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Abstract

Encouraged by recent developments in synthesizing magnetic nanospheres and

nanos- phere super-lattices, we study maghemite nanospheres using stochastic LLG

implemented by Maglua programming environment. We consider core-shell model

where the core has bulk like exchange and the surface has weak exchange and radial

anisotropy. First, we study noninteractiong nanospheres with diameters ranging from

5 nm to 7.5 nm. For comparison, we vary the surface anisotropy and the surface

thickness. We observe ferrimagnetic order where the core has a bulk-like spin texture

and ordering temperature whereas the surface spins show a hedgehog-like texture

with a domain wall at the magnetic equator. The nanospheres prefer the magnetic

moment to be in the direction that maximizes the surface vacancies at the equator,

which results in a magnetic torque. Also, results of multi-scale simulations of 7.5 nm

maghemite nanosphere FCC arrays with different surface thicknesses are presented.

Comparing these arrays with the corresponding dipole arrays (with no anisotropy)

reveals an orientational disorder below T = 20 K due to magnetic torque generated

by the surface vacancies.
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Chapter 1

Introduction

1.1 Nanospheres.

Magnetic nanospheres are spherical particles with diameters in the range between

1 nm and 100 nm. They are usually ferromagnetic or ferrimagnetic chemical com-

pounds of the iron triad (Fe, Ni, and Co) such as, magnetite (Fe3O4), maghemite

(γ − Fe2O3) [1], NiFe2O4 [2], and CoFe2O4 [3]. They also consist of antiferromag-

netic materials such as, goethite (α− FeOOH) [2]. The symmetry of the bulk crystal

breaks at the surface which result in additional anisotropy on the surface in addition

to possible chemical changes [4]. Since nanospheres have big surface to volume ra-

tio, they exhibit magnetic properties significantly different from the bulk materials.

Magnetic nanoparticles can differ from bulk materials in other ways. For example,

bulk materials can form multiple magnetic domains due to the exchange and dipole

interactions, while nanospheres can only form a single domain when nanospheres are

very small. The diameter at which nanospheres can form only one domain is known

1



as the critical diameter [2].

1.2 Synthesizing and coating nanospheres

Many applications require nanospheres with a narrow distribution of diameters [5].

While many methods are used to fabricate nanoparticles, only a few can produce

nanospheres with a narrow size distribution. These methods include: condensation

methods [2, 5], thermolysis of metal-containing compounds [2], synthesis in reverse

micelles [2], and sol-gel methods [1].

In many cases, metallic nanoparticles are unstable when exposed to air and might

spontaneously ignite at room temperature [2]. However, encapsulation of magnetic

nanoparticles can stabilize them by preventing oxidation and aggregation. Besides

that, encapsulation in organic polymers provides compatibility with organic tissues

which is important for many biomedical applications [6]. Coated magnetic nanoparti-

cles, ferritin for example, exist naturally in many biological complexes. Ferritin shown

in Fig. 1.1, is a water soluble protein filled mostly by ferrihydrite (5Fe2O3.9H2O) [7],

which can be extracted from horse’s spleen on a commercial level. It consists of 24

polypeptides forming a shell of 6 nm thickness and a hollow core of 8 nm diameter

[7]. The ferritin without the core of iron compounds is called apoferritin. It is pos-

sible to fill the ferritin with magnetite/maghemite nanospheres after extracting the

native iron in the core forming the so-called magnetoferritin. Having the magnetic

nanospheres encapsulated in this coat does not only provide a protection, but also

can be used to obtain a variety of self assembled superstructures of nanospheres [8].
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Figure 1.1: Ferritin’s structure.

1.3 Assemblies of MNPs

Besides the unique properties of magnetic nanoparticles (MNPs), assemblies of MNPs

show a collective behavior that opens the door to further applications, such as, high

density hard disks [9], magnetic refrigeration [10], spintronics [11], medicine and bi-

ology [12, 13], and hyperthermia [14].

Many methods for synthesizing assemblies of nanoparticles have been developed

such as the LangmuirBlodgett method [15] and more widely the variety of self assem-

bly techniques, such as, self-assembly at interfaces [16], self-assembly using templating

[16], assisted self assembly [16], patterned self assembly [9, 17, 18, 19] and self as-

sembly in a solution [17, 20]. One advantage of self assembly in solution relies on

the possibility of using an organic coat such as ferritin as the source of the forces
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that form the assembly. In particular, apoferritin can be crystallized in FCC, cubic,

tetragonal or orthorhombic structure. Consequently, corresponding lattices of mag-

netic nanospheres can be formed by synthesizing the nanospheres inside the ferritin

cage then making the magnetoferritin complex form the desired structure [20, 8].

1.4 Properties and structure of maghemite

Figure 1.2: Spinel superstructure.

Most of the work described in this thesis focuses on the properties of nanospheres

formed from, the spinel ferrite, maghemite. Many magnetic oxides such as ZnFe2O4

[21], MgAl2O4 [22], Fe3O4 [23], and MnFe2O4 [24] have crystalline superstructures

similar to the spinel MgAl2O4 [25] as shown in Fig. 1.2, the compound that this
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superstructure is named after. Spinels have the general formula A2+B3+
2 O2−

4 , where

A2+ and B3+ can be the same or can be two different types of minerals, whereas

O2− can be oxygen or any other (-2) anion. Normally the spinel unit cell has 32

oxygen anions arranged in a cubic close packed lattice which contains 64 holes in

a tetrahedral lattice (TH), with 1/8 of them are occupied by A2+ cations, and 32

holes in an octahedral lattice (OH), with 1/2 of them are occupied by by B3+ cations,

leading to 8 (A2+B3+
2 O2−

4 ) in each unit cell [25].

Inverse spinel structures as in magnetite (Fe3+(Fe3+2 )(O2−)4) have a different cation

distribution, where 1/2 of the B3+ cations occupy the TH sites, whereas all A2+ and

the other 1/2 of B3+ occupy the OH sites [25]. The antiferromagnetic superexchange

between OH and TH cations through the oxygen anions results in the ferrimagnetic

behavior of magnetite [25]. Since the number of OH spins does not equal the number

of TH spins, magnetite is considered as a ferrimagnetic material. Magnetite has curie

temperature Tc = 850K and saturation magnetization Ms = 90Am2/Kg [26].

Maghemite (γ − Fe2O3) is another inverse spinel iron oxide compound which con-

tains defects in the lattice structure. Maghemite’s structure can be derived from

magnetite by removing 1/6 of the iron atoms at the OH sites and distributing some

of the oxygen anions over these vacancies to neutralize the charges. Removing some

of the iron atoms results in making all the iron atoms in maghemite triple cations

Fe3+ [27, 28]. Since maghemite is fully oxidized, it is more stable than magnetite.

In addition to the ease of oxidizing magnetite to form maghemite, the high stability

of maghemite and the low toxicity [29] encourage using maghemite nanospheres in

many applications such as drug delivery and magnetic resonance imaging [30].

Bulk maghemite has an estimated saturation magnetization ofMs0 (bulk) = 400 emu/cm3

5



[31], curie temperature of Tc ≃ 950K [28], and small anisotropy of −5 kJ/m3 [32].

Similar to magnetite, maghemite is ferrimagnetic due to the superexchange between

the iron spins through the oxygen atoms[25].

Many methods have been developed to produce maghemite nanospheres of narrow

size distribution with diameters smaller than the critical diameter [1, 2]. Maghemite

nanospheres of 7nm diameter have a special interest because many medical applica-

tions require this size due to the possibility of encapsulating these nanospheres in

ferritin.

1.5 Magnetic properties of maghemite nanospheres

Neutron scattering experiment on CoFe2O4 nanoparticles [33] shows that the magne-

tization of nanoparticles comprises a core with a bulk like magnetization surrounded

by a shell of disordered spins with a thickness larger than 1 nm. This is consistent

with the observed dramatic increase of the saturation magnetization of maghemite

nanospheres at low temperature while maintaining a bulk like magnetization curve

at high temperature as shown in Fig 1.3 from Ref [1].

Based on the core-shell model and using the experimental measurements of the sat-

uration magnetization, as in Fig 1.3, it is possible to extrapolate many of the magnetic

parameters of these 7 nm diameter nanospheres. Since the core spins have magnetic

properties similar to bulk material, they order at high temperature (Tc ≈ 1000K

comparable to that of bulk maghemite). As a result, the saturation magnetization of

the core is almost constant at temperatures much lower than Tc.

Fig. 1.3 shows a significant increase in the saturation magnetization below T ≈
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Figure 1.3: Saturation magnetization as a function of temperature of 7 nm diameter

dispersed maghemite nanospheres ( the data are adapted from experimental results
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35K, which indicates that the surface starts to order at Ts ≈ 35K. Above Ts, the

saturation magnetization is almost constant which means only the bulk-like core is

contributing in the saturation magnetization at temperature above Ts. Comparing

the measured saturation magnetization of the nanospheres at T > 35K with that of

the bulk maghemite, we obtain the ratio,

Ms0 (core)/Ms0 (bulk) ≈ 210/400 ≈ 0.5. (1.1)

This implies that approximately 50% of the iron atoms are located in the core and

the rest are located on the surface. From this ratio, the surface thickness is expected

to be (0.72 nm) as explained in the following calculations,

Vcore/Vtotal = (Rc/Rs)
3 = 0.5,

Rc = Rs × 3
√
0.5,

Rc = 3.5× 3
√
0.5 ≈ 2.78 nm,

Rs − Rc = 3.5− 2.78 ≈ 0.72 nm, (1.2)

where Vcore is the core volume, Vtotal is the volume of the nanosphere, Rc is the core

radius, and Rs is the nanosphere’s radius.

By ignoring the effect of both the core-surface interactions and the surface anisotropy

on the ordering temperature of the surface, it becomes easy to estimate the ratio of the

exchange interactions between the surface spins (Jss) and the corresponding exchange

interactions in the core (Jcc),

Jss/Jcc = Ts/Tc ≈ 35/1000 = 0.035. (1.3)
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In Fig 1.3, it can also be observed that near T = 0 K the saturation magnetiza-

tion of the nanospheres is nearly 280 emu/cm3, which is considerably less than the

saturation magnetization observed in the bulk maghemite Msb ≈ 400 emu/cm3. This

can be attributed to the large surface anisotropy which causes the disordering of the

surface spins.

The surface anisotropy also plays an important role at temperatures below the

blocking temperature (Tb) in term of the magnetic dynamics of the nanospheres.

Below Tb, the rate at which the surface spins can flip their direction due to thermal

fluctuations is constrained by the energy barrier arising from the surface anisotropy.

As a consequence, the magnetic moment of the whole nanosphere can not freely

change direction as it does at temperatures higher than Tb. The blocking effect is

seen in Fig 1.4 in which a dilute dispersion of 7 nm diameter maghemite nanospheres

is cooled in a zero field to a temperature close to 0 K. At T = 0K the surface

spins freeze and lock in the magnetization of each of the nanospheres in random

directions. As a result, the whole system of the non-interacting nanospheres has zero

net magnetization. When a weak field is applied at T = 0K, the spins are blocked

due to the surface anisotropy and the magnetization of the system remains effectively

zero. If the temperature is increased, the effect of the blocking is reduced and the

net magnetization of the zero field cooled (ZFC) nanospheres increases due to the

tendency of each nanosphere’s magnetic moment to align parallel to the applied field.

However, at some temperature the disordering of the magnetic orientation of the

nanospheres due to the thermal fluctuations begins to reduce the net magnetization

of the system, resulting in a peak in the net magnetization. By cooling the sample

9



in the same field after that, the magnetization increases monotonically. The point

where the heating and cooling curves diverge is usually taken to define the blocking

temperature (∼ 25 K in this case).

Figure 1.4: The magnetization of a dilute dispersion of maghemite nanospheres as a

function of temperature. The sample was cooled in no field then heated and cooled

in a finite field [20].
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1.6 Previous models and simulation results for maghemite

nanospheres

The first model of magnetic nanoparticles based on surface spins disorder was pro-

posed by Kodama [34]. This model assumes a bulk-like core, broken exchange at the

surface (J=0 for 80% of the exchange bonds), and classical spins with no anisotropy

or dipole interactions. Applying the model to NiFe2O4 shows surface spin-canting

resulting in a reduction in the magnetic moment of all nanoparticles. Additionally,

multiple stable surface spins configurations appear as a result of the broken bonds.

Further more, applying the same model to NiFe2O4 and γ − Fe2O3 but with bulk-

like anisotropy in the core and anisotropy with radial easy axis in the surface shows

irreversible transition demonstrated by open hysteresis loops [35].

1.6.1 Results from previous simulations

A previous MC study of non-interacting maghemite nanospheres [36] was done with

the following energy expression,

E = −
∑

<i,j>

Jij ~Si. ~Sj −Ks

∑

i∈surface

(~Si.n̂i)
2 −KV

∑

i

(S2
x,iS

2
y,i +S2

y,iS
2
z,i +S2

z,iS
2
x,i). (1.4)

The first term is due to the exchange interactions where Jij is the magnetic exchange

interaction between neighbors located at sites i and j. The value of Jij depends on

the type of atoms at sites i and j (A or B) where the exchange energies in units of

kB are: JAA = −1.3K, JAB = −33.9K and JBB = 7.3K. The surface anisotropy Ks

was studied with different values and it is radial where n̂i is the radial unit vector at

11



spin i. KV = 8.13×10−3 K is the cubic anisotropy that exists in the bulk maghemite.

Each filled Fe+3 site was assigned (5/2) µb, where µb is bohr magneton.

The study focused on 3.3 nm diameter nanospheres where the core diameter is half

of the nanospheres diameter. The results show a hedgehog spin texture at the surface

where two domains can be recognized when Ks/KV < 104. This texture explains the

reduction of the nanospheres magnetization compared to the bulk material. On the

contrary to what is obtained experimentally [1], the nanospheres magnetization in

that simulation shows no increase at low temperature. This can be attributed to the

fact that the study assumed the same exchange parameters at the surface and the

core, as we will see.

Of particular relevance to the present work are simulations of non-interacting

maghemite nanospheres using heat bath Monte-Carlo simulations done by Adebayo

et al. [37]. The simulations were carried out on the maghemite spinel-like structure

discussed previously, where sites (A) correspond to the tetrahedral sites and sites

(B) correspond to the octahedral sites. Each of the (A) and (B) sites is occupied

by a spin of 1 µb in magnitude and the vacancies are randomly distributed among

(B) sites. To build the superlattice, a cube (base) of the FCC lattice is built with

sites 4(i + k, i + j, j + k), where (i, j, k) are integers in the range -L to L, where L is the

nanosphere diameter measured in unit cells. Two (A) sites and four (B) sites surround

each of the FCC sites with a distance corresponding to the vectors in Table 1.1.

Nanosphere diameters are arranged to be L unit cells by eliminating any spins

located at distances larger than 4L from the center. In all cases studied by Adebayo

et al., the surface of each nanosphere has a thickness of two unit cells (1.66 nm). For

convenience the diameter of the nanospheres presented here is expressed in terms of

12



Ion Type A1 A2 B1 B2 B3 B4

Location (0,0,0) (2,2,2) (1,1,-3) (3,1,-1) (-1,3,1) (1,3,-1)

Table 1.1: Sublattices displacements used for heat bath MC simulations of maghemite

nanospheres.

the number of unit cells (L), where each unit cell of maghemite is a cube with a side

length of 0.83 nm. Table 1.2 shows the diameter of the simulated nanospheres in

nm and the corresponding number of unit cells. The energy of a nanosphere, which

L (unit cells) Diameter (nm )

4 3.3

5 4.2

6 5.0

7 5.8

8 6.6

9 7.5

Table 1.2: L (the number of unit cells) and the corresponding diameter in nm units

that were used in MC simulations from Ref [37].

Adebayo et al. based their model on may be written as

E = −
∑

i<j

Jij ~Si. ~Sj −
∑

i∈surface

Ks(~Si.n̂i)
2 −

∑

i∈core

KcSiz
2 − ~H

∑

i

~Si. (1.5)

The first two terms are as in Eq. 1.4. The third term is the core anisotropy interaction
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with Kc is the core anisotropy constant, where the easy axis is the Z-direction. The

last term is the zeeman field term.

Table 1.3 shows the exchange values between different sites. Each of the site

notations i and j is replaced by a combination of the following notations: “c” for

sites in the core, “s” for sites in the surface, “a” for the (A) sites, and “b” for the

(B) sites. For example, the first line in the table shows that the exchange constant

between two neighboring spins located in the core with one of them on a site (A) and

the other on a site (B) is Jca−cb = −56.2K (All energies are quoted in Kelvin). The

last line shows that the exchange between two spins, both of them at the surface, is

10% of the exchange between two spins of corresponding types (A or B) at the core.

As a result, the ordering temperature of the surface (Ts) is expected to be about 10%

of the core ordering temperature (Tc). The core-surface Jsa
b
−ca

b
exchange is assumed

to be half of the exchange between the corresponding types at the core Jca
b
−ca

b
.

exchange parameter value (K) position interacting sites

Jca−cb -56.2 core-core A-B

Jca−ca -42.0 core-core A-A

Jcb−cb -17.2 core-core B-B

Jsa
b
−ca

b
Jca

b
−ca

b
× 0.5 surface-core A or B − A or B

Jsa
b
−sa

b
Jca

b
−ca

b
× 0.1 surface-core A or B − A or B

Table 1.3: Maghemite nanospheres exchange parameters used for MC simulation.

Fig. 1.5 shows the total magnetization of a single sphere as obtained by Adebayo
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et al. for different sizes. The magnetic moment verses temperature curve shows quali-

tative agreement with the experimental results of saturation magnetization presented

in Fig. 1.3 (assuming that the magnetic moment of the nanosphere is aligned along

the direction of the saturation field). As explained in Appendix. A, one temperature

unit is equivalent to 12.5 K while one magnetization unit is equivalent to (5 µb/ion).

The two distinct ordering temperatures are due to the two different sets of exchange

parameters, the core set on one side, and the surface set on the other side. The

high values of exchange at the core results in a high ordering temperature of the core

(Tc ≈ 70 × 12.5 ≃ 875K) as shown in Fig 1.6. The weak exchange interactions at

the surface produce the low ordering temperature (63K < Ts < 125K) as shown in

Fig. 1.7.

The non-zero magnetization above Tc for the core and above Ts for the surface

is due to the size effect. The saturation magnetization per spin is significantly less

than the magnetic moment of each spin even for bulk maghemite due to the ferri-

magnetic order. Assuming a perfect ferrimagnetic spins alignment, (A) spins would

be anti-parallel to (B) spins. Since 1/6 of B sites are vacancies, maghemite has two

spins at (A) sites for each of the four (×5/6) spins on (B) sites, the maximum net

magnetization per spin is 1/4 of the magnetic moment of a spin. For nanosphere with

fully parallel spins, the average magnetic moment per spin is:

Mtot =
−2 + 4× 5

6

2 + 4× 5/6
× (5µb) = 0.25 × (5µb). (1.6)

Fig. 1.7 shows the surface magnetization of a single sphere at different sizes for

Ks = 5 × (12.5K). The ordering temperature of the surface is 63K < Ts < 125K.
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Figure 1.5: The total magnetization of maghemite single nanospheres of different

sizes as a function of temperature. The results are obtained using MC simulation

from Ref. [37] where the units of temperature, field, and anisotropy are (12.5 K) and

the magnetization unit is 5 µB/ion. The unit scaling is explained in Appendix. A.

16



✵

✵�✵✁

✵�✵✂

✵�✵✄

✵�✵☎

✵�✆

✵�✆✁

✵�✆✂

✵�✆✄

✵�✆☎

✵�✁

✵�✁✁

✵ ✆✵ ✁✵ ✸✵ ✂✵ ✺✵ ✄✵ ✼✵ ☎✵ ✾✵ ✆✵✵

♠❝✝✞✟

❚

❈✠✡☛ ☞✌✍✎☛✏✑✒✌✏✑✠✎

❑s❂✺

❍❂✵

▲❂✂

▲❂✺

▲❂✄

▲❂✼

▲❂☎

▲❂✾

Figure 1.6: The core magnetization of maghemite single nanospheres of different

sizes as a function of temperature. The results are obtained using MC simulation

from Ref. [37] where the units of temperature, field, and anisotropy are (12.5 K) and

the magnetization unit is 5 µB/ion. The unit scaling is explained in Appendix. A.
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Also, we note that the ratio Ts/Tc = 0.11 ± 0.04 is in good agreement with the

ratio Jss/Jcc = 0.1. It is important to note that the surface ordering temperature

is driven by factors other than the exchange interactions between the surface spins,

such as finite size effect and the surface-core interaction. As a result, the equation

(Ts/Tc = Jss/Jcc) provides only a qualitative estimate of Jss/Jcc.
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Figure 1.7: The surface magnetization of maghemite single nanospheres of different

sizes as a function of temperature. The results are obtained using MC simulation

from Ref. [37] where the units of temperature, field, and anisotropy are (12.5 K) and

the magnetization unit is 5 µB/ion. The unit scaling is explained in Appendix. A.
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1.7 Other models

Many studies of magnetic nanospheres have shared the main core-shell principle in

their model with some variations. For example, simulations of magnetite nanospheres

in Refs. [38, 39] assume that the exchange and the bulk cubic anisotropy are the same

for both the surface and the core. The studies define the surface spins as the spins

that miss some of their nearest neighbors, whereas the surface anisotropy direction is

calculated from each surface spin based on the position of the nearest neighbors as,

ek =
∑

j

(Pk − Pj)/|
∑

j

(Pk − Pj)|. (1.7)

Ref [40] proposed core anisotropy in the Z-direction and radial surface anisotropy.

Another model using Neel anisotropy was proposed showing that magnetic nanospheres

can be modeled using uniaxial and cubic anisotropy.

Recently, studying systems of interacting nanospheres becomes a matter of inter-

est. The size and the complexity of these systems resulted in a challenge in perform-

ing the simulations. Therefore, most of the recent computational studies of magnetic

nanoparticles use more simplified models by, for example, assuming each nanosphere

as a single dipole with an effective anisotropy [41, 42, 43]

1.8 Outline of the thesis

In the following chapters, we present simulation results using the stochastic Landau-

Lifshitz-Gilbert technique. The codes were implemented by Maglua programming

environment [44, 45]. It is a scripting language developed by Jason Mercer based on
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Lua as an interface scripting language to his LLG code [44, 45]. All the subroutines to

perform numerical calculations such as calculating the effective field and performing

the LLG time steps are written in C/C++ to take advantage of the computational

efficiency of these lower level languages.

Ch. 2 presents the results of stochastic LLG simulations of noninteracting maghemite

nanospheres based on the core shell model of Refs. [34, 37] discussed in Section 1.6.

The study focuses on the microscopic spin ordering to show how the surface vacan-

cies distribution plays an important role in the magnetic properties of maghemite

nanospheres.

Ch. 3 shows the magnetic behavior of dipole FCC arrays using stochastic LLG.

The dipole field was calcalculated assuming periodic boundary conditions using Ewald

summation techniques [46].

In Ch. 4, we present multiscale simulation of maghemite nanosphere FCC arrays.

The model considers the dipole interactions between the nanospheres and the complex

internal spin structure of these nanospheres. The results are compared with the dipole

FCC arrays to show the significance of the effect of the internal structure of maghemite

nanospheres on the array collective behavior.

In Ch. 5 we give our conclusions regarding the full project with comparison to

previous simulations and experiments.
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Chapter 2

Noninteracting Maghemite

Nanospheres

2.1 Simulation using the stochastic Landau-Lifshitz-

Gilbert equation

While MC techniques are very efficient at finding the equilibrium state, they are

not able to properly explain the dynamical evolution of the magnetic systems. On

the other hand, the stochastic LLG equation has been widely used in simulating

dynamic properties of magnetic systems. Such a model is important for studying

non-equilibrated systems such as spin-glasses and magnetic hysteresis loops [47].

The stochastic LLG equation is based on Landau-Lifshitz equation that treats

the spin like a classical dipole with a damping factor, which results in an additional

magnetic torque. The equation of motion for the spin magnetic moment is given by
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d~S

dt
= −γ~S × ~Heff + λ~S × (~S × ~Heff), (2.1)

where γ is the electron gyro-magnetic ratio, and λ = −αγ/|S| with α the damping

factor. The effective field ( ~Heff) can be calculated from the energy equation,

~H i
eff = − ∂E

∂~Si
+ ~H i

th, (2.2)

where Hth is a stochastic magnetic field due to thermal fluctuations given by

Hth =

√

2αKBT

γµ0V |σ|δtW. (2.3)

Here, V is the volume, δt is the time step and W is a random number with a gaussian

distribution that satisfies,

w < Wt Wt′ > = δ(t− t′)

< W > = 0 ; t 6= t′, (2.4)

For convenience we define the time unit tu = (B0γ)
−1, where B0 is some characteristic

field value. Choosing B0 = 1T gives tu = 1/γ = 5.68×10−12 sec. The damping factor

used in the simulation is α = 0.5 and the time step used to integrate the LLG equation

is ∆t = 2.0× 10−4 tu .

The model and the parameters

The model used for LLG simulations is similar to the one used for MC simulations in

the Introduction by Adebayo et al. Ref. [37] but for simplicity, the core anisotropy is

neglected since it has a very small value compared with the surface anisotropy. Hence

the energy used for this model is,
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E = −
∑

i 6=j

Jij ~Si. ~Sj −
∑

i∈surface

Ks(~Si.~ni)
2 − ~H

∑

i

~Si. (2.5)

Table 2.1 shows the exchange parameters that have been used for the stochas-

tic LLG simulations. The parameters are derived from the exchange parameters of

Ni+2Fe+3
2 O4 by matching (B) and (A) sites in the maghemite with the Fe+3 at the

octahedral sites and the Fe+3 at the tetrahedral sites in Ni+2Fe+3
2 O4 [35]. Since the

magnetic moment of each spin is normalized to unity, the exchange parameters used

in Refs [35] have been multiplied by 5× 5 = 25 (since each ion corresponds to 5µB).

This results in a rescaling of the temperature unit to Kelvin. The nanospheres in

the simulation have a 5 nm diameter with a surface thickness of 0.83 nm. The ratio

of surface spin exchange to the corresponding core spin exchange is chosen to get

a close value to the ratio of the surface ordering temperature to the core ordering

temperature obtained from the experimental results in Fig. 1.3.

Jss/Jcc = Ts/Tc = 0.025. (2.6)

2.1.1 Results from simulations

In this section we present the results from a series of simulation studies on ensem-

bles of non-interacting nanospheres. Defining ~Si(n) as the ith atomic spin on the

nth nanosphere, the following quantities are defined. The average magnitude of the

23



exchange parameter exchange value (× 25 K) position interacting sites

Jca−cb -28.1 core-core A-B

Jca−ca -21.0 core-core A-A

Jcb−cb -8.6 core-core B-B

Jsa
b
−ca

b
Jca

b
−ca

b
× 0.025 surface-core A or B − A or B

Jsa
b
−sa

b
Jca

b
−ca

b
× 0.025 surface-core A or B − A or B

Table 2.1: The maghemite nanospheres parameters used in LLG simulations.

magnetic moment of the nanospheres (Mn):

Mn =
4

N

N
∑

n=1

∣

∣

∣

∣

∣

qn
∑

i=1

~Si(n)/qn

∣

∣

∣

∣

∣

, (2.7)

where N is the number of nanospheres in the ensemble, qn is the number of spins in

the nth nanosphere and ~Si(n) is the ith spin on the nth nanosphere in the ensemble.

Due to the ferrimagnetic structure, a normalizing factor 4 is introduced from Eq. 1.6.

This means that in the fully saturated state Mn = 1. The average magnetic moment

of nanospheres ensemble (Me) is given by

~Me =
4

N

N
∑

n=1

qn
∑

i=1

~Si(n)/qn. (2.8)

The average magnitude of the magnetic moment of the cores (Mc) is given by

Mc =
4

N

N
∑

n=1

∣

∣

∣

∣

∣

qcn
∑

i∈core

~Si(n)/qcn

∣

∣

∣

∣

∣

, (2.9)

where ~Si(n) denotes the ith spin in the core of the nth nanosphere in the ensemble

and qcn denotes the number of spins in the core of the nth nanosphere. Finally, the
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average magnitude of the magnetic moment of the surfaces (Msrf) is given by

Msrf =
4

N

N
∑

n=1

∣

∣

∣

∣

∣

qsn
∑

i∈surface

~Si(n)/qsn

∣

∣

∣

∣

∣

, (2.10)

where qsn denotes the number of spins in the surface of the nth nanosphere.

For comparison purposes, two ensembles consisting of 1000 non-interacting spheres

were studied. The two ensembles had different values of Ks, but identical in all other

aspects (the size, the series of random numbers used to generate the vacancies and the

stochastic field, etc...). One ensemble was given a value of Ks = 5K = 1.29×10−24 J,

the other Ks = 10K = 2.58 × 10−24 J. We will refer to these ensembles as K5 and

K10, respectively. Table 2.2 lists the properties of the ensembles studied in this chap-

ter.

Ensemble K5 K10 Dc63 Dc675

The surface anisotropy, Ks(K) 5 10 10 10

The diameter of the nanospheres, D( nm) 5 5 7.5 7.5

The core diameter,Dc( nm) 3.67 3.67 6.3 6.75

The number of spheres (N) 1000 1000 512 512

Core volume/nanosphere volume 0.4 0.4 0.59 0.73

Table 2.2: Characteristic parameters of the ensembles K5, K10, Dc63, and Dc675.

The ensembles were initialized with the same random spin configuration. They

were then equilibrated at an initial temperature of 1000 K in a fieldH = 5K = 1.49T

and then cooled at a rate of 1 K/ tu = 1.76× 1011K/sec.
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Figs .2.1 and 2.2 show the core magnetization of the individual nanospheres, as

defined by Eq. 2.9, as a function of temperature. We can see that the core spins

begin to order at a temperature close to that of bulk maghemite, and this temper-

ature is independent of the Ks. The data also show that the core spins are fully

ordered at T = 0K. On the other hand, the surface spins do not order until a much

lower temperature as shown in Fig. 2.3 due to the lower value of the surface exchange

interactions. We also note that the surface spins in the two ensembles do not fully

saturate at T = 0K. As we will show, this occurs as a consequence of the frustration

that arises due to the competition between the surface anisotropy and the exchange

interactions.

The results for Mn,Mc and Msrf as defined in Eqs. 2.7, 2.9 and 2.10 show that the

surface spins contribute significantly to the total magnetization at low temperature as

expected by comparing the size of the core with the size of the nanosphere. These re-

sults are consistent with the earlier MC simulations discussed in the Introduction [37].

To compare the low temperature surface magnetization for Ks = 5K with Ks =

10K, the surface magnetization for both the K5 and K10 ensembles is presented

in Fig 2.3. The data show that in both cases the surface spins begin to order at

Ts ≃ 30K. Both the transition temperature and the surface magnetization show little

dependence on the value of the surface anisotropy down to approximately T ≃ 20K

and it is only at T ≃ 15K, that the data start to diverge. The difference between the

surface magnetization for the two data sets increases as the temperature decreases.
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Figure 2.1: The average magnitude of the core magnetization (Mc), magnitude of

the surface magnetization (Msrf) and the magnitude of the magnetization of the

nanosphere (Mn) as functions of temperature. The data represents the K10 ensem-

ble cooled in Hz = 5K (1.49T). K10 consists of 1000 maghemite nanospheres of

D = 5nm, diameter, Dc = 3.67 nm core diameter and Ks = 10K (2.58× 10−23J).
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Figure 2.2: The average magnitude of the core magnetization (Mc), magnitude of

the surface magnetization (Msrf) and the magnitude of the magnetization of the

nanosphere (Mn) as functions of temperature. The data represents the K10 ensemble

cooled in Hz = 5K (1.49T). K5 consists of 1000 maghemite nanospheres of D = 5nm

diameter, Dc = 3.67 nm core diameter and Ks = 5K (1.29× 10−23J).
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We observe that, while both data sets do not show full ordering of the surface spins

at T = 0K, the surface magnetization for Ks = 10K (Msrf ≃ 0.79) is lower than

the corresponding value for Ks = 5K (Msrf ≃ 0.89). This is due to the fact that the

higher value of Ks increases the frustration of the surface spins.

Finally we note that while the value of Ts/Tc ≃ 0.03 is close to the ratio of

Js−s/Jc−c = 0.025, it is not identical. We attribute this to the effect of the core-

surface exchange interaction and finite size effects.
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Figure 2.3: Msrf for different anisotropies as a function of temperature. The results

from cooling the K5 and K10 ensembles, with H = 5K.

Fig. 2.4 shows the temperature dependence of Mz (the z-component of ~Me as de-

fined in Eq. 2.8) of the K10 ensemble as it is cooled in a field of (Hz = 5K (1.49T)).
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Also shown is a plot of the average magnitude of the nanospheres (Mn). We note

that the data are mostly identical. This indicates that a field of Hz = 5K is sufficient

to completely align the magnetic moment of each of the nanospheres in the direction

of the field for T < 100K. Similar comparison for the K5 ensemble shows that this

also applies to the Ks = 5K case.
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Figure 2.4: Mz and Mn as a function of temperature for cooling the ensemble K10

under a magnetic field Hz = 5K.
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2.2 Blocking temperature

By cooling the ensemble in zero field, the net magnetization of the ensemble will

effectively be zero. We will refer to this state as a zero field cooled (ZFC) ensemble.

By heating and then cooling in a field, as described in the experiments discussed in

the Introduction, we can identify the blocking temperature as the point of divergence

between the two curves.

Fig. 2.5 shows the heating and cooling magnetization (Mz) of a ZFC ensemble

consisting of 1000 non-interacting nanospheres under Hz = 0.4K (0.12T) as a func-

tion of temperature. Each nanosphere has a 5 nm diameter, 3.67 nm core diameter

and surface anisotropy of Ks = 10K (the ensemble, K10). The ensemble cooled in

zero field to T = 0K then heated and cooled in an external field magnetic field of

Hz = 0.4K in the z-direction where the cooling and heating rate is 0.1K/tu. The cool-

ing and heating curves are mostly identical above T > 20K. From this we estimate

a blocking temperature of TB ≃ 20K.

Fig. 2.6 shows the heating and cooling magnetization of the ZFC ensemble K5.

The heating and cooling rate is 0.1K/ tu and the applied field is Hz = 0.4K. The

blocking temperature in the K5 ensemble is about 12K. This reduction in the blocking

temperature with reducing the surface anisotropy is consistent with Arrhenius-Neel

law [48].

Fig. 2.7 compares the data in Fig. 2.5 with the data of the same ensemble using

different cooling and heating rates. A smaller rate gives a longer time for the ensem-

ble to relax and hence to get closer to the equilibrium state. As a result, a smaller

heating and cooling rate gives a lower blocking temperature.
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Figure 2.5: Data showing the magnetization of the zero field cooled ensemble K10

(Table 2.2) during the heating and then the cooling processes under an applied field of

Hz = 0.4K (0.12T) where the heating and cooling rate is 0.1K/ tu (1.76×1011 K/sec).
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Figure 2.6: The magnetization of the zero field cooled ensemble K5 (Table 2.2)

during the heating and then the cooling processes under an applied field of Hz =

0.4K (0.12T) where the heating and cooling rate is 0.1K/tu (1.76× 1011 K/sec).
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Figure 2.7: The magnetization of the zero field cooled ensemble K10 (Table 2.2)

during the heating and then the cooling processes under an applied field of Hz =

0.4K (0.12T). The data compares a heating and cooling rate of 0.1K/tu (1.76 ×

1011 K/sec) with a rate of 0.05K/tu.

The total cooling and heating rates of the LLG simulations performed here are

of the order of (0.1K/ tu ≃ 1.8 × 1011K/ sec) which is very small and the applied

field Hz = 0.4K (1200Oe) is very large. Unfortunately, the blocking temperature is

related to the heating and cooling rates as shown in Fig. 2.7 and to the applied field

[20]. Comparing with the experiments in [20] (the heating and cooling rates are of the

order of 1 K/min and the applied field is of the order of 1 Oe [49]), the parameters we
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used in the simulation are far from being ideal. Hence a different method is required

to determine the blocking temperature in order to compare it with the experimental

results.

2.3 The microscopic spin ordering

In the preceding section we focus on the average magnetic properties of nanospheres.

However, the simulation studies also reveal more information about the internal spin

configuration within the nanospheres. A typical spin configuration for one of the

nanospheres with Ks = 5K, with a field Hz = 5K at T = 5K is shown in Fig. 2.8.

Fig. 2.9 shows a simplified version of the spins configuration. For simplicity, only

B-sites are included in Fig. 2.9, since A-sites are aligned in the opposite direction.

While the results show that the magnetization in the core spins saturate at T =

0K, this is not the case for surface spins. This is a consequence of the frustration that

arises from the competition between the radial surface anisotropy and the exchange

interactions. The minimal energy due to the anisotropy is reached when the surface

spins are aligned radially while the minimal energy due to the exchange corresponds

to the spins aligned parallel to the magnetic axis of the nanosphere. Hence this

frustration and disorder is maximum at the equator (we will refer to the magnetic

equator by the equator).

Fig. 2.10 provides a more detailed illustration of the spin configuration for a Ks =

5K nanosphere at T = 0K by plotting the radial component of the direction of each

spin (with A-sites spins rotated 180o) as a function of cos(ϕ), where, ϕ is the angle
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Figure 2.8: Spin configuration of a single nanosphere at T = 0K, Ks = 5K, and

Hz = 5K.
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Figure 2.9: Simplified spin configuration of a single nanosphere at T = 0K.

between the vector connecting the center of the nanosphere with the spin location

and the magnetic moment of the nanosphere. Each point in the figure represents a

spin. When a spin is directed toward the north pole, the radial component of the

spin is equal to cos(ϕ); this means that the straight line Y = X indicates that the

spins are aligned along the net magnetic moment of the nanosphere. From this, we

see that the core spins are aligned ferrimagnetically as in bulk maghemite.

The points to the right of the vertical axis (cosϕ > 0) correspond to the spins in

the northern hemisphere while the points to the left of the vertical axis (cosϕ < 0)

correspond to the spins in the southern hemisphere. From this, we see that most

of the surface spins in the vicinity of the (magnetic) north pole are pointing more

or less radially outward and those at the (magnetic) south pole are pointing more
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or less radially inward. The extent of this configuration at the equator results in

an anti-parallel ordering where there is a strong shift in the surface spins direction

from inward at the southern side to outward at the northern side. This switch forms

a domain wall at the magnetic equator of each nanoshphere (at the surface). These

domain walls arise as a consequence of the competition between the surface anisotropy

that prefers to align the spins radially outward or inwards, and the exchange field

of the core that prefers to align the spins parallel to the magnetic axis. Due to this

competition, the domain walls have higher energy than the rest of the nanosphere.

On the other hand, close to the equator we see that there are some surface spins

in the northern hemisphere pointing radially inward and spins in the southern hemi-

sphere pointing radially outwards. These reversed spins are in a metastable state

where the anisotropic energy is minimized due to the radial orientation of spins, but

the exchange energy is not minimized as these spins are anti-parallel to the neigh-

boring spins. This metastable state is more likely to be filled in the domain wall and

therefore it is reasonable to associate the width of the reversed spins area with the

width of the domain wall. The reversed spins in Fig. 2.10 are represented by the

points in the upper left and the lower right quarters of the figure.

Fig. 2.11 shows the radial components of the spins of a nanosphere with a diam-

eter of D = 5nm, a core diameter Dc = 3.67 nm and surface anisotropy Ks = 5K.

Each sub-figure is for a different temperature. The nanosphere has been cooled in

zero field with a cooling rate of 0.1K/tu. By comparing the configurations at different

temperatures, we can see that the higher the temperature is, the wider the reversed

spins region is. Hence, the domain wall gets wider with increasing the temperature.
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Figure 2.10: The radial component of each spin of a single nanosphere with 5 K at

T=0 K.
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Figure 2.11: The radial component of each spin in a single nanosphere at different

temperatures. The nanosphere has D = 5nm, Dc = 3.67 nm and Ks = 5K cooled in

zero external field.
40



Fig. 2.12 shows the radial components of a nanosphere with diameter D = 5nm,

core diameter Dc = 3.67 nm and surface anisotropy Ks = 10K. Each sub-figure is for

a different temperature. The nanosphere has been cooled in zero field with a cooling

rate of 0.1K/tu. As compared with Fig. 2.11, Fig. 2.12 shows that increasing the

surface anisotropy increases the surface spins radial components.

Fig. 2.13 shows the density of the reversed spins as a function of cos(ϕ) for both

ensembles (K5 and K10) at different temperatures. Since each nanosphere has a

unique direction of the magnetic moment, converting to spherical coordinates for

each nanosphere was performed before averaging the reversed spins densities over the

ensemble. Both of the ensembles K5 and K10 were cooled in zero field with a cooling

rate of 0.1K/tu. The data shows that, regardless of the temperature, at least 45% of

the spins at the equator (−0.01 < cos(ϕ) < 0.01) are reversed. At T = 0 the data

show that the density of the reversed spins is narrowly peaked at the equator for both

K5 and K10 ensembles indicating a narrow domain wall. As the temperature increases

the region of reversed spins around the equator becomes larger, until at T ≈ 24K for

the K5 ensemble and T ≈ 30K for the K10 ensemble, where the spins in the equator

vicinity are completely disordered (with 50% of the spins are reversed) while a high

proportion (≈ 35% of the spins are reversed) at the north and the south poles. Thus,

at low temperature, the reversed spins area is confined to a narrow region around the

(magnetic) equator. As the temperature is increased the reversed spins area extends

over a larger portion of the surface of the nanosphere due to the thermal fluctuations

of the spins. Similarly, the width of the domain wall increases with increasing the

temperature and decreases with increasing the surface anisotropy.
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Figure 2.12: The radial component of each spin in a single nanosphere at different

temperatures. The nanosphere has D = 5nm, Dc = 3.67 nm and Ks = 10K cooled

in zero external field.
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Figure 2.13: The polar distribution of the reversed spins as a function of cos(ϕ) at

different temperatures. The results are fro the K5 and the K10 ensembles cooled in

zero field.
43



2.4 The effect of the surface vacancies

The vacancies on the B-sites are distributed randomly across each nanosphere and

hence each nanosphere has a unique distribution of the vacancies where some areas

on the surface have higher density of vacancies than other areas. Because of the

frustration, the surface spins at the equator have a higher energy than the others,

and hence the energy of the nanosphere is minimum when the highest density of

vacancies are located at the equator.

Fig. 2.14 shows the density of the surface vacancies of the ensemble K5 as a func-

tion of cos(ϕ) at different temperatures, where ϕ is the angle between the magnetic

axis connecting the north and south poles of the nanosphere and the line connecting

the site of the surface vacancy and the center of the nanoshphere. The ensemble

has been zero-field cooled at a rate of 0.1K/tu. After calculating the density of

the surface vacancies as a function of cos(ϕ) (according to the magnetic moment of

each nanosphere), the densities are then averaged over the whole ensemble. Fig. 2.14

indeed shows that the vacancy distribution of the vacancies is concentrated at the

equator at low temperatures.

Because of the high frustration energy at the equator, each nanosphere minimizes

the energy by maximizing the number of vacancies at the equator. Since the vacancy

distribution of each nanosphere is fixed, each nanosphere lowers the frustration energy

at the equator by rotating the magnetization axis of a nanosphere. An individual

nanosphere can therefore reduce its energy by aligning its magnetic moment so that

the equator is located in the region where the concentration of the surface vacancies

is the highest. The inhomogeneous distribution of vacancies therefore gives rise to an
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Figure 2.14: The polar distribution of surface vacancies of the ensemble K5 as a

function of cos(ϕ) at different temperatures. The ensemble has been cooled with rate

of 0.1K/tu under zero external field.
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Figure 2.15: The polar distribution of surface vacancies of the ensemble K10 as a

function of cos(ϕ) at different temperatures. The ensemble has been cooled with rate

of 0.1K/tu under zero external field.
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effective torque acting on the magnetic moment of the nanosphere.

Another way of representing the effect of the vacancies is to recognize that any

change in the orientation of the magnetic moment of the nanosphere must be as-

sociated with a displacement of the domain wall at the magnetic equator of the

nanosphere. The effect of the inhomogeneity in the distribution of the surface vacan-

cies is therefore to pin the domain wall, hindering the motion of the magnetization

axis. At high temperatures, thermal fluctuations unpin the domain wall and the

nanosphere behaves like a superparamagnet. However, as the temperature is low-

ered, the domain wall pinning begins to limit the amount of phase space that the

nanosphere can access. This results in the domain wall at the equator being trapped

in a region high in the density of the surface vacancies. Obviously, there is a rela-

tionship between the temperature at which the unpinning occurs and the blocking

temperature discussed previously, although the precise nature of this relationship is

elusive.

Fig. 2.16 compares the data from Fig. 2.15 and Fig. 2.14 for K10 and K5, re-

spectively. For T = 0K, the direction of the magnetic moment of each nanosphere

is dominated only by the surface vacancy distribution. As a result, the vacancies

distributions are almost identical at T = 0K. With increasing the temperature, the

K10 ensemble shows higher density at the equator and narrower peak than the K5

ensemble. This means that the pinning effect increases with increasing the surface

anisotropy. This is because of the fact that thermal fluctuations have to overcome an

energy difference between the energy of the state of maximum number of vacancies

at the domain wall and the energy corresponding to some other random direction of

the magnetic moment. This energy difference and hence the pinning effect increases
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with increasing the surface anisotropy. The pinning disappears for the low anisotropy

case at T = 30K while remaining for the high anisotropy ensemble.

The cumulative density of vacancies (CDV) is defined as the percentage of surface

vacancies in the range between ϕ and π − ϕ. To calculate CDV, the surface of each

nanoshphere was divided into 200 slices each of them has the same number of surface

spins similar to what has been done to calculate the angular vacancies distribution

where the first two slices contains 1% of the surface spins (Ps = 0.01) where these

spins are located around the magnetic equator line. The number of vacancies at the

surface slice that has the lowest vacancy density was subtracted from the number of

vacancies at each slice before calculating CDV to obtain graphs that emphasize the

variation of the vacancies distribution.

Fig. 2.17 shows the cumulative density of vacancies of the ensembles K5 as a

function of Ps (the ratio of the surface spins allocated around the magnetic equator

to the total number of the surface spins) at different temperatures. Also three lines

are shown in the graph. One line represents the area corresponding to the peak of

density of the vacancies (defined from Fig 2.14). Another line represents the CDV at

that area. The third line (black) shows the CDV in case of no correlation between

the direction of the magnetic moment and the vacancies distribution. This means

the black line represents the CDV for a homogeneous polar distribution of the surface

vacancies of the ensemble. Similar data for the K10 ensemble is presented in Fig. 2.18.

As we can see from Figs. 2.17 and 2.18, the CDV is practically above or equals the

homogeneous value at any temperature up to 30 K and for any size of surface area

around the equator. At T = 30K, the CDV approaches the homogeneity line of the

angular distribution of the surface vacancies of the ensemble and shows a very weak
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Figure 2.16: The polar distribution of surface vacancies for the ensembles K10 and

K5 as a function of cos(ϕ) at different temperatures. The ensembles have been cooled

with rate of 0.1K/tu under zero external field.
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tendency of the magnetic moment to favor any direction. This means that each of the

maghemite nanospheres from the K5 and the K10 ensembles can be approximated as

a simple magnetic dipole above T = 30K .

By looking at the line corresponding to the area of the vacancies peak at T = 0K,

we can see that the CDV is the same at that area for any temperature up to al-

most 12K for the K10 ensemble and up to 8K for the K5 ensemble. This means

that vacancies distribution controls the magnetic moment direction strongly and the

thermal fluctuation takes almost no effect on the direction of the magnetic moment

in these ranges of temperature. Rapid decreasing in CDV takes place by increas-

ing the temperature from 12K to 24K for K10 and from 8K to 20K for K5. The

CDV approaches the line of the avarage vacancies distribution and the direction of

the magnetic moment is controled by thermal fluctuations rather than the vacancies

distribution. This means that the nanospheres can be considered practically super-

paramagnets at temperatures higher than 30 K.

2.5 The effect of the surface thickness

In the previous section we discussed the effects of increasing the surface anisotropy

and its relation to of the pinning effect of the magnetic moment of the nanospheres.

Increasing the surface thickness also increases the ratio of the anisotropy energy to the

total energy and hence we would expect the pinning effect to be more pronounced

in nanospheres with a thick surface than nanospheres with a thin surface. In this
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Figure 2.17: The cumulative density of surface vacancies (CDV) of the ensembles K5

as a function of Ps (the percentage of the surface spins allocated around the magnetic

equator) at different temperatures.
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Figure 2.18: The cumulative density of surface vacancies (CDV) of the ensembles K10

as a function of Ps (the percentage of the surface spins allocated around the magnetic

equator) at different temperatures.
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section we study the effects of surface thickness.

Figs. 2.19 and 2.20 show the polar distribution of the surface vacancies of the

ensembles Dc63 and Dc675 respectively as a function of cos(ϕ). The two ensembles

were cooled under zero external field with cooling rate of 1K/tu. The ensemble Dc63

consists of 1000 non-interacting nanospheres each one is of D = 7.5 nm, Dc = 6.3 nm

and Ks = 10K. The ensemble Dc675 is identical to the ensemble Dc63 except that

the core diameter is Dc = 6.3 nm for Dc63 while it is Dc = 6.75 nm for Dc675.

Comparing Figs. 2.19 and 2.20 shows that the peak in the surface vacancy distri-

bution at the equator is wider in the ensemble with the thin surface (Dc675) than in

the ensemble with the thick surface (Dc63). This reflects the fact that the nanospheres

with the thinner surface (and hence lower pinning energy) are able to sample a wider

region of phase space than the nanosphere’s with the thicker surface. This is also re-

flected in the observation that a recognizable peak in the surface vacancy distribution

persists to T ≈ 30K for the Dc63 ensemble (thick surface) but is no longer present

by T ≈ 24K for the Dc675 ensemble.

Figs. 2.22 and 2.21 show the cumulative density distribution of surface vacancies

for the ensembles Dc675 and Dc63 respectively as a function of Ps at different tem-

peratures. The surface thickness effect is clear at T = 15K. While the CDV is fairly

different at T = 15K from T = 0K in the ensemble Dc63. This difference disappears

for an area corresponding to an angle range bigger than cos(ϕ) = Ps = 0.33.
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Figure 2.19: The polar distribution of surface vacancies for the ensemble Dc63 as a

function of cos(ϕ) at different temperatures. The ensemble has been cooled with rate

of 1K/tu under zero external field.
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Figure 2.20: The polar distribution of surface vacancies for the ensemble Dc675 as a

function of cos(ϕ) at different temperatures. The ensemble has been cooled with rate

of 1K/tu under zero external field.
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Figure 2.21: The cumulative density of surface vacancies (CDV) of the ensembles

Dc63 as a function of Ps (the percentage of the surface spins allocated around the

magnetic equator) at different temperatures.
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Figure 2.22: The cumulative density of surface vacancies (CDV) of the ensembles

Dc675 as a function of Ps (the percentage of the surface spins allocated around the

magnetic equator) at different temperatures.
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2.6 Summary

We have presented results from a series of stochastic LLG simulations implemented

by MagLua [44, 45] for noninteracting maghemite nanoshpheres. For comparison,

ensembles with different nanosphere diameters, surface anisotropies, and the surface

thicknesses were studied. The simulation model has a bulk-like core, a radial surface

anisotropy, and a weak exchange between the surface spins. The results show two

distinct ordering temperatures, Tc and Ts. Tc ≃ 850K is due to the ordering of the

core spins and hence is close to the bulk maghemite ordering temperature, whereas

Ts ≃ 30K is due to the ordering of the surface spins. These temperatures are in good

agreement with previous MC simulations as shown in the Appendix. A. Appendix B

presents a comparison between experimental results with our simulations and shows

a reasonable agreement between them.

Using the zero-field cooling procedure, we obtain a blocking temperature Tb that is

comparable to the experimental value. Since the computation limitations allow only

simulations of nanospheres under large external field with large cooling and heating

rates, it remains a challenging task to compare the blocking temperature obtained by

simulation to the one obtained experimentally. However, the simulations show high

correlation between the blocking temperature and the surface anisotropy, whereas a

weak dependency between the measured blocking temperature and the cooling and

heating rates is observed.

In the range between Tc and Ts, the surface spins are randomly oriented and

the core spins are aligned along each other. Below Ts, the core spins are highly

aligned whereas the surface spins show a hedgehog-like texture, which results in a
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domain wall at the magnetic equator at the surface. The spins at the domain wall are

highly frustrated due to the competition between the radial surface anisotropy and

the exchange with the highly ordered core spins. The width of the frustrated spins

area, which is correlated to the domain wall, increases with increasing temperature

and decreases with increasing the surface anisotropy, as shown in Fig. 2.13.

The vacancies in the B-sites are randomly distributed and therefore there is a

higher vacancy density at some areas than others. The difference in the surface

vacancy density from one area to another combined with the difference in energy

between the spins at the domain wall and the rest of the surface spins results in an

energy dependency on the direction of the magnetic moment of the nanosphere. This

dependency can be interpreted as a magnetic torque that pins the high energy region

(the magnetic equator at the surface) to one of the areas with high vacancy density

at the surface. The results show that the pinning effect increases by increasing the

surface anisotropy or the surface thickness.
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Chapter 3

Nanoparticles Superstructures and

Inter-Nanoparticle Interactions

For the case of MNP arrays in which the nanoparticles are coated with a non-magnetic

material, the exchange interaction between the MNPs is negligible. The collective

properties of an MNP array is therefore dominated by the dipole interaction. The

magnetic properties therefore depend on the magnetic moment of the MNPs, the

spacing between them and the spacial arrangement of the array.

In this section we study the phase behaviour of point dipoles of an FCC lattice

using finite temperature LLG. The purpose of this work is to demonstrate that the

code we are using reproduces the previously determined ferromagnetic ground state

[50] and Curie temperature [51]. The results are also applied to develop a simple point

dipole model of magnetic nanospheres that will be compared with a more detailed

model that includes the effect of the internal spin configuration of the individual

nanospheres (Ch. 4).
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3.1 The ground state of dipolar lattices in two and

three dimensions

The magnetic field interaction between two point dipoles ~mi and ~mj separated by a

displacement vector ~R may be written in SI units as

Eij = −~mi · ~Bij

= −µ0

4π





~mi · ~mj

R3
ij

− 3

(

~mi · ~Rij

)(

~Rij · ~mj

)

R5
ij



 . (3.1)

From this, we obtain the expression for the energy of an array of dipoles:

E = −µ0

4π

∑′

〈ij〉

(

~mi · ~mj

R3
ij

− 3
(~mi · ~Rij) · (~mj · ~Rij)

R5
ij

)

, (3.2)

where
∑′

〈ij〉
denotes the sum of all pairs {i, j} for i 6= j (Note: this may be written as

1/2
∑

i 6=j where the factor of 1/2 is included to avoid double counting). Equation 3.2

can be rewritten in terms of the dimensionless variables σ̂ = ~m/|~m| and ~rij = ~Rij/D

as

E = −g
∑′

〈ij〉

(

σ̂i · σ̂j

r3ij
− 3

(σ̂i · ~rij) · (σ̂j · ~rij)
r5ij

)

, (3.3)

where D is the distance between the nearest neighbors and g = −µ0m
2/4πD3 is the

normalizing factor. In this section the energy and temperature are rescaled by setting

g = 1.

From Eq. 3.2 we see that the dipole interaction is anisotropic and hence the

structure in which the dipoles are arranged control the nature of the dipole energy.

For example, 1D array of dipoles minimizes the energy by ordering the dipoles parallel
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to the array, a square lattice of magnetic dipoles shows antiferromagnetic order [46],

a triangular lattice shows ferromagnetic order in the lattice plane [52], while the FCC

lattice orders ferromagnetically [51].

The long range nature of the dipole interaction considerably complicates the eval-

uation of the energy of a spin configuration. While in two dimensions the dipole

energy for ferromagnetic states converge in the limit L → ∞, where L denotes the

lateral dimensions of the lattice, the convergence is very slow and highly dependent

on the boundary conditions. Typically periodic boundary conditions are applied that

require the spin configurations to satisfy,

~Mi = ~M(~ri),

= ~M(~ri + L∆~R), (3.4)

where ∆~R is a translation vector that leaves the vector lattice invariant and L is

an integer. The dipole energy can be calculated for periodic systems using Ewald

summation techniques [46].

In three dimensions the problem is even more complicated as the energy calculated

in the limit L → ∞ depends on the shape of the surface bounding the volume, giving

rise to the so called demagnetizing field. The application of the periodic boundary

conditions essentially ignores the effect of the boundary conditions. The situation is

similar to the case of an exchange ferromagnet, in which the demagnetizing field is

ignored in theoretical or numerical studies of the phase behaviour, but is nevertheless

essential to the energetics of ferromagnetic domain formation in ferromagnetism.
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3.2 Magnetic dipole interactions in FCC arrays

To investigate the effect of the dipole interaction on the FCC lattice, a series of

stochastic LLG simulations have been performed for different lattice sizes. The in-

teraction matrix used to describe the dipole interaction for the FCC array, assuming

periodic boundary conditions, was based on the work described in [50] (and the ref-

erences contained therein) and was implemented in MagLua by J. Mercer [44, 45].

The magnetic moment of the dipoles and the distance between the nearest neighbors

dipoles were set to unity and the damping factor chosen as α = 0.5.

The simulations were performed using boundary conditions that corresponds to

∆~R = {(0, L, L), (L, 0, L), (L,L, 0)}. This means that the dipole ~σ(~R) at the point ~R

is identical to the dipole ~σ(~R+ ~∆R) at the point ~R+ ~∆R. The simulations were per-

formed for lattices with L = 4, 8, 16 and 32. For each lattice size, 50 simulations were

performed cooling from 1 to 0 in steps of 0.025 (in this chapter, temperature, energy,

distance, time and all the other physical quantities are represented by dimensionless

reduced units) with 2 × 106 stochastic LLG steps performed each temperature step

with a time step of 10−3 time units. The first 106 LLG steps in each temperature

step where ignored and the parameters of interest were calculated by averaging them

over the second 106 LLG steps. These data were then averaged over the 50 systems.

The calculation of the dipole field at each LLG step made the simulation of large

lattices very time consuming. From these simulations, estimates of the magnitude

of the net magnetic moment M , the heat capacity CH , the susceptibility χ, and the

Binder parameter (Eq. 3.7) were calculated as a function of temperature.

Fig. 3.1 shows the magnetization verses temperature for different lattice sizes.
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The smaller lattices show a more pronounced size effect especially in the vicinity of

the lattice ordering temperature (Td) and above. Due to the size effect, it is difficult

to accurately determine the critical temperature from the M-T curve. However, it is

reasonable to conclude that 0.6 < Td < 0.7.
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Figure 3.1: The magnetization of different sizes of the FCC lattice of magnetic dipoles

as a function of temperature.

Fig. 3.2 shows the susceptibility as a function of temperature for different lattice

sizes. The susceptibility was calculated from the expression:

χ = (< M2 > − < M >2)/T (3.5)
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The data for each value of L show a peak in the susceptibility. We note that the

peaks get narrower with the maximum value increasing as L increases, indicative of

a continuous transition at Td ≈ 0.62
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Figure 3.2: The susceptibility of different sizes of the FCC lattice of magnetic dipoles

as a function of temperature (the susceptibility is divided by the number shown in

the legend and the solid lines are drawn for the convenience of the eye).

Fig. 3.3 shows the heat capacity as a function of temperature for different lattice

sizes. The heat capacity was calculated as:

CH = (< E2 > − < E >2)/T 2 (3.6)
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The heat capacity data for each value of L all give limT→0CH = 1 with a peak at

some temperature T0 that increases with increasing L. The data also show the peak

becoming narrower, higher and sharper as L increases, indicative of a continuous

transition to ferromagnetic state at Td, consistent with the susceptibility data.
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Figure 3.3: The heat capacity of different sizes of the FCC lattice of magnetic dipoles

as a function of temperature.

Fig. 3.4 shows the energy per dipole as a function of temperature. Since the

energies were practically size independent, even above the ordering temperature, only

the data for for the 8× 8× 8 lattice is shown. The ground state energy E0 = −2.956

agrees with [53] and [50]. It was also found that while the ground state energy is
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degenerate and there is no favoured direction, our simulation data for 200 dipole

arrays with different L values and at different temperatures appeared to show that

entropic forces favoured a magnetization vector oriented along the [1 1 1] direction.

We observed no evidence of the temperature dependent reorientation transition at

around Td/2 referred to in previous studies [51]. This is consistent with more recent

simulation results [54]. The data in Fig. 3.4 also show no obvious discontinuity in the

slope, again this consistent with a continuous transition at Td.
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Figure 3.4: The dipole energy of different sizes of the FCC lattice of magnetic dipoles

as a function of temperature.

While the magnetization, susceptibility, heat capacity and energy calculated from
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the simulation data are consistent with a continuous phase transition at Td ≈ 0.62

finite size effects make it difficult to obtain a more accurate estimate of Tc that we can

reliably compare with previous work [51]. A more accurate approach is to compute

the Binder parameter [52, 55] given by:

b =< M2 >2 / < M >4 . (3.7)

The Binder parameter is useful in calculating the value of Td from finite size data

as it has the same value at the critical temperature regardless of the lattice size.

Fig. 3.5 shows binder parameter as a function of temperature for different sizes of

the FCC lattice. The data show that the plots of b for different L values cross over

near the ordering temperature Td = 0.625 ± 0.01. This is consistent with previous

MC simulations by Bouchard [51] who gives the result ρm2/kBTd = 2.316 ± 0.015,

where ρ is the number of dipoles per unit volume and m is the magnitude of the

magnetic moment of the dipoles. To compare with the results obtained from Fig. 3.5

we set µ = 1, kB = 1 and the nearest neighbour spacing to unity to give ρ = 4× 23/2

and hence Td = 0.611, which is in good agreement with the result obtained from our

simulations. This result is also in agreement with other more recent calculations [54]

3.3 Summary

We have presented results from a series of stochastic LLG simulations for the FCC

dipole lattice with periodic boundary conditions. The results show a strong size

dependency of the magnetization at temperatures in the vicinity of Td and above. A

more precise estimation of Td using Binder parameter shows an ordering temperature
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Figure 3.5: Binder cumulant for different sizes of the FCC lattice of magnetic dipoles

as a function of temperature (lines are just for guidance).
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Td = 0.625 ± 0.01 that agrees with previous MC calculations [51]. Results for the

specific heat and the susceptibility for several L values were also presented as functions

of temperature. These curves showed a series of peaks consistent with the ordering

temperature estimated from Binder parameter that seemed to be consistent with a

second phase transition. Energy calculations show a degenerate ground state with

a normalised energy of E/g = −2.956 for any direction of the magnetization with

ferromagnetic configuration. This ground state energy value agrees with the work in

[50]. At any finite temperature the net magnetization prefers the [1 1 1] direction

or any of its equivalent and there is no observed second transition that changes the

preferred direction on the contrary of what has been suggested in the literature[51].

Finally, the consistency of the results shows that stochastic LLG can reliably simulate

the equilibrium properties of the FCC dipole lattice.
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Chapter 4

Nanosphere FCC Array

In this chapter, we study FCC arrays of maghemite nanospheres including both the

dipole interactions between the nanospheres and the complex internal spin structure

of these nanospheres, using stochastic LLG simulations. It is well established experi-

mentally that interparticle dipole interactions in assemblies of magnetic nanoparticles

can give rise to an enhanced collective behavior [56, 57, 58, 15]. This behavior can be

exploited in various applications. Previous computational studies of these assemblies

have been done assuming that each nanoparticle is a single magnetic dipole with a

uniaxial anisotropy [41, 59, 42, 60], cubic anisotropy [43, 60], or using the Meiklejohn-

Bean model where each nanosphere is represented as two anisotropic dipoles with an

exchange between them, one dipole corresponding to the core while the other corre-

sponding to the surface[61, 59]. However, here we present studies of FCC arrays that

treat the internal spin structure of the nanospheres.
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4.1 Model and parameters of the nanosphere FCC

lattices

In addition to the quantities defined by Eqs. 2.7-2.10 for the non-interacting nanospheres,

we define the following quantities: The average magnitude of the magnetic moment

of the nanospheres (Ma) is given by

Ma = 1/N
N
∑

n=1

∣

∣

∣

∣

∣

qn
∑

i=1

~Si(n)

∣

∣

∣

∣

∣

(4.1)

(Note: Ma is equivalent to Mn as in Eq. 2.7 but without normalization. Hence,

Ma defines the magnetic moment of the individual nanospheres regardless of their

collective order in the lattice.). The normalized average magnetic moment of the

nanosphere lattice (Mnl) is given by

Mnl = 4/N

∣

∣

∣

∣

∣

N
∑

n=1

qn
∑

i=1

~Si(n)/qn

∣

∣

∣

∣

∣

(4.2)

(Note: Mnl is the equivalent to the magnitude of the magnetic moment, ~Me, of the

ensemble as in Eq. 2.8.). The order parameter of the nanosphere lattice is given by

Onl = Mnl/Mn. (4.3)

The normalized average magnetic moment of the dipole lattice (Mdl) is given by

Mdl = 1/(NMa(0))

∣

∣

∣

∣

∣

N
∑

n=1

~Md(n)

∣

∣

∣

∣

∣

(4.4)

(Hence: Mdl = Mnl if the magnetic moment of every nanosphere has the same direc-

tion of its equivalent dipole.). Finally, the order parameter of the dipole lattice (Odl)

is given by

Odl = Mdl/Mn, (4.5)
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where N is the number of the nanospheres or the dipoles in the ensemble (array),

qn is the number of spins in the nanosphere number (n), Nsl is the number of the

spins in the whole array, Md(n) is the magnetic moment of the dipole n (without

normalization), and Ma(0) is the average magnitude of the magnetic moment of the

nanospheres at T = 0K (not normalized to one).

The energy of an FCC array of magnetic nanospheres may be written as

E =−
N
∑

k=1

∑

{i,j}∈k

Jki,kjσ̂ki · σ̂kj −
N
∑

k=1

∑

i∈k

Kki (σ̂ki · n̂ki)
2

− g

2

N
∑

k=1

N
∑

l=1

(

∑

i∈k

∑

j∈l

σ̂ki ·Dik,jl · σ̂lj

)

−m

N
∑

k=1

∑

i∈k

~B · σ̂ki, (4.6)

where the subscripts {ki} denote the ith spin in the kth nanosphere. While this expres-

sion is exact, the long-range character of the dipolar interaction means that the com-

putational effort required to compute the effective field for a given spin configuration

other than a few cells is not feasible. However, if we assume that the intra-nanosphere

interaction is dominated by the exchange interaction while the inter-nanosphere in-

teraction consists only of the dipolar interaction then we may simplify the dipolar

interaction somewhat to give the effective Hamiltonian as

Eeff =−
N
∑

k=1

∑

{i,j}∈k

Jki,kjσ̂ki · σ̂kj −
N
∑

k=1

∑

i∈k

Kki (σ̂ki · n̂ki)
2

− g

2

N
∑

k=1

N
∑

l=1

(

∑

i∈k

σ̂ki

)

·Dkl ·
(

∑

j∈l

σ̂lj

)

−m
N
∑

k=1

∑

i∈k

~B · σ̂ki, (4.7)

where Dkl is given by the interaction between two point dipoles. This simplification

considerably reduces the computational effort required to calculate the effective fields

while retaining the complexity of the spin structure of the individual nanospheres and

the interaction between the dipolar fields generated by the magnetic moment of the
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nanospheres where these fields are applied on the individual spins.

This model is used to study two FCC arrays of mamghemite nanospheres using

stochastic LLG. The lattice size used 8 × 8 × 8 with periodic boundary conditions,

with the long range part of the dipolar interaction treated using the Ewald summation

[46].

Results are presented for two systems of nanospheres. Both systems consist of

nanospheres of diameter D = 7.5 nm, Ks = 10K and have the same exchange pa-

rameters as these studied in Ch. 2. The first set which we refer to as FDc675 has a

core diameter of 6.75 nm and the second set, which we refer to as FDc63, has a core

diameter Dc = 6.3 nm. Table 4.1 shows the ratio of the surface spins to the total

number of spins (ns/nv), the lattice ordering temperature (Tl), the magnitude of the

magnetic moment of the individual nanospheres at T = 0K (Ma(0)), and Ma(Tl)

which is Ma at the lattice ordering temperature for FDc63 and FDc75. Also, the pa-

rameters of their equivalent dipole lattices, d63 and d675, respectively are presented

in this table. The dipoles in the equivalent dipole arrays have the same magnetic

moment of the corresponding nanospheres and have no anisotropy. To study the ef-

fect of the magnetostatic dipolar interactions on the intrinsic spin configuration of

the nanospheres, FDc63 and FDc675 are compared with their equivalent systems of

noninteracting nanospheres Dc63 and Dc675 (Table 2.2) respectively. The damping

factor used in all the cases is 0.5.

Even using the simplified expression Eeff , the number of individual spins in the

8×8×8 nanosphere arrays is sufficiently large (∼ 5×105 spins per array), so that the

computational times involved mean that it is not feasible to perform the calculation

in serial mode. All of the simulations were performed in parallel using MPI with each
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The FCC system FDc63 d63 FDc675 d675

building unit nanosphere dipole nanosphere dipole

lattice size 8× 8× 8 8× 8× 8 8× 8× 8 8× 8× 8

center to center distance 7.5 nm 7.5 nm 7.5 nm 7.5 nm

Ks (K) 10 0 10 0

Dc 6.3 nm - 6.75 nm -

ns/nv 0.406 - 0.276 -

Tl (K) 36.5 36.5 52 52

Ma(0)(µB) 9275 9275 9830 9830

Ma(Tl)(µB) 1400 1400 1850 1850

Table 4.1: Characteristic parameters of FDc63, FDc675 and the corresponding dipole

lattices, d63 and d675.

nanosphere assigned to a single processor core. In addition, in order to reduce the

effects of the latency between the processor cores and using the fact that the dipole

field changes are very small in a single LLG time step, the dipole field is updated every

100 time steps (2× 10−2 tu). Comparisons between results obtained by updating the

dipole field each LLG time step shows little difference from those obtained in which

the dipole field is updated every 100 LLG steps.

4.2 The equivalent dipole lattice

For comparison purposes, the results of the simulations of equivalent dipole lattices

(Table 4.1) are also presented. The equivalent dipole lattice consists of a FCC lattice
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of point dipoles with the same lattice spacing as the nanosphere lattice and a tem-

perature dependent moment equal to that average moment of the nanospheres that

make up the nanosphere lattice.

The dipole system is left to relax for 400 tu at each temperature step using a time

step of 1× 10−4 tu and data collected over the final 200 tu for each temperature. The

net magnetization of the dipole lattices (Mdl) is obtained by averaging over 20 dipole

arrays. The dipole arrays simulations were done using both Euler and and RK4

integration schemes in which the precession of the magnetic dipoles is treated using

quaternion formalism [44, 45]. The results of the simulations using the two integration

methods show little difference. The results are may also be obtained from the results

of the previous section using a non-linear scaling of the reduced temperature in the

case of the equivalent dipole lattice due to the temperature dependence of the moment

of the nanosphere

T/Tr =
g(T )

kB
= µ0(Ma(T ))

2/4πD3kB (4.8)

where Ma(T ) is the magnetic moment of the nanosphere/dipole at temperature T ,

D is the diameter of the nanospheres (the same as the distance between the centers

of the nearest neighbors) and Tr is the reduced temperature used in Ch. 3. Fig. 4.1

shows the relation between the temperature of the dipole lattices corresponding to

the two nanosphere lattices and the reduced temperature. We note from Fig. 4.1

that the reduced ordering temperature Tr = 0.625 is equivalent to lattice ordering

temperature (T = 52K) for the dipole lattice d675 and to lattice ordering temperature

(T = 36.5K) for the dipole lattice d63.
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Figure 4.1: The relation between the reduced temperature and the temperature of

two FCC dipole lattices d63 and d675 which correspond to the nanospheres with core

diameter Dc = 6.3 nm and 6.75 nm, respectively (Table 4.1).
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4.3 Results and Analysis

Simulations of an array of nanospheres with cores of 6.75 nm (FDc675) has been

performed using RK4 integration (Appendix. C) with a time step of 2 × 10−4 tu

with the dipole field being updated every 100 LLG steps. At each temperature, the

stochastic LLG process was performed for 400 tu. Then the temperature was reduced

and the lattice was left to equilibrate for another 400 tu. A similar procedure was

applied to the FDc63, but with the somewhat longer equilibration time of 600 tu at

each temperature.

Fig. 4.2 shows the simulation process of the lattice FDc675. For example, the first

(yellow) column represents the net lattice magnetization, Mnl, as a function of time

at T = 40K. The temperature is then reduced to 30 K and the net magnetisation

plotted in the second (green) column and the system left to relax for another 400 tu

and so on. Similarly, Fig. 4.3 shows the simulation process for the FDc63 array.

Fig. 4.2 show a rapid increases in the lattice magetisation Mnl of the FDc675

array when the temperature is reduced. We note similar jumps for the FDc63 array

as shown in Fig. 4.3. These jumps happens because of the increase in the nanospheres

magnetization Mn. Thus, reducing the temperature leads to the sudden increase in

Mnl. For the data in the temperature range T 6 15K letting the lattice to equilibrate

at the new temperature shows a reduction in Mnl following the initial increase. This

reduction implies a loss of the orientational order between the nanospheres as the

system relaxes. This reduction in the orientational order at low temperature is due

to the pinning effect of the vacancies, as will be discussed later.

Fig. 4.4 shows the lattice magnetization, Mnl, of the FDc675 array plotted as a

78



0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 400 800 1200 1600 2000 2400 2800 3200

T=40K T=30K

M

T=20K T=15K T=10K T=5K T=0K

Time (tu)

T=25K

Figure 4.2: Mnl a of an 8×8×8 FCC nanosphere array as a function of temperature,

where the nanospheres have a 7.5 nm diameter, 6.75 nm core diameter, 7.5 nm center

to center spacing and Ks = 10K (FDc675 Table 4.1).
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Figure 4.3: Mnl a of an 8×8×8 FCC nanosphere array as a function of temperature,

where the nanospheres have a 7.5 nm diameter, 6.3 nm core diameter, 7.5 nm center

to center spacing and Ks = 10K (FDc63 Table 4.1).
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function of temperature. The lattice magnetization, Mdl, of the equivalent dipole

lattice, d675 is also plotted as a function of temperature together with Mn, the

magnitude of the magnet moment of the maghemite nanospheres. Mn is scaled by unit

of µB on the right y−axis while it is normalized on the left y−axis. A comparison with

Mn of the system of noninteracting nanospheres Dc675 shows negligible difference

when the dipole effect is introduced by placing the nanospheres on an FCC array.

Fig. 4.5 shows the same data for the nanosphere lattice, FDc63 (Table 4.1), and the

equivalent dipole lattice d63.

In Fig. 4.4, we distinguish two cases. At high temperatures (T & 30K), the

nanosphere lattice have essentially the same magnetization as the equivalent dipole

lattice. This is expected since the nanospheres behave as super-paramagnets. At

low temperatures, Mnl drops below the magnetization of the equivalent dipole lattice

(Mdl). This indicates that there is some phenomenon that decreases the orientational

order between the nanospheres. The disordering at low temperatures is more obvious

if we eliminate the effect of the temperature dependency of the magnitude of the

magnetic moment of the nanospheres by defining the order parameter Onl = 〈cos(θ)〉,

where θ is the angle between the magnetic moment of the nanosphere and the net

magnetization of the lattice. Hence, Onl = Mnl/Mn.

The reduction in Onl can be understood in light of the pinning effect which is a

result of the inhomogeneity of the surface vacancies as discussed in Ch. 2. Fig. 4.6

shows the density of the vacancies of the lattice, FDc675, and the corresponding

ensemble of non-interacting nanospheres, Dc675, as a function of cos(ϕ) at different

temperatures. Both systems show a strong peak in the vacancies density at the

equator where the peak gets lower with increasing the temperature. The peaks in the
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Figure 4.4: The lattice magnetization, Mnl, and the magnitude of the nanosphere

magnetic moment, Mn, as a function of temperature. Mnl and Mn belong to the

array FDc675 (Table 4.1). The array is an 8× 8× 8 FCC lattice with 7.5 nm diameter

nanospheres, 6.75 nm core diameter, Ks = 10K and 7.5 nm center to center distance

between the nearest neighbors. Also, Mdl, the magnetization of the corresponding

dipole lattice (d675 Table 4.1) is presented as a function of temperature.
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Figure 4.5: As in Fig. 4.4 for the FDc63 lattice.
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two systems can be observed even at temperatures as high as 30K. Since the vacancies

are randomly distributed, each nanosphere has a unique vacancies distribution. This

results in a unique pinning direction/directions for the magnetic moment of each

nanosphere. By placing the nanospheres in a lattice, the pinning directions show a

random pattern where the magnetic moment of each nanosphere prefers a different

direction. On the other hand, the dipole field prefers orienting the magnetic moment

of the nanospheres in the same direction and a competition between the dipole field

and the torque due to the pinning effect increases. As shown in Ch. 2, the pinning

effect increases with reducing temperature, which explains the reduction in Onl with

reducing temperature.

This competition is demonstrated in Fig. 4.6 where the peak in the density of

the surface vacancies at the equator in the FDc675 nanosphere array is less pro-

nounced than the corresponding peak for the non-interacting nanospheres (Dc675).

Thus, while the pinning effect of the vacancies hinders the ordering of the magnetic

moment nanospheres in the FDc675 array as the temperature is reduced, the dipo-

lar field limits the pinning effect of the vacancies and a decrease in the peak in the

vacancy distribution around the equator occurs. While this array disorientation ef-

fect is masked by the increase in the magnetic moment of the nanospheres when the

temperature is reduced as shown in Fig. 4.4, this disorientation is clearly seen in the

order parameter Onl shown in Fig. 4.7.

In the case of the FDc63 array the thicker shell means that the magnetic moment

of the core and hence Mn is lower than it is in the FDc675 array. This means that the

FDc63 array orders at a much lower temperature than the FDc675 array (T ≈ 36.5K

for the equivalent dipole array as seen in Fig. 4.1). Hence the FDc63 lattice ordering
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Figure 4.6: The density of the vacancies of the lattice, FDc675, and the corresponding

ensemble of non-interacting nanospheres, Dc675, as a function of cos(ϕ) at different

temperatures.
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temperature coincides with the estimated pinning temperature (T ≈ 30K as shown

in Ch. 2 for Dc63). As a result, the pining effect of the surface vacancies is much more

effective in suppressing the formation of ferromagnetic ordering of the FDc63 array

than suppressing the ordering of the FD675 array. This is clearly seen in Fig. 4.8

where Onl of the FDc63 lattice and Odl of the equivalent dipole lattice are shown

as functions of temperature. By comparing Fig. 4.7 with Fig. 4.8, we note that the

difference in the ordering parameter between FDc63 and its equivalent dipole array

is much more pronounced than the difference in the ordering parameter between

FDc675 and its equivalent dipole array. Fig. 4.9 shows that the order parameter of

FDc63 is much lower than the ordering parameter of FDc675 at any temperature. In

particular the order parameter at T = 0K, where the only factor that reduces the

ordering parameter is the pinning effect. We note that at T = 0K, (Onl = 0.65)

for the FDc63 array is significantly lower than corresponding value for the FDc675

array (Onl = 0.80). Likewise Fig. 4.10, which compares the vacancy profile for the

FDc63 nanospheres and the equivalent profile for the non-interacting nanospheres,

shows that the effect of the dipole interaction on the polar vacancy distribution is

much smaller than the dipole effect on the vacancies distribution for FDc675 array

(as shown in Fig. 4.6).

4.4 Summary

Results of MPI simulations of FCC maghemite nanosphere lattices using stochastic

LLG implemented by MagLua [44, 45] are presented. The simulation model treats the

nanospheres as dipoles to calculate the dipole field at the center of each nanosphere.
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Figure 4.7: Onl and Odl of an 8× 8× 8 FCC array as a function of temperature, where

the nanospheres have a 7.5 nm diameter, 6.75 nm core diameter and Ks = 10K.
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Figure 4.10: The density of the vacancies of the lattice, FDc63, and the corresponding

ensemble of non-interacting nanospheres, Dc63, as a function of cos(ϕ) at different

temperatures.
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Then the atomistic structure of each nanosphere is taken into account during the

stochastic LLG integration. The study of two nanosphere lattices are presented at

different surface thicknesses. Each nanosphere lattice is compared with the equivalent

dipole lattice which has dipoles with the same magnitude of the magnetic moments

of their equivalent nanospheres, while no anisotropy were assigned to the dipoles.

The results show that the ordering temperature of each nanosphere lattice is very

close to its equivalent dipole lattice. At temperatures high enough to ignore the

pinning effect (above 25 K), the nanospheres behave as superparamagnetic dipoles.

Hence, the nanosphere lattice and the equivalent dipole lattice have the same net

magnetization at high temperatures. While the magnitude of the magnetic moment

of the individual nanospheres increases rapidly below 25 K, the nanosphere lattice net

magnetization shows only a very shallow increase. This difference between the net

magnetization of the nanosphere lattice and its equivalent dipole lattice might seem

at first as a result of the direction of the magnetic moment of the nanospheres being

blocked. By defining the orientational order parameter as an average of cos(θ), where

θ is the angle between the magnetic moment of the nanosphere and the net magneti-

zation of the lattice, we can study the orientational behavior of the nanosphere lattice.

The results show that the orientational order parameter of the nanosphere lattices

decreases with decreasing the temperature below 25 K. This disorder of the direction

of the nanospheres magnetization can be understood in light of the pinning of the

domain wall in region with high vacancy density. The results show that the vacancy

density is maximum at the magnetic equator for both interacting and noninteracting

nanospheres. These peaks get higher and narrower by decreasing temperature, which

means the pinning increases with decreasing the temperature. Since the vacancies pin
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the magnetic moment of each nanosphere to a unique direction, the strong pinning

randomizes the orientational order of the magnetic moment of the nanospheres. This

ordering reduction suggests that the pinning of domain walls to the areas with high

vacancy density is stronger than the dipole field. Therefore it might be the main

factor in determining the maghemite nanospheres blocking temperature.

Increasing the nanospheres surface thickness increases the pinning of the domain

wall to the vacancies and decreases the magnitude of the magnetic moment of the

nanosphere. As a consequence, lattices of nanospheres of thick surfaces are less or-

dered than lattices of nanospheres of thin surfaces. This is consisitant with what

we notice from Figs. 4.6 and 4.10 where the competition between the dipole inter-

actions and the pinning effect reduces the vacancy density at the equator for the

lattice FDc675 compared to the noninteracting nanosphere ensemble Dc675 whereas

the lattice FDc63 show a vacancy desnsity at the equator almost identical to the

corresponding noninteracting nanospheres in the ensemble Dc63.
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Chapter 5

Conclusion

Stochastic LLG simulations implemented by MagLua [44, 45] are presented in this

thesis. We focus on three systems: maghemite noninteracting nanospheres, FCC

dipole lattice, and FCC maghemite nanosphere lattice.

5.1 Maghemite noninteracting nanospheres

Results of stochastic LLG simulations of noninteracting maghemite nanospheres with

different surface anisotropies and different surface thicknesses have been presented.

The simulation model has a bulk-like core, a radial surface anisotropy, and a weak

exchange between the surface spins. The results show two distinct ordering temper-

atures, Tc and Ts. Tc is close to the bulk maghemite ordering temperature, which

is due to the ordering of the core spins, whereas Ts ≃ 30K is due to the ordering

of the surface spins. These temperatures are in good agreement with previous MC

simulations as shown in the Appendix. A. Comparing Fig. 2.1 with Fig. 1.3 in Ref. [1]

shows a qualitative agreement with the experimental results.
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The heating and cooling magnetization curves of ZFC ensembles show a blocking

temperature that is relatively close to experimental value [1]. Increasing the surface

anisotropy results in increasing the blocking temperature, whereas increasing the

heating and cooling rates results in a slight increase in the blocking temperature.

Below Ts, the surface spins start to order and the competition between the surface

anisotropy and the exchange interactions leads to form a hedgehog-like structure at

the surface with a domain wall at the magnetic equator. The surface spins at the

magnetic equator have higher energy than the others due to the competition between

the exchange and the surface anisotropy. The random vacancy distribution combined

with inhomogeneous energy distribution at the surface result in an anisotropic energy

by pinning the high energy region which is the magnetic equator at the surface to the

low spin density region which is the region of the surface with high vacancy density.

This pinning can be understood as a magnetic torque that change the location of the

magnetic equator by changing the direction of the magnetic moment to maximize the

number of vacancies at the magnetic equator.

The results show that increasing the surface anisotropy increases the peak in the

surface vacancy density at the equator and reduces the width of this peak, which

indicates an increase in the pinning effect. Similar changes were observed when the

surface thickness was increased from 0.36 nm to 0.6 nm.

5.2 FCC dipole lattice

In Ch. 3, we present simulations of different sizes of FCC dipole lattices with pe-

riodic boundary conditions where the dipole fields are the only interaction between
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the dipoles. The Binder parameter shows a reduced ordering temperature Td =

0.625 ± 0.01 that agrees with previous MC simulations [51]. The specific heat and

the susceptibility as functions of temperature show peaks that are consistent with

a typical second order phase transition. Energy calculations show a degenerate fer-

romagnetic ground state with a reduced energy of –2.956 in any direction of the

magnetization. The calculated ground state energy shows agreement with a previ-

ous computations [50]. The simulations show that at any finite temperature, the

net magnetization prefers the [1 1 1] direction or any of its equivalents with no sec-

ond transition that changes the preferred direction, contrary to what Bouchaud had

suggested [51].

5.3 Maghemite nanospheres on FCC lattice with

dipole interactions

In Ch. 4, we present multi-scale simulations of FCC maghemite nanosphere arrays

with periodic boundary conditions where the inter-particle dipole interaction and the

intra-particle exchange interactions and anisotropy are included. The dipole field is

calculated at the center of each nanosphere by assuming that each nanosphere is a

point dipole and the dipole field is applied to each nanosphere and then, the stochastic

LLG integrations are performed on atomistic level. To the best of our knowledge, this

is the only simulation example of this type of multi-scale modelling. This procedure

was implemented by MagLua [44, 45] using MPI where each nanosphere was assigned

to a single processing core. The array net magnetization and the inter-particle orien-
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tational order parameter were compared with the equivalent dipole lattice which has

dipoles with the same magnitude of the magnetic moments of the nanospheres, while

no anisotropy were assigned to the dipoles.

At high temperature (T > 25K), we can ignore the pinning effect and the

nanospheres behave as superparamagnetic dipoles. Hence, the magnetization and

the ordering temperature of the nanosphere arrays are very close to the results ob-

tained for equivalent dipole arrays as shown in Fig. 4.4.

While the magnitude of the magnetic moment of the individual nanospheres in-

creases rapidly below 25 K, the nanosphere lattice net magnetization shows only a

very shallow increase. This odd behavior indicates an inter-particles orientational dis-

ordering with decreasing temperature. Results of the orientational order parameter

as a function of temperature confirms this inter-particles disordering below T = 25K

as shown in Figs. 4.7 and 4.8.

As shown in Figs. 4.6 and 4.10, the pinning of the magnetic equator to the areas

with high surface vacancy is strong at T < 25K and increases with decreasing the

temperature even in the presence of the dipole interactions. The fact that the pinning

preferred direction is unique for each nanosphere explains the reduction in the ordering

parameter.

Since increasing the nanospheres surface thickness increases the pinning of the

domain wall to the vacancies and decreases the magnitude of the magnetic moment

of the nanosphere as shown in Ch. 2, lattices of nanospheres with thick surfaces are

less ordered than lattices of nanospheres of thin surfaces as shown in Fig. 4.9.

The simulations of the nanosphere FCC lattice show an ordering temperature,

T ≃ 50K, that is much lower than the temperature obtained experimentally (T =
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400K) from MH-loops [20] for nanospheres with the same size. In fact, the simulation

assumes that the nanospheres are just touching each other while the experimental re-

sults in Ref. [20] are for nanospheres that are separated from each other due to the

ferritin coat and therefore should show lower ordering temperature than the simula-

tions. A possible explanation of this discrepency may the presence of a very strong

core anisotropy where the ising model is a valid approximation [62]. In addition, there

are many factors may cause the difference between the experimental results and the

simulations such as the finite lattice size in the experiment and the unclear effect of

the ferritin cage the surface.

The inter-particles orientational disorder due to the surface vacancies can be gen-

eralized to other one [14], two [15, 58], and three [8, 20] dimensional maghemite

structures. Also, we can expect this pinning due to the surface vacancies to be

present in other nanoshperes of cation-deficient magnetic materials such as Fe2TiO4

and FeCr2O4 [63]. This disordering mechanism provides a reasonable explanation for

the reduction in the FCC lattice magnetization at low temperatures as the experi-

ments in Ref. [62] show.

5.4 Future work

The work presented in this thesis can be extended to determine and quantify the en-

ergy landscape of nanospheres as a function of the orientation of the nanosphere mag-

netic axis. This combined with the study of the dynamical response of nanospheres

to applied field and temperature can be exploited in determining the relation between

domain wall pinning due to vacancy distribution and the blocking temperature. Also,
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we intend to study further the origin of discrepancy between the ordering temperature

of the nanosphere lattice from simulations and from MH loops.
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Appendix A

Comparing Stochastic LLG with

Monte Carlo

Adebayo et al. [37] MC simulations (AMC) use double the core exchange parameters

that are used in Kodama simulations (KLLG) [34]. However, the energy expression

in AMC counts the exchange between two ions only once (Eq. 1.5), while the energy

expression in KLLG counts it twice [34](similar to Eq 2.5). Therefore, the core

ordering temperature must be the same in the two studies. However, each iron ion in

KLLG was assigned 5 µb, while each iron ion in AMC was assigned 1 µb. As a result,

the magnetization unit in Figs. 1.5, 1.6, and 1.7 is (5µb/ion). Also, this difference

results in a scaling factor of 5 ∗ 5 = 25 in energy, anisotropy, and temperature as we

conclude from the energy expression in Eq. 1.5. Hence the core ordering temperature

in KLLG (T ≃ 900 K) should translate into T ≃ 900/25 = 36 in AMC units.

However, the core ordering temperature in AMC is about twice the expected value as

shown in Fig. 1.6. This might mean that the exchange is counted twice in AMC. To
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confirm this, the total magnetization as a function of temperature is shown in Fig. A.1

where the data compares AMC results with our stochastic LLG results using the same

parameters while the exchange is counted twice. The two curves are matching and

hence a scaling factor of 25/2 = 12.5 is required for the temperature in AMC results

and the factor of 25 that is applied to the exchange parameters to get the results in

Ch. 2 and Ch. 4 is valid. Also, as shown in Fig. 2.1, the stochastic LLG simulations

give a core ordering temperature Tc ≃ 900 K, in agreement with the results in KLLG

Ref [34].
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Figure A.1: The total magnetization of maghemite single nanosphere with 5 nm

diameter as a function of temperature. The data compares MC simulations from

Ref. [37] with stochastic LLG simulation results. The units of temperature, field, and

anisotropy are (12.5 K) and the magnetization unit is 5 µB/ion.
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Appendix B

Comparing noninteracting

maghemite nanosphere simulation

with experimental results

The saturation magnetization of dispersed 7 nm diameter maghemite nanospheres

as a function of temperature is shown in Fig. B.1. The data represents the exper-

imental results (from Ref. [1]) and stochastic LLG simulations. The nanospheres

in the simulations have 0.735 nm surface thickness and Ks = 20K. The core ex-

change parameters have the same values as in Table 2.1, while and surface-surface

and surface-core exchange interactions are divided by 50. The applied field is 5 K

(1.49 T).

As shown in Fig. B.1, the surface ordering temperature and the shape of the surface

saturation magnetization obtained from the simulations is in agreement with the ex-

periment. Also the core ordering temperature is close to the bulk maghemite ordering
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temperature and in agreement with previous MC simulations [34].
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Figure B.1: The saturation magnetization of 7 nm diameter dispersed maghemite

nanospheres as a function of temperature. The data represents the experimental

results in Ref. [1] (red) and the stochastic LLG simulations with Ks = 20K and 0.735

nm surface thickness.
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Appendix C

Euler integration error in

nanospheres lattice

Above the blocking temperature T = 20K, the nanospheres are expected to behave

as superparamagnetic dipoles and the nanosphere lattice magnetization (Mnl) must

be identical to the magnetization of the corresponding dipole lattice (Mdl). However,

Mnl at high temperature is a little higher than Mdl as shown in Ch. 4.

The lattice magnetization (Mnl) of the FDc675 array and the corresponding dipole

lattice (Dc63) as functions of temperature are shown in Fig. C.1. The data compares

Mnl results obtained by Euler integration with results obtained by RK4 using a time

step of 2× 10−4tu. Since RK4 and Euler results are the same for Mdl only one curve

is shown to represent Mdl. Mnl clearly converges to the dipoles array value (Mdl)

at high temperature by reducing the error using a higher order integration method

(RK4). Updating the dipole field every time step and running the simulation for

longer time did not change the difference between Mnl and Mdl at high temperature
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for both methods. In fact, Euler integration gives reliable results for noninteracting

nanospheres or a lattice of dipoles and no difference from RK4 integration was ob-

served. This means that when Euler integration produces a systematic error when

the dipole field is introduced to the nanospheres.
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Figure C.1: The magnetization of the FDc675 FCC nanosphere lattice and the corre-

sponding dipole lattice The data represents results using Euler and RK4 integration

of the LLG equation with time step 2× 10−4 tu.
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