

Formal Algorithm Design Approaches for
Dynamic Programming and Greedy Algorithms

by

© Leila Mofarah-Fathi

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University

May 2010

St. John's ewfoundland

Abstract

In this thesis we present a formal study of greedy algorithms and dynamic pro­

gramming in a predicative framework. A simple approach i presented based on

specialization of an abstract algorithm representing an algorithm design approach.

This provides not only reuse of the algorithm, but also reuse of its proof. Moreover,

the simplicity and applicability of the design techniques are not sacrificed. For each

method, a problem is parameterized to create a specification, which is then trans­

formed to a concrete algorithm following the proposed proce s.

11

Acknowledgment

I am sincerely thankful to my supervisor, Dr. Theodore S. orvell, for his very

helpful suggestions, discussions, support and guidance through all phases of this re­

search work. It is a pleasure to thank Engineering Faculty and staff who made this

thesis possible with providing an excellent environment.

I am grateful to friends who made their moral support always available in the

course of my studies, in particular for the coffee breaks.

I owe my deepest gratitude to my parents, Fatemeh and Hossein, for always be­

lieving in me and their unconditional support.

Finally, I am grateful to the love of my life, Reza, for his encouragements, care

and support in numerous ways throughout the course of this Master work.

Ill

Contents

Abstract

Acknowledgment

1 Introduct ion

2 Background and R elated Work
2.1 Mathematical and Programming Frameworks .

2.1.1 Functional Programming
2.1.1 .1 Datatypes and Functions
2.1.1.2 Recursive Definitions .
2.1.1.3 Lists . .
2.1.1.4 Trees . . .

2.1.2 Category Theory . .
2.1.2.1 Categories .
2.1.2.2 Functors ..
2.1.2.3 Products .
2. 1.2.4 Coproducts
2.1 .2.5 F-Algebras and F-Homomorphisms
2.1.2.6 Initial Algebras and Catamorphisms
2.1.2.7 Hylomorphism . . .

2.1.3 Set Theory and Category Set
2.1.3.1 Sets
2.1.3.2 Functions on Sets . .
2.1.3.3 Isomorphisms
2.1.3.4 Sets and Categories

2.1.4 Relations and Category Rei
2.1.4.1 Rei
2.1.4.2
2.1.4.3
2.1.4.4
2.1.4.5
2.1.4.6

Powerset Functor .
Min and Max
Monotonic Algebras
Power Transpose (Lambda)
Coreflexives

IV

ii

iii

1

8
9
9
9

10
10
11
11
12
12
13
14
14
15
16
16
16
18
19
19
20
20
21
21
22
23
23

2.1.5 Algorithm Development and Category Specs
2.1.5.1 Specification .
2.1.5.2 Morphisms
2.1.5.3 Category Specs
2.1.5.4 Refinement and Diagrams
2.1.5.5 Global Search

2.2 Related Work in Dynamic Programming
2.3 Related Work in Greedy Algorithms .

2.3.1 General Specification . .
2.3.2 The Algorithm
2.3.3 The Greedy Algorithms . . .
2.3.4 Application of Greedy Algorithms: Kruskal's method

2.4 Related Work in Automated Algorithm Development
2.4.1 Software Development by Refinement
2.4.2 Application

2.4.2.1 Development of a Domain Theory .
2.4.2.2 Create a Specification
2.4.2.3 Apply a Design Tactic

3 Formal Dynamic Programming
3.1 otations
3.2 Introduction
3.3 Introduction to Applications .

3.3.1 The Matrix Chain Multiplication
3.3.2 The Largest Black Square

3.4 Divide-and-Conquer
3.4.1 The idea of Divide-and-Conquer .
3.4.2 Formal Divide-and-Conquer ...

3.5 Dynamic Programming
3.5.1 The Idea of Dynamic Programming
3.5.2 Formal Dynamic Programming . .
3.5.3 Top-Down Dynamic Programming.

3.6 Bottom-up Dynamic Programming . .
3. 7 Application of Dynamic Programming

3. 7.1 Matrix chain Multi plication
3.7.2 Largest Black Square

4 Formal Greedy Algorithms
4.1 The Ideas of Greedy Algorithm
4.2 Formal Greedy Algorithm

4.2.1 Defining Parameters and Transformations
4.2.2 Optimization

v

23
23
24
25
26
27
27
35
35
36
38
39
41
42
44
44
45
46

49
50
53
54
54
55
57
57
57
59
59
60
61
63
65
65
69

74
74
75
75
82

4.3 Application
4.3.1 Huffman Coding

4.3.1.1 Defining Slots
4.3.1.2 Implementation Process
4.3.1.3 Greedy Algorithm for Huffman Coding .

4.3.2 Kruskal s Algorithm
4.3.2.1 Defining Parameters of the Problem Space and Greedy

4.3.2.2
4.3.2.3

Solution
Implementation Process
Greedy Algorithm for Kruskal's Method

5 Conclusion

Bibliography

VI

83
83
84
86
90
91

92
94
96

97

100

Chapter 1

Introduction

Algorithm generally refers to a concrete algorithm. However, there is a broader per­

spective to algorithms known as abstract algorithms. To form an abstract algorithm,

a deeper understanding of the abstract input , and output is required. The abstract

algorithm excludes the optimization details of an algorithm, or data structure and

datatypes for implementation purposes. To develop an abstract algorithm, the main

concept is the knowledge to design an algorithm.

Moreover, algorithm design approaches, such as greedy algorithms, dynamic pro­

gramming, divide-and-conquer, and binary search, are generally taught and under­

stood as informal ideas. Can we capture each algorithmic approach formally?

We are investigating how abstract specifications can be proved to be implemented

by abstract algorithms. For this study we consider algorithm design techniques includ­

ing dynamic programming and greedy algorithms. Therefore, by applying a trans­

formation that maps the abstract specification into a concrete specification, we can

derive a concrete algorithm from the abstract algorithm. With the derived method

1

comes along a formal proof of abstract algorithm correctness. This allows the abstract

algorithm to be reused, along with its proof, to solve multiple concrete problems. The

approach is summarized as follows. Suppose we know that an abstract specification

Pis refined by an abstract algorithm Q, then if we need an algorithm for a problem

R = T(P), where Tis a data transform, we can refine R with the same transformation

T(Q).

Abstract Specification P
Pf;;_Q

Abstract Algorithm Q

T T

Concrete Specification T(P)
T (P) f;;.T(Q)

Concrete Algorithm T (Q)

One of the design approaches presented in this thesis is dynamic programming

which is a recursive approach to solving instances of problems by creating subinstances

and using the obtained solutions to the subinstances to create a solution to the original

instance. It is mostly applied to optimization problems, however, it also covers some

non-optimization problems. The idea of dynamic programming is been taught in

many books on algorithms such as [27, 13]. Its history goes back to 1955 when R.

Bellman systematically studied this approach [1]. There have been other studies by

other authors on its applications, and computational complexity. However, the main

purpose of this thesis is neither studying concrete algorithms of dynamic programming

independently nor the study of their complexity. It is rather on how to derive concrete

dynamic programming algorithms from abstract algorithms.

This approach has been studied by researchers such as Bird and de Moor who

have published papers such as [4, 3] and a book [2] on how to to calculate programs.

In these studies algorithm design techniques such as dynamic programming, greedy

algorithms, exhaustive search and divide-and-conquer are approached in an algebraic

2

form of programming. The algebraic approach can be applied to derive individual

programs and is also a tool for studying general principles of programming, in par­

ticular those concerning optimization problems. Bird and de Moor theories make use

of the categorical calculus of relations as a mathematical framework, providing the

possibility of abstracting away the datatypes. This framework helps in formulating

theorems and proofs. The calculus consists of two methods of reasoning, pointfree

and pointwise. The former is reasoning based on functions and relations , and ef­

fectively avoids the use of quantifiers. The latter, however, is reasoning based on a

formalism such as predicate calculus, and is well suited for automated development

of programs. The main concept used in the studies of Bird and de Moor in solving

problems is catamorphism. Catamorphisms in Bird and de Moor's theory is an oper­

ator similar to the fold operator in many functional languages. The results, mostly

in a recursive format , are then translated into a functional programming style. The

style of reasoning with functions and relations is pointfree.

A recent study by Lew and Mauch [27] represents dynamic programming problems

in categories such as group routing problems, optimal binary tree problems, and some

non-optimization problems. It is also a very good source of examples and applications

of dynamic programming. A study by Ward [39] presents a unified model of algorithm

design for design techniques such as dynamic programming.

Greedy algorithms are the other design approach studied in this thesis. Such al­

gorithms provide a considerable benefit of simplicity and efficiency, if applicable to

a problem. Greedy Algorithms are used for solving optimization problems, sequen­

tially making locally optimal choices to make a globally optimal solution. There have

been many studies for conditions under which greedy algorithms can be applicable to

3

problems, which are not considered in this thesis and can be studied in the following

suggested sources. For a greedy algorithm to be applicable to a problem, the greedy

structure should be satisfied [6] . Matroids and greedoids are structures that meet

certain conditions guaranteeing a greedy solution. Although, greedy algorithms can

be applied to other problems not fitting in this categories. Matroids, which first ap­

peared in the combinatorial optimization study by Edmonds [12], exhibit the property

of optimal substructure in a problem. Optimal substructure indicates that to create

an optimal solution to a problem instance, optimal solutions to the subinstances are

used [6] . There is also the concept of graphic matroids, which, for instance, covers

the structure of the minimum spanning tree problem. Greedoid theory is studied by

Korte and Lovasz in [24, 25, 26]. There are other studies on optimization problems

and particularly greedy algorithms known as priority algorithms [5]. In the study

of priority algorithms [5], greedy algorithms are known to satisfy the property of

incremental priority (fixed priority) . Therefore, problem subinstances are evaluated

based on their priority, high to low, and removed from the input list. The priority is

defined with respect to the objective (cost) function. This algorithm framework can

be viewed as a generalization of online algorithms in [34, 23]. In addi t ion, the authors

of [5] derive lower bounds with respect to priority algorithms.

Sharon Curtis has studied optimization problems and contributed to the study

of dynamic programming and greedy algorithms by approaching them in a relational

context [9, 10, 8, 7]. This study introduces more relationship between dynamic pro­

gramming and greedy algorithm and approaches them as combinatorial optimization

problems. Curtis claims using a loop operator in imperative programming style gives

an extra degree of freedom in generating feasible solutions.

4

Formal proof and algorithm correctness have been studied by J. McCarthy [28], C.

A. R. Hoare [20, 22], R. Floyd [14], and E. Dijkstra [11]. There are also recent studies

done by D. Smith [32, 35, 36, 38, 37]. Smith, in Kestrel Interactive Development

System (KIDS), has approached correct and efficient algorithm development in two

parts, techniques of automation process and the concept theory of algorithm design.

Smith explains his studies are not about the effectiveness of tactics such as dynamic

programming, but rather about how to apply the tactics to several type of problems.

To derive algorithms, first the problem is formally described with specifications, then

the theory is applied to derive the algorithm. Following datatype refinements , a cor­

rect and efficient program also known as concrete specification is developed from an

abstract specification. The work is mainly on software development by refinement

techniques and mechanizing the development of software. All of the KIDS transfor­

mations preserve correctness and are automatic, with the exception of choosing the

algorithm de ign technique.

The main contribution of this thesis is deriving abstract dynamic programming

and greedy algorithms and the transformation process to derive concrete algorithms

from concrete problem specifications. The mathematical framework used to provide

these methods is Predicative Programming. Predicative Programming is presented

by E. Hebner in [18, 16, 17]. Pointwise reasoning is applied in defining functions. The

proposed methods are suggested for the SIMPLE environment developed by T. Norvell

[31, 29]. SIMPLE is an integrated development environment to develop and edit

proofs and program development proofs. This environment assists its user in checking

the steps required for proof and algorithm development. SIMPLE can extend to an

environment to include proof support for programming and specification languages.

5

This thesis tries to provide more applicable methods for computer scientists resolving

some inadequacies of the other introduced methods.

The rest of this thesis is structured as follows. Chapter 2 presents category theory

as the mathematical framework of theories and algorithms studied in the literature

and related work. Related work includes definitions and theories of dynamic program­

ming by Bird and de Moor, and an application of their theory, optimal bracketing. It

also includes the idea of a simple recursive loop by Curtis to generate feasible solutions,

and an application of greedy algorithm which is Kruskal's minimum spanning tree.

In addition , it presents Smith's approach on algorithm development in KIDS project

including algorithm development steps, basic concepts, and software development by

refinement. This chapter ends with an algorithm of job scheduling process presented

to describe refinement and development concepts on algorithm development.

Chapter 3 presents the proposed generic dynamic programming algorithm. Like

the divide-and-conquer method, it works by finding solutions to subinstances and

combining solutions to the subinstances. Unlike divide-and-conquer, dynamic pro­

gramming saves the solutions to the subinstances. There are two approaches to

implementing dynamic programming: top-down and bottom-up. In this chapter we

will discuss an approach to solving problems based on concretization of top-down

and bottom-up abstract dynamic programming algorithms. Along the way, we also

formalize the closely related divide-and-conquer approach. Matrix multiplication,

otherwise known as optimal bracketing, and maximum black square on an image are

the applications of dynamic programming considered in this chapter.

Chapter 4 presents the proposed greedy algorithm. In this chapter we are inves­

tigating how abstract specifications can be proved to be implemented by abstract

6

greedy algorithms. In this chapter, a formal structure for greedy algorithms in a

predicative style is presented. Considering there can be many possible greedy choices

in each step which all lead to a completed solution, the proposed algorithm makes

an arbitrary election amongst all possible greedy choices. Applications of greedy

algorithms presented in this chapter are Kruskal's algorithm, and Huffman codes.

Finally, chapter 5 presents the summary and conclusion of this thesis and intro­

duces possible future works. All chapters on this thesis can be studied independently.

7

Chapter 2

Background and Related Work

Studies are conducted by several researchers on algorithm design techniques such as

dynamic programming, greedy algorithms, exhaustive search and divide-and-conquer

in an algebraic form of programming. The algebraic approach can be applied to derive

individual programs and is also a tool for studying general principles of programming,

in particular those concerning optimization problems.

In this chapter we present category theory as the mathematical framework of the­

ories and algorithms studied in the literature and related work. Related work section

includes definitions and theories of dynamic programming by Bird and de Moor, and

an application of their theory, optimal bracketing. It also includes the idea of a simple

recursive loop by Curtis to generate feasible solutions, and an application of greedy al­

gorithm which is Kruskal's minimum spanning tree. In addition, it presents Smith's

approach on algorithm development in KIDS project including algorithm develop­

ment steps, basic concepts, and software development by refinement. This chapter

ends with an algorithm of job scheduling process presented to describe refinement

8

and development concepts on algorithm development.

2.1 Mathematical and Programming Frameworks

2.1.1 Functional Programming

Some algorithms which are studied in the related work are written in a functional pro­

gramming style. Therefore, this section is an introduction to functional programming

elements and features.

2.1.1.1 Datatypes and Functions

An example of a simple datatype is boolean defined as follows [2] :

Bool ::= false I true

which may also be used to define a new datatype such as:

Either ::= bool Bool I char Char.

Functions can be written in either of the following styles

and : (Bool x Bool) -t Bool

and (false, b) = false

and (true, b) = b

cand : Bool -t (Bool -t Bool)

cand fals e b = fa lse

cand true b = b

9

In the above definitions of a function , cand is called a curried function and and is

called a non-curried function.

2 .1.1.2 Recursive Definitions

Datatypes and functions may also be defined recursively [2] . For instance, natural

numbers can be defined as:

Nat zero I succ Nat

and plus function can be defined as:

plus (m, zero) = m

plus(m, succn) = succ(plus(m,n))

Some function definitions can be written using numbers and some arithmetic oper­

ations. Factorial function fact that uses n + 1 instead of succ is an example of this

case

2.1.1.3 Lists

fact 0 = 1

fact (n + 1) (n + 1) x fact n.

A list is a datatype commonly used m functional programming with two basic

definitions [2]:

listr A ::= nil I cons (A, listr A)

listl A ::= nil I snoc (list A, A)

10

(2.1)

(2.2)

Cons-list defined in (2.1) builds a list in which new elements are added to the front;

snoc-list defined in (2.2) builds a list in which new elements are added to the rear.

An example of functions on lists is map, which applies a function to every member

of a list

f : B -t C

map f : list B -t list C

map f [a1, a2, . . . , an]= [Ja1, Ja2 , ... , fan].

2.1.1.4 Trees

One form of a tree can be described as a datatype whose values are either tips

containing data or pairs of trees [2]:

tree A ::= tip A I bin (tree A, tree A).

An example of this definition is tree Char where its elements are characters 'A' , ' B' , and 'C':

bin (tip'A', bin (tip ' B' , tip'C')).

2.1.2 Category Theory

Category theory is an algebraic structure that is useful for developing relations be­

tween specifications, designs, correctness proofs, and programming languages. It pro­

vides a framework for correctness and data validity of programming and algorithm

development [21]. Some examples of categories include Set - the category of all sets­

and Rei - the category of all relations. Set is fi rst described as an example of categor­

ical concepts. There is also a short description of Rei that is introduced by Bird and

11

------------~------~--· --- ---

de Moor [2]. The elements of category theory presented in this chapter are necessary

to understand the related work on algorithm development. To study these concepts

in more details, an example is provided in (2.1.3).

2.1.2.1 Categories

By definition a category, denoted by C, is a collection of objects and arrows (mor­

phisms) where each arrow f : B ---t A has a source and a target object [33, 2]. On each

category, composition arrows and identity arrows are defined. For any two arrows

f : B ---t A and g : C ---t B, the composition arrow is

f·g:C---tA.

For arrows f : B ---t A, g : C ---t B, and h : D ---t C the following associative law is

defined:

f . (g . h) = (! . g) . h.

For each object A and arrow f : B ---t A, an identity arrow idA : A ---t A satisfies the

following identity laws:

f ·ids

idA· f

f, and

f.

For any category C, the opposite category c op is defined such that it has the same

objects but reversed arrows, by inversion of source and target.

2.1.2.2 Functors

A Functor is a category of categories, its objects are categories and its arrows are

maps between categories denoted by F [33, 2]. A mapping of a category to category

12

includes mapping of two elements of a category: a mapping of objects to objects and

a mapping of arrows to arrows. Let C and D be categories, a functor F : D ---+ C

maps each object of D such as B to an object of C such as F(B) , and each arrow of

D such as f : B ---+A to an arrow of C such as F(J) : F(B) ---+ F(A) where

F(J. g) = F j. Fg.

2.1.2.3 Products

A product of two objects A and B in a category C is an object denoted by A x B

together with two arrows outl : A x B ---+ A and outr : A x B ---+ B with the following

property [33, 2]: for any object C and arrows

f : C ---+ A, and

g : C---+ B ,

there exists a unique arrow

h :C---tAx B

such that

h =(!,g) outl · h = f and outr · h = g

where (!,g) is pronounced "pair f and g". The following diagram summarizes the

type information

13

2.1.2.4 Coproducts

A coproduct of two objects A and B in a category C is an object denoted by A + B

together with two arrows inl : A ---7 A + B and inr : B ---7 A + B with the following

property [33, 2]: for any object C and arrows

f : A ---+ C, and

g: B---+ C,

there exists a unique arrow

h:A+B---+C

such that

h = [f,g] h · inl = f and h · inr = g

where [/, g] is pronounced "case f or g". The coproduct of A and B in C is the product

of A and B in c op. The following diagram summarizes the type information

2.1.2.5 F-Algebras and F-Homomorphisms

Let K be a category and F : K ---7 K a functor , an F-algebra is a pair (A, a) of an

object A of K and an arrow a: F(A) ---7 A of K [33].

An F-homomorphism from an algebra (A, a) to an algebra (B, b) is an arrow

h : A ---+ B of K such that the following diagram commutes [33, 2]:

A---B
h

14

,---;-----------------------------------

A simple example is the algebra (Nat,+) of the natural numbers and addition

which is an algebra of the functor:

F(A) = A x A

F(h) = h X h

2.1.2.6 Initial Algebras and Catamorphisms

An F-algebra (T, a) is an initial F-algebra if and only if for every F-algebra (A, f) ,

there is a unique homomorphism h: T-+ A which is called catamorphism ~~~[33, 2].

The following diagram summarizes the type information

F(T) ~ F(A)

Ql lf
T--...,..A

OJD

For all arrows h : T -+ A there is a universal property

h = ~~~ = h · a = f · F(h)

Example 1. Catamorphisms on Strings

A string is a list of chars which in functional programming can be presented as a

datatype defined as follows [2]

String : := nil I cons(Char, String).

To create a catamorphism, the definition of string declares that the initial algebra

is built as [nil , cons] : F String -+ String of the functor F:

FA = 1 + (Char x A)

F f = id + (id X f)

15

Here nil : 1 --t String is a constant function. Every algebra of the functor on string

is [c, f] where c : 1 --t A is a constant and f : Char x A --t A is a function.

In order to form h ·a = f · F(h) to create a catamorphism, h is defined as ~c, f~.

2.1.2.7 Hy lomorphism

The composition of a catamorphism with the converse of a catamorphism is called a

hylomorphism, such as ~R~.~s~o [2]. Let R : FA--t A, S : F B --t B, ~R~ : T --t A,

and ~S~ : B --t T, where T is the initial type of F, then ~R~ · ~s~o : B --t A.

Hylomorphisms can be characterized as least fixed points.

Theorem 2 . Suppose that R : FA --t A and S : F B --t B are two F-algebras, then

~R~ · ~s~o : B --t A is given by

2.1.3 Set Theory and Category Set

This section is a brief survey of set theory. It shows that sets and functions between

sets have th structure of categories.

2.1.3.1 Sets

One view of sets is that a set is a collection of elements that share a common property

such as P [21], and is defined as follows

S = {xI Px}.

16

Each element in a set is called a member, x E S. An element outside the set is not a

member n tt S.

x E S, y E S, .. . , z E Sis also written as x, y, .. . , z E S

A subset A of a set B is a set such that all of its members are also members of set

B , formally defined as (2.3). In addition , two sets are equal if the subset relation is

mutually definable , formally defined as (2.4).

A~B

A = B

(x E A implies x E B , for all x)

(A ~ B and B ~A)

(2.3)

(2.4)

Some examples of sets are the empty set, and powerset. The empty set {} is a

set with no members. Sets can have none, one, or more members. Powerset is a set

containing all sub ts of a set, including an empty set and the set itself.

If x, y E S, pair (x y) can be defined as an ordered pair. 1\vo pairs are equal if

their ordered m mbers are equal.

(x, y) = (x', y') = x = x' andy = y'

The cartesian product of A x B contains all pairs (x , y) as defined

AxE = {(x,y)lxEAand yEB}.

Operations such as U, n, U, n, and --. are defined on sets. For instance, A U B is

the union of A and B defined as follows:

AUB {xI x E A or x E B}.

17

If S is a set of sets, its union U S is the set containing all members of any of its

members defined as follows:

u s = {X I (:3y E s . X E y)}

2.1.3.2 Functions on Sets

A function consists of two sets, the source and the target, and a mapping between

them [21]. In concept, a function is very close to functor; it is written in form of

(J : S ---7 T), where

• S is a source set,

• T is a target set,

• f is a total mapping which maps members of S to members ofT.

Two mappings could be equal, however, form different functions by having different

source and target sets. Thus,

S=S',

(J : S ---7 T) = (f' : S' ---7 T') iff T = T', and

fx = f'x , for all x E S

For simplicity, function f : S ---7 T is abbreviated to f and a mapping is denoted

using A notation. If xis a variable inS and · · · x · · · is an expression in T when x , then

(Ax · · · x · · ·) is a A expression. The corresponding function ((Ax · · · x · · ·) : S ---7 T)

includes the presented mapping, source set S, and target sets T. The composition of

functions f : S ---7 T and g : T ---7 U is also a function

f ; g = ((Ax · g (Jx)) : S ---7 U) .

18

2.1.3.3 Isomorphisms

Let f and g be functions defined as f : S T and g : T ----7 S, if there is a unique g

for f where th y have the following relation

J;g = f s

then g is called the inverse of f. A function that has an inverse is called an isomor­

phism; Sand Tare said to be isomorphic (S ::= T) [21]. In category Set isomorphism

is also referred to as bijection which has the property of surjection and injection. If

the image of a function f : S ----7 T, which is a subset ofT which can be obtained by

applying f to som members of S, contains all members of the target set T, then f

is said to be a surjection. Conversely, for any subset S ofT, there is a functor that

maps each member of S to itself in T which is said to be the injection.

2.1.3.4 Sets and Categories

There are two type of categories: concrete category and abstract category [21]. F is

called a concrete category if it is a family of functions that has the two following

properties:

• if(! : s ----7 t) E F then Is, It E F

• if(!: s ----7 t) , (g: t ----7 u) E F then ((!;g) : s ----7 u) E F.

The objects of th category defined as a family of sets denoted by Jl F 11. The arrows

of the category are the functions denoted by I F I·

Set is the category that has all sets as its objects and all functions as its arrows.

Set is an example of a concrete category; all concrete categories are subcategories of

19

Set.

Formally, an abstract category C is defined as (II C II, I C I, I , ; , +-, --*) where

[21]

• II C II is a family of objects

• I C I is a family of arrows

• I identity is a function from II C II to I C I

• ; composition is a partial binary operator on I C I

• f- source and --* target are total functions from I C I to II C II

Moreover, t he following properties must be satisfied in a category [21]:

• j; g is defined just when 1 = g,

t- t-:- -:---t 1 • j; g = f, and j ; g = ,

• (!;g); h = j; (g; h)

2.1.4 Relations and Category Rei

2.1.4.1 Rei

Another example of a category is Rei which is defined on sets and relations [2]. In

Rei objects are sets and each arrow is a relation R : A --* B which is a subset of the

20

Cartesian product A x B. In relations aRb indicates (a, b) E R. The identity arrow

is:

idA= {(a, a) I a E A}.

Composition arrow of R: B -t A and S: C -t B is defined as:

aT c = (:Jb · aRb 1\ b S c)

2.1.4.2 Powerset Functor

A functor P : Fun -t Fun - where Fun is the category of sets and total functions - is

a mapping from a et A to the powerset P A defined as follow [2]

P A = {xI x ~A} .

It also applies f to a set which then applies to every element of it, by mapping a

function f to the function P f.

2.1.4.3 Min and Max

For any relation R : A -t A, the relation min R : P A -t A relates x to a if a is

an element of x and a lower bound of x with respect to the relation R [2]. For all

X : A -t A we can also define max R = min Ro, so a maximum element with respect

to R is a minimum element with respect to R o. The minimum element applies to a

function f as follows

min R . P f = f . min(r . R . f)

21

The following diagram summarizes the type information

min(f0 .R.f)
B ----+B

PJ l ! J

PA----A
minR

2.1.4.4 Monotonic Algebras

By definition, an F-algebra S : F(A) --t A is monotonic on a relation R: A--t A if [2]

S · F(R) ~ R · S.

The following diagram summarize the type information

F(A) ~ F(A)

sl ls
A---A

R

Furthermore, if S is monotonic on a preorder Ro, then

~min R ·AS~~ min R · A~S~.

To illustrate, consider the following example when F-algebra S is addition of natural

numbers, plus : Nat x Nat --t Nat , S i monotonic on relation R "Less than or

Equal", leq, if

plus· (leq x leq) ~ leq · plus.

To show the correctness we have:

c = a + b and a :::; a' and b :::; b' ~ c :::; a' + b'

22

2.1.4.5 Power Transpose (Lambda)

A power transpose also known as lambda operator A is an operation on relations which

converts a relation to the corresponding function [9]

(t-.R) x = {y iyR x }.

2.1.4.6 Coreflexives

A domain of a relation is a relation defined as [9]

domR = {(y ,y) l3x · (x, y) E R} .

A notdomain of a relation is a relation defined as

notdomR = {(y,y) l•3x · (x, y) E R} .

As shown in the above definitions, in the studies by Curtis sets of pairs are reversed

from their usual order.

2.1.5 Algorithm Development and Category Specs

2.1.5.1 Specification

A Specification i a presentation of a theory describing objects, operations, and prop­

erties and axioms that constrain the meaning of the symbols [35, 32].

Example 3. Specification of Partial Order

23

Specification PreOrder is

sort E

op -le-:E,E ----t Boolean

axiom reflexivity is x le x

axiom transitivity is x le y 1\ y le z ~ x le z

end-spec

2.1.5.2 Morphisms

A morphism is a translator of the language of one specification into language of

another specification preserving the correctness of the theorems of the source specifi­

cation in the destination specification; a morphism translates theorems and interprets

symbols of a theorem to expressions [35, 32j.

Example 4. Partial-Order specification using PreOrder specification

spec Partial- Order

import PreOrder

axiom antisymmetry is x le y 1\ y le x ~ x = y

end-spec

Example 5. A specification morphism from Partial-Order to Integer

morphism Partial-Order-to-Integer is:

{ E ----t Integer, le ----t:::;}

24

.-o--- ---

An import (extension) morphism is used to create a new theorem using existing

theorems. For example, specification of preorder which has the axioms of reflexivity

and transitivity could be imported to build up a new specification Partial-Order which

has those axioms and an additional axiom of antisymmetry.

2.1.5.3 Category Specs

Category of Specs is a category which has specifications as its objects and spec-

ification morphism as its arrows [35, 32]. The definition of colimit(coproduct) is

also defined in this category. For example, A~ C and A~ B has a colimit

B ~A ~ C is computed as follows:

• form the disjoint union of all sort and operator symbols of A , B, and C

• define s ~ t iff (i (s) = t V i (t) = s V j (s) = t V j (t) = s) where i : A ---t B

and j : A --+ C

• use morphism to define the axioms of colimit from axioms of A, B, and C

The co limit is the collection of all the equivalent relations (~) and sort, symbols, and

axioms.

Example 6. The theory of Binary Relation presented as a colimit of Antisymmetry

and ?reOrder

spec BinaryRelation

~ ~
spec Antisymmetry spec PreOrder

25

,-~---~-- -

In this exam pie morphisms are { E -t E, le -t le} from BinaryRelation to A ntisym-

metry and ?reorder. Colimits can be used to construct a large specification from a

diagram of specs and morphisms.

2.1.5.4 Refinement and Diagrams

Specification morphisms can be used to structure and refine a specification [32, 35]. A

morphism between a specification domain and codomain is a refinement which reduces

the number of possible implementations. Thus, refinement represents a particular

design decision or property that corresponds to the implementation of a domain

specification and is also applicable to codomain specification. A diagram morphism

from diagram D to diagram E is a set of specification morphisms, from a specification

in D to a specification in E, which maps diagram D to diagram E, represented as

D ~ E. The following diagram summarizes the refinement structure:

Example 7. A diagram morphism as data type refinement that maps bags to se-

quences

is represented by diagram morphism as:

BAG

~BtoS
SEQUENCE

26

2.1.5.5 Global Search

The definition of global search by Smith [38] is as follows:

The basic idea of global search is to represent and manipulate sets of
candidate solutions. The principal operations are to extract solutions from
a set and to split a set into subsets. Derived operations include various
filters which are used to eliminate sets containing no feasible or optimal
solutions ... Thus global search algorithms are based on an abstract data
type of informational representations called space descriptors. In addition
to the extraction and splitting operations mentioned above, the type also
includes a predicate satisfies that determines when a candidate solution
is in the set denoted by a descriptor.

2.2 Related Work in Dynamic Programming

Bird and de Moor's theories [2, 4, 3] make use of categorical calculus of relations as a

mathematical framework, providing the possibility of abstracting away the datatypes

and enhancing the capabilities of functional calculus. This framework helps in formu-

lating theorems to calculate programs in form of an abstract solution . In addition,

it is a framework to conduct proofs . Theorems are based on structural similarities

of the specification of the problems. The main concept used in solving problems is

catamorphism. The results, mostly in a recursive format, are then translated into

a functional programming language, using fold and unfold operations. The style of

reasoning with functions and relations is pointfree.

In order to solve optimization problems, Bird and de Moor formulated a problem

M in the following equation [2]

M (2.5)

27

where h is a function. An algorithm to solve the problem M is presented as

(2.6)

Using dynamic programming for this algorithm optimal solution to subinstances of

problems are composed to make an optimal solut ion. This method is presented in

two theorems of dynamic programming from 12]. In theorem 8 below, the problem

instance is decomposed in all possible ways into subinstances. Then, recursively

solved subinstances are composed to make an optimal solution. In theorem 9 below,

the decompositions that will not lead to an optimal solution will be removed from

the feasible solutions.

Theorem 8. (Bird and de Moor) Let M =min R·A (~h~ · ~T~0). If his monotonic

on R , then

(p,X : min R · P (h · F X) · AT0
) ~ M.

This theorem has a recursive scheme in which the input is decomposed in all

possible ways. There are some problems that clearly declare that some decompositions

will not lead us to a result better than others. T hus, this idea is added to the theorem

8 to eliminat unprofitable decompositions. The result is the th orem 9.

Theorem 9. (Bird and de Moor) Let M = minR·A (~h~ · ~T~0) . If h is monotonic

on R and Q is a preorder satisfying h · F (~h~ · ~T~ 0) • Q0 ~ R 0
• h · F (~h~ · ~T~0) then

(p,X : min R · P (h · F X) · thin Q · AT0
) ~ M.

Hylomorphisms are important because they capture the idea of using an inter­

mediate data structure in a solution of a problem. As mentioned in theorem 2,

28

hylomorphisms can be characterized as least fixed points. In both theories, optimal

solutions can be computed as a least fixed point . If AT0 returns finite non-empty

sets and R is a connected preorder (Relation R is connected if R · R o = ID then the

unique solution is entire.

Example 10. Opt imal Bracketing

Let's study the theorem by a standard application of dynamic programming that

is the problem of building a minimum cost binary tree [2]. The problem is often

formulated as one of bracketing an expression a 1 EB a2 EB · · · EB an in the best possible

way. It is assumed that EB is an associative operation, so th way in which the

expression is bracketed does not affect its value. However, different bracketings may

have different costs, and the objective is to find a bracketing of minimum cost. The

cost of each tree is compared by relation R.

A binary tree represents a datatype for bracketing with values in the tips:

tree A ::=tip A I bin(tree A , tree A).

For example, the bracketing (a1 EB a2) EB (a 3 EB a4) is represented by the tree:

The general method (2.5) is used to pre ent optimization probl ms

Introducing function flatten : tree A ----t list+ A that flattens a tr e to a list:

flatten = Qwrap, cat~

29

where wrap turns its argument into a singleton list, cat : (list+ A)2 -t list+ A takes

two non-empty lists of tip values to a non-empty list from left to right, and the

following substitutions:

F f = id + f X f

R=R

h := [tip , bin]

~h~ = id

T = [wrap, cat]

. ·. ~T~ = flatten.

Aflatten° creates all possible trees. This optimization problem is represented as:

min R · A~wrap, cat~o .

Thus, the problem to find the minimum cost tree is formulated as follows:

met~ min R · A~wrap, cat~ 0 •

In words, a list of expressions forms a tree that is being made in all possible ways,

making a set of results. Then according to the cost of building a tree determined by

relation R, min R chooses the minimum cost trees. When

R = cost0
• leq · cost ,

t0 R t 1 = cost t0 :::; cost t 1 .

The cost of building a single tip is zero, while the cost of building a node is some

function of sizes of the expressions associated with the two subtrees, plus the cost of

building the two subtrees; furthermore, (cost, size) form a catamorphism.

30

Since the condition of monotonicity applies

where

cost· [tip, bin] = g · (id + (cost, flatt en)2
)

g · (id + (leq x id)2) ~ leq · g,

g = [zero, outl · opb · (id x sz)2
],

the dynamic programming theorem 8 is , therefore, applicable. Thus, we can compute

a minimum cost tree using the least fixed point of the recursion equation.

p,X : min R · [tip, bin · (X x X)] · A [wrap , catt ~ m et

X= (single-t tip· wrap0
, min R · P(bin · (X x X) · Acat0

)

where

fa, if pa
(p -t j, g) a=

g a, otherwise

and Acat0 can be represented as a function

split = zip · (inits+, tails+),

where zip is a function that transforms pairs of lists to lists of pairs , inits+ and tails+

return the list of proper initial and tail segments of a list.

To make it easier to follow consider this explanation:

X ([a]) =tip a

31

Let's have s as every way that we can split l = Acat0
:

X (l) =

lets= { (lo,h) l l = cat(lo,h)} in

lett = {(l0 , l1) E s ·bin (Xlo), (Xli)} in

let u = min t in

u.

In words, produce all the possible pairs , get each pair, form a tree, and apply X

to it, recurs on both of them and use previously calculated optimal trees, then make

the tree and finally pick the best one.

To compute the optimum bracketing for the main problem, we need to compute the

smaller recursively defined subinstances of the problem instance. We will represent

an array as a list of rows , however we also consider columns.

array = list row · inits

row = list met · tails

col = list met · inits

inits returns the list of non-empty initial segment in increasing order of length, and

tail the tail egments in decreasing order. First step is to express met in terms of

row and col.

met = min R ·list (bin· (met x met))· zip· (inits+, tails+)

= mix · (col · init, row ·tail)

where zip · (inits+, tails+) creates all possible break points, and mix = min list R ·

list bin · zip zip the pairs, change it to tree, and picks the be t. Next, col is represented

32

in terms of row and col.

Therefore,

col= next· (col · init, row· tail).

col= (single-t wrap · tip · head·, next · (col· init, row· tail))

next= snoc · (outl, mix).

Finally, row is expressed in terms of met and col,

row= cons· (met, row· tail).

Therefore,

row= (single-t wrap · tip· head, cons· (met, row · tail)).

Array is computed as a catamorphism on cons-lists, building columns from right to

left and then using the column entries to extend each row. Therefore, we have array

as

where

array = Qfstcol, addcol~,

fstcol = wrap · wrap · tip,

addcol = cons · (wrap · tip · outl, step),

step= list cons· zip · (tail · process, outr).

The program to calculate optimal bracketing as a result of the calculations is as

follows:

33

> data Tree a = Tip a I Bin(Int , a) (Tree a , Tree a)

> met = head· last· array

> array = cata1list(fstcol , addcol)

> fstcol = wrap· wrap· tip

> addcol = cons · pair· (wrap· tip· outl , step)

> step = list cons· zip· pair(tail ·process, outr)

> process = loop next· cross (wrap ·tip, id)

> next = snoc · pair(outl , minlist r ·list bin· zip)

> where r = leq ·cross(cost , cost)

> cost (Tip a) = 0

> cost (Bin(c , s)ts) = c

> size(Tip a) = a

> size(Bin(c , c)ts) = s

> tip = Tip

> bin(x, y) = Bin(c , c)(x, y)

>

>

where c = cb(size x, size y) + cost x +cost y

s = sb (size x, size y)

The program produced by Bird and de Moor theorem is very concise and well

developed. However, the process summarized here is about eight pages of a book.

Furthermore, some of t he conclusions made in one line, however , would be better

written in a few lines of equations to provide more clarity for the reader.

34

2.3 Related Work in Greedy Algorithms

Sharon Curtis made a contribution to the study of dynamic programming and greedy

algorithms by approaching them in a relational context [9]. This study introduces

more relationships between dynamic programming and greedy algorithms and ap­

proaches them as combinatorial optimization problems. It also uses a simple loop

operator to generate feasible solutions.

Sharon Curtis also claims that although the theories by Bird and de Moor are

useful to express considerable number of problems, it is not easily applicable to

all optimization problems and not applicable to some exceptional cases at all. She

takes Huffman Coding as an example, and concludes that catamorphism and anamor­

phism methods are Top-Down methods while examples such as Huffman Coding need

Bottom-Up methods.

2.3.1 General Specification

The general specification in a relational context is [9]

minR· AGen

where Gen is a relation that produces a feasible solution, and AGen produces the

set of all feasible solutions to the problem. The loop operator lim expresses the

specification as

min R · AlimT

where T is a relation which refers to each step of constructing a feasible solution. In

the algorithm lim T, the construction step is repeated in a loop and stops when it

35

r------------------------------------~----- --

can generate no more new steps.

The Greedy algorithms are presented in more detail in this section. A feasible

solution that satisfies a global optimal condition is made in steps, where each step ex­

tends a partial solution. To make a decision in each step, a local optimality condition

is used to compare created partial solutions. The Greedy algorithm lim G performs a

sequence of steps which takes a partial solution and results in a feasible solution that

is globally optimal. This sequence stops when a new step does not produce a new

extension. The greedy step G considers extending a partial solution in all possible

ways when making the locally optimal choice

G = minS ·AT.

In each step G, T constructs a piece, and AT returns the set containing all extended

partial solutions.

2.3.2 The Algorithm

The algorithm is in form of a relational model of a loop called limit operator [9].

Sharon Curtis proves in her theorems that limits are a generalization of catamorphism

and anamorphisms. This section is about the theory of converting catamorphisms to

the lim operator. Let

~p~: A~ B ,

where A is the carrier set of the initial F-algebra a, and the problem under construc­

tion is

minR · A~P~ .

36

On the other hand, in lim T, T : C -7 C for some type C. Thus, to get to C from

A and to get to B from C two additional functions such as start : A -7 C and

finish : C -7 B are required. Now, cata P is represented based on lim operator

~p~ = finish · lim T · start.

For t his purpose, some constraints on the functions start and finish are required ,

presented in a theorem.

Theorem 11. If start zs a function, finish zs simple and also the converse of a

function, and

then

dom finish = notdom T

Q = finish · lim T · start

R' = finish a · R finish,

min R · AQ = finish · min R' · Alim T · start.

This paragraph helps to determine t he type of C. A new F' -algebra a' is created

that is of the form of a join a' = [Pen, Fin] which relates to type Band type A, where

Fin marks a finished portion that is computed and Pen for a pending portion . To

convert the previously introduced F-structure to the recently introduced F'-algebra

a', start is a function that changes the structures by making "Pending" labeling, then

finish is a reverse of a function and removes the Fin label from a finished computation.

start = ~Pen~F

finish = Fino.

37

The following definition presents P' that executes a ?-step:

P' = [Fin· P · F Fino, OJ,

where 0 represents t hat it reaches an unfinished portion, it does not perform. F Fino

check s that all the needed results so far have been finished, and removes the Fin

labels on them. According to P' , the construction step known as T is determined as

T = ~P' U c/~F · notdom Fino,

where, ~P' U a'~F' presents that either step P occurs or nothing, and the rest of the

expression represents that the loop terminates when the computation has finished.

Theorem 12. Given the definitions,

~p~F = finish · lim T · start.

2.3.3 The Greedy Algorithms

The Greedy Algorithms are an approach to solve optimization problems, making a

sequence of locally optimal choices to create a globally optimal solution [9]. The

Greedy algorithms, however, are not applicable to problems where the greedy struc­

ture is not satisfied. Let S be the local optimality criterion, and R be the global

optimality criterion, the greedy algorithm is presented in the following theorem.

Let

M = min R · Alim T

G= minS· AT,

38

(2.7)

(2.8)

where R is a preorder on the set of completed solutions represented by notdom T. If

the following conditions are satisfied:

domG = domT

G · (limTt ~ (limTt · R

then

limG ~ M.

(2.9)

(2.10)

In each greedy step G, min selects the best with respect to S that is not necessarily

the same relation as R. The algorithm is lim G that is the repeat of G until it is

finished. The first condition in the theorem ensures that G can be performed while

we have some unfinished solution. The second condition ensures that G makes the

correct choice. It means that continuing the algorithm will lead us to a completed

result at least as good as R. Thus, the algorithm lim G could be implemented as a

simple loop with body f and guard dom T, where a variant checks the termination of

the loop.

2.3.4 Application of Greedy Algorithms: Kruskal's method

Kruskal's algorithm is a well-known greedy algorithm that finds a spanning tree of

minimum cost in an undirected (connected) graph G = (V, E) with edge costs w :

E -t lR [10].

This algorithm builds a set of edges that do not create a cycle. Starting by an

empty set and adding an edge with a minimum cost in each step, the set is formed .

Each created set is a partial solution, and the edges sets forming spanning trees are

completed solutions. G in this example adds an acyclic edge - an edge which does

39

.-----.-----------------------

not create a cycle - to the set, S is a relation of minimum weight edge, and R is a

relation comparing the sums of weights of the sets of edges.

One of the conditions for the greedy algorithm to be applicable is (2.9) which is

satisfied since a new edge can be easily added to the set of edges. The specifica-

tion of the Kruskal 's algorithm is, therefore, presented as the format of the problem

specification (2. 7)

min R · A SpanningTree

where

R = L edgecost e,
eEt

SpanningTree = lim S.

The local cost relation S on sets of edges is defined as:

es U { e} S es, if e E { E - es} 1\ acyclic(es U { e})

where es set is a subset of the set of edges and is acyclic.

To prove that the condition (2.10) is satisfied, providing the set of edges created

in this way is of a minimum cost, two sets ds and ds' is created as

and

Let i be the lowest integer such that ei E ds. If adding it to the set of edges creates

a cycle, remove another edge from the set which is in ds' and forms a cycle. If

not, remove any other edge that is in ds' . Since the greedy step selected the lowest

40

cost edge, this replacement will not reduce the cost of spanning tree. Therefore, the

created tree is of minimum weight.

2.4 Related Work in Automated Algorithm Devel­

opment

Smith with his Kestrel Interactive Development System (KIDS) [38] has approached

correct and efficient algorithm development in two parts, techniques of automation

process and the concept theory of algorithm design. Algorithm design tactics, such

as dynamic programming and greedy algorithms, play the most important role when

solving a problem. Smith [35] explains that his studies are not about how effective

the tactics ar , rather, it is about how to apply the tactics to several types of prob­

lems. First , the problem is formally described with specifications, then the theory is

applied to derive the algorithm. When making a theory for a problem, all of the def­

initions, laws, and inference rules of a problem instance should be considered. Smith

has worked on software development by refinement techniques [32] and mechanizing

the development of software [35]. Following datatype refinements, a correct and ef­

ficient program also known as concrete specification is developed from an abstract

specification.

All of the KIDS transformations preserve correctness and are automatic, with

the exception of choosing algorithm design technique [38] . From the user's point of

view the system allows the user to make high-level design decisions like, "design a

divide-and-conquer algorithm for that specification, or "simplify that expression in

41

context" . Software development differs from algorithm development in elements of

software design such as data structure, optimization techniques, and runtime environ­

ment. However, they are similar in algorithm design elements such as the application

domain, system requirement, and category of specifications. Furthermore, rules of

morphisms and colimits are introduced and applied to refine them.

During development, the user views a partially implemented specification anno­

tated with input assumptions, invariants, and output conditions. Algorithm develop­

ment by KIDS typically consist of following steps:

• Develop a domain theory

• Create a specification

• Apply a design tactic

• Apply optimizations

• Apply data type refinements

• Compile

2.4.1 Software Development by Refinement

Software development is applying a sequence of refinements to a specification S0 [35].

The following diagram illustrates this formal process where Si, i = 0, 1, ... , n, are

structured specifications and arrows ,jJ. are refinements. In each refinement step a

design decision is made from si to si+l which cuts down the number of possible

implementations. This refinement process turns a high-level specification So to a

42

low-level specification Sn. Then, a morphism translates specification Sn to a code in

a programming language. Thus, constructing specifications and refinements are the

main parts to oftware development by refinement.

Two libraries are created for this purpose, a library of specifications including com-

mon datatypes and common mathematical structures, and a library of refinements

such as algorithm design, datatype refinement, and expression optimization. There-

fore, the use of abstract design knowledge which is expressed as reusable refinements

has an important role is the development process. An application of this refinement

is illustrated in the fo llowing diagram:

where a refinement A ~ B from a library is selected, then a classification arrow

A ~ S0 is constructed, and the colimit of B ¢::= A ~ S0 is computed. This

process results in a refinement arrow of S0 ~ S 1.

43

2.4.2 Application

The scheduling of a set of jobs on a processor is subject to a precedence relation that

constraints the order in which jobs can run [38]. Suppose that each job completes in

unit time that each job has a deadline, and that we wish to minimize the number

of jobs that fail to complete before their deadlines. If we define a schedule to be an

ordering of a given set of jobs that is consistent with a given precedence relation, the

optimization problem is to minimize the cost function which is the number of jobs in

a schedule that fail to complete before their deadline.

2.4.2.1 Development of a Domain Theory

The first and the most difficult step is formalizing the domain theory [38]. A the­

ory presentation is comprised of sets of imported theories, type definitions, function

specifications with optional operational definitions, laws, and rules of inference. The

following is a domain theory for the job scheduling problem. A chedule is a linear

arrangement of a set of jobs which can be expressed in terms of a bijection.

Injective (M : seq (integer), S : set (integer)) : boolean

= range(M) ~ S

1\ V(i j)(i E domain(M) 1\ j E domain(M) 1\ if. j =::::} M(i) f. M(j))

Bijective (M : seq(integer), S : set (integer)) : boolean

= Injective(M, S) 1\ range(M) = S

ow, the concept that a schedule must be consistent with the given precedence

44

relation is captured in the following definition and associated laws:

Consistent(S: seq(JOB), P: binrel(JOB,JOB)) : boolean

= V(i j)(i E range(S) 1\ j E range(S) 1\ (i, j) E P

===? Index(i, S) < Index(j, S)),

where Index(i, S) returns the index of element i in sequence S.

and

V(p)(Consistent(O, P) =true),

V(a, p)(Consistent([a] P) =true)

V(Sl, S2, P)(Consistent(concat(Sl, S2), P)

= (Consistent(Sl, P) 1\ Consistent(S2, P)

/\Cross-Consistent (range(Sl) range(S2), P)))

where

Cross-Consistent(Rl: set(JOB), R2: set(JOB), P: binrel(JOB, JOB)): boolean

= V(I, J)(I E Rl 1\ J E R2 ===? (J,I) tj. P)

2.4.2.2 Create a Specification

A specification can be presented as a quadruple F = (D, R, I , 0) where D is the

input type which should satisfy I : D ----t boolean, the input condition [38]. The

output type is R and the output condition that should be sati fied by a feasible

solution is 0 : D x R ----t boolean . Having defined a specification in this format , the

45

following program format can be derived:

Function F(x : D)

where I(x)

Returns {z: R I O(x, z)}

=Body

The user enters a specification stated in terms of the underlying domain theory.

Formally the problem of enumerating sch dules can be specified as follows.

Schedules(Jobs : set(JOB) Precedes : binrel(JOB), (JOB))

where Irrefiexive(Precedes, Jobs)

returns {S : seq(JOB) I Bijective(S, Jobs) 1\ Consistent(S, Precedes)}

2.4.2.3 Apply a Design Tactic

The user sele ts an algorithm design tactic from a menu and applies it to a specifica­

t ion [38]. For this example global search design tactic has been selected.

Theorem 13. Let G be a global search theory. If <I> is a necessary filter then the

following program specification is consistent.

Function F(x : D) : set(R)

where I(x)

returns {z I O(x, z)}

= If <I>(x , so(x))

Then F_gs(x, s0 (x))

Else {}

46

where

function F_gs(x : D, s : S) : set(R)

where I (x) & J(x , s) & <P(x , s)

returns {z I Satisfies (z, s) & O(x,z)}

= {z I Extract (z, s) & O(x, z)}

U reduce(U , { F_gs(x , t) I Split(x, s, t) & <P(x , t)}).

On input x the program F calls F_gs with s0 (x) and unions together all solutions

that can be directly extracted from the space and the union of all solutions found

recursively by splitting and surviving the filter.

The algorithm development process summarized in the above steps creates an

algorithm for job scheduling problem using global Search technique. Further details

on the process and the programming syntax can be obtained from [38, 32, 35, 36].

function SCHEDULES-GS

(JOBS:set(JOB) , Precedes: binrel(JOB,JOB}, ps:seq(integer))

where Irrefiexive(Precedes, Jobs} A range(ps) ~ Jobs

AConsistent(ps,Precedes) A Injective(ps, Jobs}

A @iCross-Consistent@(range(ps),Jobs \ range(ps),Precedes)

returns { SCHED I Extends(SCHED,ps) A Consistent(SCHED,Precedes)

A Bijective(SCHED,Jobs) }

= {SCHED I Consistent(SCHED,Precedes) A Bijective(SCHED,Jobs}

ASCHED=ps}

47

U reduce(U, {SCHEDULES-GS (Jobs,Precedes, @iNew-pas@)

f Consistent(@iNew-ps@, Precedes)

1\ Injective(@iNew- ps@, Jobs)

1\ @iCross-Consistent

@(range(@iNew-ps@)Jobs \ range(@iNew-ps@), Precedes)

1\ ::!(!) (@iNew-ps@ = append(psJ) 1\ I E Jobs)})

function @iSCHEDULES@(Jobs :set(JOB),Precedes :binrel(@iJOB@, @iJOB@)U

where Irrefiexive(Precedes, Jobs)

returns { SCHED I Bijective(SCHED, Jobs) 1\ Consistent(SCHED, Precedes) }

= if iCross-Consistent@(range([]), Jobs\range([]), Precedes)

then SCHEDULES-GS (Jobs, Precedes, [])

else {}

48

Chapter 3

Formal Dynamic Programming

Dynamic programming is a recursive approach to solving optimization problems by

dividing a problem instance into subinstances, then combining obtained solutions to

the subinstances to create a solution to the original instance. It is used typically

for optimization problems, but has a broader usage to create algorithms for non­

optimization problems. By storing solutions to solved subinstances of a problem,

dynamic programming algorithms can be particularly efficient.

This chapter includes a formal approach for divide-and-conquer algorithm that

is used to define dynamic programming algorithms, top-down and bottom-up. The

approaches to solving problems are based on the specialization of an abstract dynamic

programming algorithm. This provides not only the reusing of the algorithm, but also

reusing of its proof. Finally, applications of dynamic programming including matrix

chain multiplication and largest black square are presented.

49

3.1 Notations

Primed and unprimed variables in specifications

A assignment such as x := E changes the value of the variable x. In specifications,

the initial value of x is denoted by the unprimed variable x, and the final value of x

is denoted by the primed variable x'.

Refinement C

Let P and Q be specifications, P is refined by Q if every behavior accepted by Q is

accepted by P

P r;;;,Q.

For example, let

f - (x' > x)

g - (x' = x + 1)

since every behavior of g is accepted by f, we can say g refines f

Set notations

Filtering set builder

If x is a variable, S is a set and P is some boolean expression describing x then

{xES I P}

50

represents the subset of S such that contains exactly elements that fit the description

P. For example

{nEZin<O}

is the set of negative integers.

Mapping set builder

If x is a variable, S is a set and E is an expression then

{xES· E}

is the set of all values of E where x is a value of S. For example

{yEN· 2n + 1}

is the set of positive odd numbers.

Filtering and mapping set builder

The full set builder notation combines filtering with mapping. It first filters and then

maps. The set

{xES I P · E}

is the set of all values of the expression E where x is a value of the set S such that

the boolean expression P is true. For example

{ i E z I - 10 < i < 10 . 2i}

is the set of even numbers between -20 and 20

{-18, -16, .. . , 16, 18}.

51

r---;--- --------------------- ---·------

Maximum and minimum set builder

Set builder can be used for describing maxima and minima. The set

max { x E S I P · E}

is the maximum over the set of all values of the expression E where x is a value of

t he set S such that P is true. For example

min{n EN In is prime· n2
}

is the minimum over the set of all squares of prime numbers, which is 4.

Let declaration

In algorithms the value of variable x can be restricted using the let declaration

let xI P · S

where P is true. For example

let n I q = p(n)

assigns the value of n to be some i where q = p(i).

Sets of consecutive integers

The finite set of consecutive integers

{0, .. k}

is the set of all integers i such that 0 ~ i < k.

52

And, the finite set of consecut ive integers

{O, .. ,k}

is the set of all integers i such that 0 ~ i ~ k.

Through

In writing algorithms, the for loop is denoted by

for i : 0 through n · S

which represents the following loop that is executed with the integer values of 2

ascending

S[i: OJ; S[i: 1]; ... ; S[i: n].

3. 2 Introduction

Algorithm design approaches, such as greedy algorithms, dynamic programming,

divide-and-conquer, and binary search, are generally taught and understood as in­

formal ideas. Can we capture each algorithmic approach formally?

We investigate how abstract specifications can be proved to be implemented by

abstract algorithms. By applying a transformation that maps the abstract specifica­

tion into a concrete specification, we can derive a concrete algorithm from the abstract

algorithm. This allows the abstract algorithm to be reused , along with its proof, to

solve multiple concrete problems. The approach is summarized as follows. Suppose

we know that an abstract specification Pis implemented by an abstract algorithm Q,

53

then if we need an algorithm for a problem R = T(P), where T is a data transform,

we can refine R with T(Q).

One of the design approaches presented in this thesi is dynamic programming,

which is a recursive approach to solving optimization and other problems [27, 13j.

Like the divide-and-conquer method , it works by finding olutions to subinstance of

a problem and combining obtained solutions to t he subinstances. Unlike divide-and­

conquer, dynamic programming saves the solutions to subinstances for possible later

use. There are two approaches to implementing dynamic programming: top-down

and bottom-up.

In this part we will discuss an approach to solving problems based on concretiza­

tion of top-down and bottom up abstract dynamic-programming algorithms. Along

t he way, we also formalize the closely r lated divide-and-conquer approach.

First, let's consider two concrete problems to which we can apply our techniques.

3.3 Introduction to Applications

3.3.1 The Matrix Chain Multiplication

Matrix Chain Multiplication is the problem of finding the minimum co t of calculating

the product of a sequence of matrices A 1A2 .. . An [6j. Each matrix Ai has dimension

di-1 by di .

The cost of multiplying one single matrix is zero, and the cost of multiplying

two matrices AAi+1is di- J x di x di+l· The cost of any matrix chain multiplica­

tion, consi ting more than two matrices, depends on how the chain is split and how

54

the two subchains are multiplied. Consider the following matrix chain example of

four: A 1A2A 3A 4 . A feasible solution is the parenthesization ((A1A2)(A3A 4)) . Its cor­

responding cost is the sum of the following t hree parts:

(a) the cost of first subproduct (A1A2), do x d1 x d2

(b) the cost of the second subproduct (A3A4), d2 x d3 x d4

(c) the cost of mult iplying the two matrices resulted from the subproducts A1..2

and A3 .. 4, do x d2 x d4.

Thus, the optimal cost of the product AAi+1 . . . Ak ... A1, where i < j , is the

minimum over a ll k such that i < k < j , of t he sum of

(a) the optimal cost of calculating Ai .. k,

(b) the cost of calculating Ak+L.j, and

(C) di X dk X dj .

For the matrix chain problem A1..n, the problem instance space only includes the

dimensions of the matrices to be multiplied. Each problem instance is a number n ~ 2

and a set of chains of indices: Nn. The problem asks for the minimum cost to do the

multiplication.

3.3.2 The Largest Black Square

The problem is to find the size of the largest black square in a black and white image.

We will represent the image with a constant Boolean array M E X x X --t Y where

X = {0, .. N}, Y = {0, .. , N} and N E N is a constant. Each black pixel is represented

by true and each white pixel by fa lse. Let Y = XU {N} . Pix Is are indexed by X

55

while corner points are indexed by Y. The problem is to find

max { (p, q) E Y x Y · lsea(p, q)}

where lsea stands for 'largest black square ending at' and is defined for each corner

by

lsea(p, q) = max {r E {0, .. min{p, q}} I square(p, q, r)}

where

square(p,q,r) =(ViE {p -r .. p},j E {q-r, .. q} · M(i j)).

As illustrated in the following figure, we can find the large t square ending at a

corner point (p, q) (marked as * in the figure), if we know the sizes of the largest

squares ending at each of its three neighbors to the north, w st, and north west

(marked a + in the figure).

0 • • 0 0

• • • • •
• • • • •
• • • * •
0 0 • • •

In this chapt r we apply dynamic programming to the Matrix Chain Multiplication

and the Larg st Black Square problems, to further discuss the presented approach.

56

3.4 Divide-and-Conquer

3.4.1 The idea of Divide-and-Conquer

Divide-and-conquer is a recursive approach to solving problems]6, 13]. This method

divides the problem instance to number of subinstances in order to determine a solu­

tion by combining the solutions to the subinstances. The divide-and-conquer method

proceeds in three steps: divide, conquer, and combine.

Initially, the instance is divided to subinstances. Each of the subinstances are

solved yielding a set of solutions to the subinstances. The result d solutions will be

combined to create a solution to the original instance.

3.4.2 Formal Divide-and-Conquer

Consider a space of problem instances P, a space of solutions S , and a function

f : P ---+ S , mapping problem instances to solutions. Formally, given a problem

instance p we ne d to compute f(p) . The specification of a problem can be written

in the following definition in SIMPLE j31 , 30].

Definition EvaluateFunction(p) ::=

slot P: set

slot S : set

slot f : P ---+ S

requ ire p E P

ensure s' = f(p)

57

In order for the divide-and-conquer strategy to be applicable, we need to define

the following entities:

PB and PL are sets such that P L UP B = P

divide : P B ---t 2P is a function

combine : PB x 2(PxS) ---t S is a function

(3.1)

(3.2)

(3.3)

We assume that leaf instances PL are easy to solve and branch problems PB will be

solved recursively. For all p E P B and A~ P x S we require:

f(p) = combine(p, A) provided for all q E divide(p) , (q, f(q)) E A (3.4)

and that divide induces a well-founded order on P. In a well-founded order, there is

no infinite descending chain of members. A totally ordered set (A,:::;) is said to have

a well-founded order if and only if every nonempty subset of A has a least element

[19]. In another way:

q pred p = q E divide(p)

(q:::;p) = qpred+p.

The abstract divide-and-conquer algorithm can be written formally as a functional

program DC that refines f.

Function DC(p)

if p E PL then return f(p)

else let D = divide(p)

let A= {qED· (q , DC(q))}

return combine(p, A)

58

Theorem. under conditions (3.2), (3.3), s := f(p) ~ DC(p)

Proof. This theorem can be proved by the method of induction, on p. An input p

of function DC is either a leaf or a branch problem instance. The base case of the

induction is when pis a leaf problem instance. According to the assumption made by

the proposed theory its solution can be easily calculated, therefore, DC(p) = f(p).

The inductive hypothesis assumes there exists a function divide which creates all

possible subinstances of p, and all subinstances are solved.

for all q E divide(p) · DC(q) = f(q)

ow, it is required to show that f(p) for branch problems can be calculated. According

to equation (3.4), f(p) can be calculated by function combine which joins required

solut ions to the subinstances where for all q E divide(p) · DC(q) = f(q). If combine

can be defined , f(p) is computed and provides DC(p) = f(p) . From this inductive

proof we can conclude f(p) ~ DC(p), if the assumptions are met. Therefore, if there

exist functions divide and combine to satisfy the requirements, the theorem is proved

by the method of induction . 0

3.5 Dynamic Programming

3.5.1 The Idea of Dynamic Programming

Dynamic programming is very close to divide and conquer in the concept of dividing

the problem instance into subinstances, then using the solutions to the subinstances to

59

create a solut ion. Therefore, in this section, formalization of the closely related divide­

and-conquer approach is used as a basis for dynamic programming algorithms. Since

subinstances of problems share the same structure as the problem, the solut ion to a

general problem instance provides a solution to the subinstances within it. Therefore,

dynamic programming provides a recursive approach to finding a solution to a problem

instance by recursively finding solutions to subinstances. It also reuses solutions to

shared subinstances in order to reduce the run-time of the program.

There are two methods of dynamic programming, top-down and bottom-up, which

are discussed later in this section with more details. In the top-down method the

calculated solutions are saved and reused several times in a program, which is called

memoization. For bottom-up, tables are used to save the solutions to the subinstances

in order of dependency for later use. This is called tabulation [6, 2].

3 .5.2 Formal Dynamic Programming

Formal dynamic programming uses divide-and-conquer with a modification described

later in the top-down and bottom-up sections. The function divide should meet the

main concepts of dynamic programming and how to create subinstances of problems

that meet the principle of optimality. Dynamic programming is applicable to a prob­

lem when there exist a function divide and a function combine which create P B and

PL according to formulas 3.1, 3.2, and 3.3. A variable A stores the subinstances of a

problem and solutions to those subinstances.

At any given time during running the algorithm, its initiation, and its termination

there should be no false information in variable A. That is considered as an invariant

60

for variable A. The postcondition is that A contains all the subinstances of a problem

instance p within itself. Furthermore, space A is expanded when new information is

entered and no information is lost or removed from it.

3.5.3 Top-Down Dynamic Programming

One of the approaches to implementing dynamic programming is the top-down ap­

proach [6] . The proposed formal divide-and-conquer definition is used as the basis

for a top-down dynamic programming algorithm. We regard the top-down dynamic

programming approach to be a special case of divide-and-conquer combined with

memoization, that is, the storing of solutions to the subinstances.

To apply memoization to the existing divide-and-conquer definition, a variable A

is used as a table to store calculated results. It stores a set of pairs (p, s) that satisfies

s = f(p). We write A(p) to mean the solution that is paired with p in A. As an

invariant A represents a partial function. We can get a top-down algorithm using the

refinement of function DC (p).

Definition DynamicTD(p) ::=

inv V(q , t) E A· t = f(q)

var A : P --+ S := 0

proc Solve(p : P)

post (p,j(p)) E A' A A' 2 A

if 3s · (p , s) E A then A(p)

else if p E PL then (

61

}

let s := f(p)

A : = A u { (p, s)})

else (

let D := divide(p)

for q E D · Solve(q)

assert 'Vq E D· (q , f(q)) E A

let s= combine(p, A)

A : = A u { (p, s)})

end proc Solve

Solve(p)

s := A(p)

That this algorithm refines the dynamic programming problem is expressed in

SIMPLE as a theorem [31, 30[.

Theorem EvaluateFunction(p) ~ Solve(p)

where EvaluateFunction(p) =

Then, we have that:

('V(q, t) E A · t = f (q)) ::::}

('V(q, t) E A'· t = f(q)) 1\

(3s · (p, s) E A')

62

Theorem s:= f(p) ~ DynamicTD(p)

3.6 Bottom-up Dynamic Programming

The other approach to implement dynamic programming is the bottom-up approach

[6]. The same proposed formal divide-and-conquer definition is used a a basis for the

bottom-up algorithm for dynamic programming. The technique which applies to the

bottom-up approach is tabulation which is slightly different than memoization. In

this method, there could be some subinstances that are solved but never used, which

does not happen in top-down approach. All possible subinstances are solved, stored,

and combined to build a solution to the main problem. The bottom-up approach

avoids the memory and time overhead of recursive calls. There is no need to implement

the divide function because it has b en considered in the structure of the bottom­

up approach and creates a new level of subinstances in each step. Instead , to get a

bottom-up algorithm, we need, for each problem p, a sequence of problems r(i) so

that p = r(i) , for some i and so that, for each i, either r(i) is a leaf or all problems

in divide(r(i)) are in {r(O), r(l) , ... , r(i - 1)}.

We can get a bottom-up algorithm using the refinement of function DC(p) .

Defi nit ion DynamicBU(p) :: =

inv V(q, t) E A· t = f(q)

var A : P ---+ S := 0

proc Solve(p : P)

63

}

let n I p = r(n)

post (p, f(p)) E A' A A' 2 A

for i : 0 through n (

if r(i) E PL then (

let s := f(r(i))

A:= AU {(r(i), s)})

else (

assert \:fq E divide(r(i)) · (q, f(q)) E A

let s= combine (r (i), A)

A := AU {(r(i), s)}))

end proc Solve

Solve(p)

s := A(p)

T hat this algorit hm refines the dynamic programming problem is expressed in

SIMPLE as a theorem.

Theorem EvaluateFunction(p) ~ Solve(p)

where EvaluateFunction(p) =

(V (q, t) E A · t = f (q)) ==>

(V(q, t) E A'· t = f(q)) A

(:3s · (p, s) E A')

64

And therefore:

Theorems := f(p) ~ DynamicBU(p)

3. 7 Application of Dynamic Programming

3. 7.1 Matrix chain Multiplication

To understand the Matrix Chain Multiplication problem as an instance of the general

EvaluateFunction specification, we need to fill in the three slots of the specification.

• Define P to be N+, the set of all finite sequences of natural numbers with length

at least two, do .. n ::=(do, d1 , . .. , dn)·

• Define S to be N, the set of natural numbers.

• Define f to be the function that maps sequences of natural numbers to a natu-

ral number that is the minimum cost of multiplying the corresponding matrix

sequence: We define f recursively as

f(do .. l)

f(do .. n) -

0

min f(do .. k) + f(dk .. n) +do X dk X dn, ifn > 1
kE{l, .. n}

Filling the three slots S, P, and f , with these definitions adapts the problem.

To adapt the top-down dynamic solution we need to determine the P L, P B , divide ,

and combine slots.

65

• Define P L to be the set of all sequences of natural numbers with length two.

• Define P B to be the set of all finite sequences of natural numbers with length

greater than two,

• Define divide to be the function that generates all the subsequences of the

sequence (d0 , d1, .. . , dn) that are required in the process of producing the result,

divide(do .. n) = {k I 0 < k < n · do .. d

U{k I 0 < k < n · dk .. n}·

• Define combine to be the function that calculates the cost of a problem instance

using the solved subinstances stored in variable A.

combine(do .. n , A) = min (
kE{l, .. n} +

• The variable A that stores the pair of problem instances and their corresponding

cost that is used by the combine function.

F illing these slots adapts both top-down and bottom-up algorithms, first we derive

the top-down algorithm of this example in the following algorithm.

Definit ion MCMTD(p) ::=

inv V(q , t) E A · t = f(q)

66

}

var A : N+ ---+ N := 0

proc Solve(do .. n : N+)

post (do .. n f(do .. n)) E A' 1\ A' 2 A

var : N

if :3s · (do .. n, s) E A then A(do .. n)

else if n = 2 then (

s := 0

A :=AU { (do .. n, 0)})

else (

for k : 1 through n- 1 (

Solve(do .. k)

Solve (dk .. n))

assert 't:/q E divide(do .. n) · (q , f(q)) E A

s := 00

for k : 1 through n - 1

s := s min (A(do .. k) + A(dk .. n) +do X dk X dn)

A:=AU{(do .. n s)})

end proc Solve

Solve(do .. n)

s := A(do .. n)

67

The optimization problem of matrix chain multiplication returns the minimum

cost. In order to get the process of doing the multiplication we can store the break­

points k of each sequence longer than two.

Next, is the bottom-up algorithm derived below for this example. In this algo­

rithm, the instance sequence r is the segments of d of increasing length, starting with

length 2 as follows

do .. 2, d1..3, · · · , dn-2 .. n,

do .. n

Definition MCMBU(do .. n: N+) ::=

inv V(q, t) E A· t = f (q)

var A : N+ ---7 N := 0

proc Solve(do .. n : N+)

post (do .. n, f(do .. n)) E A' 1\ A' 2 A

for l : 2 th rough n + 1

for i : 0 through n- l + 1 (

let j = i + l - 1

if l = 2 t hen A:= AU {(di .. j, 0)}

else (

assert Vq E divide(di .. j) · (q, f(q)) E A

var s := oo

68

}

for k : i + 1 through j - 1

s := s min (A(di .. k) + A(dk .. j) + di x dk x dj)

A : = A U { (di .. j, s)}))

end proc Solve

Solve(do .. n)

S := A(do .. n)

More examples such as Radix-Code can be implemented in a very similar approach

as Matrix chain multiplication.

3. 7.2 Largest Black Square

To under tand the Largest Black square problem as an instance of the general Eval­

uateFunction pecification, we need to fill in the three slots of the specification.

• Define P to be the set of all corner points (p, q) E Y x Y , where Y = {0, .. , N}

• Define S to be the set of numbers r such that 0 ::; r ::; N

• Defin e f to be

f(p, q) = lsea(p, q)

where

lsea(p, q) = max{r E {0, .. min{p, q}} I square(p,q,r)} ,

and

square(p q, r) (ViE {p- r, .. p} j E {q - r, .. q} · M(i,j)).

69

Filling the three slots S, P, and f, adapts the problem.

To adapt the bottom-up dynamic programming algorithm we need to determine

PL, PB, divide, and combine slots.

• Define P L to be t he set of all pairs (p q) that are located on the most top row

or the most left column,

p L = { (p , q) E y X y I p = 0 v q = 0}.

• Define P B to be all other points

p B = { (p q) E y X y I p =I 0 1\ q =I 0}.

• Define divide to be t he function t hat generates t he set of three neighbors of a

point (p, q) to the north , west , and north west,

divide(p, q) = {(p - 1, q), (p- 1, q - 1), (p, q - 1)}.

ote that t hese three neighbors are lexicographically prior to (p , q).

• Define combine to be the function that finds the size of the largest black square

using the solved neighbor points stored in space A . The idea is that if a square

is black, the largest square at (p, q) can not be larger than 1 plus the largest

square ending at any of the neighbors generated by divide. On the other hand ,

t here is a square ending at (p, q) that is of size 1 plus the minimum of the

square ending at the three neighbors.

combine((p , q), A)

if -.M(p - 1, q - 1) then 0

else 1 + min{A(p- 1, q), A(p, q- 1), A(p- 1, q - 1)}

70

These slots adapt both top-down and bottom-up algorithms. According to top-down

algorithm approach and the introduced divide() and combine() functions, the follow­

ing algorithm i derived for 'largest black square ending at' (p, q). The r sequence for

this example i

(0, 0) , (0, 1), ... , (0, n),

(1, 0), (1, 1), ... , (1 , n),

(n, 0) (n, 1) .. . , (n n)

Definition LESATD : :=

inv V((p , q) , t) E A · t = lsea(p, q)

var A : Y x Y ---7 N := 0

proc Solve(p, q)

post ((p,q),lsea(p,q)) E A' 1\ A' 2 A

var s: N

if :Js. ((p, q) , s) E A then A(p, q)

else if p= 0 V q = 0 then (

s := 0

A := AU{((p, q) 0)})

else (

Solve(p - 1, q)

Solve(p- 1, q - 1)

Solve(p q - 1)

71

}

assert \i(p, q) E divide(p, q) · ((p, q) , lsea(p, q)) E A

s := 1 + min { A(p- 1, q), A(p - 1, q - 1), A(p, q - 1)}

A := AU {((p ,q) s)})

end proc Solve

Solve(N, N)

s := A (N, N)

For the bottom-up algori thm the other decision that needs to be made is t he or­

dering of the instances so that subinstances are solved before super-instances. For this

problem, instances can be ordered lexicographically. According to t he same divide()

and combine() functions and the bottom-up algorithm, the following algorithm is

derived for Largest Black Square ending at (p, q). In this algorithm, to create all the

subinstance from the first level to the desired one, cross points are considered in one

loop. This loop starts from the point (0, 0) to (p, q) in one loop starting from 0 to

p x N + q, where the row and column number are derived by div and mod.

Definition LEASB U ::=

inv \i((p, q) , t) E A · t = lsea(p, q)

var A : Y x Y ----t N := 0

proc Solve(p , q)

post ((p ,q) , lsea(p,q)) E A' 1\ A' -;2 A

for i : 0 through p x N + q (

72

}

let a=i div (N+ 1)

let b = i mod (N + 1)

var s: N

if a = 0 V b = 0 then (

s := 0

A:= Au { ((a,b),O)})

else (

if -.M(a- 1, b- 1)

s := 0

else (

assert \f(p, q) E divide(a, b)· ((p , q) , lsea(p, q)) E A

s := 1 + min {A(a - 1, b) ,A(a,b - 1) ,A(a - 1,b - 1)})

A:= Au { ((a,b),s)}))

end proc Solve

Solve(p, q)

s := A(p, q)

This algorithm serves to calculate the lsea function for each intersection point and

store t he result in the A table. To find the largest square is now just a matter of

looking for the largest value in the table.

73

Chapter 4

Formal Greedy Algorithms

Greedy Algorithms solve optimization problems, sequentially making locally optimum

choices to make a globally optimum solution. In this chapter, we are investigating

how abstract specifications can be proved to be implemented by abstract greedy

algorithms. We provide a formal structure to greedy algorithm in a predicative style.

Applications of greedy algorithms include Kruskal's algorithm , and Huffman codes.

4.1 The Ideas of Greedy Algorithm

Greedy Algorithm is an optimization problem solving approach, sequentially making

locally optimum choices to make a globally optimum solution. Applying the greedy

algorithm won 't provide an optimal solution to all problems. However, for some

problems, making the best choice in each step leads to an optimum solution. For

a greedy algorithm to be applicable to a problem, the greedy structure should be

satisfied in a problem [6] .

Some parameters are required to create a greedy algorithm, including a global

74

cost function and a local cost function. The former function measures the degree

of optimality in a feasible solution, and the latter function is used in each step of

the algorithm for comparing partial solutions. T here is a relation between local and

global cost functions, in most cases being identical. However, it is not required for

greedy algorithm to be defined having equal local and global cost functions.

4.2 Formal Greedy Algorithm

4.2.1 Defining Parameters and Transformations

The problem is specified by the following parameters of a problem space:

• Let S be a search space of partial solu tions

• i E S is an initial partial solution

• C ~ S i a set of completed solutions

• g : S --t 28 is a function that creat s partial solution from partial solutions

where g(x) = (/)when x E C

• cost : S --t N is a function that calculates the cost of a partial solution

• ~globa(C --t C is a cost comparison relation, and if x, y E C then x ~global y

provides that cost x ~ cost y with respect to relation global

To specify the greedy algorithm there is a list of entities derived from the above

parameters for solu tion space:

75

• :Sloca(S -t S is a cost comparison relation, and if x, y E S then x :Slocal y

provides that cost x :::;; cost y with respect to relation local

• g : 28 -t 28 is the extension of g to sets

- g(0)=0

- g({x}) = g(x)

- g(X U Y) = g(X) U g(Y) .

• g* is the transitive and reflexive closure of g

g*(X) =XU g(X) u g(g(X)) u .. . (4.1)

ote that

x E C implies g*(x) = g*({ x }) = {x } (4.2)

• m~nX is the set of all minima of X with respect to a relation :::;;

minX = { x E X I (Vy E X · x < y)} < -

The goal s t G is defined as the globally optimal set of completed solut ions reachable

from t he starting point i by zero or more applications of the generating function, g.

That is

G = min (C n g* ({ i}))
~global

In many cases, all completed solutions can be generated from i, in which case

G = min C
~global

(4.3)

A problem can be described by the following definition of Search, ensuring that

there is a result in goal set G for it.

76

Definition Search ::=

ensure x' ~ G

The solution based on the greedy algorithm is presented in the following definition

of GreedySearch . In this definition, x :E S is an operator that assigns an arbitrary

element of S to variable x.

Definition GreedySearch : :=

var x := i

while x ~ C inv reaches(x, G)

x :E min g(x)
:S,local

The invariant says that some member of the goal is reachable from x .

inv: reaches(x , G)= (g*({x}) n G) =I 0 (4.4)

Therefore, if the invariant holds Search is refined by GreedySearch.

Theorem 14. under conditions (4.6), (4. 7) and (4.8)

Search ~ GreedySearch

Proof. For the greedy algorithm to be correct, we must check that the body of the

while loop preserves the invariant, reaches (x , G). T here are also two cases to be

considered for the relation between the local and global optimality conditions: a)

when they are identical, b) when not identical global condition can be derived from

77

the local condition, x ~global y ==? x ~local y. The correctness of the algorithm is

verified in the following three phases:

1. Prior to initiating the while loop, when variable x is initialized:

reaches(x, G) is a post condition of x := i which becomes reaches(i, G)

reaches (i, G)

by def (4.4)

(g*(i) n G) =1 0

- by the property (A~ B ==? B n A= A)

The resulting equation of G =I 0 is true if the problem has be n defined correctly,

i.e. , in a way that there exists a solution.

2. We need to show that the invariant i preserved by x :E min g(x)
$local

The while loop is running, meaning that the loop condition is true, x ¢:. C. There

is also the assumption that th local optimality condition is either identical to

the global optimality condition, or can be derived from it. We need to show

that assuming reaches(x, G) is true then reaches(x' G) will be true after the

body of the loop is executed and produced x' E min g(x).
$local

78

r·eaches(x, G)

xtf_C

Let x' E min g(x)
~local

?
====:;. reaches(x', G)

Consider H a set including all the cases that lead to G.

H = {x / reaches(x, G)}

If x E H, and x tf_ C then at least one successor of x is also in H. Therefore,

Let y E min(g(x) n H) (4.5)

Let's get back to some features of greedy algorithm. First, the generation

function g(x) should imply that x is in C. This prevents the algorithm from

running into a dead end. Otherwise the following could happen. Suppose

variable x has a value of x0 and we pick x1 E ming(x), now in the next iteration

g(x) is empty and the algorithm is stuck. Therefore,

g(x) = 0 implies that x E C (4.6)

As stated in the introduction, studies have shown that there are several cases

for greedy algorithm to be applicable. However, cases considered here are those

with the monotonicity condition that is the second condition required for the

generation function g(x). Therefore,

a ~local b =} a' ~local b', Va, b, a' E g(a) , b' E g(b) (4.7)

79

This means when a partial solution is better in one step, the continuation of

it will result in a better partial solution in the next step. As illustrated in

the following diagram, taking generation function will not reverse the order of

optimality.

x•----•

•
Thus, the following condition marked by " ::::} " won't happen:

The studied case is known as Better-Local condition in [9].

Third , the generation function g(x) should also generate a better partial solution

than x with respect to the local cost relation. Otherwise, the algorithm could

follow an ever descending path that never reaches C. Therefore,

g(a) '?:.toea! a, Va (4.8)

These conditions also implies that when a completed solution is derived as a

result of a better partial solution, the continuation of the worse partial solution

80

will not lead to a better completed solution .

a ::; b ==:;. a ::; b' , Va, b, b' · a E C A b' E C A b' E g (b) (4.9)

Considering the above properties (4.6), (4. 7) and (4.8) of greedy algorithms H

includes the set of generated successors of x. This concept helps rewriting the

equation of (4.5) as

Let y E min(g(x))

On the other hand, the body of the program considers

x :E min g(x)

Therefore, all the properties of y are properties of x'. So, x' E H meaning

reaches(x', G) is true.

We can ummarize this as

reaches(x G)

g*(x)nG=f0

- since x tf. C

g*(g(x)) n G =f 0

Distributivity

::lyE g(x) · g*(y) n G =f 0

=> under conditions (4.6), (4. 7) and (4.8)

Vy E min g(x) · g*(y) n G =f 0

=> since x' E min g(x)

reaches(x' , G)

81

3. Following loop termination:

The while loop terminates when the loop condition is false, so x E C.

4.2.2 Optimization

reaches(x, G)

by def (4.4)

(g* ({ x}) n G) =1 0

- by def (4.2) and x E C

({x} n G) =1 0

::::} xEG

0

The propo ed method for greedy algorithms generally makes a greedy step in each

state by applying the generation function g(x) to every x E S. Then, it selects the best

x :E ming(x) with respect to the cost function. However, there can be a more efficient

implementation to the generat ion function. One optimization approach commonly

applied, is to a ess the cost function in order to determine a total ordering of t he

input. Revising the input as suggested, provides a more efficient implementation of

the algorithm. It provides efficiency by making the highest priority item be evaluated

earlier and removed from the input list. In order for this process not to affect the

correctnes of the a lgorithm, an optimized approach should be a refinement of the

general method of greedy algorithms.

82

4.3 Application

In this section, application of greedy algorithms is studied using Kruskul 's algorithm

and Huffman Coding. Kruskal's algorithm is an example of minimum spanning t r e

a lgorithm. Huffman coding is a high efficiency algorithm that is been broadly used

in compressing data.

4.3.1 Huffman Coding

Huffman coding is a method for compressing data considering the occurrence fre­

quency of each character [6] . This method is highly efficient and is widely used to

compact data. In ord r to encode the data, each character i given a code with a

variable length. This can be more efficient than a fixed length code. The higher

the occurrence frequency of a character, the shorter the code length assigned to it.

Huffman code is a prefix code, there is no codeword constructed which is a prefix

to another codeword. T he data is represented by the set Ch, ach character in it is

c E Ch, and the function f : Ch ---+ N provides the frequency number. In order to

encode the data, a t ree is created in the following way: in each step two characters

(or sets) with the lowest frequency are chosen and encoded 0 for the left child , and 1

for the right child . T he following tree illustrates the process of encoding characters

83

a- e, with the frequency of f(a) = 35 f(b) = 8, f (c) = 25, f (d) = 12, f(e) = 20.

0

4 .3.1. 1 D efin ing Slots

To specify the problem, it is required to fill the slots of the problem space:

• Define each element of S to be a set of binary trees. In ord r to define S, define

BT as the set containing

(c) where c E Ch, or

(l, r) where l , r E BT

Each element of S is a subset of BT. For any x E S and c E Ch, the leaf (c)

must appear in at least one member of x.

• Define i as a set of trees, each including one leaf for each el ment of Ch

i = { (c) IcE Ch}

• Define each member of C as a t of size one, lxl = 1, whose sole member is a

binary tr e including every c E Ch

84

• Define g as a function merging two trees, by making subtrees as the left and

right child in a new combined tree, and removing the original subtrees

g(x) = {{ (t,s)}u x- {t} - {s}lt,sEx 1\ t#s}

• Define cost global of tree t as the sum of the cost of retrieving each char c E C h,

which is depth of a char in a tree d times its frequency

cost(d, (c)) f(c) x d, for all c E Ch

cost(d, (s, t)) - cost(d + 1, s) + cost(d + 1, t) for t, s E Tree

cost(t) cost(O, t), fortE Tree

• Define ~global as a cost comparison relation between trees

{ t} ~global { S} cost(t) ~ cost(s) , for {t} , {s} E C

To adapt the greedy solution, following parameters are specified:

• Define cost1ocal similar to the global cost function , noticing that the global cost

applies to a completed solution which is a tree and the local cost applies to a

partial solution which is a forest

costlocal(x) = 'L:cost(t) ,
tEx

for t E Tree, x E S

• Define ~local as a local comparison relation between two forests

X ~local Y l::cost(t) ~ l::cost(s)
tEx sEy

85

4.3.1.2 Implementation Process

In order to implement the concrete Huffman algorithm based on the abstract definition

of greedy algorithm defined by Definition GreedySearch in 4.2.1, we need to fill in the

slots using the parameters and definitions defined in 4.3.1.1. These slots include

• The input parameter is Ch, a set of chars and a frequency function J(c) : Ch---+

N

• Initialization: var x := i

Definition of i can be implemented using a loop

X:= 0

for cE Ch

X:= X U (c)

• Defining the while guard: while x ¢:. C

To implement this part, consider

- initialization of x creates sets with length IChl, lxl = IChl

- the generation function x' E g(x) in each iteration joins two trees together

reducing the length of a set by one , lx'l = lxl - 1

- iteration ends when x E C, which implies lxl = 1

[lx l = IChl, lx'l = IChl- 1] ~ x := x - 1

This assignment is repeated IChl-1 times until lxl = 1. Therefore this sequence

can be implemented by a for loop starting from 1 to IChl - 1

fork := 1 through IChl - 1

86

• Generation step in x :E min g(x)

According to proposed greedy algorithm in section 4.2.1, generation function

produces all the possible combination of merging two trees together, from where

the lowest cost forest is selected. However, Huffman method suggests an opti-

mization case where trees are sorted according to their frequencies and genera-

tion function selects two subtrees of minimum frequency, merges them to create

a new tree with subtrees at its children, and finally deletes the original subtrees

from the set. Therefore, it is required to show how this method implies the

local cost of the new value of x is optimal.

Let 's consider the properties of the cost function in more detail

cost(d, (c)) J(c) x d, for all c E Ch (4.10)

cost(d, (s, t)) cost(d + 1, s) + cost(d + 1, t) fort, s E Tree (4.11)

cost(t) cost(O, t) , for t E Tree (4.12)

cost(x) :Z::cost(t) , for t E Tree, and x E S (4.13)
tEx

Equation (4.10) represents the cost of a single char in a tree being its depth

times its frequency. The next equation (4.11) describes the relation between a

tree and its subtrees. A single tree can also be considered as a zero depth tree

as represented in (4.12). The cost function is defined for a tree, however, it can

be applied to a forest as represented in equation (4.13).

Applying the proposed greedy algorithm in 4.2.1 constructs an algorithm for this

application. Generally, the greedy approach makes a greedy step in each state

by applying the generation function g(x) to every x E S. For this application,

87

greedy step produces all the possible cases of creating a new tree joining two

subtrees. T hen, it selects the lowest cost tree x :E ming(x) . However, Huffman

method suggests an optimization technique to implement the encoding system.

Using Huffman coding, this process is implemented by choosing two subtrees

with the lowest frequency, placing subtrees as left and right child of a new tree,

and finally removing the original subtrees. In this section, we show how this

optimized technique satisfies t he minimum cost of creating encoding trees.

Frequency function can be extended to trees, calculated according to frequency

of each char

J((c)) = J(c), for all c E Ch

f((t, s)) = f(t) + f(s), otherwise

f(t) = L_j(c), fortE Tree (4.14)
cEt

Concluding easily from equation (4.10) and (4.12) , cost of a tree can be ex-

pressed in terms of dc,s , depth of a char c in tree t, times f(c) , frequency of char

c.

cost(s) = cost(O, s) = L dc,s x J(c) , for all s E BT (4.15)
cEs

Now, the cost of the same tree as a subtree sin depth 1 is calculated in a similar

88

way by adding 1 to the depth of each char in subtree.

cost(!, s) = L ((dc,s + 1) x f(c))
cEs

L (dc,s X f(c)) + L f(c)
cEs cEs

by def (4.15)

cost(O, s) + L f(c)
cEs

by def (4.14)

cost(O, s) + f(s)

The result implies the relation between the cost of a subtree s in depth 0 and

its cost in depth 1.

cost(!, s) = cost(O, s) + J(s) (4.16)

Therefore, def (4.11) for d = 0 can be rewritten as

cost(O , (s, t)) cost(! , s) +cost(!, t)

by (4.16)

cost(O, s) + f(s) + cost(O, t) + f(t)

This can be more simplified as

cost ((s, t)) = cost (s) + f (s) + cost (t) + f (t) (4.17)

Now, using the derived details we reconsider the proposed greedy algorithm

for this application. In a state that x rJ. C, every x represents a forest x =

{t0 ,t1 , ... tn}, where each ti is a tree. Let 's consider the generation function

according to the proposed general method of greedy algorithm, which in each

89

state produces a new forest by joining two subtrees together, and removing the

original subtrees from the forest . For an arbitrary y E g(x) we have

And therefore

cost(y) - cost(x) + cost((ti, t1))- cost(ti)- cost(t1)

by (4.17)

cost(x) + cost(ti) + f (ti) + cost(t1) + f(t1)- cost(ti)- cost(t1)

- cost(x) + f(ti) + f(tj) (4. 18)

The result in (4.18) explains the cost of every y E g(x) simply depends on

f(ti) + f(tj) because cost(x) is a fixed amount. Therefore, to minimize the

cost(y) we only need to minimiz the value of f (ti)+ f(t1) which can be satisfi d

by choo ing two subtrees ti and t1 with the lowest frequencies. Finally, the

optimization technique of Huffman method , by using t he two trees with the

lowest cost, implements the greedy algorithm very efficiently. It considerably

reduces the complexity of the algorithm.

4.3.1.3 Greedy Algorithm for Huffman Coding

Defini t ion HuffmanSearch :: =

var x := 0

for cE Ch

X:= X U (c)

90

for k := 1 through IChl - 1 inv reaches(x, G) {

}

var s, t

s , t := the 2 trees in x of lowest f

X := XU { (s, t)} - { S, t}

4.3.2 Kruskal's Algorithm

For a connected edge weighted graph, a minimum spannmg tree is a tree which

has a minimum weight and spans th graph by connecting all the vertices. Kruskal's

algorithm find a minimum spanning tree in a connected undirected graph G = (V, E)

with the weight function w : E---+ JR. For some connected graphs, minimum spanning

trees are not unique and there are several qualifying feasible solutions which can b

formed.

Kruskal's algorithm is a greedy algorithm which adds the best choice at a time to

the partial solution. First, the edges are sorted in non-decreasing order according to

their weight. Then, from the list of sorted edges, the minimum weight edge is selected

and added to partial solution, if it does not form a cycle. In order to verify whether

a new edge e = { u , v} E E can be added without creating a cycle, the two vertices

u E V and v E V are verified not to be connected in the existing partial solution.

For the following connected graph:

91

CD-1-GDI----~6 ____ _
1/ ® 8

41 5

®- 7 0-1 ®

~/
G)--7--@

10

Kruskal 's algorithm may create a minimum spanning tree by choosing edges in the

following order:

(1, 5) -t 1, (4, 8) -t 1, (9, 12) -t 3, (9, 10) -t 3, (2, 3) -t 4, (2, 5) -t 4,

(6, 8) -t 5, (7, 8) -t 5, (5, 8) -t 6, (3, 4) -t 7, (6, 13) -t 7, (7, 11) -t 7.

The sequence of decisions results in the following minimum spanning tree:

CD-1_0 , ___ 6:...__ __ ®_3_@

/
®
41

®-7-0

®---___.:.7_1------@
5

1 ®

/ G)l--7- -@

4.3.2.1 Defining Parameters of the Problem Space and Greedy Solution

To specify the problem, it is required to define the elements of search problem:

• Define each member of S as a set of dges e E E of graph G = (V E) with no

92

cycles, S ~ 2£

S = { F I F ~ E 1\ F is acyclic}

Where

F is acyclic= Vu, vI {u, v} E F · -.(F - { {u, v} } connects (u, v)) (4.19)

Fconnects(u,v)=:3kl {u,k} EF · k =v V Fconnects(k,v)

• Define i as the empty set, i = 0

• Define each member of C as a set of edges that connect all vertices v E V with

no cycles

C = { F E S I Vu, v E V · F connects (u, v)}

• Defin e g as a function which adds a new edge to a partial solu t ion, without

creating a cycle

g(x) = {xU {e} IeEE · xU {e} is acyclic} (4.20)

To verify whether a new edge e = { u, v} creates a cycle, it is required to check

if th re is any connection between vertices u and v by any edge (set of edges)

m x .

• Define co tglobal as the sum of the weights of a set of connected edges

costglobat(x) = cost(x) = L w(e), where xES
eEx

• Define ~global as a cost comparison relation for two sets of connected edges

x ~global y L w(e) ~ L w(e), where x, yES
eEx eEy

93

To adapt the greedy solution, following parameters are specified:

• Define cost1ocal as the sum of the weights of a set of edges

costlocal(x) = cost(x) = L w(e), where xES (4.21)
eEx

• Define::;1ocal as a cost comparison relation for two sets of edges

x ::;local y - L w(e) ::; L w(e), where x, y E S
eEx eEy

The definition of local and global cost for t his example are identical and apply

to a set of edges.

4.3.2.2 Implementation Process

• Initialization is x = 0

• Defining t he while guard: while x ~ C

To implement this part consider the defini t ion of C, which implies every v E V

should be included in a complet d solution . In addition, every possible pair

of edges should be connected. Therefore, the partial solut ion x connects every

possible pair of vertices in V .

Vu , v E V · x connects (u, v)

Therefore, wh ile x ~C is implemented as while ::Ju, v E V · •x connects (u, v) .

• Generation fun ction in x :E min g(x)

Generally, as defined above in (4.20) generation function creates a set of all

possible edges which can join to the existing partial solution x, xU{e}, without

94

creating a cycle. Then, cost function (4.21) is applied to the set of creat d

partial solutions. Finally, a minimum cost partial solution is selected.

However , Kruskal 's algorithm suggests how this method can be optimized by

adding an edge with a minimum weight to the partial solution if it does not

create a cycle. In order to easily access an edge with a minimum weight, the

set of edges can be sorted according to the weight. To prove this optimization

method refines the general generation method, let's consider local cost function

(4.21) for y E g(x) according to definition of (4.20).

Let y X U { enew } E g (X)

cost(y) L w(e)
eEy

by def (4.20) andy = XU {enew }

L w(e) + w(enew)
eEx

w(x) + w(enew)

Which clearly proves that the cost of a new partial solution y E g(x) directly

depends on the weight of a new edge added to the old partial solution x. There-

fore, the optimization method of Kruskal implements th g neral generation

function .

Considering Kruskal's greedy algorithm x :E min g(x) is implemented by x :=

x U { e} where e is a minimum weight edge such that x U { e} is acyclic. The

implementation of the optimized generation function selects an edge with the

lowest weight and joins it to the existing partial solution, if it does not create

a cycle. To verify whether it creates a cycle, the existing partial solution is

95

examined not to already conne t the vertices of the new edge. T his assures

joining the new edge to the partial solut ion will not create a cycle. This implies

to implement this section we are only required to verify whether partial solution

x connects the vertices of a new edge, summarized as follows.

if x is acyclic

then x U { e} is acyclic

•x connects e

The implementation of generation function in x :E min g(x) is summarized a

follows:

let enew := an edge with the lowest w such that •X connects enew

X : = X U { enew}

4.3.2.3 Greedy Algorithm for Kruskal's Method

Definition KruskalSearch :: =

var x := 0

while (:3u v E V · • X connects (u, v)) inv reaches(x, G){

}

let enew := an edge with the lowest w such that• x connects enew

X : = X U { enew}

96

Chapter 5

Conclusion

We investigated how abstract specifications can be proved to be implemented by ab­

stract algorithms. For this study we considered algorithm design t chniques such as

dynamic programming and greedy algorithms. By applying a transformation that

maps the ab tract specification into a concrete specification, we showed how to derive

a concrete algorithm from the abstract algorithm. With the derived method came

along a formal proof of abstract algorithm correctness. This allows the abstract al­

gorithm to be reused, along with its proof, to implement multiple concrete problems.

The approach can be summarized as follow . Suppose we know that an abstract spec­

ification P is implemented by an abstract algorithm Q, then if we need an algorithm

for a problem R = T(P), where T is a data transform, we can implement R with

T(Q).

The study by Bird and de Moor uses categorical calculus as the mathematical

framework. This framework helps formulating theorems and proofs. Generally, the

framework and theorie does not match up how computer programmers typically view

97

problems; ther fore, the preliminary concepts were also presented. The style of rea­

soning with functions and relations is pointfree, which has the advantage of avoiding

to formulate bound variables used by quantifiers and is described in terms of func­

tional decomposition. However, we have experienced that the understanding of the

theorems and proofs are always impossibl without sketching and creating a support­

ing pointwise reasoning, which describes a function by its application to arguments.

Optimal bracketing also known as matrix chain multiplication was described as an

application of this case in chapter 2, the same example was later studied under our

proposed dynamic programming algorithm in chapter 3. This provided the possibility

of comparing two methods by considering the level of difficulty and complexity of the

methods.

Sharon Curtis claims that although the theories by Bird and de Moor are useful

to express considerable number of problems, it is not easily applicable to all optimiza­

tion problems and not applicable to some exceptional cases at all. She takes Huffman

Coding as an example, and concludes that catamorphism and anamorphism meth­

ods are top-down methods while examples such as Huffman Coding need bottom-up

methods. The method developed by Curtis uses a limit operator lim T, a simple

loop where lim recursively applies T to the input until it can not be reapplied. This

method has a lower complexity comparing with catamorphisms and anamorphisms

as presented by Bird and de Moor. However, Curtis uses the same framework of

pointfree reasoning and her proposed algorithm for greedy algorithm, lim T, is yet

complicated. Kruskal's method was described as the application of this method in

chapter 2. Kruskal's method fits into the category of graphic matroids and fixed

priority algorithm described in the introduction and is also later studied with our

98

proposed method in chapter 4 providing an easy comparison of complexity and effi­

ciency of algorithm.

One of th algorithm design approaches studied in this thesis is dynamic pro­

gramming, which is presented in Chapter 3. An abstract algorithm for dynamic

programming has been formally developed for an abstract specification. This speci­

fication includes slots for the problem space, solution space, and a function mapping

them. This abstract algorithm is presented in top-down and bottom-up approaches.

Principle elem nts of dynamic programming in the proposed method includes leaf

problems, branch problems, divide function, and conquer function. Leaf problems

are easy to solve and branch problems are solved by using functions divide and con­

quer. If these two functions can be defined for a problem, dynamic programming

can be applicable. The main theory of dynamic programming is proved to be correct

by method of induction. Application of dynamic programming such as Matrix chain

multiplication and Largest black square represents how this abstract algorithm can

be implemented in concrete algorithms.

The other algorithm design approach studied in this thesis is greedy algorithm,

which is presented in chapter 4. The parameters required to create a greedy algo­

rithm includes definition of completed solution, a global cost function, a local cost

function, and a generation function. The global cost function measures the degree

of optimality in a feasible solution, and the local cost function is used in each step

of the algorithm for comparing partial solutions. There is a relation between local

and global cost functions, in most cases being identical. However, it is not required

for greedy algorithm to be defined having equal local and global cost functions. The

generation function creates all the possible next greedy steps and the best is selected

99

with respect to its cost and adds it to the partial solution. If for any problem an

optimization method is used, it is required to show how it will refine the general

proposed method. As mentioned earlier in the introduction , there are many problems

with different structures which can benefit from greedy algorithm. However, in this

thesis one case has been proved to qualify for this method. This case includes prob­

lems with the monotonicity condit ion , referred as better-local by Curtis . The main

theory of greedy algorithms is proved under certain conditions, such as the property

of monotonici ty and the assumption that continuing the greedy step after a complete

solution is created will not result in a better completed solution, since the generation

function stops running when a completed solution is created.

In addition to independent examples, choosing the same examples in the literature

and main body of the thesis aims to describe how the proposed methods provide more

applicable methods for computer sci ntists by resolving some inadequacies of the other

introduced methods such as complexity.

Finally, future work can include implementing the proposed techniques in SIM­

PLE to refine abstract specification by abstract dynamic programming algorithm,

and abstract gr edy algorithms. It can also provide more d tails on the conditions

under which the proposed methods are applicable to particular problems. It can

further define conditions required on divide and conquer function , and proving the

correctness of greedy algorithm in other possible cases. The proposed methods can

be studied on more examples on different categories of problems such as hard to solve

problems. Future work can also include complexity study of algorithms and methods

of further optimizations.

100

Bibliography

[1] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,

1957.

[2] R. Bird and 0. de Moor. Algebra of Programming. Prentice Hall , London, 1997.

[3] R. S. Bird and 0. de Moor. From dynamic programming to greedy algorithms. In

B. Moller, H. Partsch, and S. Schuman, editors, Formal Program Development,

Volume 755 of Lecture Notes in Computer Science, pages 43- 61, Berlin, 1993.

Springer-Verlag.

[4] R. S. Bird and 0. de Moor. Solving optimisation problems with catamorphisms.

In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, 2nd International

Conference on the Mathematics of Program Construction, Volume 669 of Lecture

Notes in Computer Science, pages 45- 66. Springer-Verlag, 1993.

[5] A. Borodin , M. ielsen, and C. Rackoff. (Incremental) priority algorithms. In

Proceedings of the Thirteenth A CM-SIAM Symposium on Discrete Algorithms,

page 1996, 2002.

[6] T. H. Carmen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

McGraw-Hill, ew York, 2nd edition , 2001.

101

[7] S. Curti . Dynamic programming: A different perspective. In R. Bird and

L. Meertens, editors, Algorithmic Languages and Calculi, pages 1- 23, London,

1997. Chapman & Hall.

[8] S. Curtis. Use of relational operators for algorithm development.

ems. brookes.ac. uk/ staff/ Sharon Curtis/ publications/ lim. ps.gz, 1999.

[9] S. A. Curtis. A Relational Approach to Optimization Problems. PhD thesis,

University of Oxford, Oxford, U.K., April 1996.

[10] S. A. Curtis. The classification of greedy algorithms. Science of Computer

Programming, 49:125- 157, 2003.

[11] E. W. Dijkstra. Guarded commands, nondeterminancy and formal derivation of

programs. Communications of ACM, 18:453- 457, 1975.

[12] J. Edmonds. Matroids and greedy algorithms. Mathematical Programming,

1:126- 136, 1971.

[13] J . Edmonds. How to t hink about algorithms. loop invariants and recur-

sion. http: / j www.cse.yorku.ca/ rvjeff/ notes/ 3101/ The otes.pdf, Version 0.12,

January 2007.

[14] R. W. F loyd. Assigning meanings to programs. In Proceeding of Symposium

in Applied Mathematics and Mathematical Aspect of Computer Science, pages

19- 32, 1967.

[15[D. Gries. The Science of Programming. Springer-Verlag, w York, 1981.

102

[16] E. C. R. Hehner. Predicative programming part I. Communications of the A CM,

27:134- 143, 1984.

[17] E. C. R. Hehner. Predicative programming part II. Communications of the

ACM, 27:144- 151, 1984.

[18] E. C. R. Hehner. A Practical Theory of Programming. Springer-Verlag, ew

York, 1993.

[19] J. L. Rein. Discrete Structures, Logic, and Computability. Jones and Bartlett

Publishers, Boston, 2nd edition, 2002.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. In C. A. R.

Hoare and C. B. Jones, editors, Essays in Computing Science, pages 45- 58, New

York, 1989. Prentice Hall.

[21] C. A. R. Hoare. otes on an approach to category theory for computer scien-

tists. In M. Broy, editor, Constructive Methods in Computing Science, NATO

Advanced Science Institute Series (Series F: Computer and System Sciences),

volume 55, pages 245- 305. Springer Verlag, 1989.

[22] C. A. R. Hoare , I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe, J. W.

Sanders, I. H. Sorensen, J . M. Spivey, and B. A. Sufrin. Law of programming.

Communications of A CM, 30:672- 686, 1987.

[23] D. S. Hochbaum. Approximation Algorithms for NP-hard Problems . PWS Pub­

lishing Company, 1995.

103

[24] B. Korte and L. Lovasz. Mathematical structures underlying greedy algorithms.

In Fundamentals of Computation Theor·y, Volume 117 of Lecture Notes in Com­

puter Science, pages 205- 209, Berlin , 1981. Spring-Verlag.

[25] B. Korte and L. Lovasz. Greedoids and linear objective functions. SIAM Journal

on Algebraic and Discrete Methods, 5:229- 238, 1984.

[26] B. Korte, L. Lovasz, and R. Schrader. Greedoids. Springer-Verlag, Berlin, 1991.

[27] A. Lew and H. Mauch. Dynamic Programming: A computational Tool. Springer,

Berlin, 2007.

[28] J. McCarthy. Towards mathematical science of computation. www-

formal.stanford.edu/jmc/ towards.ps, 1996.

[29] T . S. orvell. The SIMPLE Report . Draft , Memorial University, St. John 's, L,

Canada, 2004 (Unpublished).

[30] T . S. Norvell. Faster search by elimination. In Newfoundland Electrical and

Computer Engineering Conference, November 2005.

[31] T . S. Norvell and Z. Ding. An nvironment for proving and programming. In

Newfoundland Electrical and Computer Engineering Conference, October 1999.

[32] D. Pavlovic and D. R. Smith. Software development by refinement. In B. K. Aich­

ernig and T. S. E. Maibaum, editors, UNU / liST 1Oth Anniversary Colloquium,

Formal Methods at the Crossroads: From Panaea to Foundational Support, Vol­

ume 2757 of Lecture Notes in Computer Science, pages 267- 286. Springer, 2003.

104

[33] B. C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press,

Cambridge, Mass, 1991.

[34] J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online

Algorithms: The State of the Art, pages 196- 231. Springer, 1998.

[35] D. Smith. Mechanizing the development of software. In M. Broy and R. Stein­

brueggen, editors, Calculational System Design, Proceedings of the NATO Ad­

vanced Study Institute, pages 251- 292. lOS Press, 1999.

[36] D. R. Smith. KIDS: A semi-automatic program development system. IEEE

transactions on Software Engineering Special Issue on Formal Methods , 16:1024-

1043, 1990.

[37] D. R. Smith. KIDS: A knowledge-based software development system. In M. R.

Lowry and R. D. McCartney, editors, Automating Software Design, pages 483-

514, Menlo Park, California, 1991. AAAI Press.

[38] D. R. Smith. Automating the design of algorithms. Lecture Notes In Computer

Science, 755:324- 354, 1993.

[39] J. Ward. A unified model of algorithm design. Master's thesis, Dept. of Computer

Science, University of Toronto, Toronto, ON, Canada, 2007.

105

