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Abstract

CFD simulations were conducted for different marine propellers at steady and

unsteady flow conditions using a commercial RANS solver ANSYS® CFX®. For

steady simulation, a spiral-like domain aligned with the vortex core was generated
with structured grids. The simulation was validated with the David Taylor Model
Basin DTMB 5168 propeller model at open-water condition.

Various eddy viscosity turbulence models and Reynolds-stress models were

bulence modeling on the solution

employed in the computations. The effect of the t
was investigated. The blade surface pressure and the propeller performance were also
computed. The simulation data were compared with the experimental data.

The unsteady simulation was conducted for propeller at inclined flow condition.
A single domain was generated with structured grids. A simulation technique for
inclined flow condition was presented. The simulation was validated with the model
test data of DTMB 4718 at, design condition. A fully implicit coupled solver was used.
A segregated solver with Incomplete Lower Upper (ILU) factorisation technique was
employed in the simulation. Algebraic Multi-grid (MG) model was used to accelerate

us were descretised by high resolution scheme while

the convergence. Advection ter
the viscous terms were treated by employing central difference scheme. The transient
terms were descretised with Second Order Backward Euler scheme. The Shear Stress
Turbulence model was employed in the computation.

The effect of grid sensitivity and domain size were investigated. The periodic

loadings on the pressure and suction sides of the blades were compared with the



experimental data. Reasonable agreement with the computed amplitude of the
pressure variations was found. The predictions of the phase of the pressure variations
were less favourable.

This work is the first attempt of the CFD simulation for unsteady propeller

flow investi using a spiral like grid. Further and

extensions of this work can be made. Suggestions are made regarding future work on

the use of CFD simulations of propeller flow.
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Chapter 1

Introduction

1.1 Background and Motivation

A marine propeller operating at the stern, within the wake of the ship, complicates
the propeller hydrodynamics. The blade inflow varies significantly as the propeller
rotates, producing unsteady forces. These forces result in additional unsteady loads
on the shaft and cause vibration on the hull. When the loading on the blades

increases, the propeller experiences another hydrodynamic phenomenon called

cavitation, which degrades propeller performance, erodes blade surfaces, produces

noise, and causes vibration on the ship hull. Apart from the vibration issues, the

knowledge of the unsteady load distribution is essential for the blade fatigue analysis.

It is also important for proper shaft and stern bearing design.

Additional complexity arises from the propeller operating with a shaft inclination
‘This shaft inclination generates unsteady loads on the blade surfaces and consequently

creates vibration and cavitation. On the other hand, with the increasing demand for

heavily loaded propellers, the occurrence of cavitation is unavoidable. Therefore, the

accurate prediction of cavitation is important




The cavitation phenomena can be revealed by experimental, analytical or numerical

techniques.  Experimental methods provide valuable insights into the cavitation
physics in various predetermined conditions, but it is expensive to manufacture the

side cavitation

models and they are vulnerable to slight flow condition changes

tunnels (Rhee and Koutsavdis, 2003). They also seriously suffer from scale effects in

viscous flow phenomena. Current analytical solutions can not predict periodic blade
loads accurately. They underpredict the periodic propeller blade loads in inclined
flow and give poor prediction of time average propeller blade loads at substantially
off-design conditions (Jessup, 1982). On the other hand, numerical methods can
provide insight into the local flow characteristics and are able to give sufficient
information. The cost and time required for the computation are much lower than
for model tests and are suitable for flow analysis.

‘The numerical methods based on potential theory are widely used in propeller flow

analysis. The potential flow methods are based on the assumptions of inviscid fuid
and irrotational motion. Using these methods, propeller performance at design
conditions can be predicted quite accurately, for example, Kinnas and Hsin (1992),
Gaggero et al. (2010). However, the off-design propeller flow phenomena, which

are dominated by viscous effects, cannot be predicted accurately. Moreover, the

potential flow methods are not able to predict the wake field with a sufficient lovel
of accuracy. To take into account the highly viscous effect of the propeller flow
field, it is proven that the numerical simulation based on the Reynolds-averaged
Navier-Stokes (RANS) method is effective. The unsteady RANS method represents
the state-of-the-art in computational prediction of the viscous flow around propellers

(Chen and Stern, 1999).

The accurate simulation of unsteady propeller flows s a challenging task due to

its complex physics and geometry. For example, general hub shapes can produce




& potential flow perturbation and will influence the inflow (Jessup, 1989). The
boundary layer can develop on the blade surfaces and can cause large gradients of
the velocity field (Qiu et al., 2010). The trailing edge flows may not maintain the
constant pressure at the trailing edge. In the case of tip vortex flows, radial flows
can separate at the tip through the adverse pressure gradients (Jessup, 1989). The
complexity of the flow field and geometry require special techniques to generate

suitable grids for the computational domain.

Another complexity for the propeller flow simulation arises from turbulence modeling.

A serew propeller generates non-equilibrium regions in the boundary layer with

adverse pressure gradients, and separation of flow may occur (Krasilnikov et al.,
2009). It induces highly rotating fow and entails a tip vortex, which causes turbulence

in the tip vortex region. The low Reynolds number (Re) flows occur at the near

wall regions, while high Re flows develop at the far-field. Morcover, the propellers
operating under off-design conditions develop strong flow separation on the blades
The simulation of propeller flow should take into account these flow phenomena.

ted studies were done to find the effects of turbulence modeling on the propeller

Lin
tip vortex computations. The fuctuating flows should be treated with the appropriate

turbulence models

1.2 Objective of this Research

‘The objectives of this research work were to predict the viscous flows past propellers

solver ANSYS-CFX was used

based on the RANS solutions. The commercial RAN

simulation. Both uniform and inclined inflow conditions were examined. A

for t
grid generation program PropGGM, developed by Qiu et al. (2003), was employed to

generate a spiral like computational domain for the steady and unsteady simulations




For the steady simulation, the propeller tip vortex flow was computed. The effect of
turbulence modeling on the tip vortex computation was performed to investigate if
the Reynolds stress model improves the tip vortex computations. For the unsteady

case, the ANSYS CFX is used to predict the unsteady blade loads.

1.3 Organization of Thesis

mmarized

A review of the past works Chapter 2. Chapter 3 describes

the process to develop the spiral like computational domain for the numerical
simulation. Chapter 4 covers the governing equations describing the fluid flow and
their descretisaton methods. Having explained the analysis process in Chapter 4,
Chapter 5 describes the research findings. The last chapter gives the conclusions,

Suggestions for future work are also presented.



Chapter 2
Review of Related Work

This chapter focuses on the literature review of work on steady and unsteady propeller

blade flows. A brief summary of some of the major experimental and numerical work

sented. The scope of predicting propeller loads, for both steady and unsteady

i

cases, using existing experimental and numerical methods are also discussed.

2.1 Steady Cases

2.1.1  Experimental Work

Advanced flow visualization and non-intrusive measurement techniques distinctly
improve the experimental investigations of flow field studies on propellers. The first
Laser Doppler Velocimeter (LDV) measurements of marine propeller flow were made
by Min (1978) at MIT and further insight into the propeller wake was provided.
The viscous wakes were identified. An extension of Min's study was carried out by
Kobayashi (1981) to measure the viscous wake downstream of the propeller with some
details. Cendese (1985) and Billet (1987) conducted LDV measurements about marine
propellers with the inclusion of turbulent measurements. Al of these experimental
investigations have only identified the wake as complications in the flow with high

turbulence, but detailed wake measurements had not been made. Chesnakas and



sed LDV systems to obtain detailed velocity measurements of a

Jessup (1998)
propeller wake at downstream locations. Di Felice et al. (2004) demonstrated the

capability of Particle Image Velocimetry (PIV) for identifying the flow structures
in the wake of a propeller. In spite of the success in measurement of propeller flow
features, the pressure field still remains unclear due to the limitations of measurement
techniques. It s desirable to provide the detailed pressure field by mumerical

simulations.

2.1.2  Numerical Work
Panel methods have long been applied for the solution of propeller design and
analysis of flow problems. Hess and Valarezo (1985) made the first attempt, to

analyse steady flow around a marine propeller using 3D Boundary Element Method.

The classical Hess and Smith formulation had been used in this paper. Kerwin et al.
(1987) also applied the panel method to investigate marine propellers performance.
In recent years, numerous researchers have used RANS to simulate the rotating
blade cases. For example, Abdel-Maksoud et al. (2004) analysed the effect of the hub
cap shape on propeller performance using commercial RANS code, CFX-TASCHlow.
Abdel-Maksoud and Heinke (2002) predicted the velocity distribution in the gap
region of a ducted propeller using the same code. Simonsen and Stern (2005)
computed the hull-rudder-propeller interaction by coupling the RANS and potential
codes. Rhee and Joshi (2003) presented the computations of marine propeller flow

using the commercial RANS code, FLUENT. However, numerical studies on the tip

vortex flow of open marine propellers are somehow limited except for some earlier
studies, for example, Hsino and Pauley (1999) and Chen and Stern (1998).  Hsino
and Pauley (1999) applied a one-equation turbulence model on fine grids to compute
the tip vortex flows. The tip vortex was better predicted at the location closer to
the propeller while the wake was better predicted at the far field location. It was

concluded that the eddy viscosity computed from the Baldwin-Barth one-cquation




turbulence model might be too large within the tip vortex and led to an overly

diffusive and dissipative tip vortex.

In this thesis, the steady-state tip vortex flow generated by a marine propeller was
computed using the RANS solver ANSYS CFX. An investigation was done to show
the effect of turbulence modeling on the vortex flow computation. Various eddy

viscosity and Reynolds stress turbulence models were employed in the investigation.

2.2 Unsteady Cases

2.2.1 Experimental Work

The investigation on unsteady blade forces requires advanced experimental and

numerical techniques.  The total unsteady and time-average blade loads were

evaluated by Boswell et al. (1976 and 1978) and Jessup et al. (1977). However, these

results are unable to reveal significant information on the distribution of the periodic

loadings over the blade and ict ti rage blade loads at

off-design conditions. An experiment was undertaken by Jessup (1982) to obtain
accurate and reliable measurements of the pressure distribution in uniform and
679 and

inclined flow. He measured unsteady pressure distributions on the DTMB 4

DTMB 4718 models in oblique flow. Single blade forces for propeller DTMB 4661 in

inclined flows of 10, 20, and 30 degrees were also reported by Boswell et al. (1981

and 1984). To acquire sufficient of unsteady propeller

Jessup (1990) did an experiment with the symmetric 3-bladed propeller DTMB 4119,

which was operated behind harmonic wake screens with 3, 6, 9 and 12 cycles per

revolution.




2.2.2  Numerical Work

Panel methods have been employed to compute steady and unsteady flows around
propellers. Kerwin and Lee (1978) proposed a lifting surface method. Liu and Bose
(1998) implemented inflow wake and hyperboloid panel algorithm to deal with the
oblique flow for highly skewed propellers. Hsin (1990) and Gaggero (2010) solved the

unsteady cavitating flow by a potential boundary element method. Politis (2004)

applied the boundary element method to predict unsteady trailing vortex sheets

emanating from each blade. However, the panel methods are limited to inviscid fluids
only. When viscous flow becomes important, for example, for tip vortex predictions
and leading and hub vortices predictions, the panel methods are unable to predict

accurately. To overcome these limitations, viscous solvers must be used.

Most of the researchers have simulated the MIT FFX (Massachusetts Institute
of Technology Flapping Foil Experiment) to reveal the physics of unsteady blade
flow. For example, Rhee and Koutsavdis (2003) presented a two dimensional (2D)
simulation of unsteady flow around the blade section embedded in a travelling
wave field. In their work, an unstructured dynamic meshing technique was used
Paterson and Stern (1997) validated their time accurate solutions of the RANS

cquations by simulating the MIT FFX. Most marine propellers operate in a highly

three dimensional and viscous inflow condition. In the case of a propeller with an
inclined shaft, the propeller operates in a primary potential flow field, but the shaft
inclination causes unsteady loads on the blades (Jessup, 1989). These practical

configurations cause complex: unsteady flow phenomena and need to be addressed.

Gaggero et al. (2010) used RANS solver StarCCM-+ to investigate the oblique flow

phenomenon on model propeller DTMB 4679 by using sliding mesh technique. This

technique takes into account the relative motion of the propeller blade around an

inclined axis inside the fixed domain in which the propeller inflow is generated.




This approach is known as mixing plane approach (Snchez-Caja et al., 2008). The
advantage of the sliding mesh technique is that it allows for time accurate simulation.
In their work, the whole domain was generated by unstructured grids. An implicit
unsteady solution approach with algebraic multi-grid model were employed. Superior

capabilities of the RANS solver were found over the potes

unsteady pressure distributions and forces at off-design conditions, although they
also described the RANS solver as an immature tool for the solution of the steady
and unsteady cavitating problem. Krasilnikov et al. (2009) also employed the sliding
mesh technique in another CFD code, FLUENT. In their simulation, the widely used
model propeller DTMB 4679 was simulated in two stages. At the first stage, the
solution was done by using Moving Reference Frame (MRF). This solution was then

used as initial conditions for time dependent simulation. Temporal discretization

was done by first order aceurate backward difference discretisation technique. The
computational domain was generated by 286 million unstructured cells. From
their computation, it was found that the RANS method predicted better in heavier
loading conditions. Under lighter (J=1.078) loading, where the influence of viscosity
is larger, the RANS calculation overpredicted the pressure on the suction side. The
same case was also reported by Leras and Hally (2010), but for heavier loading
(
at the tip which is

with two model propellers, DTMB 4679 and DTMB 4718, to investigate inclined

0.719). As explained by Leras and Hally (2010), it may be due to the cavitation

ignored in the calculation. They also did a preliminary study

flow phenomenon using the commercial RANS solver ANSYS CFX. Two dimensional
structured grids were used on the blades, and the remaining regions (hub and regions
associated with the blade) were made by unstructured grids. The data for analysis
were sampled on each blade over only one-third of a complete revolution and then
added together to get the equivalent pressure on a single blade over a full revolution.
Good agreements with the experimental data were found with the measured

average pressures. The computed amplitudes of the pressure variations were also in




good agreement. However, the phase of the pressure variations were poorly predicted.

In this study, the numerical simulation was conducted to predict the flow around a
propeller operating with a shaft inclination of 7.5°. The commercial RANS solver
ANSYS CFX was used. A single domain was generated with structured grids. The
simulation was validated with the model test data of DTMB 4718 at design condition.
The periodic loadings on the face and back of the blade surface were computed and

validated with the experimental data.



Chapter 3

Propeller Geometry and Grid

Generation

The numerical solution of RANS equations requires discretization of the field of

interest,into a collection of points or elemental volumes. The efficiency of a RANS

solver largely depends on the quality of grid. In this chapter, the geometry of propeller

and the grid generation of the computational domain are discussed

3.1 Propeller Geometry

The grid was generated by the program PropGGM (Qiu et al., 2003). The input

of this program only takes the 3-Dimensional coordinates of the blade surface and

does not include sectional pitch, chord length, pitch diameter ratio, skew and rake
distributions. A Fortran program was then developed to generate the Cartesian
coordinates of the blade by taking the basic propeller geometry. The mathematical

formulation of the program is described below.



Figure 3-1: Coordinate system of propeller

3.1.1 Coordinate System

A cartesian coordinate system, Ozyz, fixed on the propeller is applied. The positive
s-axis defined as downstream direction and y-axis located at any desired angular
orientation relative to the key blade. The z-coordinate is determined by the

right-handed system (Figure 3-1)

A cylindrical coordinate system is defined as follows. The angular coordinate @ is

measured clockwise from the y-axis when viewed in the direction of positive

The radial and angular coordinates are given by

r= Vi 3.1)




Figure 3-2: Cylindrical coordinate system
0= tan™ (y/z)

3.1.2 Blade Geometry

A projected view of a blade from upstream is shown in Figure 3-2. In the Figure, ry

is the hub radius, 0 is the skew angle measured from the z-axis at radius r.

The skew angle, 0,,(r), is defined as the angular coordinate of the mid-chord line

‘measured from the y-axis at radius r where the y-axis is along the propeller reference

|
| line. As shown in Figure 3-3 (Carlton, 1994), the rake of the propeller is divided into
‘ two components: generator line rake (ig) and skew induced rake (i,). The total rake
of the section with respect to directrix (ir) is given by
ir(r) = ig(r) +1is(r)

13
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Figure 3 tion of rake

The generator line rake, ig;, is simply the z-coordinate of the mid-chord line as shown

in the Figure 3-2. The skew induced rake i,, also measured in the & direction, is the

component of helical distance around the cylinder from the mid-chord point of the

section to the projection of the directrix when viewed normally to the yz-plane. The

skew induced rake is given by as

70, tan(6,0)

Where, 6, section skew angle and 6, is the nose-tail pitch angle

A blade index angle, 8, is defined to generalize the results to all blades other than

1




the key blade:

LN (32)

where K is the number of blades and k is the index of any blade. The key blade is

defined by the k = 1. The coordinates of a point on the pressure and suction surface

of a section on the kth blade can be written as

Zap=TC0S0,p (36)

where the subscripts s and p denote the suction side and the pressure side surfaces,

tespectively; £, is the section surface and is measured in a cylindrical surface of

radius 7 in a direction normal to the helical coordinate,

3.1.3  Blade Section Geometry

(NACA) in the USA, now known

geometries. Some of these aerofoil

The National Advisory Committee for Aeronauti

as NASA, developed a systematic series of acrof
shapes have been adopted for the design of marine propelle

NACAG6 series with the mean

Typical section

used for ship propeller ne a = 08. The section

geometry is given in the appendix. The mean line or camber line is the locus of

the

points between the pressure side (upper) and suction side (lower) when
measured perpendicular to the camber line, as shown in Figure 3-4 (Carlton, 1994).
The two edge points of this camber line are known as leading and trailing edges

of the acrofoil. The distance between these two points when measured along the
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Figure 3-4: Definition of an acrofoil section

the

chord line is the chord length, ¢, of the section. The aerofoil thickness, , i

distance between the upper and lower surfaces of the section, usually measured

perpendicularly to the chord line.

The upper and lower surfaces are measured perpendicularly from the camber line.

point Py on the upper surface and a point P on the lower surface of the aerofoil, as

shown in Figure 3-5 (Carlton, 1994), are defined by

e = ysin g

Y= Y+ Y cos

3.7)

o pesing

= e = wcos

where 1), the slope of the camber line at the nondimensional chordal position, ., is
defined as:

tan ‘(‘f—‘) (38)




Figure 3-5: Aerofoil section definition

Since 1 is very small for marine propellers, Equations 3.7 can be simplified to

Zu

W=Vt U
2= (3.9)
Y=V
where y, = /2 is the semi-thickness of the local section
The leading edges are usually circular. But in the simulation the circular edge was
replaced by a sharp edge for the ease of grid generation process.
3.1.4 Hub Geometry

Some geometry simplifications were made in the grid generation of the hub. The
propeller blades were assumed to be mounted on an infinite constant-radius hub
cylinder and therefore axial variation in hub radius was ignored. Root fillets for

fixed-pitch propellers were also ignored.



3.2 Grid Generation Method

As stated earlier, the efficiency of RANS solver largely depends on the quality of the
grid. For the computation of the propeller tip vortex flow, grid resolution within the
tip vortex core has profound effect on the physical solutions (Hsiao and Pauley, 1999).
To represent the physical solution with sufficient accuracy for a complex tip vortex
flow, the following issues must be considered in the grid generation process (Qiu et

al., 2003)

« Grid Fineness: A fine grid is necessary to adequately resolve the tip vortex.
At least 15 grid points across the tip vortex core should be used to obtain a

reliable near-field tip vortex for marine propellers (Hsiao and Pauley, 1999).

rface must be

© Grid Density: The grid density on the propeller blade

sufficient so that boundary layer effects can be well predicted.

 Grid Smoothness: Grids must be smooth throughout the computational

dom

 Grid Orthogonality: The grid orthogonality at the solid boundary

important if the zero normal pressure gradient approximation is applied

o Grid Efficiency: The grid generator has to be computationally efficient for

routine applications.

In this work, PropGGM was used for grid generation purpose. Detail description

of the structure, functionalities, i and fon of this program
is given by (Qiu et al., 2003). A brief deseription of the grid generation process is

illustrated here.



3.2.1 Grid Generation Approach

The computational domain was created as one blade-to-blade passage with two
periodic boundaries by following the inlet flow angle. One periodic boundary contains

the suction side of a blade while the other contains the pressure side of the adjacent

blade. This strategy resulted in a spiral-like computational domain. The advantage
of this kind of computational domain is that the clustered grid can be easily aligned

es can be minimized

with the tip vortex and the flow across the periodic bounda

(Hsiao and Pauley, 1999). The domain is enclosed by the inlet boundary upstream,

the outlet boundary downstream, the inner boundary located on the hub surface and
the outer boundary in the radial direction. The domain is shown in Figure 3-6. The

grid generation was done by three steps:
o Step 1: Generation of the surface grid on the blade and hub surfaces.

o Step 2: Generation of a two-dimensional grid in the fluid domain between

surfaces.
o Step 3: Smoothing the initial three-dimensional grid.
A brief discussion of each step is given below.

3.2.2  Grid Generation on Blade Surface

ates, the surface grids were distributed

After the generation of blade surface coor
on the blade surface. The pancls generated from the original data shrinks to a point at
the last radial station. This type of pancls or grids are known as O-type grid and are
not aceeptable for a structured grid based RANS solver. To solve this issue, the data
points from the original data were first increased. H-type grids were then generated
from an O-type grids. Details of the H-type grid generation can be found in Qiu et
al. (2003). Diffe

nce between H-type grids and O-type grids are shown in Figure 3-7.
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Figure 3-6: Spiral like computational domain

The distribution of H-type grid can be controlled by changing the number of grid

points in the spanwise and chordwise directions as well as by the distribution

functions. The distribution functions for grid points concentrated at two ends in

the spanwise or chordwise direction are defined by

@t B(A+ /(B = D)0 420 - §
(20 + D){1+[(8+1)/(8 - 1)]€-a/0-a)}

98 =

o Qa B8+ 1)/(B - 1SN0 4 20— g
YO = Gk {1+ (8 + V/(F - DI

(3.10)

(3.11)

where a and § are the gird distribution factor and stretching factor, respectively.

When a = 0.5, the grid will cluster evenly at both the tip and root regions in the

spanwise direction or the leading and trailing edges in the chordwise direction.

20



() O-type grid

(b) H-type grid

Figure 3-7: Difference between H-type and O-type grid



The stretching factor, 5, should be greater than one. The larger the value, the less
concentration of grid points at the end edge will be achieved. In another words, the
grid will be more uniformly distributed. The intermediate variables, ¢ and ¥, are

defined on the unit intervals, § and C. In the program, £ = £=% and ¢

T or J is the order of the point in the chordwise direction or the spanwise p dicocion,
N or M is the total number of points in the chordwise direction o the spanwise
direction. The location of a grid point on the surface can be controlled by adjusting
the single valued function ¢(€) in the chordwise direction or 1/(C) in the spanwise
direction. The controlling functions for grid points concentrated at one end in the

spanwise or chordwise direction are defined by

_ B+ - BB+ /@1
¢l CEREass S
o (B 1) = (3= DB+ /(8= 1)1
YO = - e T St

For blade flow simulation, clustered grids are required at the tip and root regions as
well as the leading and trailing edges of a blade surface. For this reason, the blade
surface was subdivided into two regions in the spanwise direction. The first region
was from s = 0.0 (1oot) to s = 0.90 where s is the non-dimensional arc length. The
two-end grid concentration was applied in this region. The second region was from
0.90 to s

1.0 (tip), where the one-end grid concentration was set. In the

chordwise direction, the two regions were divided at s = 0.45. In the region close
to the leading edge, two-end grid concentration was applied. In the other chordwise

region, the one end grid concentration was used.

3.2.3 Grid Generation on Boundaries

To generate the spiral like boundary, the domain was divided into three regions as

shown in the Figure 3-8. The first region is above the tip from the leading edge to
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Figure 3-8: Grid generation on boundaries

the trailing edge, the region from the inlet boundary to the leading edge is the second
region and the region from the trailing edge to the outlet boundary is Region 3.

To generate the grids in Region 1, the following equations were used (Qiu et al., 2003):

(i, k) = (i, KTIPNUM)

Tgar = Tipli)
Ttip-1

6(i, k) = 0(i, KTIPNUM) (3.14)

(i, k) = rip(i) + (k)

= r(i,k)sin[0(i, k)]




2(i, k) = r(i, k) cos[8(i, k)]

where, i = ILE,ITE; k = KTIPNUM + 1,KMAX. In the equations, ILE
and ITE are the indices of grid points on the leading edge and the trailing edge,
respectively, KTTPNUM is the number of grid points on the blade surface in the
spanwise direction, KMAX is the total number of grid points on the boundary
in the spanwise direction, ¢(k) is the controlling function in the radial direction,
2(i, KTIPNUM), 8(i, KTIPNUM) and ry,(i) are the z, 6 and r-coordinates at

the tip, respectively.
To generate the grids in the Region 2, the following equations were used:

o(i,k) = o(ILE,K) - 200
Qs

(ILE.k) - z1.6]

21rr (k)n

ro(k) = [2(ILE, k) - 21
0(i,k) = O(TLE, k) + %%% (3.15)

(i, k) = (i, k) sin[0(i, k)]

2(i,k) = r(i, k) cos{0(i, k)]
where, i = ILE = 1,1,~1; k = 1, KMAX, 4(i) is the controlling function in the
helix line direction, dzg is the distance from the inlet boundary to the leading
edge on the tip, z is the z-coordinate of the inlet boundary, Us is the inflow
velocity, n is the RPS of the propeller, r'(k) is the radius of the grid on the line a,
#(ILE. k), 6(ILE,k) and r(ILE,¥) are the z, 0 and r-coordinates on the leading

edge, respectively.

For Region 3, the following equations were used:




(i, k) = 2(ITE, k) + %[}:Tg - 2(ITE, k)]
e
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0(i, k) = 0UTE,K) + %)Tr’:f;

= r(i, k) sin[6(i, k)]

2(ITE, k)]

ro(k) = [re

(3.16)

Y k)
2(i,k) = r(i, k) cos[8(i, K)]

where, i = ITE + 1,IMAX; k = 1, KMAX, ¢(i) is again the controlling function

in the helix line direction, dr is the distance from the trailing edge to the outlet

boundary on the tip, a7 s the z-coordinate of outlet boundary, (k) is the radius
of the grid on the line §, x(ITE, ), 0(ITE,k) and r(ITE,k) are the 2,0 and

r-coordinates on the trailing edge, respectively.

3.2.4  Initial Grid Generation

After the completion of grid generation on the blade surfaces and periodic boundaries,
a two-dimensional grid was created on each constant radius surface considering the
blade surface grid and the first grid spacings. On each constant radius surface, a

Bezier curve (Faux and Pratt, 1979) was used to define a grid line between two

boundaries. This Bezier curve makes the grid normal to the blade surface where the

boundary condition of zero normal pressure gradient is applied.

The grid points on the Bezier curve were then distributed by using the two-end

sional

controlling function. The two-dimensional grid was smoothed by a two-dim
elliptic smoothing routine and by stacking these smoothed grids, the initial 3-D grid

was generated.



3.2.5 Elliptic Smoothing Technique

The grid generated by linear interpolation is not smooth. An elliptic smoothing

routine was used to smooth the gird. This routine solves a set of coupled Poisson

elliptic partial differential equations and generates smooth grid. The equations are

given below:

ot &yt € = PENQ)

e + Ty 7 = QL& 1,0

Gz + G+ Gex = R m,0)

These equations can be transformed into generalized coordinates by

=& y.2)
n=n(zy,2)
¢=C(@,p,2)

The Jacobian of the transformation is computed by

1

[ AR
aene | .

By ) [ W

J = det

Ye o Ve
[ I P

where & = §£, z¢ = 2, ete.

(3.17)

(3.18)

(3.19)




The metric terms are calculated as

& Yz = Y ™
&| =7 |aczm —az| =7 [
& Tl = Tl T
e Yee — e m2
my| = |weze —aez | =T | (3.20)
s Teye — Tl i
G ez~ Une T3
4 v = 2| = [m

G Telly — Tl e
Using the Jacobian of the transformation above, Equation 3.17 can be transformed

into

;I(Frﬂ»ﬁr,ﬁﬁr() (3.21)

QT+ anty, + agre + Aaiare + arare + aziyc)

with

Where, P, @ and R are the forcing functions and are used to control the grid

distribution. They are defined as
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Q(em, Q) =a(, e (3.22)
R(En.0) =T(E Qe

where a is a positive constant which determines the decay rate of the grid clustering

and p. 7 and 7 i determined by rewriting Equation 3.21 at the boundary, i¢; at 7 = 0

as follows:
Pre+an, +7rc = h (323)
where
h,
h=|hy| = =t + amry, + asire + 2ante, + aurg + axsty)]  (3.24)
hs

The partial derivatives of r with respect to €, 7 and ¢ at the boundary, i.e; at = 0,

are determined by the following three relations

TeTy

Tty (325)
o, =0

where s is the first grid spacing at the boundary. The desired spacing and

orthogonality are specified here. Expanding the equation gives

Tey + Yey + 27

Ty + Ynly + 207 (3.26)



ey + Ychn + X2

Cramer’s rule is applied to get the solution for z, and g,

e (2 = 2cve) _ —ama @)
TeU — Ve —1m

4= Sl =) —am o
T e Tew)  m

Substituting z,, and y, into the second equation in Equation 3.26 gives

f
" VRt R R
Lait]
Ty= ——— (329)
" VRt R
12

Vbt Rt

Equation 3.2 gives the first derivative r,. The second derivatives r,, can be derived

from the Taylor series:

(330)

where j is the index in the 7 direction.

A multiple block, smoothing routine was used to smooth the initial grids based on
the scheme described above. A smooth grid can be obtained in a few iterations by

this routine.



3.3 Computational ~Domain for  Unsteady
Simulation

In the previous seetions, a computational domain for steady simulation containing

sed. For the steady (uniform) flow condition it is

only a single blade was discu:
assumed that the pressure variations over all the blades are the same and there
are no significant flow interruptions among the blades. This type of domain is
computationally efficient since it requires less memory and computing time. But for
unsteady (non-uniform) inflow conditions, the flow is three dimensional and requires
consideration of all of the blades to accurately investigate the unsteady nature of

propeller blade loading

An attempt was then taken to construct a domain which would contain all the blades

of a propeller and the hub. The domain was created in two different ways. Firstly, by

modifying PropGGM for each individual blade to generate separate spiral like domain
and combining them together to get the full propeller. Secondly, by using the mesh
transformation feature of ANSYS CFX (CFX manual, 2005). The second option was
found much easier, faster and more convenient. The procedure is described in the

following section.

3.3.1 Mesh Transformation

The PropGGM generates one blade-to-blade spiral like domain which is sufficient
for uniform flow analysis. For non-uniform inflow conditions, all the blades must
be considered. This was easily done by the mesh transformation editor of ANSYS
CFX. The other blades and the full hub were regencrated by copying and rotating the
spiral like domain. Finally, all the domains were glued together to create a continuous
mesh contained in a single assembly from the multiple copies. A single domain was

thus

created for the entire assembly without the need of creating domain or periodic

30



igure 3-9: Computational domain for unsteady simulation

interfaces between each copy. Figure 3-0 shows the computational domain




Chapter 4

Computational Method

This chapter describes the numerical method used to solve the problem. The
governing equations for fuid flow are outlined first. The discretisation method of
the governing equations and the solutions strategy of the descretised equations are

then explained. A comprehensive summary of all turbulence models is also presented.

4.1 Governing Equations

A commercial viscous flow code, ANSYS-CFX (V11.0 and V13.0) was used for

the computation. The set of equations solved by 'S CFX are the unsteady

Navier-Stokes equations, The unsteady, three-dimensional continuity equation for
compressible fluid is

p

5+ Y (U) =0 (4.1)

For incompressible fluid (g water) the density p is constant and the equation

becomes:

v-(U)=0 (42)



The Momentum conservation can be presented as:

pU

LAV (UBU) =

Vp+ V- (VU + (YUY — ng U+ Sy @3)

where § is the Kronecker delta function, S is the momentum source, @ is the tensor

product of two vectors, U @ V is defined as,

UV, UV, UV,

UeV= Uy, UV, UV,

A AT AA
Additional sources of momentum are required for flows in a rotating frame of reference
to account for the effects of Coriolis force and the centrifugal force. If the frame rotates

at a constant angular velocity w, the source term can be expressed as

St = 2w x U = p x (wx 1) (44)
where the first term represents the Coriolis force and the second term is the centrifugal
force, 7 is the location vector and U is the relative frame velocity, i.c., the rotating
frame velocity for a rotating frame of reference. The final form of the momentum

equation becomes:

WY |- (pUU) = ~Vp+V-{p[VU+(VU)T — 267U} ~2moxU - (wxr)
at 3
(4.5)

The total energy equation can be expressed as:

%*g+V-(pU’m>{)=V‘(/\VT]+V'(U-T)+U Su+Se  (46)



where by is the total enthalpy. The term ¥ - (U - 7) represents the viscous work

due to the viscous stresses and the term U - Sy represents the work due to external

‘momentum sources, and S is the energy source.

The re

naining unknown thermodynamics variables (p, P, i and T) are linked together

through the assumption of hydrodynamic equilibrium and are expressed by only

two state variables. This expression is known as the equation of state. For an

incompressible fluid, where the density is constant, there is no need for the state

s conservation

cquation. The flow field can often be solved by considering only the
and momentum equations. The energy equation only needs to be solved alongside

the others if the problem involves any heat transfer (Versteeg and Malalasekera, 1995).

For turbulent flows like propeller tip vortex flows, the Navier-Stokes (N-

equations
have to be modified to produce the Reynolds Averaged Navier-Stokes (RANS)
equations by employing averaged and fluctuating quantitics. The resulting equations

then become:

a
S+ Y-(eU) 1)
o’%+v (PUSU)=V-7—puBu+Sy (4.8)

where 7 is the molecular stress tensor and pu @ u are the Reynolds stresses. These

stresses are modelled by introducing turbulence model to enclose the governing

ns. Details of the turbulence models are described in Section 4.4.




4.2 Discretisation of Governing Equations

So far we have scen that the flow phenomena are governed by partial differential
cquations. Analytical solutions to these equations are only available for the simplest
of flows, under ideal conditions. To solve real flow problems, a numerical approach
must be adopted whereby the equations are replaced by algebraic approximations

rical discretisation. This section describes this

and the process is known as nu

descretisation method used for the simulation (Versteeg and Malalasekera, 1995).

There are significant commonalities between the various governing equations and can
be written in the following general form:

o

Ae) | Giv(ppu) = div(Tgradg)+ Se (19
i @ it Dify

2
Rate of diange term

where ¢ is the variable of interest, T'is the diffusion coefficient. The Equation 4.9

is known as transport, equation since it describes various transport processes of
dependent variables. This equation represents different aspects of the fluid motion.
The convection term represents the flux of ¢ convected by the mass flow rate
pu, the diffusion term represents the random motion of particles and the source
term represents the generation and destruction of ¢. The non-lincar nature of the

convective term makes it difficult to solve the equations directly, that is, as a set of

simultancous equations. An iterative solution method is the only way to solve these
equations. The governing equations are discretised, that is, approximately linearised
to obtain the algebraic equations and are solved at discrete points throughout the

domain,

A variety of techniques, including and not limited to finite difference and finite volume
methods, are available to perform this numerical discretisation but a finite volume

approach is adopted here. A brief description of the method is given below.
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4.2.1 Finite Volume Method

The finite volume method is probably the most popular descretization method
used in CFD. This method draws on ideas from both finite element and the finite
difference discretisation techniques. In this approach the computational domain is

retized into finite control volumes, also known as cells. The gover

dis \g equations

are integrated over each control volume which utilises the conservation principles

directly. The integral form of Equation 4.9 over a control volume gives

= / podV + / n- (pgu)dA / n- (Cgradg)dA + / SV (410)
o Jev A 4 ov

The Equation 4.10 represents the flux balance in a control volume where the left
hand side represents the rate of change of ¢ and net convective flux and right hand
side gives the the net diffusive flux and the generation or destruction of the property
. These fluxes are evaluated by various numerical schemes which are discussed in

the following scctions.

The main advantage of the finite volume method is that the spatial discretisation

is carried out directly in the physical space. Thus, there are no problems with any
transformation between coordinate systems, like in the case of the finite difference
method. Compared to the finite difference method, another advantage of the finite
volume method is that it is flexible to implement on both structured and unstructured

This makes finite volume method suitable for the treatment of flows in complex

i

geometries,

4.2.2  Discretisation of the Domain

Older CFD codes used a staggered mesh approach where the scalar variables were

calculated at the cell centres and the vector variables, i.e. the velocities, at the cell

faces. But recent codes, such as CFX, use a co-located (non-staggered) grid layout
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where the values of all variables are calculated at the centre of each control volume.
This approach is better than the previous one since it requires only one mesh to
get the values of all the variables. In a complicated geometry, where curvilinear

(non-rectangular) meshes are used, application of co-located grid s easier because of

its simplicity. However, this method leads to a decoupling of the velocity and pressure
fields giving a ‘checkerboard” effect. This is overcome by Rhie-Chow (Rhie and Chow,

1982) interpolation algorithm, which s further modified by Majumdar (CFX manual,

2005) to remove the dependence of the steady-state solution on the timestep size.

4.2.3  Advection Terms

Advection terms can be approximated with different advection schemes available in
CFX. All the schemes have some advantages and disadvantages. For example, the
first order accurate upwind differencing scheme gives the most robust performance of
the solver but it suffers from numerical diffusion. On the other hand, the second order
accurate scheme is free from the diffusion problem but sometimes it gives non-physical
results. A blend of these two schemes can be achieved by the use of the high resolution
scheme, which was implemented in this simulation. A blend factor (5) is sent in
range of 0.0 for fully first order to 1.0 for fully second order schemes. The blend factor

values vary throughout the domain based on the local solution field. If the variable

gradients is low in a flow region, the blend factor will be close to 1.0, but will be

closer to 0.0 where the gradients change sharply. In other words, the scheme is fully
t order

are no discontinuiti

second order as long as the s in the flow. It drops to fi

to keep the solution bounded. A central difference advection scheme is also available

to CFX but it is reserved for large eddy simulation turbulence model only. The third
order accurate QUICK scheme is also available in CFX but not listed in the main

options and perhaps this is not recommended for general use.



4.2.4 Diffusion Terms

The reasonable way to discretise diffusion terms is to employ a central difference

tion on

scheme because of the physical nature of the viscous flux. Thus, their discretis
structured grids is straightforward. On unstructured triangular or tetrahedral grids,
the viscous fluxes are best approximated by following the standard finite element
approach. CFX also uses this approach by employing shape functions to evaluate the

derivatives for all the diffusion terms.

4.2.5 Transient terms

The transient term of Equation (4.10) can be split into terms as folloy
a — (0%, 0.
o [ petv = VUG 465 @1

The time derivatives of Equation (4.11) can be approximated by either the first order

me. The first order

Backward Euler scheme or by a second order Backward Euler s
scheme s robust, fully implicit, bounded, conservative in time, and does not create a
timestep limitation. But since it is only first order accurate, it suffers from numerical

diffusion in time, similar to the numerical diffusion experienced with the Upwind

Difference Scheme for discretising the advection term. On the other hand, the second
order scheme is also robust, implicit, conservative in time, and does not create a

ical

time step limitation, but it is not bounded and may hence create some nonphy:

mulations were done

overshoots or undershoots in the solution. However, all the

with this Second Order Backward Euler scheme.

4.3 Solution Strategy of the Discretised Equations

therefore

There is 1o equation (transport or other) for pressure and this aspect

treated differently. A constraint is set on the solution of the flow field in that when

38



the correct pressure s substituted in the momentum equations, the resulting velocity
feld satisfies mass continuity. ANSYS CFX uses segregated solvers which solve
the momentum equations using a guessed pressure and obtain a pressure correction
relation. This "guess-and-correct” approach of the linear solver requires a large mumber

of iterations. A coupled solver solves the hydrodynamic equations (for u,v, w,p) as

tion method. This reduces the number

a single system with a fully implicit discre
of iterations to achieve the convergence criteria. The discrete system of linearised
equations are solved by an Incomplete Lower Upper (ILU) factorisation technique

aceelerated by algebraic Multigrid (MG) method (Raw, 1996)

4.4 Turbulence Modeling

Turbulence modelling is another important issue to consider especially when the
simulation deals with the fluctuating flows like propeller flows. A screw propeller
induces highly rotating flow and entails a tip vortex, which causes turbulence in the

tip vortex region. A viable tool then required to represent this turbulence effect.

The random nature of a turbulent flow can be explained by introducing averaged and

®

fluctuating components. For example, a velocity u(t) can be divided into an average
component U and a fluctuating component u’(t)
u(t) = U +u'(t) (4.12)

Thus, it requires modification of the original unsteady Navier-Stokes equations,

considering the averaged and fluctuating quantities to produce the Reynolds Averaged
Navier-Stokes (RANS) equations. These equations are obtained by using the
statistical averaging procedure. This averaging procedure introduces additional

stresses in the fluid known as "Reynold: * and need to be modelled in order to

res

achieve “closure’. Turbulence models provide the model for the computation of the
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Reynolds stresses. There are several turbulence models available to CFX which can
be categorized into two classes, eddy viscosity models and Reynolds stress models.
They are discussed below.

4.4.1 Eddy Viscosity Turbulence Models

These turbulence models are based on the hypothesis that the Reynolds stresses are

proportional to mean velocity gradients and Eddy (turbulent) viscosity can be related

by the gradient diffusion hypothesis.

— BT = pu[VU + (VU)T] - §5p(k Y -U) (113)

iscosity or turbulent viscosity,

where, 4 is the Kronecker's delta and ji is the eddy
which has to be modeled. At the same time the eddy diffusivity, I', also has to be
modeled which is computed based on the assumption that the Reynolds fluxes of a

scalar are linearly related to the mean scalar gradient.

—pudp =T\ V¢ (4.14)

The eddy viscosity models are distinguished by the manner they prescribe eddy

viscosity and eddy diffusivity. The various eddy viscosity models are described below.

Zero Equation Model

In this model the eddy viscosity is computed from the mean velocity and a geometric

length scale using an empirical formula as follows:

e = pfuliy (4.15)

where, f, is a proportionality constant and [, is the length scale proposed by Prandtl

iodel named as 'z

nvolved, thi

and Kolmogorov. Since no transport equation is

10



equation model. The advantage of this model i its simplicity to implement and cheap

terms of computing time. But since it is based on empirical formulas, the model

is not reliable.

Two Equation Turbulence Models

These models solve two separate transport. equations, one for turbulent velocity
scale and another for turbulent length scale. The product of velocity and length
scale are then used to model turbulent viscosity, . The turbulent velocity scale is

nergy, k, which is provided from the solution

computed from the turbulent kinetic

of its transport equation. And the the turbulent length scale is estimated from the

turbulent kinetic energy, k, and its dissipation rate, c.

1. k ~ ¢ model

“This model predicts the turbulence viscosity from following relation:

k
= (1.16)

where €, is a constant. The values of k and e are solved from the following differential

transport equations:

BY(M) I

+V (UK = V(a4 SR+ Py = pe (.17)

01/'-‘) I

+Y (U = V- [t EYVA + (aPimcan)  (419)

where the constant coefficients ¢, = 0.09, cq = 144, co = 192, 04 = 10 and

0, = 1.3. Py is the turbulence production due to viscous and buoyancy forces, which

is modeled as:

Pe=puVU - (VU +VUT) UV - U+ pk) + Pu, (4.19)




Due to the excellent performance in many practical flows, this model is well
established and widely validated. However, poor performances are reported in a
variety of important cases like confined flows, flow with large extra strains, and in

rotating flows.

2. RNG k — ¢ model
This model shares the same transport equations as those for standard k — ¢ equation
The only difference is the model constants. ‘The constant Cyy is replaced by the strain

dependent correction term function Capvg where,
Carng = 142~ f, (4.20)
where,

(1 = 7i5)
5= s Baver)

The details of the other constants can be found in CFX manual (2005).
3. k —w model
This model, developed by Wilcox (1986), assumes that the turbulence viscosity is

linked to the turbulence kinetic energy, k, and turbulent frequency, w, via the relation:

(4.21)
‘The transport equations for k and w are
’7("") +V-(pUR) = V- [(u+ 2 ) VK + Po= (422)
9
%Jrv-(wu):v [(u+$)w]+n¥a7w* (4.23)

0.075, 8 = 0.09, 0, = 2 and 0, = 2, and Py is calculated as in the

with = 5/9,
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k ~ € model. This model is more robust and more accurate then k — e model since

it does not require any non-linear damping functions. The near wall performance of

this model is also very attractive.

4. The Baseline (BSL) k
This is

w Model

a blended form of Wilcox k —w model and modified  — € model to eliminate

the extreme sensitivity to freestream conditions of the Wileox model. The k —
model is transformed to a k — w formulation and multiplied by a blending function
1~ Fy. The Wilcox model is multiplied by the function F, where Fj is equal to
one near the surface and switches over to zero inside the boundary layer. The

corresponding k and w equations are then added to get the BSL model.

5. The Shear Stress Transport (SST) Model

This model can be called as a improved version of BSL model. The BSL model

combines the advantages of the k —w and the k — ¢ model, but it fails to predict

flow separation accurately. The reasons were revealed by Menter (1994) and the

‘main reason is that both models do not account for the transport of the turbulent
shear stress which results in an over prediction of the eddy-viscosity. Menter then

introduces limiters where the eddy viscosity is limited to give improved performance in

flows with adverse pressure gradicnts and wake regions. The turbulent kinetic energy
production is limited to prevent. the build-up of turbulence in stagnation regions. The

limiter can be expressed as:

M= nax{aw, SF) )

where Fj is a blending function similar to Fy in BSL model, a; is a constant and
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K-epsilon One Equation Model

This simple one equation model, developed by Menter (1994), is derived directly from
the k — ¢ model and is therefore named the (k — €);z model. The model contains a
destruction term, which accounts for the structure of turbulence. The eddy viscosity

is computed from:

= (4.25)
where, v is the turbulent kinematic eddy viscosity. This model includes damping
functions to catch the low Reynolds effect.

4.4.2 Reynolds Stress Turbulence (RSM) Models

These models do not use the eddy viscosity hypothesis, but solve all transport
equations for all components of the Reynolds stress tensor and the dissipation rate.

The transport equation for the Reynolds stresses is

opueu 2 B 2 ‘
oV (PUTBW) = (P+6+ V- (i + 50 )VUE) — 53p6) (426)

where ¢ is the pressure-strain correlation and P is the production term, given by

P=-p[@@u(VU)" + (VU)judu) (4.27)

icult to model

st important, but most. di

The pressure strain interaction is
accurately. This interaction reduces anisotropy of turbulent eddies and therefore it

requires additional corrections.

ake Reynolds

The exact production term and the stress anisotropies theoretically 1

Stress models more suited to complex flows. But it requires large computing
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time and in practice it poorly predicts some flows (for example, axis asymmetric

jets, unconfined re-circulating flows) due to the identical problems with the ¢ cquation.

There are three types of standard Reynolds stress models available. These are known
as LRR-IP, LRR-QI and SSG. Each model has different model constants. In the
LRR-IP and LRR-QI models, developed by Launder et al. (1975), the pressure-strain
correlation is linear. IP stands for Isotropization of Production, and QI stands for
Quasi-Isotropic. On the other hand, SSG model, developed by Speziale (1991), uses

a quadratic relation for the pressure-strain correlation.

There are other two types of Reynolds stress models available, the Omega Reynolds
Stress and Baseline (BSL) Reynolds Stress models. These models are based on w
cquation and are used for a more accurate near wall treatment. The two models

relate to each other in the same way as the two equation k — w and BSL models do.



Chapter 5
Validation Studies

This chapter has two parts: the first part describes the research findings of the steady
state tip vortex flow while the second part deals with the results obtained from the

unsteady simulation. Validation studies were carried out for both steady and unsteady

cases.

5.1 Steady Case

computed and validated by Liu (2009).

The steady state tip vortex was previous
An extension of her work was conducted to investigate the effect of turbulence
modeling on the computation of tip vortex flow with eddy viscosity turbulence

models and Reynolds stress models. The pressure coefficient on the blade surface

and the propeller thrust and torque coefficient were also computed. The predictions
agree well with the measured velocity components but underpredict the thrust and
torque coefficients. Additional experiments were then conducted to reveal the reason

and a modification of the previous numerical experiment (Liu, 2009) was performed.

To clearly explain the findings of this experiment, the previous numerical experiment

(Liu, 2009) is also summarized as follows.



5.1.1 Simulation Technique

The validation studies were carried out for the DTMB 5168 propeller model at the
advance coefficient J = 1.1. The propeller model geometry and operational conditions
are shown in Table 5.1. In the computation, the water density and viscosity were set

0 puater = 99Tkg/m® and fruater = 8.89 x 10~ kgm™1s

| respectively.

Table 5.1: Principal Characteristics of DTMB 5168

Desiguation Values
Diameter (inch) 15,850
Inflow velocity (inch/s) 2141
Chord length at 0.7R (inch) 6897
Advance coefficient 11
Rotation speed (RPS) 20163
Combined velocity at 0.7R (inch/s) | 94212
Reynolds number [ 42% 107

Computational Domain

The spiral like computational domain, as shown

n Figure 5-2, was created by setting.
the inlet. boundary at one propeller radius upstream and the outlet. boundary one
diameter downstream. The outer boundary in the radial direction was located at one

propeller diameter (Liu, 2009).

Primary /secondary coordinate system

A primary/secondary coordinate system, as shown in Figure 5-1, was used to better

des

ribe the tip vortex structure. In this system, the primary velocity, V,, is defined

in the axial-tangential  — ¢ plane at the propeller pitch angle, ¢. Tangential velocity,
Vi, and radial velacity, V,, are on the secondary flow plane normal to the primary

velocity. The primary and tangential velocities are defined as:




Figure 5-1: Primary and secondary coordinate system

V, = Vesing + Vcosd
V.= ~Vicosé+ Vising (5.1)

The center of the vortex core is defined at the location with minimum V, and is

denoted by 6= 0 in the figures.

Boundary Condition

The boundary conditions were specified as follows. A no-slip wall condition was
applied on the blades and the hub surfaces (denoted by black in Figure 5-2) . A

free siream condition was applied on the inlet boundary and the outer surface in the

span-wise direction (denoted by green). The flow rate was specified at the outlet
boundary. Rotational periodic conditior

the Fluid-Fluid Interface Modeling in ANSYS CFX.

were applied on the periodic boundaries by



Figure 5-2: Computational domain of DTMB 5168



Simulation Condition

Advection terms were discretised by the high resolution scheme. Viscous terms were
treated by employing the central difference scheme. The timestep size was determined
automatically by CFX. The convergence criterion was set to the RMS residual to
1% 107, To achieve the desired convergence, a total of 10,000 iterations were

required.

5.1.2 Convergence Tests

Before conducting the simulation, convergence tests were performed to find out the
grid sensitivity of the domain on the solution and to select the least number of
iterations. The grid sensitivity was done by Liu (2009). To maintain the sequence,
the detail of the test is explained here.

Three computational grids, Grid I, Grid 11 and Grid I11, were used for the convergence

test. A summary of the three sets of grids is given in Table 5.2.

Table 5.2: Summary of Grids

Grid T Grid 1T Grid T
Number of grids | 171101111 | 21Tx 101X 111 | 23TxT11x121
y* on blade 75 0
y* on hub 75 243 0

The computed axial, tangential and radial velocities (V;,V; and V, respectively) in
the tangential direction across the tip vortex centre at the location z = 0.2386R

were compared with the experimental data (Chesnakas and Jessup, 1998). Here, R

is the propeller radius. From the test, it was found that grid I with largest first grid
spacing led to a better prediction. The first grid spacing on the blade and hub was
3.6 x 10~* inches which represents an equivalent non-dimensional wall distance (y*)
of 7.5. Note that a small first grid spacing may lead to grid cells with huge Jacobian

values, which will cause the ANSYS CFX solver not to converge. Details of the test
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can be found in Liu (2009).

Another convergence test was carried out to find the effect of grid resolution on
the computing time of simulation. Using the SST turbulence model, the three sets
of grids were compared in Figure 5-3. 1t was found that Grid II reached to the
converged solution quickly compared to the other two. But within 500 iterations, all
types of grid converged and merged at the same point. Apparently, no significant

effect was found.

Based on the above mentioned convergence studies, Grid 1 was chosen for further
studics. The computational domain contains an H — H type grid with more than
1.9 million grid points. This domain was used to investigate the effect of turbulence
models on the predictions of V, V; and V; across the tip vortex center in the tangential

direction at = 0.2386R (R s the propeller radius).

5.1.3 Effect of Turbulence Modeling

An investigation was done to show the effect of turbulence modeling on the vortex

flow ddy viscosity and Reynolds stress turbulence models were

employed in the investigation. The eddy viscosity models include zero-, one- and

two-equation turbulence models. The simple one-equation model, (k — ¢);, derived

from the (k — ¢) model, was used. In the two-equation eddy viscosity turbulence
models, (k - ¢), (RNG k — ), and the blended (k — w)SST models were chosen.
Three types of standard Reynolds stress models based on the e~ equation and two
other w— based Reynolds stress models were emploed. The three standard models
were SSG Reynolds Stress Model (RSM) and the Launder-Reece-Rodi models (LRR):
LRR-IP and LRR-QL The other two w~ based models were Baseline (BSL) RSM and

the

‘ga Reynolds stress model. Among the above mentioned models, (k—¢), ST,
(2009).

G RSM and BSL RSM models were previously employed by
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Figure 5-3: Effect of grid resolution on computing time



Velocities across the tip region

The velocities Vz, Vi and V; actoss the tip vortex centre were compared with the

the experimental data and with the numerical data by Hsiao and Pauley (1999) to

show the effect of turbulence models on the velocity predictions. The post processor

of the program PropGGM was modified to make it compatible with the ANSYS

CFX. A further modification was done to non-dimensionalize the velocities. Figure
5-4 presents the solutions based on the eddy viscosity turbulence models and Figure
55 gives the computed results based on the Reynolds stress models. In the figures,
the first valley corresponds to the wake and the second valley is associated with the
tip vortex. In the work of Hsiao and Pauley (1999), the computations were carried

out using INS3D-UP with a one-equation Baldwin-Barth turbulence model. The

computational domain had 2.36 million structured grids.
For axial velocity, V;, in Figure 54, k — ¢ and the SST turbulence models predict
better at the vortex location while the wake valley is better predicted by the
n, the (k- €)1z and the RNG & — ¢ models. For V, the computed results

zero-equati

with the k — ¢ and the SST turbulence models agree better with the experimental
data than those by other eddy viscosity models at both the wake valley and at the
vortex location. The computed results for radial velocity component, V;, gives poor
predictions compared to the other components, V and V,. The computed results
with various turbulence models are similar at the vortex location and at the wake
region. However, zero-equation model, the (k — )i model and the RNG k — ¢
model match well at the wake valley with the numerical results of Hsiao and Pauley
(1999). In fact, in Figure 5-4, it can also be observed that the predictions by the
zero-equation model, the (k — ¢, model and the RNG k — ¢ model are similar and

they are slightly different at the vortex location.

Similar observations also found for the predicted velocities using various Reynolds
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stress models in Figure 5-5. The SSG and BSL Reynolds stress models in general
fons of V, and V; at the vortex location. LRR-IP, LRR-QI and

give better pr
omega Reynolds stress models give similar predictions. So far, it is observed that
the k — ¢ and the SST turbulence models from eddy viscosity models and the SSG
and the BSL turbulence models from Reynolds stress models cope well with the

experimental results.

A further comparison is shown in Figure 56 for the computed velocities with
the k — ¢ and the SST turbulence models and the SSG and the BSL turbulence
models to compare the predictions by eddy viscosity and Reynolds stress models.
It can be seen from the figure that the predictions by two-equation eddy viscosity
models and the Reynolds stress models are similar. In the plot of V, ANSYS
CFX with the k ¢, the SST, the BSL and the SSG turbulence models give better
predictions of the valley shape at the vortex location than INS3D-UP while the

wake valley is better predicted by INS3D-UP. For Vj, the computed results by

ANSYS CFX with two-equation models and Reynolds stress models agree better
with the experimental data than those by INS3D-UP. For V;, the computed results
by ANSYS CFX with various turbulence models are similar and none of them are

better than the the results by INS3D-UP with one equation model at the vortex valley.

The contour plot of three computed velocity components, Vi, V; and V, at z/R =

0.2386 for the k — ¢ model and the BSL Reynolds s
the experimental data by Chesnakas and Jessup (1998) in Figures 5-7 to 5-9. It can
be shown that the predicted velocity field by ANSYS CFX is visually similar to the

ress model were compared with

experimental one. The differences between results by the two turbulence models are

insignificant. The additional contour plots for other turbulence models are given in

the Appendix.
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Figure 5-4: Vr, V1, Vr actoss the tip vortex center at z/R = 0.2386 computed with

eddy viscosity turbulence models
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Figure 56: Comparison of Vz, Vt, Vr across the tip vortex center at z/R = 02386
with Reynolds stress models and eddy viscosity models
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(b) k — ¢ model (¢) BSL RSM model
Figure 5-7: Axal velocity V. at z/R = 02386




b

=
=
H
=
i
=
fi
=
5

(b) k = ¢ model (c) BSL RSM model
Figure 5-8: Tangential velocity V; at z/R = 0.2386




(b) k = ¢ model (¢) BSL RSM model
Figure 5-9: Radial velocity V; at /R = 0.2386
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Blade Surface Pressure

The post processor of the program PropGGM was modified to compute the surface
pressure of the blades. The contour of surface pressure coefficient of pressure side
and suction side based on the k — ¢ model and the BSL Reynolds stress model were
compared with the numerical results of Hsino and Pauley (1999) in Figures 5-10
and 511 In the work of Hsino and Pauley (1999), the general characteristics of
the propeller flow including the blade-to-blade flow, wake, and tip vortex were well
predicted. It can be seen from the figures that both the turbulence models give
similar results. Pressure side contour plot agrees well with the work of Hsiao while
the suction side plot is not good enough. However, no experimental results were found

to compare the pressure distributions.

Propeller Performance Analysis

The performance of marine propeller is usually determined by the thrust and torque,
The numerical thrust coefficient, K, and torque coefficient, K, were also computed.

It was found that the num

al values underpredict the experimental K; and K,. A

series of investigations was conducted to reveal the reason. They are described in the

following sections.



(a) Numerical results by Hsiao and Pauley (1999)

I _

(b) k = ¢ model (c) BSL RSM model

Figure 5-10: Surface pressure coefficient on the pressure side
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(a) Numerical results by Hsiao and Pauley (1999)

(b) k — ¢ model () BSL RSM model

Figure 5-11: Surface pressure coefficient on the suction side




5.1.4 Effect of Boundary Condition

ANSYS CFX secks pressure based boundary condition while the previous simulation
had no such boundary condition. The free stream boundary condition was applied
to the inlet while the outlet was set to mass flow rate, which overdefines the flow
field. A test was performed by setting the outlet boundary condition to zero static
pressure instead of the mass flow rate boundary. Figure 5-12 shows the comparison.
In this test, K — ¢ turbulence model was employed. It is found from the figure that
the mass flow rate boundary condition predicts V; and V; well. On the other hand,

V; is better predicted by pressure based boundas

condition. K, and K, values for
the two cases are almost same. From the observation, it can be concluded that the

effect of boundary condition is negligible.

5.1.5 Effect of Timestep Size

Investigations showed that the pressure and velocity did not converge at the same
time, which indicates the pressure-velocity coupling was decoupled for some reason.
Though the velocities were converged in an ordinary fashion, calculation showed that

propeller thrust and torque diverged with time. Figure 5-13 shows the effect.

The reason of this divergence was the choice of auto timestep size in ANSYS CFX.

Any simulation which requires more then 300 iterations, an appropriate selection

of timestep size is necessary to achieve good convergence (CFX manual, 2005). It

provides sufficient relaxation of the equation non-lincarities to obtain converged

steady state solutio ur

. Too large timestep produces oscillating convergence beha
and too small timestep slows down the convergence significantly. A judicious
selection of timestep is thus important. If the timestep size is unknown, the auto
timestep size of CFX can be used instead of physical timestep, but sometimes it
would take forever to achieve good convergence. For most steady state problems,

usually it requires fifty to hundred timesteps to achieve convergence (CFX manual,
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Figure 5-12: Effect of boundary conditions on Va, V#, Vi across the tip vortex center

at z/R = 0.2386
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Figure 5-13: Convergence plot of K; and K, with auto timestep

2005). 1f any simulation requires more timesteps to reach a steady state solution,

the smaller timestep must be used. For rotating domain, the rule of thumb to select

timestep size is 1/omega, where omega s the angular velocity. Chosen timestep size
was then applied and satisfactory convergences were found. Figure 5-14 shows the
convergence plot.

The new numerical values of K; and K, were found reasonably close to the

experimental value. Table 5.3 shows the comparison. But, the computed velocity
components at the tip region were not as good. The reason might be the inappropriate

ne was identified in the domain, which causes

size of the domain. A recirculation 7

back flow, the outlet should be moved further.

back flow in the domain. To stop this

ed to come to a meaningful

Further investigations with larger domain are req

conclusions,

66



w00 o o o 1o
Toon o

Figure 5-14: Convergence plot of K, and K, with physical timestep
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5.2 Unsteady Case

The numerical simulation was also conducted to predict the flow around a propeller
operating with a shaft inclination of 7.5°. The computational domain with structured
grids was generated. The periodic loadings on the face and back of the blade surface

were computed and validated with the experimental data.

5.2.1 Mesh Generation

The validation studies were carried out for the DTMB 4718 propeller model at the
0.751. DTMB 4718 is a three bladed propeller with

design advance coefficient, J

moderate skew and rake. The blade sections are based on the DTMB modifications
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to the NACA 66 aitfoil as defined by Brockett. (Brockett, 1966). A modification was
made to the blade section geometry. The blunt trailing edge was replaced by a sharp
edge by changing the edge thickness to zero. This was done for the simplification of

the blade geometry. The modified section geometry is given in Table A.2.

The geometry of the propeller was also modified at the tip region. The chord length
was set to zero. The modified geometry is given in Table A.1. The propeller model
geometry and operational conditions are given in Table 5.4. In the computation,

99Tkg/m® and puater = 8.89 X

the water density and viscosity were set 10 e

| respectively.

Table 5.4: Principal Characteristics of DTMB 4718

Designation Values
D, Diameter (inch) 2100
Rotation Right Hand
Number of Blades 3
Hub-Diameter Ratio 03
V, Advance velocity (inch/s) 142.1256
J, Design Advance coefficient 0.751
1, Rotation speed (RPS) 7.88

Computational Domain

The propeller model DTMB 4718 is a large diameter model (24 inches), which
requires more grid cells then DTMB 5168 (15.856 inches diameter) to achieve an
acceptable quality of grid. But the grid generation program PropGGM is limited
to generate certain number of grids. On the other hand, more grids would claim
more computing time. To resolve this problem, the model propeller was scaled down
to half, The new characteristics of the scaled propeller were calculated following
the Reynold's similitude. Table 5.5 shows the new propeller model geometry and

operational conditions that was used in the simulation.
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Table 5.5: New Principal Characteristics of DTMB 4718

Designation Values
D, Diameter (inch) 1200
Rotation Right Hand
Number of Blades 3
V, Advance velocity (inch/s) | 284.251
J, Design Advance coefficient | 0.75151
n, Rotation speed (RPS) 3152

More than 5.7 million grids were employed in the domain. Figure 5-15 shows the grid
distribution over the blade surface. The spanwise and chordwise panel distribution
factor (Regions 1& 2), a, was set to (.68, spanwise stretch factor, fy, for Region 1
was 1.05 while for Region 2, 8, was 1.13. The chordwise stretch factors were 148

and 1.68 for Region 1 and Region 2, respectively .

Like the steady state domain, a spiral like single blad domain
was created first by setting the inlet boundary at one propeller radius upstream and
the outlet boundary one diameter downstream. The outer boundary in the radial
direction was located at one propeller diameter. The remaining blades and the hub
were generated by simply copying and rotating the single blade domain. Figure 5-16
shows the domain. The inlet is open in the figure. Figure 5-17 shows the grids used
in the computation. Following the above mentioned procedure,  single domain was
created and the entire domain was set to RFR (Rotating Frame of Reference) to set
its rotating speed as propeller’s rotating speed. So there is no need for a stationary
component and thus a GGI (General Grid Interface) interface can be ignored. Note
that each GGI connection costs 5% more CPU time and memory and introduces
numerical inaceuracy compared to the equivalent computation that does not use any
GGI connections (CFX manual, 2005). The right-hand rule was used to determine

the direction of the rotation
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Figure 5-15: Blade surface of DTMB 4718
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Figure 5-16: Computational domain of DTMB 4718



Figure 5-17: Computational grids of DTMB 4718



5.2.2  Validation of the Unsteady Domain

To validate the unsteady computational domain, a test was performed . An unsteady
domain for DTMB 5168 was created first. The velocity components, V;, V; and V;
at the key blade were computed by using the unsteady domain. The data was then
compared with the steady domain data as shown in Figure 5-18. From the figure, it

is observed that V; and V; are in good agreement with each other. The axial velocity,

V., at the tip region is higher than the steady domain, which is likely due to the flow
interruptions among the blades. In general, it can be said that the unsteady domain

is good enough for further investigation.

5.2.3  Grid Quality

The non-dimensional first grid spacing on the blade was 2 x 10~ and was
non-dimensionalized by the characteristic length which is Lozz. The resulting y*
values varied between 1 and 95 over the blades. The y* values were also same for
over the hub with peak values near the blade roots (figure 5-19). The definition for

the y* is given by

& [ i
AV (52)

v

where, s* is the first grid spacing. The superscript + refers to dimensional variables.

5.2.4 Boundary Conditions

The boundary conditions were specified as follows. A no-slip wall condition was
applied on the blades (denoted by red in the Figure 5-16) and the hub surfaces
(denoted by black in the figure). A free stream inclined condition was applied on the
inlet boundary (removed in the figure) and the outer surface (denoted by blue in the
figure). Average static pressure was set to zero at the outlet boundary (denoted by

green in the figure). Note that in steady case a comparative study of specified flow
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Figure 5-19: y* distribution over the blade surface (pressure side) on DTMB 4718

rate boundary condition and pressure based boundary condition was discussed. 1t was
found that there is no significant difference between these two boundary conditions.
Since the ANSYS CFX prefers pressure based outlet, boundary condition, average
static pressure was employed in this simulation instead of specified flow rate boundary

condition.

5.25 Unsteady Simulation Technique

Initial Condition

For transient cases, initial conditions are required in the entire domain for all times

t > 0. The solutions move forward in time and diffuse in space. The occurrence of
dissipative effects ensures that the solutions are independent of initial conditions
(Versteeg and Malalasekera, 1995). To achieve a good convergence and solution

robustness, a transient run can be started with results from a converged steady-state
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it is difficult to provide an accurate estimate of the i

simulation, especially i
conditions (CFX manual, 2005). In this simulation, the unsteady simulation was
performed in two steps. The steady simulation with no inclination was conducted
first with 1000 iterations. This simulation data was then used as the initial conditions

for the unsteady simulation.

Simulation Set-up

ation causes non-uniform inflow to the

In the unsteady simulation, the shaft in
propeller. To represent this cross flow condition, several techniques were implemented
and none of them were found to be successful. The 7.5° inclination of the shaft
produces a first harmonic variation in two of the three components of propeller inflow.
The definition of this non-uniform inflow is provided by ITTC (ITTC report, 1999),

nented in the simulation. Another definition of two component inflow

and was impl

em was also examined. Both the defi

velocity in Cartesian coordinate sys

overpredict the solution field. A new technique was then employed in this simulation.

ined following the shaft inclination angle.

The whole computational domain was incl
A new Cartesian coordinate system along with the global coordinate system was

created. This new inclined coordinate was aligned with the shaft as shown in Figure

5-21. The normal inflow velocity and all other boundary conditions were set at global
coordinate. Only the rotation of the propeller and its associated domain were set
with respect to the inclined axis. This technique represents the real flow condition

very well.

Convergence Criteria

The propeller was rotated through a sequence of discrete angular intervals and the
procedure was continued through several revolutions of the propeller until steady

state oscillations of the blade loading were achieved. Initially the simulation was

carried out for four complete rotations of the propeller using a time step equivalent

76



Horzotallne

Opanboundary

Figure 5-20: Schematic diagram of unsteady simulation set-up

Figure 5-21: Coordinates of the unsteady simulation set-up



to.a three degree rotation; a total of 480 time steps. But the solution did not converge
sufficiently within the maximum number of time steps, which indicates that the CFX
solver needs more iterations to achieve better convergence. A time step equivalent to
2 one degree rotation and a complete one second of simulation was then performed.

The

e step was fixed during the simulation. Note that an accurate resolution of
gradients in the inflow can be achieved with such a small time step. It also reduces
the number of terations needed for the implicit solver to converge at each time step
(Krasilnikov et al., 2009). The maximum number of iterations per time step was set

t0 10 and the RMS residuals were set to 1 x 10,

Solution Strategy

Advection terms were discretised by the high resolution scheme while the viscous

terms were treated by employing central difference scheme. The transicnt terms were

descretised with Second Order Backward Euler scheme.  An algebraic Multi-grid
(MG) model was used to accelerate the convergence. The blended k — w Shear
Stress Turbulence model was employed in the computation. The advantage of this

model is that it predicts the flow separation accurately. It has the ability to cope

simultaneously with the low Re regions and high Re regions (Krasilnikov et al., 2009)

The model also can predict accurately the non-equilibrium regions in the boundary

layer

Computing Resources

Huge computing resources and time were required by this simulation. At the
beginning of this mumerical experiment, a cluster CPU with 20 processors were used.
It took 3 — 4 weeks to complete a 0.12 second of simulation and couple of months to
reach a steady state solution. Later on, the experiment was speed up by employing
104 cluster processors and the required time was reduced to 3 — 4 days to achieve a

steady state solution.
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5.2.6 Convergence Tests

Several convergence tests were completed to get the right number and quality of
parameters. First, a convergence test was done with the grid size of the domain.

Two grid size, large and small, were compared as shown in Figure 5-22. From Figure

5:22, it was observed that the smaller grid agrees better with the data. Next, the
effect of domain size was checked. A larger domain was created with around 115
million grids by moving the outer boundary in the radial direction to 1.5 propeller
diameter and the outlet boundary to 1.5 diameter downstream. The inlet boundary
stays at the same position. The effect is shown in Figure 5-23 and it shows that the
domain size has no significant effect. Note that the same type of grid as in steady
case, Girid 1, was employed in all the tests. The test data were compared with the
steady state data at 0.5R.

Previous experience on steady simulation of DTMB 5168 shows that the default

mass and momentum variables of ANSYS CFX are not often enough to monitor the
convergence of a simulation. Two additional variables, K, and Cj, were created to
confirm the convergence of the solution. Here, K is the propeller thrust coefficient
and G, is the pressure coefficient. Figure 5-24 shows the convergence of the residuals
of the default variables and Figure 5-25 and 5-26 shows the convergence plots of K

and G, respectively. From Figure 5-25, it is clear that the solution reached s steady

state solution in about 0.5 seconds and there is no significant change in convergence

after that
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Figure 5-23: Effect of domain size on the computed Cj, at r = 0.5
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Figure 5-24: Convergence plots of mass and momentum residuals
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Figure 5-25: Convergence of propeller thrust coefficient with time iterations

Time (5

Figure 5-26: Convergence of propeller pressure coefficient with time iterations
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5.2.7 Validation .

The computed data was validated against the available experimental results. The
time domain solution was converted to the more usual frequency domain solution by
harmonic analysis of the time histories of pressure cocfficients for the last complete
revolution. A Fortran program was written to do this Fourier transformation.
The computed pressure cocfficients were compared with the experimental data and
discussed in terms of the first order Fourier harmonic amplitudes and phases which
are defined as:

Cy(t) =y + Cy cos(6 — ¢)

nt a} + b}
@ = tan~ (a1 /by)

a

; A " 0y (t)costyat

2 [T
n=2 / () sinfutit
o

Where, T is the total time for one complete revolution and w is the angular velocity

of propeller

Pressure values were sampled on the key blade at points along the sections at
7= 0.5R,0.7R and 0.9R over the last full revolution at each time step. These data

were then converted by harmonic analysis to give the first harmonic amplitude, Cyy

and phase angle, ¢. Figures 5-27 to 5-20 compare the pred
.5R,0.7R and 0.9R.

ed and experimental

value of amplitude and phase at 7
At 7= 0.5R (Figure 5-27), on the pressure side, the predicted amplitudes of the first
harmonics are in very good agreement with the experimental data except the sudden

drops near the leading edge. However, the phase prediction is less accurate. On the
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less than the experimental data near the leading edge

suction side, the amplitude i

region and closer at the trailing edge. The phase angles are well captured at the
chord

egion.

At r = 0.7R (Figure 5-28), on the pressure side, the amplitude agrees with the

jon is found at the

experimental data reasonably well, though an overpredic
chord region. On the suction side, the predicted pressure distribution has a peak at
the leading edge and increases towards the trailing edge. The reason for this irregular
variation along the chord could be the effect of crossflow and rollup processes of the

tip vortex as explained by Jessup (1982).

Atr

.9R (Figure 5-29), on the pressure side, the computed amplitude rises at the

0.7 chord location. The modification at the tip region might be the reason. On the

suction side, computed values are less than the experimental data.

Overall, it is observed that the computed results agree reasonably well with the
amplitude over the pressure side at r = 0.5R and 0.7R while the amplitude over
the suction side is underpredicted. A possible explanation would be the modified
tip region of the blades. According to Jessup (1982), blades with zero chord length
at the tip, start the vortex at the outermost tip and the vortex travels over the
suction side of the blade. The sharp leading and trailing edges could be another
reason. To conform with the actual propeller geometry, ANSYS CFX secks a blunt
trailing edge, closed by an elliptical cap while a sharp trailing edge was used in
the simulation due to the limitations of PropGGM (Leras and Hally, 2010). The
differences in predictions at the two edges might be due to this simplification

Moreover, the current simulation ignored the sliding mesh approach, that is,

it did not take into account the relative motion of the propeller blade inside

a fixed domain, which is required for the time accurate simulation (Snchez-Caja




et al., 2008). The less favourable predictions of the phase angles are likely due to this.

The computed mean thrust, K, at the design condition is found 0.047 while the
design K, is 0.055. The calculated mean torque coefficient, K, is 0.0104 while the
design K, is 0.0106. Figure 5-30 shows the K, variation with the angular position of

the key blade. Unfortunately, no data was found to compare with the result.



(1) Pressure side (b) Suction side

Figure 5-27: Computed first harmonic amplitude and phase of the pressure coefficient,
on DTMB 4718 with J = 0.751 at 0.5
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(a) Pressure side (b) Suction side
Figure 5-28: Computed first hary litude and phase of the fici

on DTMB 4718 with J = 0.751 at 0.7R




(a) Pressure side (b) Suction side

Figure 5-20: Computed first harmonic amplitude and phase of the pressure coefficient
on DTMB 4718 with J = 0.751 at 0.9R
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Figure 5-30: Computed thrust variation with the angular position of blade




Chapter 6

Conclusions and Recommendations

6.1 Steady Case

The effect of turbulence modeling on propeller tip vortex computation was

investigated using the RANS solver ANSYS CFX. The grid generation program

PropGGM was used to generate a spiral-like structured grid with grid concentration

at the vortex:core.

Validation studies were carried out for the DTMB 5168 model propeller at open
water condition. The post processor of the program PropGGM was modified to

give the non-dimensional velocities and the surface pressure of the blades. Various

eddy viscosity turbulence models and Reynolds stress models were employed in
the computations. Both the eddy viscosity turbulence models and the Reynolds

stress models gave almost similar predictions of the vortex flow. There was no

indication found that the Reynolds stress models significantly improve the vortex
flow prediction in the near field. It was shown that the two-cquation and the

Reynolds stress models are considered slightly better than the zero-equation and

one-equation turbulence models for the vortex flow computation.

%0




Pressure distributions over the blade surfaces were computed and compared with
other numerical results. Reasonably good agreements were observed for the pressure
distributions on the pressure side. The suction side pressure distributions were less

favourable.

Despite the success of tip vortex the current

the thrust and torque coefficient of the propeller. ~Several investigations were

performed and found the significant effect of auto simulation.

mestep size on the

The simulation technique was improved by introducing physical timestep and a better

prediction of thrust and torque coefficient was achieved. However, the velocity

dentified

components were not in a good agreement. A back flow in the domain was

and it was concluded that the smaller domain size could be the reason.

6.2 Unsteady Case

In the second part of this research, the unsteady simulation of the propeller flow was

conducted using the same RANS solver ANSYS CFX. Considering the limitations of

PropGGM, a computational domain with structured grid was generated. A program

was developed to generate the surface coordinates of the blade by taking the ba

propeller geometry. Convergence studies were done to select the best and least

number of grids. A simulation technique for inclined flow was presented.

Validation studies were carried out for the DTMB 4718 model propeller at design

condition. domain solution was

A program for the harmonic analysis of the ti

developed. The results obtained are encouraging. It was demonstrated that the

current simulation reasonably predict the amplitude of the pressure variations on the

iction side is less

pressure side. The prediction of the pressure variations on the s

favourable, which could be caused by the modification of the blade geometry. The
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relative motion of the propeller blade was not captured in the simulation, which might

be another reason

6.3 Future Work

imulation. The

‘This section outlines some suggestions to improve the propeller flow
future works for the numerical simulation of propeller flow are suggested to include

the following:

 The grid generation program PropGGM has to be improved. For highly skewed
and raked propellers, a manual modification of the geometry is required to
generate smooth blade-to-blade boundaries. This modification changes the
propeller geometry and may not be acceptable for tip vortex assessment. The ‘

process should be automated.

« For the steady simulation of tip vortex computation, the next logical step

appears to examining the effect of domain size. The outlet should be moved
further; at least 6 diameters of the propeller to protect the back flow in the ‘
region.

o For the inclined flow case, the work can be extended to the computation of

propeller flow at off design conditions. ‘
\

The large computing time is a big hindrance for this numerical simulation.

A simple unsteady simulation takes couple of months to converge in a super
computer of 20 processors. Concentration also should be given to find out the

alternative simulation technique to reduce the computing time.
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Appendix A

Geometry of DTMB 4718

Table A.1: Modified Propeller Geometry of DTMB 4718

100

R /D[ P/D | TT/D | SKEW(Degree) | _T/c /e
0.300000 | 0.187000 | 0.718000 | 0.000000 -1.650000 0.249700 | 0.000000
0.400000 | 0.249000 | 0.796000 | 0.000000 -4.050000 0.177100 | 0.004400
0.500000 | 0.311000 | 0.855000 | 0.000000 - 000 0.128000 | 0.008500
0.600000 | 0.366000 | 0.886000 | 0.000000 -3.500000 0.091000 | 0.009900
0.700000 | 0.403000 | 0.888000 | 0.000000 0.400000 063000 | 0.010100
0.800000 | 0.409000 | 0.870000 | 0.000000 5.750000 0.046900 | 0.009700

365000 | 0.825000 | 0.000000 12.400000 0.041900 | 0.008200
0.950000 | 0.311000 | 0.786000 | 0.000000 16.100000 0.041800 | 0.006500
1.000000 | 0.000000 (12734000 0.000000 20.000000 0.041400 | 0.009000 |




Table A.2: Blade Section Geometry: Brocket

Xc T 77
0000000 | 0.000000 | 0.000000
0.007596 | 0.163400 | 0.060060
0.030154 | 0.321600 | 0.123810
0.066967 | 0.477600 | 0.336840
0.116978 | 0.627000 | 0.498740

0178606 0654070
0250000 0.790510
0328990 0.898310

0413176 | 0.994400 | 0.969940
0500000 | 0.992400 | 1.000000
0586824 | 0.942400 | 0.985030
0.671010 | 0.849400 | 0.923060
0.750000 | 0.722400 | 0.812120
0821394 | 0.504400 | 0638840
0.883022 | 0.421600 | 0.422270
0.933013 | 0.280400 | 0.234230
0.969846 | 0.166000 | 0.099820
0.992404 | 0092400 | 0.023650
1.000000 | 0.000000 | 0.000000
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Table A.3: Blade Section Geometry, NACA 66(DTMB Mod.),

Xe [ 4T | [F
0.0000 | 0.0000 | 0.0000
0.0125 | 0.2088 | 0.0907

0.0250 | 0.2032 | 0.1586
0.0500 | 0.4132 | 0.2712
0.0750 | 0.5050 | 0.3657
0.1000 | 0.5814 | 0.4482
0.1500 | 0.7042 | 0.5869
0.2000 | 0.8000 | 0.6993
03000 | 0.9274 | 0.8635
0.4000 | 0.9904 | 0.9615
0.4500 | 1.0000 | 0.9881
0.5000 | 0.9924 | 1.0000
0.6000 | 0.9306 | 0.9786
7000 | 0.8070 | 0.8892
0.8001 0.7027
0.9000 | 0.3754 | 0.3386
0.9500 | 0.2286 | 0.1713
1.0000 | 0.0000 | 0.0000
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Appendix B

Additional Figures
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(a) Zero equation model (b) (k = €)1z model
(¢) RNG k — € model (d) SST model
(¢) SSG RSM model (f) LRR-IP RSM model

o

() LRR-QI RSM model (h) Omega RSM model
Figure B-1: Additional contour plots of axial velocity V; at /R = 0.2386
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(a) Z‘um equation model (b) (k — €)1z model
©©
(c:) RNG lcvf € model ‘ (d)'SST model
© ©
(e) SSG RSM mlodel :4(() LRRLIP RSM model
©©
(g) LRR-QI RSN; model | (h) Or;mga RSM model

Figure B-2: Additional contour plots of tangential velocity V at z/R = 0.2386
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() RNG k — ¢ model (d) SST model

(¢) SSG RSM model (£) LRR-IP RSM model

(2) LRR-QI RSM model (h) Omega RSM model
Figure B-3: Additional contour plots of radial velocity V; at z/R = 0.2386
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