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ABSTRACT 

Solvent extraction technology (Vapor extraction/VAPEX) has drawn a lot of industry attention 

due to its potential to be an alternative to Steam assisted Gravity Drainage (SAGD) in heavy oil 

production. However the mass transfer mechanisms involved is yet to be fully comprehended. 

Reliable oil production rate data is scarce, hence the reluctance from oil companies to implement 

the technology on a field/commercial scale. More work is required at the experimental level to 

fully understand the intricacies of the technology and hence facilitate its commercialization. 

 

Experiments were conducted to evaluate the one-dimensional diffusivity of butane solvent in 

Athabasca bitumen at varying temperatures. Given diffusion is driven by concentration gradient, 

the diffusivity cannot be assumed constant throughout the whole diffusion process. Hence the 

diffusivity was found as a function of butane solvent concentration (mass fraction). Diffusivity 

functions for ideal mixing and non-ideal mixing were computed. Butane vapor temperature 

(24.00
o
C and 34.65 psi) is kept constant while the bitumen temperature is varied at 5 levels 

(27.00
o
C, 30.25

o
C, 33.50

o
C, 36.75

o
C and 40.00

o
C). 

 

Assuming ideal mixing between hydrocarbons in VAPEX experiments is prevalent in the field. 

This is because finding a parameter in the solvent-bitumen mixing system that accounts for non-

ideal mixing without upsetting the system is difficult. This work accounts for non-ideal mixing 

by constantly measuring the bitumen liquid hydrostatic pressure via pressure differential 

transmitters as diffusion occurs. With bitumen height change and amount of diffused butane 

solvent being monitored, the real density reduction (non-ideal density reduction) can be 

computed. Results showed that assuming ideal mixing over-estimates the density reduction. The 

deviation between ideal and non-ideal mixing density values increase as temperature increases. 

This is supported by most literature in the field. As temperature tends to standard temperature 

(25.00
o
C), the effects of non-ideal mixing become insignificant. 

 

A MATLAB model is used to predict the ‘bitumen growth’ (bitumen swelling), this is compared 

to ‘bitumen growth’ observed experimentally. The difference between the two (experimental – 
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predicted) is minimized by optimizing the diffusivity function coefficients. Results showed that 

the diffusion values (obtained via diffusivity functions) decreases as temperature increases. 

There was no ‘live oil’ drainage in this experiment so diffusion is governed by the butane solvent 

solubility in the bitumen. This butane solvent solubility decreases with increasing temperature. 

 

At equal mass fractions (ωs) all non-ideal mixing diffusivity functions yielded higher diffusion 

values than ideal mixing diffusivity functions. This is logical because diffusion is driven by 

concentration gradient.  Ideal mixing scenarios over-estimate density reduction on mixing and 

hence provide a smaller concentration gradient compared to non-ideal mixing. The assumption 

of ideal mixing conditions clearly underestimates the real diffusivity values. The deviation 

between ideal and non-ideal diffusivity functions also increased as temperature increased. This 

follows the same trend as the deviation between ideal and non-ideal mixing density results. 

 

A macroscopic mass balance was used to independently validate the diffusivity functions. This 

mass balance predicted the change in solvent height after ‘bitumen growth’ had been resolved for 

the full experimental time. This is an independent validation because change in solvent height 

data was not used to obtain the diffusivity functions. All but one of the diffusivity functions 

(40.00
o
C) was independently validated. Lack of validation in the 40.00

o
C run was due to 

technical issues while running the experiment. For all validation data, the non-ideal diffusivity 

functions provided a better fit for the experimental data than the ideal diffusivity functions. 

 

Finally, the experimentally determined butane slope decrease, bitumen slope increase and non-

ideal mixing coefficients for all varied temperature conditions were used as input values to make 

models in Design Expert (DE). These models were used to predict the aforementioned 

parameters at a random bitumen temperature (28.50
o
C). An extra experiment was run at this 

temperature (28.50
o
C) to compare the diffusivity functions coming from the experimental data to 

those from (DE) predictions. The DE originated diffusivities functions showed a good fit with 

the experimentally originated diffusivity functions. The model is therefore a robust model and 

can be used to predict diffusivity of butane at 24.00
o
C, within a given bitumen temperature range 

of 27.00
o
C - 40.00

o
C, while also accounting for non-ideal mixing and concentration dependency. 
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NOMENCLATURE 

Symbol Description Units 

A Area cm2, m2  

C  Concentration    g/mol 

D    Diffusivity cm2/s, m2/s 

d      Depth cm, m, mm, μm 

g  Gravitational constant m/s2, cm/s2  

h     Height cm, m, mm  

k    Permeability Darcy, μm2  

L     Length cm, m, mm  

m   Mass g, kg  

ṁ Mass flow rate g/min 

N Flux g/cm2.s, kg/m2.s 

P     Pressure kPa, MPa, psi  

PV   Pore volume  cm3  

Q   Volumetric flow rate  cm3/min, barrels/day (bbp) 

S    Saturation % 

t     Time day, hour, min, s  

U   Velocity m/s, cm/s  

V    Volume m3 , cm3, barrels, bb 

Vm Mass average velocity m/s, cm/s 

v  Volume fraction   
 

w    Width M, cm 

   
Greek 

  
δ     Depth of the draining live oil μm, mm, pores 

∆ change 
 

φ      Porosity % 

μ      Viscosity mPa.s, cP 

ρ     Density kg/m3, g/cm3  

σ      Surface tension N/m, dyne/cm 

ω   Mass fraction       
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Subscripts 
  

b  Bitumen    
 

eq  Equivalent    
 

g, G   Gas 
 

i   Interface or nodal position 
 

l, L  Liquid 
 

lo  Live oil   
 

m  Cementation factor    
 

max   Maximum   
 

min Minimum  

mix Mixture  

n  Exponent    
 

o     Oil 
 

p    Pore  
 

s   Solvent  
 

v  Vapor    
 

wb  Water bath    
 

sys  System      
 

   
Superscript 

  
*   Solubility limit, i.e. ωs*   

 
i   Interfacial   

 
dr    Drainage 

 
x  X-direction 

 
 

Acronyms/Definitions  

OOIP   Original oil in place   

EIA  Energy Information Administration 

DE    Design Expert 

DE    Design Expert 

Diffusivity Measure of the magnitude of diffusion (usually varies) 

Diffusivity function Mathematical expression for diffusion 

Diffusion coefficient Measure of the magnitude of diffusion (usually constant) 

Diffusion value Numerical values obtained from diffusivity function 

One-dimensional diffusivity Diffusion occurring in one direction and no outside impact 
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1) INTRODUCTION 
Canada has the third largest World oil reserves behind Saudi Arabia and Venezuela with 174 

billion barrels (bbls) in proven reserves (CAPP 2014), 97% are oil sands. These oil sands are 

typically extracted through mining or in-situ methods. The in-situ methods predominantly 

comprise of some form of thermal stimulation. One of such technology is Steam Assisted 

Gravity Drainage (SAGD).  

 

However, thermal methods are not always ideal for in-situ formations, and can be replaced with 

more energy efficient mass transfer methods (Vapor Extraction VAPEX or N-Solv). Although 

some research has been done on the implementation of this technology, the key diffusion 

mechanism at the crux of the technology is yet to be fully understood. 

 

Oil sands are a natural mixture of sand water, clay and bitumen. Bitumen is oil that is too heavy 

or thick to flow, or be pumped out thereby needing a form of heat stimulation or dilution 

(VAPEX or N-Solv) for it to flow. It typically possesses an API of less than 10
o
, viscosity of 

greater than 10000 cp and density of about 1000 kg/m
3
 (Law 2011). SAGD technology is energy 

intensive, produces adverse environmental effects, and is not economical for a number of heavy 

oil rich areas. 

 

The purpose of this research is to evaluate the one – dimensional diffusivity of butane solvent in 

bitumen at varying temperature conditions, while accounting for changes in concentration and 

non-ideal mixing of hydrocarbons. Diffusivity function is a mathematical expression for 

diffusion as a function of another term (mass fraction in this work). It should be noted that one-

dimensional diffusivity represents diffusion occurring in one direction and no outside impacts.  

The difference between diffusivity functions and diffusion values should also be noted. Diffusion 

values are the numerical values obtained when mass fraction (ωs) is substituted into the 

diffusivity function and computed. The study also intends to find a correlation that will predict 

the diffusivity within the given temperature range.  
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1.1. World Heavy Oil Overview 

Heavy oil and bitumen are types of crude oil that fall under the unconventional resource 

umbrella. The key difference between conventional and unconventional resources is that 

conventional resources are able to flow in their natural state through production conduits (wells) 

while being economical for production (Vassilellis 2009). Unconventional resources are unable 

to be produced at economical rates without assistance from massive stimulation treatments or 

special recovery processes (Haskett and Brown 2005). Figure 1-1 shows a resource pyramid for 

conventional and unconventional resources. It should be noted that in this current day Gas 

Hydrates technology is still in the works while Shale Oil technology is fully commercial. 

 

Figure 1-1 - Resource Pyramid focusing on Unconventional resources (Rajnauth 2012) 

 

Most heavy oil reservoirs originated as conventional oil that formed in deep formations that later 

migrated to the surface. They were then degraded by bacteria and weathering leading to the 

escape of the lightest hydrocarbons. As a result, heavy oil is deficient in hydrogen and high in 

carbon, sulphur and heavy metals. This also leads to heavy oil having API gravity of below 22.3
o
 

and viscosity of over 1,000 cP (Speight 2013a).  
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There are conflicting definitions as to what is heavy oil versus bitumen. Technically bitumen is a 

crude grade that has an API of less than 10
o
 and viscosity of greater than 10,000 cP (Law 2011). 

It also exists in solid and semi-solid states in the reservoir. Heavy oil is a crude grade with an 

API of 10
o
 – 22.3

o
 and viscosity of 100 – 10,000 cP. It is predominantly found in a highly 

viscous liquid state and can also be referred to as ‘extra heavy oil’. For the purpose of this 

research, the definitions of heavy oil will encompass normal bitumen, heavy oil, and extra heavy 

oil. 

 

As profitable as heavy oil can be, there are smaller profit margins achieved with its production 

when compared to conventional oil. This is mainly due to higher production costs, upgrading 

costs and lower market price for heavier crude oils. 

 

From a location stand point heavy oil is predominantly found in Canada and Venezuela. Other 

countries include the US, Russia, Brazil, and China. Figure 1-2 shows a diagram of OOIP 

(Original Oil in Place) heavy oil resources around the world. 

 

 

Figure 1-2 - Global heavy oil resources (Law 2011)  
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Heavy oil deposits in Venezuela are the largest in the world with 298 billion barrels of proved 

reserves (EIA 2014b). The vast majority are located in the Orinoco heavy oil belt. Figure 1-3 

shows a diagram of the heavy oil deposits. The U.S. Energy Information Administration (EIA) 

estimates Venezuela produced 2.49 million barrels per day (bpd) of petroleum and other liquids 

in 2013. 

 

 

Figure 1-3 - Orinoco Belt Venezuela (EIA 2014a) 

 

Major heavy oil deposit in the US, are found mostly in the Uinta Basin, Utah. These include the 

Sunnyside, Oil sand triangle, Peor Springs, Asphalt Ridge and Sundry deposits. Table 1-1 shows 

a list of these deposits along with their reserves. 

 

Table 1-1 - Heavy Oil Deposits in Utah (Speight 2013b) 

Deposit 
Known Reserves 

(bbl×10
6
) 

Additional Probable 

Reserves (bbl×10
6
) 

Sunnyside 4,400 1,700 

Tar Sand Triangle 2,500 420 

PR Spring 2,140 2,230 

Asphalt Ridge 820 310 

Circle Cliffs 590 1,140 

Other 1,410 1,530 

Total 118,060 7,330 
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Brazil possessed 13 billion bbls of proven oil reserves as of January 2013 (EIA 2013). The 

offshore Campos and Santos Basins, located off the country's southeast coast, hold the vast 

majority of Brazil's proved reserves, 90% of which are heavy oil. In China four natural heavy oil 

accumulations are located in the Junggar basin with resources of about 1.6 billion bbls (USGS 

2010). In Russia, large resources are present in the east Siberia platform inside the Tunguska 

basin. The area is conservatively estimated to contain 51 billion bbls of oil reserves (USGS 

2010). The area, however, is very remote and unlikely to be exploited in the near future due to 

Russia’s large conventional oil and gas resources. 

 

1.2. Canadian Perspective 

Canada, with 1.7 trillion bbls of original oil in place OOIP, is estimated to have 168 billion 

barrels of oil sands (Alberta Energy 2010). The main locations are in the provinces of Alberta 

and Saskatchewan.  

 

Alberta’s heavy oil deposits are located in Athabasca, Peace River and Cold Lake. These 

deposits combined, occupy an area of 54,000 square miles (139,860 km
2
) (Alberta, Energy 

Resources Conservation Board 2013). This is just over half the size of the entire United 

Kingdom (243,610 km
2
). Figure 1-4 shows a schematic of Alberta’s heavy oil deposits.  
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Figure 1-4 - Schematic of Alberta’s Oilsand deposits (Lunn 2013) 

 

Athabasca deposits are the largest and most accessible reserve of bitumen. It underlies a 16000 

m
2
 area and contains 812 billion bbls of bitumen in place (Alberta, Energy Resources 

Conservation Board 2013). The rich bitumen accumulation is covered by overburden between 5 

– 100 m typically with an average pay zone of 20 m. 7% of the deposits lie under less than 5 – 

100 m of overburden making it accessible to surface mining techniques and 33 billion barrels are 

estimated to be recoverable by mining methods (Speight 2013b). Also worth mentioning is the 

Wabasca oil sand deposit, which is usually indicated as part of the Athabasca reserve. It is 

estimated to have 42.5 billion bbls of OOIP and at 490 – 1500 ft (149.35 – 457.2 m) of over-

burden (Speight 2013b) it is only recoverable by in-situ methods. 

 

Cold lake deposits are the second largest of the three and have four separate reservoir deposits – 

one each in McMurray, Clearwater, Lower Grand Rapids and Upper Grand Rapids. Given depth 

varies from 984 – 1969 ft (299.92 – 600.15 m) with surface mining not possible, the deposits are 
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suitable for in-situ methods. Cold lake holds approximately 178 billion barrels of oil reserves 

(Speight 2013b). 

 

The Peace River deposit has bitumen at a depth of 1000 to 2500 ft (304.8 – 762 m) in the Blue-

sky and Gething formation. With an area of 3000 m
2
 there are 71.7 billion barrels of bitumen in 

place.  

 

In Saskatchewan, oil sands are found in McMurray formation sediments equivalent to those of 

the Athabasca deposits. Bitumen-bearing sands in the McMurray formation extend from Alberta 

into Saskatchewan and are estimated to contain 20.5 billion bbls OOIP (Speight 2013b). These 

oil sands are known as ‘shallow in-situ oil sands’. This is because there is substantial difficulty in 

driving and producing the bitumen while managing water flows in the reservoir. They are found 

between 75 – 200 m making extraction with both mining and normal in-situ methods difficult. 

VAPEX technology currently represents the best opportunity to recover these reserves. Figure 1-

5 shows a schematic of Alberta’s and Saskatchewan’s deposits. 

 

 

 

Figure 1-5 - Schematic of Alberta’s and Saskatchewan’s deposits (Nasr and Ayodele 2005) 
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1.3. In-situ Extraction Methods for Bitumen 

Extraction methods can be classified under mining or in-situ methods. Mining methods are 

typically used when the heavy oil is close enough to the surface with about 75 m of over-burden 

(Schramm et al. 2010) . This process typically gives a recovery factor of 95% or greater. In-situ 

methods are used when depths are greater than 200 m of over-burden with recovery factors 

ranging from 50% – 60% (Speight 2013a) 75 – 200 m fall under ‘shallow in-situ’ reserves as 

stated above.  

 

Surface Mining Methods - This is the excavation (surface or sub-surface) of petroleum resources 

for subsequent removal of the bitumen via washing, floatation or restoring treatments. Athabasca 

deposits are the only ones that are shallow enough to be extracted via mining methods. Of 

Alberta’s 167 billion bbls of oil reserves 81% are recoverable via in-situ methods while the 

remaining 19% are close enough to the surface and can be mined (Alberta, Energy Resources 

Conservation Board 2013). About 1.2 million bbls per day are produced via surface mining 

methods, almost exclusive to Canada (Vassilellis 2009). 

 

A typical mining operation removes one and a half ton of over-burden, mines two tonnes of oil 

sands and processes it to yield one bbl of bitumen after extraction. With increasing depth, the 

grade of oil sand decreases and additional tonnes must be mined and processed to yield the same 

amount of bitumen. Commercial mining operations therefore, have economic depth limits and 

economic grade limits. Both of these are dictated by the trade-off between mining and processing 

costs vs. the value of the bitumen (Schramm et al. 2010). 

 

After extraction the bitumen is separated from the sand through the ‘Hot Water Process’. This 

utilizes linear and the non-linear variations of bitumen density and water density, respectively, 

with temperature, so that the bitumen that is heavier than water at room temperature becomes 

lighter than water at 80°C (Speight 2013b). To date, hot water processes are still the only 

commercially viable way to separate bitumen from the sand.  
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In-situ methods – In Latin terms, the word in-situ stands for ‘in position’. When this is used in 

heavy oil production scenarios, it stands for extraction done underground. This means extraction 

is occurring in the place where the oil resources are located. Deep oil sand reservoirs (greater 

than 200 m in depth) lend themselves to this form of extraction.  

 

In-situ extraction methods encompass thermal (Cyclic processes, SAGD and Hybrid processes) 

and non-thermal methods (VAPEX and N-Solv). For this thesis, Solvent technology will 

encompass VAPEX and N-Solv methods. Thermal methods, as the name suggest, requires a 

form of heat stimulation for extraction. It is, therefore, water and energy intensive, while still 

being the most economical of all the processes. Non–thermal methods usually use solvents to 

dilute the bitumen, reducing its viscosity and leading to extraction. This thesis will exclusively 

cover in-situ methods that are used for bitumen where the viscosity reduction is first required. 

 

1.3.1. Cyclic Steam Stimulation 

Cyclic Steam Stimulation (CSS) involves alternating between injecting the well with steam and 

producing the same well using the condensed steam (Speight 2013a). This cycling occurs with a 

single vertical well which serves as both an injector and producer well (this is sometimes 

referred to as “huff and puff”). An alternative incorporates steam drive between injectors and 

producers. These processes originally depended on vertical wells, but a combination of vertical 

and horizontal wells are now used. CSS can be used for bitumen, heavy and extra heavy oil 

grades. Figure 1-6 shows a schematic of a typical CSS system. 

 

http://library.books24x7.com/assetviewer.aspx?bkid=50965&destid=529#529


Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 10 
 

 

Figure 1-6 - Typical CSS system (Lunn 2013) 

 

As shown above, CSS is a three–stage process: first, high–pressure steam is injected into the 

vertical well for a period of time; second, the reservoir is shut in to soak; and third, the well is 

put into production. Production rate decline prompts the start of another cycle of steam injection. 

The injection–production cycle is repeated a number of times over the life of the well. The time 

required to steam and produce the wells varies from well to well with each cycle, typically, 

between 6 and 18 months.  

 

Steam generated is injected into the formation through the wellbore at a temperature of about 

300°C and pressures averaging 11,000 kPa. This pressure is sufficient to cause parting of the 

unconsolidated oil sands formation, creating paths for fluid flow (Speight 2013a). The recovery 

factors for CSS range from about 20 – 25% of original bitumen–in–place. 

 

Typical steam-to-oil ratios, the major economic factor, are 3:1 – 4:1. Although CSS is 

characterized by higher steam–oil ratios than with SAGD, the quality of steam used is much 

lower and requires less energy to produce. In CSS operations, natural gas requirements can be 
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met through produced solution gas from the process. The same is not applicable SAGD 

operations, because of the low amount of solution gas produced. 

 

Bitumen produced by CSS tends to have a higher API gravity and is less viscous; therefore, 

diluent costs are reduced when compared with bitumen produced by the SAGD process. A key 

focus in a CSS operation is to increase the total recovered bitumen by increasing the quantity of 

bitumen recovered in each cycle and increasing the number of cycles for which bitumen recovery 

is economical. The steam–oil ratio, and therefore, gas costs for steam generation, is typically at 

its lowest point during early cycles. After this it begins to rise until the point at which bitumen 

production is no longer economical and the well is abandoned (Speight 2013b). 

 

The CSS process is a well-developed process; the major limitation is its unfavorable recovery 

rate (usually less than 20%) of the initial oil-in-place. The process is particularly effective in 

reservoirs with limited vertical permeability and is best suited to operations in the Cold Lake 

area and the Peace River heavy oils. 

 

1.3.2. SAGD  

Steam-assisted gravity drainage (SAGD) is currently the most commercially successful heavy oil 

in-situ extraction method in Canada. Alberta produces approximately 1.4 million bbls per day of 

heavy oil via this technology (Alberta, Energy Resources Conservation Board 2013). The key 

element of SAGD is that the two wells need to be in parallel and horizontal form. The 

development of horizontal drilling in 1992 was a key break-through that led to the 

commercialization of SAGD technology. Figure 1-7 shows a schematic of a typical SAGD set-

up.  

 

This technology involves drilling two parallel horizontal wells along the reservoir itself. The top 

well is known as the injector well and used to inject hot steam into oil sands.  The bottom well is 

known as the producer well and used to produce the oil and pump it up to the surface. Steam 

from the injector well builds up a steam chamber in the reservoir. Once this steam chamber 

reaches the bitumen source, it heats up the immobile bitumen leading to viscosity reduction of 
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the oil. With viscosity reduced by 10,000 cP, the oil becomes mobile, and drains into the 

producer well before being pumped to the surface. 

 

 

Figure 1-7 - Typical SAGD set-up (Lunn 2013) 

 

Figure 1-8 represents a cross sectional schematic of the SAGD process. Section A represents the 

initial circulation phase, where thermal communication is established between the wells. Section 

B is the early production stage in which the steam chamber has yet to come in contact with the 

oil formation (cap-rock). Section C is the lateral growth stage, where steam has fully come in 

contact with the oil and reduced its viscosity, leading to production. Some by-products of the 

production include non-condensable gases like methane. 
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Figure 1-8 - Cross sectional schematic of SAGD process (Irani and Gates 2013) 

 

Even though the injection and production wells can be very close (between 5 – 7 m), the 

mechanism causes the steam-saturated zone to rise to the top of the reservoir, expand gradually 

sideways, and eventually allow drainage from an increase area. Operating the production and 

injection wells at approximately the same pressure as the reservoir pressure eliminates viscous 

fingering and coning processes, and also suppresses water influx or oil loss through permeable 

streaks (Speight 2013a, Speight 2013b) . This keeps the steam chamber interface relatively sharp 

and reduces heat losses considerably. Injection pressures are much lower than the fracture 

gradient, which means that the chances of breaking into a thief zone, an instability problem 

which plagues all high-pressure steam injection processes, are essentially zero. 

 

Heat losses and deceleration of lateral growth mean that there is an economic limit to the lateral 

growth of the steam chamber. This limit is thought to be a chamber width of four times the 

vertical zone thickness. For thinner zones, the horizontal well pairs would need to be put in 

closer proximity leading to cost increase as well as lower total resource per well pair. 

Consequently, the zone thickness limit (net pay thickness) must be defined for all reservoirs. 

 

SAGD is widely known to recover 50 – 70% of OOIP (Mukhametshina et al. 2014) and is 

therefore the most efficient thermal recovery method. The key benefits of the SAGD process are 

an improved steam-oil ratio and high ultimate recovery (on the order of 60 – 70%). Key issues 

still troubling the technology relate to low initial oil rate, artificial lifting of bitumen to the 
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surface, horizontal well operation, and the extrapolation of the process to reservoirs having low 

permeability, low pressure, or bottom water (aquifers). The cost of heat is also still a major 

economic constraint on all thermal processes. Currently, steam is generated with natural gas, and 

when the cost of natural gas rises, operating costs rise considerably.  

 

1.3.3. VAPEX  

VAPEX (Solvent Vapor Assisted Petroleum Extraction) technology can be summarized as 

SAGD technology with solvent vapor replacing the steam used. The solvent vapor ranges from 

ethane, propane to butane depending on circumstances. The key is that this solvent, given its 

significantly lower viscosity, would dilute the highly viscous bitumen leading to overall viscosity 

reduction and therefore the flow of oil. The bitumen viscosity reduction factor using these 

solvents is not as much as that seen in thermal-based methods, but the hope is that it becomes 

comparable enough for the technology to have a viable future. 

 

The key parameter to this dilution occurring is mass transfer of the solvent into the bitumen 

through diffusion. The more soluble the solvent is in the bitumen, the more diffusion occurs and 

subsequent viscosity reduction of the bitumen. 

 

Parallel horizontal wells are drilled with about 15 ft (4.57 m) of vertical separation in similar 

fashion to SAGD technology (Speight 2013b). The injected vapor forms a vapor chamber 

(analogous to SAGD’s steam chamber), through which the solvent travels to the immobile oil 

face where it diffuses into the immobile liquid. The viscosity reduced oil become mobile and 

drains to the production well via gravity drainage, where it is pumped to the surface. Figure 1-9 

shows a cross sectional area schematic of a typical VAPEX system. 
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Figure 1-9 - Cross section of VAPEX system (James 2009) 

  

VAPEX can be applied in paired horizontal wells, single horizontal wells, or a combination of 

vertical and horizontal wells. The mechanism of the VAPEX process is essentially the same as 

for the SAGD as said earlier, as is the configuration of the wells. The key benefits are claimed to 

be significantly lower energy costs, the potential for in-situ upgrading and the application to thin 

reservoirs with bottom water or reactive mineralogy. VAPEX also does not require water 

processing or recycling, offers lower carbon dioxide emissions and can be operated at deposit 

temperatures with no loss of heat. From a numbers perspective, VAPEX capital costs are about 

75% of SAGD costs and 50% of SAGDs operating costs (Vargas-Vasquez and Romero-Zeran 

2007). Research carried out thus far suggests that up to 90% of the solvent used can be recovered 

and recycled, offering the potential for dramatic cost savings over other extraction methods 

(Speight 2013b). Also, more wells are needed to achieve similar production rates and rates of 

recovery compared to SAGD. 

 

There is also the chance of asphaltene precipitation. This can be an advantage as it reduces the 

viscosity of the drained oil, but conversely some feel that the precipitated asphaltene may clog 

portions of the pore space leading to lower production rates (Speight 2013b). However James 

(2009) work proves otherwise because: the upgraded oil sells at a higher price and 
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environmental/energy implications required by surface upgrading of the oil are reduced if the 

asphaltene are left in-situ.  

 

Because of the slow diffusion of gases and liquids into viscous oils, this approach, would 

insufficient for use in its own, unless use for less viscous oils. Preliminary tests indicate, 

however, that there are micro–mechanisms that act, which indicate that the VAPEX dilution 

process is not diffusion–rate limited. This means the process may be suitable for the highly 

viscous heavy oil and tar sands.  

 

1.3.4. N-Solv 

This is a patented in-situ technology (Nenniger and Dunn 2008) that uses warm solvent to extract 

bitumen from oil sands. The concept of N–Solv is a fairly new type of technology and relative to 

other in-situ techniques could be seen as a mix between VAPEX and SAGD technology. N–Solv 

uses the same kind of solvents used in VAPEX, but adds a much bigger thermal aspect compared 

to VAPEX.  

 

This process uses the proven horizontal well technology developed for SAGD, but differs as it 

substitutes water (steam) for a warm solvent (propane/butane). This is injected as vapor and 

condenses at the immobile bitumen interface, washing the valuable compounds out of the 

bitumen. A key benefit of the process is that it produces lighter, partially upgraded and more 

valuable oil products. It may also recover more resource from each well at lower capital and 

operating costs than existing in–situ processes. Environmental benefits like reduced CO2 

emissions are also present. 

 

While in VAPEX viscosity reduction mainly comes from diluting the bitumen with solvent 

through diffusion, N–Solv involves viscosity reduction through dilution (diffusion and 

convective mixing) with solvent and raising the temperature of the bitumen. It is a best of both 

worlds scenario and as a result it gives a much faster viscosity reduction factors compared to 

VAPEX. Also the solvent vapor is intentionally kept at lower pressure (or higher temperature) to 

stop it condensing to liquid in VAPEX systems. N–Solv conversely requires the condensation of 
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the solvent vapor for its latent heat to be given off. The sensible heat given to the bitumen to aids 

viscosity reduction, however, James, (2009) proves that the solvent mixing plays the biggest role 

in speeding up the N–Solv process. 

 

Like in SAGD and VAPEX, the vapor flows from the injection well to the colder perimeter of 

the chamber, where it condenses. This delivers heat and fresh solvent directly to the bitumen 

extraction interface. The extraction conditions are mild compared to in–situ steam processes, so 

the valuable components in the bitumen are preferentially extracted. Figure 1-10 shows a 

schematic of your typical N–Solv process 

 

 

Figure 1-10 - N-Solv Process (Stickler 2009) 

 

1.3.5. Hybrid Processes 

These are processes that involve the simultaneous use of several technologies for extraction and 

these processes are seen to hold significant promise for recovering worldwide reserves (Speight 

2013a). 
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In addition to hybrid approaches, the new production technologies, along with older, pressure–

driven technologies, will be used in successive phases to extract more oil from reservoirs, even 

from reservoirs that have been abandoned after primary exploitation. Old reservoirs can be 

redeveloped with horizontal wells, even linking up the wells to bypassed oil because of the 

physics of oil film spreading between water and gas phases. 

 

For example, in a SAGD–VAPEX or ES–SAGD hybrid process, a mixture of steam and miscible 

(non–condensable) hydrocarbons is used. 5 – 10% solvent is injected as a liquid and vaporizes 

when it encounters the steam. The solvent vapor and steam travel up to the oil interface at the 

edge of the vapor chamber and condense. The solvent dissolves in the oil. The diluted oil is 

reduced in viscosity and flows down the edge of the production well. The vaporized solvent is 

flashed out of the oil as it enters the heated area near the production well. This vaporized solvent 

then returns to the vapor chamber, where it mobilizes additional oil (Frauenfeld et al. 2013). A 

long–term challenge with the process is how much solvent can be recovered over time as it is 

necessary to recover more than 70% of the solvent to make the process viable and 

environmentally friendly (Speight 2013a).  

 

Well placement changes provide a viable option for SAGD–related processes. A single 

horizontal laterally offset well can be operated as moderate–pressure cyclic steam stimulation 

well in combination with SAGD pairs to widen the steam chamber and reduce steam-oil ratios by 

about 20%.  

 

Another process is the simultaneous use of SAGD and CHOPS (Cold Heavy Oil Production with 

Sand). CHOPS is used as a production approach in unconsolidated sandstones. The process 

results in the development of high-permeability channels (wormholes) in the adjacent low–

cohesive–strength sands, facilitating the flow of oil foam that is caused by solution gas drive. 

The immobile oil sand bitumen that is amenable to CHOPS methods is usually heavier than 

typical heavy oil (which has mobility in the reservoir) but lighter than the oil sand bitumen that is 

recovered through mining or thermal stimulation methods. The key benefits of the process are 
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improved reservoir access, order–of–magnitude higher production rates (as compared to primary 

recovery), and lower production costs. 

 

CHOPS (when paired with SAGD) offset wells until steam breakthrough occurs. CHOPS wells 

are then converted to slow gas and hot–water (or steam) injection wells to control the process. 

The high-permeability zones generated by CHOPS accelerate the SAGD recovery process. In 

addition to hybrid approaches, the new production technologies and older, pressure–driven 

technologies will be used in successive phases to extract more oil from reservoirs.  

 

1.4. Technological Impacts 

The purpose of this section is to outline some of the negative impacts of heavy oil technology 

(mostly SAGD). It should be noted that these impacts are not prevalent with VAPEX systems, 

thereby making the implementation of this technology crucial to the sustainability of the heavy 

oil industry. 

 

Water Usage – Has the biggest negative impact of the above mentioned technologies and 

applies to both thermal in-situ and mining methods. Water requirements for oil sands projects 

range from 2.5 – 4.0 bbls of water for each barrel of bitumen produced (Speight 2013a). The 

primary challenge for process water is that no large–scale water treatment facilities exist near the 

oil sands, and as a result, process water must be recycled. Groundwater aquifers are used as the 

source of process water and the typical operating procedure involves the disposal of process-

affected water to deep aquifers. The decision to use groundwater or surface water is dependent 

on whether a source of surface water is available, or if it is necessary to drill a well to access 

subsurface aquifers.  

 

For mining operations, pollutants leakage and dewatering of the formation/deposit, as well as 

diversion of water flow are major issues related to water use. The removal of water from nearby 

aquifers can lower the overall water level in the area and may affect other aquifers and surface 

water bodies, including wetlands that are dependent on groundwater recharge. 
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For in-situ processes, the water requirement to produce a barrel of recovered bitumen/oil may be 

less than 1 bbl (even as little as 0.2 bbls) (Lunn 2013), depending on how much water 

is recycled. In-situ facilities require freshwater for the following: to generate steam, for various 

utility functions throughout the plant, separation of the bitumen from sand, hydro–transportation 

of bitumen slurry, and upgrading of the bitumen into lighter forms of oil for transport.  

 

The demand for freshwater for in-situ oil sands projects is projected to more than double to 82 

million barrels by 2015 (Speight 2013a). In SAGD operations, 90 – 95% of the water used for 

steam to recover bitumen is reused, but for every 6.3 bbl of bitumen produced, approximately 1.3 

bbls of additional groundwater must be used. Thus, even with the recycled water, large amounts 

of freshwater are still required. 

 

Surface Disturbance – The surface disturbance from mining operations and processing of 

bitumen includes land clearing, and disturbance of surface strata and soil. These activities result 

in the deforestation of forests and woodlands, as well as having negative impacts on fish and 

wildlife populations. The open–pit mining of the Athabasca oils sand deposits destroys the boreal 

forest and muskeg, as well as bringing about changes to the natural landscape (Morrow et al. 

2014).  

 

In–situ processes are much less harmful in terms of surface damage and result in limited negative 

environmental impact on forests, wildlife, and fisheries. 

 

Green House Gas Emissions – It has been estimated that for every barrel of synthetic oil 

produced at oil sand facilities in Alberta, more than 35 lbs (15.88 kg) of greenhouse gases 

(GHGs) are released into the atmosphere and between 2 – 4 bbls of wastewater are sent to the 

tailings ponds, which are highly toxic (Speight 2013a). 

 

Emissions of GHGs are one of the most complicated future environmental issues for the oil 

sands industry. Development of oil sand leases causes the emissions of carbon dioxide (CO2), 
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methane (CH4), and nitrous oxide (N2O). These are members of the group of GHGs that have 

profound effects on global climate.  

 

A major Canadian initiative–the Integrated Carbon Dioxide Network (ICO2N), whose members 

represent a group of industry participants providing a framework for carbon capture and storage 

development in Canada–has proposed a system for the large–scale capture, transport, and storage 

of carbon dioxide (CO2) 

 

1.5. Scope of Research 

Having reviewed SAGD, VAPEX and N-Solv technology, we now look at what this research can 

add to the information that is currently available. As already stated, solvent technology (VAPEX 

and N-Solv) has yet to be fully commercialized, due to lack of reliable information on its key 

mechanisms (mass transfer particularly). Getting reliable concentration dependent diffusion 

values is at the very heart of the issue. Diffusivity function is the mathematical expression for 

diffusion as a function of another term (mass fraction in this work). Diffusion values are the 

numerical values obtained when mass fraction (ωs) is substituted into the diffusivity function. 

This study will exclusively examine the molecular diffusion of solvent in bitumen without 

reservoir characteristics (permeability etc.) and study diffusion in one-dimensional. As 

previously stated one-dimensional diffusivity represents diffusion occurring in one direction (in 

this case vertically downwards).Also it is important to note that we only consider butane 

diffusing into bitumen and not bitumen diffusing into butane. Below is a list of the expected 

research deliverables: 

 Obtain concentration dependent diffusivity. Most diffusion calculations in the field 

assume the solvent concentration in the bitumen remains constant through the whole diffusion 

process and hence diffusion remains constant. This leads to erroneous diffusion values. The 

simple logic behind this is that diffusion is driven by concentration. Hence lower concentration 

at any points in the fluid lead to lower concentration gradients and lower values for diffusivity.  

 Account for ideal and non-ideal mixing in the diffusion process. Most literature that has 

calculated diffusivity assumes that ideal mixing occurs between the solvent and the bitumen. 
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This is normally done to simplify experiments as parameters that can account for non-ideality 

without upsetting the experiments are hard to measure. This research we will account for the 

non-ideality by utilizing pressure differential transmitters to consistently find the density of the 

butane and bitumen mixture. This is then used in conjunction with numerical calculations to get 

diffusivity. 

 Vary Bitumen tube temperature (27
o
C – 40

o
C) and acquire the given diffusivities at these 

temperatures. Random conditions are picked and run based on a one factor design in Design 

expert software. The bitumen temperature is varied with the help of water temperature in the 

water bath. This thesis will however side step how the temperature of the reservoir (bitumen 

deposits) will be raised in actual field conditions. 

 Use the experimental data to predict diffusivity within the given temperature range. The 

above data should be enough to generate an experimental model that can be used to predict 

diffusivity for any given bitumen temperature. 

 

The value and impact of this research will be enhancing comprehension of the mechanism 

involved when butane solvent diffuses into bitumen. This work represents the only experiment 

up to date to calculate diffusivity functions in VAPEX systems while accounting for 

concentration dependence and non-ideal mixing of butane solvent and bitumen 
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2) LITERATURE REVIEW 

The purpose of this section is to review previous experimental work related to this study. This 

section will focus on the mass transfer related aspects of diffusion, concentration dependency 

and non-ideality. Note that Solvent technology and Solvent extraction process will be used 

interchangeably and both refer to VAPEX and N-Solv technology 

 

As previously stated, solvent technology has drawn considerable industry attention in recent 

years due to its potential to be a viable alternative to SAGD technology in problematic reservoirs 

by minimizing heat loses and energy requirements. Solvent extraction has potential for down-

hole upgrading and could be applied in reservoirs that are not suitable for SAGD production 

(reservoirs with aquifers). Also Solvent extraction opens the door to the possible sequestration of 

greenhouse gases Upreti et al. (2007). Hence researchers have been motivated to fully 

understand Solvent extraction processes and the driving mechanisms behind them.  

 

Majority of the research performed in Solvent extraction processes have focused on the VAPEX 

part. The work done so far shows there are several factors that affect the rate of live oil 

production using VAPEX method. Excluding the mass transfer aspect, the porosity, 

permeability, possible asphaltene precipitation, heterogeneity, pay zone height (gravity drainage 

height) and dip angle of the injection/production well play a key role in live oil production. The 

research conducted on some these factors are reviewed next.  

 

2.1. History of VAPEX Experiments 

The initial idea for the VAPEX process is attributed to J.C Allen in 1974. He varied the cyclic 

steam stimulation (CSS) process by alternating steam and solvents (butane and propane). 

However, Butler and Mokrys (1991) made the first significant breakthrough in VAPEX history. 

They sought inspiration from the extensive heavy oil deposits in Saskatchewan and Alberta that 

could only be recovered with low recovery efficiency via conventional methods at the time.  
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The rate of oil recovery was measured in experiments with vertical hele-shaw cells immersed in 

an atmosphere of saturated propane. This represented a form of investigating the porosity and 

permeability aspects of VAPEX oil production. Propane vapor contacted the oil along a vertical 

edge of the cell and the same diluted oil drained from the exposed edge. When this work was 

tested at field scale, a mixture of hot water with propane vapor was used, and high recovery rates 

were achieved. Propane requirements were on the order of 0.5 kg (or less) per kg of oil 

recovered. In addition, nearly all the injected propane was recovered.  The oil production rate 

could be calculated via the following equation; 

 

𝑄 = √2𝑘𝑔Ø∆𝑆𝑜𝐻𝑁  , 𝑚3𝑑−1 2-1 

                        

where Q is flowrate (m
3
d

-1
), k is absolute permeability (darcy), g is acceleration due to gravity 

(ms
-2

), Ø is porosity, ∆So is the change in oil saturation, H is the reservoir height (m) and N is a 

dimensionless number defined for SAGD processes as; 

 

𝑁 = ∫
𝛼𝛥𝜌

𝜇
.

𝑑𝑇

(𝑇 − 𝑇𝑅)

𝑇𝑠

𝑇𝑚𝑖𝑛

 2-2 

 

Parameter α is thermal diffusivity (m
2
d

-1
), Δρ is bitumen density minus steam density (kgm

-3
), μ 

is bitumen viscosity (kgm
-1

d
-1

), T is temperature (
o
C), Ts is steam temperature (

o
C) and Tmin is 

temperature above reservoir temperature TR (
o
C). For the solvent process, N would be 

analogously described as; 

 

𝑁 = ∫
𝐷𝑠(1 − 𝑐𝑠)𝛥𝜌

𝜇
.

𝑑𝑐𝑠

(𝑐𝑠)

1

𝑐𝑠𝑚𝑖𝑛

 2-3 

 

where Ds is the intrinsic solvent diffusivity (m
2
d

-1
), Δρ is solution density minus solvent density 

(kgm
-3

), Cs is solvent concentration (volume fraction), μ is solution viscosity (kgm
-1

d
-1

) and Csmin 

is the minimum solvent concentration in the oil (volume fraction).                                             
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Das and Butler (1994) went a step further to test the effect of asphaltene deposition in the 

VAPEX process. Asphaltene precipitate from heavy oil when the operating conditions depart 

from phase equilibrium conditions. When the asphaltene content is reduced from 16% by mass to 

zero, the heavy oil viscosity (even at low temperatures) is reduced to over twenty orders of 

magnitude. This upgrades the quality of the oil in-situ and reduces environmental and operating 

costs for the VAPEX process.  

 

Das and Butler (1994) using hele-Shaw cells with propane and heavy crude oil concluded that 

asphaltene deposition takes place if the injected solvent (propane) is very close to its saturated 

vapor pressure at reservoir temperature, and that asphaltene deposition does not prevent the flow 

of oil for the production scheme. In another set of experiments in hele-shaw cells, the drainage 

profiles of heavy oil were studied to estimate the “VAPEX Parameter” and, hence predict field 

flow rates. Table 2-1 shows a summary of experimental results obtained. At higher temperatures 

with asphaltene precipitation occurring, predicted oil production rates are doubled illuminating 

the potential benefits of asphaltene precipitation in the reservoir. 

 

Table 2-1 - Experimental results (Das and Butler 1994) 

 

 

Yildirim (2003) also conducted research on asphaltene precipitation of heavy oil. Carbon 

dioxide, propane and butane solvents were injected at varying injection rates (20, 40 and 80 

ml/min) into Hele-Shaw cells containing light (Garzan crude), medium (Raman crude) and heavy 

(Bati Raman) oils.   
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20 experiments were conducted in total: 9 for propane at room temperature for the three injection 

rates with the three different oils, 9 for butane at room temperature for the three injection rates 

with the three different oils, one for butane with steam at injection rate 40 ml/min with Garzan 

crude and one for CO2 at injection rate 40 ml/min with Garzan crude. All solvent had a pressure 

equivalent to their vapor pressure at the given experimental temperatures. 

 

Results confirmed that propane (compared to butane) injection shows better extraction 

performance. The propane also showed better upgrading (asphaltene precipitation) for the light 

and medium oil while butane makes for better upgrading of the heavy oil. The CO2 experiment 

showed the best extraction performance while the butane/steam 40 ml/min experiment showed 

similar extraction performance to the propane experiment at 40 ml/min 

 

Jiang (1997) looked extensively at VAPEX technology in homogeneous and heterogeneous 

reservoirs. Butane and propane solvents where utilized in packed models in the Tangle-Flags, 

Peace River and Atlee Buffalo heavy crudes. Figure 2-1 shows a schematic of the experimental 

set-up. 

 

 

Figure 2-1 - Schematic of experimental Set-up (Jiang 1997) 
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The packed cell was two dimensionally scaled with a cavity 14 inches wide, 9 inches high and 

1.25 inches thick (356 x 229 x 32 mm). A heterogeneous reservoir was simulated by packing the 

model in horizontal or vertical regions using two different sized sands: 20-30 mesh (coarse sand) 

and 30-50 mesh (fine sand). On experimental start-up, the packed cell was injected with water 

from the bottom. Oil saturation was then established by displacing water downwards with oil 

from a container. The oil and cell were heated to 60
o
C before injection, due to the crudes high 

viscosity. Once the packed cell was uniformly filled with oil, it was allowed to cool down to 

room temperature overnight. 

 

Butane was then injected into the model at a pressure slightly below vapor pressure. The 

temperature of the butane container was maintained 1
o
C below the model temperature. 

Cumulative butane injection was measured from weights from an electric load cell that weighed 

the solvent cylinder with time and the data was recorded by a computer. The oil, diluted with 

butane, was recovered from the well located at the bottom of the model. Injector locations were 

varied to model different well configurations. The solution and free gas from the produced fluids 

were separated at the production outlet at atmospheric pressure. The volume of the produced gas 

was measured by the displacement of water in the cylinder labeled the "bubbler". Produced oil 

was collected in a 250 ml sample bottle at suitable time intervals. At the end of each experiment, 

the model was blown down to atmospheric pressure to recover the solvent left in the vapor 

chamber and those dissolved in the oil. 

 

The effects of well spacing, well configurations, permeability, temperature, viscosity of oil and 

solvent injection rate were investigated with the above procedure. The following was discovered: 

 Reservoir heterogeneity is more important in VAPEX than in SAGD systems 

 The use of mixed solvents (solvent and non-condensable gas) gives similar performance 

to the use of pure solvents. The effects adding NCG is addressed later 

 The optimal injection rates are highly dependent on the well configuration, spacing and 

permeability. 
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By the early 2000s, VAPEX experiments were in full swing. Cuthiell et al. (2006)          

investigated the porosity and permeability effects on VAPEX through capillarity. An experiment 

was carried out in a 2D rectangular cell, using a 4.3 darcy (4.24 *10
-6

 𝞵m
2
) sand-pack partially 

saturated with heavy oil and n-butane as the solvent (injected at constant pressure). Oil was 

diluted by the solvent and drained into the lower part of the pack while a CT scanner monitored 

the oil. Capillary pressure was shown to have a major role in the VAPEX process. When its 

effects are ignored, the CT saturation profiles cannot be matched. Ayub (2009) similarly 

explored the effects of capillary pressure in VAPEX systems and found that capillarity acts in 

favor of VAPEX by shaping the vapor chamber, reducing free gas production and increasing 

drainage rate by increasing the effective area of molecular diffusion. 

 

James (2003) carried out VAPEX extraction using consolidated and unconsolidated media 

macro-models. Consolidated media experiment was used to investigate the effect of dip angle 

and length of the system on oil production. The unconsolidated experiment was used to 

investigate the VAPEX solvent chamber growth. 

 

Live oil production rates for consolidated media were also found to be constant for a given 

system and production rates varied linearly with the length of the system and were proportional 

to sine of the dip angle (sin θ). The live oil density and solvent concentration were independent 

of length and dip angle with a density ranging from 0.81 – 0.82 g/cm
3
 and the solvent 

concentration ranging from 0.27 – 0.32 mass fraction. The residual oil saturation decreased from 

22% to 10% percentage volume as the length of the system increased 

 

James et al. (2003) investigated the effects of consolidated media on live oil production rates 

compared to unconsolidated media. Also the shape of the VAPEX with its evolution during 

production is examined in unconsolidated media. The live oil production trends in consolidated 

and unconsolidated media were similar. However live production rates from consolidated media 

were less than those from equivalent unconsolidated media. Live oil production rates for 

consolidated media were also found to vary linearly with the length of the system 
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The unconsolidated media experiments showed that the solvent chamber grows in a parabolic 

way where the live oil drains from the top of the formation. It is not until most of the live oil 

from the highest part of the model is drained that the interface advances further into the heavy oil 

at points below. The growth of the solvent chamber indicated that the rate limiting step in 

VAPEX was the gravity drainage of the live oil. 

 

James and Chatzis (2004) investigated the characteristics of gravity drainage in the VAPEX 

process using rectangular models of porous media. They developed a model for describing the 

evolution of the VAPEX chamber growth as a function of time. Butane was used as a solvent and 

micro-models of pore networks were etched on glass plates for pore scale flow visualization. The 

butane was provided at constant pressure and the vapour uptake was monitored during the 

experiments as well as the advancement of the VAPEX interface. 

 

Several glass micro-models with different pore structure characteristics were used to investigate 

this process in order to discern pore scale events and compare interface velocities between 

different models. The interface velocity is defined as the speed at which the moving VAPEX 

interface boundary moves into the bitumen in the horizontal direction at any vertical location in 

the system. This parameter helps clarify the dependence between oil production rates and height 

of the system (drainage height). Figure 2-2 shows the changes in the interface position of 

VAPEX chamber with time for one of the models. 

 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 30 
 

 

Figure 2-2 - Change in VAPEX position with time for one of the models (James and Chatzis 2004) 

 

The following observations were discovered: 

 The rate at which the VAPEX interface advances depends on porous media 

characteristics; permeability, diffusion distance and drainage flow path 

 The VAPEX interface advancement is linear with time for a given cross-section. 

 Drainage of live oil (solvent rich oil) occurs in one or two pores at a time 

 The velocity of the VAPEX interface can be used to predict live oil flow rates in similar 

systems 

 

Yang and Gu (2005) designed a set-up to calculate the Bond numbers for methane, ethane, 

propane and carbon dioxide. The Bond number is the ratio of gravity to capillary forces and this 

plays a significant role in the gravity drainage flow in porous matrix. Two sand packed models 

were used; One with permeability 3 𝞵m
2
 and porosity 32% and another with permeability (k) 

830 𝞵m
2
 and porosity 35%. The Bond number was found to increase with pressure (all pressures 
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were below respective vapor pressures of solvents). The increasing bond number indicated a 

large effect of gravity on the VAPEX and thus enhanced oil recovery. 

 

Rezaei et al. (2014) investigated the use of vuggy porous media in VAPEX extraction with n-

pentane to recover Cold lake bitumen. Vuggy porous media was investigated because despite the 

enormous quantities of heavy oil deposits (2 trillion bbl) in vuggy carbonate reservoirs, there has 

not been enough attention drawn to EOR techniques applicable to these reserves.  

 

Seven different sintered glass-bead models were utilized: 3 homogeneous and 4 vuggy porous all 

with different vuggy to total pore volume ratios. The live oil sample weights were converted to 

cumulative live-oil production basis vs. sampling time. The performance of the VAPEX process 

in each vuggy medium was compared with that of the homogeneous medium with the same 

matrix glass-bead size.  

 

It was concluded that the presence of vuggy porous media improved production performance 

compared to the equivalent homogeneous media. Oil production rate increased and residual oil 

saturation decreased with the vuggy porous media. Also unlike the homogeneous models, the 

dead oil production rate was not constant in the vuggy models. An increase in oil-production rate 

was observed when several vugs were simultaneously invaded. 

 

Addition of a non-condensable gas (NCG) like CO2/N2 to the VAPEX process has been 

considered. The possible benefits include raising total gas pressure while maintaining the solvent 

in gaseous form and lowering amount of expensive pure solvent used in the process thereby 

reducing cost.  Friedrich (2006) examined the effect of using non-condensable gas (NCG) with 

the solvent in the VAPEX process. As stated earlier, maintaining the solvent in gaseous form can 

be done by co-injecting solvent with a NCG. This increases total gas pressure but reduces partial 

pressure of the solvent gas.  

 

The experimental set-up used consisted of a porous media saturated with bitumen and put inside 

acrylic housing. The non-condensable gas (air) was present in the housing before liquid pentane 
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was added. Pentane vapor evolved from the liquid pentane, which was being maintained at 

constant temperature. Partial pressure of the liquid butane was varied by varying the temperature 

of the liquid butane. 

 

The diffusive flux of the solvent through the stagnant air and at the bitumen/solvent interface 

was described via Equation 2-4: 

 

𝑁𝑠𝑧 (𝑧=𝑧1) =
𝑃𝐷𝑠𝑎

𝑅𝑇(𝑧2 − 𝑧1)
(

�̅�𝑎𝑖 − �̅�𝑎0

(𝑃𝑎)𝑀
), 2-4 

 

Where Nsz is the molar flux of solvent in direction z (mole.cm
-2

.min), P is pressure (Pa), Dsa is 

the diffusivity of solvent in air (cm
2
/s), R is the molar gas constant (m

3
.Pa.mol

-1
k

-1
), T is 

temperature (k), z represents interface position and Pa with its subscripts represents the pressure 

of the air at varying positions (Pa). The molar flow-rate of pentane in live oil can be given as 

Equation 2-5 

 

𝑄𝑠(𝑡) = 𝑁𝑠(𝑡)𝐴𝑠 =
𝑥𝑧

𝑣𝜌𝑠

𝑀𝑠

𝑑𝑉𝑡𝑜𝑡𝑎𝑙,𝑐𝑢𝑚

𝑑𝑡
, 2-5 

where As is interfacial surface area (cm
2
), Vtotal is cumulative volume (cm

3
), x is mass fraction, t 

is time (s). Substituting Ns(t) in Equation 2-4  into Equation 2-5 and re-arranging to solve for 

the diffusivity of solvent in air (Dsa) yielded: 

  

𝐷𝑠𝑎,𝑒𝑓𝑓 =
𝑥𝑧

𝑣𝜌𝑠

𝐴𝑠𝑀𝑠
(

𝑑𝑉𝑡𝑜𝑡𝑎𝑙,𝑐𝑢𝑚

𝑑𝑡
)

𝑅𝑇(∆𝑧)(𝑃𝑎)𝑚

𝑃(Ṗ𝑎𝑖 − Ṗ𝑎0)
. 2-6 

 

Results showed that in the presence of NCG, the rate of interface advancement is proportional to 

the square root of time instead of just being proportional to time. The average steady state 

effective diffusion coefficient was found to be 0.166 cm
2
/s.  
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Chatzis et al. (2006) and James (2009) also investigated the effect of non-condensable gas in the 

production history of VAPEX. Results showed that the accumulation of NCG near the boundary 

reduced the rate of advancement of the VAPEX chamber. This is because the NCG became an 

extra boundary the solvent had to diffuse through. Also the reduction in solvent partial pressure 

due to the NCG leads to a reduction of solvent solubility in the heavy oil. However, progression 

of the VAPEX front (compared to the source of the vapor) was also found to be proportional to 

the square root of time. 

 

James et al. (2007) compared various enhanced oil recovery techniques and included different 

solvent choices. VAEPX, warm VAPEX and hybrid VAPEX technology were investigated. 

Warm VAPEX involves giving sensible heat to the solvent so that it condenses on contact with 

the bitumen. Hybrid VAPEX involves the co-injection of solvent vapor with steam. Both these 

methods reduce bitumen viscosity with a combination of solvent dissolution and heat. Figure 2-3 

shows the bitumen & solvent interface profiles for all 3 methods.  

 

The mobile oil film δm is the part of the oil that has had its viscosity sufficiently reduced to 

mobilize the oil under gravity. Ignoring temperature effects, the oil film is thicker for VAPEX 

and warm VAPEX due to higher solvent concentrations at the interface. 
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Figure 2-3 - VAPEX interface and concentration profiles (James et al. 2007) 

 

In spite of the success of most of the aforementioned experiments, field applications of the 

VAPEX process have been limited amid concerns that the favorable laboratory recoveries may 

not scale up to the field. James and Chatzis (2005) reviewed various VAPEX work to collect lab 

scale data and scaled them up to field conditions. They did find some difficulty comparing lab 

scale results between different research groups. A big problem was the difference in injection 

rates. Some researchers inject solvent at a constant rate where as others delivered it at its vapor 

pressure. Constant rate injection could lead to condensation and hence the need to mix the 

solvent with NCG and thereby reducing mass transfer rate compared to injection rate. Also 

different researchers have different methods of recording oil production rates. The core analysis 

and testing of process conditions has yet to be standardized. 

 

Nevertheless, James and Chatzis (2005) examined the VAPEX interface advancement using 

various models and Figure 2-4 shows that constant interface advancement is consistent between 

models. 
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Figure 2-4 - VAPEX interface advancement for 92cm High Model (James and Chatzis 2005) 

 

It was concluded that heavy oil experiments in long enough models are desirable for predicting 

production rates. Also analysis of production history shows that diffusion coefficient measured 

in stagnant heavy oil was orders of magnitude smaller than the dispersion coefficient measured 

in the same oil. 

 

The major transport mechanism involved in VAPEX is well known to be dispersion while the 

major transport mechanism in SAGD is heat transfer. SAGD uses thermal conduction as the 

driving force to reduce heavy oil viscosity and hence facilitate production. This technology is 

well understood and is widely used in the heavy oil industry. The complexities behind dispersion 

in VAPEX are yet to be fully comprehended and as a result the technology has yet to be fully 

embraced by oil companies.   
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The dispersion in VAPEX is a combination of mass transfer of solvent into the heavy oil and 

then subsequent gravity drainage of the solvent enhanced live oil. Solvent is transferred into the 

heavy oil to reduce the viscosity of the heavy oil till gravity forces overcome capillary forces 

enabling drainage of the live oil. The mass transfer occurs through a combination of diffusion 

and convection. Having already covered some of the gravity drainage characteristics, 

understanding the individual contribution of each mass transfer mechanism (diffusion and 

convection) is crucial to predicting the possible oil production rates that can be obtained from 

VAPEX. 

 

Diffusion is analogous to heat conduction in heat transfer but the driving force is not temperature 

difference but difference in concentration (concentration gradient), for convection the driving 

force is movement or mixing of the fluids. This can easily be influenced externally by density 

difference, gravity and pressure difference. A number of papers have made efforts to review the 

mass transfer involved in the VAPEX.  

 

Boustani and Maini (2001) used effective diffusion coefficient that included taylor dispersion 

coefficient and diffusivity to find the overall mass transfer parameter (NS) from Equation 2-2. 

They found that fluid flow (convection) has a strong effect on overall mass transfer in VAPEX 

and hence the convection always needs to be accounted for. 

 

El-Haj (2007) investigated the dispersion of butane gas solvent as a linear function of its 

concentration in heavy oil based on previously carried out VAPEX experiments. A cylindrical 

wire mesh (cavity 21 cm high and 6 cm diameter) packed with homogeneous porous media 

saturated with Athabasca heavy oil was used as the physical model for the heavy oil vapor 

interface. 3 different sizes of glass beads with different permeability’s (180, 157 and 110 Darcy) 

were used as the packing for the experiments. For each experiment, temperature was kept at 

room temperature and pressure at the butane dew point. Figure 2-5 shows a histogram of the 

resulting dispersion coefficients at the varying permeability. 

 

 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 37 
 

 

Figure 2-5 - Dispersion coefficient vs. permeability for all runs (El-Haj 2007) 

 

James and Chatzis (2007) designed an experimental set-up to investigate overall mass transfer 

coefficient as a function of height, permeability, different solvents and solvent flow rates. The 

porous media used included a consolidated and unconsolidated glass bead packing model. The 

mass transfer coefficient is flux and concentration dependent, as indicated in Equation 2-7 

 

𝑘 =
𝑁𝐴

𝛥𝜔𝐴
=

�̇�𝐵

𝐴𝑦𝑧(𝜔𝐵𝑍 − 𝜔𝐵0)
(

𝑔

𝑐𝑚2𝑠
) 2-7 

 

Where, k = mass transfer coefficient (g·cm
-2

s
-1

), NA = mass flux (g·cm
-2

s
-1

), ω = mass fraction 

of component and �̇� = mass flowrate (g·s
-1

). 

 

The mass transfer coefficient from the various experiments is shown in Figure 2-6 below. The 

slope of the mass based graphs represent the mass transfer coefficient for each experimental set-

up divided by cross sectional area. 
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Figure 2-6 - Mass transfer coefficient for various models (James and Chatzis 2007) 

 

It was concluded that the VAPEX interface advances at constant velocity for a given position 

and the solvent concentration in the live oil is affected by the injection flow rate and the matrix 

permeability. The diffusion coefficient contribution to mass transfer is discussed in more detail 

in Section 2.2. 

 

All these studies so far show that convection has an effect on the mass transfer of solvent 

molecules into the bitumen. Heavy oil viscosity reduction is the core of oil production in heavy 

oil systems. Quicker heavy oil viscosity reduction leads to increased oil production. Mixing of 

the heavy oil and solvent via mass transfer (diffusion and convection) is the rate limiting step for 

viscosity reduction. It is therefore important to quantify the contribution of convection and 

diffusion. A failure to account for convection leads to an overestimation of the diffusion 

contribution to the mass transfer mechanisms and hence does not reflect the overall mass 

transfer. 
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Abukhalifeh et al. (2009) investigated a technique to experimentally determine the concentration 

dependent dispersion coefficient of a solvent in the VAPEX process. The principles of 

variational calculus were utilized in conjunction with a mass transfer model of the VAPEX 

process. A computational algorithm was then developed to optimally compute solvent dispersion 

as a function of its concentration in heavy oil. 

 

The mathematical model used to describe the mass transfer process based on vapor extraction, 

involved the following assumptions: 

 VAPEX is carried out at constant temperature and pressure 

 Solvent dispersion is along the radial direction only 

 The velocity of live oil along the vertical direction is governed by Darcy’s law in a 

porous medium 

 The porous medium has uniform porosity and permeability 

 There are no chemical reactions and any volume changes result from drainage of live oil 

 Heavy oil is non-volatile 

 

The main feature of this work was that it didn’t impose any functional form on dispersion as a 

function of concentration, but allows its realistic determination. During the mathematical 

development, the concentration-dependent dispersion function is left undetermined.  When the 

function is incorporated into the mass transfer model, the calculated mass of oil produced is 

expected to be equal to its experimental value. 

 

The technique was applied to VAPEX with propane as the solvent and results show dispersion of 

propane as a unimodal function of its concentration in bitumen. Figure 2-7 shows a graph of 

dispersion coefficient versus propane mass fraction at 21
o
C and 0.689 MPa (99.9 psi). The 

optimal dispersion coefficient is found to be 4.048*10
-5

 m
2
/s. The corresponding propane mass 

fraction is 0.336.  
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Figure 2-7 - Graph of Dispersion coefficient vs mass fraction (Abukhalifeh et al. 2009) 

 

However, the process of obtaining J, the augmented objective function is complex. The 

mathematical model possesses a moving bitumen/butane boundary which is always complicated 

to resolve and assumes all bitumen volume changes (swelling) immediately result into live oil 

drainage. This is not necessarily the case given there is a bitumen/solvent mixture viscosity 

threshold (minimum value) for live oil drainage to occur. 

 

Okazawa (2009) extended the Butler and Mokrys (1991) VAPEX analytical model to include 

situations when diffusion coefficients are dependent on concentration during the gravity drainage 

process (hence dispersion), as extreme viscosity reduction occurs from solvent dissolution in the 

bitumen. The model also covers situations where the diffusion coefficient and viscosity relate to 

each other under the Stokes-Einstein Law. The diffusion coefficient is expressed as a function of 

kinematic viscosity through Equation 2-8; 

 

𝐷(𝑣) =

(𝑛𝐴𝑣𝑠

𝑛
𝑚)

(𝑣−
𝑛
𝑚)

 2-8 
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Where D is the diffusion coefficient, v is kinematic viscosity, vs is kinematic viscosity at bitumen 

interface, A is a constant for concentration dependent diffusion, m is an exponent to 

concentration for kinematic viscosity and n is an exponent to concentration for the diffusion 

coefficient. Equation 2-8 satisfies Stokes-Einstein’s law when n = m or n < m. The most 

fundamental mechanism of the process is the gravity drainage caused by the density difference 

between the liquid heavy oil and injected solvent vapor. The final bitumen gravity drainage rate 

is as Equation 2-9: 

 

𝑄𝐵 = √2𝐶𝐵
′̅̅ ̅̅ 𝐾𝑔Ø∆𝑆𝑜(𝐻−𝑦)

𝑚∗𝑣𝑠
   2-9 

 

𝐶�̅�
′ = 1 − 𝐶𝑠 (

𝑚

𝑚 + 1
) 

 

Where H is vertical coordinate at the top of the formation, y is vertical coordinate increasing 

upwards, 𝐶�̅�
′  is bitumen average flow fraction, Cs is solvent concentration at interface and vs is 

interface viscosity. Comparing the above Equation 2-9 to the original VAPEX model equation 

in Equation 2-1, it is noticed that; 

 

ℎ ≡ 𝐻 − 𝑦 2-10 

  

𝑁𝑠 =
𝐶𝐵

′̅̅ ̅

𝑚 ∗ 𝑣𝑠
 2-11 

 

The dimensionless value Ns in Butler and Mokrys (1991)’s model is therefore related to the 

concentration dependent diffusion coefficient. Okazawa (2009) found the concentration 

dependent diffusion coefficient as a function of kinematic viscosity and plotted the graph in 

Figure 2-8. The diffusion coefficient (thus oil drainage rate) is seen to decrease with increasing 

kinematic viscosity, hence supporting the notion that VAPEX is applicable for reservoirs with 

naturally low bitumen viscosities. 
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Figure 2-8 - Diffusion coefficient vs. Kinematic viscosity (Okazawa 2009) 

 

The kinematic viscosity of the bitumen vs at the interface is the key parameter to the process. 

However it is a difficult quantity to nail down due to its dependency on solvent concentration, 

which in turn is dependent on pressure and temperature. 

 

Temperature conditions are a huge part of this work given the experiment will be conducted at 

varying temperatures to compare results. There are correlations that can be used to investigate 

the effect of temperature on diffusion coefficient. The Wilke - Chang correlation (Equation 2-

12) for small molecules diffusing through large molecules can be used to estimate the infinite 

dilution diffusivity of solvent into bitumen. 

 

𝐷𝐴𝐵 =
1.173 × 10−16(∅𝑀𝐵)

1
2𝑇

𝜇𝑉𝐴
0.6  2-12 

Where, ∅ = association parameter of solvent, MB = molecular weight of liquid fluid, T = absolute 

of temperature (k), μ = viscosity of the liquid fluid (kg/ms), VA = solvent specific molar volume 

at its normal boiling point (m
3
/kg mol). Using this correlation, at 15

o
C the diffusivity of propane 

into bitumen is estimated to be 5.3 x 10
-1 

cm
2
/s yet at 0

o
C it is estimated to be 5.2 x 10

-9
 cm

2
/s.  
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The Stokes-Einstein equation quantitatively describes diffusion of spherical particles through a 

liquid with low Reynolds number Bird et al. (2002). The equation is given as; 

 

Đ𝐴𝐵 =
𝑘𝑇

6𝛱𝑅𝐴𝜇𝐵
 2-13 

 

Where k is the Boltzmann constant, T is absolute temperature, RA is the radius of the spherical 

particle and 𝞵 is the viscosity of the given liquid component. Using the Stokes-Einstein equation 

to predict the infinite dilution of bitumen into the diffusion coefficients at 15
o
C and 50

o
C are 

estimated to be 6.1 x 10
-5

 and 6.8 x 10
-5

 cm
2
/s respectively.  

 

These correlations insinuate that increasing the temperature increases the diffusion of solvent 

into the bitumen (by huge orders of magnitude for Wilke – Chang). This would be expected 

since temperature increase significantly reduces bitumen viscosity and thus immobilizing the oil 

(live oil) for drainage. After drainage, the bitumen immediately has a fresh new surface (large 

concentration gradient) for diffusion to occur. This work however will not have any oil drainage 

hence the impact of the reduced viscosity of the oil on diffusion will be minimal. Also the 

Stokes-Einstein theory is true for large molecules diffusing into a dilute solution. Butane solvent 

vapor is considered a small molecule diffusing into large molecular weight bitumen. 

 

There is some literature that has looked at the effects of temperature on the VAPEX process as a 

whole. Haghighat and Maini (2013) took an in depth look at the effect temperature has on the 

VAPEX process. Experiments were conducted in a large high-pressure physical model packed 

with 250 Darcy (2.45 *10
-4

 𝞵m
2
) sand, Mackay River oil (300 Pa.s viscosity at 23

o
C, 0.988 

kg/m
3
 at 50

o
C) and propane as the solvent. The model was preheated to 40, 50 and 60

o
C before 

propane was injected at the same temperature, but different injection pressures. 

 

Six experiments were run under different operating conditions. For the first four experiments, 

solvent pressure was kept constant (0.817 MPa or 105 psig) and pre-heated temperature values 

were 22, 40, 50 and 60
o
C. For experiments 5 and 6 injection pressure was increased to 1.23 MPa 
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(165 psig) at T = 40
o
C and 1.55 MPa (212 psig) at T = 50

o
C. To eliminate the effect of solvent 

dilution on viscosity reduction, nitrogen as a NCG was injected for a 7
th

 experimental run at 

50
o
C and 1.55MPa. A free-fall gravity drainage test was also conducted at 50

o
C to estimate the 

additional oil production caused by free-fall-gravity drainage beyond the vapor chamber in the 

absence of solvent dissolution. 

 

Each experiment was left to run for 60 hours before the system pressure was depleted and 

produced blow-down gas was collected and measured. Oil production rates were then measured 

to evaluate VAPEX performance. To quantify the contribution of free fall gravity drainage and 

solvent dissolution the total oil production rate, the results from experiment 7 (Nitrogen 

experiment) and experiment 6 (propane, 50
o
C and 1.55MPa) were compared as shown in Figure 

2-9.  

 

 

Figure 2-9 - Oil production via gravity drainage w/wo dissolution (Haghighat and Maini 2013) 

 

With the above data, they were then able to differentiate between oil production rate due to free-

fall gravity drainage and oil production rate due to diluted oil drainage as shown in Table 2-2. 
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Table 2-2 - Total Oil production - Free fall and Diluted Oil (Haghighat and Maini 2013) 

 

 

Haghighat and Maini (2013)’s results showed an increasing oil production rate with increasing 

temperature. This is due to the significant viscosity reduction (hence higher gravity drainage) at 

higher temperatures. The total rate of oil production was 70% higher at 50
o
C and 200% higher at 

60
o
C compared to the oil production rate at 40

o
C when the pressure was kept constant at 

0.817MPa. The increased injection pressure led to an increased total oil production rate due to 

the higher solubility of solvent in bitumen (greater dilution drainage) when comparing 

experiments at the same temperature (40
o
C ad 50

o
C) but at different pressures (0.817 – 1.23 or 

1.55MPa). 

 

Haghighat et al. (2013) went a step further to add a numerical simulation to the temperature 

experiments. The experimental results were simulated with a commercial compositional 

simulator to model the phase behavior and properties of propane/Athabasca systems. With 

history matching experimental production data, the temperature range was extended to 70
o
C, 

80
o
C and 90

o
C. Viscosity of dead oil reduced drastically (favoring free fall gravity drainage 

production) but the solubility of solvent in the bitumen became far too low (unfavorable for 

diluted oil drainage). At 90
o
C the system therefore converges to the thermal-based end of the 

hybrid-solvent spectrum like ES-SAGD. 
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2.2. Viscosity correlations 

This section reviews viscosity correlations in bitumen and solvent systems. Given viscosity is 

dependent on temperature, it is important to know the impact the viscosity will have on Solvent 

extraction mass transfer mechanism. Shu (1984) is a very popular viscosity model. It presents a 

generalized correlation for calculating viscosities of mixtures of heavy and light oil solvents. 

Using an Einstein-like relationship for viscosities of infinitely dilute solutions, a power law 

mixing rule was generalized. The density along with viscosity of both fluids is needed to predict 

mixture viscosity and accurate predictions have been achieved with heavy oil/solvents systems 

compared to experimental data. 

 

𝜇𝑚𝑖𝑥 = 𝜇𝑠
𝑓𝑠𝜇𝑏

𝑓𝑏 2-14 

 

Where fs and fb both stand for the specie’s weighting factor. They also account for the difference 

in viscosity and specific gravity of both terms. 

 

𝑓𝑏 =
𝛼𝐶𝑣𝑏

𝛼𝐶𝑣𝑏 + 𝐶𝑣𝑠
 2-15 

 

Where Cvb and Cvs are both volume fractions of the heavy oil and solvent respectively. The 

summation of fs and fb is 1 as is the summation of Cvb and Cvs. The constant α is an empirical 

parameter and calculated as: 

 

𝛼 =
17.04𝛥𝜌0.5237𝜌𝑏

3.2745𝜌𝑠
1.6316

𝐼𝑛 (
𝜇𝑏

𝜇𝑠
)

 
2-16 

 

∆𝜌 = 𝜌𝑏 − 𝜌𝑠 2-17 
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Shu (1984) tested this correlation by mixing bitumen with light petroleum fractions at 

temperatures varying from 23.9 - 27.8
o
C and achieved an excellent fit, as shown in Figure 2-10 

 

 

Figure 2-10 - Calculated viscosities vs. observed viscosities (Shu 1984) 

 

Lobe (1973) is another popular viscosity model. It takes the following form: 

 

𝜇𝑚 = Ө𝑠𝜇𝑠𝑒𝑥𝑝(Ө𝑜𝛼𝑜) + Ө𝑜𝜇𝑜𝑒𝑥𝑝(Ө𝑠𝛼𝑠) 2-18 

 

where Өs and Өo both represent the volume fractions of the solvent and volume fraction of oil 

respectively. Parameters αo and αs are given as: 

 

 

𝛼𝑜 = 0.27𝐼𝑛 (
𝜇𝑜

𝜇𝑠
) + [1.3𝐼𝑛 (

𝜇𝑜

𝜇𝑠
)]

0.5

 2-19 

 

𝛼𝑠 = −1.7𝐼𝑛 (
𝜇𝑜

𝜇𝑠
) 2-20 
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However, Lobe’s model is predominantly a viscosity reduction model for liquid-liquid systems. 

The Cragoe (1933) model is based on the fact that the mixture viscosity behavior is not a linear 

function of the solvent fraction. Mixing rules are incorporated into the model as shown below: 

 

𝐿 =
1000𝐼𝑛20

𝐼𝑛𝜇 − 𝐼𝑛(5 × 10−4)
 2-21 

 

For a mixture of oil and solvent: 

 

𝐿𝑚 = 𝑓1𝐿1 + 𝑓2𝐿2 2-22 

 

𝑓2 = 1 − 𝑓1 2-23 

 

Wen and Kantzas (2006) compared an NMR (Nuclear Magnetic Resonance) model, Shu’s model 

and Cragoe’s model with experimental data, which were obtained from four heavy oil samples 

mixed with six solvent in varying ratios. Based on the NMR model, viscosity has a strong 

relationship with relative hydrogen index (RHI) and T2gm. RHI is the oil AI divided by water AI, 

and T2gm is the geometric mean of the T2 spectral distribution. The AI is the signal amplitude per 

unit sample mass derived from the NMR. Viscosity is shown as; 

 

𝜇 =
𝛼′

𝑅𝐻𝐼𝛽𝑇2𝑔𝑚

 2-24 

 

Where α’ and β are both empirical constants and are estimated for different solvent and oil data 

sets. All three models (Shu, Cragoe and NMR) use a fixed form to predict viscosities of oil and 

solvent mixture. Viscosity, density and concentration are needed for Shu’s and Cragoe’s model. 

There are therefore limitations when the concentrations of the component mixtures are unknown. 

This is not the case with the NMR model. It was concluded that Shu’s model is similar to the 

NMR model, and both are superior to Cragoe’s model. 
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Yazdani and Maini (2010) designed a set-up to perform PVT experiments and viscosity 

measurements. The PVT experiments were conducted with Frog Lake heavy oil and butane as a 

solvent. The measurements included solvent solubility in oil, mixture density and viscosity at 

four different saturation pressures. In a mixing vessel, the mixture of oil/butane was made by 

placing an arbitrary volume of oil in the vessel and pressuring the oil with butane to near its dew 

point (210 kPa or 30.45 psi) for room temperature. Mixing was continued until no solvent 

decrease was observed from solvent dissolution. Lower pressure mixtures were prepared by 

releasing the gas from a mixture saturated until saturation pressure was achieved and no pressure 

rise was observed.  

 

The data obtained from the experiment are used to tune an equation of state (EOS) to 

numerically simulate (WINPROP simulator) the VAPEX experiment. Two-phase flash and 

saturation pressure calculations were performed during the tuning process. Peng-Robinson was 

found to be the most representative EOS for the oil/butane phase behavior.  

 

Viscosity changes are correlated by applying mixing type relationships. This correlation is based 

on the Kendall model in which mixture viscosity is calculated from individual component 

viscosities as shown in Equation 2-25, 

 

𝜇𝑚𝑖𝑥
𝑛 = ∑ 𝑐(𝑖) ∗ 𝜇(𝑖)𝑛  ,

𝑖=𝑚

𝑖=1

 2-25 

 

where n is an adjustable parameter in this correlation and c is the mole fraction of each 

component. The exponent n was determined to be 0.09 and Figure 2-11 shows a comparison of 

the viscosity experimental results, EOS tuned model, and other viscosity correlations. A clear 

pattern is the reduction of viscosity with increasing butane volume fraction. 
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Figure 2-11 - Comparison of viscosity predictions with various correlations (Yazdani and Maini 2010) 

 

Das and Butler (1996) uses results of a Hele-Shaw cell VAPEX experiments to obtain empirical 

correlations for propane and butane in Peace River bitumen. Solubility of the solvent in bitumen 

and a correlation for the viscosity of solvent mixture is added to the experimental data to 

estimate diffusivity. Das and Butler (1996) applied Hayduk and Cheng (1971)’s expression as 

the general form for evaluating diffusivity. The equation is: 

 

𝐷𝑠 = 𝛼(𝜇−𝛽) 2-26 

 

where μ is mixture viscosity, α and β are constants for each diffusive substance. The dependency 

of diffusivity on temperature and composition appears through the viscosity, which is a strong 

function of both. Das and Butler (1996) eventually found the diffusivity of propane in Peace 

River bitumen to be as follows: 

 

𝐷𝑠 = 1.306 × 10−9(𝜇−0.46) 2-27 

 

Figure 2-12 shows the concentration dependence of viscosity and diffusivity using the above 

expression. 
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Figure 2-12 - Concentration dependence of viscosity and diffusivity (Das and Butler 1996) 

 

Using the same principles, the butane expression was found to be as follows: 

 

𝐷𝑠 = 4.13 × 10−10(𝜇−0.46) 2-28 

 

Yazdani and Maini (2009)  applied the expression for frog-lake oil and the graph is shown in 

Figure 2-13. One to two orders of magnitude change in diffusivity is observed in the entire 

concentration domain of the graph, thus showing a strong concentration dependency. 
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Figure 2-13 - Concentration dependency of viscosity & diffusivity butane (Yazdani and Maini 2009) 

 

The literature shows that diffusivity/diffusion coefficient increase as viscosity reduces. This 

would be expected since temperature increase significantly reduces bitumen viscosity and thus 

immobilizing the oil (live oil) for drainage. After drainage, the bitumen immediately has a fresh 

new surface (large concentration gradient) for diffusion to occur. This work however will not 

have any oil drainage hence the impact of the reduced viscosity of the oil on diffusion will be 

minimal 

 

2.3. Diffusivity/Diffusion coefficient 

Please note that for the purpose of this work, diffusivity and diffusion coefficient are used inter-

changeably. However in technical terms diffusion coefficient would represent a constant 

numerical value while diffusivity varies with another independent variable (say for example 

concentration). Diffusivity is usually represented as a function. Both are a measure of the 

magnitude of the mass transfer occurring between two fluids via diffusion. 
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Among momentum, heat and mass transport processes, heat conduction and viscosity have 

standardized techniques for measurements. However, this is not the case for the mass transfer 

characteristics. Measurements of mass transfer characteristics are often more challenging, 

specifically due to difficulties in measuring point values of concentration and other issues like: 

phase equilibrium, effect of convective transport and having a mixture rather than a pure fluid. 

Experimental techniques specifically for VAPEX systems are also inhibited due to the opacity of 

the bitumen and the volatility of the light hydrocarbon solvents mostly used. 

 

Measuring the diffusivity of light hydrocarbon solvents in heavy oil has been of great interest 

due to its direct link to oil production rates in VAPEX systems. Butler and Mokrys (1991) and 

Das (1995) concluded that a much higher diffusion coefficient than estimated by theoretical 

predictions was required to match production rates from laboratory scale VAPEX experiments. 

Until diffusion values (obtained from diffusivity functions) are reliable, oil companies will 

continue to be reluctant to implement VAPEX technology on a field/commercial scale.  

 

In the past two decades, majority of the experimental methods developed to determine the 

diffusion coefficient of a gas in bitumen have relied on Fick’s law as the basis of their work 

(Bird et al. 2002). It states that flux goes from a region of high concentration to a region of low 

concentration depending on the concentration gradient. It relates diffusive flux to concentration 

of a component under steady state conditions. The Fick’s 1
st
 law equation takes the following 

form; 

 

𝒋𝐴 = −𝜌𝐷𝐴𝐵𝜵𝑤𝐴 2-29 

 

Where jA is the diffusive flux of component A in component B, ρ is the density that when 

multiplied with parameter wA (mass fraction) gives mass concentration of component A. DAB is 

the diffusion coefficient, ∇ indicates the direction of diffusion in concentration gradient. With no 

chemical reaction occurring, Fick’s 1
st
 Law equation can be differentiated to give Fick’s 2

nd
 law 

as given: 
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𝜕𝐶𝐴

𝜕𝑡
= 𝐷𝐴𝐵𝜵𝟐𝐶𝐴 2-30 

 

Where CA is the concentration of component A found by multiplying density and mass fraction. 

This equation is applicable to diffusion in solids or stationary liquids when the concentration is 

dilute enough for the diffusivity to be constant.  

 

It must be stated that Fick’s 1
st
 law works on the assumption that density of diffusing fluids is 

equal and constant (Chordia and Trivedi 2010). This is not the case when gas diffuses into heavy 

oil. This work will account for the changing fluid density by making diffusivity a function of 

solvent mass fraction (solvent concentration). The next sections will constant diffusion 

coefficient measurement methods and concentration dependent diffusivity measurement 

methods. 

 

2.2.1. Constant diffusion coefficient methods 

2.2.1.1. Pressure decay methods 

This method, as the name suggests, involves pressuring gas solvent into an enclosed vessel filled 

with bitumen, and recording the system pressure reduction over time to evaluate the diffusion 

coefficient. The system pressure declines as the gas solvent continuously diffuses into the 

bitumen, hence increasing the bitumen’s solvent concentration. This method was initially 

developed by Riazi (1996) to determine diffusion coefficients of methane in pentane liquids 

using a PVT cell. Riazi (1996)’s method was simple and did not require any expensive or time-

consuming compositional analysis. 

 

Zhang et al. (2000) adapted Riazi (1996)’s methodology for heavy oil systems and specifically 

looked at the diffusion coefficient of carbon-dioxide and methane in high pressure window cells. 

Fick’s law of diffusion, along with gas material balance equations, was then used to history 

match the gas absorption data. The diffusion coefficient was made an adjustable parameter. 

Figure 2-14 shows a simple schematic of the experiment and Figure 2-15 shows a graph of the 

subsequent pressure decay. 
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Figure 2-14 - Pressure decay schematic (Zhang et al. 2000) 

 

 

Figure 2-15 - Pressure decay graph (Zhang et al. 2000) 

 

Some of the assumptions made by Zhang et al. (2000) are listed below; 

1) Swelling of the liquid phase is negligible and the gas/bitumen interface height is constant 

through the full experiment. It is hard to justify this assumption from a logical stand 

point. Mass can neither be created nor destroyed so all the diffusing solvent must go 
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somewhere in the heavy oil fluid. The heavy oil is thick and not particularly porous so 

the fluid will have to swell as diffusion occurs. The occurrence of bitumen swelling was 

later definitively proved by Chatzis (2002)  

2) The concentration of gas at the interface and temperature of the system remains constant 

through the experiment. This is also hard to justify given the concentration at the 

interface (solubility) is pressure dependent. The pressure of the system clearly declines 

as they experiment progresses so the concentration should equally decline as such. 

3) Diffusion coefficient is constant through the whole experiment regardless of gas 

concentration. This assumption is linked to point 2) of constant gas concentration at the 

interface. Diffusion is driven by concentration gradient so it just isn’t logical for it to 

remain the same at varying concentrations. Concentration dependency is further 

discussed in Section 2.2.3. 

4) Oil is non-volatile and the gas is a pure gas.  

 

For Zhang et al. (2000)’s work, modest pressures of about 3500 kPa were used with methane and 

2900 kPa for carbon-dioxide to evaluate the diffusion coefficient. Diffusion coefficient values 

ranged from 9.8393–6.1726 (10
-9

) m
2
/s for methane and 4.7254– 4.4241 (10

-9
) m

2
/s for carbon-

dioxide. Both trends did show that higher gas pressures gave higher diffusion coefficient values. 

 

A big issue developing a diffusion model based on pressure decay is the problem of boundary 

conditions between the solvent and bitumen. A lot of literature assumes that the heavy oil and 

solvent vapor instantaneously reach equilibrium concentration on contact with each other at the 

given thermodynamic conditions. But this concentration of the solvent (solubility) at the bitumen 

interface is dependent on pressure so any decreases in pressure will inevitably lead to decrease in 

interface concentration. Tharanivasan et al. (2006) attempted tackle this problem associated with 

pressure decay methods by utilizing special boundary conditions. Based on previous work, three 

boundary conditions were feasible;  

 

1) the interface assumes the saturated solvent concentration at equilibrium pressure 

regardless of whether or not equilibrium is reached Zhang et al. (2000), 
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2) the interfacial concentration is equal to the solubility concentration dependent on pressure 

hence the interfacial concentration is constantly changed to match the declining pressure. 

This method was used by Upreti and Mehrotra (2002) and is a sort of ‘quasi-equilibrium’. 

3) the interface is not at equilibrium, hence proving resistance to mass transfer. This method 

was first introduced by Civan and Rasmussen (2011). It is however an incredibly 

complex method to use and is therefore rarely utilized by researchers 

 

Tharanivasan et al. (2006) applied all three boundary conditions to these heavy oil solvent 

systems and diffusion coefficients were found for each boundary condition by finding the 

minimum objective function (minimum average pressure difference between theoretically 

calculated and experimentally measure pressures). The most suitable boundary condition was 

then found by comparing all minimum objective functions, and history matching is used to 

determine the solvent diffusivity. The non-equilibrium boundary condition worked best for a 

CO2-heavy oil system, equilibrium boundary condition worked best for methane-heavy oil 

system and the quasi-equilibrium worked for best for a propane-heavy oil system. Table 2-3 

below shows the diffusivities obtained for the propane heave oil system.  

 

Table 2-3 - Diffusivity of C3H8 in heavy oil at different diffusion time 23.9oC (Tharanivasan et al. 2006) 
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Behzadfar and Hatzikiriakos (2014) combined the pressure decay technique with rheological 

experiments to measure equilibrium pressure precisely and determine diffusion based on the final 

equilibrium state. Experiments were performed at three different temperatures (30, 50, 70
o
C) 

using two different pressures levels for each temperature (~2 MPa and ~4 MPa) within a CO2-

bitumen system. The experimental schematic is shown in Figure 2-16. 

 

 

Figure 2-16 - Schematic diagram of the pressure cell set-up (Behzadfar and Hatzikiriakos 2014) 

 

The liquid cup incases the measuring geometry and is the part of schematic where the CO2 and 

bitumen mixing takes place. The measuring geometry facilitates the mixing (using shear) of the 

CO2 and bitumen while being connected directly to the torque measuring system of a rheometer. 

Experiments are conducted using three steps: 

1) First CO2 is allowed into the liquid to mix with bitumen while no shearing is applied to 

capture the static diffusion thoroughly 

2) The measuring geometry is then allowed to spin gently at shear rates 10-30s
-1

 

3) Saturation takes place by diffusion which is facilitated by shear. Higher shear rates of 10-

50s
-1

 are applied to ensure equilibrium state of the system 

Mixing due to shear imposed by rheometry allows rapid direct measurements of equilibrium 

pressure with a high degree of accuracy. This is achieved by monitoring both the viscosity and 
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pressure of the system at the shearing step to ensure the system reaches equilibrium. Results 

showed that diffusion of a CO2-bitumen system can be described by the Arrhenius equation 

(effect of temperature). The diffusion increases with temperature (30-70
o
C) by 88% at 

equilibrium pressure of 2 MPa and 54% at equilibrium pressure 4 MPa. The calculated diffusion 

increase with pressure suggests in the case of diffusion in the presence of more CO2 molecules 

but this increase is clearly more dominant in lower temperatures. 

 

This method is advantageous as it calculates diffusion directly from measured equilibrium 

pressure with no assumptions. It is easy to apply and eliminates the errors from the uncertainty of 

estimating the equilibrium pressure. However the forced mixing of the CO2 and bitumen through 

shearing really is not applicable in real reservoir scenarios. The method like other pressure decay 

methods also neglects the swelling of the bitumen liquid due to the diffusion of the CO2. 

   

2.2.1.2. Dynamic Pendant Drop Shape Analysis (DPDSA) 

Yang and Gu (2003) and Yang and Gu (2006) formulated a method that involves a pendant drop 

of bitumen formed in a transparent high pressure cell. This cell will be filled with solvent (butane 

or propane) at the desired temperature and pressure. The bitumen sample is then injected into the 

system via a syringe to form a pendant drop inside the pressure cell. The diffusion that takes 

place leads to the bitumen sample shape and volume to change until equilibrium is reached. At 

equilibrium, the bitumen is completely saturated with solvent. Digital images of the bitumen 

droplet are acquired over the experiment and analyzed with digital image processing. Below is a 

schematic of the system setup Figure 2-17. 

 

 

Figure 2-17 - DPDSA set-up (Yang and Gu 2006) 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 60 
 

The physical changes noticed in the bitumen droplet are a result of interfacial tension reduction. 

Convergence between the experimentally observed and numerically predicted profiles is 

obtained by constructing an objective function. Once the minimum objective function is reached, 

the solvent diffusion in heavy oil and mass transfer Biot number are determined. A finite-

element method is employed to simulate the unsteady 2D solvent concentration distribution 

within the droplet. The drop profile is predicted by numerically solving the Laplace equation of 

capillarity. A single diffusion measurement can be completed within an hour and only a small 

amount of oil is needed. This method was applied to diffusion of CO2 in brine and diffusion of 

CO2 in heavy oil. The diffusion coefficient values obtained agreed with literature data; 1.81*10
-9

 

m
2
/s for CO2 (3.6 MPa and 25

o
C) in brine and 1.14*10

-9
 m

2
/s for CO2 (2.9 MPa and 25

o
C) in 

heavy oil. 

 

However, the impact of the shape/volume of the pendant drop on diffusion was neglected. Also, 

introducing the needed brine/bitumen into the system was difficult because it had to be spread 

evenly on the drop surface. This is very difficult to achieve given the volume of the droplet is 

constantly changing. Also, the surface profiles are analyzed under the assumption that surface 

tension is the same as the surface tension of a static droplet shape. Also another issue is the 

difference in diffusion driving force at the top and bottom of the droplet. At the top of the 

droplet, diffusion occurs into the drop but with hardly any solvent remaining there due to lack of 

solvent accumulates. Solvent falls and accumulates the bottom of the droplet leading to a 

completely different concentration driving force compared to the top. 

 

2.2.1.3. Computer Assisted Tomography (CAT) 

This method involves the use of x-ray tomography with a CT scanner to generate 2D images of 

the solvent-oil mixture. Higher density regions (bitumen rich) will typically have higher CT 

numbers compared to lower density regions (solvent rich). The CT scanner is therefore used for 

comprehensive analysis of the solvent diffusion into the bitumen. Wen et al. (2004)          

examined a range of solvents in different heavy oils using CT scanning and Nuclear Magnetic 

Resonance. Luo and Kantzas (2008) presented diffusion experiments of liquid solvents in heavy 

oil saturated sand using this CT scanning method while considering porosity variation of media 
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and volume changes of mixing. The inclusion of porous media leads to a differentiation of 

effective diffusivity (De) and bulk diffusivity (Do); De represents diffusivity in porous media 

while Do represents diffusivity in bulk fluids. Equation 2-31 and Equation 2-32 give an 

approximation of how both parameters are related. 

 

𝐷𝑒 =
𝐷𝑜

√2
 2-31 

 

Or 

 

𝐷𝑒 =
𝐷𝑜

𝐹
 2-32 

 

𝐹 = ∅−𝑚 2-33 

 

Where F is the formation electrical resistivity factor, Ø is porosity and m being cementation 

factor (different values in different packing).  

 

Luo and Kantzas (2008) outlined the following assumptions for their work: 

 No chemical reaction occurring 

 The system is contained in a static cell 

 Porosity variation of the media is considered 

 Volume changes occur due to mixing 

 Only one-dimensional diffusion is considered 

 Temperature and pressure are constant 

 

For a heterogeneous porous media, the rates at which the concentrations of two components CA 

and CB change at a given point are given by: 
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Ø
𝜕𝐶𝐴

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷Ø

𝜕𝐶𝐴

𝜕𝑥
) −

𝜕

𝜕𝑥
{𝐶𝐴 ∫

𝐷Ø

𝑉𝐵𝐶𝐴
(

𝜕𝑉𝐵

𝜕𝐶𝐴
) (

𝜕𝐶𝐴

𝜕𝑥
)

2

𝑑𝑥

𝑥

−∞

} , 𝑎𝑛𝑑 2-34 

 

Ø
𝜕𝐶𝐵

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷Ø

𝜕𝐶𝐵

𝜕𝑥
) −

𝜕

𝜕𝑥
{𝐶𝐵 ∫

𝐷Ø

𝑉𝐵𝐶𝐴
(

𝜕𝑉𝐵

𝜕𝐶𝐴
) (

𝜕𝐶𝐴

𝜕𝑥
)

2

𝑑𝑥

𝑥

−∞

} 2-35 

For a homogeneous porous media, the rates at which the concentrations of two components CA 

and CB change are simplified to: 

 

𝜕𝐶𝐴

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷

𝜕𝐶𝐴

𝜕𝑥
) −

𝜕

𝜕𝑥
{𝐶𝐴 ∫

𝐷

𝑉𝐵𝐶𝐴
(

𝜕𝑉𝐵

𝜕𝐶𝐴
) (

𝜕𝐶𝐴

𝜕𝑥
)

2

𝑑𝑥

𝑥

−∞

} , 𝑎𝑛𝑑 2-36 

 

𝜕𝐶𝐵

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷

𝜕𝐶𝐵

𝜕𝑥
) −

𝜕

𝜕𝑥
{𝐶𝐵 ∫

𝐷

𝑉𝐵𝐶𝐴
(

𝜕𝑉𝐵

𝜕𝐶𝐴
) (

𝜕𝐶𝐴

𝜕𝑥
)

2

𝑑𝑥

𝑥

−∞

} 2-37 

 

The parameter VA/VB represents volume at constant pressure and temperature for the given 

component. For a bulk fluid (porosity is one), D would represent molecular diffusivity Do; for 

porous media (porosity < 1), D would represent effective diffusivity De. Applying the Boltzmann 

substitution to Equation 2-36 gives an evaluation for D; 

𝐷 = −
1

2𝑡

𝑑𝑥

𝑑𝐶𝐴
{∫ 𝑥𝑑𝐶𝐴

𝐶𝐴

0

+ 𝐶𝐴𝑉𝐵 ∫
∫ 𝑥𝑑𝐶𝐴

𝐶𝐴

0

𝐶𝐴𝑉𝐵
2 (

𝜕𝑉𝐵

𝜕𝐶𝐴
)

𝑃,𝑇

𝑑𝐶𝐴

𝐶𝐴

0

} 2-38 

 

The diffusion process was monitored by a GE9800 CT scanner and x-ray tomography techniques 

were employed to generate 2D images of the solvent-oil mixture. These scans were then 

averaged and converted to solvent and bitumen concentration profiles. Figure 2-18 below shows 

CT images of a sand pack sample filled with solvent and heavy oil. Figure 2-19 shows CT sand-

pack images at different times. 
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Figure 2-18 - CT images of a sand pack sample (Luo and Kantzas 2008) 

 

 

Figure 2-19 - CT Scan at different times (Luo and Kantzas 2008) 

 

To process the CT scan, a Region of Interest (ROI) was selected, porosity variation was 

analyzed, the CT number of the ROI in the horizontal direction was averaged (giving CT number 

profiles) and these CT number profiles were converted to density profiles. Density profiles were 

then later converted to concentration profiles. Figure 2-20 shows an example of such 

concentration profiles at varying times. 

 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 64 
 

 

Figure 2-20 - CT converted concentration profile at time 667 minutes (Luo and Kantzas 2008) 

 

Results showed that the time dependency of the diffusivity is reduced by taking into account the 

volume change on mixing. The mutual concentration diffusion coefficient was found to be 

dependent on concentration in both homogeneous and heterogeneous porous media. Figure 2-21 

shows the diffusion coefficient relationship with concentration for bulk fluids and porous media.  

 

 

Figure 2-21 - Diffusivity in Heavy oil for bulk fluids and porous fluids (Luo and Kantzas 2008) 
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2.2.1.4. Nuclear Magnetic Resonance (NMR) 

Wen et al. (2004) and Wen et al. (2013) applied low field NMR to determine solvent content and 

viscosity reduction in heavy oil mixtures. The mobility of the hydrogen molecules changed when 

the solvent came in contact with the bitumen. These changes were detectable through changes in 

the NMR relaxation characteristics for the solvent and heavy oil. The relaxation changes were 

then correlated to mass flux and concentration changes. 

 

The diffusion coefficient calculated was via Fick’s 2
nd

 law Equation 2-30 and is independent of 

concentration and the approach tested against a variety of oil/solvents. Some of the following 

assumptions were made: 

 The system is in a static vial having a constant volume 

 The solvent is above the heavy oil and the heavy oil is one pseudo-component 

 One-dimensional mass transfer occurs 

 Infinite medium and no volume change on mixing 

 Constant temperatures and pressure through the full experiment 

 

The changes in concentration along the x-axis are expressed as below: 

 

𝐶 =
1

2
𝐶0𝑒𝑟𝑓𝑐 (

𝑥

2√𝐷𝑡
) 2-39 

 

During the NMR experiments, the concentration determined NMR spectra change is the overall 

concentration, ‘C’ in the mixture area, which is a function of time and diffusion coefficient. The 

parameter ‘x’ is the distance of unsteady diffusion. With some pre-determined boundary 

conditions, the correlation between concentration, time and D is given as: 

 

𝐶 = 𝑓(𝑥, 𝑡, 𝐷) 2-40 
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∫ 𝐶𝑑𝑥

𝑙

0

= ∫ 𝑓(𝑥, 𝑡, 𝐷)𝑑𝑥

𝑙

0

= 𝑓(𝑡, 𝐷) 2-41 

 

At a given t, 

 

𝐶̅ =
∫ 𝐶𝑑𝑥

𝑙

0

∫ 𝑑𝑥
𝑙

0

=
∫ 𝑓(𝑥, 𝑡, 𝐷)𝑑𝑥

𝑙

0

𝑙
= 𝑓(𝑡, 𝐷) 2-42 

 

The basis for using NMR is the fact that the relaxation spectrum of heavy oil is distinctly 

different than that of the solvent. Figure 2-22 shows this difference in spectra. Figure 2-23 

shows the difference in spectra during diffusion. 

 

 

Figure 2-22 - Typical NMR spectra for bitumen, pure solvent and a mixture (Wen et al. 2013) 
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Figure 2-23 - Spectra change during diffusion (Wen et al. 2013) 

 

Below in Table 2-4 is a list of diffusion coefficient values obtained from the various 

experimental conditions.  

 

Table 2-4 - Diffusion coefficient of solvents in oils (Wen et al. 2013) 
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The NMR method is great because it can also be used to understand the relationship between 

asphaltene precipitation Wen et al. (2003), density and viscosity Wen and Kantzas (2004) in 

solvent-heavy oil systems. However it does rely on the assumption of no swelling of bitumen as 

the diffusion occurs (already disproved). The assumption of an infinite medium for diffusion to 

occur is also hard to justify. The infinite medium assumptions maybe applicable while simulating 

a reservoir but in a closed system like the one used for this the experiment, the wall effects and 

finite limitation may apply dominantly hence introducing deviations in the model. Also the 

experiment is run for four weeks but only data for the first two days is accounted for when 

calculating the diffusion coefficient. This is because the interface between the solvent and oil 

could only be maintained for a short period of time. This represents a huge approximation as the 

distance traversed by the solvent front is unknown and thus the effects of the boundary walls on 

the interface may have been judged poorly. 

 

2.2.2. Mutual diffusion coefficient 

Mutual diffusion coefficient is not directly relevant to this work but is related to general Solvent 

extraction processes. Mutual diffusion occurs mainly liquid-liquid or gas-gas systems when the 

rate of diffusion of species A in B is equal to the rate of diffusion of species B in A. As the 

VAPEX technology advances, different solvent options will be explored. There will therefore be 

the possibility of including of liquid hydrocarbons as solvents. Given the foundational definition 

of VAPEX involves the using a solvent ‘vapor’ (gas), using liquid solvents would generally be 

termed as a ‘Solvent assisted recovery’ process. In liquid-liquid systems the diffusion occurring 

is typically known to be mutual diffusion given both liquid diffuse into each at fairly similar 

rates (unlike gas-liquid systems). However data for such systems are scarce, limited to ambient 

conditions and show apparent inconsistencies.  

 

Ghanavati et al. (2014a) reported all the mutual diffusion coefficient measurements in two 

general cases of concentration independency and concentration dependency. The report showed 

that literature suffers from experimental limitations and difficulties in analysis that make their 

interpretation a challenging task. Asphaltene precipitation is also very prevalent at the liquid-

liquid interface hence forming a barrier that hinders the mutual diffusion. It was concluded that 
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for significant progress to be made in liquid-liquid mutual diffusion calculations, new measuring 

techniques need to be implemented. These measuring techniques must not limited by practical 

restrictions nor sensitive to calculation procedures. 

 

Ghanavati et al. (2014b) applied Taylor dispersion technique to find reliable mutual diffusion 

coefficients in a hexane-bitumen mixture. The infinite-dilution molecular diffusion coefficients 

of bitumen in hexane was measure in both the presence and relative absence of asphaltene 

precipitates at atmospheric pressures with temperatures 303.15 K, 310.15 K and 317.15K. 

 

In a Taylor dispersion experiment, a minute amount of solvent, called a pulse, is injected into a 

laminar carrier stream of a slightly different composition of fluid flowing in a long capillary 

tube. As the pulse travels through the tube, it spreads out into a nearly Gaussian profile under the 

combined actions of molecular diffusion and convection. The shape of the dispersed peak 

measured by an adequate detector, commonly at the end of the tube, is used to determine the 

molecular diffusion coefficient D from the dispersion coefficient K. The following equation is 

applied: 

 

𝐾 = 𝐷 +
𝑅2�̅�2

48𝐷
 2-43 

 

Where R is the internal radius and is the average velocity of the laminar flow in the tube. The 

acquired dispersion profiles (refractometer voltages) are then analyzed using the nonlinear least 

square method based on a normal distribution equation assuming concentration and voltage are 

linearly correlated as: 

 

 

𝑉𝐸(𝑡) = 𝑉0
𝐸 + 𝑉𝑚𝑎𝑥

𝐸 = 𝑒𝑥𝑝 (−0.5 (
𝑡 − 𝑡𝑅

𝜎𝑡
)

2

) 2-44 
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Where 𝑉𝑚𝑎𝑥
𝐸  is the peak height relative to the baseline voltage 𝑉0

𝐸, tR is the residence time and σt 

is the peak variance in unit time. Dispersion coefficient K is correlated to tR and σt through 

𝜎𝑡
2 = 2

𝐾𝑡𝑅

𝑢2  as long as the distribution is spatially Gaussian in the dectector. Finally molecular 

diffusion coefficient is calculated from the following: 

 

𝐷 =
𝑅2

24

𝑡𝑅

𝜎𝑡
2 2-45 

 

Taylor dispersion was selected for its convenient short run experiments and reliable data 

analysis. Results showed mutual diffusion coefficients are strongly concentration dependent 

within the concentration range studied (0-34% volumetric bitumen). Thus any assumption of 

constant molecular diffusion coefficient for such a liquid solvent-bitumen system would lead to 

considerable errors in designing solvent assisted recover processes. 

 

2.2.3. Concentration dependent diffusivity methods 

This section reviews diffusion work that accounts for concentration dependency (diffusivity). 

Most diffusivity calculations assume the solvent concentration in the bitumen remains constant 

through the whole diffusion process and hence diffusion coefficient remains constant. This could 

not be further from the truth, and leads to erroneous diffusion values. The simple logic behind 

this as explained before is that diffusion is driven by concentration. Hence lower concentration 

lead to lower concentration gradients and hence lower values for diffusion.  

 

According to Upreti et al. (2007), accurate concentration-dependent diffusivity data is necessary 

to determine: the amount/flow rate of solvent required to mobilize the heavy oil, the extent of 

heavy oil reserves that would undergo viscosity reduction, the time required to mobilize the 

heavy oil for drainage under gravity and production rate of live oil. This has led to more 

researchers taking into consideration the concentration dependency of diffusivity. Some key 

findings over time include the following: 
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 The solubility of light hydrocarbons is sufficiently high so that assumptions for dilute 

conditions are invalid. 

 The high solubility of the light hydrocarbon in heavy causes the bitumen phase to swell in 

time so that swelling of the oil cannot be ignored.   

 The solubility of the light hydrocarbon in the heavy oil is proportional to the partial pressure 

of the solvent in the gas phase and the overall system pressure. 

 The viscosity of the oil phase decreases exponentially when mixed with a light hydrocarbon 

solvent. 

 There are large density gradients between the light solvent and the dense heavy oil. 

  

Etminan et al. (2009) developed a modified version of the pressure decay method that maintains 

constant concentration at the gas-liquid interface and measures the amount of gas transferred to 

the liquid as a function of time. This constant concentration is maintained by having a supply cell 

to continuously inject gas into the decay cell hence, making the measurements easier and a 

simple analysis can be performed to determine the equilibrium concentration and diffusion 

coefficient. The constant pressure helped eliminate some of the complexities in modeling the 

physics of the interface caused by declining pressure in the original pressure decay method. An 

infinite and finite acting analytical solution is derived to fit the boundary conditions. The 

concentration dependency of diffusivity is studied with a stepwise increase in pressure starting 

from a low pressure. Diffusion coefficient is measured for each gas saturation pressure, going 

from low pressure to near gas dew point pressure in 5-6 steps. 

 

The first experiment was conducted at 26 psig with test fluids Athabasca bitumen and CO2. 

Temperature disturbances did occur due to a malfunction in the supply cell water bath. The 

diffusion was determined to be 1.45*10
-6

 cm
2
/sec with a saturation concentration of C*g1 = 0.019 

g/cm
3
. The second experiment could not be completed due to the gas dissolution in bitumen 

being extremely slow. 

 

Etminan et al. (2009) method for the most part ignores the continuous swelling of bitumen due to 

the dissolution of gas in it during each step. It does try to account for swelling by updating 
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bitumen height at each starting pressure step but this is not adequate enough. Also the pressure 

supply cell and diffusion cell are connected by electronic valves. The connection is intermittent 

and hence there is a pressure build up every time gas goes into the diffusion cell. Etminan et al. 

(2009) accounted for this by assuming, all the gas leaving the pressure cell dissolves into the 

liquid but this assumption may have induced further errors. 

 

James (2003) investigated the concentration dependence of diffusion coefficient of butane in 

heavy oil, swelling effects at the pore scale and mass transfer rates were addressed for 

characterizing the rate of mass transfer of a hydrocarbon vapor in heavy oils. Experimental 

procedures were developed for investigating the transient behavior of butane solubility in heavy 

oil and heavy oil swelling as a function of time. Results showed that when the linear dependence 

between the diffusivity and solvent mass fraction was used, the model adequately predicted the 

overall change in height of both the butane and bitumen compared to experimental results. 

 

James (2009) used similar principles to investigate the one-dimensional diffusion of butane 

(24.9
o
C) in Athabasca bitumen (26.3

o
C) while accounting for bitumen swelling and assuming 

ideal mixing between butane and bitumen. Diffusivity of butane in bitumen was found as a 

function of butane mass concentration by, utilizing a mathematical model (solvent continuity 

equations) to predict the ‘bitumen growth’. This is the swelling of the bitumen fluid that occurs 

due to the diffusion of butane vapor into the bitumen. The ‘bitumen growth’ determined 

mathematically is compared to the ‘bitumen growth’ observed experimentally and the difference 

between the two (experimental – predicted) is minimized by optimizing the diffusivity function 

coefficients. James (2009) solvent continuity equation comprises of three main terms: 

 

𝜕(𝜌𝑠)

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑠𝑉𝑚) −

𝜕

𝜕𝑥
(𝜌𝐷𝑠𝑏

𝜕𝜔𝑠

𝜕𝑥
) = 0 2-46 

 

Where ρs (g/cm
3
) is mass concentration of the solvent, t (s) is time, V

m
 (g*cm/s) is mass average 

velocity, ρ (g/cm
3
) is overall phase density, Dsb (cm

2
/s) is solvent (s) diffusivity in bitumen (b), 

ωs is solvent mass fraction and x is the direction of diffusion. The first term is the solvent 
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accumulation term, the second is the convection term and, the third the diffusion term. Equation 

2-46 yields three main equations; 

 

First is an expression for change of solvent mass fraction in bitumen over time. 

 

𝜕𝜔𝑠

𝜕𝑡
=

𝜕𝜔𝑠

𝜕𝑥
[
𝐷𝑠𝑏

𝜌

𝜕𝜌

𝜕𝑥
+

𝜕𝐷𝑠𝑏

𝜕𝑥
− 𝑉𝑚] + 𝐷𝑠𝑏

𝜕2𝜔𝑠

𝜕𝑥2
 2-47 

 

where ωs is the solvent mass fraction, Dsb is solvent diffusivity in bitumen, ρ is bitumen phase 

density, V
m
 is mass averaged velocity of the mixture, t is time. 

 

The second is an expression for the mass averaged velocity of the fluid mixture V
M

. Please note 

James (2009) assumes ideal mixing of bitumen and butane 

 

𝑉𝑚(𝑥, 𝑡) = (𝑣𝑠
∗ − 𝑣𝑏

∗) ∫ (𝐷𝑠𝑏

𝜕𝜌

𝜕𝑥

𝜕𝜔𝑠

𝜕𝑥
+ 𝜌

𝜕𝐷𝑠𝑏

𝜕𝑥

𝜕𝜔𝑠

𝜕𝑥
+ 𝜌𝐷𝑠𝑏

𝜕2𝜔𝑠

𝜕𝑥2
) 𝑑𝑥

𝑥

0

 2-48 

 

where 𝑣𝑠
∗ and 𝑣𝑏

∗ are the solvent and bitumen specific volumes (cm
3
/g) respectively. The final is 

an expression describes the bitumen height increase (bitumen swelling) with time 

 

𝑑𝑥𝑠

𝑑𝑡
= (𝐷𝑠𝑏

𝜕𝜔𝑠

𝜕𝑥
)|

𝑥=𝑥𝑠

−
(𝑣𝑏

∗ − 𝑣𝑠
∗)𝑥𝑠

𝜌(𝑥𝑠, 𝑡)
∫ 𝜌2

𝜕𝜔𝑠

𝜕𝑡
|

𝑥
𝑑𝑥

(𝑡)

0

 2-49 

 

Equations 2-47, 2-48 and 2-49 are transformed (to give dimensionless positions) using a front 

fixing method first proposed by Landau 1950. Without the dimensionless transformation, the 

interface position would change with time and resolving time derivatives with respect to 

changing spatial coordinate is more complicated. The x-dimension is made dimensionless by 

introducing a dimensionless variable ′𝜉′ 
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𝜉 =
𝑥

𝑥𝑠(𝑡)
 2-50 

 

using this transformation, bitumen interface (ξ) is always equal to one and the following 

derivatives are acquired 

 

𝑑𝑥 = 𝑥𝑠𝑑𝜉,
𝑑𝜔𝑠

𝑑𝑥
=

1

𝑥𝑠(𝑡)

𝑑𝜔𝑠

𝑑𝜉
, 𝑎𝑛𝑑 

𝑑2𝜔𝑠

𝑑𝑥2
=

1

𝑥𝑠(𝑡)

𝑑2𝜔𝑠

𝑑𝜉2
 2-51 

 

The method of lines is used to discretize the dimensionless ξ and transform to an approximate set 

of ordinary differential where the remaining independent variable is time to give the following 3 

sets of equations 

 

1) Solvent continuity equation: 

𝑑𝜔𝑠

𝑑𝑡
|

𝑖
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2∆𝜉
)

− 𝑉𝑚(𝜉)} + (
𝐷𝑠𝑏(𝜔𝑠

𝑖)

(𝑥𝑠)2
) (

𝜔𝑠
𝑖+1 − 2𝜔𝑠

𝑖 + 𝜔𝑠
𝑖−1

(∆𝜉)2
) 

2-52 

No flux boundary, 𝜉 = 0, i = 1 

 

𝑑𝜔𝑠

𝑑𝑡
|

𝑖=1
= (

2𝐷𝑠𝑏(𝜔𝑠
𝑖)

(𝑥𝑠)2
) (

𝜔𝑠
𝑖+1 − 𝜔𝑠

𝑖

(∆𝜉)2
) 

 

2-53 

At the bitumen-solvent vapor interface, 𝜉 = 1, i = n+1 
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𝑑𝜔𝑠

𝑑𝑡
|

𝑖=𝑛+1
= 0 

 

2-54 

2) Mass average velocity, V
m

: 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≌ (
ℎ

2
) (𝑓(𝑎) + 𝑓(𝑏)) + ℎ ∑ 𝑓(𝑥)𝑛

𝑛

𝑖=1

   𝑤ℎ𝑒𝑟𝑒 ℎ =
𝑏 − 𝑎

𝑛
 

 

2-55 

𝑉𝑚 ≅ (𝑣𝑠
∗ − 𝑣𝑏

∗) (
(𝑖 − 1)∆ξ

2(𝑖 − 1)
) (𝑓(𝑎) + 𝑓(𝑏)) + (

(𝑖 − 1)∆ξ

(𝑖 − 1)
) ∑ 𝑓(𝜉𝑖)

𝑛

𝑖=1

 

 

2-56 

𝑓(𝑎) = 𝑓(0) = 0 2-57 

  

𝑓(𝜉𝑖) = (
𝐷𝑠𝑏(𝜔𝑠

𝑖)

𝑥𝑠
) (

𝜌(𝜔𝑠
𝑖+1) − 𝜌(𝜔𝑠

𝑖−1)

2∆𝜉
) (

𝜔𝑠
𝑖+1 − 𝜔𝑠

𝑖−1

2∆𝜉
)

+ (
𝜌(𝜔𝑠

𝑖)

𝑥𝑠
) (

𝐷𝑠𝑏(𝜔𝑠
𝑖+1) − 𝐷𝑠𝑏(𝜔𝑠

𝑖−1)

2∆𝜉
) (

𝜔𝑠
𝑖+1 − 𝜔𝑠

𝑖−1

2∆𝜉
)

+ (
𝜌(𝜔𝑠

𝑖)𝐷𝑠𝑏(𝜔𝑠
𝑖)

. 𝑥𝑠
) (

𝜔𝑠
𝑖+1 − 2𝜔𝑠

𝑖 + 𝜔𝑠
𝑖−1

(∆𝜉)2
) 

2-58 

 

𝑓(1) = (
𝐷𝑠𝑏(𝜔𝑠

𝑛+1)

𝑥𝑠
) (

3𝜌(𝜔𝑠
𝑛+1) − 4𝜌(𝜔𝑠

𝑛) + 𝜌(𝜔𝑠
𝑛−1)

2∆𝜉
) (

3𝜔𝑠
𝑛+1 − 4𝜔𝑠

𝑛 + 𝜔𝑠
𝑛−1

2∆𝜉
)

+ (
𝜌(𝜔𝑠

𝑛+1)

𝑥𝑠
) (

3𝐷𝑠𝑏(𝜔𝑠
𝑛+1) − 4𝐷𝑠𝑏(𝜔𝑠

𝑛) + 𝐷𝑠𝑏(𝜔𝑠
𝑛−1)

2∆𝜉
)

∗ (
3𝜔𝑠

𝑛+1 − 4𝜔𝑠
𝑛 + 𝜔𝑠

𝑛−1

2∆𝜉
)

+ (
𝜌(𝜔𝑠

𝑛+1)𝐷𝑠𝑏(𝜔𝑠
𝑛+1)

. 𝑥𝑠
) (

𝜔𝑠
𝑛+1 − 2𝜔𝑠

𝑛 + 𝜔𝑠
𝑛−1

(∆𝜉)2
) 

2-59 
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3) Increase in bitumen height: 

𝑑𝑥𝑠

𝑑𝑡
= (

𝐷𝑠𝑏(𝜔𝑠
𝑛+1)

𝑥𝑠
) (

3𝜔𝑠
𝑛+1 − 4𝜔𝑠

𝑛 + 𝜔𝑠
𝑛−1

2∆𝜉
) −

𝑥𝑠(𝑣𝑏
∗ − 𝑣𝑠

∗)

𝜌(𝜔𝑠
𝑛+1)

∗ 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 2-60 

 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ≅ (
1

2𝑛
) (𝑓(𝑎) + 𝑓(𝑏)) + (

1

𝑛
) ∑ 𝑓(𝜉𝑖)

𝑛

𝑖=2

 
2-61 

Node 1 

 

𝑓(𝑎) = 𝑓(0) = 𝜌(𝜔𝑠
1)2 (

𝜕𝜔𝑠

𝜕𝑡
|

𝜉=0
) 2-62 

 

Node n+1 

 

𝑓(𝑏) = 𝑓(1) = 𝜌(𝜔𝑠
𝑛+1)2 [

−1

𝑥𝑠
(

𝑑𝑥𝑠

𝑑𝑡
) (

3𝜔𝑠
𝑛+1 − 4𝜔𝑠

𝑛 + 𝜔𝑠
𝑛−1

2∆𝜉
) + (

𝜕𝜔𝑠

𝜕𝑡
|

𝜉=1
)] 2-63 

Node i = 2 : n 

 

𝑓(𝜉𝑖) = 𝜌(𝜔𝑠
𝑖)

2
[(

−(𝑖 − 1)∆𝜉

𝑥𝑠
) (

𝑑𝑥𝑠

𝑑𝑡
) (

𝜔𝑠
𝑖+1 − 𝜔𝑠

𝑖−1

2∆𝜉
) + (

𝜕𝜔𝑠

𝜕𝑡
|

𝜉=1
)] 2-64 

James (2009) assumes the following: 

 At the solvent/bitumen interface, the solvent concentration remains constant (0.6 mass 

fraction solvent solubility at given temperature and pressure) and this concentration is 

reached instantaneously.  

 Ideal mixing occurs between the bitumen and butane solvent. 

 The initial form of the diffusivity function is guessed 

 

The transformation and discretization yields Equations 2-52 to 2-64 which are all input and 

solved simultaneously in MATLAB using “lsqnonlin-least squares nonlinear” optimization 
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option. This optimization automatically minimizes the objective function (difference between 

experimental and predicted ‘bitumen growth’). The coefficients of the proposed diffusivity 

function are set as the parameters for which to optimize. 

 

James (2009) found the diffusivity of butane (24.9
o
C) in bitumen (26.3

o
C) to be 

(4.78ωs+4.91)*10
-6

 cm
2
/s where ωs is the solvent mass fraction. The diffusivity result was 

independently validated by utilizing a macroscopic mass balance to predict the change in solvent 

height after ‘bitumen growth’ has been resolved for the full time duration. This counts as an 

independent validation because the experimental solvent height change values are not used in the 

model to determine the diffusivity. The summation of the solvent concentration profile resolved 

throughout the depth of the bitumen phase gives mass of solvent in bitumen at a given time. 

 

𝑚𝑠(𝑡) = 𝐴𝑏 ∫ 𝜌𝜔𝑠𝑑𝑥

𝑥𝑠(𝑡)

0

= 0 2-65 

 

where ‘ms (t)’ is mass of solvent (g) at time ‘t’, ‘Ab’ is cross sectional area of bitumen tube 

(cm
2
), ‘ρ’ is density of the bitumen phase (g/cm

3
), ‘ωs’ is mass fraction of solvent and ‘xs(t)’ is 

increase in bitumen height (cm) due to swelling from diffusing solvent at time ‘t’. With this mass 

of solvent, the height change of solvent in the solvent tube can be found as; 

 

ℎ𝑠(𝑡) =
𝑚𝑠

𝜌𝑠𝐴𝑠
= 0 2-66 

 

where ‘hs(t)’ is height change of solvent (cm) in the solvent tube at time ‘t’, ‘ms’ is mass of 

solvent (g), ‘ρs’ is density of solvent (g/cm
3
) at solvent temperature and ‘As’ is cross sectional 

area (cm
2
) of solvent tube. A good fit was found between the experimental decrease in butane 

solvent height and predicted decrease in butane solvent height as shown in Figure 2-24 hence 

validating the obtained diffusivity function. 
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Figure 2-24 - Solvent decrease (experimental vs model results) (James 2009) 

 

2.4. Non-ideal mixing of solvent and oil 

The majority of VAPEX diffusion coefficient studies assume that bitumen and butane mix in 

equal proportions. In simple terms, this means it is assumed that a mixture of 2 m
3
 of bitumen 

and 4 m
3
 of butane should equate to a 6 m

3
 overall mixture. This is not the case given both fluids 

are hydrocarbons and mix in a non-ideal fashion. Mass can neither be created nor destroyed; 

hence the assumption of ideal mixing will either overestimate or underestimate density values 

used in our solvent continuity equations. It is therefore imperative to seek out methods to account 

for this non-ideality, and, hence enhance accuracy of diffusivity function and subsequent 

diffusion values.  

 

However accounting for the non-ideal of hydrocarbons in VAPEX system is challenging because 

finding a reliable and easily measurable parameter within the solvent-bitumen mixing system 

that can consistently account for non-ideal mixing (non-ideality) without upsetting the system 

(sampling) is very difficult. A popular way of accounting for non-ideal mixing in hydrocarbon 
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fluids is through the use of Peng -Robinson’s equations of state Peng and Robinson (1976). This 

is given by; 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎

𝑉2 + 2𝑏𝑉 − 𝑏2
  , 2-67 

 

where P is pressure, T is absolute temperature, R is the universal gas constant, and V is the molar 

volume. The coefficient b is the co-volume given by: 

 

𝑏 =
0.0777969𝑅𝑇𝑐

𝑃𝑐
  . 2-68 

The coefficient ‘a’ is defined as 

𝑎 = 𝑎𝑐𝛼(𝑇)  , 2-69 

where 

𝑎𝑐 =
0.457235𝑅2𝑇𝑐

2

𝑃𝑐
  , 2-70 

 

And Tc and Pc are the critical temperature and pressure respectively and, α(T) is an empirical 

dimensionless scaling function of temperature. This empirical function is the correlated to 

acentric factor for non-polar or slightly pure components, such as hydrocarbons as, 

 

𝛼 = [1 + 𝑓𝑤(1 − √𝑇𝑟)]
2

  , 2-71 

 

where Tr is the reduced temperature and fw is given by: 

 

𝑓𝑤 = 0.37464 + 1.54226𝑤 − 0.26992𝑤2                         𝑓𝑜𝑟 𝑤 < 0.5,    𝑎𝑛𝑑 2-72 

𝑓𝑤 = 0.3796 + 1.4850𝑤 − 0.1644𝑤2 + 0.01666𝑤3     𝑓𝑜𝑟 𝑤 ≥ 0.5. 2-73 
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The parameters a and b are calculated for the mixtures using the following mixing rules: 

 

𝑎 = ∑ ∑(1 − 𝑘𝑖𝑗)√𝑎𝑖𝑎𝑗𝑥𝑖𝑥𝑗

𝑗𝑖

  , 2-74 

and 

𝑏 = ∑ 𝑥𝑖𝑏𝑖

𝑖

  , 2-75 

 

where xi is the mole fraction of component i and kij is the binary interaction parameter (BIP) 

between components i and j. The BIP specifically accounts non ideal mixing and has a value of 

zero during ideal mixing conditions. Equations 2-67 to 2-75 can be used to calculate the molar 

volume V of a bitumen/solvent mixture. The inverse of molar volume can then be converted to 

density by multiplying it with the mixture molar mass.  

 

Using the equation of state method is an indirect way of account for non-ideality. There are a 

large number of parameters that have to be estimated using this method. Each parameter 

estimated comes with its own error and when density needs to be eventually calculated, the error 

in the density values would have grown exponentially. Still it is one of the only ways available in 

the industry to account for non-ideality. 

 

BIP values are affected by temperature and Deo et al. (1993) looked into its effects by 

determining the optimum BIP for a number of paraffinic, naphthenic and aromatic hydrocarbons. 

Using Peng-Robinson EOS, trends with respect to temperature and molecular size were 

examined. It was discovered that for components lighter than heptane, the interaction parameter 

increases slightly with temperature. However this work did not address the interaction 

specifically between bitumen and butane. Saryazdi et al. (2013) achieved this and found that BIP 

increases with increasing temperature. The red line in Figure 2-25 below shows the regression 

line of BIP vs temperature for bitumen and butane.  
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Figure 2-25 - BIP for bitumen vs. temperature (Saryazdi et al. 2013) 

 

Leahy-Dios and Firoozabadi (2007) attempted to calculate diffusivity while taking into account 

non-ideality in gas and liquid states of multi-component fluids. The non-ideality is described by 

fugacity derivatives evaluated by the volume-translated Peng-Robinson equation of state. For a 

non-ideal n-component mixture, the mole based Stefan-Maxell (SM) diffusive flux is given by, 

 

𝑱𝑀 = −𝑐(𝑩𝑀)−1𝛤𝛻𝑥 2-76 

 

where c is the molar density of the mixture and 𝛻𝑥 is a vector of composition gradient. The 

elements of the (n-1) square matrix B
M

 are given by; 

 

𝐵𝑖𝑖
𝑀 =

𝑥𝑖

Ð𝑖𝑚
+ ∑

𝑥𝑘

Ð𝑖𝑘

𝑛

𝑘=1
𝑖≠𝑘

,    𝑖 = 1, … , 𝑛 − 1 2-77 

 

𝐵𝑖𝑗
𝑀 = −𝑥𝑖 (

1

Ð𝑖𝑗
−

1

Ð𝑖𝑚
) ,    𝑖 = 1, … , 𝑛 − 1, 𝑖 ≠ 𝑗 2-78 
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The parameters Ðij=Ðji are the Stefan-Maxell diffusion coefficients for each i-j binary pair in the 

mixture and xi is the mole fraction of component i. The elements of the mixture 𝛤 of 

thermodynamics factors; 

 

𝛤𝑖𝑗 = 𝑥𝑖

𝜕𝐼𝑛𝑓𝑖

𝜕𝑥𝑗
|

𝑥𝑗,𝑇,𝑃

,    𝑖, 𝑗 = 1, … , 𝑛 − 1 2-79 

 

Where fi is the fugacity of the component and 𝛤 represents system non-ideality and is calculated 

using Peng-Robinson’s equation of state. The mole-based multicomponent Fickian diffusive flux 

is shown as; 

 

𝑱𝑀 = −𝑐(𝑫𝑀)𝛻𝑥 2-80 

 

Similarly to the previously mentioned Fick’s 1
st
 law of diffusion in Equation 2-29, where D

M
 is 

a square matrix of mole based fickian diffusion coefficients, and comparing Equation 2-76 and 

Equation 2-80 gives 

 

𝑫𝑀 = (𝑩𝑀)−1𝛤 2-81 

 

At infinite diution limit, all molecular diffusion coefficients become equal and the notation 

becomes D
∞
. With Ðij found from Equation 2-82 below, D

M
 can be calculated from Equation 2-

81. 

 

Ð𝑖𝑗 = (𝐷𝑖𝑗
∞)

𝑥𝑗
(𝐷𝑗𝑖

∞)
𝑥𝑖

∏ (𝐷𝑖𝑘
∞𝐷𝑗𝑘

∞)
𝑥𝑘

2⁄
𝑛

𝑘=1
𝑘≠𝑖,𝑗

  ,   𝑖, 𝑗 = 1, … . , 𝑛, 𝑖 ≠ 𝑗 2-82 

 

Leahy-Dios and Firoozabadi (2007) developed a correlation based on 889 experimental data on 

D
∞
 for non-polar mixtures from the literature. Experimental pressures (0.1-920 MPa), 

temperatures (154-958K), D
∞
 (0.46*10

-9
 to 6.8*10

-4
 m

2
/s) and experimental values of density 
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with viscosity of the concentrated component were used. The correlation is based on a non-linear 

square minimization of the following general expression; 

 

𝑐𝐷∞

(𝑐𝐷)0
= 𝑓 (

𝜇

𝜇0
, 𝑇𝑟 , 𝑃𝑟 , 𝜔) 2-83 

 

For an n-component mixture, (n-1)
2
 D

M
 from binary pairs D

∞
 is calculated as follows; 

 Find Dij
∞
 from Equation 2-83 

 Find Ðij from Equation 2-82 

 Find B
M

 from Equation 2-77 and Equation 2-78 

 Find D
M

 from Equation 2-79 and Equation 2-81 

 

Figure 2-26 and Table 2-5 below show some of the results of the corellation. 

 

Table 2-5 - Results for multi-component fluid at 422k & 15 MPa (Leahy-Dios and Firoozabadi 2007) 
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Figure 2-26 - Infinite dilution diffusivity: experimental & computed (Leahy-Dios and Firoozabadi 2007) 

 

Predictions for highly non-ideal gas and liquid multi-component mixtures show this method 

works. However it is complex and hard to follow and again there would be too much error 

associated with the final values.  

 

Etminan et al. (2011) conducted three sets of experiments with propane, Mackay oil and 

Athabasca bitumen to determine the effective of molecular diffusion and dispersion coefficient 

on VAPEX systems while accounting for non-ideality. The first experiment used the modified 

pressure decay technique from Etminan et al. (2009) to determine molecular diffusion of propane 

in Athabasca bitumen. However, unlike Etminan et al. (2009) the first experiment accounts for 

bitumen swelling during the experiment. The second experiment involves using a physical sand 

pack model to run a VAPEX experiment at 40
o
C and 165 psig. Using propane and Mackay oil, 

dead oil production rate data were collected over 70 hours and introduced into the VAPEX 

model from Equation 2-1. The dimensionless N value is back calculated with this model.  

 

Finally a set of PVT measurements were conducted to obtain expressions for density and 

viscosity at varying propane concentrations. These expressions are substituted into the equation 
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for N in Equation 2-3 to obtain dispersion coefficient (1.0397 × 10
-9

 m
2
/s). Mixture density 

versus solvent volume fraction graphs is shown in Figure 2-27.  

 

 

Figure 2-27 - Ideal/non ideal mixture density vs. solvent volume fraction at 40oC (Etminan et al. 2011) 

 

From the figure above, there is a clear distinction between the ideal mixing graph (dashed lines) 

and non-ideal mixing graph (blue line/linear regression line). Hence using the ideal mixing graph 

to calculate any mass transfer parameters would have given erroneous results. 

 

2.5. This work 

The literature review shows that accounting for concentration dependency gives significantly 

more accurate diffusivity functions (and subsequent diffusion values) in VAPEX systems. 

However there is barely any work that accounts for the non-ideal mixing of the hydrocarbons. 

This thesis accounts for non-ideality using a density related parameter (pressure), which is 

continuously measurable over the duration of the experiment. This is achieved using a pressure 

differential transmitter. Pressure differential transmitters were selected because the pressure 

changes were expected to be extremely small and difficult to track per minute by a normal 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 86 
 

pressure transmitter. A high precision pressure transmitter was needed and only differential 

transmitters offer such high precision. The basis of this application is the pressure, density and 

height equation below. 

 

𝑃 = 𝜌 ∗ 𝑔 ∗ ℎ 2-84 

 

𝜌 =
𝑃

𝑔 ∗ ℎ
 2-85 

 

With a camera tracking height changes of bitumen and differential transmitter tracking 

hydrostatic pressure changes of the fluid, the density changes in the bitumen mixture as the 

experiment progresses can be computed from Equation 2-85. Differential transmitters are only 

necessary with the bitumen mixture due to the changing density. Butane liquid density remains 

constant through the experiment so tracking height changes is all that is needed. The changing 

bitumen density values can then substituted into the solvent continuity equations to obtain much 

more accurate values of diffusivity.  

 

This work represents the only experiment up to date to calculate diffusivity functions in VAPEX 

systems while accounting for concentration dependence and non-ideal mixing of solvent-

bitumen. James (2009) work will form the basis for accounting for both these factors. James 

(2009) experimental work achieved the following: 

 The design and perfection of a simple one dimensional diffusion experiment to measure 

and independently validate the uptake of n-butane into bitumen and the swelling of the 

bitumen phase in time. 

 An improved mathematical description of the diffusion of n-butane into heavy oil from 

first principles, without oversimplified assumptions. This was accomplished by 

considering: 

o the diffusivity and density are functions of the solvent concentration and cannot 

be assumed constant, and 
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o the solvent concentration was assumed to be a function of position and time and 

numerically calculated 

 Determination that the concentration dependent molecular diffusivity of n-butane in 

heavy oil is a linear function of concentration. 

 Validation of the mathematical model with experimental results 

 

This work will form an extension of the work done by James (2009) while accounting for the 

following: 

 Bitumen temperature variation. Bitumen temperature is varied on five levels (27.00
o
C, 

30.25
o
C, 33.50

o
C, 36.75

o
C and 40.00

o
C) to compare diffusivity functions obtained from 

all five. The main effect these temperature variations will have is a reduction of butane 

solubility in bitumen. Higher temperatures also considerably reduce the viscosity of the 

bitumen but given the absence of gravity drainage in the system, the effects of viscosity 

on the diffusion will be minimal. 

 Non-ideal mixing between the bitumen and butane solvent. As stated above one of James 

(2009) assumptions was ideal mixing between the two fluids. This may not have affected 

the accuracy of the diffusivity function James (2009) obtained because literature suggests 

that the effects of non-ideality are minimal as temperature tends to standard conditions 

(25.00
o
C). This work however will have temperatures as high as 40.00

o
C so the effects of 

non-ideal mixing are expected to be significant. Both ideal and non-ideal diffusivity 

functions are found for comparison sake.  

 A model is designed using Design Expert software to predict the diffusivity function 

(ideal/non-ideal) for any temperature within the experimental range (27.00
o
C - 40.00

o
C). 

The values obtained with this model are compared to experimental values obtained at the 

same temperature to test robustness of the model. Details and results are discussed in 

Section 4.4 and 5.5 
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3) EXPERIMENTAL METHODOLOGY 

3.1. Experimental overview 

This section gives a simplified overview of the experiment. Figure 3-1 is a schematic of the 

experiment in its simplest form. Butane liquid at 24
o
C has a vapor pressure of 34.65 psi. The 

bitumen temperature is varied at five different temperature levels (27.00
o
C, 30.25

o
C, 33.50

o
C, 

36.75
o
C and 40.00

o
C). Each level represents one experimental run and the ‘PT” is a pressure 

transmitter. The butane vapor diffuses into the bitumen with time. The height decrease of butane 

and increase (growth) of bitumen, along with pressure and temperature readings are recorded. 

 

 

Figure 3-1 - Simplified schematic of experiment 

 

There are five key steps in conducting the experiment: Equipment loading, Equipment assembly, 

Pre-Experiment, Experiment and Post-Experiment. The sixth step is data analysis and is covered 

extensively in Section 4. Figure 3-2 gives a brief description of what each component entails. 

Detailed information about the experiment is provided in the next section. 
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 Disassemble equipment 
and weigh

 Prepare for the next 
experimental run

1) Equipment loading

2) Equipment assembly

3) Pre-Experiment

4) Experiment

5) Post-Experiment

 Loading butane  
and bitumen into 
respective glass 
tubes

 Vacuum air and fill setup 
with butane vapor

 Bring system to steady 
state experimental 
temperature

 Connect butane and 
bitumen side to 
piping system while 
immersed in 
plexiglass water bath

 Leak test 

6) Data Anlaysis

 Open valves to start 
experiment

 Record butane and 
bitumen heights, pressure 
and temperature readings

 Mathematically predict diffusivity 
using bitumen height increase data

 Independently validate diffusivity 
using decrease in butane height 
data

 

Figure 3-2- Workflow diagram for experiment 

 

3.2. Equipment set-up 

The purpose of this experimental set-up is to indirectly determine the concentration dependent 

diffusivity when butane vapor diffuses into bitumen, while also accounting for ideal and non-

ideal mixing scenarios. This is done using diffusion apparatus that allows butane vapor to diffuse 

into bitumen while the bitumen mixture density and height changes are monitored. The steps and 

procedures involved in setting up the experiment are outlined in this section. All experimentally 

analyzed parts of the set-up are explained in detail and the section ends with a troubleshooting 

section that details the pit-falls of putting the experimental set-up together. 
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3.2.1. Butane Loading 

Figure 3-3 below illustrates the set-up for the butane loading. The set-up is a combination of an 

L-shaped ¼” OD (outer diameter) glass tube (internal diameter ID 0.15”) and a ¼” OD stainless 

steel (SS) 2-way valve (internal diameter ID 0.16”). A vacuum pump is used to remove air from 

the set-up while the ¼” (SS) 2-way valve is open. The ¼” (SS) 2-way valve is then closed to 

maintain the vacuum. Vacuum creation ensures the butane condenses in the set-up as the 

presence of air makes dew point temperature much lower than can be attained.  With the butane 

set-up connected to the butane source, the butane set-up is dipped in a container of ice. After a 

few minutes, the butane ¼” (SS) 2-way valve is opened for butane vapor from the source to flow 

into the butane set-up. The lower temperature ensures the butane vapor condenses as the 

temperature of the glass tube is lower than butane dew point temperature. The loading is allowed 

to continue until a specified butane liquid height is reached. The ¼” (SS) 2-way valve is then 

closed and the butane set-up is disconnected from the source.  

 

 

 

Figure 3-3 - Butane loading set-up 
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Figure 3-4 shows a schematic of the butane side during the experiment. The right end of the side 

is eventually connected to the bitumen side. 

 

 

Figure 3-4 - Schematic of butane side 

 

Figure 3-5 shows a photograph of the butane set-up during the experiment. Note that the set-up 

is duplicated (front and back) to perform replicate experiments at the same time. Constant 

temperature is maintained using a circulatory water bath (Cole-Parmer, Polystat water bath) and 

a custom made visual Plexiglass water bath. The butane is housed in the custom Plexiglass water 

bath to allow for visualization and ensure that the diffusion apparatus is removed from any 

vibrations caused from the circulatory water bath motor. Thermocouple wires are used to 

monitor the system temperature. 
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Figure 3-5 - Butane side of one-dimensional diffusion experiment 

 

3.2.2. Bitumen Loading 

The butane is connected to the bitumen side via SS tubing and valves. The bitumen is housed in 

a 15 mm OD glass tube (12.4 mm ID) to allow for the interface height tracking. The interface 

height is tracked visually with a cathetometer and using a differential pressure transmitter. 

Figure 3-6 shows a final schematic of the bitumen side set-up. Gel is initially loaded from the 

bottom right side of a differential Keller pressure transmitter (Model PD-33X), through the ¼” 

OD SS male tube union, the ¼” OD SS T-union, the ¼” SS tube–15 mm connection and a little 

bit into the 15 OD mm glass tube (12.4 mm ID). The purpose of this gel is to translate pressure 

readings through to the Keller transmitter while separating the bitumen from the sensitive keller 

pressure transmitter diaphragm. The inertness and low viscosity of the gel (toothpaste) makes it 

perfect for this purpose. Care is taken while loading the gel to ensure no air bubbles. The 

intention is to fill the bitumen from the top of the 15 mm glass tube allowing it to sit neatly on 
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the gel. The gel has a density of 1300 kg/m
3
 compared to the bitumen’s 1010 kg/m

3
 which is 

important for gravity stability. The bottom part of the ¼” SS T-union is closed with a tube cap. 

 

After the gel is properly loaded, the bottom right hand side of the set-up is disconnected. This 

includes: the ¼” SS male BSPP-tube union, ¼” SS T-union, ¼” SS tube-15 mm connection 15 

mm glass tube. Note that all these parts are all still linked to each other and can very easily be 

reconnected back to the set-up.  

 

Figure 3-6 - Schematic of bitumen side 

 

Figure 3-7 shows the set-up used to load the bitumen into the aforementioned disconnected set-

up. The bitumen cell is filled with bitumen, heated to 60
o
C and pressurized to 2 atm (29.39 psia) 

to push the bitumen into the bitumen tube. The 2–way 1/8” inch valves serve to regulate the flow 

of the bitumen into the disconnected set. Figure 3-8 shows a magnified image of the loading 

operation. Note that it is important that bitumen does not contact the walls of the 15 mm glass 

tube. After a specified height of bitumen is reached, the 2–way 1/8” valves are closed. The 

disconnected set-up is weighed just before and just after the bitumen loading to evaluate the 
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mass of bitumen loaded. The disconnected bitumen tube set-up is then reconnected to the rest of 

the one-dimensional diffusion apparatus to prepare for the experiment. Characteristics of the 

bitumen used can be found in APPENDIX A. 

 

Figure 3-7 - Schematic of bitumen loading 
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Figure 3-8 - Magnified schematic of bitumen loading 

 

Figure 3-9 shows a picture of the bitumen side (duplicated) when it is ready for the experiment. 

Note that the front duplicate contains only gel for illustration purposes while the back duplicate 

contains gel and bitumen. For all experimental runs, both duplicates contain gel and bitumen at 

similar (recorded) heights and masses. The full bitumen set-up is connected to the full butane set-

up via the system pressure transmitter. 
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Figure 3-9 - Bitumen side 

 

3.2.3. Solvent gas phase purity and vacuum creation  

Ensuring a pure, 100% solvent gas phase is critical to obtaining reliable and repeatable diffusion 

measurements. James (2009) showed that the presence of air or non-condensable gas (NCG) 

serves as barrier to diffusion due to the butane having to diffuse through the air/NCG first before 

diffusing into bitumen. Hence the presence of air/NCG would prolong the diffusion process and 

lead to erroneous diffusion values. Vacuum creation is achieved for the bitumen side and butane 

side. For the butane side, it ensures a 100% butane fluid (liquid and gas) during butane loading. 

The butane ¼” (SS) 2-way valve is simply connected to an industrial vacuum pump, air is pulled 

from the tubing and then the ¼” (SS) 2-way valve is closed. It must be noted that the industrial 

vacuum pump pulls a very strong vacuum (0.025 atm and below).  
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Vacuum creation in the bitumen side is more difficult. Pulling vacuum direct from the bitumen 

pulls up the bitumen fluid, thereby staining the walls of the 15 mm bitumen glass tube. It is more 

important to saturate the space above the bitumen with pure solvent vapor than to create a 

vacuum. Therefore a detailed process was perfected to ensure the experimental lines were filled 

with pure solvent vapor. Please note that prior to set-up for vacuum creation, the butane and 

bitumen tubes are weighed on a mass balance to record the initial mass of butane and bitumen 

contained in their respective tubes. While prepping the experiment, the butane height will change 

but the new height can be used to estimate the new butane mass (when it is submerged in water 

and inaccessible for measurement) as long as the starting butane mass was recorded.  

 

Referring back to Figure 3-9, the system pressure on the bitumen side is typically begins at 

atmospheric conditions (1 atm). The following steps are taken to create the bitumen side 

vacuum; 

 Step 1- This involves voiding air from the ¼” connecting tube. With the 15 mm glass 

tubing filled with bitumen, the ¼” SS 3-way valve is closed and a light vacuum (0.3 atm 

or 4.4 psi) is pulled from the bitumen side via the opened ¼” SS 2-way valve to achieve 

vacuum in the ¼” connecting tube. Note that at this time, the vacuum has no impact on 

the 15mm bitumen glass tube. Also note that this vacuum will not affect the butane side 

either given that its ¼” SS 2-way valve is closed.  The system pressure at this time, read 

from the system pressure transmitter, is about 0.3 atm (4.4 psi) but this does not account 

for the air in the bitumen glass tube.  

 Step 2- The bitumen side’s ¼” SS 2-way valve is closed followed by the switching off of 

the vacuum pump.  

 Step 3- The bitumen side ¼” SS 3-way valve is now opened and this redistributes the air 

just above the bitumen leading to a system pressure increase to approximately 0.7 atm 

(10.29 psi). This is the real system. The vacuum causes the bitumen interface to rise 

momentarily but the interface quickly settles back to normal. This creates a very small 

stain on the bitumen glass walls but this stain quickly disappears as the experiment starts 

due to butane vapour pressure acting on the bitumen and the temperature of the bitumen 

side Plexiglass water bath. Figure 3-10 shows a before and after picture of the bitumen 
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interface height leading to minimal wall stain. Figure 3-11 shows a side by side look of 

the left and right tubes during vacuuming creation and experimental start time. The time 

elapsed between time A and B is 60 minutes 

 Step 4- The butane side ¼” SS 2-way valve is then opened for 30 seconds and closed. 

This leads to the system pressure jumping to approximately 2 atm (29.38 psi) and 

saturates the whole bitumen side with butane vapour. A little diffusion also occurs but the 

amount is considered negligible. The changing height of the butane liquid is recorded via 

the cathetometer.  

 Step 5- The bitumen side ¼” SS 3-way valve is once again closed and a vacuum of pulled 

from the system (0.3 atm), again via the bitumen side’s ¼” SS 2-way valve.  

 Step 6- The bitumen side’s ¼” SS 2-way valve is closed followed by the switching off of 

the vacuum pump.  

 Step 7- The bitumen side ¼” SS 3-way valve is now opened once again leading to the 

redistribution of air but this time, the system pressure drops to about 0.5 atm (7.39 psi). 

This is because the starting system pressure before vacuum was pulled was 0.7 atm 

(10.29 psi). Also, vapor in the bitumen side now consists of air and butane. 

 Step 8- Step 1-7 is repeated until the final system pressure reached is about 0.3 atm. Note 

that the more the process is repeated, the higher the ratio of butane vapor to air in the 

system. By the time the final system pressure is at 0.3 atm, the percentage of air in the 

system is as low as 1%. The vapor in the system is now predominantly butane vapor and 

the experiment can be started. Figure 3-12 shows a picture of the full experimental set-

up. The bulk of the experimental set-up (butane and bitumen side Plexiglass water baths) 

is mounted on a vibration resistant table to eliminate any convective mixing due to 

vibration. Figure 3-13 shows a detailed schematic of the experimental setup. 
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Figure 3-10 - Bitumen height pictures during vacuum creation (A) and at start of experiment (B) 

 

 

Figure 3-11 - A side by side look at both L-tubes (during A and B) and R-tubes (during A and B) 
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Figure 3-12 - Full experimental set-up 

 

 

Figure 3-13 - Detailed experimental schematic (butane and bitumen side together) 
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Main Equipment and material list 

 Re-circulatory water baths (*2)  

 Plexiglass water baths (*2) 

 Vibration resistant table 

 Thermocouples for monitoring water bath temperatures 

 Thermocouple USB module (Omega Data acquisition board) 

 Cathetometer (Schlumberger Charged-Coupled Device Measurement device) 

 High precision camera (Nikon digital D5500) 

 Bitumen side set-up 

 Butane side set-up 

 Insulation 

 Stainless steel (SS) support stands. 

 99% Butane (Praxair, Canada) 

 Athabasca Bitumen 

 Gel (Colgate toothpaste) 

 Keller differential pressure transmitters (Model PD-33X) 

 

3.2.4. Run procedure 

Below is the list of procedures taken over the course of an experimental run to get the best 

possible readings. Please note these come after already following steps 1-8 in Section 3.2.3: 

 The experimental set-up is given four hours to reach steady state temperature on the 

bitumen side for the required run. The various temperature runs are 27.00, 30.25, 33.50, 

36.75 and 40.00
o
C. These various constant temperatures are achieved using the re-

circulatory water baths. The butane side temperature is held constant at 24
o
C through all 

the experimental runs. 

 The butane and bitumen heights are recorded before the butane side ¼” SS 2-way valve 

and bitumen ¼” SS 3-way valves are opened. As soon as the valves are opened the 

butane saturates the bitumen side with butane vapor until butane vapor pressure reaches 

2.36 atm (34.65 psi). Note that this leads to a sudden reduction in butane height that has 
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to be recorded. The bitumen height changes at this point are negligible. This system 

pressure is maintained through the whole experiment. Differential pressure however, will 

change over the course of the experiment. As the butane diffuses into the bitumen, the 

bitumen phase swells causing a change in differential pressure. 

 The experiment is about start and all experimental recording devices are switched on: 

thermocouple recording devices, Keller transmitters (System and differential), 

cathetometers, and the high precision camera e.t.c. 

 The Keller differential transmitter is zero’d just before the experiment starts. This is to 

ensure that any pressure changes from then on are solely due to the changing bitumen 

density and eliminates the need to account for the toothpaste density. 

 The experiment now officially starts with the 2-way butane valve and 3-way bitumen 

valves being opened. The system pressure reaches and stabilizes at 2.36 atm.  

 Taking a reading involves: recording butane height with the cathetometer, taking a 

picture of bitumen height with the high precision camera and logging system/differential 

pressure values (using Keller transmitter logging software). Thermocouple measuring 

device automatically logs temperature readings every 10 minutes. The high precision 

camera pictures are later analysed to determine bitumen height changes.  

 Readings are taken every 30 minutes for the first hour, every hour for the next 2 hours 

and finally every 3 hours. A stop clock is used for this. An experimental run lasts for 

4320 minutes (3 days). 

 The butane height changes are easily recorded from a monitor system linked to the 

cathetometer. The pictures taken by the High precision camera for the bitumen height 

changes are analysed using pixels in Microsoft “Paint” software. Further explanation of 

this analysis is found in Section 4.2. For both height readings, the lower meniscus is 

taken as the height. 

 The system temperatures (the plexiglass water) on both sides are consistently monitored 

to ensure they are within ±0.5
o
C of what is specified using the thermocouple measuring 

device. Tweaks in temperature if needed can be done using the re-circulatory water bath 

 The water in the re-circulatory water bath evaporates over time. This could lead to the 

bath’s low level alarm going off. The water is therefore topped over time. This however, 
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leads to spikes in temperature of the system which also leads to spikes in differential 

pressure readings. The pressure values stabilise over time so in case of any pressure 

spikes, readings are not taken until the pressure value stabilizes. 

 At the end of the experiment, final values are taken and the system is disconnected.  The 

butane and bitumen sides are weighed to evaluate the final butane and bitumen masses in 

the system. There is no need to clean any of the SS tubing. The butane glass tube is 

refilled with butane and the bitumen glass tube is replaced with a new glass tube before 

being topped up with gel and filled with bitumen.  

 Due to both bitumen and butane sides being immersed in water, gas leaks are easy to 

detect (bubbles showing up in tubing connections). 

 

3.2.5. Troubleshooting 

The experimental set-up used in this work is unique and has never really been tried by any 

researcher in the field. Hence there were a lot of issues encountered while putting the set-up 

together to ensure repeatable results. A list of these issues is as follows: 

 Measuring the non-ideality 

 Monitoring the butane height 

 Purity of butane 

 Butane vapour pressure vs. bitumen temperature 

 Bitumen and gel interaction 

 

All these issues are addressed in APPENDIX B. 
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4) NUMERICAL METHODOLOGIES 

The purpose of this section is to outline the mathematical techniques used to analyze the data 

obtained from this experiment. Symbols used, as well as descriptions, are outlined in the 

nomenclature section. APPENDIX C contains starting conditions for each experiment. 

 

4.1. Bitumen/Butane Density and Pressure Calculations 

4.1.1. Non-ideal mixture density 

Shown below in Table 4-1 is table used to calculate non-ideal density/real density, real specific 

volume and equivalent mass over a certain time period for the experiment. The highlighted row 

is used in our sample calculation. Note that full calculations for all the highlighted columns is 

available in APPENDIX D under the “Non-ideal mixture density”. 

 

Table 4-1- Sample calculation for non-ideal density 

 

 

Column 3 shows a reduction in differential pressure values as the experiment progresses. One 

would expect differential pressure values to increase given bitumen height increase as time 

proceeds. But the increase in bitumen height is more than offset by the reduction in bitumen 

density due to diffusion of the butane solvent hence making the differential pressure decrease as 

the experiment progresses. 
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The change in bitumen density or ∆ density, (in column 10) represents the change in density due 

to the hydrostatic pressure change and increase in bitumen height. Using Equation 2-84: 

 

𝑃1 = 𝜌1𝑔ℎ1 4-1 

 

𝑃2 = 𝜌2𝑔ℎ2 
4-2 

Subtracting both sides from each other, 

 

𝑃1 − 𝑃2 = 𝜌1𝑔ℎ1 − 𝜌2𝑔ℎ2 

𝑃1 − 𝑃2

𝑔
= 𝜌1ℎ1 − 𝜌2ℎ2  , 

 

𝐾𝑛𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 (𝜌2 = 𝜌1 + ∆𝜌)  𝑎𝑛𝑑 (ℎ2 = ℎ1 + ∆ℎ) 𝑤𝑒 𝑔𝑒𝑡, 

 

𝑃1 − 𝑃2

𝑔
= 𝜌1ℎ1 − [(𝜌1 + ∆𝜌)(ℎ1 + ∆ℎ)] 

𝑃1 − 𝑃2

𝑔
= 𝜌1ℎ1 − (𝜌1ℎ1 + 𝜌1∆ℎ + ∆𝜌ℎ1 + ∆𝜌∆ℎ) 

𝑃1 − 𝑃2

𝑔
= 𝜌1ℎ1 − 𝜌1ℎ1 − 𝜌1∆ℎ − ∆𝜌ℎ1 − ∆𝜌∆ℎ 

𝑃1 − 𝑃2

𝑔
= −𝜌1∆ℎ − ∆𝜌ℎ1 − ∆𝜌∆ℎ 

𝑃1 − 𝑃2

𝑔
= −𝜌1∆ℎ − ∆𝜌(ℎ1 + ∆ℎ) 

 

∆𝜌 = (
1

ℎ1 + ∆ℎ
) [−𝜌1∆ℎ − (

𝑃1 − 𝑃2

𝑔
)] 4-3 

 

Where, h1 = hydrostatic height of the gel and bitumen at time 0 minutes (6.4169 cm) 

∆h = height change at given time (0.0795 cm) 

ρ1 = initial bitumen density at time 0 minutes (0.999 g/cm
3
) 
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g = acceleration due to gravity (981 cm/s
2
) 

P1 – P2 = real differential pressure change at given time (-17.29 Pa) 

∆ρ = Changing density values. Note that the toothpaste density is not used because it is assumed 

to remain constant while bitumen density changes due to the diffusion. Also the differential 

transmitter is zero’d at the start of experiment so any pressure change is solely due to changing 

bitumen density 

 

∆𝜌 = (
1

6.4169 𝑐𝑚 + 0.0795 𝑐𝑚
) [(−0.999 𝑔𝑐𝑚−3 ∗ 0.0795 𝑐𝑚) − (

−17.29 𝑃𝑎

981 𝑐𝑚/𝑠2
)] 

∆𝜌 = −𝟎. 𝟎𝟏 𝒈𝒄𝒎−𝟑 

 

Column 11 is the real or non-ideal density of the bitumen mixture at time ‘t’. This bitumen 

mixture density is given as the addition of ∆ρ at time (t) and Bitumen mixture density at time 

(t=0): 

 

𝑅𝑒𝑎𝑙 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  = ∆𝜌 + 𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑡 = 0)  

𝜌𝑚𝑖𝑥 (𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)   = ∆𝜌 + 𝜌𝐵 4-4 

−0.01 + 0.999 = 𝟎. 𝟗𝟖𝟗 𝒈𝒄𝒎−𝟑 

 

Column 12 is the real or non-ideal specific volume of the bitumen mixture at time ‘t’. This 

bitumen mixture is given as the inverse of the real bitumen mixture density: 

 

𝑅𝑒𝑎𝑙 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒  =
1

𝑅𝑒𝑎𝑙 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
  

𝑣𝑚𝑖𝑥 (𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)   =
1

𝜌𝑚𝑖𝑥 (𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙) 
 4-5 

1

0.989
= 𝟏. 𝟎𝟏𝟏 𝒄𝒎𝟑𝒈−𝟏 
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4.1.2. Ideal mixture density 

Table 4-2 for this section covers the way to calculate ideal density of the bitumen. Note that full 

calculations for all the highlighted columns is available in APPENDIX D under the “Ideal 

mixture density”. 

 

Table 4-2 - Sample calculations for ideal density 

 

 

The ideal bitumen mixture density (column 21) of the bitumen and butane is computed as 

follows: 

 

𝐼𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

= (𝐵𝑢𝑎𝑡𝑛𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝐵𝑢𝑡𝑎𝑛𝑒 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) + (𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

∗ 𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝜌𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙) = (𝜌𝑠 ∗ 𝜔𝑠) + (𝜌𝐵 ∗ (1 − 𝜔𝑠)) 4-6 

𝜌𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙) = (0.557𝑔 𝑐𝑚−3 ∗ 0.034) + (0.999 𝑔𝑐𝑚−3 ∗ (1 − 0.034)) 

= 𝟎. 𝟗𝟖𝟒 𝒈𝒄𝒎−𝟑 
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Finally, the ideal bitumen mixture specific volume (column 22) is computed as: 

𝐼𝑑𝑒𝑎𝑙 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒  =
1

𝐼𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
  

𝑣𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙)   =
1

𝜌𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙)
 4-7 

1

0.984
= 𝟏. 𝟎𝟏𝟔 𝒄𝒎𝟑𝒈−𝟏 

 

Note: All values from column 11 (real/non-ideal mixture density ρmix (non-ideal)), column 12 

(real/non-ideal mixture specific volume vmix (non-ideal)), column 19 (solvent mass fraction ωs), 

column 21 (ideal mixture density ρmix(ideal)) and column 22 (ideal mixture specific volume 

vmix(ideal)) are later used to plot graphs applied in Section 4.3.2 and 5.3 

 

4.2. Bitumen height analysis 

The purpose of this section is to outline the methodology used to compute bitumen changes as 

the experiment progresses. As stated in Section 3, the bitumen height changes are tracked using 

pictures taken with a high precision camera (Nikon digital D5500). These pictures are then 

analyzed using pixels in Microsoft ‘Paint’ software. The smallest movement of the camera 

between pictures can lead to erroneous bitumen height values. The camera is therefore mounted 

on a tripod stand and its position is not altered through the whole experiment. Figure 4-1 shows 

a picture of a typical bitumen height at the start of an experimental run (time t = 0 mins). Table 

4-3 further explains the notation for the terms used. 
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Figure 4-1 - Picture of bitumen height at t = 0 minutes 

 

Table 4-3 - Notation for bitumen height analysis 

Acronym Full meaning Acronym Full meaning 

LT-TRP Left tube top reference point RT-TRP Right tube top reference point 

LT-TIP Left tube top interface point RT-TIP Right tube top interface point 

LT-BIP Left tube bottom interface point RT-BIP Right tube bottom interface point 

LT-BRP Left tube bottom reference point RT-BRP Right tube bottom reference point 

Hor pixel Horizontal pixel Ver pixel Vertical pixel 

 

Four reference points are used when analyzing the bitumen heights in ‘Paint’ software. There are 

two reference points for the left tube: LT-TRP for the top and LT-BRP for the bottom. There are 
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also two reference points for the right tube: RT-TRP for the top and RT-BRP for the bottom. 

Each point will have a horizontal pixel and vertical pixel value (Hor pixel and Ver pixel). The 

values for the reference points should ideally remain constant throughout the experiment. 

However, there is the slight possibility of a shift in vertical pixel values between readings 

(usually by ±1 or 2 pixels). This could occur if the flash button on the camera is pressed a little 

too hard while taking the picture leading to a slight elevation in the camera eye-level while 

taking the picture. Having two reference points for each tube prevents this from being an issue 

because a vertical pixel point +1 shift for the top reference point (LT-TRP or RT-TRP) will 

equally lead to a vertical pixel point +1 shift for the bottom reference point (LT-BRP or RT-

BRP) and vice versa. Hence the vertical pixel point difference between the two positions remains 

constant. The horizontal pixel points remains constant for all experimental values. 

 

There are four interface points used to compute the bitumen height at any given time. Each tube 

has two interface points used which represent top and bottom of the bitumen fluid. The left tube 

has interface points: LT-TIP for the top and LT-BIP for the bottom. The right tube has interface 

points: RT-TIP for the top and RT-BIP for the bottom.  The top interface points (LT-TIP and 

RT-TIP) are the main points used to track the changing bitumen height as their vertical pixel 

point values change over the course of the experiment. Ideally, the bottom interface points (LT-

BIP and RT-BIP) remain constant though the whole experiment. However, as stated earlier, a 

slight increase in camera elevation (usually ±1-2 pixels) will similarly lead to a shift in these 

vertical pixel points. The top interface points (LT-TIP and RT-TIP) will equally shift vertically 

by the same amount thereby eliminating these issues. The horizontal pixel points will also 

remain constant for all experimental values. 

 

For this section, the left tube (LT) bitumen height will be analyzed. The whole procedure used is 

directly applicable to the right tube bitumen height. The lower meniscus is used for all height 

readings. 

 

There are two key ways of computing the starting bitumen height in Figure 4-1. The 1
st
 way 

utilizes the bitumen mass, volume, density and area of the bitumen tube. The mass of bitumen is 
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measured before the start of the experiment (1.95 g for the left tube and 2.25 g for the right tube). 

The density of the bitumen at the given experimental run temperature is also know (0.999g/cm
3
). 

The volume of the bitumen is then found as: 

 

𝑉𝑜𝑙𝑢𝑚𝑒 =
𝑀𝑎𝑠𝑠

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
 4-8 

 

𝑉𝑜𝑙𝑢𝑚𝑒 =
1.95

0.999
= 1.9516 𝑐𝑚3 

 

The cross sectional area of the bitumen tube is given as: 

 

𝐴𝑟𝑒𝑎 =  𝜋𝑟2  

𝐴𝑟𝑒𝑎 = 3.14 ∗ 0.622 = 1.207𝑐𝑚2 

 

The height of the bitumen can now be found as: 

 

𝐻𝑒𝑖𝑔ℎ𝑡 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐴𝑟𝑒𝑎
 4-9 

𝐻𝑒𝑖𝑔ℎ𝑡 =
1.9516

1.207
= 𝟏. 𝟔𝟏𝟔𝟗𝒄𝒎 

 

The second method involves scaling of the bitumen height. It used to compute the starting 

bitumen height and the subsequent bitumen heights as the experiment progresses. It is executed 

as follows: 

 Prior to the start of the experiment, the distance between the top reference points (LT-

TRP or RT-TRP) and bottom reference points (LT-BRP or RT-BRP) is measured with 

the Cathetometer. 

 For the left tube this distance with the cathetometer was found to be 5.036 cm. Hence in 

terms of real vertical distance 
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𝑇𝑢𝑏𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐵𝑜𝑡𝑡𝑜𝑚 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 − 𝑇𝑜𝑝 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 4-10 

LT-BRP – LT-TRP = 5.036 cm 

 

 From Figure 4-1, we can also find the difference between the top (LT-TRP) and bottom 

(LT-BRP) reference points based on vertical pixel points as; 

 

𝑇𝑢𝑏𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑓𝑓 = 𝐵𝑜𝑡𝑡𝑜𝑚 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 − 𝑇𝑜𝑝 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 4-11 

LT-BRP – LT-TRP = 1457 – 127 

= 1330 pixels 

 

 We now know that 1330 pixels is equivalent to 5.036 cm in real height. We now find the 

difference in vertical pixel points for the bitumen height (LT-BIP minus LT-TIP) from 

Table 4-1 as; 

 

𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑓𝑓 = 𝐵𝑜𝑡𝑡𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 − 𝑇𝑜𝑝 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑝𝑜𝑖𝑛𝑡 4-12 

LT-BIP – LT-TIP = 1241 – 814 

= 427 pixels 

 

 Therefore finding the real bitumen height or vertical distance can be given as; 

 

𝐵𝑖𝑡𝑢𝑚𝑒𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 =
𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑓𝑓

𝑇𝑢𝑏𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑓𝑓
∗ 𝑇𝑢𝑏𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  4-13 

LT-BIP – LT-TIP = 
427

1330
∗ 5.036 𝑐𝑚 

= 1.6169 cm 

 

 This is exactly the same height value calculated from Equation 4-9. If ever the values 

obtained are not exactly the same, an average is taken. The value also corresponds with 

bitumen height at time t = 0 minutes from Figure 4-1 column 7. 
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 APPENDIX E has a table of all initial bitumen heights calculated using both methods for 

all temperatures 

 

 

Figure 4-2 - Picture of bitumen height at time t = 660 minutes (11 hours) 

 

Figure 4-2 shows a picture taken of the bitumen height for the same experiment at time t = 660 

minutes (11 hours). This is also the highlighted time in Table 4-1. Note there has been a shift in 

all the reference and interface vertical pixel points compared to those at time t = 0 minutes from 

Figure 4-1. The differences in points for the left tube (LT) are tabulated below in Table 4-4; 
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Table 4-4 - Difference in left tube pixel points from time t = 0 minutes and t = 660 minutes 

 

 

From Table 4-4, note that all horizontal pixel points for t = 0 min and t = 660 min are constant. 

This remains the same through the full duration of the experiment. From t=0mins and t=600mins 

the left tube top reference point (LT-TRP) experiences a vertical pixel point shift (difference) of 

-2 pixels. As stated earlier stated earlier, when such a shift occurs, it will also apply to the left 

tube bottom reference point (LT-BRP) and left tube bottom interface point (LT-BIP). Note: that 

looking at Figure 4-1 and Figure 4-2, the right tube vertical pixel values from t = 0 mins and t = 

600 mins also experience this -2 pixel shift. 

 

The left tube top interface point (LT-TIP) will equally experience the -2 pixel shift combined 

with an increase in bitumen height (due to diffusion of butane) leading to a difference of -23 

pixels. The bitumen height at time t = 660 minute is then calculated using Equation 4-13: 

 

𝐵𝑖𝑡𝑢𝑚𝑒𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑁𝑒𝑤 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑝𝑖𝑥𝑒𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑓𝑓

𝑇𝑢𝑏𝑒 𝑝𝑖𝑥𝑒𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑓𝑓
∗ 𝑇𝑢𝑏𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

= 
1239−791

1330
∗ 5.036 𝑐𝑚 
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= 
448

1330
∗ 5.036 𝑐𝑚 

= 1.6964 cm 

 

This value corresponds with the highlighted value in Table 4-1 column 7. 

 

4.3. Solvent Continuity and Diffusivity Calculations 

The purpose of this section is to review the differential equations used to eventually calculate 

concentration dependent diffusivity of the butane solvent in the bitumen. James (2009) carefully 

explains how these equations are acquired (Section 2.2.3). The only tweak needed for the 

purpose of this thesis is the incorporation of non-ideality and temperature dependent solubilities. 

 

4.3.1. Diffusivity equations 

The equations used to evaluate diffusivity functions are discussed in literature review of James 

(2009) work in Section 2.2.3. As stated earlier, the numerical results are independently validated. 

Trial and error was used to select the type of diffusivity function where the predicted ‘bitumen 

growth’ and butane solvent decrease were compared to experimental results. The coefficients of 

the proposed diffusivity function were set as the parameters to optimize. The difference in 

experimental and predicted growth of the bitumen is used as the objective function and 

minimized to optimize the linear diffusivity coefficients p1 and p2. 

 

Using the ‘lsqnonlin – least squares nonlinear’ optimization option in Matlab, the objective 

function is minimized automatically. The butane solvent decrease is not used in the objective 

function and is utilized as an independent validation of the butane solvent diffusivity. 

 

𝐷𝑠𝑏 = 𝑝1𝜔𝑠 + 𝑝2 4-14 

 

𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =
(ℎ𝑏𝑖𝑡𝑢𝑚𝑒𝑛)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − (ℎ𝑏𝑖𝑡𝑢𝑚𝑒𝑛)𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

(ℎ𝑏𝑖𝑡𝑢𝑚𝑒𝑛)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
 4-15 
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Lower and upper bounds on the diffusivity coefficients are initially set at 1×10
-9

 and 1×10
-4

 

before being constantly adjusted depending on results obtained. The aim is to obtain a result with 

first order optimality of about 1×10
-3

 and sum of squared residuals of about 1×10
-2

. 

 

One key difference with this work compared to James (2009) is the different temperature used 

give different solvent mass fractions/concentration ωs* at the bitumen solvent interface 

(solubility of solvent in bitumen). This is discussed in Section 4.3.3. The full Matlab code used 

in is APPENDIX I. The other key difference between this work and James (2009) work is the 

accounting for the non-ideal mixing of bitumen and butane solvent. This is discussed next. 

 

4.3.2. Accounting for non-ideal mixing 

James (2009) assumed ideal mixing of bitumen and butane solvent to give an overall mixture 

density with the following,  

 

𝜌𝑚𝑖𝑥 = [
1

𝑣𝑠𝜔𝑠 + 𝑣𝑏(1 − 𝜔𝑠)
] 4-16 

 

Where ρmix is overall bitumen mixture density (g/cm
3
), ωs is the butane solvent mass 

fraction/concentration, vs and vb are butane solvent and bitumen specific volumes (cm
3
/g) at the 

given butane solvent and bitumen temperatures. The overall bitumen mixture density obtained 

using Equation 4-16 (ρmix) is the ideal bitumen mixture density (ρmix (ideal)) 

 

1

𝜌𝑚𝑖𝑥
=

1

𝜌𝑚𝑖𝑥 (𝑖𝑑𝑒𝑎𝑙)
= [

1

𝑣𝑠𝜔𝑠 + 𝑣𝑏(1 − 𝜔𝑆)
]

−1

 

 

1

𝜌𝑚𝑖𝑥 (𝑖𝑑𝑒𝑎𝑙)
= 𝑣𝑚𝑖𝑥 (𝑖𝑑𝑒𝑎𝑙) = 𝑣𝑠𝜔𝑠 + 𝑣𝑏(1 − 𝜔𝑆) 

 

𝑣𝑚𝑖𝑥 (𝑖𝑑𝑒𝑎𝑙) = 𝑣𝑠𝜔𝑠 − 𝑣𝑏𝜔𝑠 + 𝑣𝑏 4-17 
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where vmix (ideal) is the overall ideal bitumen mixture specific volume (cm
3
/g).  The bitumen 

mixture specific volume can be based on ideal or non-ideal mixing. James (2009) work based all 

mixing values on ideal mixing, while this work will account for ideal and non-ideal mixing. In 

both density and specific volume calculations, non-ideal values give the best estimate of what 

experimental values actually are. For the sample calculation in Section 4.1 with bitumen at 

30.25
o
C, the ideal specific volume vmix(ideal) values are obtained from Table 4-2 column 22. The 

non-ideal volume vmix(non-ideal) values are obtained from Table 4-1 column 12. The butane solvent 

mass fraction/concentration ωs values are obtained from Table 4-2 column 19. Refer to 

APPENDIX D for comprehensive information on how vmix(ideal) and vmix(non-ideal) values were 

obtained. Figure 4-3 shows a plot of vmix(non-ideal) and vmix(ideal) vs the solvent mass fraction. 

 

 

Figure 4-3 - Bitumen mixture specific volume plots for ideal and non-ideal mixing 

 

APPENDIX F contains all the specific volume graphs for all temperatures. From Figure 4-3 

plotting a graph of values for vmix(ideal) against ωs gives an equation representation for the ideal 

specific volumes as a function of butane solvent mass fraction/concentration. This is given as: 
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𝑣𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙) = 0.458𝜔𝑠 + 1.001 

Organizing the equation in the same form as Equation 4-17; 

 

1

𝜌𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙)
= 𝑣𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙) = 1.459𝜔𝑠 − 1.001𝜔𝑠 + 1.001 4-18 

 

where ideal butane solvent specific volume vs is 1.459 cm
3
/g and ideal bitumen specific volume 

vb is 1.001 cm
3
/g for the given experimental temperature (30.25

o
C).  

 

From Figure 4-3 plotting a graph of values for vmix(non-ideal) against ωs gives an equation 

representation for the real or experimental determined specific volumes as a function of solvent 

mass fraction/concentration. This equation is given as: 

 

𝑣𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙) = 0.378𝜔𝑠 + 1.001 

 

Note that the values plotted are for sample 1 and sample 2 of bitumen. Organizing the equation 

in the same form as Equation 4-17; 

 

1

𝜌𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)
= 𝑣𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙) = 1.379𝜔𝑠 − 1.001𝜔𝑠 + 1.001 4-19 

 

where non-ideal butane solvent specific volume vs is 1.379 cm
3
/g. Non-ideal bitumen specific 

volume vb is 1.001 cm
3
/g for the given experimental temperature (30.25

o
C). Note that the vs and 

vb non-ideal terms are arbitrary terms only used for comparison sake to ideal conditions. 

 

James (2009) differentiates Equation 4-17 with respect to ωs while trying to simplify the 

expression for mass average velocity (V
m

) in Equation 2-48. This differentiation follows; 

𝜕 (
1

𝜌𝑚𝑖𝑥
)

𝜕𝜔𝑠
=

𝜕(𝑣𝑚𝑖𝑥)

𝜕𝜔𝑠
=

𝜕

𝜕𝜔𝑠
[

1

𝑣𝑠𝜔𝑠 − 𝑣𝑏𝜔𝑠 + 𝑣𝑏
]

−1
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𝜕 (
1

𝜌𝑚𝑖𝑥
)

𝜕𝜔𝑠
=

𝜕(𝑣𝑚𝑖𝑥)

𝜕𝜔𝑠
=

𝜕

𝜕𝜔𝑠

(𝑣𝑠
∗𝜔𝑠 + 𝑣𝑏

∗ − 𝑣𝑏
∗𝜔𝑠) 

𝜕 (
1

𝜌𝑚𝑖𝑥
)

𝜕𝜔𝑠
=

𝜕(𝑣𝑚𝑖𝑥)

𝜕𝜔𝑠
= (𝑣𝑠

∗ − 𝑣𝑏
∗) 

 

Therefore differentiating the ideal specific volume expression in Equation 4-18 gives; 

𝜕 (
1

𝜌𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙)
)

𝜕𝜔𝑠
=

𝜕(𝑣𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙))

𝜕𝜔𝑠
= [1.459 − 1.001] 

4-20 

 

And differentiating the non-ideal specific volume expression in Equation 4-19 gives; 

𝜕 (
1

𝜌𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)
)

𝜕𝜔𝑠
=

𝜕(𝑣𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙))

𝜕𝜔𝑠
= [1.379 − 1.001] 

4-21 

 

The differentiated non-ideal specific volume Equation 4-21 can be re-expressed in terms of the 

differentiated ideal specific volume Equation 4-20: 

 

𝜕 (
1

𝜌𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)
)

𝜕𝜔𝑠
=

𝜕(𝑣𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙))

𝜕𝜔𝑠
= [𝟎. 𝟗𝟒𝟕(1.459) − 1.001] 

 

Hence in non-ideal form, the equation can be expressed as: 

 

𝜕 (
1

𝜌𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)
)

𝜕𝜔𝑠
=

𝜕(𝑣𝑚𝑖𝑥(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙))

𝜕𝜔𝑠
= [𝟎. 𝟗𝟒𝟕𝑣𝑠 − 𝑣𝑏] 

4-22 

 

The added coefficient is what is used to account for non-ideal mixing for the solvent continuity 

equations. The value of the coefficient will vary for different temperatures but it can be added 

straight into the solvent continuity equations in MATLAB to solve for diffusivity. Equations 2-
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56 and 2-60 both have the vs term and the coefficient is put as above right beside them when 

calculating non-ideal mixing. Table 4-5 gives a full list of non-ideal expressions for each 

experimental run. 

Table 4-5 - Non-ideal mixing specific volume expressions 

 Non-ideal mixing specific volume 

expressions (cm
3
/g) 

27.00
o
C 𝟎. 𝟗𝟗𝟐𝑣𝑠 − 𝑣𝑏  

30.25
o
C 𝟎. 𝟗𝟒𝟕𝑣𝑠 − 𝑣𝑏  

33.50
o
C 𝟎. 𝟗𝟎𝟎𝑣𝑠 − 𝑣𝑏  

36.75
o
C 𝟎. 𝟖𝟒𝟗𝑣𝑠 − 𝑣𝑏  

40.00
o
C 𝟎. 𝟖𝟐𝟒𝑣𝑠 − 𝑣𝑏  

 

Figure 4-4 shows a plot of all the above non-ideal mixing coefficients against temperature. 

 

 

Figure 4-4 - Non-ideal mixing coefficients at varying temperatures 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 121 
 

The non-ideal mixing coefficient values reduce with increasing temperature and a second order 

polynomial equation best describes its relationship to temperature. 

 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.0002𝑇2 − 0.0297𝑇 + 1.6178 

 

The R
2
 value is 0.9951 which signifies a good fit. By making the non-ideal mixing coefficient 

one (1), we can find the temperature at which the effects of non-ideal mixing are zero. 

 

1 = 0.00027𝑇2 − 0.0297𝑇 + 1.6178 

0 = 0.0002𝑇2 − 0.0297𝑇 + 1.6178 − 1 

0 = 0.0002𝑇2 − 0.0297𝑇 + 0.6178 

𝑇 = 𝟐𝟓. 𝟎𝟐𝒐𝑪 

 

The significance of this temperature is that it is close to standard temperature (25.00
o
C). All 

literature says that the effects of non-ideal mixing are at minimum at standard temperature 

conditions. Note that the non-ideality coefficient used here is analogous to the binary interaction 

parameter (BIP) discussed in Section 2.4. The BIP is used to account for non-ideality when 

hydrocarbons mix. BIP is zero at ideal mixing conditions while the non-ideality coefficient used 

in this work is 1 at ideal mixing conditions. BIP deviates from zero as non-ideal mixing becomes 

more significant while the coefficient in this work deviates from 1 as non-ideal mixing becomes 

significant. 

 

4.3.3. Butane solvent solubility in bitumen 

Another condition at the bitumen-solvent vapor interface is that the interfacial concentration 

(𝜔s
n+1

) is assumed to have reached equilibrium immediately after times greater than zero. The 

concentration at the interface is assumed to be the solubility (𝜔s*) of solvent in bitumen at the 

temperature of the bitumen and the vapor pressure of the solvent. 
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Figure 4-5 - Solvent solubility at varying experimental conditions 

 

The solubility limit was estimated using the Peng-Robinson equation of state (PR EOS) in 

PVTSim. An assay for Athabasca bitumen closely approximating the bitumen used was entered 

in PVTSim and the solubility of n-butane in the bitumen was found at 34.65 psi and varying 

experimental temperatures as shown in Figure 4-5. Figure 4-5 also shows the solvent conditions 

used by James (2009). James (2009) conditions led to higher butane solvent solubility due to the 

lower bitumen temperature (26.3
o
C) and higher butane vapor pressure (35.177psi). Table 4-6 

shows a full list of all solubility values used 
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Table 4-6 - Full list of solubility limits at different conditions 

 Bitumen 

temperature (
o
C) 

Butane vapor 

pressure (psi) 
Solubility limit (ωs*) 

This work 

27.00
o
C 34.650 0.52 

30.25
o
C 34.650 0.33 

33.50
o
C 34.650 0.24 

36.75
o
C 34.650 0.19 

40.00
o
C 34.650 0.15 

James (2009) 26.30
o
C 35.177 0.60 

 

4.4. Using Design Expert  

The purpose of this section is the review technique used to incorporate Design Expert (DE) into 

the experiment. DE is analytical software that can be used to find possible trends and correlations 

in experimental data. If for instance the experimental values for 28.50
o
C were needed, normally 

the experiment would then have to be run at 28.50
o
C. However, every experimental run takes 

three days and time/cost constraints might prevent one from performing the experiment. Design 

Expert (DE) is able to take current experimental data and find a correlation that can be used to 

find experimental values for any temperature in the given range.  

 

The nature of the experimental parameters creates problems when finding a full-fledged 

diffusivity prediction model in DE. Below is a list of the main experimental parameters and their 

inter-dependencies. 

1. Diffusivity = f(concentration, temperature, solubility, viscosity) 

2. Viscosity = f(concentration, temperature) 

3. Solubility or maximum concentration = f(temperature) 

  

The two independent variables are concentration and temperature however, maximum 

concentration (solubility limit ω*) is dependent on temperature as well. Trying to analyze the 
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data in DE to give a model that can predict diffusivity function is beyond the capabilities of the 

software we have available. Hence the best course of action was not to create a diffusivity model 

directly in DE, but to create 3 models that can predict key parameters need to compute 

diffusivity functions in MATLAB.  

  

This experiment has one main independent factor (temperature), at five different levels (27.00, 

30.25, 33.50, 36.75 and 40.00
o
C) with 2 replicates. Given those conditions, the best design for 

the experiment is using a general factorial design. The three key parameters needed to compute 

diffusivity functions are; 

 

 Slope of the Butane decrease (cm) vs. Square root time (SRT) (s
0.5

) (Figure 5-3) 

 Slope of the Bitumen increase (cm) vs. Square root time (SRT) (s
0.5

) (Figure 5-6) 

 Deviation from ideal mixing (coefficients from Table 4-5) 

 

After each model is obtained, it is tested with a value within the experimental range (28.50
o
C). 

The experiment is re-run (28.50
o
C) and all experimental values are compared to predicted values 

from the DE model. If a good fit is obtained, the model can be used to acquire the above stated 

output data and subsequently compute diffusivity functions for any temperature value within the 

given temperature range (27.00
o
C to 40.00

o
C). 

 

After analysis was performed in DE, the following models were obtained to compute the output 

data: 

 

(𝐵𝑢𝑡𝑎𝑛𝑒 𝑠𝑙𝑜𝑝𝑒)0.5

= 0.379 − [0.013 × 𝑇] + [5.093 × (10−5) × 𝑇2]

+ [1.728 × (10−6) × 𝑇3] 

4-23 

 

(𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑠𝑙𝑜𝑝𝑒)0.5 = 0.123 − [4.955 × (10−3) × 𝑇] + [5.543 × (10−5) × 𝑇2] 4-24 
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(𝐼𝑑𝑒𝑎𝑙𝑖𝑡𝑦)3 = −2.13554 + [0.36648 × 𝑇] − [0.013102 × 𝑇2]

+ [1.40606 × (10−4) × 𝑇3] 
4-25 

  

where T is the input temperature (
o
C) within the experimental range (27.00

o
C – 40.00

o
C) and is 

used to compute all the output values. The output data butane slope is used to obtain butane 

solvent decrease over time, bitumen slope is used to obtain bitumen solvent increase over time 

and ideality is used with the help of ideal mixing densities to obtain non-ideal mixing density. 

The aforementioned data, along with solubility values at the given temperature and starting 

bitumen mass, is input into the Matlab code and used to compute diffusivity functions and 

subsequent diffusion values.  
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5) DISCUSSION OF RESULTS 

The purpose of this section is to perform a complete analysis and discussion of the experimental 

results obtained. Please note that experimental values for butane sample 1 and 2 are plotted 

together to give an average for every computed value. The same applies for experimental values 

for bitumen sample 1 and 2. 

 

5.1. Butane solvent height changes as a function of time 

Figure 5-1 shows a graph of butane height decrease over time at varying temperatures. The 

highest bitumen temperature (40.00
o
C) corresponds to the lowest diffusion of butane, while the 

lowest bitumen temperature (27.00
o
C) corresponds to the highest diffusion of butane. Given 

butane temperature is constant for all the runs (24.00
o
C), the vapor pressure of butane is constant 

and the solubility of butane in bitumen is strictly dependent on the bitumen temperature. We find 

that the solubility decreases with increasing temperature, the trend makes sense as more butane 

dissolves in bitumen at lower temperatures compared to higher, leading to a greater reduction in 

butane height at lower temperatures. 
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Figure 5-1- Butane height decrease vs. time (all temperatures) 

 

As determined by James (2009), there is a linear relationship between the change in butane 

height and the square root of time (s
0.5

). The butane height decrease vs. square root time (SRT) 

graph shown in Figure 5-2 follows a similar trend. The slopes of the straight trendline graphs are 

much greater for lower temperatures than for higher temperatures. This is expected given 

solubility (directly proportional to magnitude of the slopes) is inversely proportional to 

temperature. Figure 5-2 also clearly shows 2 straight line graphs drawn for each set of 

experimental temperatures. The dashed line shows the trendline being forced to pass through 

time t = 0 while the other allows a time t ≠ 0 (a start time that best suits the graph). The R
2
 values 

(fit of the graph) is significantly lower when the trendline is forced to pass through time t = 0 

compared to when the trendline is not (t ≠ 0). The highlighted part of Table 5-1 further confirms 

this. 
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This occurs due to the delicacy of determining the start time of the experiment when creating a 

vacuum. As stated in Section 3.2.4 it is extremely hard to pin point the start time of the 

experiment after creating a vacuum due to the sensitivity of the differential pressure transmitter. 

Ideally, experiments start when the system pressure (system pressure transmitter) side reaches 

2.36 atm (34.65 psi) and plateaus while both the butane 2-way and bitumen 3-way valves are 

open. However, the sensitivity of the pressure transmitter leads to fluctuations in these values of 

± 0.002 atm. The point at which the differential pressure transmitter value is 0.00 atm could also 

be used as a reference point for the start of the experiment. However, its value also fluctuates due 

to the transmitter sensitivity. The bottom line is it takes time equilibrate the system due to the 

combination of the pressure transmitter sensitivity and pressure differences from the butane to 

bitumen side. 

 

 

Figure 5-2 - Butane solvent decrease vs SRT for t = 0 and t ≠ 0 
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Table 5-1 - Tabulated values for butane solvent decrease data (t = 0 and t ≠ 0) 

 

 

The start times for t ≠ 0 were re-calculated according APPENDIX G (butane) such that they 

start at time t = 0. The new graph with all trendlines passing through zero is shown in Figure 5-

3. This data is what is used to eventually calculate diffusivity. 
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Figure 5-3 - Butane height decrease vs. SRT (all temperatures) 

 

Figure 5-3 shows all the new trendlines at various temperatures going through zero. It should be 

noted that all R
2
 values are greater than 0.99 thereby showing a great fit for the data. These 

slopes are also later used in Design Expert (DE) software (Section 5.5) for further analysis. 

 

5.2. Bitumen height changes as a function of time 

Figure 5-4 shows a graph of bitumen increase (swelling) over time at varying temperatures. The 

highest bitumen temperature (40
o
C) sees the lowest diffusion of butane into bitumen (lowest 

swelling of bitumen), while the lowest bitumen temperature (27
o
C) sees the highest diffusion of 

butane into bitumen (highest swelling of bitumen). As stated earlier, the solubility of butane in 

bitumen is strictly dependent on bitumen temperature given butane vapor pressure is fixed (34.65 
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psi) for all experimental runs. This solubility decreases with increasing temperature. Hence, 

lower temperatures lead to more swelling (bitumen increase) compared to higher temperatures. 

 

 

Figure 5-4- Bitumen height increase vs. time (all temperatures) 

 

Figure 5-5 illustrates the changes in bitumen height in relation to Square root time (SRT). The 

slopes of the straight trendline graphs are much greater for lower temperatures than for higher 

temperatures. Figure 5-5 also clearly shows two straight line graphs drawn for each set of 

experimental temperatures. The dashed line shows the trendline being forced to pass through 

time t = 0 while the other allows a time t ≠ 0 (a start time that best suits the graph). Just like the 

butane changes in Section 5.1 the R
2
 values (fit of the graph) is significantly lower when the 

trendline is forced to pass through time t = 0 compared to when the trendline is not (t ≠ 0). The 
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highlighted part of Table 5-2 further confirms this. This occurs for the same reason stated in 

Section 5.1 (fluctuation of pressure differential values due to its high sensitivity). 

 

 

Figure 5-5 - Bitumen increase vs SRT for t = 0 and t ≠ 0 
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Table 5-2 - Tabulated values for bitumen increase data (t = 0 and t ≠ 0) 

 

 

The start times for t ≠ 0 were re-calculated according APPENDIX G (bitumen) such that they 

start at time t = 0. The new graph with all trendlines passing through zero is shown in Figure 5-

6. This data is what is used to eventually calculate diffusivity. 
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Figure 5-6 - Bitumen height increase vs. SRT (all temperatures) 

 

Figure 5-6 shows all the new trendlines at various temperatures going through zero. It should be 

noted that all R
2
 values are greater than 0.99 (apart from at 40.00

o
C) thereby showing a great fit 

for the data. These slopes are also later used in Design Expert (DE) software (Section 5.5) for 

further analysis. 

 

James (2009) performed this experiment at a butane temperature of 24.9
o
C and a bitumen 

temperature of 26.3
o
C. The experimental run for butane (24

o
C) in bitumen (27

o
C) is the closest 

match to James (2009) conditions. James (2009) obtained a slope of 0.01602 cm/s
0.5 

for the 

butane decrease vs SRT graph and a slope of 0.00244 cm/s
0.5

 for the bitumen increase vs SRT 

graph. Those values are higher than the ones obtained for the 27
o
C condition for this thesis 

(0.00971 cm/s
0.5

 for butane and 0.00087 cm/s
0.5

 for bitumen). This is illustrated in Table 5-3. 
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The lower values in this experiment can be explained as James (2009) operating conditions 

ensuring higher solubility of butane in bitumen (higher butane vapor pressure and lower bitumen 

temperature). The raw purity of the butane solvent James (2009) used was 99.5% while the 

purity used in this work was 99%. Individually these three reasons (higher butane vapor pressure, 

lower bitumen temperature and higher butane purity) would not be enough to lead to significant 

differences in solubility limits but combined they are more than enough to do so. As example, in 

PVTSim keeping all parameters constant (butane vapor pressure at 35.177 psi and purity) but 

changing bitumen temperature from 26.3
o
C to 27

o
C decreases the solubility from 0.60 to 0.56 

mass fraction. The combined effects of all parameters lead to greater solubility limit differences. 

 

Table 5-3 - SRT graph slope comparisons between James (2009) and this work 

 

 

5.3. Ideal & non-ideal mixing density results 

The calculations in Section 4.1 and APPENDIX D outline how ideal and non-ideal mixing 

density values are compiled for this experiment. Figure 5-7 shows a graph of density vs. time at 

various temperatures for ideal mixing and non-ideal scenarios (based on pressure transmitter 

readings). As the experiment progresses, butane diffuse into the bitumen, diluting it and hence 

reducing the density of the bitumen/butane mixture. The highest bitumen temperature (40.00
o
C) 

corresponds to the lowest value of density decrease, while the lowest bitumen temperature 

(27.00
o
C) corresponds to the highest value of density decrease. As stated earlier, lower bitumen 

temperatures give higher butane solubility’s and hence more dilution of butane in the bitumen. 

Also the difference between ideal and non-ideal density values increase as temperature increases 

from 27.00
o
C to 40.00

o
C. This is because the effects of ideality also increase with temperature 

rises in this bitumen-butane system. This is discussed further in later sections. 
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Figure 5-7 - Mixture densities vs. time (all temperatures) 

 

Figures 5-8 to 5-12 show graphs of bitumen/butane mixture density vs. mass fraction of solvent 

disolved in bitumen for all temperatures. All graphs are plotted on the same scale for comparison 

purposes. The black filled markers represent experimental data and subsequently have the ρmix 

(non-ideal) line drawn through them. The gray filled markers represent calculated ideal densities and 

subsequently have the ρmix (ideal) line drawn through them. The R
2
 value for the ρmix (ideal) line is 

always one (1), while this value varies for the ρmix (non-ideal) line depending on fit. As expected, the 

the 40.00
o
C graph shows the lowest reduction in mixture density over the duration of the 

experiment. It also shows the lowest increase in solvent mass fraction due to the low solubility at 

that temperature. The 27.00
o
C graph conversely shows the highest reduction in mixture density 

over the duration of the experiment. It also shows the highest increase in solvent mass fraction 

due to the high solubitlity at that temperature. All non-ideal linear (ρmix (non-ideal) line) graphs show 

a good fit with experimental data. 
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Figure 5-8 - Mixture density vs. solvent mass fraction (40.00oC) 

 

 

Figure 5-9 - Mixture density vs. solvent mass fraction (36.75oC) 
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Figure 5-10 - Mixture density vs. solvent mass fraction (33.50oC) 

 

 

Figure 5-11 - Mixture density vs. solvent mass fraction (30.25oC) 
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Figure 5-12- Mixture density vs. solvent mass fraction (27.00oC) 

 

These graphs are consistent with Figure 2-27 from Etminan et al. (2011). Assuming ideal 

mixing conditions over-estimates the real density reduction occurring (non-ideal mixing) 

between the bitumen and butane solvent. Table 5-4 shows all experimental density results (ideal 

and non-ideal) obtained.  

 

Table 5-4 - Ideal and non-ideal mixing density results 

 Ideal results Non- ideal results 

27.00
o
C ρmix(ideal) = -0.439ωs + 1.000 ρmix(non-ideal) = -0.429ωs + 1.000 

30.25
o
C ρmix(ideal) = -0.442ωs + 0.999 ρmix(non-ideal) = -0.367ωs + 0.999 

33.50
o
C ρmix(ideal) = -0.445ωs + 0.998 ρmix(non-ideal) = -0.316ωs + 0.998 

36.75
o
C ρmix(ideal) = -0.449ωs + 0.998 ρmix(non-ideal) = -0.233ωs + 0.998 

40.00
o
C ρmix(ideal) = -0.452ωs + 0.997 ρmix(non-ideal) = -0.200ωs + 0.997 
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At 27.00
o
C, the non-ideal mixing density equations are similar to the ideal equation (slopes of 

the graph). However as temperature increases the non-ideal slope deviates from the ideal slope 

with 40.00
o
C having the largest deviation. This deviation was previously illustrated in Table 4-5 

as the ideality coefficient deviated further from one as temperature increased. Table 5-5 serves 

as a reminder of the coefficient values. This mirrors how the difference between ideal and non-

ideal mixing conditions increases as temperature increases. The binary interaction parameter (kij) 

from Peng-Robinson equation of state is a solid representation of mixing non-ideality (has a 

value of zero at ideal mixing conditions). The coefficient used in this thesis has a value of one at 

ideal mixing conditions. Deo et al. (1993) and Saryazdi et al. (2013) found that the binary 

interaction parameter (BIP) increases as temperature increases, hence the fact that the coefficient 

in this thesis deviates from one as temperature increases is in agreement with literature.  

 

Table 5-5 - Non-ideal mixing specific volume expressions 

 Non-ideal mixing specific volume 

expressions (cm
3
/g) 

27.00
o
C 𝟎. 𝟗𝟗𝟐𝑣𝑠 − 𝑣𝑏  

30.25
o
C 𝟎. 𝟗𝟒𝟕𝑣𝑠 − 𝑣𝑏  

33.50
o
C 𝟎. 𝟗𝟎𝟎𝑣𝑠 − 𝑣𝑏  

36.75
o
C 𝟎. 𝟖𝟒𝟗𝑣𝑠 − 𝑣𝑏  

40.00
o
C 𝟎. 𝟖𝟐𝟒𝑣𝑠 − 𝑣𝑏  

 

5.4. Diffusivity results 

This section reviews all the diffusivity results obtained from the experiments conducted. The 

method used to obtain the diffusivity functions is explained in Section 2.2.3 in the literature 

review of James (2009) work and Section 4.3. Note that for each temperature, ideal and non-

ideal diffusivity functions will be computed via Matlab. To obtain non-ideal diffusivity 

functions, the coefficients in the Table 5-5 above will be incorporated into the diffusivity 

equations while for ideal diffusivity, the coefficients are not incorporated. 
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5.4.1. Diffusivity functions  

The results are shown in Table 5-6. It should be noted that diffusivity functions are mathematical 

expressions for diffusion as functions of another term (mass fraction ωs). Diffusion values are the 

numerical values obtained when (ωs) is substituted into the diffusivity function. There is a clear 

trend of decreasing diffusion values (ideal and non-ideal) with increasing temperature. This is 

due to a reduction in solvent solubility in bitumen with increasing temperature, leading to less 

dilution solvent in bitumen as temperatures increases. However, at equal mass fractions (ωs), the 

non-ideal diffusivity functions yield greater diffusion values than the ideal diffusivity functions. 

This means that assuming ideal mixing conditions under-estimates the magnitude of diffusion 

that occurs. This is because the occurrence of diffusion is driven by concentration gradient. 

However due to the over-estimation of density reduction in ideal mixing scenario, that 

concentration gradient is less for ideal mixing scenario compared to non-ideal mixing. Also, the 

difference between ideal and non-ideal diffusivity functions increases with increasing 

temperature (further discussed in Section 5.4.3 in Table 5-7). This follows the previously 

observed pattern in Section 5.3 of deviations from ideality increasing with higher temperatures. 

 

Table 5-6 - Diffusivity functions for all temperatures (ideal and non-ideal) 

 Ideal Diffusivity ×10
6
 (cm

2
/s) Non-ideal Diffusivity ×10

6
 (cm

2
/s) 

27.00 
o
C 1.623ωs + 0.306 1.620ωs + 0.312 

30.25 
o
C 0.843ωs + 0.799 0.884ωs + 0.851 

33.50 
o
C 0.647ωs + 0.626 0.734ωs + 0.715 

36.75 
o
C 0.456ωs + 0.423 0.546ωs + 0.532 

40.00 
o
C 0.367ωs + 0.366 0.491ωs + 0.481 

 

James (2009) found diffusivity of butane solvent (24.90
o
C) in bitumen (26.30

o
C) to be (4.780ωs 

+ 4.910) ×10
-6

 cm
2
/s when assuming ideal mixing conditions. The experimental run for butane 

(24.00
o
C) in bitumen (27.00

o
C) is the closest match to James (2009) conditions and gives an 

ideal diffusivity of (1.623ωs + 0.306) ×10
-6

 cm
2
/s and non-ideal diffusivity of (1.620ωs + 0.312) 

×10
-6

 cm
2
/s. Functions in this work yield less diffusion values than James (2009)’s which makes 
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sense given James (2009) operating conditions ensure considerably higher solubility of butane in 

bitumen (higher butane partial pressure and lower bitumen temperature). This is further 

illustrated in Section 4.3.3 by James (2009) having a butane solubility limit (ωs*) of 0.6 mass 

fraction while the highest solubility limit achieved in this work (27.00
o
C) was 0.52 mass 

fraction. APPENDIX I contains full details of the diffusivity function results (ideal/non-ideal). 

 

5.4.2. Butane solvent mass fraction profile and bitumen 

density profile 

As part of the Matlab code, a predicted mass fraction (butane solvent) and density (bitumen) 

profile is obtained. This profile is available for ideal and non-ideal scenarios for a;; temperatures 

and will show how the given parameter (bitumen density or butane solvent mass fraction) will 

change in relation to the height of the full bitumen fluid at different times.  

 

 

Figure 5-13 - Butane solvent mass fraction profile at 27.00oC (non-ideal) 
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Figure 5-13 shows the predicted solvent mass fraction profiles for 27.00
o
C (non-ideal) at 

different times along with a magnified section of the graph. The figure clearly shows that the 

solvent mass fraction (concentration) at the bitumen solvent interface (depth from interface = 0) 

is kept at the solvent’s solubility limit (ωs*) at the given temperature, i.e. 0.52 mass fractions. In 

the first 10 minutes, the solvent barely reaches 0.05 cm from the bitumen-butane solvent 

interface, hence the plateauing of the graph after 0.05 cm. At time 60 minutes, the butane solvent 

reaches a depth of 0.15 cm and the overall depth of the bitumen fluid increase due to swelling. 

As time passes, the mass fraction of butane solvent in the bitumen fluid keeps increasing as well 

as the overall bitumen fluid height due to swelling. It is not until after 4500 minutes that the 

butane solvent barely reaches the no-flux boundary at the bottom of the bitumen tube. This is 

clearly seen in the magnified part of the graph (Zoom A) as the 4500 minutes graph is the only 

one that does not completely plateau at solvent mass fraction of zero. APPENDIX J contains all 

the rest of the non-ideal solvent profiles at all temperatures. 

 

Figure 5-14 shows the bitumen density profiles for 27.00
o
C (non-ideal) at different times along 

with a magnified section of the graph (Zoom A). The significance of density 0.711 g/cm
3
 at 

depth zero (bitumen/butane solvent interface) is the bitumen and butane solvent non-ideal 

mixture density (ρmix(non-ideal)) when the butane solvent mass fraction is 0.52 (solubility limit ωs*). 

At 10 minutes, only the first 0.03 cm at the top of the bitumen fluid experiences density 

reduction. By 60 minutes, the first 0.24 cm at the top of the bitumen fluid experiences density 

reduction. As the experiment progresses, the density of the bitumen through the fluid keeps 

decreasing while the overall bitumen fluid height keeps increasing due to swelling of the 

bitumen. It is not until after 4500 minutes that there is an overall density reduction through the 

full bitumen fluid. This density reduction is from 1.0000 g/cm
3
 to 0.9999 g/cm

3
. This is seen in 

the magnified version of the 4500 minutes graph (Zoom A) and these observations mirror the 

solvent mass fraction profile. APPENDIX K contains all the rest of the non-ideal density 

profiles at all temperatures. 
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Figure 5-14 - Bitumen density profile at 27.00oC (non-ideal) 

 

5.4.3. Ideal and non-ideal mixing comparisons 

Figure 5-15, 5-16 and 5-17 below show graphs for ideal and non-ideal diffusivity functions at 

27.00
o
C, 33.50

o
C and 40.00

o
C respectively. All graphs are plotted on the same scale for 

comparison for purposes. The difference between the graphs from temperature to temperature is 

explained with the help of upcoming Table 5-7. 
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Figure 5-15- Solvent diffusivity functions at 27.00oC 

 

The maximum solvent mass fraction (concentration) for each graph is dependent on the 

solubility limit (ωs*) for the given temperature. The solubility limits at the varying temperatures 

was tabulated in Table 4-6. Solvent mass fraction (concentration) in bitumen at a given 

temperature never exceeds the solubility limit. When the solvent mass fraction in the full 

bitumen fluid is at the given solubility limit, the full liquid is in equilibrium and diffusion stops. 

Reaching this equilibrium however is estimated to take approximately one to two weeks.  
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Figure 5-16 - Solvent diffusivity functions at 33.50oC 

 

 

Figure 5-17 - Solvent diffusivity functions at 40.00oC 
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Aside from the non-ideal diffusion values being consistently greater than the ideal diffusion 

values, it is clear that as temperature increases, the difference between the ideal and non-ideal 

diffusion values becomes more significant. The highlighted parts of Table 5-7 show the 

percentage difference between ideal and non-ideal diffusion values for all temperatures. 

 

Table 5-7 - Table showing % difference between ideal and non-ideal diffusion values 

 

 

Using 27.00
o
C as an example, a butane solvent mass fraction ωs of 0.15 is selected for 

consistency. It is substituted into the ideal and non-ideal diffusivity functions as follows, 

 

𝐷𝑠𝑏(𝑖𝑑𝑒𝑎𝑙) = ((1.623 × 0.15) + 0.306) × 10−6 × 106 = 0.5495 𝑐𝑚2/𝑠 

𝐷𝑠𝑏(𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙) = ((1.620 × 0.15) + 0.312) × 10−6 × 106 = 0.5550 𝑐𝑚2/𝑠 

 

The percentage difference of non-ideal diffusivity value from the ideal diffusivity value is then 

found as, 
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|0.5495 − 0.5550|

0.5495
× 100 = 1.00% 

 

27.00
o
C has the lowest percentage difference (1.00%) while 40.00

o
C has the higher percentage 

difference (31.71%). This is due to the earlier explained deviation from ideality as temperature 

increases. This deviation from ideality is further illustrated in Figure 5-18, 5-19 and 5-20 

 

 

Figure 5-18 - Ideal and non-ideal butane solvent mass fraction profile at 27.00oC 

 

Figure 5-18 is butane solvent mass fraction/concentration profile at 27.00
o
C for ideal and non-

ideal scenarios. In Figure 5-18 the ideal and non-ideal profiles for the experimental times, 

predominantly overlap indicating similarities in their results. Looking at the zoomed profile 

(Zoom A) for Figure 5-18, the non-ideal solvent mass fraction is always greater than ideal. This 

is expected because the non-ideal diffusion is greater than ideal (more butane diffusing through 
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at every given stage). The same is true for Figure 5-19 (ideal/non-ideal profile at 33.50
o
C) and 

Figure 5-20 (ideal/non-ideal profile at 40.00
o
C). However the difference between the ideal and 

non-ideal profiles becomes more significant in both figures. All the profiles follow the same 

trend as the previously explained butane solvent concentration profile in Section 5.4.2 in Figure 

5-13. 

 

 

Figure 5-19 - Ideal and non-ideal butane solvent mass fraction profile at 33.50oC 
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Figure 5-20 - Ideal and non-ideal butane solvent mass fraction profile at 40.00oC 

 

As earlier stated in Section 5.3, assuming ideal mixing conditions over-estimates the density 

reduction that’s occurs when butane solvent and bitumen mix. However, ideal mixing also 

underestimates diffusion values. Figure 5-21 is the bitumen density profile at 27.00
o
C for ideal 

and non-ideal mixing scenario. At depth zero, the butane solvent mass fraction is at its highest 

value (solubility limit ωs*) and hence bitumen mixture density is at its lowest. As the depth 

increases, butane solvent mass fraction reduces and hence the bitumen density increases until it 

plateaus at the starting bitumen density (when solvent mass fraction is zero).  

 

Figure 5-21 shows that the mixing density of butane solvent and bitumen for ideal and non ideal 

mixing scenario gets as low as 0.711 g/cm
3
. The ideal mixing density would be expected to be 

lower than the non-ideal but at 27.00
o
C the effects of ideality are almost non-existent (coefficient 

of 0.992), hence the similarities in the two values.  
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Figure 5-21 - Ideal and non-ideal bitumen density profile at 27.00oC 

 

However, for 33.50
o
C in Figure 5-22 (0.835 g/cm

3
 ideal vs 0.878 g/cm

3
 non-ideal) and 40.00

o
C 

in Figure 5-23 (0.884 g/cm
3
 ideal vs 0.921 g/cm

3
 non-ideal) the effects of ideality significantly 

increase (0.900 for 33.50
o
C and 0.824 for 40.00

o
C). This ideality effect leads to a clear 

distinction between ideal and non-ideal mixing density values.  
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Figure 5-22 - Ideal and non-ideal bitumen density profile at 33.50oC 

 

 

Figure 5-23 - Ideal and non-ideal bitumen density profile at 40.00oC 
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5.4.4. Temperature comparisons 

Figure 5-24 shows the non-ideal diffusivity functions at varying temperatures. The figure 

confirms the earlier stated trend of decreasing diffusion with increasing temperature. All 

diffusivity functions are plotted to their solubility limits (ωs*) previously shown in Table 4-6. 

 

 

Figure 5-24- Non-ideal diffusivity functions at all temperatures 

 

The trend of decreasing diffusion with increasing temperature is due to a reduction in butane 

solvent solubility in bitumen with increasing temperature, leading to less dilution solvent in 

bitumen as temperatures increases. However, the diffusivity function for 27.00
o
C stands out from 

the rest. It has a much steeper slope, gets to the highest solvent mass fraction (solubility limit 

ωs*), gets to the highest solvent diffusion value (Dsb at ωs*), but starts at the lowest initial 

solvent diffusion value (Dsb at ωs=0). This can be explained due to the increasing bitumen 
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viscosity with decreasing temperature. 27.00
o
C (the lowest experimental temperature) 

subsequently has the highest bitumen viscosity. According to literature (Das and Butler 1996, 

Yazdani and Maini 2009), higher viscosities (from lower temperatures) impede the diffusion 

process leading lower diffusion values. However, lower temperatures also mean higher 

solubilities and hence higher diffusion values. When comparing the diffusivity function of 

27.00
o
C to 30.25

o
C, the negative effects of higher viscosity at 27.00

o
C is not overcome until 

butane solvent mass fraction reaches approximately 0.50. This value keeps decreasing when 

comparing the 27.00
o
C diffusivity functions to the rest of the higher experimental temperatures. 

At 30.25
o
C, the negative effects of viscosity on butane solvent diffusion values are not enough to 

ever overcome the higher butane solvent solubility compared to the higher temperatures. 

 

Figure 5-25 shows non-ideal solvent profiles at 60 minutes for all temperatures.  At depth zero 

all solvent profiles start at their varying solubility limits (ωs*) before plateauing 0. This is 

because at time 60 mins, the butane solvent has diffused a very short distance into the bitumen. 
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Figure 5-25 - Solvent mass fraction profile at 60 minutes for all temperatures 

 

Figure 5-26 shows non-ideal density profiles at 60 minutes for all temperatures. These density 

profiles start at the non-ideal bitumen mixture density with solvent at mass fraction solubility 

limit (ωs*). Zoom A shows that the concentration vs depth for 27.00
o
C is steeper than other 

temperatures. This is so that the 27.00
o
C profile can plateau above all the other profiles due to its 

higher density value at solvent mass fraction ωs = 0 (bottom of bitumen tube). This is illustrated 

in Zoom B where all profiles plateau at their given density based on temperature and ωs = 0.  
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Figure 5-26 - Bitumen density profile at 60 minutes for all temperatures 

 

Figure 5-27 is the non-ideal solvent profile at 2000 minutes for all temperatures. It follows a 

trend to that explained in Figure 5-25 for 60 minutes. However in time, i.e 2000 minutes, more 

solvent has diffused through the bitumen. With more solvent being diffused in, more density 

reduction is occurring for all temperatures hence a less steep profile (for solvent and density) 

compared to those for 60 minutes. This is also illustrated in Figure 5-28 which is the non-ideal 

density profile at 2000 minutes for temperatures.  
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Figure 5-27 - Solvent mass fraction profile at 2000 minutes for all temperatures 

 

Figure 5-28 - Bitumen density profile at 2000 minutes for all temperatures 
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Figure 5-29 is the solvent profile at 4500 minutes for all temperatures. As expected with more 

elapsed time for 4500 minutes, more solvent has diffuses through the bitumen fluid, more density 

reduction occurring for all temperatures and less steep concentration and density profiles. 

30.25
o
C is the only temperature that breaks the bitumen flux boundary. The flux boundary is a 

part of the bitumen fluid (usually at the bottom) that never comes in contact with butane solvent 

and hence maintains its original density at given temperature. Factors that increase the chances 

of the flux boundary being broken include: shorter bitumen depth (less distance to travel for 

solvent), higher solvent diffusion and lower viscosity (less impediment to solvent travel). These 

factors combine favourably for at 30.25
o
C and hence the flux boundary being broken as seen in 

Zoom A of the figure.  

 

Figure 5-29 - Solvent mass fraction profile at 4500 minutes for all temperatures 

 

Given the flux boundary is broken for 30.25
o
C, the density at the bottom of the tube for the same 

time should be considerably less than the normal density. Figure 5-30 is the bitumen density 
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profile at 4500 minutes for all the temperatures. Normally 30.25
o
C should plateau in between the 

density of 27.00
o
C (1.000 g/cm

3
) and 33.50

o
C (0.998 g/cm

3
). However, due to the flux boundary 

being broken, 30.25
o
C plateaus below all the temperatures (0.997 g/cm

3
). This is illustrated in 

the zoomed part (Zoom A) of Figure 5-30. None of the other temperatures significantly break 

flux boundary and hence plateau at their typically expected densities. 

 

Figure 5-30 - Bitumen density profile at 4500 minutes for all temperatures 

 

5.4.5. Diffusivity results validation 

As stated earlier, the uniqueness of this method is the independent validation of the diffusivity 

function results. A macroscopic mass balance to predict the change in solvent height after 

‘bitumen growth’ has been resolved for the full time duration. This counts as an independent 

validation because the experimental solvent height change values are not used in the model to 

determine the diffusivity.  
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Figure 5-31 shows the predicted change in butane solvent height (ideal/non-ideal) and 

experimental change in butane solvent height vs time at 33.50
o
C over the entire experiment. The 

dashed line represents predicted values for ideal mixing scenario, the solid line represents 

predicted values for non-ideal mixing and the markers represents experimental data. Recollect 

that every single experimental run was duplicated hence the two sets of experimental data. The 

predicted values for non-ideal mixing clearly show a better fit with the experimental data than 

predicted values for ideal mixing scenario. The good fit between predicted non-ideal mixing 

scenario and experimental data validates the diffusivity functions obtained for this temperature. 

 

 

Figure 5-31 - Predicted and experimental change in solvent height vs time at 33.50oC 

 

Figure 5-32 shows the predicted change in butane solvent height (ideal/non-ideal) and 

experimental change in butane solvent height vs SRT at 33.50
o
C over the entire experiment. As 

expected the predicted non-ideal mixing shows a much better fit with the experimental data than 

the ideal mixing scenario. 
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Figure 5-32 - Predicted and experimental change in solvent height vs SRT at 33.50oC 

 

The validation works fine for temperatures 30.25
o
C, 33.50

o
C and 36.75

o
C. However the 

validations of 27.00
o
C and 40.00

o
C are not as clear. Figures 5-33, 5-34, 5-35 and 5-36 show the 

validation plots for both these temperatures. The predicted non-ideal mixing values for both 

these temperatures fits well for the first 2000 minutes of the experiment but  not so much for the 

rest of the experimental time. This lack of fit is more pronounced in 40.00
o
C more so than 

27.00
o
C. This was due to technical issues encountered while conducting the experiments at those 

temperatures. Those issues are discussed in Section 5.6. 
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Figure 5-33- Predicted and experimental change in solvent height vs time at 27.00oC 

 

 

Figure 5-34 - Predicted and experimental change in solvent height vs SRT at 27.00oC 
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Figure 5-35 - Predicted and experimental change in solvent height vs time at 40.00oC 

 

 

Figure 5-36 - Predicted and experimental change in solvent height vs SRT at 40.00oC 
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Table 5-8 gives a list of predicted values (ideal/non-ideal) and experimental butane solvent 

change slopes for all temperatures. The predicted (ideal/non-ideal) slopes are then compared to 

experimental slopes using percentage difference. For each temperature, the predicted percentage 

difference closer to zero, signifies which is the better fit. For all temperatures, the highlighted 

column shows that the predicted non-ideal percentage differences are always closer to zero 

compared to the predicted ideal percentage differences. 

 

Table 5-8 - Validation data for butane solvent height decrease at all temperatures 

 

 

A brief overview of how the value in Table 5-8 is shown. Using 30.25
o
C as an example slope of 

graphs is given as follows; 

 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 = 0.0633 𝑚𝑚/𝑠0.5 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑑𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 = 0.0601 𝑚𝑚/𝑠0.5 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑜𝑛 − 𝑖𝑑𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 = 0.0623 𝑚𝑚/𝑠0.5 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 165 
 

 

The percentage difference of predicted value (ideal and non-ideal) from experimental value is 

then found as follows, 

 

𝑀𝐴𝑇𝐿𝐴𝐵  𝑖𝑑𝑒𝑎𝑙 % 𝑑𝑖𝑓𝑓 =
|0.0601 − 0.0633|

0.0633
× 100 = 5.06% 

 

𝑀𝐴𝑇𝐿𝐴𝐵  𝑛𝑜𝑛 − 𝑖𝑑𝑒𝑎𝑙 % 𝑑𝑖𝑓𝑓 =
|0.0623 − 0.0633|

0.0633
× 100 = 1.58% 

 

Bitumen is an input value in the validation equation, hence its predicted slope (ideal/non-ideal) is 

expected to be exactly the same as experimental data. The validation table is available in 

APPENDIX L along with the rest of the validation graphs. 

 

5.5. Design expert correlation results 

Design Expert (DE) software was used to analyze the experimental data to determine a 

correlation for predicting diffusivity function within the give temperature range (27
o
C – 40

o
C).  

 

As stated in Section 4.4, input parameter (temperature) along with output parameters (butane 

slope, bitumen slope and ideality coefficient) were used in DE to form a correlation for 

predicting each of the output parameters for any given temperature within the range 27.00
o
C – 

40.00
o
C. Equations 4-23, 4-24 and 4-25 represent the models obtained for each of the output 

parameters. A real experiment at 28.50
o
C was conducted to test the robustness of the above 

models. The ANOVA tables from the DE results are in APPENDIX H. 

 

5.5.1. Butane solvent decrease results 

Figure 5-37 shows the butane solvent decrease data vs SRT at 28.50
o
C. The experimental run 

encounters the same issues as others in regards to varying start times. The figure shows that a 

better data fit is achieved with a non-zero start time compared to a zero start time.  
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Figure 5-37 - Butane solvent decrease vs SRT for t = 0 and t ≠ 0 at 28.50oC 

 

Table 5-9 shows all the graph data for 28.50
o
C. The highlighted column indicates that the R

2
 

value for t ≠ 0 (R
2
 = 0.9966) is greater than for t = 0 (R

2
 = 0.9910). The experimental data is 

therefore shifted as explained in Section 5.1 and the new data is plotted in Figure 5-38. 

 

Table 5-9 - Butane solvent height decrease data (28.50oC) 

 

 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 167 
 

 

Figure 5-38 - Butane solvent height decrease vs. SRT (28.50oC) 

 

Referring back to Section 4.4, Equation 4-23 (obtained from Design Expert software) is utilized 

to compute the predicted butane slope value. 

 

(𝐵𝑢𝑡𝑎𝑛𝑒 𝑠𝑙𝑜𝑝𝑒)0.5 = 0.379 − [0.013 × 𝑇] + [5.093 × (10−5) × 𝑇2] + [1.728 × (10−6) × 𝑇3] 

 

Substituting in 28.50
o
C for T gives: 

(𝐵𝑢𝑡𝑎𝑛𝑒 𝑠𝑙𝑜𝑝𝑒)0.5

= 0.379 − [0.013 × 28.5] + [5.093 × (10−5) × 28.52]

+ [1.728 × (10−6) × 28.53] 

𝐵𝑢𝑡𝑎𝑛𝑒 𝑠𝑙𝑜𝑝𝑒 = 𝟎. 𝟎𝟎𝟕𝟗 𝑐𝑚/𝑠0.5 

 

The experimental butane data and butane data obtained from the DE predicted slope are 

compared in Figure 5-39. If both were exactly the same, the equation of the graph should have a 
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slope of 1.  The slope for this graph however is 1.0243. It is not a perfect fit but is good enough 

for use in this work. 

 

 

Figure 5-39 - Butane solvent decrease DE predicted vs experimental values (28.50oC) 

 

Given temperature 28.50
o
C is in between 27.00

o
C and 30.25

o
C, the slope of the 28.50

o
C butane 

solvent graph (experimental and Design Expert predicted) should also be between the slope of 

27.00
o
C and 30.25

o
C. This is illustrated in the highlighted part of Table 5-10. 
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Table 5-10 - Comparison of 28.50oC butane decrease graph data to other temperatures 

 

 

5.5.2. Bitumen increase results 

Figure 5-40 shows the bitumen solvent increase data vs SRT at 28.50
o
C. The figure shows that a 

better data fit is achieved with a none zero start time compared to a zero start time.  

 

 

Figure 5-40 - Bitumen height increase vs SRT for t = 0 and t ≠ 0 at 28.50oC 
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Table 5-11 shows all the graph data for 28.50
o
C. The highlighted column indicates that the R

2
 

value for t ≠ 0 (R
2
 = 0.9930) is greater than for t = 0 (R

2
 = 0.9795). The experimental data is 

therefore shifted as explained in Section 5.2 and the new data is plotted in Figure 5-41. 

 

Table 5-11 - Bitumen height increase graph data (28.50oC) 

 

 

 

Figure 5-41 - Bitumen height increase vs SRT at 28.50oC 

 

 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 171 
 

Referring back to Section 4.4, Equation 4-24 (obtained from DE software) is utilized to 

compute the predicted bitumen slope value. 

(𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑠𝑙𝑜𝑝𝑒)0.5 = 0.123 − [4.955 × (10−3) × 𝑇] + [5.543 × (10−5) × 𝑇2] 

 

Substituting in 28.50
o
C for T gives: 

 

(𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑠𝑙𝑜𝑝𝑒)0.5 = 0.123 − [4.955 × (10−3) × 28.5] + [5.543 × (10−5) × 28.52] 

𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑠𝑙𝑜𝑝𝑒 = 𝟎. 𝟎𝟎𝟎𝟕𝟏 𝑐𝑚/𝑠0.5 

 

The experimental bitumen data and bitumen data obtained from the DE predicted slope are 

compared in Figure 5-42. The slope for this graph is 1.0636 which is once again not a perfect fit, 

but is good enough for use in this work. 

 

 

Figure 5-42 - Bitumen increase DE predicted vs experimental values (28.50oC) 
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The slope of the 28.50
o
C bitumen graph (experimental and Design Expert predicted) is also 

between the slope of 27.00
o
C and 30.25

o
C as illustrated in the highlighted part of Table 5-12. 

 

Table 5-12 - Comparison of 28.50oC bitumen increase graph data to other temperatures 

 

 

5.5.3. Non-ideal mixing results 

Figure 5-43 shows bitumen specific volume vs solvent mass fraction graph for 28.50
o
C. Using 

the method outlined in Section 4.3.2 the ideality coefficient for 28.50
o
C is 0.977. 
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Figure 5-43 - Bitumen mixture specific volume plots for ideal and non-ideal mixing 28.50oC 

 

Referring back to Section 4.4, Equation 4-25 (obtained from DE software) is utilized to 

compute the predicted ideality coefficient at 28.50
o
C. 

 

(𝐼𝑑𝑒𝑎𝑙𝑖𝑡𝑦)3 = −2.13554 + [0.36648 × 𝑇] − [0.013102 × 𝑇2] + [1.40606 × (10−4) × 𝑇3] 

 

Substituting in 28.50
o
C for T gives: 

(𝐼𝑑𝑒𝑎𝑙𝑖𝑡𝑦)3 = −2.13554

= +[0.36648 × 28.50] − [0.013102 × 28.502]

+ [1.40606 × (10−4) × 28.503] 

 

𝐼𝑑𝑒𝑎𝑙𝑖𝑡𝑦 = 𝟎. 𝟗𝟕𝟑 

 

The ideality coefficient for 28.50
o
C (experimental and DE predicted) should also be between the 

ideality coefficient for 27.00
o
C and 30.25

o
C. This is illustrated in Table 5-13. 
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Table 5-13 - Non-ideal mixing expression (28.50oC) vs other temperatures 

 Non-ideal mixing expressions (cm
3
/g) 

 Experimental values DE predicted values 

27.00
o
C 0.992𝑣𝑠 − 𝑣𝑏 

28.50
o
C 0.977𝑣𝑠 − 𝑣𝑏  0.973𝑣𝑠 − 𝑣𝑏  

30.25
o
C 0.947𝑣𝑠 − 𝑣𝑏 

 

5.5.4. Diffusivity results and validation 

DE predicted and experimental diffusivity functions (ideal and non-ideal) are shown in Table 5-

14 below. At equal mass fractions (ωs), the trend of non-ideal diffusivity functions yielding 

greater diffusion values than ideal diffusivity functions is observed. However, at equal mass 

fractions (ωs) the DE predicted diffusivity functions yield greater diffusion values than the 

experimental diffusivity functions. This was expected given the DE predicted diffusivity gave a 

higher butane and bitumen height change slope (more diffusion occurring). Figure 5-44 shows a 

comparison of all the functions on a graph. 

 

Table 5-14 - Diffusivity results (28.50oC) 

 Ideal Diffusivity × 𝟏𝟎𝟔 (cm
2
/s) Non-ideal Diffusivity × 𝟏𝟎𝟔 (cm

2
/s) 

 Experimental DE Predicted  Experimental DE Predicted  

28.50
o
C 1.160ωs + 0.591 1.413ωs + 0.608 1.187ωs + 0.598 1.452ωs + 0.614 
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Figure 5-44 - Experimental and DE predicted diffusivity functions 28.50oC (ideal/non-ideal) 

 

The diffusivity function at 28.50
o
C is expected to be in between the diffusivity function of 

27.00
o
C and 30.25

o
C for both ideal and non-ideal scenarios. Figures 5-45, 5-46 and Table 5-15 

show that is the case. 
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Figure 5-45- Comparison of 28.50oC diffusivity function to other temperature (ideal) 

 

 

Figure 5-46 - Comparison of 28.50oC diffusivity function to other temperature (non-ideal) 
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Table 5-15 - Comparison of ideal/non-ideal diffusivity function deviation for 28.50oC 

 

 

The solvent profile for 28.50
o
C would also be expected to be wedged in between that of 27.00

o
C 

and 30.25
o
C solvent profiles at the same experimental times. This is confirmed by Figures 5-47 

below. The 28.50
o
C graph does not completely plateau at solvent mass fraction zero meaning 

that the flux boundary is partially broken at that temperature. 
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Figure 5-47 - Comparison of 28.50oC solvent profile to other temperatures (non-ideal) 

 

Given the flux boundary for 28.50
o
C at 4500 minutes is slightly broken, the density profile is 

expected to plateau slightly below its normal bitumen density temperature (0.99956 g/cm
3
). 

Figure 5-48 below shows it plateaus at 0.99917 g/cm
3
. 
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Figure 5-48 - Comparison of 28.50oC density profile to other temperatures (non-ideal) 

 

Finally the diffusivity functions for both experimental are DE predicted diffusivities are 

validated in both Figures 5-49 and 5-50. 
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Figure 5-49 - Predicted and experimental change in solvent height vs SRT at 28.50oC 

 

 

Figure 5-50 - Predicted and DE predicted change in solvent height vs SRT at 28.50oC 
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5.6. Experimental Error 

The purpose of this section is to review and analyze the experimental error encountered during 

the experiment. A major issue was the measurement of bitumen and butane set-up pre and post 

experiment. The weighing scale used had a precision of ±0.1 g but many of the butane and 

bitumen masses calculated during the experiment had decimal places as low as 0.001 g 

(especially butane). A higher precision weighing scale would not have been big enough to 

accommodate the full weight of the butane/bitumen side. A weighing device which was big 

enough to accommodate the full weight of the butane or bitumen side, while also having high 

enough precision (0.001 g) was not available. This ultimately led to some inconsistencies while 

trying to match the final calculated weight of the bitumen mixture to the measured weight of 

bitumen mixture. Weight values also constantly fluctuated by ±0.1 g during weighing.  When 

these fluctuations occurred repeatedly, an average of the two values was taken. 

 

The precision issues experienced while weighing the butane/bitumen masses post experiment 

prevents us for using those values as a way to confirm diffusivity data. However given the 

experimental data was independently validated, this is not seen as a problem. Another 

experimental issue was fluctuations in the bitumen (depending on run) and butane (24.00
o
C) 

water bath temperatures. 2 thermocouples were inserted in each water bath to monitor 

temperature over the duration of the experiment.  Temperatures were logged every 5 minutes and 

Table 5-16 below show the standard deviation for the temperatures recorded. 
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Table 5-16 - Standard deviations for temperature logging of all experimental runs 

 

Note: 30.25
o
C was not logged due to some technical difficulties 

 

The standard deviations for the butane thermocouples are always lower than those of the bitumen 

thermocouples. This is because the butane water bath temperature (24.00
o
C) is closer to room 

temperature (25.00
o
C) compared to the bitumen temperatures (27.00

o
C - 40.00

o
C). This means 

deviations in room temperature do not have as much impact on the Butane water bath compared 

to the bitumen water bath.  

 

The standard deviation values for the 27.00
o
C and 40.00

o
C are all significantly higher than the 

rest of the experimental runs. Fluctuations in room temperature and having to top-up the re-

circulatory water bath led to drops in the Plexiglass water bath temperature. This often led to 

spikes in pressure differential readings before values eventually stabilized. As stated in Section 

4.1, pressure readings were not taken during this spiking period but error was most certainly 

incurred as a result of this issue. These spikes trickled down to the validation of the experiment 

discussed in Section 5.4.5. 

 

Figures 5-51 and 5-52 show a temperature vs time graph at 40.00
o
C, 36.75

o
C, 33.50

o
C and 

27.00
o
C (30.25

o
C was not available due to technical issues). The data for 33.50

o
C shows a 

variation as high as +0.50
o
C early but mainly stays within ±0.20

o
C of its expected value. The 

data for 36.75
o
C consistently stays within ±0.20

o
C of its expected value. The data for 27.00

o
C 
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also shows one or two heavy temperature fluctuations in Figure 5-51. However, 40.00
o
C gets to 

a variance of ±0.50
o
C on a few occasions. This was because at 40.00

o
C (highest experimental 

temperature), the water in the bitumen re-circulatory water bath evaporated at a very high rate 

making the addition of water multiple times essential. Pressure spikes were witnessed when the 

water was added. The pressure and temperature variations would have caused error in the 

recorded butane/bitumen change values and subsequently trickle down to diffusivity functions. 

 

 

Figure 5-51 - Graph of temperature vs time for experiment (27.00oC bitumen and 24.00oC butane) 
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Figure 5-52 - Graph of temperature vs time for experiment (33.50oC, 36.75oC and 40.00oC bitumen) 

 

Figure 5-53 shows the temperature and differential pressure vs times graph for a typical 

experimental run (33.50
o
C). The temperature stays within its expected range. Save for a little 

spike approximately around time 1500 minutes and 3800 minutes the pressure also declines 

smoothly through the experiment. However Figure 5-54 (27.00
o
C) and 5-55 (40.00

o
C) show 

significant pressure spikes. These pressure spikes are also clearly shown to coincide with quick 

changes in temperature. As can be seen, the circled areas show when the pressure spikes occur 

and how they always coincide with sudden increases or decreases in temperature. These spikes in 

pressure during the experiment are the cause of the validation issues for the 27.00
o
C (partially) 

and 40.00
o
C experimental runs. 
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Figure 5-53 - Smooth pressure decline at 33.50oC 
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Figure 5-54 - Pressure spikes at 27.00oC 
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Figure 5-55 - Pressure spikes at 40.00oC 
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6) CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

1) The assumption of ideal mixing between bitumen and butane solvent over-estimates the 

density reduction when the fluids mix. Accounting for non-ideal mixing gives more accurate 

density reduction results 

 

2) The deviation between ideal and non-ideal mixing density values increases as temperature 

increases. This is confirmed by majority of the literature in the field. As temperature tends to 

standard temperature (25.00
o
C), the effects of non-ideal mixing become exactly the same as 

ideal mixing 

 

3) Results showed that the diffusion values decreased as temperature increased. In some other 

literature, diffusion has increased with increasing temperature but those scenarios had the 

live oil draining from the bitumen mainly with the help of the significant viscosity reduction 

that higher temperatures bring. Live oil draining allows for fresh new surface (hence higher 

concentration gradient) which favours more diffusion. This work has no oil draining so 

diffusion is predominantly governed by solvent solubility in the bitumen. This solvent 

solubility reduces with increasing system temperature.  

 

4) According to literature (Das and Butler 1996, Yazdani and Maini 2009), higher viscosities 

(from lower temperatures) impede the diffusion process leading lower diffusion values. This 

effect was felt when comparing the 27.00
o
C and 30.25

o
C diffusivity functions. The positive 

diffusion effects of higher solubility at 27.00
o
C compared to 30.25

o
C, could not overcome 

negative diffusion effects of higher viscosity at 27.00
o
C compared to 30.25

o
C until about a 

mass fraction of 0.5 is reached for 27.00
o
C. 

 

5) At the same mass fraction (ωs) and temperature, all non-ideal mixing diffusion values were 

greater than ideal mixing diffusion values. This is because the occurrence of diffusion is 

driven by concentration gradient between the two fluids. However due to the over-estimation 
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of density reduction in ideal scenario, that concentration gradient is less for ideal scenario 

compared to non-ideal. Hence, the assumption of ideal mixing conditions between bitumen 

and butane by most literature clearly under-estimates diffusion values. 

 

6) The deviation between ideal and non-ideal diffusion values also increased as temperature 

increased. This follows the same trend as the deviation between ideal and non-ideal mixing 

density results with temperature. 

 

7) For all the validation data, the non-ideal diffusivity function always provided a better fit for 

the experimental data than the ideal diffusivity function. All but one of the diffusivity 

functions (40.00
o
C) were independently validated using the macroscopic mass balance to 

match the solvent growth. The reason for the lack of validation in the 40.00
o
C run was due to 

technical issues while running the experiment. The predicted non-ideal mixing values for 

both these temperatures fits well for the first 2000 minutes of the experiment but  not so 

much for the rest of the experimental time. This lack of fit is more pronounced in 40.00
o
C 

than 27.00
o
C. 

 

8) The predicted diffusivity function for 28.50
o
C obtained from the DE model showed a good 

fit with the 28.50
o
C experimental run. The model is therefore a strong model and can be used 

to predict diffusivity functions of butane at 24.00
o
C, within a given bitumen temperature 

range of 27.00
o
C - 40.00

o
C, while also accounting for non-ideal mixing and concentration 

dependency. 

 

6.2. Recommendations 

1) This work accounts for concentration dependency, non-ideal mixing and temperature 

dependency of diffusivity. However, it does not investigate the effect of pressure dependency 

on diffusivity. Experiments with varying solvent pressure and bitumen temperature would be 

useful. Given diffusion values increased with increasing solvent solubility (lower bitumen 

temperatures) the diffusion values would be expected to increase with if butane solvent vapor 

pressures values are increased.  



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 190 
 

 

2) Adding a NCG to the system would also make for interesting observations as current 

literature suggests that the NCG would hinder diffusion. However experimental run times 

will have to be significantly longer than those completed in this experiment to ensure 

detectable diffusion. 

 

3) Performing experimental runs that allows the solvent to diffuse until equilibrium is reached 

(diffusion stops) would also give some interesting results. Some of such test runs were 

performed for these experiments but unfortunately, the solvent diffused through the bitumen 

and the gel. As minute as this diffusion is, equilibrium could never be reached using the 

current experimental set-up. Based on information from the test runs, equilibrium at 27.00
o
C 

bitumen temperature and 2.36 atm (34.65 psi) butane pressures would have been reached 

within approximately 14 days. Perhaps researching other intermediate fluids that the solvent 

does not remotely diffuse into would resolve this issue. 
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APPENDIX 

APPENDIX A - Bitumen assay characteristics 

Bitumen Analysis 

Temperature Density 

15°C 1.012 g/ml 

22°C 1.001 g/ml 

40°C 0.997 g/ml 

70°C 0.978 g/ml 

 

Fractions (SAPA analysis by ARC) 

 Saturates = 22.4 mass% 

 Aromatics = 30.8 mass% 

 Polars = 29.4 mass% 

 Asphaltenes = 17.4 mass% 

Notes:  Since the fractions are solubility classes not compounds this analysis is only useful when 

comparing fractions separated in the same manner – it is not comparable to SARA.  Asphaltenes 

are precipitated first with the addition of excess pentane. 

 

Carbon-Hydrogen-Nitrogen-Sulphur 

 Carbon = 83.62 mass% (ASTM D5291) 

 Hydrogen = 9.57 mass% (ASTM D5291) 

 Nitrogen = 0.39 mass% (ASTM D5291) 

 Sulphur = 5.25 mass% (ASTM D1552) 

 



Concentration Dependent Non-Ideal Diffusion in Hydrocarbon systems Page 199 
 

Molecular Weight = 557 g/mol (ASTM D2503) 
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Appendix - A1: Viscosity correlations 
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Appendix - A2: Bitumen Assay 

Component 

Boiling 

Point 

(°C) 

Normalized 

Weight 

Percent 

Cumulative 

Weight 

Percent 
< Octane ≤C7 ≤98 0.0 0.0 

Octane C8 126 0.0 0.0 

Nonane C9 151 0.0 0.0 

Decane C10 174 0.0 0.0 

Undecane C11 196 0.7 0.7 

Dodecane C12 216 1.0 1.7 

Tridecane C13 235 1.3 3.0 

Tetradecane C14 254 1.6 4.6 

Pentadecane C15 271 1.8 6.4 

Hexadecane C16 287 1.9 8.3 

Heptadecane C17 302 2.1 10.4 

Octadecane C18 316 2.3 12.7 

Eicosane C20 344 4.8 17.5 

Docosane C22 369 4.5 22.0 

Tetracosane C24 391 4.4 26.4 

Hexacosane C26 412 4.0 30.4 

Octacosane C28 431 4.1 34.5 

Triacontane C30 449 4.0 38.5 

Dotriacontane C32 466 3.3 41.8 

Tetratriacontane C34 481 2.9 44.7 

Hexatriacontane C36 496 2.7 47.4 

Octatriacontane C38 509 2.5 49.9 

Tetracontane C40 522 2.4 52.3 

Dotetracontane C42 534 2.0 54.3 

Tetratetracontane C44 545 1.9 56.2 

Hexatetracontane C46 556 1.8 58.0 

Octatetracontane C48 566 1.6 59.6 

Pentacontane C50 575 1.5 61.1 

Dopentacontane C52 584 1.5 62.6 

Tetrapentacontane C54 592 1.3 63.9 

Hexapentacontane C56 600 1.3 65.2 

Octapentacontane C58 608 1.3 66.5 
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Hexacontane C60 615 1.2 67.7 

Dohexacontane C62 622 1.2 68.9 

Tetrahexacontane C64 629 1.3 70.2 

Hexahexacontane C66 635 1.1 71.3 

Octahexacontane C68 641 1.2 72.5 

Heptacontane C70 647 1.2 73.7 

Doheptacontane C72 653 1.3 75.0 

Tetraheptacontane C74 658 1.1 76.1 

Hexaheptacontane C76 664 1.2 77.3 

Octaheptacontane C78 670 1.1 78.4 

Octacontane C80 675 1.1 79.5 

Dooctacontane C82 681 1.1 80.6 

Tetraoctacontane C84 686 1.0 81.6 

Hexaoctacontane C86 691 1.1 82.7 

Octaoctacontane(C88) C88 695 0.9 83.6 

Nonacontane C90 700 1.0 84.6 

Dononacontane C92 704 0.9 85.5 

Tetranonacontane C94 708 0.9 86.4 

Hexanonacontane C96 712 0.8 87.2 

Octanonacontane C98 716 0.9 88.1 

Hectane C100 720 0.9 89.0 

Hectane + C100+ > 720 10.4 99.4 

 

APPENDIX B - Troubleshooting 

Non ideality 

Normally when measuring diffusion in VAPEX systems, the bitumen height change is used to 

measure the progression of the experiment. This change signifies the amount of butane that has 

diffused into the bitumen. However, both butane and bitumen are hydrocarbons and do not mix 

ideally. Still, difficulty with taking in-situ measurements makes it extremely hard to account for 

ideality.  

 

A differential pressure transmitter was used with the following specifications;  

 Model PD-33X pressure transmitter 
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 Range: 1.4503 psi differential 

 Accuracy: ±7.25 ∗ 10−4𝑝𝑠𝑖 + 7.25 ∗ 10−5 𝑝𝑠𝑖

𝑝𝑠𝑖 𝑠𝑡𝑎𝑡𝑖𝑐 𝑙𝑖𝑛𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
 

 Max static line pressure: 725 psi 

 Resolution: 2.9*10
-5

 psi 

 

One side of the transmitter accounts for butane gas pressure and the other side accounts for 

butane gas pressure plus bitumen liquid pressure. The difference is the hydrostatic pressure of 

bitumen which is dependent on bitumen height where P=∆ρgh. 

 

With consistent logging of pressure and bitumen height values, the bitumen phase density can be 

calculated (which are non-ideal values) and used to validate the amount of butane diffused into 

the bitumen. A normal pressure transmitter cannot be used because the pressure changes 

observed are too small (1-10 Pa or 0.000145 psi over a few minutes). Most available pressure 

transmitters today do not possess such high precision. 

 

It is best not to let bitumen come in contact with the diaphragm of the differential pressure 

transmitter. The bitumen is extremely sticky and will create a mess on the diaphragm and 

possibly damage it. An intermediate fluid is therefore necessary between the bitumen and the 

differential pressure transmitter diaphragm. It is recommended that such a fluid must have a 

higher density than the bitumen to ensure it holds it up. It must be largely inert and fully capable 

of transmitting pressure values from the bitumen through to the transmitter. Also the fluid should 

have a low enough viscosity to flow while loading it but high viscosity to maintain its shape 

integrity through the experiment. Colgate toothpaste was used in this experiment. 

 

Monitoring the butane 

Initially the plan was to install a differential transmitter under the butane as well. The butane 

height pressure would be measured and with the constant density, height values can be logged 

into the computer system as often as every second. 
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Unfortunately, as seen the below set-up Appendix - B3 the system requires two sides immersed 

in the same water. As a result, there will always be condensation in the opposite side of the set-

up leading to erroneous butane height values. Multiple runs showed that there was always 

condensed butane liquid in the extra tube side. An easy fix could be to use a normal pressure 

transmitter (leading to just the one end needed) but again pressure transmitters with the needed 

precision are hardly available given the miniscule pressure changes that will be observed. 

 

 

Appendix - B3: Two sided butane set-up 

 

Utilizing a heating coil around the second side is not feasible either as this creates a temperature 

gradient in the water. There could be a valve closing the other side but this defeats the whole 

purpose of the differential pressure transmitters as gas needs to get to the negative side of the 

transmitter.  

 

All these issues led to the use of an L-shape tube for the butane with no pressure transmitter 

connected to it. The height of the butane is easily monitored with the cathetometer. The butane 
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height decreases during the experiment but the density does not change, leaving little to worry 

about ideality wise.  

 

Purity of butane 

When VAPEX was first being considered, the thought was to add non-condensable gas (NCG) to 

reduce the amount of expensive pure solvent being used and reduces the chances of solvent 

condensation due to the elevated pressure that the NCG provides. However, a reduction in 

solvent (butane) purity leads to a reduction of the butane solubility of the butane in the bitumen. 

This is because solubility is a function of the partial pressure of the diffusing gas component and 

not total pressure of the gas mixture. This leads to significantly less diffusion occurring and 

given how slow the diffusion is under the best conditions, this leads to extremely low values (2-3 

mm) of bitumen height change over as much as a week. Such miniscule values are almost 

impossible to track even with the best equipment. The solubility of the solvent in the bitumen is a 

function of the partial pressure of the solvent and not total gas mixture pressure. 

 

It is therefore advisable to keep purity levels of butane high to ensure that significant and clearly 

detectable diffusion occurs, preferably purity values that give a solubility of 80% and above. 

 

Butane vapor pressure vs. bitumen temperature 

The partial pressure of the butane and the bitumen temperature are the two most important 

parameters affecting diffusion as they are both directly responsible for the solubility of the 

butane in the bitumen. The butane vapor pressure is a function of the butane temperature, the 

higher the temperature, the higher the vapor pressure (Appendix – B4 ) and resulting solubility. 

The bitumen temperature works conversely because as it increases, butane solubility in bitumen 

decreases and so does the diffusion 
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Appendix - B4: PVTSim butane solvent temperature vs vapour pressure graph 

 

The bitumen temperature must be kept greater than the butane temperature (if the partial pressure 

is equal to the vapour pressure) or the butane will condense on any surface at a temperature less 

than the butane liquid temperature. In fact it is advisable to have the bitumen system at least 3
o
C 

higher to ensure no condensation occurs. Also, the middle region of the experimental set-up 

(space between the Plexiglass water baths) is kept a 3
o
C higher to avoid condensation. 

 

One would assume that varying the butane and bitumen temperatures over a certain range 

(always at least 3
o
C difference between both) and obtaining subsequent diffusion coefficient 

values would create a good correlation of diffusion at varying conditions. However, the 

solubility problem is once again an obstacle at moderately low butane temperatures and 
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moderately high bitumen temperatures. The solubility of the solvents is just too low to 

effectively track changing bitumen height and therefore diffusivity. 

 

It is advisable to maximise the butane temperature, keep it constant through the experiment and 

vary bitumen value (minimum value being 3
o
C higher than the butane temperature). Getting as 

many thermocouple wires to measure temperature at various parts of the experiment will help a 

great deal. 

 

Bitumen and gel interaction 

Given the slight compressibility of the gel used (toothpaste), the interface between the bitumen 

and gel goes down briefly at the start of the experiment. It is imperative to keep track of this to 

ensure correct values for bitumen height. The gel fluid height has to be visible in the glass tube 

to ensure the changing interface is visible. The bitumen falling does stain the walls of the glass 

tube but butane pressure later ensures all the bitumen on the walls goes into the liquid making a 

clear readable height.  

 

Creating a vacuum in the bitumen also pulls up the bitumen giving false bitumen height but after 

half an hour of the experiment running, the bitumen height starts to clear up and be readable with 

miniscule stains on the glass walls. 

 

The gel provides a huge advantage when transitioning from one experimental run to the other. 

The system is constantly required to be air tight, so always having to dismantle the set and re-

tighten would be extremely tedious; especially given the system is a combination of steel and 

glass parts (the glass could easily break on tightening). The experimental set-up does not need to 

be washed either, all that is needed is the bitumen glass tube taken out, gel topped  up (since 

some gel is taken out with the glass tube), a new glass tube used and bitumen loaded. 

Preliminary runs were executed to see if the gel held its structure during and after experimental 

runs. The gel always held its structure. The butane is completely emptied out between 

experimental runs and loaded with fresh pure butane.  
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APPENDIX C - Starting experimental values 

Appendix - C5: Starting experimental parameters 

 
**Note: 27.00oC and 28.50oC experiments were the last two runs and tubes used differed from 
previous due to availability of solvent tubing 

 

APPENDIX D - Bitumen/Butane density and pressure 

calculations 

Non-ideal mixture density 

Shown below in Appendix – D6 is table used to calculate non-ideal density/real density, real 

specific volume and equivalent mass over a certain time period for the experiment. The 

highlighted row is used in our sample calculation. 
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Appendix - D6: Sample calculation for non-ideal density 

 

 

Time is given in minutes (column 2) and every value is calculated until the end of the experiment 

(4320 minutes). Given that the starting experimental time (column 1) is 7pm and the sample 

calculation time is at 6am, the time elapsed in minutes is 660 minutes. 

 

Diff pressure (column 3) represents the differential pressure reading on the Keller transmitter at 

the given time (-0.00222 atm). The value is converted to Pascals (column 4) using the factor 

below. 

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑃𝑎) = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑎𝑡𝑚) ∗ 101325  A-1 

−0.00222 ∗ 101325 = −𝟐𝟐𝟓 𝑷𝒂 

 

Column 3 shows a reduction in differential pressure values as the experiment progresses. One 

would expect differential pressure values to increase given bitumen height increase as time 

proceeds. But the increase in bitumen height is more than offset by the reduction in bitumen 

density due to diffusion of the butane solvent. 

 

At every given time, the differential pressure reading, represents the hydrostatic pressure of the 

full liquid (butane dissolved, bitumen and gel). However, the differential pressure transmitter is 

zero’d at the start of the experiment and we assume the butane does not dissolve in the gel. 
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Therefore, any changes in hydrostatic pressure are a result of the butane diffusing into the 

bitumen. We then consistently subtract the differential pressure readings at every time point from 

the starting differential pressure reading at 0 minutes. This gives us the pressure change/∆ 

pressure (column 5) experienced due to swelling of bitumen from diffusion of butane. 

 

∆ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) − 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑎𝑡 𝑡𝑖𝑚𝑒 0) A-1 

−224.94 − (19.25) = −𝟐𝟒𝟒 𝑷𝒂 

 

The Keller differential transmitters used has a different calibration from real pressure values. 

These readings have to be normalized to give real pressure values. The reduction factor for both 

transmitters (used in the above table) was calculated to be 0.0708. The value is the multiplied by 

the ∆ pressure value to give real pressure values (column 6). 

 

𝑅𝑒𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒  = ∆ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ∗ 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 A-2 

−244.19 ∗ 0.0708 = −𝟏𝟕 𝑷𝒂 

 

The next column is the bitumen height (column 7) at the given time. This value is calculated 

from the images from the camera. They are analyzed in Paint software using pixel numbers 

(explained in Section 4.2). The full hydrostatic height (6.4964 cm column 8) is the full height of 

the liquid in the system (bitumen liquid + gel). This directly correlates to pressure differential 

values in the transmitter. Given the gel height (4.8 cm) is assumed constant, the only changes in 

this column are a result of bitumen height changes. 

 

The ∆ height (column 9) is the difference in height between bitumen at any given time and initial 

bitumen height at time zero minutes. Given starting bitumen height is 1.6169 cm: 

 

∆ ℎ𝑒𝑖𝑔ℎ𝑡  = ℎ𝑒𝑖𝑔ℎ𝑡 (𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) − ℎ𝑒𝑖𝑔ℎ𝑡 (𝑎𝑡 𝑡𝑖𝑚𝑒 0) A-3 

∆ ℎ𝑒𝑖𝑔ℎ𝑡 = 1.6964 − 1.6169 

= 𝟎. 𝟎𝟕𝟗𝟓 𝒄𝒎 
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The change in bitumen density or ∆ density, (in column 10) represents the change in density due 

to the hydrostatic pressure change and increase in bitumen height. This is calculated by: 

 

𝑃1 = 𝜌1𝑔ℎ1 A-4 

𝑃2 = 𝜌2𝑔ℎ2 
A-5 

Subtracting both sides from each other, 

 

𝑃1 − 𝑃2 = 𝜌1𝑔ℎ1 − 𝜌2𝑔ℎ2 

𝑃1 − 𝑃2

𝑔
= 𝜌1ℎ1 − 𝜌2ℎ2  , 

 

𝐾𝑛𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 (𝜌2 = 𝜌1 + ∆𝜌)  𝑎𝑛𝑑 (ℎ2 = ℎ1 + ∆ℎ) 𝑤𝑒 𝑔𝑒𝑡, 

 

𝑃1 − 𝑃2

𝑔
= 𝜌1ℎ1 − [(𝜌1 + ∆𝜌)(ℎ1 + ∆ℎ)] 

𝑃1 − 𝑃2

𝑔
= 𝜌1ℎ1 − (𝜌1ℎ1 + 𝜌1∆ℎ + ∆𝜌ℎ1 + ∆𝜌∆ℎ) 

𝑃1 − 𝑃2

𝑔
= 𝜌1ℎ1 − 𝜌1ℎ1 − 𝜌1∆ℎ − ∆𝜌ℎ1 − ∆𝜌∆ℎ 

𝑃1 − 𝑃2

𝑔
= −𝜌1∆ℎ − ∆𝜌ℎ1 − ∆𝜌∆ℎ 

𝑃1 − 𝑃2

𝑔
= −𝜌1∆ℎ − ∆𝜌(ℎ1 + ∆ℎ) 

∆𝜌 = (
1

ℎ1 + ∆ℎ
) [−𝜌1∆ℎ − (

𝑃1 − 𝑃2

𝑔
)] A-6 

 

Where, h1 = hydrostatic height of the gel and bitumen at time 0 minutes (6.4169 cm) 

∆h = height change at given time (0.0795 cm) 

ρ1 = initial bitumen density at time 0 minutes (0.999 g/cm
3
) 

g = acceleration due to gravity (981 cm/s
2
) 

P1 – P2 = real differential pressure change at given time (-17.29 Pa) 
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∆ρ = Changing density values. Note that the toothpaste density is not used because it is assumed 

to remain constant while bitumen density changes due to the diffusion. Also the differential 

transmitter is zero’d at the start of experiment so any pressure change is solely due to changing 

bitumen density 

 

∆𝜌 = (
1

6.4169 𝑐𝑚 + 0.0795 𝑐𝑚
) [(−0.999 𝑔𝑐𝑚−3 ∗ 0.0795 𝑐𝑚) − (

−17.29 𝑃𝑎

981 𝑐𝑚/𝑠2
)] 

∆𝜌 = −𝟎. 𝟎𝟏𝟎 𝒈𝒄𝒎−𝟑 

 

Column 11 is the real or non-ideal density of the bitumen mixture at time ‘t’. This bitumen 

mixture density is given as the addition of ∆ρ at time (t) and Bitumen mixture density at time 

(t=0): 

 

𝑅𝑒𝑎𝑙 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  = ∆𝜌 + 𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑡 = 0)  

𝜌𝑚𝑖𝑥 (𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)   = ∆𝜌 + 𝜌𝐵 A-7 

−0.010 + 0.999 = 𝟎. 𝟗𝟖𝟗 𝒈𝒄𝒎−𝟑 

 

Column 12 is the real or non-ideal specific volume of the bitumen mixture at time ‘t’. This 

bitumen mixture is given as the inverse if the real bitumen mixture density: 

 

𝑅𝑒𝑎𝑙 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒  =
1

𝑅𝑒𝑎𝑙 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
  

𝑣𝑚𝑖𝑥 (𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)   =
1

𝜌𝑚𝑖𝑥  (𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙)
 A-8 

1

0.990
= 𝟏. 𝟎𝟏𝟏 𝒄𝒎𝟑𝒈−𝟏 

 

Column 13 is the mass of the bitumen phase at the given time. This is calculated by multiplying 

the density, cross sectional area of the bitumen tube and height of bitumen. 
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𝑀𝑎𝑠𝑠 = 𝐴𝑟𝑒𝑎 ∗ (𝑏𝑖𝑡𝑢𝑚𝑒𝑛 ℎ𝑒𝑖𝑔ℎ𝑡) ∗ 𝜌 
A-9 

1.207 𝑐𝑚2 ∗ (1.6964 𝑐𝑚) ∗ 0.989 𝑔𝑐𝑚−3 = 𝟐. 𝟎𝟐𝟔 𝒈 

 

Ideal mixture density 

Appendix - D7 for this section covers the way to calculate ideal density of the bitumen. Column 

13 is the mass at time t for the non-ideal bitumen scenario 

 

Appendix - D7: Sample calculations for ideal density 

 

 

 

The next value (1.0700 cm in column 14) is the height change of the butane at time t compared 

to time 0 minutes. The cross sectional area of the butane tube (column 15) comes next and is 

calculated as: 

 

𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑡𝑢𝑏𝑒 =  𝜋𝑟2 A-10 

𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑡𝑢𝑏𝑒 𝐴𝑆 = 𝜋 ∗  (0.189 𝑐𝑚)2 

𝐴𝑆 = 𝟎. 𝟏𝟏𝟐 𝒄𝒎𝟐  
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This area is multiplied by the change in butane height to get the volume of butane liquid (column 

16) that has been converted to vapor and diffused into the bitumen in that time frame. 

 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑉𝑆 = 𝐴𝑟𝑒𝑎 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 A-11 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑉𝑆 = 0.112 𝑐𝑚2 ∗ 1.0700 𝑐𝑚 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑉𝑆 = 𝟎. 𝟏𝟐𝟎 𝒄𝒎𝟑   

  

The next two columns compute the moles (column 17) and mass of butane (column 18) 

contained in the above volume. The number of butane is obtained by dividing volume of butane 

lost (butane diffused into bitumen) by molar volume of butane at butane temperature (24.00
o
C). 

The molar volume of butane (102.87 cm
3
/mol) at 24.00

o
C is obtained from PVTSim. The mass is 

obtained by multiplying volume of butane lost (butane diffused into bitumen) by density of 

butane at butane temperature (24.00
o
C). The density of butane (0.565 g/cm

3
) at 24.00

o
C is also 

obtained from PVTSim. 

 

# 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑚𝑜𝑙𝑒𝑠 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝑀𝑜𝑙𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒
 A-12 

# 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑚𝑜𝑙𝑒𝑠 =
0.1200 𝑐𝑚3

102.87 𝑐𝑚3/mol
 

# 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑚𝑜𝑙𝑒𝑠 = 𝟎. 𝟎𝟎𝟏 𝒎𝒐𝒍𝒔 

 

𝑀𝑎𝑠𝑠 = 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 A-13 

𝑀𝑎𝑠𝑠 = 0.12 𝑐𝑚3 ∗ 0.565 𝑔𝑐𝑚−3 

𝑀𝑎𝑠𝑠 = 𝟎. 𝟎𝟔𝟖 𝒈   

 

The butane mass fraction/concentration ωs (column 19) becomes the above calculated mass of 

butane divided by the sum of mass of butane and starting experimental mass of bitumen. 

 

𝑀𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝜔𝑆 =
𝑏𝑢𝑡𝑎𝑛𝑒 𝑚𝑎𝑠𝑠

𝑏𝑢𝑡𝑎𝑛𝑒 𝑚𝑎𝑠𝑠 + 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑎𝑠𝑠
 A-14 
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𝑀𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝜔𝑆 =
0.068 𝑔

0.068 𝑔 + 1.95 𝑔
 

 

𝑀𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝜔𝑆 = 𝟎. 𝟎𝟑𝟒 

 

Similarly, the butane mole fraction ωs (column 20) becomes the above calculated moles of 

butane divided by the sum of moles of butane and starting experimental moles of bitumen. 

 

𝑀𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
# 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑚𝑜𝑙𝑒𝑠

# 𝑜𝑓 𝑏𝑢𝑡𝑎𝑛𝑒 𝑚𝑜𝑙𝑒 + # 𝑜𝑓 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑜𝑙𝑒
 A-15 

𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
0.0012

0.0012 + 0.0035
 

𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝟎. 𝟐𝟓𝟎 

 

The ideal bitumen mixture density (column 21) of the bitumen and butane is computed as 

follows: 

 

𝐼𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

= (𝐵𝑢𝑎𝑡𝑛𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝐵𝑢𝑡𝑎𝑛𝑒 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) + (𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

∗ 𝐵𝑖𝑡𝑢𝑚𝑒𝑛 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝜌𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙) = (𝜌𝑠 ∗ 𝜔𝑠) + (𝜌𝐵 ∗ (1 − 𝜔𝑠)) A-16 

𝜌𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙) = (0.557𝑔 𝑐𝑚−3 ∗ 0.034) + (0.999 𝑔𝑐𝑚−3 ∗ (1 − 0.034)) 

= 𝟎. 𝟗𝟖𝟒 𝒈𝒄𝒎−𝟑 

 

Finally, the ideal bitumen mixture specific volume (column 22) is computed as: 

 

𝐼𝑑𝑒𝑎𝑙 𝑏𝑖𝑡𝑢𝑚𝑒𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒  =
1

𝐼𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 

 

𝑣𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙)   =
1

𝜌𝑚𝑖𝑥(𝑖𝑑𝑒𝑎𝑙)
 A-17 
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1

0.984
= 𝟏. 𝟎𝟏𝟔 𝒄𝒎𝟑𝒈−𝟏 

 

Note: All values from column 11 (real mixture density ρmix), column 12 (real mixture specific 

volume vmix), column 19 (solvent mass fraction ωs), column 21 (ideal mixture density ρmix(ideal)) 

and column 22 (ideal mixture specific volume vmix(ideal)) are later used to plot graphs applied in 

Section 4.3.2 and 5.3 

 

APPENDIX E - Bitumen height analysis table 

Appendix - E8: Bitumen height analysis 
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APPENDIX F - Specific volume graphs (all temperatures) 

 

Appendix - F9: Bitumen mixture specific volume plots for ideal and non-ideal mixing 40.00oC 

 

 

Appendix - F10: Bitumen mixture specific volume plots for ideal and non-ideal mixing 36.75oC 
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Appendix - F11: Bitumen mixture specific volume plots for ideal and non-ideal mixing 33.50oC 

 

 

Appendix - F12: Bitumen mixture specific volume plots for ideal and non-ideal mixing 30.25oC 
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Appendix - F13: Bitumen mixture specific volume plots for ideal and non-ideal mixing 27.00oC 

 

APPENDIX G - Butane/Bitumen changes as function of 

time calculations 

Butane 

The real start time is found by using the equation of the (t ≠ 0) trendline. For 27.00
o
C, that 

equation is, 

 

𝑦 = 0.0097𝑡0.5 − 0.3517 A-18 

Where (0.0097) is the slope of the graph and (-0.3517) is the y-intercept of the graph. The SRT 

start time (x-intercept from Table 5-1) can be found by equating y to zero and finding t
0.5

, 

 

0 = 0.0097𝑡0.5 − 0.3517 

0.3517 = 0.0097𝑡0.5 
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0.3517

0.0097
= 𝑡0.5 

𝑡0.5 = 36.26𝑠0.5 

 

This value is directly subtracted from all 27.00
o
C SRT experimental values to give a trendline 

that will pass through zero. Other corresponding x-intercept values for other temperature are 

identically computed and used to give trendlines that will pass through zero. The new graph with 

all trendlines passing through zero is shown in Figure 5-3. This data is what is used to eventually 

calculate diffusivity. 

 

To get the real start time in minutes from Table 5-1, the above compute SRT start time is 

converted back to minutes by squaring and dividing by 60, 

 

(36.26)2

60
= 21.91𝑚𝑖𝑛𝑠 

 

Other real start times are calculated similarly. 

Figure 5-3 shows all the new trendlines at various temperatures going through zero. The slopes 

are tabulated in Appendix - G14 along with other data. It should be noted that all R
2
 values are 

greater than 0.99 thereby showing a great fit for the data. These slopes are also later used in 

Design Expert (DE) software (Section 5.5) for further analysis. 
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Appendix - G14: Butane solvent height decrease graph data (all temperatures) 

 

 

Bitumen table 

The real start time is found by using the equation of the (t ≠ 0) trendline. For 27.00
o
C, that 

equation is, 

 

𝑦 = 0.00087𝑡0.5 − 0.0360 A-19 

Where (0.00087) is the slope of the graph and (-0.0360) is the y-intercept of the graph. The SRT 

start time (x-intercept from Table 5-2) can be found by equating y to zero and finding t
0.5

, 

 

0 = 0.00087𝑡0.5 − 0.0360 

0.0360 = 0.00087𝑡0.5 

0.0360

0.00087
= 𝑡0.5 

𝑡0.5 = 41.33𝑠0.5 

 

This value is directly subtracted from all 27.00
o
C SRT experimental values to give a trendline 

that will pass through zero. Other corresponding x-intercept values for other temperature are 

identically computed and used to give trendlines that will pass through zero. The new graph with 

all trendlines passing through zero is shown in Figure 5-3. This data is what is used to eventually 

calculate diffusivity. 
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To get the real start time in minutes from Table 5-1, the above compute SRT start time is 

converted back to minutes by squaring and dividing by 60, 

 

(41.33)2

60
= 28.47𝑚𝑖𝑛𝑠 

 

Other real start times are calculated similarly. 

 

Figure 5-6 shows all the new trendlines at various temperatures going through zero. The slopes 

are tabulated in Appendix - G15 along with other data. It should be noted that all R
2
 values are 

greater than 0.99 (apart from at 40.00
o
C) thereby showing a great fit for the data. These slopes 

are also later used in Design Expert (DE) software (Section 5.5) for further analysis. 

 

Appendix - G15: Bitumen height increase graph data (all temperatures) 
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APPENDIX H - Design expert ANOVA tables 

Butane table 

 
 

 
Bitumen table 
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Ideality table 

 
 

APPENDIX I - Matlab code & diffusivity function results  

fDsb 
%   Diffusion of Butane in Bitumen 
% 
%   by Lesley James, 20088392 
%   Supervisor: Dr. I Chatzis 
%   Quality Assurance:  Dr. M.A. Ioannidis 
% 
%   Name:           fDsb.m 
%   Version:        3.0 
%   Date Created:   20-Mar-03 
%   Last Updated:   14-Mar-09 
% 
%   List of Versions, dates and desciptions 
%       1.0     20-Mar-03   Creation 
%       2.0     12-May-03   Add Co-efficient variables for use in  
%                           Optimisation Program (Dsb_Opt.m) 
%       3.0     14-Mar-09   Tidy unused and obselete diffusivity functions 
% 
%   Description of program 
%       This function solves the bogus Diffusivity function 
 

 

function Dsb = fDsb(B) 
global rhoS rhoB nA1 nA2 nA3 nE2 nE3 p MWS MWB 
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    Dsb=p(1)*B+p(2);      % Linear diffusivity to optimise for the 

coefficients 

 
frho 
%-------------------------------------------------------------------------- 
%   Diffusion of Butane in Bitumen 
% 
%   by Lesley James, 20088392 
%   Quality Assurance:  Dr. M.A. Ioannidis 

%   Updated by: Evulukwu Ebubechi 
% 
%   Name:           frho.m 
%   Version:        1.0 
%   Date Created:   20-Mar-03 
%   Last Updated:   14-Dec-14 
% 
%    
% 
%   Description of program 
%       This function solves the mixture density function 
%-------------------------------------------------------------------------- 

 
function rho = frho(A) 
global vS vB 

  
    rho = (1/((1*A*vS) + ((1-A)*vB))); 

Note: parts bolded and highlighted vary depending on ideal/non-ideal experimental run 

 
Optimisation 
%-------------------------------------------------------------------------- 
%   Diffusion of Butane in Bitumen 
% 
%   by Lesley James, 20088392 
%   Quality Assurance:  Dr. M.A. Ioannidis 

%   Updated by: Evulukwu Ebubechi 

 
%   Name:           Optimisation.m 
%   Version:        2.0 
%   Date Created:   Fall 2008 
%   Last Updated:   14-Dec-14 
% 
%   List of Versions, dates and desciptions 
%       1.0    Fall 2008   Creation 
%       2.0    14-Mar-09   Tidy and delete unused variables 
 

Description of program 
%       This shell optimises the one-dimensional diffusion of solvent into 

bitumen.   
%       It calls wS_xt_ode_dim_OBJ1.m and minimises the objective function 
%       using lsqnonlin  
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clc 
clear all 
close all 
global p times 

  
p0  = [1e-6 1e-6]; 
lb  = [1E-8 1E-8]; 
ub  = [1E-04 1E-04]; 

 
times = linspace(0, 270000, 450);  % for 26-Aug-08 and both, every 10 min up 

to 4500 min 

  
%options=optimset('MaxFunEvals',1000,'MaxIter',150,'LargeScale','on'); 
%[p,fval]=fmincon(@wS_xt_ode_dim_OBJ1,p0,A,b,Aeq,beq,lb,ub,[],options,tfrom,t

to) 

  
options=optimset('MaxIter',400, 'MaxFunEvals',1200,'LargeScale','on', 

'Display','iter', 'TolFun',1E-08, 'TolX',1E-08); 

  
%TolFun - Termination tolerance on the function value [ positive scalar ] 
%TolX - Termination tolerance on X [ positive scalar ] 
%Display - to display output for every iteration, 'iter' 
%MaxFunEvals - specifies the maximum number of log-likelihood objective 

function evaluations.  The default value is 100 times the number of 

parameters 
%estimated in the model. 

       
[p,resnorm, residual, exitflag, output]=lsqnonlin(@wS_xt_ode_dim_OBJ1, p0, 

lb, ub, options) 

Note: parts bolded and highlighted vary depending on experimental run trial and error 

 
fsystem_ode_dim 
%-------------------------------------------------------------------------- 
%   Diffusion of Butane in Bitumen 
% 
%   by Lesley James, 20088392 
%   Quality Assurance:  Dr. M.A. Ioannidis 

%   Updated by: Evulukwu Ebubechi 
% 
%   Name:           fsystem_ode_dim.m 
%   Version:        6.0 
%   Date Created:   05-Mar-03 
%   Last Updated:   09-Dec-14 
% 
%   List of Versions, dates and desciptions 
%       1.0     06-Mar-03   Creation 
%       2.0     21-Mar-03   Organisation + solution of ode for no change in  
%                           interface 
%       3.0     16-Aug-06   Name change and boundary condition 
%       4.0     05-Dec-07   Make ode dimensionless over height of bitumen 
%       5.0     20-Feb-08   Replace Vv, dxsvdt and dxsdt with new dxsdt 
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%       6.0     09-Mar-09   Do not set dwSt=zeros, insert "dummy" variable to 

approximate dxSdt on RHS of (4) 
%       7.0     09-Dec-14   Adding non-ideality coefficients (bolded and 

highlighted in code 

             

%                           at end, reset "dummy" to new value of dxSdt 
%                           (LHS of (4) 
%       Description of program 
%       This function solves the discrete version of the Continuity eqtn 
%       taking into account bulk swelling, a convection term due to density 
%       changes and the fact that density and the diffusion coefficient are 
%       dependent on the mass fraction of the solvent in the bitumen. 
%---------------------------------------------------------------------------- 
  

function dwSdt = fsystem_ode_dim(times, wS) 
global z vB vS deltaxi p MWS MWB dummy 

 
% Dimensionless segment thickness  
deltaxi = 1/z; 

  
% (2) Mass Average Velocity - comment out if you want to look at effect of 

diffusion only 
    Vf = zeros(z+1,1);  
    Vfsum = zeros (z+1,1); 
    Vm = zeros (z+1,1); 

  
    Vf(1) = 0; 

  
    Vf(z+1)=(fDsb(wS(z+1))/wS(z+2))*((3*frho(wS(z+1))-

4*frho(wS(z))+frho(wS(z-1)))/2*deltaxi)*((3*wS(z+1)-4*wS(z)+wS(z-

1))/2*deltaxi)+(frho(wS(z+1))/wS(z+2))*((3*fDsb(wS(z+1))-

4*fDsb(wS(z))+fDsb(wS(z-1)))/2*deltaxi)*((3*wS(z+1)-4*wS(z)+wS(z-

1))/2*deltaxi)+(frho(wS(z+1))*fDsb(wS(z+1))/wS(z+2))*((2*wS(z+1)-

5*wS(z)+4*wS(z-1)-wS(z-2))/(deltaxi^2)); 

  
    for r=2:z 
        Vf(r) = (fDsb(wS(r))/wS(z+2))*((frho(wS(r+1))-frho(wS(r-

1)))/(2*deltaxi))*((wS(r+1)-wS(r-

1))/(2*deltaxi))+(frho(wS(r))/wS(z+2))*((fDsb(wS(r+1))-fDsb(wS(r-

1)))/(2*deltaxi))*((wS(r+1)-wS(r-

1))/(2*deltaxi))+(frho(wS(r))*fDsb(wS(r))/wS(z+2))*((wS(r+1)-2*wS(r)+wS(r-

1))/(deltaxi^2)); 

     
        Vfsum(r)=Vf(r)+Vfsum(r-1); 
    end 

  
    Vm(1) = 0; 
    Vm(z+1) = ((1*vS)-vB)*(((1/(2*z))*(Vf(1)+Vf(z+1)))+(1/z)*Vfsum(z)); 

  
    for s=2:z 
        Vm(s) = ((1*vS )-vB)*(((((s-1)*deltaxi)/(2*(s-

1)))*(Vf(1)+Vf(s)))+((((s-1)*deltaxi)/(s-1))*Vfsum(s-1))); 
    end 
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 % (3) The Continuity Equation      
% Boundary Conditions 
    % (a) At node z+1, i.e. the solvent bitumen interface, there is no  
    % change in solvent concentration wrt time. At time t > 0 the interface 
    % concentration (wS(z+1)) has reached equilibrium (wS*) for the given  
    % pressure and temperature conditions. 

  
%    wS(z+1) = 0.6;   % The solvent mass fraction instantaneously reaches  
                     % equilibrium at the interface. 
    dwSdt(z+1) = 0; 

     
    % (b) There is no flux at the end wall of the bitumen. So that the 
    % change in solvent mass fraction wrt change in position is zero at the  
    % end wall. Equation 3.27 

     
    dwSdt(1) = (2*fDsb(wS(1))/((wS(z+2))^2))*((wS(2) - wS(1))/(deltaxi^2)); 

     
    if round(times)==0 
        dummy=0; 
    end 

     
 % Nodes greater than 1 and less than z+1 can be expressed with the discrete 
% derivative of the general continuity equation. 

  
for i=2:z 
    % The change in solvent mass fraction wrt time is represented as the 
    % following form taking into account swelling and convection 

         
    dwSdt(i) = ((i-1)*deltaxi/wS(z+2))*((wS(i+1)-wS(i-1))/2*deltaxi)*(dummy)+ 

(1/wS(z+2))*((wS(i+1)-wS(i-

1))/2*deltaxi)*((fDsb(wS(i))/(frho(wS(i)*wS(z+2))))*((frho(wS(i+1))-

frho(wS(i-1)))/2*deltaxi) + ... 
    (1/wS(z+2))*((fDsb(wS(i+1))-fDsb(wS(i-1)))/2*deltaxi) - Vm(i)) + 

(fDsb(wS(i))/wS(z+2)^2)*((wS(i+1)-2*wS(i)+wS(i-1))/(deltaxi^2)); 

  
end 

  

  
% (4) New material balance development of xS (Increase in Bitumen Height), 

28-Mar-08 
% dxSdt is stored in the dwSdt(z+2) column and xS in the wS(z+2) column. 

  
b = 1; 
a = 0; 

  
fa = ((frho(wS(1)))^2)*dwSdt(1); 
fb = ((frho(wS(z+1)))^2)*(-(1/wS(z+2))*dummy*((3*wS(z+1)-4*wS(z)+wS(z-

1))/(2*deltaxi))+dwSdt(z+1)); 

  
fi = 0; 
fsum = 0; 
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for j=2:z 
    fi = ((frho(wS(j)))^2)*(-(deltaxi*(j-1)/wS(z+2))*dummy*((wS(j+1)-wS(j-

1))/(2*deltaxi))+dwSdt(j)); 
    fsum = fsum + fi; 
end 

  
integral = (((b-a)/(2*z))*(fa+fb)+((b-a)/z)*fsum);  %had fi, changed to fsum 

(06-Mar-09) 

  
dwSdt(z+2) = (fDsb(wS(z+1))/wS(z+2))*((3*wS(z+1)-4*wS(z)+wS(z-

1))/(2*deltaxi)) - ((vB-(1*vS))*(wS(z+2))/frho(wS(z+1)))*integral; 

  
% No moving boundary - if you want to look at effect of no swelling, 
% comment out the above expression for dwSdt(z+2) and use the following. 

  
dummy=dwSdt(z+2); 

  
%dwSdt(z+2) 
%for q=1:52 
%    dxSdt(q) = dwSdt(q); 
%end 
%dxSdt=dwSdt(1,z+2); 
%disp('comming out') 
%pause 
dwSdt=dwSdt'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 

Note: parts bolded and highlighted vary depending on ideal/non-ideal experimental run 

 
wS_xt_ode_dim_OBJ1 
function f = wS_xt_ode_dim_OBJ1(par, times) 
global p vS vB z times MWS MWB 

  
p=par; 
 

%-------------------------------------------------------------------------- 
%   Diffusion of Butane in Bitumen 
% 
%   by Lesley James, 20088392 
%   Quality Assurance:  Dr. M.A. Ioannidis 
%   Updated by: Evulukwu Ebubechi 
 

%   Name:           wS_xt_ode_dim_OBJ1.m 
%   Version:        10.0 
%   Date Created:   05-Mar-03 
%   Last Updated:   14-Dec-14 
% 
%   List of Versions, dates and desciptions 
%       1.0     05-Mar-03   Creation 
%       2.0     21-Mar-03   Organisation + solution of ode for no change in 
%                           interface 
%       3.0     30-Mar-03   Add functionality for a change in bitumen  
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%                           interface height 
%       4.0     14-Apr-03   Add convergence functionality by resetting the  
%                           initial concentration profile to the result of  
%                           the previous ode and obtaining an acceptable  
%                           tolerance. 
%       5.0     24-Apr-03   Following Grogan's method, if xS_new is not  
%                           within the desired tolerance than the initial  
%                           concentration profile is set to the previous 
%                           result and the xS_old is set to the previous  
%                           xS_new. 
%       6.0     07-Jun-03   Implemented trapezoidal rule for finding the  
%                           change in mass and height. 
%       7.0     24-Jul-06   Change directories for writing files 
%       7.1     26-Jul-06   Added file extensions (.csv) to output files. 
%       8.0     03-Nov-08   New Flux Boundary condition, see changes to 
%                           lines 125, 127, 129, 136 and in 

fsystem_ode_dim_BC2.m 
%       9.0     09-Mar-09   Change ode23s to ode45 
%       10.0    14-Mar-09   Tidy and delete unused variables 
%       11.0    14-Dec-14   Change experimental parameters and excel 

directories 

 
%   Description of program 
%       This function is used by Optimisation.m to solve the discrete version 

of the Continuity eqtn  
%       taking into account bulk swelling, a convection term due to density 
%       changes and the fact that density and the diffusion coefficient are 
%       dependent on the mass fraction of the solvent in the bitumen. 
%----------------------------------------------------------------------------

---------------------- 

  
% This program finds the relationship of Diffusivity & density  
% as a function of solvent concentration of butane in bitumen with respect  
% to depth and time. 

  

  

  
% (1) Experimental Results 
% Read experimental results from the given Worksheet found in the listed 

Excel Workbook  
% ('Workbook', 'Worksheet') found in the Directory listed. The experimental 

results  
% must be copied into this file name (Workbook) or the name listed below must 

be changed. 
% The data contained in the worksheet must start in cell A1 (without header 

titles) as the  
% command below will read the entire sheet starting at cell A1.  

 

  
%-------------------------------------------------------------------------- 
%   Diffusion of Butane in Bitumen 
% 
%   cd 'C:\Users\admin\Desktop\Diffusion code\Lesley\Ideal' 
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Decrease in Solvent Height (mm) 
[dHS_Exp] = xlsread('26,3c','Imported Butane 1'); 

  
Increase in Bitumen Height (mm) 
[dHB_Exp] = xlsread('26,3c','Imported Bitumen 1'); 

  
% Extract the experimental times in seconds 
[t_dHS_Exp] = (dHS_Exp(:,1)).^2;        % The experimental times for 

recording the height of the Solvent (s) 
[t_dHB_Exp] = (dHB_Exp(:,1)).^2;        % The experimental times for 

recording the height of the Bitumen (s) 

  
% Extract the experimental heights in mm 
[h_dHS_Exp] = dHS_Exp(:,2);        % The experimental times for recording the 

height of the Solvent (s) 
[h_dHB_Exp] = dHB_Exp(:,2);        % The experimental times for recording the 

height of the Bitumen (s) 

  
% (3) Variable Declaration 
%global vS vB n  

  
% (3a) Input Variables 
z = 50;                 % Number of segments 
mB = 1.583;           % Mass of bitumen                          

AS = 0.0855;          % Cross sectional area of new glass tubes for the 

solvent (cm^2) 
AB = 1.207;             % Cross sectional area of the bitumen (cm^2) 
 

% (3b) Miscellaneous variables 
rhoW = 1.0;             % Density of pure water (g/cm^3). 

  
% (3c) Pure Solvent (butane) Properties 
TS = 24.0;              % Temperature of the solvent (oC) 
rhoS = 0.57132;         % Density of pure liquid solvent at the bitumen 

temperature (butane)  (g/cm^3). 
rhoSS = 0.57295;        % Density of pure liquid solvent at the solvent 

temperature (butane)  (g/cm^3). 
vS = 1/rhoS;            % Mass specific volume of liquid butane (cm^3/g). 
muS = 0.15645;          % Viscosity of liquid butane corrected for the 

bitumen temperature (cP) 
MWS = 58.123;           % Molecular weight of butane (g/gmol). 
SGS = rhoS/rhoW;        % The specific gravity of butane. 

 
% (3d) Pure Bitumen Properties 
rhoB = 1.0004;           % Density of pure bitumen (g/cm^3). 
vB = 1/rhoB;            % Mass specific volume of bitumen (cm^3/g). 
muB = 238441;           % Bitumen viscsoity (cP) at 26.3oC after Karen re-ran 

mu for degassed bitumen 
TB = 26.3;               % Temperature of the bitumen (oC) 
MWB = 557;              % Molecular weight of bitumen (g/gmol). 
SGB = rhoB/rhoW;        % The specific gravity of bitumen. 
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L = mB/(rhoB*AB);              % Original height of bitumen                         

  
% (4) Solve simultaneously the set of Equations 
% (4a) Initial Solvent Mass Fraction 
    wS_init = zeros(1,z+2);         % Mass fraction of solvent in the  
                                     

wS_init(z+1) = 0.60;            % Instantaneously the wS at the interface 

reaches equilibrium. 

wS_init(z+2) = L;               % Set the initial xS to the wS(n+2) position 
%times = linspace(0, 46000, 1000); 

     
% (4b) Call the ODE    
%    options = odeset('RelTol', 1e-03, 'AbsTol', 1e-4); 
    [t, wS] = ode45('fsystem_ode_dim', times, wS_init); 
%    wS_init); with time intervals 
    [j,k] = size(wS);   % j times (rows) and k positions including dummy 
    q=k-1;              % The last i value is the dummy wS, i.e. xS_new 

     
% (5) Record the ODE Results and Analyse     
% (5a)  Initialization of the ODE output solvent mass fraction (wS)  
%       and the functions dependent upon it 

     
% Output matrix for Dsb wrt time and position 
    Dsb_tx = zeros(j, q);    

  
% Output matrix for rho wrt time and position 
    rho_tx = zeros(j, q); 

     
% The height of each nodal point throughout the depth of the bitumen layer  
% (no flux boudary =0) 
    xS_t = zeros(j,1); 
    x_t = zeros(j,q); 
    xS_xt=zeros(j,q); 

     
% Rewrite the solvent mass fractions into a new array for plotting purposes  
    wS_t = zeros(j, 1);  

     
% Mole Fraction 
    MoleS_t=zeros(j,q); 

     
% The solvent mass over depth of the bitumen wrt time     
    mS_t = zeros(j, q); 

          
% The total mass of solvent diffused into the bitumen at each time  
% (integrated)      
    mS_tot = zeros(j,1); 

     
% The change in height of the solvent due to diffusion into the bitumen            
    hS_tot = zeros(j,1);  

     
% The change in height of the solvent due to diffusion into the bitumen 
    hS_tot_delta = zeros(j,1);  
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% The change in height of the bitumen mixture 
    hB_tot_delta = zeros(j,1); 

  
% The change in height of the bitumen mixture 
    hB_tot = zeros(j,1);  

     
% The mass fraction of solvent diffused     
    wS_tot = zeros(j,1); 

           
% Computation of the convection term        
    Convection = zeros(j,q); 

       
% Computation of the diffusion term            
    Diffusion = zeros(j,q); 

     
% Record the sum of the solvent masses in node positions 2:i-1 for use in  
% trapezoidal rule     
    Sum_rhoS_t = zeros(j,1);           

       
% The solvent mass over depth of the bitumen wrt time 
    mS_t = zeros(j, q);   
    rhoS_t_trap = zeros (j, q); 

      
% Initialise the time in minutes     
    t_min = zeros(j,1); 

  
% Initialise the experimental heights 
    Exp_dhS = zeros(j,1); 
    Exp_dhB = zeros(j,1); 

         
% (5b) Step throught the times and positions recording the output parameters.     
    for h = 1:j     %time steps 
        for i=1:q   %position steps 

     
            % Determine the diffusivity dependent on the solvent mass 
            % fraction (wS) 
            Dsb_tx(h,i) = fDsb(wS(h,i));  

             
            % Determine the mixture density at each node dependent on the 
            % solvent mass fraction (wS) 
            rho_tx(h,i) = frho(wS(h,i));  

             
            % The size of the individual node segment 
            delta_xS = (wS(h,k)/z);    

             
            % The nodal positions starting from the no flux boundary 
            x_t(h,i) = delta_xS*(i-1);   

             
            % The nodal position at the no flux boundary is zero 
            x_t(h,1) = 0;   
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            % Rewrite the solvent mass fractions into a new array for 
            % plotting purposes. 
            wS_t(h,i) = wS(h,i);   

             
            %Mole Fraction array 
            MoleS_t(h,i) = (wS_t(h,i)/MWS)/((wS_t(h,i)/MWS)+((1-

wS_t(h,i))/MWB)); 

             
            % The mass of solvent in a differential segment 
            rhoS_t_trap(h,i) = AB*delta_xS*rho_tx(h,i)*wS(h,i);  

             
            % For each time step sum the mass of solvent from the 2nd to  
            % the next to last node to resolve the overall mass of solvent  
            % diffused into the bitumen 
            if i~=2 
                if i~=(k-1) 
                    Sum_rhoS_t(h) = Sum_rhoS_t(h) + rhoS_t_trap(h,i); 
                end 
            end             

             
        end    

         
        % Capture the change in height of the bitumen mixture explicitly (mm) 
        xS_t = wS(h,k); 
        hB_tot_delta(h) = ((wS(h,i+1) - L)*10);     % in milimetres 

         
         for i=1:q-1 

             
            % The mass of solvent in a differential segment 
            mS_t(h,i) = 

AB*(rho_tx(h,i)*wS(h,i)+rho_tx(h,i+1)*wS(h,i+1))*delta_xS/2;   

             
        end 

  
    % Change the time into minutes for plotting 
    t_min(h) = t(h)/60; 

                 
    % The change in the mass of butane diffused into the bitumen for each 
    % time t 
    mS_tot(h) = sum(mS_t(h,:));        

         
    % The total mass fraction at time t 
    wS_tot(h) = mS_tot(h)/(mS_tot(h)+mB);   

         
    % Capture the change in height of the bitumen mixture explicitly (cm) 
    hB_tot(h) = wS(h,k);    

         
    % The change in butane height (mm) 
    hS_tot(h) = (mS_tot(h)/(rhoSS*AS))*10;   

         
    % The change in butane height (mm) 
    hS_tot_delta(h) = (mS_tot(h)/(rhoSS*AS))*10;    
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    % The experimental change in bitumen and solvent heights computed from 
    % the curve fit of the experimental data 
    Exp_dhB(h) = 0.0244*sqrt(t(h));           
    Exp_dhS(h)=0.1602*sqrt(t(h));             

  
    end 

     
    % Prepare Xi matrix 
        Xi = zeros(j,q); 

     
    for h = 1:j 
        for i = 1:q 
            Xi(h,i) = x_t(h,i)/x_t(h,k-1); 
            xS_xt(h,i)=x_t(h,q)-x_t(h,i); 
        end 
    end 

  
% (6) Objective Function  
% (6a) Minimise the SSE 

  
    %f=abs((Exp_dhB-hB_tot_delta)/Exp_dhB)+abs((Exp_dhS-hS_tot)/Exp_dhS); 
    f=abs((Exp_dhB-hB_tot_delta)/Exp_dhB); 
    %f=abs((Exp_dhS-hS_tot)/Exp_dhS); 

      
hold off 

   
% (8) Write comma separated files for the following variables for Icappsrv1 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\t.csv',t) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\t_min.csv',t_min) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\Dsb_tx.csv',Dsb_tx) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\rho_tx.csv',rho_tx) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\x_t.csv',x_t) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\xS_t.csv',xS_t) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\xS_xt.csv',xS_xt) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\Xi.csv',Xi) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\wS_t.csv',wS_t) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\wS.csv',wS) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\MoleS_t.csv',MoleS_t) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\mS_t.csv',mS_t) 
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csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\mS_tot.csv',mS_tot) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\hS_tot.csv',hS_tot)  
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\hB_tot.csv',hB_tot)   
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\wS_tot.csv',wS_tot)  
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\hB_tot_delta.csv',hB_tot_delta)  
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\Exp_dhB.csv',Exp_dhB) 
csvwrite('C:\Documents and Settings\la2james\My Documents\Diffusion\Matlab 

Results 2008\Exp_dhS.csv',Exp_dhS) 

Note: parts bolded and highlighted vary depending on experimental run 
  

27.00oC ideal 
output =  
    firstorderopt: 6.7773e-04 
       iterations: 20 
        funcCount: 63 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 20 
Number of function evaluations: 63 

P: 1.62253E-06
 

Number of iterations: 3.06452E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0137505 

 

27.00oC non-ideal 
output =  
    firstorderopt: 0.0092 
       iterations: 16 
        funcCount: 51 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 16 
Number of function evaluations: 51 

P: 1.62036E-06
 

Number of iterations: 3.11999E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0129484 

 
30.25oC ideal 
output =  
    firstorderopt: 7.8061e-04 
       iterations: 11 
        funcCount: 36 
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     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 11 
Number of function evaluations: 36 

P: 8.42601E-07
 

Number of iterations: 7.98569E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0210707 

 
30.25oC non-ideal 
output =  
    firstorderopt: 0.0012 
       iterations: 12 
        funcCount: 39 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 12 
Number of function evaluations: 39 

P: 8.83794E-07
 

 

Number of iterations: 8.51128E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0163218 

 
33.50oC ideal 
output =  
    firstorderopt: 0.0069 
       iterations: 11 
        funcCount: 36 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 11 
Number of function evaluations: 36 

P: 6.47256E-07 
Number of iterations: 6.26044E-07

 

Number of function evaluations: Sum of squared residuals at solution: 0.0305356 

 
33.50oC non-ideal 
output =  
    firstorderopt: 0.0025 
       iterations: 11 
        funcCount: 36 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 11 
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Number of function evaluations: 36 

P: 7.34443E-07
 

 

Number of iterations: 7.14686E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.019785 

 
36.75oC ideal 
output =  
    firstorderopt: 0.0055 
       iterations: 11 
        funcCount: 36 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 11 
Number of function evaluations: 36 

P: 4.56324E-07
 

Number of iterations: 4.22576E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0417347 

 
36.75oC non-ideal 
output =  
    firstorderopt: 0.0076 
       iterations: 13 
        funcCount: 42 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 13 
Number of function evaluations: 42 

P: 5.46299E-07
 

Number of iterations: 5.31826E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0218285 

 
40.00oC ideal 
output =  
    firstorderopt: 0.0057 
       iterations: 13 
        funcCount: 42 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 13 
Number of function evaluations: 42 

P: 3.67085E-07
 

Number of iterations: 3.65682E-07
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Number of function evaluations: Sum of squared residuals at solution: 0.0473623 

 
40.00oC non-ideal 
output =  
    firstorderopt: 0.0048 
       iterations: 11 
        funcCount: 36 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 11 
Number of function evaluations: 36 

P: 4.90677E-07
 

Number of iterations: 4.80693E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0225671 

 
28.50oC ideal (experimental) 
output =  
    firstorderopt: 0.0034 
       iterations: 13 
        funcCount: 42 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 13 
Number of function evaluations: 42 

P: 1.16052E-06
 

Number of iterations: 5.91083E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0195693 

 
28.50oC non-ideal (experimental) 
output =  
    firstorderopt: 0.0053 
       iterations: 12 
        funcCount: 39 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 12 
Number of function evaluations: 39 

P: 1.18692E-06
 

Number of iterations: 5.97641E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0175477 
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28.50oC ideal (DE predicted) 
output =  
    firstorderopt: 0.0049 
       iterations: 13 
        funcCount: 42 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 13 
Number of function evaluations: 42 

P: 1.41302E-06
 

Number of iterations: 6.08486E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.017115 

 
28.50oC non-ideal (DE predicted) 
output =  
    firstorderopt: 0.0043 
       iterations: 13 
        funcCount: 42 
     cgiterations: 0 
        algorithm: 'trust-region-reflective' 
          message: [1x415 char] 
Number of iterations: 13 
Number of function evaluations: 42 

P: 1.45127E-06
 

Number of iterations: 6.13672E-07
 

Number of function evaluations: Sum of squared residuals at solution: 0.0149401 
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APPENDIX J - Solvent concentration profiles (non-ideal) 

 

Appendix - J16: Butane solvent mass fraction profile at 30.25oC (non-ideal) 
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Appendix - J17: Butane solvent mass fraction profile at 33.50oC (non-ideal) 
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Appendix - J18: Butane solvent mass fraction profile at 36.75oC (non-ideal) 
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Appendix - J19: Butane solvent mass fraction profile at 40.00oC (non-ideal) 
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APPENDIX K - Density profiles (non-ideal) 

 

Appendix - K20: Bitumen density profile at 30.25oC (non-ideal) 
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Appendix - K21: Bitumen density profile at 33.50oC (non-ideal) 
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Appendix - K22: Bitumen density profile at 36.75oC (non-ideal) 
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Appendix - K23: Bitumen density profile at 40.00oC (non-ideal) 
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APPENDIX L - Extra Validation temperatures data 

 

Appendix - L24: Predicted and experimental change in solvent height vs SRT at 30.25oC 
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Appendix - L25: Predicted and experimental change in solvent height vs SRT at 36.75oC 
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Appendix - L26: Validation data for bitumen height increase at all temperatures 

 

 

 

 


