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Abstract

This thesis describes a theoretical

ems based on corner-sharing

ation of magnetic

tetrahedra in the pyrochlore lattice. Ex;Ti;Or shows magnetic ordering at low temperatures.
In order to understand the origin of this magnetic behavior, we have investigated the crystal
structure and have found the possible ground states using group theoretical approaches. We

investigate nearest neighbour exchange interactions on the pyrochlore lattice. The pyrochlore

structure consists of vertex-sharing tetrahedra; there are two different types (A and B) of

tetrahedra that differ by their orientation within the pyrochlore lattice. Each edge of each

tetrahedron corresponds to a term in the exchange interaction. Our model assumes that the

pyrochlore space group symmetry is broken such that exchange constants on the A tetra-

hedra are different than those on the B tetrahedra. The Hamiltonian des ng exchange

interactions on the A tetrahedra has an exact solution. We include the exchange interactions

conditions. Possible

on the B tetrahedra using perturbation theory with periodic bounda

ground states for selected values of exchange interaction are calculated
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Prelude

And then there’s the kind of thing which you don’t understand. Meaning “I don’t believe

s the kind of thing I won't accept.” This kind, T hope you'll come along with

me and you'll have to accept it because it’s the way nature works. If you want to know

the way nature works, we looked at it, carefully, that's the way it works. You don’t like it.
go somewhere else! To another universe! Where the rules are simpler, philosophically
more pleasing, more psychologically easy. I can’t help it! OK! If I'm going to tell you

honestly what the world looks like to the human heings who have struggled as hard as the

can to understand it, T can only tell you what it looks like. And I cannot make it any simpler,
T'm not going to do this, I'm not going to simplify it. and I'm not going to fake it. I'm not
going to tell you it’s something like a ball bearing inside a spring, it isn't. So I'm going to
tell you what it really is like, and if you don’t like it, that's too bad.

Richard P. Feynman

Lecture at the University of Auckland



Chapter 1

An Introduction to Frustrated Spin

Systems

1.1 Introduction

In the study of ordering phenomena, great efforts have been made to understand the basic

‘mechanism responsible for the ordering and the nature of the associated phase transition.

Understanding the underlying rules of a phase transition between different stat

of the main interests of theoretical physicists. A group of systems which have gat

lot of interest recently are “frustrated spin systems”, in which a spin in the system cannot
find an orientation that satisfies all the interactions with surrounding spins. The interactions

for an exact

between spins are very complicated and will generally need rigorous calculati

treatment of the problem. Hor reasonable approximat

can simplify the int

to some well known models such as the Ising or Heisenberg models which are relatively easic

to deal with. T

simplification is discussed more in Section (2.3).



1.2 Frustration in Spin Systems

When systems consisting of spins, which are interacting with each other, are subjected to
some constraints either from environment or the nature of their interactions, they might not
be able to satisfy all these conditions. Frustration is the term used to convey this state of the
system and as the meaning of the word frustration suggests, the system that is frustrated
has a lot to do, or does not know what to do. It must satisfy two or more interactions which
do not generally correspond to a simple definite classical state. Frustration in spin systems

can have two different origins: competing interactions and lattice structure.

J
-

10, ¥<o

ration. J > 0 is

Figure 1.1: Competing interactions in a line of spin resulting in f
the exchange interaction constant between neighbouring spins and .J' < 0 is the exchange

interaction constant between next nearest neighbouring spins

In systems with different kinds of interactions, whether they are different in origin or

magnitude, a spin may find it hard to satisfy all interactions with its neighbouring sites




(J < 0) between next nearest neighbours (nun), the ferromagnetic interaction between spins

2 and 3 cannot be satisfied if the anti-ferromagnetic interaction between spins 2 and 4 are

satisfied.

Figure 1.2: Lattice frustration in a triangular system. In each case, the red line shows the

unsatisfied interaction.

Also, the connectivity or structure of the lattice might be such that it does not allow all of

the interactions to be satisfied. Lattices such as triangular (see Figure 1.2), face-centred cubic

(fce), o hexagonal close-packed (hep) with anti-ferromagnetic nearest neighbour interactions

can result in frustration

This

ind of frustration which is due to the lattice structure is called “geometric frus-

tration”. Geometrically frustrated systems cannot minimize all of their bond interactions.

completely and find a proper orientation. As can be seen in Figure 1.1, a ferromagnetic
interaction (J > 0) between nearest neighbours (nn), and an anti-ferromagnetic interaction

However the ground state in which each plaquette has its energy minimized must also be a

ground state for whole system [11]. The first experimental evidence for geometrical frustra-

tion in a ferromagnetic system goes back to 1997 [12]




Figure 1.3: The fcc unit cell of EryTisOr. Top left shows all of the atoms, eight copies of
chemical formula EryTizO7. Top right and bottom left show the tetrahedral networks of
Ti and Er atoms.The bottom right shows the tetrahedral network of Er atoms only. The

connections are exchange paths [23]

1.3 Physical Properties of Er,Ti;O7

En,TiyOr was determined to be a cubic pyrochlore in 1965 [14] and has nearest neighbour
anti-ferromagnetic interactions between Er atoms which make it is geometrically frustrated.




It belongs to the space group Fd3m (#227,0]) with fec lattice translations (see Section
(4.2)). There are two copies of the chemical formula per primitive unit cell and eight copies
per face-centred cubic unit cell. Exbium and titanium both form tetrahedral networks. The

magnetic properties are due to the erbium atoms which form a tetrahedral network show

in the bottom right of the Figure 1.3. The Ert? ion has a 4f"" configuration in a *Iys (L

1) state according to Hund’s rules. The large value of L suggests a significant

amount of anisotropy in the system. The erbium s

s show a magnetic ordering transition

at ~ 1.2 K [13] which does not have an explanation yet. A possible explanation is discussed

ection (5.3.2).

1.4 Tetrahedral Network

In Er;Ti,07, both erbium and titanium oceupy the vertices of tetrahedral networks, however

we are only concerned with the erbium network. The edges of the tetrahedra are nearest-
neighbour exchange paths. The tetrahedra appear in two different orientations (as can be
seen in Figure 1.3) that we call A and B which alternate in the network. Every A tetrahedron
is connected to four B tetrahedra, and vice versa. The set of A tetrahedra are related to the
set of B tetrahedra by some of the symmetry elements of the space group Fd3m

Assingle tetrahedron is a set of six exchange paths. The primitive unit cell contains twelve
exchange paths that belong to one A tetrahedron and one B tetrahedron. The exchange
interaction on the entire lattice can be conveniently divided into two parts, the sum over all

A tetrahedra and the sum over all B tetrahedra. If one of these parts is neglected then the

problem of the exchange interaction on the lattice is greatly simplified to the problem of the

exchange interaction on a single tetrahedron, which has exact solutions. However, it implics
that the space group symmetry is lowered via a lattice distortion [22].

The isolation of single tetrahedra is suggested by neutron scattering experiments, and

s



exact calculation of eigenstates of a single tetrahedron may help us to find the state of the
network generally [22]. The reason why this can be true is still unresolved since because of
the connectivity of this network, eigenstates of a single tetrahedron should not necessarily
form cigenstates of the entire network. It was proposed by Curnoe [22] that a kind of

lattice distortion, which lowers the point group symmetry but leaves the crystal s

stem
unchanged. can be applied to relieve geometrical frustration and arrive to an ordered state.
This distortion does not remove the frustration symmetry but it will lead to isolation of

single tetrahedra.

1.5 Crystal Electric Field

There are four Er ions in the primitive unit cell. Their local site symmetry (due to the

electric field of the surrounding atoms in the c

ystal) is Dag, where the 3-fold axes point

along the different directions shown in Figure 1.4 [21]. The crystal electric field splits the
16-fold degeneracy of the J = 15/2 multiplet into singlets and doublets; the ground state is

the doublet[26].

(1.1)

1 1
) = F0.475] £ 1) — 0.418] & g)torfm + %> 02415 g) +0.463)F

where the quantization axis (= axis) is along the 3-fold axis for each site. These states tend
tolie in the plane perpendicular to the 3-fold axis, therefore it said that they have easy plane
anisotropy [13].

In this thesis, in order account for the magnetic ordering which was experimentally

observed in Er,Ti;O7, we begin with exact solutions of a single A type tetrahedron, and add

the effect of B type tetrahedra perturbatively. We consider two A type tetrahedra, perturbed
by two B type tetrahedra with periodic boundary conditions and calculate the ground state

of the system (see Chapter 5).




Figure 1.4: Local 3-fold (quantization or z axis) sites on a tetrahedron

tools and methods used in this

In following Chapter, the quantum mechanical concepts
thesis are introduced. Chapter 3 introduces electron spin and its properties, as well as spin

systems. An introduction to group theory and the space group Fd3m is the main subject of

Chapter 4. In Chapter 5, we discuss the ground state for a single tetrahedron and we use
perturbation theory in order to find the ground state of two tetrahedra. The final Chapter

contains the conclusion and possible further works on the subject



Chapter 2

Introductory Quantum Mechanics

2.1 Foundations of Quantum Mechanics

Quantum theory is the mathematical tool for describing how the physical world works

nything to do with the

smaller scales. It may be, and it seems likely, that it does not ha
real underlying mechanism of physical phenomena, but above all the philosophical debates.

atement in one of his lectures which describes

it agrees with experiments. Feynman made a s

the quantum behavior of the nature versus the philosophy behind it. He said: “A philosopher
once said: It is necessary for the very ezistence of the science that the same conditions always

ts...Well, They don't” [1]. For example, in the case of the double slit

produce the same res

experiment, nature herself does not know which way the electron is going, even though it
prepared in the same way. Furthermore, as nature does not know herself, there is no way to
resolve the problem more in order to find some hidden aspects inside an electron which can
predict its exact trajectory. Any further resolution in the double slit experiment in order to
track the electron down would destroy the interference pattern [1].

Quantum mechanics, like the other physical laws of nature, agrees with observation

However, it does not give us any mechanism of how nature actually works, just as some




other laws do not (such as gravity). Otherwise, nature should be a great mathemati

calculate her wave-function continuously in order to find her next move [1, 2].

Quantum mechanics can characterize the physical model by defining states, observables,

measurements and dynamics [3]. States are the complete deseriptions of the physical systems,

onsidered as elements of the Hilbert space which is a complex vector space with

They ar
a well defined norm and inner product. Observables are properties of physical systems that
can be measured in principle. In quantum mechanics observables are self-adjoint operators
which have real eigenvalues and orthogonal eigenstates. A measurement is the numerical
outcome of an operation of the observable on the state of the system. Dynamics of the
system, unlike classical dynamics, are governed by a lincar equation (Schrédinger equation)

23

2.1.1 States

In classical mechanics, the state of a particle at any given time £ is specified by its position

2(t) and momentum p(t) as a point in two dimensional phase space [4]. However in quantum
‘mechanics states are elements of the Hilbert space H. A system made of single components
can be described by the state [¢). If a system is made of two components (bipartite),

known to live in

with one component living in Hy and the other in H, then the system is
H = H,®H,. This state is known as a tensor product state or a separable state, which
admits the classical interpretation such that the first system is in state [¢1) and the second

one i in [i/3). Such states have the general form of

1) = 3 Cijltin) @ w2} 21)
o
where 1 and 2 denote the system label, and i, j are different states that these systems can

have. The dimension of separable states is obviously dim H,+ dim H,. However the total

space has a different dimension as the number of coefficient in [ ;) implies and s the product

10




dim H, x dim H,. The missing states are those which are not separable, that is

they cannot

be factored as product of two

separate states. They are known as entangled stat

s [3). The
fact that the total dimension of the product states is much larger than just the addition of

the dimension of just the two, in general, tells us that most of the states in a Hilbert space

h cannot have clas

of a bipartite system are entangled whi al description:

2.1.2  Observable

Observables are the properties of physical systems that can be determined by a series of
observations, which have corresponding Hermitian operators which act on the Hilbert Space

H. As thei

name suggests, observable values in principle could be verified as an outcome of
experiment. In quantum mechanics, observables are Hermitian operators [2].
Observables and their definitions are sometimes considered as postulates in quantum me-

chanics (Born interpretation of quantum mechanics). To any self-consistent and well defined

observable in physi

such as mass or energy or angular momentum, there corresponds a

Hermitian operator A such that measurement of A will result in eigenvalues of A [5]

2.1.3 Measurement

Measurement in quantum mechanics has been a subject of debate between the founders and

also the opponents of quantum theory. The measurement problem arises when you ask,

“What was the state of the sys

em just before the measurement?”. The answer to th

question leads to different interpretations of quantum theory. According to the Copenhagen

interpretation of quantum mechanics, which i

mainly accepted by theorists based on obser-

vation. measurement not only disturbs the s

tem, but also produces the result. After the

measurement, the wave function of the system is totally disturbed and has collapsed to a

state which is the outcome of this measurement, and subsequently evolves according to the

11




Schrédinger equation.

2.1.4 Dynamics of the System

States

stems. In classical mechanics, the state of a

arc a complete description of physical sy
particle in any given time is a point in 6 dimensional phase space (% and ), and the density

matri

, which is an ensemble of different states with various probability evolutions is given
by the Liouville equation. In quantum mechanics, the dynamics of a state is governed by

the Sehridinger equation,
v t)
o

) _
n = v, (22)

which is a linear equation. The  on the right hand side is the Hamiltonian which is almost

the same as the classical Hamiltonian with corresponding operators for each abservable.

Basically each Hamiltonian consi

s of different terms. Degrees of complexity in these terms

determines the complexity of the problem. We can say our problem will reduce to finding
solutions for the Schrédinger equation for different cases of 7 which does not always have

an exact solution.

2.2 Solution to the Schrodinger Equation

The econd law in classical

chrodinger equation (SE) plays a role analogous to Newton's

mechanics; having the initial condition 1(r,0), the SE determines ¢(r, ) for all future times
However, finding eigenstates for a specific Hamiltonian is not an easy task generally. Once
you have the eigenstates the rest is straightforward. But the main problem is solving an
0. Most of the time, even fo

cigenvalue equation for given Hamilton iple well-known

§

cases like the harmonic oscillator potential, we use mathematical tricks in order to simplify

the problem. The SE has been solved for a wide range of potentials [2, 4, 5]. Howeve

12



as in classical mechanics,

the number of problems which can be solved exactly is small. In

the majority of cases, we have to use some approximation in order to solve the problem.

ferent approximation methods are known and are widely used in tackling different prob-

lems

perturbation theory, the WKB approximation, the variational principle, the adiabatic

approximation and the Born approximation are some of these methods. All of these meth-

ods are well discussed in most quantum mechanical textbooks. In this thesis, we solve the
SE that uses the Hamiltonian known as Heisenberg-Dirac using perturbation
theory

2.3 The Heisenberg-Dirac Hamiltonian

If we want to include magnetic interactions in the Hamiltonian, we should consider that

rela-

the dependence of the interaction energy of two or more magnetic moments on their

tive directions

is dominated by electrostatic interactions, rather than magnetic ones [6]. An

estil

mate of magnetic dipolar interaction energies in clectrons in solids typically 2 A apart
is 0 more than 104 eV [6]. A well-justified model of magnetic interactions applicable to
insulators (and with considerable modifications to metals) which was developed for the case
of a single hydrogen molecule, was also generalized to real solids. In the case of real crys-

tal, the Heisenberg-Dirac Hamiltonian is a simpler mathematical model, than the original

Hamiltonian, wl

h consists of electron-electron interaction terms which cannot always be

treated casi

. The Heisenberg-Dirac Hamilton

1 should lead to an energy spectrum that

is similar to that of the original Hamiltonian (the SE with the relevant potential terms). If

we assume that the crystal forms in a similar way as a hydrogen molecule, which consists

of individual atoms containing one clectron in the ground state, then the e

hange Hamil-

tonian is equivalent to the original Hamiltonian. The Heisenberg-Dirac Hamiltonian was

13




constructed for such a two-el stem as follows:

Hspin =—J 51 -8, (23)

E,-E (2.4)

where E, stands for singlet energy and B, for triplet energy. where singlet and triplet are the
possible spin configurations. Since Hss, is the scaler product of the vector spin operators,
it depends on the relative orientation of spins and it will favour parallel s

pins if J is positive

and anti-parallel spins if J is negative. It is clear that J is positive or negative depending
on which energy is lower, which is consistent with the fact that spins are parallel in triplet
and anti-parallel in singlet 6], In case of large number of ions, in many cases of interest, the
of fons

form of Heisenberg-Dirac Hamiltonian can be gencralized to all pairs

Hspin=~3J; 5+ 5 (255)

If the angular momentum of each ion contains an orbital as well as a spin part, then the

coupling constant depends on the absolute as well as relative spin orientation and

==Y JyJd;, (2:6)

where J'is the total angular momentum. The exchange interaction is a purely quantum
mechanical effect and it is the result of the wave function of indistinguishable particles being

subjected to exchange symmetry and both bosons and fermions can experience it.

2.3.1 to the Hei: -Dirac F

ate of the anti

Finding the ground s erromagnetic Heisenberg-Dirac Hamiltonian is an un-

solved problem and only in one special case of a spin } array in one dimension is the problem

solvable analytically [6]. When we move on to more complicated geometries, it is almost im-

possible to have an analytic solution. Numerical methods like Monte Carlo simulations are

14



used in order to solve Heisenberg-Dirac Hamiltonian in different geometries and can be eas-
ily performed on a magnetic system. However, in this thesis, an analytical approach based
on symmetry groups was taken in order to solve the Heisenberg-Dirac Hamiltonian in the

specific case of the pyrochlore lattice with the aid of perturbation theory.

2.4 Perturbation Theory

2.4.1 General Formulation

Suppose that eigenfunctions of a Hamiltonian H° are known:

Hy)) = EY) 2.7)
Now we perturb H by adding some term to it called H’,
H=H+\H' (28)

The factor A is to ensure that ' is small enough so that it does not change the eigenstates

of the system drastically, and mathematically makes it possible to expand the solutions in a

hold, as the series

power scries. For large values of A perturbation theory does not necessaril

might not converge. Perturbation theory is a systematic approach to obtain approximate

solutions to the Schrédinger equation [2. We rewrite our time independent (SE) for the
general new Hamiltonian H:
HIn) = Enltn) (29)

We write [¢2,) and |E,) as power series in A:

T} = 102 + M) + X} + AJu) + .. (2.10)

E,=E)+AE\ + NE2+ NES +... . (2.11)



The method is very simple when the eigenvalue E2 is non degenerate. We assume this for
the remainder of this subsection. E} is the first order correction to the nth energy level, as
[42) is the first order correction to the nth eigenstate. If we substitute £, and [¢,) by the
the series above in (2.9), and also use equation (2.8) and then order by order in A we have
HOlR) + NHOW) + HW) + X (HOW) + H'l) + .. =
Enln) + MEn) + Ealv) + N(Epli) + Ealvn) + Eylun) + . (212)
The above equation is solved seprately for cach power in A [7]:

(H® = E)lu,

0 (2.13)

(H = Eln) + (H' = E})lun) (2.14)
(H— EDl2) + (H' = E)|a) - E2lyn) =0 (215)
(H = Bl + (' = B! (2.16)

For the remainder of this chapter, the perturbative method is from Quantum Mechanics by

Messiah [7). We can select the phase so that (40[t,) = (u|y .+ Using (ilyn) = 1 we
obtain:

(Waln) = Walv) =+ = Walvi) =0, (217)
By considering the conditions in (2.17), Eq. (2.13) will give us the first order perturbed wave
function and energy, while (2.14) will give us second order and (2.15) will give us mth order.
One can use the Eq. (2.16) to extract EJ by projecting on to the cigenfunctions of H'

Ey = (I H' ") (2.18)

However, we have to obtain [y~ in order to find this energy. Also, by projecting on to
other basis vectors of H9 we can find the corresponding component of |¢;") along each of
them when (Ef # EJ'):

(I = BN~ - B3 wlon ]

i) (219)

16




Since (i

0, [¢") can be completely det

Qo=1-[U)wl

and

il
B

20 1 _
T T

With the aid of this notation, one can write [¢) as follows:

to) = (0~ Bl - B2ty

Epen)) (222)

In principle, we can use perturbation theory in order to find mth order correction to the
state and also to the energy of the state. In short-hand notation [2], Vi, = (vf[H'|u).

A

Ep — EY the first three corrections to nth cnergy lovel are

(2.23)
(224)
VokViem Vi ”lu
oy Vbl -
o Anda Al (22)

2.4.2 Degenerate Perturbation Theory (DPT)

Depending on the symmetry of Hamiltonian H°, it is possible that two or more of its eigen-
states have the same energy. The addition of the perturbation Hamiltonian H’ might reduce
the symmetry of the total H. In that case, the degeneracies maybe lifted due to the broken
symmetry of H. Treating the degenerate states in perturbation needs more care than the
non-degencrate states, since the denominator in (2.20) could be undefined in certain cases
which can not lead to valid answer unless the mumerator also vanishes. So we should seck
another approach to the problem. In this case, even the first order correction to the energies

determined by the formula of the previous section is not reliable any more.



1f we consider the case of two eigenfunctions of H® with the same energy, it is clear that

a linear combination of thes

tates is also an eigenfunction:

HOY0 = EO0

= g+ B4

To find the zeroth order correction to the energy and first order correction to the wave-

function one find the matrix W, = (u|H'|u) where i.j = 1,2 and solve the eigenvalue
equation
Wi Wi | () fa )
Wy Wy B8 B8
to find the first order correction to energy and zeroth order correction to wave function. For
a degeneracy of order n, one can extend the method above and build an n x n matrix W,

which will again yield the zeroth order correction to the wave-function and the first order

corrections to the eigenvalue. For finding higher order corrections, one can take the following

steps [7):

The unperturbed Hamiltonian should be written in diagonal form. The representation

of H® on the basis

) has its cigenvalues along the diagonal

2. We define the proj

fon operator Py which projects out the degenerate cigenfunctions

(those we wish to apply the perturbation to).:

P X’j 169.)(@0, (2.29)
=

where j is the degree of degeneracy corresponding to the subspace of [u2). 1f H' is

diagonal, then Py has 1's in the diagonal components and zeros everywhere else.

We find the matrix 92 defined by (2.21)
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We have to write the matrix H' using the same basis as the unperturbed diagonal

Hamiltonian H°.

We construct an operator called Ky which is a positive-definite Hermitian operator.

K P.,—)Jn,H’?,l H'Py+ -+ (2.30)
:

and find its matrix representation.

. We construct another operator called H, which is also a Hermitian operator,

Q
Hy = EQKo + AP H'Py + A’Pnu’ﬁu’m doen (2.31)
a
and find its matrix representation.

We solve the following equation which is a generalized cigenvalue equation,

Hal4f) = E.Kal¥ (2.32)

The eigenvalues £, are the desired eigenenergies which are the solution of this secular
equation:

det(H, —7K,) (2:33)

. We find the projector operator:

Q(r

P xR Ry e (231)

The projection of the corresponding eigenvectors i) in (2.33) are the eigenvectors of

17

In this thesis, these steps were followed in order to find the first order perturbed states and

also shifts in cnergies as the result of a perturbation. A complete description of degenerate

perturbation theory is given by Messiah [7]



In summary we discussed the basic quantum mechanical tools including deg

erate per-
turbation theory. In Chapter 5, we will use these methods to solve the problem of finding
spin states on the pyrochlore lattice with exchange interactions. In the following chapter, we
introduce the concept, of spin and basics of frustration in spin systems, as the investigated

system Er,Ti0y is a frustrated system.
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Chapter 3

Spin and Spin Systems

The universe is an enormous direct product of representations of symmetry

groups. Steven Weinbery

3.1 Electron Spin

Spin is a fundamental observable in quantum mechanics which lacks a classical analog. The

first model of electron spin was a charged sphere rotating with fixed frequency and a radiu

given by
2
3.1

Ameqmec

own that the velocity of the surface of the spinning electron should exceed the

Then it w

speed of light in order to produce the electron’s angular momentum 5. The analogy with

classic

1 spin was abandoned, and the success of quantized angular momentum in explaining

spin related phenomena led to its acceptance [8]. According to observation, if we prepare a

spin in any manner and put it in magnetic field, it may emit a photon with a specific energy
corresponding to the energy of flipping the magnetic moments 180 degrees, while a classical

‘magnetic moment can emit a continuous spectrum of photons from 0 to 180 degrees. It
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seems that if we measure the spin of an electron in any direction, it is either in that direction
or opposing that direction and it is never something in between. It is either up or down, and
we get a specific photon or we do not get anything. This picture of the electron makes it

different from any classical counterpart. In three dimensional space, we use three operators

which act on the spin state in order to measure the spin in z or y or = direction. The

quantum mechanical operator associated with spin observables are the Pauli spin matrices

times a factor of 4:

The cigenfunctior

Suppose we measure the = component of a spin and it turns out to be either up or down.

What is the component of the same spin in z or y direction? In order to find the answer

one should me

ure the desired direction of that spin. As mentioned in Section (2.1.3),

measurement is an outcome of the observable which is a Hermitian operator which in this

could be o or , o . This

uggests that successive application of spin operators as it is
in up [+) or down |~) eigenstates of o, will result in:
a:l+) (3.4)

ayl+)

a:l+)




3.2 Spin Systems

In a bipartite state as described in Section (2.1.1) one component can live in Hy and another
one in Hy, so the total state of the system can be found by taking the tensor product (direct
product) of the two states. For example, if the first particle has spin % and the second has

—%. the tensor product is

0
1 0 1
Q=)= ® = =[ 4= (3.5)
0 1 0
0

00 0 —i
01 0 - 00 i 0

Qo ® (3.6)
10 0 0 -0 0
i 000

The operator (3.6) will measure the  component of the first spin and y component of the

second spin. This method in principle can be used for n electrons living in different Hilbert

spaces. Tn this manner, measuring the spin on systems consisting of two or more spins would

reduce o operating the product matrix on the product state.

3.2.1 Exactly Solved Model in Frustrated Systems

The first frustrated system which was studied was the triangular lattice with Ising spins and

ng-like interaction of the form

3.7




where J is the interaction constant that can be positive (ferromagnetic interaction) or neg-

ative (anti-ferromagne

interaction). Obviously for a ferromagnetic system the mi

um

of energy is the configuration when all the spins are pointing in the same direction in any

lattice s

stem. However, this is not the case for anti-ferromagnetic interaction. In the XY

Heisenberg model, the ground state of the triangular lattice can be found by minimizing the
energy of the a triangle. If we consider S; (i = 1,2,3) to be the magnitude of spin on site i
and 6; be the angle that it makes with positive z direction, then the energy function would

be
E=—J(5 -8+ Sy Sy + Sy - 51) = JS2(cos(8 — 0,) + cos(8y — 05) + cos(6; — 6,)) (3.8)
where S=(S,.8,). In order to find the minimum energy of the system, we should minimize

the energy with respect to each variable of the energy function

QE _JE _OE
Ny 9
a6, 90, ~ 90y BB

By solving the coupled equation (3.9), one can find the the solution for a triangular lattice

which is obvi ithout further analysi

us even

(61 =02 = 0 — 03 = 05 — 6 = 120°)[9)]
The same procedure could be used to solve the case of frustrated square plaquette with an
anti-ferromagnetic bond. However, these are the rare cases that the model has an exact
solution. Two frequently encountered frustrated spin systems with n.n. anti-ferromagnet
are fee and hep lattice which are formed by stacking tetrahedra with four triangular faces.
In summary, in this chapter, the basics of spin and spin systems and also spin frustration
were introduced. In following chapter, basic of group theory is discussed as a mathematical
tool which is used in applying these symmetry properties to the Hamiltonian and finding

the cigenstates.




Chapter 4

Group Theory and the Spin State of a

Single Tetrahedron

To those who do not know mathematics it is difficult to get across a real feeling

as to the beauty, the deepest beauty, of nature. Richard P. Feynman

4.1 Point Groups and Space Groups

Group theory s a mathematical formalism developed to study symmetry. Physics laws are

a mathematical interpretation of symmetries in nature. The symmetry of a crystal plays

an important role in the study of different phenomena like the diffraction of light or the

electronic and magnetic structure of crystal. The ideas of point groups and space groups

provide us with tools which are used in studying those phenomena. In following sections, a
brief summary and basic definitions needed to understand these tools are given

A regular array of points in three dimensions which are mainly fixed in their places is

the definition of a lattice, and if each of these points is occupied by a basis (which can

be a molecule or a single atom) then we have a crystal. Since crystals do not extend to
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infinity in all directions, we may impose periodic boundary conditions in order to conceal

the effect of finite size. Symmetry transformations on crystal are classified in to two types:
(i) translations and (ii) rotations, reflections and inversions. The latter type are known as

point group symmetries due to the fact that they leave at least one point fixed in space

while operating on the system. If point group sy i ied by the
then they together constitute the space group symmetries. Crystals possesses space group
symmetries while molecules possess only point group symmetries (except in the case of very

long polymer chains). There are 32 distinct point groups and 230 distinct space groups.

4.1.1 Translations

The space group of a crystal is the set of symmetry operations that leave the crystal lattice

invariant. A crystal has the property of being unchanged by translations through cert

distances in certain di

cctions, as it has spatial periodicity. Translation vectors in a lattice

can be written in a general form:

7k, 8, m) = ki + Iy + my (1)

where (kl,m) are integers and i, w3 and 4 are the set smallest of linearly independent

s a combination of a translation

translations. Every symmetry operation of the erystal latti
7 and point group operation P. The Seitz operator { | 7} will denote this combination as
follows:

(Plryr=Pr-r (42)

1 is the position vector of some point in the lattice.

The successive operation of two such elements will result in the following:
{A|MHB | m}r = {AB| Br+ 7). (4.3)

2



nd the inve

se of an element is given by:

{AlT} ' = {47 |47} (1)

Generally, translations do not commute with point group elements. Moreover, the transla-
tional symmetries of a crystal are completely determined by the fourteen types of Bravais
lattices [15, 17]. We can consider a subgroup 7' as the translational subgroup of the space

group G. Elements of the group T arc the translation operators

{E | 7} where 7 are lattice
translations given by (4.1) and E is identity element. Clearly, all translations parallel to

i form a subgroup 75 and similarly for the directions i and . Since clements of the

Abelian and a

bgroups Tz, Tz and T, commute (all translations commute), group T is

direct product of the three subgroups:
T @Tis @ T, (45)

If we assume that the crystal is infinite, then we have infinite number of translations. This

inconvenience is solved by the Born-von Karman (periodic) boundary condition. We assume

that crystal has N primitive cells along i axis. Using Seitz operators we can express the

Born-von Karman condition as follows:

{E| Nt} = (E] 0). (6

By using periodic boundary conditions we limited the number of translations along the i
axes to N,y and the same procedure can be used for the other two axis. The total number

of elements in group T is therefore N = Ny NyNy.

4.1.2  Group Representation

In order to introduce the concept of a representation of a group, we give an example of

a simple useful group and will find its representations [18, 19]. The Schrodinger group is
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defined as the set of symmetry operators which leave the Hamiltonian invariant. It follows

that Hamiltonian commutes with all of the Schrédinger group operations g:

gHg™ = H = gH = Hg, 7

Then if ¢ is an cigenstate of H. so is gt with the same eigenvalue E,

(4.8)

Now suppose that the eigenvalue E of H has an N-fold degenerac

Hlp) = Elpi); i=1,2...] (49)

Then any other state found as the result of operating elements of the Schrédinger group on

any ;) must be the lincar combination of [)’s

(4.10)

The coefficients ¢, form an N x N matrix G(gi) which corresponds to the operation g of

the group G. 5o the above equation can be more compactly rewritten as:
9le1p2-0n) = Glgh)|Prpa-pn)- (a.11)

The set of matrices G(gy) is called a representation of the group G and the set of functions

[¢) = [p1¢2-<p) s called the basis of the representation. For example, suppose that we

Dly-d "

have a d basis [) and a de S [t1,2) with representations
B ) 1.2)

G(g) and Gy(g):
gler) = Golghuler) (4.12)

Gulo)n Gul9

Gu(9)n Gul9)z

glins [¢nta). (4.13)
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If we combine the basis [1) and [¢1%) into a three-dimensional basis [p10y¢) = 1), the

corresponding matrix G)(g) can be written as:
Golon 0 0
Gl@=| 0 Gulon Guloh (4.14)
0 Gel9)n Gulg)n

The matrix G (g) has a block-di 1 form, where the blocks are e matrices of different

sizes. Representations of this form are said to be reducible [16]. Group theory provides us
with ways to reduce representations or tells us that such a task s impossible, in which case
the representation is said to be irreducible. In general, the bases of irreducible representations
are sets of degenerate cigenstates 16, 18].

‘The energies and wave functions of an electron in a crystal are solutions of the Schrodinger
equation. The potential term in the equation is due to the periodic lattice. The full s

mmetry

group of Hamiltonian is the space group to which the crystal belongs. The solution to the

Schridinger equation in a periodic lattice turns out to have the form of Bloch functic

which are introduced in next section. In the simplest case, if the potential is neglected o
approximated as zero, then the electrons are “free” and the solutions are

[
2m

Ou(r) = exp(ik-7) 5 E(k)

(1.15)

1s have def-

According to Bloch’s theorem in the case of a periodic potential, the cigenfunct

inite translation properties determined by the wave vector k and eigenfunctions at equivalent

points in different unit cells are simply related by a phase factor.

4.1.3  Bloch’s Theorem and Symmetry in the Reciprocal Lattice

Consider the eigenvalue equation:

Je(r)) (4.16)



1f the potential term in H is in the form of V(r) = V/(7+ 7). then Hamiltonian is invariant
under the translation group, and the eigenfunctions ¢(r) can be used to generate an irre-
ducible representation of T'. The operation of any element of T on ¢(r) is just a scalar which

forms a representation of T' with é(r) as the basis. The action of any translation P, on

Prtam(r) = clh, 1, m)(r) (@17)

and by definition we also have
Paam(r) = $(r + ki + iy + mai3) (4.18)

where 4, 4 and w3 are primitive lattice translation vectors. For instance, operating Py o0

on ¢(r), Ny times yields
Pr000(r) = ¢(N1,0,0)6(r) = ¢(1,0,0)™, (4.19)
and using the periodic boundary condition we obtain
m
¢(1,0,0) = exp(2mis— (4.20)
where my is an integer. Therefore the general form of c(k.1,m)
mk mol  mgm 7
ek 1,m) = exp(2mi( T + = + ) (4.21)
)
The definition of fundamental translations in reciprocal lattice is
I P L om
6= x ) = 1) = 370 x ) €

(4.23)




where m’s are integers. If coefficients . §2 and 2 are integers then such vectors are called

reciprocal lattice vectors which are denoted

G(h.

i + ke + 165 (4.24)

The scaler product of a general ¥ vector and a translation vectors 7(k,m,1) is then

mik | mal | mm

F-7(kom.1) = RS e (4.25)
and c(k,1,m) can be written as
e(k,m, 1) = exp [if - 7(k,m,1)] (4.26)
As a special case if we replace K by G then
G #(kom, 1) = 2n(hk + kil + Im) = 27 X integer (4.27)
Therefore the cignfunctions o(r) have the property of
O+ 7) = expli(k - 7)}o(r) (4.28)
which can be satisfied if and only if ¢(r) has the form
o(r) = exp ik - Au(r) (4.29)

v of the lattice. Bloch's

where the function u(r) is periodic function with the same periodici

theorem simply states that in periodic potential, eigenfunctions has the form of (4.29).

The reciprocal lattice has the same point group symmetry as the direct lattice, although
it may not have the same type of lattice, for example a bee lattice in direct space corresponds
to a fec lattice in reciprocal space. If we chose a lattice point in three dimension in a given

lattice, the volume containing points nearer, or the most equidistant, to the chosen lattice
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point than to any other lattice point is known as Wigner-Seitz cell. In other words, it is
the volume enclosed by the perpendicular bisectors of the vectors from the chosen lattice
point to all its neighbours. This cell has a particular property among all unit cells which are
possible to chose, which is that it inherits the full point symmetry group of the lattice. The

eitz cell in re

Wigne procal lattice is called the Brillouin zone. Because of the propertics

o-called Brillouin zone is the convenient choice for the unit cell in

mentioned above, th

reciprocal lattice in the study of electronic structure of crystals. For every point on the

t on the boundary which dif-

boundary of the Brillouin zone, there is at least one other p

or. All such points on boundary must therefore

fers from the first by a reciprocal lattice ve

be treated the same and are assigned the the same value of ¥ [6, 15, 18]

The point group of the vector ¥ (the little group) is defined as the set of symmetry op-
erations that leave K invariant or transform it into an equivalent vector & + G. Irreducible

representations of the little groups of are called small representations. Bloch functions cor-

responding to equivalent vectors transform under the same representation so such a basi
is clearly reducible. The star of a arbitrary vector ¥ [15], which is the set of destinct K
vectors obtained by applying all the symmetry to k, determines the irreducible basis for
translation group when corresponding functions are symmetrized with respect to the small
representations of the vector k. Accordingly, each irreducible representation of the space

group is defined by k* and the small representations.

4.2 Properties of the Space Group Fd3m

As mentioned in chapter one, the space group symmetry of Er, TiOy is Fd3m (# 227, O5),

with fec lattice transition, and the point group is octahedral Oy,

O is the group of proper rotations which take a cube or an octahedron to itself (see
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Figure 4.1: Rotational symmetries of a regular octahedron[20].

Fig.(4.1)). It has 24 elements: the identity B, three C, (180°) rotations about the z and

y and 2 axes, eight Cs (120°) about the cubic body diagonals, six Cy (90°) rotations about

2 and y and 2 and six Cy rotations through origin parallel to the face diagonals (We use

notation as in M. Tinkham [20]). Oy is the full octahedral group with inversion, which is

the direct product of inversion i the and octahedral group: Op= O x i. O is the largest

point group. It has 48 elements. A charucter table is a table whose rows correspond to

irreducible group representations, and columns correspond to classes of group elements. The,

entries consist of characters, the trace of the matrices representing group elements for each

irreducible representation. The character table of Oy is shown in Table (1.1).




O, | E 8C; 30, 6C, 6Cy| I 8ICs 3IC, 6IC; 6IC,

Ag[1 1 1 1 1|11 111

-]
<
© o o®
o

Au|1 1 1 1 1|1 1 11 1
Ap |1 1 1 1 14 1o 1

3
T3 0 1 -1 -1{3 1 0 -l

Table 4.1: The character table of the point group Oy,

With four Er ions per unit cell, there is a 16-fold degeneracy of the ground state for each

unit cell. The collective angular momentum states can be written as
[ £) = |21 @ 14): @ ) @ 1+)a (4.30)

where subscripts indicate the site number. These states are divided according to represen-

tations by which they transform under the operations of octahedral point group Oy, wh

is the point group of the crystal, as A, @3E, @271, Ty, a singlet, 3 doublets and 3
triplets). The states are listed in Table 4.2 [21]. As we always refer to even representation

we omit the subscript g.



4.3 Exchange Hamiltonian with Fd3m Symmetry

The space group Fd3m permits a total of four nearest neighbour exchange interactions. There

are four distinct exchange terms that are invariant under all the operations of Fd3m. These
terms are listed in Table 4.2, where X; is the ith exchange term for a single tetrahedron. In

Table 4.2, J; is the total angular momentum operator for the ith Er site in the primitive unit

ection of the Cy site symmetry

cell. The axes of J are chosen such that .J. points in the

axis at cach site, i.c. J. points in the [111] direction, ete. (see Figure 1.4). The local z and

 axes are chosen to obey the right-hand rule. The terms listed in Table 4.2 can be extended
to the entire lattice by applying all fec lattice translations. As discussed in Section 1.4, there
are 12 exchange paths in each primitive unit cell. These can be divided into two groups,
corresponding to the edges of A tetrahedra and B tetrahedra. These two contributions
are the same (have the same coupling constants) when the space group is Fddm. So the
Hamiltonian can be written as

He=Ha+ Hy (4.31)
where H is the Hamiltonian of A type tetrahedra. In general, Hy can be written as
Hy=Y CaiXu (4.32)
C

Where Cy; is the ith coupling constant for an A type tetrahedon and Xy ith exchange term
on the kth tetrahedron. k is summed over fec lattice sites. Hy is the Hamiltonian of B type

tetrahedra. Hy also have the same form of (4.32) with Cy instead of C4. The eigenstates

of Hy and Hp can be found and are Dirac product of the states of a single tetrahedron,

cessarily commute;

which are given in Table (4.2). However, in general H and Hy do not ne

¢ do not. But the experiments

they may have common cigenfunctions but generally the
agree with the single tetrahedra picture. Thus the single tetrahedra picture is difficult to

» A suggestion was made by Ref. [24] that H, and Hp might have different coupling




constants such that the smaller part (say

The difference

Hp) be treated perturbative

between the exchange interaction coupling constants implies that there is a structural lattice

distortion which makes A tetrahedra smaller and the B tetrahedra larger. It is possible that

a very small lattice distortion may produce a noticeable difference in between the coupling
constants.

Interactions in Table (4.3) lift the sixteen-fold degeneracy and split the states into a

nglet, three doublets and three triplets, which are depicted in Table (4.2). By convention

singlets are shown by A, doublets by E, and triplets by T. The correspondence between
the states in Table (4.2) and our direct product states are shown in Table (5.1) in following
chapter. Tn following chapter, we use the results we found from group theory together with

perturbation theory in order to find the ground states of the system.
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Table 4.2: Basis functions for the four Er ion sites comprising a single tetrahedron, labelled
according to the irreducible representations of Oy, by which they transform & = exp(2i/3)
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term X X
Ty 3D BT (ar+ o) + (Fae + h)d]
Lt =2 Ju(Jas + 1) + s + ) )
—Ls. — L i(edsy + %) + (i +€210) ]
3o i — L[y (e Jus + €2042) + (€doy + €22 ) u]
Jiedi —3hedie (s +e01o) + (2 + € a]
dy- Ty —y e L2y + e J3) + (s + 2 )]
term X X
Yedor + Di_da-) (Jigdae + hoday)
§ (s das + Jada-) 4 dae + Ja-das)
- d | Uetdiedas +edins) Y5 A )
B 0y || Mt dis +edodi) —Wardic + Jodiy)
Ji | T du + €20 d) —thadis+ Do)
oy || §(edadas + B da) —L(Jay s+ JaJss)

Table

: The Heisenberg-Dirac Hamiltonian for a single tetrahedron in terms of local

coordinates for each Er ion. The first column lists the terms in H over a single tetrahedron

= = exp 4. The sum of terms in each blocks yields a symmetry allowed term in the exchange

interaction, and the sum of all terms is the isotropic exchange interaction X = ¥ Ji.Jj
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Chapter 5

Results and Discussion

I can live with doubt, and uncertainty, and not knowing. I think it’s much more
interesting to live not knowing than to have answers which might be wrong. 1
have approximate answers, and possible beliefs, and different degrees of certainty

about different things, but I'm not absolutely sure of anything, and in many

things I don’t know anything about, such as whether it means anything to ask

why we're here, and what the question might mean. I might think about a little,

but if T can’t figure it out, then I go to something else. But I don’t have to
know an answer. I don’t feel frightened by not knowing things, by being lost in

a mysterious universe without having any purpose, which is the way it really is,

as far as I can tell, possibly. It doesn’t frighten me. Richard P. Feynma

5.1 Single Tetrahedron

In the case of single tetrahedron, we have the four sites depicted in Figure 1.5 the spins can
be cither up or down. Using (4.31), we can build up 16 possible different states which are

shown in the second column of Table 5.1. The first column is the number assigned to these
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states according to the following procedure. As we discu

ssed at the beginning of chapter 2,

‘measurement of spin in any direction would result only in up or down state, and nothing

between. In order to do the calculations using a computer we have to build up the states | +);

also their direct product in a way which can be implemented on a computer. Considering

[+) as an array (1,0) and |~} as (0,1) enables a 4-site state to be expressed as a 16 x 1 array
consisting of all zeros save one. For instance, if we want to build up the state | + + — +) as

an array of numbers we use:

0
0
1 1 0 1
HRH Q1) QI+ = ) ® N ® . ® MR (5.1)
0

In this case there is a one row number 3 and all the others are zero, so we label this state

No. 3. All the other states can be built and labelled in the same mann
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Table 5.1: The basis states, their label mumbers and the overlap they have with singlets. doublets and triplets defined in

Table 4.2 . These numbers define the transformation matrix S.




We can also build the operators needed in the Hamiltonian by direct products of Pauli

matrices and the identity matrix. The following is an example of an operator which acts on

site 3 while leaving the others unchanged:

which

Sy =

nian given in Table 4.

a 16 x 16 matrix:

0
0
0
0

0

0

0

0

0

0
0

0

Jay = IQIQo, QT

0
0
0

0
0

©




Jy=Jp k1, (5.4)
(EI|E) = £ (5.5)

(sl =t (56)

j and t are numbers that can be calculated using the explicit form of |+) given in (1.1). But

h

in the following we leave them as free parameters. Using our transformation matrix §
is given in the Table 5.1, and our (16 x 16) Hamiltonian built up as explained, we can find
the block diagonal Hamiltonian which is §~'H,iS that has 2 identical blocks for doublets, 3

identical Blocks for triplets, and one diagonal element for the single [25]:

—2%¢, 0 NEEe
= 0 C (57
VARG~ L(2%C) +£2Cy)
(4G + Cy) 0 1VEtCy
T= 0 12 (40 + Cy) 0 (5.8)
4V2jtCy 0
a=1(7c-vc) (5.9)

5.1.1 Ground State of a Single Tetrahedron

I order to find the ground state, we have to attribute some numbers to the variables in each
case. We assume j = ¢ = 1, (they get incorporated into the C;'s) and then switch two of the
four interactions on at a time in order to find the ground state for the various interaction
ratios [25]. These results are shown in Figure 5.1 to 5.6.

The problem simply is finding the eigenvalues and eigenvectors of the matrices introduced,

13
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Figure 5.1: Energy as a function of ¢ for C;

0.0y = cos ),

Energy(6)
2

Figure 5.2: Energy as a function of ¢ for C; = sin6, C3 = cos6, C
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Figure 5.3: Energy as a function of § for C; = sin,

Encrey(0)

Figure 5.4: Energy as a function of ¢ for C.

sinf,

= cosf, Cy= C4=0.
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Figure 5.5: Energy as a function of ¢ for C; = sin8,Cy = cos#,C,=
Energy(0)

Figure 5.6: Energy

a function of @ for Cy = sinf, Cs = cosf, Cy

Cy=0




however with so many parameters, the general solution is not very 1 of

lightening. Inste:
the general case, one can consider some interactions in Hamiltonian to be more important or

more dominant than the others by switching some interaction on or off. The binary switch

will let us do so, and considering all the six possible cases will help us to investigate the
problem. We also use the convention of & = 1 without the loss in generality of the problem.
As shown in Figure 5.1 (25, if we set Cy=C;=0 and let the C) vary as a function sine and
Cy as a cosine function, the ground state is doubly degenerate (a|ES) + |ES)) where

€4 [TTTRCE
WAG

a= As the € and Cy vary like sine and cosine respectively, the ground state

cnergy will mainly follow the blue dashed line. For some specific values of the sine and cosine

argument (0). the ground state will become degenerate with the singlet or the triplet. In

Figure 5.2, which has Cy = C; =0, the ground state is again a linear combination of doublets,

but a different one with different coefficients which follows the red dashed line. The green

line representing three different states with the same energy that becomes degenerate with

ground states for specific values of periodic functions.

With €, = C5 = 0 shown in Figure 5.3, interestingly there are three different candidates

for the ground states for different values of 6. The singlet or the doublets are three different
candidates for ground state in this cases.

all

As for the case €y = Cy = 0 shown in Figure 5.4, the ground state is mainl

car
combination of doublet states that are degenerate with triplets in some values of the 6 (C

=0 and ~1) . If we want to be more specific on this case, only to see how the states

would look like exactly, the ground state is (25

alEY) + BIED) + | EWY) (5.10)
where
Cy 5o 220 1)
i, =
V8ct+ct /8C3 +C3



‘The linear combination of triplet states which sometimes is degenerate with the ground state
in this case is of the form:
NT) + 1Y) (5.12)

where:

sl B (5.13)
420, .

Figure 5.5 and Figure 5.6 show the other two possible cases in this binary investigation of

A

the ground states with respect to the coupling constants. Table 5.2 lists the ground states

(doublets) for all cases.

Nonzero Ground States a 8 Figure
. ; Grrorna
&G (lE) + |EY)) e =

C &Gy (alEY) + |EDY) 7*P“"'ﬁmﬂ:'x’”‘3 .
Co&e Oy [ (1EY) or (IES)) or (14)) -
T £} 281 | -

2G| Gl AED B | il

ae (lE®) + 1B ey Teceit] - |69
G | @EP) +1EM) or () [} (ci-2ucirad) | - | 69)

Table 5.2: The possible ground states when only two of four coupling constants are zero.

The ground states are mainly doublets [25]

5.2 Two Tetrahedra

If we consider two tetrahedra, the state that describe the system should carry the information

needed to specify the spin configuration on 8 sites. According to what we did previously, we

a8



can build up the states as follows;

ETTTITET

[£) @) @ 1£): @ 1)1 ®14): @ 1£)s @ |4)7 @ [+)s (5.14)

Again by considering the |+) being (1,0) and |~) being (0,1), one can build up 256
distinet states which are of the form 256 x 1 array in which all elements are zero save one.
The Hamiltonian Hy can also be built up by the direct product of the Pauli spin matrices
and identity matrix on each site. Suppose we need to measure the Y direction of spin on
the site labelled as 7 (See Figure 5.7. The operator for this case is Jr, which is a 256 x 256

matrix that is built as follows:

= IQIQIR IR IR @1 19)

Figure 5.7: Two tetrahedra with sites labelled by the convention used throughout this chap-

ter

1f we define the Hamiltonian on first tetrahedron Hy=C; X; +CyXa+Cs Xy +Cy Xy and on

second one Hy=C; Yy +Cy Ya+Cs Ya+C, Vi, where the terms in Hamiltonian are given by



(Nredas + Jaeodie + Jiodye + Joediz + Jiandie + Jaanss)

3 (Usado: + Jraodse + Jozdrs + Joz o + Tszdsz + JozoJz)

-(Dap + Jant) + (Dp + Jiae) oz + Jaz. (Jap + Jan)

Hap + Janr) iz + iz (€dap + Jaag) + (i + € Jiar)

+ Jo.. (edyp + EJ4ar)
et b ) Tin + Fins (B ip # edise) #(Fip b eFiae) Tiw - Tany (oo eiss) +
(@ Jap + €anr) Jz:)
Yo = =5 e o + Jow) + (s o) s+
+ Joar) i+

Jsp + Jsr)

(edzp + € Jaat) + (edip + € i) oz + Jos. (edsp + € Jnr)

Hedop + Edon) Jue + Joa (s + €dsaa) + (EJ5p + € i) s

:)

Hloz. (EJzp + €ing) + (¢ dop + €oar)

ipoap + JigJass + Jsp-Jap + Jy

it + € dipdsp
+edingdsag + € JapJip + €dangJant + €dipJap
eI dins + €ap s + € JoarJane)
Yy = 4 (JopJop + Joar-Jont + JrpJup + Jrar Juns + EJspdrp

+edsaredin + Edopdsp + edortdsn + edspJsp

+E JsarJsnt + €dop.Jrp + € Joar-Juan)

] v Dindap + JapJan + Jaedip + Dy

Hap.dis + JoJap + DipJi + S Jap + Jap-Jans + o

—& (sp-dons + Jot-Jop + Jrp-Just + Foat-Jsp + JspoJoss + Jose.Jop

+op-dss + Jost-Jsp + Jsp. sy + Jaat-Jp + JopJian + Jo

P)



where P and M subscripts stands for + and — respectively. Each operator is now a 236 x
256 array. We can find the block diagonalized matrix for the case of 8 sites of the form
S (Hy + Hy)S. For the casc of a single tetrahedron, § which was a 16 x 16 array, which
now is replaced by S @S which is a 256 x 256 array. However for simplicity we will still keep
call it S, keeping in mind that the transformation matrix for states, has larger dimension for

larger Hilbert space. The result of S™'(H + H)S is a 256 x 256 array wl

h is the sum of
the block diagonal matrices Hy ® I+ I ® Hy and some of its matrix elements are shown

in Table 5.3. We can diagonalize this Hamiltonian if we pick suitable values for j and ¢ and

also two of the coupling constants as before and find the eigenvalues and eigenvectors. The

ground states for two tetrahedra i

uply the direct product of possible ground states for

one tetrahedron. As the ground state is degenerate in the case of one tetrahedra, the order

of degeneracy increases when we are dealing with direct product states.



states | |EO)EY) | (EO)ED) |- | 1EO)A) | 1ED)EL) || 14)14)
EONEY | i 0 R 0 0
(EDWED 0 0 0 0
@ g0

EOEY | JEeo 0 0 0
(EYED 0 0 0 0 0
(EDVED] 0 0 0 0 0
(AKEL| 0 0 0 0 o
(ESED] 0 0 - 0 0 ]
ANAl 0 0 . 0 0

Table 5.3: Some matrix elements for the exchange interaction Hamiltonian for 2 tetrahedra

25]. (Full matrix is available by contacting the author)

5.3 Two Tetrahedra Perturbed by Hp

We have found the exact solution for a system of two isolated tetrahedra. Now we include
the exchange interaction for B type tetrahedra in our finite system with periodic boundary
conditions perturbatively. We use periodic boundary conditions, so there are two A type
tetrahedra and two B type tetrahedra. The atomic position of all eight Er atoms are given
in Table (5.4). The A tetrahedra are the sets of atoms A={1,2,3,4} and A’ = {5,6,7.8}.
We consider two A type tetrahedra and two B type with periodic boundary condition.

It can be verified that the B-type tetrahedra are on sites {1,2,4,7} and {3,5.6,8}

The Hamiltonian for B type tetrahdra is of the form Hy=C5(Zi + Vi) + G5 (Z2 + Va) +



Tetrahedron # | Atom # | Position

A 1 (5/8,1/8,1/8) |

+(0,0,0) 2| (7/8.3/8,1/8)
3| (/8.1/8,3/8)

1| (5/8.3/8,3/8)

A 5| (1/8.5/8,1/8)

+(=1/21/20)| 6 | (3/8.7/8,1/8)
7| (3/8,5/8,3/8)
il

(1/8.7/8.3/8)

Table 5.4: Atom positions of eight Er atoms in two tetrahedra

C1(Zy +Va) + Cs (Zy + Vi), where

§ (Drawas + Jredis + sz + Dasdis + Jisodis + JoeJre)

3 (ssdos + Jazodss + Jszas + Jos o + Joeodss + JooJae)

= (Jap + o) + (ip + Jie) oz + Jrse (Jap + Jant)

H(zp + Jong) is + D (€dzp + Ea) + (edip + D) iz + o (€dap + € Janr)
H(edap + o) i + e (Edip + i) + (Ehp + ) s+ Jas (e + i) +
:)

V= =52 (Jsee (Jop + Jue) + (Jop + Jone) Ja + Jaz. (Jup + Jose)

| (s + Janr) s+ T (eJap -+ EJane) + (€dop + iar) e + oz (€Jsp + € Jgr)

(Ao + €Jnr)

(e dop + o) s+ Joa (Edsp + edsar) + (dsp + €sar) oy + Jos- (Esp + €aa) +
} (Jop + €Joar) J:)



= Y (Dupodap + o + FopJup + Joar-Jusa + EDip T
+edinJont + E€dap.Jip + edarJant + €dip.Jip + EdiarJan + €dap.dip + Eaar.Jon)
Va =4 Uspdor + Jons-Jors + Jap-Top + Juss-Jose +EJsp.Jap

+edsar.Jant + €JopJop + eorr.Jont + €Jsp.Jyp + EsarJont + €dop.Jsp + €Joar.Jan)

+ e+ o Jie

= =4 (hpane + Jiardop + JrpJavt + Jon
+dap.dint + Jasup + Dpodist + JieJap + JapJon + Jan-Jrp)

Vi = =4 (Jsp-Jort + Jsnt-dop + Jap-Jsns + Jant-Jsp + Jop-Jag + Joae-Jap

)

Hlop-dsst + Joar-Jsp + Jsp-Jsar + Jsna-Jsp + JopJsna + Jonr-Jy

where P and M subscripts stands for + and — respectively. As mentioned before, the B
type tetrahedra appear as a result of different coupling constants between atom sites. So in
general C's in B type are different than those in A type tetrahedra. Now we have the total
Hamiltonian Hy defined as follows which is the complete Hamiltonian for two tetrahedra

with considering the effect of the B type tetrahedra.

Hp=Hy+ Hy + Hg (5.16)

With the addition of Hp, diagonalizing the 256 x 256 matrix Hr with so many off-diagonal

clements would be a difficult task. In order to solve this problem, one approach is to treat

the Hy part perturbatively to find the ground state when the B type tetrahedra is present.

stem of

Generally, the perturbation will mix in the other states with the ground state of
two tetrahedra,

ribed in Chapter one. As we are dealing mainly

We use the perturbative method des

with degenerate ground states, we use degencrate perturbation theory (DPT) following the



8 steps introduced in Section (2.4.2).

perturbative treatment of the B type tetrahedra for a specific value of coupl

The rest of this Chapter is devoted to the result of

ng constants.




5.3.1 Degenerate Perturbation Theory for €y = Cy = J5, (o = (3
=10

As it can be seen from Figure (5.3) at § = ¥, the ground state is mainly |E{"). So the

ground state for our unperturbed two tetrahedra system has these four degenerate ground

states:

IEONEYY) L EDEY) L EDIEY)  EO)ES) (5.17)

The perturbation will lift the degeneracy so that the states split into two slightly
levels.

In doing the perturbation, since we have C = Cs = 0, we also chose the corresponding
coupling constants in Hp which are Cg andC; to be zero, and set the two others to be
4 of the value of Cy and C; so we that can treat it as a perturbation (the value {f was

chosen for the purpose of doing numerical caleulations and can be changed without the loss

& Gy and Cy =

of generality of the problem). So we have L C1. Even by considering

this perturbation, states which are related by time reversal symmetry still stay degenerate.

IEDIED)  EO)EL)

(4.21):
[ED)EY

(5.18)

) IEMEY)

It is interesting to see how higher order in perturbation theory mixes the states. First of all
each set of degenerate states related by time reversal symmetry mix the same by the effect

of B type tetrahedra as we expected. Furthermore the state |EY)| E{") does not mix to the

first order in perturbed wave function. However |E{")|E") and its time reversal will mi:

with the following states [25]:



|ED)EL) —:

1B

(—0.00833333)| E) | E)

(0.00160706) E¥)|T3,)

(~0.00160706)| E)|T2")

(—0.00080353 — 0.001391767) | E®)[T3,)
(0.00080353 + 0.001391764)| E®) 12
(0.00080353 — 0.001301764) | E¥)| T3,
(~0.00080353 + 0.001301760) | E) [T{2")
(0.00160706)|T{)| By
(0.000961538)|T{!")|73.)
(~0.000961538)| 7))
(—0.000480769 — 0.000832717:)|T{.")[T3,)

(0.000480769 -+ 0.0008327171)| 7))
(0000480769 — 0.0008327174)|T{) T3,)

(~0.000480769 + 0.000832717) | T{)| T{2")

(0.00160706)| T2 )| B
(0.000961538) T5:) T.)
(0.000061538)|T2.) T2}

(~0.000480769 — 0.0008327176)| ) | T3,)
(0.000480769 + 0.0008327173)| o) 12"
(0000480769 — 0.000832717:)|T3:)|T3,)
(~0.000480769 -+ 0.0008327174)|T3.) [ T52 )
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1EP)EY) —:

(~0.00080353 + 0.001301761)|T,) | ES”)
(~0.000480769 -+ 0.0008327174) | T T4.)
(0.000480769 — 0.0008327171)| Ty, ) T{")
(0.000961538)| T ) T3, )
(~0.000061538)|T,)[T{2")

(0.000480769 + 0.0008327174) T3, )| T3,)
(~0.000480769 — 0.0008327173) T3, T{2")
(~0.00080353 + 0.00139176i) [ T{2) | 1Y)
TTT)ITE)
(0.000480769 — 0.0008327170) |7 |72
(0.000961538)[T{)|T3,)

(~0.000961538) (72 [T{*)

(0000180769 + 0.0008327173)| 717 ) T3,)
(~0.000480769 — 0.0008327171)| T T{2")

+0.001301761) Ty, | £

(—0.000480769 + 0.0008

(0.000803

(0.000480769 + 0.0008327174)|T,)|T3.)
(~0.000480769 — 0.0008327171) T2, T{2")
(0.000480769 + 0.0008327174)|T2,)|T3,)
(~0.000480769 — 0.0008327174) | T3, 1{2")
(0.000961538)| T3, T3,)
(~0.000061538)|T2,)T{2)




(0.00080353 + 0.001391763)|T{}))| L)

(0.000480769 + 0.0008327174) [T} ) |T3.)
o 7170 [Ty 72

O E e (—0.000480769 — 0.000832717:)| 1) |12y

(0000480769 + 0.0008327174)[T{2) T3,

(~0.000480769 — 0.0008327171)| T{2)|T{2")

(0.000961538)|712)|T3,)

(~0.000961538)|T{2)|T{2

)
5.4 Interpretation of the Results

For any other values of 6, we can pick any two C’s and do (DPT) on the corresponding ground
states, following the steps described in (2.4.2) to get the split in states and also mixes from
the other states. In the most of the cases investigated by the author, the degeneracy of the
states which are related to each other with time reversal symmetry were not lifted. However,
we did the perturbation theory up to first order correction in the wave-function. Furthermore
for different €, the states that mixes in with the ground state follow a rhythmical pattern
apart from the weight of that mixture. This rhythm can also be observed in the case of C

and Cyat 0 = %. The states and the ener

ies are caleulated for 5 different cases and possible
to be further developed for any other value of the exchange interaction of interest. From the

wave-functions found by perturbation, further information can be

xtracted. The magnetic

transition that Er,

20 shows at 1.2 K is not easy to explain via the unperturbed ground
state. The magnetically ordered state has a non-zero expectation value of the operator M =
Sio Sar+82,+S4, (where x is the local coordinate), while none of the unperturbed states

carry a non-zero value for M as they don't have a magnetic character (all matrix elements

are zero (| MY

= 0)). It is possible that the mixing found by perturbation theory will
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give rise to a non-zero value of A, then the observed magnetic transition can be described
using molecular field

In summary, in the case of two tetrahedra with periodic boundary conditions, we found

the mixing in ground state by including the B tetrahedra perturbatively. These states should

be investigated to see if they have a magnetic character
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Chapter 6

Conclusion and Outlook

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty

lies only in the fact that application of these laws leads to equations that are too

complex to be solved. Paul D

6.1 Conclusion

The overall objective of this research was to investigate the frustrated pyrochlore system and

find the ground state properties by looking at the symmetry properties of the system which

in our case was Er,Ti;O7. In order to do so following steps were taken which lead us to the

final answer

1. With the aid of the symmetry properties of the space group Fd3m, we find the possible

states of a single tetrahedron and also the general form of the Heisenberg-Dirac Hamil-

tonian that governs the system. We have four different exchange coupling constants
which determine the ground state. In order to investigate the form of the ground state.

we switched two out of four of the interaction off, while keeping other two varying like
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periodic functions. The ground state for single tetrahedron was calculated for all six

different cases

The ground state for two tetrahedra can be built by direct product of the two ground
states. The exchange Hamiltonian for two tetrahedra is Hy @ T+ 1® Hy. The direct

product preserve the form of the ground state.

In EnyTiOr we are dealing with a network of tetrahedra. Because of the isolation of

single tetrahedron, exact caleulation of eigenstates of a single tetrahedron will help us

to find the state of the network generally. However, because of the the connectivity

of this network, eigenstates of single tetrahedron are not the eigenstate of the entire
network. We assumed that there are two types of tetrahedra in pyrochlore lattice,
type A and B which were different in overall orientation. A kind of lattice distortion

was proposed that lowers the point group symmetry but leaves the crystal sys

em

ive to an ordered

unchanged, was applied to relieve geometrical frustration and
state. This distortion did not remove the frustration symmetry but led to isolation of

individual A type tetrahedra by neglecting exchange interactions on B. By adding the

effect of B type terahedra as perturbation, we were able to find the ground state for the

system of two tetrahedra more accurately. However, degencracies of states connected

by time reversal symmetry were not lifted by this form of perturbation

The perturbed states can be further used to justify the magnetic characters observed
in Er;TiyO; at low temperatures. By caleulating the magnetic order parameter, the

states with magnetic properties will have non-zero matrix elements ((v|M|v))

62



6.2 Outlook

Further analysis can be done by considering 4 tetrahedra and then applying the B type

tetrahedra perturbatively. In that case the matrix we are dealing with is a square matrix of

dimension 65536 which can be diagonalized numerically for specified values of the coupling
constants. In that case, a more vivid picture of the ground state will be constructed which
can be used to justify the experimental result of the material that is being studied. By

considering 4 tetrahedra, the calculated magnetic order parameter for the ground state will

be mre prec
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Postlude

The scientist has a lot of experience with ignorance and doubt and uncertainty. and this

1 think. W ientist. doesn’t know the

nswer

experience is of very great importanc a
to a problem, he is ignorant. When he has a hunch as to what the result is, he is uncertain.

And when he s pretty damn sure of what the result s going to be, he is still in some doubt.

ze our

We have found it of paramount importance that in order to progress, we must recogni
ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying

lutely certain. Now,

degrees of certainty some most unsure, some nearly sure, but none abs
we scientists are used to this. and we take it for granted that it is perfectly consistent to be
unsure, that it is possible to live and not know. But I don’t know whether everyone realizes
this is true. Our freedom to doubt was born out of a struggle against authority in the carly

days of science. It was a very deep and strong struggle: permit us to question to doubt. to

1ot be sure. I think that it is important that we do not forget this struggle and thus perhaps

lose what we have gained. Richard P. Feynman

-



Appendix A

This code was used for in calculations of the 256x256 Hamiltonian. In first set of lines,
operators are defined with the aid of Pauli matrices and identity matrix. Then the states in

Table (5.1) are defined and the transformation mat

ix is constructed by direct product of two

S matrices. The rest will define the ian and di ion process of
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S((8, 9] =8((8, 51 = S((8, 14]) = 8([8, 15]] =

1 1
(9, 13]) = -— 8([9, 4]) = —

s((10, 12]]

(010, 141) = 8((11, 8] = 8131, 181) = ——)
O

S[[11, 12)) = 8((31, 14]] = 8L[10, 8)) = 8([10, 18] = -——
Ve
51030, 311 = 8([30, 511 = 8([11, 31] = 8((11, 51) =
Ve
81110, 211 = 81010, 911 = 8{(11, 21 = 8((41, 9)] = -— 3
O

1 i

(012, 7)) = — 8((12, 10]]

50014, 2)] = 8([14, 5] = 8[(13, 2] = (13, 5)] =
=

S[(14,91) = 8[[14, 3]) = 8[(13, 9]) = 8([13, 3]] =

(013, 14]] =

(113, 81)

s((13,12]] =

[[13, 15)) = S[[14, 8)] = S[[14, 14]) = —
Ve

1

1
s((15, 61] = — ) 8[(13, 11])

S((16, 4] = S[[16, 6]) = 8([16, 7)) = S((16, 10]] = 8([16, 11]) = [ (36, 131 =
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MatrixPorm (NT) ;

90 = simplify (0]
MatrixForn(g)
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