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Abstract 

In the prCl;€nt ~tudy a linear boundary value solution for the ship wave radiation 

problem at zero speed and at forward speed i~ obtained in the time domain. Fluid 

velocity potentials due to the non-impulsive input and constant input are obtained by 

soh'ing the boundary value problem using source ~lrengths (indirect method), The 

singularities in the Rankine soul'ce of the transit frcc surface Grew function were 

dealt with by the usc of the well known Hess-Smith method. The pauel method was 

validated by the application of the classical problem of the hemisphere and extended 

to the applicat ion of the Wigley Hull for the radiation problems at forward speW. 

The computed response functions, added-mass and damping coefficients, along with 

the waw resistances were comparcd with published results. The final part of this 

thesis discusses some of the limitations of the Green function and suggest numerous 

ways to avoid these intrinsic crrors 
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Nomenclature 

F(P,Q,t - T) Mcmory part of thc Green function 

G(P,Q,I - T) T ime-Domain Gr(,.'t,)n fun~tion 

Go(P,Q) = (~- M Rankine Source 

ll(t - T) Hem"iside unit step function 

10 Bessel function of order Zero 

K]1 Response function for the radiation force in en degree of freedom(N) 
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SF Free surface 

S"", Boundary at infinity 

Uu Forward speed of body (~) 

V Fluid domain 

Vn(P, t ) NorIllal velocity at point Pat tillle t 

IV Steady flow velocity vcctor 

bjk Time independent hydrodynamic damping c.odficient of the floating body 

e)k Time independent hydrodynamic restoring force of the floating body 

Acceleration due to gravity (~) 

M-terms that are the gradients of the steady veloci ty in the normal (\irecti( 

Normal Vector point into the bod) 

Distance between source and field points 

Position vcctor forecntcr of gravity 



Time 

" 
Initial time 

lntcn;cctioll of body 6urfru:c and mean water plane 

<1> (,1, /) Total velocity potential at any point P(x,y,z) at time t 

Arbitrary constant which controls the non-impulsive input 

'ttl 
,)(I) 

a(Q,T) 

•• 

Dirac Delta function 

Non-impub;t\"c \"c!ocity input 

Time independent added-mass of the floating body 

FluiddcnsiIY{~) 

Source 6trcIlgth for point Q at time T 

Velocity !>olclltial for radiated wave in the l.:'h degrcc of freedom 

Velocity 1}()lcntial for diffracted waxe 

Components of radiated potential due to decomposition 
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Chapter 1 

Introduction 

With an expected increase in indm;trial activitie:; in the Arctic, interest in icc loads 

on ships and offshore structures is again becoming an important engineering research 

topic. The STePg'l Research Project, a relatively large, multi-faceted, research un­

dertaking at Memorial University was created, to bettcr quantify ice loadscxpcrienccd 

by ships and structures operating in arctic waters. One of the ice loading scenarios, 

to be investigated by the STePs'l, project is the interaction betwccn a moving ship 

and relatively ~mall ice masses floating in the path of the \"es:;el. Such impacts can 

be a significant drin~r of structural design or a significant source of operating risk. A 

promising method of understanding and predicting such interaction sccnarioo is the 

numerical modeling of the hydrodynamic interaction between a \·csscl and a small icc 

piece when the vessel is underway. The first step in de\·eloping a complete numerical 

model of this interaction scenario is to undersltllld and qunntify the hydrodynamic 

prc:;sures and forces for the ship undergoing forward motion at a constant speed. 

The intent of the work detailed in this thesis is to develop an efficient but rela­

tively simple hydrodynamic model of a ship at forward speed that can be used as the 

first step in deH!loping a full simulation model of the ship-icc interaction scenario 



In developing this model, (I Boundary EI~mcnt Mcthod (BEM), or Panel Mcthod, 

was considered as a reasonable first step. The panel method is based on potential 

flow theory. This was done on the premi~ thnt the interaction problem is primarily 

influcnced by pressure forces and thus thc viscous effects need not bc modeled at this 

stage. The intent is to create a relat ively simple and robust numerical tool to accu­

mteiy predict thc coefficients of added mass and damping, as well as the wave making 

rClSi~tance of hull forlll:; utiing a trantiient free :;urface Green function. The primary 

technical challenge is solving thc Grecn fun ction to provide the numerical prediction 

of coefficients of ru"lci<.'ti mass nnd damping lind the WA.ve mnking r~'!:iis t ancc of a ship 

under forw(lrd spet..'ti 

As an alternative approach, prediction:; can be made by physical model tests. How-

c\·cr current advancements in computing power IUld computational tools make numeri-

cal prediction a viable alternative to conventional mooel tests. Numerical methoos arc 

becoming more cost effective due to their lower OO8t and quicker computing time. On 

the other hand, more complex numerical methoos are also available for marine hydro­

dynamic predictions such as solutions based on the Rernolds-Average-Navier-Stokes 

(RANS) equations, Large Eddy Simulation (LES), and Direct Numerical Simulation 

(ONS). These methods all :solve the Navier-Stokcs equations for fluid mechanics and 

arc known as Computational Fluid Dynamic (CFD) codes. These codes include the 

effccts of viscosity but ftrc complcx IUld lime consuming, both in problem dcfinition 

and in code execution, when compared to thc simple Panel Method approach. It may 

however be possible, once the potential flow mooel is completed, to upgrade the mooel 

to include viscous effects. However, at this stage, it was considered a bettcr approach 

to start with a simple modcl that explores the primary effects 



In summary, the overall purpose of this study is 10 develop a Boundary Element 

/I:lethod based prediction code using the Green function to solve the radiation prob­

lems in the time domain, The layout of the thesis following this introductory section 

is as follows. The remainder of Chapter I presents the current state of the art in hy­

drodynamic modeling using the panel method. Chapter 2 presents the mathematical 

formulation of the boundary valuc problem. Chapter 3 discusses the solution based 

on the impulse re:>ponse functioll in order to solve for eocflicients of added-mas; and 

damping. The numerical implementation of the equations is outlined in Chapter 4 

In Chapter 5 thc numerical solutions arc compared with experimental results and 

publisht'(\ numerical results. The limitations of the Green function and how to ap­

propriately apply the function for reasonable results arc also discussed in Chapter 5 

Conclusions and recommendations for future numerical development arc presented in 

Chapter (l 

1.1 Previous Work 

The following sections det.ail the development of various aspects of the modcling 

problem covering thc numcrical approaches and the evolution of the panel method, 

starting with basic radiation problems and moving through early strip theory and 

frequency domain approaches to the development of more accurate panel methods in 

the [requene)' domain and panel methods for time domain analysis 

1.1.1 Radiation Problems 

The radiation problem eo\"CfS the modeling of wave:; radiated by a moving or oscil­

lating body on the frcc surface of a fl uid . Solution of this problem underpins both 

the wave rCl:listanee model aud general sea keepiug modek For this reason reference 



is made to both prohlems in the following !;(!Ctions 

The specific application of the radiation problem for this case is the wave making 

resistance, which is a form of drag created by an object moving Oil a flllirl free surface 

It is a rlin.'Ct reflection of the amount of energy that is required to displace the fluid in 

front of the object . This energy is an irrecoverable expenditure and leaH'S the system 

as a radiated waye. The waw making resistance is highly dependent on the speed to 

length ratio of the ~hip. In deep water, the wave system speed is equal to the ships 

speed. This results in an initial ncar lincar relationship betwecn ship speed and wave 

making resistance. until a limiting point at which the wave resistance dramatically 

increases. Thi~ limiting point is approximately a Froude number of 0.415 however 

most displacement hull forms operate at a speed-lengt.h rat io Ifl.rger than 1 according to 

Savitsky (2003). The first attempt to numerically predict the wave making resistance 

of a surface ship was by Michell (1898) late in the nineteenth century. Thck (1964) 

furt her examined Michell's work with traditional strip theory, which implies two-

dimensional flow on all sections. However two-dimensional transverse flow dOCll not 

provide an adequate model for flows at forward speed, but is more suitable for zero 

or low speed seakeeping predicitions. Because of its ability to better model the flow 

conditions for forward ~peed, most researchers prefer to use the panel method to 

determine thc WH\"C mfl.king rcs ist fl.nce , Newman (1979) and Anncbland (1986) 

There ha\'e becn many challenges in accurately predicting ship resistance. For 

walle making rcsistancc, the Hoating body mll~t ha\"e a forward ~peed which rCl>u lts 

in the Ncumann-Kelvin problem (Newman, 1977). This increases the complexity 

of the solution due to thc required Grecn fun~tion. Ogilvie (1964) and Cummins 

(1962) attempted to directly formulate the problem in the t ime-domain u~ing a time­

dependent Green function. This approach was further examined by Wehausen (1971) 



for zero forward speed. Recently, Kim, ct nl. (1998) have predicted wavc making 

resistancc using a higher order panel method. Lee, et al. (1997) used a B-Spline pane! 

method to create a more efficielll and robust solution to the wave making problem 

1.1.2 Frequency-Doma in Solution 

III the froquency domain, problems arc lincarized based on MSUllIptions that the 

motions arc sma!! and time-harmonic, coupled with the use of the mean wctted surfacc 

on the body. This method has been very successful for zero forward speed problems 

(Korsmeyer, et al. 1988). According to Lin & Yue (1991 ) they ha\'e become an 

industry standard tool for the design of large offshore structures. Chang (1977) and 

Inglis and Price (1982) attempted to formulate the problem with non zero forward 

speed, using a zero-speed frequency domain Green function with a speed adjustment 

The presented re.;uits only had meaning if the body motions were sinusoidal ill time 

This coupled with thc diflicu]tics in the computation of the Green function with the 

speed adjustment in the frequency domain, an alternative method was desired. The 

suggt'llted alternati\'e approach was to solve the problem directly in the timt'-domain 

1.1.3 Linear Time-Domain Solution 

Due to the difficulties of the bMic frequency-domaill solution, many attempts have 

been madc to refine the approach, with limited success according to Lin & Yue(1991 ) 

To o\'crcome the difficulties. Cummins (1962) and Ogilvie (1964) moved to soke the 

zero-forward speed problem directly in the time-domain with a lincar free surface, 

expanding on the work of Finkelstcin (1957) and Stoker (1957). The linenr radilltion 

problem was solved by using the unit impulse response function , which provides the 

coefficients of added mass and dnmping for the body under consideration. The unit 

response function describes the body's response to an unit impulse Illotion in any 
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degree of freedom. The implusivc motion of the body gives risc to a force from 

the surrounding fluid which can be f('!;()lvcd into added mass and linear damping 

coefficients. Cummins (1962) states that a solution for this unit impulse response 

provides the basis for a solution to the body response to an arbitrary force by providing 

the coefficients of added-mass and damping which can be applied to the morc general 

motion cases. 

Wchauscll (1971) furthered this research for the zero forward spco.xl case with ex­

tensive analysis of the problem, prcscnting detailed results (Wchauscll 1971, 1967) 

Consistcill two-dimensional (strip theory) time domain results have been a\llilablc 

for some t ime, howc\'cr tbree-dilllell~ iollal (panel) resulls arc still \"ariable. The fin;t 

three-dimensional time-domain problems were linearized in an attempt to reduce the 

mMhematieal and numerical complexity. 

In linear time-dolllain formu latio!lli, the time-dependent Grccn fUllction is applied to 

derive a boulldar~' intergrn.l equation at the mean wetted body ~urfa.ce, f\l;>illming that 

the body's wetted surface area docs not change, i.e., the mcan wetted surface is used 

and motions arc assumed to be sma!! in amplitude. In this study the linear radiation 

forces acting on the body then arc expressed by convolution integrals with impulse 

functions. Newman (1985) succcssfu!!y computed the impulse respon:sc function for 

a cylinder in the timo-domain, satisfying the zero-speed case. However, the non-zero 

speed formulation was of greater practical interest. Liapis (1986) and King (1987) 

furthered the time-domain analr"i~ method by developing a nOll-zero forward speed 

solution. They developed a fll!!y three-dimensional mathematical problem for time-

domain analysis for a const ant forward speed, creating a large leap forward in time­

domain simulation. The next progression in time domain analysis was the ability to 

include varying forward speed, large amplitude waves and a non-linear frcc surface 
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condition, which covers most realistic cases. 

A variation of the method wa:,; int roduced by Dawson (1977). Daw>;()Il introduced 

panels 011 the fr()l)-~nrfacc, as well as the body surface using Rankine sourC0:l to sati~fy 

the frcc-surface condition. This approach i~ known fI.'S a quasi-linearized frcc surface 

Recent. results have been promising for this method, due to its development for many 

years by others: Larsoon (1987) and Nakos &, SclUYOUllOll (1990). Lin und Vue (1991) 

state that in this method the frcc surface and body geometry remain fixed in the 

undisturbed positions, and the nonlinearities of the geometry arc not included 

1.1.4 Nonlinear Time-Domain Solution 

Current research has been carried out to include nonlinearit.Y into the time-domain 

formulation . Lin &, Vue (1991), and Beck & tlbgee (1990) have extended the time­

domain approach to arbitrary large-amplitude motions. T he free surface however 

remained linear so that the time-dependent Green funct ion can ~till be applied. This 

wa.-; IIchicnod by applying the hody boundary condition on the instantanCOll~ sub­

mcrged hu!! surfacc. This h38 been rdemo".:! to as the body exact problem. Qiu, ct 

al. (2006) achieved this, using a panel free method and applying the body boundary 

condition on the instantam.'Ous submerge<! hull surface. Fo!!owing researchers have 

had various success with this formulation. Qiu & Peng (2007) used a the panel free 

method to combinc thc exact bod:. boundary conition with a free surfacc condit ion 

linearized about the incident wave profile. The presented remits showed improvement 

for ea~e~ of comput,ation~ dealing with large.amplitude motions 



The final progression in the time-domain formulation is to include the nonlinear frcc 

surfUl-'e. With the Green function the fn_'e ~urface Ifiust maintain linearity, limiting 

the ability of the method to include significant nonlinear wave elfcct~ . This poses 

limitations on the panel method with researchers such as Song (1993) attempting to 

usc the Rankine Source method a.;; an alternative approach to satisfy the nonlinear 

frccsurface 

In summary. the current state-of-the-art methods arc higher order pancl methods 

using either the Rankine panel or the Green function method. Higher order Rankine 

panel method~ arc fully nonlinear. a.;; they include the nonlinear frcc surface using 

various numerical techniquCl:l_ Huang and Sclavouno::; (1997) addressed the nonlinear 

frcc-surface using wcak-scatterer thcory, lincarizing the ship wave disturbance about 

thc instantaneous position of the ambient wave problem. The nonlincar wallc resis­

tance fl'Su lts were an imprO\'ernent O\'er the standard linear thcory when compared 

to experimental rcsults. These predictions are still not fully nonlinear. Kim, et al. 

(2011 ) also used the weak-scatter theory approach showing similar results. Brocze, 

el a!. (1993) de\'eloped a highcr order three-dimensional Rankine pancl method for 

non-linear frcc surface waves. They claim that the results were stable and accurate 

However, due to the complexity of the numerical scheme, a vector supercomputer was 

required for the computations to deal with the motion of the grid. For the Green 

function method, higher ordcr results arc almost fully non-linear_ The only limitation 

of the Green function, is that the free surface must maintain is linearity. This method 

is called the blended approach. The body boundary condition i1S applied to the instan­

taneous wetted surface, known as the body-exact problem. but the free-surface still 

remrunslinear. Qiu &: Peng (2007) achie\'ed this with a panel frcc approach. However, 

without the inclusion of the nonlinear free surface, the method is stilllimitcd. duc 10 



the slight reduction in accuracy (Lin &0 Yuc 1991 ). 

In this work, the Grccn func t ion approach WM chOCltiCn, in which the linear frcc $ur­

face boulldary cOlldition is ~ati~fied on the frO<' ~Ilrface and the linear body boundary 

condition$ are satisfied on the mcan wctted body surface. 



Chapter 2 

Mathematical Formulation 

2.1 Boundary Value P roblem 

In setting up the problem based on the work of Liapi~ (1986) the following conventions 

and boundary conditions are used. Figure 1 shows a coordinate system and the 

boundaries used to define the boundary value problem. The local coordinate system 

is fixed to the floating ship at the center of the midship, moving in the pOoiitive x-axis 

with a constant forward speed of Uo. The .L coordinate is poc-;itivc in the direction of 

the bow, the y coordinate is positive in the direction port, while the z coordinate is 

positive upward. The boundaries seen in Figure I afC the free surface (Sf), body's 

surface (511), bottom surface (Sbolt<>m), and the conditions at infinity (500), Each 

boundary must satisfy its own individual boundary condition. When u~ing potential 

flow theory, the lIuid is assumed to be incompressiblc, inviscid, frcc of surface tension, 

and irrotat ional. With the,;e as:;umptiolls, coupled with thc assumption of small 

unsteady a:;cillatioIlH, a velocity potential q> can exist at any time t where the velocity 

of the fluid can be described at any point P(x,y,z) at the corresponding time hy the 

10 
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Figure 2.1 Boundary Value Problem Domain and Coordinate System 

gradient of the potential given by: 

V(P:t)=V''l>{P;t). (21) 

With this defined potential, the boundary condition mll~t be enforced on all bound· 

aries and can be defined mathematically. The governing equation is the Laplace equa­

tion, (Equation 2.2) which stipulatcs the conS€rvation of mass in the entire bounded 

volume V. 

(2.2) 

The fluid must satisfy the body boundary condition. known as the '·no-flux'· boundary 

condition, given by: 

(2.3) 

meaning no fluid will flow eros; the body boundary. Sb is the mean wetted body 

surface and docs not change with time where ii is the unit out-ward normal vector, 

pointing out of the body. On the frcc surface, the exact boundary condition is derived 

from Bernoulli's equation aso;uming that the surface tension and viscous effects are 

II 



negligible. The exact (non-linear) boundary condition can be wrilten as, 

~ + 2Vq, .'iJ?Ji + ~'V¢.'V('V6 .'V¢)+ g';;; = O , on Z= 'I (2.4 ) 

where lJ(xo, Yo, I ) is the unknown wave elevation (or amplitude) and (.ro, Yo, zo ) 

define:; a point on the free ~urface. 

On the bottom boundary it h; I\,';,';umoo that fluid velocity effects from the body 

vanish, represented by· 

lim 'Vtf,(P, 1)1 =: 0, Oil Sbottom ' _ IX> • __ <1 
(2.5) 

The conditions at infinity arc known as the Sommerfield radiation conditions that 

state wave:; created by the Hoating body propagate away from the body and vanish 

in the far field 5"" given by: 

(2.6) 

With the abow! boundary conditions, a linearized problem can be set up to allow the 

application of superposition, greatly simplifying the problem. If the disturballCCl in 

the fluid are small in the steady problem and in the unsteady problem, both can be 

separated due to the principle.; of SUI>cq)()t;ition. allowing the following breakdown of 

the total velocity I>otential 

<I' (P:t ) = - VoX + ¢o(J.,y,.::) + cfJrCl" ,y,.;;; t ), (2.7) 

where - VoX and ¢o are theeomponellts that make up Ihestcady efTects of the \·elocity 

potential while IjJI contain!) all the unsteady effects. The unsteady velocity potential 

12 
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can latcr bc brokcn down into the radiation and diffraction potentinl~ (Equation 2.9), 

where ¢k represents all ~ix degreC!; of freedom and rPD represents the potential of 

diffrac ted wavcs_ The total potential can be defined as . 
1'1 = t; 1'k(P:t) + ¢V(P:t) (28) 

The final1inearization applied to the boundary value problem. known M the Neuillann­

Kelvin problem, defincs the pressure, frcc-surface condition and body boundary con­

dition by the follow ing conditions 

(2.9) 

(~-Uo~j29k+fJ~ = O, (2.10) 

~ =:= nk(l; + mk(k, on S~ (2.11 ) 

where rij is the generalized unit normal is dcfim..'C1 by Equations 2.12 and 2.13 and ( 

is the ampl itude of the unsteady motion in all degrees of freedom 

(2.12) 

(2.13) 

(214 ) 

The ~teady effects and unsteady effects arc linked together through the IlI-term~ in 

the body boundary condition (Xewman, 19ii). These terms are the gradient~ of the 

13 



steady velocities in the normal direct ion given by' 

(2.15) 

(2.16) 

In the Neumann-Kelvin problem If" = - uoi, eouplcd with the assumption that the 

body is slender, and the perturbation of the steMY flow field caused by the ship is 

neglected, the m-terms are simplified to the format represented by: 

The complete radiat ion boundary value problem is reprCtiCnted by' 

\12¢k = O 

(I; - UOI; )1¢k + 9~ = 0, 

~ = lIki;k+lIIk(k ' 

\1(/Jk-0, 

\1';'k- O, 

¢k = O ~= O, 

irl V: 

on z = 0 

(It t = 0 

(2.17) 

(2.18) 

This BVP is used to solve the \'clocity potcntia] in each of the 6 degrees of froo:l.om. 

14 



2.2 Boundary Integral Equation 

There arc two different approaches to soh-c the BVP that were discu~ in Chapter 

1, the Rankine Panel Method and the Green function ~\'lcthod. The Rankine panel 

method distributes sources on the frcc-surface as on the body surface and forces the 

boundary condition on the frcc-surface_ The Green function method only distributes 

WUTee.; Oil the hody ~Ilrfa.ce, becflu>;C the Grccn function automatically sati:;fies the 

linearized frcc-surfacl' condition. In this work, the Green functioll Method is applied 

The body is panclizcd and each panel has a source singularity located at the panel 

centroid. Liapis {1986} explains that these source strengths arc dctcrmint..'<i by solving 

a Fredholm integral of the second kind on the body ~urface. It is known that the Green 

function satisfies three boundary conditions, on the free surface, the bottom boundary, 

and the conditions a t infinity. A time-dependent Green function is required to solve 

the case considered for thi~ study. Liapis (1986) states the most appropriate Green 

function for thi~ boundary value problem mllst represcnt an impulsive source below 

the free surface. WehnuSCIl find Laitone (1960) developed a Green function of thi8 

type for infinite water depth for a field point P(x, y, z) and source point Q(x' . .II' , z') 

This problem uses the Green function in the form represented by Qiu (2001) 

G(P,Q,t - T) = Go(P,Q)6(t - r) -I I-I(t- r}F(P,Q,t - T). (2.19) 

witharankinesollfce 

(2.20) 

whereJ(t-r) is the Dirac Delta function and Il(!-r) is the Heaviside unit step func-

tion, where F is known as the memory part of the Green function and mathematically 

15 



repreSf'nted by' 

F(P, Q, I - r) = -~ 1"" #Hiu[JYi(t - r)]t/ {<H' )Jo(kR)dk, (2.21 ) 
2;r 0 

with 

,. = J(./" :r' )2 + (y - y' )2 + (z - Z')2, (2.22) 

/"1 = V (x ,(1)2 + (y - y')2 + (z + zl)2 , (2.23) 

R = J(z ·,'F + (y y')2, (2.24) 

and Jo is the Bessel function of the zeroth order. The Green function represents 

the potential at the field point P(x,y, z) and at time t due to an impulsive source 

Q(X', y', z' ) which is instantaneously created at time I and completely annihilated at 

time r. Liapis (1986) demonstrates that this source acts like an underwater distur­

bance that creates a Cauchy-Poisson type wave system represented by the memory 

tenns contained in F(P,Q,I - r) . Liapis (1986) shows that the Green function can 

be solved from the follow ing sy~t.ellls of differential equations: 

\]2G(p,Q. t - r) = -4r.<>(P - Q)<>(I- rl, 

(-!};_U#rfG(p,Q,I _ r)+g8G(P,~~,H) = O. 011 z= O; (2.25 ) 

G(f',Q,I _ r) ,[)G(I'Z,t-T) = 0, for 1 < 0; 

with the boundary conditions set for the boundary value problem described in Chapter 

2. Using these boundary conditions with the defined Green function, a boundary 

integral equation can be obtain by applying Green theorem (Equation 2.26) to the 

bounded volume V 
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Thc abo\"c equation is valid for time independent problems. [n order to describe the 

time domain wc must intcgrate both ~idcs of the equation from 0 to t with rcspeo:t 

to T coupled with the properties of G(P,Q; I - r) and the fact thM <I) satisfies the 

Laplace equation everywhere in the fluid domain. Liapis (1986) derived Equation 

2.27 to mathematically describe the velocity potential at any time t and any place 

P(.r ,y, z} in the lIuid domain. Liapis (1986) showed that the eOn1ribution to </J from 

the surface illlegrai over the free 8urface can be reduced to a line integral about the 

water line of the VCSliCI and proves that the final remIt for rP at a point in the fluid 

domain (V) is cxpr('f;.<;(.'(\ by: 

(Il(p;t) = J.'1 [<I>(Q; t)aG(pa·Q;t - r) - G(P,Q;t - r)8<1a'(Q;t)jdTdS 
os. lip III' 

__ .1 J.' r ug[G(P,Q:t _r) M (Q;r) _ '~(Q;r) ac(P.Q;t -T)ldrdl 
q 0 ir ax' ax' (2.27 ) 

+ 1J.' r UOJ[G(P,Q;t_rtf>~Q;r) _ <I> (Q:r) i)C ( p,~ ; I -r)ldTdl 
9 0 i r ar iJr 

Details of this formulation can be found in Liapis (1986). Equation 2.27 can also be 

re-written in terms of source distribution. To do this, an interior How is considered 

and subtracted from the equation 

0(1'./) = d,?e(Q;r) _ iJt/J;(Qi r ) 
, Ollp all p ' 

(2.28) 

(2.29) 
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With a source strength denoted as a(l-':t) (Equation 2.28) and the assumption of 

Equation 2.29 ¢ can be represented in its standard format: 

4}(P,t) = t1 G(P,Q, I-T)I1(Q, T)dTlI,~ 

u'1/1"" " +--.-i!. u(Q,TJltjG(P,Q.I - rjdrdl 
9 0 f 

(2.30) 

For the present case, an "indirect" method i.-; u,;€(! 

The indircct method initially SOh'C8 the source distribution frolll the initial BVP 

with the problem dependent body boundary condition. Once the source distributions 

UTC obtained, the velocity potential can be computed using F..quution 2.30. The in~ 

tcgral equation for the source strength is obtained by differentiating Equation 2.30 

with respect to the normal on the body surface and setting it equal to the boundary 

condition resulting in 

8¢(P,t) =_ U(P,l) _ t r u(Q,rJ 8C(P,Q,t-T)dTdS 
81lp 2 io is" allp (2.31) 

_'!l tl a (Q.T)ll liJG(P,Q,f - T)dTdl 
.tI io r aup 

This equation is used to solve for the source ~trength on each panel. After the veloc­

ity potential i~ obtainoo, the hydrodynamic force on the body can be calculated as 

described in the following ~tiOIl 
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2.3 Hydrodynamic Force 

'rodetermine the hydrodynamic force over the body surface (8~), the dynamic prcs,sure 

must be determined The unsteady pressure in the fluid domain (V) is defined by 

Bernoulli's equation: 

_ (dO I ) 
P(X,y,z)=-p Ft + 2'Vci+ gz (2.32) 

This equation can be linearized to Equation 2.33 using the Neumann-Kelvin Lin-

carizntion 

r(p,t) = - pjf - (III'. V¢. (2.33) 

The pr~llrc is then integrated O\Tr S'JJ to determine the dynamic force equation 

(2.34) 

The second term in Equation 2.34 is difficult to evaluate due to the derivat ive of the 

potential. The theorem developed by Ogilvie and Tuck (1969) is useful because it is 

possible to eliminate the gradient ~illlplifyillg the evaluation of the force yielding: 

Liapis (1986) shows this force can then be broken into two components, gJ~{t ) and 

F'jk(t) = - g;dt) - h,k{f), (2.36) 

ll,k(t) = p r ¢kllJdS. (2.37 ) 
j," 
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Equations 2.36 10 2.38 are llS(xi to determine the response function 

20 



Chapter 3 

Impulse Response Function 

The complete boundary value problem solution is rcpfC!;Clltcd by the ~um of all six 

degrees of fn,'(xloffi (k = 1,2, ··.6). It is important to dco::omp~ the potential into 

six individual potentials, each rcprCS€nting a degree offrccdom, in order to simplify the 

problem. Each potcntial function must satisfy the Laplace equation, the linear frcc­

surface condition, the body boundary condition and the condition~ at infinity. Each 

potential can be solved as an independent boundary value problem (2.18) defined 

in Chapter 2. Due to the linearity of the boundary value problem, it is possible to 

decompo8C the problem by modeling the object as a set of lillcar equatioll~ (linear 

system). This allows the problem to han; a simple input, ship motion in each dcgroc 

of freedom, returning a generalized hydrodynamic force. Cummins (1962) defined an 

impulsc responsc function for each degrt'e of frt>edom which completciy characterizes 

any stable linear system. If the response to a unit impulse is known, then the systems 

rCSjlonsc to an arbitrary force can be determined. This is valid due to the problem 

maintaining linearity. The method is then applied to find the hydrodynamic force due 

to an arbitrary motion. To define this impulS€ response function, we must consider 

that the ~hip velocity at t =oO jump:; frolll 0 to I in the kth degree. Thb vciocity spike 
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is so instantanoous it can be considered impulsive and represented by Ij.(t) - ott) 

The vdocity spike will cause a force on the body from the ~urrounding fluid, known 

as the impulse response function. Cummins (1962) and Ogilvie (1961) consider this 

impulse and modified the body boundary condition given by: 

(3.1) 

From Ihis new body boundary condition, it can be seen that the problem can be 

decomposed into two pans, a impulsive (1/; .. {P)J(t» part and a memory (X .. (P)If(t» 

part due to the nature of both the Dirac Delta and Heuvisidc unit step functions. The 

velocity potential is mathematically ~hOWll as: 

¢J~. = tb .. (P)d"(t) + Xk(P)If(t} (32) 

If the following is defined on the body boundary condition (SB)' 

(3.3) 

then the new dccompoocd potentials will satisfy the body boundary conditions for all 

time. Due to the Dirac delta function, it is known that 1.Vk potential describes the 

fluid motion for the impulsive stage and must satisfy the following boundary value 

problem 

Wk = 0, 
Dt/J 
~ = nk' (3.4) 

\1Wk ..... O, at 
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The Heaviside unit step function characterizes X k( P) as I he potenl ial which rqm.-'l;t)nts 

the memory part (radiated waves) due to the impulse of the Dirac delta function. 

This potential can be further decomposed into two parts. The first representing the 

potential due to the change in body orientation as a result from the sudden velocity 

impulse. Duc to the velocity jump from 0 to 1. the body will have a new position in the 

eh degree of freedom. Since the problem deals with a steady flow field. this pooition 

change will cause a change in the jjuid velocity all the body ~u rface (58). These 

changes nm~t be taken int o account and removed from the equation to maintain the 

body boundary condition. Therefore (~) must be equnl to mk on the bod.\' surface 

for all time (t > 0) . The second part represents the potential due to the disturbance 

in the now field, which i~ a result of the veloci ty impulse. The disturbance in time 

radiates as a wave from the body. Therefore X k mu~t ~ati~fy the following boundary 

value problem: 

Xk = O, 
iJXk iJJj}k at = -9&, 

z-O 

Z = O 
(3.5) 

Liapi~ (1986) attempted to improve computational efficiency by represenling thc>;c 

two components of XI; explicitly in the following form: 

(3.6) 

where '{Jk reprC!;ents the potential created from the change ill body orientation dur­

ing the impulsi\'e velOCity 8tage. The potential must satisfy the following boundary 

conditions 

<fik = O, 

dp 
U;; = mk, 
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To maintain the originnl boundary conditions of Xk, Xk (P, t ) must satisfy the follow­

ing boundary conditions: 

at 1 = 0: 

on .1:= 0 at 1 = 0; 

on ;= 0 at 1= 0; (3 .8) 

on Z= 0 for I > 0; 

on z= 0 for I > 0 

The potential for the arbitrary forced motion in the k'n degree of freedom in terms 

of the non-impulse input velocity 1il.:(t) can be found by integrating Equation 3.1 and 

evaluating the convolution of tb( P, t) with i/I.: (t ). The resulting potential is given by· 

Cummins (1962) showed that ¢k( P, t ), in its deeompo6cd forIllat , satisfic:s the body 

boundary condition, the frcc surface condition , and the conditions at infinity for all 

time. It is important to note that each j)otential, tP .. , 'PI:., and Xk must be solved from 

its indi\'idual boundary \1l1ue problem Equations 3.4 : 3.7, and 3.8, respccti\·e]y. Sub-

sti tuting the new decomposed potential in the hydrodynamic force equation (Equation 

2.35), causes the force equation to transform into Equation 3.10. This formal has each 

component of the decomposed potential present in the following force evaluation 



where 

/.Ijl; = pi ~'!k'n;d8 

hJk - P[/B 'P~n!dS -.L Wk:~;dS - i Wknj(rYfi) lVdl j, 

I'jk = -(l[j hmjdS - i CPl;ll;((Xii) . IVdl] , 

I<j~(t) = p[l a:<;rls -1 x*~:jrlS - i Xk nj((Xr7) .IVrll ]. 
'B '" ! 

II;., is the t ime indepcndcnt added mas; of the Hoating body, that is only depcn­

dent on geometry. Both hjk and Cjk, arc coefficients that depend on gl"ometry and 

forward speed, represent ing hydrodynamic damping and restoring force. The final 

term, Kj1(t), reprC!;ellts the memory of the fluid due to the impulse velocity. It is 

also a function of geometry, speed, and time. It is important to note that II;k and 

bjk are frequency indcpendent parts of thc added mas; and damping. Liapis (1986) 

dcmon~trates that all frequcncy depcndencies of the added mass and damping arc 

contained in the memory fUllction f{j1(t). Thc impulsc responsc fUll ction /\"j~{t) ca.n 

be evaluated by using a non-impulsi.·c input veloeity defined in Equation 3.11. The 

purpose of th i~ fum:tiOIl i~ 10 remove the high frequcncy content of the implusc input, 

rcsultingin minimal numerical crror 

Ilk(/) = ~ [I +crf(JOi")] 

lik(t)= ~e-"!', 

iik(/) = - 2o/ridt), 

(3.11) 

where CI: is an arbitrary ch06Cn constant that controls the freqnency of the input. A~ 

(\ ~ 00 the input function approaches the Dirac Delta function (6(/). Applying this 
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function 10 thc boundary value problem changes the body boundary condition to 

(3.12) 

Therefore the impulse rcsponse function can be determined from the following equa-

tion 

A benefit of the non-impulsive input is that it only requires a relatively small number 

of computational time steps to accurately determine the response function. Con­

sequently, using Equation 3.13, the radiation force can be determined through the 

previously defined Equation :;l.lO 

3.1 Solving the Response Function 

The method applied in this study is to solve for the hydrodynamic force (pressure) 

using Bernoulli 's equation and then subtract the components from the force to obtain 

the response function K}1(t ) The hydrodynamic force can mathematically repre-

sented by 

(3. 14) 

where: 
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Cong et al (1998) showed that this function can be solved using a direct solution 

scheme as follows· 

Fr,." = ~ Kr ... _. r)/. l::.t t ~[Kr ... 71/u + K,..7/1,.)l::.t . 
.... I - (3.16) 

771 = 1, 2 . ,M, 

where 1\"1 is the total number of steps in time. Equation 3.16 is a set of equations that 

can be representoo in the following matrix form(\!· 

~ 
(3.17) 
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Chapter 4 

Numerical Implementation 

To properly implement the prccce<ling mathematical equat ions into a computer pro-

gram, the equations must be represented in their discrete format. The following 

equat ions are discussed in the order in which they arc solved within the program 

The code was written in FORTRAN 90 using a Gaussian elimination solwr to solve 

thc system of equations 

4.1 Zero Forward Speed 

The fir8t special ca...e is when the object has zero forward speed (Uo = 0 and IIlj = 0), 

thus allowing the removal of the line integration and ch1mging the original 50urcc 

strength equation (Equation 2.30) into it's new format (Equation 4. I) . The equation 

must be rearranged to move the unknown terms 10 the left hand side, while the known 

terms are on the right hand side, re.;uiting in: 

(41) 
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V. ( ~ )~_ "( P, t) I DG,(?,,!) (Q IdS 
,, ;.t 2 + lS8 all/, a , t 

+j1dT r f1(Q.T/ F(P,.Q , I, -T)dS, 
10 JS8 iJllp 

(42) 

(43) 

where V" = £;;, is the bounci!lry condition lill; , it is important to note that the - :I; 

term is absorbed into the Green function. Equation 4.3 is represented in matrix form 

[B[ ; ~[ II [" ["(t,, lIj , (4.4) 

with N repre;ent ing the number of panels and kf is the current time ~tep . The matrix 

terms arc defined by' 

If,; --0.5, (45) 

f1;j ".- -lllj· V'(~-~ ), I =!- j; 
s" r r 

(4.6) 

(4.7) 

It can be sccn that Equation 4.7 i~ independent of time. The "kernel" matrix does 

not ehange throughout the time domain simulation, meaning that the H matrix only 

needs to be invencd once at the beginning of the computation 

The velocity potential at time t on the body surface is derived through the following 

equations 

¢(P, t )= j 'dT r G(P, Q,t - T)O(Q,T)d.'J. (4.8) 
'" l sn 



¢(P,t) = LA Co{P,Q)(1{Q,I)rI.~ 
+ t Il (1{Q, Id· .6.1(F(P.Q, 1< - 1._ d) l d,~ 

h,1 s" 

(4.9) 

The final discrete format is given by: 

, 
N :(P,t) ~ ~Co(P. Ql(1(Q,t) 

(00) 

+ ~ t; [(1(Q, td . .6.t{F(P. Q, tk - tk_d) ]· 

4.2 Non-Zero Forward Speed 

For the ease when there is a forward speed, the line integral and m-terms must be 

included. Equation 2.31 expands to the following: 

" D<t>(P, lkd + .6.I.L r a(Q,t./F(l',.Q,I - t..)dS 
Vllp k_ 1 lSI! iJllp 

.6. UJ~l (Q ) of(l',Q,I - I.l dl + t-;;6 r(1 ,/k 1l1--0-,,-,,- , (4.12) 

=_<1{P,t) + r rr(QI<,/Go(P,Q)rl8 
2 ls!) , anp 

- !!ll<1(Q.tk dnl dGo(P,Q) dl 
9 r a'l p 

Note that the time SUllnllatiolls in Equation 4.12 require halfwcights at. the end points 

due to the usc of a trapezoidal integration rule. Tm.nsforming Equation 4.12 into 

30 



(4.13) 

Equation ,1.13 becomes: 

As with the zero forward speed case, the equation can be represented in matrix form 

(4.15) 
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where kt stand~ for the current time step, .,V represents the panel number. The matrix 

terms arc defined by 

Ulj 1 1 11;, =-0.5 -- /!,·V' (--,)dL. (416) 
.IJ I", r r 

l-l;j =- ll1"V' ( ~ 
U'j ""I 1 I (4.17) 

-~ n,·'V(- - -)dL, iii 
9 f, r r' 

where j" mt~ans that only the panels on the free surface are used for the summation 

of the line integrals. The source strength for the line integral ~gment is assumed 

to be the same as the source strength of the panel direct ly below it. As with the 

no-forward speed case, the [1I 1; j matrix is independent of lime, so only one inversion 

is required for all time domain computations. It is also important to note that the line 

integration part of the "Rankine Source" is zero, due to the fnet at the free surface 

~ - ~ = 0. After the solution for the ,;c:::mrcc strengths over all pancl~ are determined 

for every lime step, the \"c1ocity potential can be determined through Equation 2.30 

32 



The final discrete form is giH'n by' 

(4.19) 
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Chapter 5 

Numerical Results 

The following section prc:scnls the validation of the radiation problems for a Hemi­

sphere and Wigley Hull. The zero S]K'Cd and forward speed radifltion problems wore 

applied to the Wigley Hull, while only the zero ~POO:I case was applied to the Hemi-

sphere 

5 .1 Hemisphere 

The fiI'l;t :set of validations were performed on a hemisphere The pflneiizatioll was 

only over half tho hemisphere due to symmetry about the x-flXili 

Due to the importfUlce of the ~ - ~ term to the entirety of the numerical scheme 

it is important to verify this before applying it to the time-domain integration. This 

is verified by computing the time-independent heave added-rna&; of a floating hemi­

sphere al the short wave limit. Newman (1977) determined that this addcd-mnss can 

be computed using the ~ - f" while Havelock (1955) presented a non-dimensional 

analytical solution of 0.5 , The present code produced a non dimensional result of 

0.526 with 100 l>ancllS and 0.518 with 225 panek The:>c f{'l:;ults are rea;;onable when 

compared with the panel method SEALOADS that produc«i fI. non-dimensional result 
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Figure 5. 1: Hemisphere '\ksh for 225 Panels 

of 0.517 with 256 fiat panels over a hemisphere (Qiu, 2(01). 

The de\"elopcd panel method WIlS used to compute the radintion heave response 

function for a hemisphere of radius of 5 meters. The response function Wlls non­

dimensionali~cd by: 

K3.1 

r'Vjr 
while time W[II; non-dilllen~iollalizcd by: 

,Iii 
Vii ' 

(5.1) 

(5.2) 

where R is the radius of the hemisphcrc, g is acceleration due to gravity (9.81 ~), 

and 'V is the hemisphere volume of displacement. The ehosen time step, OJ was 0.05 

SCCQll(k Figure 5.2 ~hows that the response function agreed with results from Qiu 

(2001 ) und the analytical oolutioll proouecd by Barakat (1962) 

T he code U5C6 the compllt(.'<1 response function to compute the addcd-mllSS (A.ul 
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N<Jr>.DI ..... "",IonIIITlme(s) 

Figure 5.2: Non-dimensional Heave Response Function Versus Non-dimensional Time 

and damping coefficients (ll3j ) of a heaving hemisphere versus non dimensional fre­

quency. The added mass and damping coefficients are directly related to the cosine 

and sine transformn.tiOI! of the computed response function The mathematical for-

mulationsthat were uscrl arc 

'100 A(W)jk = /Ijk - - l«f)jkSin(wt)tll, 
w " 

(5.3) 

(5.4) 

where Iljk and b)~ arc the time-independent parts of the added-rnM» nnd damping 

coefficients. The frequen cy was non-dimcnsionalize>Q by: 

(5 .5) 
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while the added-mass and damping coefficients were non-dimensionalized by" 

(5.6) 

(57) 

The results were compared to analytical results produced by Hulme (1982). Fig­

ur~ 5.3 and 5.4 show reasonable agreement. Hulme (1982) showed that an irregular 

frequency response occurs a t· 

(5.8) 

It ean be seen from the graph that at a low panclization we seen a similar phenomena 

reported by Lin &: '(ue (1991). This wru; referred to a solution oocillation at an 

irregular frequency behavior ncar "'\rr However when the panel number is increast.-'<i 

this irregularity begins to disappear. 

....... . j • •• - O···{j·· 

Non-DlmeI"llSD .... I FlUqUancy 

Figure 5.3: NOIl-dimcn~ ioll a l Heave Added Mass Ve!"ljl1~ )"on-dimensional Frequency 
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Figure 5.4: Non-dimensional I1em"e Damping Versus Non-dimensional Frequency 

5.1.1 Single Source Point 

Before computing the forward ;;peed cases of the Wigley Hull, it was important to 

verify the Grecn function flbility to compute the forwnrd ;;peed case. T he code was 

applied to a single moving source )XIint flt fl constant source strength to validate the 

wave pattern. Due to the Kelvin-Neumann linearizat ion, a "Kelvin " wave pattern is 

to be expected. Figure 5.5 illustrates this particular type of a wa\"e pattern 
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Figure 5.5: Single Moving Source Points with Constant Source Strength 

5.2 Wigley H ull 

5.2.1 Zero Forward Speed 

The de~·eloped panel method has been applied to the Wigley Hull at zero forward 

speed and non-zero forward speed cases. The Wigley Hull geometry is defined by 

(Journee, 1992) 

where; 

• 0' = 1.0 and !3 = 0.2 for models 11', and \VII 

• 0 -=- 0 and f;J = 0.2 for models 11'/1, and II'/V 

• o- Oand !3 -= 0 for Illodel WilT 

39 



Qiu (2001 ) dcfines the non-dimcnsional variahlcs hy: 

(5.\0) 

where L is the ships length, B is the beam, and T i~ the draft. Length and beam arc 

taken at the water line Figure 5.6 shows the mc:>h of WI with 256 pallcl~ over the 

half body 

Figure 5.6: Wigley Hull WI ~Icsh for 256 Panels 

The Wigley Hull WI was used to validate the hcave response function Figurc 5,7 

and pitch rcsponse function Figure 5,8. The hull used had a block coefficient (Cb ) of 

0.5606 with the dimensions given by (Qiu, 2001 ): 

!i = 0,10, 7.:. = 0,0625 L = 120,0 
f. ' f, 

(5,11 ) 

The rcsponse functions were found to be quitc scnsitivc to the n\1mb(~r of pan-

els along the z-direction, while the choocn number of panels along thc x-direction 
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ha\"c minimal cffect. This is due to the properties of the Green function and its 

sensitivity when the centroid of a panel approaches the free surface, see Section 5.3 

for further discussion. Thc response function for hea\"e (1<'"13) and pitch (l(r.s) were 

non-dimensionalizcd by 

§rE. 
!!!if'- VI ' 

and time was non-dimensionalizcd by: 

, 
L. 
J ,. 
1 0 • 

j" 

IrE. VI· 

Figure 5.7: Wigley Hull !VI Hcave Response FUllction K33 

'I 

(5.12) 

(5.13) 

(5.14) 



! • 

l. 
J ' 
! ' 

I· !, 

Figure 5.8: Wigley Hull lI'j Pitch Re;pom;e Function 1{55 

The zero speed hc8,\'c cocllicicnts of addcd-nulSS and damping for the Wigley Hull 

were computed from their respective response functions The frequency was non­

dimcnsionalizoo by: 

(5.15) 

Thccoeflicicnts for heave addoo-1ll1\5S (An) and damping (B33 ) were nOll-dimclll;ionalizcd 

by: 

A~ 
(5.1 6) -,;v' 

Bn (5.11) 
pVw 

T he non-dimensional cocfficicnts were compared to that of MIT's code Til\HT 

taken from Qiu (2001). The results shown in Figures 5.9 and 5.10 show reasonable 

agreement 
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I" 
I 

I" 
I 

Figure 5.9: Wigley Hull WI Non-dimensional Heave Added r-.h,;s Versus Non-

dimensional Frequency 

I 

I r 
e a .0 

No<>~f __ 

Figure 5.10: Wigley Hull 1V, Non-dimensional HeRve Damping Versus NOIl-

dimensional Frequency 

5.2.2 Non-Zero Forward Speed 

When introducing forward speed into the computation, it increases the complexity 

of the computations [n this study, only the waw! resistance problem is compule<! 
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in the forward spccrl problem. The Wigley Hull H'RT was used in the forward speed 

computation case. A number of Froude numbers were tesh.>d for the It'RT and the 

results were compared to experimental and numerical results . .'\ kcy componcnt to 

note is that with the forward speed case and thc Grecn function , it is sensitivc to thc 

panel selection along the z-axis and the x-axis. It is important to select a sufficient 

number of panels along the x-direction to capture the wave along the body. while an 

incorrectly chosen number of panels in 1 he z..axi~ can have a undesirablc outcome. If 

the mlltlbcr of panels arc too large or too few, the program will incorrectly predict 

the WILVC rC!)istll.ncc. This is further discussed in Section 5.3 

'~.-7~7-~,~,~,~~,,--~~~~ 
_~Tiooo 

Figure 5.11: Surge Force (Wa\·e Resistance) Wigley HulllllHT for Fn= O.3 
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Figure 5.12: Henve Force Wigley Hull IVRT for Fn= O.3 

Figure 5.13: \Vigley HulllFRT Wave Resistancc Vcrsus Fn 

The surge force (wave resistancc) and \·crtical force were non-dimensionalizcd by 

(5.18) 
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Time wn.s non-dimensionali~ed by the oscillation period given by 

To = Ts:U (5 .19) 

Figures 5.11 and 5.12 show the force results for constant forward speed at a Froude 

number of 0.3. Forces in the heave and surge direction "·ere computed. The surge 

and heave forces arc compared to Lin & Yne (199 1) and the experimental r('!)ult~ frolll 

ITIC, 1985. The present results agree with Lin & Vue and arc reasonably clO6C to 

the experimental results. To complete the wa,·e resistance curve the program was 

run for a wide range of Froude numbers from 0.2 to 0.45 and compared again to the 

IITC 1985 experimental result and Lin & Vue's results. Figure 5.13 represents the 

final wa,·e resistance curve. From this curve it can be seen that there is reasonable 

agreement with the experimental and numerical results 

5_3 Discussion on N umerica l Stability 

During the progress of creating this numerical method to 501>·c the ship resistance 

boundary value problem , many situations were encountered when dealing with the 

numerical stability of the program. The Green function as mentioned above plays a 

key role in the computations of this boundary value problem. It satisfies theconditions 

at infinity. bottom boundary, and the linear free surface. Ilowever, there arc a number 

of thing.; that must be considered when w;ing the Green function. When panelizing an 

objcct, it is very important to create a eoo:;ine distribution of pancls along the z-axis. 

This is due to the fact that Green function is highly o:scillatory at the freesurfacc. If 811 

even panel distribut ion is used, unstable oscillations will occur, rendering inaccurate 

results. Thus it is impornnt to maintain a relatively large pl).nel size ncar the free 

surface. 



When computing forward spc«i problems, the panclization along the z-a.'(i~ and the 

x-axis is also important. If the ;r.-din.'etion ha.~ too many panels, even with a cosine 

distribution, the centroids of the panels will approach the frcc surface boundary, and 

if the centroid comes close enough 10 the frcc surface, large oscillations will occur. 

However, if the panelization is too low along the z-direction, the method will be 

unable to capture the entirety of the problem, also rendering inaccurate results. This 

ean be a major problem when attempting 10 compute a solution for small ohject!;. For 

example 1\ ~hip model with a draft of 0.1875, would CI\Ul;C an issuc. For panelizatioll 

a long the x-direction, is important for the pmlCls to be able to capture the waves 

along the moving body. Should the panel number be low, the numerical method will 

be unable to capture the effects, producing in inaccurate results 
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Chapter 6 

Conclusions and Recommendations 

A panel method computer program has bccn dc\"c!opcd to soh~ the radiation prob-

lcms in the time domain. This was done as the first step in creating a complete 

numerical model of the ship-icc interaction scenario. The validity of the approach 

and its accuracy were assessed by comparing results from t he code with results from 

similar codes presented by Qiu (2001 ) and Lin & Vue (1991) for different geometries 

The \'3.lidation cases covered were the radiation problems, the computing of the co­

efficients of added-mass and dampin....: along with the forward wave resistance. The 

present results are rcaoonablc when compared to published results, both numerical 

and experimental 

6.1 Pane lization 

Numerical stability was fully investigated using the solution to the preceding defined 

boundary value problem. It was disco\"ercd that a stable solution for the Green 

function is dependent on the number and arrangement of the panels in the x and z 

d irection~. A cosine arrangement is required in order to avoid free surface oscillatiolls 

An excessive number of panels along the z direction eRn abo produce large oscillll.tions 
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in the solution, ewm with a C06ine arrangement. due to the pand ccntroids being to 

close to the free surface. Choosing a panelization grid of 6 to 8 panels along the 

z-axis for the Wigley hull should minimize the errors. The optimal number of panels 

is beyond the scope of the current study. but it is expccted that this may change 

with the size and geometry of the model. It is recommended that further research be 

preformed to find the optimum grid for a wide \-ariety of geometries and speeds 

The main limitation of this method is the numerical manipulation that is required 

due to the assumption of having a constant source strength across each panel. This 

limits the ability for more accurate solutions_ Another area of the code that required 

considerable effort was the line integration. This integration is preformed where the 

body intersects the free ~urf:\Ce inereMing the complexity of the integration. In the 

present study the integration assumes that the source strength at the frcc surface is 

equal to the source strength on the panel directly below the point on the line. It 

is recommended that the method to solve this integration be imporved. to increase 

accuracy. 

6.2 Recommendations for Future Work 

The Grccn function was a suitable choice for the p~nt work. However. the Green 

fnnction only satisfies the linear free surface condition_ It is recommcnded that alter­

native methods be explored to implement a nonlinear free surface condition. One al­

ternativc may be the use of Rankine Source method. This method distributes sources 

on the free surface and forces the free surface boundary condition. This remO\'cs the 

Green funct ion from the boundary value problem and allows for the possibility of 

non-linear free surface condition Significant work has been done with this method 

and is quite mature 



Another approach may be to adopt a -Panel Free' approach (Qiu [,.: Hsiung, 2000) 

that is more robust and accurate than the prl'8ent panel method. The method rc­

mOVe8 the singularity from the boundary value problem by the dC8ingularization of 

the boundary integral equation. Thi8 allows the geometry of the body surface is be 

repre;ented by Non-Uniform Rational B-SplinC8 (NURBS) in8tead of panels. The 

integral equation can then be applied to the body by Gauo.sian quadrature, removing 

the itioSue of panelization. The method has minimal numerical manipulation, due to 

the removal of panels. Panel free has been provcn to be morc accuratc sincc thc body 

i8 described mathematically by ;';URBS as opposed to panels 
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