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Neura l precursor ce ll (NPC) prol iferation andapoptosis arc keyregulatory aspects of mamm alian

nervous system development. Although recent studies suggested these two processes to be

interrelated,the molecula r mechani sms behmd this remain undefined.llere I show that myeloid

cell leukemia-I (Mel- I) , a BeI-2 family memb er that is essen tia l for the surv ival of NPCs also

reduces NPC pro liferation and promo tes their termin al mitosi s. I found that within 48 hours of in

utero electroporating Mel- I in EI3 .5 mouse embryonic brains , the majority of NPCs transfected

with Mel- I have migrated into the post mitotic coni cal plate . where as contro l transfected PCs

are still within the pro liferating vcnt ricu lar/subvcntricu lar zones. Ana lysis of proliferation by

proliferating ce ll nuelea r antigen (PCNA) immunohistoche mistry revea led a 2-fo ld reduction in

proli ferating NPCs in the Mel-I treated brains. Immu nohistochemi stry for Tb r l , a marker 1("

newborn neurons , showed a 50% increase in differentrated neurons 111Mel-I treated brains. HrdU

birthdating demonstrated that McI-l overcxpression results in a greater cohort of' newborn

neurons . Furthermore , Mel- I transfeeted NPCs gave rise to neurons in the deeper layers o f the

corte x than contro l tran sfected PCseonfirrningan earlier birthda te. Similarly , transfc ction of

Mel- I in PCs ill vitro promotes ce ll eyele exit. I showed that Mel- I interacts with key cell eyele

regulator s in NPCs, namely PCNA and CdkllC yelin HI complex. In addition, I found an increase

in Cdk inhibitorp 27" Pl protein, a key promoterofecll cycle ex it with McI·1 overexp ress ionand

a concomitant decrease in p27Ki p i in Mel-I conditional knockout NPCs, suggesting that Mel-!

may modu late p27' ;P' protein 10 promote NPC dilTelenti ation . Fina lly I showed that p27"'" is

required lor Mel- I med iated NPC ce ll cycle exit, sugges ting that Mel-I regulates NPC cell eyele

through p27" PI activity . In summary, these results ident ify a novel function for Mel-I in

promo ting termin al mitosis of I PCs by u.Il uencing the cell cycle regulatory machinery .
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Chapter1

Introduction

1.1 Dc vcto pm ent o f th e l\la mma lia n Co rtex

Duriog embry o nic deve lopme nt , neura l ste m ce lls (NS Cs) g ive rise to all the neuro ns and

macro glia l cells o f the mamm al ian ce ntra l nerv o us sys tem (C NS) . T he d ifferen tiated and

funct ionally speci ali zed cells areder ived eitherdi rect ly fromthe stem cell s or ind irectly via fatc-

restri cted pro genitors. Stem cell s arc deli ned by the ir self-renewal capabi lity, ideally for an

unlimit cd numb er o f ce ll di vision s, and multip otency.thc ability to give rise to num erou s typcs o f

d iffere nt iate d ce lls (Reyno lds and Wei ss. 1992). NSCs and the fate-re stricted progen ito rs arc

co llect ivel y ca lled ne ura l prec urso r ce lls (N I'Cs ). In the mo use bra in , cort ico genesis occur s

be twe en embry o nic days 11- 17 (E II-1 7), when NI'Cs ge nerate the neuro ns to lim n the d ist inct

cort ica l layers (Ta ka ha shi et a l.. 1996 ). Init iall y, NI'Cs must ex pan d their pool before a

prop o rtion of them co mmit to a spe cific lineage and di ffere ntiate (N octor c t aI., 200 4, Ih mncr

and Kosod o, 2005) . As a res u lt, a ba lance be twee n prol iferati on and co mm itment to a speci fic

lineage reg ulates the NI'C pop ulat ion. Ther efore, one of the cr itica l aspec ts o f mam mal ian brain

develop men t is the regu lation o f NI'C ce ll cycle .



1. 1.1 Ne uruepi th e lj a l Cells

Develop ment of the eNS beg ins wit h the formation of the neura l tube . T he ne ura l tub e is formed

with the fo ldin g o f a shee t of ne uroe pithe lial ce lls , deri ved from the ec toder m germ layer.

Ne uroe pithe lial ce lls arc the primiti ve neural ste m ce lls , linin g the ne ura l tub e lum en formi ng the

ven tr icu lar zo ne (Merk le and A lvarez- Buy lla, 2006 ). T he ncur ocp ithcl ial ce lls arc c longa tcd and

in contac t with both the api ca l (ven tricu lar) and basa l (pia \)surfaces( Figure 1.1A) . A ltho ugh the

ce lls divide at the vent ric ular zone(VZ) ,t heypull the nuc lei to the pial s ur face during inte rp hase .

This intcrk ineti c nuc lear movement makes the ne uroe pitheli um loo k ' pse udostratificd ' or layered

(Hu ttner and Kosodo, 2005. Zhong and Chia, 2008). Before the on set of ne urog cnesi s in mice,

the neuro epithelial cell s di vid e sym me tr ica lly . Thi s type of cell di vision generat es 2 identic al

daughte r stem cell s (Fi gure 1.18 ) and expands the neura l stem ce ll poo l (ll auben sak et al. , 200 4 ,

Got zand l luttner,2005)

With the on set o f neu rogenesi s fro m Ell , theneur oepi theli al cell s swi tch to as ymme tric d ivisions

and generate rad ia l g lia l cell s. which exhibi t bot h residua l ne uroe pithel ial an d g lia l prop erties

( lla ubensak et al., 2004, G otzand lI uttner, 2005, Tarui c t a l., 2005 ). Like neuro epith elial cell s.

radia l g lial cell s di vid e in the VZ and maint ain cont act with the pial sur face via a rad ially

proje ct ing basal proc ess (Fig ure 1.11\) , The rad ial g lia l ce lls arc the princip al progen itor s of the

embryon ic bra in and succes siv e ly replace the neuroe pithelial ce lls , Thu s, most o f the neuron s arc

genera ted eith er di rec tly fro m radia l g lial cells or throu gh intermediate progenitors (Anthonyet

aI. , 2004 , Got z and Bard e, 2005) (F igure 1.18). Rad ial g lia l ce lls mainta in some neuroe pithe lia l



ce ll properties includin g intcrkinctic nucl ear migration and ex press ion of the intermediate-

filament Ncstin (Hartfuss et al.. 200 1). In addition, they also exhibit several glia1characteristics

including the astrocyte specific glutamate transporter (GLAST), thcCa ' +- binding proteinS 100fl,

glial fibrillary acidic protein (GFAP), vimentin and brain-lipid-binding protein (13LBP)

(Campbell and Gotz, 2002, Gotz, 2003, Kricgstein and Gotz, 2003).



Fi!:ure 1.1 : Ne uro gen cst s in the de ve lup jng co rte x

A -An illustration of the developmental ehangesoeeurring duringcorticogenesis between EIO-

18 (from left to right). Transition of neuroepithelial cells (NE Ps) to radial glia occurs after

EIO/11. The nuclei of neuroepithelial cells and radial gha cells remain at the ventricular zone

(VZ) while the basal progenitors occupy the sub-ventricular zone (SVZ) . Differentiated neurons

make up the cort ical plate (C l') following ncurogenesis, starting after E l l (Mal atesta ct aI.,

2008)

B -The lineage trees show the generation of neurons IN) from neuroepithelial cells (NE) via the

stem cell population -radial glial cells (RG), and from the progenitor population that is the basal

progenitors( BI')(Gotza nd ll uttner,2 005j
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1.1 .3 Il as al I' ro l:enito rs

During mid-neuro genesis (E I3- 14). another neuron al progenitor population appears, the basal

progenitors or intermediate progenitors. Basal progenitors develop from the div isions of both

neuroepithelia l ce lls and the radial glial cells. During later stages of ncurogenesis. basal

progenitors fonn the subventricular zone (SVZ), which is a mitotic ce ll layer basal to the

ventricularzone(l laubensaketal., 2004. Miyata et al., 2004, Noctor et al., 2004). Charac teristic

markers for basa l progen itors inc lude transcr iption factors TBR 2, CUX I and CU X2 (Nieto et a l.,

2004. Englund et al., 2005) .

Basal progenitors contribute to neurogenesis by undergoing symmetric cell divisions and

generate two neuronal daughter cells (Figure 1.1A). Therefore. basal progenitors amplify the

numb er of cells produced by aprevious progenitor cell division and are an importantd etenni nant

of brain size (l laubensak et al., 2004, Noctor et al., 2004. Martinez-Cerdeno et al.. 2006) .

The difTerent stages of neuroge nes is can be distinguished by the sequential express ionofspecific

transcr iption factors (Figure 1.2). NPCs at the VZ express Pax6 and divide to generate the

intermed iate progenitor cell s (lP Cs). which migrate to tbe SVZ and express Tbr2 . The IPCs give

rise to the Ncuro l) " comm itted ncuroblasts . Finally. di fferentiated neurons are generated from

neuroblasts and they express Tbrl. Tb r l + neurons migrate to the cortica l plate. and so express ion

ofTbr l confirms the completio n ofncurogenesis (Takaha shi and Liu, 2006).



Fig ure 1.2 : T he ch an g es in tran scription fact or e xpress io n durin g neuro gen ic

pro gre ssion ,

A - Illustrat ion of a ventricular zone (YZ) NPC (radia l glia) progressing to a differentiated neuron

in the cortical plate (C P), via basal/ intermediat e progen itors (IPC) located in the subvcntricular

zone (SYZ). The sequentia l expression of the specific transcription factor s (TFs; top row) and

different phases of the cell cycle tor radial glia and IPCs (second row from bottom ) arc also

B - Immunohi stochemi stry on E14.5 mouse brain furthe r demon strate s the sequentia l express ion

oflh et ranscriptionfactor sduringneurogenieprogressionof NPCs( !I evneret al., 2006) .

(IZ -intenll ediate zone)



1.2 0'1:a nizatio na l De vel opm en t o f th e Co rt iea l La yers

During cortico gcne sis (E I I-E I9) in mice, the NPCs generate neuron s to form the 6-layered

cortex (Dehay and Kennedy, 2007) . The first neurons form the transient pre-pl ate, which is then

split by later-bom neuron s to form the super ficial marginal zone and deep er sub-plate. The

cortica l plate (C P) develops between these two layers, and eventually gives rise to the multi-

layered neocorte x (Figure 1.3) (Molyneaux etal., 2007). The organi zation al develo pment of the

cortical layers is largely regu lated by Caja l-Retzius cells, early-bomneurons orlhemarginal zone

that expre ss Reelin (Alcantar a et a l.. 1998). Reelinis a largeextracelIular glycoprotein that plays

a role in cell migra tion and process outgrow th. Mutations of the ree lin gene severely disrupt the

norma l pattem or cortical lami nat ion. resulling in an inverted orde r or cort ical layers II-VI

(D'Areange lo ct aI., 1995, Hirotsune et aI., 1995). The positioning or Cajal-Retzius ce lls is

regulated by the radial glial ce lls (Kwon et aI., 20 1I).

Cortica l plate deve lopment is regulated in such a way that the later born neurons that arrive at the

cortical plate migrate past the earlierbom neuron s. Thi s resu lts in the formation or the deeper

layers first, followed by the formation of the more superfic ial layers. The inside-o ut pattern or

corticogcncsis results in neurons within a given layer being bom at the same timc and sharing

com mon funct ional properties and connec tivity (Rakic. 1988, McConn ell, 1995). Neurons in the

differe nt layers or the post-natal corte x can be distinguished by the expression of' spec ifi c

transcripti on factors. For examp le, cut-like transcripti on ractors(Cuxl and Cux2) are expressed

in neurons in Layers II-IV and the zinc-finger transcripti on facto rs (FezQ and Ct ip2) are

expressed in neurons in dee per Layers V-V I (Figure 1.3) (Leone et aI., 200 8) .



Fi~ u re 1.3 : Th e ""ins ide-o ut" d eve lupm e nt of the cort ex and ge ne e xpre ss io n

patterns du rin g a nd a ftc rcor t icogc ncs is .

A - A repre sent ation of the deve lopment of the mo use neocortex (Ncx ) durin g conicogene sis as

shown by the corona l section throu gh the mouse bra in at 1010.5 (top panel ). The embryo nic time-

po int sca le show s the sequential developm ent of diff erent layers (bottom panel ) (M olyneaux ct

a l., 2(0 7). The multi layere d cor tex develo ps in a way tha t later bom neu rons arr iving at the

cort ical plate migrate past the ear lier bom neuron s.

U - Expre ssion paucms o f differen t tran scripti on factors durin g mid -eorticogcnesis (embryonic:

left panel ) and afte rbirth (right panel ). The se marke rs ca n be used to identif y spec ifi c cort ical

layer s in the post-natal brain (Leone et al ., 2008).

(CI I. cort ical hem ; IZ, intermediate zone; LGE, lateral ganglionic em inence; MGE, med ial

ganglionic emine nce ; SYZ. subvcntricular zone; YZ. ventricular zone; PP. preplatc: MZ.

marginal zone ; 51', subplate; CP, cortica l plate; WM , white matter; I-Vi , the distinct cortical

layers i-VI I
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To form a matur e nerv o us syste m co ns isti ng of the vast numb er of ne urons and g lial ce lls. Nrcs

must be reg ulated in a balance between prohferation an d their commitment to a spec ific lineage.

This ba lance is large ly controlled by the ce ll cycle regu latory mo lec ules. which cue the ce ll to

eilher pro lifcrateorto d iffcrcntialewith subse que nt matur ati on,

1. 3 .1 RCl:ulation o f N I'C C e ll C ycle

Like all somatic ce lls . s igoa lingpathways that dir ect entry, progress ion into and exit from the cell

cycle reg ulates NPC proli fera tio n. Th e ce ll cy cle of an active ly div iding ce ll is com pose d of4

phases: sy nthes is (S), mito sis (M ) and two gap (G I and G2) phases (Figure l A A). The S phase is

res ponsi b le for rep lication of ge nomic D NA and the M phase is ded icat ed for physical d iv ision of

ce llu lar and ge no mic contents into two indiv idual ce lls . The first gap I'hase (G I) occurs between

the end of M phase and the bcginning of S phase . Gl phasecollsistsofacrilica lrestrictionpoint

(Rj . w hen the cell ei ther com mits to the nex t rou nd o f cell d ivision 0 rexi ts the ce ll cy cle to en te r

GO phas c. T he sec ond ga p phase (G2 ). bet ween the end ofS phase and bcg innin g o f M phase, is

dedicat ed to repa ir any err ors in DNA repli eati on andprepa, es the celll'ormilOsis (F igur e lAA )

(Pardee , 1989. Nurse . 1994)

Dur ing cortica l neurogenesis. IheGI restriction po int Ikr has been identifi ed as the critica l ce ll

cy cle reg ulatio n point. Each successive cyc les ofNPCand their res tricted progenit or res ult in a

grea ter prop ortion o f po st-mitot ic ce lls that ex it the cell cy cle at R (Cavine ss et al., 1999 ). Thi s

res triction point R is regul ated by the Retinoblastoma ge ne fami ly an d E2 F tra nscr iption factors



1.3 .2 Retinohlastoma l:e ne a nd E2F tr an scription factors

The retinobla stoma gene (Rb) was the first tumour suppressor to be identified for its mutation s

leading to ped iatric eye tumour development (Fun g et a l., 1987. Lee et al., 1987). Rb family

proteins include pRb, 1'130 and 1'107. a ll sharing the structura l homologyof the funct ional N B

pocket (Cla sson and Dyson . 200 1). Thi s functional domain can interact with transcription al

regulators like the E2F transcri ption factor s, a family of proteins tha t share a related DNi\-

bindingdomain.E2Ftranscription faetorsbind to setsoftargl'tpromoters and aetiv ateorrepress

transcripti on. Therefore. Rb/E2F activity plays a pivotal ro le in regul ating ce ll cyele progression

by contro lling transcription of target genes (Polagerand Ginsberg, 2008).

During the GI phase of the cell cycle , Cycl in dependent kinase and Cyclin activity

hypcrphosphor ylatcs Rb (Figure 1.4). Once hypcrphos phorylated, Rb releases the E2F

transcription factors (E2F-1.2, 3), whiehare the aetivators o fg ene transeription that is essential

for the G I to S phase transition and commitment to mitosis (Dyson . 1998, Nev ins. 1998)

Overexpression of Rb causes cells to remain in quie scence or prolonged G I phase, whereas

overexpress ionofE2 Fs induces quiescent immortalized cells to re-ente rtheeelleyele (l'o lager

and Ginsberg, 2008)

The functiunufRbandeonsequent lyE 2Fs is eritieal for neurogenes is and the development of the

CNS . Germline knocko ut of Rb results in emb ryonic lethali ty at E15.5 due to hematopoietic and

neurological defects. Co nditionally knoc king out Rb results in ecto pic mitosis with in the

developing brain and although NPCs commit to a diff erenti ated fate. they fai l to ex it the cell

cycle (Ferg uson ct a l., 2002) . This is a result of enhanc ed E2r - 1 and E2F-3 activ ity that de lays

the terminal mitosis o f NPCs differ entiat ing in absence ofRb (Callaghan et a l., 1999). Rbfamily

member, 1'107, has also been identified to regulate the NPC pool. Althou gh 1'107 null mice



exhibit increased prol ife rat ing progeni to r cells . the p I0 7-/-progenitors sho w impair ed neuronal

commitment (C allaghan et al., 1999, Vanderlui t et al ., 200 4. Vanderluit ct aI.. 200 7) . Therefore,

Rband re lated proteins and the ir 1021' target s regulate the NI'Ccell cyc le progre ssion an d cell

cy cle ex it.

1.3 .3 C y cl i n- d e p e n d e n t kina s e s a nd Cy cl i ns

Cyc lin-dcpcndcnt kina sc s(Cdks) regul ate thc pro gre ssion throu gh each of the phases of the cell

cycle . Cdks arc activa ted by phosphorylation/dcphosp horyla tion events as the y bind to spec ific

Cyclinpartners.thcirrcgo lalOry sub unit s . Distinct Cy clins arc synthesized and then de stro yed at

specific phases ofthe ce ll cy cle, add ing ano ther regu latory step for Cdk -Cy cl in act iv ity (Nigg ,

1995). The re are 4 Cdks (Cd k l , Cd k2, Cdk4 and Cdk6) and 10 Cyc lins that belon g to 4 di ffer ent

cla sse s (C yclin A, Cyclin 8 , Cycli n D an d Cyc lin 10 type) , and are res po nsible for ce ll cycle

progression(Ma lumhresand llarbaci d,2009).

The initi ation and pro gre ssion thro ugh G I is medi ated by activa tion of mult iple signa ling

pathw ays that converge on the transcription of immediate earl y genc s, D-t ype Cyc lins, and thei r

asse mb ly with Cdk4 /6 k inase s (Sherr, 1995, Roussel , 1998). Once activ ated , Cy cl in D-Cdk4/6

com plexe s preferent ia lly phosph o ry late pR b and pRb-re lated proteins 1'107 and p l3 0 (Sherr.

1994 . Weinb erg, 199 5). Th is is fo llo wed by add itiona l phospho ry lati on by the Cy clin E-C dk2

and progression into the ce ll cyc le (Oh tsub o et a l., 1995) (Fi gur e I All ). Duri ng S andG2phasc,

con tinuo us Cyc lin A-C dk2 act iv ity is req uired but the tran sitio n to mi tosis requ ires Cycl in ll -

Cdkl aetiv ation by the phos phat ase cd c2 5c (K ing ct aI.. 1994. ur sc, 1994 ) (Fi gure I.4A) .

Activit y o f all Cd ks arc regulated at multiple level s including the abundan ce of Cyc lins ,



activat ing or deact ivat ing phosphorylation ofCdk subunits and the abundan ce of endoge nous

Cdki nh ibitor prote ins( Figure 1.3) (Cunningham and Rousse l. 200 1. Musgrove et al., 2004).

Recent ly.t he idea that activityofa ll Cdks isreq uiredfor progre ssing through the mamm alian cell

cycle has been challenged. Even in the absence of all interph ase Cdk s (Cdk2, CdkI , Cdk4 and

Cdk6), the mouse embryo can undergo organogenesis with continued development until

midgestation. Under these circumstances , Cdkl binds to all Cyclins and phosphorylates pRb.

resuitingint hcexpress ionofgenesthata reregulated byE2F transcriptionfactors(Santamariaet

al.. 200 7) Cdkl can also bring cells out of quiescence in the absence of interphase Cdks by

interacting with Cyclin-D and/o r Cyc lin-E to phosphorylate Rb (Martin ct al., 2005) . However,

Cdk l knockout mouse emb ryos fail to develop to the moru la or blastocyst stage, sugges tiogthat

otherC dks do not have the same com pensato ry capac ity as Cdk l (Santamariact a l., 200 7).

1,3 .4 Cy cl i n- de pe nde n t k in ase i nhi b it ors

Cyclin-dcpcndem kinase inhibitor proteins are importa nt in regulat ing Cdk act ivity, and hence

the progression of ce ll cycle or cell quiescence . Two families of Cdk inhibitors promote cell

cyc le exit by block ing the act ivity of Cdk-Cy clin com plexes: the Cip/K ip family, includi ng

p2 ( 'p,. p27" P' , and pS7' ;P' , and the INK4 family, including p iS" " ' , p I6" " ', pI S" " " and

pI 9" " d (Eliedge and ll arper, 1994).

Although the Cip/Kip family of inhibi tors can interact with all Cdk-Cycl in complexes. p27' ;P' is

the main Cip/Kip inhibi tor in NPCs during development. The othe r family members, p2l c;p, and

p57"'P' . arc on ly express ed in post mitotic cells within the con ical plale (Nguyen ct a l., 2006) .

P27" P' promo tes cell cycle arre st of neural progen itor ce lls during em bryogenesis (Fero et a l..

1996, Kiyokawa et a l., 1996. Nakaya ma et al.. 1996. Car ruthers et a l., 2003) . reduces



proliferation of transit amplifying progenitors in the adult subventr icular zone (Doet sch et al.,

2002) . and. together with pI 9'Ok4d. main tains dilTerentiated neurons in a non -mitot ic state (Zind y

et al.. 1999). The p27Ki"-nu ll mice exhibit multi- organ hyperplasia from enhanced ce ll

pro liferat ion. lnaddition.the p27" " -nu llm utan tsd emo nstrate a decrease in neurona l prod uction

during mid-eortieogenesis and an increase in production of late-born neurons. This de lay in cell

cycle ex it results in an enlargement of upper cortica l layers (Goto et a l., 2004) . Similarly.

ove rexpressing p27 KiP' in cortical progenitors promotes premature ce ll cycle exit and results ina

reduction of upper layer neurons (Tarui et al., 2005) .

In addition to promoting cell cycle exit. Cdk inhibitor p27KiP' a lso promotes differ entiation and

radial migration of cortical projection neuron s. The N-terminus of 1'27' ;" is involved in

stahilizing Neurogenin-2 pro tein . a proneur al basic helix-loop-h elix (bHLl I) factor , which

specifics cortical prugenit ors to a neuron al fate. The Cvtcnninus half o f 1'27' ;' 1 inact ivates

G'I'Pase Rho/v, a modul ator o f intracellular actin dynamics and influences cort ical neuronal

migration (Nguyen ct aI., 2006) . Thcrel(lre.p27'; PI plays a crucial role in neuronal development

by promoting cell cycle ex it o f Nl'Cs , as well as their different iation and migration

The p27'; P' protein is regulated via priming phosphorylation . ubiquitination followed by

proteasomal degrada tion (Paganoet aI., 1995, Loda et aI., 1997). Cdk-mediated phosphorylation

on T IS7 of p27';P' is required for uh iqu itination. This represents a feedback mechanism by

which Cdks eao regu late p27' ;P1 turnove r. Phosphorylation 01'1'27' ;" on TlS 7 by Cdk-c ycJin

complex requires forma tion of a stahle trimerie complex. However, although Cdk l -CycJin 131

phosphorylatesp27" P' on T IS7, it fails to form a stable comp lex with 1'27" " and thus "annot

direct its ubiquitination byE3 ligase (Momagnoli et a I.. 1999). Whether the phosphorylation of

1'27" " on T IS7 byCdk l-Cy cJinBI affec ts its functiona l role IS sti ll unknown.



Apart from the 1' 187 resid ue, regulatory phosphorylation ofp27K,p' protein also occur s on 510 .

Arginine directed ser ine/threoni ne kmases like Mirk/dyrk l B phosphory lates p27KiP' on 5 10. This

stabilizes p27K
;P ' protei n and enhance s its functio nal propert ies as a Cdk inhibitor , bindin g to

Cdk2 (Den get aI., 2004) . Interestingly in neura l stem cells, Cdk5 can phosphor ylatc pz r'i'" on

both 5 10 and 1' 187. Phosphorylation on both sites promote s neuronal differe ntiation from cell

cycle arrest followed by neurite outgrowth and migration (Zhen g et a l.. 20 10). Therefore ,

phosphorylation ofp27K
;Pl is a critica l regulatory step in promot ing cell cycle exit of Nl' Cs and



Fi gure \..1 : Ce ll cy c le regul at ion by C d ks ( C yc fi n dependent kin a s cs ) , cyc l i ns ,

C d k inbihitors and th e Rb / E2 F pathw a y .

A - Schem atic of the euka ryotic ce ll cycle showing the different pha ses - G I. S. G2. M and the

cri tica l restric tion point R. Th e specific Cdk-c yc hn co mplexes respo nsib le for progre ssion

through ea ch phase are shown with thei r INK or KWICI!' inh ihitors (Adap ted from (Dc hay and

Kenned y.200?) .

B - To progress throu gh the G I restr iction point. G I Cdk-cyc lin co mplexes hypcrph ospho rylate

Rb free ing E2F tran scription factors. Free E2F s promote tran script ion o f targe t genes and

progression into the S phase.
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1.4 S urv iva l o fN e ural l'rec urs o rCe lls

The survival of NPCs is import ant to ensure the app ropriate number of neurons within the

different layers of the cortex. During neurogene sis, NPCs and neuron s arc made in excess. Th is

ensures that if a port ion of the cells exhibit defects during cell div ision ,differenti ation or

matu ration, they can be eliminated . Cells exhibiti ng such de fects and the excess cells arc

eliminated by apoptosis (Nicho lson ct aI., 1995,lIaydar ct al., 1999). At E IOo nly rare apoptotic

cells arc observe d when the PCs arc undergoing symm etric divisions to expand their pool.

However, by late-neurogenesis at E18, 50-70% of NPCs are dying (Blaschke et a l.. 1996). This

massive ce ll death is required to reguJate the NPC population size and eventually the brain size

and shape. Ali ef ncurogcnc sis is co mplete, there is a second wav e of apoptosis among

cells and so arc not parts of the functional circuitry (de la Rosa and de Pab lo, 2000, Blomgren ct

a1..2007)

Studies on pro-apoptotic protein s and aspartate-specificcysteine proteaseslcaspases) have

provide d insights on NPC survi val. Specia lly, studies on Caspase-J defic ient mice revealed

hyperp las ia of the NPC popul ation duri ng CNS deve lopment. ThIS demonstra ted that the

programmed cell death of NPCs and neurons during development is apoptotic (Nicho lson et aI.,

1995,llaydar et al., 1999, Roth et al., 20001.Apo ptosis is an energy dependent form of cell death

that is characterized by DNA fragmentation . nucle ar condensation ami membran e change s

without induction of an immune response (Ken ct al., 1972) . There arc two main families of

proteins that regulate apoptosis: the Caspase family and the Il-ceillymph oma (llcl-2) family

(YouleandStrasser,2008) .



104. 1 C as pase fami ly

Caspascsarcclassificdaseithcrinitiatorcas pascsorcxccutioncrcas pases . lnitiatorcaspascshavc

a caspase recruitment domain (CAR D) that a llows them to interact with other apopto sis initiating

molecules like apoptotic protea se activating factor - I (Apaf' -l ), wh ich cleaves and acti vates

cxccutioncr caspa ses. Once activatcd vexecutioner caspascs cleave cellular proteins resulting in

thc physiolo gicalcharacteri sticsofapoptoSls.inciudingplasmamcmbraneblcbbin gandnuclcar

condensation(Fanetal. .2005, Wange ta J..2005) .

Caspasc family member s are invol ved in developmental apoptosis within the mamm al ian cortex.

Caspase-J and caspase-9 null-mice exhibit hypcrcc llularity due to impaired cell death. This

results in an expanded cortex and ultimately lethality dur ing the perinatal period (Kuida et a l.,

199X, l laydar et al., 1999).

104.2 Ilcl -2 fam il y

The BcI-2 fami ly of proteins is characteri zed by the presence of 1-4 1311 do mains . It is divided

into ) subtypes based on the function al homo logy of the BcI-2 family member s, The anti-

apopt oticBcI-2proteinsareBcI-2,BcI·xL,BcI·W, McI· l andA J,andtheyinhibittheactiv ity of

pro-apoptotic Ilcl-2 prote ins. BcI-2, BeI·xL and BcI· W have all four BII domain s, whereas McI·1

docs not have a BII4 domain and A I lacks both BIB and B1I4 domain s (You le and Strasser.

2008). These pro-apo ptotic protein s arc either effector protein s containin g BII·I to 1lI1-)

domains. including Bak and Bax, or the III13 domain only. The BII3 only pro-apo ptotic protcins

activate the ce ll intrinsic apoptotic p.ulrva y and include Puma. Noxa. Bim, Bad. Bid.T lrk and

Bmf(Figure 1.5) (Chipuk and Green , 200X. You le and Strasser, 2008) . Co llect ively. the BII3



only protein s facilitate the o ligome riza tion of Hak and Ba x, wh ich leads to mitochondrial

membrane permeabi lization and ultimately apoptos is.

Ihc ex press io n of anti-a poptotic Bel -2 prot ein s varies throu ghout development. Within the

devclopin g CNS . BcI-2 expression pe ak s between E l l - IS and then declines to an undetectable

level by the time "I' birth (Kr ajewska ct al., 2002). Alth ou gh BcI-2 targeted dele tion in mice docs

no t a ffec t neuron a l deve lopment. po stn ata lly it results in a significant loss of sympathetic. motor.

and sensory neurons (Michaclidis ct al ., 1996 ). Bcl -xl r cxpre ssion is first seen in post -mitot ic

ne uro ns after E IO.5 (Krajcwska ct al., 2002). Cond itio nal de letion o f Bc l-x t . in

catccho lamincrgic neurons results in viable mice wi th a reduction in the catccho lamincrgic

ne uro na l popul at ion by one-t hir d (Savit t ct al ., 2005) .

In co mpar iso n. ger m line knocko ut of anti -upoptotic McI-1 res u lts in peri- impl antati o n lethal ity

du e to de fect s in different ia tion of the troph ectod erm (R inke nberger et al., 2000) . Co ndit iona l

knock ou t (C KO) of McI-1 with in the NI'C popul ation resu lts in wi de spread apoptosi s and

embry onic leth al ity at E 15. McI-1 CKO em bryo s show apo ptos is amon g Nes tin exp ressing

precur sor cells . Do ublccortin expre ssing m igratin g precur sor ce lls am i [\111 tubu lin (T ujl )

expre ssin g newborn neuron s (Arb o ur e t al., 200 8). Thi s demonstra tes that McI-1 is requ ired fo r

thc surviv al o f both proliferating and differentiatin g NPC s. Additionall y. unpubl ished data from

our lab ha s ident ified McI-1 as a surv iva l factor of emb ryonic neura l stem ce lls (N SCs ). To ass ess

self-renewa l o f emb ryonic NSCs. we perfonned a secondary neuro sph ere assa y (V and erluit e t al .,

2ll04) and demonstrated that McI-1 CKO result s in a -l-fold redu ction in seco ndary neuro sphe res

when co mpa red to wildt ype controls. Th erefor e. Mci - I is a cr it ical surv iva l fac tor o f bot h NSC ,

and NP Cs. Thi s is un ique to McI ·:. sinc e all other Bcl- 2 pro-surv ival pro tein s ex presse d in the

CNS. like BcI-2 and BcI -x L. arc requ ired for the surv iva l ofpost-m itotic neurons .



Fi gure 1.5 : Ilcl-2 familyofprnteins

The Ilcl-2 family is divid ed into the anti-apoptotie. pro-apoptotie and BID-o nly pro-apoptotic

subfamily. The 1311 domains are illustrated as 13111. 13112, IlH 3 and BII4 , while the

transmembrane domain is deno ted as TM. The PEST sequence is also shown on Mel- ! (Adapted

from(You!c andStrasser,200S)
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1.5 8 el - 2 Fami ly and the Ce ll Cycle

Besides apoptosis. some members of the BcI-2 famil y o fp roteins regul ate ce ll cycle progre ssion

(Tab le 1.1). Force d expres s ion of some pro-apoptotic BcI-2proteins. in the presenceofapoptosis

inhibit ors, promot e cell cycle progre ssion and arc prolifcra tivc .Tn co ntrast, forccdcxprcssionof

pro-s urv iva l Bcl-2 and BcI-xL proteins arres t ce ll cyc le progression and are ant i-pro liferative

(Zinke l et al., 2006) .

Overex pression of BcI-2 protein s lows cell cycle ent ry in III 3T3 ce ll lines by promotin g

express ion o f the Cdk inh ibito r 1'27" , 1 and pRb relative 1'130. Increase in 1'130 results in the

forma tion of repre ssive p 130-E2F4 com plexe s and delay in the expre ssion of E2FI. which is

requir ed for the ce ll cycle progression (Va iro ct al.. 2(0 0). Elevation 01' 1'27" " protein a lso

occur s with Bcl-xL overexp ression and induc es delayed ce ll cycle progression. The eleva ted

1'27' ;' ; protein del ays ac tivat ionofCdk2 and Cdk4 duri ng progressio n into S-phase (Grc ider et

al., 20(2) . Therefore. forced expression of some anti-apoptotic BcI-2 me mber s in cel l lines

confers ant i-prolifera tive effects .

Howev er. the anti-pro lifera tive eff ect s of BcI-x L can be rever sed by the pro-apoptoti c Bcl- 2

membe r Bad . Induced Bad expres sion in fibrob lasts res ults in continued prolifera tion and

sustained Cdk z-cyc lin E ac tivity. Bad also forms heterodimers with BcI-xL to overco me the

GO/GI chec kpoint and co ntinue ce ll cyc le progrcssion rChauop ad hyay ct a1. 2( 0 1)

Overexp ressionof someotherpro-apopto tic Bcl-2 memb ers in the pre sence of apopt osis

inhibitors also increases proliferation, Transgenic ovcrcx prc ssion of Bax-alp ha increases the

number o f pro liferating thymocytes, reduc es the level of p27" pt in mature T-ce lls and promotes

rapid progre ssion to Svphase (Brady ct al., 1996) . Gcnn line knocko ut o f' anothcr pro-apoptotic

mem ber. Bid . results in imp aired hepati c cell pro liferatio n and carcinogencsi s.demollstratingits



role in cell cycle regu lation (Bai et al., 2005).

It has been demon strated that the dual roles of some Bel-2 fami ly member s in cell cycle

progression and cell surv ival are functiona lly separate. Site-speci fic mutati on ofa tyrosine

residue withinthe N-terrnina IB II4regionofBcI-2 abo lishesit sfunctionin ee ll eycleprogression

but has no effect on cell survival (lluang et al., 1997).



fa ble 1.1: Bcl-z famil y mcm bcrs thatfun~t i(Jnin cell ap(Jpthsisalldpr(J lif('ration ( -I- = knockout .

E3.5 = cmhryonic day 3.5)



1 . 6 :\ Ic l- I R e gul a ti on of Ce ll S u rv iva l

Mel-I is an an ti-apoptotic mem ber of the Bel-2 family. Full length Mel-I protei n cont ains a

transme mbrane dom ain , which localizes it to the outer-mit ochondri al membr ane, wher e it

intera cts with pro- apoptotic Bel-2 membe rs like Bim , Brnf Puma , Noxa and Bak to pre vent ce ll

apoplosis (Warrand Shore, 2008) , Mel- 1 protein also has 3 1311 dom ain s and 2 PESTseqllcnces

(Ko zop as et al., 1993. Yo ulc and St rasser. 200 8). Pl-S'L seq ucnce s are associa ted with protein s

with short ha lf-live s and are absent in othcr Bcl-2 pro-surviv al members (Fuji sc ci al., 2000 )

Alternative splic ing of thc Mel-I mR NA result s in a splice variant con tainin g on ly the IlH -3

domain . The shorter Mel- I prote in is functiona lly oppo site to full lcngt h Mcl-I fragme nt ami

prom otes ce ll death (B ing le ct al., 20( 0), Therefore, processing of Mel-I mRNA is important in

determinmg its role in cell surv iva l.

Md-I wasli rst discovc rcdasagclJe lhati s uprcg ulatedduring induccd diffcrcnt iat ion ofhu l1lan

mye loblast ic leukemia ce lls ML-I (Kozopas ct al., 1993). However, studies on MeI- 1 loss-of -

function have been restricted sincegen n linc knockoul o f 1\1c1- 1 results in the peri -imp lanta tion

lethal ity of mice at E3.5 . This lethalit y isducto defec ts in different iation ofthe trophec toderm

(R inkcnhcr gcrct al. .2000),ltisthemost sevcrephcnotypc amon gall o f the Bcl-z ant i-apoptot ic

protein s. Since Mcl-I germli ne knock outs arc emb ryoni c lethal , our curr ent und erstand ing of thc

functions of' Me l-I co me fro m conditional knocko ut models using the C re-lox system (Sauer.

1998\ . Co nditiona l knockout mode l for Mel-I was first genera ted to ass ess thc funct ion of Mel-I

inhcmatopoic tic systemdevelopmc m (Opfc nnan etal. ,2005).ltwasdcmOl:stra tcd thatMel-1 is

esscnti alforthc surviva lufhcmatop oietic stcmcclls andthcdeveloplllent and surviva l o f 13and

T Iympho cytcs . The subseq uelll gencrationofMel-1 knockOlll<inhcpalocyte s ar.dkcratinocytcs



resulted in widespread apoptos is w ith in both popul ati ons . Thi s identifies the surviv al ro le of Mel -

I m hep ati c andepidenna l pro lifera ting precur sor s (Sit ai lo et al., 2009 ,Viek et al. . 2009) .While

prom otin g surv iva l of epidermal keratinocytes. Mel-I also induces expr ession of kcra tinocy te

d ifferentiation markers, indic atin g that its ro le may be cr itica l at thc timc of di ffcrcnua tion

(Si tailoetaI..2 00 9) .

Co ndi tiona l knock out o f Mel-I in the ' PC popul ati on ca uses wi despr ead apoptos is in bo th

prolifer atin g anddi ITerenti atin g NI'Cs. lnthe ab sence o fl\lel - l , NPCs undergo ap op losi s as they

mi grate away from the ventri cu lar zo ne and commit to a ne uron al fate (A rbour et a I., 2008) . In

Incl. Mel -I is the on ly BeI- 2 famil y member that is required for the surv iva l of embryonic NPCs

Th us. Mel-I appea rs to be a eritiea l regu lato r durin g the time of differen tia t ion or ce ll cyc le exit

1. 7 Rcguf utio n of M el -I Prot ein

Regu lation of Me l- I is achieved at mult ip le levels - transcriptional. po st -tran scri pti onal and post-

tran s lation a l (Wa ng et a l., 1999. Bin g le et a l., 2000. Cra ig, 2002 , Wanget aI..200 3). lJnli ke its

othe r anti-apo ptotic BeI-2 famil y memb ers. Mel - I protein is labi le with a sho rt hal f-li fe.

Depen din g on the ce ll type and co ntex t, its ha lf- life ran ges fro m minut es to a le w hour s (Craig.

2002 . Cucona ti et al., 200 3. Ad am s and Coo per , 2007) . Mel -I prot ein is reg ulated by

phosp horylati on andubiquitinati onfoll owedbyprote3Somat degrad ati on . Mel - ! ub iquit in ligase

E3 (Mule) . an ubiquitin ligase co nta ining a BII -3dom ain, intcrac ts with Mcl-L and ubiqui tin atcs

its5 lys incresidues that res ulti n proleasoma l degra dal ion (WalTe t aI..2 005 ,Zhonget a l.. 2005) .

Gl yco gen sy ntha se kinase 3 (GSK -3) al so phosph orylate s Mel-I and prim es it fo r ubiquiunation



by the E3 ligase beta-TrC P, prom oting its degradation (Ding et al.. 200 7). Both ubiq uitinatin g

pathways arc opposed hy the deuh iquitinase USPX. which remov es the lysine linked

polyub iqui tin eh ain s and prevents protcasornal dcgradation of McI-1 (Sehw iekart et al., 20 10).

Sub stituti ng the lysine residu es in McI- 1 with arginine can extend the half-life of the protei n

(Zhong et a l., 2005). Thi s demo nstrates that prot easom al deg rada tion is the major regulator o f

McI-1 pro tein and that preventi on " f its n:piddegradation offers a wayto effeci ivc ly ovcrcxp rcss

McI-1 protein is also regulated thro ugho ut the cell cycle and peaks at mitosis. Durin g mito tic

arrest, Cdk l - Cyc lin B I phosphorylates McI-1 at Ser64 and Thr92 . Th is phosphorylation initiat es

degra dat ion of McI-1 by proteasomal ac tivity of the anaphase-promou ng co mplcx/eycloso me

V,pC /C) E3 ubiqui t in ligase (Harley et al., 2010) . Thu s. phospho rylat ion o f McI-1 by Cdk l

Cyc lin ll l and its A PCIC med iated degrad ation initiatcs apoprosis ofc c lls arrestcd in mitosis

1.8 i\lcI -1 and the Ce ll Cy cle

11/\·it ro .McI-1 has been shown to affe ct cell cycle progress ion. Forced expre ssion of Mel-I in

ce ll lines lead s to decreased Brd U (bromo deo xyuridine) intake , a measur e of cell pro liferation.

and a slower doublin g rate (Fuj ise ct a l., 2000, Jamil ct al., 2005). McI-1 inte racts with pC NA

(pro liferating cell nuclea r ant igen) . a facto r for DNA Polymerase b activity during DNA

rep licati on. This s lows ce ll cycle progression into S-phase in HEK 2931'. Il eLa and U20S ce ll

lines Iluj ise et a l., 2000 ). Furthenn Ol'e. aproteolytic frJ gment o fMcI- lhashecnd emonSlrated lO

bind to Cdk l resulting in a lower rate of pro lifera tion in a murine myeloid progen itor cell line.

Cdk l regulates progre ssion through Gz and M phases of the ce ll cycle by bindingwithCycl in ll



and pho sphory latin g multi ple downstream target s (Jamil ct al., 200 5) . There fore, Mel-t may

affect the cell cyc le kinetics at different phases and redu ce cell pro lifcration.Reeently.

co nditiona l knockout of Me l- I in hepatocytcs resulted increased proliferation and hepatoce llu lar

car cinoma deve lopment (Weber et al. ,2010)

1.9 Rati un al c and Hyp othesi s

Neural precur sor ce ll prol iferation and apoptos is arc crucial regulato ry aspects of mamma lian

nervous system deve lopment. A lthough recent ev idence suggests that these two processes arc

interrclatcdjhe mo lecular mechani sms beh ind them arc not well es tablishe d. Mel- I is a cr itical

surviva l l1letor !or both proliferatiug and differentiating emb,)'onie NPCs (Arbo ur at al. 200S) . ln

addition, recent studies in ce ll lines show that Mcl-l can also affe ct cel l cyc le kinet ics upon

!'Jrcedexpre ssion(f uj iseeraI2001l, Jam ileral.2005) . l low cvcr. the role of Mel-t in regu lating

ce ll cycle progre ssion under physiological ill vrvo conditions has no t yet bcen dem onstrared.

Therefore , I put forwar d the followin g hypothe sis-

Mel-I regulate s ce ll cycle progression and promotes di fferent iat ion of NPCs within the

embryon ic brain.

Objecti ve..:

The main objectives o f this the sis arc-

I. To determ ine whethe r Mcl- l regulate s emb ryoni c NPC proliferation and diff erent iat ion .

2. To dctennine the mechanism by which McI-1 reg ulates NrC cycl e progression



Chapter 2

Materials& Methods

Mice were kept on a 12-hour light/dark cyc le and food/water was administered ad libitum. All

experiments were approve d by Memorial University 's Animal Care Ethics Committee, adhering

CD- I mice were provi ded from Charles River Laborato ries. For breeding, mice were housed in

the same cage for up to 3 days and the formation of the plug was checke d ever y 12 hours. For

embryo nic time poin ts. the time of plug identification was cons ideredtobe emb ryon icd ayO .5( E

0.5) and the male mouse was immediately separated opon detect ion o f the plug. Flexed Mel- I

(Mel- Ipr) transgen ic mice were generated in the laboratory of Dr. S. Korsm eycr (Opfenna n et al.,

2005) and 'estin Cre (Cre' ") transgeni c mice were genera ted in the laboratory of Dr. R. Slack

(Berube et 'II.. 2005) . Both were mainta ined on a FVB N backgro und. Mel- I conditional knocko ut

(C KO) mice were generated by cross ing Nest in Cre transgenic mice with Mel- I flexed (Mel- I' r)

adults as descn bed by (Arbour et a l., 2008) and illustrated in Figure 2.1. Mel-I CKO (Cre' <.Mcl-

1m) mice were compared to litterm atc contro ls (Mcl- , ' I» foral! experiments studying Mel-I

loss-of-funct ion. The p27K;r l knockout embryos (p27Ki
I' ] ' / ' ) were generated by crossing p27K'r i

hetero zygous males (p27 Kir l +l.) with p27K1r 1he terozygou s females (p27Kir l +/' ) (Fero et al., 1'196).

both mainta ined on a C57 BL/6 background . For loss-o f-function studies , p27Kir
' knockout

emb ryos (p27 Kir l _'. ) were compared to wi lotype littennate eonlrols (p27 K
'r ' '' ' ) .



Fi gure 2.1 : C o od it io na l McI -1 Knockout mediated by C re re cnmhln us e,

McI-1fif mouse is crossed with Ncstin e re transgenic mice. The Ncstin promoter mediates

expression of Cre rccornbinasc and the DNA between the loxP sites is excised . There fore. McI-1

is condit ionally knocke d out from neural tissue using the neura l spccific Ncstin promotcr.
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2.2 Gc no ty pi ng Mi c e

To determi ne the genotype . DNA was isolated from ta il clippin gs of adults and limb bud s of

embryos at embryon ic day 13 (E 13) using the RED Extra et-N-Amp tissue r CR kit (S igma.

029K 6262). Isolated DNA was then subj ected to Polymerase Chain Reaction (PCR ) using the

react ion components outl ined in Tab le 2. 1. For p27 ' ;P' r CR . the REDE xt ract-N-Amp r CR

Reaction Mix (Sigma. R4775) was used and the co mponents arc outlined in Table 2.2 .

Ih e PCR react ion for Mcl-I was programmed to bc in 94"C for 6 minute s. 55"C for 1 minu te and

n "c for I minut e - repeated for 30 cycles . The PCR reaction for C re was programm ed to he III

94"C for 3 minutes. 56"C for I minut e and n ecfor 1.5 minutes - repea ted for 30 cycles . The

PCR react ion for p27 KiP ' was program med to he in 94°C for 6 minutes, 6 1"C for 1 minu te and

n "c for I minut e - rep eated for 12 cycles . fo llowed by 25 rcpeti tions of 94"C for 3 minutes,

rCR products were run in a 2% agar ose ge l (U ltra Purc Agarose - Invitrogen. 155 10-027 )

contai ning Eth idium bromid e ( 155R5-011. Invitrogen) to stain the DNA under ultraviolet ligh t.

The gel was run at 120 Vo lts for 30 min utes to detect the Cre band and for 90 min utes for the

Mcl -I hand . Mcl - l f'r a liclehastw0 34bp /nxP sitesflank ing exon I (Opfenna nelal..2005 ),asa

result the wildtype Mcl -I +!' a llcle (36 0bp) is smaller than the Mcl _l fII alle le (40 0bp ). Using the

di ff erence in the s ize of the band s under ultraviolet light. thcse two alleles can be disting uished.

The wi ldtype p27 Kip
' IP27" P' '' +) band can he iden tified at 190bp compared to mutan t p27' '' '

(p27 Ki p ' .!.) hand that ca n be identified at 280bp . Mice heterozygous lor p27 Ki p '( p27" P!+!')show

hoth band s. one at 190bp and anot her at 2RObp (Figure 2.2 ).



Reaction c o m p o ne n ts M e l- I I;;~ume / S a m Ie ~re PCR

--5-.0-- 5.0

Tabl e 2.1 : Re a ction co m p o ne nt s for .Vl cI - 1 and C re PCR

l'uhl c 2. 2 : Rea ction components fo rp2 7 K ;P' I' C n



Fig u re 2 .2: Id entifying Mel-I , C re and p2 7
K1pl

ge n n ty pe by I'CH.

A - The floxed MeI- 1 (M cl_If/r) alle le can he distin guished from wildtype MeI-1 (Mel-I ' '' ) allel e

by the diff erence in band size. Md -I ''''has two 34bp/oxP sites and is see n as the larger ban d

compared to MeI-1 '" , Mice that arc hetero zygou s to Mel- I (Mel-! ' ifl) show ho th bands

B-Crecan be identifi ed by the pre senc e o fa hand at - 700bp.

C - Wildtypc p27K1p, (p27KiP' >/+) can be identified by a band at 190bp , comp ared to mutant

p27KiP' (p 27K,p, ./.) that can be identified by a band at 280bp, Mice heterozygou s for p27Kip,

(p27K'P' · ") showhothbands.
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2.3 Culturing c lo nal ly de ri ved N I'C~

NPCs were harv es ted from the neu roepit hel ia of the E 13 embryos . Pregnant dams were

euthanize d with a lethal intr aper iton eal injecti on of Eutha nyI (250 mg/ml, sodi um pentobarbital ,

Vetoq uino l, IEUSOOI), follow ed by cervical dis loca tion. The uteru s cont aining thc embryos was

dissccted and subme rged in cold Ix IIBSS pll 7.4 (made from lOx HB SS -llanks ' I3alaneed Salt

Solut ion: Gi bco . 14065-056. and Gib co disti lled water, 15230- 162 ) with phenol red (S igm a,

P0290).l ndividual emb ryos werc rcm oved from their embryonic sac and their bra ins extr acte d in

co ld Ix lIB SS. The NPCs we re harv ested from the ga nglion ic em inen ces o f these embr yos by

making a longitu di nal inc ision through the over lying cortex. The exc ised gan glion ic eminences

were immedi ately tran sferred into stem cell media (SCM), prepar ed as descr ibed in Appendi x I.

and manu all y triturated to single ce lls . Ce lls were counted in a I: I mix with 0.4% Tr ypan Blue

(Gib co, 15250-61 ) on a Hemacytometer (Fisher Sc ientific , 0267 J 10). Neural prec urso r ce lls we re

then plated at clonal de nsity ( lG cc lls/p l.t to grow ncurosphe res and incubated at 3'1"C with 5%

car bon dioxide and humidity.

For study ing McI-1 ga in-o f-functio n. a mutant McI-1 (nu Mcl-l ) constru ct from (Zhong et al.,

20(5) was used where the lysine resid ues , invo lved in ubi quitin-mediated destruct ion of the

protein. we re conve rted to arginine . The pCIG2 express ion vector (Megason and Mc lvlahon.

2002) (Append ix II) was used to direct the expre ssion of mt McI-1 both il/,·il'u and il/ ,'itro . The



mt McI- l co nstruc t was cloned into the pC IG2 vector 5 ' to the intern a l ribos ome entry sequence

(IRES) and enha nced gree n Iluore sce ntp rotein (eGF P) (Appe nd ix 1II).

Forstudy ing p27"P I gai n-of-funct; on, p27" PI from pGFP-E p27 vec tor (Dyer and Ce pko , 200 1)

was cloned into the pCIG2 vecto r 5 ' to the interna l riboso me ent ry seq uenc e (IR ES) and

enhanced green Iluor escentprotein (eGFP ) (Append; x IV).

The express ion of both pCIG2 tnt Mcl -l and pClG 2 p27" pl were verified thro ugh transfection of

E l3 NPCs followe d by protein ana lysis via Western l3lot 24 hour s post-transfec tion, as sho wn in

Figure 2.3 . The overex pre ssed tnt MeI-l band (hum an) appears at 37 kDa whi le the endogenous

Mel -I band (mo use) appea rs at 35 kDaas adoublet. Sin ce the endo geno us Ievelof McI- l is 100

low for performing protein interaction studies, all immun oprccipn at ion experiments were hascd

on the ove rexpresse d tnt Mel-I.



Fig ure 2.3 : Veri fi ca t io n o f :\lcI -1 a nd p27 K
;P\ uver e xpre ss io n ill E13 N I'Cs .

A - Western blot analysis of protein samples 24 hours POSl transfection with actin used as a

loading contro l (42 kDa) . Thc overcx prcsscd Mcl-I band (human) appeared at 37 kDa while the

endogenous McI-1 band (mouse) appeared at 35 kDa.

Ct l = ce lls transfected with pC IG2 contro l plasmid . mt McI-1 = ce lls transfcctcd with mt Mel-I.

Il -Westernblot analysisof prot ein samplcs 24h oursp osttransfc ction with act in used as loading

control (42 kDa). The p27K
;P' band appeared at 27 kDa.

Ct l = cells transfec tcd with pCIG2 contro l plasmid, pn KiP
' '~ ce lls transfectcd with p27';'PI
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3-4 days after p latin gc ne uros pheres were passaged to sing le cell s and then transfectcd 24 hou rs

later. Transfecti on was carri ed out using the Am axa Mouse Neura l Stem Ce ll Nuc lcofecto r Kit

(Lonza , VPG- I004) and Amaxa Nucleofcctor Device (Lonza, AAO- IOOI) . accor ding to

manu factu rer ' s instru ction . For every million ( Ix I06
) NPCs, I0 ug of plasm id D A was used for

Transfectcd cells for prote in assay we re plated in stem ce ll medi a immedia tely foilow ing

transfee tion. Cells for imm unocytochemi stry were plated immediately followin g tra nsfeetion in

stemeell mediawilho ut heparin l(Jr adherent culturcs.

2,6/llvitroProliferation A s s a y

NPCs we re transfected with pC IG2 conu o l plasmid. mt Md -I plasm id or p27 "'PI plasmid and

plated in proliferatin g conditi ons at clona l density, on Poly-ornithine (Si gma. 1'4<)57) coate d

dishes. To determin e the effect s of Mcl-l ga in-of -functio n on proli feration, transfec tcd NPC

cultures rece ived a 5-Brom o-2-d coxyur idinc ( ImM BrdlJ -- Sigm a, B5002) pulse 2 hour s

immed iate ly befo re fixation . Cultures were fixed with 1:1 methano l (Sigma. 179337-4 L) and

acetone (Fishe r Scientific, A949 -4) at 24 hours , 48 hou rs or 72 ho urs posttransfectiou

Proliferat ion was assessed to compare the effects of Md - I or p27Kipi gain-of-func tion on Nl'Cs,

This was performed using immu nocytochem istry for prol iferating ce ll nuclea r antigen (PC NA) at

24 ho urs,48hoursor72 ho urs posttransfeet ion .



Prote in samples were extracted from NI'Cs . Ce lls were lysed in complet e immun opreeipit ation

(11') buffer cont ain ing 25 mM Tri s-lla se I'll 7.4, 148 mM NaCI, 1 mM CaC I" 1% Triton X- IOO,

0.2 mg/mL phcnylmethylsulfonyl Iluoride (PMSF) , lOX prot ease inhib itors (apro tinin and

leupeptin ) and 10 mM dithi oth reitol (DT T). Sampl es were IUn in dup licates using Bio-Rad

Protein Assay Reagent (BioRad. 500-00 06) to determ ine the protein concent ration of each

sample by produci ng a standard cur ve using the ll rad ford Assay (Table 2.3)

App rox I
Absorban~e j

0.000 ,

=-~=3
-~~
_ _ _ _ I

The slope of the stan da rd curve was used to determine protein conce ntrat ion of each sample using

the following equation'

u l. (Slope) (Volum e uf sampl e)



2. 7 lmmunnprcctpttatlun with I'rotein- G Sc phuro se B e ad s

Individual pro tein sa mples cont ainin g 600 ug of protein in 250 flLof eomp letell'buffer,5flgof

specific antibodies (Cyclin de pendent kina se I (Cdk l ) - San ta Cr uz, SC53219 ; Cy cl in B _. Santa

Cruz, SC752 ; McI -1 - Sant a Cruz , SC819) were used lor pulli ng down protei n co mplexes .

Prot ein s with an tibo d ies were placed o n a rotator at 4 'C for 3 hour s, then 40 flL of Protcin G

Seph arose Bead s (Sigma , P3296-lmL) were added and set back to incub at e ove rn ight The

followin g day. bead s we re wa shed in co ld compl ete II' buffer to rem o ve any non-s pec ific bind ing

and then ce ntrifug ed at 1000 rpm for 2 minute s in 1°C, allowi ng the spec ific prot ein compl exes

bou nd 10 thc an tibodie s and bead s to sed iment.To thi s pellet , 40 ftL o f6X pro tein loadi ng bu ffer

(250 mM Tri s- II CI. 0 .5M DTT , 10% Sodium dodec yl sulpha te (SDS) , 0 .5% brom op henol blue

and 50% glycero l) wa s adde d. Sa mp les were boi led at 100 ' C for 2 minut es to d issocia te the

prot ein co mplexes , co oled to roo m temperatur e and then ee ntrifuged atlO,OOO rpmto sedim ent

the sepharose beads. The supe rna tan t conta ining the prot ein samples was then loa ded illl0 15%

poly-ae rylamid e gel andwasrun aceord ing totheproeedurefo . we stemblO!.

2.8 W esl ern Bioi Anal ysis

Protei n samples containing 60 ug of' p rotein wer e mi xed wi th 5flL of6X prot ein load ing buffe r,

boil edatI00°Cfor 2minutes and thenloaded on aI 5%poly-aery lam ide ge l.



l'ahI0 2. 4 : Rec ip es forl'o( y- auyl amido soparatin g aod sta ekin g g ol s

1\ Mini -PROTEI\ N appara tus (BioRad. 165-8001 ) filled with Runn ing Bu ffer (0 .1 M 'Ir is-Base,

0.3 M glyc ine, 0.01 M SDS ) was used to run the gel. The protein sa mples were loaded into the

stackmg gel and run at 80 vo lts until the dye cleared the stacking ge l. On ce the sam ples reached

the separating ge l. the ge l was run at 110 vo lts for .) hours . To determine the sit e o f various

protein band s, 10 I,LofHio-Rad Kaleido scope pre-sta ined protein marker (Bi o-Rad, :6 1-0324 )

was also loaded in one of the lanes in each ge l.

Protein s from the sepa ratin g gel were transferred to a nitroce llu lose membrane (Amersharn

BioSeie nee s. RPN30320) with the BioR ad Mini Trans-B lot Electrophoretic Trans fer Cell

(BioRad , 170-3930 ) in Western Tran sfer Buffer (0.02 M 'Iri s-B ase . 0. 15 M glyc ine and 4 .9 M

methanol ). Follo win g tran sfe r. the me mb rane was wash ed in Ix Twee n-20 phosphate buffered

sa line, TPBS ( 126 mM Na II, POa, 62/) mM NaC!, " )r.M Twcen-20 , ddl lyO ) for 15 minutes on

the sha ker , then blocked in 5% blott o (5% skim milk in TPB S) for an hour at room temp eratur e.

followed by a wa sh in 0.5% blotto . Blots were incubated overnight with appropriate primary



antibody (Append ix V) in 0 .5% blotto at 4°C in a scaled plastic conta iner on a shaker at low

speed

The following day, memb ranes were washed in 0.5% blotto, followed by incubat ion with

appropriate secondary antibod y ( 1:2000 goat anti -rabbit IgG horseradish pero xidase (II RP)

conjugate, BioRad , 1706515; 1:2000 goat anti-mouse IgG IIRP conj uga te. Biok ad. 17065 1(,)

di luted in 0.5% blotto for I hour in room temperature. Then memb ranes were washed in Ix TPBS

and the secondary antibod ies were detected using a chem iluminescenc e reaction kit (Perkin

Elmer Labs Inc. - Westem Lightning. 02 118-25 12) accor ding to the manu facturer' s instructions .

Images of the memb ranes were taken 1 minute after apply ing the chemiluminescence reagent.

using GE ImagcQu ant LAS 4000 (GE Healthcare, 28-9558- 10). To detect the levels of l>-actin,

the loading control, membranes were stripped using Western Blot Str ipping Buffer (Sigma,

2 1(5 9) at 37°C for 30 minutes and the procedure was repeated following a wash in 5% blotto.

2.9/lIl1teroel cctroporalioll

III lIt ero electroporation was per formed on pregnant CD- I female mice at EI3 (embryon ic day

13). 10 examine the e tTects of McI-1 gai n-of..function on neura l precur sor ce lls i ll V;l 'O . Pregnant

females were anaest hetized w ith isol luor ane inhalation and were closel y monito red daring the

enti re proccdure. A hypotear ophthalmic oin tment was applied on the eyes of the mouse dun ng

the surgica l procedure to prevent eyes from drying OU: . The entire procedure was performed

within 45 minutes. During the surge ry. the mouse was kept on a stcr iIe padding on a heat ing pad

setat30°Ctomaintainbody tcmperaturc.



Onc e anaes thetized, the fur was removed from the abdomen of the pregnant mo use using Nair

(Church & Dwigh t Ca nada Co rp., Mississauga, ON). The abdo men was then cleared with 7l)%

ethano l and an incis ion was made dow n the midl ine of the abdo men and thro ugh the

intraperit onea l wa ll, which was the n lined with steri le gauze. Uterine horn s wer e pulled th rough

the incision and placed on sterile gauze and moistened with pre-warm ed steri le 0.9% sa line .

Individual emb ryos received an inj ect ion of the plasm id ( 1 ~lg/~ I L), eith er pClG 2 co ntrol. p27' ;P'

or mt Mel - I plasmids, usin g a Fernto .let Injector (lOOhl'a, 1.2 sec, I'C=16) into the latera i

ventric les . The plasm id solution also contai ned a non -toxic dye to visually monitor injec tions into

the lateral vcntrieles. Followin g the inje ction, e lcctroporation paddles (5ml11, Protech

lntcrnational. C UY6501'5) were placed on oppos ite poles of the embryo ' s head and using an

ECM 830 Generator (l Iarvard App aratus) a series of 7 pul ses at 45 volt s, 50 msec durat ion with a

500 msec interval, wer e de livered as described previously (Lange vin et 0 /.2( 07 ). Followin g

c lcctroporation. the uterin e ho m was re-in scrtcd bac k into the abdom en ofthe pregnan t mouse,

the musculature and overly ing skin sutured and the mouse was allow ed to recover . A t co mpletion

oftbe sur gery , a topica l gentamicin (To pagen ) was spray ed on the abdo men of' the pregnant

Post surgery mice w ere g iven sterilized drinking water w ith sulfamethaz ine antibiotic (O.U5'%

sod ium sulfamethaz ine so lution ) for the first 3 days post-ope ration to pre vent inf ection. The

hea lth and weigh t of the mice were mo nitored on a dally basis unti l eut hanasia. 24 ho urs povt-

c1ectropora tion , pregnant mice received a single intra peritonea l Brdl,' inje cti on (lOO,tglg body

weight) 10 label proliferating ce lls. Brai ns of the electro porated emb ryos were .collected at 48

hour s and 5 days fo llowin g the i ll lIferoelcct ropo ration, or two wee ks postnatally.



2 . 10 Ti ssue co lle c tio n, fix ation, cry o pro tec tio n and scctioutng

At48 hours and 5 days following the in utero clectropora tion, pregnant mice were cuthanized

with a lcthal intraperitone al injectionofEuthanyl( 250mg/ml. sodium pentob arbital. Vetoquin ol.

IEUSOOI). followe d by cervica l dislocation . The uterus was removed by making an incision

throug h the abdominal wall and placed in Ix PBS. The embryos were remo ved from the

embryonic sacs and their brains dissected . Brains were checked under the microscop e forGlP

fluorescence, and on ly those with 01'1' expression were collected. Pups collected 2 weeks

postnata lly were also sacrificed with a letha l intraper itonea l injection of Euthan yl. Following

euth anasia, pups were perfu sed with icc-cold Ix PBS followed by 4% Para-for maldehyde (PFA ~

Fisher Scientifi c, 0404 2-500 ; Ix pBS .dd l1,O ,pI1 7.4\

Brains were post fixed ovcrmght in 4% pFA . After fixation, the tissue was cryoprotectcd by

equilibrating in increasing concentrations o f sucrose soiutions (12%, I()% and 22%~ w/v sucrose

in Ix PBS). Following cryoprote ction. brains were frozen in Tissue-Tek (Sak ura Finctck,

0004348-0 1)o ni sopentane, coo ledondryi ce .l3rain s werc sectioned ( 14 flln in thickness) on the

same day as freezing. on a cryostat (Microm 11M 520 Cryostat). Ti ssue sections were collected

on Supcrl rost Plus (Fisherb rand , 12-550- i5) slides and then stored at -XO°C until further

2, 1 1 Immunohistoc hemi str y and Immunoc ytoc hemi st ry

Forimmunohistochemistry, slides were warmed to 3T=Cand a hydrophobic moat (D ako pen) was

draw n around the brain sect ions. For nuclear stains (r CNA. Tbr l , Brd\! and Cux l t. slides were



post-fixed in acetone (Fisher Scientific. A949-4 ) for one minute followe d by washes in lx PBS.

Slides were next incubated overnig ht with primary antibodies (Appendix V) d iluted in Ix PBS at

room temp eratur e. For BrdU and PCNA (proliferatin g cell nuclear antigen)

immu nohistochemi stry. slides were pre-tre ated in 2N IICI for 30 minutes at 37°C followed by 0.1

M Na, B,O, (I' " 8.0) wash for 10 minutes to denatu re the DNA. Slides were then washed in Ix

PBS before incubatin g overnight with primary antibody in the hum idity chamber at room

For PCNA immunocy tochemistry, cultures were fixed using cold (-20°C) 1:1 methanol .acetone

(Fisher Scienti fic. A949-4) for 5 minutes. This was followed by washes in cold (4°C) lx

phosphate buffered saline (PB S - 137 mM NaCI. 27 mM KCI. 100 mM Na, IIPO, . 18 mM

KII, pO" dd 11,0, adj usted to I'll 7.4). Then the cells were first treated with 2N Hydrochloric

acid (Fisher Scientific. SA56 500) at room temperature for 15 minutes followed by washes ill cold

Ix PBS. Following this. primary antibodies for PCNA (\ :300 - Vecto r Labs, VP-P980j ill l x

PBS was added to the ce lls and incubated overnight at 4°C.

For BrdLJ immunoc ytoche mistry. cultures were fixed using cold (4°C) 4% PFA 10 1' 10 minutes,

followed by washes in co ld (4°C) Ix PAS. Then the cells were treated with DNase ( I unit/50 Ill -

Promega, M6101) in DNase Buffer (40 mM Tris-lIc1, III mM NaCI. 6 111M MgCI, and 10 mlvl

CaCI, ) at 37°C for 30 minutes. to denature the DNA. Following this. ce lls were washed m ix

PBS and then incubated with primary antibod ies for BrdLJ( 1:100 -BD Bioscicnccs, 347580) ill

Ix PBS over night at 4°C.

The folluwing day. the slides or culture dishes were washed ill Ix PBS and incubated w:th the

appropriate secondary antibody di luted ill Ix PBS ( 1:200 dm:kcy anti-n1'JuS{' lgG (1l-:-LI Akxa

Fluor 594 - Invitrogen. A2120" 1:200 donkey ant i-rabbit IgG (11+1..1Alexa Fluor 594 -



Invitrogen. A2120 7) for one hour . cov ered with aluminium foil. Fo llowin g thi s. the ce lls were

stained with the nuclear dye Hocchst diluted in Ix PBS (1 :250 BisBenzimide 11 3 325 8 ~ S i gma.

B 1155) for two minu tes and then was hed again in Ix PBS. Slides were then cover slippcd with

1:3 g1yccro l:l xPBS andthe edges were sealed withn ailp oli sh .

2. 1 2 :\ li c rosc o py a n dS t a t is t i c s

Cultures were examined on a Zeiss. AxioObserver A.I microscope to co nfirm trans fectio n and

subsequent expression of plasmids. Immunostained cel ls and tissues were examined on a Zeiss

Axio lma ger Z. I microscope under LE O fluorescence produced usin g Co libri. Each slide

conta ined three bra in sectio nsc cach abou t 140 )1I11apart. Photom icro graph s were taken of each

embryonic brain section at the same magnification. The sample size indicates the num ber of

d ifferent embryos used for each trea tment group . A verag e nU!11bcrofG FP' ce lls det ected p" r

experiment fo r each treatment group is listed in Appendix VI.

All images were taken with ZC i5S AxioC:1nl MRmca me ra USi1g Zeiss A xio Visto n ~ . 8 sof tware

Images were processed and the figures were compi led using Adobe Photo-hop CS2 where

manipu lation s were made only to contrast and brightness. rhe freeware Image J (1 ational

Institute for lI ealt h) was used for quantil ication of posi tive ce lls follow ing imm uno sta inin g und

the counts were mainta ined in Microsoft Excel spreadsheets. All 'Statistics were perfo rmed us rng

GraphPad Prism 5 software, including unpaired Tvtcst and One-way Analysis of Variance

(ANOV A) . Tukcy 's post hoc ana lys is was used to determi ne difference s bet ween trea tmen t



Chapter 3

Results

3. 1 110'" do cs :\Ie l- I aff ect e m bry o nic NrC, in vi vn?

During neurogene sis within the embryonic brain. Nl'Cs di vide at the ventr icular zone (VZ) and

subventricular zone (S VZ ). As Nl' Cs exi t the ce ll cyele and progress tow ards a neuron al lineage,

they migrate radially out into the cort ica l plate (CP ) (Malatesta et 'II., 2008) . Thcrcf orcv the

prol iferat ing zones in the de ve loping cortex arc the VZ and SVZ, while the post-mitotic

dirrerentiared ee lis mak e up theCP.

To investigate the ef fects or Mel- I gain-o f-function on NPCs, I c lectroporatcd G FP (control) 01

mt Mel -I plasm ids into E I3 mouse embryo s ill utero, I co llected the brains 4& hou rs post

elect roporationandassess ed the locationorthe GFp'transrcctcdcelis.

In control brains, the di stributi on or G Fp' cells was mostly in the proli ferative zones, VZ

(26 t 2%) and SVZ (52±2%) . with less than a fourth or the GFP ' ce lls in the post-mitotic CP

(2 1±3%) . In cont ras t, the re was a sh ift in the locat ion or the G Fp' ce lls toward, the C P in the mt

Mel-! treated brains Less than ha lfofthe GFp ' cell s in mt Mel-I trea ted brai ns were in the

pro lifcranvc zones. VZ ( 16±2 %) and SVZ (26 ±2%). and most o r GFp ' cell s were in the CP

(58±3% ) (Fig ure 3. 1) This d istinct shift in the location or G r p' ce lls ill the mt Mcl-l trea ted

bra ins sugg ested that McI-l ga in-o f-function induces i pe s to ex it the cell cyc le and migrate to



Fi ~ure 3 . 1: :\lcI-1 g ai n-o r- f unc tio n promotes mi gr ation of N ile s into th e co rtica l

pl ate.

A - Representative photomicrographs of embryo nic brain sect ions 48 hours post-elcc tropora tion

of con tro l (01) or mt Mc1- 1 pla snud s, showing thc locati on of GF P+ce lls in the VZ (ve ntricular

zone ). SVZ (subvent ricu lar zone) and C l' (cor tica l plate) .

B ·-Quantification o f the perce nt GF P+ce lls located in VZ. SVZ and C P within Ctl and mt Mel- I

trcatcdbrains.G FP+cc llswerccountcd in3 repre sentative sec tions per embryo (11:::;"5 itrea tme ntj .

Mean cell co unt s were ana lyzed by t-te st with sta tistical s ignificance assess ed at *p<O.05 . Graph s

reprc scnt mcans e SfrM .
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3.2 ;\lcI -1 regulates NI' C proliferation within th e e mh ryo nic hrain

To charac terize the effect of Mel-Ion embrynnic NI'C proliferation, I electroporatcd GFI'

(control) or mt Mcl- I plasm ids into 1013 mouse embryos in utero and assessed proliferation with

I'CNA immuno his tochemist ry 4R hours post clectroporation. I'CNA is a component of DNA

polymerase-delta and is required for DNA replication . As a result, there is a disrinct increase in

I'CNA expre ssion dur ing the S ·phase (Bacchi and Gown . 1993 ) and so it is used widel y as a

marker for cell proliferation . 4R hours post electropora tion, in control brains 22±3% of

transfected cells were also I'CNA' . In contrast , on ly 8± I% of transfected cells were also I'CNA'

in the mt Mel-I treated brains {Figure 3.2). Th is greater than two- fold reducti on in proliferating

NPCs suggests that Mel- I gain -of-f unctio n promotes ceil cycle ex it ofNPCs.



Fi::u re 3 . 2: :\I cl-I re ::ulate s N I'C prutlfcr atlnn in th e e m bryo nic hrain .

A - Representat ive pho tomicrog raphsofcmbryonic bra inscclions48 hours post c lcctrop oration

show ing GFI" cells and r CNA+ ce lls in control and mt Mel- I c1cctrop oratcd brains. Arrows

point to doub le labeled cell s.

R ~ . Quantificat ion of the percent double labeled GFI" and I'CNA+ cells in contro l (Ctl) and mt

McI-1 elcctropo ratcd brains. orr: cells were cou nted in 3 represen tative sections per embryo

(n=5/trcatmcn t). Mean cell coun ts were analyzed by t-test with sta tistical signiii cance asscsse d at

· p<O.05. Graphs reprcsent mealls oiSEM.
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3.3 Mcl -I promote s N I'C d iffe re ntia tio n within the emh ryoni c brain

Since Mel-I ga in-of- function reduce s NpC proliferation, I assesse d if Mel-I regulates NpC

di fferentia tion. The stages of neuro genic progression of a NPCcan be distinguished by sequential

express ion of specific transcription fae:tors( Figure 1.2). The express ion of the Tbrl transcription

factors confi rms the neurogenic transition of NPCs and can be used to labe l new born neurons

(Hevner et aI., 2006). I e lectropora ted Ge l' (control) or mt McI-1 plasmid s into EI3 mouse

embryos in utero and assessed di fferentia tion with Tbrl immun ohistochemi stry 48 hours post

electroporation. lnc ontro l brains 18±3% of transfected celis were also Tbr! ' .l n contrast, 29±3%

oftransfec tedceliswere Tbr l ' in the mt Mcl- 1 treated brains (Figure 3.3). The 50% increase in

di fferentiated neurons within mt McI-1 electropora tcd brains suggests that Mcl-L gain-of-function



Fig ure 3 .3: :\l c l- 1 pro mot e s :"I'C differe ntia lio n in the e m bryo nic hrai n.

A -Representative photomicrograp hs of embryon ic brain sec tions 48 hours post electro pora tion

show ing GF P' cells and Tb r l" ce lls in contro l and mt Mel- I clcctrop orated brains. Arrows point

B - Quantification of the percent dnuble labeled GFP' and Tbr l ' cells in con trol (Ctl) and mt

Mel- l eleetro porated brai ns. GF P' ce lls were counted in 3 representative sections per embr yo

(n=5/treat ment) . Mean ce ll counts were analyzed by t-tcst withstatistica l significuncc usscsscd ut

· p<O.05. Graphs represe nt means ±SE M.
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3. 4 McI -1 gain-of-function gcn cra tes a g re a lc r co ho rt o f nc who rn ce lls

Since Mel-I gain-o f-function promote s neuronal differe ntiation of Nl'Cs, I examined if

transfected Nl'C s prematurely ex it their ccll cyele and become post-mi totic. Th is was perform ed

with a BrdU birthd ating exper iment. Elcctroporation was perfo rmed on EI3 mouse emb ryos and

pregnant dams were administered a single BrdU pulse 24 hours post e lectroporatio n. BrdU labels

dividing cells as they undergo DNA replication in S-phase . Proliferating ce lls dilute the UrdU

label with each success ive division, wherea s cells in their last mitot ic division at thc time of

inject ion retain the BrdU label and arc cons idered "born " at that time. I asses sed the embryos5

days post electroporatio n, when the only cells to reta in the BrdU signal arc the cells that have

exited the ce ll cyele at the time of injection. Immun ohistochemistry for Brd U revea led that in

contro l brain s6 ± I%oftransfectedcellswerealsoUrdU+. lncontra st, 14±2%oftransfec tedcells

were BrdU' in the mt Mel- I treated brains (Figure 3.4). Therefore . Mcl - l ga in-of-funct ion

generated a 2-fold greater cohort of newborn cells. These results demonstrated that Mel- I

promote s NPCs to prematurely exit the cell cyele.



Fil:ur e3..l :i\lcI-ll:ain-of-funetionl:cneratesal:reatereohortofnewborn eells .

i\ - Representative photom icrographs of embryon ic brain sections 5 days post c leetroporation

showing GF I" cells and BrdU· cel ls in contro l and mt Mel-I elcctropor atcd brains. Pregnant

dams rece ived a sing le BrdU pulse 24 hours post clcctropuration. Arrows point to doublc labclcd

Il - QLlantilieation of the percent double labeled GFI" and IlnIU· cells in contro l (Ct lj and 1111

McI- 1 c1ectropora ted brains. GFp'cells were cuunted in 3 representative sections per emb ryo

(n: 5/treatment) . Meancellcountswereanalyzed by t-testwithstatist ica l signilicanc e assessed at

*p<O.OI. Ciraphs represent means ±SEM.
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3 .5 :\lcI-ll:ain-of-funetio n alters the lam inar de st ina tion o f Nl'C s in the

dcvc tnpt ng c u rte x

SinccMeI- 1 ga in-of- function promot cs prcmaturccclicyelc cxitof NpCs. 1 exami ned the li nal

laminar loeation oftransfee tedeells in the deve loped cortex. Electro poration was perform ed on

1'13 emb ryos and the pups were collected 2 weeks post-nata lly. Cort icogenes is in mice is from

EI I-E I9 (Dehay and Kennedy. 2007) and there is a second wave of apoptosis among

differentiated neuro ns (de la Rosa and dc Pablo, 2000 , Blomgren ct al ., 200 7) following

corticogenes is. Therefore , the 2 week post-natal time poin t a llowed assess ment o f the location of

Lamin ar location of thcGFp'cclls wcrcidcntilicd using a layer specilicmarkc r, Cux l (Cut like

transcr iption factor) . that labels cortical layers II-IV (Leonc ct al., 2008) . Cclls born on 1'15 or

later make up the neuron s in the Cux l' uppercortical laycrs II-IV. Cells born at an earl ierti me

makcupthcdcepcrcorticallayer s V-VI (Cavine ss et a l., 2009 ),as the cortex dcvelop s vinsidc­

out" . Immunohistochemist ry for Cux I revealed that in contro l brains almost all the GFp ' cells

(98± 1%) were in the upper cort ical layers II-IV. In contrast. only 8 1±2% of transfeeted cell> were

in the upper cortica l layers II-IV in the J11t Mel-I treated brains. The rcmaining 18±2% of

transfceted cell s wcrc in the dee per layers V-VI, confin lling thcircarlier birthdate (Figure 3.5).

This is co nsistent w ith my previous data that Mcl-I ga in-o f-function promote s premature ce ll

cyclc cxit o f Nl'Cs in thce mbryoniebrain.



Fig u re 3 .5: M cI -1 ga i n-of- f unc tio n a lters th e lamin a r d es tinat ion of :'i 1'Cs .

A --Re presentat lve photo microgra phsofbrainsect ions from 2 week-o ld postnatal pups showing

GFP'cd ls and Cux l ' ce lls in cortica l layers II-IV in control (01 ) and mt Mcl-I trcated brains.

Elcctroporation wasperfonne d on E l3c mbryo s.

B - Quantification of the percent of GlP cells in layers !I-IV and layers V-VI, GFI" cells were

counted in 3 representative see tions per pup (n=5/treatment). Meau eell connts \'Iere analyzed by

t-lestwithstat istical significanc eassesseda t* p<O.OI.G raphs represent mea ns iSEM.
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3 .6 1\1c1- 1 gai n-of- f unct io n reg ula tes N I'C pr o lif crarl o n Jn v/rr«

The ;11 \ ';1'0 data revea led that Mel-I promote s prema ture cell cyc le exi t of NI'Cs that form the

dee per cortic al layers. con finn ing an ea rlierbirthdate . So, I invest igate d if thc cc ll cyc lc cx it is

cell autonomo us for NI'Cs when replicated ill vitro. I cu ltured E I3 NPCs and transfccted them

with ei ther conlrol or mt Mel-I plasmid. To maintain transfeeted NI'Cs unde r prol iferat ing

co nditions. I euhured them in a high co ncentra tion of FGF -2, a potent growt h factor that

prom otes NI'Cprol iferat ion (Tropepe et al. . 1999,S osunov and Ch elyshev lu . 2002).

Ihc cultures received a Brd U pul se 2 hour s be fore fixat ion at 24 and 48 hours follow ing

transfcction of NI'Cs . Brd U labels the ce lls in S-phase. Immunocytochemistry for Brd U was

ca rried out and the BrdU ' tran sfectc d ce lls were quantified . In the contro l cuhures 3 1±6'Yoof

GFP ' cells were a lso Brd U' at 24 hour s post transfcctio n. Com parativ ely, only 12±1 % ofGFI"

cells were ll ,d U' in the mt Mel- I treated cultures 24 hours post tra nsfcction. 48 hour s post

transfcct ion, 3 1±1% of transfectcd ce lls were also IlrdU ' m con tro l cultures. whereas only

14±2% of trans fectcd cells wer e Brd tf ' in mt Mcl-l treated brai ns (Fi gur e 3.6) . The 2-fo ld

reduct ion in prol iferation upon Me l- I over express ion at both 24 and 48 ho urs pos t tra ns fectio n

supported our ill vivo findings that Mel-I promotes cell cyc le exit of NPCs. Furthermore , this in

vi tro analysis a lso suggests that Mel -I promotes cel l cyelc ex it indc pendenr of cxtcrna l eucs .

Therefore, Mel-I pro motes cell cyc le cxi t of'Nl'Cs thro ugh a cell autonomo us manner.



Fi !:ur e 3 .6: McI-1 regulates N PC prolifer ation thro ug h a cell aulonomou s

Quantification of the percent of GFP ' ce lls that arc also BrdU+in contro l (Ctl) and mt Mel-I

transfeetcd NPCcu ltures. Cult ures recei ved a 2 hour BrdU pulse before fixation at 24 hoursor48

hours post transfection . Proliferat ion was assessed with BrdU immunoc ytochemi stry

(n=5/treatme nt) .Meancellcountswereanalyzedbyt-test"ith stati stica ls ignificanceassessedat

*p<O.OI. Graphs represent means ±SEM.
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3. 7 i\lcI-1 directl y int er acts with ce ll cy cle regu lators in N I'Cs

Evidence of Mel-I interaeting with eell eyele ;egulators eomes either from foreed expression of

Mel-I in ce ll lines or from studies inducin g cell eyele arrest. Mel-I slows cell cycle progression

by binding to PC A (Fujise et aI., 2000) and Cdk l (Jamil et aI.. 2005) in ce ll lines. In addition.

during mitotic arrest, the Cdkl-Cyelin 01 comp lex binds to Mel-I promot ing its phosphorylation

(llar ley et al., 20 10). To determine whethe r Mel-I binds to either PCNA or Cdk l -Cyel in ll l in

NPCs, l perforrned immunopreeipitation studies (Figure 3.7 )

I transfeeted E I3 NPCs with either contro l or mt Mel-I plasm id and collected the ce lls 24 hours

post transfcctio n, lmmunoprecipitation was carried out with antibodies for Mel-I , Cdk l and

Cye lin Ill . A pre- IP sample was co llected for western analysis 10 demon strate the overall level of

each protein in the Iysates. Allhough Mel-I showed direct binding to PCNA in NI'Cs, there was

no di fference in this interaction with Mel-I overex pression (Figure 3.7A). In contrast , Mel- I

sequestered more Cdk l-C yel in III complex when ovcrex prcsscd . This was demon strated by

immunopr ccip itation for Mel-I and subsequent western ana lysis for Cdk l or Cyel in ilion the

same blot (Figure 3.7 0 ). Thi s interaction was further confi rmed by doin g the rever-e :

immunopreeipitation for either Cdk l or Cye lin III followed by western ana lysis for Mel-I

(Figure 3.7C,D). Since Mel- I ga in-of -function seque sters more Cdk l and Cyclin BI in NPCs.

this may suggest a mechanism by which Mel-I regulates ce ll eyele progression of NPCs



3.1l C h a nges in :\lcI-1 e x p ress io n s ho w concomitant chang e s in p2 7 ~ ; PI

e x p ressio n

Previous ,» vitro studies ioeell lines suggested that forccd exp ression of Bcl-z and Bclv.slows

cell cycle progressioo by leogthcnin g GI phase. Thi s effect on cell cyc le was attributed to the

increased levelofp27 K'P'expression. aG I Cdk inhibitor (Vairo et a l., 2000. Greider et a l..2 002).

1'27K,pl is akeyregu latorof NI'Ccell eycleexit.Overexpress ionofp27Kip, promot es premature

NI'C cell cycle exit and alters their laminar destination (Goto et a1..2004). In contr ast . knocko ut

of p27Kip, causes increased NPC proli feration resulting in bigger brains (Tarui ct a l., 2005) . So I

quest ioned whether McI- 1 af fected NI'Ccell cyc le by mod ulating the express ion " fp 27K,pl.

To assess this. I carried out both gain-of-function and loss-o f-function approac hes (Figure 3.8)

WildtYl'e NI'Cs were transfeeted wilh eilher control ormtMcl-1 plasmid and co llected 24 hours

posttransfection . Western ana lysis was carrie d out on protein Iysates from transfectedNI'Cs and

eleva ted levels of p27 KiP' prot ein was observed upon Mcl- I ovcrcx prcs sion. For the loss-o f-

function mode l. NI'Cs were cultured from Mcl- I conditional KO embryos and littermate controls.

\Vcstcm analysis of these NPCs shows a concomitant decrease in p27Kip i expression in the

abseneeof McI- l . Taken together, this demon strates that changes in McI- 1 protein may affect the

express iono rs tability of p27 KiP' prolein.



Fig ure 3 .8 : C ha ng es in ;\l cI - 1 ex pressio n s ho w co nc o mita nt c hanu es in p2 7
Ki

l' 1

prot e in in N IJes.

Western Blot analysis of p27" PI and Mcl-l protein expression in NI'Cs from 1'13 Mel-I

conditional KG embryos (-f-) . littcrmatc enntrols ( t f+). and in NPCs transfected with cithci

control (Ctl) or mt Mel -I plasmidsand eolleeted 24h oursposttransfeetion.A etini sll sed asth e

loading control. Blo ts arc rcprcscntative o f 3 scparatc cxpcrimcnts.
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3.9 p 2 7 ' I'" a ffects N rC prol if er ation a nd differ enti ati on si m i larto j\JcI- 1 i ll

Since p27" P' is a key prom oter of NI'C cell cycle exit and shows concomitant changes in protein

with McI-1 expre ssion . I asked if p27" pl acts downstream of McI-1 to promote cell cycle exit o f

NI'Cs . To assess this, I first investigated the effects of p27';pl gain-o f-function on E I3 NPCs ill

1'i1'O. I elcctropor ated GFP (control) or p27' ,pl plasmid s into EI3 mou se emb ryos in utero, I

collected the brains 48 hours post elcctroporat ion and assessed the location of the GFI' +

In contro l brains , the dis tribution of GFI" ce lls was mostly in the proli ferat ive zones , YZ

(33±2%) and SYZ (44±2%), with less than a fourth of the Gl,'I'+ cells in the post-mitotic CI'

(23±2%)(Figure3 .9A). lncontrast , therewasashif\ in thc location of the GFP+cells towards the

CI' in the p27K'PI transfectcd bra ins. Less than half of the GFP' ce lls in p27K1p, treated bra ins

were in the proliferative zones , VZ ( 18± 1%) and SYZ t30± 1%), and most ofGFI" ce lls were in

the CP (52±2%) (Figure 3.9A) . This distinct shift in the location of GFI'+ cells in the p27' ,pl

treated brains suggested thatp27K,PI promote s NPCs to exit the cell cycle and migrate to Ihe CP,

similar 10 McI- 1 gain-o f-function (Pigurc L l ). So, I next asked whether there is a differ ence in

NI'C differenti ation within the pn " p' treated brains when compared to contro l. Tbrl

immunohi stochemi stry was performed 48 hours post clectroporation on control and p27"'P'

transfected brain sections to labcl the differentiated neurons . In control brains / 1",2% of

transfccled cell s were also Tbrl ". In cont rast, 26±2% of transfected cells were also Tbr l+ in

p27",Plt reatedbrains(Figure 3.9Il ). The 2-fold increase in different iated neurons within p27K;PI

c1ectrop oraledbrains suggeslsthat p27"'P' promotes NI'C neurogenesi s simi lar to McI-1 ga in-of-

function (Figure 3.3).



F;g u r03 .9: p 2 7 Kip
, a f fec ts ;'I/1'C d ifforo n t ia l; o n si m i la r t o .\101- ( in vivo,

1\ Q uantifi cat ion of the pe rcen t G Fp ' ce lls located in VZ, SVZ and CP wi thin contro l (01) and

p27",pl tre ated bra ins. G FI" ce lls we re count ed in 3 rep resent ative sections per embry o

(n=4/treat me nt) . Mean cell cou nts we re analyzed by t-te st w ith stat istical significa nce assessed at

*1'<0.05 G raph s repr esent mean ±SEM .

B -Quanti Iicati on ofth epere entdoub le lab eled GFI" andTbr l+ ee lis in cont ro l (C tlj and p27 " 'PI

c1cctroporatcd brains. GFP+ cells were counted in 3 representative sections per embryo

(n=4 Itrea tment) . Mcan cell eou nts were analyzed by t-test with stati st ica l sign ifica nce asscsscd at

*1'<0.05. Gra ph s represent meuns Lx lj M.
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3 . 10 p2 7 " P' a n d l\Ic\-1 r e gul at e N PC prolifer ati on at th e s a m e ra te in vitro

The ill \';1'0 data revea led that p27" PI promotes d ifferentiation of NI'Cs similar to Mel-I (Figure

3. 1,3 .3.3.9). So. 1 next invest igated whether p27' iP' affect NI'C prolife rat ion similar to Mel- I,

when cultured under proli ferating cond itions ill vitro (Figure 3.6). I cultured EI3 NI'Cs and

transfectc d them with control, mt Mcl-I or p27"P I plasmids. To maintain transfected NI'Cs in a

proliferat ive state. I cultured cells in high concentration ofFGF-2. a potent gro wth factor that

promotes PC prolif eration (So sunov and Chelyshev IU, 2002,.

The cullur es were fixed at 24,48 and 72 hours post-elcc troporation and immunocy tochemistry

for I'CNA was performed to label the pro lifera ting cells The PCNA+ transfc ctcd cells were

quant ified to assess pro lifera tion . 24 hours post transfcction, 86± 1% ofG!'P' cells were also

I'CNA' in the contro l cultures, 72~. I % of GFP' cells were I'CNA' in the mt Mcl- I treated

cultures and 7 1i l% GFP+ cells were PCNA' in the p27' ;· ' treated cultures. 48 hours post

transfect ion, 80± 1% ofGFP' cells were also I'CNA+ in control culture s, 70± 1% of GFP ' cells

were PCNA+ in mt Mel-I treated cultures and 68±1% ofGFP !- cell s were PCNA' in the p27" · '

treated cultures . The greatest di fference was observed at 72 hours post transfectionw hen,5 7±9%

of transfeeted ce lls were also PC A' III cont rol cultures. whereas only 36±2% of transfected cells

were PCNA' in mt Mel-I treated cultur es and 35± 1% of transfe cted cells were PC A+ in the

p27" . ' treated culture s(Figure 3.6).The significant rcdoetioninproliferation upon either Mel- I

or p2i~ ir l ovcrexpression at 24. 48 and 72 hours post transfcc tion supports our in vi tro findings

that Mel-I and p27" · ' reduc e NPC proliferat ion at similar rates. Thi s sugge sts that both Mel- I

and p27" · ' may be part o f the same mechanism that promotes NPC cell cycle exit,



F i ~IJre 3 .10: p2 7 K
;P\ and McI- 1 reduce s N PC proliferatio n at similar rat es ill vitro.

Quantification ofthe percent orGFI" ce lls that are also PCNA+in contro l (ClI). mt Mel-I and

P27Ki p l transfccted NPC cu ltures. Cultures were fixed at 24 . 48 or 72 hours post truns fcction

Proliferation was assessed with PCNA immunocytochemistry (n=3/treatment) . Mean cell counts

were analyzed by l -way ANOYA followed by Tukey' s post hoc ana lysis with statistical

significance assessed at *1'<0.0 1. Graph s repre sent means ±SEM
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3.11 McI -1 regulates N I'C proliferati on th rou gh p2 7 "'1., uc tl vl ty

I next asked whether p27 " ·' is required for Mel- I to promot e NI'C cell cyele ex it. So I assessed

the effect of Mel-Ion NPC proliferation in the absence of p27"· ' . NPCs were cultured from

p27" P'nullembryos(-/-)andwildtype littcrmatc contro ls t-e/s j at EI3 .transfeetedwilhcolllrol

(Ct l) or mt Mel-I plasm ids and plated at elonal densi ty, NPCs were maintained in pro liferatin g

media with high concentration ofFGF-2. The cultures received a BrdU pulse 2 hours before

fixation at 24.48 and 72 hours followin g transfection ofNPCs. BrdU labels the cells in S-phase .

Immu nocytochemi stry for BrdU was carri ed out and the BrdU'transfec ted ce lls were quantified.

Ce lls double labeled for both GF P and IlrdU were expressed as a percent age of tota l GFP' cells

to asses s the proliferating status .

Mel- I gain-of-function reduced proliferation of wildtype NPCs (wt : mt Mel-I ) by 2-1(\ld when

compared to control trnnsfected NPCs ( wt : Ct I)( Figure 3. 11), both at 24 hours and 48 hours

post transfection . This supports my previous data, which demonstrated that Mel-I promotes NPC

cell cycle exit in a cell autonomous manner (Figure 3.6). ln colllrast. overexpression of mt McI- 1

in the p27K,pl - null NPCs did not reduce pro liferation at any time po ints studied (Figure 3.111

Regardless of whether p27K;P' _null 'PCs were transfected with control or lilt McI- 1 plasmid s,

they remained high ly proliferatin g even after 72 hours post transfecti on (*p<O.OOI for all lime

pointsj .Thcse results indicate thai McI-1 docs nor affect 'PC proliferation in absence uf p27K'P:.

suggcsting that MeI-1 promolesNPCcell cycleexitthrough p27K'P'act;vity.



' ··; I:ure 3 .11 : "roliferat;on is nut uf f'ec tc d by McI-1 i n p2 7 ~ ; '" null N PCs .

1\ Repr esentati ve photomicro graph s of' w ildtypc (w t) or p27 K1
,, ' ·I. cu ltures tran sfc cted with

eithe r Ct l or mt McI-1 plasmid s . Panels show GFP + ce lls , Brd U+ cells , l locchst nucl ear sta ining

and me rged images

B - Qu an tili eati on or the per cent or GFP ' cells that arc a lso Brd U +in contro l (01) and mt Me l-I

tran srcctcd NPe cultures. N PCs were generated from p27Kip1 null emb ryos (p27K'PI
-.. ) and

wi ldtype litte nnate co ntro ls (wt ) and prol ifera tion was ass ess ed at 24 , 48 and 72 hou rs post

tra ns fcc tion (n =3 /ge no lype ), Mean ce ll cou nts were ana lyzed by 2-w ay I\ NOV 1\ fo llowed by

Tu kcy ' s post hoc ana lysi s wi th sta tistical significa nce assesscd at *1'<0.0 1 or"p<O.OOI . Gra phs

rcprcscnt mcans e.S lilvl.
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Chapter 4

Discussion

4.1 :\tcl- t promot es ce ll cycl e ex it o fe mhryo nic N rCs

Mel -I is a critica l surv ival factor am on g stern cell popu lations. It is required for the surv ival of

hem atopoieti c stem ce lls and the deve lopmen t and surviva l of' B and Tlympho eytes (Opfe rman el

al., 200 5). Mel -I has also been identified as a surv ival factor for bep atic and epiderma l

pro liferatin g precur sor s (Si tail o et a I.. 2009, Viek etal.,2 009). Similarly, cond itiona l kno ckou t of

Mel- I in NI'Cs causes wide spread apopto sis among NI' Cs. migratin g ncuro blasts and immature

neuron s (Ar bour ct al., 2008) . T here fore, not on ly is Mel- I critical for the surviv a l of different

preeursorpopulat ions,b ut a lsoerocialfor sur viva l during lhetime of ce ll differenti ation

Mel-I was first disco vered as a gene that is uprc gulated durin g induced differenti at ionofhuman

myelo blastic leukemia eell s (Kozopas el al., 1993). Genn line knoekout o f Mcl- 1 results in per i-

implant ation letha lity in mice at E3.5 duc to defeels in troph cctod erm fonna tionsugg cs ting that

Mel-I may have othcr ro les than cel l surv iva l (Rinke nbcrgcr ct a l., 2000 ).lIowever, the on ly

evidence of Mcl-I affect ing ce ll cycle regulation comes from a limited number of in vitro studies

invo lving forced express ion of McI-1 in ce ll lines (Fuj ise et al., 20ClO,Jamil et al ., 2005) . A:

prese nt , there is no physiol ogical in vivo evidence of McI- 1 regul ating ce ll cycle progression .

I invest igated the roleof McI- J on NI'C ce ll cycle since it is the onl y BcI-2 fami ly mem ber that is

requi red for the surv iva l of emb ryoni c NI'Cs and app ears to be a critica l surviva l factor during

the lime o fN PC d ifferentiation (Ar bour et al., 2008) . From my studies. I have dem onstrated a



novel role of Mel-I using an in vivo model. I have shown that thro ugh a ce ll autonomou s

mechanism, Mel- I promote s cell cycle exit and differentiation of NPCs. Cell s that prematurel y

exit the cell eyele upon Mcl-l overexprcss ion form neuron s in the deepe r cort ical layers.

eonlirming their earlier birthdate. ll owever. based on these studies. no functional differencescan

be drawn between cell cyele exit and differenti ation of NPCs. I have assessed neuron al

differenti ation using Tbr l expre ssion . a marker fornewbom neuron s. and separately assessed cell

eyele exit using BrdU brrthdating. Taken together , I have demon strated that Mcl- l affects both

aspect s of I'C cell eyele -it promotes eeli cyele exit and d ifferentiation of PCs.

I have chara cteri zed Mcl-l as a mediator of NI'C cell cyele exit based on gain-of-function

exper iments . The main challenge in the Mcl-Ll oss-o f-funct ion mode l comes from the high level

of apoptos is in the absenc e of Mel- I. Nonet heless, complement ing data from loss-o f-function

experiments will further support a role lor Mel-I as a promoter of NPC ce ll cycle exit. Th is can

be performed using apoptotie inhibi tor> in pro liferation or di fferentiation assays on Mel-I CKO

NPCs. Since activa tion of executioner caspases like Caspasc-J IS required for completion of

apoptos is, caspase-J inhibitor s like z-Asp-Glu-Val-Asp-fl uoromethyl ketone (z-D EVD-t ink) can

be used (Liu ct al., 1998. Tayloret al., 2008).

".2 ;\ lcI- 1 d i r ectl y i nteracts w ith ce ll cyc te re gul a to rs in NrCs

Previous evidence of Mel-I interacting with cell cycle regulators come , either from forced

cxpressiono f MeI- 1 in cel l lines or from studies inducin g cell cycle arrest. Since Mel-I has been

shown to interac t with PCNA ami Cdk l -Cyclin HI under such condition s (Fuji se et a l., 2000.

Jami l et al., 2005 , IIarle y et al., 20 10), 1 investigated whether MeI-l binds to eithe r PC A or



Cdk l -Cycl in III in NPCs. My results show that Mel-I direct ly binds to both PCNA and Cdk 1-

Cyelin HI complex in PCs. Irnmunoprccipitation results however. also revealed that Mel-t

gain-of- function sequestered more Cdk l-Cyclin HI complex. whereas the re was no difference

with PC A. It remains 10 be determin ed, wheth er this difference is responsi hle for the PC cell

cyeleexit.

Associat ion between Cdk l-Cyclin HI and Mel-I is of' particul ar inter est because: ( I) expression

of Mel- I protein level peaks at mitosis (lI ariey et al. , 201O); (2) transition to mitosis is regulated

by Cdk l -Cyclin III activity (Nurse. 1994 ); and (3) as I have shown. overexpression of Mel-t

sequesters more of the cell ' s Cdk l -Cycl in HI complexes. Cdk l -Cycl in HI promotes cell cycle

progression , whereas McI- 1 promot es cell cycle exit. Therefore. increased sequester ingofCdk l -

Cye lin HI by McI- 1 may represent a way by which Mel-I alters Cdk l -Cyclin II I activity durin g

mitosis promoting cell cycle ex it.

4 ,3 Cd k inhihitorp2 7 K1
'" is requi red fo r McI-1 mediated cell cycl e ex it

The Cdk inhibi tor p27K
;P' has been shown to promote ce ll cycle arrest of PCs dur ing

em bryogenesis (Fe ro ct al., 1996, Kiyokawa et aI., 1996. Nakayama et al., 1996, Carruthers et al.,

2003) .Overexpressionof p27Kip, incortical progenitors promotes prematurecell cycleexitand a

reduction of upper layer neurons. which arc born latcr rTarui etal.. 2005) . ln eontra st, p27" p1_

null mice demon strate conti nued proliferation of NPCs and a decre ase in neuron al produc tion

during mid-corticogcnesis. This results in an increase in production oflatc-born neurons and

subsequent enlargemenl of upper eortica l layers (Goto eta l. 2004).



I have demon strated that changes in Me l-I expre ssion result s in concomi tan t changes inp27' ,pl

protein level. In addition, ovcrcxprcssion ofp2 7'; P' mirror s the eff ect s of Mel-I ove rexpress ion

in NPCs both ill vivo and in vitro . Furthermo re, McI- 1 ga in-of-function fai ls to promote ce ll

cycle exit in p27KiP'-null NPCs. Taken together , I have demo nstrated that Mel -I promotes NPC

ce ll cycle exit throu gh p27, ;pl activity.

l lowchanges in McI-1 expre ssion C3 USC concomitant chan ges in p27KiPI protein remains to be

detennined.Sincephospho rylationofp27Kip, protein regulates its tumo vcr and funct iona lrolc in

promotin gcelicycl e exit(Paganoetal" 1995, Loda et a I., 1997), it is possib le that Mcl-I gain-

of-function or loss-of-function changes the pho sphory lation stat usofp 27' ;P' prot ein . Thi s will be

an area for future investigation

I have demon strat ed a nove l function of anti-a po ptotic McI- 1 in NPCs. Apart from its critica l rolc

in survival, McI-1 prom otes ce ll cycle exit ofNPCs in a cell autonomous man ncr and promotes

their di fferenti at ion. The ce ll cycl e cxit is medi ated throu gh Cdk inhibitor p27
Kip'

, howe ver any

direct regu lation o fp 27';pl prot ein by McI-1 is still unkno wn . McI-1 also diffcrcnually bind s to

Cdk l -Cycl in B I when mo re abundant, but whether thi s ass ociation promot es NPC cell cycle exit



4.4 .1 lI ow d o c ha nges i n ~l cI - 1 e x p re sslu n a ffect p2 7 " '" p rot ein ?

Funetiona l pro pe rt ies of p27';" protei n arc regu lated by pho sphorylation . In parti cul ar ,

phosph o ryiation o fSlOandTl 87 residue is imp licated m promoting ne uron aldifferentia tion of

neur al stem cells and mi gration of d ifferen tiatm g neurobl ast s (Zhen g et al., 20 I0) . Sin ce Mel-I

ga in-o f-func tion sequesters more Cdk l-Cyclin III complex and also inc rea ses p2 7" ' \ prot ein

expre ssion . it is poss ib le that the two pro cesses arc rel ated and together promote cell cy cle exit

and differentiation of NPCs. Cdk/Cyclin co mplexes pho sphory late p27" p\ on '1'187 . One

possibil ity is tha t the assoc iat ion w ith Me l- I aff ects the k inase activit y ofCdk l- Cyel in II I to

promotep27" "phosph ory lation o n '1'187, and in do ing so prom otes its neurogcnic function.

To address whet he r Mel-I af fects p27" p\ phosph or ylat ion . both ga in-of-func tion and loss-o f-

function stra teg ies can be implem ente d . Spec ifica lly 1<" Mel -I ga in-of-f unct ion, NPCs can bc

tran sfcctcd with either control or lilt Mel - t p lasmids followed by quantification 01''1'1 87

pho spho rylated p27 ' ;" in the two culture s. However. a low tran sfcct ion effici enc y of pri mar y

cultures make s th is challengin g. Tech nique s like wes tern analys is cannot separate the tran srccted

NPCs from the heterogeneous culture. and thu s may fai l to detect ch an ge s in p27 ' ;"

pho sph o rylation at spec ific sites with Mcl -l overcxpression . Perform ing a (low cytometnc

analysis w ill over come th is prob lem . Thi s way changes in the pho sphorylation sta tu; of p27" pl

will onl y be recorded from G FP ' tran sfectcd cells using antibod ies spec ific to p27 " r ' _

pho spho rylated residu es. For the MeI -I loss-o f-function model. it will be lcss cha llen gm g since

Mel-I IS condit iona lly knocked out from all NPCs (A rbour ct a l., 200 8) . If Mel- t doc s promote

phosphorylation on T18 7ofp27 ' ;"' , i expect an incre ase inTI 87 phosphorylated p27" ' \ prote in



in mtMeI-1 transfected PCs and a lterna tely, a reduction in phosph orylated 1'27" 01 protei n in

Mel-I C KO NPCs . Therefore, it is possible to analyze changes in the phosphorylation status o f

1'27" 01 with chan ges in Mel-I expression. which will give a more com plete picture about the

mechani sm of NPC ce ll cyele ex it.

-tA .2 Is th e assoeia t io o b e twe e n McI - 1 a nd C d k l-Cycli n IH requ ir ed fo r :'III'C

cctt cy cle e xit ?

To determin e wheth er seque ster ing ofCdk l- Cyel in Bl by Mel -I promotes NPC cell cyc le exit . it

is impo rtant to identify the putati ve bindi ng site( s) on Mel-I that are required for interact ing with

Cdk l -Cyclin BI. Once the site(s ) arc identified , site-s pecific Mel-l mut ant construc ts can bc

generated that abrogate its intcracti on with Cdk l-Cyl in Ill. Using site-specific mut ant con structs.

thc dual rolcs in ce ll cycle pro gression and cell surv iva l have been dem onstrated to be

functionally separate in some BeI-2 family members (Huang et a I., 199 7). This model can be

replicated and proli fera tion assays can be perform ed on NPCs tran sfected with Mel -I mu tant

constructs . Th is will de monstra te whether the assoc iation between Mel -I and Cdk I-Cyel in III is

required for ce ll cyc le ex it. To further determ ine whether 1'27 ' ;01 prote in phos phorylation

depends on this inte raction . NPCs can be transfected with Mel-I mu tant const ructs that arc

unab le to inte ract w ith Cd k l-Cyelin III and then the phosphorylation status of 1'27" 0
1

ca n be

detected via flo w cytometry. If the interaction between Mel-I and Cdk l -Cy el in B I is required for

promoting 1'27" 01 phosph orylati on. atte nuat ing this interact ion w ill show no a lterations in the

phosphorytation status of pz v'"? ' .

Increased association between Mel- I and Cdk l- Cycli n 131 may also represen t a 1'27" ' 1



indep endent path way for promoting cell cyc le exit of Nl'C s. Cdk l -Cyc lin BI phospho rylates

tran scription factor N-myc on S54 and promote s its degradation by GSK-3~ m Nl'Cs (Sjos trom ct

al ., 2005) . Nvmyc is a down stream eff ector of Sonic Hedgehog (Shh) signa ling Ihat promot es

proli feration of NPCs (Kenney et a I., 2003) . Du ring NPC mitosis, Cdk l -Cyci in II I

phosph orylates Nvmyc and its degrada tion a llow s ce ll eyele ex it and d ifferentiation (Sjos tromet

aI., 2005) . If increase d association with Me l- I promotes the kinase activity of Cdk l -Cycli n BI , it

may resu lt in enh anced N·m yc phospho rylation and degrad ation . This may also represent a

mech ani sm by whi ch Mel-I promotes NrC cyele exit and different iation - by affect ing Shh

signa ling . To test thi s, one need s to exa mine whethe r Mel -I ga in-of- function af fec ts Nsmyc

pho sphorylation. Furthermore, to lest whether the assoc iation betwe en Mc l- l and Cdk l -Cycl in

B I promotes Nvmyc phosphory lation, NPCs can be transfected wit h Mel-I mutant cons tructs that

are unab letoassociatewithCdk l·Cy el inB I and assayed for changes in Nsrnyc phosphorylation

4.4 .3 Do cs Mel· ] affect Rh / E2F pat hway 10 p ro mo te ce ll cyc le e x it of N I'C s '?

Rb/E2F aeliyi typlays apiyotal ro leinregul atin g ccllcyeleprogre ssionbycontrolli ng

transc riptionof targetgenes (Polagera nd G insberg,2 008) . During the G I pha se o ft he cell cyc le.

activity of G l Cdks-cyclins prom otes hypcrpho sphory latio n ofRb and prevent s its bind ing with

E2Fs. Once hypcrphos phory latcd , Rb releases the E2Ftranscription factors (E2 F· l , 2,3),which

aret hcactivatorsofgcnctranscriptioncsscntialforthcG I to S phasc tran sition and comm itment

to mito sis (Dyson . 1998, Ne vins. !998). Since the activity of Gt Cdk s-cyclin s is inhib ited by

p27~,p l . increa sed p27 ~iP l should result in hypoph osphoryl ated Rb that is bound to E2 F

transcri ption factors, blo ckin g cell cycle ent ry . Mel- I ovcrcxpre ssion may therefore result in



grea ter assoc iation between RbandE2Fs.through an inercascinp27 Kip' . ln co ntras t. MeI- l lo,,-

of-func tion result s in a concomitant reduction in p27" P' and is likel y to re flect Rb

hyperp hosphorylati on . releasing E2F transc ript ion factors to activa te gcn c tran scripti on required

for ce ll cyc le entry . Thi s can be tested via an eleetrom obili ty shift assay . which de tects bot hthe

level s of free E2F protein s and E2f prot eins bound to Rb.1t is thus possibl e to deteet how the

Rb/E2Finteract ion is altered illbothM eI-l ga in-of-fun etioll andloss-o f-fun eti on strategie s.

f hemain lindin gs and the eonti nuedhypoth e, is ofhowMcJ-1 promot cs ccll cyc lc cx it ol

arc illustrat ed in Figure 4.1.



Fi/: u re -1.1 : S u m ma ry & th e con tin ued hyputh cs i s of how ~1c1 -1 re/:u la te ce ll

cy c le e x it o f N I)Cs .

A - In the Mel-I gain-of-function mode l, there is greater assoc iation between Mel-I and Cdk l-

Cyel in Il l . Although it remains to be determ ined whether this assoc iation regulates p27
K

;· 'le\e1.

Mel. I ovcrexprcss ion also causes an increase in p27K;pl. Th is inhibits the G I Cdks-Cyclins

responsible for phosphory latingRb. Ilcn ce Rb remains bound to E2Ftranseription l\letor s,

block ing the transcription of genes necessary tor progressing into G I. The G llS block prevents

eell cyele fl·-entry leading to cel! cyd e exit.

B - In the Mel- I loss-of-function mode l there is a concomitan t reducti on in p27
K
,p,. The

reduction in p27 K,pl allows the G I Cdks-Cyclins to hyperphos phory late pRb. This frees 1:21'

transcri ption facto rs to prom ote gene transcription required for ee llcyeleentry.

The solid lines repres ent estab lished links in the mechanism and the dotted lines represent a

hypothesi zedlpotent ial pathway .
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-IAA Do e s :\101-1 pr eferen tiall y promot e n euronal differenti ati on '?

Th e nove lty of my proj ect ar ises fro m the d isco very that Mel- I. a crit ica l surv iva l factor of Nl'Cs,

a lso prom otes ce ll eyele exi t and differ enti ati on of Nl'Cs, Alth ou gh I have dem on strat ed that

MeI- 1 gain-o f- funct ion promotes ne urona l differe nt iation of Nl' Cs in vivo, it rema ins to he

determined if Mcl -I preferentiall y prom otes neuron al diff erenti at ion ovcrglial diff erenti ati oo .

Th is can bcach icvc d in vitro hy MeI-1 ga in-of-f unc tion in Nl'Cs and indu cing diffe rent iation .

Since Nf'Cs arc capa ble of d iffe rentiating into bot h ne urons and g lia, from the d iffercntia ting

cultures.jhe percent-tran sfected eell s that express g lia l marke rscan be co mpared to the percent-

transfected ce lls ex press ing ne urona l marke rs. To further de mons tra te that endogenous MeI -1 has

a crucia l ro le in neuro gene s is. ad iffer enti ationassay can al sobeused to assess the e ffects of

Mcl-I loss-of-fun ction on neurona l differ enti ati on usin g Mcl - I CKO Nl'Cs . lI owcver, Nl'Cs

under go apoptos is in abse nce of Mcl- I. Thi s pre vent s assess ing diffe rentiation of NI'Cs s ince

many of the m will die d uring the experim ent al pro cedure . Ther efore . the di fferent iati on assay

sho uld be per forme d in the presence of an apoptotic blocker. like Caspase-3inhib itorz-DEV Dto

prevent Nrc apo ptosis (Liu et al., 1998),

If MeI- 1 pre feren tiall y prom otes ne urona l diff erentiat ion ov er g lia l d iffe rentia tion. the

impl ica tio ns can be ex trao rd inary in the field of regen erati ve mcd ici ne to trea t neu rodegcncr ati ve

cond itions . A lthoug h g lia l dysfuncti on is also observ ed in man y neurodegenerative cond itio ns,

the main challenge in the aging brain come s from the severe reduction in the number of neura l

progeni tor s as we ll as thei r differentiatin g potenti al (AhJcnius et aJ., 2009) .Regardl essofwheth er

it is thro ugh manipul ation of endoge nous neura l stem ce lls or th rou gh stem cell transplants ,

add it iona l kcychalle nges in ne ura l regenerati on co me from poo r surv iva l ratc of Nl'Cs an d their

fa ilureto different iateto ne urons(ArvidssonetaJ.,2002. l'arent.2003 . lI aas et aJ.. 200 5. IIsu et



al., 2007) . If MeI- l prefer entially promotes neuronal diff erentiation , it will rellee t a potential

therape utic strategy that will successf ully promote PC survival while facilitating neurona l

Survival and di fferentiation of PCs arc key regu latory aspec ts of mammalian nervous system

development. Although there have been sugges tions that these processes arc interre lated, thc

molecular mechanism behind this ela im is still undefined. I have shown that Mcl-l , which is

essential for the surviva l of NPCs, also causes premature termin al mitosis in NPCs. Mel-I

promot es ce ll cyclc cxitanddi ffcrentiat ionofNPCs into neuron s of thedeepc rcortical laycrs and

this is mediated throu gh Cdk inhibitorp27K
;P' activity. Likc its pro- survi val role (Arbour ct al.,

2008 l, the effec t of Mel -I on NPC ce ll cyele is also mediated in a cell autono mous manner. This

provide s new insig hts into how surviv al and differentiat ion of NPCs may be related during brain

development.



Appendices

A p pe nd i x I - S te m Ce ll :\Ie dia (SC ;\I)

DMEMlFI 2 (Gi bco, 9 11330),

5.85 mglmL D-glucose (Sigma , G7528).

1.95 mML-glutami ne (Sigma, 25030-081),

48.7 units /m l. peni cill in-streptomycin (Invitrogen, 15140-122),

24.4 ug/ml, insu lin (Sigma, 1-5500),

97.4 ug/mt. upotransfcrrin (Sigma,T4 382),

0.0 194nM progesterone (Sigma, ( 8783),

9.3(l flglml. putresc ine (Sigma, P5780) ,

2.92n Ms cicnillm (S igma,S5290) .

12.1 ng/mLfungizone( Gibeo, 15290-0 18),

1.95 ug/ml, heparin (Sigma, H3149).

0.195 [,g 'ml. FGF-2 (Sigma, F029 1).



A ppe ndix 1\ - pCI G2 e x press io n ve c tu r map

..........Ori

pCIG2-temp

6191 bp

/ -CM""',"';"'"'.'''''
~ "ChB.act (2175.2456)

' Ch B·actlntron (2469-3422)



A ppe nd ix 111- pCI G 2 lilt :\ Ic l- I ve c to r map

~Ori



Appendix IV - pCIC2 p27 K ;p, vector map

~Ori

rabb~be""'l'ObinpoIyASignall 't
, .." (.... )~PCIG2_ temp AMP1801-16601

EGFP("152-4883}- 6 lQlb p

I RES(3:~~:0\ _ ., . J-CMVEnhanc:e« 1811.2174)

,"QI;:=~~::~ .......,/Ch S-aCI(217S-24561



A ppe ndix V - Lis t o f A ntiho dies

Prnlifcratin gccll

nuclear anti gen

(PC A)

Cycl in B I

~actin

T-boxbrain 1 (Tbrl)

Cut-like tran scription

factor (Cux l )

Bro modeox yur idine

~~--

VcctorLabs ­
VP-P980

----+-----
( 1:500) I (1:300)



A ppe nd ix V I - Ave rage number o f GF I" ee lls det e ct ed p er ex peri me nt fn r

ea c btrea t m e ntg ro np

No. o r GF I" N o . o fG FP+ No . o fG Fll +

Exper ime nt ce lls in CII ce lls in ml cell s in p2 7 " i1JI

tr eat ed ,' l ei - I tr eat ed t rea te d

--- -- -~~ __~I!~-~.:'~~o ____
l.ocation of Gt' Pt cclts a x hrs 109 117
post electroporation (Figure 3.1)

% GFP' & PCNA' cells 48 hrs 90 65
post ciectroporation (Figurc 3.2)

--
% GFP' & Tbrl 'cclls 48 hrs 130 170
~~)ration ( Figure3 .3)

% GFP' & BrdU, cells 5 daYs 200 170
posl eleclropomtion(F igure 3A)

--
i.oca non vn - ce us IL-" eeKS 98 =;-8% GFp' & BrdU' eells 24/48 45

~~:;~~;:t::~::\:ii;~~:~~~~~
% GFp' & Tbrl ' cells48hrs 366 308
POSIelcctroporntion t f igure 3.9) I
% orr: & pCNA' cells 24,48 - ,
and 72 hrsp ost transfcction 225 228

~~2~_o_ _ ----

~;SC~I(:~;;~~~~~~;(~ne:~ :~/~~,Cs I 151 154~gure" I !l ~O_ _~_~~_-I
% G"" & '''dU' re ll' ' ''48 . :~+ . ,

I hrSPoSl lra nSfection in p27Kirlol' i 157 156 I j
~(Flgllr~_I ) J __ __ _ __--.1 _
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