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Abstract

Estimation of inelastic strains in notched mechanical components and structures
are necessary for low cycle fatigue evaluations. This has been a topic of considerable
interest to pressure vessel designers.

The Generalized Local Stress Strain (GLOSS) method is a robust technique that
is based on two linear elastic finite element analyses. and has been used for evaluating

inelastic strains in pressure to hanical loadings. This thesis

endeavors to determine the inelastic strains of components and structures that are
subjected to both mechanical as well as thermal loadings. A two bar kinematic model

is used to explain the fundamental aspects of modulus reduction method. Using the

lastic-inelastic equi . a to obtain the complete relaxation locus has
been provided. Based on the relaxation locus, the GLOSS method is extended for
combined mechanical and thermal loadings.

In this thesis, GLOSS method is applied to several pressure component configu-
rations of practical interest. The strain estimates are then validated by comparing

them with inelastic finite element results.
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Chapter 1

Introduction

1.1 General Background

Ensuring performance, safety and durability are some of the key objectives in
designing any component, while keeping cognizance of the economy of design and
operational costs. A clear understanding of the various modes of structural failures
helps the design process to be more rational and economical in the long term. While
prototype and component testing are often necessary to verify the integrity of com-
ponents. the time and cost involved makes them less attractive to designers. With
the advent of high speed digital computers, various modes of failures can be studied.
thereby speeding up the design process.

Failures due to excessive plastic deformation. fatigue, fracture and creep are some
of the common modes of failure. The process of designing components to avoid failure
due to low-cycle fatigue and the means of carrying out such a design is the topic of
interest in this thesis. Fatigue is a process which causes damage of a component
subjected to repeated loading. Primary fatigue analysis methods are the stress life
approach, the strain life approach and the fracture mechanics approach. The stress
life approach is widely used in design applications where the stresses in the component

are primarily within the elastic range of the material and the cycles to failure are long.



Geometric discontinuities such as holes. fillets and grooves that are unavoidable
in design cause stress to be locally elevated and are potential fatigue crack initiation
locations. Such notched components are often subjected to loads causing local vield-
ing at the notch root. It is convenient to separate the total fatigue life of notched
members into two portions: firstly the crack initiation life. which is spent in nucleat-
ing small cracks. and secondly the crack propagation life. which is spent in growing
these cracks to final fracture. While the cyclic plastic strain at the notch root is
the controlling factor during the early stages of fatigue life, nominal stress and crack
length are the controlling factors during the later stages.

Strain life concepts are used to estimate the fatigue life when notch root plasticity

is the fatigue failure is assumed to occur in the

material at the notch root and in the smooth i when both are to

identical stress-strain histories.
Since closed form solutions are not easy to obtain for the inelastic problem. nu-

. although it

merical methods are often resorted to. Non-linear finite element anal;

provides reasonable results. is quite often elab time ing and exp

The use of nonlinear elasto-plastic stress-strain relationships makes the analysis more
complex when compared to linear elastic analysis. Further. the large amount of out-
put data has to be properly interpreted in order to get meaningful results from the
analysis. Consequently, there is a need for simple methods to determine the inelastic

behavior of components.

1.2 Need for Robust Methods

One of the more widely used approximate method to determine the inelastic strain
is Neuber’s rule [23]. In this method nominal stress and strain are related to the local

counterparts. It requires the use of a single elastic finite element analysis or a linear



elastic analytical solution. This method, initially developed for torsional loadings.
was then applied to plane stress configurations. The strain estimated by Neuber's
rule was found by Mowbray {22] to be reasonably accurate for plane stress cases. The
life estimates have been found to be very conservative for situations other than plane
stress. In particular, the effect of multiaxiality is not properly considered.

Keeping cognizance of the importance of inelastic strain assessment and the in-
adequacy of the existing methods. this thesis endeavors to develop a generic robust
method based on two linear elastic finite element analyses for an inelastic evaluation
of notched components and structures subjected to combined mechanical and thermal
loadings.

In the context of this thesis, robustness implies the ability to provide acceptable
results based on less than reliable input together with conceptual insight and economy
of computational effort [29]. Robust methods are suitable for

e initial scoping and feasibility study

e screening of critical situations in large complex systems for further detailed
analysis

e “sanity” checks on results obtained by detailed inelastic analysis

e approximate estimate of inelastic effects

Robust methods are I} e for in an ing plant

environment where detailed characterization of material damage is difficult to obtain.
In such situations robust approximate methods would provide reasonable assessment

of the condition of equipment or systems.



1.3 Organization of the Thesis

The need for robust methods of inelastic strain estimation in notched components
is addressed in Chapter 1. The cost and time constraints posed by nonlinear finite
element analysis. and the overly conservative Neuber's rule have necessitated robust
approximate methods. The objectives and the organization of the thesis are also
presented in this chapter.

Chapter 2 discusses the basic concepts in plasticity and fatigue. An incremental

iterative algorithm for the ical solution of el: plastic is

Existing approximate methods for the determination of notch root strains such as
Neuber’s rule [23] and Molski-Glinka method [20] are discussed. The extension of
Neuber’s rule to account for bending and non-linear nominal stress range using a
limit load factor developed by Seeger and Heuler (28] is described. A discussion of
the methods developed by Hoffman and Seeger [13] and Glinka et. al. [21] to determine
the multiaxial notch root elasto-plastic stresses and strains is carried out.

The concept of multiaxial stress relaxation is introduced in Chapter 3. Multiaxial
relaxation and uniaxial relaxation are related through the constraint parameter by
Seshadri and Mikulcik [36]. It has been shown that the constraint parameter can
be expressed as a function of principal stress and strain ratios for any location in a
structure. As a consequence of the aforementioned ideas, GLOSS (Generalized Local

Stress Strain) method was introduced by Seshadri [29] as a practical technique to

d ine the i and local region inelastic strain for any general

component. In this method, a finite element analysis is carried out by assuming

that the component is linear elastic. The modulii of all the elements that are above

yield are modified in the second linear elastic finite element analysis in a systematic

manner in order to simulate the inelastic behavior. To account for proper plastic

zone size, Seshadri and Kizhatil [34] developed the GLOSS method with Plasticity
4



Correction. The method is developed based on leading to
better inelastic strain estimates.

The basic concepts of modulus reduction method are elaborated in Chapter 4 by
using a two bar model for the purpose of illustration. It is shown that. in principle.
the constraint parameter is independent of the amount of softening of the local bar
elastic modulus for the two bar model subjected to combined mechanical and thermal
loadings. Analytical expressions show that the local bar strain predicted by the

inelastic analysis and modulus modification method are equal.

Chapter 5 describes the for ining the 1 ion locus

using inelastic finite element analysis. It is shown that any inelastic distribution can

be obtained with an elastic analysis provided the modulus of elasticity and Poisson’s

ratio of every element are known. Using this ! the )l it

locus can be determined from an inelastic finite element analysis. The local as well
as remote relaxation locus obtained from inelastic finite element analysis is studied
for the two bar model and for some general mechanical components subjected to
mechanical and thermal loadings. A modified modulus adjustment technique for
combined loadings is also presented.

The proposed method for determining the inelastic strains is applied to typical
pressure component configurations in Chapter 6. A plate with a hole, a Bridgman
notch, a cylinder with a circumferential notch on the inside surface and an industrial
steam turbine valve body are the specific components that are analyzed. The pressure

are to ical as well as thermal loadings. Cyclic effects

due to pressure and temperature resulting from unit start-up, operation and shut-
down, which can lead to possible ratchetting and low cycle fatigue are of design
interest. The valve body is analyzed for a range of start-up rates and the resulting

maximum temperature difference at a given critical section is determined. Using this

o



temperature distribution, a stress analysis is performed in order to determine the
maximum possible inelastic strain range. Results obtained from the GLOSS method
with Plasticity Correction are compared with those obtained from inelastic finite
element analyses and Neuber’s rule.

The main contributions of the research work are presented in Chapter 7. A case
is made here for the attractiveness of robust methods of design and analysis in the
context of industrial applications.

ANSYS [2] input files for performing linear as well as non-linear finite element
analysis are given in Appendix A. The GLOSS method with Plasticity Correction
and the process of inelastic stress relaxation have been coded in the form of ADPL
(ANSYS Design Parametric Language) macros within ANSYS. The macros listings

are given in Appendix B.



Chapter 2

Literature Review

2.1 Problem Formulation in Solid Mechanics

Formulation of a boundary value problem in solid mechanics involves the deter-
mination of the distribution of stresses and strains in the interior of the body for a
prescribed traction distribution over a part of the boundary, and a prescribed dis-
placement distribution over a different part of the boundary. For a body with volume

V' and surface area S subjected to bady forces f; in V. surface forces T; on Sr. and

prescribed displacements u? on S, (Fig. 2.1). the equations of equilibrium are given

by
oy;+fi=0 inV. (2.1)
Based on the small displ: theory the strain-displ or ki ic relations
can be expressed as
1 s
6 =5(u,+u,) iV (2.2)

Tractions are specified on the surface in the form of point loads, distributed load and

moments. In general, however, the equations can be expressed as

oyn; =T, onSr
2 e

Uy =uf on S,. (2.3)

-~



Figure 2.1: Body under traction forces



Finally. the stresses and strains are related through constitutive equations. which

could depend on the strain rate and temperature. and can be written as
oy = fley.é,.T). 2.4)

While the relationship between the stress and strain is linear in the elastic range.
it is non-linear in the plastic range. Closed form analytical solutions are difficult to
obtain in the plastic range. which necessitates the use of numerical methods such as
the finite element method. Theoretical aspects pertaining to elastic-plastic analysis.
finite element method and approximate methods in notched component analysis are

presented in this chapter.
2.2 Material Stress-Strain Curve

The stress-strain relation of a material is obtained from a uniaxial tensile test. A

typical stress-strain diagram for a number of metals and alloys is shown in Fig.
The portion of the curve OA showing the relation between the stress and the strain.
is linear. Stress and strain are proportional though a constant called the modulus of
elasticity which is essentially a material property. In the elastic range

e stresses and strains are related through Hooke’s Law
® the strains are path independent
e there is complete reversibility of stresses occurs during the unloading process.

The point A is identified as the yield point which demarcates the linear and the
nonlinear range of the behavior. On further increases in the applied load. the stress-

strain curve follows the path AB which is i As the d

the stress required also increases indicating the resistance of the material to further
plastic deformation. The stress required to produce this further plastic deformation is

9
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Figure 2.2: Material Stress-Strain Curve
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usually referred to as the flow stress. Stresses and strains are no longer proportional.
therefore. there is a need to characterize plastic behavior through more appropriate

constitutive equations. In the plastic range
e the strains are irrecoverable
e the stresses and strains are path and. therefore. history dependent
e hydrostatic state of stress has no effect on yielding
o the material is assumed to be incompressible (Poisson ratio = 0.5)
o the stress and strains are related through “flow rules”
o effect of strain rate is negligible

If the material is stressed up to point B and then unloaded, the unloading path
is considered to be linear. It follows the path BD which is parallel to the line OA.
The net strain is comprised of two parts. The portion OD is the irrecoverable plastic
strain and the portion DE is the recoverable elastic strain. If the specimen is reloaded
again, the unloading path DB is more or less retraced. Plastic low does not occur
until the point B is reached after which plastic strain is induced. Thereafter, the rest
of the stress-strain curve BC is traced.

The material stress-strain curve can be idealized (Fig. 2.3) in number of ways.

e Elastic Perfectly Plastic Model
The material is assumed to follow the Hooke's Law until the vield point is
reached after which the strain is assumed to increase without any bound. The
model assumes that the structure made of this material cannot take any more
load, once the stress reaches the yield. This model is widely used as it is simple

to use in practice.
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Figure 2.3: Material Models
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« Rigid Perfectly Plastic Model

When elastic strains are small compared to plastic strains, this model is appro-
priate. Deformations are not induced until the stresses reach the vield beyond
which the strains are unbounded. This model is particularly useful in determin-

ing limit loads of structures and in metal forming operations.

o Elastic Linear Strain Hardening Model

This model is an approximation for stress strain curves that rise after yvielding.
It is bilinear in the sense that the strain hardening portion of the model is also

linear but with a different slope.

2.3 Multiaxial State of Stress

is usually multiaxial.

The state of stress in any general
In order to determine the elastic limit due to a given three dimensional stress state.
a yield criterion is required. For isotropic materials, it is required that the failure
criterion be independent of the choice of the coordinate system. The yield function

(¢) would therefore depend on the stress invariants [19].
(I, o, I5) =0 (2.3)

where the stress invariants Iy, [, I3 are

I, = oi+o+03
I, = —(0102+ 0203 +0301)
I3y = 010903 (2.6)

It has been shown experimentally by Bridgman and others [12, 19] that moderate

hydrostatic stress state (either compressive or tensile), does not affect the yield. The

13



stress tensor can be decomposed into a hydrostatic stress tensor and a deviatoric
stress tensor. The hydrostatic stress tensor is a tensor whose elements are omd,,.

where oy, is the mean stress, i.e..

(2.7)

o 1
Pi; = Omby; = 5(01 +02+03) =

4,5 is the Kronecker Delta and is equal to 1 if i = j and 0 if i # j. The deviatoric
stress tensor (s,;) is defined by subtracting the hydrostatic state of stress from the

actual state of stress (0,;). Mathematically, deviatoric stress tensor is given by

1
Sy =0y ~ 3Tkkdy (2.8)

Since the hydrostatic stresses does not affect yielding, the yield criterion can then be

d in terms of the i i of the deviatoric stress tensor as

6(Ji 2, J3) =0 (29)

where Jy, Jo, J; are related to the invariants [1, [, and I3 of the stress tensor o;

through the following relations.

=0
B o= 3(G+3n)

1
B = E(21,3+91.12+2m). (2.10)

The two of the most commonly used yield criterion are the von Mises yield criterion
and the Tresca yield criterion.

In an elastic material, the applied stress is stored as internal strain energy. A
portion of the energy is associated with a change in volume and the remaining is
associated with distorting the shape of the material. Hydrostatic stress is associated

with dilation or volume change, and does not affect the yielding. Since the distortional

14



energy is proportional to the stress invariant J>. von Mises proposed that the yielding

occurs when the deviatoric stress tensor. .J, exceeds a characteristic value of the

material. k. The value of k is found by assuming that vielding begins when the

distortional energy due to any stress state equals the distortional energy at vield in

simple tension. Mathematically. yielding occurs when

=% (211)
V3

In other words. yvielding is said to occur when the quantity called as the equivalent

T

stress does not exceed the vield stress in a uniaxial tensile test. The equivalent stress

o, can be expressed as

1 2 2
Cfg=ﬁ[(dl—02)"(02-01)1710‘1—02)'] ; 1212)
The Tresca yield criterion assumes that yielding occurs when the maximum shear
stress for a multiaxial stress state reaches the maximum shear stress occurring under
simple tension. For a given multiaxial stress state. if oy > o3 > 03. the maximum

shear stress is

(2.13)

,

The maximum shear stress in a uniaxial tensile test (0, = 03 = 0) at yielding is

which implies that yvielding begins when

o1 -0y =0y (2.14)
When plotted on a three dimensional stress space. the Tresca’s vield surface is a

hexagonal prism inscribed in von Mises's cylindrical surface.

2.4 Plastic Stress-Strain Relationships

The flow rule is the necessary kinematic assumption postulated for plastic flow. It
provides the ratio or the relative magnitudes of the components of the plastic strain
increment tensor (de?;). The flow rule is developed for the uniaxial case as follows.
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The hydrostatic or the mean stress for the uniaxial case (o, = 07,02 = 0.03 =0),
is given by

Op = ————— = —. (2.15)

gi+oatoy oy
3 3

The deviatoric stresses are obtained as

2
G = oi—on=Za
1
Ty = 02— Om= -.icr,
o = mAam:—%m (2.16)
or
o _a
h R R (2.17
= 17)
Further. for volume constancy, the sum of plastic strain increments must be zero.
Therefore
dey + dey + dey = 0. (2.18)
Symmetry in the uniaxial case leads to de; = de; or in other words de; = —2de; =
—2de3. which can be written as
de; _ de;
— == (2.19,
de;  dey )
and a comparison with Eq. 2.17 shows that
‘;ﬂ e s onstant =@k (foragenerilicnss).  (250)
1
The above equation the flow rules p d for a general case by Prandtl

and Reuss [19]. It essentially states that the ratio of current incremental plastic
strain increments to the current deviatoric stresses is a constant. The Eq. 2.20 can

be i d to give the fc

dey =

ol | &

1
o1 =5 (02 +03)
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der=E [0~ L os+ )]

des=E[os - 31 +au)]. (221)
T 2

The above equation looks similar to the generalized Hooke's law where % is replaced

byganduisreplacedby;asa ofi ibility. The i |

effective strain is given by

e = g [(der — dea)? + (dex — dea)? + (des — dea)?]

The coefficient g is so chosen that d is equal to de; under uniaxial tension.

Due to the nonlinear nature of the plastic constitutive relations, analytical so-
lutions of the boundary-value problems are difficult to obtain. Exact elastic-plastic
solutions are available for only few simple problems. In general, a complete load

history analysis has to be performed in order to get the solution. Due to the rapid

of powerful and modern
inelastic analysis of structural problems is carried out by the powerful finite element

method.
2.5 Finite Element Formulation

The general governing equation of the finite element method for 2 static analy-
sis is derived from the principle of virtual work which states that “if a deformable
body in equilibrium is subjected to arbitrary virtual displacements associated with a
compatible deformation of the body, the virtual work of external forces of the body
is equal to the virtual strain energy of the internal stresses”. The principle can be
expressed as

/V oiydedV = A TibuidA + /V qbudV (2.23)
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where Ju; and de;; are the virtual displacement and virtual strain increments respec-
tively. and form a compatabile set of deformations. T, and ¢; are surface traction
and body force respectively. For the discretized finite element mesh configuration.

Eq. 2.23 is written in matrix form as

51T - 50T VT - 5 3
/;} {de}" {o} dV _/A(ou} {1} d:l+/; {6u}" {q} dV (2.24)
where the vectors for displacement {u}. strain {¢} and stress {} are given by
{60} = {6uy.0ua. bus}

{6e}" = {es. ey, Bec. 671ryr 677zay 6

{0} = {04,04:0:,0my.0sss0y2} - (2.25)
For a small deformation analysis.

{de} = [BI {aU} (2.26)
where {U} is the displacement vector of nodal points that is related to the distributed
displacement {u} by

{u} = [NV{C} (2.27)
in which [[V] is the shape function matrix. The strain displacement matrix [B] and

the shape function matrix are related through

where (L] is the differential operator matrix. Substituting Eqs. 2.26 and 2.2
Eq. 2.24, the governing equation for a small deformation analysis in matrix form is
obtained as
[ 1B (o} av = [ (N (T} da+ [V (g} av (229)
or
LB o} v = (R} (2.30)
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where {R} is the equivalent external force acting on the nodal points.
(R} = L VT {T} dA + /v [T {q} dV- (231)
For a linear elastic stress-strain relationship. the governing equation is
(KI{U} = (R} 232)
where (K] is the stiffness matrix of the structure
(K1 = [ (BI7(C1(B] v (2.33)

in which [C] is the elastic constitutive matrix. In the elastic-plastic analysis. because
of the non-linear relationship between stress and strain. the governing Eq. 2.23 is a
non-linear equation of strains and therefore. a non-linear function of nodal displace-
ments. Iterative methods are used to solve for the displacements for a given set of

external loads. The y used ical i are :

1. the tangential stiffness method
2. the initial stiffness method

2.5.1 The Tangential Stiffness Method

If it is assumed that the stresses, strains and displacements at any instant to be
represented by oy, € and ug, then the global stiffness matrix K, corresponding to this
state can be found. Kj can be considered as the local slope of the force-displacement
relationship. If the external loads are increased by AFy and using the stiffness ma-
trix Ky, the displacements Au,, stresses Agp and strains Aeo corresponding to this
incremental load can be found. Now, the total displacements, stresses and strains are
given by ug + Aug, 0o + Adg, € + Ag. If the solution has to be improved , another

tangential stiffness matrix K, can be calculated from the above improved results. For
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all the elements in which the yield condition is violated (&(dg+ag) > 0). the stresses
have to be reduced in order to satisfy the yield condition and for plastic deformation
to occur. The stress increment Ao corresponding to the strain increment Aeg can

be obtained from the elasto-plastic constitutive equation
Aoy = DAey (2.34)

where the matrix D is calculated on the basis of the stresses og + Agg. The residual
stress which has to be removed from the element in order to satisfy the yield condition

is obtained from the relation
Ao = Agg — Ad). (2.35)

The equivalent nodal forces on the elements corresponding to this stress state can be

calculated from Eq. 2.30 as
ARy - AFR = / BTAd5dA. (2.36)

The residual (unbalanced external nodal) forces can now be applied as the next load
increment and the procedure is repeated until desired convergence on the displacement
is achieved. This iterative procedure is also called the generalized Newton-Raphson

method.
2.5.2 The Initial Stiffness Method

In the tangential stiffness method, 2 new matrix has to be computed every time the
load is incremented. This requires more storage space and an increase in computation
time. In the initial stiffness method, the stiffness matrix computed from the first
iteration is used in subsequent load increments. The solution of the equation dF =
Kdu has to be performed only on the first iteration, because the subsequent solutions
merely requires the proportional reduction of the solution obtained from the first load
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21



step. It can be seen that in the initial stiffness method, the stiffness matrix has to
be found only once in the iteration process and is definitely an advantage especially
when the model contains large number of nodes. Although, this method reduces the
computing time to a fair extent. the rate of convergence is very slow. The most
economical method would obviously be the combination of the above two algorithms.
where the stiffness matrix is changed only at selected load steps during the iteration

process.

2.6 Analysis of Notched Components

Notched engineeril are often subjected to loads that cause localized

yielding. The resulting plastic strains are of interest in determining the fatigue life of

using the strain-based h
In the elastic range, the notch root stress and the nominal stress are related by a

geometric constant k, called as the stress concentration factor.

kS o<y (2.37)

In the case of plane stress problems such as thin sheets in tension, the stresses at the
notch root can be considered to be uniaxial. Therefore, the expression for strain is
given by

kS

= (2.38)

which is valid only in the elastic range. Yielding occurs when the stress at the notch

€

root (Fig. 2.6) reaches yield and occurs at the load

b—a)t
P= ET“)a, (2.39)

and the load corresponding to full plastic yielding is given by
Py = (b—a)to,. (2.40)
22
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Only few i lutions are available for d ining the plastic strains

which are important for determining the fatigue life of components. They are:

. Neuber’s rule

variations of Neuber’s rule proposed by Seeger and Heuler

o

strain energy density method

2.7 Neuber’s Rule

Neuber’s rule [23] states that during plastic deformation. the geometric mean of
stress and strain concentration factors remains invariant and is equal to the elastic
stress concentration factor.

If on and €, are the notch stresses and strains. and S and e are the nominal

stresses and strains. then the plastic stress and strain concentration factors are

g
ks = ?"
=2 (2.41)
e
and Neuber's rule is given by
koke (2.42)

If net section yielding does not occur, then the nominal strain can be written as

e= 3. Using Eqs. 2.41 and 2.42, we have
kS)*
Tnéa = 5% (2.43)

The above equation can be solved in conjunction with the material stress strain curve
in order to obtain the notch stresses and straiuns. If an elastic-perfectly plastic material

is considered, the notch strain can be determined as

_ (kS
“=F (244)
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Figure 2.6: Stresses at Notch Root
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where o, is the yield stress of the material.

The above rule does not account for general vielding effects. Further. general
vielding may not occur when S equals o, as in the case of bending. In order to
account for the non-linear net section behavior. Seeger and Heuler [28]. proposed a
modified version of Neuber’s Rule which can also be used for combined loading cases.
The relation is expressed as

o€ =k2S"e" (2.45)

where k, is the plastic limit load factor and is given by

S at onset of general v S
k= =5 2.
? = "5 at first notch vielding % (2:46)
e

where k. and S are defined in consistent manner. either net or gross section. S, is
a particular value of S corresponding to fully plastic behavior for an elastic-perfectly
plastic material having the same yield strength as the material under consideration.
If the material stress strain curve is assumed to be elastic-perfectly plastic. then k,

equals k,.
2.8 Extension to Plane Strain Problems

In the case of axisymmetric sections such at shafts and notched cylinders, when
the notch radius p is small compared with the other dimensions of the shafts. the
situation at the vicinity of the notch approaches the plane strain condition. Under
this condition, oy is zero due to the free surface (Fig. 2.6). Since ¢; = 0 due to the
plane strain assumption, a situation of plane stress exists in the 2-3 plane, and the

stresses in the 2 and 3 direction are related by

o3 = V02 (2.47)



where

(2.48)

The quantity 7 reduces to the elastic Poisson’s ratio if there are no plastic strains and
increases to 0.5 when the plastic strains are large [10]. Using the Eq. 2.47 and 2.48.

the uniaxial stress-strain curve can be modified for the plane strain condition as

= X (2.49)

This stress-strain curve can be used in conjunction with Neuber’s rule to obtain the

strains at the notch root.

2.9 Molski-Glinka Method

Molski and Glinka (20] proposed a method to calculate the notch root stresses and
strains based on strain energy considerations. In the elastic regime, the strain energy

per unit volume due to the local stress o is given by
W, =2 (2.50)
and the elastic strain energy per unit volume due to the nominal remote stress S is
Ws = _5—1 (2.51)

The stress concentration factor k, in the elastic region can be obtained as

k= % = (%s)“ (252)

When the stress at the notch root increases beyond the yield, plastic deformation

occurs. It is assumed that the energy ratio does not change due the small plastic
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region. The relatively high volume of the elastic material surrounding the smail
plastic zone controls the amount of strain energy absorbed by the plastic zone. Thus.
the ratio of strain energy is assumed constant even during the plastic deformation.
However. the material stress-strain relationship is used to determine the strain energy
absorbed by the notch root. If a Ramberg-Osgood relation of the form
z:e,,—e,:%—(%/\" 233)
is used. where n is the strain hardening exponent and K is the strength coefficient.

then. Eq. 2.52 can be modified to give

- 2 0-2 =
‘k'zt? 3E il ([%)

Egs. 2.53 and 2.54 can be used simultaneously to obtain the notch root stress - and
strain e respectively.

The energy interpretation of Neuber's Rule and the strain energy density method
is shown in Fig. 2.7. OABC is the strain energy due to the nominal stresses. OADE
is the strain energy absorbed by the MG method and OAFG is the strain energy
absorbed by Neuber’s rule.

2.10 Multiaxial Elasto-Plastic Notch Root
Stress-Strains

Hoffman and Seeger {13] proposed a method to obtain complete information on the

multiaxizl elastic-plastic stress and strain states at the notch root. Recently. Glinka

1] have extended the energy density method to multiaxial stress states. The
complete solution in both the methods essentially consists of three steps.
o In the the method proposed by Hoffman and Seeger. Neuber's rule is used in its

equivalent form to relate the equivalent stresses and strains. The pseudo elastic
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quantities can be written in the form

KiS?

T
" 0 E

where K. is the equivalent stress concentration factor. In order to obtain the
strain in the non-linear nominal stress range. the plastic limit load factor has
to be known.

In the energy density method. the notch root strain energies are related to the
nominal strain energies. For an arbitrary multiaxial stress state on the principal

axes, the strain energy relation leads to
/ (o%des + oSdes + otdes) = / (oFdef + ofdef + oFdef) . (2.36)

In both the methods. Hencky's rule is used to relate the stresses and strains in
the plastic regime which assumes the plastic strains to be a function of deviatoric
stresses.

3e,,
€=5"0  i=123. (2.57)
20,

It is assumed that the deviatoric stress components (at the notch tip) do not

change much (at the notch tip) and that no unloading occurs.

One of the stresses normal to the notch surface would be zero due to the free
surface. Therefore, it is necessary to make one assumption in order to solve for
all the stress and strain components.
Hoffman and Seeger have assumed in the elastic-plastic region a constant ratio
€ P i "
of 2 equal to the ratio in the elastic region.
€
In the energy density method, it is assumed that the ratio of the largest notch

tip principal strain energy to the notch tip total strain energy is equal to the
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cor ing ratio which is for a geometrically identical linear elastic

body.
_oFd

=
i€y

15

€

(2.38)

The above set of equations can be solved for determining the elastic-plastic stresses

and strains at the notch root.

2.11 Fatigue

Accumulation of damage due to cyclic loading and subsequent failure is called
fatigue. The two tvpes of fatigue failures produced by different physical mechanisms
are :

o High Cycle Fatigue
o Low Cycle Fatigue

Failures associated with lower loads and long lives or high number of cycles to
produce fatigue failure is commonly referred to as high cycle fatigue. In this case,
strains cycles are mostly confined to the elastic range. Failures associated with high
loads and short lives or low number of cycles to produce fatigue failure is referred to
as low cycle fatigue. Plastic deformation may occur in localized regions. such as stress
raisers, where fatigue cracks are likely to begin. Low cycle fatigue is associated with
cycle lives up to 10* cycles and high cycle fatigue for lives greater than 10* cycles.

The stress-strain response of most materials change significantly with cyclic strains
initially, but the hysteresis loop tends to stabilize so that the stress amplitude remains
constant in strain control over the remaining portion of the fatigue life. Hysteresis
loops from near half the fatigue life are conventionally used to represent the approxi-

mately stable behavior. A line joining the origin and the tip of the loops is the cyclic
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stress-strain curve (Fig. 2.8) which is the relationship between stress and strain for
cyclic loading.
Since plastic strains are the controlling variable in the low cycle fatigue regime.

Mason and Coffin [6] proposed an empirical relation

% =Ny (2:59)
where
32—6— = plastic strain amplitude
€, = fatigue ductility coefficient
2N; = total reversals to failure
¢ = fatigue ductlity exponent.

The quantities €} and ¢ are material constants.
The strain based approach can also be applied where there is little plasticity at
long lives, making it as a comprehensive one that can be used in place of stress based

approach. Morrow et al. [6] used total strain amplitude in place of plastic strain

amplitude.

325 = %(zlv,)" +€) (2Vp)° (2.60)
where the material constants b and c are the slopes of elastic and plastic curves and
the constants % and €} are one reversal intercepts (i.e. 2Ny = 1) of elastic and plastic
curves respectively.

A tensile mean stress was found to give shorter fatigue lives and compressive
mean stress, longer fatigue lives than a zero mean stress. Morrow modified Eq. 2.60
to account for the non-zero mean stress effects and proposed the following relation

% = % (1 - —) (@Ny) +¢; (1 - —) (2Np)°. (2.61)
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In the above equation. the material constants o%, €y, ¢ and b can be obtained from
literature [4]. The strain amplitude Ne. can be determined from inelastic finite el-
ement analysis. Neuber’s rule or the GLOSS method. later described in this thesis.
which gives good estimate of inelastic strain from only two linear elastic finite element

analysis.
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Chapter 3
The GLOSS Method

3.1 Uniaxial and Multiaxial Relaxation

Uniaxial stress relaxation data are obtained by subjecting 2 uniaxial member to
a fixed strain and measuring the reduction in the initial stress as a function of time.
The situation wherein the initial strain is held fixed is referred to as deformation
controlled. Since the strain is held constant, the stress-strain response for such a case
is depicted by the line AB (Fig. 3.1). On the other hand if an axial load is applied
to the uniaxial member, internal stresses are set up to balance the external load that
does not change with time. Such a response is termed as load controlled and on the
stress-strain plot, the response is depicted by the line AC. [n general. however, the
response is neither load controlled nor deformation controlled, and this mixed-mode
response is termed as follow-up and is depicted by the line AD.

More often than not stresses in a given are On

an intuitive basis, Seshadri and Mikulcik [36] recognized that the effect of multiaxiality
is to speed up or slow down the uniaxial relaxation process. Consequently. uniaxial

and multiaxial relaxation can be related as Ty = and X is designated as the

Tuniazial
A
constraint parameter by Seshadri and Mikulcik. The constraint parameter essentially
characterizes the interaction between the local region and the remainder region. If
the local plastic zone is very small then the predominantly elastic remainder region
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controls the local region response leading to a deformation-controlled behavior of
the local element. When the plastic zone spreads across the entire cross section,
the structure or component becomes statically determinate leading to load-control
behavior. When the plastic zone is in between, the local element will exhibit follow-
up behavior.

For a uniaxial member subjected to a fixed strain. the sum of elastic. plastic and

creep strain rate components at any time can be expressed as

e (8) = € (8) + ép () +écr (B).- (3.1)

. 5 ¢ s 1\ (do _ .
In the above equation. the elastic strain rate is é; = (E) (Ti?) the plastic strain

rate is equal to zero. the creep strain rate is ¢, = Bo™ and the total strain is. é, = 0.

Eq. 3.1 can therefore be written as

do
— =0. 3.2
5 + BEg" =0. (3:2)
The solution for the above equation can be expressed as
a(t)=l: —r+BE(n—1)t 2 (3.3)
ChH

Since multiaxial relaxation and uniaxial relaxation are related by the constraint pa-
rameter, Tuniaziat = Tmute, Eq. 3.2 simply gets modified as

o
dr

+ABEg? =0 (3.4)

and the solution can be written as

e
1 T

o (t) = =T+ ABE (n—-1)7 . (3.3)
Therefore, when X is known, the stress ion for iaxi ints can be

determined using the above expression. As well, when X = 1 the situation becomes a
uniaxial case of deformation controlled. When X = 0, the stresses do not relax as it

to a load




3.2 Determination of Multiaxial Constraint
Parameter

Kizhatil and Seshadri [16] have developed a generalized relation for the determi-
nation of \ involving the principal stress and strain ratios. For a structure undergoing
creep with a uniaxial creep relationship of the form é, = v (0. 7). the stress relaxation

for a multiaxial case is given by
c:l—‘:_’- +A(r)vE=0 (3.6)

where

37
g (a1, 00, a3) @)

>
[l

and f and g are given by

Fo= [u. = %(m Fail= j.] a1 (2 = 4v) + (an + a3) (20 — 1)]

+ foa- 3(as+ay) = 302 (2~ 40) + (as + ) (2 = )]

+ [a; - % faptaif— J,] a3 (2 = 1) + (@ +2) (20 — 1)]
g = %) [(er = @2)* + (02 = @a)® + (a3 — u,)z] (338)
ey 24 28 - 20 01 e 0
and 3; (1) = ——2—. The above equation for X is expmﬁsed in terms of the stress

(W/ ge) o1
ratios and the time-dependent strain rates. As a first approximation, the stress ratios
can be considered to be constant, which is generally valid during the early part of the
relaxation cycle where most of the creep-damage in pressure components is likely to

occur. The ion can be then d for two di ional ints where

the total strains are held fixed in two directi and three

where the total strains are held fixed in all the directions.

The determination of A for a general mechanical ion from

the above i requires the k ledge of principal stress and strain ratios.
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The GLOSS (Generalized Local Stress Strain) analysis is a more direct method for

the i on the basis of two linear elastic finite element

analyses. The method can be applied to any component configuration of practical

relevance.

3.3 The GLOSS Method

The component under consideration is divided into local and remainder regions.
The local region experiences inelastic effects and is the region of interest from the
design standpoint. The GLOSS theory relates the multiaxial stress distribution in
the local region to the uniaxial redistribution process. The local region quantities are
designated by superscript ‘0’. while the remainder region quantities are designated
by superscript ‘r’. The multiaxial stresses and strains are idealized as uniaxial case

and are shown in the Fig. 3.2. The strain distribution can be expressed as
éa+ Mer =0 £3.9)

where X is the i which ch izes the interaction between the

local and the remainder regions. Since the total local strain ¢, is the sum of elastic.
plastic and creep strains. and given that the plastic strains do not vary with time.

€, = 0. Therefore

€ =éa +éc. (3.10)
Combining Egs. 3.9 and 3.10
; AN,
o wan
" . 1 do. "
Since éy = ———=, the relaxation modulus E, can be defined as
E, dr
do. _ 1 (do. A
=—= === i, 3.12
5 é,(dr) (A—l)E" ta12)
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e . = E .
Normalizing the relaxation modulus such that E, = E the above equation can be
o

expressed in term of } as
< E,
A== 3.13

E-1 (3.13)
Once the relaxation modulus E, is known, the constraint parameter can be deter-

mined.

3.4 Relaxation Modulus, E.

The GLOSS diagram (Fig. 3.3) is a plot of normalized equivalent stress versus the
normalized total equivalent strain that is generated on the basis of two linear elastic
finite element analysis. A first finite element analysis is carried out assuming the
material behavior to be completely linear elastic. The equivalent stress and strain of
the highest stressed element is identified as the local region and the quantities are
denoted as o,; and €. The elastic modulii of all the elements above nominal yield

are identified and modified according to the expression

E=2E, (3.14)
Ter

where o, is the von Mises equivalent stress of the ith element.

A second linear elastic finite element analysis is carried out next after making the
above modification. The stress and strain of the local element is determined as 0.,
and €. On the basis of the two linear elastic finite element analysis. the GLOSS
diagram can be constructed.

OAC is the elastic perfectly plastic stress strain curve and OD is the elastic line.
The pseudo elastic point D(d.y, é.1), of the local element is located on this elastic line.
The stress and strain of the local element (o2, €.2) determined from the second linear

elastic finite element is represented by point E. The slope of the line OE is called as
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the secant modulus and that of the DE is the relaxation modulus. The relaxation

modulus is given by
Gel — T2
B e
(€e2 —€a1)E,

13.15)
from which A can be determined. It was shown earlier that the constraint parameter
X was a function of principal stress and strain ratios which can vary with time.
Consequently, E, is also a function of principal stresses and strains which vary with
time. It was also pointed out that the principal stresses and strains were reasonably
constant during the early portion of relaxation and. as a first approximation. A can
be treated as a constant during this initial part of relaxation. For small to moderate
amounts of follow-up, the constraint parameter and the relaxation modulus do not
vary with time irrespective of whether the inelastic response of the structure is due to
steady-state creep or time independent plasticity. GLOSS analysis can therefore be
used to determine the inelastic effects due to plasticity as well as creep. Thus the line
DE can be extended to intersect the material stress strain curve. The local region
inelastic strain can therefore be determined.

The angle 6 is the measure of the degree of multiaxiality and follow-up present
in the local element. When # equals 0 and the stresses relax with strains remaining
constant, pure deformation-control action is said to occur. When 6 equals 90° load
control action occurs. For cases where there is significant amount of follow-up one
more analysis can be performed in order to get an improved estimate of inelastic

strain.

3.5 GLOSS with Plasticity Correction

In the case of notched configurations, the nominal plastic zone established from
the first linear elastic analysis is smaller than the actual plastic zone. From Fig. 3.4,
it can be seen that the plastic zone under contour I', is the nominal plastic zone
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whereas the region under contour I is the actual plastic zone. The elements with
the region I'; need to be modified in order to obtain good estimate of inelastic strain.
A method was proposed by Seshadri and Kizhatil [34] to establish a more realistic
plastic zone size in a manner similar to Irwin’s crack tip plastic zone correction in
fracture mechanics.

From Fig. 3.4. it can be seen that the excess force is due to the area S;. With

respect to the finite element discretization. the excess force can be computed as

M=

Funsatance = Q_ (0 — 0y) Ak (3.16)

K

where .V is the total number of elements under the region Sy, A is the area of the
typical element considered and o, is the equivalent stress of the element determined
from the first linear elastic analysis. This excess force has to be accounted for in order
to establish the exact plastic zone size. This can be accomplished by the lowering the

vield stress to the value o;. so that the excess force can be accounted for by equating
(0 —a,) Ae = (0, — 7)) Ax. (3.17)
Thus. the modified vield can be found as

o, =20, ~o.. (3.18)

The modified secant modulus is now given by

= (5) E, = [z"—” = 1] E.. (3.19)
Oe

e
The stress distribution adjacent to the notch obtained from the first and the second
linear elastic finite element analysis using the above modification is shown in Fig. 3.4.

The area under the curve I is given by

Sa=S1+S52+ 55+ Ss. (3.20)
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The area under the curve /] is given by
S3=S53+S1+ S5+ Se. (3.21)

Since both stress distributions are statically admissible. both areas are equal implying
that

Sa=35; (3.22)
or

S) + Sy =853+ Sy (3.23)

By the modified softening process. described by the Eq. 3.19

S1+85 =

(3.24)

This establishes the nominal vield zone denoted by the line ab. Therefore. from
Eq. 3.23. S3 + S, = 0 implying that the actual yield zone is denoted by the line abc.

In actual components curves [ and /I do not intersect exactly at point b because
of varying amounts of follow-up. The strain estimates obtained by the above method
have found be better than the estimate obtained by the GLOSS method explained in

the previous section.
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Chapter 4

Multibar Models

4.1 Two-Bar Model

In this chapter. the GLOSS method is explained using a two-bar model (Fig. 4.1)

The two-bar system is j to

and thermal loadings.

The bar stresses and strains are determined by invoking the equilibrium. strain-

and st i i ips as follows:

® Equilibrium Equation :

g1 +ordy = P (4.1)
o Strain-Displacement Equation :
- = ]
€l = €1e T €19 = ™
LA
e G 12
€2 = €2¢ + €20 L5 (+2)

® Stress-Strain Relationship :

=2
*TE
o
€= E: (4.3)

For the two bar model the thermal strains are
6y = ATy
s = AT (4.4)
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Figure 4.1: Two-Bar Model



On the basis of Egs. 4.2, 4.3 and 4.4, the ions for the total strains

can be obtained as

@ = %+Q,AT|
A

a
s
I

i;l! + AT (4.3)
Compatibility of deformations requires that d, = d, = . Therefore

=enLly = eala. (4.6)

Combining Egs. 4.1. 4.2 and 4.6, the bar stresses can be obtained as

AT, — ﬂm._\Tl

(4.7)

s T T4
Ei Ly Epdy
P 4,
y = —— —0y. 1.8
o2 Friabnd (48)

If the material and geometric parameters are so chosen, such that o, is greater than
3. then bar 1 is considered as the local bar. The relaxation of bar 1 can be studied
by softening the modulus of elasticity of bar 1. The relaxation of bar 1 is studied by
setting £} = ~E). Egs. 4.1 - 4.6 are used to solve for the stresses. with ¢;. now being

equal to —b:- The stresses for the relaxed system are given by
ey

P T - Haan
o = B L, (19)
' LTy, T '
B Ly Epdy
' o1
=— 5 4.10;
=g +aTy (4.10)
The relaxation modulus E. is given by
< _m-e (@11)

de;  en—€n
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Substituting Eqgs. 1.7 and 4.9 into 4.11. and carrying out the necessary simplifications.

the following expression can be obtained

E. E; A2E,Ly

E T TAEL

(4.12)

Ay = ko - .
It can be seen that when _T' — x. E;, — c signifying deformation control. while
4

- s z
E, — 0 when -l_- ~ 0 signifying load control. All other finite values of —:—! represent
A A2

various amounts of follow-up.

The constraint parameter can be obtained using Eq. 3.13 as

L,

,\=L‘+L2.

(4.13)

It can be seen that the i is of ~. the amount of

softening of the local system elastic modulus. This is attributed to the fact that the
remainder system (bar 2] drives the local system quite independently of the local

system material behavior.

2 Analytical Expression for Local Bar Inelastic
Strains

Fig. 1.2 shows the GLOSS diagram for the two-bar model. The GLOSS plot is
a normalized plot of local bar total axial stress and strain. Point A is the local bar
stress and strain corresponding to the first linear elastic analysis. When the local bar
is softened, the local bar stress relaxes and is denoted by the point B. Assuming the

relaxation locus to be linear, the local bar inelastic strain is predicted by the point C.



From similar triangles ADB and AEC, the local inelastic strain e, is given by

E’l — €1 |
=B e—g) e (+14)

where g, is the yield strength of the elastic-perfectly plastic material. Expressing the

above equation in terms of stresses, we have

LA
E_E a .
€ = m(a, —oy)+ El + AT, (4.13)

Substituting the stress from Egs. 4.7 and 4.9 into the above equation. the local bar

strain is given by
o = PLa=0ydils + ByolyoeTy
we XN :

The inelastic strain can be found analytically for this simple two-bar model. The

(4.16)

material is assumed to be elastic-perfectly plastic. Once the stress in bar 1 reaches

vield, the stress remains at g,. Now, from the equilibrium equation (4.1). o2 can be

obtained as
P—oag,d -
g = ————. 4.1
oy 5 (4.17)
Compatibility equation lead to the expression
L, a2 Ly
w=af= (Ez —‘rn-_xATz) B (4.18)
Combining Egs. 4.17 and 4.18. the local bar total strain can be written as
_PLi-o Al + E;A;Lz&sz. (4.19)

o ExAaLy
Therefore, from Egs. 4.16 and 4.19, it can be seen that the total strain in the local bar

predicted by both the modulus reduction method and analytical methods are same.

4.3 Finite Element Modeling and Results
The two-bar is modeled in ANSYS finite element software. The bars are modeled
as link elements capable of taking axial compressive and tensile stresses. They are
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fixed at one end and coupled at the other end in order to simulate the rigid bar
condition.
* Dimensions of the two-bar model :
Length of bar 1 = [ in.
Length of bar 2 = 5 in.
Area of cross-section of bar 1 = 0.01 in?

Area of cross-section of bar 2 = 0.1 in?

® Material properties :
Modulus of elasticity, E = 2 x 10° psi
Yield stress, o, = 400 psi

Coefficient of Thermal Expansion for both bars = 2 x 10~ per °C’

The mode is subjected to different c ination of mechanical and thermat load and

the results are reported in Table 4.1. It can be seen from the table that the strain

predictions are the same as the results obtained from inelastic finite element analysis.

Table +.1: Comparison of GLOSS and Inelastic strain estimates

Local Bar Strain

GILOSS




Chapter 5

Relaxation Locus

5.1 Introduction

In Chapter 3, both the GLOSS method and the GLOSS method with Plasticity
Correction were shown to be robust techniques that are capable of predicting local re-
gion inelastic strains on the basis of two linear elastic finite element analyses. In both
methods. the stress relaxation locus was implied to be linear as a first approximation.
A closer study of the relaxation locus would be useful in verifying the assumption of
its linearity.

In addition to evaluating the local strain, the complete relaxation locus also en-
ables the determination of the primary stress or the so-called reference stress of the
component. The determination of reference stress is useful since it has extensive

application in the integrity of hanical and structures as

described in Nuclear Electric’s R5 and R6 documents [24. 25]. These assessments
include low-cycle fatigue, elastic-plastic fracture, creep damage, creep-crack growth

and stress classification.

5.2 Reference Stress

The reference stress method developed in U. K. during 1960’s, was primarily used
to correlate creep deformations in a structure with the results of an equivalent simple
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creep test, that is performed at the reference stress oz [17]. The reference stress was
found to be independent of the creep exponent. Since the solution of a infinite creep

to perfect icity, Sim

exponent is analogous to the limit solution cor
[38] proposed that the reference stress can be obtained from the relationship
TR= 50y (5.1)
where P is the load on the structure. Py is the limit load and o, is the yield stress.
In 1991, Seshadri [29] introduced the concept of r-nodes in order to determine the

limit loads of i and using two linear elastic finite

element analyses. Similar to the GLOSS method, the inelastic stress redistribution
is simulated by modifying the elastic modulii of all the elements in the structure. In
certain locations of the structure the stresses do not change during stress redistribu-
tion. These locations were called redistribution nodes or r-nodes. The r-nodes were

identified as load- lled 1 ions that are induced in order to preserve equilib-

rium with externally applied forces and moments. The insensitivity to the inelastic
constitutive relationship exhibited by the r-node stresses and reference stress was
established. The reference stress was identified as primary stress and was unified
with the stress-classification concepts (as described in ASME Codes) in a paper by
Seshadri and Marriott [33].

When widespread inelastic action such as plasticity or creep occurs, the statically

indeterminate stresses undergo a redistribution t hout the Since the

r-nodes are locations within a ora that are determi-

nate, for fixed external loads the stresses do not change at these locations during the
inelastic stress redistribution process. The r-nodes stresses are therefore insensitive

hip of the material, and are, in this

to the inelastic



sense. a measure of the reference stress. such that

OR = Uoy,.

The value of 4 is less than one prior to collapse and is equal to one when collapse
occurs. Through a sequence of plastic hinge formations. the component or structure
releases static indeterminacies eventually resulting in a collapse mechanism.

The knowledge of the reference stress is therefore useful in assessing the local as
well as remote relaxation behavior of the component. The reference stress can be
obtained from the Eq. 5.1 provided the limit load of the component is known. The
limit load estimated from inelastic finite element analysis can be used to determine
the reference stress. It has been found that the reference stress determined from the
r-node method is an upper bound on the exact reference stress. In order to study the
relaxation locus in detail. limit load obtained from inelastic finite element analysis is

used in conjunction with Eq. 5.1 for evaluating the reference stress.

5.3 Determination of Relaxation Locus

A typical plot of the relaxation locus of a local region for a component subjected to
mechanical loading is shown in Fig 5.1. The material is assumed to be elastic-perfectly
plastic. From the knowledge of the limit load, the reference stress is obtained. which

is specified as the fictitous yield stress in order to carry out the non-linear analysis.

Points 1 to 6 in Fig. 5.1 are the st train points ding to load i

pertaining to a non-linear finite element analysis. The relaxation locus has to be
determined for a constant load, which in this case is the load applied on the structure,
P. The stress and strain obtained from the load steps of a non-linear finite element

analysis have to be suitably scaled, in order to determine the complete relaxation
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locus for the applied load.

Points 1 and 2 corresponding to the first two load steps. lie on the linear elastic
line and can be scaled proportionally to the applied load P. to obtain points 1’ and
2. If Py. 0. and €., are the load. stress and strain corresponding to point 1. then

the stress-strain point 1’ can be obtained as

P iy
Ta1r = 5-0e1 e = préer- 5.3)
i

P
Redistribution takes place as soon as the stress in the local region reaches vield. Points

3-6 ing to the load i can be i i on the stress-

strain curve. They can also be suitably scaled in proportion to the load corresponding
to the particular loadstep to obtain 3'-6". even though they lie on the non-linear
portion of the stress-strain curve. The scaling is performed by assuming that any
inelastic distribution can be obtained by an elastic analysis provided the modulus
of elasticity and Poisson’s ratio of all the elements are known. The equivalence is

described in the following section.

5.4 Elastic-Inelastic Equivalence

Stress-strain relation for an elastic-perfectly plastic material under uniaxial load-

ing is given by

Z g<o
e = =
E v
g,
=D
€ = Z+¢ o >0 (34)
E y
where gy, is the vield stress. For a bjected to i hanical and

thermal loadings, the total strain tensor is given by

— th
& = €+ el

1 o1 1 ..
F 1+ v) 0y —voudy] + 2= [50;, - gouds] +adT8;  (53)
P
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" i 5 3 o, :

where E, is the plastic modulus and is given by —L. The total strain tensor can be
€
»

rewritten as

‘_P) aily S ANTE, (56)
Ty

If E, and v, are the elastic material properties capable of describing the inelastic

behavior. the total or the elastic strain tensor is given by

Ys

Fowdy ~alTd,. (5.7)

Eo,

E = g, + Ee,

v vay +0.aEs,‘ (5.8)
o, — Eep

The above equations provide the complete spatial distribution of material prop-
erties to simulate the inelastic behavior from an elastic analysis.

To ate the above ival a thick cylinder under plane strain condi-

tion subjected to pressure as well as linear ure distribution is
e Dimensions of the cylinder :
Inner Radius, R; = 3 in.
Outer Radius. R, =9 in.

e Material Properties :
Yield Stress, o, = 300 psi
Modulus of Elasticity, E = 207 ksi

Coefficient of Linear Thermal Expansion, & = 1.0 x 1075 per °C

o Loadings :
Inner Surface Temperature = 200°C

39



Outer Surface Temperature = 0°C

Applied Internal Pressure = 300 psi
e Number of elements = 25

A non-linear finite element analysis is performed and the element centroidal equiv-
alent stress and strain distributions are shown in Figs. 5.2 and 5.3. Using the equiv-
alent plastic strains from the non-linear analysis results. the modulus of elasticity
and Poisson’s ratio are modified according to Eq. 5.8 and a linear elastic analysis is
performed. It can be seen from Figs 5.2 and 5.3 that the equivalent stress and strain
distribution obtained from inelastic and modified elastic analysis are equal.

Therefore, any train distribution obtained from a 1i analysis can

be obtained from a linear elastic analysis by modifying its modulus of elasticity and
Poisson’s ratio. This makes it possible to scale the stresses and strains obtained from

any load step corresponding to an inelastic analysis. to the applied total load.
5.5 Three Bar Model - Relaxation Locus

As the governing equations are available in simple form for the uniaxial case of bar
models, a three bar model subjected to mechanical, thermal and combined loadings

is studied. The 1 I ion locus is i ified for all the cases and some

conclusions are drawn.

e Dimensions of the model :
Lengthof bar 1 =1 m
Lengthof bar2 =2 m
Length of bar 3 =3 m

Area of all the bars = 1 m?
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Figure 5.2: Equivalent stress distributions across the radius of a cylinder subjected
to uniform internal pressure and a linearly varying temperature
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jected to uniform internal pressure and a linearly varying temperature
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e Material Properties :
Yield stress of all the bars = 100 .VG/m?
Modulus of Elasticity = 100 N/m?

Coefficient of thermal expansion = 0.02 per°C

e Loadings :
Applied mechanical load. P = 235 .V

Uniform Temperature = 50°C
5.5.1 Pressure Loading
The equilibrium equation of a three bar model with equal areas is given by
(or+or+03)A=P (3.9)

where 0,0, and o3 are the bar axial stresses and P is the applied load. If all the
bars are assumed to be elastic-perfectly plastic with same yield stress value. then the

limit load of the three bar model can be determined as

(5.10)
Using Eq. 3.1. the reference stress for the applied load. P, is determined as
P
=, 3.11
TR =37 (3.11)

A non-linear finite element analysis is performed by specifying the reference stress
as the yield stress value. Using the procedure outlined in Sec. 5.3, the relaxation locus
is obtained for the given load, P. Fig. 5.4 shows the complete relaxation locus of the

local bar (bar 1). As soon as the stress in the local bar reaches yield, any additional

applied load is d to the ining bars. The reduction in stiffness of the

structure and the process is identified on the ion locus by the
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line 1-2. At point 2. the stress in bar 2 reaches yield thereby creating further reduction
in the stiffness. Line 2-3 shows the stress relaxation of the local bar with increasing
strain. When the stress reaches point 3. bar 3 also yields resulting in collapse of the

structure.
5.5.2 Temperature Loading
The equilibrium equation of a three bar model subjected to a thermal load is
(o +02+03) A=0. (5.12)

For pure thermal loadings, stresses are set up to equilibriate internally and to satisfy
the compatability requirements. The onset of yielding of the local bar initiates the
process of redistribution. For a uniform temperature rise in all the bars. it can be

seen that a tensile stress is set up in bar 1 and compressive stresses are set up in

bars 2 and 3. in order to satisfy the bility As the
of the tensile stress in bar 1 is more than bars 2 and 3, bar | is considered as the
local bar. Consequently, bar 1 yields in tension first followed by bar 3 in compression.
At this temperature the structure is in equilibrium, with bar 2 remaining stress free.
Further increases in temperature produce equal strains increments (aAT) in all the
bars proportional to the temperature rise AT with no change in the bar stresses.
Collapse does not occur in structures subjected to pure thermal loadings. as equi-
librium is preserved internally by redistribution of stresses. Therefore, any arbitrary
value of yield stress can be prescribed in order to determine the complete relaxation
locus from a non-linear finite element analysis. For the three bar model a yield stress
value of 20 V/m? is prescribed. On the relaxation locus diagram, line 1-2 corresponds
to the relaxation of stress after the yielding of bar 1. Redistribution takes place until
point 2 after which bar 3 yields in compression. Further increases in the temperature

will cause the axial stress in bar 1 to relax from 2 to 3 without any change in strain.
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It can be seen that the ion of stress with i ing strain would continue
for any arbitrary low value of yield stress (shown by dotted line 3-4).

For combined loadings. (Fig. 5.6) the relaxation locus is very similar to pressure
loading case as a reference stress can be identified to balance the external load.

It was shown earlier in Chapter 4. that the inelastic strain predicted by the modu-
lus modification method and the analytical method were equal for the case of two bar
model. From the relaxation locus diagrams it can be seen that for all loading cases.
the relaxation is linear for a certain drop in stress level. For small load cases. where
the first linear portion of the relaxation locus intersects the material stress-strain

curve, accurate predictions are made by the modulus modification method.

5.6 General Pressure Component Relaxation
Locus - Pressure and Thermal Loadings

Figs. 5.7 and 5.8 are the relaxation locus curves for a plate with central hole and
a Bridgman notch respectively. The relaxation locus curves for pressure loading are
similar to the case of bar models. As vielding progresses. the stiffness of the structure
reduces thereby producing more strain at the local element. For the applied load.
P, collapse state corresponds to the vield being set at a value of the reference stress.
The relaxation curve for pure thermal loading, in the case of Bridgman notch, shows
decreasing strain increments as the stress relaxes. As in the case of bar models,
the structure approaches an equilibrium point. In the case of the plate with a hole.
convergence could be obtained only with the yvield stress value of 100 MPa. The
increasing strain at the local region is attributed to the fact that more than half the
elements were still elastic.

The relaxation curve for a general pressure component can be identified as multi-

bar model with plasticity gradually proceeding from the shorter bar to the longer bar
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Figure 5.9: R ion locus for a multi-bar model ji to pressure loading



as shown in Fig. 5.9. The relaxation locus of the model can be obtained as a series

of lines with decreasing slopes eventually converging at the reference stress

5.7 Neuber’s Relaxation Locus

Neuber’s rule states that the theoretical stress-concentration factor is the geo-
metric mean of the actual stress and strain concentration factors. Although this
approximation strictly holds for specific notch constraints. on account of its simple
form and ease of use. it has been extended to predict notch root strains for other
geometric configurations in its equivalent form.

Neuber's relaxation locus is described by the equation
Oe€eqe = cONSTANT. 15.13)

If o.; and ¢, are the notch root pseudoelastic equivalent stresses and strains and if ¢ v
is the inelastic strain predicted by Neuber's rule. then. for an elastic-perfectly plastic
material we have

Teréer = 0y€x- 15.14)

Therefore. the implied GLOSS angle 4 is given by:

wnd = (:;_\;_l)x(l-””_j)
Tel

= = 15.15)
7y

The relaxation-modulus E, = — tan (§ - 9). The GLOSS angle § for Neuber’s case
is a function of the maximum elastic stress and yield stress and for given loading
conditions. it is, independent of the geometry.

It has been shown by experiments that Neuber’s rule predict strains higher than
the measured strains for many cases other than thin sheets. Similar observations
have been made by Mowbray and Ohji [22. 26]. It has also been shown that Neuber's

2



[
8

g

&
8

P
8 8

Psuedo-elastic equivalent stress (x 10° N/m?)
8

|
|

o
8

0.50 1.00 1.50 2.00 250
Total equivalent strain (x 10°)

{— = —Plane stress — - — - Plane strain Neuber i

Figure 5.10: Relaxation locus for a thin plate with a hole subjected to plane stress
and plane strain conditions



rule agrees well with measurements in plane stress situations such as thin sheets in
tension.

Fig. 5.10 is the relaxation plot of a plate with a central hole subjected to pressure
loading. The figure shows the relaxation of the local element when the plate is under
plane stress condition and plane strain condition. It can be seen that for the same
maximum stress and yield stress. the relaxation of the two curves are different on
account of the constraint prevailing at the vicinity of the notch. The strain estimated
by the plane strain case is less than the plane stress condition. For both cases.
Neuber's rule predicts the same strain. Neuber’s rule takes into account only the
maximum stress and the yield, and the local inelastic strain does not depend on the

c int. This is obvi a drawback of Neuber's rule.

5.8 GLOSS for combined loadings

The relaxation locus is identical for both mechanical and thermal loadings for a
limited drop in stress level. It is seen that thermal loadings also behave as mechanical

load, with redistribution of stress ing after the vield initiati It is also found

that the actual plastic zone is larger than the nominal plastic zone. Therefore, the
GLOSS with Plasticity Correction modulus modification scheme presented in Chap-
ter 3, can also be used for thermal as well as combined mechanical and thermal
loadings.

As well, it was shown earlier in Eq. 5.8 that modulus as well as Poisson’s ratio are
modified in order to simulate the non-linear finite element analysis from an elastic
analysis. In order to obtain improved estimate of strains predicted by the GLOSS
method with Plasticity Correction, the Poisson’s ratio of each elements above nom-
inal yield is also modified to 0.49. This essentially assumes all the elements above

yield from the first analysis to be completely plastic leading to better inelastic strain
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estimates.
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Chapter 6

Numerical Examples

6.1 Introduction

The GLOSS method with Plasticity Correction (GMPC) is applied to some bench-
mark geometric configurations and an industrial problem of practical interest. The
configurations analyzed have notch-type details wherein the determination of inelas-
tic strain is useful in estimating the low-cylce fatigue life. Inelastic strain at the
notch root is obtained by the GMPC. which is used in conjunction with the cyclic
stress-strain curve of the material. The estimated strain can then be inserted into
the Coffin-Manson's strain life equation in order to determine the number of cycles
required for crack initiation.

The numerical examples considered are :

® a plate with a hole
e a Bridgman notch

e an axisymmetric cylinder with a circumerferential notch on the inside surface

and
® asteam turbine valve body.

These components are modeled using ANSYS finite element software and are sub-
jected to i thermal and ination loadings. The materials used are




assumed to be homogeneous, isotropic and elastic-perfectly plastic. The inelastic
strain estimated by the GMPC is compared with inelastic finite element results and

Neuber's rule.
6.2 Thin Plate with a Hole

A thin plate with a circular hole is subjected to a remote tensile stress. On account
of symmetry only one quarter of the plate is modeled using four noded isoparametric
quadrilateral elements. Next the plate is fixed on the top surface and is subjected to
a uniform and linearly varying temperature. :

e Dimensions of the Plate :

Length of the plate = 0.7620 x 10~' m
Width of the plate = 0.3819 x 10! m
Radius of the hole = 0.6375 x 1072 m

o Material Properties :
Material - 245-T3 Aluminum Alloy
Modulus of Elasticity, £ = 7.2368 x 10* MPa
Yield Stress, g, = 363.2 MPa

Coefficient of Linear Thermal Expansion = 3 x 10~5 per °C'

Figures 6.1, 6.2 and 6.3 are the plots of notch root pseudoelastic equivalent stress
(the theoretical notch stress, 0, K;) versus the notch root total equivalent strain. For
various pressures and temperatures, the inelastic strain estimates are determined by
the GMPC and non-linear finite element analysis. Since uniaxial state of stress exists
at the notch root, Neuber's rule gives good predictions of the inelastic strain. It can
be seen from the plots that the strains estimated by the GMPC agree reasonably well

with the non-linear finite element results. Although the strain is underpredicted for
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certain load cases. the maximum error is found to be not more than three percent.
which would result in not very unconservative fatigue life. Further, the time involved
in performing  non-linear analysis was found to be 4-6 times more than that required
by GMPC. From the plots. it can also be seen that the GMPC shows similar behavior

for pressure as well as thermal loading cases.

6.3 Bridgman Notch

A round bar with a deep circumferential notch under tensile load is considered as
an example of biaxially stressed notches. The radial stress at the notch root is zero

due to the free surface, and in addition, the circumferential strain is also zero since the

notch radius p is small to the other di i The problem considered
here is that of a plane strain condition. Advantage is taken of the symmetry present
and therefore only one quarter of the notch is modeled.
e Dimension of the Bridgman Notch :
Maximum diameter = 2.6416 x 107> m
Minimum diameter = 2.1082 x 107> m

Notch radius = 0.6858 x 1072 m

Material Properties :

Material = Cr-Mo Steel

Yield stress, o, = 200.00 MPa

Modulus of Elasticity, £ = 1.9 x 10° MPa

Coefficient of Linear Thermal Expansion, a = 1.5 x 107> per °C

Figures 6.4 and 6.5 are the plots of pseudo elastic equivalent stress, (the theoretical
notch root equivalent stress, 0, K,) versus the notch root total equivalent strain. As

it can be seen from the graph, for a given value of load or temperature the inelastic
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strain predicted by the GMPC overestimates the strain predicted by the inelastic
finite element results leading to conservative low-cycle fatigue life. It can also be
seen that Neuber's rule overestimates the strain by around 25% leading to overly

conservative fatigue life.

6.4 Cylinder with a Circumferential Notch

In order to demonstrate the application of the proposed method to triaxially
stressed notches. a thick-walled cylinder with a circumferential notch on the inside
surface under internal pressure is considered. The cylinder is subjected to a plane
strain condition. The cylinder is subjected to pressure loading and combined pressure
and uniformly varying thermal loading.

» Dimensions of the Cylinder :

Outer diameter = 50 in.
Inner diameter = 32 in.

Notch radius = 1 in.

e Material Properties :
Yield stress. o, = 29000 psi
Modulus of Elasticity, E = 27.5 x 10° psi
Coefficient of linear thermal expansion = 3 x 10~ per °C
Figures 6.6 and 6.7 shows the notch root equivalent strain results for various
pressure and combined loads. Once again. it can be seen that che strain estimated by
the GMPC somewhat overpredicts the non-linear results but is not as conservative as
Neuber’s rule.
From the above three examples it can be seen that the GLOSS method with
Plasticity Correction predicts reasonably accurate inelastic strain, and is conservative

from a fatigue standpoint for most of the cases.
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6.5 Steam Turbine Valve Body

Having demonstrated the validity of the robust method for benchmark problems.
a problem of practical interest to designers of power plants is analyzed next.

The need for increased thermal efficiency and improved use of resources has led

to higher i and The concurrent presence of cyclic
secondary stresses (discontinuity and thermal stresses) and sustained primary stresses
(pressure-induced and mechanical loads) could cause plastic strains to be incurred
during every cycle of start-up and shut-down. along with temperature transients.
The components are thus subjected to cyclic nature of stresses which consequently
result in low-cycle fatigue failure of the components.

In order to reduce the damage caused by fatigue and to ensure safe operation of
turbine components for a specific period. it is essential that the thermal strains in
components during start-up and shut-down periods be not allowed to exceed limiting
values obtained from their respective material fatigue curves. In other words. start-up
and load change rates are to be governed by the permissible magnitude of thermal
strains in the turbine and valve components.

The most important factors for determining the start-up rates are

e identification of the critical section
® evaluation of peak strains at the critical section

A section which comes into contact with high temperature steam. or sections with
sharp geometry can be expected to be a critical section. The peak stresses can be
determined by an elastic finite element analysis. The highest stressed element from
the elastic finite element analysis is considered as the critical location.

Evaluation of temperature at various times during transient operation is the first

step of thermal stress analysis. ANSYS finite element software is used to solve for
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the temperature at various times. and stresses corresponding to the temperature
distributions. in this problem of heat conduction and stress analysis. The initial
temperature of all points in valve body before starting up from cold is taken as 30°.
The valve is ramped to a steam temperature of 300°C for different start up times.
Inelastic strains are estimated for the different start-ups to determine the longest life.

The dimensions of the valve body are shown in Fig. 6.8 and the finite element

model is shown in Fig. 6.9.

o Material Properties :
Material - Cr-Mo Steel
Yield Stress = 300 MPa

Modulus of Elasticity = 1.8521 x 10° MPa

Coefficient of linear thermal expansion, & = 1.5022 x 10~* per °C

Inner surface convective heat transfer coefficient = 3000J/sec — m* —° K’

The valve body is modeled using 6 noded triangular axisymmetric elements. The
temperature at the inner surface is gradually increased to the steam temperature of
500 °C. Valve bodies are normally lagged with thermal insulation so that the heat
loss can be minimized. The outer surface is modeled such that the heat flux is zero.

A transient heat conduction analysis is first carried out to determine the temper-
ature distribution at various times during the start-up. The maximum thermal stress
occurring in the valve body depends on the duration of the start-up. The temper-
ature difference at the critical section where the maximum stress occurs for various
start-up durations is shown in Table 6.1.

Using the temperature distributions at various times during the start-up, a struc-
tural analysis is performed to determine the inelastic strain. The strains are estimated
by non-linear finite element analysis, GLOSS method with Plasticity Correction and
Neuber’s rule. The strain estimates are shown in Table 6.2. It can be seen that the
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Table 6.1: Temperature difference at the critical section

Start-up
Time (secs) 1500 2000 2500
Temperature
Difference °C 186 160 45

strain estimated by the GLOSS method with Plasticity Correction in conjunction with
the Poisson’s ratio modification are comparable with the detailed inelastic analysis
and are conservative from a fatigue standpoint. It can also be seen that Neuber’s rule
underpredicts the inelastic strain for all cases. This aspect of non-conservativeness of

Neuber’s rule is not widely known.

Table 6.2: Steam Turbine Valve Body - Inelastic Strain Estimates

Pressure | Temperature Elastically Tnelastic
(MPa) | Difference (°C) | Calculated Strain Strain
(Percent) (Percent)
Neuber GLOSS T Tnelastic FEA
v =03 ] v=019

50 186 0.308 0387 | 0414 | L1170 0.692
9.81 186 0.297 0546 | 0396 | 0.991 0.649
13.73 186 0.288 0513 | 0336 | 0.860 0.619
5.0 160 0418 | 0428 | 0618 0512
9.81 160 0.383 | 0.387 | 0.568 0.467
13.73 160 0.356 | 0358 | 0.517 0.433
5.0 165 0331 | 0457 0.401
9.81 145 0208 | 0.418 0.360
13.73 145 0274 | 0274 | 0.382 0.339
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

The determination of inelastic strain at a critical section of any mechanical com-
ponent or structure is required for evaluating the fatigue life of components. Most of
the components in power plants and process industries are often subjected to com-
bined mechanical and thermal loadings. In such highly competitive environments.
simple and reliable methods are necessary during the preliminary stages of design.

Conventional methods such as non-linear finite element analysis are expensive and
time consuming and are not suitable for such practical situations. Caution should be
exercised when using simple methods such as Neuber’s rule. Neuber’s rule predicts
reasonably accurate strains only for the plane stress case such as thin sheets. In plane
strain situations Neuber’s rule has been found to overestimate the actual inelastic
strain significantly leading to overly conservative fatigue lives. Also. it is shown in
this thesis that for the case of steam turbine valve body, the strain predicted by
Neuber’s rule underestimates the non-linear results.

Fully cognizant of the difficulties inherent in conventional methods. this thesis
aimed to develop a simple method for evaluating the inelastic strain in any component
subjected to combined mechanical and thermal loadings. Fundamental aspects of the
modulus reduction method are explained through a two-bar kinematic model. A pro-
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cedure has been developed to obtain the complete relaxation locus of any component
subjected to mechanical and thermal loadings. It is shown that any inelastic analysis
can be exactly simulated by an elastic analysis provided the modulus of elasticity and
Poisson’s ratio distributions are known. In addition to identifving the redistribution
process, the relaxation locus also predicts the local inelastic strain and the reference
stress. The relaxation locus is identified for the bar models and some general me-
chanical components. It is found that the relaxation locus for pure thermal loading
is identical to that of pressure loading for a limited drop in stress level. Based on the
similar nature of the relaxation locus. the GLOSS method with Plasticity Correction
has been extended to combined mechanical and thermal loadings.

The method has been applied to some bench-mark problems and practical steam

turbine valve body problem. The inelastic strain estimated by the GLOSS method

with Plasticity Correction ly with i finite element results.
The method developed can be applied to any component configuration as the relax-
ation depends on the geometry and multiaxiality conditions existing at the critical

section, which is not taken into account in Neuber’s rule.

7.2 Future Research

It is shown in this thesis that the robust method is simple and direct, and pro-
vides good estimates of inelastic strain for combined loading cases. Further research
in this area should be worthwhile. Determination of bounds should be an area worth
pursuing as it would be a measure of conservativeness of the design. Future research
should concentrate on extending the method towards orthotropic and anisotropic com-
ponents, which play an important role in engineering due to their superior strength

to weight characteristics.
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Appendix A

ANSYS Commands Listing of
Mechanical Components and
Structures

All ANSYS commands listing for the problems given in Chapter 6 are provided
in this section. The listings include linear elastic analysis and non-linear analysis
using ANSYS. The transient heat conduction analysis performed for the valve body

problem is also provided.

A.1 Plate with a Hole - Mechanical Load

A.1.1 Linear Elastic Analysis

/BATCH

*SET, STRS, -200e06 ! LOAD ON THE STRUCTURE
*SET,R,6.375e-03 ! RADIUS OF THE CENTRAL HOLE
*SET,W,19.05e~-03 ! WIDTH OF THE PLATE

*SET, D, 38.1e-03 ! LENGTH OF THE PLATE



*SET, YS,363.2e06 ! YIELD STRENGTH (psi)

*SET, YM,7.2368e10 ! YOUNG’S MODULUS (psi)
*SET,POISSON,0.3 ! POISSON’S RATIO
/PREPT ! ENTER PREPROCESSOR

/TITLE, PLATE WITH A CENTRAL HOLE

ET,1,42 ! ELEMENT TYPE - PLANE 42 FOUR NODED
! ISOPARMETRIC QUADRILATERAL ELEMENT
MP,EX,1,YM ! YOUNG’S MODULUS

MP,NUXY, 1,POISSON ! POISSON’S RATIO

K,1,R,0 ' DEFINITE KEYPOINTS AND LINES
K,2,¥W,0
£1,2,22,22
K,3,W,D/2
L,2,3,12
K.4,0,D/2
L,4,3,12
K,5,0,R
L.5,4,22,22
cs¥s,1
K,6,R,45
L,5,6,12
L,6,1,12

CsYs,0



L,6,3,22,22

csys,0
K,7,W,D
K,8,0,D
L,3,7,10
L,4,8,10

L,7,8,12

A,1,2,3,6 ! DEFINE AREAS
A,6,3,4,5
4,3,7,8,4

AMESH, ALL ! MESH THE AREAS WITH ELEMENTS

CSsYs,0 | BOUNDARY CONDITIONS
NSEL,S,LOC,Y,0

D,ALL,UY,0

NALL

NSEL,S,LOC,X,0

D,ALL,UX,0

NALL

SAVE ! SAVE MODEL AND GEOMETRY
FINI ! EXIT PRE-PROCESSOR
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/SOLU

ANTYPE,0

NSEL,S,L0OC,Y,D
SF,ALL, PRES,STRS
NALL

SAVE
SOLVE
FINI

/INP,GLOSSMAC
EXIT

ENTER SOLUTION
STATIC ANALYSIS

APPLY EXTERNAL LOAD

SAVE
SOLVE
EXIT SOLUTION

INPUT MACRO FOR PERFORMING GLOSS ANALYSIS

A.1.2 Non-Linear Analysis

/BATCH

*SET, STRS, ~200E06
*SET,R,6.375E-03
*SET,W,19.05E-03

*SET,D,38.1E-03

*SET,NWID, 22
*SET, SRATIO, 22
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*SET, ¥S,363.2E06
*SET,YM,7.2368E10

*SET,POISSON, 0.3

/PREPT

ET,1,42

MP,EX,1,YM

MP,NUXY, 1,POISSON

TB,BKIN,1,1 ! BI-LINEAR KINEMATIC HARDENING

TBDATA,1,YS,0 ! YIELD STRESS = YS & TANGENT MODULUS = 0

K,1,R,0
K,2,W,0
L,1,2,22,22
K,3,W,D/2
L,2,3,12
K,4,0,D/2
L,4,3,12
K,5,0,R
L,5,4,22,22
CsyYs,1
K,6,R,45
L,5,6,12

L,6,1,12
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CsYs,0
L,6,3,22,22

CsYs,0
K,7,W,D
K,8,0,D
L,3,7,10
L,4,8,10

L,7,8,12

4,1,2,3,6
4,6,3,4,5
A4,3,7,8,4

AMESH, ALL

Cs¥s,0
NSEL,S,LOC,Y,0
D,ALL,UY,0

NALL

NSEL,S,LOC,X,0
D,ALL,UX,0
NALL

SAVE

/SOLU



ANTYPE, 0

AUTOTS, ON
PRED,ON, ,ON
NROPT, t, ,OFF
OUTRES, ALL, ALL

NSUBST, 300

TIME,4

NSEL,Ss,LOC,Y,D

SF,ALL,PRES, STRS

NALL

SAVE

SOLVE

FINISH

/POST1

SET,LAST

ETABLE, SEQV, S ,EQV

ETABLE, EL, EPEL,EQV

ETABLE,EP,EPPL,EQV

! NON-LINEAR ANALYSIS OPTIONS

ENTER POST-PROCESSOR

GO TO THE LAST-SUBSTEP

STORE THE ELEMENT CENTROID
EQUIVALENT STRESS

STORE THE ELEMENT CENTROID
ELASTIC EQUIVALENT STRAIN

STORE THE ELEMENT CENTROID PLASTIC
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! EQUIVALENT STRAIN

/0UT,RESULTS ! CREATE OUTPUT FILE

PRETAB, SEQV, EL,EP ! RE-DIRECT ALL THE RESULTS TO THE FILE
/0uT

FINI

EXIT,NOSAVE

A.2 Plate with a Central Hole - Uniform
Temperature

A.2.1 Linear Elastic Analysis
/BATCH
*SET, R, 6.375E-03

*SET, W, 19.05E-03
*SET,D,38.1E-03

*SET, YS,363.2E06
*SET, YM,7.2368E10
*SET, ALPHA, 3E-05

*SET, TEMP, 110

/PREPT
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ET,1,42
MP,EX,1,YM
MP,ALPX,1,3E-05 ! CO-EFFICIENT OF THERMAL EXPANSION

K,1,R,0
K,2,W,0
L,1,2,22,22
K,3,W,D/2
L;2,8,12
K,4,0,D/2
L,4,3,12
K,5,0,R
L,5,4,22,22
CSYs, 1
K,6,R,45
L,5,6,12
L;6;1,12
CsYs,0

L,6,3,22,22

CsYs,0
K,7,4,D
K,8,0,D
L,3,7,10
L,4,8,10

L,7,8,12
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4,1,2,3,6
A,6,3,4,5
A,3,7,8,4
AMESH, ALL

CsYs,0
NSEL,S,L0C,Y,0
D,ALL,UY,0
NALL

NSEL,S,LOC,X,0
D,ALL,UX,0
NALL

NSEL,S,LOC,Y,D
D,ALL,UY,0
NALL

SAVE

/SOLU
ANTYPE, 0

BF,ALL, TEMP, TEMP ! TEMPERATURE ARE INPUT AS BODY FORCES
! ON ALL NODES
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SAVE
SOLVE

FINISH
/INP,GLOSSMAC

A.2.2 Non-Linear Analysis

/BATCH

*SET,R,6.375E-03
*SET, W, 19.05E-03

*SET,D, 38.1E-03

+SET, YS,363.2E06
*SET, YM,7.2368E10
*SET, TEMP, 110

/PREP7

ET,1,42
MP,EX,1,YM
MP,ALPX,1,3E-05

TB,BKIN,1,1
TBDATA,1,YS,0
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K,1,R,0
K,2,4,0
L,1,2,22,22
K,3,W,D/2
L;2:3;12
K,4,0,0/2
L,4,3,12
K,5,0,R
L,5,4,22,22
csys, 1
K,6,R,45
L,5,6,12
L,6,1,12
Cs¥s,0

L,6,3,22,22

Cs¥s,0
K,7,4,D
K,8,0,D
L.3,7,10
L,4,8,10
L,7,8,12

4,1,2,3,6
4,6,3,4,5
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4,3,7,8,4

AMESH, ALL

CsYs,0
NSEL,S,LOC,Y,0
D,ALL,UY,0
NALL

NSEL,S,LOC,X,0
D,ALL,UX,0
NALL

NSEL,S,LOC,Y,D
D,ALL,UY,0
NALL

SAVE

/S0LU
ANTYPE, 0

AUTOTS, ON
PRED,ON, ,ON
NROPT, L, ,OFF
OUTRES, ALL, ALL
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TIME,4

NSUBST, 300

BF,ALL, TEMP, TEMP

SAVE
SOLVE

FINISH

/POST1

SET,LAST

ETABLE, SEQV,S,EQV
ETABLE, EL,EPEL,EQV
ETABLE, EP,EPPL,EQV

/0UT,RESULTS
PRETAB, SEQV,EL,EP
/00T

FINI

EXIT,NOSAVE
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A.3 Bridgman Notch - Mechanical Load

A.3.1 Linear Elastic Analysis

! The following program performs the first linear elastic analysis

! as well as the GLOSS analysis for multiple load cases.
/BATCH

! BRIDGMAN NOTCH - DIMENSIONS

*SET,NR,0.6852E-02 ! NOTCH RADIUS

*SET, 0D, 2.6416E~02 ! OUTER DIAMETER OF THE NOTCH
*SET,ND, 2. 1082E-02 ! INNER DIAMETER OF THE NOTCH
*SET,LENG, 2«0D ! LENGTH OF THE NOTCH

*SET, XC,ND+NR
+SET,THE1,77.160412
*SET, THE2, THE1/2.0

! MATERIAL PROPERTIES

*SET,YM,1.90E11

+SET, YS, 200E06

+SET,YLOAD,77E06 ! LOAD CORRESPONDING TO FIRST YIELD
#SET,LOAD, (140E06 - YLOAD) ! 140E06 IS THE TOTAL LOAD
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/PREP7

ET,1,42,0,0,1 ! ELEMENT - 4 NODED ISOPARAMETRIC (AXISYMMETRIC)

EX,1,YM

K,1,0,0
K,2,ND,0
L,2,1,22,22
K,4,0D,LENG/2
K,5,0,LENG/2
L,4,5,12
L/5;1,12
LOCAL,11,1,XC
K,3,NR, 180-THE1
K,6,NR, 180-THE2
L,2,6,12
L,6,3,12

Cs¥s,0
L,3,4,22,22
L,6,5,22,22
K,7,0D,LENG
K,8,0,LENG
L,4,7,10
L,7,8,12

L,8,5,10
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4,1,2,6,5
A,5,6,3,4
4,5,4,7,8

AMESH, ALL

NSEL,S,LOC,X,0
D,ALL,UX,0

NALL

NSEL,S,LOC,Y,0

D,ALL,UY,0

NALL

/SOLU

ANTYPE, 0

*D0,I,0,9

/SOLU

NSEL,S,LOC,Y,LENG

SF,ALL,PRES,-(YLOAD + I=LOAD/9)

NALL

SAVE
SOLVE



FINI

CHrxr SOFTENING OF YM

/POST1

SET,1,1

ETABLE, SIGC,S,EQV
ETABLE,ELAS,EPEL,EQV

*DIM,DUM2,ARRAY, 1

*DIM,DUM3, ARRAY, 1
*CFOPEN,RESULT
*GET,STEQ,ELEM,22,ETAB,SIGC ! 22 is the highest stressed element
*GET,ELEQ, ELEM, 22 ,ETAB,ELAS
DUM2(1) = STEQ

DUM3(1) = (ELEQ/1.3)

*SET, NEUBER , DUM2 (1) *DUM3 (1) /YS
*VWRITE,DUM2(1) ,DUM3(1) ,NEUBER
(3X,E15.8,3X,E15.8,8X,E15.8)
*CFCLOS

SAVE

/SYS,CAT RESULT >> SOLUTION
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*CFOPEN, EXVAL

+SET,MN,2
*GET,K,ELEM,0,COUNT

*D0,L,1,K

*GET, STEQ, ELEM, L ,ETAB, SIGC

*IF ,STEQ, GT, ¥S, THEN

*SET,ESEC, ((2+YS/STEQ) - 1)*¥¥
*CFWRITE,MP,EX, MN,ESEC
*CFWRITE, MP, NUXY ,MN,0.3
*SET, MN, MN+1

*ENDIF

*ENDDO

*CFCLOS

*+SET,MN, 2

*CFOPEN , EXMOD

*D0,L,1,K

*GET, STEQ, ELEM, L,ETAB, SIGC
*IF,STEQ,GT, YS, THEN
*CFWRITE,MAT,MN
*CFWRITE,EMODIF,L

*SET,MN, MN+1

*ENDIF
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*ENDDO
*CFCLOS

FINISH

I I -

L I NEA AR

AN ALY S

I

S

/PREPT
RESUME

EX,1,YM
NUXY,1,0.3
*USE, EXVAL
*USE, EXMOD
FINISH
/SOLU

SAVE

SOLVE

FINISH

/POSTL

*DIM,DUM4,ARRAY, 1
*DIM,DUMS,ARRAY, 1
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*CFOPEN, RESULT

SET,1,1

ETABLE,SIGC,S,EQV

ETABLE,ELAS, EPEL, EQV

*GET, STEQ,ELEM, 22,ETAB, SIGC

*GET,ELEQ,ELEM, 22 ,ETAB,ELAS

*SET,NUXY1,0.3

DUM4(1) = STEQ

DUMS(1) = ELEQ/(1+NUXY1)

*SET,GLOSS, DUM3 (1) +(DUMS (1) -DUM3 (1) ) *(DUM2(1) -YS) / (DUM2 (1) -DUM4& (1) )
! The second point strain is reported as the exact strain in the
! GLOSS method with Plasticity Correction

*VWRITE,DUM4 (1) ,DUM5(1) ,GLOSS

(X,E15.8,3X,E15.8,3X,E15.8)

*CFCLOS

/SYS,CAT RESULT >> SOLUTION

/PREP7

MP,EX,1,YM
MP,NUXY,1,0.3

MPCHG,1,ALL

*SET,DUM2(1)
*SET, DUM3 (1)
*SET, DUM4 (1)
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*SET,DUMS (1)

SAVE

*ENDDO

FINI
EXIT,NOSAVE

A.3.2 Non-Linear Analysis

/BATCH

*SET,NR,0.6852e-02
*SET,0D,2.6416e-02
*SET,ND, 2.1082e~-02
*SET, LENG, 2+0D
*SET, XC,ND+NR

*SET, THE1,77.160412

*SET, THE2, THE1/2.0

«SET,YM,1.90E11

*SET, YS, 200E06

*SET, YLOAD, 70e06
*SET,LOAD, (140E06 - YLOAD)
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/prep?
ET,1,42,0,0,1

EX,1,YM

TB,BKIN, 1,1

TBDATA, 1,YS,0

K,1,0,0
K,2,ND,0
L,2,1,22,22
K,4,0D,LENG/2
K,5,0,LENG/2
L,4,5,12
L,5,1,12
LOCAL,11,1,XC
K,3,NR, 180-THE1
K,6,NR, 180-THE2
L,2,6,12
L,6,3,12

Csys,0
L,3,4,22,22
L,6,5,22,22
K,7,0D,LENG
K,8,0,LENG
L,4,7,10

L,7,8,12
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L,8,5,10
4,1,2,6,5
A,5,6,3,4
4,5,4,7,8

AMESH, ALL

NSEL,S,LOC,X,0
D,ALL,UX,0

NALL

NSEL,S,LOC,Y,0
D,ALL,UY,0

NALL

/SOLU

ANTYPE, 0

*D0,1,0,10

NSEL,S,LOC,Y,LENG
SF,ALL,PRES,-(YLOAD + I*LOAD/10)
NALL

SAVE
SOLVE
*ENDDO
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/POSTL

«DIM,DUM1, ARRAY, 1
«DIM,DUM2, ARRAY, 1
«DIM,DUM3, ARRAY, 1
«DIM,DUM4 , ARRAY , 1
«DIM,DUMS , ARRAY, 1
*CFOPEN ,RESULT
*00,1,1,11

SET,I,1

ETABLE, SIGC,S ,EQV
ETABLE, ELAS , EPEL ,EQV
ETABLE, PLAS , EPPL, EQV

*GET, STEQ, ELEM, 22, ETAB, SIGC
*GET,ELEQ,ELEM, 22, ETAB, ELAS
*GET,PLEQ, ELEM, 22 ETAB, PLAS
DUM1(1) = I

DUM2(1) = STEQ

DUM3(1) = (ELEQ/1.3)

DUM4(1) = (PLEQ/1.5)

DUMS(1) = (DUM3(1) + DUM4(1))

*VWRITE,DUM2(1) ,DUM5 (1)

(3X,E15.8,

*ENDDO
*CECLOS

3X,E15.8)



FINI

EXIT,NOSAVE

A.4 Bridgman Notch - Thermal Load
A.4.1 Linear Elastic Analysis

/BATCH

*SET, ¥R, 0.6852E-02
*SET,0D,2.6416E-02
*SET,ND, 2. 1082E-02
*SET,LENG, 2+0D
=SET,XC,ND+NR

*SET, THEL, 77160412

=SET, THE2, THE1/2.0

*SET,YM,1.90E11
*SET, YS,200E06

=SET,ALPHA, 1.5E-05
*SET, TEMP, 55

/PREPT

ET,1,42,0,0,1
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EX,1,YM

ALPX,1,1.5E-05

K,1,0,0
K,2,ND,0
L.2i1,22,22
K,4,0D,LENG/2
K,5,0,LENG/2
L,4,5,12
L,5,1,12
LOCAL,11,1,XC
K,3,NR, 180-THEL
K,6,NR, 180-THE2
L,2,6,12
L,6,3,12
cs¥s,0
L,3,4,22,22
L,6,5,22,22
K,7,0D,LENG
K,8,0,LENG
L,4,7,10
L,7,8,12
L,8,5,10
4,1,2,6,5
A,5,6,3,4

A,5,4,7,8
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AMESH, ALL

NSEL,S,LOC,X,0

D,ALL,UX,0

NALL

NSEL,S,L0C,Y,0

D,ALL,UY,0

NALL

NSEL,S,LOC,Y,LENG

D,ALL,UY,0

NALL

/SOLU
ANTYPE, 0

BF,ALL, TEMP , TEMP

SAVE
SOLVE

FINI

/INP,GLOSSMAC
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A.4.2 Non-Linear Analysis

/BATCH

*SET,NR,0.6852E-02
*SET,0D,2.6416E-02
*SET,ND, 2. 1082E-02
*SET, LENG, 2*0D
*SET,XC,ND+NR
*SET,THEL,77.160412

+SET, THE2, THE1/2.0

+SET, YM,1.90E11
*SET, YS, 200E06

*SET, TEMP, 55

/PREP7
ET,1,42,0,0,1
EX,1,YM

ALPX,1,1.5E-05

TB,BKIN, 1,1

TBDATA, 1,YS,0

K,1,0,0
K,2,ND,0
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L,2,1,22,22
K,4,0D,LENG/2
K,5,0,LENG/2
L,4,5,12
L.5,1,12
LOCAL,11,1,XC
K,3,NR, 180-THEL
K,6,NR, 180-THE2
L,2,6,12
L,6,3,12
cs¥s,0
L,3,4,22,22
L,6,5,22,22
K,7,0D,LENG
K,8,0,LENG
L,4,7,10
L,7,8,12
L,8,5,10
4,1,2,6,5
4,5,6,3,4
4,5,4,7,8
AMESH, ALL

NSEL,S,LOC,X,0
D,ALL,UX,0
NALL
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NSEL,S,LOC,Y,0
D,ALL,UY,0
NALL

NSEL,S,LOC, Y,LENG
D,ALL,UY,0

NALL

/soLU

ANTYPE, 0

AUTOTS , ON

PRED,ON, ,ON

NROPT, 1, ,OFF

OUTRES, ALL, ALL

TIME,4

NSUBST, 300

BF,ALL,TEMP, TEMP

SAVE
SOLVE

/POST1



SET,LAST
ETABLE, SEQV, S, EQV
ETABLE, EL , EPEL, EQV

ETABLE, EP, EPPL ,EQV

/OUT,RESULTS
PRETAB, SEQV,EL,EP
/0UT

FINI

EXIT,NOSAVE

A.5 Cylinder with a Circumferential Notch -
Mechanical Load

A.5.1 Linear Elastic Analysis

\BATCH

*SET,RI, 16 ! INNER RADIUS OF THE CYLINDER
*SET,R0,25 ! OUTER RADIUS OF THE CYLINDER
*SET,RN,1 ! NOTCH RADIUS OF THE CYLINDER

*SET,RIN,RI+RN

*SET,LENG,9 ! LENGTH OF THE CYLINDER

! MATERIAL PROPERTIES
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+SET, YM, 27.5E06

*SET, YS, 29000

/PREP7

ET,1,42,,,1 ! ELEMENT - 4 NODED ISOPARAMETRIC
! (AXISYMMETRIC)

MP,EX,1,YM

K,1,RIN
K,2,R0
L;1,2,10,10
K,3,R0,LENG
L,2,3,10
K,4,RI,LENG
L,3,4,10
K,5,RI,RN
L,5,4,10,10
LOCAL, 11,1,RI
K,6,RN,45
L,1,6,10
L,5,6,10
cs¥s,0
L,6,3,10,10
4,1,2,3,6
4,6,3,4,5
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AMESH, ALL

FINI

/SOLU

ANTYPE, O

NSEL,S,L0C,Y,LENG
D,ALL,UY,0

NALL

NSEL,S,LOC,Y,0
D,ALL,UY,0

NALL

NSEL,S,LAC,X,RL
SF,ALL,PRES,STRS
NALL

Csys, 11
NSEL,S,LOC,X,RN
SF,ALL,PRES,STRS
NALL

CsYs,0
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SAVE
SOLVE
FINI

/INP,GLOSSMAC

A.5.2 Non-Linear Analysis

/BATCH

*SET,RI, 16
*SET,RO,25
*SET,RN, 1
*SET,RIN,RI+RN
*SET,LENG, 9
*SET, YM, 27 . 5E06

*SET, YS, 29000

/PREP7
ET,1,42,,,1

EX,1,YM

TB,BKIN, 1

TBDATA, 1,YS,0
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K,1,RIN
K,2,R0
L,1,2,10,10
K,3,R0,LENG
L,2,3,10
K,4,RI,LENG
L,3,4,10
K,5,RI,RN
L,5,4,10,10
LOCAL,11,1,RI
K,6,RN,45
L,1,6,10
L,5,6,10
CsyYs,o0
L,6,3,10,10
A,1,2,3,6
A,6,3,4,5

AMESH, ALL

FINI

/S0LU

ANTYPE,0

NSEL,S,LOC,Y,LENG
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D,ALL,UY,0

NALL

NSEL,S,L0OC,Y,0
D,ALL,UY,0
NALL

AUTOTS, ON
PRED,ON, ,ON
NROPT, 1, ,OFF
NSUBST, 300

TIME,4

NSEL,S,LOC,X,RI
SF,ALL,PRES,STRS

NALL

Csys, 11
NSEL,S,LOC,X,RN
SF,ALL,PRES,STRS

NALL

CsYs,0

SAVE
SOLVE
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FINI

/POSTL

SET,LAST

ETABLE, SEQV, S, EQV
ETABLE, EL, EPEL , EQV
ETABLE, EP, EPPL ,EQV

/OUTPUT, STRESS
PRETAB, SEQV,EL,EP

/0UT

FINI

EXIT,NOSAVE

A.6 Cylinder with a Circumferential Notch -
Combined Loading

A.6.1 Linear Elastic Analysis
\BATCH

*SET,RI, 16

*SET,R0,25

*SET,RN, 1

*SET,RIN,RI+RN
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*SET,LENG, 9
*SET, YM, 27.SE06
*SET, ¥S,29000

/PREP7
ET,1,42,,,1
MP,EX,1,YM

MP,ALPX,1,3E-05

K,1,RIN
K,2,R0
1,1,2,10,10
K,3,R0,LENG
L,2,3,10
K,4,RI,LENG
L,3,4,10
K,5,RI,RN
L,5,4,10,10
LOCAL,11,1,RI
K,6,RN,45
L.1,6,10
L,5.6,10
cS¥Y5,0
L,6,3,10,10
4,1,2,3,6
4,6,3,4,5
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AMESH, ALL

FINI

/SOLU

ANTYPE,O

NSEL,S,LOC,Y,LENG
D,ALL,UY,0
NALL

NSEL,S,LOC,Y,0
D,ALL,UY,0
NALL

NSEL,S,LOC,X,RI
SF,ALL,PRES,STRS
NALL

CsYs, 11
NSEL,S,LOC,X,RN
SF,ALL,PRES,STRS
NALL

CsYs,0
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BF,ALL,TEMP,25

SAVE

SOLVE

FINI

/INP,GLOSSMAC

A.6.2 Non-Linear Analysis

/BATCH

*SET,RI, 16
+SET,RO,25

*SET, RN, 1
+SET,RIN,RI+RN
*SET, LENG, 9
*SET, YM, 27 .5E06
+SET, ¥S,29000
*SET, ALPX,, 3E-05

/PREPT
ET,1,42,,,1
MP,EX,1,YM
MP,ALPX,1,ALPX
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TB,BKIN, 1
TBDATA,1,YS,0

K,1,RIN
K,2,RO0
L,1,2,10,10
K,3,R0,LENG
L,2,3,10
K,4,RI,LENG
L,3,4,10
K,5,RI,RN
L,5,4,10,10
LOCAL,11,1,RI
K,6,RN,45
L,1,6,10
L,5,6,10
CsYs,0
L,6,3,10,10
A4,1,2,3,6
A4,6,3,4,5

AMESH, ALL

FINI

/S0LU
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ANTYPE, 0

NSEL,S,LOC,Y,LENG

D,ALL,UY,0

NALL

NSEL,S,LOC,Y,0

D,ALL,UY,0
NALL

AUTOTS, ON
PRED,GN, ,ON
NROPT, 1, ,OFF
NSUBST, 300
TIME, 4

NSEL,S,LOC,X,RI
SF,ALL,PRES, STRS
NALL

CsYs, 11
NSEL,S,LOC,X,RN
SF,ALL,PRES, STRS
NALL
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CsYs,0

BF,ALL, TEMP, 20

SOLVE
FINI

/POSTL

SET,LAST

ETABLE, SEQV,S,EQV
ETABLE, EL,EPEL,EQV

ETABLE, EP,EPPL,EQV

/OUTPUT, STRESS
PRETAB, SEQV,E1,EP
/0UT

FINI

EXIT,NOSAVE

A.7 Steam Turbine Valve Body
A.7.1 Transient Heat Conduction Analysis

/BATCH
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/PREPT
ET,1,77,,,1 ! ELEMENT - 6 NODED THERMAL ELEMENT

/INP,OUTPUT, TMP

¥ MATERIAL PROPERTIES

MP,KXX,1,38.37
MP,DENS,1,7460.0
MP,C,1,561.03
MP,EX,1,1.8521E11

MP,ALPX,1,1.5022E-05

/INP,NPR ! NODES ARE SELECTED ON THE INSIDE SURFACE
D,ALL, TEMP, 500

NALL

/INP,NPR
SF,ALL, CONV, 3000
NALL

/INP,NPR1 ! INSULATED BOUNDARY CONDITIONS ON THE
! OUTER SURFACE

SF,ALL,HFLUX,0

NALL



FINISH

{SOLU

ANTYPE, TRANS

TIMINT,OFF,STRUC

AUTOTS, ON
OUTRES, NSOL, ALL
KBC,0

TREF, 30

TUNIF, 30
DELTIM,1,,30

TIME, 1500

SAVE
SOLVE

TRANSIENT ANAYSIS

NEGLECT DYNAMIC EFFECTS

APPLY THE TEMPERATURE LINEARLY
REFERENCE TEMPERATURE SET TO 30 C

INITIAL UNIFORM TEMPERATURE SET TO 30 C

THE TEMPERATURE IS APPLIED OVER A PERIOD
OF 1500 SEC

! THE ANALYSIS IS CONTINUED TILL THE STEADY STATE IS REACHED

TIMINT,ON
AUTOTS, ON
OUTRES, NSOL, ALL
DELTIM,1,,60

TIME, 4000



SAVE
SOLVE
FINI

! THE NODAL TEMPERATURES ARE STORED IN A FILE TO BE SUPPLIED AS
! BODY FORCE INPUTS TO THE STRUCTUAL ANALYSIS

/POSTL

SET,1,LAST
*CFOPEN , TEMP

*GET, K, NODE, 0, COUNT
*DO,L,1,K

*GET, TEM, NODE, L, TEMP
*CFWRITE,BF,L, TEMP, TEM
*ENDDO

*CFCLOS

! DETERMINES THE TEMPERATURE DIFFERENCE AT THE CRITICAL SECTION
! AND OUTPUT IS WRITTEN IN A FILE CALLED AS NODALDIFF

/POST26
NSOL, 2,333, TEMP
NSOL, 3,252, TEMP

ADD,4,2,3,,,

-1
/0UT ,NODALDIFF

PRVAR,2,3,4



/0UT

FINI

EXIT,NOSAVE

A.7.2 Linear Elastic Analysis
/BATCH
*SET,STRS, 10E07

*SET, YS,300E06

*SET,YM,1.8521E11

/PREP7
ET,1;82,;,1

/INP,OUTPUT, TMP

MP,EX,1,1.8521E11
MP,ALPX,1,1.5022E-05

! STRUCTURAL BOUNDARY CONDITIONS

NSEL,S,LOC,Y,-0.210
D,ALL,UY,0
NSEL, ALL
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D,1847,UX,0
D,1987,UX,0
D,1991,UX,0
D,1993,UX,0

FINISH

/SOLU
ANTYPE, STATIC

/INP,NPR ! APPLY INTERNAL PRESSURE ON THE INSIDE SURFACE

SF,ALL,PRES,9.81E06

NALL

/INP, TEMP ! APPLY THE TEMPERATURES AS NODAL BODY FORCE

SAVE

SOLVE

FINI

/INP,GLOSSMAC
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A.7.3 Non-Linear Analysis

/BATCH
*SET, STRS, 10E07
*SET, YS, 300E06

+SET,YM,1.8521E11

/PREP7
ET,1,82,,,1

/INP,OUTPUT, TMP

MP,EX,1,1.8521E11
MP,ALPX,1,1.5022E-05

TB,BKIN,1,1
TBDATA,1,YS,0

! STRUCTURAL BOUNDARY CONDITIONS
NSEL,S,LOC,Y,-0.210
D,ALL,UY,0

NSEL, ALL

D,1847,UX,0
D, 1987,UX,0
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D,1991,UX,0

D,1993,UX,0

FINISH

/SOLU
ANTYPE,STATIC

AUTOTS,ON

PRED,ON, ,0N

NROPT, 1, ,0FF

OUTRES, ALL,ALL

NSUBST, 300
TIME,4

/INP,NPR

SF,ALL,PRES,9.81E06

NALL

/INP,TEMP

SAVE
SOLVE
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/POST1

SET,LAST

ETABLE, SEQV, S ,EQV
ETABLE, EL, EPEL,EQV
ETABLE, EP,EPPL,EQV

/GUT, STRES
PRETAB, SEQV,EL,EP
/0UT

FINI
EXIT,NOSAVE
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Appendix B

Elastic Modulii Softening Macro
for GLOSS Analysis

The following macro written using the ANSYS Parameric Design Language. changes
the modulus and Poisson’s ratio after the first linear elastic analysis. The macro
provides the equivalent stresses and strains as outputs from the analyses in two files

stressl and stress2.

B.1 GLOSS Macro for modulus and Poisson’s
ration modification

1 I - LI NEA AR AN ALY SIS

! wxsxxikx THIS MACRO IS FOR COMBINED LOADINGS #kexxkskis

! The parameters YS (yield strength), YM (modulus of elasticity) and
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! ALPHA (co-efficient of thermal expansion) has to be specified in

! the main linear elastic program

/POST1

SET, 1,1
ETABLE,SIGC,S,EQV

ETABLE,EIGC,EPTO,EQV

/output,stressi
PRETAB,SIGC,EIGC

/output

Iowkkn SOFTENING OF YM

*CFOPEN, EXVAL

*SET,MN, 2
*GET,K,ELEM,0,COUNT

+D0,L,1,K
+GET, STEQ, ELEM, L, ETAB, SIGC
+IF,STEQ, GT, YS, THEN

*SET,ESEC, ((2+YS/STEQ) - 1)*YM
*CFWRITE, MP,EX,MN , ESEC
*CFWRITE, MP, ALPX, MN, ALPHA



*CFWRITE, MP,NUXY,MN,0.499
*SET,MN, MN+1

*ENDIF

*ENDDO

*CFCLOS

*SET,MN,2

*CFOPEN, EXMOD

*D0,L,1,K

*GET, STEQ,ELEM, L,ETAB,SIGC
=IF,STEQ,GT,YS, THEN
*CFWRITE, MAT ,MN
*CFWRITE,EMODIF,L

*SET,MN, MN+1

*ENDIF

*ENDDO

*CFCLOS

FINISH

4 II - LI NEAKWTR AN ALY SIS

/PREPT
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RESUME

EX,1,YM

ALPX, 1,ALPHA
*USE,EXVAL
*USE, EXMOD
FINISH

/SOLU
SAVE
SOLVE

FINISH

/POST1

SET,1,1

ETABLE, SIGC,S,EQV
ETABLE,EIGC,EPTO,EQV
/output,stress2
PRETAB, SIGC,EIGC

/output

FINISH
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B.2 Macro for scaling stresses and strains to
obtain the relaxation locus

*DIM,DUM1, ARRAY, 1

«DIM,DUM2, ARRAY, 1
*=DIM,DUM3,ARRAY, 1
*=DIM,DUM4,ARRAY, 1

*DIM,DUMS, ARRAY, 1

*CFOPEN, RESULT

*D0,I,1,20 ! The number of uniform load steps
SET,I,1

ETABLE,SIGC,S,EQV
ETABLE,ELAS,EPEL, EQV

ETABLE,PLAS, EPPL,EQV
*GET,STEQ,ELEM, 1,ETAB,SIGC ! 1 corresponds to the local element
+GET ,ELEQ, ELEM, 1,ETAB,ELAS
*GET,PLEQ,ELEM, 1,ETAB,PLAS

DUM1(1) = I

DUM2(1) = 20*STEQ/I

DUM3(1) = (ELEQ/1.3)

DUM4(1) = (PLEQ/1.5)

DUMS(1) = 20+(DUM3(1) + DUM4(1))/I
*VWRITE,DUMS (1) ,DUM2(1)
(3%,E15.8,3X,E15.8)

*ENDDO

*CFCLOS

—
o
&



Appendix C
Strain Calculations in ANSYS

The total equivalent strain is the sum of elastic equivalent strain and the plastic

equivalent strain. In a general form. the equivalent strain is given by

Coqu =

e el s @ < @-a] (GAY

2(l+v,

The equivalent strain values obtained from ANSYS does not consider the Poisson’s
ratio factor. Therefore, elastic equivalent strain values obtained using EPEL.EQV
command should be divided by 1.3 in order to get the correct elastic equivalent strain.
Similarly, plastic equivalent strain values obtained using EPPL,EQV command (used
in non-linear analysis) should be divided by 1.5 in order to get the correct plastic
equivalent strain. Their sum gives the required total equivalent strain.

In the GLOSS analysis, the strain values obtained using EPEL.EQV command

has to corrected according to the elements Poisson’s ratio.
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