

St. John's

Combinatorics and its applications

in DNA Analysis

by

© Seung-byong Light Go

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Mathematics and Statistics

Memorial University of Newfoundland

August 2009

Newfoundland

Abstract

There are several aspects of research in DNA analysis. This thesis is an exploration

of four different areas of DNA analysis that use Combinatorics and its applications.

First, Levenshtein introduced the idea of Levenshtein Distance. For two strings, Lev­

enshtein Distance is the number of operations (insertions, deletions and substitutions)

required to transform one string into the other. An application of Levenshtein Dis­

tance includes creation of large sets of synthetic tissue identification that provided

error detection and correction. The second area of DNA analysis using Combina­

torics is the application of Graph Theory. Two methods of sequencing technique,

fragmentation (overlap) method and sequencing by hybridization, both of which use

Graph Theory, are studied. The third area of DNA analysis that we study is sequence

comparison. Dynamic programming is used to effectively pair up two sequences. A

heuristic method of searching sequence alignment such as PASTA is discussed. The

final area of DNA analysis studied is the efficient selection of unique oligonucleotide

(oligo) from a database containing large DNA or protein sequences. With the large

size of database, an effective approach to find unique oligos is required. In this thesis,

the Brute-Force method and the filtration methods for the selection of unique oligos,

and parallelization of these methods to save some time in searching for unique oligos,

are studied. The Brute-Force and filtration methods give us accurate results but they

may take a long time. We attempt a new approach, which gives us less accurate

results over much improved searching time.

ii

Acknowledgements

Thank God, my salvation and inspiration. I would like to express my gratitude

to all people who helped me throughout my studies.

I thank my first thesis advisor Dr. Nabil Shalaby for all his patient help and

encouragement.

I thank Dr. Manrique Meta-Montero, my other thesis advisor, for his critiques

and help toward the thesis.

I would like to thank the Department of Mathematics and Statistics for providing

computer access on Beowulf clusters as well as providing me the Teaching Assistant

position during the course of the study.

I would like to thank my family for encouragments and prayers. I thank Rev.

John Duff, Dr. John Melgaard and Dr. Gary Sneddon for their encouragements and

for always being supportive of me.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables viii

List of Figures ix

List of Algorithms xi

0 Introduction 1

1 Molecular Biology 5

1.1 DNA 5

1.2 The Central Dogma . 8

1.2.1 Replication 8

1.2.2 'franscription 9

1.2.3 'franslation 10

1.3 Restriction Enzyme . 11

1.4 Expressed Sequence Tag 12

iv

2

1.5 Mutation .

1.6 Oncogenes

Combinatorics and its Applications-Part 1:

Coding Theory and Design Theory

2.1 Definitions

2.1.1 Hamming Distance

2.1.2 Levenshtein Distance (also known as Edit Distance)

2.1.3 Error Detecting Codes

2.1.4 Error Correcting Codes .

2.2 Design Theory

2.2.1 Balanced Incomplete Block Design

2.2.2 Packing Design

2.2.3 Covering Design .

2.2.4 Directed Packing and Directed Covering Design

2.2.5 Latin Squares • 0 ••• ••• • •••• •• 0 ••

2.3 Construction of Perfect insertion and deletion Codes

2.3.1 Length 3

2.3.2 Length 4 and 5

2.3.3 Length 6 .

2.3.4 Length 7 .

2.3.5 Application of LD .

3 Combinatorics and its Applications- Part II:

Graph Theory and DNA sequencing

v

13

14

15

16

20

21

22

22

25

25

27

28

29

30

31

34

36

37

39

40

42

~ - ---------------~

3.1 Introduction to Graph Theory

3.2 Fragmentation

3.3 Sequencing by Hybridization .

4 Sequence Alignment

4.1 Complexity

4.1.1 8-notation.

4.1.2 0-notation .

4.2 Longest Common Subsequence Problem

4.3 Global Alignment

4.4 Dynamic Programming Solution .

4.5 Semi-global Alignment

4.6 Local Alignment

4. 7 Gap Penalty . . .

4.8 Heuristics: FASTA

4.8.1

4.8.2

4.8.3

Statistical Significance of Alignment Score

Hashing

FASTA.

43

47

53

58

59

60

61

61

62

63

66

67

67

69

69

73

74

5 Combinatorial Pattern Matching 78

5.1 Repeats Searching 79

5. 2 Exact Pattern Matching 81

5.3 Approximate Pattern Matching 82

5.3.1 Unique Oligonucleotides 83

5.3.2 Algorithms for the unique oligonucleotides design problem 85

Vl

5.3.3 Parallelization .

5.3.4 Test Runs . . .

5.3.5 More Improvements .

6 Conclusions

A Algorithms

B Small Example

vii

89

102

106

114

127

130

List of Tables

4.1 Handling Collisions in Hash Table . 74

4.2 Hash Table ••• 0 ••••• 76

4.3 Table of calculated Q values 77

5.1 Processing time table for parallelized Brute-Force method . 104

5.2 Processing time table for filtration method 1 111

5.3 Processing time table for filtration method 2 112

5.4 Number of unique oligos found using different methods 113

B.1 Table for q-mer occurrences in the database. 132

B.2 Hash Table for the small example .. 133

B.3 Hash Table for the small example .. 135

viii

List of Figures

1 DNA sequence alignment between human and mouse •• 0 0 • • • • • 3

1.1 Deoxyribose with labeled carbon . 6

1.2 Molecular Structure of DNA 7

1.3 Replication process 9

1.4 Splicing: messenger RNA. 10

1.5 Genetic code 11

1.6 Types of Mutation 14

2.1 Construction of blocks using a diagram. 33

3.1 An example of a graph and a pseudograph 44

3.2 A graph with a trail, a circuit and a cycle. 45

3.3 A non-Eulerian and an Eulerian graph 45

3.4 Hamiltonian and non-hamiltonian graphs 46

3.5 Two diagraphs 46

3.6 Example of trees 47

3.7 Gel Electophoresis 48

3.8 Eulerian graphs for RNA chains 51

ix

3.9 The Eulerian digraph after the partial digestion 52

3.10 Sequence by Hybridization 54

3.11 A problem with Sequence by Hybridization . 55

3.12 Graph Theory in Sequence by Hybridization 55

3.13 The Eulerian trails for SBH Spectrum of length 3 56

4.1 Scoring Matrix in Global alignment 64

4.2 Local alignment matrix 68

4.3 Frequency distribution of Q values 77

5.1 An illustration of parallel computing. 90

5.2 Estimating the run time of Algorithm 1 on different numbers of pro-

cessors. 107

5.3 Estimating the run time of algorithm 2 with the 1-mutant on different

numbers of processors. 108

X

List of Algorithms

1 Brute-Force algorithm for Pattern Matching 81

2 Brute-Force algorithm in parallel 92

3 The parallelizing portion of Brute-Force algorithm: each lM er[[i]) will

4

5

enter into the function for analysis on different computers.

Parallelized Filtration algorithm 1

The parallelizing portion of the algorithm 1: each q-mer will enter into

this function for analysis on different computers.

93

95

96

6 Parallelized Filtration algorithm 2 97

7 The parallelizing portion of algorithm 2: each qp[[i]) will enter int o this

8

9

function for analysis on different computers.

Needleman-Wunsch algorithm .

Smith-Waterman algorithm . .

xi

98

128

129

Chapter 0

Introduction

Recent developments in technology and informatics have given a significant boost

to research in biological sciences. Biologists analyze the interactions of species and

the function of cells, researchers depend greatly on collection and analysis of large

data such as DNA1 information to understand the interactions between species [32].

Technological improvements have been allowing us to collect and interpret data faster

than ever. Still, many studies and even more technological improvements are needed

to handle large amounts of data, so that we can determine which parts of DNA are

responsible for the various chemical processes of life. In an attempt to analyze the vast

amount of biological data, a new and growing discipline combines other branches of

science. Bioinformatics, which is the combination of mathematics, computer science,

biology, biochemistry and statistics, is a growing field that attempts to solve biological

problems using computers and combinatorics, some of which are explained here, in

an attempt to analyze the vast amount of biological data.

1 DNA is the fundamental substance of which genes are composed.

1

The term 'gene' defines an inheritable trait that exists in cells. Genes are made

of DNA. A gene may be turned on (expressed) or off (not expressed) within a cell.

The process of how a gene is turned on or off is called gene expression. Scientists

are working very hard to sequence and assemble the genomes of various organisms

including humans in an attempt to understand where and how a gene is expressed

under normal circumstances.

DNA controls the activity of a gene. Maintenance of DNA is essential for normal

function of a cell, and thus to survival [56]. Hormones and other chemical agents in

the body of a human try to maintain DNA. However, DNA is constantly damaged

by both external and internal agents. It must be repaired by certain mechanisms to

maintain the integrity of genetic information [60]. Failure to do so results in mutations

which may ultimately result in death. Some of these mutations may be responsible

for cancer.

Sequence alignment attempts to identify mutations in genes. Primary sequences

of DNA, RNA2 , or protein of an organism can be aligned. Figure 1 is an example

of alignment of two DNA sequences. In more detail, the alignment of two sequences

is for the purpose of identifying similar regions, which may lead to functional and

structural similarities of the two sequences. If two compared sequences are from the

same species, mismatches or gaps within the alignment indicate mutations.

There are various types of studies in DNA analysis and most of these studies

include different branches of scientific fields. This thesis includes topics from mathe­

matics, computer science and biology.

This thesis is organized as follows: Chapter 1 introduces the reader to the basics of

2RNA is a working copy of DNA. Biological terms will be defined in the next chapter.

2

EMBOSS_OOl 1 AGIGAGAO.CGACGAGCCTACIA!CAGGACGAGAGCAG&AGAGTGAIGAI 50
11 11. 1.1.11 . 11.11111 11.1111 111 11 11 11 111 . 11111.1111

EHBOSS_OOl 1 AGIGIGICICGTCG!GCCIACIIICAGGACGAGAGCAGGTGAGIGIIGAT 50

EMBOSS_OOl 51 GAGIAGCGCAO.GCGACGA'TCAICACGAGAGAGIAAGAA----------- 89
1111. 1111 .1.1 11 111.111 11 .1111.1 111.1111

EHBOSS_OOl 51 GAGITGCGCICTGCGACGIICA!CICGAGIGAGIIAGAAAGIGAAGGTAI 100

EHBOSS_OOl 90 ----------------GCAGIGA!GAIGIAGAGCGACGAGAGCACAGCGG 123
111111111111111 1111111111111 11 11 11

EHBOSS_OOl 101 AACACAAGG!GIGAAGGCAGIGAIGAIG!AGAGCGACGAGAGCACAGCGG 15 0

EMBOSS_001 124 CG----ACTACTACTAGG 137
I I .. 11 . .. 11111

EMBOSS_OOl 151 CGGGAIGA!A!AICIAGGAGGA!GCCCAAIIITI!TII 188

Figure 1: An example of DNA sequence alignment between human and mouse using EM-

BOSS Pairwise Alignment Algorithms at http:/ jwww.ebi.ac.uk/emboss/alignj.

molecular biology. This includes a brief review of DNA, RNA, protein, the processes

of replication, transcription and translation. In Chapter 2, we discuss the coding

theory and the design theory necessary for the construction of error-detecting and

error-correcting codes. We use the notion of Levenshtein Distance (or edit distance) ,

which measures the distance between two strings that are paired (or aligned); this

distance is the minimum number of transformations needed to transform one string

into the other. We conclude this chapter by giving an applied example of the cod-

ing theory and the design theory that uses Levenshtein Distance in gene discovery

projects. In Chapter 3, we study Graph Theory applied to DNA sequencing and map-

ping. We study the Fragmentation method and Sequencing by Hybridization (SBH).

In Chapter 4 we study the known methods of aligning DNA and protein sequences.

We explore some developed algorithms including FASTA. Finally, in Chapter 5 we

review combinatorial pattern matching. We discuss exact pattern matching and ap-

proximate pattern matching problems. In particular, our main focus is on the unique

3

oligonucleotide searching problem that are popularly used in DNA technologies such

as microarray [54, 42, 58]. We present the existing brute-force and filtration methods

(see [49, 6, 35, 72]) and propose some improvements and a parallelization technique.

We implement these algorithms and parallelize them in Mathematica3 . We give a

small example to explain the brute force algorithm, the two filtration algorithms and

the parallelized algorithms of each. Running these on the databases of three bacteria

species (acaryochloris marina, bacillus cereus and aspergillus nudulans), we find that

the parallelization technique works very well and improves the speed of old algorithms.

3Mathematica is a fully integrated software environment for technical and scientific computing.

4

Chapter 1

Molecular Biology

The purpose of this chapter is to provide an overview of gene expression at the

molecular level. What is known as the Central Dogma as the organizing theme to

define the basics of DNA, RNA and protein is explored here. In particular, this

chapter illustrates the application of Bioinformatics in terms of nucleotide sequences.

1.1 DNA

In every organism, the ultimate source of genetic information is stored in nucleic

acids. A nucleic acid is a macromolecule made from nucleotide chains. A nucleotide is

composed of a nitrogenous base, five-carbon sugar and a phosphate group (Figure 1.1).

Nucleotides are joined to each other to form chains called polymers1 such as DNA

or RNA. There are four nitrogenous bases found in DNA: Adenine(A), Cytosine(C),

Guanine(G) and Thymine(T). The bases of nucleotides may be classified as either

purine or pyrimidine. The bases A and G are purines and C and T are pyrimidines.

1 A Polymer is a large molecule with repeating chemical structure.

5

In 1953, Watson and Crick proposed that DNA is formed by two long strands that

are entwined giving the shape of a double helix [63] . See Figure 1.2a.

OH (O)H

(Deoxy)Ribose

Figure 1.1: Deoxyribose with labeled carbon numerically from 1' to 5'. The labeling is

according to the system of naming organic compounds in Organic Chemistry.

The above structure composed of five carbons is often referred to as pentose

sugar deoxyribose.

The 'backbone' of the DNA strand is formed by alternating phosphate and sugar

groups. Sugar in DNA is composed of five carbons as in Figure 1.1. Each nucleotide

base containing sugars is connected by phosphate groups at the 5' and 3' ends. The

existing bonds by the phosphate groups result in the direction of the nucleotides

in one strand. In a double helix, the direction of the nucleotides in one strand is

opposite to that of the other. In the sugar backbone of a DNA strand, the 5' end is a

terminal phosphate group (chemical compound containing phosphate) and the 3' end

is a terminal hydroxyl group (chemical compound containing OH).

One strand of a DNA chain bonds with the other strand by complementary base

pairing. Complementary base pairing refers to nucleotides with the base Adenine

that bond with nucleotides with thymine base (A-T). Similarly, nucleotides with the

6

Adenine

Thymine

Guanine

Cytosine

(a)

Sugar
Phosphale
Backbone

Base pair

Nilrogeous
base

Thymine
Adenine

S'end ~

·f . ::0 ··-yJ;"'
. 7 r-tN

Pho•photo-Y ~~·~ "'~
deoxyribose"70J ~ ~

bO<kboOO . •l ~~'~'\~
.) .(~)~~ y -..1-

3' end Cytosine (.,.
Guanine 5· end

(b)

Figure 1.2: Deoxyribonucleotides are linked by phosphate group. Sugars, which are read

from 5' end to 3' end, form the backbone of the DNA. Adenine bonds to

Thymine and Cytosine bonds with Guanine in DNA. Figures are adapted

from wikipedia [65].

base Guanine bond with nucleotides having the base Cytosine (G-C). As a result of

the complementary base pairing, the DNA molecule has entwined helical shape and

the two strands of DNA are said to be complementary (see Figure 1.2).

As illustrated in the Figure 1.2, a DNA molecule can be represented by four bases,

A, C, G and T. The two strands in DNA are connected by hydrogen bonds between

complimentary bases of the two strands. Adenine from the sugar backbone bonds to

Thymine and Guanine with Cytosine as in Figure 1.2.

A protein is made up of 20 amino acids, which are polymers. Three nucleotide

7

bases can be used to identify these amino acids. For example, CCA (cytosine­

cytosine-adenine) represents Arginine, one of the 20 amino acids. The three nucleotide

bases such as CC A are called codons.

1.2 The Central Dogma

A DNA sequence, which is a nucleotide chain (i.e. a biological polymers) encodes

genetic information. The Central Dogma of molecular biology, which was proposed by

Francis Crick [19] , is a framework for understanding the transfer of genetic information

between biopolymers.

There are three types of biopolymers: DNA, RNA and proteins. The transfer of

information from DNA to DNA is called replication, DNA to RNA is called transcrip­

tion and RNA to protein is called translation. The Central Dogma is represented by

these three stages; replication, transcription and translation. The dogma, when it

was first postulated, highlighted only the three stages, but later it was found that

some organisms were able to replicate RNA and even go back to DNA from RNA.

For the purpose of this thesis, we will only focus on the three stages of the Central

Dogma as it was first proposed.

1.2.1 Replication

To transmit genetic information, the DNA must first replicate [29] . The Central

Dogma states that for replication to take place, the two strands of DNA must unwind.

The two exposed nucleotide chains act as templates for new strands that are catalyzed

8

(formed) by the enzyme2 DNA polymerase (see Figure 1.3). The new chain of DNA is

synthesized from the 5' end to the 3' end, where free nucleotides are added according

to the complementary base pairing of the template strands.

1 -s Jt.s.-.it-,s,.J&-s -
I ~ I

Dlrectl(lfl -' •:

3· -s P·S P·S P ·S P·S p-~ p ··
I I l ,.

~ f:

Figure 1.3: Replication Process. This figure is taken from Griffiths [29].

1.2.2 Transcription

An organism is either made of proteins or something that has been made with proteins.

Since proteins are encoded in a gene, the products of most genes are specific proteins

[29]. The Central Dogma states that to produce a protein from a gene, the cell

must copy information encoded in DNA to RNA, which represents a "working copy"

of the gene. The process in which nucleotide sequences in DNA are copied onto

RNA is called transcription. In comparison to DNA, RNA also contains nucleotides

containing the sugar ribose instead of deoxyribose in DNA. The RNA contains Uracil

(U) instead of Thymine occurring in the DNA. During the transcription process, the

DNA acts as a template. A small section of the DNA double helix unwinds and is

then used as a template by the enzyme, RNA polymerase to synthesize a messenger

2 An enzyme catalyzes chemical reactions of the cell.

9

RNA (mRNA) in a process called splicing (Figure 1.4). The DNA molecule contains

parts that code for proteins called exons, and some other parts that do not code

anything called introns. In splicing, introns of pre-mRNA are removed and exons

of pre-mRNA are joined, resulting in an mRNA molecule. During the transcription

process the mRNA is capped (by 7-methylguanine) at the 5' end and a polyA tail is

added at the and 3' end. The addition of both, a 7-methyguanine cap and a polyA

tail, are essential for the proper function of the mRNA.

Since introns do not exist in prokaryotes3 splicing only occurs in eukaryotes4 . In

the mRNA, genetic information is encoded in the form of triplets of the four possible

bases called codons.

pre-mRNA

5' Exon ~] ::: 17 E~on 3'

Figure 1.4: Splicing process of the pre-mRNA into the mRNA, where introns are elimi-

nated.

1.2.3 Translation

Translation is the process by which a protein is formed from RNA. The Central Dogma

states that a DNA molecule directs its own replication as well as its transcription to

form RNA. The sequence of RNA is transcribed into the corresponding amino acids

3In general, prokaryotes are organisms that lack a cell nucleus. Bacteria and archaea are prokary­
otes.

4Eukaryotes are organisms that have cell nucleus. Animals, plants, fungi, and protists are eu­
karyotes.

10

which then forms protein.

Figure 1.5: Genetic Code: There are three stop codons to mark the end of translation

TAA, TAG and TGA for DNA. There is one start codon to initiate translation

process: ATG for DNA. This figure is adapted from Bergeron, 2002.

Genetic information is passed in the transcription and translation processes through

codons. Since codons are triplets of the four possible bases, then the possible number

of codons is 43 = 64. Three codons specify the termination of the chain. Figure 1.5

shows all the possible codons and the respective amino acids.

1.3 Restriction Enzyme

Restriction enzymes cut an RNA sequence after a particular occurrence of a base.

There are two kinds of restriction enzymes, the G-enzyme and the U, C-enzyme. The

11

G-enzyme cuts an RNA sequence after every G base and the U, C-enzyme cuts the

sequence after every U or C base. The resulting pieces are called fragments, which

we will discuss in a later chapter.

For example, assume we have an RNA chain consisting of AGGACCGU AAU.

The G-enzyme will break the chain after every appearance of the G base, resulting

in the G-fragments: AG, G, ACCG, and U AAU. Similarly, the U, C-enzyme for the

given RNA chain will produce the U, C-fragments: AGGAC, C, GU, and AAU.

1.4 Expressed Sequence Tag

In order to study the difference between a normal gene and an altered gene, which may

be responsible for a particular disease, researchers must identify and study proteins

[1]. The detection of a gene that codes a particular protein is very complicated and

time consuming. Sometimes, this process may take years to complete. Often times,

attempts to find a gene that codes for a particular protein are only plausible after

a certain disease is found. In such cases, scientists can back-track and isolate the

location in the chromosome responsible for the construction of the protein causing

the disease.

Significant advances in technology such as computers, microarrays (to be discussed

in Chapter 5), have helped boost the speed of biological research.

Expressed Sequence Tags (ESTs) are bits of DNA segments which are expressed

in a cell. ESTs are short, about 200-800 nucleotides and are generated from either

5' or 3' end of an expressed gene [47] . An EST serves as a "tag" that can identify

unknown genes and to map their position within a genome [1].

12

The mRNA 'does not contain non-coding introns; it represents copies from ex­

pressed genes. However, mRNA is unstable outside of a cell and it cannot be cloned

directly. Instead of using mRNA, scientists use special double-stranded complemen­

tary DNA (eDNA) that is generated by reverse transcriptase. These eDNA clones

are sequenced to obtain ESTs [47).

1.5 Mutation

Occasionally there may be errors in the DNA replication, transcription and translation

processes. For the accurate transmission of genetic information during cell division,

these errors must be repaired through a number of DNA repair mechanisms. Failure

to do so results in the mutation of a gene.

Sources of errors include ultraviolet(UV) radiation, ionizing radiation, alkylating

agents, and/ or viruses, which can be present within the cell of an organism, resulting

in a base pair sequence change leading to possible mutations.

A mutation is hereditary, which means it can be passed onto offspring. Certain

mutations can cause the cell to become malignant, thus leading to cancer [21) . On

the other hand, a mutation may lead organisms to better adapt to changes in their

environment. For example, a moth may develop offspring with a mutation which

changes its color so that it will be harder for predators to detect them.

A chemical mutagen which causes DNA damage can be classified into two major

classes: point mutations and insertion/ deletion mutations. Point mutations, in which

a base pair is replaced by another, can be subclassifed as transitions and transversions.

In transitions, a purine is replaced by another purine, A t-t G or a pyrimidine is

13

Figure 1.6: Types of Mutation

replaced by another pyrimidine, C H T. In transversions, a purine is replaced by a

pyrimidine and vice versa. Insertion/deletion (indel) is where one or more nucleotides

are inserted or deleted from the DNA as in Figure 1.6.

1.6 Oncogenes

Oncogenes are mutated forms of genes. They cause normal cells to grow out of control,

usually becoming cancerous cells. Oncogenes are mutations of certain normal genes of

the cell called proto-oncogenes, which regulate cell division. When there is a mutation

of a proto-oncogene, this gene is permanently turned on (expressed). This means that

this gene is turned on even when it is supposed to be turned off (inactivated). As

a result, there is no control on cell division leading to uncontrolled growth, possibly

resulting in cancer [20] .

14

Chapter 2

Combinatorics and its

Applications-Part I:

Coding Theory and Design Theory

Coding Theory deals with finding an efficient and accurate transfer of information

from one place to another. The medium used to transfer information is called a chan­

nel. Telephone lines are one example of a channel. Information carried through the

channel may be interrupted or disturbed causing the sent information to be different

than the received information. These undesirable disturbances, called noise, may be

caused by many sources such as weather conditions. Coding Theory analyzes the

information that is transferred from the transmitter to the receiver with the noise

level as a variable. Implementing the Central Dogma with the concepts of Coding

Theory enables scientists to model the transfer of information within organisms using

computational techniques [10, 31].

15

- -- - - --------

Coding Theory includes five major entities: information source, transmitter (en­

coder), channel, receiver (decoder) and destination. We rephrase the cellular process

in terms of coding theory as follows: The information source contains the genetic

information of the human DNA and this is transmitted as a nucleotide sequence

through a channel. This channel may be the nucleus of a cell. UV radiation which

causes damage in the DNA is a source of disturbance. A strand of mRNA that is

expressed from the damaged and un-repaired DNA by the UV light is received from

the nucleus to the cytoplasm of the cell. The received message is then sent to the

final destination, which is protein synthesis.

The purpose of this chapter is to explore Coding Theory and Design Theory.

Later, we introduce Design Theory to discuss directed designs, which may be thought

of codewords and error correcting codes of certain lengths. This chapter concludes

with an example of an application of Coding and Design Theory to gene discovery.

2.1 Definitions

The information to be sent is often transmitted as a binary sequence of O's and 1 's.

A DNA molecule consisting of the four nucleotide bases, A, C, G and T, can be

represented using binary sequences, i.e. A= 00, C = 01 , G = 10 and T = 11. Thus,

the sequence ACGA would be represented with 8 bits as 00011000.

Definition 1. Let A be a finite set of elements. The set A is referred to as an

alphabet and its elements are referred to as letters or symbols. An arbitrary sequence

x = (x 1, x2 , . . . , x1) of l, l any nonnegative integer, letters of A is called a word (or a

string or an [-tuple) and the number l is called its length. Notice that when l = 0,

16

x = E is the empty string of length 0.

Example. A DNA sequence (A, T, T, C, G) is a 5-tuple, also a word or a string of

length 5, over the alphabet {A, C, G, T}. The sequence (0, 1, 1, 0) is a 4-tuple over

the alphabet {0, 1} and this word or string has length 4.

Remark. For simplicity, we may use the notation for strings or sequences without

the bracket and commas between the elements. For example, (0, 1, 1, 0) can be simply

written as 0110 and (A, G, T) as ACT.

Definition 2. Given two strings x andy we define their concatenation as x * y.

Example. Let x = ACGGT andy= ATTT be two DNA sequences. The concate­

nation x * y is ACGGT ATTT.

Definition 3. Given two sets of strings A and B we define their concatenation A*B =

{x * ylx E A andy E B}. In other words, the concatenation of two sets are all the

possible concatenations of an element from one set with an element of the other set.

Remark. When A= B we write A* B or A2 or B 2
.

Example. Let A= {000, 001} and B = {010, 011}. The concatenation is A* B =

{000010,000011,001010,001011}.

Definition 4. Let A be a set of strings. The powers of A are: A 0 = { E}, A 1 = A,

An= An-1 *A, for all n ~ 1.

Definition 5. A code C of length n over an alphabet A of size v is any subset C of

An(v) (the set of all n-tuples over A). The number of words of a code is denoted as

ICI.

17

Example. A binary code is a set C of words over the alphabet {0, 1 }. The code that

has all words of length three is

c = {000,001,010,011,100, 101,110,111}.

The largest possible number of codewords for length three is 23
.

Remark. A code having all its words of the same length is called a block code. We

will consider only block codes.

Definition 6. Let x be a word. If another wordy can be obtained from x by deleting

some of its letters, y is referred to as subword (or subsequence). Similarly, a word z

that is obtained from x by adding some letters to it is referred to as superword (or

supersequence).

Example. For A = {0, 1}, let x = 01010. We can obtain subsequence y = 001 from

x by deleting second element 1 and the fifth element 0. Inserting 1 and 0 at the

start of the sequence x gives the supersequence z = 1001010. Also, w = 01010 is a

superword and a subword of x.

Example. For A= {A, C, G, T}, let x be AACGT, a DNA sequence. Then, deleting

the first and the fifth element of x gives subword v = ACG. Deleting the first element

of x gives w = ACGT. Both v and w are subsequences of x. Adding A before the

first element of x gives superword y = AAACGT.

Definition 7. Let x = (x1 , ... , Xm) be a string over A = {A, C, G, T}. A prefix

of x is (x1 , x2 , ... , xi), where 0 ::; i ::; m; when i = 0 the prefix is c. A suffix of x

is (xi, xi+l, . . . , Xm), where 1 ::; i; when i > m the suffix is c. A substring of x is

(xi, xi+1, ... , Xj_1 , xi), where 1 ::; i, j ::; m; when i > j the substring is c.

18

- -------------

Example. Let x = AGGCGT AG. A prefix of x is AGGC. A suffix of x is TAG.

AGGC and CGTA are substrings. Also, Eisa prefix, suffix and substring of x.

Remark. It is important to note that all substrings are subsequences but not all

subsequences are substrings. A substring includes all symbols between two entities

of a sequence while a subsequence includes some entities between two symbols of

a sequence. The symbols of both subsequences and substrings appear in the same

relative orders as in the original sequence. Biologists deal primarily with fragments

of DNA which are substrings, not subsequences.

Example. Let x = ACCAC. Then ACC is both a subsequence and a substring

(also a prefix) of x. However, CCC is only a subsequence, not a substring.

Definition 8. Let X = { x1 , x2 , ... , xk} be a collection of strings called input database,

where xi is a sequence over the alphabet A= {A, C, G, T}. If k = 0, then X= {}.

The length of X is L = 2::7=1 li, where li is the length of xi.

Example. Let X = { x1 , x2 , x3 } such that x 1 = ACGT A, x 2 = ACGT A and x 3 =

ACCC. Clearly, k = 3, l1 = l2 = 5 and b = 4. The length of the database, L, is

therefore, 14.

If all possible outputs of a channel correspond exactly to the input codes, there is

no error present and there is no need to detect errors. In the presence of errors,

a channel code must be designed to identify an output code with the correct input

code. This is done by recognizing similarities between the output and the input. The

idea of similarities between input and output can be formalized using the Hamming

Distance(HD) between words.

19

2.1.1 Hamming Distance

Definition 9. We define addition and multiplication among elements in the set B =

{0, 1} to be mod 2.

Example.

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0,

0 . 0 = 0, 0 . 1 = 0, 1 . 0 = 0, 1 . 1 = 1.

We generalize addition and multiplication on the set Bn such that given x = xi, ... , Xn

andy= Yi, ...) Yn, X+ y =Xi+ Yi, ...) Xn + Yn and X. y =Xi. Yb . ..) Xn. Yn

Definition 10. Let g and h be words of length n. The Hamming Distance between

g and h, H D(g, h) is the number of positions in which g and h disagree.

Example. If g = 0110 and h = 0111, H D(g, h)= 1. Let i = ACGT and j = TTTT

be two DNA codes. The Hamming Distance between i and j is 3.

Similarly, the Hamming Distance can also be determined by obtaining the Hamming

Weight between two sequences.

Definition 11. Let g be a binary sequence of length n. The Hamming Weight of g,

HW(g) , is the number of occurrences of 1 in g.

Lemma. The Hamming Distance between g and h is the same as the Hamming

Weight of the error pattern e = g + h:

H D(g, h)= HW(e).

20

Example. Let g = 01101111 and h = 11001011.

We have H D(g, h)= H D(01101111, 11001011) = 3 and HW(g+h) = HW(10100100) =

3.

Definition 12. For a code C containing at least two words the distance of the code

is the minimum value of HW(g +h) , for all g, h in C.

Example. For C = {0001, 0101, 1001}, the Hamming Weight of each pair of elements

in C is the following.

HW(0001 + 0101) = HW(0100) = 1, HW(0001 + 1001) = HW(1000) = 1, and

HW(0101 + 1001) = HW(1100) = 2. Thus, the distance of Cis 1.

2 .1. 2 Levenshtein Distance (also known as Edit Distance)

Levenshtein Distance(LD) or Edit Distance(ED), which was introduced by Leven­

shtein [43], is the minimum number of substitutions, insertions and deletions (indels)

that is required to transform one sequence into another.

Example. Let x = 011011 and y = 110110. The Hamming Distance between the

two strings x andy is four, i.e. H D(x, y) = 4. If we take x and delete the first digit

0 and insert 0 after its last symbol we would obtain y, thus, LD(x, y) = 2.

Example. Let z = 012234 and h = 5122647. We cannot obtain the Hamming

Distance between the two strings, z and h, because they are of different lengths. If

we take z and substitute the first element 0 with 5, substitute the fifth element 3

with 6 and insert 7 at the end of the string, we obtain 5122647, which is h. The

transformation from z to h requires these three operations and there is no other

shorter way, thus LD(z, h) = 3.

21

- -------------

2.1.3 Error Detecting Codes

In the next two sections, we follow the notations and definitions from [31].

Definition 13. Suppose that g is in a code C is sent and h in En is received, then

e = g + h is the error pattern. Any word e in En can occur as an error pattern, and

we wish to know which error patterns C will detect. We say that code C detects the

error pattern e if and only if g + e is not a codeword, for every g in C. In other words,

e is detected if for any transmitted codeword g, the decoder, upon receiving g + e can

recognize that it is not a codeword and hence that some error has occurred.

Example. Let C = {001, 011, 110}. Suppose g = 011 is sent and the received word

is h = 111, hence e = 100. We calculate f + e for all f in C: 001 + 100 = 101,

011 + 100 = 111 and 110 + 100 = 010. None of the three words 101, 111, or 010 is in

C, hence, C detects the error pattern 100. Suppose now g = 011 and h = 001, hence

e = 010. We calculate f + 010 for all g in C: 001 + 010 = 011, 011 + 010 = 001 and

110 + 010 = 100. Since the first sum 011, and the second sum 001 are in C, we see

that C does not detect the error pattern 010. Note that we only require at least one

f + e to be in C for the error pattern to remain undetected.

2.1.4 Error Correcting Codes

Definition 14. Let g E C be transmitted over a channel and h be the received word.

Let e = g + h be the error pattern. We say the code C corrects the error pattern e if

for all g E C, g + e is closer to g than to any other word in C. By closer, we mean

HD(g, g +e)< HD(d,g +e), for all dEC and d #g.

22

Example. Suppose we have code C = {001, 101}. We wish to see if the code corrects

the error pattern e = 010.

For g = 001, g + e = 001 + 010 = 011. H D(001, g +e) = H D(001, 011) = 1 and

H D(101, g +e) = H D(101, 011) = 2.

For g = 101, g + e = 101 + 010 = 111. H D(001, g +e) = H D(001, 111) = 2 and

H D(101, g +e) = H D(101, 111) = 1.

Since all g + e is closer to g than any other word in C, C corrects the error pattern

010.

Take another error pattern, e = 110.

For g = 001, g + e = 001 + 110 = 111. H D(001, g +e) = H D(001, 111) = 2 and

H D(101, g +e)= H D(101, 111) = 1.

Since g + e is not closer tog = 001 than to 101, C does not correct the error pattern

110.

Definition 15. A code Cis called a linear code iff+ dis a word in C whenever f

and dare in C.

Example. A code C = {00, 01, 10, 11} is a linear code because all the sums are inC:

00 + 00 = 00 01 + 00 = 01 10 + 00 = 10 11 + 00 = 11

00 + 01 = 01 01 + 01 = 00 10 + 01 = 11 11 + 01 = 10

00 + 10 = 10 01 + 10 = 11 10 + 10 = 00 11 + 10 = 01

00 + 11 = 11 01 + 11 = 10 10 + 11 = 01 11 + 11 = 00

A code C = {00, 01, 10} is not a linear code because 01 + 10 = 11 is not in C.

The minimum distance of a code measures how "far apart" from each other different

codewords are. The minimum distance of a code is defined to be the smallest distance

23

between two distinct codewords [30].

Lemma. The distance of a linear code is equal to the minimum Hamming Weight of

any nonzero codeword.

Definition 16. A code is said to be a t error-correcting code if it corrects all error

patterns of Hamming Weight at most t and does not correct at least one error pattern

of Hamming Weight t + 1.

Definition 17. Given non-negative integers nand t, the binomial coefficient is given

by,

(
n) n!
t -t!(n-t)!

(7) is the number of t-element subsets of an n-element set.

Let g be a word of length n. For 0 ~ t ~ n, the number of words of length n of

distance at most t from g is

Since we are using binary words, there are 2n words of length n. For t = n,

Definition 18. A code C of length n and distance 2t + 1 is referred to as a perfect

code if,

2n

ICI = (~) + (7) + ... (7)'
Example. Let n = 2t + 1.

(~) + (~) + · · · (;) ~ ~ r (~) + (~) + ... (:)l ~ ~2" ~ 2"-'.

24

2n
ICI = 2n-1 = 2.

Thus, any perfect code of length whose length and distance are both 2t+ 1 has exactly

two codewords.

2.2 Design Theory

The main references from this section are from Colbourn et al. [18), Street el al. [59]

and Wang et al. [61].

2.2.1 Balanced Incomplete Block Design

Definition 19. A balanced incomplete block design (BIBD) is a collection of k-

subsets (called blocks) of a v-set V, k < v, such that each pair of elements is in V is

in exactly >. blocks.

Sometimes, BIBDs are referred to as (v, k, >.) BIBD or (v, b, r, k, >.) BIBD (design) ,

where b is the number of blocks in the design and r is the number of blocks each

element in V is included in.

Theorem 1. Given a (v, b, r, k, >.)-design, the following holds.

• 1. bk = vr

• 2. >. (v - 1) = r(k- 1)

Proof. See Ian Anderson's book [3].

Example. A (7, 7, 3, 3, !)-design is given by the set V = {1, 2, 3, 4, 5, 6, 7} and the

following 7 blocks (b = 7): {1, 2, 4}, {2, 3, 5} , {3, 4, 6}, { 4, 5, 7}, {5, 6, 1}, {6, 7, 2} ,

25

and {7, 1, 3}. We may note that the block size k is 3, and the replication number r is

also 3. Each pair of elements appears exactly once in only one block, A = 1.

Note that this design is called cyclic since all blocks are obtained by adding 1 (mod 7)

to each element of the first block (or developing the block {1, 2, 4}). The first block

is called the base block.

Remark. The condition v > k refers to the "incomplete" in BIBD and the parameter

of A refers to "balanced", thus a (v, b, r, k, A)-design is called BIBD.

Definition 20. A directed balanced incomplete block design(DBIBD) with parame­

ters (v, b, r, k, A), is a balanced incomplete block design with parameters (v, b, r, k,

2A), in which the blocks are regarded as ordered k-tuples and in which each ordered

pair of elements occurs in A blocks. We denote DB I B D by DB (k, A, v).

Remark. Given the block (a, b, c, d) we will say the six ordered pairs (a , b), (a, c),

(a, d), (b, c), (b, d) and (c, d) occur in the block.

Example. For DB(3, 3, 5), we have total b = 5'4~~~·2) = 20 blocks. Developing the

blocks of (0, 1, 2), (0, 2, 4), (0, 3, 1) and (0, 4, 3) modulo 5, we have the following 20

blocks.

(0, 1,2) (0,2,4) (0,3, 1) (0,4,3)

(1,2,3) (1 , 3, 0) (1,4,2) (1,0,4)

(2,3,4) (2, 4, 1) (2,0, 3) (2,1,0)

(3, 4, 0) (3,0,2) (3,1,4) (3,2,1)

(4,0,1) (4, 1,3) (4,2,0) (4,3,2)

Since A is 3, every pair and the reverse pair are in exactly three blocks, i.e., (0, 1) and

(1, 0) are in exactly three blocks.

26

2.2.2 Packing Design

Definition 21. A packing design P D(v, k , >.) is a pair (V, B) where V is a set of v

points and B is a family of k- subsets from V such that each pair in V is in at most

). blocks. If the number of blocks is maximum, it is called the maximum packing

design.

Theorem 2. In a maximum packing design (v, k, >.), the number of blocks, b, is

defined by:

Proof. For every point x E V there are at most >.(v - 1) pairs including it. If x is in

a block, then each block contains k- 1 pairs including x. Thus, the total number of

blocks in which x is included is at most

>.(v - 1)
k- 1 .

This number, however, must be an integer, so it becomes

l>.(v- 1)J
k - 1 '

which includes each v points. These points must all fit in blocks of size k . The total

number of blocks becomes,

l (v-l)A J
v k-1

b ~ k '

and it must be an integer thus,

27

Example. For v = 6, k = 3, and A= 1, we have

b ~ l ~ ·l ~ J J = l132 J = 4.

The number of blocks in the maximum packing design is four: {1, 2, 3}, {1, 4, 5},

{2, 4, 6} and {3, 5, 6}. Every pair from each block, which is called the leave, is used

exactly once except {1, 6}, {2, 5} and {3, 4}.

2.2.3 Covering Design

Definition 22. A covering design CD(v, k, A) is a pair of (V, B) where Vis a set of

v points and B is a family of k- subsets from V such that each pair in Vis in at least

A blocks.

Theorem 3. In a minimum covering design (v, k, A), the number of blocks, b, is

defined by:

Proof. Similar method as in Theorem 1.

Example. For minimum covering design of v = 5, k = 3, and A = 1, we have

b ~ ~~ l~l l = f1
3°l = 4. The four blocks are {1,2,3}, {1,4,5}, {2,3,4} and {2, 3,5}.

Generating pairs from each block, we note that the pair {2, 3} is used three times but

all other pairs are used exactly once. The extra pair {2, 3} used three t imes is called

the excess graph.

28

2.2.4 Directed Packing and Directed Covering Design

This subsection is taken from [7]. A directed packing (covering) design with param-

eters v, k, >., denoted by (v, k, >.)-DPD ((v, k, >.)-DCD) is a pair (V, B) where V is

a set of v points and B is a collection of ordered k-tuples (called blocks) of V, such

that every ordered pair of points of V appears in at most (at least) >.blocks of B.

Example. For the DPD we have,

For (6, 4, 1)-DPD, we have b ~ l ~ l ¥ J J = 4. The four blocks are (5, 1, 2, 4),

(2, 3, 6, 1), (6, 3, 4, 2) and (4, 1, 3, 5). We note that there are total(~) x2 = 30 ordered

pairs in this design. From the four blocks, we can only generate G) x4 = 24 pairs,

thus, there are six directed pairs which are not used which gives us a directed leave

graph.

Example. For the DCD we have,

For (14, 4, 1)-DCD, let the point set be Z13 . We take (13, 13, 4, 4, 1)-BIBD on Z13

in a decreasing order, that is, the blocks of this design are arranged so that its ele-

ments are in a decreasing order. There are 13 blocks in this design. Furthermore we

take the following 18 blocks.

29

(0, 1, 2, 12) (0, 7, 11, 13) (13, 0, 3, 9) (0,4,8,10)

(0, 5, 6, 11) (1, 8, 9, 13) (13, 1, 4, 11) (1, 3, 7, 10)

(1,5,6,9) (2, 3, 8, 11) (2, 4, 7, 9) (13, 2, 6, 10)

(2,5,10,13) (3,4,6,13) (3, 4, 5, 12) (13, 5, 7, 8)

(6, 7,8,12) (9, 10, 11, 12)

We have total 31 blocks. From the equation we should have b ~ r~4 r~11 =

/
14

4x
9 l = 32 blocks. The above 31 blocks form the desired (14, 4, 1)-DCD on Z

14

where the ordered pairs (12, 13) and (13, 12) do not appear any block of the design.

There are a total of (~4) x2- 2 = 180 ordered pairs in this design. From our 31

blocks, we generate (~) x31 = 186 pairs. We note that there are 6 pairs which are

used more than once in the DCD. This gives an excess graph where 6 directed pairs

(or edges) are repeated.

2.2.5 Latin Squares

Definition 23. A latin square is an n by n table filled with n sets of the numbers

from 1 to n in a way that each number appears exactly once in each row and each

column.

1 2 3

Example. A latin square of order 3 is 2 3 1 .

3 1 2

Definition 24. Two latin squares are orthogonal if the ordered pairs from each

position of latin squares are all distinct.

30

1 3 2 3 1 2 13 31 22

Example. A= 2 1 3 ' B= 1 2 3 ' A and B = 21 12 33

3 2 1 2 3 1 32 23 11

A and B are latin squares and when superimposed, all ordered pairs from correspond-

ing square entries are distinct.

Remark. A set of n latin squares is mutually orthogonal if every pair of latin squares

from the set is orthogonal.

2.3 Construction of Perfect insertion and deletion

Codes

In this section, we survey constructions of perfect codes. Levenshtein introduced

perfect codes of length 3 capable of correcting single deletions [43). Bours then con­

structed perfect codes of length 4 and 5, capable of correcting 2 or more deletions

[11). Yin and Shalaby constructed perfect codes of length 6 capable of correcting any

combination of up to 4 deletions [69, 55). Wang et al constructed perfect codes of

length 7 capable of correcting 5 deletions [61). We conclude this section by introduc­

ing a paper by Gavin et al which uses synthetic tags to detect and correct errors in

codes of length five [26).

Definition 25. Let K be a set of positive integers and let >. be a positive integer. A

pairwise balanced design (PBD) of order v and index..\ with block sizes from K is a

pair (V, B), where V is the point set of cardinality v with a collection B of subsets

(called blocks) such that (1)if D E B then IDI E K and (2)every pair of V lie in

31

exactly A blocks of the PBD.

Example. Blocks for the undirected PBD(10, {3, 4}) are the following.

{1, 2, 3, 4}, {1, 5, 6, 7}, {1, 8, 9, 10}, {2, 5, 8}, {2, 6, 9}, {2, 7, 10}, {3, 5, 10}, {3, 6, 8},

{3, 7, 9}, { 4, 5, 9}, { 4, 6, 10}, and { 4, 7, 8}.

D efinition 26. A group divisible design (GDD) of index A is a triple (V, G, B), where

Vis a v-set of points, G is a partition of V into subsets (called groups) and B is a

collection of subsets of V such that every pair of points from distinct groups appears

in exactly A blocks but no block contains a pair from the same group.

We denote a group-type in exponent terms. 1a, 2b, 3c, ... means that a group of size

1 occurs "a" times, a group of size 2 occurs "b" times, etc. The notation k-PBD and

k-GDD of order v are often used for A = 1. A (k, A)-GDD of type P is a P BD of

index A.

Example. A ({3, 4}, 10)-GDD of group-type 1133 has groups {1 , 2, 3}, { 4, 5, 6}, {7, 8, 9},

{10} and the following blocks of size three and four: {1, 4, 7, 10}, {2, 5, 8, 10}, {3, 6, 9, 10},

{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}. See Figure 2.1.

Definition 27. A directed group divisible design (DGDD) with block size k and

order v is a triple (V, G, B) where V is a v-set, G is a partition of V into subsets

(called groups), and B is a set of transitively ordered k-subsets (called blocks) of V

such that every ordered pair of distinct points of V occurs in exactly one block, and

no block meets a group in more than one point. The block size is k and 1 v represents

v occurrences of 1 in the multi-set of GDD. Thus, we denote by k-DGDD.

Example. (5, 2)- DGDD of type 36 has the groups: {0, 6, 12}, {1, 7, 13}, {2, 8, 14},

{3, 9, 15}, { 4, 10, 16}, and {5, 11, 17}. The following are the blocks: (0, 9, 13, 17, 10)

32

- - - - -- ------- - -

Figure 2.1: A diagram shows how the blocks of size 3 and 4 intersect with the groups.

Each block represents a group. Two blocks, {1, 4, 7, 10} and {3, 5, 7}, are

constructed as an example. Other blocks can be constructed accordingly.

There is no pair formed from the same group.

mod 18, (0, 14, 16, 3, 1) mod 18, (0, 2, 13, 10, 9) mod 18. This example is taken from

[70].

Remark. If a k-GDD exists, then k-DGDD also exists. The k-DGDD is obtained by

writing all blocks of the k-GDD twice, once in some order and the other in reverse

order. In other words, a (k, >.)-DGDD is a (k, 2>.)-GDD.

Remark. Recall the following definition. Let v be a positive integer and A(v) be an

alphabet of size v, or equivalently a v-set (of points). By a word of length k over A

we mean a vector (or sequence) of length k with coordinates t aken from A. The set

of all words of length k over A(v) will be denoted by Ak (v) .

We use Ak(v) to denote the set of all words of length k over A(v) with different

coordinates (i.e. transitively ordered subsets of size k of A(v)). A subset C ~ Ak is

said to be perfect (k- 2)-deletion-correcting code over A if every word of A2 occurs

as a subword in exactly one word of C. Such a code is referred to as T *(2, k, v)-code

Definition 28. A (k - t)-deletion/insertion-correcting code over A(v) is a subset

C* ~ Ak(v) (respectively C ~ Ak(v)) such that every word in AZ(v) (respectively

33

Ak(v)) appears as a subsequence of at most one word inC* (respectively C). The

words in C* (or C) are referred to as codewords.

"(k- t)-deletion/insertion correcting" means that we can correct any combina­

tion of up to (k- t) deletions and insertions of letters occurred in transmission of

codewords. We say the code is capable of correcting (k - t) deletions because any

two distinct codewords in C* (or C) cannot share a common subsequence of length t

or longer. This implies that it can correct any combination of up to (k- t) deletions

and insertions [61].

There are two types of perfect (k - t) deletion-correcting codes with words of

length k over an alphabet of size v; those where the coordinates are equal in size,

T*(t, k, v) and those where the coordinates are different, T(t, k, v). For example, let

A= {1, 2, 3, 4, 5, 6, 7} be an alphabet of length 7. Two codewords of equal coordinates

of length 3 are (1, 2, 3) and (2, 5, 7). Two codewords of different coordinates are

(1, 2, 2) and (1, 2, 3). Both ofT* and T are capable of correcting any combination

of up to (k - t) indels that have occurred during the transmission of codewords.

This then can be translated to DNA fragments; let A= {A, C, G, T} be an alphabet

of length 4. Two codewords with equal coordinates of length 3 are (A, C, G) and

(C, T, A) and two codewords of different coordinates are (A, A, C) and (A, A, T).

2.3.1 Length 3

The notion of perfect deletion-correcting codes was introduced by Levenshtein (43].

In his paper, he proved the existence of a T(3, 4, v) code and also proved that the set

of permutations of length k can be partitioned into k T(t- 1, t, t)-codes.

34

L(t, n, q) is equivalent to T(t, k, v), which is a perfect in A~ code capable of cor­

recting t deletions [43]. Recall that k is the length of the word and v is the size of

the alphabet.

T heorem 4. T(2, 3, r) exists if r = 3s or 3s + 1, where s = 1, 2, .. .

A proof is given in [43]. Let s = 2p +a+ 1, where a E {0, 1}, and p = 0, 1,

Two cases are considered: r = 3s and r = 3s + 1. Assuming x runs the set

Br-1 ={0, 1, . .. , r - 2} (while i and j are fixed) and assuming the addition to be

the addition modulo r - 1. For r = 3s the code is

(x, r - 1, 3p + 1 + 2a + x),

(x, 2p + 1 + 2a- i + x, i + x),

(2j + x, x, 3p + 1 + 2a + j + x),

where i = 1, 2, .. . ,p +a and j = 1, 2, . .. ,p. For r = 3s + 1 the code is

(x, r- 1, 3p + 2- a(2p + 1) + x),

(X, 2p + 1 + a - i + X, i + X) ,

(2j- a+ x, x, 3p + 2 +a+ j + x),

(2p + 1 +a+ y, y, 4p + 2 + 2a + y),

(2p +a+ z, 4p + 2 + 2a + z, z),

(2p +a+ v, v, 4p + 2 + 2a + v),

where i = 1, 2, ... ,p, j = 1, 2, ... ,p = 1 +a, y = 0, 1, ... , 2p +a, z = 0, 1, ... , 4p +

2a + 1, and v = 4p + 2 + 2a, .. . , q- 2.

35

Example. For r = 9, we have a = 0, p = 1, i = 1 and j = 1. Using the above

construction T(2, 3, 9) would have the following codes:

084 185 286 387 488 580 681 782 883

021 132 243 354 465 576 687 708 810

205 316 427 538 640 751 862 073 184

2.3.2 Length 4 and 5

Bours [11] showed the existence of perfect (k - t) deletion-correcting codes with

length 4. He proved the existence of T(2, 4, v) codes for v = 1(mod 3) by proving the

existence of DB(4, 1, v) for v- 1(mod 3).

Definition 29. Let a set E having v elements be given; furthermore let K =

{k1 , k2 , ... , kn} be a finite set of integers 3 ::; ki ::; v, i = 1, 2, . .. , n, and let >.

be a positive integer. If it is possible to form a system of blocks (ordered subsets of

E) in such a way that:

• 1. the number of elements in each block is some ki E K,

• 2. every ordered pair of elements of E is contained in exactly >. blocks,

then we shall denote such a system by B[K, >., v].

Let B = {b1, b2, ... , bk} be an arbitrary block in B[v, k, >.]. Now take (b1 , b2 , ... , bk)

and (bk, bk_1, ... , b1) as blocks in DB(k, >., v). Take (a, b) and (b, a), where a, b E

An(v). Let B 1,B2 , ... ,B>.. be the blocks of B[v,k,>.] containing {a,b} as a subset,

which means that (a, b) will also be a subword of (bh, bi2 , ... , bik). Likewise, (b, a)

will be a subword of (bik' bik-P ... , bi1) . Every word (a, b) is a subword of exactly >.

directed blocks of the system. Thus, the system is DB(k, >., v).

36

The blocks of these ordered designs can be used for the codewords of the perfect

deletion-correcting codes. Every pair of elements of the set F corresponds to a pair of

letters of the alphabet, Av. There is one-to-one correspondence between the elements

of the set F and the letters of the alphabet. This unique pair of letters is subword of

exactly one codeword of the perfect deletion-correcting code T(2, k, v) (see (11, 43]).

Bours and Mahmoodi [11, 46] presented perfect deletion correcting codes with

words of length 4 and 5. For length 4, perfect t-deletion-correcting codes T(4, 1, v)

exist for v = 1(mod 3) except v = 1.

Example. For v = 19 the system DB(4, 1, 19) consists of the following 57 words:

(i, i + 3, i + 12, i + 1), (i + 13, i + 1, i + 5, i) and (i + 4, i + 9, i + 6, i) modulo 19.

Example. T(2,5, 11) has the following words: (3,5,1,4,9), (4,6,2,5,10), (5,7,3,6,0),

(6,8,4,7,1), (7,9,5,8,2), (8,10,6,9,3), (9,0,7,10,4), (10,1,8,0,5), (0,2,9,1 ,6), (1,3,10,2,7)

and (2,4,0,3,8).

2.3.3 Length 6

Yin (69] presented a combinatorial construction for a T*(2, 6, v)-code capable of cor­

recting any combination of up to 4 deletion and/ or insertions of letters that occur in

transmission of codewords. In his paper, a T*(2, 6, v)-code exists for some positive

integers by using directed group divisible design(DGDD). Later, Shalaby et al [55]

proved additional missing cases for T* (2, 6, v)-code by using directed group divisible

quasidesign (DGDQD).

Definition 30. A DGDQD is a triple (V, G, B) where V is a finite set (of points),

G is a partition of V into subsets (called groups) , and B is a collection of sequences

37

(called blocks) of length k over V with the following properties: (a) every ordered pair

of points from distinct groups occurs as a subsequence in exactly one block; (b) for

any point x in all but one distinguished group, the pair (x, x) occurs as a subsequence

in a unique block, while for any pointy in the distinguished group the pair (y, y) does

not occur in any block; and (c) all pairs of distinct points from the same group do

not occur together in any block.

Example. 6-DGDQD of group type 5621 (i.e. 6 groups of size 5 and 1 of size 2)

has the following groups of size 5 plus two infinity points which make up the dis­

tinguished group of size 2: {j,j + 6,j + 12,j + 18, j + 24}, for j = 0,1, ... ,5.

The groups are {0, 6, 12, 18, 24}, {1, 7, 13, 19, 25}, {2, 8, 14, 20, 26}, {3, 9, 15, 21, 27},

{4, 10, 16, 22, 28}, {5, 11, 17, 23, 29}, and {oo1, oo2}. There are a total of 80 blocks: (8,

0, 1, 16, 5, 3) mod 30, (1, 0, 14, 10, 21, oo1) +6 mod 30, (oo1, 2, 1, 15, 11, 22) +6 mod 30,

(3, 2, 16, 12, 23, oo2) +6 mod 30, (oo2 , 4, 3, 17, 13, 24) +6 mod 30, (5, 4, 4, 18, 14, 25) +6

mod 30, (6, 5, 19, 15, 15, 26) +6 mod 30, (5, 5, 5, 5, 5, oo1) +6 mod 30, (oo1, 0, 0, 0, 0, 0)

+6 mod 30, (1, 1, 1, 1, 1, oo2) +6 mod 30, (oo2 , 2, 2, 2, 2, 2) +6 mod 30. The notation

+6 mod 30 means that 6 mod 30 should be successively added to the block, which

generates five blocks. Each block intersects with each of the group exactly once. The

pair (8, 0) occurs as a subsequence in the first block, however the pair (0, 8) does not

occur in any block. This example is taken from [55].

Remark. Adding blocks of the form (x, x, .. . , x) to a k-DGDD of type gtd1 yields a

k-DGDQD of type gtd1 where x runs over all groups except for the group of size d.

The existence of a k-DGDD implies the existence of a k-DGDQD.

An IDB(k, 1, g + w, w)(incomplete DBIBD) can be defined as a k-DGDD of type

38

1 vw1
, in which the group of size w is the hole. The definition of DGDQD can be used to

fill in the groups to give T*(2, k, v)-codes. The theorem in (55] states that a T*(2, k, v)

code can be produced with a T*(2, 6, v)-code as its subcode by the following, where

v = gt + d + w. Suppose there exists a k-DGDQD of type gtdl, T*(2, k, v)-code for a

non-negative wand an IDB(k, 1, g + w, w). First, adjoin a set F of w infinite points

to each group of DGDQD. Replace all groups of size g plus F by IDB to make F

as the common hole of size w. Replacing the distinguished group of size d + w by a

T*(2, k, d + w)-code, which produces the T*(2, k, v)-code and T*(2, 6, v)-code as its

sub code.

Example. For v = 8, there exists a T*(2, 6, 8)-code. We take the alphabet to be

Z8 . The required codewords are obtained by cycling modulo v the following base

codeword, (0, 0, 5, 0, 1, 7).

Shalaby et al [55] provided the complete proofto show T* (2, 6, v) exists for all positive

integers v = 3(mod 5) except for v E {173, 178,203, 208}.

2.3.4 Length 7

Wang et al [61] presented a perfect 5-deletion-correcting codes of length 7. T(2, 7, v)

and T*(2, 7, v) are capable of correcting (k-t) indels. They show this by using DGDD

and directed balanced incomplete block design(DBIBD). Recall that a k-GDD of type

1 v is a PBD of index .X. Similarly, a k-DGDD of type 1 v is called DBIBDs denoted by

DB(k, 1, v). DBIBD is related to T(2, k, v) codes. Given DB(k, 1, v), taking a point

set X as alphabet and blocks as codewords we have T(2, k, v) code. Conversely, given

a T(2, k, v)-code, we can form a DB(k, 1, v) by reversing the above process. Then,

39

the necessary and sufficient conditions for the existence of a T(2, 7, v) are v ~ 7 and

v = 1, 7(mod 21) except for v = 22 and possibly for v = 21t + 1 and v = 21t + 7.

In addition, a large number of constructions for T*(2, 7, v)-codes with v < 2350 were

also shown in [61].

2.3.5 Application of LD

Gavin et al[26] presents an application of Levenshtein Distance in a gene discovery

program using EST sequencing. In a gene discovery project, identification of tissue

source is difficult for the eDNA libraries derived from single tissues. The identification

of tissue source becomes even more challenging if the eDNA libraries are derived

from multiple tissues. A computer program called UITagCreator by the University

of Iowa creates a large set of synthetic tissue identification tags, which provide error

detection and correction. The program utilizes a synthetic nucleotide tag to identify

the source tissue from which eDNA clone is derived. However, with the presence of

errors this program faces more complications. To minimize the complexity of the

model program, a process was developed which creates the library tags. From these

library tags, identification becomes plausible.

There are three generations of tissue tags. The first generation is composed of the

minimum error detection or correction capabilities. Gavin et al[26] obtained kidney

tissue to be CAAAC and liver tissue to be CACAC. The two sequences differ in

their third position giving LD of 1. The second generations of tissue tags have LD

of at least 3. The tissue tags for Cerebellum and Hypothalamus have LD of 4. The

third generations of tissue tags have the capability of up to two substitution errors.

40

The use of LD over the Hamming Distance may be better because LD may be more

accurate measurement of how close two sequences are. Suppose we have two sequences

GCACT and CACTC. Hamming Distance measures two sequences of same length.

Each position of the sequences are compared and calculated. The Hamming Distance

between the two sequences would be 5, whereas the LD is 2.

The creation of tissue tags is important for eDNA clones derived from pooled

libraries. Application of the techniques demonstrated by Gavin et alto the biological

program may be an important area of research. Gavin et al only considers the ability

to detect and correct up to two substitution errors. However, we observe that design

theory, along with coding theory, allows codes capable of detection and correction of

up to length 7.

41

Chapter 3

Combinatorics and its

Applications- Part II:

Graph Theory and DNA

• sequencing

The entire DNA of a living organism is its genome (49]. Sequencing refers to de-

termining the order in which the four bases occur along a DNA (or RNA) chain.

It involves a large number of complex manipulations including chemical processing

techniques which for instance break up the DNA into shorter chains, add identifiable

groups, and separate and study the fragments as well as computational techniques

for handling and analyzing the data. There are numerous methods for sequencing

DNA but none of these methods are capable of sequencing the long DNA sequences

of most organisms at once. Rather, scientists sequence short DNA segments and map

42

their positions in the entire genome.

Graph Theory can be used to model the DNA sequencing problem. The study of

sequencing techniques and their use of Graph Theory is very important, since Graph

Theory may speed-up the process. In this chapter we study two sequencing tech­

niques, the fragmentation (overlap) method and sequencing by hybridization (SBH)

[2, 24]. The definitions and theorems from this chapter are adapted from Goodaire

and Parmenter, 2006 [28].

3.1 Introduction to Graph Theory

Definition 1. A graph G is an ordered pair (V, E), where V is a set of elements

called vertices and E is a family of 2-subsets taken from V called edges. If e is an

edge between vertices v and w , we may refer to e as vw or wv. The vertices v and w

are said to be incident with the edge vw (or wv).

Definition 2. The number of edges incident with a vertex v is called the degree of

v. It is denoted as deg(v).

Definition 3. A pseudograph is a graph which may contain multiple edges or loops.

A loop is an edge with the same end points i.e. v to v.

Example. Figure 3.1 shows a graph and a pseudograph.

Definition 4. A graph G1 is a subgraph of another graph G if and only if the vertex

and edge sets of G1 are, respectively, subsets of the vertex and edge sets of G.

Definition 5. A walk is an alternating sequence of vertices and edges, beginning

and ending with a vertex, in which each edge is incident with the vertex immediately

43

e l e2

QC e3 =:> V2

1 e4

(a) An example of a graph (b) A pseudograph

Figure 3.1: An example of a graph and a pseudograph. a)A graph G(V, E) with V =

graph: The edge e1 is a loop and e2,e3, and e4 are multiple edges.

preceding it and the vertex immediately following it . A walk, where all edges are

distinct is called a trail. A walk where all vertices are distinct, is called a path.

Definition 6. A walk is said to be closed if the start vertex is the same as the end

vertex.

D efinition 7. A closed trail is called a circuit.

Definition 8. A circuit with no repeating vertices (except the initial and the terminal

ones) is called a cycle.

Example . Figure 3.2 shows a graph which contains a trail, a circuit and a cycle.

Definition 9 . An Eulerian circuit in a pseudograph (or a graph) is a circuit that

contains every vertex and every edge. A pseudograph is Eulerian if it contains an

Eulerian circuit.

Example. Figure 3.3 shows two graphs; an Eulerian graph and a non-Eulerian graph.

44

A

Figure 3.2: ABCDBE is a trail, but not a path. ABCDEA is both a circuit and a cycle.

A
A

B

c D B

(a) A non-Eulerian graph (b) An Eulerian graph

Figure 3.3: a) A circuit starts from vertex A and cannot return to it unless repeating the

edge AB. b) A graph that contains an Eulerian circuit ABCDEA.

Definition 10. A graph is connected if and only if there exists a walk between any

two vertices.

Definition 11. A Hamiltonian cycle in a graph is a cycle including every vertex of

the graph. A Hamiltonian graph is one which possesses a Hamiltonian cycle.

Example. Figure 3.4 shows a Hamiltonian graph and a non-Hamiltonian graph.

Definition 12. A digraph consists of two sets V and E, where V is a set of vertices

and E is set of ordered pairs called arcs. A digraph is a graph in which each edge has

an orientation or direction.

45

A

c F
A B

F

B

D E E D G

(a) A hamiltonian graph(b) A non-hamiltonian graph

Figure 3.4: a) A Hamiltonian graph. b) A non-Hamiltonian graph.

Example. An example of digraphs is shown in Figure 3.5. Note that with digraphs

the term "arc" is used rather than "edge".

Definition 13. A Hamiltonian cycle in a directed graph is a cycle in which every

vertex of the graph appears (arcs must be followed in the direction their arrows).

Example. Figure 3.5 shows two different digraphs.

(a) digraph 1 (b) digraph 2

Figure 3.5: a) Two similar graphs with different directed arcs.

Definition 14. The number of arcs (or edges) directed into a vertex is referred to as

indegree and that of the arcs directed out of a vertex is referred to as outdegree.

46

Definition 15. A digraph is called strongly connected if and only if there is a walk

from any vertex to any other vertex which respects the orientation of each arc.

Theorem 1. A digraph is Eulerian if and only if it is strongly connected and, for

every vertex, the indegree equals the outdegree.

Example. From Figure 3.5, vertex v4 is indegree 2 and vertex v5 is outdegree 2.

Definition 16. A tree is a connected graph without any circuits.

Example. Figure 3.6 shows an example of a tree.

c

F

A

E

c

Figure 3.6: Example of a tree.

3.2 Fragmentation

In 1976-77, Allan Maxam and Walter Gilbert developed a DNA sequencing method

based on chemical modification of DNA and subsequent cleavage (break) at spe­

cific bases. In 1977, Fred Sanger independently developed an alternative method in

his published paper "DNA sequencing with chain-terminating inhibitors" [53]. Both

47

methods require radioactive labeling at one end and purification of the DNA frag-

ment to be sequenced. Chemical treatment generates cleavage at a nucleotide base.

A series of labeled fragments are generated, each starting and ending at the cleavage

site. Labeled DNA fragments are separated by size by gel electrophoresis. Fig-

ure 3. 7 is an example of gel electrophoresis. The sequence is read from the bottom,

ATAAAAAACTCAGAACGGCTTCGTA.

Early sequencing methods dealt with RNA for

its simpler single-stranded structure. tRNA is a

type of RNA that is involved in translation (Re-

call from section 1.2.3). tRNA was a good can-

didate for sequencing because it is short (7 4-95

bases) and samples are easily obtained. Sequenc-

ing tRN A involves the overlapping of smaller

fragments of the chain. This overlapping tech-

nique was to determine the long RNA chain given

just the pieces of short fragments after the chain

had been exposed to a complete digest with two

enzymes. The technique uses overlaps occurring

in the two sets of fragment data to obtain the cor-

rect order in which the fragments should be read.

This overlap technique is also referred to as the

fragmentation method.

G C

A
T
G
c
T
T
c
G
G
c
A
A
G
A
c
T
c
A
A
A
A
A

Figure 3. 7: Gel Electophoresis.

With the collection of fragments of the chain, it is possible to determine the

complete enzyme digest. In other words, suppose we do not know the order of a

48

particular chain but we have the list of the fragments. It is possible to obtain the

unknown RNA chain with just fragments using Graph Theory operations. From

our previous example in section 1.3 there are 4 possible RNA chains with the G­

fragments listed. This possible number of chains must also coincide with the given set

of U, C-fragments. The fragmentation method involves using the complete listing of

G-fragments and U, C-fragments to construct a digraph and then finding an Eulerian

path, which ultimately gives us the unknown RNA chain.

Given the collection of the G- and U, C-fragments lists the procedure to obtain

the unknown RNA chain is as follows. From the previous example one might note

that the fragment AAU from G-fragments list does not end with G. We refer to such

fragment as abnormal. An abnormal fragment is the end of the unknown RNA chain.

In our example, the RNA chain ends with AAU. If there are multiple candidates

for an abnormal fragment, for example a chain that ends with A, then we take the

longest abnormal fragment as the end fragment.

Now, we further cut the G-fragments with the U, C-enzyme and U, C-fragments

with the G-enzyme. The resulting fragments are called extended bases. The extended

bases that were neither the first nor the last in their fragments are referred to as

interior extended bases. Also, fragments that cannot be split by the second enzyme

are called unsplittable fragments.

Example . From the example in section 1.3 we obtain the following extended bases

and unsplittable fragments.

Extended bases from G-fragments: AG, G, AC, C, G, U, AAU

Extended bases from U, C-fragments: AG, G, AC, C, G, U, AAU

49

Interior extended bases: C, G

Unsplittable fragments: AG, G, C, AAU

There are exactly two unsplittable fragments that do not belong to interior ex­

tended bases. These two fragments are the beginning and the end of the unknown

RNA chain. In our example, the two fragments are AG and AAU. We determined

AAU to be the end fragment, so AG must be the start fragment.

Now consider all fragments obtained by extended second enzyme. Take a G­

fragment ACCG, as an example, and draw two vertices and an edge. Here we have

a vertex AC and another vertex G. We draw an arc from the first extended base to

the last extended base and label the edge with the fragment as shown below.

ACCG
AC G

Repeat constructing arcs for each fragment and matching the overlapping vertices

and edges. We draw a final arc from the first extended base of the largest abnormal

fragment X to the the first extended base Y of the chain. We label this arc X * Y.

Then, we determine all Eulerian circuits in the graph which end with X* Y. From the

previous example, we obtain a directed Eulerian graph as in Figure 3.8a. This gives

us the RNA chain, AGGACCGU AAU. The original chain is obtained by analyzing

Eulerian circuits, knowing the starting and end fragments of the chain. If there

are more than one Eulerian circuits, then there is more than one RNA chain. The

Eulerian circuits may have a number of possible chains and from the previous example

it would be very difficult to determine the particular chain we seek. Figure 3.8b shows

50

an Eulerian digraph that contains total of 360 possible RNA chains [13] . Partial digest

enables the problem to be minimized by exposing the chain to a specific restriction

enzyme at different temperatures or limited to a shorter time than for a complete

digest. This results in larger fragment size than the complete digest method. Large

fragments determine a particular edge with its direction, thus reducing the number

of possible chains.

c

ACCG
AC G

AGGAC GU

u
UAAU·'AG u G•G

(a) A directed Eulerian graph (b) 360 chains

Figure 3.8: a) Eulerian graph for a RNA chain. Start from the starting fragment AG and

travel through directed edge to vertex AC. By doing so, we obtain a chain,

AGGAC. Repeat until we obtain Eulerian circuit and obtain the complete

RNA sequence which is AGGACCGUAAU. b) An Eulerian graph that con­

tains 360 possible RNA chains. Adapted from [13].

Example. Suppose we have the following complete enzyme digest with two enzymes:

G-fragments: G, ACUG, ACG, G and U, C-fragments: U, GGAC, G, GAG which

will produce the internal extended bases to be U, and G and unsplittable fragment

51

to be G, G, U, and G. From this we know that the chain starts and ends with the

same G. The Eulerian digraph as in Figure 3.9a. The digraph gives the following 4

possible chains.

GGAGUGAGGG GGAGGAGUGG

GAGUGGAGGG GAGGGAGUGG

Suppose the partial digest with the G- enzyme produces the larger fragment of

GAGGG. The correct Eulerian circuit must contain the sequence of arcs GAG, AGG

and GG. Knowing these new arcs, we can add new vertex as in Figure 3.9b. The

vertex AG' is added to produce GAG and AGG. As a result, we have a reduced graph

which results in two possible RNA chains: GGAGUGAGGG and GAGGGAGUGG

(Figure 3.9b). Additional available data will further reduce the graph resulting in

fewer, yet specifically possible RNA chains.

AC AC

G*G G*G

(a)

I.!'
::I AC'
~ ..

1"-~(...,.,., I
~.,.... .1. I.!'

., 'f' u
,<

----~---· GG G

(b)

Figure 3.9: a)The Eulerian digraph. b)The reduced Eulerian digraph after the partial

digestion.

52

3.3 Sequencing by Hybridization

Recall that a restriction enzyme from section 1.3 only cut an RNA sequence, not a

DNA sequence. The previous fragmentation method for RNA chains is not applicable

to DNA sequencing. Sequencing by Hybridization (SBH) was proposed by several

research groups in the 80's and is still being developed [8, 45). SBH is a non-enzymatic

method of determining the order in which nucleotides occur on a strand of DNA. In

this method, unknown DNA is labeled and compared with the known sequences. If

the hybridization (or binding) occurs then that unknown sequence occurs with the

known sequence.

In 1988-1989, four groups of biologists independently suggested the SBH. SBH

does not involve gel-electrophoresis but rather it involves building a DNA array and

combinatorics. An array consists of all possible short sequences of a given length l.

A short synthetic fragment of DNA is called a probe. The sequence of nucleotides in

a probe is known. These probes are usually about 8 to 30 nucleotides long [49). They

are used to obtain information about an unknown DNA fragment. The DNA strand

is composed of four nucleotides, so the array would consist of 41 subsequences. Given

a probe and a single-stranded target DNA fragment, the target will hybridize to the

probe if there is a substring of the target that is the complement of the probe. Recall

that A is complementary toT and G is complementary to C.

Example. A probe ATT ACGT will hybridize with a target CT AATGCAAT since

it is complementary to TAATGCA of the target .

The unordered set of all substrings is called the SBH Spectrum of the DNA frag­

ment. For example, the SBH Spectrum (see Figure 3.10) for the target, ATTAGCC,

53

- -- - - - - - - - -

A T T AIT !T I I

DNA Sample hybridization

IAJTJr ~JCi [CJ~
T ,T :A

T ;A G

A lG 'c
G c 'C

1T T A[I
.. I I

j

I T
A' G ·
A!_9_ c l -r--· , IG c lc

Spectrum for /=3 AIT ' T . AiG C t C

Figure 3.10: A DNA sample is hybridized by spectrum of length 3.

using probes of length three is: SBH Spectrum= {ATT, TTA, TAG, AGC, GCC}.

The probes with which the target fragment hybridizes can be detected.

The steps for SBH are as follows. Attach all possible probes of length l to the sur-

face, each probe at a specific location. The array is treated with fluorescence labeled

DNA fragment. The DNA fragment hybridizes with those probes that are comple-

mentary to substrings of length l of the fragment. Detect probes hybridizing with

the DNA fragment with a detector. Then the SBH spectrum of the DNA fragment

is obtained[2].

Graph theory and combinatorial algorithms play a key role in understanding and

performing SBH reconstruction [2]. In examining the roles that Graph Theory and

combinatorics play we assume the ideal case that the number of occurrences of each

subsequence of length l in the DNA fragment is known. Determining the DNA frag-

ment using the spectrum requires the listing of each spectrum in order. If a subse-

quence i is followed by a subsequence j, then the last l - 1 elements of i match the

first l - 1 elements of j. There may be a problem with SBH for two samples may

result in the same spectrum, as in Figure 3.11. Using graphs this could be avoided.

There are two ways of representing the list using graphs: Hamiltonian and Eulerian.

54

Figure 3 .11: There may be a problem with SBH such that two samples may result in the

same spectrum as in this figure.

In a Hamiltonian representation, the DNA sequence corresponds to a Hamiltonian

path while in Eulerian representation, the DNA sequence corresponds to an Eulerian

trail [2]. For the Hamiltonian method, the vertices of the graph are the subsequences

in the spectrum. An arc is drawn between two vertices u and v if the last l - 1

elements in u match the first l - 1 elements in v . Repeat drawing the arcs until all

the spectrum fragments are used. Once all the arcs are constructed, we seek for a

Hamiltonian path in the resulting digraph.

Example. Figure 3.12 shows the Hamiltonian path which depicts the following spec-

trum.

Spectrum = { C AC, ACC, CCT, CTG}.

TG

Figure 3 .12: Graph Theory in Sequence by Hybridization method. Hamiltonian path

starting at vertex CA and ending at vertex TG shows a DNA sequence of

CACCTG.

55

Increasing the length of the spectrum increases the complexity of the graphs.

There is no efficient algorithm to find Hamiltonian paths in a graph yet [40]. Pevzner

[49, 40] reduced the SBH problem to finding Eulerian trails. In this method, the sub-

sequences of length l in the SBH spectrum are arcs in the corresponding graph. The

vertices of the graph are the subsequences of length l - 1 present in the subsequences

of length l. For each subsequence in the spectrum, an arc is drawn from a vertex

labeled with the first l - 1 elements of the subsequence to a vertex labeled with the

last l- 1 elements of the subsequence.

Example. Figure 3.13 shows the Eulerian trails for the following SBH Spectrum of

l = 3.

Spectrum= {ATG, TGC, GCG, GGC, GCA, GGT, TGG, CGT, GTG}

•
AT

Figure 3.13: The Eulerian trails for SBH Spectrum of length 3.

Note from the previous example that there are two possible Eulerian trails, one giving

the sequence ATGCGTGGCA and another one for ATGGCGTGCA. With a greater

number of spectra, we may have more than one possible DNA sequence. Then it would

be difficult to determine the particular DNA sequence we seek. If subsequences of

length l are used, it is clear that there will be fewer repetitions of subsequences

of length l - 1, and hence there will be fewer possible DNA sequences [2]. Other

56

than multiple possible DNA sequences, the SBH method holds many other problems

[51]. In the case where hybridization is incomplete, oligonucleotides would be missing

from the spectrum. On the contrary, non-specific oligonucleotides may appear in the

spectrum leading to wrong DNA sequence. Such errors prevent the SBH method from

being an efficient sequencing technique as yet.

57

Chapter 4

Sequence Alignment

During DNA replication, errors may occur causing insertions, deletions (indels) and

substitutions of DNA base pairs, leading to modifications in the DNA nucleotide

chains. Such modifications are referred to as mutations. Within an organism, gene

comparisons can be done by aligning two sequences. Mismatches between the two se­

quences might indicate that mutations have occurred. Likewise, matches between two

genes from different organisms might indicate the functional or structural similarity

between the organisms. Furthermore, it could even allow the prediction of a common

evolutionary origin. Gene comparisons are also an application of Levenshtein Dis­

tance (LD) as we discussed earlier. In this chapter, we review the different methods

of sequence alignment. Sequence alignment using LD finds differences between two

sequences being aligned. The Longest Common Subsequence (LCS) algorithm finds

similarities between two aligned sequences [49].

When scientists attempt to study the similarities or differences between two strings,

they "align" the two strings. One way to align is by using an m by n matrix where

58

m is the length of one string and n is the length of the other. There are three

types of alignment methods: a) Global alignment, which compares the entire length

over two strings, b) semi-global alignment, which attempts to find the best possible

alignment that includes the start and the end of a sequence and c) local alignment,

which attempts to find the best possible alignment that includes conserved regions of

similarities.

Finally, we will conclude this chapter by exploring the heuristic for fast database

searches that use an idea of filtration. This heuristic includess technique such as

FAST A.

4 .1 Complexity

Analyzing an algorithm's complexity means establishing the computational resources

that the algorithm requires. Often times, different algorithms devised to solve the

same problem differ in their efficiency. That is, one algorithm may bring forth the

same answer as the other but faster. We wish to measure computational time of an

algorithm to identify the most efficient one.

When analyzing an algorithm, it might be possible to determine the exact running

time of tlie algorithm; however, the extra precision may not be worth the effort

because of several reasons, including the different speeds of different computers and

the time spent to obtain the exact running time. Instead, we can identify an upper

bound to the worst-case running time in terms of the input size. In this section

we adopt the asymptotic analysis of algorithms; that is, we are concerned with how

the running time depends on input size. We review the most general asymptotic

59

notations, 8-notation and 0-notation. The description of complexity is based on

[16].

In general, for a given algorithm, we try to find functions whose domains are the set

of natural numbers N = {0, 1, 2, . .. } and are asymptotically greater or asymptotically

equivalent to the time complexity of the algorithm.

4.1.1 8-notation

Definition 1. For a given function g(n), a function f(n) belongs to the set 8(g(n))

if there exist positive real numbers c1 and c2 and an integer n0 such that f can be

"squeezed" between c1g(n) and c2g(n), for all n ~no. In other words, 0::; c1 lg(n)l ::;

if(n) I ::; c2ig(n) l, for all n ~ no.

Remark. 8(g(n)) is a set, so we take f(n) = 8(g(n)) to mean the same as f(n) E

8(g(n)) .

Example. Let f(n) = 2n2 + 4n. We claim f(n) = 8(n2) so that g(n) = n2
. We find

values for c1 , c2 , and n0 so that the following holds.

c1n2 ::; 2n2 + 4n::; c2n2 for all n ~no. Divide each side by n2

4
c1 ::; 2 + - ::; c2.

n

The right hand inequality holds for any value of n ~ 1 by choosing c2 ~ 6. Similarly,

the left hand inequality holds for any value of n ~ 1 by choosing c1 ::; 2. We can

verify that 2n2 + 4n = 8(n2) by choosing c1 = 2, c2 = 6 and n0 = 1. There are other

choices for c1, c2 and n0 . The point is that there exists a choice of constants which

60

depend on the particular function f(n). Different functions belonging to 8(n2
); say

f(n) = ~n2
- 40n + 14 would have a different choice of constants than the one we

have chosen for our f(n) = 2n2 + 4n.

Remark. For an algorithm with time complexity function f(n), if we can find a

function g(n) such that f E 8(g) we say that g is equivalent to the time complexity

of the algorithm.

4.1.2 0-notation

Definition 2. For a given function g(n), a function f(n) belongs to the set O(g(n))

if there exist a positive real number c and an integer n0 such that Jf(n)J ::; cJg(n)J for

all n 2: no.

Remark. We write f(n) = O(g(n)) to denote that f(n) belongs to the set of O(g(n)).

0-notation describes asymptotic upper bounds. We use it to establish upper

bounds to the running time of an algorithm for every input. Thus, 0 -notation is

used to express upper bounds on running time of algorithms. The 8-notation can

be used to establish upper and lower bounds on the running time of an algorithm

simultaneously [16].

4.2 Longest Common Subsequence Problem

Needleman and Wunch in 1970 introduced an algorithm that finds the LD of two

aligned sequences. Longest Common Subsequence (LCS) Problem is equivalent to

61

the sequence alignment using Levenshtein insertion and deletion operations (with no

substitution) [49].

Let z(x, y) be the length of a LCS of two strings x of length m andy of length n.

Then the minimum number of modifications or LD needed to transform x into y (or

y into x) is represented by LD(x, y) = m + n- 2z(x, y).

Example . Let x = ACCGACC and y = AGACC be strings over the alphabet

{A, C, G, T}. The longest common subsequence of both x andy is AGACC, which

has length 5. Thus, LD(x, y) = 7 + 5- 2(5) = 2. We can insert two C's into the

second position in y to obtain x or we can delete element C in the second and third

positions of x to obtain y.

4 .3 Global A lignment

Consider two strings x and y to be aligned, of length m and n respectively. We wish

to find an alignment between the two strings such that we maximize the number of

matches. We insert gaps denoted by "-" allowing for the possibility of indels.

Remark. We use a superscript to identify the location of the element in a string.

Suppose x = ACGTT, by xi we mean substring of x at position i. So, x2 would be

C. Suppose the length of x2 is 3, then x2 = CGT.

Using the gaps we can then align the strings to form two new strings Xp from x

and Yp from y that are equal in length, where max(m, n) ::; p::; m + n. Note that xi

and yi may not be both gaps.

Example . AGGCGAT and GCAAGATG are aligned below with gaps inserted.

62

Gaps can occur before the first character of a string, inside a string and after the

last character of a string as shown below. If we omit gaps, we would have fewer

matchings between two sequences.

A G G C G A T

G C A A G A T G

In global alignment, similarities between two strings are detected and scored over

entire strings. This score is called the raw score.

Definition 3. Raw score~ is the addition of all weights given to matches, mismatches

and gaps, from the alignment of two sequences.

Raw score can give us an approximate idea of how close the sequences are. If a

character is aligned with the same character, we say that is a match, represented

by a. If a character is aligned with another character, then there is a mismatch,

represented by (3. Finally, a gap is represented by r · We assign a, /3, and r the

values 1, -1, and -2, respectively. An optimal alignment would maximize a+ /3, +

f. From the above example of two aligned sequences AGGCGAT and GCAAGATG,

the raw score is - 2 + (-2) + 1 + 1 + -2 + -2 + 1 + 1 + 1 + (- 2) = - 5.

4.4 Dynamic P rogramming Solution

The Needleman-Wunsch algorithm uses dynamic programming to find a fast solution

for the global alignment of two sequences. There are three main steps in dynamic

programming: characterize the structure of an optimal solution (initialization), re-

63

cursively define the value of an optimal solution, and compute the value of an optimal

solution in a bottom-up fashion [16) .

Let x and y be two strings of length m and n, respectively. The first step in a

dynamic programming solution for the global alignment is to create an m+ 1 by n+ 1

matrix. Since the gap was assigned a gap penalty value of -2, we populate the first

row and the first column accordingly.

CACAGTGT

GJtTIGBGG@JBG
c8JDDDDDDDD
A8JDDDDDDDD
GGJDDDDDDDD
GGJDDDDDDDD
TGDDDDDDDD

a)

CA· ·G ·GT

b)

Figure 4.1: a) Two sequences CACAGTGT and CAGGT are paired to form a matrix

with initial values. b) Each matrix cell is given its score and the final score

is the bottom right corner, -1, where the backtracking begins to obtain the

best alignment with gaps inserted in Global alignment. The score for this

alignment is 1 + 1 + (-2) + (-2) + 1 + (- 2) + 1 + 1 = - 1.

Let x = CACAGTGT andy= CAGGT. For each position in the matrix, let d[i,j]

be the maximum score at position (i, j), where p(xi, yj) is the score of Xi and Yj

64

occurring as an aligned pair.

d[i, j- 1] + 1, the gap in sequence x

d[i,j] =max d[i -1,j -1] +p(xi,Yi)

d[i- 1, j] + 1, the gap in sequence y.

Using the above given conditions the score at the (1, 1) position can be calculated

to be 1, since d[1, 1] =max{ -2, 1, -2} = 1. The gap penalty is -2, and we fill the

rest of the rows and the columns with according values. Using the same techniques,

we fill in all values in the matrix as in Figure 4.1b. Once the score values are filled

in we can search the matrix to determine the actual alignment that results in the

maximum score. The search step begins at the (m, n) position of the matrix. At this

(m, n) position, we have a match (ie. T), thus we move on to the next predecessor

at the (m- 1, n- 1) position. We have another match (ie. G) at the (m- 1, n- 1)

position and the next predecessor becomes the entry at the (m- 2, n- 2) position.

At this (m- 2, n- 2) position, there is a mismatch (T and G), thus, we move to

either upward, (m- 2, n- 3) to -6 or leftward, (m- 3, n- 2) to -1. We move to the

higher value of -1 (over -6). Moving to the leftward or upward indicates that there

is a gap in the y or x string, respectively. Repeat this search procedure until we reach
~

the (1, 1) position of the matrix. Then the following alignment would be obtained.

C A C A G T G T

C A G G T

Note that scoring is typically assigned so that a is positive and {3 and 1 are negative.

If we assign a to be 1 and {3 and 1 to be 0, we would obtain the final score at the

65

(m, n) position to be 5, which is the total number of matches in the above string

alignment of x and y.

4.5 Semi-global Alignment

Semi-global alignment is similar to the global alignment. In semi-global alignment

we ignore the score of starting gaps, which does not penalize the missing end of the

sequence. This scheme works when one sequence is much longer than the other.

Finding a gene in a genome is an example of semi-global alignment. In a global

alignment, we start with an alignment score of 0. This corresponds to initializing

p(xi, Yi) = 0. We can start with a score of 0 after ignoring either the prefix of

x or the prefix of y. Also, we ignore end gaps, either a suffix of x or a suffix of

y. The matrix scoring for semi-global alignment is obtained by the following rule.

d[i- 1, j]- 2

d[i,j] =max d[i- 1,j- 1] ± 1 ,according to match(+1) or mismatch(-1)

d[i,j - 1]- 2

Suppose we have two strings of very different lengths, CAGCACTTGGATTCTCGG

and CAGCGTGG. Using the semi-global alignment, we obtain the following align­

ment. This alignment has the score of 6(1) + 1(- 1) + 1(- 2) = 3.

CAGCAC T TGG A TTCTCGG

CACGTGG

0 0 0 1 1 1 - 1 1 1 1 - 2 0 0 0 0 0 0 0

66

4.6 Local Alignment

Suppose two different strings x and y contain similar regions in the middle. Local

alignment aligns a substrings of x and a substring of y, which gives the best score.

The matrix scoring for local alignment is obtaining by the following rule.

d[i,j] =max

d[i, j - 1]- 1 the gap in sequence x

d[i -1,j- 1] + p(i,j)

d[i - 1, j] - 1 the gap in sequence y

0

Figure 4.2 gives matrix scoring of the local alignment method of two strings AGGT ATT A

and CTATGC. From Figure 4.2b, the highest score is obtained to be 3. From this

cell, we trace back to the highest value toward left, top, or left-top diagonal. The

left-top diagonal has the value of 2. Recall that tracing back diagonally means a

match.

4. 7 Gap Penalty

Recall in global alignment that inserting gaps contributes -2 to the score value of

the alignment. In biological applications, mutations cause change in DNA sequences

causing insertions or deletions. A single mutational event can create gaps of varying

sizes, thus, we treat gaps as a whole rather than individually to avoid high penalties

to these mutations[49, 40].

Example. Suppose we align two sequences ATT AA and AT A. The possible align­

ments are as follows. All three alignments have three matches and two gaps. Recall

67

a) b)

Figure 4.2: a) Alignment scores populate the matrix. b) We trace back to obtain the

best alignment in local alignment for the given sequences AGGT ATT A and

CTATGC.

that we use the score of 1 for a match and -2 for a gap.

A T T A A A T T A A AT T A A

A T A A T A A T A

1 1 - 2 1 - 2 1 1 - 2 - 2 1 1 1 -2 - 1 1

The scores of each alignment from the left are - 1, - 1 and 0. The first and the

second alignments, which use the regular gap penalties, have the same score. From

the biological point of view, gaps occur more contiguously next to each other rather

than individually, thus, the second alignment is more plausible over the first one. For

this reason, we penalize the gap as a whole as in the third alignment. The opening gap

penalty for the third alignment has a score of - 2 and the extended gap has the score

of - 1. The third alignment is preferred over the two previous alignments [49, 40].

68

- -------------------------------

4.8 Heuristics: FASTA

A few oncogenes were identified in the early 1980's. Since then, nearly 100 oncogenes

which lead to cancer have been identified [71]. With the growing size of the GenBank

database, the search for oncogenes and genes involved in normal growth and devel­

opment has become difficult and time consuming. To search for a string of a gene in

a database of size 109 , we may use a parallel implementation of algorithms.

Many heuristics, such as FAST-A(FASTA) use the idea of filtration for fast database

search. The filtration method is used to eliminate or skip certain strings so that the

database search may be faster.

An algorithm based on dynamic programming performs similarity searches based

on local sequence alignment. Obtaining an optimal local alignment, one with highest

score, between some strings turns out to be very difficult. To avoid the high ex­

pense involved in finding an optimal alignment, heuristics have been developed. The

description in this section is from [68].

4.8.1 Statistical Significance of Alignment Score

Definition 4. A segment pair (x, y) consists of two strings, x and y, of the same

length.

The Smith-Waterman algorithm will find all the segment pairs between two strings

whose scores cannot be improved by extensions. This is referred to as a high-scoring

segment pair (HSP). In order to analyze how a score is measured, a random sequences

model is constructed. Recall that a DNA sequence is composed of A, C, G and T.

Let PA denote probability that the nucleotide A occurs in a sequence. Given PA,

69

Pc, Pc and Pr in a database of DNA strings, the probability of a source sequence x

having a perfect match with the target sequence, y is given by:

n

p(x) =IT Px;·
i=l

Example. The probability of x = AATCCG having a perfect match to a target

sequence y is p = P1P(:PcPr.

Let Ly be the target sequence length and Lx be the source sequence length. The

number of possible matching operations (the number of possible alignment between

two sequences) is given by:

n = Ly - Lx + 1.

Example. Let x = AT and y = TCATGG. We have Ly = 6, Lx = 2 and n = 5.

There are five possibilities where AT of x can be matched under y: TC, CA, AT,

TG, or GG.

The binomial probability distribution of the number of matches is given by pd(x)

where p is the probability of a successful match and q = 1 - p is the probability of

failure [9].

d() n! X n-x
p X = ()1 I p q n- x .x . ..__._.,.

._____., f3
a

a is the number of outcomes with exactly x successes among n trials and f3 is the

probability of x successes among n trials for any one particular order.

If the probability of each codon is one in a total of four (for DNA, i.e., PA = Pc =

Pc = Pr = 0.25), from the above example we have p = 0.252 = 0.0625, q = 0.9375,

Ly = 6, Lx = 2 and n = 5. The probabilities of having 0, 1, ... exact matches of two

70

letters (rounded to four decimals) are:

pd(O)

pd(1)

pd(2)

5! 0 5-0
(5 _ O)!O!P q = 0.7241

0.2414

0.0322.

The probability of having at least one match is simply: 1 - pd(O) = 1 - 0.7241 =

0.2859. The calculation of the binomial probability distribution can be complicated

and tedious as n gets very large. The Poisson probability distribution can be used to

approximate the binomial probability distribution since the computations involved in

calculating binomial probabilities are greatly reduced [38, 9].

Definition 5. The Poisson probability distribution with parameter (.A= np) is given

by:

<p(x)

Remark. Approximating the binomial probability distribution gives the Poisson

probability distribut ion.

<p(x) =
n! X n-x p q

(n- x)!x!

n(n - 1)(n - 2) ... (n- x + 1) (Ey(1 _ Pt
x! q

Example. From the above example we have p = 0.252 = 0.0625, q = 0.9375, Ly = 6,

71

Lx = 2 and n = 5. The Poisson probability distribution for x = 0 is

cp(O) = ,\~e-).,= [(5)(0.~625)]0 e-(o.o625)(5) = 0.7316.
x. 0.

Given x, y, Ly, Lx and let us assume PA = Pc = Pa = Pr = 0.25. The probability

of finding an exact match of at least R consecutive letters is p = 0.25R, where R ::;

Ly, Lx. If the size of a source sequence and a target sequence are m and n, respectively,

then there are mn possible matching operations. Thus, the expected matches with

length at least R is given by:

E = mn0.25R = mn2- 2R = mn2-~, ~ = 2R.

According to Atschul-Dembo-Karlin, the number of matches with score above ~ is

approximately Poisson distributed,

E = Kmne-A~
'

where K and ,\ are scaling constants.

Recall that raw score ~ is the sum of the alignment 's pair-wise scores using a spe-

cific scoring matrix (see earlier sections in this chapter). The probability of matching

exactly x with a score greater than or equal to ~ is given by

The probability of matching at least one H S P "by chance" is given by

pm = 1 - Po = 1 - e-E.

This is the p-value associated with the score ~. If we expect to find two H S P s with

score greater than or equal to~. the probability of matching at least one is 0.95.

72

For a given HSP(x,y) the raw score~ is converted into bit score, Ill, which has

been normalized with respect to the scoring system. Bit score can be compared

between different alignments [39, 38, 22].

Definition 6. Bit score is given by the following [39] .

w = .\~ -ln(K)
ln2

The significance of a given bit score can be determined by obtaining its own E-

value [39, 38, 22] .

E = Kmne- >..t; = Kmne1J!ln(2)+ln(k) = mn2- w.

4.8.2 Hashing

This subsection is based on [16].

Hashing is the transformation of a string of characters into a shorter string (oft n

into binary numbers of O's and 1's) or keys. Given a large database, we create the

hashes for the data, store the hashes and these hashes can be compared if we wish to

compare the large amounts of data.

If we have a collection of n elements with a set {0, 1, .. . , m- 1}, where m::; n,

then we can stor the items in a direct addr ss table, T[O, 1, ... , m- 1] indexed by

keys. Using a direct address table may not be efficient as the collection of n elements

becomes very large. An efficient way is to use a hash function, h(k) which maps

the set of keys into a certain space formed with slots. This results in a hash table

which contains the actual database information. As a hash table is generated there

may be more than one data that can be mapped into the same slot in the hash

73

table. This is referred to as collisions. There are several ways to avoid collisions (see

Table 4.1). Hashing DNA sequences can be done in different ways. One way is to use

Handling Collisions

Technique Method pros cons

Chaining chain all collisions in lists handle large num- overhead of mul-

attached to the appropriate ber of elements and tiple linked lists

slot in the hash table collisions

Re-hash re-hash until an empty slot fast possibly multi-

is found ple collisions

Overflow shift the collision into the fast possibly multi-

reserved area ple collisions

Table 4.1: Ways to handle collision problem.

a nucleotide as an index and another way is to define an l-mer 1 and convert it into a

binary sequence.

4.8.3 FASTA

FASTA (fast-all) is a heuristic for finding significant matches between two strings,

x and y. Its general strategy is to find the most significant paths in the dynamic

programming matrix or dot -plot. The FASTA algorithm consists of two main steps.

First, the algorithm determines all exact matches of length k between the two se-

1 Recall that an l-mer is a substring of size l.

74

quences. To find these exact matches, it uses a special form of hashing (look-up).

This creates a hash table which consists of all words of length k that are contained in

the sequence x. Hy values, which are the locations of each word of length k from the

database sequence y, are recorded. Then Q values, which is the difference between

the position of each word in x and Hy values, are also recorded. The second step is

compiling a frequency distribution of Q values. The highest frequency number tell

the number of position the sequence y should shift in order to obtain the maximum

number of matches between x and y.

Example. Given query sequence x , and the database sequence y are as follows:

0 1 2 3 4 5 6 7

x A G C T G G A A

y A G G A A G C C

8 9

G G

A T

0 1 2

C A T

C C T

We find Hy values and construct a table as in Table 4.2, and we then obtain Q valu s

as in Table 4.3. For example, nucleotide A, which is a word of length 1 occurs at

positions 0, 3, 4 and 8 in sequence y. Q values for A at position 0 are 0- 0 = 0,

0 - 3 = - 3, 0 - 4 = - 4 and 0 - 8 = - 8. Then, we would not look for the Q valu s

for A at position 3, but instead consider the next word in x, which is G. Q values for

G at position 1 are 1 - 1 = 0, 1 - 2 = -1 and 1 - 5 = -4.

The number of values equal to 0 is 5, which indicates that ther are five matched

nucleotides between two sequences x andy without shifting any position (we see they

match at positions 0, 1, 5, 10, and 12). We can use these values of differences in

table to construct a graph (see Figure 4.3). From this graph, we can then observe

the high st frequency. The values equal to 3 occur the most (eight times) , which

75

Bases Position, Hy values Total

A 0 3 4 8 4

c 6 7 10 11 4

G 1 2 5 3

T 9 12 2

Table 4.2: Hashing of databases sequence y in PASTA algorithm. Hy is the location of

corresponding base (A, C, G and T) and the total number of its appearances.

For example, A appears at the positions 0, 3, 4 and 8 in sequence T.

indicates that shifting y three positions to the right would give us the most matches

of eight between two sequences x andy.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xAGCTGGAAGGCAT

y AGGAAGCCATCCT

76

Source x A G c T G G A A G G c A T

Position 0 1 2 3 4 5 6 7 8 9 10 11 12

Q values 0 0 -4 -6 3 4 6 7 7 8 4 11 3

-3 -1 -5 -9 2 3 3 4 6 7 3 8 0

-4 -4 -8 -1 0 2 3 3 4 0 7

-8 -9 -2 -1 -1 3

Table 4.3: Calculated Q values which is the difference between the location number of the

source sequence x and H y.

r--,
Frequency Dsitrubution

----------- ---------------------- --

~

-5 6 ------------------
~
'o 5

j
E 4 1-----------------
" " -= 3 1----------­
~

0

-9 ·8 ·7 ·6 -5 -4 ·3 -2 ·1 0 1 2 3 4 5 6 7 8 9 10 11

Qvalu•s

Figure 4.3: Frequency distribution of Q values.

77

Chapter 5

Combinatorial Pattern Matching

In general, a pattern is a theme of reoccurring events or elements of a set. In this

thesis, by "patterns", we mean substrings of DNA sequences, repeating in some man­

ner . When a pattern is seen in a DNA coding segment, biologists suspect that this

may be an indication of functionality of a gene. Specifically, many patterns in DNA

segments have been identified to be associated with diseases in humans. For example,

the number of GAA repeats (the definition of repeats will be introduced in section

5.1) in an intron region of a gene is as large as 900. Such repeats of G AA in the

human DNA is associated with the Friedreich Ataxia disease [12]. Around 50% of the

human genome are repeats [49], so, the study of patterns in DNA sequences possesses

a great deal of importance.

Given a collection of strings X , a database, and a string p, the pattern matching

problem is to search for the presence of p in strings in X. In general, there are two

types of pattern matching problems; exact and approximate. Given X and p , the

exact pattern matching problem is to find substrings of strings in X that are exactly

78

the same as p; whereas approximate pattern matching is to find substrings of strings

in X that equal to p with a few mismatches.

To find a pattern in thousands of genomes is computationally challenging. Using

more sophisticated ways such as hash tables to organize data improves the search

t ime from being impractical to somewhat practical. In this chapter, we find unique

oligonucleotides (oligos) in strings of a database. Formal definition of unique oli­

gos will be given later in the chapter. The search for unique oligos, a widely used

application of string matching in biology, for the study of the functionality of cells,

involves both exact and approximate pattern matching. We will look at some of the

existing algorithms (see [49, 6, 35, 72]) for unique oligos searching. Based on these

algorithms, we propose a parallelization technique in searching for the unique oligos

to improve the search time. Furthermore, we propose a modified parallel algorithm

based on those algorithms to improve the search t ime. References to this chapter are

from [40, 72].

5.1 Repeats Searching

Let x = AT ACCGT ACT ACCGT AACCG be a arbitrary sequence over the alpha­

bet {A, C, G, T} . The substring ACCG repeats three times in x. We call ACCG

a "repeat" . There are numerous such repeats within any given genome and they

are very important in genetic studies. In fact , repeats in DNA may provide clues

for the tracing of evolution and understanding genetic diseases. Genomic Rearrange­

ments1 between organisms may indicate evolution through mutation and many genetic

1Genomic Rearrangements are differences in the order of genes, or in sequences within genes.

79

diseases including cancer are associated with a rearrangement of repeats within its

genome2 .

In practice, we are interested in long repeats since they can provide more informa­

tion about genes and mutations than shorter ones. However, it is clear that finding

long repeats in a genome is more difficult and time consuming than finding short

ones since finding long repeats require more comparisons. Thus, a simple approach

to finding exact long repeats is to first find short q-mers for some small q and then

extend them into longer l mers (ie. q < l) [49]. Recall that q-mer is a short substring

of length q. Depending on different species, the meaningful values of l vary.

Example. Suppose we have the following sequence:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A A C C T A C T A T c C T A C T A T C

The 4-mer TACT occurs at positions 4 to 7 and 12 to 15. Extending these 4-mers

we can obtain two maximal repeats CT ACT AT, these are the 7-mers starting at

positions 3 and 11.

Maximal repeats may always be detected in t his manner by extending short repeats.

Note that during the searching and extending process, the positions of l-mers must

be identified and recorded in an organized fashion as the input database size may be

very large.

2Genome is a collection of genes. This can be thought of as a database.

80

5.2 Exact Pattern Matching

As mentioned earlier, pattern matching is the process of finding all occurrences of a

string p in strings of a database X .

Definition 1. Given a database X = {xi, x2 , . . . , xk} for some positive integer k 2:: 1,

we say a substring qi,j of length m occurs at jth position in Xi, where m = lql ::;

Example. Let X = {ACCG, ACGTAG, TTTC } and q = TAG. We say that q

occurs at the fourth position of x 2 . We may denote the substring TAG as q2,4 = TAG.

Algorithm 1: Brute-Force algorithm for Pattern Matching

Input: Pattern p and a database X = {XI, x2 , ... , xk} for some positive

integer k 2:: 1 and IPI ::; I xi I, where 1 ::; i ::; k

Output: All locations of substrings of length m in X that match p.

begin
m +--- length of p

ni +--- length of xi

for i +--- 1 to k do

fort +--- 1 to (ni- m + 1) do

end

l if %.j) = p then
L output (i,j)

The simplest algorithm to find pattern p in a string of strings in X is shown in

Algorithm 1. Let q(i,j) represent a substring of length m, where i refers to the ith

81

string in the database X and ni is the size of the string xi· If a substring % ,j) equals

p, then there is one occurrence of the pattern p in a string of strings in X. This is the

brute-force algorithm that scans the entire strings of the database. At each position

t, the program runs up to m operations for each string of strings in X, thus taking

O(kmn) time, the worst case time complexity.

5.3 Approximate Pattern Matching

In the exact pattern matching problem, matches for the exact pattern p are found

in strings of the database being analyzed. However, due to the existence of muta­

tions in DNA, it would be more sensible to investigate approximate pattern matches.

For example, suppose that a gene mutation causes a DNA string ACCG to become

ACCT. In the exact pattern matching problem, these two strings are considered to

be different. If for some positive integer d, two strings within d mismatches are said

to be "approximately" the same. For instance, we say that ACCG and ACCT are

approximately the same for d = 1. In the approximate pattern matching problem,

we search for approximate matches of a pattern p with up to d mismatches, for some

positive integer d.

In this section we are interested in finding unique oligos in a given database.

Unique oligos are strings of certain length that appear only once in the database.

Recall that a database is a collection of sequences. We find unique oligos by first

identifying all substrings of some length from the database and comparing them with

all the substrings of the same length in strings of the database. If the two substrings

are the same, then they are not unique. We explore the idea of approximate pattern

82

matching using the Brute-Force method and two filtration methods. Using Brute­

Force method, we generate all possible substrings of size l , ie., l-mers, from the

database and compare them with other l-mers from the database to see which ones

are unique. In the filtration met hods, we search for all non-unique oligos in the

database. Eliminating these non-unique oligos from the list of all possible l-mers

results in the unique oligos of the database. To be unique, an oligo can appear any

number of t imes exactly or approximately in one sequence of the database but t he

oligo cannot appear exactly or approximately in any other sequence [73]. For this

reason, we do not compare with the other l-mers of the same sequence.

In this work, we will introduce the Brute-Force algorithm and two algorithms

that use filtration method (see e.g., [49, 72]) . FUrthermore, we will implement t hese

algorithms using Mathematica and parallelize them describing their improvements in

search t ime, their time complexity, as well as suggesting a possible method to improve

the search time.

5.3.1 Unique Oligonucleot ides

In the past few years, several genomes including humans have b een identified. The

human genome contains about 3 billion base pairs [35]. Studying such a large set of

data requires vast amount of computer resources. Many DNA analysis experiments

involve breaking up the DNA to be investigated into short fragments, forming what

is called a "DNA library" .

A microarray typically is a solid substrate (e.g. glass or a semiconductor chip) on

which spots of oligos have been deposited, each spot with a different known oligo. In

83

an experiment each D A fragment in th DNA library attaches to a particular spot,

ie. the olio which corresponds to it , so that many, if not all, of the D A fragments

are identified as well as the frequency of each kind of fragment. It is important that

all the oligos used on the array are unique, so that the binding to each spot represents

the expression of the corresponding gene.

In recent years, many biologists and computer scientists have been working on

the unique oligo searching problem. Many algorithms have be n developed, see [40,

49, 34, 35, 36, 6, 72, 73] for different sizes of the oligos. The size unique oligos were

chosen differently for different species. For example, the length of unique oligos for

Barley was chosen to be between 33 and 36 [72, 73] while for some bacteria species,

the length was 25 [36].

We are interested in how to generate unique oligos from a collection of large

sequences, by applying both the exact pattern matching problem and the approximate

pattern matching problem.

Recall that given two strings x and y of the same length, H D(x, y) denotes the

hamming distance between x andy. If H D(x, y) :::; d, we say that x d-mismatches y

or x is d-mutant of y.

Example . Suppose we have the following two sequences.

x : A C C G T T A G

y : A G G C T A A C

It follows that H D(x , y) = 5, and hence, xis d-mutant of y for any d ~ 5.

Recall that ESTs (Expressed Sequence Tags) are collection of DNA sequences. We

think of ESTs as a database.

84

Definition 2. Given an ESTs set X= {x1, x2, ... , xk} for some k and d, a unique

oligonucleotide is a substring of a string in the database with length l, which

appears any number of times exactly in one EST sequence but does not appear

exactly or approximately (within d mismatches) in any other EST sequence.

Example. Let l = ACCGGT, d = 2 and X= {xi, x2 }. Suppose l occurs exactly in

some position in XI and l occurs approximately (within 2 mismatch) in some position

XI = 0 0 0 ACCGGT 0 0 0

l

X2 = 00 0 ACGCGT 00 0

l

By the above definition, l is not unique.

Example . Suppose that li and l2 exist as substrings of different strings in X and

H D(li , l2) ~ d. Then l1 is d-mutant of l2 and itself. Similarly, l2 is d-mutant of l1 and

itself. Thus, both it and l2 have 2 d-mutants (namely, it and l2), and hence, they are

not unique.

5.3.2 Algorithms for the unique oligonucleotides design prob-

I em

Our purpose is to find all unique oligos occurring in a given database. We describe the

Brute-Force method and the two filtration methods in the following. The references

to this subsection are from [49, 72].

Method 1. The Brute-Force method.

By the definition of unique oligos, the simplest way to find all uniqu l-mers is to gen r-

ate all substrings of size l from a string of strings in the database X = { x1 , x2 , ... , xk}

85

first. Then we compare these l-mers with each other . From the comparison result ,

it is very easy to see which l-mers are unique. This simple and intuitive algorithm

is called Brute-Force Method [36]. Recall n refers to the size of a database. As n

becomes large, the time and space needed for Brute-Force Method becomes imprac­

tical. The time complexity for searching alll-mers in a length n of database is 8(ln).

Since there are four nucleotide bases in a DNA sequence, the number of comparisons

between l-mers is
41 (4~- 1). Then the total time complexity is O(ln + 41 (4~- 1)), which

clearly illustrates that the Brute-Force method is very difficult for database containing

millions and billions of bases.

Method 2. The two filtration methods.

The filtration method presents a faster technique to find unique oligos than the Brute­

Force method. It may even be the fastest method so far, although to some extent,

it is not as accurate as the Brute-Force method. The main point of the filtration

technique is to find all non-unique l-mers from the database. Then, eliminating these

non-unique l-mers from all the l-mers in the database, we can obtain unique l-mers.

Some algorithms of the filtration technique have been introduced by [49, 35, 36, 72].

Algorithm 1. The basic l-mer filtration algorithm (see [49]) is based on the fol­

lowing observation. Suppose that two l-mers, h and l2 have d mismatches, i.e.,

HD(h,l2) ::; d. If we divide both of them into d + 1 substrings: lililr . .. lf+1
,

l~ l~ l~ . .. z~+ 1 and each z;, except possibly zJ+1 has length r d~1l) then there exists

at least one i 0 E { 1, 2, ... , d + 1}, such that ll0 = z~o. It is easy to see this by con­

tradiction. Suppose that we cannot find any i 0 E { 1, 2, ... , d + 1} such that ll0 = z;o.

Then there exists at least one mismatch between ll and l~ for all i E { 1, 2, ... , d + 1} ,

and hence, there exist at least d + 1 mismatches between l1 and Z2 . In practice, we

86

can choose suitable l and d such that d~l is an integer. Let q = d~l . We say that

if two l-mers have d-mismatches, t hen they share at least one identical q-mer. If an

l-mer from EST x1 is not unique, then we can find at least one l-mer from some EST

sequences other than x1 that are approximately the same. These two l-mers would

share some q-mer. An effective way to find all candidates for non-unique l-mers is to

find all q-mers that occur more than once and then extending them to l-mers.

This algorithm includes three steps. First, we find all strings of length q (i.e., q­

mers) in a database X . The q-mers that occur more than once may be candidates to

generate non-unique oligos. Then, we extend each identical q-mer into longer strings

of length l and compare these l-mers with each other to identify their non-uniqueness.

Recall that we do not compare two l-mers if they are from the same sequence in EST

sequences. By an identical q-mer, we mean the same q-mer occurring in different EST

sequences. Finally, we eliminate all non-unique l-mers from the total set of l-mers

in X to obtain the unique ones. All the q-mers over the alphabet set {A , C, G , T}

are stored into a hash table. Each q-mer corresponds to an entry whose index is the

hash value of the q-mer according to a hash function. This hash function assigns a

unique value to each q-mer. Whenever a q-mer occurs in the database, its location

gets recorded in the hash table. Once all the locations of all q-mers are found , we

extend the often-occurring q-mers into l-mers and compare l-mers from different EST

sequences.

Suppose that the total size of X is n . The time complexity for searching all q-mers

is 8(qn) . The number of comparisons within each table entry is O(r2), where r::::::::: n/4q

is the approximate number of identical q-mers in each table entry. Each comparison

requires extension of the q-mers and takes 2(l- q) times. Noting that the hash table

87

has 4q entries, we can finally obtain the overall time complexity O((l- q)r24q) for t he

basic filtration method [72].

Algorithm 2. The algorithm in [72] is similar to the above basic filtration method,

except that it is based on another observation. Suppose that two l-mers, h and l2 have

d mismatches, i.e., H D(h, l2) :::; d. If we divide both of them into l ~ J + 1 substrings:

l 1l 2 l3 z l ~J+ 1 l 1 l 2l3 zl~J+ 1 d h zi t ·bl zl~J+ 1 h 1 t h r 1 1
1 1 1 .. . 1 , 2 2 2 ... 2 an eac j, excep poss1 y j , as eng 1 l ~ J+ l ,

then there exists at least one io E { 1, 2, .. . , l ~ j + 1}, such that li0 and l~0 have at

most 1 mismatch, i. e., H D(li0
, l~0) :::; 1. It is also easy to see this by contradiction.

If for any i E { 1, 2, . .. , l ~J + 1}, l{ and l~ have at least 2 mismatches, then the t otal

mismatches between h and l2 would be at least d + 2. In practice, one can also choose

suitable l and d such that l ~J+ 1 is an integer. In this filtration algorithm, they also

first search for all q-mers (q = l ~ J +
1

), which they call seeds. Then before extending

each identical q-mer to l-mers like we do for the basic filtration method, t hey cluster

all the possible q-mers into groups such that within each group, every q-mer has no

more than one mismatch with the other q-mers. Finally, for each group, t hey extend

the q-mers to l-mers, compare those l-mers to see if they are non-unique, and then

filter all non-unique l-mers from the total set of l-mers. The algorithm is implemented

in C++ language.

Note that the idea of this filtration method is almost the same as t he basic one,

except for the clustering of 1 mutant seeds and extensions of 1 mutant seeds to l-mers

and comparisons following, which results in O(qr2) comparisons, where r ~ n/ 4q and

n is t he size of the database. Thus, the overall time complexity is 0((l - q)q ~;). By

the applications of these two filtration algorithms to some database, we can see that

algorithm 2 is actually faster than algorithm 1.

88

R emark 1. A q-mer that occurs in more than one EST sequence has to be extended

to l-mers to the left and to the right positions for comparison. The extensions are

done as follows. First, each identical q-mer is extended to the left most l - q positions.

For t he next extension, the q-mer is extended to the left by l - q - 1 positions and

one position to the right. As the extension step proceeds, the number of possible

extensions to the left decreases as the number of possible extension to the right

increases. We can continue to extend until the number of possible extension to the

left reaches zero and the number of possible extension to the right reaches l- q. For

each identical q-mer, we can generate at most (l - q + 1) l-mers because if the q-mer is

found at the very beginning of a sequence in a database, then it cannot be extended

to the left position. This results in only one possible extension to the right by l - q

positions. A similar case happens when a q-mer to be extended is at the very end of

a sequence.

5.3.3 Parallelization

To improve the existing algorithms for the unique oligos problem in a simple and

feasible way, we think of the application of parallelization.

DNA analysis such as unique oligo design requires tremendous computational re­

sources which include vast amounts of processing power and memory. Nowadays, we

may not easily find any highly efficient single computers in universities or research

institutions, but it is not hard at all to find many standard computers in any inst itu­

tion. Thus, the idea of parallel computing for DNA analysis is to let many computers

share the load in order to get the job done faster.

89

As we know, a computer is composed of four main parts: central processing unit

(CPU), memory, hard disk and user interface device. All the arithmetic operations are

carried out in CPU. Memory is temporary storage to save the arithmetic operations

and data. Inputs and outputs can be stored in the hard disk. A cluster is a group

of computers that work together in a distributed memory system. In a distributed

memory multiple-processor system, each processor has its own memory. This requires

computational tasks to be distributed to the different processors for processing, mak-

ing the system appropriate for designing parallel algorithms. The most common type

of cluster is the Beowulf cluster (Figure 5.1b), computers connected with a TCP/IP

Ethernet network. ..
~~
=~ Input

/ CPU /

I I I I
.. =-~CPu~/ - Hard Disk • Memory
- lnoul 1 1

(a) A general computation (b) A parallel computation method with multiple cpu's

method with one cpu

Figure 5.1: a)A general computation method with one cpu. Six inputs must wait for

their t urns to be executed b)A parallelized computation method with three

computers that take two inputs each. This is an example of Beowulf cluster.

Parallelization is an idea in which large problems can be divided into smaller ones

t hat can be solved simultaneously. For implementing our parallel algorithms, we were

90

able to access over 40 Beowulf clusters through the departments of Mathematics and

Statistics and Computer Science at Memorial University of Newfoundland.

For the Brute-Force method we have two steps: generation of l-mers and com­

parisons among l-mers. Given a database, we first need to generate all l-mers from

all EST sequences of the database. The l-mers generation can be done in parallel as

follows. Each processor is used to find all the l-mers in one sequence. The length of

each sequence varies. Upon completion of the l-mers generation for some sequence,

the processor receives the next sequence in line and repeats the task. Finally, all

the detected l-mers from all the processors are combined in the main processor to

have the total set of l-mers. For the comparison part, we pick one l-mer from one

sequence and compare it with all the other l-mers in the other sequences to determin

its uniqueness. Therefore, the parallelization idea is very simple. The algorithm for

Brute-Force in parallel is given in Algorithms 2 and 3.

91

Algorithm 2: Brute-Force algorithm in parallel

Input: EST sequences X= {x1, x2, · · · , Xn }

l: Length of unique oligonucleotides

d: Maximum number of mismatches for non-unique oligonucleotides

Output: All unique l-mers in X

begin

1. lMers ~ alll-mers generated from the database X (lMer[[i]] contains

all different l-mers from the sequence X [[i]])

2. Comparisons for unique l-mers

unilmer sl ~ all unique l-mers (results of parallelization of map goo[i])

3. Discard l-mers in unilmersl which do not satisfy given conditions

unilmers ~ final results of unique l-mers.

end

92

Algorithm 3: The parallelizing portion of Brute-Force algorithm: each

lM er[[i]] will enter into the function for analysis on different computers.

goo[i]: map to find all unique l-mers in X[[i]]:

begin

z +--- a table to put all possible unique l-mers in X[[i]]

lt +--- a test table for uniqueness of l-mers in X[[i]], initially assumed to be 1

for each component, i.e., each l-mer is assumed to be unique.

for ii from 1 to length of lM ers[[i]] do

for j from 1 to length of X do

for j j from 1 to length of lM er s[[j]) with j =I i do

I if HammingDistance[lMers[[i, ii]], lMers[[j,jjllJ ::; d then

L L lt [[ii]] = 0

z +--- alllMers[[i, ii]] with lt[[ii]] = 1

Return[z]

end

The filtration method for the unique oligos searching problem also consists of two

main parts: the generation of q-mers, the extension of q-mers and comparison of

l-mers. The generation of q-mers is the same used in the previous method.

For the extension and comparison part, the parallelization idea depends on the

specific algorithms. Using the filtration algorithm 1 without the application of par-

allelization requires first finding of all q-mers (or seeds) the occur more than once in

the first sequence of EST sequences. Next , each seed is extended (l-mer) from the

first sequence and compared with other extended l-mers in all the sequences except

93

the first one in the database to determine uniqueness. After this process, the next

seed from the first sequence repeats the same procedure. In the whole process, each

seed performs the extension and comparison independent of other seeds. We can

parallelize by sending each seed into an available processor to perform the extension

and comparison to determine uniqueness of each seed. After this step, each processor

sends the recorded non-unique l-mers to the main processor and receives the next

available seed. Finally, we find unique l-mers through filtration by the main proces­

sor. As for the filtration 2, it first clusters q-mers into groups such that in each group

every q-mer is 1-mutant of each other. These q-mers are extended and compared,

just like in the previous method. When we apply parallelization to this algorithm,

we distribute all groups of seeds to different processors. Then each processor works

on the extension and comparison for the related group of q-mers, and returns the

recorded non-unique l-mers to the main processor later. The final filtration is also

done by the main computer. The algorithms for the filt ration methods in parallel is

given in Algorithm 4 through Algorithm 7.

94

Algorithm 4: Parallelized Filtration algorithm 1

Input: EST sequences X = { x1 , x2 , · · • , Xn }

l: Length of unique oligonucleotides

d: Maximum number of mismatches for non-unique oligonucleotides

- l q- d+l

Output: All unique l-mers in X

begin
1. q Mer s f-- all q-mers generated from the alphabet {A, C, G, T}

2. Extensions and comparisons for non-unique l-mers

nonunipo f-- positions of possible non-unique l-mers (results of

parallelization of map goo[qmer])

3. Filtration

all f-- all possible positions of l-mers in X

uni f-- all possible positions of unique l-mers (Complement[all , nonunipo])

unilmersl: Apply "StringTake" to all elements in uni to obtain all unique

l-mer candidates

4. Discard l-mers in unilmersl which do not satisfy given conditions

unilmers f-- final results of unique l-mers.

end

95

Algorithm 5: The parallelizing portion of the algorithm 1: each q-mer will

enter into this function for analysis on different computers.
goo[qmer] :

begin
z ~ a table for positions of non-unique l-mers resulted from extensions and

comparisons for qmer

Posi ~ list of positions of qmer in X

(e.g., Posi = { {1, 2}, {9, 10}, · · · , {20, 30}} corresponding to occurrences of

qmer: (1, 1), (1, 2), (2, 9) , (2, 10) , · · · , (n, 20), (n, 30), where (p0 , PI) means

position PI in sequence Po·)

for j from 1 to n - 1 do

for jj from 1 to Length[Posi[[j]]] do

for k from j + 1 to n do

Return[z]

end

for kk from 1 to Length[Posi[[k]]] do
qi ~ the q-mer located at (j, Posi[[j, jj]])

q2 ~ the q-mer located at (k, Posi[[k, kk]])

for each pair of l-mers h and l2 that contain qi and q2 ,

respectively, do

if H ammingDistance[l1 , l2] :::; d then

l z = Append[z, {Po(li) ,PI(li)} , {po(l2),PI(l2)}]

({po (li), P1 (li)} is the position of li)

96

Algorithm 6: Parallelized F iltration algorithm 2

Input: EST sequences X= {x1 , x2, · · · , Xn }

l: Length of unique oligonucleotides

d: Maximum number of mismatches for non-unique oligonucleotides

- l
q - L~J+l

Output: All unique l-mers in X

begin

1. q Mer s +- all q-mers generated from the alphabet { A, C, G, T}

qp +- Groups of q-mers. Each entry of qp is a q-mer group in which each

q-mer is one mutant of the other q-mers.

2. Extensions and comparisons for non- unique l-mers

nonunipo +- posit ions of possible non-unique l-mers (results of

parallelization of map goo(qpi])

3. Filtration

all +- all possible positions of l-mers in X

uni +-all possible positions of unique l-mers (Complement[all , nonunipo])

unilmersl : Apply "StringTake" to all elements in uni to obtain all unique

l-mer candidates

4. Discard l-mers in unilmersl which do not satisfy given conditions

unilmer s +- final results of unique l-mers.

end

97

Algorithm 7: The parallelizing portion of algorithm 2: each qp[[i]] will enter

into this function for analysis on different computers.

goo(qp((i]]]:

begin
z f- a table for positions of non-unique l-mers resulted from extensions and

comparisons for q-mers in qp((i]]

Posi f- list of positions of all q-mers in qp((i]] in X

(e.g., Posi = { {1, 2}, {9, 10}, · · · , {20, 30}} corresponding to occurrences of

all q-mers in qp([i]]: (1 , 1) , (1, 2), (2, 9), (2, 10), · · ·, (n, 20), (n, 30), where

(Po, pi) means position p1 in sequence p0 .)

for j from 1 to n - 1 do

for jj from 1 to Length[Posi[[j]]] do

for k from j + 1 to n do

Return(z]

end

for kk from 1 to Length[Posi[[k]]] do
q1 f- the q-mer located at (j, Posi[[j , jj]])

q2 f- the q-mer located at (k, Posi[[k, kk]])

for each pair of l-mers l 1 and l2 that contain q1 and q2 ,

respectively, do

if HammingDistance[l1 , l2]:::; d then

l z = Append[z, {po(ll), PI(h)} , {po(l2),p1(l2)}]

({po(li),Pl(li)} is the position of li)

98

We now analyze the time complexity for the parallelization for each algorithm. In

general, the complexity for each algorithm has the following notion.

T(n) + C(n)
p

T(n) defines the complexity of the algorithm (for n operations) we want to paral­

lelize, where p is the number of processors in parallel computing. Thus, T~n) is the

complexity of a parallel algorithm. In parallel computing, there exists communication

complexity C which is the communication time taken between a main computer and

the processors used for parallelization. In detail, a main computer checks the avail-

ability of each processor. Once the main computer communicates with a processor

that the processor is free , a task gets assigned for the processor. After successful

completion of the task, the results get sent back to the main computer. These com-

munication steps are determined experimentally, not analytically.

Suppose that the size of database X is n and p processors are used for paralleliza-

tion. The time complexity for searching all q-mers in X by one computer is 8(qn).

Each proces or works on n/p bases for the generation of q-mers. Zheng et al [72]

assume that the average occurrences of a q-mer in X is r, where r ~ n/4q. Each

q-mer at some location in X has (l- q + 1) possible extensions to l-mers. For one

type of extension to l-mers of a q-mer, there are r extensions and (;) comparisons.

Thus, one q-mer takes (r+ (;))(l - q+l) time for extension and comparison [72]. The

total time for extension and comparison for all q-mers is then (r + (;))(l - q + 1)4q if

we do this in one computer. Since every processor does extensions and comparisons

for 4
q q-mers. The overall time complexity for our basic filtration method is

p

8(qn) + O((r + (;))(l - q + 1)4q) = O((l - pq)r
24

q).

99

With parallelization the complexity i

As for the parall lization for the filtration algorithm 2, the idea is almost the same

as that of the basic one. There are 4q possible q-mers of the alphabet {A, C, G, T}.

We cluster q-mers such that each group contains at most 4 q-mers, along which each

q-mer has 1-mismatch with the others. Every q-mer can be in q groups we may have

4q · q groups in total. Since every group has 4 elements, the number of differ nt

groups is ~ = q · 4q- l. That is, we could have at most q4q- l groups of q-mers, so

it takes q4q- l for clustering part. Then the extension and comparison for each group

take (4r + (";)) (l - q + 1) time. Note that every processor works for f q4~-' l groups.

Therefore, the overall time complexity for the filtration method in [72] is

With parallelization the complexity becomes,

Similarly as we analyzed above, it is easy to see that for the Brute-Force algorithm

working on a database with n bases and p processors, the time complexity for search-

ing alll-mers is G(ln) and that for comparisons is 0(41(41 - 1)). With parallelization

the time complexity is,

The above algorithms and their complexity analysis are based on the algorithms

in [49, 6, 35, 72]. In fact, in the implementation of these algorithms, we improve

100

the filtration algorithms for the extension part. Recall that th filtration method

1 is based on the observation that if two l-mers are d-mutant to each other, then

they share at least one q-mer provided that they are partitioned into d + 1 q-mer

(substrings of length q). Therefore, we should consider each q-mer that we generat

from the database as one of the d + 1 substrings of an Z-mer. This indicates that when

we extend a q-mer to an l-mer, we do not have to extend it base by base to the left

or right. Instead, every time we extend the q-mer by kq (k is a positive integer such

that kq :::; l - q + 1) bases to the left or right. This results in at most d extensions

to an l-mer for any q-mer in the database, rather than l - q + 1 extensions as before.

Thus, the time complexity for filtration method 1 becomes

With parallelization, the time complexity for filtration method 1 is

We can also apply this extension idea to filtration method 2 and obtain the time

complexity as

With parallelization the time complexity is,

As the parallclization idea has been determined, we decided to implement and

parallelize the above mentioned algorithms using Mathematica, since it is a very

101

convenient software to deal with data, and in particular, it is very convenient to

implement parallel algorithms.

Using built-in functions in Mathematica, we can easily gen rate a table for all

possible 4q q-mers, find the positions of all q-mers in the database, and distribute

the q-mers into groups such that within each group each q-m r is one mutant of the

other q-mers. For the filtration algorithms, we do not have a hash table to r cord

all the occurrences of all q-mers before the extension. Instead, every time we pick

one seed (i.e., one q-mer for the filtration algorithm 1 or one group of q-mers for the

filtration algorithm 2), find all its positions in the database, and then extend it at

different positions to l-mers for comparison. This takes less memory than the hash

table . Moreover, we realize that the sets of all non-unique l-mers and alll-mers take

large amounts of computer memory, so we just generate a table for all possible l-mer

positions and only return the positions of non-unique l-mers from each processor to

the main computer. Then, by filtration, we have all positions for unique l-mers and

hence obtain alll-mers. In Mathematica programming, we can also conveniently use

built in functions.

5.3.4 Test Runs

We wish to find unique oligos, which appear in only one sequence of a given set of

genes. Our main focus is on the parallelization, that is, we illustrate that paralleliz d

algorithms greatly reduce run time as compared to the serial ones.

We obtained the genomes of acaryochloris marina (173 gen s with 128,904 bases),

bacillus cereus (241 genes with 170,988 bases) and aspergillus nidulans (421 genes with

102

711,492 bases), which were taken from National Center for Biotechnology Information

(http:/ jwww.ncbi.nlm.nih.gov.) . These bacteria genomes were chosen arbitrarily for

test purposes.

The main computer used for the parallel program has 1GB of memory and 2 GHz

of CPU. Beowulf clusters have 4GB of Memory with 2.6GHz CPUs.

In our test runs, we are interested in unique oligos in these three databases.

According to [44, 67, 6], in addition to being unique, the selected unique oligos have

to fulfill the following conditions: t he length of 25 nucleotides, includes at most 12 A

or T nucleotides, includes at most 10 Cor G nucleotides, includes at most 6 successive

A, 6 successive T, 5 successive C or 5 successive G nucleotides, the GC content is

30% - 70%, i.e., the total number of G and C nucleotides is between 8 and 17, no

window of 8 nucleotides includes more than 6 A, 6 T, 4 C or 4 G nucleotides, and an

inverse complementary nucleotide of an oligo can match at most 6 symbols from the

beginning of an oligo.

Such conditions or parameters depend on different species. For barley, as presented

in [72, 73], number of other parameters were required including GC content and

melting temperatures. Parameters are related to the content and morphological shape

of the probes used in microarray. The criteria for the parameters on long oligo probe

can be found in [6].

Suppose that two 25-mers are approximately the same if they have 4 mismatches to

each other (i .e., d = 4). According to the algorithms, q = 5 in the filtration algorithm

1 and q = 8 in the filtration algorithm 2. We implemented the Brute-Force method,

the filtration algorithm 1 and the filtration algorithm 2 into Mathematica and also

parallelized the three resulting programs. Then we ran the two filtration programs

103

in 1, 5, 10, 25, 44 processors, respectively. Brute-Force requires a great number

of comparisons, thus, we parallelized Brute-Force method. Using 44 processors, we

obtained the processing time for the parallelized Brute-Force method in Table 5.1.

Table 5.2 shows the results of the processing time spent to obtain unique oligo with

the filtration algorithm 1. On Table 5.3, the results of the processing time are

recorded for the filtration method 2 and the Brute-Force method. Since the program

for the Brute-Force method is very time consuming, we only ran it in 44 processors.

The number of unique oligos for each methods can be found in Table 5.4.

organism time

a. marina 4h45m17s

b. cereus 6h10m1s

a. nidulans 5d4h7m25s

Table 5.1: Processing time for parallelized Brute-Force method using 44 computers for

the three test organisms, acaryochloris marina, bacillus cer us and aspergillus

nidulans.

The processing times on Table 5.2 and Table 5.3 are plotted against the number

of computer processors used on Figure 5.2 and Figure 5.3, respectively. We note two

interesting observations. First, extensions by bases resulted in more comparisons.

With increasing number of comparisons, we have more "chanc s" of obtaining the re­

sults close to Brute-Force method. However, when we applied the extensions method

by qM er siz , it reduced the number of comparisons and obtained the unique oligos

104

much faster than the extension by bases method. Although the number of compar­

isons are decreased resulting in less accurate number of unique oligos, we have saved

some time. Filtration method in the first place may not be the most accurate method,

but as the database gets larger and larger for different organisms, this could be an

efficient approach to solve the problem.

A second inter sting observation is that effectiveness of our parallelization tech­

nique did not depend on the number of processors used as much as we expected. It

would be sensible to think that the more processors you have the faster the program

would be. However, from the graphs we note that the run time significantly reduces

even after 5 processors from the single processor for aspergillus nidulans. For other

organisms, the databases were too small to note any changes between different num­

ber of computers us d. The main computer is responsible for assigning works to other

processors and once each processor finishes its job, the main computer must effec­

tively organize the data and process them accordingly. As the database size become

larger, th r turned values of non-unique oligos may become larger for each processor.

Thus, when large amounts of data are returned to the main computer, and possibly

at the same time, the main computer is unable to do its job at a given time, which

may lead to delays.

From the database of acaryochloris marina with 173 genes of 128, 904 bases, we

find 48, 999 different 8-mers in about 20 minutes. oting that at most 48 = 65 , 536

different 8-mers can be obtained from any database, we assume that for most of bigger

databases, 65,536 different 8-mers will be obtained. Also, we suppose that almost

all 45 = 1024 different 5-mers can always be obtained from any test database. Thus,

when we implement the filtration algorithms into Mathematica programs, we do not

105

generate all q-mers from the database. Instead, we directly generate all possible q­

mers over the alphabet {A, C, G, T} (which takes a split second) that resulted in the

exact output as to first generating the q-mers from the database.

In Table 5.4, the number of unique oligos found using different methods can be

found for the three test organisms. The number of unique oligos using the Brute­

Force method is most reliable since each substring is compared with all others. The

number of unique oligos for the filtration 2 when extended base by base includes a few

more unique oligos compared to the ones by Brute-Force method. It is especially true

for the filtration 2, qMer size extension. According to private communications with a

local researcher3 in biology and medicine that use microarray, these extra number of

unique oligos is acceptable. The number of unique oligos using Brute-Force is desired.

However, many unique oligos generated by manufactures may already contain errors

such as those oligos that are not transcribed. Even with the best results, we may

always have some errors contained in biological experiments. Filtration 2 using qMer

size extension, performed in 3 minutes and 55 seconds, is an improvement over the

Brute-Force method which took about a day with about 0.08% of extra unique oligos

for aspergillus nidulans.

5.3.5 More Improvements

Other than parallelization, we propose more improvements for the old filtration meth­

ods to find the unique oligos in a given database.

Motivated by the old filtration algorithms, we can easily have some similar al­

gorithms. One is based on the following observation. Suppose that two l-mers, l1

3 Dr. G Sun, Department of Medicine, Memorial University of Newfoundland

106

w
E
;=

2008-7-2 4:48

2008- 7- 2 o:oo

2008-7- 1 19:12

2008-7-1 14:24

2008-7- 1 9:36

2008-7-1 4:48

2008-7-1 0:00

2008-6-30 19: 12

2008-6-30 14:24

2008-6-30 9:36

'·:,

,.

!-

'
-+- acaryo
--bacillus

asper930

'

'

~

:0

5 10 20 44
Number of computers

Figure 5.2: Estimating the run time of Algorithm 1 on different numbers of processors.

and l2 have d mismatches, i.e., H D(l1 , Z2) ~ d. If we divide both of them into

l dJ 1 b t · · Z1l 2Z3 z l~J+ 1 l1l2l3 zl ~J+1 d h zi 'bl z l ~ J + 1
3 + su s rmgs. 1 1 1 ... 1 , 2 2 2 . . . 2 an eac 1, except poss1 y 1 ,

has length r l ~J+ 1 l, then there exist s at least one io E {1, 2, . .. , l~J + 1}, such that li0

and z ~o have at most 2 mismatches, i.e., H D(li0
, l~0) ~ 2. This is t rue since if for any

i E { 1, 2, . . . , l ~J + 1} , l i and l~ have at least 3 mismatches, then the total mismatches

between l1 and l2 would be at least d + 3. Based on this observation, we can have a

new algorithm. First find all q-mers (q = r~J1 l) in the database and cluster t hem
3 + 1

into groups such that within each group, each q-mer has no more than 2 mismatches

with the other q-mers. Then ext end the q-mers in each group to l-mers and compare

107

2008-7- 1 4:48
-+-- acaryo
---bacillus

asper930
2008-7-1 3:36

2008-7- 1 2:24

cu

;§ 2008-7- 1 1:12

·-,__ -, ..
I

2008-7-1 o:oo

2008- 6-30 22:48

2008-6-30 2 1 :36
5 10 20 44

Number of computers

Figure 5.3: Estimating the run time of algorithm 2 with the 1-mutant on different numbers

of processors.

the resulted l-mers to see if they are non-unique, and finally eliminate t he non-unique

l-m ers from the total l-mers to obtain t he unique l-mers. The detailed steps of t he

algorithm are as follows.

(i) (1) Find all q-mers (q = f L~J+ 1 l) in the database X .

(2) Make a table "qmergroups" such t hat in each table ntry, a group of q-

mers are recorded and each q-mer has no more than 2 mismatches with

the other q-mers.

(ii) (1) For ach ent ry of "qmergroups", find all posit ions of q-mers in this entry

108

and record these positions (sequence by sequence) into a table "qmerposit ions".

(2) Fix one position from one (i-th) ent ry of "qmerpositions", say L1 .

(3) Choose a position from another entry of "qmerpositions", say L 2 . The

q-mers at L1 and L 2 are called q1 and q2 , respectively, for convenience.

Extend q1 and q2 correspondingly to l-mers. Compare the two l-mers

to see whether the Hamming Distance between them is less than d. If so,

these l- mers are not unique oligo.

(4) Choose all the other possible positions from entries other than the i-th

entry of "qmerpositions" and repeat (3).

(5) Fix another position from the i-th entry of "qmerpositions" and repeat

(3)-(4). Repeat this step t ill all positions from the i-th entry of "qmerpo-

sitions" have been considered.

(6) Choose another entry of "qmerpositions" and repeat (2)-(5) . Repeat this

step till all entries of "qmerpositions" have been considered.

(7) Choose another entry of "qmergroups" and repeat (1)-(6). Repeat this

step till all entries of "qmergroups" have been considered.

Actually, we did not implement this algorithm into a program. We think it should

be interesting and maybe will work on this as a future effort . However, following this

idea, we may have a few algorithms based on similar observations and they may be

not bad algorithms from some points of view. In this series of algorithms, the number

q, the length of small strings which are candidates for extension, is increasing from

f d!1l to f L~J+ 1 l , f LgJ+1 l, and finally to f ~ l and even l. Thus, th size of possible q­

mers, 4q, is also becoming larger and larger. This may result in impossible algorithms

109

for current computers because of memory limitation or oth r problems. We do not

know what would happen. This also seems to be an interesting problem.

110

Organisms

a. marina b. cereus a. nidulans

no. genes 173 241 421

nt length 128,904 170,988 711, 492

1h17m52s 32m49s 24h24m26s
serial 1

(5h27m38s) (6h10m53s) (7d14h19m38s)

7m7s 29m22s 4h37m56s
5

Processing time (30m8s) (1h53m20s) (21h44m4s)

for filtration method 1 4m24s 20m15s 2h36m54s
10

using various (19m49s) (1h38m13s) (11hllm34s)
Parallel

numbers of computers 3m30s 17m0s 1h10m35s
20

(16m33s) (1h6m14s) (5h37m32s)

3m30s llm7s 40m17s
44

(8m30s) (51m42s) (3h43m29s)

Table 5.2: Processing time table for filtration method 1 for three test organisms, acary­

ochloris marina, bacillus cereus and aspergillus nidulans. The time in the

non-bracket is extension by qMer size and the time in bracket is the extension

by bases. Extension by bases produces more comparisons, thus lengthening the

processing time.

111

Organisms

a. marina b. cereus a. nidulans

11m50s 18m17s 4h3m48s
serial 1

(22m0s) (1h20m46s) (14h20m17s)

3m14s 5m19s 25m12s
5

Processing time (4m22s) (10m56s) (1h20m35s)

for filtration method 2 1m57s 4m58s 8m30s
10

using various (3m37s) (10m20s) (46m44s)
Parallel

numbers of computers 56s 2m59s 6m55s
20

(1m42s) (5m27s) (20m4s)

47s 1m55s 3m55s
44

(59s) (4m35s) (16m2s)

Table 5.3: Processing time table for filtration method 2 for the three test organisms. The

time in the non-bracket is extension by qM er size and the time in bracket is

the extension by bases.

112

Organisms
Methods

a. marina b. cereus a. nidulans

Brute-Force 119,448 162,700 695,115

filtration 1 119,448 162,700 695,115

(base by base)

filtration 2 119,486 162,735 695,210

(base by base)

filtration 1 119,448 162,700 695,115

(qMer size extension)

filtration 2 119,645 162,999 695,668

(qMer size extension)

Table 5.4: Number of unique oligos found using different methods for the three test or­

ganisms.

113

Chapter 6

Conclusions

There are several aspects of research in DNA analysis. This thesis is an exploration

of four different areas of D A analysis that use Combinatorics and its applications.

Gavin et al [26] applied the idea of Levenshtein distance and created large sets of

synthetic tissue identification. The identification tags provided error detection and

correction. Gavin et al[26J used the error detection and correction capability of up to

only two distances. Error-detecting and error-correcting codes of various lengths can

be constructed using design theory. In Design Theory, code capable of correcting

errors of lengths up to seven have been identified. Gavin et al[26] applied the Leven­

shtein idea to improve the accurate identification of tissue source in the presence of

errors even though their paper only considered the ability to detect and correct up

to two substitution errors.

The second area of D A analysis using Combinatorics is the application of Graph

Theory. We studied two methods of sequencing technique, fragmentation (overlap)

method and sequencing by hybridization (SBH), both of which use Graph Theory.

114

These sequencing t echniques are very important in the advancement of biological

sciences. Fragmentation method uses each base position of DNA chain to be deter­

mined individually (eg. gel electrophoresis). On the other hand, SBH uses sets of

oligos to be hybridized, t hus, allowing analysis of DNA samples up to several kilobases

which are much longer than the samples produced by fragmentation method. Graph

theory and combinatorial algorithms play a key role in understanding and performing

SBH reconstruction [2]. SBH method still needs to be studied and improved since it

can result in multiple "possible" DNA sequences [51].

Third area of DNA analysis that we studied was sequence comparison. Whenever

there may be an error in gene expression, one may inspect the normal expressed

sequences and the one with errors. It is often impossible to suspect whether the gene

expression contains errors or not after a specific stage in the expression. Errors in

gene expression may be detected in much later stages as t he cell with errors become

suspicious as with those cancerous cells. Then, we backtrack the stages to study

what has gone wrong in the expression. DNA sequences are expressed in terms of

four nucleotides whereas protein sequences are expressed by 20 different amino acids.

Two sequences are aligned (paired) element by element . Locating different positions

of alignment, we can identify what options give us the best alignment by the scores

of these options. Dynamic programming is used to effectively pair up two sequences.

Heuristic searches including FASTA are still being developed to improve the search

t ime. The different sequences from the same cell do not mean that there is an error.

Rather, it means that some genes are activated to express while others are not.

The final area of DNA analysis studied is t he efficient selection of unique nucleotide

from a database containing large DNA or protein sequences. Even though technology

115

has improved significantly over the past decade, it is not sufficient to handle an ever

increasing production of large data. Technology such as the microarray works by

exposing a given DNA molecule to hybridize to its complementary DNA template

requiring unique oligos of certain length. This length varies for different species.

Intuitively, to find all unique oligos in a DNA data set, we can find all oligos of the

given length and compare them with each other. However, while the speed and the

memory capacity of a computer improved significantly, it is still impossible to generate

all oligos of large length from a large database. For example, barley, with the current

data size of 56 Mb, requires unique oligos of length about 36 [73] , which means that

it requires up to 436 ~ 4.7 x 1021 bytes of computer memory. This is impossible for

current computers. Analysis of such large data require an effective approach such

as those given in [35, 40, 72]. In this thesis, we studied the Brute-Force method,

which is the intuitive method mentioned above, and the filtration methods for the

selection of unique oligos. In particular, we improved the existing filtration methods

to an extent, and implemented them in Mathematica. We then applied paralleled

these algorithms. We used a small example to explain the technique of parallelization

(see Appendix). We discussed the time complexity for the algorithms we used as well

as the modified-parallelized algorithms. By the simulations for DNA databases of

some species (acaryochloris marina, bacillus cereus and aspergillus nidulans), we saw

that , even with 5 processors, parallelization improve the time significantly. However,

as the number of processors increase there was no need of extra processors. This

interesting factor was due to the communication complexity that took place between

the main computer and each processor. Machines that does not use or limit t he

use of communication factors are becoming popular these days. Such machines have

116

multiple processors in one computer (ie. duo and quad processors) which significantly

improves the communication time between the processors. We also proposed more

improvements that can be done to the algorithms we have mentioned. Parallelization

techniques provide much faster way for DNA analysis (including the selection of

unique oligos) and they make it more effective to do analysi for large DNA databases

with availabl computers.

117

Bibliography

[1] Adams MD, Kelly JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H,

Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR andY, n­

ter JC "Complementary DNA sequencing: expressed sequence tags and human

genome project" Science 252 (1991) pp. 1651-1656.

[2] Adams P, Bryant D and Byrnes S "Application of Graph Theory in DNA se­

quencing by hybridization" Bulletin of the Institute of Combinatorics and its

Applications 31 (2001) pp. 13-20.

[3] Anderson I "Combinatorial desigms and Tournaments" Oxford Science Publica­

tions, Clarendon Press, Oxford (1997).

[4] Altschul SF, Gish W , Miller W , Myers EW and Lipman DJ "Basic local align­

ment search tool" Journal of Molecular Biology 215 (1990) pp. 403-410.

[5] Altschul SF, Madden TL, Schaffer AA, Zhang J , Zhang Z, Miller W and Lipman

DJ "Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs" Nucleic Acid Research 25-17 (1997) pp. 3389-3402.

[6] Aluru S "Handbook of Computational Molecular Biology" Chapman and Hall

CRC (2006) pp. 6-19, 13-1, 13-2, 24-1, 24-3.

118

[7] Assaf A, Shalaby Nand Yin J "Directed packing and cov ring designs with block

size of four" Discrete Mathematics 238 (2001) pp. 3-17.

[8] Bains W and Smith G "A novel method for nucleic acid sequence determination''

Journal of Theoretical Biology 135 (1988) pp. 303-307.

[9] Barlow RJ "Statistics: A guide to the use of statistical methods in the physical

sciences" Wiley (1989) pp. 24-33.

[10] Bergeron B "Bioinformatics Computing" Pearson Education Inc (2003)

[11] Bours PAH "On the construction of Perfect Deletion-Correcting Codes using

Design Theory" Designs, Codes and Cryptography 6-1 (1995) pp. 5-20.

[12] Campuzano V, Montermini L, Molto' MD, Pianese L, Cosse'e M, Cavalcanti F,

Monros E, Rodius F , Duclos F, Monticelli A, Zara F, Can izares J , Kout nikova

H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A,

De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig

M and Pandolfo M "Friedreich 's ataxia: autosomal recessive disease caused by

an intronic GAA triplet repeat expansion" Science Mar 8,271-5254 (1996) pp.

1374-1375.

[13] Chafe K "Applications of Graph Theory to DNA and RNA Sequencing" Memo­

rial University of Newfoundland Department of Mathematics and Statistics,

Honours Thesis (2004) .

[14] Chen X, Kwong S and LiM "A compression algorithm for DNA sequences and

its application in genome comparisons" Genome Informatics 10 (1999) pp. 51-61.

119

[15] Colbourn CJ and Dinitz JH "Mutually orthogonal latin squares: a brief survey of

constructions" Journal of Statistical Planning and Inference 95-1-2 May (2001)

pp. 9-48.

[16] Carmen TH, Leiserson CE, Rivest RL and Stein C "Introduction to Algorithms­

Second Edition" The MIT Press Cambridge, Massachusetts (2001) pp. 10,41-45.

[17] Cover TM, Thomas JA "Elements of Information Theory" Wiley-IEEE (2006)

pp. 212.

[18] Colbourn CJ and Dinitz JH "The CRC Handbook of Combinatorial Designs"

CRC Press Inc. , Boca Raton Second Edition (2006) .

[19] Crick F "Central Dogma of Molecular Biology" Nature 227 (1970) pp. 561-563.

[20] Croce CM "Oncogenes and Cancer" The New England Journal of Medicine 358-5

January 31 (2008) pp. 502-511.

[21] Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J , Woffendin

H, Garnett MJ , Bottomley W, Davis , Dicks E, Ewing R , Floyd Y, Gray K,

HallS, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stev ns

C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley

J , Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Tr nch G, Riggins GJ,

Eigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY,

Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall

CJ, vVooster R, Stratton MR, and Futreal PA "Mutations of the BRAF gen in

human cancer" Nature 27-417 June (2002) pp. 949-954.

120

(22] Dembo A, Karlin S and Zeitouni 0 "Limit distribution of maximal non-aligned

two-sequence segmental score" Ann. Prob 22 (1994) pp. 2022-2039.

(23] Dori S and Landau GM "Construction of Aho Corasick Automaton in Linear

Time for Integer Alphabets" Information Processing Letters 98-2 (2006) pp. 66-

72.

(24] Drmanac R, Drmanac S, Chui G, Diaz R, Hou A, Jin H, Jin P, Kwon S, Lacy S,

Moeur B, Shafto J, Swanson D, Ukrainczyk T, Xu C, Little D "Sequencing by

hybridization (SBH): advantages, achievements, and opportunities" Adv Biochem

Eng Biotechnol 77 (2002) pp. 75-101.

(25] Franca LTC, Carrilho E and Kist TBL "A review of DNA sequencing techniqu s"

Quarterly Reviews of Biophysics 35-2 (2002) pp. 169-200.

(26] Gavin AJ , Scheetz TE, Roberts CA, O'Leary B, Braun TA, Sheffield VC, Soares

MB, Robinson JP and Casavant TL "Pooled Library tissue tags for EST-based

gene discovery" Bioinformatics 18-9 (2002) pp. 1162-1166.

(27] Gibas C and Jambeck P "Developing Bioinformatics Computer Skills" O'Reilly

(2001)

(28] Goodaire EG and Parmenter MM "Discrete Mathematics with Graph Theory"

Prentice Hall Third Edition (2006)

(29] Griffith AJF, Miller JH, Suzuki DT, Lewontin RC and Gelbart WM "An Intro­

duction to Genetic Analysis" Freeman, New York (2000) pp.2-10.

121

[30] Guruswami V "List Decoding of Error-Correcting Codes" Lecture Notes in Com­

puter Science 3282 (2004) pp.1-14.

[31] Hoffman DG , Leonard DA, Lindner CC, Phelps KT Rodger CA and Wall JR

''Coding Theory: The Essentials" Marcel Dekker Inc. New York (1991)

[32] Hood L and Galas D "The digital Code of DNA" Nature 421-6921 (2000) pp.

444-448.

[33] Hudson D "Lecture Notes: Algorithms in Bioinformatics I" ZBIT:Zentrum fur

Bioinformatik Tubingen (2006) pp. 3-78.

[34] Hyyro H "On applying string matching in searching unique oligonucleotides"

Proceedings of the 2001 International Conference on Mathematics and Engineer­

ing Techniques in Medicine and Biological Sciences CS Press (2001) pp. 1-7.

[35] Hyyro H, Juhola M and Vihinen M "On exact string matching of unique oligonu­

cleotides" Computers in Biology and Medicine 35 (2005) pp. 173-181.

[36] Hyyro H, Vihinen M and Juhola M "On Approximate string matching of unique

oligonucleotides" Medinfo 10 (2001) pp. 960-964.

[37] Jonassen I "Efficient discovery of conserved patterns using a pattern graph"

CABIOS 13-5 (1997) pp. 50-522.

[38] Karlin, S and Altschul SF "Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes" Proc. Natl. Acad.

Sci. USA 87 (1990) pp. 2264-2268

122

[39] Korf I, Yandell M and Bedell J "BLAST: An Essential Guide to the Basic Local

Alignment Search Tool" O(Reilly (2003) pp. 100-101.

[40] Jones NC and Pevzner PA "An Introduction to Bioinformatics Algorithms" MIT

Press, London, England (2004)

[41] Kurtz Sand Schleiermacher C "REFuter: fast computation of maximal repeats

in complete genomes" Bioinformatics: Applications Note 15-5 (1999) pp.426-427.

[42] Keller GH and Manak MM "DNA Probes" M Stockton Press Second Edition

(1993) pp.1-21.

[43] Levenshtein VI "On Perfect Codes in deletion and insertion metric" Discrete

Mathematics Appl. 2-3 (1992) pp. 241-258.

[44] Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann

M, Wang C, Kobayashi M, Horton H and Brown EL "Expression monitoring by

hybridization to high-density oligonucleotide arrays" Nature Biotechnology. 14

(1996) pp. 1675-1680.

[45] Lysov Y, Florent 'ev V, Khorlin A, Khrapko K, Shik V and Mirzabekov A

"DNA sequencing by hybridization with oligonucleotides" Koklady Academy

Nauk USSR. 303 (1988) pp. 1508-1511.

[46] Mahmoodi A "Existence of Perfect 3-Deletion-Correcting Codes" Designs, Codes

and Cryptography 14 (1998) pp. 81-87.

[47] Nagaraj SH, Gasser RB and Ranganathan S "A hitchhiker's guide to expressed

sequence tag (EST) analysis" Briefings in Bioinformatics 8-1 (2006) pp. 6-21.

123

[48] Parida L "Pattern Discovery in Bioinformatics" Chapman and Halls/CRC (200)

pp.89-106.

[49] Pevzner PA "Computational Molecular Biology: An Algorithmic Approach"

MIT Press, London, England (2000)

[50] Pevzner PA "DNA physical mapping and alternating EUlerian cycles in coloured

graphs" Algorithmica 13 (1995) pp. 77-105.

[51] Pevzn r PA and Sze SH "Combinatorial approaches to finding subtle signals in

DNA sequence ." In: Proceedings of the First IEEE Computer Society Bioinfor­

matics Conference (CSB'02) IEEE Press (2002)

[52] Rahmann S "Rapid large-scale oligonucleotide selection for microarrays" In: Pro­

ceedings of the International Conference on Intelligent Systems for Molecular

Biology AAAI press, Menlo Park, CA (2000) pp. 269-278.

[53] Sanger F, Nicklen S and Coulson AR 'DNA sequencing with chain-terminating

inhibitors" Proceedings of the National Academy of Sciences of the United States

of America 74 (1977) pp. 5463-5467.

[54] Schena M "Microarray Analysis" John Wiley and Sons Inc (2003) pp. 1-25, 121-

157.

[55] Shalaby N, Wang J and Yin J "Existence of Perfect 4-Deletion-Correcting Codes

with length six" Designs, Codes and Cryptography 27-1,2 (2002) pp. 145-156.

[56] Siede W, Kow Y W, and Doetsch P W "DNA Damage Recognition" Taylor and

Francis, New York. (2006)

124

[57] Smith TF and Waterman MS "Identification of Common Molecular Subse­

quences" Journal of Molecular Biology. 147 (1981) 195-197.

[58] Stekel D "Microarray Bioinformatics" Cambridge University Press. (2003) pp.43-

61

[59] Street DJ and Seberry J "All DBIBDs with block size four exist" Utilitas Math­

ematica 18 (1980) pp. 27-34.

[60] Voet D, Voet JG and Pratt CW "Fundamentals of Biochemistry" John Wiley

and Sons Inc., New York (1999)

[61] Wang J , and Yin J "Construction for Perfect 5-Deletion-Correcting Codes of

length seven" IEEE Transations on Informations Thoen) 52-8 (2006) pp. 3676-

3685.

[62] Watson, J "Molecular Structure of Nucleic Acid: A Structure for Deoxyribose

Nucleic Acid" American Journal of Psychiatry 160-4 April (2003) pp. 623-624.

[63] Watson, JD and Crick FHC "A Structure for Deoxyribose Nucl ic Acid" Nature

171 (1953) pp. 737-738.

[64] Wesselink JJ, Iglesia B, James SA, Dicks JL, Roberts IN and Rayward-Smith VJ

"Determining a unique defining DNA sequence for yeast species using hashing

techniques" Bioinformatics 18-7 (2002) pp. 1004-1010.

[65] Wikipedia "www.wikipedia.org" 1 21-3 March (2003) pp. 497-503.

[66] Wilson, RM "An existence theory for pairwise balanced designs" J. Combinato­

rial Theory 13A (1972) pp. 220-245.

125

[67] Wodicka L, Dong H, Mittmann M, HoM and Lockhart DJ "Genome-wide expres­

sion monitoring in Saccharomyces cerevisiae' Nature Biotechnology 15 (1997) pp.

1359-1367.

[68] Xia X "Bioinformatics and the Cell: Modern Computational Approaches in Ge­

nomics, Proteomics and 'franscriptomics" Springer USA (2007) pp. 1-22.

[69] Yin J "A Combinatorial Construction for Perfect Deletion-Correcting Codes"

Designs, Codes and Cryptography 23 (2001) pp. 99-110.

[70] Yin J "Existence of directed GDDs with block size five and index,\ 2: 2" Journal

of Statistical Planning and Inference 86 (2000) pp. 619-627.

[71] Yoota J "Tumor progression and metastasis" Carcinogenesis 21-3 March (2003)

pp. 497-503.

[72] Zheng J , Close TJ, Jiang T and Lonardi S "Efficient Selection of Unique and

Popular Oligo for Large EST Databases" Bioinformatics 20-13 (2004) pp. 2101-

2112.

[73] Zheng J , Svensson JT, Madishetty K, Close TJ, Jiang T and Lonardi S

"OligoSpawn: a software tool for the design of overgo probes from large uni­

gene datasets" BMC Bioinformatics Jan 7-7 (2006) pp. 1-9

126

Appendix A

Algorithms

127

Algorithm 8: Needleman-Wunsch algorithm
Input: Two sequences, S and T

Output: Optimal alighment and score fJ

Initialization: Set d[i, 0] = -i1 fori = 0, 1, . .. , m

Set d[O, j] = - j1 for j = 0, 1, ... , n

begin

for i= 1, 2, ... , m do
For i = 1, 2, . . . , m Set

d[i , j - 1] - 1 the gap in sequence X

d[i, j] =max d[i - 1, j - 1] + p(i, j)

d[i- 1, j] - 1 the gap in sequence Y

Set backt rack B[i,j] to the maximizing pair
The score is o = d[m, n]

Set [i, j] = [m, n]

repeat

if B[i, j] = [i- 1,j- 1] then

L Print si and Tj

else

l if B[i, j] = [i - 1, j] then
L Print si

Print Tj

Set [i,j]= B[i,j]

until [i, j] = [0, 0]

end

128

Algorithm 9: Smith-Waterman algorithm
Input: Two sequences, S and T

Output: Opt imal alighment and score o
Initialization: Set d[i, OJ = -ir for i = 0, 1, ... , m

Set d[O,j] = -j[for j = 0, 1, .. . , n

begin

for i = 1, 2, .. . , m do

Fori = 1, 2, . .. , m Set d[·i, j] =max

d[i,j - 1] _,

d[i- 1, j -1] + p(i,j)

d[i- 1, j] _,

0

Set backtrack B[i,j] to the maximizing pair

Set [i,j] = max{d [i,j] fori= 1, 2, . .. , m and j = 1, 2, ... , n}

The score is o = d[i, j]

repeat

if B[i,j] = [i - 1,j - 1] then
L Print si- 1 and Tj - 1

else

l if B [i~ j] = [i- 1, j] then
L Prmt si-1

Print T1_1

Set [i ,j]= B[i,j]

until d[i, j] = 0

end

129

Appendix B

Small Example

Suppose we have a database X= {x 1 , x2 , x3 } , where

x 1 = ACCACGCT,

x2 = GG ACGCTGC,

x 3 = GCGCTGC AC.

We search for unique oligos of length l = 6. Assume that two l -m rs ar approximat ly

the same if the Hamming Distance between them is at most 2, i.e., d = 2. Let li,j

refer to the l-mer located at the jth position in sequence Xi of X. For example,

l1,2 = CCACGC occurs at the second position of x 1.

For the Brute Force Method, we generate all possible l-mers in X:

l1 ,1 = ACCACG, l 1,2 = CCACGC, l1,3 = CACGCT,

l2,1 = GGACGC, l2,2 = GACGCT, l2,2 = GACGCT, l2,4 = CGCTGC,

l3,1 = GCGCTG, l 3,2 = CGCTGC, l3 ,3 = GCTGCA, l3 ,4 = CTGCAC,

and then compare all these 11 l-mers with each other. The total number of compar­

isons is up to C21). oting that we search for unique l-mers which occur approximately

130

only in one sequence, we only compare l-mers from different sequences and do not

compare l-mers occurring in the same sequence. That is, we only compare li,j and

l k ,h when i =!= k. Thus, the total comparison number is 3 · (4 + 4) + 4 · 4 = 40.

First , we compare l1,1 with l2,1 , then with l2,2 , until we reach the last l-mer , l3,4 .

After all the comparisons for l1,1 are performed, we find that no l-mer is exactly

and approximately the same as l1,1 . We say that l1,1 occurs only in sequence x1 and

does not occur in x2 or x 3 . By definition , l1,1 is unique. The algorithm moves on

to the next l-mer , l1,2 , and compare it wit h l2,1 until l3 ,4 . We find that l1,2 and l2,1

are within 2 mismatches (i.e., H D (l1,2 , l2,1) = 2) . We say that l1,2 and l2,1 occur

approximately at least in two sequences of X , and hence, they are "labeled" to be

non-unique. Next , we move to l1,3 and compare it with the l-mers in x2 and x 3 , and so

on. Note that although l2,1 has been marked as non-unique, we still need to compare

it with l-mers in x3 , because this helps to decide if l-mers in x 3 are unique. After

all the comparisons are carried out, all unique l-mers are picked out and all non-

unique l-mers are marked as non-unique. The unique l-mers are l11 = ACCACG,
'

l3,3 = GCTGCA, and l3,4 = CT GCAC.

Suppose that we have 5 processors available for parallelization technique. To

parallelize t he Brute-Force program, we apply the command "ExportEnvironment"

to alll-mers such that all processors can work on alll-mers. We write the comparison

process for one l-mer into a function and then use the command "ParallelMap".

Using the "ParallelMap" command, we send each l-mer to each available processor. A

processor takes one l-mer and compares with all the other l-mers to see if it is unique.

Then, the processor returns the result to the main computer. The first processor

returns that h,1 is unique, the second processor returns that l1,2 is not unique, and so

131

on. Such comparisons can be carried out simultaneously in this manner, thus saving

time. As soon as each processor finishes its comparison, it seeks for the next lined up

l-mer to perform another comparison until no Z-mers are available for comparisons.

For the filtration method algorithm 1, we know that q = d!l = 2. We hav 9

different q-mers in X. All the e q-mers and the numbers of their occurrences ar

listed in Table B.l. The q-mers that occur more than once in X are AC, CA, CG,

AC CA cc CG CT GA GC GG TG

XI 2 1 1 1 1 0 1 0 0

X2 1 0 0 1 1 1 2 1 1

X3 1 1 0 1 1 0 3 0 1

Table B .l: Table for all the 2-mers and their number of occurrences in X (for filtration

method 1).

CT, GC, TG. For each of these q-mers, we will find all their locations in X and then

extend them to l-mers to determine if those l-mers are non-unique.

Let us take AC for an example. The locations of all AC are (1, 1), (1, 4), (2, 3) and

(3 , 8) , where (i,j) refers to position j in Xi · We refer to these q-mers in (1, 1), (1,4),

(2, 3) and (3, 8) a q1,1 , q1,4 , q2,3 and q3,8 , respectively. According to the definition

of unique l-mers, we do not extend q1,1 and q1,4 , because both of them are in th

same sequence, x 1 . For q1,1 and q2,3 , q1,1 starts at the beginning of x1 and thus,

cannot be extended to the left . We can only extend q1,1 to the right and obtain one

pair of l-mers: ACCACG and ACGCTG. H D(ACCAC G , ACGCTG) = 3 does not

132

indicate the non-uniqueness of these two l-mers. ote that q3,8 ends in x3 , which

implies that q1,1 cannot be extended to the left and (3, 8) cannot be extended to

the right. So, there is no comparison between these two q-mers. For q1,4 and q2,3 ,

we see that q1,4 cannot start or end an l-mer because we extend by q-bases every

time. Therefore, there is only one pair of extensions for q1,4 and q2,3 : CCACGC and

GGACGC. H D(CCACGC, GGACGC) = 2, so we record these l-mers CCACGC

and GGACGC as non-unique. Next, we take q1,4 and q3,8 and note that q1,4 cannot be

extended to the left to obtain an l-mer we do not have a possible extension betw en

these two q-mers. It is the same for q2,3 and q3,8 . From these comparisons, we

obtain two non-unique l-mers: CCACGC and GGACGC. We carry out the same

procedures for other q-mers that occur more than once in the database. This results

in the unique oligos of ACCACG, GCTGCA and CTGCAC.

q-mer Resulted non-unique l-mers

AC CCACGC, GGACGC

CA

CG CACGCT,CGCTGC,GACGCT

CT CACGCT,CGCTGC,GACGCT

GC ACGCTG, CCACGC,CGCTGC, GCGCTG, GGACGC

TG ACGCTG, GCGCTG

Table B.2: All 2-mers occurring more than once and resulting non-unique l-mers from

extensions and comparisons (for filtration method 1).

133

To parallelize the above filtration m thod 1, we first find all q-mers that occur

more than once (i.e., AC, CA, CG, CT, GC, TG). In our Mathematica program, we

write the process of extension and comparison for one q-mer as a function. Using the

command "ParallelMap" enable us to send all these q-mers to all different processors

for extensions and comparisons. Each processor works on one q-mer at a time simul­

taneously. Upon completion of extensions and comparisons, each processor returns a

list of detected non-unique l-mers. The processor returns nothing if it did not find

any non-unique l-mers. The main computer takes all the non-unique l-mers and then

finds unique l-mers by eliminating non-unique ones from all the l-mers in the giv n

database.

For the filtration method algorithm 2, q = L~J+1 = 3. We search for all q-mers

and cluster them into groups such that within each group each q-mer is one mutant

to the other q-mers. We have 9 groups for this small example. They are listed in

Table B.3. Then we consider q-mers in the same group as the same. This enables

us to perform more extensions and comparisons increasing its accuracy to generate

unique l-mers.

For the ACC group, the q-mers consist of ACC and ACG. We find the locations

for both of them in X as (1, 1), (1, 4) and (2, 3), where (i,j) also corresponds to po­

sition j in Xi· We refer to these q-mers in (1, 1), (1, 4) and (2, 3) as q1,1 , q1,4 and q2,3,

respectively. Since q1,1 and q1,4 are located in the same sequence, we do not extend

them. We extend q1,1 and q2,3 and obtain one pair of extensions: ACCACG and

ACGCTG. Th Hamming Distance between this pair indicate that they are different

(H D(ACCACG, ACGCTG) = 3). So we do not record any non-unique l-mer. For

qi ,4 and q2,3, we cannot extend them both by q bases. From the first q-mer group, we

134

q-mer group Resulted non-unique l-mers

ACC, ACG

ACG,GCG ACGCTG, GCGCTG

CAC,CGC CCACGC,CGCTGC,GGACGC

CAC,GAC CACGCT, GACGCT

CCA,GCA

CGC, TGC CCACGC, CGCTGC, GGACGC

CTG ACGCTG,GCGCTG

GCT,GCA,GCG CACGCT,GACGCT

GCA,GGA

Table B.3: Group table for all 3-mers in X and the resulted non-unique l-mers from x­

tensions and comparisons (for filtration method 2).

do not obtain any non-unique l-mers. From the second group, ACG, we have q-mers

consisting of ACG and GCG. These appear in q1,4 , q2,3 and q3,1. After each compari­

son, the Hamming Distance between q2,3 and q3,1 is 1 (HD(ACGCTG,GCGCTG)=1).

Thus, th se two l-mers are recorded in th non-unique l-mers list.

We do similar extensions and comparisons for the other q-mer groups and record

the resulting non-unique l-mers in Table B.3. This also results in unique l-mers

ACCACG, GCTGCA, and CTGCAC. The parallelization for the program for the

filtration method 2 is similar to the one for the filtration method 1. Each processor

works on one q-mer group for extensions and comparisons.

135

