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Abstract 

In this thesis, we consider N quantum particles coupled to collective thermal quantum 

environments. The coupling is energy conserving and scaled in the mean field way. 

There is no direct interaction between the particles, they only interact via the common 

reservoir. It is well known that an initially disentangled state of the N particles will 

remain disentangled at all times in the limit N --+ oo. In this thesis , we evaluate the 

n-body reduced density matrix (tracing over the reservoirs and the N - n remaining 

particles). We identify the main , disentangled part of the reduced density matrix and 

obtain the first order correction term in 1/ N. \Ne show that this correction term is 

entangled. vVe also estimate the speed of convergence of the reduced density matrix as 

N --+ oo. Our model is exactly solvable and it is not based on numerical approximation. 
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Chapter 1 

lntrod uction 

One of the important problems in quantum theory is the study of the effect of noise on 

quantum systems. There are many situations which have this behaviour. For instance, 

quantum information processing is based on manipulation of superposition and entan­

glement of basic quantum bits forming a quantum processor. The effect of noise can be 

due to interaction with thermal environment or another open system. This interaction 

will destroy phase coherence ( decoherence) and quantum correlation (entanglement) [1-

4]. To study this behaviour we need to model the system mathematically. In general, a 

collection of particles can interact directly or indirectly via common reservoirs . In direct 

interaction, there are mathematical difficulties to solve the problem exactly or numeri­

cally complicated models involving many particles. In indirect interaction, one can start 

with a system with disentangled states and create and control entanglement by coupling 

the system with a common thermal noise [1- 4]. In this work we will consider indirect 

interaction. 

Before studying a system with many particles interacting indirectly, first one should 

study the entanglement of two subsystems interacting indirectly via a common reservoir 

(quantum thermal noise) [4]. In [4], the authors obtain expressions for the character­

istic time-scales for decoherence, relaxation , disentanglement , and for the evolution of 

observables, valid uniformly in time t :'.'.': 0. In [5] the authors consider an open quan­

tum system of N not directly interacting spins ( qubits) in contact with both local and 

collective thermal environments and it is shown numerically that creation of two-spin 

entanglement is suppressed if N is large. Obviously, to study this problem analytically 

and solve it exactly we need some other restrictions and physical assumptions. Since the 

size of interaction energy will be proportional to the number of pairs of particles [ 6], for 

balanced competition between individual energy and interaction energy one can choose 

an appropriate scaling for interaction with negative power of N. In [6] it is shown the 
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only scaling with non-trivial dynamics for large N is the so-called mean field scaling. 

Note that the mean field models (theory) are very useful mathematical tools to study 

complicated systems. This approximation theory allows us to reduce a complex problem 

to a one particle problem. Mean field methods are deterministic methods, making use of 

tools such as Taylor expansions. They have many application in physics and information 

theory such as phase transition in Ising model. One of the main applications of mean 

field model is the study of N-body quantum system. In the classic paper of [7] mean field 

models of directly interacting systems have been studied. It has been proved that an 

entangled system will be disentangled after time evolution when we increase the number 

of particles. The evolution of the state of single particle turns out to be nonlinear in the 

state, the nonlinear Hartree equation. 

In [6] the authors studied a large number N of particles interaction via thermal noise. 

They proved that common noise cannot create entanglement in the N particle system if 

N is large enough. Moreover , it is shown that dynamics of the system is very close to a 

product state and the difference is of order 1/ N. This behaviour has an explicit speed 

of convergence(N ---t oo ). This problem is very interesting since it is exactly solvable 

without any extra assumptions such as weak coupling or any Markovian approximations. 

In reality, one does not have N = oo, but only N very large, so it is important to know 

the corrections to the case N = oo for large but finite N only. In this thesis, we study this 

problem. \Ve consider an open system of N particles interacting indirectly via a common 

thermal reservoir. Moreover, the interaction is energy preserving. To model the system 

and solve it exactly we follow these steps: First, we select appropriate Hilbert spaces for 

particles and Fock spaces for reservoirs. Second, we construct the Hamiltonian of the 

system as sum of the Hamiltonian of each particles and a mean-field scaled interaction 

Hamiltonian. Third, we find explicit expression for reduced n-body density matrix of the 

system. Then we calculate the leading order correction of the n body reduced density 

matrix (the one proportional to l/N). We show that the first order term (ex N-1) of 

the density matrix is entangled, while the one ex N° is factorized. Moreover, we find the 

explicit expression for the entangled first order term and we compute the speed of this 

behaviour exactly. 

This thesis is organized as follows. In Chapter 2 we review mathematical preliminaries 

and some basic concepts such as Hilbert spaces, linear operators, their spectra, and tensor 

products of Hilbert spaces and Fock spaces. Moreover , we continue with the concepts 

of dynamics of open and closed quantum systems, entanglement, and von Neumann 

entropy. In Chapter 3 we present the main structure of our model and give the main 

results. Finally, the proof of the main results are given in Chapter 4. 



Chapter 2 

Basic mathematical background 

In different parts within this work, we will need some definitions and properties of the 

foundation of our study. 

2.1 Hilbert Space 

In this section we will define some basic definitions and theorems about Hilbert spaces 

[8-10]. 

Definition 1. Let X be a vector space over either the scalar field IR of real numbers or 

the scalar .field e of complex numbers. Suppose we have a function II· II : X ---+ [O, oo) such 

that 

• ll xll = 0 if and only ifx = 0 for any x EX, 

• 11.r + Yll :::;; ll xll + llYll for all x, Y E X, and 

• llo:xll = lal llxll for all scalars a E IR ore and vectors x EX. 

We call (X, 11 ·II) a normed linear space. 

Example 2.1. LetX =en = {(z1 , z2,···,zn) Zj Ee} with ll(zl;Z2,···,zn) ll 
1 

(2=]=1 lzj l2) 2; 

this is called Euclidean norm. 

Example 2.2. The space x = en with ll(z1, Z2, .. . 'Zn) ll =max {lzjl : 1:::;; j:::;; n} is a 

norm linear space. 

Definition 2. A sequence { Xn} in X is said to be a Cauchy sequence if it has the following 

property: Given any E > 0 there exists N such that if n, m 2:: N, then ll xn - Xm ll < E. 
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Definition 3. A space is said to be complete if every Cauchy sequence in X converges 

in X. 

Definition 4. A Banach space X is a complete linear space with a norm II· II· 
Example 2.3. A basic example is the n-dimensional Euclidean space with the Euclidean 

norm. Usually, the notion of Banach space is only used in the infinite dimensional setting, 

typically as a vector space of functions. For example, the set of continuous functions on 

closed interval I = [a, b] of the real line with the norm of a function f given by 

11111 =sup lf(x)I (2.1) 
xEI 

is a Banach space. 

Definition 5. Let X be a vector space over C. An inner product is a map ( ·, ·) : X x X ---+ 
C satisfying, for x, y and z in X and scalars a EC 

• \x , y) = \y,x) 

• \x, x) ~ 0, with \x, x) = 0 if and only if x = 0, 

• \x + y, z) = \x, z) + \y , z) 

• \x , ay) = a \x , y). 

An inner product on L2 (X, µ) is 

(f , g) = j~ fgdµ. 

This general framework includes, as special cases, the example en with 

n 

((z1, Z2, · · · , Zn), (w1, W2 1 • • • , Wn)) = L ZjWj· 

j = l 

1 

(2.2) 

(2.3) 

Proposition 1. If(-,·) is an inner product on X then ll xll = \x, x) 2 is a norm on X. 

Definition 6. A Hilbert space 1{ is a vector space over C with an inner product (-, ·) 

such that 1{ is complete in the norm obtained from the inner product 

ll 1/J ll 2 = (1/;, 1/;)' 1f; E H. (2.4) 

Any space L2 (X, µ) as described above is thus an example of a Hilbert space, since we have 
2 l. 

already observed that L2 (X, µ) is a Banach space under the norm 11111 = Ux Ill dµ) 2 

1 

which we recognize as (! , !) 2. 
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In quantum theory a normalized vector in a Hilbert space called ket and denoted by 

11/i) . Moreover, the dual element associated to 11/i) is called the bra (1/il = 11/i)*, it is the 

linear functional on H defined by 

(1/il (tp) := (1/i, tp), \ftp E 'H . (2.5) 

Definition 7. Given vectors f, g in a Hilbert space H, we say that f is orthogonal to 

g, written f _lg , if (!, g) = 0. For M ~ H , we define the orthogonal complement by 

MJ_ = {f E 1-{ : (j , g) = 0 for all g EM}. 

Theorem 1 (Projection Theorem). : Let M be a closed subspace of a Hilbert space H. 

There is a unique pair of mappings P : H ---+ M and Q : 1-{ ---+ M J_ such that x = Px + Qx 

for all x E 1-{. Furthermore, P and Q have the following additional properties: 

• x E M::::} Px = x and Qx = 0. 

• x E M J_ ::::} Px = 0 and Qx = x . 

• Px is the closest vector in M to x. 

• Qx is the closest vector in M J_ to .1:. 

• 11Pxll 2 + 11Qxll 2 = llxll 2 for all x. 

• P and Q are linear maps. 

Definition 8. If X is a normed linear space over C, then a linear functional on X is a 

map A: X---+ C satisfying A (ax+ f3y) = aA(x) + f3A(y) for all vectors x, y EX and all 

scalars a, /3 E C. 

Theorem 2 (Riesz representation Theorem) . : Every bounded linear functional A 

on a Hilbert space H is given by taking the inner product with a (unique) fixed vector 

h0 E H : A(h) = (h0 , h). Moreover, the norm of the linear functional A is llholl-

Definition 9. An orthonormal set in a Hilbert space 1-{ is a set S with the properties: 

• for every e E S, ll ell = 1, and 

• for distinct vectors e and f in S, (e, f) = 0. 

For an easy example of an orthonormal set in the Hilbert space £ 2 ([0, 2n]), with 

respect to normalized Lebesgue measure dt/(2n) , consider the collection of functions eint 

for any integer n form an orthonormal set. 
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Definition 10. An orthonormal basis B for a Hilbert space 1-l is a maximal orthonormal 

set; that is, an orthonormal set that is not properly contained in any orthonormal set and 

every x E 1-l can be written as a linear combination of the elements of B. 

It is easy to see that the set { eint: n E Z} is an orthonormal basis for £ 2 ([0, 2n], dt/2n). 

Definition 11. Let X and Y be normed linear spaces, a map T: X ---+ Y is linear ~f 

(2.6) 

for all x 1 , x 2 E X and scalars o:, /3 E <C. We say the linear map Tis a bounded linear 

operator from X to Y if there is a finite constant C such that II Txlly ::; C llxllx for all 

x EX. 

Proposition 2. ff T : X ---+ Y is a linear map from a normed linear space X to a normed 

linear space Y, the fallowing statements are equivalent: 

• T is bounded. 

• Tis continuous. 

• Tis continuous at 0. 

Theorem 3. Given Hilbert spaces 1-l and JC and a bounded linear map A : 1-l ---+ JC there 

is a unique A* : JC ---+ 1-l such that 

(Ah , k) = (h, A* k) (2.7) 

for all h E 1-l and k E JC. 

The operator A* called the (Hilbert space) adjoint of A. In the case that 1-l =JC and 

A* =A we say that A is self-adjoint or Hermitian. 

Proposition 3. For A and B : 1-l ---+ JC we have 

• A** =A where A**= (A*)*. 

• (A + B )* = A* + B*. 

• (o:A)* = aA* for o: E <C. 

• (AB)* = B* A*. 

• llAll = llA*ll and llA* All= llAll 2 . 
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Definition 12. If T: X ---7 X is a bounded linear operator on a Banach space X , then 

the set of complex numbers >. for which T- >.I is not invertible is called the spectrum of 

T. 

We will denote the spectrum of T by a(T). The collection of the eigenvalues of T 

is called the point spectrum of T; we denote it ap(T). If >. is in a(T) but is not an 

eigenvalue, then the range of T- >.I is a proper subset of a Hilbert space H , and this can 

happen in two different ways: Either the range of T - >.I is a proper, but dense, subset 

of H , or the closure of the range of T - >.I is a proper closed subspace of H. This leads 

to a classification of a(T) \ap(T) into two disjoint pieces: the continuous spectrum, where 

the range of T - >.I is dense in, but not equal to, H , and the residual spectrum, where 

the closure of the range of T - >.I is a proper subset of H. So now we have decomposed 

a(T) into three disjoint pieces: 

• point spectrum : { >. : T - >. is not one-to-one } 

• continuous spectrum : { >. : T - >. is one-to-one, (T - >.)Hi=- H, (T - >.)H = H} 

• residual spectrum : { >. : T - >.is one-to-one, (T - >.)Hi=- H}. 

Definition 13. Let T be a bounded operator on a Hilbert space H. For a fl.red orthonor­

mal basis {en} of H we define trace of T by 

(2.8) 
nEN nEN 

Proposition 4. The quantity Tr( T) is independent of the choice of the orthonormal 

basis. 

Definition 14. A bounded operator T on Hilbert space H is trace-class if 

Tr(T) < oo (2.9) 

2.2 Tensor product of Hilbert space 

Definition 15. Let H 1 , H 2 be two (separable) Hilbert spaces with orthonormal bases 

{ek}k 2: l and {fj}J 2'. l · Then H 1 @ H 2 is the tensor product of H 1 and H 2. It is the 

separable Hilbert space with basis { ek @ f1 h ,12 1 · For 'ljJ E H 1 @ H2, 

00 

't/; = 2::::: °'klek @ 11 
k,1=1 

(2.10) 
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Theorem 4. Let H 1 and H 2 be (separable) Hilbert spaces. Let A and B be bounded 

operators on H 1 and H 2, respectively. If A and B are trace-class operators then A ® B 

is a trace-class operator on H 1 ® H 2. Moreover, Tr(A ® B) = Tr(A) Tr(B). 

Let H 1 , ... , Hn be Hilbert spaces. The finite tensor product 

@ Hi = Hi ® H2 ® · · · ® Hn 
l::O:i:Sn 

is well defined. But the infinite tensor product will be defined as follows. 

(2.11) 

Definition 16. Let H ®n be a Tensor product of the Hilbert spaces, then Sym(H®n ) is a 

Hilbert subspace of H ®n such that for all TE Sym(H®n ) 

fa(T)=T (2.12) 

where a is any permutation of 1, · · · , n and 

(2.13) 

Definition 17. Let (Hn)nEN be a sequence of Hilbert spaces. Choose a sequence { un}nEN 

such that Un E Hn and 11Un11 = 1 for all n E N. This sequence is called a stabilizing 

sequence for ®nEN Hn . The space ®nEN Hn is defined as the closure of the pre-Hilbert 

space of vectors of the form 

@en (2.14) 

such that en E Hn for all n and en = Un for all but a finite number of n. The scalar 

product space on the space being obviously defined by 

(2.15) 

Definition 18. A (bosonic) Fock space is the direct sum of the symmetric tensor prod­

ucts of copies of a single-particle Hilbert space H 

F(H) =EB Sym (H ®n ) (2.16) 
n~O 

Where Ho = <C. F(H) is called the Fack space over the Hilbert space H. The Hilbert 

space Hn identified as a subspace of Fack space is called the n-sector (or the nth chaos, 
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in quantum probability). The zero-sector is also called the vacuum sector. 

Now we will define the following operators which we will use in the last chapter. 

Definition 19. Let Rj and Lj be the operators on 1-l ® · · · ® 1-l defined by 

and 

Definition 20. {11} Let H be an operator acting on 1-l. Th e second quantized operator 

dr(H) acts on F. Its action on the n-sector is defined by 

df(H) = H ®] ® .. ·] +] ® H ®] ® .. · ® ] + .. · +] ® .. · ® ] ® H (2.19) 

2. 3 Partial Trace 

In this section we will define partial trace operator [12] 

Definition 21. Let 1-l = 1-l1 ® 1-l2 , T = A 1 ® A 2 E B(1-l). The partial trace of T over 

1-l2 is given by 

(2.20) 

Tr2 extends by linearity to a linear map B(1-l)---+ B(1-l 1 ). 

Example 2.4. 

(2.21) 

Tr2 ( T) = I 0) (11 · 1 + I 1) ( 0 I · 0 = I 0) (11 (2.22) 

2.4 Density matrix 

A density matrix p is a representation of a quantum state or a statistical ensemble of 

quantum states [13, 14]. A normalized vector in Hilbert space is called a pure state. 

The density matrix of a pure state 17/J) in Hilbert space C2 is given by the outer product 

of the state vector with itself: 

(2.23) 
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Where we have used the general two-dimensional state vector of l'!f';). Density matrices 

can also describe ensembles of pure states {l'!f';i)} with probabilities {Pi} by constructing 

a linear combination of pure states. 

Definition 22. Suppose {l '!f';i) }i are (orthogonal) vectors in H , and Pi are probabilities 

then the associated density matrix is 

(2.24) 

Here 0 :::; Pi :::; 1 and L i Pi = 1. 

If p = ~ where I is an identity matrix, then they are maximally mixed, without 

any quantum superpositions. vVe give some examples for density matrix. 

Example 2.5. Consider the mixed state IO) = (1, o)t with probability of 1/4 and 11 ) = 
(0, l)t with probability 3/4. Then 

IO) (OI ~ ( ~ ) ( 1 o ) ~ ( ~ ~ ) (2.25) 

and 

11) (11 ~ ( ~ ) ( 0 I ) ~ ( ~ ~ ) . (2.26) 

Thus in this case 

(2.27) 

Example 2.6. Now consider another mixed state, this time consisting of I+)=~ (1, l)t 

with probability 1/2and1-) = ~ (1, -l)t with probability 1/2. this time we have 

1(1)( 1) --21(11 11)· I+) \+I = 2 1 1 (2.28) 

and 

(2.29) 

Thus in this case the off-diagonals cancel, and we get 

(2.30) 

Note that the two density matrices we computed are identical. 
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2.4.1 Properties of density matrices 

The definition of density matrix is (2.24). In an arbitrary orthonormal basis {lb1)} each 

element of density matrix is 

(2.31) 

From this it follows that p has the following properties: 

1. Trp = 1 (unit trace) 

2. p = p* (Hermitian) 

3. ('l/J IPI 'l/J) 2:: 0 (positive definite) 

4. 0 < Tr(p2 ) ::::; Tr(p) = 1 

Example 2. 7. The density operator of a pure state can be written p = l'l/J) ('I/JI, so it's 

clear that p2 = l'l/J) ('l/Jl 'l/J) ('I/JI = l'l/J) ('I/JI = p, so Tr(p2 ) = Tr(p) = 1. However, it can 

be shown that for a mixed state 0 < Tr(p2 ) < 1. We check this for the mixed state in 

example 2.5 

Definition 23. Choosing an arbitrary orthonormal basis { lb1)} and density matrix p = 

LiPi l'l/Ji) ('l/Jil, the erpectation of an operator T with matrix elements Tkl = (bklTlb1) is 

given by 

i ,k ,l k,l 

The variance of Tin the state p is defined by 

var(T) =(I') - (1) 2 = Tr(pT2) - {Tr(pT)} 2 . (2.34) 

Definition 24. An observable is a self-adjoint operator having the following physical 

interpretation: 

• Any physical quantity corresponds to an observable (e.g. the total energy is associ­

ated to the Hamiltonian). 

• Eigenvalues are the possible outcomes of m easurem ents of a given observable. 
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2.5 Quantum system 

Definition 25. A closed quantum system is described by Hilbert space of (pure) states 

which does not interchange information with any other system with two cases. Pure states 

of the system are given by normalized vectors 1/; E H, 11 1/J ll = 1. Mixed states are density 

matrices p E B(H). 

Physics determines what the Hilbert space and Hamiltonian of a closed quantum 

system are, based on the physical system considered. 

Example 2.8. Assume there is a particle in a potential V(x). Then the Hilbert space 

will be H = L 2 (ffi.3 , d3x) with hamiltonian H = -~ + V and 11/J(t)) E H . Moreover, 

11/J(x, t)l 2 is probability density of location of the particle. 

Example 2.9. Assume an spin ~ particle (e.g. a qubit ). Then the Hilbert space will be 

Ji= C2 with hamiltonian H = ~ [~ ~I] and states l<Puv) = [~] and l<Pdu=) = [~] · 

Then every state vector can be written as linear combination of this basis 

11/J(t)) EH 11/J(t)) = a(t) 11/JupJ + b(t) 11/JdownJ 

where la(t)l 2 is probability of being in state "up" and lb(t)l 2 is probability of being in state 

2.5.1 Composite quantum system and reduced density matrices 

Definition 26. Let (Hs, Hs) and (Hs , Hs) be two quantum systems. The composite 

interacting system is (H, H) where 

H = Hs ®] +] ® Hs + Hss 

Now if we consider two orthonormal bases of states { 11/Ji/ 3 } i and { 11/JjJB } j in Hilbert 

spaces H s and H s respectively, a general state in the tensor product space H may be 

written as 

11/J) = L O:ij l1/JiJ 3 ® 11/JjJB' 
ij 

(2.35) 

where o;ij are the coordinates of 11/J), with l:ij lo:ij l2 = 1. This means that 11/Ji)s ® 11/JjJB 
is an orthonormal basis for composite system H. Now if As is an operator acting on Hs 

and As is an operator acting on Hs, their tensor product is defined as 

(2.36) 
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Then an operator on composite system 1-l can be written as linear combination of tensor 

product of operators , i.e. A= Li Asi ® ABi· A mixed state of the composite system is 

a density matrix p on 1-l. If p is of the form 

P = Ps ® PB (2.37) 

where Ps,B are density matrices of the systems Sand B , then pis called separable. For a 

separable state, expectation values of any tensor product of operators pertaining to the 

subsystems factorize, namely, 

(As ® As)= Tr (As ® As(p)) = Trs (Asps)· Trs (Asps)= (As) (As) 

where Trs and TrB are the traces over Hilbert spaces 1-ls and 1-lB , respectively. 

(S, 1-ls, Ps) 
System 

(R, 1-lR, PR) 
Environment 

Figure 2.1: Open quantum system 

(2.38) 

Definition 27. Let p be a state of the composite system. The reduced density matrix 

pertaining to the subsystems S and B are 

Ps = TrB (p) and PB= Trs (p) , (2.39) 

respectively. 

\""le can see in figure 2.1 an open quantum system, where a system S interacts with a 

reservoir R. 
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2.5.2 Dynamics of open and closed quantum systems 

According to quantum mechanics the state vector 11/l (t)) evolves in time according to the 

Schrodinger equation 

i.!!:_ 11/l(t)) = H 11/l (t)) 
dt 

(2.40) 

where H is the Hamiltonian of the system and Planck's constant n has been set equal 

1. The solution of the Schrodinger equation may be represented in terms of unitary 

time-evolution operator U(t, t0 ) which transform the state from t0 tot by 

11/1 ( t)) = U ( t, to) 11/1 ( to)) (2.41) 

The time-evolution operator has the form 

U(t, to)= e-'i(t- ta)H. 

and the time evolution of the system is 

11/l (t)) = e- i(t- to)H 11/l (to)) (2.42) 

Similarly, an initial (time t 0 ) density 

(2.43) 

evolves as 
p(t) = e-i(t-to)H p(to)ei(t-to )H (2.44) 

The equation of motion for the density matrix obtained by differentiation of the previous 

equation and it is called the van Neumann or Liou ville-van Neumann equation. It reads 

d 
dtp(t) = -i [H, p(t)] (2.45) 

There is another picture for the dynamics of a quantum system , called t he Heisenberg 

picture. In this picture the dynamics is obtained by transferring the time dependence 

from the density matrix p to the observables A as follows. By the cyclicity of the trace 

(and setting t0 = 0) , 

Tr(p(t)A) =Tr( e- itH p(t0 )eitH A) = Tr(p(O)A(t)) (2.46) 
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where 

A(t) = eitH Ae-itH. 

The map t r--+ A(t) is called the Heisenberg evofotion of the observable A. As (2.46) 

shows, the physical quantity (average of A in state pat time t) is expressed equivalently 

using the Schrodinger evolution of states (p( t)) or the Heisenberg evolution of observables 

(A(t)). 

The case of open quantum system is more complicated. The time evolution of the 

reduced density matrix of an open quantum system is 

Ps(t) = TrR {U(t , to)p(to)U*(t, to)} (2.47) 

where U(t, t0 ) is the time-evolution operator of the total system. The expectation of an 

observable A of the system alone is given by 

(A(t)) = Trs+R {p(t) (A ® ].R)} = Trs {TrR(p(t))A} = Trs {psA} (2.48) 

In addition, the equation of motion of the open quantum system will be 

d . 
dtPs(t) = -iTrR [H, p(t)] (2.49) 

We can distinguish three types of open quantum system models: 

( 1) System near equilibrium: e.g. a collection of spins in contact with an infinitely 

extended environment in thermal equilibrium 

R 
Reservoir 

Figure 2.2: A system near to equilibrium 

(2) Systems far from equilibrium: e.g. a collection of spins which has interaction with 

two (or more) infinite heat reservoirs. 



R2 with T2 
Reservoir 

R 1 with T1 

Reservoir 

Figure 2.3: A system far from equilibrium 
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(3) Repeated interaction system: e.g. a collection of spin particles shooting inside 

of an open system which consists of a cylinder and a spin particle. Then they interact 

repeatedly. 

2.6 Quantum entropy and entanglement 

Quantum entropies play a crucial role in quantum statistical mechanics and quantum 

information theory. Von Neumann entropy provides an important entropy functional 

used in quantum statistical mechanics and thermodynamics. 

Definition 28. The van Neumann entropy of a density matrix pis S(p) = -Tr(plnp). 

Now we list properties of the von Neumann entropy 

1. For all density matrices one has 

S(p) ~ O (2.50) 

where the equality sign holds if and only if p is a pure state. 

L •-+ 

Figure 2.4: Particles shooting inside a cylinder and interact with the particle inside 
cylinder. 
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2. If the dimension of the Hilbert space is finite , dimH = D < oo, the von Neumann 

entropy is bounded from above S(p) ::; lnD, where the equality sign holds if and 

only if pis the completely mixed or infinite temperature state p = -!J. 

3. The von Neumann entropy is invariant with respect to unitary transformations U 

of the Hilbert space, that is S(U pU*) = S(p). 

4. The von Neumann entropy is a concave functional p--+ S(p) on the space of density 

matrices. This means that for any collection of densities Pi and numbers Ai ~ 0 

satisfying Li Ai = 1 one has the inequality 

(2.51) 

The equality sign in this relation holds if and only if all Pi with non-vanishing Ai 

are equal to each other. This property is called strict concavity of the entropy 

functional. 

5. Consider a composite system with Hilbert space H = Hs ® HR and density matrix 

p and reduced density matrices p8 and PR- Then the von Neumann entropy has 

the sub-additiviy property 

S(p) ::; S(ps) + S(pR) (2.52) 

where the equality sign holds if and only if the total density matrix describes an 

uncorrelated or separable state, i.e. p = Ps ® PR· 

Definition 29. Let (H := Hs ® HR, H) be an open quantum system with density matrix 

p and 

The entanglement (of formation) of p is defined by 

(2.53) 

The entanglement has the following properties 

1. £(p) ~ 0 
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2. £(p) = 0 {::::::::}pis separable, i.e 

p = LPi (11/if) \1/ifl ® 11/if) \1/ifl) = LPiP~ ® Pk 
i 

In other words for pure states, consider a state 11/iAs) of a composite system. 11/iAs) 
is entangled if and only if there do not exist 11/iA), 11/is) such that 

Equivalently, we may say that the state is non-separable. If a state is not entangled, then 

it is called separable [15] 

Example 2.10. Consider IO) = (1, o)t' 11) = (0 , l)t, 100) = IO) ® IO), and 111) = I 1) ® 11)' 
then the four Bell states 

100) + 111) 

J2 
100) - 111) 

J2 

are well known two-qubit entangled states. 

101) + 110) 
J2 

101) - 110) 

J2 

Example 2.11. IOO) + 111) + 122) is an entangled state. In fact, this is a common form 

for writing entangled states, because, for e.mmple consider the case when Alice and Bob 

share two Bell states. They thus have 

(IOO) + 111)) ® (IOO) + 111)) 

10000) + 10011) + 11100) + 11111) (2.54) 

Rearranging the labels by grouping all of Alice's qubits together, followed by Bob's qubits 

gives us 

10000) + 10011) + 11100) + 11111) = 100) 100) + 101) 101) + 110) 110) + 111) 111) 

In fact, most multi-qubit states are entangled. 



Chapter 3 

Statement of the problem and main 

result 

3.1 Statement of the problem 

We consider N quantum particles, each one coupled to its own local reservoir and all of 

them coupled to a common reservoir, as illustrated in Figure 3.1. 

Figure 3.1: Interaction of N particles with common and local environments (reservoirs). 

The associated Hilbert space is 

N N 

HN = (8}Hs @Q9HR ® Hc, (3.1) 
j=l j=l 

where Hs , HR and He are the Hilbert spaces of a single system, a single (local) reservoir 
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and the collective reservoir, respectively. We assume that 

dim Hs = d < oo. 

In this sense, we can assume that Hs = ([d. The Hilbert space of every reservoir is the 

Fack space 

J{R =He= F :=EB L;ymm(l~3 , d3nk). 
n2'.0 

(3.2) 

Here, L;ymm (1~3 , d3n k) is the space of square-integrable complex-valued functions which 

are symmetric in n arguments from ~3 . The direct summand for n = 0 is interpreted to 

be C, it is called the vacuum sector. The one for n ;:::: 1 is called the n-particle sector. 

A general element 'i/J E Fis a sequence 'i/J = ('I/Jo, 'l/J1, 'l/J2, ... ) , with ~Jn E L;ymm (~3 , d3n k), 

satisfying 

The last quantity defines the norm of F. A 'i/J E F with 'iPno -/=- 0 for a single n0 E N is 

interpreted to be the wave function of a system having exactly n0 particles. Fock space 

allows to describe creation and annihilation of particles (variable number of particles in 

a system under consideration), since it encompasses n-particle sectors for all n. 

The creation operator a*(j) , with f E £2 (~3 , d3k) (f is a single-particle wave func­

tion), is defined on Fas follows. On then-particle sector, for 'i/J = (0 , ... , 'I/Jn, 0, ... ), its 

action is given by 

{ 
0 if k-/=- n + 1 

(a*(f) 'i/J )k= Jn+lSf ®'i/Jn ifk=n+l. 
(3.3) 

Here, S is the symmetrization operator. In particular, 

l n+l 

(SJ 0 'I/Jn) (k1 , · · ·, kn+l) = (n + l)! L J(k1) '1/Jn (k1, · · ·, kj-1 1 kj+1 , · · ·, kn+l)· 
J = l 

The action (3.3) is then extended to vectors in F by sector-wise linear action. Note that 

a*(f) maps the n-sector into the (n + 1)-sector, hence the name of creation operator. 

The adjoint operator of a*(f) , denoted by a(f), maps then-sector into the (n-1)-sector 

(and the vacuum sector onto zero). It acts, for 't/; = (0, ... , 'I/Jn, 0, ... ), as 

(3.4) 
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The field operator is the self-adjoint operator 

1 
<p(J) = V'l(a*(J) + a(J)). (3.5) 

The dynamics of the total system is generated by a self-adjoint Hamiltonian HN , 

acting on H N, defined by 

N N 

LAj+ LKj+K (3.6) 
j = l j = l 

N 

+ L X'j Vj ® <pj(Jj) (3.7) 
j=l 

N 

+ ~ f; wj ® <p(J). (3.8) 

Here, A.i is understood to act nontrivially only on the j-th factor Hs in (3.1). There, 

it is a fixed (equal for all j) single-particle operator A on Hs (represented by a d x d 

matrix). The operators Kj and Kare the Hamiltonians of the j-th local and the collective 

reservoir , respectively. They are all given by 

Kj = K = df(lkl) , (3.9) 

where df(X) is called the second quantization of the operator X. It is defined on the the 

n-sector of Fock space by 

df(X) = X ® ] ® · · · ® ] +] ® X ® ] ® · · · ® ] + · · · +] ® · · · ® ] ® X , 

then extended by linearity to F , see also Definition 20. In (3.9), X = lkl is the operator 

of multiplication by lkl, acting on L2 (Jft3 , d3k). 

The operators <pj and <pin (3. 7) and (3.8) are field operators, (3.5) , of the j-th reservoir 

and the collective one, respectively. Also, Xj and x are coupling constants. The Vj is 

interaction operators, acting nontrivially on the j-th system factor as a fixed operator 

VE B(H8). Similarly for YVj (which acts as a fixed WE B(Hs)). 

Note that the common interaction term (3.8) has the N-dependent scaling x/J'N. 
This scaling is called the mean field scaling. 
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The dynamics of an initial (pure) state 'I/Jo E 1-l N is given by a path { 'l/Jt}tEIR , deter­

mined by the Schrodinger equation 

(3.10) 

equivalently expressed as 

'l/Jt = e-itHN 'I/Jo. (3.11) 

For initial mixed states, given by a density matrix p0 (acting on 1-lN ), the dynamics is 

given by 

(3.12) 

We are going to consider initial product states, namely, states of the form 

(3.13) 

where 

Ps =Po ® ··· ® Po (3.14) 

is the N-fold t ensor product of a fixed initial single-system state p0 and 

PR = PR ® · · · ® PR ® Pc (3.15) 

is the N-fold tensor product of a fixed (local) initial reservoir state PR times the initial 

state of the collect ive reservoir, Pc · Then the total density matrix at time t is given by 

(3.16) 

The state of the first n systems ( n ::;: N) has the reduced density matrix 

Pn,N(t) = Tr [n+l,N],R PN(t). (3.17) 

Here, the partial trace Tr· [n+l ,N] (discussed in section 2.3) is taken over all local and the 

collective reservoir. 

Assumption. We suppose that the interaction is energy conserving, meaning that 

all operators A , V and W commute. More precisely, there are rank-one spectral 
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projections p(l) , ... , p(d) on 1-ls such that 

d 

A L a(m) p(m) 

rn=l 

d 

V L V(m)p(m) 

m=l 

d 

W LW(m)p(m). 

m=l 

Here, the a(m) are the d real eigenvalues of A (possibly repeated) , and similarly for 
v(m) and w(m). 

\""le introduce the quantities 

(3.18) 

and 

(3.19) 

The large N limit of the reduced density matrix has been investigated in [6]. 

Theorem 5 (Merkli & Berman 2012 , [6]). For any t E IR and n;:::: 1 we have 

J~= TrlPn,N(t) - P1 ,t ® P2,t ® · · · ® Pn,t l = 0. 

The single particle matrix P),t satis.fies the time-dependent non-linear Hartree-Lindblad 

equation 

Here, Aj is the single system Hamiltonian, W eff(t) is an effective two-body interaction 

given by 

vVeff = 2S(t)W ® W 

and Lj ( t) is a Lindblad operator, describing the effect of the local environment, 

Note that the theorem shows that for large N, the state of the n first systems is 
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(nearly) of product form. However, the corresponding single-particle density matrix (of 

one factor) obeys a more complicated non-linear evolution equation. 

Theorem 6 (Convergence Speed; Merkli & Berman 2012 [6]). Fort E IR and 1 ::; n::; N 

such that N > 4n llWll 2 IS(t)I , we have 

(3.20) 

where 

Cn(t) = 7]od2n ((2n + 2770 IS(t)I + l) e1JolS(t)l(n+2r70IS(t)l+l) + n lr(t)I) ' (3.21) 

3.1.1 Main result 

Theorems 5 and 6 show, formally, that 

Pn,N(t) = Pn,00 (t) + 0(1 / N), (3.22) 

where Pn,oo (t) = P1 ,t ® P2,t ® · · · ® Pn,t· In this t hesis, we refine the result (3.22) and obtain 

an expansion 

(3.23) 

with an explicit expression for the correction term p~1 ) ( t). While the main term Pn,oo ( t) 

is of product form, p~1)(t) is not. However, we show that p~1)(t) is obtained by applying 

an explicit operator to a product state. In this sense, we are calculating the lowest order 

correction to the mean field limit , which makes the density matrix entangled (for finite 

values of N). 

In t he following , we consider Aj = 0 and Xj = 0 in (3.6) , for simplicity of notation. 

The main result , stating (3.23) , is given in Theorem 7 below. 

Recall that p0 is the initial single-particle density matrix. We introduce the notation 

(T) 

var(T) 

Tr(poT) 

(T2) - (T)2' 

(3.24) 

(3.25) 

for all T E B(Hs). Also, given any single-particle operator T E B(Hs) , we define the 

operators TL and TR by 

(3.26) 
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for any single-particle density matrix p. Finally, we define the time-dependent operator 

En,t := -x2 r(t)(dr(WR) - df(WL)) 2 + ix2S(t) ([df(WR)] 2 - [dr(WL)] 2 ) 

-2inx2S(t) (W) dr(WR - WL) - 2x4S(t)2 var(W) [dr(WR - WL)J2~3.27) 

which acts on then-fold tensor product of H s with itself. Recall that the functions S(t) 

and r(t) are defined in (3 .18) , (3.19). 

Theorem 7 (Main result of t hesis). For any t E IR and n ~ 1, we have 

- 1 (1) 
Pn,N(t) - Pn,oo (t) + NPn (t) + RMain , (3.28) 

where 

(3.29) 

and 

(3.30) 

The trace-norm of RMain is bounded as 

(3.31) 

The following result gives an upper bound on the constant Cn(t) , (3.31). Set 

and 

rJ := 4n2 llWll 2 (IS(t)I + lf(t)I) . 

Also, recall that d =dim H s. 

Lemma 3.1. For N > 2C the constant Cn(t) in (3.31) satisfies the bound 

where 

Note that the t -dependence on the right side of (3.32) is in rJ = rJ(t) and~= ~(t). 



Chapter 4 

Proof of Results 

4.1 Proof of Theorem 7 

vVe start with the following expression for the reduced density matrix. 

Lemma 4 .1. We have 

n N 
(t) e-it(A1 + ... +An ) 

Pn,N = L II (P}mj) PoPj(mj)) II Pj 

j=n+l 

(4.1) 

where 

(4.2) 
j=l 

N 

L XjV(mj)cpj(Jj) , (4.3) 
j = l 

(4.4) 

n N 

I' l L XjV(mj)cpj(fj ) + L XfU(mj)cpj(fj), (4.5) 
j=l j=n+l 

I' c (4.6) 



27 

Proof. We know from the definition of then-body reduced density matrix that 

(t) T - itHN N\ N\ N\ N\ itHN 
Pn,N = r [n+l,N],R e Po '<Y Po '<Y • • • '<Y Po '<Y PR e (4.7) 

By definition of HN as (3.8) we have 

e-itHN = 

(4.8) 

Also we know p(m)V = v(m) p(m) and p(m)W = w(m) p(m) , so 

m1, ... ,rnN 

't("N A K "N (m ) (j ) x "N (m ) (j)) X e-i L..j=l j + R+ L..j=l XjV J 'Pj j + y'"N L.. j=l W J <p ( 4.9) 

Thus, by the definition (4.3) ,(4.4) 

Similarly, if we proceed with similar steps as above for the conjugate we have 

eitH N = L Pim~) ® ... ® p~m'tv) eit(l:f=l Aj+KR+J1+lc) 

m~ , ... ,m'tv 

h . J _ '\'N (m') (J ) d J _ x '\' N (m') (J) 
W ere l - L.....j= l XjV 1 i.pj j an c - Vf\i L.....j= l W 1 i.p · 

By equations (4.10) and (4.11) we have 

Tr - ~ [n+ l ,N ],R L 

(4.10) 

(4.11) 

( 4.12) 
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We know that KR, Iz Jc,Jz and Jc are operators acting non-trivially on the space of the 

reservoirs , only. Therefore, 

(t) - Tr -it l:N-1 Aj Pn,N - [n+l,N],R e J -

m1 , ... ,mN m~ , ... ,m~ 

(4.13) 

From trace properties we know Tqn+1,NJ(N1 0 · · · 0 NN) =Ni 0 · · · 0 Nn Tr(Nn+l 0 

· · · 0 NN)· Thus, 

(t) e-it(A1 + ... +An ) 
Pn,N = 

m1 , ... ,mN m~ , ... ,m'rv 

(4.14) 

But we know Tr(P(mk) p0P(m~)) = Tr(P(mk) p(mU p0 ) and by projection properties we have 

unless mk = m~. So, Tr(P(mk) Pop(m~)) = Tr(P(mk) p(m~ ) Po) = Tr(5mk,m~Po) = 5mk,m~Pk 

for n + 1 ::::; k ::::; N. Thus 

Pn,N(t) 
m1 , .. . ,mN m~,. . .,m:i j = l j = n+l 

vVe should note that since mJ = mj for n + 1 ::::; j ::::; N , we should define another version 

of Jc and J1 that divided summation by two parts , that are I~ and I{. Therefore , we 

obtain the final result 

n N 

Pn,N(t) L II (P}mj) PoPj(mj) ) II PJ 

m1, .. . ,mN m~,. . .,m:i j = l j = n+l 

This proves Lemma 4.1. D 

Now we give the prove of Theorem 7. 
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Proof. According Lemma 4.1, we know 

n N 

Pn,N(t) e-it(A1 + ... +An) L L II (P}mj) PoPj(mj)) II Pj 

Now we simplify the trace term in ( 4.17) 

n 
e-it(KR+l1+lc) = e-it[K+(x/vN) I:f=l w(mj)<p(f)] II e-it[Kj+XjV(mj)'PjUj)] ( 4.18) 

j =l 

and similarly for the second exponential in the trace in ( 4.17) 

ft I eit[Kj +XjV(mj) 'Pj (fj )] e -it [K j+XjV(rnj) 'Pj (fj )] ) 

J=l \ f3 

x \ cit[K +Ix I v'N){L,j ~• w' mj l + L.f~ .. +< w< m1 l Mfl I e -it[K +Ix/ v'NJ L.f~, w< m' l ,If) I ) µ 

(4.19) 

where (X) f3 is the average of an operator X in the Bosonic equilibrium state at temper­

ature 1/ fJ. 
By [16], for x , y E JR 

(4.20) 

where S(t) and r(t) are defined in (3.18),(3.19). By (4.19) ,(4.20) 

n I I I II eixJ [v (mj) -v<=j )][v(mj) +v<=j )]Sj(t) e-xJ [v(rnj) -v(mj )]2r j(t) 

j=l 

X e ·i(x2 /N)[I;j=1 (w(mj) _w(mj))][,I:j =1 (w (mj) +wCmjl)+2 ,I:f =n+i w(mj)]S(t) 

X e-(x2 /N) [I;j= 1 (w(mjl _w(mjl)]2 r(t) . ( 4.21) 
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Now we insert this expression into ( 4.17) 

n 

Pn,N(t) L (IJ pj(mj) PoPj(mj)) 

rn1 , ... ,mn m~, ... ,m~, j = l 

n I I I 

x II eixJ[v(mj) _ v(mj)][v(mj) +v<mj)]Sj(t) e - xJ [v(mj) _ v(mjl]2rj(t) 

j=l 

x ei(x2 I N)[I::j=l (w(mj) -w(mj))][I:: j=l (w(mj) +w(mj ))]S(t) 

X e - (x2 /N)[I:;j=1 (wCmj) _ w(mjl)]2r(t) 

x [ ~ Pme2i(u' /N)wlm) LJ~, (w(mj 1- w(mJ))S(t) l N-n eit(A, + +An) ( 4.22) 

The dependence on the uncoupled Hamiltonians Aj of the particles is trivial (a conjugacy 

by a unitary operator in (4.22)) , so we consider just the case Aj = 0. Furthermore, we 

take Xj = 0, meaning that there is no coupling to local reservoirs. Then we have 

n 

Pn,N(t) L (IJ pj(mj) PoPj(mj) ) 

m 1, ... ,mn m~, ... ,m~ j = l 

X ei(x2 /N)[I:;j=1 (wCmjJ _w(mj)) ][l::j=1 (w<mj) +wCmj ))]S(t) 

X e-(x2 /N)[I:; j=l (w(mjl _w(mj))]2r(t) 

X [ ~ PmC2i(x' /N)w(m) L7~.lw<mj)_w<m,))S(t) l N - n 

Now we define 

n n 

j=l j=l 
n 

Xm := 2x2w(m) L(w(mj) - w(mj))S(t) 

j=l 

So (4.23) becomes 

Pn,N(t) = L 
m1 , ... ,mn m~, ... ,m~i j=l 

n 

j=l 

rn 

I 

(4.23) 

(4.24) 

( 4.25) 
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• Now we expand expression I. In the first step by Taylor expansion of the exponen­

tial function, we have 

(4.26) 

(4.27) 
m 

The second term in I is equation ( 4.27) with power N - n. To expand this we need 

a special trick by rewriting this term as the exponential of a logarithm and then 

expand the logarithm, that is 

m 

e (N-n) log( l:m Prne~) 

e (N - n) log( l+l:rnPm ( e~ -1)) 
._ e(N-n)S (4.28) 

We start by expanding the power of the exponential function m ( 4.28) by the 

following expression 
(-l)k+l 

log(l +x) = L k xk 
k;:::l 

(4.29) 
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and since e~ - 1 = 0( ~) we have 

(4.30) 

Therefore, we have 

Where (x) := LmPmXm and var(x) := (x2 ) - (x) 2 . Now we combine equations 



(4.28) and (4.31) 

m 

e (N - n) log( l+l:m Pm (e7-1)) 
ei NNn (x)- ~;;2'var(x)-i ;;;3 ( ~ (x3 )+(x) 3 +~(x) (x2) )+o( ~) 

ei(x) e - i]if(x ) e- -~;;2var(x) e-i ;;;3 ( ~ ( x3)+(x) 3+~ (x) ( x2) ) 

+ 0(~3) 
ei(x) ( 1 - i; (x) - 2~2 (x)2) 

x ( 1 - 2~ var(x) + ~2 { ~var(x) + ~var(x) 2 }) 

x (1- 3~2 (~ \x3 ) + (x) 3 +~ (x)(x2 ))) +0(~3 ) 
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( 4.32) 

Now by combining equations (4.26) and (4.32) as I in equation (4.25) we have 

Pn,N(t) ~ m,~mn m\~m~ (Il lj(m,) Polj(m;J) ei(x) {I 
+ ~ [ x 2a - in (x) - ~var(x) ] 

1 [ x 2et 1 2 1 1 
+ N 2 (-2-)2 - 2n2 (x) + 2nvar(x) + S(var(x))2 + x 2a(-in (x) 

1 1 i l 3 3 l 1} - 2 var(x)) + 2 in (x) var(x) - "3('.2 (x3 ) + (x) + '.2 (x) (x2)) + 0( N 3 ) 

(4.33) 

Now we consider the coefficient of "Jv 

coefficient of ~ ~ m•~mn m',~m" (Il (Pt') p0 P;m;i) ei(x) ( x 2 a - in (x) - ~var( x) ) 
(4.34) 
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This equation includes three terms. The product of the first two terms is 

(rrn p(mj) p(mj)) i(x) _ 
j Po j e -

j=l 
n 

II p(mj) e-2ix2 S(t)(W)Wp e2ix2 S(t)(W)W p(mj) 
J , 0 , J 

j=l 

(4.35) 
j=l 

Where p0 is given in (3.30). Hence, 

coefficient of~ = m,~m" m;~m' (P, Ij(m,) p0 pCmj)) ( x'a - in (x) - ~var(x)) 
(4.36) 

Since this is a complicated formula we need to expand and simplify term by term. We 

compute this in three steps as follows 

Step 1: Recall that o: is given in (4.24) 

m,~m" m;~m' (P, Ij(mj) Pofj(mj)) x' 

x { [i8(t) - r(t)][l( wlmjJ1 2 + [-i8(t) 

r(t)][l( wCmJJ1 2 + 2r(t) t: wlmj)w(m,) } 

I+II+III (4.37) 

Remark 4 .1. Let W = L m w(m) p(m) where w(m) are eigenvalue of matrix W. Then we 

have 

p(m)w p(m) L w(n) p(n) 

n 

L w(n) p(m) p(n) 

n 

w(m) p(rn) p(rn) 

w(m) p (m) 

p(m)W(m) (4.38) 
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and 

w2 (4.39) 
n 

Now we first compute I as following 

I = m,~m,, m\~m~ (1] Pt') PoPrj)) x 2 [iS( t) - r( t) II~ w(m; l]2 

u2(iS(t) - r(t)) L L Pim1) poP{m~) ® ... ® p~mn ) PoP~m;,) [L w(mj)l2 
m1, ... ,rnn m~ , ... ,m~ j 

u 2(iS(t) - r(t)) L 
m 1, ... ,mn rn~ 1 ••• 1m it 

j j < k 

.i m1 , .. . ,m n m~ , ... ,m~ 

® ... ® p~mn ) PoP~m;J 

+ 2u2(iS(t) - r(t)) L L 
(4.40) 

+ 2u2(iS(t) - r(t)) L Po ® ... ® PoW ® ... ® PoVV ® ... ® Po 
. k '-...,-" '-...,-" 

J < jth kth 

u 2(iS(t) - r(t)) (2= Rz(W2 )po ® ... ® Po+ 2 L Rz(W)Rk(W)po ® ... ® Po) 
l l< k 

u 2(iS(t) - r(t)) L Rz(vV)Rk(W)po ® ... ® Po (4.41) 
l ,k 

vVe use here the notation introduced in definition 19. We carry out a similar argument 



for the term II in ( 4.37) and obtain 

II = m,~m" m;~m' (g PJ"'' l p0rj"'i I) x' [-iS( t) - r( t )][Jt w<m, l]' 

x 2 (-iS(t) - r(t)) L L1(vV)Lk(vV)po @ .. . @ Po 
l ,k 

Next , we calculate 

II I = m,~m" m\~m' (g PimJ) PoP;(mj)) 2x'r(t) t: wlmJlw(m>) 

36 

( 4.42) 

2x2f(t) L L P{mi) PoP{m~) @ · · · @ p~mn ) PoP~m~ ) [L W(mj)w(mk)] 
m1 , ... ,mn m~, ... ,m·'ri j,k 

2,,_2f(t) ~ ~ ~ p(m1)- p(mU ,9, ,9, p(mj)- (m')p(mj) ,9, 
'" ~ ~ ~ 1 Po 1 'd ... 'd .i PoW J j 'd ... 

j ,k m 1, ... ,mn m~ , ... ,m~, 

@ p~mk)W(mk ) PoP~m~) @ ... @ p~mn ) PoP~m~) 

2x2r( t) L Po @ · · · @ Po W @ · · · @ W Po @ · · · @ Po 
. k '-v-" '-v-" 

] , jth kth 

2x2r(t) L Rj(W)Lk(W)po @ ·· · @Po 
j,k 

Combining(4.37) with (4.41) , (4.42), and (4.43), we obtain 

m'~™"mj~m' (D PJ'"'1i3-0P}"'JI) x'a 

(4.43) 

,?( -I'(t)[~R,(W) - L1(W)] 2 + iS(t) [ ( ~ R1(W))' - ( ~L,(W))']) 
x Po ® ··· ® Po 

( 4.44) 
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Step 2: We analyze the second term in (4.36). Proceeding above, we obtain 

m,~mn m;~m' (]] Pj"';) PoPtj)) - in (x) 

m•~mn m;~m~ (]] Pj"';) PoPtj)) { - 2inx2S(t) (W) 1( ( W(mj) - w<m;))} 

-2inx2S(t) (W) L 
m1 , ... ,m n m~ , ... ,m~ 

J 

-2inx2S(t) (W) [L Rz(W) - Lz(W)].Oo ® ··· ® Po (4.45) 

Step 3: Similar to step 1 we can compute the last term in ( 4.36), 

1 ( n ) 2 m,~mn mj~m' g P,(m,) PoP,(m;) var( X) 

~ m•~mn mj~m' (g P,(m,) PoJ',(m;I) ( (x2) - (x)') 

-2x4S(t)2var(w) m,~mn mj~m' (D P,(mJ)p0 ptJ)) ( 1( ,,,(mj) + 1( wlm;))' 

-2x4S(t)2var(w) ( ;;= R,(W) - L,(W)) 
2 

Po 0 · · · 0 Po 

Thus, by equations (4.44), (4.45) , (4.46) and Definition 20 we have 

m•~mn m;~m' (]] Pj"';I PoPtjl ) ( x 2a - in (x) - ~var(x)) = 

{ - x'r(t) [dr(Wn - WL)]2 + ;,.(l-S(t) ([dr(Wn)]2 - [dr(WL)'l) 

- 2inx2 S(t) (W) dr(WR - WL) - 2x4S(t)2var(W)[dr(WR - WL)]2 } 

x Po ® ··· ® Po 

(4.46) 

(4.47) 

where WR.Do:= p0W and WLPo := W,00 . Therefore,according to (4.33) ,(4.34) and (4.47) 
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the expansion of reduced density matrix is 

Pn,N(t) = Pn,oo + ~ ( -x2r(t) [dr(Wn - WL)] 2 + ix2S(t) (ldr(Wn)]2 - [df(WL)]2 ) 

2inx2S(t) (W) dr(WR - WL) 

2x4S(t)'var(W)[dr(Wn - WL)] 2) Po 0 ,, · 0 ffo 

(4.48) 

This shows the expression (3.28) with p~1 )(t) given in (3.29). 

D 

4.2 Proof of Lemma 3.1 

From(4.25) 

(4.49) 

where a and Xm are given in (4.24). Now we expand 

(4.50) 

= :R 

We have lo:I < rJ where rJ := 4n2 llWll 2 (IS(t)I + lr(t)I) 

00 ( 2 )k 00 ( 2 )k x a 1 x a 1 ,,.2"' 

L N (k + 2)! < L N k! = etr 
k=O k=O 

(4.51) 

then we have 

( 4.52) 

Moreover, 

(4.53) 
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Where 

""""' ( ~ ) a:= ~Pm e N - I (4.54) 
m 

Expanding the logarithm we have (for la l < I) 

2 00 ( I )k 
log(I +a) = a - ~ + a3 """"' ----ak 

2 ~ k+3 
k=O 

( 4.55) 

In addition, we know I L~o (~~r ak I is bounded above by the geometric series, 1! lal < 2 

. Thus 
a2 

log( I +a)= a - 2 + a3 R1 (4.56) 

a2 
( N - n) log( I + a) = ( N - n )(a - 2 ) + R2 (4.57) 

with IR2I :s; 2(N - n)I LmPm(e~ - I)l 3and we know for Xm real, we have l e~ - II = 

I J0i"Jvm eiYdyl :s; lx;I = t (by the definition of~), so 

. . c3 c3 
""""' ~ 3 ~ 3 .,, .,, IR2I :s; 2(N - n)I ~Pm(e N - I)I :s; 2(N - n) m:x le N - II :s; 2(N - n) N 3 :s; 2 N 2 

m 

(4.58) 

Now we expand first term of (4.57) with 3 steps Step 1: First we multiply N - n and a 

(4.59) 



Step 2: second we multiply N - n and ; 2 

a2 
(N - n)-

2 

Step 3: Then we add final terms from step 1 and 2 

40 

(4.60) 

a2 . "°' 1 ( . "°' 1 "°' 2 1 "°' 2) (N - n)(a - 2) = i L.JPmXm - N in L.JPmXm + 2 L.JPmXm - 2(L.JPmXm) + R3 
m m m m 

(4.61) 

where 

( 4.62) 
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We know by assumption that N > 2(::::} fr < ~ and, since lxm l .S ( 

""""" ( ixm) k 1 """"" I ixm I k 1 """"" 1 k 1 
L..ik2 0 N (k + 2)! ::::; L..i N (k + 2)! ::::; L....J(2) (k + 2)! < 1 (4.63) 

k 2 0 k20 

Therefore, 

(4.64) 

Now we add R2 and R3 and we call it R4 

(N - n) log( l +a) 

(4.65) 

where 

Hence, by equations (4.53) and (4.66) we have 

Also, since leR4 -11 .S IR4 1 elR4 I, we conclude that 

where R5 has following bound 

(4.69) 
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We have used here that the first exponential on the right side of ( 4.67) has modulus 

bounded above by 1. Thus, 

(1 + a)N-n ;( ·) -·in ( ·) 1 var(x) 
ei x e--V x e-2----w- + R5 

where 

ci(x) (I -~ (x) + ~ (in;:)) k ( -k~)k) 

x (i -~ var(x) + ~ (~ var(x))k (- l)k) + R5 
2 N L.t 2 N kl 

k=2 

i(x) ( in ) ( 1 var(x) ) e 1 - N (x) +A 1 - 2,---y:;- + B + R5 

i(x) (i in ( ) 1 var(x)) ·i(x)R R e - - x - --- + e 6 + 5 
N 2 N 

where A and B have following bounds 

IAI < In (.T) 12 ~I in (.T) lk 2_ < n2e ec, 
- N ~ N k! - N 2 

k=O 

IBI < ~I var(x) 12 ~I var(x) lk 2_ < _t_e! 
- 4 N ~ 2N k! - N 2 

k=O 

Therefore, we have 

(4.70) 

(4.72) 

(4.73) 

(4.74) 

Now we add last two terms of equation (4.70) and call it R7 , then equation (4.70) will be 

( )(N -n)_ i(x)( in 1 .) lvar(x)) R 1 + a - e 1 - - \x - - + 7 
N 2 N 

(4.75) 
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To find bound of R7 we need bounds of R5 and R6 which are equations (4.69) and (4.74) , 

respectively. Then we have 

IR1I < iei(x) R61 + IR5I 

< _f_ { ( 47 ~ + ~n) e~(fh+ ~n) + ~e + nef,(n + e) + edf,(1 + ~ + ~ef,)} 
N 2 12 2 2 

(4.76) 

Going back to (4.49), we multiply two terms as 

where IRI ::; y~12 e9 and 77 := 4n2 llWll 2 (IS(t)I + lf(t) I) so we have 

(4.78) 

where 

If we define 

(4.80) 

such that I R7 I ::; t2
2 M, then we have following bound 

(4.81) 
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Thus, from (4.49) 

Pn,N(t) n ( ) [ l N- n "'"" "'"" II p(mj) p(mj) x~a "'"" i"tvm 
L..J L..J J Po J e L..JPme 

m1 , . .. ,rnn m~ , .. . ,m~ j=l rn 

Wh . R - '°" '°" ITn (p( mj l p(mj l) R ere Main - ~mi, ... ,m,, ~m~ , ... ,m:i j=l j Po j T · RMain is an operator on 

the n-fold tensor product H.n := H. ® · · · ® H. where H. is the Hilbert space of a single 

particle. Since the space of bounded linear operators on H.n , denoted by B(H.n) is the 

dual space of the Banach space L1(H.n) of trace-class operators on H.n (with norm ll x ll 1 = 

Trixi) , we have 

llRMain ll1 = sup ITrRMainB I 
BE(1-ln), ll B ll= l 

Let B be a bounded operator on H.n· By cyclicity of the trace we have 

Since ITrXYI ~ llYll TrlXI and because a density matrix has trace one, we obtain 

ITuRMa1nB I < m,~m .. m',~m~ Rr (P, Ptj) ) B (P, P;m1i) 
< llBll d2nSUPm1 , .. . ,mn,m~ , .. . ,m~, RT 

< llBll d2n IRr l 

where d =dim H.s. Thus, llRMain ll ~ d2n IRr l· 

(4.83) 

(4.85) 

D 
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