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Ab stract

T his thesis describes a theoretical investi gation of magneti c systems based on corner-shar ing

tet rah edra in the pyrochlorc lat tice. Er2T i207shows magnet icor der ingat low tempera tures .

ln ordertollnderstandthe originofthismagneticbehavior , wehave investigat edthe cryst al

struc ture and have found the possible ground sta tes using group theore t ical approac hes. \Ve

investi gat e nearest neighbour exchange interactions on the pyrochlore lat tice. T ho pyrochloro

st ruc ture consists of vertex-s haring tet rah edra ; th ere are two different types (A and 13)of

te tra hedra that differ by their orientat ion within the pyrochloro lattic e. Each edge of each

tet rah edron corresponds to a term in the exchange inte raction . Our model ass umes th aI the

pyrochloro space group symmetry is broken such that exchange consta nts on the A tet ra-

hedra arc different th an those on the 13te tra hedra . The Hamilt onian describin g exchange

interac t ions 011 the A tet rahedra has an exact solution. \Veinclnde the exchangeinteraet ions

on the 13tetra hedra using perturbation theory with periodic boundary condit ions. Poss ible

gronndstatesforselectedva inesofexc hangeinteraet ionarecalculated.
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Pr elud e

And th en th ere's th e kind of thin g which you don ' t und erst and . Muanin g "I don 't believe

it , it 's crazy, it 's th e kind of thing I won't accept. " Thi s kind , I hope you' ll COllie along with

IlIC and you'll have to acce pt it because it' s t he way nat nrc works. If you want to know

th e way nat ure works. we looked at it , caref ully, th at 's th c way it works. You don 't like it.

go some w here e lse ! To another uni ve rse! Wh ere th e rules arc simpler, phil osoph ically

more pleasin g, more psychologically easy, I can't help it ! OK! If I'IlI going to tell you

honest ly what th c world looks like to th e hum an beings who havc stru ggled as hard as t.hcy

can to und ers tand it , I can only tcll you what it looks like. And I cannot make it any simpler.

! '1lI not going to do th is, I'm not going tc simplify it , and I'IlI not goingtofake it.I"Iunot

going to tell you it 's something like a ball bearin g inside a spring , it isn 't. So I'IlI going to

tcll you what it reall y is like, and if you don 't like it , th at 's too bad .

R ich a rd P. Fey n ma n

Lectur e at th e University of Auckland



Chapter 1

An Introduction to Frustrated Spin

Systems

1.1 Introduct ion

III the stlld y oforderillgphenom ena . great effor ts have been made to understund t hc basic

mechanism respo nsible for th e orde ring and t he uat.ure of the associat ed phaso trnu siti on .

Uuders ta nding th e und erlyin g rules of a phase transiti on between different sla tes is one

of th e main interests of th eoretic al physicist s, A group of sys tems which have ga rlu-n-d a

lot of interest recentl y are "frus t ra ted spin sys tems". in which a spin in th e sys te m ra nnot

find all orieuta tion th at sa t isfies ull th e intcrncti ons with surro undiug spins. Th e inter act ions

bl'twl'en spills are\'ery compli eatl'd alld will genera lly need rigorous calculati ons for a n exa ct

troat iueut of th e problem . Ho\\'c\ 'l'Lreasollable app roximation sean simplif ytheint era cti ons

to some well known model s such as th e Ising or Heisenb erg model s which are relat ively eas ier

to deal with . This simplificat.iou is discussed more in Section (2,3).



1.2 Frustrati on in Spin System s

Wh en sys te ms consist ing of spins , which are interacti ng with each other , are subjec ted to

some constraints eithe r from env ironment or the nature of the ir inte rae t ions, theymight not

be able to sat isfy all th ese condit ions . Frust rat ionis th etermnsed to convey thi s state of t he

sys te m and as t he meani ng of t he word frust ra t ion sugges ts , th e syste m that is fru st rat ed

has a lot to do, or does not know what to do. It must sat isfy two or more int era ct ions which

do not genera lly cor respo nd to a simple definite classica l sta te. Frust rat ion in spin sys te ms

ca n have two di lferent or igins: compet ing intera ctions and la t t ice st ruc ture .

--L
J'

J) 0 , l' < 0

Figure 1.1: Competi ng interaction s in a line of spin resulti ng in frust ratio n. .1 > 0 is

t he excha nge intera ction cons ta nt between neighbourin g spins a nd.1' < 0 is the excha nge

intera ct ion constant betwee n next nearest neighbour ing spins

In sys te ms wit h different kinds of intera cti ons, wheth er th ey are differen t in origin or

magnitude, a spin may find it ha rd to sat isfy all inte ract ions with its neighb ourin g sites



com pletely and find a prop er orientation . As can be seen in Fignr e 1.1. a ferroma gnet ic

interaction (J> O) between nearest neighbours (nn), and an anti-f erroma gneti c int eraction

(.1 < 0) between next near est neighbours (nnn) . th e ferroma gneti c intera cti on between spins

2 and 3 cannot he satisfied if the anti -ferrom agnetic interacti on between spins 2 a", 1 4 are

/t\
~

Figur e 1.2: Lat tice frust rati on in a tria ngular syste m. In each case , t he red line shows the

Also,theconnectivityor stru ctur e ofthelattice mightbe suchthat it dOL'S not a llow all of

th e int eracti ons to be sat isfied. Latti ces such as trian gular (see Figur e 1.2), face- centr ed cubic

(fcc), or hexagonal close-pac ked (hcp) with anti-ferrom agnetic nearest neighbour intera cti ons

This kind of frustration which is du e to th e lattic e st ructure is ca lled "geomet ric frus-

tr ation " . Ceometri cally frustr at ed syste ms cannot minimize all of their bond intera ctions.

However the ground sta te in which each plaqu et te has its energy minimi zed must also he a

ground state for whole syste m [n] . Th e first experimenta l evidence for geomet rica l frustr a-

t ion in a ferroma gnet ic system goes back to 1997[12 ].



Figur e 1.3: Th e fcc unit cell of ErzTi20 7. Top left shows all of the atoms, eight copies of

chemical formula Er2T iz07. Top right and botto m left show the tetrah edral networks of

Ti and Er atoms.Th e bottom right shows the tetr ahedral network of Er a toms only. Th e

connections are exchange path s [23]

ErzTi20 7 was det ermin ed to be a cubic pyrochlore in 1965 [141 and has nearest neighb our

anti-ferromag nct ic interact ions between Er at oms which make it is geomet rically frust ra ted .



It belongs to th e space group Fd3m (#227 ,OJ.) with fcc latti ce tran slati ons (see Sectio n

(4.2)). Th ere are two copies of th e chemica l formul a per primiti ve unit. ccII lind eight. copies

perface-centr ed cubic unit cell. Erbium and t itan ium bot.h fonn te trn hcdra l networks. T he

magneti c prop erti es are du e to th e erbium atoms which form a te tra hedra l network shown

in the bott om right of th e Figur e 1.3. Th e Er+3 ion has a 4j1 1 configuratio n in a "IIf (L=6,

S=~ ..J= -\f) sta te according to Hund 's rules . T he large value of L suggests a significant

amount of anisotro py in the syste m. T he erbium spins show a magnet.icorderin g transit.ion

at ~ 1.2 K [13] which does not have an explanat ion yet. A poss ible explana t ion is discussed

in Sect ion (5 .3.2).

1.4 Tetrahedr al N etwork

In Er2T i20 7 , both erbium a nd ti tanium occupy the vert ices of tetrahedral networks, however

we are only concerned wit h th e erbium network , Th e edges of the te tr ahedr a are nearest -

neighb our exchange path s. Th e tetra hedr a ap pea r in two differen t orientati ons (as can be

seen in Figur e 1.3) th at we call A and l3 which alte rna te in the network. Every A t.etrahedron

is connecte d to four l3 tetrah edra , and vice versa . T he set of A tet rah edra are relate d to t.he

setofl3 te tra hedra by some of th e symmetry elements of th e space gro up Fd3m.

A single te tra hedro n is a set of six exchange path s . Th e primiti ve unit cell conta ins twelve

exchange path s th at belong t.o one A tet rah edron and one l3 tet rah edron . Th e excha nge

interaction onthe entirelat t ice canbe convenientl ydividedintotwopar t.s. th e sum over all

A t.et.rah edra and th e sum over all l3 tetrah edra . If one of these part s is neglected th en th e

prob lem of the exchange interacti on on th e latti ce is grea tly simplified to r.ho pro blom of the

exchange interactiollonasillgle tctrahedrOll. which has exact solut ions. However, it imp lies

t.hat the space gro up symmetry is lowered via a latti ce disto rtio n [22].

T he isolati on of single tct ra hodra is suggested by neut ron scattering exper iments. a nd



exact calcnlat ion ofe igensta tcs ofasinglc tet ra hcdron may help us to find the stat e of thc

network genera lly [221. Th e reason why this ca ll he tru e is st ill unres olved since because of

thc conneclivit y ofthisnetwork . cigcnstat cs of a singletetra hedron shonldnotnccessari ly

form eigenstat es of the entire network. It was proposed by Curuoe [221 that a kind of

latt ieedistorti on.whichlowersthepoint gronp symmctr ybnt lcavcs the crys ta l system

unchanged, can be applied to relieve geometrical frust rati on and arrive to an ordere d sta le .

Thi s distorti on docs not remove the frustrati on symmet ry bnt it will lead to isolati on of

single tetrah edra .

1.5 Crystal Electri c Field

T here arc four Er ions in the primitive unit cell. T heir local site symmet ry (due to the

electri c field of the surro unding atoms in the crysta l) is D:ld ' where the 3-fold axes point

along the different directions shown in Figure 1,4 [21j. The crystal electr ic field splits the

lfi-fold degeneracy of theJ = 15/ 2mnltiplet. into singlets and doub lets ; the ground sta te is

the doublet [2Gj.

I± ) = =r=0,475I ± ¥)-0,4181±~) ± 0.5721± ~ ) ± 0.2.tll =r= ~ ) =r= 0,4G31=r= ¥) (1.1)

where t he quanti zati ou axis (c ax is) isalongthe 3-fold axisfor each sit e. T hese sta tes teud

to lie in the plane perpendi cular to the 3-fold axis. th erefore it said th at they have easy pia lie

anisotro py [13j.

Inthis thcsis.in order ac('Quntforthemagneticorderingwhichwas exper imcnt ally

observed in Er1Ti10 7. we begin with exac t solut ions of a single A type tetra hedron . and add

tho cffoct of 13typ e tet rah edra pert urbat ively. \\' e ('()nsider two A type tctra hedra . perturhed

by two 13type tetr ahedra with periodic boundary cond it ions and calculate the ground sta te

of the system (St'CChapter 5).
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Figure 1.4: LOCAI3-fold (quAnti zAtion or z Axis) sit cs on A tet rnhedron [231.

In following Cha pter , the quantu m mechanical concepts, tools And meth od s used in thi s

th esis ar c introdu ced. Chapte r 3 introdu ces electron spin And its prop er ties, AS well AS spin

systems, An introduction to gronptheoryand the space group Fd 3m is t he main suhject of

Chnpter4. In Chapte r 5, we discuss the ground sta te for a single tetrah edron and we use

perturbation t heory in order to lind the ground sta te oftwo te trahedra. T he lina l Chapter

conta ins tho conclusion and possib le furt her works on the subjec t.



Chapter 2

Introductory Quantum Mechanics

2.1 Foundation s of Quantum Mechanics

Quant um theory is the math emati cal tool for describin g how the physical world works in

smaller scales. It may be, and it seems likely, that it does not have anything to do with the

real underlying mechanism of physical phenomena, but above all the phi losophica l debat es.

it agrees with experiments. Feynm an made a state ment in one of his lectures which describ es

the quantum behavior of the natu re versus the philosophy hehindit. He said: "A philosopher'

once said: It is necessary for the uert] exis tence of the science that the sam e comli iians aluuujs

produce the same results ... Well, They don 't ' [1). For example, in the case of the double slit

exper iment. natu re herself docs not know which way the electron is going. even thongh it is

prepared in the same way. Furt hermore , as nature does not know hersclLthore is no wnyto

resolve the problem more inorder to findsome hiddenaspects insideanclectro nwhichcan

predict its exact tra jec tory. Any fnrther resolut ion in the double slit experiment in order to

trac k the clectro n down would destro y th e interference patt ern [1].

Quant.um rnechanics, like the other physical laws of nature . agrees wit h observat ion.

However, it docs not give us any mechanism of how nat nrc actually works. just as some



other laws do not (such as gravity). Ot herwise, nature should be a great mat hematician to

calculate her wave-funct ion cont inuously in order to find her next move [1, 21.

Quantum mechanics can charac terize the physical model by definingsta tes,obscrvables.

llleasur elllents anddynalllies[3 ]. Stat es arethec ompletedescripti ons oft hep hysieal systellls.

Th ey are considered as elements of the Hilbert space which is a complex vector space with

a well defined norm and inner product, Observab lcs are prop erti es of physical systems that

can be measured in principle. In quantum mechanics observables aresclf-adjointopera tors

which have real eigenvalues and orth ogona l cigeusta tes. A measur ement is the numerical

outcome of an operati on of the observable on the sta te of the system. Dynamics of the

system. unlike classical dynamics, are governed by a linear equa tion (Schriidinger equation)

[2,31·

2.1.1 States

In classical mechanics, the sta te ofa part icle at. any given t imet is specified by its position

r(t) and momentu m pu ) as a point in two dimensional phase space [41. However in quantum

lllechan ics st.at es areclement.softhe Hilbert. spaceH . A system made of single components

can be described by t.he stat.e II/J). H n systcm is made oft. wo components (bipart ite) ,

with onc component Iiving iu H I and the other in H 2 • thenthe syst.em is known to live in

H = H10H2• Thi s state is known as a tensor product. st.ate or a separa ble stat e, which

admits t.he elassieal int.erpre ta t ionsuch t.ha t the first. system is in st.at.el l/Ji) and tho second

one is inI 1/J2).Sllchst.at.es have t.hegeneral formof

(2.1)

where 1 and 2 denot.e t.he syst.em label, and i,j are differentsta tes t.hat these systems can

have. T he dimension of separa ble sta tes is obviously dimll l+ dim H 2. However the total

space hasa different dimensionas the nllmbero fco efficient in ll/Ji.j) illlpliesa nd is the prodllct



dim II I x dim H2 . Th e missing sta tes are those which arc not separa ble. that is. they cannot

he factored as product of two separa te sta tes . Th ey arc known as enta ngled sta tes [3). Th e

fact that the total dimension of the product sta tes is much larger than just the add it ion of

thedimension of jnst the two. in genera l. tcllsnsthat most of thesta tcs ina Hilber t space

ofa bipart ite svstem are entang led which ca nnot have classical descripti ons.

2.1.2 Ob servable

Obscrvabl es arc the prop erti es of physical systems that can be determin ed by a series of

ohserm tions. which haveeo rrcsponding Hermit iano perators whichactont he !l ilhertSpace

II . As their namesuggests .ohscrm hle values in prineipleco uld he verificd as an outcome of

experiment. In quantum mochanies. ohservnbles are Hermit ian operators [2].

Observnbles and theirdefi llitiolls are somet imes collsidered as postu latcs in quant.um tuo-

chan ics (Born interpretation of quantum mechan ics}. To any self-consistent and well defined

observabl e in physics, such as m ass or energy or angu lar momentu m, there corresponds a

!Iermiti an operator A such that measurement of Awill rcsult in eigenvalues of A [51 .

2.1.3 M ea surem ent

Measurem ent in quantum mechanics has been a subjectof debat e between thc founders and

also the opponents of quantum theory. T he measu rement problem arises when you ask .

"What was the sta te of the syst em just hefore the measurement?" . Th e answer 10 this

quest ion leads to different inter pretat ionso f quant um th",ry. Accordin g to the Copcnhagcn

interpr ctati on ofquantummcehanies. which is mainly accepted by theorist s based on obscr-

vat ion. measur ement not only disturb s t he system. but also produ ces the result. Aftrr the

m easurement. the wave functiou of the system is totally disturb ed and has collapsed 10 a

sta te which is the outcome of this measur ement , andsuhsequent lyevolvcs ae('()rd ing to the



Schr6dingcrcquat ion.

2.1. 4 D yn ami cs of t he System

Sta tes are a complete descrip tion of physical systems. In rlassicnl mcchan ics, thesta teofa

particl e in any given time is a point in Gdimensional phase spare (iandjJ) ,and the density

matr ix, which is an ensemble of different sta tes with various prob abilit y evolut.ions is given

by the Lioiunl le equation . In quantum mechanics, the dynamics of a sta te is governed by

the Schrodinger equat ion,

(2.2)

which is a linear equat ion. The Hon the right hand side is the Hamilt onian which is almost

the same as the classical Ham iltonian with corresponding opera tors for each observa ble.

Basically each Hamiltonian consists of different tenu s. Degrees of complexity in these terms

determin es the complexity of the problem. Wo can say our probl em will reduce to finding

solutions fortheSchr6dingerequa tion for differentcasesofHwhich does not always have

2.2 Solution to th e Schrodinger Equation

The Schrodinger equat ion (SE) plays a role ana logous to Newto n's second law in classical

mechanics; having the initial condit ion !/J(r, 0), th e SE determin es !/J(r, t) for all futur e t imes.

However, fiuding cigenstates for a specific Hamilt onian is not an easy task genera lly. Once

yon have the eigensta tes th e rest is stra ight forwar d. But the main prob lem is solving an

eigenvalue equa tion for given Hamilt onian . Most of the time, even for simple well-known

cases like the harm onic oscillator potentia l, we use math emati cal tricks in order to simplify

the problem. T he SE has been solved for a wide ra nge of pot enti als [2, 4, 51. However,



as in class ical mechani cs, t he numb er of prob lems which can be solved exac t ly is sma ll. In

th e maj orit y of cases, we have to use some approx ima t ion in order to solve the prob lem .

Differen t approx imat ion meth ods are known and are widely used in tackling differeut prob-

lcins: perturbati on th eory, th e WK 13approximat ion, th e variat iona l prin ciple, t he adiabat ic

approx ima t ion and th e 130m approximat ion are some of these met hod s. All of these moth-

ods are well discussed inmost quan tum mechani cal tex t boo ks. In this thesis, we solve the

SE th at uses th e Hamiltonian known as Heisenberg-Dir ac Hami ltonian , using perturbati on

theory.

2.3 The Heis enberg-Dirac Hamiltonian

If we want to includ e magneti c interact ions in the Ham iltonian, we should consider th at

the depend ence of th e interac t ion energy of two or more magneti c moment s on th eir rela-

t.ive dir ecti ons is domin at ed by electr osta tic interact ions, ra ther than magnet ic ones [6). An

est ima te of magnet ic dipolar int era cti on energ ies in elect rons in solids typically 2 A apa rt

is no more th an 10- 4 eV [61. A well-just ified model of magnetic int eracti ons applicable to

insulat ors (and with considera ble modificati ons to metals) which was dcvclopcd forthe cese

ofa single hyd rogen molecule, was also genera lized to real solids. In th e case of rea l crvs-

ta l. the Heisenb erg-Dirac Hamilt onian is a simpler math emati cal model , t han th e orig ina l

Hamil tonian , which consists of elect ron-elect ron interacti on terms which cannot always be

treated eas ily. T he Heisenberg-Dirac Hamiltonia n should lead to an energy spectru m tha t

is similar to that of th e origina l Hamilt onian (t he SE with th e relevant potent ial te rms). If

we ass ume th at the crys ta l form s in a similar way asa hydrogen molecule, which consists

of individua l atoms conta ining one electron in the gro und sta te , th en the excha nge Hamil -

tonian is equivalent to the original Hamilt onian. The Heisenberg-Dira c Hamiltonian was



constructed for such a two-electron sys tem as follows:

(2.:l)

.J= E, - E, (2.4)

where E, sta nds for singlet energy and E, for tr ipletenergy, whorc singlct and tripl et are th e

possib le spin configura tions. Since H s pi " is th e sca ler product of th e vector spin opera tors ,

it depend s on th e relat ive orienta tio n of spins and it will favour para llel spins if'Ll s positl ve

and ant i-pa ra llel spins if.J is negati ve. It is d ear that .J is posit ive or negati ve dependin g

on which energy is lower, which is consistent with th e fact t ha t spins are pa ra llel in tripl et

and a nt i-para llel in singlet [6J. In case of large number of ions,i n many cascs of intorcstv the

form of Heisenberg-Dirac Hami ltonian can be genera lized to a ll pairs of ions

(2.5)

If the angular momentum of each ion conta ins an or bita l as well as a spin par t. th en th e

coupling consta nt depends on th e absolute as well as relat ive spin or ientat ion and

(2.0)

where .T is th e tot al angular mom cnt mu . T he exchange int eracti on is a purel y quantum

mecha nical effect and it is th e resu lt of the wave function of indist.inguishabl c par t icles being

subjected to exchange symmet ry and both bosons and fermi ons ean expericn re it.

2.3.1 Solutions to th e Hei senb erg-Dirac Hamiltoni an

Finding th o ground sta te of the ant i-ferro mag net ic Heisenberg-Dirac Hamiltonian is an un

solved problem a nd only in one special case of a spin ~ array in one dimension is the prob lem

solvable ana lyt ically [6J. \Vhen we move on to more complicate d geomet ries, it is almost im

possibl e to have an ana lytic solut ion . Numerical meth ods like Monte Ca rlo simulatio ns are



Ilsedin orderto solveHeisenberg-Diracllamilt onianinditrerent geomet ries an d canbe eas-

ily performed on a magnetic system. However . in th is thesis, an ana lyt ical approa ch based

on symmetry groups was tak en in order to solve the Heisenberg-Dirac Hamilt onian in the

specific case of the pyrochlore latti ce with the a id of pcrt urba tion th cory.

2.4 P erturbati on Th eory

2.4 .1 Ge neral Form ulat ion

Suppose that cigeufunct ions of a Hamil tonian HOare known:

(2.7)

Now we pcrturb H'' by adding some term to it called H' .

H = HO+>..H' . (2.8)

The factor >.. is to ensure that H' is small enough so that it does not cha nge theeigensta tes

of the system drasti cally, and math emat ically makes it possible to cxpand the solut.ions in a

power series. For iarge vailles of>..pert nrb atio ntheory does not necessarily hold. as the series

might not converge. Perturb ation theory is asystemat ic approach to obtain approximate

solut ions to the Schriidinger equat ion [21. We rewrit e our t ime independent (SE) for the

general new Ham iltoni an H:

(2.!J)

We write I!/',,) and IE,,) as power series in >..:



The meth od is very simple when the eigenvalne E~ is non degenera te. \Ve ass ume this for

the remainder of th is subsectio n. E,~ is t he first order correction to th e nt h energy level. as

1l,!J,~) is t he first order correct ion to the nt h eigenstate. If we subst it ute E" and 1l,!J,, ) by the

the series above in (2.9), alld also nse e'l uat ion (2.8) and then order by order in A we have

HOIl,!J?,) + A(Holl,!J;') + H' Il,!J?,)) + A2(Holl,!J;') + H'I l,!J;,)) +

E?'It/J?,) + A(E?,1t/J;,)+ E~ I l,!J:: ) ) + A2 (E?' I ~J ;' ) + E~ I t/J ,I.) + E;' I l,!J~ ) ) + ... (2.12)

T he above equat ion is solved seprat ely for each power in A [7]:

(HO- E?'M;,) + (H' - E,~M?' ) = 0 (2.].j)

(HO- E?')It/J;') + (H' - E,~M;, ) - E;, I ~J~ ) = 0 (2.15)

(HO- E?'M ;;' ) + (H' - E;,M ;;'- I) . . . - E;;' Il,!J?') = 0 (2.IG)

For the remaind er of this cha pt er, the pert.urb at ive meth od is from Oiuuuu ni Mectum ics iv :

Messiah [71. We can select t he phase so that (l,!J?Il,!Jn) = (l,!J~ Il,!J?) = 1. Using (l,!J" I~J,,) = I we

(2.17)

I3y consideringtheco ndit ions in (2.17). Eq, (2.13) will give us the first ord er perturbed wave

functio n and energy. while (2.14) will give us second order and (2.15) will give us mth order.

One can use the Eq. (2.16) to extra ct E~' by proje ctin g on to th e eigenfuncti ons of HO:

(2.18)

However , we have to obtain 14J;;,- I) in order to find this energy. Also. by proj ectin g on to

other basis vector s of H O we can find the corre sponding compo nent of 1l,!J;;') along each of

thcm when (E? # E;:'):



Since (t/J~14J~') = 0, I t/J~' ) can be complete ly det ermin ed . We define an op erat or as follows:

Qo == 1 - 14J::)(t/J::I = L L I~J)')UJ?I
E?# J';:.tt l

With th e aid of th is not a tion , one can write It/J:,n) as follows:

(2.20)

(2.21)

In principle, we ca n use perturba t ion th eory in ord er to find mth or der correc t ion t.o t.he

sta te and also t.o the energy of t he st a te. In short- ha nd not ati on [2], \!In == (ljIl' lli 'It/J::),

t> /n == E)' - E~ th e first t hree corre ct ions to n t h ene rgy level a re

E,~ = \!1m

E~ = ~ 1~,:~2

E~ = /~k V~l~:~',::' l - \!1m~ l ~f~2.

2.4.2 Degen erate P erturbation Th eor y (D P T )

(2.23)

(2.2.1)

(2.25)

Dep endin g on t he symmet ry of Hamiltonian li o, it. is possib le th at two or mo re of its cigen-

sta tes have th e same energy. T he add it ion of the perturbat ion Hami lt oni an li 'might red uce

t.he symlllet ryof t he to tal li . In t ha t.c ase,t. he degenerac ies lllaybe lift.ed dne t.o t.he broken

symmetry of I l . Treat ing th o degenera te sta tes in perturbati on needs mor e care t ha n th e

non-deg enera te sta te s, s ince t.he de nollliniltor in (2 .20) conld be nndefined in cert ilincas es

which can not lead t.o valid answer unless the numerator a lso vanishes . So we shoulrl seek

Hnother approilch tot. heproblelll. Int. hiscase, eventhe first or dercorrect ion t.o t he enel'gies

det.erlllin edbyt.hefol'llln la oft. heprevions secti onisnotreliilble anymore.



If we consider the case of two eigenfunctions of If o with the same energy, it is clear that

a linear combinat ion of these sta tes is also an eigenfunct ion:

(2.26)

(2.27)

To find the zeroth order correct ion to the energy and first order correct ion to the wave

funct ion one find the matri x IV ;} == (1,0?IIf ' II/!J) wherei.j = 1, 2 and solve th e eigenvalue

equation

(2.28)

to find the first ordercorrec tio n to energy and zeroth order correct ion to wave funct ion. For

a dcgcncracy of ordcr u, one can exte nd the meth od above and bui ld an n x nmat rixll'"x"

which will again yield the zeroth order correct ion to the wavo-fuuc t ion and th e first order

correct ions to the eigenvalue. For finding higher order correct ions, one can take the following

steps [7]:

1. Th e unp erturb ed Hamilt onian should be writte n in diagonal form . T he representation

of If o on the basis II/J~) has its eigenvalues along the d iagonal.

2. \Ve define the project ion opera tor Po which projects out the degenerat e eigenfunct ions

(those we wish to apply theperturha tion to).:

(2.29)

where j is the degreeof degeneracy corrl'sponding to thcsubspace ofI I/J::). lf lJo is

diagonal. then Po has ls in the diagonal components and zeros everywhere else.

3. \Vc find the matrix ~ dcfinl'd by(2.2 1 ).



4. \Ve have to write the matri x H' using the same basis as the unp erturbed diagonal

Hamiltoni an HO

5. \Vc const ruct an opera tor called 1( , which is a posit ive-definite Hermiti an opera tor.

(2.:30)

and find its matrix representation.

G. \Ve constru ct another operator called H; which is alsoa Hermitianopcrat or.

and find its mat rix representat ion.

7. \Ve solve the following equat ion which is a genera lized eigenvalue equat ion.

(2.32)

T he eigenvalues Eo are the desired cigcncncrgics which arc the solut.ion of this secular

eq ua tion:

8. \Vc find thc projcctor opera tor:

det (Ho - x/{ o) = 0. (2.33)

T he projectionofthe corresponding eigcnvcctor s lljJ?) in (2.33) are tho eigenvecto rs of

H' .

In this thesis. these steps were followed in order to find the first order perturbed sta tes and

also shifts in energies as the result ofa perturb ati on. A complete descript ion of degenerat e

pertur bat ion thcory is given by Messiah [7].



In sununary we discusscd the basic quantu m mechanical too ls includin g degenera te per-

tnrbati on theory. In Chapter 5, we will use these met hods to solve the problem of finding

spin states on the pyrochlore latti ce with exchange interactions. ln the following chnptcr . wc

intr oduce the concept of spin and basics of frustr ation in spin syst.oms v as the investigated

system Er2Ti20 7 is a frustr at ed system.



Chapter 3

Spin and Spin Systems

T he univer se is an enor m ous d irect product of repr es entations of sy m me t ry

gro ups. Steven Weinberg

3.1 Electron Spin

Spin is a Iundnm ental obscrvab le in quuntum mechanics which lacks a class ica l ana log. T he

first model of electron spin was a charged sphere rot ati ng with fixed frequency and a radius

given by

(3.1)

Th en it was shown th at th e velocity of th e surface of th e spinning elect ron should exceed th e

speed of light in orde r to produ ce th e electron 's angular momentum j . Th e ana logy with

classical spin was aba ndoned . a III I th e slllT",,-s ofquant ized angular mom entum in explaining

spin relat ed phenom ena led to its accepta nce [8]. Accordin g to observat ion, if we prepare a

spin in any mann er and put it in magneti c field. it may emit a photon with a spccific cuergy

corrcs po nding to th e energy of flippin g the magneti c moment s 180degrccs . while a classical

magneti c moment ca n emit a continuous spect ru m of photon s from 0 to 180 degrees . It



seems that ifw emeasurethe spi no f lmel eetron in any direction . it is either in t ha t direcr iou

or opposing that direction and it is neversomething in between . It is either up or down, and

we get a specific photon or we do not get anything. Thi s pictur e of the electron makes it

dilferentfrom anyclassical count erpart.. lnthreedimensional space,weusethrL'C operat ors

which act on the spin sta te in order to measur e the spin in x or y or z direct ion . T he

quantum mechanical opera tor associa ted with spin observables are the Pauli spin matri ces

times a factor of~:

a, = (01), ay = (0-' ), a, = (1 0). (3.2)10 1 0 0-1

Th e cigcnfuncr.ious of o, are:

(:l.3)

Suppose we measure the z compo nent of a spin lind it turns out to he eit her up or down.

What is the component of the same spin in x or !J directio n? In order to find the answer

one should measur e the desired direction of that spin. As menti oned in Sect ion (2.1.3).

measu rement isanoutcomeof thcohserm hlewhich isa Hermiti an opera tor which in thi s

could he a, oray ora, . Thi s suggests that successive applicat ion of spin opera tors as it is

in up 1+)or down 1-) eigensta tes of a, will result in:

a,I+) = I-) a,I- ) = 1+)

ayl+) = 11- ) ayl-) = -11+ )

a,I+) = 1+) a,I- ) = -I-)

(3..1)



3.2 Spin Syst ems

In a biparti te state as describ ed in Sect ion (2.1.1) one component can Iive in H,andanother

one in Hz. so the tot al sta te of the system can he found by ta king the tensorprodurtIdirect

prod uct ) of the two sta tes. For example, if th e first particl e has spin ~ and the second has

-~ . the tensor prod uct is

The spin observables can be const ruc ted in a similar way, for example:

T he operator (3.G) will measur e the x component of the first spin and y component. of the

second spin. T his meth od in prin ciple can be used for n elect rons living indifferent. Hilbert

spaces. III t his mnun er, measuring th e spin Oil sys te ms cons isting of two 0 rmorc spins would

reduce to opera t ing th e produ ct matri x on the produ ct state .

3.2.1 Ex act ly So lve d Mod el in Frustrated Systems

The first frust rat ed system which was studied was the tr iangular latt ice wit.h Ising spins and

nn anti -ferromagnet icinteractions [10]. If we consider an Ising-like interaction of t.he form

E = - .f(S, .~) (3.7)



where J is th e interacti on consta nt th at can be positi ve (ferro mag net ic intera ction ) or neg-

ative (anti -ferro mag nen c intera cti on). Obviously for a ferrom agneti c syste m th e mininnun

of energy is the configura tion when all th e spins arc point ing in th e sa me direct ion in any

latti ce sys tem. However, this is not th e case for ant i-ferro mag net ic intera ction . In th eXY

Heisenberg model , th e ground state of the t riangular lat.ticc can be found by minimi zing the

energy of th e a tri angle. If we consider S, (i = 1, 2, 3) to be th e magni tud e of spin on site i

and() ; be th e angle th at it makes with posit.ive z dir ecti on , th en the energy funct ion would

where S= (S"S, J. In order to find th e minimum energy of th e sys tem, we should minimi ze

th e energy with respect to each variable of the energy functi on

DE DE DE
DB; r s; = 750;;= 0. (:J.9)

By solving the conpled equa tio n (3.9), one can find the th o solutio n for a tri angular latti ce

which is obvious even without furth er ana lysis (()I - ()2 = ()2 - ()" = ()"- 01 = 12()O)[9).

Th e same pro cedur e could be used to solve the case of frustrat ed squa re plaqu ettc with an

anti-fcrro mag nctic bond . However, these are the rare cases that the mod el has a ll exac t

solut ion. Two frequ entl y encountere d frustrated spin systems with n.n. ant i-ferro mag netic

are fcc and hcp latti ce which are forrned by stac king tet rah edra with four tri angular fares.

In summary , in thi s cha pte r , th e basi cs of spin and sp in syst ems and also spin frust ration

were int rodu ced . In following cha pter , basic of gro up th eory is discussed as a ma thematical

tool which is used in applying th ese syuunctry properti es to th e Hamilt onian and finding

th c eigcnstutes .



Chapter 4

Group Theory and the Spin State of a

Single Tetrahedron

To t hose who do not kn ow ma th em a t ics it is di fficul t to get acro ss a rea l fee ling

as t o t he b eau ty, t he deep est b ea ut y, of nature . Richard P. Foynuian

4 .1 Point Groups and Space Groups

Group theory is a mat hemati cal formalism developed to study symmetry. Physics laws are

a math emati cal interpr et ati on of symmetries in natur e. The symmetry of a crys ta l plays

an illlporta nt role in thestudyof different phenomena like the diffract ion of lightor lhe

electro nic and magnetic st ruct ure of crysta l. Th e ideas of [mint groups and space qroups

provide us with tools which arc used in studying t11(1~C phenomena. In following sect ions. a

hrief sunlln ary andbasicdefinitionsnecdedtollnderst andthcsetools arc given.

A regular arra y of points in thr ee dimensions which are mainly fixed in their places is

the definit ionofa latt ice. and if each ofthesc point s is occupied bya basis (which can

he a molocnle or a singlc atom) then we have a crys tal. Since cryst a ls do not extend to



infinity in all directions, we may impose periodic bound ary conditions in order to conceal

the effect of finite size. Symmet ry tran sformati ons on crystal are classified in to two types:

(i) tra nslat ions and (ii) rot atio ns, reflcctious and inversions. Th e latt er typ e are known as

point !l1"OU]! sym me tri es due to the fact that they leave at leas t one point fixed in space

while opera t ing on the system. If point gronpsymmetries accompanied by the t ran slat ions,

then they together consti tut e the space qroup symme tries. Crysta ls possesses space group

symmetries while molecules possess only point group symmetries (except in the case of very

long polymer chains). T here arc 32 distin ct point groups nnd 230 distin ct space groups.

4.1.1 Tra ns lations

T he space group of a crysta l is th e set of synunetry opera tions that leave the crystal lattic e

invariant. A crysta l has the property of being unchanged by tran slation s thro ugh certain

dista nces in certni n dircctions, as it has spatial periodicity. Translation vectors in a latt ice

can be writte n in a genera l form:

T(k, l,m) = k1li + lli2+ rl1li; (.J.l)

where (k.l,m) are integers and u] . 10and I'"are the set smallest of linearly independent

tra nslat ions. Every symmetry operation of the crysta l latt ice is a combinat ion 0 f a tra nslation

T and point group operat ion P. Th e Seitz opera tor {P I T} will denote this combina t ion as

{P I T} r = P r - T

where r is the posit ion vector of some point in the latt ice.

T he successive operat ion of two such clements will result in the following:

(.J.2)

(.J.3)



And the inverse of an element is given by:

(4.4)

Generally, tran slati ons do not commute with point group elements, Moreover, the trau sla-

tional sYlIlmetries of a crystal are l'OlIlplet elydeterlllined hy the fourt een types of Bravais

lattices [15, 17]. We can consklcrn subgroup T asthetranslatio na l sllhgrollp ofthe space

group G. Elements of the group T arc the tra nslat ion opera tors {E I r } where r arc lat tice

tra nslat ions given by (4.1) and E is identi ty clement. Clearly, all tra nslations para llel to

,ij fonn a subgroup Tj, and similarly for the direct ions Ii; and 1l3. Since elements of the

subgroups T,,, , Tu; and Tu; commute (all translati ons commute), group T is Abelian and a

direct produ ct of the three subgroups:

(4.5)

Ifw o assume that the crysta l is infinite, then we have infinite numb er of tran slations. T his

inconvenience is solved by the Born-von Karman (periodic) bound ary condit ion. We nssume

th at crysta l has N 1 primiti ve cells along uj axis. Using Seitz opera tors we can express t he

{E I N ,uj} = {E IO}. (4.G)

By using periodic bound ary cond it ions we limited the number of tra nslat ions along the ,ij

axes toNx l and the same pro cedure can be used for th e ot her two ax is. T he totnl uumbcr

of elements in group T is therefore N = N 1N2 N: l '

4.1.2 Group Rep resen tati on

In order to introdu ce the concept of a representat ion of a group, we give an example of

a simple useful group and will find its representa tions [18, 19). T he Schriidinger group is



defined as th e set of symmetry opera tors which leave the Hamiltonian invari an t. It follows

that Hamil tonian commutes with all of th e Schrodinger group operat ions g:

gHg- 1 = H => gH = Ng,

T hen if ~) is an eigenstate of H . so is g ~) with the same eigenvalue E,

g(H !/J ) = H(g~) ) = E(g!/J ).

Now suppose th at the eigenvalue E of H has an N- fold degeneracy,

H I'Pi ) = EI'Pi); i = 1, 2, ..., N .

(4 ,7)

(4.8 )

(4.9)

T hen any other state found as the result of opera t ing clements of the Schro di ngcr group on

anyl 'Pj) must be the linear combina t ion of l'Pi) 's

(4.10)

T he coefficients Cij form an N x N matri x G(gk) which corresponds to the opera t ion gk of

t he group G , sothe above equat ion can be more compact ly rewritt enas :

(4.11)

T he set of matri ces G (gd is ca lled a representat ion of th e gro up Gand th e set of funct ions

1'1') = l'Pl'P2...'Pn) is called the bas is of the representation. For example, suppose tha t we

have a non- degenerat e basis 1'1') and a doubl y-degenerat e basis 1'!/Jr,2) wit h representations

G",(g) andG"Jg ):

gl'Pl) = G",(g)l tl'Pl) ,

g l1/Jl!/J2) = ( G",(g)1l G"'(9)12 ) l!/Jl!/J2)'

G",(g), l G",(gln

(4.12)

(4.13)



If wc combin c th c basis I'PI) and 1,p1 ,p1) into a th rcc-dimcnsional basis l'PI,pI,pz) = II), the

corrcs pon ding matri x Cj Ic) can bc writt en as:

(H I )

T he matrix GI (.'J) has a block-diagonal form , where th e blocks ares quarc matri ccs of differcnt

sizes. Representati ons of this form arc sa id to be reducible [16]. Gro up theory provides us

with ways to redu ce represe nta t ions or te lls us th at such a task is imp ossibl e. in which casc

thereprescntat ion is sa id to bc irredu cible. In general , th cbases of irredu cible representations

are sets of dogenerate eigcnsta tes [16, 18].

T he energies and wave functions of an electro n in a crysta l are soluf.ions of th c Schrodinger

equa tion. T he pote nt ial ter m in the equation is due to th e period ic latt ice. T he full symmet ry

group of Hamil tonian is the space gro up to which the crys ta l belongs. T he solution to th e

Schriidinger equa t ion in a periodi c latt ice turns out to have the form of Bloch functi ons

which arc introduced in next sect ion. In the simplest case, if t he pot enti al is neglected or

approx imate d as zero , t hen the electro ns arc "free" and th e solut ions arc

q,,( I') = exp( ik · T) E(k) =~ (4.15)

Accordingto I31och's theorc m in thecaseofa pcr iodicpotcnt ial,theeigenfllnct ions have clef-

initctran slati onprop crti esdctcrmin edby th c wavc vector k and eigcnfllnctions at cqllivalent

points in different uni t cells are simp ly relate d by a phase fact or.

4.1.3 Bloch's Theorem and Symmetry in th e R eciprocal Lattice

Consider the cigenvalue equat iou:

H I'P(I')) = E I'P(I'))· (4.16)



If the pot enti al term in H is in the form of V (l' ) = V (f + f) , then Hamil toni an is invariant

undcr the translatiou gro up, and thc cigenfuuct ions e fr) can he 11sed to genera te an irre

ducihle representati on ofT. T he opera tion of any element of Ton ¢ (1') is just a scalar which

forms a representa t ion ofT with ¢ (1') as the basis. T he action of any tr anslation Pk,l . tn on

¢(1') is

and hydefinition we alsohave

Pk.l.m ¢(l' ) =c(I.: , I, rn)¢(I·) (4.17)

(4.18)

where Iii , 112 and Ii; are primiti ve latt ice translat ion vectors. For inst ance, opera ting PJ.(I .O

on ¢(1'),N1 t imes yields

PN ,.O.O¢(l') = c(N" O,O)¢(l') = c(I , O,Ot' ¢(I') (4.19)

and using the periodic:bound ary condition weo hta in

C( I, O, O) =eXP(27fi~ )

wherc rn, is an integer. Th erefore the genera l form ofc(I.:, I,rn)

T he definit ion of fundamental t ranslati ons in reciprocal latti ce is

(4.20)

(4.21)

A genera l k vectorof recipro cal latti ce can be writte n as a linear combinat ion ofv \ , IS and

(4.23)



whcrelll ' s are int cgers.lfcoeflicicnt s W. . ~ and R: arcintcgcrsthcn snchvcclors are cHlled

reciprocallatti ccvector swhich aredenoted

G(h.k. l) = 11I';j + kl'i + l lij

T he sca lcr productofa gencra lkvectorand a tr anslati on vectors f] k. m.l ) is then

k. r (k.m . l) = 2 71"(~ +~ + "~:" )

and c(k. l. lII) can he writt en as

c(k. III . I ) = exp[ ik.r(k. IIl. I))

As a special case if we replace k hy Gthen

(4.2-1)

(4.25)

(4.26)

G· r (k.lII .l ) = 271"( hk + kl + 1111 ) = 271" x int eqer (4.27)

Th erefore the cignfun ction s ¢( r) have the prop erty of

¢(,..,+ r) = exp [i( k · T)]¢(r)

which can be sa t isfied if and only if ¢ (r ) has the form

¢(r ) =exp[ ik' ''' "dr)

(4.28)

(4.29)

whcrct hcfunction lIdr) is periodic funct ion with the snme periodicityof thc laltic e. Bloch's

theorem simply sta tes that in periodic potenti al, eigenfunct ions has thc form of (4.29).

T hereciprocal lattic e has thc SHmc point grollp symmet ry as the dircct latt icc. a lthough

itmaynotllll\'cthc SHmct ypc ofl atti cc. for cxmnplc ahccl atti cc indirecl space corrcsp ollds

to a fcc latti ce in rec iprocal space . Ifw c chose a latti ce point in thr ee dimension in a given

latti (·e.thc volllllle containingpoilltsllearer. orthcmost cC[uidistant .tothe choscnlatti ce



point than to any oth er latti ce point is known as Wigner-Seitz cell. In oth er words. it is

the volume enclosed by the perpendi cular bisector s of the vecto rs from the chosen latt ice

point to all its neighbour s. Thi s cell has a part icular property among all unit cells which are

possib le to chose. which is th at it inherit s the full point symmet ry group of the latti co. Th e

\Vigner-Seitz cell in recipro cal lattic e is called the Bnl louin zone. Because of the properti es

lllenti oned ab ove,the so-calledl3rillouin zoneisthe convenient choice for th e unit cell in

rcciproca l Iatti co in the study of electronic st ructure of crysta ls. For every point on the

boundar y ofthel3rill ouin zone,thereis atleast one oth erpoint onthe bound ary which dif-

fers from the first by a reciprocal latt ice vector. All suchpoints onbound arYlll usttherefore

be tr eat ed the same and are assigned the thesallle value ofk [6, 15, 181.

T he point group of the vecto r k (the littl e group) is defined as the set of synunctr y op

orat ions that leave k invariant or tran sform it into an equivalent veetork +G. Irreducible

representa t ions of the litt legroupsofarecalled s1nallrel' resentations. Bloch funr-tions cor-

responding to equivalent voctors tr nnsfonn under the same reprosentnt ion so such n basis

is clearly reducible. The star of a arbit rary vector k [15], which is th e set of dcst.iuct J(

vcctors obtn incd by applying all the symmetry to k, determin es the irreducibl e basis for

tran slati on group when corresponding function s urc symmetrizod with respect to the small

representa tions of the vector k. Accordin gly. each irreducible represent ati on of the space

group is defined by k'and thesmall representa t ions.

4.2 Properties of th e Spa ce Group Fd 3rn

As mentioned in chapter one, the space group symmetry of Er2Ti20 7 is Fd3m (# 227, 0 ,,).

with fcc latti ce tran sition, and the point group is octa hedra l 0 " .

o is the group of proper rot ation s which take a cube or an octahedro n to itself (see



Figure 4.1: Rotational symmetries of a regular octa hedro n[20).

Fig.(4.1)). It has 24 clements : t he ident ity E , t hree C2 (1800
) rota t ions abo ut thez and

yand z axes, eight C3 (1200
) about the cubic body diagonals, six C4 (!JOO

) rot at ions about

x and y and z and six C2 rota t ions through origin para llel to the face diagonals (We usc

not ation as in l\!. Tinkham [20]). 0 " is the full oct ahedra l group with inversion, which is

the direct pro duct. of inversion i the and octa hedra l group: 0 ,,= 0 x i. 0 " is t he largest.

point group. It has 48 clements. A character table is a ta ble whose rows correspond to

irreduci ble group representatio ns, and columns correspond to classes of group clements. T he

entries consist of char acters, the trace of the matrices representi ng group clcments forcach

irred ucible rep res ent at ion. T he charac ter table of O, is shown in Table (4.1).



A I g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 -1 -1 1 1 - 1 1 1 - 1

E9 2 -1 0 0 2 2 0 - 1 2 0

r., 3 0 -1 1 -1 3 1 0 -1 -1

T2g 3 0 1 -1 -1 3 -1 0 -1 1

A I" 1 1 1 1 1 -1 -1 -1 -1 -1

A2lJ 1 1 -1 -1 1 -1 1 -1 -1 1

E" 2 -1 0 0 2 -2 0 1 -2 0

TI" 3 0 -1 1 -1 -3 -1 0 1 1

T2" 3 0 1 -1 -1 -3 1 0 1 -1

Tab le 4.1: T he cha racter table of the point group Oh.

With four Er ions per unit cell, th ere is a l ti-fold degenera cy of th e grouud sta tc for each

uni tcell , T he collect ive angular momentum sta tes can be writ ten as

I±±±±) == 1±)101±h 0 1±h0 1±).j (4.30)

where subscripts indicate the site numb er. Th ese sta tes are di vided according to rcprcscn-

tati ous by which they tra nsfor lIl llndertheoperat ionsof octa hedra l po int gro llpO,,, which

is the point group of th e cryst al, as A t gEl13Eg EI1 2T t g EI1 T 2g a singlet , 3 doub lets and 3

trip lets). T he sta tes are listed in Table 4.2 [211. As we always refer to even repr esentati on

wo omitthe subscript p.



4.3 Exchange Hamiltonian with Fd 3m Symmetry

T he space group Fd3m permitsa to ta lo f foll1'nearest neighbour excha nge interactions. T here

are four distin ct exchange terms that arc invariant under all the opera t ions of Fd3m. T hese

terms arc listed in Table 4.2, where Xi is the ith excha nge term for a single tetra hedrou. ln

Table 4.2, .J;is the tot al angular momentum opera tor for theith Ersitein the primit iveunit

cell. Th e axes of Jare chosen such that J; points in the direction of thc C3 site symmetry

axis at each site. i.e. .I'z point s in the [111j direction, etc. (see Figure 1.4). T he local x and

y axes arc chosen to obey the right-hand rule. T he terms listed in Table 4.2 can be extended

to tbe ent ire latti ce by applying all fcc latt ice tran slations. As discussed in Sect ion l .4.tbere

arc 12 excha nge path s in each pr imiti ve unit cell. These can be divided into two groups,

corresponding to th e edges of A tet rah edra and B tetr ahedra . These two contribut ions

arc the same (have the same coupling consta nts) when the space group is Fd3m.

(4.31)

where H A is the Hamil tonian of A type tet rahedra . In general, H A can be written as

(4.32)

Where CAi isthe ith coup ling eonstantfor an A typetetrah edon andXik itb exchange term

on thekth te tra hedron. k is summed over fcc latt ice sites. HIJ is the Hamiltonian of B type

tetra hedra . HIJ also have the same form of (4.32) with CIJ inst ead of CA' T he cigenstntes

of H A and H IJ can be found and are Dirac produ ct of the states of a single tet rahedron.

which arc given in Table (4.2). However, in genera l H A and H IJdo not necessarily commute;

they may have common eigenfunctions but genera lly they do not . But the experiments

agree with the single tet rah edra pictur e. T hus the single tetra hedra pictur e is difficult to

just ify. A suggestion was made by Ref. [24] that HA and Hn might have different coupling



consta nts such that the sma ller part (say fi ll ) be tre at ed perturbati vely, T he difference

betweenthe exchangeinteraction conpling const ant s impliesthattherei s a strtl ctn fllil att ice

distort ion which makes A tetr ahedra smaller and t he B tetrah edralarger. It is possible that

a verysmall lat tice distor t ion may produ ce a not iceable difference in between the coup ling

Intoract ious in Tab le (4.3) lift the sixtee n-fold degeneracy and split the stu tes into a

singlet. t hroe doublets and three tr iplets. which are depicted in Table (4.2). Bv convcnt iou

singlets arc shown by A . doublet s by E . and tri plets by T . Th e correspondence between

the states in Table (4.2) and our direct produ ct. sta tes arc shown in Table (5. 1) in following

chapte r. In following chapter, we use thc result s we found from group theory togeth er with

perturbati on th eor y in order to find the ground sta tes of the system.



IAI ) = (I+ + - - )+ I+ - + - )+ 1+- - +)

+1- + + -) + 1-+- +)+ 1- -+ +))!V'G

I E~)) = 1++++)
I E~I ) ) = 1- - --)

IE~) ) = (I+ - - -) + 1- + - -) + 1- - + -) + 1- - - +))/2

IE!?)) = - (I+ + + -) + I+ + - +)+ I+ - + +)+ 1- + + +))/2

IE£l))= (I+ + - -) +01+ - + -) +021 + - - +)

+1- - + +)+01- + - +) +021- + + -))y'6

I E~1)) =C.C.

ITg))= (02[ _1+ + + - )+ I+ + - +)+ I+ - + +) - 1- + + +)1

-0[1 + - - -) - 1- + - -) - 1- - + - )+ 1- - - +)])/2V2

I TI(~)) = (0[1+++ -) -I ++ - +)+ I+ - + +) -1- + ++) ]

_02[1+ - - - ) -1- + - - )+ 1- - + -) - 1- - - +)])/2V2

11'1(;)) = (I+ ++ - )+ I++- +) - 1+- ++) - 1-++ +)

- I+ - - - ) - 1- + - -) + 1- - + -) + 1- - - +))/2V2

ITg)) = (I+ - - +) -1- + + -))/ V2

I TI(~ ) ) = (I+ - + - ) -1 - + - +))/V2

ITg )) = (I+ + - -) - 1- - + +))/V2

IT2x ) = (02[_1+ + + -) + I+ + - +)+ I+ - + +) - 1- + + +)]

+0[1 + - - - ) - 1- + - -) - 1- - + -) + 1- - - +)])/2V2

IT2!J) = (E[I+++-) -I ++ - +)+ I+ -++) -1 -+ ++) ]

+0 2[1+ - - - ) - 1- + - -) + 1- - + -) -1- - - +)])/2V2

11'2, ) = (I+ + + -) + I+ + - +) -I + - + +) - 1- + + +)

+1+ - - -) + 1- + - -) -1- - + -) - 1- - - +))/2V2

Tabl o d.z: Basis function s for th e four Er iOlL sit es compri singa singletet rah edron .lah elled

according to th e irr edu cible represe nta tio ns of 0 " by which th eytransform o = exp (27fi / 3).



ton n X I X 2

.~ .J; -~ JI , J2Z -~[.II Z(J2+ + J2_) + (J I+ + .h -) J2,]

k J4 - ~ J3Z 1.I' -~ [J"Z(J4+ + 1.1_) + (J:I+ + .h - )JI,]

k J, -~ .II ,.hz -~ [JIz (EJ3+ + 02.1,,_ ) + (0.11+ + 02J I_).h , j

k .ll -~ .hz .l4z -~ [.J2z (EJ4+ + 02.14_) + (0.12+ + 02.12_).I4Z]

i. .s, - ~ .Il z .l4z -~ [.JIZ (02 .14+ + 0.14_) + (02JI+ + EJI-) 1.IZ]

.J;. .I; -V2zJ3Z -~ [.J2 Z( 02 .13+ + EJ,,_) + (02J2++ EJ2-) .h ,]

term X" X ,I

k J~ ~ (JI + J2+ + JI_J2_) - t,(J I+J2- + J,-J2+)

k .ft ~( .I3+ J4+ + J I-J4- ) - t,(J3+1.,- +. h - J4+)

s. .J, V 02.1I+.IH + o.lI_.h _) -t,( .II+JI-+ .II- .I3+)

.J;..T.t ~(02 .12+ .14+ +EJ 2- J4-) - t,(.I2+1.I- + .I2- .I4+)

.J;·.ft ~(EJI+ 1.l+ + 02JI_.I4_) -t, (JI+JI-+ JI- J I+)

k J, HcJ2+.I3++02J2_h _) -t,( .I2+.I3-+ Jz- .I3+)

Tab le 4.3: T he Heisenberg-Dirac Hamiltonian for a single tet rah edron in terms of 10",,1

coordinates for each Er ion. T he first collimn lists the terms in H over a single tetra hedron

0= exp~. T he SH ill of term s in each blocks yields a symmetry allowed term in the exchange

interaction . and the slim of all terms is the isot ropic exchange interact ion X = L (ij ) J,..t,



Chapter 5

Results and Discussion

I ca n live wit h d oubt , a nd un cer t ai nt y, a nd not kn ow in g. I t h in k it ' s mu ch more

inter esting to live not kn owin g t ha n to ha ve a ns wers wh ich mi ght be wro ng . I

have a pproxima te a nswers, a nd possibl e b eli efs , and diff er ent d egr ees of ce r t a in ty

a bo ut diff er en t t h in gs , but I'm not a bso lu te ly sure of a ny t hi ng , a nd in man y

t h ings I don ' t kn ow anyth ing a bo ut, such as whe t her it mean s a nyth ing to as k

why we 'r e her e , a nd what t he qu esti on mi gh t mean . I mi gh t t h ink a bo ut a little ,

but if I ca n't figure it out, t hen I go to some t h ing e lse . Bu t I do n 't have to

know a n a nswer. I don 't fee l frig ht ened by not kn owin g t h ings , by being lost in

a myste r io us uni verse wit ho ut havin g a ny pu rp ose , whi ch is t he way it rea lly is,

as far as I ca n t e ll , possibl y. It doesn ' t fri ght en me. Richard P. Feymu an

5.1 Single Tetrahedron

In the case of single tet rahedron, we have the four sites depicted in Figurcl.5the spins can

hceithcr up or down. Using (4.31). we ca u build up 16 possible different sta tes which arc

shown iu thc scnlll d colulIln of Tah lc 5.1. T he first colullin is the number ass igned tothesc



sta tes according to th e following pro cedur e. As we discussed at th e beginnin g of chapter 2,

measur ement of spin in any dir ection would resu lt only in up or down st.ate , and nothin g in

between . In order to do the calculat ions using a computer we have to buil d up th e sta tes l-E),

also th eir dir ect produ ct in a way which can be implemented on a compute r . Considering

1+) as an arra y (1,0) and 1-) as (0,1) enables a 4-sitestate to be expressed as a 1Gx I array

consist ing of all zeros save one. For inst ance, if we want to bui ld up the sta te 1 + + - +) as

<Ill HrrH.Y of numb ers we usc:

In this case th ere is a one row numb er 3 and all th e others are zero, so we lab el th is sta te



~o. Sta te E(I) Er; ) E? ) E~I ) E~2 ) E~l) Tt; ) T2, Tt; ) T (l ) T2x Tt; ) Tl(~ ) T2y Tt~ ) A

1 1++++) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1++ + - ) 0 0 0 0 "2 0 7s 7s 0 7s 7s 0 7s 7s 0 0

3 1++ - +) 0 0 0 0 "2 0 7s 7s 0 Ts Ts 0 =fs =fs 0 0

4 1++ - - ) 0 0 75 0 0 75 0 0 T2 0 0 0 0 0 0 75

5 1+ - + +) 0 0 0 0 "2 0 7s 7s 0 Ts Ts 0 7s 7s 0 0

G 1+-+ - ) 0 0 Ts 0 0 &0 0 0 0 0 0 0 0 0 T2 75

7 1+- -+) 0 0 ~ 0 0 7G 0 0 0 0 0 72 0 0 0 75

8 1+ - --) 0 :2 0 0 0 0 7s 7s 0
_ £ 2 £ 2

0 7s 7s 0 0
~ 7s

9 1-+++) 0 0 0 0 "2 0 7s 7s 0 7s 7s 0 =fs =fs 0 0

10 1-++-) 0 0 ~ 0 0 Ts 0 0 0 0 0 T2 0 0 0 75

11 1- + - +) 0 0 Ts 0 0 ~ 0 0 0 0 0 0 0 0 T2 75

12 1- + - - ) 0 '2 0 0 0 0 7s 7s 0 7s =fs 0 Ts 7s 0 0

13 1- -++) 0 0 75 0 0 75 0 0 T2 0 0 0 0 0 0 75

14 1- -+ - ) 0 0 0 0 0 7s 0 7s =fs 0 0 0

15 1-- -+) 0 0 0 0 0 7s 0 :cfs fa 0 0 0

16 1- - - - ) 0 0 1 0 0 0 0 0 0 0 0 0

Table 5.1: Th e basi s sta tes. th eir lab el num bers and th e overla p th ey have with singlets, doub let s and triplets defined in

Table4.2 . Th ese numb ers define th e tr ansform ati on matri x S .



\Ve can also build the operato rs needed in the Hami ltoni an by direct produ cts of Paul i

matri ces and the identity mat rix. Th e following is all example of all opera tor which ad s on

site 3 while leaving the others unchanged:

J"y =

(5.2)

(5.3)

The following are the identi ties which arc used to do bui ld up thc opcrator s in t.hc Hnmilto

nian givou in Tablc4.3 [25].



(± IJ,I±) =±j

(± I.h l'f)= 1

(5.-1)

(5.5)

(5.6)

j and I are numb ers t hat can be calculated usiu g the ex plicit Ion n of lE ) gin " , in (1.1). nu t

in II", following we leave th em as free pa ram et ers. Using om lran sform ationmatri x S wh ich

is given in the Tab le 5.1. and our (1G x 1G) Hamil tonian built up as expla ined. we can find

t he block d iagon al Hamiltonian which isS- 'H "S t hat has 2 idcnt icalblocks fordonbl el s. 3

idl'nti ca ll3l ocksfor lrip lcts. and onediagonalelemen t forthe sin gle [251:

(5.7)

(

t t" (4C3 + C,) ()

T = () t t" (- 4C,,+C,)

1J2j1C2 ()

1J2,iIC"]
()

~

(5 .8)

(5.9)

5.1.1 Ground St at e of a Sin gle Tetrahedron

In order 10 find t he gro und sta te. we han , 10 a t t ribute so me numb ers to t he vari abl es in eac h

case . \\' e m;,,,mle j = l = 1. (t hey get inco rpor a ted inlo t he C;'s ) a nd t hen switch two of t he

four int eract ions on a t a t ime in order to find th e gro und sta te for t he vari ous iutr-ra ct ion

ra t ios [251. T hese res ults ar c shown in Figure Ii. I to 5.6.

Th e pro blem simply is find ing t he eigcuvalucs lind l'igen\'ectorsof t hc lllllt r i(,l's int rod u('('d .



Enerllv(9)

Figure 5.1: Energy as a funct ion of 0 for C1 = siu O,02 = C050,03 = C4= O .

Figure 5.2: Energy as a function of 0 tor C, = sin 0, 0 3 = cos 0,O2= C4= O.



[ nergy<8j
2

~8m=~'"- 1T1~ l l alTl . 2 >

••• jA.·f

Figure 5.3: Energy as a function of 8 for C] = sin 0, C 4 = cos 8, C2= C3=O.

[ nergy(8j

Figure 5.4: Energy as a function of 8 for C2 = sin 8,C 3 = cos 8,C] = C4=O.



Figure 5.5: Energy as a funct ion of 0 for C2 = sin O,C. = cos O,C , = C,,= O .

E nergj'((/j

Figure 5.6: Energy AS a funct ion of 0 for C" = sin O,C. = cosO, C, = C2=O.



however wit h so many parameters, th e genera l solut ion is not very enlightening. Instead of

the genera l case. ollc ca n collsid er SOIneillteractionsin Ham iltoniau to be more imporr a nt or

more domin an t th an the ot hers hy switching some int eract ion on or off. T he bin ary switch

will let us do so, and considering all th e six possibl e cases will help us to investigate the

pro blem . \\'e also use the convent ion of fr= 1 without the loss in genera lity of th e problem.

As shown in Figure 5.1 [25], if we set C:1=C4=O and let th e C t var y as a function sine and

C2 as a cosine funct ion , th e ground state is doubly degenerat e ((tIE~) ) + IE£l))) where

() = c,+~. As the C, and C2 var y like sine and cosine respec tive ly, t he ground sta te

energy will mainly follow the blue dashed line. For some specific values of th e sine and cosine

arg ument (11) . t he ground sta te will become degenerat e with the singlet or th e triplet . In

Figure 5.2, which has C, =C4 = 0, the ground sta te is aga in a linear combination of dou hlots.

hu t a different one with different coefficients which follows th e red dash ed line. T he green

line representin g three different states with th e same energy th at becomes degenera te wit h

ground sta tes for specific values of periodi c funct ions .

With C2 = C" = 0 shown in Figure 5.3, int erestin gly there are thr ee different candida tes

for the ground sta tes for different values of (J.T he singlct or thc doublets nre th ree different

candida tes for ground sta te in thi s cases.

As for th e case Ct = C4 = 0 shown in Figure 5.4 . th e ground sta te is mainl y a linea r

("Olnhina t ionof douhletstHtes tha t are degenera tewith triplets in some values of the (J (C2

= (l and C" = -1) . If we want to he more speci fic on thi s case , only to sec how the sta tes

would look like exac t ly. t he ground sta te is [25]:

0 = - j8C~:~ C:i ~=~

(5.10)

(5.11)



Th e linenr cornbinarion of t riplet sta tes which somet imes is degenera tewith thegronndsta tc

in t his cnse is of th e form :

(5.12)

-C3+~
·h12C2

(5.13)

Fignre5.5 and Figure 5.6 show the ot her two possible cases in th is binar v invest iga t ion of

the gro nnd sta tes with respect to th e conplin g consta nts . Tablc5.2 lists thegronndsta tes

(doublet s) for all cases,

I Nouzoro C's II Cround Sta tes I Fignr el

C1 &C2 (oIE~) ) + IE~I ) )) CI+'!JltfCI (5. 1)
43C2

C1 ,".:C" (oIE~l ) ) + IE~I ) )) _ ICI+~~ (5.2)

C1 S: G., ( IE~I) )) or (IE~I ) )) or (IA)) (5.3)

C2&C" ((}-IE~l) ) +~ I E~))+ I E~1 ) ) ) -~ ~ (5..l)

C2 ,".:G., ((} IE~ ) ) + I E~I ) ) ) " c' -'C;'I~+2"CI (5.5 )

C:,&G., (l I E~)) + IE~1) ) ) or (IA) ) ~ (C~ - J 24Cj + d) (5.6)

Tab le 5.2: T he possible gro und states when onlv two of four coupling consta nts are zero.

The gron ndstatcsarclllainly do nhiets [251.

5.2 Two Tetrahedra

If we mn sid"r two tet rah cd ra.the st at ethat describ e th e sys te m should ca rry t he inform at ion

needed to specify th e spin configurnt ion on Ssites . According to wha t we did previously, we



can build lip the sta tes as follows:

Again by considering the 1+) being (1,0) and 1-) being (0,1), one can build III' 256

dist inct st ate s which are of the form 256 x 1 array in which all elements are zero save one.

Th e Hamiltonian H A can also bo built lip by the direct produc t of the Pauli spin matri ces

and identity matr ix on each site. Suppose we need to measure the Y direct ion of spin on

the site labelled as 7 (See Figure 5.7. T he operator for this case is Jry which is a 256 x 256

~'

Figure 5.7: Two tetra hedra with sites labelled by the convention used throughout th is cha p-

second one H", =C, Y, +C2 Y2+C3 Y3 +C4 Y4 , where the terms in Hamiltonian are given by'



XI = - k(J I,. J" + .f:J,.J" + .11".1", + .12" .1" + .h,· J" + .I2, .J", )

'1'1= - k(JO, .J6, + .!r, ..I" + J." ..!r, + .ft.,.J" + JO".I " + .16, ..17,)

X2 = -4 (JI , ' (.121'+ .lz.II) + (.III' + Ju tl ·J" + .I", . ( J~ /, + Jw )

+( J,,/, + .1".11 ) .1." + JI, . ((.h /' + (2.1".11 ) + (d ll' + (2.1L1/ ) .J", + .12, . (d ll' + ,21.1.11 )

+(d 2l , + ,' .12.11 ) . J~, + JI, . ((21.11'+ d w ) + ((' .Ill' + d u tl ..I~ , + .I" . ((2J:". + d :l.II) +

(,2.12/, + £.12.ll) .J",)

'1', = -4 (Jo, . (.161'+ .ft..II) + (.151'+ .10.11 ) ..ft., + ·h ,. (.I,/, + J, .II)

+(.I71·+ -h.II)' .I8, + .10 , . (d 7/, + ,2J7AI ) + (d 51' + ,'.15.11 ) .J7, + .ft.,. (d , /, + ,' .1,.11)

+ (d 6/, + (' J6M).J" + JO" ((2J, 1'+ d 'M ) + ((' JO/, + do.ll ) ..1"

+.J6, · ((' .171'+ d 7AI ) + (" .h l' + d 6 M ) ..!r, )

X:l = k(.III'.J,I' + JW ../z,1I+ .I:lI'..I.1P+ .hl1 . J~M + (' J II".I,,/,

+( JUI..!:L1I + (' .1'1'..1.". + , .I'.II..hll + (JlI'..I.1I'

+,' JUI·.I.L\1+ d , l'..f:lI' + ,2./z,I1.h .ll)

'1'" = k(JOp·J61'+ JO.ll .J6M+ J7I,·.I8P + J7.11 .J8M + (' Jop..h /,

+(JO.ll..!rM + (' J6/,..I,/ , + ' ·ft.M·.I'M + , .101',.1,1'

+,'JO.ll..h .1I+ , .I6p..l rr + (, J6M.J71/)

XI = -t, (J lp.J, .1I+ JI.I/.J2I' + .I:l/'..hll + .1".11'.1.11'+ JII'''/'''II+ .IL1/..I:!1'

+.)' /,.1.1.11+ J2M.1.1/'+ JI/'..I.L11 + JI .II ·J~ p + J21'·J:!.II+ J, .II.J:lI')

Y, = - t,(JOp.J6M + JO.ll.J6/,+ J7I,·.I8M + Jrsi .Jse + Jo/'.hM + '/o.ll.J7I,

+.J6p·J8M + .16.11 ..181'+ JO/'·.I, .II+ .I0.ll.J, 1'+ .I6p·J7,\/+ J6.11 ..h l' )



where P and Xl subscripts stands for + and - respectively, Each operator is now a 256 x

256 a rrav, \Ve can find th e block diagoualized matri x for the case of 8 sites of the form

S - I(If ..\ + 1f", )S. For th e case of a single tet rah ed ron . S which was a 16 x 16 array , which

now is replaced hy S @ S which is a 256 x 256 array, However for simplicity we will st ill keep

ca ll it S . keepin g in mind th at t he t ran sform ati on matri x for sta tes . has larger dim ension f01

larger Hilbert space . Th e result of S-1 (lf A + 1f", )S is a 256 x 256 arr ay which is th e sum of

the hlock d iagonal matri ces HA @ 1+ I @ If ", and some of its matri x clement s are shown

in Ta hle 5.3. \ \'e can dia gonali ze th is Hamiltonia n if we pick suita ble va lues for .i a nd l all(l

also two of the coup ling const ant s as hefore and find th e eigenvalues and eigenvecto rs . T he

ground states for two tetrahedra is sim ply the direct product ofpossihle groun d sta tes for

one tetra hedro n. As thc gro und state is dcgencra te in the cascof onc tetra hedra . t he order

of degeneracy increases when we are dealin g with direct. produ ct states .



Sta tes IE~ ) )IE~' ) ) I E~ ))IEr' ) ) IE~ )) I A' ) IE~) )IE~ ' I) IA)IA')

(En(E~1 1 _4 j2C
I 0 0 0 0

( E~'II(E~) I 0 -2 fC1 - !f' 0 0 0

(Et'II(E.\111 ; 'i;yc" -~ 0 0 0

(E~I'I I( E~1 1 0 0 0 0 0

(E~'I I( E~l) 1 0 0 0 0 0

(A'I(E~) I 0 0 0 0 0

( En(E~1 1 0 0 0 0 0

(A'I(AI 0 0 0 0

Table 5.3: Sonic mat rix elements for th e exchange intera cti on Hami ltonian for 2 tet rah edra

[25]. (FlIll matrix is available by contacting the allt hor )

5.3 Two Tetrahed ra Perturbed by HB

\Ve have found th e exact sollit ion for a syste m of two isolated tet rah ed ra . Now we includ e

th c cxchange intcracti ou for I3 typ e tet rah edra in our finit e syste m with period ic bounda ry

condit ions perturhatively. \Ve lise periodi c bound ary conditi ons. so th ere arc two A type

tet rah edra and two B ty pe tet ra hedr a . Th e atomic positi on of all eight Er ato ms arc given

in Tab le (5.4). Th e A te t ra hedra arc the sets of ato ms A={ 1, 2.3 , 4} awl A' = {5. 6 , 7. 8 }.

\Ve consider two A type tetrahedra and two I3 type with period ic bound ary condition .

It can be verified th at th e Bvtyp c tutra hcdra are on sites {1. 2,4 , 7} and {3 ,5 .6 .8} .

T he Hamilt onian for I3 type te tru hdrn is of th e form HlJ= Cs (Zl + VI) + Co (Z2 + V2) +



Tet rahedron # Atom # Position

A 1 (5/ 8. 1/ 8. 1/8)

+( 0. 0. 0) 2 (7/8 . 3/ 8. 1/ 8)

3 (7/ 8. 1/8. 3/ 8)

-I (5/ 8. 3/ 8, 3/ 8)

A' 5 (1/ 8.5 / 8. 1/8)

+(-1/ 2. 1/ 2. 0) (j (3/ 8. 7/ 8, 1/ 8)

7 (3/ 8. 5/ 8. 3/ 8)

8 (1/8 . 7/8 .3 /8)

Tahle 5..J: Atom posit ions of eight Er atoms in two tetrahedra

z, = - ~ (JI , .h, + ./7,J" + .I , ..h, + ./2"./1 ' + ./1"./" + .h ,..h ')

V, = - ~ ( ./5, .J6, + .h, ../., + ./5"./:1, + .h" ./8' + ./5"./8, + .h , ../",)

Z2 = -4 (./1" (./2/>+ .h .lI) + (./' 1' + ./l.\tl ·./2' + h ,· (./11' + ./W)

+ (.171'+ J7.l/ ) .J4, + J 1, · (d 7/' + f2 ./n l) + (d ll' + f2./LIJ)·h , + h ,.(f J41'+ f 2.1.",, )

+ (d 2/>+ f 2./2.IJ) .J4, + J I:. (f2.1.1£'+ d,.II) + (f2./1f'+ d LIJ) .J " + .h:. (f2./7/>+ d7.ll ) +

(f 2./2/>+ d w ) ..h : )

V2 = -4 (J 5:' (./6£'+ .h .lI ) + (.151'+ J5.11 ) .J6: + h ,· (./8£'+ '/8.11 )

+( .J:w + ./:l.\I)../. , + J5, . (fh £'+ f2.J:l.\l) + (c h £'+ f2J5.1I ) ·h : + .h:. (f./8£'+ f2./8 .11)

+( d ,,£,+ f2./".II) './8: + '/5: ' (f2./8£'+ d 8.1I) + (f2./5£'+ <.15 .11 ) './8: + -les- (f2
./:l/' + <.I3.1tl +

(f 2./" I>+ f k ll) ' ./3,)



Z" = 4(J 11'·.I21, + .IL1/ ·.I2.11 + .17/>..11/' + .17.11. .11.11 + (2.111".171'

+ d I.II.h.ll + f2.12p..IW + f .l2M.J IM + d l/' .JI/ ' + f2.1L1/ J IM + f .l21'..I71'+ (2.I2.11••h.ll )

V" = 4(Jsp"," 1'+ .ISM..I6M + .1,,1".181'+ .h ll '.I8.11+ f2.1SI'·.I,,1'

+( .IS.II . .I:I.II + f2.16p..I8p + ( .,".11 •.18.11+ f.lSI' ''!>1' + f2.1S.II . .IR.II + f.l61'·.I:11' + f2.h .ll' .I".II)

ZI = -~ (.Itp ..hll + .IL1/ ..1, I' + .171',.11.1/+ '/;'11..11/' + J i» ..h .ll + .IIM.h l'

+ .121'..1•.11+ .hll ·.Iw + .I11'..hll + .II.11 ..II/' + .121' •.17.11 + .I2A/ ..I7/' )

V, = -~ (.ISP..I6M + .ISM..I61'+ .I:11'·.I8M + .h ll ..I81' + .ISP..laM + .ISM..I:l1'

+.J61'·.IRM + .I6M·.IRp + .ISI' . .I8M + .!s.I/·.I81'+ .I6P..!a.1I + .h M..I:l1')

where I' and Xl subscripts sta nds for + and - respective ly. As menti oned before. th e Il

type tetra hedra appear as a result of different conpiing consta nts between atom sites. So in

genera l C's in Il type are different tha n those in A type tet rah ed ra . Now we have th e tot al

Hami ltonian li T defined as follows which is th e comp let e Ham iltonian for two tet rah ed ra

with couside riug the effcct of the Il typ e tet rahedra.

fir = H" + liN + H B (5.16)

With th e addit ion of HB , dia gona lizingthe2 56 x 256 matri x HT with so manyoff -diagonal

elements would be a difficult task . In ord er to so lve thi s prob lem , one approach is to tr eat

the lI lI part pert urb at ively to find th e grouud sta te when the Il typ e tetrahedra is present .

Gencru lly. th e perturbati on will mix in th e other sta tes with the ground sta te of syste m of

We use the pert urb ative met hod describe d in Cha pter one. As we are dealin g mainly

wit h degenera te ground sta tes , we usc degenera te perturbation the ory (OPT) following the



8 steps introd uced in Sect ion (2..1.2). Th e rest of this Chapter is devoted to the result of

perturb ati ve treatm ent of tho B typetetr ahedrn for a specific value of coupling constants.



5.3. 1 Degen er at e P erturbation Th eory for C\ = C~ = 72' C2 = C3

= 0

As it can be seen from Figure (5.3) at 0 = l ' the ground sta te is mainly I E~ ) ) . SO the

ground sta te for our unp erturb ed two tetr ahedra syste m has these four degenerat e ground

T he pert urbation will lift the degeneracy so that the states split into two slight ly different

In doing the perturb ati on, since we have C2 = C" = O. we also chose the corresp onding

coupling constant" in H B which are CG andC7 to be zero, and set the two others to be

*' of the value of C , and C , so we that can t reat it as a pertur bation (the value *' wax

chosen for the purp ose of doing numerical calculations and can be changed without t hc loss

of generality of the problem). So we have Cr, = *' C, and Cs = fcJ C,. Even by considering

this perturb ation. sta tes which are relat ed by th nc reversa l synunetry st ill stay degenerate.

I E~' I ) I E~ ' ) ) --+

I E~ ))I E~ ' ) ) --+
(5. 18)

It is interes t iug to see how higher order in perturb at ion theory mixes the states. First of all

each liCt of degeIlerate statcs rclated by t imc rcverlilll symmet ry mix the sa me by thc cffect

of [l t~'I)( ' tet rahedra as we expec ted. Furth ermore the sta te IE~' ) ) IE~ ' ) ) does not mix to the

first order ill perturb ed wave funct ion. However I E~' ) )I E~" ) ) and its t ime reversa l will mix

with t he following sta tes [25]:



IE~ ) )IE£l ' ) )

(- 0 .00833333J I E~11) I E~1'1)

(0 . O()]G070GJ IE~1 ) ) IT~ , )

( - 0 .00 1 G070GJI E~1 1 )I Tt;' ))

(- 0.00080353 - 0 .001 3917Gi J I E~I I ) I T~x )

(0 .00080353+ 0 . 00 1 39 1 7Gi)I E~II) I Tr;' ))

(0.00080353 - 0 .00 139 17G i)lE~1 1 ) ITU

(-0.00080353 + 0.00 1 39 1 7G i J I E::' ) ) I T,(~' I )

( 0 . 00 1 G070G) IT,(; I)I E~1))

( 0. 0009G 1 538 JI Tt;))IT~,)

(- 0.0009G1538J1Tt;))!T,(;'))

I E~))I E£" )) --+: (-0.0004807G9 - 0 .000832 71 7 i J I T,(2 ) IT~x )

(0.0004807G9+ 0.000832717iJIT,(; I) ITt; ' I)

(0.0004807G9 - 0.0008:m1 7i J I T,(; ) ) I T~y )

(-0.0004807G9 + 0 .0008 :l 2 7 1 7i J I T,(; ) )ITt~' I )

( 0 . 00 1 G070GJI T,,) I E~1))

(0 . 0009G 1 538J IT2z) IT~,)

(- 0.0009G1538JIT2z)IT,(;' I)

(-0.0004807G9 - 0.000832717iJIT, ,) IT~x )

(0.0004807G9 + 0.000832717iJIT2z ) ITt; ' ))

( 0 . 000480 7G9 - 0 .0008327 1 7iJ I T,,) I T~y)

(-0.0004807G9+ 0.000832717iJIT2,) IT,(~' ) )



(- 0.00080353 + 0.00139176iJIT2, )IE r ))

(-0.000480769 + 0.000832717iJIT2x)ITU

(0.000480769- 0.0008:12717iJIT2,) IT1(; ' ) )

( 0 . 00096 1 538 JIT2x) IT~x)

(-0.000961538JIT2x)ITr;' ))

( 0 . 000480769 + 0.0008327 1 7iJ I T2,) I T~y)

(-0.000480769 - 0 .000832717i JI72x )ITi~' ) )

(-0.00080353 + 0.00139176i J IT!;) ) IE~1 1 )

(- 0.000480769 + 0.000832717i J ITr; ) )IT~J

(0.000480769 - 0.000832717iJIT!;)) IT1(; ' ) )

( 0 . 00096 1 538J I T!;IJI T~x)

(-0.000961538JITr;) )IT!;'I)

(0.000480769 + 0.000832717i JITgI ) IT~y )

(- 0.000480769 - 0 .000832717i J ITg) ) ITl(~' ) )

( 0.00080353+ 0.00 139 1 76i ) IT2y ) IE~' ) )

(0.000480769 + 0.000832717i J IT2y ) IT~J

(- 0.000480769 - 0.000832717iJIT2y) ITg '))

(0 .000·180769 + 0. 000832 7 1 7i J I T2y )IT~x )

(- 0.000480769- 0.000832717iJIT2y)IT1(; ' ) )

(0 .00096 1538J IT2y ) I T~y )

(-0 . 00096 1 538 )1 T2y)I Ti~'))



( O.00080353+ 0 . 00 13!.l 17G;)ITi~) )IEi1 ) )

(O.0004807G!.l+ O .00083271 7; ) ITl(~ ) ) I T~z )

( - O.0004807G!.l - O.000832717i) I Tl(~ ) ) I Ti;' ) )

(O.0004807G!.l+ O .00083271 7i) ITl(~ ) ) IT~z )

( -O . 0004807G!.l - O . 0008327 1 7i) ITl(~ ) )ITI(;'))

(O . OOO!.l G 1 538) ITr~))ITU

(-0 . OOO!.lG 1 538 ) ITl(~ ) )ITI(~'))

5.4 Int erpr et ation of th e Results

For any other values of IJ, we can pick any two C 's and do (OPT) on the corres ponding ground

states. following the steps described in (2.4.2) to get the split in sta tes and also mixes from

the ot her states. In the most of the cases investigated by the aut hor , thedegeneracy ofthc

states which arc relat ed to each ot her with time reversal symmetr 0' were not lifted . However,

wc did thepcrtnrba t ion theory up to !irstorderc orrect ion in thewavc- funct ion. Furth ermor e

for different C' s, the sta tes tha t mixes in with the gronnd sla te follow a rhyt.hmicnl patt ern

apar t from the weight of th at mixtu re. Thi s rhythm can also be observed in the case ofC I

and C, atIJ = ~. Th e sta tes and the energies arc calculated for 5 different cases and possible

to be furth er developed for any other value of the excha nge interaction of interest. From the

wave-functio ns found by per tu rba tion, furth er informati on can be extra cted . Th e magneti c

tra nsit ion that Er2T i207 shows at 1.2]( is not easy to explain via the unperturbed ground

stat e. The magnetically ordered sta te has a non-zero expectat ion value of thc operat or AI =

81.,+ 82z+8 3., +8, z (where:r is the local coordina te), while none of the unpertu rbed sta tes

carrya non-zerovalue for i\[asthcy don't havcamagneticcharacle r(all mat rixelcments

arc zero ((¢d MI~);) = 0)) . It is possible that the mixing found by perturbation the ory will



givc risc toa non-zcrova!uc of Af , t hcn the obscrvcd lllagnet ic t ra nsit ioncan bc dcs<Tibcd

using molecular field.

In summary , in the case of two tet rah ed ra with periodic bouud ary condit ions, we found

th cllli xingin ground st at ebyincludingtheI3t. etrah edrapcrturb at ivcly. Th ese sta tes should

beiuvestigatcd to scc if thcy havca umgnetic charactcr.



Chapter 6

Conclusion and Outlook

T he fu nda uiental laws nec essa ry for t he m ath em a t ical tr eatm ent ofalargepartof

physic s a nd t he who le of che m ist ry a rc t hus com p le te ly kn own , a nd t he dif ficul ty

lies only ill t he fact th a t ap p lication of t hese laws lead s to eq ua t ions t hat a rc to o

com plex to he so lved . Pau l Dirac

6.1 Co ncl us ion

Th e overa ll object ive of this research was to invest igat e the frust rated pyrochloro svs tc rn aud

find the gro nnd stat eproperti esby looking atthe sYlllllletr ypropert icsofthe systelllwhil"h

in our case WIIS Er2Ti207. III order to do so following steps were taken which lead us to the

I. With the aid of the symmetry properti es of the space group Fd311l,w efill d t he possihle

sta tesofasillgle tetra hed rollll llda lso thege llera l forlllo f the Heisellherg-Dirac 1111mi1-

tOllillllthat go\"l>rnsthe systelll. \\ 'e hm'e four differellt exchallge l'Ouplillg collstllllts

whil·h dete rlllille thegroulldstate . IIIorder to investigat e the Ionn of the ground state.

we switched two out of four of the interact ion off. while keeping ot her two varyiug like



periodic funct ions. Th e ground sta te for single tetr ahedron was calculated for all six

2. The ground sta te for two tet rah edra can be buil t by direct produ ct of the two ground

states. Th e exchange Hamilt onian for two tetra hedra is HA ~ I + I ~ H,j' . Th e direct

product preserve the form of the ground state.

3. In ErzTi20 7 we are dealing with a network of tet rah edra . Because of the isolati on of

single tet rah edron , exac t calculat ion of eigensta tes of a single tet rah edron will help us

to find the sta te of the network genera lly. However . because of the thc ro nnecti vity

of this network . eigensta tcs of singlc tet rah edron arc not the eigensta te of the ent ire

network . \Ve assumed that there arc two types of tet rah edra in pyrochlore latti ce.

type A and 13which were different in overa ll orienta t ion. A kind of latti ce distort ion

was proposed th at lowers the point group symmetry but leaves the crys ta l system

unchanged . was applied to relieve geometrical frustr ati on and arr ive to an ordered

sta te . Thi s distort ion did not remove the frustra tion symmetry but led to isolation of

individua l A type tet rah edra by neg!e<·tin g exchangeinteractions on 13. By ndding the

elfect of 13typetera hedra as pert urbat ion.we were abletofi nd the gronnd sta te for the

system of two tet rah edra morc accura telv. However, degeneracies of sta tes connecte d

by time reversal symmetry were not lifted by th is form of perturbat ion .

.J. The pert urb ed sta tes can be fur ther used to justi fy the magucti c charact ers observed

in ErzTiz0 7 at low temperatur es. By calculatin g the magnet ic order param eter, the

sta tes with magnet ic properti es will have non-zero matr ix elements ((l/Jil i\ fl tiJi))



6.2 Outlook

Furth er analysis ra n be done by considoring vl tet rah edra and then applyingthel3typ e

tcrrahcdra pcrturbati vely. In that case the matri x we are dealing with is a square mat rix of

dimension G553Gwhich ra n bediagonalized numerically for specified \1111leS of the coupling

consta nts . In that rase , a more vivid picrurc ol thc ground sta te wiII bc coust ructod which

can be used to justify the experimenta l result of the mat erial that js bcing xtudied. l3y

consider ing .J tc tra hcdra. t heralclllaled magnet ic order para metc r for the ground sta te will

be more precise.



Pos tl ude

T he scientist has a lot of experience with ignoran ce and doubt and uncert a inty, and th is

experience is of very great impor tance, I thi nk. Wh en a scient ist doesn't know th e a nswer

to a problein , he is ignorant . When he has a hunch as to what th e result is, hc is unccrt.aiu.

And when he is prett y damn sure of wha t the result is going to be, he is still in some donb t.

\Vehavefonnd it ofparam onn t importance th at in ord er to progress , we must recognize our

iguora ncc and leave roo m for doubt. Scient ific knowledge is a body of sta tements of vary ing

degrees of certainty some most unsur e, some nearly sure , but none absolutely certa in. Now,

wes cicnt.ists ar e used to this, and we take it for granted th at it is perfectly consistent to be

unsure , t ha t it is possible to live and not know. I3ut I don 't know whether everyone realizes

this is tr ue. Our freedom to doub t was born out of a struggle against authority in the ea rly

days of science. It was a very deep and st rong strugg le: perm it us to question todoubt to

not be sm e. lthillkthat it is importa nt thatwe do notforgctthis stru ggle and thus perhaps

lose what we have ga ined. Ric hard P. Feynman



Appendix A

T his {'ode was used for in ca lculatio ns of th e 256 x25 6 11alllilto nian. In first set of lines .

opcrators are dcfiued with the a id of Pan li mat rices nud idcnri ty matri x . T hen th e sta tes in

Table (5.1) are defined and th e t ra nsfon ua t ion matri x is const ruc ted by dirc ct product of two

S nlalri('es. Th e rest will define th e Hamilt oni nn aud diagonalizati on pr oces s of Ha milto ninn.



J l . · J*KroneckerProduct [pauliMatrix [J ],IdentityMatrix [2 ],
IdentityHatrix [2 ], IdentityMatrix [2 ], IdentityHatrix [2 ],
IdentityHatrix [2 ], IdentityMatrix [2 ], IdentityHatrix [2 ] ] ;

J l . · J*KrOneckerproduct [IdentityHatrix [2 ],pauliMatrix[J ],
IdentityHatrix [2 ], IdentityMatrix [2 ], IdentityHatrix [2 ],
IdentityHatrix [2 ], IdentityHatrix [2 ], IdentityMatrix [2 ] ] ;

J .J•• J*Kroneckerproduct [IdentityMatrix [2 ],IdentityHatrix [2 ] ,
pauliHatrix [J ],IdentityHatrix [2 ],IdentityHatrix [2 ],
IdentityHatrix [2 ] ,IdentityMatrix [2 ],IdentityMatrix [2 ]];

J .... J*KrOneckerproduct [IdentityHatrix [2 ],IdentityMatrix [2 ],
IdentityHatrix [2 ],PauliMatrix [J ],IdentityHatrix [2 ],
IdentityMatrix [2 ] ,IdentityMatrix [2 ],IdentityHatrix [2 ]];

J 5 . _J*KroneckerProduct [IdentityHatrix [2 ],IdentityHatrix [2 ],
IdentityMatrix [2 ] , IdentityHatrix [2 ] , PauliMatrix [J ] ,
IdentityMatrix [2 ] ,IdentityHatrix [2 ] ,IdentityMatrix [2 ] ] ;

J 6•• J*KroneckerProduct [IdentityMatrix [2 ],IdentityHatrix [2 ],
IdentityHatrix [2 ] ,IdentityHatrix [2 ],IdentityHatrix [2 ] ,
pauliMatrix[J ], IdentityMatrix [2 ] , IdentityMatrix [2 ] ];

J l . _J*Kroneckerproduct [IdentityMatrix [2 ],IdentityMatrix [2 ] ,
IdentityMatrix [2 ] , IdentityHatrix [2 ], IdentityMatrix [2 ] ,
IdentityMatrix [2 ] ,PauliMatrix [J ],IdentityHatrix [2 ] ];

J s . _J*KroneckerProduct [IdentityMatrix [2 ],IdentityHatrix [2 ] ,
IdentityMatrix[2 ] ,IdentityMatrix[2 ] ,IdentityMatrix [2 ],
IdentityMatrix[2 ], IdentityMatrix[2 ], pauliMatrix[J] ];

J l x ·Kroneckerproduct[pauliMatrix[1 ],IdentityMatrix [2 ],
IdentityMatrix [2],IdentityMatrix [2],IdentityMatrix [2],
IdentityMatrix [2], IdentityMatrix [2] , IdentityHatrix [2] ] ;

J ] " .Kroneckerproduct[IdentityMatrix[2],PauliHatrix [1 ],
IdentityHatrix [2], IdentityMatrix [2], IdentityHatrix [2],
IdentityMatrix [2], IdentityMatrix [2], IdentityMatrix [2] ] ;

J J x .KrOneckerproduct[IdentityMatrix [2],IdentityMatrix [2],
PauliHatrix [l ], IdentityMatrix [2], IdentityMatrix [2],
IdentityHatrix [2] , IdentityMatrix [2], IdentityHatrix [2] ] ;

J . x .KrOneckerproduct[IdentityHatrix [2 ],IdentityHatrix [2 ],
IdentityMatrix [2 ],pauliMatrix [1 ],IdentityHatrix [2 ] ,
IdentityHatrix [2 ] , IdentityMatrix [2 ] , IdentityMatrix [2 ] ] ;

J 5 x ·KroneckerProduct [IdentityMatrix (2 ],IdentityMatrix [2 ],
IdentityMatrix [2 ],IdentityKatrix [2 ] ,PauliMatrb:[1 ],
IdentityMatrix [2 ], IdentityMatrix [2 ] , IdentityMatrix [2 ] ];

J ", ;d~~~~~~~:::::d[~~~[ ~::::~:;=:::~=g: ; ;::::~:;=:::~=g:;
pauliMatrix [1 ] ,IdentityMatrix [2 ],IdentityMatrix [2 ] ] ;

J l x .KroneckerProduct [IdentityMatrix [2 ],IdentityHatrix [2 ] ,

;::::~:~:::~~: ~ ~: : ~::~~~:~=~:7~~ ~ 2ide~:~:;~:~:~:7~~g],
J 8Il .Kroneckerproduct [IdentityHatrix [2 ],IdentityMatrix [2 ],

IdentityMatrix [2 ], IdentityMatrix [2 ], IdentityMatrix [2 ],
IdentityMatrix [2 ],IdentityMatrix [2 ] ,pauliHatrix [1 ] ];

J 1y ·Kroneckerproduct [pauliMatrix [2 ] ,IdentityHatrix [2 ],
IdentityMatrix [2 ], IdentityMatrix [2 ], IdentityMatrix [2 ],
IdentityKatrix [2 ], IdentityHatrix [2 ], IdentityMatrix [2 ] ] ;

J ] y .KrOneCkerproduct [IdentityHatrix [2 ] ,PauliMatrix [2 ] ,

;::::~:~:::~~: ~ ~ ~ : ;::::~:~:::~~:g~ : ;::::~:~:::~~: ~ ~ ~ j ;
J J y .KroneckerProduct [IdentityMatrix [2 ],IdentityHatrix [2 ],

~::~~7:;~~:~~~ [ 2I]~e~:~:~~:;~~:;~~ [ 2I]~e~:~:~~:;~~:;~~ [ 2]] ;

J . y ;d:::::~::::::d[~~~ [ ;::~:~:;~::;~~ ~ 2I];e~~;:;~:;~::;~~ ~2 ],
IdentityMatrix [2 ], IdentityMatrix [2 ], IdentityMatrix [2 ] ] ;



J
5

y ;d:::::~~:::::d[~~~ [ :::::~::=::;~:g~ ~ ;::~:~::=::~~; ,[
2

] ,

Id en t ityMat rix [2 ] ,IdentityMat rix [2 ],IdentityMat r i x [2 ] ] ;

J , y ;d:::::~::::::d[~~~ [;::::~::::::~:g ~ ~ :::::~:::::;~: ~~ ~ ~
PauliHatrix [2 ], IdentityMatrix [2 ], Id entityHatrix [2 ] ];

J 7 y _ Kro ne c ke r Pro duc t [ Ide nt i t yHa t r i x [2 ] , I de nt i t yHa t r i x [2 ] ,

~::::~:~:::~~: g~: ~::~~~:i:~:~~~ ~2ide~:~:;;:i:~:~~~ }~ ] ,
J S y = Kro ne c ke r pro duc t [ I de nt i t yMa t r i x [ 2 ] , I de nt i t yMa t r i x [ 2 ] ,

IdentityMatrix [ 2 ] , IdentityMatrix [2 ] , IdentityMatrix [2 ] ,
Id;ntitYMatriX[ 2 ],IdentitYMatriX[2 ] ,paUliHatriX[2 ] ] ;

J ,, = ;+ Tab1 e [J l . [ [ i , j ] ]+ i J l y [ [i,j ] ] , {i , 25 6 ) , ( j , 256 1 ] '

J , . = ; +T ab1e [J , .[ [i, j ) ] - iJ, y [ [i, j )) , (i , 2 5 6 ) , {j, 25 6 1] '

J ,, =; +T ab1 e [J h [ [ i , j ))+iJ, y [ [ i ,j ] ] , ( i , 256 ) , ( j , 2 56)] ,

J , . + ; +T ab1 e [J h [ [i , j ] ]-iJ' y [ [ i , j ) ], ( i, 2 56) , {j , 2 5 6 1] '

J ,, =; +T ab1e [J , .[ [i, j )) +iJ, , [ [i, j )) , {i , 256 1 , {j, 25 6 ) ) '

J l . = ; +T ab1 e [J h [ [i ,j ] ]- iJl , [ [ i ,j ] ], ( i , 2 56 ), ( j, 2 5 6 »),

J .. =;+ Ta b1e [J • .[ [i,j ]] +i J., [ [ i, j)) , {i,256 1, { j , 25 6» ),

J •• =;+ Ta b1e [J .. [[ i , j )) - i J . , [ [ i , j ]] ,{ i , 25 6 1 ,{ j , 2 56) ) '

J ,, = ;+Tab1 e [J , .[ [ i ,j ) ]+ iJ, ,[ [i,j ) ] , ( i,25 6 ), {j , 2 5 61] '

J , . =';+ Ta b1e [ J, .[ [i , j ]] -i J, , [ [i, j)) , { i ,256 1, {j, 256 ))'

J .. . ;+ Ta b1e[J • .[ [ i , j )] + i J , , [[ i , j )] , ( i , 2 56) , { j , 2 5 6 1] '

J , .= ; +T ab1 e [J , . [ [ i , j ]]- iJ, , [ [i , j ] ) , {i,256 1 , {j ,256 ») '

J ,, = '; +T ab1e [J h [ [ i ,j ) ]+ iJ, , [ [ i , j ) ], (i, 256 ) , {j , 25 6 1]'

J , • • '; +T able [J h [ [ i ,j ]]- iJ, , ( [i,j )) , {i ,256 1 , {j ,256 ) ) '

J 8P = ; * Ta b l e [ J 811[ [ i , j ] ] + i J s y [ [ i , j ]] , {i, 2 56} , { j , 2 5 6J] ;

J , . = '; +T ab1 e [J , .[ [ i , j ) ] - iJ, , [ [i,j )) , { i ,256 1, { j ,256 ) ) '

S" Ta b le [O, {i, 1 6} , { j , 1 6}] ;

-,-«
5[ [ 1 , 1 )) _ 1,

5[ [2,8 ]] . 5 [ [2, 12)). 5[ [2, 15 )) . 5[ [2, 14 ] ] -;,



8 [ [6,4 ] ] .8[ [6 ,13 ] ] .8 [ [3 ,4 J ]=8 [ [3 ,13 ] ]=- ,

-rr
8 [ [6,6] ] -8[ [6 ,11 ] ] .8 [[3 ,7 ] ] .8 [ [3 ,10 ] ] . -,

-r:
.'8 [ [6,7 ]] .8 [ [6,10 J ]=8 [ [3 ,6 ]]=8 [ [3 ,l1]]=- ,

-r:
8 [ [7 , 9 ]] = 8 [ [7 , 5] ] . 8 [ [7 , 1 2 ]] = 8 [ [7 , 8] ] = -- ,

-r:
8 [ [7,3 ]]=8 [[7, 2] ] -8 [ [7 , 15 ] ] -8 [[7,14]]=- ,

...rs
8 [ [8 ,8] ] .8 [ [8 ,3 ] ] .8 ( [8 ,12] ] .8 [[8,2 ] ] .- ,

-ir

8 [ [8 ,9 ] ]=8 [ [8,5 ]] =8 [ [8 ,14] ]=8 [ [8,15 ] ]=-- ,

-r:
8 [ (9 ,13 ]] =- - ,8 [[9 ,4 ] ] =- ,

...{2 ...{2

.'8 [ (10 , 12 J ] .8 [ [10 ,14 ] ] .8[ [l1,8 ] ] =8 [ [11 ,15 ] ] =- ,

-a
.'8 [ [11 ,12]].8 [ [11 ,14 ] ].8 [ [1 0 ,8] ] =8 ( [10 ,15 ] ] =- - ,

...rs
8 [ [10 ,3 ] ]=8 [ [10,5 ] ] =8 [ (l1 ,3 ] ]=8 [ [l1 ,5 J ] ' - '

-a
8 [ [10 , 2 ] ]=8 [ [10 ,9] ]=8 [ [11 ,2 ] ] =8 [ [11 ,9 ] ] = -- ,

-n:
1 1

8 [ [1 2,7 ] ]=- ,8 [ [1 2 ,10]]=-- ,
...{2 ...{2

8 [ [14, 2 ]] =8 ( [14,5 ] ] =8 [ [13,2 J ] '8 [ [13,5 ]] = ~ '
...rs
.'8 [ [14,9 ]]=8 [ (l 4 ,3 ] ] = 8 [ [ 13 , 9]]= 8 [ [13, 3]] . --,

...rs
8 [ [1 3 ,14 ] ] =8 [ [13 ,8 ]] .8 [ [14 ,12 ]] .8 [ [14,15 ]] . -- ,

-r:
8 [ [13,12 ] ] =8 [ [13 ,15 ] ] -8 [ [14 ,8 ]] =8 [ [14 ,14 ]] .- ,

...rs
1 1

8 [ [15, 6 ]] = - ,8 [ [ 15 ,11] ]=-- ,
...{2 ...{2

8 [ [16 ,4] ] _8 [ [16 ,6]].8 [ [16,7 ] ] _8 [ [16 ,10] ] .8 [ [16,11 ] ] _8 ( [16 ,13 ] ] = - ,

-a



W.Simplify [Kroneckerproduct [S ,S ) ),
L .Simplify [ConjugateTranspose [W) ] J

Xl - - - (.1 l • . .12 .+,]3 • • .1.. " + .1l •• .1) .+.12 ,, . .1• • + .1l • . .1• • +.12 . '.1, . ) J

YI --- ( J S " . J 61 + Jl .. . J I ,.+JS • . J 7 1+J6 11oJ•• +JS •• J ' a.J6 1loJ., ,, ) J

ZI - - - (J I • . J 2 "+J7 . oJ" 1l+Jl " .J, . +JZ•. J t a +Jl •• J , ,,+JZ,, .J' 1I) J

Vl ( JS •• J , ,, +J) .oJ• • +JS • . J J . +J6 .oJ•• +JS ll oJ•• +J6 11oJ) . ) J

V2
X2 - - -;- ( Jl S 0( J :lP + J ZM) + (Jtp + J 1 M) . J :za + J J . ' ( J f, p + J U..) + ( J l P + J ) .) · J &. +

J".(aJ".a'J,.). (aJlP.a' J, .).J,..J,..(aJ" .a' J,.) .(aJ".a' J,.).J.. .J,..(a' J".aJ,.) .(a' J".aJ, .) .J.. ,J".(a' J" .aJ,.).(a' J" .aJ..).J,,),
V2y2-- ---;- (J5 • • ( J 6 P + J 6 M) + ( JS P + JS M) . J 6lI +Jho ( J8 . + J 8IC) + (J' P + J 7 M) · J .. •

J,.. (aJ".a' J,.) .(aJ".a'J, .).J" .J,..(aJ"'E'J..).(aJ,, .a' J,.) .J.. .J".(a'J...aJ..).(a'J".aJ,.).J...J,..(a'J".aJ,.) .(a' J".aJ,.) .J,,) ,
V2ZZ- ---;- ( J lao( J Z P + J ZM) + ( J IP + J II II) . JZ a +J7 11' {J tp + J foM) + (J 7P+J7 H) .Jh+

J,..(aJ".a'J,.) .(aJlP .a'J,.).J,..J".(aJ,,'E'J,.). (aJlP.a'J..).J,..J,..(E' J"'EJ..)'(E'JlP .aJ, .).J,..J".(a'J,,.aJ,.). (a'JlP. aJ..).J,,),
V2

VZ:ll- ---;- ( JSs o( J 6 P + J 6I1) + ( JS P + J S M). J 6lI + J ho( J8 P + J 8IC) + ( J J p + J:U) · J •• +

J,..(aJ"'E'J, .) '(EJ" .a' J, .) .J" .J,..(aJ".a' J..).(aJ,, .a' J,.).J.. .J,..(a'J,, +E J..).(a' J".aJ, .) .J.. .J,..(a' J,, +E J,.) .(a'J,, +E J, .) .J,,),
x,.;a::',:·.:':.::';:::;:.:'~ ~~':. : ,J: :~:':,:~: ,J: :~J:::. :,J:: ~:':,: . J" )'

Y,.;a::',:·.:':.::';:::;:.:'~ ~:':. :.J: :~:':,:~:.J: : ~J:~:.:,J: :~:':6: .J" ) '

Z,.;a::',':.:',:::';:::;:.:'~ ~~'.~ :,J: :~:':,:~:,J: : ~J:::.:,J: : ~:':,: . J," ),
V,.;a::'::.::'.::';:::;:.:'~~:'.~:.J: : ~:':,: ~:.J: :~J:~:. :,J::~:':,: . J" )'



Xf, --- (J lp· J 211+ J 1M.J2 P+ J JP. Jf,M+J JM.Jf,p+J1 p ·JJ M+

J ll1 .JJP+J2p .Jf,M +J2 11.Jf,P+J l p .Jf,M+J l l1·Jf, P+J2 p·JJM+ J 2 11.J Jp ) 1

Yf, - - - (J 5 p·J' II+J5M·J' P+J7 p·JS M+J 7 M·J' P+J5 P·J7 M+J 5 M.J7 P+

J ' P .J'M+J' II.JSP+J5 P.J'M+J5 11.J S P+J' P.J7M+J' M.J7 P)1

Zf, - - - (J l p .J2 11+J 1M·J2 P+J7 p·Jf, M+J 7 M·J f,P+Jl P·J7 M+J l lI .J7 P+

J 2 p .J f,M+J2 11.J f, P+JI P.Jf,M+J l lI·Jf, P+J2 P.J7 M+J2 H.J7 P) ;

Vf, - - - (J 5 p ·JU I+J5M·J' P+JJ P·JS M+J J M·J' P+J5 P·JJ M+J 5 M.JJ P+

J ' P.J'M+JUI.JSP+J5 p.J'M+J5 11.JS P+J' P·JJ M+J' H.JJP );

HA - (C 1 (X I>+C2 (X 2)+CJ (X J)+ Cf, (X f,» ;

HB - (C 1 (Y I>+C2 (Y 2)+CJ (Y J)+Cf, (Y f,» ;
HP -C5 ( ZI + VI> + C, ( Z2 + V2) + C7 ( ZJ + VJ ) + CS ( Zf, + Vf,)'
HT _HA+HB+HP ;

:~:~~~:~;:~~~ ] ;

F _H . HT;

G .Slmplify [F l,
Q _G.L,

QQ . Sl mplif Y[ll l ,
Ha t r i xFOrm [QQ)

(*Ha t r i xFo rm [AAh Table [QQ[ ( i , j ) ) , { i , 17 , 30 ), ( j , 2 56, 25 6 ) ) ]

:;~~~7~;~~AA20 Tab l e [BB [ [l ,i n . 11 , 17 , 30 ) , I i ,256,2 56 ) II
HatrixForm (AA2_ Table [BB [ [i,j ] ] , {i ,160,17 0 ), {j,256,2 56 }) ]

~~~;~:~~~~~i~~~~f : ~ ' { i , 25 6)]
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