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Abstract

In modem VLSI design, extensive rescarch has shown that automated analog layout
generation is a nontrivial process in the analog and mixed-signal circuitry synthesis.
“The main contribution of this thesis is successful development of a method, which is
able to handle complex multi-group symmetry, substrate sharing, and other
topological constraints in the analog and mixed-signal layout placement design using
transitive closure graph (TCG) representation.

“This thesis proposes a set of symmetric-feasible conditions, which can guarantee
symmetric placement of sensitive cells with respect to one or multiple symmetry axes
for reduction of parasitic mismatch and thermal gradients. A new contour-based
packing scheme has been developed with the time complexity of O(pnlgn), where p
is the number of the symmetry groups and  is the number of the placed cells
Furthermore, a set of perturbation operations is devised with the time complexity of
Ofm), where n is the number of the placed cells, in order to generate a random
symmetric-feasible TCG state from an existing one. The experimental results show
the effectiveness and superiority of this proposed scheme compared o the other
state-of-the-art placement algorithms for analog layout designs.

In addition, the proposed method is able to handle the substrate sharing
constraints which require the devices to be placed adjacent to share a common
substrate in order to decrease the effect of substrate coupling. To the best of the
author’s knowledge, this i the first proposed approach to handle the substrate sharing

constraints based on topological representations. Other topological constraints such as



relationship, abutment and alignment can also be handled by our method.

The thesis first presents a brief introduction to the analog design, including
electronic design automation, analog synthesis, and analog placement. The previous
important works, which intended to solve the analog placement problem, are
thoroughly surveyed and analyzed. Secondly the TCG-based method to handle
complex analog layout constraints such as symmetry, substrate sharing and other
requirements is detailed and the corresponding algorithm complexity is analyzed.
Finally the performance of the proposed method is compared with the other

alternatives and the conclusions are drawn.
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Chapter I Introduction

With the of complex i ! I
integration (VLSI) circuits have constantly developed since 1970s. VLSI i the process
to design and fabricate integrated circuits (IC) by combining a large number of
transistor-based circuits into a single chip (1]

The first semiconductor chips only contained one transistor on each chip.
However, the users required more individual functions, or systems, with more
transistors to be integrated on the chips. Therefore, the integrated circuits became very
demanding. The first integrated circuits consisted of a few diodes, transistors, resistors
and capacitors to fabricate one or more logic gates on one single device. Then
small-scale integration (SSI) and medium-scale integration (MSI) extended the IC
devices with hundreds of logic gates. A process, known as large-scale integration (LSI),
improved the size of systems to at least one thousand logic gates. Recently, the

technology has developed significantly and today's microprocessors have many

‘millions of gates and hundreds of millions of individual transistors to perform complex
functions.

Nowadays, the VLSI circuits and systems have been widely used and they have
achieved extremely high performance. As of early 2008, billion-transistor processors

were commercially available. One typical example is Intel's Montecito Itanium chip. It

shows that the semiconductor fabrication is moving from the current generation of 65



nm processes to the next 45 nm generation and facing hasi d
variation across process comers. Its large transistor count s largely due to its 24 MB L3
cache. Another example is Nvidia's 280 series GPU, which is unique in the fact that 1.4
billion transistors are used for logic computation.

Due to the development of VLSI, current designs use extensive design automation
and automated logic synthesis to lay out the transistors to achieve better performance
and enable higher levels of complexity in the resulting logic functionality [2]. This
modern design methodology is completely different from the carliest design. However,
several certain logic blocks, like SRAM cells or analog building-blocks, are still
designed by hand to ensure the highest performance and to avoid errors.

As a consequence of technology scaling and complexity of new microprocessors,
VLSI design has encountered several challenges [3]. The first challenge is the power
usage which is due to the fact that the threshold voltages have ceased to scale with
advancing process technology. The second challenge is process variation. As

lithography techniques approximate to the fundamental laws of optics, doping

b ly difficult and error-pr i lipl
fabrication process comers should be considered before the chip is certified ready for
production. In addition, the timing and the first-pass success should be considered
seriously due to the change of the physical features of the circuits. Abundance of
stricter design constraints is another important aspect in the design. The constraints for
layout become much more stringent and play a more important role due to lithography

and etching issues with scaling. Many companies now opt to switch to electronic design



automation (EDA) [2] tools to automate their design process because of the overhead
for custom design.

In this thesis, an efficient algorithm to handle complex constraints in the
placement design is presented. Its features are analyzed theoretically and the

performance is evaluated with promising experimental results. This chapter is to

introduce the general concepts of the analog design, which provide the i ion and
background of the whole thesis. Section 1.1 reviews the concept of the analog design
and electronic design automation including the flow of general analog circuit design.
Section 1.2 introduces two important steps in analog design, that is, analog circuitry
synthesis and optimization. Section 1.3 details analog placement problem and lists the
analog placement constraints. Section 1.4 raises the motivation and purpose of our
analog placement research work, summarizes the main contribution of this work and

presents the organization of this thesis.

1.1 Analog Circuit Design and Electronic
Design Automation

Going from one single transistor to multimillion transistor circuits has provided
the people with more functionality than the past generations of electronics. The
microelectronics market, in particular, the markets for application-specific ICs (ASICs),

application-specific standard parts (ASSPs), and high-volume commodity ICs are



characterized by an ever-increasing level of integration complexity, now featuring
multimillion transistor ICs [3]. To handle the design complexity, hierarchical design
and reuse of IP blocks tend to be inevitable. In recent years, complete systems that
previously oceupied one or more boards have been integrated on a few chips or even
one single chip. Examples of such systems on a chip (SoC) are the single-chip TV, the
single-chip camera [3], or new generations of integrated telecommunication systems
that include analog, digital, and even radio-frequency (RF) sections on one chip.

Due to the rising level of integration, the complexity of integrated circuits
increases. More and more functionality can be added as new processes of technology
evolve [2]. With the increasing complexity, use of computer-aided design (CAD) tools
that support design on a hierarchy of abstractions becomes more important. For digital
circuit design, there exist a large variety of tools and design methodologics, which
efficiently support designs using several levels of abstraction. This s required to keep
in phase with the new capabilities offered by technology and design constraints.
However, for analog circuit design, the situation is completely different. The level of
abstraction is still kept at very low levels and there are not many efficient CAD tools
available. The lack of a structured design flow is one of the major problems in analog
cireuit design. This problem becomes obvious when analog and digital circuits are
combined on the same chip, as in the mixed-signal SoCs. In general, the digital parts
account for about 90% of an integrated cireuit while only 10% is analog. However,

most of the time and efforts are spent on the analog design part [2].
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Figure 1.1 Analog design flow

A simplified view of an analog design flow is shown in Figure 1.1 [3]. The analog
circuit designers normally start with an idea of the functionality to implement. The
funetion is mapped onto an architectural description. In this process, the functionality is
decomposed into a set of high-level building blocks. The decomposition is continued
until the functional block can be mapped onto a set of lower-level analog building
blocks. The simulations done at this level are typically carried out by using high-level
models in order to validate the functionality of the concept.

From these simulations, the specification on the low-level blocks is extracted [3].

The i contains i on the various performance



metric of the cireuit. Here the performance is the measurement of properties, which is
used to simulate the behaviour of a cell. In the next step, these cells are realized by
designing the low-level building blocks that comply with the previously derived
performance specification. The cell design step includes choosing between several
possible realizations in order to implement the functionality in the most efficient way.
During the layout phase, the geometry for the functional blocks is determined. Finally,
the building blocks are assembled to implement the desired functionality. Throughout
the design process, excessive simulations and validation steps are required. If the

circuit fails to meet the speci t some level, the proceeding design steps must be

revised as shown in the Figure 1.1. That may include backtracking several former steps
in the analog circuit design process.

Electronic design automation (EDA) has become increasingly important in both
digital and analog design. Typically the chip designers at semiconductor companies
have to use a variety of EDA tools since large chips are too complex to design by hand.
“The EDA tools have rapidly increased in great importance with the continuous scaling
of semiconductor technology. In addition, EDA software is used to evaluate an
incoming design for manufacturing readiness as well as for programming design
functionality into field-programmable gate arrays (FPGASs) [2].

Before the dawn of EDA, integrated circuits were designed by hand and manually
laid out, thus required lots of time and resources. By the mid-70s, the designers had
begun to use the automation with drafting. In the meantime, the first placement and

routing tools were developed. The earliest EDA tools were designed academically, and




then used in industry in 1981. Many EDA companies such as Daisy Systems, Mentor
Graphics and Valid Logic Systems were all founded around this time. The development
of hardware description languages such as Verilog and VHDL permitted the simulators
to direetly report the simulation results of chip designs. This improvement also
accelerated the development of EDA tools.

Current digital modular flows use the front ends to produce standardized design
descriptions that compile into invocations of cells. Cells perform the logic or other
electronic functions using a specific integrated circuit technology. Generally speaking,
the fabricators provide libraries of components for their production processes, with
simulation models that can fit standard simulation tools. However, analog EDA tools
are much less modular since many more interference functions are required.

In the past decade, people have seen that the electronic design automation is
starting to play a very important role in the analog design. However, on account of the
complexity of analog circuit design and constraints, the EDA tools still need to be

improved both in breath and in depth.

1.2 Analog Circuitry Synthesis and Layout
Synthesis

Analog synthesis gets particularly significant for ever-growing mixed-signal SoC

designs [4]. However, the analog design is an intrinsically difficult subject as it often



has to explore a much larger design space. As a matter of fact, in modern VLSI design
the analog portion of a mixed-signal chip still has to be routinely handcrafted by
experienced designers, which costs extraordinarily disproportional amount of efforts
and time compared with only a small fraction occupied within the entire chip [S]
Figure 1.2 shows the optimization and evaluation flow of the analog circuit design.

Here the optimization engine is to provide candidate circuit designs to the evalu

engine, whereas the evaluation engine is to evaluate circuit performance of the current

candidate design in order to be prepared for the next run of optimization.

Figure 1.2 Optimization and evaluation

Recently, the commercial CAD tool has supported analog cell-level circuit and
layout synthesis. Gielen and Rutenbar [2] offered a fairly complete survey of this arca.
The analog synthesis consists of two major steps: 1) circuit synthesis followed by 2)
layout synthesis. Most of the basic techniques in both circuit and layout synthesis rely
on powerful numerical optimization engines coupled to the evaluation engines that

qualify the merit of the evolving analog circuits or layout candidates [5).




‘The layout synthesis relies more on combinatorial optimization techniques [6].
The layout of all devices will be determined so that the layout meets the given

specifications with an optimal cost.

ure 1.3 shows the traditional flow of the layout
design. Based on high-level constraints, three phases (i.c., placement, routing, and
compaction) are included in the layout design. We can sec adding the high-level
constraints and generating the correct placement are the first steps for the analog layout

generation.
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Figure 1.3 The conventional layout design



Although successful, these simulation-based analog synthesis methods still have
o be used with care by designers because the processing time tends to be long and
involves some errors against the constraints. To reduce the CPU time and the
complexity, how to handle the complicated design constraints is an active area of
research

Several challenges have been presented for the synthesis and optimization in the
research domain. Although the traditional methodology works well for circuits with the
range of dozens of devices, for larger circuits the time required for each single
simulation is too long. In addition, how to handle the analog layout constraints becomes

increasingly important

1.3 Analog Placement

1.3.1 Analog Placement Problem

Extensive research has shown that automatic analog layout generation is a
nontrivial process in the analog synthesis [7]. In the analog layout design, the
placement problem is about how to locate a set of rectangular or rectilinear cells on a
plane. It has been well recognized as one of the most significant stages in the analog
layout synthesis [8]. The goal of the placement design is that the placed cells do not

overlap with one another and the total area is minimized with certain constraints (c.g..



symmetry, substrate sharing, etc.) satisfied. Figure 1.4 shows an example of the analog
placement. The schematic of the circuit is shown in Figure 14(a), and one type of
layout style is shown in Figure 1.4 (b). It s not hard to see that the circuit elements are

transferred to the rectangle blocks and thus the problem of placement is formulated [9]

Figure 1.4 Example of analog circuit and analog layout

Since placement is one of the most si

gnificant stages in the analog-layout

synthesis (8], the study of the analog placement problem has attracted great interest in

industry and academia [10]. As a matter of fact, once an analog placement solution is



fixed, most of the electrical effects are largely determined and more seriously, and
some undesirable effects caused by a poor placement cannot be compensated by the
following routing procedures. To meet the device-matching constraints in the design
of analog layouts, it is usually preferable to cluster multiple devices to form
parameterized cells or modules. Thus, the objective of the analog cell placement

problem is to position cells appropriately so that the chip area and the total wire

length of the interconnections can be minimized under the given constraints.

1.3.2 Analog Placement Constraints

In the analog placement design, certain constraints from the fabric analog circuits
have to be imposed to improve the performance and meet specific requirements. As
shown in Figure 1.5, constraint generation and checking are very important in the
analog layout synthesis. In the following several important analog layout constraints,
including the symmetry, substrate-sharing, relationship, abutment, and alignment
constraints, will be introduced.

Symmetry, as an important type of topological constraints, widely appears in
expert analog layouts. Symmetry constraints require sensitive cells to be placed on the
opposite sides with respect to the corresponding symmetry axes in an identical or
‘mirror manner. The symmetry constraints can reduce the effect of parasitic mismatch

that may increase offset voltage and decrease power-supply rejection ratio. In addition,




they can reduce circuit sensitivity to thermal gradients and achieve better electrical
properties. There are two types of symmetry constraints among cells: symmetric pairs
and self-symmetric cells. A symmetric pair is a pair of cells placed in identical/mirror

orientations and located on the opposite sides with respect to one particular symmetry

axis. As for the second type of the symmetry constraints, self-symmetric cells need to
be placed along the symmetry axis and share the same axis with the other symmetric
cells. The cells, which include the symmetric pairs and self-symmetric cells sharing

one common symmetry axis, are defined as one symmetry group. Multiple symmetry

‘groups widely exist in the analog circuits [10].

Figure 1.5 Constraints generation and checking in the layout synthesis

The substrate-sharing constraint limits devices to an adjacent placement so that



the devices can share a common substrate/well region. This can significantly decrease
the effect of substrate coupling. For the substrate-sharing constraints, we can merge
the substrates of the adjacent cells to minimize the cost of the area and the wire length
of the placement. The performance of analog circuits can be improved by applying
this type of constraints.

Moreover, there are some additional constraints, such as cell relationship,

abutment, and alignment constraints, for the analog

uit design. In the practical

analog layout design, the designers may have specific placement requirements that

demand one or several cells to have particular topological relationship with another
cell. This is called relationship constraint. Besides, the cell abutment constraints
require some cells to be placed in an abutting manner. The cell alignment constraints

require one cell to be located vertically or horizontally in alignment with other cells.

1.4 Motivation, Contributions and
Organization of the Thesis

According to my survey, quite a few approaches [11]-[17] have been proposed to
handle the analog placement problem. However, each method has its own features as
well as drawbacks. Therefore, I am motivated to find a methodology which has better
performance compared 1o previous work and is able to handle more complex analog.

placement constraints.

In this thesis, 1 propose a method using ransitive closure graph (TCG) [11] to



handle the multiple group constraints, - substrate-sharing and  other
topological constraints. The proposed method is able to produce generic solutions to
analog placements with efficient perturbation and packing schemes.

“The major contributions of this thesis are listed as follows.

o Necessary and sufficient conditions, which can verify the symmetric
feasibility of TCG representations in the context of general symmetric placement

situations enclosing multiple symmetry groups, are introduced;
« 1 propose an efficient contour-based packing scheme to convert
symmetric-feasible TCGs under multi-group symmetry constraints to symmetric

placements in polynomial time;

o Aset of random perturbation operations with the time complexity of O(n)

is defined to generate new multi-group symmetric-feasible TCGs;

o The proposed placement algorithm is able to cover all the possible

topological situations. And thy i results show that this method achi

superior performance compared to the other state-of-the-art work;



« Ipropose a method to handle the substrate-sharing constraints and apply
the merging process to minimize the size of the placement. In addition, it can handle
several other constraints such as cell relationship, abutment, and alignment.

‘The rest of the thesis is organized as follows. Chapter 2 conducts a brief review of
previous works. These works are compared with each other and their instinct features
are pointed out. In Chapter 3, I detail the scarch engine such as simulated annealing
algorithm and genctic algorithm. I design an algorithm to solve the placement problem
by using artificial neural network and compare it with the previous two algorithms. In
Chapter 4, I introduce symmetric-feasible conditions using TCG to handle placement in
the context of multiple symmetry groups. The contour-based packing algorithm, which
is to construct a symmetric placement from a symmetric-feasible TCG, is detailed. And
a set of perturbation schemes for maintaining symmetric-feasible TCGs are discussed.
In Chapter 5, I define a solution to handle the placement problem with substrate-sharing

constraints. The packing and perturbation methods are also proposed. The schemes to

handle other constraints such as relationship, alignment and abutment are also
discussed in this Chapter. Finally, I draw the conclusions and enumerate some future

work in Chapter 6.




Chapter 2 Prior Work

In this chapter, some important prior works, which were targeted at the analog
placement problem, will be first surveyed. Then they are evaluated to see whether
they are suitable to handle the symmetry constraints. Finally a comparison of the
previous methods is made and a direction for further development is proposed.

There are two streams for the placement methods: absolute placement and

relative placement. For the absolute placement [10], cells are located by means of

their absolute coordinates. This method has been traditionally regarded as the most
effective solution to the analog placement in the past decades. The main drawback of
the absolute placement lies in the fact that it may generate an infeasible placement
with overlapping cells and thus requires a post-processing step to eliminate the
overlap. In contrast, the relative placement (also known as topological placement)
method is based on topological representations [9] [11]-[17). Recently, it has drawn
more attention from the researchers and a few topological representations, such as
Sequence Pair (SP) [12], O-tree [13], B*-tree [14], Comer Block List [15], Transitive
Closure Graph (TCG) [11], Transitive Closure Graph with topological order (TCG-S)

[16], and hierarchical B-tree (HB*-tre) [9] [17], have been applied to solve analog



placement problem.

2.1 Absolute Placement Method

The absolute placement method locates the cells based on their coordinates. Its
main flow based on a stochastic scheme (normally simulated annealing algorithm (SA)
[18)) firstly employs a constraint generator to analyze the constraints. A cost function

like (2.1 is used to evaluate the merit of one placement state

Cost =Y. B, - Parameter, Q@1

where  is the weight of the parameters to the cost. The parameters include the
different aspects of the cost value, such as wire length, area cost, constraint plenty,
distance of cells, and so on.

The absolute representation was first introduced by Jepsen and Gellat [19], where
the cells are specified in terms of absolute coordinates on a gridless plane. The moves
are simple coordinate shifts or changes in cell orientation. Cells are allowed to

overlap in possibly illegal ways, as no restriction is made to refer to the relative

position of a cell with respect to another cell. A (weighted) penalty cost term is
associated with infeasible overlaps, and this penalty must be driven to zero in the
optimization process. The absolute representation is well suited to handle device

matching and symmetry constraints, typical to analog layouts. It is also allowed to



explore the beneficial device overlaps. Taking these factors into consideration, the
absolute representation was the choice for KOAN/ANAGRAM II [20], PUPPY-A
[10], and LAYLA [21] systems. However, this representation has revealed a
drawback. Due to the complexity of the cost function, the total (infeasible) overlap in
the final placement solution is not necessarily equal to zero: a final step eliminating
gaps and overlaps must be performed, degrading the computation time and the

solution optimality (in terms of the cost function). Moreover, the weight of the

overlap term must be carefully chosen [10]: if it is too small, the cells may have the
tendency to collapse; if it is too large, the search ability of the optimization engine for
a good placement (in terms of area, total net length, etc.) may be impeded. To combat
this effect, an earlier version of the Timber Wolf system [22] used a sophisticated
negative control scheme to determine the optimum values of the cost term weights.
‘The absolute representation approach trades off a larger number of annealing moves
to build layout configurations more quickly, which may not be always physically
realizable.

Reference [10] provides an algorithm of the absolute placement method to handle

the symmetry const

It presented a quantitative approach to automatically
generate symmetry constraints. Symmelry is recognized as a particular case of
matching between devices or interconnections belonging to distinet differential signal
paths, which become effective when the circuit is operated in differential mode. A

graph-based search algorithm, described in detail in [10], has been designed for the

automated detection of all symmetry constraints. First, a graph is built, with a node



for each circuit net, and an edge for each device, to represent the circuit connectivity.
Then all virtual grounds are detected by comparing the common and
differential-mode gains of all nets. The search algorithm recognizes all the sub-graphs
whose structure has the following characteristics:

1) Symmetric topology;

2) Matching constraints between symmetric graph elements;

3) The two halves of the structure are connected with one another by one or more
real or virtual ground nets.
Each of these sub-graphs is a differential structure, and the symmetry constraints are

all recognized as the matching constrain

This method worked efficiently as a placement solution in the old times.
However, it may generate the infeasible solution to the placement problem. Therefore,
the intrinsically high complexity and the requirement of post-process step have made

the researchers be recently focused on new topological methods.

2.2 Topological Methods

The second class of placement representations—named fopological—allows
trading off more complex, physically correct, and layout constructions per cach
random move for a smaller number of moves. Generally, the placement algorithms

develop a packing scheme to transfer the representations to placements, and design a




set of perturbations to randomly generate new placements from the existing ones.
Then the search engines, such as SA, genetic algorithm (GA), are used to obtain the
optimized placement based on the predefined cost functions. In the following parts,

several different types of the topological representations are introduced.

2.2.1 Sequence Pair (SP)

Sequence-pair [12] is considered o be a general representation for the placement
problem. It uses an ordered pair of sequences (i.c., a- and f- sequences) to encode a
placement. The topological relationship between two cells a and b can be derived

from the SP representation as follows [12]:

ifa,'<a'and f,'<ps" thencell aistothe lefiof cell b (2.2)

ifa;' <a'and py" <p," ., then cell bis on the below of cell @, (2.3)

where @, and @ represent the order of cells a and b in the @ sequence, while £,
and f" represent the order of cells a and b in the f sequence, respectively.

In [12], to generate the a-sequence, it needs to process SP positive step-lines as
shown in Figure 2.1(a). For each cell, we draw lines using a pebble (which is regarded
as the nib of a pen). The pebble is initially located at the upper right corer of cell x

and starts to move upward. It tums its direction alternatively right and up until it




reaches the upper right comer without crossing: 1) boundaries of other cells, 2)
previously drawn lines, and 3) the boundary of the chip. The drawn line is called the
up-right step-line of cell x. Similarly, the down-left step-line of x is drawn. The union
of these two step-lines and the connecting diagonal line of cell x is called the positive
step-line of x. It is always possible to draw such positive step-line for a cell. They are
referred to by the corresponding cell names. Follow this procedure, we can draw the

a-sequence of the placement, which s (e, ¢, a, d,

b).

Simultaneously, we have to obtain the f-sequence following a negative step-line
process as shown in Figure 2.1 (b). The difference is that a negative step-line is the
union of the lefi-up step-line and right-down step-line, whose direction changing
policies are “left, up, left, up.....” and “right, down, right, down, ....” respectively.
We order the negative step-lines also from left. Let the f-sequence be the cell name
sequence in this order. So after the negative process, the f-sequence of the placement
shown in Figure 2.1 (b) is (£ ¢, b, ¢, a, d).

To transfer a sequence-pair to a placement, reference [12] details a packing
scheme for the sequence-pair. It needs to construct two constraint graphs of the
packing scheme as shown in Figure 2.2 and the example is the same as Figure 2.1.
‘The constraint of the sequence pair is detailed in the formulae (2.1) and (2.2). It is
casily observed that the constraint imposed on the packing by a sequence-pair is
unique and the constraints are always satisfied.

Given a sequence pair, one of the optimal packing under the constraints can be

obtained in time Ofn’) where n is the number of cells. By applying the well-known



longest path algorithm to directed acyclic graphs with weighted vertices, we can
process the packing of the SP scheme. The process is given below. Based on “left of”
constraint of the sequence pair, a directed and vertex-weighted graph G ( ¥, E) where
¥ presents the vertex set, and £ presents the edge set, called the horizontal-constraint
graph,is constructed as follows.

1) V: source s, sink 1, and vertices  labeled with cell names.

2) E: (5, x) and (x, ) for each cell x, and (x, x") if and only if x is on the left of x"

3) Vertex-weight: zero for s and 1, width of cell for the other vertices.

(a) ®)

Figure 2.1 (a) SP positive step-lines (b) SP negative step-

Similarly, the vertical-constraint graph is constructed using “below” constraints
and the height of each cell. Neither of these graphs contains any directed cycle. We.
set the X-coordinate to be the longest-path length from s to x in Gy. The Y-coordinate

of x is set independently using G,. As shown in Figure 2.2, if two cells x and x are in



horizontal relation, then there is an edge between x and x in Gy; hence they do not
overlap horizontally in the resultant placement. Similarly, if x and x are in vertical
relation, they do not overlap vertically. Thus no two modules overlap with each other
in the resultant placement because any pair of cells is either in horizontal or vertical
relation. The width and the height of the chip are determined by the longest-path
length between the source and the sink in G, and G, respectively. Since the width and
the height of the chip are independent minimum, the resultant packing is the best of
all the packing solution under the constraints. The longest-path length calculation in
each graph can be done in O(r’) time, proportional to the number of edges in the
‘graph. Following this process, we can obtain the final placement of the sequence pair.
And the SP perturbation is very straightforward, just to change the order of the cells
in the sequence with time O(1).

“To facilitate the description within this thesis, we will first present one definition

in the following.

Definition 1: If a set of representations following a certain structure is called
symmetric-feasible, then any symmetric placement can be expressed by a
representation in that set while a representation in that set can guaranice to construct a

valid symmetric placement

References [23] and [24] developed two schemes to handle symmetric placement

based on a set of the SP symmetric-feasibility conditions (advocated in [23]) as



follows:

o' <o and o' B, (@ @)ET, (b b) €T, 24

where I'is one symmetry group.

(@) ()

Figure 2.2 (a) horizontal constraint graph (b) vertical constraint graph

However, these symmetric-feasibility conditions have involved some intrinsic
problems which are indicated in [25]. According to the conditions above, the
symmetric cells should appear in a mirror form in two sequences of SP. The a- and
f-sequences are indeed ordered in a mirror form. Thus, the SP representation above is

symmetric feasible. However, this obscrvation is partial, as revealed in [28]. For



instance, the SP of a symmetric placement depicted in Figure 2.3 (b) is (a, ¢, b, 4", d.
@) (a. ¢ b, b, d @), which is in line with the proposed formula (2.3). (@, a*) and (b,
b°) are two symmetric pairs. Although another placement depicted in Figure 2.3 (d) is
symmetric for (a, ) and (b, b’),its SP, which is (@, ¢, b, b', d, @) (b, ¢, a, b', d, @’),
obviously does not satisfy formula (2.3). Therefore, searching in a subset of the

symmetric-feasibility space as 23] may lead to a non-optimal solution.

Figure 2.3 The symmetric feasible examples (a, a’) and (b, b’) are symmetric
pairs: (a) @’ }b, b ba’; (b) @’ }b, b ba's(e) b La, b La’; (d) bLa, b La’s and (¢)

@b b L



By cnumerating a number of intrinsic problems in those SP symmetric-feasibility
conditions (2.3), Kouda ef al. proposed one lincar-programming based scheme using
SP [26] [27]. Although the formulation is general, the method has high packing
complexity due to the nature of linear programming. Nevertheless, the work fits well
into the framework of template-driven analog layout retargeting and optimization,

which is an increasingly important area of research [29].

2.2.2 Corner Block List (CBL)

Comer Block List (CBL) [15] is composed of three sequences (5, L, T), where
sequence § represents cell names from lefi-bottom corer to right-top comer, list L
records the orientation of cell deletion operations, and 7 is the number of T-junctions
uncovered if the corer cell is deleted from the packing. This representation features
only linear time for constructing a placement if given a CBL.

In the CBL method [15], it firstly determines the orientation of comer block cell,
and then processes the comer block deletion. If the comer block is horizontally
oriented, 1o delete the comer block, we shift its left segment to the right boundary of
the chip, and pull the attached T-junctions along with the segment. A T-junction is
composed of two segments: a non-crossing segment and a crossing segment. If the
comer block is vertically oriented, we shift its bottom segment to the top boundary of

the chip, and pull the attached T-junctions along with the scgment. The comer block



list is constructed from the record of a recursive comer block deletion. For each block
deletion, we keep a record of block name, comer block orientation, and number of
T-junctions uncovered. At the end of deletion iterations, we concatenate the data of
these three items in a reversed order. Thus, we have the sequence S, orientations list L,
and T-junction information st 7. Each string of 1 is ended with a 0 to separate from
the record of the next comer block deletion. We take the floorplan of Figure 2.4 as an
example. First, cell d is deleted since d is vertical oriented and there is one T- junction

attached at the bottom edge of block d. Thus, we keep a record (d, 0, 10). Cells a, b, g,

e, c are deleted successively. We concatenate these records in a reverse order of
deletion and derive a comer block list (5, L, 7), where § = (feegbad), L = (001100),

and T= (001010010).

Figure 2.4 CBL example

The proposed CBL placement method of [15] is based on simulated annealing
algorithm. The perturbations of the CBL are listed as follows.

1) Randomly exchange the order of the blocks;



2) Randomly choose a position in L, change /10 0, or 010 I;

3) Randomly choose a position in 7, change /o 0 or 010 /;

4) Rotate the cell;

5) Reflect the modules in both horizontal and vertical orientations;

6) Randomly choose a cell, then randomly choose an alterate cell to substitute
the original one.

Using the algorithm above, among the random comer block lists one optimal
solution can be generated. The algorithm works efficiently since the time complexity
of transforming a comer block list to a placement configuration is Ofn. The number
of the combinations of comer block list is O(n/2"**/ n'"). In addition, comer block list
takes n(3+{/gnl) bits to describe, where [/gn] denotes the minimun integral number
which is not less than /gn. Furthermore, comer block list represents the floorplan
independent of the cell sizes. One can use this representation to optimize the cells
with multiple configurations of widths and heights.

Liu e al. investigated the application of the CBL representation in the
symmetry-aware context [30]. To handle the symmetry constraints, one need to build
up a tree structure, which all of the later processing operations are based on. However,
10 detailed complexity analysis and experimental comparison with other prior work is
provided in [30]. And that work only focuses on the situation of single
symmetry-group constraints. Moreover, similar 1o the other tree representations, the
CBL representation fails to effectively expose the topological relationship between

any two cells before packing.



2.2.3 Tree Structures

Some tree structures, such as O-tree [13] and B*-tree [14], are employed to
reduce high packing complexity for the analog placement problem. O-tree uses the
ordered tree to represent the placement as shown in Figure 2.5 and traverse the tree
using depth-first-search (DFS) order [13]. However, this representation can only
handle compact placements rather than any general placements. In contrast, B*-tree is
based on ordered binary trees to derive the admissible placements [14]. For a node, its
left and right child nodes represent a left-right and bottom-top geometric relationships,
respectively. However, for those tree representations, due to lack of the definition of
the geometric relationship between each pair of cells, there is no awareness of cell
relative positions and optimality before packing especially under complex constraints,
resulting in degradation of solution quality and even longer exceution time.

Most recently, HB*-tree [9] has been proposed for solving symmetry constraints
using a concept of symmetry island. The author points out that when the symmetric
cells of the same symmetry group are placed tightly (or even adjacent) to cach other,

the layout style is generally considered much better. Consequently, the sensitivities

due to process variations can be imized, and the circuit performance can be

improved. So [9] defined the symmetry island, a placement patter with respect to a

symmetry group in which each cell in the group abuts at least one of the other cells in



the same group, and all the cells in the symmetry group form a connected placement.

Figure 2.5 Example of O-tree

It uses a binary tree to represent a compact placement just like B*-tree. The root
of a B*-iree corresponds to the cell (or called module) on the bottom-left comer. For
each node  corresponding to cell b, the left child of n represents the lowest adjacent
cell on the right side of b, while the right child of n represents the first cell above b
with the same horizontal coordinates. The symmetric cells in one symmetry group are
formed as one symmetry island to be represented by one hierarchy node. For example,
in Figure 2.6 (a), there are two symmetry groups. The HB*-tree representation of this
placement is shown in Figure 2.6 (b). The asymmetric cells placed adjacent to cells in
the symmetry island on the top are connected as the right child to the contour nodes of

the hierarchy node.
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Figure 2.6 The HB*-tree representation and corresponding placement

The packing scheme of HB*-tree has two steps, that is, island packing and the
HB*-tree packing. The packing of the island is similar to that of the B*-tree [14],
which follows the preorder-tree-traversal procedure to caleulate the coordinates of
the cells. During the packing flow, two double-linked lists are implemented 1o keep
both horizontal and vertical contour structures. Afier obtaining the coordinates of all
representative cells in the symmetry group, we can caleulate the coordinates of the
symmetric cells and the extended contours. The HB*-tree packing also adopts the
preorder-tree-traversal procedure. When a hierarchy node is traversed, the island in
the hierarchy node should be packed first to obtain the contours of the symmetry

island deseribed previously. The contours are then stored in the corresponding

W



hierarchy node. When packing a hierarchy node that represents a symmetry island, we
should calculate the best packing coordinate for the botiom boundary of the symmetry
island. We then proceed to pack the left child of the hierarchy node. After the left
child and all its descendants are packed, we pack the first contour node of the
symmetry island, followed by the second one, and so on. When packing the contour
nodes, we only need to update their coordinates and replace the hierarchy node in the
contour data structure. The perturbation of the HB*-tree is based on the node
operations and takes Oflgn) time due to the feature of tree structure.

“The work of [9] is the first approach, which can handle symmetric packing with
linear time complexity. However, it can only handle the situation where symmetric
cells belonging to the same symmetry group are closely adjacent to each other (i.¢., no
asymmetric cell keeping symmetric ones separate). In addition, as it cannot denote the
relationship between any two nodes before traversing the tree and packing, it s hard
1o handle any relative topology constraints (explicitly imposed by the designers),
which require one cell (or symmetry group) to be placed on the lefuright or

bottomv/top of another cell (or symmetry group).

2.2.4 Graph Structure

Graph structures have also been used to solve the analog placement problem.

Assume there are a set of vertices ¥ and a set of edges £, and a directed acyclic graph



G= (¥, E) is formed. Transitive Closure Graph (TCG) [11] of G is defined as graph

(V. E) with E'= (v, v). If ¥ (v, ) €V, there is a path from vertex v; to v;in G.

A TCG representation of a placement consists of two graphs: horizontal transitive
closure graph Gy and vertical transitive closure graph G,. In both graphs, a vertex (c.g.,
v) corresponds to a cell. A direct edge <, v> in the Gy, (G,) means that cell v, should
be placed at the left (bottom) of cell v;. This relationship is presented as v; | (1) v;. For
an edge <v, v> in Gy (Gy), v, (c) is called a fan-in vertex (fan-in cell) of v; (c),
whereas v, (c) is called a fan-out vertex (fan-out cell) of v; (c). The weight of vertex
indicates width (height) of the corresponding cell. And the number of the fan-in
(fan-out) vertexes of a cell is called in-degree (out-degree) of this cell. As shown in
Figure 2.7 (a), the compact placement, which cannot be presented by O-tree, can be
correctly presented by the TCG graphs.

The TCG placement scheme proposed in [11] needs to be implemented with
some extra operations (e.g.. checking conflict edges upon random perturbation) to
guarantee the transitive closure feature (that is, if v/ | (1) v2and va | (1) vs holds,
there must exist v, | (1) v; in the graphs during perturbation). Thus, the complexity of
the proposed perturbation and packing operations tends to be high. For the TCG
packing scheme, the original TCG method uses the longest path algorithm for the
graphs, which has the time complexity of Ofn’).

In contrast, to handle the symmetry constraints, [31] deployed another
graph-based topological representation called TCG-S [16] as shown in Figure 2.8,

which combines TCG with a topological sequence. This TCG-S method developed a



contour-based packing method with the time complexity of O(nlgn). The topological
sequence is the same as the f-sequence in the SP method. It tunes the coordinates of
the symmetric cells during the packing flow based on the symmetric constraints.
Similarly, mandatory validity checking of TCG reduction edges significantly
increases the perturbation complexity. Moreover, this proposed TCG-S method is

only limited to handling the situation with one single symmetry group.

a sy Iy

Gy

(a) ()

Figure 2.7 (a) The placement and (b) the corresponding TCG

To cover any possible symmetry situations and obtain a general solution to
analog constraints, a preliminary work of [28] derived basic symmetric-feasible TCG
conditions. But that work only exhibits the processing details for one single symmetry
group and experiences high packing time complexity of O(n), where 7 is the number
of the placed cells. In this thesis, | am motivated to explore the TCG placement
strategy to handle the complex constraints with multiple symmetry groups but with

less packing and perturbation complexity.
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Figure 2.8 (a) The placement and (b) the corresponding TCG-S.

2.3 Summary

In this chapter different approaches for analog layout placement problem have
been reviewed. Based on the comparison of the distinet methods above, the best way
of guaranteeing the validity and efficiency of solution searching tends to be the
topological methods. Considering the complex analog placement constraints as well
as the features of TCG, I choose the TCG as the basic representation scheme in this
thesis.

As two outstanding topological representations, TCG and SP are exhibited

equivalent from the perspective of functionality [28]. As a matter of fact, they can be



converted to each other if either is available. Nevertheless, TCG and SP are different

in the following aspects. Since SP is a sequence based representation, it is casy to be

and quite straig for the ion operations. One can
simply perturb the sequence and obtain a new valid SP. In contrast, simple edge move
(ie., moving an edge from G, to G, or vice versa) or edge reverse (i.c., reversing an
edge in G or G,) operation for TCG is not always safe as the transitive closure
feature of TCG cannot be automatically preserved. In this thesis, we will prove that
TCG, if following our proposed perturbation scheme, is able to manage the
perturbation while preserving the transitive closure with linear time complesxity.

On the other hand, SP can only show the abutting geometric relationship between
cells, while TCG is a graph-based representation that can use edge weights to store
the distance information of cells. This feature makes TCG cffortless to indicate the
‘geometric relationship of the cells and further handle some additional constraints.
Provided that the weight of an edge between two vertices in a TCG represents the
width or height of the corresponding cell, cell separation (i.¢., two cells are kept away
from each other with a certain distance) and cell merging (ic., two cells overlap with
cach other to share some regions such as bulk contact rows) constraints can be
represented by having the edge weight more than or less than a pre-set value.
‘Therefore, despite a topological representation, TCG is capable of obtaining a denser
layout solution (i.c. due to cell merging) without compromising parasitic (i..
separation of certain cells that include sensitive nets). In contrast, it is very hard to

perform cell separation or cell merging with the SP representation.




In summary, the SP and TCG can be transferred to each other or complete the
same perturbation operation in Ofn) time, where n is the number of the cells in the
placement. Our study shows both representations mainly differ in the edge weight,
which we can take advantage of in the analog placement design. The TCG-based
symmetry-aware placement algorithm proposed in this thesis can be readily rephrased
in terms of the SP representation. For the sake of any further development targeting at
the analog placement problem, we propose the method based on TCG to handle the
multiple symmetry-group constraints, the substrate sharing constraints, and some
other constraints.

In addition, the features of different approaches, including SP [23), SP with linear
programming (LP) (26], SP with dummy node (DN) [24], HB*-tree [9], CBL [30],
TCG-S [11] and S-TCG (this work), are summarized in Table 2.1. The third column
Non-compact placement shows whether the method is able to obtain the solution that
is not compact. And the fifth column Completeness means whether a complete
solution space is able to be explored by the individual approach. Our work in this

thesis is denoted in the last line.



Table 2.1 Comparison of different topological representations in the context

of symmetric-aware placement
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Chapter 3 Search Engine for the Analog
Placement Problem

Simulated annealing algorithm (SA) and genetic algorithm (GA) are two effective

search engines for the placement approaches [32], because they can readily regard

distinet constraints in different applications. SA and GA have been widely used for
the layout synthesis of both digital [33], [34] and analog circuits. They typically can
yield good placement results.

As an important part of our algorithm, we introduce the SA method in Section 3.1.
“The other important approach GA s detailed in Section 3.2. As one of my prior work,
in Section 3.3 1 propose an analog placement scheme based on the artificial neutral

network, which is compared with the SA and GA algorithms. In the last section |

make a brief summary.

3.1 Simulated Annealing Algorithm

Simulated annealing (SA) [18] is a generic probabilistic heurist

for the global
optimization problems of applied mathematics, namely locating a good approximation
1o the global minimum of a given function in a large search space. It is ofien used

when the search space is discrete (¢.g., all tours that visit a given set of cities). For



certain problems, simulated annealing may be more effective than exhaustive
enumeration — provided that the goal is merely to find an acceptably good solution
within a fixed amount of time, rather than the best possible solution.

The name and inspiration come from annealing in metallurgy, a technique
involving heating and controlled cooling of a material to increase the size of its
erystals and reduce their defects. The heat causes the atoms to become unstuck from
their initial positions (a local minimum of the internal energy) and wander randomly
through states of higher energy; the slow cooling gives them more chances of finding
configurations with lower internal energy than the initial one [18].

By analogy with this physical process, cach step of the SA algorithm [18]
replaces the current solution by a random "nearby” solution, chosen with a probability
that depends on the difference between the corresponding function values and on a
global parameter T (called temperature), which is gradually decreased during the
process. The dependency is that the current solution almost randomly changes when 7
is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill"
moves saves the method from becoming stuck at local minima — which is the bane of
greedier methods.

In the earliest days of scientific computing, SA was introduced and could be used
10 provide an efficient simulation of a collection of atoms in equilibrium at a given
temperature. In each step of this algorithm, an atom is given a small random
displacement and the resulting change, AE, in terms of the energy of the system is

computed. If AE <0, the displacement is accepted, and the configuration with the




displaced atom is used as the starting point of the next step. The case AE>0 is
treated probabilistically: the probability that the configuration is accepted is P(AE) =
exp(-AE/K,T). Random numbers uniformly distributed in the interval (0, 1) are a
convenient means of implementing the random part of the algorithm. One such
number is selected and compared with P(AE). If it is less than P(AE), the new
configuration is retained; if not, the original configuration is used to start the next step.
By repeating the basic step many times, one simulates the thermal motion of atoms in
thermal contact with a heat bath at temperature T [18]. This choice of P(AE) has the
consequence that the system evolves into a Boltzmann distribution.
Using the cost function in place of the energy and defining configuration by a set
of parameters {x;) , it is straightforward with the Metropolis procedure to generate a
population of configurations of a given optimization problem at some effective
temperature [18]. This temperature is simply a control parameter in the same unit as
the cost function. The simulated anncaling process consists of first “melting” the
system being optimized at a high effective temperature, then lowering the temperature
by slow stages until the system “freczes™ and no further changes occur. At each
temperature, the simulation must proceed long enough for the system to reach a
steady state. The sequence of temperatures and the number of rearrangements of the
{x,) attempted to reach equilibrium at each temperature can be considered an
annealing schedule.

Annealing, as implemented by Metropolis procedure, differs from integrative



improvement in that the procedure does not get stuck since transitions out of a local
optimum are always possible at nonzero temperature [18]. A second and more
important feature is that a sort of adaptive divide-and-conquer occurs. Gross features
of the eventual state of the system appear at higher temperatures; fine details develop
at lower temperatures.

Statistical mechanics contains much useful information for extracting properties
of a macroscopic system from microscopic averages. Ensemble averages can be

obtained from a single generating function, the partition function, Z,

z=r,exp[1;—frj G
2

In which the trace symbol, 7;, denotes a sum over all possible configurations of atoms
in the sample system. The logarithm of Z, called the free energy, /(T), contains
information about the average enrgy, <E(T)>, and also the entropy, S(T), which is

the logarithm of the number of configurations contributing to the ensemble at 7;

—KpTinZ = F(T) = < E(T)> —S(T) 32
Boltzmann-weighted ensemble averages can be easily expressed in terms of
derivatives of F. and the rate of change of the energy with respect to the control

parameter, 7, is related to the size of typical variations in the energy by



c(r) = £ (33)

In statistical mechanics, C(T) is called the specific heat. A large value of C
signals a change in the state of order of a system, and can be used in the optimization
context to indicate that freezing has begun and hence that very slow cooling is
required. It can also be used to determine the entropy by the thermodynamic relation

Of the approaches to handle the analog placement problem, SA is used as the
search engine based on a cost function that includes arca, wire length, and other
penalties. Although an SA-based approach performs well in the placement problem,
to ensure the convergence to the optimum, much effort is required for the problem
definitions and the parameter tune-up, such as move types, neighbor structures, and

annealing schedules.

3.2 Genetic Algorithm

A genetic algorithm (GA) [35] is a search technique used in computing to find

tion or search problems. Genetic

exact or approximate solutions to optimi;
algorithms are categorized as global search heuristics and a particular class of
evolutionary algorithms (EA) that use techniques inspired by evolutionary biology
such as inheritance, mutation, selection, and crossover. GA is implemented in a

computer simulation in which a population of abstract representations (called



chromosomes or the genotype of the genome) of candidate solutions (called
individuals, creatures, or phenotypes) to an optimization problem evolves toward
beter solutions. Traditionally solutions are represented in binary as strings of Os and
s, but other encodings are also possible.

The evolution usually starts from a population of randomly generated individuals
and happens in generations. In each generation, the fitness of each individual in the
population s evaluated. Multiple individuals are stochastically selected from the
current population (based on their fitness), and modified (recombined and possibly
randomly mutated) to form a new population. The new population s then used in the
next iteration of the algorithm. Commonly, the algorithm terminates when cither a
‘maximum number of generations has been produced, or a satisfactory fitness level has
been reached for the population. If the algorithm has terminated due to a maximum
number of generations, a satisfactory solution may or may not have been reached.

A typical genetic algorithm requires:

1) a genetic representation of the solution domain;

2) a fitness function to evaluate the solution domain.

A standard representation of the solution is an array of bits. Arrays of other types
and structures can be used in essentially the same way. The main property that makes
these genetic representations convenient is that their parts are casily aligned due to
their fixed size, which facilitates simple crossover operations. Variable length
representations may also be used, but crossover implementation is more complex in

this case. Tree-like represent

ns are explored in genetic programming and



graph-form

“The fitness function is defined over the genetic representation and measures the
quality of the represented solution. For instance, in the knapsack problem one wants
to maximize the total value of objects that can be put in a knapsack of some fixed
capacity. A representation of the solution might be an array of bits, where each bit
represents a different object, and the value of the bit (0 or /) represents whether or not
the object i in the knapsack. Not every representation is valid, as the size of objects
may exceed the capacity of the knapsack. The fitness of the solution is the sum of
values of all objects in the knapsack if the representation is valid or 0 otherwise. In
some problems, it is hard or even impossible to define the fitness expression; in these
cases, interactive genetic algorithms are used.

Once we have the genetic representation and the fitness function defined, genetic
algorithm proceeds to randomly initialize a population of solutions and then improve
it through repetitive application of mutation, crossover, inversion and the selection
operators.

Zhang et al [32] proposed a genetic algorithm associated with certain simulated

annealing concepts to handle the analog placement problem. The process is described

as follows. First, the geometry information and the net-list of the cells are inputted.
‘Then the first population is randomly initialized and several random placement states
are initialized to setup the initial temperature 7. The next step is to evaluate the cost

with the aid of the cell-slide process which is to place the cells adjacent and no

overlap.



“The iteration based on the crossover-rate begins to do crossover to generate one
offspring and do inversion on the generated offspring based on inversion-rate. Then
the best N members are chosen among the former members and newly gencrated
offspring, and they are set as the new generation. For each of N/2 members in the new
generation, mutation on the clone of one member s done based on the mutation-rate.
The iteration continues until the temperature reaches the stop criterion. At last, it
outputs the best results. The flow of the algorithm is shown in Figure 3.1. It is
reported that this proposed algorithm along with the optimized parameters, with high
computation efficiency, can generate high-quality placement of the cells.
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Figure 3.1 Overflow of the GA-based analog placement algorithm

3.3 Neutral Network




In this section, a method to handle the placement problem using artificial neutral
network is detailed to compare with the previous two search engines. An artificial
neural network (ANN) [36] is a mathematical model or computational model that tries
to simulate the structure and/or functional aspects of biological neural networks. It
consists of an interconnected group of artificial neurons and processes information

u

g @ connectionism approach o computation. In most cases, an ANN is an
adaptive system that changes its structure based on external or internal information
that flows through the network during the learning phase. Neural networks are
non-linear statistical data modeling tools. They can be used to model complex
relationships between inputs and outputs or to find patterns in data. In the following
sections, I will introduce the details of the neutral network and its application to solve

the analog placement problem.

3.3.1 Introduction to Neutral Network

Although many schemes have been proposed for the analog layout automation, a
majority of the current placement algorithms deploy simulated annealing (18] or
evolutionary algorithms [35], whose performance heavily relies on the applied
cooling schedule or the construction of perturbation/mutation operators.

“The development of artificial neural networks provides us more choices to solve

the placement problem. Thus far, some neural networks have been adapted for this



purposc. Kita ef al. [36] proposed a Hopfield network model to handle the placement
problem by introducing several schemes (e.g., interconnection modification and
weight-factor tuning) for the energy function. This neural network can generate

proper placement that has sufficiently good quality. However, this work only

considered the basic area and wire requirements normally demanded by digital VLSI
circuits. Gloria ef al. presented a neural model called Boltzmann machine to solve the
block placement problem on parallel machines [37]. This work is particularly suited
for the low-cost massively parallel implementation in order to reduce execution time
at the price of processor and memory resources.

Fang ef al. proposed a mean-field neural network model for quadratic assignment
[38]. According to their theoretical study, the mean-field neural network is able to
repeat the annealing flow at particular temperature 7 so that the optimal solutions can
be searched with less execution time. The analysis shows the iteration numbers should
be proportional to 7./ (.-T), which means more iteration is required to reach
equilibrium around 7 than anywhere else. Furthermore, Unaltuna and Pitchumani
designed a normalized neural network that is able to find optimal solution with lower
cost compared to Hopfield network [39]. In addition, they provided a good scheme to
determine the temperature .

To the best of my knowledge, applying neural network to the analog placement
problem has yet to be investigated. Therefore, in this thesis, I extend the previous

work by focusing on the analog constraints.



3.3.2 Analog Placement Problem Modeling

Assume a list of cells {C}, Cs, Cj, ..., Cy} are to be placed on a plane whose width
and length are 1 and H, respectively. So we design a mean-field neural network with
W H neurons. Each neuron has a binary value output. For the problem modeling,
we define a set of three-dimensional binary array V= {0, , , } 1o represent neurons.
“The network architecture is shown in Figure 3.2. If we place one cell C; on the plane
and the coordinates of the lefi-bottom vertex is (v, y), then O, , will be 1.
Otherwise, the output will be 0. We update the state of cach neuron following the
mean-field algorithm described in section 3.3.3 until the network reaches thermal

equilibrium. Based on the final state of neurons, we can obtain an optimal placement.

Figure 3.2 Network Architecture



To obtain a valid placement, we need to consider the following constraints: (1)
cach cell should be placed at one and only one particular position on the plane; (2)
any two cells should not overlap with each other; (3) any cells should not be placed
over the boundary of the plane; (4) to extend the use of the network, we take the
symmetry and proximity constraints into account.

After applying the aforementioned constraints, we can obtain a valid placement.
‘The goal of the analog placement problem s to locate the cells within the plane whose

size is WxH. And the total wire interconnection should be minimized.

3.3.3 Algorithm Description

“To solve the analog placement problem, we design the mean-field neural network

algorithm with the aid of several parameters as shown below.

1) Energy function

@) Basic energy function
In this section, we define some parameters to indicate the characteristics of cells.
We create an nxn matrix L to include the interconnections between each two cells.

L(C, ) specifies the number of interconnections between cells €, and C; (i, how



‘many ports are connected between these cells). The Euclidean distance value between
the two cells is defined as d(C, C) by calculating the distance between the cell
centers in the algorithm.

Based on the variables defined above, we construct the basic energy function as

follows:

5-FITEETUCC)

(€, )0, 0.,

where O stands for the output of neuron. We can see this basic energy function

decreases when two cells are placed with less distance.

b) Non-overlap constraints
The non-overlap constraint means no cell is allowed to overlap with another in
the final placement. As w(C,) and A(C, are used to indicate width and height of cell C,,

we can easily set up the following constraint for all the cells:

et e o 65

Therefore, we have the second energy function item as a penalty component

shown in (3.9):
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c) Symmetry constraints

Symmetry constraints involve two types of cases: symmetric pair and
self-symmetric cells. Cells in one symmetric pair should be placed on the opposite sides
with respect to symmetry axis, whereas the self-symmetric cell should be placed along
the symmetry axis. In this work, we only consider the horizontal symmeltry situation.
We use an 7% matrix 1o indicate the symmetry relationship between the cells. If ells

€, and G are a symmetric pair, then S(C,C))

S(C,,C) =1, otherwise, S(C,.C) =

S(CC)=0. If cell C; is self-symmetric, then S(C,C) =1, otherwise, S(C\y

) =0.
Assume we have p symmetric pairs and ¢ self-symmetric cells. We use p; and p; to
denote any symmetric cells. Now we consider a symmetric pair P4 =(C,,C;) whose two
cells have the same ¥ coordinates and are placed on the opposite sides with respect to
the same symmetry axis.

We assume the center X coordinates of one symmetric pair and one self-symmetric

are X, and X,, respectively. And X, stands for the corresponding symmetry coordinates.

X, 124X, X )12,
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d) Proximity constraints

‘The proximity constraints limit cells to a connected placement so that the devices
can share a common substrate/well region or guard ring in order to decrease parasitic
effect. To represent proximity relationship, we use an nxn matrix K. If cells C; and G,
have proximity relationship, then K(C,, ) = 1 and K(Cj, C) =1, otherwise, K(C, C)
= 0. So we can have the energy function £, to apply the proximity constraints to the

placement:
E=XYYYYY KCCHCCI0;, Orpn, - B
Gx %€y

) Boundary constraints
As the plane is fixed, we need to set up boundary constraints to place cells only
inside the plane. For every cell, we must keep 0< x, < W-w(C) and 0< y; < H-h(C}). So

we can have a ffth energy function as follows:
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‘We can obtain the entire energy function of the mean-field neural network for the

analog placement problem in the following:
E=a-EroyBtagEro - Eta ki, (3.10)

where aj, @ a5 ay, and as are weight factors. The selection of the weight factors may

affect the optimization process of the neural network. When selecting large valucs, the

network has fast convergence speed but maybe sacrifice the scarch quality, i.c., the
optimization is premature and a non-optimal solution is obtained. However, when we
select small values, the network can obtain a better solution but with long computing
latency. We tune the factors after computation experiment and follow the standard of
choosing the factors describe in [36].

Furthermore, we can obtain the mean field by caleulating the first-order partial

derivative of £ in terms of O,

sy, 10 update the state of the neurons,

dE
d(;ZZOF,_n i Ll



2) Plane constraint

For a general placement problem, we need to set up a plane constraint. This
constraint means that each cell must be placed within one panel (ic., neuron) on the
plane in Figure 3.2. Therefore, in the three-dimensional matrix of Figure 3.2, there is
only one neuron, whose output is /, on one plane formed by X and ¥ dimensions. In
contrast, for the Hopfield network, we need to add a penalty item to the energy
function in order to apply this constraint. Generally speaking, it is difficult to
determine the penalty item in a neural network to solve the analog placement problem.
Therefore, in this thesis, we employ the mean-field neural network [7] and
normalization of neurons to apply this constraint

The output state vector O, of each neuron can be treated as a unit in the
random equilibrium disturbance. So we can assume that the probability of locating the
coordinates of left-bottom corner of cell C; accords with the Boltzmann distribution as

shown in (3.12),

0, x,.y, X EXPCHC, ., 1 T) (¢.12)

where @, is the mean field as given in (3.11).

When ¢, increases, the probability 0, , , , which is the output of neuron,



will decrease. When output O, decreases to zero, the left-bottom comer of cell

€, will not be assigned to the position of (x, y,). To obtain a practical probability, we
apply normalization of the neuron output by dividing the sum of the value of all

neurons as shown in (3.13):

Oy = XD, [ TV Z XY, Xty IT). G.13)

The equations mentioned above would guarantee that cells can be placed
following the plane constraint, Obviously, this normalization scheme is beneficial as it
removes the requirement of the penalty item. The normalization scheme and the

energy function can guarantee to obiain a valid solution o the placement problem.
3) Critical temperature

As mentioned in Section 3.3.1, one of the advantages of the mean-field neural
network is that it may achieve the optimal solution at particular temperature without
decreasing the temperature [38] [40]. This temperature is called critical temperature
where the bulk of the optimization occurs. To obtain the critical temperature, we can
assume that in the initial state, the occupation probability of cach cell in cach grid

position is the same, 1/X,. (W H). So we can determine the critical temperature using

(3.14):



max {g,, /In(Ec, OV -H)) 619

‘And we choose 7. as the critical temperature and start the annealing process from

that temperature.
4) Algorithm flow

‘The annealing flow for solving the analog placement problem s shown in Fig

33,



PO

End

Begin

12 While (deltaF: is not small enough)

Randomly assign values to neurons and generate an initial placement;
Calculate the normalization of all the neurons;

Calculate 7 using (3.14) as the initial temperature;

Caleulate the energy g~ using (3.10);

Do

Randomly choose one cell €,

Calculate the mean field ¢, for all x and all y with (3.11). Add

hill-climbing item to (3.11) to avoid local minima;

Update the output 0, of the neurons for all x and all y using (3.12);

Calculate normali:

tion of O, , for all x and all y using (3.13);

Caleulate Eyey using (3.10);

Calculate deltal:

Smew = Eoldy

Figure 3.3 ANN placement algorithm

After establishing a mean field neural network and inputting a circuit netlist, we

first randomly assign each neuron with a value, do the normalization and calculate the

critical temperature as shown in Lines 1-3 of Figure 3.3, Then we randomly choose one

&



cell and update the neurons on the plane corresponding to this cell using (3.12) and
calculate the energy change (in Line 11) after update. When updating the neurons, we
first need to calculate thed. , , . Here local minima means all the output of the
network is close to zero and we cannot obtain a better solution. To escape from this
situation, we need to add a value (called hill-climbing ifem as shown in Line 7 of Figure
3.3). This update process is repeated until the network reaches thermal equilibrium.
And the final output of the network gives an optimal solution to the placement problem.

The complexity to calculate the mean field ¢, , , is O(N), where N is the
number of neurons. To calculate the encrgy, we only need to calculate delrak: (shown in
Line 11 of Figure 3.3) and the complexity is O(N"x), where 7 is the number of cells
needed to be placed. We need O(n) iteration to reach the thermal equilibrium state. So

the total complexity of the algorithm is O(N?)

3.3.4 Neural Network Method Results

We implemented this neural network algorithm in Java and tested it on a 2GHz
PC. To compare with other work, we employ two test circuits with added symmetry
and proximity properties. The first test circuit has 20 cells from [37). Reference (37)
provides a solution known to be the best optimal to this circuit. The second test circuit
that we used in this study has 25 cells provided in [36]. Both circuits are input

together with interconnection, symmetry, and proximity matrixes to initialize distinet



properties.

We can first see a simple case of 4 cells whose width and length is 2x2 need to

be placed at a 1010 plane. The result is shown in Figure 3.4. We have to build a /0

* 104 neural network first. We can see that the four matrixes denote the location of

the four cells. The maximum possibility of / in matrices /, 2, 3, 4 are in the position

(9, 2), (9, 4). (7, 4) and (7, 2) respectively. So we obtain the final placement with 4

cells placed closely and the cost is minimized.
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Figure 3.4 The result of a

‘We compare our work with simulated annealing (S4), genetic algorithm (GA)

[35], Hopfield network [36], and Boltzmann machine [37]. Our algorithm presented



in this chapter is marked as MF. Since the previous work did not consider the analog
placement constraints, we added some related weight items to the Hopfield and
Boltzmann machine methods. For simple implementations of S4 and GA, we added a
checking function to exclude invalid placements. In Table 3.1, we show the
comparison results from 50 times execution, and we pick the best results, the worst
results, and the average results. From Table 3.1, we can see that our MF algorithm
obtained better placement with cost improvement of 9%, 15%, and 13% over S4, GA.
and Hopfield methods, respectively, for the best results of Circuitl. In terms of
execution time, the MF algorithm ran 21%, 18%, and 24% faster than S4, GA, and
Hopfield methods, respectively. In contrast, for the average results of Circuitl, our
proposed algorithm achieved better performance in cost by 16%, 16%, and 17% and
less execution time by 14%, 17%, and 20% compared to §4, GA, and Hopfield
methods. Compared to the Boltzmann machine method, MF had higher cost of 5%,
1%, and 1% for the best, the worst and the average results, respectively. However, our
proposed algorithm reduced the exceution time by 5%, 8%, and 6%, respectively. One
final placement result of Circuit] is depicted in Figure 3.5.

For the best results of Cireuit 2, our proposed algorithm achieved better
performance in cost by 8%, 8%, and 10% and reduced the execution time by 7%, 7%,
and 15% compared to 54, GA, and Hopfield methods, respectively. Although MF
worked marginally worse (by 1%) in terms of cost than Boltzmann machine method,

the former algorithm ran a bit faster (by 4%) than the latter one.

0



Table 3.1 Neural network algorithm circuits results

Gl | S4 | [ GA | Hopfield | Bolizmann
Best Cost 164 134
Time (sec.) 2]
Cireuitl | Worst Cost 168
Time (sec.) 9
| Average Cost 154
Time (sec.)
Best Cost 752
Time (sec.) 159|152
Cireuit2 901887 883 832
| Time (sec.) | 186|189 193 167
Average Cost | 879 | 867 | 865 802
Time (sec) | 175 17| 173 | 154

In summary, our mean-field neural network algorithm is able to achieve better
performance in both cost and the exccution time than 54, G, and Hopfield methods.
Compared to Boltzmann machine method, our proposed algorithm can reduce the

execution time but experience marginal performance loss in cost.

Figure 3.5 Final placement of Circuitl using MF



3.3.5 Neural Network Method Summary

We first discussed the modeling of the problem in terms of neural network and
then presented a detailed optimization flow in particular on how to manage the
multiple constraints for analog placement. Our experimental results show. the
efficiency of the proposed algorithm compared to some other stochastic approaches.
However, one big issue for this problem is that it cannot guarantee to obtain a valid
placement all the time. Thus, a post-processing step is needed to check whether the
result is correct and fix the place plane if it is invalid. This drawback motivates me to
develop a better algorithm 1o resolve the problem for the general analog placement

design.

3.4 Summary

Most of the work of the analog placement design uses simulated annealing or

genetic algorithm. An artificial neural network based approach is implemented to
handle the analog placement problem. However, this algorithm cannot always
guarantee 1o obtain a valid placement. And the plane size has to be fixed at the

beginning of optimization. Therefore, in the following chapters 1 am focused on




developing an efficient topologic placement algorithm to resolve this problem by
nature. As most of the previous work used simulated annealing as the search engine,
to maintain a fair comparison, we will use the same scheme as the search engine for

the proposed TCG-based algorithm in this thesis.



Chapter 4  TCG-based Method to Handle
the Symmetry Constraints

In this chapter, 1 will introduce a strategy for the placement problem to handle the
symmetry constraints with multiple groups. A set of symmetric-feasible definitions
for TCG s first presented in Section 4.1. Then the packing flow will be detailed and
the perturb operations will be discussed in Sections 4.2 and 4.3. Finally I will show

the experimental results and draw the conclusions in Section 4.4.

4.1 Symmetric-Feasible TCG

In this section, we first present one definition for TCG symmetric-feasible
conditions. Then the correctness of the conditions is proved. By using the proposed
conditions, one can verify the feasibility of symmetric placements without packing in
advance. Without loss of generality, the analysis in this thesis is only focused on the
situation where the symmetry axis is vertical.

Let (Gy, G,) be the TCG representation of a placement containing two symmetry

groups I"and ®. For (a, )€, if a# a, then (a, a) is a symmetric pair consisting of



two distinct cells @ and a; and if a=a, then a is a self-symmetric cell. For the

multi-group symmetry situation, we can define the following conditions.

Definition 1: For V(a, a) €T, V(b b)) €T, V(¢ ¢’) €D, and V(d, d)
E€®, a TCG representation is symmetric-feasible if the following four conditions are

satisfied.

For intra-group of I" (the same for ®)

inGyrafkbahabh, @.1)
inGy:akbpbLa; “@2)

For inter-group between I" and &
inGy:afcanda’fe'h dbbandd’ b, “3)
(4

inGy:abcapelar;
where symbol |- represents its left operand is topologically on the left of its right
operand, symbol L represents its left operand is topologically below its right operand,
and symbol ¢ denotes that the two cases before and afier this symbol cannot
simultancously appear in the same TCG. For the intra-group conditions, (4.1) and (4.2)
guarantee the symmetric feasibility of symmetric cells within one group. In conirast,
the inter-group conditions (4.3) and (4.4) are deployed to coordinate the relative

Tocation of symmetric cells among muliple symmetry groups.

Lemma 1: Any symmetric placement containing multiple symmetry groups can

be represented by a symmetric-feasible TCG,



Proof: First, we consider the relationship between symmetry groups since the

intra-group relationship can be considered as a special case of multiple symmetry

groups.

For any two symmetric pairs (¢, a) €T and (b, b)ET, and another two
symmetric pairs (¢, ¢")€ ® and (d, d")€®, to simplify the analysis, we first assume
two pairs within one symmetry group are located vertically, that is, a- b, a“L b", a}
biandbla’inT, el d ¢ d’, chd’,and df ¢’ in ®. Thus, there are four typical
relative positions as shown in Figure 4.1. Cases (1) and (11) show the situation where
the two symmetry groups are placed without interference, whereas cases (I11) and (IV)

indicate the situation where the two symmetry groups interfere with cach other.

Case (1): (a, @) and (b, b") are placed at the left of (¢, ¢") and (d d). In other
words, group-I" is placed at the left of group-® as depicted in Fig. 4.1(I). The
relationships of the cells in Gy, are:

abea'te,

bld,bta:

Feate

‘b bk,

abd,a'td,abd,a'}td,
ble,ble' b beandbfe
And the relationships in the G, are

albaly, cldcla



[} vy

Figure 4.1 (I) group I'is placed at the left of group ®; (II) T"is placed below

; (1) T and @ are intermingled; (IV) ® is placed within I

Obviously, there is no violation above in terms of the symme

conditions (4.1)-(4.4)

Case (11): as group-I" s placed above group-®, and the relationships between the
cells are list as follows:
alcate,ale,ale
bhd bld,bla,bLa,
abd,atd,ald,aLd,

ble,bbebLc andb e




And the relationships in the Gy are:
abba'bh, chdcbd.

we can prove it in the same way as case (1).

Case (Il): This case shows that group-I' and group-® are placed with
interference. The relationships of the cells in G, are:
abe,abdabe,alb,
cla’dbaickbate,
abetabd,bbes bk,
And in G, we can have the relationships
albate, obdcta.
The relationships listed above do not violate the symmetry conditions of

(@.1)-(4.4).

Case (IV): The relationships of the cells in G, are:
abe,atbdalerabs,
ebatekdichs,
bhe,bldbla,
dbbidfedfa,
we can have the relationships in G,
albaLp, cbdcLa

We can see the same result holds for this case, where group- is placed inside



group-T".

Besides, in a similar manner we can analyze the other situations, e.g., the
symmetric pairs within one symmetry group are located horizontally or any
symmetric pair is replaced by one self-symmetric cell. Therefore, we can derive that
the symmetric-feasibility conditions (4.3)-(4.4) will always hold for any analog
placements with multiple symmetry groups.

As for the intra-group conditions, we can consider one single symmetry group,
say . Assume (¢, @) €T and (b, b) €T There are three typical placements as
shown in Figure 4.2, where cells ¢ and @ may be any cells. If a = a’ (or b = b"), then a
(or b) is a self-symmetric cell.

(1ILa) (11Lb)

Figure 4.2 (I) (b, b") are placed within (a, a'); (I1) (a, ") are placed at the

bottom of (b, b); (ILa) a }b, b"Fa’, abe, ¢ }b, b"}d, and d fa’s (ML) a }b,
aLb,ale chb, dtb’, and a*ld.



In case (1) of Figure 4.2, (b, b") sit within (¢, a’) along the horizontal direction,
and their vertical projections overlap. In this case, no relationship in G, exists and the
following relationships in G hold:

atbandb’ta’,

which satisfy (4.1 in Definition 1. In case (II), (b, ") are placed on the top of (a, a’)
and there are relationships of a-L b and a*Lb", which accord with (4.2) in Definition 1.
In case (III), we can categorize it into two situations. As shown in situation (IILa),
cells ¢ and d are placed within the two pairs, and their vertical projections overlap.
‘Thus, this situation is the same as case (1). As for situation (IILb), we have a | b (due
toa Fcandc | b) on the left side of the symmetry axis, whereas we have a 16" (due
to aLd and a-b") on the right side. And these geometry relationships in the graphs
have no violation from (4.1) and (4.2).

Therefore, we can conclude that any symmetric placement with multiple
symmetry groups can be represented by a symmetric-feasible TCG. [ |

(Note: symbol [l stands for an end of proof)

4.2 Symmetric Packing

In this section, 1 will describe the flow of the packing scheme for TCG. To
construct placement of a symmetric-feasible TCG, the conventional TCG

representation has been adapted by introducing a dummy axis cell to denote the



symmetry axis of each symmetry group. One example is shown in Figure 4.3, where
there are two symmetry groups. Group-1 has two symmetric pairs (i.¢., (¢, a) and (¢,
<)) and one self-symmetric cell b, whercas group-2 has two symmetric pairs (i.c., (g,
&) and (£./). Cells d, ¢, and h are asymmetric. For the two symmetry groups, we add
dummy axis node DNI for group-1 and DN2 for group-2. In the packing and
perturbation process, we employ the dummy nodes as barriers to separate the TCG
into different parts with respect to different symmetric axes. To make it convenient to

operate on self-symmetric cells, we divide any self-symmetric cell into a pair. In

Figure 4.3 (a)-c), b and b, stand for the two halves (i.c., the left and right part)
derived from the self-symmetric cell of b. For any asymmetric cells that overlap with
a symmetry axis, we consider them to be constrained by a horizontal relationship with
the symmetric axis. Figure 4.3 (d) shows the corresponding symmetric placement, To
make the graph more comfortable to read, we only keep the edges between the cells in
each divided area.

1 have developed a packing scheme as listed in Figure 4.4. Below the packing
process is explained based on the example depicted in Figure 4.3. The proposed flow

is composed of four major steps:

Step 1: packing preparation (Lines 1-4).
First we obtain the topological order (i.c., the f-sequence of the corresponding SP)
that represents the packing sequence of the TCG. Then we use the dummy axis nodes

as barriers to divide the entire sequence into multiple sub-sequences as shown in



Figure 4.6. The purpose of this operation is to keep symmetry requirements void
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G,

(bya, d ¢, DN b, c' e a’f g h DN2.f, g)

within each sub-sequence;
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(a,d ¢ by, DNI, ¢’ e,a’ b, g h fDN2, g’ f)
(b)
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Figure 4.3 (a) TCG; (b) corresponding SP; (¢) symmetric placement with

separate self-symmetric halves; (d) final symmetric placement

Step 2: initial packing (Lines 5-7).




Here we borrow the concept of contour adopted in TCG-S [16] to operate on a
step called initial packing for compactly placing each sub-sequence. Two lists (i.c., Cy
and C, for horizontal and vertical contours, respectively) are initialized empty and
updated once each new cell is placed. The cells are processed one by one according to
the topological order and a current cell is always placed horizontally/vertically
adjacent to the cells that are already on the contour list. The packing is started from
the most left bottom coordinates of (0, 0). For instance, in Figure 4.6, to pack each
sub-sequence, each time we only consider the cells in the shadow region. That is to
say, we first pack sub-sequence (a, d, ¢, by), then the second sub-sequence (¢, ¢, a’, b,
g h. ), and last the third sub-sequence (g, /).

The contour scheme is based on the topological order and both C, and C, keep
updated. The basic idea is to process the cells following the sequence defined in the
topological order and locate the current cell to a comer fixed by the previously placed
cells in Cy and C, according to the geometric relationship defined in Gy and G,. As
well, we keep the information of valid segment value with the cells. We use x; (x, )
and y, () to denote the X and Y coordinates of the left-bottom (right-top) comer of
cell ¢, Recall that C(C,) is a list of cell ¢/’ for which there exists no module ¢, with
> 3> x). G (Cy) consists of the cells along the top (right) boundary of a
placement. We can keep the cell ¢'s in C;(C,) in a balanced binary search tree 7 (7,)
in the increasing order according to their right (top) boundaries. For casier
presentation, we add a dummy cell ¢; (cs) to Cy (C) to denote the left (botiom)

boundary cell of a placement. We have ¢ |, and cylc; , for all ¢, in the placement.



Let (7, 31) = (0, ), and (x3’, 34) = (, 0). C4(C,) consists of ¢/ (cy) initially, and so
does the corresponding (7). To pack a cell c; in the topological order, we traverse
the cell ¢;'s in 7}, (T,) from its root, and go to the right child if ¢ |c; (c¢L ;) and the
left child if ¢, L ¢4 (c; } e ). The process is repeated for the newly encountered cell
until a leaf node is met. Then, ¢; is connected to the leaf node, and x, = x, (3, =y, ),
where c; is the last cell with ¢, |, (¢, ¢, ) in the path. After ¢, is inserted into 7,(T}),
every predecessor ¢/ with x/<x; (/<) in T (75 is deleted since c; is no longer on
the contour. The ordering of nodes in ) (7,) can be obtained by depth-first search.
“This process repeats for all cells in the topological order. Thus, we have W= x, (H=
) if ey s the cell in the resulting 7, (7,) with the largest value, where I¥ () denotes

the width (height) of the placement.



Begin

1 Construct the topological order of the TCG;

2 Generate the packing sequence of packSe, which contains only the
symmetric cells;

3 Consider the dummy axis cells as barriers to scparate packSeq into
sub-sequences;

4 Create a list made up of the sub-sequences;
5 Do initial packing for the first sub-sequence and calculate the axis position
6 For (the list is not empty)

7 Donitial packing for the second sub-sequence;

8 Follow packSeq one by one. Compare the Y coordinates of cach two cells
in one symmetric pair such as (@, a’), and make ¥, = ;= max(¥y, ¥,)
and shift the packing symmetric cells that have vertical relationship with
the shified cells;

9 Follow packSeq one by one, for every two cells in one symmetric pair
such as (a, a”); caleulate A=Y, ~Xou) and AY,: =|X, Yoy, Then shift
one symmetric cell to make AX,= AX, = max (A, AX,). Also tune-up
the corresponding cells with same AX, ;

10 Do final packing for the first and second sub-sequences;
11 Remove the first sub-sequence from the sub-sequence lisr;
12 End for

13 Consider all symmetric cells as preplaced cells and final-pack the whole
sequence;

14 Post-process self-symmetric cells to merge two split parts back to one unit;

End

Figure 4.4 Symmetric packing flow



“The detailed procedure is illustrated in Figure 4.7 (a)-(d). Initilly the two contour
lists C and C, only have boundary cell ¢, and ¢; respectively. And in the example, the
dotted line shows the vertical contour and the dash line indicates the horizontal
contour. After we place the first cell a, Cy and C, are updated to {cs a} and {c; a},
respectively. As the second cell d has horizontal relationship with cell @, it is
positioned on the right of cell a, C; s updated to {cs,a, d}, and C s updated to {c d}
For the next cell ¢ that has horizontal relationship with cell d, it is placed on the right
of cell d based on the current vertical contour list. Next, it s the tur of cell b to be
placed, which s supposed to be on the top of cells a, d, and c. As currently Cj is {c» a,
d. ¢}, we trace the cells in Cy so that cell by is placed according to the highest
horizontal contour (i.., cell d) as shown in Figure 4.7(d). Afier that, C, is updated to
{es b d, ¢}, C, is updated t0 {c1 ¢, d, by}. Up to now we have completed the packing
of the cells on the left of symmetry axis DN1, whose coordinates can be determined
accordingly.

In the following procedure, the coordinates of the symmetry axis need to be
updated after placing cach cell. When we process the first symmetric cell, the

coordinates of the symmetric axis Xy is just the right end of that cell. After that, if a

placing cell belongs o a symmetric pair, Xus is updated with the right end of that
current cell if the latter is larger. If a placing cell is asymmetric, we will calculate the
middle coordinates axisimp between the right end of the current cell and the right end

of the closest symmetric cells placed on the left. Xy is updated With axisim if the



latter value is larger. In the example of Figure 4.7, we can see that the coordinates of
the first symmetry axis DNI are Xus. After we place the first symmetric cell a,
Xuisi=La where L is the width of the cell. After placing d that is an asymmetric cell,
Xost s updated to Ly + Ly / 2. After we process cell ¢ that is symmetric, Xosi
changes 10 L+ L+ Le, which is the same as the horizontal boundary. And the second
sub-sequence can be packed in the same way to obtain the horizontal coordinates of

the axis,

Step 3: tune-up operation on symmetric cells with respect to the symmery axis
for meeting the symmetry constraints (Lines 8-10).

After initial packing, the vertical and horizontal positions of symmetric cells are
modified with respect to the corresponding axis as listed in Figure 4.4. To avoid
cyclic shift, we follow the packing sequence of packSeq to conduct the tune-up

operation. After the comparison of ¥ coordinates of two cells within one symmetric

pair (such as (b, b)), the lower cell would be shified to the same level (i.c.
max (Y3, ¥4)). Then we increase the vertical coordinates of its fan-out symmetric cells
by AY. Notice that we need to shift the counterpart of the shifted cell as well
For each two cells belonging to one symmetric pair (such as (b, b)), AY; = X
Nl and AXy: = Xy X are caleulated and one of the symmetic cells is shified to

make AYy= AXy = max (AX, AXy). In addition, if the shifted cell is on the right (or

left) with respect to the symmetry axis, its fan-out (or fa cells in Gy

symmet

are moved in the same direction with the same amount, This tunc-up operation



guarantees that the symmetric cells are placed in harmony with the symmetry

constraints. The examples can be seen from Figure 4.7 (f)-(g). From the graph, we can
see that we shift cell b, up with AY, and shift cell a’to the right with AX. Afierwards
the third sequence (', /) is packed and the tune-up operation is conducted for

symmetry group 2 as shown in Figure 4.7(h)

Step 4: final packing of the entire TCG and post-processing of self-symmetric
cells (Lines 13-14).

In the final packing, the same contour-based scheme is used for the entire TCG,
in which the symmetric cells are considered as the preplaced ones (i.c., unchanged
coordinates). That is to say, for a symmetric cell, it is just added to the contour list

without modifying the coordinates because symmetric cells have been placed

with respeet to the ing symmetry axis in the previous steps.

Any shift of symmet

c cells in the final packing would make all the efforts spent in

the initial packing and tune-up operation in vain. In effect, the final packing is
focused on positioning asymmetric cells compactly. As the contour lists are deployed,
any waste space can be reused by asymmetric cells so that the entire placement area
may be reduced.

In the previous steps, by dividing self-symmetric cells into two halves (i.c., the
left and right ones), we can consider them as normal symmetric pairs. As special care
has been taken in the perturbation operation (detailed in Section 4.3), it is guaranteed

that there is no cell in between these two halves. As the last step of the packing, a




post-processing operation is conducted to shift the two halves towards the symmetry

axis and eventually merge them to one cell. Since there is no cell placed between
these two halves and they are considered to be symmetric pairs in the previous phases,
this post-processing step is to locate the self-symmetric cells along the symmetry axis

‘without fail.



Begin
1 Construct the topological order of the TCG;

2 Generate the packing sequence of packSeq, which contains only the
symmetric cells;

3 Consider the dummy axis cells as barriers to separate packSeq into
sub-sequences;

4 Create a list made up of the sub-sequences;

5 Do initial packing for the first sub-sequence and calculate the axis position
Naisy

6 For (the list is not empty)
7 Do initial packing for the second sub-sequence;

8 Follow packSeq one by one. Compare the Y coordinates of cach two cells
in one symmetric pair such as (a, @), and make ¥, = ¥, = max(¥s, Yo);

9 Follow packSeq one by one, for every two cells in one symmetric pair
such as (, a’); calculate AX,=Xo ~Xaxa| and AX; =|Xy ~Xaxs|. Then shift
one symmetric cell to make AX,= AX, = max (AX AX);

10 Do final packing for the first and second sub-sequences;

11 Remove the first sub-sequence from the sub-sequence fist;

12 End for

13 Post-process self-symmetric cells to merge two split parts back to one unit;

End

L

Figure 4.5 Simplificd Symmetric packing flow

Assume we need to place n cells where p symmetry groups are included. Each

%



group has at most g symmetric pairs and s self-symmetric cells. And each
sub-sequence has at most m cells. Our proposed packing scheme above first takes O(n)
time to generate the topological order (due to [28]). According to [16], the time
complexity of the contour-based packing algorithm for each sequence is O(m-lgm).
And we need O(n) time to update the symmetry axes. For the tune-up operation of
symmetric cells, we need O(p( g + 25 )) time for both the Y and X dimensions. In
addition, the final packing takes O(i/gn) time and the post-processing operation takes
Ofp's) time. Therefore, for the worst case, the time complexity is O(pnlgn) in total
for our proposed packing scheme of TCG.

Based on the general packing scheme above, we can allow for a relatively simple
implementation where the cells of different symmetry groups do not interfere with
one another by placing all the symmetric cells of one group to the left (or right) of the
symmetric cells belonging to another group as shown in Figure 4.1(I). For this
situation, the algorithm s simplified by keeping Lines 1-7. And for Lines 89, we
only need to tune up the coordinates of the symmetric cells since the dummy node
representing the axis s used as a barrier, and the cells from different groups cannot
interfere with one another. The simplified symmetric packing flow is presented in
Figure 4.5. For this simplified scheme, for every loop, the tune-up operation takes ()
time. The loop number of the initial and final packing operations is of O(p). And the
post-processing siep takes O(p'k) time. So the total complexity of this simplified
packing scheme is O(pm lgm). The experimental and comparison results between the

general and simplified packing schemes will be detailed in Section 4.4.
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Figure 4.6 Packing sub-sequences

Compared to the HB*-tree approach [9], this proposed method can handle the
situation where an asymmetric cell is placed between two symmetric cells (such as
cell ¢ in Figure 4.1). In contrast, following the symmetry-island definition in [9],
symmetric cells in one symmetry group must be always connected. As a mater of fact,

if an asymmetric cell includes some highly sensitive nets that are associated with both



cells in a symmetric pair, placing the cell within the symmetry group can significantly
reduce the cost of wire length.

As a summary of the operation above, we can derive the following lemmat

Lemma 2: Any symmetric-feasible TCG containing multiple symmetry groups can be

packed to a symmetric placement within polynomial time.

Proof: Following either packing scheme explained above, any symmetric-pair cells
are placed at the same Y coordinates and at the same distance (on the opposite sides)
from the corresponding axis since the coordinates of the symmetry axis are calculated
based on this principle embedded within the tune-up operation. The self-symmetric
cells are placed along the symmetry axis by the post-processing operation
Furthermore, as we use the contour-based packing scheme, the asymmetric cells
would not overlap. And the complexity analysis shows the entire algorithm takes

Ofpn-lgn) time at most. Thus, this lemma is proved. |
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Figure 4.7 Example of the packing



Theorem 1: Optimal symmetric placement can be derived by searching the

space by means of ic-feasible TCG.

Proof: From Lemma 1, we have proved that for a symmetric placement, we can
always find a symmetric-feasible TCG to represent it. And from Lemma 2, we are
able to pack a symmetric-feasible TCG containing multiple symmetry groups to a
symmetric placement. Thus, it is seen that symmetric-feasible TCGs and symmetric
placements have a straightforward mapping relationship. By taking advantage of the
correlation between both, a thorough search in the configuration space of
symmetric-feasible TCGs can eventually pinpoint to a symmetric-feasible TCG state

that maps the optimal symmetric placement. | |

4.3 Symmetric-Feasible TCG Perturbations

To search for an optimal solution to symmetric placements, we need to conduct
continuous random perturbation of TCG states, where the TCG validity and
symmetric-feasibility should be always preserved. For this purpose, we introduce five
perturbation operations in this section. Since all the perturbations are done by TCG
edge operations, we will first prove that the topology-relationship change among the
vertices in a TCG can be done in Ofn) time. In contrast, the same task has to be

fulfilled in O(n’) time by means of checking the reduction edge in the conventional



TCG method [11].

4.3.1 Cluster Edge Move-Reverse and Edge Move
Operations

Following the terminology defined in [11], in a TCG, moving an edge from G to
Gy, or vice versa, is called edge move operation; moving an edge from G 10 G, or
vice versa, and also changing the direction of the edge after the edge move is called

edge move-reverse operation. We further have the following definitions:

Definition 2: The sum of in-degrees in both Gy and G, of a vertex is called in-in
degree, whereas the sum of in-degree in G, and out-degree in G, of a vertex is called
in-out degree. For any two vertices (termed as reference vertices) in a TCG, an
aggregate of the vertices, whose in-in degrees (or in-out degrees) are between the
in-in degrees (or in-out degrees) of the reference vertices, is called in-in (or in-our)

cluster.

Definition 3: Cluster edge move-reverse (or cluster edge move) operation is defined
as a set of edge move-reverse (or edge move) operations between one reference vertex
and cach vertex from a union of the other reference vertex and in-in (or in-out) cluster

vertices.




Lemma 3: Without losing TCG transitive-closure property, the topological
relationship between any two vertices in a TCG can be modified by a cluster edge

move or cluster edge move-reverse operation, which takes Ofn) time.

Proof: As mentioned in Section II, TCG and SP are equivalent in functionality and

different only in certain aspects. According to [28], for a TCG, the vertices in the

a-sequence of the corresponding SP are ordered incrementally according to the in-out
degrees of vertices, whereas the vertices in the B-sequence are ordered incrementally
according to the in-in degrees of vertices.

As per Definition 2, the vertices within an i

cluster are actually the ones
between two reference vertices in the P-sequence. Thus, one cluster edge
‘move-reverse operation is equivalent to reversing one reference vertex with respect to
the union of the other reference vertex and in-in cluster vertices. Thus, the resultant
TCG must remain transitive-closure as the corresponding reversed SP is valid. A
similar observation can be conducted for a cluster edge move operation, where the
only difference for this situation is that the vertices within an in-out cluster are
actually the ones between two reference vertices in the a-sequence.

For a TCG, it takes constant time to obtain in-degree and out-degree of a vertex.
And any trivial edge move-reverse or edge move operation only needs constant time:
Therefore, one cluster edge move-reverse or edge move operation would take at most

Ofm) time. [ |



As an illustration shown in Figure 4.8(a), we follow the example used in [11]

‘which has 5 vertices.
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Figure 4.8 Perturbation example

First we run a cluster edge move operation to change the relationship from b-c to
ble. By calculating in-out degrees, we can determine the in-out cluster between
vertices b and c is {a, d}.Thus, besides an edge move operation between vertices b
and ¢, we have to make edge move operations between vertex ¢ and any vertex from

{a, d} as shown in Figure 4.8(a). And the result afier cluster edge move operation is



shown in Figure 4.8(b). It is obvious that the TCG transitive-closure feature is
preserved but with no need to check the reduction edge [11]. Similarly, if we run a
cluster edge move-reverse operation to change the relationship from a-Lc to ¢ ba, the
in-in cluster between vertices a and ¢ that we determined is {b}. Thus, besides an
edge move-reverse operation between vertices @ and ¢, we have to make another edge
move-reverse operation between vertices b and ¢ which are bold as shown in Figure

4.8(c) and the result is shown in Figure 4.8 (d).

4.3.2. Five Perturbation Operations

In the following sub-scctions, we will discuss five proposed perturbations. We
declare that we use the dummy axis vertices to separate the TCG into different
regions. From left to right, the first region is all fan-in vertices of the first axis vertex.
And cach of the next regions consists of in-in cluster between two adjacent axes. The

last region includes all the fan-out vertices of the last axis vertex.

1) Vertex Rotation

Vertex rotation operation is actually to change orientation of the corresponding

vertex. For a symmetric pair, rotation of one vertex should make the corresponding

counterpart on the other side change to the mirror orientation with respect to the



symmetry axis.

Lemma 4: Given a symmetric-feasible TCG, the perturbed TCG is still
symmetric-feasible and valid under the vertex rotation operation, and this operation

takes O(1) time.

Proof: After the vertex rotation process, the vertices and edges of the TCG will
remain the same as before. As we only need to exchange the weights of the related
edges, the resultant graphs are still symmetric-feasible and valid. And exchanging the

weights of the related vertices in G and G, only takes O(1) time. [ ]

2) Symmetric Swap

Symmetric swap operation is defined as follows: one vertex in a symmetric pair

swaps position with its symmetric counterpart.

Lemma 5: Given a symmetric-feasible TCG, the perturbed TCG is still
symmetric-feasible and valid under the operation of symmetric swap, and this

operation takes O(/) time.

Proof: When processing the symmetric swap operation, we only need to exchange the

two vertices and the corresponding edges. So the topology of the TCG, which was



originally symmetric-feasible and valid, does not change. The change of the two
related vertices and the corresponding edges in the G, and G, of TCG only take O(1)

time, |

3) Symmetric-Cell Move

This operation is to change the horizontal or vertical relationship between
symmetric vertices within one symmetry group or from different symmetry groups.
For example, if one symmetric pair was located at the bottom of one self-symmetric

cell, the self-symmetric cell may be moved to a position within or at the bottom of the

As mentioned in Section 4.2, the self-symmetric cells in our TCG are divided into
two halves. To deal with this perturbation, we need to ensure there is no vertex to be
placed within the halves. When the topology relationship of one cell from a
symmetric pair changes, the relationship of its counterpart has to be changed
accordingly if there is a violation of (4.1)-(4.4).

‘The details of the algorithm are shown in Figure 4.9. Recall that we use the
dummy axis vertices as barriers to separate the TCG to different regions. As shown in
Figure 4.10, the two dummy axis vertices divide the TCG into three regions.
Following this operation, we first randomly pick up two symmetric vertices in one
region (say, vertices a and ), and randomly change their topology relationship. To

keep the symmetric-feasibility, if & is a self-symmetric half, we cannot change to the



situation where vertex a is placed between the dummy axis vertex and vertex b.
According to Lemma 3, we can safely change the vertices relationship based on in-in
or in-out cluster. After we have made the relationship change, the counterpart vertices
of the changed symmetric ones have to be verified. If there is a violation of (4.1)-(4.4),
the counterpart vertices have to be updated according to the moved part. Note that the
change of the counterpart vertices would not interfere with the original vertices as
they are belonging to the different regions separated by symmetrix axes.

One example is shown in Figure 4.10. Assume vertices a and ¢ from symmetric
group 1 are randomly chosen. Due to a |, the derived in-out cluster for vertices a and
cis {d}. After cluster edge move operation, the following two edges appear: a-Lc and
e, In addition, we need to change the relationship between the symmetric
counterparts, that is, aLc’. Following the same strategy, we can change the
relationship from c1b; to ¢ b The result of the perturbation is shown in Figure

4.10(e), where the moving vertices are shown in the TCG.



Begin

1 Randomly pick up two symmeric vertices a and  in reference to a symmetry
axis;

2 Check the relationship of these two symmetric vertices;
3 IF (ais one self-symmetric half vertex)
4 In reference to the dummy node (marked DN) for the symmetry axis,

randomly change (by using the cluster-based edge operations) to another
relationship between a and b except for a H FDN or DN b ba;

5 ELSE
6 Randomly change the relationship of  and b (by using cluster-based edge
operations);

7 ENDIF

3 Il 5 violation of (4.1)-(4.4) for the symmetric counterparts of vertices
9 Change the counterparts to the same relationship (by using cluster-based

edge operations);
10 ENDIF
End

Figure 4.9 Symmetric cell move

Lemma 6: Given a symmetric-feasible TCG, under the operation of moving
symmetric vertices, the perturbed TCG is still symmetric-feasible and valid. And this

operation takes O(n) time.

Proof: Following the scheme in Figure 4.9, the topology-relationship change between

103



symmetric vertices is always in accordance with (4.1)-44). Thus,
symmetric-feasibility can always be preserved. In addition, as the aforementioned
geomery-relationship change is based on cluster edge move-reverse and cluster edge
move operations, the updated TCG is still valid according to Lemma 4. As at most
two cluster cdge move-reverse or cluster edge move operations are involved, the

complexity of this symmetric-cell move operation is just O(n). [ ]

50 8

Figure 4.10 Example of symmetric-cell move
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4) Asymmetric-Cell Move

“This operation is to perturb the topology relationship between an asymmetric

vertex and other vertices. The operation flow is listed in Figure 4.11.

Begin
1 Randomly pick up an asymmetric vertex ¢ and another vertex d in one region;
2 IF (dis an asymmetric veriex)
3 Randomly change the relationship between ¢ and d using the cluster-based
edge operation;
4 ELSE IF (dis a self-symmetric vertex)
5 In reference to the dummy node (marked DN) for the symmetry axis,
randomly change the relationship between ¢ and d except for d ¢ FDN or
DN e bd;
6 ELSE IF (dis one dummy node for symmetry axis)
7 Pickup cand d as reference, and all the vertices in the target regions is in the
in-in cluster;
8 Apply the cluster edge move-reverse operation and edge move operation to
update the TCG;
End

Figure 4.11 Asymmetric cell move



First we randomly pick up an asymmetric vertex ¢ and another vertex d in one
region. If d is an asymmetric vertex, we randomly change the topology relationship
between ¢ and d. If d is a self-symmetric vertex, we randomly change the topology
relationship between ¢ and d but excluding the situation where ¢ is eventually placed
between d and its corresponding dummy symmelry axis vertex. If d is a dummy
symmelry axis vertex, since any vertex can only have horizontal relationship with the
dummy symmetry axis vertex, this topology-relationship change is to place the
asymmetric cell (i.c., ¢) to another region. So when this operation is applied, we take

vertex ¢ and the dummy node vertex as two reference vertices. All vertices C, in this

region are in the i

in cluster of the two vertices. And then we apply the cluster edge
move-reverse operation and edge move operation to update the TCG.

As an illustration, Figure 4.12 exhibits the topology-relationship changes between
asymmetric cell 4 and symmetric cell £ In the graphs, we only present the related
vertices. The in-out cluster between / and /s {g}. To update the graphs, we can use
cluster edge move-reverse to change the relationship of  with reference to vertex g
and £ And then we can apply the cluster edge move and reverse operation between
vertex fand h. Figure 4.12(d) depicts the new placement after the perturbation where

his moved to the top of symmetric cell /

Lemma 7: Given a symmetric-feasible TCG, under the operation of moving
asymmetric cells described above, the perturbed TCG is still symmetric-feasible and

valid. And this operation takes O(n) time.




Proof: Following the process in Figure 4.11, the topology-relationship change of
asymmetric  vertices is always in accordance with (4.1)-(4.4). Thus,
symmetric-feasibility can always be preserved. In addition, it first takes O(1) time to
pick up the vertex, and then Ofi) time to extract the in-out or in-in cluster. According
to Lemma 3, the eventual cluster edge move-reverse or cluster edge move operations

only needs Ofn) time to construct a new symmetric-feasible and valid TCG.  []
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Figure 4.12 Example of asymmetric move

5) Symmetry-Group Move

“This operation is to change the relative position of different symmetry groups.
‘The flow is detailed in the Figure 4.13. We can randomly pick up one dummy axis
vertex for perturbation, and we are going to place the related symmetry group at the
most right position. To apply this operation, we first delete all vertices belonging to
this symmetry group (with respect to the selected dummy axis vertex). The TCG is
still transitive closure since we also delete all edges related to the deleted vertices.
And then we begin to add the deleted vertices follow the in-in degree order one by
one. We set them 1o be the fan-out vertices to all vertices currently in Gy and no
relationship in G,. One example of the symmelry group move operation is shown in

Figure 4.14. In other words, we remove all the cells c; belonging to symmetry group 1,
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and then place all these cells to the rightmost side of all the remaining cells. As they
are placed to form a group, by further using operations 1) - 4) described above, we

can continue to search for other configurations.

Begin

Randomly pick up one symmetry group A, search all cells in this group.

2 Delete all vertices belonging to this symmetry group A with respect to the
picked dummy axis vertex;

3 Set them to be the fan-out vertices to all vertices current in Gy and no

relationship in Gi;

4 Output the new TCG

Figure 4.13 Asymmetric cell move

Lemma 8: Given a symmetric-feasible TCG, under the operation of symmetry group
move, the perturbed TCG s still symmetric-feasible and valid. And this operation

takes O(n) time.

e 10 pick up the related vertices and then O(n) time to

Proof: 1t first takes O(1)
delete the vertices. Then it takes O(n) time to complete the insertion process.
Moreover, as the newly formed symmetry group is placed in the in-in degree order

and only has horizontal relationship among the related vertices, the TCG is stll

109



Figure 4.14 Example of symmetric group move

‘Theorem 2: By means of operations 1) - 5) detailed above, the solution space of
the symmetric-feasible TCGs can be fully explored. Each operation takes at almost

Ofn) time, where n is the number of cells.



Proof: Since all the perturbations in 1) - 5) are done by TCG cluster edge
move-reverse or cluster edge move operations, they can be completed in Ofn) time.
And in our perturbation scheme, we are able to randomly change the relationship of

any two vertices unless there is violation to the symmetric-feasible conc

ons
(4.1)4.4). Therefore, the continual perturbations and search using operations 1)-5)

can ensure to traverse the complete configuration space of placements. [ ]

4.4 Experimental Results

In this section, the experimental results using our proposed scheme are reported.
They are compared with several other methods to evaluate the performance of our
method. The final placement of several test circuits by using our scheme is also
shown in this section.

Following the algorithm described above, I have implemented the proposed
symmetry-aware TCG scheme based on a simulated annealing optimization flow. The
program was coded in C++ language under Linux operating system and tested on a
2GHz PC with distinet test benchmark circuits. Compared to the existing schemes,

our method is able to effe

ely search the entire configuration space. And it
theoretically features less perturbation complexity than TCG [11] or TCG-S [16], and

less packing complexity than SymmTCG [28]. In addition, this method can handle



multiple symmetry-group constraints. The cost function is constructed in the

following format:

Cost=a,,,- Area +Y. f3 -WireLength, , “3)

where @ and  are two factors prioritizing the weights between area and wire length.
And for different wires or nets, different f, can be used. As we pay more attention to
improving the placement quality of analog layouts, the cost values obtained from
distinet approaches are of utmost concem, and we are less worried about the
computation time compared to the cost.

Since there are only a few published approaches available for the multiple
symmetry-group placement, we compare our work (i.c., S-TCG-1 representing the
complete flow with the general packing scheme and S-TCG-2 standing for the flow
with the simplified packing scheme discussed in Section 4.2) with the absolute
placement method [10], basic SP (23], SP with dummy node [24], SP with lincar
programming (26] and HB*-tree method [9]. In this work, we have used two groups
of test circuts. In the first group, three MCNC benchmark circuits (i.c., apte, ami33,
and amid9) were modified to include two symmetry groups in each circuit. The
second group includes three industry-size analog circuits, each of which is composed
of 60-100 cells and 3-5 symmetry groups. In addition we use an OTA from [41] as
our own test cireuit. The details of the test circuits and the compared approaches are
listed in Tables 4.1 and 4.2,

First we test the performance of the distinct placement algorithms on the MCNC

n




benchmark circuits and the results are shown in Table 4.3. We list the number of the
cells and the number of symmetry groups in each circuit. The last column shows the
absolute cost value and execution time of our S-TCG-2 method. The cost value is
calculated from the cost function including both area and wire length. And in the cost
funetion, we have assigned distinct factors to different nets. The other columns show
the percentage of the result value of the other methods we implemented compared to

our proposed §-TCG-2 method.

Table 4.1 MCNC benchmarks

Block Symmetric
index Name Nets remarks | Source
size groups |
1 apte 9 91| 2 MCNC
[ ami33 [ 33123 2 | MCNC
3 amid9 a9 (a8 2 [ | MCNC
T I | Modified
4 | biasynth_2pdg | 65 | 100 3 Modified
from [9]
Inamixbias_ B Modified
5 110 | 100 5 Modified
2pdg | from [9]
||
— — 1 Nodiied
6 | Mod_biasynth | 65 | 100 3 Modified
| from [9]
Modified
7 | Mod_Inamixbias | 110 | 100 5 Modified
from [9]

8 |OTA 69 | 100 5| Modified | [41]
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Table 4.2 Approaches for comparison

Index | Name Technique Packing | Perturbation | Ref.
1 Abs Absolute mothod o) o) (10
2 SP sp o) o) 231
3| SPWD | SP+ dummy node o) om ||
4| SP+LP | SP+Linear Programming |  O(n) o | e
5 | HB*tree | Hierachical B*-tree O oty | 9
6 | S-TCG-1 TCG O(pnign) om
7 |STCG2 TCG Ofpmigm) | o
Table 4.3 Results of MCNC benchmarks
Circuit “Abs | SP | SPWD | SP+LP | HB*tree | S-TCG-I | $-TCG-2
Cost | 120.7% | 112.2% | 107.7% | 106.4% | 101.2% | 100.0% | 50.74
apte | Time
1100% | 767% | 466.7% | 400.0% | 100% | 119% 3
(sec)
Cost | 1189% | 1093% | 108.5% | 107.4% | 103.7% | 99.0% 133
ami33 [ Time N
1670% | 1190% | 244.4% | 354.8% 104% 121% 62
(sec)
Cost | 129.1% | 107.9% | 108.7% | 107.1% | 102.5% 99.2% 4221 ‘
amid9 | Time |
2250% | 1360% | 201.0% | 2280% | 113% | 118% | 107
(sec)
Cost | 124% | 110% | 108% | 107% | 1025% | 99.4%
average | Time )
| - 1640% | 1105% | 274% | 327% | 105.6% | 119%
scc)




From the experimental results listed in Table 4.3, we can find that our methods
achieve the best performance in terms of cost. On average, S-TCG-2 can reduce the
cost by 24% compared to Abs, 10% compared to SP, 8% compare to SPWD, 7%
compared to SP+LP and 2.5% compared to HB*tree,. In terms of execution time, we
can see that $-TCG-2 is 15.4 times faster than Abs, 10 times faster than SP, 1.7 times
faster than SPWD, 2.3 times faster than SP+LP, 5.6 % slower than HB*iree. As
suggested in [9], the tree representations such as B*-free and O-free intrinsically have
low complexity. Therefore, B*ree can manage the packing in the lincar time.
However, this approach is based on the concept of symmetry-island and can only
handle the situation where all symmetric cells are located together. No asymmetric
cells or symmetric cells from another symmetry group can separate the symmetric
cells of one symmetry group. This limitation would inevitably compromise the search

quality for the final optimal placement.

Comparing two packing schemes discussed in Section 4.2, we can see that the
general packing scheme (i.c., S-TCG-2) is helpful (by decreasing the cost by 0.6%
compared to the simplified packing scheme (i.c., S-TCG-1)), but at the expense of
19% more in terms of execution time. So in the following experiments we consider
the simplified packing scheme as our standard implementation for the comparison
with other approaches on the test of large-size analog circuits. Figure 4.15 shows the

final placement result of ami33 with two symmetry groups. The symmetric cells are



shadowed for easy identification. The left symmetry group includes two symmetric
pairs and one self-symmetric cell, whereas the right symmetry group has two
symmetric pairs.

In addition, as shown in Table 4.4, we tested two analog circuits, including
biasynth_2pdg of 65 cells and Inamixbias_2pdg of 110 cells [9] [24] [26]. Comparing
with the other work, we have achieved 21% better than Abs, 12.2% better than SP,
9.4% better than SPWD and 7% better than SP+LP in cost on average. Also our
method runs 21.9 times, 9.7 times, 4.5 times and 6.7 times faster than Abs, SP, SPWD
and SP+LP, respectively. In addition, our proposed method is able to achieve certain
improvement in terms of cost (2.1% and 4.2%, respectively) compared to the
HB*-tree work, although the execution time of our method is inferior. From our
observation, the symmetry groups in those test circuits are mainly made up of the
cells with similar sizes and few self-symmetric cells. Thus, the best placement
situation s to pack the symmetric cells together closely without any involvement of
asymmetric cells in between, i.c., with the design methodology of symmetry island

[10y.
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Table 4.4 Results of industry circuits

Circuit [ Abs | sP | SPWD | SP+LP HB'—lru‘S—TCG»Z
[ Cost | 127% [ 109.8% [ 107.4% | 104% | 102.1% | 542 |
biasynth
[ Time
opdg | 2150% | 611% | 154% | 221% | 893% | 131
(sec)
Cost | 119% | 114.6% | 109% | 109% | 1042% | 5141
Inamixbias_ | | . S I B o
ime
2pdg 2430% | 1130% | 543% | 920% | 82.5% | 287
(sec) |
Cost | 123% | 112.2% | 108% | 105.5% | 102.7%
average | Time
| 2290% | 871% | 349% | 667% | 85.9%
| (sec)
L

To evaluate the performance of distinet algorithms when handling more complex
situations, we modified the two circuits by adding some self-symmetric cells to
different symmetry groups and changing size of some symmetric-pair clls. In
addition, we deployed another test circuit calld OTA due to a highly linear
operational transconductance amplifier [41], which includes 69 cells and five
symmetry groups. The experimental results are listed in Table 4.5. On average, our
proposed method reduced the cost by 21%, 11.2%, 9.4% and 7% compared to Abs,
SP, SPWD and SP+LP, respectively. In particular, for mod-biasynth, mod-Inamix,
and OTA, our method gained 4.2%, 5.1%, and 5.5% reduction in terms of cost

compared to HB*free, respectively. As for the exceution time, our method is faster



than Abs, SP, SPWD and SP+LP by 2121%, 718%, 128% and 373%, respectively.
Among all the algorithms, HB*-ree tends to be the fastest method (around 11.6%

faster than our method).

Table 4.5 Results of modified industry circuits and OTA

Circuit Abs | SP | SPWD | SPALP | HB*-tree | $-TCG-2

Cost | 123% | 107.8% | 107.1% | 106% | 1042% | 553
Mod_biasynth

Time (sec) | 2137% | 621% | 153% | 224% | 88.5% 144

Cost | 120% | 114.1% | 111% | 110% | 1051% | 5223
Mod_Inamixbias

Time (sec) | 2440% | 1110% | 572% | 934% | 863% | 294

Cost | 119% | 114.9% | 107.2% | 105% | 105.5% | 27.53
OTA
Time (sec) | 2084% | 724% | 167% | 207% | 904% | 263
Cost | 121% | 1122% | 109.4% | 107% | 104.9%
average

Time (sec) zzzlwlxls.z% 288% | 4T3% | 884%

|

Nevertheless, analog designers normally prefer to reply on design automation
tools to conduct a thorough search at the expense of exceution time. Therefore, in our
optimization the effort on the reduction of cost should be primary, whereas the
performance on the execution time is deemed as a secondary objective. Besides, as
the execution time for a quite large analog circuit (say, 110 cells) is about two

hundred seconds by using our proposed method, it would be acceptable from the
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analog circuit designers” point of view if we consider the entire layout generation of a
normal size analog circuit that may take a few hours. More importantly, compared
with HB*-tree, our proposed scheme can handle more general placements since
symmetric cells may not be always closely adjacent to each other.

One example placement of Inamixbias_2pdg with 5 symmetry groups is depicted

in Figure 4.16. The grey area denotes the symmetric cells. We can see the area within

the ellipse including three asymmetric cells placed between the symmetric pairs 70,
71, 72, and 74. However, the HB*-tree method is not able to handle this type of
situations and cannot obtain such kind of placements. In practice, this feature offered
by our proposed algorithm may reduce wire or area cost, and guarantee that our
method can fully explore the placement solution space. The schematic of the OTA
circuit is shown in Figure 4.17 and the final placement of OTA with 5 symmetry

groups using our algorithm is shown in Figure 4.18.

In Table 4.

we list the results from our implemented SP with linear
programming method. Since [26] does not offer detailed perturbation operation, we
employ the general SP perturbation for this work. We report the number of average
times to find one successful SP and the number of successful SP in the first 107 runs.
We can see that the SP+LP method spent a lot of time in finding a successful SP,
which increased the whole execution time. But our method is able to find a valid

feasible TCG after cach which clearly saves time.




‘Table 4.6 SP with linear programming

Average times with | Success times with first
Cireuit
one success 10000000 times run
ami33 278187 )
Inamixbias_2pdg 001177 | 2

Figure 4.15 Final placement of circuit ami33



Figure 4.16 Final placement of circuit Inamixbias_2pdg

Figure 4.17 The schematic of the OTA



Figure 4.18 Final placement of circuit OTA

In summary, our method is efficient to handle the multiple symmetry group

constraints. And the experimental results show that our method achieves far better

performance compared to the absolute method, SP, SPDW, and SP+LP method. We

are able to obtain even more impressive solutions compared to the HB*-tree method

but with a slight trade off on the execution time.

4.5 Summary

In this chapter, I presented a complete set of symmetric-feasible conditions and a

new packing scheme to handle the constraints of multiple symmetry groups for analog

layout placement. An efficient perturbation strategy was proposed to achieve random



state conversion in O(n) time without losing TCG symmetric-feasibility and validity,
Then I tested the proposed method based on a simulated annealing optimization flow
with MCNC benchmark and several circuits. Our algorithm has shown better

performance compared to several well-known methods.
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Chapter 5 Substrate-sharing and Other
Constraints

Besides the symmetry constraints, the TCG-based method is capable of handling
another type of important constraints — substrate-sharing constraints, which have not
been fully considered in any prior work. In this chapter (Sections 5.1-5.3), I will detail
the formulation of the substrate sharing constraints and discuss how to handle these
constraints in our proposed method. The experimental results are reported in Section
54. In Section 5.5, the solution to handling other analog layout constraints, including
relationship constraints, proximity constraints, and alignment constraints, are also

discussed. Finally a brief summary is made in Section 5.6.

5.1 Introduction

Substrate-sharing consirainis mean some devices are placed adjacently so that
they can share a common substrate/well region. This operation s normally followed
by certain device geometry merging optimization [44]. In the analog circuits, some
devices can be located as a connected or adjacent placement so that the devices can

share a common substrate/well region, which decreases the effect of substrate
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coupling [44]. One example is shown in Figure 5.1. In Figure 5.1 (a) two transistors
M1 and M2 have their own substrates, whereas in Figure 5.1 (b) the substrates are
merged to form one single substrate around the devices. In addition, M1 and M2 are

merged to share one diffusion area. Obviously, by merging the substrate of the

devices, the total area and the wire length can be minimized.

(@) (b)

Figure 5.1 An example of applying the substrate sharing constraint
P. Drennan et al. [43] addressed one significant substrate sharing effect, which is
called shallow trench isolation (ST1) stress. The shallow trench isolation, also known

as “Box Isolation Technique”, is an integrated circuit feature that prevents electrical

current leakage between adjacent semiconductor device components. STI is generally

used on CMOS process technology nodes of 250 nanometers and smaller. Older

CMOS technologies and non-MOS technologies commonly use isolation based on
LOCal Oxidation of Silicon (LOCOS). Reference [43] compared the performance
between merged layouts and non-merged layouts taking into account several other

aspects, including current mirror ratio, mismatch, maximum drain source voltage, and

oxide defined area. The drawn conclusion is that the merged layouts achieve better



performance in the listed four areas compared to the non-merged layouts. Therefore,
applying the substrate sharing constraints is very helpful in the analog circuit design.
‘The advantages of these constraints are listed as follows:

1) These constraints can reduce the area of the placement since several devices
can be placed tightly by sharing the common substrate.

2) The substrate sharing can reduce the complexity of routing for the analog
layout. Besides, i is obvious that the merged devices can reduce the total wire-length
of the placement.

3) Applying the substrate sharing constraints can decrease the coupling effect of
substrate, minimize parasitic capacitance [8] during placement and enhance the
performance of the circuit.

Cohn et al. 8] introduced a placement tool named KOAN to merge MOS devices
in order to explore desirable optimization. In [8], cight typical types of geometry
sharing optimizations in analog VLSI layout are described as shown in Figure 5.2.

) MOS diffusion merging is the case when two or more MOS devices share a
common source or drain diffusion, which reduces parasitic capacitances by
eliminating some routing parasitics and reduce the area and perimeter of diffusion to
bulk junctions.

b) MOS well merging is the case when the well regions of two or more MOS
devices are connected by overlapping placement. Well merging lowers parasitic
capacitance by reducing the area and perimeter of well to substrate junctions.

©) MOS bulk contact merging is the case when two or more MOS devices share



common bulk, well or substrate contacts. The capacitance reduction of the bulk
contact merging is important.

d) MOS gate abutment routing is the case when an electrical connection between
two or more devices gates is made by non-overlapping abutting placement of
polysilicon gates. It reduces parasitic capacitance and layout area by eliminating the
need for discrete contacts and routing.

) MOS strapping abutment routing is the case an electrical connection between
two or more devices’ source or drain strapping. And the effect of this sharing
optimization is the same as that of gate abutment routing.

) BIT collector merging is the case when an electrical connection between two
bipolar collectors is made by overlapping placement of the collector regions. The BIT

collector merging reduces critical capacitance on the device’s collector regions.

) BIT guard-ring merging is the case when an electrical connection between two
or more bipolar devices” diffusion guard rings is made by overlapping placement. It is
effective in reducing layout area by eliminating the need for minimum diffusion
spacing between adjacent BITs.

h) Capacitor abutment routing is the case when an electrical connection between

two or more non-precision capacitors is made by non-overlapping abutment of the
capacitor contacts. It reduces parasitic capacitance and layout area by eliminating the

need for discrete contacts and routing.



Figure 5.2 Various forms of device geometry sharing ())MOS diffusion
merge (b) MOS well merge () MOS bulk contact merge (d) MOS gate abutment
(¢) MOS strapping abutment (f) BJT collector merging (2) BT guard-ring

‘merging (h) capacitor abutment.

Focusing on the substrate sharing constraints, we may have three kinds of sharing
situations in the layout as shown in Figure 5.3. In Figure 5.3 (), the two devices are
spaced far enough apart and have no illegal overlap. The second situation is shown in
Figure 5.3 (b) where the two devices are placed by overlapping their substrate areas
(called legal overlap). The last situation is an illegal overlap, which will be penalized

in the KOAN method.
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(@) (b) (©)

Figure 5.3 Use of protection frames in merge detection (a) no merging (b)

complete merging, no illegal overlap (¢) merging and illegal overlap.

Based on the situations mentioned above, KOAN [8] handles the substrate
sharing constraints as a post-processing step following the placement. All the merge
processes work as a post-processing step and have to place new restriction on the
device generation, which generalizes the move-set to allow merged devices to move
as a group. A new geometry-sharing encouragement term Corge is added 1o the

annealing cost function as follows.

PR
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“The merge possibilities are not limited to a pre-defined set of module-generated
structures. However, this method completely ignores the electrical and geometric
implications. The shape of the well geometry cannot be determined before the
placement of device is known. After the simulated annealing flow, the optimal
merged placement solution is generated. Moreover, this method has extremely high
time complexity due to the feature of the absolute placement scheme. In [42], a
method named ALDAC can merge the MOS group. However, the paper failed to
describe much about the details of how to merge the cells;

To the best of my knowledge, thus far there is no method based on topological
representations for handling the substrate sharing constraints. 1 am motivated to
propose the first topological-representation-based method to take care of the substrate
sharing constraints in the placement design for analog layouts. Our experimental
results show that this method achieves the goal to minimize the area and the

wire-length of the circuits.

5.2 Substrate Sharing Problem Definition



To regard the substrate-sharing constraints, we define substrate arca and orientation
for each cell. The cells may have one, two or four substrates to share as shown in Figure
54. Each substrate has an orientation with respect to the orientation of the

corresponding cells.

[a] [al
Figure 5.4 The substrate area of cells

If the cells are placed adjacent and the orientation of the substrate matches, we

apply merge process to the cells as shown in Figure 5.5.

[e] [ 2]
[a] 2]

Figure 5.5 An example of merging

Also for the substrate sharing, we may have partial sharing situation as shown in
Figure 5.6. This means we need to calculate how much area may be merged by two
cells according to the adjacency situation of the cells and the substrate area of different
cells. Afier we have the calculated results, we understand how much area we can

merge for each cell.



Figure 5.6 Partial sharing and full sharing

‘Then we use the TCG representation to handle the processing since the TCG has an
important feature, that is, the weight that is to indicate the distance between the
corresponding two cells. In contrast, the SP representation cannot show the distance of
two cells before packing. With this feature, the TCG representation can be used to

readily handle the substrate sharing constraints.

5.3 Algorithm to Handle Substrate Sharing
Constraints

To handle the substrate sharing constraints, we take advantage of the weight
value to represent the merge situation as shown in Figure 5.7. For example, in the
cireuit, we have cells a and b, whose original weight of the edge from a to b in Gy is
10. And the substrate width is 2 for @ and 2 for b. If the two cells are merged
horizontally, we can update the edge weight to 10-2=8. That i to say, the edge weight
of two cells would be less if the cells are sharing their substrate areas. Then we merge

the cells with the substrate sharing area of the two cells.
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Figure 5.7 Example of merge

Similar to handling the symmetry constraints, we modify the packing and

perturbation schemes to deal with the substrate sharing constraints. The packing flow
is listed in Figure 5.8. First, we generate the topological order of the cells. And then
we use the fan-in (fan-out) degree to evaluate whether the cells are placed adjacently.
Following the topological order one by one, we check the orientation of the substrate
of the adjacent cells. If the orientation matches, these cells are able to share the
substrate and can be merged. The area to be merged should be determined depending

on substrate size and adjacent situation. The weight of the edges in the TCG of the

merged cells will be updated accordingly
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Begin
1 generate the topological order;
2 FOR (the cells in the topological order one by one);
3 Apply contour packing;
4 IF (the substrates of the current cell and previous cell are  placed
adjacently and the orientation of the substrate matches)
5 Apply the merge process;
6 Update the corresponding contour;
7 ENDIF
8 ENDFOR
End

Figure 5.8 Substrate sharing packing flow

For the packing process, we follow the contour-based packing flow described in
chapter 4 to process the cells. If the adjacent cells are merged, we will merge the
substrate area of the cells and update the contour lst. One example is shown in Figure
5.9. We employ the same example used in chapter 4. First, we place cell a that has
one substrate as shown in Figure 5.9 (a). Then we place cell b with four substrates.
Since the substrate orientation matches, and we can merge the substrate areas of cells
aand d as shown in Figure 5.9(c). Then we need to update the contour list afier the
merging for further packing. The top contour of cell a is shortened by the substrate
width. Then we place cell ¢ with one substrate, which can be merged with cell b if
their substrate orientations match, The merging of cells b and ¢ is shown in Figure 5.9

(©). In addition, we need to update the top contour of cells c after the merging process;



Then cell b; has been placed. Since cell by is a self-symmetric cell, we first place it to

the correct location that is adjacent to the symmetric axis, and then merge the

substrate depending on the adjacent situation as shown in Figure 5.9 (f). The final

Bigl
(b)

placement of (a,d,c, b) is shown in Figure 5.9 (h).

® L]

Figure 5.9 Example of the packing flow

The perturbation is the same as the method handling symmetry constraints. We

only need to apply the perturbations of cell orientation change and asymmetric cell
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move if we do not include the symmetry constraints. In this situation, we only
consider all the cells are asymmetric cells and check the substrate sharing situation,

As mentioned in Chapter 4, the extraction of the topological order takes O(n)
time where » is the number of the cells necded to be placed and the contour-based
packing takes O(nlgn) time. The merge process takes O(n) fime. In total, we have a
packing scheme with the time complexity of Onlgn). For the perturbation, since it
only takes time in the cell orientation change and asymmetric cell move, its time

complexity is Ofn) where n is the number of the cells.

5.4 Experimental Results of the Substrate
Sharing Method

Based on the algorithm discussed above, | have implemented the proposed
substrate sharing TCG scheme based on a simulated annealing optimization flow. The
program was coded in C++ language under Linux operating system and tested on a
2GHz PC with distinct benchmark test circuits. The cost function is constructed as
follows:

Cost=tureArea +3.; WireLength, (5.3)

where a and /3 are two factors prioritizing the weights between area and wire length.

Different nets may have different f; due to distinet sensitivity to circuit performance.

Since there s no previous work targeting at the substrate-sharing constraints by using the

topological representations, we only compare the proposed substrate-sharing scheme with
our symmetry constraint method (denote as S-TCG). Our substrte-sharing method is

denoted as (S-TCG (m)). We can see the results shown in Table 5.1. One can see that the
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substratc-sharing method can decrease the cost of the benchmarks with 4.8% on average.
As for the large industry circuits, our substrate-sharing method can reduce the cost by
5.6% on average. Note that the running-time performance s not our focus at the moment.
One example of the final placement of APTE is shown in Figure 5.10 and the final

placement of Inamixbias_ 2pdg is shown in Figure 5.11.

Table 5.1 Results of MCNC benchmarks of substrate sharing constraints

[ Circuit | Cells | groups  Abs | S-TCG | $-TCG(m) |
Cost | 120.7% | 5074 | 48.67
apte 9 2 [Time|1000% | 3 |
Cost | 1189% | 133 125
ami33 33 2 [Time | 1670% | 49 79
Cost | 129.1% | 4221 | 41.03
| amito | a9 2 |Time | 2250% | 86 134




Table 5.2 Results of Circuits of substrate sharing constraints

Circuit Abs | STCG | S-TCG(m)
Cost 127% 542 527
biasynth _2pdg Time 2150% | 107 152
R Cost 119% | 5141 4835
Inamixbias_2pdg “Time (sec) 30% | 241 31
| mod_biasynth | Cost 123% 553 | 541 |
Time (sec) | 2137% | 112 150
[ - Cost 120% .
mod_Inamixbias_ Time (sec) | 2440% | 231 323 |
Cost 9% | 2753 | 2525
OTA Time (sec) | 2084% | 223 327

Therefore, we can conclude that the proposed method is able to handle the
substrate sharing constraint based on the TCG method, and it is efficient to enhance

the cost performance of our TCG-based method.
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Figure 5.10 Placement of APTE

Figure 5.11 Placement of Inamixbias_2pdg

5.5 Other Constraints

Besides symmetry and substrate-sharing constraints, there are other constraints in

the analog placement design such as relationship, abutment, and alignment constraints.
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In this section, we briefly discuss the additional constraints that our proposed
TCG-based placement scheme is able to handle. Due to the intrinsic features of the
TCG representation, some other constraints, such as cell relationship, abutment, and
alignment constraints, can be readily implemented in the current tool suite. Users are
allowed to input multiple constraints based on some particular requirements of their

desired placements.

5.5.1 Cell Relationship Constraints

In practical analog layout design, the designers may have specific placement
requirement that demands one o more cells to have particular topological relationship
with another cell. For instance, in Figure 5.12, one may require cell a to be located on
the right of a symmetry group, which consists of cells b, ¢, d and ¢ due to some
sensitivity requirements. It is casy to handle this type of constraints when using TCG
representation since we can just take them into account in the perturbation stage. In
detail, we can input the relationship requirement at the initial stage so that cell @
should be placed on the right of cell b, Then in the perturbation stage, we preserve the
situation of b | a whenever changing the fan-in (fan-out) relationship of cell b or  in
Gy, In this way, we can always guarantee this constraint to be observed in the
following optimization.

However, for the tree-structure representations, such as HB*-tree, this operation

10



s nonrivial as there is no clue to reflect the relationship between each pair of cells
based on the B*-tree representation. Furthermore, this constraint can be casily
extended to require one symmetry group to have a particular relationship with another
symmetry group. To realize it, we can simply add multiple constraints between the
cells of one group and the cells of the other group. And one final placement of ami33

is shown in Figure 5.13.

Figure 5.12 Example of relationship constraint

Figure 5.13 Example of ami33 with relationship constraints



5.5.2 Cell Proximity Constraints

Users can input the requirement of two cells that should be placed tightly. For
example, in Figure 5.14, we may require that cell a is placed to vertically abut cell b,
which forms a proximity placement. We can follow the concept of island employed in
[10]. We first place the two cells abutting in the initial placement and then consider
them as a connected island. In the TCG, the two vertices are combined together and
treated as one dummy node. In other words, the two cells are always placed adjacent,
and the weight between the cells is always the minimal value. And one final

placement of ami33 with proximity constraints is shown in Figure 5.15,

Figure 5.15 Example of ami33 with proximity constraints
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5.5.3 Cell Alignment Constraints

We can also handle the cell alignment constraints that require one cell to be
located vertically or horizontally in alignment with other cells. For this type of
constraints, in the stage of initial placement, we first pack the cells following the
topologic order one by one. If the current cell has an alignment constraint with
another placed cell, we shift it to satisfy this constraint. Then it is considered as a
pre-placed cell and the contour is updated accordingly in the final packing, which
itself is the same as the packing scheme described in Chapter 4. If a symmetric cell
has an alignment constraint, its symmetric counterpart should be shifted as well. As

the example depicted in Figure 5.16, there is a vertical alignment constraint between

the bottom sides of cells ¢ and b. In contrast, it is impossible for the HB*-tree method
to obtain this solution since the symmetric groups should be compactly packed and all
the cells in one symmetry group should be always closely connected. And one final

placement of ami33 is shown in Figure 5.17.
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Figure 5.16 Alignment exmaple

v

Figure 5.17 Example of ami33 with alignment constraints
5.6 Summa
In this chapter, I first reviewed the necessity of substrate-sharing constraints in the
analog layout design. Then the formulation of the substrate-sharing constraints in our
TCG-based placement scheme was discussed. Some experimental results were also
provided to demonstrate the efficacy of our proposed approach. Finally the
implementation schemes of other constraints, such as topological relationship,

y. alignment constraints, were also discussed.




Chapter 6 Conclusions and Future Work

6.1 Conclusions

‘The main contributions presented in this thesis are the design, implementation, and
performance evaluation of the TCG-based method to handle complex analog layout
constraints including the multi-group symmetry, ~substrate-sharing and other
topological constraints. The experimental results show that the proposed method

works effectively and efficiently,

o After a thorough literature review on analog placement methods as well as
distinet stochastic optimization techniques, 1 developed an  artificial neural
network based placement algorithm as a preliminary solution to the analog
placement design problem. Some intrinsic drawbacks of this method, in particular,
no guarantee of the final valid results as well as high complexity, have motivated

me to investigate the topological placement methods.

1 carefully studied the features of different topological representations and
tried to bridge the link between the topological representations and complex

analog constraints. Among the different topological representations, I chose TCG

s




as the focus and developed TCG-based placement algorithms for handling

complex analog constraints.

For the symmetry constraints, | proposed several sufficient conditions to

verify the symmetric feasibility of TCG representation to handle the multiple
symmetry groups’ situation. In addition, an efficient contour-based packing
scheme and an O(n) perturbation scheme are introduced in our algorithm for the
transfer between the TCG representation and placement. I have proved that the
proposed algorithm can cover all the possible topological configurations of

placement. And the experimental results show that this method achieves better

performance compared with several recently published algorithms,

o For the substrate-sharing constraints, I propose a method to handle this type
of constraints based on topological representation. The efficient packing and
perturbation algorithm performs well and the results show that the area and wire
length costs are noticeably decreased by applying this type of constraints.

Moreover, our algorithm is casy to handle the relationship, proximity and

alignment constraints due to the intrinsic features of the TCG representation.

6.2 Future Directions
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Based on my current work reported in this thesis, several research directions can
be expected. Besides the constraints covered in this thesis, there are still some other
constraints that are helpful for the analog layout design. They are likely to be realized
by extending the current TCG-based method proposed in this thesis. Moreover, the
representation of TCG itself still has some room to be improved. In the following,

these directions are listed in detail.

«  Handling more analog placement constraints

More complex analog placement constraints include:

1) Common Centroid Constraints: The component mismatch has adverse effects
on many analog circuits. One of the most important sources of mismatch is process
gradient, like oxide thickness, threshold voltage, resistor layer thickness, ete. These

kinds of mismatch can be effectively suppressed by common centroid layout, which

refers 1o a layout style in which a set of devices have a common center point
‘Therefore, to reduce parasitic mismatch in analog circuits, some groups of devices
may be required to share a common centroid while being placed [8]. Or devices may

be split into a number of smaller ones, which can be placed with reference to the same

center point.

2) Matching Constraints: The matching constraints force a common gate

It



orientation and an inter-digital placement among devices. It helps to reduce the effect
of process-induced mismatehes. The common centroid constraints are just one type of

matching constraints.

3)  Clustering constraints: The device constraints are usually specified according
to circuit functionality in analog designs, such as current mirrors, differential pairs,
and other sub-circuits. Besides the circuit functionality, constraints are also
determined based on device model, substrate/well types or even designers’ intents. If
a set of devices belonging to a sub-circuit that needs to satisfy the matching,
symmetry, or proximity constraint, they are usually formed as a device group or a
cluster. Such clustering constraints can be hierarchically specified. That is, a cluster
may contain not only device modules but also other clusters which contain other
device modules or device groups. We can use a dummy node in the TCG to represent

the clusters.

o Further study of the topological relationship

It can be observed that the sequence-pair, the hicrarchical B*-tree and the
transitive closure graph method all can only handle the horizontal and vertical
relationships in the representations. The diagonal relationship in these representations
i always ignored or classified as the horizontal or vertical relationship. As a matter of
fact, recognizing the diagonal relationship is helpful when evaluating only the

representation without packing. Therefore, it would be beneficial if one representation

18



can be found to handle the diagonal relationship. In this way, one s able to handle
more complex analog placement constraints and speed up the evaluation or even the

packing operations.

o Postlayout simulation of real analog circuits after the optimization
After applying our TCG-based method to handle complex analog placement
constraints, it would be interesting to focus on not only the minimization of the area

and wire length cost, but also the evaluation of performance of the analog circuits.

‘This needs some additional work on layout routing and compaction. Then with
post-layout simulation, one can understand and appreciate the significance of

considering complex analog constraints in the placement stage.
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