
































































































































































































greedy step produces all the possible cases of creating a new tree joining two 

subtrees. T hen, it selects the lowest cost tree x :E ming(x) . However, Huffman 

method suggests an optimization technique to implement the encoding system. 

Using Huffman coding, this process is implemented by choosing two subtrees 

with the lowest frequency, placing subtrees as left and right child of a new tree, 

and finally removing the original subtrees. In this section, we show how this 

optimized technique satisfies t he minimum cost of creating encoding trees. 

Frequency function can be extended to trees, calculated according to frequency 

of each char 

J( (c)) = J(c), for all c E Ch 

f( (t, s)) = f(t) + f(s ), otherwise 

f(t) = L_j(c), fortE Tree (4.14) 
cEt 

Concluding easily from equation (4.10) and (4.12) , cost of a tree can be ex-

pressed in terms of dc,s , depth of a char c in tree t, times f(c) , frequency of char 

c. 

cost(s) = cost(O, s) = L dc,s x J(c) , for all s E BT (4.15) 
cEs 

Now, the cost of the same tree as a subtree sin depth 1 is calculated in a similar 
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way by adding 1 to the depth of each char in subtree. 

cost(!, s) = L ((dc,s + 1) x f(c)) 
cEs 

L (dc,s X f( c)) + L f(c) 
cEs cEs 

by def ( 4.15) 

cost(O, s) + L f( c) 
cEs 

by def ( 4.14) 

cost(O, s) + f(s) 

The result implies the relation between the cost of a subtree s in depth 0 and 

its cost in depth 1. 

cost(!, s) = cost(O, s) + J(s ) (4.16) 

Therefore, def (4.11) for d = 0 can be rewritten as 

cost(O , (s, t)) cost(! , s) +cost(!, t) 

by (4.16) 

cost(O, s) + f(s) + cost(O, t) + f(t) 

This can be more simplified as 

cost ( ( s, t)) = cost ( s) + f ( s) + cost ( t) + f ( t) ( 4.17) 

Now, using the derived details we reconsider the proposed greedy algorithm 

for this application. In a state that x rJ. C, every x represents a forest x = 

{t0 ,t1 , ... tn}, where each ti is a tree. Let 's consider the generation function 

according to the proposed general method of greedy algorithm, which in each 
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state produces a new forest by joining two subtrees together, and removing the 

original subtrees from the forest . For an arbitrary y E g(x) we have 

And therefore 

cost(y) - cost(x) + cost((ti, t1))- cost(ti)- cost(t1) 

by (4.17) 

cost(x) + cost(ti) + f (ti) + cost(t1 ) + f(t1)- cost(ti)- cost(t1) 

- cost(x) + f(ti) + f(tj) (4. 18) 

The result in (4.18) explains the cost of every y E g(x) simply depends on 

f(ti) + f(tj) because cost(x) is a fixed amount. Therefore, to minimize the 

cost(y) we only need to minimiz the value of f (ti)+ f(t1) which can be satisfi d 

by choo ing two subtrees ti and t1 with the lowest frequencies. Finally, the 

optimization technique of Huffman method , by using t he two trees with the 

lowest cost, implements the greedy algorithm very efficiently. It considerably 

reduces the complexity of the algorithm. 

4.3.1.3 Greedy Algorithm for Huffman Coding 

Defini t ion HuffmanSearch :: = 

var x := 0 

for cE Ch 

X:= X U (c) 
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for k := 1 through IChl - 1 inv reaches(x, G) { 

} 

var s, t 

s , t := the 2 trees in x of lowest f 

X := XU { (s, t)} - { S, t} 

4.3.2 Kruskal's Algorithm 

For a connected edge weighted graph, a minimum spannmg tree is a tree which 

has a minimum weight and spans th graph by connecting all the vertices. Kruskal's 

algorithm find a minimum spanning tree in a connected undirected graph G = (V, E) 

with the weight function w : E---+ JR. For some connected graphs, minimum spanning 

trees are not unique and there are several qualifying feasible solutions which can b 

formed. 

Kruskal's algorithm is a greedy algorithm which adds the best choice at a time to 

the partial solution. First, the edges are sorted in non-decreasing order according to 

their weight. Then, from the list of sorted edges, the minimum weight edge is selected 

and added to partial solution, if it does not form a cycle. In order to verify whether 

a new edge e = { u , v} E E can be added without creating a cycle, the two vertices 

u E V and v E V are verified not to be connected in the existing partial solution. 

For the following connected graph: 
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Kruskal 's algorithm may create a minimum spanning tree by choosing edges in the 

following order: 

(1, 5) -t 1, (4, 8) -t 1, (9, 12) -t 3, (9, 10) -t 3, (2, 3) -t 4, (2, 5) -t 4, 

(6, 8) -t 5, (7, 8) -t 5, (5, 8) -t 6, (3, 4) -t 7, (6, 13) -t 7, (7, 11) -t 7. 

The sequence of decisions results in the following minimum spanning tree: 
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4.3.2.1 Defining Parameters of the Problem Space and Greedy Solution 

To specify the problem, it is required to define the elements of search problem: 

• Define each member of S as a set of dges e E E of graph G = (V E) with no 
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cycles, S ~ 2£ 

S = { F I F ~ E 1\ F is acyclic} 

Where 

F is acyclic= Vu, vI {u, v} E F · -.(F - { {u, v} } connects (u, v)) (4.19) 

Fconnects(u,v)=:3kl {u,k} EF · k =v V Fconnects(k,v) 

• Define i as the empty set, i = 0 

• Define each member of C as a set of edges that connect all vertices v E V with 

no cycles 

C = { F E S I Vu, v E V · F connects ( u, v)} 

• Defin e g as a function which adds a new edge to a partial solu t ion, without 

creating a cycle 

g(x) = {xU {e} IeEE · xU {e} is acyclic} (4.20) 

To verify whether a new edge e = { u, v} creates a cycle, it is required to check 

if th re is any connection between vertices u and v by any edge (set of edges) 

m x . 

• Define co tglobal as the sum of the weights of a set of connected edges 

costglobat(x) = cost(x) = L w(e), where xES 
eEx 

• Define ~global as a cost comparison relation for two sets of connected edges 

x ~global y L w(e) ~ L w(e), where x, yES 
eEx eEy 
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To adapt the greedy solution, following parameters are specified: 

• Define cost1ocal as the sum of the weights of a set of edges 

costlocal(x) = cost(x) = L w(e), where xES ( 4.21) 
eEx 

• Define::;1ocal as a cost comparison relation for two sets of edges 

x ::;local y - L w(e) ::; L w(e), where x, y E S 
eEx eEy 

The definition of local and global cost for t his example are identical and apply 

to a set of edges. 

4.3.2.2 Implementation Process 

• Initialization is x = 0 

• Defining t he while guard: while x ~ C 

To implement this part consider the defini t ion of C, which implies every v E V 

should be included in a complet d solution . In addition, every possible pair 

of edges should be connected. Therefore, the partial solut ion x connects every 

possible pair of vertices in V . 

Vu , v E V · x connects (u, v) 

Therefore, wh ile x ~C is implemented as while ::Ju, v E V · •x connects (u, v) . 

• Generation fun ction in x :E min g(x) 

Generally, as defined above in ( 4.20) generation function creates a set of all 

possible edges which can join to the existing partial solution x, xU{e}, without 
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creating a cycle. Then, cost function (4.21) is applied to the set of creat d 

partial solutions. Finally, a minimum cost partial solution is selected. 

However , Kruskal 's algorithm suggests how this method can be optimized by 

adding an edge with a minimum weight to the partial solution if it does not 

create a cycle. In order to easily access an edge with a minimum weight, the 

set of edges can be sorted according to the weight. To prove this optimization 

method refines the general generation method, let's consider local cost function 

(4.21) for y E g(x) according to definition of (4.20). 

Let y X U { enew } E g (X) 

cost(y) L w(e) 
eEy 

by def (4.20) andy = XU {enew } 

L w(e) + w(enew) 
eEx 

w(x) + w(enew) 

Which clearly proves that the cost of a new partial solution y E g(x) directly 

depends on the weight of a new edge added to the old partial solution x. There-

fore, the optimization method of Kruskal implements th g neral generation 

function . 

Considering Kruskal's greedy algorithm x :E min g(x) is implemented by x := 

x U { e} where e is a minimum weight edge such that x U { e} is acyclic. The 

implementation of the optimized generation function selects an edge with the 

lowest weight and joins it to the existing partial solution, if it does not create 

a cycle. To verify whether it creates a cycle, the existing partial solution is 
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examined not to already conne t the vertices of the new edge. T his assures 

joining the new edge to the partial solut ion will not create a cycle. This implies 

to implement this section we are only required to verify whether partial solution 

x connects the vertices of a new edge, summarized as follows. 

if x is acyclic 

then x U { e} is acyclic 

•x connects e 

The implementation of generation function in x :E min g(x) is summarized a 

follows: 

let enew := an edge with the lowest w such that •X connects enew 

X : = X U { enew} 

4.3.2.3 Greedy Algorithm for Kruskal's Method 

Definition KruskalSearch :: = 

var x := 0 

while (:3u v E V · • X connects (u, v )) inv reaches(x, G){ 

} 

let enew := an edge with the lowest w such that• x connects enew 

X : = X U { enew} 
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Chapter 5 

Conclusion 

We investigated how abstract specifications can be proved to be implemented by ab

stract algorithms. For this study we considered algorithm design t chniques such as 

dynamic programming and greedy algorithms. By applying a transformation that 

maps the ab tract specification into a concrete specification, we showed how to derive 

a concrete algorithm from the abstract algorithm. With the derived method came 

along a formal proof of abstract algorithm correctness. This allows the abstract al

gorithm to be reused, along with its proof, to implement multiple concrete problems. 

The approach can be summarized as follow . Suppose we know that an abstract spec

ification P is implemented by an abstract algorithm Q, then if we need an algorithm 

for a problem R = T(P), where T is a data transform, we can implement R with 

T(Q). 

The study by Bird and de Moor uses categorical calculus as the mathematical 

framework. This framework helps formulating theorems and proofs. Generally, the 

framework and theorie does not match up how computer programmers typically view 
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problems; ther fore, the preliminary concepts were also presented. The style of rea

soning with functions and relations is pointfree, which has the advantage of avoiding 

to formulate bound variables used by quantifiers and is described in terms of func

tional decomposition. However, we have experienced that the understanding of the 

theorems and proofs are always impossibl without sketching and creating a support

ing pointwise reasoning, which describes a function by its application to arguments. 

Optimal bracketing also known as matrix chain multiplication was described as an 

application of this case in chapter 2, the same example was later studied under our 

proposed dynamic programming algorithm in chapter 3. This provided the possibility 

of comparing two methods by considering the level of difficulty and complexity of the 

methods. 

Sharon Curtis claims that although the theories by Bird and de Moor are useful 

to express considerable number of problems, it is not easily applicable to all optimiza

tion problems and not applicable to some exceptional cases at all. She takes Huffman 

Coding as an example, and concludes that catamorphism and anamorphism meth

ods are top-down methods while examples such as Huffman Coding need bottom-up 

methods. The method developed by Curtis uses a limit operator lim T, a simple 

loop where lim recursively applies T to the input until it can not be reapplied. This 

method has a lower complexity comparing with catamorphisms and anamorphisms 

as presented by Bird and de Moor. However, Curtis uses the same framework of 

pointfree reasoning and her proposed algorithm for greedy algorithm, lim T, is yet 

complicated. Kruskal's method was described as the application of this method in 

chapter 2. Kruskal's method fits into the category of graphic matroids and fixed 

priority algorithm described in the introduction and is also later studied with our 
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proposed method in chapter 4 providing an easy comparison of complexity and effi

ciency of algorithm. 

One of th algorithm design approaches studied in this thesis is dynamic pro

gramming, which is presented in Chapter 3. An abstract algorithm for dynamic 

programming has been formally developed for an abstract specification. This speci

fication includes slots for the problem space, solution space, and a function mapping 

them. This abstract algorithm is presented in top-down and bottom-up approaches. 

Principle elem nts of dynamic programming in the proposed method includes leaf 

problems, branch problems, divide function, and conquer function. Leaf problems 

are easy to solve and branch problems are solved by using functions divide and con

quer. If these two functions can be defined for a problem, dynamic programming 

can be applicable. The main theory of dynamic programming is proved to be correct 

by method of induction. Application of dynamic programming such as Matrix chain 

multiplication and Largest black square represents how this abstract algorithm can 

be implemented in concrete algorithms. 

The other algorithm design approach studied in this thesis is greedy algorithm, 

which is presented in chapter 4. The parameters required to create a greedy algo

rithm includes definition of completed solution, a global cost function, a local cost 

function, and a generation function. The global cost function measures the degree 

of optimality in a feasible solution, and the local cost function is used in each step 

of the algorithm for comparing partial solutions. There is a relation between local 

and global cost functions, in most cases being identical. However, it is not required 

for greedy algorithm to be defined having equal local and global cost functions. The 

generation function creates all the possible next greedy steps and the best is selected 
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with respect to its cost and adds it to the partial solution. If for any problem an 

optimization method is used, it is required to show how it will refine the general 

proposed method. As mentioned earlier in the introduction , there are many problems 

with different structures which can benefit from greedy algorithm. However, in this 

thesis one case has been proved to qualify for this method. This case includes prob

lems with the monotonicity condit ion , referred as better-local by Curtis . The main 

theory of greedy algorithms is proved under certain conditions, such as the property 

of monotonici ty and the assumption that continuing the greedy step after a complete 

solution is created will not result in a better completed solution, since the generation 

function stops running when a completed solution is created. 

In addition to independent examples, choosing the same examples in the literature 

and main body of the thesis aims to describe how the proposed methods provide more 

applicable methods for computer sci ntists by resolving some inadequacies of the other 

introduced methods such as complexity. 

Finally, future work can include implementing the proposed techniques in SIM

PLE to refine abstract specification by abstract dynamic programming algorithm, 

and abstract gr edy algorithms. It can also provide more d tails on the conditions 

under which the proposed methods are applicable to particular problems. It can 

further define conditions required on divide and conquer function , and proving the 

correctness of greedy algorithm in other possible cases. The proposed methods can 

be studied on more examples on different categories of problems such as hard to solve 

problems. Future work can also include complexity study of algorithms and methods 

of further optimizations. 
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