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Ab st ract

CFD simulations were conducted for different mar ine propellers at steady and

unsteady flow condit ions using a commercial RANS solver ANSYS® CFX®. For

steady simulation, a spira l-like domain aligned with the vortex core was generate d

with st ructured grids. The simulat ion was valida ted with the David Taylor Model

Basin DTl\IB 5168 propeller model atopen-water condition.

Various eddy viscosity turb ulence models and Reynolds-st ress models were

employed in the computat ions. The effect of the turbul ence modeling on the solut ion

was investigated. The blade surface pressure and the propeller performance werea ls0

computed. The simulation dat a were compared with the experimenta l data.

The unsteady simulation was conducted for propeller at inclined flow condit ion.

A single domain was genera ted with st ruct ured grids. A simulat ion technique for

inclined flow condition was presented. Th e simula tion was validated with the model

test dat a of DTMB 4718 at design condit ion. A fully implicit coupled solver was used.

A segregate d solver with Incomplete Lower Upper (ILU) factorisat ion technique was

employed in the simulat ion. Algebraic Multi-grid (MG) model was used to accelerate

the convergence. Advect ion terms were descret iscd by high resolution scheme while

the viscous terms were treated by employing central difference scheme. T he tra nsient

terms were descretised with Second Order Backward Euler scheme. The Shear St ress

Turbu lence model was employed in the computati on.

The effect of grid sensitivity and domain size were investigated. The periodic

loadings on the pressure and suct ion sides of the blades were compared with the



Reasonable agreement with the computed amplitude of the

pressure variati ons was found. The predictions of the phase of the pressure variat ions

work is the first attempt of the CFO simulation for unsteady propeller

flow investigation using a spiral like computatio nal grid. Further improvements and

exte Illsionsof tl llis wo>rkcan bc made. Suggest ions are made regard ing futur e work on
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Chapter 1

Introduction

1.1 B ackground and Motiva t ion

A marin e propeller operat ing at t he ste rn, within th e wake of the ship, complicates

the propell er hyd rodynamics. Th e blade inflow varies significantly as t he prop eller

rota tes, produ cing unstead y forces. Th ese forces resul t in addi tional unst eady loads

on the shaft and cause vibra tion on t he hull . \Vhen the loadin g on th e blades

increases, th e propeller experienccs another hyd rodynamic phenomenon called

cavitation, which degrades propeller performance, erodes blade surfaces, produces

noise, and causes vibrat ion on th e ship hull . Apart from th e vibra tion issues, the

knowledge of th e unst eady load distr ibut ion is essential for the blnde fati gue analys is.

It is also importa nt for prop er shaft and ste rn bearin g design.

Addi tional complexity arises from th e prop eller opera tin g with a shaft inclinat ion .

T his shaft inclina tion genera tes unsteady loads a ll t he blades ur faces and consequently

crea tes vibratio n and cavitat ion, On th e ot her hand , wit h t he increasing demand for

heavily load ed prop ellers, the occurr ence of cavita t ion is linavoidab le. Th erefore, th e

accurate predicti on of cavitat ion is import ant.



The cavita tion phenomena can be revealed by experimenta l, analytical or numerical

techniques. Experimental methods provide valnable insights into the cavitat ion

physics in various predetermined conditions, bntit is expensive tomanufactm ethe

models and they are vulnerable to slight flow condit ion changes inside cavita tion

tuimels (Rhee and Koutsavdis, 2003). They also seriously suffer from scale effects in

viscous flow phenomena. Current ana lyt ical solutions can not predict periodic blade

loads accurate ly, They underp redict the periodic propeller blade loads in inclined

flow and give poor prediction of time 3\'erage propeller blade loads at substantia lly

off-design conditions (Jessup, 1982). On the ot her hand , numerical methods can

provide insight into the local flow characteristics and are able to give sufficient

information. T he cost and time required forthe compnt ati on arc much lower than

for model tests and arc suita ble for flow analysis.

The numerical methods based on potent ial t heory arc widely used in propeller flow

analysis. The poten tial flow methods arc based on the assumptions of inviscid fluid

aIHI irrotational motion. Using these meth ods, propeller performance at design

conditions can be predicted quite accurat ely, for example, Kinnas and Hsin (1992),

Gaggero et al. (2010). However, t he off-design propeller flow phenomena, which

are domina ted by viscous effects, cannot be predicted accurat ely. Moreover, t he

potential flow methods arc not able to predict t he wake field with a sufficient level

of' accuracy, To ta ke into account the highly viscous effect of the propeller flow

field, it is proven th at the numerical simulat ion based on the Reynolds-averaged

Navier-Sto kes (fiANS) method is effective. The unsteady fiANS method represents

the state-o f-the-art in computat ional prediction of the viscous flow around propellers

(Chen and Stern, 1999).

The accurate simulation of unsteady propeller flows is a challenging tas k due to

its complex physics and geomet ry. For example, general hub shapes can produce



a pot enti al flow pertur bati on and will influence thc inflow (Jess up, 1989). T hc

boundary layer can develop on t he blade surfaces and can cause Iargc gra dicnts of

the vclocity field (Qiu ct al., 2lllO). The trailin g edge flows may not ma intai n th c

constant pressure at th e trailin g edge. In the case of t ip vortex flows, radia l flows

can separa te at thc tip thro ugh the adverse pressure gradients (Jess up, 1989). T ho

complexity of t he flow field and gcomctry require special techniques to genera te

suitable grids for thccomputat ioua l domain.

Anot her complexity for the propeller flow simulat ion arises from tu rbulcnccm odcling.

A screw prop eller genera tes non-equil ibrium regions in t he boundary layer wit h

adverse pressure gradients , and separation of flow may occ ur (Kras ilnikov et al.,

2ll09). It indu ccs highly rotatin gfl ow find cnt ails a t ip vortex, which causestur bulellce

ill the tip vortcx rcgion. The low Reynolds number (Re) flows occur at the near

wall regions, while high Re flows develop at the far-field . Moreover, the propellers

operati ng under off-design conditio ns develop st rong How sepa ra t ion on t he blades,

Th e simulat ion of pro peller flow should ta ke into account th ese flow phenomena,

Limit ed studies were done to find the effects of turb ulence modeling 011 thc prope llcr

t ipvortcx compu ta tions. The fluctua ting flows should be treat ed with the appropriate

1.2 Obj ecti ve of thi s Research

The objectives of this research work were to predict the viscous flows past prop ellers

based on the RANS solutions. Th e commercial RANS solver ANSYS-CF X W iU; used

for thi s simulation. Both un iform and inclined inflow condit ions were exa mined. A

grid genera tion program f' ropGGM, developed by Qiu ct a1. (2003) , was employed to

gcncratcaspiral likcco mplltationai domain fort hes tcadyand ullstcadysimulatiolls.



For the steady simulation, t he prop eller t ip vortex flow was comp uted . Th e effect of

turbu lence mod eling on the tip vort ex computa tion was perform ed to investigat e if

th e Reynolds stress model improves th e tip vortex computations. For th e unst eady

case, the ANSYS CFX is used to predict the unsteady blad e loads.

1.3 Organizati on of T hes is

A review of th e past works is summarized in Chapt er 2. Chapt er 3 describes

th e process to develop the spira l like computa tional domain for th e numerical

simulation. Chapt er 4 covers th e governing equa tions describin g the fluid flow and

their descreti sat on meth ods . Having explained the analy sis process in Chapter 4,

Chapte r 5 describ es th e research findings. Th e last chapte r gives the conclusions.

Suggesti ons for fut ure work are also pres ented .



Chapter 2

Review of Related Work

T his chap ter focuses ou theliterature review of work ou stead y and unsteadypropeller

blad e flows. A bricf surnrnary ofso rne of the maj or exper imenta l and numerical work

is present ed . Th e scope of predicti ng propeller loads, for both steady and unsteady

cases, using exist ing experimenta l and numerical methods are also discusscd

2.1 St ead y Cases

2.1. 1 Ex pe rime nta l Work

Advanced flow visualization aIHI non-intrusive mea..sure mcnt techniques distinctly

improve th e experimental investigations of flow field st udies on pro pellers. T he first

Laser Ooppler Velocirneter (LOV) measure ments of mari ne propeller flow were rnade

by Min (1978) at MIT and fur ther iusight iuto th e prop eller wake was provided .

Th e viscous wakes were identified . An extension of Min's study was carr ied out by

Kobayashi (1981) to measure t he viscous wake downstr eam of the propeller with some

det ails. Cendese (1985) and I3illet (1987) conducted LOV measur ements about rnarine

prop ellers with the inclusion of turb ulent measurement s. All of these experimental

invest igat ions have only ident ified t he wake as complications in th e flow with high

turbulence, but detailed wake measurem ent s had not been made.



Jessup (1998) used LOV syste ms to obt ain det ailed velocity measurements of a

propeller wake at downstr eam locat ions. Oi Felice et al. (2004) demonst rat ed the

capability of Particle Image Velocimetry (PIV) for identifying the flow struct ures

in the wake of a propeller. In spite of the success in measurement. of propeller flow

feat.ures,t.h epressure field stillremainsuncleardueto thelimitat.ions of measur ement.

techniques. It. is desirable to provide th e detai led pressure field by numerical

2.1.2 N um erical Work

Pan el meth ods have long been applied for the solut ion of propeller design and

analysis of flow problems. li e" and Valarezo (1985) made the first. a tte mpt. t.o

ana lyse stea dy flow aro und a marin e propeller using 30 Boundary Element Method .

The classical Hess and Smit.h formulation had been used in this paper. Kerwin et. al.

(1987) also applied the panel method t.o investigate marin e propellers performance.

In recent years, numerous research ers have used RANS to simulate the rotating

blade cases, For example,Abdel-Maksoud et. al. (2004) analysed t.hee lfect.oft.he hub

cap shape on propeller performance using commercial RANS code, CFX-TASCflow.

Abdel-Maksoud and Heinke (2002) predicted the velocit.y distribution in the gap

region of a elud ed prop eller using the same code. Simonsen and Stern (2005)

computed t.hel mll-ruelder-propellerint. eract.ion by coupling the RANSand pot ential

codes. Rheeanel Joshi (2003) presented the computa tions of marine propeller flow

using the commercial RANS code, FLUENT. However, numerical studies on the tip

vortex flow of open marine propellers are somehow limited except. for some earlier

studies, for example, Hsiao and Pauley (1999) and Chen and Stern (1998). Hsiao

and Pauley (1999) applied aone-equat ion turbulence model on fine grids to compnte

the tip vortex flows. The tip vort.ex was bett er predicted at. the locati on closer t.o

tho propeller while the wake WI" bett er pred icted at t.he far field location . It. was

concluded that the eddy viscosity computed from the Baldwin-Barth one-equation



turb ulenc e mod el might be too large with in the t ip vort ex a nd led toanoverly

diffusive and dissipat ive t ip vort ex

In t his thesis , the steady-state t ip vor tex flow genera ted by a ma rine prop eller was

computed using t he RANS solver ANSYS CFX . An investi gatio n was don e to show

the effect of turbulence mod eling on th e vortex flow computat ion. Various edd y

viscosit y and Reynolds stress turbulence models were employed in the investigation .

2.2 U nst ea dy Cas es

2.2.1 Exp er im ental Work

The invest igation on unsteady blade forces requires advanced experimental and

numerical techniques. The tot al unsteady and t ime-uvera ge blade loads were

evaluated by Boswell et al. (1976 a nd 1978) a nd J cssup et al. (1977). However , these

result s are unable to reveal significant informa t ion on th e dist ributionof t he per iod ic

loadings over t he blade and und erp redi ct t ime-average blade loads at substa nt ially

off-design cond it ions . An experiment was und er taken by Jessup (1982) to obt a in

accurate and reliable measurements of the pressure dist ributi on in uniform and

incli ned flow. He measur ed unst eady pressur e distributions on th e DT l\lI3 4679 and

DT I\!I3 4718 mod els in obliqu e now. Single blad e forces for prop eller DTMI3 466 1 in

inclined flows of 10, 20, and 30 degrees were also reported by Boswell et al.( 1981

a nd 1984). To acquire sufficient understandin g of unsteady prop eller hyd rodyna mics ,

Jessup (1990) did an experiment with th e symmet ric 3-bladed prop eller DT l\l I34119,

which was opera ted behi nd har monic wake screens wit h 3, 6, 9 and 12 cyc1esper



2.2 .2 N umerica l Work

Panel met hods have been em ployed to compute stea dy an d un stead y flows ar ound

prop ellers. Ker win and Lee (1978) prop osed a liftin g surface met hod . Liu and I30se

(1998) im plemented inflow wake a nd hyp erb oloid pa nel a lgor it hm to deal wit h t he

oblique flow for highly skewed propellers. Hsin (1990) and Gaggero (20 10) solved the

un st ead y cav itating flow by a pot ent ia l bo unda ry element method . Polit is (2004)

applied t he boun dar y eleme nt meth od to pred ict unst eady t ra iling vortex sheets

ema nat ing fro m eac h blade. However , t he pan el meth od s are limited to inviscid fluids

only. W hen visco us flow becom es impor tant , for exa mple, for tip vortex pr ed ict ions

and lead ing a nd hub vorti ces pr ed ict ion s, th e pa nel meth ods are una ble to pred ict

acc urate ly. To overcome t hese limit a tions, viscous solvers must be used .

Most of t he resear chers have simula ted the MIT F FX (Massac huse tts Inst it u te

of Techn ology Flapp ing Foil Exp erim ent ) to revea l t he physics of unsteady blad e

flow. For exa mple, Rhee and Kou tsavd is (2003) pr esent ed a two di mensional (20)

simulat ion of unstead y flow a round the blade sec tio n embedded in a trave lling

wave field . In their work, an unstructured dynami c mesh ing techn ique was used .

Paterson a nd Ste rn ( 1997) validated the ir t ime acc urate solut ions of t he R ANS

equa t ions by simula t ing the NlIT FF X. Most mar ine pr op ellers operate in a high ly

three dim ensional and viscous inflow condit ion. In th e case ofa prop eller with an

inclin ed shaf t , th e pr op eller ope ra tes in a prim ary potenti a l flow field , but the sha ft

inclina t ion causes unst ead y loads on th e blad es (Jess up, 1989 ). Th ese pr acti cal

configurat ions ca use complex unsteady ffow phonom cna an d need to be addr essed

Gagge ro et a l, (2010) used RANS solver StarC Cl\1+ to invest igat e the oblique flow

phenom eno n on model prop eller OT l\l I3 4679 by using slid ing mesh technique. Th is

techn ique tak es into accou nt the rela ti ve mot ion of the pro peller blad e around an

inclined ax is inside the fixed dom ain in which the pro peller inflow is genera ted



This approach is known as mixing plane approach (Snchez-Ca ja et aI., 2008). T he

advantage of t he sliding mesh techniqu e is that it a llows for t ime aceurat e simulat ion.

In their work, the whole domain was generated by unstru ctur ed grids. An implicit

unst ead y solution approac h with algebra ic multi-grid model were employed . Sup erior

capabilities of the HA:\ S solver were found over t he potential solvel' in pred icting t he

unst eady pressure dist ribu tions and forces at off-desig n cond it ions, alt hough they

also descri bed th e HANS solver as an immature too l for the solut ion of the steady

and unsteadycavitati ng problem. l\ras ilnikovetal.(2009)alsoemployedthes liding

mesh technique in anothe r CF D code, FLUENT . In their simulat ion, the widely used

model prop eller DT:O-IB 4679 Willi simulate" in two stages. At the first stage , t he

solution was done by using Moving Reference Fram e (:O- IHF) . T his solution was then

used as initi al condit ions for tim e dependent simulation. Temp oral discreti zat ion

was done by first order accura te backward difference discret isation techniq ue. T he

computat iona l domain was generate d by 2.86 million unstructured cells. From

their computat ion, it was found tha t t he HANS method predicte d bett er in heavier

loading eondit ions. Under lighter (.1=1.078) loadi ng, where the influence of viscosity

is larger , th e HANS calculat ion overpre dictcd t he pressure on the suction side. T he

same case was also reporte d by Lcras and Hally (2010), but for heavier loadin g

(.1=0.719). As explained by Lems and Hally (2010), it may be due to th e cavitat ion

a t t he tip which is ignored in the calculat ion. Th ey also did a prelimin ary study

with two model propellers, DT i\1B 4679 and DT:O-IB 4718, to invest igate inclined

flow phenomenon using the commercia l HANS solver ANSYS CFX. Two dimensional

structured grids were used on the blades, and t he remaining regions (hub and regions

associated wit h the blade) were made by unstructur ed grids. Th e data for analysis

were sampl ed on each blade O\'er ollly olle-t hird of a compl ete revolutioll and then

added together to get the equivalent pressure on a single blade over a full revolution .

Good ag reements with t he expe rimenta l da ta were found wit h the measured

average pressures. T he computed amplit udes of the pressur e varia tions were also in



goodagreemcnt. However, the phase of the pressure variat ions were poorly predicted.

In t his st udy, the numerical simulatio n was conducted to predict t hc flow around a

propeller operat ing with a shaft inclination of 7.5°. Th e commercia l RANS solver

ANSYS CFX was used. A single domain was genera ted with st ruct ured grids. The

simulat ion was validate d with the model test data ofDTlvlI34718 at design condition.

The perioclicloaclings on thefaceancl back oftbe blade sur face were computed and

validate d with the experimental data.



Chapter 3

Propeller Geometry and Grid

Generation

T he numerica l solution of BA NS equat ions require'S discreti zation of th e field of

interest into a collection of points or elementa l volumes. The efficiency ofa RANS

solver largelyd epcnds on the qualit y of grid . In thi s chapt er , th e geometry of prop eller

and the grid gcnerat ion of t he computa tiona l domain are discussed.

3.1 Prope ller Geometry

T hc grid was genera ted by the program PropGGM (Qiu et al., 2003). T he input

of th is progra m only ta kes the 3-Dimensiona l coordina tes of th e blade surface and

docs not include sect ional pitch, chord length, pitch diameter ratio , skew and rake

distribu tions. A Fortra n program was th en developed to genera te the Cartes ian

coord ina tes of the blade by taking thc bas ic propeller geometry. T hc mathcma tical

for mulat ion of t he program is described below.



Figur e 3- 1: Coor dinate system of pro peller

3.1.1 Coordinate System

A car tesia n coor dinate syste m, Oxyz , fixed on th e prop eller is applied. T he positive

z-axis defined as downstream direction and y-axis located at any desired angular

or ientat ion relative to the key blade. Th e z-coo rdinate is dete rmined by the

right- ha nded syste m (Figme3-1)

A cylindrical coord ina te system is defined as follows. T he ang ular coord ina te e is

measured clockwise from the y-ax is when viewed in the di rect ion of positive z-ax is.

Th e ra dial and ang ular coor dinates a re given by

7'= .J1li+ii (3. 1)



Figur e 3-2: Cylindrical coord inate system

O= tan - 1(y/ z)

3.1.2 Blade Geometry

A projected view of a blade frorn upstr eam is shown in Figur e 3-2. In the Figur e, ru

is the hub radius, e isthes kewHn glc mcasun..ed from the z-axis at radius r .

Th e skew angle, IIm(r ), is defined as the angular coord inate of t he rnid-chord line

meas ured from the y-axis a t radiu s r where t he y-axis is along the propeller reference

line. As shown in Figure 3-3 (Carlton, I !J!J~ ) , the rake of th e prop eller is divided into

two components: genera tor line rake (ic) and skew ind uced rake (i ,) . Th e tot a l rake

of th e sect ion with respect to di rect rix (iT) is given by

iT(r ) = ic( r)+ i,( r)



fExpandedview)

Figur e 3-3: Definition of rake

T hegcnera tor line ra ke, ic , is simply th e x-coo rdina te of the mid- chord line as shown

in th e Figur e 3-2 . Th e skew indu ced rnke L; also measured in th e x dir ecti on, is t he

compo nent of helical dist an ce around th e cylinder from the rnid-cho rdpoint of t he

sec t ion to th e proj ecti on of the directri x when viewed norm ally to th e ya-planc. Th e

skew induced rake is givcn by as

i,=re,tan(e",)

W here, e., sec t ion skew angle and O"t is the nose-tail pit ch anglc.

A hlade index ang le, 8k, is defined togencra lize th e result s to all blad es other th an



the key blad e:

J.= 21r(~(- I) , k= 1, 2, . . ,J( (3.2)

where [( is the nnmber of blades and k is t he index of any blade. T he key blade is

defined by thek= I. The coordinates ofa point on th e pressure and suction surface

ofascct ionon thekth blade can be writ ten as

:1',."= .em + c(s - ~ ) sin o!> - I, .pcos o!> (3.3)

O,.P= Om+ c(s - ~ )~ + I, .,,~ + J. (3.4)

Y.•."=-rs in O.•.,, (3.5)

z.,.,,=rcos O.,./, (3.6)

where th e subscripts s and n dcnotc t he suct ion side and t he pressu re side sur faces,

respectively ; l s ,p is the section surface and is measured in a cylindrical surfucc of

rndi us rin a direction norm al to the helical coordina te .

3 .1.3 Blade Scct ion Geom etry

Th e Nat ional Advisory Commit tee for Aeronauti cs (i'\ACA) in t he USA, now known

as :\ ASA, developed a syste mat ic series of aero foil geometries. Some of these aerofoil

shapes have been adopted for th e design of ma rine propellers. Typ ical section

nsed for ship prop eller is ;\A CA66 series with the mean line " = 0.8. Th e section

geomet ry is given in t he ap pendix . Th e mean line or camber line is the locus of

the mid-point s between t he pressure side (upper] and suct ion side (lower) when

measur ed perpendi cular to the camber line, as shown in Figure 3-4 (Ca rlton, 1994).

The two edge points of this camber line arc known as leading and tra iling edges

The distance betwee n th ese two points when measur ed along t he



Figur c 3-4: Definition of an acro foilscc tion

chord line is the chord length , c, of the sect ion. Th e aerofo il thickness, t, is th e

distan ce between the upp er and lower surfaces of the sectio n, usually measured

pcrp cndicularly to th c chord linc.

The upp er and lowersu rfaces are measu red perp endicula rly from tho cambcrI ine. A

point Pu on t hc upp er surface and a point PL on t he lower surface oft hc acrofoil, as

shown in Figurc 3-5 (Carlton, 1994), arc dcfincd by

Xu=xc -Ytsin t/J

Yu =Yc +YtCOS,p

.TL=.Tc+Ytsin t/J

YL=Yc-YtCOS,p

(3.7)

wherce, the slope of t he camber line at the nond imensional chorda l posit iQn, xc , is

(3.8)



Figure 3-5: Aerofoil section defini tion

Since,p is verysmall for marin e prop ellers , Equati ons 3.7 can be simplified to

u«=Y c +Yt

(3.9)

wherc p, = t/ 2 is t he semi-thickness of the local sect ion.

Th e leadin g edges are usually circular. Bnt in t he simula tion the circular edge was

replaced by a sharp edge for th e ease of grid genera t ion pro cess.

3. 1.4 Hu b Geometr y

Some geometry simplifications were made in th e grid genera tion of the hub .

prop eller blades were assumed to be mount ed on an infinite consta nt- rad ius hub

cy linder and therefore axial variation in huh radius was ignored.

fixed-pitch propellers were also ignored .



3.2 Grid Generation Method

As stated earlier , theefficieney of RANS solver largely depends on the quality of the

grid . For theeomputatio n of the prope ller t ip vortex flow, grid resolut ion within the

tip vortex eore has profound effect on the physical solut ions (Hsiao and Pauley, 1999).

To repr esent t he physical solution with sufficient accuracy for a complex tip vortex

flow, the following issues must be considered in the grid generat ion process (Qiu et

aI., 2003) :

• G ri d F in en ess: A fine grid is necessa ry to adequate ly resolve th e ti p vortex.

At least 15 grid points across t he tip vortex core should be used to obtai n a

reliable near-field tip vor tex for marin e propellers (Hsiao and Pauley, 1999).

• Grid D en s ity : Th e grid density on t he prop eller blade surface must be

sufficient so that bound ary layer effects can be well predicted.

• Gr id S mooth ness: Grids must be smoot h throughout the computa tiona l

• G r id Or th ogon ali ty: T he grid ort hogonality at t he solid bound ary is

impor tan t if the zero norm al pressure gra dien t approximat ion is applicd.

• Gr id Effi cieu cy: Th e grid genera tor has to be computa tiona lly efficient for

rout ine applicat ions.

In thi s work, PropGGM was used for grid genera tion pur pose. Detail descr ipt ion

of the st ruc ture, funct iona lit ies, implement ati ons and demonst rati on of this program

is given by (Qiu et aI., 2003). A brief descript ion of th e grid genera tion process is



3.2 .1 Grid Gen eration Approach

T he comp utation al domain was created as one blade-to-blade passage with two

periodic bo undari es by following the inlet flow angle. One periodic bound aryc ontains

tho suct ion side of a blade while the othcrconta ins the pressure side of the adja cent

blade. T his st ra tegy resulted in a spira l-like computat ional domain. Th e advantage

of thi s kind of computat ional domain is t hat th e clustered grid canbe easily aligned

wit h the tip vortex and the flow across the period ic boundaries can be minimized

(Hsiao and Pauley, 1999). T he domain is enclosed by the inlet boundary upstream,

the outlet boun dary downst ream , the inner boundar y located on the hub sur face and

the outer boundary in t he radia l direct ion. The domain is shown in Figure 3-6. The

grid genera tion was done by three steps:

• Step 1: Generat ion of the sur face grid on t he blade and hub surfaces.

• Step 2: Genera tion of a twa-di mensiona l grid in the fluid domain between

• St ep 3: Smooth ing the initi al three-dimensional grid .

A brief discussion of each step is given below.

3 .2 .2 Gr id Gen erat ion on B lad e Surface

After the genera tion of blade sur face coordinates , the sur face grids wcre distr ibuted

on the blade sur face. The panels genera ted from the origina l data shrinks to a point at

the last radi a l sta t ion. T his type of panels or grids are known as O-type grid and are

not acceptable for a str uctured grid basedRANS solvcr. To solve this issne, the data

points from t he origina l dat a were first increased . II-type grids were t hen genera ted

from an O-type grids. Deta ils of th e H-t ype grid genera tion can be found in Qiu et

al. (2003). Difference between H -type grids and O-t ype grids arc shown in Figur e 3-7.



Figure 3-6: Spira l like computa tiona l domain

T he distribution of H-type grid can be controlled by changing the numb er of grid

point s in th e spa nwise and chordwise dir ection s as well as by th e distri bu tion

funct ions. T he distribution functions for grid poin ts concentrated at two ends in

the spanw ise or chordw ise dir ection are defined by

where Q and (3 are t he gird distrib ution factor and st retching fact or , respect ively.

Wh en a = 0.5, the grid will cluster evenly at bot h th e tip and root regions in t he

spanwise direct ion or th e lead ing and t ra iling edges in th e chordwise direction.



( a ) a -type g rid

( b) II - t y p e g r id

Figurc 3-7: Difference between H-typc alld O-typc grid



Th e stretching factor , fl, should he greate r th an one. Th e larger the value, t he less

concentra tion of grid points at the end edge will be achieved. In anot her words, the

grid will be more uniform ly distribut ed . Th e intermedi ate vari ables, ¢ and t/J,me

defined on the uni t intervals, E.and ( . In th e program . E.= Band ( = B ,where

I or J is the orde r of the point in the chordwise direction or the spa nwise dir ection ,

Nor M is the tota l number of points in t he chordwise dir ection or t.hc spanwise

dir ection . Th e locat ion ofagrid point on t he surface can be contro lled by adj usti ng

the sing le valued funct ion ¢(E.)in the chord wise di rection or t/J(() in the spanwise

dir ection. T he contro lling functions for grid points concentrate d at one end in t he

spa nwise or chordwise dir ection are defined by

For hlade flow simulation, clustered grids are required at the tip and root regions as

well as the lead ing and tra iling edges ofa blade sur face. For thi s reason, the blade

surface was subdivided into two regions in the spanwise di rection . Th e first region

was from s = 0.0 (root) to s = 0.90 where s is the non-dimensional arc length . Th e

two-end grid concentration was applied in this region . Th e second region was from

s = 0.90 to s = 1.0 (t ip). where the one-end grid concentrat ion was set. In the

chordwise direct ion. the two regions were d ivided at s = 0.45. In t he region close

to the lead ing edge , two-end grid concentra t ion was app lied. In the ot her chord wise

region , the one end grid concent ra tion was used .

3 .2 .3 Grid G en eration on Boundaries

To generate the spira l like bou ndary, the domain was divid ed into t h ree regions as

shown in the Figure 3-8. Th e first region is abo ve t he t ip from the leadi ng edge to



Fignre3-8: Grid genera tion on boundaries

the tr ailing edge , the region from the inJetbonnd arytothe leading edge is the second

region and the region from the trailing edge to the outle t bound ary is Region 3.

To generate the grids in Region I , the following equations were used (Qiu et aI., 2003):

x(i ,k) = x(i ,I ( T I PNU M )

r(i , k) = I'" p(i ) + 4>(1.0 ) I'la~,:_~~:(i)

Ii(i,k) = Ii(i, KTI PN UM )

y(i,k ) = r(i , k) sin[li(i, k))

(3.14)



z( i, k) =r(i, k)cos[O(i, k)]

where, i = IL E,lT E ; k = l\ TI P N UM + I , K M A X . In the eq ua tions, ILE

and IT E are th e ind ices of grid points on the leading edge and th e trailin g edge,

respectively, l\ TI P N U M is the numb er of grid point s on the blade surface in th e

spa nwise dir ection , l\MAX is the total numb er of grid point s on the bound ary

in th e spa nwise dir ection , <I>( k) is th e controlling functi on in the radial direction ,

x(i, l\ T I P NU M), O(i , KTIPNUM ) and rtip(i ) are the x , 0 and r-coord inates a t

th e tip , respectively.

To genera te the grids in t he Region 2, the following equat ions were used:

(3.15)

y(i ,k) = r (i ,k )si n[O(i ,k )]

z(i , k) = r( i, k) cos[O(i, k)]

where, i = I LE - I , I , - I; k = I , l\ M AX , <I>(i) is th e cont rolling function in th e

helix line dir ect ion , du: is the dist ance from t he inlet boundary to th e leading

edge on the tip , X LE is the x-coo rd ina te of the inlet bound ary, Uoo is th e inflow

velocity.u , is the RP S of the propeller , r'( k) is th e radiu s of th e grid on th e line n ,

x(I L E , k) , O(ILE,k ) and r(ILE,k ) are th e x , oand r-coordin at es on th e leadin g

edge , respect h·ely.

For Region 3, the following equat ions were used:



x(i , k ) = :r (I T E , k ) + ~[XTE - x (I T E, k )]

ro(k' ) = [xn; - x (I T E, k)]2"~~k)1l

lI(i ,k ) = II(I T E , k) +~~

y(i , k)=r(i , k )s in[lI(i , k)]

z(i, k) =r(i , k) coslll(i , k))

(3.16)

where, i = IT E + 1, 1M A X ; k = 1, K M AX , q,(i) is aga in th e cont rolling fnnction

in the helix line direction , dT E is th e dist ance from the tra iling edge totheont let

bound ary on the tip , .LTE is th e :r-coordin at e of outlet bound ary, r '( k) is the radius

of t he grid on th e line {J, .L(I T E , k) , II(I TE,k ) and r (I TE,k ) arc th e x,1I and

r-coordina tes on the tra iling edge , respecti vely.

3.2.4 Ini tial Grid Gen erat ion

After th e completion of grid genera t ion on the blade sur faces and periodic bouud aries,

a two-dimensional grid was created on each constant radius surface considering the

blade sur face grid and the first grid spacings. On each constant radiu s sur face, a

Bczicr curve (Faux and Pra t t , 1979) was used to define a grid line between two

bound aries. Thi s Bezier curve makes the grid norm al to th e blade sur face where th e

bound arycond ition of zero norm al pressure gradient is applied.

Th e grid points on the Bezier curve were t hen distr ibuted by using the two-end

controlling function . T he two-d imensiona l grid was smoot hed by a two-dimensional

ellipt ic smoot hing rout ine and by stac king thcsesmoothed grids , th e initi a l 3-D grid

was genera ted .



3.2.5 Ellip tic Smoothing Technique

The grid genera ted by linear interpolation is not smooth. An elliptic smoothing

routine was used to smooth the gird. This rout ine solves a set of coupled Poisson

elliptic partial different ial equations and generates smooth grid. The equations are

given below:

~xx + ~YY +~" = P(~ , 7/, ()

71xx + '1UY + 'I" = Q(~ , ll , ()

These equat ions can be transformed into generalized coordinates by

~ = ~ (x , y , z )

'1='1(x,y, z)

( =((:r,y , z)

T he Jacobian of the transformation is computed by

where ~x =~, .7:, =~ , etc.

(3.17)

(3.18)

(3.19)



[~x] [1'11]
~y = J = J 1'21

~, 1'31

[

'IX] [V(Z( - V(Z(] [1'12]
Tly = J :r(z(-:r(z( = J 1'22
'J, X(Y( -:r(v( 1'32

[
(x] [1'13]
(y = J = J 1'23

(, 1'33

(3.20)

Using the Jacobian of the trans formation above , Equation 3.17 can be tran sformed

i= 1, 2, 3;j = 1, 2, 3

Where, P, Q and R are th e forcing funct ions and arc used to control th e grid

distri bu tion. Th ey are defined as



(3.22)

where a is a positi ve eonsta nt which determin es th e decay rat e of th e grid clust ering

and p, q and risd etermi ned by rewritin g Equation 3.21 a t t he boundary, i.e; at r/ =O

pl',+ ql',,+rl'<= h

[

ill]
h = ii , = - J

2[all l'" + " 221'"" + a3:'I'« + 2(a 121'" , + "131'« + "231'"dJ

h3

(3.23)

(3.24)

T he parti al derivati ves of I' with respect to ~, r/ and ( at th e boundary, i.e; atr/= O,

are determined by th e following three relat ions

r { ·r,/ = O

(3.25)

1'<'1',, = 0

where s is th e first grid spacing at th e boun dary. Th e desired spac ing and

ortho gonal ity are spec ified here. Expandin g t he equat ion gives

(3.26)



I ' """+~,,,+ ,,.= o
I Cmm"', m,. """ Hoow"" H"ooH,O",, 'm,.,,,d,.,

I " = -Z;~ ~:y~:,::yd = -~;~~2

y" = -~(.~;~;'--;;~;) ) = -~;~;

SlIbst itllt ing.T"andy"intothescco nd equatio n in Equat ion 3.26g ivcs

(3.27)

(3.28)

(3.29)

.9/' 32

Z" = \h~2 + /'i2+ /,g2
8/'12

.r, = \h~2 + /'i2+ /,g2
.9/'22

u. = 'h~2 + /'i2 + /,g2
Equat ion 3.29 gives the lirst derivative 1'". The second derivati ves 1'"., can be derived

from the Taylor series:

where j is the index in the rydirection.

A mult iple block, smoot hing routine was used to smooth the initial grids IJlL"'" on

the scheme described above, A smoot h grid can be obta ined in a few iterations by



3.3 Computational Domain for Un st eady

Simulation

In t he previous sect ions, a computat iona l domain for stea dy simulation containing

only a single blade was discussed. For th e steady (uniform) flow cond it ion it is

assumed t hat t he pressure varia tions over all t he blades arc t he same and there

arc no significant flow interru ptions among th e blades. Th is type of domain is

computat ionally efficient since it requ ires less memory and comput ing t ime. But for

unsteady Inon-un iform) infiow condit ions , t he flow is three dimensional and requires

consideratio n of all of the blades toaccurat cly investigate t he unstea dy na tureof

prop eller blade load ing.

An at tempt was t hen taken to const ruct a domain which would conta in all the blades

ofa propellerand the hub. Th e domain was create d in two different ways. First ly, by

modifying Prol'GGM for each individu al blade to genera te separa te spira l like domain

and combining t hem toge t her to get the full propeller. Secondly, by using t he mesh

tra nsformati on feat ure of ANSYS CFX (CFX ma nual , 2005). T he second opti on was

found much easier, fast er and more convenient. Th e procedur e is described in t he

following sect ion.

3.3 .1 M esh Tran sformation

T he Prol' GGM genera tes one blade-to-blade spira l like domain which is sullicient

for uniform flow analys is. For non-uniform inflow condit ions , all the blades must

be considered. T his was easily done by the mesh t ransformation editor of ANSYS

CFX. Th e ot her blades and the full hub were regenera ted by copying and rot a t ing the

spira l like dom ain . Finally, all t he domains were glued togeth er to crea te aco ntinuous

mesh conta ined in a single assembly from t he mult iple copies. A single domain was

th us create d for th e entire assembly wit hout th e need of ereating domain or periodic



Figurc 3-9: Comput at ional domain forunsteady simulntion

interfaces between each copy. Figure 3-9 shows the computat ional domain.



Chapter 4

Computational Method

Th is chapte r describes th e num erical meth od used to solve t he problem.

governing equations for fluid flow arc outlined first. Th e discreti sati on meth od of

th e govern ing equa tions and th e solutions stra tegy of the dcscret iscd equa tions are

thcn explained. A comprehensive summary of a ll turbu lence models is also presented.

4 .1 Governing Equat io ns

A commercial viscous flow code, ANSYS-CFX (V I l. O and VI 3.0) was used for

th e computa tion. T he set of equati ons solved by ANSYS CFX arc the unst eady

Navier-Sto kes equat ions. Th e unst ead y, thr ee-dimensional continuity equat ion for

compressible fluid is

'f!f+ '\l'(PU) = 0 (4. 1)

For incompress ible fluid (e.g. wat er ) t he density P is consta nt and the equat ion

'\l · (U ) =o (4.2)



Th e Momentum conservat ion call be presented as :

0fjf + 'V . (pU 0 U) = - 'VI' + 'V. {pv['VU + ('VujT - ~<5 'V · U n + S ", (4.3)

wherc<5is the Kroneckcr dclta funct ion, S.\I is the momcntumsource , 0 is thc tensor

produ ct of two vectors, U 0V is defined as.

l

UxVx u,Vy u.V']
U 0V = UyVx UyVy UyV,

U, Vx U, Vy U, l',

Additional sources of momentum are requir ed for flows in a rotating frame of rcfcrence

to account for th c effects of Coriolis force and t hc ccntrif ugal forceo If th c fra mc rotatcs

at a constant angula r velocity w, t he source term CHn be expressed as:

S "'.,ol = - 2pw x U -pw x (w x r ) (4.4)

wherethefir stterm representstheCoriolisforc eaudthesc condterm ist he centrif uga l

force, l ' is the location vector and U is the relative fram e velocity, i.e., the rota t ing

fra me velocity fora rotatin g frame of reference. T he fina l form of th e momentum

equat ion becomes:

0fjf+'V'( PU 0 U) = - 'Vp+ 'V.{pv[ 'VU+( 'VujT-~<5'V.Un -2pw XU-f", x (w x r )

(4.5)

Th e tot al energy equa tion can he expressed as:

D(p;~t"') _ ~ + 'V . (pUi ltod = 'V . ('\ 'VT) + 'V. (U· r ) + U · S ", + S E (4.6)



whereh tot is the total enthalpy . Th e term \7 , (U ' T) represent s the viscous work

duetothe,·iscous str esses andthetermU· S .1/r epresentsthework due to external

momentum sources , find S E is th e energy source.

The remainin g unkn own thermodynamics variables (p, P,i and T ) are Iinked togeth er

th rough th e assumption of hydrod ynamic equilibrium and are expressed by only

two sta te vari ables. Thi s expression is known as th e equation of sta te. For an

incompr essiblefluid,where thedensityis constant ,thereisnoneedfor the stat e

equa tion. Th e flow field can often be solved by considering only the mHSSconserva ti on

and momentum equa tions. Th e energy equati on only needs to be solved alongside

t he ot hers if the problem involves any hea t tran sfer (Versteeg and Malnlasckere , 1995).

For turbul ent flows like pro peller t ip vortex flows, th e Navier-Stok es (N-S) eq uat ions

have to be modified to produ ce the Reynolds Averaged Navier-Stok es (HA NS)

equations by employ ing averaged and fluct uati ng quant it ies. Th e result ing equa tions

~ + \7 ' (PU ) =O (4.7)

0jJf- + \7 . (pU <81 U ) = \7 . T - pu <81 u + 5 ,11 (4.8)

where T is the molecular st ress tensor and pu <81 u are th e Reynold s stresses. Th ese

stresses are modelled by introdu cing turbul ence model to enclose th e governing

equati ons. Det ails of the turbul ence models are described in Secti on 4.4.



4.2 Di scretisation of Governing Equations

So far we have seen t hat th e flow phenomena arc governed by par tial different ial

equat ions. Analytical solutions lo th ese equa tions arc only available for the simplest

of flows, under ideal conditions. To solve rea l flow problems, a numerical approach

must be adopte d whereby t he equat ions are replaced by algebra ic approximations

and the process is known as numerical discret isat ion . Th is sect ion describes this

descret isati on meth od used for the simulation (Vcrsteeg and Malalasckcra , 1995).

T here are significant commonalit ies between the various governing equa tions and can

be writte n in the following genera l form:

(4.9)

where ¢ is th e variable of interest , r is t he diffusion coefficient. Th e Equation 4.9

is known as transport equation since it describes various transpor t processes of

dependent variables. Thi s equation represents different asp ects of th e fluid mot ion .

Th e convect ion ter m represents the flux of ¢ convect ed by the mass flow ra te

pu ,the diffusion termrepr csentstherandom ltlotionof part icles and t hc source

term represents the generat ion and destruc tion of¢. The non- linear natur e of the

convect ive term makes it difficult to solve th e equations dir ect ly, th at is, as a set of

simulta neous equat ions . An itora tive solution rnct hod is the only way to solve these

equa tions. T he govern ing equat ions arcdiscretised , thatis, ap proximately lincarised

to obt ain the algebra ic equa tions and are solved at discrete pointsthro ughoutthe

Avaricty of techniques, includingand not limitedtofinitediff erenceandfi nite volullle

mcthods ,are availableto pcrform this numericaldiscret isati o Il but a finite VOIUIIlC

approach is adopted here. A brief description of the method is given below



4 .2 .1 Finite Volum e Met hod

Th e finite volnm e meth od is probabl y th e most popu lar descret izati on met hod

used in CFD. Thi s meth od draw s on ideas from bot h finit e element lind th e finite

differencediscretisationtechniqucs. In thi s a pproach th e computat iona l domain is

discret ized into finite cont rol volum es. a lso known lIS cells. Th e govern ing equat ions

a re int egratccl over each contro l volume which ut ilises th e conser vatio n pr incipl es

dir ectl y. Th e integral form ofEqu lltion4.90\·er acontro lvolum e givcs

T he Equ ati on 4.10 repres ents th e flux balan ce in a cont ro l volum e where th e left

ha nd side represent s th c rat e ol chango of e a nd net convect ive flux and right hand

side gives t he t he net diffusive flux lind th e genera t ion or destru ction of th e proper ty

¢. Th ese fluxes are evaluated by various numerical schemes which a rc discussed in

t he following sect ions.

Th e ma in adva ntag e of the fini te vohnne meth od is th a t the spa t ial discretisat.ion

is ca rr ied out dir ect ly in the physical space. T hus , the re ar c no problems wit h a ny

tran sformatio n between coordina te sys tems , like in t he case of the finit e d ifference

meth od . Compared to th e finite difference meth od , another advantage of the finit e

volume meth od is th at it is flexib le to impl ement on both st ruc tured and unst ruct ured

grids. This makes finit e volum e meth od suita ble for t he t rea tment of flows in complex

geometr ies.

4.2 .2 Di scr eti sat ion of th e Domain

Old er CF D codes used a stagg ered mesh approac h where t he sca lar vari abl es were

calc ulatedat thecellcent resandthe vecto r \'ariablcs, i.e. the velocit ies, at the cell

faces. But recent codes , such lIS CFX, usc a co-loca ted (non-staggered) grid layout



where the vallies of all variables arc calculated at the centre of each contro l volume.

T his approach is bett er t han the previous one since it requires only one mesh to

get the values of all the variables. In a complicated geometry, where curvilinear

(non-recta ngular) mes hesarc lIscd,applica tioIlo fco- loca tcd grid is easier because of

its simplicity. However, this method leads to a decoupling of the velocity and pressure

fields giving a 'checkerboard' effect. This is overcome by Rhie-Chow (Rhie and Chow,

1982) interpo lat ion algorithm, which is furth er modified bylvl aju mdar (CFX manual,

2005) to remove thedependence of thes teady-sta tesolutionon the timestep size.

4 .2.3 Advect ion Terms

Ad vec tion terms can be app roxima ted with different advection schemes available in

CFX. All the schemes have some advantages and disadvantages. For example, t he

firstorderaecurate upwind differencingsc hemegivesthe mostrobust per formanceof

the solver but it suffers from numerical diffusion. Onthe other hand,the second order

accurate scheme is free from the diffusion problem but sometimes it gives non-physical

results. A blend of these two schemes can be achieved by the use of the high resolut ion

scheme, which was implemented in this simulation. A blend factor ((3) is sent in a

range of 0.0 for fully first order to 1.0 for fully second order schemes. T he blend factor

valuesvary throllghoutthe domain based on the local solut ion field. If the variable

gradients is low in a flow region, the blend factor will be close to 1.0, but will be

closer to 0.0 where the gradients change sha rply. In other words, t he scheme is fully

second order as long as there arc no discontinuities in the flow. It drops to first orde r

to keep the solut ion bounded. A centra l difference advection scheme is also available

to CFX but it is reserved for large eddy simulation turbulence model only. The third

order accurate QUICK scheme is also availab le in CFX but not listed in the main

optio llsand pcr hapsthis is llotrecommcu dcd forgcneral use.



4 .2.4 Diffu sion Term s

Th e reasonab le way to discretise diffusion terms is to employ a centra l d ifference

scheme beca nse oft he physical nat ure of the viscous f1nx. Tlms,theirdiscretisati on on

struct ured grids is st ra ightforward . On unstru ctur ed tri angular or tetrahedra l grids ,

th e visconsfluxes arebest appr oximat edby followingthe st and ardfinite element

approach. CFXalso uses thisa pproac h by employing shape functi ons to evalua te th e

derivatives for all th e d iffusion ter ms.

4. 2.5 Tran sien t term s

Th e t ransient term of Equati on (4.10) can be split into terms as follows:

(4.11)

T he ti me derivatives of Equ ation (4.11)ca n be approximated by either the first order

Backward Euler scheme or by II second ord er Backward Eu ler scheme. T he first order

scheme is rob ust , fully implicit , bounded vconscrva tive in time, find docs not creatc n

tuuestc p Iimitat ion. I3ut sincc itis onlyfirsto rdcracc uratc , it suffcrsfrolIl llumcrical

diffusion in time, similar to t he numerical diffusion experienced with the Upwind

Diffcrencc Scheme for discretising the advection term. On the ot her hand , the second

order scheme is also robust , implicit , conservative in time, and docs not crea te a

time step limitation, but it is not bou nded and may hence crea te sorne nonph ysical

overshoots or undershoots in the solution. However, all t he simulat ions were done

with t his Second Order Backward Euler scheme,

4 .3 So lution Strategy of th e Di scr etised Equations

Th ere is no equati on (tra nsport or other) for pressure and t his aspect is therefore

treated differently. A constra int is set on th e solution of the flow field in tha t when



thecolTect pressure issubst itute d inthe momcntumequat ions, the result ingvelocity

field satis fies mas s cont inuity. ANSYS CFX uses segrega ted solvers which solve

the momentum equat ions using a guessed pressure and obtain a pressure correction

relation. T his 'guess-a nd-c olTect' appro achofthelin ear solverrequ ires a lar gen umb er

of iteratio ns, A coupled solver solves t he hyd rod ynami c equa t ions (foru,v ,lU,p) as

a single sys te m with a fully impli cit discreti sa t ion meth od . Th is redu ces the numb er

of iterati ons to achieve the convergc llcc criter ia. T he d iscret e sys tem of Iineari sed

equatio ns ar c solved by a ll Incomplete Lower Upp er ([LU) factor isa tion techniq ue

accelerat ed by algebra ic Mul tigrid (1 IG) method (Ra w, l aaG).

4.4 Turbulence M od eling

Turbu lence mo dellin g is anot her imp ortant issue to conside r esp ecially when the

simulat ion deals wit h t he fluctua tin g flows like prop eller flows. A screw prop eller

indu ces high ly rotati ng flow and enta ils a t ip vort ex , which ca uses t urbulence in t he

tip vort ex region . A viabl e tool then required to repr esent this turb ulence effect.

Therandomnature of a turbulcntft ow canbc cxplaillcdbyintrodllCillg averaged and

Huctu atin g compo nents. Forcxample,a vclocity u(t) canbcdividcdinto HIl Hvcrage

component U a nd a fluctu atin g compo nent u'(t)

u(t) =U+l/(t) (4. 12)

Thus, it requires modification of the original unsteady Navier-Stokes equations ,

conside ring the average d and fluctua t ing qu untiti cs to produce the Reynolds Avera ged

Navier-St okes (RANS) equat ions. T hese equat ions are obt ained by using t he

statistical averaging procedure. This averaging proced ure introduces additi on al

st resses in th e fluid known as 'Reynolds stresses' a nd need to be modelled in orde r to

Turbu lence model s provide the mod el for th e computa t ion of t he



Reynold, st resses. Th ere arc several turbulence models available to CFX which can

be catego rized into two classes, eddy viscosity models and Reynolds stress models.

Th ey are discussed below.

4.4 .1 Eddy Vi scosity Turbulen ce Models

Th ese turbu lence models a re based on the hypot hesis t hat t he Reynolds stresses arc

propor tional to mean velocity gradients and Edd y (turb ulent) viscosity can be related

by the grad ient diffusion hypothesis.

- p"i1®U = Pll,[V'U + (V'uf] - ~<5p(k + /l' V" U) (4.13)

where, <5is th e Kronecker's deltil lind Il , is the eddy viscosity or t ur bulent viscosity,

which has to be modeled. At the same time the eddy diffusivity, r, also has to be

modeled which is computed based on the assumption t hat t he Reynold, fluxes of a

scalar are linearly relatcd to thc mcallsca larg rndient.

- Pl/¢= r ,V'</> (4.14)

T he eddy viscosity mod els arc dist inguished by the manner they prescrib e eddy

viscosity and eddy diffusivity. Th e var ious eddy viscosity models a re describ ed below.

Zero Equa t ion M od el

In this mod el t he eddy viscosity is comp uted from the mean velocityand a geomet ric

length seale using an empirica l formula as follows:

Il , = p!,.U,I, (4.15)

where,!,. baproportioua lityeonstantll nd l, i, the length , cale proposed hyPrand tl

and Kolmogorov. Sincen otransport cquat ion isinvol\"ed, thisll1 odcl namcd as 'zcroI



equation model. Th e advantage of this model is its simplicity to implement and chea I'

in term s of comput ing tim e. Bu t since it is based on empirical form uliL"themodel

Tw o Eq uation Tu rb ulen ce M ode ls

Th ese mod els solve two separa te t ranspor t equati ons , one for turbul ent velocit y

scale and another for turbnl ent length sca le. Th e produ ct of velocity and length

scale arc th en nsed to mod el tur bulent viscositY,II " Th e turbul ent veloc ity scale is

computed from the turbul ent kinetic energy, k, which is provided from the solution

of its tr anspor t equati on . And the th e turbul ent length scale is est imated from the

turbu lent kinetic energy, k, and its dissipati on rat e,<'

Thi s model predict s the t urbulence viscosity from following rela t ion :

(4.16)

where C"isa constant. T he values of e and < are solvod from the following differential

trnnsport equat ions:

a~t) + \1 . (pUk) = \1 . [(II +~ )\1k] + Pk - P< (4.17)

where th e consta nt coefficients c, = 0.09, Cd = 1.44, C,2 = 1.92, Ok = 1.0 and

0, = 1.3. Pk is the t ur bulence produ cti on dn e to viscous and buoyancy forces, which



Due to th e excellent performan ce in many pra ctical flows, thi s model is well

esta blished and widely validate d. However , poor perform ances arc reported in a

variety of impo rta nt ca.scs like confined flow», flow with large ext ra stra ins, and in

rota ti ng flows.

Thi s mod el sha res th e same tra nsport equatio ns as th ose for standardk-Ecquation.

Th e only difference is t he model consta nts . Th e consta nt Ci , is replaced by t he stra in

depend ent correct ion te rm functi on C ,IRNC where,

C<111NC = 1.42 - 1"

whore,

T he details of th e oth er constants can be found in CFX manual (2005).

(4.20)

Thi s model, developed by Wilcox (1986), assumes tha t the turbulence viscosity is

linked to the tur bulence kinetic energy, k , andturbulent frequency,w ,viathe relat iou'

11'= p~

T he t ransport equa tions for k andw are:

(4.21)

D~tk) + V'. (pUk ) = V'. [(II+ ~) V'kl + Pk - rJ'pkw (4.22)

Dr::: )+ V' . (pUw) = V'. [(II+ ;;:) V'wj + O:I Pk - (3pu? (4.23)

with 0: = 5/ 9, (3 = 0.075, (3' = 0.09, ak = 2 and a w = 2, and Pk is ca lculate d as in th e



it docs not requir e a ny non-lin ear dampin g funct ions. T he near wall performance of

t his model is also very at t rac tive.

4 . The B aselin e ( BS L) I. - w Model

This is a blended form of Wilcox I. - w model and modi fied I. - e mod el to eliminat e

the extre me sensit ivity to freest ream conditions of the Wilcox model. Th e 1.- ,

model is tr an sformed toa k- w formu lation a nd mu ltip lied by a blend ing function

1 - F,. Th e Wilcox mod el is multipli ed by th e function F, where FI is equ al to

one near th e surface and switches over to zero inside th e bound ar y layer.

corr espondin g I. a nd w equ ati ons are th en added to get th e I3SL mod el.

5 . T he S h ea r St ress Tr an sp o r t (SS T) Mode l

T his model can be ca lled as a improved version of I3SL mod el.

combines t he advantages of th e I. - wand the 1.-, model , bu t it fails to pred ict

flow separation accurately, Th e reaso ns were revea led by Men ter (1994) a nd the

main reason is t hat bot h model s do not account for th e tran sport ofthe tur bulent

shea r st ress which results in a n over predicti on of th e eddy-v iseosity, Xlent er t hen

int rodu ces limit ers where th e eddy viscosity is limit ed to giveim proved perform an ce in

flows with ad verse pressur e gradients and wake regions. Th e turbulent kineti c energy

produ ct ion is limited to prevent th e build-up of tur bulence in sta gna t ion regions. Th e

limitercan be expressed as:

(4,24)

where F2 is a blending function similar to F I inl3SL mo de l, "I is a constant and

s=~,



K-epsil on On e Eq uat ion Model

Thi s simpl e one equati onmodel,d evclopc,l byj\ lent er (1994),i sderh 'eddirectlyfrom

the k - < model and is therefore named the (k - <)IE model. Th e model conta ins a

destru ction term ,which accollntsfor th e stru ctur e ofturbulence. Th e eddy viscosity

is comput ed from:

1'. = pv; (4.25)

where, v; is t he turbul ent kinemat ic eddy viscosity. Thi s model includ es dampin g

functi ons to ca tch th e low Reynolds effect.

4.4 .2 R eynolds Str ess Turbulen ce (R SM) Models

Thes e models do not lise the eddy viscosity hypot hesis, hut solve all transport

equat ions forall compo nents of the Reynolds stress tensor and t he dissipa tion ra te.

Th e trans port equa tion for the Reynolds stresses is:

iJPI~~ 11 + V' . (pU 0 li0U) = (P + q,+ V' . (( /l + ~c'P~ )V'li0U) - ~6p< ) (4.26)

wherc o is the pressure-strai n correlat ion and P is the production ter mvgiven by:

P = - p(li0U(V'uf + (V'U)li0U) (4.2i)

Th e pressure stra in interaction is most importan t , hut most d ifficul t to model

accura tely. Thi s intera ction redu ces anisot ropy of turbul ent eddies and th erefore it

requi res addit iona l corrections.

Th e exac t produ ction term and t he st ress anisot ropies th eoreti cally make Reynolds

Str ess mod els more suited to complex flows. But it requir es large computing



time and in practic e it poorly predicts some flows (for example, ax is asymmet ric

jets, nnconfincd re-circulat ing flows) ducto thcid cnt ical probl ems with the e equat ion.

Th ere are three types of sta nda rd Reynolds stress models available. Th ese are known

as LRR- IP, LRR-Q I and SSG. Each model has different model consta nts . In t he

LRR-IP andLRR-QIm odels,d cvelopcd by Lannd er et al. (19i5),thc pressurc-stra in

corre lat ion is linear. II' sta nds for lsot ropization of Pro du ction , and QI sta nds for

Quasi-Isotropic. On th c othcr hand , SSG model,dewl opcd bySpeziale (1991), uses

a quad ra tic relati on for th e prcssure-str uin correlat ion.

Th ere are other two types of Reynolds stress models available, the Omega Reynolds

Str ess and Baseline (I3SL) Reynolds Stress models. Th ese models arc based 0 11 w

equation and are used for a mor e accurate near wall treatment. The two models

relate to cach ot hcr in thc samc way as th c two equation k - wand I3SL models do.



Chapter 5

Validation Studies

Thi s chapte r has two part s: t he firs t part desc ribes th e research findings of t he stea dy

sta te t ip vort ex flow while the second par t deals with t hc result s obt ained from the

unstead ysimulation . Valid ati on st udies were carried out for both stea dy and unsteady

5.1 St ead y Ca se

The steady state t ip vort ex was previously computed and validat ed hy Liu (2009).

An extension of her work was cond ucted to investi gate th c effect of turbul ence

modeling on the computa tion of t ip vort ex flow with eddy viscosity turbul ence

models and Reynolds stress models. Th e pressure coefficient on t he bladc surface

and the propeller thrust and torque coefficient were also computed. Th e predict ions

ag ree well wit h t hc measur ed velocity components but underpred ict t he thrust and

torque coefficients. Addi tional expcrimcntswerethcn cond uctedto rcw al the reason

and a mod ifica tion of the previous nnmcrical experiment (Liu, 2009)wasperformcd.

To clcarly cxplainthefi ndin gs of th is cxpcriment , thcprevious numcrical cxpcrilllent

(Liu, 2( 09) is also summarized as follows.



5 .1. 1 Simulatio n Tec h ni q ue

The validation studies were carried out for the DTtv1I35168 propeller model at t he

advancecoe fficient J= I .I. Th e propeller model geometry and operat ional conditions

are shown in Table 5.1. In the computatio n, the waterdensity and viscosity were set

tOP",o'er = 997kg/m'and /l",o,,,=8.89 x llJ- ' kgm- 1s- 1, respect ively.

Table 5.1: Principal Charaete risticso f DTA1I35168

Designation Values

15.856
421.44

:nn
6.897

1.1
24.163
942.12

4.2 xlO

Co m p u ta t iona l Domain

The spira l like computn tionnl domain , as shown in Figure 5-2, was crca tcd by sett ing

the inlet boundaryat one propellerradius llpstreamandtheoutlet boundaryone

diameterdownstre am. T he outer boundary in the radial direction was located at OIl C

propeller diameter (Liu, 2009).

P ruua r y / seco n d a r y co o rd ina te sys te m

A primary/ secondary coordinate sys tem, a•.I.) shown in Figure 5- 1, was used to bett er

describe the tip vortex st ructure. In th is system, the primary velocitY,\l"isdefined

in theaxial-ta ngentia l :r-t plane at the propeller pitch angle, ¢. Tangential velocity,

v:: 1 and radial velocity , Fr , are on the secondary flow plane normal to the primary

velocity. Th e primary and tangcntial velocit ies aredefincd a.-;;



Fignre5-1: Primary and secondary coordina te syste m

V, = Vx sin q,+V; cos q,

Vc = -V, cos q,+ V;sin q, (5.1)

Th e center of th e vortex core is defined a t t he location wit h minimum V:, and is

denoted byO =O in the fignres.

Boundary Condit ion

Th e bou ndar y condit ions were specified as follows. A no-slip wall condit ion was

app lied on th e blades and the hub surfaces (denoted by black in Figur e 5-2) . A

free strea m condit ion was applied on th e inlet boundar y and t he outer surface in the

spa n-wise directi on (denoted by green) . Th e flow rate was specified at the outlet

boundar y. Rotation al periodi c conditio ns were applied on theperiodicboundar iesby

the Fluid-Fluid Interface Modeling in ANSYS CFX



Fignre 5-2: Complltationai domaino f DTMI351G8



Advect ion term s were discretised by t hc high resolnt ion schemc . Viscous term s were

tr catcdby cmpl oyingthe centraldifferencc schcmc. T he t imes tc p size was det ermined

auto ma t ica lly by CFX. T he convergence crite rion was set to thc R~lS residu al to

I x 10- 0 ' . To achieve t he desired convergence , a tota l of 10, 000 itera t ions were

req uired ,

5. 1.2 Conve rge nce Test s

Before cond uct ing the simulat ion, convergence tes ts were pcrformcd to find ou t thc

grid sensit ivity of th e domain on t hcsolnt ion and to select t hc lcast nnmbcrof

itcrat ions. T he grid sensit ivity was done by Liu (2009). To main tai n the sequence ,

thcdetailofthc tcst is cxp laincdhcrc.

T hrcc computa t iona l grids , Grid I, Gri d II and Grid III , were used for the convergence

test. A summa ry of the three sets of grids is given in Tablc 5.2.

Tab le 5.2: Snmma ry of Gr ids

Th e com pnt ed axial , ta ngent ial a nd radi al vel ociti es (liz, \1,and V" resp ec t ively) in

th e tan genti al dir ection across the t ip vort ex cent re a t th e locat ion :r = 0.2386R

were compa red with the exper ime nta l data (Chesna kas and J essup , 1998). Here, R

is t he prop eller radiu s. From the test, it was found t ha t grid I with largest first grid

spac ing led to a better predict ion. Th e first gr id spaci ng on th e blade a nd hub was

3.6 x IO -~ inches which repr esents an equivalent non-dim ensional wall dist ance (y+)

of 7.5. Note th at a srna ll first grid spaci ng may lead to grid cells with hngeJacobi an

values , which will ca use th e ANSYS CFX solver not to converge. Details of th e test



can be fonnd in Liu (2009).

Anoth er convergence test was car ried out to find th e effect of grid resoluti on on

the comput ing time of simulat ion. Using t he SST turbul ence model, the thr ee sets

of grids were compa red in Figure 5-3. It was found th at Grid II reached to the

converged solut ion quickly compared to the other two. But within 500 iterati ons, all

types of grid converged and merged at the same point. Appar ently, no significant

Based on th e above mentioned convergence st ndies, Grid [ Wf.S chosen for furth er

st udies . Th e computa tiona l domain conta ins an H - H type grid with more th an

1.9 million grid point s. Thi s domain was used to investigat e the effect of turb ulence

models on the predictions of V" V, and V,acl'OssthetipvOl'texce nter inthe ta ngentia l

directionat .1:=0.2386R (R is the propelle r radius).

5.1.3 Effect of Tu r bul ence M od elin g

An investiga tion was done to show the effect of tur bulence modeling on t he vort ex

flow computa tion. Vario us eddy viscosity and Reynolds st ress tur bulence models were

employed in th e investi gatio n. The eddy viscosity models include zero-, onL~ and

two-equati on turbulence models. Th e simple one-equa tion model, (k-€hE' derived

from t he (k - e) model, was used . In the two-equati on eddy viscosity t urbulence

models, (k - e), (RNG k: - e), and the hiended (k - w)SS T models were chosen.

Thr ee types of sta nda rd Reynolds stress models based on the € - equa tion and two

otherw- based Reynolds stress models were employed. Th e t hree sta nda rd models

were SSG Reynolds Str ess Model (RS" I) and the Laund er-R eece-Rod i models (LRR):

LRR-IP and LRR-QI. Th e ot her two w- based models were Baseline (n SL) RS"I and

the Omega Reynolds stress model, Among the above mentioned models, (k-€), SST,

SSG RS,,1 and BSL RS,,1 models were previously employed by Lin (2009) .



Figure 5-3: Effect of grid resolution on computing time



Veloci t ies a cr oss t he t ip regio n

Th e velociti es II,, \!, and II, across th e tip vort ex cent re were compared with the

th e experimenta l dat a and with thennmerical dat a by Hsiao and Pauley (1999) to

show th e effcct of turbul ence models on th e velocity predi cti ons . Th epostproccssor

of th e program PropGGM was mod ified to make it compatible with th e ANSYS

CFX. A furth er modificati on was done to non-dimensi onalize th e velocities. Figure

5-4 presents the solnti ons based on the eddy viscosity turbul ence models and Figure

5-5 gives t he computed results based on th e Reynold s st ress models. In th e figures,

the first valley corr esponds to th e wake and the second valley is assoeia ted with the

tip vort ex. In the work of Hsiao and Pauley (1999) , the computat ions were carr ied

out using INS3D-UP with a one-equa tion Baldwin-Barth turb ulence model.

computat ional doma in had 2.3u million struct ured grids.

For ax ial velocity, II" in Figure 5-4, k - < and the SST tur bulence mod els predict

bet ter at the vortex location while t he wake valley is het ter predicted hy t he

zero-equation, the (k - <)IE and the RNe k - < models. For 1;" t he computed resul ts

with the k - < and th e SST turb ulence models agree bett er wit h th e experimenta l

da ta t han those by other eddy viscosity models a t bot h the wake valley and a t t he

vort ex loca tion. T he comp uted results for radi al velocity component , lI" givespoor

predictions compared to the oth er components , IIx and 1;,. Th e computed results

with various turbul ence models nre similar ut th e vort ex loca tion and a t th e wake

region . However. zero-equa t ion model, the (k - <hE model and th e nNe k - e

model mat ch well at th e wake valley with the numerical result s of Hsiao and Pau ley

(1999). In fact , in Figure 5-4, it can also be observed thatthepredictions by t he

zero-equa tion model, th e (k - <)IE model and the RNe k - < model arc similar and

th ey are slightl y different at the vort ex locati on.

Similar observati ons also found for th e predi cted velocities using var ious Reynolds



st ress models in Figur e 5-5 . Th e SSG and I3SL Reynolds st ress mod els in genera l

give bett er predict ions of If, a nd V, at t ho vort ex locat ion . LRR -IP , LRR -QI and

omega Reynolds st ress mod els give sim ilar predict ions . So far , it is observed th at

the k - < and t he SST t urb ulence mode ls from eddy viscosity mod els a nd the SSG

and the BSL tur bulence models from Reynolds st ress mod els cope well with t he

ex perimenta l results .

A furt her compa rison is shown in Figure 5-6 for t he com puted velocities with

tbe k - < a nd t he SST tur bulence mod els a nd the SSG and th e I3SL turbulence

mod els to com pa re t he pred ict ions by eddy viscosity and Reynolds st ress mod els .

It ean be seen from t he figur e that the predicti ons by two-eq ua t ion eddy viscosity

mod els a nd th e Reynolds st ress models arc similar. In th e plot of If" ANSYS

CFX with th e k:- <, t he SST , th e I3SL and the SSG turb ulence models give bett er

pred ictions of t he va lley sha pe a t the vort ex loca t ion t ha n INS3D-UP while the

wake valley is bet ter predicted by INS3D-UP. For 11" th e computed resul ts by

ANSYS CFX with two-equati on models and Reynolds st ress models agree bett er

with the experimental data than those by INS3D-UP. For If" the com put ed result s

by ANSYS CFX wit h var ious tur bulence mod els arc similar an d none of them arc

bett er than th e t he result s by INS3D-UP with one eq uat ion model at th c vortex vnllcy.

Th e conto ur plot ofth rce com puted velocity components, 1f,,1I, and If, at x l I! =

0.2386 for thck- < mod el and t he I3SL Reynolds stress mod el were compared with

th e ex perimenta l da ta by Chesnakas a nd J essup (1998) in Figur es 5-7 to 5-9. It ca n

be shown t ha t t he pred icte d velocity field by ANSYS CFX is visually similar to t he

experi menta l one. Th e differences betwee n results by th e two tur bulence models a rc

insignifican t. Th e add itio na l contour plots for ot her turbu lence mod els are given in

t he App endix.





[--"""",..~ I

': ''' ·''" · ·'JF~·:~~·'~·

I-·· ,-m;:,; ~ !

> ': =~"~~--'~" "

Figure 5-5: V x , Vt, V r across the t ip vortex cente r at .T/ R = 0.2386 computed with
Reynolds stress models
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Figure 5-6. Compan son of V x , V t , V r across the tip vortex center at :c/ R = 0.2386
wit h Reynolds stress models and ed dy viscosity models



(a) Exp erim ent al results by Ch esnaka s a nd J essup (1998)
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Figure 5-7: Axial velocity Vx at J:j R = O.238G
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(a) Experimenta l results by Chcsnakas and Jessup (1998)

(b) k - f modcl (c) BSL RS~l lIlodel

Figure 5-8: Tangcnti al velocity \~ at x / R = O.238G
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(a) Exp erimenta l result s by Chesnakas and Jessup (1998)

(b) k - € model (e) BSL RSl\lmodel

Figure 5-9 : Radial velocity v,. at x/R=O.238G



The post processor of the program PmpGGM was modified to compute the surface

pressure of the blades. The contour of surface pressure coefficient of pressure side

and suct ion side based on thek- , model and the BSL Reynolds stress model were

compared with the numerical results of Hsiao and Pauley (1999) in Figures 5-10

and 5-11. In the work of Hsiao and Pauley (1999), the genera l charac ter istics of

the propeller flow including the blade-to-blade flow, wake, and tip vortex were well

predicted. It can be seen from the figures tha t both the turbul ence models give

similar results. Pressure side contour plot agrees well with the work of IIsiao while

the suction side plot is not good enough. However, no experimenta l results were found

toc omparc thepressuredistr ibut ions.

Prope ller P erfo rmance Ana lysis

The performan ce of marine propeller is usually determined by the th rust and torque.

The numerical thru st cocfficicnt , J( " and torque coefficient , K; were also computed.

It was found tha t the numerical valucsunderpredict the experimenta l J(, and J( q . A

sericso f investigatio ns was conducted to reveal thcreason. They aredescribcd in the

following sect ions.



(a) Numerical results by Hsiao and Pauley (1999)

(b) k - ftnodcl (c) BSL RS~ [ modcl

Figurc 5-1O: Surfaccprcssurc cocfficicnt onthcprcssurc sidc



(a) Numerical res ults by Hsiao and Paul ey (1999)

(b) k- fmodel (c) BSL n S:' lmodel

Figure 5-11: Sur face pressure coefficient on th e suction side



5.1.4 Effect of Boundar y Co nd it ion

ANSYS CFX seeks pressur e based bound a ry condit ion while t he previous simulatio n

had no such bou ndar y cond itio n. Th e free st ream bound ar y cond it ion was applied

to the inlet while th e out let was set to mass flow rate , which overdefines the How

field. A test was performed by setting th e outlet bo undary condit ion to zero static

press ure ins tead of t he mass flow rate bo unda ry. Figu re b-Jz shows th c comp a rison .

In t his test , [( - E t urb ulence model was employed . It is found from the figur e t ha t

the mass flow ra te bound ar y cond it ion predicts Fr and Vx\\'ell. On th e ot her hand ,

\~ is bet ter pred ict ed by pressur e based bo unda ry condit ion. K, a nd [( q valu es for

the two cases are a lmost sa me. Fromthe observa tion,it canbe con cluded that the

etfecto f bo unda rycond it ion is negligible.

5.1.5 Effect of Timcst ep Size

Invest iga t ions showed th at the pressure and velocity did not eonverge a t t he snmc

time, which indicates the pressure-velocity coupling was dcco upled for Home reason.

Th ough the velocit ies were converged in an ordinar y fashio n , calculat ion shewed tha t

pro peller t hrust a nd torque di verged wit h t ime. Figure f - l .Lshows t he effcct.

Th e reason of thi s divergence was t he choice of auto t imeste p size in ANSYS CFX.

Any simulat ion which requ ires more then 300 iterati ons , a n a ppropriate select ion

of tim cstcp size is necessar y to achie ve good com·ergence (C FX ma nual , 2005). It

provid es sufficient reInxati on of t he cqu ation non-linea rit ies to obta in com·erged

stea dy sta te solut ion. Too lar ge t imcstep prod uces osc illat ing converge nce behaviour

and too small t imeste p slows down t he convergence significant ly. A jud icious

select ionoftimes te p isthus important. If t he t imeste p size is unkn own, t he auto

t iuieste p size of CFX can be used instead of physical t imestep , but somet imes it

would ta ke forever to achieve good convergence. For mos t stea dy state prob lems,

usu ally it requir es fifty to hundr ed t imesteps to achieve converge nce (C FX man ual ,
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Figure 5-13: Convergence plot of K, and [{ q with au to tim estep

2005). lf any simulation requires more timest eps to reach a stea dy statc solut ion,

th e smaller tim estep must be used. Forrotatin g domain , th erule of thumb to select

t imeste p size is 1j ornega , where omega is the angular veloc ity , Chosen t imestepsize

was th en applied and sat isfacto ry convergences were found. Figur e 5-14 shows the

convergence plot .

Th e new numerical values of K, and [{ q were found reasonably close to the

experimenta l value. Table 5.3 shows th e comparison. But , the compute d velocity

compo nents at the t ip region were not as good. Th e reaso n might be th e ina ppropriate

size of the doma in. A recirculation zone was identified in the domain , which causes

back How in the doma in. To stop this back How, th e outlet should be moved fur ther.

Fur ther investigati ons wit h larger domain are required to come to a meaningful



Figur e 5-14: Convergence plot of K, and [( q with physical t imestep

Tab le 5.3: Compa rison of tc, and «,

5.2 Un st ead y Case

T he numerical simulation was also conducted to predict th e ftow aro und a propeller

operat ing wit h a shaft inclination of7 .5'. Th e comput a tional doma in wit h struc tured

grids was genera ted. Th e periodic loadin gs on th e face and back of the blade sur face

were computed and validated with the experimenta l dat a.

5.2 .1 M esh Ge ne rat ion

T he validat ion studies were carr ied out for th e DT l\1I34718 propeller mod el at the

design advance coefficient , J = 0.751. DT MB 4718 is a t hree blad ed propeller with

moderate skew and rake. The blade sect ions are based on the DTMI3 modifica tions



to the NACA 66 airfoil as defined by Brockett (Brockett, 1966). A modifi cation was

mad e to th e blad e sec t ion geomet ry. Th e blunt tra iling edge was rep laced by a shar p

edge by changing the edge thi ckness to zero . Thi s was don e for t he simplificat ion of

the blad e geometry. Th e modifi ed sect ion geome try is given in Tabl eA.2.

Th e geometry of th e prop eller was also modifi ed a t the t ip region . T he chord length

was set to zero. T he modified geomet ry is given in Tabl e A.!. Th e prop eller mode l

geomet ry and opera tiona l conditi ons ar e given in Tab le 5.4. In th e computa t ion,

the water density and viscosity were set to P w al" = 997kg / m 3 and Itw a' " = 8.89 x

1O- 4 kgm - l s - l ,respectiv ely.

Tabl e 5.4: Prin cipal Charact erist icsof DT1II134718

24.00
Right Hand

3
0,3

142.1256
0.751

7.88

Com p u t a t iona l Dom a in

Th e propell er mod el DT I\I13 4718 is a large diam eter mod el (24 inches), which

requires mor e grid cells then DT i\I13 5168 (15.856 inches diamet er ) to achieve an

acce pta ble quali ty of grid. But t he gr id generat ion pro gram P1"01'GGM is limited

to generate certain number of grids. On the other hand , more grids would claim

mor e comput ing t ime. To resolve thi s probl em , th e mod el prop eller was sca led down

to half. Th e new cha rac ter ist ics of the scaled prop eller were calculated following

th e Reynold 's similitnde. Tabl e 5.5 shows th e new prop eller model geomet ry and

opera t iona l cond it ions th at was used in the simulat ion.



Table 5.5: New Principal Characte ristics of DT1\1I34718

12.00
Right Hand

3
284.251
0.75151

31.52

More thun 5.7 million grids were employed in the domain. Figure 5-15 shows the grid

distribution over the blade surface. The spanwise and chordwise panel distribn tion

factor (Regions 1& 2), o , was set to 0.68, spanwise stretch factor, {Jr, for Region 1

was 1.05 while for Region 2, {J2,was 1.13. The chordwise st retch factors were 1.48

and 1.68 for Region 1 and Region 2, respectively .

the outlet bound ary one diameter downstream . The outer bound ary in the rad ial

direction was located at one propeller diameter. The remainin g blades and the hub

were generate d by simply copying and rotat ing the single blade domain. Figure 5-16

shows the domain. The inlet is open in the figure. Figure 5-17 shows the grids used

in the computat ion. Following the above mentioned procedure, a single domain was

created and the entire domain was set to RFR (Rotating Frame of Reference) to set

its rota ting speed as propeller 's rota ting speed. So there is no need for a stat ionary

component and thus a GGI (General Grid Interface) interface can be ignored. Note

that each GGI connect ion costs 5% more CPU t ime and memory and introduces

numerical inaccuracy compared to the equivalent comput at ion that does not use any

GGI connect ions (CFX manual, 2005). The right-hand rule was used to determine

the direction of the rota tion.



Figure 5-15: I31ade surface ofDTlv1I34718



Figure 5-16: Compllta tional domainof DTMI3 4718



Figure 5-17: Comput ational grids of DTMB 4718



5.2. 2 Va lidation of t he U nst ea dy Domain

To validate the unsteady computational domain , a test was performed . An unsteady

domain for DT1\lB 5168 was creat ed first. The velocity components , V"v, and \-;.

a t the key blade were computed by using the unsteady domain . The dat a was thcn

compared with the steady domain data as shown in Figurc 5-18. From the figure , it

is observed that V,and v,.arc in goodagrccmcntwith cach ot hcr. T he axial velocity,

Vx, at t he t ip region is higher than the steady domain, which isli kc1yduc to thc flow

interr uptions among the blades. In genera l, it can be said that thc unsteady domain

is good enough for furt hcr invest igation.

5.2.3 G rid Qu ali ty

The non-dimensional first grid spacing on thc blade was 2 x 10- 5 and was

non-dimensionalized by thc charac ter istic lcngth which is LO.7R • The resultin g y+

values varied between 1 and 95 over the blades. T he u' values were also same for

over the hub with peak values ncar the blade roots (figurc 5-19). T he definition for

thcy+i s given by

(5.2)

where, s' is t he first grid spacing. The superscript * refers to dimensional variables.

5.2.4 Boundar y Co nd it ions

The boundary condit ions were specified as follows. A no-slip wall condition was

applicd on thebladcs (denoted by red in thc Figmc 5-16) and the hub surfaces

(denoted by black in thcfi gure). A frcc strealll inclined condition was applied on thc

inlet houndary Iremoved in the figure) and thc outcr surfacc (dcnoted by blue in the

figure). Average sta tic pressure was set to zero at thcout lct boundary (denoted by

green ill the figure). Note that ill steady case a comparative study of specified flow
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of unsteady domain on \l x , V t , V r across t he ti p vortex



Figure 5-19: y+ distribution over the blade surface (pressure side) on DTM I3 4718

rate bounda ry condition and pressure based houndary condition was discusscd , It was

found that there is no significant difference between these two bound ary conditions.

Since the ANSYS CFX prefers pressure based out let bound ary condition , average

stati c pressure was employed in this simulat ion instead of specified flow rat e boundary

5 .2.5 U ns tea dy Simulation Technique

For t ransient cases, initial conditions are required in the ent ire domai nfor alltimcs

t > O. The solut ions move forward in time and diffuse in space. The occurrence of

dissipativ e effects ensures that the solutions are independent of initial conditions

(Versteeg and Xlalal asekera , 1995). To achieve a good convergence and solution

robu stn ess, a tra nsient run ca ll be sta rted with results from a converged steady-sta te



\vr A ru a.nua r, ,'UU iJ) . In t his simulat ion, th e unsteady simulation was

nod'"n""<1;,, t wo ,he,,, TILe stea dv simulatio n with no inclinat ion was conducted

for the unsteady simulat ion.

Slm u la t ion Sct -up

In th e unsteady simulat ion, the shaft inclination causes non-uniform inflow to t he

propeller. To represent thi s cross flow condit ion, several techn iques were imp lemented

and none of t hem were found to be successful. Th e 7.50 inclination of th e shaft

produ ces a first harmonic varia t ion in two of the thr ee components 0 fpr opelleriufl ow.

Th e definition of this non-uniform inflow is provided by ITT C (ITTC report , 1999),

aud was implemented in t he simulat ion. Anot her definition of two component inflow

velocity in Cartesian coordinate system was also examined. Both the definitions

overpre dict the solution field. A new technique was then employed in thi s simulation.

Th e whole computat iona l domain was inclined following the shaft inclina tion angle.

A new Ca rtes ian coordina te system along with th e global coordina te syste m was

created. This new inclined coordinate was aligned with the shaft as shown in Figure

5-21. Th e normal inflow velocity and all other boundar y conditions were set at global

coord inate . Only t he rotation of th e propeller and its assoc iated domain were set

with respect to th e inclined axis. Thi s techniqu e repr esents the real flow condit ion

very well.

Co nve rge nce C r iteria

T he prop eller was rot ated thro ugh a sequence of discret e ang ular intervals and t he

procedur e was continued throu gh severa l revoluti ons of the prop eller unti! stea dy

sta te oscillat ions of the blade loading were achieved. Init ially th e simulation was

carr ied out for four complete rotat ions of the prop eller using a t ime step equi valent



Fignrc 5-20: Schcmat ic diagramo f ullstcadysimulationsct-up

Fignrc 5-21: Coordinatcsof the unsteadysimulat ioIlsct- up



to a th ree degree rotat ion; a tota l of 480 time steps. But th e solutio n did not eonverge

sufficient ly within t he maximum numb er of tim e ste ps, which indicates t hat t he CFX

solver needs more itera t ions to achieve bet ter convergence. A tim e stepeqnivalent to

a one degree rotati on and a complete one second of simnlatio n was th en performed.

The tim e step was fixed duri ng the simula tion. Note t hat an accurate resoluti on of

gradients in th e inflow can be achieved with such a small t ime step. It also reduces

the numb er of itera tions needed for the implicit solver to converge at each time ste p

(Kras ilnikovetal., 2009). The maximum numb er of iteration s per tim e step was set

to lO and the R1\IS residuals were set to l x 10- 4 •

Sol ut.ion St.rat egy

Advect ion terms were discret ised by t he high resoluti on scheme while t he viscous

terms were trea ted by employing centra l difference scheme. Th e tran sient terms were

descretisod wit h Second Order Backward Euler scheme. An algebra ic Multi-grid

(l\IC) model was used to accelerat e the convergence. Th e blend ed k -w Shear

Str ess Turb ulence model was employed in the computa tion. T he ad vant age of th is

mod el is t hat it predicts th e flow separa tion accura tely. It has t he ab ility to cope

simultaneously wit h the low Re regions and high Rc regions (Kras ilnikov et a l., 20( 9).

Th e model also can predict accurately the non-equilibrium regions in the boundary

layer.

Co m p u t ing R esources

Huge computing resources and time were requir ed by this simulation.

beginnin g of thi s numerical experiment, a cluster CP U with 20 processors were used

It took 3 - 4 weeks to completeaO.12 second of simula tion and couple of month s to

reach a stea dy sta te solution. La ter on, the exper iment was speed up by employing

104 cluste r pro cessors and the requir ed time was reduced t0 3 - 4 days to achieve a

stea dy sta te solution.



5.2. 6 Co nve rge nce Tests

Several convergence tests were completed to get the right number and quality of

parameters . First, a convergence test was done with the grid size of th e domain.

Two grid size , large and small, were compared as shown in Figure 5-22. From Figure

5-22, it was observed that the smaller grid agrees bett er with the data. Next, t he

effect of domain size was checked. A larger domain was create d with around 11.5

million grids by moving the outer boundary in the rad ial direct ion to 1.5 propeller

diameter and the outlet boundary to 1.5 diameter downstream. T he inlet boundary

stays at t he same position. T he effect is shown in Figure 5-23 and it shows that t he

domain size has no significant effect. Note that t he same type of grid as in steady

case, Gr id I , was employed in all t he tests. Th e test dat a were compared with the

ste ady sta te data at O.5R.

Previous experience on steady simulat ion of DTMB 5168 shows that the default

mass and momentum variables of ANSYS CFX are not often enough to monitor the

convergence of' a simulation. Two add itional variables, J( , and Cp were created to

confirm theconvergenceofthesolut ion. IIere, J(, is the propellerthrustcoefficient

and Cp is the pres~ure coefficient. Figure 5-24 shows the convergence of the residuals

of the default variables and Figure 5-25 and 5-2GsholYstheconvergence plots of' X,

andC,,,respectively. From Figure S-zb, it is clear that t he solut ion reached its stea dy

state solut ion ill abo ut 0.5 seconds and there is no significant change in convergence



Figure 5-22: Effect of grid size on the computed Cput r= O.5R
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Figure 5-23: Effect of domain size on the computed C" utr = O.5R



Figure 5-24: Convergence plots of mass and moment um residuals



Figurc 5-25: Convcrgcnceof propellcr t hrust coeflicient with tim e itera tions

Figure 5-2G: Convergence of propeller pressure coefficient wit h time iterati ons



5.2. 7 Validat ion

The computed data was valida ted aga inst t he available experimental result s.

tim e dom ain solut ion wa.s convert ed to the rnorc usual frequency domai n solution by

harmo nic analysis of the time histori es of pressure coefficients forthe last complete

revolut ion. A Fortran program was written to do this Fourier transformation.

Th e computed pressur e coefficients were compared with the experimenta l data and

discussed in te rms of the first order Fourier harmo nic amplitudes and phases which

Cp(t) = C;+ Cp 1 cos(O- </»

</>=ta n- 1(lll / h1)

II I = ~iTCp(t) cos(wt)dt

hi = ~ .IaT Cp(t)s in(wt)dt

Where, Tis the tot al ti me for one complete revoluti on and w is the angular velocity

of pro peller.

Pr essure values were sampled on the key blade at points a long the sections a t

r = O.5R,O.7R and O.9R over th e last full revolut ion at each time ste p. T hese dat a

were then converte d by harmonic analysis to give th e first harmonic amplitude , Cpl

and phase angle, </>. Figures 5-27 to 5-29 compar e the predicted and experimenta l

value of ampli t ude and phase at r = O.5R, 0.7R and O.9R.

At r = O.5R (Figure 5-27), on the pressure side, t he predicted amplit udes of the first

harmonics are in very good ag reement with th e experimenta l dat a except the sudden

drops near th e leading edge. However, t he phase predict ion is less accur at e. On the



suctiouside,the amplitude is lessthantheexperimenta l data near the leadin g edge

region and closer a t t he trailin g edge. Th e phase angles are well captured a t th e mid

chord region .

At r = 0.7R (Figure 5-28) , on th e pressure side , th e amplit ude agrees wit h the

exper imenta l da ta reasonably well, th ough an overpre dict ion is found at t he mid

chord region . On the suctio n side , the predicted pressure distribution has a peak at

th e leading edge and increases toward s t he trailin g edge. Th e reas on for thi s irr egular

var iat ion along th e chord could be th e effect of crossflow and rollup processes of t he

tip vortex as explained by Jessup (1982)

At r =0.9R (Fignre 5-29) , on th e pressur e side , t he computed amplit ude rises at the

0.7 chord loca tion. Th e modification at t he tip region might be the reason . On the

slict ionside,computedvalucsare lcss than thccxpcrimcntal datao

Overall , it is observed th at th e compute d resu lts agree reasonably well with th e

amplitude over th e pressure side at r = 0.5R and 0.7R while the amplit ude over

th e suct ion side is und erpr edicted . A possible explanat ion would be t he modified

tip region of the blad es. Accordin g to Jessup (1982), blades with zero chord length

at th c tip , st ar t th e vortex at the outer most tip and th e vortex travo Is over th e

suct ion side of the blade. Th e sha rp leading and trai ling edges could be ano th er

reason . To conform wit h th e ac tual propeller geometry, ANSYS CFX seeks a blunt.

t railing edge , closed by an ellipt ical cap while a sha rp t.railing edge was used in

t.he simulation due t.o the limitat ions of Prol'GGM (Leras and Hally, 2010). Th e

differences in predictions at t.hc two edges might be du e to t his simplification.

Moreover, the curre nt simulatio n ignored the sliding mesh approac h, that is,

it. did not take int.o account th o relati ve mot ion of the propeller blade inside

a fixed domain , which is requir ed for th e t ime accurate simulat ion (Snchcz-Caja



etaI., 2008). The less favourable predictions of the phase angles are likely due to this.

The computed mean thru st , K , at t he design condition is found 0.0~7 while the

design K, is 0.055. Th e calculated mean torque coefficient , [( q, is 0.01O~ while the

design [( q isO .OIOG. Figure 5-30 shows the K, variation with the angular position of

the key blade. Unfort unatcly. no data was follndtocompare withthe rcsllit.
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Figure 5-27: Comput ed first har mollie amplitude and phase of the pressure coefficient
011 DT MI3 4718 wit h J = 0.751 at 0.5R
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Figur c5 -28: Computc d first ha rmon ica mplitudcand phascof thc prcssurccocfficicnt
on DT l\U3 4718 wit h J = 0.751 at 0.7R
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Figur e 5-29: Cornpllted first har rnollica mplit lldealld phaseoft hepressllre coefficiellt
0 11 DT~II3 4718 with J = 0.751 at 0.9R



Figure 5-30: Computed thrust variation with the angular posit ion of blade



Chapter 6

Conclusions and Recommendations

6.1 St ead y Case

Th e effect of turbul ence modelin g on prop eller tip vortex computa t ion was

investi gat ed using th e RANS solver ANSYS CFX. T he grid genera tion program

PropGGM was used to genera te a spira l-like structured grid wit h grid concentra t ion

Validation studies were carr ied out for t he DTMB 5168 model prop eller a t open

water condit ion. T he post processor of t he program PTUpGGM was modified to

give the non-dim ensional velocit ies and the sur face pressure of th e blades. Vari ous

eddy viscosity tur bulence models and Reynolds stress models were employed in

the computatio ns. Both the eddy viscosity turbul ence models and the Reynolds

stress models gave almost similar pred ictions of t he vortex flow. Th ere was no

indica tion found th at t he Reynolds stress mode ls significantly improve the vortex

flow prediction in the ncar field . It was shown t ha t th e two-equat ion and the

Reynolds st ress models arc considered slightly bett er than thezero-equatio nand

one-equatio n tur bulence models for t he vort ex flow computatio n.



Pressure distributions over t he blade surfaces were computcd and compa rcdwith

other numerica l resu lts. Reasonably good agreements were observed for the pressure

distrib utions on the pressure side. The suct ion side pressure distribu tions were less

Despit e the success of t ip vortex computat ion, t he cur rent invest igat ionunderpr edicts

t he thru st and torque coefficient of t he propeller. Severalim·estigationswere

performed and found the significant effect of auto timeste p size 0 n the simula tion .

Th e simulation technique was imp roved by int rodu cing physical t imest epanda bette r

prediction of th rust and torque coefficient was achieved. However, the velocity

compo nents were not in a good agreement. A back flow in the domain was identified

and it was concluded th at the smaller domain size could be the reason .

6.2 Un st ead y Ca se

In the second par t oftbis research, the unsteady simulatio n of the propeller flow was

conducted using the same RANS solver ANSYS CFX . Considering t he limita t ions of

Pml' GGM, a computa tiona l domain with struc tured grid was gcnera ted . A progra m

was developed to genera te the sur face coordina tes of th e blade by taking the bas ic

propeller geomet ry, Convergence st ndies were done to select t he best and least

number of grids. A simulation technique for inclined flow was presented .

Valid ati on st udies were carried out for th e DTi\lI3 4718 model propeller a t design

condit ion. A program for the harm onic ana lysis of t he time domain solut ion was

developed. Th e results obt ained arc encourag ing. It was demonstrat ed th at t he

current simulation reasonably predict the am plit ude of th e pressur e va riations on t he

pressure side. Th e prediction of the pressure variat ions on th e suction side is less

favourable, which could be caused by the modificati on of th e blade gcometr y. T he



relat ive motion of the propeller blade was not captured in thc simulation, which might

6.3 Fu tu re Work

This section outlin es some suggestions to improve th e propeller flow simulat ion. The

futu re works for the numerical simulation of propeller flow are suggestcd to include

the following:

o T he grid generat ion program Prol'GGAf has to be improved. For highly skewed

and raked propellers, a manual modification of the geometry is required to

generate smooth blade-t o-blade bound aries. T his modificati on changes the

propeller geometry and may not be acceptable for tip vort ex assessment. The

process should be automated .

o For the steady simulation of t ip vortex computat ion, t he next Iogical ste p

appear s to examining the effect of domain size. The outlet should be moved

furthe r; at least 6 diamet ers of the propeller to protect the back llow in the

region.

o For the inclined flow case, the work can be extended to the computa tion of

propeller flow at off design condit ions.

o T he large comput ing time is a big hindrance for this numerical simulat ion.

A simple unsteady simulation takes couple of month s to converge in a super

computer of 20 processors. Concentrati on also should be given to find out the

alterna tives imulation techniqne to red uce thecomputing time.
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Appendix A

Geometry of DTMB 4718

Table A.l: Modified Pr opeller Geometr y of DTi\lB 4718

r/R c/ O P /D IT / D SKE\V( Degree) T / c F/ c

0.300000 0.187000 0.718000 0.000000 -1.650000 0.249700 0.000000

0.400000 0.249000 0.796000 0.000000 -4.050000 0.177100 0.004400

0.500000 0.311000 0.855000 0.000000 -5.000000 0.128000 0.008500

0.600000 0.366000 0.886000 0.000000 -3 .500000 0.09 1000 0.000900

0.700000 0.403000 0.888000 0.000000 0.400000 0.063000 0.010100

0.800000 0.409000 0.870000 0.000000 5.750000 0.046900 0.000700

0.900000 0.365000 0.825000 0.000000 12.400000 0.041900 0.008200

0.950000 0.311000 0.786000 0.000000 16.100000 0.041800 0.006500

l.0000 00 0.000000 0.734000 0.000000 20.000000 0.041400 0.000000



TableA .2: Blade Section Geomet ry: Brocket

Xc tiT f/F
0.000000 0.000000 0.000000
0.007596 0.163400 0.060060
0.030154 0.321600 0.123810
0.066967 0.477600 0.336840
0.116978 0.627000 0.498740
0.178606 0.761400 0.654070
0.250000 0.872600 0.790510
0.328990 0.952000 0.898310
0.413176 0.994400 0.969940
0.500000 0.992400 1.000000
0.586824 0.942400 0.985030
0.671010 0.849400 0.923060
0.750000 0.722400 0.812120
0.821394 0.594400 0.638840
0.883022 0.421600 0.422270
0.933013 0.280400 0.234230
0.969846 0.166000 0.099820
0.992404 0.092400 0.023650
1.000000 0.000000 0.000000



Table A.3: Blade Sect ion Geometr y, NACA 66(DT/vIB i\Iod .), a = 0.8 Mea nline

Xc t i T [I F
0.0000 0.0000 0.0000
0.0125 0.2088 0.0907
0.0250 0.2932 0.1586
0.0500 0.4132 0.2712
0.0750 0.5050 0.3657
0.1000 0.5814 0.4482
0.1500 0.7042 0.5869
0.2000 0.8000 0.6993
0.3000 0.9274 0.8635
0.4000 0.9904 0.9615
0.4500 1.0000 0.9881
0.5000 0.9924 1.0000
0.6000 0.9306 0.9786
0.7000 0.8070 0.8892
0.8000 0.6220 0.7027
0.9000 0.3754 0.3586
0.9500 0.2286 0.1713
1.0000 0.0000 0.0000



Appendix B

Additional Figures



(a) Zero equation model (b) (k-£)lE model

(e) R1\'Gk - £ model (d) SST model

(e) SSG RSM model (f) LRR-IP RSM mod el

(g) LRR-QI RSM model (h) Omega RSl\[ model

Figure 13-1: Add itiona l eontour plots of ax ial velocity Vx at x/ R = 0.2386



(a j Zero eqnation modcl

(c) RNG k- €model

(e) SSG RSM model

(g) LRR-QI RSM model

(0) (k-f) lE model

(d) SST model

(f) LRR-IP RSM model

(h) Omega RSM model

FignreB-2: Additio nal contonr plots of tangential velocity VIatx/ R = O.2386
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(g) LRR-QI RS:\I model (h) Omega RS:\[ model

Figure 13-3: Additi onal COli tour plot s 0 1 rad ial velocity Ifr a t x/ R= 0,2386










	0001_Cover
	0001a_InsideCover
	0001b_Blank Page
	0001c_Blank Page
	0002_Title Page
	0003_Abstract
	0004_Page ii
	0005_Acknowledgements
	0006_Table of Contents
	0007_Page v
	0008_Page vi
	0009_List of Figures
	0010_Page viii
	0011_Page ix
	0012_List of Tables
	0013_Nomenclature
	0014_Page xii
	0015_Introduction
	0016_Page 2
	0017_Page 3
	0018_Page 4
	0019_Page 5
	0020_Page 6
	0021_Page 7
	0022_Page 8
	0023_Page 9
	0024_Page 10
	0025_Page 11
	0026_Page 12
	0027_Page 13
	0028_Page 14
	0029_Page 15
	0030_Page 16
	0031_Page 17
	0032_Page 18
	0033_Page 19
	0034_Page 20
	0035_Page 21
	0036_Page 22
	0037_Page 23
	0038_Page 24
	0039_Page 25
	0040_Page 26
	0041_Page 27
	0042_Page 28
	0043_Page 29
	0044_Page 30
	0045_Page 31
	0046_Page 32
	0047_Page 33
	0048_Page 34
	0049_Page 35
	0050_Page 36
	0051_Page 37
	0052_Page 38
	0053_Page 39
	0054_Page 40
	0055_Page 41
	0056_Page 42
	0057_Page 43
	0058_Page 44
	0059_Page 45
	0060_Page 46
	0061_Page 47
	0062_Page 48
	0063_Page 49
	0064_Page 50
	0065_Page 51
	0066_Page 52
	0067_Page 53
	0068_Page 54
	0069_Page 55
	0070_Page 56
	0071_Page 57
	0072_Page 58
	0073_Page 59
	0074_Page 60
	0075_Page 61
	0076_Page 62
	0077_Page 63
	0078_Page 64
	0079_Page 65
	0080_Page 66
	0081_Page 67
	0082_Page 68
	0083_Page 69
	0084_Page 70
	0085_Page 71
	0086_Page 72
	0087_Page 73
	0088_Page 74
	0089_Page 75
	0090_Page 76
	0091_Page 77
	0092_Page 78
	0093_Page 79
	0094_Page 80
	0095_Page 81
	0096_Page 82
	0097_Page 83
	0098_Page 84
	0099_Page 85
	0100_Page 86
	0101_Page 87
	0102_Page 88
	0103_Page 89
	0104_Page 90
	0105_Page 91
	0106_Page 92
	0107_Page 93
	0108_Page 94
	0109_Page 95
	0110_Page 96
	0111_Page 97
	0112_Page 98
	0113_Page 99
	0114_Page 100
	0115_Page 101
	0116_Page 102
	0117_Page 103
	0118_Page 104
	0119_Page 105
	0120_Page 106
	Z001_Blank Page
	Z002_Blank Page
	Z003_Inside Back Cover
	Z004_Back Cover

