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Abstract

In bioturbated reservoir facies, ichnology is integral toreservoircharacterization.

Ichnological analysis ofa reservoir facies and subsequent c1assification into ichnofabrics

or ichnofacies allows for characterization of reservoir properties. Bioturbation can

redistribute grains and cause sorting or mixing, this physical modification ofth eprimary

sedimentary fabric causes changes to porosity, and permeability in reservoir facies. In

highly bioturbated reservoir facies, bioturbation can be the first order control on

petrophysical properties.

Petroleum geologists are primarily concemed with the effect that bioturbationhas

on the petrophysical properties of a reservo ir facies, rather than the details of

ichnotaxonomicidentification. The proposed bioturbation style categories do not require

in-depth knowledge of ichnology. The categories can easily be applied to facies and core

analysis for incorporation into reservoir models. The action ofbioturbators can be

considered in terms of: I) sediment mixing; 2) sediment cleaning; 3) sediment packing; 4)

pipe-work building strategies; 5) combination sediment cleaning and packing; and 6)

combination pipe-work building and sediment packing. Sediment packing and sediment

mixing styles commonly reduce porosity/permeabil ity, while sediment cleaning

bioturbation style enhancesporosity/permeability. Pipe-work building and combination

bioturbation styles are highly dependent on the lithological contrastbetween burrow fill,

and enclos ing substrate. The use of bioturbation style categories, and the classification of

trace fossils into these categories may be more user-friendly for reservoir geologists than

existing paleoenvironmentally-driven ichnofacies or ichnofabric analysis.

While categorization of bioturbat ion style is a useful tool in reservoir

characterization, lateral variations in reservoir quality and heterogeneity of ichnofacies or

ichnofabric must be incorporated into geological models in orderto predict fluid flow in

bioturbated facies at the inter-well scale. Ichnological analysis allows insight into

variations in sedimentation rate, hydrodynamic energy (erosive currents), substrate

consistency, length of colonization window, and community success ion (tiering and



cross-cutting relationships). This ichnological dataset means that inferences regarding

both physica l and chemical processes acting at the time ofbioturbation can be made.

There is inherent ichnological variability within most bioturbated beds . The

lateral variabi lity,o r patchiness of the ichnofabrics studied were not found to be related to

proximity to the paleo-shoreline in the three wave-dominated depositiona l systems .

Instead, the most critical factor appears to be the sediment accumulation style. Slow

continuous depos ition was found to produce complex and highly patchy ichnofabrics,

whereas rapid,episodic, event bed deposition was found to be associated with the most

uniform deve lopment of ichnofabric.

Autocy lic and allocyclic interpretations can be postulated for bioturbated key

stratigraphic surfaces in siliciclastic shallow marine settings. A case study illustrating the

need for careful ichnological analysis has been undertake n as partofthis thesis, and

focuses on Thalassino ides, and its validity as an indicator for key stra tigraphic surfaces .

Thalassino ides iseas ilyide ntified incoreando utcrop, hasa pipe-workbioturbationstyle,

and colonizes a variety of substrates including softground and firmgroun d (Glossifimgit es

ichnofacies) substrates . The Glossifungites ichnofacies is commonly found in association

with relative sea level change, but alternative autocy clica lly-generated processes should

be considered. With careful ichnological investigation, realisticp alaeoenvironmental and

sequence stratigraph ic interpretations can be made by object ive considera tion of both

autocyclic and allocyclic processes .

understand ing of likely reservoir quality, reservoir heterogeneity,and interpretation of

candida te key sequence stratigraphic surfaces . These concepts are an integra l part of

reservoir to basin scale models of hydrocarbon reservoirs. With an improved , integrated,

understanding of whatbioturbating organismsdo to sediment,i chnology can continue to

grow as an important component of reservo ir character ization studies, and petroleu m

geology in general.
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Chapter I: Introduction

Many of the wor ld' s silic iclastic reservoirs are developed in biotu rbated

shallow marine facies including Jeanne d' Arc Basin, offshore Newfoundland, Canada;

No rth Sea, UK; Halten Terrace, olTshore mid-Norway; Athaba sca O il Sands, Canada;

and Orin oco Oil Belt, Venezuela (McA lpine, 1990; Richards, 1992; Cannon and

Gow land, 1996; Mcil roy, 2004b; Crerar and Amott, 2007; Labourdette et al., 2008 )

Bioturbation can redistr ibute grains and resuit in either sorting or mixing ; this physical

modification of the primary sedimentary fabric affect s porosity and permeab ility in

reservoir fac ies. Effective produ ction of hydrocarbon reservoirs requ ires reliable

prediction of facies-related reservoir propert ies and co rrelation at the inter-well sca le.

In bioturbated facies, paleoenvironmental analysis and reservoir characterization are

heavily reliant upon the description and interpretation of ichnofabries (e.g., Martin and

Poilard, 1996; Pemb erton et ol .,200 1;Mcilroy, 2004b ;P emb erton and Gingras, 2005;

Gin gras et 01., 2007; Tonkin er zn., 2010).

In this thesis, outcrop and core-based case studies are used toproduce afi rst

order understanding of : I) the effect of bioturbation on reservoirquality;2)lateral

ichno log ieal variability; and3) the interpre tationo f "Gl oss ifulJgites surfaces" that may

be incorporat ed into paleoenvironmental and reservo ir models o f siliciclastic shallow

marin e hydro carbon reservoirs.



1.1 Aim a nd Scope

T his research generates a more complete understand ing of the impact that

bioturbat ion has on reservoir quality and characte rization of shallow marine

success ions. Bioturb ated siliciclastic strata are studied: I) at the micro-fabric sca le; 2)

the outcro p sca le; and 3) in terms of sequence stratigraphic cycl es. T he aim at the

micro- fabric scale is to understand the role that organisms have in contro lling the

poro sity and permeab ility of sandstone reservoir interva ls. Along-strike or lateral

trends in sedimentological and ichnological variability are studied at the outcrop scale.

This work also considers autocy clic and allocyclic processes inherent to producing the

G/ossifu ngites ichnofacies and bioturbated key stratigraphic surfaces. Shallow marine

case studies from New Zealand, Utah, Argentina , and offshore Newfoundland are

used to achieve these aims. Development o f a consistent quanti tative methodology is

required in order to obje ctively compare sedimentologica l and ichnological datasets.

Th is research into shallow mar ine bioturb ated reservoir intervals is innovative in its

quantitative sty le (inclusion of porosity and permeability data), identification of

multiple autocy lic and allocyclic interpretations for "Glossifungites surfaces" ,

documentati on of lateral trends in ichnofabric from delta ic facies, and propo sal of

simple bioturbation sty le categori es that can be used as a too l in reservo ir quality

prediction .

Samples from reservoir facies were taken along vertical and lateral profi les of

biot urbated sandstone success ions. This thesis uses detailed ichnological analysis,

facies analys is, logging of outcrop, petrography, permeability/poro sity measurements,



and large thin slicing to produce and refine the reservoir characterizationof

1.l.10hjcctives

I) Describe the physical modifications that trace fossils cause to sediments and

sedimentary rocks, compared to the origina l primaryunbioturbated fabric.

a. lchnolog icala ndfaciesa nalysisofstudiedoutcropa ndcore,ineluding

logging of section/core, and large thin slicing of slab samples.

b.Qu antify bioturbation in terms of petrophysical properties (poros itya nd

permeability). Measure permeability of slabs (on ern-scale) and

visually estimate porosity from thin sections.

2) Describe the relative heterogeneity of ichnological and sedimentological

properties along horizontal (lateral) transects, and consider the implication of

this variability for ichnologieally based facies modeling.

3) Describe the envi ronmental and depositional history of Thalassinaides-bearing

surfaces recorded in ichnofabrics, considering both autoeyc lic andallocyclic

mechanisms for formation and preservation.

4) Erect bioturbation categories that quantify the physical modifications that

trace-makers produce in siliciclastic facies, for use in predicting reservoir

quality.



T race fossils are biogenic sedimentary structures, tracks, trails and borings

producedby an imals onor withinth e sedim ent orrock (Hlintzschel, 1975; Bertl ing el

al., 2006). Trace fossils record fossil behaviour, effectively the response 0 f organisms

to the physical, biological, and chemical environments in which they lived (F igure

1.1). Integrat ing sedimentology and ichnology results in more comprehensive

paleoenvironm entalreconstruetions,including physico-chemical parameters, and aids

in the ident ification of key stratigraphic surfaces (sec reviews in Taylor ct al., 2003;

Gingras elal., 20 11). Ichnological analysis provides insights into some aspects of

ancient environ ments (e .g., salinity and relative oxygenation) that cannot be gleaned

from the study of physical sedimentary structures alone (Ekdale and Mason, 1988;

Savrda and Bottjer, 1991). Studying the effects of bioturbation is important in

understanding the dynami c processes associated with sedimentation in shallow marine

sett ings.

1.3 Palcocn vir nnm cnt ul cont ro ls on t ruce fossil di striburion

Them ain pa)eoenvironmental contro)s on bioturbation are: sedimcntation rate,

salinity, turbidity , oxygenation, substrate consistency, hydro dynamic energy, and

event bed deposition (see reviews in Taylor el al., 2003; Mcil roy 2004a; Gingrasel

al., 20 11). Physico-chemical parameters that affect biotu rbation includ e gra in size,

turbidity , light,t emperature,a nd sediment supply;w hile biologicalconstrai nts include





salinity tolerance of the tracemaker, food supply and burrow morphology (Figure 1.1).

Reworking of sediments at the coastline by physical processes controls the

bioturbat ion intensity, diversity and ichnological distribu tion in shallow marine

settings. The following subsections detail the physical and biological parameterst hat

control the distribution, diversity, and abundance of trace fossils in shallow marine

environments (Figures 1.1and 1.2).

1.3.lllydrody ·nami een er l:)·andbioturbation

The distribution of trace fossils is linked to hydrodynamic energy in all

depositional settings. The dominant hydrodynamic processes that actively erode,

transport, or deposit sediment in shallow marine settings arc tluvial currents,

hype rpycna l 110ws, tidal currents, longshore wind-generated currents, wave- and

storm-induced gravity 110ws, and turbidity currents (see review in Nittrouer and

Wright, 1994). The shoreface and proximal delta front arc high hydrodynamic energy

settings with rapid sedimentation rates. Shallow marine facies arc typically well-

sorted and sand-rich (Reading and Collinson, 1996), and are associated with enhanced

porosity and perrneability. Consequently, the distribution of reservoir properties with

regard to geometry and architecture is of particular interest inhydrocarbo nre servo ir

characterization (e.g. Brandsaiter er zn., 2005; Howell etal., 2008 ; Ainsworth et al.,

2011). Upper shoreface and proximal delta front facies arc typically characterizedb y

low bioturbation intensities and lowi chnological divcrsities. Typ ical trace fossils that

can be found in the high-energy environments such as the upper shoreface , and

proximal delta front deposits are vertical burrows including Diplocraterion,

Ophiomorpha. Skolithos. and Arenicolites (e.g., Gingrasetal., 1998; Mcllroy et al.,
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2005). As such, the deposits have an ichnological asse mblage comparable to the

Skolithos ichnofacies (Seilacher, 1964; 1967a; Bromley and Asgaard, 1991;

MacEachem elal ., 2007c).

Trace fossil dive rsity and intensity of bioturbation generally increase both

offshore and laterally away from sources of high sedimentation input such as

distr ibutary channel mouths. Facies with low sedimentation rates or event-bed type

sedimentation pallems (e.g., lower shoreface, distal delta front to prodelta, and shelf

settings) are typically characterized by moderate to high bioturbation intensity and

trace fossil diversity. Ove rprinting of ichnocoenoses (i.e. palimpsesting) is common

In the moderate energy facies of the delta front, lower shoreface, and the inner-

shelf, deposits arc dominated by a mix of vertical and horizontal trace fossils

including Teich ichnus , Asterosoma, Ophiomorpha , Thalassinoides, and Planolites

(broadly equivalent to the Cruziana ichnofacies; Gingras et aI., 1998; Cumming et 01.,

2006; Buatois et al., 2008) . In low to variab le energy facies including prodelta,

offshore transition zone below storm-wave base, and in the outer shelf, deposits

lypically containPhycosipholl, Cholldriles, Zoophycos, and Scolicia (equivalent to the

Cruziana and Zoophycos ichnofacies; Pemberton et al., 200 1; Wetzel and Uchman,

200 1).

1.3.2 Salinity toler an ce of tra ce-m akin g organisms

The salin ity characteristics ofm arine systems can bebroadly groupcdinto: I)

normal marine, 2) brackish and fresh-water environme nts. Biological diversity and

organ ism size are thought to co-vary with salinity (Pickeri ll and Brenchley , 1991;



Pemberton et al., 1992; Gingras et al., 20 11). Rap id salinity fluctuations arc

somewhat buffered in pore-water systems due to slow rates o f dif fusion (see

discussion in Mcllr oy,2004a) . Infaunal biomineralized organisms have behavioural

adaptations to protect aga inst short term osmotic stress caused by rapid salinity change

(rev iews in Buatois et al., 1997; Mcil roy, 2004a; G ingras et al., 20 11). Ichno logical

assemblages of fresh-wa ter enviro nments are usually devoid of co mplex feeding

burrows (e.g. Mermia ichn ofacies; Mangano and Buato is, 2004) . Brackish water or

marginal marine assemblages are characterized by simple hori zontal and vertical

burrows inclu ding Planolites, Diplocraterion, Skolithos, Palaeophycus, Lockeia, and

Thalassilloides(Buatois etal.,2 00S). In these ichno logical assemblages, salinity is

seldo m demonstrably the first order control on ecology (temperature, sedimentation

rate, substrate consistency and turb idity are generally all involved ; Mcllroy et al.,

2004b; Buatois et al., 200S).

Fluv ial, brackish, and marine assemblages have distinct ichnological

assemblages. Some ichnotaxaare see mingly ubiquitou s such as Planolites which is

conside red to have been made by euryhalineorganisms (Mangano andlluatois, 2004).

Low diversity assemblages interpreted as bein g made by euryhaline organisms arc

comm on ly con sidered to be indicative of brackish water settings (Mangano and

llu atois, 2004 ). An integrated approach incorporatin g careful sedimentary fac ies and

ichnological ana lys is is requ ired. Persistentl y brackish paleoenvironment s are only

really expected in distributary channels, near-channel paleoenvironments and

potent iallyinrestr icted seas, lagoons, estuar ies andfjord s (cf.M artin ius et al., 2001;

Mci lroy etal. , 200S; Dalrymple, 20 10).



J.3.2. JSalin eWedge

Less dense fresh-water sits above saline water in some estuarine sys tems

(Dalrymple et aJ., 1992). The density contrast between essentially fresh-water in

distributary channels- with varying proport ions of suspended sediment load-relative

to the sa line waters of the marine basin contro ls the mode of sediment dispersal

processes at the river mouth (Wright, 1977). The salt-water wedge, and the associated

fine-grained suspended sediment to the turbidity maximum zone can extend landward

into the delta plain, trapping silts and clays in the nearshore zone until fluvial

discharge is high enough to push the sediment-laden wedge seaward, and into the

receiving marine basin (review in Dalrymple and Choi, 2007) . As a consequence of

this salinity wedge, marine influence from the receivin g basin can extend into the

marginal marine realm of inner estuary, distributary channels anddeita plainfacies

(Dalrymple,2 0 10).

The salinity wedge is crit ically important in ichnological analysis of tide-

dominated ancient deltaic and estuarine successions, as it can ereate significant along-

strike and up-dip variability of ichnofabrics (e.g., Gingras et aJ., 1999; Mangano and

Buatois, 2004 ; Mcil roy, 2004b; Mci lroy et aI., 2005; Fielding, 2010). Fluvial

influence can also extend seaward of the distributary mouth as hypopycnal,

homopycnalor hyperpycnal flows (Wright, 1977; Brettle et al., 2004; Bhattacharya

and MacEachern, 2009; Macquaker et aJ., 20 lOa),

1.3.3 Scdim entation rJ.te andt hc coloni1.:Ji tio" \\i ndow

The deceleration of fluvial or marine currents can cause rapid deposition of the

suspended sediment load, as can flocculation in the mixing zone ofestuaries (Pryor,



1975, Mcilro y, 2004b; Boyd et al., 2006) . Sedimentation rate is variable, from

instantaneous and permanent deposition to erosion and redistributi on by waves and

tides, sometimes in a multi-cyclic fashion (Einseleelal., 1991). Rates of sediment

deposition and reworking are to a large degree controlled by: I) depositional setting

(pan icularly water depth); 2) hydrodynamics of the receivin g basin (a non and

Reading, 1993); and 3) destruction/generation of accommodation space by both

autocyclic anda llocyclic processes (Van Wagoner el al., 1988; Einsele el al., 1991).

In orderto assessthepaleoenvironm ental signilicanceof ahi ghlybi oturbated

bedorbedset,it is imponan tt obe ableto comparethe intenselybioturbated unit with

its "normal" eounterpaJ1(Figure 1.2). In shallow marine success ions, some facies are

persistently highly bioturbated indicating persistently lowratesof sedimentation

relat ive to the rate of bioturbation (Chapter 3). Preservation of physical sedimentary

structures with in abed is a functionof sedimentationrate, bioturbation rate, and bed

thickness (Wheatcroft, 1990; Bentley and Sheremet, 2003) . This window of

opportunit y on the seafloor for bioturbat ion of the substrate (and potential obscuring

or destruction of primary sedimentary fabric) is known as the coloni zation window

(l' ollard et al., 1993; Figure 1.2). Environmental stability can be reflected in the

length of time that the colonization window is open (Taylor elal ., 2003).

Shallow marine facies have highly variable sedimentation rates (Walker and

James,1992). Successions characterized by rapid continu ous sedimentation are

commonly devoid of trace fossils or are sparsely bioturbated, by low diversity

ichnological assemblages, with optimal preservation of primary sedimentary fabrics

(e.g. lower shoreface Neslen Formation, Chapter 3). In areas of slow continuous

sedimentation, bioturbation intensity and ichnodiversity are commonly high (e.g.



shelfal Pohutu Formation, Chapter 3). This is due to the colonization window being

open long enough for biogenic reworking of sediments. Facies with such low net

accumulation rates, and repeated overprinting may be characterized by intense

bioturbation, which obscures/destroys most primary sedimentary structures (Taylor

and Go ldring, 1993).

Fluvial input to the marine basin, and generation of sedi ment gravity flows can

be seasonally variable. T he inter-bedd ing of fair-wea ther and event-bed deposits, may

produce " lam-scram" fabrics of alternat ing low (" lam" or laminated) to high ("scram"

or scrambled) intensities of bioturbation (llo ward, 1972 ). T he thickness of an event

bed is an important limiting factor on benthic eco logy , as it may smother existing

infaunal communities, effectively causing macrofaunal defaunation if the endobenthos

are unable to esca pe to the new sediment-water interface (Pollard et al., 1993;

Wheatcroft and Drake, 2003). If colonization from below is not possible, post-

depo sitional re-co lonization by ju veni les or adult organisms is possib le (Mci lroy,

2004a), thoughthe new seafloor substrate may not be initially entire ly hospitablc to

deposit fecdi ng organisms duetoa lack of deposited organ ic matter (see discussion in

Herringshaw el al., 20 10).

1.3.40xy\:enati on

T he oxygenation of interstitial pore-waters at thesediment-watcrinterface isa

relatively common first order contro l on trace fossil distribution in subaqueous

environments (Savrdaand Bottjer, 199 1). Well-oxygenated seafloors will typ ically

exhibit high degrees of bioturbation, and burrowing to depth below the ancient

sea floor. The maximum depth of burrowing and infaunal co lonization of shallow,



mid-, and deep-tiers (i.e., the vertical partitioning of substrate; Berger et al., 1979;

Ausich and Bottjer, 1982) or mixed and transition layers (Goldring, 1995; Bromley,

1996) can be used as an indicator of well-oxygenated bottom waters and pore-waters

(Brom ley and Ekdale, 1984; Bromley, 1996; Figure 1.2).

Some marginal marine and delta plain environments may be rich in

sedimentary organic matter (e.g., swamps, tidal Oats, marshes, lagoons and bay fills;

Reading and Collinson, 1996). Increased accumulation of organic carbon-bearing

sediment at or near the sediment-water interface can result in higher microbial

product ivity using free oxygen which can lead to locally oxygen-poor, pore-water

environmen ts (Jorgensen and Postgate, 1982; Konhauser and Gingras, 2007).

Endobenthic act ivity in such organic-rich sediments is seldom Iimited by the absence

of pore-wa ter oxygen. Oxygenated waters can be introduced to the sediment by

bioirrigation , which also stimulates microbial growth in the ncar-burrow environment

(Gust and Harrison, 198 1; Herringshaw et al., 2010) or simply by maintaining a

connection to the sediment-water interface while feeding on sediments below the

redox boundary (sec discussion of sulphur mining inechinoderrns by Bromley, 1996).

Tidal Oat facies containing solely Ophiomorpha or Thalassinoides traces may be

indicative of a periodically oxygen stressed paleoenvironm ent where pore-water

oxygenation fluctuate through the tidal cycle (Swinbanksand Luttemauer, 1987).

Shoreface , deltaic and shelf facies arc areas of dynamic coasta l processes and

arc character ized by strong boltom currents (Read ing and Collinson, 1996). These

currents are commonly a combination of fluvial, wave and tidal processes, which keep

the water column mixed, and the bottom water oxygenated, making it suitable for

endobe nthie/trace-making organisms. Consequently, bottom-water oxygenation in



shallow marine settings is not generally a contro lling factor in the occurrence and

distribut ion of shallow marine trace fossils. This is particularly true of the shallow

marine facies focussed upon in this thesis.

1.3.5 Substra te consistency and biot urbatio n

Shallow marine substrates are commonly found to be sotlgrounds, with

occasional soupground, firmground and woodground substrates (Seilacher, 1978;

Ekdale, 1985; Go ldring, 1995; Figure 1.2). Bioturbated softground substrates are

typically depositional settings with continuous deposition, or hiatuses (see Chapter 4

for discussion) . Bioturbated tinn ground substrates can also be interpreted as a hiatal

surfaces (e.g., "Glossifimgites surfaces"; Gingras et al., 1999, 2007). Firmground

surfaces in shallow marine settings may typically be colonized by Thalassinoides and

have autocycl ic (e.g., change in sediment delivery) or allocycl ic (e.g., eustatic sea-

level fluctuat ions) causative mechanisms. Soupground s are generally found in

association with rapid deposition, especially where rapid flocculation in the mixing

zone, orremobil ization of partly settled mud by waves and tidal currents produces

hyperpycnal flows, and fluid mud deposition (Bentley and Nittrouer, 2003;

Bhattacharya and MacEachern, 2009; Macquaker et al., 2010a).

1.3.6 Nutri cnts andfccdingm odc of th c tr accmak cr

Organic nutrients arc not typically a limiting resource in shallow marine

depositional environments. This is evident in the presence of particulate organic

matter in most shallow marine sandstones and mudstones (Macquaker et al., 2010b).



Organic matter ava ilability is not considered to bea limiting factor in the ecology of

most benthic marine systems. Organic particulates from terrestrial and marginal

marine vegetatio n are common ly rich in refractory organ ic compound s (Gooday et 01.,

1990). Many shallow marine trace fossils (e.g. Arenicolitesy arc thought to culture

micro-organisms on buried detrital organic matter, processing the microbial biomass

for food (sec Bromley, 1996; Herringshaw et 01., 2010) . Bioavailable organic malter

is commonly present both in suspcnsionand buried in sediments. The trace fossil

assemblages found in shallow marine facies are likewise inferred to represent a

mixture of suspcnsion, gardening, scavenging anddeposit fecdingbehaviours (Nickell

and Atkinson, 1995; Mci lroy, 2004b; MacEachern et 01., 2007b ; Herringshaw et 01.,

2010).

While trace fossil morphology docs rellect behaviour of the tracc-maker, the

feeding strategy of the tracemaker is commonly more comp lex. Recent research has

demonstra ted that numbe r of modern benthic burrowing organismsdi splays ignificam

behavioural plasticity, with a single burrow serving multiple purposes (e.g.,

thalassinid shrimps, Suchanek, 1985; Nickell and Atkinson, 1995; Herringshaw el a l.,

20 10).

1.3.7 Summ aryofpalcoc liviro nmcn talcontrolsonichnolog.,v

Shallow marine settings arc generally sites of abundant food supply, well-

oxygenated water columns and pore-waters for benthic organisms. The ichnological

assemblages of shallow marine systems arc typically optimal for marine organisms,

and as a consequence ichnological assemblages are commonly diverse. The major

paleocnvi ronmental controls on trace fossil abundancea nd diversity in shallowm arine



systems are considered to be hydrodynamic energy/sedimentation rate, salinity, andt o

a lesser extent substrate consistency.

Fluctuations in hyd rodynamic energy, salinity, and sedimen tation rate exist in

shallow marine systems, particularly in proximity to fluvial systems in the shore-

parallel direction. Fluctuations in energy, salinity and sedimentation rate exist along

strike, and dip in ancient depositional environments, with variability diminishing

seaward of the distributary mouth to the outer shelf. The benthic ecosystems of the

offshore shelf are typically independent of hydrodynamically related stress (e.g.

salinity wedge and wave action). The most commo n contro ls on the distr ibution of

trace fossils and bioturbation intensity in distal settings are larval scttling and inter-

species interactions (e.g. predation and competition). Bioturbation intensity and

ichnodiversity typ ically increase systematically in an offshore direction, from the

In nearshore settings, the combination of fluvial, tidal and wave processes

produces distinct environments for benthic organisms. The resultant sedimentary

facies therefore have distinctive ichnological signatures (sec Chapter 3). Nosingle

trace fossil is diagnostic ofa shallow marine facies, ratherthe tracefossil assemblage

in an ichnofabric or ichnofacies, when considered in their sedimentolog ical context.

may be used in paleoenviro nmental interpretation.

1.4 Ichn ological A nu lys is

Ichnological analysis of sedimentary rocks is a powerful tool in facies

characterization. Infaunal and epifaunal trace-producing organisms adj ust their



behavio ur to suit changes in enviro nmental parameters (Fi gures 1.1 and 1.2).

Sedi mento logica l and ichno logical da ta are comb ined and assessed using the concep ts

of ichnofab ric ana lysis and app lication of the ichnofacie s para digm (fo llowing

Mc ilroy , 2008 ).

IA .llehn ofabri e A nalysis

Ichnofabric is de tined as ra ll aspec ts of the tex ture and intem al struct ureof

sediment that result from bioturbation at all scales" (Bromley, 1990; p. 269) .

Ichnofabric analys is is a descr iption of the ichnology, diversity, bioturbation level and

colonizat ion order of bioturb ated beds (see review in Taylor et al., 2003; Mcilr oy,

2004a for detai led methodology). Bioturb ated sedimentary fabric s arc stud ied on a

bed-b y-bed bas is, and involve quantifi cation of bioturbation intensity,documentation

of diversity and cross-cull ing relationships (Figure 1.2 and Table 1.1).

Th e ichnofa bric analysis approach uses the ichnofabr ic constituent diagram

(lC D, Figure 1.3) and the Biolurb ation Index (B1, Table I.l )t o provide a normalised

visual means for describ ing and comparing ichnofa brics in sedimentary rocks (Taylor

and Go ldring, 1993). The ichnofab ric analys is method is used to: ident ify key

strat igrap hic surface s (Tay lor and Gaw thorpe , 1993; Gold ring, 1995; Droscr et al.,

2002); and formula te depositional mode ls (Droser and Bottjer, 1989; Bonjcr and

Droser, 1991; Ekda le and Bromley, 1991; Pollard et al., 1993; Mart in and Pollard,

1996; Gow land, 1996; Mcil roy, 2oo4a , b), and create fully integrated reservoir

characte riza tions (Bocke lie, 199 1; Taylo r and Gaw thorpe, 1993; Mcilroy , 2007;

Tonkin elal., 20 10).



Grade -I. Biot u rbated Classification

No bioturba tion

1-4% Sparseb loturbatlon:be dding distinct. fewd iscretetr aces andloresca pes truetures

5-30% Low blotureatlon : bedding distinct, low trace densrty, escape structu res often common

31-60% Moderate bioturbation : bedd ing boundaries sharp, traces discrete, overlap rare

61·90% High bioturbat ion : bedding boundaries Indistlnct high trace density With over1apcommon

91·99% Intense bioturbat ion: bedd ing compl etely disturbed, limited rewor1<.lng , laterb urro'NSdisCrete

100 % Complete bioturba tion : sedimentr ewor1<.lng due to repeat ed overprinting
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physical sedimentary slnuctures that
can be subsequenlly reworked

one or more ichnofabrics. The diagram neatly illustrates ichnctaxan identifica tion, burrow size and e,",n '(% area of



Ichnological analysis when integrated with detailed sedimentological studies is

readily applicable to siliciclas tic sedimentation, and highlight s ichnological response

to changes in environmenta l conditions (Tay lor and Goldring , 1993; Mcllro y,2004c,

2008 ; Figure 1.2). This method allows direct com parison of different ichnofabrics

from different geographic or stratigraphic successions. The focus on cross-cutting

relationships can provide insights into commun ity deve lopment and tiering to

determin eichn ocoenoses (FigureI.2).

t.4 .t.lllioturbation lnlen sily

Intensity of bioturbation and ichnological diversity in shallow marine settings

arc useful first-order tools in recognition of facies, facics association andth ed ominant

process that influenced the assemblage of trace fossils that the rocks host.

Ilioturbat ion intensity, known as the bioturbat ion index (Ill, Table I. l)i s basedonthe

amount of reworkin g with respect to the original sedimentary fabric (Tay lor and

Goldring, 1993). The bioturbation index ranges from 131 0 which represents an

unbioturbated lithology and extends up to 131 6, 100% which is complete biologieal

reworking of the primary sedimentary fabric (Table 1.1). This index is different from

the ichnofabr ic indices (II) of Droser and Bottjer ( 1986), as they do not allow

recognition of the relationship of traces to background sedimentation or event

stratigraphy. Highly bioturbated successions are commonly well-oxygenated, and

have abundant food supply, providing optimal conditions for creation of burrows,

tracks and trails on the ancient seafloor, Such intensely bioturbate d facies can occur

in a range of shallow marine facies, with the pre-requisite being a rate ofbi oturbation

which is greater than the rate of scdimentation.



IA .I .2 Recording of ichnotaxa

In this thesis, ichnotaxonornic identification was typically made at the

ichnogeneric rather than ichnospecific level. In most cases ichnospecies-level

as burrow size, burrow-fill , morphology, cross-cutting relationships, tier level,

abundance, and depth below event bed are documented for each identi fiedi chnofossil

in the ichnofabric studies presented herein (see Chapter 3). Docume ntation of' other

ichnological textures such as burrow mottling (Savrda and Bottjer , 1989; Gingras et

al., 2004), and cryptob ioturbat ion (Pemberton et ol., 2008) areequally important for

facies modelling, and reservoir characte rization.

I.u. l.Llchnodiversity

Preserved ichnodiversit y is influenced by: I) taphonom y (e.g. loss of

preservation throu gh physical and diagenetic processes); 2) sediment textural and

mineralogical maturity; 3) colonization history; 4) intensity of bioturbation (e.g.

overprinting or rapid deposition); and 5) the taxonomic philosophy of the investigator

(e.g. sedimento logist versus specia list ichnologist). Diversity of a trace fossil

assemblage should not be directly linked to species diversity or abundance on the

ancient seafloor, because organisms have the ability to create multiple burrow

morphologies (behavioural plasticity), andlo create extensiveburrow networks (e.g.

Thalassinoidesy that may obscure or enhance diversity. The presence of rnonotaxic



assemblages in a stra tigrap hic succession is usually taken to be indicative of a rs tress"

in paleoenvironments of high ene rgy, high rates of sedimentation and lowered salinity.

There is a stro ng preservatio nal biastowardsmid-todeep- tiertracefossils

(the shallow mixed layer for exa mple may be rem oved by erosio n or ove rprinted

during sedime nt acc umulation by the transition layer, Figures 1.2 and 1.3).

Ichnodiversity cannot be used as a direct indicator of biological specie s diversity, but

can be used (with care) to document facies change.

studies presented herein. Variat ions in burrow size can indicate organi sm response to

change in env ironmental cond itions including oxyg enation and salinity (Ekdale and

Bromley, 1991; Savrda and Bottjer, 1991; MacEachem el a /., 2007a; Gi ngras el a/ .,

20 11).
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Recognition of the lithology and intem al structure of burrow fill is important

when exa mining depositional history of a bed or surface, in partieular the relationsh ip

of the causative open burrow to a particular stratigraphic hor izon . T he taphonomic

express ions of trace fossils and the relationship of the burro w fill to the host sediment,

(subt le litho logica lco ntraslor distinctlitholog icalcontrast)canbe usedto recognizea

key stratigraphicsurface,andaccompanyingdcpositiona l history(seeChapter4).



IJI .6 Cross-clitlingr elationships

The basic geo log ical principle of cross-cutt ing relati onship s applies to trace

fossils. In ichnofabric s these relationships repre sent thecolonization order of

ichnotaxa (F igure 1.3). In addition, sedimentation rates and recogniti on of condensed

beds can be determined throu gh identifying cross-cuttin g relationships between

different ichnotaxa and overprinting of ichnofabric s (Taylor et al., 2003; Figures 1.2

and 1.3).

1.•. 1.7 Ichnofabric Constituent Diagram (ICD)

The ichn ofabric constituent diagram (lCD, Figure 1.3) is a visual

representatio n of one or more ichnofabrics. T he diagram displays compo nents o f the

ichnofabric including, iehnotaxon identification, biotu rbation intensity (Ill) , burrow

size and abundance, colonisation order and tiering , sed imentary structures, and key

stratigraphic surfaces . Toget her these features of the ICD graph ically represent the

charac teristics of an ichnofabric and its development throu gh time in response to

chan ging paleo environmental cond itions (Tay lor and Go ldring , 1993; Mcil roy,

2004a) . This dia gram provid es detailed inform ation for high-resolution

paleoenvironmental and paleoecological reconstruct ions.

Bioturbated rocks can also be categorized using Seil acher ian ichnofacics(see

MacEachern et al., 2007c for detailed methodology). The arch etypal ichnofacies

concep t (Seilacher, 1964,1 967a, b)i s widely used to describe traee fossil associations



and facies successions in terrestrial and marine environments (Figurot A). Originally,

ichnofacies were considered to be bathymetrically contro lled (e.g. Seilacher, 1964).

The current definition of an ichnofacies is a recurring ichnological assemblage that

has paleoenvironmental implications (Bromley and Asgaard, 1991). Ichnofacies are

not restricted to specified salinity or bathymetric conditions and can occur in a range

of marine and non-marine environments (Frey et 01., 1990; Bromley and Asgaard,

1991). This broadening of ichnofacies concept, defines ichnofacies as being

paleoenvironmentallyc ontrolled, ratherth an a simplepaleobmhymetricproxy (Frey el

01., 1990).

Each ichnofacies is named after a typical trace fossil, but the particular trace

need not appear in the ichnological assemblage (Figure 104). Inth is study,i chnofacies

were identified for each comparable ichnofabric (Chapters 2 and 3). Three archetypal

ichnofacies have been identified from siliciclastic shallow marine settings; Skolilhos,

Cruziana, and Gloss ifungites. General definitions of these three ichnofacies arc

summarised from Frey et 01. ( 1990); Bromley and Asgaard ( 199 1); and Bromley

( 1996):

I ) Skolilhos ichnofacies - a suite of sofiground trace fossils, generally with low

diversity, typically associated with high energy conditions in clean, well sorted

shifiings ubst rates.

2) Cruz iana ichnofacies - characterised by a high preservation potential of

shallow to mid tier traces in relatively low energy conditions. Ichnodiversity is

high and benthic communities consist of a mixture of deposit feeders and

suspension feeders.





3) Glossifungites ichnofacies - a suite of finnground burrows and/or borings,

generally with low diversity. It occurs locally, intercalated with softground

horizons, or can be exhumed by localised erosion and/or event deposition.

Ichnological analysis of sedimentary rocks is a powerful tool in facies analysis

and reservoir characterization (Gingras et 01., 1999; Pemberton el al. , 2001; Buatois er

01., 2002; Mcil roy, 2004,2008; Pemberton and Gingras, 2005; Gingras et 01., 2007,

20 10). The objec tive of ichnofacies and ichnofabric analysts is the same, to detenn ine

ancien t paleoenvironments. Both methodologies do this successfully and generally

come 10 comparable conclusions (Mci lroy, 2008). A neutral ichnological analysis

approach has been proposed, and abandonment of the conflicting terms of ichnofacies

and ichnofabric has been suggested (Mcilroy, 2008).

Coas tlines are dynamic settings where fluvial and marine processes interact to

produce a diverse array of depositional environments (see reviews in Reading and

Collinson, 1996; Posamentier and Walker, 2006). Fluvia l, tidal and wave processes

produce distinctive coastal morphologies, as well as having diagnostic lateral and

stratigraphic facies trends (Boyd et 01., 1992; Figure 1.5). Combinations of these

parameters are evident in the resultant sedimentology and ichnology.

Sedimentological analysis is used as the primary tool to define shallow marine settings

and their facies. Ichnological variability in response to the same hydrodynamic

parameters provides an excellent additional tool in recognition of marginal marine to

shelfal facies. Integration of sedimentology and ichnology enab les us to construct
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more comprehensive reservoir, facies, and paleoenvironmental models (Pemberton et

al., 2001; Mcilroy, 2004a, b, 2008; MacEachem el al., 20JO).

Deltaic coastlines are sites of net sediment deposition where a rivercn tersa

body of water (Ga lloway, 1975). Deltas are progradat ional features that form discrete

shoreline protuberances where the alluvial-fluvial system delivers sediment more

rapidly than can be redistr ibuted away from the distr ibutary mouth by waves and tides

(Orton and Reading, 1993). Estuaries are assoc iated with net shoreline transgression

with high- usually eustatically driven-rates of accommodation space generation

relative to rates of sediment supply (Boyd et al., 1992). Non-deltaic coas tlines derive

their sedimentfromthe adjacent coastline and shelf, and arenot fed directly by a river

sediment supply. These coasta l areas include beaches, strand-plains, barrier-island

systems, lagoons, estuaries and tidal flats (James and Dalrymple, 2010).

Deltaic and non-deltaic coastlines and the associated depositionalsys temsa re

part of a continuum linked to shoreline regression and transgression, and are

influenced by wave, tidal, and fluvial currents (Figure 1.5; Boyd et aI., 1992).

Characterization of ancient deltas is somewhat challenging. The deltaic morphology

(e.g. , elongate versus lobate; Bhattacharya, 2006) is difficult toc haracterizein ancient

deposits. For example, ancient wave-dominated river deltas develop shoreface facies

and may be difficult to distinguish from non-deltaic shorelines, unless the large-scale

spatial context is well delineated by seismic data, good outcrop exposuresorc losely

spaced, reliably correlated core or well-log data (Hampson and Howell, 2005).



1.6 Facies Analysis

A facies is a body of rock with specific lithological, physical and biogenic

characte ristics (sec reviews in Walker, 1992; Reading, 1996; James and Dalrymple,

20 10). The body of rock termed a facies may be a single bcd ora grou p ofbcds. The

facies name may be purely descriptive (e.g. bioturbated sandy mudstone), or

interpret ive (e.g. shoreface facies). When facies are used in a descriptive manner it

allows for objective and transparent environmental interpretations. Groups of facies

that arc genetically or environmentally linked to one another arc termed facies

associations, and arc deposited under specific environmental cond itions (Collinson,

1996). Facies and facies associations arc distilled into a facies model that

characterizes the depositional system; this model is drawn from both ancient and

modern examples (Walker , 1992). An integral principle in construction ofa facies

model is ' Walther's Law' or the ' Law of Correlation of Facies ' (Midd leton, 1973).

Walther' s Law states that a vertical succession of conformable facies aecumulated in

laterally adjacent deposit ional environments. In this research project the facies

analysis approach is used to interpret depositional environments (Figure 1.5).

Ichnological analysis can be incorporated into a facies model as an additional building

block in the interpretation of the depositional environment (Mci lroy, 2008).



1.7 Laborat ory Analyses

Sedimentary rock specimens were sampled from each outcrop locality for each

case study. The aim of sample analysis was to determine: I) petrology (slab sample

and thin section analysis) ; and 2) petrophysical propenie s (porosity and penneab ility).

Hand specimens were described in detail including color, texture, composition,

sedimentary structures, and trace fossil and fossil content. Slab faces of samples were

sliced for preparation of large thin slice (Figure 1.6), and thin section analysis. The

remaind er of the samples underwent spot permeability measurem ent on the slab

surface (using a probe penn eameter, Figure 1.7).

1.7.1 La rge T hin Slicing

The technique of large thin slicing is used to study the sedimentary and

biogenic fabrics in sandstone and mudstone lithologies in transmitted light (Garton

and Mcilroy, 2(06) . A large thin slice is cut from the hand specimen using a rock saw

fitted with a travell ing vice. The cut slice of2-3 10m is then mounted with epoxy or

wax onto a large glass slide (28 x 20 em). The mounted slice is further reduced in

thickness by lapp ing on a rotating lapidary wheel until translucent (Figure 1.6). The

thicknessrequiredvariesbetween samples from between O.3t ol .Omm ,d ependent on

the gra in size of the sample. The large thin slices were photographed with a mounted

camera in transmitted light using a 500 W halogen light with a parabolic reflector.

Large thin slicing is particularly useful where weathering or diagenetic processes(e.g.

cement) may mask sedimentary, or biogenic features, or in very fine grained facies

(Garton and Mci lroy, 2006). The resultant images when viewed in transmitted light,
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show sedimentary structures and detailed ichnology that is not otherwise visib le in

polished hand spec imen or field samples (Figure 1.6).

1.7.2 T hin Sec tion Ana lysis

Thi n sections (4.5 x 2.7 ern) were cut from each sample.

petro graph ical analysis of each thin section was undertaken, includin g descr iption of

texture, grains, matrix, compaction, cementation, porosity, classification and

photograp hy. Petrography provides micro-fabric detail which aids in accurate

sedimento logical classification, mineralogica l compos ition, andenablcs identificat ion

of minera logical burro w-gra in relationships.

Thin sections were impregnated with blue epoxy resin, in order to highlight

pore spaces when viewed under the microscope. Visual est imates of grain sorting

were measured using comparison charts (Jerram, 200 1). Digital image ana lysis

software (S imple PC I®) is used to caleu late the relative proportions of ' blue ' pore

space in a given area of interest, and this 2D visual measurement is taken as a proxy

for the correspond ing poro sity . Porosity is a measure of the proport ion of vo id spaces

in a materi a l, and is comm only quantified as a percentage. Poro sity was determi ned in

bioturbated samples to: I) assess the influence of biogenic rework ing on porosity; 2)

docum ent variability in porosity relative to bioturbation intensity; and to be able to

directly relate bioturbat ion to reservo ir quality .



1.7.3 Pr obe I'erm eam et ry

A probe-permeameter (TEMCO Inc. MP-401) was used to measure

permeability (k) in the collected samples. Permeability is the measure of the ability a

material to transmit fluids (expressed as the millidarcy (mD)).

measures the flow rate and injection pressure of nitrogen gas into aroc k.

rock volume of approximately lcrn' , In each of the slab samples, a

the centre of each square (cf. Dreyerel al., 1990; Figure 1.7).

to measure the effective permeability. In each slat. samples a4cm Iby lOcm grid was

drawn on the slab face. The spacing between columns and rows is Icm.

tip seal thickness (Gogg in et aI., 1988). Four ,"eas uremer,tsweretak,enof thesame

obtained from each sample (Figure 1.7). The permeability data was overlain and

compared to sedimentological (large thin slice image and thin

ichnologicaldata(seeChapter2).



1.8 Rcscrv oirqualit yprcLli ct ionin bioturbated successions

Effec tive produ ct ion of petroleum from bioturbated reservoirsrequires reliable

predict ion offacies-related reservoirproperties. ln suchbioturbated sett ings, facies

analysis and reservoir characterization are essent ially ichnological analysis (Mcll roy,

2008). Bioturbation ca n red ist ribute grains and cause sorting or mixing (sec Chapter

2), this physical mod ification of the primary sedimentary fabric effects porosity and

permeability in reservoir facies. Some ichnotaxa produ ce zones of enric hed

mud/organic matter (e.g., pellet burrow linings) or mud-reduced zones by removing

the inter-particle clay- grade between sand grains (e.g., burrowmatrix/halo; Tonkin et

al., 20 10; Bednarz and Mci lroy, 2009; sec discussion in Chapter 2). Bioturbation of

reservoir facies can eit her enhance or reduce porosity and permeability, and is

important when calcu lating reserves (Pemberton and Gingras, 2005, Meyer and

Krause, 2006; Tonkin et al., 20 10).

t.8 .1I'orositya nd l'e rmeab ility

T he majority of studies discussing the relat ionsh ip of bioturbation to porosity

and permeability in carbonate and siliciclastic reservoirs have focused on burrow-

enhanced porosity/permeab ility trends (Gingras et al., 1999, 2002, 2004; Smit h el al.,

2003; Pemb erton and Gi ngras 2005; Spila et al., 2007; Florea et al., 2009;

Cunninghamel al., 2009). The literature on the effec ts of bioturbation on petro leum

reservoirs is biased towards permeability-enhancing trace fossils oi Ophiomorpha.

(Gin gras et al., 1999, 2002, 2004, 2007, 2010; Cunningham et al., 2009;



2009; Gordon et al., 20 10; Tonkin et al., 20 10; Chapter 2 herein). This thesis

documents the effect of bioturbation on petrophysical properties and focuses on the

more common but subtle heterogeneities in shallow marine sandstone reservoirs

(C hapter 2) .

1.9 Spa tia l va ria bility of tr ace fossils

Lateral variability is of relevance to understanding trends in paleoecology

throu gh time, flow in porous media, and determines the productivity of so me

bioturbated petroleum reservoirs (Pemberto n and Gingras, 200 5). Knowledge of the

lateral var iab ility of bioturbation and application of a more quant itative ichnological

met hodology is requ ired to make reliable pred ictions of reservoir properties (see

discussion in Chapter 3). Most studies of bioturbat ion have been aimed at

understanding chan ges in vertical stratigraphic proliles (Pembert on and G ingras,

2005; G ingras et al., 2007 ). Lateral variability is significa ntly understudied but of

relevance to understand ing flow in porous med ia, and candeterm ine the productivity

of some bioturbated petroleum reservoirs.

Stud ies in lateral variabilityoftmce fossils are beginning to givean impression

of in silu spatialvariabilityo f ichnofabr ics (Mci lroy, 2007),witht he additional insight

into variations in sedimentation rate, hydrodynamic energy (erosive currents),

substrate consistency , length of colonization window, community structure and

succession (tiering and cross -cutting relationships). Ichnofabric analyses along a

highly bioturba ted lateral profile (55 m), demonstra te there is considerable along-

strike eco log ical patch iness in offshore shelf settings, given the expected



hydrod ynamic homogeneity at this scale (Mcilroy, 2007). Th is thesis uses onshore to

olTshore case studies to create a first order understanding of likely Iaterali chnological

variability in a number of depositional environments that may be incorpora ted into

reservoir to basin scale models of shallow marine hydrocarbon reservoirs and

paleoecological models (Chapter 3).

1.10 Key stra tigr aphic surface s a nd bioturbation

Key stratigraphic surfaces (erosion, non-deposition or condensation) in

bioturbated successions arecl early identifiablewhere there isadistinct facies change,

variation in bioturbat ion intensity, trace fossil cross-cu tting relationships,and

lithological contrast in burrow fill relative to the host sediment. Trace fossils

observed at key stratigraphic surfaces include Thalassin oides, P1anoliles, and

Ophi omorpha (Pem berton et al., 1992; Taylor and Gawthorpe , 1993; Bromley, 1996;

Gowland, 1996; Gingras et al., 2002, 2008; Taylor et aI., 2003 ; Mcilroy, 2004b;

MacEachern and Gingras, 2008; see Chapter 4). These surfaces can have

allostratigraphic, autocyclic , or ecologic significance and can be fundamental in

identification of sequence stratigraphic surfaces (Einselee tal., I99 1;Ca tuneanu etal..

2009).

The fill of Thalassinoides, Planolites, and Ophiomorpha are commonIy found

to correspo nd to that of the lithology of the overlying colonization surface.Thisi s

generally taken to indicate that the burrow was kept open with burrower/borer-

induced water currents (Sheehan and Schiefelbein, 1984), or that the burrow was

constructed in a firm substrate not prone to collapse. Modem thalassinid shrimps



construct burrows that resemble Ophio morpha and Thalass inoides with vertical shafts

connected to horizontal to oblique galleries at depths of up to I metre below the

sediment-water interface (Pryor, 1975; Sheehan and Schiefelbein, 1984; Swinbanks

and Luternauer, 1987; Phillips elal., 20 1\ ). Analogous fossil burrow systems thus

have the potential to produce enhanced permeability fabr ics within sedimentary

successions (e.g., Cunningham el al., 2009; Pemberton and Gingras, 2005; Tonkin et

al .,2 0 10). Sand-filled Thalassinoid es may potentially produce vertical and horizontal

macrop ore network s with the potential to act as flow conduits in hydrocarbon

reservoirs (Gingras et al., 1999; Tonkin et al., 2010).

Taphonomic expressions of bioturbated stratal surfaces and therelationshipt o

the enclosing sediment allows recognit ion of bioturbated stratigraphic surfaces and

their relationship to the enclosing sediment allows assessment of the sequence

stratigraphic significance, depositional history, and paleoenvironmental change

of key stratigraphic surfaces because of the: I) abundance o fThalassinoidesin the

geo logical record; 2) distribution of Thalassinoides in a wide range of depositional

and geographical environments; 3) easeof identiti cation in core and outcrop; and 4)

ability of the Thalassinoides trace maker to colonize a variety of substrate types

inciuding softgrounds andfirm grounds (Chapler 4).

A variety of case studies of onshore to offshore shaJlow marine facies areu sed

in this thesis, including: I) Quaternary fan deltaic success ion, Conway Flat, New



Zealand; 2) Early Cretaceous shoreface succession, otTshore Newfoundla nd, Canada;

3) Late Cretaceous shoreface succession, Book ClitTs, Utah, USA; 4) Middle Jurassic

tide-influenced deltaic succession, Neuquen Basin, Argentina; and 5) Neogene shelf

success ion, East Cape, Raukumara Basin, New Zealand. Th is thesis is submitted in

manuscript style. The following four chapters are summari zed below.

C ha pter 2: Biotur ba tion influence on reservo ir quali ty: A ease st udyfrumt hc

Cretaceous Hen Nevis Formatio n, J eann e d'Arc Basin, Offshore Newfoundland,

This manuscript investigates the role bioturbation has in controlling the

petrophysical properties of sandstone reservoir intervals. Quantitative permeability

and porosity is presented while ichnotaxa are discussed and categorized with respecl

to their sediment modification behaviour, and enhancement or reduction of

permeability. The burrowing act ivity of marine organisms is grouped into live

categories with predictable effects on porosity and permeability.

C ha ptcr 3 : Latc ral lrends in the ichnologica l va ria hilityofs ha lIow ma rinc

This manuscript discusses the lateral variability of ichnological and

sedimentological propertie s of three along-strike horizontal transects. Threedatasets



are analyzed: I) a Quaternary proximal fan delta succession (New Zealand); 2) a

Cretaceous shoreface success ion (Utah); and 3) a Miocene otTshore shelf succession

(New Zealand). These case studies are used to produce a first order understanding of

likely lateral ichnol ogical variability in a number of depositional environments.

Lateral trends in ichnological variability may be incorporated into rcscrvoir- to basin-

scale models of shallow marine hydrocarbon reservoirs and paleoeco logical models.

C ha pter a : Bioturbated kcy str ati graphi c surfa ces andthcir aut ocyclic und

allocyc lic impl icati ons

This manuscript examines the complexityand significanceof Thala-'"'iooides-

bearing surfaces (erosion, non-deposition or condensation). Autocyclic and alloeyelie

interpretations are debated using examples from ancient shallow marine facies.

C hap ter 5: 8i oturhation asa tool in reserv oir cha rac teriza tion

A summary chapter of how bioturbation can be used as tool 10 predict

reservoir quality in shallow marine siliciclastic successions. A new, non-taxonomic

bioturbation c1assifieation is proposed, lhat direclly reflects the physical modifiealions

trace-makers produce insi licic1astic facies.
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Chapter 2: Bioturb ation influence on reservoir qualit y: A case

study from the Cretaceous Ben Nevis Formation , Jeanne d'Arc

Basin, offshore Newfoundland, Canada

Abstract

The de lineati on well Ben Nevis L-55, located in the Hebron-B en Nevis Field,

offshore Newfoundland, targeted the Cretaceous Ben Nevis Formation in the petro leum-

rich Jeanne d'Ar c Basin. Thi s case study focuses on the biotu rbated net-pay hor izons,

and assesses the importance of anima l-sediment interaction s in contr ollin g the porosity

and permeab ility of sandstone reservo ir intervals. In this study bioturbati on can either

reduce permeabi lity and porosity by as much as approximately 33% orc nhancc by up to

600%, dependen t on burrow type and behaviour of the trace-makin g organism.

The net-pay interv al in thccored interva l of Ben Nevis L-55 is character ized by

Ophiol/lorpha-do minated ichnofabr ics. The action of bioturbators can be classified in

terms of sed iment mixing, sediment cleaning, sediment packin g and pipe-work building

strateg ies . Bioturbati on has the potent ial to: I) increase isotropy or uniformit y of grain-

size by destroying sed imentary laminae through burrow homogenization; or 2) decrease

isotropy by selectively sorting grains into burrow lining and fillb y grain size, and through

creation of open burrow systems filled with later sediments of differin g character to thc
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dependen t on lithology, trace fossil morphology, presence or absence of burrow linings,

nature of burrow fills, burrow size and bioturb ation intensity. Mudstone-rich facies and

ichnofabrics containing mudstone-fil led and/or lined burrows (e.g., Oph iomorpha and

clusters of Chondrites) have the net-effect o f permeabi lity reduction . In contrast,

permeability enhance ment is documented from muddy sandstone facies with clean sand-

filled bur rows (e.g., Thala ssino ides ), and clean sandstones with burrow-mottled or diff use

2.1 Introduction

Many of the world' s most productive siliciclastic petro leum reservoirs are

strongly bioturbated, includ ing the Early Cretaceous Ben Ne vis Formation, Jeanne d'Ar c

Basin, offshore Newfoundland, Canada; Late Jura ssic Fulmar Formation and Middle

Jurassic Brent Group, North Sea, UK; Middle Jurassic lie Formation, lIalten Terrace,

offshore mid-Norway; and Early Cretaceous McMu rray Formation, Alberta, Canada

(McA lpine, 1990; Richards, 1992; Cannon and Gow land, 1996; Mcil roy, 2004; Crerar

and Arnott, 2007). Effective production of hydrocarbon reservo irs requires re liab le

prediction of facies-related reservo ir properties and corre lation at the inter-we ll sca le.

lIence, speci ficallyin bioturbated sett ings, facies analysis andreservo ir characterization

are re liant upon description and interpreta tion of biotu rbat ion and ichnofabrics from

conventional core (Martin and Pollard, 1996).



Ichnofabric analys is is an approach used to descr ibe the sedimentology and

ichnology of a horizon in terms of diversity, bioturb ation intensity and co lonization

history (Bromley and Ekdale, 1986; Taylor and Goldring, 1993; Taylor et al., 2003). An

integrated app roachtotheprediction ofreservoirqualityinbioturb ated reservoir intervals

involves study of ichnofabric in core and further laboratory-based analysis. The same

principles have also been used to impro ve the productivity of aquifers (Cunningham et

al., 2009).

This research is aimed at generating a more complete unde rstand ing of the ro le

that organisms have in controlling the porosity and permeabi lity of sandstone reservoirs at

the reservoir scale. The studied core (BN L-55) was taken from Ben Nevis Field, in

which the primary reservoir target is the Ben Nevis Formation. This sandstone-

dominated reservoir is variably intenselybioturbated,with intensity ofbioturbation being

strong ly facies contro lled. Ophiomorpha are the most conspicuous element of the

ichnofauna throughout the we ll, and are eharacteristic of several net-pay interva ls. Th is

study is focused on reservoir quality changes directly assoc iated with Ophiomorpha

In order to determin e the influence that bioturbation has on petrophysical

proper ties. 129 meters of core were studied ichnologically and sedimento logically. Core

descriptions are supplemented by ichnofabric analys is, and detailed petrophysical analysis

of net-pay horizons. Bioturbated reservo ir zones from the Ben Nev is L-55 core were

studied using the followin g techniques: I) core logging from both a sed imentologica l and

ichnological (ichnofabric ass ignment) perspect ive, includin g visual estimation of

biotur bation intensity; 2) creation of large thin slices (sensu Garton and Mcil roy, 2006);



3) probe-pcrm camet ry: and , 4) porosity estimated using dye-impre gnated petrograph ic

th in secti ons anddigita lim aging sollwar e.

2.2 Regional sett ing

The Jeanne d'Ar c Basin, offs hore Newfoundland contains several petroleum

reservoir s in three presently produ cing fields (Hibernia, Terra Nova and Whiterose), with

approxi mate ly 350 km southeas t of St. John ' s, Newfound land, on the northeast Grand

Banks (Figu re 2. 1). The Jeanne d'Arc Basin deve loped in response to three rilling

episodes that took place durin g the late Triass ic to early Cretaceo us (Hubb ard et al., 1985;

Tanka rd and Welsink, 1987; Sincla ir, 1988) . The Ben Ne vis Formation was deposited

dur ing the last docum ented episodeof rilling (S inclair, 1993). The base of the Ben Nevis

Formation is marked by the mid-Apt ian Unconformity, which has been related to uplill

and eros ion durin g continenta l break-up (Tankard and Welsink, 1987; Tankard et al.;

1989).

The Ben Nev is Field is part o f the Hebron-Ben Nevis complex of fault blocks,

offs hore Newfoundland, Ca nada (Figure 2.1). The field was discovered in July 1980 and

currently has two wells dri lled to date. The d iscovery well, Mobil et al. Ben Nevis 1-45

( 1980) drill ed multipl e target s from the Ben Nevis to the Hibernia Format ion, while the

delineation well Chevron et al. Ben Nevis L-55 (1999) targeted the Ben Nev is Formation

alone. Ben Nevis L-55 was dri lled to a vertical sub-sea depth of 265 0 rn, from which 129
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Figure2. t. Sedimentary basins of the Grand Banks, ofTshorc Newfoundland. Canada; including the Ben Nevis Fieldwithin the

petroleum-rich Jeanne d'Arc Basin. The rift basins arc separated from the Scotian and Labrador shc1vcs by the Newfoundland

and CharlieGibbs fracturezones respectively (modifiedaftcrTankard& Welsink, 1987)



m of core were recover ed from the upper Ben Nevis Formation between 2320 m and 2452

m vertica l sub-sea depth . The base of the Ben Nevis Formation was not drilled at the L-

55 location . The cored interval includes 82 mo f net porous sandstonew ith a netoto-gross

ratio of 29%, based on a petrophysical cut-off of 15%. Most of the net-porous sandstone

occurs in bioturb ated intervals, and concentrated in the lower half ofthe core (Table 2.1).

The Ben Nevis Field is estimated to contain resources of 429 bef of gas and 114mbbls oil

within 3 petroleum reservoirs: I) the Ben Nevis Formation; 2) the Eastern Shoals

Formation ; and 3) the Hibern ia Formation (C-NLOPB, 2008).

The Kimmerid gian Egret Formation is reco gnized as the prim ary source rock in

the Jea nne d'A rc basin reservoir s, anorganic-rich shale deposited in euxinic conditions

(von der Dick, 1989). The terrestrial organic-rich Gambo Memb er form s the base of the

Ben Nevis Formati on, and it is suggested that this is the source of carbonaceo us debris

within the upper part of the formation (Sincla ir, 1993). The fining-upward shallow

marin e success ion is overlain by the transgressive marin e Nautilus Shale (McAlpine,

1990), which actsa s a reservoir seal. A back barr ier-shoreface deposit ional setting for the

Ben Nevis Form at ion was first proposed by Sinclair (1988, 1993).

Bioturbation is recogn ized in the Ben Nevis f orm at ion (Tankard and Welsink,

1987; Sinclair, 1988, 1993; McAlpine , 1990; Driscoll et al., 1995; Hesse and Abid, 1998;

Pemberton et al., 200 1; Spila etal., 2007), but has not previously been directly linked

with improved reservoir quality. Highly bioturbated sandstones and siltstones of the Ben

Nevis Formation of the lIib ernia f ield have been interpreted as shoreface sandstones and

tida l inlet channels in a barrier island system (Tankard and Weisink, 1987; Sinclair 1993).
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Detailed ichnological and sedimento logical study of the Ava lon and Ben Nevis

formations, based on nine wells in the Jeanne d'Ar c Basin, allowed recognition ofa

number of depositional sett ings including fluvio-deltaic, tidaillats, sa lt marsh, barrier

island to lagoon, and shoreface to offs hore environments (Pe mberton et al. , 200 1).

Ichnofacies recognized from the shorefa ce and embayment sett ings in the upper Ben

Nevis Formation fall within the Skolithos and Cruz iana Ichnofacies, and include

recognit ion of several "G lossifu ngites surfaces" (Pembert on etal., 200 1). To date there

has been no pub lished sed imentologica l or ichnological study undertak en on the Ben

2.3 Method s

Three methods were used to describe the influence of bioturb ation on porosity and

permeabilit y on five centre-cut core slab samples taken from the net payzone in the Ben

Nevis L-55 core interval: large thin slic ing; conventional thin sections; and probe-

perme ametry. Two slices, 3-5 mm thick were removed from the core slab face of each

sample; one for preparat ion ofa large thin slice to study litho log ical contrasts between

burrows and host matr ix (Garton and Mci lroy, 2006), and another slice to make blue

epoxy -impregnated thin sections to visually estimate porosity and sorting. The core slab

surface was divided into a grid (Dreyer et al., 1990) and spot permeabi lity data were

obtained using a steady-state probe-p errnearnete r (TE MCO Inc. MP-40 1). Porosity

measurements are unstressed (e.g., in ambient laboratory conditions, not at ca lculated



reservoir confining stresses) , and pcrmeabilities are unstressed hor izonta l a ir

penn eabilitie s.

2.3.1 Th in Sect ion Ana lysis

Thi n sec tions (2.5 em by 4.5 em) were cut from a slice of the core slab face. The

sample was then impregnated with blue epoxy resin, in orde r to highlight pore spaces

when viewed under the microscope (Figures 2.2 and 2.3). Visual estimates of sorting

were measured using comparison charts (Jerram, 200 1). Digital image ana lys is software

(Simple PCI®) is used to calcu late the relative proportions of 'b lue ' pore space in a given

area of interest, and this 2D visual measurement is takenasa proxy fort hecorresponding

poros ity .

2.3.2 Lar ge T hin Slicing

The technique of large thin slicing is used to study the sed imentary and biogenic

fabrics in sandsto ne and mud stone lithologies in transmitted light (Garton and Mci lroy,

2006). When viewed in transmit ted light , the large thin slices display sedimentary

strtlcturesand deta iled ichnology noto therwise visiblei n polishcd hand speci men or field

samples (Figures 2.4 and 2.5).







Fi~u re 2.4. Large thin slices and permeability data of samples 1, 2 and 3 from bioturbated line sandstone

2388m. Core slabslices(A, D and G) and large thin slice images (B. E and H) with spot-permeability

measurements overlaln tC, F and I) . (A) Core slab sample I (2475m). (B) Ophiomorpha( Oph) margins

and concentrations of clay-fi lled pores of burrow mottled sandstone. (C) Permeability data points range

fragments. (E) Burrow mottled mud-rich sandstone and clean sandstone bed at base. (F) Permeab ility data

poi nts range from 1.54 mDto 55.20mD. (G) Cure slab sample 3 (2388m). (11) Thalassinoides(Thal)

burrow halo. mud-pellet lined Ophiomorphaandsp reiten burrow(S pr). (I) Permeability data points range
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2.3 .3 Pr ob e-P crm cam et ry Dat a

The probe-perm eameter (TEM CO Inc. MI' -401) injects compressed nitrogen gas

into the rock and. using a tip of3. 18-6.35 mm inner-outer diameter , measures the \low

rate and injecti on pressure in a rock vo lume of approx imately I em' . Permeabilit y in

millid arcies (mD) was calcu lated using the appropriate form of Darcy ' s equation

modifi ed by the half-space solution ofageo metrical factor Go asafunction ofprobe-tip

seal thickne ss (Goggin et ul., 1988). In each of the five center -cut core slab samples, a I

em-grid was drawn on the surface, and spot perme abi lity measurem ent s were taken in the

centr e of each square . Four measuremen ts were taken for each of 40 points on the grid to

obtain an average (Figures 2.4C, 2.4F, 2.41, 2.5C and 2.5F ).

2.4 Sedi mento logy and Ichnolo gy ofBen NevisL-55

2.4. 1 Sedi me nto logy uf Bcn Nevis L-SS

The Ben Nevis Form ation in the L-55 we ll d isplays a net upward- fining trend,

with mudston e content increasing upward . The cored interv al is dominated by

bioturb ated fine-grained sandstones with shell lags and mudstonebeds, grading into mud-

rich very fine sandstone at the top of the cored interval (Tab le 2. 1). Mudstone laminae,

low-angle stratification, dispersed shell fragments (decreasi ng upwards), bioclastic beds

and carbonaceo us material are common throughout , a long with rare mudstone rip-up

clasts and sideritizedmudstoneclasts. A total of five lithofaci es (LF) are defined herein:



LF I) bioturbated sandstone with shell materia l; LF2) low-angle cross-stratified

sandstones; LF3) bioc lastic sandstones; LF4) laminatedvery-fine-gra ined sandstones with

mudstone ; and , LF5) bioturb ated mud-rich sandstones (Tab le 2.1 and Figure 2.6).

Lithofacie s I and 5 are intense ly bioturbated , and contain disseminat ed carbonaceous

matte r and shell debri s. Bioturba tion intensity in LFI and LF5 varies between 60 and

100%, but is typically about 75%. Lithofaeie s2,3,and4 arc sparsely to moderat ely

bioturbated (1%-60%) . Intensely bioturbated facies LF l and LF5 are interpreted as fair-

weather beds. Less intense ly bioturbated sandstone and mudstone units arc interpreted to

be event beds deposited during periods of intense hydrodynam ic activity in which

bioturb at ion is exclusively post-depositional (cf . Aigner, 1985).

The do minant facies in the cored interval is LF I, highly bioturb ated sandstones

which conta in d ispersed shelly debri s. The presence of coarse shelly lags (LF3) and

pebble hor izons at the base of bioturbated units suggests eve nt bed depo sitionfollowed

by bioturbation during protra cted periods of loll' hydrodynamic energy. LF2eonsists of

fine-grained, low-angle, cross-laminated sandstones that are either unbioturbated or

contain loll' to moderate levels of bioturbat ion (5-60%bioturba tion) . The cross laminae

are conside red to be either storm-ind uced humm ocky cross-stratifica tion (Dumas and

Arnott . 2006) or suspension sett ling in mouth-b ar sett ings (ef. Brett lc er ol.. 2004).

Sections of the cross-laminated sandstone (1.1'4) show diffu se zones that may have

formed biogenically by meiofau nal cryp tob ioturbati on (Howard and Frey, 1975), or by

small-scale physica lly- induced dewateri ng or liquefaction (Figure 2.6C ; Owen, 1996;

Hildebrandt and Egen hotf, 2007). The author considers it to be nearl y impossible to

distinguish betwee n these possibilities for lack of object ive recognition criteria . The



Figure2 .6. (A) Ophiomorpha-do minated ichnofabric in lithofac ies I (LF l ), note irregu lar mud pellets on roo f o f Ophiomorpha

irregulaireb uTTowonly. (B) Ophiomorpha-dom inated ichnofabric with Diplocraterion (Diplo) and Teichic tmus (Tej burrows in

lithofacies I (LF l). (C) Low-angle cross-stratified sandstone Iithofac ies2(LF2). (D)Oystera ndcalca reouswo nn tube rich

bioclast ic horizon of lithofacies 3 (LF3) . (E)Ophiomorpha-Asterosoma ichnofabricinuppcrsa ndy muds tone lithofacies 5

(LF5) , Asterosama (Ast). (F) Thalussinoides (Thai) and Chondri tes (Chon) in laminated mudstone facies 4 (LF4) with

Thalassinoides- Planoli tes ichnofabric,i ntcrbcddedwi thbi oturbated sandstone with shell material lithofacies I (LF l) . (G)

Clustersof mudstonc- filledP hycos iphon burrows with sandy halo in Phycoslp hon-dominated ichnofabric ofl ithofacies 4 (LF4)



biocla stic beds of LF3 comprise abundant broken, current-so rted bivalves (especially

oys ters), along with gastropods and serpulid worm tube seg ments (Figure 2.6D). The

shell beds of LF3, are also commonly interbedded with LF I, e ither as erosively-bascd

shell lags below sandstone beds or as up to 20 em thick biocl astic beds with low sand

content. The laminated sandstone and mudstone beds ofLF2 are planar- or wavy-bedded,

or d iffusely lamin ated with partin gs defined by mud drapes. A basal mudstone-pebb le

lag, locally with oblate often side ritized, mudstone clasts and/or shell debri s may be

present. Alternations of planar laminae, diff use laminae and structure less intervaisin LF4

are interpreted as periods of variab le sedimentation rates. Laminated mudstone beds

(LF4) arc commonly found to directly overlie cross -stratified sandstone (LF2) in the

upper sec tion of core interval. These mudstone beds are interpreted to represent rapid

post-event bed deposition in paleoen vironments with low hydrodynamic energy. The

mud-ri ch siltstone (LF5) contains the most intense and diverse levels of bioturb ation

within the cored interva l. This highly bioturb ated facies (LF5) is often interca lated with

laminated horizons (LF4) and can be referred to as a " lam-sc ram" sty le of deposition

(Howard , 1972). Laminated beds are deposited under high \low regime conditions, for

exa mple dur ing storm eve nts, followed by "scrambling" of the sediment by bioturb ation

dur ing low ener gy post-event per iods (Ekdaleetal., 1984). Coalified and pyr itizedwood

clasts are common in all facies and may indicate proximity to adi strib utary system and/or

transgressive reworki ng and eros ion of the plant -rich Gamb o Mem ber (Sinclair , 1993).

The heterolithic nature of that portion of the Ben Nevis Formation coredatL55 is

consistent with event bed deposit ion in an offshore sett ing. Event beds arc thought to be



storm induced with evid ence for fluvial influence on the sys tem in the form of fluid mud

deposits and plant-debri s. Towards the top of the Ben Nevis success ion in the L-55 core,

the mudstone-ri ch facies (LF5) becomes dominant and this is takentoreflect anincrease

in relative sea level. In summary, deposition of the fac ies represented in the cored

interval of Ben Nevis L-55 is thought to have occurred on a wave-d omin ated coastline

with some Iluvial influence. No back-barrier or lagoonal facies were identified .

depositional setting is perhaps best compared to that ofa wave-dominated delta.

2.4.2 lehnnlogy of Ben Nevis L-55

A diverse assemblage of deposit- and suspension-feeding marinetrace fossils are

found in the cored interval. Ichnotaxainclude (byfirst oecurr ence atbase of core);

Ophiomorpha, Phyeosiphon, Thalassinoides, Planolites , Chondrites, Diplocraterion,

Teichichnus, Palaeophycus and Asterosoma (Figure 2. 6) . Indistinct burrow-mottling is

also present throu ghout the core . Bioturbati on intensity is extre mely variable and is

found to be facies-depend ent (Table 2.1). Measurement of the common trace fossils

shows that burro w diameter s o fOphio11lorpha, Thalassinoides and Asterosoma remain

constant throughout the success ion. This suggests that they were created by adult

organisms. probably ina n equable palaeocnvironmental sett ing. Rare escape traces ex ist

and are assoc iated with event beds; they are likely a result of organism entrainment

durin g event bed Ilow and transport (c f. Follmi and Grimm, 1990).

Ophiomorpha (5-50 mm diameter ) is the most abundant and conspicuous trace

fossil in the succession. visually dominates most of the describ ed ichnofabri cs in the



lowe r part of the L-SS core , and is an acce ssory component ofichnofabricsinmany ofth e

mudstone-rich beds at the top of the Ben Nevis Formati on . Op hiomorpha are lined with

circular to oval mudst one or organic-detritus-rich pellet s. In several cases the pellets arc

only present on the roof of the burrow. Burrow fill is lithologically variable. and may

comprise either a massive sandstone infill or a concentrically- laminated mudstone fill

(Fig ures 2.2B-D, 2.3E 2.6A. 2.6 B, 2.6 F). The three-dimensional morphology of

Ophio morp ha ga lleries arc known to include boxw orks, network s and mazes (Frey et al..

1978). Many modern species of burrowin g (Op hiomorp ha and Thalass inoides-

producin g) crustaceans produce inter-connect ed burrow networks (Pryor. 1975).

Ana logous fossil burrow systems thus have the pote ntia l to produce enhanced

permeability fabrics within sedimentary successions (F igures 2.4 and 2.S). though

burrowsw iths imilarc ross-sectionalex pressions may compr ise iso latedshaftsa nd tunnels

(e.g.• Miller and Curran. 200 1). This uncerta inty rega rding the degree to which the fossil

burrows Thal assin oid es and Ophio mo rp ha arc in hor izont al communication. and the

macro-pore networks that they form. remains a problem atic issue in some hydrocarbon

reservoirs (Gingras et 01., 2007).

Unlined Thalassin oides ( 10-2 I mm diameter ) are common in Ben Nevis L-SS. but

arc only clearly visible in mudstone-ri ch laminated beds (LF4) and mud-rich siltstone

(LFS) (Fig ure 2.6F) . Large thin slices created using the method of Garton and Mcil roy

(2006) reveal that Thalass inoi des is actually present in all facies throughout thecore

(compare Figure s 2.4G and 2.41). The fill of Thalassi noides is common ly found 10

correspond to that of the lithology of the overlying colonization sur face (Figure 2.6F).

Thi s is generally taken to indicate that the burrow was created as an open burrow, and



kept open with self-induced water currents (Sheehan and Schief elbein , 1984). Modern

thalassinid shrimps construct burrows that resemble Tha lassinoi des trace fossils with

vertical shafts and horizontal to oblique ga lleries at depth s of up to I m (Sheehan and

Schiefelbein, 1984; Swinbanks and Luternauer , 1987). Sandstone-fi lled Thalas sinoides

create verti cal and hor izontal macropore networks in Ben Nev is L-55 with the potential to

act as flow conduits in hydro carbon reservoirs, but- as is the case with Ophiomorpha-«

isolated burrows may requir e mechanical fracturing in the horizont al plane to create

Mud stone-fill ed burrows of Phycos ip hon « I rnrn diamete r; Wetzel and Bromley,

1994) and Chondrites ( I to 2 mm diameter; Bromley and Ekdale, 1984) are common

throughout the core interval (Figures 2.6F, 2.6G,) with the exception of the bioclastic

horizons (LF3) . Clusters of the trace fossils are generally horizont al or oblique and may

overprinto ther tracessuch as Op hiolllorpha. When present in clusters, these trace fossils

may create local ized low porosity patches inthe host sed iment,

Burrow-m ottling is persistent throu ghout Ben Nevis L-55 core (Fig ures 2.6 and

2.5) and is ofte n cross-cut by discrete burrows. These undetermin able biogenic structures

arc assoc iated with repeated ove rprinting in horizons with intense biotur bation (>9 0%).

This burrow-mottl ed textur e is interpreted to reflect burr ow homogenization of the

primary sedimentary fabric,and may create zones of perm eability enhancement relative

to the host sediment (Me yer and Krause, 2006) .



Event bed preservat ion (e.g., LF2, 3, 4) is a function of sedimentation rate,

biogenic mixing rate, and event bed thickness (Wheatcroft, 1990; Bentley and Sheremet,

2003). In this study, event beds with low-angle cross-stratification, greater than around

10 cm in thickness, are found to greatly suppress bioturbation . Densely packed bioclastic

beds are also generally found to be un-biotur bated (Figure 2.1).

Tiering of trac es within the Ben Nevis Formation eve nt beds includes rare ly

preserved shallow tier trace fossils such as Diplocraterion, perha ps by instantaneous

casting (ef. Einseleand Seilacher, 1991; Figure2 .6B). In facies thatare interpreted to

represent slow continuous deposition (e.g., LF I and 5), evidence for repeated

overprinting ca n be recognized. Colonization order of trace-make rs is difficult to

determ ine as very few cross-c utt ing relationships are recognized . Nonetheless,

Diplocraterion is seen cutting Ophiomorph a, Phycosiphon traces arc overprinting

Ophiomorpha, and all burrow s cross-cut indistinct burrow -mottled ichnofabr ic. Shallow

tier burro ws are poorly preserved, and the ichnofabrics are dominatedby mid to deep tier

trace foss ils (e.g., Ophiomorpha, Thalassinoides, Phycosiphon and Chondrites; cf.

Bromley, 1990).

Nine discrete ichnofabrics (Table 2. 1) have been recognized in Ben Nevis L-55,

and have been catego rized into either intensely bioturbated " fair-weather" or "event bcd

related" ichnofabric assoc iationsvensn Mcilroy (2007). Ichnofabrics characterizing the

fair-weather ichnofa bric asso ciation (associa ted with biotur bated sandstone and siltstone,

LF I and LF5) are typically Ophiolllorpha-dominated. Fair-weather ichnofabr ics include



the: Ophiomorpha-Phycos iphon; Ophiomorpha-Asterosoma; Teichichnus-Phycosiphon

and burrow-m ottled ichnofabr ics. The event bed related ichnofabr icsare Oph io/llorp ha-

Chond rites-Phycos ipho n (assoc iated with laminated sandstone, LF4 and the low-angle

cross -stratified LF2); spre iten-burrow ichnofabric, associated with the bioclastic (l.F3 );

Thalassinoi des -Planoli tes; and the Phycosipholl-domi nated ichnofab ric of the laminated

mudstone facies (LF4).

Core slab samples 1, 2 and 3 are of the Ophio /llorpha-do minated fair-weather

ichnofabri c in the bioturb ated sandstone facies (LF I; Figures 2.2 and 2.4) . Samples 4 and

5 come from the laminated sandstone facies (LF4; Figures 2.3 and 2.5) , and contain the

Ophio /llorpha -Chol/{!rites-Phycos ipholleve nt bed ichnofabric. On the basis of the data

presented these two ichnofabr ics are associa ted with improved reservoir quality in Ben

Nevis well L-55. Detailed assess ment of the host sediment has been undertaken in order

to fully understand the impact o f bioturbation on reservo ir quality .

2.5 Porosity and Permeability in Ben Nevis L-55

The main controls on spot permeability contrasts are litho logy and cementation, a

simple and expected relat ionship betwee n higher permeability sandstone and lower

permeab ility mudstone, siltstone, muddy sandstone or cemented zones. Processes which

affect the distribution of grain size fract ions are the developm ent of physical and biogenic

structures. In the Ben Nevis L-55 core, mudstone-rich facies (LF4) and ichnofabr ics

containing mudstone-fi lled and/or lined burrows (e.g., Ophiomorpha and clusters of



Chondrites) have the net-effect of permeabilit y reduction . In contrast, sandstone-rich

facies (LFI and LF2) with sandstone-filled burrows (e.g., Thalassinoidesi and

permeab ility enhancemenl.

The main pore type is inter-granular porosity, which has been reduced by pore-

filling detrit al clay, biocl asts, calcite cements and sedimentary Iithoclasts. Thin section

analysis reve als grain size sorting assoc iated with sedimentary structures (e.g., laminae)

and biogenic structures (trace fossils). Concentration of the clay to silt grade material

into lamin ae, burrow linings and fill (e.g., Ophiomorpha eivi Chondrites; Figures 2.3 and

2.5) within sandstone decre ases sorting of gra ins and therefore redu ces porosity. This

biogeni c process ca n be described as sediment packin g. Converse ly, some mud lined

burrows (e.g., Thalass inoidesi create zones of biologica lly-c leaned sandstone, as mud and

organic matter is preferent ially removed from host sediment (23 .4% and 3 1.28 mD;

Figures 2.21-L and 2.41). Sorting and concomitant increased porosity is created by the

process of sediment clea ning in these burrows. l3urrow-mottled fabrics or diffuse to

massive horizon s are formed by the biogenic process of sediment mixing.

Anomalous permeabili ty data points on large thin slice images that do not appear

tob edirectly associated with any sedim entaryorbiogenicfeatures on the slabbed surface,

are suggested to be influenced by high permeability domains (e.g., burrows and

dissoluti on vo ids) or low permeabilit y zones (shells and pyr ite) in the core that do not cut

the two-dim ensional surface (Figures 2.4C, 2.4D and 2.5F) . In this regard it is important

to remember that the probc-permcarneter measurem ent s reflect a three-dimensional

sample volume which is only partially represented by slabbed surfaces.



2.5.llIosI Sedimenll'oro sil) · andl'erme ahili l)·inHen NevisL55

All samples are predom inantly fine to mud-r ich very fine-grai ned sandstones .

Sandstone composition is dominated by quartz grains. with lesser amounts of feldspar,

calcite grains, lith ic clasts, clay and organic detritus. Good inter-particle (primary)

porosity is present between moderate to we ll-sorted. sub-angular to sub-rounded loosely

packed grains (Figures 2.2 and 2.3). Porosity measured from blue-epoxy impregnated

thin sections is between 4.9 and 27.2%. It is suggested the inter-granular pore space was

preserved due to ear ly ca lcite cementation, followed by subsequent d issolution of pore-

filling cements (Hesse and Ab id, 1998). The source of the early ca lcite cementation in

the Ben Nevis Forma tion is through dissolution of bioclastic material from within the

reservo ir interval (Hesse and Abid , 1998). Secondary porosity can be recognized in the

form of oversized pores, corroded grains, floatin g grains and grain-shap ed voids in the

sandstone (Figures 2.2D, 2.211and 2.2L). Thi s suggests that the secondary porosity is

generated from dissolut ion of shell fragment s. calcite ce ment, lithic clasts, clay minerals.

and feldspar grains.

Physical sedimentary structures are absent in samples 1, 2 and 3 from the

biotur bated fine sandstone facies (LF I) as a result of the intense bioturbation. High

permeab ility values in Sample I are found in clea n, mud-deficient sandstone-rich areas

(Figures 2.4C, 2.4F and 2.41). Lower permeab ility regions of Samples 2 and 3

correspond to mud- rich bioturb ated sandstone with shell fragment s (Figures 2.5C and

2.5F) . Samples within this facies preserve no physical sedimentary structures, only



burrow-m ottling with few discrete burrows visible. Sample s 4 and 5 of the laminated

sandstone facies (LF4) generally have well developed very fine «I mm-3 mm) planar

and parallel mud stone laminae within very fine sandstone. The porosity and permeability

of the host sed iment is low due to well developed closely spaced mudstone lamin ae. The

higher perm eabilit y data points of Sample 5 are a result o f lower mud content in the

laminated sandstone, and greater proportions of diffu sely laminated to massive textur e

(Figure2.5F).

2.5.2 lli oturbated Sed iment Poro sity a011Permeabilityio Ben Nev'is L-55

Burrowing organisms can secrete mucus as they move through the sediment; usc

mucus to trap orga nic matter or line gra ins; or incorporate de tritus (mud or sand) to create

a burrow wa ll or lin ing (Brom ley. 1990; Herr ingshaw et al., 20 10). Consequently

burrows can alter the geochem istry of a substrate, act ing as foca l point s for the

co lonization of microbe s and miner alization, which may consequently dr ive early

diagenetic proces ses (Bromley, 1990; Pemberton and Gin gras, 2005) . Th is bio-

geochemical reaction may promote burrow-induc ed diagene sis, withpyrite (Figure 2.5E),

siderite and ca lcite growth centered on the burrow (Pemberton and Gingras. 2005 ;

Gingras et al.. 2007).

In highly bioturb ated ichnofabrics from Lithofacies I (Figures 2.2 and 2.4),

discret e traces are generally not preserved asa result of repeated ove rprinting. Samples I,

2 and 3 of this facies preserve no original sed imentary fabric and arc categorized as

burrow-m ottled . Porosity and permeabilit y within the burrow-m ottl ed sandstone arc



enhanced relat ive to uri-biotur bated sandstone by one or both of two animal- sediment

interactions: 1) "sediment packing" the removal o f silt-c1ay grade mater ial from the host

sediment, and re-dep ositing it in burrow linings and fills; 2) "sediment cleaning" , the

removal of silt-clay grade materi al from the sedimentary envir onment (i.e. back to the

sediment-water interface) . Incorporation of silt-clay grade material from the host

sediment into burrow fills and/or linings creates only locali zed . discontinu ous areas of

reduced porosity and permeabili ty (Figure 2.4), due to the silt-clay size fraction filling

pore space. The removal of silt-c lay grade material from the host sed iment by deposit

feed ing organisms that defecate at the ove rlying sediment-water interfa ce, can create

areas of biologically enhanced porosity and permea bility within burrows. Both of these

biological processes generally improv e the porosity and permeabilit y charac leristics of

the sediment. The resu lts arc consistent with Meyer and Krause (2006) who doc umented

higher and relati vely isotropic directional permeabilit ies in bioturb ated middle shoreface

sandstones re lative to un-bioturbated, laminateds andstones.

Our petrograph ic analyses demonstrate that the Oph iolllorpho.produci ng

organism(s) create local ized zones of porosity reducti on (along burrow wa lls), and the

Thalassinoides tracemaker creates porosity enhancemen t. relative to the host sed iment

with in the reservoir (Figures 2.21-L). Correspondin g spot-permeability measurem ents

also display similar trends (Figure s 2.4G-I).



2.5.2. / Porosity ond Permeability ofOphio morpha- domina ted Ichnof abric

This ichnofabric is domi nated by conspicuous Ophiomorp ha within burrow-

mott led fine sandstones from the bioturbated fine sandstone facies (LFI) . Sam ples 1.2

and 3 arc representative of the Ophio ll/orpha-do mi nated ichnofabric. The porosity

estimate for Sample 1 is 20 .3%. that of sample 2 is 27 .2% and Sample 3 is 23.4 % (Figure

2.2). Permeabilit y ranges recorded from this facies range from 1.26 mO to 394.80 mO.

The highest permeabi lity values arc from Sample I averag ing 79.36 mO (Figure 2AC),

with Samp le 2 and 3 averages of 9.32 mD and 18.33 ml) , respectively (Figures 2.41' and

2.41). Bioturbation level ranges from 60- 100%, with discrete bur rows including pellet.

lined Ophiomorpha and the unlined tubular bur rows of Thalassinoides. In add ition. some

undetermin ed sand stone- Jilledburrows and an incl ined spreitenburrow arc only visible in

large thin slices (Figures 2.4G-I). Sandstone-rich zones arc characterized by higher

permeabil ity zones (e.g., 8.84-394.80 mO; Figure s 2.4C, 2.4 1' and 2.41) than the

mudstone-rich bur row-mott led zones (e.g., 1.26-66.86mD; Figures 2.4F and 2.41).

Ophiomorpha burrow fill s, margins and linings have clay- rich pores, relative to

the surrounding elean high-porosity sandstone. Permeabil ity data support this

observation. with spot permeab ility data points within Ophiomorpha and at the burrow

margins being low (e.g.• 1.54- 15.71 mO), relative to the surrou nding higher-permeability

(e.g .• 5.38-66 .86 mO) sandstone (Figures 2041). In one of the stud ied specimens.

oversize d pores are present within Ophiomorpha burrow margins (Fig ures 2.2A-O).

These arc inferred to have formed by dissolution of burrow lining durin g diagenetic

seco ndary porosity development (Hesse and Abid, 1988; Figure 2AC) . Thin section



samples were impregnated with blue epoxy prior to prepr ation to prevent clay

disaggregation . Ophiomorpha were created by sed iment-packing during deposit feed ing

aetivity, in whieh the traee makingorganism eoneentrates mud and organic-rich particles

inloburrow linings. The effect of this isto reduce poros ity and permeability in the near-

burrow env ironme nt relative to the bio logica lly cleaned host sed iment. The

Ophiomorpha Iiu is apassive fill unrelated to the host sediment, which can locally even

includ e ripple cross-laminat ion, In our material the burrow fill is typically of low

permeabil ity, though we ack now ledge that Ihisneed not always be the case (Figures 2AI

and 2.51').

Tha/assinoi des studied by us from L-55 are distinguishab le as vcry thin mudstone-

lined burrows, with fill similar to, or cleaner than, the enclosing matr ix (Figures 2.2K and

2.2L). A halo of high-porosity, c lean, well-sorted sandstone is present around a small

numb er of Thalass inoides . For example, in sample 3 the Thalassinoides is 31.28 mD, the

adjace nt Ophiomorp ha is 1.54-1 5.71 mD, and the mean permeabilit y for the sample is

18.33 mD (F igures 2AG-I). This burrow halo exhibits higher porosity and permeabi lity

than the matrix (F igure 2.41), and may be the result of the trace-maker generating a

current around its body and expelling fines into the wate r co lumn (aquarium observations

of mode rn Neo trypaea califo rniensis by Mci lroy) . At least in the Ben Nevis Formation

core of we ll L-55, Thalassi noides is consistently associa ted with areas of enhanced

poros ity and perm eability relative to the host sediment.



2.5.2.2 Porosi ty and Perme abil ity ofOp hiolllorpha-Chondri tes -Phycosip holllchnofabri c

Thi s ichnofabric is typically incompl etely bioturbated (5-60% bioturb ation). The

sedimentary fabric is co mposed of bioturb ated mudstone -rich lamin ae in a very fine-

grained san dstone matri x (LF4). Pellet-l ined Op hio mo rpha tuvi undetermine d sandstone-

and mudstone-filled traces arc common. Samples 4 and 5 arc representative of the

Ophiolllorpha-Cho lldri tes -Phycosip llOll ichnofabri c. The porosity of sample 4 is

estimated at 4.9% and that o f sample 5 is 16.8% (F igure 2.3) . Thi s is significantly lower

than the porositie s of 20.3%, 27.2% and 23.4% from the sandstone-rich samples 1-3

(LF I; Figure 2.2). The permeab ility of samples in lithofac ies 4 (LF4) range from 2.0 1

mDt065.64mD. Sample 4 has a mean permeability ofl l .06 mD and Sample 5 a mean

of 45.7 I mD (Figures2 .5C and 2.5F).

Ophiomorpha and Chondrites within this ichnofabric arc assoc iated with zones of

local ized porosity and permeability reduction in their mudstone-rich burrow fills and

linings (Figure s 2.3 and 2.5). Pellet-lined and filled Ophiomorpha significantly reduce

permeabil ity (e.g., 2.0 1-8.96 mD; Figure2.5C) relative to the host sediment (7.99- 12.59

mD; Figure 2.5C) . Large opaque zones assoc iated with Op hiomo rpha arc pyritized

organic-rich mud stone with low permeabilit y values (e.g ., 8.04-21.4 8 mD, Figure 2.51')

relative to the host sed iment (e.g., 19.76-65.64 mD; Figure 2.51'). Widely spaced

mudstone-fill ed Chon drites (1-2 rnrn diameter) do not affect perme abilit y relative to host

sed iment (Figure 2.51'). At the microscopic-scale Chondri tes significantly reduce

porosity relat ive to the host sediment as silt-clay grade materiaI is packed into pore space

(F igures2.3E-H).



Lami na-sets with sharp mud-rich drapes alternate with intervals show ing diffuse

laminat ion, interpreted to be formed bycryptobioturbation or lique fact ion (Fig ure 2.5).

Laminac adjacent to bur rows are deflected by the vertical movements ofbioturbating

orga nisms (Figure 2.5 B). Diffusely lamin ated lamin a-sets are characte rized by

perme abil ities between 5.89 mD and 33.60 mD, whereas inter-lamin ated massive

sandstone interva ls have permeabiliti es o f7 .99-12.59 mD (Figure 2.5B and 2.5C).

2,j,2 .3 Comparison of core pl ug and slab porosi ty and permeabi lity

Core plug porosity values obta ined for the sampled facies (LF I and LF4) of the

cored interval of Ben Nevis L-55 range from 9.2% to 22 .7%, with an ave rage value of

15.9% (Ta ble 2.1, Core Laboratories Ltd., 1999). Visual porosity est imates of the 5

samples using the SimplePCI software on a blue epoxy impregnated thin section range

from 4.9% to 27 .2%, with an average value of 18.5% Cra ble 2. 1). Micro-porosity is not

measured in the 5 samples and is reco rded as minor in the core plug analysis report (Core

Laborator ies l.td ., 1999). Core plug porosity data of g iven facies arc thus in gene ral

agreement with porosity trends revealed in thin section and measuremenls.

Permeab ility values obtained for Ben Nevis L-55 core interval facies (LF I and

LF4) from the core plug data range from < I mD to 376 mD with an ave rage value of 44.9

mD (Tab le 2.1; Co re Laboratories Ltd., 1999). Permeability data of the 5 samples using

the probe-permeamete r range from 1.5 mD to 394 mD, with an average value of 32 mD

(Table 2. 1). Spot-permeability data of bioturbated core slab samples reveals that that the

mud- rich Ophio morph a can locally reduce permeability by as much as approx imate ly



33% , throu gh incorpora tion and co ncentra tion of silt-clay grade mater ia l in burrow fill

and lin ing (Figures 2.4 and 2.5}. Co nve rse ly, sand- filled burrows such as Thalassino ides

can enhance perm eabi lity by as much as 600% , throu gh rem ova l of s ilt-c lay grade

materi a l from pore spaces (F igur e 2.4). A lthough prob e permeam etcr valu es corr e late

we ll w ith the correspond ing core plug data, the co llectio n o f probe data at I cmi nterva ls

enables a more co mprehens ive understandin g of the heterogene ous nature of the Ben

2.6 Poro sity and permeability trend s associated with bioturbation

Porosity and permeabi lity in the Ben Nevis Format ion of we ll L-55 arc found to

be co ntro lled by a co mbination of sedimentary, biogenic and diagenetic proce sses. C lay

and silt- rich lami nae are as soc iated with porosity and perm eab ility red ueti on (Ta ble 2.1}.

Biot urbation can either enha nce or reduce permeab ility, depend on the burrow type and

the behaviour o f the trace-makin g organism in the Ben Nevis L-55 core inter val.

Based upon our studies of bioturbat ion in the Ben Nev is Formati on , we conside r

that the burrowi ng activi ty o f animals ca n be grouped broadly into 5 catego ries with

predi ctab le effe cts on porosity and perm eab ility:

I} "Sediment mixer s" - cause indiscrim inate mixin g of sed iment gra ins.

decrease the isotropy or uniformity o f the sediment by un-sort ing any gra in-

s ize trends. and throu gh mechanical destruction of laminae . Sediment

mixer s burr ow in the sedime nt without sorting the sed iment into d ist inct



burrow linings or tills. Clearly, the negat ive effect of dimi nished small-sca le

sorting is more than compensated for by the elim ination of tine-grained

lamin ae that act as baffles, For example burrow-mottled (Figu re 2.4) and

d iffuse to massive textures (Figure 2.5) create intense to complete leve ls of

bioturba tion (>90 %) with the net-effect of permeabil ity enhancement(e.g..

diffuse laminae, 5.89-3 3.60 mD and inter-laminated sandstone, 7.99- 12.59

mD;Fi gure s 2.5B and 2.5C}.

2) "Sediment cleaners" - increase isotropy of the sediment by selectively

removing tine-grained materia l (e.g., pore-ti lling clay-s ilt and organic

matter) from the sed iment by ingestion and subsequent defecat ion of tines

into the water co!umn or creating a current within the ncar-burrow

environment. l3urrows consisting of well-sorted clean sandstone fill. relative

to enclosing host sed iment, arc considered to be produced by sediment

cleanin g organisms with the net-effect o f perme abili ty enhancement (e.g ..

Thalassi no ides burrow margin is 3 1.28 mD, the adjacent Ophiomo rpha

burrow till is 1.54-15. 71 mD, and the mean permeab ility for the sample is

18.33 mD; Figure 2.41). Thalassinoides traces with clean sandstone halos

could be categorized as sed iment clea ners (Figures 2.21-L and 2.4G- I).

3) "Sed iment packers"- incorporate tiner grained material (e.g.. clay and tine

organic matter) from the host sed iment into burrow tills and/or linings

decreases isotropy of the sediment. Packing of the clay-silt size fract ion into

pore space by organisms locally reduces perme abili ties (e.g., 0 'phiomorpha

burrow permeabi lity is 1.54-15.7 1 mD, relative to 5.38-66.86 mD of the



surrounding higher-permeability sandsto ne; Figure 2.41). Burrows of

Ophiomo rpha, Chondrites , Phycosiphon, Asterosoma and Teichichnus can

be catego rized as "sed iment packers" (Figures Ld li- H; 2.4E, 2.41;2 .5, and

2.6).

4) Combina tion "Sediment cleaners and packers" - overall deerease isotropy of

the sed iment. These organisms paek mud into a mud-fill ed core and clean

adjace nt sediment creating a coarser gra ined halo. Phycosiphon burrowsa re

an exce llent example of this combined behaviour (Figure 2.6G).

5) " Pipe-work builders" -o pen semi-permanent burrows in sediment perforate

pre-exist ing physical sedimentary fabr ics. Such burrows are horizontal

ga lleries connected at depth by vertica l pipes to the sediment-water

inter face. Upon burrow abandonment, the burrow genera lly remains ope n

and is passively filled with the ove rlying sediment at the sed iment-water

a. If the "pipe-wo rk" is IiIled with sand grade material, high-porosity

biogenic macro-pore networks can result. If such burrows are of

sufficiently high density, effect ive permeabi lity at the bed-scale can be

greatly improved. Bioturb ation-enhanced porosity and permeab ility

has been documented in a number of settings associa ted with

sandstone-filled burrows into mudstone horizons including

Glossifu ngites ichnofacies (Weber, 1982; Gingras et 01., 1999). This

study includ es examples of enhanced permeabil ity in assoc iation with



(Figure s 2.4G-I) .

b. If the "pipe network is filled with mudstone, theefTect is generally a

decre ase in net-to-gross sandstone ratio, but without serious deleteri ous

efTecton host sed iment reservoir propertie s.

2.7 Conclusions

The burrowi ng activity of marine organisms produces a variety of burrows, tracks

and trai ls, reworkin g lithic clasts, minera l grains and organic matter to modify primary

physical sed imentary fabri cs. The action of bioturbators can be classified as sediment

mixing, sediment cleaning, sediment pack ing and pipe-w ork building strateg ies.

Bioturb ation has the potenti al to either increase isotrop y by un-sorting hydrod ynami cally-

sorted grains or decrea se isotrop y by sorting grains, and through creat ion of openburrow

In this sandstone-dominated reservoir, Ophiomorpha are the most conspicuous

element of the ichnofauna thro ughout the well, and are characteristic o f several net-pay

intervals. Although our research demonstrates the conspicuous Ophiomorpha reduce

porosity and perme abi lity, the subtle sand-filled bur rows of Thalassinoides are

recognized as enhancin g petroph ysical properties in the nct-p ay intervals.

Ophiomorpha in the Ben Nevis Formati on of we ll L-55 display "sediment

packin g" behav iour in which clay-silt grade materia l is removed from the sediment, and



incorporated into burrow linings and fill, thereby markedly red ucing porosity and

permeability (e.g ., 33%). Thalassi noides , the other key trace fossil is classified as a

"sed iment cleaner" and "pip e-work builder" increases isotro py and is re laled toenhanced

porosity and permeabilit y (up to 600% greater than the host sediment). Burrow-mottlin g,

diffu se laminae and massive intervals un-sort the primary sed imentary fabrics formed

during deposition. In intensely bioturba ted lithologies bioturbat ion has the net-effect of

perme abilit y enhancement.

The implication of animal-sedime nt interactions, for exampl e the porosity and

permeability reducing sed iment packin g activity within the Ophio lllorpha· dominate d

ichnofab ric. and porosity and permeabil ity enhancing sediment cleaning activity withi n

the Ophi olllorph a· C/lOndrite,'·P hycosiphon ichnofabri cs are eas ily ident ified in core, and

arc hence of pred ictive value. Assignment of the aforementioned 5 catego ries of

burrowi ng activity can be applied to other core analyses and used as a too l to pred ict

effects on porosity and permeability.
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Chapter 3: Lateral trend s in the ichnological variability of

shallow marine succe ssion s

High resolut ion paleoenv ironmenta l reconstruction in marine sys tems can be

constraincd by undcr standin gvariabi lity, and trcnds in thc distributionofbc nthic

organisms. Spatia l distrib ution of trace fossils is complex, and involves both bio logical

physico-chem ical parameters. Superimp osed

cco logical/paleoenvironmenta l signatures, are the effects of burrow preservat ion

(taphonomy). Ichnofabric and ichnofac ies se ldom preserve trace foss ils re latin g to a

single bent hic community, or co lonization surface. Onbiologicalt imescales ichnological

asse mblages are commo nly the product of several time-aver aged communities, or a

condensed representation of an unknown number of communities with hiatuses. Three

siliciclas tic shallow marine along-strike profiles were studied from the Quaternary

Conway Flat, New Zea land; Late Cretaceo us Ncs lcn Formation, Utah, USA; and

Neogene Pohutu Formation, East Cape. Maximum ichnological var iabilit y was found in

the shclfal deposits o f the Pohutu Formation.c haracterized by slow continu ous deposition

in assoc iation with event bed deposition. Neslen Form ation shoreface and Conway lower

deltaplain studicswcrc charactcrizcdby rclativc litt lc lateralchangcinichnofabric.

Along-str ike variabilit y, or patchiness, was found to be un-re lated to proximit y to thc

paleo-shoreline in the three wave-domi nated depositional systems, Instead, thc most



critical factor appears to be the sediment accumulation sty le. Siow continu ousd cposit ion

is found to produce complex . and highly patchy ichnofabrics, where as rap id, episodic.

eve nt bed deposition was found to be assoc iated with the mos t uniform development of

ichnofab ric. There is lateral ichno logica l variab ility within most beds but modes of

feed inglbio turbation are commo nly more uniform than ichnogeneric distributions. Where

feedin g strategieslbioturb at ion styles arethe same.thenet effect on reservoir quality is

seen to be less variable than would first appear.

3.llntrounction

Someof the world' smost productivepetro leum reservo irsare high lybi otu rbated.

with biogenic structures being integral to fac ies analysis. and contro lling reservo ir quality

(c.g.• Martin and Po llard. 1996). Effective production of hyd rocarbon reservo irs requires

re liable pred iction of facies-related reservoir properties, and correlation at the inter-well

scale. It is a lso becomin g clear that reservoir quality, can be significan tly impacted by

bioturb at ion (Gingrasetal.• 1999. 2002.2004; Pem berton and Gingras . 2005; To nkin et

al.. 20 10). Stud ies of bioturbation are conventionally aimed at understand ing

stratigraphic changes in ichnology to determine facies trend s at the bedset scale. usually

within prog radationa l packages (parase que nces and parasequence sets, Van Wagoner el

al., 1990). In effect, such studies provide inform ation about down-depositional-dip

ichnological trends (by app lication of Walther' s Law; Middlet on,1 973), and areb ased on

both semi-quantitative and qualitative approac hes (Mcilroy et al., 2004; MacEachern et

al., 2007) . Implic it to this is the assumption that ichnofab rics only vary in a down -dip



directi on, as seen in bed-b y-bed changes in ichnology (Tay lore t al., 2003). Recent study

of ichnofabri cs, from with in a single bed, have revealed significant local patch iness in

ichnofabri c that require s reassessment of the ass umption of ichnological homogeneity at

the bed sca le (Mc ilroy, 2007).

3,1.1 Patchiness of the modern endo benthos

Study of spatia l variabilit y in modern benthic populati ons by biologists has

catego rized benthic sea floor patchine ss as being in the form of gradients, c lusters. and

I) Grad ient pattern s arc comp arable to the infer red along-depositional-dip

variabi lity inherent in most ichno logical studies in the rock record. Species arc

distributed along environme nta l gradients, and variabi lity is gradual a long the gradient

(e.g. onshore to offshore), and reflects trends in sedimento logical param eters (e.g. energy

and grain size; Johnson, 1971;Bl oom etlll., 1972; Valentine and Jabl onski, 20 10) .

2) Clustering and clumpin g patterns of specie s, or communities constitute abrupt

or discontinu ous spatial distributi ons. and are ofte n recognize d asdiscrete. intenseiy

populaled,p atches onthe seafl oor (Woodin .1 976; Tilm an etal., 1997).

3) Mosaic pattern s have spatial-temporal significance, clusters of species or

communities overlap. and under go disturbances over lime. Both physically-induced (e.g,

eros ion and detrit al input s), and biologically-induced (e.g. predationa nd larval d ispersal)

phenomena can produc e a compl ex spatial patchwork on the sea floor . When the time

interval between disturb anc e events is non-uni form. this can add a temp oral component



to mosaic eco logica l trends/patterns of communities (Jo hnson, 1970; Reise, 1979;

Levinton andKelaher, 2004).

Clusteri ng and mosaic patterns arc common phenomena in response to local

trends, usually parallel to the shoreline, and are typica lly not systematica lly related 10

dep th grad ient pattern s. The most common first-order biological con tro ls on patchiness

of the modem seafloor are: I) localized input o f particulate food to the sediment-water-

inter face (Shanks, 2002) , which creates heterogeneity in the distributi on of food

resources; and 2) the motility and mobilit y of benthi c organisms, which greatly affec ts

their abilit y 10 exploit spatially-localized resources (Levinton and Kelaher, 2004) .

part iculary a fter defaunat ion events. The spatio-temporal controls acting on the

distributi on of modern benth ic sea floor communiti es are comp lex. Anomalously large

detrit a l input even ts may attract larvae or boost invertebrate pop ulation growth (Lev inton

and Kclaher, 2004). The motility of cpibenthic, and endobe nthic organisms encom passes

both adult, and juv eni le organisms. The mob ility of organisms mostly affects juv eniles,

and is caused by currents (e.g. Thorson. 1950; Beukema and Vias, I989) .

Sea floor patchin ess is widely studied, by both biologists and eco logists.

However, equating such eco logiea llbio logical variabil ity with ichnofabrics in the rock

record is not stra ightforward. Biological studies are typically focused on organisms.

rather than their burrows. and snapshots of ecology are on biological rather than

geological timescales. Inherent in any analysis of ancient ecosystems is the possibi lity

for time ave rag ing of skeleta l asse mblages, by reworking and winnowi ng of skeletal

material (Kidwe ll and Bosence, 1991; Valentine and Jablonski, 1993; Fursich and

Aber han, 1994). Superimposed on these ecological/paleoenvir onm ental parameters arc



taphonom ic processes. It is a lmos t impossib le to dete rmine whet her an assemblage of

fossils or trace foss ils reflects a true biological commun ity or iehnocoenosis (Cummin s et

al., 1986;Kidweli andFlessa,1 996 ;M eli roy and Garton,2010; Liu el a l., 2011 ).

The re is a need to develop an understandin g of the combin ed effects ofbiological

patchin ess with respect to the time -averaging typ ical of ancient sed imentary unitswhen

interp reting ichno logy. The variab ility seen in ichnofabr ics is pert inent to: I) the

establishment of ichnologica lly-defined facies (Mcilroy, 2008); 2) interpr eting

paleoenvironmental paramete rs from ichnofossil assemblages (Taylorel al., 2003) ; and

3) predict ing changes in sediment properti es in porous media (To nkin et al., 20 10,

Pemb erton and Gingras, 2005) .

3.1.2 Paleoecologtcal studics of patchin ess in ancient stra ta

A bioturb ated bed or ichnofabric rarely preserve s burrows relatin g to a single

benthi c community . Ichnofabrics are commonly the product of several time-aver aged

communities. Ther efore a latera l profile along a bioturb ated bed will commonly

incorporate both spatial, and temp oral component s. There are few studies of lateral

variability of trace fossils/ichnofabri cs/ichnofacies (Mcilroy,2007). Give n the expected

hydrod ynamic homogeneit y on the sca le of tens of meters, much of the variabilit y in

ichnofabri c is likely to be primar ily related to time- averaged patchine ss(Mcllroy, 2007).

When sampling for patchiness on the modern seafloor, and in the rock record a

consistent methodology is important, small replicate sampling protocol is recomm ended

(Bennington, 2003), a lthough time-av eraging on a eco log ical timescale (e.g . seaso nal,

Gingras el al., 2008) may be effective in homogenizing patchin ess. If burrow type is



equated with trophi c mode, the effects of time averag ing ca n be incorporated into

under standing oflateralvariabilit yinichnofabr ics.lchnofabr ics could be considered as

being represen tat ive of in situ spatial variability, the ichnolog icaldistrib utionbeing the

result o f the life activity on the ancient sea-floor. Cross-cutt ing relationship s, and depth

of bur rowin g seen in ichnofabr ics additi onally prov ide proxies for community structure,

and success ion can be considered with respect to sediment acc umulation style .

Thi s chapter expands on McIlroy (200 7), and considers ichnological variabilit y in

three case studies from a range of onshore to offshore shallow marine settings. The aim

of the presented studies is to determine the lateral variabilit y of ichnological, and

sedimento logical characteristics ofa give n bed along a horizon tal transect within a range

of wave -influenced depositional sett ings . Thi s understandin g of the variabilit y of

ichnofabr ics is fundamental to reliable understanding of what constitutes a significant

(interpretable) di fference in ichnofabri cs relative to norm al inherent variab ility (McIlroy,

2007). Comparable ichnological datasets have been co llected from three case studies

from onshore to offshore: I) a proximal Quaternary fan delta success ion (Ne w Zea land);

2) a Cretaceo us shoreface success ion (Utah); and 3) a Miocene offs hore shelfal

successio n (Ne w Zea land). Co llection of semi-quantitative and qualitative ichnological

data such asbi oturb at ionintensity,i chnotaxaid ent ification,burrow size/lill, cross-cuttin g

relationships, andbioturb ation styleshighlightsichnofaunaI response to changes in

physico-chem ical parameters, and enables recognition of trend s in spatia l d istribution.

Thesecasestud iesa re used toassess thei mportanceof lateral ichnologica lvar iability ina



3.2 Methodo logy

To aid paleoenvi ronm ental reconstruct ion of each case study, a variety of

techni ques are used to interpret the complex relat ionship between physico-chemical

parameters and the associated ichno logy . Well-exposed, acces sible, laterally-continuous

outcrops were logged to determin e sedimentary facies. At intervals along a chosen

bedd ing plane sedimento logical and ichnologieal observat ions were made to assess lateral

variab ility along 35mt0 60mprofiles.

3.2 .1 Ichn ol ogicul a nu lysis

Each sample was characterize d using both the ichnofabric and the ichnofacies

approaches (see Chapter I). Each sample underwent detailed ichnological analysis.

Ichnofabric analysis involves catego rization of the ichnology, ichnodiversity, burrow

diameter, bioturb at ion intensity and cross cutt ing relationship s (Taylor and Goldring,

1993; Taylor et al., 2003) . Sem i-quanti tative data on bioturbati on intensity was based on

the amount of destruction of sed imentary fabri c by bioturb ation (Bioturbation Index or

B1;Taylor andGoldrin g, 1993).

Assess ment of ichnod iversity involved quantifi cation of the burrow numb er of

ichnotaxa present , and is somewhat subjective due to taphonomic and ichnotaxonomic

biases. Potentia l taphonomic biases include preferential preservation of mid- to deep-tier

level trace fossils, late colonizers, deposit feedin g burrow s, and large burrows (' e lite

traces' of Bromle y, 1996). Other taphonomic controls include : I) the degree of

lithological heterogeneity and intensity of bioturb ation ; and 2) diffi culti es of identifying



ichnotaxa from vert ical cross-sections (e.g. McIlroy et al., 2009). Maximum burrow

diamet er was measured from all the most abundant ichnotaxa. This quantifi cation of

burrow size was perfor med for the tota l abundance number of trace fossi ls in each

ichnofabric. Burrow diame ter has been used as a proxy to define fluctuating bottom

water oxyg enation (e f. Bromley and Ekdale, 1984), a lthough preservat ion biases

(taphonomy), and the potential to sample a range of both j uveniles and adult trace-

making organisms is potentially misleadin g. In this work, ichnofabri cs were catego rized

and named based on the dom inant trace fossil or fossils within a sample or sample area

(Taylor et al., 2003; Mci lroy, 2004, 2007, 2008).

Ichnofacies were determine d through comparison of the ichnotaxa compos itionof

asse mblages to pre-establi shed/archetypal ichnofacies acco rding to the proposals of

MacEaehern etal. (20 10) . Burrow ing activity categor ies or biotur bation styles (To nkin

etal. , 20 10) are applied to eac h dataset studied, in order to deseribe the physical

modificat ions made by eac h ichnotaxon or "bioturbation sty le" (Ta ble 3. 1). The

catego ries o f biotur bation styles used arc: sediment mixers, sediment cleaner s, sediment

packers and pipe-work builders (Chapter 2; Tonki n et al., 20 I0). This new classification

can be used to summarize ichnological patterns, and ca n be used for reservoir

The pr imary objective for data co llection was to undertake syst ematic sampling

(e.g. replicate sampling; Bennington, 200 3) as a basis for a quantitative ichnological

study . The following data were co llected at 5 m or 10 m lateral spacings along horizonta l

transects in the field or analyzed from slab faces:

I) Grain size .



2) Lithology.

3) Organ ic matter content.

4) Body fossil ident ificat ion and abundance .

5) Sedim entary structures.

6) Diagenetic feature s.

7) Bcd thickness.

8) Intensity of bioturb at ion .

9) lchn otaxon identifi cation and abundance .

10) Burrow size .

II)Burrowfill.

12) Depth of bioturbati on .

13) Cro ss cu tting relat ionship s betwee n trace fossils.

14)l chnodiversity.

These data arc used to systematically assess the relative sedimentologica l and

ichnolog ical heter ogeneit y acro ss a lateral profile (sec review s in Taylor et al.. 2003;

Mcllr oy, 2004fordetailedmelhodology). Thisi chnological appr oachisu sedlodecipher

a high resolut ion deposit ional history from each lateral profile and highli ghts along-strike

ichnolog ical variabilit y . Biogen ic structures that cannot be nuributcd to a specific

ichnotaxo n Ifor lack of appropriate ichnotaxobases) are recorded , and are considered an

important co mponent of ichnologica l analyses. Burrow-m ottl ing textures and

cry ptobioturbation arc the net effect of bulk sediment rnixing tracemakerbeha viours, and

in the case studies presented her in constituent a significant o f the ichnofa bric. his



important to document these structures since they are a component 0 f theichnofabric,a nd

canaffect bulksed iment properties (e.g.Chapter2 ,Tonkine l al.,20 10).

Slab face ana lyses, analogous to core used in hydro carbon exploration, enable

core-w idth (40-100 mm) views of sedimentary env ironment and ichnofabri c. Thin slabs

of sedimentary rock were sampled at 5 or 10 m spacings along a horizontal transec t, to

assess variability over lateral distances of up to 60 m. In the Quaternar y case study,

co llection of samples was not possib le and vertica l surfaees (OA mby OA m)ono utcrop

surfaces were cut into the cli ff face (w ith a blade) and detai led descripti ons and

photograph y were collected . While lateral transects of the sca le of 100s of meters would

be ideal, no suitably access ible beds were located at the field localities. Samp les have

under gone facies, iehnologieal, petrographic analysis, and large thin slicing (Ga rton and

Mcilro Y, 200 6).

3. 2.2 T h in sec t io n a na lys is

Thin sec tions (25 mm by 45 mm) were cut from a slice of the sample slab face.

Detai led petrographic analys is of each thin section arc under taken, includ ing descript ion

of; grain size, sorting, roundness of grains, grain shape, matri xd istribution , miner alogy,

and cementation. Visual estimates of sorting were measured using comparison charts

(Jerram,200 1). Proporti ons of quartz, calcite, c lay and organic matt er were visually

est imated and photom icrographs were taken of microfabr ie textur es for eac h sample.

Petrographi c analysis prov ides microscop ic detail , which aids lithological classificat ion

andenables identifi eat ion ofmineralogicalburrow-grainr elationships.



3.2.3 Large Thin Slicing

The technique of large thin slicing is used to study the sedimentary and biogenic

fabrics in sandstone and mudstone lithologies in transmitted light (Ga rton and Mcil roy,

2006). When viewed in transmitted light, the large thin slices display sed imentary

structures and the ichnology not otherwise visible in polished hand specimen or field

samples.

The result s o f three case studies were chosen to reflect a range of onshore to

offshore facies across wave-influenced shallow marine sys tems: I) a Quaternary lower

delta plain in a fan delta success ion (New Zea land); 2) a Cre taceous shoreface succession

(Utah); and 3) a Miocene offshore shelfal succession (New Zealand).

3.3 Proximal ran delta succession (Quaternary Conway Flat, NZ)

Coa rse-grained fan delta deposits are well-exposed in coasta l c liffs at Conway

Flat, South Island , New Zea land (Figure 3. 1). This Quaternary success ion is composed

of a compiex of fan-delta facie s inciudin gpro-fan-delta, gravelly distr ibutary channels,

sandy gravel barri er bars and embayme nt facies (Lewis and Ekda le, 1991). The lateral

profile is measured within the delta front-de lta plain transition facies assoc iation (Lewi s

andEkdale, 199 1).

In the late Q uaternary, a series of small, short, and steep fan deltas drained the

lIawkeswood Range, buildin g into the nearby Paci fic Ocean (Figure 3.1). The gravel of

the Gilbert-type fan deltas was sourced from the Mesozoic sandstones of the

Hawkeswood Range (Ratte nbury et al., 2006). Loess-r ich sediment was derived from the



Figure 3.I . Locality map of Conway Flat, South Island, New Zealand. Cliff sectio ns of Quaternary age sand.m ud

and gravel are exposed parallel to modem day Conway coastline. The Hawkeswood Range trend Nli-Sw through

Mt Wilson (elevation 640 m). Offshore from the field locality lies the Conway Trough and Ridge in the SW Pacific

Ocean (taken from Lewis and Ekdale, 1991). The 30m length lateral profi le was sampled from a coas tal cliff section.



Southern Alps as a product o f wind deflation from glacia l outwash plains. and fluv ial

transport (Lew is and Ekdale, 1991; McConn ico and Bassett , 2007) . The bathymetr ically

deep (>800 m) Conway Trough lies j ust o ffshore and runs parallel to the present day

coas tline, and is the receiving basin for coarse-grained deltaic sediments (Carte r et 01.,

1982; Figure 3.1). In the most north ern part of the fan delta comp lex exposed along the

Conway Flat coastline, fossil wood has been "c dated at between 7600 and 8400 years

(Otae /a l.. 1984). The sedimentation rate is calc ulated at 0.5 m ( IOOOy(l ) since 20.000

yr BI'(C artere / al., 1982).

Facies architecture in the fan de lta is highly complex and laterally variab le. A 25

m high cli ff section within the embayment facies (Lewis and Ekdale, 199 1) was logged.

The lateral profile bed is part o f the distal embayment facies characterized by moderate ly

to intensely bioturb ated (131 3 toB I 5, Figurcs 3.2 and 3.3) sand, inter- bedded with very

thin carbonaceous mud and silt to very fine sand-grade loess deposits. The horizon

chosen for the lateral profile study is at the proximal delta front-lower delta pla in

transition lies stratigraphically above a de lta front, gravelly bar facies. and below a delta

plain, rhizolith-domin atedm udfacies. lIand samples were not co llected along the profile

due to the unconsolidated nature of the Quat ernary sediments,asmall thin section sized

sample was co llected intact. Instead. a smooth 0.4 m by 0.4 m area was prepared in the

field. A latera l profi le of 30 m was logged at 5 111 interva ls (Figures 3.2, 3.3 and 3.4) .

The short length of the lateral profile and close r interval spac ing highlights the lack of

continuity of beds within this embayment facies.
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3.3 .1. Se d im ento log ica l varability

Loess-rich greybioturbatedmudw ithverythi n interbeds ofl ight brown to orange

silt to very fine sand. dark grey carbonaceo us mud, and grey loessial mud beds are

sampled for latera l variabilit y assess ment. A dark grey to black carbonaceous mud bed

( 10-20 mm) with woody fragment s, and a laminated to cross-laminated very fine sand

bed (10-50 mm) can be traced along strike within the bioturb ated mud, form ing marker

horizons in the O.4m by O.4m quadrat (Figure 3.2A). Ilasal contacts ofthe carbonaceous

and sand beds are typically wavy and erosional into the underiying mud . The thickness

of these very thin beds is highly variab le, and the beds pinch and swell along strike

(Figures 3.21l, and 3.3A- D), with woody particulate and frag ments increasing to the

north . Laminated to ripple cross-laminated silt to very fine sands also thicken to the

north . Small scale syn-sed imentary fau lts, with offsets of - 50 mm are common in this

The th in section (Figure 3.2C) collected from th is mud facies is mainly composed

of clay and silt-grade grains (-93 %), with lesser amounts o f organic material (-5 %) and

very fine-grained sand (- 2%). Very fine-gra ined sand and coa rse silt are moderately

sorted, sub-angular to sub-rounded, and spherical to blade-shaped quartz grains. Very

fine scale lateral and vert ical heterogeneity exists in this facies. within the mud-

dominated 0.4 m by 0.4 m areas (Figures 3.21l, and 3.3A-D).

3.3.2 Ich nolo gy

The highest intensities of bioturbation (Ill 5) are in the grey mud, and are

dominated by pervasive Phycosiph on along the horizontal transect.



comm on Planolites, with rare Diplocrater ion and Skolithos , and abundant burrow-

mottled textur e. In the carbonaceo us mud bed, bioturb at ion ranges from moderate to

high(Bl 3 to 5), and is dominated by Planolites . The ripp le cross -laminated sand beds

have low bioturb at ion intensities (Bl I to 2), and contain rare Diplocraterion and

Phycosi phon dominat es the loess-r ich horizontal transect in this fan delta

complex. These mud-filled burrows, < I mm to I mm in diameter with very line sandy

halos, orient ed in all directi ons (Figure 3.313). This distinctive textur e of dark grey

curved and hook-shaped burrows is recogn ized in the mud, si lt and very line-grained

sand beds, but is absent in the dark grey carbonaceo us mud beds (Goldrin g etal., 1991;

Wetzel and Ilromle y, 1994; Bednar z and Mci lroy, 2009). Phy cosiphon are cross -cut by

large Diplocraterion and Skolithos (Ekdale and Lewis, 1991) inth e loessial mud beds.

Simple horizon tal sand- or silt-filled traces of Planolites are common in the

carbonaceo us mud bed, at a ll intervals along the lateral prolil e (Figure 3.3C). Burrows

are circu lar to oval in cross-section, and range from 2 mm to 7 mm in d iameter.

Planoli tes consistently post-d ate (cross-cut) Phycosip llOn in loessial grey mud beds, but

no other systematic cross-cuttin g relationships are recognized with in the meas ured

Rare Diplocra ter ion cross-cut multip le beds of grey mud (F igure 3.3D). The

spreiten of Diplocraterion are alternate ly composed of mud, and sand, with diameters

from 15mm to 26mm, and depth s 20 mm to 70 mm (Figure 3.3 D). Unlined mud-lilled

vertical bur rows of Sko lithos , with diameters of 2 mm to 5 mm, and cross-c ut

Phycosiph on andburrow-m ottledichnofabrics( Figure 3.3A) .



Observations along a bioturbated horizontal transect reveals a patchy distribut ion

of the lour identified ichnotaxa in the Quaternary, Conway Flat sec tion (see summary

Figure 3.4). Ichnodiversity is low in the ichnofabric studies, ranging from 2 to 4

ichnotaxon . Maximum bur row diameters range from 5 mm (in Skolithos) to 26mm (in

Diplocra terion} along strike. Ichnofabrics can be catego rized as Phycos ipho n-dominatcd

or Phycosipho n-Diplocraterion. and P1onolites-dom inated. Alternative ly, using the

ichnofacies approach, the lateral profile bed is assigned the Cruziana ichnofacies.

Bioturb at ion sty les across the profi le arc domi nated by burrow s of combination

cleaner-p acking (e.g. Phycosiphom , sed iment mixing (e.g. burrow-mottlin g texture), and

pipe-work buildin g strateg ies of Planolites and Skolithos. Rare examp les of sediment

packi ng bioturb ation sty le (Dip locraterio n) are associa ted with the thin carbonaceous

mud, and ripple cross-Iaminated sandb eds.

The loess-r ich mud is intensely bioturbated (B I 5), and in some cases

homogen ized , these characteri stics rcll cct low sedimentation rates re lative to the rate of

bioturbation. The lower de lta plain facies is inferred to have bee n well-oxyge nated with

abundant food supply in the form of detrital organic matter. Bioturbation intensity in the

storm-induced sand beds is generally 10w (B11 to 3}, as these event beds arc related to

rapid deposition of storm washovcrs heets. Rare root traces arc not related to the studied

beds, but have penetr ated from the stratigraphically higher rhizo lithfacies in the section.

The hetero lithic facies form the marginal marine component of a fan delta

complex (Ekda le and Lew is, 199 1; Figures 3.2, 3.3 and 3.4). Thi s ichnological



investigati on focused on a back barr ier, lagoona l facies, with inter-bedd ed terrigenous

matter and ripple cross-laminated sand bed. The se thin event beds erode into underlying

mud, suggesting fluctuatin g hydrodynamic energy and rapid deposition durin g episodic

flooding, and storm washover events. Thehi ghlyvariablebioturb ationintensity (BII to

5) of the beds isa direct result o f the episodic high fluvial discharge (a llowing time for

organisms to co lonize substrate between depositional event s), and associa ted high

sedimentation rates (impedin g rate of bioturbati on) on the flood- prone lower delta plain .

The lateral profi le at Conwa y Flat is dominated by fair-weather Phycosiphon-

dominated ichnofabrics, with event bed Planol ites ichnofabrics (Figure 3.4).

Sedimentati on rates are variab le, and consist of episodic, storm (sand ) and flood-related

(carb onaceou s mud) depo sition. The biotur bation sty le is do minated by sediment mixing

and combination cleaning-pack ing with, similar ichnofabr ics along the short latcra l

3.4. Shoreface success ion (Neslen For ma tion, Book C liffs, Utah, USA)

In the late Creta ceous, continent al colli sion of the Pacific Plate and the North

American Plate produced high mountains in western Utah, while eastern Utah was

drowned by seas from the east (Kauffman, 1984). This tecton ically induced transgression

of eastern Utah formed an inland sea, and a coasta l plain devel oped betwe en the easta nd

west coa l swamps (Franczy k et al., 1992). Foreland basin deposition took place duri ng

the Sev ier Orogeny (Cro ss, 1986), and is characlerizedbyarange of sil icicla stic shallow

marine facies . A variety of depositional envi ronment s have been interpreted inth c lipper



Cretaceous strata o f eastern Book Cliffs including coasta l plain , estuarin e, shoreface,

delta front and offshore marine (e.g . SegoSandstone , Nes len Formati on and Castlega te

Sandstone of the Mesaverde Group ; Swift et al.• 1987; Van Wagoner • 1995 ; Willis. 2000;

Kirschbaum and Hettin ger. 2004; Patt ison et al., 2007) . Ophiolllo rpha-dominaled

ichnofabrics of the Sego Sandstone (stratigraphica lly below the esle n Format ion)reveal

variat ions in burrow architec ture ofOphiolllo rpha that are cont rolled by hyd rodynamic

energy. grain size and sed imentation rate (Anderson and Droser, 1998). The present

study has focused on a sing le upward coa rsening success ion (parasequence) of well-

ceme nted hetero lithic mud stones, and siltstones inter-bedded with mudd y very fine

grained hummocky cross stratified (HCS) sandstones of the Neslen Form ation (Figure

3.5). The HCS sandstone beds become amalgama ted at the top of the success ion

indicat ing deposition in the middle shoreface. Cliff-line exposures of the Neslen

Formation at Sagers Canyon. Book Cliffs, Eastern Utah were sampled along at 10 m

intervals along a laterally continuous exposure (Figures 3.5 and 3.6A).

3.... l Sed imentnlogtca l vu r ta bility

The stud ied horizon is very fine grained. well-cement ed. sandstone from within a

thick 12 m hete rolithic success ion of hummocky cross -stratified lamin ated mudstones

and bioturb ated siltstones . Tbe th ickness of the sandstone bed was found to vary laterally

from 0.13 to 0.22 m. Tbe basal contact with the underl ying heter olit hic facies is wavy

and eros ive. Para lle l laminae «I mm to I mm spac ing) are present in the basal portion

of the bed in all sa mples, with the excepti on of SC I I. The uppe r porti on of the sandstone

is apparently massive with no grading apparent in hand specimen. When studied in large
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Figure3 .S. l ocality map of Sagers Ca nyon. Book Cl iffs. Utah. USA. (tak en from Anderson and Droser; 1998)

The 50 m lateral profile was sampled from a c1itT-linc section.



sampleof SC l lfrom HCS lateral profile bed

impregnated with blue epoxy. blue co lor shows pore space E) Vertical shaft ci Ophiomorpha (Op h) burrow in

humm ocky cross-s tratified (HCS) bed



thin slice, the massive fabric is resolved as very low ang le, fuzzy lamin at ion (F igures

3.7A-3.7E).

The samples are from the same muddy very fine-grained sandstone bed, which

calcareously cemented. Petrographic characteristics arc similar along-strike, all samples

are composed of clay, silt, and very fine sand fract ions, and are moderate ly sorted,w itha

ca lcitic or clay-miner al cements (Figure 3.60) . In sample SC3, the proportions of

lowered ca lcite (25%),and proportionally higher clay content (40%) coincide with the

presence of an Ophiomorpha burrow . Sed imentological characteri st ics are homogenous

along strike in this humm ocky cross -stratified bed (HCS).

3,4 ,2 Ichn ol ogy

Bioturb ationintensityi seonsistently I0- 20% aerossthel ength of the studied bed

(B12 of Taylor and Goldring, 1993). Discrete trace fossils of Phyc osiphon.Cylindr ichnus

and Ophiomorpha overprint the prevalent fuzzy lamination which is interpr eted as

cryptobioturbation(Figures3 .7A-3.7 E).

Mudstone-fi lled Phycosiphon (cl mm diamet er) arc common within the HCS bed

as moderate intensity clusters o f " frogspawn texture" (cf. Bednarz and Mcilroy, 20 10;

Figures 3.7A-3 .7E). Phycosiph on is only visible in large th in slices, as weather ing and

cement obscure these tiny burrow structures under normal light in hand sample (F igures

3.7B and 3.7C).

Ophiomorpha irregulaire ( 18 mm diameter) arc recorded in cut slab sample SC7

only despite bein g the most abundant and conspicuous trace fossi1in out crop, anduncut

sample faces (SC3, SC5, and SC9, 9-20 mm diameter). Ophiomorpha irregulaire





burrows are lined with circular to oval mudstone-ri ch pellet s ( 1-3 mm pellet diameter )

and its recogniti on in outcrop and core has been the subj ect of some debate (Bromley and

Petersen , 2008; Mcilr oy et 01., 2009). Some Ophiomorpha arc passively infilled with

alternating sandstone and mudstone laminae (Figure 3.7 D). Ophiomorpha have vert ical

to inclined sha fts and beddin g parallel galleries and are cro ss-cut byPhycosiplllJII.

Cyli ndric/mils (8- 16 mm diameter) is circular to ovoid in cross-sect ion, with

concentric mud stone-rich fill, verti cal to inclined to bedd ing, and 0 ften tapers into a cone

shape (Howard and Frey, 1984). Thi s trace is not visib le in any of the cut slab faces

along the lateral profi le, but was comm on in the field and present in uncut sample faces

of SC3, SC5, SC7a nd SCI I.

Analysis of the cut slab samples along a bioturba ted horizont al transect reveals

distribution of Phycosiphon and Ophio morpha in the Nes len Format ion, Book Cliffs,

Utah (sec summary Figure 3.8). Cylindric/mils is om itted from the quantitative dataset,

as it is not present in the cro ss-sec tion of any of the random samples . In the cut slab

sample data set, crypt ob ioturbati on and Phycosiphon u eces are comm on. Ichnofabr ics

arc variable arc comprised of Phycosiphon (SC I, SC5, SC9 and SC I I),

cryptobioturbation (SC3), and Ophiomorpha (SC7). Using the ichnofacies approach,

most samples would fall within either the archetypal Cruziana ichnofacies (SC I, SC3,

SC5, SC9 and SCI I) or stressed proximal Cruziana ichnofacies, and the archetypal

Cruzia na ichnofacies for sample SC7 (cf. MacEachern et al., 2010 ). Ichnod iversity is

low and ranges from I to 2 identifi ed ichnotaxa. The maximum burrow diamet er of trace

fossils at each sample point ranges from > Imm Phyc osiphon to 18 mm in the single

Ophiomorpha. l3ioturbati on styles( Chapter 2, Tonkin et al ., 20 10) across the prolile arc
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dominated by sediment mixing (e.g. cryptobioturbation), with the combined clean ing­

packing behaviours (e.g . Phycosiphoni being comm on, and more rarely sediment pack ing

iOphiomorpha i .

The ca lcareous sandy siltstone bed sampled for thc lateral prolil e study is

consistent with deposition shoreface setting, and interpreted to be a storm-induced IICS

bed (F igures 3.6, 3.7 and 3.8). Deposition is inferred to have been above storm wave

base, but below fair weather wave base. The source of sand is interpr eted to be from

beaches and mouth bars, eroded durin g storm cond itions, and re-deposited in the lower

shoreface and offs hore transition zone to create sheet -like sandstone geo metries (Dumas

and Arnoll, 2006).

The HCS bed stud ied here in has an undulatin g erosive basal contact with the

undcrly ing background heteroli thicpackage. The bulk of thc HCS bcd consists o f cross

lamin ae with a fuzzy appearance, this post-dep osit ional modific ation may have formed

biogenically by meiofaunal cryptobioturbation (Howa rd and Frey, 1975) or by small-

scale physically- induced dewatering or liquefaction (Owen, 1996; Hildcbrandt and

Egcnhoff,2007). It isconsidcrcdd ifficult to dist inguish between thcscpossibilit ics for

lack of objcctiv c rccognit ion critcria. In this thcsisthc fuzzy laminatcdtcxtur c is tcrmcd

cry ptobioturbation.

Ichnodiver sity of the HCS storm-induced event is impoverished relative to the

enclosing highly bioturbatcd hctcrolithic intcrbcds . Bioturb ation stylcs arcrclatively

similar in all sa mples, with sediment mixing and combined sed iment cleaning-mixing



strateg ies volumetr ica lly dom inant in the bed. In outcrop exposure Op hiomorpha and

Cylindrichnus are conspicuous components of the ichnofabr ic (Figures 3.6Cand 3.6E),

but the field observations arc not rell eeted in sample dataset. In addition, while

Phycosiph on were not noted in outcrop or uncut sample surfaces, they are common in

largethin sliees, anddemonstrate observationalbiasesfromfieldt o slab sampl es.

Bioturb ation intensity and iehnodiversity of trace fossils are low in all samples

and are late ra lly unvaryin g in the sample dataset. Op hiomo rpha and Phycosipho n

consistently overprint the prevalent fuzzy lamin ated texture (erytobioturbation or

dewatering), this relationship suggests e ither that the original sediment mixing

community predate s the subsequent larger traces or that ther e is mutual avoidance. I'ost-

event co lonization of the HCS sandstone by Ophiomorpha, Phycosiphon and

Cylindrichnus is considered to have been short- lived since bioturb at ion intensity is low

(BI 2) relativ e to the intense bioturb ation charac teristic of the enclosing fair-weather

In summary, physical and biogenic sedimentary structures, and petrography do

not vary significantly in the present study (F igure 3.8) . This homogeneity is taken to

imply Iitlled iseernablepatch inessanda lack of significant bio log ieal stress in the post­

event ecosystem. Observation of any slab (in retrospect) wo uld have been acee ptable for

facies characterization of the bed throughout the lateral profi le.

3.5 Offshore shelf (Pohutu Formation, Raukumara Basin, New Zea land)



The late Miocene to early Pliocene age strata of East Cape, Raukum ara Peninsula,

New Zea land were deposited in a forearc basin located along the Hikurangi convergent

plate bound ary. Thi s open coast marine success ion of siliciclas tic rocks has high

volcaniclast ic input because of its proximity to the active Coro mandel Volcanic Arc

durin g the Neogen e (Ad ams el al ., 1994). Tuff beds are re-dep osited as volcaniclastic

sediment gravity flows, from inllu x of material into the basin via fluvial transport

(Ballance et al., 1991; Shane et al., 1998). These strata co mprise the Paeoneone and

Pohutu Formati ons of the Mangaheia Group (Maze ngarb et al., 199 1), and are now

recognized as potential anal ogous reservoir facies to those offs hore in the Raukumara

Basin (Stagpoole et al., 2008). The petroleum potential of the Raukumara Basin has been

identi fied from 2D se ismic data (RAU07), d irect hydrocarbon indicators, and se ismic

facies of shelf and turbidit e sandstones are interpreted as potential reservo irs (Urusk i et

al., 2008).

The background mud stones, siltstones and very line sandstones of the Pohutu and

Paeoneone Formati ons are interbedded with sediment gravity flows (slump s, turbidit es,

debri s and grain Ilows) and tuff horizon s (Ballance et al., 1991). The majority of these

sediment grav ity Ilows are bioturbated, have erosional bases and are of rhyolitic volcanic

origin. The upper- slope to outer-shelf marine success ion of the Pohutu Form ation

coarsens upward s, and is in gradational contact with the sandier Paeoneone Form ation.

Bioturb ation is intense in most beds, and trace fossils are well-pr eserved, owing to the

strong lithological contr asting between the dark grey lithic mudstones and sandstones,

and light-colored volcanicla stic burrow fill.



Sample s were taken from a bedset exposed in a wave cut platform. close to the

gradational bound ary between the Pohutu and Paeoneone formations. atWharariki!'oint.

along 60 m of outc ropat 5 m intervals (Figure 3.9). Silicicla stic mudstones. siltstones

and sandstones are inter -bedded with volcaniclas tic rocks of Neogene age in Pohutu

Formation upper slope to outer shelf depositional sett ings (Ballanceelal.• 1991). The

shallowing upward success ion of grey sandy mudstone facies are interbedded with

reworked rhyolitic tuff beds. The studied bed runs parallel to the present day coastline in

a NW/SE strike directi on . The length of the lateral profile was limited due to erosio n and

small sca le faultin g in the section, but represents the longest continuous exposurc

availablc forstudy .

3.5. IScdimcnto log ical variability

Sand y mudstone is interbedded with two thin tuff beds. and are samplcdtoassess

the lateral ichnological and sed imentological variabilit y. The lower pale- grey to white

fine -grain ed tuff ranges from 20-50mm thickness along strike inth e 60mprofile (Figure

3. IOA). The basal contact with the underl ying mudstone is highly variable. being

irregular , and either sharp or diffu sely bioturbated. The upper cream to ora nge co lored.

pum ice-rich coa rse-grained volcan ic tu ff bed is between 60 and 120mmthick. and lies

directly above the lower finetuff or above athin bed of sandy mudstonebetweenthet wo

tuff beds. The enclos ing sandy mudstone is absent of sedimentary structures duc to

intense bioturb ation (B15). Sedim entary structures in the pyrocl astic tuff beds arc rare,

but include wavy, irregular thin ( 1-3 mm) laminae arc recognized in the basal 0-30 mm of

the coarse tuff bed of sample EC I2 (Figure 3.1013). Bivalv e shell fragments «5 mm) arc
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dispersed throughout the mudstone, but are absent in the tufT beds. Most samples

contained both a bioturbated fine-grained tufT and a coar se tufT bed . The discontinuous

lateral distr ibution of the tu fTbeds in the sample is a product of theerosive , undulating

contact both volcanicl ast ic beds with the underlying sandy mudstone( EC5, EC6.Figures

3. 107B,3 . IOC, and 3. I IA). In localit ies with dee per erosion (e.g. belowtheuppertu ll)

the thin tufTbeds are stacked, and the intercalated mudstone bed is not preserved.

Co lor and lithological contrast are commonly the only evidence 0f bedd ingi nt his

study. As a consequence of the lack of physical sedimentary structures in the Pohutu

Formation. ichnological and other paleontological analyses are the basis of the

paleoenvironment al interpret at ion .

3,5,2 Ichn ol ogy

Bioturb ation intensity ranges from BI 4t0 5 (61-99%) along strikeinthelateral

profile. The sandy mudstone consistently has intense bioturb ation (B1 5), dominaled by

A.I'tero.l'oma . ln both the fine- and coarse-gra ined tufTbeds, bioturbation is intense(B1 4

to 5). with lamin ae only rarely preserved (EC I2) . Phycosipho n, Teichichnus. Scolicia.

Chondrites, Planolites, Thalassinoides, and ambient burrow-mottled textu res are

recorded from cut slab faces. Along-strike ichnodiversity is variable ( I to 4 discrete

ichnotaxa ,Fi gures 3. IOB-3. IOE,a nd 3. 11C).

Burrow diameters o f As terosoma range from 15 to 90 mm, with concentrically

laminated sandstone or alternating tuff-mud stone burrow fill in most o f the samples

(cross sections of shafts and arms, Figures 3. IOC and 3. IOE). At, or near bedding

contacts with tufT, all burrows are readily seen, and both the vertical shafts and





longitudinal/transverse sections through the rad ial arm s of Asteroso lllaa re determined. A

complete burrow system with both central shaft and radiating ar ms is visib le sample

EC IO, and in outcrop (Figure 3. IOE). Asterosoma burrows in sample EC9 and EC IO

have a centra l core of coarse-grained tuffaceous fill. linking them to an overlying

sediment water interface at a depth of tierin g of O. 15m (Figure 3. IOE).

Phyc osiphon are com mon in small patches in the sandy mudstone facies. The

dark mudstone-fil led burrow core s are up to Imm in diameter with slightly lighter silt-

grade haloes. Phycosiphon cross-cuts Asterosoma in samples EC7 and EC8. Thi s small

trace is di fficu lt to distingu ish from backgro und burrow-mott led texture in the fie ld.

having little lithological contrast, and therefore may be more preva lenl than recorded

Chondrites are rare and var iably distributed in the sandy mudstone. The burrows

arc genera lly filled with fine-grained tuff. The branehesof Chondr ites are I to 3111 111 in

d iameter. and are orientated subparallel 10 bedding (Figure 3. 1IA). No systematic cross-

cutt ing relat ionship s are recognized in relation to other ichnotaxa and the vertica l shaft is

Hor izon ta l, ci rcular to ovo id cross sections of Planolites are present in samples

EC I and EC60nly. The burrows are fine tuff or sandstone-filled in contrast to enclos ing

rock. and range from 3 mm to 12 mm in dia meter. Planolit es have wavy margins, and no

systel11aticc ross -cutting relationshipsareobserved. Thalassinoides is present in samples

EC I. and EC3 to EC5. and is found to be filled with fine-grained tu ff or mudstone, in

litho logical contrast to encl osing lithology. Hor izontal burrows ofTlwlssinoides range



from 7 mm to 27 mm in diameter and cross-cuttin g relati onships with other iehnotaxa arc

Scolicia is rarel y obse rved in vert ical sections of samples (EC3), but are

commonly seen in outcrop at the interface between mudstone and tuff beds (Fig ure

3. 11C). Burrow is 25mm diamet er and visible an X-ray image of sample EC3 (Figure

3.11D). Alternating mudstone and tu ff meniscate backfill makes this horizontal Scolica

burrow conspicuous in the EC3 sample. Tuff is likely a constituent of all samples across

the profile, as in beddin g planes in outcrop.

Teichichnus zig-zag (Frey and Brom ley, 1985; Marti n and Pollard , 1996) is rare in

the stratigraphic interv al sampled except in sample. The incl ined burrows have diameters

of between 5 mm and 10 mm. Burrow fill is either fine-grained tuff, or a lternating tuff

and sandstone within mudstone host sediment. Burrows of Teichichnus mutua lly cross-

cut one another and have wavy marg ins. Teichichnus is com mon in outcrop, below and

adjacent to sample po ints along the lateral profile (Figure s 3. IOD and 3.111l). The case

for potenti al over-representation of Teichichnu s in sample EC7 is interesting. The

importance of this ichnotax on could easi ly have been over-interpreted had that point been

intersected in a core-based study in the subsurface.

Ci rcular to ovoid coa rse tuff-filled burrows arc present in the mudstone facies.

Burrow margins arc sharp with d iameters ranging from 7 to 12 mm, in hor izontal and

verti cal orientations in sam ples EC I, EC4, EC I I and ECI3 . In samples where disc rete

trace fossils are not d iscernible. or where discrete traces overprint intensely bioturb ated

ichnofabri cs, this biogeni c texture is named burrow -mottli ng and occurs where



lithological contrast is low or the sample is intenselybi oturbated (Figures 3.IOB-3. IOE,

and 3.1IA-3.1IE).

Sampling along the lateral transect reveals patchy distribution of the seven

identified ichnotaxa in the upper Pohutu Formation. Raukumara Basin, New Zealand (see

summary Figure 3.12). Asteroso ma and Phycosiphon dominate the ichnofabrics, with

accessory ichnotaxa being Chondrites, Scolicia, Thalassinoides. Planolites and

Teichichnu s. The ichnofabrics seen arc subdivided conservatively into: Asteroso ma-

dominated ichnofabrics (EC2-6; EC8-12), burrow-mottled ichnofabric (lOCI). and a

Teichichnu s-Phyco siphon (EC7) ichnofabric. Alternatively, using the ichnofacies

approach, all sample point along beds would be grouped into the Cruziana ichnofacies.

with the exception ofECI. Ichnodiversity is low to moderate in all ichnofabrics, and

ranges from 2t 0 4 identified ichnotaxa. Thet otal ichnodiversity ofth el ateralp rolile is 7

ichnotaxa. Maximum burrow diameters range from 12mm to 90mm along strike and arc

usually attributable to Asterosoma, or Planolites.

Bioturbation styles across the prolile arc dominated by sediment mixing (e.g.

mottling texture). with common sediment packing (Asterosoma and Scolicia), and

combination cleaner-packers (e.g. Phycosiphon; Tonkin et al., 2010). Minor pipe-work

building Thalassinoides and Planolites arc also present in low abundance in ECI. EC3 to

EC9 samples (Figure 3.12).

The intensely bioturbated sandy mudstones of the Pohutu Formation arc inferred

to have been deposited on a wave/storm-dominated shelf paleoenvironment.
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Sedim entat ion rate on the outer shelf is inferred to have been low based on the high

bioturb ation intensity, but is punctuated by episodic rapid deposition of reworked

pyrocl astic tephra. Tuff has also been biogenically mixed into the intensely biotu rbated

sandy mudstone , and sourced from air-fall teph ra, and subsequent suspens ion settling

(Figures 3.1013-3. IOE). Thi s mudstone is considered to be the background fair-weather

facies on the outer shelf. The reworked subaqueous tuffs are likely to be deposited by

sed iment gravity flows generated by rap id deposition of fluvial-derived pyroclast ic

material ontot heinner shel f (Fisher, 1984). The type of sediment grav ity flow isd ifTicult

tod efine, as on lyrare sedim entary structures arepreservedin tuffbeds. The presence of

complete Boum a sequences in the upper-slope facies elsewhere in the lower Pohutu

Formation (E inseleet al., 1991) suggests that they were deposited by either debris flows

or turbidit y currents. The mudstone/siltstone-rich outer shelf facies arc inferred to have

been sourced from a fluvio-deltaic sys tem which supplied a mix of silicic lastic and

Sollgro und substrates arc recognized over the short vertica l sec tion( 1.0- 1.5 m)as

defined by wavy burrow margins of trace fossils (Figures 3. 1013, 3. IOC and 3. IOD).

Periods of non-deposition allowed for deve lopm ent of firmgro und conditions( reflectedin

the ichnologicalassemblage). An alternative hypothesis isexhumation of a firmground

by eros ive sediment gravity flows, Previous authors have discussed winnow ing out o f

clay-size fraction of sediments by bottom water currents produ ced by geos trophic now

(Swill and Thorne, 199 1; Ballance et 01., 1991). The low mud conten t in the wave/storm-

dominated shelfal facie s sugges ts clay-grade sediment was being lransported offshore to

deeper slope facies (Ballance et 01., 199 1, MacQuaker and Gawthorpc, 1993). This



interpretation is confirmed by abundance of silt-size grains in thin section, and the

locality of the beds on the shelf are likely areas of sed iment bypass.accou ntingfor the

low sedimentation rates. erosion of paleo-seafloor by ash-rich turbidit y cur rents.

Relative ly condensed sections are recognized by the abundant cross-cuttin g

relationships between trace fossi ls seen in the ichnofabrics. representing the overpr inting

of mult iple successive so il-bottom communities (ichnocoenoses) . The fine-grained

tuffaceous bed is found to be discont inuous as a result of d ifferent ial erosionbythe

turb idite current that deposited the overlying coarse-grained tuff, andlocally dueto

intense bioturb ation (F igures 3. 100 and 3. I IA). The pre-tuff mudstone displays

evid ence for multiple colonization events. involvin g repeated cycles of erosion and

deposition. fo llowed by slow rates of sedimentation and recolonization . Many of the

burrow s in the mudstone facies can be categor ized as softground " floating" burrows

(Droser etal.. 2002), such as Chondrites and Teichichnuswtvae they are recognized in

deep tier Chondrites and Teichichnus , and mid tier Asterosoma and Phycosiphon, are

conspicuous along the lateral profile bed . Shallow tiers are removed by erosion and re-

burrowing during vent-bed deposition at the sed iment-water interface .

Several tuff-fi lled burrow s includin g Asterosoma, Chondrites. Scolicia,

Thalassinoide s, Planolit es and Teichichnus ac twescta in the back ground shelf facies up

to 0.6 m below tuff beds, this suggests that either: I) the open burrows were part of the

background facies communit y and were passively infilled durin g tuff deposition (e.g.

Thalassinoides, Planolites and Chondrites); or 2) colonization occ urred after deposition

of the tuff bed and tracemakers bur rowed into underlyin g substrate actively filling their



burrows as they moved through the sediment (e.g. Asterosoma , Scolicio and

Teichichn usi . In some samples (EC9 and EC IO) the central co re of Asterosoma conta in

coarse-g rained tuff, the associated co lonization surface for thesc burrows are likely to

pre-date deposition of the coa rse-grained tuf f.

The patch iness and rarity of Thalassinoi des in samples and outcrop suggests that

the trace-makers were either: I) a llochthonous organisms were en trained in tuff sediment

gravity flows and transported to the outer shelf (Follmi and Grimm, 1990); or 2)

recolon izing the paleo-seafloor post-eve nt bed deposition. The latter is conside red more

probable, as Thalassino ides zie recognized in the rb ackgrou nd" ichnofabrics.

The burro w-mottled background ichnofabric is cross-cut by several ichnotaxa,

this relationship suggests the ichnofabrics do not represent a sing le ichnocoenosis, or

community at any of the local ities along strike. The lateral profi le beds arc condensed

and represent success ive ove rprinting of mult iple communities or ichnoconoeses. There

is stro ng evidence for time-averaging, with multipl e cross-cutt ing relationships. intense

overprinting,and intense bioturbati on. Although the time- aver agin g has not complete ly

removed lithological heterogeneities alongth eh orizonta l transect.

Intensely bioturbated outer shelf environments arc interpreted as sites of abundant

food supply, stable marine salinity. oxygcnatcd water co lumn and pore waters for benthic

organisms. Ichnological analys is reveals lateral variabilit y in the ichnofabrics (Figure

3. 12). Four ichnofabri cs in descend ing order o f abundance : Asterosoma-dominated,

Asterosoma-Phycosiphon, burrow-mott led, and Teichichn/ls -Phycosipho ll ichnofabrica re

recognized in the same bed. The Cruziana ichnofacies is present in 12 of 13 samples.

with Skolithos ichnofacies at a single sample point withi n the single studied bed.



Biotur bat ion sty les (sensu Tonkin et al., 20 10; Ta ble 3.1) show little variabilit y between

the samples, with sediment mixing, sediment packing, and com binatio n cleaner -packing

behaviours being persistent throughout the dataset (Fig ure 3. 12). In addition, low

abundanee patchesof pipe-work tracefossilsa re presenl. Rare patches of the pipe-work

bioturbation sty le are directly assoc iated with ichnotaxa from the post-event bed. and are

not part of the background sed imentation. Therefore. a lthough both qualitative and

quantitative ichno logica l analyses revea l significant lateral heterogeneity in the

ichnologica l dataset, the net-effect on sedimentary fabrics is generally uni form at the

sca le of the study presented here.

3.60nshore-off shorelateraltrendsinichnologicalvariability

In all three case stud ies there is little change in sedimentology 0 fth e studi edunits

on the scale of the lateral profile from 35 m to 60 m in shallow marine sett ings. However

lateral changes in ichnology were found to be variably developed . Maximum variab ility

was found in the offshore shelfal deposits of the Pohutu Format ion, characterized by slow

continuous deposition in associa tion with event bed deposit ion . Neslen Formation

shoreface and Conway delta plain studies were charac terized by relative little lateral

change in ichnofabric . Along-strike variabi lity. or patchiness, was found to be un-relatcd

to proximity to the paleo-shorel ine in the three wave-domin ated depos itional systems.

Instead, the most critica l factor appears to be the sedimentaccumulation style.

I'atch iness ofth emodern seatl oori sun likelyto bepreservedinthc rock record.

Modern gradient patterns are comparable 10 along-d ip variabil ity from the onshore to



offshore, and are preserved at a gross-sca le in the rock record (Valentin e and Jablonski,

20 10). The depth-rel ated gradient patterns are a concept on which the archetypal

ichnofacies are based upon (Se ilacher, 1967). The clustering and mosaic patterns

(parallel to the shoreline) on the mode rn benthic seafloor, a concept on whic h this study

is based cannot be obj ectively identifi ed due 10 time averaging and taph onomic

processes. The closest analogy of mode rn sea floor patch iness is a frozen profile bed or

frozen tier (Savrda and Bottjer, 1986; Orr. 1994; Tay lor et al ., 200 3). where rap id

deposition (e.g. eve nt bed) and minimal erosion has preserved an infaunal co mmunity,

And,even in such examples (e.g. Utah case study) it is impossibl e to determin e whether

the preserved trace fossils reflect a mult iple biological communities or a single

community.

3.7 Conclusion

The patchy d istributi on of the modern ben thic sea floor is not dir ectly analogous to

patterns of spatial ichnologicaldistribution in the rock record . Siow continuous

deposition was found to produce complex and highly patchy ichnofabrics, whereas rapid.

episod ic. event bed deposition was found to be associate d with the most uni form

dcvclop ment ofichnofab ric. Eros ion. Ouctuationofs ed imentation ratesandoverprinting

of success ive com munitie s at the sediment-water interface, a ll introduce geo logica l

complex ity to ecological patterns - hitherto unex plored . Biological factors of larval

dispersa l. competition and predation are unlikely to be contribu ting factors in controlling



the benthic spatia l distribution in the rock record due to time -aver aging on a geo logical

In reservo ir characterization studies variability in ichnologyand ichnofabricscan

bc an important contr ol on reservoir quality (e.g.. Pemb erton and Gingras. 200 5;Tonkin

et al.. 2010). For the petro leum geo logist it is commonly the effect o f the trace fossil on

reservoir quality that is important rather than the ichnotaxonom ic identification. The

burrowi ng activity categories of Tonkin et al. (20 10) are proposed as a practical approach

to ichnology for the petroleum geologist undertaking reservo ir characterization. The

studies of lateral variability presented herein suggest there is inherent ichnotaxonomic

variability within most beds, if one considers only the effec t on reservoi rquality and the

style of biotur bat ion, lateral variab ility of ichnofabrics/ic hnofaciesis seen tobeless

variable than would first appear.



References

Adams, C.J., I.J. Graham, D. Seward, and D.N.1l Skinner, 1994, Geoc hronological and

geoc hemical evolution of late Cenozoic volcanism in the Cororna ndel Peninsula,

New Zealand: New Zea land Journ al of Geology and Geophysics, v. 37, p. 359-

Anderson, Il .G., and M.L. Droser, 1998, Ichnofabrics and geometric configuration of

Ophiomorpha within a sequence strat igraphic framew ork : and example from the

Upper Cretaceous US western interior: Sedimentology, v. 45, p. 379-396.

Ilallanee P.F., M.R. Gregory, G.W. Gibson, G.C.H. Chaproniere, A.P. Kadar, and T.

Sameshima, 1984, A Late Mioce ne and Early Pliocene upper slope-to-shelf

sequence of calc areous fine sediment from the Pacific margin of New Zealand, ill,

D.A.V. Stow, and D.J.W. Piper, ed., Fine-grained sediments, deep water

processes and facies: Geo log ical Society (London) Special Publicat ion 15,

Geological Societ y of London, p. 33 1-342.

Ilednarz, M., and D. Mcil roy, 2009, Three-dimens ional reconstruction of

"phycos iphoniform" burrows: implications for identification of' trace fossi ls in

Palaeontologica Electronica, v. 12, 151'; Illtp://nalaeo-

elcclronica.org/20093/ 195/index.html.

Bennington, J.B., 2003, Tra nscending Patch iness in the Comparative Analysis o f

Paleocommunities: A Test Case from the Upper Cretaceous of New Jersey:

Palaios,v . 18. p. 22-33.



Beukcma. T.J.. and J . de Vias. 1989. T idal-curr cnt transport ofthrcad.dr iftingpostlarval

j uvenil es of the bivalve Macoma balthica from the Wadde n Sea to thc North Sea :

Marine Eco logy Progress Series. v. 52. p. 193-200.

Bloom . S.A.• J.L. Simon. and V.D. Hunter, 1972. Animal-sed iment relations and

co mmunityanalysisofa Florida estuary: Marine Biology,v . 13. p. 43-56.

Brom ley. R.G.• 1996. Trace fossils: biology. taphonomy and app lications: London.

Chapman and Hall. 36 1 pp,

Brom ley, R.G. and G.K. Petersen , 2008. Ophiomorp ha irregulaire, Mesozoic trace fossil

that is either we ll understood but rare in outcrop or poorly understood but

co mmon in core: Palaeogeography. Palaeoclim atology, Palaeoecology, v. 270, p.

Carter, L.. R.M. Ca rter, and G.B. Griggs. 1982. Scdimentation in the Conway Trough, a

deep ncar- shore marine basin at the jun ct ion of the Alpine transform and

Iliku rangi subduction plate boundary, New Zealand: Sedimentology, v. 29. p.

Cross. T .A.. 1986, Tectonic controls of fore land basin subs idence and Larami de style

deformat ion. western United States. in. P.A. Allen. and P. Homewood. cds ..

Foreland basins: International Associa tion of Sediment ologists Specia l

Publication8,p. 15-l0.

Cummins. II.• E.N. Powell , RJ . Stanton. and G. Staff, 1986, The rate of taphonom ic loss

in modem benth ic habitats: how much of the potent ia lly preservable community

is preserved ?: Palaeogeography. Palaeocl imatology. Palaeoecology. v. 52. p. 29 1-



Droser , M.L.. S. Jensen. J.G. Gehling. P.M. Myrow, and G.M. Narbonne, 2002,

Lowermost Ca mbrian ichnofabrics from the Chapel Island Format ion,

New foundland: Implic at ions for Ca mbrian substrates : Palaios, v. 17. p. 3-15.

Dumas. S. and R.W.C. Amo tt, 2006 . Origin of humm ocky and swa ley cross-

stratificatio n: the contro lling influence of unidi rectional current strength and

agg radation rate : Geology. v, 34. p. 1073-1076.

Ekda le A.A., and D.W. Lewis. 1991. Traee fossils and paleoenvir onm ental contro l of

ichnofaciesin al ateQuaternary gravel andloess fandelta compl ex, New Zealand:

Palaeogeograph y,Palaeoelimat ology. Palaeoeco logy,v .8I ,p . 253-279.

Franczyk, KJ .. T.D . Fouch, R.C. John son, C.M. Molenaar . and W.A . Cobban. 1992.

Cretaceous and Tertiary paleogeograp hic reconstruct ions for the Uinta-Piceance

basin study area : US Geologic Survey Bullet in. v. B- 1787-Q.p. 1- 37

Fisher, R.V. 1984, Sub marine volcan iclastic rocks. in. 13.1'. Koke laar , and M.F. Howells.

Marginal Basin Geology: Volcanic and asso cia ted sedimen tary and tecton ic

processes in modern and ancienlmarginal basins: Geological Soc iety (London)

Spec ial Publi cation 16. p. 5-27.

Follmi, K.B.. and K.A. Grimm. 1990, Doomed pioneer s: Gravit y-flow deposition and

bioturb ation in oxyg en-deficient environments:G eology.v. 18. p. 1069- IOn.

Ftlrsich, F.T., and Aberh an, M., 1994. Significance of time averaging for

palaeocoml11unityanalys is:L ethaia,v .23 . 143- 152.

Garto n, M.• and Mcil roy. D. 2006: A new method for the study of ichnofabric in cryptic

highlyl ithifiedfacies.J ourn al of Sediment aryR esearch76.1 - 5.



Gingras. M.K.• S.G. Pemberton. C.A. Mendoza. and F. lIenk , 1999. Assess ing the

anisotropic permeability oi Glossifung ites surfaces: Petroleum Geosc ience. v. 5.

p. 349-357.

Gingras. M.K.• B. Macm illan, B.J. Balcom. T. Saunders, and S.G. Pemberton, 2002,

Using magnetic resonance imaging and petrographic techniques to understand the

textural attr ibutes and porosity distribution in Mocaronichnus-oiur owea

sandstone: Journal of Sedimentary Research. v. 72, p. 552-558 .

Gingras. M.K., C.A. Mendoza, and S.G. Pemberton, 2004, Fossilized worm burrows

innu enceth ere sourcequ ality ofp orousmedi a: AAPGBulletin.v.88. p. 875-883.

Gingras, M.K., S.G. Pemberton, S. Dashtgard, and L. Dafoe, 2008, How fast do marine

inverteb rates burrow?: Palaeogeography, Palaeoclimatology, Palaeoecology, v.

270, p. 280-286 .

Goldring. R.. J.E. Pollard, and A.M. Taylor, 1991, Anconchichnus horizontalis: a

pervasive ichnofabric-forming trace fossil in post-Paleozoic offshore siliciclastic

facies: Palaios, v. 6. p. 250-263.

Hildebrandt , C.. and S. Egenhoff, 2007. Shallow-marine massive sandstone sheets as

indicators of palaeoseismic liquefaction; an example from the Ordovician shelf of

central Boliv ia: Sedimentary Geology, v. 202. p. 58 1-595.

Howard. J.D., and R.W. Frey, 1975. Regional animal-sediment characteristics of Georgia

Estuaries: Senckenbergiana Maritima, v. 7. p. 33- 103.

Howard, J.D., and R.W. Frey, 1984, Characteristic trace fossils in nearshore to offshore

sequences. Upper Cretaceous of cast-central Utah: Canadian Journal of Earth

Scienees ,v .2 1, p.200 -2 19.



Jerrarn, D.A., 200 I, Visual compa rators for degree of grain-s ize sorting in two and three-

dime nsio ns: Com puter s and Geoscience, v. 27, 1'.485-492.

Johnson, R.J., 1970, Variations in d iversity with marine benthi c communities: The

Ame ricanNaturalist,v.104,p . 285-300.

John son, R.J., 197 1, Animal- sediment interactions in shallow water benthic communities:

MarineGeology,v .II ,p .9 3-104 .

Kauffman, E.G., 1984, Paleobiogeography and evo lutionary response dynamic in the

Cretaceous Western Interior Seaway of North Ame rica, in G.E.G. Westerman n,

ed., Jurassic-Cretaceous biochronology and paleogeog raphy of North America :

Geo logical Assoc iation of Canada Specia l Paper 27, p. 273-306 .

Kidwe ll, S.M., and D.W.J . Boscnce, 1991, Taphonomy and time-ave rag ing of mar ine

shelly faunas , in P.A. Allison, and D.E.G. Briggs, cds., Taphonomy: re leasing the

data locked in the fossils record: To pics in Geo biology 9, New York, Plenum

Press,p .11 5-209.

Kidwell, S.M., and K.W . Flessa, 1996, The qua lity of the fossil record: Populations,

species , and communities: Annual Review of Earth and Planetary Science s, v. 24,

1'.433-464.

Kirschb aum , M.A., and R.D. Hell inger, 2004, Facies analysis and sequence stratigraphic

framew ork of Upper Campani an strata (Nes len and Mount Garfie ld Formations.

Bluecastle To ngue of the Castlegate Sandstone, and MancosShalc), Eastern Book

Cliffs, Co lorado and Utah: U.S. Geologica l Survey Digital Data Report, DDS-69-

G, 40 PI'.



Levinton, J. and B. Keleher, 2004, Opposing organizing-forces of marine benthic

communitie s: Journal o f Experimental Mar ine Biology and Ecology, v. 300, p.

Lewis, D.W., and A.A. Ekda le, 1991, Lithofacies relationship s in a late Quaternary gravel

and loess fan delta complex, New Zealand: Palaeogeography, Palaeoclimatology,

l' alaeoecology, v. 81, p. 229-251.

Liu, A .G.. D. Mcilroy, J.B. Antcliffe , and M.D. Brasier, 20 11, Effaced preservation in the

Ed iaca ra biota of Avalonia and its implications for the eariy macrofossil record:

Palaeontology, v. 54, p. 607-630.

MacEachern, J.A., M.K. Gingras, K.L Bann , S.G. Pemb erton, and L.T. Reich, 2007,

Applications of ichnology to high-resolu tion genetic stratigraphic parad igms, in:

J.A. MacEachern, S.G. Pemberton, M.K. Gingras, and K.L. Bann , eds., Applied

Ichno logy: SEPM Core Workshop 52,p. 95-1 31.

MacEachern , J.A., M.K. Gingras, S.G. Pemberton, and K.L Bann, 20 10, Ichnology and

Facies Mode ls, i ll N.P James, and R.W. Dalrymp le, eds., Fac ies Models 4: St

John ' s, GeologicaI Association of Canada,p.1 9-58.

MacQuaker, J .B.S., and R.I.. Gawthorpe, 1993, Mudstone lithofacies in the Kimm eridge

Clay Formation , Wessex Basin: implications for the orig in and contro ls on the

distributi on of mud stones: Journ al of Sedimentary Petro logy, v. 63, p. 1129- 1143.

McConn ico, T.S. and K.N., Bassett , 2007, Gravelly Gilbert-type fan delta on the Conway

Coast, New Zealand: Forese t depositional processes and clast imbrications:

Sed imentaryGeology,v . 198, p. 147-166.



Mcil roy, D. 2004, A review of ichnological concepts, methodologies, applications and

frontiers, in D. Mcilroy, ed., The Application of Ichnology to

Palaeoenvironm ental and Stratigraphic Analysis: Geological Soc iety (Lo ndon)

Special Publicat ion 228, p. 3-27 .

Mcil roy,D ., 2007,L atera l variabi lity in shallowmarinei chnofabri cs: implications forth e

ichnofabri c analysis method: Journal of the Geologieal Society 0 fL ondon,v .1 64,

p. 359-369.

Mcilroy, D., 2008, Ichno logical analysis: The common ground between ichnofacies

workers and ichnofabric analysts: Palaeogeography, Palaeoclimatology.

Palaeoecology, v. 270, p. 332-338.

Mcil roy, D., N.S. Tonkin, C. Phillips, and L.G. Herrin gshaw, 2009, Comment on

"Ophiomorpha irregulaire, Mesozoic trace fossil that is e ither well understood

but rare in outcrop or poorly understood but common in core" by R.G. Bromley

andG.K. Pedersen: Palaeogeography, Palaeocl imatology, Palaeoecology, v. 284,

p. 392-395.

Mcil roy, D., and M. Garton, 20 10, Realistic interpretation of ichnofab rics and

palaeoeco logy of the pipe-rock biotope : Lethaia, v , 43,p .4 20-4 26.

Martin, M. A., and J. E. Pollard, 1996, The role of trace fossil (ichnofabr ic) analys is in

the developm ent of depositional models for the Upper Jurassic Fulrna r I'ormation

of the Kitt iwake Field (Quadrant 2 1 UKCS), in A. Hurst, I I. D. John son, S. D.

Burley, A. C. Ca nham, and D. S. Macke rtich, eds., Geology of the !lu mber

Gro up: Centra l Graben and Moray Firth, UKCS : Geo logica l Soc iety (London)

Specia l Publication 114, p. 163-183.



Mazengarb , C, D. A. Francis, and P. R. Moore, 1991. Sheet Y I6--Tauwhareparae,

Geologica l map of New Zea land, scale 1:50 000 : Lower Hutt, New Zealand,

Departm ent of Scientific and Industria l Research .

Midd leton, G.V., 1973, Johann es Walther' s law of the corre lation of facies: GSA

13l1llet in,v .8 4,p .9 79-988.

Orr, PJ ., 1994, Trace fossi l tiering within event beds and preservation of frozen profi les:

and exa mple from the Lower Carboniferous of Menorea : Pala ios, v.9, p. 202-2 10.

Ota, Y., T. Yoshikawa , N. Iso, A. Okada, and N. Yonekura, 1984, Marine terrace s of the

Conway Coast, South Island, New Zea land: New Zea land Jou rnal of Geology and

Geophysics,v . 27,p. 313- 325 .

Owe n, G., 1996, Experimental soft-sediment deform ation ; structures formed by the

liquefaction of unconsolidated sands and some ancient exa mples: Sedimentology,

v.43, p.279-293 .

Pattison, S.AJ ., II. Williams. and P. Davies. 2007, Clastic sedimento logy, sed imentary

architec tllre,and seq uence stratigraphyoflluvio-de ltaic,shore face, and shelf

deposit s, Upper Cretace ous, Book Cliffs, eastern Utah and western Colorado, in,

R.G. H. Rayno lds, ed., Roaming the Rocky Mountains and Enviro ns: Geo logical

Field Trips: Geologica l Society of America Field Trip Guide 10, p, 17-43.

Pemberton, S.G., and R.W. Frey, 1984, Quantit ative methods in ichnology: spatia l

distribution amongp oplllat ions:L ethaia,v .1 7, p. 33-4 9 .

Pemberton, S. G., and M. K. Gi ngras , 2005 , Classification and charac terizat ions of

biogen ica llye nhancedpermeability: AAPG Bulletin,v . 89,p. 1493- 1517.



Pembert on, S.G., and J .A. MacEachern, 1995, The sequence stratigraphic significance of

trace foss ils: exampl es from the cretaceous Foreland Basin of AlbcnaCanadar».

J.A. Van Wagoner , and G.T. Bertram, eds., Sequence Stratigraphy of Fore land

Basin Deposits - Outcro p and Subsurface Examples from the Cretaceous of North

Amer ica: Ameri can Association of Petro leum Geo logists Mem oir 64, p. 429-475.

Reise, K., 1979, Spatial configurations generated by motile benthic polychaetes:

lIelgoland Mar ineR eseareh, v. 32, p. 55-n .

Savrda, C.E ., and OJ . Boujcr , 1986, Trace-fossil model for reconstruct ion of paleo-

oxyge nation in bottom bollom water s: Geo logy, v. 14, p. 3-6.

Seilacher, A., 1967a, Bathymetry of trace fossils: Marine Geo logy, v. 5, p. 4 13-428.

Shank s, A.I.., 2002 , The abundance, vertical flux, and still-water and apparent sinking

Resea rch, v. 22, p. 2045-2 064.

Shane, P., T. Black, S. Egg ins, and J. Westgate, 1998, Late Miocene marine tephra beds:

recorders of rhyo litic volcani sm in North Island, New Zea land: New Zea land

Journal of Geo logy and Geo physics, 1998, v.41 ,p .165-178.

Stagpoole, V., B. Field, R. Sutherland, C.1. Uruski, and K. Zink, 2008 , Petroleum

prospectivity o f the Raukumara Basin, New Zealand, ill, GNS Science

Consultancy Report 2008/1 11, New Zealand Open-file Petroleum Report 392 1:

Cro wn Minera ls, Wellington, 80 p.

Swift, OJ.P. , P.M. Hudelson, R.L. Brenner, and P. Thompson, 1987, Shelf construction

in a forel and basin : storm beds, shelf sandbodies, and shelf-s lope depositional



sequences in the Upper Cretaceous Mesaverde Gro up, Book Cliffs, Utah:

Sedimentology v. 34, p. 423 -457 .

Swift, D.1.P., and J.A. Thorne, 1991, Sed imentati on on continenta l margins, I: a general

mode l for shelf sed imentation, in Swi ft, D.1.P., Oerte l, G.F., Ti llman, R.W.. and

Thorne ,J .A., eds., Shelf Sand and Sandstone Bodies: International Association of

Scdimentolog ists, Specia l Publication 14,p . 3- 31.

Taylor, A.M.. and R., Go ldring, 1993, Descripti on and analysis o f bioturba tion and

ichnofabric : Journ al o f the Geologica l Socie ty of London, v. 150, p. 14 1-148.

Taylor, A.M., R. Goldring, and S. Gowland, 2003, Analysis and application of

ichnofabri cs: Earth-Sc ience Reviews, v. 60, p. 227 -259 .

Thorson, G., 1950, Some factors influencing the recrui tment and establi shment of marine

benlh ic com munities: Netheriands Journalo f Sea Research, v. 3, p. 267-293.

Tilm an, D.. C. L. Lehman , and P. Kareiva, 1997, Population dynam ics in spatial habitats:

in D. Ti lman, and P. Kareiva, eds., Spatia l Ecology, The Role of Space in

Population Dynamics and Interspecific Interactions: Monographs in Population

Biology 30, p. 3-20.

Tonkin, N.S., D. Mcil roy, R. Meyer, and A. Moore-Turpin , 20 10, Biotu rbation influence

on reservoir qu ality: A case study from the Cre taceous Ben Nevis Formation,

Jeanne d'Arc Basin, offshore Newfoundland, Canada: AAP G Bulletin, v, 94, p.

Uruski, C.I.. C. Kenned y, V. Stagpoole, R. Sutherland, and S. Henrys, 2008, The

discovery of a new sedimentary basin: Offshore Rauk urnara, East Coast, North

Island, New Zealand: APP EA Journal, v. 48, p. 53-68.



Valentine, J.W., and D. Jab lonski, 1993, Fossil comm unit ies: Co mpositional var iation at

many time scales, in. R.E. Rick lefs and D. Schluter, eds ., Specie s d iversity in

eco logical co mmunities: historical and geographica l perspect ives: University of

Chicago Press, p. 34 1-349.

Valentine, J.W., and D. Jablonski, 20 10, Origins of mar ine patterns on biodiv ersity: some

correlates anda pplications: Palaeontology,v .53 , p. 1203- 1210.

Van Wagoner, J.e. , 1995, Sequence stratigraphy and marine to nonmarine facies

arc hitecture of foreland basin strata, Book cli ffs, Utah, USA . in J.e. Van

Wagoner, and G.T. Bert ram, eds., Sequence Stratigraphy of Foreland Basin

Deposits: American Associat ion of Petro leum Geo log ists Memoir 64, Tulsa, p.

Van Wagoner, J .C., R.M. Mitchum, K.M. Campion, and V.D. Rahm an ian, 1990,

Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for

high resolut ion corre lation of time and fac ies: Tulsa, AA PG Methods in

ExplorationSeries7 ,55pp.

Wetzel, A., and R.G. Bromley, 1994, Phycosiphon incertum revisited: Anconichnus

horizontalis is its j unior subject ive synonym: Journal o f Paleonoto logy,v.68, p.

Willis, A., 2000,Tectoniccontrol o f nested sequence architecture in the Sego Sandstone,

Nes len Formation and Upper Castlegate Sandstone (Upper Cretaceo us), Sevier

Foreland Basin, Utah, USA: Sed imentary Geo logy, v. 136, p. 277- 3 17.

Wood in, S.A., 1976, Adult-larval interac tions in dense infaunal assemblages: patterns of

abundance: Journ al ofM arineR esearch,v . 34,p . 25-4 1.





Chapter 4: Bioturbat ed key stratigraphic surfaces and their

autocyclic and alloc yclic interpret ations

Trace fossils are comm on at key stratigraphic surfaces (both eros ional and non-

depositional)reflectin gtheir comm on associationwithparasequen ce boundarie s in many

petrole um reservoir intervals and in a wide range of marine facies. The most common of

these trace fossils is perhaps Tha/as.'il/oides.whiehareeasily identi fied in both core and

in outcrop , and co lonize a varie ty of substrates includ ing softgrounds and firmground s.

This large.un lined branehedburrowoftenfo rms dee p-tier box- worksand/or ga lleriest hat

arc conspicuous within the substrate. and can form conduits for flow of hydrocarbons.

Four idealized tapho nomic expressions of Thalassinoides are conside red in terms of

possibleautoeylie and allocyc lic causative mecha nisms: l j coar sc-gra ined burrow fill in

fine-grained sediment (e.g ., mudstone : sandstone); 2) fine-grained burrow fill in line-

grained sediment (e.g., mudstone : mudstone ); 3) fine-gra ined burrow fill in eoarse-

grained sed iment (e.g ., sandstone: mudstone ); 4) coa rse-grained burrow fill in coarse-

gra ined sediment (e.g., sandstone: sandstone). With careful ichnological investigation.

realist ic paleoenvir onment al interpretations should be considered to assess the relative

merit of Integ ration of both autoeycl ic and allocyc lic proce sses for trace fossil-bearing

surfaces of sequence stratigraphic signiliea nee.



4.1 Introduction

A key sequence stratigraphic surface is a sedimentary surface that character izes a

hiatus produced by erosion or non-deposition (Mitchum e/a l., 1977 ; Van Wagoner e/ al.•

1990). Eros ion and non-dep osition can be caused by either allocyclic or autocyclic

mechanisms. Distingui shing between basin-wide and local env ironmental processes is

integral to sequence stratigraphic analyses (Ei nse le et al., 1991; Catuneanll, 2006; Tomer,

e/ a l.,2 0 11). Sequencestratigraphiesurfaces are interpreted as the productso f allocycl ic

mechanisms, and are asso cia ted with basin-wide to global changes in re lat ive sea-level

change. These basin-w idechanges arec an bec aused byan interplay between changes in

rates o f eustatic sea-level change, sedimentation rates, and tectonically induced

subsidence or upl ift. The relative importance of these processes arc related to

acco mmodations pacegain or loss fors ediment accumulation (Mitchum e/ al., 1977; Van

Wagoner e/ al., 1988;V anW agoner e/ a l., 1990).

Ichno log icala nalys ise nablesi nterpretations ofana utocycl icorigin, a process that

occ urs within an evolving sedimentary basin without any externaI (ellstatic) forcing; or an

allocyclico rigin, a process influenced by eventsexternal to the bas in includingc hanges in

global climate, tectonism and eustasy (Einsele et al., 199 1). Shallow marine deposition

of sandstone or mudstone is a component of transgressive, or regressive paraseqllence

sets; and asso ciated with: I) aggradation; 2) progradation; or 3) retrogradat ion. Key

sequence stratigraphic surfaces with dist inctive ichno log ieal expressions include the



transgressive surface of eros ion (TSE) ,sequence boundary (SB), flooding sur facc If'Sl or

amalgamated surface (SBrrS) .

Stratigraphic surface s in bioturbated success ions are commonly ident ifiable where

there is some combination of distinct facies change, var iation (usually an anomalous

increase) in biotur bat ion intensity, unexpecte d trace fossi lc ross-c utting relat ionships, and

lithologic contrast in burrow fill relative to the host sediment. Even where there is low

lithologic contrast or subtle facies changes, bioturb ated stratigraphic surfaces may be

expressed as ove rprinting ichnofabr ics. Key sequence stratigrap hic surfaces have

allocyc lic, autocyc lic or eco logical significance and can be fundamental in the

identification of system tracts, and thus ichnological expressions (Einsc le et al., 1991;

Catuneanu etal ., 2009 ; Dalrympl e, 20 10; Figure 4.1).

Key sequence stratigraphic surfaces of relative sea-leve l change may involve

erosion, non-deposition or condensation, and in marine settings com monly have

d ist inctiveichno logica lexpressions(Figure4 .2). Ichnology can provide aids in the

recog nition of such surfaces in marine environments in several ways by providing

I) Significant paleoenvi ronmental change refle cted in marked ichnological

assemblage change acro ss or associa ted with a sing le stratigraphic surface.

2) Stratigraphic condensat ion, which may be inferred from the presence of

anomalously intense bioturb ation intensities (ofte n with an associa ted facies shin)

In regions of very slow sedi mentation. Overprinting of infaunal communities







related to gradually changing (often deepenin g) paleoenvi ronmen ts (ichnological

cro ss-cutting relationships),

3) Partially lithified sed iments onthe seaOoor evidenced by the presence of

lirmground Glossifimgitcs ichnofacies trace fossils or borings into fully lithilied

carbona te substrates (Trypanites ichnofacies). Lithifi cation may either be caused

by seaOoor cementat ion or erosional exhum ation oflith ified sedi ment (caused by

eros ion induced by relative sea- level change) .

Eco logical studies are, by necessity, performed on biological timcscalcs,

considering census populations of organisms, not burrows (e.g.. Swinbanksand

Luternauer , 1987. Inherent in any analysis of ancient eco system s is the possibility for

time averag ing of assemblages of fossils (Kidwe ll and Bosence, 199 1; Valentine and

Jablonski, 1993; Fursich and Aberh an, 1994) . The same is true of trace fossils. It is

difficu lt to determin e whether an assemblage of body or trace fossils represents the

activities ofa true biological community (Cummins et al., 1986; Kidwell and Flessa,

1996; Mcilroy, 2008; Mcil roy and Garton, 20 10). Thu s, it is unlikely a trace fossil

assemblage represent s a coenosis in the strict sense of the term (sec discussion of

ichnocoenos is in Mcil roy, 2004a), rather it is the preservation of a number of

communities that are super imposed (e.g.. mult iple ichnocoenoses). The most commonly

cited exa mple of a ichnological assemb lage at a bioturba ted key stratigraphic surface is

the lirmground Glossifu ngites ichnofac ies, com monly assoc iated with a parasequence

boundary or transgressive surface of eros ion (e.g.. MacEachern and Pem berton. 1992;

Taylor and Gawthorpe, 1993; Savrdaclal.. 200 1; Gingras et al.. 2002).



Thalass inoides is the trace fossil most comm only recognized in assoc iation with

the Glossifu ngites ichnofacies (Table 4.1). Thalass inoides is a lso a com ponent of the

Cruziana, Zoop hycos and Nereit es, and Teredo lites ichnofacies (Frey et al .. 1990).

Thalassinoides is easily recognizable in core. and is comm on in shallow marine strata

from the Triassic onwards (Table 4.1 and Table 4.2). Recent wor k has recognized that

the classica l express ion of the Glossifungites ichnofaciesas firmgro und burrows cut into

bioturb ated mudstones can also express autocycl ic processes associatcd withcolonization

of eros ional channel floors, and in associa tion with tidal flat firmgrounds (Mcilroy.

2004b). In modern estuarine lirmgrounds, TJ/lJla...,inoidesa t"Glossifimgi tes surfaccs" arc

attributed to both autocycli c and allocyclic mechanims (Gi ngras et 01., 200 1, 2004).

Firmground ichnotaxa iGlossifungites ichnofacies) include Skolithos, Diplocraterion,

Chondrites, Pala eophy cus, Psilonichnus and Zoophycos (MacEa chern et al ., 2007a) .

"Glossifimgites sur faces" as they have been dubbed in the literatu re, may enhance the

porosity and permeability characteristics ofa reservoir by increas ing vertica l permeabilit y

(e.g., Gingras et al ., 1999; Pemberton and Gingras, 2005; Cunningham et al. , 2009;

Tonkin et al.• 20 10).

The trace makers of Thalassinoides are commonly considered to be various

species of ca llianassid crustacea ns (Swinbanks and Luternauer, 1987; Tab le 4.1). These

shrimps employ a range of burrowing behavio urs in mudsto ne and sandstone facies

(Zieb ise tal.• 1996;Yang et al, 2009; T able 4.1). Ca llianassi d shrimps produceextcnsive

bedding-paralle l ga lleries connected to the sediment water interface byshafts(Swinbanks

and Lutem auer, 1987). The depth of bioturb at ion of ca llianass ids and ancient

Thalass inoides is variable. and is commonly substrate dependent (e.g., Griffis and
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Chavez, 1988 ; Gin gras et al., 200 1). Thalassinoides is usua lly assoc iated with intense

hydrodynamic currents (Fre y and Seilachcr, 1980; Kamola, 1984; Go wland, 1996;

Gingras et al. , 1998; Buatois elal., 2007), and as such it is comm on ly filled with coarse-

grained sediment post-mortem (or post-abandonm ent), to form the classical

"G lossifu ngites- vyt ie" exp ression of the trace fossil (MacEachern et al., 2007a; Figure

4.2) . Thecoarse-grainedinfi ll ofthe Thalassinoid esis comm only usedtoh elprecognize

a significant change in hydrod ynamic regime (Wanless et al, 1988). In many cases, that

change in hydrodynamic regime has been inferred to be associat ed with relative sea-level

change (Savrda et al ., 200 1; Gingras et al., 2002 ; MacEachern elal., 2007b) . Relat ive

sea- level change is not the only possible cause of the "Glossifung ilestype"preservation

of Thalass inoide s, and valid autocyciic interpretati ons can also be drawn from a given

stratigraphic surface.

This work explores the preservati on of Thalass inoides as an exa mplc of a

common Glossifu ngites ichnofacies trace fossil, and objec tively assesses the fundament al

ichnologica l and hyd rodynamic processes responsib le for them. A conceptual model to

encompass the main expre ssions of Thalassinoides preservat ion in sandstones and

mudstones, characterizing the burrow fill with respect to the host sed iment, is developed

herein , The possible modes of preservat ion are:

I) Coarse-grained burrow fill in fine-grained sediment (e.g., mudstone;

sandstone; Figure 4.3A).

2) Fine-grained burrow fill in fine-grained sed iment (e.g., mud stone: mudstone;

Figure 4.3B).



3) Fine- grained burrow fill in coa rse-grained sediment (e.g ., sandstone:

mud stone ; Figure4 .3C) .

4) Coarse-grai ned burrow fill in coa rse-grained sediment (e.g., sandstone:

sandstone; Figure 4.3 D).

Examples of the four taphonomic expre ssions of Thalassinoi des have been studied

both in outcrop and core. Ichnofabr ic ana lysis is used in th is study to assess changes in

depositiona l sett ing and paleoecology associat ed with the different taphonomic

express ions of Thala ssin oides (sec reviews in T aylor etal., 200 3; Mcilr oy, 2004a, 2008;

Gingras et al., 2007 ). The ichnofabric method allows easy comparison of ichnofabrics

from difTerent geographic success ions, recogniti on of sequence stratigraphic context,

interp retatio n of commu nity deve lopment (e.g., cro ss-cutt ing relationships and tiering)

and consequen t changes in commu nity structure. Thi s study recognizes the following

stages of form ation of Thalassin oides ichnofabri cs: I) deposition of the host sediment; 2)

co lonization of substrate by Thalassinoides-mak ing organism; 3) infilling of burrow and

deposition of the cas ting medium ; and 4) buria l and diagene sis (F igure 4.2). These

fundamenta l comp onents o f the formationo f TIUllass inoides ichnofabrics arc influenced

by a combination of eco logical. and sedimentological processes. The sed imentological

processes may be eitherautocycl ically orallocyclica lly cont rolled . The challenge for the

pet roleum geo logist and ichnologist is determinin g whether the resultant ichnofab ric isof

sequence stratigraphic importance or whether normal autocyclic process es can acco unt

for the observed relationships. Thi s research build s on previous work on trace fossils as

key sequence stratigraphic surface indicators (Pemberton et al., 1992; Bromley 1996;



Tay lor and Gawthorpe, 1993; Go wland, 1996; Gingras et al., 2002, 2008; Taylor et al.,

2003; Mcilr oy, 2004b ; MacEachern et al., 2007b).

This study focuses on Thalass inoides due to its abundance in the rock record , and

its pipe-w ork bioturb ation sty le (ef. Tonkin et al., 20 10 and Chapier 2). It is important to

recognize that not all bioturb ated surfaces or Glossifu ngites surfaces have sequence

stratigraphicsigni lica nce. Thi s research proposes autocyclic alternatives that may occur

more commonly in the rock record as part of the evo lution ofa sedimentary basin.

Published literature and case studies are used as exa mples of Thalass inoides -bearing

stratigraphic surfaces, with the aim to provide both alternative autocyc lic andallocycl ic

mechani sms to produce the same taphonomic outcome. Modern analogues Cra ble 4.1)

and ancient example s (Table 4.2) arc d iscussed in detail to demonstrate the mult iple

pathw ays (autocycli c and allocycl ic) that lead to formation ofa particularpreservati on of

Thalassinoides (F igure 4.2). The overa ll objective of this study is to delin e the validity of

using Thalass ino idesasa ind icator for key stratigraphic surfaces, and outline all

applicable autocyc lic and allocyc lic processes (Figure 4.2).

4.2 Modern an alogues for Thalassinoides

Through the study of modern marine environments and aquaria experiments it is

now recognized that the trace-making organism of Thalassinoides is most likely a

thalassinid shrimp (e.g., Swinb anks and Lutern auer , 1987; Miller and Curran, 200 I; Table

4.1). Many modern spec ies of burrowin g crustacea ns produ ce Ophiolllorpha -and





Thalassi noide s- use burrows (Pryor, 1975; Swinbanks and Luternauer, 1987).

Thalassinidea n decapods includin g the mud shrimp Upogebia, the ghost shrimp

Neo trypa ea californiensis ( formerly Callianassa californiensis. Tab le 4.1), as well as

fiddler crabs create bur rows somew hat analogous to Thalassinoides in modern soft

substrates (Griffis and Suchane k, 1991; Gingras et al., 200 1). Freshwater crayfish

(parastaci ds) are also possible progenitors of Thalassinoides (Martin et al., 2008) .

Modernthalassin id shrimp s constructburrowsthatresembl e Tha lassinoides trace

fossils with verti cal shafts, and horizontal to ob lique ga lleries at depths to I m deep

(Swinbanks and Luternauer, 1987; Table 4. 1). The burrows are kept clear of detrita l

sediment durin g the life of the burrowing organism by active mani pulation of grains, and

exca vat ion of maleria l back to the sediment-water interface by organism- induced water

currents (Sheehan and Schiefe lbein, 1984; Swinbanks and Luternauer, 1987). This

process of exca vation using the limbs of the crustacean can , in firmground sediments,

leave scratch mark s (bioglyphs) which have been named Sponge liomorpha by some

authors (Bromley and Frey, 1974; Gibert and Robles, 2005) , but synonymised with

Thalassinoidesby others (FUrsich,1 973; Schlir f, 2000 ). In vert ical cross-sect ion the

bioglyph cannot be seen and recognition of a firmground exprcssion iscommonly based

on a lack of com pression of the burrow . The host mudstone is inferred to have already

dewatered and , as such, willnot signi ficantly compressduring subsequent burial.

Resea rch on the eco logy of thalassinid shr imps in modern soft substrate

enviro nments describe these crustacean s as dietary/troph ic genera lists or exhibiting a

range of feed ing behaviours, and cannot be considered exclus iveIy asdeposit feeders

(Gr iffis and Chevez , 1988; Nickell and Atkin son, 1995; Bro mley 1996). Thalassinid



shrimp display deposit feedin g, filter/suspension feedin g, drift catching and omnivorous

scavenging feeding behaviours (Griffi s and Suchanek, 199 1; Asta ll et al., 1997). Such

endobenthic shrimp effic iently contro l the oxyge nation of their burrows, and can have

inha lant and exhalant openings which produce conical mound s and funnel-shaped

depressions at the sediment-water interface (Table 4. 1; Ziebis elal., 1996; Astall et al .,

1997). Burrow irrigation by thalassinid shrimps also has the additional benefit of

introducing parti culate matter to the burrow for suspension feedin g (Pryor, 1975; Asta ll et

al., 1997).

Most modern studies of burrowing shrimps that produce Thalassi noides-cse

burrows are from marginal to shallow mar ine settings, in part icular shallow bays,

intertid al to subtidal flats, and estuaries (Table 4.1). Research into water depths of

modern thalassinid shrimp burrows range from the upper intertida l to 15 m below mean

sea- level, and burrows arc commonly 9-24 mm in diameter, and infaunal tier ing depths

arc 7-80 cm (Griffis and Chavez, 1988 ; Ziebis et al., 1996; Astall et 01., 1997; Gingras et

al., 200 I; Tab le 4.1). Thalassinids are also efficient sediment reworkers and can extrude

18 ± 9 ml of wet sed iment per day (Swinbanks and Luternauer, 1987).

Neotrypae a tuui Ubogebia are recognized as bioturbators that have the ability t0

penetrate softgroundand firmground deposits (Pemberton and Frey, 1985; Gingrase l al .,

200 1, 2004). The buria l time of a softground mud to become a firmground has been

estimated at a "few years", when buried at a depth of at least 0.5 m (Yang et 01., 2009).

Thalassinoi des are also found in log-grounds in modern estuarine sett ings, and are

produced by a mud shrimp (Gingras et al., 200 1, 2004). Modern marginal marine

Thalassinoi des- uxe bur rows have been found to not change as burrows penetrate from



sofiground sand veneer, through a firmground mud and into a "woo dg round" (Gingras et

al .,2 004) . The impl ication of this observa tion is that firmground Thalassinoide s may be

unrelated to a key sequence stratigraphic surface . The colonization surface maybe

associa ted with an overlying surface, potenti a lly up to 80 em strat igraphically above

(Ta ble 4.2). Firmgrounds that arc not exposed at the sea floor at time of burrowing arc

known as conce aled firmground s (Bromley, 1990). As in ancient exa mples of

Thalassinoi des-dom inated surfaces , modern analogues are commonly foun d to be related

to hiata l surfaces crea ted by autocyc lic- or allocyclic- induced eros ion (Gin gras et al .

200 1,2 004; Ya nge lal. 2009), but arc also a normal intrin sic co mponent of estuaries.

4.3 Thulassinoldes in ancie nt sha llow water environments

The fill of Thalass inoides is commonly found to cor respond to that of the

lithology overly ing the co lonizatio n surface to which the bur row is assoc iated. For this

reason Thalassin oides arc eas ily identified in core and outcrop, and co lonize a variety of

substrates includin g sofigrou nds (Cr uziana ichnofacies), and firmgrounds (Glossifllngiles

ichnofacies) .

The first occ urrence of Tha lassino ides comes from the Ordov ician, and ranges

through to the recent (Sheehan and Schie felbein, 1984; Ekdale and Bromley, 2003;

Buatois el al ., 2007). Thalassinoides is well known from both silic iclastic and carbonate

rocks, and is most common from the Triassic to Recent (Table 4.2; Kamola et al., 1984;

Pembert on and MacEachern, 1995; Zeibi s el a l., 1996 ; Gingras et al ., 200 1; Miller and



Curran. 200 1; Curran and Martin. 2003; Cunnningham et af.• 2009). In siliciclastic

facies, Thalassinoides are recognized in a broad range of depositional environments from

marginal-marine estuarine facies to marine turbidite facies. but are most common in

shallow marinefacies(e.g.• Buatois el af.• 2007;Uchman. 1995; Phillipsclaf.• 20 11). A

deep water Glossifungites surface has been recognized by Savrda (200 1). and interpreted

asa firmgroundproduced by transgression-induced sediment starvation (MacEachern and

Burton. 2000).

A wealth of literature exists on sandstone/shell/pebble filled Thalassinoides

burrows in mudstones (e.g.• Table 4.2; Bromley. 1975; Pemberton and MacEachern,

1995; Gingras el af ., 2002). Where such coarse-grained burrow fills arc uncompressed in

mudstones, they are commonly inferred to be assoc iated with firmground development,

and are referred to colloquially as "Glossifungites surfaces" or more properly as omission

or hiatalsurfaees(FreyandSeilacher. 1980; Bromley, 1990; MacEachernel af .. 2007a;

Table 4.2). These surfaces have been variously used to recognize the followings equence

stratigraphic surfaces: sequence boundaries(SB); parasequence boundaries(pSB).

transgressive surfaces of eros ion (TSE) ; and flooding surfaces (FS) (e.g.• Tab le 4.2;

Tay lor and Gawthorpe, 1993; Savrdaelaf., 200 1; Gingras et al., 2002).

In carbonate shelf to slope facies, Thalassi noides has been recognized in chalk-

marl successio ns at surfaces interpreted as omission surfaces where firmground and

hardgrounds are inferred to have deve loped due to seafloo r cementation/l ithification

(Bromley. 1967. 1975; Pemberton and Gingras. 1995; Locklair and Savrda. 1998; Table

4.2). Diagenetic enhancement (differentia l cementation) of Tha lassinoides in carbonate

facies (chalk, marls. dolomite and micrite) can be interpreted ase arly digenesisassociated



with non-d eposit ion (Bromley, 1967). and are asso ciated with allocycl ic generated

sediment starvation (Table 4.2). Preservation of burrows can be enhanced or obscured by

diagenesis. Four type s of diageneti c burrow preservat ion have been described in

carbonate facies: I) preferred tube cementation; 2) preferre d burrow cementation; 3)

fabric-mimicking cement ation, and 4) nodular hypo-burrow cementation (Gingras et al..

2007).

The Bernoulli effect created by the open burrow morphology of Thalass inoides is

thought to improve circulation through the burrow, also pred isposing the burrow to post-

mortem or post-abandonment infill from the sed iment water interface (Vogel. 1981;

Allanson, et al., 1992). The burrow fill is generally the same as the grain size of sed iment

present at the sed iment water interface at the time of burial. However, if the burrow

remains open for some time- and hydrod ynamic conditions change- the burrow fill may

be composed of an erosional lagt o a subsequent eve nt unrelated to conditions at the time

of occ upancy of the burrow (Figure 4.2). Thalass inoid es are often only clearly visib le

where there is lithologic contrast between the host sed iment and burrowfill ; examples of

sandstone-filled bur rows in mudstone-r ich beds are we ll documented (Ta ble 4.2).

Many authors have noted that normal basinal processes can generate

T1wlassilloides-domi nated surfacesinfirmground sellingsin association with exhum ation

firmgroundmudsby storm cvcnts,t idal scour.tidalchannel incision. subm arinc canyon

incision. and changes in sed iment delivery or rate (c.g ., Gri mm and Follmi. 1994; Savrda.

1995; l.owemark et al.• 2004; Mcilroy. 2004 a.b). Alternat ively. a so called

Tha lass ino ides- oee ruig kcy stratigraphic surface may not be a surface at a ll. but a product



of the trace-mak er penetr atin g a concealed firrnground, unconnected to a

contemp orane ous depositional surface (Bromley, 1990) .

Thalassinoidessre found in a range of marine facies (marginal marineto slope), a

variety of substrate consistencies (soll ground to firmgrou nd) and Iithologies (siliciclastic

and carbonate). The abundance and range of this marine ichnotaxon, therefore casts

doubt on the preferen ce in literature to invokeallocyclic processes to explain bioturbated

strat ig raph ics ur faces (e.g ., fir mgro undG/ossifi mg ilessurfaees; Table 4.2).

4.4 Taphonomic express ions oi Tludassinoides

The basic geo logica l principle of cross-cutt ing relationships applies to trace

fossils, and the study of taphonomy (preservat ion) of trace fossils is an integra l part in

deciph ering of paleocommunit y analysis and determ ining of colon izat ion order (see

review in Savrd a, 2007). Taphonomic express ions of Thalassinoides, and the relationship

to its enclos ing sed iment, can illustrate a key stratigraphic surface, and acco mpanying

deposit ional history and environmental informat ion can be extracted (Figure 4.1). The

depositional history can be broken down into : I) deposition of bur rowed substrate and

assoc iated processes; 2) co lonization of substrate by trace-mak ing organism; 3) infilling

of burrow and further deposit ional processes; and 4) burial and diagenesis (Figure 4.2).

The pre-deposit ion ichnofabri cs, have previously been descr ibed as the pre-event or post-

omission suite (Brom ley, 1975). There arc many variable s to this idealized model, and



there may be more than one hiatal surface and/or condensed section, at different times in

the taphonomic proce ss (Figure 4.2).

Summaries of autocycl ic and allocyclic interpretat ions for each of the fo ur

taphonom ic expressions of Thalassinoides arc d iscussed . These interpretations arc highly

dependent on sedimento logical context. Detailed descripti on of each of the

aforementioned taphonomic expressions of Thalassin oides were studied in the deltaic

facies of the heterolithi e Laja s Formation (Middle Jurassic), Neuquen Basin, Argentina;

shoreface facies of the Ben Nevis Formation (Early Cretaceous), Jeanne d 'Arc Basin,

offshore Ne wfoundland; marginal marine facies of the Blackhawk Formation (Late

Cretaceous), Book Cliffs, Utah; and supplemented with an literature example from the

marginal marine facies of the Pebas Formation (Miocene), Peru (Gin gras et al., 2002).

-t.-t.l Deposition of muds lone (deposition of burrowed substrate)

The autocyc lic interpretati ons of a softground mar ine mud stone in marginal

marine to slope facie s are: I) continuous fair-wea ther sedimentation; or 2) event bed

deposition (Einse le and Se ilacher, 1991). Autoeyclie interpr etations for the development

ofa firrnground marine mud stonc are: I) exhumation by eve nt bed deposition (Savrda el

al., 200 1); or 2) non-d eposition due to change in sed iment de livery (e.g., delta lobe

abandonment or channel avulsion; Robert s, 1997). Allocyclie interpreta tions of

so ftground mud deposition arc: I) component of transgressive parasequence set; or 2) or

regressive parasequence set. Allocyclic interpr etations for tirmgroun d development arc:



l) sub-aerial exposureduetorelative sea- level rise or sed iment deposition due to relative

sea- level fall (e.g., HST, and SB/pS B), and 2) current agitation precluding deposition

(e.g., exhuma tion by wave or tidal ravinement ; TS E). The trace-maker then colonizes the

mudstone, creating open burrows, ready to be passively infilled durin g the next

depositional event (Figure 4.2).

4.4.1. l lnjilli ngo jbllrrolVsby sands /one depo si/ion (lIIl1ds/one: sand s/one)

The open Thaiassinoides tue infilled with sandstone, usually producing a distinct

litho logic contrast in the substrate (Figure 4.3A) . The taphonomi c express ion of

sandstone burrow fill, enclosed with in firmground mudstone is commonly refereed to as

being linked to a "Glossifun gites surface". Possible autocyclic interpretat ions of such

surfaces arc: I) event bed deposition and , 2) overprinting of ichnofabrics; or3 ) change in

sediment delivery (e.g., de lta lobe switching or channel migration). The allocyclic

interpretations for the same surface are: I) transgressive surface of eros ion (TSE); or2 )

flood ing surface (FS); or 3) amalgamated surface (SB and TSE); or4) progradation of

shoreface sands over offshore muds during regression (Figures 4.3A and 4.4) .

4.4.1.2 /njill ing ojbllrrolVs bY lllllds/onedeposi/ion (lIIl1dSlone: III udsto ne)

Open Thalassinoidescen be infilled with mudstone, producing a subtle lithologic

contrast in the substrate (F igure 4.3B). Thea utocycl ic interp retations of this subtle fabr ic

are: I) continuous so figround deve lopment or eve nt bed deposition or mud; and 2)

overprinting of ichnofabrics. The allocyclic interpretations for the same fabric are: I)



parasequence boundary(pSO);2) flood ing surface(FS; e.g.,juxtaposition of offshore

mudstone on nearshore mudstone); or 3) amalgamated surface (SO and rS); or 4)

agg radation dur ing transgression (r igures4 .30 and 4.4) .

4.4 .2 Dcpo sitionof sand st onc (depo sitionofburrowcd sub str at e)

Deposition of the "pre-omission" or "pre-event" sandstone is typically generated

by autocyclic processes. The autocyciic interpretations of a softgro undmarine sandstone

in marginal marin e to slope facies are either: continuous fair-weather sed imentation, or

event bed deposition . Theallocyciic intcrprctations of a softgro und mar ine sandstone in

marginal marine to slope facies are: I) related to relative sea-level rise (e.g., TSE, pSll ,

r S); or 2) re lative sea-level fa ll (e.g., SO). The trace-maker then colonizes the sandstone,

creating open burrows, ready to be passively infilled durin g the next depositional event.

4.4.2.1 Infilling of burro ws by mudstone deposi tion (sandstone: mudstone)

Open Thalassin oides infilled with mudstone, produce a distinct Iithologic contrast

in the substrate (Figure 4.3C) . Tbe autocyci ic interpretat ions of this preservation style

are: I) fair wea ther deposition of mud or event bed deposition ; and 2) overprinting

(co lonization of histor ical layer from overly ing sed iment-water interface; or 3) change in

sed iment delivery (e.g., delta lobe sw itching or channel migration). The allocyclic

interpret ations for the same surface are: I) floodi ng surface (FS; e.g., j uxtaposition of

offs hore mudstone over shoreface sandstone duri ng transgression); 2) parasequence

boundary (pSB); and 3) amalgamated surface (pSO and FS; Figure 4.3C).



.J.4.2.2 Injilli ngofburrowsbysandslonedeposi lion (w ndslone:sandston e)

The open Thalas sinoidesste infilled with sandstone, produ cing a subtle Iithologic

contrast in the substrate (Figure 4.3D). The autocycli c interpr etations of this subtle fabric

are: I) softground continuation or event bed deposition ; and 2)overprinting of

ichnofabrics. The allocyc lic interpret at ions for the same fabric are: I) transgressive

surface of ersion (TSE) ; 2) parasequence bound ary (pS B); 3) amalgamated surface (SB

and FS); or 4) aggradation durin g transgression (F igures 4.30) .

4.4.3 Sum mary of ta phono mic exp ressio ns of Thulassi noides

Thalassinoides-bearing surfaces, Thalassinoides-domin ated ichnofabr ics and

"Glossifungites surfaces" arc produced by a range ofa llocyclic and autocyc lic-induced

mechanisms. These four taphonomic express ions arc not so lely associated with

firmgro unds or key sequence stratigraphic surfaces. The subtle express ions of mudstone-

filled burrow s in mud stone and sandstone-filled burrows in sandstone (Figures 4.3B and

4.3D) are generally attributable to autocyc lically generated processes on softgrounds,

including continuo us quiescent deposit ion . These expressions of Thalass inoides would

like ly be overlooked in the rock record, and an autocycl ic interpretation applied to the

ichnofabric, a lthough allocyclic interpretations may beju st as valid (Figure 4.4) .

Express ions of Thalass inoides preservation with distinct lithologic contrasts, can

have either auotcyclic or allocyc lic interpretat ions (F igures 4.2, 4 .3A, 4.3C, 4.4, 4.5A,

4.5B), includ ing ichno logical overprinting (condensed andamalgamated beds), change in



substrate consistency, co lonization/penetration from overlying surface, parasequence

boundaries, sequ ence boundar ies (SB),fl ood ing sur faces (FS),t ransgressive surfaces (TS)

and amalgamated surfaces (e.g., SB/TS) . It is c lear when study ing all four taphonomic

expressions of Thalassi no ides, that there is a preservational biases towards burrows with

d istinct lithlogic contrast, and this is clear from the over representation in literature of the

Glossifu ngites ichnofacies, i.e., sandstone-filled burrows within mudstone or coa l beds

(Ta ble 4.2) .

4,5 Examples of the Tlwlas sil/oides-bearin gsurfaces

The preservation (taphonomy) of Thalassin oides yields detai led data on

depositional history, which can be interpreted in an autocyc lic or sequence stratigraphic

(a llocyclic) context (Figure 4.2 and Table 4.2). Thalassi noides -bearing surfacesfromt he

case stud ies and pub lished literature are used as exa mples of both autocyclic and

allocyc lic interpretations for each taphonom ic expression.

4.5.1 Sa nds to ne-filled Tlllllcl.l'silwidesinmudslon e( " Glo.n ifuu gites surfac es" )

The first taphonom ic expression is extremely conspicuous throughout the rock

record , and is often refer red to as a "G lossifu ngites surface" (sensll Pemberton and

MacEachern, 1995). Thalassi noides are commonly, passively filled with light co lored

sandstone enclosed in dark co lored mudstone (Figure 4.3A). Severa l exam ples of this



taphonomic express ion have been studied from marginal marine settings of Permian to

Miocence in age (Ta ble 4.2). The majori ty of interpretations of this Thalassinoides-

bearingk ey surface are allocyclica lly-based, sequence stratigraphic surfaces (e.g., TSE or

SB; Table 4.2 and Figure 4.4) .

Examples of Thalassi noides from the shoreface facies o f the Ben Nevis Formation

arc sandstone-filled burrows in mudstone bed and interpreted to be formedby autocyclic

mud event bed deposition (F igure 4.5A). Fluid mud deposition formed by enhanced

settling velocity duri ng wave dissipat ion or slack tidal currents (MacQ uaker et 01., 20 10),

crea tingasoftgro undsubstrate for co lonization. The laminated mudstone bed in the Ben

Nev is Form ation is interbedded with bioturbated sandstone, and also contains other pipe-

working formi ng burrows of Planolites and Chondrites (Figure 4.5A; Tonkin et 01.,

2010). The post-event burro ws are then infilled by sand dur ing the return of fair-wcather

The Blackhawk Formation, Book Cliffs, Utah contains abundant sandstone-filled

Thalassino ides in carbonaceo us mudstone, and is part of a marine to non-marine

succession (F igure 4.3A ). The carbonaceo us bed interpreted asacoasta l pla in facies was

deposited du ring a transgression, the increase in relative sea-levcl prov iding the

accom modation space for carbonaceous mudstone deve lopm ent and preservation (Dubiel,

2003) . A significant hiatal per iod followed peat deposition, and rep resentslhe shoreline

regressio n, allowi ng for the development ofa marine firmground surface. Subsequent

erosion of mudstone and colonization by the Thalas sinoid es reflects a return to marginal

marine conditions, and the onset of transgression. These ope n bur rows are then filled

with sandstone, assoc iated with deposition of the overlying tidalc hannel facies (Kamola,







1984; Figure 4.3A) . Burrows are adhered to a bounding discontinuity surface that is

laterally extensive in outcro p. This surface between the mud stone bed and tidal channel

fill fac ies was allocyclically- induced and represent s a sequence boundary (SB). The

Thalassinoides-domi nated ichnofabric (condensed bed), as a whole represents a sequence

boun dary (SB, basal contact of biotur bated bed, Figure 4.3A), and transgressive surface

of ero sion (TS E), where the firmground carbonaceous bed (developed during sediment

starvation) was exhumed and colonized dur ing the onset of transgression (Zaitlin et al.,

1994). This marginal marine ichnofabric is a lso termed the Glossifu ngites ichnofacies, or

surface (MacEachern et al., 2007a). It is conce ivab le burrows may be unrelated to the

stratigraphic surface between the two distinct facies, and be assoc iated with co lonization

ofa concealed firmgound/woodground from an overly ing surface .

In the deltaic Laj as Formation, Argentina , sandstone-fiIled burrows arc preserved

in a mudstone bed with a oyster-rich shell lag (Figure 4.5D). This Thalassinoides-

dominated ichnofabri c and contemporaneous shell lag can be interpreted as a

transgressive surface of erosion (TSE) . Alternatively, the autocyc lic interpretation is

related to exhumation ofa firmground by storm, or underflow-induced erosion on the

dista l delta front (Mcilroy etal., 2005). Although, the an autocyclic interpretation is

more likely in this exa mple, as the surface can be traced into deltaic topsets with shell-



The subtle taphonom ic express ion of mudstone to mudston e Thalass inoides, are

rare ly recogn ized in the rock record. An exam ple from the inner shelf facies o f the

Paeoneone Format ion, New Zealand has burrows with mud stone- fill within muddy

sandstone,and is interpret ed as an autocyc lic assoc iated taphonomic express ion (Figure

4.5C). In outcrop, burrows arc visib le in hypore lief , cross-c ut a highly bioturb ated

ichnofabri c, and are inferred to represent condensed beds and fait-wea ther deposition on

the softgro und paleo-seafloor. The condensed bed is produccd by repeated ove rprinting

of infaunal communities, and low sedimcntation rates (Figure 4.5C) .

Mud stone-fi lled burrows in mudstone are recognized in the distal de lta front

facies of the Lajas Form ation, Argentina, and is interpreted asallocycl ic (Figure 4.313).

Thi s ichnofabri c is interpreted asa we ll-oxyg enated,softground dista l delta front facies,

bioturb ation intensity is high implying, slow sed imentation rates, and cross-cu tt ing of

earl ier ichnofabri cs (palimp sesting).

Mud stone-fi lled Thalassinoides are enclosed in sandstone, and are rare in the

literature despite bein g conspicuous (Table 4.2). A literature exa mple from the bay-

margin fac ies of the Pebas Formation, Peru show a complex Glossifu ng ites ichnofacies

associa tion, including mudstone-fi lled Thalassinoides in sandsto ne bay-margin

parase quences (Gingras et 0/ .,2002). Marginal marine sands were colonized and

penetrated by open burrows, then subsequently in-filled by the ovc rlying mudstone. The



surface between the sandstone and mudstone is interpr eted asa transgressive surface of

erosion (TSE) formed by wave and tidal rav inement , demarcating the base of a

parasequen ce (Gin gras el al ., 2002).

In a coarsening upward deltaic success ion, LajasF ormation, Argentin a,mud stone-

filled burrow s in sandstone are recognized at the bound ary between 2 cycles of delta front

deposition (Figure 4.3C) . Sharp walled Thal ass inoid es co lonize sands in the distal delta

front facies, these burrows are then infilled by mud deposition at the base of the next

upward coarsening delta front package. Either autocycl ica lly or alloeyc lically induced

mechani sms can be interpreted from this ichnofabric. The Thalassin oides-oee sing surface

demarcates a boundar y between two parasequen ces, and mudstone depos ition may be

assoc iated with a marine floodin g surface (Mcllroy el al ., 2005). Altem atively, allocyclic

or intra-basinal processes drive deposition, from either rapid fluid mud deposition (c.f.

Macquak er el a l., 2010) , or are aproduet of sedim entdelivery change on the delta front,

caused by delta lobe sw itching (Roberts, 1997).

Mud stone-filled Thalassinoides within a coarse-gra ined vo lcaniclas tic sediment

gravity Ilow bed arc recorded from the inner shelf facies of the Paconcone Formation,

New Zea land (Figure 4.5B). A purely alloeycl ic interpret ation is describ ed for this

Thala.l'.I' ino ides ichno fabric in thisshe lfal facies. The reworked pyrocl astic ash event bed

is co lonized by pipe-work buildin g strategis ts (Tha lassi no ides ), and upon return to fair­

weather conditions is infilled with mudstone (Figure4 .5B) . While , no Thalassinoides

burrows were identifi ed in the enclosi ng background mudstone at this particular locality,

further up-secti on mud stone in mudstone taphonomic express ions arc visible in hyporelief

(Figure 4.5C).



Low contrast exampl es of Thalass inoides in sandstone are not commonly

describ ed, although large thin slice images of core slabs reveal they may be more

comm on in sandstones than previously documented (Chapter 2, Figure 2.3 ; Tonk in et al .

20 10). Subtle expressions of sandstone-filled Thalass inoides in sandstone of the Ben

Nevis Formation and Lajas Formation are interpret ed as autocyclic background

sed imentation in the lower shoreface, and delta front, respect ively (Figure 4.3D).

4.6 Discussion

There are varie ty of taphonomic expressions of Thalassinoides in silic iclas tic

rocks (F igures4 .2,4 .3 and 4.4). Four have been documented in the author' s research and

literature . The two most conspicuous taphonomic expressions re late to litho logic and

grain size contrasts, for exa mple: I) sandstone-filled burrow in mudstone host rock; and

2) mudstone-fi lled burrow in sandstone filled host rock ; but the more subtle; 3)

sandstone-filled burrow in sandstone; and 4) mudstone-fi lled burrow in mud stone are less

conspicuous in the rock reco rd, and not well docum ented. There is a bias in literature

towards a predom inantl y allocyclic or sequence stratigraphic interp retation of

Thalassiooides-be aring bioturb ated surfaces (Table 4.2), although it is clear that



autocyclic interpr etations ofthc same surface may in somc cascs bc cquall y val id (Figure

4.2) .

The bioturb ated key surfaces can be broken down into six comp onent s: I)

sandstone or mudstone deposition and formation of physical sedimentary structures; 2)

bioturbati on, form at ion of biogen ic structures; 3) no hiatus, or hiatus and creation of

firmground or condensed so figround; 4) co lonization of the substrate by Thalassinoides

and creation of an open burrow ; 5) infi lling of the burrow by overly ing or bypassing

sandstone or mudstone and; 6) diagenesis and bur ial, which may include compaction,

minera l rep lacement, cemen tat ion and degradation of organic maller. At each stage, a

variety of physical envir onment al and ecological controls arc active (Figures 4.1 and 4.2) .

Interpretations of Tha lassinoides-bearing surfaces can be attr ibutedto either

autocyclic processes such as storm-induced event sedimentation, or regressive or

transgressive shoreline shift (Figure 4.4). Parasequence boundaries are often marked by

"G lossifungi tes surfaces" and are interpreted as transgressive surfaces of erosio n (TSE ;

e.g., Pebas Format ion, Gingras et al., 2007; Blackhawk Formation) . Alternatively the

"Glossifu ngites surface" (sandsto ne:mudstone) and mudstone: sandstone express ions may

be bioturb ated concealed firmgrounds (e.g., Blackhawk Formation, Figure 4.3A), Iluid

mud deposition (e.g. , Ben Nevis Formation, Figure 4.5A) or stor m induced eros ion (e.g.,

Lajas Form ation, Figure 4.50 ). Rarely docum ented mudstone-fi lled Thalassinoides in

sandstone may be associated with transgression, as floodin g surfaces (e.g ., FS; Lajas

Form ation, Figure 4.30) ; transgressive surfaces of eros ion (TSE; Pebas Format ion), or

post-eve nt co lonization (Paco ncone Formati on, Figure 4.5B). Burrows with low

lithologic contrast (e .g., Ben Nevis Formation, Figure 4.30 ; Paeoneone Formation. Figure



4.5C) are generally interpr eted as condensed beds, and can be attributed to variation in

sedimentation rates associa ted with varying hydrodynamic energy in shallow marine

facies. In the delta front facies o f the Lajas Formation all possible four taphonomic are

expressed and can associ ated with allocyc lic processes including delta lobe switching,

and change in sediment de livery at the dista l delta front (mudstone-fill in sandstone).

The abundance of firmground mudstones in estuaries (Buatois et a/.,2 005), means

that the Glossifu ng ites ichnofacies is likely to form without assoc iation to allocyclic key

surfaces . Relating the Glossifu ngites firmground direct ly to relative sea-level change

should be acce pted only once alternativeautocyc lically generated proce sses are excluded.

The impli cat ion of this conceptual study is the ove r-interpretation of bioturbated surfaces

as sequence stratigraphic surfaces, in particularmisidenti fication of systems tracts in core

is possible. In core analysis where recognit ion of the laterally extent stratigraphic surface

is not possible, a lternate allocyclic interpretations must be considered. The major ity of

stratigraphic surfaces are most likely not asso ciated with relative sea-level change, but a

prod uct of autocyc lically controlled physical processes such aschange in sed iment

de livery, and event bed deposition.

4.7 Conclus ion

While this study has focused upon generalities, in eac h case study should be

considered in its full sedimentological context as part of a succession of rocks. When a

Tha/assinoides-bearings urface is considered in its proper sed imentological, stratigraphic,



temp oral and spatial cont ext, it may be possible to favor either an autocycl ic or an

allocyc liccontro lling mechanism. Several possible auto/a llocycl ic interpretations can be

draw n from each taphonomic expression of Thalassinoides (Figures 4.2, 4.3,4 .4 and 4.5).

Th rough a depositional step-by-step breakdown of the creation ofa bioturbated

key surface, the co mplexity of these surface s is revealed. Multipl e scenarios and

interpr etations can be commonly made . Non-un ique solutions and interpretations of

Thalassinoides ichnofabri cs or Glossifungites ichnofacies may be extracted with

understandin g of stratigraphic and sedimento logical context. Objec tive analysis of

bioturbated key stratigraphic surfaces is an excellent too l for paleoenvi ronmental stud ies
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Chapter 5: Summary - Bioturbation as a tool in reservoir

characterization

In biotur bated reservoir faeies, iehnology is integral toreservoir characterization.

understanding of likely reservoir quality (Chapter 2), reservoir heterogeneity (Chapter 3),

and interpretation of autocyclic orallocyc lic (sequence stra tigraphic) key surfaces

(Chap ter 4), that can be incorporated into reservoir to bas in scale models of hydrocarbon

5.1 Effect of biotu rb ation on reservoir qualit y

Descripti on and interpretation of bioturbation in shallow marine facies is a

valuable too li n rese rvoirc harac terization.lchnolog icala nalysis ofa reservoir facies and

subsequent class ificat ion into ichnofabrics or ichnofacies allowsfor characterizationof

reservoir propert ies. In highly bioturbated reservoir facies, physical modifi cation by trace

fossils can be the first order contro l on petrop hysical properties; e.g. if the biotur bated

reservoir were quartz cemented, the cementat ion would be the first order controI. The

action of bioturbators can be classified in terms of: I) sediment mixing; 2) sediment

cleaning; 3) sed iment packin g; 4) pipe-work building strateg ies; 5)combinationsed iment

clean ing and packing; and 6) combination pipe-work build ing and sedi menl packing (see

Table 6. 1). These catego ries o f bioturbat ion style have predi ctable effects on porosity





and permeability, and can be eas ily incorporated into reservo ir characterization, even by

the non-expert.

5.2 Application of bioturbation sty les as a tool to predict reservoir

qualit y

Petroleum geo logists are primarily concerned with the effect that bioturbation has

on the petroph ysical properti es ofa reservoir facies, rather thanthedetails of

ichnotaxonomicidentification . The proposed bioturb ation style catego ries do not require

in-dept h knowledge of ichnology. The catego ries can easily be applied to facies and core

analys is for incorporation into reservoir mode ls. This approac h makes ichnofabric study

access ible and directly applicable to reservoir characterizat ion. Bioturbat ioncan

redi stribut e grains and cause sorting or mix ing (see Chapter 2), this physical mod ification

of the primary sedimentary fabric effec ts porosity and permeability in reservoir facies.

The physical modification of the sediment by trace-mak ing organisms has the potential to

either decrease sorting, by un-sort ing physically-sorted grains or increase sorting by direct

manipu lation of grains, and through creation of open bur row systems. The bioturbation

sty le catego ries seen in a hydrocarbon reservo irs (To nkin et al .,2 0 10), were introduced in

Chapter2 , used in Chapter 3 and are further refined below (see Table 6.1).

I) Sediment mixing - indiscriminate mixing of sediment grains, decreases the

sorting of the sediment by un-sorting any grain size trends, and through mechanical

destruct ion of depositional textures. "Se diment mixers" burrow in the sed iment without

sorti ng the sediment into distinct burrow linings or fills (e.g. cryptobioturbation and



burrow mott ling) . The se biogeni c structures generally cannot be attributed to a specific

ichnotaxa. Thi s type of bioturb at ion by bulk sed iment mixers commonly const itutes a

large proport ion of ichnofabrics (cf . Chapters 2 and 3). Localized sediment mixing style

in laminated facie s enhan ces porosity and permeabi lity, through elimination of fine-

grained laminaeor pre-existing discrete traces(e.g .sediment packers) thatactasbames

for fluid flow . Alternativel y in burrow mottled fabrics (with high bioturbation

intensit ies),the collecti ve sediment mixing behavior of the trace-making organisms, and

bu lk sed iment mixi ng /unsorting of grain size trends or bedd ing wou ld reduce

permeab ility/poros ity. The net effect o f sediment mixing sty le is most commonly

porosity and permeability reduction.

2) Sediment packing - incorporation of finer grade material (e.g. clay, silt and

fine-grained organic carbo n) from the adjace nt stratigraphic Ievels into burrow fills and/o r

linings decrea ses the sorting of the sediment. I'acking of clay and silt-grade grains into

pore space loca lly reduces permeability, relat ive to the adja cent sub strate . Lined burrows

(e.g. Palaeophycusy; burrows that have been actively infi lled by the trace maker (e.g .

Asterosoma, Chondrites, Diplocraterion, Phycosiphon, Scolicia. Teichichnus and

Zoophyeos),ca n be categorized as "sediment packer s" . Traeemakers ca n also incorporate

coarser grade mater ia l (e.g . sand and coarse tuff with in a mud stone) from the adjacent

stratigra phic levels into burrow fills and/or linings decrea sing sorting of the sediment.

The net effect of sediment pack ing style is most comm only porosity and permeability

3) Sedim ent cleaning - selective removal of fine-grai ned material (e .g., pore-

filling clay-s ilt and organic matter) from the enclosing substrate. increasing sorting. By



ingestion and subsequent defec ation of fines into the water column. Burrows with halos

of well-sorted clean sands (e.g. Thalassinoides) are categori zed as "se diment cleaners" .

The net effect of sediment clean ing style is permeabi lityenhancement.

4) Pipe-work building - open semi-permanent burrows in sediment perfor ate pre-

ex isting sedimentary fabric s or ichnofabr ics. Such biogenic structures are connected to

the sediment-water inter face . Upon burrow abandonment, the burrow generally remains

open and is passively filled with the overly ing sediment at the sediment-water interface.

Trace fossi ls oi Ophiomorpha . Planolites, Skolithos, Thalassinoides and Teredolites are

catego rized as "pipe-work builders" . The net effect of this bioturbati on sty le is dependent

on the lithological contrast between the burrow fill and the host sed iment. For example,

that produ ce verti ca l and horizontal macroporen etworks, with the potenti al to act as flow

conduit s (Chapter 2; Tonki n et 01.,2010). Thi s bioturbati on style can be further

subd ivided into vertic al or horizontal pipe-work buildin g.

5) Combination sed iment cleaning and packin g - incorporat ion of finer grade

mater ial from the host sediment into burrow fillsand/or linings, and clean ingofa djace nt

sediment. Phycosiphon burrows are an example of th is combined bioturbati on style, with

their c lay-grade eore and coarser grained halo. The net effect of th is combination

bioturb at ion style is dependent on the lithological context, in part icul ar the contrast

between burrow fill and host substrate . For examp le, Phycosiphon halos have twice the

vo lume of coarse-g rained halo than the assoc iated clay-rich burrow core, and therefore

have the net effect of permeabilit y enhancemen t in shale gas reservoirs (Bednarz and

Mcl lroy, 2009) .



Combination pipe-work building and sediment packing - open burrows in

sediment per forat e pre-exist ing physical sedimentary fabrics , and pack finer grade

materia l from the host sediment or suspended sediment into bur row linings.

Ophiomorpha burrow s are an example of this combined sty le. Burrow margins arc

packed with mud , while the burrow itse lf remains open and is pass ively infilled with

sediment. Ophiomorpha is dist inet from other pipe-work buildin g iehnotaxa (Planolites,

Skolithos ,a nd Thalassinoidest which are un lined. The net effect of this bioturb ation style

is dependent on the litho logical cont rast between burrow fill and host sed iment.

Catego rization of bioturbati on style can be applied to any bioturb ated reservoi r

facies, and used as a tool to predict reservoir quality (Table 6. 1). Enhancement or

reduction of porosity/permeabilit y, is dependent on trace fossi1m orphology, composit ion

of burrow linings/fi lls, burrow size, bioturb ation intensity, and bioturbation style (Chapter

2). The petrophysical characteristics of pipe-work buildin g and combinat ionb ioturbat ion

sty les are high ly dependent on the lithological contrast between burro wfill , and enclosing

Sed iment packin g and sediment mixing sty les commonly reduce

porosity/per meab ility, while sed iment cleanin g biotur bat ion style enhances

porosity/permeability . An understandin g of trace foss il behavior, as it affec ts reservoir

quality is important in reservoir characterization. The use of bioturb ation style catego ries

and the class ificatio n of trace fossils into these categories may be a more useful

application of ichno logical analys is reservoir geo logists, than paleoenvironmentally-

dr iven ichnofacies or ichnofabri c analyses.



5.3 Ichn ological tre nds in reservoir heterogeneity

While cate gorization of bioturb ation style is a useful tool in reservoir

characterization, lateral variat ions in reservoir quality and heterogeneity of ichnofacies or

ichnofabr ic must be incorporated into geological models in order to predict fluid flow in

bioturbated facies at the inter-we ll scale (Cha pter 4). Tren ds in trace fossil distribution

are exce llent indicators of in-situ spatia l variability of physico-chemical processes.

Ichnological analys is a llows insight into variations in sedimentation rate. hydrodynamic

energy (ero sive currents), substrate consistency, length of co lonization window, and

community succession (tiering and cross-cutting relati onship s). The patchy distribu tion

ofc ndobcnthicorganismson thc modcrns calloo r is not d irectlycomparablc to pattcrns of

spatial distr ibution in the ichnological record . Biological factors (e.g., larval dispcrsal,

competitio n and predation) arc unlikely to be contributing factors in contro lling the

benth ic spatia l distributi on in the rock record. T ime-ave raging. community success ion

and physica l processes of erosion and deposition on a geo logica l timescalc are likely to

erase primary ecologica l signatures in most cases.

There is inherent ichnological variabi lity with in most beds. However if one

considers only the effec t on reservoir quality cau sed by bioturbators(bioturbation sty le).

the net effect on reservoir quality heteroge neity is seen to be less variab le than wou ld first

appear. Ichnofabrics most comm only result from bioturbat ion by several communities.

effec tive ly a condensed representation of an unknow n numb er of communities (with

hiatuses).



The variab ility, or patch iness, a long-strike was not found to be related to

proximity to the paleo-shoreline in the three wave-dom inated depositional systems.

Instead, the most critica l factor appears to be the sediment accumulation sty le. Slow

continuous deposition was found to prod uce complex and high ly patchy ichnofabrics,

whereas rapid, episodic, event bed deposition was found to be asso ciated with the most

uniform deve lop ment of ichnofabr ic.

5.4 Identification of key stra tigra phic surfaces in biotu rb ated facies

Identification of bioturb ated hiatal or key stratigraphic surfacesoferos ion, non-

deposition or condensation arc clearly identifiable where there is a dist inct lithological

contras t in burrow fill re lative to the host sediment. Autoeylie and allocycl ie

interpretations of key stratigraphic surfaces can be postulatedfor thepre-b ioturbation and

post-bioturbation in siliciclastic shallow marine settings. A case study illustrat ing the

need for careful ichnological analyses has been undertaken as part of this thesis (sec

Chapter 4 ),a nd focuseson Tha/assinoides burrows ,a nd its validity as an indica tor for key

stratigraphic surfaces , and outline all applicab le autocy cl ie and allocyclic processes.

Thalassino ides is eas ily identified in core and outcrop, has a pipe-work

bioturb ation style, and colonizes a variety of substrates including softg round and

firmground iGlossifungites ichnofacies) substrates . The Glossifungi tes firmground

assoc iation with base leve l change, and transgression may be an over-interpretation, and

alternative autocyclica lly-generated processes should be invest igated. Uncritica l usc of

the G/ossifi mg ites ichnofacies as a direct indicator for the identificat ion of re lative sea



level rise is considered to be flawed . Possible autocyclic mechani sms for formation of

firmgro und surfaces should always be objectively considered. Four taphonom ic

express ions of Thalassin oides are described: I) sandstone-filled bur row in mudstone host

rock; 2) mudstone-filled burrow in mudstone; 3) mudstone-fi lled bur row in sandstone

filled host rock; 4) sandstone-fil led burrow in sandstone; and have been discussed in this

thesis (Chapter 3). These interpretations of Thalassinoi des-bearing surfaces are generic

and could be applied to carbonate facies such as chalks, marls, calcarenites and shell

beds; and extended to other pipe-work buildingichnotaxa (e.g. Ophiomorph a, Skolithos ,

and Planoli tes) . With careful ichnological investigation, realistic palaeoenv ironmental

and sequence stratigraphic interpretations can be made by objective considera tion of both

autocycJic and allocycJic processes.

5.5 Co ntr ibutlous of ichnolo gy to reser voir cha rac ter iza tion

lchnological analysis is becomin g an integral part o f reservoir characterization.

The petroph ysical properties associated with bioturb ation can be pred icted (Chapter 2);

spatial variability and heterogeneity can be determined in bioturbated reservoir facies

(Chapter 3); and both autocycJic and allocyclic contro ls on ichnologyc an be incorporated

into reservoir model (Chapter 4) .

In bioturbated reservoir facies, the proposed bioturbation style catego ries (Tonkin

et al.; 20 10 and herein ) can be incorporated into conventional facies and core analysis.

Core can be logged and assigned bioturbation styles, allowing the petroleum geo logist to



make predicti ons with respect to porosity/permeability trends, and de fine poten tial net

pay intervals without needing to be a specia list ichnologisl.

Ichnological variability in hyd rocarbon reservoir s is dependent on sediment

accumulation sty le. In depositional settings where there is slow continuous deposition,

complex and highly patchy ichnofabri cs are recogn ized. Where even t bed sedimentation

isth en orm, ichnofabr ies with verylitt le change along-strikepredom inatein the event bed

itse lf. If the petro leum geo logist focuses on the effect of bioturb at ion on reservoir

properties using biotu rbation style catego rization (rather than gett ing deepl y invo lved in

ichnotaxonom icvariabi lity), lateral variabi lity in reservoir quality ca n be assessed. This

work has found that while ichnodiversity commonly changes, the net effeet on reservo ir

quality, and the bioturb ational style, is seen to be less variablet han it might first appear.

Thi s thesis has shown that ichnology analysis (ichnofab ric and ichnofacies) is a

usefu l, and dire ctly applicable tool for reservoir characterization. With an improved,

integrated , understanding of what bioturbating organisms do to sed iment, ichnology can

continue to grow as an important component of reservo ir charac terization studies, and

petroleum geo logy in general.
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