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Many animals produce alarm calls that warn conspecifics about predators. In some species, alarm calls 27 

communicate continuous traits associated with a predator encounter, such as its level of threat. In other species, 28 

alarm calls communicate categorical traits, such as predator class (e.g. avian versus terrestrial), and are 29 

consequently considered functionally referential. In theory, functionally referential alarm calls can 30 

simultaneously communicate continuously distributed traits, though examples of such calls are rare. Such dual-31 

function calls could be adaptive because they would enable receivers to tailor their responses to a specific 32 

predator class, as well as to more subtle characteristics of individual attacks. Here, we tested whether male fowl 33 

(Gallus gallus) communicate continuous variation in avian stimuli through graded structure in their functionally 34 

referential aerial alarm calls. In the first experiment, we held male fowl in an indoor test cage and allowed them 35 

to view wild birds flying past a window. We recorded their alarm calls and compared the structure to the size, 36 

speed, and proximity of the eliciting stimuli. Stimuli that appeared closer, larger, and faster elicited alarm calls 37 

that were shorter, louder, clearer, and lower in frequency. In the second experiment, we broadcast alarm calls to 38 

foraging females and compared their responses to the graded structural changes documented earlier. Females 39 

exhibited greater initial responses and finished feeding later in response to louder alarm calls. Together, these 40 

results show that fowl communicate the size, speed and proximity of avian stimuli through graded variation in 41 

their functionally referential aerial alarm calls. 42 
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Many animals produce alarm calls that alert conspecifics to the presence of predators (reviewed in 56 

Zuberbühler 2009). In some species, alarm calls also communicate continuous variation in some aspect of the 57 

predator encounter, such as the caller’s motivational state or the predator’s proximity, size or speed of attack 58 

(Darwin 1872; Morton 1977; Blumstein & Amitage 1997; Templeton et al. 2005). These traits can be important 59 

correlates of a predator’s hunting success, so they may be especially important for determining a receiver’s 60 

antipredator response (Howland 1974; FitzGibbon 1989). These traits can also be measured for all types of 61 

predators and thus may be important to receivers in a wide variety of predator contexts. 62 

 63 

In some communication systems, callers produce acoustically distinct alarm calls that correspond to specific 64 

external referents (production specificity), such as different types of predators (e.g. Seyfarth et al. 1980) or 65 

different types of predator behaviours (e.g. Griesser 2008). Receivers, upon hearing such calls, show 66 

antipredator behaviours that are appropriate for the specific external referent that evoked the alarm (perception 67 

specificity). Alarm calls that show both production and perception specificity are termed ‘functionally 68 

referential’ (Macedonia & Evans 1993; Evans 1997), and they have been documented in primates, suricates 69 

(Suricata suricatta), Gunnison’s prairie dogs, Cynomys gunnisoni, and birds (Seyfarth et al. 1980; Evans et al. 70 

1993a; Zuberbühler et al. 1999; Manser 2001; Manser et al. 2001; Fichtel & Kappeler 2002; Kiriazis & 71 

Slobodchikoff 2006). In general, functionally referential alarm calls are associated with species that use different 72 

escape strategies for different types of predators (Macedonia & Evans 1993). In some species, social factors, 73 

such as the need to coordinate group movements during foraging, can also contribute to the evolution of 74 

functionally referential alarm calls (Furrer & Manser 2009). 75 

 76 

Theory predicts that functionally referential alarm calls can simultaneously communicate continuous 77 

variation in some aspect of a predator encounter (Marler et al. 1992; Macedonia & Evans 1993). Furthermore, 78 

there are no obvious mechanistic constraints. Predator class can be communicated by producing structurally 79 

discrete types of alarm calls, whereas continuous traits associated with a predator attack can be communicated 80 

through graded features of a particular call type (Evans 1997). In principle, there are several ways in which a 81 

signal could be designed to simultaneously encode predator class and other information. For example, an animal 82 
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could produce a functionally referential alarm call repeatedly and encode a continuous trait, such as predator 83 

distance, through a sequence-level parameter, such as calling rate. Alternatively, callers could encode a 84 

continuous trait in the graded structure of a functionally referential call. For example, highly aroused individuals 85 

generally produce harsh, low-frequency calls, whereas less aroused individuals generally produce calls that are 86 

clearer and higher in frequency (Morton 1977). Regardless of the specific encoding mechanism, functionally 87 

referential alarm calls that simultaneously communicate continuous traits could be highly adaptive because they 88 

would allow receivers to tailor their anitpredator responses to a specific predator class, as well as to more subtle 89 

characteristics of individual predator attacks. 90 

 91 

Functionally referential alarm calls that simultaneously communicate continuous traits have only been 92 

documented definitively in suricates (Manser 2001; Manser et al. 2001). Callers in this species produce 93 

acoustically distinct alarm calls in response to avian and terrestrial predators, and they simultaneously encode the 94 

predator’s distance into the graded structure of calls. When alarm calls are broadcast in the absence of predators, 95 

receivers show antipredator behaviours that are appropriate for both the class and distance of predator that 96 

evoked the call (Manser 2001; Manser et al. 2001). Other species, such as tufted capuchin monkeys, Cebus 97 

apella nigritus, produce functionally referential alarm calls in some contexts and separate alarm calls that 98 

communicate continuous traits in others (Wheeler 2010). However, capuchins are not known to produce 99 

functionally referential alarm calls that simultaneously communicate continuous traits (Wheeler 2010). Such 100 

dual-function calls probably exist in other species, but the necessary experiments have yet to be conducted. For 101 

example, white-browed scrubwrens, Sericornis frontalis, communicate the distance to aerial predators by 102 

grading the number of elements in their trilled aerial alarm calls (Leavesley & Magrath 2005). Whether trilled 103 

aerial alarm calls are functionally referential, however, remains unclear because formal tests of their production 104 

specificity have yet to be conducted; calls may be elicited specifically by avian predators, or by all predators 105 

more generally (Leavesley & Magrath 2005). Similarly, the mobbing calls of Siberian jays, Perisoreus infaustus, 106 

encode the type of threat (hawk, owl) and the level of threat (low to high) that is associated with perched raptors 107 

(Griesser 2009). Playback experiments necessary for assessing call perception have yet to be conducted, 108 
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however, so it remains unclear whether mobbing calls communicate predator type and predator threat to 109 

receivers in jays (Griesser 2009). 110 

 111 

Fowl (Gallus gallus) are ideal for studying alarm calling behaviour because they produce two functionally 112 

referential alarm calls (Evans et al. 1993a). The ‘terrestrial alarm call’ is a loud series of broadband pulses that is 113 

produced by both sexes specifically in response to predators approaching on the ground, such as foxes (Vulpes 114 

vulpes) or racoons (Procyon lotor). In response to terrestrial alarm calls, fowl assume an erect posture and scan 115 

the horizontal plane (Evans et al. 1993a). The ‘aerial alarm call’ is acoustically distinct from the terrestrial alarm 116 

call and has a highly variable structure (Table 1, Fig. 1, Supplementary Material; see also Figure 4 in Evans et al. 117 

1993a). It is produced only by males in response to a broad class of objects moving overhead, including insects, 118 

airplanes and predatory and nonpredatory birds (Gyger et al. 1987; Evans & Marler 1995). Larger and faster 119 

aerial stimuli that are shaped like raptors have the greatest probability of evoking these calls (Evans et al. 1993b; 120 

Evans & Marler 1995). In response to aerial alarm calls, fowl crouch, scan the sky and seek shelter (Evans et al. 121 

1993a). 122 

 123 

The objective of the current study was to determine whether the functionally referential aerial alarm calls of 124 

male fowl also communicate continuous traits associated with avian stimuli. In the first experiment (i.e. call 125 

production), we held males in an indoor test cage and allowed them to view wild birds flying past a window. In 126 

the past, we have noticed males housed indoors producing aerial alarm calls in response to wild birds flying past 127 

outside. We therefore took advantage of this opportunity and compared the structure of males’ alarm calls to the 128 

size, speed and proximity of the eliciting avian stimuli. In the second experiment (i.e. call perception), we played 129 

back aerial alarm calls to females and compared variation in their antipredator responses to gradation in the 130 

structure of the eliciting calls. We predicted that female responses would be explained best by the acoustic 131 

parameters that were correlated with avian stimulus attributes in the call production experiment. By assessing 132 

both call production and call perception, we were able to test whether fowl communicate continuous variation in 133 

avian stimuli through gradation in their referential aerial alarm calls. 134 

 135 
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 136 

METHODS 137 

 138 

Experiment 1: Call Production 139 

 140 

In the first experiment, we placed male fowl into an indoor test cage and permitted them to view wild birds 141 

and other objects flying past a window outside. To monitor and quantify the naturally occurring stimuli observed 142 

by the subjects, we videorecorded the window from the male’s perspective and quantified the apparent size, 143 

speed and proximity of the stimuli. We also audiorecorded the subject’s vocal response, so that we could test for 144 

relationships between variation in avian stimulus attributes and gradation in alarm call structure. 145 

 146 

Subjects 147 

Subjects were 24 sexually mature male golden Sebright fowl that were between 1 and 3 years of age. When 148 

not being tested, they were kept in a climate-controlled holding facility (temperature: 21 °C; light: overhead 149 

incandescent lighting for 12 h, beginning at 0600 hours, as well as natural light from surrounding windows). 150 

Each male was paired with one female in a separate wire cage (1 m long, 1 m wide, 0.8 m high) that contained 151 

food, water, wooden perches and straw bedding. 152 

 153 

Apparatus 154 

During recording sessions, we held subjects in a wire test cage (1.12 m long, 0.45 m wide, 0.73 m high) that 155 

had an artificial grass mat, wooden perches and a continuous supply of food and water. The test cage was housed 156 

inside a climate-controlled test room (temperature: 21 °C; lighting: incandescent lights for 12 h, beginning at 157 

0600 hours each day) that had a single window to the outside (1.11 m wide, 0.82 m high). The test cage was 158 

positioned on a small table, such that its floor was level with the bottom of the window. The longitudinal axis of 159 

the test cage was aligned with the centre of the window, and the narrow end of the cage was placed facing the 160 

window at a distance of 1.7 m. To reduce acoustic interference from outside the test room, as well as 161 

reverberation from within the test cage, we attached 10 cm thick ‘Sonex’ sound-attenuating foam baffles 162 
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(Illbruck Acoustic, Inc., Minneapolis, MN, U.S.A.) to the back and both sides of the cage, as well as to the wire 163 

overhead. 164 

 165 

The view from the test cage through the test room window was dominated by several large trees 166 

(Eucalyptus) in the foreground (0–15 m from window), three small buildings in the mid-ground (15–30 m from 167 

window) and several large trees in the background. Sky was visible between tree branches in the upper half of 168 

the field of view, and green grass was visible between trees and buildings in the lower half of the field of view. 169 

When a subject was in the end of the cage nearest the window (i.e. 1.7 m from window), its horizontal and 170 

vertical fields of view through the window were approximately 36° and 27°, respectively. When a subject was in 171 

the opposite end of the cage (i.e. 2.8 m from window), its horizontal and vertical fields of view through the 172 

window were approximately 22° and 17°, respectively. 173 

 174 

We videorecorded aerial stimuli from the subject’s perspective using a Sony Handicam (model: HDR-HC7; 175 

format: HDV 1080i50; shutter speed: 1/100 s). The camera was mounted on a tripod at approximately the 176 

subject’s eye-height (27 cm above the floor of the test cage) and was placed outside the subject’s cage midway 177 

along the side of the cage that faced the test room window. We adjusted the focal length so that the camera’s 178 

field of view included the entire window for the remainder of the experiment, so that the apparent size, speed 179 

and proximity of stimuli could be compared across recording sessions. Because the camera was slightly closer to 180 

the window, it captured the subject’s complete field of view through the window, regardless of his position 181 

within the cage. Video was recorded digitally (format: HDV 1080i50) to the hard drive of a Macintosh computer 182 

using QuickTime Pro software (version 7; Apple, Inc., Cupertino, CA, U.S.A.). 183 

 184 

We recorded the subject’s vocalizations with a Sennheiser MHK 40-P48 microphone (cardioid pickup 185 

pattern; 40–20 000 Hz frequency response, ± 1 dB deviation) that was suspended from the centre of the subject’s 186 

cage. Calls were digitized using a MOTU UltraLite-mk3 digital interface (48 kHz sampling rate; 24-bit 187 

amplitude encoding) and were recorded to the digital sound track (WAVE format, 48 kHz sampling rate, 16-bit 188 

amplitude encoding) of the video file that was recording the aerial stimuli. By recording to the same digital file, 189 
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we ensured precise temporal synchronization of the audio and video tracks. We calibrated our system by 190 

recording 30 s of continuous white noise, which we broadcast at 76 dB(C) SPL (measured at a distance of 1 m 191 

with a RadioShack sound level meter, model 33-4050, slow response) through a Nagra Kudelski DSM monitor, 192 

which was placed on the centre of the test cage floor. After this initial calibration procedure, we did not adjust 193 

the gain on the audio-recording system for the remainder of the experiment, which ensured that all vocalizations 194 

were recorded at the same level. 195 

 196 

Procedure 197 

We recorded subjects between 13 February and 7 May 2008. We began a recording session at 1200 hours 198 

by transferring a subject and his female cagemate from the holding facility to the test cage inside the test room. 199 

The female was included because males only produce alarm calls in the presence of a conspecific audience 200 

(Karakashian et al. 1988; Evans & Marler 1992). The pair was given until 3 h before sunset to acclimate to the 201 

test cage (time of sunset determined at -33°50’00” latitude; 151°15’00” longitude). Audio and video recording 202 

began at that time and continued until sunset, at which time the birds went up to roost and became silent. We 203 

resumed recording the next morning at sunrise and continued for an additional 4 h, resulting in a total of 7 h of 204 

audio and video recording per subject. We programmed all recordings to begin and end automatically, thus 205 

eliminating the need for a human observer to enter the test room during a recording session. Following a 206 

recording session, we returned the subject and his mate to the holding facility, replaced the food, water and 207 

artificial grass mat in the test cage, and cleaned the test room window. 208 

 209 

Our goal was to record at least 10 alarm calls per subject. To achieve this, we reviewed the audio recordings 210 

following the first round of 24 recording sessions (see Sound Analysis details below). Males that had not 211 

produced 10 alarm calls in the first round were recorded again in a second round. The recording procedure for 212 

the second round was identical to that of the first, and subjects were recorded in the same order. Of the 24 213 

subjects recorded in the first round, 16 were recorded in the second round, resulting in a total of 280 h of audio 214 

and video recording. 215 

 216 
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Quantifying stimulus attributes and alarm call structure 217 

We identified alarm calls on the original recordings using Soundtrack Pro software (version 2.0.2; Apple, 218 

Inc., Cupertino, CA, U.S.A.). For each recording, we listened to the audio track at approximately natural 219 

amplitude while simultaneously viewing the video track and a scrolling real-time spectrogram of the audio track 220 

(512-point fast Fourier transform (FFT), 87.5% overlap, Hamming window). When we detected an alarm call 221 

(see example spectrograms in Fig. 1; example audio files are provided in the Supplementary Material), we noted 222 

the exact time (40 ms resolution) on a permanent time code that we had superimposed on the video track, and 223 

then saved the alarm call into two separate digital files. The first file contained the video track only (format: 224 

HDV 1080i50) and was used to characterize the aerial stimuli that evoked the alarm calls. The second file 225 

contained the audio track only (WAVE format, 44.1 kHz sampling rate, 16-bit amplitude encoding) and was 226 

used to quantify alarm call structure. Both files included 30 s of the original recording before and after the alarm 227 

call. Females do not produce aerial alarm calls, so we were confident that the male subject produced all recorded 228 

calls. 229 

 230 

Extracted video clips were displayed on a high-resolution external video monitor (1920 x 1080 pixels 231 

resolution) that we controlled with Final Cut Pro software (version 6.0.6; Apple, Inc.). For each of the 695 video 232 

clips, we searched frame by frame for aerial stimuli during a 5 s measurement window that immediately 233 

preceded the alarm call. The beginning and end of the measurement window were selected relative to the video’s 234 

permanent time code, thus keeping the observer blind to the structure and sound of the corresponding alarm call. 235 

After detecting a stimulus, we categorized it as avian or nonavian and excluded all nonavian stimuli (e.g. flying 236 

invertebrates, falling leaves) from subsequent analysis (N = 217 clips). We also excluded clips in which an avian 237 

stimulus was airborne for less than two video frames (i.e. < 80 ms) during the measurement window (N = 39 238 

clips) because it was not possible to measure the speed of such stimuli. If more than one avian stimulus was 239 

present during the measurement window (N = 52 clips), we measured only the one closest in time to the alarm 240 

call. 241 

 242 
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We measured the following three variables for every avian stimulus: (1) maximum diameter (a measure of 243 

the size of the avian stimulus from the subject’s perspective), (2) average speed and (3) proximity to subject. To 244 

determine maximum diameter, we measured the largest diameter of the stimulus in every video frame in which it 245 

was visible during the 5 s measurement window, and then noted the maximum value of these measures. 246 

Measurements were made by placing a transparent ruler directly onto the video monitor. To determine average 247 

speed, we divided the linear distance travelled by the stimulus during the 5 s measurement window by the period 248 

of time for which it was visible. Linear distance was measured by placing a transparent ruler directly onto the 249 

monitor and stepping frame by frame through the video; the measure did not incorporate deviations from a linear 250 

flight path. To determine the proximity to the subject, we compared the position of the stimulus to landmarks in 251 

the video (e.g. trees, buildings). Based on known distances between the landmarks and the video camera, we 252 

could approximate the minimum distance between the stimulus and the camera. The resolution of this method 253 

was limited by the spacing of landmarks and the difficulty of estimating depth from a two-dimensional video; 254 

consequently, we quantified proximity using an ordinal scale that was based on landmark positions (1 = 0–15 m; 255 

2 = 15–30 m; 3 = 30+ m). 256 

 257 

For each avian stimulus that we measured, we also measured the fine structure of the corresponding alarm 258 

call using SASLab Pro software (version 4.40; Avisoft Bioacoustics, Berlin, Germany). We filtered each 259 

extracted audio file with a band-pass filter (200–12 000 Hz), which removed background noise without affecting 260 

the structure of the alarm call (Wilson & Evans 2010). We then generated a spectrogram (1024-point FFT, 261 

87.5% overlap, Hamming window, 2.9 ms temporal resolution, 43 Hz frequency resolution; Fig. 1) and used the 262 

‘automatic parameter measurements’ feature (settings: holdtime, 100 ms; threshold, -30 dB relative to maximum 263 

amplitude) to select the alarm call and measure its structure. If the subject produced more than one alarm call in 264 

response to a particular avian stimulus, then we selected and measured only the first. We measured four 265 

structural features, including (1) call length, (2) amplitude, (3) dominant frequency and (4) entropy. Amplitude is 266 

the root-mean-square amplitude of the entire call, and dominant frequency is the frequency with the highest 267 

amplitude. Entropy is a measure of sound purity that approaches 0 for pure tones and 100 for white noise; it is 268 

the ratio of the geometric mean to the arithmetic mean of the spectrum, multiplied by 100. Dominant frequency 269 
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and entropy were measured from every FFT within the alarm call and were then averaged (separately for each 270 

variable) for statistical analysis. 271 

 272 

Statistical analysis 273 

Preliminary analyses revealed that the three independent variables (i.e. maximum diameter, average speed, 274 

proximity to subject) were highly intercorrelated. To avoid potential problems associated with multicollinearity, 275 

we conducted a principal components analysis on the three independent variables (see Table 2) and used only the 276 

derived factor scores in subsequent statistical analyses. 277 

 278 

We used linear mixed model analysis to test for relationships between avian stimulus attributes and alarm 279 

call structure. A single principal component derived from the three original avian stimulus variables was entered 280 

as a covariate with fixed effects, and male identity was entered as a subject variable with random effects to 281 

account for repeated measures of the same individuals. A separate model was constructed for each of the four 282 

measures of alarm call structure. For each model, we estimated fixed effects using the restricted maximum 283 

likelihood method and modelled the subject effect by assuming a variance components covariance structure. 284 

Residuals were not normally distributed for three of the four models, but were corrected by applying a square-285 

root transformation to call length and a log transformation to dominant frequency and entropy. All other model 286 

assumptions were satisfied. Tests were two tailed, and we considered results to be statistically significant when P 287 

≤ 0.05. All analyses were conducted in PASW (version 18.0 for Macintosh; Chicago, IL, U.S.A.). 288 

 289 

Experiment 2: Call Perception 290 

 291 

In the second experiment, we tested whether female fowl respond appropriately to gradation in the structure 292 

of aerial alarm calls. We played back alarm calls, and then compared female responses to variation in call 293 

structure, which we quantified according to the structural measures described in experiment 1. 294 

 295 

Subjects 296 
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Subjects were 32 sexually mature female golden Sebright fowl that were between 2 and 7 years of age. Of 297 

the 32 females tested, 24 had served as a conspecific audience in the first experiment. When not being tested, 298 

subjects were paired with males and kept in the same conditions and climate-controlled holding facility as in the 299 

call production study. 300 

 301 

Apparatus 302 

During playback trials, we held subjects in a wire test cage (1.12 m long, 0.45 m wide, 0.73 m high) that 303 

was placed on the floor in the centre of a sound-attenuating chamber (Ampliscience, model 10070; 304 

Robassomero, Italy). The chamber measured 2.38 m wide x 2.38 m long x 2.15 m high and was lined with 10 cm 305 

thick ‘Sonex’ foam baffles on the walls and 15 cm thick baffles on the ceiling to prevent reverberation. The cage 306 

had an artificial grass mat, a continuous supply of water, and light provided by two incandescent lamps (60 W). 307 

A remotely operated food dispenser was placed above the cage and was used to deliver fresh corn to the centre 308 

of the cage floor during trials. To broadcast alarm call stimuli, we placed a Nagra Kudelski DSM monitor 309 

midway along the length of the test cage, abutting the side. The monitor was connected through a conduit panel 310 

in the chamber wall to a Behringer digital-to-analogue converter (model FCA202, 24 bits/96 kHz) and a 311 

Macintosh computer that played stimuli using QuickTime Pro software (version 7; Apple, Inc.). Subjects were 312 

monitored with a Panasonic video camera (model WV-CL320) and a Sennheiser microphone (model MHK 40-313 

P48) connected to a Canopus analogue-to-digital converter (model ADVC110) through the conduit panel. This 314 

was connected to a second Macintosh computer, which recorded trials using QuickTime Pro software. 315 

 316 

Prior to commencing playbacks, we calibrated the playback system by broadcasting the white noise that we 317 

had recorded during the call production study. We adjusted the playback level so that the white noise measured 318 

precisely 76 dB(C) SPL at a distance of 1 m (i.e. the same level used during recording). The playback level was 319 

not adjusted for the remainder of the playback experiment, which ensured that each alarm call was broadcast at 320 

the same amplitude at which it had been produced (mean ± SD = 70 ± 8 dB(C) SPL at a distance of 1 m). 321 

 322 

Stimuli 323 



 14 

Playback stimuli were 20 high-quality aerial alarm calls recorded during the call production study (Table 3, 324 

Fig. 1, Supplementary Material). For each of four males, we selected five calls that were, as far as possible, 325 

evenly distributed across the range of variation observed in the call production study (Table 1, 3, Fig. 1, 326 

Supplementary Material). Using Raven Interactive Sound Analysis software (version 1.3 Pro, Cornell Lab of 327 

Ornithology Bioacoustics Research Program, Ithaca, NY, U.S.A.), we extracted the calls from the original 328 

recordings, plus 100 ms of silence before and after each call. We removed background noise with a band-pass 329 

filter (200–12 000 Hz; Wilson & Evans 2010), and then saved the calls as separate digital files (WAVE format, 330 

48 kHz sample rate, 16-bit amplitude encoding). We did not normalize the sound files because we wanted to 331 

preserve natural amplitude gradation among calls. 332 

 333 

Procedure 334 

We tested subjects between 2 August and 9 September 2008 using a randomized complete block design. We 335 

assigned the 32 hens at random to four equal-sized groups (i.e. 8 per group), and then tested each group daily 336 

during a different 5-day period. Each group was tested with alarm calls derived from different stimulus males 337 

(i.e. 4 stimulus males corresponding to 4 groups of subjects, with the constraint that subjects were not tested with 338 

alarm call stimuli recorded from their cagemates), and each subject within the group was tested with the same set 339 

of five alarm calls (i.e. one alarm call per day in a random order). Subjects were tested individually each day in 340 

either the morning (0800–1100 hours) or the afternoon (1500–1800 hours) to correspond to peak foraging 341 

periods. A given hen was always tested at the same time each day. 342 

 343 

Prior to testing a group, we habituated each subject in the group to the test apparatus. We placed one of the 344 

eight subjects into the test cage and allowed her to move freely around the cage for approximately 15 min. 345 

During that time, we delivered five kernels of fresh corn to the centre of the test cage floor using the remotely 346 

operated food dispenser. We repeated this habituation procedure each day until every subject in the group 347 

walked readily around the cage, did not become startled by the food dispenser, and consumed all of the corn that 348 

was delivered (range 3–11 habituation cycles per subject). 349 

 350 
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We began testing a group on the day after all birds had habituated to the test apparatus. A trial began by 351 

placing one of the eight subjects into the test cage, closing the chamber door and initiating the recording 352 

procedure. The observer controlled the experiment from outside the chamber, viewing the subject remotely on 353 

the computer monitor. When the subject began moving around the cage, we delivered five kernels of fresh corn 354 

to the centre of the test cage floor. As soon as the subject pecked at the corn, we broadcast an alarm call stimulus 355 

and continued recording the subject until she consumed all of the remaining corn (4–59 s), or for 10 min if she 356 

did not resume feeding. We then returned the subject to the holding facility, replaced the mat in the test cage and 357 

reloaded the food dispenser with fresh corn. 358 

 359 

Quantifying female responses 360 

Prior to scoring female responses, we viewed the trial recordings using QuickTime Pro software. When the 361 

corn was delivered, we stepped frame by frame through the video and noted the exact time at which the alarm 362 

call stimulus was played, relative to the video’s time code (40 ms resolution). We then scored female responses 363 

to alarm call stimuli by viewing the recordings again with the audio track muted. This method allowed us to 364 

score female responses relative to when the alarm call was played, but ensured that the observer was not 365 

influenced by listening to the eliciting call. 366 

 367 

We measured two dependent variables from every trial: (1) initial response and (2) time to finish feeding. 368 

Initial response was scored as the immediate reaction to the onset of the alarm call and was quantified according 369 

to the six-level ordinal scale defined by Evans et al. (1993b) as follows. 370 

 371 

(1) No visible response. 372 

(2) Looking upwards (typically by rolling the head to fixate with one eye). 373 

(3) Looking upwards and flexing the neck, so as to draw the head towards the body. 374 

(4) Responses 2 and 3, together with perceptible crouching. 375 

(5) Responses 2 and 3, together with pronounced crouching, so that the body makes contact with the floor. 376 

(6) Responses 2, 3 and 5, together with running in a crouched posture. 377 
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 378 

Time to finish feeding was designed to reflect the trade-off between foraging and vigilance. It was defined as the 379 

time from the onset of the alarm call stimulus to when the subject consumed the last kernel of corn. If a subject 380 

did not consume all of the corn after the alarm call was played, we set time to the maximum value observed 381 

among the 32 subjects on that particular test day (i.e. test days 1–5). Subjects did not consume all of the corn in 7 382 

of the 160 playback trials. 383 

 384 

Statistical analysis 385 

We used linear mixed model analysis to test for relationships between alarm call structure (independent 386 

variables) and female response (dependent variables). Our measures of alarm call structure were derived directly 387 

from the call production study (see above), and included call length, amplitude, dominant frequency and entropy. 388 

These four measures, as well as test day (i.e. 1–5), were entered into the model as covariates with fixed effects. 389 

Female identity was entered as a subject variable with random effects to account for repeated measures of the 390 

same individuals. We constructed a separate model for each measure of female response. For each model, we 391 

estimated fixed effects using the restricted maximum likelihood method and modelled the subject effect by 392 

assuming a variance components covariance structure. Preliminary analyses revealed a two-way interaction 393 

between test day and amplitude in the model explaining initial response. Therefore, in the final model explaining 394 

initial response, we included as covariates with fixed effects all two-way interactions between test day and the 395 

four measures of alarm call structure. No interaction effects were detected in the model explaining time to finish 396 

feeding, so interactions were not included in this model. Residuals were not normally distributed in the model 397 

describing time to finish feeding, but were corrected by applying a log transformation to the dependent variable. 398 

All other model assumptions were satisfied. Tests were two tailed, and we considered results to be statistically 399 

significant when P ≤ 0.05. 400 

 401 

RESULTS 402 

 403 

Experiment 1: Call Production 404 
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 405 

Of 695 aerial alarm calls produced by 24 subjects during 280 h of recording, 373 (54%) were associated 406 

with a clear avian stimulus, 217 (31%) with a nonavian stimulus (e.g. invertebrates, falling leaves) and 105 407 

(15%) with no discernable aerial stimulus. Of the 373 calls that were associated with an avian stimulus, we 408 

excluded 39 because the stimulus was not present on two or more video frames. Analyses were therefore based 409 

on 334 aerial alarm calls that were associated with a clear avian stimulus during the 5 s immediately preceding 410 

the call (mean ± SD = 1.3 ± 0.9 calls/subject/h; range  0.1–4.0 calls per subject per h). In general, we could not 411 

ascertain the species of avian stimuli because the lighting conditions (i.e. dim light inside the test room, bright 412 

light outside the test room) caused the avian stimuli to appear very dark on the video recordings. The few stimuli 413 

that we could identify included predatory birds, such as Australian magpies, Cracticus tibicen, kookaburras, 414 

Dacelo novaeguin, and unidentified raptors, as well as nonpredatory birds, such as parrots (Cacatuidae, 415 

Psittacidae) and honey-eaters (Meliphagidae). The brown goshawk, Accipiter fasciatus, was the only raptor that 416 

was observed regularly at our study site. 417 

 418 

Avian stimuli were highly variable in terms of maximum diameter, average speed and proximity to subject, 419 

as measured from the video on an external monitor (Table 1). In addition, the three variables were highly 420 

intercorrelated and thus loaded heavily onto a single principal component that explained 82% of the variance in 421 

the original 3 variables (Table 2). Maximum diameter and average speed loaded positively onto the principal 422 

component, whereas proximity to subject loaded negatively onto the principal component. Consequently, a high 423 

principal component score reflects a close, large and fast-moving avian stimulus.  424 

 425 

The principal component describing the avian stimuli accounted for a significant amount of the gradation in 426 

alarm call structure (Fig. 2). In response to stimuli that appeared larger, closer and faster moving, subjects 427 

produced shorter alarm calls (linear mixed model analysis: F1,327 = 40.8, P < 0.001) with higher amplitude (F1,323 428 

= 38.5, P < 0.001), lower dominant frequency (F1,322 = 39.4, P < 0.001) and less random energy distribution 429 

(F1,325 = 8.7, P = 0.003). In contrast, stimuli that appeared smaller, more distant and slower moving elicited 430 
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longer alarm calls that had lower amplitude, higher dominant frequency and more randomly distributed energy 431 

(Fig. 2). 432 

 433 

Experiment 2: Call Perception 434 

 435 

Females usually responded to the playback of male alarm calls by crouching, rolling their head to the side 436 

and looking upwards with one eye. They also stopped consuming corn and remained still for up to 1 min. Alarm 437 

call structure and test day both had a significant effect on female response (Fig. 3). The initial response was 438 

stronger in response to louder alarm call stimuli, but declined significantly over the 5-day test period (Fig. 3a). 439 

Furthermore, the effect of amplitude on initial response diminished over time, as reflected by a significant 440 

interaction between test day and amplitude (linear mixed model analysis: test day: F1,138 = 8.1, P = 0.005; 441 

amplitude: F1,142 = 16.3, P < 0.001; test day x amplitude interaction: F1,139 = 14.5, P < 0.001; Fig. 3a). Initial 442 

response was not affected by the other measures of alarm call structure, or by their interactions with test day 443 

(linear mixed model analysis: call length: F1,145 = 0.0, P = 0.903; dominant frequency: F1,139 = 0.5, P = 0.494; 444 

entropy: F1,140 = 0.4, P = 0.510; test day x call length interaction: F1,147 = 0.3, P = 0.571; test day x dominant 445 

frequency interaction: F1,139 = 0.6, P = 0.439; test day x entropy interaction: F1,136 = 0.0, P = 0.900). As with 446 

initial response, the time to finish feeding was longer in response to louder alarm call stimuli, but declined 447 

significantly over the 5-day test period (linear mixed model analysis: test day: F1,124 = 33.8, P < 0.001; 448 

amplitude: F1,150 = 8.0, P = 0.005; Fig. 3b). Time to finish feeding was not affected by the other measures of 449 

alarm call structure (linear mixed model analysis: call length: F1,140 = 1.9, P = 0.166; dominant frequency: F1,154 450 

= 2.5, P = 0.114; entropy: F1,153 = 2.3, P = 0.128). 451 

 452 

DISCUSSION 453 

 454 

Male fowl encoded continuous traits associated with avian stimuli into several graded parameters of their 455 

functionally referential aerial alarm calls. Stimuli that appeared closer, larger and faster elicited alarm calls that 456 

were shorter, louder, clearer and lower in frequency. Female receivers ignored gradation in the duration, 457 



 19 

frequency and entropy of alarm calls, but responded appropriately to gradation in alarm call amplitude. In 458 

response to louder alarm calls, females showed stronger initial responses and took longer to finish feeding. 459 

Together, these results show that fowl communicate continuous variation in avian stimuli through graded 460 

structure in their functionally referential aerial alarm calls. 461 

 462 

Gradation in the structure of alarm calls correlated with continuous variation in both stimulus attributes and 463 

receiver responses. This pattern is consistent with urgency-based calling, which has been described in ground 464 

squirrels, birds, suricates and primates (Owings & Hennessy 1984; Blumstein & Armitage 1997; Manser 2001; 465 

Manser et al. 2001; Warkentin et al. 2001; Fichtel & Hammerschmidt 2002; Leavesley & Magrath 2005; 466 

Templeton et al. 2005; Fallow & Magrath 2010). As in these other systems, however, the precise cause of 467 

gradation in alarm call structure is unclear (Evans 1997). It could reflect the size, speed or proximity of avian 468 

stimuli, or the risk of predation associated with these physical properties. Another possibility is that gradation in 469 

call structure instructs receivers about how to respond (i.e. imperative), rather than denoting stimulus 470 

characteristics per se (i.e. denotative; Cheney & Seyfarth 1990; Marler et al. 1992). Finally, gradation could 471 

reflect the caller’s affective state, which logically correlates with those stimulus characteristics that predict attack 472 

(Morton 1977; Evans 1997). Future studies could address this latter possibility by testing whether predator 473 

attributes affect physiological measures that are associated with the caller’s affective state (Cabanac & Aizawa 474 

2000; Walker et al. 2006). 475 

 476 

Gradation in the amplitude of alarm calls affected female responses and thus had communicative value. In 477 

addition, receivers appeared to respond adaptively to this gradation, since they resumed feeding sooner in 478 

response to quieter calls that were putatively associated with less dangerous predators (FitzGibbon 1989). 479 

Female responses also diminished over time, which could reflect habituation to a novel environment. We have 480 

observed similar effects in male fowl, whose alarm calling rates declined steadily for several weeks following 481 

their introduction to a novel outdoor environment (Wilson & Evans 2008; Wilson et al. 2010). Alternatively, 482 

reduced female responsiveness could reflect caller reliability. In our experimental design, we repeatedly 483 

broadcast alarm calls from the same male in the absence predators, which made him progressively less reliable. 484 
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Since the alarm calls of fowl are individually distinctive (Bayly & Evans 2003), it is possible that females 485 

became less responsive as the alarm calls of an individual male consistently failed to predict aerial predators. 486 

Richardson’s ground squirrels, Spermophilus richardsonii, yellow-bellied marmots, Marmota flaviventris, and 487 

vervet monkeys , Chlorocebus aethiops, all discriminate between the alarm calls of reliable and unreliable 488 

individuals (Cheney & Seyfarth 1988; Hare & Atkins 2001; Blumstein et al. 2004). 489 

 490 

Amplitude was the only acoustic feature we measured that correlated with both stimulus attributes and 491 

receiver responses. In general, animals produce louder calls when they are highly aroused (Darwin 1872; Driver 492 

& Humphries 1969; Scherer 1985; Conover 1994; Jurisevic & Sanderson 1998; Rendall 2003; Soltis et al. 2009; 493 

but see Searcy & Nowicki 2006). Furthermore, louder calls are generally more evocative than quiet calls 494 

(Brenowitz 1989; Blumstein & Armitage 1997; Fichtel & Hammerschmidt 2002; Lampe et al. 2010; Brumm & 495 

Ritschard 2011). Gradation in call amplitude thus provides a simple, noncognitive mechanism for adapting 496 

receiver responses to those predator attributes that directly influence a caller’s affective state. A potential 497 

disadvantage of using amplitude gradation for communication is that amplitude can vary as a function of wind 498 

gusts, topography, vegetation, movement of the caller’s head, and other, presumably irrelevant, factors. 499 

Furthermore, calls necessarily attenuate as they travel from caller to receiver (Bradbury & Vehrencamp 1998). In 500 

fowl, however, the effects of attenuation and these other miscellaneous factors are probably minimal because 501 

males only produce aerial alarm calls when accompanied closely by a conspecific audience (Karakashian et al. 502 

1988; Evans & Marler 1992). In social groups, most aerial alarm calls are given by alpha males, which associate 503 

closely with hens and keep other males at a distance (Wilson et al. 2008, 2009; Kokolakis et al. 2010). 504 

 505 

Avian stimuli affected several acoustic parameters of alarm calls that failed to predict receiver responses. 506 

These relationships potentially can be explained by mechanisms that also are unrelated to receiver responses. For 507 

example, the apparent effect of avian stimulus attributes on call length could be an artefact of varying call 508 

amplitude. In order to produce a loud, continuous call, the caller must expel the air in its air sacs at a high rate, 509 

which rapidly depletes its air supply and results in a short call (Plummer & Goller 2008). Similarly, the effect of 510 

stimulus attributes on dominant frequency can be explained by Morton’s (1977) motivation-structural rules, 511 
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which predict that animals will produce lower-frequency sounds in highly arousing situations. In contrast to 512 

dominant frequency, the observed effect of stimulus attributes on alarm call entropy contradicts Morton’s (1977) 513 

motivation-structural rules, which predict that animals will produce noisier calls (i.e. greater entropy) when they 514 

are highly aroused. Surprisingly, fowl produced alarm calls with lower entropy in response to stimuli that we 515 

assume were highly arousing. Similar results have also been found in other species, suggesting that highly 516 

aroused individuals may produce clearer vocalizations more generally. For example, yellow-bellied marmots (D. 517 

T. Blumstein & Y. Y. Chi, unpublished data), piglets, Sus scrofa (Puppe et al. 2005) and goats, Capra hircus 518 

(Siebert et al. 2011) all produce clearer vocalizations when they are highly aroused. 519 

 520 

By grading the structure of alarm calls in relation to predator distance, callers can potentially mitigate the 521 

predation costs associated with calling. For example, Richardson’s ground squirrels remain cryptic by producing 522 

short-range ultrasonic alarm calls in lieu of long-range audible alarm calls when predators are distant and 523 

unlikely to have detected them (Wilson & Hare 2006). Our results suggest that fowl use a similar strategy for 524 

reducing predation risk. When predators were distant and unlikely to have noticed potential callers, males 525 

produced low-amplitude, high-frequency alarm calls that are known to be cryptic (Marler 1955; Klump & 526 

Shalter 1984; Wood et al. 2000). This finding is consistent with a recent study on risk management, which 527 

showed that male fowl have a greater probability of producing alarm calls when concealed under cover 528 

(Kokolakis et al. 2010). In contrast, when predators were close and likely to have already noticed the caller, 529 

males produced loud, low-frequency alarm calls. These characteristics typically indicate a caller’s willingness to 530 

defend itself and may consequently function as threat signals (Morton 1977). Furthermore, these calls were 531 

similar to the ‘distress calls’ produced by many birds. Distress calls are thought to startle predators during the 532 

final stages of attack (Driver & Humphries 1969; Conover 1994), so this may be an additional function of the 533 

loud, low-frequency alarm calls observed in our study. 534 

 535 

In conclusion, fowl have a remarkably complex alarm communication system in which they produce 536 

acoustically distinct alarm calls in response to aerial and terrestrial predators. Receivers, upon hearing alarm 537 

calls, respond with categorically distinct antipredator behaviour that is specific to the type of predator that 538 
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evoked the call. By recording males’ alarm-calling responses to naturally occurring avian stimuli, and by 539 

comparing variation in females’ responses to gradation in alarm call structure, the current study reveals 540 

additional complexity in this system. Specifically, we show that male fowl encode continuous variation in avian 541 

stimuli through gradation in the fine structure of their functionally referential aerial alarm calls. Stimuli that 542 

appear closer, larger and faster elicit alarm calls that are shorter, louder, clearer and lower in frequency. We also 543 

show that females ignore gradation in the duration, frequency and entropy of alarm calls, but respond 544 

appropriately to gradation in call amplitude. In response to louder alarm calls, females show stronger initial 545 

responses and take longer to finish feeding. Together, these results provide the first definitive evidence that a 546 

bird can communicate continuous variation in avian stimuli through gradation in the fine structure of their 547 

functionally referential alarm calls. 548 
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Table 1 695 

Description of 334 aerial alarm calls produced by male fowl and the avian stimuli that evoked them in the call 696 

production experiment 697 

Variable Minimum Maximum Average Coefficient of 

variation (%) 

Alarm call structure         

Length (ms) 403 (349) 2154 (882) 1048 (308) 53 (19) 

Amplitude (dB(C)) 60 (5) 78 (7) 69 (5) 9 (3) 

Dominant frequency (Hz) 673 (196) 1473 (370) 992 (218) 26 (10) 

Entropy (%) 21 (3) 33 (4) 27 (3) 15 (3) 

Avian stimuli         

Diameter (mm) 1.5 (1.3) 35.2 (15.2) 14.2 (5.8) 81 (14) 

Speed (cm/s) 4.3 (1.8) 68.1 (34.6) 23.1 (10.2) 88 (21) 

Proximity (index) 1.1 (0.4) 2.9 (0.3) 1.9 (0.4) 41 (11) 

PC1 -1.1 (0.2) 1.6 (1.1) 0.0 (0.5) —  

For each variable, we calculated four parameters for each male (minimum, maximum, average, coefficient of 698 

variation). Shown is the average (standard deviation) of each parameter from among the 24 males. ‘PC1’ is a 699 

principal component that incorporates the maximum size, average speed and proximity to subject. Coefficient of 700 

variation could not be calculated for PC1 because it involved division by zero. All values are shown prior to 701 

transformation. 702 

703 
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Table 2 704 

Details of the principal components analysis used to describe 334 avian stimuli recorded in the call production 705 

experiment 706 

Variable PC1 

Diameter (mm) 0.94 

Speed (cm/s) 0.88 

Proximity (index) -0.89 

  

Eigenvalue 2.45 

Variance explained (%) 81.7 

 707 

Component loadings are provided for the single extracted principal component (PC1). Analysis was based on the 708 

correlation matrix and unrotated components were extracted when eigenvalues exceeded 1. Sampling adequacy 709 

was assessed using Bartlett’s test, and the hypothesis that the correlation matrix contained only zero correlations 710 

was rejected (χ2
3 = 595.8, P < 0.001). Component scores were generated using the regression method. 711 

712 



 30 

Table 3 713 

Description of the 20 aerial alarm calls that were used as stimuli in the call perception experiment 714 

Variable Minimum Maximum Average Coefficient of 

variation (%) 

Length (ms) 473 (48) 1361 (180) 958 (75) 38 (7) 

Amplitude (dB(C)) 61 (4) 81 (4) 70 (1) 11 (2) 

Dominant frequency (Hz) 655 (99) 1165 (214) 926 (30) 22 (1) 

Entropy (%) 24 (3) 33 (3) 28 (1) 13 (4) 

For each variable, we calculated four parameters for each male (minimum, maximum, average, coefficient of 715 

variation). Shown is the average (standard deviation) of each parameter from among the four stimulus males.716 
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 718 

Figure 1.  Graded structure of aerial alarm calls. The five calls shown here (a–e) were produced by a single male 719 

in the call production experiment, and were used as one of the four sets of playback stimuli in the call perception 720 

experiment. Calls are arranged in order of ascending amplitude because amplitude was the only acoustic feature 721 

that correlated with both avian stimulus attributes and receiver responses. Spectrograms were generated using a 722 

1024-point FFT, 87.5% overlap, and a Hamming window, which resulted in a frequency resolution of 43 Hz and 723 

a temporal resolution of 2.9 ms. Calls were filtered with a bandpass filter (200–12 000 Hz) and are shown at 724 

original amplitude. Greyscale represents an amplitude range of 50 dB. 725 

726 
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Figure 2.  Relationship between avian stimulus attributes and alarm call structure. Shown on the abscissa is a 728 

principal component that incorporates the size, speed and proximity of 334 avian stimuli. Shown on the ordinates 729 

are the (a) call length, (b) amplitude, (c) dominant frequency and (d) entropy of the 334 corresponding alarm 730 

calls (N = 24 males). Note the nonlinear ordinate scales for call length, dominant frequency and entropy (see text 731 

for details of associated tranformations). To elucidate the relationship between avian stimulus attributes and 732 

within-male gradation in alarm call structure, we removed between-male differences in alarm call structure by 733 

centering each male’s measurements for a given variable on that variable’s overall sample mean. Regression 734 

lines were calculated from the slope and intercept coefficients generated by the linear mixed model analyses. 735 

736 
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 738 

Figure 3.  Relationship between alarm call structure and female response over a 5-day test period (N = 32). 739 

Shown on the abscissa is the amplitude of the eliciting alarm call stimulus. Shown on the ordinates are (a) initial 740 

response and (b) time to finish feeding. Note the nonlinear ordinate scale for time to finish feeding. 741 


