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ABSTRACT 

There is no evolutionary, ecological or behavioural explanation for the partitioning of 

parental roles between the sexes in the Alcini, which includes murres (Uria), the 

razorbill, (Alca torda), great auk (Penguinus impennis) and dovekie (Aile aile) ; and why 

the male is the selected sex to accompany the chick to sea. I investigated parental roles 

and diving behaviour of two sympatric alcids, thick-billed murres, Uria lomvia, and 

razorbills, at the Gannet Islands, Labrador to determine whether sex-specific differences 

in energy expenditure at the time of departure explain male-only care at sea. Externally 

attached time-depth recorders (TDRs) negatively affected parental behaviour in male and 

female thick-billed murres. Partners ofTDR-equipped birds compensated for the reduced 

parental effort in brooding and chick provisioning of their mates, with no differential 

responses between sexes. There was a temporal segregation of water depths, dive 

profiles, and food resources between the sexes in both species; these differences being 

stronger in thick-billed murres than in razorbills. Most murre females' self-feeding diving 

coincided with the vertical migration of crustaceans to surface waters; while male' s self­

feeding foraging occurred when prey were in deeper sections of the water column. Chick­

provisioning diving was deeper than self-feeding irrespective of the sex or the time of 

day, suggesting equal parental effort allocation ofthe sexes underwater. Nevertheless, 

males had longer foraging trips than females probably due to the time spend flying to 

farther locations than females. Higher self-feeding rates and closer feeding locations may 
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explain female's higher delivery rates at the breeding site. The longer time males spent 

brooding the chicks may serve to ensure parent-offspring vocal recognition at departure. 

Larger bill dimensions and higher levels of aggressive behaviour may confer males a 

better ability to protect the chick. In conclusion, differences in energy expenditure 

between the sexes did not seem to explain the male's parental role at sea. Instead, I 

proposed that the patterns of parental roles found between sexes was the result of a chain 

of events favouring male involvement in chick brooding and care at sea. A higher level of 

aggressiveness of the parent that escorts the chick to sea may have been selected for to 

ensure offspring survival, and as a result, parental roles developed at the breeding site to 

ensure male-only care at sea. 



lll 

ACKNOWLEDGMENTS 

I could have not finished this study without the immeasurable support and love of my 

husband Stephen J. Insley, and the smiles of my two wonderful little boys, Andres and 

Sebastian. They became part of my life during my programme, which allow me to know 

all about parental care and effort allocation by first hand. I am deeply grateful to my 

parents, Rosa Vela de Paredes and Javier Paredes Carqufn, for their love, support and 

encouragement through my personal and professional life. 

I am very grateful to my supervisor, Ian L. Jones, for his outstanding support and advice 

throughout my Ph. D programme at Memorial University of Newfoundland. My special 

gratitude to my co-supervisor, Daryl 1. Boness for his important role in my career 

development as a research biologist during and before this programme; and for providing 

key parts of the field equipment. Thanks to Ian Jones, Daryl Boness, Yann Tremblay, 

Martin Renner, and Stephen 1. Insley for their contribution as co-authors in the chapters 

that have been published (2 & 6) or submitted (4 & 5) to peer review journals. Dann 

Costa kindly let me use the facilities of his laboratory at the University of Santa Cruz, CA 

while I was working in the dive analysis with Yann Temblay. Likewise, Dr. Don Kent, 

kindly provided me with a working area at Hubbs Research Institute, during my stay in 

San Diego, CA. This allowed me to have productive discussions with Dr. Joe Jehl and 

Dr. Gerry Kooyman. Thanks to David Schneider for his statistical advice in many parts of 

this study. My gratitude to my supervisory committee members, David Schneider and 



lV 

William Montevecchi, who provided helpful comments on this manuscript. I am deeply 

thankful to all the people that helped me in Gannet Islands, Labrador. Thanks to Bobby 

Fokidis, Andy Higdon, Tony Lavictoire, Robert Eveleigh, Stephen J. Insley, and Brian 

Veitch for their assistance in the field, and to Johanne Dussurreault (camp leader), for 

making life and work more enjoyable at Gannet Islands. Thanks to Randy Cahill, Labsea 

Data and Logistics Corp., for the logistic and enthusiastic support from Cartwright, 

Labrador. Thanks to Steve Carr and Dawn Marshall for invaluable assistance and use of 

their laboratory for the genetic sexing. Special thanks to Tony Dickinson, and Collen 

Clarke (CIDA) for their dedicated work in helping foreign graduate students to be 

successful in Canada. My special gratitude to Shirley Kenny and Collen Clarke for her 

invaluable help with my thesis submission at Memorial University. This study was 

supported by a CIDA fellowship to RP, the Atlantic Cooperative Wildlife Ecology 

Research Network CWS/NSERC Industrial Research Chair and NSERC Individual 

Research grants to Ian L. Jones, and by a Smithsonian Institution Abbott Fund grant to 

Daryl J. Boness. My field assistants, Bobby Fokidis, Andy Higdon, Tony Lavictoire and 

Robert Eveleigh. were supported by the Northern Scientific Training Program of the 

Department of Indian Affairs and Northern Development, Canada. The Women' s 

Association of Memorial University ofNewfoundland granted me with the 2003 

W AMUN award for the completion of my PhD thesis. 



v 

TABLE OF CONTENTS 

Abstract . . . ... .... . ... . .. . . . .... .... . .. . . ......... .......... . ........... . ......... . .. . .... . .. ... . ...... . . i 

Acknowledgments . .. .. ... .. . ...... ... .. . .... . .................. . ... . ..... . ............. ... . .... . ... .iii 

List of Tables ...... . . ... . . ........ ... ... . ............. . .. . ............. . . . . . ... . ........ . ... .. .. .. ... .ix 

List of Figures . .. ... ... ............ .. . . .. . ........ . .. ..... ..... . . .. .. ... .. .. . . .... . . .... . ...... ........ x 

Chapter 1 Introduction . . ... . . .. . . . . .. .. .. ... . ... . . ..... . . . . ... . . . . . .. . . . ... .... . . . .. . .... ... ... ...... 1 

1.1 Study species ... ... ... . .... .... . ... .. ....... ....... .. .... . . .... ... . . . .. . . .. .. .. ...... .. ... . ... ... .. 1 

1.2 Background of study .. . . . .............. . .... . .. .. . .. .. .. .. .. . . .. . . ... ....... . . .. . .. ........... ... .4 

1.3 Purpose ofstudy .. ... .... .. . .... ........ . .. .. . ... . ... . .. . . .. .. .. ... ... .. ... ... . ......... .. . .. .... 14 

1.4 Significance of study ... . .. .. . .. ......... . .. . ..... .. .. . .......... . . .... . . ....... . ................. 17 

Chapter 2 Reduced parental care, compensatory behaviour and reproductive costs 

experienced by female and male thick-billed murres equipped with data loggers . ........ 19 

2.1 Abstract. . . .. . ... . . .. . .... . . .. . . ... .. . ..... .. . . ...... . .. . ...... . .... . .... . . .. ..... . .. .. ............. 19 

2.2 Introduction .... . . .. . .. . . . . .... . . . ........ . .... . ....... .. ... ... ... .. . .... . ..... .. .. .. .. .. . .. ...... 20 

2.3 Methods . ... .. .. .... . ... .. ... . . . .. . . .. . .... . . ... ....... . .... .. .... . . . ... . . .. . .. . ..... . ... ... ... . . . 25 

2.3.1 Data analysis ...... . ..... . ..... . .. .. ... . ... . . ... ... . . . . . ... .. .. . . . .... . .. . . ... .... ..... 28 

2.4 Results .. ..... ..... . ........................... . ............. . .. .. .... ..... . ... ... .. ....... ........ 30 

2.4.1 Inter-annual fledging success ...... .. . .... .. ........... .. .. .. . ... ............ ...... 30 

2.4.2 Effect of time-depth recorders on body mass and parental behaviour ........ 31 

2.4.2.1 Effect on body mass .. .......................... ............... .. ........ . 31 

2.4.2.2 Effect on foraging behaviour .. .. . .......... ..... ..... ...... .. ......... . 33 

2.4.2.3 Effect on brooding behaviour .... ..... .. .. .. ... ...... .. ................ 37 

2.4.3 Compensation of reduction of parental effort. . ...... . .. . .. . ....... .. .. .. .. ..... 38 

2.4.3.1 Chick provisioning ...... ..... . ..... ... . ........... . ... . .... . .. .......... 38 

2 .4.3.2 Offspring attendance .... ..... .. .. ....... ..... . ... .. .................... .45 



Vl 

2.4.4 Fledging success ........ . .. . . ... .... .. . . .. ........ . .. . ... .... .. . .... . ......... .. ... .45 

2.4.5 Reproductive costs ................... .. ....... .. .... ........... . . . ... ... .. . ... . .. .. .46 

2.5 Discussion ..... .. ....... ....... .. . ... ..... . ... . .. ...................................... .. ..... ... 48 

2.5 .1 Effect of time depth recorders on parental behaviour .................... . ..... .48 

2.5.2 Compensatory behaviour and reproductive costs ...... ...... .. .. . .......... . . . 51 

2.6 Acknowledgments ............... .. . . ... .. ............... . . . ....... .. . ..................... .. . .. 57 

Chapter 3 Sex differences in diving behaviour of thick-billed murres and razorbills at 

Gannet Islands, Labrador ............ ............ ... .. ....... . ......... .. ........................... 58 

3.1 Abstract ................... . ... . .. ....... ... .. ..... . .. . . .... ....... .. .. ... .. . . ..... .. ..... . ...... .. 58 

3.2 Introduction ............................................ . .............. .. . .. ........ .... . .... ...... 59 

3.3 Methods ..................... . ..... ... ........ ... .. .. ... . .. ............ ... .... . ... ......... . ...... . 64 

3.3.1 Data. and statistical analysis ..... .. .... .......... .. ... ........ .. ......... . .... .. .... 66 

3.4 Results . ......... ... ................. .. .... ...... ............... ..... .. ........ ... ........ ......... 68 

3.4.1 Non-effect ofTDR type .......................... .. ...... .... .......... ...... .. .... 68 

3.4.2 Thick-billed murre diving behaviour ......... .. . .. . .. . . .................. ... ...... 69 

3.4.2.1 Murre dive profiles in relation to prey type ...................... .. .... 69 

3.4.3 Razorbill diving behaviour . ... .. . .... ...... . .. ... ..... . . ........ .. .. ........ ...... . 85 

3.4.3.1 Razorbill dive profiles in relation to prey type .... .. .. ...... .. ........ 88 

3.5 Discussion . ... ................ . ........................... .. ......... .. .... .. ..... .. .. .......... ... 91 

3.5.1 Effect of time-depth recorders in birds' behaviour .............................. 91 

3.5 .2 Patterns and differences in diving behaviour of sympatric thick-billed 

murres and razorbills ... ........................ .. .......... .. .... .... . .. .. .... .. .. .. ....... 92 

3.5.3 Sex differences in diving behaviour and inter-sexual patterns in murres 

and razorbills ........................ . .. . . .... .... ...... ......... ............... ........ .. ... 95 

3.5.4 Do parental roles determine foraging patterns and consequently diving 

behaviour? ...... ......... ... ........ ....................... .................................. ............ ........ .. .. . 1 00 

3.6 Acknowledgments ....... . ..... .. ................. . . ... ... .. .. ... ....... ........ . ..... . . .... ... 103 



Vll 

Chapter 4 Sex-specific differences in foraging behaviour of Thick-billed murres at the 

Gannet Islands: provisioning vs. self-feeding ............ .. ................................... 104 

4.1 Abstract .. .. ........ ... .... ... .... ........ ........ . . ................... . .. ................ . .. .... 1 04 

4.2 Introduction ....... ........ . . . ........ ..... .. .. ........... . .... .... . . .. ... .... .. . . .. ........... .. 1 05 

4.3 Methods .... .. ...... . ..... . ....... . .. . ... .. . .. ....... .......... ..... . ... ...... . ....... ... ... .... . 109 

4.3.1 Data and statistical analysis ......... .............. .. .. . ...... .. .......... . .. . ... . 111 

4.4 Results .............. . ......... . .......... . .. .. ........ ................... . .... .. .... .......... . . 113 

4.4.1 Chick Provisioning and Self-feeding foraging quantified ... ... .. . ......... . 113 

4.4.2 Foraging trips and time spent from foraging areas ..... . .................. ... 124 

4.4.3 Prey species delivered to chicks ... ........ ... .................................. 128 

4.5 Discussion ...... .. . .. ..... . . .. .......... .. .... .. .. .. ............ .. ........... .. . .. ... ... ....... 129 

4.5.1 Effect of time-depth recorders in birds' behaviour ....... .... .......... .... .... 129 

4.5.2 Chick-provisioning foraging .... ... . ...... . ..... ............ . ............ ..... .... 130 

4.5.2 Self-feeding foraging ............... .. ............................................ 133 

4.6 Acknowledgments ...................................................................... ...... . 137 

Chapter 5 Sex differences in aggressive behaviour in thick-billed murres and 

razorbills ..... ... ..................................................................... .... ...................... .... 13 8 

5.1 Abstract ...... ..... ....... ... .... ..... .. .. . . .. ... . .. . . . .. ...... . . ... . . .. .. .. ... .... .... .... .... .. 138 

5.2 Introduction ........... . .... ..... ... .. ..... .. ........ . .. . .. ... ....... .. ........ ...... . ..... .. .... 139 

5.3 Methods .. ..... ........... .... ......... . .. ................... .. ......... ..... . ............... .. .. 142 

5.3.1 Aggressive interactions ........... .. ............................... ..... . ... .. ..... 143 

5.3.2 Model presentation ....... .......... ....... ... . ........................ ... ... ....... 147 

5.3.3 Statistical analysis ..................... . ......................... . ............. ... ... 148 

5.4 Results ..... ...... .. . . ......... ......... . ................ . .. . .............. .... ......... ... . ...... 149 

5.4.1 Morphological measurements ...................... . . ... . ..................... .... 149 

5.4.2 Thick-billed murres . .. . ... .......... ................. . ........ . .. ........ .... ....... 151 

5.4.3 Razorbills ..... .. .... . ........ .... . .. . . ...... ... .. ............ .. ... .. ... . ...... ... .... 154 



Vlll 

5.4.4 Model Predator Presentation . ...... . .................... . . ... .. ..... ... ..... . .... . 158 

5.5 Discussion.... . ............................ . ........... . .... .... . ............ ..... . .. ... . .. .. .. 160 

5.6 Acknowledgments ... ........ ......... . .......... .. .......... . ........ .. ...... ........... . . .. .. 168 

Chapter 6 Parental roles of male and female thick-billed murres and razorbills at the 

Gannet Islands, Labrador ..... ..... ........ . ........ . ...... . ..... ... ..... ...... . ...... ...... ... .... 169 

6.1 Abstract ......................... ...... . . .. . . . . . ..................... ...... . . ... . .. . .. .. .. . .. . ... 169 

6.2 Introduction .. . ...... ........ ......... . .. ... . ... .. . ..... . .. ....... ............. .. ....... ... ...... 171 

6.3 Methods .... ... .. . ........... .. ... .. . ... ... . ... ... ... . . .... . . ... ...... .. . . . . ...... . . .. ..... .. .. .. 176 

6.3.1 Data analysis ............. .... ........ ... . .......... . .. .. ...... . . ................... . 179 

6.3.2 Statistical analysis ........... ........ ..... .. . . ................... ..... ......... .... . 182 

6.4 Results .... .. . ..... ... .. . ...... ............ ............ .. .. ... . . . ............ . ..... . .... ... ..... .. 183 

6.4.1 Breeding success and duration of chick-rearing period .. . .... .. . ... .. .. ... .. 183 

6.4.2 Breeding site attendance ..... . ..... . . .. . ....... . ......... ...... ... .... ............. 184 

6.4.2.1 Thick-billed murres .. .. .. . . ........ . ....... ... .. . ...... ... ..... .. ... .... 184 

6.4.2.2 Razorbills .................. .. . .............. ................ . ........ ... 187 

6.4.3 Chick-provisioning .. . . . .. . ... . ............... ............ . . . ...... ......... ... ... 190 

6.4.3 .1 Thick-billed murres ...... . .... . .... .. . ... ... .. . .. ... ... .. . .. .. ...... ... 190 

6.4.3.2 Razorbills ....... . ........ ...................... .. ... .................... 192 

6.4.4 Foraging trip frequency and duration .. . .. . ..... . ... . ... . ..... .... .. ........... 197 

6.4.4.1 Thick-billed murres ... . ........ ..... ....... . ......... .. ...... ... ........ 197 

6.4.4.2 Razorbills ... ..... . .. .. .... . . .. .. . . ... . ... . .. ..... ... . ..... . .. ....... . ... 198 

6.5 Discussion . . . .................................. .. ....... .... ............... .... ..... .. ..... ..... .. 200 

6.5.1 Intra-specific patterns ... . .......................... ......................... .. .... 200 

6.5.1 Inter-specific patterns .. . .. ............ ... . .......... ...... .. ......... ... ... . ...... 203 

6.6 Acknowledgments ..... ................ .... ... .. . ... .... ................................ .. ... .. 212 

7. Chapter 7 Summary and Final remarks ..... . ......... . . . .. . ..... ...... ...................... 213 



IX 

8. Bibliography and References .. . . ...... .. ...... ......... ... . . . . . . ............. .. ............ .. 254 



Table 2.1 

Table 3.1 

Table 3.2 

Table 3.3 

Table 3.4 

Table 4.1 

Table 5.1 

Table 5.2 

Table 3 

X 

LIST OF TABLES 

Effect of externally attached time-depth recorders on parental 

behaviour of female and male thick-billed murres rearing chicks . .. ........ 36 

Frequencies of the main type of dives of thick-billed murres 

and razor bills at Gannet Islands, Labrador ........ . ..... . ..... . ......... .. . . .. 77 

Dive parameters of male and female thick-billed murres and razorbills 

at Gannet Islands, Labrador.. ...................... . . .. . ........ ... ... .... .... ... . 81 

Thick-billed murres. Mixed-linear model comparisons of standardized 

depth-by-depth data of male and female dive parameters .. . ..... . .... .. .... 82 

Statistical comparisons of parameters ofW-shaped and U-shaped 

between male and female thick-billed murres ........ . . . .... . .. . ... ... .. ... ... 84 

Diving parameters of male and female thick-billed murres during bouts 

for chick-provisioning and self-feeding ....... . .. . ... . . . .............. . .... .. 121 

Measurements of male and female thick-billed murres ... . .. .. ... ...... .. 150 

Measurements of male and female razorbills .. . ..... . ...... . . ..... . ...... .. . 151 

Sex differences in bill dimensions and aggressive behaviour in shorebirds 

and ale ids with biparental care and male-only care ................ . .. ... .. 166 



Table 6.1 

Figure 1.1 

Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 3.1 

xi 

Foraging trips of female and male thick-billed murres and razorbills ... 199 

LIST OF FIGURES 

Phylogeny proposed for the order Charadriiforrnes by Ericson et a/. 

(2003) .... .. . . . . . .. . ...... .... ........ . ... . ......... ........... .. . .. . ................ 2 

Mass loss of control and TDR-equipped thick-billed murres 

rearing chicks ... . ........................ . . ........ ..... ..... ... . ..... .. .. .. ..... 33 

Overall effect of TDR deployment on chick provisioning in 

thick-billed murres ..... .... ........ . ... .. ............... ... .. ...... .. . .. ......... 39 

Provisioning rates ofTDR-equipped birds and their partners 

before and after TDR deployment, and after TDR was removed . .. .. . ... .42 

Total provisioning of control pairs and pairs with a TDR-equipped 

bird according to treatment stage (before TDR deployment, TDR 

deployed, and after TDR removal) . ...... .... ... ........... .. . .... ... .... .... . .44 

Number of dives according to time of day of male and female 



Xll 

thick-billed murres and Razor bills .... . ............... . ....... . . . .. .. .. . . .. . ....... 71 

Figure 3.2 Variation of dive depth of male and female thick-billed murres 

and razor bills according to time of day and total illumination .... .. .. .. .. . 73 

Figure 3.3 Frequency of dives of male and female thick-billed murre 

and razorbill at 1 0 m -depth interval ............. . .. ..... . ... ................. 7 6 

Figure 3.4 Frequency of the main dive shape categories according to 

depth for male and female thick-billed murres and razorbills .. .. ... ... .... 77 

Figure 3.5 Relationship between dive depth and duration in thick-billed 

murres and razorbills .. . . ...... .. ....... .. ...... . . .. .......... . . . .. ... .... .... . 80 

Figure 3.6 Hourly variation in the frequency ofW- and U-shaped dives of male 

and female thick-billed murres ... . ..... . . .... ... .. .... . ... . ....... . . ... .... .... 83 

Figure 3.7 Prey species delivered by male and female thick-billed murres and 

razor bills ... .... .... .............. . ........... ... . ... ....... . ......... . ...... . ...... 90 

Figure 4.1 Dive profiles of two different male and female thick-billed murres 

according to time of day ..... . . . ..... .. . .. ... . ....... . ...... ... .. .... ........ .. . 115 

Figure 4.2 Daily proportion of type of dive bouts of female and male thick-billed 

murres according to 2h-interval time periods .... . .. ..... .. .. ..... .... . ...... 117 

Figure 4.3 Differences in depth and number of individual dives of male 

and female thick-billed murres during chick provisioning bouts, self-

feeding bouts, and last bout without meal delivery ... . ..... .. . .. . .......... 119 



Figure 4.5 

Figure 4.6 

Figure 4.7 

Figure 4.8. 

Figure 5.1 

Figure 5.2 

Figure 5.3 

Figure 6.1 

Figure 6.2 

Figure 6.3 

Xlll 

Depth dives of male and female thick-billed murre's self-feeding 

and chick provisioning bouts according to day time periods ("morning" 

d "aft ") d 1' h . d (" '1' h " d "d 1' h ") an ernoon an 1g t peno s tw1 tg t an ay 1g t .. .... .. .. .. 123 

Proportion of self-feeding bouts ofmale and female thick-billed murre 

according to provisioning trips and "self-feeding only" trips ........ ...... 124 

Foraging trips with and without meal delivery of male and female 

thick-billed murres: A) trip duration, B) return time since the last dive 

and approximate distance . .. . . .. .... .. . .. ....... . ... .. .. .. ... .. ... ... . . . ..... . . 126 

Time-activity budget of male and female thick-billed murres 

during chick provisioning trips ....... . ........... . ....... . ............... .. .. . 127 

Frequency of aggressive interactions and scores of female 

and male thick-billed murres during the incubation period .. ...... .. ....... 153 

Frequency of aggressive interactions and scores of female and 

male razor bill during the incubation and brooding period ................. 157 

Frequency of aggressive responses and scores of female 

and male razorbill to the presentation of a predator model . .... ... .. . . . ... 159 

Timing of breeding site attendance ofthick-billed murres and 

razorbills during the incubation and brooding period .. .. .. .. .. .. ........ ... 186 

Timing of chick provisioning of thick-billed murres and razorbills .. . .. .. 189 

Time spent at the breeding site by male and female thick-billed 

- - - - ----- --- ----



Figure 6.4 

Figure 6.5 

Figure 6.6 

XIV 

murres razorbills .............. . .............................. . .. . .. .. . .. . .. ... .. 190 

Sex differences on the brooding duration of thick-billed murres and 

razor bills according to chick age categories .... ............ .. . . . . .. . . ... . ... . 19 5 

Provisioning rates of male and female razorbills and thick-billed 

murres according to chick age categories ..... .. ..... ...... . . . .. ... .. .. . ...... 196 

Patterns of parental roles of female and male thick-billed murre and 

razorbill at Gannet Islands, and proposed explanation of male only 

care at sea ......................... . . . ... . .. . ... . ... . ...... . .. ... . . ..... . ... . ... . . 208 



CHAPTER 1: INTRODUCTION 

1.1 STUDY SPECIES 

Seabirds' life history charactheristics differ notably from those of land birds; in general 

they live longer and produce fewer offspring that require extensive parental care until 

they mature (e.g. Schreiber & Burger 2001). As a result, both sexes provide parental care 

(biparental care) and retaim the same mates for several seasons or lifetime (social 

monogamy; e.g. Brooke 2004) to increase survival and lifetime reproductive success 

(fitness). Some seabirds, such as auks (or alcids) and petrels, spent considerably more 

time at sea and use land mostly for reproduction (marine birds). Alcids are highly 

specialized and ecologically diverse group of marine, wing-propelled pursuit-diving birds 

(Nettleship 1996). Phylogenetically, the family Alcidae is located in one of two major 

groups in the order Charadriformes along with the clade of gulls, terns, skimmers and 

jaegers (Sibley and Ahlquist 1990; Ericson et a/.2003; Fig. 1.1). 



Larus 

Stem a 
Rynchops 

Catharacta 
stercorarius 

Ale a 

Cursorius 

Rhinoptilus 

Arena ria 

Ca/idris 

Tringa 

Phalaropus 

Gal/in ago 
Rostra tufa 

Jacana 
Thinocorus 

Charadrius 

Vane/Ius 

Haematopus 

Recurvirostra 
Pluvia/is 

Burhinus 

Chionis 
Pteroc/es 

Scardafella 

Afrotis 

Grus 

Outgroups 

Figure 1.1. Phylogeny proposed by Ericson et al. (2003). Inter-familial relationships in 
charadriiformes based on nuclear DNA sequence data. 
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The Alcini is a clade of large black-and-white alcids composed of Uria (thick-billed 

murres, U lomvia and common murre, U aalge) Alca (razorbills, Alca torda, and the 

extinct great auk, Penguinus impennis) and Alle (dovekies, Alle alle). Their phylogenetic 

relationships (Mourn eta!. 2002) are: 



-------- --
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.---- thick-billed murre 

.....__ __ common murre 

.------- dove.ki& 

,.------- - great auk. 

-
,___ ____ razorbill 

The four extant Alcini species differ in modes of chick provisioning; murres 

deliver a single prey held longwise in the bill (single-loaders), razorbills deliver multiple 

prey held crosswise in the bill (multiple loaders), and dovekies transported food in a 

temporal pouch in the throat (internal transporters; Gaston & Jones 1998). These four 

species also differ on their breeding site charactheristics; murres breed on open nests, and 

razorbills (open nests as well) and dovekies breed on crevices (Gaston & Jones 1998). 

The longevity record for murres is 22-32 years and for razorbills 30 years (De Santo and 

Nelson 1995). 
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1.2 BACKGROUND OF STUDY 

Decision-making about allocation of energy, time and risk is an ongoing task for animals 

during reproduction and it is believed that natural selection acts against individuals that 

fail to balance tradeoffs associated with these decisions. Furthermore, individuals are 

required to correctly allocate resources between current and future reproduction in order 

to maximize their fitness (Williams 1966). Balacing current and future costs and benefits 

of reproduction is particularly important for long-lived species such as seabirds (Stearns 

1992), because excessive reproductive effort at one breeding attempt may greatly 

decrease individuals' lifetime reproductive success (Croxall & Rothery 1991 ; Woller et 

al. 1992). 

Males and females do not necessarily raise offspring in perfect harmony because 

each individual should behave to maximize its own success even if this is at the expense 

of its mate (Trivers 1972). It has been suggested that females should usually be the care­

giving sex because the costs of producing ova exceed those of sperm (Trivers 1972) and 

their progeny is limited by the number of eggs they produce (reproductive potential; 

Krebss & Davies 1991; Hall et a/.1998). In contrast, assuming sperm is cheap, male' s 

reproductive potential is virtually limitless, it seems likely that they can increase their 

reproductive success by mating with several females instead of investing in parental care 

(Hallet a/.1998). These hypotheses seem to explain females' greater involvement in 
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parental care in some taxonomic groups with internal fertilization such as mammals, and 

birds with mixed-reproductive strategies (monogamous and polygamous). However, they 

failed to explain male post-zygote care in fish species with external fertilization and some 

bird species with polyandrous mating systems (Owens 2002). They also do not explain 

the dominant role that males play in raising chicks in socially monogamous species of 

Charadriiformes. For example, in scolopacids, females attend chicks for a shorter period 

after hatching than do males, and may even desert late in incubation (Gratto-Trevor 1991; 

Piersma 1996a; Payne & Pierce 2002). A similar but weaker trend also occurs in socially 

monogamous charadriids (Piersma 1996b ). 

About 90% of avian species (1 00% in seabirds) are socially monogamous (Lack 

1968). In seabirds, biparental care is obligatory because a lapse of one parent's 

contribution leads inevitably to breeding failure. Both sexes need to balance their 

allocation towards offspring care and self-maintenance in response to changing demands 

of energy and time during reproduction (Drent & Daan 1980; Y den berg et al. 1994). 

Thus, conflicting interests in the level of contribution between partners are likely to 

occur. Game theory models predict that only partial compensation for a mate's reduced 

parental effort must occur to maintain a stable evolutionary strategy of biparental care 

(Houston & Davies 1985; McNamara et al. 1999). Thus, males and females should 

compete to provide a minimum parental effort within a reproductive season to maximize 

their individual fitness. Handicapping experiments in birds have been able to measured 

the response of one member of the pair to the reduction of parental effot of the other 
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member by attaching weights to tail or by clipping feathers (Wright & Cuthill 1989; 

1990; Whittingham et al. 1994; Markman et al. 1995; Sanz et al. 2000; Schwagmeyer et 

al. 2002). Some of these studies have found partial compensation for a partner's reduced 

effort (Wright & Cuthill 1989, 1990; Whittingham et al. 1994; Markman et al. 1995), 

supporting dynamic models, whereas others (Sanz et al. 2000) reported full 

compensation. Truly monogamous species such as seabirds are expected to be less likely 

to exploit their partners because maintaining their partners' condition enhances the fitness 

of both parents (Mock & Fujioka 1990; Fowler 1995). Thus, individuals of species with 

long-term pair bonds may distribute parental effort such that the partner who will benefit 

the most from contributing less parental effort does less work (K. M. Jones et al. 2002). 

Although biparental care is necessary for success in seabirds, the level of 

contribution toward specific duties, or parental roles, may vary between sexes (Trivers 

1972; Bart & Tornes 1989). The relative level of contribution may depend on life-history 

decisions of males and females in morphological, energetic, ecological and behavioural 

constraints during reproduction. Differences in parental roles between males and females 

have been found in several species of seabirds. Body size is the main factor to which 

these differences have been attributed in sexually dimorphic seabirds (Hamer & Furness 

1993; Weimerskirch et al., 2000). In sexually monomorphic seabirds (most species), sex 

differences in the form of parental care have been associated to competition for mates in 

sex-biased populations (Tershy & Croll 2000), differences in deferred maturity and 

mortality nites (Montevecchi & Kirkham 1981 ), different foraging strategies (Lewis et al. 



2002), and ability to perform specific roles (Pierotti 1981; Furness 1983; Sproat & 

Ritchison 1993; Kis eta!. 2000; Fraser et al. 2003). 

7 

In terms of functionality, animal's aggressive behaviour is used for self-protection 

and defence of mates, eggs and offspring (Archer 1998). The sexes are not expected to 

differ in levels of self-protection aggression unless there is a sex-biased predator pressure 

(Archer 1988). On the other hand, there is often specialization in defensive aggression by 

one sex (review by Archer 1988). Parental aggression in the form of offspring defence 

directly affects offspring survival and consequently the adult's fitness. Seabirds tend to 

be sexually monomorphic with biparental care of their young and as a result, sex 

differences in parental aggression are not expected. Nevertheless, male-biased aggressive 

behaviour has been reported in several seabird species. In some species, male aggressive 

behaviour appears to be driven by the need of defending the territory or the mates 

because it mainly occurs during the pre-laying and incubation periods (Spurr 1974; 

Morris & Bidochka 1982; Butler & Janes-Butler 1983; Moreno et al. 1995). However, 

males' aggressive behaviour and major role in nest defence persist through the chick­

rearing period in many other seabird species (Larus spp.; Creelman & Storey 1980; 

Southern 1980; Burger 1981; Pierotti 1981) suggesting it may be driven by the need of 

protecting the offspring. 

The members of the avian family Alcidae (Order Charadriiformes) are a diverse 

group of diving birds with remarkably variable forms of parental care and stages of chick 

development at the time of chick departure from the breeding site. At one end of the 
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spectrum, puffins (Fratercula sp.), guillemots (Cepphus sp.) and Brachyramphus 

murrelets provide biparental care at the nest site until chicks are nearly fully grown 

("semi-precocial"; Sealy 1973) and fledge unaccompanied by their parents. At the other 

extreme, Synthliboramphus murrelets depart with their chicks two days after hatching 

("precocial"; Sealy 1973), and both parents provide care at sea. In the tribe Alcini, thick­

billed murres, common murres, and razorbills have a short period of biparental care at the 

breeding site (15-20 days) and partly grown chicks (15-30% of adult body mass; 

"intermediate"; Sealy 1973) depart with the male parent to sea for an additional 3-4 

weeks of exclusively paternal care (Gaston & Jones 1998). Tuck (1961) reported that 

collection of adult thick-billed murres accompanying chicks at sea indicated that either 

sex may care for the young at that age. Other studies has shown that the majority of birds 

taking the chick to sea (14/16 razorbills, Wanless and Harris 1986; 46/47murres, 

Bradstreet 1979) were males. The low occurrrence of females departing with the chick 

suggest it may be a result of accidental departure (i.e. gull disturbance). Partly grown 

dovekie chicks, the fourth extant Alcini member, also depart the colony with their male 

parent (27 days after hatching; Stempniewicz 1995; Harding eta/. 2004), but with 68-

72% of adult body mass ("semiprecocial", Sealy 1973, Norderhaug 1980; Stempniewicz 

2001; Harding eta!. 2004). 

The most common explanation for the evolution of departure to sea of the partly­

grown chicks of the Alcini tribe is the constraint on provisioning at the colony imposed 

by the load-carrying capacity (Houston eta!. 1996; Gaston & Jones 1998). These large 

auks have the highest wing loading of all seabirds (Greenwalt 1962; Spear & Ainley 



1997), which is a tradeoff for having excellent diving capacity. Consequently the flight 

costs of foraging and meal delivery are energetically expensive. However, this limitation 

should not apply so much to the much smaller planktivorous dovekies, and its 

applicability to razorbills that provision their chicks with multiple (sometime large) fish 

is questionable. Another explanation for early chick departure is that predation risk is 

high at the colony compared to at sea (Cody 1971; Y den berg, 1989; Y denberg eta/. 

1995). Y denberg's (1989) model for the intermediate-fledgling alcids assumed that 

chicks have a lower mortality rate at the colony than at sea, but grow faster at sea than at 

the colony. Neither of these two assumptions are rigorously testable (i.e. logistical 

limitation) and more importantly, this 'tradeoff' hypothesis has no exclusive predictions 

(Gaston & Jones 1998). In this paper, I take as a starting point only that 'intermediate' 

chick colony departure is a phylogenetically fixed characteristic of the auk tribe Alcini. 

Despite the different stages of development at chick departure, modes of chick 

provisioning, and nest-site characteristics (murres: open nests; razorbills: open and 

crevice nests; dovekies: crevice nests), the four Alcini members share a unique 

"intermediate" form of parental care; biparental care at the breeding site and uni-male 

parental care at sea. Two interesting questions that arise from patterns of parental care 

among the auk species are: How do the sexes allocate parental effort at the breeding site 

before paternal care begins when the chick departs the colony? and Why do males 

accompany chicks to sea? 

Biparental care followed by male-only care also occur in other Charadriiformes 

such as Scolopaci (sandpipers, phalaropes) and Charadrii (plovers, lapwings, avocets). 

9 
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In shorebirds, there are several hypotheses explaining why males care for the brood 

whereas the female desert at or early hatching. One explanation is the poorer condition 

of females because of the production of large eggs relative to their body size ("parental 

ability hypothesis"; Erckmann 1983). The Alcini species produce a single large and 

probably energetically costly egg (Birkhead and Nettleship 1982; 1984). In a review of 

the mechanisms underlying the costs of egg production, Williams (2005) conclude that 

females' investment in additional or larger eggs could potentially be recovered very 

rapidly during the post-laying period, or at least within the same breeding attempt, by 

increasing food intake. Measurements of body mass, body composition, and energetic 

costs during incubation in Kentish plovers (Charadrius alexandrinus) indicate no 

differential condition between sexes during incubation (Amat et al. 2000). Similarly, 

male and fermale common murres did not differ in body mass during late incubation and 

thorough the chick-rearing period (Wilhem 2004) suggesting that female poor condition 

may not explain male-only care. The "remating opportunity hypothesis"- females gain a 

greater reproductive success deserting than do males (Oring 1986)- is the best­

supported explanation for the desertion of female in shorebirds with male-biased 

populations (Szekely 1996; Szekely et al. 2006). 

Differences in energy expenditure due to different female-male constraints at the 

breeding site may cause one sex to be in better condition and thus better able to finish 

raising the chick at sea. For instance, different mortality rates (Nelson 1978), population 

ratios between sexes (Tershy & Croll 2000; Szekely et al. 2006), foraging strategies (i.e. 
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self-provisioning and offspring feeding; Markman et al. 2004), and levels of aggressive 

behaviour (i.e. nest defense, Burger 1981; Fraser et al. 2002) are some factors that appear 

to affect the division of parental roles and effort allocation between sexes in biparental 

care species. Although both sexes guard their mates in an effort to assure paternity and to 

maintain pair bonds, extra-pair copulations and, to a lesser degree successful fertilizations 

occur in murres (thick-billed murres: Gaston & Hipfner 2000; common murres: review 

Ainley et al. 2002) and razorbills (Wagner 1992). Before egg-laying (3-4 weeks), males 

are continuously present at the breeding site (common murres) and/or mating arenas 

(razorbills) while female visitation is occasional (Gaston & Jones 1998). During this time 

males engage in fights for mate/site defense and are likely to fast or have reduced 

opportunities to feed (Birkhead et al. 1985), so overall they should have higher risk and 

energy costs than females. I hypothesized that sex-specific differences of murres and 

razorbills in contribution to parental care (effort allocation) at the time of departure may 

explain why males accompany chicks to sea. I expected parental care at the breeding site 

of both species to be mostly female-biased due to the male's initial expenditure of effort 

on mate guarding prior to egg-laying. I further expected that this would lead to males 

being in better condition than females at the time of departure to finish raising the chick 

at sea. 

Thick-billed murres and razorbills are specialized wing-propelled divers that 

balance the demands for flying and diving (i.e., regulation of swimming speed; Lovvron 

et al. 1999). Both species spend considerably part of their time foraging at sea during 
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reproduction (Gaston & Jones 1998). Thus, the study of the foraging and diving 

behaviour of these alcids is an important component for the overall estimation of parental 

effort allocation between the sexes. For instance, breeding murres and razorbills feed 

their chicks with different prey taxa (i.e. fish) than those captured during the winter (i.e. 

crustaceans; Gaston & Hipfner 2000; Hipfner & Chapdelaine 2002, see also Rowe eta!. 

2000), which may reflect in their diving behaviour. Furthermore, incubating murres dived 

shallower than brooding murres probably due to different nutritional requirements for 

self-maintenance and chick provisioning (Benvenutti et al. 2002). 

Thick-billed murre's diving behaviour has been extensively studied across their 

geographic range (Croll et al. 1992; Falk eta!. 2000; Melhum eta!. 2001; Watanuki et 

al. 2001; Benvenutti et al. 2002; Jones et al. 2002; Mori et al. 2002; Watanuki et al. 

2006). They are generally deep divers and permormed mostly U-shaped dives when 

capturing prey (Croll et al.1992; Benvenutti et al. 2002). They feed on a variety of 

pelagic and benthic fish during reproduction (summer; see reviews by Gaston& Jones 

1998; Gaston & Hipfner 2000) as well as invertebrates during non-breeding seasons 

(winter; e.g. Melhum 2001). In contrast, razorbills' diving behaviour has been much less 

studied (Benvenutti et a!. 2001; Dall' Antonia et al. 2001; Watanuki eta!. 2006). 

Razorbills are generally shallow divers (11-38 m), although they can dive as deep as 120 

m (Piatt andNettleship 1985). They perfomed mostly V -shaped dives (Benvenutti eta!. 

2001; Dall' Antonia eta!. 2001 )and feed on mid-water schooling fish (reviewed by 

Hipfner and Chapdelaine 2002). Only one study examined differences in diving 

behaviour between the sexes, and recorded that male thick-billed murres have longer 



dives than females mainly due to differences in daily timing of foraging at Gannet 

Islands, Labrador (Jones et al. 2002). 
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Data loggers have been used extensively for the study of foraging behaviour of 

seabirds (Gales et. a/1990; Falk et al. 2000; Garthe et al. 2000; Mehlum et al. 2001 ; 

Shaffer et al. 2003). The attachment of external devices has shown to reduce swimming 

speed (Wilson et al. 1986), and increase hydrodynamic and aerodynamic drag during 

diving and flying (Bannash et al. 1994; Obrecht et al. 1988), which in turn increased 

energy expenditure and affected foraging performance (Wilson et al. 1986; Gessaman & 

Nagy 1988; Croll et al. 1992; Culik et al. 1994). Seabirds with attached data loggers have 

been reported to have extended foraging trip durations (penguins: Croll et a/. 1991; 

Watanuki et al. 1992; Hull 1997; Ropert-Coudert et al. 2000; Taylor et al. 2002; seals: 

Walker & Boveng 1995) and reduced nest visitation (alcids: Wanless et a/.1988; 

Tremblay et al. 2003). Increase of workload due to instrumentation may be a special 

concern for large alcids, which have one of the highest wing loadings of any seabird 

species (Greenwalt 1962; Spear & Ainley 1997) as a trade-off of their excellent diving 

capacities. Therefore, it is important tocontrol for possible differential effects of 

instrumentation in the behaviour of male and female auks to be able to put the 

information in the context of parental effort allocation. 
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1.2 PURPOSE OF THE STUDY 

This study examined sex differences in parental roles and diving behaviour of thick-billed 

murres and razorbills at Gannet Islands. The Gannet Islands Ecological Reserve protects 

the largest colony ofrazorbills (10,000 pairs) and the third largest colony of Atlantic 

puffins (38,000) in North America. The thick-billed murre population is considerably 

smaller than the common murre. population (36,000 and 1,900 pairs respectively; Parks 

and Natural Division-Environment Canada). 

My main objective was to quantify inter- and intra-specific patterns of parental care 

between sexes as attempt to understand why the male accompanies the chick to sea. 

Although a widespread tendency for paternal care late in chick rearing exists in 

Charadriiform birds (Gratto-Trevor 1991; Piersma 1996a; Piersma 1996b; Payne & 

Pierce 2002), it is relatively rare among the alcids (4 of23 extant species). Thus, my 

approach was to identify characteristics of two alcid species that could favour such a 

pattern. Although murres and razorbills share similar life-history strategies, they also 

differ in many aspects of their foraging ecology (Gaston & Jones 1998). Therefore, it is 

unclear how two sister-species segregate in the light of niche-partitioning concepts when 

capturing prey. My second objective was to determine whether the sexes of two 

sympatric diving species differ in their foraging strategies particularly in their behaviour 

underwater. 

- ------------------------
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In chapter two, I quantify the effect of external time-depth recorders on body 

condition and parental behaviour (brooding time and provisioning rates) of female and 

male thick-billed murres rearing chicks. Secondly, I examine whether the partner of a 

TOR-equipped bird would compensate for a reduction in parental effort by a gear­

encumbered mate and whether tlus behaviour was sex biased. In addition, I measure post­

effects ofTDR deployment on return rates, breeding success and mate fidelity. This 

chapter was published in Animal Behaviour (2004) jointly with Dr. Ian Jones and Dr. 

Daryl Boness. 

In chapter three, I examined sex differences in diving behaviour and diet in thick­

billed murres and razorbills. I specifically analyzed time of day effects on dive and bout 

parameters and compared dive profiles (shapes and parameters) between the sexes in 

each species. This dive information was related to their main prey taxa captured for chick 

provisioning. This chapter is in review for publication in Canadian Journal of Zoology 

(2008) jointly with Dr. Ian Jones, Dr. Daryl Boness, Dr. Yann Tremblay and Dr. Martin 

Renner. 

In chapter four, I investigated whether parental roles of male and female thick­

billed murres reflect different foraging strategies for self-feeding and chick provisioning. 

It was possible to distinguish between the two foraging activities because murres perform 

a direct flight back to the colony for chick provisioning. I specifically measured dive 

parameters and foraging trip durations for each category, and estimated distance to 
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foraging areas by using combined information of time-depth recorders and observations 

at the breeding site. 

In chapter five, I analyzed differences in aggressive behaviour between the sexes 

in both auk species during the incubation and brooding period. I studied the aggressive 

behaviour of the on-duty parent in the absence of its mate in order to ensure that the 

aggression was directed toward the protection ofthe egg/offspring instead of the mate. I 

measured aggressive responses of attending individuals (egg/chick) in two different 

conditions: a) opportunistic observations of aggressive interactions between con- and 

heterospecifics; and b) experimental observations of aggressive behaviour resulting from 

the presentation of a model predator. This chapter was submitted jointly with Dr. Stephen 

J. Insley for publication in Ibis (2008). 

In the sixth chapter, I sum up the ways male and female of both alcid species 

differed in their parental roles at the breeding site. I examined four components of 

parental care: breeding site attendance (egg/chick care and breeding site defence), 

provisioning rates, prey size delivered to chicks, and foraging trips. In this fmal chapter, I 

combine the results from this and previous chapters to discuss the differential energy 

expenditure hypothesis proposed to explain the occurrence of male-only care in murres 

and razorbills. This chapter has been published, jointly with Dr. Ian Jones and Daryl 

Boness, in Behaviour. 

---- - ---
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1.2 SIGNIFICANCE OF THE STUDY 

Understanding how males and females distribute parental roles may give us insights into 

how evolution has shaped forms of parental care, the extent to which morphological, 

physiological and behavioural factors limit the allocation of parental effort, and why the 

transition to paternal care at sea occurs in the first place. The detailed study of the 

parental roles in sister auk species with similar chick-rearing strategies can help to 

undertand the mechanisms driven differences in foraging behaviour between males and 

females. 



18 

CO-AUTHORSHIP STATEMENT 

I have made a major intellectual and practical contribution to all work that is reported in 

my thesis. I am the principal author of all the manuscripts that had been published or 

submitted to peer-review journals. Specifically, i) I have made the design and 

identification of the research proposal with advice of my supervisor, Dr. Ian Jones. ii) I 

organized all aspects of the research such as, writing of proposals for funding (e. g. 

research assistants, equipment) and required permits to work at Gannet Islands ( e.g. 

CWS, Animal Care); and purchasing of field equipment. I also perfomed most bird 

manipulations (e.g. captures and deployment of data loggers), and data collection. My 

assistants followed a detailed protocol I wrote for all activities we undertook in the field. 

iii) I performed all data analysis, except for the initial part of dive analysis (i.e. generation 

of dive parameters) that was done in Y. Tremblay' s program. iv) I had the lead role in the 

preparation of all manuscripts, which were benefited with the comments of co-authors 

and supervisory committee members. 

- - - - - - ------------



19 

CHAPTER 2: REDUCED PARENTAL CARE, COMPENSATORY 

BEHAVIOUR AND REPRODUCTIVE COSTS EXPERIENCED BY 

FEMALE AND MALE THICK-BILLED MURRES EQUIPPED WITH 

DATA LOGGERS 

2.1 ABSTRACT 

Theoretical models predict that in species with obligate biparental care, individuals will 

partially compensate for decreased parental effort by their partners as a stable 

evolutionary strategy. Full compensation may occur when breeding success is an 

accelerating function of parental effort, especially in long-lived bird species. I 

experimentally examined the effect of time-depth recorders (TDRs) on body mass and 

parental behaviour of thick-billed murres Uria lomvia, and evaluated the effect ofTDRs 

as handicaps to test whether there was compensation for decreased partner effort and 

whether this behaviour was sex biased. Compared with control birds, TDR-equipped 

birds had reduced body mass, offspring attendance, number of foraging trips and feeding 

rates, and males had increased foraging trip duration. In general, males lost mass at 

higher rate and made longer foraging trips than females. Partners ofTDR-equipped birds 

compensated for their mates' reduced parental effort by increasing offspring attendance 
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and by increasing chick provisioning above averages rates of control birds. Although 

partners ofTDR-equipped birds fully compensate for their mates' reduced offspring 

attendance (i.e. chicks were never observed to be left unattended), total provisioning rates 

of pairs with a TDR-equipped bird (mean± SE: 4.38 ± 0.26 meals day "1) were 

significantly lower than those of control birds (mean± SE: 5.74 ± 0.31 meals day·'). 

However, fledgling success of control and TDR-equipped birds did not differ between 

reproductive seasons. TDR-equipped birds also had a significantly lower rate of return to 

breed than their non-equipped partners or control birds, and those that did return the 

following season were more likely to change mates (32%) compared with controls (0%). 

Taken together, my results underline the need to quantify the effects of monitoring 

equipment used to measure seabird's activities, and indicate the ability of female and 

male thick-billed murres to compensate for reduced partner effort due to handicapping. 

Compensatory behaviour seems to be a necessary response of this single-brooded species 

to ensure current breeding success; however it may affect the stability of pair bonds in 

some individuals. 

2.2 INTRODUCTION 

According to life-history theory, animals will tend to minimize their effort during current 

reproduction to maximize survival and lifetime reproductive success (Williams 1966). 
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In species with biparental care, both parents need to balance their allocation towards 

offspring care and self-maintenance in response to changing demands of energy and time 

during reproduction (Drent & Daan 1980; Ydenberg et al. 1994). Thus, conflicting 

interests in the level of contribution between partners are likely to occur. Game theory 

models predict that only partial compensation for a mate's reduced parental effort must 

occur to maintain a stable evolutionary strategy of biparental care (Houston & Davies 

1985; McNamara eta!. 1999). Thus, males and females should compete to provide a 

minimum parental effort within a reproductive season to maximize their individual 

fitness . 

Empirical studies have tested these predictions using mate removal, testosterone 

implants, and handicapping experiments in monogamous species. Mate removal studies 

have provided insights to the function of biparental care and monogamy across different 

taxa (birds: Bart & Tomes 1989; review of male-removal by Moller et al. 2000; Transue 

& Burger 1989; beetles: Fetherston et al. 1994; Hunt & Simons 2002; and fish: Mrowka 

1982; Lavery & Reebs 1994); and showed that individuals' response to the loss oftheir 

mates varies from abandonment to complete compensation of parental effort. 

Nevertheless, these experiments have failed to test dynamic models of bargaining of 

parental· effort between males and females. Although experiments with testosterone 

implants (e.g. Saino & Moller 1995; Hunt et al. 1999; Alonzo-Alvarez 2001) have been 

used to reduce paternal effort, female compensation is difficult to interpret because a 

female's behaviour can be affected by the endocrine manipulation of her partner (Alonzo-
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Alvarez 2001 ). Handicapping experiments using birds have reduced parental effort of one 

member of the pair by attaching weights to tail or clipping feathers (Wright & Cuthill 

1989, 1990; Whittingham eta!. 1994; Markman eta!. 1995; Sanz eta!. 2000; 

Schwagmeyer eta!. 2002), so the level of response of the other member can be measured. 

Some of these studies have found partial compensation for a partner's reduced effort 

(Wright & Cuthill 1989, 1990; Whittingham eta!. 1994; Markman eta!. 1995), 

supporting dynamic models, whereas others (Sanz eta!. 2000) reported full 

compensation. A recent model of biparental care has proposed that full compensation 

may occur when the breeding success is an accelerating function of parental effort, i.e., in 

species with high predation levels, high breeding density or poor condition of one parent 

(Jones eta!. 2002b). Other studies have found a lack of compensation for reduced partner 

effort (Slagsvold et al. 1990; Saether eta!. 1993; Schwagmeyer eta!. 2002). Overall, 

these results suggest that further studies are required to better understand the dynamic of 

bargaining of effort levels between sexes. 

Most handicapping experiments testing for compensatory behaviour have been 

performed in socially monogamous passerines and used chick feeding as the only 

measure of parental care (but see Markman eta!. 1995); only one has been reported for a 

seabird (Saether eta!. 1993). Long-lived seabirds are thought to be less likely to increase 

their investment in a current reproduction and risk affecting their future breeding (Curio 

eta!. 1988; Pugesek & Diem 1990). On the other hand, seabird's responses to reduced 

parental effort due to handicapping may be easier to interpret because confounding 



variables common in passerines, such as frequent extra-pair copulations and multiple 

broods, are rare or absent. 
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Data loggers have been used extensively for the study of foraging behaviour of 

seabirds (e.g. penguins' review in Gales et. a/1990; Falk et al. 2000; Garthe et al. 2000; 

Mehlurn et al. 2001; Shaffer et al. 2003), pinnipeds (e.g. Kooyman et al. 1976; Boness et 

al. 1994; Hooker et al. 2002), cetaceans (e.g. Ray et al. 1978; Frost et al. 1985; Croll et 

al. 2001 ), and turtles (e.g. Eckert et al. 1989; Minamikawa 2001 ). The attachment of 

external devices has been shown to reduce swimming speed (Wilson et al. 1986), and 

increase hydrodynamic and aerodynamic drag during diving and flying (Obrecht et al. 

1988; Brumash et al. 1994), which in turn increased energy expenditure and affected 

foraging performance (Wilson et a/.1986; Gessaman & Nagy 1988; Croll et al. 1992; 

Culik et al. 1994). Although few studies have tested the effect of such devices on parental 

performance using equipped and non-equipped animals, extended foraging trip durations 

have been reported in several species of penguins (Croll et al. 1991; Watanuki et al. 

1992; Hull 1997; Ropert-Coudert et al. 2000; Taylor et al. 2002; but see Gales et al. 

1990; Ballard et al. 2001) and in the Antarctic fur seals (Arctocephalus gazella, Walker 

& Boveng 1995). In flying seabirds, reduced nest visitation has been reported for alcids 

carrying radio-transmitters with external antennas (Wanless et a/.1988) or time-depth 

recorders (Tremblay et al. 2003); but no effects have been found in king cormorants 

(Phalacrocorax a/biventer, Kato et al. 2000) and wandering albatrosses (Diomedea 

- ---------- -



exulans, Schaffer et al. 2003). Thus, data loggers can be used as handicapping tools in 

species where they increase breeding effort. 
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Increase of workload due to instrumentation may be a special concern for large 

alcids, which have one of the highest wing loadings of any seabird species (Greenwalt 

1962; Spear & Ainley 1997) as a tradeoff of their excellent diving capacities. In fact, the 

intermediate chick development strategy shared by thick-billed murres, common murres, 

Uria algae, and razorbills, Alca torda has been attributed to reduce high costs of chick 

provisioning at the breeding site (Gaston & Jones 1998). 

This study had two main objectives; one was to quantify the effect of external 

time-depth recorders on body condition and parental behaviour of female and male thick­

billed murres rearing chicks. The second objective, which could only be fulfilled if the 

recorders handicapped the birds on which they were deployed, was to determine whether 

the partner of a TDR-equipped bird would compensate for a reduction in parental effort 

by a gear-encumbered mate and whether this behaviour was sex biased. I used brooding 

time and provisioning rates as estimates of parental care. In addition, post-effects on 

return rates, breeding success and mate fidelity were examined. 
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2.3 METHODS 

I studied thick-billed murres at island GC4, one of the six Gannet Islands on the low­

arctic coast of southern Labrador, Canada (53.56'N, 56.32'W), and a colony of about 150 

pairs. A total of 62 pairs were followed during the brooding periods (June-August) for 

2000,2001,2002 and 2003 . Ofthese, 18 males and 22 females (one mate per pair) 

rearing chicks were captured for attachment of time-depth recorders. Both of the TDR 

types used, MK7 (Wildlife Computers, Redmond Washington, U.S .A.; 25 g, flat shape 

with pointed end) and LTD _100 (Lotek Marine Technologhy, St. John's Newfoundland, 

Canada; 16 g, cylindrical shape with rounded end) were similar in size (5-8 x 1-2 x 1-2 

em), and in cross-sectional area (1.7- 1.9 cm2
, 1.2- 1.3% ofthe body area). Birds were 

captured using noose poles from the edge of the cliff above the colony. After capture, 

each bird' s mass was measured to the nearest 1 0 g using a spring scale and individuals 

were marked with permanent (stainless steel) and temporary (color) numbered bands. 

TDRs were attached to the back of feathers using three strips of black TESA tape, cable 

ties and drops of cyanoacrylate glue ("hot stuff'®) under both ends of the device. TDRs 

were placed on backs of birds to maintain their centre of gravity (Kenward 1987) and 

balance the total mass during flying (Obrecht eta!. 1988). Birds preened their dorsal 

feathers so part of the frontal and lateral edges of the device were covered by contour 

feathers, which may help to reduce drag during swimming (Bannash eta!. 1994). In 

addition, the color oftape used resembled bird's plumage color, which seems to reduce 

--- - - - - ----- - --



the frequency of pecking (Wilson eta!. 1990). Handling time from capture to release 

totaled between 5-8 minutes. Birds were re-captured after 1- 4 days for TDR recovery 

and re-weighed. Blood samples (0.5 ml) were taken from the tarsus vein and stored in 

vials with 95% ethanol for use later for sex determination by molecular DNA analysis 

(Fridolfsson et a!. 1999). During capture and re-capture both adults were present at the 

breeding site so chicks were never left alone. This procedure was used to ensure chick 

safety and to reduce possible stress on captured birds that would have been caused by 

leaving their offspring unattended. 
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To quantify parental care ofmurres equipped with TDRs (16 males and 19 

females) and their partners, observations were undertaken before and after TDR 

deployment, and after TDR removal during 2000 and 2001 . The same information was 

obtained simultaneously for a group of undisturbed birds without TDRs (control birds: 13 

females, 13 males). Both groups of birds had chicks of similar ages, ranging from 1 to 15 

days old. Behavioural observations were undertaken from a blind using binoculars and a 

zoom telescope between dawn and dusk (0400 - 2200 h) during 3- 15 days ofthe chick­

rearing period. Breeding sites were scanned every 1 0 minutes and the presence/absence 

and identity of adults were recorded to calculate the time spent at the breeding site per 

day. The departure and arrival of adults and chick provisioning events were recorded 

continuously to calculate feeding frequencies and foraging trip durations. In order to be 

able to identify individuals before capture, I temporarily marked birds with picric acid 

(yellow) or fluorescent paint (green, pink and orange). I attached a small container (10 cc 
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of marking liquid) to the tip of the noose pole so drops of the liquid could be delivered 

from above the birds without disturbing the colony. Birds were marked as if they were hit 

by falling guano, which is a normal occurrence in the colony, so disturbance caused by 

marking was minimal. The mark patterns, along with other life history information were 

recorded on ID cards for quick reference. Non-equipped birds were captured twice (4-17 

day interval) and manipulated during a similar time period to the TDR-equipped birds to 

determine rates of mass loss. These were marked with a field readable stainless steel leg 

band and a color band, and a blood sample was taken for sex determination (Fridolfsson 

et al. 1999). The results of sexing were obtained after the season was finished (observers 

were blind to the sex of birds) and then matched with the ID cards to interpret 

behavioural data. 

A total of 30-43 pairs of non-equipped birds at breeding sites were checked daily 

from hatching to fledging to quantify fledging success. The fledging success ofTDR­

equipped and control birds was measured during the current (all years) and following 

breeding season. A sub-sample of control, TDR-equipped birds and their partners, 

individually marked with color bands, were monitored during the following breeding 

season to measure subsequent return rates, and maintenance of pair bonds. Return rate 

was calculated based on the birds that were present at the colony during incubation and 

brooding. I did not perform observations before the laying period. 

- - -------- --
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2.3.1 Data analysis 

To determine the effects ofTDRs on body condition (mass loss) and parental behaviour 

(chick attendance, number and duration of foraging trips, feeding rates) data were 

compared between groups (control and TDR-equipped birds) and sexes. Measures of 

parental behaviour for individuals were averaged per day, and comparisons between 

groups were undertaken using the same chick ages (up to 11 days). In order to quantify 

feeding compensation by partners I first did a cross-sectional analysis of chick 

provisioning rates between three groups (TDR-equipped birds, their partners and control 

birds), and also between sexes. Then, I did a longitudinal analysis ofTDR-equipped birds 

and ·their partners to account for possible individual differences between groups. 

Matched-pair comparisons of chick provisioning rates of TDR-equipped birds, their 

partners and the pair (both parents) were made before the TDR was deployed (before 

TDR) and after it was deployed (TDR deployed). In addition, paired comparisons were 

made between the two previous stage categories (before TDR and TDR deployed) and 

after TDR removal (TDR removed) to determine possible differences in chick 

provisioning and compensatory behaviour. For the consistency of the analysis I sampled 

the same number of days each bird was equipped with the TDR (1-4 days) to calculate 

the average provisioning rates before TDR deployment and after TDR removal. Finally, 

in order to compare the total chick provisioning between control pairs and pairs with a 

TDR-equipped birds (Pair TDR-equipped bird), I matched chick ages to the three 



deployment stages, before TDR (up to 7 days), TDR deployed (4-11 days) and TDR 

removed (12-15 days). 
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For each individual, I calculated time spent at the breeding site per 24 hr even 

though the observation period only covered the daylight hours (18 hr). Previous studies 

have shown that thick-billed murres at the Gannet Islands do not make changes at night 

(Jones et al. 2002a). In this study, the same bird present at dusk was found the following 

morning with a dirty plumage, suggesting it did not leave the breeding site during the 

night. So I added six hours (dark time) to the observed time the bird spent at the breeding 

site during the day. 

Analysis of foraging trips included trips with and without a fish delivered to a 

chick. It was not possible to distinguish between bathing trips and feeding trips because 

birds could return to the breeding site with a fish after absences of less than I 0 min. The 

first foraging trip was usually performed by females, which normally spent the night at 

sea (Jones et al. 2002a) and arrived at the breeding site in the early morning. Thus, in 

order to calculate the duration of the first foraging trip I assumed birds started to forage 

right after sunrise (0330 h). Chick provisioning was calculated as the number of meals 

per individual and per pair per day. 

Statistical analysis was carried out using SPSS version 11.5. I used parametric 

tests (Student's t test, ANOVA, and Paired t test) to compare groups if the residuals met 
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the assumptions for the general linear model (homogeneity and normality). I report 95% 

confidence intervals instead of estimates of statistical power to address the question of 

Type II error (Hoenig & Heisey 2001). Multiple comparisons were undertaken using the 

Post-hoc Tukey HSD test. The Chi-square test was used to compare two categorical 

proportions. Means were expressed± SE of the mean. All comparisons were two-tailed, 

except otherwise, and differences were considered significant when P < 0.05. 

2.4 RESULTS 

2.4.1 Inter-annual fledging success 

The fledging success of thick-billed murres was high and did not differ among years 

(2000: 0.93 fledglings breeding site · I, N = 30; 2001: 0.98 fledglings breeding site·' , N = 

40; 2002: 0.98 fledglings breeding site'1, N= 43 ; ANOVA: F 1, 11 2 = 0.576, P = 0.564). 

Based on these results, data were pooled for the analysis of mass loss (2000- 2002) and 

parental care (2000- 200 1 ). 
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2.4.2 Effect of time-depth recorders on body mass and parental behaviour 

2.4.2.1 Effect on body mass 

The initial body mass of males (965 ± 10 g, N = 32) was higher than females (917 ± 9 g, 

N= 37; ANOVA: F 1, 67 = 13.01 , P = 0.001), and it did not differ between control (948 ± 

10 g, N= 31) and TDR-equipped birds (932 ± 10 g, N = 38; ANOVA: F 1, 67 = 1.347, P = 

0.25). The relative mass of the TDR to initial body mass was on average 2. 7% and 2.4 % 

for females and males respectively. The rate of mass loss varied between control and 

TDR-equipped birds (ANOVA: F 1, 63 = 75.77, P < 0.0001) and with sex (F 1, 63 = 4.93, P 

= 0.030); and the interactive effect of the factors on mass loss was significant (F 1, 63 = 

4.84, P = 0.031). Further analysis ofthe main factors showed that mass loss rates were 

significantly higher on TDR-equipped males (-27.01 ± 3.02 g day -I, N = 15) and TDR 

equipped females (-18.15 ± 2.54 g day -I, N = 21) than control males (-3 .98 ± 0.64 g day -

1
, N= 15; ANOVA: F 1, 28 = 59.45, P < 0.0001) and control females (-3 .94 ± 0.95 g day-

1
, N = 16; ANOVA: F 1, 35 = 21.88, P < 0.0001) respectively. TDR-equipped males lost 

mass at a higher rate than TDR-equipped females (ANOVA: F 1, 34 = 5.988, P = 0.020), 

and within control birds both sexes lost weight at a similar rate (males: -3.98 ± 0.64 g day 

-I , N = 15; females: -3.94 ± 0.95 g day -I, N = 16; ANOVA: F 1, 29 = 0.002, P = 0.97). 

Similar results were obtained when controlling for the initial mass of each bird. The mass 

loss ratio varied between groups (ANOVA: F 1, 63 = 73.01, P < 0.0001) and sexes (F 1, 63 

= 4.013, P = 0.049). The interactive effect of the factors on mass loss ratio was 
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significant (F 1, 36 = 4.145, P = 0.046). In both sexes, TDR-equipped birds had 

significantly higher mass loss ratios than control birds (ANOVA: females- F 1,35 = 23.41, 

P < 0.0001, males- F 1, 2& = 63.05, P < 0.0001). Within groups, differences between sexes 

were only significant within TDR-equipped birds, with males losing proportionately 

more than females relative to their body mass (ANOVA: F 1, 34 = 5.018, P = 0.032, 

Figure 2.1 ). 

Four of the TDR-equipped birds that were still brooding chicks (2 males and 2 

females) were re-weighed 7-14 days after the TDRs were removed. All birds, except for 

one female (-3.5 g day -1), increased in mass (4.2 ± 0.4 g day -I) after TDR removal. 
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Figure 2.1 Mass loss (mass Joss per body mass per day) of control and TDR-equipped thick­

billed murres rearing chicks at the Gannet Islands, Labrador. Means± SE. Different letters above 

bars denote statistical differences between groups (ANOVA, P < 0.0001). For example, control 

females (a) differ from TDR-equipped females (b) but not from control males (a). 

2.4.2.2 Effect on foraging behaviour 

Thick-billed murres performed 1 to 12 foraging trips per day, lasting between 10 and 720 

minutes. Parents delivered one to six fish to their chicks per day. Males foraged mostly 

during the day (0600 - 1500) and females before sunset (2200 h) and after sunrise (0330 

h). 
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Individual provisioning rates of control pairs and pairs with a TDR-equipped 

member (with chicks up to 7 days old) were compared before TDRs were deployed to 

check for possible individual differences between groups. I found no significant 

interactive effect of the group and sex on chick provisioning (ANOVA: F 1• 114 = 0.083, P 

= 0.774). Provisioning rates did not differ significantly between groups (control pairs: 

2.46 ± 0.18 meals individual-1day -I, N = 26; pairs with a TDR-equipped bird: 2.21 ± 

0.12 meals individual -1day -I, N= 35; ANOVA: F 1, 114 = 1.437, P = 0.233), or sexes 

(females: 2.22 ± 0.14 meals individual-1day -I, N= 32; males: 2.41 ± 0.15 meals 

individual -1day -I, N = 26; F 1• 114 = 0.755, P = 0.387). The mean values of both groups 

(control and equipped birds) and sexes were within the 95% confidence limits (2.13 -

2.54 meals day -I) of the grand mean. 

To examine the effect of TDRs on chick provisioning, chick attendance, and 

number and duration of foraging trips, I compared the mean rates of control (13 males 

and 13 females) and TRD-equipped birds (16 males and 19 females) using the same chick 

age categories (up to 11 days old). Provisioning rates of TDR-equipped birds were less 

than half of control birds (ANOVA: F 1• 57 = 70.33, P < 0.0001). There was no difference 

in provisioning rates between sexes (F 1• 57 = 0.151, P = 0.699) nor was there an 

interaction between instrument status and sex (F 1• 57 = 0. 295, P = 0.589, Table 2.1). In 

control pairs, males and females did not differ significantly on their mean provisioning 

rates (ANOVA, F 1. 2s = 1.012, P = 0.324, Table 2.1). 
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Both male and female TDR-equipped birds performed fewer foraging trips per day than 

control birds (Table 2.1; ANOVA: TDR condition- F 1, 57 = 67.46, P < 0.0001; sex- F 1, 57 

= 0.187, P = 0.667). No interactive effect of the factors on foraging trip was detected (F 1, 

57 = 0.700, p = 0.406). 

Foraging trip duration varied between groups (ANOV A log-data transformed: F 1, 

57 = 13.74, P < 0.0001) and sexes (F 1, 57 = 36.91, P < 0.0001, Table 2.1). There was not a 

significant interaction effect of group*sex on trip duration (ANOVA: F 1, 57 = 3.263, P = 

0.076). Further analysis of the main factors was done due to the small P value of the 

interaction term. Within sexes, TDR-equipped males performed longer foraging trips than 

control males (ANOVA: F 1, 27= 15.498, P = 0.001). However, the trip duration did not 

differ between TDR-equipped females and control females (F 1, 32 = 2.694, P = 0.111). In 

both groups, males performed longer foraging trips than females (ANOVA: control- F 1, 

24 = 14.90, P = 0.001; TDR condition- F 1, 33 = 23.92, P = 0.0001). 

- - - ---- - - - - - -
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Table 2.1. Effect of externally attached time-depth recorders on parental behaviour of female and male thick-billed murres 

rearing chicks at the Gannet Islands, Labrador. 

Control birds TDR-equipped birds 

Females Males Pooled Females Males Pooled 

Meals per day 2.7 ± 0.27 2.5 ± 0.24 2.6±0.18* 0.9 ± 0.13 0.9 ± 0.22 0.9 ± 0.12* 

Foraging trips/day 4.0 ± 0.27 3.7 ± 0.29 3.8 ± 0.20* 1.9 ± 0.17 2.0 ± 0.22 1.9±0.13* 

Trip duration (h) 1 1.4 ± 0.37 2.2 ± 0.39* 1.8 ± 0.29* 1.8 ± 0.48 4.6 ± 0.49* 2.8 ± 0.35* 

Chick attendance (h) 9.9 ± 0.28 14.5 ± 0.30* 12.2 ± 0.52* 8.9 ± 0.36 12.3 ± 0.86* 10.5 ± 0.52* 

Means are given± SE. Comparisons were done between groups (pooled data) and sexes (males and females) within each group. Significant differences 

between control (N= 13 females, 13 males) and TDR-equipped birds (N= 19 females, 16 males) and sexes are shown. 

*Two-way ANOV As, P :S 0.00 l. 
1Data were log (base 10)-transformed before the statistical analysis. 
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2.4.2.3 Effect on brooding behaviour 

Parents attended their breeding sites alternately during the chick rearing period, which 

lasted 15-24 days. Most females brooded their chicks from early morning to late 

afternoon (overnight at sea) and males from late afternoon until the next morning 

(overnight at the breeding site). The duration of the chick raising period did not differ 

significantly between pairs with a TDR-equipped member (20.69 ± 0.43 days) and 

control pairs (21.15 ± 0.54 days; Student's t test: t 37 = -0.643, P = 0.524). The means of 

both groups were within the 9 5% confidence limits (20 .17 - 21.54 days) of the grand 

mean. 

Birds equipped with TDRs spent less time brooding their chicks than control birds 

(ANOVA: F I, 57 = 9.959, P = 0.003). Overall males stayed with the chick 

proportionately more than females for both groups (Table 2.1; ANOVA: F I , 57 = 52.07, 

P < 0.0001). There was no significant interaction between group and sex on the brooding 

time (F I , 57 = 1.375, P = 0.246). Within sexes, TDR-equipped males spent significantly 

less time brooding than control males (ANOV A: F I , 57 = 4.893, P = 0.036). On average 

TDR-equipped females stayed with the chick less time than control females, however 

these differences were not significant (F I , 57 = 3.491, P = 0.071). 
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2.4.3 Compensation of reduction of parental effort 

2.4.3 .1 Chick provisioning 

I compared chick provisioning rates among three groups (TDR-equipped birds, partners 

ofTDR-equipped birds and control birds), controlling for possible sex differences, to 

determine whether partners would compensate for reduced parental effort by TDR­

equipped birds. Provisioning rates differed significantly by group (F 2, 136 = 37.99, P 

<0.0001), but not by sex (F 1, !36 = 0.454, P = 0.502, Figure 2.2); and there was no 

interactive effect of the factors on the response variable (F 2, 136 = 1.149, P = 0.320). 

Partners ofTDR-equipped birds (3.42 ± 0.25 meals day -I) fed chicks at a significantly 

higher rate than TDR-equipped birds (0.87 ± 0.12 meals day -I) or control birds (2.60 ± 

0.15 meals day -I, Tukey HSD test: P < 0.004, Figure 2.2). Comparisons of provisioning 

rates between the partners of TDR-equipped birds and control birds revealed that male 

partners had higher rates than male control birds (ANOV A: F 1, s2 = 10. 70, P < 0.002), 

but female partners did not differ from those of control females (F 1, s4= 0.954, P = 0.333; 

Figure 2.2). However, the longitudinal analysis of pairs with a TDR equipped birds (see 

below) showed that partners of both sexes increased their provisioning rates after TDR 

· deployment. 
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Figure 2.2 Overall effect ofTDR deployment on chick provisioning in thick-billed murres at the 

Gannet Islands, Labrador. Data show feeding rates (mean± SE) ofTDR-equipped birds (19 

females, 16 males), their partners and control birds (13 females, 13 males). Different letters above 

bars denote statistical differences between groups (two-way ANOVA, P < 0.0001). For example, 

control female (a) differ from TDR-equipped female (b) but not from partner female (ac). 

In order to account for possible individual differences among pairs with a TDR-

equipped member and control pairs, I used a longitudinal analysis to examine the effect 

ofTDR deployment on chick provisioning. Paired t-test comparisons before and after 

TDR deployment were made on 24 pairs ofTDR-equipped birds and partners. The TDR-

equipped birds reduced their provisioning rates after TDRs were deployed (Paired t test: t 
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23 = 8.549, P < 0.0001), whereas their unencumbered mates increased their rates 

significantly (before: 2.19± 0.25 meals day -I, after: 3.55 ± 0.31 meals day -I; t 23 =-

4.084, P < 0.0001). For partners ofTDR-equipped birds, both males (before: 2.51 ± 0.43 

meals day -I, after: 3.83 ± 0.44 meals day -I; Paired t test: t 11 = -3.058, P = 0.011) and 

females (before: 1.86 ± 0.26 meals day -I, after: 3.26 ± 0.43 meals day -I; Paired ttest: t 11 

= -2.661, P = 0.022) increased their feeding rates significantly after TDR deployment. 

A similar approach was used to determine whether chick provisioning rates of 

TDR-equipped birds or of their partners changed after the TDR was removed. The mean 

provisioning rates of previously TDR-equipped birds increased significantly (Paired t 

test: t 19= -4.37, P = 0.001, Figure 2.3) to values similar to before the TDR deployment 

(Paired t test: t 19= 1.35, P = 0.194). Their partners maintained provisioning rates (Paired 

t test: t l9 = 0.31, P = 0. 79), which were significantly higher than those before the TDR 

deployment (Paired t test t 19= -3.75, P = 0.001, Figure 2.3). After TDR removal, the 

provisioning rates of the partners were significantly higher than those of the previously 

equipped birds (ANOV A: F 1, 39 = 14.36, P = 0.01 ). There were no differences between 

males and females within each group (TDR-equipped birds: female = 1.98 ± 0.30 meals 

day -I, male = 2.23 ± 0.55 meals day -I; Student's !test: t 18 = 1.02, P = 0.32; partners: 

female = 3.66 ± 0.41 meals day -I , male = 3.57 ± 0.42 meals day -l , Student's t test: t 18 = 

0.78, p = 0.44). 
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The pair-wise comparisons for the total provisioning rates of pairs with a TDR­

equipped bird revealed no significant differences before and after TDR deployment 

(Paired t test: t 19 = 0.986, P = 0.336) and before TDR deployment and after TDR 

removal (Paired t test: t 19 = -2.044, P = 0.055, Figure 2.3). However, the provisioning of 

both parents was significantly lower after TDR deployment than after the TDR removal 

(Paired t test: t 19 = -3.421, P = 0.003, Figure 2.3). 
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Figure 2.3 Provisioning rates (mean ± SE) ofTDR-equipped birds and their partners (N = 20 

pairs) before and after TDR deployment, and after TDR was removed. Pair represents the total 

provisioning ofTDR-equipped birds and their partners. Asterix * denote statistical differences 

between groups (paired ttests: * P :::; 0.003; ** P < 0.0001). 

To compare the total chick provisioning of control pairs and pairs with a TDR-

equipped bird before and after TDR deployment and after TDR removal (TDR stage) I 

42 

matched chick age with TDR stage to control for age effects in both pair groups. Before 

TDR deployment, chicks were up to 7 days old, during TDR deployment chicks were 

between 4 and 11 days old and after TDR removal chicks were between 12 and 15 days 

old. The total chick provisioning per pair was not affected by whether a member of a pair 

- ------- - -
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was given a TDR (ANOVA: F I, m = 3.758, P = 0.055), but was significantly affected by 

TDR stage (F 2, I33 = 9.957, P = 0.0001). There was no interactive effect of the factors on 

chick provisioning (F 2, 133 = 2.429, P = 0.092; Figure 2.4). A post-hoc analysis revealed 

that pairs provided significantly less food before TDR deployment than after TDR 

deployment and TDR removal (Tukey HSD: P < 0.05). After TDRs were deployed, the 

pairs with a TDR-equipped bird provided significantly less food to their chicks than did 

control pairs (ANOV A: F 1, 62 = 10.988, P = 0.002). However, there were no differences 

in the amount of food provided by the two types of pairs (control and TDR-equipped), 

when matched for chick age, before TDR deployment (F I , 36 = 0.039, P = 0.845) or after 

TDR removal (F 1, 3s = 0.520, P = 0.475; Figure 2.4). 

--------
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Figure 2.4 Total provisioning of control pairs and pairs with a TDR-equipped bird according to 

treatment stage (before TDR deployment, TDR deployed, and after TDR removal). Means are 

given ± SE. An asterix *denotes statistical difference between groups (ANOVA, P = 0.002). 
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2.4.3.2 Offspring attendance 

The partners ofTDR-equipped birds fully compensated for their mates' reduced offspring 

attendance (see above) of their mates, such the chicks were never observed to be left 

unattended. In order to confirm these results, and also to account for possible individual 

differences between control and TDR-equipped birds, I undertook paired t-test 

comparisons before and after TDR deployment. The TDR-equipped birds reduced the 

time spent brooding their chicks after TDRs were deployed (before: 12.39 ± 0.65 h day -I, 

after: 10.05 ± 0.64 h day -1; Paired ttest: t 23 = 3.462, P = 0.002), whereas their unfettered 

mates increased their time significantly (before: 11.67 ± 0.66 h day -I, after: 14.04 ± 0.63 

h day -1
; t 23 = -3.666, P = 0.001). Both sexes of the instrumented birds spent significantly 

less time at the breeding site after TDRs deployment (Female: Paired t test: t 13 = 3.317, P 

= 0.037, Male: Paired t test: t 9 = -2.676, P = 0.025). For partners ofTDR-equipped birds, 

both females (Paired t test: t 9 = -2.676, P = 0.025) and males (Paired t test: t 13 = -2.332, 

P = 0.025) increased their time brooding the chicks significantly after TDR deployment. 

2.4.4 Fledging success 

Of the 40 birds equipped with TDRs, three lost their chicks after deployment. One 

abandoned its breeding site after two days of breeding site attendance, another 

accidentally dislodged its chick during a fight with a neighbor and a third lost its chick 
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for unknown reasons several days after the TDR was removed. Nevertheless, fledging 

success did not differ significantly between TDR-equipped birds (0.92 fledglings year ·1, 

N = 39) and control birds (0.92 fledglings year ·1
, N = 12, Student's t test: t 49 = 0.071, P 

= 0.994). It was not possible to determine fledging success for one control and one TDR­

equipped bird that were late breeders. 

2.4.5 Reproductive costs 

The rate of return to breed the following year was lower for TDR-equipped birds (83%, N 

= 40) than for control birds (96%, N = 26). The odds of return dropped significantly from 

25:1 (TRD-equipped birds) to 4.74:1 (control) as expected (odds ratio = 0.181 , Chi­

Square test: / 1= 2.918, P = 0.044 one-tailed). Ofthe TDR birds that did not breed, three 

were females and four were males. In contrast, the TDR-equipped birds ' partners (88%, 

N = 18) returned to breed at a similar rate to control birds (Chi-Square test: / 1= 0.950, P 

= 0.329). Reproductive success did not differ significantly between control birds (0.89 

fledglings, N = 26) and those equipped with TDRs the previous year (0.88 fledglings, N = 

33; ANOVA: F 1, ss = 0.014, P = 0.996). Overall breeding success did not differ between 

TDR-equipped females (0.81 fledglings, N = 21) and males (0.89 fledglings, N = 19; 

Student' s t test: t 38 = 0.740, P = 0.464). 
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A sub-sample of control pairs and pairs with a TDR-equipped bird (both members 

individually banded) were followed the next year to determine mate fidelity. Of the pairs 

that had a TDR-equipped member the previous year, one (2000: N = 5), four (2001 : N = 

9) and one (2002: N = 5) changed their mates the following year. All control pairs in 

2000 (N = 4), 2001 (N= 3), and 2002 (N = 4) maintained their breeding site and mates 

the following year. Overall, a significantly higher proportion of pairs with a TDR­

equipped birds member (32%, N = 19) bred with a different mate in comparison to 

control birds (0%, N = 11 ; Chi-Square test: i 1= 4.342, P = 0.037). Of these pairs that 

divorced, previously TDR-equipped birds were not seen breeding except for one female 

that moved to a different breeding site. In contrast, most unencumbered partners (3 males 

and 2 females) stayed on the same breeding site with a different adult. Of these birds, 

two successfully fledged chicks, two lost their eggs/chicks and one bred very late in the 

season so breeding success could not be determined. 

The second year after TDR deployment, fewer birds that had been equipped with 

TDRs (68 %, N = 35) were seen breeding at the colony in comparison to control birds 

(88%, N = 26; Chi-Square test: .11= 3.34, P = 0.034 one-tailed). A similar proportion of 

males (3/14) and females (9/21) previously equipped with TDRs did not breed the 

following year. Of these 12 birds, six of their prutners were individually banded and five 

of these were seen breeding with a different adult. Whether the birds equipped with 

TDRs were not seen because they changed their mates at the beginning of the season, 

omitted reproduction, or died was unknown. 

----------
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2.5 DISCUSSION 

I was able to satisfy both initial objectives of this study on a long-lived seabird because I 

found clear negative effects of time-depth recorders on parental effort, thereby setting up 

the opportunity to examine compensatory parental behaviour experimentally using a 

handicapping approach. 

2.5.1 Effect of time depth recorders on parental behaviour 

Although my instruments were substantially less intrusive (3% of the body mass and 2% 

of cross-sectional body area) than the criteria (5%) used by most investigators for 

acceptable externally attached devices (Cochran 1980; Wilson et al. 1986) and smaller 

and lighter than those used in previous murre diving studies (Croll et al. 1992; Falk et al. 

2000), I found that instrumented thick-billed murres suffered a reduction in body mass, 

offspring attendance, provisioning rates and frequency of foraging trips compared to non­

equipped control birds. For equipped males only, increased foraging trip duration also 

occurred. Handling non-instrumented control birds similarly to the TDR-equipped birds 

eliminated the possibility that these effects were associated with stress due to 

manipulation. 
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Individual and inter-annual variation can also be excluded as factors that explain 

differences in foraging trip duration (Ballard eta!. 2001) and provisioning rates of TDR­

equipped birds. I found that foraging trips of equipped and control birds did not always 

end with chick feeding. In Cory's shearwaters (Calonectris diomedea), non-feeding visits 

were a regular occurrence when increments of chick weight were taken into account 

(Granadeiro et a!. 1999). Thus, short or long foraging trips may in fact result in normal, 

reduced or no food delivery to chicks, so inferences about parental and foraging effort 

using only breeding site visitation (e.g. Jones eta!. 2002a) and time spent at sea (e.g. 

Ballard eta!. 2001) may lead to confusing conclusions. Additionally, the consistent 

findings with respect to provisioning rates using a longitudinal analysis before and after 

TDR deployment within a year and the cross-sectional analysis (control vs. equipped 

birds) support the idea that a device effect was the main cause of reduced parental effort 

ofTDR-equipped birds. 

In short, I believe the most likely explanation for my results is the physical effect 

of the device on murre flight (Obrecht eta!. 1988) and underwater swimming 

performance (Bannash eta!. 1994). The associated increase in energy costs experienced 

by TDR-equipped birds during foraging (Gessaman & Nagy 1988) would have caused a 

reduction in body condition, and an increase in maintenance effort with a consequent 

reduction in parental care. 
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Previous efforts attempting to measure the effect of instrumentation on the 

behaviour of individual animals may have used inadequate measures (e.g. Cairns et al. 

1987; Croll et al. 1992; Benvenuti et al. 1998; Falk et al. 2000; Jones et al. 2002a). For 

example, I found that measures such as survival and success showed no difference 

between instrumented and non-instrumented birds, but parental behaviour was clearly 

affected. The tendency for partners to compensate seems to mask these effects on 

individual behaviour and total parental effort. Some studies that have tested the effect of 

TDRs in animal behaviour have found that individuals can compensate for the "extra 

workload" without disrupting their parental performance (e.g. seals: Boyd et. a/1991; 

Harcourt et al. 1995; seabirds: Weimerskirch et al. 1995; Schaffer et al. 2003; Kato et al. 

2000). Others have shown that breeding individuals carrying data loggers had extended 

foraging trips (penguins: Croll et al. 1991; Watanuki et al. 1992; Hull1997; Ropert­

Coudert et al. 2000; Taylor et al. 2002) and reduced chick provisioning (alcids: Wanless 

et a!. 1988; this study). Recent efforts to reduce drag of instrumented birds during 

swimming and flying have used new attachment methods. Implanted data loggers seem to 

reduce the effect of external attached devices in king penguin's foraging behaviour 

(Ropert-Coudert et al. 2000). However, they can affect the breeding success and increase 

mortality of murres and puffins (Meyers et a!. 199 8; Hatch et al. 2000). Ventral 

attachment of TDRs seems to reduce physiological stress in common murres, but affects 

their frequency of nest site visitation (Tremblay et al. 2003). The quantification of 

parental behaviour is a non-invasive method to infer gear effects on diving performance 

of free-ranging birds with external devices. Further research (i.e. using dummy TDRs) is 

- - ------



51 

required to determine the optimal size, mass and shape of instruments so that behaviour is 

not affected and reliable activity data can be collected. 

2.5.2 Compensatory behaviour and reproductive costs 

According to models of biparental care (Houston & Davies 1985; McNamara et al. 

1999), only a partial compensation by individuals for a reduced parental effmi of their 

partners is expected in a stable evolutionary strategy. My results with respect to chick 

provisioning concur with these predictions and support other handicapping studies in 

birds (Wright & Cuthill1989, 1990; Whittingham eta/. 1994; Markman et al. 1995). I 

found that partners of encumbered murres increased their feeding rates above the average 

rates of control birds, so total amount of food delivered to chicks per day equaled that 

provided by both parents before TDR deployment. Even though this compensation was 

not enough in magnitude to equal the total provisioning rate of control pairs, it was 

sufficient for chicks to fledge at a similar rate to control birds. 

In Antarctic petrels, handicapped birds also reduced their chick feeding frequency, 

however their non-manipulated partners did not compensate for this reduction, and chick 

loss was higher than for control birds (Saether et al. 1993). Foraging costs may be 

significant for this species, which has to travel long distances ( 400 km) during a 

prolonged chick-rearing period ( 45 days). I suggest that responses of seabird species to 

handicapping may be dependent on their life history strategies and individual energy 
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thresholds to different costs during reproduction (Jan-Ake 2002). In fact, handicapped 

thin-billed prions, Pachyptila belcheri, were able to feed their chicks at a similar rate to 

control birds at the expense of a reduction of their body mass (Weimerskirch eta!. 1995). 

Within seabirds, thick-billed murres have the shortest chick-rearing period at the breeding 

site (15- 20 days) of any species except murrelets (Synthliboramphus; Gaston & Jones 

1998) and can deliver only one fish at a time. Thus, birds must commute between 

foraging areas and the breeding site several times per day (Gaston & Jones 1998). The 

reduction in frequency of foraging trips and body mass ofTDR-equipped birds suggests 

chick provisioning is energetically costly. With only a single offspring at the breeding 

site, individuals face the prospect of zero reproductive success if they do not compensate 

for an indolent or disabled mate. A drastic reduction of chick provisioning may lead to a 

longer time at the breeding site for both parents, or cause poor chick development and 

likely increase chances of mortality at departure (Gilchrist & Gaston 1997). I found that 

the duration of the chick-rearing period by pairs with a TDR-equipped member did not 

differ from those of control pairs, which suggest maintenance of growth rates may be 

beneficial for both parents and offspring survival. Future research on other auk species 

that provision chicks at the nest site until they are full-sized (e.g. puffms) would help to 

better understand the mechanisms underlying compensatory behaviour. 

After TDR removal, the previously equipped birds increased their feeding rates to 

values before TDR deployment. Their mates unexpectedly maintained their high 

provisioning rates, so the total amount equaled those of control pairs. After TDR 

removal, chicks were larger and received considerably more food than before TDR 

- ----~-
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deployment in control nests. Thus, the magnitude of the recovery ofTDR-equipped birds 

might not have fully met the feeding demands of larger chicks. A complete recovery of 

the instrumented birds and the consequent reduction of their mates' feeding rates seems 

to occur later on, but this prediction requires further study. 

Contrary to partial compensation in chick provisioning, I found that partners of 

TDR-equipped birds fully compensated for a temporary daily reduction of offspring 

attendance by increasing their time at the breeding site. Chicks were never observed 

unattended. As thick-billed murres breed in dense colonies where temporary 

abandonment is likely to yield chick mortality, full compensation is what would be 

expected based on recent models of biparental care (Jones et al. 2002b) that predict this 

when breeding success is an accelerating function of parental effort, (e.g., high nest site 

density and high predation levels). In yellow-legged gulls, Larus cachinnans, females did 

not compensate for a reduced incubation time of their males with testosterone implants 

(Alonso-Alvarez 2001). However, the fact that hatching success was not affected by a 

temporary abandonment of the eggs suggested compensatory behaviour was not crucial 

for chick survival. 

Two surprising findings arise from the handicapping study. First, individuals were 

able to increase their parental effort above normal limits to cover their partner's 

deficiency when food availability was apparently normal. Second, the level of 

compensation to a reduced partner's effort (full or partial) was related to individual costs 



of males and females towards different aspects of parental care and the consequent 

likelihood of breeding failure. 
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Parental roles and levels of energy allocation are not necessarily equal between 

males and females in species with biparental care (e.g. Hamer & Furness 1993; Gray & 

Hamer 2001 ). Therefore compensatory responses to reduced parental effort of impaired 

mates may also vary according to different parental roles between sexes (Sanz eta/. 

2000). Generally, parental behaviour of male and female murres in this study was 

similarly affected by the strain imposed by attached TDRs. Nevertheless, TDR-equipped 

males lost weight at a higher rate than TDR-equipped females. I also found overall that 

males, including control birds, spent more time at the breeding site and made longer 

foraging trips than females. These results suggest foraging strategies may differ between 

sexes in thick-billed murres as suggested by a previous study at Gannet islands on this 

subject (Jones et al. 2002a). However, chick provisioning did not differ between sexes in 

control pairs with chicks up to 11 days old. Both males and females responded similarly 

to the reduction in chick provisioning of their partners; and although control females 

spend less time with the chicks, TDR-equipped partners fully compensated for the 

absence of their encumbered partners at the breeding site. Compensatory behaviour 

seems not to be related to parental roles, but to reproductive values and costs of increased 

parental effort for males and females. 

Parents that provide biparental care have common and conflicting interests, and in 

theory, males and females are expected to compete to provide the minimum parental 
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effort to ensure their individual fitness (Williams 1966). My results are consistent with 

these predictions of dynamic game models of parental effort (Houston & Davies 1985; 

McNamara et al. 1999), and further support the behavioural flexibility and cooperation of 

truly monogamous long-lived species. The compensatory responses of males and females 

to reduced partner effort are likely the result of their obligated biparental care and life 

history strategies. 

Several authors have suggested that long-term relationships in monogamous 

species can help to synchronize parental activities, reduce energy allocation in mating 

and therefore increase lifetime reproductive success (Cooke et al. 1981; Fowler 1995; see 

Black 1996; Black 2001 ). In this context, it would be advantageous for individuals of 

long-lived species to maintain the condition of their partners and ensure their survival, so 

compensation to reduced partner's effort would be more likely to occur. Although I found 

that all thick-billed murres compensated for the reduction of parental effort oftheir 

handicapped partners, I also found that these birds tended to change their mates in each of 

the three study years, while control pairs showed total mate and site fidelity. Divorce in 

monogamous birds is more likely to occur if there is a reproductive failure or if one 

member of a pair shows poor quality as a parent (reviewed in Choudhury 1995; see Black 

1996). Common murres pairs (12/30) with low reproductive success divorced the 

following season, and those individual that change mates have higher reproductive 

success (Moody et al. 2005). This may explain my results in part because although 

breeding success of pairs with a handicapped bird was not affected, there was a clear 

reduction on parental performance by the TDR-equipped mate. Less experienced or 
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young birds are expected to be more likely to be divorced if mates show poor parental 

performance in thick-billed murres (Gaston & Hipfner 2000) and other birds (Rowley 

1983; Choudhury 1995). Thus, young birds (or others with recently established pair 

bonds) that are forced to compensate may subsequently divorce their "poor quality" 

mates to reduce costs in future breeding seasons. Several authors have suggested that 

divorce should be seen as a tactic by an individual to increase fitness (see review 

Choudhury 1995). The lack ofknown-age birds and fitness information for my study 

population precludes us from making conclusions about these predictions. Even though 

not mutually exclusive another explanation for the higher rates of divorce of pairs with a 

TDR-equipped member is the mortality of their mates. I found that previously TDR­

equipped birds returned to breed less often than their partners and control birds, which 

suggest handicapping, might have affected their survival. However, it is also possible that 

TDR-equipped birds left the colony because they failed tore-mate at the beginning of the 

season, when I was not doing observations. 

In summary, individual thick-billed murres' body condition and behaviour was 

affected by carrying TDR data loggers. Both males and females were able to fully or 

partially compensate for a reduction of parental effort by their handicapped partners to 

ensure breeding success. Although, compensatory behaviour seems to be a necessary 

response for breeding success in this single brooded species, it might also affect the 

stability of pair bonds of some individuals. 
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CHAPTER 3: SEX DIFFERENCES IN DIVING BEHAVIOUR OF 

THICK-BILLED MURRES AND RAZORBILLS AT THE GANNET 

ISLANDS, LABRADOR 

3.1 ABSTRACT 
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Empirical evidence suggests sympatric seabird species partition the resources of their 

environment. Within species, the reasons behind sex differences in foraging behaviour 

remain unclear. Sympatric thick-billed murres (Uria lomvia) and razorbills (Alca torda) 

have distinct foraging strategies and their sexes differ similarly in parental roles. I tested 

whether males and females in these species at Gannet Islands, Labrador differed in their 

diving behaviour and prey choice during the chick-rearing period. Murre males dived 

deeper (34.5 m ± 21.32 SD vs. 19.7 m ± 17.9 SD) and longer (120 ± 44.1 SD s vs. 88.8 

s ± 44.3 SD) than females, which appear to be associated to the time of day they foraged. 

Males dived mostly during mid-day to early afternoon whereas females dived after dawn 

and before dusk. In razorbills, although there were no clear sex differences in the main 

dive parameters and foraging times, female razorbills tend to dive more often at twilight 

and to shallower depths (<10m) than males (10-27 m). The tendency for shallow diving 

by females of both species may explain their shorter bouts despite the equal number of 
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dives per bout and per day between sexes. I also found sex differences in dive profiles 

and prey in both species. Female dives were mostly shallower W-shaped dives, probably 

for capturing crustaceans at twilight. In contrast, males performed mostly deeper U­

shaped dives for capturing mid-water species (e.g., capelin Mallotus villosus). Razorbill 

dives for capturing shallow schooling species (e.g., sand lanceAmmodytes sp.) were V­

shaped. Altogether, my results suggest that two sympatric auks had relatively similar 

inter-sexual segregation in water depth, time of day, and prey during reproduction. 

Females tend to dive in shallower waters than males, which reflects in their dive shape 

profiles and prey species. Sex differences in nest attendance, driven by differences in 

parental roles, seem to explain these findings. 

3.2 INTRODUCTION 

According to niche theory, species coexisting at equilibrium must partition the resources 

of their environment until inter-specific competition becomes less significant than intra­

specific competition (Hutchinson 1978; Ricklefs 1990). In seabirds, empirical evidence 

indicates partitioning of food resources occurs in related sympatric species by habitat, 

prey choice (McGinnis & Emslie 2001; Day et al. 2003) and foraging times (Lance & 

Thompson 2005). Other studies have shown that sexes can also differ in their foraging 

niches, which may reduce intra-specific competition for food resources (Casaux & 
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Barrera-Oro 2006; Breed et al. 2007). Sex differences in foraging behaviour in some 

marine mammals (seals: e.g., Becket al. 2003; Page & Goldsworthy 2005; killer whales: 

Baird et al. 2005) and seabirds (penguins: Bethge et al. 1997; Clarke et al. 1998; Bearhop 

et al. 2006; cormorants: Kato et al. 2000; Ishikawa & Watanuki 2002; Cook eta!. 2007; 

and auks: Jones eta!. 2002) is explained by sexual size dimorphism (i.e. body mass and 

bill size, review Halsey et al. 2006). The larger sex is able to forage over greater 

distances and to deeper sections of the water column (Weimerskirch et al. 1997; Kato et 

al. 2000; Ishikawa & Watanuki 2002). They may also forage on larger prey (Cook eta!. 

2007). Sex differences in foraging behaviour have also been found in several 

monomorphic seabird species (Bethge et al. 1997; Lewis et al. 2000; Jones et al. 2002; 

Peck & Congdon 2006), which suggests other factors can explain the differences found 

between males and females. 

Thick-billed murres (Uria lomvia) and razorbills (Alca torda) are generally 

monomorphic with slightly differences in some body measurements (Gaston & Jones 

1998). These alcids are wing-propelled divers with distinct foraging strategies; thick­

billed murres are single loaders and mid-deep water divers while razorbills are multiple­

loaders and shallow-mid water divers (review by Gaston and Jones 1998; Gaston and 

Hipfner 2000; Hipfner and Chapdelaine 2002). Although thick-billed murres' diving 

behaviour has been extensively studied across their geographic range (Croll et al. 1992; 

Falk et al. 2000; Melhurn et al. 2001, Watanuki et al. 2001; Benvenutti et al. 2002; Jones 

et al. 2002; Mori et al. 2002; Watanuki et al. 2006) only one study has examined possible 

- ---------------
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differences between the sexes (Jones et al. 2002). Razorbills' diving behaviour has been 

studied much less and no studies have investigated possible sex differences (Benvenutti 

et al. 2001, Dall' Antonia et al. 2001, Watanuki et al. 2006). 

Regardless of the species differences in foraging tactics, murre and razor bill 

males and females share similar partitioning in parental roles - biparental care is 

provided at the breeding site for two weeks and uni-paternal care at sea for 3-4 weeks 

(Gaston and Jones 1998). At the Gannet Islands, Labrador, females are the main meal 

providers while males are mostly involved in brooding and chick defence (Paredes eta!. 

2006). The intriguing question is whether these patterns in parental behaviour determine 

the foraging and diving behaviour of males and females. In other monomorphic seabirds, 

the sex with the shorter foraging trip also feeds the chick more frequently (Gray and 

Hamer 2001; Peck and Congdon 2006; but see Lewis et al. 2002). At the Gannet Islands, 

murres and razorbills followed the same pattern between the sexes (Paredes et al. 2006). 

The fact that sex differences only occurred during trips with meal delivery suggested that 

foraging tactics of males and females were motivated by their parental duties. Whether 

sex differences in trip duration were due to differential diving activity or distance to 

feeding areas was unknown. Sexes could potentially forage at different times because of 

differences in breeding site attendance patterns (i.e. thick-billed murres: Woo in Gaston 

and Hipfner 2001; Jones et al. 2002; Paredes et al. 2006). In Crested Auklets (Aethia 

cristatella), males brood at night and dive by day, and they seem to be better suited to 

breeding site defence and chick guarding than females (Fraser eta!. 2002). The male-
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biased capability in defending the chick, because of larger bill dimensions and more 

aggressive behaviour (Chapter 5), is one of the proposed explanations for partitioning of 

parental roles in murres and razorbills (Paredes eta!. 2006). Thus, it is possible that 

foraging schedules were driven by the need of males to be at the breeding site at times 

when the chick is potentially in most danger. If this were true, we expect males in both 

species to show foraging schedules that correlate with their parental behaviour. 

Consequently, they could potentially forage under different at-sea environmental 

conditions than females (i.e. light levels or prey availability), and therefore affect their 

dive depth and prey taken (Wilson eta!. 1993; Jones eta!. 2002) differently. Physical 

(water depth) and ecological constraints (prey species) play major roles in the frequencies 

of dive types and other dive parameters in a multi-species comparison of seabirds and 

pinnipeds (Schreer eta!. 2001). 

Functional classification of dives based on dive shape (i.e., time-depth profile) has 

been done for several species of air-breathing animals (Kooyman eta!. 1992; Schreer and 

Testa 1996; Schreer eta!. 2001). U- and V-shaped dives are the most frequent types 

observed in thick-billed murres (Croll eta!. 1992; Elliot eta!. 2008) and razorbills 

(Benvenuti et al. 2001; Dall'Antonia et al. 2001; Watanuki et al. 2006) respectively, 

however whether sex differences occur is unknown. Using stomach-temperature 

recorders, some studies have been able to confirm associations between dive shape and 

feeding (Thompson et al. 1991; Wilson eta/. 1992a; Lesage et al. 1999). Thick-billed 

murres usually perform direct flights to the colony for chick delivery (Benvenuti et al. 

--- - - - -
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2001 ). This distinctive behaviour has allowed for associations between dive shapes and 

specific prey species (Elliot et al. 2008). Others diving studies in northern gannets 

(Morus bassanus L., 1758; Garthe et al. 2000), and king penguins (Aptenodytes 

patagonicus Miller, 1778; Piltz and Cherel2005) have also reported relationships 

between prey species and dive profiles. Sex differences in prey delivered to chicks have 

been reported for razorbills at Skornmer Island (Wagner 1997), which may reveal 

differences in dive profiles as well. Thus, the analysis of dive profiles in relation to prey 

and daytime may be useful for understanding the mechanisms behind sex differences in 

diving behaviour. 

The aim of this study was to investigate whether sexes of two sympatric sister­

species, thick-billed murres and razorbills, differ in their foraging behaviour and prey 

captured; and whether these differences mirrored their parental roles. I specifically 

studied whether sexes differed in dive parameters, frequency of dives and dive bouts, 

dive type, and prey species for chick provisioning. Body mass and parental behaviour of 

a group of non-instrumented murres was investigated simultaneously to control for 

possible effects of attached gear on diving behaviour (Paredes eta!. 2005). 
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3.3METHODS 

I conducted fieldwork during August 2000-2003 at one of the six Gannet islands (GC4) 

located on the low Arctic coast of Labrador, Canada (53 .56' N, 56.32' W). 

A mixed colony of about 150 pairs of thick-billed murres (murres from now on) and 45 

pairs ofrazorbills were studied through the chick-rearing period. A total of 40 thick­

billed murres and 18 razorbills were captured for deploying time-depth recorders (TDRs ). 

Fifteen additional razorbills were captured, as part of another ongoing study, for sex 

determination. Only one member of a pair was captured for TDR deployment while the 

other was brooding, so the chick (1-11 days old) was never left unattended. Murres were 

captured with a noose of nylon monofilament (1.5 mrn diameter) on the end of a 4-m 

graphite pole. Razorbills were captured with a small weighted noose-carpet attached to 

one end of20 m of nylon monofilament line (1.5 mrn diameter) and with the other end 

attached to 3-m wooden pole. The noose-carpet was positioned on cliff ledges, so 

razorbills were captured by the leg as they approached or departed their breeding site. 

Two types ofTDRs were deployed on murres- MK7 (Wildlife Computers, 25 g, 3% of 

body mass, flat shape with pointed end) and LTD _1 OOs (Lotek, 16 g, 2 % of body mass, 

cylindrical shape with rounded end). Both TDRs are similar in size (5-8 em x 1-2 em x 

1- 2 em), and in cross-sectional area (1.7- 1.9 cm2
, 1.2- 1.3 % ofthe body area). I 

deployed LTD _ 1 00 units on razor bills. TDRs were attached onto the back of feathers 

using three strips of black TESA® tape, cable ties and drops of cyanoacrylate glue ("hot 
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stuff'®) under both ends of the device. Handling time from capture to release totalled 

between 5- 8 minutes. TDRs were programmed to sample depth every 5 sand depth 

resolution was 0.5 m. I recovered TDRs several days after deployment (murres: 1- 4 

days, razorbills: 2-7 days). Blood samples (0.5 ml) were taken from the tarsus vein and 

stored in vials with 95% ethanol for use in determining the bird's sex by DNA analysis 

(Fridolfsson & Ellegren 1999). 

I performed daily observations of feeding of marked murres (15 pairs) and 

razorbills (31 pairs), including the instrumented birds; during most of the chick-rearing 

period. The observations were undertaken from a blind, using a spotting scope (20- 60x, 

60 mm) and binoculars (1 Ox, 50 mm), from dawn to dusk (0400 h - 2200 h). Prey 

delivered to chicks was recorded at the species level when possible. I identified 

individual birds by temporary marks of picric acid (yellow) or fluorescent paint (green, 

pink and orange) delivered using a small container ofthe marking liquid attached to the 

tip of a 4 m graphite pole. This method allowed marking the birds from above without 

capturing them or disturbing the colony. The markings and key life-history information 

were recorded on ID cards for quick reference. One member of each pair was captured at 

the end of the chick-rearing period for permanent banding (a stainless steel and a colour 

leg band) and sex determination. The sexing analysis was done after the season was 

finished so the observers were blind to the sex of birds during behavioural data 

collection. 



Data of ambient light intensity or total illumination (solar+ lunar illumination) 

were inferred for the colony position using astronomical ephemeris (Eran Ofek: 

http://wise-obs.tau.ac.iV-eran/). These calculations do not account for cloud coverage. 

Based on these records, I determined that twilight periods occurred around dawn from 

03:30 to 05:30 and around dusk from 20:00 to 22:00. 

3.3.1 Data and statistical analysis 
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Dive data were analyzed using the dive analysis program from IKNOS toolbox (Y. 

Tremblay, unpublished) developed with MATLAB software (The Math Works, Natick, 

Massachusetts). The program was setup to analyze all dives equal or exceeding 3m 

depth (6 times depth resolution), and 15 seconds duration (3 times sampling interval). 

Dive parameters were calculated for each dive, following Tremblay and Cherel (2003). I 

determined maximum depth (depth), duration, bottom time (the amount oftime between 

75% and 100% of the maximum depth reached), and descent and ascent rates for 

individual dives. I calculated diving efficiency, the proportion of the bottom time over a 

complete dive cycle (dive duration + PDI, Ydenberg & Clark 1989). Because 95% of 

dives had a post-dive interval < 2 times their duration, this threshold was chosen as a bout 

ending criterion (Tremblay & Cherel 2003). Dive profiles were classified visually in five 

dive shape categories: V-, U-, square-, W-, and asymmetrical. 
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Of the 40 TDRs deployed on murres, 30 obtained data, seven had anomalous data 

and three fell off the birds before re-capture. I was unable to compare data between the 

sexes from both types ofTDRs, ((MK7: 11 males and 15 females and Lotek: 3 males and 

1 female), directly because only one female murre had a Lotek since I did not know the 

sex of birds at the time of deployment. Nevertheless, because most of the birds had MK7 

units (26 of 30) I compared the dive records of them against those of both TDRs together 

(MK7+Lotek). In this way, I indirectly accounted for possible effect of type ofTDR, and 

if the results were not affected by pooling the data I assumed tllis would allow us to 

include Lotek data for the analysis. Of the 18 TDRs deployed on razorbills (all Lotek), 9 

obtained data recordings (6 females and 3 males), one had no data (female), and eight 

were never recovered. 

A total of 4,716 dives and 1,668 dives were recorded from murres and razorbills 

respectively. I only used a total of dives performed during entire days (murres: females = 

1,721 dives, males = 1,927 dives; razorbills: females = 1,082 dives, males = 473 dives) to 

be able to investigate time of day effects in diving behaviour. 

Maximum depth reached during a dive affects other diving parameters in other 

species (Wilson et al. 1997; Tremblay & Cherel2000). The analysis of other dive 

parameters can show whether sexes differ in their behaviour at the same water depths, 

which can indicate or not differences feeding tactics. When there were differences in 

depth between the sexes, I compared the standard deviates of dive parameters to provide 

an independent analysis of depth. Standard deviates [(value-mean)/SD] were calculated 

for all the dives belonging to every bin depth of 2 meters (Sokal & Rohlf 1998). 



68 

I used mixed factor models for the analysis of bouts, dive parameters and dive shapes. 

The fixed factor was sex, and individual was used as the random factor. In this way, we 

were able to include the effect of individual variation in the model. Statistical analysis 

was carried out using SPSS version 11.5. If residuals were not normally distributed, we 

transformed the dependent variable using log or square-root transformation as appropriate 

before the analysis and presented coefficient of variation (CV) instead of standard 

deviation (SD). We report 95% confidence intervals instead of estimates of statistical 

power to address the question of type II error (Hoenig and Heisey 2001). Chi-Square tests 

with Yates's correction were used to compare proportions. Relationships between 

parameters were analyzed using Pearson correlations. Means were expressed ± SD of the 

mean. 

3.4 RESULTS 

3.4.1 Non-effect of TDR type 

The mean depth of individual dives was not affected by TDR type (MK7: 25.9 ± 20.8 m, 

both TDRs: 27.5 ± 21.1 m; mixed-factor model: F 1, 53 = 0.053, P = 0.818), but 

significantly affected by sex (F 1. 2&.21 = 19.21, P = 0.0005). On average, male murres 
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(33.6 ± 21.4 m) dove 59% as deep as females (19.8 ± 18.0 m). Lack of significant effect 

of TDR type on the main factor allowed us to compare males and females in my analysis. 

TDR effect on body mass 

No sex differences were found in initial body mass in razorbills (female: 701 ± 51.8 g, N 

= 14, male: 711 ± 38.5 g, N= 19, Student t-test: t [l , )l] = -0.651, P = 0.52). On average, 

razorbills, regardless of sex (females: 16.4 ± 5.3 g /d, males: 13.7 ± 3.5 g/d, Student t­

test: t [1,61 = 1.040, P = 0.338) with TDRs lost 15.0 ± 4.8 g/ d during the deployment 

period. Male murres had higher initial body mass and lost weight at higher daily rates 

than females (Paredes et a!. 2005). 

3.4.2 Thick-billed murre diving behaviour 

Murres at Gannet Islands showed a difference between the sexes in the time of day 

foraging occurred (Fig. 3.1). Most dives of female were between late afternoon and 

sunset (18:00- 21:00, 70%, N = 1,721) and between early morning and after sunrise 

(03:30 - 06:00, 11 %), while most dives of males occurred during late morning to early 

afternoon (08:00 - 19:00, 67 %, n = 1 927, Fig. 3.1). For twilight periods, females 

performed more dives near dusk (20:00 - 22:00 h, 56%) than dawn (03:30 - 05:30 h, 

10%), while males performed only 7- 9% of their dives during these periods. Only 3% ( 

- -----
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N= 125) of dives were recorded during darkness (22:00- 03:00 h). These dives were 

shallow(< 10m) and performed mostly by females (68%). Dive depth was positively 

correlated with inferred solar illumination, however some deep diving (up to I 02 m) was 

also performed at times (05:00 - 07:00 h) when total illumination was low (Fig. 3.2). 
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Figure 3.1 Number of total dives according to time of day of male and female thick-billed murres 

(males: N = 14; 1,927 dives; females: N = 16; 1,721 dives) and razorbills (males: N =3; 473 dives, 

females: N = 6; 1,082 dives) at Gannet Islands, Labrador. Dark rectangules represent the darkness 

periods ( 10:00-03:00 h); night diving was infrequent or absent in murres and razorbills 

respecttively. 
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The depth of murres' dives was strongly related to the time of day (mixed- factor model: 

F (23, 3 574] = 41.54, P < 0.0001). However, male and female dive depths were affected 

differently by time of day (sex* time: F (21, 3 574) = 9.88, P < 0.0005). The deepest dives 

of females occurred early in the morning (05:00 - 06:00 h, Post-hoc Tukey HSD test, P < 

0.0001), and to a lesser degree early in the afternoon (15:00- 17:00 h, Post-hoc Tukey 

HSD test, P < 0.002, Fig. 3.2). Males' deep diving also occurred early in the morning 

(05:00- 07:00 h) but they occurred during mid-day and early afternoon as well (12:00 -

17:00 h, Post-hoc Tukey HSD tests, P < 0.01). The dives of both males and females were 

significantly shallower immediately after sunrise (03:00- 04:00 h) and before sunset 

(20:00 - 23:00 h, Post-hoc Tukey HSD test: P < 0.001, Fig. 3.2). 

Figure 3.2 Variation of dive depth of male (black bars) and female (white bars) thick-billed 

murres (males: N= 14, 1, 926 dives; females: N= 16, 1,721 dives) and razorbills (males: N = 3, 

473 dives, females: N = 6, 1,082 dives) according to time of day (means ± SD) and total 

illumination (solar and moon illumination) at Gannet Islands. Statistical differences were found in 

the interaction term sex * time of day in both species (mixed- linear models: P < 0.0005). 

--- - ------
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Most dives by females occurred at shallower depths (73%, up to 19 m), and most 

dives by males (67%) occurred deeper in the water column (20-90 m, Fig. 3.3). There 

were significant differences in the proportion of dive shape groups between males and 

females r.l r41 = 385.46, P < 0.0005). On average, males dived significantly deeper 

(mixed-factor model: F[1 ,28J= 20.015, P < 0.0001) and longer (mixed-factor model: F 

[I ,28J = 16.55, P < 0.0005) than females (Table 3.2). Females (N= 1,721) had 

significantly more W -shaped dives than males (N = 1 ,927), and males had more U­

shaped dives than females(/= 370.77, P < 0.0005, Table 3.1). We did not find sex 

differences among the other three groups of dive shapes, V -shaped, square-shaped, and 

other asymmetrical shapes of males (3%) and females (3%;2 = 4.908, P = 0.086, Table 

3.1). On average W-shaped dives (N = 2,133) were significantly shallower than U­

shaped dives (N = 1,144; mixed-factor model: F (1, 68.55] = 89.84, P < 0.0005, Table 3.3). 

Females performed most W-shaped dives (70%) immediately before sunset (20:00 -

22:00 h), and most U-shaped dives during late afternoon onwards (67%, 15:00 - 20:00 h) 

and early morning (16%, 04:00- 06:00; Fig. 3.6). In contrast, W-shaped and U-shaped 

dives of males were distributed in a similar manner according to hour of the day (05 :00 -

16:00 h; Fig. 3.6). During nighttime (21 :30 - 3:00 h) both sexes performed only W­

shaped dives. These differences in the timing of diving between sexes correlated with 

differences in the parameters of dives of different shapes. W -shaped dives of males were 

significantly deeper (mixed-factor model: F [I , 311 = 15.648, P < 0.0005) and longer (F [1, 

311 = 8.781, P = 0.006) than those of females. Likewise, W-shaped dives of males had 

longer bottom time (F r1,31] = 13.19, P = 0.001), faster ascent rate (F [l,3 1] = 13.37, P = 



0.001) and longer post-dive interval (F [I , 3IJ = 9.57, P = 0.004) than those of females 

(Table 3.4). No sex differences were found in descent rate and dive efficiency ofW­

shaped dives (P > 0.05; Table 2). We did not find differences in any diving parameters 

ofU-shaped dives between males and females (mixed-factor models: P > 0.05; Table 

3.4). 
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Figure 3.3 Frequency of dives of male and female thick-billed murre (males: N = 14, 1, 
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1,082 dives) at 10m-depth interval. 
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Table 3.1 Frequencies ofthe main type of dives ofthick-billed murres (males: 1, 927 

dives, females: 1,721 dives) and razorbills (males: 473 dives; females: 1,082 dives) at 

Gannet Islands, Labrador. Asterix (*)denote statistical significance (Chi-square tests: 

p < 0.0005). 

Razorbill Thick-billed murres 

Female Male 
Dive Shape 

Female Male 

6% 21% * v 17% 45% * 

38% 18% * \vJ 75% 44% * 

1% 6% * u 4% 6% 

43% 40% v 2% 3% 
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Dive duration was positively correlated with depth (duration = 14.9 mJ s depth + 0.4 s, r 2 

= 0.89, P = 0.001; Fig. 3.5) and post-dive interval (PDI) in murres (PDI = 24.4 s + 0.8 

duration, r2 = 0.65, P < 0.001). Males dive deeper and had longer bottom time, PDI, dive 

cycle and faster ascent and descent rates than females (mixed-factor models: P < 0.007; 

Table 3 .2). Despite differences in dive depth, sexes did not differ in diving efficiency 

(Table 3.2). The differences in other dive parameters bewteen the sexes disappeared 

when depth was controlled for, except for PDI. Female murres had significantly longer 

post-dive intervals than males independently ofthe depth of the preceding dive (Table 

3.2). 

Males haci longer bouts than females (mixed-factor model: F [1 , 281 = 7.66, P = 0.009); but 

they did not differ in the daily number of dives (mixed-factor model: F p,28J = 0.69, P = 

0.420), and bouts (mixed-factor model: F [1,28] = 0.150, P = 0. 701 ). Sexes did not differ 

in the number of dives per bout per day (mixed-factor model: F [1, 28] = 0.400, P = 0.532; 

Table 3.2). 
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Table 3.2 Dive parameters of male and female thick-billed murres (F = 16, M = 14) 

and razorbills (F = 6, M = 3) at Gannet Islands, Labrador. The total number of dives 

is shown in parenthesis. Asterix (*) denotes statistical significance between the sexes: 

** p < 0.0001, p < 0.007. 

Thick-billed murres Razorbills 

Female Male Female Male 
(N= 1,721) (N=1,927) (N= 1,082) (N= 483) 

Mean SD Mean SD Mean SD Mean SD 

Max. dive Depth (m) 19.69 17.89 34.52** 21.32 9.94 5.78 10.4 4.9 

Dive Duration (s) 88.79 44.33 120.05** 44.11 48.32 14.73 52.1 11.7 

Bottom time (s) 35.79 17.75 47.05** 17.23 19.15 5.22 21.8 5.94 

Ascend rate (m s·1
) 0.594 0.239 0.823* 0.289 0.608 0.250 0.65 0.26 

Descend rate (m s' 1
) 0.755 0.269 0.882* 0.259 0.538 0.180 0.54 0.17 

Post-dive interval" (s) 43 .62 50.29 66.34* 50.85 25.12 22.75 25.1 23.1 

Dive cycle" (s) 127.84 79.85 181.9* 82.09 74.89 29.18 78.1 16.4 

Diving efficiency " (s) 0.332 0.125 0.311 0.122 0.320 0.091 0.33 0.10 

N dives per day 53.70 . 25.19 49.41 29.86 54.10 26.37 43.00 34.65 

N bouts per day 11.00 4.69 10.38 4.62 17.25 8.35 13.36 7.35 

Dive bout duration (s) 1,296 334 1,878** 298 825 323 1,070* 434 

N dives per bout 5.05 2.48 4.62 2.00 3.31 1.41 3.00 1.60 

Mixed-factor models: sex = fixed factor, individual = random factor. 

• These excluded preceding dives to bout intervals in murres (female: N = I ,318, male: 

N = 1,464) and razorbills (female: N = 697, male: N = 316). 

---------
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Table 3.3 Thick-billed murres. Mixed-factor model comparisons of standardized 

depth-by-depth data (Rolf & Sokal, 1998) of male (N = 14) and female (N = 16) 

dive parameters, so differences are independent of depth. Statistical differences 

when P:::; 0.05. 

Female Male Statistics 

(N = 1,721) (N =1,927) F p 

Mean SD Mean SD (df = 1, 28) 

Dive Duration 0.115 0.841 0.129 0.906 0.001 0.981 

Bottom time -0.054 0.827 0.279 0.898 3.205 0.084 

Ascend rate 0.078 1.057 0.024 0.995 0.034 0.855 

Descend rate -0.212 0.936 0.186 1.031 2.881 0.101 

Post-dive interval a -0.189 0.076 -0.227 0.116 9.958 0.004 

Dive cycle a -0.116 0.778 -0.106 0.863 0.005 0.945 

Diving efficiency a 0.160 0.825 0.513 0.769 3.827 0.060 

Mixed-factor models: sex = fixed factor, individual = random factor. 

• These excluded preceding dives to bout intervals (female: N = 1 ,3 18, male: N = 1 ,464). 

3 .4.2.1 Murre dive profiles in relation to prey type 

Murre's dives were mostly W-shaped (59%) and U-shaped (31 %), and to a lesser extent 

square-shaped (5%), V-shaped (3%), or other asymmetrical shapes (3%). The number of 

W-shaped and U-shaped dives varied according to dive depth in opposite directions. The 

proportion ofW-shape dives decreased with depth whereas the proportion ofU-shape 

dives increased with depth (Fig. 3.5). Shallow W-shaped dives were significantly shorter 

- ----------------------------
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in duration (F [1. 65.33) = 69.26, P < 0.0005), and had slower descent rates (F [1 , 75.791 = 

24.65, P < 0.0005) than U-shaped dives. Log-PDI was significantly shorter in W-

shaped dives than U-shaped dives (mixed-factor model: F r1• 68.441 = 39.42, P < 0.0005). 

Diving efficiency was significantly higher in W-shaped dives than U-shaped dives 

(mixed-factor model: F [1, 64.4 1] = 18.25, P < 0.0005; Table 3.4). These differences in dive 

parameters between dive profiles may indicate specific methods of capture for various 

prey species of males and females. 
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Figure 3.6 Hourly variation in the frequency ofW- and U-shaped dives of male and female thick­

billed murre at Gannet Islands, Labrador. 
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Table 3.4 Statistical comparisons of parameters ofW-shaped and U-shaped between male and female thick-billed murres. Asterix (*) 

denotes significance between groups. 

U-shape W-shape 

Female Male Total Female Male Total 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Dive Depth (m) 40.66 25.66 45.33 20.79 44.15* 22.14 13.4 7.67 21.45* 11.77 16.59 10.29 

Dive Duration (s) 136.2 61.18 138.3 44.64 137.8* 49.29 75.02 26.15 97.07* 26.87 87.77 28.55 

Bottom time (s) 46.20 24.82 48.05 18.11 47.58 20.51 32.57 12.11 45.54* 14.30 37.71 14.59 

Ascend rate (m s-1
) 0.735 0.252 0.886 0.265 0.85 0.27 0.549 0.205 0.761 0.291 0.63 0.26 

Descend rate (m s-1
) 0.911 0.281 0.991 0.213 0.97* 0.23 0.703 0.246 0.759 0.236 0.73 0.24 

Post-dive interval (s) a. b 56.62 4.64 66.54 3.188 64.14* 3.50 22.70 10.30 34.77 6.09 26.85 8.62 

Dive Efficiency • 0.267 0.116 0.270 0.119 0.27 0.12 0.348 0.121 0.357 0.113 0.35* 0.12 

• These excluded preceding dives to bout intervals (females: N = 1,032, males: N = 669) 

b Data were log (Base 10)-transformed before the analysis (CV instead of SD is shown in the table). 
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Thick-billed murres delivered to their young mainly daubed shanny (Lumpenus 

maculatus; 83% by number, N= 956), followed by capelin (Mallotus villosus,· 10%). 

All other prey species, such as sandlance (Ammodytes sp.), blennies (Lumpenus sp.), 

eelpout (Lycodes sp.), Arctic cod (Boreogadus saida), and invertebrates added up to only 

7% ofprey delivered to chicks. We observed three cases of crustaceans, which were 

delivered by females only at about 05:00 h in the morning. 

Prey fed to chicks differed significantly between the sexes (x.2r21 = 13.91, P = 

0.016). Both sexes fed their chicks mainly daubed shanny (males: 82%, N= 441 items, 

females: 84%, N = 515 items), however males provided significantly more capelin than 

females (12% vs. 7% respectively, x.2 = 6.96, P = 0.008, Fig. 3.7). 

We assumed that the prey item delivered to the chick was caught on the last dive. 

The last dives corresponding to daubed shanny delivery were mostly U-shaped (77 %, N 

= 13), the rest were single dives of square-shaped, V -shaped, and asymmetrically-shaped. 

Half of the last dives followed by capelin delivery (N= 4) were U-shaped and half were 

square-shaped. No prey deliveries to chicks followed W-shaped dives. 

3.4.3 Razorbill diving behaviour 

The maximum depth recorded for razorbills was 36m (160 s) and 27m (90s) for 

females and males respectively. Razorbills dived deeper at times when total illumination 
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was higher (Figure 3.2). Depth ofrazorbills' dives was affected by time of day (mixed­

linear model: F [1 7, 1 51!]= 11.73, P < 0.0005, Fig. 3.2). However, male and female depth 

of dive was affected differently by time of day (sex*time: F[!, 1 5111 = 9.183, P < 0.0005). 

By analyzing the sexes independently, we found that the dives of females were 

significantly shallower at 04:00 h (Post-hoc Tukey HSD test: P < 0.003) and deeper 

between 11:00 hand 12:00 h than other times of the day (Post-hoc Tukey HSD test: P < 

0.008). These times coincided with lowest and highest illumination levels at Gannet 

Islands (Fig. 3 .2). In contrast, the depth of male razorbills' dives did not differ 

significantly among hours (Post-hoc Tukey HSD test: P > 0.05). We excluded 3 hour­

periods (04:00 h, 20:00 h, and 21:00 h) in the post-hoc analysis for males because of 

small sample size. 

Razorbills started and finished foraging at 04:00 hand 22:00 h respectively; very few 

dives were recorded after dark (Fig. 3 .2). There was not a clear division of foraging 

times between sexes, males and females foraged throughout the day. Nevertheless, about 

half of the dives of females were concentrated at morning hours (04:00- 08:00 h), while 

58% of males' dives occurred at mid-day and early afternoon hours (13:00 - 17:00 h, Fig. 

2). At twilight periods, females performed more dives around dawn (03:30- 05:30 h, 

31 %) than around dusk (20:00- 22:00 h, 10%; fig. 3.1). Overall, males performed fewer 

dives around dawn (9%) and dusk (0.8%), respectively, than females. 

A multivariate mixed-factor analysis of the main razorbill dive parameters (depth, 

duration, ascent and descent rates, and bottom time) indicated that diving behaviour 
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differed by sex in razorbills (MANOVA: Wilk's Lambda= 0.948, F [S, 71 = 12.46, P < 

0.005). The univariate mixed-factor analysis of depth and other dive parameters showed 

no significant differences between sexes (mixed-factor models: P > 0.05; Table 3.2), 

except for bottom time (mixed-factor model: F [I , 71 = 8.224, P = 0.020). The mean dive 

depths of both sexes were within the 95% confidence limits of the grand mean of depth 

(9.78 -10.43 m), although males were close to the upper bound limit. The mean values of 

males were above the upper bound of the 95% confidence limits of the grand mean of 

dive duration (4911-50.80 s) and ascent rates (0.60 - 0.62 m/s), which indicate a type II 

error. 

There were significant differences in the number of dives performed by females 

and males (10m-interval depth categories, Chi-square: / 1= 60.933, P < 0.0005, Fig. 3.3). 

Female razorbills performed more dives less than 10m in depth (61 %), and males 

performed more dives greater than 10m (58%, Fig. 3.3). There were significant 

differences in the distribution of dive types for males and females c!r4J = 147.34, P < 

0.0005). Males had significantly more U-shaped and square-shaped dives than females, 

and females had more W-shaped dives than males c! = 144.97, P < 0.0005, Table 3.1). 

No sex differences were found in the proportion of V -shaped dives or other asymmetrical 

dives c! = 2.27, P = 0.14). V-shaped dives (11.9 ± 5.9 m) were significantly deeper than 

W-shaped (8.8 ± 5.4 m) and U-shaped dives (9.6 ± 4.4 m, mixed-factor model: F [2,28.7J= 

4.08, P = 0.028) in razorbills. No differences in dive depth were found between W­

shaped and U-shaped dives (Post-hoc Tukey HSD test: P = 0.20). 
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Between sexes, no differences were found in any dive parameter of the three dive shape 

categories (mixed-factor models, P > 0.05), except for bottom time. V-shaped dives (19.2 

± 4.4 s) and W-shaped dives (22.9 ± 5.7 s) ofrazorbill males had longer bottom times 

than those of females (V-shape: 17.7 ± 3.6 s, mixed-factor model: F [!. S.41) = 8.34, P = 

0.02; W-shaped: 20.2 ± 5.9 s; F [2,16.64] = 5.07, P = 0.004). 

Dive duration correlated with depth (duration= 4.15 m/s depth+ 0.29 s; / = 0.74, P = 

0.001; Fig. 3.5) and post-dive interval (POI = 8.786 s + 0.31 duration, r2 = 0.19, P < 

0.001) in males and females. Despite slight differences in depth between the sexes, there 

were no intersexual differences in PDI, dive cycle and diving efficiency (mixed-factor 

model: P > 0.05, Table 3.2). The mean values of both sexes were within the 95% 

confidence limits of the grand means for each variable. 

Males had longer bouts than females (mixed-factor model: F [1, 71 = 8.416, P = 0.023); 

but they did not differ in the daily number of dives (mixed-factor model: F [! , 71 = 0.773, P 

= 0.409) or bouts (mixed-factor model: F [1, 71= 4.815, P = 0.064). Likewise they did not 

differ in the number of dives per bout (mixed-factor model: F [1, 71 = 0.024, P = 0.881 ; 

Table 3.2). The mean values ofthe sexes were within the 95% confidence interval limits 

of the grand means of bouts per day, dives per day and dives per bout. 

3.4.3.1 Razorbill dive profiles in relation to prey type 
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Most dive profiles ofrazorbills were V-shaped (42%) and W-shaped (32%), and 

to a lesser extent U-shaped (11 %), square shaped (2%) and other asymmetrical shapes 

(14%). The proportion ofV-shape dives increased with depth and the proportion ofW­

shaped dives tended to decrease with depth (Fig. 3 .5). The proportion of U-shaped dives 

did not vary with dive depth in razorbills (Fig.3 .5). The proportion of V -shape dives 

increased with depth and the proportion ofW-shaped dives tended to decrease with depth 

(Fig.3.5). Dive duration did not differ between the three dive categories (V -shaped: 51.9 

± 14.9 s, W-shaped: 47.7 ± 14.6 s, U-shaped: 50.8 ± 9.3 s, mixed-factor model: F r2• 31.1) = 

0.96,P = 0.39). U-shaped dives (25 ± 5.5 s) and W-shaped dives (20.7 ± 5.0 s) had 

significantly more bottom time than V-shaped dives (18.2 ± 3.9 s, mixed-factor model: F 

r2• 40.951 = 16.53, P < 0.0001). Bottom times ofU-shaped dives were significantly longer 

than W-shaped dives (Post-hoc Tukey HSD test: P < 0.0001). No differences were found 

among the three dive shapes in other dive parameters or PDI (mixed-factor model; P > 

0.05). Dive efficiency was significantly higher in U-shaped dives (0.38, CV = 1.14%) 

than W-shaped (0.34, CV= 2%) and V-shaped dives (0.27, CV= 3.3 %, square-root 

transformation: mixed-factor model: Fr2, 32.4q: 12.56, P < 0.0001). W-shaped dives were 

significantly more efficient than V-shape dives (Post-hoc Tukey HSD test: P < 0.0001). 

Razorbills delivered mainly sandlance (85% by number, N = 1 685) and less 

frequently capelin (8%), daubed shanny (6%) and "other" species (1 %) such as blennies 

(Lumpenus sp.), eelpout, Atlantic cod (Gadus morhua) and crustaceans. The composition 

of prey species delivered to chicks at the breeding site did not differ between male and 

female razorbill parents (x.2r3J = 6.69, P = 0.08). Both sexes fed their chicks primarily 

- - --------- -----
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sandlance (females: 85%, N= 884, males: 84%, N= 548), and although males delivered 

more cape lin ( 1 0%) than females (7% ), this difference was not statistically significant (x2 

= 3.48, P = 0.07, Fig. 3.7). 

1U 100 ...... 
a... Razorbill 0 Female - 80 0 
...... 

• Male Q) 60 ..0 

E 
40 ::::::1 

c 
co 20 ....... 
0 ....... 

eft. 0 
D. shanny Capelin Sand lance Other 

>. 100 Thick-billed murre Q) ...... 
a... -0 80 
...... 
Q) 60 ..0 
E 
::::::1 40 c 
co 20 ....... 
0 ....... 
~ 0 0 

D. shanny Capelin Sand lance Other 

Figure 3.7 Prey species delivered by male and female thick-billed murres (males: 441 items; 

females: 515 items) and razorbills (males: 548 items; females: 884 items) at Gannet Is. Asterix 

(*)denotes statistical differences between sexes (Chi-square: P = 0.008). 
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3.5 DISCUSSION 

3.5.1 Effect of time-depth recorders in birds' behaviour 

The effect of experimentally-attached gear on seabirds is a neglected subject, yet 

the effects may be significant. Murres equipped with TDRs were shown previously to 

experience a reduction of body mass, parental effort (provisioning and brooding) and 

foraging trip duration (Paredes et al. 2005). In razorbills, no sex differences were found 

in initial body mass and daily rates of weight loss during the TDR deployment period. No 

data was available for the effect of instrumentation on razor bill's parental and foraging 

behaviour. However, we assumed that both murres and razorbills were negatively 

affected by the extra work of carrying TDRs. These behaviours are likely to be due to a 

reduction of birds' diving and/or flying performance, so we are aware that our 

measurements are likely under or overestimates. Nevertheless, because male and female 

thick-billed murres and razorbills are only slightly different in mass and morphometries 

(Gaston and Jones 1998), and were treated identically in our procedures, we assumed that 

sex differences in foraging behaviour would occur as a result of naturally different 

strategies and not due to the effect of attached devices. In fact, males and females of both 

species did not differ in the number of dives per bout and per day and both were able to 
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dive to similar maximum depths, which suggested no differential TDR effect on the sexes 

underwater. 

3.5.2 Patterns and differences in diving behaviour of sympatric thick-billed murres 

and razorbills 

As previously reported, we also found that U- and V -shaped dives characterized time­

depth profiles in thick-billed murres (Croll et al. 1992) and razorbills (Benvenuti et al. 

2001; Dall'Antonia et al. 2001; Watanuki et al. 2006) respectively. Furthermore, we 

found that W-shaped dives were also common in both murres (59%) and razorbills 

(32%). U- and W- shaped dives represent different prey-capturing strategies in penguins, 

with prey pursuit occurring predominantly during the ascent and bottom phases, 

respectively (Kirkwood and Robertson 1997; Ropert-Coudert et al. 2000). Occurrences 

ofW-shaped dives decreased with depth (i.e., more frequent at< 30m); and U-shaped 

dives increased with depth (i.e., more frequent at> 50 m) in murres and razorbills. The 

fact that the same relationship between dive depth and dive shape was found in two 

species that use different parts of the water column (murre dive range was 4 -102 m 

compared to razorbill dive range 3 -36m) supports the idea that the visual classification 

of dive profiles were not biased by the difference in maximum depth. The resolution of 

the diving program allowed for distinguishing zig-zags (W-shaped dives) from small 

wiggles at different depths clearly. In Peruvian boobies, U-shaped dives also increased 

with water depth (Zavalaga et al. 2007). W-shaped dives were more effective, diving 
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efficiency calculated as the proportion of the bottom time over a complete dive cycle; 

than U-shaped dives in thick-billed murres. Similar results have been reported for king 

penguins; W-shaped dives were more effective than U-shaped dives and ocurred more 

often at twilight periods probably for capturing crustaceans (P"litz & Cherel 2005). 

Crustaceans (e.g., euphausiids) swim within dense uni-directional and regularly spaced 

schools, but they do not have any specialized anti-predator behaviour as fish schools do 

(Hamner & Hamner 2000). Wilson et al. (2002) proposed that predators should be able to 

spend longer time at the bottom of a dive when feeding on smaller prey (crustaceans) 

than on larger prey (fish) because of differences in swim speed. In our study, analysis of 

the last dive in relation to prey delivered to chicks showed that W -shaped dives never 

preceded chick-feeding, suggesting they were used mostly for self-feeding. The analysis 

of dive type in relation to prey species suggested that U-shaped dives in thick-billed 

murres were used for capturing daubed shanny and capelin. Although our results are not 

conclusive because we were unable to obtain a large sample of prey deliveries by TDR­

equipped murres (N = 20), other seabird studies support our findings. In thick-billed 

murres, U-shaped dives preceded deliveries of daubed shanny (Elliot eta!. 2008) and 

preceded regurgitations of capelin in northern gannets (Garthe et al. 2000). At Gannet 

Islands, thick-billed murres and razorbills overlap in secondary prey items, thus it is 

likely U-shaped dives were performed by both species when capturing mid-bottom fish 

species, and W-shaped dives when capturing crustaceans. 

V -shaped dives in razorbills and other shallow flight-divers such as northern 

gannets (Garthe et al. 2000), Peruvian Bobbies (Sula nebouxii; Zavalaga et al. 2007) and 
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rhinoceros auklets (Kuroki et al. 2003) could not be explained by constraints in aerobic 

dive limits as has been proposed for deep diving species (Schreer et al. 2001 ). The fact 

that sandlance was the main prey species delivered by both razorbill sexes, and that both 

sexes also had similar frequencies ofV-shaped dives in this study suggested that this dive 

type was a result of a specific method of capture underwater. Sandlance schools 

preferred shallow-habitats (Ostrand et al. 2005) and characteristically form a tight ball 

when attacked (Grover & Olla 1983). While this behaviour may be an anti-predator 

response to reduced chances of individual mortality (see Hamilton 1971 ), it can also 

make the group more vulnerable near the surface to aerial predators (see review by 

Willson et al. 1999). We hypothesize that razorbills foraging at daylight were able to 

localize their prey from the air or sea surface, dive directly to the school and capture 

individuals on their way back to surface, helped by their positive buoyancy (threshold 

limit: 20m; Watanuki et al. 2006). Other alcids can use buoyancy to enhance 

acceleration in capturing prey above the birds in the water column (Burger et al. 1993). 

This may allow for a faster return to the same feeding spot. The fact that razorbills have 

consecutive dives at similar depths within a bout (Dall' Antonia et al. 2001) supports this 

hypothesis. 

According to niche theory, species must partitioning resources to be able to co­

exist (Hutchinson 1978). Inter-specific competition for resources between thick-billed 

murres and common murres are likely to occur because of their similar size and foraging 

strategies during reproduction (deep divers and single-loaders). At Gannet Islands, they 
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differ in population size, thick-billed colony is considerably smaller than that of common 

murres 1 :20). Although, these two species overlap in secondary prey species (i.e. capelin 

and daubed shanny) they deliver mainly one prey (Bryant & Jones 1999). The other two 

auks, razorbills and Atlantic puffins (shallow divers and multiple loaders) deliver mainly 

sandlance but with different stages of development: adult (razorbill; this study) and larvae 

(Atlantic puffins; Baillie & Jones 2003). Stable-isotopes studies indicate different 

distances to feeding areas during reproduction; thick-billed murres travel to farther areas 

than common murres, and razorbills stay near shore (Thompson et al. 1999). Thus, 

sympatric auks' partitioning of food resources may occur at Gannet Islands by different 

use of the water column, distances to feeding areas and primary prey or/and size (adult 

vs. larvae). 

3.5.3 Sex differences in diving behaviour and inter-sexual patterns in murres and 

razorbills 

In razorbills, dive depth varied with light intensity, being deeper at mid-day and 

shallower around dawn and dusk. Diving was infrequent at night. However, this pattern 

was mainly observed in female razorbills, which seem to track the diurnal patterns of 

sandlance. This shallow prey species is hght sensitive and stays under the sand during the 

night and emerges and roams in the water column during daytime (Winsladel974; 

Hobson 1986; Ostrand et al. 2005). Male razorbills did not differ in dive depth 
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throughout the day (except twilight), and tended to deliver more secondary prey species, 

e.g., capelin, than females. Capelin is a pelagic fish that moves in schools at variable 

depths ofthe water column (Montevecchi & Piat 1986; Davoren et al. 2006) and 

typically follows the vertical migration of zooplankton at night (see review Mowbray 

2002). Contrary to the behaviour at Gannet Islands, razorbill females at Skomer Is. 

delivered more secondary prey species (sprats) than males (Wagner 1997). The maximum 

depth for razorbills at Gannet Islands was 36m and agreed with previous studies 

(reviewed by Hipfner & Chapdelaine 2002). However, the fact that razorbills can dive as 

deep as 140 m (Jury 1986) suggests light intensity may not be a limitation for this 

species. Thick-billed murres' diving behaviour did not closely track the diurnal pattern 

of light intensity and the sexes differed in the amount of secondary prey species as well. 

Although both sexes dived shallower at twilight, they dived deeper at different times of 

day regardless of light levels. Deep diving (up to 120 m) coincided with peaks of chick 

provisioning for each sex (Paredes et al. 2006), which likely targeted daubed shanny 

(benthic fish) the main prey delivered to murre chicks at Gannet Islands (Bryant & Jones 

1999; this study). Both male murres and razorbills appeared to deliver more capelin than 

females. During the breeding .season of auks mature cape lin are found at sites near shore 

( < 50 m depth), probably due to spawning behaviour, while other age classes were found 

at intermediate (50-100m) and deeper depths (up 250m) offNewfoundland (Davoren et 

al. 2006). Stable isotope analysis suggested that breeding razorbills have a stronger 

tendency to feed in near shore waters than thick-billed murres (Thompson et al. 1999). 

Thus, male razorbills were likely feeding on spawning shoals of capelin at depths up to 
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30m, while male thick-billed murres were likely foraging on deeper shoals of capelin off 

shore. On the other hand, the shallowest dives observed in both species at twilight and 

night may be the result of feeding on species that follow the vertical migration of 

zooplankton (i.e., crustaceans), and is likely for self-feeding (Chapter 4). Incubating 

murres dived shallower than chick-rearing murres at Hakluyt (77° 26'N; Benvenuti et al. 

2002), suggesting differences in foraging for provisioning and self-feeding. Altogether, 

these results suggest diving behaviour in razorbills and murres were determined by the 

behaviour of the prey, which may largely depend on times and places each sex foraged 

for either provisioning or self-feeding. 

Sex differences in dive parameters and timing of diving behaviour were found in both 

thick-billed murres and razorbills at Gannet Islands, although a less clear division 

between sexes in foraging times and dive depths occurred in razor bills (consistent with 

other studies; Wanless and Harris 1986; Wagner 1992). Among murres, the sex 

difference in dive depth could be attributed to the consistent differences in breeding site 

attendance and foraging schedules of each sex (Jones et al. 2002; this study). When dive 

depth was controlled differences in other dive parameters such as dive duration, ascent 

and descent rates, bottom time and post-dive interval disappeared, which suggest that 

sexes do not differ on the way they feed at the same level of the water column. In 

razorbills, the multivariate approach that combined the main dive parameters (depth, 

duration, bottom time, ascent rate and descent rate) suggested that diving behaviour 

depended on sex. However, we did not find significant differences in mean depths and 



98 

other dive parameters, except for bottom time, between the sexes using the univariate 

approach. The lack of significant differences between sexes in most of the dive 

parameters was probably due to the small sample size of razor bill males (N = 3; Type II 

error). Males' mean values of depth, duration, and ascent rate were above the upper 

bound ofthe 95% confidence limits of the grand means. These results suggest males' 

tendency for diving at deeper levels than females . In fact, we found female razorbills 

tend to forage at twilight periods (mainly sunrise) and dive to shallower depths more 

often than males (61% vs. 42% of total dives) as occurs with female murres. The fact that 

female razorbills had shorter bout duration than males, despite similar number of dives 

per bout, supports their more frequent shallow diving. Thus, it seems female murres, and 

to lesser extent, female razorbills take advantage of the vertical migration of crustaceans 

to shallow depths during twilight periods at Gannet Islands. This behaviour may allow for 

faster self-feeding rates and consequently a more efficient provisioning (Chapter 4). 

Although we observed few cases of crustacean delivery to chicks (murres 0.3 %, and 

razorbills 0.4%), the consistent reddish coloration of the guano that covered the ledges in 

the murre colony suggests crustaceans are a main part of adult diet there and at Coats 

Island (Croll et al. 1992). Crustaceans are also an important part of adult murre and 

razorbill diets, especially in the winter (Mehlum et al. 1996; Mehlum 2001 ; Hipfner and 

Chapdelaine 2002; see also Rowe et al. 2000). 

Sex differences in foraging trip duration found in murres and razorbills at Gannet 

Islands (Paredes et al. 2006) may be partially accounted for by differences in diving 

activity. Dive duration and PDI decreased with depth in both species, which implied that 
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females should have shorter dive cycles (dive duration plus PDI) if they dive shallower 

than males. This explains how sexes performed similar numbers of dives per bout but 

females had shorter bouts than males. Thus, although sexes had similar numbers of dives 

and bouts per day females seemed to spend less time underwater than males, which may 

partially explain differences in trip duration. 

Different distributions of dive shapes found between males and females seem to 

mirror differences in their diets and the different vertical distribution of the various prey 

species. Both female murres and razorbills performed significantly more W-shape dives 

than males. Between sexes, we found that W -shaped dives of female murres were 

shallower and shorter than those of males and had shorter bottom times, slower 

ascent/descent rates and shorter PDis. These results are consistent with the different 

foraging times of males and females and diel vertical migration of their prey (i.e. 

crustaceans). Breath-holding divers experience changes in buoyancy resistance because 

of'the compression of air in their respiratory system, feathers or hair (Lovvorn and Jones 

1991; Wilson et al. 1992b ). Alcids experience greater buoyancy since they have 1.4 times 

greater air volume per mass than penguins (Wilson et al. 1992b ). Reduced buoyancy 

(threshold limit: 18-20 m, zero buoyancy: 62 m; Lovvron et al. 1999) of male murres at 

their depth range may allow them to spend longer time at the bottom of individual dives. 

Interestingly, we found that the efficiency ofW-shaped dives did not differ between 

sexes, which supports the possible relationship between dive shape and prey species. 

Males of both species performed more U- shaped dives than females, consistent with a 

higher consumption of capelin than females. Similarly, the lack of difference in U-shape 
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dive parameters of murre males and females suggested the capture strategies of both 

sexes for prey at deeper levels of the water column were indistinguishable. The narrow 

range in dive depths may be why sex differences did not occur in the most dive 

parameters of the main dive profiles, W and V- shapes of razorbills. 

3.3.4 Do parental roles determine foraging patterns and consequently diving 

behaviour? 

We hypothesized that sex differences in diving behaviour could result from differences in 

foraging schedules determined by different parental roles of males and females at the 

Gannet Islands. As a result, sexes would forage under different at-sea environmental 

conditions (i.e. light levels or prey availability), which would in turn affect their dive 

depths and prey taken (Wilson et al. 1993; Jones eta/. 2002) differently. The relatively 

similar inter-sexual segregation in feeding time and dive depth found in the two 

sympatric alcid species suggest that the observed foraging patterns were linked to the 

patterns of parental roles found at the Gannet Islands. We proposed that foraging 

schedules were driven by the need of males to be at the breeding site at times of higher 

chick vulnerability because ofthe greater ability of males to protect the chick (Paredes et 

al. 2006, Paredes and Insley unpublished data). In both species, males spend more nights 

with the chick than females (Paredes eta/. 2006), suggesting that males were present at 

the breeding site during twilight periods. Our results confirmed that females were more 

often diving at twilight periods (mainly sunrise in razorbills) and therefore males were 
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present at the breeding site. Higher predation and kleptoparasitism rates occur at times 

when seabirds return from feeding sites, which coincides with sunrise and sometimes 

sunset (Oro & Martinez-Vilalta 1994; St. Clair et a!. 2001; Williams & Ward 2006). 

These behaviours may potentially increase chick vulnerability during aggressive 

encounters between con-specifics and hetero-specifics. One of the most distinctive life­

history characteristics of the Alcini species is that the male is the caregiver that 

accompanies the chick to sea (Gaston & Jones 1998). Chick survival at departure, which 

mostly occurs at sunset, is a major constraint for these species (Gilchrist & Gaston 

1997b ). Males seem to be morphologically and behaviourally more capable of chick/egg 

defence because they have larger bills that can be used as weaponry and because they are 

more aggressive than females (Chapter 5). Thick-billed murres that defended eggs were 

able to reduce predation by glaucous gulls (Larus hyperboreus) in comparison to birds 

that did not (Gilchrist & Gaston 1997a). Thus, male presence at the breeding site at times 

when chick is most at danger (i.e. sunrise and sunset) would potentially benefit parents' 

fitness, and consequently determine foraging schedules. 

The fact that different nest attendance schedules, i.e., males diving at night and brooding 

during the day, have been reported for thick-billed murres at Coat Islands (K. Woo, in 

Gaston & Hipfner 2000) may be explained by differences in daylight periods and colony 

size. Larger bird colonies have greater nest competition and per-capita fight rates than 

smaller colonies because either non-breeding floaters contest sites more persistently or 

more floaters visit larger colonies (Brown & Brown 1996; Davis & Brown 1999). If 

breeding site competition is a major constraint for larger thick-billed murre colonies at 
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Coat Island, then male presence through longer daylight periods (3 h more than at Gannet 

Islands) may be necessary to defend the breeding site and chicks against prospecting non­

breeders. Comparative studies between localities with different environmental conditions 

(i.e. light availability) and similar productivity are needed to confirm two major and 

related questions. First, whether the patterns of parental roles found at Gannet Islands are 

general to these alcid species?, and second whether these roles are driven by the foraging 

behaviour of males and females during reproduction? 

In conclusion, we found a relatively similar temporal segregation of the sexes in dive 

foraging time, dive depth and prey during reproduction in two monomorphic, sympatric 

and closely related auks. Females dived at twilight periods and at shallower depths on 

average than males, which was reflected in their dive profiles. We propose that the 

different foraging schedules, and consequently dive depths, were driven by the need for 

males to be at the breeding site at times of higher chick vulnerability because of their 

better capability of defending the offspring. 
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CHAPTER 4: SEX-SPECIFIC DIFFERENCES IN FORAGING 

BEHAVIOUR OF THICK-BILLED MURRES: PROVISIONING VS. 

SELF-FEEDING 

4.1 ABSTRACT 

In theory, breeding animals can experience different constraints in terms of 

energy gain and expenditure when foraging to feed their offspring than to feed 

themselves. In several alcid species, females are the main food providers for chicks while 

males mostly defend the chick or nest. I tested whether these sexual differences in 

parental behaviours are reflected on the provisioning and self-feeding in thick-billed 

murres at Gannet Islands. Males self-feeding foraging occurred through daylight and 

mostly during ( 49% of total diving bouts) and in between provisioning trips (31% of total 

diving bouts). In contrast, females' self-feeding occurred during "self-feeding only" trips 

(91 %) at twilight, which coincided with the vertical migration of zooplancton (i.e. 

crustaceans) to surface waters. As a result, females' dives for self-feeding were shallower 

(17.17 ± 2.17m vs. 28.50 ± 3.50 m) and ascend rates slower (0.54 ± 0.04 m s-1 vs. 0.66± 

0.05 m s-1
) than males. This suggests males were foraging on the same mid-deep prey 

delivered to chicks, which may partially explain their higher delivery of capelin. Diving 

------
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for chick provisioning was deeper than self-feeding, irrespective of the sex (male: 62.91 

± 7.01 m, female: 52.98 ± 8.03 m) or the time of day. Number of dives and other 

parameters of chick provisioning bouts did not differ between sexes. Both results suggest 

similar diving effort of the sexes for parental tasks. Foraging trips and return time to the 

colony with meal delivery for females (1.53 h, 0.34 h) was significantly shorter than for 

males (6.63 h, 0.79 h), which suggested a division of foraging areas between sexes 

(estimated ranges: females 31 km; males 63 km). During a chick- provisioning foraging 

trip, females spent significantly less time underwater (0.27 h vs. 1.45 h) and 

flying/resting at sea (1.43 h vs. 4.61 h). Higher self-feeding rates and closer feeding 

locations may partially explain female's higher delivery rates at the breeding site. 

Altogether, my results indicate different strategies of males and females for self-feeding 

and provisioning foraging due to different energy and time constraints, which reflect on 

their parental roles. 

4.2 INTRODUCTION 

Parents must balance tradeoffs of resource allocation between survival and reproduction 

to maximize fitness (Williams 1966). Foraging determines an individual's intake of 

resources and its later energy expenditure in fitness-related activities. On the other hand, 

decisions about resource allocation in foraging activities will depend on the net income 
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and resource availability as well as other ecological and physiological factors (Boggs 

1992). According to optimal foraging theory, foraging strategies have evolved to 

maximize fitness}, which is a function of their foraging efficiency (Schoener 1971; Pyke 

et a/.1977). During reproduction, most birds forage for self-feeding and provisioning 

their offspring. These should be taken as two different foraging processes because 

constraints on energy intake and expenditure may be different (Y denberg 1994). Foraging 

behaviour may tend toward either rate maximization (time constraint)- or efficiency 

maximization (energy constraint) depending on the allocation of resources between self­

feeding and provisioning (Y den berg et al.1994). 

Parents are expected to value food for self-feeding and offspring differently 

because although foraging in both cases is costly, self-feeding has short-term benefits 

(energy balance) while chick-provisioning has long-term benefits (to fitness) (Ydenberg 

1994). Some evidence supports these predictions. For example, diet studies have shown 

that adults feed their chicks with larger or higher quality prey than those captured for 

themselves (Bradstreet & Brown 1985; Piat 1987; Mahon et al. 1992; Shealer 1998; 

Grieco 2002). Other studies have shown birds have different foraging behaviour and prey 

selection when feeding for their chicks than for themselves (Weimerskirch et al. 1997; 

Davoren & Burger 1998; Clarke 2001; Markmann et al. 2004). Deeper dives have been 

reported for thick-billed murres rearing chicks than for those incubating eggs (Benvenutti 

eta!. 2000); and longer dives for provisioning than self-feeding (Jones et al. 2002). 

Relatively few studies have considered possible differences between the sexes in these 
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two foraging processes (but see Weimerskirch et al. 1997, Jones et al. 2002; Markmann 

et al. 2004). 

Thick- billed murres are pursuit-divers, central place foragers and single prey item 

loaders (Gaston & Jones 1998); so their foraging range is constrained by the requirement 

of returning to their breeding sites at regular intervals. Murres raise a single offspring, 

which departs with the male parent after 15 days of biparental care at the breeding site 

and completes its development at sea over the following 3-4 weeks (Gaston & Jones 

1998). At the Gannet Islands, Labrador, both parents fed their chicks mainly with a 

benthic fish (daubed shanny, Lumpenus maculatus), however males provided more 

capelin (Mallotus villosus) than females. Males had longer but less frequent foraging trips 

with meal delivery than females (Paredes et al. 2006, Chapter 3). Males forage during 

the day at deeper depths than females, which foraging occur mostly at twilight periods 

(Jones et al. 2002; Chapter 3). These differences in diving and foraging behaviour seem 

to be result of the time at which each sex dive (Jones et al. 2002; Chapter 3). Sex 

differences in foraging for self-feeding and provisioning may also result from distinctive 

parental roles (Markmann et al. 2004). As thick-billed murres, other female auks such as 

the commom murre (Uria aalge, Wanless & Harris 1986; Wilhem 2004), the Atlantic 

puffins (Creelman & Storey 1991 ), the crested auklet (Aethia cristatella, Fraser et al. 

2002), and the razorbill (Alca torda, Paredes et al. 2006), are mostly in charged of chick 

provisioning. In marblet murrelets, males' higher rate of nest visitation suggests their 

major involvement in provisioning (Bradley et al. 2002). Males dovekies provided more 
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meals per day (Harding eta/. 2004) but less in quality and quantity than females 

(Wojczulanis eta/. 2006). Foraging for chick provisioning is very costly, especially for 

murres because of their reduced flying efficiency (Gaston 1985; Gaston & Jones 1998). 

Therefore, it is possible females have different ways of foraging for chick-provisioning 

than males to compensate for associated energetic costs. 

Murres usually perform a direct flight back to the colony for delivering a single 

fresh prey to their chicks (Benvenuti eta/. 1998); which can allow distinguishing 

between foraging trips for provisioning and self-feeding and estimating distances to 

feeding areas. 

My main goal was to test whether the different parental roles of male and female 

thick-billed murres are accompanied by differences in chick-provisioning and self­

feeding foraging at Gannet Islands, Labrador. Specifically, I determined foraging trip 

durations, return time to the colony (distance to feeding areas), diving bouts and 

parameters; and prey species delivered by birds carrying time-depth recorders. I used this 

information to estimate the foraging effort of males and females at sea and the total 

parental effort allocation in the final chapter. 



109 

4.3 METHODS 

The study was carried out during July and August 2000 and 2001 at a breeding colony of 

ca. 150 pairs of thick-billed rnurres ("Grey Cup", GC4) at one of the six Gannet islands 

located on the low arctic coast of Labrador, Canada (53"56'N, 56"32'W). During the 

study, sunrise and sunset occurred c. 03:30 and 21:30 local time respectively. 

I instrumented a total of 40 birds (18 males and 22 females) with time-depth recorders 

(TDRs) as part of a general study of sex differences in diving behaviour (see chapter 2). 

Birds with TDRs had chicks between 1-11 days old at the time of capture. 

We used two types ofTDRs, MK7 (Wildlife Computers, 25 g, flat shape with pointed 

end) and LTD _1 00 (Lotek, 16 g, cylindrical shape with rounded end); both similar in size 

(5-8 x 1-2 x 1-2 ern), and in cross-sectional area (1.7-1.9 cm2
, 1.2-1.3% of the body 

area). Data from both types ofTDRs were pooled because there were no significnat 

differences in diving behavior between birds outfitted with these different TDRs (see 

chapter 2). Only one member of each pair was captured for TDR deployment while the 

other was brooding, so a chick was never left unattended. Birds were captured using 

noose poles from the edge of the cliff above the colony. Their mass was measured to the 

nearest 10 g using a spring scale. After weighing individuals were marked with 

permanent (stainless steel) and temporary (color) numbered bands. TDRs were attached 

to the back of feathers using three strips of black TESA® tape, cable ties and drops of 

cyanoacrylate glue ("hot stuff''®) under both ends of the device. Handling time from 
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capture to release totalled 5-8 minutes. Time and depth were recorded continuously at 5 

sec interval during 1-4 days. After TDR recovery data were immediately downloaded to a 

laptop computer for analysis. Blood samples (0.5 ml) were taken from the tarsus vein and 

stored in vials with 95% ethanol for use later to determine the sex of each bird by 

molecular DNA analysis (Fridolfsson & Ellegren 1999). 

Parental care behaviour ofbirds with TDRs was observed between dawn and 

dusk (0400-2200 h) from a blind located at the edge ofthe colony. All events of meal 

delivery and the departure and arrival of adults were recorded to identify foraging trips 

"with meal delivery" and "without meal delivery" and to differentiate diving bouts for 

chick-provisioning and self-feeding. Prey delivered by each parent was identified at the 

species level when possible. Because murres usually return in direct flights from the 

foraging areas to deliver a single fresh fish to their chicks (Benvenutti et al. 1998) I used 

a flight speed of 65 km. h -1 (Benvenutti et al. 1998) and the return time from the last 

dive at sea to the breeding sites, to estimate the maximum travel distance to foraging 

areas for each bird . 

4.3.1 Data and statistical analysis 

My approach combined two types of information: records of diving activities and 

behavioural observations of birds instrumented with diving data loggers. 

- - ----- ------
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Thirty of the 40 TDR attachments yield useful data; seven had anomalous data 

and 3 fell offthe birds before re-capture. Twenty-three of the 40 TDR-equipped birds (11 

females and 12 males) had both information of diving and parental behaviour and were 

used for the analysis of chick-provisioning and self-feeding foraging. 

I grouped individual dives according to three types of bouts: all bouts before the last bout 

("self-feeding") and last bout before returning to the colony either without meal delivery 

("last bout without meal delivery") or with meal delivery ("chick-provisioning"). Trips 

were assumed to be for self-feeding when birds retun without food and when they did 

not return to the colony at the end of the day ("no return, overnight at sea"). 

Data were averaged by individual and sex before statistical analysis of type of bout and 

foraging trip. I reported the duration of individual dives but did not include this in any 

statistical analysis because there was a highly statistically significant correlation between 

depth and dive duration (r2 = 0.89, P = 0.001; Chapter 2). Therefore, I assumed there 

were statistical differences in duration of dives when statistical differences were found in 

depth. 

For the analysis of the effect oftime of day on dive depth/duration I grouped dives into 

ten 2 h-periods (1 = 21:31-03:30, 2 = 03:31 - 05:30, 3 = 05:31 - 07:30, 4 = 07:31- 09:30, 

5 = 09:31 - 11:30,6 = 11:31-13:30,7 = 13:31 - 15:30,8 = 15:31 -17:30, 9 = 17:31 -

19:30, 10 = 19:31 - 21 :30) according to sunrise (period 2) and sunset (period 10) 

occurrence. 
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I quantified the time-activity budget of males (N = 8) and females (N = 11) during 

foraging trips with chick meal delivery. Based on information from time-depth recorders 

and observations at the breeding site, I estimated the total time spent diving including 

self-feeding and chick feeding bouts ("time underwater"), and total time resting at sea or 

flying between bouts ("time at sea"). I assumed birds that remained at sea overnight (3/11 

females and 1/8 males) started the first foraging trip at 3:30am (sunrise) and only have 

return time flying to the colony. All data were averaged by individual and sex before 

statistical analysis. 

Dive data were analyzed using the dive analysis program from IKNOS toolbox 

(Y. Tremblay, unpublished ) developed with MA TLAB software (The Math Works, 

Natick, Massachusetts). The program was setup to analyze all dives equal to or exceeding 

3m deep (6 times the depth resolution ofthe instrument), and 15 seconds duration (3 

times the sampling interval). Dive parameters were calculated for each dive, following 

Tremblay & Cherel (2003). These included maximum depth, duration, bottom time (the 

amount of time between 75% and 100% ofthe maximum depth reached), and descent and 

ascent rates for individual dives. Because 95% of dives had a post-dive interval less than 

twice their duration, this threshold was chosen as a bout ending criterion. 

Statistical analysis was carried out using SPSS version 11.5. We used parametric 

tests (ANOVA, Student t-test) to compare groups if the residuals met the assumptions for 

the general linear model. If not, data were transformed and checked whether the residuals 
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met the assumptions for the transformed response variable. For instance, data of foraging 

trip duration were log-transformed before statistical analysis to reduce skewness and 

variance ofthe means. Chi-Square test with Yates's correction was used to compare 

proportions. Means were expressed± SE of the mean. All comparisons were two-tailed, 

and differences were considered significant when P s;o.05. 

4.4 RESULTS 

4.4.1 Chick Provisioning and Self-feeding foraging quantified 

Sexes foraged at different times of the day; males foraged mostly between late morning 

and early afternoon, and females foraged during early morning and late afternoon (Figure 

4.1 ). The number of bouts per trip varied between 1 and 26 for females and 2 and 30 

bouts for males. Males (11.9 ± 1.10 bouts trip -1 day -1
; N = 12) had significantly more 

bouts per foraging trip than females (6.63 ± 1.18 bouts trip -1 day -1
; N = 11 ; ANOVA: F 

1, 21 = 1 0.80, P = 0.004). Often long self-feeding bouts preceded short bouts for chick 

provisioning and without meal delivery for both males and females . Female murres had 

most of their self-feeding bouts at the end of the day (Figure 4.1). 
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The timing of females' foraging bouts for chick provisioning was bimodal with 

most bouts occurring early in the morning between periods 1 - 3 (73%, N = 15) and in 

the remainder occurring late in the afternoon between periods 6- 8 (27%, Figure 4.2 a). 

The period with the most activity in the morning was period 1 (03:30 - 05:30 h, 40%), 

and in the afternoon was period 7 (15:30- 17:30 h, 13%). The earliest dive for females' 

chick provisioning was at 04:55 and the latest at 19:07. Most males' bouts for chick 

provisioning occurred mid-day onwards, between periods 5 - 8 (90%, N = 19). The 

remainder of diving bouts by males (10%) occurred during periods 2 and 3 in the early 

morning. The earliest provisioning dives for males dive for provisioning occurred at 

05:30 and the latest at 17:58. Neither sex dived for chick provisioning during periods 4 

(09:30 - 11 :30) or 9 (19:30- 21 :30). 

The timing of self-feeding bouts by females occurred mainly late in the afternoon, 

between periods 6 and 9 (80%, Figure 4.2 b). In contrast, self-feeding bouts by males 

occurred mostly during the day, between periods 2 and 6 (80%, Figure 4.2 b). The last 

bout before returning to the colony without meal delivery occurred similarly during all 

time periods for both males and females, except for a relatively high occurrence (38%) 

during period 1 for females (38%, Figure 4.2 c). 
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Figure 4.2 Daily proportion of type of dive bouts of female ( N = 11) and male ( N = 12) thick­

billed murres according to 2.h-interval periods: Chick provisioning (a), Self-feeding (b), Last 

bout without meal delivery (c). 

We found a significant effect of the type of bout (two-way ANOVA: F 2. 53 = 

10.7, P = 0.0005) on dive depth, but no effect of sex (F 1, 53 = 3.107, P = 0.084, Figure 

4.3 a) nor an interaction between sex and type of bout (F 2, 53 = 0.47, P = 0.63). Post-hoc 

analysis of the type of bouts showed that both murre sexes dove deeper during bouts for 
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chick provisioning than for self-feeding or last bout without meal delivery (Tukey HSD, 

P < 0.05, Figure 4.3 a). No significant difference in dive depth was found between self­

feeding and last bout without meal delivery (Tukey HSD, P > 0.05). Between sexes, 

males dove significantly deeper during self-feeding bouts than females (ANOV A: F 1, 21 = 

10.8, P = 0.003, Figure 4.3 a),but no sex differences were found in dive depth for the last 

bout without meal delivery or chick-feeding (ANOV A: P < 0.05). Within sexes, males 

(ANOVA: F 1. 19 = 5.9, P = 0.025), and females (ANOVA: F 1, 11 = 19.02, P < 0.005) 

dove deeper during chick-provisioning bouts than for self-feeding (Figure 4.3 a). The 

number of dives performed by individuals per day was affected by the type of bout (self­

feeding: 66.1 ± 3.3 dives day -1; chick-feeding: 3.2 ± 0.8 dives day -1
; last bout without 

meal delivery: 4.0 ± 0.8 dives day -1
; two-way ANOVA: F 2, 53 = 277.6, P < 0.0005) but 

not by the sex of birds (P < 0.05). We found no interactive effect of sex and type of bout 

on the number of dives per day (F 2. 53 = 1.48, P = 0.24). 
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Figure 4.3 Differences in depth (A) and number (B) of individual dives of male ( N= 12) and 

female ( N = 11) thick-billed murres during chick provisioning bouts (last bout with meal 

delivery), self-feeding bouts (all bouts before the last one), and last bout without meal delivery. 

Means ± SE. Asterix (*) indicates statistical differences between sexes (ANOV As, P < 0.05). 

- ------------
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Similar results were found for the number of dives performed per bout. We found 

no difference between sexes (log-transformed data, two-way ANOV A: F 1,53 = 2.06, P = 

0.16), but a significant effect of the type of bout in the (F 2,53 = 11.37, P < 0.0005; Figure 

4.3 b). There was no effect ofthe interaction term sex* type of bout on the number of 

dives per bout (F 2, 53 = 1.52, P < 0.23). 

For the rest of the diving analysis, I excluded the last bout without meal delivery because 

showed no clear pattern ofbehaviour. 

Sexes differed on diving parameters (maximum depth, ascent and descent rates, and 

bottom time) during self-feeding bouts (MANOVA; Wilk's Lambda = 0.51 , F 4, 1s = 4.40, 

P = 0.012) but not during chick-provisioning bouts (MANOVA; Wilk' s Lambda = 0.925, 

F 4, 12 = 0.090, P = 0.908 Table 4.1). Parameters of self-feeding dives differ according to 

the two trip categories (provisioning vs. "self-feeding only trips": MANOV A: Wilk's 

Lambda = 0.53, F 4, 16 = 2.89, P = 0.048). Sexes differed on dive depth (F 1, 20 = 6.70, P = 

0.018) and ascent rate (F 1, 20 = 4.657, P = 0.043) only during "self-feeding only" trips. 

On those trips that also included chick provisioning the sexes showed no differences in 

self-feeding dive parameters (MANOVA: P > 0.05; Table 4.1). 
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Table 4.1 Diving parameters (Mean± SE) of male (N = 12) and female (N = 11) thick-billed murres during bouts for chick-provisioning 

and self-feeding. Asterix (*) denote statistical differences (P < 0.05). 

Chick-provisioning Self-feeding Pooled 

Female Male Female Male Female Male 

Depth (m) 58.97±6.17 62.0 ± 7.10 20.16 ± 2.45 32.45 ± 3 .27* 35.25 ± 5.33 44.27 ± 4.73 

Duration (s) 164.26 ± 9.10 163.02 ± 14.30 83.92 ± 5.22 104.47 ± 7.5* 115.16 ± 10.7 127.89 ± 9.6 

Bottom time (s) 40.91 ± 4.65 42.14 ± 5.48 25.07 ± 1.77 26.76± 3.03 
31.23± 2.75 32.9 ± 3.26 

Ascent rate (m s·1
) 0.82 ± 0.006 0.88 ± 0.006 0.54 ± 0.003 0.70 ± 0.004* 0.65 ± 0.004 0.77 ± 0.004* 

Descent rate (m s·1) 0.99 ± 0.007 1.11 ± 0.006 0.62 ± 0.002 0.77 ± 0.004* 
0.76 ± 0.005 0.90 ± 0.005* 
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We analyzed the effect of time of day on the depth of individual dives during self­

feeding and chick provisioning bouts of males and females. As noted earlier, most self­

feeding dives occurred during two periods: "twilight" (03:30- 05:30 and 19:31-21 :30) 

and "daylight" (05:31-19:30). For self-feeding bouts, time of day (F 1,138 = 6.58, P = 

0.011) and sex had an effect on dive depth (square-root transformed data: two-way 

ANOVA: F 1• 138 = 9.01 , P = 0.003). There were not an interaction effect ofthe main 

factors on depth (sex* time of day: F 1, 138 =1.08, P = 0.301). Both sexes dived shallower 

during twilight than during daylight periods (ANOVA: F 1. 140 = 11.395, P = 0.001). 

Males dived deeper than females during daylight (ANOVA: F 1. 111 = 19.345, P < 0.0001) 

but not during twilight periods (ANOVA: F 1• 28 = 2.406, P = 0.133, Figure 4.4). 

Because the sexes differed in the timing of diving for chick-provisioning, we grouped 

feedings bouts of each sex into two time periods: "morning" (females: 03 :30- 09:30, N = 

9, males: 05:31- 09:30, N= 3) and "afternoon" (females: 13:30 - 19:30, N= 4, males: 

11:30-19:30, N= 13) and analyzed the sexes' bouts independently. For neither males 

(Student's t-test: t 1. 14 = 1.34, P = 0.20) nor females (Student t-test: t 1, 11 = 1.16, P = 

0.27) did the depth of dives differ between chick-provisioning bouts in the morning and 

afternoon (Figure 4.5). 
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Figure 4.5 Depth dives (mean± S.E) of male and female thick-billed murre ' s self-feeding and 

chick provisioning bouts according to day time periods ("morning": females = 03:30 h-09:30 h, N 

= 9; males: 05:31 h-09:30 h, N= 3 and "afternoon": females: 13:30 h-19:30 h, N= 4, males: 

11:30 h-19:30 h, N = 13) and light periods ("twilight":03:30 h-05 :30 hand 19:31 h-2 1:30 h, and 

"daylight": 05:31 h-19:30 h). Different letters above bars denote statistiscal differences between 

(ANOVA: P = 0.003) and within sexes {!-test, P = 0.01 8). For example, dive depth at twilight 

was significantly shallower than at daylight for males but not for females. 

Females had most of their self-feeding diving bouts during "self-feeding only" trips 

(91 %, N =31 0), while about half of males' self-feeding diving bouts occurred during 

provisioning trips ( 49%, N = 411, Figure 4.6). Within "self-feeding only" trips, females 

had significantly more bouts than males during the last trip of the day ("no return to 

colony, overnight at sea"; Chi-square test: l1= 165.6, P < 0.001) Males had significantly 

more self-feeding bouts during provisioning trips (Chi-square test: 11= 207.24, P < 



0.001) and in between provisioning trips ("return to colony", Chi-square test: / 1= 

15.208, P < 0.025) than females. 
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Figure 4.6 Proportion of self-feeding bouts of male and female thick-billed murre according to 

provisioning trips and "self-feeding only" trips. The latter includes two sub-categories: trips with 

return to colony without meal delivery ("return to colony") and trips after last provisioning at the 

end of the day(" no return" overnight at sea). Asterix (*)denotes statitistical differences between 

sexes (Chi-Square test, P < 0.05). 

4.4.2 Foraging trips and time spent from foraging areas 

I examined whether males and females had similar foraging trip durations and 

flight times from the foraging to the breeding site and if the sexes behaved differently as 

a function of whether or not the trip was for chick provisioning. There was significant 

interaction between sex and type oftrip duration (F 1, 37 = 10.37, P = 0.003), so we 
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analyzed the main factors independently. Females had similar duration foraging trips 

regardless of whether they brought food to their chicks (squared-root transformed data, 

ANOVA: F 1, 21 = 0.08, P = 0.78; Figure 4.7 a). In contrast, males had longer foraging 

trip durations when they delivered food to their chick than when they did not (ANOVA:. 

F 1, 17 = 17.33, P = 0.001). Males had longer foraging trip durations than females only 

when they brought food to their chicks (ANOVA: F 1, 21 = 38.63, P < 0.0005); the sexes 

did not differ in foraging trip duration when no meal was deliverred (ANOVA: F 1, 17 = 

2.28, P = 0.15, Figure 4. 7 a). 

In the analysis oftravel time from last dive to the breeding site (return time), I found 

significant interaction between sex and type of trip on the return time (F 1, 33 = 6.26, P = 

0.017). Further analysis showed that the return time of males (square-root transformed 

data: ANOVA: F 1, l6 = 3.68, P = 0.074) and females (ANOVA: F 1, 19 = 2.28, P = 0.15, 

Figure 4.7 b) did not differ whether or not they brought food for their chicks. However, 

males spent significantly longer time returning from their foraging areas when they 

brought food than females (ANOVA: F 1, 18 = 9.47, P = 0.007). Returning time to the 

colony did not differ between sexes when there was no meal delivery (ANOV A: F 1, 17 = 

0.44, P = 0.52, Figure 4.7 b). 

-- -- --------------------
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Figure 4.7 Foraging trips (mean± S.E) with and without meal delivery of male ( N = 12) and 

female ( N = 11) thick-billed murres: A) trip duration, B) return time since the last dive and 

approximate distance. Significant differences between sexes were found only during trips with 

meal delivery in both analysis(* ANOVAs: P < 0.007); and only in trip duration in pooled data 

(* ANOVA: P < 0.0005). Within sexes, males had significant differences in duration only 

between trips categories (* ANOV As: P < 0.007); females trip duration and return time did not 

differ between trip categories (ANOVAs: P > 0.05). 
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Analysis of the time-activity budget showed that males and females spent similar 

percentages of time at the three different activities during foraging trips for chick 

provisioning (Chi-square test: /1= 3.203, P = 0.202, Figure 4.8). Males spent longer time 

"flying from I to the colony" (Student t-test: t 1, 17 = 4.60, P < 0.0005), "underwater" 

(Student t-test: t 1, 11 = 5.53, P < 0.0005) and "at sea" (Student t-test: t 1, 17 = -4.28, P = 

0.001; Figure 4.8). 

• Flying to/from colony 0 underwater 0 at sea 

Female 

Male 

0% 20% 40% 60% 80% 100% 

Foraging trip with meal delivery 

Figure 4.8. Time-activity budget of male (N = 8) and female (N = 11) thick-billed murres during 

chick provisioning trips at Gannet Islands, Labrador. 
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4.4.3 Prey species delivered to chicks 

Parents delivered mainly daubed shanny (74%, N = 19) and in less proportion capelin (21 

%) and eelpout (Lycodes sp. 5%) to their chicks. Among 11 prey items delivered by 

females (N = 8) eight were daubed shannies (2 females duplicated) and three were capelin 

(one female duplicated). Of eight prey items delivered by males (N= 6), six were daubed 

shannies (one male duplicated), one capelin and one eel pout (one male delivered both 

species). On average, the maximum depth of dives for capturing daubed shannies and 

capelin were 73.2 ± 4.28 m and 74.2 ± 5.14 m respectively. The maximum depth ofthe 

only dive performed for capturing eelpout was 54 m. Males (79.0 ± 6.02 m) and females 

(68.9 ± 5.8 m) did not differ on their maximum depth dives for capturing daubed shanny 

(Student t-test: t 1, 12 = 1.22, P = 0.25). The maximum depth for capturing capelin was 

70.57 ± 5.18 m for females, and 85 m for a one male. 
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4.5 DISCUSSION 

4.5.1 Effect of time-depth recorders in birds' behaviour 

In a previous study (Paredes et al. 2005), I have shown that attached data loggers affect 

thick-billed murres' body mass and parental behaviour. Because murre males and females 

are monomorphic and were treated equally in our procedures, I assumed any effect of 

TDRs on the behaviour of our birds would have been the same for all birds. Thus, 

differences in behaviour should have been a result of their foraging strategies not 

spurious instrumentation effects. For instance, sex differences in foraging trip duration 

occurred naturally in non-equipped murres; males have longer trips than females (Paredes 

et al. 2006). By flying to further foraging areas (see below) males might experience 

higher energy expenditure than females and be reflected in their body condition. TDR­

equipped males lost weight at a higher rate than TDR-equipped females (Paredes et al. 

2005). Both these results indicate a strong effect of instrumentation on murres ' flying 

performance as expected by their high-wing loading characteristics. 

Peaks of chick provisioning dives coincided with peaks of prey delivery of non­

TDR equipped male (mid-day and early afternoon) and female (early morning/ late 

afternoon) murres at the Gannet Islands, Labrador (Paredes et al. 2006). However, 

instrumented females had a higher delivery rates in the morning than in the afternoon, 
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which also concur with a previous study of diving behaviour of murres at Gannet Islands 

(Jones et al. 2002). Females, especially those with the extra work of carrying TDRs, 

might be in better condition at the beginning of the day because they had time for 

replenishing energy reserves during periods of prey abundance at twilight before 

engaging in chick provisioning. 

4.5.2 Chick-provisioning foraging 

In seabird species, the parent that provides more meals to their chicks shows a 

characteristic foraging behaviour. For instance, they travel to closer foraging areas, dive 

shallower and provide larger or more energy rich prey than their mates (Weimerskirch et 

al. 1997; Gray & Hamer 2001; Kato et al. 2000; Clarke 2001 ). In thick-billed murres, I 

found that they dived deeper for chick provisioning than for self-feeding irrespective of 

the sex or the time of day. In addition, sexes did not differ in the number of dives per 

bout nor in other dive parameters (duration, bottom time, and descent and ascent rates). 

Both these results suggest that the sexes do not differ in the allocation of effort for chick­

provisioning diving. Both parents feed their chicks mainly with benthic preys (i.e. daubed 

shanny; Bryant & Jones 1999; Chapter 3) although other prey items such as small 

crustaceans are a considerable component of adult murre's diet year around (Gaston & 

Jones 1998; Melburn 1996, 2001). In fact, incubating murres dived shallower than chick­

rearing murres, which probably reflected capturing crustaceans versus fish (Benvenutti et 

----- -
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al. 2000). Thus, deep diving may allow murres to provide larger or better preys to their 

chicks although probably at a higher cost. 

Both sexes performed fewer dives during chick-provisioning bouts than self-feeding 

bouts. This suggest that murres are likely to seek ideal foraging areas when they search 

for their chick's food, so costs related to deep diving are minimized. In fact, murres are 

able to locate "hot spots" of food during reproduction (Cairns & Schneider 1990; 

Davoren eta!. 2003) and have strong fidelity to their foraging areas at spatial scales of 1-

20 km in Kongsfjorden (79°N; Mehlum eta!. 2001). 

Previous studies have shown that on average female chick-rearing thick-billed murres 

have shorter foraging trips than males at Gannet Islands (Paredes eta!. 2005, 2006). We 

found that females had shorter trips and return time to the colony than males when they 

were foraging for chick provisioning but not for self-feeding. Although sex and type of 

foraging trip was not distinguished, there is evidence of individual tendency to perfom1 

short or long foraging flights to reach feeding areas in thick-billed murres at Latrabjarg, 

Iceland (65°30' N, Benvenuti et al. 1998). Differences in foraging trip duration ofhigh­

arctic murres in Greenland were mostly attributed to the time spent flying to feeding 

areas instead of diving activity at location (Falk et a!. 2000). Assuming thick-billed 

murres have a direct flight back to the colony after the last dive (Benvenuti et a!. 1998), 

the average maximum distance estimated for females (32 Km) was about half of that of 

males, which indicate a spatial segregation of foraging areas when feeding for 

provisioning . Jones eta!. (2002) did nor find sex differences on return time to the colony 

at Gannet Islands, which may be explained by the use of radio-transmitters instead of 

- - --------- -
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direct observations of meal delivery (this study) and the assumption that all return trips 

ended in chick-provisioning. In fact, we did not fmd differences when all return trips 

were included. According to central place theory, foragers are expected to increase the 

quantity and quality (larger size for single loaders) of the prey item delivered to chicks 

when increased foraging distance (Orians & Pearson 1979). Although males seem to fly 

to more distant foraging areas than females, the sexes did not differ in the length of prey 

items delivered to chicks (Paredes eta!. 2006). This may be the result of balancing costs 

of carrying a heavier load and flying for a long period oftime by a high-wing loading 

species. 

If both parents are diving equally deep for chick provisioning the most pressing 

question is why is there partitioning of foraging times and feeding areas between males 

and females during reproduction? Foraging for chick provisioning includes traveling, 

searching and capturing prey for both self-maintenance and chick meal delivery. 

According to provisioning models (Y denberg 1994; Y denberg eta!. 1994) parents must 

reserve time and energy for enough self-feeding to balance their own energy budget, 

while maximizing their daily food delivery to offspring. Female murres forage at times 

when zooplancton (e.g., crustaceans) is most available in surface waters at Garmet Islands 

(Jones eta!. 2002, Paredes et al. in prep.). Swarms of crustaceans move upward at dusk 

for feeding, and migrate downward as anti-predatory defence against visual predators at 

dawn (Loose & Dawidowicz 1994). One possible explanation is that by traveling to 

nearer foraging areas and foraging at times of prey abundance, female murres may gain 

energy at a faster rate for self-maintenance and therefore be able to provision offspring at 
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a higher rate. Whether similar distinctive foraging strategies occur in other auk females 

(Wanless & Harris 1986; Creelman & Storey 1991; Fraser et al. 2002; Wilhem 2004; 

Paredes et al. 2006) or males (Bradley et al. 2002; Harding et al. 2004) that are mainly in 

charge of chick provisioning require further investigation. 

Altogether these results indicate that differential foraging strategies of male and female 

thick-billed murres were driven by constraints associated to parental care (i.e. chick 

nutritional needs) and self-feeding foraging was adopted accordingly. 

4.5.2 Self-feeding foraging 

During self-feeding individuals capture and ingest food for their own maintenance 

instead of sharing or storing it for later delivery as occurs for chick-feeding. In theory, 

murres could adopt two different strategies for self-feeding foraging, "rate maximizing" 

(gain/time) and efficiency maximizing" (gain/expenditure), according to their 

requirements and environmental pressures (Ydenberg et a/.1994). At Gannet Islands, 

murres seem to fill their requirements for self-maintenance in two different ways. Most 

self-feeding bouts offemales occurred during "self-feeding only" trips (91 %), which 

occur mainly at the end of the day (68%, before sunset). Because females usually 

remained at sea overnight, they were able to feed exclusively for self-maintenance well 

after their last chick provisioning and before their first delivery of the new day. Thus, the 

main self-feeding by females, characterized by shallow diving behaviour, coincided with 

the vertical migration of zooplancton at dawn and dusk. Although we were unable to 
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determine whether females were in fact feeding on different prey for self-feeding, there is 

indirect evidence that suggests crustaceans are an important component of the diet of 

adults at Gannet Islands (Jones et al. 2002; Chapter 3). By foraging in swarms of 

crustaceans during twilight periods female murres may be reducing energy expenditure 

costs by intense foraging. Thus, most female self-feeding foraging appears to fit the rate 

maximizing strategy because although food is abundant its availability is constrained by 

time. 

Self-feeding foraging in male murres occurred during (49%) and in between chick 

provisioning trips (31 %). During provisioning trips, sexes did not differ on depth and 

other dive parameters when feeding for self-maintenance suggesting they were feeding 

on similar preys than those delivered to their chicks. At Gannet Islands, male murres 

delivered significantly more capelin than females (Chapter 3); this fish can be found at 

different levels of the water column during the reproductive season (Montevechhi & Piatt 

1984). In contrast, male murres dived deeper and have faster ascent rates than female 

murres during self-feeding-only trips, which suggest they were seeking different prey. 

Efficient divers are expected to adjust their behaviour underwater to maximize feeding 

time over the dive cycle (Kramer 1988, Houston and Carbone1992, Mori eta/. 2002). 

Despite the differences in dive depth, males spent similar time at the bottom (i.e. 

capturing/ingesting prey) and descend at similar rates than females. Murres are able to 

adjust their angle (Wilson et al. 1996, Ropert-Coudert et al. 2001 , Sato eta/. 2003) 

or/and swimming speed accordingly to the behaviour oftheir preys (Lovvorn eta/. 1999, 

2004). Thus, males may be descending at sharper angles than females so they can reach 

---- ------------------
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deeper depths at similar rates. In fact, U-shaped dives characterized diving profiles of 

murre males while W -shaped dives characterized female profiles at Gannet islands 

(Chapter 3). The shorter "self-feeding only" trips and the return time to the colony 

suggest that males might be flying to closer feeding areas when foraging exclusively for 

self-feeding. Thus, males foraging strategy for self-feeding seems to be more oportunistic 

than that of females. Although, both sexes distributed their time similarly among 

activities at sea, the amount of time males spent underwater, flying from or to feeding 

areas, and resting at sea was significantly more than for females. Greater resting time at 

the surface may allow males to digest food and recover from costs incurred during the 

first part of the foraging trip ("digestive strategy", Sibly 1981; see also Jackson 1992). 

Thus, male's self-feeding behaviour seemed not to be constrained by time but by energy 

costs of deep diving and flying to further feeding areas during provisioning trips, so 

lower feeding rates were expected. By balancing their total energy budget, males might 

be.maximizing their total daily gain and delivery rate, which is similar to an efficiency 

maximizing strategy. 

Interestingly, bottom time and descent rate did not differ between the sexes despite their 

differences in depth during self-feeding dives. Diving-flying birds are not only limited by 

a limited oxigen supply, and changes in presure depths, but also by the need to carry large 

oxigen supplies that aid to reduce flying costs (Lovvorn & Jones 1994). As a result, they 

experienced an increased bouyancy underwater and therefore increased diving costs 

(Wilson et al. 1992b). Work against bouyancy become minimal below the depth at which 

most compression of air spaces has occurred (- 20m; Lovvorn & Jones 1991; Lovvorn, 
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2001), and much of the energy expended against buoyancy during descent may be 

recovered during ascent (i.e. gliding effect, Lovvorn et al. 1999). Their narrow depth 

range (20-32 m) exposed to negative bouyancy, might explain similar descent rates of 

male and female thick-billed murres during self-feeding. Faster ascent rates of males 

migth be needed to minimize oxygen depletion and maximize capturing/ingesting time at 

the bottom. 

In summary, male and female thick-billed murres at the Gannet Islands, Labrador 

seemed to use different foraging areas, but decended to similar depths and captured 

similar prey for chick provisioning suggesting similar effort allocation underwater. On 

the other hand, they dived to different depths to capture what was available for self­

feeding at the respective time of day each sex foraged. Taken together, these results 

suggest different strategies of males and females for self-feeding and chick -provisioning 

foraging, reflecting different energy and time constraints, which seem to be associated 

with their parental roles. 
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CHAPTER 5: SEX DIFFERENCES IN AGGRESSIVE BEHAVIOUR 

IN THICK-BILLED MURRES AND RAZORBILLS 

5.1 ABSTRACT 

Parental aggression in the form of offspring defence directly affects offspring survival 

and consequently the adult's fitness. Seabirds tend to be sexually monomorphic with 

biparental care of their young and as a result sex differences in parental aggression are 

not expected. The four species in the Alcini tribe, however, have an intermediate form of 

parental care - biparental at the breeding site followed by male-only at sea - and therefore 

may have evolved sex biases in parental aggression. Here, I set out to measure sexual 

dimorphism and to test for sex bias in parental aggression in two sympatric Alcini 

species, razorbills, Alca torda, and thick-billed murres, Uria lomvia. I made 

morphological measurements and studied aggression levels of attending male and female 

thick-billed murres and razorbills during the incubation and brooding period in 2002 at 

the Gannet Islands, Labrador. I found that males were significantly larger than females in 

culmen and gape length in both species. Murres were also sexually dimorphic in body 

mass. I measured parental aggression in two ways: frequencies of aggressive interactions 

and, in razorbills only, the response to the presentations of a predator-model. I found that 

during the incubation period, thick-billed murre males initiated most of the aggressive 
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interactions (78% vs. 58%). During the brooding period, razorbill males responded 

aggressively to intruders more frequently than females (98% vs. 89%). Although the level 

of conspecific aggressive behaviour was not different among sexes in both species, male 

razorbills performed most of the high-scored aggressive responses such as chasing and 

fighting (64%). In response to presentations of the predator model, male razorbills 

responded aggressively more often (88% vs. 41 %) and more intensely than females. 

Overall, my results indicate a male-bias in parental aggressive behaviour in murres and 

razorbills. Whether by cause or effect, elevated male parental aggression maybe directly 

related to male-only accompaniment of chicks at sea. 

5.2 INTRODUCTION 

Parental aggression in the form of defence or protection of their offspring increases the 

parent's fitness by reducing the likelihood of offspring mortality. However, there are 

costs in terms of risk, energy and time for the parent that shows such aggressive 

behaviour during reproduction. In theory, optimal intensity of nest defence should 

maximize net fitness benefits of the aggressive parent (Montgomerie & Weatherhead 

1988). Parental or defensive aggression may be shown by one or both sexes; which 

largely depend on their forms of parental care and mating systems. In the majority of 

insects, fish and many mammal species, only one parent takes care of the egg or offspring 
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(Clutton-Brock 1991; Crawford & Balon 1996; Trumbo 1996). Consequently, defence 

decisions by the caregiver are relatively simple. In the majority of monogamous bird 

species both parents share parental duties, however there is often specialization in 

defensive aggression by one sex (review by Archer 1988). Male-biased aggressive 

behaviour reported in some penguins (Spurr 1974; Moreno eta/. 1995), gulls (Morris & 

Bidochka 1982; Butler & lanes-Butler 1983) and passerines with facultative mating 

systems (i.e. polygyny: Knight & Temple 1988) has been attributed to territorial and mate 

defence because it occurs only or more intensively during the courtship and laying 

period. 

In contrast, in many of the bird species that practice biparental care, males play major 

roles in nest defence and this persists throughout the chick-rearing period (passerines: 

Regelmann & Curio 1986; Breitwisch 1988; Lombardo 1991; Winkler 1992; Hogstad 

2005; eastern screech owl, Otus asio, Sproat & Ritchison 1993; Northern lapwing, 

Vanellus vanellus, Kis eta!. 2000; gulls, Larus spp., Pierotti 1981; Southern 1981; black 

skimmer, Rhyne hops niger, Burger 1981; and Atlantic puffin, Fratercula arctic a, 

Creelman & Storey 1980). Sex differences in aggressive behaviour have been attributed 

to differential capacity of defending the offspring (size or manoeurability: Pierotti 1981; 

Sproat & Ritchison 1993; Kis et al. 2000), body condition (Rogstad 2005), and sex­

biased populations (Breitwisch 1988). 

The Alcini tribe, composed of thick-billed murres, Uria lomvia, common murres, 

Uria aalge, razorbills, Alca torda and little auks, Aile alle, is an interesting group for 
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investigating sex differences in parental roles. Although they are not overtly sexually 

dimorphic seabirds, slight differences in some morphological measurements have been 

reported for all of these species (see reviews by Gaston & Jones 1998; Gaston & Hipfner 

2000; Ainley eta!. 2002; Hipfner & Chapdelaine 2002). In these species, both parents 

take care of a single offspring at the breeding site for 2-4 weeks, and it is only the male 

that takes care of the partially grown chick for the subsequent 3-4 weeks at sea (Gaston & 

Jones 1998; Stempniewicz 1995; Harding eta!. 2004). There are several proposed 

explanations for the "intermediate" chick development and departure strategy shown by 

the four Alcini species (Cody 1971; Houston eta!. 1996; Gaston & Jones 1998; 

Ydenberg 1989). However, there is no evolutionary, behavioural or ecological 

explanation for why males are the selected sex to accompany the chick at sea. According 

to Birkhead (1985), the ~ff-duty murre parent generally defends the breeding site, while 

the on-duty parent avoids such aggressive interactions. Previous studies at the Gannet 

Islands have shown that in both thick-billed murres and razorbills males spend more off­

duty time at the breeding site, suggesting its greater involvement in the defence of 

egg/chick, breeding site and mate than females (Paredes eta!. 2006). 

In this study, I set out to measure sexual size dimorphism and to test for sex bias 

in parental aggression in two sympatric Alcini species, razorbills and thick-billed murres. 

I studied the aggressive behaviour of the on-duty parent in the absence of its mate in 

order to ensure that the aggression was directed toward the protection of the 

egg/offspring instead of the mate. I measured aggressive responses of attending 
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individuals (egg/chick) in two different conditions: a) opportunistic observations of 

aggressive interactions between con- and heterospecifics; and b) experimental 

observations of aggressive behaviour resulting from the presentation of a model predator. 

My results address the functionality of parental or defensive aggression and the selective 

pressures and constraints that shape differences between the sexes. 

5.3 METHODS 

The study was undertaken at a mixed colony of thick-billed murres and razorbills located 

at GC4, one of the six islets of the Gannet Islands, Labrador (53°56'N, 56°32'W) during 

June-August 2001 and 2002. Murres were observed for 21 days (378 h) during their 

incubation period only in 2001. Razorbills were observed during 30 days (540 h) of the 

incubation period and 12 days (192 h) of the brooding period in 2002. The focal murres 

(29 pairs) were part of a colony (ca. 150 pairs) located on the top-most cliffledge in the 

breeding area known as "Grey Cup"; three common murre pairs were also located in the 

same study area among the focal thick-billed murres. The razorbill group (31 pairs) was 

located on the mid and bottom part of the same cliff used by murres, and was part of a 

colony of open and crevice breeding sites on the cliff (approx. 45 pairs) and beach area 

(approx. 60 pairs) respectively. 
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Other species using the same breeding area (Grey Cup) were black-legged 

kittiwakes (4-5 pairs; Rissa tridactyla) and Atlantic puffins. The principal predator for 

chicks and to a lesser degree for adults was the great black-backed gull, Larus marinus; a 

total of25 pairs nest on the Gannet Islands (Robertson & Elliot 2002). Other occasional 

predators observed include peregrine falcons, Falco peregrinus, northern ravens, Corvus 

corax, and herring gulls, Larus argentatus. 

I collected two types of data to compare levels of aggressive behaviour between 

males and females: a) frequency of aggressive interactions of attending birds during the 

incubation and brooding period and b) responses of brooding razorbills to the 

presentation of a model predator. 

5.3.1 Aggressive interactions 

During the incubation period, opportunistic aggressive interaction data were recorded 

continuously, concurrent with breeding site attendance observations (04:00-23:00). This 

was feasible because in comparison to the brooding period other parental activities were 

less frequent (i.e. shifts.) or absent (i.e. feedings). During the brooding period, it was 

necessary to conduct the same observations during two four-hour focal blocks each day 

(04:00-08:00, 08:00-12:00, 12:00-16:00, and 16:00- 20:00) so that a full day observation 

was completed every two days. Observations of aggressive interactions of brooding 

murres were not possible because of other research activities happening at the time chicks 

were hatched (i.e. lack of assistants). 
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In murres, I recorded 178 aggressive interactions (females= 104 and males= 74) 

in which incubating birds either initiated or responded to an attack from an intruder. I 

recorded 672 aggressive interactions of attending razor bills during the incubation period 

(females= 340, males= 332) and 171 interactions during the chick-rearing period 

(females = 68, males= 1 03). 

Observations were made from a blind, using a 20 - 60 X, 60 mm zoom spotting 

scope andl 0 x 50 mm binoculars. During each session, I recorded all aggressive 

interactions of marked subjects attending either eggs or chicks. I focused my observations 

on birds that were either incubating or brooding rather than off-duty parents because they 

were more likely to be defending the offspring compared to the territory, breeding site or 

mate. During each interaction, I recorded the ID of the breeding site owner (note that sex 

was not known at this point), breeding site condition (egg/chick), intruder species and its 

distance to the breeding site owner, initiator of the aggression, and the aggressive 

behaviour of the breeding site owner. 

Thick-billed murres breed in denser colonies than razorbills so the likelihood and 

direction of aggressive interactions between the breeding site owner and neighbours or 

intruders was different. Murre breeding site owners were physically in contact with 1- 4 

neighbours at the same time. In contrast, razorbills were generally ca. 1 m from their 

nearest neighbour and so body contact was unusual. As a result, murre breeding site 

owners would initiate or respond to attacks from neighbours (attending, arriving, and 

departing) or intruders (con- or heterospecifics); attending razorbills would mostly 

initiate attacks on intruders present near their breeding site . . 
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The distance between the breeding site owner and the intruder was estimated from 

the observation blind using the maximum width of a razor bill's body (0.15 m) as a 

reference. I recorded six forms of aggressive display in murres: a) head movement toward 

intruder without contact, b) vocalization, c) pecking without leaving the nest, d) standing 

and looking at the intruder without leaving the nest, e) chasing (bird leaves the nest to 

follow intruder), and i) fight (includes pecks, bites, wing strikes, rolling on the ground 

and sometimes falling down the cliffs). I recorded nine aggressive displays in razorbills: 

a) open bill, b) bill flapping, c) head shaking, d) head movement toward intruder without 

contact, e) vocalization f), pecking without leaving the nest, g) standing and looking at 

the intruder without leaving the nest, h) chasing (bird leaves the nest to follow intruder), 

and i) fight (includes pecks, bites, wing strikes, rolling on the ground and sometimes 

falling down the cliffs). I also recorded whether there was no response or a negative 

response such as a) movement away from the intruder but remaining near egg/chick, b) 

temporary abandonment of the breeding site. Ordinal scores were assigned according to 

the subjectively judged degree of aggression. Murre behavioural responses were scored 

as follows: 0 = no response; 1 = move toward intruder and vocalization (no contact); 2 = 

pecking (2: 1; on breeding site); 3 = standing at the level of intruder and chasing; and 4 = 

fight. Razorbill responses were scored as follows: -2 =breeding site abandonment; -1 = 

move away from breeding site; 0 = no response; 1 =bill open, bill flapping, and head 

shaking (on breeding site); 2 = head movement towards intruder, and vocalization (no 

contact); 3 = pecking (2: 1; on breeding site); 4 = standing at the level of intruder and 



chasing, and 5 = fight. The scores of the same individual were averaged before the 

analysis to account for possible replication. 
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Individuals were identified by temporary marks of picric acid (yellow) or 

fluorescent paint (green, pink and orange) delivered from a small open-top container (10 

ml of the marking liquid) attached to the tip of a 4 m graphite pole. This method allowed 

marking from above the birds without disturbing the colony. Individual mark patterns 

along with other life history information were recorded on ID cards for quick reference. 

One member of each pair was captured during the chick-rearing period for permanent 

marking (i.e. banding), morphological measurements and sex determination. Twenty-six 

additional birds were captured from other areas in order to supplement the between-sex 

comparison dataset. 

Murres were captured with a noose of nylon monofilament (1.5 mm diameter) on 

the end of a 4-m graphite pole. Razorbills were captured with a small weighted noose­

carpet (ca. 15-30 short slip-knots of monofilament line attached to a 0.3 x 0.2 m wire 

carpet laid on the ground) or noose string (ca. 10-20 short monofilament slip knots 

attached to a 0.3-0.4 m single main line) attached to 20m of nylon monofilament line 

(1.5 mm diameter) with the other end attached to a 3m wooden pole. The carpet or string 

was positioned on cliff ledges used by the birds; birds would become entangled by the 

legs and feet as they approached or departed their breeding site. 

Once captured, birds were permanently marked with a field readable stainless 

steel leg band and a color band. Weights were taken with a Pesola balance to the nearest 
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5 g, and wing cord and tail length (tail-tip to where feathers join the skin under the 

uropygial gland) were measured with a steel ruler to the nearest 1 mm. Measurements of 

the culmen (bill-tip to where feathers meet the top of the bill), bill depth at gonys, and 

g&pe length (bill-tip to where mandibles join) used vernier callipers accurate to the 

nearest 0.1 rnrn. Blood samples (0.5 ml) were taken from the tarsal vein and stored in 

95% ethanol for later sex determination using molecular DNA analysis (Fridolfsson & 

Ellegren 1999). In addition, six razorbills were sexed by behavioural observations; males 

were seen leaving the colony with the chick. The results of sexing were obtained after the 

season was finished (during the fieldwork observers were did not know the sex of birds) 

and then matched with the ID cards to interpret behavioural data. 

5.3.2 Model presentation 

I presented a model predator, a stuffed great black-backed gull, to 17 pairs of brooding 

razorbills with chicks 9-12 days old. The dead gull was donated by the Canadian Wildlife 

Service, NL and taxidermy was done by RP at Memorial University. The model was 

attached to a 2 m-wooden pole and presented on the ground with wings folded as if it 

were walking toward the breeding site. The model was presented from a hidden site to 

each sex of a breeding pair when the mates were absent. During each session, the model 

was presented first at 3 m distance for 3 minutes, and then moved to a second position, 1 

m away from the breeding site for another 3 minutes. I scored the model trials using the 



same methods and metrics used to score the observations of aggressive interactions 

(detailed above). Additional behavioural responses observed and recorded during the 

model trials included protective behaviour: a) move toward the chick, and b) 

accommodate the chick under the wings. 

5.3.3 Statistical analysis 
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Statistical analyses used SPSS version 11 .5. I used parametric tests (Student t-test for 

independent samples, and paired t-test) to compare groups if the residuals met the 

assumptions for the general linear model and non-parametric tests when they did not. 

There was the possibility of Type II error when hypothesis null of rank-based tests was 

accepted. Chi-Square test and Fishers' exact test was used to compare proportions when 

sample sizes were large and small respectively. Means are expressed ± SE. All 

comparisons were two-tailed and differences were considered significant when P < 0.05. 
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5.4 RESULTS 

5.4.1 Morphological measurements 

In both species, sexes differed significantly in some bill dimensions; males had longer 

gape and culmen than females (Table 5.1 & 5.2). Male thick-billed murres were 

significantly heavier than females (Table 5.1 ). Male razor bill had greater depth bill than 

females (Table 5 .2). There were not sex differences in wing cord, tail length in both 

species (Table 5.1 & 5.2). 

- -- ----~ 



Table 5.1 Measurements ofmale (N= 29) and female (N= 35) thick-billed murres 

captured at the Gannet Islands Labrador during the 2000-2002 breeding seasons. 

Female Male t p 

Mean SD N Mean SD N 

Body mass (g) 905 .77 58.47 44 949.21 70.11 39 -3 .073 0.003 

Culmen (mrn) 33.22 0.20 45 34.80 0.22 39 -3.443 0.001 

Bill depth (mrn) 13.95 0.01 45 14.21 0.05 39 -1.507 0.136 

Gape (mrn) 58.90 0.32 45 60.92 0.35 39 -2.723 0.008 

Wing cord (mrn) 211.2 0.54 45 212.7 0.57 38 -1.193 0.236 

Tail length (nun) 64.0 0.53 43 64.7 0.59 34 -0.609 0.544 

t = t-tests for independent samples (two-tailed). 
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Table 5.2 Measurements of male (N = 26) and female (N= 26) razorbills captured at the 

Gannet Islands, Labrador during the 2000-2003 breeding seasons. 

Female Male t p 

Mean SD N Mean SD N 

Body mass (g) 705 43.9 27 705 37.6 29 0.046 0.963 

Culmen (mm) 32.9 0.10 26 33.9 0.15 26 -2.760 0.008 

Bill depth (mm) 22.8 0.06 26 23 .3 0.07 26 -2.551 0.014 

Gape (mm) 52.2 0.29 26 54.0 0.22 26 -2.552 0.014 

Wing cord (mm) 205 20.45 26 205 0.63 26 0.562 0.576 

t = t-tests for independent samples (two-tailed). 

5.4.2 Thick-billed murres 

Most ofthe aggressive interactions occurred between conspecifics (90%, N= 162). The 

majority of heterospecific interactions (94%, N = 16) involved neighbouring common 

murres. About 46% of the aggressive interactions (N = 162) occurred between neighbours 

and 54% between unknown adults. Numerically, females (N = 1 04) had more aggressive 

interactions than males (N = 74). However, aggression was more often initiated by males 

(80%, N = 74 interactions); females were attacked by conspecifics and heterospecifics 

more often than males (42%, N = 104 interactions; Chi-square test: '/1 = 6.888, P = 

0.009). Attacks were nearly always responded to (males: 99.4%, N= 14; females: 99%, N 



= 41) with no sex difference. The same results were found when only conspecific 

interactions were analyzed; males initiated most of the aggressive interactions and 

females mostly received attacks from con-specifics (Chi-square test: x2
1 = 5.529, P = 

0.019; Figure 5.1). 
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Figure 5.1 Frequency of aggressive interactions (A) and scores (B) of female and male thick­

billed murres according to whether the adult initiate the aggression ("in itiate") or respond and 

attack ("receive") from a conspecific during the incubation period. Means ± SE are shown. 
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Results of the aggression intensity scores for all incubating murre interactions 

showed no significant differences between males (1.56 ± 0.09; N = 31) and females (1.47 

± 0.11, N= 44; Mann-Whitney U test: U= 553.0, P = 0.073). The same results held true 

when only conspecific interactions were analyzed (males: 1.52 ± 0.09, N= 26; females: 

1.43 ± 0.12, N = 43; Mann-Whitney U test: U= 452.0, P = 0.075). Furthermore, mean 

aggression scores did not differ between sexes whether the adults initiated (Mann­

Whitney U test: U= 234.0, P = 0.328) or responded to attacks (Mann-Whitney U test: U= 

63.00, P = 0.082; Figure 5.1). Despite the many aggressive interactions, there were few 

actual fights; of five fights, all were between conspecifics, four involved females 

responding and one involved a male initiating. 

5.4.3 Razorbills 

The estimated distance between the breeding site owner and the intruder varied between 

0 - 3 m. The average distance that produced an aggressive reaction from the incubating 

adult was 0.21 ± 0.01 m. In those cases where there were aggressive responses from 

razorbills, sexes did not differ in their average distance to the intruder during incubation 

(males: 0.20 ± 0.02 m, N = 299; females: 0.21 ± 0.02 m, N = 302; Student t test: t 1, 463 = 

0.289, P = 0. 773) and brooding (males: 0.25 ± 0.03 m, N = 101 ; females: 0.25 ± 0.02 m, 

N = 61; Student t-test: t 1, 129 = -0.028, P = 0.978) . 
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During the razorbill incubation period, there were no sex differences in frequency 

of aggressive responses (females: 89%, N = 340; males: 90%, N = 332; Chi-square test: 

·l 1= 0.272, P = 0.301). Most of the aggressive interactions involved conspecifics (91 %, N 

= 672) whether it produced an aggressive response or not from the nest owner. Most of 

these interactions involved unknown razorbills while only few (1- 2%) involved 

neighbours. Most of the heterospecific interactions involved murres ( 69%, N = 59), 

followed by puffins (19%) and gulls (12%). The same results were found when only the 

conspecifics interactions were analyzed; no differences were found in the frequency of 

aggressive behaviour between sexes (Chi-square test: x2
1= 0.015 , P = 0.452; Figure 5.2). 

Results of the aggression intensity scores for all incubating razorbill interactions 

showed no significant differences between males (1.83 ± 0.09, N = 38) and females (1.76 

± 0.11 , N = 31; Mann-Whitney U test: U = 53 8.5, P = 0.528). The same result held true 

(i.e. no sex difference in aggression intensity) for interactions involving either 

conspecifics (Mann-Whitney U test: U = 203 .0, P = 0.668; Figure 5.2) or heterospecifics 

(Mann-Whitney U test: U = 86.00, P = 0.942). 

During the brooding period, male razorbills responded aggressively more 

frequently to the presence of intruders than females (98%, N = 103 vs. 89%, N = 68; Chi­

square test: x2
1= 5.731 , P = 0.017). Most of the aggressive interactions involved 

conspecifics (87 %, N = 171). The remaining heterospecific interactions (13%, N = 171) 

involved mostly murres (55%) and puffins (41 %). The same result held true (i.e. 

frequency of aggression was higher in males) when only conspecific interactions were 

analyzed (Chi-square test: x2
1= 5.376, P = 0.020; Figure 5.2). 
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Results of the aggression intensity scores for all brooding razor bill interactions 

showed no significant differences between males (2.43 ± 0.17, N = 18) and females (2.06 

± 0.13, N = 23,; Mann-Whitney U test: U = 3232.0, P = 0.193). The same result held true 

(i.e. no sex difference in aggression intensity) for interactions involving either 

conspecifics (Mann-Whitney U test: U = 69.0, P = 0.302; Figure 5.2) or heterospecifics 

(Mann-Whitney U test: U= 19.50, P = 0.699). Males performed most ofthe interactions 

with the highest aggression scores (67%, N = 41, 4 = stand and chase, 5 = fight). Only 

one fight was recorded and it was between a male razorbill and a thick-billed murre. 

Over the course of a breeding season, higher aggression intensity scores were 

found during brooding (2 .27 ± 0.11) compared to incubation (1.80 ± 0.07; Mann-Whitney 

U test: U = 842.5, P < 0.0005). These differences were found in both razorbill males 

(Mann-Whitney U test: U= 241.5, P = 0.003) and females (Mann-Whitney U test: U= 

181 .5, P = 0.039; Figure 5.2). 
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Figure 5.2 Frequency of aggressive interactions (A) and scores (B) of female and male razorbill 

according to whether the adult respond to the presence of a conspecific during the incubation and 

brooding period. Means± SE are shown. Sample size inside bars represents the total number of 

interactions (responses + no responses). 
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5.4.4 Model Predator Presentation 

The frequency and type of responses to the model predator (gull) presentation differed 

significantly between sexes (Figure 5.3). At both distances from which the gull model 

was presented, males responded with positive aggressive behaviours significantly more 

than females, and females responded with negative or neutral aggressive behaviours more 

than males (3m: Chi-square test: x2I=4.371, P = 0.019; lm: Chi-square test: x2
1=6.585, 

P = 0.005; Figure 5.3). Most ofthe cases where razorbills showed no response (78%, N= 

9) to the predator model occurred at 3 m distance. On average, male razorbills showed 

higher aggression intensity scores than females at both model presentation distances (lm: 

Mann-Whitney U test: U= 73.00, P = 0.013; 3m: Mann-Whitney U test: U= 82.5, P = 

0.031; Figure 5.4). In addition, more males than females showed protective behaviour 

(move toward and covered the chick) at both model presentation distances (3 m: 8 vs.l 

out of 17 of each sex; P = 0.017, Fisher's exact test; 1 m: 7 vs. 0 out of 17 of each sex; P 

= 0.003, Fisher's exact test). 
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Figure 5.3 Frequency of responses (A) and scores (B) of female and male razorbill (17 pairs) to 

the presentation of a predator (Great black-back gull) model at two distances (1m and 3 m). 

Means± SE are shown. 
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5.5 DISCUSSION 

In their analysis of sexual size dimorphisms in shorebirds and other birds Jehl & 

Murray (1986) concluded that in monogamous species intersexual divergence in 

morphology has been accompanied by the evolution of large differences in bill length, 

whereas in polygamous species sexual selection has acted to maximize differences in 

overall size. In truly monogamous species where opportunities of re-mating (i.e. 

shorebirds) do not exist or is rare (i.e .. alcids), the selection for larger bill dimensions may 

persist for different reasons (e.g. feeding roles, defense). For instance, in the North Island 

Kaka Nestor parrot (meridiana/is septentrionalis), disproportionately differences in bill 

length of males have been attributed to male prolonged provisioning of females and 

young (Moorhouse eta!. 1999). Other possible explanation is that larger bills could 

confer an advantage during aggressive encounters. Contestants with greater fighting 

ability (i.e. larger size) win fights in several species where the payoffs of winning are 

assumed to be high (e.g., fish: Schuett, 1997; birds: Bjorklund, 1989; Petrie, 1984; 

mammals: Clutton-Brock eta!. 1979; Haley et al. 1994). 

We found that bill dimensions (i.e. culmen and gape length) were significantly greater in 

males of both species (tables 1 & 2). Only male murres were found to be significantly 

heavier than females (table 1). These results concurred with previous measures of thick­

billed murres (see review by Gaston & Hipfner 2000) and razorbills in different locations 

(Wagner 1999; Grecian et al. 2003). Larger bill dimensions in males have also been 
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reported in other alcids (Corkhilll972; Nelson 1981; Jones 1993). In male crested 

auklets (Aethia cristatella), large and hooked bills has been suggested to be sexual 

selected (male-male) for weaponry (Jones 1993). Larger bill dimensions may also confer 

males a better ability for defending or protecting the offspring. Fraser et al. (2002) 

suggested that male crested auklets take the brooding role because they are more 

aggressive and have a larger and stronger hooked bill than their mates, and therefore 

better equipped than females to guard young chicks or the breeding site. 

According to parental investment theory, nest defence should increase during the 

course of a breeding season because the fitness value of a chick is higher than that of an 

egg and increases with time (Williams 1966; Trivers 1972; review in Montgomerie & 

Weatherhead 1988). Razorbills and murres are single-brooded species, so the value of the 

chick and the willingness to defending it should increase as breeding site departure 

approaches. In razorbills, as expected, I found higher levels of aggressiveness during 

brooding compared to during incubation. Although I was not able to collect brooding 

period data to make the same comparison for murres, studies at Coats Island indicated 

that thick-billed murres increased the amount of aggression at the time of hatching 

(Kober & Gaston 2003). 

During the incubation period, I found sex differences in the frequency of aggressive 

interactions in thick-billed murres only. These results may be explained by the 

differential likelihood of aggressive interactions between species; murres breed in higher 

density colonies than razorbills. High-density nesting might impose selection for an 
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enhanced capacity to nest defence in one or both sexes and therefore favour larger body 

sizes (Jehl & Murray 1986). Only male murres were found to be significantly heavier 

than females (Table 5.1). Incubating murre females have more aggressive interactions 

than males; however males initiated most ofthe aggressive interactions while female 

aggressive behaviour was mostly responses to attacks from both conspecifics and 

heterospecifics (mostly neighbouring common murres). In dark-eyed juncos (Junco 

hyemalis oreganus), individuals likely to win an aggressive interaction were more likely 

to initiate that interaction (Jackson 1991). This also implies that chicks being protected by 

females (receivers) may be more often in danger than when they are with the males 

(initiators). Measurements of the intensity of aggressive behaviour did not indicate a sex 

difference in either murres or razorbills during their incubation periods. 

During chick-brooding, male razorbills showed higher frequency of aggressive 

responses to the presence of intruders than females . However, no sex differences were 

found in the intensity of their aggression. This was true whether the intruder was a 

hetero-specific (murres, puffins) versus a conspecific. Nevertheless, male razorbills 

performed significantly more high-scored aggressive behaviours than females during 

brooding. 

Predators represent a more serious threat for the egg/chick and potentially adult 

survival (Patterson eta!. 1980; Stenhouse eta!. 2005; Margalida & Bertran 2005) so 

responses to predators were expected to be stronger than for con-specifics or non­

predator intruders. Many bird species respond differentially to different predators, likely 
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in accordance with the danger they pose (Patterson eta!. 1980; Gochfeld 1984). Similar 

to my findings, territorial limpets, Lottia gigantean, show different forms of aggressive 

responses to con-specific intruders compared to predators (Stimson 1970). My simulated 

predator experiment used the most common avian predator at the Gannet Islands, great 

black-backed gull, presented in a natural manner, walking toward the breeding site. My 

results indicated a clear differential response of male and female razor bill to the presence 

of a predator-model. Males responded aggressively more often than females to the 

presence of the predator model at both distances (3m and lm). On average, male 

razorbills' responses to the predator model had higher aggressive scores than those of 

females at both distances. These differences were mainly due to the higher frequency of 

negative responses (i.e. move away from or abandon chick) or lack of responses by 

females. In contrast to conspecific intruders, there were no high-scored aggressive 

responses to the predator model. In addition to the aggressive responses, razorbills also 

performed chick protective behaviours (i.e. moved towards chick, accommodated chick 

under wings); these behaviours were primarily performed by males. 

In a review of nest defence behaviour, Montgomerie and Weatherhead (1988) 

proposed several explanations for male-biased aggressive behaviour in birds. The 

"perception of risk hypothesis" predicts that females in poor body condition, weakened 

by the rigours of nest building and egg production, will be willing to risk less in nest 

defence. The "renesting potential" hypothesis predicts that in male-biased populations 

females will have a higher chance of re-nesting if their mate is lost and therefore invest 

less in the current offspring defence. The "life history characteristics" hypothesis predicts 



163 

that in populations with different mortality rates, more intense nest defence can be 

expected from the sex that suffers a higher over winter mortality because its loss in 

residual reproductive value (i.e., the risk involved in nest defence) will be lower. Finally, 

according to the "ability to raise offspring unaided" hypothesis, if there are sex 

differences in the ability to raise the brood alone, then the parent taking the risks will 

invest less because they have more to loose for a given level of nest defence (e.g. 

Regelmann& Curio 1983). None ofthese hypotheses appears to explain the sex 

differences in parental aggression found in thick-billed murres and razorbills. There was 

no evidence for sex differences in body condition during the brooding period in thick­

billed murres (Paredes et al. 2005). Similar survival rates have been reported for male 

and female thick-billed murres at Coats Island (Gaston et al. 1994). However, lower male 

survival rates for breeding common murres have been reported in Witless Bay (Robertson 

et al. 2006). Adult sex-ratio is unknown for most seabirds but generally assumed to be 

equal; e.g., thick-billed murres had an even sex ratio in a 2004 oil event in 

Newfoundland, where most likely birds of Gannets Islands spend the winter (Robertson 

et al. 2006 .. Finally, sex-biased ability in raising the chick un-aided at an early stage is 

not applicable for these species because chick survival depends on both parents' care. 

Later on, males raise the chick on their own at sea, so their lower investment in offspring 

defence might be expected at the breeding site but the contrary was found. I thus 

proposed that male-biased breeding site defence found in murres and razorbills (Paredes 

et al. 2006) are associated with their more aggressive behaviour and greater ability (e.g. 

larger body size) to protect the offspring than females. 
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At breeding site departure, chicks typically call, walk towards the edge of the 

cliff/rockery, jump and attempt to fly/glide to the ocean below. They may be 

accompanied by the parent, a group of adults or alone. Chick mortality occurs as a result 

of injuries from the jump, failure of parent-offspring reunification, predation, and attacks 

from con-specifics (Gilchrist & Gaston.1997). The timing of chick departure, usually late 

evening, is believed to have evolved in response to avoidance of terrestrial and avian 

predators. At this time, low light conditions supposedly make it difficult for sight-hunting 

predators to locate departing chicks (Tuck 1960). Gull, Larus spp., and fox predation 

seems to be the main cause of fledging failure of murre and razorbill chicks crossing 

beaches or rock slopes to reach the sea (Williams 1975; Hatch 1983; review by Hipfner 

& Chapdelaine 2002). At colonies where chicks jump directly to sea, attacks from con­

specifics attracted by chick calls are a major cause of departure failure (Gilchrist & 

Gaston 1997). In either case, defence of the chick during departure and while at sea is 

crucial for its survival and therefore parents' fitness. The larger and/or better equipped 

and more aggressive sex would likely to be more successful protecting the chick at the 

colony and at sea 

In several shorebirds where the male take care of the chick after female desertion, 

males show higher aggressive behaviour than females during the incubation and/or 

brooding period and few ofthem are also larger in body size (Table 3.). Differential 

aggressive behaviour between the sexes may be a key factor for understanding the 

division of parental roles in alcids, shorebirds and other bird species. 
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Table 3. Sex differences in bill dimensions and aggressive behaviour in shorebirds and 

alcids with biparental care and male-only care. 

Parental Culmen Territory/ne Territory/nest 
care size st defence defence *References 
duration incubation brooding 

Parental bill Parental 
care size defence 

SHOREBIRDS 

American avocet 
(Recurvirostra americana) M :::: F M >F M >F 2 13,2 2 

Black-necked Stilt M :::: F M = F M >F 2 6,2 2 
(Himantopus mexicanus) 

Eurasian Lapwing M ::::F 
M = F M > F 1 M > F 1 4,6 6 5, 24 

(Vanellus vanellus L.) F::::M 

Eurasian Curlew 
M ::::F F::::M M = F 2 3,21 21, 6 22 

(Numenius arquata) 

Kentish plover M > F M = F 
M >F2, 3 

15 6 8* 
(Charadrius alexandrinus) 

Greater Golden plover 
M > F M = F M > F 1 4 6 22 

(Pluvialis apricaria) 

Purple Sandpiper 
M >F F :::: M M >F 1 n/a 16,12 6, 16 12 

(Calidris maritime) 

Killdeer 
M >F M = F M >F 1 M>F 1. 2 17 6 18 

(Charadrius vociferus) 

Eastern willet 
( Catoptrophorus M > F M = F M > F 1 19 6 19 
Semipalmatus) 

Malasyan plover 
M = F M > F 1 M = F 1 20 20 

(Charadrius peronii) 

Black-tailed godwit 
M = F M = F M > F M > F 14, 6 6 5 

(Limosa limosa L.). 

ALCIDS 

Thick-billed murre 
M > F M > F M > F 1 7 

This This 
(Uria lomvia) study study 

Razor bill 
M > F M > F M = F 1 M > F 1, 2 7 

This Tills 
(A/ca torda) study study 
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Parental care duration: M 2: F: biparental or biparental plus male-only care, M = F: biparental care, F 2: M: 
1 Observations, 2 Predator-model experiment, 3 Mate removal experiment (measure of chick survival). 
biparental care or biparental plus female-only care. 
* High density colony (no sex differences in chick survival in low density areas; Szekely et a/. 2006). 
n!a : not applicable because females desert the nest right after hatching. 

*References 1, Hamilton (1975); 2, Sordahl (1990); 3, Reynolds & Szekely (1997); 4, Nethersole­
Thompson (1986); 5, Hehgy & Sasvari (1998); 6, Jolmsgard (1981); 7, Gaston & Jones (1998); 8, Szekely 
(1996); 9, Creelman & Storey (1991); 10, Brunton (1988); 11 , Fraser eta!. (2002); 12, Pierce (1997); 13, 
Gibson (1971); 14, Lind (1961); 15, Szekely & Lessens (1993); 16, Cramp (1983); 17, Lenington (1984); 
18, Brunton (1990); 19, Howe (1982); 20, Yasue & Dearden (2007), 21, Curie eta!. (2001); 22, Byrkjeda1 
(1987); 23, Jones (1993). 

In summary, males were larger in body mass (only murres) and bill measurements 

than females. Frequency but not inten·sity of aggressive behaviour against con-specifics 

was higher in males of both species (murres: incubation; razorbills: brooding). Both 

frequency and intensity of aggressive responses to a predator model was higher in male 

razorbills. Altogether, my results suggest a male-biased capacity for protection of the 

chick in murres and razorbills. These findings may partially explain why the male is the 

selected sex to accompany the chick at sea. 
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CHAPTER 6: PARENTAL ROLES OF MALE AND FEMALE 

THICK-BILLED MURRES AND RAZORBILLS AT THE GANNET 

ISLANDS, LABRADOR 

6.1 ABSTRACT 

I studied female and male parental roles in two sympatric auks, thick-billed murre, Uria 

lomvia, and razorbill, Alca torda, with initial biparental care at the breeding site and later 

exclusively paternal care at sea. My study addressed the following two questions: Why 

do males accompany chicks to sea?, and How do the sexes allocate parental effort at the 

breeding site before parental care at sea begins? I tested the hypothesis that males care for 

chicks at sea because they are in better condition at the time of chick departure as a result 

of female-biased parental effort at the breeding site ('nest'). Breeding success and 

duration of chick-rearing did not differ between the two study years in either species at 

the Gannet Islands, Labrador. At the breeding colonies, females of both species provided 

more food (murres: 2.84 ± 0.18 loads day -1; razorbills: 2.02 ± 0.11 loads day "1
) to their 

chicks than males (murres: 2.26 ± 0.12loads day "1
; razorbills: 1.42 ± 0.09loads day "1), 

and males spent more time brooding the chicks. These differences were chick-age 

dependent in both species, with females providing more meals to chicks older than two 
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weeks. Razorbill males spent more time with chicks greater than two weeks old, while 

murre male's attentiveness of brooding did not vary with chick age. In both species, 

males (murres: 3.04 ± 0.3 h day"1
; razorbill: 3.30 ± 0.2 h day -1

) performed longer 

foraging trips with meal delivery than females (murres: 1.23 ± 0.4 h day -1; razorbill: 2.50 

± 0.4 h day -1). Thick-billed murres showed a consistent diurnal pattern of egg and chick 

attendance: females were usually found at the breeding site during the day whereas males 

were found there early in the morning and at night. In contrast, razorbill's timing of 

attendance was much more variable and did not differ between sexes. Despite these 

differences in timing of breeding site attendance between species, males of both species 

spent twice as much time as females engaged in the defence of the egg or chick at the 

breeding site, which suggest male-biased capability of protecting the chick at departure. 

Overall my data indicated different female and male parental roles at the breeding site but 

not a female-biased allocation of time, energy and risk as predicted. In fact, males seem 

to provide equal if not more parental effort than females prior to the time of colony 

departure. I propose that the patterns of parental roles found between sexes is the result of 

a chain of events favouring male involvement in chick brooding and care at sea. 
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6.2 INTRODUCTION 

Decision-making about allocation of energy, time and risk is an ongoing task for animals 

during reproduction and it is believed that natural selection acts against individuals that 

fail to balance tradeoffs associated with these decisions. The allocation of resources 

between current and future reproduction is the crucial life-history trade-off (Williams 

1966), and long-lived species should maximize lifetime fitness by balancing current and 

future costs and benefits of reproduction (Stearns 1992). In nature, excessive 

reproductive effort at one breeding attempt may greatly decrease individuals' lifetime 

reproductive success in long-lived seabirds (Croxall & Rothery 1991; Wooller et 

a/.1992). In monogamous species such as seabirds, biparental care is obligatory because a 

lapse of one parent's contribution leads to breeding failure. Although biparental care is 

necessary for success in such species, the level of contribution toward specific duties, or 

parental roles, may vary between sexes. (Trivers 1972; Bart & Tornes 1989). 

The members of the avian family Alcidae are a diverse group of diving birds with 

remarkably variable forms of parental care and stages of chick development at the time of 

chick departure from the breeding site. At one end of the spectrum, puffins (Fratercula 

sp.), guillemots (Cepphus sp.) and Brachyramphus murrelets provide biparental care at 

the nest site until chicks are nearly fully grown ("semi-precocial"; Sealy 1973) and fledge 
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unaccompanied by their parents. At the other extreme, Synthliboramphus murrelets 

depart with their chicks two days after hatching ("precocial"; Sealy 1973), and both 

parents provide care at sea. In the tribe Alcini, thick-billed murres, Uria lomvia, common 

murres, and razorbills, Ale a torda, have a short period of biparental care at the breeding 

site (15-20 days) and partly grown chicks (15-30% of adult body mass; "intermediate"; 

Sealy 1973) depart with the male parent to sea for an additional 3-4 weeks of exclusively 

paternal care (Gaston & Jones 1998). Partly grown dovekie chicks, Aile alle, the fourth 

Alcini member, also depart the colony with their male parent (27 days after hatching; 

Stempniewicz 1995; Harding et al. 2004), but with 68-72% of adult body mass 

("semiprecocial", Sealy 1973; Norderhaug 1980; Stempniewicz 2001; Harding et al. 

2004). 

The most common explanation for the evolution of departure to sea of the partly-grown 

chicks of the Alcini tribe is the constraint on provisioning at the colony imposed by the 

load-carrying capacity (Houston et al. 1996; Gaston & Jones 1998). These large auks 

have the highest wing loading of all seabirds (Greenwalt, 1962; Spear & Ainley, 1997), 

which is a tradeoff for having excellent diving capacity. Consequently the flight costs of 

foraging and meal delivery are energetically expensive. However, this limitation should 

not apply so much to the much smaller planktivorous dovekies, and its applicability to 

razorbills that provision their chicks with multiple (sometime large) fish is questionable. 

Another explanation for early chick departure is that predation risk is high at the colony 

compared to at sea (Cody 1971; Ydenberg 1989; Ydenberg et al. 1995). Ydenberg's 

(1989) model for the intermediate-fledgling alcids assumed that chicks have a lower 
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mortality rate at the colony than at sea, but grow faster at sea than at the colony. Neither 

ofthese two assumptions are rigorously testable (i.e. logistical limitations) and more 

importantly, this 'tradeoff hypothesis has no exclusive predictions (Gaston & Jones 

1998). 

It is also important to keep in mind that males play the dominant role in raising chicks in 

many other species of Charadriiformes. For example, in socially monogamous 

scolopacids, females attend chicks for a shorter period after hatching than do males, and 

may even desert late in incubation (Gratto-Trevor 1991; Piersma 1996a; Payne & Pierce 

2002). A similar but weaker trend also occurs in socially monogamous Charadriids 

(Piersma 1996b ). Therefore, a functional explanation for paternal care late in chick 

development specific to auks of the tribe Alcini may not be required. In this paper I take 

as a starting point only that 'intermediate' chick colony departure is a phylogenetically 

fixed characteristic of the auk tribe Alcini. 

Despite the different stages of development at chick departure, modes of chick 

provisioning, and nest-site characteristics (murres: open nests; razorbills: open and 

crevice nests; dovekies: crevice nests), the four Alcini members share a unique 

"intermediate" form of parental care; biparental care at the breeding site and uni-male 

parental care at sea. Two interesting questions that arise from patterns of parental care 

among the auk species are: Why do males accompany chicks to sea?, and How do the 

sexes allocate parental effort at the breeding site before paternal care begins when the 

chick departs the colony? By understanding how sexes distribute energy allocation at the 

breeding site may help to explain their partitioning of roles after chick-departure. 
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Differences in energy expenditure due to different female-male constraints at the 

breeding site may cause one sex to be in better condition and thus better able to finish 

raising the chick at sea. For instance, different mortality rates (Nelson 1978), population 

ratios (Tershy & Croll 2000), foraging strategies (Markman et al. 2004), and aggressive 

behaviour (Burger 1981; Fraser et al. 2002) are some factors that appear to affect the 

division of parental roles and effort allocation between sexes in biparental care species. It 

has been suggested that the risk of loss of paternity can limit the allocation of male 

parental effort; so males should invest parentally in proportion to their probability of 

siring their mates' young (Trivers 1972; Maynard Smith 1977). Although both sexes 

guard their mates in an effort to assure paternity and to maintain pair bonds, extra-pair 

copulations and, to a lesser degree successful fertilizations occur in murres (thick-billed 

murres: Gaston & Hipfner 2000; common murres: review by Ainley eta!. 2002) and 

razorbills (Wagner 1992). Before egg-laying (3-4 weeks), males are continuously present 

at the breeding site (common murres) and/or mating arenas (razorbills) while female 

visitation is occasional (Gaston & Jones 1998). By doing this, males seem to reduce their 

uncertainty of paternity and potentially increase the number of offspring they father 

(Gaston & Jones 1998). However, during this time males engage in fights and are likely 

to fast or have reduced opportunities to feed (Birkhead et al. 1985), so overall they 

should have higher risk and energy costs than females. Theoretical models predict 

conflicts of interest in the level of parental effort between sexes, so in some 

circumstances each parent's fitness can be enhanced at the expense of their partner's 
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effort (Houston & Davies 1985; McNamara eta/. 1999). On the other hand, individuals 

in species with long-term monogamy, such as the murres (review by Gaston & Hipfner 

2000; review by Ainley et al. 2002) and razorbills (review by Hipfner & Chapdelaine 

2002), are expected to be less likely to exploit their partners because maintaining their 

partners' condition enhances the fitness of both parents (review by Mock & Fujioka 

1990; Fowler 1995). Thus, individuals of species with long-term pair bonds may 

distribute parental effort such that the partner who will benefit the most from contributing 

less parental effort does less work (K. M. Jones et al. 2002). I hypothesize that a male's 

effort at the breeding site will be lower than a female's because of the male's initial 

energy expenditure guarding their mate prior to egg laying. On the other hand, female 

auks produce a relatively large egg, from which hatches a semi-precocial chick (Cramp 

1985). This initial parental investment, although costly, may influence the female's 

decision to compensate for their partner's reduced parental effort at the breeding site. As 

a result, males might be in better condition than females to finish raising the chick at sea. 

Both murres and razorbills are central place foragers so they have to commute 

several times a day between their nests and foraging areas to feed their chicks. Foraging 

is energetically expensive for these flapping-flight and pursuit-diving species (Birt­

Friesen et al. 1989; Obst & Nagy 1992; Bech et al. 2002; Jodice eta/. 2003). Thus, 

foraging for chick provisioning must be more costly than incubation/brooding at the 

colony. Taking all these factors into consideration I predict that early in the chick-rearing 

period, males might allocate most of their time at the breeding site, and females would 

spend most of their time foraging for chick provisioning. Equal parental investment in 



breeding site defence before chick departure is expected for both species. After chick 

departure, males will provide all the care for several weeks but will not have the 

additional effort of flying for chick feeding as they raise the chick at their feeding 

grounds (Gaston & Jones 1998). 
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The aim ofthis study is to compare two sympatric Alcini species with similar 

chick-rearing behaviour, to determine intra and inter-specific patterns in parental 

behaviour between sexes. Thus, I examined four components of parental care: breeding 

site attendance (egg/chick care and breeding site defence), provisioning rates, prey size 

delivered to chicks, and foraging trips. This allowed me to quantify the contribution of 

both sexes to parental care at the breeding site of thick-billed murres and razorbills at the 

· Gannet Islands, Labrador. 

Understanding how males and females distribute parental roles may give us 

insights into how evolution has shaped forms of parental care, the extent to which 

morphological, physiological and behavioural factors limit the allocation of parental 

effort, and why the transition to paternal care at sea occurs in the first place. 

6.3 METHODS 

Behavioural observations were undertaken during the incubation and chick-rearing 

periods (June-August) ofthick-billed murres (2000-2001) and razorbills (2001-2002) at 
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GC4, one of the six Gannet Islands located on the low arctic coast of Labrador, Canada 

(53.56'N, 56.32'W). 

I studied a total of 15 thick-billed murre pairs and 31 razorbill pairs. Both groups were 

located in the same cliff area ("Grey Cup") on the north side of the island with about 150 

and 45 open breeding sites ofmurres and razorbills respectively. Behavioural 

observations were undertaken from a blind, using a zoom telescope (20-60x, 60 mm) and 

binoculars (1 Ox, 50 mm), between dawn to dusk (0400h - 2200h; sunrise occurred 

between 0330h and 0400h and sunset between 2130h and 2200h). Two observers made 

daily observations in double shifts of 4.5 h each with an equivalent resting time in 

between shifts. Most birds were already incubating eggs when I started the observations 

the period of observation covered most of incubation (9-27 days post-laying) for 

razorbills and half of incubation for thick-billed murres (7-15 days post-laying) except 

when egg loss occurred. Observations continued through hatching until chicks were 

fledged. Hence, observations covered most of the brooding period in both species (6-16 

days for razorbills, and 5-15 days for murres), except in cases of breeding failure. 

Individuals were identified by temporary marks of picric acid (yellow) or 

fluorescent paint (green, pink and orange) delivered from a small container (10 ml of the 

marking liquid) attached to the tip of a 4 m graphite pole. This method allowed marking 

from above the birds without disturbing the colony. The birds' reaction to the marking 

liquid was similar to that produced by falling guano, which is a normal occurrence in the 

colony, so additional disturbance caused by marking was minimal. Identifying marks and 

life history information of individuals were recorded on cards for quick reference. 
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Breeding sites were scanned every 10 minutes and the presence or absence of 

marked birds was recorded so that the time spent at the breeding site per day could be 

calculated. When both adults were present, the "off-duty" parent was observed 

interacting aggressively with conspecifics and predators (great black-backed gulls, Larus 

marinus), and also preening their mates (Paredes et al., unpublished data), so I assumed 

birds were mainly engaged in the defence of the breeding site, mate and offspring. The 

identity of the adult incubating or brooding ("egg/ chick care") and that of the "off-duty" 

parent ("breeding site/mate defence") was recorded and the time spent in these activities 

calculated separately. The departure and arrival times of adults, and chick provisioning 

events, were recorded continuously to quantify chick provisioning frequencies and 

foraging trip durations. During chick provisioning, I identified prey items to the species 

level when possible, recorded the number of items per load, and estimated the length of 

prey items when possible. I used direct estimation of the prey items' length compared to 

the length of the gape as a reference unit for estimating prey size (e.g. two-times gape 

length). Then, I used the mean gape length of males and females to estimate the prey item 

length in centimeters. A similar method of prey length estimation was used by Gaston & 

Nettleship (1981) but using the culmen as a reference unit. 

One member of each pair was captured during the chick-rearing period for 

permanent marking and sex determination. Murres were captured with a noose of nylon 

monofilament (1.5 mm diameter) on the end of a 4-m graphite pole. Razorbills were 

captured with a small weighted noose-carpet attached to one end of20 m of nylon 

monofilament line (1.5 mm diameter) and with the other end attached to 3-m wooden 
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pole. The noose end was positioned on cliff ledges used by the birds, so they were 

captured by the leg as they approached or departed their breeding site. Birds were marked 

with a field readable stainless steel leg band and a colour band. Blood samples (0.5 ml) 

were taken from the tarsal vein and stored in 95% ethanol for sex determination using 

molecular DNA analysis (Fridolfsson & Ellegren 1999). The results of sexing were 

obtained after the season was finished (observers were blind to the sex of birds) and then 

matched with the ID cards to interpret behavioural data. 

Every year, I followed a large number of thick-billed murres, (49-50 pairs) and 

razorbills (36-41 pairs), including the birds used for behavioural observations and for 

breeding success determination. Pairs were followed from incubation to chick departure 

to determine overall breeding success (proportion of eggs that survived to chick departure 

per active breeding site), fledgling success (proportion of chicks that fledged per active 

breeding site), and the duration (days) of the brooding period. 

6.3.1 Data analysis 

Two years of behavioural data (breeding site attendance: egg/chick care and breeding 

site/mate defence, chick provisioning, and foraging trips) and chick diet (species and 

size) were pooled for each species for the analysis of parental care because no differences 

in breeding success and duration of chick-rearing were found between years (see below). 

For each individual, I quantified time spent at the breeding site per 24 h. Even though the 
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observation period only covered daylight hours (c. 18 h), previous studies have shown 

that male and female thick-billed murres at the Gannet Islands do not make parental roll 

changes ("change-overs") at night (Jones eta!. 2002). In this study, most of the same 

birds present at dusk were present the following morning with soiled plumage, suggesting 

they did not leave the breeding site during the night. In addition, I did not see flight 

activity of murres or razorbills at the colony during opportunistic observations in 

moonlight conditions during the night. Consequently, I added six hours (dark time) to 

individuals present at dusk and dawn at the breeding site. The initial sample size of murre 

(N = 15) and razorbill (N = 31) pairs used for the behavioural analysis of the incubation 

period decreased slightly during the brooding period because of breeding failure. I did not 

include data from new pairs, except for the analysis of prey species delivered to chicks 

between sexes to be able to find possible differences in second prey items. Only 1115 

murre pairs and 5/31 razorbill pairs were followed during the two study years. Because of 

the small ratio of repeated pairs, I believe that possible data duplication, assuming birds 

behaved the same in both years, might have not affected the statistical analysis. However, 

I tested for possible effect of data duplication in razorbills by excluding one-year of data 

(randomly chosen) of replicated pairs and compared these results with those of complete 

data. Female razorbills spent longer time incubating (12.90 ± 0.30 h day -1) than males 

(11.1 0 ± 0.30 h day -1
) when one-year data of repeated pairs was excluded (Paired t-test: t 

1, 2s = 3.049, P = 0.005) and when it was not (see below). I did not use data from repeated 

individuals for independent statistical tests. 
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I calculated the number (shifts day "1) and duration (h shift "1
) of incubation and 

brooding shifts for each species using the total number of days of observation per period. 

The time spent at the breeding site ("breeding site attendance") was sub-divided into time 

spent incubating or brooding the chick ("chick care"), and off-duty time. Breeding site 

and sub-categories of attendance were analysed separately for each sex and pair-wise per 

breeding site. The timing of breeding-site attendance by males and females was 

calculated using hourly checks for attendance of the egg or chick (24 h period) during the 

incubation and brooding period. Timing of chick provisioning was calculated based on 

the total number of feedings of males and females recorded during the brooding period. 

Chick provisioning rates (loads individual -1 day "1), total number of trips (number 

individual -1 day "1
), and duration of foraging trips (h individual -1 day) were averaged per 

individual across three chick-age groups (one, two, and three weeks old). These data were 

analysed using two-way ANOVAs with sex and chick-age group as the main factors . In 

addition, paired comparisons were undertaken between sexes matched per breeding site 

to control for individual differences and confirm results from the cross-sectional analysis. 

Load sizes were also determined and compared between sexes in both species (as was 

number of prey items per load for razorbills). It was not possible to distinguish between 

bathing trips and feeding trips because birds could return to the breeding site with a fish 

after absences of less than 10 minutes. All foraging trips ("total") and those with meal 

delivery ("w/meal") were analysed separately so results could be related to parental care. 

The first foraging trip was usually performed by females, which normally spent the night 

at sea (Jones eta!. 2002) and arrived at the breeding site in the early morning. Thus, in 
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order to calculate the duration of the first foraging trip I assumed birds started to forage 

right after sunrise (0330h). This assumption is supported by large number ofmurres and 

puffins observed on the water just before dawn at Witless Bay, Newfoundland (Schneider 

et al. 1990). 

6.3.2 Statistical analysis 

Statistical analysis was carried out using SPSS version 11.5. I used parametric tests 

(ANOV A, Student t-test for independent samples, and paired t-test) to compare groups if 

the residuals met the assumptions for the general linear model. If not, I transformed data 

and checked whether the residuals met the assumptions for the transformed response 

variable. For instance, data of foraging trip duration was log-transformed before 

statistical analysis to reduce skewness and variance of the means. Chi-Square tests with 

Yates's correction were used to compare proportions. Means were expressed± SE of the 

mean. All comparisons were two-tailed, and differences were considered significant 

when P < 0.05. 
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6.4 RESULTS 

6.4.1 Breeding success and duration of chick-rearing period 

The reproductive success of murres (2000: 0.55 fledglings breeding site -I, N = 49; 2001: 

0.74 fledglings breeding site -I , N = 50); and razorbills (2001 : 0.85 fledglings breeding 

site -I, N = 41; 2002: 0.72 fledglings breeding site - I, N = 36) did not differ significantly 

between years (murres: Student t-test: t 97 = -I.99, p = 0.05; razorbills: Student t-test: t 15 

= 1.41 , p = 0.16). Of the murre's eggs that hatched, a similar proportion survived to chick 

departure in both years (2000: 0.93 fledglings breeding site -I, N = 29; 2001: 0.97 

fledglings breeding site -I , N = 38; Student t-test: t 6s = -0.83, p = 0.41 ). Similarly 

razorbill ' s fledging success did not differ between years (2001: 0.97 fledglings breeding 

site -I , N = 36; 2002: 1.00 fledglings breeding site - I, N = 26; Student t-test: t 60 = - 0.85, p 

= 0.40). In 2000, murres lost more eggs than in 2001 for unknown reasons, which may 

explain the marginal p value (0.05) for the overall breeding success in 2000. 

The duration of the chick -rearing period for murres (2000: 19.8 8 ± 0.48 days, N = 17; 

2001: 20.33 ± 0.80 days, N = 18) and razorbills (2001: 18 ± 0.8 days, N = 19; 2002: 19 ± 

0.60 days, N = 1 0) did not differ significantly between years (murres: Student t-test: t 33 = 

- 0.48, p = 0.63; razorbills: Student t-test: t 27 = 0.84, p = 0.41). For these reasons, data 

from the two study years were pooled for the analysis of parental care in each species. 
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For both murres (N = 13) and razorbills (N = 21 ), all birds that were seen departing with a 

chick were males as confirmed by DNA analysis (Fridolfsson & Ellegren 1999). 

6.4.2 Breeding site attendance 

6.4.2.1 Thick-billed murres 

The mean number of change-overs per day during incubation was 3.24 ± 0.07 (range 2-

7) with three change-overs on most days (63%, N= 164). Occasionally two (14%) 

change-overs occurred per day, otherwise there were four (12%) or more (11 %). The 

duration of incubation bouts varied from 0.67 to 22.33 h. On average, the duration of the 

first, second and third incubation bouts were 2.73 ± 0.17 h, 10.98 ± 0.36 hand 8.25 ± 

0.30 h, respectively. The first and third bouts were usually performed by males and the 

second by females. 

Most males incubated eggs early in the morning (0400h- 0600h) and late 

afternoon and night (1900h - 0300h); while females incubated eggs mostly during the day 

and early afternoon (0800h - 1700h; Figure 6.1 ). On average, males spent significantly 

more nights incubating eggs (8.9 ± 1 days, N= 15; paired t-test: t 12 = -6.775, P < 0.001) 

than females (1.3 ± 0.36 days, N = 15). During the incubation period, male murres (14.66 

± 0.51 h day -1, N = 15) spent significantly more time at the breeding site than their 

female mates (12.14 ± 0.32 h day -1, N = 15; paired t-test: t 14 = -3.15, P < 0.01). Even 
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though the sexes did not differ in the daily amount of time allocated to incubate their eggs 

(paired t-test: t 14 = -1.75, P = 0.10), males devoted more time to certain other activities 

(e.g., breeding site defence and mate preening) at the breeding site than females (paired t­

test = t 14 = -4.75, P < 0.001; Figure 6.2). 

The mean number of change-overs per day during the brooding period was 5.34 ± 

0.2 (range 3 - 12), with 40% of 101 days having five change-overs, 21% three, 13% 

seven, 9% four, and 7% six. The overall mean duration of brooding bouts was 4.49 ± 

0.18 h (range 0.17- 17.17 h). The mean duration ofthe first, second, third, fourth and 

fifth chick-rearing bouts were 1.62 ± 0.08 h, 5.73 ± 0.36 h, 4.41 ± 0.46 h, 4.12 ± 0.41 h, 

7.23 ± 0.59 h, respectively. The first and the last bout were usually performed by males. 

The timing of breeding site attendance of males and females during the brooding period 

was similar to that observed during the incubation period, except that females had earlier 

and shorter bouts (0700h- 1400h; Figure 6.1 ). Males spent significantly more nights 

with the chick (7.0 ± 0.49 days, N= 13) than females (0.92 ± 0.29 days, N= 13; paired t­

test: t 12 = -9.013, P < 0.001; Figure 6.1). 

During the brooding period, male murres (15.52 ± 0.30 h day ·I, N=13) spent 

significantly more time attending the breeding site than their female mates (1 0.44 ± 0.30 

h day ·1
, N=13; paired t-test: t 13 = -9.1, P < 0.001). Males spent significantly more time 

brooding their chicks than females did (paired t-test: t 13 = -8.7, P < 0.001); and the 

additional time that each parent spent at the breeding site (i.e., when their mates were 

present brooding) did not differ significantly between sexes (paired t-test: t 13 = -1.93,P = 
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0.08; Figure 6.2). The time spent brooding did not depend on chick age (females: 

ANOVA: F 2, 42 = 0.23, P = 0.79; males: ANOVA: F 2, 42 = 0.13, P = 0.88; Figure 6.3). 
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Figure 6.1 Timing of breeding site attendance of thick-billed murres and razor bills during the 

incubation (N = 15 pairs; N = 31 pairs) and brooding (N = 13 pairs; N = 23 pairs) period at 

Gannet Islands, Labrador. Means of males± SE are shown. 
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6.4.2.2 Razorbills 

The mean number of incubation change-overs per day was 2.90 ± 0.06 (range 1- 9). Most 

days razorbills had two (48%, N = 372) or three change-overs (30%), but occasionally 

had four (9%), five (7%) or more (4%). The overall mean duration of incubation bouts 

was 8.23 ± 0.18 h (range 0.17-24 h). The mean duration ofthe first, second, third, fourth 

and fifth incubation bouts was 5.43 ± 0.21 h, 12.20 ± 0.32 h, 7.39 ± 0.39 h, 6.45 ± 0.62 h, 

and 6.69 ± 0.68 h, respectively. Male and female razorbills were equally likely to be 

found at the breeding site during the day (0400h - 1800h; Figure 6.1). However, on 

average females spent significantly more nights incubating the egg (11.6 ± 1.17 days) 

than males (7.6 ± 0.74 days; paired t-test: t 19 = 3.21, P = 0.005). 

Overall, female razorbills (13.69 ± 0.29 h day -1, N =31) spent significantly more 

time at the breeding site than males during incubation (12.23 ± 0.22 h day -1
; paired t-test: 

. f 30 = 3.02, P < 0.01). These differences were mainly due to the greater amourJt oftime 

females spent incubating the eggs than their mates (paired t-test: t 30 = 3.75,p < 0.01; 

Figure 6.2). Males spent significantly more time than females in other activities at the 

breeding site, such as breeding site defence, (paired t-test: t 30 = -3 .64, P < 0.01; Figure 

6.2). 

During the brooding period razorbills had on average 6.06 ± 0.15 (range: 2-15) 

change-overs in 24 hours, with most days (64%, N= 219) having four to seven change­

overs. The overall mean duration of brooding bouts was 3.95 ± 0.11 h (range 0.17- 19 h). 

On average the frrst, second, third, fourth, fifth, sixth and seventh brooding bouts lasted 
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2.56 ± 0.10 h, 4.90 ± 0.21 h, 3.28 ± 0.22 h, 4.00 ± 0.29 h, 4.00 ± 0.36 h, 3.45 ± 0.36 hand 

4.40 ± 0.49 h, respectively. 

Females were at the breeding site more often between 0700h and 1 OOOh and males 

between 1700h and 0500 h (Figure 6.1). In contrast to the incubation period, males spent 

significantly more nights with the chick (6.65 ± 0.5 days) than females (3.75 ± 0.61 days, 

paired t-test: t 19 = -3.28,p = 0.004). Overall, razorbill males (13.41 ± 0.42 h day -I, N= 

23) and females (12.28 ± 0.42 h day -1, N = 23) did not differ in the time spent at the 

breeding site (paired t-test: t 21 = -1.44, P = 0.17) during chick rearing. However, time 

spent brooding differed according to chick age for males (ANOVA: F 2, 5? = 7.67, P = 

0.001) and females (AN OVA: F 2, 57 = 7.66, P = 0.001; Figure 6.3). Females brooded one 

to two weeks old chicks significantly more than three-week old chicks (Turkey HSD: P 

< 0.01), whereas males spent significantly more time brooding three-week old chicks 

(Turkey HSD: P < 0.01 ). Overall, males spent significantly more time at the breeding site 

engaged in other activities (e.g., breeding site or mate defence) when their partners were 

brooding than females did (paired t-test: t21 = -2.91, P < 0.01; Figure 6.2). 
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Figure 6.2 Timing of chick provisioning of thick-billed murres and razorbills at Gannet Islands, 

Labrador. Proportions of the total number of feedings of males (murres: N= 235; razorbills: N= 

456) and females (murres: N= 290; razorbills: N= 660) are shown. 
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Figure 6.3 Time spent at the breeding site (Means± SE) by male (M) and female (F) razorbills 

(razo) and thick-billed murres (Tbm) at Gannet Islands, Labrador. The overall time spent at the 

breeding site has been broken in subcategories: incubating (w/egg), brooding (w/chick) and 

chick/mate defence and preening (other). Only the pair comparisons between sexes "b", "c", "d", 

" e", and "h" were significant(* Paired t test: P < 0.05). 

6.4.3 Chick-provisioning 

6.4.3.1 Thick-billed murres 

Females had a bimodal timing of chick feeding; 41% (N = 290 feedings) of the total 

feedings occurred early in the morning (04:00-09:00 h), and 51% late in the afternoon 

(14:00-19:00 h; Figure 6.4). In contrast, males had a single and long period of chick 
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feeding; 97% (N= 235 feedings) ofthe total feedings occurred between 05:00- 19:00 h. 

However, 42% of the feedings occurred after midday between 13:00-16:00 (Figure 6.4). 

Chick provisioning frequency differed significantly between sexes (females: 2.84 ± 0.18 

loads day -1
, N = 13; males: 2.26 ± 0.12loads day -1

, N = 13; two-way ANOVA: F 1, 72 = 

7.78, P< 0.01); but provisioning frequency did not vary with chick age (one week, 2.25 ± 

0.19loads day "1
; two week, 2.76 ± 0.18loads day "1

; three week, 2.63 ± 0.21loads day "1; 

F2, 72 = 2.20, P = 0.12). The interaction term sex*chick age was not significant (F2. 72 = 

2.48, P = 0.06). Further analysis of the main factors showed that only the provisioning 

rates of females differed significantly among chick-age groups (females: ANOVA: F 2• 39 

= 4.09, P = 0.03 ; males: AN OVA: F2, 39 = 0.08, P= 0.93). Female murres fed their chicks 

significantly more often than males during the second (ANOVA: F1, 24 = 11.01, P < 0.01) 

and third weeks after hatching (ANOVA: F1, 24 = 4.94, P = 0.04), but did not differ in 

feeding rates when chicks were less than one week old (ANOVA: F1• 24 = 0.12, P= 0.73 ; 

Figure 6.5). The total chick provisioning per pair did not vary among chick-age groups 

(ANOV A: F2• 36 = 0.28, P = 0.09; Figure 6.5). Thick-billed murres always delivered a 

single prey item per load. The length of prey items was calculated based on the 

estimation of the gape, which was significantly larger for males (6.11 ± 0.05 em, N = 38) 

than for females (5 .90 ± 0.04 em, N = 43; Student !-test: t ?9 = -3. 29, P < 0.01). The 

length of prey items delivered did not vary between males and females (female: 12.8 ± 

0.33 em, N = 13, male: 13.4 ± 0.16 em, N = 13; two-way ANOVA: F 1, n = 2.74, P = 

0.10) or chick-age group (one week: 12.8 ± 0.28 em, N = 26; two week: 13.4 ± 0.40 em, 
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N = 26; 13.1 ± 0.26 em, N = 26; F 2, 72 = 0.94, P = 0.40). There was no interactive effect 

of the main factors on the length of the prey delivered (F 2,12 = 0.36, P = 0.70). 

6.4.3.2 Razorbills 

Females and males fed their chicks throughout the day (04:00 - 20:00 h, Figure 6.4). 

Both sexes had two small peaks of prey delivery early in the morning (females: 04:00-

07:00 h = 39%, N= 660 feedings; males: 05:00-08:00 h = 38%, N= 456 feedings), and 

early in the afternoon (females: 14:00-16:00 h = 24%; males: 15:00-17:00 h = 24%; 

Figure 6.4). 

Razor bills delivered an average of 2.13 ± 0.08 items (range 1 - 8) per load. On average 

the number of prey items per load did not differ significantly between females (2.20 ± 

0.11 preys load -l, N = 14) and males (2.06 ± 0.11 preys load -I, N = 14; two-way 

ANOVA: F 1, 78 = 0.75, P = 0.34); or with chick age (one week: 2.01 ± 0.11 preys load -l , 

N= 28; two week: 2.25 ± 0.13 preys load -l, N = 28; three week: 2.12 ± 0.15 preys load -

1
, N = 28; F2, 78 = 0.79, P = 0.46). There was no interactive effect of the main factors on 

the number of prey items delivered per load (F2, ?8 = 0.46, P = 0.63). 

Based on these results, I used the number of loads provided per day to analyse differences 

in provisioning rates between males and females. 

The provisioning rate of razorbills differed significantly between the sexes 

(females: 2.02 ± 0.11 loads day -I, N = 19; males: 1.42 ± 0.09 loads day -I, N = 19; two-
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way ANOVA: F 1, 108 = 18.94, P < 0.001), but not with chick age (one week: 1.67 ± 0.12 

loads day -1
; two week: 1.83 ± 0.12 loads day -1; three week: 1.65 ± 0.16 loads day·'; F 2, 

108 = 0.72, P = 0.491). However, the interaction term sex* chick age was significant (F 2, 

1o8 = 4.48, P < 0.02). Further analysis of the main factors showed that sexes did not differ 

on the feeding rates when chicks were less than one week old (ANOVA: F1, 36 = 0.49, P = 

0.49; Figure 6.5), but the feeding rates of females were significantly higher than those of 

males when chicks were two (ANOVA: F1, 36 = 4.50, P = 0.04) and three weeks old 

(ANOVA: Ft , 36 = 20.47, P < 0.001; Figure 6.5). Provisioning rates of males differed 

among chick-age groups (ANOV A: F2, 54 = 4.04, P = 0.02), with males feeding one-week 

old chicks significantly more frequently week than older chicks (Tukey HSD: P = 0.04). 

Provisioning rates of females did not vary with chick age (ANOV A: F2, 54 = 1.65, P = 

0.20; Figure 6.5). The combined chick provisioning per pair did not vary with chick age 

(ANOVA: F2, 54 = 1.02, P = 0.37; Figure 6.5). 

The length of prey items was calculated as a proportion of the gape length of 

males and females. The gape length was significantly larger in males (5.42 ± 0.04 em, N 

= 28) than in females (5.25 ± 0.05 em, N = 34; Student t-test: t 6o = -2.59, P = 0.01). I 

inferred that females delivered prey items that varied between 2.63 and 15.75 em long, 

and males delivered prey items between 4.07 and 16.26 em long. I used the mean length 

of multiple-prey loads for the comparison between sexes because no significant 

differences were found in the number of prey items per load (see above). The mean 

length of prey items did not differ between females (9.82 ± 0.17 em, N = 14) and males 

(10.19 ± 0.21 em, N = 14; two-way ANOVA: F 1, 78 = 1.69, P = 0.20) or among chick-age 
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groups (one week: 9.90 ± 0.29 em, N= 28; two week: 9.82 ± 0.17 em, N = 28; three 

week: 10.06 ± 0.24 em, N = 28; F2, 78 = 0. 13, P = 0.88). There was no interaction ofthe 

main factors on the mean length of prey items (F2, 78 = 0.078, P = 0.93). 
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Figure 6.4 Sex differences on the brooding duration of thick-billed murres (N= 13 pairs) and 

razorbills (N = 21 pairs) according to chick age categories. Data are shown as means ± SE. 

Statistical differences within sexes were only for razorbills (*Turkey HSD: P < 0.01 ). 
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Figure 6.5 Provisioning rates (Means± SE) of male and female razorbills (N = 19 pairs) and 

thick-billed murres (N = 13) according to chick age categories at Gannet Islands, Labrador. 

Statistical differences between sexes in each category are shown (* ANOV As, P < 0.05). No 

significant differences of the total chick provisioning were found among chick age categories in 

both species (ANOV As, NS). 
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6.4.4 Foraging trip frequency and duration 

6.4.4.1 Thick-billed murres 

During the chick-rearing period, murres performed a mean of 3. 72 ± 0.12 foraging trips 

per day (range 1 - 8) that lasted an average of 1.90 ± 0.11 h (range 0.17 - 12 h). Foraging 

trips with food delivery to the chick occurred after absences from the breeding site of 10 

or more minutes. Overall, females performed significantly more foraging trips per day 

than males did (two-way ANOVA: F 1, 72 = 7.21 , P < 0.01, Table 6.1). The number of 

foraging trips did not depend on chick age (one week: 3.40 ± 0.20 trips day -1
, N= 26, 

two week: 3.90 ± 0.20 trips day -I, N = 26, three week: 3.85 ± 0.20 trips day -I , N = 26; F 

2, 72 = 1.90, P = 0.16) and no interactive effect of the main factors was detected (F 2, 72 = 

0.81 , P = 0.45). Similar results were found when individual differences were controlled 

using a paired comparison of the foraging trip frequency per breeding site between sexes 

(paired t-test: t 12 = 2.89, P = 0.01). 

The duration of foraging trips of males was significantly longer than that of 

females (log-transformed data, two-way ANOVA: F 1, 72 = 85.39, P < 0.001 , Table 6.1). 

Foraging trip duration did not vary with chick age (F 2, 72 = 2.321 , P = 0.11) and the 

interaction term sex* chick-age group was not significant (F 1, 72 = 0.94, P = 0.40). 

Similar results were found between sexes when their foraging trip durations were 

matched per breeding site (paired t- test: t 12 = -6.39, P < 0.001). The mean duration of 

foraging trips that ended in chick provisioning was significantly longer for males than for 
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females (log-transformed data: ANOVA: F 1, 24: 47.95, P < 0.001, Table 6.1). Foraging 

trips without chick provisioning did not differ significantly between sexes (female: 1.28 ± 

0.10 h; male: 1.42 ± 0.21 h; ANOV A: F 1, 24: = 0.39, P = 0.54). 

6.4.4.2 Razorbills 

During brooding, a mean of3.21 ± 0.09 (range 1-14) foraging trips was performed per 

day, lasting on average 2.18 ± 0.09 h (range 0.17- 11.83 h). Foraging trips with food 

delivery occurred after absences from the breeding site of 10 or more minutes. The total 

number of foraging trips per day did not differ between sexes (two-way ANOVA: F 1, 120 

= 1.76, P = 0.19, Table 6.1), nor with chick age (one week: 3.08 ± 0.14 trips day ·I; two 

week: 3.15 ± 0.17 trips day -I three week: 3.38 ± 0.16 trips day ·I; N = 42; F 2, 12o = 1.04, 

P = 0.35). There was no interactive effect of the main factors on the number of foraging 

trips (F 2, !20 = 1.88, P = 0.16). Similar results were found between sexes when their mean 

number oftrips was matched per breeding site (paired t-test: t2o = -1.04, P = 0.31). 

However, females had significantly more foraging trips with food delivery (see chick 

provisioning) than males (Table 6.1). 

Foraging trip duration did not differ between the sexes (log-transformed data: 

two-way ANOVA: F 1,12o = 0.400, P = 0.53, Table 6.1) or with chick age (one week: 2.03 

± 0.24 h; two week: 2.06 ± 0.22 h; three week: 1.85 ± 0.27 h; F 2, 12o = 0.71 , P = 0.49). 

No interactive effect of the main factors on trip duration was detected (F 2, 120 = 0.63, P = 
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0.54). Similar results between sexes were found after matching the mean duration of trips 

per breeding site (paired t-test: t 20 = -1.38, P= 0.18). In contrast, the duration of foraging 

trips with food delivery was significantly longer for males than for females (ANOV A: F 

1, 42 = 10.15, P < 0.01, Table 6.1). The mean duration oftrips without food delivery did 

not differ between sexes (female: 1.42 ± 0.18 h; male: 1.10 ± 0.15 h, ANOVA: F 1,42 = 

0.02, p = 0.88). 

Table 6.1 Foraging trips offemale and male Thick-billed murres (13 pairs) and Razorbills 

(21 pairs) at Gannet Islands, Labrador. 

Thick-billed murre Razor bill 

Female Male Female 

Number of trips per day 4.02 ± 0.22* 3.40 ± 0.23 3.09±0.11 

Number of trips with meal delivery 2.84 ± 0.21 * 2.26 ± 0.11 2.02 ± 0.12* 

Trip duration1 (h) 1.19 ± 0.23 2.40 ± 0.21 * 1.93 ± 0.20 

Trip duration with meal delivery1 (h) 1.23 ± 0.41 3.04 ± 0.33* 2.50 ± 0.42 

Means are given ± SE. Significant differences between sexes are shown(* ANOV As, P < 0.01). 
1Data were Jog-transformed before the statistical analysis. 

Male 

3.32 ± 0.13 

1.42 ± 0.13 

2.03 ± 0.15 

3.30 ± 0.21 * 
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6.5 DISCUSSION 

I studied two sympatric Alcini species, thick-billed murres and razorbills that have 

biparental care at the breeding site followed by exclusively paternal care at sea (Gaston & 

Jones 1998). My objective was to determine inter and intra-specific patterns of parental 

roles between sexes to be able to understand why the male accompanies the chick to sea. 

Although a widespread tendency for paternal care late in chick rearing exists in 

Charadriiform birds (Gratto-Trevor 1991; Piersma 1996a; Piersma 1996b; Payne & 

Pierce 2002), it is relatively rare among the alcids (4 of23 extant species). Thus, my 

approach was to identify characteristics oftwo alcid species that could favour such a 

pattern. 

6.5.1 Intra-specific patterns 

I found different patterns in the time devoted to incubation by males and females between 

species. Both parents spent a similar amount oftime incubating eggs in thick-billed 

murres, but female razorbills had longer incubating bouts than males. Common murres at 

the Gannet Islands behave similarly to thick-billed murres, that is females and males do 

not differ in the duration of incubation bouts (V erspoor et a/.1987). Likewise, female 

razorbills in the Gulf of the St. Lawrence, Quebec (Bedard 1969) behave similarly to 



those at the Gannet Islands. Differences in levels of male effort during mate guarding 

prior to egg-laying may explain the different incubation patterns between species. 
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Razor bills have more occurrences of extra-pair copulations than murres (Wagner 1992; 

Hipfner & Chapdelaine 2002) and they need to commute between two locations, mating 

arenas and breeding sites, for mate guarding. Thus, male razorbills may start the 

incubation period in poorer condition than male murres and, for this reason, may be more 

selective in their parental duties and effort allocation. For example, if males are better 

than females in defending the nest, it would be of benefit to both parents for the male to 

spend more time and effort defending the nest than incubating (see intra-specific patterns 

below). 

Thick-billed murres showed a consistent pattern in the timing of breeding site 

attendance during the incubation and brooding period. Most males incubated eggs or 

brooded chicks during early morning, late afternoon and, usually, over night. In contrast, 

females incubated eggs or brooded chick mostly during the middle of the day. Likewise, 

females had a bimodal period of chick feeding; 41% and 51% of their feedings occurred 

early in the morning and late in the afternoon respectively. Males had a single and long 

period of chick feeding during the day; however about half of their feeding occurred 

between 13:00-16:00 h. These results support a previous chick-rearing study ofmurres, 

which used radio-transmitters and temperature loggers at Gannet Is. That study found that 

males foraged during the day and females foraged mostly before sunset and after sunrise 

(Jones et al. 2002). Conversely, but consistent with these results, another study reported 

that female common murres at Gannet Is.; incubated eggs during the day whereas males 
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did so during the night (Verspoor 1987). In contrast, I found that razorbills do not show 

sex differences in the timing of breeding site attendance and chick feeding. Males and 

females were found incubating or brooding at similar times of the day, as was found in a 

previous study ofrazorbills at the Isle of May (56~; Wanless & Harris 1986). Likewise, 

both sexes fed their chicks all through the day; and showed two small peaks of prey 

delivery early in the morning and early in the afternoon. During reproduction, thick-billed 

murres and razorbills are central place foragers, so traveling and searching effort can 

affect chick-provisioning (Orians & Person 1979) and therefore reproductive 

performance (Clode 1993). Because murres are single loaders and deep-pursuit divers 

(Gaston & Jones 1998), the division of foraging time between sexes initiated during the 

incubation period may help to maximize their foraging effort during chick-rearing. In 

fact, several studies have shown the ability of murres to memorize and locate "hot spots" 

of food during reproduction (Cairns & Schneider 1990; Davoren eta!. 2003), and their 

strong fidelity to foraging areas at spatial scales of 1-20 km (Mehlum eta!. 2001). On the 

other hand, razorbills are multiple prey loaders and shallow divers (see review by Hipfner 

& Chapdelaine 2002), suggesting that they might use different tactics than murres to 

reduce their foraging effort at sea. According to central place foraging theory, multiple 

prey loaders are expected to forage closer to the colony to reduce traveling time; if this is 

the case for razorbills require further investigation. In addition, the time spent searching 

within food patches is likely to be less for razorbills than for murres, as razorbills 

performed shorter dives to capture their prey higher in the water column or in shallow 

water (review by Hipfner & Chapedelaine 2002). Thus, razorbill's searching effort may 



not be as constrained as that of murres, and a strict division of foraging times between 

males and females may not be mandatory. 

6.5.2 Inter-specific patterns 
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I hypothesized that sex-specific differences of murres and razorbills in energy 

expenditure at the time of departure may explain why males accompany chicks to sea. I 

expected parental care at the breeding site of both species to be mostly female-biased due 

to the male' s initial expenditure of effort on mate guarding prior to egg-laying. I further 

expected that this would lead to males being in better condition than females at the time 

of departure to finish raising the chick at sea. 

Incubating and brooding both seem to be energetically less expensive than chick 

provisioning in thick-billed murres (Gaston 1985) and probably in razorbills. Foraging at 

sea for chick provisioning is the most time- and energy-consuming activity for seabirds 

(e.g. Chappell et al. 1993), especially for flapping-flight and pursuit-diving species (Birt­

Friesen et al. 1989; Obst & Nagy 1992; Bech et al. 2002; Jodice et al. 2003), such as the 

large auks (Gaston & Jones 1998). In fact, thick-billed murres rearing chicks reduced 

their feeding rates and body mass, and have longer foraging trips when handicapped with 

data loggers (Paredes et al. 2005). As I predicted, I found that in both auk species males 

spent more time with chicks and provided fewer meals per day than females, although 

these results depended somewhat on chick age. Razorbill males spent more time with 
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chicks greater than two weeks old, while murre's allocation of care did not differ among 

chick age groups (1-3 weeks). Nevertheless, males of both auk species spent more nights 

with chicks during the brooding period than females. In both species, males reduced their 

provisioning rates when chicks were more than a week old. I did not fmd differences in 

the prey sizes delivered by males and females in either species. Higher female 

contribution toward chick provisioning has been reported in common murres at Isle of 

May (Wanless & Harris 1986) and at Witless bay, NL (Wilhelm 2004). However, no 

extra-male allocation toward brooding has been reported in common murres (Wanless & 

Harris 1986; Verspoor 1987; Wilhelm 2004). In razorbills, approximately equal parental 

contribution to night nest attendance and chick feeding has been reported at Skomer Is. 

(Wagner 1992). These differing results may be explained by methodological differences; 

slight sex differences in parental behaviour might be less likely to detect when using sub­

sample observations (other studies) instead of continuous daylight sampling (this study). 

Different foraging strategies within and between species may also affect parental 

behaviour in other localities (see intra-specific patterns). In dovekies, differences in nest 

attendance and chick provisioning only occur during the late chick-rearing period; 

females depart the colony and males provide all the care until chick departure (Harding et 

a!. 2004). Assuming breeding site visitation was a reliable method to assess feeding rates 

in crevice nesters that feed regurgitated food (see Granadeiro eta!. 1999), these different 

results may be explained by breeding biology. Because dovekie chicks depart with the 

male when almost full grown (67-82% of adult body mass), the time and effort males 

need to allocate at sea is likely to be less than for murres and razorbills (chicks 15-30% of 
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adult body mass). In addition, flying in smaller dovekies may involve less effort than in 

larger auks. Thus, increased provisioning by the male at the end of the chick-rearing 

period may not be an energy constraint during reproduction. 

By analyzing only foraging trips with meal delivery, I found that males of both 

species performed longer trips while females performed shorter, but more frequent trips, 

than males. These results suggest different foraging strategies between males and 

females, such as traveling to different foraging areas and/or diving at different levels of 

the water column when searching for food. In thick-billed murres, sexes do not differ in 

their dive depth or duration (Jones et al. 2002; Chapter 2) and other dive parameters 

(Chapter 2) when capturing prey for chick provisioning. However, the return trips of 

males after the last dive and before chick feeding were longer in duration than those of 

females (Chapter 3). Murres are likely to fly directly back to the colony from their 

foraging areas because they deliver a single fresh fish to their chicks (Benvenutti et al. 

1998). Thus, if males travel farther to forage their flying costs for chick provisioning are 

likely to be higher than those of females. No data are available for razorbill diving 

behaviour between sexes so I was unable to determine whether the longer foraging trip 

durations of male razor bills were due to different foraging areas, diving effort or both. 

Nevertheless, the longer foraging trips of males are probably as energetically costly as the 

more frequent trips of females with meal delivery. Thus, the overall effort for chick 

provisioning is not likely female-biased as I predicted. 

In relation to the role of breeding site defence, I found another interesting pattern 

in the time and activities of male and female parents at the breeding site when their mates 
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were incubating or brooding. According to Birkhead (1978; 1985), the off-duty parent 

generally defends the breeding site, while the on-duty parent avoids such aggressive 

interactions. I found that in both species males spent more time interacting aggressively 

with neighbours or intruders and preening their mates than females during incubation and 

brooding. These results are more suggestive of a male-biased role toward the defence of 

the breeding site, guarding ofthe mate and protection of the offspring. The extra time 

males spent at the breeding site may be important to reinforce long-term bonds and to 

ensure breeding site ownership, as males will leave earlier than females. Thus, male 

allocation of risk and effort toward the defence of the breeding site, egg or chick, and 

mate seems to be higher than that of females before chick and male departure to sea, 

which also contradict my prediction of equivalent parental care between sexes before 

chick and male departure. 

In summary, I found males and females had different parental roles, but the level 

of parental effort at the breeding site does not seem to be female-biased as I 

hypothesized. In fact, the opposite seems to be true, males spent more time brooding and 

defending the nest than females, while the total allocation in chick feeding seems to be 

sex balanced. After the initial effort of males and females in mate guarding and egg 

production, respectively, they seem to be able to recover their energy expenditure while 

engaged in their parental roles during incubation. During this time, foraging is less costly 

and entirely focused on self-feeding. Flying and diving effort appears to be lower than 

during brooding because commuting between feeding areas and breeding sites is less 



206 

frequent (this study), and they feed on prey located in shallower water (Benvenuti et al. 

2002). Later on, males and females might be in reasonable shape to start taking care of 

the chick at the breeding site. Although I was unable to measure energy expenditure, my 

indirect measurements of parental effort (time and frequency of events) suggest an equal 

if not a male-biased parental effort at the breeding site. Thus, differences between males 

and females in energy expenditure do not explain the male's parental role at sea, as their 

condition is likely to be equal or lower than that of females at the time of departure. 

Instead, I believe that the most likely explanation for the patterns of parental roles found 

between sexes was the result of a chain of events favouring male involvement in chick 

brooding and care at sea (Figure 6.6). 



During brooding, male present at the breeding site 
more than female (for razorbills only during the 
late brooding period). 
(Female provides most chick meals; this study). 

1 
Only male and chick Jearn to respond/recognize 
each other's vocalizations ("fledging' calls") 
before departure (Insley eta!., 2003, unknown for murres) 

/ 

207 

Male spends more off-duty time at the 
breeding site defending egg/chick 

(this study). I 
Male larger and more aggressive 
and maybe more capable of chick 
defense (this study) 

Parent offspring acoustic 
recognition is mandatory 
for chick survival 

High con- specific aggression 
during chick departuret 
(Gilcltrist & Gaston 1997) 

Only one parent required 
for parental care at sea 

Exclusively male parental care 
after colony departure 

Female stays guarding 
the breeding site 
Harris & Wanless 
2004) 

Figure 6.6 Patterns of parental roles of female and male thick-billed murre and razorbill at 

Gannet Islands, and proposed explanation of male only care at sea. 
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A longer time spent brooding the chick by males may also benefit the 

development of parent-offspring acoustic recognition, which is crucial for chick survival 

at breeding site departure. Lefreve et al. (1998) reported that in thick-billed murres chick 

and parents were able to recognize each other's calls when the chick was three days old. 

They also reported that parents recognize their chicks' calls at fledging age, when chicks 

produced a unique "fledging" call. Unfortunately, the sex of the birds in this study was 

not known. However the sample might have been male-biased, as suggested by the time 

of the day the recordings were made. I observed one incident in which a female murre did 

not respond to its chick's "fledging" calls (c. 1 m apart) when it was left alone by the 

male during colony departure. The calling chick was pecked several times by other 

adults, without reaction from the female, which stayed at the breeding site, and eventually 

departed alone. 

Whether or not there is a sex-biased parent-offspring vocal recognition in thick­

billed murres requires further investigation. In razorbills, the onset of vocal recognition 

occurs during the last week before departure (Ingold 1975; Insley et al. 2003), and it is 

only the male that appears to recognize its chick's calls, or at least responds to them 

(Insley et al. 2003). Other studies of alcids with different modes of development (Sealy 

1973) suggest that onset of recognition occurs when spatial cues are not sufficient to 

prevent misidentification (Harris 1983; Jones et al. 1987). Murre breeding sites are less 

discrete and denser than those of razorbills, so the risk of chicks intermingling is higher. 

Thus, in comparison to razorbills parent-offspring mutual recognition by male and female 
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murres is needed at an early stage. Later on, a longer investment of time at the breeding 

site by males of both species may be required to learn their chicks "fledging's" calls and 

ensure parent-offspring recognition at departure. Like murres and razorbills, dovekies 

males also spent more time at the nest site than females during late chick-rearing period 

(Harding eta!. 2004), which suggest male-biased time brooding may also function as a 

way to ensure parent-offspring vocal recognition at departure. 

One of the main causes of murre chick mortality at departure is the aggressive 

interaction from neighbours at the colony and co-specifics at sea (Gilchrist & Gaston 

1997). My fmdings of a male-biased role towards the defence of egg and chick at the 

breeding site suggest sex differences in aggressive behaviour (see also Fraser eta!. 2002). 

A larger and more aggressive sex may be more successful in protecting the chick during 

and after departure. All members of the Alcini tribe are slightly dimorphic species, with 

males being larger in mass and in most morphological dimensions (Gaston & Hipfner 

2000; Wagner 1999; Gaston & Jones 1998). In addition at Gannet Islands, males ofboth 

thick-billed murres and razorbills seem to be more aggressive and protective of their 

chicks than females (Chapter 4). Ainley et al., (2002) suggested that in common murres, 

males depart with the chick because of their slightly larger size and apparently more 

aggressive behaviour; however, few data have been reported so far. Altogether these 

results suggest a male-biased capability of defending the offspring at nest departure, and 

partly could explain why the male accompanies the chick at sea. 
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Another explanation for the partitioning of roles between sexes, although not 

mutually exclusive, is that the male goes to sea as a default of the female's choice of 

staying behind. One pair member seems to be required to stay at the colony to maintain 

the breeding site for the following season (Harris et al. 1996). Maintenance of the 

breeding site is crucial because if lost, it is likely that individuals will not breed the 

following year (Harris et al. 1996). In all my study pairs, males left the colony with the 

chick and females stayed at the breeding site. It has been suggested females stayed at the 

breeding site for mating with other males to ensure future reproductions in case of mate 

loss or poor quality partner (Gaston & Jones, 1998). However, although females can 

copulate and form temporary bonds with other males these do not persist to the next 

season, even when the original males did not return (Harris & Wanless, 2003). Thus, 

there is no support for female looking for replacement mates in case of widowing, but 

toward the female role of guarding the breeding site after male departure. 

Both, escorting the chick at sea and guarding the breeding site after chick 

departure may require an aggressive sex. Nevertheless, a successful chick departure and 

fledging at sea is crucial for the fitness of both parents. Hence, a higher level of 

aggressiveness of the parent that escorts the chick to sea may have been selected for to 

ensure offspring survival. As a result, male parental role towards egg and chick defence 

(male-biased capability) and brooding (parent-offspring vocal recognition) might have 

developed at the breeding site at the same time or independently to ensure male-only care 

at sea. 
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CHAPTER 7: SUMMARY AND FINAL REMARKS 

This study aimed to elucidate parental roles and foraging strategies of males and females 

of two sympatric closely related large auk species, thick-billed murres and razorbills at 

Gannet Islands, Labrador. They raise a single offspring, which departs with the male 

parent after 15-20 days ofbiparental care at the breeding site and completes its 

development at sea over the following 3-4 weeks. 

I hypothesized that sex-specific differences in effort allocation at the time of 

departure could explain why males accompany chicks to sea. I expected parental care at 

the breeding site of both species to be mostly female-biased due to the male's initial 

expenditure of effort on mate guarding prior to egg-laying. I further expected that this 

would lead to males being in better condition than females at the time of departure to 

firiish raising the chick at sea. Because these species are wing-propelled diving species, I 

first analyzed their diving behaviour and diet to determine possible relationships of 

foraging strategies and parental roles. I specifically quantified sex differences in: 1) effect 

of external data loggers in parental and foraging behaviour, 2) diving behaviour in 

relation to prey species captured, 3) diving behaviour for self-feeding and chick 

provisioning, 4) aggressive behaviour of attending birds, and 5) parental roles at the 

breeding site. 

My conclusions, briefly . . . 
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1. Individual thick-billed murres' body condition and behaviour (brooding, 

feeding, foraging duration) was negatively affected by carrying time-depth recorders 

(TDRs) when compared to non-instrumented birds (control). These results were likely to 

be due to a reduction of birds' diving and/or flying performance, so I was aware that my 

measurements were likely under or overestimates. Both sexes were similarly affected 

except for body mass and foraging trip duration; males lost mass at a higher rate and had 

longer trips than females. Males' longer return trips after diving for provisioning suggest 

males had farther feeding areas than females. These results support the idea that the effect 

of data-loggers in murres' flying performance was due to their high wing loading. On the 

other hand, sexes of murres and razorbills did not differ in the number of dives per bout 

and per day and both were able to dive at similar maximum depths, which suggested no 

differential TDR effect of the sexes underwater. Because males and female thick-billed 

murres and razorbills are almost identical in mass and morphometries, and were treated 

identically in my procedures, I cautiously assumed that sex differences in foraging 

behaviour would occur as a result of naturally different strategies and not due to the 

effect of attached devices. 

Partners ofTDR-equipped birds compensated for the reduced parental effort in brooding 

and chick provisioning of their mates, with no differential responses between sexes. As a 

result of this behaviour, overall breeding success ofTDR-equipped pairs (only one bird 

with TDR) did not differ from that of control pairs. TDR-equipped birds also had a 

significantly lower rate of return to breed than their non-equipped partners or control 

birds, and those that did return the following season were more likely to change mates 



(32%) compared with controls (0%). Although, compensatory behaviour observed in 

thick-billed murres seem to be a necessary response for breeding success in this single 

brooded species, it might also affect the stability of pair bonds of some individuals 

2. Differences in diving behaviour and secondary prey preference were found in 
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female and male thick-billed murres and razorbills. Differences in diving behaviour were 

mainly in their dive profiles, which are likely related to specific capturing strategies and 

prey species. In thick-billed-murres, differences in diving behaviour were strongly related 

to the time they foraged; males dived deeper than females and mostly between mid-day 

and early afternoon, while females mostly dived around dawn and dusk. Because depth 

directly affects other dive parameters, male murres also had longer bottom time, ascent 

and descent rates, duration, and post-dive interval. These differences disappeared when 

depth was controlled for, except for post-dive interval (PDI). Longer female 's PDI may 

be explained by their slightly smaller size (c. 5 % of body mass) and therefore lower gas­

storage capacity than males. In razorbills, there was not a clear division in timing 

between the sexes nor were there differences in their main dive parameters. Nevertheless, 

female razorbills dived somewhat more frequently in shallower waters ( < 10 m) and at 

twilight periods than males as shown by female murres. These results explained the 

shorter dive bouts found in females of both species despite the similar number of dives 

per day and bout between the sexes. This temporal segregation in depths between sexes 

was reflected in their dive shapes and prey species. U-shaped dives were deeper and 

male-biased, and W -shaped dives were shallower and female-biased in both species. V-
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shaped dive was mostly performed by razorbills. Although both sexes delivered mostly a 

primary prey species (murres: daubed shanny; razorbills: sand lance); both male species 

delivered more capelin than females. Analysis of foraging time, dive-shapes and preys 

delivered suggest a relationship between dive profile and prey species: a) W-shaped 

dived and crustaceans, mainly captured by females at twilight periods, b) U- and square 

shaped dives and mid-deep water species such as capelin and daubed-shanny, and c) V­

shaped dives and shallow water species such as sandlance .. Altogether, my results 

suggest a temporal segregation of water depths and food resources between the sexes in 

two sympatric and closely related species during reproduction. Sex differences in nest 

attendance, driven by differences in parental roles, seem to explain these findings. 

3. Further analysis of the foraging behaviour of male and female thick-billed murres 

showed differences in diving behaviour for self-feeding and distance to foraging areas as 

well. Females' dive bouts for self-feeding were shallower than males and occur mainly 

around dawn. Males' dives for self-feeding were deeper than those of females and occur 

during and between trips for chick provisioning. In contrast, chick- provisioning diving 

was deeper than self-feeding irrespective of the sex or the time of day. This suggests 

equal parental effort allocation of the sexes underwater. Assuming murres return directly 

to the colony after the last dive at sea, shorter female's return trips suggest they feed in 

closer areas to the colony than males. Higher self-feeding rates and closer feeding 

locations may partially explain female's higher delivery rates at the breeding site. 
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4. Attending male and female thick-billed murre and razorbills differed in the level 

of aggressive behaviour at the Gannet Islands, Labrador. Frequency but not intensity of 

aggressive behaviour against con-specific intruders was higher in males in both species. 

Both frequency and intensity of aggressive responses to a predator model was higher in 

male than female razorbills. The larger bill dimensions found in both male species may 

confer a better ability for defending or protecting the egg or offspring. The defence of the 

chick at departure, and at sea is crucial for its survival and therefore parents' fitness . 

Thus, a more aggressive and better equipped sex may be better in protecting the chick at 

departure. 

5. Female and male thick-billed murre and razorbill differ in their parental 

roles at the breeding site. Females provided more meals to the chicks and males spent 

longer time periods brooding than females. These results were chick-age dependant in 

each species. Murres showed a consistent pattern of breeding site attendance between 

sexes throughout the incubation and brooding period; females brooding during mid-day 

and early afternoon and males during twilight and night periods. Razorbills ' breeding site 

attendance schedules were much more variable and did not differed between the sexes. 

Despite these differences in timing of breeding site attendance between species, males of 

both species spent twice as much time as females engaged in the defence of the egg or 



chick at the breeding site, consistent with my previous observations of male-biased 

capability of protecting the chick at departure. 

217 

I found males and females had different parental roles, but the level of parental 

effort at the breeding site did not seem to be female-biased as I had originally 

hypothesized. Although I was unable to measure energy expenditure, my indirect 

measurements of parental effort (time and frequency of events) suggest an equal if not a 

male-biased parental effort at the breeding site. Thus, differences between males and 

females in energy expenditure did not explain the male's parental role at sea, as their 

condition was likely to be equal or lower than that of females at the time of departure. 

Instead, I believe that the most likely explanation for the patterns of parental roles found 

between sexes was the result of a chain of events favouring male involvement in chick 

brooding and care at sea. A successful chick departure and fledging at sea is crucial for 

the fitness of both parents. Hence, a higher level of aggressiveness of the parent that 

escorts the chick to sea may have been selected for to ensure offspring survival. As a 

result, male parental role towards egg and chick defence (male-biased capability) and 

brooding (parent-offspring vocal recognition) might have developed at the breeding site 

at the same time. 



------- -
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Final remarks 

The evolution of predominant male care among monogamous birds is not well 

understood. One possible explanation is that high costs of egg production constrain 

females' ability to incubate or to care take of the offspring; however increasing evidence 

suggest they can recover by re-arranging activities of feeding more (Amat et al. 2000; 

Wilhem 2003; Williams 2005). Re-mating opportunities seem to explain the desertion of 

females in populations with male-biased ratios (e.g. Szekely 1996; Szekely et al. 2006). 

Another possible explanation is that there are relatively few species where biparental care 

is share exactly equally between the sexes (Clutton-Brock 1991). For instance, in many 

monogamous species males are more involved in territory defense than females, while 

females spend more time caring for the young (e.g. Breitwish 1988). The fact that male 

major involvement in nest defense persists during the chick-rearing period (Hogstad 

2005; Winkler 1992; Lombardo 1991; Regelmann & Curio 1986; Sproat & Ritchison 

1993, Kis et al. 2000; Pierotti 1981; Southern 1981 ; Creelman & Storey 1980) suggests 

that defensive behaviour is driven by the offspring needs. My study supports this and 

further indicates greater ability of males of defending the offspring because of their more 

aggressive and larger bill size (weapondry). The persistence of these morphological and 

behavioural traits (i.e. bill size, aggressive behaviour) in truly monogamous males 

suggests they were selected for parental rather than for a sexual function. Differential 

abilities in parental duties (e.g. offspring defense) may explain how males and females 

divide parental roles. 
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