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Abstract 

Estimation of inelastic rtrains in ootched mmhanical eompaoeots and structures 

are nffersar? for low cycle fatigue evaluations. This has been s topic of considerable 

interest to prersure v-l deignem. 

The Generalized Local S t r w  Strain (GLOSS) merhad is a robus$ technique chat 

is based on two linear elastic finite element a n a l m .  and has been used lor evaluating 

inelastiestrains in preaure componenrs subjected to mechanical loadings. Thir thesis 

endeavors ro determine the inelastic strains of mmponeots and structures chat are 

subjeered to both mechanical as mil  as thermal loading. -4 two bar kinematic model 

is used to explain the fundamental aspects of modulus reduction merhod. Cnng the 

elastic-inelastic equivalence, a procedure to obtain rhe complete relaxarion locus h a  

been prorided. B d  on the relaxation locus. the GLOSS method b extended for 

combined mechanical and thermal loadlop. 

In this thesis, GLOSS method is applied to remral pr-re cornpaoenr eoofigu- 

rations of p rz t i cd  intemt. The strain mimates are then validaced by compsring 

them with inelastic h i r e  element results. 
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Chapter 1 

Introduction 

1.1 General Background 

Ensuring performance. rafev and durabiiiv are some of rhe key objectits m 

des~gning an? mmponenr. svhrle keeping cognizance of the economy of design and 

operational costs. A clear understandiog of the various modes of structural failure 

helps the design pmeea to he more rational and eeonamieal in the long term. \Vhile 

prototype and component testing are often nemssarp ro veriip the rntegrity of com- 

ponents. the rime and emt iovolved makes them 1 s  attractive to designers. \V!th 

the advent of high speed digital computers, various modes of failures can be studied. 

thereby speeding up the design proem. 

Failures due to excessive plastic deformation. fatigue, lraeture and creep are some 

of the common modes of failure. The process of designing components to avoid failure 

due to low-e)~ie fatigue aod the means of c-ng out such a design is the ropie of 

interest in this thesis. Fatigue is a proem which a- damage of a component 

rubjeeted to repeated loading. Primary fatigue analysis method. sre the st= life 

approach, the strain life approach and the fraeture mechanics approach. The streas 

life approach is widely wed i. deign applications where the stresses in the component 

are primarily within the elastic range of the material and the cycles to f d u e  am iong. 



Geometric diintinuities such as holes. 6Uecs and gmw- that are unavoidable 

in design c a w  stress to be locally elemted and are potential fatigue track ioitiatioo 

loearioos. Such notched componenrs are often subjected to loads causing local >veld- 

ing at the notch mot. It is mnvenient to separate the total fatigue life of notched 

members into tnn, portiom: firstly the crack initiation life. which is spent io nueleat- 

ing small cracks. and secondly the crack propagation life. which u spent ~n gosing 

there crack to final fracture. !\Tile the qelie plastic strain ar rhe notch root b 

the mntmliing factor during the early sager of fatigue life. nominal stress aod crack 

length are the mntmlling faetors during the later stages. 

Strain life concepts are used to estimate the fatigue life when notch root plasticit? 

is rhe eontmlling parameter. Equidcnr fatigue failure is arsumed ro occur io the 

material at the notch root and in the smooch specimen when both are subjected to 

identical s t r e s t ra in  &tories. 

Since closed brm solutions are oot e- to obrain for the inel-tie problem. nu- 

merical methods are often resorted to. Son-linear finite elemenc analysis. although it 

pmvides reasonable results. is quite onen elaborale. time consuming and expensive. 

The use of nonlinear elastc-plastic ar-strain relarronshlps makes the analysis more 

complex when compared to linear elastic aoal?sis. Furrher. the large amounc of our- 

put data has to be properly interpreted in order to get meaningful results fmm the 

analysis. Comquently, there is a need for r~mple methods to determine the inelastic 

behavior of components. 

1.2 Need for Robust Methods 

One of the more widely 4 appmximate method to determine the inelsnic strain 

is Xeuber'r rule 1231. lo this method nominal mesr and strain are related to the local 

counterparts. It q u i r s  the use of a siogle el& bite element analysir or a linear 



elastic analytical solution. This method, initially developed for torsional loadings. 

was then applied to plane stress eonfiyratioos. The strain estimated by Xcuber's 

rule found by >lowbray [22] to be reasonably accurace for plane stress e m .  The 

life estimates have been found to be wr). consemrive for rlruations other than plane 

stress. In particular, the effect of muhiaxiality is not properly considered. 

Keeping mgniraoee of the imporranee of inelactie strain assessment and the in- 

adequacy of the existing methods. this rheris endeavors to develop a generic robusz 

method based on tao linear elastic b i t e  element analysa for an inelastic evaluation 

of notched components and structures subjected to combined mechanical and thermal 

loadinp. 

In the context of this thesis. robustness implies the ability to provide acceptable 

w i t s  bared on lers than reliable input together with conceptual insight and economy 

of computational effort 1291. h b w t  methods are suitable for 

initial reoping and feasibility study 

screening of critical sitvatioos in Large ~ompley -tern. for further derailed 

aoalwis 

sanity" checks on results obtained by derailed inekric analysis 

approximate mimate d inelastic effect3 

Robust methods are especially appropriate for asseswenu in an operating plant 

environment whem detailed charactemation of material damage is dif6eult to obtaio. 

In such situations robust approximate methods would provide remaable -ent 

of the condition of equipment or +ems. 



1.3 Organization of the Thesis 

The need for robnst methods of inelastic strain estimation in notched components 

is addrerred in Chapter 1. The cmt and time eooatraints posed bv nonlinear finite 

element analysis. and the overly conservative Xeuber'r rule haw oeeeaitated robust 

approximate methods. The objeetiws and the organization of the thesis are alw, 

p-~ted in this chapter. 

Chaptar 2 diiusres the basic concepts in plasticity and fatigue. n incremental 

iterative algorithm for the numerical solution of elato-plastic problems is presented 

Existing approximate methods for the determination of notch root strains such as 

Seuber'r rule 1231 and Slolskl-Glinka method [20] are discussed. The extension of 

Xeuber's rule to acmunt for bending and non-linear nominal stress range using a 

limit load factor dewloped by Seeger and Heuler [28j is described. .\ discussion of 

the methods developed by t iohanand  Seeger [I31 and Glinkaet. al. [21] todetermine 

the multiaeal notch root elastc-plastic rtreses and strains is carried out. 

The mocepr of multiadal s tres reluatioo is introduced in Chapter 3. Llultia+ai 

relaxation and uniaual relaration are related through the constraint parameter b? 

Seshadri and Slikuleik PSI. It has been shown that the constraint parameter can 

be expressed as a function of principal st- and strain ratios for any location in a 

structure. .& a m-uenee of the drementroned ideas, GLOSS (Generalied L-1 

St- Strain) method was introduce4 by Seshadri [29] as a practical technique to 

determine the constraint parameter and local region inelastic strain for any general 

component. Io this method, a finite element analysis is carried out b' asruming 

that the component b linear elastic. The modulii of all the elements that are abwe 

yield are modi6ed in the ssond linear elastic fite element analysis in a systematic 

mamer in order to simulate the inelsstic behavior. To acmunt for pmper plastic 

zone size, Seshadri and Kihatil P4] developed the GLOSS method with Plartidty 

4 



Corntion. The method is developed based oa equilibrium considerations leading to 

better inelastic strain estimates. 

The basic mnceprs of modulus reduetioa method are elahrated in Chapter 1 by 

wing a two bar model for the purpose of illustration. It is shown rhat. in principle. 

the constraint parameter is independent of the amount of softening of the loeal bar 

elast~e modulus for the two bar model subjected to mmbined mechanical and thermal 

loadings. Analytical expressions show rhat the local bar strain predicted bp the 

inelanic anal* and modulus modification method are equal. 

Chapter 5 describes the p d u r e  for determining the mmplete relaxation locus 

using inelastic finite element analysis. It is s h m  rhat any inelastic dismhuriao can 

he obtained with an elastic analysis provided the modulus of elasticity and Poissoo's 

ratio of every element are known. Csing chis equivalence. the complete rela~arion 

ioeus can be determined fmm an inelastic finite element analysis. The local as well 

as remote relaation locus obtained from inelastic finite element analpsis 19 studied 

for the two bar model and for some general mechanical mmponenrr subjected to 

mechanical and thermal loadin@. .I modified modulus adjurrmeot technique for 

mmbined loadin@ n a h  presented. 

The p m p d  method for determining the inelastic rtraiar k applied to typical 

pressure component mniigvratians in Chapter 6. -4 plate with a hole, a Bridgman 

notch, a cylinder with a circumferential notch on the inside surface and an industrial 

*team turbine valve body are the specific components rhat are analyzed. The presrure 

components are subjected to mrchanical as well s thermal loadings. C~ciic effects 

due to pr-e and temperature resulting from unit start-up, operation and shut- 

doan, which can lead to possible ratchetting and low cycle fatigue are of desip 

interest. The valve body is analyzed for a range of start-up rates and the resulting 

maximum temperature aerence at a giwn critical seetion k determined. Using chir 



temperature dinributien, a st- anal>-is is performed in order to determine the 

manmum pasihle inelastic strain range. Results obtained from the GLOSS method 

with Plasticity Cornt ion are mmpared with rhme obtained fmm inelastic finire 

element anal- and Seuber's rule. 

The main mntrihutioos a1 the research work are presented in Chapter 7. A case 

is made here for the attraetirmeu of robust methods of design and anal?-is in the 

context of industrial applications. 

ASSYS 121 input files for performing linear es well as noo-!inear finite element 

ana?vnr are given in Appendix A. The GLOSS method with PlaticiN Cormtion 

and the pracem of inelastic st- relaxation hare been coded in the form of ADPL 

(ASSYS Design Parametric Language) maems within AXSYS. The macror listings 

are gibw in .lppen&m B. 



Chapter 2 

Literature Review 

2.1 Problem Formulation in Solid Mechanics 

Formulation of a bound- value problem in solid m ~ h a n i n  invol%w the deter- 

mination of the distribution of st- and strains in the interior of the bod? for a 

prescribed rractioo distribution over a pan of the boundap. and a prescribed dis- 

placement distribution overs diferent pan of rhe b o u n d m  For a body with volume 

V and surface area S rubjecred to body fo- f, in V. surface forces L on Sr, aod 

prescribed displacements u: on S, (Fig. 2.11. the equations of equ~iibrium are given 

(~l l~ + f, = O  in C- (r.1) 

Based on the small displmmeot rheov the strain-displacement or Linematic relations 

can be expresed as 

e , , = ~ ( Y , ~ + U , . . )   in^- ( 2 4  

Tractions are s p ~ s e d  an the d a c e  in the form of paint loads, distributed load and 

moments. In general, however, the equations ean be e x p m e d  as 



Figure 2.1: Body under traction fmm 



Finally. the st- and strains are related through eonstirutiw equations. which 

muld depend on the strain rate and temperarm. and can be micten as 

!\'bile rhe relationship between the nresl and strain is linear m rhe elartie range. 

it is oon-linear in rhe plasrie raoge. C l o d  form analqlcal solutions are difficuir to 

obrlun in the plastie range. which necesitares the use of numerical methods such as 

rhe finite element method. Theorerlcal aspects penatomg to elastic-plasric anal!%. 

finite element method and approximate methods in notched component analais are 

presented in chis chapter. 

2.2 Material Stress-Strain Curve 

The srres-srrain relation of a material is obrained from a uniaxial tensile rest. A 

r!pical srressrrain diagram for a number of metals and ai iqs  is shown In Fig. 1.2. 

The ponioo of rhe cume 0 A  shoning the relarion ber-n rhe stress and the scram. 

is linear. Stresl and stran are pmponronal rhough a eouranr called rhe modulus of 

elasrieiry which is emt i a l l y  a maretial propenp In rhe elastic range 

sr- and rtraios are related rhmugh Hooke's Law 

. the strains ace path independent 

there is complete rewrribility af srrenes oaurr during rhe unloading pro-. 

The paint A is identified as the l e l d  point which dematcates the l i a r  and the 

nonlinear m g e  of the behavior. Oo funher inereares i s  the applied load. the s c m  

strain nwe follows the path AB which is nonlinear. .As the deformation coorinues. 

the st- required also inere- indicating the resistance of the material to funher 

plastic deformation. The a- required to pmduce this fmher plmic deformation is 

9 
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usually referred to as the flow stress. Stresses and strains are no longer pmpartional. 

therefore. there is a need to characterize plastic behavior thmugh more appropriate 

constitutive equations. In the plasttc range 

. the strains are irrecoverable 

. the rtr- and a r a n r  are path and. rherefore. hisram dependem 

h!dmstatic state of a r e s  h a  no effect oa yielding 

the material is assumed to be incompressible (Poisson ratio = 0.5) 

. the rtrpsr aod strains are related thmugh -flow rules" 

. effect of strain rare is negligible 

if the material is stressed up to point B and then unloaded, the unloadmg path 

is considered to be linear. It follows the parh BD which is parallel to the line OA. 

The net srrain is comprired of two parts. The portion OD is rhe irrmverable plastic 

srrain and the portion DE is the recoverable elastic strain. If the specimens reloaded 

again. the unloading path DB ir more or lea rerraeed. Plasric flow d o e  noc occur 

until the point B is reached after which planic srraio is induced. Thereafter. the rest 

of the rrress-strain curve BC is t r d .  

The material st-strain em-  can be idealired (Fig. 2.3) In number of wavs. 

Elastic Perfectly Plastic Model 

The material is a~rumed to follow the Hooke's Law until the yield point is 

maehed &er which the strain is m e d  to increase without any bound. The 

model assumes that the structure made of this material cannot take any more 

load, once the strep. reaches the yield. This mcdel is widely wed as it is simple 

to w ill praet1ee. 

11 
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. Rigid Perfectly Plastic Model 

W e n  elastic strains are amall m m p d  la plastic stratno, this model a apprw 

priatr. Defomatioos are not Induced until the s t r e s s  reach the yield be)ond 

which the strains are unbounded. T h i  model is particularly ureful in determin- 

ing limit I d  of structures and in metal forming operations. 

. Elmtic Linear Strain Hardening Model 

This model is an apprdmation for stres strain curves that rise after y~eiding 

It is bilinear m the seme that the strain hardening ponioo af the model is aLFo 

linear but aith a dlKerent slope. 

2.3 Multiaxial State of Stress 

The state d s t r w  in any general mechanical component is usually multisxisl. 

In order to determroe the elastic limit due to a given three dimens~onai st- state. 

a !<eid criterion is required. For imtmpie materials, it is required that the failure 

criterion be independent of the choice d the coordinate Vtem. The yield function 

(4) would therefore depend an the st- invariants 1191. 

where the st- invariants h,12,h are 

It has beep s h m  experimentally by Bridgman and others 112, 191 thac moderate 

hydrostatic stre59 state (either m m p m i w  or tensile), does not a6e-x the yield. The 

13 



stress tensor can be decomposed into a hydrostatic stress tensor and a devxatorie 

st- tensor. The hydrostatic st- tensor is a tensor rhme elements are a,&,. 

rhere om is the mean st-. i.e.. 

P v  = om6,, = (a, +02 +o,) = !I ,  C2.i) 

8 ,  is the tironmker Delta and is equal to 1 if t = j and 0 ~f r P 1. The de%iiatoric 

st- tensor (o,,) is defined by subtracting the hydrostatic state of rtreu fmm the 

actual sa te  of st- (G,). Slathematieally, deviatoric st- tensor b giwn by 

s,, = a,, - :a11$. (2.8) 

Since the hydmstatic strases does not affect *elding, the yield criterioo can then be 

expressed in terms of the in-ants of the deviatoric stress tensor as 

where J L ,  J2. J3 are related to the m>ariantr h.12 and Is of the st- tensor o,, 

rhmugh the following relations. 

The two of the most mmmonlyused yield miterion are the w o  41ires yield criterion 

and the Trwa yield criterion. 

In an elastic material, the applied st- is stared as  internal strain energy. A 

portion of the energy is woeiated with a change in wlume and the remaining is 

-dated with dsmning the shape of the material. Hydrostatic st- is arrociated 

withdilationor volume change, and does not afieet the yielding. Sice the distortional 

14 



energy is pmpartional to the st- invariant A. xnn SLiser propod that the )ielding 

occurs when the deriatorie rr- reasor. 4 e x d  a characterisrie ralue of the 

material. k.  The d u e  of k is found br. amuning that peldxng begus ~rhen rhe 

distortional enere due to any stress state equals the distorrional enerp ar yeld In 

rimple tension. Slarhematieallc !idding occurs when 

= 4 
43. 

,?.ill 

In orher words. ?elding is said to occur when rhe quaorip- called s rhe equ~xalenr 

sr- doer nor exceed the yield stress in a uniaxial remile ten. The equixdalent rrreu 

cc can he expnned as 

I?.l?l 

The Trerea yield drerion wumes that ><elding occurs when rhe ma-- shear 

stress for a multiaxial srrm state reacher rhe madmum shear rtreu omuning under 

simple tension. For a given multiaxial mess rrare. if ol > 4 > 03. the mbrtimum 

rhear st- is 

0,  - e3 =ul = -. 11.131 

The madmum shear strerr in a uniaxial tensile r s r .  (o? = 03 = 0 )  at ~~eldling b 2. 
which implies char pelding begins when 

When plotted on a three dimenrional srreu space. the Tma's p l d  surface is s 

hewgonal pnsm inscribed in m n  Y i i . r  eylidncal surface 

2.4 Plastic Stress-Strain Relationships 

The Bow rule is the nffeaar)i hinematic sumprron panulared for plastic Bow. Ir 

pmvides the ratio or the mlativc maepituder of the components of the p h r c  strain 

increment tensor (dc,). The Bow rule is dewloped for the unirudal case ss foU0~1. 
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The h:&cstatie or the mean stres  for the uniaxial case (al = o i  .a? = 0. = 01, 

is given b. 
u, 0 2  +U$ u, a",=-=- 

3 3' (2.16) 

The deriatotie str- are obtained as 

Further. for volume constancy. the rum of planie rrraio increments must be zero. 

Therefore 

L , + d r 2 r d 6 ,  =O. (2.18) 

S?mmetv m the uniural cane leads to dr2 = dr, or m orher mrds de, = -Yde? = 

-?La,  rrhieh can he mittem as 

4 = 4 = - 2  
drr d.3 

12.19) 

and a compariwo with Eq. 2.17 shorn that 

r*, = 5 = 5 = constanc = dA (for a g e n d  ease). (2.20) 
< 4 4  

The above quation represents the flow rules postulated for a general ease hy Prandtl 

and Reus [19]. It essentially nates that the ratio of current rneremental plastic 

strain increments to the m o t  dwiatotic st- is a constant. The Eq. 2.20 eao 

he manipulated to giw the following equatiom. 

dr, = $[-,-f (o*+03,] 

16 



The abow equation I m b  similar to the generalied H0oke.n law where $ s replaced 

by $ and u is replaced by as a consequence of ineompresibility. The incremental 

efeetive strain is given by 

The coeficient $ is so eh-n that &is equal to drt under uniaxial tesian. 

Due to the nonlinear nature of the platic constitutive relations, analytical r* 

iutions d che boundary-value problems are difficult to obtain. Evict elastic-plane 

solutions are available for only few stmple problem. In general, a complete load 

history anal+ has to be performed in order to get the solution. Due to the rapid 

advancement of powerful computers and modern numerical techniques. ineremenral 

inelsstie analyss of rtruetural problems is carried out by the powerful finite element 

method. 

2.5 Finite Element Formulation 

The general governing equation of the finite element method for a static analy- 

sis is derived kom the principle of virtual mrk which state. that i f  a deformable 

body in equilibrium is subjected to arbirrary virtual displacements asociated with a 

compatible deformation d the body, the virtual nork of external force of the body 

is equal to the virtual strain energy of the imernal st-". The principle can be 

expresed as 

lo* ,Sr ,  dV = LT.SU. U + ~.6u.dv (2.23) 



where 6 4  and bc,> are the virtual displacement and virtual strain ineremenrs rspee- 

t idy .  and form a mmpatabiie set of defomatioos. T, and q, are surface traction 

and body force respfftiwly. For the dimretired finite element mesh configuration. 

Eq. 2.23 rs written in matnx brm ar 

1. (6<}' { a )  dY = / ( 6 ~ ) ~  {T]  d.4 + /. ( 6 ~ ) '  { q )  dC. (2.24) 

where the vector. for displacement { u ] .  strain { r )  and r t rw {o) are giwn by 

For a small deformation anal*. 

(6e) = [B! ( b t )  (4.26) 

where (O-) i. the diplacemem -tor of nodal points that i related ro rhe diimbuted 

displaeemeot { u )  by 

I.) = 1-Y (64 (2  27) 

in which [.V] b the rhape fuocrioo matrb. The strain displacement mar* [BI and 

the rhape function matrix are related through 

where [L]  is the ditlerential operator mafri~. Sub6tituting Eqr. 2.26 and 2.27 in 

Eq. 2.24, the governing equation for a mall deformation analpis in msttix form b 

obtained sr 

/,[BIT ( a )  dV = [iVIT {T) d.4 + /Y [NIT { q )  dV 12.29) 

or 

/ , [ B I T { a )  d v  = (R) 12.301 
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where ( R }  is the equikdent external force acting on the oadal points. 

{ R }  = 1, [.vlr (T} d l  + 1. [.\lr { q }  dV. (2.311 

For a linear elastic st-nrain relationship. the governing equation is 

where [K] is the ni&s matrix of the structure 

in which [C') i the elastic mnstitutlve marru. In the elanie-plastic anal?sis. kause  

of the "on-linear relationship between stress and strzim. the gowming Eq. 223 is a 

oon-linear equation of strains and therefore. a "on-linear funcrion of nodal displace- 

ments. Iterative merhods are used to miw far the diiplaeemeots for a given set of 

external loads. The commonly used numerical algorithms are : 

1. the tangenrid nlffness merhad 

2. the tnltial aiflnerr method 

2.5.1 The Tangential Stiffness Method 

If it is assumed that the stresses, strains and diiiaeementr at any instant to he 

represented by u,, ra and uo, then the global stifties matrix KO companding to this 

state can he found. KO can he musidered as the local slope of the force-displacement 

relationship. If the external loads am increased by AFo and using the stiffness ma- 

trix KO, the displacements rly, rtr- 400 and strains i\r. eonespooding to th= 

incremental load can he found. Xow, the total displacemenla, st- and strains are 

given by ua + Auo, uo + AUO, Q + A*. If the solution has to he improved , another 

tangentid sti6nes matrix KI ean he calculated from the shove i m p r o d  d t s .  For 
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all the elemens in which the yield condition is violated (m(ao+Iao) > 0). the stresses 

haw to be reduced in order ra ratis@ the yield condition and for plastic deformation 

co occur. The stress increment Id, conspanding ra the strain ineremenr I s  can 

be obtained from the elasto-plastic constitutive equation 

where the mammy D is calculated on the basis of the srresses 00 +Ice. The residual 

stress which has to be removed from the element in order tosarisf?. rherieldeoodition 

is obcained from the relation 

The equivalent nodal forces an the elements corresponding to this s t rm stare can be 

calculated from Eq. 2.30 ap 

The residual (unbalanced external nodal) forces can oow be applied as the oerr load 

increment and the procedure is repeated unttl desired convergence oo the displacement 

is achieved. Thh iterarive praeedure s also called the seneralied ?je\vton-Raphron 

method. 

2.5.2 The Initial Stiffness Method 

In the t-ntialstSnes method, a new macny has to be computed every time the 

laad is incremented. Thir qu i res  more storage space and an increase in computation 

time. In the initial n&es method, the n i k e ~ s  m a v h  mmputed from the h t  

iteration is used in subsequent load inuemenb. The solution of the equation d F  = 

Kdu hap to be p h r m e d  only on the &st iteration. beeawe the subsequent vllutions 

me& qu i res  the proportional reduction of the solution obtained kom the h t  load 

20 



F i i  2.4: h p t i a l  St*- Method 
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nep. It can he seen that in the initial stiffness method, the stiffnea marrh has to 

be huod only once in the iteration process and is definitely ao advantage especially 

when the model contains large number of node.. Although, this merhod reduces the 

mmputlng time to a lair extent. the rate of mnvcrgence is b-ry slow. The most 

economical method would obviously be the combination of the abow tw, algorirhmr. 

where the stiffness matrix is changed only at  selected load steps during the iterarnon 

pr0cOJS. 

2.6 Analysis of Notched Components 

Sotched engineering components are often subjected to loads that cause localired 

yielding. The resulting plastic strains are of interest in determining the fatigue life of 

components using the strain-bsred approach. 

In the elmtie range. the notch root stress and the nominal r t r e  are related b? a 

geometric constant 4, called ar the a- concentration factor. 

In the ease of plane stress problems such as thin sheets in tendon, the st-s at the 

notch root an be considered to be uniadal. Therefore, the expression for rrraio is 

which is valid only in the rlastic range. Yielding occurs when the st- at the notch 

root (Fig. 2.6) reaches yield and occurs at the load 

p - k 9 L m "  "-  4 (2.39) 

and the load eo-poodlng to full plastic yielding b given by 



F i  2.5: Initial St&- Muhod 
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Only few appmximate solutions are available for determining the plarcie strains 

which are important for determining the fatigue life of cornpaneom. They are. 

1. Neuber'~ rule 

2. Mriacions of Xeuber's rule pmpared by Secger and Heuier 

3. strain energy densicy methd 

2.7 Neuber's Rule 

Neuber's rule [23] states that during plastic defarmacion. che geometric mean of 

stress and strain coocentration factors remains invariant and is equal to che elastic 

r tras eoneeotrarion factor. 

If a. and r.  are the notch srr- and strains. and S and e are the nominal 

rtrewr and strains. then the plastic st- and strain concentrarion factors are 

and Ne'euber'r mle is even by 

k#k* = k:. (Y.IY) 

If net section *elding does nor occur, then the nominal strain can he written as 

e = $. Using Eq. 2.41 and 2.42. we have 

(4SIZ 
C"C = - E ' 

(2.43) 

The a b m  equation can he solved in eonjunetioo with the material st- strain c u m  

inorder ta obtain the notch st- and strains. If an elastic-perfectly plastic macerial 

is maridered, the notch st- can be determined as 

(2.44) 





where 0" is the )ield st- of rhe material. 

The above rule d m  not mount for general yielding effects. Further. general 

)ielding may not occur when S equals a" as in the ease of bending. In order to 

account for the oon-linear net rcerion behavior. Seeger and Heuier pa!. prop& a 

modified version of Seuher's Rule ahrch can a h  he used for combined Loading cases. 

The relation is expressd as 

r e  = GS'r' (2.45) 

where k, Is the plastic limit load factor and is gi~-n by 

- S at onset of general )idding - S, - - 
- S at k t  notch pelding 3 

where kl and S are defined in masissent manner. either met or gram seerion. S, U 

a particular \due of S corresponding ro fully plastic behavior for an elasnc-perfectly 

plastic material having the same yield strength as the macenal under eoasiderac~oo. 

If the material st- ntraio c u n e  is arrumed to be elastie-perfectly plastic. then kp 

equals 4. 

2.8 Extension to Plane Strain Problems 

In the case of ~-5qmmettie sections such at shafts and notched eyiinders. when 

the notch radius p b small compared wrh the ocher dimeas~ons of the shafts. the 

s~tuation at the vicinity of the notch appmacher the plane main eoodirian. Under 

this mndition, o, is zero due to rhe free surface (Fig. 1.6). Since q = 0 due to the 

plane strain aaumption, a rrtuation of plane scress e s b u  in the 1-3 plane. and the 

st- in the 2 and 3 dimtion are related by 



Thequanriw I dues to the elastic Poisatis ratio if there are no plwtte strains and 

incre- to 0.5 when the plasrlc strains are large [lo]. Using the Eq. 2.47 and 118. 

rhe unia~lal stresstrain c u m  can he modified for the plane strain coodicioo w 

This st-strain curve can he used in mnjunetion mth Xeuber'~ mle to obtain the 

strains at  the notch mot. 

2.9 Molski-GLinka Method 

MoMobki and Giinb 1201 proposed a method to calculate rhe notch root stresses and 

strains h a d  on strain energy considerai~oor. In the elastic regime. the strain energ). 

per unit wlume due to the local rtresr misgiven by 

and the elastic strain energv per unit volume due to the nomind remore st- S 1% 

The st- concentration factor 4 in the elastic e o n  cao be obtained sr 

When the st- at the notch mot inm- beyond the yield, plastic deformation 

a- It is assumed that the energy ratio does not change due the small plartlc 
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region. n e  relatiwl! high xvlume of rhe elanic marenal surroundmg rhe imall 

planic zone mntrok rhe amount of nrain en- absorbed by rhe plarrie zone. Thur. 

rbe ratio of straio enerc is armmed mosranr expn during rhe plastic deformarlon. 

Hon~>?r. the material st-train relatiomhip is used co determine rhe m a n  eners- 

absorbed b? the notch mot. If a Ramberg-&:ood relarion of the form 

e uzed. where n is the nrain hardening exponent and K is rhe nrengh roeffinenr. 

then. Eq. 2.?2 can be modi6ed to ex* 

-=--- 3.541 

Eqs. 1.53 and 1.54 can be lrred rimultaneausl?- to ahrain the notch ioor icr- ? and 

rrran r rrspeeriwt 

The e n e r ~ -  iinterprerarion of Seuber's Rule and che rirain energ' densir?. merhod 

is ~ h o a n  in Fig. 2.7. OABC e rhe rirain ener~ -  due co rhe nornurai stresses. OADE 

is rhe strain e n e w  absorbed b :he .\lG mechod and OhFG e the rrrmn e n e r ~ -  

absorbed by Seuber's rule. 

2.10 Multiaxial Elastc-Plastic Notch Root 
StressStrains 

H o h a n  and j13) pmpored a merhad to obtain complete ~n fomr ion  on rhe 

mulriadd elsnic-plastic rr- and strain aars  ar the notch mot. Rocenrlc G b k a  

cr al. 211 haw mended rhe energ). denssty method re multk.ial ares rrares. The 

mmplere solution in both the methods essentially consins of three new. 

In the the method propored hy Hotfman and S-. Xeubeir rule is used in irr 

equivalent form to relate the egui%alenc n- and strains. The p u d o  elasric 
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quantities can be mitten in the form 

K.?.S 
Gn = - 

O ~ E  
11.55) 

where Kc- rs rhe equir;tleot r t r e s  eonccotratbn factor In order ro obtain the 

strain in rhe oon-linear nominal st- range. the plastic limit load factor has 

to be knonn. 

In the enere density method. the mrch r w t  strain energies are related to the 

nominal srrao eorwes. For an arbitrary mulriaxial srr- sate an rhe principal 

axe.  the strain eoerc reiation leads to 

. In both the methods. Heneky's rule is ured ro relate rhe st-es and strains in 

che plastic reglme vhleh assumes rhe plasrienraio. to be a funerlon ofde\~arorie 

SfleseS. 

6 = 3G4, 1 = 1.2.3. 
2 oe 

Il.57) 

It is assumed that the deviararie st- mmponenrr (at the norch rip) do nor 

change much (at the noreh tip) and chat no unloading ornun. 

. One of rhe st-e oormal to the notch surface would he zero due to rhe free 

surface. Therefore, it is necessary ro make one assnmpcion in order m ~ 1 % -  for 

all the stress aod srrain mmponenta. 

H o h a n  and Seeger haw aMLrned in the elastic-plastic region a mnsrant rarm 

of C? equal to the ratio in the elastic r e o n .  

In the energy density method. it is srrumed that the ratio of the largest notch 

tip prinnpd strain energy to the notch tip total strain energy is equd to the 



PO-ondingratiowhich is calculated for a geometrically identical linear elastic 

The above set d equations can be solved for determining the elastic-plastic st- 

and strains ar the notch root. 

2.11 Fatigue 

.\ecumulation of damage due to qetie loading and subsequent failure is called 

fatigue. The tna ppa of fatigue failures produced by different physical mechanisms 

are : 

High Cycle fatigue 

Low Cycle Fatigue 

Failures associated with lower loads and long lives or high number of cycles ra 

produce fairgue failure is commonly referred to as high cycle fatigue. In rhxr case. 

strains cycle are mostly confined to the elastic range. Failures associated with high 

loads aod short lives or low number of ercles ro produce fatigue failure is referred to 

as low cycle fatigue. Plastic defomarion may occur in localized regions. such as st- 

raisers, where facigue cracks m likely to begin. Low cycle fatigue is sssociated ai th 

qele liws up to 10' cycles and high q r l e  fatigue for liven seater than 10' cycles. 

The s t m r a i n  iesponse of mmt materials change significantly with cyclic strains 

initially, but the hynererb loop tends to rabilizeso that the strear amplitude remains 

cowant in strain control over the remaining portion of the fatigue 18. Hperesis 

loops from near half the fatigue life are mnwntionally used to rep-t the approxi- 

mately stable behavior. A line joining the origin and the tip of the loop is the cyclic 



st-~traim c u m  (Fig. 2.8) which is the relationship betwen a r e s  and srraio for 

cyclic loading. 

Since plastic strains are the cootmlling variable in the low q r l e  fatigue regime. 

Slason and Coffin [6] p m p d  an empirical relation 

where 

$ = plarrie strain amplitude 

r )  = fatigue ductility meffideot 

2,V, = total rewnais to failure 

e = fatigue duerlity exponent. 

The quantities t; and e are material constants. 

The strain bared approach can also be applied where there b little p l ~ r i e ~ t ?  at 

long lives, making it as a eomprehemir* one chat can be ued in place of strers based 

approach. .\lorrow et ai. 161 used toral strain amplitude in place of plastic strain 

amplitude. 
1 6  d 

= $ (2.q)' + d, (2.Vf)' (2.60) 

where the material constants band c are the slope. of elanic and plastic curres and 

the constants % and 8, am one revenal intempts ( 2& = 1) of e l s i c  and pls t ic  

e m  rapeetively. 

A tensile mean n- a9s found to give shorter fatigue liws and mmprerrive 

mean stresp, longer fatigue lives than s zero mean st-. Morrow modified Eq. 2.60 

to account br the noazero mean nres effects and prop& the foUowing relation 

Rr = 4 (I - ) 2 )  +dl (l- ) 2 .  (2.61) 
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In the above equation. the materid eonstants dl , / , ,c  and b can be obtained from 

literature [41. The strain amplitude AE. can be determined from rnelastie fio~re eC 

ement analysis. Yeuber's rule or the GLOSS method. later dernbed in chis thesis. 

which gives p o d  estimace of inelastic strain lrom only t ~ r o  linear elasrlc finlrc element 

analysis. 



Chapter 3 

The GLOSS Method 

3.1 Uniaxial and Multiaxial Relaxation 

Uniaxial stress rela~atioo data are obtained by subjecting a uniaxial member to 

a &xed strailn and measuring the reduction in the initial s t rm as a function of rime. 

The situation wherein the imial strain is held fued is refcrd co as deformarion 

controlled. Since the strain a held eomant. the stresstrain response tor such a case 

is depicted by the line .lB (Fig. 3.1). On che ocher hand if an axial load is applied 

to the uniaxial member. internal str- are set up to balance the external load that 

d o e  oat change wirh time. Such a reponse a termed as load mnrralled and on rhe 

stresstrain plot, the response is depicted b!, the line .kc. Ln general. howwr, rhe 

response is neither load eontmlled nor deformation controlld, and this miued-mode 

response is termed as follow-up and is depicted by rhe Line ID 

Store ohen than not st- in a giwn mechanical component are multkial. On 

an intuitive his,  Seohadri and Mikuleik [36] recognized that the effect dmultiaxiality 

is to speed up or slow d m  the uniadal relaxation process. Consequently. uniadal 

and multiaxial relaxation can be related as T,~, = =and T\ IS designated a. the 

constraint parameter by Seshadri and Mikulcik. The constraint parameter eaentially 

characterizes the intersetion between the local region and the remainder region. If 

the Lad plastic zone is wry mall then the predominantly elastic remainder region 
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comrols the local region response leading to a deformatiom-mnrmled behavior of 

the local element. !hen the planic moe spreads acrm the entire rrms sectroo. 

the structure or compooent b e o m s  statically determinate leading ro load-eonrrol 

behavior. !%hen the plastic zone is in betwen. the local element will exhibit follow- 

up behavior. 

For a uniaxial member subjected to a k e d  strain. the sum of elastic. plasrlc and 

creep strain rate component* at any time can be expressed as 

s ( t )  =&, I t )  - & ( t ) + i L T ( t )  13-11 

In rhe above equarion. the elastic strain rate hi. ,  = (i) E). the plastic strain 

rate is quai ro zem. the creep strain rate is 1, = Bu" md rbe total strain is. 1, = 0. 

Eq. 3.1 can rherefore be mitten as 

~ + B E ~ = O .  
dt (3.2) 

The raluttan for the above equatlon can be emreJsed as 

u( t )= [ -$+BE(n - l ) t ] * .  13.3) 

Since multia..al r e h ~ i o n  and unisxial relaxation are related by the constrant pa- 

rameter, r~,,,,, = r,d, Eq. 3.2 rimply gee modified as 

+7\fle0: = o  
d r  (3.4) 

and the solution can be mitten as 

(3.5) 

Therefore, when X is know, the scms relaxation for rnultiaxial comtraints can be 

determined using the above expmsion. .b well, when X = 1  the situation hemmer s 

u n i d  case of deformation controlled. When X = 0, the a- do not relax as it 

corresponds to a load controlled situation. 
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3.2 Determination of Multiaxial Constraint 
Parameter 

Kiihacil and Sshadri 1161 have developed a generalized relation for the d e t e n -  

nation of I mvohng the prineipalotreaand strain ratios. Fora structure undergoiog 

creep with a uniaxial ereep relationship of the form 2, = o (a. r ) ,  the rrrsr  r e l a ~ r r o n  

for a multiadal e s e  is giwn by 

% + ~ ( ~ ) U E = O  dr (3 6 )  

where 

I = f ( a t . o z . a , , 3 t . & . h i  
g(*, .a2.a31 

(3 7) 

and f and g are given by 

and & (7 )  = A. The above equation for I is exprersed in terms of the s t m  
(./ae) a, 

ratios and the time-dependent strain rate. As a fist  approximation, the Stress racim 

can be maridered to be mustant, which is generdl? valld duriog the early part of the 

relaxation cycle where moat of the creepdamage in preoure components is likely to 

occur. The expression can be then specialized lor cam dimensional constraints where 

the total strains are held &ed in two directions, and three dimensional constraints 

where the total strains are held B e d  in all the directions. 

The determination of for a general mecbaied mmpanent eonfiguration from 

the a b m  expresions require the knowledge of principal strers and strain ratios. 
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The GLOSS (Generalired Local St- Strain) aoalyir is a mare d i i t  method for 

determining the mmraint parameter on the basis of rwo linearelarric fintre element 

anal?res. The method can be applied to an?- component configurarioo of praerical 

relevance. 

3.3 The GLOSS Method 

The mmponent under mmiderarion is dividd into local and remainder regiow. 

The local region experiences inelartic effects and is the region of interen tmm the 

design standpoint. The GLOSS theor). relater the multiadal rrrps distribution m 

the local region to the uniaxial redistribution pmcm. The loeal region quaoriries are 

derignated bv superscript '0'. while the remainder region quaoriries are designaced 

bv superscript 'r'. The multiaial rriersn and strains are idealized as uunisxial case 

and are shown in the Fig. 3 1. The strain distribution can be expressed ar 

where 1% the eoonraiut parameter which characterizes rhe inremtion between the 

local and the remainder regioos. Since the total local strain a, is the rum of elarm. 

plastic and creep strains. and given that the plasric srrains do nor mrh rime. 

i. - 0. Therefore 

e, = id  + ic. (3.10) 

Combining Eqs. 3.9 and 3.10 

A-1  
(3.11) 

Since ia = -?-%, the relaxation modulus E, can be dehed as 
E. dr 



Local 
Remainder 
region 

F i i  3.2: One dimensional relaxation model 



Yormalizing the relaxation 

expressed m r e m  of X as 

modulus such that E, = g. the a b o \ ~  equarton can be 

i = L  
E, - 1. 

(3.13) 

Once the relaxation modulus E, is kknm. the constraint parameter can be deter- 

mined. 

3.4 Relaxation Modulus, E, 

The GLOSS diagram (Fig. 3.3) is a ploc of nonnalhed equi>aienr rrresr versus the 

o o d i z e d  total equivalent scrain char is generated on the basis of two linear elastic 

finite element analysis. h first finite element analpk is earried out asruming the 

material behavior to be complerely linear elastic. The equivalent sr- and a a i n  of 

the highm stressed element is identrfied as the local region and the quantxtier are 

denoted as o,, and r.,. The elastic moduli of all the elements abaw mominal yield 

are idenrified and modified a m d i n g  ro the expmrion 

where a. is the m n  4Iise equivalenr st- of rhe a h  element. 

.I second linear elastic &ire element analyds is carried out oetc after malilng the 

above modification. The mess and strain of the local element is determined as 0.2 

and E.Z. On the baris of the mo linear elastic Snire element analysis. the GLOSS 

diagram can be mnsrmcted. 

OAC is the elstie perfectly plastic stress strain e l w e  and OD is the elasric line. 

The pseudo elastic point D(a.,, 4,). af the local element is located on this elastic line. 

Toe st- and main of the local element (a*z,ee) determined from the semnd linear 

elastic b i t e  element is represented by point E. The slope of the l i e  OE is called as 



FOUOW-UP 
RESWNSE 

O e. NORMALIZED EFFECTIVE TOTAL STRAIN 

A m  3.3: GLOSS Diagram 



the seeant modulus and that of the DE is the relaxation modulus. The rela~atioo 

moduius is given bv 
E, = 2 % ! . z z L  

Ic-2 - cct)Eo 

from srhieh I can be determined. It war ~ h m  earlier that rhe eomtranr paramecer 

I a- a function of principal stress and srrain ratios which can >- with rime. 

Consequentlx E, is a h  s function of principal str- and strains which xarr= wtih 

time. It war also pointed our that the principal rtresser and strains were reasonablr 

eonstanr during rbe early panion of relaxation and. as a 6m apprdmarioo. I can 

be treated as a mnsrant during rhis initial pan of relaxation. for small ro moderate 

amounts of follow-up. the constraint parameter and the relayation modulus do nor 

r a p  wirh rime rmpe t ive  of whether the inelastic respore of the rrmerure e due to 

steady-state creep or rime independdenr plasricic).. GLOSS analysis can therefore be 

used to determine the inelasric &rs due to pkzicity as well as creep. Thus the line 

DE can be extended to interser the matcnal nrerr strain cum.  The laeal re$m 

inelastic strain can therefore be determined. 

The angle 8 is the measure of the degree of m u h i d r y  and follow-up present 

in the local element. \Vhen 0 equal 0 and the rrr- relax wirh rrrains rem-g 

constant. pure deformation-morroi acrion is raid ro occur. \%'hen 8 equals 90" load 

control action o c m .  For c- where there is ri&eant amounr of follow-up one 

more analysis can he performed in order ro ger an improwd stunare of inehric 

strain. 

3.5 GLOSS with Plasticity Correction 

In the case of notehed mmKgwatioos, the nominal p b i e  zone established from 

the 6mt linear elastic d p i s  is smaller than the m u d  planic zone. From Fig. 3.4, 

it cao be seen that the plstic zone under contour rt is the nominal plastic zone 
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whereas the region under mnmur r2 is the actual plastic zone. The elemeou rrith 

the region r. meed to be modified in order to obtain good estimate of inelastic strain. 

.I method was prop& by Seshadri and Kirhatil [Y] to establish a more rralisrie 

plastic rone size in a manner similar m Irwin's crack rip plastic rone comerion in 

fracture mxhanies. 

From Fig. 3.4. ir can he seen char the mea force is due to the area 51. With 

respect to the finite element discretization, the excess force can be compared as 

where .V IS the roral number of elemenrr under the region S,. .Ar is the area of the 

!?id element mmidered and o. is the equi%alent strew of the element determined 

from the E s r  linear elastic analysis. This excess f m e  has to be accounted for in order 

to establish rhe exact plasrie zone I&. This can be amomplished by the 1o~erin.g the 

kield rcress to the dalue d,. ro chat the ex- force cao be accounted for by equarlng 

Thus. the madihed +Id can he found as 

The moGed  secant modulus is o m  given by 

~=(?)&=k:-l]&. (3.19) 

The st- distribution adjacent to the notch obtained from the &st and the second 

linear &tie finite element analpis using the abow modi6mtion is shorn in Fig. 3.4. 

The arm under the - I is dm by 



F i i  3.4: S p s e  at the a h d  of n o d  tip 



The area under the curve I1 is given by 

SJ = Ss + $4 + Sr + Ss. (3.21) 

Since both r t res  distributions are statically admissible. both areas are equal implying 

that 

S. = Sj (3.22) 

S,+Sz=S3+S4. 13.23) 

By the modified wrfrening pmces. described by the Eq. 3.19 

This establishes the nominal yield zone denoted by rhe lroe oh. Therefore. from 

Eq. 3.23. SS + S, = 0 implying that the actual yield zone b denoted by the line obc. 

In actual components curves I and I1 do not internet exactly at point b because 

of varying amounts of foiiow-up. The strain estimates obtained by the above method 

have found be better chan the er t imte obtained by che GLOSS method explained m 

the previous section. 



Chapter 4 

Multibar Models 

4.1 Two-Bar Model 

in this chapter. rhe GLOSS method is explained using a two-bar model (Fig. 4.1). 

The r-bar r)rtem is rubjceted ro combined mechanical and thermal loadings. 

The bar rrrerre and straior are determined by iowking the equilibrium. nrm- 

displacement and stresssfrain relacionships as  follow^: 

Equilibrium Equation : 

01.4s + 0 4 2  = P . Strain-Displacement Equation : 

et,=e,c7e,o=L 
L, 
b 

< R = ~ . + ~ P I = -  L? 

Str-Strain Relationship : 

For the tm bar model the thermal strains are 



Figore 4.1: -Bar Modd 



On the basis of Erp. 4.2.4.3 and 14. the exprenioos for the total component strains 

can be obtained as 

e,, = 5 +a,lT, 
El 

r,, = '+az-\T2. 
E? 

(d5l 

Comparibllity of deformations requires that 8, = C = 6 Therefore 

Combining Eqr. 1.1. 4.2 and 16. the bar stresses can be obtained as 

If the material and geometric parameters are so chosen. such that 0, is greater rhan 

a,. then bar 1 is cooridered as the local bar. The relaxation of bar 1 can be studied 

by softening the modulus oielartieity of bar 1. The rela=rion of bar 1 13 srudted by 

setting 6 =:,El .  Eqs. 4.1 - 4.6 are used to  solw far the srreaes. \nth r,. nor bang 

equal to 5. The streaer for the relaxed rvstem are given by 
YE! 

r;,  = 5 +a,T,. (4.10) 
-I& 

The relaxation modulus E is aven by 



Substituting Eps. 1 7 a n d  4.9 into4.11. and w i n g  our the neeessay rimplifieatioos. 

the follakng exp-ion can be obtained 

-5-  _hE,,. 
' E .4tEcL2 

(-1 L1) 

It can be seen that when * -+ x. E, i r. signifying deformation eonrml. \r.hile 
.A, 

6 + 0 when 2 -+ 0 ~ignifyiog load coocml. All other 6noe values of A represent 
-41 .4? 

various amounts of follov-up. 

The constraint parameter can be obtained using Eq. 3.13 as 

x = A .  
L, + L, 

(4.13) 

It can be seen that she constraint parameter is independent of 7.  rhe amount of 

softening of the local system elastic modulus. This is atrributed to the faer char the 

remainder syrrem (bar 2) drives the local -ern quite independenrly of the k a l  

system marerial behavior. 

4.2 Analytical Expression for Local Bar Inelastic 
Strains 

Fig. 4.2 rh- the GLOSS diagram for the rwo-bar model. The GLOSS plot is 

a normalized plot of local bar totd a d d  srres and strain. Point .& is the local bar 

streas and rrrain corresponding to the first linear elastitic analysis. When the local bar 

is rohened, the local bar stress relaxer and is denoted by the point B. .Asuming the 

relaxation locus M be linear, the local bar inelsrtic strain is predicted by the point C 



Fmm similar triangles AD0 and AEC. the local inclartic strain ecy is given by 

- 4 1  - 41 
,g - 3 (0, - 0 ~ 1  (4.14) 

where 0, is the yield strength of the elmtie-perfectly plastic material. Expressing the 

above equation in terms of stresses, we ha,* 

Substitufing the stress fmm Eq .  4.i and 4.9 into the above equacioo. the local bar 

strain is given by 

<ly = 
PL. - ~ ~ 6 1 4  + E2&&nrT2 

The inelastic strain can be found anal!tically for th! simple two-bar model. The 

material is asumed to be elastic-perfmtly plastic. Once the stress in bar I reaches 

rield. the n r e s  remains at  og. Now. fmm the equilibrium equation (4.11. 02 can be 

obtained as 
P - u,l,  

4=- 
.4? ' 

(4.17) 

Compatibility equation lead to the expresion 

s, = r - 2  = (2 r 2. (4.18) 

Combining Eqs. 4.17 and 4.18. the local bar total strain can he mitten as 

Ct# = 
PL2 -u,;LtL2 + EzA2L2wT2 (4.19) 

E262Lx 

Therefore, from Eqs. 4.16 and 4.19, it can be seen that the total strain in the local bar 

predicted by both the modulus reductha method and analytical methods are same. 

4.3 Finite Element Modeling and Results 

The tao-bar is modeled in ANSYS finite element so-. The bars are modeled 

as link elements capable of taking adal comprerdye and m i l e  str-. They are 
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~ i *  4.2: GLOSS Diagram for T-bar Model 



Led at one end and coupled at the other end in order to simulate the tigid bar 

condition. 

Dimemiam of the two-bar model 

Length of bar 1 = I ~ n .  

Length of bar 2 = 5 cn. 

Area of cross-seerion of bar 1 = 0.01 zn2 

.area of erosrrw-ion of bar 2 = 0.1 an2 

. blaterial propercie~ : 

.\lodulus of elasticity, E E 2 x 1LOS psr 

Yield st-. o, = 4M ppsz 

Coefficient of Thermal Expansion for both bars = 2 x 10-5 per ' C  

The model b subjeered to differrot combinatloo of mechanical and thermal load end 

the results are reported in Table 4.1. It can be seen fmm the table that the strain 

predictions are rhe same as the results obraincd from inelartic &?re element analyns. 

Table 11: Compar~ron of GLOSS and Inelasrie strain estimates 

P AT1 AT2 Local Bar Strain 

O.OOi2 0.0072 
50 45 0.0025 0.0025 

20 20 10 0.0046 0.0016 



Chapter 5 

Relaxation Locus 

5.1 Introduction 

In Chapter 3, both the GLOSS mahod and the GLOSS method with Plasrieirv 

Correction were shown to be robust techniques that arccapableof pdiering loeal re- 

gion inelartic strains on the basis of two linear elastic finite element aoaljres. In both 

methods. the r r r m  relaxation lo- rras implied to be linear as a first appranmation. 

h closer study of the relayation locus muld be useful in verifying rhe a.rumptlon of 

its linearity. 

lo addition to  eraluating the local strain, the complete r e l a t i on  locus also en- 

abler rhe determination d the p r imw srress or the $0-called reference stress of the 

component. The determination of reference srres a useful since li has extensix 

applicatioo in the imtegrity arressmenr of mechanical eomponenrs and rtrvetures ar 

described in Xuclear Electric's R5 and R6 documents [24, 251. Thee mesvneots 

include low-cycle fatigue, elastic-plartic fracture, ereep damage, creperadt growth 

and s t r m  dsification. 

5.2 Reference Stress 

The mfe-ee stress method developed in ti. K. duriog 1960'5, was primarily used 

to mrrelate creep deformations in a structure nith the results of an equivalent simple 
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creep tat .  that is performed at  the reference stress on [li] The reference st- was 

found to he independent of the creep exponent. Since the ~ i u r i o o  of a infinite creep 

exponent is analogous to the limit solution compooding to perfect piastieit!, Sim 

[381 proposed that the referen- r r r e s  can be obtained from the relationship 

where P i s  the load on the srrueture. PC is the limit load hod o, is the yield st-. 

In 1991. S d a d r i  [291 introduced the concept of r-nodes in order to determine the 

limit loads of mechanical components and structurer using two linear elastic fiolre 

element anal-. Similar to the GLOSS method. the inelastic r t m  redistribution 

is simulated by modifying the elastic modulii of all the elements in the rcrueture. In 

certain locations of the structure the str- do not change during stress redirtrihu- 

tion. T h e  locations were called redisrrihution modes or r-nodes. The r-ooda were 

identified as load-eontmiied locations chat are induced in order to preserve eguliib 

rium $nth enernally applied forces and moments. The imensirivicy ro the inelartre 

constitutive relationship exhibaed by the r-node stresses and reference st- rvas 

established. The reference st- was identified .% ptimw- stress and was u d e d  

with the r r r e s~ -e idca t ion  mnceprr (as deretibed m ASSIE Codes) in a paper by 

Seshadri and Harriott [331. 

\!%en mdapread ineiastie acrion such as plastieig or creep occurs, the rraziealk 

indeterminate strrsses undergo a redistribution rhmughout the component. Since the 

r-nodes are locations withim a component or a structure that are statically determi- 

nate, for fired external loads the st- da not change at t h e  iocations during the 

inehtitie st- redintihution prrress. The r-node stresses are therefore insensitive 

to the ioelasic constitutiw relationship of the component materid, and are, in this 



-me. a measure of the reference st-. meh char 

The value of II is less than one prior co collapse and is equal ia one when collapse 

occur.. Thmugh a sequence of plastic hinge formations. the component or structure 

releaes static indeterminacies eventually resulting in a mllapse mechanism. 

The knowledge of the reference stres is therefore useful in assessing rhe local as 

well as remote .el-tion behamor of the camponem. The reference rrrerr can be 

obtained fmm the Eq. 5.1 pmvidd che limit load of rhe component is knowo. The 

l i t  load estimated h m  inelastic h i t e  element analysis can be used LO derermine 

the reference st-. It has been found that the referenee stress determined from the 

r-node method w an upper bound on the exact reference st-. In order to study the 

rela-atian lo- in detail. l i t  load obtained fmm inelasric finite element and!.iw is 

vsed in conjunerioo mch Eq. 5.1 for evaluaring the reference st-. 

5.3 Determination of Relaxation Locus 

A typical plat of rhe rela-ation locusof a locd region for a component rubjecred to 

m~hanical  loading is shorn m Fig5.l. The material is assumed co be elarr~c-perfectly 

phtie. From the knowledge of the limit load, the reference stress s obtained. which 

is rpeci6ed ar the &titous yield stress in order to  eany out the oon-line% anal-. 

Point.? 1 to 6 in Fig. 5.1 are the -atrain point.? mrresponding te load increments 

pertaining to a non-Linear k i t e  element anal-. The relaxation locus has to be 

determined tor a mostant load, which in this case is the load applied on the structure. 

P. The stress and strain obtained fmm the load step of a non-linear Snite element 

analysis haw to be suitably scaled, in order to determine the complete relaxation 
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Flgme 5.1: Plot of- relaxation of a mechanical mmponem 



locus far the applied load. 

Points 1 and ? mrmponding to the 6m r a o  load steps. lie on the linear elacrrc 

line and e m  bc waled proportiody to the applied I d  P. to obtain points I' and 

Y. If P,. ocI and re, are the load. nrea and strain eorrespooding ro point 1. then 

the str-train poinr 1' can be obtained ac 

P P 
e~,, = -o .I = ~ ' C L -  i.5 31 

Redsrrbutioo rakes place ar roan ac the st- m the local w o n  reaches !~eld. Points 

3-6 corresponding to the subsequent load increments ean be idenri6ed on the rrr- 

stran cun~. They ean 4.w be suitably waled in proportion to the I d  corrsponding 

ro rhe particular loadstep to obrain 3'-6'. even though the? lie oo the nan-linear 

portion of rhe rtresrstrain em*. The scaling is performed b? ~ u m i n g  that an? 

inelastic distribution can be obcained by an elasric ad>?sis praided the modulus 

of elacfici~ and Poissan's rario of dl rhe elements are known. The egui\dalence is 

described in rhe foilornng rwrion. 

5.4 Elastic-Inelastic Equivalence 

Stresstrain relation for an elsric-perfeerlp plsrrie marerial under uniaxial load- 

ing is given by 

where 4 is the *eld st-. For a component nrbjccted to combined mRhanical and 

thermal loading., the rota1 strain tensor is girpn b 



where E, ir [he planic modulus and is given by 5 The rota1 strain tensor can be 

rewritten as 

If E, and v, are rhe elarric material propenies capable of dewnbing the tnelasric 

behaxior. the toral or rbe elarric strain tensor is $rpn by 

Comparing Eqs. 5.6 and 5.7. E, and u, can be obtained as 

The above equatiocs provide the complete spatial distriburion of marenal prop 

enies to simulate rhe inelastic beha>iior from an elastic andpu. 

To demonstrate the abow equxralence. a chick cylinder under plane strain condi- 

tion subjecred to p-"re ar well as linear temperacure disrriburion a mnstdered. . Dimendons of the ey-linder 

Inner Radius. R, = 3 in. 

Outer Radiuz. R. = 9 in. 

Material Pmpenier . 
Yleld St-. 4 = 3W p i  

Ydulus d Elarricity, E = 207 h i  

Coefficient of Linear Thermal Expansion. a = 1.0 x 10.' per 'C 

Loadings : 

Inner Surface Temperatwe = 20WC 
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Outer Surf- Temperature = 0% 

Applied Internal Presure = 300 psi 

Sumher of elements = 25 

.% non-linear finite elemeor anai>~is is performed and the element eentmidal equtv- 

dent streso and strain diiributioas are ah- in Figs. 5.2 and 5.3 Csing the equrr. 

aleot pla~tic strains from the non-linear analysis results. the modulus of eisrieiry 

and Poisson's ratio are modified according to Eq. 5.8 and a lrnear elastic analysis is 

performed. It can be seen from Figs .i 2 and 5.3 that the equivalent st- and stran 

distribution obtained from inelastic and modified eelastie anal.wis are equal. 

Therefore. any stresstrain distribution obtained from a non-linear analysis can 

be obtained from a linear elastic aoal?sir by mod.8-g its modulus of ela~tieiry and 

Poisson's ratio. This makes it possible to =ale the streses a d  strains obtained fmm 

aov load nep  corresponding to an ineiastie analysis. to the applied total load. 

5.5 Three Bar Model - Relaxation Locus 

As rhe governing equation. are amiable in simple form for the unuudai case d bar 

models. a three bar model subjected to mechanical, thermal and eomblned loadings 

is rrudied. The complete rel-rion locus is identified for all the cares and =me 

coociusions ace drawn. 

Dimension. of the model : 

Length of bar 1 = 1 m 

Leng tho fba r2=2rn  

L m g t h o f b a r 3 = 3 r n  

. h a  of all the btm = 1 mZ 



F i  5.1: Equivalent - M o t i o n s  acms the radius of a cylinder subjected 
to uniform internd preyurr and a linearly saning temperature 



Figun 5.3: Total equivalent Jtrai. distributions ac- the radius d a  cylinder rub 
jr ted to uniform internd p x s u e  and a Linearly varying tunpenrture 



Material Properlie : 

Yield stress of all the bars = LOO .V/rn2 

Slodulus of Elasticiv = LOO .V/rn2 

Coefficlenc of rhermal expanson = 0.02 pePC 

. Loading 

Applied mechanical load. P = 235 .V 

Uniform Temperature = 5VC 

5.5.1 Pressure Loading 

The equilibrium equacroo of a three bar model with equal arras is given bv 

where at.c2 and a3 are rhe bar axial stress- and P is the applied Load. If all the 

ban are assumed to be elastic-perfmtl? plasric nirh same yield rrrers value. then the 

limit load of the three bar model cao be determined as 

Using Eq. 5.1. the reference stress for the applied load. P, is determined as 

P 
CTR = - 3.4 (.i.ll) 

A non-linear %ite element aoaly'sis is prfonned by specifying the reference rlres 

as the yieldstress due. Using the pnredure outlined in SK. 5.3, the relaxationlocus 

is obtained for the given load, P. Fig. 5.4 shows the complete rela~atian locus of the 

l o d  bar (bar 1). . i s  soon as the stress m rhe local bar reaches peld. any additional 

applied load h transfend to the remaining b m .  The reduction in &ess of the 

structure and the d t r i b u t i o n  pme- is identiEd on the relaxation loeus by the 
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Fipre 5.4: FiekAion 1- for a three bar madel subjected ta mechanical loading 



line 1-2. .it point 2. the stresr in bar 2 reaches yield tberelq creating further Rducrioo 

in the stiffncsr. Line 2-3 shows the stress relaxarioo of the iaeal bar ~ i r h  ~nereasing 

strain. When the st- reaches point 3. bar 3 also yields resulting in c o l l a p  of the 

JtructuTE. 

5.5.2 Temperature Loading 

The equilibrium equation da three bar model subjected to a thermal load is 

For pure thermal laading~, rtr- are set up to equilibriate mfernally and to satisfy 

tbe e o m p t a b i t i ~  requirements. The onset of yielding of rhe l o d  bar initiates the 

process of redistribution. For a uniform temperacure rise in all the bars. it can be 

reen that a tensile srres is net up in bar 1 and compressive stress are rec up in 

bars 2 and 3. in order to satisfy the cornpatability requiremeus. .As the magnitude 

of the tensile stress in bar 1 is mare than ban 2 and 3, bar i is considered as the 

local bar. Consequently. bar 1 yields in remion k c  foUowed by bar 3 in compression. 

At chis temperature the structure is io equilibrium. vith bar 2 remaining stress free. 

Further inereares in temperature pmduee equal ma im increments ( a m  in all rhe 

bars proponionsl m che temperature rke AT wirh no change m the bar rrrascs. 

Collapse does not occur m structures subjected to pure thermal loading.. as equi- 

librium is p r e m e d  internally by redistribution of s t r e s s .  Therefore, any arbitrary 

valued yield stress can be prescribed in order to determine the complete relaxation 

locus from a no-linear Gnite element analysis. For the t h  bar model a yield r r m  

ralue of 20 iV/mz is prescribed. On the relaution locus diagram. Line 1-2 corresponds 

to the relaxation of st- after the yielding d bar 1. hdimihutioo takes plaee until 

paint 2 after which bar 3 yields in eompresioo. Funher inere- in the temperacue 

wi l l  c a w  the axial stress in bar 1 to relar &om 2 to 3 without any change in strain. 

6.5 



Figure S.5 Relaxation lonw for or thee bar model subjected to tern-tun loading 



Figure 5.6: Relaxation I- for a three bar model ~ o b j ~ t e d  to combined mechanical 
and thermal loading 



It can be seen rbat the relaxation of str- m th  mom-inerrssing strain would mnrinue 

for an). arbitran. lo- value of yield a r e s  (shown by dotted line 34).  

For mmbined loadings. (Fig 5.6) the relaation locus n very rimrlar to p-"re 

loading caw as a reference stress can be identified to balance rhe external load. 

It -shorn earlier in Chapter 4. chat the inelanic strain pdicred b>- the modu- 

lus modification method and the anal!tical method were equal for che casp of r a o  bar 

model. From the relaxation locus diagrams it can be seen chat for ail loading cares. 

the relaxation is linear for a certain drop in stress level. For ma l l  load cases. where 

the 6m linear portion of the relaxation locus intersens the matenal strewstrain 

curve. accurate predictions am made bv the modulus modificarion merhod. 

5.6 General Pressure Component Relaxation 
Locus - Pressure and Thermal Loadings 

Figs. 5.7 and 5.9 are the relaxation locus e u n e  for a plate wirh central hole and 

a Br~dgman ooreh mpect i>~ly.  The relaxation l a m  curves for pressure loading are 

similar to the e w  of bar models. As>ielding progresses. the rriffnen of the structure 

reduces thereby producing more sfrain at the local element. For the applied load. 

P, collapse state corresponds to the yield being set ar a d u e  of the reference stress. 

The relaxation e m  for pure thermal loading, in rhe case of Bndgman notch. shorn 

decreasing strain increments s the stress relaxes. .As in the case d bar models. 

the structure approaches an equilibrium point. lo the case of the plate with a hole. 

convergence could be obtained only with the *eld s t r e s  value of LOO 21Pa. The 

incrraPing strain at the local region is attributed to the fact that more than halt the 

elements were still elastic. 

The relaxation curve for a general pressure mmponent can be i den tad  as multi- 

bar model with plasticity gradually proceeding Born the shorter bar to the longer bar 



0.02 I 
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Figure 5.7: Relaxation l m  for or plate with th hole ~ b j e n d  ca prasnre and thermal 
buds 
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Fignn 5.8: Rebation locus for a Bridgmao notch subjected to prermrr and thermal 
Load 
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~i~~~~ 5.9: ~ e l a e t i o n  l a m  (or a multi-bar modd rubjmed to ~=emm loding 



ac nhom in Fig. 5.9. The relamtion I- of the model can be obtained as a se"es 

of lines nxh deerearns slopa ex~nruallr conwrging at rhe reference rrrws 

5.7 Neuber's Relaxation Locus 

Seuher'r rule stares chat the rheorerical str~~mneeoirarion factor b rhe sea- 

metne mean of rhe mual rrress and strain eoncenrrarion facrors. hlrhough chi 

appn?idmsrion srricrlt- holds for ipeise eorch consrramrs. on mounr of irs srmple 

form and eare of use. it has been exreodd i o  predier notch i w r  rrratns for orher 

gmmcrric configurations in irs equiralenr form. 

Seuber'r relaxation locus e derribed b rhe equation 

If or, and e., are the norch root pseudoelasric equixdenr stresses and strains and if a, 

1s the tnelasrie strain prediccd by Seubers mle. ihen. for an eiaric-periecrl!- plasrlc 

material we haw 

c*L<cl = c9cy. i5.141 

Therefore. rhe implied GLOSS angle @ a g k n  'by 

The relaxation-modulus E, = -tan (f - 0). The GLOSS an& 5 for Seuber's care 

is a funerion of the maximum elacric rr- and :icld rr- and for pipipn loading 

mnditians. ir ir,. independent of the geomer- 

It has been rho- bli experiments char Seuber's rvle predict srraim higher rhan 

the m e a d  strains for many casps other rhao thin sheets. S i a r  obserrarions 

haw h made W Ymbray and Ohji [22.26]. It har a h  been rho- char Seuber.5 
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Figure 5.10: Rel-tion Ion. for a thin plate aith a hole mhjected to plane otm 
and plane strain mnditions 



rule a- well with memrements in plane st- situations such as thin sheem in 

tension. 

Fig. 5.10 is the relaxation plot of a plate with a central hole subjected to pressure 

loading. The figure rhaw the relaxation of the local element when the plate b under 

plane stress condition and plane strain mnd'itioo. It can be wen that for the same 

maemum st- and :ield stress. the relaxation of the taro curves are different oo 

aeeoum d the constraint prevailing st the meinityof the notch. The strain ertimated 

by the plane strain case is les than the plane arm condition. Far both ca~es. 

Seuber's rule predicts the same strain. Saber's rule take into account only the 

maximum stress and the yield. and the local inelastic strain does not depend oa the 

constraint. This b obviously adrawhack of Zieuber'r rule. 

5.8 GLOSS for combined loadings 

The relaxation locus is identical for borh mshanieal and chermal loadings for a 

limited drop in st- level. It is reen that thermal loadings also behave as mechanic4 

load, with redistribution of rtr- occurring after the field initiation. It b a h  found 

that the actual plastic zone is larger than the nominal plastic zone. Therefore. the 

GLOSS with Plasticity Correction modulus modiEcatian scheme pmenred in Chap 

ter 3, can also be used for thermal as aell as mmbied meehanieal and thermal 

loadings. 

.k well, it war r h o n  earlier in Eq. j.8 that modulus as laell as Poisson's ratio are 

modified in order to simulate the noo-linear bite element analysis from an elsstic 

analysis. In order ta obtain impmwd estimate of strains predicred by the GLOSS 

method with Plasticity Correction, the Poiswn'r nrtio of each elements above nom- 

inal yield is & modified to 0.49. This esentially arrumer all the elements above 

yield from the &st analysis to be completely plastic leading to better inelastic strain 





Chapter 6 

Numerical Examples 

6.1 Introduction 

The GLOSS merhod wirh Plasrreirp Comrioo (GSIPC) is applied to some bench- 

mark geomerric coofigurations and an industrial problem of practical inremt. The 

coofiguratioar analpred have norch--?.pc details wherein rhe derermmatton of inelas 

tic s t a i n  is useful in e.rimating the loarsvice fatigue life. Inelastic rrrain at the 

ooreh mor is obtained 4r. che GSIPC. which is used in mnjuocooo a ~ r h  rhe eyelic 

ar-strain c w - e  of rhe macerial. The estimated strain can then be lnsened into 

the Co&-Y-o's srrain life equarion in order ro derermrne the number of cycles 

required for crack initiation. 

The numerical example. coosidered are . . a plate d r h  a hob 

a Bridgman notch 

an adsymmetric qlinder with a cirwmerferential notch on the inside surface 

aod 

a acam turbine valve body 

Theoe mmpooents are modeled using .LVSYS bite elemear software and are sub  

jected to meehanieal, thermal and combination load@. The materials uJed are 

is 



-med to be homogeneous, isotropic and elastic-perfectly plastic. The inelarric 

strain estimated by the GIIPC is compared with xnelastie finite element resulrs aod 

Nenber's mle. 

6.2 Thin Plate with a Hole 

-4 thin plate with a circular hole is subjected u, a remote tensile stress. On amount 

of wmmetry only one quarter of the place is modeled using four naded isoparametrie 

quadrilateral elements. Next the plate ir 6xed on the top surface and is subjected to 

a uniform and Linearly varying temperature. 

Dimeosioos of the Plate : 

Length of the place = 0.7620 x 10-L m 

Width of the plate = 0.3819 x 10.' m 

Radius of the hole = 0.6375 x m 

. hlarerial Pmpenies : 

Material - 24s-13 .kluminum .Uloy 

4lodulus of Elasticiv. E = 7.2368 x LO" 41Pa 

Yield Stress. o, = 363.2 SIP= 

Coefficient of Linear Thermal Expansion = 3 x 10-9per 'C 

Figures 6.1, 6.2 and 6.3 are the plots of notch root pseudoelastic equivaleor st- 

(the theoretical notch st-, nnKt) versus the notch mot total equivalent rcrain. For 

various pressures aod temperatures. the inelastic strain estimates are decermiaed by 

the GUPC and non-linear hnite element analysis. Since uniaxial s a t e  of n- m t s  

at the notch root, Neuber's rule gives good predictions of the inelanic nrain. It can 

be seen from the plots that the arab estimated by the GYPC agree remnably e l l  

with the noo-linear Mte element results. Mhough the nrain is underpredlcted for 



certain load c-. the madmum error is found to be not more than three percent. 

which would -It in not vev unmnnnative fatigue life. Further, the time inwlwl 

in performing a no.-linear analpis nsr found to be 4-6 times more than char required 

by G.\IPC. From che plots. it can alx, hereen that the GSIPC shows similar heharior 

for pressure as well as thermal loading e m .  

6.3 Bridgman Notch 

. m u d  bar Nith a deep circumferential ootch under tensile load is considered as 

an example of hiaxially stressed notches. The radial st- at the ooreh mot is zero 

due to the Free surf-, and in addition, the circumferential strain is also rem since the 

mot& radius p is ma l l  compared to the other dimensions. The problem considered 

here is that of a plane strain condition. M\amage is taken of the symmetry present 

and therefore only one quarter of the notch is modeled. 

Dimens~on of the Bridgman Soteh : 

SIa\imum diameter = 2.6416 x m 

Mimimum diameter = 2.1082 x 10.' m 

Yoreh radius = 0.6858 x lo-' m 

Material Pmpertie~ : 

.\laterial = Cr-Yo Steel 

Yield st-, o. = '200.00 MPa 

Modulus of Elasticity, E = 1.9 x 10' SIP= 

C d c i e n t  of Linear Thermal Expansion, a = 1.5 x 10- per 'C 

Figures 6.4 and 6.5 are the plats of pseudo elsric equivalent st-. (the theoretical 

notch root equivalent st-, o,,K,) wrsus the notch root total equivalent strain. .As 

it can be sea from the graph, for a given value of load or temperature the inelaptic 



Fi- 6.1: Plate with s Hole - Plsnic Strain mncentmtion due to R- Load 



P i v  6.2: Plate with s Hale - PI& Strain concentration due to Goifam Temper- 
at- 



F i w  6.3: Plate with a Hole - Plastic Strain mmntration doe to Linearly Varying 
Temperature 



strain predicted by the GlIPC w e ~ t i m a t e s  rhe strain predicted by rhe lnelssrie 

finite element ~ u l t r  leading to coosenatin low-cycle faugue life. It can also be 

seen that Seuber'r rule weresunares the strain by around 95% leading ra ~ove~ly 

consenati,? fatigue life. 

6.4 Cylinder with a Circumferential Notch 

In order to demomtrate the application of the propored method ro rriaually 

stressed notches. a thick-ded cylinder with a cireumfereorial norch on the inslde 

surface under internal p-e is considered. The cylinder u subjected ro a plaoe 

strain condition. The cylinder is subjmred to presrure loadrng and combined preuure 

and uniformly 1-ng thermal loading. 

r Dimeosj- of the Cylinder : 

Outer diameter = 50 in. 

Inner diameter = 32 in. 

.Voteh radius = 1 in. 

. Material Properties : 

Yield rrresl. o, = 29024 psi 

Modulus of Elastieit?i E = 27.5 x 106 p i  

Coefficient of linear thermal expansion = 3 x 10-5 per "C 

Figures 6.6 and 6.i show the notch rooc equivalent rcrain results for \arious 

presure and combined loads. Once again. ic eao he seen that rhe rcraio estimated by 

the GlvIPC somewhat overpredicts the non-linear results but is nor arr come-riw as 

Xeleuber's rule. 

Fmm the above three examples it can be seen that the GLOSS methad with 

Plasticity Correction predicts resonably m a t e  inelastic strain, and is eonservati%* 

from a fatigue standpoint for ormo of the cases. 



Figun 6.4: Bridgman Not& - Planie strain mnentmtion due to Meebmid Load 



Figure 6.j: Bridgman Notch - PMie xrain mncentracion due to Uniform Tempera- 
ture 



F i w  6.6: Cylinder with a C i f - t i a l  Notch - Plastic nnin mwentratiion due 
to P m e  Load 



F- 6.7: Cylinder with a C ' d ~ n t i a l  Xorch - Planic strain conantration due 
to combined P-e and Thwal Load 



6.5 Steam Turbine Valve Body 

Having demonstrated the validity of the mhust method for benchmark problems. 

a problem of practical interest ro des~gnerr of power plancs is anal!xed nexr. 

The need lor increased thermal efficient). and improwd we of resources has led 

ro higher operating temperature. and presures. The cooeurrem presence of cyclic 

r-ndw stresses (diseontinuir? and thermal rtrerses) and susrained prima- srr- 

(pressure-induced and mechanical loads) could cause plastic arrainr ro be ~ncurred 

during eve- cycle of srarr-up and shu t -dm.  along vith remperature rraaslenrs. 

The mmponenrs are rhw subjeered to vclic nature of stresses which eonsequencl? 

r d t  in loa-e)rle fatigue failure of the mmponentr;. 

In order to reduce the damage caused by fatigue and to e o s m  safe operation of 

turbine components for a r p e i b  period. tc a e~~en t l a l  that the thermal strains in 

components during start-up and s h u t - d m  periods be nor allowed ro exceed Imiring 

values obtained from rheir respetir? matenal fatigue cunps. In orher rmrdr. ararc-up 

and load change rates are to he governed by the permissible magnitude of rhermal 

strains in the turbine and ralw components. 

The most important bcaerorr for determining the srarr-up rates are . identification of the critical seetion 

. edvat lon of peak st-r at the critical section 

h section which mmes into concact with high temperatwe rream. or seerions with 

sharp geometry can be expected ro he a critical section. The peak srrwes can be 

determined by an elastic 6nite element analpb. The highest s t d  element fmm 

the elastic finite element aaalysis is eons~dered ss the critical location. 

Evaluation of temperature at Mnow times during transient operation is the 6rst 

step d thermal st- analysis. MSYS hoite element ~~e is used to solve for 



(All Dimensions are in rnrn) 

Fi- 6.0: St- turbine vdve body - Dimensions 



Critical 
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Figure 6 9 Steam turbine d v e  body - Flnlre element model 



the temperature at rariour times. and st- corresponding to the temperature 

diitributioos. in this problem of heat conduction and stress anal~xis. The initial 

remperatum of all points in ~ a l w  body before starting up from cold is rden as 3V. 

The \alw is ramped to a steam temperature of 5 W C  for diEereot start up rims. 

Inelastic strains are estimated for the diereat start-ups to derermine the longest life. 

The dimensions of the xalve body are show m Fig. 6.8 and the 6nire elemenr 

mod4 is s h m  In Fig. 6.9. 

. Slaccrial Pmprtips : 

.\laterial - Cr-Slo Steel 

field St- = 300 >(Pa 

Slodulus of Elaricit>- = 1.8821 x IOS SIPa 

Coefficient of linear thermal expansion. a = 1.5022 x lo-' per 'C 

Inner surface eonteetive heat cr-fer eoefficieot = 3000JIsee- mZ -" K 

The valve body a modeled using 6 noded triangular ~xkvnmerric elemeotr. The 

temperature ar the inner surf- is gradually increaxd to the steam remperarure of 

5W "C. Valve bodies are normally lagged with thermal insulation ro thac the hear 

loss can he minimized. The oucer surface s modeled such that the hear flux IS zero. 

.% rrmient heat conducrion analpis is k t  carried our to determine rhe remper- 

ature dbtr~huc~on at mans rimes during the start-up. The madmum thermal rr- 

occurring in the salve body depends on the duration of the start-up. The temper- 

at- dSerenm at the entical m i o n  where the &- n- oectus for d o u s  

start-up durations Is show in Table 6.1. 

Ushg the temperature distributrons at Mnous times during the start-up, a struc- 

t d  analysis is performed to  determine the inelastic strain. The strains sre estimated 

by non-linear h i t e  element analysis. GLOSS method with Plasticity Correction aod 

Xeuber'r rule. The strain enimater are rhoan in Table 6.2. It can be seen that the 
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Table 6.1: Temperature difference at the cntieal reetion 

Stan-up 

strain estimated by che GLOSS method with Piartieiry Correctton in conjunction rich 

the Poison's ratio modification are comparable with the derailed ineiasr~e anal>ris 

and are mwrva t iw  from a fatigue standpoint. It can also be reen rhar Seubefr rule 

underpredicts the inelsstic strain for all cares. This s p a  of non-eonsenativeoess of 

Seuber's d e  is oot widely knm.  

(Percent) (Percent1 
. Yeuber GLOSS I loclarric FEA 

/ u = 0 3  v=0.49 
5.0 I 186 I 0.308 I 0.587 ! 0 714 I 1.170 1 0.692 

Table 6.2: Steam Turbine Valve Body - Inelastic Strain Esrimares 

ELartidy 1 I n e k c ~ c  
Catvlared Strain 1 Strain 

P m  
1MPaI 

Temperatun 
Diere- 1'C) 



Chapter 7 

Conclusions and Future Research 

7.1 Conclusions 

The determination of inelastic strain at a mitical reetioo of any mechaoieal o m  

ponenr or structure is required for evaluating the fatigue life of mmponentr. llort of 

the components in poarer plants and pro- industries an often subjeered to mm- 

bind mechanical and t h e d  lcxdings In such highly eomperirive envlroomears. 

simple and reliable methods are necersary during the preliminary stager of design. 

Convennonal merhods such as moo-linear h i r e  element analpis are e.pensir? and 

time consuming and are not suitable for such pramleal situations. Caution should be 

exercised when using simple merbds such as Seuber's rule. Seuber'r rule predicts 

remnably amurate arraios only for the plane rrresr ease such as thin sheerr. In plane 

strain dtuatlons Seuber's rule has been found ro owresrimate the aerual inelastic 

nrain si&eantly leading to overly mnservatiw farrgue liws. .Aka it is show in 

this thesis char for the care of steam turbine valve body, the strain predicted by 

Seuher's rule uoderertimates the "on-linear results. 

Fully cognizant of the rnenlties inherent in mnwotional methods. this thesis 

aimed to develop aJimple method foreevaluating the inelastic strain in any component 

subjected to combined mechanical and thermal loadings. Fundamend aspects of the 

modulus reduction methcd are explained chmugh a t-bar kinematic model. A p m  
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cedure has been dewloped to obtain the complere relaxation locus of any component 

subjected to mechanical and thermal loadings. It o s h m  that any inelastte analysis 

can be exactly simulated by an elastic ansl>~is provided the modulus of elasticity and 

Poisson's ratio distributions are !am. In zddition to identfiing the redistributmn 

process. the relaxation locus also predicts the local inelastic strain and the reference 

stress. The relaxation locus is identified for the bar models and some general me- 

chanical components. It is found that the relaxation locus for pure thermal loading 

is identical to chat of pressure loading for a limited drop in st- Iwel. B d  on the 

similar nature of the relaration lo-. the GLOSS method ~ i r h  Plasticit? Cometlon 

has been extended to mmbined mechanical and thermal loadings. 

The method has been applied to some bench-mark problems and practical steam 

turbine valve body problem. The inelastic strain ea~mated by the GLOSS method 

w<th Plasticity Correction compares favorably with "on-linear &ice element results. 

The method dewloped can be applied to any eomponeot configuration as the relay- 

ation depends on rhe geometry and multiaxiality eonditioos existing at the cnrlcal 

section. which is not taken into account in Yeuher's rule. 

7.2 Future Research 

It is shown in t& thesis that the robust method is simple and direct, and pro- 

vider goad estimate. of inelanle strain for ormhioed loading c-. Further m a r c h  

in this area should he worthwhile. Determination of bounds should he an area worth 

pursoing as it would he a messure of eonservatiwne of the design. Future research 

should mnceotrate on extending the method towards orthotropic and anisotmpic eom- 

ponents, which play an important mle in engineering due to their superior strength 

to weight characteristics. 
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Appendix A 

ANSYS Commands Listing of 
Mechanical Components and 
Structures 

.UI .lYSYS m m m d  listing lor the pmblemr giwn m Chapter 6 are pmvided 

in chis section. The listings tnclude linear elastic aoalyis and non-linear analyir 

using AXSYS. The tansienc hear cooduction analysis performed for the valve bad? 

problem is a h  provided. 

A . l  Plate with a Hole - Mechanical Load 
A.l. l  Linear Elastic Analysis 

*SFC.SCQ.S,-2M)eO6 ! LOU OX W STRUCmRE 

*SFZ,R.6.375e-03 ! RdOmS OF W CENTRAL WLE 

*SEI.W.19.05e-03 ! WIOTB OF IEE PLATE 

rSFT,D.38.le-03 ! LDlm OF W PLATE 



*SEI.YS,363.2806 I YIELD STILEIIm (psi) 

*SW.YK.7.236&10 I XmiG's rmomos (psi) 

tSW.POISSON.0.3 1 POISSON'S RATIO 

/PREP7 1 WIER PREPROCESSOR 

/?IXE. PLATE YITB A C3lUL BOLE 

n.1.42 ELMM NPE - PLAUE 42 FOW NODE0 

1 ISUPhE43RIC QUMRILATEW 

W,EX,l.Yn 1 Y ~ C ' S  m m m  
IIP.UUXY.1.WISSON I WISSON'S RATIO 

K.1,R.O 0 DEFINITE KEypOIu'E m L m  

K.2,Y.O 

L.1.2.22.22 

K,J.W.O/2 

L.2.3.12 

K.4.0.0/2 

L.4.3.12 

K.5,O.R 

L.5.4.22.22 

CSYS.1 

K.6.R.45 

L.6.6.12 

L.6.1.12 

aYS.0 



*,1,2,3,5 ! DEFINE AREAS 

1.6.3.4.5 

1.3.7.6.4 

*PaSH.AU H E S H T H E B R U S W I T A ~  

CSYS.0 1 BOWDlRY COWITIDNS 

NSEL.S,UIC.Y,O 

D.*LL.W,O 

U M L  

SAVE 

FIN1 

! SAVE MODE nu0 DEOMEIRY 

! EXIT PRE-PROCESSOB 



1 EWE?. SOLrnION 

1 STATIC dllllLYSIS 

NSEL.S.LOC.Y.D ! APPLY W A L  LOAD 

SF.ALL.PRES.STRS 

NALL 

SAVE I SAVE 

SOLVE ' SOLVE 
FIN1 ! EXIT SOLOTION 

/INP.GLOSSW*C I IBFlJT MACRO FOR PERFOMING GLOSS ANALYSIS 

EXIT 

A.1.2 Non-Linear Analysis 

/BATCH 



TB.BKIN.1.1 ! 81-LIHEUI KINEJUTIC HllRDElfINC 

TBDATA.1,YS.O 0 YIELD STRESS I YS k TMGFJT HODUIUS = 0 



CSYS ,o 

NSEL.S.LOC.Y.0 

D.ALL.W.0 

U A U  

YSEL,S,L0C,X.0 

D,ALL.Ux.O 

HALL 

SAVE 



SAVE 

SOLVE 

FINISH 

1 N O N - L I W  MALYSIS OPTIONS 

! EVER POST-PROCESSOR 

1 GO m mi? LAST-msm 
! SmRE m ElmEuT CEBIRDID 

! q m v m  smss 
1 SmRE TKE ELElWT CEBIRDID 

I ELASTIC m m v m  SSR~IN 

! s m R E  m ELElWT  ID m S T 1 c  



! EpUIVlWLll STRlIIl 

/ O U T , ~ T S  1 CRUTE OUl'PUT FILE 

PrnIB,SWV.EL.EP ' RE-DIRECI ALL W IEsoLTS TO W PILE 

/om 

A.2 Plate with a Central Hole - Uniform 
Temperature 

A.2.1 Linear Elastic Analysis 



K,t.R,O 

K,2.W,O 

L,1.2,22,22 

K,3,W,D/2 

L,2.3,12 

K,4.O,D/2 

L,4.3,12 

K,S.O,R 

L.5.4.22.22 

CSYS. 1 

K.6.R.45 

L.5.6.12 

L,6,1.12 

CSYS.0 

L.6.3.22.22 



NSEL,S,LoC.X.O 

o,Au.m.o 

NALL 

USEL.S.LOC.Y,D 

o,*LL.w.o 

NALL 

BF.ALL,TMP.IZW ! IZWEUATLRE ARE INPUT AS BODY FORCES 

! ON ALL NODES 



SAVE 

SOLVE 

A.2.2 Non-Linear Analysis 

/BATM 



K.1.R.O 

K.2.Y.O 

L.1.2.22.22 

K.3.U.D/2 

L.2.3.12 

KS4.O,D/2 

L.4.3.12 

K.5.O.R 

L.5.4.22.22 

CSYS. I 

K.6.R.45 

L.5.6.12 

L.6.1.12 

CSYS , 0 

L.6.3.22.22 

CSYS , 0 

K.7,W.D 

K.8.O.D 

L.3.7.10 

L.4.8.10 

L.7.8.12 



CSYS.0 

NSEL,S,LOC,Y,O 

D.bLL.uY.0 

NALL 

NSEL,S,LnC,X,O 

O,ALL,UX.O 

NALL 



SAVE 

SOLVE 

FINISH 



A.3 Bridgman Notch - Mechanical Load 

A.3.1 Linear Elastic Analysis 

I 'lhe following program performs the first llnear elastic analysis 

I as well as the bWSS amlgsla for multlple load cares. 

IBATCH 

.SEt,ER,0.6852E-02 1 UOTCH RdDmS 

*SEI,OD.2.6416E-02 ! OUlER DIAE3FR OF W NOTCH 

rSEI,W.2.1082E-02 ! INBE4 DIAE3FR OF TBE NOTCH 

*SEI,LMG,2*OD ! LEIIGTn OF TEE AUTCH 

1 MrnIAL PROPERTIES 

*SEI.YLOAD.l7EQ6 ! LOAD UJRUEPOI(OIUO TO FIRST YIELD 

*SET,LOADI).(140E06 - W A D )  ! 140E06 IS W TOTAL LOAD 
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NSEL,S.LIIC.I,O 

D.NL,IIX.O 

R A U  

SAVE 

SOLVE 



.DIM,Drn.AFaAY,l 

*DlM,Dm,UWLY,l 

*CFOPnr.RESULT 

*GEr.StEQ.ELDl.22.~ABbBSICC ! 22 is the highest stressed element 

~OEr,ELEq,am,22,ErAB,Eus 

DUHZ(1) = SIEq 

DUU3(1) = (ELE911.3) 

*SEr,HEWER,DW2(ll*DW3(l)/YS 

*YVRrn,Drn(l) ,Drn(l) . m E R  

(3X.E15.8.3X.E15.8.8XXE15.8) 

*CFCLOS 





FINISH 

I I - L I N E A R  A N A L Y S I S  
.................................................. 

EX.1.m 

NUXY.1.0.3 

*USE,EKVAL 

*USE, O(MD 

FI l ISB 

ISOLU 

SAVE 

SOLVE 

FINISH 



*Crnrn,RESm.T 

SR.1.1 

ETABLE,SIGC.S,EUV 

ETIBL€.adS.EPEL.E9V 

*CET.Sn9,ELEU.22,ETABbBSIU: 

*GET,EI.Eq.~.22.~ABBEUS 

*SR,rnY1,0.3 

om4(1) = STEQ 

DDHS(1) - ELM/(l+wXY1) 
*S~.G1DSS.DOPO(l)+(DUn5(1)-D~3(1))*(D~(1)-YS)/(D~(1)-D~4(1)) 

! The second point strain IS reported aa the exact strain m the 

1 GLOSS method with Plasriclty Correction 

rVVRIE,Dm4(t).Dm5(1),GLOSS 

(X.E15.8,3K.E15.8,3X,E15.8) 

*cFcLOS 

/NS.CAT RESULT >> SOLWOU 



SAVE 

.mDo 

A.3.2 Non-Linear Analysis 





nsEL.S.~C.Y.O 

D.ALL.W,O 

NALL 

SAVE 

SOLVE 

*EN000 





A.4 Bridgman Notch - Thermal Load 

A.4.1 Linear Elastic Analysis 





mEL.s.LOc,x,o 

D.ALL.ux.0 

NALL 

SAM 

SOLVE 



A.4.2 Non-Linear Analysis 

IBATCA 





NSEL,S.LOC,Y.LENG 

O , A L L , W , O  

N A U  

SAVE 

SOLVE 



FMI 

FXT.NOSAVE 

A.5 Cylinder with a Circumferential Notch - 
Mechanical Load 

A.5.1 Linear Elastic Analysis 

! IAHER U D N S  OF TE CYLINDER 

1 o m  wm OF TE m I m m  

1 NMCH RdDmS OF TE CYLINDER 

! mom OF TM CYLINDER 

! RATERIAL PROPERTIES 







SAVE 

SOLVE 

FIN1 

A.5.2 Non-Linear Analysis 





uSEL.S.LOC.Y.o 

D.AU,W,O 

U A U  

CSYS,11 

NSa.S.LOC.x.RH 

SF.ALL.PRES.S?RS 

NAIL 

SAVE 

SOLE 



A.6 Cylinder with a Circumferential Notch - 
Combined Loading 

A.6.1 Linear Elastic Analysis 





USEL,S.LIIC,Y.LENG 

D.ALL.W.0 

u r n  

CSYS, 11 

NSEL.S,LOC.X.RI( 

Sf,rn.PRES,S~ 

N U  



SAVE 

SOLVE 

PIUI 

A.6.2 Non-Linear Analysis 



FIUI 



NSEL.S,LOC,Y.O 

D.ALL.W.0 

NAIL 

NSEL.S.LOC,X.RI 

SF.ALL,PW,SIPs 

NAIL 



SAVE 

SOLVE 

FIN1 

A.7 Steam Turbine Valve Body 

A.7.1 'Itaasient Heat Conduction Analysis 

IBArcn 

142 



IIUP.YPR 0 UODES ARE SELECrm ON W IUSIDE SURFACE 

D.ALL.1MP.500 

HALL 



TMINT.OFf.STRUC ! NEGLECI O W M I C  EmCIS 

A r n S  , ON 

OUTPES,NSOL.ALL 

KBC.0 ! APPLY W TEWERILIURE L1NEm.Y 

IEF.30 1 REWEBE TEUPERImQ.E SET TO 30 C 

lUNIF.30 8 INITIAI UNIFOFLM EWEUAITRE SET m 30 c 

oana,x..30 

TIHE, 1500 8 THE T M P E B A ~  IS APPLIED DYER A PERIOD 

! OF 1500 SEC 

SAW. 

SOLVE 

1 W WALYSIS IS COUTIMIED TILL W S E M Y  STATE IS RUCHm 



I THE NODAL IEUPERANRES bRE SmRm IN A FILE TO BE SUPPLIED AS 

1 BODY FORCE I ~ S  m THE smcm~~ MALYSIS 

D m I B E S  'iUE IDW5ANRE DIFFERENCE AT IEE CRITICAL SECIION 

! A50 OVIPUT I S  VRITIEY IN A FILE CALLEU AS N O D U I F F  



A.7.2 Linear Elastic Analysis 

/BATCH 



/IIIP.NPR ! APPLY 1-AL PRESSWE ON THE INSIDE SURFACE 

SF.ALL.PRES,9.81E06 

NAU 

/IIIP.TEhT ! APPLY W TEhTEQAIWSS AS NODAL BODY FORCE 

SAVE 

SOLYE 



A.7.3 Non-Linear Analysis 

/BATCH 

! S l R U r n  BommAeY CONDITIONS 



SAVE 

SOLVE 





Appendix B 

Elastic Modulii Softening Macro 
for GLOSS Analysis 

The following maem wrirten vsing the AXSYS Paramerie Design Language. chanw 

the modulus and Poison's ratio after the first linear elastic analyrir. The macm 

provides the equivalent ~trerses and strains as outputs from the analyses in in- filer 

rt-1 and ~ t r e s 2 .  

B.l  GLOSS Macro for modulus and Poisson's 
ration modification 

1 - L I N E A R  A U A L Y S I S  

.................................................. 

! r.***r-t TATS HlCRO I S  FOR COHBIHED LOADINGS *************** 

! The paranetterr YS ( y i e ld  strength). Yn (modulu of  e l aa t l s i t y )  and 
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3 ALP= (so-efficient of t h e m 1  expansion) has fo  be specified in 

! the main linear elastic program 





EX.1.m 

ALPX,l,ALPR* 

*USE.EXvAL 

rUSE.U[HOD 

FMISA 

ISOLU 

SAVE 

SOLVE 

FIUISB 



B.2 Macro for scaling stresses and strains to 
obtain the relaxation locus 

*DIH.DUHl.UIRdY.l 

rDIH.DU112.UIRdY.l 

tDIH.DUU3.UIRdY.1 

tDIn.DUn4.mY.l 

*DIn,Dms,mY,1 

* m o m ,  RESULT 

*D0.1.1.20 8 me number of -form load s t q s  

SEI.I.1 

EIABLE.SIGC,S.EPV 

EIABLE.EULS.EPFL.EPV 

ETIBLE.PUS,EPPL.EqV 

* G E I . ~ , a m , l . E I ~ . s I G C  I 1 corresponds to the local elwent 

*GET.aEP.am,l,EIAB,EWiS 

*GEI.PLEP.ELM,I,EI*B.PUS 

DUUl(1) . I 
Dm(11 = 20*SEQ/I 

DUU3(1) = (ELEP/1.31 

DUM(11 = (PLEP/I.Sl 

om(11 = ~O*(D~S(II + ~m4(1)1/1 

IVVRITE.DUIIS(~I,D~~(~) 

(3X.El5.8.3X.El5.8) 

.omDO 

*cFcI.m 



Appendix C 

Strain Calculations in ANSYS 

The total equivalent strain is the rum of elartic eqoivalent arrain and the plastic 

equivalent strain. In a general fonn, the equivalent amin is given by 

The equivalent strain valuer obramed Imm AXSYS does nor consider the Poisron'r 

ratio faetor. Therefoq elastic equivalent scrain >dues obtained using EPEL.EQV 

command should be divided b?- 1.3 in order to get the correct elastic equivalent stimn. 

Similarly, plastic equivalent swain values obtained using EPPL.EQV command (used 

lo noo-linear analysis) should be divided by 1.5 in order ro get the correct plascie 

equivalent strain. Their rum giws rhe r q d  total equivalent strain. 

In the GLOSS analysis, the strain dues obtained using EPEL.EQV command 

h s  to mnected according to the elements Poisson's ratio. 
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