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Abstract

Pulse-to-pulse coherent Doppler sonar is a promising tool for measuring near-
bed turbulence and sediment transport in energetic environments such as the bottom
boundary layer. However, turbulence measurements are limited by measurement noise

caused by pulse-to-pulse backscatter and by the to resolve

velocity ambiguity in the presence of measurement noise. Existing methods address

these limitations separately. This thesis presents an algorithm for velocity estimation

that optimally fuses multi-frequency and multi-transduce to simulta-

neously suppress noise and resolve velocity ambiguity. Data fusion is achieved using

a ilistic approach, whereby are combined numerically to derive
a velocity likelihood function evaluated on a discrete grid. Maximum A Posteriori

(MAP) estimation is used to produce a velocity time series in which measurement

noise is suppressed while high frequency turbulent fluctuations are retained. The algo-
rithm is validated with numerical simulations of a multi-frequency coherent Doppler
sonar.Results are presented from a turbulent round jet and a towing tank grid
turbulence experiment where both velocity ambiguity and backscatter decorrelation
were present. Time series and spectra from MAP velocity estimation are compared to

those obtained with conventional Doppler signal processing. In addition to robustly

resolving velocity ambiguity, the MAP velocity estimator is shown to lower the noise

floor in measured turbulence spectra.
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Chapter 1

Introduction

1.1 Motivation

The ocean has been described as Eartl's “final frontier” in a vision statement on ocean
exploration (National Oceanic and Atmospheric Administration, 2000). The search
for new insight and understanding is motivated by the fact that our environmental

and economic security depends critically on the ocean and the freshwater bodies that

drain into it. As the vast majority of the ocean is unknown and unexplored, there

is great potential for scientific discovery beneath the sea surface (McNutt, 2002).
The development of remote and in situ sensors forms a cornerstone of this vision for
exploring ocean dynamics and interactions at new scales.

It has long been known that sound waves propagate well in water, whereas light

and other electromagnetic waves attenuate rapidly with depth (Urick, 1983, chap. 1).

The backscatter, or echo, from transmitted unde ound contains information

water

about the location, size, distribution, and velocity of objects and organisms either



suspended in the water column or resting on the seabed. Analysis of underwater
sound propagation can also be used to infer properties of the medium, such as its
temperature, drift speed, and stratification, as well as geophysical properties of the
seabed (Medwin and Clay, 1998, chap. 1). Underwater acoustics is therefore an ideal
tool for remote sensing in the ocean and in freshwater bodies such as lakes, rivers,
and streams.

Pulse-to-pulse coherent Doppler sonar has been widely used to study transport

and mixing proces

es in the ocean. Examples include tidal flows (Lhermitte, 1983;
Lu and Lueck, 1999a; Souza et al., 2004), surface boundary layer processes (Gargett,
1989), surface wave breaking (Veron and Melville, 1999; Gemmrich and Farmer,
2004), internal waves (Plueddemann, 1992; Scotti and Pineda, 2004; Bourgault et al.,
2007), sediment transport (Smyth et al., 2002; Williams et al., 2003), and turbulence
measurement. (Lohrmann et al., 1990; Stacey et al., 1999; Trowbridge and Elgar,

2001; Rippeth et al,, 2002). High frequency (1 to 10 MHz) coherent Doppler sonar

g near-hed profiles of shear stress and sediment flux

& promising tool for obta
in the ocean bottom boundary layer (Grant and Madsen, 1986; Thorne and Hanes,
2002). Recent studies have focused on the estimation of bottom friction from near-
bed turbulence profiles (Smyth and Hay, 2003; Newgard and Hay, 2007; Hay, 2008).
“oherent Doppler sonar has also been used in freshwater applications such as river

discharge measurement (Lane et al., 1998), open channel flow (Lhermitte and Lem-

min, 199

Voulgaris and Trowbridge, 1998), and the study of internal waves in lakes
(Umlauf and Lemmin, 2005).
‘The performance and limitations of coherent Doppler sonar have been extensively

explored through numerical simulations (Mo and Cobbold, 1992; Zhang et al., 1994;

2




Zedel, 2008) and in the laboratory (Garbini et al., 1082b; Zedel et al., 1096; Lemmin
and Rolland, 1997; Voulgaris and Trowbridge, 1998; Zedel and Hay, 1999; Veron
and Melville, 1999; Zedel and Hay, 2002). Measurement errors have been found to
be caused by pulse-to-pulse backseatter decorrelation from (i) scatterer advection

shear and turbulence within the sample

through the sample volume, (ii) velocity
volume, (iii) phase distortion of the transmitted wave, and (iv) electronic noise in
the receiver circuitry (Zedel et al., 1996; Hurther and Lemmin, 2001). Measurement
errors introduce biases when calculating turbulence statistics from the fluctuating
component of velocity measurements (Lu and Lueck, 1999b; Hay, 2008). Coherent
Doppler sonar measurements are also limited by the existence of range and velocity
ambiguities (Lhermitte and Serafin, 1984). In particular, velocity aliasing oceurs
when the radial component of scatterer velocity exceeds one quarter wavelength per
pulse-to-pulse interval (a Nyquist sampling criterion).

Multi-frequency coherent Doppler sonar is a recent development where multiple
aicoustic carrier frequencies are transmitted simultaneously using a wide bandwidth

acoustic transducer. Measurements from multiple receiver channels can be combined

to resolve velocity ambiguity and reduce measurement errors. In medical ultrasound,
 multi-frequency approach has been used for both noise reduction (Eriksson et al.,
1995) and velocity ambiguity resolution (Nitzpon et al., 1995). A profiling sonar
developed for sediment transport applications employs four carrier frequencies and
five acoustic transducers (Hay et al., 2008). Multi-frequency acoustic backscatter has
also been used to infer the concentration and size of suspended sediment particles
(Hay, 1991; Hay and Sheng, 1992). Thus, multi-frequency coherent Doppler sonar

has the potential to obtain simultancous profiles of sediment velocity, concentration,



and particle size using a single instrument.

The use of multiple carrier frequencies in coherent Doppler sonar produces redun-

dant velocity measurements. For example, the sonar described in Hay et al. (2008)

collects twenty Doppler for three of velocity.

An optimal algorithm for velocity estimation would extract all of the information
available in redundant Doppler measurements while simultancously resolving velocity
ambiguity and attenuating measurement noise. Optimal velocity estimation would

be especially useful for measurements in highly turbulent flow exhibiting backscatter

decorrelation and velocity ambiguity.
The estimator presented in this thesis has been developed with the aim of im-
proving instrumentation for studying near-bed turbulence and sediment dynamics

in coastal areas. New instrumentation capabilities would also benefit researchers in

related fields since transport processes in the benthic boundary layer are of biological,
chemical, and geophysical importance (Lisle, 1989; Boudreau and Jorgensen, 2001;
Jackson et al., 2002). Velocity ambiguity and measurement noise are also present in

Doppler weather radar (Doviak et al., 1979), coherent Doppler lidar (Menzies and

Hardesty, 1989), and medical ultrasound (York and Kim, 1999). New methods for

il

frequency Doppler signal processing may benefit these related fields as well.




1.2 Background

1.2.1 Sediment transport

‘The study of sediment transport in water sheds light on many forces that have shaped
the Earths topography. As rivers empty into the ocean, they deposit large quantities

of sediment, forming river deltas that are rich in topsoil. These regions have supported

some of the earliest, civilizations such as the Egyptians at the Nile River delta and the

Chinese at the Yangtze River delta (Graf, 1971). Even today these regions remain
some of the most fertile on the planct. On geological time scales, sediment transport

determines the evolution of river bed:

. estuaries, and coast lines.

Sedimentation plays a significant role in many present day engincering endeav-
ours (Chien and Wan, 1999). Deposition of sediment in harbours and waterways
reduces shipping capacity and leads to increased dredging costs. In many parts of
the world, irrigation canals are indispensable for agriculture. Sedimentation in canal
systems decreases irrigation capacity over time. Reservoirs built for flood control and
hydroelectric power generation also lose capacity due to accumulation of sediment.
Recognition of the effects of sediment transport has led to soil conservation practices
and changes to design processes used in civil engincering (Shalash, 1982).

When sediment transport is measured, the total transport is often divided into
three components: wash load, bed load, and suspended load (Fredsoe and Deigaard,
1992, chap. 7). Wash load consists of very fine particles that are carried by the flow

essentially in permanent suspension. Thus, particles in the wash load may be of a

different, composition than the bed material since there is little to no interaction with



the bottom. It is useful to think of wash load as part of the fluid (such as water
vapour in air) and neglect its contribution when considering entrainment, transport,
and deposition. Bed load, in contrast, consists of much larger particles that roll or
slide along in continuous contact with the bed. Dynamics of the bed load are primarily
determined by shear stress of the flow acting on the bed. Suspended load consists

of intermediate size particles that make intermittent contact with the bottom. Fluid

turbulence serves to dislodge particles from the bed into the suspended load, where
they are transported some distance before being deposited downstream.
Empirical correlations for predicted bed load and suspended load have been de-

veloped under idealized conditions in the laboratory. For

ample, an experiment

might consider steady flow over a flat bed of uniform particles (Van Rijn, 1981)

However, there are several complicating factors in a natural environment such as a

river o constal aren. Flow may at times be unsteady, the bed may be uneven or

sloped, particles may vary widely in composition and size, and sediment, transport

may be complicated by wave action in addition to steady fluid flow (Nielsen, 1992,

chap. 1). Therefore, correlations developed in the laboratory provide at best a rough

prediction of sediment transport in a natural environment. Direct measurement is

essary to obtain accuracy better than an order of magnitude approximation (Grant

and Madsen, 1986).

1.2.2 Measurement techniques

Measurement techniques for sediment transport can be divided into in situ measure-

ments and remote sensing techniques. fn situ measurements consist of inserting a




probe or sensor into the flow to intercept sediment particles in a localized sampling

region. Remote sensing techniques, on the other hand, encompass non-intrusive

measurements such as optical or acoustic methods.

Mechanical instruments are often used to measure transport in the suspended
load (Van Rijn, 2007, chap. 5). The challenge in making accurate measurements
arises from the fact that a probe will inevitably disturb the flow. The probe must
be designed so that the intake velocity matches the (possibly unknown) local flow

velocity. Therefore, any probe will only make accurate concentration measurements

over a limited range.

Optical sensors operate under the principle that suspended sediment particles will

scatter light that is transmitted into the water. The principal advantage of optical

ing & time history of concentration

sensors is that they provide a means of obtai

without disturbing the flow at the point of measurement, which is a significant
advantage compared to mechanical instruments. Optical transmission and optical
backscatter sensors transmit light from a high-intensity source into the water and

weasure the intensity of light transmitted through a sample volume or backscattered

from a sample volume using a photodetector. Calibration is required to relate inten-

sity measurements at the photodetector to cither the mass or volume concentration

of sediment partices.

Optical backscatter sensors are particularly useful for sediment concentration

measurement since the transmitter and detector can be combined in a single sensor

head, resulting in a compact measurement unit. By time-gating the signal from the
photodetector, the sensor can be tuned to operate over a large range of distances

Optical devices have been found to be reliable since there are no moving parts and




1o small ports or nozzles that could clog easily.

The main disadvantage of optical backseatter (and transmission) sensors is that
calibration strongly depends on particle size (Van Rijn, 2007, chap. 5). Calibration
for cach experiment or field trial must be performed for the expected particle size

in the flow. This means that optical backscatter sensors are not well-suited to flows

containing a wide range of sediment particle sizes (such as a mixture of clay, silt, and
sand). Also, a sufficient number of scatterers must be present to produce a signal
that exceeds the noise level of the photodetector.

Acoustic

nsors operate in a similar fashion as optical sensors in that energy
is transmitted into the flow, scattered from sediment, particles, and measured by a

detector. The speed of sound in water is approximately 1500 m 5!, compared to

3% 10° m s for light. Duc to the relatively low propagation speed of acoustic

energy, it is possible to sample backscatter intensity sufficiently quickly to give a

profile of concentration versus range. Thus, acoustic sensors are especially uscful for

boundary layer studies where it is of interest to measure the concentration profile as
a function of height above the bed (Thorne and Hanes, 2002).

A second limitation of optical backscatter sensors is that they only provide a

measurement of sediment. concentration. In order to calculate the rate of sediment

transport, it is necessary to know or measure the flow velocity through the sample

volume. A flow meter or velocity probe placed into the flow may disturb the flow of
sediment through the sample volume, or it may interfere with optical measurement of

nent

concentration. With an acoustic sensor, backscatter intensity is related to sedi
concentration, while the Doppler shift of the transmitted waveform is related to the

mean particle velocity. Furthermore, intensity and Doppler shift may be sampled




to determine the i sediment flux.

The Doppler shift is a change in backscatter frequency (as compared to the trans-
mitted frequency) caused by particles moving toward or away from the transmitter
and receiver. A commonly used configuration consists of a stationary sensor mea-
suring the speed of particles transported by a moving fluid. However, the sensor
platform may also be moving, for example in the case of shipborne measurements. In

all cases, the sensor measures the relative motion between the transmitter, scatterers,

and receiver. In order to measure the magnitude and direction of sediment flux

in a transverse flow, it is necessary to employ a minimum of three acoustic beams

oriented i to resolve three spatial f velocity. For example, a

Doppler velacimeter manufactured by Nortek uses four convergent beams to measure

backscatter intensity and three components of velocity in a small sample volume
(Nortek, 2009).

Acoustic sensors have two more advantag

s: they are rugged, and they can profile
right up to a boundary such as the seabed. This makes it possible to collect acoustic

sediment transport measurements in harsh environments. For example, in the tidal

inlet. experiment described in Williams et al. (2003), acoustic sensors were used to

measure velocity while separate acoustic backscatter sensors were employed to mea-

sure concentration. Since acoustic sensors can operate without interference in different

or that

frequency ranges, it is possible to choose an operating frequency for each sen

on measurement).

is optimal for the task at hand (e.g. velocity or concentrati

For the majority of sand and silt particles in suspension, the acoustic wavelength

s can be used to measure

lo diameter. Lower frequency se

i greater than the par

the concentration of larger particles in suspension. Like optical sensors, calibration

9




is required to relate backscatter intensity to concentration. Multi-frequency acoustic
systems have been developed to account for flows containing a distribution of particle
sizes by exploiting the frequency dependence of the scattering cross section (Hay and
Sheng, 1092), e.g. f* for Rayleigh scattering (Pierce, 1989, chap. 9). At high frequen-
cies, the scattering cross section approaches the projected area of the particle whereas
acoustic absorption in water increases as f2 (Medwin and Clay, 1998, chap. 3). Thus,
frequencies higher than 10 MHz are not often used in acoustic sensing of sediment

transport due to the increasingly high absorption of acoustic energy at high frequency.

1.3 Literature review

Many of the signal processing techniques used in coherent Doppler sonar were origi-
nally developed for Doppler weather radar. Coherent Doppler systems have also been
actively developed within the biomedical engincering community. This literature
review therefore draws upon references from the fields of weather radar and medical
ultrasound in addition to research that has been performed in oceanography and
hydraulic engineering.

Methods for estimating mean scatterer velocity from observed Doppler frequency
spectra are deseribed in Section 1.3.1. In particular, the commonly used covariance

method is discussed in detail, along with some of its limitations. Previous studies

concerning improved Doppler velocity estimation have focused on noise suppression
and velocity ambiguity resolution. These techniques are reviewed in Sections 1.3.2
and 1.3.3, respectively. Although Maximum A Posteriori (MAP) velocity estimation

for Doppler sonar is a novel concept, there are similarities with other applications

10



of Bayesian estimation such as Kalman filtering, the forward-backward algorithm for
hidden Markov models, and belief propagation. These related topics are reviewed in
Section 1.3.4. In this thesis, performarce of the MAP velocity estimator s evaluated

via laboratory observations of grid turbulence and a turbulent jet. These flows have

been extensively studied both theorerically and experimentally. Their significant

properties are summarized in Section 1.3.5.

1.3.1 Doppler velocity estimation

A backscatter sonar transmits an acoustic signal into the water and records the
backscatter, or echo, from particles, bubbles, and organic matter suspended in the
water column. When scatterers are moving with radial speed v toward the sonar,
the Doppler effect causes a transmitted acoustic wave of frequency fo to return as an

echo with received frequency fg given by (Medwin and Clay, 1998, chap. 3)

(11

where ¢ is the speed of sound wave propagation (approximately 1500 m s~ in water).
For the present discussion of basic concepts, the simple backscatter geometry of a
collocated transmitter and receiver is considered. In Section 22, a more general
version of (1.1) is derived for the case of a bistatic geometry (i.e. separated transmitter
and receiver). For oceanographic applications, the speed v is typically on the order
of 1 ms™". Therefore, (1.1) can be approximated with a Taylor series

%ml+2.r+0(r2} (1.2)




when 7 < 1. Letting z = v/c and retaining only first order terms yields

2
JR:fn(|+7)» (L3)
Equation (1.3) may be written in terms of the Doppler frequency shift fp = fi — fo,
2

o= )

Scatterer velocity can therefore be determined by measuring the Doppler frequer

shift of the reccived signal via.

fo (1.5)

Fourier analysis is one tool which is commonly used to examine the frequency

content of a signal. Spectral estimation has also been performed using time domain
methods (Woodman and Hagfors, 1969; Dotti et al., 1976; Barber et al., 1985; Bon-
nefous et al., 1986) and autoregressive parameter estimation (Marple, 1980; Ahn and
Park, 1991). The performance and merits of various spectral estimation techniques
have been compared for applications in Doppler weather radar (Sirmans and Bum-
garner, 1975), coherent, Doppler sonar (Lhermitte and Serafin, 1984), and medical

ultrasound (Vaitkus and Cobbold, 1988; Vaitkus et al., 1988; David et al., 1991).

For in 1y and hydraulic engineering, the covariance method

(Miller and Rochwarger, 1972) has been widely used due to its low computational
complexity and unbiased estimation in the presence of white noise (Lhermitte and
Lemmin, 1994)

Miller and Rochwarger (1972) analyzed the performance of the covariance method

12



in the presence of additive Gaussian noise. The backscatter signal was modelled as a.
complex Gaussian wide-sense stationary (WSS) stochastic process with autocorrela-

tion function R(t). The mean Doppler frequency fj, and spectral variance of of the

signal were shown to be related to the autocorrelation function as follows:

— 1 R(0) .
D= 3% R(0) 6
1 [Roy  (RO))"
2 — SN o [ e
1= "5 | RO) (n(n)) . an
When the autocorrelation function is written in polar form
R(t) = A(t) 0 (1.8)

where A and ¢ represent the amplitude and phase (in radians), respectively, the mean

Doppler frequency and spectral variance take the form

o % (1.9)
1 A(0)
%=~ 20) (1.10)

Au alternative to direct measurement of Doppler frequency is the pulse-to-pulse
colierent approach, where the sonar transmits acoustic pulses with constant phase

ems measure changes in particle displacement

offset. In actuality, pulsed Doppler
rather than a frequency shift described by the classical Doppler effect (Cobbold,

2007, chap. 10). However, scatterer motion causes a shift in the mean frequency of

13




the pulse-to-pulse time series with the same velocity-frequency relationship as in (1.4)
(Newhouse and Amir, 1983; Thomas and Leeman, 1993).

“Thus. the pulse-to-pulse autocorrelztion of the backscatter signal may be measured
to approximate (1.9) and (1.10) with finite differences

0(1) 010) (L)
o i AR _1-p
o= Zle’[ - 20y = 2 (112)

The time interval between successive pulses is denoted by 7. When written with no
time dependence, 6 denotes autocorrelation phase evaluated at a lag of 7. Also, p
denotes the normalized autocorrelation coefficient A(r)/A(0). With these approxi-
mations, radial velocity and its corresponding RMS uncertainty o, are given by

c
= (113)
o= “,o"/mf (114)

In practice, autocorrelation is estimated from complex-valued backscatter samples
1 corresponding to an ensemble of M = L — 1 pulse-pairs (Zric, 1977),

Ri) = R() = ‘,Z.mﬂ (1.15)

where * denotes complex conjugation. The phase @ of the autocorrelation estimate



R(r) is determined from real and imaginary components as follows:

q::él?(r):nm"mv (1.16)
R(R(7))
Also, the autocorrelation magnitude can be estimated as (Zedel et al., 1996)
(1.17)

The triangle inequality ensures that 0 < 5 < 1.

One limitation of the covariance method is that, strictly speaking, finite difference

approximations in (1.11) and (1.12) are only valid in the limit T — 0. However, the

pulse transmission interval cannot be made arbitrarily small. Range measurements

become ambiguous if backscatter at a given time is due to echoes from two or more
acoustic transmissions. When range anbiguity is addressed, for example with phase-
coded pulses (Sachidananda and Zrnié, 1999), the requirement for  to be finite in
(1.13) implies that & — 0 as 7 — 0. Therefore, measurement errors in the phase
resolving circuitry of the sonar become large relative to ¢, causing the RMS velocity
error to vary as 1/7 (Zedel et al., 1996).

A long pulse-to-pulse interval, on the other hand, exacerbates the problem of
backscatter decorrelation. Equation {1.14) predicts that velocity uncertainty will

crease in the presence of backscatter decorrelation, as quantified by 1— p. An

increase in measurement noise due to backseatter decorrelation has been quantified
experimentally (Zedel et al., 1996)

Another limitation of the covariance method is that the autocorrelation phase



angle can only be measured modulo 27 radians. For example, a phase angle interval

of [~,7] in (1.13) implies an ambiguity velocity v, of (Lhermitte and Serafin, 1984)

.

=i (1.18)

In other words, seatterer velocities of v, and —v, are indistinguishable since the
corresponding phase shifts of 7 and —7 are equivalent. Velocity ambiguity is a
characteristic of coherent Doppler systems (whether or not the covariance method

is used) since the Doppler frequency spectrum is sampled at a rate of 1/7 samples

per second. Therefore, Doppler frequencies can only be measured unambiguously up

to the Nyquist frequency (Mitra, 1998, chap. 5)

1
L= 1.19
1ol < 5 (119)

quivalent to (1.18) due to the velocity-frequency relationship expressed in

1.3.2  Measurement noise suppression

Doppler measurement errors consist of both intermittent spurious measurements

(“spikes”) and continuous random fluctuations (“noise”). Spikes tend to be relatively

rare and obviously distinct from good data, whereas noise is ubiquitous and difficult to

separate from real fluctuating Both types of the measured
velocity variance to exceed the true variance of scatterer velocity. In order to obtain

accurate statistics, for example in turbulence measurement, it is necessary to suppress



spikes and noise. Averaging and low pass filtering can be applied to attenuate

measurement errors. However, there is a corresponding reduction in effective sample
rate and bandwidth. The methods described below aim to improve velocity estimates
while prescrving the sample rate and bandwidth of the original data.

“Despiking’ consists of identifying spurious measurements and replacing these
values with interpolated data. For example, in a surf zone experiment (Elgar et al.,
2005), empirical thresholds were applied to reject Doppler velocimeter measurements
based on low values of signal-to-noise ratio (SNR), autocorrelation coefficient, and cor-
relation with a collocated pressure sensor. In another application, coherent Doppler
sonar observations of near-bed turbulence were subject to a despiking algorithm that

rejected on average 2% of the measurements (Hay, 2008). Many heuristic despiking

algorithms are simple yet effective; however, there is always the potential to miss some

spikes or to inadvertently remove valid data points. In an approach known as phase-
space thresholding (Goring and Nikora, 2002), velocity measurements and their first
and second derivatives (as estimated from time series differencing) were represented
4 points in a threc-dimensional space. Standard deviations of all three variables
were used to define an ellipsoidal threshold surface where points lying outside the
ellipsoid were replaced using cubic interpolation of the time series. When phase-space
thresholding and four other despiking algorithms were applied to a contaminated data
set, the resulting standard deviation was found to depend strongly on the method
that was used.

Doppler noise suppression can be achieved when redundant measurements with
uncorrelated measurement errors are available. An example of this approach is the

use of two partially overlapping or non-overlapping sample domains (Garbini et al.,

17



1982a). Velocity measurements from two closely spaced regions along the acoustic
beam were cross-corrclated to attenuate uncorrelated noise sources. When sample

regions overlapped, noi

sources were partially correlated and therefore only partially
attenuated. In turbulent flow, spatial decorrelation of velocity limits the allowable
sample volume separation. Although the spatial cross-correlation method was shown

to improve velocity measurements for a single beam sonar (Garbini

al., 1982b), the
method has not been widely used for configurations employing multiple receivers.
Redundant. measurements with uncorrelated errors may also be obtained with
additional acoustic receivers. By using four receivers to measure three components
of velocity, redundant vertical velocity caleulations have been used to reduce the

noise contribution in turbulence statisti

s (Hurther and Lemmin, 2001). With a
refinement of this approach that determines redundant values for each receiver, an

order of magnitude noise level reduction was demonstrated compared to uncorrected

measurements (Blanckaert and Lemmin, 2006). Noise reduction for one-dimensional

flow has also been considered by placing two receivers at different angles to the flow.
In a simulation of Doppler ultrasound, noise sources were found to decorrelate when
the receivers were oriented as little as 5° apart (Jones and Krishnamurthy, 2002). Re-

dundan receivers have also been used in four-beam acoustic Doppler current profilers

(Rowe et al., 1986) and a five-transduce

profiling sonar (Hay et al., 2008).

Another method for obtaining redundant velocity measurements with uncorrelated

o sources Involves si ion of two closely spaced acoustic carrier

frequencies (Hurther and Lemmin, 2008). Experiments

in oscillating grid turbulence
showed that a carrier frequency shift of 10% was sufficient to achieve an order of

magnitude in nois

» suppression



1.3.3  Velocity ambiguity resolution

As discussed in Section 1.3.1, velocity ambiguity is related to the Nyquist sampling

criterion when a frequency shift due to scatterer motion is measured. Tn principle,
velocity estimators base on time domain cross-correlation are not limited by velocity

ambiguity (Bonnefous et al., 1986). However, in practice, the maximum achievable

velocity i

limited since correlation methods are prone to artifacts arising from false

peaks in the cross-correlat

on function (Jensen, 1993).

Alinsing errors produce

spurious data artifacts when the autocorrelation phasc
jumps discontinuously by +2. Conscquently, unresolved velocity ambiguity leads
to overestimation of the velocity variance in turbulence measurement. When using
the covariance method for mean frequency estimation, velocity ambiguity may be
avoided by choosing a sufficiently short pulse-to-pulse interval, or it may be resolved
using existing methods from any of the following four categories: (i) temporal con-
tinuity, (i) spatial continuity, (iii) staggered pulse repetition frequency (PRF), and
(iv) multiple carrier frequencies.

From (1.13), autocorrelation phase is related to the pulse-to-pulse interval 7 by

an fy

(1.20)

Therefore, velocity ambiguity may be avoided by choosing T to be

sufficiently small
so that phase is constrained to lie within the interval [~7,7). However, a short
pulse interval often results in range ambiguity. As discussed in Section 1.3.1, a short

pulse interval also exacerbates the Doppler noise problem. When veloci

's are slowly



time-varying, as in many current measurement applications, averaging can be used
10 obtain satisfactory noise suppression.

Velocity ambiguity may be resolved by invoking the assumption that the velocity

is continuous in time and space. When using the covariance method, multiples

of 27 have been added to the ion phase to minimize discontinuities in

time (Smyth and Hay, 2003), space (Bergen and Albers, 1988; Eilts and Smith,
1990; Tabray et al., 2001; Gong et al., 2003; Gao and Droegemeier, 2004), or both
simultaneously (Veron and Melville, 1999; James and Houze, 2001; Franca and Lem-

min, 2006). In medical ultrasound applications employing the Fourier transform,

ambiguous Doppler spectra have been successfully corrected by tracking changes

in time (Tortoli, 1989) and across spatial samples (Torp and Kristoffersen, 1995).

Two difficulties arise in applying temporal and spatial continuity methods. First,

is unambiguous, such

the algorithm must be initialized at a point where veloc
as near a solid boundary. Otherwise, a constant offset, might remain even though

discontinuities have been eliminated. Second, the autocorrelation phase or Doppler

spectrum may change rapidly if the flow is highly sheared or turbulent, or if a burst of

scatterer concentration)

low quality data is recorded (for example, in pockets of low
Continuity methods therefore frequently suffer from a lack of robustness under highly
time-varying conditions.

Another method for velocity ambiguity resolution involves varying the pulse-to-

pulse interval 7 to obtain two or more staggered pulse repetition frequencies. The

covariance method is applied to each data stream separately. From (1.20), the phase
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¢ and pulse interval 7; for each data stream are related by

0= Amforis. (121)

‘When values ¢; are measured in a fixed interval such as [~ 7], multiple offsets of 27
can be determined to best satisfy the linear relationship in (1.21). A dual-PRF ap-

proach has been widely used in Doppler weather radar (Doviak et al., 1979; Holleman

and Beekhui

2003; Joe and May, 2003) and coherent Doppler sonar (Lhermitte and

Serafin, 1984; Lohrmann et al., 1990). The main disadvantage with dual- and multi-
PRF schemes is that additional sampling time is required, thus lowering the maximum
achicvable sample rate. Another difficulty arises if large measurement errors obscure
the correct linear fit to (1.21).

The multi-frequency approach to velocity ambiguity resolution involves transmit-

ting pulses with multiple carrier frequencies. As in the staggered PRF method, the

covariance method may be applied to each data stream separately to obtain phase

shifts ¢; proportional to carrier frequencies f;,

¢ =dnf; (1.22)

Once again, velocity ambiguity may be resolved by determining phase offsets to best

satisfy the linear relationship in (1.22). One advantage compared to the staggered

PRF method is that multiple carrier frequencies can be transmitted simultaneously
using a wide bandwidth transducer so that there is no sample rate reduction. Multi-

frequency coherent Doppler sonar has been used in medical ultrasound (Nitzpon et al.,
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1995) and in a profiling sonar developed for sediment transport applications (Hay
et al., 2008). For two carrier frequencies f < f;, (1.22) implies that

cléj-9) _ ¢ Bo

S W, for  SAf .z
If the phase difference A is constrained to lie in the interval [~ 7], the multi-
frequency ambiguity velocity is given by

v, (1.24)

_ e
= S

where Af is the frequency difference f; — f;. Letting fo denote the nominal centre
frequency of the acoustic transducer, (1.24) represents an ambiguity velocity im-
provement by a factor of fo/Af compared to (1.18). Extensions to multiple (i.e.
more than two) frequencies have been developed based on nonlinear least squares
estimation (Zhang et al., 2004), adaptive filtering (Zhang et al., 2005), and by phase
extrapolation based on the slope A¢/Af (Zedel and Hay, 2010). As noted in Zedel
and Hay (2010), the ambiguity limit cannot be raised arbitrarily in the limit Af — 0

since, in practice, phase measurements are corrupted with noise.

1.3.4 Bayesian estimation

Maximum A Posteriori (MAP) estimation is one of several parameter estimation
methods based on Bayesian inference (Kay, 1993, chap. 10). In contrast with classical
statistical estimation, Bayesian methods treat a parameter  to be estimated as a ran-

dom variable rather than a deterministic but unknown constant (Box and Tiao, 1973).
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The motivation for the Bayesian approach is that prior knowledge of the probability
density function (PDF) p(f) may be used to improve estimator performance. Once
observations x have been made, Bayes' theorem permits calculation of the posterior
PDF p(#|x) which expresses the likelihood of a particular value of § given that x
have been observed. The estimated value § is then calculated as a function of the
posterior PDF, for example as the posterior mean, median, or maximum value.

The MAP velocity estimator developed in this thesis shares many conceptual
similarities with Kalman filtering. A Kalman filter is a sequential estimator that
combines measurements with prior knowledge from a linear dynamic model to achieve
a minimum mean square error (MMSE) optimal estimate (Kalman, 1960). In the
discrete-time filtering problem, the time-varying parameter 6, is estimated from mea-
surements X, ..., . A useful property of the Kalman filter is that the estimate 6,
incorporates all of the information contained in the measurements xi, ..., X, 1. The
estimator may therefore be implemented in the recursive form 6, = E(6, | fn-1,%,)
where E is the expectation operator. A dynamic model is used to generate a pre-
diction of 6, from @,_, which is then corrected by the measurement x,. For each
iteration in the sequence, the filter produces its own performance measure via. the
estimated covariance of f. If the unknown parameter and measurement noise are
assumed to have a jointly Gaussian PDF, the Kalman filter can be interpreted as a

Bayesian MMSE estimator (Meinhold and Singpurwalla, 1983). Alternatively, if only

the first and second moments (mean and covariance) of the PDF are specified, then
the Kalman filter is optimal in the class of linear estimators (Kay, 1993, chap. 13).
Like any other causal filter, the Kalman filter tends to exhibit estimator lag when

tracking a time-varying parameter. If estimation can be deferred until all measure-
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ments have been collected, then the smoothing problem can be solved to estimate f,

fromxy, ..., xy wheren < N. A Kalman smoother can be implemented by combining
the result from a forward filter operating on the measurements Xy, .., X, with the

output of a filter operating backward in time on the measurements X,  (Fraser

and Potter, 1969). Together, the forward and backward filters use all of the available

data to optimally estimate ,. The corresponding smoother uncertainty is less than
that obtained by forward or backward filtering alone (Gelb, 1974, chap. 5).

Two other Bayesian estimation methods related to MAP velocity estimation ar

the forward-backward algorithm for hidden Markov models (Rabiner and Juang,
1986) and belief propagation (Pearl, 1986). Like the Kalman smoother, the forward-
backward algorithm separately processes measurements forward from x; to xy and

backward from xy to x;. The results from each pass are then combined to calculate

the probability of the measurement sequence given an underlying hidden Markov
model. Belief propagation s a message passing algorithm for network-based models
consisting of random variable nodes in a graph. Relationships between variables

are quantified via conditional probabilities along edges of the graph. For example,

measurements of a velocity time series could be modelled using a graph of nodes

connected in a line segment to express their temporal relationship. In the initialization

phase of belief propagation, prior knowledge and nodal measurements are used to

ne an initial belief function that expresses the likelihood of a particular state.

def

are then passed iteratively between nodes until

Conditional probability “messag

the network converges to a most likely state. In addition to its original applications

in information theory and artificial intelligence, belief propagation has been used for

surfiace reconstruction in computer vision (Petrovic et al., 2001) and bathymetric

2



synthetic aperture sonar (Barclay ef

¢ al., 2003; Hayes and Barclay, 2003). Conditional
probabilities between nodes (i.c. image pixels) express the expected continuity of the

physical surface,

1.3.5 Grid turbulence and the turbulent round jet

In laboratory turbulent flows, prior experimental results are available for compar-

ison with coherent Doppler sonar. For example, grid turbulence has been studied

extensively using hot-wire anemometry (Taylor, 1035b; Batchelor and Townsend,

1947; Comte-Bellot and Corrsin, 1966; Mohamed and LaRue, 1990), lnser Doppler
velocimetry (LDV) (George and Lumley, 1973), and particle image velocimetry (PIV)
(Westerweel et al., 1997). Likewise, the turbulent round jet has been studied using
hot-wire anemometry (Gibson, 1963; Wygnanski and Fiedler, 1969; Crow and Cham-
pagne, 1971; Panchapakesan and Lumley, 1993), hot-film anemometry (Zedel and
Hay, 1999), LDV (Husscin et al., 1004), and PIV (Westerweel et al., 2002).

Grid turbulence is formed by passing a steady flow through a rectangular grid of

wires or bars spaced a distance D apart. Within a downstream distance of appro

mately 20D, wakes from individual grid elements merge to form a turbulent flow that
is approximately isotropic and homogeneous, and therefore amenable to theoretical
analysis (Taylor, 1935a). In the “initial period” of decay beginning at 20D (Batchelor
and Townsend, 1948a), turbulent kinetic energy decays downstream according to a
universal self-similar power law independent of Reynolds number, mesh size, solidity,
grid rod shape, and surface roughness (Mohamed and LaRue, 1990). In the “final

period” of decay beyond a distance of approximately 400D, inertial forces become



negligible and viscous forces dominate. The final period of decay has also been shown
to exhibit self-similar behaviour (Batchelor and Townsend, 1948b).

Discharge from a round jet into an ambient fluid produces a turbulent flow that

is statistically stationary and axisymmetric. Symmetry dictates that Reynolds shear

stresses are zero on the jet centre line. Throughout the flow, however, the Reynolds

stress tensor is anisotropic and inhomogencous: shear stress is non-zero away from

the axis of symmetry, and streamwise normal stress exceeds transverse normal stress
(Hussein et al., 1994). Turbulent transport of momentum causes the jet to entrain

fluid and spread with downstream distance. A key observation is that upon non-

dimensionalization, cross-jet velocity profiles collapse to a single selfsimilar profile

(Wygnanski and Fiedler, 1969).

1.4 Objectives

Existing methods for Doppler velocity estimation have considered noise suppression
and velocity ambiguity separately. However, the presence of measurement noise com-

plicates ambiguity resolution, and vice versa, velocity ambiguity presents a challenge

for noise suppression methods. The primary objective of this thesis is to apply MAP
estimation to multi-frequency coherent Doppler sonar for the purpose of resolving

velocity ambiguity and i noise rather than

separately. It will then be possible to effectively use coherent Doppler sonar under
challenging conditions where both backscatter decorrelation and velocity ambiguity

are present, such as in a highly turbulent boundary layer. In Section 1.3.2, it was

stated that measurements with additional receivers and multiple acoustic carrier
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frequencies can be combined to suppress noise. The resulting MAP velocity estima-
tor will therefore optimally combine redundant measurements to minimize velocity

uncertainty.

The MAP velocity estimator will share the following similarities with a Kalman

smoother: (i) the estimator processes a time serics sequentially using a recursive

formulation, (ii) a model is used to provide prior statistical knowledge, (iii) the
estimator produces its own performance measure, and (iv) estimator lag is eliminated
via forward and backward filtering. However, unlike the Kalman smoother, the MAP
velocity estimator will make use of non-Gaussian PDFs and it will be inherently
nonlinear. The motivation for using MAP estimation is that velocity ambiguity causes
the velocity likelihood function to be multi-modal; thus a Gaussian representation is
inappropriate. Also, secondary peaks in the likelihood function would bias a MMSE
estimator, whereas MAP estimation correctly selects the most likely peak of the
posterior PDF.

This thesis will develop an estimation framework that accommodates commonly

used coherent Doppler sonar geometries such as one-dimensional single beam sys-

tems, ADCPs with divergent beams, three-dimensional velocity point sensors, and

'he aim is to develop an estimator that depends solely on physical

profiling sonars.
parameters of the sonar and is free from empirically determined instrument-specific
and application-specific thresholds and constants. While the focus of this thesis is
on multi-frequency coherent Doppler sonar, the results will be equally applicable to
staggered PRF systems in light of the discussion in Section 1.3.3.

The secondary objective of this thesis is to evaluate MAP velocity estimation using

numerical simulations and laboratory experiments under realistic and challenging op-
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erating conditions. In particular, laboratory evaluation will include highly turbulent

flows with both backscatter decorrelation and vels

ity ambiguity, i.e. conditions in
which coherent Doppler sonar does not normally perform well.

The long-term goal of this work is to develop improved signal processing for

and hydraulic entation that will contribute to new insights

into the dynamics of near-bed turbulence and sediment transport.

1.5 Overview

The results of this thesis are presented in the form of four research papers. Some
relevant theory associated with MAP estimation and the Doppler shift for multistatic
(i

of the research results. Although the information in Chapter 2 is not new, it has been

multiple receiver) sonar geometrics is included in Chapter 2 prior to presentation

included as background material for Chapters 5 and 6. The research contributions of
this thesis appear in Chapters 3 to 6.
In order to optimally combine measurements, a data quality metric is needed to

appropriately weight each measurement. For coherent Doppler sonar, data quality is

evaluated using the magnitude of an autocorrelation coefficient. In Chapter 3, a new
formula is derived for the asymptotic form of the magnitude of an autocorrelation
coefficient for coherent Doppler sonar. The autocorrelation magnitude is shown
to be a biased estimator for finite pulse-pair averages and in the limit of infinite
ensemble length. However, the distribution of observed autocorrelation coefficients is
well-predicted by a Gaussian random process once the autocorrelation bias has been

removed. This work has been published in the Journal of Atmospheric and Oceanic
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Technology (Dillon et al., 2011a).
One of the inputs to the MAP velocity estimator is a family of probability distri-

butions that describe the likelihood of a particular value of velocity given observations

of autocorrelation phase and magnitude. In Chapter 4, the distribution of velocity

measurements from coherent Doppler sonar is analyzed using a combination of theory

and mumerical simulation. It is shown that the velocity distribution exhibits non-
normal behaviour for ensemble lengtlhs of less than ten pulse-pairs. Simulation results
indicate the range of autocorrelation coefficients for which perturbation analysis may
be used to predict velocity standard deviation. This work has been submitted to the
IEEE Journal of Oceanic Engineering (Dillon et al., 2011c).

In Chapter 5, the MAP velocity estimator is described and evaluated. A method
is presented for automatically determining the estimator smoothing parameter from
examination of the spectrum of a representative segment of the measurement time

series. Measurement noise

e suppression is evaluated using results from a laboratory

turbulent jet in which velocity was measured simultaneously with multi-frequency co-

herent Doppler sonar and particle image velocimetry. This work has been published in

the Proceedings of the IEEE/OES 10™ Current, Waves, and Turbulence Measurement

Works

op (Dillon et al., 2011b)
In Chapter 6, results are presented for a towing tank experiment that used a

rectangular grid to generate turbulence upstream of the sonar. It is shown that the

MAP velocity estimator simultancously resolves velocity ambiguity and suppres

measurement noise. The one-dimensional velocity estimator from Chapter 5 is gen-

eralized to higher dimensions to show how measurements from multiple transducers

may be combined probabilistically. This work has been submitted to the Journal of
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Atmospheric and Oceanic Technology (Dillon et al., 2011d). Finally, conclusions of

this thesis appear in Chapter 7, including directions for future work.

1.6 Instrumentation

Each research paper presents mumerical simulations or experimental results for a
multi-frequency coherent Doppler profiler known as the MFDop (Hay et al., 2008).
The geometry of this multistatic sonar is shown schematically in Figures 2.2, 3.4,
5.2, and 6.4. The sonar normally operates in a downward looking configuration to
measure horizontal and vertical velocity components as close as possible to a bottom

boundary such as the seabed. Velocity components are measured along a vertical

profile extending from about 30 to 50 cm below the transmitter. To resolve the vertical

bottom boundary layer flows, the sonar vertical resolution is

gradients observed i
on the order of 3 to 6 mm whereas the horizontal resolution is approximately 2 cm.

The design trade-offs and the rationale for the chosen sample volume geometry are

discussed in Hay et al. (2008).

Each MFDop acoustic transducer is a flat circular disk with a diameter of ap-

proximately 2 cm. Such disk tr are ively simple to

ignals from

but have characteristic sidelobes that can introduce deceptive (sidelobe)

strong scattering surfaces. In the turbulent jet and grid turbulence experiments,

the sonar was oriented to avoid receiving spurious signals from transducer sidelobes
or from multipath propagation, for example by tilting the sonar relative to a solid

boundary to avoid receiving reflected signals.

ncy interval

“Transducer and receiver bandwidth are specified in terms of the freques
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Pressure (arbitrary units)
o

10 15
Time (us)

Figure 1.1: Example multi-froquency transmit pulse for carrier frequencies of 1.2, 1
1.8, and 2.1 MHz. Each component is 4 s in duration. The effects of the transducer
bandwidth (1 MHz) and centre frequency (1.7 MHz) have been simulated by applying
a first order bandpass filter to a constant amplitude waveform.

between half power points. Properties of the transducers were common throughout

itre

all simulations and experiments, namely a bandwidth of 1 MHz and a nominal c
frequency of 1.7 MHz. However, the receiver demodulation bandwidth was adjusted
to match the frequency content of the transmitted pulses. A four-tone transmit signal
such as the one shown in Figure 1.1 was used throughout the thesis. The pulse length
and carrier frequencies for each simulation or experiment are listed in the relevant

sections (e.g. Tables 3.1, 4.1, 5.1, and 6.1).
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Chapter 2

Theory

2.1 Bayesian estimation

The basic idea of Bayesian estimation is that prior knowledge can be used to improve
estimator performance. Prior knowledge and information obtained from measure-
ments are combined to form the posterior PDF p(8|x). The posterior PDF expresses
the likelihood of the unknown parameter ¢ taking a particular value given that mea-
surements x have been observed. The concepts of Bayes risk and cost functions for

jon 2.1.1. It is shown that an estimator

optimal estimation are introduced in Sec

may be formed by mi

iimizing Bayes risk, and that the form of the estimator depends

on the cost function. In Section 2 the “hit-or-miss” cost function is shown to

correspond with MAP estimation which maximizes the posterior PDF. The following

discussion of Bayesian estimation is based on Kay (1993, chap. 11).
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2.1.1 Bayes risk

Let 6 represent an estimate of the unknown parameter f. Estimator error is the

difference ¢ = 6 — 0. In order to construct an optimal estimator, it is necessary
to specify a non-negative cost function C(c). For example, the choice C(¢) = ¢
is common; however, other symmetric functions such as C(¢) = |¢| are also useful.
The cost function is a deterministic function of the random variable ¢. Therefore,
C(e) takes on a different value for each realization of the underlying random process.

Estimator performance is quantified by Bayes risk R which expresses the average cost

R = E(C(e)). 21

Bayes risk s therefore a deterministic quantity which can be minimized by appropriate
choice of the estimate 0.

Expectation in (2.1) is taken with respect to the joint probability distribution
p(x.6). Bayes' theorem relates the joint PDF to the conditional probability distribu-

tion p(0]x) as follows:

p(x,0) = p(0]x) p(x) (2.2)

Equation (2.1) becomes

=

:/ () p(x, 0) b dx
:/[/c(q,,(eyx).w] plx) dx. (23)

nce p(x) > 0 for all x, Bayes risk will be minimized when the inner integral of
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(2.3) is minimized for each x. The optimal estimate is therefore found by solving the

following equation for f:

%[:Cll)p(ﬂ|x)dﬂ:0. (24)

For example, substituting a quadratic cost function C(¢) = ¢ in (2.4) yields

/:,’(ﬂ—ﬂ')p(ﬂx)dl
./\Kﬂﬁﬂxim-ﬁ-ﬂ}[ﬂﬂﬂx)&- (25)

Observing that [* p(6|x)dé = 1, (2.5) results in the Bayesian minimum mean

square error (MMSE) estimator

é [‘momdﬂ (2.6)

‘which is seen to be the mean of the pasterior PDF p(6|x).

For the cost function C(e) = le|, the inner integral of (2.3) is

/x [0~ 0] p(01x)d0 = /' w—ammxm+f(e-éma|xwﬂ. @

- . i

Using the Leibniz integral rule, the derivative of (2.7) is

P .

— 0 — 0 df = (i dg— 0 df. 2.8
2 o=t [ sorma- ["woro 28)
Setting the right hand side of (2.8) equal to zero, the Bayesian estimator for C(e) = |¢|
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is the median of the posterior PDF, i.e. the value 0 that satisfies
5 -
/ p(0]x)d0 = / p(0]) db. (2.9)
® i

In general, the posterior mean and median do not coincide. The form of the optimal

estimator therefore depends on the cost function used to calculate Bayes risk.
2.1.2 Maximum a posteriori estimation
Another candidate cost function is the so-called “hit-or-miss” function

0 ifle <8
Cle)= (2.10)

1 otherwise

where 6 is an error threshold. The corresponding inner integral of (2.3) is

/xcw—&)p(u!x)‘w /‘p(H\x)«lﬁJr/mp(ﬂx)db’
. on

45
7/ p(0|x)do (2.11)
li-s

where the identity [, p(#|x) df = 1 has been used. Bayes risk s thercfore minimized

by maxim

i
p(0|x)db. (212)
s

In the limit 6 — 0, the optimal estimate § is the posterior mode, i.e. the location of

the maximum of the posterior PDF p(@|x). This estimator, known as the Maximum

A Posteriori (MAP) estimator, minimizes the Bayes risk for the “hit-or-miss” cost
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function in the limit § — 0. The following notation will be used to denote the MAP

estimate:

0= arg max p(6]x). (2.13)

From Bayes' theorem, the posterior PDF p(6|x) can be expressed as

(2.14)

_ p(x[0)p(6)
p(0]x) = e

Since the denominator does not depend on 6, an equivalent formulation of the MAP

estimator is

arg mx p(x|0) p6). (2.15)

The term p(x|6) expresses the probability of observing measurements x when the
unknown parameter takes the value §. The term p(@) describes any prior knowledge
that exists before measurements x have been observed.

The above discussion has shown that there are at least three different Bayesian
estimators to choose from (posterior mean, median, and mode), and each one is
optimal with respect to a particular cost function. For Doppler velocity estimation,
the unknown parameter @ is either the radial velocity component v (for monostatic
sonar) or the velocity vector v (for multistatic sonar). Measurements x correspond

to the vector 1 of multi-frequency and multi d ion phase and

magnitude. From (2.15), the MAP velocity estimator takes the form

v = arg max p(p | v) p(v)- (2.16)
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2.2  Multistatic geometry

The relationship between scatterer velocity and Doppler frequency shift is developed

Section 2.2.1 for the bistatic case where the transmitter and receiver are not

collocated. The derivation generalizes the monostatic velocity-frequency relationship
that was presented in Section 13.1. It is shown that each transmitter-receiver pair

measures a velocity component in the direction of the bistatic baseline along the

bisector of the angle subtended by the transmitter, scatterer, and receiver. A trans-

formation from Cartesian to transducer coordinates is derived in Section 22.2. An
inverse coordinate transformation based on least squares estimation is developed in
Section 2.2.3. The inverse transformation is used in Chapter 6 to calculate a velocity

vector from measurements obtained using conventional pulse-pair processing

2.2.1 Bistatic Doppler shift

The Doppler frequency shift due to scatterer motion depends on relative positions of

depicted in Figure 2.1,

the scatterer, transmitter, and receiver. A bistatic geometry
where scatterer, transmitter, and receiver positions are indicated by S, T, and R,
respectively. In the following derivation, R and T are fixed whereas the scatterer

moving with velocity vector v. Unit vectors directed from the scatterer to the

transmitter and receiver are denoted by rr and rp. The transmitter-receiver pair
measures a velocity component in the direction of the bistatic baseline, i.e. toward
the line segment RT and along the bisector of the angle £ RST. Let i denote a unit

ine in the direction rr + ry as shown in Figure 2.1.

vector directed toward the bas



Figure 2.1: Schematic diagram of a scatterer S, transmitter T, and receiver R. The
scatterer is moving with velocity vector v. Unit vectors rr, rg, and rg are directed
from the scatterer to the transmitter, to the receiver, and toward the bistatic baseline
RT, respectively

The angle subtended by vectors rr and rp is denoted by 2.

A sinusoidal acoustic source of frequency fo is assumed to emanate from the

transmitter with a corresponding acoustic wavelength given by

The wavelength A determines the spacing of surfaces of constant phase that propa-

oward the seatterer with speed . The frequency fs of acoustic waves impinging

w

upon the scatterer is determined by relative velocity between S and T, i.e. by the
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speed of motion across a surface of constant phase, given by

ctverr
Ao

fs (2.18)

ng (2.17), substitution for Ay results in

(2.19)

ney fs

s are produced with frequ

In the scattering process, reflected acoustic wav

However, motion of the scatterer S causes a change in wavelength compared to the
transmitted wavelength A. Relative to the scatterer, the acoustic medium is moving

determined by the relative

with velocity —v. Wavelength compression or

speed ¢ — v - g of wave propagation in the direction rz. Waves scattered in the

direction ry have a wavelength given by
—virg
Jgm =R (2.20)
%

Relative to the stationary receiver, however, scattered acoustic waves propagate with
speed ¢. Combining (2.19) and (2.20), the observed frequency fr at the receiver is
given by

o, (ervery

— —_—. 2.21

fm = 0 (20 221)

iver, (2.21) simplifies to

For the monostatic case with collocated transmitter and re
ctv 9.9
fr=fo ( ) (2.22)

v
v

0



which was stated as (1.1) of Section 13.1 in terms of the radial velocity component
v toward the transducer.

As discussed in Section 1.3.1, [v] < ¢ for oceanographic applications. Therefore,

may be replaced with the first arder Taylor series approximation
Tify (, + w) 22)
The corresponding Doppler frequency shift fp = fa — fo

fo= gy (LIRS (220)

3
In the plane defined by points R, S, ard T, the vector rr + g lies along the bisector
of the angle 2 RST. The following relationship holds:

rr 41z =2rpcosé. (2:25)
Equation (2.24) therefore becomes

fo=to (w) (226)

which s a bistatic version of (1.4). Thus, a bistatic configuration measures the
velocity component vy = v-rp toward the bistatic baseline according to the Doppler

velocity-frequency relationship

v = 510 (2.21)

qu cos
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When the covariance method is used to estimate Doppler frequency, autocorrelation

phase and the velocity component vg are related by

6= for—2 cosf (2.28)

which is a bistatic version of (1.20).

2.2.2 Cartesian coordinate transformation

A bistatic sonar measures a velocity component in a direction determined by the
relative locations of the transmitter, scatterer, and receiver. In current, measurement
applications, divergent monostatic beams are often used to produce a velocity profile
assuming spatial homogeneity between beams (Rowe et al., 1986; Lohrmann ct al.,
1990). To make a point measurement of a 2D or 3D velocity vector, it is neces-
sary employ multiple intersecting beams, for example with independent transmitter-
receiver pairs (Fox and Gardiner, 1988) or by recording sound scattered from a single
transmitter toward multiple receivers (Kraus et al., 1994; Zedel and Hay, 2002). The

following derivation relates the velocity vector to the components measured by the

MFDop (Hay et al., 2008). An inverse transformation is developed in Section 2.2.3.

ymmetric two-dimensional multistatic sonar geometry s shown in Figure 2.2.

The advantages of a symmetric configuration over an ic configuration have
been described in Zedel (2008). Acoustic signals are transmitted from transducer 3

. Velocity measurement occurs

and backscatter is received by all three transducer
in the region where transducer beam patterns overlap (Zedel and Hay, 2002), as

indicated with dashed lines in Figure 2.2.
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natic diagram of a symmetric multistatic sonar. Sound is transmitted
from lmhMlu( er 3 and backscatter is received by all transducers

Beam patterns are
indicated by dashed lines. The angle between the centre transducer and transducers
1 and 2 is 2. Bistatic baselines are tilted by

 from the z-axis.

tional rec

The arrangement in Figure 2.2 can be extended to three dimensions with addi-

4 and 5 out of the plane of the page. For example, transducers 4 and
5 may be located symmet

lly in the —y and +y directions by rotating transducers
1 and 2 about the transducer 3 axis.

Sach receiver forms a bistatic configuration with the transmitter to measure the

velocity component toward the corresponding bistatic baseline. Let y denote the tilt
angle of the transducer 1 and 2 baselines with respect to the z-axis in Figure 2
(r r

for the MFDop). For the

osceles geometry in Figure 22, 0 = 7 for a
scatterer at the beam intersection point. Veloc

components measured by ea

h
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receiver are denoted by v; (j = 1,2,3) with unit vectors r; directed from the beam

intersection point toward the corresponding baselines for j = 1,2 and toward the

centre transducer for j = 3. Unit vectors may be specified in vector form r = [r, "
and assembled into a matrix R,
ol —siny cosy
R=|¢T| = | siny cosy (2.29)
4 0 1
1If the velocity vector is specified in Cartesian coordinates as v = [, v.]7, velocity
components v; = v -, are given by
vy = —v,siny +v; cosy
vy = vesiny + v, cosy
v (2.30)
2.2.3 Pseudo-i coordinate tr i
Equation (2.30) can be written in the matrix form
v;=Rv (2.31)

where v, is the vector of velocity components. If the velocity vector is measured along

werted to

three linearly independent vectors, then R is a 3x3 matrix which may be
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obtain v from v,,

v=R"v; (2:32)

When velacity is measured redundantly (i.e. when the number of receivers exceeds the
mumber of velocity o peeudo-i be used to determine Cartesian

velocity components from transducer measurements. If columns of R are linearly
independent, then the inverse (R”R)~ exists and (2.31) may be pseudo-inverted in
a least squares sense (Luenberger, 1969, chap. 4),

v =(R"R)"'Rv,. (233)
When transducers 1, 2, and 3 are used to measure velocity components v, and v,
of |-siny cosy
| = | sny  cosy] [ (2.31)

)

(2.31) takes the form

which may be pseudo-inverted as in (2:33) to obtain

o
"7 2siny
_tst+(n+wm)cosy
N e =T it
If each transducer has variance o2, th ing horizontal and




vertical velocity variances are

:__%

%=y

a__ 0

T T 2oty (2:36)

Equation (2.36) shows that the ratio of horizontal and vertical measurement error
(standard deviation) is given by

0. _ [142ca?y
% g 237
P 2sin’ 330

Equation (2.37) is plotted in Figure 23, showing that vertical velocity is measured
more accurately than horizontal velocity when using a symmetric multistatic geome-
try. For example. when 5 is 7°, the ratio o, /0. is approximately equal to 10.

While a small angle 9 maximizes the beam pattern overlap in Figure 5.2, it
becomes difficult to estimate horizontal velocity when the unit vectors r; and r;
are nearly parallel (the so-called “baseline instability” problem). An analysis of the
trade-offs, sensitivity, and accuracy for the design of a bistatic sonar may be found
in Zedel and Hay (2002).




10 15 20
Baseline Tilt Angle (degrees)

Figure 2.3: Ratio of horizontal to vertical measurement error o,/o, as a fu
baseline tilt angle 5. The dashed line represents a ratio of one.



Chapter 3 Preamble

The magnitude of an autocorrelation coefficient is used as a measure of data quality for
coherent Doppler sonar. In this chapter, the autocorrelation magnitude is shown to be

a biased estimator. However, once the bias is corrected, the distribution of observed

i is well-predicted by a Gaussian random process. The
results of this chapter are used in Chapters 5 and 6 to determine the probabilty density
function of velocity measurements when autocorrelation magnitude is estimated from
a finite mumber of pulse-pairs.

‘This chapter presents a paper titled “Asymptotic Properties of an Autocorrelation

Coefficient for Coherent Doppler Sonar.” It has been published in the Journal of

Atmospheric and Oceanic Technology (Dillon et al., 2011a).




Chapter 3

Autocorrelation Estimation

3.1 Abstract

A new formula is derived for the asymptotic form of the magnitude of an autocorrela-

hown

cient for coherent Doppler sonar. The autocorrelation magnitude

tion coe
to be a biased estimator in the limit of infinite ensemble length. Numerical simulation

of  Caussian random process is used to verify the asymptotic formula and to show

that a bias persists for finite pulse-pair averages. Validity of the asymptotic formula
is also confirmed using a high fidelity coherent Doppler sonar simulation, and from
sonar measurements in a towing tank. 1t is shown that the distribution of observed

antocorrelation coefficients is well-predicted by a Gaussian random process once the

autocorrelation bias has been removed.
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3.2 Introduction

Backscatter is the in pulse-to-pulse coher-
ent Doppler sonar (Garbini et al., 1982 Lhermitte and Serafin, 1984). While velocity
is determined from the phase of the complex autocorrelation coefficient, the coeffi-
cient. magnitude is often used as & measure of data quality. Corresponding to each

velocity many ially available i provide a measure of

autocorrelation, for example, as a coefficient between 0% and 100%. Recommended
minimum values for the autocorrelation coefficient assist the user in collecting high
quality measurements and in diagnosing instrumentation problems when necessary.
In addition to qualitative assessment, autocorrelation can also provide quantitative
information on the expected magnitude of measurement errors. For example, pulse-
to-pulse autocorrelation has been used to identify and replace spurious Doppler ve-
locimeter measurements in the surf zone (Elgar et al., 2005). Also, the relationship
between velocity measurement error and autocorrelation has been determined through
laboratory testing of a coherent Doppler sonar (Zedel et al., 1996).

For a sequence {z,} of complex-valued backscatter samples, the autocorrelation

at a lag of k pulse-to-pulse intervals is

R(kr) = E(z3z48) (3.1

where E denotes expected value, * denot

s complex conjugation, and 7 is the time

interval between successive acoustic transmissions. The autocorrelation coefficient is
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defined as

(32)

where o is the variance of the sequence {z,}. By definition, p is a number between

zer0 and one that expresses the degree of pulse-to-pulse autocorrelation.

In practice, autocorrelation is estimated from a finite sequence 1, ..., 2y, corre-
sponding to an ensemble of M = L — | pulse-pairs (Zrnié, 1977),
L
R Znzngr 3.3)
(1) =3 2z ®3)

Zedel et al. (1996) define the following autocorrelation coefficient as an estimate of p:

(34)

The above expression has the desirable property that / is a number between zero and
one. Also, the numerator resembles (3.2) in the sense that expected value has been
replaced with a finite sum.

For applications in sediment transport, current measurement, and medical ultra-

sound, scatterers consist of a large number of particles. Each backscatter sample = is

therefore well-described by a complex Gaussian distribution, i. +iy where

and y are independent normally distributed random variables with equal variances. In
general, a time series of backscatter samples is a non-stationary random process since
Doppler frequency, autocorrelation, and amplitude are functions of time. However, in

the analysis of coherent Dappler systems, backscatter samples are frequently modelled

as being drawn from a wide-sense stationary (WSS) random process with Gaussian



power spectral density (Garbini et al., 1982; Lhermitte and Serafin, 1984; Zedel et al.,
1996)

s (35)

where fp, i the mean Doppler frequency and o denotes the spectral width. Tn this
chapter, the term “Gaussian distribution” refers to the probability distribution of a
single backscatter sample. The term “Gaussian random process” refers to time series
where (i) each sample obeys a Gaussian distribution. and (ii) the power spectrum of
the time series is a Gaussian function as in (3.5).

Autocorrelation is determined from the inverse Fourier transform of the power

spectral density
B o ,\l-l?r‘ e
"‘”'m/:' i
= gl M e lot (36)
o i i S—
pis

37)

Therefore, p determines the width of the Doppler spectrum, and hence the variance
of velocity

Tc herent Doppler ions wit ed

on a Gaussian random process, it is necessary to examine the relationship between
the true autocorrelation coefficient p ard its estimate j. As increasingly more pulse-

pairs are averaged, one would expect the accuracy of the autocorrelation estimate to
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improve. Nevertheless, it is shown in this chapter that s a biased estimator both for
finite averages and in the limit of infinite ensemble length. However, the relationship
between j and p may be inverted to obtain unbiased estimates of autocorrelation
from biased samples of 5. The results presented in this chapter allow theoretical
predictions of velocity variance, such as those in Zmié (1977), to be expressed in
terms of the observed autocorrelation estimate rather than the true (but typically
unknown) autocorrclation p. Since the effectiveness of pulse-pair averaging depends
on the correlation between successive measurements, a sonar designer may wish to
know how much averaging is required to sufficiently attenuate measurement errors
for a given observed coefficient .

T

chapter is organized as follows. In Section

3, a new formula is presented

for the asymptotic estimator po = limy_, . In Section 3.4, properties of  are
determined for finite pulse-pair averages via numerical simulation. Sections 3.5 and
3.6 describe the apparatus and methods employed in a towing tank experiment.

Experimental results appear in Section 3.7, followed by a diseussion in Section 3.8.

Our conclusions are summarized in Section 3.9.

3.3 Theory

‘The autocorrelation coofficient in (3.4) may be written as

Sy s

T2l zns1]

(3.8




As M 5 o0, the numerator converges to [R(r)| = po?. Assuming that each sample
2, is described by a Gaussian distribution, the denominator converges to the mean
4t of the product of two dependent Rayleigh random variables |2,| and |z, The
product |2, |2+ is described by the probability distribution (Simon, 2002, chap. 6)

) (3.9)

|2ne1l. Ko is a modified Bessel function of the second kind, and /o is a

I 2 2rp
0= sy () o (i

modified Bessel function of the first kind. The mean  is determined from

l‘=/va(r)dr
o

et o 2 N 29
s (o) () oo

In Appendix 3A, the integral is evaluated in terms of the complete elliptic integral of
the second kind E(k),
_(+p) (2P
n=—z B(m). (3.11)

The asymptotic estimate is, therefore,

fom ¥ @12)
i a+pE(
For small values of p, the first order Taylor series is
R i 4
hem 2 aspso. (3.13)



Figure 3.1: Asymptotic autocorrelation estimate j, from (3.12) as a function of
the actual autocorrelation coefficient p. In (a), the dashed line represents the ideal
tion jise = p. In (b), the ratio fsc/p is displayed.

For values of p near one, the first order Taylor series is given by

p+ 1
2r1 wp1 (3.14)

The asymptotic estimate and asymptotic ratio js/p are plotted in Figures 3.1a and

3.1, respectively. It is evident that the asymptotic estimate is biased for p < 1



3.4  Numerical simulation

3.4.1 Gaussian random process

Nuerical simulations of & complex Gaussian process were performed using the
MATLAB randn generator. Let Gi,....C. denote an ensemble of L independent
identically distributed samples from a complex Gaussian distribution with zero mean
and unit variance. For a Gaussian power spectrum, the backscatter autocorrelation

sequence Ry is given by (3.6) and (3.7),

Ry = 07" eI, (3.15)

Let 2 denote samples ..., 2, arranged as a vector. The corresponding covariance
1993, chap. 15)

matrix C, is given by (
Ry Ra - Ruy
R -+ R

ce|® R = in)

Ry Ria - Ro

By definition, C, is Hermitian positive definite and therefore can be written in terms

of the Cholesky decomposition (Watkins, 2002, chap. 1)

C.=UU (3.17)



Here, U is an upper triangular matrix with positive diagonal entries and U* denotes

the conjugate transpose of U. The vector ¢ of independent samples ... G has

covariance matrix E(¢¢*) = I. Simulated backscatter samples were generated using

the transformation

2=UC. (3.18)

Therefore, z has covariance matrix given by

E(a")

E(U*¢¢U)

U'B((¢)U =C, (3.19)

as desired.

Samples of the autocorrelation estimate j were generated from 107 simulated
pings for ensemble lengths of L = 10, 20, 40, and 100, and true autocorrelation
cocfficients ranging from 0.2 to 0.98 in increments of 0.02. For each pair (p, L), the
mean autocorrelation estimate was calculated as an approximation to the expected
value E(p). The ratio E(3)/p is plotted in Figure 3.2, where the dashed line is the
asymptotic ratio ju/p from (3.12). Although the asymptotic ratio is only strictly
valid for L - o, simulations for larger values of L indicated that in the interval of
p > 0.2, the autocorrelation ratio is within 1% of the asymptotic ratio when L is

greater than or equal to 600.

3.4.2  Coherent Doppler sonar model

Numerical simulation of steady flow was also performed with the coherent Doppler

sonar model described in Zedel (2008). The model simulates pulse-to-pulse coherent
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Figure 3.2: Estimated autocorrelation coefficients from simulation of a Gaussian
random process. Each curve represexts the ratio £(5)/p plotted as a function of
the true autocorrelation coefficient p for a fixed ensemble length L. The dashed line
is the asymptotic ratio j/p from (3.12).

ati

scattering from a cloud of moving particles for arbitrary mul sonar geometries
Physical effects such as spherical spreacing, acoustic absorption, frequency-dependent

ise are included in the

beam patterns, transducer frequency response, and recei
model. The model supports simulation of arbitrary pulse shapes, including the use
of mltiple carrier frequencies.

Simulations were performed for a monostatic sonar measuring horizontal velocities

of 05, 1.5, 3.0, and 4.5 m s™'. Tn the model, the sonar was tilted 5° from vertical

to reproduce the geometry of the towing tank experiment described in Section 3.5.

Parameters for the coherent Doppler sonar simulation are listed in Tables 3.1 and
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Table 3.1: Coherent Doppler sonar parameters.

Parameter Value
Transducer centre frequency | 1.7 MHz
Transducer bandwidth 1.0 MHz
Receiver bandwidth 250 kHz
Carrier frequency 1.8 MHz
Transmit pulse length dps

Ping interval 15 ms
Transducer diameter 2cm

Table 3.2: Parameters for the coherent Doppler sonar simulation.

Parameter ‘alue
Particle number density T20LT
Receiver signal-to-noise ratio | 10 dB
Simulation time step 125 ns
Simulation time 3005

The model was configured to record the result from each ping in addition to cal-
culating pulse-pair averages. The true autocorrelation coefficient was approximated

by averaging over all sinulated pings.

(3.20)

where o? is the variance of the backscatter sequence {z,} and N = 2x 10° is the total
number of simulated pings. The mean autocorrelation estimate £(p) was calculated
for ensemble lengths of L = 10, 20, 40, 100, and 1000. Figure 3.3 shows the ratio

E(5)/p corresponding to cach velocity. As L is increased, the ratio converges toward

the asymptotic ratio jo/p specified by (3.12).
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“igure 3.3: Estimated autocorrelation cocfficients from the coherent, Doppler sonar
simulation. Each circle represents the ratio £(5)/p plotted as a function of the true
autocorrelation coefficient p for ensemble lengths of Z = 10, 20, 40, 100, and 1000.
The dashed line is the asymptotic ratio o/ from (3.12). For increasing values of L,
circles converge downward to the dashed line.

3.5 Apparatus

A towing tank experiment was performed using the multi-frequency coherent Doppler
sonar described in Hay et al. (2008). Each circular piezo-composite transducer has
a diameter of 2 em, a nominal centre frequency of 1.7 MHz, and a bandwidth of
approximately 1 MHz. Carrier frequencies, profiling range, range resolution, pulse
length, pulse-to-pulse interval, and ensemble length are configurable in software.

The dimensions of each sample volume are determined by the beam pattern, carrier
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frequency, and range resolution. Nominally, each sample point has a diameter of 2 cm
and a height of 3 mm. The parameters in Table 3.1 also apply for the sonar used in
the towing tank experiment

The experiment was performed in the Marine Craft Model Towing Tank at Dal-
housie University. The tank has horizontal dimensions of 30 m x 1 m and a depth of
1 m. An instrumented carriage is propelled by an electric motor along rails mounted
above the tank. Carriage speed is computer-controlled and programmable over a
!

range of 0 to 3.0 ms!. Constant speed is sustained over a rail length of approximately

25 m. The towing carri o i ion are shown in Figure 3.4

The sonar was rotated to point 5° aft (i.e. counter-clockwise in Figure 3.4) to avoid
receiving multiple reflections from the tank bottom. The sonar was located on the
tank centre line with the centre transducer 56 cm above the bottom. Water in the

tank was seeded with agricultural lime. Prior to each run, approximately 0.5 kg of

lime was added to replace scatterers lost to settling. An order of magnitude estimate

of sediment concentration was 1 g L~

3.6 Experimental procedure

Clarriage speed was varied from 0.0 to 3.0 m s by programming the desired speed

into the towing tank control system. Results are presented in Section 3.7 for velocities

of 0.5, 1.5, and 3.0 m s™'. The control system software automatically calculated an

aicceleration and deceleration profile to maximize the time at constant speed subject to
the tank length constraint. Two runs were performed for each speed with a duration

of 55 5, or the time elapsed in traversing the entire tank length, whichever was less.
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Figure 3.4: Side view schematic of the towing tank showing the multi-frequency
coherent Doppler sonar. Instrumentation was attached to a carriage that moved
along rails mounted above the water. Transducer beam patterns are indicated with

dashed lines.

Carriage speed was recorded by the control system.

recorded by the sonar data acquisition system

Autocorrelation cocfficients w
using a fixed ensemble length of L = 10. Since it was not possible to simultaneously
record data with multiple ensemble lengths, an indirect approach was taken to assess
the validity of simulations in Section 3.4. For each carriage speed, the L = 10
curve from Figure 3.2 was used to infer the true autocorrelation coefficient p from

ation

the mean of the observed estimates . Histograms of towing tank autoce
coefficients were compared with those from a Gaussian random process, as described

in Section 3.7.



3.7 Results

In Table 33, the mean autocorrelation estimate E(p) was calculated for towing

carringe speeds of 0.5,
transducer receiver channel. Here, E(j) represents the mean magnitude of observed

5, and 3.0 m s™* from the 41 em range bin of the centre

autocorrelation coefficients, which is similar to the measure of data quality reported

by ial i “Table 3.3 also L
coefficients estimated from the L = 10 curve in Figure 3.2. These values of p were used
to generate autocorrelation coefficients from a Gaussian random process, as described

in Section 3.4.

Table 3.3: Estimated autocorreletion coefficients from towing tank data.

Velocity (m s-) | E(p) | p from Figure 3.2
05 0.990 0977
15 0.948 0599
3.0 0817 0.713

Distributions of towing tank autocorrelation coefficients are shown in Figure 3.5
for carriage speeds of 0.5, 1.5, and 3.0 m s~ Values of / from the centre transducer
receiver channel were grouped in 30 equally spaced bins and plotted as histograms.
Dotted lines in Figure 3.5 represent distributions of  from a Gaussian random process
with L = 10 and p as listed in Table 3.3. Dashed lines in Figure 3.5 represent
distributions of / that result from assuming that no bias exists, ie. that p = E(p).
Histograms were generated from 107 simulated pings, with autocorrelation coefficients

grouped in 200 equally spaced bins.
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Figure 3.5: Distributions of measured and simulated autocorrelation coefficients.
Each solid line is a histogram of / from the 41 cm range bin of the centre transducer
1.8 MHz receiver channel. Dotted lines represent the corresponding distributions from
process where the autocorrelation bias has been removed using
the L = 10 curve in Figure 3.2, Dashed lines represent simulated distributions with
10 bias correct




3.8 Discussion

The derivation of the asymptotic autocorrelation coefficient assumed a complex Gaus-

sian probability distribution for each backscatter sample. However, it was not neces-

sary to assume a Gaussian power spectrum for the time series since the asymptotic
formula depends only on the expected autocorrclation at a lag of one pulse-to-pulse
interval. The formula was presented in terms of an clliptic integral. Although B(k)

cannot be expressed in terms of elementary functions, it may be evaluated numerical

for example, with the e11ipke function in MATLAB.
Numerical simulation of a Gaussian random process showed that the bias of the
autocorrelation coefficient increases for short ensemble lengths. For example, the

degenerate case of a single pulse-pair resul

n a coefficient of one regardless of the
actual pulse-to-pulse autocorrelation. A longer ensemble length is necessary to obtain

meaningful autocorrelation estimates. As shown in Figure 3.2, a bias persists for all

of the ensemble lengths, with convergence to the asymptotic formula occurring for
L approximately equal to 600. The bias is more significant for small values of the

autocor

clation cocfficient. For practical applications where reasonably high quality
data are obtained (say p > 0.7), there is negligible variation in the ratio 5/p as L is
varied. However, a bias is still present for p > 0.7, and in this case the bias is well
described by the asymptotic formula (3.12).

The coherent Doppler sonar model in Zedel (2008) does not require any Gaussian

assumption about the backscatter probability distribution or the time series power
spectrum. The model describes the physics of coherent scattering and accounts for
the sonar geometry and operating parameters, unlike the simulations of a Gaussian
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random process in Section 3.4. Simulations of steady flow confirmed that the au-

tocorrelation coefficient converges to the asymptotic formula as ensemble length is

increased. However, ity between Figures 3.2 and 3.3 shows that simulation
of a Gaussian random process is sufficient to predict the bias of the autocorrelation
coefficient.

In Table 3.3, the mean observed autocorrelation es

imates from the towing tank
satisfy E(p) > 0.8, which is within the range of acceptable data quality for com-

mercial instruments,

Although the towing tank experiment was performed for a

single ensemble length,

esults in Figure 3.5 validate the relationship between / and
p for the L = 10 curve in Figure 3.2. When it is assumed that p & E(p) instead
of accounting for the autocorrelation bias, simulated histograms in Figure 3.5 do

not match experimental observations. As expected, the discrepancy increased with

velocity

due to backscatter decorrelation from particle advection through the sonar
sample volume. However, when the autocorrelation bias is removed, simulated dis-
tributions of the autocorrelation coefficient closely match experimental observations.
The towing tank experiment confirms the validity of the Gaussian random process

for predicting the bias of the autocorrelation coefficient. One would therefore expect

towing tank observations to converge to the asymptotic formula. as the ensemble
length is increased.

1t would be interesting to repeat the towing tank experiment with additional

runs for each carriage speed while recording the result from cach ping. Autocorrela-

tion coefficients could be caleulated for a range of ensemble lengths to demonstrate
convergence to the asymptotic formula, as in Section 3.4, for the coherent Doppler

sonar simulation. ion of Figure 3.3 with il would
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require approximately 300 seconds of data for each speed. At 3.0 m s, the carriage
would need to travel 900 m, requiring 36 runs in the Dalhousie University towing
tank. For such an endeavour, a longer tank o a continuously operated flume would
be more suitable.

Finally, we remark that the definition of the autocorrelation coefficient is not

lered in this chapter is an appropriate choice since

unique. The coefficient con

0< p < 1 and the numerator 3 23z, is similar in form to the expected value in
the definition of autocorrelation. However, any power or root of j also provides a

measure of pulse-to-pulse autocorrelation while taking values in the interval [0, 1)

The method presented in Appendix 3A could be applied to analyze the asymptotic
behaviour of other coefficients. If the analysis turns out to be intractable, one may

4.

resort to numerical simulation as in Section 3

3.9 Conclusions

A new formula has been presented for the asymptotic form of an autocorrelation

coefficient for coherent Doppler sonar. The derivation showed that the autocorrelation

coefficient is a biased estimator in the limit of infinite ensemble length. Numerical sim-

ulation of a Gaussian random process indicated that the bias persists for finite pulse-

pair averages. Furthermore, the bias increases for shorter ensemble lengths. Validity

was confirmed with numerical simulation using a

of the Gaussian random proc

high fidelity coherent Doppler sonar model, and from sonar measurements in a towing

tank where the towing carriage travelled at constant speed. The experiment showed

that the di fon of observed coefficients is well-predicted by a




Ganssian random process once the autocorrelation bias has been removed. Although
other autocorrelation coefficients may be defined, the analysis and numerical methods

developed in this chapter could be applied to derive their asymptotic behaviour.

3A  Asymptotic autocorrelation bias

the asymptotic autocorrelation coefficient was shown to be

In Section

Poo=

o (3.21)
W
where the denominator 4 s given by

i () o (i)

The following identity results from the integral 6.576-5 of Gradshteyn and Ryzhik

F (3 3 "2) (3.23)

22

(2007):
2r@)y
@T(1)

/ " 12 Kofar) Io(br) dr =
Jo

where I'(z) = [*#=~'e"!dt is the gamma function and F is the hypergeometric
function (Ahlfors, 1966, chap. 8). Equation (3.23) is valid when a > b. The gamma

function satisfies (1) = 1 and [(3/2) = v/7/2, resulting in

P8

/ 12 Ko(ar) To(br) dr = (3.24)
o

2



To apply (3.24) to (3.22), let

(3.25)

(3.26)

Therefore, b/a = p implies that a > b is satisfied when p < 1. Equation (3.24)

becomes

AP
("’M.,(m Lo{br) dr = M;(s &
lo 16

Substitution of (3.27) in (3.22) results in

:p’) - (3.27)

_ "’(1‘— )P P

1;,;) ; @29

The integral 9.112 of Gradshteyn and Ryzhik (2007) may be used to evaluate the

hypergeometric function
33 3= dr
r(G3340) -3 [ ar g os)
The following identity appears as integral 2.575-4 in Gradshteyn and Ryzhik (2007):
/ o .1«::)’“ [ 7.1)\/” Lo a0

where

E(p. k)= /u' V1 - k2sin* zdz (3.31)



is the elliptic integral of the second kind, and

\ e+ d)(1—cosz)
o

$=tia (c— deos)

(3.32)

(3.33)

Equation (3.30) is valid for ¢ > d > 0 and 0 < 7 < x. To apply (3.30) to (3.29), let

e=1+¢", (3.34)

d=2p. (3.35)
Therefore, ¢ > d > 0 is satisfied when 0 < p < 1. The parameter r is given by
2P
ks (4] .36)
ST 330

Symmetry of the integrand in (3.29) implies that

L3P dz
w) =2 | s 6
Since integration occurs over the interval 0 < r < =, (3.30) may be used to obtain
33,0) o2 (s 22)
P(334¢) = s £ (1 205) | e

Noting that §(0) = 0, 6(x) = /2, and £(0.k) = 0, (3.38) reduces to

) = s (s ()
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where E(k) = € (§.k) is the complete elliptic integral of the second kind. Combining

and (3.39) results in
_o+p) (2 .
w="5 E(l+ﬂ (3.40)
Substitution of (3.40) in (3.21) produces the final result,

(3.41)
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Chapter 4 Preamble

In order to optimally combine coherent Doppler sonar measurements, a family of

probability distributions is required to describe the likelihood of a particular value of
velocity given observations of autocorrelation phase and magnitude. In this chapter,

the distribution of velocity measurement

s analyzed using a combination of theory

and numeri

al simulation. It is shown that the velocity distribution exhibits non-

normal behaviour for ensemble lengths of less

s than ten pulsc-pairs. Probability den-
sity functions are expressed in terms of autocorrelation phase error, number of pulse-

pairs per ensemble, and the magnitude of the autocorrelation coefficient. The results

of this chapter are combined with the autocorrelation bias correction in Chapter 3 to
determine velocity likelihood functions in Chapters 5 and 6.

This chapter presents a paper titled “On the Distribution of Velocity Measure-
ments from Pulse-to-Pulse Coherent Doppler Sonar.” It has been submitted to the

IEEE Journal of Oceanic Engineering (Dillon et al., 2011c).



Chapter 4

Velocity Measurement Distribution

4.1 Abstract

Th ion of velocity from pulse-to-pulse coherent Doppler sonar

is analyzed for ensemble lengths consisting of less than ten pulse-pairs. A formula

is presented for the probability distribution of velocity measurements from a single

pulse-pair. The resulting distribution is shown to be non-normal for all values of

the pulse-to-pulse autocorrelation coefficient. In particular, single pulse-pair velocity

measurements obey a Pearson Type VII distribution in the limit of perfect pulse-to-
pulse correlation. The Pearson Type VII distribution has a higher peak and broader
tails compared to a normal distribution. Numerical simulation of a Gaussian random
process is used to determine second and fourth moments of the multiple pulse-pair
Validity of the Gaussian random process is confirmed

measurement distribution,

indicate

using a high fidelity coherent Doppler sonar simulation. Simulation results

nts for which perturbation analysis may be used

the range of autocorrelation cocf



to predict velocity standard deviation. For ensemble lengths less than four pulse-

pairs, the ratio of standard deviation to that predicted by perturbation analysis

differs from unity by at least 5% for all values of the autocorrelation coefficient.

For lengths greater than six pulse-pairs, perturbation analysis is within 5% when the
autocorrelation coefficient lies in the interval from 0.62 to 0.96. Calculation of kurtosis

shows that multiple pulse-pair velocity obey a
for ensembles containing less than six pulse-pairs. However, for ensemble lengths

greater than six pulse-pairs, kurtosis is within 5% of that of a normal distribution for

autocorrelation coefficients in the interval from 0.80 to 0.98.

4.2 Introduction

The covariance method is well-established as a suitable velocity estimator for pulse-
to-pulse coherent Doppler sonar (Lhermitte and Serafin, 1984; Rowe et al., 1986;
Lohrmann et al., 1990). Knowledge of the distribution of velocity measurements made

with the covariance method is useful for the design and analysis of coherent Doppler

systems. For example, successful resolution of velocity ambiguity with a staggered
pulse repetition frequency (PRF) places upper hounds on the allowable magnitude
of measurement errors (Lohrmann et al., 1990). Although pulse-pair averaging may
be used to reduce errors, the effectiveness of averaging depends on the correlation
between successive measurements. A sonar designer may therefore wish to know how
much averaging is required to sufficiently reduce measurement errors while achieving
the maximum possible sampling rate.

Multiple acoustic carrier frequencies have also been employed to measure velocity
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beyond the Nyquist limit of a single frequency system (Nitzpon et al., 1995; Hay
ot al., 2008). However, as noted in Zedel and Hay (2010), the ambiguity limit cannot
be extended arbitrarily when measurements are corrupted with noise. The designer
of a multi-frequency system must know how velocity measurements are distributed to

establish an acceptable trade-off between ambiguity velocity and the receiver band-

width necessary to resolve ambigu

The covariance method is a time-domain estimator of mean Doppler frequency
based on pulse-to-pulse autocorrelaticn (Miller and Rochwarger, 1972). For a se-
quence {2} of complex-valued backscetter samples, the autocorrelation at a lag of k
pulse-to-pulse intervals is

R(k7) = E(z57nss) “n

where £ denotes expected value, * denotes complex conjugation, and 7 is the time
interval between successive acoustic transmissions. The autocorrelation coefficient is

defined as
R(7)
R(0)

» = 1Bz “2)

where 07 is the variance of the sequencs {2, ). Radial velocity is determined from the
phase ¢ = £ R(r),

e
o

v=

& oel-ma] (43)

where ¢ is the speed of acoustic wave propagation and fo is the carrier frequency
of the transmitted signal. Phase may therefore be interpreted as a non-dimensional
representation of velocity.

For applications in sediment transport and current measurement, scatterers con-
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sist of a large number of particles. Each backscatter sample z is therefore well-
described by a complex Gaussian distribution, ie. = = z + iy where z and y are
independent normally distributed random variables with equal variances. In general,
a sequence of backseatter samples is a non-stationary random process since Doppler
frequency, autocorrelation, and amplitude are functions of time. However, in the
analysis of coherent Doppler systems, backscatter is frequently modelled as a wide-
y (WSS) i ian power densi
(Lhermitte and Serafin, 1984; Garbini et al., 1982)

(44)

where o s the spectral width and fp denotes the mean Doppler frequency
2v
Jo=fo—- (43)

In this chapter, the term “Gaussian random process™ refers to a time series where (i)
«each sample obeys a complex Gaussian distribution, and (ii) the power spectrum of
the time series is a Gaussian function as in (4.4).

Autocorrelation is determined from the inverse Fourier transform of the power

spectral density

__a AEYE oy
e e

= P et (4.6)




At fon lag of one pulse-to-pulse interval, th ion coefficient

pis
=¥, (4.7

Therefore, p determines the width of the Doppler spectrum, and hence the variance
of velocity measurements.

Analyses of the covariance method have been published in the Doppler radar
literature (Zrni¢, 1977; Woodman and Hagfors, 1969; Lank et al., 1973). A proba-
bility distribution for the phase estimste has been derived for the limiting case of a
large number of pulse-pairs (Woodman and Hagfors, 1969, eq. (10)). The limiting
distribution is normal when the variance is sufficiently small (Woodman and Hagfors,
1969, eqs. (12), (13)).

In Zmié (1977). variance of the mean frequency estimator was derived as a function
of the pulse-to-pulse antocorrelation ccefficient and signal-to-noise ratio (SNR) using
perturbation analysis. The equivalent phase standard deviation 7, is (Zmié, 1977,

. (9)

= 2,,:\,{“"'[“22("—) ]+$+:(1 A+ )}(u)

where 7 is the SNR and AY is the number of pulse-pairs in the autocorrelation estimate.

] (4.9)

The ions inherent in i lysis that the dwell time M7 is long.

In the limit of infinite SNR, (4.8) simplifies to




compared to the decorrelation time (Zrié, 1977, eq. (B17a)),

2Maoyr > 1, (4.10)
and that i i ié, 1977, eq. (BITh)),

a+1/q?

<1 (411)

Condition (4.10) is satisfied for sufficiently large spectral widths. However, for a
single pulse-pair (M = 1), condition (4 11) is never satisfied since p < 1. For multiple
pulse-pairs, the inequalities in (4.10) and (4.11) do not indicate how much smaller or
larger than unity the corresponding terms must be for the analysis to be valid.

In practice, ion is estimated from an ensemble of backseatter samples

.21, corresponding to M = L — 1 pulse pairs (Zmié, 1977),

)=y (12)
Phase is determined from the real and imaginary components of (4.12),
b= LR(r)=tan~ DR (413)
R(R(7))

The phase estimate & s & random variable defined on the interval [, 7] radians.
We wish to know how & deviates from the true value ¢.
In this chapter, theoretical analysis and numerical simulation are employed to

precisely determine the conditions for which perturbation analysis correctly predicts
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phase standard deviation. In sonar applications, the maximum achievable sampling

rate is often limited by range ambiguity and power considerations. Short ensemble

lengths are therefore of interest for turbulence measurement, where it is desirable to

maximize the sampling rate to resolve the inertial subrange. We focus on ensemble

lengths of less than ten pulse-pairs to investigate conditions for which perturbation
analysis fails to predict phase standard deviation. It is found that velocity measure-
ments from short ensembles exhibit non-normal probability distributions.

For applications in sediment transport and turbulence measurement, broadening
of the Doppler spectrum arises from scatterer advection through the sample volume
and velocity shear and turbulence within the sample volume (Newhouse et al., 1976,
1977). Equation (4.8) indicates that phase variance due to receiver noise is negligible
when the SNR s on the order of 20 dB (see Zmié (1977, Fig. 2), and also Kay
(1993, Fig. 9.2)). Laboratory testing of a 1.7 MHz coherent Doppler sonar in Zedel
et al. (1996) also provides an example where the variance contribution from random
phase changes in the receiver was negligible under typical operating conditions. This
chapter thercfore focuses on the case where velocity measurement error is dominated

by the effect of spectral width rather than receiver noise.

The remainder of the chapter is organized as follows. In Section 4.3, a formula
is presented for the single pulse-pair phase distribution. Second and fourth moments
are calculated to show that the resulting distribution is non-normal for all values of

the pulse-to-pulse autocorrelation coefficient. In particular, single pulse-pair measure-

ments obey a Pearson Type VII distribution in the limit of perfect pulse-to-pulse cor-

relation. Derivation of the single pulse-pair distribution is included in Appendix 4A.

The

g form of the distribution is derived in Appendix 4B. In Section 4.4,
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standard deviation and kurtosis of the multiple pulse-pair phase distribution are
determined via numerical simulation of a Gaussian random process. Validation of
the Gaussian random process is performed using a high fidelity coherent Doppler
sonar simulation in Section 4.5. Results are discussed in Section 4.6, followed by a

summary of our conclusions in Section 4.7
4.3 Theory
For a single pulse-pair, the autocorrelation estimate from (4.12) simplifies to

(4.14)

with autocorrelation phase given by

$=Ln-2 (4.15)

The phase distribution p(¢) is well known in the synthetic aperture radar literature

(Just and Bamler, 1994). A derivation is included in Appendix 4A. The resulting
distribution is a symmetric function of the phase difference t = ¢ — ¢,
p(#) = s [14 28 (- cos™ta) (4.16)
W)= ri—a ot g

where a = peost. Equation (4.16) is plotted in Figure 4.1 for four representative

values of p.

“The behaviour of (4.16) in the limit p — 0 is obtained from a first order Taylor
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Figure 4.1: Phase distribution of a sirgle pulse-pair. Equation (4.16) is plotted for
four values of the autocorrelation coefficient

series in the variable a,

plo)= (4.17)

on the interval

As expected. the phase

] as p 0.

xamine the limit p — 1, let ¢ = so that £ = 0 as p — 1. The

behaviour of (4.16) in the limit p — 1 is shown in Appendix 4B to be

(4.18)




Probability Density

4 0 D
Normalized Phase Difference, /¢
Figure 4.2: Comparison of the single pulse-pair phase dxﬂnlmllnn with a standard
normal distribution in the limit p — 1. Phase is

Equation (4.18) is a Pearson Type VII distribution (Pearson, 1916)

plr) = (4.19)

with parameters m and @ given by 3/2 and ¢, respectively.
As £ = 0, the peak value of (4.18) tends to infinity, resulting in an impulse
at ¢ = 0. To visualize the shape of the limiting distribution, let z represent the

normalized phase difference ¢/z, so that

(4.20)




Equation (4.20) is compared with a standard normal distribution in Figure 4.2. It is
evident that in the limit p - 1, the single pulse-pair phase distribution has a higher
peak and broader tails compared to a normal distribution.

In Figure 4.3, moments of the single pulse-pair phase distribution were evaluated

by numerically integrating expressions of the form
= f v p(v) dy (4.21)

where j; denotes the k** moment and p(¥) is given by (4.16). An analytical expression
for the second moment can also be found in Bamler and Hartl (1998). In Figure 4.3a,
the standard deviation

s =iz (4.22)

is compared with o, from perturbation analysis, ie. (4.9) with M = 1. The ratio

,/0, is plotted in Figure 4.3b.

Kurtasis of a probability ion is defined as (. itz and Stegun, 1972,
. 928)
"
B2l 4.23)
o () ¢ )

Kurtosis is a useful statistic for identifying non-normal distributions since f; is 3
for all normal distributions. The kurtasis of (4.16) tends to infinity as p — 1. It
is therefore more convenient to plot the reciprocal of kurtosis 1/3 in Figure 4.4.
Although f is 3 when p equals 0.56, the normalized sixth moment is 12.2 rather than
15 characteristic of a normal distribution. The single pulse-pair phase distribution is

therefore non-normal for all values of p.
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Figure 4.3: Standard deviation of the single pulse-pair phase distribution. In (a),
the solid line represents a,, for the distribution specified by (4.16). The dashed |
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Figure 4.4: Reciprocal of kurtosis for the single pulse-pair phase distribution. The
solid line represents (4.23) for the distribution specified by (4.16). The dashed line
presents the kurtosis of a normal diszribution.

4.4 Simulation of a Gaussian random process

Numerical simulation of a Gaussian random process was performed using the randn
generator in MATLAB, as described in Dillon et al. (2011). For a Gaussian power

spectrum, the hackscatter autocorrelation sequence Ry is given by (4.6) and (4.7),

Ry = o*pFé*. (4.20)



Let ¢ = [Gi ... GiJ" denote an ensemble of L independent identically distributed
samples from a complex Gaussian distribution with zero mean and unit variance,
where the superscript T denotes the matrix transpose. Simulated backscatter samples

.. 2|7 were generated using the transformation z = U*¢ where U* is

obtained from Cholesky decomposition of the desired covariance matrix C. (Kay,
1993, chap. 15),
R R -+ Rgy
R "

h Re Ry R (425)

Ry Rz - Ro
Phase estimates were generated from 3 x 107 simulated ensembles with length A
equal to 1. 2, 3. 5. 7, and 9 pulse-pairs. In order to obtain time series for the phase
difference, & was set 10 zero in (424) 50 that ¥, = 6, Autocorrelation coefficients
included the interval from 0 to 0.98 in increments of 0.02, and additional values of
0.99,0.995, and 0.999. For each pair (p. M), second and fourth sample moments were
calculated from the time series {¢;,} s follows:

N
Yo (4.26)
where N is the total number of simulated pings. Phase standard deviation and
kurtosis were calculated from (4.22) and (4.23) using estimated moments from (4.26).
Phase standard deviation o, and the ratio oy/7, are plotted as a function of the
autocorrelation coefficient in Figure 4.5. The reciprocal of kurtosis is plotted in

Figure 4.6,
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Figure 4.5:
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Phase standard deviation from simulations of a Gaussian random process.

I (a). the standard deviation o, is estimated from the second sample moment. In
(b), the ratio 0y /a,, is plotted, where c, is given by (4.9)
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Figure 4.6: Reciprocal of phase kurtosis from simulations of a Gaussian random
process. Kurtasis is estimated from second and fourth sample moments of the time
series.

4.5 Coherent Doppler sonar model

Numerical simulation of steady flow was performed using the coherent Doppler sonar
model described in Zedel (2008). The model simulates pulse-to-pulse coherent scat-

tering from a eloud of moving particles for arbitrary multistatic sonar geometries.

Physical effects such as spherical spreading, acoustic absorption, frequency-dependent

beam patterns, transducer frequency response, and receiver noise are included in the

model. The model supports simulation of arbitrary pulse shapes, including the use

of wuiltiple earrier frequencies.
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Simulations were performed for a monostatic sonar measuring horizontal velocities
of 0.5, 1.5, 3.0, and 4.5 m s™'. In the model, the sonar was tilted 5° from vertical
and the receiver SNR was set to 20 dB. Parameters for the coherent Doppler sonar

simulation are listed in Table 4.1.

‘Table 4.1: Parameters for the coherent Doppler sonar simulation.

Parameter Value
Transducer centre frequency | 1.7 MHz
Transducer bandwidth 10 MHz
Receiver bandwidth 250 kHz
Carrier frequency 1.8 MHz
Transmit pulse lngth dps
Ping interval 15ms
Transducer diameter 2em
Sonar tilt angle 5
Particle mumber density 0L
Receiver signal-to-noise ratio | 20 dB.
Simulation time step 12505
Simulation time 300

The model was configured to reccrd the result from each ping in addition to
calculating pulse-pair averages. For each flow speed, the autocorrelation coefficient

was approximated by averaging over all simulated pings.

(a.27)

where o* is the variance of the backseatter sequence {z,} and N = 2 x 10° is the
total number of simulated pings. The autocorrelation coefficient for each flow speed

is listed in Table 4.2,




Table 4.2: Estimated autocorrelation coefficients from coherent Doppler sonar simu-
lation.

Speed (m s-) | Autocorrelation Coefficient
0.5 0.985
15 0.888
30 0.633
45 0.366

In order to calculate phase differences ¢, = 6, — ¢, the pulse-to-pulse phase shift

& was approximated by averaging over all simulated pings.

reya (_\17I ; (4.28)
Standard deviation o, of the time seres {¢%,} is plotted in Figure 4.7 for ensemble
lengths M from 1 to 9 pulse-pairs. Results from coherent Doppler sonar simulations
are indicated with circles that lie on the corresponding curves for simulations of a

Ganssian random process from Figure 4.5a.

4.6 Discussion

The derivation of the single pulse- pair phase distributi med Gan

probability distribution for each backscatter sample. However, it was not necessary

to assume a Gaussian power spectrum for the time series since the formula only
depends on the expected autocorrelation at  lag of one pulse-to-pulse interval. The
resulting phase distribution describes a family of symmetric non-normal probability
distributions defined on the interval -7, 7). As the autocorrelation coefficient p varies

from zero to one, the phase distribution transitions from a uniform distribution to a



Standard Deviation, o (radians)

Figure Phase standard deviation from coherent Doppler sonar simulations. Au-
tocorrelation coefficients for flow speeds of 0.5, 1.5, 3.0, and 4.5 m s~ are listed in
Table 4.2. Results from coherent Doppler sonar simulations are indicated with circles
that lie on the corresponding curves for simulations of a Gaussian random process in
Figure 4.5a.

Pearson Type V11 distribution.
Phase standard deviation and kurtosis were determined via numerical simulation

ofa G

sssian random process for ensemble lengths ranging from 1 to 9 pulse-pairs.
Simulation results for single pulse-pairs (A = 1) match the theoretical predictions
in Section 4.3. Figure 4.5b shows that the range of applicability of the perturbation
analysis formula (4.9) increases with ensemble length. For M less than 4, the standard
deviation ratio a, /a, differs from unity by at least 5% for all values of the autocor-

cocfficient. However, for M greater than 6, Figure 4.5b indicates that oy is

rela
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within 5% of , in the interval 0.62 < p < 0.96. The fact that oy and , do not agree
in the limit p — 1 is usually not an area of concern when designing an instrument
since capability limits are determined by the performance at low correlations.

‘The plot of kurtosis in Figure 4.6 demonstrates that the phase distribution is non-
normal for all values of p when the ensemble length M is less than 6 pulse-pairs. For M
greater than 6, kurtosis is within 5% of that of a normal distribution over the interval
0.80 < p < 0.98. In the limit p — 1 when pulse-pairs are perfectly corrclated, the
phase distribution is unaffected by averaging multiple pulse-pairs. Therefore, kurtosis
tends to infinity in the limit p — 1 for all values of M.

The coherent Doppler sonar model in Zedel (2008) does not assume that backscat-

ter samples obey a Gau

ian probability distribution with Gaussian power spectrum.

For simulation of steady flow, no statistical assumptions about particle motion are

made other than that particles move uniformly with constant velocity. The model

describes the physics of coherent

cattering and accounts for the sonar geometry

and operating parameters, unlike the simulations of a Gaussian random process in

Scction 4.4. Simulations of steady flow confirmed the predictions of phase standard
deviation from a Gaussian random process. Figure 4.7 shows that simulation with a
Gaussian random process is sufficient to predict the reduction in standard deviation
achieved by pulse-pair averaging. Since simulations of the Gaussian random process
were performed without additive noise, agreement in Figure 4.7 also confirms that
receiver noise with a 20 dB SNR does not affect phase standard deviation.
Non-normality of the phase distribution implies that any analytical expression for

phase must account for the kurtosis observed in Figure 4.6. The Pearson Type VII

istribution has the desirable property that standard deviation and kurtosis may be
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specified independently. However, this distribution is defined on the entire real line,
whereas phase measurements lic in the interval [~,7]. Although the peak of the
Pearson Type VII distribution is narrow as ¢ — 0, higher order moments depend

ond and fourth moments of

on the broad tails of the distribution. For example, se
(4.19) with m equal to 3/2 are infinite, whereas second and fourth moments of the

phase distribution are necessarily bounded above by 72/3 and #*/5 for a uniform

distribution. In order to represent the phase distribution for ensemble lengths less
than 10 pulse-pairs, it would be useful to construct a family of symmetric probability
distributions defined on a finite interval where standard deviation and kurtosis may

be specified A suitable ization of the single pulse-pair

distribution (4.16) may provide such a famil

4.7 Conclusions

A formula has been presented for the distribution of a single pulse-pair phase mea-
surement for coherent Doppler sonar. Evaluation of second and fourth moments
showed that the single pulse-pair phase distribution is non-normal for all values of

s described

the autocorrelation coefficient p. In particular, the phase distribution

the |

by a Pearson Type VII distribution t p — 1. Numerical simulation of
a Gaussian random process was used to determine phase standard deviation and

Kurtosis for ensemble lengths ranging from 1 to 9 pulse-pairs. Validity of the Gaussian

random process was confirmed using a high fidelity coherent Doppler sonar model

For ensemble lengths M less than 4 pulse-pairs, the ratio of phase standard deviation

to that predicted by perturbation analysis differs from unity by at least 5% for all



values of the autocorrelation coefficient. However, for M greater than 6, perturbation

analysis is within 5% when p lies in the interval from 0.62 to 0.96. Calculation of

kurtosis that the ph: istribution is l for M less than 6.
For M greater than 6, kurtosis is within 5% of that of a normal distribution for p
in the interval from 0.80 to 0.98. In the limit p — 1 when pulse-pairs are perfectly
correlated, kurtosis tends to infinity for all ensemble lengths considered.

4A  Single pulse-pair phase distribution

“The derivation follows a similar approach as Davenport and Root (1987, chap. 8). but
makes use of a more direct evaluation of the joint PDF. To derive the distribution for
the autocorrelation phase of a single palse-pair,

n-Lz, (4.20)

let 7 and y represent real and imaginary parts of each complex backseatter sample
== r+iy. The realvalued random vector X = [r; 72 tr 1a]” is assumed to be
described by  joint Gaussian distribution

oK)= ( %x’c;,' x) (4.30)

\/’aa Cx B2,




with zero mean and covariance matrix Cy given by (Kay, 1993, chap. 15)

1 peoso 0 psing

Cx

cos¢ 1 —psing 0
="72 s L (4.31)

0 -—psing 1 peosg)

psing 0 peosé 1

It is assumed that p < 1 for the inverse of (431) to exist. Substituting (4.31) in

(4.30) and transforming to polar coordinates results in the joint PDF

(4.32)

-+ ur,rz)
xlole?

Priorab,0) = 2 exp(

where A = pcos(fly — 6; — ¢) and =* = 1 — g*. The joint distribution for 8, and 6, is
obtained from

P61.6;) = fj PAry,T2,01,85) drydirz. (4.33)
o Jo
Integration over the (ry,r;) first quadrant is performed using the transformation
ry = Reos® and ry = Rsin®,

ma..m:#/’/ Rsin20e % dRdO, (4.34)
o Jo

where a is & positive cocfficient given by

1-Asn20

a
o?<?
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Integrating by parts produces the identity

]; ~ Rleo 4R (4.36)
Applying (4.36) to (4.34) results in
PO, 0:) = ;—;’ A (4.37)
Let £ = 5~ 26, so that
w0y =122 [::ﬁ%‘;n,dt. (438)

The distribution for the difference é = (6; — 6;) mod 2 is given by (Pawula et al.,
1982, eq. (6))
#é)= [ 90001+ dm. (439)

Substituting (4.38) in (4.39) and changing the order of integration results in

. 1—p 7 cost

LR~ N e L (4.40)

where a = pcos(é — ¢). Since the integrand does not depend on 6y, (4.40) simplifies
to

)  cost
M=) T —acwip

(4.41)

Equation (4.41) is a special case of Pawula et al. (1982, eq. (B-6)). The distribution

is & symmetric function of the phase difference ¢ = & — ¢. We therefore adopt the
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notation p() for p(6).
The integral in (4.41) is evaluated using the identity from Gradshteyn and Ryzhik
(2007, eqs. (2.553-3), (2.554-1))

cosxdr 1 [_sinr 2a _, ((1+a)tand
/(l—ll(mt)’ ] =T ( . (42)

Applying (4.42) to (4.41) yields
G 1-f 2% _ [ 1+a
PO =i [H\/l--ﬂ"n (JTTM)] wy

The following identity is derived from Gradshteyn and Ryzhik (2007, eq. (1.628-2)):

(4.44)
Substituting (4.44) in (4.43) produces the final result,
)= 2—,’1{7"2—,) [1 = (x—cos™ u)] . (4.45)

4B Limiting form of the phase distribution

To examine the limit p — 1, let £ = \/T— 77 so that £ — 0 as p— 1. A small angle

approximation is used for ¢ since phase becomes concentrated in a narrow peak as



=+ 1. The left hand term in (4.45) is approximated as

(4.46)
Likewise,
1
— (4.47)
i=a ~JEre e
In the limit p — 1, the following approximation holds:
cos'a =y (4.48)
Therefore,
T-cslamw (4.49)

when ¢ is a small angle. Substituting (4.46), (4.47), and (4.49) for the corresponding

terms in (4.45) results in

(4.50)

PR P .
) | JEre

For ¢ = 0 and small values of , the right hand term of (4.50) dominates. The
restlting expression is

1 1
1) R 4.51
PO~ o T e fat)
Numerical evaluation indicates that in the interval [-5¢,5¢], (4.51) is within 1% of

(4.45) for p > 0.997.
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Chapter 5 Preamble

This chapter describes the MAP velocity estimator and presents a method for au-
tomatically determining the smoothing parameter from examination of the mea-

surement time series. In this chapter, three of the thesis objectives are achieved:

(i) measurement noise is suppressed for turbulent flow, (ii) the estimator is validated

using measurements from particle image velocimetry, and (iii) the estimator is frec

from empirically determined constants

This chapter presents a paper titled “Automatic Tuning of a Velocity Estimator for
Pulse-to-Pulse Coherent Doppler Sonar.” It has been published in the Proceedings of

the IEEE/OES 10* Current, Waves, and Turbulence Measurement Workshop (Dillon

et al., 2011b).
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Chapter 5

Measurement Noise Suppression

5.1 Abstract

Pulse-to-pulse coherent Doppler sonar is capable of measuring si profiles of

veloctiy and sediment concentration in turbulent suspensions. However, the presence

are calculated from

of measurement noise introduces biases when turbulence statistics

the fluctuating component of velocity. In order to further develop coherent Doppler

sonar as a tool for turbulence measurement, a velocity estimator based on Maximum A

Posteriori (MAP) estimation has been developed. The estimator optimally combines

measurements from multiple acoustic carrier frequencies and multiple transducers.

Data fusion is achieved using a ilistic approach, whereby are

combined mumerically to derive a velocity likelihood function. The only parameter
which must be chosen by the user is a smoothing factor that describes the diffusion
of velocity (in a probabilistic sense) from sample to sample in time. A method is

presented for automatically determining the smoothing parameter from examination



of the spectrum of a representative segment of the measurement time series. Re-
sults are presented from a laboratory turbulent jet in which velocity was measured
simultancously with multi-frequency coherent Doppler sonar and particle image ve-
locimetry (PIV). Time series and turbulence spectra from PIV are compared to those
obtained with conventional Doppler signal processing and MAP velocity estimation.
It is shown that automatic tuning of the estimator results in a velocity time series
where measurement noise is suppressed while high frequency turbulent fluctuations

are retained.

5.2 Introduction

Pulse-to-pulse cohes

nt Doppler sonar has been widely used to study transport and
mixing processes in the ocean. Applications include tidal flows (Lhermitte, 1983),
surface boundary layer processes (Gargett, 1989), surface wave breaking (Veron and
Melville, 1999), internal waves (Plueddemann, 1992), sediment transport. (Smyth
et al., 2002), and turbulence measurement (Lohrmann et al., 1990). High frequency
(1 to 10 MHz) coherent Doppler sonar is a promising tool for obtaining near-bed
profiles of shear stress and sediment flux in the ocean bottom boundary layer (Thorne
and Hanes, 2002). Recent studies, for example, have focused on estimation of bottom
friction from measurements of near-bed turbulence profiles (Hay, 2008).

The performance and limitations of coherent Doppler sonar have been extensively
explored through numerical simulations (Zedel, 2008) and in the laboratory (Zedel
et al., 1996). Measurement errors are caused by pulse-to-pulse backscatter decorrela-

tion from (i) seatterer advection through the sample volume, (i) velocity shear and
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turbulence within the sample volume, (iii) phase distortion of the transmitted wave,
and (iv) electronic noise in the receiver circuitry (Zedel et al., 1996; Hurther and

Lemmin, 2001)

consist of both large amplitude instantancous spikes

Doppler measurement errors
and contimuous random fluctuations. Both types of error cause the measured velocity

variance to exceed the true variance of scatterer velocity. In order to obtain accurate

statistics, for example in turbulence measurement, random errors must be suppresse.
While averaging and low pass filtering attenuate measurement errors, there is an

undesirable reduction in sample rate and bandwidth, and high frequency turbulent

fluctuations are also suppressed. Noise suppression methods aim to improve velocity

estimates while preserving the sample rate and bandwidth of the original data.
Noise suppression is possible when redundant measurements with uncorrelated

measurement errors are available. An example of this approach is the use of two

partially overlapping or non-overlapping sample domains (Garbini et al., 1982). Ve-

locity measurements from two closely spaced regions along the acoustic beam may

be cross-correlated to attenuate uncorrelated noise sources. However, in turbulent
flow, spatial decorrclation of velocity limits the allowable separation of the sample
volumes,

Redundant measurements with uncorrelated errors may also be obtained with
additional acoustic receivers. By using four receivers to measure three components
of velocity, redundant vertical velocity calculations have been used to reduce the
noisc contribution in turbulence statistics (Hurther and Lemmin, 2001). Redundant
receivers have also been used in four-beam acoustic Doppler current profilers (Rowe

et al., 1986) and a five-transducer profiling sonar (Hay et al., 2008). Another method
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for obtaining redundant velocity measurements with uncorrelated noise sources in-
volves simultancous transmission of two closely spaced acoustic carrier frequencies.
Experiments in oscillating grid turbulence have shown that a carrier frequency shift

suffic

of 10% ent. to achieve an order of magnitude in noise suppression (Hurther
and Lemumin, 2008).

In order to further develop coherent Doppler sonar as a tool for turbulence mea-
surement, a velocity estimator has been developed based on the Bayesian technique of
Maximum A Posteriori (MAP) estimation (Kay, 1993). The MAP velocity estimator
shares many similarities with a Kalman smoother: (i) the estimator processes a time

series recursively, (if) a model is used to provide prior statistical knowledge, (iii) the

estimator produces its own performance measure, and (iv) estimator lag is eliminated
via application both forward and backward in time. However, unlike a Kalman
smoother, the MAP velocity estimator makes use of non-Gaussian probability density

functions and is inherently nonlinear. The motivation for using MAP estimation is

that velocity ambiguity causes the velocity likelihood function to be multi-modal;

thus a Gaussian representation is inappropriate.

The MAP velocity estimator optimally combines measurements from multiple

acoustic carrier frequencies and multiple transducers. Data fusion is achieved using

a probabilistic approach, whereby measurements are combined mumerically to derive
a velocity likelihood function. The estimation framework accommodates commonly
used sonar geometries such as one-dimensional single beam systems, acoustic Doppler

current profilers (ADCPs) with divergent beams, three-dimensional velocity point

sensors, and profiling sonars. While the focus of this chapter is on monostatic

multi-frequency coherent, Doppler sonar, the results are equally applicable to single-
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frequency and staggered pulse repetition frequency (PRF) systems with multistatic
geometries.

The algorithm is specified by physical parameters of the sonar and is free from
empirically determined instrument-specific or application-specific thresholds or con-
stants. The only parameter which must be chosen by the user is a smoothing factor
that describes the diffusion of velocity (in a probabilistic sense) from sample to sample
in time. In this chapter, a method is presented for automatically determining the
smoothing parameter from examination of the spectrum of a representative segment
of the measurement time series.

The method is evaluated using results from a laboratory turbulent jet experiment

where veloci

y was measured simultancously with multi-frequency coherent Doppler
sonar and particle image velocimetry (PIV). Automatic tuning of the estimator results
in a velocity time series where measurement noise is suppressed while high frequency

turbulent fluctuations are retained.

5.3 MAP velocity estimation

Maximum A Posteriori (MAP) estimation is one of several parameter estimation

methods based on Bayesian inference. In contrast with classical statistical estimation,
Bayesian methods treat a parameter to be estimated as a random variable rather
than a deterministic but unknown constant (Box and Tiao, 1973). The motivation
for the Bayesian approach is that prior knowledge of the probability density function

(PDF) may be used to improve estimator performance. Once observations have been

made, Bayes’ theorem permits calculation of the posterior PDF which expresses the
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likelihood of a particular parameter value given the measurements that have been
observed. An estimate is then calculated as a function of the posterior PDF, for
example as the location of the maximum value in MAP estimation (Kay, 1993).

Backscatter on s the in pulse-to-pul

coherent Doppler sonar. For a sequence {2, } of complex-valued backscatter samples,
the antocorrelation at a lag of one pulse-to-pulse interval is

R(7) = E(z32ns1) 1)

where E denotes expected value, * deaotes complex conjugation, and 7 is the time
interval between successive acoustic transmissions. Velocity is proportional to the
pulse-to-pulse phase shift ¢ = £ R(r) (Lobrmann et al., 1990),

o éel-ma] (52)

ey~ >4

where c s the speed of acoustic wave propagation and o is the carrier frequency of
the transmitted signal.
In practice, autocorrelation is estimated from a finite sequence of Al pulse-pairs

(Zrmi¢, 1977),

. L&

R(r) = 37 o (53)
The phase @ of the autocorrelation estimate R(7) is determined from real and imag-
inary components as follows:

I(R()
R(R())

é=ZR(r)=tan™" (54)

110




[ ing to cach phase an ion cofficient  may also

be defined (Zedel et al., 1996),

(5.5)

The coefficient j provides » measure of data quality. Equation (5.5) implies that
0<p<.

The unknown parameter to be estimated is the radial speed v (for monostatic
sonar) or u velocity vector v (for multistatic sonar). The one-dimensional case is
described in this chapter: the generalization to multiple transducers is presented in
Chapter 6. For a multi-frequency system with N carrier froquencies, measurements
consist of antocorrelation phases & and coefficients ; corresponding to carrier fre-
quencies f,. The MAP velocity estimate is the location of the maximum value of the
posterior PDF, denoted by (Kay, 1993, chap. 11)

Ny
= arg max p(e) [T o 0)- (56)
=

The term p(v) describes any prior knowledge of v that exists before measurements
have been observed. The measurement PDFs p(;. x| v) express the probability of
observing measurements {d;, 4} when velocity takes the value v. For the results
presented in this chapter, measuremert PDFs were determined from simulations of
a Gaussian random process as described in Chapter 4 (Dillon et al., 2011b), with
& correction for the bias of the autocorrelation coefficient from Chapter 3 (Dillon

et al. 2011a). Example measurement PDFs are shown in Figure 5.1a for the jet

11
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1: Example velocity likelihood functions from the jet tank experiment,
g (a) multi-fre \|v|u\‘ measurement PDFs, and (b) product distribution and
MAP smoother posterior PDF. In (a), the corresponding autocorrelation coefficients
.73, 051, 0.84, and 11,82

tank experiment described in Section 5.4. Autocorrelation coefficients in Figure 5.1a
ranged from 0.51 to 0.84. The product PDF in Figure 5.1b represents the term

12| v) in (5.6)

5.3.1 Velocity model

Prior information is derived from a model of the underlying random process. For
velocity estimation, the model should express the inherent continuity of the time

series in a simple and generic fo

m to be applicable to many flows. It is not necessary
to predict the long term evolution of velocity since the time series will ultimately be

12



determined by available measurements. The simplest continuous model for a velocity

sequence {v,} is the diffusion process

Un+&n (5.7)

Vs

where € is a discrete-time white Gaussian noise process with standard deviation o.

In order to apply (5.7) as a predictive model, the sonar sample interval must be less

than the decorrelation time of the flow.
For each sample in the time series, measurements {¢, 5;} may be arranged as a
rib-

dependent random variables.

vector .. Let p(v) denote the forward time posterior PDF p(u |y, .. ) des

ing the likelihood of v, occurring after the sequence of measurements {4,

By assumption, the noise process ¢ and velocity v ar

s given by convolution

The probability distribution of a sum of independent variables it

of the distributions of the summands. Therefore, given a posterior PDF p/(v), the

predicted likelihood pf,,(v) is the convolution of p(v) with a Gaussian probability

distribution,

P =) e (~ ) du. (58)
i d oxp | =357

ek

Convolution may be implemented on a discrete set of points by fitering the posterior

PDF pf(v) with a FIR filter having a Gaus

ian impulse response.

5.3.2 Filtering and smoothing

MAP velocity estimation can be implemented by filtering forward or backward in

time, or by combining all available measurements in the form of a smoother. In each



case, the velocity likelihood function is initialized to be uniformly distributed on a
finite interval that is assumed to include the expected range of observed velocities.

The forward time MAP velocity estimator is obtained by maximizing the posterior
PDF as in (5.6),

Ny

(o) = ph () [[ s 1), (59)
=

i = arg max (v). (5.10)

The forward time prior distribution p](v) is initialized to be uniform and is updated
using the convolution operation in (5.8).
The velocity model applies equally well to the time-reversed sequence since (5.7)
implies that
Vnot = Un — a1 (5.11)

Let ,(v) denote the backward time posterior PDF p(ty | g, ... #y) describing the
likelibood of v, occurring after the sequence of measurements {fty, . fy_1.- - by }-
Analogous to the forward time case, the backward time estimator is given by

N
PADEYAD) | ECS NN (5.12)
=
T = arg max whv). (5.13)

The backward time prior distribution p (v) is initialized to be uniform and is updated
as in (5.8),

Phale) = ﬁ/pﬁ,u —u) exp (72"71,) du. (5.14)

14



The terms p/(v) and pi(v) in (5.9) and (5.12) describe prior information gained from

processing measurements {g;,..., My} and {foy,e.y My}, respectively.

Let 7,(¢) denote the smoother posterior PDF p(uy |y, ..., y) describing the
likelihood of v, occurring after all measurements in the time series have been recorded.
The MAP smoother is formed by combining the results from forward and backward

filtering,

Ny
7a(v) = PL(0) Ph(0) [ P(Gnis s | 0), (5.15)

i, = arg max 73 0). (516)

With this formulation, the smoother utilizes all available measurements to estimate
. The product p/(v) p, (v) reflects the independence of two predictions for v, derived
from disjoint measurements sets {tt;... pty 1} and {ftyr, .- iy}

An example smoother posterior PDF from the jet tank experiment is shown in
Figure 5.1b. Compared to the product of measurement PDFs, the smoother has
applied a correction of ~0.2 cm 5! to the velocity estimate by incorporating infor-
mation from adjacent samples in time. Also, the width of the peak has decreased

from 1.2 em s~ t0 0.9 cm 57", reflecting an increase in measurement accuracy.

5.3.3 Automatic tuning

The noise standard deviation o is a free parameter which controls the amount of

smoothing applied by the estimator. The limit o — oo corresponds to maximum



likelihood estimation where no prior knowledge is used,

(5.17)

N
arg max [] p(d0 i ).

As o decreas

s, the likelihood function is increasingly shaped by the assumption of
temporal continuity. However, due to the random component €, the resulting velocity
estimate is not constrained to obey the model precisely. The velocity estimate o is
ultimately determined by available measurements, with the smoothing parameter
affecting how measurements are temporally combined to form the MAP velocity
estimate.

The measurement PDFs in (5.6) are determined by physical parameters of the

sonar such as the carrier frequencies, pulse-to-pulse interval, and number of pulse-pairs
per ensemble. For the jet tank experiment in Section 5.5, the smoothing parameter
was automatically determined from the measurement time series via the following

process.

. Caleulate velocity from multi-frequency phase measurements using (5.2) and

evaluate the velocity spectrum;

Determine the lowest frequency fy of the noise floor (e.g. see Figure 5.6 and

the discussion in Section 5.5);

w®

Choose a value for o that is large compared to the velocity standard deviation;

-

Process measurements using the MAP velocity smoother with smoothing pa-

rameter o;

@

Calculate the velocity spectrum for the time series produced by the smoother;
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crease o and iterate Steps 4 to 6 until the smoothed spectrum is linear in the

terval [0.5fy, 2fy].

In Step 6. the spectral slope s determined on a log-log plot, for example as shown
in Figure 5.6. Once the tuning has been completed, the MAP velocity estimator is

completely specified by sonar parameters and available measurements.

5.4 Instrumentation

5.4.1 Multi-frequency coherent Doppler sonar

Velocity measurements were collected using the multi-frequency coherent Doppler

sonar descr

ed in Hay et al. (2008). The sonar employs a symmetric multistatic ge-
ometry as shown in Figure 5.2 with an angle of 14° between the centre transducer and
transducers 1 and 2. Acoustic pulses are transmitted from the centre transducer and
backscatter is received by all transducers. Each circular piezo-composite transducer
has a diameter of 2 cm, a nominal centre frequency of 1.7 MHz, and a bandwidth of
1 MHz, Carrier frequencies, profiling range, range resolution, pulse length, pulse-to-
pulse interval, and number of pulse-pairs per ensemble are configurable in software.
Dimensions of each sample volume are determined by the beam pattern, carrier
frequency, and range resolution. Nominally, each sample volume has a diameter
of 2 cm and a height of 3 to 6 mm. Operating parameters for the sonar are listed in
Table 5.1

The sonar was installed in a rectangular jet tank with dimensions of 1.2 m on

each side, as shown in Figure 5.3. A round jet emerged from a 1 cm inner diameter

7
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Figure 5.2: Schematic diagram of the symmetric multistatic sonar tested in the jet
tank. Sound pulses are transmitted from transducer 3 and backscatter is received by
all transducers. Beam patterns are indicated by dashed lines. The angle between the
active transducer and transducers 1 and 2 is 14°.

‘Table 5.1: Coherent Doppler sonar parameters.

Parameter Value
Transducer centre frequency 1.7 MHz
Transducer bandwidth 1.0 MHz
Transducer diameter 2cm
Transmit pulse length 8 ps

Ping interval 0.88 ms
Pings per ensemble

Sample rate 113.6 Hz
Recciver bandwidth 125 kH;
Carrier frequencies 22,24 M
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Figure 5.3: Side view schematic of the jet tank showing the multi-frequency coherent
Doppler sonar. The jet flow was directed downward from the nozzle toward the
capture cone. Sonar beam patterns intersected on the near side of the jet, as indicated
with dashed lines.

nozzle that was directed downward just below the water surface. A capture cone at

the bottom of the tank was connected to a recirculation pump. Steady flow rates
were achieved by controlling the pump speed over a range of 600 to 3600 RPM.

Water in the tank was seeded with 50 ym diameter polyamide particles. The

particles have a density of 1.03 g cm™* and are thus approximately neutrally buoyant.
Although the capture cone kept many of the particles in the recirculation circuit,
particles tended to escape the cone and eventually settle on the tank bottom. Over
the course of the experiment, seeding perticles were added to maintain a concentration

of approximately 1 g L™ in the jet
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Figure 5.4: Side view schematic of the jet tank showing the laser periscope and light
sheet. The intersection of the light sheet and camera field of view measured 5.3 cm
by 4.0 cm, as indicated by the rectangle (C) located at the jet centre-line.

5.4.2 Particle image velocimetry

Particle illumination was provided by a dual-head Nd:YAG laser. The laser outputs

two 120 mJ pulses at & wavelength of 532 nm with a pulse width of 5 ns and a

repetition rate of up to 15 Hz. Laser light was directed toward the test area using
an underwater periscope as shown in Figure 5.4 The width of the light sheet was
approximately 5 mm.

The PIV data acquisition system consisted of a digital camera and a data acquisi-

tion computer containing a frame grabber board. Components of the data acquisi




system were obtained from Dantec Dynamics. Focus and aperture settings on the lens
were adjusted manually for optimum exposure. Digital images at 13441024 pixel
resolution were captured in & 5.3 cm by 4.0 cm rectangular region within the jet.

Image pairs were recorded at 4 Hz using a timing signal to synchronize PIV and

sonar data acquisition.
Velocity estimation was performed using the adaptive correlation method imple-
mented in FlowManager software from Dantec Dynamics. The interrogation window

size was set to 6464 pixels with 50% overlap to ensure that each window contained

a minimum of 5 particles (Raffel et al., 2007, chap. 5). Images were pre-processed to
remove ambient illumination and to attenuate image noise. Outliers were detected

and corrected using 3x3 local median validation. Additional information on PIV

age processing and calibration is included in Appendix A.

Due to space constraints within the tank, the sonar and periscope were located as
shown in the top view in Figure 5.5. The angle between the sonar and the light sheet
was 18°. The camera was mounted outside the tank behind a glass wall. Intersection
of the jet centre-line, light sheet, and sonar centre beam occurred in the centre of the

camera field of view.

5.5 Experimental results

Horizontal velocity spectra from the jet tank are presented in Figure 5.6 for a jet
discharge velocity of 118 em s™). Spectra were calculated from 30 seconds of sonar

measurements from the centre transducer range bin located on the jet centre-line.

nted for the 2.2 MHz receiver

The spectrum for single frequency measurements is pres
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Figure 5.5: Top view schematic of the jet tank showing the multi-frequency coherent
Doppler sonar and laser light sheet. The dot and concentric rings indicate the jet and
the capture cone, respectively. The camera (C) was located outside the tank behind
a glass wall

channel only, as other channels show a similar result. The multi-frequency spectrum
represents an average of measurements from each of the four carrier frequencies.
For the maximum likelihood case, velocity was estimated from (5.17) where each
measurement is weighted according to its measurement PDF. In other words, velocity
was estimated from the location of the peak of the product PDF (e.g. as shown in
Figure 5.1b).

Under-smoothed, auto-tuned, and over-smoothed results correspond to output

from the MAP velocity smoother with ¢ equal to 3.2, 1.6, and 0.8 cm s~ respectively.
The auto-tuned value of 1.6 cm s~' was derived from the procedure outlined in
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Figure 5.6: Horizontal velocity spectra for a turbulent round jet. Single frequency
sonar measurements were derived from the 2.2 MHz receiver channel. The multi-
frequency spectrum was produced by averaging measurements from all four carrier
frequencies. The maximum likelihood estimate was derived from (5.17). Under-
smoothed, auto-tuned, and over-smoothed results correspond to output from the
MAP velocity smoother with o equal to 3.2, 1.6, and 0.8 cm s~', respectively.

Section

where the noise floor of the multi-frequency spectrum was observed
to begin at a frequency fy of 10 Hz

PIV velocity fields were recorded at 4 Hz, resulting in a total of 120 image pairs
being recorded simultancously with sonar measurements during the 30 second data

acquisition interval. For the PIV results in Figure 5.6, horizontal velocity spectra were

calculated in terms of spatial frequency for each image pair. Although the PIV system
measures a different horizontal velocity component than the sonar, as indicated by
the top view schematic in Figure 5.5, the results are expected to be statistically
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similar due to the radial symmetry of the jet. Wavenumbers were multiplied by the

mean downward velocity of 16.1 cm s~ to transform spatial frequencies into temporal

frequenci
As expected, the noise floor in Figure 5.6 is highest for measurements made with

a single carrier frequency. The spectrum for multi-frequency measurements demon-

strates the noise reduction that wable when independent measurements are

s acl
averaged. However, the noise floor was further reduced when measurements were
weighted according to PDFs determined by the autocorrelation coefficients j for
cach measurement, as indicated by the maximum likelihood spectrum. Further noise
reduction is possible when measurements are combined temporally rather than pro-

When MAP velocity smoothing was applied using

cessing cach sample independently
the auto-tuned smoothing parameter, the smoothed, muli-frequency, and maximum

es less than 10 Hz. However,

likelihood (i.e. unsmoothed) spectra agree for frequenci

above 10 Hz, the MAP velocity estimator produces a power law velocity spectrum

that agrees well with PIV measurements.

Horizontal velocity time series corresponding to the multi-frequency and auto-

tuned smoother spectra are shown in Figure 5.7. Spikes in the multi-frequency

time series would normally be removed with a despiking algorithm. However, lower

amplitude measurement noise is difficult to separate from real turbulent fluctuations.

The time series for the smoother follows the general trend of the multi-frequency
measurements. The smoother suppresses measurement noise inherent, in the raw
measurements while retaining high froquency fluctuations that are characteristic of a

turbulent flow.

124



Velocity (cms™)

2
Time (seconds)

Figure 5.7: A representative four second interval of the horizontal velocity time series
corresponding to multi-frequency and auto-tuned smoother spectra from Figure :

The smoother attenuates measurement noise while retaining high frequency fluctua-
tions characteristic of turbulent flow.

5.6 Conclusions

In this chapter, a velocity estimator for coherent Doppler sonar has been described

The estimator employs MAP estimation to optimally combine multi-frequency and

multi-transducer measurements. The algorithm operates on a time series of measure-

dngle point in space. Each phase measurement is weighted according to

ments from

a PDF determined by a ion coefficient. A
smoothing parameter controls how measurements are combined in the time domain.

A method was presented for automatically determining the smoothing parameter
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from examination of the spectrum of a representative segment of the measurement

time series. The method was evaluated using results from a laboratory turbulent jet

where velocity was measured simultancously with multi-frequency coherent Doppler
sonar and particle image velocimetry. Automatic tuning of the estimator resulted in

a velocit

¢ time serics where measurement noise was suppressed while high frequency
turbulence fuctuations were retained. Once a smoothing parameter has been chosen
using the tuning procedure, the MAP velocity estimator is free from empirically

determined thresholds or constants specific to a particular instrument or application.
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Chapter 6 Preamble

This chapter presents results from a towing tank experiment that used a rectangular
grid to generate turbulence upstream of the sonar. In this chapter, two additional
thesis objectives are achieved: (i) the MAP velocity estimator performs velocity

ambiguity resolution and noise supy Iy, and (i)

the one-dimensional estimator from Chapter 5 is generalized to higher dimensions
to combine measurements from multiple transducers

This chapter presents a paper titled “Simultaneous Velocity Ambiguity Resolution
and Noise Suppression for Multi-Frequency Coherent Doppler Sonar.” It has been
subitted to the Journal of Atmospheric and Oceanic Technology (Dillon et al.

2011d

130



Chapter 6

Velocity Ambiguity Resolution

6.1 Abstract

Coherent Doppler sonar is a useful tool for non-invasive measurement of ocean cur-

sediment transport, and turbulence in coastal environments. Various methods

have heen proposed to s

parately address two of

s inherent limitations: velocity
ambiguity and measurement noise. However, in energetic turbulent flows, both fac-

tors may be present The presence of noise

velocity ambiguity re

solution, and vice versa, velocity ambiguity presents a challenge

for existing noise suppression methods. A veloc

y estimator based on Maximum A

Posteriori (MAP) estimation has been developed to resolve velocity ambiguity and
suppress measurement noise simultancously rather than separately. The estimator

optimally combines measurements from multiple acoustic carrier frequencies and

multiple transducers. Data fusion is achieved using a probabilistic approach, whereby

measurements are combined numerically to derive a velocity likelihood function. The
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MAP velocity estimator is evaluated using a high fidelity coherent Doppler sonar
simulation of oscillating flow, and with data from a towing tank grid turbulence
experiment where both velocity ambiguity and backscatter decorrelation were present.
Time series and spectra from MAP velocity estimation are compared to those obtained
with conventional Doppler signal processing. In addition to robustly resolving velocity
ambiguity, the MAP velocity estimator is shown to reduce high frequency noise in

turbulence spectra.

6.2 Introduction

Pulse-to-pulse coherent Doppler sonar has been widely used to investigate oceanic
transport and mixing processes. Applications include measurement of tidal flows
(Lhermitte, 1983), surface wave breaking (Veron and Melville, 1999), internal waves
(Plueddemann, 1992), sediment transport (Smyth et al., 2002), and near-bed turbu-

lence (Hay, 2008).

is the in coherent Doppler
sonar. For a sequence {2} of backscatter samples, the autocorrelation at a lag of one
pulse-to-pulse interval is

R(7) = E(z32n41) (6.1)

where E denotes expected value, * denotes complex conjugation, and 7 is the time

interval between successive acoustic transm

jons. The radial velocity compor
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proportional to the pulse-to-pulse phase shift ¢ = Z R(r) (Lohrmann et al., 1990),

c

VS o

& g€l-mal (62)
where ¢ s the speed of acoustic wave propagation and fo is the carrier frequency of the
transmitted signal. In (6.2), the phase interval [, 7] corresponds to an ambiguity
velocity

(6.3)

c
Tor

In other words, scatterer velocities of v, and —v, are indistinguishable since phase

shifts of = and —7 are equivalent.
In practice, autocorrelation is estimated from a finite sequence of M pulse-pairs
(Zemié, 1977),

L
TP (64)
=

R(r)

The phase ¢ of the autocorrelation estimate is determined from real and imaginary

of R(r). C¢ ing to each phase the
magnitude 5 may also be defined (Zedel et al., 1996),

(6.5)

The coefficient / provides a measure of data quality and satisfies 0 < < 1.

noise is caused by pulse-to-pulse backscatter ion from (i)
scatterer advection through the sample volume, (ii) velocity shear and turbulence

within the sample volume, (iii) phase distortion of the transmitted wave, and (iv)
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electronic noise in the receiver circuitry (Zedel et al., 1996; Hurther and Lemmin,

2001).

ise suppression ble when redundant measurements with uncorrelated

poss
measurement errors are available. An example of this approach is the use of two non-

overlapping sample domains (Garbini et al., 1982). Redundant measurements with

uncorrelated errors may also be obtained using additional acoustic receivers (Rowe
et al., 1986; Hurther and Lemmin, 2001) or by simultancously transmitting two or
more acoustic carrier frequencies (Hurther and Lemmin, 2008; Hay et al., 2008).
Coherent, Doppler sonar measurements are also limited by the existence of veloc-
ity ambiguity. Velocity ambiguity may be resolved by cross-correlating broadband
pulses (Brumley et al., 1991) or by invoking the assumption that the velocity field is

continuous in time and space, e.g. by adding multiples of 27 to the autocorrelation

phase to minimize discontinuities in time (Smyth and Hay, 2003), space (Ray and
Ziegler, 1977), or both simultancously (Franca and Lemmin, 2006). Another method
for velocity ambiguity resolution involves varying the pulse-to-pulse interval 7 to
obtain two or more staggered pulse repetition frequencies (Lhermitte and Serafin,
1981; Lohrmann et al., 1990). Multi-frequency coherent Doppler sonar is a recent, de-
velopment where multiple acoustic carrier frequencies are transmitted simultancously

using a wide bandwidth acoustic transducer (Nitzpon et al., 1995; Hay et al., 2008).

from which

The use of multiple frequencies gives rise to different ambiguity veloc
the true velocity can be determined (Zedel and Hay, 2010).

In order to resolve velocity ambiguity and suppress measurement noise simulta-

neously, a vel stimator has been developed based on the Bayesian technique of

city

Maximum A Posteriori (MAP) estimation (Kay, 1993). The MAP velocity estimator
shares many similarities with a Kalman smoother: (i) the estimator processes a time
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series recursively. (if) a model is used to provide prior statistical knowledge, (i) the
estimator produces its own performance measure, and (iv) estimator lag is eliminated
via application both forward and backward in time. However, unlike a Kalman
smoother, the MAP velocity estimator makes use of non-Gaussian probability density
functions and is inherently nonlinear. The motivation for using MAP estimation is
that velocity ambiguity causes the velocity likelihood function to be multi-modal;
thus a Gaussian representation is inappropriate.

The MAP velocity estimator optimally combines measurements from multiple
acoustic carrier frequencies and multiple transducers. Data fusion is achieved us-

ing a probabilis

tic approach, whereby measurements are combined numerically to
derive a velocity likelihood function. While the focus of this chapter is on multi-
static multi-frequency coherent Doppler sonar, the results are equally applicable to
single-frequency and staggered pulse repetition frequency systems with monostatic

g tank grid turbu

or multistatic geometries. Results are presented for a tow ce

experiment where both velocity ambiguity and backscatter decorrelation were present.

Time series and spectra from MAP velocity estimation are compared to those obtained

with conventional Doppler signal processing. In addition to robustly resolving velocity

ambiguity, the MAP velocity estimator is shown to reduce high frequency nose in

turbulence spectra.



6.3 Theory

6.3.1 MAP estimation

Maximum A Posteriori (MAP) estimation is one of several parameter estimation

methods based on Bayesian inference. In contrast with classical statistical estimation,
Bayesian methods treat a parameter to be estimated as a random variable rather
than a deterministic but unknown constant (Box and Tiao, 1973). The motivation
for the Bayesian approach is that prior knowledge of the probability density function
(PDF) may be used to improve estimator performance. Once observations have been
made, Bayes’ theorem permits caleulation of the posterior PDF which expresses the
likelihood of a particular parameter value given the measurements that have been
observed. An estimate is then calculated as a function of the posterior PDF, for

example as the location of the maximum value in MAP estimation (Kay, 1993).

The unknown parameter to be estimated is the radial speed v (for monostatic

sonar) or the velocity veetor v (for multistatic sonar). Let p denote a vector of

phase and magnitude for

cach carrier frequency and transducer. The MAP velocity estimate is the location of

the maximum value of the posterior velocity PDF, denoted by (Kay, 1993, chap. 11)

arg max p(v) p(n|v). (6.6)

The term p(v) describes any prior knowledge of v that exists before measurements

have been observed. The measurement PDF p(s|v) expresses the probability of
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Figure 6.1: Velocity likelihood functions for single- and multi-frequency phase mea-
surements. The true velocity 0.5 m s has been measured using: (a) a single
carrier frequency with an ambiguity velocity of 0.25 m s, and (b) multiple carrier
frequencies with ambiguity velocities of 0.23, 0.25, and 027 ms™'.

ohserving measurements p# when velocity takes the value v.

nce autocorrelation phase can on'y be measured modulo 2x radians, the veloc-
ity likelihood function for a single phase measurement is periodic with period 2v,

determined by the ambiguity v

ity. For example, a measurement with ¢ = 0 and

v, =0.25 m s~ is illustrated in Figure 6.1a. From only a single measurement, it is
not possible to determine the true velocity unless prior knowledge can be invoked to
restrict the range of possible velocity values.

I o multi-frequeney

stem, velocity ambiguity may be resolved by noting that

amb

ty velacity is inversely proportional to each carrier frequency (Zedel and Hay,
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Figure 6.2: Velocity likelihood functions showing: (a) the product of PDFs from
multiple carrier frequencies, and (b) the posterior mean, median, and MAP estimate.
In (b). prior knowledge has been represented by restricting velocity to lie in the
=

interval o] < (

ms

2010). For example, velocity likelihood functions are shown in Figure 6.1b for a true
velocity of 0.5 m s~ and carrier frequencies with ambiguity velocities of 0.23, 0.25,
and 0.27 m s~ In this example, all three likelihood functions coincide in the vicinity
of the true velocity. Although each function is periodic, periods differ according to

the dis

ct. ambiguity velocities

Independent measurements in Figure 6.1b may be combined by multiplying the

cortesponding probability distributions, as shown in Figure 6.2a. No measurement

errors have been

roduced; the existence of multiple peaks in Figure 6.2a is solely

the result of measurement, uncertainty and the presence of velocity ambiguity.
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Prior knowledge may be used to further constrain the velocity likelihood function.
In the example posterior PDF shown in Figure 6.2b, prior knowledge has been rep-
resented by enforcing the restriction [u] < 0.75 m s~ In Figure 6.2b, the mean and
median values for the posterior PDF are biased by the presence of multiple peaks.
These two methods are therefore not suitable when the posterior PDF is multi-modal.

In contrast, the MAP estimator correctly selects the most likely peak.

6.3.2 Bistatic Doppler shift

A bistatic geometry is depicted in Figure 6.3, where the scatterer, transmitter, and

receiver positions are indicated by S, T, and R, respectively. Unit vectors directed

from the scatterer to the transmitter and receiver are denoted by ry and rz. The
transmitter-receiver pair measures a velocity component in the direction of the bistatic

bascline, i.c. toward the line segment RT and along the biscctor of the angle £ RST.

Let ry denote a unit vector directed toward the baseline in the direction rr + rp as

shown in Figure 6.3. The angle subtended by vectors ry and rg is denoted by 20.
11 a sinusoidal acoustic source of frequency fo emanates from the transmitter, the

observed frequency fi at the receiver is given by

ctverr :

= —_—. 6.7,

s () ©)

Since [v] < ¢ for ions, (6.7) may be i with a first
order Taylor series to obtain

fn= gy (14 L), ©8)
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Figure 6.3: Schematic diagram of a scatterer S, transmitter T, and receiver R. The
scatterer is moving with vel
fic

u the scatterer to th
RT,

vecter v. Unit vectors rr, rr, and ry are directed
transmitter, to the receiver, and toward the bistatic baseline
espectively. The angle between rr and rp is 20

Since rr + rg = 2rg cosf, the Doppler frequency shift fp = fr— fois

Jo=po(2rEee=).

(6.9)
Thus, a bistatic configuration measures the velocity component vg = v-r toward the
bistatic basel

. When the covariance method is used to estimate Doppler frequency,
autocorrelation phase and the velocity component vg are related by

”
2 cosf.

(6.10)

140



Passive ‘”;'“ Passive

A 40cm

Figure 6.4: Schematic diagram of the symmetric multistatic sonar tested in the towing
tank. Sound pulses are transmitted from transducer 3 and backscatter is received by
all transducers. Beam patterns are indicated by dashed lines. The angle between the
centre transducer and transducers 1 and 2 is 14°. Bistatic baselines are tilted 7° from
the z-axi

6.3.3  Velocity estimation

A symmetric two-dimensional multistatic sonar geometry is illustrated in Figure 6.4.

Acoustic pulses are transmitted from transducer 3 and backscatter is received by all

three transducers. Velo

ty measurement occurs in the region where transducer beam

patterns overlap, as indicated with dashed

s in Figure 6.4, produc

profile that extends above and below the nor

nal intersection point by appro

nately

10 em (Hay et al., 2008),



Let  denote the tilt angle of the transducer 1 and 2 baselines with respect to the
s-axis in Figure 6.4 For the isosceles geometry in Figure 6.4, 6 = v for a scatterer
at the beam intersection point. Velocity components measured by each recciver are

denoted by v (j = 1,2,3) with unit vectors r; directed from the beam intersection

point toward the corresponding baselines for j = 1,2 and toward the centre transducer

for j = 3. 1f the velocity vector is specified in Cartesian coordinates as [v; v.], velocity

measurements are given by

vy = —vpsiny +v: o8y (6.11)
vy = v,siny + v, cosy (6.12)
v =0, (6.13)

For comparison with MAP estimation, a least squares inverse transformation will be

used to determine Cartesian velocity components from transducer measurements,

v (6.14)
ny
+ (0 + ) cosy (©6.15)
T+2cos?y

Division by sin< in (6.14) indicates that the transverse velocity component v, is
more difficult to estimate than the radial component v.. For a tilt angle 5 of 7°, the
measurement error ratio o,/ is approximately equal to 10

In the least squares formulation for v, and v,, each measurement is weighted
cqually. In contrast, the MAP velocity estimator uses (6.11)-(6.13) to project mea-

surement PDFs onto a two-dimensional velocity space, thereby weighting each mea-
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surement according to its PDF.

For a multi-froquency system with N carrier frequencies and N, transducers,
consist of jon phase ;; and ion magnitude
jy corresponding to each carrier frequency f; and transducer j. The MAP velocity

estimator takes the form
Ny M 5
v = arg max p(v) [T [T p(éss. s 1 5)- (6.16)

For the results presented in this chapter, measurement PDFs were determined from
simulations of a Gaussian random process as described in Chapter 4 (Dillon et al..
2011¢), with a correction for the bias of the autocorrelation coefficient from Chapter 3
(Dillon et al., 2011a).

6.3.4 Filtering and smoothing

The following presentation extends the one-dimensional MAP velocity estimator de-
scribed in Chapter 5 (Dillon et al., 20115) to higher dimensions. Superscripts f, b, and
s denote results from the forward filter, backward filter, and smoother, respectively.

Let (v) denote the forward time posterior PDF, ie. p(Va iy, bt,). describing

the likelihood of v,, occurring after the sequence of measurements {4y, ft,}. The

sample-to-sample velocit
tribution. Therefore, given a posterior PDF 5(v), the predicted likelihood pf,, (v)
is the convolution of 7#(v) with a Gaussian distribution (Rosenthal, 2000),

Phav) = v —w) 47 M, (617)

1
(2m)7 detiC¢ Jas
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where d i the dimension of the velocity vector and Cg denotes the covariance matrix
of the velocity increment.

The forward time MAP velocity estimator is obtained by maximizing the posterior
PDF as in (6.16).

Ny N
) = ol [T [T PGnssn 1) (6.18)
i
v_=.,gm'.xﬂ(v). (6.19)

The forward time prior distribution p](v) is initialized to be uniform and is updated
using the convolution operation in (6.17).

Let FA(v) denote the backward time posterior PDF, i.e. p(Va |y, - iy ), de-
scribing the likelihood of v,, occurring after observation of the measurement sequence

(B by—1s---fiy ). Analogous to the forward time case, the backward time esti-

mator is given by

Ny N
) = A) [T TTP(Gncs s 125} (6:20)
=]
V¥, = arg max ). (6.21)
“The backward time prior distribution g (v) i nd is updated
as in (6.17),
_ 1 o ;
)= it [ e ©2)

The terms p/(v) and ph(v) in (6.18) and (6.20) describe prior information gained

4




from measurements {pty,.....ft, 1} and {4, fy}, respectively.

MAP estimation can also be i by combining all in the
form of a smoother. Let 7(v) denote the smoother posterior PDF p(v, |ty pty)
describing the likelihood of v,, occurring after all measurements in the time series
have been recorded. The MAP smoother is formed by combining the results from

forward and backward filtering,

N N

7 v) =PV o) [T TT 2(bnss s 103) (6.23)
el

Vo = arg max ;(v). (6.24)

With this formulation, the smoother utilizes all available measurements to estimate
Vi The product p/(v)pl(v) reflects the independence of two predictions for v,

derived from disjoint measurements sets {fty,. ., sy} and {fyq,.... ey}

6.4 Numerical simulation

In order to evaluate MAP estimation of a known velocity, simulations of oscillating
flow were performed using the coherent Doppler sonar model described in Zedel
(2008). ‘The model simulates pulse-to-pulse coherent, scattering from a cloud of
moving particles for arbitrary multistatic sonar geometries. Physical effects such as
spherical spreading, acoustic absorption, frequency-dependent beam patterns, trans-

ducer frequency response, and receiver noise are included in the model. The model

supports simulation of arbitrary pulse shapes, including the use of multiple carrier

frequencies.



Oscillating horizontal flow was simulated with a sinusoidal amplitude of 4.0 ms~'
and a period of 10 seconds. Thirty seconds of simulated measurements were generated,
representing three periods of ascillation. In the model, the multistatic configuration
shown in Figure 6.4 was tilted 5° from vertical to reproduce the geometry of the grid
turbulence experiment described in Section 6.5. Parameters for the coherent Doppler

sonar simulation are listed in Table 6.1.

Table 6.1: Coherent Doppler sonar simulation parameters.

Parameter Value
Transducer centre frequency 17 MHz
Transducer bandwidth 1.0 MHz
Transducer diameter 2cm
Transmit pulse length dps
Baseline tilt angle

Ping interval 7 15 ms
Pulse-pairs per ensemble 10
Sample rate 66.7 Hz
Receiver bandwidth 250 kHz
Carrier frequencies 1.2, 15,18, 2.1 MHz
Simulation time step 25 s
Simulation time 30s
Particle number density 4720 L7
Receiver signal-to-noise ratio 10dB

In Figure 6.5a, the phase time series is presented for the 2.1 MHz receiver channel
of the centre transducer in the oscillating flow simulation. Numerous phase discon-
tinuities at £ are present. Similar results were obtained for carrier frequencies at
12, 15, and 1.8 MHz, except that phase discontinuities occurred at higher speed for

lower carrier frequencies. When veloci

is near zero, for example at ¢ = 5 and 10
seconds, phase measurement noise is minimal. However, when the velocity amplitude
is high, for example at ¢ = 2.5 and 7.5 seconds, phase measurement noise increases
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Figure 6.5: Simulated time series showing: (a) autocorrelation phase and (b) au-
tocorrelation magnitude from the centre transducer 2.1 MHz receiver channel. The
oscillating horizontal velocity is shown in (c).

due to backscatter decorrelation caused by scatterer advection through the sample
volume. The oscillating flow simulation therefore provides a data set in which both
velocity ambiguity and significant measurement noise are present

The time series of autocorrelation magnitude is presented in Figure 6.5b for the
2.1 MHz receiver channel of the centre transducer in the oscillating flow simulation.
Autocorrelation magnitude also exhibits periodic behaviour corresponding to the

phase noise in Figure 6.5a. When velocity is near zero, autocorrelation magnitude

147



for all frequency channels approaches one. When the velocity amplitude is high,
autocorrelation coefficients as low as 0.1 are observed. However, during periods of
peak velocity, o wide range of coefficents are observed. Thus, accurate velocity
estimates may be obtained if samples are combined in a way that emphasizes the

higher quality measurements.

6.4.1 Radial velocity

The MAP velocity estimator was configured to calculate velocity likelihood functions
on a one-dimensional grid extending over +1 m s~ in increments of 0.01 ms~'. Gaus-
sian interpolation was used to refine the location of the likelihood peak (Appendix B).
Velocity smoothing was performed as described in Section 63 with C; = o® in
(6.17) and (6.22) and @ equal to 0.01 m s~'. The smoothing parameter ¢ is a user-
configurable parameter that describes the expected amplitude of velocity increments
from sample to sample. The value of o ¥as chosen to be less than the radial ambiguity
velocity and greater than the maximum sinusoidal velocity increment in one ensemble

interval Mr. For the ascillating flow simulation, radial velocity varies as
olt) = Viin (ZTL‘) sin5® (6.25)

where V is the peak horizontal velocity and T, is the period of oscillation. Therefore,

the maximum velocity increment is given by

dop o, zﬂrms" 56 (626)
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Figure 6.6: Comparison of MAP radial velocity estimation and averaged multi.
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0 autocorrelation phase to minimize

frequency measurement
frequency (gray) curve by adding multiples of
velocity

ror

which is equal to 0.003 m s~ for the parameters of the oscillating flow simulation

In Figure 6.6, radial velocity from MAP velocity estimation is compared with
the average of multi-frequency measurements from the centre transducer. Velocity
ambiguity has been removed from the multi-frequency curve in Figure 6.6a by adding
multiples of 2 to cach phase measuranent to minimize the difference between the

measured and actual radial velocities. The MAP estimator, however, operates on raw
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Figure 6.7: Comparison of radial velocity ambiguity resolution using MAP estimation,
multi-frequency phase resolution, and :emporal continuity.
phase measurements constrained to the interval [, z].

The time series of velocity error in Figure 6.6b shows that measurement error
for the multi-frequency measurements increases when the velocity amplitude is high.

In addition to resolving velocity ambiguity, the MAP velocity estimator produces an

error time series with  standard deviation of 0.005 m s~! compared to 0.011 ms™" for
the average of multi-frequency measurements. Also, the multi-frequency error time
6.6b is clearly periodic. Although the quality of raw measurements

series in Figure

varies in time, reduced RMS error is pussible using the MAP velocity estimator since

each measurement is weighted according to its probability density function.

In practice, velocity ambiguity cannot be removed from individual measurements

as in Figure 6.6a since the actual velocity would not be known. In Figure 6.7,

radial velocity from the MAP velocity estimator is compared with two other methods



for velocity ambiguity resolution. All three algorithms operate on the same set of
raw measurements. The multi-frequency phase resolution algorithm processes mea-
surements from each sample in time to derive a lincar relationship between phase
and frequency based on an estimate of the slope dg/df, as described in Zedel and
Hay (2010). For the temporal continuity algorithm, offsets of 27 were added to the

for each frequency channel to minimize phase differences between

phase time ser
successive samples. Oceasional spikes occur in the multi-frequency phase resolution
time series due to the difficulty of estimating d@/df as Ag/Af when large amounts
of phase noise are present. However, spikes could be removed with low pass filtering
or  de-spiking algorithm.

The temporal continuity method shows a much more serious error occurring at,
= 7.7 seconds. A series of poor quality measurements causes an ambiguity resolution

ts until ¢ = 22.3 seconds when

error in the fy frequency channel. The error pe

another error happens to cancel the f, error. However, an error occurs in the f;

followed by an error in the f; channel at ¢ = 27.5

chamnel at ¢+ = 22.5 s

seconds. The temporal continuity method is therefore not robust for bursts of low

quality measurements such as those oc g at the peak horizontal velocity of

esolution method

1.0 m s~ Ambiguity errors for both the multi-frequency phase
and the temporal continuity method disappear when the complex autocorrelation
sequence is low pass filtered with a 10 Hz Butterworth filter before calculating velocity

measurements. However, low pass filtering leads to a reduction in bandwidth which

may be unacceptable for applications in turbulent flow.



6.4.2 Transverse velocity

‘The MAP velocity estimator was also configured to caleulate velocity likelihood func-

tions on a two-dimensional grid extending over 45 m s~ in the horizontal direction
and +1 m s~ in the vertical direction, with a grid spacing of 0.02 m s'. The
rationale for choosing a smaller range for vertical velocity is that, in practice, one-
dimensional MAP velocity estimation may be used with centre transducer data to

quickly estimate the range of expected radial velocities. Velocity smoothing was

performed using C¢ = 0°I and 0 = 0.02 m s~

In Figure 6.8, the transverse velocity Vx (i.e. perpendicular to the centre trans-
ducer axis) from MAP velocity estimation is compared with the transformation given
by (6.14) in Section 6.3. As for the radial case, velocity ambiguity has been removed
from the multi-frequency curve in Figure 6.8a by adding multiples of 2 to autocor-
xelation phase to minimize velocity error.

As before, the MAP estimator operates on raw phase measurements constrained

to the interval [~m,7]. The time series of velocity error in Figure 6.8b also shows

ncrease in measurement, error for multi-frequency measurements when

a period

velocity amplitude is high. Also, transverse error is greater than radial error from

Figure 6.6b, since transverse velocity is more difficult to estimate than radial velocity
using a multistatic geometry with small baseline tilt angle, as discussed in Section 6.3.
In addition to resolving velocity ambiguity, the MAP velocity estimator produces an
error time series in Figure 6.8b with a standard deviation of 0.018 m s~ compared
100063 m s~ for the average of multi-frequency measurements. As in Figure 6.6b,

reduced RMS error is possible since the MAP velocity estimator weights each mea-
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re 6.8: Comparison of MAP transverse velocity estimation and averaged multi-
frequency measurements. Velocity ambiguity has been removed from the multi-
frequency (gray) curve by adding multiples of 21 to autocorrelation phase to minimize
velocity error

surement according to its probability censity function.

6.5 Experimental instrumentation

A grid turbulence experiment was performed in the Marine Craft Model Towing Tank

at Dalhousie University. The tank has horizontal dimensions of 30 m x 1 m and a



Figure 6.9: Side view schematic of the towing tank showing the MFDop, Vectrino,
r grid. Instrumentation was attached to a carriage that moved al
sunted above the water. MFDop beam patterns are indicated with dashed

&

b of 1 m. An instrumented carriage is propelled by an electric motor along rails

e tank. Carriage speed is computer-controlled and programmable

over a range of 0 to 3.0 m ™. Constant speed is sustained over a rail length of

v 25 m. The towing carriage, rectangular grid, and instrumentation are

approximat

own schematically in Figure 6.9

Velocity was measured using the MFDop, a multi-frequency coherent Doppler
sonar described in Hay et al. (2008). The sonar employs a symmetric multistatic

geometry as shown in Figure 6.4 with an angle of 14° between the centre transducer

ed 40 cm from the face

and transducers 1 and 2. The beam intersection point is loc:
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of transducer 3. Bach transducer has a diameter of 2 cm, a nominal centre frequency
of 1.7 MHz, and a bandwidth of approximately 1 MHz. Carrier frequencies, profiling
range, range resolution, pulse length, pulse-to-pulse interval, and ensemble length are
configurable in software. Nominally, each sample point has a diameter of 2 cm and a

height of 3 mm. The parameters in Table 6.1 also apply for the MFDop. The sonar

was rotated to point 5° aft (i.e. counter-clockwise in Figure 6.9) to avoid receiving
multiple reflections from the tank bottom and water surface. The sonar was located
on the tank centre line with the centre transducer 56 cm above the bottom.

Measurements were also collected with a 10 MHz Nortek Vectrino acoustic ve-
locimeter to independently measure carriage speed. The centre transducer of the
Veetrino was located 45 em above the bottom, 16 em forward of the MFDop centre
transducer, and 19 em to the left side of the tank centre line. Vectrino measure-
ments were recorded at 100 Hz using Vectrino* firmware. Accuracy is quoted by the
manufacturer to be £0.5% of the measured value.

A rectangular grid was installed 79 cm forward of the Vectrino and 95 cm forward
of the MFDop, as indicated in Figure 6.9. The grid consisted of 11x11 aluminum

bars with 1 em square cross-section. Each of the openings between grid elements was

square with size D = 4 cm. Therefore, the Vectrino was located approximately 20D
downstream of the grid, corresponding to the beginning of the homogencous initial

period of decay for grid turbulence (Batchelor and Townsend, 1948)

Water in the tank was seeded with agricultural lime. Prior to each run, approx-
imately 0.5 kg of lime was added to replace scatterers lost to settling. An order of

‘magnitude estimate of sediment concentration was 1 g L™

Carriage speed was varied from 0.1 to 1.0 m s by programming the desired specd
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into the control system. Results are presented in Section 6.6 for a nominal speed of

. Due to additional drag from the grid, actual carriage speed was less than

im
the requested value by approximately 10% as determined from velocity measurements

with the Vectrino. The control system software automatically calculated an acceler-

ation and deceleration profile to maximize the time at constant speed subject to the

tank length constraint

6.6 Experimental results

Time series of autocorrelation phase and magnitude are shown in Figures 6.10a and
6.10b. MFDop results are presented for transducer 1 at a range of 40 cm for the

2.1 MHz carrier frequency. The towing carriage accelerated to a nominal speed of

1ms, as shown by the time series of horizontal velocity measured by the Vectrino
in Figure 6.10c. A phase discontinuity due to velocity ambiguity is evident at the one
second mark in Figure 6.10a. Similar results were obtained for carrier frequencies at

12, 15, and 1.8 MHz, except that the phase discontinuity oceurred later (ic. at a

higher carriage speed) for lower carrier fi ‘The time serics of

‘magnitude in Figure 6.10b shows a decreasing trend during carriage ion. Fur-

thermore, measurement noise increased abruptly as the MFDop entered the turbulent

ake of the grid at approximately the two second mark.

Three methods for velocity ambiguity resolution are compared in Figure 6.11a for
measurements from a single MFDop receiver in a bistatic configuration. For a sonar
tilt angle of 5, the velocity component V; measured by transducer 1is inclined 12° to

the vertical. Therefore, for a carriage speed of 1 ms™, the Vi component is nominally
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Figure 6.10: Towing carriage acceleration showing: () autocorrelation phase from the
MFDop, (b) MFDop autocorrelation magnitude, and (c) Vectrino horizontal velocity.
MFDop results from transducer 1 are shown for the 40 cm range bin and 2.1 MHz
carrier frequency.

02 m s'. In Figure 6.11b, horizontal and vertical Vectrino measurements were
rotated by 12° to obtain the V; velocity component. Results from one-dimensional
MAP velocity estimation in Figure 6.11a were obtained by evaluating velocity like-

lihood functions over a range of +1 m s~ with a grid point spacing of 0.01 m s

and a smoothing parameter o of 0.08 m s~'. The multi-frequency time series is

the result of applying the method in Zedel and Hay (2010) for velocity ambiguity
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Figure 6.11: Velocity estimation of the Vi component directed toward the bistatic
baseline between transducers 1 and 3 showing: (a) comparison of three methods
for velocity ambiguity resolution, and (b) Vectrino measurements rotated by 12° to
obtain the V; component

resolution. For the temporal continuity method, multiples of 27 radians were added

to the autocorrelation phase of each carrier frequency to minimize discontinuities in

time before averaging the results from all carrier frequencies.
Velocity spectra for the multi-frequency and MAP velocity V; time serics are

shown in Figure 6.12 for the steady-s

ate portion of towing carriage motion. Spikes

in the multi-frequency time series were removed prior to calculation of the spectrum
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Figure 6.12
dimensional
1 baseline.

Comparison of multi-frequency and MAP velocity spectra for one-
timation of the V; velocity component directed toward the transducer

by shifting phase measurements by multiples of 25 to best match the MAP velocity
time series. Since there is no high frequency noise floor in Figure 6.12, the automatic

Di

tuning algorithm et al. (2011b) does not apply. Instead, the smoothing

parameter of o = 0.08 m s~ was obtained by decreasing o as much as possible
without introducing high frequency attenuation in the velocity spectrum. Results
similar to Figure 6.12 were obtained when MAP velocity smoothing was applied to

measurements from transducers 2 and 3.

In Figure 6.13, the Vy velocity component (i.e. transverse to the MFDop, as shown

ure 6.4) is estimated from measurements from all three MFDop transducers.
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Figure 6.13: Estimation of transverse velocity Vy using multistatic measurements
from transducers 1, 2, and 3 showing: (a) comparison of three methods for velocity

ambiguity resolution, and (b) Vectrino measurements rotated by 5° to obtain the Vx

component

Results are shown for the range bin at 40 cm. The centre transducer is inclined 5°
10 the vertical. In Figure 6.13b, horizontal and vertical Vectrino measurements were
rotated by 5° to obtain the Vy velocity component. Results from two-dimensional

like-

MAP velocity estimation in Figure 6.13a were obtained by evaluating velocit
lihood functions over a horizontal range of 0 to 2 m s™' and a vertical range of

41 m s~ with a grid point spacing of 0.01 m s~ and a smoothing parameter o of
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Figure 6.14: Comparison of multi-frequency and MAP velocity spectra for two-
dimensional estimation of the Vi component from transducers 1, 2, and 3.

0.08 ms~", where C¢ = 0?L For multi-frequency and temporal continuity time series.
the respective methods were applied to measurements from each transducer before

estimating Vy using (6.14)

Velocity spectra for the multi-frequency and MAP velocity Vi time series are
shown in Figure 6.14 for the steady-state portion of towing carriage motion. As
for the one-dimensional case, spikes in the multi-frequency time series were removed
prior to calculation of the spectrum. Also shown in Figure 6.14 is a spectral slope

of 4

3 corresponding to the inertial subrange of homogeneous isotropie turbulence

.3 Hz for a pulse-to-pulse interval of

(Pope, 2000). The Nyquist frequency occurs at 3

1.5 ms and ensembles of 10 pulse-pairs. The velocity spectrum for the Vz component
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was similar to Figure 6.12

6.7 Discussion

An illustrative example was presented in Section 6.3 to show how multi-modal velocity

likelihood functions may oceur when velocity ambiguity is present. It was shown that

estimators based on the posterior mean and median can be biased when the velocity
likelihood function is multi-modal. When velocity ambiguity is present, estimators
that assume Gaussian statistics (e.g. Kalman filters) are also inappropriate and will

lead to biases in velocity estimates. In contrast with classical statistical estimation,

MAP estimation makes use of prior knowledge to identify the most likely peak. Two
types of prior knowledge result if it is known that (i) velocity lies in some pre-defined
range. or (i) velacity is continuous in time and/or space.

The MAP velocity estimator was developed in Section 6.3. Although the dis-
cussion focused on the two-dimensional multistatic geometry shown in Figure 6.4,
estimator equations were presented in a way that applies for one-, two-, or three-
dimensional velocity estimation. The MAP velocity smoother combines results from
forward and backward filtering to eliminate estimator lag and reduce measurement
uncertainty. Prior knowledge is derived from a model where the velocity increment
from sample to sample is assumed to be discrete-time white Gaussian noise. As the

smoothing parameter o decreases, the likelihood function is increasingly shaped by

the assumption of temporal continuity. However, the resulting velocity estimate is not

constrained to obey the model precisely since the estimate is ultimately determined

by available measurements.



In the prediction step, convolution is implemented by filtering the posterior PDF
of the previous sample with a FIR filter having a Gaussian impulse response. MAP
velocity estimation could also be applied in the spatial domain. However, spatial
smoothing would require an assumption of spatial continuity which may not be valid
for shear flows,

A simulation of multi-frequency coherent, Doppler sonar measuring an oscillating
flow was used to evaluate the MAP velocity estimator via a comparison with the
known simulated velocity. Measurement noise was caused by scatterer advection
through the sample volume. Numerous phase wraps at 7 were also present due
to velocity ambiguity. The one- and two-dimensional MAP velocity estimators were
shown to correctly resolve velocity ambiguity while suppressing measurement noise
during periods of peak velocity amplitude. The key observation was that although
autocorrelation coefficients as low as 0.1 were observed, low quality measurements
tended not to occur simultancously on all frequency channels and for all transduc-
ers. Thus, by combining measurements according to their corresponding probability
density functions, it was possible to suppress spurious measurements, resulting in an
error amplitude that was approximately constant in time despite the varying quality
of raw measurements.

The grid turbulence experiment also provided a data set where velocity ambiguity
and backscatter decorrelation were present. Time series of autocorrelation phase
and magnitude in Figure 6.10 indicate that there was an increase in measurement
noise during carriage acceleration, with additional measurement noise occurring as
the MFDop entered the turbulent wake of the grid. The Vectrino and MFDop velocity

time series in Figures 6.11 and 6.13 are not directly comparable due to the spatial
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separation of the sensors, as indicated in Figure 6.9. However, the Vectrino provides
an independent. measurement of carriage speed which is useful for evaluating the
performance of algorithms for velocity ambiguity resolution.

Figures 6.11a and 6.13a show that backscatter decorrelation leads to velocity am-

biguity resolution errors for the multi-frequency and temporal contimuity methods.

nce the multi-frequency method processes each point of the time series indepen-
dently, oceasional errors appear as velocity spikes. The algorithm has no “memory”

and thercfore spikes can be removed with a de-spiking algorithm. The temporal con-

tinuity method, on the other hand, has infinite memory, in the sense that ambiguity
resolution errors persist indefinitely unless two errors happen to cancel. MAP velocity

smoothing can be interpreted as a compromise between these two extremes where the

best features of each approach are retained. The estimator incorporates temporal

formation to help choose the correct peak in a multi-modal velocity likelihood

function. However, temporal continuity is not enforced in a strict sense, and the
estimator is able to recover if an error oceurs. The two-dimensional MAP velocity
estimator is more tolerant of measurement noise than one-dimensional methods since

probability distributions from all three transducers are combined before estimating

velocity.
While large amplitude spikes may be removed from the velocity time series, lower
amplitude measurement noise is difficult to separate from real turbulent fluctuations

Averaging and low pass filtering are frequently applied to reduce measurement errors;

howey

there is a corresponding reduction in effective sample rate and bandwidth.

Ideall;

. noise suppression methods would improve velocity estimates while preserving

the sample rate and bandwidth of the original data. Figures 6.11 and 6.12 show an
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example where one-dimensional MAP velocity estimation robustly resolved velocity

ambiguity without introducing high frequency attenuation in the velocity spectrum. 1
anoise floor had been present in the velocity spectrum, the one-dimensional estimator

could also be used to suppress noi

. as demonstrated in Dillon et al. (2011b). Since

the MAP velocity estimator operates in the time domain, a smoothed time series at

the full sonar sample rate is produced (e.g. Figures 6.11a and 6.13a) in addition to
the smoothed spectra shown in Figures 6.12 and 6.14.

For transverse velocity measurement, the component V is more difficult to esti-

mate than radial velocity using a multistatic geometry with small baseline tilt angle.
Figures 6.13 and 6.14 show that two-dimensional MAP velocity estimation suppresses

high frequency noise inherent in transverse velocity measurement while resolving

velocity ambiguity and retaining high frequency fluctuations characteristic of tur-
bulent flow. Comparison of Figures 6.12 and 6.14 illustrates how two-dimensional
MAP velocity estimation differs from the one-dimensional case. The two-dimensional

estimator projects measurements from cach transducer onto the space of Cart

sian

components [v. 1] so that each measurement is weighted according to the geometry

of the sonar in addition to the corresponding autocorrelation coefficient. Smoothing
is then applied to (v, v.] rather than to the time series from each transducer.
Velocity likelihood functions were evaluated on a discrete set of grid points to
estimate the maximum value of the posterior PDF. Although the grid search is not
computationally efficient, there are no convergence ssues and the search produces
the global maximum when the grid spacing is small compared to the width of peaks

in the posterior PDF. Velocity estimates were refined by fitting a Gaussian peak to

in the

#3x3 grid of points cinity of the maximum value, as is typically performed




for sub-pixel estimation in particle image velocimetry (Raffel et al., 2007, chap. 5).
Using the peak fitting algorithm, velocity results were not sensitive to the choice of
grid point spacing. Future work will investigate the use of an adaptive mesh and

more sophisticated optimization algorithms to improve computational efficiency.

6.8 Conclusions

In this chapter, a velocity estimator for coherent Doppler sonar has been described.

MAP estimation to optimally combine multi-frequency and

The estimator employ
multi-transducer measurements. The estimation framework accommodates mono-
static, bistatic, and multistatic sonar configurations. The algorithm operates on a
time series of measurements from a single point in space. Spatial smoothing is also
possible if the flow can be assumed to be spatially continuous. Each phase measure-
ment is weighted according to a PDF determined by a corresponding autocorrelation
coefficient. A user-configurable smoothing parameter controls how measurements are
combined in the time domain. The MAP velocity estimator was evaluated using
a high fidelity coherent Doppler sonar simulation of oscillating flow. Results were
also presented from a towing tank grid turbulence experiment where both velocity

ambi and backscatter decorrelation were present. Time series and spectra from

MAP velocity estimation pared to those obtained with ional Doppler
signal processing. In addition to robustly resolving velocity ambiguity, the MAP

velocity estimator was shown to reduce high frequency noise in turbulence spectra.
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Chapter 7

Conclusions

7.1 Summary

The following thesis objectives were outlined in Section 1.4:

n to multi-frequency coherent Doppler sonar for the

To apply MAP estimat

purpose of resolving velocity ambiguity and suppressing measurement noise

ather than separately;

multancously

2. To develop an estimation framework that accommodates commonly used sonar

tems, ADCPs with divergent

geometries such as one-dimensional single beam sy

t sensors, and profiling sonars;

beams, three-dimensional velocity p

To ensure that the estimator depends solely on physical parameters of the sonar

trument-specific and application-specific constants;

and is free from in

1. To evaluate MAP velocity estimation using numerical simulation and laboratory

experiments under realistic and challenging operating conditions.
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The above objectives have been successfully achieved, culminating in the

of the multi-dimensional MAP veloci

¢ estimator in Chapter 6. The approach taken
in this thesis to resolve objectives 1-4 is summarized below.

A new formula was derived in Chapter 3 for the asymptotic form of an auto-
correlation coefficient that provides a measure of data quality for coherent Doppler
sonar. Theoretical analysis and numerical simulation showed that the autocorrelation
coefficient is a biased estimator for finite pulse-pair averages and in the limit of
infinite ensemble length. Validity of the results from a Gaussian random process
was confirmed using a high fidelity coherent Doppler sonar model, and using sonar
measurements in a towing tank where the towing carriage travelled at constant speed.
The experiment showed that the distribution of observed autocorrelation coefficients

s once the autocorrelation bias has

well-predicted by a Gaussian random proces

been removed. The results of Chapter 3 served to relate the observed coef nt from

a finite ensemble to the actual pulse-to-pulse backscatter autocorrelation.
In Chapter 4, numerical simulation of a Gaussian random process was used to

investigate of the velocity istribution on ensemble length

and the degree of backscatter autocorrelation. A formula was presented for the distri-
bution of a single pulse-pair phase measurement. In the limit of perfect pulse-to-pulse

ibution

autocorrelation, the phase distribution tended to a Pearson Type VII di
which has a higher peak and broader tails compared to a normal distribution. Evalu-
ation of second and fourth moments showed that the phase distribution exhibits non-
normal behaviour over a range of parameter values. Simulation results also indicated

the range of values for which perturbation analys

s fails to accurately predict velocity

variance, For example, for ensemble lengths less than 4 pulse-pairs, the ratio of phase
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standard deviation to that predicted by perturbation analysis differs from unity by
at least 5% for all values of the autocorrelation coefficient. Thus, for short ensemble
lengths, e.g. between 2 and 10 pulse-pairs, the measurement PDF must be determined
from numerical simulation. Results from a coherent Doppler sonar model showed that

simulation of a Gaussian random process is sufficient to predict the distribution of

velocity measurements.

In Chapter 5, the one-dimensional MAP velocity estimator was developed for
multi-frequency measurements from a monostatic sonar. Using results from Chapters
3 and 4, each phase measurement was weighted according to a PDF determined by its

‘magnitude. A smoothing parameter

controlled how measurcments were combined in the time domain. A method was
presented for automatically determining the smoothing parameter from examination
of the spectrum of a representative segment of the measurement time series. The
method was evaluated using results from a laboratory turbulent jet where velocity was
measured simultaneously with multi-frequency coherent Doppler sonar and particle
image velocimetry. Automatic tuning of the estimator resulted in a velocity time series

where measurement noise was suppressed while high frequency turbulence fluctuations

were retained. Once the smoothing parameter was chosen using the tuning procedure,
the MAP velocity estimator was free from empirically determined constants specific
to a particular instrument or application, satisfying objective 3.

MAP velocity estimation was generalized to multistatic geometries in Chapter 6
to satisfy objective 2. The estimator was evaluated using numerical simulation of
oscillating flow and results from a towing tank grid turbulence experiment. For

simulation and experiment, both velocity ambiguity and backscatter decorrelation
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were present, thereby satisfying objective 4 with a challenging test of the estimator

under realistic conditions. Time

and spectra from MAP velocity estimation were
compared to those obtained with conventional Doppler signal processing. Objective 1
was satisfied since the MAP velocity estimator was shown to reduce high frequency

noise while robustly resolving velocity ambiguity.

7.2 Future work

The long-term goal of this

work is to develop improved signal processing for oceano-
graphic and hydraulic instrumentation that will contribute to new insights into the
dynamics of near-bed turbulence and sediment transport. In this thesis, the MAP
velocity estimator has been developed and evaluated using mumerical simulation and
laboratory tests in steady and turbulent flows. The next logical step is to collect sonar
measurements in the ocean bottom boundary layer under conditions where the mean

flow is sufficient to induce velocity ambiguity, and where boundary layer turbulence

results in backseatter decorrelation. A field experiment involving the multi-frequency
coherent. Doppler sonar described in Hay et al. (2008) is planned for Fall 2011 in a
tidal passage in the Bay of Fundy. It would be useful to compare MAP estimates

of veloci

y and shear stress with results from conventional Doppler signal proce

boundary layer theory, and other sensors.

The MAP velocity algorithm is expected to always perform at least as well as

conventional Doppler signal processing since the MAP framework always includes

the maximum likelihood estimate (o — o) as a possibility. The relevant question

for practical applications is whether or not the benefits justify the increase
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putational cost. For example, processing times for one- and two-dimensional MAP
velocity estimation are listed in Table 7.1 for the MFDop simulations of oscillating

flow in Section 6.4. Clearly, processing time increases rapidly with the dimension of

iy veetoe (e aosealled “eirpeof disenaicnslity). A
may be to perform one-dimensional MAP velocity estimation for each receiver and
then transform the results to obtain Cartesian velocity components.

Table 7.1: Processing time for conventional Doppler signal processing and MAP
velocity estimation for 30 seconds of simulated MFDop measurements.

[ Dimension | C i | MAP Velocity |
D 001 s 3s
20 003 s 2005
The esti been coded as a proof-of- in MATLAB with an emphasis

on ease of implementation rather than computational efficiency. Also, no effort has
been made to parallelize the algorithm to make use of multi-core processors. Velocity
likelihood functions were evaluated on a discrete grid of evenly spaced points. A more
efficient approach would be to use an adaptive mesh, coded in C or FORTRAN, with
sample points concentrated in the region of highest likelihood. An adaptive mesh
would take advantage of the fact that the distribution of velocity likelihood tends
to be sparse, especially in higher dimensions. If the results from field experiments
are promising, it may be worthwhile to develop a commercial software package for
post-processing of coherent Doppler sonar measurements.

While the focus of this work has been on measurement of sediment-laden flows for

Iaboratory and ic applications, the results are immediately applicable to

other systems that employ the coherent. Doppler measurement principle. For exam-
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ple, as discussed in Chapter 1, a bi-frequency acoustic Doppler system for medical

pon et al., 1095). For applications

ultrasound has been developed and tested (
in Doppler weather radar, dual pulse repetition frequencies (PRFs) have been more
widely used than multiple carrier frequencies (Holleman and Beekhuis, 2003; Joe and
May, 2003). However, the principles of MAP velocity estimation apply equally well
for staggered PRF systems since variation of the pulse-to-pulse interval and variation
of the carrier frequency produce equivalent changes in the ambiguity velocity.

The idea of combining measurements probabilistically according to some measure
of data quality is a useful and powerful concept that has been applied in other
fields such as multi-sensor data fusion (Hall and Llinas, 1997) and radio direction
finding (Elsacsser, 2007). An approach analogous to MAP velocity estimation could
be useful for applications that seck to estimate a time series from uncertain and
possibly ambiguous measurements. Research areas which could lead to fruitful new
results include the resolution of carrier phase ambiguities in differential GPS (Cannon
et al., 1993), angle-of-arrival estimation for array signal processing (Kracutner and
Bird, 1999), phase ambiguities in interferometric sonar/radar (Budillon et al., 2005),
and estimation of directional wave spectra from high frequency surface wave radar

(Hashimoto and Tokuda, 1999)
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Appendix A

Particle Image Velocimetry

A.1 Image processing

In particle image velocimetry (PIV), velocity components are measured in the plane
of the laser light sheet by observing the mean particle displacement d in a region
of the camera field of view known as an interrogation window (Raffel et al., 2007,
chap. 1). Velocity is related to particle displacement via

)
T

(A1)

v

where T, is the time between laser pulses. Mean displacement is determined by cross-
correlating a pair of images and estimating the location of the peak of the 2D cross-
correlation function. Displacements in units of pixels are converted to spatial units
by applying a length scale that is determined by the calibration process described in
Section A.2.

PIV velocity estimation was performed using the adaptive correlation method
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in version 4.71 of the Dantec Dynamics FlowManager software (Dantec Dynamics

2002). Interrogation window size was set to 64x64 pixels with 50% overlap to ensure
that each window contains a minimum of 5 particles (Raffel et al., 2007, chap. 5).

The following Gaussian window function was applied to each image:

ann o[- () + ()

where k = 0.71 corresponds to 50% overlap and W = 64 s the window size in pixels.

(A2)

The window function acts as a low pass filter to remove high frequency image noise and
to ensure that each particle diameter appears as a minimum of two pixels in the filtered
image (Raffel et al., 2007, chap. 5). The FlowManager software implements image
cross-correlation using a 2D Fast Fourier Transform (FFT). Background illumination
was removed with the high pass “No-DC” filter

0 for (u,v) = (0,0)
H(u,v) = (A3)

1 otherwise

where (u,v) denotes horizontal and vertical components of the Fourier transform.
Image noise and the random distribution of seeding particles cause occasional
spurious measurements. Outliers were detected using 3x3 local median validation
with a normalized threshold of 0.1 (Dantec Dynamics, 2002, chap. 9). Each vector
field was also inspected visually to identify any obviously incorrect measurements that
had passed the local median test. Spurious values were replaced with interpolated

values. The overall rate of spurious vectors was below 0.5%, which is considered

178




acceptable for high quality PIV measurements (Raffel et al., 2007, chap. 6).

A.2 Calibration

ne was located by suspending a %32 inch diameter rod from the centre

centre-line was achieved

of the nozzle. Alignment of the laser light sheet with the j

by firing the laser on its low power setting and positioning the periscope to achieve
‘maximum brightness on the rod. The length scale was calibrated by photographing
the rod with the PIV camera and measuring the rod diameter in pixels. A reference
mark was placed on the rod to indicate a vertical distance from the nozzle. The
location of the mark within the calibration image provided a vertical reference to

locate PIV measurements relative to the nozzle. The intersection point between the

jet centre-line, the light sheet, and sonar centre transducer beam pattern was located

44 em below the nozzle.
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Appendix B

Gaussian Interpolation

MAP velocity estimation is implemented by evaluating the velocity likelihood function

aximum value has been identified, estimation of the

on a grid of points. Once the
peak location may be refined via Gaussian interpolation, as indicated in Figure B.1.
Equations for peak location and peak width (i.c. standard deviation) are derived in
Sections B.1 and B.2 for estimation of one and two velocity components. One- and
two-dimensional estimators are widely used in particle image velocimetry for improved

measurement aceuracy (Raffel et al., 2007, chap. 5).

B.1 One-dimensional interpolation

Let p_, po, and p,. denote values of the PDF sampled at points —Av, 0, and Av
relative to the location vy of the maximum value. The function p(v) is assumed to be

described a Gaussian function

(B.1)



Probability Density
°
2

°
9

Figure B.1: Example three point Gaussian interpolation. The peak is located at
as indicated by the dashed vertical line.

where v, is the location of the peak and o7 describes the peak width. Equation (B.1)

is equivalent to

Inp=InA—

Therefore, peak estimation may be performed by fitting values of Inp to a quadratic

function

Inp = ag + ayv + azt® (B3)
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where coefficients a; are to be determined. In matrix form, the following equation is

satisfied:
1 —Av (A2 |ag|  [p.
10 0 ||a|=|mp
1 Av (AvR| |a| |mps

Tnversion of the 3x3 matrix in (B.4) results in

a Inpo
= | impecine
al = i

Inpi—2Inpotin
ay _ZtmﬁL_L
Comparison of (B.2) and (B.3) reveals that

(Av)
Topy +Inp_

Tinp, —

Setting the derivative of (B.3) equal to zero produces

Inp(v) = a + 2y

a

2a;

which is in agreement with Raffel et al. (2007, chap. 5).

182

(B4)

(B.5)

(B.6)

(B.7)

(B.8)



B.2 Two-dimensional interpolation

The two-dimensional equation for a Gaussian peak is

where x is the skewness of the distribution. The corresponding quadratic form is

Inp = aan + Gt + a0 + ayuw -+ axt® + agat’.

(B.10)

‘When p(u, v) is sampled on a 3x3 neighbourhood of the maximum value, the matrix

form of (B.10) is given by

1 -Au
1 -Au
1 -Au
10
10
10

1 Au
1 Au
1 Au

-Av

—Aulv
0

Aulv

(Aay?
(Auy?
(Au)?

0

0

0
(Au)?
(Aa)?
(Aap?

(avp?
0
(Av)?
(Avp?
0
(Avp?
(av)?
0
(Avp?

a0

Inpsa

Inpyy

(B.11)



or, in symbolic form,

Ha =Inp.

(B.12)

‘The vector a is found by least squares estimation (Luenberger, 1969, chap. 4).

a=(H'H)"'H Inp.

(B.13)

An explicit solution for the case Au = Awv is presented in Nobach and Honkanen

(2005). Alternatively, (B.13) may be evaluated mumerically. Comparison of (B.9)

and (B.10) reveals that

ol Koo, 1|om lau

Koo, oF lon am

Therefore,

Setting the partial derivatives of (B.10) equal to zero produces

%I"P:ﬂ|a+ﬂnl’+mu=&

)
E'ﬂl’:ﬂm+ﬂnu+‘lamv=0.

(B.14)

(B.15)

(B.16)

(BaT7)

(B.18)




‘The estimate of the peak location is given by

2002010 — anian
ty == (B.19)
P (an)? ~ daxae

2a30001 — axoa .
4y = 20mtr = dunty B20

(an)? = dazay”

‘The above expression is in agreement with Nobach and Honkanen (2005).
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