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Abstract

In the present study a linear boundary value solution for the ship wave radiation
problem at zero speed and at forward speed is obtained in the time domain. Fluid
velocity potentials due to the non-impulsive input and constant input are obtained by
solving the boundary value problem using source strengths (indirect method). The
singularities in the Rankine source of the transit free surface Green function were
dealt with by the use of the well known Hess-Smith method. The panel method was
validated by the application of the classical problem of the hemisphere and extended
to the application of the Wigley Hull for the radiation problems at forward speed.
The computed response functions, added-mass and damping coefficients, along with
the wave resistances were compared with published results. The final part of this
thesis discusses some of the limitations of the Green function and suggest numerous

ways to avoid these intrinsic errors.




Acknowledgments

First and foremost I want to express my thanks to my supervisor, Dr. Wei Qiu, for
his advice and guidance throughout the progress of my research. I would also like
to thank Dr. Shaoyu Ni, a post doctorate of Dr. Qiu for his extensive help and
encouragement. It has been a great opportunity to work with Dr. Wei Qiu and the
Advanced Marine Hydrodynamics Lab group during the development of this work
A great deal of knowledge on mathematics and computational hydrodynamics was

gained during my time here.

I would like to acknowledge my friend Evan Martin who provided me with his help
during my rescarch. Lastly, T would like to thank my family for all their love and
encouragement. T would like to mention my mother, Lily Cole and my girlfriend,
Karen Pike, because without their support, this thesis would not be possible and my

late father, Kenneth Penney, who encouraged me to pursue my academic career




Contents

1 Introduction
1.1 Previous Work
111 Radiation Problems
1.12  Frequency-Domain Solution
113 Linear Time-Domain Solution

1.1.4  Nonlinear Time-Domain Solution

o

Mathematical Formulation
21 Boundary Value Problem
2.2 Boundary Integral Equation

23 Hydrodynamic Force

w

Impulse Response Function

31 Solving the Response Function

'S

Numerical Implementation
4.1 Zero Forward Speed .

4.2 Non-Zero Forward Speed

o

Numerical Results

5.1 Hemisphere

34
34



o
0

6 C

511 Single Source Point
Wigley Hull

5.2.1 Zero Forward Speed
522 Non-Zero Forward Speed

Discussion on Numerical Stability

and

6.1

6.2

Panclization

Recommendations for Future Work .

References

38
39
39
43
46

48
48
49

51



List of Figures

>

© ®

Boundary Value Problem Domain and Coordinate System . . v 1L

Hemisphere Mesh for 225 Panels . PR SYTY AL L. 35
Non-dimensional Heave Response Function Versus Non-dimensional Time 36
Non-dimensional Heave Added Mass Versus Non-dimensional Frequency 37

Non-dimensional Heave Damping Versus Non-dimensional Frequency 38

Single Moving Source Points with Constant Source Strength . . . .. 39
Wigley Hull W; Mesh for 256 Panels . . .. ... ........... 40
Wigley Hull W; Heave Response Function K33 . . . ... ....... 41
Wigley Hull W; Pitch Response Function K55 . . . . . .. .. )

Wigley Hull W; Non-dimensional Heave Added Mass Versus Non-dimensional
Frequency . .« «ai:msus o Sweme s 48

‘Wigley Hull W; Non-dimensional Heave Damping Versus Non-dimensional

Frequency . . ... .... P
Surge Force (Wave Resistance) Wigley Hull Wy for F=03 . . ... 44
Heave Force Wigley Hull Wi for Fn=0.3 ... ............ 45
Wigley Hull Wgp Wave Resistance Versus Fn . . . . . .4



Nomenclature

F(PQ,t—7) Memory part of the Green function

G(P,Q,t—7) Time-Domain Green function

Go(P,Q) = (1~ %) Rankine Source

H(t-7) Heaviside unit step function

Jo Bessel function of order Zero

K, ﬂ Response function for the radiation force in k" degree of freedom(N)
KP Response function for the diffraction force

P(P,t) Pressure at a point P at time t(Pa)

Sp(t) Instantancous wetted surface of the body

Sp Mean wetted surface of the body

SBottom Bottom of the fluid domain

Sp Free surface

Soo Boundary at infinity

Uo Forward speed of body (%)

v Fluid domain

Va(P,t) Normal velocity at point P at time t

W Steady flow velocity vector

bk Time independent hydrodynamic damping coefficient of the floating body
Cik Time independent hydrodynamic restoring force of the floating body
g Acceleration due to gravity (%)

mi M-terms that are the gradients of the steady velocity in the normal directic
i Normal Vector point into the body

LT Distance between source and field points

Teg Position vector for center of gravity



Time

Initial time

Intersection of body surface and mean water plane

Total velocity potential at any point P(x,y,z) at time t
Arbitrary constant which controls the non-impulsive input
Dirac Delta function

Non-impulsive velocity input

Time independent added-mass of the floating body

Fluid density(£%)

Source strength for point Q at time 7

Velocity potential for radiated wave in the k™ degree of freedom
Velocity potential for diffracted wave

Components of radiated potential due to decomposition



Chapter 1

Introduction

With an expected increase in industrial activities in the Arctic, interest in ice loads
on ships and offshore structures is again becoming an important engineering rescarch
topic. The STePS? Research Project, a relatively large, multi-faceted, research un-
dertaking at Memorial University was created, to better quantify ice loads experienced
by ships and structures operating in arctic waters. One of the ice loading scenarios,
to be investigated by the STePS?, project is the interaction between a moving ship

and relatively small ice masses floating in the path of the vessel. Such impacts can

be a signi driver of sf I design or a signi source of operating risk. A

method of undk ing and icting such interaction scenarios is the

numerical modeling of the hydrodynamic interaction between a vessel and a small ice
piece when the vessel is underway. The first step in developing a complete numerical
model of this interaction scenario is to understand and quantify the hydrodynamic

pressures and forces for the ship undergoing forward motion at a constant speed.

The intent of the work detailed in this thesis is to develop an efficient but rela-
tively simple hydrodynamic model of a ship at forward speed that can be used as the

first step in developing a full simulation model of the ship-ice interaction scenario.




In developing this model, a Boundary Element Method (BEM), or Panel Method,
was considered as a reasonable first step. The panel method is based on potential
flow theory. This was done on the premise that the interaction problem is primarily
influenced by pressure forces and thus the viscous effects need not be modeled at this
stage. The intent is to create a relatively simple and robust numerical tool to accu-
rately predict the coefficients of added mass and damping, as well as the wave making
resistance of hull forms using a transient free surface Green function. The primary
technical challenge is solving the Green function to provide the numerical prediction
of coefficients of added mass and damping and the wave making resistance of a ship

under forward speed.

As an alternative approach, predictions can be made by physical model tests. How-
ever current in ing power and ional tools make numeri-

cal predi

ion a viable alternative t ional model tests. N ical methods are

becoming more cost effective due to their lower cost and quicker computing time. On
the other hand, more complex numerical methods are also available for marine hydro-
dynamic predictions such as solutions based on the Reynolds-Average-Navier-Stokes
(RANS) equations, Large Eddy Simulation (LES), and Direct Numerical Simulation
(DNS). These methods all solve the Navier-Stokes equations for fluid mechanics and
are known as Computational Fluid Dynamic (CFD) codes. These codes include the
effects of viscosity but are complex and time consuming, both in problem definition
and in code exccution, when compared to the simple Panel Method approach. It may
however be possible, once the potential flow model is completed, to upgrade the model
to include viscous effects. However, at this stage, it was considered a better approach

to start with a simple model that explores the primary effects.
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In summary, the overall purpose of this study is to develop a Boundary Element
Method based prediction code using the Green function to solve the radiation prob-
lems in the time domain. The layout of the thesis following this introductory section
is as follows. The remainder of Chapter 1 presents the current state of the art in hy-
drodynamic modeling using the panel method. Chapter 2 presents the mathematical
formulation of the boundary value problem. Chapter 3 discusses the solution based
on the impulse response function in order to solve for coefficients of added-mass and
damping. The numerical implementation of the equations is outlined in Chapter 4.
In Chapter 5 the numerical solutions are compared with experimental results and
published numerical results. The limitations of the Green function and how to ap-
propriately apply the function for reasonable results are also discussed in Chapter 5.
Conclusions and recommendations for future numerical development are presented in

Chapter 6.

1.1 Previous Work

The following sections detail the development of various aspects of the modeling
problem covering the numerical approaches and the evolution of the panel method,
starting with basic radiation problems and moving through early strip theory and
frequency domain approaches to the development of more accurate panel methods in

the frequency domain and panel methods for time domain analysis.

1.1.1 Radiation Problems

The radiation problem covers the modeling of waves radiated by a moving or oscil-
lating body on the free surface of a fluid. Solution of this problem underpins both

the wave resistance model and general sea keeping models. For this reason reference



is made to both problems in the following sections.

The specific application of the radiation problem for this case is the wave making
resistance, which is a form of drag created by an object moving on a fluid free surface.
It is a direct reflection of the amount of energy that is required to displace the fluid in
front of the object. This energy is an irrecoverable expenditure and leaves the system
as a radiated wave. The wave making resistance is highly dependent on the speed to
length ratio of the ship. In deep water, the wave system speed is equal to the ships
speed. This results in an initial near linear relationship between ship speed and wave
making resistance, until a limiting point at which the wave resistance dramatically
increases. This limiting point is approximately a Froude number of 0.415 however
most displacement hull forms operate at a speed-length ratio larger than 1 according to
Savitsky (2003). The first attempt to numerically predict the wave making resistance
of a surface ship was by Michell (1898) late in the nineteenth century. Tuck (1964)
further examined Michell's work with traditional strip theory, which implies two-
dimensional flow on all sections. However two-dimensional transverse flow does not
provide an adequate model for flows at forward speed, but is more suitable for zero
or low speed seakeeping predicitions. Because of its ability to better model the flow
conditions for forward speed, most researchers prefer to use the panel method to

determine the wave making resistance, Newman (1979) and Annelsland (1986).

There have been many in ship resi For
wave making resistance, the floating body must have a forward speed which results
in the Neumann-Kelvin problem (Newman, 1977). This increases the complexity
of the solution due to the required Green function. Ogilvie (1964) and Cummins

(1962) attempted to directly formulate the problem in the time-domain using a time-

dependent Green function. This approach was further examined by Wehausen (1971)



for zero forward speed. Recently, Kim, et al. (1998) have predicted wave making
resistance using a higher order panel method. Lee, et al. (1997) used a B-Spline panel

method to create a more efficient and robust solution to the wave making problem

1.1.2 Frequency-Domain Solution

In the frequency domain, problems are linearized based on assumptions that the
motions are small and time-harmonic, coupled with the use of the mean wetted surface
on the body. This method has been very successful for zero forward speed problems
(Korsmeyer, et al. 1988). According to Lin & Yue (1991) they have become an
industry standard tool for the design of large offshore structures. Chang (1977) and
Inglis and Price (1982) attempted to formulate the problem with non zero forward
speed, using a zero-speed frequency domain Green function with a speed adjustment.
The presented results only had meaning if the body motions were sinusoidal in time.
This coupled with the difficultics in the computation of the Green function with the
speed adjustment in the frequency domain, an alternative method was desired. The

suggested alternative approach was to solve the problem directly in the time-domain

1.1.3 Linear Time-Domain Solution

Due to the of the basic frequency-domain solution, many attempts have

been made to refine the approach, with limited success according to Lin & Yue(1991).
To overcome the difficulties, Cummins (1962) and Ogilvie (1964) moved to solve the
zero-forward speed problem directly in the time-domain with a linear free surface,
expanding on the work of Finkelstein (1957) and Stoker (1957). The linear radiation
problem was solved by using the unit impulse response function, which provides the
coefficients of added mass and damping for the body under consideration. The unit

response function describes the body’s response to an unit impulse motion in any
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degree of freedom. The implusive motion of the body gives rise to a force from
the surrounding fluid which can be resolved into added mass and linear damping
coefficients. Cummins (1962) states that a solution for this unit impulse response
provides the basis for a solution to the body response to an arbitrary force by providing
the coefficients of added-mass and damping which can be applied to the more general

motion cases.

Wehausen (1971) furthered this research for the zero forward speed case with ex-
tensive analysis of the problem, presenting detailed results (Wehausen 1971, 1967)
Consistent two-dimensional (strip theory) time domain results have been available
for some time, however three-dimensional (panel) results are still variable. The first
three-dimensional time-domain problems were lincarized in an attempt to reduce the

mathematical and numerical complexity.

In linear ti it i i the ti s dent Green function is applied to

derive a boundary intergral equation at the mean wetted body surface, assuming that
the body’s wetted surface area does not change, i.c., the mean wetted surface is used
and motions are assumed to be small in amplitude. In this study the linear radiation
forces acting on the body then are expressed by convolution integrals with impulse
functions. Newman (1985) successfully computed the impulse response function for
a cylinder in the time-domain, satisfying the zero-speed case. However, the non-zero
speed formulation was of greater practical interest. Liapis (1986) and King (1987)
furthered the time-domain analysis method by developing a non-zero forward speed

solution. They devel 1 a fully th i ional ical problem for time-

domain analysis for a constant forward speed, creating a large leap forward in time-
domain simulation. The next progression in time domain analysis was the ability to

include varying forward speed, large amplitude waves and a non-linear free surface




condition, which covers most realistic cases.

A variation of the method was introduced by Dawson (1977). Dawson introduced
pancls on the free-surface, as well as the body surface using Rankine sources to satisfy
the free-surface condition. This approach is known as a quasi-lincarized free surface.
Recent results have been promising for this method, due to its development for many
vears by others: Larsson (1987) and Nakos & Sclavounos (1990). Lin and Yue (1991)
state that in this method the free surface and body geometry remain fixed in the

undisturbed positions, and the nonlinearities of the geometry are not included.

1.1.4 Nonlinear Time-Domain Solution

Current research has been carried out to include nonlinearity into the time-domain
formulation. Lin & Yue (1991), and Beck & Magee (1990) have extended the time-
domain approach to arbitrary large-amplitude motions. The free surface however
remained linear so that the time-dependent Green function can still be applied. This

5 sub-

was achieved by applying the body boundary condition on the instantanco
merged hull surface. This has been referred to as the body exact problem. Qiu, et
al. (2006) achieved this, using a panel free method and applying the body boundary
condition on the instantaneous submerged hull surface. Following rescarchers have
had various success with this formulation. Qiu & Peng (2007) used a the panel free
method to combine the exact body boundary conition with a free surface condition
linearized about the incident wave profile. The presented results showed improvement

for cases of computations dealing with large-amplitude motions.




The final ion in the time-domai ion is to include the nonlinear free

surface. With the Green function the free surface must maintain linearity, limiting
the ability of the method to include significant nonlinear wave effects. This poses
limitations on the panel method with researchers such as Song (1993) attempting to
use the Rankine Source method as an alternative approach to satisfy the nonlinear

free surface.

In summary, the current state-of-the-art methods are higher order panel methods
using either the Rankine panel or the Green function method. Higher order Rankine
panel methods are fully nonlinear, as they include the nonlinear free surface using
various numerical techniques. Huang and Sclavounos (1997) addressed the nonlinear
free-surface using weak-scatterer theory, linearizing the ship wave disturbance about
the instantancous position of the ambient wave problem. The nonlinear wave resis-
tance results were an improvement over the standard linear theory when compared
to experimental results. These predictions are still not fully nonlinear. Kim, et al.
(2011) also used the weak-scatter theory approach showing similar results. Broeze,

et al. (1993) developed a higher order three-dimensional Rankine panel method for

non-linear free surface waves. They claim that the results were stable and accurate.
However, due to the complexity of the numerical scheme, a vector supercomputer was
required for the computations to deal with the motion of the grid. For the Green
function method, higher order results are almost fully non-linear. The only limitation
of the Green function, is that the free surface must maintain is linearity. This method
is called the blended approach. The body boundary condition is applied to the instan-
taneous wetted surface, known as the body-exact problem, but the free-surface still
remains linear. Qiu & Peng (2007) achieved this with a panel free approach. However,

without the inclusion of the nonlinear free surface, the method is still limited, due to



the slight reduction in accuracy (Lin & Yuc 1991).

In this work, the Green function approach was choosen, in which the linear free sur-
face boundary condition is satisfied on the frec surface and the lincar body boundary

conditions are satisfied on the mean wetted body surface.



Chapter 2

Mathematical Formulation

2.1 Boundary Value Problem

In setting up the problem based on the work of Liapis (1986) the following conventions
and boundary conditions are used. Figure 1 shows a coordinate system and the
boundaries used to define the boundary value problem. The local coordinate system
is fixed to the floating ship at the center of the midship, moving in the positive x-axis
with a constant forward speed of Up. The  coordinate is positive in the direction of
the bow, the y coordinate is positive in the direction port, while the z coordinate is
positive upward. The boundaries seen in Figure 1 are the free surface (Sy), body’s
surface (Sp), bottom surface (Shorom), and the conditions at infinity (Sw). Each
boundary must satisfy its own individual boundary condition. When using potential
flow theory, the fluid is assumed to be incompressible, inviscid, free of surface tension,
and irrotational. With these assumptions, coupled with the assumption of small
unsteady oscillations, a velocity potential & can exist at any time ¢ where the velocity

of the fluid can be described at any point P(x,y.z) at the corresponding time by the

10



Figure 2.1: Boundary Value Problem Domain and Coordinate System

gradient of the potential given by:

V(P;t) = VO(P;t). (21)

With this defined potential, the boundary condition must be enforced on all bound-
aries and can be defined mathematically. The governing equation is the Laplace equa-
tion, (Equation 2.2) which stipulates the conservation of mass in the entire bounded
volume V.

V2(P;1) =

The fluid must satisfy the body boundary condition, known as the “no-flux™ boundary
condition, given by:

(Vo-V.)-i=0, on S, (2.3)

meaning no fluid will flow cross the body boundary. S is the mean wetted body
surface and does not change with time where 7 is the unit out-ward normal vector,
pointing out of the body. On the free surface, the exact boundary condition is derived

from Bernoulli's equation assuming that the surface tension and viscous effects are



negligible. The exact (non-lincar) boundary condition can be written as,

3¢ a1 0
—5 +2V$-V—=+ -V -V(Vo- — =0, z=1. 2.4
8t1+ Vo Vc’iz+2 ¢-V(Vo V¢)+galu on n (2.4)
where (z, %o, 1) is the unknown wave elevation (or amplitude) and (2o, yo, %)
defines a point on the free surface.
On the bottom boundary it is assumed that fluid velocity effects from the body
vanish, represented by:

lim V(P 1) on Shattom- (25)
i

The conditions at infinity are known as the Sommerfield radiation conditions that
state waves created by the floating body propagate away from the body and vanish

in the far field Sy given by:

lim 22| =0, on Se. (26)

With the above boundary conditions, a linearized problem can be set up to allow the

of s sition, greatly simplifying the problem. If the disturbances in

the fluid are small in the steady problem and in the unsteady problem, both can be
separated due to the principles of superposition, allowing the following breakdown of

the total velocity potential:

O(P;t) = —UoX + ¢o(x,y, z) + du(w,y, 1), (2.7)

where —UpX and ¢, are the components that make up the steady effects of the velocity

potential while ¢, contains all the unsteady effects. The unsteady velocity potential



can later be broken down into the radiation and diffraction potentials (Equation 2.9),
where ¢ represents all six degrees of freedom and ¢p represents the potential of

diffracted waves. The total potential can be defined as:
b= Zok (Pst) + éo(P;t) (28)

The final lincarization applied to the boundary value problem, known as the Neumann-
Kelvin problem, defines the pressure, free-surface condition and body boundary con-

dition by the following conditions

9
»=-ok ~ vy (29)
LI 4,‘30* ~0, on Sp (2.10)
. )
9 _ bt miGe on S (211)
on

where 1}, is the generalized unit normal is defined by Equations 2.12 and 2.13 and ¢

is the amplitude of the unsteady motion in all degrees of freedom

it = (ny, na, ng), (2.12)
X i = (n4, s, n), (2.13)
= (%9, Yor %) (2.14)

The steady effects and unsteady effects are linked together through the m-terms in

the body boundary condition (Newman, 1977). These terms are the gradients of the




steady velocities in the normal direction given by:

—(ii - V)W = (my, mg, mg), (2.15)
—(ii - V)(Fx W) = (my, ms, me). (2.16)
In the Neumann-Kelvin problem W = —Ui, coupled with the assumption that the

body is slender, and the perturbation of the steady flow field caused by the ship is

neglected, the m-terms are simplified to the format represented by:

i = (0,0,0,0, Ugng, —Ugna). (217)

The complete radiation boundary value problem is represented by:

V24, = 0, in V;
(2 - Vo on + g% on z=0;
20 = g + MG, on S a18)
Vi — 0, as Ri— o0, 2=0;
Ve — 0, as z— —00;
G=0 %0, at t=0.

This BVP is used to solve the velocity potential in each of the 6 degrees of freedom.



2.2 Boundary Integral Equation

There are two different approaches to solve the BVP that were discussed in Chapter
1, the Rankine Panel Method and the Green function Method. The Rankine panel
method distributes sources on the free-surface as on the body surface and forces the
boundary condition on the free-surface. The Green function method only distributes
sources on the body surface, because the Green function automatically satisfies the
linearized free-surface condition. In this work, the Green function Method is applied.
The body is panclized and cach panel has a source singularity located at the panel
centroid. Liapis (1986) explains that these source strengths are determined by solving
a Fredholm integral of the second kind on the body surface. It is known that the Green
function satisfies three boundary conditions, on the free surface, the bottom boundary,
and the conditions at infinity. A time-dependent Green function is required to solve
the case considered for this study. Liapis (1986) states the most appropriate Green
function for this boundary value problem must represent an impulsive source below
the free surface. Wehausen and Laitone (1960) developed a Green function of this
type for infinite water depth for a field point P(z,y, z) and source point Q(a,1/, 2').

This problem uses the Green function in the form represented by Qiu (2001):

G(P,Q,t—7) = Go(P,Q)é(t — 7) + H(t = T)F(P,Q,t — 7). (2.19)

with a rankine source

(2.20)

where §(t—7) is the Dirac Delta function and /I(t ) is the Heaviside unit step func-

tion, where F is known as the memory part of the Green function and mathematically




represented by:

F(P,Q,t—7)= -2'7 /“ec gk sin[/gh(t — 7)]e*C) Jo(kR)dk, (2.21)

with
r=V{-2P+-y)+ (-2 (2.22)
n=yVE-aP+y-yr+(z+2)P (2.23)
R=V(@ -2+ -y (2.24)

and Jy is the Bessel function of the zeroth order. The Green function represents
the potential at the field point P(z,y, 2) and at time ¢ due to an impulsive source
Q(«',y/, /) which is instantancously created at time ¢ and completely annihilated at
time 7. Liapis (1986) demonstrates that this source acts like an underwater distur-
bance that creates a Cauchy-Poisson type wave system represented by the memory
terms contained in F(P,@Q,t — 7). Liapis (1986) shows that the Green function can

be solved from the following systems of differential equations:

V2G(P,Q.t - 7) = —4md(P = Q)8(t - 7),

&’
0

2G(P,Q,t —7) + 2B — 0, on 2=0; (2.25)
G(P,Q,t—7), 221 o for t<0;

g

with the boundary conditions set for the boundary value problem de

ibed in Chapter

2. Using these boundary conditions with the defined Green function, a boundary

integral equation can be obtain by applying Green theorem (Equation 2.26) to the
bounded volume V.
/(w’(.' ~GVA)Y = / {d»_d" - ﬂ}ds‘ (2.26)
) Jo P onr o
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The above equation is valid for time independent problems. In order to describe the
time domain we must integrate both sides of the equation from 0 to t with respect
to 7 coupled with the properties of G(P,Q;t — 7) and the fact that ® satisfies the
Laplace equation everywhere in the fluid domain. Liapis (1986) derived Equation
2.27 to mathematically describe the velocity potential at any time ¢ and any place
P(r,y,z) in the fluid domain. Liapis (1986) showed that the contribution to ¢ from
the surface integral over the free surface can be reduced to a line integral about the
water line of the vessel and proves that the final result for ¢ at a point in the fluid
domain (V) is expressed by:

o(P;t) = //[‘PQra(’ Pdgt D _epQit-r)] (Q' 92(@:t)) g

1 7 O‘P(Q ) _ g(g. 08RGt = ),

{7/“ /L [GP,Qit— (Q : B(Q; >Ug(pJ, )]Irdl @
7 ,Qit =T

+;/u /Uu[c PQst = 1) — ¥(Q; ) ——5 —Jdrdi.

Details of this formulation can be found in Liapis (1986). Equation 2.27 can also be
re-written in terms of source distribution. To do this, an interior flow is considered

and subtracted from the equation

0e(Qi7) _ 9:(Qi7) o
Pl == anp (228)
e = (2.29)




o

With a source strength denoted as o(P:t) (Equation 2.28) and the assumption of

Equation 2.29 ¢ can be represented in its standard format:

¢(Pt) = / / G(P.Q,t—7)a(Q,7)drds

(2:30)
/ / o(Q, T)mG(P, Q,t — 7)drdl.

For the present case, an “indirect” method is used

The indireet method initially solves the source distribution from the initial BVP
with the problem dependent body boundary condition. Once the source distributions
are obtained, the velocity potential can be computed using Equation 2.30. The in-
tegral equation for the source strength is obtained by differentiating Equation 2.30
with respect to the normal on the body surface and setting it equal to the boundary

condition resulting in:

i)o(m) __a(Pt) i
oy 7~ a(Q, T)
¢

// an"GPQ' drdl
np

This equation is used to solve for the source strength on each panel. After the veloc-

ity potential is obtained, the hydrodynamic force on the body can be calculated as

described in the following section.




. fildesiats Skt

2.3 Hydrodynamic Force

To determine the hydrodynamic force over the body surface (S;), the dynamic pressure
must be determined. The unsteady pressure in the fluid domain (V') is defined by

Bernoulli’s equation:
= [
Pz,y,2) = —p (7‘; +596+ ,,z) (232)

This equation can be linearized to Equation 2.33 using the Neumann-Kelvin Lin-
earization:

p) -~ —,% — W Vo (2.33)

The pressure is then integrated over Sp to determine the dynamic force equation:

Y
n(/):/ l"(l",l)n,:/S:vp/ L
Sn 55 O

The second term in Equation 2.34 is difficult to evaluate due to the derivative of the

(W - Vor)n;ds. (2.34)

potential. The theorem developed by Ogilvie and Tuck (1969) is useful because it is

possible to eliminate the gradient simplifying the evaluation of the force yielding:

e

Fi(t) = -,7/ S + ,./ m,{/swfm](l‘,\'ﬁ) Sl (2.35)
Js, ot Jsu '

Liapis (1986) shows this force can then be broken into two components, g;(t) and
hii(t):
Fi(t) = =gje(t) = hjr(1), (2.36)

ant) = p / GunydS. (2.37)
Sp

halt) = =p / BemydS 4 ,,%
Sp r
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Equations 2.36 to 2.38 are used to determine the response function




Chapter 3

Impulse Response Function

The complete boundary value problem solution is represented by the sum of all six
degrees of freedom (k = 1,2, ,6). It is important to decompose the potential into

six individual potentials, each ing a degree of freedom, in order to simplify the

problem. Each potential function must satisfy the Laplace equation, the linear free-
surface condition, the body boundary condition and the conditions at infinity. Each
potential can be solved as an independent boundary value problem (2.18) defined
in Chapter 2. Due to the linearity of the boundary value problem, it is possible to
decompose the problem by modeling the object as a set of linear equations (linear
system). This allows the problem to have a simple input, ship motion in cach degree
of freedom, returning a generalized hydrodynamic force. Cummins (1962) defined an
impulse response function for each degree of freedom which completely characterizes
any stable linear system. If the response to a unit impulse is known, then the systems
response to an arbitrary force can be determined. This is valid due to the problem
‘maintaining linearity. The method is then applied to find the hydrodynamic force due
to an arbitrary motion. To define this impulse response function, we must consider

that the ship velocity at t=0 jumps from 0 to 1 in the k* degree. This velocity spike



is so instantancous it can be considered impulsive and represented by 7 (t) = §(t)
The velocity spike will cause a force on the body from the surrounding fluid, known
as the impulse response function. Cummins (1962) and Ogilvie (1964) consider this
impulse and modified the body boundary condition given by:

Dby

B = nid(t) + miH(t) (3.1)

From this new body boundary condition, it can be seen that the problem can be
decomposed into two parts, a impulsive (1x(P)d(t)) part and a memory (Xi(P)H(t))
part due to the nature of both the Dirac Delta and Heaviside unit step functions. The
velocity potential is mathematically shown as:

o = Uk(P)S(t) + Xk(P)H(t) (3.2)

If the following is defined on the body boundary condition (Sp),

(33)

then the new decomposed potentials will satisfy the body boundary conditions for all
time. Due to the Dirac delta function, it is known that 1 potential describes the

fluid motion for the impulsive stage and must satisfy the following boundary value

problem:
on z=0;
on  Sp; (34)
at 0.
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The Heaviside unit step function characterizes Xi(P) as the potential which represents

the memory part (radiated waves) due to the impulse of the Dirac delta function
This potential can be further decomposed into two parts. The first representing the
potential due to the change in body orientation as a result from the sudden velocity
impulse. Due to the velocity jump from 0 to 1, the body will have a new position in the
k™ degree of freedom. Since the problem deals with a steady flow field, this position
change will cause a change in the fluid velocity on the body surface (Sp). These
changes must be taken into account and removed from the equation to maintain the
body boundary condition. Therefore (%) must be equal to my on the body surface
for all time (¢ > 0). The second part represents the potential due to the disturbance
in the flow field, which is a result of the velocity impulse. The disturbance in time
radiates as a wave from the body. Therefore X must satisfy the following boundary

value problem:
Xk =0,
Xy

ot

(35)

Liapis (1986) attempted to improve computational efficiency by representing these

two components of Xy explicitly in the following form:

Xi(P,t) = ou(PYH(t) + Xi(P,1), (36)

where @ represents the potential created from the change in body orientation dur-

ing the impulsive velocity stage. The potential must satisfy the following boundary

conditions:
=0, on z=0;
% i, on S (3.7)
on

Vpr — 0, at oc.



To maintain the original boundary conditions of X, Xi(P.t) must satisfy the follow-

ing boundary conditions:

at t=0;
on z=0att=0;

onz=0att=0; (38)

. on z=0 for t > 0;
0,0, 9 o B B

((E—U,,E) +ga)(,\“¢k) =0, on z=0 for t>0.

The potential for the arbitrary forced motion in the k% degree of freedom in terms
of the non-impulse input velocity 7k(t) can be found by integrating Equation 3.1 and

evaluating the convolution of ¢(P,t) with 7k(t). The resulting potential is given by:
t L
o= / dron(P,7)in(7) = Uu(PYi(t) + p(P)me(t) + / Xi(P,7)in(t — 7)dr. (3.9)
to Juo

Cummins (1962) showed that ¢ (P, ), in its decomposed format, satisfies the body
boundary condition, the free surface condition, and the conditions at infinity for all
time. It is important to note that each potential, ¥, i, and X; must be solved from
its individual boundary value problem Equations 3.4, 3.7, and 3.8, respectively. Sub-
stituting the new decomposed potential in the hydrodynamic force equation (Equation
2.35), causes the force equation to transform into Equation 3.10. This format has each

component of the decomposed potential present in the following force evaluation:

1
Fjelt) = =pswie(t) = bywsu(t) = cieme(t) = / drEKi(t = )isu(7), (3.10)
o



ik =p / YinydS,
by = ol / ounyds - / wumydS — 7{ eny(IXF) - W,

= -p[/ Prm;dS — f,aw,(wn) W),

,,.[/ Zknds - / Xm;dS — kani (I - Wl].

Jijk, is the time independent added mass of the floating body, that is only depen-
dent on geometry. Both by and ¢y, are cocfficients that depend on geometry and
forward speed, representing hydrodynamic damping and restoring force. The final
term, KJi(t), represents the memory of the fluid due to the impulse velocity. It is
also a function of geometry, speed, and time. It is important to note that ji;x and
by are frequency independent parts of the added mass and damping. Liapis (1986)
demonstrates that all frequency dependencies of the added mass and damping are
contained in the memory function K/;(t). The impulse response function KJj(t) can
be evaluated by using a non-impulsive input velocity defined in Equation 3.11. The
purpose of this function is to remove the high frequency content of the impluse input,

resulting in minimal numerical crror.

m(t) = -{1 +erf(Vat)],
(t) = y/Fer, (3.11)

iik(t) = —2ati(t),

where a is an arbitrary chosen constant that controls the frequency of the input. As

a — oo the input function approaches the Dirac Delta function (6(t)). Applying this




function to the boundary value problem changes the body boundary condition to;

o g )
% = meC + M = mai + mMan- (3.12)

Therefore the impulse response function can be determined from the following equa-

tion:
A
/dejk(ffr)n]k(T = 45200) + h(t) — pnie(t) — barie®) — cpme(®).  (3.13)
o

A benefit of the non-impulsive input is that it only requires a relatively small number
of computational time steps to accurately determine the response function. Con-

sequently, using Equation 3.13, the radiation force can be determined through the

defined Equation 3.10.

3.1 Solving the Response Function

The method applied in this study is to solve for the hydrodynamic force (pressure)
using Bernoulli's equation and then subtract the components from the force to obtain
the response function KZ(). The hydrodynamic force can mathematically repre-
sented by:

£ = [ Koo (319

where:

Fo(t) = giu(t) + hyi(t) — piiie(t) = bjejin(t) = cinm(t)- (3.15)




Cong et al (1998) showed that this function can be solved using a direct solution
scheme as follows
o

1
=3 Kot A+ S[Key + Koy, 102,

n=1

F

(3.16)
m=12--,M,

where M is the total number of steps in time. Equation 3.16 is a set of equations that

can be represented in the following matrix format:

ke 4+ mKn  + jukK

F,
Ko + 3K ar
Y
At
. . . 5
uKe + muo Ko+ 0+ mKe + gmeKae, e
1

©
5



Chapter 4

Numerical Implementation

To properly implement the preceeding mathematical equations into a computer pro-
gram, the equations must be represented in their discrete format. The following
equations are discussed in the order in which they are solved within the program.

The code was written in FORTRAN 90 using a Gaussian elimination solver to solve

the system of equations.

4.1 Zero Forward Speed

The first special case is when the object has zero forward speed (U = 0 and m; = 0),
thus allowing the removal of the line integration and changing the original source
strength equation (Equation 2.30) into it’s new format (Equation 4.1). The equation
must be rearranged to move the unknown terms to the left hand side, while the known

terms are on the right hand side, resulting in:

a0(P.t) __o(P) |
g
/ ”wj).)(;(/’,q,r

s

’ dr
onp

(1)

np
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Va(Pit) = —@ + ./SE %a(gtws "
+/d/ o BBt Ty,
9G,(P.Q)
e '" fr(}?(z))t— IF(P.Q;t—1) (£3)
Vi(Put ﬁ/ = o Zo(P.7)ds,

where V, =

,)np is the boundary condition #n, it is important to note that the — -

term is absorbed into the Green function. Equation 4.3 is represented in matrix form:
[Bli = [H]islo(ti))j, (4.4)

with N representing the number of panels and kt is the current time step. The matrix
terms are defined by:

Hy = —05, (4.5)

Hj= —/S ny+ V(é - %). i#d; (4.6)

X )
{a(o],;k,,u AP PGyt = )

o,

By = Va(Pistu) =

=1
N k-1 OF(PuQy ty — tir) (4.7)
—;g[d(Qj,tk)~At(T)].

It can be seen that Equation 4.7 is independent of time. The “kernel” matrix does
not change throughout the time domain simulation, meaning that the H matrix only

needs to be inverted once at the beginning of the computation.

The velocity potential at time ¢ on the body surface is derived through the following
equations:

d)(FAr):/lldr/S G(P,Q.t = 7)0(Q,7)ds, (48)
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#(P 1) = /S‘VG“(PAQ)U(Q.I)vI.‘

Kt " (4.9)
+3U[ (@) APt~ o).

k=1

The final discrete format is given by

X
=3 Go(P.Q)(Q.)
(3 (4.10)
(@ t0) - AMEP.Quty — i)

-
M»

" 1

i
4.2 Non-Zero Forward Speed

For the case when there is a forward speed, the line integral and m-terms must be

included. Equation 2.31 expands to the following:

onp

d8(Pt) __a(P.t) 9Go(P,Q)
=g /hn(q.l)ids

"
—/ d‘r/ o(@r)——""Tas )
oI5 (41
5
Jin/n(wn,
e
2o _
_u ,zf/ @rm2EBt=1)
9 Jo anp
(P tie) OF(P,Q.t = t)
st Atzl (Q, ) e kg
IF(P,Q.t — tx)
}Ar.fZ/ (@, i)y — L Bos R 12 1)

(b )+/ (Q’ )d('ll)“,,(?) is
—7/ (Q- txe) n| ColP, Q)

onp
Note that the time summations in Equation 4.12 require half weights at the end points

due to the use of a trapezoidal integration rule. Transforming Equation 4.12 into:
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(P tre) I Ai/ (@, tmdl’(l’l?,l))is

onp s onp
5
+A"’°/ (@ b 2P0,y
2% Jo onp
o]
OF(P.Q, tu — )
+At;/§ a(Q.m*dnp ds
+At=L Z/ (Q. ) m 2P Dt — b) PQ(“ gy
(P:) _— )‘3prr(P Q)ds
7 G PQ)P
i
0(Q tum 8Ly,
e
making use of the conditions:
F(P,Q, 0) =B,

Equation 4.13 becomes:

39(P,t) aF(P, Q =t
)
“onp A'Z A
-~

“Z/ Q,mwﬂ
! (Pr) ocuwm

- R

S5
U 9G u(PvQ)
5 /rd(Q.th)nl B dl.

(4.13)

(4.14)

As with the zero forward speed case, the equation can be represented in matrix form

= [Hlijlo(te)];s

(4.15)



where kt stands for the current time step, N represents the panel number. The matrix

terms are defined by:

"
Hij = 05— 5/ ne vt - 1,)v1L~ (4.16)
g T
e 7/ nevE -3
s
2 5 (4.17)
-ﬂ/ m V= yr, it
9 Jr, ror
o D0 Pi tar)
0 the
=2,

(4.18)

kt=1
us OF(Py, Qje ke — )
+Y At g T 0(Qye, i) —— M g,

Onp,

‘ where j* means that only the panels on the free surface are used for the summation
of the line integrals. The source strength for the line integral segment is assumed
to be the same as the source strength of the panel directly below it. As with the
no-forward speed case, the [H];; matrix is independent of time, so only one inversion
is required for all time domain computations. It is also important to note that the line
integration part of the “Rankine Source” is zero, due to the fact at the free surface
1~ L =0. After the solution for the source strengths over all panels are determined

for every time step, the velocity potential can be determined through Equation 2.30.



The final discrete form is given by:

o(Pt) | ¥ .
(P, 1y = 2el Go(P )ds
(0 = 28 »Z/ o0 @)0(Qy, )

+Li Y [arieo@nat
AiZZ/ PPy Qs tie = t)o(Qs, )dS

k=1 g1

f“A122/ F(Po Qthe — 1)o@ )L

k=1j°=1

(4.19)



Chapter 5

Numerical Results

The following section presents the validation of the radiation problems for a Hemi-
sphere and Wigley Hull. The zero speed and forward speed radiation problems were
applied to the Wigley Hull, while only the zero speed case was applied to the Hemi-

sphere.

5.1 Hemisphere

The first set of validations were i on a b The ion was

only over half the hemisphere due to symmetry about the x-axis

Due to the importance of the 1 — L term to the entirety of the numerical scheme

it is important to verify this before applying it to the time-domain integration. This
is verified by computing the time-independent heave added-mass of a floating hemi-
sphere at the short wave limit. Newman (1977) determined that this added-mass can
be computed using the ! — 1 while Havelock (1955) presented a non-dimensional
analytical solution of 0.5. The present code produced a non dimensional result of
0.526 with 100 panels and 0.518 with 225 panels. These results are reasonable when

compared with the panel method SEALOADS that produced a non-dimensional result
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Figure 5.1: Hemisphere Mesh for 225 Panels

of 0.517 with 256 flat panels over a hemisphere (Qiu, 2001).
The developed panel method was used to compute the radiation heave response
function for a hemisphere of radius of 5 meters. The response function was non-

dimensionalized by:

MR , 5.1
v/
while time was non-dimensionalized by:
9
Ve 5.2
g 52)

where R is the radius of the hemisphere, g is acceleration due to gravity (9.81 %),

and V is the hemisphere volume of displacement. The chosen time step, At was 0.05
seconds. Figure 5.2 shows that the response function agreed with results from Qiu
(2001) and the analytical solution produced by Barakat (1962).

The code uses the computed response function to compute the added-mass (Ass)
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Figure 5.2: Non-dimensional Heave Response Function Versus Non-dimensional Time

and damping coefficients (By;) of a heaving hemisphere versus non dimensional fre-
quency. The added mass and damping coefficients are directly related to the cosine
and sine transformation of the computed response function. The mathematical for-

mulations that were used are:

A= = 5 /0 % K(t)0sin(uwt), (53)
Blw) = b~ /n * K(t)cos(wt)dt, (5.4)

where yu; and by, are the time-independent parts of the added-mass and damping

coefficients. The frequency was non-dimensionalized by:

R
o
9

) (5.5)



while the added-mass and damping coefficients were non-dimensionalized by:

pwm’

The results were compared to analytical results produced by Hulme (1982). Fig-
ures 5.3 and 5.4 show reasonable agreement. Hulme (1982) showed that an irregular
frequency response occurs at:

%~ 2.56. (5.8)

It can be scen from the graph that at a low panclization we seen a similar phenomena
reported by Lin & Yue (1991). This was referred to a solution oscillation at an
irregular frequency behavior near w;,,. However when the panel number is increased

this irregularity begins to disappear.

09

Cyrent Method honse Banels

Panl Freo Mcmod S Qi Tl 06,
08 and Yue (1991

Analytical Solubon (Huime, 1982) ()

07

06

05

Non-Dimensional Added Mass A33

04

03

0 2 4 6 8 10
Non-Dimensional Frequency

Figure 5.3: Non-dimensional Heave Added Mass Versus Non-dimensional Frequency
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Figure 5.4: Non-dimensional Heave Damping Versus Non-dimensional Frequency

5.1.1 Single Source Point

Before computing the forward speed cases of the Wigley Hull, it was important to
verify the Green function ability to compute the forward speed case. The code was
applied to a single moving source point at a constant source strength to validate the
wave pattern. Due to the Kelvin-Neumann linearization, a “Kelvin” wave pattern is

to be expected. Figure 5.5 illustrates this particular type of a wave pattern
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Figure 5.5: Single Moving Source Points with Constant Source Strength

5.2 Wigley Hull

5.2.1

Zero Forward Speed

The developed panel method has been applied to the Wigley Hull at zero forward

speed and non-zero forward speed cases. The Wigley Hull geometry is defined by

(Journee, 1992)

(5.9
(5.9)

a’1-¢*)(1-€*

n=>0-¢)1-)1+p¢

where;

a

a=

1.0 and 8 = 0.2 for models W; and Wi

0 and 8 = 0.2 for models W;;; and Wy

0 and 8 = 0 for model Wiy
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Qiu (2001) defines the non-dimensional variables by:

(5.10)

where L is the ships length, B is the beam, and T is the draft. Length and beam are
taken at the water line. Figure 5.6 shows the mesh of W with 256 pancls over the

half body.

Figure 5.6: Wigley Hull W; Mesh for 256 Panels

The Wigley Hull W; was used to validate the heave response function Figure 5.7

0.5606 with the dimensions given by (Qiu, 2001):

4
L =0.10, ; =0.0625, L = 120.0. (5.11)

and pitch response function Figure 5.8. The hull used had a block coefficient (C) of
L

The response functions were found to be quite sensitive to the number of pan-

ion

els along the z-direction, while the chosen number of panels along the x-dires

10



have minimal effect. This is duc to the propertics of the Green function and its
sensitivity when the centroid of a panel approaches the free surface, see Section 5.3
for further discussion. The response function for heave (K3s) and pitch (Ks;) were

non-dimensionalized by:

Ky [g 9
Fatlh (5.12)

Kss [g -
9V \/; 5:13)

and time was non-dimensionalized by

g
t = 5.14
A (5.14)

12
Cument Method (256 P.mhg P
Panal Fros (Qiu, 2001

Non-Dimensional Heave Response Funclion K33

o T 2 « 5 o

3
NonDimensional Time.

Figure 5.7: Wigley Hull W; Heave Response Function K33
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Figure 5.8: Wigley Hull W} Pitch Response Function K55

The zero speed heave coefficients of added-mass and damping for the Wigley Hull
were computed from their respective response functions. The frequency was non-
dimensionalized by:

(5.15)

WNp =

The coefficients for heave added-mass (As3) and damping (Bss) were non-dimensionalized

by

A
N (5.16)
Bas (5.17)

Ve
The non-dimensional coefficients were compared to that of MIT’s code TiMIT
taken from Qiu (2001). The results shown in Figures 5.9 and 5.10 show reasonable

agreement
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Figure 5.9: Wigley Hull W; Non-dimensional Heave Added Mass Versus Non-

dimensional Frequency

et Methos 256 Pancty) ——
T

Non-Dimensional Damping 833

o 2 4
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Figure 5.10: Wigley Hull W, Non-dimensional Heave Damping Versus Non-

dimensional Frequency

5.2.2 Non-Zero Forward Speed

When introducing forward speed into the computation, it increases the complexity

of the computations. In this study, only the wave resistance problem is computed
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in the forward speed problem. The Wigley Hull Wer was used in the forward speed
computation case. A number of Froude numbers were tested for the Wgr and the
results were compared to experimental and numerical results. A key component to
note is that with the forward speed case and the Green function, it is sensitive to the
panel selection along the z-axis and the x-axis. It is important to select a sufficient
number of panels along the x-direction to capture the wave along the body, while an
incorrectly chosen number of panels in the z-axis can have a undesirable outcome. If
the number of panels are too large or too few, the program will incorrectly predict

the wave resistance. This is further discussed in Section 5.3.

Lin Yue (1991
Current Method (256 Panaly
PTG Exparimental (1965)

oxx1000

o o5 1t 35 4 4

5 2 25 3
Non Dimensional Time

Figure 5.11: Surge Force (Wave Resistance) Wigley Hull Wgr for Fn=0.3
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Figure 5.12: Heave Force Wigley Hull Wy for Fn=0.
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Figure 5.13: Wigley Hull Wpr Wave Resistance Versus Fn

The surge force (wave resistance) and vertical force were non-dimensionalized by:

F

C=

45

(5.18)



Time was non-dimensionalized by the oscillation period given by:

_r o
TO*TSWU

(5.19)

Figures 5.11 and 5.12 show the force results for constant forward speed at a Froude
number of 0.3. Forces in the heave and surge direction were computed. The surge
and heave forces are compared to Lin & Yue (1991) and the experimental results from
ITTC, 1985. The present results agree with Lin & Yue and are reasonably close to
the experimental results. To complete the wave resistance curve the program was
run for a wide range of Froude numbers from 0.2 to 0.45 and compared again to the
ITTC 1985 experimental result and Lin & Yue's results. Figure 5.13 represents the
final wave resistance curve. From this curve it can be seen that there is reasonable

agreement with the experimental and numerical results.

5.3 Discussion on Numerical Stability

During the progress of creating this numerical method to solve the ship resistance
boundary value problem, many situations were encountered when dealing with the
numerical stability of the program. The Green function as mentioned above plays a
key role in the computations of this boundary value problem. It satisfies the conditions
at infinity, bottom boundary, and the linear free surface. However, there are a number
of things that must be considered when using the Green function. When panelizing an
object, it is very important to create a cosine distribution of panels along the z-axis.
This is due to the fact that Green function is highly oscillatory at the free surface. If an
even panel distribution is used, unstable oscillations will occur, rendering inaccurate
results. Thus it is imporant to maintain a relatively large panel size near the free

surface.




When computing forward speed problems, the panclization along the z-axis and the
x-axis is also important. If the z-direction has too many panels, even with a cosine
distribution, the centroids of the panels will approach the free surface boundary, and
if the centroid comes close enough to the free surface, large oscillations will occur.
However, if the panelization is too low along the z-direction, the method will be
unable to capture the entirety of the problem, also rendering inaccurate results. This
can be a major problem when attempting to compute a solution for small objects. For
example a ship model with a draft of 0.1875, would cause an issue. For panclization
along the x-direction, is important for the pancls to be able to capture the waves
along the moving body. Should the panel number be low, the numerical method will

be unable to capture the effects, producing in inaccurate results.




Chapter 6

Conclusions and Recommendations

A panel method computer program has been developed to solve the radiation prob-
lems in the time domain. This was done as the first step in creating a complete
numerical model of the ship-ice interaction scenario. The validity of the approach
and its accuracy were assessed by comparing results from the code with results from
similar codes presented by Qiu (2001) and Lin & Yue (1991) for different geometries.
The validation cases covered were the radiation problems, the computing of the co-
efficients of added-mass and damping along with the forward wave resistance. The
present results are reasonable when compared to published results, both numerical

and experimental

6.1 Panelization

Numerical stability was fully investigated using the solution to the preceding defined
boundary value problem. It was discovered that a stable solution for the Green
function is dependent on the number and arrangement of the panels in the x and z
directions. A cosine arrangement is required in order to avoid free surface oscillations.

An excessive number of pancls along the z direction can also produce large oscillations
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in the solution, even with a cosine arrangement, due to the panel centroids being to

close to the free surface. Choosing a panelization grid of 6 to 8 panels along the
z-axis for the Wigley hull should minimize the errors. The optimal number of panels
is bevond the scope of the current study, but it is expected that this may change
with the size and geometry of the model. It is reccommended that further research be

preformed to find the optimum grid for a wide variety of geometries and speeds.

The main limitation of this method is the numerical manipulation that is required
due to the assumption of having a constant source strength across each panel. This
limits the ability for more accurate solutions. Another area of the code that required
considerable effort was the line integration. This integration is preformed where the
body intersects the free surface increasing the complexity of the integration. In the
present study the integration assumes that the source strength at the free surface is
equal to the source strength on the panel directly below the point on the line. It
is recommended that the method to solve this integration be imporved, to increase

accuracy.

6.2 Recommendations for Future Work

The Green function was a suitable choice for the present work. However, the Green
function only satisfies the linear free surface condition. It is recommended that alter-
native methods be explored to implement a nonlinear free surface condition. One al-
ternative may be the use of Rankine Source method. This method distributes sources
on the free surface and forces the free surface boundary condition. This removes the
Green function from the boundary value problem and allows for the possibility of
non-linear free surface condition. Significant work has been done with this method

and is quite mature.



Another approach may be to adopt a ‘Panel Free' approach (Qiu & Hsiung, 2000)
that is more robust and accurate than the present panel method. The method re-
moves the singularity from the boundary value problem by the desingularization of
the boundary integral equation. This allows the geometry of the body surface is be
represented by Non-Uniform Rational B-Splines (NURBS) instead of panels. The
integral equation can then be applied to the body by Gaussian quadrature, removing
the issue of panelization. The method has minimal numerical manipulation, due to
the removal of pancls. Panel free has been proven to be more accurate since the body

is described mathematically by NURBS as opposed to pancls.
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