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Abstract 

There are several aspects of research in DNA analysis. This thesis is an exploration 

of four different areas of DNA analysis that use Combinatorics and its applications. 

First, Levenshtein introduced the idea of Levenshtein Distance. For two strings, Lev­

enshtein Distance is the number of operations (insertions, deletions and substitutions) 

required to transform one string into the other. An application of Levenshtein Dis­

tance includes creation of large sets of synthetic tissue identification that provided 

error detection and correction. The second area of DNA analysis using Combina­

torics is the application of Graph Theory. Two methods of sequencing technique, 

fragmentation (overlap) method and sequencing by hybridization, both of which use 

Graph Theory, are studied. The third area of DNA analysis that we study is sequence 

comparison. Dynamic programming is used to effectively pair up two sequences. A 

heuristic method of searching sequence alignment such as PASTA is discussed. The 

final area of DNA analysis studied is the efficient selection of unique oligonucleotide 

(oligo) from a database containing large DNA or protein sequences. With the large 

size of database, an effective approach to find unique oligos is required. In this thesis, 

the Brute-Force method and the filtration methods for the selection of unique oligos, 

and parallelization of these methods to save some time in searching for unique oligos, 

are studied. The Brute-Force and filtration methods give us accurate results but they 

may take a long time. We attempt a new approach, which gives us less accurate 

results over much improved searching time. 
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Chapter 0 

Introduction 

Recent developments in technology and informatics have given a significant boost 

to research in biological sciences. Biologists analyze the interactions of species and 

the function of cells, researchers depend greatly on collection and analysis of large 

data such as DNA1 information to understand the interactions between species [32]. 

Technological improvements have been allowing us to collect and interpret data faster 

than ever. Still, many studies and even more technological improvements are needed 

to handle large amounts of data, so that we can determine which parts of DNA are 

responsible for the various chemical processes of life. In an attempt to analyze the vast 

amount of biological data, a new and growing discipline combines other branches of 

science. Bioinformatics, which is the combination of mathematics, computer science, 

biology, biochemistry and statistics, is a growing field that attempts to solve biological 

problems using computers and combinatorics, some of which are explained here, in 

an attempt to analyze the vast amount of biological data. 

1 DNA is the fundamental substance of which genes are composed. 
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The term 'gene' defines an inheritable trait that exists in cells. Genes are made 

of DNA. A gene may be turned on (expressed) or off (not expressed) within a cell. 

The process of how a gene is turned on or off is called gene expression. Scientists 

are working very hard to sequence and assemble the genomes of various organisms 

including humans in an attempt to understand where and how a gene is expressed 

under normal circumstances. 

DNA controls the activity of a gene. Maintenance of DNA is essential for normal 

function of a cell, and thus to survival [56]. Hormones and other chemical agents in 

the body of a human try to maintain DNA. However, DNA is constantly damaged 

by both external and internal agents. It must be repaired by certain mechanisms to 

maintain the integrity of genetic information [60]. Failure to do so results in mutations 

which may ultimately result in death. Some of these mutations may be responsible 

for cancer. 

Sequence alignment attempts to identify mutations in genes. Primary sequences 

of DNA, RNA2 , or protein of an organism can be aligned. Figure 1 is an example 

of alignment of two DNA sequences. In more detail, the alignment of two sequences 

is for the purpose of identifying similar regions, which may lead to functional and 

structural similarities of the two sequences. If two compared sequences are from the 

same species, mismatches or gaps within the alignment indicate mutations. 

There are various types of studies in DNA analysis and most of these studies 

include different branches of scientific fields. This thesis includes topics from mathe­

matics, computer science and biology. 

This thesis is organized as follows: Chapter 1 introduces the reader to the basics of 

2RNA is a working copy of DNA. Biological terms will be defined in the next chapter. 
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EMBOSS_OOl 1 AGIGAGAO.CGACGAGCCTACIA!CAGGACGAGAGCAG&AGAGTGAIGAI 50 
11 11. 1.1.11 . 11.11111 11.1111 111 11 11 11 111 . 11111.1111 

EHBOSS_OOl 1 AGIGIGICICGTCG!GCCIACIIICAGGACGAGAGCAGGTGAGIGIIGAT 50 

EMBOSS_OOl 51 GAGIAGCGCAO.GCGACGA'TCAICACGAGAGAGIAAGAA----------- 89 
1111. 1111 .1.1 11 111.111 11 .1111.1 111.1111 

EHBOSS_OOl 51 GAGITGCGCICTGCGACGIICA!CICGAGIGAGIIAGAAAGIGAAGGTAI 100 

EHBOSS_OOl 90 ----------------GCAGIGA!GAIGIAGAGCGACGAGAGCACAGCGG 123 
111111111111111 1111111111111 11 11 11 

EHBOSS_OOl 101 AACACAAGG!GIGAAGGCAGIGAIGAIG!AGAGCGACGAGAGCACAGCGG 15 0 

EMBOSS_001 124 CG----ACTACTACTAGG 137 
I I .. 11 . .. 11111 

EMBOSS_OOl 151 CGGGAIGA!A!AICIAGGAGGA!GCCCAAIIITI!TII 188 

Figure 1: An example of DNA sequence alignment between human and mouse using EM-

BOSS Pairwise Alignment Algorithms at http:/ jwww.ebi.ac.uk/emboss/alignj. 

molecular biology. This includes a brief review of DNA, RNA, protein, the processes 

of replication, transcription and translation. In Chapter 2, we discuss the coding 

theory and the design theory necessary for the construction of error-detecting and 

error-correcting codes. We use the notion of Levenshtein Distance (or edit distance) , 

which measures the distance between two strings that are paired (or aligned); this 

distance is the minimum number of transformations needed to transform one string 

into the other. We conclude this chapter by giving an applied example of the cod-

ing theory and the design theory that uses Levenshtein Distance in gene discovery 

projects. In Chapter 3, we study Graph Theory applied to DNA sequencing and map-

ping. We study the Fragmentation method and Sequencing by Hybridization (SBH). 

In Chapter 4 we study the known methods of aligning DNA and protein sequences. 

We explore some developed algorithms including FASTA. Finally, in Chapter 5 we 

review combinatorial pattern matching. We discuss exact pattern matching and ap-

proximate pattern matching problems. In particular, our main focus is on the unique 
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oligonucleotide searching problem that are popularly used in DNA technologies such 

as microarray [54, 42, 58]. We present the existing brute-force and filtration methods 

(see [49, 6, 35, 72]) and propose some improvements and a parallelization technique. 

We implement these algorithms and parallelize them in Mathematica3 . We give a 

small example to explain the brute force algorithm, the two filtration algorithms and 

the parallelized algorithms of each. Running these on the databases of three bacteria 

species (acaryochloris marina, bacillus cereus and aspergillus nudulans), we find that 

the parallelization technique works very well and improves the speed of old algorithms. 

3Mathematica is a fully integrated software environment for technical and scientific computing. 
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Chapter 1 

Molecular Biology 

The purpose of this chapter is to provide an overview of gene expression at the 

molecular level. What is known as the Central Dogma as the organizing theme to 

define the basics of DNA, RNA and protein is explored here. In particular, this 

chapter illustrates the application of Bioinformatics in terms of nucleotide sequences. 

1.1 DNA 

In every organism, the ultimate source of genetic information is stored in nucleic 

acids. A nucleic acid is a macromolecule made from nucleotide chains. A nucleotide is 

composed of a nitrogenous base, five-carbon sugar and a phosphate group (Figure 1.1). 

Nucleotides are joined to each other to form chains called polymers1 such as DNA 

or RNA. There are four nitrogenous bases found in DNA: Adenine(A), Cytosine(C), 

Guanine(G) and Thymine(T). The bases of nucleotides may be classified as either 

purine or pyrimidine. The bases A and G are purines and C and T are pyrimidines. 

1 A Polymer is a large molecule with repeating chemical structure. 
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In 1953, Watson and Crick proposed that DNA is formed by two long strands that 

are entwined giving the shape of a double helix [63] . See Figure 1.2a. 

OH (O)H 

(Deoxy)Ribose 

Figure 1.1: Deoxyribose with labeled carbon numerically from 1' to 5'. The labeling is 

according to the system of naming organic compounds in Organic Chemistry. 

The above structure composed of five carbons is often referred to as pentose 

sugar deoxyribose. 

The 'backbone' of the DNA strand is formed by alternating phosphate and sugar 

groups. Sugar in DNA is composed of five carbons as in Figure 1.1. Each nucleotide 

base containing sugars is connected by phosphate groups at the 5' and 3' ends. The 

existing bonds by the phosphate groups result in the direction of the nucleotides 

in one strand. In a double helix, the direction of the nucleotides in one strand is 

opposite to that of the other. In the sugar backbone of a DNA strand, the 5' end is a 

terminal phosphate group (chemical compound containing phosphate) and the 3' end 

is a terminal hydroxyl group (chemical compound containing OH). 

One strand of a DNA chain bonds with the other strand by complementary base 

pairing. Complementary base pairing refers to nucleotides with the base Adenine 

that bond with nucleotides with thymine base (A-T). Similarly, nucleotides with the 
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Adenine 

Thymine 

Guanine 

Cytosine 

(a) 

Sugar 
Phosphale 
Backbone 

Base pair 

Nilrogeous 
base 

Thymine 
Adenine 

S'end ~ 

·f . ::0 ··-yJ;"' 
. 7 r-tN 

Pho•photo-Y ~~·~ "'~ 
deoxyribose"70J ~ ~ 

bO<kboOO . •l ~~'~'\~ 
. ) .(~)~~ y -..1-

3' end Cytosine (.,. 
Guanine 5· end 

(b) 

Figure 1.2: Deoxyribonucleotides are linked by phosphate group. Sugars, which are read 

from 5' end to 3' end, form the backbone of the DNA. Adenine bonds to 

Thymine and Cytosine bonds with Guanine in DNA. Figures are adapted 

from wikipedia [65]. 

base Guanine bond with nucleotides having the base Cytosine (G-C). As a result of 

the complementary base pairing, the DNA molecule has entwined helical shape and 

the two strands of DNA are said to be complementary (see Figure 1.2). 

As illustrated in the Figure 1.2, a DNA molecule can be represented by four bases, 

A, C, G and T. The two strands in DNA are connected by hydrogen bonds between 

complimentary bases of the two strands. Adenine from the sugar backbone bonds to 

Thymine and Guanine with Cytosine as in Figure 1.2. 

A protein is made up of 20 amino acids, which are polymers. Three nucleotide 
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bases can be used to identify these amino acids. For example, CCA (cytosine­

cytosine-adenine) represents Arginine, one of the 20 amino acids. The three nucleotide 

bases such as CC A are called codons. 

1.2 The Central Dogma 

A DNA sequence, which is a nucleotide chain (i.e. a biological polymers) encodes 

genetic information. The Central Dogma of molecular biology, which was proposed by 

Francis Crick [19] , is a framework for understanding the transfer of genetic information 

between biopolymers. 

There are three types of biopolymers: DNA, RNA and proteins. The transfer of 

information from DNA to DNA is called replication, DNA to RNA is called transcrip­

tion and RNA to protein is called translation. The Central Dogma is represented by 

these three stages; replication, transcription and translation. The dogma, when it 

was first postulated, highlighted only the three stages, but later it was found that 

some organisms were able to replicate RNA and even go back to DNA from RNA. 

For the purpose of this thesis, we will only focus on the three stages of the Central 

Dogma as it was first proposed. 

1.2.1 Replication 

To transmit genetic information, the DNA must first replicate [29] . The Central 

Dogma states that for replication to take place, the two strands of DNA must unwind. 

The two exposed nucleotide chains act as templates for new strands that are catalyzed 
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(formed) by the enzyme2 DNA polymerase (see Figure 1.3). The new chain of DNA is 

synthesized from the 5' end to the 3' end, where free nucleotides are added according 

to the complementary base pairing of the template strands. 

1 -s Jt.s.-.it-,s,.J&-s -
I ~ I 

Dlrectl(lfl -' •: 

3· -s P·S P·S P ·S P·S p-~ p ·· 
I I l ,. 

~ f: 

Figure 1.3: Replication Process. This figure is taken from Griffiths [29]. 

1.2.2 Transcription 

An organism is either made of proteins or something that has been made with proteins. 

Since proteins are encoded in a gene, the products of most genes are specific proteins 

[29]. The Central Dogma states that to produce a protein from a gene, the cell 

must copy information encoded in DNA to RNA, which represents a "working copy" 

of the gene. The process in which nucleotide sequences in DNA are copied onto 

RNA is called transcription. In comparison to DNA, RNA also contains nucleotides 

containing the sugar ribose instead of deoxyribose in DNA. The RNA contains Uracil 

(U) instead of Thymine occurring in the DNA. During the transcription process, the 

DNA acts as a template. A small section of the DNA double helix unwinds and is 

then used as a template by the enzyme, RNA polymerase to synthesize a messenger 

2 An enzyme catalyzes chemical reactions of the cell. 
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RNA (mRNA) in a process called splicing (Figure 1.4). The DNA molecule contains 

parts that code for proteins called exons, and some other parts that do not code 

anything called introns. In splicing, introns of pre-mRNA are removed and exons 

of pre-mRNA are joined, resulting in an mRNA molecule. During the transcription 

process the mRNA is capped (by 7-methylguanine) at the 5' end and a polyA tail is 

added at the and 3' end. The addition of both, a 7-methyguanine cap and a polyA 

tail, are essential for the proper function of the mRNA. 

Since introns do not exist in prokaryotes3 splicing only occurs in eukaryotes4 . In 

the mRNA, genetic information is encoded in the form of triplets of the four possible 

bases called codons. 

pre-mRNA 

5' Exon ~] ::: 17 E~on 3' 

Figure 1.4: Splicing process of the pre-mRNA into the mRNA, where introns are elimi-

nated. 

1.2.3 Translation 

Translation is the process by which a protein is formed from RNA. The Central Dogma 

states that a DNA molecule directs its own replication as well as its transcription to 

form RNA. The sequence of RNA is transcribed into the corresponding amino acids 

3In general, prokaryotes are organisms that lack a cell nucleus. Bacteria and archaea are prokary­
otes. 

4Eukaryotes are organisms that have cell nucleus. Animals, plants, fungi, and protists are eu­
karyotes. 
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which then forms protein. 

Figure 1.5: Genetic Code: There are three stop codons to mark the end of translation 

TAA, TAG and TGA for DNA. There is one start codon to initiate translation 

process: ATG for DNA. This figure is adapted from Bergeron, 2002. 

Genetic information is passed in the transcription and translation processes through 

codons. Since codons are triplets of the four possible bases, then the possible number 

of codons is 43 = 64. Three codons specify the termination of the chain. Figure 1.5 

shows all the possible codons and the respective amino acids. 

1.3 Restriction Enzyme 

Restriction enzymes cut an RNA sequence after a particular occurrence of a base. 

There are two kinds of restriction enzymes, the G-enzyme and the U, C-enzyme. The 
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G-enzyme cuts an RNA sequence after every G base and the U, C-enzyme cuts the 

sequence after every U or C base. The resulting pieces are called fragments, which 

we will discuss in a later chapter. 

For example, assume we have an RNA chain consisting of AGGACCGU AAU. 

The G-enzyme will break the chain after every appearance of the G base, resulting 

in the G-fragments: AG, G, ACCG, and U AAU. Similarly, the U, C-enzyme for the 

given RNA chain will produce the U, C-fragments: AGGAC, C, GU, and AAU. 

1.4 Expressed Sequence Tag 

In order to study the difference between a normal gene and an altered gene, which may 

be responsible for a particular disease, researchers must identify and study proteins 

[1]. The detection of a gene that codes a particular protein is very complicated and 

time consuming. Sometimes, this process may take years to complete. Often times, 

attempts to find a gene that codes for a particular protein are only plausible after 

a certain disease is found. In such cases, scientists can back-track and isolate the 

location in the chromosome responsible for the construction of the protein causing 

the disease. 

Significant advances in technology such as computers, microarrays (to be discussed 

in Chapter 5), have helped boost the speed of biological research. 

Expressed Sequence Tags (ESTs) are bits of DNA segments which are expressed 

in a cell. ESTs are short, about 200-800 nucleotides and are generated from either 

5' or 3' end of an expressed gene [47] . An EST serves as a "tag" that can identify 

unknown genes and to map their position within a genome [1]. 
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The mRNA 'does not contain non-coding introns; it represents copies from ex­

pressed genes. However, mRNA is unstable outside of a cell and it cannot be cloned 

directly. Instead of using mRNA, scientists use special double-stranded complemen­

tary DNA (eDNA) that is generated by reverse transcriptase. These eDNA clones 

are sequenced to obtain ESTs [47). 

1.5 Mutation 

Occasionally there may be errors in the DNA replication, transcription and translation 

processes. For the accurate transmission of genetic information during cell division, 

these errors must be repaired through a number of DNA repair mechanisms. Failure 

to do so results in the mutation of a gene. 

Sources of errors include ultraviolet(UV) radiation, ionizing radiation, alkylating 

agents, and/ or viruses, which can be present within the cell of an organism, resulting 

in a base pair sequence change leading to possible mutations. 

A mutation is hereditary, which means it can be passed onto offspring. Certain 

mutations can cause the cell to become malignant, thus leading to cancer [21) . On 

the other hand, a mutation may lead organisms to better adapt to changes in their 

environment. For example, a moth may develop offspring with a mutation which 

changes its color so that it will be harder for predators to detect them. 

A chemical mutagen which causes DNA damage can be classified into two major 

classes: point mutations and insertion/ deletion mutations. Point mutations, in which 

a base pair is replaced by another, can be subclassifed as transitions and transversions. 

In transitions, a purine is replaced by another purine, A t-t G or a pyrimidine is 
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Figure 1.6: Types of Mutation 

replaced by another pyrimidine, C H T. In transversions, a purine is replaced by a 

pyrimidine and vice versa. Insertion/deletion (indel) is where one or more nucleotides 

are inserted or deleted from the DNA as in Figure 1.6. 

1.6 Oncogenes 

Oncogenes are mutated forms of genes. They cause normal cells to grow out of control, 

usually becoming cancerous cells. Oncogenes are mutations of certain normal genes of 

the cell called proto-oncogenes, which regulate cell division. When there is a mutation 

of a proto-oncogene, this gene is permanently turned on (expressed). This means that 

this gene is turned on even when it is supposed to be turned off (inactivated). As 

a result, there is no control on cell division leading to uncontrolled growth, possibly 

resulting in cancer [20] . 
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Chapter 2 

Combinatorics and its 

Applications-Part I: 

Coding Theory and Design Theory 

Coding Theory deals with finding an efficient and accurate transfer of information 

from one place to another. The medium used to transfer information is called a chan­

nel. Telephone lines are one example of a channel. Information carried through the 

channel may be interrupted or disturbed causing the sent information to be different 

than the received information. These undesirable disturbances, called noise, may be 

caused by many sources such as weather conditions. Coding Theory analyzes the 

information that is transferred from the transmitter to the receiver with the noise 

level as a variable. Implementing the Central Dogma with the concepts of Coding 

Theory enables scientists to model the transfer of information within organisms using 

computational techniques [10, 31]. 

15 
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Coding Theory includes five major entities: information source, transmitter (en­

coder), channel, receiver (decoder) and destination. We rephrase the cellular process 

in terms of coding theory as follows: The information source contains the genetic 

information of the human DNA and this is transmitted as a nucleotide sequence 

through a channel. This channel may be the nucleus of a cell. UV radiation which 

causes damage in the DNA is a source of disturbance. A strand of mRNA that is 

expressed from the damaged and un-repaired DNA by the UV light is received from 

the nucleus to the cytoplasm of the cell. The received message is then sent to the 

final destination, which is protein synthesis. 

The purpose of this chapter is to explore Coding Theory and Design Theory. 

Later, we introduce Design Theory to discuss directed designs, which may be thought 

of codewords and error correcting codes of certain lengths. This chapter concludes 

with an example of an application of Coding and Design Theory to gene discovery. 

2.1 Definitions 

The information to be sent is often transmitted as a binary sequence of O's and 1 's. 

A DNA molecule consisting of the four nucleotide bases, A, C, G and T, can be 

represented using binary sequences, i.e. A= 00, C = 01 , G = 10 and T = 11. Thus, 

the sequence ACGA would be represented with 8 bits as 00011000. 

Definition 1. Let A be a finite set of elements. The set A is referred to as an 

alphabet and its elements are referred to as letters or symbols. An arbitrary sequence 

x = (x 1, x2 , . . . , x1) of l, l any nonnegative integer, letters of A is called a word (or a 

string or an [-tuple) and the number l is called its length. Notice that when l = 0, 
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x = E is the empty string of length 0. 

Example. A DNA sequence (A, T, T, C, G) is a 5-tuple, also a word or a string of 

length 5, over the alphabet {A, C, G, T}. The sequence (0, 1, 1, 0) is a 4-tuple over 

the alphabet {0, 1} and this word or string has length 4. 

Remark. For simplicity, we may use the notation for strings or sequences without 

the bracket and commas between the elements. For example, (0, 1, 1, 0) can be simply 

written as 0110 and (A, G, T) as ACT. 

Definition 2. Given two strings x andy we define their concatenation as x * y. 

Example. Let x = ACGGT andy= ATTT be two DNA sequences. The concate­

nation x * y is ACGGT ATTT. 

Definition 3. Given two sets of strings A and B we define their concatenation A*B = 

{x * ylx E A andy E B}. In other words, the concatenation of two sets are all the 

possible concatenations of an element from one set with an element of the other set. 

Remark. When A= B we write A* B or A2 or B 2
. 

Example. Let A= {000, 001} and B = {010, 011}. The concatenation is A* B = 

{000010,000011,001010,001011}. 

Definition 4. Let A be a set of strings. The powers of A are: A 0 = { E}, A 1 = A, 

An= An-1 *A, for all n ~ 1. 

Definition 5. A code C of length n over an alphabet A of size v is any subset C of 

An(v) (the set of all n-tuples over A). The number of words of a code is denoted as 

ICI. 
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Example. A binary code is a set C of words over the alphabet {0, 1 }. The code that 

has all words of length three is 

c = {000,001,010,011,100, 101,110,111}. 

The largest possible number of codewords for length three is 23
. 

Remark. A code having all its words of the same length is called a block code. We 

will consider only block codes. 

Definition 6. Let x be a word. If another wordy can be obtained from x by deleting 

some of its letters, y is referred to as subword (or subsequence). Similarly, a word z 

that is obtained from x by adding some letters to it is referred to as superword (or 

supersequence). 

Example. For A = {0, 1}, let x = 01010. We can obtain subsequence y = 001 from 

x by deleting second element 1 and the fifth element 0. Inserting 1 and 0 at the 

start of the sequence x gives the supersequence z = 1001010. Also, w = 01010 is a 

superword and a subword of x. 

Example. For A= {A, C, G, T}, let x be AACGT, a DNA sequence. Then, deleting 

the first and the fifth element of x gives subword v = ACG. Deleting the first element 

of x gives w = ACGT. Both v and w are subsequences of x. Adding A before the 

first element of x gives superword y = AAACGT. 

Definition 7. Let x = (x1 , ... , Xm ) be a string over A = {A, C, G, T}. A prefix 

of x is (x1 , x2 , ... , xi), where 0 ::; i ::; m; when i = 0 the prefix is c. A suffix of x 

is (xi, xi+l, . . . , Xm), where 1 ::; i; when i > m the suffix is c. A substring of x is 

(xi, xi+1, ... , Xj_1 , xi), where 1 ::; i, j ::; m; when i > j the substring is c. 
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Example. Let x = AGGCGT AG. A prefix of x is AGGC. A suffix of x is TAG. 

AGGC and CGTA are substrings. Also, Eisa prefix, suffix and substring of x. 

Remark. It is important to note that all substrings are subsequences but not all 

subsequences are substrings. A substring includes all symbols between two entities 

of a sequence while a subsequence includes some entities between two symbols of 

a sequence. The symbols of both subsequences and substrings appear in the same 

relative orders as in the original sequence. Biologists deal primarily with fragments 

of DNA which are substrings, not subsequences. 

Example. Let x = ACCAC. Then ACC is both a subsequence and a substring 

(also a prefix) of x. However, CCC is only a subsequence, not a substring. 

Definition 8. Let X = { x1 , x2 , ... , xk} be a collection of strings called input database, 

where xi is a sequence over the alphabet A= {A, C, G, T}. If k = 0, then X= {}. 

The length of X is L = 2::7=1 li, where li is the length of xi. 

Example. Let X = { x1 , x2 , x3 } such that x 1 = ACGT A, x 2 = ACGT A and x 3 = 

ACCC. Clearly, k = 3, l1 = l2 = 5 and b = 4. The length of the database, L, is 

therefore, 14. 

If all possible outputs of a channel correspond exactly to the input codes, there is 

no error present and there is no need to detect errors. In the presence of errors, 

a channel code must be designed to identify an output code with the correct input 

code. This is done by recognizing similarities between the output and the input. The 

idea of similarities between input and output can be formalized using the Hamming 

Distance(HD) between words. 
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2.1.1 Hamming Distance 

Definition 9. We define addition and multiplication among elements in the set B = 

{0, 1} to be mod 2. 

Example. 

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0, 

0 . 0 = 0, 0 . 1 = 0, 1 . 0 = 0, 1 . 1 = 1. 

We generalize addition and multiplication on the set Bn such that given x = xi, ... , Xn 

andy= Yi, ... ) Yn, X+ y =Xi+ Yi, ... ) Xn + Yn and X. y =Xi. Yb . .. ) Xn. Yn 

Definition 10. Let g and h be words of length n. The Hamming Distance between 

g and h, H D(g, h) is the number of positions in which g and h disagree. 

Example. If g = 0110 and h = 0111, H D(g, h)= 1. Let i = ACGT and j = TTTT 

be two DNA codes. The Hamming Distance between i and j is 3. 

Similarly, the Hamming Distance can also be determined by obtaining the Hamming 

Weight between two sequences. 

Definition 11. Let g be a binary sequence of length n. The Hamming Weight of g, 

HW(g) , is the number of occurrences of 1 in g. 

Lemma. The Hamming Distance between g and h is the same as the Hamming 

Weight of the error pattern e = g + h: 

H D(g, h)= HW(e). 
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Example. Let g = 01101111 and h = 11001011. 

We have H D(g, h)= H D(01101111, 11001011) = 3 and HW(g+h) = HW(10100100) = 

3. 

Definition 12. For a code C containing at least two words the distance of the code 

is the minimum value of HW(g +h) , for all g, h in C. 

Example. For C = {0001, 0101, 1001}, the Hamming Weight of each pair of elements 

in C is the following. 

HW(0001 + 0101) = HW(0100) = 1, HW(0001 + 1001) = HW(1000) = 1, and 

HW(0101 + 1001) = HW(1100) = 2. Thus, the distance of Cis 1. 

2 .1. 2 Levenshtein Distance (also known as Edit Distance) 

Levenshtein Distance(LD) or Edit Distance(ED), which was introduced by Leven­

shtein [43], is the minimum number of substitutions, insertions and deletions (indels) 

that is required to transform one sequence into another. 

Example. Let x = 011011 and y = 110110. The Hamming Distance between the 

two strings x andy is four, i.e. H D(x, y) = 4. If we take x and delete the first digit 

0 and insert 0 after its last symbol we would obtain y, thus, LD(x, y) = 2. 

Example. Let z = 012234 and h = 5122647. We cannot obtain the Hamming 

Distance between the two strings, z and h, because they are of different lengths. If 

we take z and substitute the first element 0 with 5, substitute the fifth element 3 

with 6 and insert 7 at the end of the string, we obtain 5122647, which is h. The 

transformation from z to h requires these three operations and there is no other 

shorter way, thus LD(z, h) = 3. 
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2.1.3 Error Detecting Codes 

In the next two sections, we follow the notations and definitions from [31]. 

Definition 13. Suppose that g is in a code C is sent and h in En is received, then 

e = g + h is the error pattern. Any word e in En can occur as an error pattern, and 

we wish to know which error patterns C will detect. We say that code C detects the 

error pattern e if and only if g + e is not a codeword, for every g in C. In other words, 

e is detected if for any transmitted codeword g, the decoder, upon receiving g + e can 

recognize that it is not a codeword and hence that some error has occurred. 

Example. Let C = {001, 011, 110}. Suppose g = 011 is sent and the received word 

is h = 111, hence e = 100. We calculate f + e for all f in C: 001 + 100 = 101, 

011 + 100 = 111 and 110 + 100 = 010. None of the three words 101, 111, or 010 is in 

C, hence, C detects the error pattern 100. Suppose now g = 011 and h = 001, hence 

e = 010. We calculate f + 010 for all g in C: 001 + 010 = 011, 011 + 010 = 001 and 

110 + 010 = 100. Since the first sum 011, and the second sum 001 are in C, we see 

that C does not detect the error pattern 010. Note that we only require at least one 

f + e to be in C for the error pattern to remain undetected. 

2.1.4 Error Correcting Codes 

Definition 14. Let g E C be transmitted over a channel and h be the received word. 

Let e = g + h be the error pattern. We say the code C corrects the error pattern e if 

for all g E C, g + e is closer to g than to any other word in C. By closer, we mean 

HD(g, g +e)< HD(d,g +e), for all dEC and d #g. 
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Example. Suppose we have code C = {001, 101}. We wish to see if the code corrects 

the error pattern e = 010. 

For g = 001, g + e = 001 + 010 = 011. H D(001, g +e) = H D(001, 011) = 1 and 

H D(101, g +e) = H D(101, 011) = 2. 

For g = 101, g + e = 101 + 010 = 111. H D(001, g +e) = H D(001, 111) = 2 and 

H D(101, g +e) = H D(101, 111) = 1. 

Since all g + e is closer to g than any other word in C, C corrects the error pattern 

010. 

Take another error pattern, e = 110. 

For g = 001, g + e = 001 + 110 = 111. H D(001, g +e) = H D(001, 111) = 2 and 

H D(101, g +e)= H D(101, 111) = 1. 

Since g + e is not closer tog = 001 than to 101, C does not correct the error pattern 

110. 

Definition 15. A code Cis called a linear code iff+ dis a word in C whenever f 

and dare in C. 

Example. A code C = {00, 01, 10, 11} is a linear code because all the sums are inC: 

00 + 00 = 00 01 + 00 = 01 10 + 00 = 10 11 + 00 = 11 

00 + 01 = 01 01 + 01 = 00 10 + 01 = 11 11 + 01 = 10 

00 + 10 = 10 01 + 10 = 11 10 + 10 = 00 11 + 10 = 01 

00 + 11 = 11 01 + 11 = 10 10 + 11 = 01 11 + 11 = 00 

A code C = {00, 01, 10} is not a linear code because 01 + 10 = 11 is not in C. 

The minimum distance of a code measures how "far apart" from each other different 

codewords are. The minimum distance of a code is defined to be the smallest distance 
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between two distinct codewords [30]. 

Lemma. The distance of a linear code is equal to the minimum Hamming Weight of 

any nonzero codeword. 

Definition 16. A code is said to be a t error-correcting code if it corrects all error 

patterns of Hamming Weight at most t and does not correct at least one error pattern 

of Hamming Weight t + 1. 

Definition 17. Given non-negative integers nand t, the binomial coefficient is given 

by, 

(
n) n! 
t -t!(n-t)! 

(7) is the number of t-element subsets of an n-element set. 

Let g be a word of length n. For 0 ~ t ~ n, the number of words of length n of 

distance at most t from g is 

Since we are using binary words, there are 2n words of length n. For t = n, 

Definition 18. A code C of length n and distance 2t + 1 is referred to as a perfect 

code if, 

2n 

ICI = (~) + (7) + ... (7)' 
Example. Let n = 2t + 1. 

(~) + (~) + · · · (;) ~ ~ r (~) + (~) + ... (:)l ~ ~2" ~ 2"-'. 
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2n 
ICI = 2n-1 = 2. 

Thus, any perfect code of length whose length and distance are both 2t+ 1 has exactly 

two codewords. 

2.2 Design Theory 

The main references from this section are from Colbourn et al. [18), Street el al. [59] 

and Wang et al. [61]. 

2.2.1 Balanced Incomplete Block Design 

Definition 19. A balanced incomplete block design (BIBD) is a collection of k-

subsets (called blocks) of a v-set V, k < v, such that each pair of elements is in V is 

in exactly >. blocks. 

Sometimes, BIBDs are referred to as (v, k, >.) BIBD or (v, b, r, k, >.) BIBD (design) , 

where b is the number of blocks in the design and r is the number of blocks each 

element in V is included in. 

Theorem 1. Given a (v, b, r, k, >.)-design, the following holds. 

• 1. bk = vr 

• 2. >. (v - 1) = r(k- 1) 

Proof. See Ian Anderson's book [3]. 

Example. A (7, 7, 3, 3, !)-design is given by the set V = {1, 2, 3, 4, 5, 6, 7} and the 

following 7 blocks (b = 7): {1, 2, 4}, {2, 3, 5} , {3, 4, 6}, { 4, 5, 7}, {5, 6, 1}, {6, 7, 2} , 
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and {7, 1, 3}. We may note that the block size k is 3, and the replication number r is 

also 3. Each pair of elements appears exactly once in only one block, A = 1. 

Note that this design is called cyclic since all blocks are obtained by adding 1 (mod 7) 

to each element of the first block (or developing the block {1, 2, 4} ). The first block 

is called the base block. 

Remark. The condition v > k refers to the "incomplete" in BIBD and the parameter 

of A refers to "balanced", thus a (v, b, r, k, A)-design is called BIBD. 

Definition 20. A directed balanced incomplete block design(DBIBD) with parame­

ters (v, b, r, k, A), is a balanced incomplete block design with parameters (v, b, r, k, 

2A), in which the blocks are regarded as ordered k-tuples and in which each ordered 

pair of elements occurs in A blocks. We denote DB I B D by DB ( k, A, v). 

Remark. Given the block (a, b, c, d) we will say the six ordered pairs (a , b), (a, c), 

(a, d), (b, c), (b, d) and (c, d) occur in the block. 

Example. For DB(3, 3, 5), we have total b = 5'4~~~·2) = 20 blocks. Developing the 

blocks of (0, 1, 2), (0, 2, 4), (0, 3, 1) and (0, 4, 3) modulo 5, we have the following 20 

blocks. 

(0, 1,2) (0,2,4) (0,3, 1) (0,4,3) 

(1,2,3) (1 , 3, 0) (1,4,2) (1,0,4) 

(2,3,4) (2, 4, 1) (2,0, 3) (2,1,0) 

(3, 4, 0) (3,0,2) (3,1,4) (3,2,1) 

(4,0,1) (4, 1,3) (4,2,0) (4,3,2) 

Since A is 3, every pair and the reverse pair are in exactly three blocks, i.e., (0, 1) and 

(1, 0) are in exactly three blocks. 
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2.2.2 Packing Design 

Definition 21. A packing design P D(v, k , >.) is a pair (V, B) where V is a set of v 

points and B is a family of k- subsets from V such that each pair in V is in at most 

). blocks. If the number of blocks is maximum, it is called the maximum packing 

design. 

Theorem 2. In a maximum packing design (v, k, >.), the number of blocks, b, is 

defined by: 

Proof. For every point x E V there are at most >.(v - 1) pairs including it. If x is in 

a block, then each block contains k- 1 pairs including x. Thus, the total number of 

blocks in which x is included is at most 

>.(v - 1) 
k- 1 . 

This number, however, must be an integer, so it becomes 

l>.(v- 1)J 
k - 1 ' 

which includes each v points. These points must all fit in blocks of size k . The total 

number of blocks becomes, 

l (v-l)A J 
v k-1 

b ~ k ' 

and it must be an integer thus, 
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Example. For v = 6, k = 3, and A= 1, we have 

b ~ l ~ ·l ~ J J = l132 J = 4. 

The number of blocks in the maximum packing design is four: {1, 2, 3}, {1, 4, 5}, 

{2, 4, 6} and {3, 5, 6}. Every pair from each block, which is called the leave, is used 

exactly once except {1, 6}, {2, 5} and {3, 4}. 

2.2.3 Covering Design 

Definition 22. A covering design CD(v, k, A) is a pair of (V, B) where Vis a set of 

v points and B is a family of k- subsets from V such that each pair in Vis in at least 

A blocks. 

Theorem 3. In a minimum covering design (v, k, A), the number of blocks, b, is 

defined by: 

Proof. Similar method as in Theorem 1. 

Example. For minimum covering design of v = 5, k = 3, and A = 1, we have 

b ~ ~~ l~l l = f1
3°l = 4. The four blocks are {1,2,3}, {1,4,5}, {2,3,4} and {2, 3,5}. 

Generating pairs from each block, we note that the pair {2, 3} is used three times but 

all other pairs are used exactly once. The extra pair {2, 3} used three t imes is called 

the excess graph. 
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2.2.4 Directed Packing and Directed Covering Design 

This subsection is taken from [7]. A directed packing (covering) design with param-

eters v, k, >., denoted by (v, k, >.)-DPD ((v, k, >.)-DCD ) is a pair (V, B) where V is 

a set of v points and B is a collection of ordered k-tuples (called blocks) of V, such 

that every ordered pair of points of V appears in at most (at least) >.blocks of B. 

Example. For the DPD we have, 

For (6, 4, 1)-DPD, we have b ~ l ~ l ¥ J J = 4. The four blocks are (5, 1, 2, 4), 

(2, 3, 6, 1), (6, 3, 4, 2) and (4, 1, 3, 5). We note that there are total(~) x2 = 30 ordered 

pairs in this design. From the four blocks, we can only generate G) x4 = 24 pairs, 

thus, there are six directed pairs which are not used which gives us a directed leave 

graph. 

Example. For the DCD we have, 

For (14, 4, 1)-DCD, let the point set be Z13 . We take (13, 13, 4, 4, 1)-BIBD on Z13 

in a decreasing order, that is, the blocks of this design are arranged so that its ele-

ments are in a decreasing order. There are 13 blocks in this design. Furthermore we 

take the following 18 blocks. 
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(0, 1, 2, 12) (0, 7, 11, 13) (13, 0, 3, 9) (0,4,8,10) 

(0, 5, 6, 11) (1, 8, 9, 13) (13, 1, 4, 11) (1, 3, 7, 10) 

(1,5,6,9) (2, 3, 8, 11) (2, 4, 7, 9) (13, 2, 6, 10) 

(2,5,10,13) (3,4,6,13) (3, 4, 5, 12) (13, 5, 7, 8) 

(6, 7,8,12) (9, 10, 11, 12) 

We have total 31 blocks. From the equation we should have b ~ r~4 r~11 = 

/
14

4x
9 l = 32 blocks. The above 31 blocks form the desired (14, 4, 1)-DCD on Z

14 

where the ordered pairs (12, 13) and (13, 12) do not appear any block of the design. 

There are a total of (~4) x2- 2 = 180 ordered pairs in this design. From our 31 

blocks, we generate (~) x31 = 186 pairs. We note that there are 6 pairs which are 

used more than once in the DCD. This gives an excess graph where 6 directed pairs 

(or edges) are repeated. 

2.2.5 Latin Squares 

Definition 23. A latin square is an n by n table filled with n sets of the numbers 

from 1 to n in a way that each number appears exactly once in each row and each 

column. 

1 2 3 

Example. A latin square of order 3 is 2 3 1 . 

3 1 2 

Definition 24. Two latin squares are orthogonal if the ordered pairs from each 

position of latin squares are all distinct. 
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1 3 2 3 1 2 13 31 22 

Example. A= 2 1 3 ' B= 1 2 3 ' A and B = 21 12 33 

3 2 1 2 3 1 32 23 11 

A and B are latin squares and when superimposed, all ordered pairs from correspond-

ing square entries are distinct. 

Remark. A set of n latin squares is mutually orthogonal if every pair of latin squares 

from the set is orthogonal. 

2.3 Construction of Perfect insertion and deletion 

Codes 

In this section, we survey constructions of perfect codes. Levenshtein introduced 

perfect codes of length 3 capable of correcting single deletions [43). Bours then con­

structed perfect codes of length 4 and 5, capable of correcting 2 or more deletions 

[11). Yin and Shalaby constructed perfect codes of length 6 capable of correcting any 

combination of up to 4 deletions [69, 55). Wang et al constructed perfect codes of 

length 7 capable of correcting 5 deletions [61). We conclude this section by introduc­

ing a paper by Gavin et al which uses synthetic tags to detect and correct errors in 

codes of length five [26). 

Definition 25. Let K be a set of positive integers and let >. be a positive integer. A 

pairwise balanced design (PBD) of order v and index..\ with block sizes from K is a 

pair (V, B), where V is the point set of cardinality v with a collection B of subsets 

(called blocks) such that (1)if D E B then IDI E K and (2)every pair of V lie in 
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exactly A blocks of the PBD. 

Example. Blocks for the undirected PBD(10, {3, 4}) are the following. 

{1, 2, 3, 4}, {1, 5, 6, 7}, {1, 8, 9, 10}, {2, 5, 8}, {2, 6, 9}, {2, 7, 10}, {3, 5, 10}, {3, 6, 8}, 

{3, 7, 9}, { 4, 5, 9}, { 4, 6, 10}, and { 4, 7, 8}. 

D efinition 26. A group divisible design (GDD) of index A is a triple (V, G, B), where 

Vis a v-set of points, G is a partition of V into subsets (called groups) and B is a 

collection of subsets of V such that every pair of points from distinct groups appears 

in exactly A blocks but no block contains a pair from the same group. 

We denote a group-type in exponent terms. 1a, 2b, 3c, ... means that a group of size 

1 occurs "a" times, a group of size 2 occurs "b" times, etc. The notation k-PBD and 

k-GDD of order v are often used for A = 1. A (k, A)-GDD of type P is a P BD of 

index A. 

Example. A ( {3, 4}, 10)-GDD of group-type 1133 has groups {1 , 2, 3}, { 4, 5, 6}, {7, 8, 9}, 

{10} and the following blocks of size three and four: {1, 4, 7, 10}, {2, 5, 8, 10}, {3, 6, 9, 10}, 

{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}. See Figure 2.1. 

Definition 27. A directed group divisible design (DGDD) with block size k and 

order v is a triple (V, G, B) where V is a v-set, G is a partition of V into subsets 

(called groups), and B is a set of transitively ordered k-subsets (called blocks) of V 

such that every ordered pair of distinct points of V occurs in exactly one block, and 

no block meets a group in more than one point. The block size is k and 1 v represents 

v occurrences of 1 in the multi-set of GDD. Thus, we denote by k-DGDD. 

Example. (5, 2)- DGDD of type 36 has the groups: {0, 6, 12}, {1, 7, 13}, {2, 8, 14}, 

{3, 9, 15}, { 4, 10, 16}, and {5, 11, 17}. The following are the blocks: (0, 9, 13, 17, 10) 
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Figure 2.1: A diagram shows how the blocks of size 3 and 4 intersect with the groups. 

Each block represents a group. Two blocks, {1, 4, 7, 10} and {3, 5, 7}, are 

constructed as an example. Other blocks can be constructed accordingly. 

There is no pair formed from the same group. 

mod 18, (0, 14, 16, 3, 1) mod 18, (0, 2, 13, 10, 9) mod 18. This example is taken from 

[70]. 

Remark. If a k-GDD exists, then k-DGDD also exists. The k-DGDD is obtained by 

writing all blocks of the k-GDD twice, once in some order and the other in reverse 

order. In other words, a (k, >.)-DGDD is a (k, 2>.)-GDD. 

Remark. Recall the following definition. Let v be a positive integer and A(v) be an 

alphabet of size v, or equivalently a v-set (of points). By a word of length k over A 

we mean a vector (or sequence) of length k with coordinates t aken from A. The set 

of all words of length k over A( v) will be denoted by Ak ( v) . 

We use Ak(v) to denote the set of all words of length k over A(v) with different 

coordinates (i.e. transitively ordered subsets of size k of A(v)). A subset C ~ Ak is 

said to be perfect (k- 2)-deletion-correcting code over A if every word of A2 occurs 

as a subword in exactly one word of C. Such a code is referred to as T *(2, k, v)-code 

Definition 28. A ( k - t )-deletion/insertion-correcting code over A( v) is a subset 

C* ~ Ak(v) (respectively C ~ Ak(v)) such that every word in AZ(v) (respectively 
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Ak(v)) appears as a subsequence of at most one word inC* (respectively C). The 

words in C* (or C) are referred to as codewords. 

"(k- t)-deletion/insertion correcting" means that we can correct any combina­

tion of up to (k- t) deletions and insertions of letters occurred in transmission of 

codewords. We say the code is capable of correcting ( k - t) deletions because any 

two distinct codewords in C* (or C) cannot share a common subsequence of length t 

or longer. This implies that it can correct any combination of up to (k- t) deletions 

and insertions [ 61]. 

There are two types of perfect (k - t) deletion-correcting codes with words of 

length k over an alphabet of size v; those where the coordinates are equal in size, 

T*(t, k, v) and those where the coordinates are different, T(t, k, v). For example, let 

A= {1, 2, 3, 4, 5, 6, 7} be an alphabet of length 7. Two codewords of equal coordinates 

of length 3 are (1, 2, 3) and (2, 5, 7). Two codewords of different coordinates are 

(1, 2, 2) and (1, 2, 3). Both ofT* and T are capable of correcting any combination 

of up to (k - t) indels that have occurred during the transmission of codewords. 

This then can be translated to DNA fragments; let A= {A, C, G, T} be an alphabet 

of length 4. Two codewords with equal coordinates of length 3 are (A, C, G) and 

(C, T, A) and two codewords of different coordinates are (A, A, C) and (A, A, T). 

2.3.1 Length 3 

The notion of perfect deletion-correcting codes was introduced by Levenshtein (43]. 

In his paper, he proved the existence of a T(3, 4, v) code and also proved that the set 

of permutations of length k can be partitioned into k T(t- 1, t, t)-codes. 
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L(t, n, q) is equivalent to T(t, k, v), which is a perfect in A~ code capable of cor­

recting t deletions [43]. Recall that k is the length of the word and v is the size of 

the alphabet. 

T heorem 4. T(2, 3, r) exists if r = 3s or 3s + 1, where s = 1, 2, .. . 

A proof is given in [43]. Let s = 2p +a+ 1, where a E {0, 1}, and p = 0, 1, . . .. 

Two cases are considered: r = 3s and r = 3s + 1. Assuming x runs the set 

Br-1 ={0, 1, . .. , r - 2} (while i and j are fixed) and assuming the addition to be 

the addition modulo r - 1. For r = 3s the code is 

( x, r - 1, 3p + 1 + 2a + x), 

(x, 2p + 1 + 2a- i + x, i + x), 

(2j + x, x, 3p + 1 + 2a + j + x), 

where i = 1, 2, .. . ,p +a and j = 1, 2, . .. ,p. For r = 3s + 1 the code is 

(x, r- 1, 3p + 2- a(2p + 1) + x), 

(X, 2p + 1 + a - i + X, i + X) , 

(2j- a+ x, x, 3p + 2 +a+ j + x), 

(2p + 1 +a+ y, y, 4p + 2 + 2a + y), 

(2p +a+ z, 4p + 2 + 2a + z, z), 

(2p +a+ v, v, 4p + 2 + 2a + v), 

where i = 1, 2, ... ,p, j = 1, 2, ... ,p = 1 +a, y = 0, 1, ... , 2p +a, z = 0, 1, ... , 4p + 

2a + 1, and v = 4p + 2 + 2a, .. . , q- 2. 
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Example. For r = 9, we have a = 0, p = 1, i = 1 and j = 1. Using the above 

construction T(2, 3, 9) would have the following codes: 

084 185 286 387 488 580 681 782 883 

021 132 243 354 465 576 687 708 810 

205 316 427 538 640 751 862 073 184 

2.3.2 Length 4 and 5 

Bours [11] showed the existence of perfect (k - t) deletion-correcting codes with 

length 4. He proved the existence of T(2, 4, v) codes for v = 1(mod 3) by proving the 

existence of DB(4, 1, v) for v- 1(mod 3). 

Definition 29. Let a set E having v elements be given; furthermore let K = 

{k1 , k2 , ... , kn} be a finite set of integers 3 ::; ki ::; v, i = 1, 2, . .. , n, and let >. 

be a positive integer. If it is possible to form a system of blocks (ordered subsets of 

E) in such a way that: 

• 1. the number of elements in each block is some ki E K, 

• 2. every ordered pair of elements of E is contained in exactly >. blocks, 

then we shall denote such a system by B[K, >., v]. 

Let B = {b1, b2, ... , bk} be an arbitrary block in B[v, k, >.]. Now take (b1 , b2 , ... , bk) 

and (bk, bk_1, ... , b1) as blocks in DB(k, >., v). Take (a, b) and (b, a), where a, b E 

An(v). Let B 1,B2 , ... ,B>.. be the blocks of B[v,k,>.] containing {a,b} as a subset, 

which means that (a, b) will also be a subword of ( bh, bi2 , ... , bik). Likewise, ( b, a) 

will be a subword of (bik' bik-P ... , bi1 ) . Every word (a, b) is a subword of exactly >. 

directed blocks of the system. Thus, the system is DB(k, >., v). 
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The blocks of these ordered designs can be used for the codewords of the perfect 

deletion-correcting codes. Every pair of elements of the set F corresponds to a pair of 

letters of the alphabet, Av. There is one-to-one correspondence between the elements 

of the set F and the letters of the alphabet. This unique pair of letters is subword of 

exactly one codeword of the perfect deletion-correcting code T(2, k, v) (see (11, 43]). 

Bours and Mahmoodi [11, 46] presented perfect deletion correcting codes with 

words of length 4 and 5. For length 4, perfect t-deletion-correcting codes T(4, 1, v) 

exist for v = 1(mod 3) except v = 1. 

Example. For v = 19 the system DB(4, 1, 19) consists of the following 57 words: 

(i, i + 3, i + 12, i + 1), (i + 13, i + 1, i + 5, i) and (i + 4, i + 9, i + 6, i) modulo 19. 

Example. T(2,5, 11) has the following words: (3,5,1,4,9), (4,6,2,5,10), (5,7,3,6,0), 

(6,8,4,7,1), (7,9,5,8,2), (8,10,6,9,3), (9,0,7,10,4), (10,1,8,0,5), (0,2,9,1 ,6), (1,3,10,2,7) 

and (2,4,0,3,8). 

2.3.3 Length 6 

Yin (69] presented a combinatorial construction for a T*(2, 6, v)-code capable of cor­

recting any combination of up to 4 deletion and/ or insertions of letters that occur in 

transmission of codewords. In his paper, a T*(2, 6, v)-code exists for some positive 

integers by using directed group divisible design(DGDD). Later, Shalaby et al [55] 

proved additional missing cases for T* (2, 6, v )-code by using directed group divisible 

quasidesign (DGDQD). 

Definition 30. A DGDQD is a triple (V, G, B) where V is a finite set (of points), 

G is a partition of V into subsets (called groups) , and B is a collection of sequences 
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(called blocks) of length k over V with the following properties: (a) every ordered pair 

of points from distinct groups occurs as a subsequence in exactly one block; (b) for 

any point x in all but one distinguished group, the pair (x, x) occurs as a subsequence 

in a unique block, while for any pointy in the distinguished group the pair (y, y) does 

not occur in any block; and (c) all pairs of distinct points from the same group do 

not occur together in any block. 

Example. 6-DGDQD of group type 5621 (i.e. 6 groups of size 5 and 1 of size 2) 

has the following groups of size 5 plus two infinity points which make up the dis­

tinguished group of size 2: {j,j + 6,j + 12,j + 18, j + 24}, for j = 0,1, ... ,5. 

The groups are {0, 6, 12, 18, 24}, {1, 7, 13, 19, 25}, {2, 8, 14, 20, 26}, {3, 9, 15, 21, 27}, 

{4, 10, 16, 22, 28}, {5, 11, 17, 23, 29}, and {oo1, oo2}. There are a total of 80 blocks: (8, 

0, 1, 16, 5, 3) mod 30, (1, 0, 14, 10, 21, oo1) +6 mod 30, (oo1, 2, 1, 15, 11, 22) +6 mod 30, 

(3, 2, 16, 12, 23, oo2 ) +6 mod 30, ( oo2 , 4, 3, 17, 13, 24) +6 mod 30, (5, 4, 4, 18, 14, 25) +6 

mod 30, (6, 5, 19, 15, 15, 26) +6 mod 30, (5, 5, 5, 5, 5, oo1) +6 mod 30, (oo1, 0, 0, 0, 0, 0) 

+6 mod 30, (1, 1, 1, 1, 1, oo2) +6 mod 30, (oo2 , 2, 2, 2, 2, 2) +6 mod 30. The notation 

+6 mod 30 means that 6 mod 30 should be successively added to the block, which 

generates five blocks. Each block intersects with each of the group exactly once. The 

pair (8, 0) occurs as a subsequence in the first block, however the pair (0, 8) does not 

occur in any block. This example is taken from [55]. 

Remark. Adding blocks of the form (x, x, .. . , x) to a k-DGDD of type gtd1 yields a 

k-DGDQD of type gtd1 where x runs over all groups except for the group of size d. 

The existence of a k-DGDD implies the existence of a k-DGDQD. 

An IDB(k, 1, g + w, w)(incomplete DBIBD) can be defined as a k-DGDD of type 
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1 vw1
, in which the group of size w is the hole. The definition of DGDQD can be used to 

fill in the groups to give T*(2, k, v)-codes. The theorem in (55] states that a T*(2, k, v) 

code can be produced with a T*(2, 6, v)-code as its subcode by the following, where 

v = gt + d + w. Suppose there exists a k-DGDQD of type gtdl, T*(2, k, v)-code for a 

non-negative wand an IDB(k, 1, g + w, w). First, adjoin a set F of w infinite points 

to each group of DGDQD. Replace all groups of size g plus F by IDB to make F 

as the common hole of size w. Replacing the distinguished group of size d + w by a 

T*(2, k, d + w)-code, which produces the T*(2, k, v)-code and T*(2, 6, v)-code as its 

sub code. 

Example. For v = 8, there exists a T*(2, 6, 8)-code. We take the alphabet to be 

Z8 . The required codewords are obtained by cycling modulo v the following base 

codeword, (0, 0, 5, 0, 1, 7). 

Shalaby et al [55] provided the complete proofto show T* (2, 6, v) exists for all positive 

integers v = 3(mod 5) except for v E {173, 178,203, 208}. 

2.3.4 Length 7 

Wang et al [61] presented a perfect 5-deletion-correcting codes of length 7. T(2, 7, v) 

and T*(2, 7, v) are capable of correcting (k-t) indels. They show this by using DGDD 

and directed balanced incomplete block design(DBIBD). Recall that a k-GDD of type 

1 v is a PBD of index .X. Similarly, a k-DGDD of type 1 v is called DBIBDs denoted by 

DB(k, 1, v). DBIBD is related to T(2, k, v) codes. Given DB(k, 1, v), taking a point 

set X as alphabet and blocks as codewords we have T(2, k, v) code. Conversely, given 

a T(2, k, v)-code, we can form a DB(k, 1, v) by reversing the above process. Then, 
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the necessary and sufficient conditions for the existence of a T(2, 7, v) are v ~ 7 and 

v = 1, 7(mod 21) except for v = 22 and possibly for v = 21t + 1 and v = 21t + 7. 

In addition, a large number of constructions for T*(2, 7, v)-codes with v < 2350 were 

also shown in [61]. 

2.3.5 Application of LD 

Gavin et al[26] presents an application of Levenshtein Distance in a gene discovery 

program using EST sequencing. In a gene discovery project, identification of tissue 

source is difficult for the eDNA libraries derived from single tissues. The identification 

of tissue source becomes even more challenging if the eDNA libraries are derived 

from multiple tissues. A computer program called UITagCreator by the University 

of Iowa creates a large set of synthetic tissue identification tags, which provide error 

detection and correction. The program utilizes a synthetic nucleotide tag to identify 

the source tissue from which eDNA clone is derived. However, with the presence of 

errors this program faces more complications. To minimize the complexity of the 

model program, a process was developed which creates the library tags. From these 

library tags, identification becomes plausible. 

There are three generations of tissue tags. The first generation is composed of the 

minimum error detection or correction capabilities. Gavin et al[26] obtained kidney 

tissue to be CAAAC and liver tissue to be CACAC. The two sequences differ in 

their third position giving LD of 1. The second generations of tissue tags have LD 

of at least 3. The tissue tags for Cerebellum and Hypothalamus have LD of 4. The 

third generations of tissue tags have the capability of up to two substitution errors. 
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The use of LD over the Hamming Distance may be better because LD may be more 

accurate measurement of how close two sequences are. Suppose we have two sequences 

GCACT and CACTC. Hamming Distance measures two sequences of same length. 

Each position of the sequences are compared and calculated. The Hamming Distance 

between the two sequences would be 5, whereas the LD is 2. 

The creation of tissue tags is important for eDNA clones derived from pooled 

libraries. Application of the techniques demonstrated by Gavin et alto the biological 

program may be an important area of research. Gavin et al only considers the ability 

to detect and correct up to two substitution errors. However, we observe that design 

theory, along with coding theory, allows codes capable of detection and correction of 

up to length 7. 
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Chapter 3 

Combinatorics and its 

Applications- Part II: 

Graph Theory and DNA 

• sequencing 

The entire DNA of a living organism is its genome (49]. Sequencing refers to de-

termining the order in which the four bases occur along a DNA (or RNA) chain. 

It involves a large number of complex manipulations including chemical processing 

techniques which for instance break up the DNA into shorter chains, add identifiable 

groups, and separate and study the fragments as well as computational techniques 

for handling and analyzing the data. There are numerous methods for sequencing 

DNA but none of these methods are capable of sequencing the long DNA sequences 

of most organisms at once. Rather, scientists sequence short DNA segments and map 
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their positions in the entire genome. 

Graph Theory can be used to model the DNA sequencing problem. The study of 

sequencing techniques and their use of Graph Theory is very important, since Graph 

Theory may speed-up the process. In this chapter we study two sequencing tech­

niques, the fragmentation (overlap) method and sequencing by hybridization (SBH) 

[2, 24]. The definitions and theorems from this chapter are adapted from Goodaire 

and Parmenter, 2006 [28]. 

3.1 Introduction to Graph Theory 

Definition 1. A graph G is an ordered pair (V, E), where V is a set of elements 

called vertices and E is a family of 2-subsets taken from V called edges. If e is an 

edge between vertices v and w , we may refer to e as vw or wv. The vertices v and w 

are said to be incident with the edge vw (or wv). 

Definition 2. The number of edges incident with a vertex v is called the degree of 

v. It is denoted as deg(v). 

Definition 3. A pseudograph is a graph which may contain multiple edges or loops. 

A loop is an edge with the same end points i.e. v to v. 

Example. Figure 3.1 shows a graph and a pseudograph. 

Definition 4. A graph G1 is a subgraph of another graph G if and only if the vertex 

and edge sets of G1 are, respectively, subsets of the vertex and edge sets of G. 

Definition 5. A walk is an alternating sequence of vertices and edges, beginning 

and ending with a vertex, in which each edge is incident with the vertex immediately 
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e l e2 

QC e3 =:> V2 

1 e4 

(a) An example of a graph (b) A pseudograph 

Figure 3.1: An example of a graph and a pseudograph. a)A graph G(V, E) with V = 

graph: The edge e1 is a loop and e2,e3, and e4 are multiple edges. 

preceding it and the vertex immediately following it . A walk, where all edges are 

distinct is called a trail. A walk where all vertices are distinct, is called a path. 

Definition 6. A walk is said to be closed if the start vertex is the same as the end 

vertex. 

D efinition 7. A closed trail is called a circuit. 

Definition 8. A circuit with no repeating vertices (except the initial and the terminal 

ones) is called a cycle. 

Example . Figure 3.2 shows a graph which contains a trail, a circuit and a cycle. 

Definition 9 . An Eulerian circuit in a pseudograph (or a graph) is a circuit that 

contains every vertex and every edge. A pseudograph is Eulerian if it contains an 

Eulerian circuit. 

Example. Figure 3.3 shows two graphs; an Eulerian graph and a non-Eulerian graph. 
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A 

Figure 3.2: ABCDBE is a trail, but not a path. ABCDEA is both a circuit and a cycle. 

A 
A 

B 

c D B 

(a) A non-Eulerian graph (b) An Eulerian graph 

Figure 3.3: a) A circuit starts from vertex A and cannot return to it unless repeating the 

edge AB. b) A graph that contains an Eulerian circuit ABCDEA. 

Definition 10. A graph is connected if and only if there exists a walk between any 

two vertices. 

Definition 11. A Hamiltonian cycle in a graph is a cycle including every vertex of 

the graph. A Hamiltonian graph is one which possesses a Hamiltonian cycle. 

Example. Figure 3.4 shows a Hamiltonian graph and a non-Hamiltonian graph. 

Definition 12. A digraph consists of two sets V and E, where V is a set of vertices 

and E is set of ordered pairs called arcs. A digraph is a graph in which each edge has 

an orientation or direction. 
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A 

c F 
A B 

F 

B 

D E E D G 

(a) A hamiltonian graph(b) A non-hamiltonian graph 

Figure 3.4: a) A Hamiltonian graph. b) A non-Hamiltonian graph. 

Example. An example of digraphs is shown in Figure 3.5. Note that with digraphs 

the term "arc" is used rather than "edge". 

Definition 13. A Hamiltonian cycle in a directed graph is a cycle in which every 

vertex of the graph appears (arcs must be followed in the direction their arrows). 

Example. Figure 3.5 shows two different digraphs. 

(a) digraph 1 (b) digraph 2 

Figure 3.5: a) Two similar graphs with different directed arcs. 

Definition 14. The number of arcs (or edges) directed into a vertex is referred to as 

indegree and that of the arcs directed out of a vertex is referred to as outdegree. 
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Definition 15. A digraph is called strongly connected if and only if there is a walk 

from any vertex to any other vertex which respects the orientation of each arc. 

Theorem 1. A digraph is Eulerian if and only if it is strongly connected and, for 

every vertex, the indegree equals the outdegree. 

Example. From Figure 3.5, vertex v4 is indegree 2 and vertex v5 is outdegree 2. 

Definition 16. A tree is a connected graph without any circuits. 

Example. Figure 3.6 shows an example of a tree. 

c 

F 

A 

E 

c 

Figure 3.6: Example of a tree. 

3.2 Fragmentation 

In 1976-77, Allan Maxam and Walter Gilbert developed a DNA sequencing method 

based on chemical modification of DNA and subsequent cleavage (break) at spe­

cific bases. In 1977, Fred Sanger independently developed an alternative method in 

his published paper "DNA sequencing with chain-terminating inhibitors" [53]. Both 
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methods require radioactive labeling at one end and purification of the DNA frag-

ment to be sequenced. Chemical treatment generates cleavage at a nucleotide base. 

A series of labeled fragments are generated, each starting and ending at the cleavage 

site. Labeled DNA fragments are separated by size by gel electrophoresis. Fig-

ure 3. 7 is an example of gel electrophoresis. The sequence is read from the bottom, 

ATAAAAAACTCAGAACGGCTTCGTA. 

Early sequencing methods dealt with RNA for 

its simpler single-stranded structure. tRNA is a 

type of RNA that is involved in translation (Re-

call from section 1.2.3). tRNA was a good can-

didate for sequencing because it is short (7 4-95 

bases) and samples are easily obtained. Sequenc-

ing tRN A involves the overlapping of smaller 

fragments of the chain. This overlapping tech-

nique was to determine the long RNA chain given 

just the pieces of short fragments after the chain 

had been exposed to a complete digest with two 

enzymes. The technique uses overlaps occurring 

in the two sets of fragment data to obtain the cor-

rect order in which the fragments should be read. 

This overlap technique is also referred to as the 

fragmentation method. 

G C 

A 
T 
G 
c 
T 
T 
c 
G 
G 
c 
A 
A 
G 
A 
c 
T 
c 
A 
A 
A 
A 
A 

Figure 3. 7: Gel Electophoresis. 

With the collection of fragments of the chain, it is possible to determine the 

complete enzyme digest. In other words, suppose we do not know the order of a 
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particular chain but we have the list of the fragments. It is possible to obtain the 

unknown RNA chain with just fragments using Graph Theory operations. From 

our previous example in section 1.3 there are 4 possible RNA chains with the G­

fragments listed. This possible number of chains must also coincide with the given set 

of U, C-fragments. The fragmentation method involves using the complete listing of 

G-fragments and U, C-fragments to construct a digraph and then finding an Eulerian 

path, which ultimately gives us the unknown RNA chain. 

Given the collection of the G- and U, C-fragments lists the procedure to obtain 

the unknown RNA chain is as follows. From the previous example one might note 

that the fragment AAU from G-fragments list does not end with G. We refer to such 

fragment as abnormal. An abnormal fragment is the end of the unknown RNA chain. 

In our example, the RNA chain ends with AAU. If there are multiple candidates 

for an abnormal fragment, for example a chain that ends with A, then we take the 

longest abnormal fragment as the end fragment. 

Now, we further cut the G-fragments with the U, C-enzyme and U, C-fragments 

with the G-enzyme. The resulting fragments are called extended bases. The extended 

bases that were neither the first nor the last in their fragments are referred to as 

interior extended bases. Also, fragments that cannot be split by the second enzyme 

are called unsplittable fragments. 

Example . From the example in section 1.3 we obtain the following extended bases 

and unsplittable fragments. 

Extended bases from G-fragments: AG, G, AC, C, G, U, AAU 

Extended bases from U, C-fragments: AG, G, AC, C, G, U, AAU 
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Interior extended bases: C, G 

Unsplittable fragments: AG, G, C, AAU 

There are exactly two unsplittable fragments that do not belong to interior ex­

tended bases. These two fragments are the beginning and the end of the unknown 

RNA chain. In our example, the two fragments are AG and AAU. We determined 

AAU to be the end fragment, so AG must be the start fragment. 

Now consider all fragments obtained by extended second enzyme. Take a G­

fragment ACCG, as an example, and draw two vertices and an edge. Here we have 

a vertex AC and another vertex G. We draw an arc from the first extended base to 

the last extended base and label the edge with the fragment as shown below. 

ACCG 
AC G 

Repeat constructing arcs for each fragment and matching the overlapping vertices 

and edges. We draw a final arc from the first extended base of the largest abnormal 

fragment X to the the first extended base Y of the chain. We label this arc X * Y. 

Then, we determine all Eulerian circuits in the graph which end with X* Y. From the 

previous example, we obtain a directed Eulerian graph as in Figure 3.8a. This gives 

us the RNA chain, AGGACCGU AAU. The original chain is obtained by analyzing 

Eulerian circuits, knowing the starting and end fragments of the chain. If there 

are more than one Eulerian circuits, then there is more than one RNA chain. The 

Eulerian circuits may have a number of possible chains and from the previous example 

it would be very difficult to determine the particular chain we seek. Figure 3.8b shows 
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an Eulerian digraph that contains total of 360 possible RNA chains [13] . Partial digest 

enables the problem to be minimized by exposing the chain to a specific restriction 

enzyme at different temperatures or limited to a shorter time than for a complete 

digest. This results in larger fragment size than the complete digest method. Large 

fragments determine a particular edge with its direction, thus reducing the number 

of possible chains. 

c 

ACCG 
AC G 

AGGAC GU 

u 
UAAU·'AG u G•G 

(a) A directed Eulerian graph (b) 360 chains 

Figure 3.8: a) Eulerian graph for a RNA chain. Start from the starting fragment AG and 

travel through directed edge to vertex AC. By doing so, we obtain a chain, 

AGGAC. Repeat until we obtain Eulerian circuit and obtain the complete 

RNA sequence which is AGGACCGUAAU. b) An Eulerian graph that con­

tains 360 possible RNA chains. Adapted from [13]. 

Example. Suppose we have the following complete enzyme digest with two enzymes: 

G-fragments: G, ACUG, ACG, G and U, C-fragments: U, GGAC, G, GAG which 

will produce the internal extended bases to be U, and G and unsplittable fragment 
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to be G, G, U, and G. From this we know that the chain starts and ends with the 

same G. The Eulerian digraph as in Figure 3.9a. The digraph gives the following 4 

possible chains. 

GGAGUGAGGG GGAGGAGUGG 

GAGUGGAGGG GAGGGAGUGG 

Suppose the partial digest with the G- enzyme produces the larger fragment of 

GAGGG. The correct Eulerian circuit must contain the sequence of arcs GAG, AGG 

and GG. Knowing these new arcs, we can add new vertex as in Figure 3.9b. The 

vertex AG' is added to produce GAG and AGG. As a result, we have a reduced graph 

which results in two possible RNA chains: GGAGUGAGGG and GAGGGAGUGG 

(Figure 3.9b). Additional available data will further reduce the graph resulting in 

fewer, yet specifically possible RNA chains. 

AC AC 

G*G G*G 

(a) 

I.!' 
::I AC' 
~ .. 

1"-~(...,.,., I 
~.,.... .1. I.!' 

., .... 'f' u 
,< 

----~---· GG G 

(b) 

Figure 3.9: a)The Eulerian digraph. b)The reduced Eulerian digraph after the partial 

digestion. 
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3.3 Sequencing by Hybridization 

Recall that a restriction enzyme from section 1.3 only cut an RNA sequence, not a 

DNA sequence. The previous fragmentation method for RNA chains is not applicable 

to DNA sequencing. Sequencing by Hybridization (SBH) was proposed by several 

research groups in the 80's and is still being developed [8, 45). SBH is a non-enzymatic 

method of determining the order in which nucleotides occur on a strand of DNA. In 

this method, unknown DNA is labeled and compared with the known sequences. If 

the hybridization (or binding) occurs then that unknown sequence occurs with the 

known sequence. 

In 1988-1989, four groups of biologists independently suggested the SBH. SBH 

does not involve gel-electrophoresis but rather it involves building a DNA array and 

combinatorics. An array consists of all possible short sequences of a given length l. 

A short synthetic fragment of DNA is called a probe. The sequence of nucleotides in 

a probe is known. These probes are usually about 8 to 30 nucleotides long [49). They 

are used to obtain information about an unknown DNA fragment. The DNA strand 

is composed of four nucleotides, so the array would consist of 41 subsequences. Given 

a probe and a single-stranded target DNA fragment, the target will hybridize to the 

probe if there is a substring of the target that is the complement of the probe. Recall 

that A is complementary toT and G is complementary to C. 

Example. A probe ATT ACGT will hybridize with a target CT AATGCAAT since 

it is complementary to TAATGCA of the target . 

The unordered set of all substrings is called the SBH Spectrum of the DNA frag­

ment. For example, the SBH Spectrum (see Figure 3.10) for the target, ATTAGCC, 
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Spectrum for /=3 AIT ' T . AiG C t C 

Figure 3.10: A DNA sample is hybridized by spectrum of length 3. 

using probes of length three is: SBH Spectrum= {ATT, TTA, TAG, AGC, GCC}. 

The probes with which the target fragment hybridizes can be detected. 

The steps for SBH are as follows. Attach all possible probes of length l to the sur-

face, each probe at a specific location. The array is treated with fluorescence labeled 

DNA fragment. The DNA fragment hybridizes with those probes that are comple-

mentary to substrings of length l of the fragment. Detect probes hybridizing with 

the DNA fragment with a detector. Then the SBH spectrum of the DNA fragment 

is obtained[2]. 

Graph theory and combinatorial algorithms play a key role in understanding and 

performing SBH reconstruction [2]. In examining the roles that Graph Theory and 

combinatorics play we assume the ideal case that the number of occurrences of each 

subsequence of length l in the DNA fragment is known. Determining the DNA frag-

ment using the spectrum requires the listing of each spectrum in order. If a subse-

quence i is followed by a subsequence j, then the last l - 1 elements of i match the 

first l - 1 elements of j. There may be a problem with SBH for two samples may 

result in the same spectrum, as in Figure 3.11. Using graphs this could be avoided. 

There are two ways of representing the list using graphs: Hamiltonian and Eulerian. 
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Figure 3 .11: There may be a problem with SBH such that two samples may result in the 

same spectrum as in this figure. 

In a Hamiltonian representation, the DNA sequence corresponds to a Hamiltonian 

path while in Eulerian representation, the DNA sequence corresponds to an Eulerian 

trail [2]. For the Hamiltonian method, the vertices of the graph are the subsequences 

in the spectrum. An arc is drawn between two vertices u and v if the last l - 1 

elements in u match the first l - 1 elements in v . Repeat drawing the arcs until all 

the spectrum fragments are used. Once all the arcs are constructed, we seek for a 

Hamiltonian path in the resulting digraph. 

Example. Figure 3.12 shows the Hamiltonian path which depicts the following spec-

trum. 

Spectrum = { C AC, ACC, CCT, CTG}. 

TG 

Figure 3 .12: Graph Theory in Sequence by Hybridization method. Hamiltonian path 

starting at vertex CA and ending at vertex TG shows a DNA sequence of 

CACCTG. 

55 



Increasing the length of the spectrum increases the complexity of the graphs. 

There is no efficient algorithm to find Hamiltonian paths in a graph yet [40]. Pevzner 

[49, 40] reduced the SBH problem to finding Eulerian trails. In this method, the sub-

sequences of length l in the SBH spectrum are arcs in the corresponding graph. The 

vertices of the graph are the subsequences of length l - 1 present in the subsequences 

of length l. For each subsequence in the spectrum, an arc is drawn from a vertex 

labeled with the first l - 1 elements of the subsequence to a vertex labeled with the 

last l- 1 elements of the subsequence. 

Example. Figure 3.13 shows the Eulerian trails for the following SBH Spectrum of 

l = 3. 

Spectrum= {ATG, TGC, GCG, GGC, GCA, GGT, TGG, CGT, GTG} 

• 
AT 

Figure 3.13: The Eulerian trails for SBH Spectrum of length 3. 

Note from the previous example that there are two possible Eulerian trails, one giving 

the sequence ATGCGTGGCA and another one for ATGGCGTGCA. With a greater 

number of spectra, we may have more than one possible DNA sequence. Then it would 

be difficult to determine the particular DNA sequence we seek. If subsequences of 

length l are used, it is clear that there will be fewer repetitions of subsequences 

of length l - 1, and hence there will be fewer possible DNA sequences [2]. Other 
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than multiple possible DNA sequences, the SBH method holds many other problems 

[51]. In the case where hybridization is incomplete, oligonucleotides would be missing 

from the spectrum. On the contrary, non-specific oligonucleotides may appear in the 

spectrum leading to wrong DNA sequence. Such errors prevent the SBH method from 

being an efficient sequencing technique as yet. 
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Chapter 4 

Sequence Alignment 

During DNA replication, errors may occur causing insertions, deletions (indels) and 

substitutions of DNA base pairs, leading to modifications in the DNA nucleotide 

chains. Such modifications are referred to as mutations. Within an organism, gene 

comparisons can be done by aligning two sequences. Mismatches between the two se­

quences might indicate that mutations have occurred. Likewise, matches between two 

genes from different organisms might indicate the functional or structural similarity 

between the organisms. Furthermore, it could even allow the prediction of a common 

evolutionary origin. Gene comparisons are also an application of Levenshtein Dis­

tance (LD) as we discussed earlier. In this chapter, we review the different methods 

of sequence alignment. Sequence alignment using LD finds differences between two 

sequences being aligned. The Longest Common Subsequence (LCS) algorithm finds 

similarities between two aligned sequences [49]. 

When scientists attempt to study the similarities or differences between two strings, 

they "align" the two strings. One way to align is by using an m by n matrix where 
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m is the length of one string and n is the length of the other. There are three 

types of alignment methods: a) Global alignment, which compares the entire length 

over two strings, b) semi-global alignment, which attempts to find the best possible 

alignment that includes the start and the end of a sequence and c) local alignment, 

which attempts to find the best possible alignment that includes conserved regions of 

similarities. 

Finally, we will conclude this chapter by exploring the heuristic for fast database 

searches that use an idea of filtration. This heuristic includess technique such as 

FAST A. 

4 .1 Complexity 

Analyzing an algorithm's complexity means establishing the computational resources 

that the algorithm requires. Often times, different algorithms devised to solve the 

same problem differ in their efficiency. That is, one algorithm may bring forth the 

same answer as the other but faster. We wish to measure computational time of an 

algorithm to identify the most efficient one. 

When analyzing an algorithm, it might be possible to determine the exact running 

time of tlie algorithm; however, the extra precision may not be worth the effort 

because of several reasons, including the different speeds of different computers and 

the time spent to obtain the exact running time. Instead, we can identify an upper 

bound to the worst-case running time in terms of the input size. In this section 

we adopt the asymptotic analysis of algorithms; that is, we are concerned with how 

the running time depends on input size. We review the most general asymptotic 
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notations, 8-notation and 0-notation. The description of complexity is based on 

[16]. 

In general, for a given algorithm, we try to find functions whose domains are the set 

of natural numbers N = {0, 1, 2, . .. } and are asymptotically greater or asymptotically 

equivalent to the time complexity of the algorithm. 

4.1.1 8-notation 

Definition 1. For a given function g(n), a function f(n) belongs to the set 8(g(n)) 

if there exist positive real numbers c1 and c2 and an integer n0 such that f can be 

"squeezed" between c1g(n) and c2g(n), for all n ~no. In other words, 0::; c1 lg(n)l ::; 

if(n) I ::; c2ig(n) l, for all n ~ no. 

Remark. 8(g(n)) is a set, so we take f(n) = 8(g(n)) to mean the same as f(n) E 

8(g(n)) . 

Example. Let f(n) = 2n2 + 4n. We claim f(n) = 8(n2) so that g(n) = n2
. We find 

values for c1 , c2 , and n0 so that the following holds. 

c1n2 ::; 2n2 + 4n::; c2n2 for all n ~no. Divide each side by n2 

4 
c1 ::; 2 + - ::; c2. 

n 

The right hand inequality holds for any value of n ~ 1 by choosing c2 ~ 6. Similarly, 

the left hand inequality holds for any value of n ~ 1 by choosing c1 ::; 2. We can 

verify that 2n2 + 4n = 8(n2) by choosing c1 = 2, c2 = 6 and n0 = 1. There are other 

choices for c1, c2 and n0 . The point is that there exists a choice of constants which 
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depend on the particular function f(n). Different functions belonging to 8(n2
); say 

f(n) = ~n2 
- 40n + 14 would have a different choice of constants than the one we 

have chosen for our f(n) = 2n2 + 4n. 

Remark. For an algorithm with time complexity function f(n), if we can find a 

function g(n) such that f E 8(g) we say that g is equivalent to the time complexity 

of the algorithm. 

4.1.2 0-notation 

Definition 2. For a given function g(n), a function f(n) belongs to the set O(g(n)) 

if there exist a positive real number c and an integer n0 such that Jf(n)J ::; cJg(n)J for 

all n 2: no. 

Remark. We write f(n) = O(g(n)) to denote that f(n) belongs to the set of O(g(n)). 

0-notation describes asymptotic upper bounds. We use it to establish upper 

bounds to the running time of an algorithm for every input. Thus, 0 -notation is 

used to express upper bounds on running time of algorithms. The 8-notation can 

be used to establish upper and lower bounds on the running time of an algorithm 

simultaneously [16]. 

4.2 Longest Common Subsequence Problem 

Needleman and Wunch in 1970 introduced an algorithm that finds the LD of two 

aligned sequences. Longest Common Subsequence (LCS) Problem is equivalent to 
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the sequence alignment using Levenshtein insertion and deletion operations (with no 

substitution) [49]. 

Let z(x, y) be the length of a LCS of two strings x of length m andy of length n. 

Then the minimum number of modifications or LD needed to transform x into y (or 

y into x) is represented by LD(x, y) = m + n- 2z(x, y). 

Example . Let x = ACCGACC and y = AGACC be strings over the alphabet 

{A, C, G, T}. The longest common subsequence of both x andy is AGACC, which 

has length 5. Thus, LD(x, y) = 7 + 5- 2(5) = 2. We can insert two C's into the 

second position in y to obtain x or we can delete element C in the second and third 

positions of x to obtain y. 

4 .3 Global A lignment 

Consider two strings x and y to be aligned, of length m and n respectively. We wish 

to find an alignment between the two strings such that we maximize the number of 

matches. We insert gaps denoted by "-" allowing for the possibility of indels. 

Remark. We use a superscript to identify the location of the element in a string. 

Suppose x = ACGTT, by xi we mean substring of x at position i. So, x2 would be 

C. Suppose the length of x2 is 3, then x2 = CGT. 

Using the gaps we can then align the strings to form two new strings Xp from x 

and Yp from y that are equal in length, where max(m, n) ::; p::; m + n. Note that xi 

and yi may not be both gaps. 

Example . AGGCGAT and GCAAGATG are aligned below with gaps inserted. 
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Gaps can occur before the first character of a string, inside a string and after the 

last character of a string as shown below. If we omit gaps, we would have fewer 

matchings between two sequences. 

A G G C G A T 

G C A A G A T G 

In global alignment, similarities between two strings are detected and scored over 

entire strings. This score is called the raw score. 

Definition 3. Raw score~ is the addition of all weights given to matches, mismatches 

and gaps, from the alignment of two sequences. 

Raw score can give us an approximate idea of how close the sequences are. If a 

character is aligned with the same character, we say that is a match, represented 

by a. If a character is aligned with another character, then there is a mismatch, 

represented by (3. Finally, a gap is represented by r · We assign a, /3, and r the 

values 1, -1, and -2, respectively. An optimal alignment would maximize a+ /3, + 

f. From the above example of two aligned sequences AGGCGAT and GCAAGATG, 

the raw score is - 2 + ( -2) + 1 + 1 + -2 + -2 + 1 + 1 + 1 + ( - 2) = - 5. 

4.4 Dynamic P rogramming Solution 

The Needleman-Wunsch algorithm uses dynamic programming to find a fast solution 

for the global alignment of two sequences. There are three main steps in dynamic 

programming: characterize the structure of an optimal solution (initialization), re-
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cursively define the value of an optimal solution, and compute the value of an optimal 

solution in a bottom-up fashion [16) . 

Let x and y be two strings of length m and n, respectively. The first step in a 

dynamic programming solution for the global alignment is to create an m+ 1 by n+ 1 

matrix. Since the gap was assigned a gap penalty value of -2, we populate the first 

row and the first column accordingly. 

CACAGTGT 

GJtTIGBGG@JBG 
c8JDDDDDDDD 
A8JDDDDDDDD 
GGJDDDDDDDD 
GGJDDDDDDDD 
TGDDDDDDDD 

a) 

CA· ·G ·GT 

b) 

Figure 4.1: a) Two sequences CACAGTGT and CAGGT are paired to form a matrix 

with initial values. b) Each matrix cell is given its score and the final score 

is the bottom right corner, -1, where the backtracking begins to obtain the 

best alignment with gaps inserted in Global alignment. The score for this 

alignment is 1 + 1 + (-2) + (-2) + 1 + (- 2) + 1 + 1 = - 1. 

Let x = CACAGTGT andy= CAGGT. For each position in the matrix, let d[i,j] 

be the maximum score at position (i, j), where p(xi, yj) is the score of Xi and Yj 
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occurring as an aligned pair. 

d[i, j- 1] + 1, the gap in sequence x 

d[i,j] =max d[i -1,j -1] +p(xi,Yi) 

d[i- 1, j] + 1, the gap in sequence y. 

Using the above given conditions the score at the (1, 1) position can be calculated 

to be 1, since d[1, 1] =max{ -2, 1, -2} = 1. The gap penalty is -2, and we fill the 

rest of the rows and the columns with according values. Using the same techniques, 

we fill in all values in the matrix as in Figure 4.1b. Once the score values are filled 

in we can search the matrix to determine the actual alignment that results in the 

maximum score. The search step begins at the ( m, n) position of the matrix. At this 

(m, n) position, we have a match (ie. T), thus we move on to the next predecessor 

at the (m- 1, n- 1) position. We have another match (ie. G) at the (m- 1, n- 1) 

position and the next predecessor becomes the entry at the (m- 2, n- 2) position. 

At this (m- 2, n- 2) position, there is a mismatch (T and G), thus, we move to 

either upward, (m- 2, n- 3) to -6 or leftward, (m- 3, n- 2) to -1. We move to the 

higher value of -1 (over -6). Moving to the leftward or upward indicates that there 

is a gap in the y or x string, respectively. Repeat this search procedure until we reach 
~ 

the (1, 1) position of the matrix. Then the following alignment would be obtained. 

C A C A G T G T 

C A G G T 

Note that scoring is typically assigned so that a is positive and {3 and 1 are negative. 

If we assign a to be 1 and {3 and 1 to be 0, we would obtain the final score at the 
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(m, n) position to be 5, which is the total number of matches in the above string 

alignment of x and y. 

4.5 Semi-global Alignment 

Semi-global alignment is similar to the global alignment. In semi-global alignment 

we ignore the score of starting gaps, which does not penalize the missing end of the 

sequence. This scheme works when one sequence is much longer than the other. 

Finding a gene in a genome is an example of semi-global alignment. In a global 

alignment, we start with an alignment score of 0. This corresponds to initializing 

p(xi, Yi) = 0. We can start with a score of 0 after ignoring either the prefix of 

x or the prefix of y. Also, we ignore end gaps, either a suffix of x or a suffix of 

y. The matrix scoring for semi-global alignment is obtained by the following rule. 

d[i- 1, j]- 2 

d[i,j] =max d[i- 1,j- 1] ± 1 ,according to match(+1) or mismatch(-1) 

d[i,j - 1]- 2 

Suppose we have two strings of very different lengths, CAGCACTTGGATTCTCGG 

and CAGCGTGG. Using the semi-global alignment, we obtain the following align­

ment. This alignment has the score of 6(1) + 1(- 1) + 1(- 2) = 3. 

CAGCAC T TGG A TTCTCGG 

CACGTGG 

0 0 0 1 1 1 - 1 1 1 1 - 2 0 0 0 0 0 0 0 
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4.6 Local Alignment 

Suppose two different strings x and y contain similar regions in the middle. Local 

alignment aligns a substrings of x and a substring of y, which gives the best score. 

The matrix scoring for local alignment is obtaining by the following rule. 

d[i,j] =max 

d[i, j - 1]- 1 the gap in sequence x 

d[i -1,j- 1] + p(i,j) 

d[i - 1, j] - 1 the gap in sequence y 

0 

Figure 4.2 gives matrix scoring of the local alignment method of two strings AGGT ATT A 

and CTATGC. From Figure 4.2b, the highest score is obtained to be 3. From this 

cell, we trace back to the highest value toward left, top, or left-top diagonal. The 

left-top diagonal has the value of 2. Recall that tracing back diagonally means a 

match. 

4. 7 Gap Penalty 

Recall in global alignment that inserting gaps contributes -2 to the score value of 

the alignment. In biological applications, mutations cause change in DNA sequences 

causing insertions or deletions. A single mutational event can create gaps of varying 

sizes, thus, we treat gaps as a whole rather than individually to avoid high penalties 

to these mutations[49, 40]. 

Example. Suppose we align two sequences ATT AA and AT A. The possible align­

ments are as follows. All three alignments have three matches and two gaps. Recall 
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a) b) 

Figure 4.2: a) Alignment scores populate the matrix. b) We trace back to obtain the 

best alignment in local alignment for the given sequences AGGT ATT A and 

CTATGC. 

that we use the score of 1 for a match and -2 for a gap. 

A T T A A A T T A A AT T A A 

A T A A T A A T A 

1 1 - 2 1 - 2 1 1 - 2 - 2 1 1 1 -2 - 1 1 

The scores of each alignment from the left are - 1, - 1 and 0. The first and the 

second alignments, which use the regular gap penalties, have the same score. From 

the biological point of view, gaps occur more contiguously next to each other rather 

than individually, thus, the second alignment is more plausible over the first one. For 

this reason, we penalize the gap as a whole as in the third alignment. The opening gap 

penalty for the third alignment has a score of - 2 and the extended gap has the score 

of - 1. The third alignment is preferred over the two previous alignments [49, 40]. 
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4.8 Heuristics: FASTA 

A few oncogenes were identified in the early 1980's. Since then, nearly 100 oncogenes 

which lead to cancer have been identified [71]. With the growing size of the GenBank 

database, the search for oncogenes and genes involved in normal growth and devel­

opment has become difficult and time consuming. To search for a string of a gene in 

a database of size 109 , we may use a parallel implementation of algorithms. 

Many heuristics, such as FAST-A(FASTA) use the idea of filtration for fast database 

search. The filtration method is used to eliminate or skip certain strings so that the 

database search may be faster. 

An algorithm based on dynamic programming performs similarity searches based 

on local sequence alignment. Obtaining an optimal local alignment, one with highest 

score, between some strings turns out to be very difficult. To avoid the high ex­

pense involved in finding an optimal alignment, heuristics have been developed. The 

description in this section is from [68]. 

4.8.1 Statistical Significance of Alignment Score 

Definition 4. A segment pair (x, y) consists of two strings, x and y, of the same 

length. 

The Smith-Waterman algorithm will find all the segment pairs between two strings 

whose scores cannot be improved by extensions. This is referred to as a high-scoring 

segment pair (HSP). In order to analyze how a score is measured, a random sequences 

model is constructed. Recall that a DNA sequence is composed of A, C, G and T. 

Let PA denote probability that the nucleotide A occurs in a sequence. Given PA, 
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Pc, Pc and Pr in a database of DNA strings, the probability of a source sequence x 

having a perfect match with the target sequence, y is given by: 

n 

p(x) =IT Px;· 
i=l 

Example. The probability of x = AATCCG having a perfect match to a target 

sequence y is p = P1P(:PcPr. 

Let Ly be the target sequence length and Lx be the source sequence length. The 

number of possible matching operations (the number of possible alignment between 

two sequences) is given by: 

n = Ly - Lx + 1. 

Example. Let x = AT and y = TCATGG. We have Ly = 6, Lx = 2 and n = 5. 

There are five possibilities where AT of x can be matched under y: TC, CA, AT, 

TG, or GG. 

The binomial probability distribution of the number of matches is given by pd(x) 

where p is the probability of a successful match and q = 1 - p is the probability of 

failure [9]. 

d( ) n! X n-x 
p X = ( )1 I p q n- x .x . ..__._.,. 

._____., f3 
a 

a is the number of outcomes with exactly x successes among n trials and f3 is the 

probability of x successes among n trials for any one particular order. 

If the probability of each codon is one in a total of four (for DNA, i.e., PA = Pc = 

Pc = Pr = 0.25), from the above example we have p = 0.252 = 0.0625, q = 0.9375, 

Ly = 6, Lx = 2 and n = 5. The probabilities of having 0, 1, ... exact matches of two 
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letters (rounded to four decimals) are: 

pd(O) 

pd(1) 

pd(2) 

5! 0 5-0 
(5 _ O)!O!P q = 0.7241 

0.2414 

0.0322. 

The probability of having at least one match is simply: 1 - pd(O) = 1 - 0.7241 = 

0.2859. The calculation of the binomial probability distribution can be complicated 

and tedious as n gets very large. The Poisson probability distribution can be used to 

approximate the binomial probability distribution since the computations involved in 

calculating binomial probabilities are greatly reduced [38, 9]. 

Definition 5. The Poisson probability distribution with parameter (.A= np) is given 

by: 

<p(x) 

Remark. Approximating the binomial probability distribution gives the Poisson 

probability distribut ion. 

<p(x) = 
n! X n-x p q 

(n- x)!x! 

n(n - 1)(n - 2) ... (n- x + 1) (Ey(1 _ Pt 
x! q 

Example. From the above example we have p = 0.252 = 0.0625, q = 0.9375, Ly = 6, 
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Lx = 2 and n = 5. The Poisson probability distribution for x = 0 is 

cp(O) = ,\~e-).,= [(5)(0.~625)]0 e-(o.o625)(5) = 0.7316. 
x. 0. 

Given x, y, Ly, Lx and let us assume PA = Pc = Pa = Pr = 0.25. The probability 

of finding an exact match of at least R consecutive letters is p = 0.25R, where R ::; 

Ly, Lx. If the size of a source sequence and a target sequence are m and n, respectively, 

then there are mn possible matching operations. Thus, the expected matches with 

length at least R is given by: 

E = mn0.25R = mn2- 2R = mn2-~, ~ = 2R. 

According to Atschul-Dembo-Karlin, the number of matches with score above ~ is 

approximately Poisson distributed, 

E = Kmne-A~ 
' 

where K and ,\ are scaling constants. 

Recall that raw score ~ is the sum of the alignment 's pair-wise scores using a spe-

cific scoring matrix (see earlier sections in this chapter). The probability of matching 

exactly x with a score greater than or equal to ~ is given by 

The probability of matching at least one H S P "by chance" is given by 

pm = 1 - Po = 1 - e-E. 

This is the p-value associated with the score ~. If we expect to find two H S P s with 

score greater than or equal to~. the probability of matching at least one is 0.95. 
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For a given HSP(x,y) the raw score~ is converted into bit score, Ill, which has 

been normalized with respect to the scoring system. Bit score can be compared 

between different alignments [39, 38, 22]. 

Definition 6. Bit score is given by the following [39] . 

w = .\~ -ln(K) 
ln2 

The significance of a given bit score can be determined by obtaining its own E-

value [39, 38, 22] . 

E = Kmne- >..t; = Kmne1J!ln(2)+ln(k) = mn2- w. 

4.8.2 Hashing 

This subsection is based on [16]. 

Hashing is the transformation of a string of characters into a shorter string (oft n 

into binary numbers of O's and 1's) or keys. Given a large database, we create the 

hashes for the data, store the hashes and these hashes can be compared if we wish to 

compare the large amounts of data. 

If we have a collection of n elements with a set {0, 1, .. . , m- 1}, where m::; n, 

then we can stor the items in a direct addr ss table, T[O, 1, ... , m- 1] indexed by 

keys. Using a direct address table may not be efficient as the collection of n elements 

becomes very large. An efficient way is to use a hash function, h( k) which maps 

the set of keys into a certain space formed with slots. This results in a hash table 

which contains the actual database information. As a hash table is generated there 

may be more than one data that can be mapped into the same slot in the hash 
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table. This is referred to as collisions. There are several ways to avoid collisions (see 

Table 4.1). Hashing DNA sequences can be done in different ways. One way is to use 

Handling Collisions 

Technique Method pros cons 

Chaining chain all collisions in lists handle large num- overhead of mul-

attached to the appropriate ber of elements and tiple linked lists 

slot in the hash table collisions 

Re-hash re-hash until an empty slot fast possibly multi-

is found ple collisions 

Overflow shift the collision into the fast possibly multi-

reserved area ple collisions 

Table 4.1: Ways to handle collision problem. 

a nucleotide as an index and another way is to define an l-mer 1 and convert it into a 

binary sequence. 

4.8.3 FASTA 

FASTA (fast-all) is a heuristic for finding significant matches between two strings, 

x and y. Its general strategy is to find the most significant paths in the dynamic 

programming matrix or dot -plot. The FASTA algorithm consists of two main steps. 

First, the algorithm determines all exact matches of length k between the two se-

1 Recall that an l-mer is a substring of size l. 

74 



quences. To find these exact matches, it uses a special form of hashing (look-up). 

This creates a hash table which consists of all words of length k that are contained in 

the sequence x. Hy values, which are the locations of each word of length k from the 

database sequence y, are recorded. Then Q values, which is the difference between 

the position of each word in x and Hy values, are also recorded. The second step is 

compiling a frequency distribution of Q values. The highest frequency number tell 

the number of position the sequence y should shift in order to obtain the maximum 

number of matches between x and y. 

Example. Given query sequence x , and the database sequence y are as follows: 

0 1 2 3 4 5 6 7 

x A G C T G G A A 

y A G G A A G C C 

8 9 

G G 

A T 

0 1 2 

C A T 

C C T 

We find Hy values and construct a table as in Table 4.2, and we then obtain Q valu s 

as in Table 4.3. For example, nucleotide A, which is a word of length 1 occurs at 

positions 0, 3, 4 and 8 in sequence y. Q values for A at position 0 are 0- 0 = 0, 

0 - 3 = - 3, 0 - 4 = - 4 and 0 - 8 = - 8. Then, we would not look for the Q valu s 

for A at position 3, but instead consider the next word in x, which is G. Q values for 

G at position 1 are 1 - 1 = 0, 1 - 2 = -1 and 1 - 5 = -4. 

The number of values equal to 0 is 5, which indicates that ther are five matched 

nucleotides between two sequences x andy without shifting any position (we see they 

match at positions 0, 1, 5, 10, and 12). We can use these values of differences in 

table to construct a graph (see Figure 4.3). From this graph, we can then observe 

the high st frequency. The values equal to 3 occur the most (eight times) , which 
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Bases Position, Hy values Total 

A 0 3 4 8 4 

c 6 7 10 11 4 

G 1 2 5 3 

T 9 12 2 

Table 4.2: Hashing of databases sequence y in PASTA algorithm. Hy is the location of 

corresponding base (A, C, G and T ) and the total number of its appearances. 

For example, A appears at the positions 0, 3, 4 and 8 in sequence T. 

indicates that shifting y three positions to the right would give us the most matches 

of eight between two sequences x andy. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

xAGCTGGAAGGCAT 

y AGGAAGCCATCCT 
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Source x A G c T G G A A G G c A T 

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 

Q values 0 0 -4 -6 3 4 6 7 7 8 4 11 3 

-3 -1 -5 -9 2 3 3 4 6 7 3 8 0 

-4 -4 -8 -1 0 2 3 3 4 0 7 

-8 -9 -2 -1 -1 3 

Table 4.3: Calculated Q values which is the difference between the location number of the 

source sequence x and H y. 

r------------------------------------------------, 
Frequency Dsitrubution 

----------- ---------------------- --

~ 

-5 6 ------------------
~ 
'o 5 

j 
E 4 1-----------------
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~ 
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-9 ·8 ·7 ·6 -5 -4 ·3 -2 ·1 0 1 2 3 4 5 6 7 8 9 10 11 

Qvalu•s 

Figure 4.3: Frequency distribution of Q values. 
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Chapter 5 

Combinatorial Pattern Matching 

In general, a pattern is a theme of reoccurring events or elements of a set. In this 

thesis, by "patterns", we mean substrings of DNA sequences, repeating in some man­

ner . When a pattern is seen in a DNA coding segment, biologists suspect that this 

may be an indication of functionality of a gene. Specifically, many patterns in DNA 

segments have been identified to be associated with diseases in humans. For example, 

the number of GAA repeats (the definition of repeats will be introduced in section 

5.1) in an intron region of a gene is as large as 900. Such repeats of G AA in the 

human DNA is associated with the Friedreich Ataxia disease [12]. Around 50% of the 

human genome are repeats [49], so, the study of patterns in DNA sequences possesses 

a great deal of importance. 

Given a collection of strings X , a database, and a string p, the pattern matching 

problem is to search for the presence of p in strings in X. In general, there are two 

types of pattern matching problems; exact and approximate. Given X and p , the 

exact pattern matching problem is to find substrings of strings in X that are exactly 
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the same as p; whereas approximate pattern matching is to find substrings of strings 

in X that equal to p with a few mismatches. 

To find a pattern in thousands of genomes is computationally challenging. Using 

more sophisticated ways such as hash tables to organize data improves the search 

t ime from being impractical to somewhat practical. In this chapter, we find unique 

oligonucleotides ( oligos) in strings of a database. Formal definition of unique oli­

gos will be given later in the chapter. The search for unique oligos, a widely used 

application of string matching in biology, for the study of the functionality of cells, 

involves both exact and approximate pattern matching. We will look at some of the 

existing algorithms (see [49, 6, 35, 72]) for unique oligos searching. Based on these 

algorithms, we propose a parallelization technique in searching for the unique oligos 

to improve the search time. Furthermore, we propose a modified parallel algorithm 

based on those algorithms to improve the search t ime. References to this chapter are 

from [40, 72]. 

5.1 Repeats Searching 

Let x = AT ACCGT ACT ACCGT AACCG be a arbitrary sequence over the alpha­

bet {A, C, G, T} . The substring ACCG repeats three times in x. We call ACCG 

a "repeat" . There are numerous such repeats within any given genome and they 

are very important in genetic studies. In fact , repeats in DNA may provide clues 

for the tracing of evolution and understanding genetic diseases. Genomic Rearrange­

ments1 between organisms may indicate evolution through mutation and many genetic 

1Genomic Rearrangements are differences in the order of genes, or in sequences within genes. 
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diseases including cancer are associated with a rearrangement of repeats within its 

genome2 . 

In practice, we are interested in long repeats since they can provide more informa­

tion about genes and mutations than shorter ones. However, it is clear that finding 

long repeats in a genome is more difficult and time consuming than finding short 

ones since finding long repeats require more comparisons. Thus, a simple approach 

to finding exact long repeats is to first find short q-mers for some small q and then 

extend them into longer l mers (ie. q < l) [49]. Recall that q-mer is a short substring 

of length q. Depending on different species, the meaningful values of l vary. 

Example. Suppose we have the following sequence: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

A A C C T A C T A T c C T A C T A T C 

The 4-mer TACT occurs at positions 4 to 7 and 12 to 15. Extending these 4-mers 

we can obtain two maximal repeats CT ACT AT, these are the 7-mers starting at 

positions 3 and 11. 

Maximal repeats may always be detected in t his manner by extending short repeats. 

Note that during the searching and extending process, the positions of l-mers must 

be identified and recorded in an organized fashion as the input database size may be 

very large. 

2Genome is a collection of genes. This can be thought of as a database. 
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5.2 Exact Pattern Matching 

As mentioned earlier, pattern matching is the process of finding all occurrences of a 

string p in strings of a database X . 

Definition 1. Given a database X = {xi, x2 , . . . , xk} for some positive integer k 2:: 1, 

we say a substring qi,j of length m occurs at jth position in Xi, where m = lql ::; 

Example. Let X = {ACCG, ACGTAG, TTTC } and q = TAG. We say that q 

occurs at the fourth position of x 2 . We may denote the substring TAG as q2,4 = TAG. 

Algorithm 1: Brute-Force algorithm for Pattern Matching 

Input: Pattern p and a database X = {XI, x2 , ... , xk} for some positive 

integer k 2:: 1 and IPI ::; I xi I, where 1 ::; i ::; k 

Output: All locations of substrings of length m in X that match p. 

begin 
m +--- length of p 

ni +--- length of xi 

for i +--- 1 to k do 

fort +--- 1 to (ni- m + 1) do 

end 

l if %.j) = p then 
L output (i,j) 

The simplest algorithm to find pattern p in a string of strings in X is shown in 

Algorithm 1. Let q(i,j) represent a substring of length m, where i refers to the ith 
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string in the database X and ni is the size of the string xi· If a substring % ,j) equals 

p, then there is one occurrence of the pattern p in a string of strings in X. This is the 

brute-force algorithm that scans the entire strings of the database. At each position 

t, the program runs up to m operations for each string of strings in X, thus taking 

O(kmn) time, the worst case time complexity. 

5.3 Approximate Pattern Matching 

In the exact pattern matching problem, matches for the exact pattern p are found 

in strings of the database being analyzed. However, due to the existence of muta­

tions in DNA, it would be more sensible to investigate approximate pattern matches. 

For example, suppose that a gene mutation causes a DNA string ACCG to become 

ACCT. In the exact pattern matching problem, these two strings are considered to 

be different. If for some positive integer d, two strings within d mismatches are said 

to be "approximately" the same. For instance, we say that ACCG and ACCT are 

approximately the same for d = 1. In the approximate pattern matching problem, 

we search for approximate matches of a pattern p with up to d mismatches, for some 

positive integer d. 

In this section we are interested in finding unique oligos in a given database. 

Unique oligos are strings of certain length that appear only once in the database. 

Recall that a database is a collection of sequences. We find unique oligos by first 

identifying all substrings of some length from the database and comparing them with 

all the substrings of the same length in strings of the database. If the two substrings 

are the same, then they are not unique. We explore the idea of approximate pattern 
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matching using the Brute-Force method and two filtration methods. Using Brute­

Force method, we generate all possible substrings of size l , ie., l-mers, from the 

database and compare them with other l-mers from the database to see which ones 

are unique. In the filtration met hods, we search for all non-unique oligos in the 

database. Eliminating these non-unique oligos from the list of all possible l-mers 

results in the unique oligos of the database. To be unique, an oligo can appear any 

number of t imes exactly or approximately in one sequence of the database but t he 

oligo cannot appear exactly or approximately in any other sequence [73]. For this 

reason, we do not compare with the other l-mers of the same sequence. 

In this work, we will introduce the Brute-Force algorithm and two algorithms 

that use filtration method (see e.g., [49, 72]) . FUrthermore, we will implement t hese 

algorithms using Mathematica and parallelize them describing their improvements in 

search t ime, their time complexity, as well as suggesting a possible method to improve 

the search time. 

5.3.1 Unique Oligonucleot ides 

In the past few years, several genomes including humans have b een identified. The 

human genome contains about 3 billion base pairs [35]. Studying such a large set of 

data requires vast amount of computer resources. Many DNA analysis experiments 

involve breaking up the DNA to be investigated into short fragments, forming what 

is called a "DNA library" . 

A microarray typically is a solid substrate (e.g. glass or a semiconductor chip) on 

which spots of oligos have been deposited, each spot with a different known oligo. In 
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an experiment each D A fragment in th DNA library attaches to a particular spot, 

ie. the olio which corresponds to it , so that many, if not all, of the D A fragments 

are identified as well as the frequency of each kind of fragment. It is important that 

all the oligos used on the array are unique, so that the binding to each spot represents 

the expression of the corresponding gene. 

In recent years, many biologists and computer scientists have been working on 

the unique oligo searching problem. Many algorithms have be n developed, see [40, 

49, 34, 35, 36, 6, 72, 73] for different sizes of the oligos. The size unique oligos were 

chosen differently for different species. For example, the length of unique oligos for 

Barley was chosen to be between 33 and 36 [72, 73] while for some bacteria species, 

the length was 25 [36]. 

We are interested in how to generate unique oligos from a collection of large 

sequences, by applying both the exact pattern matching problem and the approximate 

pattern matching problem. 

Recall that given two strings x and y of the same length, H D(x, y) denotes the 

hamming distance between x andy. If H D(x, y) :::; d, we say that x d-mismatches y 

or x is d-mutant of y. 

Example . Suppose we have the following two sequences. 

x : A C C G T T A G 

y : A G G C T A A C 

It follows that H D(x , y) = 5, and hence, xis d-mutant of y for any d ~ 5. 

Recall that ESTs (Expressed Sequence Tags) are collection of DNA sequences. We 

think of ESTs as a database. 
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Definition 2. Given an ESTs set X= {x1, x2, ... , xk} for some k and d, a unique 

oligonucleotide is a substring of a string in the database with length l, which 

appears any number of times exactly in one EST sequence but does not appear 

exactly or approximately (within d mismatches) in any other EST sequence. 

Example. Let l = ACCGGT, d = 2 and X= {xi, x2 }. Suppose l occurs exactly in 

some position in XI and l occurs approximately (within 2 mismatch) in some position 

XI = 0 0 0 ACCGGT 0 0 0 

l 

X2 = 00 0 ACGCGT 00 0 

l 

By the above definition, l is not unique. 

Example . Suppose that li and l2 exist as substrings of different strings in X and 

H D(li , l2 ) ~ d. Then l1 is d-mutant of l2 and itself. Similarly, l2 is d-mutant of l1 and 

itself. Thus, both it and l2 have 2 d-mutants (namely, it and l2), and hence, they are 

not unique. 

5.3.2 Algorithms for the unique oligonucleotides design prob-

I em 

Our purpose is to find all unique oligos occurring in a given database. We describe the 

Brute-Force method and the two filtration methods in the following. The references 

to this subsection are from [49, 72]. 

Method 1. The Brute-Force method. 

By the definition of unique oligos, the simplest way to find all uniqu l-mers is to gen r-

ate all substrings of size l from a string of strings in the database X = { x1 , x2 , ... , xk} 
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first. Then we compare these l-mers with each other . From the comparison result , 

it is very easy to see which l-mers are unique. This simple and intuitive algorithm 

is called Brute-Force Method [36]. Recall n refers to the size of a database. As n 

becomes large, the time and space needed for Brute-Force Method becomes imprac­

tical. The time complexity for searching alll-mers in a length n of database is 8(ln). 

Since there are four nucleotide bases in a DNA sequence, the number of comparisons 

between l-mers is 
41 (4~- 1). Then the total time complexity is O(ln + 41 (4~- 1 ) ), which 

clearly illustrates that the Brute-Force method is very difficult for database containing 

millions and billions of bases. 

Method 2. The two filtration methods. 

The filtration method presents a faster technique to find unique oligos than the Brute­

Force method. It may even be the fastest method so far, although to some extent, 

it is not as accurate as the Brute-Force method. The main point of the filtration 

technique is to find all non-unique l-mers from the database. Then, eliminating these 

non-unique l-mers from all the l-mers in the database, we can obtain unique l-mers. 

Some algorithms of the filtration technique have been introduced by [49, 35, 36, 72]. 

Algorithm 1. The basic l-mer filtration algorithm (see [49]) is based on the fol­

lowing observation. Suppose that two l-mers, h and l2 have d mismatches, i.e., 

HD(h,l2) ::; d. If we divide both of them into d + 1 substrings: lililr . .. lf+1
, 

l~ l~ l~ . .. z~+ 1 and each z;, except possibly zJ+1 has length r d~1l) then there exists 

at least one i 0 E { 1, 2, ... , d + 1}, such that ll0 = z~o. It is easy to see this by con­

tradiction. Suppose that we cannot find any i 0 E { 1, 2, ... , d + 1} such that ll0 = z;o. 

Then there exists at least one mismatch between ll and l~ for all i E { 1, 2, ... , d + 1} , 

and hence, there exist at least d + 1 mismatches between l1 and Z2 . In practice, we 
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can choose suitable l and d such that d~l is an integer. Let q = d~l . We say that 

if two l-mers have d-mismatches, t hen they share at least one identical q-mer. If an 

l-mer from EST x1 is not unique, then we can find at least one l-mer from some EST 

sequences other than x1 that are approximately the same. These two l-mers would 

share some q-mer. An effective way to find all candidates for non-unique l-mers is to 

find all q-mers that occur more than once and then extending them to l-mers. 

This algorithm includes three steps. First, we find all strings of length q (i.e., q­

mers) in a database X . The q-mers that occur more than once may be candidates to 

generate non-unique oligos. Then, we extend each identical q-mer into longer strings 

of length l and compare these l-mers with each other to identify their non-uniqueness. 

Recall that we do not compare two l-mers if they are from the same sequence in EST 

sequences. By an identical q-mer, we mean the same q-mer occurring in different EST 

sequences. Finally, we eliminate all non-unique l-mers from the total set of l-mers 

in X to obtain the unique ones. All the q-mers over the alphabet set {A , C, G , T} 

are stored into a hash table. Each q-mer corresponds to an entry whose index is the 

hash value of the q-mer according to a hash function. This hash function assigns a 

unique value to each q-mer. Whenever a q-mer occurs in the database, its location 

gets recorded in the hash table. Once all the locations of all q-mers are found , we 

extend the often-occurring q-mers into l-mers and compare l-mers from different EST 

sequences. 

Suppose that the total size of X is n . The time complexity for searching all q-mers 

is 8(qn) . The number of comparisons within each table entry is O(r2), where r::::::::: n/4q 

is the approximate number of identical q-mers in each table entry. Each comparison 

requires extension of the q-mers and takes 2(l- q) times. Noting that the hash table 
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has 4q entries, we can finally obtain the overall time complexity O((l- q)r24q) for t he 

basic filtration method [72]. 

Algorithm 2. The algorithm in [72] is similar to the above basic filtration method, 

except that it is based on another observation. Suppose that two l-mers, h and l2 have 

d mismatches, i.e., H D(h, l2) :::; d. If we divide both of them into l ~ J + 1 substrings: 

l 1l 2 l3 z l ~J+ 1 l 1 l 2l3 zl~J+ 1 d h zi t ·bl zl~J+ 1 h 1 t h r 1 1 
1 1 1 .. . 1 , 2 2 2 ... 2 an eac j, excep poss1 y j , as eng 1 l ~ J+ l , 

then there exists at least one io E { 1, 2, .. . , l ~ j + 1}, such that li0 and l~0 have at 

most 1 mismatch, i. e., H D(li0
, l~0 ) :::; 1. It is also easy to see this by contradiction. 

If for any i E { 1, 2, . .. , l ~J + 1}, l{ and l~ have at least 2 mismatches, then the t otal 

mismatches between h and l2 would be at least d + 2. In practice, one can also choose 

suitable l and d such that l ~J+ 1 is an integer. In this filtration algorithm, they also 

first search for all q-mers ( q = l ~ J + 
1

), which they call seeds. Then before extending 

each identical q-mer to l-mers like we do for the basic filtration method, t hey cluster 

all the possible q-mers into groups such that within each group, every q-mer has no 

more than one mismatch with the other q-mers. Finally, for each group, t hey extend 

the q-mers to l-mers, compare those l-mers to see if they are non-unique, and then 

filter all non-unique l-mers from the total set of l-mers. The algorithm is implemented 

in C++ language. 

Note that the idea of this filtration method is almost the same as t he basic one, 

except for the clustering of 1 mutant seeds and extensions of 1 mutant seeds to l-mers 

and comparisons following, which results in O(qr2) comparisons, where r ~ n/ 4q and 

n is t he size of the database. Thus, the overall time complexity is 0( ( l - q )q ~; ). By 

the applications of these two filtration algorithms to some database, we can see that 

algorithm 2 is actually faster than algorithm 1. 
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R emark 1. A q-mer that occurs in more than one EST sequence has to be extended 

to l-mers to the left and to the right positions for comparison. The extensions are 

done as follows. First, each identical q-mer is extended to the left most l - q positions. 

For t he next extension, the q-mer is extended to the left by l - q - 1 positions and 

one position to the right. As the extension step proceeds, the number of possible 

extensions to the left decreases as the number of possible extension to the right 

increases. We can continue to extend until the number of possible extension to the 

left reaches zero and the number of possible extension to the right reaches l- q. For 

each identical q-mer, we can generate at most (l - q + 1) l-mers because if the q-mer is 

found at the very beginning of a sequence in a database, then it cannot be extended 

to the left position. This results in only one possible extension to the right by l - q 

positions. A similar case happens when a q-mer to be extended is at the very end of 

a sequence. 

5.3.3 Parallelization 

To improve the existing algorithms for the unique oligos problem in a simple and 

feasible way, we think of the application of parallelization. 

DNA analysis such as unique oligo design requires tremendous computational re­

sources which include vast amounts of processing power and memory. Nowadays, we 

may not easily find any highly efficient single computers in universities or research 

institutions, but it is not hard at all to find many standard computers in any inst itu­

tion. Thus, the idea of parallel computing for DNA analysis is to let many computers 

share the load in order to get the job done faster. 
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As we know, a computer is composed of four main parts: central processing unit 

(CPU), memory, hard disk and user interface device. All the arithmetic operations are 

carried out in CPU. Memory is temporary storage to save the arithmetic operations 

and data. Inputs and outputs can be stored in the hard disk. A cluster is a group 

of computers that work together in a distributed memory system. In a distributed 

memory multiple-processor system, each processor has its own memory. This requires 

computational tasks to be distributed to the different processors for processing, mak-

ing the system appropriate for designing parallel algorithms. The most common type 

of cluster is the Beowulf cluster (Figure 5.1b), computers connected with a TCP/IP 

Ethernet network. .. 
~~ 
=~ Input 

/ CPU / 

I I I I 
.. =-~CPu~/ - Hard Disk • Memory 
- lnoul 1 1 

(a ) A general computation (b) A parallel computation method with multiple cpu's 

method with one cpu 

Figure 5.1: a)A general computation method with one cpu. Six inputs must wait for 

their t urns to be executed b )A parallelized computation method with three 

computers that take two inputs each. This is an example of Beowulf cluster. 

Parallelization is an idea in which large problems can be divided into smaller ones 

t hat can be solved simultaneously. For implementing our parallel algorithms, we were 
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able to access over 40 Beowulf clusters through the departments of Mathematics and 

Statistics and Computer Science at Memorial University of Newfoundland. 

For the Brute-Force method we have two steps: generation of l-mers and com­

parisons among l-mers. Given a database, we first need to generate all l-mers from 

all EST sequences of the database. The l-mers generation can be done in parallel as 

follows. Each processor is used to find all the l-mers in one sequence. The length of 

each sequence varies. Upon completion of the l-mers generation for some sequence, 

the processor receives the next sequence in line and repeats the task. Finally, all 

the detected l-mers from all the processors are combined in the main processor to 

have the total set of l-mers. For the comparison part, we pick one l-mer from one 

sequence and compare it with all the other l-mers in the other sequences to determin 

its uniqueness. Therefore, the parallelization idea is very simple. The algorithm for 

Brute-Force in parallel is given in Algorithms 2 and 3. 
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Algorithm 2: Brute-Force algorithm in parallel 

Input: EST sequences X= {x1, x2, · · · , Xn } 

l: Length of unique oligonucleotides 

d: Maximum number of mismatches for non-unique oligonucleotides 

Output: All unique l-mers in X 

begin 

1. lMers ~ alll-mers generated from the database X (lMer[[i]] contains 

all different l-mers from the sequence X [[i]]) 

2. Comparisons for unique l-mers 

unilmer sl ~ all unique l-mers (results of parallelization of map goo[i]) 

3. Discard l-mers in unilmersl which do not satisfy given conditions 

unilmers ~ final results of unique l-mers. 

end 
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Algorithm 3: The parallelizing portion of Brute-Force algorithm: each 

lM er[[i]] will enter into the function for analysis on different computers. 

goo[i]: map to find all unique l-mers in X[[i]]: 

begin 

z +--- a table to put all possible unique l-mers in X[[i]] 

lt +--- a test table for uniqueness of l-mers in X[[i]], initially assumed to be 1 

for each component, i.e., each l-mer is assumed to be unique. 

for ii from 1 to length of lM ers[[i]] do 

for j from 1 to length of X do 

for j j from 1 to length of lM er s[[j]) with j =I i do 

I if HammingDistance[lMers[[i, ii]], lMers[[j,jjllJ ::; d then 

L L lt [[ii]] = 0 

z +--- alllMers[[i, ii]] with lt[[ii]] = 1 

Return[z] 

end 

The filtration method for the unique oligos searching problem also consists of two 

main parts: the generation of q-mers, the extension of q-mers and comparison of 

l-mers. The generation of q-mers is the same used in the previous method. 

For the extension and comparison part, the parallelization idea depends on the 

specific algorithms. Using the filtration algorithm 1 without the application of par-

allelization requires first finding of all q-mers (or seeds) the occur more than once in 

the first sequence of EST sequences. Next , each seed is extended (l-mer) from the 

first sequence and compared with other extended l-mers in all the sequences except 
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the first one in the database to determine uniqueness. After this process, the next 

seed from the first sequence repeats the same procedure. In the whole process, each 

seed performs the extension and comparison independent of other seeds. We can 

parallelize by sending each seed into an available processor to perform the extension 

and comparison to determine uniqueness of each seed. After this step, each processor 

sends the recorded non-unique l-mers to the main processor and receives the next 

available seed. Finally, we find unique l-mers through filtration by the main proces­

sor. As for the filtration 2, it first clusters q-mers into groups such that in each group 

every q-mer is 1-mutant of each other. These q-mers are extended and compared, 

just like in the previous method. When we apply parallelization to this algorithm, 

we distribute all groups of seeds to different processors. Then each processor works 

on the extension and comparison for the related group of q-mers, and returns the 

recorded non-unique l-mers to the main processor later. The final filtration is also 

done by the main computer. The algorithms for the filt ration methods in parallel is 

given in Algorithm 4 through Algorithm 7. 
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Algorithm 4: Parallelized Filtration algorithm 1 

Input: EST sequences X = { x1 , x2 , · · • , Xn } 

l: Length of unique oligonucleotides 

d: Maximum number of mismatches for non-unique oligonucleotides 

- l q- d+l 

Output: All unique l-mers in X 

begin 
1. q Mer s f-- all q-mers generated from the alphabet {A, C, G, T} 

2. Extensions and comparisons for non-unique l-mers 

nonunipo f-- positions of possible non-unique l-mers (results of 

parallelization of map goo[qmer]) 

3. Filtration 

all f-- all possible positions of l-mers in X 

uni f-- all possible positions of unique l-mers ( Complement[all , nonunipo]) 

unilmersl: Apply "StringTake" to all elements in uni to obtain all unique 

l-mer candidates 

4. Discard l-mers in unilmersl which do not satisfy given conditions 

unilmers f-- final results of unique l-mers. 

end 
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Algorithm 5: The parallelizing portion of the algorithm 1: each q-mer will 

enter into this function for analysis on different computers. 
goo[qmer] : 

begin 
z ~ a table for positions of non-unique l-mers resulted from extensions and 

comparisons for qmer 

Posi ~ list of positions of qmer in X 

(e.g., Posi = { {1, 2}, {9, 10}, · · · , {20, 30}} corresponding to occurrences of 

qmer: (1, 1), (1, 2), (2, 9) , (2, 10) , · · · , (n, 20), (n, 30), where (p0 , PI) means 

position PI in sequence Po·) 

for j from 1 to n - 1 do 

for jj from 1 to Length[Posi[[j]]] do 

for k from j + 1 to n do 

Return[z] 

end 

for kk from 1 to Length[Posi[[k]]] do 
qi ~ the q-mer located at (j, Posi[[j, jj]]) 

q2 ~ the q-mer located at (k, Posi[[k, kk]]) 

for each pair of l-mers h and l2 that contain qi and q2 , 

respectively, do 

if H ammingDistance[l1 , l2] :::; d then 

l z = Append[z, {Po(li) ,PI(li)} , {po(l2),PI(l2)}] 

({po (li), P1 ( li)} is the position of li) 
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Algorithm 6: Parallelized F iltration algorithm 2 

Input: EST sequences X= {x1 , x2, · · · , Xn } 

l: Length of unique oligonucleotides 

d: Maximum number of mismatches for non-unique oligonucleotides 

- l 
q - L~J+l 

Output: All unique l-mers in X 

begin 

1. q Mer s +- all q-mers generated from the alphabet { A, C, G, T} 

qp +- Groups of q-mers. Each entry of qp is a q-mer group in which each 

q-mer is one mutant of the other q-mers. 

2. Extensions and comparisons for non- unique l-mers 

nonunipo +- posit ions of possible non-unique l-mers (results of 

parallelization of map goo(qpi]) 

3. Filtration 

all +- all possible positions of l-mers in X 

uni +-all possible positions of unique l-mers (Complement[all , nonunipo]) 

unilmersl : Apply "StringTake" to all elements in uni to obtain all unique 

l-mer candidates 

4. Discard l-mers in unilmersl which do not satisfy given conditions 

unilmer s +- final results of unique l-mers. 

end 
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Algorithm 7: The parallelizing portion of algorithm 2: each qp[[i]] will enter 

into this function for analysis on different computers. 

goo(qp((i]]]: 

begin 
z f- a table for positions of non-unique l-mers resulted from extensions and 

comparisons for q-mers in qp((i]] 

Posi f- list of positions of all q-mers in qp((i]] in X 

(e.g., Posi = { {1, 2}, {9, 10}, · · · , {20, 30}} corresponding to occurrences of 

all q-mers in qp([i]]: (1 , 1) , (1, 2), (2, 9), (2, 10), · · ·, (n, 20), (n, 30), where 

(Po, pi) means position p1 in sequence p0 . ) 

for j from 1 to n - 1 do 

for jj from 1 to Length[Posi[[j]]] do 

for k from j + 1 to n do 

Return(z] 

end 

for kk from 1 to Length[Posi[[k]]] do 
q1 f- the q-mer located at (j, Posi[[j , jj]]) 

q2 f- the q-mer located at (k, Posi[[k, kk]]) 

for each pair of l-mers l 1 and l2 that contain q1 and q2 , 

respectively, do 

if HammingDistance[l1 , l2]:::; d then 

l z = Append[z, {po(ll), PI(h)} , {po(l2),p1(l2)}] 

({po(li),Pl(li)} is the position of li) 

98 



We now analyze the time complexity for the parallelization for each algorithm. In 

general, the complexity for each algorithm has the following notion. 

T(n) + C(n) 
p 

T(n) defines the complexity of the algorithm (for n operations) we want to paral­

lelize, where p is the number of processors in parallel computing. Thus, T~n) is the 

complexity of a parallel algorithm. In parallel computing, there exists communication 

complexity C which is the communication time taken between a main computer and 

the processors used for parallelization. In detail, a main computer checks the avail-

ability of each processor. Once the main computer communicates with a processor 

that the processor is free , a task gets assigned for the processor. After successful 

completion of the task, the results get sent back to the main computer. These com-

munication steps are determined experimentally, not analytically. 

Suppose that the size of database X is n and p processors are used for paralleliza-

tion. The time complexity for searching all q-mers in X by one computer is 8(qn). 

Each proces or works on n/p bases for the generation of q-mers. Zheng et al [72] 

assume that the average occurrences of a q-mer in X is r, where r ~ n/4q. Each 

q-mer at some location in X has (l- q + 1) possible extensions to l-mers. For one 

type of extension to l-mers of a q-mer, there are r extensions and (;) comparisons. 

Thus, one q-mer takes (r+ (;))(l - q+l) time for extension and comparison [72]. The 

total time for extension and comparison for all q-mers is then (r + (;) )(l - q + 1)4q if 

we do this in one computer. Since every processor does extensions and comparisons 

for 4
q q-mers. The overall time complexity for our basic filtration method is 

p 

8(qn) + O((r + (;) )(l - q + 1)4q) = O((l - pq)r
24

q). 
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With parallelization the complexity i 

As for the parall lization for the filtration algorithm 2, the idea is almost the same 

as that of the basic one. There are 4q possible q-mers of the alphabet {A, C, G, T}. 

We cluster q-mers such that each group contains at most 4 q-mers, along which each 

q-mer has 1-mismatch with the others. Every q-mer can be in q groups we may have 

4q · q groups in total. Since every group has 4 elements, the number of differ nt 

groups is ~ = q · 4q- l. That is, we could have at most q4q- l groups of q-mers, so 

it takes q4q- l for clustering part. Then the extension and comparison for each group 

take ( 4r + (";)) ( l - q + 1) time. Note that every processor works for f q4~-' l groups. 

Therefore, the overall time complexity for the filtration method in [72] is 

With parallelization the complexity becomes, 

Similarly as we analyzed above, it is easy to see that for the Brute-Force algorithm 

working on a database with n bases and p processors, the time complexity for search-

ing alll-mers is G(ln) and that for comparisons is 0(41(41 - 1)). With parallelization 

the time complexity is, 

The above algorithms and their complexity analysis are based on the algorithms 

in [49, 6, 35, 72]. In fact, in the implementation of these algorithms, we improve 
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the filtration algorithms for the extension part. Recall that th filtration method 

1 is based on the observation that if two l-mers are d-mutant to each other, then 

they share at least one q-mer provided that they are partitioned into d + 1 q-mer 

(substrings of length q). Therefore, we should consider each q-mer that we generat 

from the database as one of the d + 1 substrings of an Z-mer. This indicates that when 

we extend a q-mer to an l-mer, we do not have to extend it base by base to the left 

or right. Instead, every time we extend the q-mer by kq (k is a positive integer such 

that kq :::; l - q + 1) bases to the left or right. This results in at most d extensions 

to an l-mer for any q-mer in the database, rather than l - q + 1 extensions as before. 

Thus, the time complexity for filtration method 1 becomes 

With parallelization, the time complexity for filtration method 1 is 

We can also apply this extension idea to filtration method 2 and obtain the time 

complexity as 

With parallelization the time complexity is, 

As the parallclization idea has been determined, we decided to implement and 

parallelize the above mentioned algorithms using Mathematica, since it is a very 
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convenient software to deal with data, and in particular, it is very convenient to 

implement parallel algorithms. 

Using built-in functions in Mathematica, we can easily gen rate a table for all 

possible 4q q-mers, find the positions of all q-mers in the database, and distribute 

the q-mers into groups such that within each group each q-m r is one mutant of the 

other q-mers. For the filtration algorithms, we do not have a hash table to r cord 

all the occurrences of all q-mers before the extension. Instead, every time we pick 

one seed (i.e., one q-mer for the filtration algorithm 1 or one group of q-mers for the 

filtration algorithm 2), find all its positions in the database, and then extend it at 

different positions to l-mers for comparison. This takes less memory than the hash 

table . Moreover, we realize that the sets of all non-unique l-mers and alll-mers take 

large amounts of computer memory, so we just generate a table for all possible l-mer 

positions and only return the positions of non-unique l-mers from each processor to 

the main computer. Then, by filtration, we have all positions for unique l-mers and 

hence obtain alll-mers. In Mathematica programming, we can also conveniently use 

built in functions. 

5.3.4 Test Runs 

We wish to find unique oligos, which appear in only one sequence of a given set of 

genes. Our main focus is on the parallelization, that is, we illustrate that paralleliz d 

algorithms greatly reduce run time as compared to the serial ones. 

We obtained the genomes of acaryochloris marina (173 gen s with 128,904 bases), 

bacillus cereus (241 genes with 170,988 bases) and aspergillus nidulans ( 421 genes with 
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711,492 bases), which were taken from National Center for Biotechnology Information 

(http:/ jwww.ncbi.nlm.nih.gov.) . These bacteria genomes were chosen arbitrarily for 

test purposes. 

The main computer used for the parallel program has 1GB of memory and 2 GHz 

of CPU. Beowulf clusters have 4GB of Memory with 2.6GHz CPUs. 

In our test runs, we are interested in unique oligos in these three databases. 

According to [44, 67, 6], in addition to being unique, the selected unique oligos have 

to fulfill the following conditions: t he length of 25 nucleotides, includes at most 12 A 

or T nucleotides, includes at most 10 Cor G nucleotides, includes at most 6 successive 

A, 6 successive T, 5 successive C or 5 successive G nucleotides, the GC content is 

30% - 70%, i.e., the total number of G and C nucleotides is between 8 and 17, no 

window of 8 nucleotides includes more than 6 A, 6 T, 4 C or 4 G nucleotides, and an 

inverse complementary nucleotide of an oligo can match at most 6 symbols from the 

beginning of an oligo. 

Such conditions or parameters depend on different species. For barley, as presented 

in [72, 73], number of other parameters were required including GC content and 

melting temperatures. Parameters are related to the content and morphological shape 

of the probes used in microarray. The criteria for the parameters on long oligo probe 

can be found in [6]. 

Suppose that two 25-mers are approximately the same if they have 4 mismatches to 

each other (i .e., d = 4). According to the algorithms, q = 5 in the filtration algorithm 

1 and q = 8 in the filtration algorithm 2. We implemented the Brute-Force method, 

the filtration algorithm 1 and the filtration algorithm 2 into Mathematica and also 

parallelized the three resulting programs. Then we ran the two filtration programs 
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in 1, 5, 10, 25, 44 processors, respectively. Brute-Force requires a great number 

of comparisons, thus, we parallelized Brute-Force method. Using 44 processors, we 

obtained the processing time for the parallelized Brute-Force method in Table 5.1. 

Table 5.2 shows the results of the processing time spent to obtain unique oligo with 

the filtration algorithm 1. On Table 5.3, the results of the processing time are 

recorded for the filtration method 2 and the Brute-Force method. Since the program 

for the Brute-Force method is very time consuming, we only ran it in 44 processors. 

The number of unique oligos for each methods can be found in Table 5.4. 

organism time 

a. marina 4h45m17s 

b. cereus 6h10m1s 

a. nidulans 5d4h7m25s 

Table 5.1: Processing time for parallelized Brute-Force method using 44 computers for 

the three test organisms, acaryochloris marina, bacillus cer us and aspergillus 

nidulans. 

The processing times on Table 5.2 and Table 5.3 are plotted against the number 

of computer processors used on Figure 5.2 and Figure 5.3, respectively. We note two 

interesting observations. First, extensions by bases resulted in more comparisons. 

With increasing number of comparisons, we have more "chanc s" of obtaining the re­

sults close to Brute-Force method. However, when we applied the extensions method 

by qM er siz , it reduced the number of comparisons and obtained the unique oligos 
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much faster than the extension by bases method. Although the number of compar­

isons are decreased resulting in less accurate number of unique oligos, we have saved 

some time. Filtration method in the first place may not be the most accurate method, 

but as the database gets larger and larger for different organisms, this could be an 

efficient approach to solve the problem. 

A second inter sting observation is that effectiveness of our parallelization tech­

nique did not depend on the number of processors used as much as we expected. It 

would be sensible to think that the more processors you have the faster the program 

would be. However, from the graphs we note that the run time significantly reduces 

even after 5 processors from the single processor for aspergillus nidulans. For other 

organisms, the databases were too small to note any changes between different num­

ber of computers us d. The main computer is responsible for assigning works to other 

processors and once each processor finishes its job, the main computer must effec­

tively organize the data and process them accordingly. As the database size become 

larger, th r turned values of non-unique oligos may become larger for each processor. 

Thus, when large amounts of data are returned to the main computer, and possibly 

at the same time, the main computer is unable to do its job at a given time, which 

may lead to delays. 

From the database of acaryochloris marina with 173 genes of 128, 904 bases, we 

find 48, 999 different 8-mers in about 20 minutes. oting that at most 48 = 65 , 536 

different 8-mers can be obtained from any database, we assume that for most of bigger 

databases, 65,536 different 8-mers will be obtained. Also, we suppose that almost 

all 45 = 1024 different 5-mers can always be obtained from any test database. Thus, 

when we implement the filtration algorithms into Mathematica programs, we do not 
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generate all q-mers from the database. Instead, we directly generate all possible q­

mers over the alphabet {A, C, G, T} (which takes a split second) that resulted in the 

exact output as to first generating the q-mers from the database. 

In Table 5.4, the number of unique oligos found using different methods can be 

found for the three test organisms. The number of unique oligos using the Brute­

Force method is most reliable since each substring is compared with all others. The 

number of unique oligos for the filtration 2 when extended base by base includes a few 

more unique oligos compared to the ones by Brute-Force method. It is especially true 

for the filtration 2, qMer size extension. According to private communications with a 

local researcher3 in biology and medicine that use microarray, these extra number of 

unique oligos is acceptable. The number of unique oligos using Brute-Force is desired. 

However, many unique oligos generated by manufactures may already contain errors 

such as those oligos that are not transcribed. Even with the best results, we may 

always have some errors contained in biological experiments. Filtration 2 using qMer 

size extension, performed in 3 minutes and 55 seconds, is an improvement over the 

Brute-Force method which took about a day with about 0.08% of extra unique oligos 

for aspergillus nidulans. 

5.3.5 More Improvements 

Other than parallelization, we propose more improvements for the old filtration meth­

ods to find the unique oligos in a given database. 

Motivated by the old filtration algorithms, we can easily have some similar al­

gorithms. One is based on the following observation. Suppose that two l-mers, l1 

3 Dr. G Sun, Department of Medicine, Memorial University of Newfoundland 
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Figure 5.2: Estimating the run time of Algorithm 1 on different numbers of processors. 

and l2 have d mismatches, i.e., H D(l1 , Z2 ) ~ d. If we divide both of them into 

l dJ 1 b t · · Z1l 2Z3 z l~J+ 1 l1l2l3 zl ~J+1 d h zi 'bl z l ~ J + 1 
3 + su s rmgs. 1 1 1 ... 1 , 2 2 2 . . . 2 an eac 1, except poss1 y 1 , 

has length r l ~J+ 1 l, then there exist s at least one io E {1, 2, . .. , l~J + 1}, such that li0 

and z ~o have at most 2 mismatches, i.e., H D(li0
, l~0 ) ~ 2. This is t rue since if for any 

i E { 1, 2, . . . , l ~J + 1} , l i and l~ have at least 3 mismatches, then the total mismatches 

between l1 and l2 would be at least d + 3. Based on this observation, we can have a 

new algorithm. First find all q-mers (q = r~J1 l) in the database and cluster t hem 
3 + 1 

into groups such that within each group, each q-mer has no more than 2 mismatches 

with the other q-mers. Then ext end the q-mers in each group to l-mers and compare 
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Figure 5.3: Estimating the run time of algorithm 2 with the 1-mutant on different numbers 

of processors. 

the resulted l-mers to see if they are non-unique, and finally eliminate t he non-unique 

l-m ers from the total l-mers to obtain t he unique l-mers. The detailed steps of t he 

algorithm are as follows. 

(i) (1) Find all q-mers (q = f L~J+ 1 l) in the database X . 

(2) Make a table "qmergroups" such t hat in each table ntry, a group of q-

mers are recorded and each q-mer has no more than 2 mismatches with 

the other q-mers. 

(ii) (1) For ach ent ry of "qmergroups", find all posit ions of q-mers in this entry 
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and record these positions (sequence by sequence) into a table "qmerposit ions". 

(2) Fix one position from one (i-th) ent ry of "qmerpositions", say L1 . 

(3) Choose a position from another entry of "qmerpositions", say L 2 . The 

q-mers at L1 and L 2 are called q1 and q2 , respectively, for convenience. 

Extend q1 and q2 correspondingly to l-mers. Compare the two l-mers 

to see whether the Hamming Distance between them is less than d. If so, 

these l- mers are not unique oligo. 

( 4) Choose all the other possible positions from entries other than the i-th 

entry of "qmerpositions" and repeat (3). 

(5) Fix another position from the i-th entry of "qmerpositions" and repeat 

(3)-(4). Repeat this step t ill all positions from the i-th entry of "qmerpo-

sitions" have been considered. 

(6) Choose another entry of "qmerpositions" and repeat (2)-(5) . Repeat this 

step till all entries of "qmerpositions" have been considered. 

(7) Choose another entry of "qmergroups" and repeat (1)-(6). Repeat this 

step till all entries of "qmergroups" have been considered. 

Actually, we did not implement this algorithm into a program. We think it should 

be interesting and maybe will work on this as a future effort . However, following this 

idea, we may have a few algorithms based on similar observations and they may be 

not bad algorithms from some points of view. In this series of algorithms, the number 

q, the length of small strings which are candidates for extension, is increasing from 

f d!1l to f L~J+ 1 l , f LgJ+1 l, and finally to f ~ l and even l. Thus, th size of possible q­

mers, 4q, is also becoming larger and larger. This may result in impossible algorithms 
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for current computers because of memory limitation or oth r problems. We do not 

know what would happen. This also seems to be an interesting problem. 
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Organisms 

a. marina b. cereus a. nidulans 

no. genes 173 241 421 

nt length 128,904 170,988 711, 492 

1h17m52s 32m49s 24h24m26s 
serial 1 

(5h27m38s) (6h10m53s) (7d14h19m38s) 

7m7s 29m22s 4h37m56s 
5 

Processing time (30m8s) (1h53m20s) (21h44m4s) 

for filtration method 1 4m24s 20m15s 2h36m54s 
10 

using various (19m49s) (1h38m13s) (11hllm34s) 
Parallel 

numbers of computers 3m30s 17m0s 1h10m35s 
20 

(16m33s) (1h6m14s) (5h37m32s) 

3m30s llm7s 40m17s 
44 

(8m30s) (51m42s) (3h43m29s) 

Table 5.2: Processing time table for filtration method 1 for three test organisms, acary­

ochloris marina, bacillus cereus and aspergillus nidulans. The time in the 

non-bracket is extension by qMer size and the time in bracket is the extension 

by bases. Extension by bases produces more comparisons, thus lengthening the 

processing time. 
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Organisms 

a. marina b. cereus a. nidulans 

11m50s 18m17s 4h3m48s 
serial 1 

(22m0s) (1h20m46s) (14h20m17s) 

3m14s 5m19s 25m12s 
5 

Processing time (4m22s) (10m56s) (1h20m35s) 

for filtration method 2 1m57s 4m58s 8m30s 
10 

using various (3m37s) (10m20s) (46m44s) 
Parallel 

numbers of computers 56s 2m59s 6m55s 
20 

(1m42s) (5m27s) (20m4s) 

47s 1m55s 3m55s 
44 

(59s) (4m35s) (16m2s) 

Table 5.3: Processing time table for filtration method 2 for the three test organisms. The 

time in the non-bracket is extension by qM er size and the time in bracket is 

the extension by bases. 
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Organisms 
Methods 

a. marina b. cereus a. nidulans 

Brute-Force 119,448 162,700 695,115 

filtration 1 119,448 162,700 695,115 

(base by base) 

filtration 2 119,486 162,735 695,210 

(base by base) 

filtration 1 119,448 162,700 695,115 

(qMer size extension) 

filtration 2 119,645 162,999 695,668 

( qMer size extension) 

Table 5.4: Number of unique oligos found using different methods for the three test or­

ganisms. 
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Chapter 6 

Conclusions 

There are several aspects of research in DNA analysis. This thesis is an exploration 

of four different areas of D A analysis that use Combinatorics and its applications. 

Gavin et al [26] applied the idea of Levenshtein distance and created large sets of 

synthetic tissue identification. The identification tags provided error detection and 

correction. Gavin et al[26J used the error detection and correction capability of up to 

only two distances. Error-detecting and error-correcting codes of various lengths can 

be constructed using design theory. In Design Theory, code capable of correcting 

errors of lengths up to seven have been identified. Gavin et al[26] applied the Leven­

shtein idea to improve the accurate identification of tissue source in the presence of 

errors even though their paper only considered the ability to detect and correct up 

to two substitution errors. 

The second area of D A analysis using Combinatorics is the application of Graph 

Theory. We studied two methods of sequencing technique, fragmentation (overlap) 

method and sequencing by hybridization (SBH), both of which use Graph Theory. 
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These sequencing t echniques are very important in the advancement of biological 

sciences. Fragmentation method uses each base position of DNA chain to be deter­

mined individually ( eg. gel electrophoresis). On the other hand, SBH uses sets of 

oligos to be hybridized, t hus, allowing analysis of DNA samples up to several kilobases 

which are much longer than the samples produced by fragmentation method. Graph 

theory and combinatorial algorithms play a key role in understanding and performing 

SBH reconstruction [2]. SBH method still needs to be studied and improved since it 

can result in multiple "possible" DNA sequences [51]. 

Third area of DNA analysis that we studied was sequence comparison. Whenever 

there may be an error in gene expression, one may inspect the normal expressed 

sequences and the one with errors. It is often impossible to suspect whether the gene 

expression contains errors or not after a specific stage in the expression. Errors in 

gene expression may be detected in much later stages as t he cell with errors become 

suspicious as with those cancerous cells. Then, we backtrack the stages to study 

what has gone wrong in the expression. DNA sequences are expressed in terms of 

four nucleotides whereas protein sequences are expressed by 20 different amino acids. 

Two sequences are aligned (paired) element by element . Locating different positions 

of alignment, we can identify what options give us the best alignment by the scores 

of these options. Dynamic programming is used to effectively pair up two sequences. 

Heuristic searches including FASTA are still being developed to improve the search 

t ime. The different sequences from the same cell do not mean that there is an error. 

Rather, it means that some genes are activated to express while others are not. 

The final area of DNA analysis studied is t he efficient selection of unique nucleotide 

from a database containing large DNA or protein sequences. Even though technology 
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has improved significantly over the past decade, it is not sufficient to handle an ever 

increasing production of large data. Technology such as the microarray works by 

exposing a given DNA molecule to hybridize to its complementary DNA template 

requiring unique oligos of certain length. This length varies for different species. 

Intuitively, to find all unique oligos in a DNA data set, we can find all oligos of the 

given length and compare them with each other. However, while the speed and the 

memory capacity of a computer improved significantly, it is still impossible to generate 

all oligos of large length from a large database. For example, barley, with the current 

data size of 56 Mb, requires unique oligos of length about 36 [73] , which means that 

it requires up to 436 ~ 4.7 x 1021 bytes of computer memory. This is impossible for 

current computers. Analysis of such large data require an effective approach such 

as those given in [35, 40, 72]. In this thesis, we studied the Brute-Force method, 

which is the intuitive method mentioned above, and the filtration methods for the 

selection of unique oligos. In particular, we improved the existing filtration methods 

to an extent, and implemented them in Mathematica. We then applied paralleled 

these algorithms. We used a small example to explain the technique of parallelization 

(see Appendix). We discussed the time complexity for the algorithms we used as well 

as the modified-parallelized algorithms. By the simulations for DNA databases of 

some species (acaryochloris marina, bacillus cereus and aspergillus nidulans), we saw 

that , even with 5 processors, parallelization improve the time significantly. However, 

as the number of processors increase there was no need of extra processors. This 

interesting factor was due to the communication complexity that took place between 

the main computer and each processor. Machines that does not use or limit t he 

use of communication factors are becoming popular these days. Such machines have 
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multiple processors in one computer (ie. duo and quad processors) which significantly 

improves the communication time between the processors. We also proposed more 

improvements that can be done to the algorithms we have mentioned. Parallelization 

techniques provide much faster way for DNA analysis (including the selection of 

unique oligos) and they make it more effective to do analysi for large DNA databases 

with availabl computers. 
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Algorithm 8: Needleman-Wunsch algorithm 
Input: Two sequences, S and T 

Output: Optimal alighment and score fJ 

Initialization: Set d[i, 0] = -i1 fori = 0, 1, . .. , m 

Set d[O, j] = - j1 for j = 0, 1, ... , n 

begin 

for i= 1, 2, ... , m do 
For i = 1, 2, . . . , m Set 

d[i , j - 1] - 1 the gap in sequence X 

d[i, j] =max d[i - 1, j - 1] + p(i, j) 

d[i- 1, j] - 1 the gap in sequence Y 

Set backt rack B[i,j] to the maximizing pair 
The score is o = d[m, n] 

Set [i, j] = [m, n] 

repeat 

if B[i, j] = [i- 1,j- 1] then 

L Print si and Tj 

else 

l if B[i, j] = [i - 1, j] then 
L Print si 

Print Tj 

Set [i,j]= B[i,j] 

until [i, j] = [0, 0] 

end 
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Algorithm 9: Smith-Waterman algorithm 
Input: Two sequences, S and T 

Output: Opt imal alighment and score o 
Initialization: Set d[i, OJ = -ir for i = 0, 1, ... , m 

Set d[O,j] = -j[ for j = 0, 1, .. . , n 

begin 

for i = 1, 2, .. . , m do 

Fori = 1, 2, . .. , m Set d[·i, j] =max 

d[i,j - 1] _, 

d[i- 1, j -1] + p(i,j) 

d[i- 1, j] _, 

0 

Set backtrack B[i,j] to the maximizing pair 

Set [i,j] = max{d [i,j] fori= 1, 2, . .. , m and j = 1, 2, ... , n} 

The score is o = d[i, j] 

repeat 

if B[i,j] = [i - 1,j - 1] then 
L Print si- 1 and Tj - 1 

else 

l if B [i~ j] = [i- 1, j] then 
L Prmt si-1 

Print T1_1 

Set [i ,j]= B[i,j] 

until d[i, j ] = 0 

end 
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Appendix B 

Small Example 

Suppose we have a database X= {x 1 , x2 , x3 } , where 

x 1 = ACCACGCT, 

x2 = GG ACGCTGC, 

x 3 = GCGCTGC AC. 

We search for unique oligos of length l = 6. Assume that two l -m rs ar approximat ly 

the same if the Hamming Distance between them is at most 2, i.e., d = 2. Let li,j 

refer to the l-mer located at the jth position in sequence Xi of X. For example, 

l1,2 = CCACGC occurs at the second position of x 1. 

For the Brute Force Method, we generate all possible l-mers in X: 

l1 ,1 = ACCACG, l 1,2 = CCACGC, l1,3 = CACGCT, 

l2,1 = GGACGC, l2,2 = GACGCT, l2,2 = GACGCT, l2,4 = CGCTGC, 

l3,1 = GCGCTG, l 3,2 = CGCTGC, l3 ,3 = GCTGCA, l3 ,4 = CTGCAC, 

and then compare all these 11 l-mers with each other. The total number of compar­

isons is up to C21). oting that we search for unique l-mers which occur approximately 
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only in one sequence, we only compare l-mers from different sequences and do not 

compare l-mers occurring in the same sequence. That is, we only compare li,j and 

l k ,h when i =!= k. Thus, the total comparison number is 3 · ( 4 + 4) + 4 · 4 = 40. 

First , we compare l1,1 with l2,1 , then with l2,2 , until we reach the last l-mer , l3,4 . 

After all the comparisons for l1,1 are performed, we find that no l-mer is exactly 

and approximately the same as l1,1 . We say that l1,1 occurs only in sequence x1 and 

does not occur in x2 or x 3 . By definition , l1,1 is unique. The algorithm moves on 

to the next l-mer , l1,2 , and compare it wit h l2,1 until l3 ,4 . We find that l1,2 and l2,1 

are within 2 mismatches (i.e., H D (l1,2 , l2,1) = 2) . We say that l1,2 and l2,1 occur 

approximately at least in two sequences of X , and hence, they are "labeled" to be 

non-unique. Next , we move to l1,3 and compare it with the l-mers in x2 and x 3 , and so 

on. Note that although l2,1 has been marked as non-unique, we still need to compare 

it with l-mers in x3 , because this helps to decide if l-mers in x 3 are unique. After 

all the comparisons are carried out, all unique l-mers are picked out and all non-

unique l-mers are marked as non-unique. The unique l-mers are l11 = ACCACG, 
' 

l3,3 = GCTGCA, and l3,4 = CT GCAC. 

Suppose that we have 5 processors available for parallelization technique. To 

parallelize t he Brute-Force program, we apply the command "ExportEnvironment" 

to alll-mers such that all processors can work on alll-mers. We write the comparison 

process for one l-mer into a function and then use the command "ParallelMap". 

Using the "ParallelMap" command, we send each l-mer to each available processor. A 

processor takes one l-mer and compares with all the other l-mers to see if it is unique. 

Then, the processor returns the result to the main computer. The first processor 

returns that h,1 is unique, the second processor returns that l1,2 is not unique, and so 
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on. Such comparisons can be carried out simultaneously in this manner, thus saving 

time. As soon as each processor finishes its comparison, it seeks for the next lined up 

l-mer to perform another comparison until no Z-mers are available for comparisons. 

For the filtration method algorithm 1, we know that q = d!l = 2. We hav 9 

different q-mers in X. All the e q-mers and the numbers of their occurrences ar 

listed in Table B.l. The q-mers that occur more than once in X are AC, CA, CG, 

AC CA cc CG CT GA GC GG TG 

XI 2 1 1 1 1 0 1 0 0 

X2 1 0 0 1 1 1 2 1 1 

X3 1 1 0 1 1 0 3 0 1 

Table B .l: Table for all the 2-mers and their number of occurrences in X (for filtration 

method 1). 

CT, GC, TG. For each of these q-mers, we will find all their locations in X and then 

extend them to l-mers to determine if those l-mers are non-unique. 

Let us take AC for an example. The locations of all AC are (1, 1), (1, 4), (2, 3) and 

(3 , 8) , where (i,j) refers to position j in Xi · We refer to these q-mers in (1, 1), (1,4), 

(2, 3) and (3, 8) a q1,1 , q1,4 , q2,3 and q3,8 , respectively. According to the definition 

of unique l-mers, we do not extend q1,1 and q1,4 , because both of them are in th 

same sequence, x 1 . For q1,1 and q2,3 , q1,1 starts at the beginning of x1 and thus, 

cannot be extended to the left . We can only extend q1,1 to the right and obtain one 

pair of l-mers: ACCACG and ACGCTG. H D(ACCAC G , ACGCTG) = 3 does not 
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indicate the non-uniqueness of these two l-mers. ote that q3,8 ends in x3 , which 

implies that q1,1 cannot be extended to the left and (3, 8) cannot be extended to 

the right. So, there is no comparison between these two q-mers. For q1,4 and q2,3 , 

we see that q1,4 cannot start or end an l-mer because we extend by q-bases every 

time. Therefore, there is only one pair of extensions for q1,4 and q2,3 : CCACGC and 

GGACGC. H D(CCACGC, GGACGC) = 2, so we record these l-mers CCACGC 

and GGACGC as non-unique. Next, we take q1,4 and q3,8 and note that q1,4 cannot be 

extended to the left to obtain an l-mer we do not have a possible extension betw en 

these two q-mers. It is the same for q2,3 and q3,8 . From these comparisons, we 

obtain two non-unique l-mers: CCACGC and GGACGC. We carry out the same 

procedures for other q-mers that occur more than once in the database. This results 

in the unique oligos of ACCACG, GCTGCA and CTGCAC. 

q-mer Resulted non-unique l-mers 

AC CCACGC, GGACGC 

CA 

CG CACGCT,CGCTGC,GACGCT 

CT CACGCT,CGCTGC,GACGCT 

GC ACGCTG, CCACGC,CGCTGC, GCGCTG, GGACGC 

TG ACGCTG, GCGCTG 

Table B.2: All 2-mers occurring more than once and resulting non-unique l-mers from 

extensions and comparisons (for filtration method 1). 
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To parallelize the above filtration m thod 1, we first find all q-mers that occur 

more than once (i.e., AC, CA, CG, CT, GC, TG). In our Mathematica program, we 

write the process of extension and comparison for one q-mer as a function. Using the 

command "ParallelMap" enable us to send all these q-mers to all different processors 

for extensions and comparisons. Each processor works on one q-mer at a time simul­

taneously. Upon completion of extensions and comparisons, each processor returns a 

list of detected non-unique l-mers. The processor returns nothing if it did not find 

any non-unique l-mers. The main computer takes all the non-unique l-mers and then 

finds unique l-mers by eliminating non-unique ones from all the l-mers in the giv n 

database. 

For the filtration method algorithm 2, q = L~J+1 = 3. We search for all q-mers 

and cluster them into groups such that within each group each q-mer is one mutant 

to the other q-mers. We have 9 groups for this small example. They are listed in 

Table B.3. Then we consider q-mers in the same group as the same. This enables 

us to perform more extensions and comparisons increasing its accuracy to generate 

unique l-mers. 

For the ACC group, the q-mers consist of ACC and ACG. We find the locations 

for both of them in X as (1, 1), (1, 4) and (2, 3), where (i,j) also corresponds to po­

sition j in Xi· We refer to these q-mers in (1, 1), (1, 4) and (2, 3) as q1,1 , q1,4 and q2,3, 

respectively. Since q1,1 and q1,4 are located in the same sequence, we do not extend 

them. We extend q1,1 and q2,3 and obtain one pair of extensions: ACCACG and 

ACGCTG. Th Hamming Distance between this pair indicate that they are different 

(H D(ACCACG, ACGCTG) = 3). So we do not record any non-unique l-mer. For 

qi ,4 and q2,3, we cannot extend them both by q bases. From the first q-mer group, we 
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q-mer group Resulted non-unique l-mers 

ACC, ACG 

ACG,GCG ACGCTG, GCGCTG 

CAC,CGC CCACGC,CGCTGC,GGACGC 

CAC,GAC CACGCT, GACGCT 

CCA,GCA 

CGC, TGC CCACGC, CGCTGC, GGACGC 

CTG ACGCTG,GCGCTG 

GCT,GCA,GCG CACGCT,GACGCT 

GCA,GGA 

Table B.3: Group table for all 3-mers in X and the resulted non-unique l-mers from x­

tensions and comparisons (for filtration method 2). 

do not obtain any non-unique l-mers. From the second group, ACG, we have q-mers 

consisting of ACG and GCG. These appear in q1,4 , q2,3 and q3,1. After each compari­

son, the Hamming Distance between q2,3 and q3,1 is 1 (HD(ACGCTG,GCGCTG)=1). 

Thus, th se two l-mers are recorded in th non-unique l-mers list. 

We do similar extensions and comparisons for the other q-mer groups and record 

the resulting non-unique l-mers in Table B.3. This also results in unique l-mers 

ACCACG, GCTGCA, and CTGCAC. The parallelization for the program for the 

filtration method 2 is similar to the one for the filtration method 1. Each processor 

works on one q-mer group for extensions and comparisons. 
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