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Abstract 

In this thesis we present a formal study of greedy algorithms and dynamic pro­

gramming in a predicative framework. A simple approach i presented based on 

specialization of an abstract algorithm representing an algorithm design approach. 

This provides not only reuse of the algorithm, but also reuse of its proof. Moreover, 

the simplicity and applicability of the design techniques are not sacrificed. For each 

method, a problem is parameterized to create a specification, which is then trans­

formed to a concrete algorithm following the proposed proce s. 
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Chapter 1 

Introduction 

Algorithm generally refers to a concrete algorithm. However, there is a broader per­

spective to algorithms known as abstract algorithms. To form an abstract algorithm, 

a deeper understanding of the abstract input , and output is required. The abstract 

algorithm excludes the optimization details of an algorithm, or data structure and 

datatypes for implementation purposes. To develop an abstract algorithm, the main 

concept is the knowledge to design an algorithm. 

Moreover, algorithm design approaches, such as greedy algorithms, dynamic pro­

gramming, divide-and-conquer, and binary search, are generally taught and under­

stood as informal ideas. Can we capture each algorithmic approach formally? 

We are investigating how abstract specifications can be proved to be implemented 

by abstract algorithms. For this study we consider algorithm design techniques includ­

ing dynamic programming and greedy algorithms. Therefore, by applying a trans­

formation that maps the abstract specification into a concrete specification, we can 

derive a concrete algorithm from the abstract algorithm. With the derived method 

1 



comes along a formal proof of abstract algorithm correctness. This allows the abstract 

algorithm to be reused, along with its proof, to solve multiple concrete problems. The 

approach is summarized as follows. Suppose we know that an abstract specification 

Pis refined by an abstract algorithm Q, then if we need an algorithm for a problem 

R = T(P), where Tis a data transform, we can refine R with the same transformation 

T(Q). 

Abstract Specification P 
Pf;;_Q 

Abstract Algorithm Q 

T T 

Concrete Specification T(P) 
T (P ) f;;.T(Q) 

Concrete Algorithm T (Q) 

One of the design approaches presented in this thesis is dynamic programming 

which is a recursive approach to solving instances of problems by creating subinstances 

and using the obtained solutions to the subinstances to create a solution to the original 

instance. It is mostly applied to optimization problems, however, it also covers some 

non-optimization problems. The idea of dynamic programming is been taught in 

many books on algorithms such as [27, 13]. Its history goes back to 1955 when R. 

Bellman systematically studied this approach [1]. There have been other studies by 

other authors on its applications, and computational complexity. However, the main 

purpose of this thesis is neither studying concrete algorithms of dynamic programming 

independently nor the study of their complexity. It is rather on how to derive concrete 

dynamic programming algorithms from abstract algorithms. 

This approach has been studied by researchers such as Bird and de Moor who 

have published papers such as [4, 3] and a book [2] on how to to calculate programs. 

In these studies algorithm design techniques such as dynamic programming, greedy 

algorithms, exhaustive search and divide-and-conquer are approached in an algebraic 
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form of programming. The algebraic approach can be applied to derive individual 

programs and is also a tool for studying general principles of programming, in par­

ticular those concerning optimization problems. Bird and de Moor theories make use 

of the categorical calculus of relations as a mathematical framework, providing the 

possibility of abstracting away the datatypes. This framework helps in formulating 

theorems and proofs. The calculus consists of two methods of reasoning, pointfree 

and pointwise. The former is reasoning based on functions and relations , and ef­

fectively avoids the use of quantifiers. The latter, however, is reasoning based on a 

formalism such as predicate calculus, and is well suited for automated development 

of programs. The main concept used in the studies of Bird and de Moor in solving 

problems is catamorphism. Catamorphisms in Bird and de Moor's theory is an oper­

ator similar to the fold operator in many functional languages. The results, mostly 

in a recursive format , are then translated into a functional programming style. The 

style of reasoning with functions and relations is pointfree. 

A recent study by Lew and Mauch [27] represents dynamic programming problems 

in categories such as group routing problems, optimal binary tree problems, and some 

non-optimization problems. It is also a very good source of examples and applications 

of dynamic programming. A study by Ward [39] presents a unified model of algorithm 

design for design techniques such as dynamic programming. 

Greedy algorithms are the other design approach studied in this thesis. Such al­

gorithms provide a considerable benefit of simplicity and efficiency, if applicable to 

a problem. Greedy Algorithms are used for solving optimization problems, sequen­

tially making locally optimal choices to make a globally optimal solution. There have 

been many studies for conditions under which greedy algorithms can be applicable to 
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problems, which are not considered in this thesis and can be studied in the following 

suggested sources. For a greedy algorithm to be applicable to a problem, the greedy 

structure should be satisfied [6] . Matroids and greedoids are structures that meet 

certain conditions guaranteeing a greedy solution. Although, greedy algorithms can 

be applied to other problems not fitting in this categories. Matroids, which first ap­

peared in the combinatorial optimization study by Edmonds [12], exhibit the property 

of optimal substructure in a problem. Optimal substructure indicates that to create 

an optimal solution to a problem instance, optimal solutions to the subinstances are 

used [6] . There is also the concept of graphic matroids, which, for instance, covers 

the structure of the minimum spanning tree problem. Greedoid theory is studied by 

Korte and Lovasz in [24, 25, 26]. There are other studies on optimization problems 

and particularly greedy algorithms known as priority algorithms [5]. In the study 

of priority algorithms [5], greedy algorithms are known to satisfy the property of 

incremental priority (fixed priority) . Therefore, problem subinstances are evaluated 

based on their priority, high to low, and removed from the input list. The priority is 

defined with respect to the objective (cost) function. This algorithm framework can 

be viewed as a generalization of online algorithms in [34, 23]. In addi t ion, the authors 

of [5] derive lower bounds with respect to priority algorithms. 

Sharon Curtis has studied optimization problems and contributed to the study 

of dynamic programming and greedy algorithms by approaching them in a relational 

context [9, 10, 8, 7]. This study introduces more relationship between dynamic pro­

gramming and greedy algorithm and approaches them as combinatorial optimization 

problems. Curtis claims using a loop operator in imperative programming style gives 

an extra degree of freedom in generating feasible solutions. 
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Formal proof and algorithm correctness have been studied by J. McCarthy [28], C. 

A. R. Hoare [20, 22], R. Floyd [14], and E. Dijkstra [11]. There are also recent studies 

done by D. Smith [32, 35, 36, 38, 37]. Smith, in Kestrel Interactive Development 

System (KIDS), has approached correct and efficient algorithm development in two 

parts, techniques of automation process and the concept theory of algorithm design. 

Smith explains his studies are not about the effectiveness of tactics such as dynamic 

programming, but rather about how to apply the tactics to several type of problems. 

To derive algorithms, first the problem is formally described with specifications, then 

the theory is applied to derive the algorithm. Following datatype refinements , a cor­

rect and efficient program also known as concrete specification is developed from an 

abstract specification. The work is mainly on software development by refinement 

techniques and mechanizing the development of software. All of the KIDS transfor­

mations preserve correctness and are automatic, with the exception of choosing the 

algorithm de ign technique. 

The main contribution of this thesis is deriving abstract dynamic programming 

and greedy algorithms and the transformation process to derive concrete algorithms 

from concrete problem specifications. The mathematical framework used to provide 

these methods is Predicative Programming. Predicative Programming is presented 

by E. Hebner in [18, 16, 17]. Pointwise reasoning is applied in defining functions. The 

proposed methods are suggested for the SIMPLE environment developed by T. Norvell 

[31, 29]. SIMPLE is an integrated development environment to develop and edit 

proofs and program development proofs. This environment assists its user in checking 

the steps required for proof and algorithm development. SIMPLE can extend to an 

environment to include proof support for programming and specification languages. 
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This thesis tries to provide more applicable methods for computer scientists resolving 

some inadequacies of the other introduced methods. 

The rest of this thesis is structured as follows. Chapter 2 presents category theory 

as the mathematical framework of theories and algorithms studied in the literature 

and related work. Related work includes definitions and theories of dynamic program­

ming by Bird and de Moor, and an application of their theory, optimal bracketing. It 

also includes the idea of a simple recursive loop by Curtis to generate feasible solutions, 

and an application of greedy algorithm which is Kruskal's minimum spanning tree. 

In addition , it presents Smith's approach on algorithm development in KIDS project 

including algorithm development steps, basic concepts, and software development by 

refinement. This chapter ends with an algorithm of job scheduling process presented 

to describe refinement and development concepts on algorithm development. 

Chapter 3 presents the proposed generic dynamic programming algorithm. Like 

the divide-and-conquer method, it works by finding solutions to subinstances and 

combining solutions to the subinstances. Unlike divide-and-conquer, dynamic pro­

gramming saves the solutions to the subinstances. There are two approaches to 

implementing dynamic programming: top-down and bottom-up. In this chapter we 

will discuss an approach to solving problems based on concretization of top-down 

and bottom-up abstract dynamic programming algorithms. Along the way, we also 

formalize the closely related divide-and-conquer approach. Matrix multiplication, 

otherwise known as optimal bracketing, and maximum black square on an image are 

the applications of dynamic programming considered in this chapter. 

Chapter 4 presents the proposed greedy algorithm. In this chapter we are inves­

tigating how abstract specifications can be proved to be implemented by abstract 
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greedy algorithms. In this chapter, a formal structure for greedy algorithms in a 

predicative style is presented. Considering there can be many possible greedy choices 

in each step which all lead to a completed solution, the proposed algorithm makes 

an arbitrary election amongst all possible greedy choices. Applications of greedy 

algorithms presented in this chapter are Kruskal's algorithm, and Huffman codes. 

Finally, chapter 5 presents the summary and conclusion of this thesis and intro­

duces possible future works. All chapters on this thesis can be studied independently. 
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Chapter 2 

Background and Related Work 

Studies are conducted by several researchers on algorithm design techniques such as 

dynamic programming, greedy algorithms, exhaustive search and divide-and-conquer 

in an algebraic form of programming. The algebraic approach can be applied to derive 

individual programs and is also a tool for studying general principles of programming, 

in particular those concerning optimization problems. 

In this chapter we present category theory as the mathematical framework of the­

ories and algorithms studied in the literature and related work. Related work section 

includes definitions and theories of dynamic programming by Bird and de Moor, and 

an application of their theory, optimal bracketing. It also includes the idea of a simple 

recursive loop by Curtis to generate feasible solutions, and an application of greedy al­

gorithm which is Kruskal's minimum spanning tree. In addition, it presents Smith's 

approach on algorithm development in KIDS project including algorithm develop­

ment steps, basic concepts, and software development by refinement. This chapter 

ends with an algorithm of job scheduling process presented to describe refinement 

8 



and development concepts on algorithm development. 

2.1 Mathematical and Programming Frameworks 

2.1.1 Functional Programming 

Some algorithms which are studied in the related work are written in a functional pro­

gramming style. Therefore, this section is an introduction to functional programming 

elements and features. 

2.1.1.1 Datatypes and Functions 

An example of a simple datatype is boolean defined as follows [2] : 

Bool ::= false I true 

which may also be used to define a new datatype such as: 

Either ::= bool Bool I char Char. 

Functions can be written in either of the following styles 

and : (Bool x Bool ) -t Bool 

and (false, b) = false 

and (true, b) = b 

cand : Bool -t (Bool -t Bool) 

cand fals e b = fa lse 

cand true b = b 

9 



In the above definitions of a function , cand is called a curried function and and is 

called a non-curried function. 

2 .1.1.2 Recursive Definitions 

Datatypes and functions may also be defined recursively [2] . For instance, natural 

numbers can be defined as: 

Nat zero I succ Nat 

and plus function can be defined as: 

plus (m, zero) = m 

plus(m, succn) = succ(plus(m,n)) 

Some function definitions can be written using numbers and some arithmetic oper­

ations. Factorial function fact that uses n + 1 instead of succ is an example of this 

case 

2.1.1.3 Lists 

fact 0 = 1 

fact (n + 1) ( n + 1) x fact n. 

A list is a datatype commonly used m functional programming with two basic 

definitions [2]: 

listr A ::= nil I cons (A, listr A) 

listl A ::= nil I snoc (list A, A) 

10 
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Cons-list defined in (2.1) builds a list in which new elements are added to the front; 

snoc-list defined in (2.2) builds a list in which new elements are added to the rear. 

An example of functions on lists is map, which applies a function to every member 

of a list 

f : B -t C 

map f : list B -t list C 

map f [a1, a2, . . . , an]= [Ja1, Ja2 , ... , fan]. 

2.1.1.4 Trees 

One form of a tree can be described as a datatype whose values are either tips 

containing data or pairs of trees [2]: 

tree A ::= tip A I bin (tree A, tree A). 

An example of this definition is tree Char where its elements are characters 'A' , ' B' , and 'C': 

bin (tip'A', bin (tip ' B' , tip'C')). 

2.1.2 Category Theory 

Category theory is an algebraic structure that is useful for developing relations be­

tween specifications, designs, correctness proofs, and programming languages. It pro­

vides a framework for correctness and data validity of programming and algorithm 

development [21]. Some examples of categories include Set - the category of all sets­

and Rei - the category of all relations. Set is fi rst described as an example of categor­

ical concepts. There is also a short description of Rei that is introduced by Bird and 
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de Moor [2]. The elements of category theory presented in this chapter are necessary 

to understand the related work on algorithm development. To study these concepts 

in more details, an example is provided in (2.1.3). 

2.1.2.1 Categories 

By definition a category, denoted by C, is a collection of objects and arrows ( mor­

phisms) where each arrow f : B ---t A has a source and a target object [33, 2]. On each 

category, composition arrows and identity arrows are defined. For any two arrows 

f : B ---t A and g : C ---t B, the composition arrow is 

f·g:C---tA. 

For arrows f : B ---t A, g : C ---t B, and h : D ---t C the following associative law is 

defined: 

f . (g . h) = (! . g) . h. 

For each object A and arrow f : B ---t A, an identity arrow idA : A ---t A satisfies the 

following identity laws: 

f ·ids 

idA· f 

f, and 

f. 

For any category C, the opposite category c op is defined such that it has the same 

objects but reversed arrows, by inversion of source and target. 

2.1.2.2 Functors 

A Functor is a category of categories, its objects are categories and its arrows are 

maps between categories denoted by F [33, 2]. A mapping of a category to category 
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includes mapping of two elements of a category: a mapping of objects to objects and 

a mapping of arrows to arrows. Let C and D be categories, a functor F : D ---+ C 

maps each object of D such as B to an object of C such as F(B) , and each arrow of 

D such as f : B ---+A to an arrow of C such as F(J) : F(B) ---+ F(A) where 

F(J. g) = F j. Fg. 

2.1.2.3 Products 

A product of two objects A and B in a category C is an object denoted by A x B 

together with two arrows outl : A x B ---+ A and outr : A x B ---+ B with the following 

property [33, 2]: for any object C and arrows 

f : C ---+ A, and 

g : C---+ B , 

there exists a unique arrow 

h :C---tAx B 

such that 

h =(!,g) outl · h = f and outr · h = g 

where (!,g) is pronounced "pair f and g". The following diagram summarizes the 

type information 
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2.1.2.4 Coproducts 

A coproduct of two objects A and B in a category C is an object denoted by A + B 

together with two arrows inl : A ---7 A + B and inr : B ---7 A + B with the following 

property [33, 2]: for any object C and arrows 

f : A ---+ C, and 

g: B---+ C, 

there exists a unique arrow 

h:A+B---+C 

such that 

h = [f,g] h · inl = f and h · inr = g 

where [/, g] is pronounced "case f or g". The coproduct of A and B in C is the product 

of A and B in c op. The following diagram summarizes the type information 

2.1.2.5 F-Algebras and F-Homomorphisms 

Let K be a category and F : K ---7 K a functor , an F-algebra is a pair (A, a) of an 

object A of K and an arrow a: F(A) ---7 A of K [33]. 

An F-homomorphism from an algebra (A, a) to an algebra (B, b) is an arrow 

h : A ---+ B of K such that the following diagram commutes [33, 2]: 

A---B 
h 
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A simple example is the algebra (Nat,+) of the natural numbers and addition 

which is an algebra of the functor: 

F(A) = A x A 

F(h) = h X h 

2.1.2.6 Initial Algebras and Catamorphisms 

An F-algebra (T, a) is an initial F-algebra if and only if for every F-algebra (A, f) , 

there is a unique homomorphism h: T-+ A which is called catamorphism ~~~[33, 2]. 

The following diagram summarizes the type information 

F(T) ~ F(A) 

Ql lf 
T--...,..A 

OJD 

For all arrows h : T -+ A there is a universal property 

h = ~~~ = h · a = f · F(h) 

Example 1. Catamorphisms on Strings 

A string is a list of chars which in functional programming can be presented as a 

datatype defined as follows [2] 

String : := nil I cons( Char, String). 

To create a catamorphism, the definition of string declares that the initial algebra 

is built as [nil , cons] : F String -+ String of the functor F: 

FA = 1 + (Char x A) 

F f = id + ( id X f) 
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Here nil : 1 --t String is a constant function. Every algebra of the functor on string 

is [c, f] where c : 1 --t A is a constant and f : Char x A --t A is a function. 

In order to form h ·a = f · F(h) to create a catamorphism, h is defined as ~c, f~. 

2.1.2.7 Hy lomorphism 

The composition of a catamorphism with the converse of a catamorphism is called a 

hylomorphism, such as ~R~.~s~o [2]. Let R : FA--t A, S : F B --t B, ~R~ : T --t A, 

and ~S~ : B --t T, where T is the initial type of F, then ~R~ · ~s~o : B --t A. 

Hylomorphisms can be characterized as least fixed points. 

Theorem 2 . Suppose that R : FA --t A and S : F B --t B are two F-algebras, then 

~R~ · ~s~o : B --t A is given by 

2.1.3 Set Theory and Category Set 

This section is a brief survey of set theory. It shows that sets and functions between 

sets have th structure of categories. 

2.1.3.1 Sets 

One view of sets is that a set is a collection of elements that share a common property 

such as P [21], and is defined as follows 

S = {xI Px}. 
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Each element in a set is called a member, x E S. An element outside the set is not a 

member n tt S. 

x E S, y E S, .. . , z E Sis also written as x, y, .. . , z E S 

A subset A of a set B is a set such that all of its members are also members of set 

B , formally defined as (2.3). In addition , two sets are equal if the subset relation is 

mutually definable , formally defined as (2.4). 

A~B 

A = B 

(x E A implies x E B , for all x) 

(A ~ B and B ~A) 

(2.3) 

(2.4) 

Some examples of sets are the empty set, and powerset. The empty set {} is a 

set with no members. Sets can have none, one, or more members. Powerset is a set 

containing all sub ts of a set, including an empty set and the set itself. 

If x, y E S, pair (x y) can be defined as an ordered pair. 1\vo pairs are equal if 

their ordered m mbers are equal. 

(x, y) = (x', y') = x = x' andy = y' 

The cartesian product of A x B contains all pairs (x , y) as defined 

AxE = {(x,y)lxEAand yEB}. 

Operations such as U, n, U, n, and --. are defined on sets. For instance, A U B is 

the union of A and B defined as follows: 

AUB {xI x E A or x E B}. 
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If S is a set of sets, its union U S is the set containing all members of any of its 

members defined as follows: 

u s = {X I ( :3y E s . X E y)} 

2.1.3.2 Functions on Sets 

A function consists of two sets, the source and the target, and a mapping between 

them [21]. In concept, a function is very close to functor; it is written in form of 

(J : S ---7 T), where 

• S is a source set, 

• T is a target set, 

• f is a total mapping which maps members of S to members ofT. 

Two mappings could be equal, however, form different functions by having different 

source and target sets. Thus, 

S=S', 

(J : S ---7 T) = (f' : S' ---7 T') iff T = T', and 

fx = f'x , for all x E S 

For simplicity, function f : S ---7 T is abbreviated to f and a mapping is denoted 

using A notation. If xis a variable inS and · · · x · · · is an expression in T when x , then 

(Ax · · · x · · · ) is a A expression. The corresponding function ( (Ax · · · x · · · ) : S ---7 T ) 

includes the presented mapping, source set S, and target sets T. The composition of 

functions f : S ---7 T and g : T ---7 U is also a function 

f ; g = ((Ax · g (Jx)) : S ---7 U) . 
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2.1.3.3 Isomorphisms 

Let f and g be functions defined as f : S T and g : T ----7 S, if there is a unique g 

for f where th y have the following relation 

J;g = f s 

then g is called the inverse of f. A function that has an inverse is called an isomor­

phism; Sand Tare said to be isomorphic (S ::= T) [21]. In category Set isomorphism 

is also referred to as bijection which has the property of surjection and injection. If 

the image of a function f : S ----7 T, which is a subset ofT which can be obtained by 

applying f to som members of S, contains all members of the target set T, then f 

is said to be a surjection. Conversely, for any subset S ofT, there is a functor that 

maps each member of S to itself in T which is said to be the injection. 

2.1.3.4 Sets and Categories 

There are two type of categories: concrete category and abstract category [21]. F is 

called a concrete category if it is a family of functions that has the two following 

properties: 

• if(! : s ----7 t) E F then Is, It E F 

• if(!: s ----7 t) , (g: t ----7 u) E F then ((!;g) : s ----7 u) E F. 

The objects of th category defined as a family of sets denoted by Jl F 11. The arrows 

of the category are the functions denoted by I F I· 

Set is the category that has all sets as its objects and all functions as its arrows. 

Set is an example of a concrete category; all concrete categories are subcategories of 
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Set. 

Formally, an abstract category C is defined as (II C II, I C I, I , ; , +-, --*) where 

[21] 

• II C II is a family of objects 

• I C I is a family of arrows 

• I identity is a function from II C II to I C I 

• ; composition is a partial binary operator on I C I 

• f- source and --* target are total functions from I C I to II C II 

Moreover, t he following properties must be satisfied in a category [21]: 

• j; g is defined just when 1 = g, 

t- t-:- -:---t 1 • j; g = f, and j ; g = , 

• (!;g); h = j; (g; h) 

2.1.4 Relations and Category Rei 

2.1.4.1 Rei 

Another example of a category is Rei which is defined on sets and relations [2]. In 

Rei objects are sets and each arrow is a relation R : A --* B which is a subset of the 
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Cartesian product A x B. In relations aRb indicates (a, b) E R. The identity arrow 

is: 

idA= {(a, a) I a E A}. 

Composition arrow of R: B -t A and S: C -t B is defined as: 

aT c = (:Jb · aRb 1\ b S c) 

2.1.4.2 Powerset Functor 

A functor P : Fun -t Fun - where Fun is the category of sets and total functions - is 

a mapping from a et A to the powerset P A defined as follow [2] 

P A = {xI x ~A} . 

It also applies f to a set which then applies to every element of it, by mapping a 

function f to the function P f. 

2.1.4.3 Min and Max 

For any relation R : A -t A, the relation min R : P A -t A relates x to a if a is 

an element of x and a lower bound of x with respect to the relation R [2]. For all 

X : A -t A we can also define max R = min Ro, so a maximum element with respect 

to R is a minimum element with respect to R o. The minimum element applies to a 

function f as follows 

min R . P f = f . min(r . R . f) 
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The following diagram summarizes the type information 

min(f0 .R.f) 
B ----+B 

PJ l ! J 

PA----A 
minR 

2.1.4.4 Monotonic Algebras 

By definition, an F-algebra S : F(A) --t A is monotonic on a relation R: A--t A if [2] 

S · F(R) ~ R · S. 

The following diagram summarize the type information 

F(A) ~ F(A) 

sl ls 
A---A 

R 

Furthermore, if S is monotonic on a preorder Ro, then 

~min R ·AS~~ min R · A~S~. 

To illustrate, consider the following example when F-algebra S is addition of natural 

numbers, plus : Nat x Nat --t Nat , S i monotonic on relation R "Less than or 

Equal", leq, if 

plus· (leq x leq) ~ leq · plus. 

To show the correctness we have: 

c = a + b and a :::; a' and b :::; b' ~ c :::; a' + b' 
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2.1.4.5 Power Transpose (Lambda) 

A power transpose also known as lambda operator A is an operation on relations which 

converts a relation to the corresponding function [9] 

(t-.R) x = {y iyR x }. 

2.1.4.6 Coreflexives 

A domain of a relation is a relation defined as [9] 

domR = {(y ,y) l3x · (x, y) E R} . 

A notdomain of a relation is a relation defined as 

notdomR = {(y,y) l•3x · (x, y) E R} . 

As shown in the above definitions, in the studies by Curtis sets of pairs are reversed 

from their usual order. 

2.1.5 Algorithm Development and Category Specs 

2.1.5.1 Specification 

A Specification i a presentation of a theory describing objects, operations, and prop­

erties and axioms that constrain the meaning of the symbols [35, 32]. 

Example 3. Specification of Partial Order 
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Specification PreOrder is 

sort E 

op -le-:E,E ----t Boolean 

axiom reflexivity is x le x 

axiom transitivity is x le y 1\ y le z ~ x le z 

end-spec 

2.1.5.2 Morphisms 

A morphism is a translator of the language of one specification into language of 

another specification preserving the correctness of the theorems of the source specifi­

cation in the destination specification; a morphism translates theorems and interprets 

symbols of a theorem to expressions [35, 32j. 

Example 4. Partial-Order specification using PreOrder specification 

spec Partial- Order 

import PreOrder 

axiom antisymmetry is x le y 1\ y le x ~ x = y 

end-spec 

Example 5. A specification morphism from Partial-Order to Integer 

morphism Partial-Order-to-Integer is: 

{ E ----t Integer, le ----t:::;} 
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An import (extension) morphism is used to create a new theorem using existing 

theorems. For example, specification of preorder which has the axioms of reflexivity 

and transitivity could be imported to build up a new specification Partial-Order which 

has those axioms and an additional axiom of antisymmetry. 

2.1.5.3 Category Specs 

Category of Specs is a category which has specifications as its objects and spec-

ification morphism as its arrows [35, 32]. The definition of colimit(coproduct) is 

also defined in this category. For example, A~ C and A~ B has a colimit 

B ~A ~ C is computed as follows: 

• form the disjoint union of all sort and operator symbols of A , B, and C 

• define s ~ t iff (i (s) = t V i (t) = s V j (s) = t V j (t) = s) where i : A ---t B 

and j : A --+ C 

• use morphism to define the axioms of colimit from axioms of A, B, and C 

The co limit is the collection of all the equivalent relations ( ~) and sort, symbols, and 

axioms. 

Example 6. The theory of Binary Relation presented as a colimit of Antisymmetry 

and ?reOrder 

spec BinaryRelation 

~ ~ 
spec Antisymmetry spec PreOrder 
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In this exam pie morphisms are { E -t E, le -t le} from BinaryRelation to A ntisym-

metry and ?reorder. Colimits can be used to construct a large specification from a 

diagram of specs and morphisms. 

2.1.5.4 Refinement and Diagrams 

Specification morphisms can be used to structure and refine a specification [32, 35]. A 

morphism between a specification domain and codomain is a refinement which reduces 

the number of possible implementations. Thus, refinement represents a particular 

design decision or property that corresponds to the implementation of a domain 

specification and is also applicable to codomain specification. A diagram morphism 

from diagram D to diagram E is a set of specification morphisms, from a specification 

in D to a specification in E, which maps diagram D to diagram E, represented as 

D ~ E. The following diagram summarizes the refinement structure: 

Example 7. A diagram morphism as data type refinement that maps bags to se-

quences 

is represented by diagram morphism as: 

BAG 

~BtoS 
SEQUENCE 
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2.1.5.5 Global Search 

The definition of global search by Smith [38] is as follows: 

The basic idea of global search is to represent and manipulate sets of 
candidate solutions. The principal operations are to extract solutions from 
a set and to split a set into subsets. Derived operations include various 
filters which are used to eliminate sets containing no feasible or optimal 
solutions ... Thus global search algorithms are based on an abstract data 
type of informational representations called space descriptors. In addition 
to the extraction and splitting operations mentioned above, the type also 
includes a predicate satisfies that determines when a candidate solution 
is in the set denoted by a descriptor. 

2.2 Related Work in Dynamic Programming 

Bird and de Moor's theories [2, 4, 3] make use of categorical calculus of relations as a 

mathematical framework, providing the possibility of abstracting away the datatypes 

and enhancing the capabilities of functional calculus. This framework helps in formu-

lating theorems to calculate programs in form of an abstract solution . In addition, 

it is a framework to conduct proofs . Theorems are based on structural similarities 

of the specification of the problems. The main concept used in solving problems is 

catamorphism. The results, mostly in a recursive format, are then translated into 

a functional programming language, using fold and unfold operations. The style of 

reasoning with functions and relations is pointfree. 

In order to solve optimization problems, Bird and de Moor formulated a problem 

M in the following equation [2] 

M (2.5) 
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where h is a function. An algorithm to solve the problem M is presented as 

(2.6) 

Using dynamic programming for this algorithm optimal solution to subinstances of 

problems are composed to make an optimal solut ion. This method is presented in 

two theorems of dynamic programming from 12]. In theorem 8 below, the problem 

instance is decomposed in all possible ways into subinstances. Then, recursively 

solved subinstances are composed to make an optimal solution. In theorem 9 below, 

the decompositions that will not lead to an optimal solution will be removed from 

the feasible solutions. 

Theorem 8. (Bird and de Moor) Let M =min R·A (~h~ · ~T~0 ). If his monotonic 

on R , then 

(p,X : min R · P (h · F X) · AT0
) ~ M. 

This theorem has a recursive scheme in which the input is decomposed in all 

possible ways. There are some problems that clearly declare that some decompositions 

will not lead us to a result better than others. T hus, this idea is added to the theorem 

8 to eliminat unprofitable decompositions. The result is the th orem 9. 

Theorem 9. (Bird and de Moor) Let M = minR·A (~h~ · ~T~0 ) . If h is monotonic 

on R and Q is a preorder satisfying h · F ( ~h~ · ~T~ 0 ) • Q0 ~ R 0 
• h · F ( ~h~ · ~T~0 ) then 

(p,X : min R · P (h · F X) · thin Q · AT0
) ~ M. 

Hylomorphisms are important because they capture the idea of using an inter­

mediate data structure in a solution of a problem. As mentioned in theorem 2, 
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hylomorphisms can be characterized as least fixed points. In both theories, optimal 

solutions can be computed as a least fixed point . If AT0 returns finite non-empty 

sets and R is a connected preorder (Relation R is connected if R · R o = ID then the 

unique solution is entire. 

Example 10. Opt imal Bracketing 

Let's study the theorem by a standard application of dynamic programming that 

is the problem of building a minimum cost binary tree [2]. The problem is often 

formulated as one of bracketing an expression a 1 EB a2 EB · · · EB an in the best possible 

way. It is assumed that EB is an associative operation, so th way in which the 

expression is bracketed does not affect its value. However, different bracketings may 

have different costs, and the objective is to find a bracketing of minimum cost. The 

cost of each tree is compared by relation R. 

A binary tree represents a datatype for bracketing with values in the tips: 

tree A ::=tip A I bin( tree A , tree A ). 

For example, the bracketing (a1 EB a2 ) EB (a 3 EB a4 ) is represented by the tree: 

The general method (2.5) is used to pre ent optimization probl ms 

Introducing function flatten : tree A ----t list+ A that flattens a tr e to a list: 

flatten = Qwrap, cat~ 
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where wrap turns its argument into a singleton list, cat : (list+ A)2 -t list+ A takes 

two non-empty lists of tip values to a non-empty list from left to right, and the 

following substitutions: 

F f = id + f X f 

R=R 

h := [tip , bin ] 

~h~ = id 

T = [wrap, cat] 

. ·. ~T~ = flatten. 

Aflatten° creates all possible trees. This optimization problem is represented as: 

min R · A~wrap, cat~o . 

Thus, the problem to find the minimum cost tree is formulated as follows: 

met~ min R · A~wrap, cat~ 0 • 

In words, a list of expressions forms a tree that is being made in all possible ways, 

making a set of results. Then according to the cost of building a tree determined by 

relation R, min R chooses the minimum cost trees. When 

R = cost0 
• leq · cost , 

t0 R t 1 = cost t0 :::; cost t 1 . 

The cost of building a single tip is zero, while the cost of building a node is some 

function of sizes of the expressions associated with the two subtrees, plus the cost of 

building the two subtrees; furthermore, (cost, size) form a catamorphism. 
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Since the condition of monotonicity applies 

where 

cost· [tip, bin] = g · (id + (cost, flatt en )2
) 

g · (id + (leq x id)2) ~ leq · g, 

g = [zero, outl · opb · (id x sz)2
], 

the dynamic programming theorem 8 is , therefore, applicable. Thus, we can compute 

a minimum cost tree using the least fixed point of the recursion equation. 

p,X : min R · [tip, bin · (X x X)] · A [wrap , catt ~ m et 

X= (single-t tip· wrap0
, min R · P(bin · (X x X) · Acat0

) 

where 

fa, if pa 
(p -t j, g) a= 

g a, otherwise 

and Acat0 can be represented as a function 

split = zip · (inits+, tails+), 

where zip is a function that transforms pairs of lists to lists of pairs , inits+ and tails+ 

return the list of proper initial and tail segments of a list. 

To make it easier to follow consider this explanation: 

X ([a]) =tip a 
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Let's have s as every way that we can split l = Acat0
: 

X (l) = 

lets= { (lo,h) l l = cat(lo,h)} in 

lett = {(l0 , l1) E s ·bin (Xlo), (Xli)} in 

let u = min t in 

u. 

In words, produce all the possible pairs , get each pair, form a tree, and apply X 

to it, recurs on both of them and use previously calculated optimal trees, then make 

the tree and finally pick the best one. 

To compute the optimum bracketing for the main problem, we need to compute the 

smaller recursively defined subinstances of the problem instance. We will represent 

an array as a list of rows , however we also consider columns. 

array = list row · inits 

row = list met · tails 

col = list met · inits 

inits returns the list of non-empty initial segment in increasing order of length, and 

tail the tail egments in decreasing order. First step is to express met in terms of 

row and col. 

met = min R ·list (bin· (met x met))· zip· (inits+, tails+) 

= mix · (col · init, row ·tail) 

where zip · (inits+, tails+) creates all possible break points, and mix = min list R · 

list bin · zip zip the pairs, change it to tree, and picks the be t. Next, col is represented 
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in terms of row and col. 

Therefore, 

col= next· (col · init, row· tail). 

col= (single-t wrap · tip · head·, next · (col· init, row· tail)) 

next= snoc · (outl, mix). 

Finally, row is expressed in terms of met and col, 

row= cons· (met, row· tail). 

Therefore, 

row= (single-t wrap · tip· head, cons· (met, row · tail)). 

Array is computed as a catamorphism on cons-lists, building columns from right to 

left and then using the column entries to extend each row. Therefore, we have array 

as 

where 

array = Qfstcol, addcol~, 

fstcol = wrap · wrap · tip, 

addcol = cons · (wrap · tip · outl, step), 

step= list cons· zip · (tail · process, outr). 

The program to calculate optimal bracketing as a result of the calculations is as 

follows: 
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> data Tree a = Tip a I Bin(Int , a) (Tree a , Tree a) 

> met = head· last· array 

> array = cata1list(fstcol , addcol ) 

> fstcol = wrap· wrap· tip 

> addcol = cons · pair· (wrap· tip· outl , step) 

> step = list cons· zip· pair(tail ·process, outr) 

> process = loop next· cross (wrap ·tip, id) 

> next = snoc · pair(outl , minlist r ·list bin· zip) 

> where r = leq ·cross( cost , cost) 

> cost (Tip a ) = 0 

> cost (Bin(c , s )ts) = c 

> size(Tip a ) = a 

> size(Bin( c , c )ts) = s 

> tip = Tip 

> bin(x, y) = Bin(c , c)(x, y) 

> 

> 

where c = cb(size x, size y) + cost x +cost y 

s = sb (size x, size y) 

The program produced by Bird and de Moor theorem is very concise and well 

developed. However, the process summarized here is about eight pages of a book. 

Furthermore, some of t he conclusions made in one line, however , would be better 

written in a few lines of equations to provide more clarity for the reader. 
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2.3 Related Work in Greedy Algorithms 

Sharon Curtis made a contribution to the study of dynamic programming and greedy 

algorithms by approaching them in a relational context [9]. This study introduces 

more relationships between dynamic programming and greedy algorithms and ap­

proaches them as combinatorial optimization problems. It also uses a simple loop 

operator to generate feasible solutions. 

Sharon Curtis also claims that although the theories by Bird and de Moor are 

useful to express considerable number of problems, it is not easily applicable to 

all optimization problems and not applicable to some exceptional cases at all. She 

takes Huffman Coding as an example, and concludes that catamorphism and anamor­

phism methods are Top-Down methods while examples such as Huffman Coding need 

Bottom-Up methods. 

2.3.1 General Specification 

The general specification in a relational context is [9] 

minR· AGen 

where Gen is a relation that produces a feasible solution, and AGen produces the 

set of all feasible solutions to the problem. The loop operator lim expresses the 

specification as 

min R · AlimT 

where T is a relation which refers to each step of constructing a feasible solution. In 

the algorithm lim T, the construction step is repeated in a loop and stops when it 
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can generate no more new steps. 

The Greedy algorithms are presented in more detail in this section. A feasible 

solution that satisfies a global optimal condition is made in steps, where each step ex­

tends a partial solution. To make a decision in each step, a local optimality condition 

is used to compare created partial solutions. The Greedy algorithm lim G performs a 

sequence of steps which takes a partial solution and results in a feasible solution that 

is globally optimal. This sequence stops when a new step does not produce a new 

extension. The greedy step G considers extending a partial solution in all possible 

ways when making the locally optimal choice 

G = minS ·AT. 

In each step G, T constructs a piece, and AT returns the set containing all extended 

partial solutions. 

2.3.2 The Algorithm 

The algorithm is in form of a relational model of a loop called limit operator [9]. 

Sharon Curtis proves in her theorems that limits are a generalization of catamorphism 

and anamorphisms. This section is about the theory of converting catamorphisms to 

the lim operator. Let 

~p~: A~ B , 

where A is the carrier set of the initial F-algebra a, and the problem under construc­

tion is 

minR · A~P~ . 
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On the other hand, in lim T, T : C -7 C for some type C. Thus, to get to C from 

A and to get to B from C two additional functions such as start : A -7 C and 

finish : C -7 B are required. Now, cata P is represented based on lim operator 

~p~ = finish · lim T · start. 

For t his purpose, some constraints on the functions start and finish are required , 

presented in a theorem. 

Theorem 11. If start zs a function, finish zs simple and also the converse of a 

function, and 

then 

dom finish = notdom T 

Q = finish · lim T · start 

R' = finish a · R finish, 

min R · AQ = finish · min R' · Alim T · start. 

This paragraph helps to determine t he type of C. A new F' -algebra a' is created 

that is of the form of a join a' = [Pen, Fin] which relates to type Band type A, where 

Fin marks a finished portion that is computed and Pen for a pending portion . To 

convert the previously introduced F-structure to the recently introduced F'-algebra 

a', start is a function that changes the structures by making "Pending" labeling, then 

finish is a reverse of a function and removes the Fin label from a finished computation. 

start = ~Pen~F 

finish = Fino. 
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The following definition presents P' that executes a ?-step: 

P' = [Fin· P · F Fino, OJ, 

where 0 represents t hat it reaches an unfinished portion, it does not perform. F Fino 

check s that all the needed results so far have been finished, and removes the Fin 

labels on them. According to P' , the construction step known as T is determined as 

T = ~P' U c/~F · notdom Fino, 

where, ~P' U a'~F' presents that either step P occurs or nothing, and the rest of the 

expression represents that the loop terminates when the computation has finished. 

Theorem 12. Given the definitions, 

~p~F = finish · lim T · start. 

2.3.3 The Greedy Algorithms 

The Greedy Algorithms are an approach to solve optimization problems, making a 

sequence of locally optimal choices to create a globally optimal solution [9]. The 

Greedy algorithms, however, are not applicable to problems where the greedy struc­

ture is not satisfied. Let S be the local optimality criterion, and R be the global 

optimality criterion, the greedy algorithm is presented in the following theorem. 

Let 

M = min R · Alim T 

G= minS· AT, 

38 

(2.7) 

(2.8) 



where R is a preorder on the set of completed solutions represented by notdom T. If 

the following conditions are satisfied: 

domG = domT 

G · (limTt ~ (limTt · R 

then 

limG ~ M. 

(2.9) 

(2.10) 

In each greedy step G, min selects the best with respect to S that is not necessarily 

the same relation as R. The algorithm is lim G that is the repeat of G until it is 

finished. The first condition in the theorem ensures that G can be performed while 

we have some unfinished solution. The second condition ensures that G makes the 

correct choice. It means that continuing the algorithm will lead us to a completed 

result at least as good as R. Thus, the algorithm lim G could be implemented as a 

simple loop with body f and guard dom T, where a variant checks the termination of 

the loop. 

2.3.4 Application of Greedy Algorithms: Kruskal's method 

Kruskal's algorithm is a well-known greedy algorithm that finds a spanning tree of 

minimum cost in an undirected (connected) graph G = (V, E ) with edge costs w : 

E -t lR [10]. 

This algorithm builds a set of edges that do not create a cycle. Starting by an 

empty set and adding an edge with a minimum cost in each step, the set is formed . 

Each created set is a partial solution, and the edges sets forming spanning trees are 

completed solutions. G in this example adds an acyclic edge - an edge which does 
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not create a cycle - to the set, S is a relation of minimum weight edge, and R is a 

relation comparing the sums of weights of the sets of edges. 

One of the conditions for the greedy algorithm to be applicable is (2.9) which is 

satisfied since a new edge can be easily added to the set of edges. The specifica-

tion of the Kruskal 's algorithm is, therefore, presented as the format of the problem 

specification (2. 7) 

min R · A SpanningTree 

where 

R = L edgecost e, 
eEt 

SpanningTree = lim S. 

The local cost relation S on sets of edges is defined as: 

es U { e} S es, if e E { E - es} 1\ acyclic( es U { e}) 

where es set is a subset of the set of edges and is acyclic. 

To prove that the condition (2.10) is satisfied, providing the set of edges created 

in this way is of a minimum cost, two sets ds and ds' is created as 

and 

Let i be the lowest integer such that ei E ds. If adding it to the set of edges creates 

a cycle, remove another edge from the set which is in ds' and forms a cycle. If 

not, remove any other edge that is in ds' . Since the greedy step selected the lowest 
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cost edge, this replacement will not reduce the cost of spanning tree. Therefore, the 

created tree is of minimum weight. 

2.4 Related Work in Automated Algorithm Devel­

opment 

Smith with his Kestrel Interactive Development System (KIDS) [38] has approached 

correct and efficient algorithm development in two parts, techniques of automation 

process and the concept theory of algorithm design. Algorithm design tactics, such 

as dynamic programming and greedy algorithms, play the most important role when 

solving a problem. Smith [35] explains that his studies are not about how effective 

the tactics ar , rather, it is about how to apply the tactics to several types of prob­

lems. First , the problem is formally described with specifications, then the theory is 

applied to derive the algorithm. When making a theory for a problem, all of the def­

initions, laws, and inference rules of a problem instance should be considered. Smith 

has worked on software development by refinement techniques [32] and mechanizing 

the development of software [35]. Following datatype refinements, a correct and ef­

ficient program also known as concrete specification is developed from an abstract 

specification. 

All of the KIDS transformations preserve correctness and are automatic, with 

the exception of choosing algorithm design technique [38] . From the user's point of 

view the system allows the user to make high-level design decisions like, "design a 

divide-and-conquer algorithm for that specification, or "simplify that expression in 
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context" . Software development differs from algorithm development in elements of 

software design such as data structure, optimization techniques, and runtime environ­

ment. However, they are similar in algorithm design elements such as the application 

domain, system requirement, and category of specifications. Furthermore, rules of 

morphisms and colimits are introduced and applied to refine them. 

During development, the user views a partially implemented specification anno­

tated with input assumptions, invariants, and output conditions. Algorithm develop­

ment by KIDS typically consist of following steps: 

• Develop a domain theory 

• Create a specification 

• Apply a design tactic 

• Apply optimizations 

• Apply data type refinements 

• Compile 

2.4.1 Software Development by Refinement 

Software development is applying a sequence of refinements to a specification S0 [35]. 

The following diagram illustrates this formal process where Si, i = 0, 1, ... , n, are 

structured specifications and arrows ,jJ. are refinements. In each refinement step a 

design decision is made from si to si+l which cuts down the number of possible 

implementations. This refinement process turns a high-level specification So to a 
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low-level specification Sn. Then, a morphism translates specification Sn to a code in 

a programming language. Thus, constructing specifications and refinements are the 

main parts to oftware development by refinement. 

Two libraries are created for this purpose, a library of specifications including com-

mon datatypes and common mathematical structures, and a library of refinements 

such as algorithm design, datatype refinement, and expression optimization. There-

fore, the use of abstract design knowledge which is expressed as reusable refinements 

has an important role is the development process. An application of this refinement 

is illustrated in the fo llowing diagram: 

where a refinement A ~ B from a library is selected, then a classification arrow 

A ~ S0 is constructed, and the colimit of B ¢::= A ~ S0 is computed. This 

process results in a refinement arrow of S0 ~ S 1. 
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2.4.2 Application 

The scheduling of a set of jobs on a processor is subject to a precedence relation that 

constraints the order in which jobs can run [38]. Suppose that each job completes in 

unit time that each job has a deadline, and that we wish to minimize the number 

of jobs that fail to complete before their deadlines. If we define a schedule to be an 

ordering of a given set of jobs that is consistent with a given precedence relation, the 

optimization problem is to minimize the cost function which is the number of jobs in 

a schedule that fail to complete before their deadline. 

2.4.2.1 Development of a Domain Theory 

The first and the most difficult step is formalizing the domain theory [38]. A the­

ory presentation is comprised of sets of imported theories, type definitions, function 

specifications with optional operational definitions, laws, and rules of inference. The 

following is a domain theory for the job scheduling problem. A chedule is a linear 

arrangement of a set of jobs which can be expressed in terms of a bijection. 

Injective ( M : seq (integer), S : set (integer )) : boolean 

= range(M) ~ S 

1\ V(i j)(i E domain(M) 1\ j E domain(M) 1\ if. j =::::} M(i) f. M(j)) 

Bijective ( M : seq( integer), S : set (integer)) : boolean 

= Injective(M, S) 1\ range(M) = S 

ow, the concept that a schedule must be consistent with the given precedence 
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relation is captured in the following definition and associated laws: 

Consistent(S: seq(JOB), P: binrel(JOB,JOB)) : boolean 

= V(i j)(i E range(S) 1\ j E range(S) 1\ (i, j) E P 

===? Index(i, S) < Index(j, S)), 

where Index(i, S) returns the index of element i in sequence S. 

and 

V(p)( Consistent(O, P) =true), 

V(a, p)( Consistent([a] P) =true) 

V(Sl, S2, P)( Consistent(concat(Sl, S2), P) 

= ( Consistent(Sl, P) 1\ Consistent(S2, P) 

/\Cross-Consistent (range(Sl) range(S2), P ))) 

where 

Cross-Consistent(Rl: set(JOB), R2: set(JOB), P: binrel(JOB, JOB)): boolean 

= V(I, J )(I E Rl 1\ J E R2 ===? (J,I) tj. P) 

2.4.2.2 Create a Specification 

A specification can be presented as a quadruple F = (D, R, I , 0 ) where D is the 

input type which should satisfy I : D ----t boolean, the input condition [38]. The 

output type is R and the output condition that should be sati fied by a feasible 

solution is 0 : D x R ----t boolean . Having defined a specification in this format , the 
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following program format can be derived: 

Function F(x : D) 

where I(x) 

Returns {z: R I O(x, z)} 

=Body 

The user enters a specification stated in terms of the underlying domain theory. 

Formally the problem of enumerating sch dules can be specified as follows. 

Schedules(Jobs : set(JOB) Precedes : binrel(JOB ), (JOB) ) 

where Irrefiexive(Precedes, Jobs) 

returns {S : seq( JOB) I Bijective(S, Jobs) 1\ Consistent(S, Precedes)} 

2.4.2.3 Apply a Design Tactic 

The user sele ts an algorithm design tactic from a menu and applies it to a specifica­

t ion [38]. For this example global search design tactic has been selected. 

Theorem 13. Let G be a global search theory. If <I> is a necessary filter then the 

following program specification is consistent. 

Function F(x : D) : set(R) 

where I(x) 

returns {z I O(x, z )} 

= If <I>(x , so(x)) 

Then F_gs(x, s0 (x)) 

Else {} 
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where 

function F_gs(x : D, s : S) : set(R ) 

where I (x) & J(x , s) & <P(x , s) 

returns {z I Satisfies (z, s) & O(x,z)} 

= {z I Extract (z, s) & O(x, z)} 

U reduce(U , { F_gs(x , t) I Split(x, s, t) & <P(x , t)} ). 

On input x the program F calls F_gs with s0 (x) and unions together all solutions 

that can be directly extracted from the space and the union of all solutions found 

recursively by splitting and surviving the filter. 

The algorithm development process summarized in the above steps creates an 

algorithm for job scheduling problem using global Search technique. Further details 

on the process and the programming syntax can be obtained from [38, 32, 35, 36]. 

function SCHEDULES-GS 

(JOBS:set( JOB) , Precedes: binrel( JOB,JOB}, ps:seq(integer)) 

where Irrefiexive(Precedes, Jobs} A range(ps) ~ Jobs 

AConsistent(ps,Precedes) A Injective(ps, Jobs} 

A @iCross-Consistent@(range(ps),Jobs \ range(ps),Precedes) 

returns { SCHED I Extends(SCHED,ps) A Consistent(SCHED,Precedes ) 

A Bijective(SCHED,Jobs) } 

= {SCHED I Consistent(SCHED,Precedes) A Bijective(SCHED,Jobs} 

ASCHED=ps} 
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U reduce(U, {SCHEDULES-GS (Jobs,Precedes, @iNew-pas@) 

f Consistent(@iNew-ps@, Precedes) 

1\ Injective(@iNew- ps@, Jobs ) 

1\ @iCross-Consistent 

@(range(@iNew-ps@)Jobs \ range(@iNew-ps@), Precedes) 

1\ ::!(!) (@iNew-ps@ = append(psJ) 1\ I E Jobs)}) 

function @iSCHEDULES@( Jobs :set( JOB),Precedes :binrel(@iJOB@, @iJOB@)U 

where Irrefiexive(Precedes, Jobs) 

returns { SCHED I Bijective(SCHED, Jobs) 1\ Consistent(SCHED, Precedes) } 

= if iCross-Consistent@(range([]), Jobs\range([]), Precedes) 

then SCHEDULES-GS (Jobs, Precedes, []) 

else {} 
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Chapter 3 

Formal Dynamic Programming 

Dynamic programming is a recursive approach to solving optimization problems by 

dividing a problem instance into subinstances, then combining obtained solutions to 

the subinstances to create a solution to the original instance. It is used typically 

for optimization problems, but has a broader usage to create algorithms for non­

optimization problems. By storing solutions to solved subinstances of a problem, 

dynamic programming algorithms can be particularly efficient. 

This chapter includes a formal approach for divide-and-conquer algorithm that 

is used to define dynamic programming algorithms, top-down and bottom-up. The 

approaches to solving problems are based on the specialization of an abstract dynamic 

programming algorithm. This provides not only the reusing of the algorithm, but also 

reusing of its proof. Finally, applications of dynamic programming including matrix 

chain multiplication and largest black square are presented. 
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3.1 Notations 

Primed and unprimed variables in specifications 

A assignment such as x := E changes the value of the variable x. In specifications, 

the initial value of x is denoted by the unprimed variable x, and the final value of x 

is denoted by the primed variable x'. 

Refinement C 

Let P and Q be specifications, P is refined by Q if every behavior accepted by Q is 

accepted by P 

P r;;;,Q. 

For example, let 

f - (x' > x) 

g - (x' = x + 1) 

since every behavior of g is accepted by f, we can say g refines f 

Set notations 

Filtering set builder 

If x is a variable, S is a set and P is some boolean expression describing x then 

{xES I P} 
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represents the subset of S such that contains exactly elements that fit the description 

P. For example 

{nEZin<O} 

is the set of negative integers. 

Mapping set builder 

If x is a variable, S is a set and E is an expression then 

{xES· E} 

is the set of all values of E where x is a value of S. For example 

{yEN· 2n + 1} 

is the set of positive odd numbers. 

Filtering and mapping set builder 

The full set builder notation combines filtering with mapping. It first filters and then 

maps. The set 

{xES I P · E} 

is the set of all values of the expression E where x is a value of the set S such that 

the boolean expression P is true. For example 

{ i E z I - 10 < i < 10 . 2i} 

is the set of even numbers between -20 and 20 

{-18, -16, .. . , 16, 18}. 
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r---;--- --------------------- ---·------

Maximum and minimum set builder 

Set builder can be used for describing maxima and minima. The set 

max { x E S I P · E} 

is the maximum over the set of all values of the expression E where x is a value of 

t he set S such that P is true. For example 

min{n EN In is prime· n2
} 

is the minimum over the set of all squares of prime numbers, which is 4. 

Let declaration 

In algorithms the value of variable x can be restricted using the let declaration 

let xI P · S 

where P is true. For example 

let n I q = p( n) 

assigns the value of n to be some i where q = p(i). 

Sets of consecutive integers 

The finite set of consecutive integers 

{0, .. k} 

is the set of all integers i such that 0 ~ i < k. 
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And, the finite set of consecut ive integers 

{O, .. ,k} 

is the set of all integers i such that 0 ~ i ~ k. 

Through 

In writing algorithms, the for loop is denoted by 

for i : 0 through n · S 

which represents the following loop that is executed with the integer values of 2 

ascending 

S[i: OJ; S[i: 1]; ... ; S[i: n]. 

3. 2 Introduction 

Algorithm design approaches, such as greedy algorithms, dynamic programming, 

divide-and-conquer, and binary search, are generally taught and understood as in­

formal ideas. Can we capture each algorithmic approach formally? 

We investigate how abstract specifications can be proved to be implemented by 

abstract algorithms. By applying a transformation that maps the abstract specifica­

tion into a concrete specification, we can derive a concrete algorithm from the abstract 

algorithm. This allows the abstract algorithm to be reused , along with its proof, to 

solve multiple concrete problems. The approach is summarized as follows. Suppose 

we know that an abstract specification Pis implemented by an abstract algorithm Q, 
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then if we need an algorithm for a problem R = T(P), where T is a data transform, 

we can refine R with T(Q). 

One of the design approaches presented in this thesi is dynamic programming, 

which is a recursive approach to solving optimization and other problems [27, 13j. 

Like the divide-and-conquer method , it works by finding olutions to subinstance of 

a problem and combining obtained solutions to t he subinstances. Unlike divide-and­

conquer, dynamic programming saves the solutions to subinstances for possible later 

use. There are two approaches to implementing dynamic programming: top-down 

and bottom-up. 

In this part we will discuss an approach to solving problems based on concretiza­

tion of top-down and bottom up abstract dynamic-programming algorithms. Along 

t he way, we also formalize the closely r lated divide-and-conquer approach. 

First, let's consider two concrete problems to which we can apply our techniques. 

3.3 Introduction to Applications 

3.3.1 The Matrix Chain Multiplication 

Matrix Chain Multiplication is the problem of finding the minimum co t of calculating 

the product of a sequence of matrices A 1A2 .. . An [6j. Each matrix Ai has dimension 

di-1 by di . 

The cost of multiplying one single matrix is zero, and the cost of multiplying 

two matrices AAi+1is di- J x di x di+l· The cost of any matrix chain multiplica­

tion, consi ting more than two matrices, depends on how the chain is split and how 
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the two subchains are multiplied. Consider the following matrix chain example of 

four: A 1A2A 3A 4 . A feasible solution is the parenthesization ((A1A2)(A3A 4 )) . Its cor­

responding cost is the sum of the following t hree parts: 

(a) the cost of first subproduct (A1A2), do x d1 x d2 

(b) the cost of the second subproduct (A3A4 ), d2 x d3 x d4 

(c) the cost of mult iplying the two matrices resulted from the subproducts A1..2 

and A3 .. 4, do x d2 x d4. 

Thus, the optimal cost of the product AAi+1 . . . Ak ... A1, where i < j , is the 

minimum over a ll k such that i < k < j , of t he sum of 

(a) the optimal cost of calculating Ai .. k, 

(b) the cost of calculating Ak+L.j, and 

(C) di X dk X dj . 

For the matrix chain problem A1..n, the problem instance space only includes the 

dimensions of the matrices to be multiplied. Each problem instance is a number n ~ 2 

and a set of chains of indices: Nn. The problem asks for the minimum cost to do the 

multiplication. 

3.3.2 The Largest Black Square 

The problem is to find the size of the largest black square in a black and white image. 

We will represent the image with a constant Boolean array M E X x X --t Y where 

X = {0, .. N}, Y = {0, .. , N} and N E N is a constant. Each black pixel is represented 

by true and each white pixel by fa lse. Let Y = XU {N} . Pix Is are indexed by X 
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while corner points are indexed by Y. The problem is to find 

max { (p, q) E Y x Y · lsea(p, q)} 

where lsea stands for 'largest black square ending at' and is defined for each corner 

by 

lsea(p, q) = max {r E {0, .. min{p, q}} I square(p, q, r)} 

where 

square(p,q,r) =(ViE {p -r .. p},j E {q-r, .. q} · M(i j)). 

As illustrated in the following figure, we can find the large t square ending at a 

corner point (p, q) (marked as * in the figure), if we know the sizes of the largest 

squares ending at each of its three neighbors to the north, w st, and north west 

(marked a + in the figure). 

0 • • 0 0 

• • • • • 
• • • • • 
• • • * • 
0 0 • • • 

In this chapt r we apply dynamic programming to the Matrix Chain Multiplication 

and the Larg st Black Square problems, to further discuss the presented approach. 
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3.4 Divide-and-Conquer 

3.4.1 The idea of Divide-and-Conquer 

Divide-and-conquer is a recursive approach to solving problems ]6, 13]. This method 

divides the problem instance to number of subinstances in order to determine a solu­

tion by combining the solutions to the subinstances. The divide-and-conquer method 

proceeds in three steps: divide, conquer, and combine. 

Initially, the instance is divided to subinstances. Each of the subinstances are 

solved yielding a set of solutions to the subinstances. The result d solutions will be 

combined to create a solution to the original instance. 

3.4.2 Formal Divide-and-Conquer 

Consider a space of problem instances P, a space of solutions S , and a function 

f : P ---+ S , mapping problem instances to solutions. Formally, given a problem 

instance p we ne d to compute f(p) . The specification of a problem can be written 

in the following definition in SIMPLE j31 , 30]. 

Definition EvaluateFunction(p) ::= 

slot P: set 

slot S : set 

slot f : P ---+ S 

requ ire p E P 

ensure s' = f(p) 
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In order for the divide-and-conquer strategy to be applicable, we need to define 

the following entities: 

PB and PL are sets such that P L UP B = P 

divide : P B ---t 2P is a function 

combine : PB x 2(PxS) ---t S is a function 

(3.1) 

(3.2) 

(3.3) 

We assume that leaf instances PL are easy to solve and branch problems PB will be 

solved recursively. For all p E P B and A~ P x S we require: 

f(p) = combine(p, A) provided for all q E divide(p) , (q, f(q)) E A (3.4) 

and that divide induces a well-founded order on P. In a well-founded order, there is 

no infinite descending chain of members. A totally ordered set (A,:::;) is said to have 

a well-founded order if and only if every nonempty subset of A has a least element 

[19]. In another way: 

q pred p = q E divide(p) 

(q:::;p) = qpred+p. 

The abstract divide-and-conquer algorithm can be written formally as a functional 

program DC that refines f. 

Function DC(p) 

if p E PL then return f(p) 

else let D = divide(p) 

let A= {qED· (q , DC(q))} 

return combine(p, A) 
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Theorem. under conditions (3.2), (3.3), s := f(p) ~ DC(p) 

Proof. This theorem can be proved by the method of induction, on p. An input p 

of function DC is either a leaf or a branch problem instance. The base case of the 

induction is when pis a leaf problem instance. According to the assumption made by 

the proposed theory its solution can be easily calculated, therefore, DC(p) = f(p). 

The inductive hypothesis assumes there exists a function divide which creates all 

possible subinstances of p, and all subinstances are solved. 

for all q E divide(p) · DC(q) = f(q) 

ow, it is required to show that f(p) for branch problems can be calculated. According 

to equation (3.4), f(p) can be calculated by function combine which joins required 

solut ions to the subinstances where for all q E divide(p) · DC(q) = f(q). If combine 

can be defined , f(p) is computed and provides DC(p) = f(p) . From this inductive 

proof we can conclude f(p) ~ DC(p), if the assumptions are met. Therefore, if there 

exist functions divide and combine to satisfy the requirements, the theorem is proved 

by the method of induction . 0 

3.5 Dynamic Programming 

3.5.1 The Idea of Dynamic Programming 

Dynamic programming is very close to divide and conquer in the concept of dividing 

the problem instance into subinstances, then using the solutions to the subinstances to 
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create a solut ion. Therefore, in this section, formalization of the closely related divide­

and-conquer approach is used as a basis for dynamic programming algorithms. Since 

subinstances of problems share the same structure as the problem, the solut ion to a 

general problem instance provides a solution to the subinstances within it. Therefore, 

dynamic programming provides a recursive approach to finding a solution to a problem 

instance by recursively finding solutions to subinstances. It also reuses solutions to 

shared subinstances in order to reduce the run-time of the program. 

There are two methods of dynamic programming, top-down and bottom-up, which 

are discussed later in this section with more details. In the top-down method the 

calculated solutions are saved and reused several times in a program, which is called 

memoization. For bottom-up, tables are used to save the solutions to the subinstances 

in order of dependency for later use. This is called tabulation [6, 2]. 

3 .5.2 Formal Dynamic Programming 

Formal dynamic programming uses divide-and-conquer with a modification described 

later in the top-down and bottom-up sections. The function divide should meet the 

main concepts of dynamic programming and how to create subinstances of problems 

that meet the principle of optimality. Dynamic programming is applicable to a prob­

lem when there exist a function divide and a function combine which create P B and 

PL according to formulas 3.1, 3.2, and 3.3. A variable A stores the subinstances of a 

problem and solutions to those subinstances. 

At any given time during running the algorithm, its initiation, and its termination 

there should be no false information in variable A. That is considered as an invariant 
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for variable A. The postcondition is that A contains all the subinstances of a problem 

instance p within itself. Furthermore, space A is expanded when new information is 

entered and no information is lost or removed from it. 

3.5.3 Top-Down Dynamic Programming 

One of the approaches to implementing dynamic programming is the top-down ap­

proach [6] . The proposed formal divide-and-conquer definition is used as the basis 

for a top-down dynamic programming algorithm. We regard the top-down dynamic 

programming approach to be a special case of divide-and-conquer combined with 

memoization, that is, the storing of solutions to the subinstances. 

To apply memoization to the existing divide-and-conquer definition, a variable A 

is used as a table to store calculated results. It stores a set of pairs (p, s) that satisfies 

s = f(p). We write A(p) to mean the solution that is paired with p in A. As an 

invariant A represents a partial function. We can get a top-down algorithm using the 

refinement of function DC (p). 

Definition DynamicTD(p) ::= 

inv V(q , t) E A· t = f(q) 

var A : P --+ S := 0 

proc Solve(p : P) 

post (p,j(p)) E A' A A' 2 A 

if 3s · (p , s) E A then A(p) 

else if p E PL then ( 
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} 

let s := f(p) 

A : = A u { (p, s)}) 

else ( 

let D := divide(p) 

for q E D · Solve(q) 

assert 'Vq E D· (q , f(q)) E A 

let s= combine(p, A) 

A : = A u { (p, s)}) 

end proc Solve 

Solve(p) 

s := A(p) 

That this algorithm refines the dynamic programming problem is expressed in 

SIMPLE as a theorem [31, 30[. 

Theorem EvaluateFunction(p) ~ Solve(p) 

where EvaluateFunction(p) = 

Then, we have that: 

('V( q, t) E A · t = f ( q)) ::::} 

('V(q, t) E A'· t = f(q)) 1\ 

(3s · (p, s) E A') 
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Theorem s:= f(p) ~ DynamicTD(p) 

3.6 Bottom-up Dynamic Programming 

The other approach to implement dynamic programming is the bottom-up approach 

[6]. The same proposed formal divide-and-conquer definition is used a a basis for the 

bottom-up algorithm for dynamic programming. The technique which applies to the 

bottom-up approach is tabulation which is slightly different than memoization. In 

this method, there could be some subinstances that are solved but never used, which 

does not happen in top-down approach. All possible subinstances are solved, stored, 

and combined to build a solution to the main problem. The bottom-up approach 

avoids the memory and time overhead of recursive calls. There is no need to implement 

the divide function because it has b en considered in the structure of the bottom­

up approach and creates a new level of subinstances in each step. Instead , to get a 

bottom-up algorithm, we need, for each problem p, a sequence of problems r(i) so 

that p = r(i) , for some i and so that, for each i, either r(i) is a leaf or all problems 

in divide(r(i)) are in {r(O), r(l) , ... , r(i - 1)}. 

We can get a bottom-up algorithm using the refinement of function DC(p) . 

Defi nit ion DynamicBU(p) :: = 

inv V(q, t) E A· t = f(q) 

var A : P ---+ S := 0 

proc Solve(p : P ) 

63 



} 

let n I p = r(n) 

post (p, f(p)) E A' A A' 2 A 

for i : 0 through n ( 

if r(i) E PL then ( 

let s := f(r(i)) 

A:= AU {(r(i), s)}) 

else ( 

assert \:fq E divide(r(i)) · (q, f(q)) E A 

let s= combine (r (i), A) 

A := AU {(r(i), s)} )) 

end proc Solve 

Solve(p) 

s := A(p) 

T hat this algorit hm refines the dynamic programming problem is expressed in 

SIMPLE as a theorem. 

Theorem EvaluateFunction(p) ~ Solve(p) 

where EvaluateFunction(p) = 

(V ( q, t) E A · t = f ( q)) ==> 

(V(q, t) E A'· t = f(q)) A 

(:3s · (p, s) E A' ) 
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And therefore: 

Theorems := f(p) ~ DynamicBU(p) 

3. 7 Application of Dynamic Programming 

3. 7.1 Matrix chain Multiplication 

To understand the Matrix Chain Multiplication problem as an instance of the general 

EvaluateFunction specification, we need to fill in the three slots of the specification. 

• Define P to be N+, the set of all finite sequences of natural numbers with length 

at least two, do .. n ::=(do, d1 , . .. , dn)· 

• Define S to be N, the set of natural numbers. 

• Define f to be the function that maps sequences of natural numbers to a natu-

ral number that is the minimum cost of multiplying the corresponding matrix 

sequence: We define f recursively as 

f(do .. l) 

f(do .. n) -

0 

min f(do .. k) + f(dk .. n) +do X dk X dn, ifn > 1 
kE{l, .. n} 

Filling the three slots S, P, and f , with these definitions adapts the problem. 

To adapt the top-down dynamic solution we need to determine the P L, P B , divide , 

and combine slots. 
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• Define P L to be the set of all sequences of natural numbers with length two. 

• Define P B to be the set of all finite sequences of natural numbers with length 

greater than two, 

• Define divide to be the function that generates all the subsequences of the 

sequence ( d0 , d1, .. . , dn) that are required in the process of producing the result, 

divide(do .. n) = {k I 0 < k < n · do .. d 

U{k I 0 < k < n · dk .. n}· 

• Define combine to be the function that calculates the cost of a problem instance 

using the solved subinstances stored in variable A. 

combine(do .. n , A) = min ( 
kE{l, .. n} + 

• The variable A that stores the pair of problem instances and their corresponding 

cost that is used by the combine function. 

F illing these slots adapts both top-down and bottom-up algorithms, first we derive 

the top-down algorithm of this example in the following algorithm. 

Definit ion MCMTD(p) ::= 

inv V(q , t) E A · t = f(q) 
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} 

var A : N+ ---+ N := 0 

proc Solve(do .. n : N+) 

post (do .. n f(do .. n)) E A' 1\ A' 2 A 

var : N 

if :3s · (do .. n, s) E A then A(do .. n) 

else if n = 2 then ( 

s := 0 

A :=AU { (do .. n, 0)}) 

else ( 

for k : 1 through n- 1 ( 

Solve(do .. k) 

Solve ( dk .. n)) 

assert 't:/q E divide(do .. n) · (q , f(q)) E A 

s := 00 

for k : 1 through n - 1 

s := s min (A(do .. k) + A(dk .. n) +do X dk X dn) 

A:=AU{(do .. n s)}) 

end proc Solve 

Solve(do .. n) 

s := A(do .. n) 
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The optimization problem of matrix chain multiplication returns the minimum 

cost. In order to get the process of doing the multiplication we can store the break­

points k of each sequence longer than two. 

Next, is the bottom-up algorithm derived below for this example. In this algo­

rithm, the instance sequence r is the segments of d of increasing length, starting with 

length 2 as follows 

do .. 2, d1..3, · · · , dn-2 .. n, 

do .. n 

Definition MCMBU(do .. n: N+) ::= 

inv V(q, t) E A· t = f (q) 

var A : N+ ---7 N := 0 

proc Solve(do .. n : N+) 

post (do .. n, f(do .. n)) E A' 1\ A' 2 A 

for l : 2 th rough n + 1 

for i : 0 through n- l + 1 ( 

let j = i + l - 1 

if l = 2 t hen A:= AU {(di .. j, 0)} 

else ( 

assert Vq E divide(di .. j) · (q, f(q)) E A 

var s := oo 
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} 

for k : i + 1 through j - 1 

s := s min (A(di .. k) + A(dk .. j ) + di x dk x dj) 

A : = A U { ( di .. j, s)})) 

end proc Solve 

Solve(do .. n) 

S := A(do .. n) 

More examples such as Radix-Code can be implemented in a very similar approach 

as Matrix chain multiplication. 

3. 7.2 Largest Black Square 

To under tand the Largest Black square problem as an instance of the general Eval­

uateFunction pecification, we need to fill in the three slots of the specification. 

• Define P to be the set of all corner points (p, q) E Y x Y , where Y = {0, .. , N} 

• Define S to be the set of numbers r such that 0 ::; r ::; N 

• Defin e f to be 

f(p, q) = lsea(p, q) 

where 

lsea(p, q) = max{r E {0, .. min{p, q}} I square(p,q,r )} , 

and 

square(p q, r) (ViE {p- r, .. p} j E {q - r, .. q} · M(i,j)). 
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Filling the three slots S, P, and f, adapts the problem. 

To adapt the bottom-up dynamic programming algorithm we need to determine 

PL, PB, divide, and combine slots. 

• Define P L to be t he set of all pairs (p q) that are located on the most top row 

or the most left column, 

p L = { (p , q) E y X y I p = 0 v q = 0}. 

• Define P B to be all other points 

p B = { (p q) E y X y I p =I 0 1\ q =I 0}. 

• Define divide to be t he function t hat generates t he set of three neighbors of a 

point (p, q) to the north , west , and north west, 

divide(p, q) = {(p - 1, q), (p- 1, q - 1), (p, q - 1)}. 

ote that t hese three neighbors are lexicographically prior to (p , q). 

• Define combine to be the function that finds the size of the largest black square 

using the solved neighbor points stored in space A . The idea is that if a square 

is black, the largest square at (p, q) can not be larger than 1 plus the largest 

square ending at any of the neighbors generated by divide. On the other hand , 

t here is a square ending at (p, q) that is of size 1 plus the minimum of the 

square ending at the three neighbors. 

combine((p , q), A) 

if -.M(p - 1, q - 1) then 0 

else 1 + min{A(p- 1, q), A(p, q- 1), A(p- 1, q - 1)} 
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These slots adapt both top-down and bottom-up algorithms. According to top-down 

algorithm approach and the introduced divide() and combine() functions, the follow­

ing algorithm i derived for 'largest black square ending at' (p, q). The r sequence for 

this example i 

(0, 0) , (0, 1), ... , (0, n), 

(1, 0), (1, 1), ... , (1 , n), 

(n, 0) (n, 1) .. . , (n n) 

Definition LESATD : := 

inv V((p , q) , t) E A · t = lsea(p, q) 

var A : Y x Y ---7 N := 0 

proc Solve(p, q) 

post ((p,q),lsea(p,q)) E A' 1\ A' 2 A 

var s: N 

if :Js. ((p, q) , s) E A then A(p, q) 

else if p= 0 V q = 0 then ( 

s := 0 

A := AU{((p, q) 0)} ) 

else ( 

Solve(p - 1, q) 

Solve(p- 1, q - 1) 

Solve(p q - 1) 
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} 

assert \i(p, q) E divide(p, q) · ((p, q) , lsea(p, q)) E A 

s := 1 + min { A(p- 1, q), A(p - 1, q - 1), A(p, q - 1)} 

A := AU {((p ,q) s)} ) 

end proc Solve 

Solve(N, N) 

s := A (N, N ) 

For the bottom-up algori thm the other decision that needs to be made is t he or­

dering of the instances so that subinstances are solved before super-instances. For this 

problem, instances can be ordered lexicographically. According to t he same divide() 

and combine() functions and the bottom-up algorithm, the following algorithm is 

derived for Largest Black Square ending at (p, q). In this algorithm, to create all the 

subinstance from the first level to the desired one, cross points are considered in one 

loop. This loop starts from the point (0, 0) to (p, q) in one loop starting from 0 to 

p x N + q, where the row and column number are derived by div and mod. 

Definition LEASB U ::= 

inv \i((p, q) , t) E A · t = lsea(p, q) 

var A : Y x Y ----t N := 0 

proc Solve(p , q) 

post ((p ,q) , lsea(p,q)) E A' 1\ A' -;2 A 

for i : 0 through p x N + q ( 
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} 

let a=i div (N+ 1) 

let b = i mod ( N + 1) 

var s: N 

if a = 0 V b = 0 then ( 

s := 0 

A:= Au { ((a,b),O)}) 

else ( 

if -.M(a- 1, b- 1) 

s := 0 

else ( 

assert \f(p, q) E divide( a, b)· ((p , q) , lsea(p, q)) E A 

s := 1 + min {A(a - 1, b) ,A(a,b - 1) ,A(a - 1,b - 1)}) 

A:= Au { ((a,b),s)})) 

end proc Solve 

Solve(p, q) 

s := A(p, q) 

This algorithm serves to calculate the lsea function for each intersection point and 

store t he result in the A table. To find the largest square is now just a matter of 

looking for the largest value in the table. 
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Chapter 4 

Formal Greedy Algorithms 

Greedy Algorithms solve optimization problems, sequentially making locally optimum 

choices to make a globally optimum solution. In this chapter, we are investigating 

how abstract specifications can be proved to be implemented by abstract greedy 

algorithms. We provide a formal structure to greedy algorithm in a predicative style. 

Applications of greedy algorithms include Kruskal's algorithm , and Huffman codes. 

4.1 The Ideas of Greedy Algorithm 

Greedy Algorithm is an optimization problem solving approach, sequentially making 

locally optimum choices to make a globally optimum solution. Applying the greedy 

algorithm won 't provide an optimal solution to all problems. However, for some 

problems, making the best choice in each step leads to an optimum solution. For 

a greedy algorithm to be applicable to a problem, the greedy structure should be 

satisfied in a problem [6] . 

Some parameters are required to create a greedy algorithm, including a global 
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cost function and a local cost function. The former function measures the degree 

of optimality in a feasible solution, and the latter function is used in each step of 

the algorithm for comparing partial solutions. T here is a relation between local and 

global cost functions, in most cases being identical. However, it is not required for 

greedy algorithm to be defined having equal local and global cost functions. 

4.2 Formal Greedy Algorithm 

4.2.1 Defining Parameters and Transformations 

The problem is specified by the following parameters of a problem space: 

• Let S be a search space of partial solu tions 

• i E S is an initial partial solution 

• C ~ S i a set of completed solutions 

• g : S --t 28 is a function that creat s partial solution from partial solutions 

where g(x) = (/)when x E C 

• cost : S --t N is a function that calculates the cost of a partial solution 

• ~globa( C --t C is a cost comparison relation, and if x, y E C then x ~global y 

provides that cost x ~ cost y with respect to relation global 

To specify the greedy algorithm there is a list of entities derived from the above 

parameters for solu tion space: 

75 



• :Sloca( S -t S is a cost comparison relation, and if x, y E S then x :Slocal y 

provides that cost x :::;; cost y with respect to relation local 

• g : 28 -t 28 is the extension of g to sets 

- g(0)=0 

- g({x}) = g(x) 

- g(X U Y) = g(X) U g(Y) . 

• g* is the transitive and reflexive closure of g 

g*(X) =XU g(X) u g(g(X )) u .. . ( 4.1) 

ote that 

x E C implies g*(x) = g*({ x }) = {x } (4.2) 

• m~nX is the set of all minima of X with respect to a relation :::;; 

minX = { x E X I (Vy E X · x < y)} < -

The goal s t G is defined as the globally optimal set of completed solut ions reachable 

from t he starting point i by zero or more applications of the generating function, g. 

That is 

G = min ( C n g* ( { i})) 
~global 

In many cases, all completed solutions can be generated from i, in which case 

G = min C 
~global 

(4.3) 

A problem can be described by the following definition of Search, ensuring that 

there is a result in goal set G for it. 
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Definition Search ::= 

ensure x' ~ G 

The solution based on the greedy algorithm is presented in the following definition 

of GreedySearch . In this definition, x :E S is an operator that assigns an arbitrary 

element of S to variable x. 

Definition GreedySearch : := 

var x := i 

while x ~ C inv reaches(x, G) 

x :E min g(x) 
:S,local 

The invariant says that some member of the goal is reachable from x . 

inv: reaches(x , G)= (g*( {x}) n G) =I 0 (4.4) 

Therefore, if the invariant holds Search is refined by GreedySearch. 

Theorem 14. under conditions ( 4.6), ( 4. 7) and ( 4.8) 

Search ~ GreedySearch 

Proof. For the greedy algorithm to be correct, we must check that the body of the 

while loop preserves the invariant, reaches (x , G). T here are also two cases to be 

considered for the relation between the local and global optimality conditions: a) 

when they are identical, b) when not identical global condition can be derived from 
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the local condition, x ~global y ==? x ~local y. The correctness of the algorithm is 

verified in the following three phases: 

1. Prior to initiating the while loop, when variable x is initialized: 

reaches(x, G) is a post condition of x := i which becomes reaches(i, G) 

reaches ( i, G) 

by def ( 4.4) 

(g*(i) n G) =1 0 

- by the property (A~ B ==? B n A= A) 

The resulting equation of G =I 0 is true if the problem has be n defined correctly, 

i.e. , in a way that there exists a solution. 

2. We need to show that the invariant i preserved by x :E min g(x) 
$local 

The while loop is running, meaning that the loop condition is true, x ¢:. C. There 

is also the assumption that th local optimality condition is either identical to 

the global optimality condition, or can be derived from it. We need to show 

that assuming reaches(x, G) is true then reaches(x' G) will be true after the 

body of the loop is executed and produced x' E min g(x). 
$local 
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r·eaches(x, G) 

xtf_C 

Let x' E min g(x) 
~local 

? 
====:;. reaches(x', G) 

Consider H a set including all the cases that lead to G. 

H = {x / reaches(x, G)} 

If x E H, and x tf_ C then at least one successor of x is also in H. Therefore, 

Let y E min(g(x) n H) (4.5) 

Let's get back to some features of greedy algorithm. First, the generation 

function g(x) should imply that x is in C. This prevents the algorithm from 

running into a dead end. Otherwise the following could happen. Suppose 

variable x has a value of x0 and we pick x1 E ming(x), now in the next iteration 

g(x) is empty and the algorithm is stuck. Therefore, 

g(x) = 0 implies that x E C (4.6) 

As stated in the introduction, studies have shown that there are several cases 

for greedy algorithm to be applicable. However, cases considered here are those 

with the monotonicity condition that is the second condition required for the 

generation function g( x). Therefore, 

a ~local b =} a' ~local b', Va, b, a' E g(a) , b' E g(b) (4.7) 
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This means when a partial solution is better in one step, the continuation of 

it will result in a better partial solution in the next step. As illustrated in 

the following diagram, taking generation function will not reverse the order of 

optimality. 

x•----• 

• 
Thus, the following condition marked by " ::::} " won't happen: 

The studied case is known as Better-Local condition in [9]. 

Third , the generation function g(x) should also generate a better partial solution 

than x with respect to the local cost relation. Otherwise, the algorithm could 

follow an ever descending path that never reaches C. Therefore, 

g(a) '?:.toea! a, Va (4.8) 

These conditions also implies that when a completed solution is derived as a 

result of a better partial solution, the continuation of the worse partial solution 
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will not lead to a better completed solution . 

a ::; b ==:;. a ::; b' , Va, b, b' · a E C A b' E C A b' E g (b) (4.9) 

Considering the above properties ( 4.6), ( 4. 7) and ( 4.8) of greedy algorithms H 

includes the set of generated successors of x. This concept helps rewriting the 

equation of (4.5) as 

Let y E min(g(x)) 

On the other hand, the body of the program considers 

x :E min g(x) 

Therefore, all the properties of y are properties of x'. So, x' E H meaning 

reaches(x', G) is true. 

We can ummarize this as 

reaches(x G) 

g*(x)nG=f0 

- since x tf. C 

g*(g(x)) n G =f 0 

Distributivity 

::lyE g(x) · g*(y) n G =f 0 

=> under conditions ( 4.6), ( 4. 7) and ( 4.8) 

Vy E min g(x) · g*(y) n G =f 0 

=> since x' E min g(x) 

reaches(x' , G) 
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3. Following loop termination: 

The while loop terminates when the loop condition is false, so x E C. 

4.2.2 Optimization 

reaches(x, G) 

by def (4.4) 

(g* ( { x}) n G) =1 0 

- by def (4.2) and x E C 

( {x} n G) =1 0 

::::} xEG 

0 

The propo ed method for greedy algorithms generally makes a greedy step in each 

state by applying the generation function g(x) to every x E S. Then, it selects the best 

x :E ming(x) with respect to the cost function. However, there can be a more efficient 

implementation to the generat ion function. One optimization approach commonly 

applied, is to a ess the cost function in order to determine a total ordering of t he 

input. Revising the input as suggested, provides a more efficient implementation of 

the algorithm. It provides efficiency by making the highest priority item be evaluated 

earlier and removed from the input list. In order for this process not to affect the 

correctnes of the a lgorithm, an optimized approach should be a refinement of the 

general method of greedy algorithms. 
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4.3 Application 

In this section, application of greedy algorithms is studied using Kruskul 's algorithm 

and Huffman Coding. Kruskal's algorithm is an example of minimum spanning t r e 

a lgorithm. Huffman coding is a high efficiency algorithm that is been broadly used 

in compressing data. 

4.3.1 Huffman Coding 

Huffman coding is a method for compressing data considering the occurrence fre­

quency of each character [6] . This method is highly efficient and is widely used to 

compact data. In ord r to encode the data, each character i given a code with a 

variable length. This can be more efficient than a fixed length code. The higher 

the occurrence frequency of a character, the shorter the code length assigned to it. 

Huffman code is a prefix code, there is no codeword constructed which is a prefix 

to another codeword. T he data is represented by the set Ch, ach character in it is 

c E Ch, and the function f : Ch ---+ N provides the frequency number. In order to 

encode the data, a t ree is created in the following way: in each step two characters 

(or sets) with the lowest frequency are chosen and encoded 0 for the left child , and 1 

for the right child . T he following tree illustrates the process of encoding characters 
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a- e, with the frequency of f(a) = 35 f(b) = 8, f (c) = 25, f (d) = 12, f(e) = 20. 

0 

4 .3.1. 1 D efin ing Slots 

To specify the problem, it is required to fill the slots of the problem space: 

• Define each element of S to be a set of binary trees. In ord r to define S, define 

BT as the set containing 

(c) where c E Ch, or 

(l, r) where l , r E BT 

Each element of S is a subset of BT. For any x E S and c E Ch, the leaf (c) 

must appear in at least one member of x. 

• Define i as a set of trees, each including one leaf for each el ment of Ch 

i = { (c) IcE Ch} 

• Define each member of C as a t of size one, lxl = 1, whose sole member is a 

binary tr e including every c E Ch 
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• Define g as a function merging two trees, by making subtrees as the left and 

right child in a new combined tree, and removing the original subtrees 

g(x) = {{ (t,s)}u x- {t} - {s}lt,sEx 1\ t#s} 

• Define cost global of tree t as the sum of the cost of retrieving each char c E C h, 

which is depth of a char in a tree d times its frequency 

cost(d, (c)) f( c) x d, for all c E Ch 

cost(d, (s, t)) - cost(d + 1, s) + cost(d + 1, t) for t, s E Tree 

cost( t) cost(O, t), fortE Tree 

• Define ~global as a cost comparison relation between trees 

{ t} ~global { S} cost(t) ~ cost(s) , for {t} , {s} E C 

To adapt the greedy solution, following parameters are specified: 

• Define cost1ocal similar to the global cost function , noticing that the global cost 

applies to a completed solution which is a tree and the local cost applies to a 

partial solution which is a forest 

costlocal(x) = 'L:cost(t) , 
tEx 

for t E Tree, x E S 

• Define ~local as a local comparison relation between two forests 

X ~local Y l::cost(t) ~ l::cost(s) 
tEx sEy 
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4.3.1.2 Implementation Process 

In order to implement the concrete Huffman algorithm based on the abstract definition 

of greedy algorithm defined by Definition GreedySearch in 4.2.1, we need to fill in the 

slots using the parameters and definitions defined in 4.3.1.1. These slots include 

• The input parameter is Ch, a set of chars and a frequency function J(c) : Ch---+ 

N 

• Initialization: var x := i 

Definition of i can be implemented using a loop 

X:= 0 

for cE Ch 

X:= X U (c) 

• Defining the while guard: while x ¢:. C 

To implement this part, consider 

- initialization of x creates sets with length IChl, lxl = IChl 

- the generation function x' E g(x) in each iteration joins two trees together 

reducing the length of a set by one , lx'l = lxl - 1 

- iteration ends when x E C, which implies lxl = 1 

[lx l = IChl, lx'l = IChl- 1] ~ x := x - 1 

This assignment is repeated IChl-1 times until lxl = 1. Therefore this sequence 

can be implemented by a for loop starting from 1 to IChl - 1 

fork := 1 through IChl - 1 
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• Generation step in x :E min g(x) 

According to proposed greedy algorithm in section 4.2.1, generation function 

produces all the possible combination of merging two trees together, from where 

the lowest cost forest is selected. However, Huffman method suggests an opti-

mization case where trees are sorted according to their frequencies and genera-

tion function selects two subtrees of minimum frequency, merges them to create 

a new tree with subtrees at its children, and finally deletes the original subtrees 

from the set. Therefore, it is required to show how this method implies the 

local cost of the new value of x is optimal. 

Let 's consider the properties of the cost function in more detail 

cost( d, (c)) J(c) x d, for all c E Ch ( 4.10) 

cost(d, (s, t)) cost(d + 1, s) + cost(d + 1, t) fort, s E Tree ( 4.11) 

cost( t) cost(O, t) , for t E Tree (4.12) 

cost(x) :Z::cost(t) , for t E Tree, and x E S ( 4.13) 
tEx 

Equation ( 4.10) represents the cost of a single char in a tree being its depth 

times its frequency. The next equation ( 4.11) describes the relation between a 

tree and its subtrees. A single tree can also be considered as a zero depth tree 

as represented in (4.12). The cost function is defined for a tree, however, it can 

be applied to a forest as represented in equation ( 4.13). 

Applying the proposed greedy algorithm in 4.2.1 constructs an algorithm for this 

application. Generally, the greedy approach makes a greedy step in each state 

by applying the generation function g(x) to every x E S. For this application, 
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greedy step produces all the possible cases of creating a new tree joining two 

subtrees. T hen, it selects the lowest cost tree x :E ming(x) . However, Huffman 

method suggests an optimization technique to implement the encoding system. 

Using Huffman coding, this process is implemented by choosing two subtrees 

with the lowest frequency, placing subtrees as left and right child of a new tree, 

and finally removing the original subtrees. In this section, we show how this 

optimized technique satisfies t he minimum cost of creating encoding trees. 

Frequency function can be extended to trees, calculated according to frequency 

of each char 

J( (c)) = J(c), for all c E Ch 

f( (t, s)) = f(t) + f(s ), otherwise 

f(t) = L_j(c), fortE Tree (4.14) 
cEt 

Concluding easily from equation (4.10) and (4.12) , cost of a tree can be ex-

pressed in terms of dc,s , depth of a char c in tree t, times f(c) , frequency of char 

c. 

cost(s) = cost(O, s) = L dc,s x J(c) , for all s E BT (4.15) 
cEs 

Now, the cost of the same tree as a subtree sin depth 1 is calculated in a similar 
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way by adding 1 to the depth of each char in subtree. 

cost(!, s) = L ((dc,s + 1) x f(c)) 
cEs 

L (dc,s X f( c)) + L f(c) 
cEs cEs 

by def ( 4.15) 

cost(O, s) + L f( c) 
cEs 

by def ( 4.14) 

cost(O, s) + f(s) 

The result implies the relation between the cost of a subtree s in depth 0 and 

its cost in depth 1. 

cost(!, s) = cost(O, s) + J(s ) (4.16) 

Therefore, def (4.11) for d = 0 can be rewritten as 

cost(O , (s, t)) cost(! , s) +cost(!, t) 

by (4.16) 

cost(O, s) + f(s) + cost(O, t) + f(t) 

This can be more simplified as 

cost ( ( s, t)) = cost ( s) + f ( s) + cost ( t) + f ( t) ( 4.17) 

Now, using the derived details we reconsider the proposed greedy algorithm 

for this application. In a state that x rJ. C, every x represents a forest x = 

{t0 ,t1 , ... tn}, where each ti is a tree. Let 's consider the generation function 

according to the proposed general method of greedy algorithm, which in each 
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state produces a new forest by joining two subtrees together, and removing the 

original subtrees from the forest . For an arbitrary y E g(x) we have 

And therefore 

cost(y) - cost(x) + cost((ti, t1))- cost(ti)- cost(t1) 

by (4.17) 

cost(x) + cost(ti) + f (ti) + cost(t1 ) + f(t1)- cost(ti)- cost(t1) 

- cost(x) + f(ti) + f(tj) (4. 18) 

The result in (4.18) explains the cost of every y E g(x) simply depends on 

f(ti) + f(tj) because cost(x) is a fixed amount. Therefore, to minimize the 

cost(y) we only need to minimiz the value of f (ti)+ f(t1) which can be satisfi d 

by choo ing two subtrees ti and t1 with the lowest frequencies. Finally, the 

optimization technique of Huffman method , by using t he two trees with the 

lowest cost, implements the greedy algorithm very efficiently. It considerably 

reduces the complexity of the algorithm. 

4.3.1.3 Greedy Algorithm for Huffman Coding 

Defini t ion HuffmanSearch :: = 

var x := 0 

for cE Ch 

X:= X U (c) 
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for k := 1 through IChl - 1 inv reaches(x, G) { 

} 

var s, t 

s , t := the 2 trees in x of lowest f 

X := XU { (s, t)} - { S, t} 

4.3.2 Kruskal's Algorithm 

For a connected edge weighted graph, a minimum spannmg tree is a tree which 

has a minimum weight and spans th graph by connecting all the vertices. Kruskal's 

algorithm find a minimum spanning tree in a connected undirected graph G = (V, E) 

with the weight function w : E---+ JR. For some connected graphs, minimum spanning 

trees are not unique and there are several qualifying feasible solutions which can b 

formed. 

Kruskal's algorithm is a greedy algorithm which adds the best choice at a time to 

the partial solution. First, the edges are sorted in non-decreasing order according to 

their weight. Then, from the list of sorted edges, the minimum weight edge is selected 

and added to partial solution, if it does not form a cycle. In order to verify whether 

a new edge e = { u , v} E E can be added without creating a cycle, the two vertices 

u E V and v E V are verified not to be connected in the existing partial solution. 

For the following connected graph: 
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Kruskal 's algorithm may create a minimum spanning tree by choosing edges in the 

following order: 

(1, 5) -t 1, (4, 8) -t 1, (9, 12) -t 3, (9, 10) -t 3, (2, 3) -t 4, (2, 5) -t 4, 

(6, 8) -t 5, (7, 8) -t 5, (5, 8) -t 6, (3, 4) -t 7, (6, 13) -t 7, (7, 11) -t 7. 

The sequence of decisions results in the following minimum spanning tree: 

CD-1_0 , ___ 6:...__ __ ®_3_@ 

/ 
® 
41 

®-7-0 

®---___.:.7_1------@ 
5 

1 ® 

/ G)l--7- -@ 

4.3.2.1 Defining Parameters of the Problem Space and Greedy Solution 

To specify the problem, it is required to define the elements of search problem: 

• Define each member of S as a set of dges e E E of graph G = (V E) with no 
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cycles, S ~ 2£ 

S = { F I F ~ E 1\ F is acyclic} 

Where 

F is acyclic= Vu, vI {u, v} E F · -.(F - { {u, v} } connects (u, v)) (4.19) 

Fconnects(u,v)=:3kl {u,k} EF · k =v V Fconnects(k,v) 

• Define i as the empty set, i = 0 

• Define each member of C as a set of edges that connect all vertices v E V with 

no cycles 

C = { F E S I Vu, v E V · F connects ( u, v)} 

• Defin e g as a function which adds a new edge to a partial solu t ion, without 

creating a cycle 

g(x) = {xU {e} IeEE · xU {e} is acyclic} (4.20) 

To verify whether a new edge e = { u, v} creates a cycle, it is required to check 

if th re is any connection between vertices u and v by any edge (set of edges) 

m x . 

• Define co tglobal as the sum of the weights of a set of connected edges 

costglobat(x) = cost(x) = L w(e), where xES 
eEx 

• Define ~global as a cost comparison relation for two sets of connected edges 

x ~global y L w(e) ~ L w(e), where x, yES 
eEx eEy 
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To adapt the greedy solution, following parameters are specified: 

• Define cost1ocal as the sum of the weights of a set of edges 

costlocal(x) = cost(x) = L w(e), where xES ( 4.21) 
eEx 

• Define::;1ocal as a cost comparison relation for two sets of edges 

x ::;local y - L w(e) ::; L w(e), where x, y E S 
eEx eEy 

The definition of local and global cost for t his example are identical and apply 

to a set of edges. 

4.3.2.2 Implementation Process 

• Initialization is x = 0 

• Defining t he while guard: while x ~ C 

To implement this part consider the defini t ion of C, which implies every v E V 

should be included in a complet d solution . In addition, every possible pair 

of edges should be connected. Therefore, the partial solut ion x connects every 

possible pair of vertices in V . 

Vu , v E V · x connects (u, v) 

Therefore, wh ile x ~C is implemented as while ::Ju, v E V · •x connects (u, v) . 

• Generation fun ction in x :E min g(x) 

Generally, as defined above in ( 4.20) generation function creates a set of all 

possible edges which can join to the existing partial solution x, xU{e}, without 
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creating a cycle. Then, cost function (4.21) is applied to the set of creat d 

partial solutions. Finally, a minimum cost partial solution is selected. 

However , Kruskal 's algorithm suggests how this method can be optimized by 

adding an edge with a minimum weight to the partial solution if it does not 

create a cycle. In order to easily access an edge with a minimum weight, the 

set of edges can be sorted according to the weight. To prove this optimization 

method refines the general generation method, let's consider local cost function 

(4.21) for y E g(x) according to definition of (4.20). 

Let y X U { enew } E g (X) 

cost(y) L w(e) 
eEy 

by def (4.20) andy = XU {enew } 

L w(e) + w(enew) 
eEx 

w(x) + w(enew) 

Which clearly proves that the cost of a new partial solution y E g(x) directly 

depends on the weight of a new edge added to the old partial solution x. There-

fore, the optimization method of Kruskal implements th g neral generation 

function . 

Considering Kruskal's greedy algorithm x :E min g(x) is implemented by x := 

x U { e} where e is a minimum weight edge such that x U { e} is acyclic. The 

implementation of the optimized generation function selects an edge with the 

lowest weight and joins it to the existing partial solution, if it does not create 

a cycle. To verify whether it creates a cycle, the existing partial solution is 
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examined not to already conne t the vertices of the new edge. T his assures 

joining the new edge to the partial solut ion will not create a cycle. This implies 

to implement this section we are only required to verify whether partial solution 

x connects the vertices of a new edge, summarized as follows. 

if x is acyclic 

then x U { e} is acyclic 

•x connects e 

The implementation of generation function in x :E min g(x) is summarized a 

follows: 

let enew := an edge with the lowest w such that •X connects enew 

X : = X U { enew} 

4.3.2.3 Greedy Algorithm for Kruskal's Method 

Definition KruskalSearch :: = 

var x := 0 

while (:3u v E V · • X connects (u, v )) inv reaches(x, G){ 

} 

let enew := an edge with the lowest w such that• x connects enew 

X : = X U { enew} 
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Chapter 5 

Conclusion 

We investigated how abstract specifications can be proved to be implemented by ab­

stract algorithms. For this study we considered algorithm design t chniques such as 

dynamic programming and greedy algorithms. By applying a transformation that 

maps the ab tract specification into a concrete specification, we showed how to derive 

a concrete algorithm from the abstract algorithm. With the derived method came 

along a formal proof of abstract algorithm correctness. This allows the abstract al­

gorithm to be reused, along with its proof, to implement multiple concrete problems. 

The approach can be summarized as follow . Suppose we know that an abstract spec­

ification P is implemented by an abstract algorithm Q, then if we need an algorithm 

for a problem R = T(P), where T is a data transform, we can implement R with 

T(Q). 

The study by Bird and de Moor uses categorical calculus as the mathematical 

framework. This framework helps formulating theorems and proofs. Generally, the 

framework and theorie does not match up how computer programmers typically view 
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problems; ther fore, the preliminary concepts were also presented. The style of rea­

soning with functions and relations is pointfree, which has the advantage of avoiding 

to formulate bound variables used by quantifiers and is described in terms of func­

tional decomposition. However, we have experienced that the understanding of the 

theorems and proofs are always impossibl without sketching and creating a support­

ing pointwise reasoning, which describes a function by its application to arguments. 

Optimal bracketing also known as matrix chain multiplication was described as an 

application of this case in chapter 2, the same example was later studied under our 

proposed dynamic programming algorithm in chapter 3. This provided the possibility 

of comparing two methods by considering the level of difficulty and complexity of the 

methods. 

Sharon Curtis claims that although the theories by Bird and de Moor are useful 

to express considerable number of problems, it is not easily applicable to all optimiza­

tion problems and not applicable to some exceptional cases at all. She takes Huffman 

Coding as an example, and concludes that catamorphism and anamorphism meth­

ods are top-down methods while examples such as Huffman Coding need bottom-up 

methods. The method developed by Curtis uses a limit operator lim T, a simple 

loop where lim recursively applies T to the input until it can not be reapplied. This 

method has a lower complexity comparing with catamorphisms and anamorphisms 

as presented by Bird and de Moor. However, Curtis uses the same framework of 

pointfree reasoning and her proposed algorithm for greedy algorithm, lim T, is yet 

complicated. Kruskal's method was described as the application of this method in 

chapter 2. Kruskal's method fits into the category of graphic matroids and fixed 

priority algorithm described in the introduction and is also later studied with our 
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proposed method in chapter 4 providing an easy comparison of complexity and effi­

ciency of algorithm. 

One of th algorithm design approaches studied in this thesis is dynamic pro­

gramming, which is presented in Chapter 3. An abstract algorithm for dynamic 

programming has been formally developed for an abstract specification. This speci­

fication includes slots for the problem space, solution space, and a function mapping 

them. This abstract algorithm is presented in top-down and bottom-up approaches. 

Principle elem nts of dynamic programming in the proposed method includes leaf 

problems, branch problems, divide function, and conquer function. Leaf problems 

are easy to solve and branch problems are solved by using functions divide and con­

quer. If these two functions can be defined for a problem, dynamic programming 

can be applicable. The main theory of dynamic programming is proved to be correct 

by method of induction. Application of dynamic programming such as Matrix chain 

multiplication and Largest black square represents how this abstract algorithm can 

be implemented in concrete algorithms. 

The other algorithm design approach studied in this thesis is greedy algorithm, 

which is presented in chapter 4. The parameters required to create a greedy algo­

rithm includes definition of completed solution, a global cost function, a local cost 

function, and a generation function. The global cost function measures the degree 

of optimality in a feasible solution, and the local cost function is used in each step 

of the algorithm for comparing partial solutions. There is a relation between local 

and global cost functions, in most cases being identical. However, it is not required 

for greedy algorithm to be defined having equal local and global cost functions. The 

generation function creates all the possible next greedy steps and the best is selected 
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with respect to its cost and adds it to the partial solution. If for any problem an 

optimization method is used, it is required to show how it will refine the general 

proposed method. As mentioned earlier in the introduction , there are many problems 

with different structures which can benefit from greedy algorithm. However, in this 

thesis one case has been proved to qualify for this method. This case includes prob­

lems with the monotonicity condit ion , referred as better-local by Curtis . The main 

theory of greedy algorithms is proved under certain conditions, such as the property 

of monotonici ty and the assumption that continuing the greedy step after a complete 

solution is created will not result in a better completed solution, since the generation 

function stops running when a completed solution is created. 

In addition to independent examples, choosing the same examples in the literature 

and main body of the thesis aims to describe how the proposed methods provide more 

applicable methods for computer sci ntists by resolving some inadequacies of the other 

introduced methods such as complexity. 

Finally, future work can include implementing the proposed techniques in SIM­

PLE to refine abstract specification by abstract dynamic programming algorithm, 

and abstract gr edy algorithms. It can also provide more d tails on the conditions 

under which the proposed methods are applicable to particular problems. It can 

further define conditions required on divide and conquer function , and proving the 

correctness of greedy algorithm in other possible cases. The proposed methods can 

be studied on more examples on different categories of problems such as hard to solve 

problems. Future work can also include complexity study of algorithms and methods 

of further optimizations. 
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