

greedy step produces all the possible cases of creating a new tree joining two

subtrees. T hen, it selects the lowest cost tree x :E ming(x) . However, Huffman

method suggests an optimization technique to implement the encoding system.

Using Huffman coding, this process is implemented by choosing two subtrees

with the lowest frequency, placing subtrees as left and right child of a new tree,

and finally removing the original subtrees. In this section, we show how this

optimized technique satisfies t he minimum cost of creating encoding trees.

Frequency function can be extended to trees, calculated according to frequency

of each char

J((c)) = J(c), for all c E Ch

f((t, s)) = f(t) + f(s), otherwise

f(t) = L_j(c), fortE Tree (4.14)
cEt

Concluding easily from equation (4.10) and (4.12) , cost of a tree can be ex-

pressed in terms of dc,s , depth of a char c in tree t, times f(c) , frequency of char

c.

cost(s) = cost(O, s) = L dc,s x J(c) , for all s E BT (4.15)
cEs

Now, the cost of the same tree as a subtree sin depth 1 is calculated in a similar

88

way by adding 1 to the depth of each char in subtree.

cost(!, s) = L ((dc,s + 1) x f(c))
cEs

L (dc,s X f(c)) + L f(c)
cEs cEs

by def (4.15)

cost(O, s) + L f(c)
cEs

by def (4.14)

cost(O, s) + f(s)

The result implies the relation between the cost of a subtree s in depth 0 and

its cost in depth 1.

cost(!, s) = cost(O, s) + J(s) (4.16)

Therefore, def (4.11) for d = 0 can be rewritten as

cost(O , (s, t)) cost(! , s) +cost(!, t)

by (4.16)

cost(O, s) + f(s) + cost(O, t) + f(t)

This can be more simplified as

cost ((s, t)) = cost (s) + f (s) + cost (t) + f (t) (4.17)

Now, using the derived details we reconsider the proposed greedy algorithm

for this application. In a state that x rJ. C, every x represents a forest x =

{t0 ,t1 , ... tn}, where each ti is a tree. Let 's consider the generation function

according to the proposed general method of greedy algorithm, which in each

89

state produces a new forest by joining two subtrees together, and removing the

original subtrees from the forest . For an arbitrary y E g(x) we have

And therefore

cost(y) - cost(x) + cost((ti, t1))- cost(ti)- cost(t1)

by (4.17)

cost(x) + cost(ti) + f (ti) + cost(t1) + f(t1)- cost(ti)- cost(t1)

- cost(x) + f(ti) + f(tj) (4. 18)

The result in (4.18) explains the cost of every y E g(x) simply depends on

f(ti) + f(tj) because cost(x) is a fixed amount. Therefore, to minimize the

cost(y) we only need to minimiz the value of f (ti)+ f(t1) which can be satisfi d

by choo ing two subtrees ti and t1 with the lowest frequencies. Finally, the

optimization technique of Huffman method , by using t he two trees with the

lowest cost, implements the greedy algorithm very efficiently. It considerably

reduces the complexity of the algorithm.

4.3.1.3 Greedy Algorithm for Huffman Coding

Defini t ion HuffmanSearch :: =

var x := 0

for cE Ch

X:= X U (c)

90

for k := 1 through IChl - 1 inv reaches(x, G) {

}

var s, t

s , t := the 2 trees in x of lowest f

X := XU { (s, t)} - { S, t}

4.3.2 Kruskal's Algorithm

For a connected edge weighted graph, a minimum spannmg tree is a tree which

has a minimum weight and spans th graph by connecting all the vertices. Kruskal's

algorithm find a minimum spanning tree in a connected undirected graph G = (V, E)

with the weight function w : E---+ JR. For some connected graphs, minimum spanning

trees are not unique and there are several qualifying feasible solutions which can b

formed.

Kruskal's algorithm is a greedy algorithm which adds the best choice at a time to

the partial solution. First, the edges are sorted in non-decreasing order according to

their weight. Then, from the list of sorted edges, the minimum weight edge is selected

and added to partial solution, if it does not form a cycle. In order to verify whether

a new edge e = { u , v} E E can be added without creating a cycle, the two vertices

u E V and v E V are verified not to be connected in the existing partial solution.

For the following connected graph:

91

CD-1-GDI----~6 ____ _
1/ ® 8

41 5

®- 7 0-1 ®

~/
G)--7--@

10

Kruskal 's algorithm may create a minimum spanning tree by choosing edges in the

following order:

(1, 5) -t 1, (4, 8) -t 1, (9, 12) -t 3, (9, 10) -t 3, (2, 3) -t 4, (2, 5) -t 4,

(6, 8) -t 5, (7, 8) -t 5, (5, 8) -t 6, (3, 4) -t 7, (6, 13) -t 7, (7, 11) -t 7.

The sequence of decisions results in the following minimum spanning tree:

CD-1_0 , ___ 6:...__ __ ®_3_@

/
®
41

®-7-0

®---___.:.7_1------@
5

1 ®

/ G)l--7- -@

4.3.2.1 Defining Parameters of the Problem Space and Greedy Solution

To specify the problem, it is required to define the elements of search problem:

• Define each member of S as a set of dges e E E of graph G = (V E) with no

92

cycles, S ~ 2£

S = { F I F ~ E 1\ F is acyclic}

Where

F is acyclic= Vu, vI {u, v} E F · -.(F - { {u, v} } connects (u, v)) (4.19)

Fconnects(u,v)=:3kl {u,k} EF · k =v V Fconnects(k,v)

• Define i as the empty set, i = 0

• Define each member of C as a set of edges that connect all vertices v E V with

no cycles

C = { F E S I Vu, v E V · F connects (u, v)}

• Defin e g as a function which adds a new edge to a partial solu t ion, without

creating a cycle

g(x) = {xU {e} IeEE · xU {e} is acyclic} (4.20)

To verify whether a new edge e = { u, v} creates a cycle, it is required to check

if th re is any connection between vertices u and v by any edge (set of edges)

m x .

• Define co tglobal as the sum of the weights of a set of connected edges

costglobat(x) = cost(x) = L w(e), where xES
eEx

• Define ~global as a cost comparison relation for two sets of connected edges

x ~global y L w(e) ~ L w(e), where x, yES
eEx eEy

93

To adapt the greedy solution, following parameters are specified:

• Define cost1ocal as the sum of the weights of a set of edges

costlocal(x) = cost(x) = L w(e), where xES (4.21)
eEx

• Define::;1ocal as a cost comparison relation for two sets of edges

x ::;local y - L w(e) ::; L w(e), where x, y E S
eEx eEy

The definition of local and global cost for t his example are identical and apply

to a set of edges.

4.3.2.2 Implementation Process

• Initialization is x = 0

• Defining t he while guard: while x ~ C

To implement this part consider the defini t ion of C, which implies every v E V

should be included in a complet d solution . In addition, every possible pair

of edges should be connected. Therefore, the partial solut ion x connects every

possible pair of vertices in V .

Vu , v E V · x connects (u, v)

Therefore, wh ile x ~C is implemented as while ::Ju, v E V · •x connects (u, v) .

• Generation fun ction in x :E min g(x)

Generally, as defined above in (4.20) generation function creates a set of all

possible edges which can join to the existing partial solution x, xU{e}, without

94

creating a cycle. Then, cost function (4.21) is applied to the set of creat d

partial solutions. Finally, a minimum cost partial solution is selected.

However , Kruskal 's algorithm suggests how this method can be optimized by

adding an edge with a minimum weight to the partial solution if it does not

create a cycle. In order to easily access an edge with a minimum weight, the

set of edges can be sorted according to the weight. To prove this optimization

method refines the general generation method, let's consider local cost function

(4.21) for y E g(x) according to definition of (4.20).

Let y X U { enew } E g (X)

cost(y) L w(e)
eEy

by def (4.20) andy = XU {enew }

L w(e) + w(enew)
eEx

w(x) + w(enew)

Which clearly proves that the cost of a new partial solution y E g(x) directly

depends on the weight of a new edge added to the old partial solution x. There-

fore, the optimization method of Kruskal implements th g neral generation

function .

Considering Kruskal's greedy algorithm x :E min g(x) is implemented by x :=

x U { e} where e is a minimum weight edge such that x U { e} is acyclic. The

implementation of the optimized generation function selects an edge with the

lowest weight and joins it to the existing partial solution, if it does not create

a cycle. To verify whether it creates a cycle, the existing partial solution is

95

examined not to already conne t the vertices of the new edge. T his assures

joining the new edge to the partial solut ion will not create a cycle. This implies

to implement this section we are only required to verify whether partial solution

x connects the vertices of a new edge, summarized as follows.

if x is acyclic

then x U { e} is acyclic

•x connects e

The implementation of generation function in x :E min g(x) is summarized a

follows:

let enew := an edge with the lowest w such that •X connects enew

X : = X U { enew}

4.3.2.3 Greedy Algorithm for Kruskal's Method

Definition KruskalSearch :: =

var x := 0

while (:3u v E V · • X connects (u, v)) inv reaches(x, G){

}

let enew := an edge with the lowest w such that• x connects enew

X : = X U { enew}

96

Chapter 5

Conclusion

We investigated how abstract specifications can be proved to be implemented by ab

stract algorithms. For this study we considered algorithm design t chniques such as

dynamic programming and greedy algorithms. By applying a transformation that

maps the ab tract specification into a concrete specification, we showed how to derive

a concrete algorithm from the abstract algorithm. With the derived method came

along a formal proof of abstract algorithm correctness. This allows the abstract al

gorithm to be reused, along with its proof, to implement multiple concrete problems.

The approach can be summarized as follow . Suppose we know that an abstract spec

ification P is implemented by an abstract algorithm Q, then if we need an algorithm

for a problem R = T(P), where T is a data transform, we can implement R with

T(Q).

The study by Bird and de Moor uses categorical calculus as the mathematical

framework. This framework helps formulating theorems and proofs. Generally, the

framework and theorie does not match up how computer programmers typically view

97

problems; ther fore, the preliminary concepts were also presented. The style of rea

soning with functions and relations is pointfree, which has the advantage of avoiding

to formulate bound variables used by quantifiers and is described in terms of func

tional decomposition. However, we have experienced that the understanding of the

theorems and proofs are always impossibl without sketching and creating a support

ing pointwise reasoning, which describes a function by its application to arguments.

Optimal bracketing also known as matrix chain multiplication was described as an

application of this case in chapter 2, the same example was later studied under our

proposed dynamic programming algorithm in chapter 3. This provided the possibility

of comparing two methods by considering the level of difficulty and complexity of the

methods.

Sharon Curtis claims that although the theories by Bird and de Moor are useful

to express considerable number of problems, it is not easily applicable to all optimiza

tion problems and not applicable to some exceptional cases at all. She takes Huffman

Coding as an example, and concludes that catamorphism and anamorphism meth

ods are top-down methods while examples such as Huffman Coding need bottom-up

methods. The method developed by Curtis uses a limit operator lim T, a simple

loop where lim recursively applies T to the input until it can not be reapplied. This

method has a lower complexity comparing with catamorphisms and anamorphisms

as presented by Bird and de Moor. However, Curtis uses the same framework of

pointfree reasoning and her proposed algorithm for greedy algorithm, lim T, is yet

complicated. Kruskal's method was described as the application of this method in

chapter 2. Kruskal's method fits into the category of graphic matroids and fixed

priority algorithm described in the introduction and is also later studied with our

98

proposed method in chapter 4 providing an easy comparison of complexity and effi

ciency of algorithm.

One of th algorithm design approaches studied in this thesis is dynamic pro

gramming, which is presented in Chapter 3. An abstract algorithm for dynamic

programming has been formally developed for an abstract specification. This speci

fication includes slots for the problem space, solution space, and a function mapping

them. This abstract algorithm is presented in top-down and bottom-up approaches.

Principle elem nts of dynamic programming in the proposed method includes leaf

problems, branch problems, divide function, and conquer function. Leaf problems

are easy to solve and branch problems are solved by using functions divide and con

quer. If these two functions can be defined for a problem, dynamic programming

can be applicable. The main theory of dynamic programming is proved to be correct

by method of induction. Application of dynamic programming such as Matrix chain

multiplication and Largest black square represents how this abstract algorithm can

be implemented in concrete algorithms.

The other algorithm design approach studied in this thesis is greedy algorithm,

which is presented in chapter 4. The parameters required to create a greedy algo

rithm includes definition of completed solution, a global cost function, a local cost

function, and a generation function. The global cost function measures the degree

of optimality in a feasible solution, and the local cost function is used in each step

of the algorithm for comparing partial solutions. There is a relation between local

and global cost functions, in most cases being identical. However, it is not required

for greedy algorithm to be defined having equal local and global cost functions. The

generation function creates all the possible next greedy steps and the best is selected

99

with respect to its cost and adds it to the partial solution. If for any problem an

optimization method is used, it is required to show how it will refine the general

proposed method. As mentioned earlier in the introduction , there are many problems

with different structures which can benefit from greedy algorithm. However, in this

thesis one case has been proved to qualify for this method. This case includes prob

lems with the monotonicity condit ion , referred as better-local by Curtis . The main

theory of greedy algorithms is proved under certain conditions, such as the property

of monotonici ty and the assumption that continuing the greedy step after a complete

solution is created will not result in a better completed solution, since the generation

function stops running when a completed solution is created.

In addition to independent examples, choosing the same examples in the literature

and main body of the thesis aims to describe how the proposed methods provide more

applicable methods for computer sci ntists by resolving some inadequacies of the other

introduced methods such as complexity.

Finally, future work can include implementing the proposed techniques in SIM

PLE to refine abstract specification by abstract dynamic programming algorithm,

and abstract gr edy algorithms. It can also provide more d tails on the conditions

under which the proposed methods are applicable to particular problems. It can

further define conditions required on divide and conquer function , and proving the

correctness of greedy algorithm in other possible cases. The proposed methods can

be studied on more examples on different categories of problems such as hard to solve

problems. Future work can also include complexity study of algorithms and methods

of further optimizations.

100

Bibliography

[1] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,

1957.

[2] R. Bird and 0. de Moor. Algebra of Programming. Prentice Hall , London, 1997.

[3] R. S. Bird and 0. de Moor. From dynamic programming to greedy algorithms. In

B. Moller, H. Partsch, and S. Schuman, editors, Formal Program Development,

Volume 755 of Lecture Notes in Computer Science, pages 43- 61, Berlin, 1993.

Springer-Verlag.

[4] R. S. Bird and 0. de Moor. Solving optimisation problems with catamorphisms.

In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, 2nd International

Conference on the Mathematics of Program Construction, Volume 669 of Lecture

Notes in Computer Science, pages 45- 66. Springer-Verlag, 1993.

[5] A. Borodin , M. ielsen, and C. Rackoff. (Incremental) priority algorithms. In

Proceedings of the Thirteenth A CM-SIAM Symposium on Discrete Algorithms,

page 1996, 2002.

[6] T. H. Carmen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

McGraw-Hill, ew York, 2nd edition , 2001.

101

[7] S. Curti . Dynamic programming: A different perspective. In R. Bird and

L. Meertens, editors, Algorithmic Languages and Calculi, pages 1- 23, London,

1997. Chapman & Hall.

[8] S. Curtis. Use of relational operators for algorithm development.

ems. brookes.ac. uk/ staff/ Sharon Curtis/ publications/ lim. ps.gz, 1999.

[9] S. A. Curtis. A Relational Approach to Optimization Problems. PhD thesis,

University of Oxford, Oxford, U.K., April 1996.

[10] S. A. Curtis. The classification of greedy algorithms. Science of Computer

Programming, 49:125- 157, 2003.

[11] E. W. Dijkstra. Guarded commands, nondeterminancy and formal derivation of

programs. Communications of ACM, 18:453- 457, 1975.

[12] J. Edmonds. Matroids and greedy algorithms. Mathematical Programming,

1:126- 136, 1971.

[13] J . Edmonds. How to t hink about algorithms. loop invariants and recur-

sion. http: / j www.cse.yorku.ca/ rvjeff/ notes/ 3101/ The otes.pdf, Version 0.12,

January 2007.

[14] R. W. F loyd. Assigning meanings to programs. In Proceeding of Symposium

in Applied Mathematics and Mathematical Aspect of Computer Science, pages

19- 32, 1967.

[15[D. Gries. The Science of Programming. Springer-Verlag, w York, 1981.

102

[16] E. C. R. Hehner. Predicative programming part I. Communications of the A CM,

27:134- 143, 1984.

[17] E. C. R. Hehner. Predicative programming part II. Communications of the

ACM, 27:144- 151, 1984.

[18] E. C. R. Hehner. A Practical Theory of Programming. Springer-Verlag, ew

York, 1993.

[19] J. L. Rein. Discrete Structures, Logic, and Computability. Jones and Bartlett

Publishers, Boston, 2nd edition, 2002.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. In C. A. R.

Hoare and C. B. Jones, editors, Essays in Computing Science, pages 45- 58, New

York, 1989. Prentice Hall.

[21] C. A. R. Hoare. otes on an approach to category theory for computer scien-

tists. In M. Broy, editor, Constructive Methods in Computing Science, NATO

Advanced Science Institute Series (Series F: Computer and System Sciences),

volume 55, pages 245- 305. Springer Verlag, 1989.

[22] C. A. R. Hoare , I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe, J. W.

Sanders, I. H. Sorensen, J . M. Spivey, and B. A. Sufrin. Law of programming.

Communications of A CM, 30:672- 686, 1987.

[23] D. S. Hochbaum. Approximation Algorithms for NP-hard Problems . PWS Pub

lishing Company, 1995.

103

[24] B. Korte and L. Lovasz. Mathematical structures underlying greedy algorithms.

In Fundamentals of Computation Theor·y, Volume 117 of Lecture Notes in Com

puter Science, pages 205- 209, Berlin , 1981. Spring-Verlag.

[25] B. Korte and L. Lovasz. Greedoids and linear objective functions. SIAM Journal

on Algebraic and Discrete Methods, 5:229- 238, 1984.

[26] B. Korte, L. Lovasz, and R. Schrader. Greedoids. Springer-Verlag, Berlin, 1991.

[27] A. Lew and H. Mauch. Dynamic Programming: A computational Tool. Springer,

Berlin, 2007.

[28] J. McCarthy. Towards mathematical science of computation. www-

formal.stanford.edu/jmc/ towards.ps, 1996.

[29] T . S. orvell. The SIMPLE Report . Draft , Memorial University, St. John 's, L,

Canada, 2004 (Unpublished).

[30] T . S. Norvell. Faster search by elimination. In Newfoundland Electrical and

Computer Engineering Conference, November 2005.

[31] T . S. Norvell and Z. Ding. An nvironment for proving and programming. In

Newfoundland Electrical and Computer Engineering Conference, October 1999.

[32] D. Pavlovic and D. R. Smith. Software development by refinement. In B. K. Aich

ernig and T. S. E. Maibaum, editors, UNU / liST 1Oth Anniversary Colloquium,

Formal Methods at the Crossroads: From Panaea to Foundational Support, Vol

ume 2757 of Lecture Notes in Computer Science, pages 267- 286. Springer, 2003.

104

[33] B. C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press,

Cambridge, Mass, 1991.

[34] J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online

Algorithms: The State of the Art, pages 196- 231. Springer, 1998.

[35] D. Smith. Mechanizing the development of software. In M. Broy and R. Stein

brueggen, editors, Calculational System Design, Proceedings of the NATO Ad

vanced Study Institute, pages 251- 292. lOS Press, 1999.

[36] D. R. Smith. KIDS: A semi-automatic program development system. IEEE

transactions on Software Engineering Special Issue on Formal Methods , 16:1024-

1043, 1990.

[37] D. R. Smith. KIDS: A knowledge-based software development system. In M. R.

Lowry and R. D. McCartney, editors, Automating Software Design, pages 483-

514, Menlo Park, California, 1991. AAAI Press.

[38] D. R. Smith. Automating the design of algorithms. Lecture Notes In Computer

Science, 755:324- 354, 1993.

[39] J. Ward. A unified model of algorithm design. Master's thesis, Dept. of Computer

Science, University of Toronto, Toronto, ON, Canada, 2007.

105

