

DESIGN OF AN INTEGRATED HARDWARE PLATFORM FOR FOUR

DIFFERENT LIGHTWEIGHT BLOCK CIPHERS

By

© Haohao Liao

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

 requirements for the degree of

Master of Engineering

FACULTY of ENGINEERING AND APPLIED SCIENCE

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

June 2015

St. John’s Newfoundland

i

Abstract

In recent years, there are more and more embedded devices with limited hardware

resources, such as RFID tags and smart cards. In these devices, since the resources are

limited, we need some specially designed cryptographic ciphers to ensure the required

security level. Many lightweight block ciphers, such as PRESENT, PRINTcipher, LED

and Piccolo, were designed to meet these requirements. In these resource-constrained

environments, we need specific hardware implementations for these ciphers to

minimize resources.

In this thesis, we investigate the hardware implementation of four different, but

similar, lightweight block ciphers: PRESENT, Piccolo, PRINTcipher and LED. The

purpose of this thesis is to present a common platform which integrates these four

ciphers into one system using a shared datapath, with the objective of reducing the area

below the total sum of area consumed by the individual ciphers. First, we implement

these four ciphers separately, and then design a platform which integrates these four

ciphers together into a basic iterative design. Then, we compare the resource

consumption results of the platform and the four individual ciphers. In addition to the

normal iterative design, we also present a serialized design of the platform, which is

more compact than the iterative design. The structure and implementation of the

platform is clearly stated in the thesis with the target technology being the Altera

Cyclone IV FPGA. The final synthesis result shows the whole design has successfully

ii

achieved the desired objective of flexibility, low resource consumption and

compatibility to many applications. We save a lot of hardware resources by significantly

reducing the number of dedicated logic registers and combinational functions used in

the FPGA.

iii

Acknowledgement

I would like to show my best respect to my supervisor Dr. Howard Heys for his

supervision during the past two years. His patience gives me a lot of time to achieve

the targeted goal in my research. His experience gives me the best path for my research.

I would not be able to successfully finish my graduate studies without his guidance,

encouragement, and inspiration. I would also thanks the financial support given to me

by him and the School of Graduate Studies.

I also would like to show my best thanks to Dr. Cheng Li and Dr. Lihong Zhang.

From their courses, I learnt a lot of expertise which helped me finish my research. In

particular the course Advanced Digital System, from the course project, the principle

for hardware design, which is always thinking physically, is deeply engraved in my

brain. It helps me a lot in my research career.

Thanks to my colleagues Yuanchi Tian, Fan Jiang and Jiming Xu for their

friendship. They gave me a lot of help not only in my research, but also in my daily life.

We always talk together for the problems encountered during the research, the daily life.

Besides, as an international student, we also celebrate some traditional Chinese festival

together, which makes me no longer feel alone in Canada.

iv

Contents

Abstract ... i

Acknowledgement .. iii

Contents .. iv

List of Tables .. viii

List of Figures ...x

List of Abbreviations and Symbols .. xiv

Chapter 1 Introduction .. 1

1.1 A Model for Security in Communication Networks 1

1.2 Symmetric Key Ciphers and Public Key Ciphers ... 3

1.3 Block Ciphers and Stream Ciphers ... 4

1.4 Public Key Ciphers .. 5

1.5 Lightweight cryptography ... 6

1.6 Iterative Design and Serialized Design ... 7

1.7 Motivations and Contributions .. 7

Chapter 2 Background ... 11

2.1 Conventional Cryptography and AES ... 11

v

2.2 Lightweight Cryptography .. 12

2.2.1 PRESENT Cipher .. 14

2.2.2 Piccolo Cipher .. 16

2.2.3 PRINTcipher .. 18

2.2.4 LED Cipher .. 20

2.2.5 Some Other Lightweight Block Ciphers .. 22

2.3 Implementation Results and Comparison of Lightweight Block Ciphers 23

2.4 FPGA Design and Implementation Methodology ... 25

2.4.1 Logic Elements (LEs) .. 25

2.4.2 FPGA Design Flow .. 27

2.5 Summary ... 28

Chapter 3 Iterative Design of Individual Ciphers and the Multi-cipher Platform

 29

3.1 Iterative Design of Four Individual Ciphers ... 29

3.1.1 Block Diagram ... 29

3.1.2 Iterative Design of PRESENT Cipher ... 30

3.1.3 Iterative Design of Piccolo Cipher ... 34

vi

3.1.4 Iterative Design of PRINTcipher ... 38

3.1.5 Iterative Design of LED Cipher ... 41

3.2 Iterative Design of the Multi-cipher Platform ... 44

3.3 Summary ... 54

Chapter 4 Serialized Design of Individual Ciphers and the Platform 56

4.1 Serialized Design of Each Individual Ciphers .. 57

4.1.1 Block Diagram ... 57

4.1.2 Serialized Design of PRESENT Cipher ... 58

4.1.3 Serialized Design of Piccolo Cipher .. 62

4.1.4 Serialized Design of PRINTcipher ... 70

4.1.5 Serialized Design of LED Cipher .. 75

4.2 Serialized Design of the Multi-cipher Platform .. 84

4.3 Summary ... 95

Chapter 5 Conclusions and Future Work .. 96

5.1 Conclusions ... 96

5.2 Future Work ... 98

5.2.1 Transferring the Platform from FPGA to ASIC 98

vii

5.2.2 Verification in Real Test Environment ... 99

5.2.3 Adding More Lightweight Block Ciphers on the Platform 99

References ...101

Appendix A VHDL Code for “Mixcolumns” Component in Piccolo Cipher and

LED Cipher ...104

A.1 “Mixcolumns” in Piccolo Cipher .. 104

A.2 “Mixcolumns” in LED Cipher Using Matrix M ... 105

A.3 Serialized “Mixcolumns” in LED Cipher Using Matrix A 106

Appendix B VHDL Code for the State Register Used in the Serialized Design of

the Platform ...108

viii

List of Tables

Table 2.1 Difference Between Lightweight Block Ciphers and Conventional Block

Ciphers ... 13

Table 2.2 Virtual sbox of PRINTcipher [10] .. 19

Table 2.3 Summary of Evaluation Metrics for Hardware Implementations [16] 24

Table 3.1 Synthesis Result of the Iterative Design of PRESENT Cipher 34

Table 3.2 Synthesis Result of the Iterative Design of Piccolo Cipher 37

Table 3.3 Synthesis Result of the Iterative Design of PRINTcipher 40

Table 3.4 Synthesis Result of the Iterative Design of LED Cipher 43

Table 3.5 The Coding of "cipher_mode" Signal .. 46

Table 3.6 Resources Usage Comparison for Different Ciphers and Platform 51

Table 3.7 Number of Combinational functions of Key scheduling 53

Table 3.8 Performance of the Iterative Implementation .. 54

Table 4.1 Notations in Chapter 4 ... 56

Table 4.2 Summary of the Resource Consumption of the Serialized Design of

PRESENT Cipher .. 61

ix

Table 4.3 Mode of Operations in Piccolo State Register ... 64

Table 4.4 Summary of the resource consumption of the serialized design of Piccolo 69

Table 4.5 Summary of the Resource Consumption of the Serialized Design of

PRINTcipher .. 74

Table 4.6 Summary of the Resource Consumption of the Serialized Design of LED

Cipher Without Serializing the "Mixcolumns" Component .. 79

Table 4.7 Summary of the Resource Consumption of Serialized Design of LED Cipher

with the Serialized the "Mixcolumns" Component ... 84

Table 4.8 Modes of Operations Shared by Different Ciphers 87

Table 4.9 Resource Usage Summary for Different Ciphers ... 92

Table 4.10 Number of Combinational functions of Key Register and State Register . 94

Table 4.11 Performance of the Serialized Implementation .. 95

x

List of Figures

Figure 1.1 Model for Network Security [1] ... 1

Figure 1.2 Typical Model of Symmetric Key Cipher .. 3

Figure 1.3 A Basic SPN Structure .. 4

Figure 1.4 Public Key Cipher Model ... 6

Figure 2.1 Structure of PRESENT. [7] .. 15

Figure 2.2 Structure of Piccolo Cipher [9] ... 16

Figure 2.3 F Function and the Diffusion Matrix .. 17

Figure 2.4 One Round of PRINTcipher ... 19

Figure 2.5 Structure of LED Cipher [11] ... 20

Figure 2.6 One Round and The Mixcolumns Matrix of LED Cipher. 21

Figure 2.7 Logic Elements for Cyclone IV device [19] ... 26

Figure 2.8 FPGA design flow [21] ... 27

Figure 3.1 Block Diagram for Each Individual Ciphers .. 30

Figure 3.2 Hardware Structure of Iterative Design of PRESENT Cipher 31

Figure 3.3 Block diagram of PRESENT FSM ... 32

Figure 3.4 Simulation Results of PRESENT Cipher Error! Bookmark not defined.

xi

Figure 3.5 Hardware Structure of Iterative Design of Piccolo CipherError! Bookmark

not defined.

Figure 3.6 State Transition Diagram of the FSM of Piccolo 36

Figure 3.7 Simulation Results of Piccolo Cipher... 37

Figure 3.8 Hardware Structure of the Iterative Design of PRINTcipher 39

Figure 3.9 Simulation Result of Iterative Design of PRINTcipher 40

Figure 3.10 Hardware Structure of the Iterative Design of LED Cipher 42

Figure 3.11 Simulation Result of the Iterative Design of LED Cipher 43

Figure 3.12 Block Diagram of the Multi-cipher Platform ... 44

Figure 3.13 Hardware Structure of the Iterative Design of the Multi-cipher Platform 45

Figure 3.14 State Transition Diagram of the Iterative Design of Multi-cipher Platform

.. 49

Figure 3.15 Simulation Result of the Iterative Design of Platform 50

Figure 4.1 Block Diagram for Each Individual Cipher .. 57

Figure 4.2 Hardware Structure of the Serialized Design of PRESENT Cipher [26] ... 58

Figure 4.3 State Transition Diagram of the Serialized Design of PRESENT Cipher .. 59

Figure 4.4 Simulation Result of the Serialized Design of PRESENT Cipher 60

xii

Figure 4.5 1-bit of the Structure of the Registers with 4 Modes of Operation 62

Figure 4.6 Hardware Structure of the Serialized Design of Piccolo Cipher 63

Figure 4.7 State Transition Diagram of the Serialized Design of Piccolo Cipher 65

Figure 4.8 Simulation Result of the Serialized Design of Piccolo 69

Figure 4.9 Hardware Structure of the Serialized Design of PRINTcipher 71

Figure 4.10 State Transition Diagram of the Serialized Design of PRINTcipher 72

Figure 4.11 Structure of the "permutation" Component .. 73

Figure 4.12 Simulation Result of the Serialized Design of PRINTcipher 74

Figure 4.13 Hardware Structure of the Serialized Design of LED Cipher Without

Serializing the "Mixcolumns" Component .. 76

Figure 4.14 State Transition Diagram of the Serialized Design of LED Cipher Without

Serializing the "Mixcolumns" Component .. 77

Figure 4.15 Simulation Result of Serialized Design of LED Cipher Without Serializing

the "Mixcolumns" Component .. 78

Figure 4.16 Hardware Structure of the Serialized Design of LED Cipher With the

Serialized "Mixcolumns" Component ... 81

Figure 4.17 Steps of the the "Mixcolumn" component .. 82

Figure 4.18 Simulation Result of Serialized Design of LED Cipher With the Serialized

xiii

the "Mixcolumns" Component .. 82

Figure 4.19 Block Diagram of the Serialized Design of the Platform 85

Figure 4.20 Hardware Structure of the Serialized Design of the Platform 86

Figure 4.21 State Transition Diagram of the Serialized Design of the Platform 89

Figure 4.22 Simulation Results of the Serialized Design of the Platform 91

xiv

List of Abbreviations and Symbols

3DES Triple DES

ASIC Application Specified Integrated Circuit

AES Advanced Encryption Standard

CMOS Complementary Metal-Oxide Semiconductor

DES Data Encryption Standard

FPGA Field Programmable Gate Array

FSM Finite State Machine

GE Gate Equivalent

Mbps Megabits per second

MHz Mega Hertz

MUX Multiplexer

NIST United States National Institute of Standards and Techonology

TSMC Taiwan Semiconductor Manufacturing Company

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

1

Chapter 1

Introduction

In this chapter, we give a brief introduction about cryptography and some typical

applications. Two different design principles are also introduced.

1.1 A Model for Security in Communication Networks

Figure 1.1 shows a typical model for security in a communication network. First,

the sender will send the message into the cipher or encryption algorithm, where the

message is encrypted into a secret message by using the key. The key is unknown and

the secret message is unreadable to the opponent. Then, after the recipient receives the

secure message, the decryption algorithm in the recipient’s side will perform the

decryption where the secure message will be decrypted and readable to the recipient.

Sender
Information

channel

Encryption algorithm

key

S
ec

ret

m
e
ssag

e

Decryption algorithm

key

Trusted third party

Recipient

Opponent

S
ec

ret

m
e
ssag

e

Figure 1.1 Model for Network Security [1]

Here the encryption algorithm and decryption algorithm may be a symmetric key

2

cipher such as the Advanced Encryption Standard (AES) [2]. Also, it can be public a

key cipher such as RSA [2]. A trusted third party may act as the distributer of the secret

information. For example, if the encryption algorithm and decryption algorithm is AES,

the trusted third party will be used to distribute the cipher key for both the sender and

recipient. This key must not be obtained by the opponent, so it must be ensured that the

transmission between the sender/recipient and the trusted third party is secure.

 There are four tasks in this general model [1]:

1. Design a secure algorithm which will act as the security-related transformation and

which should be secure enough to defeat the attempt of the opponent to get the

messages sent by the sender. For example, AES is the most applied encryption

algorithm today and is believed to have a very high security level.

2. Generate the security information for the algorithm. For example, AES needs to get

the encryption/decryption key to finish the encryption/decryption.

3. A secure scheme should be developed to distribute the security information. This is

also known as the key distribution scheme.

4. Both the sender and recipient need a protocol to make sure the encryption algorithm,

decryption algorithm and key are correctly working to receive the security goal of

this model.

3

1.2 Symmetric Key Ciphers and Public Key Ciphers

 A cipher is a set of functions which are combined together to generate an algorithm

which transfers the original set of data into another set of data which has no obvious

features and is unreadable to an opponent.

 Typically, ciphers are divided into two categories: symmetric key ciphers and

public key ciphers. Furthermore, symmetric key ciphers consist of block ciphers and

stream ciphers.

Encryption Decryption

ciphertext

insecure channel

plaintext plaintext

cipher key cipher key

Figure 1.2 Typical Model of Symmetric Key Cipher

 Figure 1.2 shows a typical model of how a symmetric cipher works. Normally, the

plaintext will be encrypted by using the cipher to transfer the plaintext into ciphertext,

which is sent through an insecure channel. At the recipient’s end, the ciphertext will be

decrypted into plaintext again by using the same cipher. In encryption or decryption,

the same key is required to correctly execute the operation. In order to keep the plaintext

from any potential attackers, the key must be secret to any other untrusted entities. In

this way, if the cipher is carefully designed, the attackers can not recover the ciphertext

without the correct key.

4

1.3 Block Ciphers and Stream Ciphers

 Symmetric key ciphers can be divided into two different categories: block ciphers

and stream ciphers. A stream cipher encrypts one bit or one byte of data at a specific

time [2], while a block cipher divides the data into different blocks, and deals with one

block of data at a specific time [2]. Typical block sizes range from 48 to 128 bits.

Normally the stream cipher is similar to a one-time pad by using a keystream generator.

The keystream generator generates a pseudorandom sequence of bits which have no

obvious characteristics. For block ciphers, the architecture of the algorithm usually

follows a Feistel cipher structure or Substitution-Permutation Network (SPN) structure.

.

.

.

Add_roundkey

Sbox Layer

Permutation Layer

Add_roundkey

Sbox Layer

Permutation Layer

Plaintext

Sbox Layer

Add_roundkey

Ciphertext

R
o
u
n
d

Figure 1.3 A Basic SPN Structure

The SPN structure is widely used in many ciphers. Figure 1.3 shows a typical

5

structure of an SPN. Basically, an SPN consists of several rounds of three components:

Add_roundkey, substitution or sbox layer and permutation layer. The Add_roundkey

component is typically a bit-by-bit XOR of the data block and the round key. The round

key is achieved through the key scheduling algorithm from the original cipher key. The

substitution layer is a non-linear function applied to the data block executed by mapping

sub-blocks using a fixed nonlinear function. For example, in many lightweight block

ciphers, a 4x4 sbox maps 4 inputs to 4 outputs using nonlinear Boolean functions. The

permutation layer is a bit position change of the data block, usually, at the cost of no

hardware resources. Sometimes the permutation is replaced by a more complex linear

transformation as is done, for example, in AES. A typical lightweight block cipher

usually consists of several identical rounds applying a different round key in each round

to finally get the ciphertext.

1.4 Public Key Ciphers

In symmetric key ciphers, at the transmitter, plaintext is encrypted into ciphertext

which is transferred through an insecure channel and then decrypted at the receiver by

using a symmetric key. If the opponent knows the key, it would be very easy for the

opponent to recover the ciphertext. In this way, the distribution of the symmetric key is

a serious problem. Under this circumstance, public key ciphers are employed. RSA is

one of the best known public key ciphers and is based on number theory.

6

Encryption

Ekp

Decryption

Dks

insecure channel

plaintext plaintext

kp

Figure 1.4 Public Key Cipher Model

 Figure 1.4 shows the model of a public key cipher. In this model, the encryption

key and decryption key are different. The encryption key kp is a public key which is

known to all the senders, whereas the decryption key ks is a secret key which is only

available to the receiver. In order to make sure that after the decryption function, the

receiver can recover the plaintext, the following equation must be satisfied:

Dks(Ekp(plaintext)) = plaintext. Under this model, the public key kp and secret key ks

are related to each other. However, since the public key is known to everyone, the secret

key must not be easily determined by the known public key.

1.5 Lightweight cryptography

 Modern cryptographic algorithms are widely used in many applications such as

RFIDs, smart cards, Internet of Things (IoT), etc. The requirement for security level

ranges from lightweight applications to conventional applications. In some applications,

resource consumption is critical. For example, an RFID tag is a lightweight application

where hardware cost is the major factor considered and the required security level is to

achieve enough security but not a very high security. However, in conventional

applications such as web-based banking, AES is the most suitable choice since the

7

security requirement is usually very high and there are no significant implementation

constraints.

1.6 Iterative Design and Serialized Design

For symmetric key block ciphers, different hardware design approaches are

available. One approach is the iterative design. In this approach, one clock cycle will

deal with all the functions inside a round. For example, the PRESENT cipher has three

operations in one round: Add_roundkey, sbox and permutation. If an iterative design is

applied, all these three operations will be completely finished in one clock cycle. If the

block size is 64 bits, we need a 64 bit “XOR” and 16 4x4 sboxes. The iterative design

is sometimes also called the round-based design.

Compared to the iterative design, a more compact design approach is the serialized

design. In a serialized design, only one sbox will be applied for one clock cycle. Besides,

for the Add_roundkey layer, the size of the “XOR” is based on the size of datapath we

want to use, and usually, we choose the same size of the “XOR” as the size of the sbox.

For example, the serialized design of PRESENT, a 4 bit “XOR” will be applied to the

Add_roundkey layer and only one 4x4 sbox will be applied in one clock cycle. Usually,

a shift register will be used for the state register and key register inside a serialized

design.

1.7 Motivations and Contributions

 Lightweight cryptography is a hot and promising research area. However, typically

8

specific lightweight block ciphers are found to be most suitable for particular

applications. For example, PRINTcipher is designed for IC-Printing. However, in some

applications, such as RFID tags and other embedded systems, there is a potential need

to integrate several different lightweight block ciphers into a single device to supply

higher flexibility for multiple application environments. However, there is always a

trade-off between flexibility and hardware resource consumption. Under this situation,

we develop a digital hardware platform which integrates four well regarded recently

proposed lightweight block ciphers: PRESENT, Piccolo, PRINTcipher, and LED. This

platform is designed to only modestly increase the hardware resource consumption

beyond the requirements of one cipher. It is found that the platform is efficient and

resource-friendly, important considerations since the resource usage is critical for most

embedded systems.

 The purpose and motivation of my research is to design the platform which can

meet these requirements: high flexibility, low resource consumption and compatibility

to various applications.

 On one hand, it is easier for the users to apply the platform in different application

environments. On the other hand, they do not need to worry about the large increase of

the hardware resource consumption since the platform is an efficient implementation

of four lightweight block ciphers. In this way, the users can have a very compatible

embedded devices with high flexibility with only a very modest cost.

9

 The organization of this research thesis is presented in subsequent chapters as listed

below:

 Chapter 2 provides the detailed background for the design in this thesis. The

design specification of PRESENT, Piccolo, PRINTcipher and LED are

presented in this chapter. Besides, it also introduces the differences between the

conventional block ciphers and lightweight block ciphers. A list of the

implementation results of several lightweight block ciphers are also provided in

this chapter.

 Chapter 3 introduces the iterative hardware design and implementation of both

the four individual ciphers and the multi-cipher platform. Block diagrams and

the state transition diagrams for the finite state machines (FSMs) are provided.

It is particularly focused on the structure of the platform and the philosophy of

how the hardware resources are saved. The synthesis results are also provided.

 Chapter 4 presents the serialized hardware design and implementation of both

the four individual ciphers and the multi-cipher platform. Block diagrams, state

transition diagrams for the FSMs and some simulations results are provided.

Also, it will particularly pay attention to the structure of the platform. Some

different ways of implementation are also presented with analysis in relation to

the synthesis results.

 Chapter 5 draws a conclusion for all the designs and implementations.

10

Additionally, it also provides the future research direction.

11

Chapter 2

Background

In this chapter, we provide the background for our research. Four lightweight block

ciphers which are integrated into the platform are discussed in detail while some other

lightweight block ciphers are also briefly introduced. Besides, we also analyze the

reason why we chose these four ciphers and not others.

2.1 Conventional Cryptography and AES

Cryptography has a very long history dating back to the Caesar cipher [2] and

beyond. Nowadays, in order to provide higher security, more and more ciphers with

complex algorithms are being invented. For most conventional block ciphers, the

hardware implementation typically has a very high security level at the sacrifice of

costing a large amount of hardware resource such as area on a chip.

The Data Encryption Standard (DES) [3], which was the old standard of the

National Institute of Standards and Technology (NIST), is still in service in some

applications. Also, after some modifications to the algorithms used in DES, 3-DES,

which is also called triple-DES was developed. However, in order to provide a better

encryption algorithm which is capable ensuring the security of sensitive government

information in the 21st century, Rijndael was selected as the Advanced Encryption

Standard (AES) [4].

12

AES is the most widely used conventional block cipher all over the world. It is a

symmetric key block cipher which is designed to replace DES in many commercial and

government applications. The block size for AES is fixed as 128 bits, while the key size

is flexible and can be 128, 192 or 256 bits. As a conventional block cipher, AES is very

complex in its data processing structure. In particular, the implementation of the sbox

layer inside AES is basically not very hardware-friendly. As a result, the hardware

implementation of AES costs a lot of resources, but generates a very high security level

which is more than needed in some embedded applications.

2.2 Lightweight Cryptography

 In most cryptographic applications, AES is the best choice. However, AES is not

suitable for some resource-constrained environments. Under this circumstance,

lightweight cryptography is designed to meet the requirements. Lightweight

cryptography has 4 important design considerations [5] :

1. The targeted environment is a resource-constrained environment.

2. It is not a good choice for all applications. In most resource-sufficient environments,

AES may be a better choice.

3. Lightweight is not equal to weak. Lightweight cryptography also has a enough

security for most attacks but likely not for an extremely strong opponent.

4. Lightweight cryptography is designed for a specific platform, while conventional

cryptography (eg. AES, DES and so on…) considers a broad range of target

13

platforms.

Table 2.1 Difference Between Lightweight Block Ciphers and Conventional Block

Ciphers

 Features

Cipher

Key

Scheduling

Algorithm

Key size

Block Size

Number of

Rounds

Lightweight

block cipher

Simple Small (80 bits) Small (64, 80

bits)

More

(25,32,48)

Conventional

block cipher

Complex Large (128

bits)

Large (128 bits

or larger size)

Fewer

(typically

10)

Many lightweight block ciphers are designed according to these criteria. PRESENT,

Piccolo, PRINTcipher and LED are four typical lightweight block ciphers [6].

Compared to traditional block ciphers, lightweight block ciphers always have a smaller

block size, a simpler key scheduling algorithm and a smaller key size. In order to

achieve enough security for lightweight applications while the key size and block size

are reduced, the key scheduling algorithm is simplified, and the number of rounds for

block ciphers is increased. Table 2.1 shows the differences between lightweight block

ciphers and conventional block ciphers.

14

2.2.1 PRESENT Cipher

 The PRESENT cipher is an ultra-lightweight block cipher presented in 2007 [7]. It

uses a typical SPN structure.The label PRESENT-80 refers to the cipher structure with

an 80 bit length key, while PRESENT-128 uses a 128 bit length key. PRESENT-80

consists of 32 rounds by using a structure of substitution permutation network and it

works based on a block size of 64 bits.

Figure 2.1 shows the structure of the PRESENT cipher. The “Add_roundkey”

component performs a simple 64 bit XOR between the round key and the state. For

each round, the 64 bit block is divided into 16 4-bit nibbles for input to the sbox layer.

The sbox in PRESENT is 4 bits, half of the size of the sbox in AES. Although an 8 bit

sbox can achieve higher security, it is not hardware friendly [8]. However, since the

sbox is the only non-linear component in PRESENT, it is also carefully designed against

differential and linear attacks. The permutation layer is a bit position change performed

on the 64 bit data block according to the following pseudocode:

for i in 0 to 15 generate

 output(i) <= input (4* i);

 output(i+16) <= input(4*i+1);

 output(i+32) <= input(4*i+2);

 output(i+48) <= input(4*i+3);

15

Note that the last round of the PRESENT cipher does not include an sbox layer or

permutation layer. The last round key will XOR with the last state and finally generate

the ciphertext.

Add_roundkey

16 4*4 sbox

Permutation

.

.

.

Key

Update

Add_roundkey

31 rounds

last round

Round key

.

.

.

Update

Round key

Figure 2.1 Structure of PRESENT. [7]

The key scheduling part of this cipher is comprised of a 61 bit left shift, an sbox

and an XOR with the round counter. For PRESENT-80, the key scheduling algorithm

is performed according to the following steps [7]:

1. [k79k78 . . . k1k0] <= [k18k17 . . . k20k19].

2. [k79k78k77k76] <= S[k79k78k77k76].

3. [k19k18k17k16k15] <= [k19k18k17k16k15] ⊕ [round counter].

where S represents the sbox operation.

16

2.2.2 Piccolo Cipher

The Piccolo cipher is a lightweight block cipher recently published in 2011 [9]. It

uses a Generalized Feistel Network (GFN). Figure 2.2 shows the structure of the

Piccolo cipher. The cipher is similar to the PRESENT cipher. It also has two different

key lengths: 80 bits and 128 bits. The 80-bit key version, Piccolo-80, consists of 25

rounds.

round permutation

Plaintext

64

 wk0

16

16

F
rk0

 wk1

16

16

F
rk1

F

round permutation

16 16

F

16 16

rk2

rk3

...

F

round permutation

16

...

16

...

F

16

...

16

rk2i-4 rk2i-3

 wk2

16

16

F
rk2i-2

 wk3

16

16

F
rk2i-1

ciphertext

64

Figure 2.2 Structure of Piccolo Cipher [9]

17

The combinational datapath of the Piccolo-80 includes a round function, F, which

consists of a diffusion matrix which is taken from AES and has eight sboxes. Figure 2.3

shows the structure of the F function and the matrix used in the F function.

16

sbox

M

4

sbox

4

sbox

4

sbox

4

sbox

4

sbox

4

sbox

4

sbox

4

16

input

output

𝑀 = (

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

)

Figure 2.3 F Function and the Diffusion Matrix

 The calculation of the matrix is based on the Galois Field GF(24) [1] by using an

irreducible polynomial x4 + x + 1. For a 16 bit input of the F function, the result of this

calculation is included in the VHDL code which can be found in Appendix A.1.

The key scheduling part for Piccolo consists of two different keys. One is whitening

18

key wki which is used in the first and last round of the encryption. The other one is

round key rki which has two different values for each round. For round i, the two

different round keys are labelled as rk2i-2 and rk2i-1. In each round, two round constants

rc2i-2 and rc2i-1 are used to generate the round key rk2i-2 and rk2i-1. The details of this key

scheduling algorithm is too complicated to demonstrate here. Refer to [9] for more

details.

2.2.3 PRINTcipher

PRINTcipher is a lightweight block cipher published in 2010 [10]. Unlike the

PRESENT cipher and Piccolo cipher, the cipher operates on a 48 or 96 bit data block.

However, PRINTcipher still uses the conventional substitution permutation network

except the permutation is selected by the key. The label PRINTcipher-48 refers to the

cipher structure with a 48 bit length data block, while PRINTcipher-96 uses a 96 bit

length data block. Figure 2.4 shows one round of PRINTcipher-48. SK1 is the 48 most-

significant bits of the original key, while SK2 is the 32 least-significant bits of the

original key.

Each round of PRINTcipher-48 consists of 4 different layers. First, the state value

will XOR with the 48 bit round key SK1, which is called the “Add_roundkey” layer.

Second, in the permutation layer, the state will perform a simple linear diffusion. Third,

the last 5 bits of the state performs a bitwise XOR with the round constant “rc”. Finally,

after the combination of sbox and keyed-permutation, the last layer is also called the

19

virtual sbox layer [10]. The input and output of the virtual sbox is listed in Table 2.2.

The 3-bit data input refers to the data input of the virtual sbox and the 2 bit key input

refers to the key input which is taken from SK2. In Table 2.2, output(x|key=k) refers to

the output of the virtual sbox when the 2 bit key is k and 3 bit data input is x.

SK2

Round permutation

Add_roundkey

Add_roundconstant

Keyed permutation

Add_roundkey

sbox

SK1

virtual sbox

Figure 2.4 One Round of PRINTcipher

Table 2.2 Virtual sbox of PRINTcipher [10]

3 bit data input 0 1 2 3 4 5 6 7

Output(x|key=0) 0 1 3 6 7 4 5 2

Output(x|key=1) 0 1 7 4 3 6 5 2

Output(x|key=2) 0 3 1 6 7 5 4 2

Output(x|key=3) 0 7 3 5 1 4 6 2

20

The PRINTcipher consists of 48 rounds. The key scheduling part for PRINTcipher

is less complex than the previous two ciphers. The key is identical for each round. In

each round, 48 bits of key, SK1, are used to XOR with the state and 32 bits of key, SK2,

are used for the keyed-permutation. PRINTcipher uses a 3-bit sbox, which can form a

virtual sbox when combined with the keyed-permutation.

2.2.4 LED Cipher

The LED cipher is a lightweight block cipher published in 2011 [11]. Similar to the

above mentioned three ciphers, LED cipher also uses an SPN structure. The cipher

operates on a 64 bit data block. It has four different key sizes: 64 bit, 80 bit, 96 bit and

128 bit and they are labelled as LED-64, LED-80, LED-96 and LED-128, respectively.

LED-64 needs 32 rounds to finish encryption while the others need 48 rounds to finish

encryption. In the LED cipher, a step is defined as four identical rounds without an

“Add_roundkey” process. The major difference between the LED cipher and other

three ciphers is the key scheduling component. LED cipher does not need a round key

for each round. Instead, it needs a step key for each step.

4 rounds 4 rounds 4 rounds

Ki Ki Ki Ki Ki

Step 1 Step 2 Step i

Figure 2.5 Structure of LED Cipher [11]

Figure 2.5 shows the data flow of the LED cipher. For LED-64, 8 steps are needed

21

to finish the whole encryption process, while for LED-80, LED-96 and LED-128, 12

steps are needed to finish the encryption process. As described above, each step has

four identical rounds. Each round consists of four layers listed as: “Add_roundconstant”,

“sbox”, “Shiftrows” and “Mixcolumns”. The structure of these four layers is shown in

Figure 2.6.

sbox

Add_roundkey

Shiftrows

Mixcolumns

Add_roundconstant

𝐴4 = (

0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

)

4

= (

4 2 1 1
8 6 5 6
𝐵 𝐸 𝐴 9
2 2 𝐹 𝐵

) = 𝑀

Figure 2.6 One Round and The Mixcolumns Matrix of LED Cipher.

 The LED cipher also has a Mixcolumns layer which is similar to AES. Usually, for

a round-based implementation, matrix M is used in the Mixcolumns, while in compact

serialized implementation, matrix A is adopted for four times in the Mixcolumns. The

computation of the diffusion matrix is based on GF(24) by using an irreducible

polynomial x4 + x + 1.

22

2.2.5 Some Other Lightweight Block Ciphers

In addition to the mentioned-above four ciphers, there are many more other

lightweight block ciphers. For example, KATAN32 [12], which is one of the variants

of KATAN cipher family, has a 32 bit block size. In KATAN32, the state register is

divided into two parts L1 and L2 and two different functions fa(·) and fb(·) to perform

as the nonlinear part inside this cipher. Another example is KLEIN [13] cipher, in which

the same Mixcolumn operation is used as AES. The round permutation, which is called

the RotateNibbles step, for KLEIN cipher is pretty simple, just an 8 bit left shift. Both

these lightweight block ciphers have much less complex encryption or decryption

algorithms than AES.

The reason why we choose PRESENT, Piccolo, PRINTcipher and LED to be

implemented and integrated into our platform rather than other lightweight block

ciphers is these four ciphers were recently presented at the well-regarded Cryptographic

Hardware and Embedded Systems (CHES) conference and are considered by the

cryptographic community to be serious proposals. Furthermore, these four ciphers share

a similar structure compared to other ciphers, such as the KATAN cipher which has no

sbox layer. Instead, it uses two other different nonlinear functions for each round. Since

we need to find similar components for the ciphers to integrate into the multi-cipher

platform, we chose to use these ciphers in which similar structure are shared.

23

2.3 Implementation Results and Comparison of Lightweight

Block Ciphers

In recent years, lightweight cryptography has been an extraordinarily hot research

field. Not only the above-mentioned four typical lightweight block ciphers, but also

many lightweight block ciphers such as MIBS [14], KlEIN [13], KATAN [12] and

TWINE [15] have also been developed. All these lightweight block ciphers are aimed

at efficiency and low-cost. However, it is extremely hard to find suitable evaluation

metrics for these different lightweight block ciphers since different ciphers are designed

based on different perspectives. In [16], the author introduced several different metrics

which could be applied to evaluate the hardware implementation lightweight block

ciphers.

Table 2.3 shows several metrics and their relationships. The column of “Relative

to” means the change of a specific application constraint is related to other constraints

[16]. For example, if we want to save a lot of area or reduce the instantaneous power of

a hardware implementation, we can simply share as many resources as possible or just

reduce the datapath to 1 bit. However, in this way, the throughput will be significantly

reduced, which results in the increase of the time constraints. Also, to finish one

encryption cycle, the energy cost may be increased. In this way, the possible design

principles of block ciphers can be divided into two categories. The first one is “design

for low area and power” and the second category is “design for high throughput and

low energy”. In [17], similar opinions are provided. Actually, the evaluation metric for

24

a lightweight block cipher should also include the security level. Usually, a high

throughput implementation of a block cipher with a high security level always results

in a high cost or area [17].

Table 2.3 Summary of Evaluation Metrics for Hardware Implementations [16]

Application

constraints

Relative to Hardware design

goals

Algorithmic

design goals

area (um2 or Gate

Equivalent (GE))

Time or energy

constraints

Share resources Reduce

components cost &

versatility

instantaneous

power (J/sec)

Reduce datapath

throughput

(bit/sec)

Area or power

constraints

Pipeline,

parallelize

Minimize the total

combinational cost

energy (J/bit) unroll

The hardware design goals and the algorithmic design goals are the methodology

which could be applied to reduce the area, power and/or energy or increase the

throughput. In our thesis, all these four ciphers we choose to be integrated on the

platforms have basically simple algorithms both in the datapath and the key scheduling.

As a result, these lightweight block ciphers achieve the goal of area efficiency.

25

In this thesis, we study an iterative design and a serialized design focused on

sharing the hardware components to reduce the area cost which focuses on both

reducing the width of the datapath and sharing similar hardware components.

2.4 FPGA Design and Implementation Methodology

Field-Programmable Gate Array (FPGA) and Application Specified Integrated

Circuits (ASIC) are both potential choices for our targeted environment. However,

FPGA is our first choice since it is easier to quickly prototype in FPGA and the

development tools are mature and reliable.

 Hardware Description Languages (HDLs) [18] are now widely used in industry

and academic fields. HDLs are used to describe the hardware circuits in programmable

languages. Three different design levels of HDLs are: behavior level, Register-to-

Transfer (RTL) level and structural level. The most popular two HDLs are VHSIC HDL

(VHDL) and Verilog HDL. In our research, we use VHDL as the programmable

language.

2.4.1 Logic Elements (LEs)

In our thesis, the number of Logic Elements (LEs) is used to indicate the hardware

resources consumed our design since they are the smallest unit [19] in the Altera

Cyclone IV FPGA devices. Figure 2.7 shows the structure of the LEs used in Altera

Cyclone IV device. The basic components of one LE are a 4 input Look-Up Table (LUT)

and a single programmable register. A 4 bit input LUT is actually a 16x1 Random

26

Access Memory (RAM). The 4 bit input acts as the address line of the RAM and after

synthesis, the synthesis tool will calculate the possible outputs of a certain

combinational circuit and store the results in the RAM. The LUT and the programmable

register can separately drive the three different outputs. This feature allows the

synthesis tool to generate the resource utilization result in two different categories:

combinational functions and dedicated logic registers. The LEs have two different

working modes. The first one is normal mode which is suitable for normal

combinational functions. The second one is arithmetic mode which is suitable for

comparators or counters. In our design, except for the counters, most LEs are working

in normal mode.

Figure 2.7 Logic Elements for Cyclone IV device [19]

In this thesis, we often enumerate resources based on synthesis results which list

27

the number of combinational functions and dedicated logic registers. Note that one logic

element is needed for every combinational function and/or register. Hence, the number

of LEs needed can be assumed to be the larger of the number of combinational functions

and dedicated logic registers.

2.4.2 FPGA Design Flow

Figure 2.8 provides the FPGA design flow for Altera devices. The “Design”

includes analyzing the specification of a design and VHDL coding. Then the whole

project will be compiled before we apply the functional simulation. In the “Compile”

process, we need to deal with any syntax error in our code, while in the “Simulate”

process, we need to make sure that the test vectors can run through the project correctly.

After finishing the simulation, the synthesis tool Quartus II [20] will be used to program

the project to our targeted device.

CompileDesign Simulate Program
Hardware

verify

Figure 2.8 FPGA design flow [21]

 In our research, we do not include the “Hardware verify” process in the design flow.

We only complete the simulation and synthesis and leave the real hardware verification

for the future work. Moreover, “Hardware verify” is not necessary to obtain the desired

results of the analysis.

28

2.5 Summary

In this chapter, we introduced the necessary background required for our work in

this thesis. First, we discussed the differences between lightweight cryptography and

conventional cryptography. Then, we introduce the details of four lightweight block

ciphers that are designed and implemented in our thesis. Besides, we discussed the

reasons why we chose these four ciphers instead of other lightweight block ciphers.

Finally, a basic background on FPGAs and their design flow was introduced in the last

section.

In the next chapter, we will discuss the details of the iterative design for each

individual cipher and the multi-cipher platform. Comparison of the synthesis results

between these designs will be provided.

29

Chapter 3

Iterative Design of Individual Ciphers and

the Multi-cipher Platform

In this chapter, an iterative design and implementation of the four individual

ciphers and the multi-cipher platform are presented. An iterative design is also a round-

based design. In this design, one clock cycle deals with one round of a single state. Thus,

the structure of each design is basically straightforward. Since in many applications,

only the forward or encryption process of the block cipher is required (eg. counter mode

of operation), this chapter does not discuss the decryption process, although due to the

similar structure of encryption and decryption processes, similar results of resource

consumption are expected. Some of the results of this chapter were presented in [22].

3.1 Iterative Design of Four Individual Ciphers

In this section, we discuss the iterative design of the individual ciphers. We first

discuss the common interface used for all designs and then describe the details of the

structure of each cipher.

3.1.1 Block Diagram

For all the four individual ciphers, only PRINTcipher uses a 48 bit data block while

64 bit data block is required for PRESENT, LED and Piccolo. In order to keep

30

consistency for the size of data block with a view towards integrating all these ciphers

together into one platform, in our work, we use a 64 bit input data for PRINTcipher

with the 16 most-significant bits set to all ‘0’. The intended datapath also uses 64 bits.

For all these 4 ciphers, an 80 bit key version is used in the hardware implementation.

Plain_valid

plaintext

Key_valid

key

ciphertext

Cipher_valid

64

64

80

Each

individual

cipher

Figure 3.1 Block Diagram for Each Individual Ciphers

Except for the data signal, two different valid signals, “Key_valid” and

“Plain_valid” are used to indicate when the input “key” or “plaintext” is ready,

respectively. After an appropriate number of rounds of encryption, a “Cipher_valid”

signal is asserted and the “ciphertext” is ready at the output data line. For PRINTcipher,

the 16 most-significant bits of output “ciphertext” will be set to default value of ‘0’.

3.1.2 Iterative Design of PRESENT Cipher

Figure 3.2 shows the hardware structure of the PRESENT cipher. According to the

specification of the PRESENT cipher, the combinational datapath which is included in

the dashed line of Figure 3.2, includes three layers. The “Add_roundkey” layer

performs a 64 bit-wise XOR with the round key. Since the iterative design uses a 64 bit

datapath, 16 4x4 sboxes are needed for each round. The permutation layer is a simple

31

linear layer which changes the bit positions of the state.

The state register is used to store the current state for the current clock cycle. The

“MUX” is used to select data from the current state or the plaintext. For the whole

encryption process except the first round of the encryption process, the “MUX” should

choose the input from the current state register. If the current round is the last round,

the “Cipher_valid” signal will be asserted and we can get the ciphertext from the output

of the “Add_roundkey” component.

Add_roundkey

16 4*4 sbox

Permutation

key scheduling
Round key

MUX

plaintext

state register

round counter

Round counter

5

ciphertext

Combinitional

datapath

10

Figure 3.2 Hardware Structure of Iterative Design of PRESENT Cipher

32

The key scheduling component consists of an 80 bit key register and the key

scheduling algorithm consists of a 61 bit left shift, an sbox layer for the 4 most-

significant bits and an XOR with the round counter for bit 19 to bit 15.

FSM

clock

rst_b

Plain_valid

Key_valid

done

sel_mux

sel_reg

sel_keyreg

cnt_en

cnt_ld

ready

Figure 3.3 Block diagram of PRESENT FSM

The FSM is introduced in Figure 3.3. Basically, for the iterative design of

PRESENT, the FSM is not very complex. A Mealy machine is used for the FSM since

the outputs of the FSM are based on both the current state and input. Only three states

- “IDLE”, “wait_plain”, “ENCRYPTION” - are needed. The whole system uses an

active-low asynchronous reset signal, “rst_b”, and assumes that the upstream sends the

key to the system first. The system is in “IDLE” state after the asynchronous “rst_b” is

de-asserted, and starts to work after it is asserted. The FSM steps into “wait_plain” state

after the “Key_valid” signal is asserted which means the key for this encryption process

is already loaded into the key register. In this state, the system is waiting for the plaintext

33

and ready to start the encryption. After the “Plain_valid” signal goes to high, the FSM

transfers to “ENCRYPTION” state and the “cnt_en” signal is asserted to allow the

round counter to start counting. After 31 clock cycles, the round counter asserts the

“done” signal to indicate the end of the encryption process and at the same time, the

“ready” signal is asserted by the FSM to tell the top level entity that the ciphertext is

ready and the “ready” signal is asserted. At last, the FSM transfers to “IDLE” state and

waits for the next encryption.

The whole design is coded by using VHDL and ModelSim is used for the

simulation. The simulation results are shown in Figure 3.4. The input plaintext and key

are all ‘0’ with the corresponding ciphertext being 5579C1387B228445 which is

exactly the same as the test vectors supplied in [7].

Figure 3.4 Simulation Results of PRESENT Cipher

After successfully simulating the design on ModelSim [23], Quartus II [20] is used

for the synthesis based on Altera’s Cyclone IV FPGA [24]. Table 3.1 shows the result

of the resource consumption. From Table 3.1, the number of the total combinational

34

functions and dedicated logic registers consumed by the whole cipher is 608 and 153,

respectively. Moreover, the key scheduling component consumes 328 combinational

functions which is more than half of the total combinational functions of the whole

cipher. This is a very important point that will be further discussed in later sections.

Table 3.1 Synthesis Result of the Iterative Design of PRESENT Cipher

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

PRESENT 608 153 100%

key scheduling 328 80 53.5%

3.1.3 Iterative Design of Piccolo Cipher

Figure 3.5 shows the structure of the iterative design of Piccolo. Compared to the

PRESENT cipher, it is a little bit more complex since Piccolo uses four different

whitening keys before the first round and after the last round. Multiplexers “MUX0”,

“MUX1”, “MUX2”, “MUX3” are 16 bit 2-to-1 multiplexers while “MUX4” and

“MUX5” are 64 bit 2-to-1 multiplexers. The 16 bit multiplexers are used to choose the

data from each round or the result of adding the whitening key. “MUX4” is used to

choose the correct input to the combinational datapath from the current state or the

plaintext. Since the last round does not apply a round permutation, “MUX5” is needed.

35

The original key is loaded into the key register which is included in the key scheduling

component. To generate round key “rkodd” and “rkeven”, two different round constants,

“rcodd” and “rceven” which are generated by the round counter, are required.

plaintext

64

wk0

16 16

rkeven

round permutation

MUX0

F

MUX2

 wk2

wk1

16 16

rkodd

MUX1

F

MUX3

 wk3

MUX4

MUX5

64

64

64

key scheduling

round counter

ciphertext

round constant

combinational datapath wk0 , wk1, wk2, wk3, rkeven, rkodd

state register

key

Figure 3.5 Hardware Structure of Iterative Design of Piccolo Cipher

Since the block diagram for the FSM of Piccolo is almost exactly the same as

PRESENT cipher except that the FSM of Piccolo cipher has five more outputs since it

has five more multiplexers, the block diagram for the FSM of Piccolo cipher is not

36

provided here. However, Figure 3.6 is provided to introduce the state transition diagram

of Piccolo cipher. Three states listed as “IDLE”, “wait_plain”, “ENCRYPTION”, which

are exactly the same as the states in PRESENT cipher are required. The whole system

starts from the “IDLE” state. After the “rst_b” is asserted which means the

asynchronous reset is not active and the “key_valid” goes high, the FSM transfers to

“wait_plain” state. When the “plain_valid” has a one clock cycle positive pulse, the

FSM steps into the “ENCRYPTION” state and begins the encryption process and at the

same time, the “cnt_en” signal will be asserted to enable the round counter to start to

count. If the “done” signal is asserted, the FSM goes back to “IDLE” state and waits

for the next encryption cycle.

IDLE

key_valid?

NO

wait_plain

YES

plain_valid?

NO

ENCRYPTION

YES

done?

NO

YES

rst_b=1?

YES

NO

Figure 3.6 State Transition Diagram of the FSM of Piccolo

The whole design is coded in VHDL and simulated by ModelSim. Figure 3.7 shows

the simulation result of Piccolo cipher. The test vector used in this simulation is exactly

37

the same as what it is in [6]. The corresponding ciphertext shows that the design is

correct.

Figure 3.7 Simulation Results of Piccolo Cipher

Table 3.2 Synthesis Result of the Iterative Design of Piccolo Cipher

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

Piccolo 809 153 100%

key scheduling 431 80 53.2%

Similar to the PRESENT cipher, this design is also synthesized based on the same

device by using Quartus II. Table 3.2 shows the synthesis results of the Piccolo cipher.

Compared to the PRESENT cipher, the iterative design of Piccolo cipher consumes 809

combinational functions which is slightly more than the PRESENT cipher and 153

dedicated logic registers. The reason is because of the structure of the iterative design

of the Piccolo cipher: it has four more 16 bit 2-to-1 multiplexers and one more 64 bit

38

2-to-1 multiplexers. Similar to the PRESENT cipher, the key scheduling component

also consumes over 50 percent of the total number of combinational functions.

3.1.4 Iterative Design of PRINTcipher

Figure 3.8 presents the iterative design of PRINTcipher. Although PRINTcipher is

a 48 bit cipher, a 16 bit all ‘0’ default value is used to ensure the datapath of the design

is also 64 bits which is the same as the datapath of the other three ciphers. The input to

the “MUX” is a 64 bit signal with the 16 most-significant bits set as ‘0’ and the 48 least-

significant bits being the original plaintext. All the components inside the dashed box

form the combinational datapath of PRINTcipher. The datapath within the dashed box

is divided into two routes. One is a 16 bit all ‘0’ datapath which is just a bypass of all

the components inside the combinational datapath, another one is 48 bit datapath which

contains the valid information of each state and passes through all the components

inside the combinational datapath. These two different routes are combined together at

A.

In PRINTcipher, as described in Section 2.2.3, the key scheduling algorithm is quite

simple. Actually, the round key “SK1” and permutation key “SK2” used for each round

is identical. The 48 most-significant bits of the original 80 bit key is used as the round

key “SK1”, while the 32 least-significant bits act as the permutation key “SK2”.

The FSM of this design is almost the same of the PRESENT cipher. The only

difference is that PRINTcipher needs 48 rounds to finish one encryption cycle while

39

PRESENT needs 32 rounds. In this way, the “done” signal which indicates the end of

the encryption process will be asserted later than that in the PRESENT cipher.

Add_roundkey

Round permutation

Add round_constant

Key scheduling
SK1

MUX

input=Default & plaintext

16 3-bit Virtual sbox

Round

counter

state register

Round constant

5

SK2

32

16

64

A

48

48

6

4

Figure 3.8 Hardware Structure of the Iterative Design of PRINTcipher

Figure 3.9 shows the simulation result of the iterative design of PRINTcipher, the

simulation is also based on ModelSim and the test vector is obtained from [7]. From

the waveforms, the corresponding ciphertext is same as the ciphertext provided by [7],

40

which means the design is successful.

Figure 3.9 Simulation Result of Iterative Design of PRINTcipher

Table 3.3 Synthesis Result of the Iterative Design of PRINTcipher

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

PRINTcipher 516 143 100%

key scheduling 242 80 46.9%

Table 3.3 shows the synthesis result of PRINTcipher. The result is based on Altera

Cyclone IV FPGA and uses Quartus II as the synthesis tool. Compared to the PRESENT

cipher and the Piccolo cipher, PRINTcipher not only consumes a smaller number of

combinational functions, but also consumes fewer dedicated logic registers. In fact,

after investigating the reports in Quartus II and viewing the resource utilization by entity,

we find that the state register in PRINTcipher only consumes 48 dedicated logic

41

registers while in VHDL code, a 64 bit state register is applied. Actually, since the 16

most-significant bits in the state register are never used and all set to ‘0’, the synthesis

tool optimizes the design by using a 48 bit register.

3.1.5 Iterative Design of LED Cipher

Figure 3.10 provides the hardware structure of the iterative design of the LED

cipher. Since the “Add_roundkey” is not applied to every round of the LED cipher,

“MUX2” is required to choose the input to the “Add_constant” component between the

output from “MUX1” or “Add_roundkey” component. The rest of the combinational

datapath is basically straightforward. An 80 bit key size is chosen, the round key used

for each “Add_roundkey” component is decided by the number of current step. Actually,

a 64 bit left shift for the key register each time after the “Add_roundkey” component is

applied, since the new 64 most-significant bit inside the key register is the correct

choice for the next “Add_roundkey” process.

The FSM of this design is slightly different from the previous three design. Since

the “Add_roundkey” component should be applied to the datapath every four rounds,

the round counter not only outputs a “done” signal but also outputs the “cnt” signal

which indicates the number of rounds to the FSM. In this way, the FSM knows the

correct round to determine when the select signal for “MUX2” should be inverted to

apply the “Add_roundkey” component. As a Mealy state machine is applied, the state

transition diagram is similar to the previous three designs. The difference is during the

42

“ENCRYPTION” state, the selection signal for “MUX2” is inverted when the

“Add_roundkey” component is applied.

Add_constant

16 4x4 sbox

Shiftrows

key scheduling

Round key

MUX1

plaintext

Mixcolumns

round counter

Add_roundkey

MUX2

Round constant

combinitional

datapath

key

Figure 3.10 Hardware Structure of the Iterative Design of LED Cipher

The “Mixcolumn” component here uses the matrix M since an iterative design is

used here. The calculation for the output of the “Mixcolumn” is complex and the VHDL

code is found in Appendix A.2.

43

Figure 3.11 provides the simulation results of LED cipher. This waveform is also

based on ModelSim. The test vectors are obtained from [25]. The simulation result

indicates that the output ciphertext is correct with the corresponding input key and

ciphertext.

Figure 3.11 Simulation Result of the Iterative Design of LED Cipher

Table 3.4 Synthesis Result of the Iterative Design of LED Cipher

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

LED 821 160 100%

key scheduling 404 80 49.2%

Table 3.4 shows the synthesis result of the iterative design of the LED cipher.

Compared to [22], the total number of combinational functions is reduced. Actually, in

our design, the structure of the key scheduling component is optimized. In [22], the

round counter is used to choose different bits inside the key register to form the round

44

key, while in this design, a simple 64 bit left shift is applied once after each

“Add_roundkey” component is used in the datapath.

3.2 Iterative Design of the Multi-cipher Platform

Figure 3.12 provides the block diagram of the multi-cipher platform. As different

ciphers have different output lines, we use four different signals “PRESENT_valid”,

“LED_valid”, “Piccolo_valid” and “PRINT_valid” to be the valid signal of the four

different output ciphertexts, respectively. For PRINTcipher, the output ciphertext

“PRINT” is 64 bits with the 16 most-significant bits as the default value of all ‘0’.

Multi-cipher

platform

Plain_valid

plaintext

Key_valid

key

PRESENT

PRESENT_valid
64

64

80

LED

LED_valid
64

Piccolo

Piccolo_valid
64

PRINT

PRINT_valid
64

ciphermode

3

Figure 3.12 Block Diagram of the Multi-cipher Platform

45

MUX1

PRESENT Comb Piccolo Comb PRINTcipher Comb

state register

MUX2

key scheduling

SK1,SK2
WK0,WK1,rk2i-1,rk2i

PRESENT_key

FSM

round counter

PRESENT_done

Piccolo_done

PRINTcipher_done

Sel_keyreg

Sel_reg

Sel_MUX2

Sel_MUX1

cipher_mode

64

plaintext

LED Comb

LED key

LED_don

e

Round constant

64

Key

80

Figure 3.13 Hardware Structure of the Iterative Design of the Multi-cipher Platform

The purpose of our design is to integrate PRESENT, Piccolo, PRINTcipher and

LED into one platform. Figure 3.13 provides the hardware structure of the iterative

design of the platform. Compared to the previous design of each individual cipher,

another 3-bit “cipher_mode” signal is used to indicate which cipher should be chosen

in the next encryption process. The coding of the “cipher_mode” signal is shown in

Table 3.5. Actually, since a 3-bit signal can represent 8 different values, we can use this

signal to indicate 7 different ciphers with the last value representing NULL. In this way,

we can add 3 more ciphers inside our platform. The components “PRESENT comb”,

“Piccolo comb”, “PRINTcipher comb” and “LED comb” are the combinational

datapaths of PRESENT, Piccolo, PRINTcipher and LED, respectively. In Figure 3.2,

46

Error! Reference source not found., Figure 3.8 and Figure 3.10, the datapath included

in the dashed rectangle is the structure of the combinational datapath for each cipher.

Two different multiplexers are used in this design. Multiplexer “MUX1” is used to

select the input from the plaintext or the state register, while “MUX2” is used to load

the correct output of the combinational datapaths into the state register. The round

counter is a counter which is used to indicate the end of the encryption process. It also

generates the round constant which is used in the key scheduling algorithm.

Table 3.5 The Coding of "cipher_mode" Signal

cipher_mode chosen cipher

000 NULL

001 PRESENT

010 Piccolo

011 PRINTcipher

100 LED

101-111 extensions

To decrease the area and resources consumed by this platform, we have tried to

share some similar components with different ciphers. For example, the

47

“Add_roundkey” process for PRESENT and Piccolo are almost the same, so we only

use a 64 bit XOR for these two ciphers. However, in this way, we need to use an

additional 64 bit 2-to-1 multiplexer and after examining the synthesis result, we found

that this approach is not worthwhile. In our final design, we have decided that our

approach to save the area is based on sharing the state register within the cipher datapath

and the key register inside the key schedule block. The penalty of this structure is that

we need to use one more 64 bit 4-to-1 multiplexer to choose the correct data to be

loaded into the state register.

Before the encryption process, the “cipher_mode” signal must be loaded into the

FSM to choose the cipher that would be used in the encryption process. Since the four

ciphers need a different number of rounds to finish the encryption process, we need four

different “done” signals from round counter component to indicate the end of the

encryption process. The block size of PRINTcipher is 48 bits while PRESENT, Piccolo

and LED have a 64 bit block. If we choose to use the PRINTcipher, the 16 most-

significant bits of output will be set to default value of 0.

Figure 3.14 provides the state transition diagram of the platform. The following

steps introduce how the platform works:

1. Before the “cipher_mode” signal is changed to any valid value for one of the four

ciphers, the FSM will stay in “IDLE” state.

2. After the “cipher_mode” signal is loaded into the platform, the FSM will step into

48

“PRESENT_IDLE”, “Piccolo_IDLE”, “PRINT_IDLE” or “LED_IDLE” based on the

value of “cipher_mode” signal. For example, if “cipher_mode” = “001”, then the FSM

will step into “PRESENT_IDLE” state.

3. In “PRESENT_IDLE”, “Piccolo_IDLE”, “PRINT_IDLE” or “LED_IDLE” state,

the FSM will wait for the key that will be used in the following encryption process.

After the key is loaded into the platform, The FSM will step into

“PRESENT_waitplain”, “Piccolo_waitplain”, “PRINT_waitplian” or “LED_waitplain”

state and wait for the plaintext that needs to be encrypted.

4. After the plaintext is loaded into the platform, the FSM will step into the

“PRESENT_encryption”, “Piccolo_encryption”, “PRINT_encryption” or

“LED_encryption” state and start the encryption process.

5. In “PRESENT_encryption”, “Piccolo_encryption”, “PRINT_encryption” or

“LED_encryption”, when the “done” signal indicates that the encryption process is over,

the FSM will step into “IDLE” or one of the four “cipher_IDLE” states based on the

value of “cipher_mode” signal. The four ciphers have separate control paths, which is

used to ensure that each cipher is not influenced by another.

Moreover, to ensure that the whole system works smoothly, we also have a more

robust design for the following cases:

1. The FSM will stay in “IDLE” state if no “cipher_mode” signals have been loaded

into it. Any plaintexts and keys will be ignored.

49

2. During the encryption process, any “cipher_mode” signals, keys, and plaintexts

will be ignored.

IDLE

PRESENT_ID

LE
Piccolo_IDLE PRINT_IDLE

cipher_mode=present

cipher_mode=piccolo

PRESENT_waitplain Piccolo_waitplain PRINT_waitplain

Key valid =

 1 ?Y
Key valid =

 1 ?

Yes

Key valid =

 1 ?

Yes Yes

NONONO

PRESENT_encryption Piccolo_encryption PRINT_encryption

Y
Plain_valid =

 1 ?

Yes

NO

Y
Plain_valid =

 1 ?

Yes

NO

Y
Plain_valid =

 1 ?

Yes

NO

Y
Present_done =

 1 ?

Yes

NO

Y
Piccolo_done =

 1 ?

Yes

NO

Y
Print_done =

 1 ?

Yes

NO

cipher_mode=Print

LED_IDLE

LED_waitplain

Key valid =

 1 ?

Yes

NO

LED_encryption

Y
Plain_valid =

 1 ?

Yes

NO

Y
LED_done =

 1 ?

NO

Yes

cipher_mode=LED

Figure 3.14 State Transition Diagram of the Iterative Design of Multi-cipher Platform

Figure 3.15 shows the simulation results of the platform. The whole simulation is

based on ModelSim [23]. According to the design of this platform, only one cipher

could be executed at a specific time inside the platform. The waveforms in Figure 3.15

are based on this principle. First, the testbench sets “cipher_mode” signal to “001”

which means the next cipher should be the PRESENT cipher and loads the input key

and plaintext to the platform. Then, “cipher_mode” signal is set to “010” which

indicates Piccolo cipher is chosen for the next encryption process after we get the

ciphertext of PRESENT cipher. For PRINTcipher and LED cipher, the same philosophy

is used. Comparing Figure 3.15 to the simulation results of each individual cipher, we

50

can conclude that the design is successful.

Figure 3.15 Simulation Result of the Iterative Design of Platform

51

Table 3.6 Resources Usage Comparison for Different Ciphers and Platform

Cipher Combination functions Dedicated logic registers

PRESENT 613 153

Piccolo 809 153

PRINTcipher 516 143

LED 821 160

Total 2759 609

Platform 1864 172

Table 3.6 presents the usage summary of the multi-cipher platform compared to the

individual cipher implementation. From Table 3.6 it is clear that the platform saves a

lot of resources, not only in combinational functions, but also in dedicated logic

registers. The total combinational functions consumed by these four ciphers should be

2759, while the platform only consumes 1864 combinational functions. We save 32.4%

combinational functions for the platform. This results from simplification that occurs

in the key scheduling component when the four ciphers are combined. In fact, we find

that the key scheduling algorithms consume a large amount of combinational functions

since the key scheduling algorithms of these four ciphers are complex. Table 3.7 shows

the number of combinational functions for the key scheduling consumed by the four

52

ciphers and our platform. From the table, it is clear why the total combinational

functions of our platform is smaller even though we add an extra 64 bit 4-to-1

multiplexer in the platform. Moreover, the number of dedicated logic registers is

significantly reduced by sharing the state register and key register. The total number of

dedicated logic registers consumed by these four ciphers should be 609, while the

platform only consumes 173 dedicated logic registers. Compared to [22], the total

combinational functions for the platform and LED is also reduced due to the

optimization in the key scheduling design of the LED cipher.

However, the drawbacks for this design are also obvious. First, the performance of

this design is not very high compared to each individual cipher and other high speed

implementations. In Table 3.8, we examine the performance of our system by

presenting the resulting throughput of the 4 ciphers using our platform, as determined

by the synthesis tools. The data of throughput is based on the maximum frequency of

our platform being 224.7 MHz. The throughput of the four ciphers are different from

each other since they need different numbers of rounds to finish the encryption process.

The number of clock cycles that are needed to finish the encryption process are 32, 25,

48 and 48 for PRESENT, Piccolo, PRINTcipher and LED, respectively, after the

plaintext is loaded into our platform.

Furthermore, for this iterative design, a large number of I/O pins are needed. For

each individual cipher, 213 I/O pins (64 for the input plaintext, 64 for the output

ciphertext, 80 for the input key, 3 for data valid signal, 1 for clock and 1 for reset) are

53

needed. In the platform, 395 pins are required, since in the platform, different ciphers

generate different ciphertexts at different positions. Should we want to use same pins

for the output ciphertext of different ciphers, some combinational functions are required

in the top level entity to choose the output from different ciphers, and this will increase

the amount of hardware resources.

Table 3.7 Number of Combinational Functions of Key Scheduling

Cipher Comb functions of Key

Scheduling

Percentage of Comb

functions

PRESENT 328 53.5%

Piccolo 431 53.2%

PRINTcipher 242 46.9%

LED 404 49.2%

Total 1405 50.9%

Platform 515 27.6%

If should be noted that high throughput is usually not a requirement in lightweight

applications since area and resources consumption are the only thing that matters. In

this way, in order to save more area and use fewer pins, a more compact design is

54

required. A serialized design is considered to be a better way to save the hardware

resource even though the throughput may be decreased since fewer bits are processed

during one clock cycle.

Table 3.8 Performance of the Iterative Implementation

Cipher Throughput

PRESENT 448 Mbps

Piccolo 573 Mbps

PRINTcipher 224 Mbps

LED 299 Mbps

3.3 Summary

In this chapter, we present the details of the iterative design of each individual

cipher and the multi-cipher platform. In addition, we also compare the synthesis results

of each individual cipher and the platform. The synthesis result shows that our design

successfully reduces the total number of combinational functions and dedicated logic

registers and hence, reduces the number of logic elements required for the design.

In the next chapter, we will present a more compact serialized design. Similar to

this chapter, we will first present the serialized design of each cipher and then provide

the details of the serialized design of the multi-cipher platform. In addition, the

55

comparison and analysis of the resource consumption result will be provided.

56

Chapter 4

Serialized Design of Individual Ciphers and

the Platform

In this chapter, a serialized design for each individual cipher and the multi-cipher

platform is provided. Compared to the iterative design, the serialized design is more

compact. For PRESENT, Piccolo and LED cipher, a 4 bit datapath is used, while for

PRINTcipher, a 3 bit datapath is used for the virtual sbox and 4 bit datapath is applied

for the “Add_roundkey” layer. Since we use a smaller datapath, only 3 or 4 bits can be

dealt with in one clock cycle which certainly leads to the reduction of throughput.

However, also due to the smaller datapath, more hardware resources can be saved.

Before introducing the structure of the ciphers, here is some of the notation that

will be used in this chapter:

Table 4.1 Notation in Chapter 4

Notation Meaning

MUX(X,Y) X inputs Y bit multiplexer

& bit concatenation

cc counter clock cycle counter

57

4.1 Serialized Design of Each Individual Ciphers

In this section, we provide the details of the serialized design of each individual

cipher. The hardware structure, state transition diagram, simulation result and synthesis

result will be provided and discussed.

4.1.1 Block Diagram

Figure 4.1 shows the block diagram for the serialized design of each individual

cipher. Notice that the data length for plaintext, key and ciphertext is 4 bits. In this way,

far fewer I/O pins are required compared to the iterative design. Besides, since the

actual data length of ciphertext for PRESENT, Picclo and LED is 64 bits, while for

PRINTcipher, a 48 bit output of ciphertext is used, in order to ensure that the design is

consistent for each cipher, the most-significant bit of the output ciphertext of

PRINTcipher is always set to ‘0’, while the three least-significant bits are the valid bits

of the ciphertext.

each

individual

cipher

Plain_valid

plaintext

Key_valid

key

ciphertext

Cipher_valid

4

4

4

Figure 4.1 Block Diagram for Each Individual Cipher

In this design, we assume that the “Key_valid” signal will be asserted for a

58

consecutive 20 clock cycles to load the “key” and the “Plain_valid” signal will be

asserted for a consecutive 16 clock cycles inside the 20 clock cycles pulse of

“Key_valid” signal. All the designs discussed below are based on this assumption.

4.1.2 Serialized Design of PRESENT Cipher

Figure 4.2 provides the hardware structure of the serialized design of the

PRESENT cipher which is taken from [26]. In this design all the three multiplexers

used in this figure are MUX(2,4). Two counters are needed in this design even though

they are not included in Figure 4.2. One of the counters is called the “cc counter”, while

the other one is referred to as the round counter. The “cc counter” is a 4 bit counter

which counts from 0 to 15 for each clock cycle and it is used to indicate if the

“Add_roundkey” and sbox layer are finished. Actually, since we use a 4 bit datapath

for these two layers, 16 clock cycles are needed to finish these two layers. The round

counter is used to indicate the end of one entire encryption process.

state register

key register

plaintext

key

permutation sbox

key shift

[79:76]

[19:15]

round counter

&

4

4

4

4

4

80

80

64

64

5

71

M
U

X
3

M
U

X
2

M
U

X
1

Figure 4.2 Hardware Structure of the Serialized Design of PRESENT Cipher [26]

59

IDLE

initialization

Y
Key_valid =

 1 ?

Yes

encryption

Y
Key_valid

= 0 ？

Yes

Ycc counter = 15?

Yes

round counter =

31?
Yes

NO

NO

NO

NO

permutation

Figure 4.3 State Transition Diagram of the Serialized Design of PRESENT Cipher

Figure 4.3 provides the state transition diagram of this design. The details of this

state transition diagram are introduced below:

1. The whole system begins with the “IDLE” state. After the “Key_valid” signal

is asserted, the FSM steps into the “initialization” state, and according to the

assumption at the beginning of this chapter, during the “initialization” state, the

60

“key” and “plaintext” will be loaded into the key register and state register

respectively.

2. After the “Key_valid” signal is de-asserted, which means the “key” has been

fully loaded and the “plaintext” must also be fully loaded according to the

assumption at this same time, the FSM steps into the “encryption” state.

3. In the “encryption” state, the state register and the key register will left shift 4

bits every clock cycle. Also, the “cc counter” also starts to count. When the “cc

counter” reaches 15 and the round counter has not reached 31, the FSM transfers to

“permutation” state. If the “cc counter” reaches 15 and the round counter has

reached 31, the FSM transfers to “IDLE” state.

4. In the “permutation” state, the round counter will increment in this state. The

key register and the state register will parallel load the 80 bit input and 64 bit input,

respectively. In fact, in this state, the key scheduling algorithm is performed. After

one clock cycle, the FSM will perform an unconditional transfer to “encryption”

state again.

Figure 4.4 Simulation Result of the Serialized Design of PRESENT Cipher

Figure 4.4 provides the simulation result of this design. The signal “cv_tb” is the

valid signal for the ciphertext. Comparing the results with Error! Reference source

61

not found., we can conclude that the design is successful.

Table 4.2 Summary of the Resource Consumption of the Serialized Design of

PRESENT Cipher

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

PRESENT 206 158 100%

FSM 28 4 13.6%

key register and

state register

155 144 75.2%

Table 4.2 provides the total resource consumption of this design. Compared to

Table 3.1, the number of total combination functions consumed by the serialized

implementation is only 206, about one-third of the number of total combinational

functions consumed by the iterative design. However, the dedicated logic registers

consumed by the serialized design is slightly increased due to the fact that we use

another 4 bit “cc counter” inside the design.

Figure 4.5 provides a typical structure of the registers used in all of our designs.

Usually, if we need more modes of operations, we need to increase the inputs to the

“MUX” which will result in an increase in the number of combinational functions

62

consumed by the registers.

M
U

X
M

U
X

Clear

Parallel_load

Hold

S
el

D Q

clk

4 bit shift

2

Figure 4.5 1-bit of the Structure of the Registers with 4 Modes of Operation

Since the key register and state register in PRESENT need another operation which

is 4 bit left shift in the serialized design and the size of the datapath is reduced to 4 bits,

the number of combinational functions consumed by the registers inside this design is

increased while the number of combinational functions consumed by the datapath is

reduced, which leads to the result that the percentage of the combinational functions

consumed by the key register and state register is as high as 75%.

4.1.3 Serialized Design of Piccolo Cipher

Figure 4.6 introduces the serialized design of the Piccolo cipher. Multiplexer

“MUX1” is a MUX(2,4) which is used to select the two different inputs to the sbox

since the F function has two layers of sbox. Multiplexer “MUX3” is a MUX(4,16) with

the purpose to select different whitening keys and a MUX(2,16), MUX6, is used to

select different round keys. Multiplexers “MUX2”, “MUX4” and “MUX5” are all

MUX(4,4). Counter “cnt_2” and “cnt_4” are two “cc counters” and “cnt_6” is the round

63

counter. The state register has more different modes of operations as listed in Table 4.3.

[63:48] [47:32] [31:0]

S

mixcolunm

S
-

1

key register key

plaintext

M
U

X
1

M
U

X
2

MUX3

MUX4

MUX6

MUX5

wk0

rk0

wk1

rk1

wk2 wk3

16 16

4

4

44

4 4

4

4

4444

16

4444

4

4

permutation

64

64

Figure 4.6 Hardware Structure of the Serialized Design of Piccolo Cipher

The reason that we design the state register in this way is we need to deal with the

F function in the Piccolo cipher. The main challenge for this design is how to deal with

the F function in Piccolo cipher. Since the F function deals with a 16 bit data block, we

require extra registers to store the intermediate value of the F function if we use a 4 bit

datapath. In [9], a brief introduction of a smart approach has been provided about how

to deal with this issue.

64

Table 4.3 Mode of Operations in Piccolo State Register

Mode Operation

1 Hold

2 32 most-significant bits swapped with the 32 least-significant bits

3 4 bit left shift to all the 64 bits with the 4 bits input shift to the 4 least-

significant bits.

4 4 bit left shift to the 16 most-significant bits with the 4 bits input shift to 51st

bit to 48th bit, while the rest is hold.

5 4 bit left shift to the 16 most significant bits and 47th bit to 32nd bit with two

different inputs shift to 51st bit to 48th bit and 35th to 32nd respectively, while

the rest is hold.

6 Parallel load.

First, let us take a look at Figure 2.3. We assume that the output of the first sbox

layer inside the F function is a vector S1 =[A B C D]T, and the output of the diffusion

matrix is S2 =[a b c d]T. Then we perform the calculation of the diffusion matrix and

we can get the result that :

65

𝑆2 = (

𝑎
𝑏
𝑐
𝑑

) = 𝑀 ∗ 𝑆1 = (

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

) ∗ (

𝐴
𝐵
𝐶
𝐷

) = (

2𝐴 + 3𝐵 + 𝐶 + 𝐷
𝐴 + 2𝐵 + 3𝐶 + 𝐷
𝐴 + 𝐵 + 2𝐶 + 3𝐷
3𝐴 + 𝐵 + 𝐶 + 2𝐷

)

This operation can be easily achieved by a shift register as shown in Figure 4.6. If we

can left shift 4 bits for the 16 most-significant bits every clock cycle, then we can use a

“Mixcolumn” component which only deals with 16 bits each time. The details of this

operation will be discussed in the state transition diagram.

IDLE

initialization

Key_valid=

1 ?

YES

NO

Key_valid=

0 ?

NO

Add_wk

YES

cnt_2 =3?

Piccolo_shift

YES

NO

sel_shift =1?

F_1

NO

NO

cnt_2 =3?

F_2

cnt_2 =3?

F_3

cnt_2 =3?

YES

NO

YES

NO

NO

Piccolo_shift1

YES

sel_shift1

=1?

NO

permutation

cnt_6=25?

YES

YES

NO

NO

cnt_6=25?

YES

output

YES

cnt_4=15?

NO

YES

Figure 4.7 State Transition Diagram of the Serialized Design of Piccolo Cipher

66

Figure 4.7 provides the state transition diagram of the serialized design of Piccolo

cipher. The whole system starts with the “IDLE” state and since the “initialization” state

is exactly the same as the serialized design of PRESENT cipher, we describe the details

of this design from the “Add_wk” state.

1. In the “Add_wk” state, the selection signal for “MUX4” will be incremented by

one for every clock cycle. In this way, the 16 most-significant bits of the state register

can “XOR” with the correct bits of the whitening key. “MUX2” will select the input

from the output of the 2 input “XOR” and the state register will choose mode 4. Since

we need to step into the “Add_wk” state twice for the first and last round, at the fourth

clock cycle of “Add_wk” state, a control signal “sel_shift” with a initialized value of

‘0’ will be inverted to indicate that if we have already stepped into the “Add_wk” state

twice. After 4 clock cycles, the “cc counter” “cnt_2” will reach a value of 3, and then

the FSM transfers to “Piccolo_shift” state.

2. In the “Piccolo_shift” state, the state register will choose mode 2 to switch the bit

position of the 32 most-significant bits and the 32 least-significant bits. This state will

only last for 1 clock cycle and the system will step into the next state according to

different conditions

 If “sel_shift” signal is ‘1’, which means the “Add_wk” has only been done once,

then next state should be “Add_wk”.

 If “sel_shift” signal is’0’, and the round counter “cnt_6” is 25, which means the

67

post-whitening has been finished, then the next state should be “output” state.

 If “sel_shift” signal is ‘0’ and the round counter does not reach 25, which means

“Add_wk” state has been finished twice and we should start a round operation,

then the next state is “F_1” state.

3. In the “F_1” state, this is the first step to deal with the “F” function inside the

Piccolo cipher. In this state, the main purpose is to add the first sbox layer to the 16

most-significant bit of the state register. “MUX4” will choose the output of the sbox

and the state register is in mode 4. After this state, the 16 most-significant bits are the

vector we mentioned S1 = [A B C D]T. This state will last for 4 clock cycles and the “cc

counter” “cnt_2” will indicate the end of this state, resulting in a transfer to “F_2” state.

4. In the “F_2” state, “MUX4” will choose the left shift output of the state register

and the state register will be in mode 5. This state will also last for 4 clock cycles. After

the first clock cycle inside this state, the 16 most-significant bits in the state register can

be represented as S1 = [B C D A]T, and then the input of the sbox in the second clock

cycle during the “F_2” state is [2B+3C+D+A] which is just the correct input of the

sbox for the second 4 bits of the output of the F function. At the same time, the output

of the sbox will “XOR” with the round key and the 47th to 32nd bits of state register.

After 4 clock cycles, the FSM transfers to “F_3” state and at this time the 16 most-

significant bits in the state register are still [B C D A]T.

5. In the “F_3” state, the state register will be in mode 4. This state also lasts for 4

68

clock cycles. The purpose of this state is to recover the 16 most-significant bits before

applying them to the first sbox layer of the state register. “MUX2” will choose the input

from the output of the “S-1” component. The “S-1” component is an inverse sbox. In the

fourth clock cycle of “F_3” state, another control signal “sel_shift1” with a initialized

value of ‘0’ will be inverted. After 4 clock cycles, the FSM transfers to “Piccolo_shift1”

state.

6. In the “Piccolo_shift1” state, the state register will be in mode 2. Since the next

state decode logic is different from “Piccolo_shift” state, we need two different states.

This state will also only last for 1 clock cycle and steps into the next state according to

different conditions:

 If “sel_shift1” signal is ‘1’, which means the F function has only been done

once, then next state should be “F_1”.

 If “sel_shift1” signal is ‘0’, and the round counter “cnt_6” is 25, which means

all the rounds have been finished, then we need to step into “Add_wk” state to

finish the post-whitening.

 If “sel_shift1” signal is ‘0’ and the round counter has not reached 25, which

means the F function has been completed twice and we should start the

permutation of the round, then the next state is “permutation” state.

7. In the “permutation” state, the state register will be mode 6 and parallel load the

output of the “permutation” component. This state lasts for only one clock cycle and

69

the system will subsequently step into the “F_1” state.

Figure 4.8 Simulation Result of the Serialized Design of Piccolo

Figure 4.8 provides the simulation result of the serialized design of Piccolo cipher.

When the “cipher_valid_tb” signal is asserted, we can get the ciphertext as

8D2BFF9935F84056. We can conclude that the design is successful after comparing

the result with the test vectors provided in [9].

Table 4.4 Summary of the Resource Consumption of the Serialized Design of Piccolo

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

Piccolo 372 164 100%

FSM 80 11 21.5%

key register and

state register

197 144 53.0%

Table 4.4 provides the result of resource consumption of the serialized design of

Piccolo. Compared to Table 3.2, the total number of combinational functions is

70

significantly reduced by 434. However, the percentage of the reduction of the

combinational functions is not as large as the result of the serialized design of

PRESENT. Actually, by investigating the resource utilization by entity in Quartus II

[20], we find that the FSM consumes 80 combinational functions, which is far more

than the FSM in the iterative design of Piccolo cipher which consumes only 22

combinational functions.

Although the complexity of the FSM increased, the percentage of the

combinational functions consumed by the key register and state register is slightly

reduced to 53% compared to the serialized design of PRESENT cipher.

4.1.4 Serialized Design of PRINTcipher

Figure 4.9 shows the structure of the serialized design of PRINTcipher. Since

PRINTcipher uses a 3 bit sbox and the keyed permutation needs a 2 bit key, the state

register needs to left shift 3 bits out and the key register needs to left shift 2 bits out.

Both the multiplexers used in this design are MUX(2,4). Compared to the Piccolo

cipher, this structure is basically straightforward. The only issue inside this design is to

deal with the 16 bits default value of all ‘0’. In order to keep consistent to other ciphers,

the ciphertext of PRINTcipher will also be 4 bits per clock cycle, and the “cipher_valid”

signal will also be asserted for 16 clock cycles. As the last component in one round of

PRINTcipher is the “Virtual sbox” and it deals with 3 bits per clock cycle for 16 clock

cycles, we add a default ‘0’ to the most-significant bit of the output ciphertext every

71

clock cycle. The details of this structure will be discussed in the following state

transition diagram.

state register

key register

plaintext

key

permutation

4

64

64
4

Add_roundconstant

2

4

Virtual sbox

3

3

M
U

X
M

U
X

Figure 4.9 Hardware Structure of the Serialized Design of PRINTcipher

Figure 4.10 presents the state transition diagram of our design. We need five

different states to finish an encryption cycle for the serialized implementation of

PRINTcipher. The FSM also starts from “IDLE” state, and transfers to the

“initialization” state when the “Key_valid” signal is asserted. The operations inside the

“initialization” state are exactly the same as the previous two designs. The only

difference is that for PRINTcipher, since the block size is 48 bits, only data in the first

12 clock cycles in the initialization state contains the valid block values and the last 4

clock cycles are all default ‘0’s.

72

IDLE

initialization

Y
Key_valid =

 1 ?

Yes

Add_key

Y
Key_valid

= 0 ？

Yes

Ycc counter = 11?

Yes
permutation

Yes

NO

NO

NO

Virtual sbox

round counter =

48?

cc counter = 15?

NO

NO

Yes

PRINT shift

cc counter = 3?

NO
Yes

Figure 4.10 State Transition Diagram of the Serialized Design of PRINTcipher

The details of this FSM is described below starting with the “Add_key” state:

1. In the “Add_key” state, the key register and the state register will both left shift 4

bits every clock cycle. The “cc counter” here will increment by 1 every clock cycle.

After 12 clock cycles, when the “cc counter” reaches 11, then the “Add_key” state is

over. The FSM will transfer to the “permutation” state.

2. In the “permutation” state, the key register will hold for 1 clock cycle while the

state register will parallel load the 64 bit input. Actually, after the “Add_key” state, the

valid bits inside the state register are the 48 least-significant bits. The “permutation”

component executes the permutation layer according to Figure 4.11 and after applying

73

the "permutation" layer, the 48 most significant bits will be the valid bits in the state

register. Then the state register can be ready for the next “Virtual sbox” state. The

“permutation” state will only last for one clock cycle and do an unconditional transfer

to the “Virtual sbox” state.

[63:16] [15:0]

[47:0][63:48]

Figure 4.11 Structure of the "permutation" Component

3. In the “Virtual sbox” state, the state register will left shift 3 bits out and the key

register will shift 2 bits out every clock cycle to perform the “Virtual sbox” component.

The FSM will first check if the round counter reaches 48. If it reaches 48 and the “cc

counter” reaches 15, the FSM will transfer to “IDLE” state. If not, it will step into the

“PRINT shift” state when the “cc counter” reaches 15.

4. In the “PRINT shift” state, the state register will circular left shift 4 bits every clock

cycle while the key register will hold in this state. The purpose for this state is to shift

the 48 valid least-significant bits to the 48 most-significant bits and prepare for the next

“Add_key” state.

Figure 4.12 provides the simulation result of our design. Notice that the output

ciphertext is a 4 bit signal which is only valid for the last 3 bits. Converting the output

ciphertext 7264537127476467 which is in octal to hexadecimal gives a result of

74

EB4AF95E7D37, which is exactly the same with the test vectors provided in [10]. We

can conclude that our design is successful.

Figure 4.12 Simulation Result of the Serialized Design of PRINTcipher

Table 4.5 Summary of the Resource Consumption of the Serialized Design of

PRINTcipher

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

PRINTcipher 225 161 100%

FSM 43 7 19.1%

key register and

state register

147 144 65.3%

Table 4.5 provides the synthesis results of the serialized design of PRINTcipher.

Compared to the iterative design, a lot of combination functions are saved resulting in

a much smaller datapath. The total number of combinational functions consumed by

the serialized design is only 225 while the iterative design consumes 516 combinational

functions. However, there is a slight increase for the dedicated logic registers since we

75

add a 4 bit “cc counter” and we need more states in the FSM. The key register and state

register consumes 65 percent combinational functions of the whole design due to the

fact that we use a 4 bit datapath for the “Add_roundkey” layer and a 3 bit datapath for

the “Virtual sbox” layer, which results in the combinational datapath only consuming a

small number of combinational functions. Moreover, the number of combinational

functions consumed by the FSM can be viewed as a metric for the complexity of the

algorithm for a specific cipher. This design only consumes 43 combinational functions

for the FSM, which is only half of the number for the FSM in the serialized design of

the Piccolo cipher.

4.1.5 Serialized Design of LED Cipher

Unlike the previous three ciphers, we have two different designs for the serialized

design of the LED cipher. The first one is a design without serializing the “Mixcolumns”

component. The other one has serialized the “Mixcolumns” component.

4.1.5.1 Design Without Serializing the “Mixcolumns” Component

Figure 4.13 provides the structure of our design. Multiplexers “MUX1” here is a

MUX(2,4) which is used to load the correct output of the initial key or the 4 bit shift

output of the key register. Since in the LED cipher, the sbox is not connected directly

with the “Add_roundkey”, two different datapaths are required. We use a “MUX2”

which is a MUX(3,4) here to choose different inputs from the initial plaintext and these

two different datapaths. More details of the operation in this structure will be illustrated

76

in the state transition diagram.

state register

key register

M
U

X
2

M
U

X
1

plaintext

key

64

4

4

4

Add_constant

SBOX

Shiftrows Mixcolumns

MUX3

64

64

Figure 4.13 Hardware Structure of the Serialized Design of LED Cipher Without

Serializing the "Mixcolumns" Component

The state transition diagram of the design is given in Figure 4.14. As the

“initialization” state is same as the previous designs, we introduce the state transition

diagram from the “Add_key” state.

1. In the “Add_key” state, the state register and the key register will both left shift 4

bits out every clock cycle. A total of16 clock cycles are required to finish this state. We

use a 4 bit “cc counter” “cnt_4” to count the number of clock cycles in this state. When

it reaches 15 and the round counter, “cnt_6”, does not reach 48 which means the

encryption process is not over, the FSM will transfer to the “Add_constant” state. If the

round counter reaches 48, the FSM will transfer back to the “IDLE” state.

77

2. In the “Add_constant” state, the key register will hold while the state register will

parallel load the 64 bit input from the output of “MUX3” which should select the input

from the “Add_constant” component. The FSM will do an unconditional transfer to

“sbox” state.

IDLE

initialization

Y
Key_valid =

 1 ?

Yes

Y
Key_valid

= 0 ？

Yes

NO

NO

Add_key

cnt_4 =15？

NO

Add_constant

sbox

cnt_4 =15？

NO

S_M

cnt_2 =3？

NO
NO

Yes

Yes

cnt_6 =48？

Yes

Figure 4.14 State Transition Diagram of the Serialized Design of LED Cipher Without

Serializing the "Mixcolumns" Component

3. In the “sbox” state, the key register will also hold in this state and the state register

will left shift 4 bits every clock cycle. Multiplexer “MUX2” will choose the output of

the “sbox” component in this state and after 16 clock cycles when the “cc counter”

reaches 15, the FSM will step into “S_M” state which refers to “Shiftrows” and

“Mixcolumns”.

4. In the “S_M” state, the key register will still hold and the state register will parallel

78

load the 64 bit input from “MUX3” which will choose the correct output from the

“Mixcolumns” component. Besides, another counter “cnt_2” will increment by one in

this state. The FSM will also check if “cnt_2” reaches 3. If it reaches 3, then one step

has been finished and the FSM will transfer to “Add_key” state. If not, the FSM will

transfer to “Add_constant” state to do the next round operations.

Figure 4.15 Simulation Result of Serialized Design of LED Cipher Without

Serializing the "Mixcolumns" Component

Figure 4.15 shows the simulation result of this design. Comparing the output

ciphertext with the test vectors provided in [25] proves that the design is successful.

Notice that the time for the cursor inserted in the Modelsim [23] is 21950 ns. This is

the time when all the bits of ciphertext have all been generated. Since another figure

which is almost exactly the same as this one will be provided in the next section to show

the simulation result of the serialized LED with the serialized “Mixcolumns”

component, we point out this time to show the difference in the next section.

Table 4.6 provides the resource consumption result of our design. Compared to the

iterative design, the serialized design saves a lot of combinational functions. The total

combinational functions consumed by this design is only 293. Since we do not use a

serialized “Mixcolumns” component in this design, it consumed 33.4 percent of the

79

total combinational functions. Besides, the combinational functions consumed by the

state register and key register are not as high as the previous three ciphers because we

only need 2 modes - 4 bit left shift and hold - for the key register and three modes for

the state register - hold, 4 bit left shift and parallel load. In the Quartus II [20] synthesis

results, “MUX3” is integrated into the state register, which increases the number of

combinational functions consumed by the state register.

Table 4.6 Summary of the Resource Consumption of the Serialized Design of LED

Cipher Without Serializing the "Mixcolumns" Component

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

LED 293 160 100%

FSM 51 6 19.1%

Mixcolumns 98 0 33.4%

key register and

state register

91 144 31.1%

4.1.5.2 Design With Serialized “Mixcolumns” Component.

Recall the matrix used in the “Mixcloumns” in LED cipher. The matrix M can be

viewed as the fourth power of matrix A.

80

𝐴4 = (

0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

)

4

= (

4 2 1 1
8 6 5 6
𝐵 𝐸 𝐴 9
2 2 𝐹 𝐵

) = 𝑀

 Matrix A is more hardware-friendly than M. Actually, in the LED cipher, we usually

consider the 64 bit block as another matrix C with sixteen 4 bit nibbles:

𝐶 = (

𝑐0 𝑐1 𝑐2 𝑐3

𝑐4 𝑐5 𝑐6 𝑐7

𝑐8 𝑐9 𝑐10 𝑐11

𝑐6 𝑐13 𝑐14 𝑐15

) = (𝐶0 𝐶1 𝐶2 𝐶3)

We use the first column vector 𝐶0 as an example for the calculation. We can get the

following equations

𝐴 ∗ 𝐶0 = (

0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

) ∗ (

𝑐0

𝑐4

𝑐8

𝑐6

) = (

𝑐4

𝑐8

𝑐12

4𝑐0 + 𝑐4 + 2𝑐8 + 2𝑐12

)

According to this equation, we can use a less complicated “Mixcolumn” component

which only deals with the calculation of 4𝑐0 + 𝑐4 + 2𝑐8 + 2𝑐12 and deals with only

one column each clock cycle. In this way, 4 clock cycles are needed to finish one

complete matrix. Since matrix M is matrix A to the power of four, we need to apply A

four times. In total, 16 clock cycles are required to finish the “Mixcolumn”. The VHDL

code can be found in Appendix A.3.

Figure 4.16 provides the structure of the serialized design of LED cipher with the

serialized "Mixcolumns" component. Compared to Figure 4.13, the only difference here

is that we change “MUX3” from MUX(2,64) to MUX(3,64) and the contents inside the

“Mixcolumns” component is different. Thus, we only discuss how the “Mixcolumns”

81

component works in the following steps in relation to Figure 4.17:

1. The 64 bit block data will be treated as a matrix 𝐶 inside the “Mixcolumns”

component with the most-significant bits located in 𝑐0 and least-significant bits in 𝑐15.

2. The “Mixcolumns” component will only deal with the first column of the matrix

𝐶. Then it will shift the result of the first column to the last column and output the

results to the register.

state register

key register

M
U

X
2

plaintext

key

64

4

4

4

Add_constant

SBOX

Shiftrows

Mixcolunms

MUX3

64

64

64

64

M
U

X
1

Figure 4.16 Hardware Structure of the Serialized Design of LED Cipher With the

Serialized "Mixcolumns" Component

The state transition diagram for this design is almost identical to Figure 4.14 with

only two differences. The first one is that we need to divide the “S_M” state into two

different states, one is “Shiftrows” and the other one is “Mixcolumns”. The second

82

difference is that the “Mixcolumns” and “Add_key” states both need the “cnt_4” to

count from 0 to 15. Hence, we add another “remain” state between these two states to

clear the counter. Thus, this design needs 780 more clock cycles to finish one entire

encryption process than the design without the serialized “Mixcolumns”. The

“Shiftrows” state will only last for one clock cycle while the “Mixcolumns” will last

for 16 clock cycles.

Colunm 1 Colunm 2 Colunm 3 Colunm 4

Result Colunm 2 Colunm 3 Colunm 4

Colunm 2 Colunm 3 Colunm 4 Result

Step 1

Step 2

Figure 4.17 Steps of the the "Mixcolumn" component

Figure 4.18 Simulation Result of Serialized Design of LED Cipher With the

Serialized the "Mixcolumns" Component

Figure 4.18 provides the simulation result of our design. Since the “Mixcolumns”

83

needs 16 clock cycles each round, the time at which the last 4 bits of the ciphertext is

generated is 37550 ns. Since the period for the clock cycle used in the simulation is 20

ns, this is consistent with the need for 780 more clock cycles than the previous design

where the ciphertext is complete at 21950 ns. The simulation results prove that the

design is successful.

Table 4.7 provides the synthesis result of the design with the serialized

“Mixcolumns” component. Compared to Table 4.6, we find that the total number of

combinational functions is slightly increased. Actually, to use the serialized

“Mixcolumns” component, we need to add one more input to a 64 bit multiplexer.

Although we do save 93 combinational functions for the “Mixcolumns” component,

the one more input for the multiplexer consumes more resources than we save. Besides,

we also find that the number of combinational functions consumed by the state register

and key register is reduced. However, that is because the synthesis tool does not

integrate “MUX3” into the state register. The actual number of combinational functions

consumed by these registers should be 69+169= 238.

As the design with serialized “Mixcolumns” consumes more resources than the

design without serialized “Mixcolumns” and has a lower throughput, we use our first

design of LED when we integrate all these four ciphers into the final platform.

84

Table 4.7 Summary of the Resource Consumption of Serialized Design of LED

Cipher with the Serialized the "Mixcolumns" Component

Entity Combinational

functions

Dedicated logic

registers

Percentage of the

combinational

functions

LED 342 162 100%

Mixcolumns 5 0 1.5%

MUX3 169 0 49.4%

key register and

state register

69 144 20.1%

4.2 Serialized Design of the Multi-cipher Platform

Figure 4.19 provides a block diagram of the serialized design of the platform.

Similar to the iterative design of the platform, we also need another 3 bit input signal

“cipher_mode” to indicate which cipher should be applied. The coding of the

“cipher_mode” signal is the same as the previous iterative design and shown in Table

3.5. The input key and plaintext is 4 bits and the output ciphertext is also 4 bits. Unlike

the iterative design of the platform, only one “Cipher_valid” and one ciphertext output

are used to help reduce the number of I/O pins required.

85

Platform

cipher_mode

Plain_valid

plaintext

Key_valid

key

ciphertext

Cipher_valid

4

4

4

3

Figure 4.19 Block Diagram of the Serialized Design of the Platform

Figure 4.20 provides the structure of the serialized design of the platform. As this

platform is compatible for all four ciphers, the register structure includes all the modes

of operations required by all these four ciphers. The modes of operations for the state

register are presented in Table 4.8 and illustrated by VHDL code in Appendix B.

We use a total number of eleven multiplexers inside the platform. Multiplexers

“MUX1”, “MUX2”, “MUX3”, “MUX4”, “MUX9” and “MUX10” are exactly the same

as the multiplexers used in the serialized design of the Piccolo cipher in Figure 4.6.

Also, “MUX11” is the same as the “MUX3” in the serialized design of the PRESENT

cipher in Figure 4.2. Multiplexers “MUX7” is a MUX(2,4) which is used to load the

correct input from the output of the “PRESENT sbox” or “4 bit XOR A” component

since the “4 bit XOR A” component is used to execute the “Add_roundkey” layer for

PRESENT, LED and PRINTcipher. Multiplexers “MUX4” and “MUX8” are used to

load the correct 4 bit left shift input to the state register and key register. Multiplexer

“MUX5” is an extra multiplexer added in the platform which is used to load different

parallel input to the state register.

86

key

MUX8

Figure 4.20 Hardware Structure of the Serialized Design of the Platform

87

The major factor we considered for this design is to reduce the total resources

consumed by the platform after integrating PRESENT, Piccolo, PRINTcipher and LED

into it. To achieve this objective, we share the key register and the state register for all

four ciphers since they share several of the same modes of operations for the registers.

Table 4.8 provides the nine different modes of operations for the state register and

key register in this platform. In the table, the ciphers that use these different operations

are listed. Except that Piccolo and PRINTcipher have 5 different operations which are

not used by PRESENT and LED, the remaining four operations are shared by all four

ciphers. Recall as we discussed in relation to Figure 4.5, one operation is one more

input to a 64 bit multiplexer and 80 bit multiplexer for the state register and key register,

respectively. If we could share the same operations for different ciphers, since at one

certain time only one cipher will be running in the platform, a lot of resources could be

saved.

Table 4.8 Modes of Operations Shared by Different Cipher Registers

Modes of operations State

registe

r

Key

registe

r

Ciphers that

needs this

operation

Hold. Yes Yes All four ciphers

4 bit left shift to all the 64/80 bits with the 4 Yes Yes All four ciphers

88

bits input shift to the 4 least-significant bits.

4 bit left shift to the 16 most-significant bits

with the 4 bits input shift to 51st bit to 48th

bit, while the rest is held.

Yes No Piccolo

32 most-significant bits swapped with the 32

least-significant bits

Yes No Piccolo

4 bit left shift to the 16 most significant bits

and 47th bit to 32nd bit with two different

inputs shift to 51st bit to 48th bit and 35th to

32nd respectively, while the rest is held.

Yes No Piccolo

3 bit left shift to all the 64 bits with the 3 bits

input shift to the 3 least-significant bits.

Yes No PRINTcipher

2 bit left shift to all the 80 bits with the 2 bits

input shift to the 3 least-significant bits.

No Yes PRINTcipher

Parallel load Yes Yes All four ciphers

Synchronous clear Yes Yes All four ciphers

For each different cipher, their combinational datapath is relatively independent by

89

using the multiplexers inside the design to choose the correct input or different input

ports to the registers. For example, PRINTcipher needs a 3 bit left shift for the state

register and a 2 bit left shift for the key register to execute the “Virtual sbox” component.

For the other three ciphers, they need a 4 bit left shift for the state register to execute

the sbox layer. Thus, PRINTcipher uses different input ports for the registers. By using

this philosophy, different ciphers have comparatively separated combinational

datapaths which contributes to the simplification of the simulation.

IDLE

initialization

Y
Key_valid =

 1 ?

Yes

Y
Key_valid

= 0 ？

Yes

N

O

N

O

Wait_ciphermode

Piccolo state

transition path

PRINTcipher state

transition path

LED state

transition path

PRESENT state

transition path

Cipher_mode=PRESENT

Cipher_mode=Piccolo Cipher_mode=PRINTcipher

Cipher_mode=LED

Figure 4.21 State Transition Diagram of the Serialized Design of the Platform

Figure 4.21 provides the state transition diagram of our design. The serialized

design of each different cipher we discussed before and the serialized design of the

platform, they all have the same “IDLE” state and “initialization” state. Following these

two states, we define the rest of the state transition paths as “PRESENT state transition

90

path”, “Piccolo state transition path”, “PRINTcipher state transition path” and “LED

state transition path”. Since the “IDLE” state and “initialization” state are exactly the

same as for the four individual ciphers, the details of this FSM is described below

starting with the “Wait_ciphermode” state:

1. In “Wait_ciphermode” state, the FSM will wait for a valid value of the 3 bit

“Cipher_mode” signal and step into one of the four state transition paths when receiving

a valid “Cipher_mode” signal. For example, if the “Cipher_mode” signal is “001”, the

FSM will step into the “PRESENT state transition path”.

2. In one of the state transition path states, the FSM will work according to each

individual state transition path and transfer back to “IDLE” state when the ciphertext

has been generated.

Figure 4.22 shows the simulation result of our design. Notice that the “c_m_tb”

signal is the “Cipher_mode” signal. The platform will choose PRESENT, Piccolo,

PRINTcipher or LED when the “Cipher_mode” signal is “001”, “100”, “011” or “010”,

respectively. Comparing to the waveforms for the previous four individual ciphers, we

can draw the conclusion that our design is successful.

91

Figure 4.22 Simulation Results of the Serialized Design of the Platform

From Table 4.9, we find that we save a lot of dedicated logic registers since all the

registers are shared by the four ciphers in the platform. Indeed, the number of dedicated

logic registers are reduced to about 25% of the sum of the individually synthesized

ciphers. Also, there is a slight decrease for the combinational functions. The total

number of combinational functions consumed by the four individual ciphers is 1145,

while the platform consumes only 1095 combinational functions. Compared to the

iterative design of the platform, we have reduced the synthesized design by 769

92

combinational functions. We can conclude that the serialized design of the platform

saves a large amount of hardware resources.

Table 4.9 Resource Usage Summary for Different Ciphers

Cipher Combinational functions Dedicated logic registers

PRESENT 206 158

Piccolo 372 164

PRINTcipher 225 161

LED 342 162

Total 1145 645

Platform 1095 177

However, another interesting result could be found from Table 4.9. Compared to the

iterative design of the platform which saves 895 combinational functions over the

individual cipher design, only 50 combinational functions are saved by the serialized

design of the platform over the sum of the individual design resources. Actually, in the

serialized design of the platform, the combinational functions consumed by the

combinational datapath for each individual cipher is quite small, which results in the

fact that “MUX5” in the serialized design of the platform is a much more significant

93

factor for the combinational functions compared to the “MUX2” in Figure 3.13.

Notably, “MUX5” has one more 64 bit input than “MUX2” in Figure 3.13.

From Figure 4.19 we find that LED cipher uses two out of the five inputs of

“MUX5”. If we remove the LED cipher from the platform, we can reduce the number

of inputs of “MUX5” from 5 to 3 and it is reasonable to expect we can have a

significantly better result for the combinational functions in the platform. Using the

synthesis tool, we investigated that possibility and found that the new serialized

platform consumes 852 combinational functions, while the remaining three individual

ciphers consume a total number of 803 combinational functions. Hence, removing LED

only reduced the number of combinational functions by 22.2% from 1095 to 852 while

we expect the reduction to be perhaps more than 25%. In fact, the number of

combinational functions for the platform with the remaining 3 ciphers is larger than the

sum of the 3 individual ciphers. Hence, the result shows that the optimization by

removing LED cipher does not improve the consumption of combinational functions.

Table 4.10 illustrates the reason why we can not reduce more combinational

functions even though we remove the LED cipher from the platform. The key register

and the state register consumed 37.5 percent of the total combinational functions. Even

though the LED cipher is removed, the modes of operations for the key register and

state register are still required by other ciphers. For this reason, we can not reduce more

94

than 25% of the combinational functions by removing the LED cipher.

Table 4.10 Number of Combinational functions of Key Register and State Register

Cipher Combinational functions

of key register and state

register

Percentage of

Combinational functions

PRESENT 155 75.2%

Piccolo 197 53.0%

PRINTcipher 147 67.3%

LED 238 69.6%

Total 737 64.4%

Platform 411 37.5%

Table 4.11 shows the performance of the serialized implementation. The

throughtput is based on the maximum frequency of the platform being 183 MHz as

determined by the critical path in the design. Different ciphers need different numbers

of clock cycles to finish the encryption process. From this table, it is obvious that the

throughput is significantly low. However, in most lightweight applications, such as

RFID tags, the requirement for the throughput is not the major factor that will be taken

95

into consideration. Since the serialized platform saves a lot of hardware resources, we

can conclude that our design is suitable for the lightweight applications or embedded

systems where resource consumption is often critical. Moreover, we only need 20 I/O

pins for the platform.

Table 4.11 Performance of the Serialized Implementation

Cipher Number of clock cycles Throughput

PRESENT 544 21.5 Mbps

Piccolo 711 16.8 Mbps

PRINTcipher 1581 5.6 Mbps

LED 1073 10.9 Mbps

4.3 Summary

In this chapter, we present the serialized design of the four individual ciphers and

the multi-cipher platform. In addition, we provide two different designs of the serialized

LED cipher. Comparison of these different implementations are also provided and we

carefully investigated the differences of the resource consumption result.

In the next chapter, we will make a summary and give a conclusion for all the

designs in this thesis. Several future work approaches are also provided.

96

Chapter 5

Conclusions and Future Work

In this thesis, we provide two different designs of four individual lightweight block

ciphers and the multi-cipher platform. The iterative design of the four individual ciphers

and the platform is comparatively straightforward. By sharing the similar components

of these four ciphers, we significantly reduced both the combinational functions and

dedicated logic registers in comparison to the total resources required to implement the

ciphers individually. Hence, the number of LEs is significantly reduced. However, by

using the serialized design, the number of combinational functions is reduced even

further even though we have a slight increase in the dedicated logic registers over the

iterative platform due to the complexity in the FSM. The whole design has been

simulated by ModelSim [23] and test vectors are used to verify the correct operation of

the systems designed. Our work has built a flexible platform which provides the

possibility to add more lightweight block ciphers on the basis of our design.

5.1 Conclusions

The research objective of this thesis is the design of a platform which has small

hardware resource consumption and high flexibility. First we investigated several

papers which introduce several lightweight block ciphers and then we selected four

97

lightweight block ciphers: PRESENT, Piccolo, PRINTcipher and LED to be integrated

into our platform. Two different multi-cipher platform designs have been proposed and

simulated.

The first design is the iterative design which is also called the round-based design.

We carefully designed the functional component of each individual cipher to save as

many resources as possible. In the design of each individual cipher, we also considered

the common features so that the integration of these four ciphers is not a difficult task.

After the integration of these four ciphers into the iterative multi-cipher platform, we

also considered the flexibility of the platform and included fault-tolerant design aspects

to ensure that our platform could work smoothly. The simulation results have been

provided for both the four individual ciphers and the platform, which proves that the

design is successful. Synthesis results show the hardware resource savings resulting

from sharing the similar components. A total of 32.4% combinational functions and

71.8% dedicated logic registers are saved for an iterative design. By simply changing

the “Cipher_mode” signal, different ciphers could be chosen, which ensures the

flexibility of the platform. However, since we realized that serializing the

combinational datapath, more combinational functions could be saved, we were

motivated to design a more compact platform.

The second design is the serialized design. Compared to the iterative design, it is

much more complex. We have re-investigated these four ciphers and found methods to

deal with the difficulties of the serialization of the datapath. One challenge was to

98

serialize the “Mixcolumns” both in LED cipher and Piccolo cipher and this was solved

by using a specially designed shift register. Another problem was to deal with the F

function inside the Piccolo cipher and this was solved by using an inverse sbox. After

successfully finishing the serialized design of each individual cipher, the combinational

datapath for each cipher was seriously investigated to check if more components can

be shared other than the registers. Finally, we found that only the “4 bit XOR A”

component could be shared by PRESENT, PRINTcipher and LED cipher to finish the

“Add_roundkey” layer. Hence, we chose, when we integrated these four ciphers into

the platform, to keep their combinational datapath comparatively separated. The

simulation results and synthesis results are provided. The results prove that the design

is successful. Compared to the iterative design, we save 41.3% more combinational

functions. The penalty is that the throughput is really low. However, there is always a

trade-off between hardware resource consumption and the performance. Since the

resource consumption is the biggest factor we need to take into consideration for

lightweight applications and embedded systems, we conclude that our design is

worthwhile and successful.

5.2 Future Work

In this section, we conclude the thesis by identifying some directions for future work.

5.2.1 Transferring the Platform from FPGA to ASIC

All designs in this thesis are synthesized based on Altera Cyclone IV FPGA [24].

99

However in most lightweight applications, an FPGA is not a good option since usually

it costs more than ASIC implementation. A lot of extra resources are provided in an

FPGA chip that may not be used in lightweight applications. For example, in the

synthesis results given by Quartus II [20], all these designs in this thesis use less than

1% of the total combinational functions and dedicated logic registers provided by the

device. In the future, a synthesis based on CMOS technology should be applied. For

example, we can consider transferring the platform to the Taiwan Semiconductor

Manufacturing Company (TSMC) 90 nm CMOS technology.

5.2.2 Verification in Real Test Environment

Further verification should be applied for the platform on a real test board. For

example, since we use Altera Cyclone IV FPGA in our design, we could download the

project to the DE-II board [27]and run more functional tests in the real test environment.

This verification could examine any possible issues inside the dataflow of our platform.

5.2.3 Adding More Lightweight Block Ciphers on the

Platform

Since our multi-cipher platform is designed with the consideration of flexibility,

more lightweight block ciphers could be added to our platform easily. However, the

potential ciphers need to be carefully investigated so that the selected cipher could also

share the similarities with the integrated four ciphers. If the selected cipher has a big

difference with the four integrated ciphers, it may increase the number of multiplexers

100

needed in the implementation.

Even though throughput is not the major factor we consider for the multi-cipher

platform, adding more ciphers into the platform may result in a larger delay in the

critical datapath, which could lead to a decrease of the throughput. As a result, the trade-

off between the resource consumption and throughput needs to be seriously investigated.

101

References

[1]
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied

Cryptography, New York: CRC Press, 2001.

[2]
W. Stallings, Cryptography and Network Security Principles and Practices., New

Jersey: Pearson Prentice Hall, 2006.

[3]
"DATA ENCRYPTION STANDARD (DES)," National Institute of Standards and

Technology (NIST), 25 Oct 1991. [Online]. Available:

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[4]
"Advanced Encryption Standard (AES) Development Effort," National Institute

of Standards and Technology, [Online]. Available:

http://csrc.nist.gov/archive/aes/index2.html.

[5]
G. Leander, "Lightweight Block Cipher Design," 2014. [Online]. Available:

http://summerschool-

croatia14.cs.ru.nl/slides/Lightweight%20Block%20Cipher%20Design.pdf.

[6]
"Lightweight block ciphers website," 2015 May 15. [Online]. Available:

www.cryptolux.org/index.php/Lightweight_Block_Ciphers..

[7]
A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw,

Y. Seurin and C. Vikkelsoe, "PRESENT: An Ultra-Lightweight Block Cipher,"

vol. 4727, pp. 450-466, Lecture Notes in Computer Science, in Cryptographic

Hardware and Embedded Systems, 2007.

[8]
G. Leander and A. Poschmann, "On the Classfication of 4 Bit S-boxes," vol. 4547,

pp. 159-176, Lecture Notes in Computer Science, in Proceedings of Arithmetic

of Finite Fields, Heidelberg, 2007.

[9]
K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita and T. Shirai,

"Piccolo: An Ultra-Lightweight Blockcipher," vol. 6917, pp. 342-357, Lecture

Notes in Computer Science , in Cryptographic Hardware and Embedded Systems,

2011.

102

[10]
L. Knudsen, G. Leander, A. Poschmann and M. J. Robshaw, "PRINTcipher: A

Block Cipher for IC-Printing," vol. 6225, pp. 16-32, Lecture Notes in Computer

Science, in Cryptographic Hardware and Embedded Systems, 2010.

[11]
J. Guo, T. Peyrin, A. Poschmann and M. Robshaw, "The LED Block Cipher," vol.

6917, pp. 326-341, Lecture Notes in Computer Science, in Cryptographic

Hardware and Embedded Systems, 2011.

[12]
C. D. Cannière, O. Dunkelman and M. Knežević, "KATAN and KTANTAN — A

Family of Small and Efficient Hardware-Oriented Block Ciphers," vol. 5747, pp.

272-288, Lecture Notes in Computer Science, in Cryptographic Hardware and

Embedded Systems, 2009.

[13]
Z. Gong, S. Nikova and Y. W. Law, "KLEIN: A New Family of Lightweight Block

Ciphers," vol. 7055, pp. 1-18, Lecture Notes in Computer Science in RFID.

Security and Privacy, 2012.

[14]
M. Izadi, B. Sadeghiyan, S. S. Sadeghian and H. A. Khanooki, "MIBS: A New

Lightweight Block Cipher," vol. 5888, pp. 334-348, Lecture Notes in Computer

Science, in Cryptology and Network Security, 2009.

[15]
T. Suzaki, K. Minematsu, S. Morioka and E. Kobayashi, "TWINE: A Lightweight

Block Cipher," vol. 7707, pp. 339-354, Lecture Notes in Computer Science, in

Selected Areas in Cryptography, 2013.

[16]
S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol and . F.-X. Standaert, "Towards

Green Cryptography: A Comparison of Lightweight Ciphers from the Energy

Viewpoint," vol. 7428, pp. 390-407, Lecture Notes in Computer Science, in

Cryptographic Hardware and Embedded Systems, 2012.

[17]
T. Eisenbarth, C. Paar , A. Poschmann, S. Kumar and L. Uhsadel, "A Survey of

LightweightCryptography," IEEE Design & Test of Computers, no. Special Issue

on Secure ICs for Secure Embedded Computing, pp. 522-533, 2007.

[18]
Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, New York:

McGraw-Hill, 1997.

[19]
"Logic Elements and Logic Array Blocks in Cyclone IV Deivice," [Online].

Available: https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cyiv-

103

51002.pdf.

[20]
"Quartus II Handbook," Altera, [Online]. Available:

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/hb/qts/quartusii_handbook.pdf.

[21]
"My First FPGA Design Tutorial," [Online]. Available:

https://www.altera.com/en_US/pdfs/literature/tt/tt_my_first_fpga.pdf.

[22]
H. Liao and H. M. Heys, "An Integrated Hardware Platform For Four Lightweight

Block Ciphers," in CCECE, Halifax, 2015.

[23]
"ModelSim® User’s Manual," [Online]. Available:

http://www.microsemi.com/document-portal/doc_view/131619-modelsim-user..

[24]
"Altera Cyclone IV Device Handbook," [Online]. Available:

http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf..

[25]
J. Guo, T. Peyrin, A. Poschmann and M. Robshaw, "The LED Block Cipher,"

[Online]. Available: https://sites.google.com/site/ledblockcipher/.

[26]
C. Rolfes, A. Poschmann, G. Leander and C. Paar, "Ultra-Lightweight

Implementations for Smart Devices – Security for 1000 Gate Equivalents," in

Smart Card Research and Advanced Applications, 2008.

[27]
"DE2 Development and Education Board User Manual," [Online]. Available:

ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf.

104

Appendix A

VHDL Code for “Mixcolumns” Component

in Piccolo Cipher and LED Cipher

A.1 “Mixcolumns” in Piccolo Cipher

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_signed.all;

use work.all;

entity piccolo_mix is

 port (x : in std_logic_vector(15 downto 0);

 output : out std_logic_vector(15 downto 0));

end entity;

architecture rtl of piccolo_mix is

begin

 output(15) <=x(14) xor x(11) xor x(10) xor x(7) xor x(3);

 output(14) <=x(13) xor x(10) xor x(9) xor x(6) xor x(2);

 output(13) <=x(15) xor x(12) xor x(11) xor x(9) xor x(8) xor x(5) xor x(1);

 output(12) <=x(15) xor x(11) xor x(8) xor x(4) xor x(0);

 output(11) <=x(15) xor x(10) xor x(7) xor x(6) xor x(3);

 output(10) <= x(14) xor x(9) xor x(6) xor x(5) xor x(2);

 output(9) <= x(13) xor x(11) xor x(8) xor x(7) xor x(5) xor x(4) xor x(1);

 output(8) <= x(12) xor x(11) xor x(7) xor x(4) xor x(0);

 output(7) <= x(15) xor x(11) xor x(6) xor x(3) xor x(2);

 output(6) <= x(14) xor x(10) xor x(5) xor x(2) xor x(1);

105

 output(5) <= x(13) xor x(9) xor x(7) xor x(4) xor x(3) xor x(1) xor x(0);

 output(4) <= x(12) xor x(8) xor x(7) xor x(3) xor x(0) ;

 output(3) <= x(15) xor x(14) xor x(11) xor x(7) xor x(2);

 output(2) <= x(14) xor x(13) xor x(10) xor x(6) xor x(1);

 output(1) <= x(15) xor x(13) xor x(12) xor x(9) xor x(5) xor x(3) xor x(0);

 output(0) <= x(15) xor x(12) xor x(8) xor x(4) xor x(3);

end architecture;

A.2 “Mixcolumns” in LED Cipher Using Matrix M

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

entity LED_mixcolumn is

 port(a : in std_logic_vector(63 downto 0);

 o : out std_logic_vector(63 downto 0));

end entity;

architecture rtl of LED_mixcolumn is

begin

 label1: for i in 0 to 3 generate

 -- 63-60

 o(63-4*i)<= a(61-4*i) xor a(47-4*i) xor a(30-4*i) xor a(14-4*i);

 o(62-4*i)<= a(63-4*i) xor a(60-4*i) xor a(46-4*i) xor a(29-4*i) xor a(13-4*i);

 o(61-4*i)<= a(63-4*i) xor a(62-4*i) xor a(45-4*i) xor a(31-4*i) xor a(28-4*i) xor

a(15-4*i) xor a(12-4*i);

 o(60-4*i)<= a(62-4*i) xor a(44-4*i) xor a(31-4*i) xor a(15-4*i);

 --47-44

 o(47-4*i)<= a(63-4*i) xor a(60-4*i) xor a(46-4*i) xor a(45-4*i) xor a(31-4*i) xor

a(29-4*i) xor a(14-4*i) xor a(13-4*i);

106

 o(46-4*i)<= a(63-4*i) xor a(62-4*i) xor a(47-4*i) xor a(45-4*i) xor a(44-4*i) xor

a(31-4*i) xor a(30-4*i) xor a(28-4*i) xor a(15-4*i) xor a(13-4*i) xor a(12-4*i);

 o(45-4*i)<= a(62-4*i) xor a(61-4*i) xor a(46-4*i) xor a(44-4*i) xor a(31-4*i) xor

a(30-4*i) xor a(29-4*i) xor a(14-4*i) xor a(12-4*i);

 o(44-4*i)<= a(61-4*i) xor a(47-4*i) xor a(46-4*i) xor a(30-4*i) xor a(28-4*i) xor

a(15-4*i) xor a(14-4*i);

 --31-28

 o(31-4*i)<= a(62-4*i) xor a(60-4*i) xor a(47-4*i) xor a(46-4*i) xor a(45-4*i) xor

a(44-4*i) xor a(31-4*i) xor a(30-4*i) xor a(28-4*i) xor a(12-4*i);

 o(30-4*i)<= a(63-4*i) xor a(61-4*i) xor a(46-4*i) xor a(45-4*i) xor a(44-4*i) xor

a(31-4*i) xor a(30-4*i) xor a(29-4*i) xor a(15-4*i);

 o(29-4*i)<= a(63-4*i) xor a(62-4*i) xor a(60-4*i) xor a(45-4*i) xor a(44-4*i) xor

a(31-4*i) xor a(30-4*i) xor a(29-4*i) xor a(28-4*i) xor a(14-4*i);

 o(28-4*i)<= a(63-4*i) xor a(61-4*i) xor a(60-4*i) xor a(47-4*i) xor a(46-4*i) xor

a(45-4*i) xor a(31-4*i) xor a(29-4*i) xor a(13-4*i) xor a(12-4*i);

 --15-12

 o(15-4*i)<= a(62-4*i) xor a(46-4*i) xor a(30-4*i) xor a(29-4*i) xor a(28-4*i) xor

a(14-4*i) xor a(12-4*i);

 o(14-4*i)<= a(61-4*i) xor a(45-4*i) xor a(29-4*i) xor a(28-4*i) xor a(15-4*i) xor

a(13-4*i);

 o(13-4*i)<= a(63-4*i) xor a(60-4*i) xor a(47-4*i) xor a(44-4*i) xor a(28-4*i) xor

a(15-4*i) xor a(14-4*i) xor a(12-4*i);

 o(12-4*i)<= a(63-4*i) xor a(47-4*i) xor a(31-4*i) xor a(30-4*i) xor a(29-4*i) xor

a(28-4*i) xor a(15-4*i) xor a(13-4*i) xor a(12-4*i);

end generate;

end architecture;

A.3 Serialized “Mixcolumns” in LED Cipher Using Matrix A

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

107

entity LED_mixcolumn_seri is

 port(input3, input2, input1, input0: std_logic_vector(3 downto 0);

 output: out std_logic_vector(15 downto 0));

end entity;

architecture rtl of LED_mixcolumn_seri is

begin

output(15 downto 12) <= input2;

output(11 downto 8) <= input1;

output(7 downto 4) <= input0;

output(3)<= input3(1) xor input2(3) xor input1(2) xor input0(2);

output(2)<= input3(3) xor input3(0) xor input2(2) xor input1(1) xor input0(1);

output(1) <= input3(3) xor input3(2) xor input2(1) xor input1(3) xor input1(0) xor

input0(3) xor input0(0);

output(0) <= input3(2) xor input2(0) xor input1(3) xor input0(3);

end rtl;

108

Appendix B

VHDL Code for the State Register Used in

the Serialized Design of the Platform

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_signed.all;

use work.all;

entity platform_reg is

 port(clk, rst_b: in std_logic;

 sel_reg: in std_logic_vector(2 downto 0);

 parallel_input: in std_logic_vector(63 downto 0);

 shift_input1 : in std_logic_vector(3 downto 0);

 shift_input2 : in std_logic_vector(3 downto 0);

 shift_input3 : in std_logic_vector(3 downto 0);

 shift_input_3bit : in std_logic_vector(2 downto 0);

 shift_out_1,shift_out_2: out std_logic_vector(3 downto 0);

 shift_out_3bit : out std_logic_vector(2 downto 0);

 parallel_out: out std_logic_vector(63 downto 0));

end entity;

architecture rtl of platform_reg is

 signal reg: std_logic_vector(63 downto 0);

begin

 p0:process(rst_b, clk)

 begin

 if (rst_b='0') then

109

 reg<=(others=>'0');

 elsif (clk='1' and clk'event) then

 case sel_reg is

 when "000"=> reg<=reg;

 when "001"=> reg<=reg(59 downto 0) & shift_input1;

 when "010"=> reg<=reg(59 downto 48) & shift_input2 ®(47 downto 0);

 when "100"=> reg<=reg(31 downto 0) & reg(63 downto 32);

 when "011" => reg<= reg(59 downto 48) &shift_input2 ®(43 downto 32) &

shift_input3 ®(31 downto 0);

 when "101"=> reg<= reg(60 downto 0) & shift_input_3bit;

 when "110"=> reg<= parallel_input;

 when "111"=> reg<= (others=> '0');

 when others=>null;

 end case;

 else

 null;

 end if;

 end process;

 parallel_out<=reg(63 downto 0);

 shift_out_1 <= reg(63 downto 60);

 shift_out_2 <= reg(47 downto 44);

 shift_out_3bit<= reg(63 downto 61);

end rtl;

