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Abstract

Variable selection is an important topic in high-dimensional statistical modeling, es-
pecially in gencralized lincar models. Several variable selection procedures have been
developed in the literature, including the sequential approach, prediction-error ap-
proach, and information-theoretic approach. All of these are computationally ex-
pensive. A new method based on penalized likelihood has been lauded for its com-
putational efficiency and stability. In this approach the variable selection and the

estimation of the coefficients are carried out simultaneously. The parametric likeli-

hood is a crucial component, but in many situations a well-defined parametric likeli-

hood is not easy to construct. To overcome this problem, Variyath (2006) proposed

a penalized-empirical-likelihood (PEL) based variable selection where empirical like-
lihood is constructed based on a set of estimating equations. We investigate the

asymptotic properties of the new method, and develop an algorithm for estimating the

parameters. Our simulation studies show that when a parametric model is available,




PEL-based variable selection gives results similar to those achieved by parametric-
likelihood variable selection. The former method outperforms the latter when the
parametric model is misspecified. We extend our approach to variable selection in

Cox's proportional hazard model.
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Chapter 1

Introduction

1.1 Background of Variable Selection

Variable selection is an important topic in statistical modeling, especially in general-
ized linear models (GLM). In practice, a large number of covariates, (X1, X, .., X,),
are believed to have an influence on the response variable y of interest. However, some
covariates have no influence or a weak influence, and a regression model that includes
all the covariates is not advisable. Excluding the unimportant covariates results in a
simpler model with better interpretive and predictive value

The problem of identifying a submodel that adequately models the response is

generally referred to as the variable selection problem. Statistically speaking, variable
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selection is a way to reduce the complexity of the model, in some cases by accepting

a small amount of bias to improve the precision. The main advantages of selecting a

subset of the variables instead of the entire set are:

o The interpretation of a large model can be difficult.

o The prediction accuracy may be improved by dropping redundant and irrelevant

variables.

o Knowing which variables are significant gives insight into the nature of the

prediction problem and allows a better understanding of the final model.

o It is cheaper to measure a reduced set of variables.

ple, consider the d sit data from the Australian healt) of 1977~
78, which is discussed in detail by Cameron and Trivedi (1998). The data set consists
of a response variable (the number of doctor visits in the previous two weeks by an
adult) and twelve covariates, including health indicators and general factors, which
are listed in Table 1.1. Our goal is to model the relationship between the response
and the covariates. The model with all covariates is not interesting since it s difficult
to interpret, and will have poor prediction precision. We aim to find a simpler model

that gives a reasonable descript

n of the data-generating mechanism. The initial

analysis of and variable selection for this data set are discussed in Chapter 5. In
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the next subsection we will discuss commonly used regression models and estimation

procedures where variable selection is considered important.

Variables __ Description

y-Dvisits _ Number of doctor visits i previous two weeks
Xy-Sex 1if female, 0 if male

XrAge Age in years divided by 100

XyAgesq  Age squared
XyIncome  Aunual income in Australian dollars divided by 1000
Xy-Levyplus 1 if covered by private health insurance; 0 otherwise
Xe-Freepoor 1 if covered by government because low income,
recent immigrant, unemployed; 0 otherwise
Xy-Freerepa 1 if covered free by government because elderly, disability
invalid veteran, or family of deceased veteran; 0 otherwise
Xelllness  Number of illnesses in previous 2 weeks, with 5 or more coded as 5
Xo-Actdays  Number of days of reduced activity in previous 2 weeks due to illness or injury
Xu-Hscore  General health questionnaire score using Goldberg’s method;
high score indicates bad health
Xu-Cheond] 1 if chronic condition(s) but not limited in activity; 0 otherwise
Xiz-Cheond2 1 if chronic condition(s) and limited in activity; 0 otherwise

ension

Table 1.1: Response and covariates of doctor-visit data

1.1.1 Linear Models

Linear models have been the mainstay of statistics for thirty years and remain one
of our most commonly used statistical tools. In linear models, the data are modeled
using linear functions of the covariates, and the unknown parameters are estimated

from the data. For a given data set {yi i, -, i}y of n units/subjects, a lincar
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regression model assumes that the relationship between the response variable g, and

the p dimensional regressors X; is linear. Thus, the model has the form

y=XB+e (L.1)

where ¢ is the error term, X is an n x p matrix of covariate values, and 3 s a vector
of unknown parameters to be estimated. A violation of the linearity assumption
between the response and the explanatory variables or the distributional assumption
of the random error may increase the model variation. The method of least squares

is the most popular method for estimating the regres

n parameters. This approach

minimizes the

csidual sum of squares,

RSS() = (v - i)

=
In matrix form, the residual sum of squares can be written

RSS(8) = (v~ XB)" (v — XB) (1.2)
Hence, the ordinary least-squares estimate of § is given by

B=(X"X)"' X"y (1.3)

and the fitted values at the trai

g inputs are

9=XB=X(X"X)"' X"y.
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1f we assume that € ~ N(0,02I,), then the likelihood function of y can be written

= (2m0?) "2 exp { = i(v. - 1;.)’}

=

L(B,0*

Let £(8,0%) = log L(8,0%), then the partial derivative of £(8,0%) with respect to 8

is
(B, %) 1 T, T
o = g 2X Ty 4 2XXE)
o
and setting ﬂgbﬂ 0 gives an estimate of B, which is same as the least-squares

estimate of

1.1.2  Generalized Linear Model (GLM)

Generalized linear models are defined by Nelder and Wedderburn (1972). GLMs
include linear regression models, logistic and probit models for categorical responses,
and log-linear models. For all these models, a linear relationship is assumed between

onditional

the response variable y and covariates X through some link function. The

expectation of y given X is specified as

n=Eyl|X) = g(XB), (L4)

where g(+) is a known link function and 3 is the vector of regression parameters.

A GLM includes a random component specifying the conditional distribution of the
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response variable y given the explanatory variable. Traditionally, the random com-

ponent is a member of an exponential-family distribution such as the Gaussian, bi-

nomial, Poisson, gamma, or inverse-Gaussian. The estimation proceeds by defining a

measure of goodness-of-it between the observed data and the fitted values generated
by the model. The parameter estimates are the values that minimize the goodness-
offit criterion. We primarily estimate the parameters by maximizing the likelihood
for the observed data. The log-likelihood based on a set of independent observations

Yoo 08

iy) = Y log (15 B)
The goodness-of-fit criterion is
Dly; u) = 26(y;y) = 2 y);

it is called the scaled deviance. Note that ((y;y) is the maximum likelibood for an

exact fit in which the fitted values are equal to the observed data, and it does not

depend on the parameters. Maximizing (4 y) is equivalent to minimizing D(y; 1)

with respect to g1, subject to the constraints imposed by the model.
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1.1.3  Quasi-Likelihood (QL)

When there is insufficient information about the data for us to specify a parametric

elihood is often used. In this situation we can develop the statistical

model, quasi

analysis based on approximations to the likelihood, and we concentrate on cases

where the observations are independent. Suppose we have a vector of independent
responses, y, with mean 4 and covariance diagonal matrix o?V(g). We assume that
s a function of covariates and some regression parameters 8. To construct the

quasi-likelihood, we start by looking at a single component y of y. Under the above

conditions, the function

U =ulsn) = s

has the following properties:
1 o 1
£ (5) = v

E(U) =0, V(V)

Most of the first-order asymptotic theory concerned with the likelihood is based on

ng that

these properties. 1t is therefore not surpris

-
pall
i = [ A

behaves like a log-likelihood function for yi; this is called the quasi-likelihood. The

quasi-likelihood for complete data is
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Quiy) = Y- Quiw)-

‘The quasi-deviance function for a single observation can be written

vy -
vty

D(i;y) = -20°Q(s;
(1;w) Qi y; |, Vo

The quasi-likelihood estimating equations for the regression parameters 3 are ob-

tained by differentiating Q(s; ). They can be written in the form U(3) = 0, where

vy -
v =2 mn

is called the quasi-score function and D is the derivative of j1(3) with respect to 3.

‘The Newton-Raphson method is widely used to estimate the parameters.

1.2 Variable Selection Methods

The main objective of variable selection methods is to identify a simpler adequate

model that is easier o interpret than the full model. In linear models, the submodel

relates the response variable y to a subset of components of X in the form
y=X()B(s) +e

where X (s) is a subset of the components of X, A(s) is a vector of the correspond-

\p). The variable selection problem

ing regression parameters, and s C (1,2,
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is to find the best subset s such that the submodel is optimal according to some
criterion that gives a good description of the data-generating mechanism. Several

the literature for the identification of the best

methods have been developed

submodel. These methods can be broadly classified into four categories: sequen-

tial approaches, predi approaches, information-theoretic approaches, and

penalized-likelihood approaches. In the next section we will discuss existing variable

selection procedures and their advantages and disadvantages.

1.2.1 Sequential Approaches

The sequential approaches were developed in the carly 1960 when computing re-
sources were limited. In these approaches, only some of the possible submodels are
evaluated to identify the best model. In the forward-selection approach, we start
with an intercept model and add the variables one at a time. At each step, each vari-

able that is not already in the model is tested for inclusion, and the most significant

variable is added to the model. This process continues until none of the remai

variables are significant when added to the model or there are no more variables. Be-
cause of the complexity that arises from the nature of this procedure, it is essentially
impossible to control the error rate.

Forward selection has drawbacks, including the fact that addition of a new variable
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may change the significance of one or more variables already included in the model.
An alternative approach is backward elimination. In this approach, we start a model
with all the variables of interest. Then the least important variable is dropped, pro-
vided it is not significant. We continue this process by successively re-fitting reduced
models and applying the same rule until al the variables remaining in the model are

statistically significant. Backward elimination also has drawbacks. Sometimes vari-

ables that are dropped would be significant in the final reduced model. This suggests
that a compromise between forward sclection and backward elimination should be
considered.

Efroymson (1960) proposed a stepwise-regression approach that is a combination
of the above two approaches. This method uses forward selection, but after the addi-
tion of each variable, backward elimination is applied to potentially remove variables
already in the model. Stepwise regression does not guarantee to find an optimal
submodel. The sequential approaches are computationally less demanding than the

other methods.

1.2.2 Prediction-Error Approach

Another approach to variable selection s to choose the submodel with the best ability

to predict a future response. Methods using the prediction-error approach, such as
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lidation and bootstrap, are i intensive. Cross-validation has
been well studied as a basis for model selection by Stone (1974). In cross-validation,
we compute the prediction error of all submodels. We split the data into K parts of
roughly equal sizes and estimate the prediction error for one part of the data based
on the fitted submodel using the remaining (K — 1) parts. We then combine all K
estimates of the prediction error for each submodel. The submodel with the minimum
prediction error is selected
Let k: {1,2,...,n} = {1,2,..., K} be an indexing function that indicates the
partition to which each observation is allocated by the randomization. The case

K = nis known as c id: In this case the lid

estimators are approximately unbiased for the true prediction error, but they can
have a high variance and the computational burden is also high. In general, five- or
ten-fold cross-validation is recommended (see Breiman and Spector, 1992; Kohavi,
1995).

Bickel and Freedman (1982) suggested that conditional bootstrap be used for
variable selection. The bootstrap is a general tool for assessing statistical accuracy.
Suppose we wish to fit a model to a set of training data. The basic idea is to randomly
draw data sets with replacement from the training data, each of the same size as the

original training set. This procedure repeated a large number of times. Then we refit
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the model to each of the bootstrap sample sets and examine the behavior of the fits.
These methods are computer-intensive and tend to be impractical if we have to
fit more than 15-20 models o if th

mple size is large. However, cross-validation

offers an interesting alternative for model selection. In some situations the prediction
error is not, well defined (for example, in generalized linear models) and therefore

these methods are not applicable.

1.2.3 Information-Theoretic Approach
In this section, we briefly introduce the most commonly used information-theoretic

maodel selection approaches: the Akaike information criterion (AIC) and Bayesian

information ci

erion (BIC). These methods are applicable when a well-defined para-
metric model is available, We will also discuss nonparametric versions of AIC and
BIC.

Akaike Information Criterion (AIC)

Kullback and Leibler (1951) introduced the Kullback-Leibler (K-L) “distance” ¢

v
“information” between two models. Let f and g be continuous distribution functions,

then the K-L information between models £ and g s defined to be

11.0)= [ 10 g [ £ ] e
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The notation 7(f,g) denotes the distance from g to f. However, the K-L distance
can not be computed without full knowledge of both f and the parameter ¢ for each
candidate model gi(z(0). Akaike (1973, 1974) found a simple relationship between
the K-L distance and Fisher’s maximized log-likelihood function. Akaike also found
a rigorous way to estimate the K-L information, based on the empirical log-likelihood

function at its maximum point. We represent the full model with p parameters as
model(p) : (3, X,B,), By = (A1, Bav-- Bus Bernro o B)-

Akaike formulates the problem of statistical model identification as the selection of
a submodel f(y, X, 8,), where the particular restricted model is defined by the con-

straints Buy1 = Pup2 = s0 that

model(s) : f(¥, X.,B,), B, = (B s B 0,..,0)F

where s is the number of parameters and S, is a subspace of R?. Let f, be the
maximum likelihood estimate under model(s), then the log-likelihood function is given

by

B,

> tog { £ X B)}-
The Akaike information criteria of submodel s is defined to be

AIC(s) = —20(B,) + 2k
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where k is the cardinality of 5. Under this criterion we choose the model with the

minimum AIC value.

Bayesian Information Criterion (BIC)

Schwarz (1978) suggested using a Bayesian approach to the model selection problem.

This method results in a criterion that is similar to AIC. It is based on the penalized
log:likelihood function evaluated at the maximum likelihood estimate for the model.
The penalty term in the BIC obtained by Schwarz (1978) is the AIC penalty term
& multiplied by %lug(n). where n is the sample size. Similarly to AIC, the BIC of a

submodel is defined to be
BIC(s) = —2¢(8,) + klog(n).

The submodel with the minimum BIC value is selected. It has been observed that

‘minimizing AIC does not produce asymptotically consistent estimates of the correct

model. In contrast, BIC is consistent.

Mallow’s Cy. Criterion

Mallow’s Ci. is a technique for model selection in regression proposed by Mallows

(1973, 1995). The Ci statistic is a criterion to assess the fit when models with
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different numbers of parameters are being compared. The Mallows criterion for a
submodel is

RSS(s)

o) =~

—n+2k

where RSS(s) is the residual sum of squares and  is the cardinality of 5. Usually
Cy s plotted against k for the collection of subset models of various sizes under
consideration. Acceptable models (minimizing the total bias of the predicted values)
are those for which Cy approaches the value k.

In summary, the information-theoretic approaches are based on strong parametric
model assumptions. In GLMs and QL, the model is frequently specified by a set of
estimating equations and we may not have fully specified parametric assumptions
Hence, these methods can not be used directly. One solution is to use nonparametric
likelihood based on the available information. Another limitation of the information-
theoretic approach is the computational burden of fitting all possible submodels.
In the next section, we discuss the empirical-likelihood-based information-theoretic

approach for variable selection proposed by Variyath, Chen, and Abraham (2010).

Empirical-Likelihood-Based Informat

n-Theoretic Approach

Variyath, Chen, and Abraham (2010) developed an information-theoretic approach

to variable selection based on a nonparametric likelihood, for use when a well-defined
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parametric model is not available. They replaced the parametric likelihood by the
empirical likelihood and investigated the use of empirical-likelihood-based AIC and

BIC. The empirical-likelihood-based AIC is defined to be
EAIC(s) = W(B,) + 2k,

where W/(B,) = 26.(B,) is the empirical-likelihood ratio function for the submodel.

Similarly, the empirical-likelihood-based BIC is defined to be
EBIC(s) = W(B,) + klog(n).

The best model is identified as the model with the minimum value of EAIC (or
EBIC) over all possible submodels. More details of the empirical likelihood are given
in Chapter 3. Variyath, Chen, and Abraham (2010) show that the empirical and para-
metric likelihood-based AIC and BIC have first-order asymptotic properties. Their
simulation studies show that when a parametric likelihood exists, the two methods
have similar performance. The empirical-likelihood-based approach is superior when

the parametric model is misspecified.

In the information-theoretic approach ion of all is
necessary. As the number of covariates increases, the computational burden becomes
‘more severe. To avoid the evaluation of all the submodels, a new penalized-likelihood

variable selection approach has recently been developed.
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1.2.4 Penalized-Likelihood Approach

The idea of penalization s very useful in statistical modeling particularly in high
dimensional variable selection. Most traditional variable selection procedures such
as AIC, Mallow's G, and BIC use a fixed penalty based on the size of the model.
However, all these procedures use cither stepwise or subset-selection procedures to
select the variables. These selection procedures make the procedures computationally

intensive and unstable. To overcome the inefficiencies of traditional variable selection

procedures, Fan and Li (2001) proposed a unified approach via nonconcave penal-
ized least squares. This method automatically and simultancously selects variables
and estimates their coefficients. The least absolute shrinkage and selection operator
(LASSO) proposed by Tibshirani (1996, 1997) is another variant of the penalized-
likelihood approach. Fan and Li (2001) applied the penalized-likelihood approach to
linear regression, robust linear regression, and generalized linear models. They show
that the proposed penalized-likelihood estimator with the smoothly clipped absolute
deviation (SCAD) penalty function (defined in Chapter 2) outperforms all the sub-
set and information-theoretic variable selection procedures in terms of computational
cost and stability. The SCAD improves the LASSO by reducing the estimation bias
Furthermore, they show that the SCAD possesses oracle properties with a proper

choice of the tuning parameters. The true regression coefficients that are zero are
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automatically shrunk to zero, and the remaining coefficients are simultaneously esti-

mated. Hence, the SCAD and its properties are ideal procedures for variable selection,

at least from a theoretical point of view. This encourages us to investigate SCAD

properties in nonparametric-likelihood setting,

1.2.5 Motivation for New Approach

Several methods have been developed to select the best submodel. The sequential
approaches are computationally less demanding as the mumber of covariates increases,
but the identification of the optimal model is not guaranteed. The simplest and

most widely used variable selection method is cross-validation. In some situations

the prediction error is not well defined, for example in generalized linear models,

of this technique. Infc -theoretic

methods such as AIC and BIC are based on the parametric likelihood. These two
criteria can not be applied without full knowledge of the parametric model. If the

model is not well defined, we can use empirical-likeliood-based AIC and BIC. In

some situations, the mumber of possible submodels is large, and the computational
cost becomes substantial if all the submodels must be evaluated. Methods based on

penalized likelihood such as LASSO and SCAD have superior computational efficiency

and stability. SCAD improves on LASSO by reducing the estimation bias and it




1.3 PROPOSED APPROACH TO VARIABLE SELECTION 19

satisfies the oracle properties. The parametric likelihood is a crucial component of

these methods. As discussed earlier, the parametric model is not well defined in many

miting the application of the methods. We investigate the properties of SCAD

cases,

in a nonparametric setting, where instead of the parametric likelihood, we use the

empirical likelihood based on a set of estimating equations.

1.3 Proposed Approach to Variable Selection

Likelihood methods play a major role in statistical analysis. They can be used to
find efficient estimators and are flexible. Likelihood methods can reduce or eliminate
the problems arising when the data are incompletely observed, distorted, or sampled

with a bias. They can be used to pool information from different data sources. One

problem with parametric likelihood inference is the risk of model mis-specification.

Such mis-specification can cause likelihood-based estimates to be inefficient. To avoid

the risk of model mis-specification, a nonparametric method can be used. Instead of

parametric likelihood, we use nonparametric empirical likelihood in the penalized-

likelihood variable selection approach
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1.3.1 Empirical Likelihood (EL)

Owen (1988) introduced the empirical likelihood. Empirical likelihood is a nonpara-
‘metric method of statistical inference. It allows us to use likelihood methods without
assuming that the data come from a known distribution. The empirical likelihood

method combines the reliability of nonparametric methods with the flexibility and

effectiveness of the likelihood approach.
Let 91,92,y be & random sample from a cumulative distribution function

F(s). Let

pi=Ply=y)=Fly) - Fly—)
be the probability mass assigned to ;. The empirical likelihood function defined by

Owen (1988) is

Maximizing
() =log {L(p)} = J_ log(pi)
=
subject to p; >0 and Y p; =1 leads to j = 1 The maximum empirical likelihood
n
(MEL) estimator of F,(y) is given by

Fly) = Y bl <) = Fa(v).
=
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where /() is the indicator function. The empirical distribution function based on a

random sample is

R =13 105y,

Statistical inference on be based on the pr irical likelihood.

For example, if we are interested in inference on the mean, say 4, we define the profile

empirical log-likelihood for jt to be

() :s\lp{zlog(p(): p>0i=12m Y op=1 > pilni— ) ,o}.
= = =
Owen (1988, 1990, 2001) proved that the empirical likelihood ratio function has an
asymptotic x? distribution when 1 = g, the true value. This result is useful for in-
ference on the parameters, such as testing hypotheses and constructing a confidence
region for . Note that there is no need to estimate a scale parameter in the con-
struction of the confidence interval, and the confidence regions are not necessarily
symmetric because of the data-driven approach. Because of these properties, the EL.
method has become popular in the statistical literature and has been extended to lin-
ear regression models (Owen, 1991; Chen, 1993, 1994), general estimating equations.
(Qin and Lawless, 1994), survival analysis (Thomas and Grunkemeier, 1975; Li, 1995;
Murphy, 1995), survey sampling (Chen and Qin, 1993; Chen, Sitter, and Wu, 2002)

and time series (Monti, 1997).
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1.3.2 Penalized Empirical Likelihood (PEL)

As discussed ealier, penalized-likelihood-based variable selection can be applied only
when we have a well-defined parametric model. When we are not sure about the para-
metric model, but the parameters can be estimated by a set of estimating equations,

we can use an EL based on a set of estimating equations. So we propose to replace th

parametric likelihood by the empirical likelihood to define a nonparametric version
of the penalized likelihood method. We discuss the asymptotic properties of the re-
gression estimates, and we develop an algorithm for estimating the parameters. Our

simulation studies show that when a parametric model is available, PEL-based v

able selection gives results similar to those achieved by parametric-likelihood variable
selection. The former method outperforms the latter when the parametric model is
‘misspecified. We extend our approach to Cox's proportional hazards model. We also

apply our method to an Australian health survey and a lung-cancer data set.

1.4 Outline of the Thesis

The main objective of this thesis is to make a contribution to variable selection. We

‘mainly focus on penalized-empirical-likelihood variable selection. In Chapter 2 we

briefly discuss variable selection via the nonconcave penalized likelihood proposed
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by Fan and Li (2001). In Chapter 3, we introduce the empirical likelihood and its

We describe our penalized-empirical-likelihood variable selection and
discuss its asymptotic properties. The algorithm is given in Chapter 4. In Chapter
5 we provide simulation studies to compare the performance of empirical-likelihood

variable selection with penaliz the context of

parametric-likelihood SCAD,

rear

regression, Poisson regression, and logistic regression. We also apply our method to
the Australian health survey. In Chapter 6, we discuss the implementation of PEL in

Cox's proportional hazard model. Our concluding remarks are given in Chapter 7.




Chapter 2

Variable Selection via Nonconcave

Penalized Likelihood

A new class of variable selection methods based on a nonconcave penalized-likelihood
approach was proposed by Fan and Li (2001) and Tibshirani (1996). These methods
are superior to traditional methods because of their computational efficiency and
stability. The variable selection and the estimation of the regression parameters are

carried out simultaneously. That is, insignificant variables are removed by estimating

their regression parameters as zero. These methods work reasonably well in high-
dimensional problems. In this chapter, we will introduce the penalized-likelihood

variable selection proposed by Fan and Li (2001) in the context of a linear model.
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Consider a linear model of the form

vi=XB+e i

where X, € R? is a vector of covariates and 3 € R a vector of parameters. We
assume that the collected data {(X;,)} are independent samples and 4| X, has
density f(yi; X,8). A general form of the penalized likelihood proposed by Fan and

Li (2001) is defined by

> twixB) - (@1)

where {(y;; X;f3) s the conditional log-likelihood of ;| X, ps(+) is a penalty fnction,
and § is the tuning parameter.

In linear regression models, if the columns of the design matrix X are orthonormal
then it is easy to show that the best-subset selection method and the stepwise elimi-
nation method are equivalent to penalized least-squares estimations with the HARD
thresholding penalty proposed by Fan (1997) and Antoniadis (1997). This penalty is

defined to be
a(l6l) = 8~ (6] - 6)" 1(16] < 5)

For a large value of [6], the HARD thresholding penalty does not overpenalize. The

LASSO penalty function is the Ly-penalty, py(|6]) = 8/6], proposed by Donoho and
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Johnstone (1994) in the wavelet setting and extended by Tibshirani (1996) to general
likelihood settings. The penalty function used in ridge regression is the Ly penalty,
Ps(161) = 816]2. According to Fan and Li (2001), a good penalty function should result

in an estimator with the following three oracle properties:

1. Unbiasedness: To avoid unnecessary modeling bias, the estimator is nearly un-

biased when the true unknown parameter is large.

2. Sparsity: This is a thresholding rule that automatically sets small estimated

coefficients to zero to reduce the model complexity.

3. Continuity: This property eliminates unnecessary variation in the model pre-

diction.

However, the penalty functions Ly, Ly, and HARD do not satisfy all three conditions.
A simple penalty function satisfying all three is the SCAD penalty proposed by Fan
(1997). Tts first derivative is
o) =5 {1(3 <)+ Hm > &)} for somea>2and0>0.  (22)
Necessary conditions for the unbiasedness, sparsity, and continuity of the SCAD
penalty have been proved by Antoniadis and Fan (2001). This penalty function

involves two unknown parameters a and 5.
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Ly penalties (p=1,2, 0.3)

o(6)

Figure 2.1: L, penalty function

As shown in Figs. 2.1 and 2.2, all the penalty functions are singular at the origin,

satisfying ps(0+) > 0. This is the nec

sary condition for sparsity in variable se-

lection. As shown in Fig. 2.2, the HARD and SCAD penalties are constant when

 is large, indicating that there is no excessive penalization for large regression co-

efficients. However, SCAD is smoother than HARD and hence yields a continuous
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HARD and SCAD penalties.

-10 =5 o s 0
L
Figure 2.2: SCAD and HARD penalty functions
estimator.

Let By = (8%, 8%)" be the true value of B. Without loss of generality, we assume
that By = 0 and all components of By, are nonzero. Let 1(8,) be the Fisher informa-
tion matrix and let 7;(8,0,0) be the Fisher information given Ay = 0. Under some
regularity conditions, Fan and Li (2001) show that the estimate of the regression pa-

o far AT
rameter based on the SCAD penalty, 3 (B,T,B:) , satisfies the oracle properties
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for a certain choice of tuning parameter (6,a), since

B0 and V(B - Bp) = N (0, I (B,0)).

The SCAD penalty function involves two unknown parameters, & and a. In practice,
we could search for the best pair (3,a) over a two-dimensional structure using cross-

validation (CV) or generalized cross-validation (GCV; Craven and Wahba, 1979).

However, this would be computationally expensive. From a Bayesian point of view,
Fan and Li (2001) suggested setting a = 3.7 and using GOV to select the best value

of 8.

2.1 Local Quadratic Approximations and Standard
Errors

‘The penalty function py(|5;]) is irregular at the origin and does not have continuous
second-order derivatives at some points. Special care is needed in the application of
the Newton-Raphson algorithm. Fan and Li (2001) locally approximate the SCAD
penalty function by quadratic functions as follows. Suppose our initial value B, is
close to the maximizer of (2.1). If fo is very close to zero, then set f; = 0, otherwise,

the penalty ps(|8;1) can be locally approximated by the quadratic functions via
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(15101 = #i(18;)sen(3;) =~ {#i(1B01)/1Bsol} 551
when f; # 0. In other words,
ps(18i]) = ps(1Bjol) + % {Pi(1B50l)/18i0l} (83 = B30), for B = Bro.

A disadvantage of this approximation is that once a coefficient has been shrunk to
zero, it will stay at zero. However, this method significantly reduces the compu-
tational burden. Now we assume that the first two partial derivatives of the log-
likelihood function are continuous, so that it is a smooth function with respect to
. The first term in (2.1) can be locally approximated by a quadratic function via

Taylor’s expansion. The maximization problem (2.1) can be reduced to  quadratic

problem and the Newton-Raphson algorithm can be used. Therefore,

(2.1) can be locally approximated by

UBy) + ALB,)" (B = Bo) + %(B = Bo)" A%(By)(B ~ By) ~ %ﬂBTE:(Bu)Bv (23)

where Al(By) = 6’;2“’, A%(B,) = %.

The quadratic maximization problem (2.3) is solved via the Newton-Raphson algo-
rithm. In this algorithm, the update at the (k + 1)" iteration is
B = Bt — [A%(BY) - nxa(8Y)] ' [AUBY) - nUs(BY)

where T5(8Y) = ding [’"%ﬁ" %‘Zﬂ and U(8) = (89"
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The sandwich formula. for the standard errors of the estimated parameters exists

immediately because this method estimates the parameters and selects the variables

at the same time. The standard errors of the estimated parameters are given by

@(p) = [3(B) - )] @ {aud)} [a3) - nza(d)

Fan and Li (2001) conducted a series of Monte-Carlo simulations in linear regression,
robust regression, and logistic regression and showed that the penalized-likelihood
variable selection using the SCAD penalty performs better than the LASSO, HARD,

and information-theoretic approaches.




Chapter 3

Variable Selection via Penalized

Empirical Likelihood

‘The empirical likelihood method is a powerful inference tool with promising appli-
cations in many areas of statistics. In this chapter, we briefly introduce the basic
concept of empirical likelihood. We then discuss the penalized-empirical-ikelihood

based variable selection method
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3.1 Empirical Likelihood (EL)

We first outline the empirical likelihood as discussed by Owen (1988, 1990). For a
given random sample yy, ya, .. ., yn from an unknown distribution function F(y), the

empirical likelihood function of F is defined to be

LA =TTr

where p; = F({z:}) = Pr(Y; = y). The empirical likelihood is maximized without

any further information about the empirical distribution function F

Lo
;XI:I(.'/; <)

where I(x) is the indicator function and the inequality is expressed componentwise.

Faly)

In general, it is more common to work with the empirical log-likelihood

(F) = log(p.), @3.1)
,

,n. Suppose we want to

subject to the constraints 2 pi=1andp; >0,

investigate inference on the pmmmn under the assumption that F' is a member of

& nonparametric distribution family , say s = T(F) for some functional T of the

distribution. Inference for parameter j can be obtained using the likelihood approach,
if we know the likelihood value at . For a given value of s, the population F € F

is such that T(F) = . The task is to choose the F' that best represents ji. The
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notion of profile likelihood is to find the F at which the empirical likelihood attains
the maximum value among the set of T(F) = . The profile empirical likelihood
function is defined to be

La(w) = sup {La(F) | T(F) =, F € F}.

We can construct the likelihood inference on s based on Ly (k). This likelihood has

it

similar properties to its parametric counterpart. Since Ly () < n™", it is conve

to standardize Ly (1) by defining the likelihood ratio function to be
R(F) = n"La(n),

and it is easily shown that this can be written as
R(F) ﬁnp..

The likelihood ratio function has a maximum value of 1. For simplicity, we can

perform inference on any function F using the population mean 1 = (s, iz, ., ia),
via the profile empirical likelihood. The profile empirical log-likelibood for  is defined
tobe

[(p):sup{ln(l’): p>0i=12.m Y op=1, ZP‘(F-"“=°} (32)
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We can compute £(z2) by maximizing {zlng(p.)} by the Lagrange multiplier
-
method under the above constraints. The Lagrange multiplier method is very ef-

fective for this constraint maximization problem. Define

A7) = 3 log(p) + 7 [Zp - 1} -7 [im. - m],

where A (vector-valued) and + are Lagrange multipliers. By setting the partial deriva-

Glprypy

tive of G with respect to p, to zero, we get

(-} (m w}’

and the Lagrange multiplier A = A(u) s the solution of

fori=12...,n,

Therefore, we can write the profile empirical likelihood function as
. -
() = ~nlog(n) = 3 log(1+ A" () (vi = w))-
=

Now we define the profile empirical log-likelihood ratio function to be

n e -
Wi(p) = log(np) = Y log [1 +A ()i = 1‘)]»

= =
Owen (1990) showed that, when yiq is the true population mean, 2W (i) —2 X3
as n — oo, similar to the parametric likelihood ratio function of Wilks (1938).

This result is useful for hypothesis tests on parameter 1 and for the construction of

100(1 = )% confidence regions, defined by
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{n:2W () < X301 - )},

where x3(1 = a) is the (1 = a)"* quantile of the chi-square distribution with d de-

grees of freedom. This is different from the confidence intervals based on a normal

approximation.

3.2 Penalized Empirical Likelihood based Variable
Selection

Owen (1991) first considered EL for linear models. EL confidence regions for regres-

sion coefficients in linear models were studied by Chen (1994). We consider a lincar

model of the following form

XiB+e

where X, € R? is a vector of covariates and 8 € R” a vector of parameters. We
assume that the 3| X s are conditionally independent. We also assume that the error

term ¢ is independent and identically distributed with mean zero and finite variance

o, Thus, E(y|X,) = X[ is the conditional mean function and Var(y| X;)
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Following Owen (1991) and Qin and Lawless (1994), we can extend the empirical like-
lihood inferences for linear models based on a set of estimating functions g(y, X, 8).
Assume that the generalized linear model is defined by E [g(yi, X, 8)] = 0. In gen-
eral, g is a vector of p x 1 estimating functions. The profile empirical log-likelibood

function of 3 is defined by

B)=sup | loglp): pi>0i=12m Yop=1, Y poly, Xu8)
= = r

Using the Lagrange multiplier method discussed in Section 3.1, we can define

Glprypaye P A7) = D log(p) +7 3 opi = l] —nA" [ZM(%XUB)}

where A (vector valued) and v are Lagrange multipliers. Setting the partial derivative
of G with respect o p; equal to zero gives

1

S S - ©3)
{1+ A9 X))

where the Lagrange multiplier A = A(4) is the solution of

9w XiB) o
L xs " o4

This leads to the profile empirical log-likelihood function

() = ~nlog(n) — > log(1 + A (B)g(w X1, )
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and the profile empirical log-likelihood ratio function is defined to be

W(B) = log(ni) = 3 log(1 + A" (B)g(ui, X, ). (35)

Now we define the penalized empirical likelihood estimator of 8 as the maximizer of
. o
L(8) = —nlog(n) = Y [los(1+ X" (Baus X B)] = 1Y ps(15;))
=0B) - nY_pillB)) (36)

with respect to 8, where ps(+) is the penalty function. We can use any of the penalty
functions discussed in Chapter 2. Variyath (2006) first introduced the PEL, but
xeported some computational issucs with over-penalizations. We use the contimuous
differential smoothly clipped absolute deviation (SCAD) penalty function with two
unknown tuning parameters (5,a) proposed by Fan and Li (2001) and defined in
(2:2). In the next section we will discuss the distribution properties of the penalized
empirical likelihood estimates of 3 derived by Variyath (2006). The algorithm for the

penalized empirical likelihood will be discussed in the next chapter.

3.3 Distributional Properties

Variyath (2006) stated and proved theorems in connection with PEL; we reproduce

them here. Let B, = (81, A%)" be the true value of B with vector lengths of k
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and p — k respectively. Without loss of generality, we assume that By = 0 and all
components of By, are nonzero. Let I(8,) be the Fisher information matrix and let
11(B10,0) be the Fisher information given B = 0. Under some regularity conditions,

L p T
our penalized empirical likelihood SCAD estimator 3 (a,’,;s{) satisfies the oracle

properties for a certain choice of the tuning parameters (5,a). Hence, it is easy to
prove that

- B, . » -

By 50 and VB, = Byy) = N (0, 17 (810, 0))
The following theorem proves the existence of a local maximizer of the penalized

empirical likelihood L(8).

Theorem 3.3.1 (Variyath, 2006) Suppose (yi, Xi),i = 1,2,...,n s a set of inde-
pendent and identically distributed random vectors. Let gi(B) = g(yi, X1, B) be the

estimating functions for B € R such that for eachi=1,2,...n,
E{gi(Bo)} =0
Jor some B, Also assume that
(i) V = E{g(Bo)g" (Bo)} is positive definite,

is continuous in B in a neighborhood of Bo,

} is p in a neighborhood of Bo,
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(iv) there exists some functions G(y, X) such that in a neighborhood of Bo,

Iﬂy(ﬂi
ap"

<G X), lolv. XA < Gly. X)

such that E[G(y, X)] < 0. The tuning parameter  is chosen as a function
of n such that maz(p,|Bl : Bjo # 0) — 0 asn — oo. Then there ex-
ists a local mazimizer B of L(B) such that H/z S ﬂou = 0,(n""/2 +1,), where
by = max(#, |Bjol : Bjo #0)-
Theorem 3.3.1 shows that for an appropriate choice of 8, there exists a root-n con-
sistent penalized empirical likelihood estimator. The following lemma shows that this

estimator must have the sparsity property B, = 0.

Lemma 3.3.2 (Variyath, 2006) Suppose (yi, X),i = 1,2,...,n is a set of inde-
pendent and identically distributed random vectors. Let gi(B) = g(y:, X, B) be the

estimating function for 3 € RP such that, for cachi=1,2,...,n,
E{9:(Bo)} =0
Jor some By. Also assume that
(i) V = E{g(Bo)g" (o)} is positive definite,

il

(ii) a”g;) is continuous in B in a neighborhood of B,
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41
() the rank of E {‘9;;‘2)} is p in a neighborhood of Bo,
(iv) there exists some functions G(y, X) such that in a neighborhood of Bo,
|2 < 6030, ot x. 901 < G0, 0
such that E[G(y, X)] < oo.
Assume that
lim lim {’/‘;B)} >0. (3.7)

If 84 = 0 and b, — oo, then with probability tending to 1, for any given B,

satisfying 1By — Broll = Op(n™"/2) and any constant C,

o B B

= mazys, <

0 By

Using the above lemma, one can prove the following theorem on the asymptotic

normality of the empirical likelihood estimate,

Theorem 3.3.3 (Variyath, 2006) In addition to the conditions of Theorem 3.5.1 and
Lemma $.3.2, suppose that ;%”,(B% is continuous in 8 in a neighborhood of the true

value of By and is bounded by some integrable function G(y, X). Then

ViR {B, - B+ (-A) (8D} 2 N(©.4)
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where 3 is the penalized empirical likelihood estimate of B and

| ,
- ({222 (rromon) s {2522)]

3.4 Penalized Adjusted Empirical Likelihood

Computation of W(8) for a given value of 8 may lead to some technical problen.
The solution for A must satisfy {1 + A"(my(y,.x..ﬂ)} >O0foralli=1,...,n A

T

s an

\
i - . . 5
i necessary and sufficient condition for its existence is that the vector ‘0

point of the convex hull of {g(y, X, 8),i = ,n}. The true parameter value 3y
is the unique solution of Elg(y, X, )] = 0. But, under some moment conditions on

9y, X, B) (Owen, 2001), the convex hull {g(y, X, B),i

..,n} contains 0 as
its inner point with probability 1 as n — co. When 8 is not close to B, or when
nis small, there s a considerable chance that the solution of (3.4) does not exists
To avoid this problem, Chen, Variyath and Abraham (2008) introduced the adjusted
empirical likelihood.

Denote g(8) = 9(u, X, 8) and 7,(8) = %Zy‘(ﬂ) for any given 8. For some
=

positive constant a,, define

= ~,7,(B).
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Now the adjusted profile empirical log-likelihood ratio function is defined as

a1l

it
W'(ﬂ):sup{Zlug[(nﬂ)p.] p>0i=12 . n+1 Y
1

S (14X B8]

oty
with & = A(3) beng the solution of 3~ () 0. Note that now 0 always

+XTg(8)
++...n}. The adjusted empirical log-

lies inside the convex hull of {g(y;, X, B),i
likelihood ratio function is well defined after adding a pseudo-value go4(8). For a
wide range of a,, W*(8) have same first order asymptotic properties of W(B) (see
Chen et al., 2008). We extend this idea of penalized adjusted empirical likelihood to
avoid the technical problem of non-existence of solution to (3.4) for any given value
of .

Now we define the penalized adjusted empirical likelihood estimator of 8 as the max-

imizer of

L7(8) = —(n+ logln+ 1) - 3 [log(1 + 3" (B)ai(8)] - (n+ DY pil15])

»

£08) = (n+1) D psllB;) (38)
=

with respect to 3, where ps(#) is the penalty function defined in (2.2). This adjust-

ment is particularly useful hecause even for some undesirable values of 8 and tuning

parameters, the proposed algorithm guarantees a solution. Now, we can show that

the penalized adjusted empirical likelihood has the same asymptotic properties as

=1 Zml(m:u].
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the penalized empirical likelihood detailed in Section 3.3. We state and prove the fol-
lowing theorems and lemma to show that the penalized adjusted empirical likelihood

estimates have oracle properties,

Theorem 3.4.1 Suppose (y,, Xi),i = 1,2,...,n is a set of independent and identi-
cally distributed random vectors. Let g,(B) = g(ui, X1, B) be the estimating functions

Jor B € RP such that for eachi=1,2,...n,

E{g:(Bo)}

Jor some By Let§,(8) = i(B) and o1 (B) = ~a,G,(B), where a, is a positive

n

constant. Also assume that
(i) V = E{g(Bo)g" (Bo) } is positive definite,

is continuous in B in a neighborhood of Bo,

(i) O—g;ﬁ )

(iii) the rank »jE{ D—;-)} is p in a neighborhood of Bp,

(iv) there exists some functions G(y, X) such that in a neighborhood of By,

29(8)

T

<G X), low. X, B)|' < Gy, X)

such that B[G(y, X)) < oo. The tuning parameter § is chosen as a function of

m such that max(pf, |8jo] : Bjo # 0) = 0 as m = o0, where m =n+ 1. Then
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there exists a local mazimizer B of L*(8) such that ”a = ,a(,H =0 (m™2 +b,),

where by, = max(pf, ol : Bjo # 0)-

Proof
Let ay = m™"/2 4 by,. It is sufficient to show that for any € > 0, there exists a large

enough € such that
Pr{sup L'((8 + )i Jull = C] < L*(By)} 2 1 ¢ 3.9

a local

is implies that for large m with probability at least 1 — ¢, there exi

maximizer in the ball (8 + amu); u]| = C]. Hence, there exists a local maximizer

such that |3 — Byl| = Oplam). Let
Dj,(u) = L*(Bo + anu) — L*(8y).
Then

D} () = {£°(By + ) = €(80)} = {ps(Bo + ) — ps(B0)}
.
={€' (B + amu) = €(B)} =m > {ps(1Bj0 + amul) = ps(18j0])},
=1

where k is the number of components in By, The Lagrange multiplier in A(f) can

" o m
A = %2%(/30)0;‘(/9.7)} {}Zg,wo}w(nﬂ“)

),

p(m
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1
m

> 0i(Bo) and Va(Bo) = — 3~ (o) (By). Hence,

Similarly,

(B + ) = 3 N (B + anw)gi(By + )
]

-3 55 (B + ) + amw)]” + 0y(1)

m T m
-3 {i PR n,,.u)} {i S oo ol P+ u,,.-n}

{#Zg.wwam«)} +o1)

= {wmi kS %‘;’)} {% S0 um}

=1

{ymwn) RS S L0 St

””,;f“;] }T V30 {300 + ot [ 2450)

]} a0

(o) + 0B [
Now

B
£(By + amu) — £(By) = —mapu” {E [%‘-’] E [g(ﬂn)yT(Bu)]"s?mlﬁu)}
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T
- %mnfnur {E [‘L(;g“'] Vi (B E [‘75(;5“' }u +0,(1).

Now, letting
.
a= {E [248]" & snamio0) " = [%Z)]}

we have

9(B
B

| Dj(w) < ~manu” {E [

B
]Am.(m)} FaluTAu (310)

.
=3 {maunth, (Brl)sgn(Bo)u + madph (Bl +o(1)]}
i

It can easily be shown that A is the asymptotic variance of v/mi(8 — B), and so the
representation is similar to normalized parametric likelibood. By the central limit
theorem, 7,,(8y) is Op(m~"/%), thus the first term on the right-hand side of (3.10) is

of order O,(m'/2a,,) = Oy(maZ). By selecting a large C, the second term dominates

the first term uniformly in [Jufl = C. The third term is bounded by
VEmapbulull + ma,max {[#(18])| : B0 # 0} lu]*

This is also dominated by the second term in (3.10). Hence, by choosing a sufficiently

large value of C, (3.9) holds. This completes the proof. Theorem 3.4.1 shows that

for an appropriate choice of 8,,, there exists a root-m consistent penalized empirical
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likelihood estimator. The following lemma shows that this estimator must have the
sparsity property B, = 0.
Lemma 3.4.2 Suppose (v, X.),i = 1,2,....,n is a set of independent and identically
distributed random vectors. Let g,(B) = g(ui, X, B) be the estimating function for
B ER? such that, for cachi=1,2,....n,
E{9:(Bo)} =0

L

for some By. Let3,(8) = - 3 0:(8) and gu.1(8) = ~a,5,(8), where ay is a positive
=1
constant. Also assume that
(i) V = E{9(Bo)g" (Bo)} is positive definite,
ﬂy(ﬂ)

(ii) g i continuous in B in a neighborhood of Bo,

(iti) the rank of E

{oq(ﬁ ) } is p in a neighborhood of Bo,

(iv) there exists some functions G(y, X) such that in a neighborhood of Bo,

<Gy, X), gy, X, B)[* < G(y.X)

such that E[G(y, X))

<oo.
Assume that

Jim_ lim (3.11)

o0 g
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where m =n-+1. If 8, — 0 and \/7id,, = oo, then with probability tending to 1, for

any given B, satisfying ||B) — Byoll = O,(m~"/?) and any constant C,

s (s
L = mazysjccnls
0 By
Proof

Following Fan and Li (2001) in proving this Lemma, it is sufficient to show that for 8

satisfying B, ~Byg = Op(m~"/?) and for some small &, = Cm~'/?, and j = k+

<0 for0<fi<en

for =€, < f; < 0. (3.12)

Due to the condition on ps, (|]), the task is equivalent to showing that, uniformly
in B,

()

/2
35, | = Om):

That is, the slope around the true value of 3 is low compared to the slope of the

penalty. Now

€(8)) = = Y log {1+ X"(8))ai(B;)}

where we regard A and g; as functions of a specific component of /3 for simplicity.

Note that
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o(8;)
9B;

2u(8)
e R

=

Since B — o = Op(m~"/?), it is simple to show that we still have

max [l9:(8)]| = op(m'"*) and |XT(8;)]| = Op(m™"7%).

oy

Hence,
XF(85)u(B5) = 0(1)

uniformly in both i = 1,2,...,m and B. Thus we have

99:(8;)

|‘W’ [N Z| [14+0,0)]

- opon-'“)o,.(m)u + a,un

=0y(m'”?)

Using the above results, for each component of B we have

oL(B)
5,

= b {=0,'75,, (1B, )sen(B,) + 8! 0p(m~1)}.

Using the assumption (3.11), y/iid, — 0o and ,, — 0, the sign of the derivative

is completely determined by that of ;. Hence (3.12) holds. This completes the

proof. Using the above lemma, we can prove the following theorem on the asymptotic

normality of the adjusted empirical likelihood estimate.
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Theorem 3.4.3 In addition to the conditions of Theorem 3.4.1 and Lemma 3.4.2,

&
suppose the second derivatives of each component of g, say glk], ‘7[1], apxp
matria with the (i) entry 3 ;’y‘l , is continuous in B in a neighborhood of B, and

9508;

is bounded by some integrable function G(y, X). Then
Vi (B = B+ (-8) (8D} 2 N(0,4)
where B is the penalized empirical likelihood estimate of B and

A={ {aq(a.,} {E{oB5B)) "} B {%}]A

Proof

Due to the sparsity property given in Lemma 3.4.2, it is scen that the penalized

adjusted irical likelihood estimator with proper tuning parameter §, maximizes

L*{(8,,0)"} with respect to 8,. Hence,

BN 1. 5520, LB B.3)=
o = Lin(B.A) =0 =522 = L (B,X) = 0
where
& alB)
LialBN) = Z T (8)aB)
and

A+ mpi(18y])sgn(By).

. =1 e -
LX) =535 i
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For notational simplicity, we do not differentiate 3— and ﬁ for the rest of the

proof. That is, we present our proof as if k = p. If we expand these functions at

(8= By, A = 0), we have

(B0, 0)
"

] -0+ -0,

L3 (B.3) =

ul

(Bo,0)
i Lin(B0 0)] 5
mégu “)] BB+ [“_(”;ﬂ] (A=0)+0,(6m) =

where 8, = |8 — Byll + | All. The partial derivatives in the above expansions are
Lin(80,0) _ 1 K1 00i(8y) 99(8,)
alfe® 13000 o {2},
L;, , 0] ul
a0 L5 @)~ E (o005 @0),
d
(180l
2B
ERC SRS SE
Therefore,
A “Lin(B1,0) + 0y(6m)
-Bu ~L30(8,,0) + 0y(6m)
with

~E{(B)d" (B0} {250}
P A Y)

Sn=
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Since Ly, (B10,0) = Gn(Bp) = Op(m™"/2), we can easily show that &, = Op(m~"/?)

B]) = 0 as m — oo, the limiting distribution of B, — B, will be asymp-

totically normal, i.e.,
Vi {B - Bo-+ SELan(B1,0)} 25 N(0,4),
where
(o8 tamaany

and §2 = —A~is the (2,2)"* element of S;;* assuming pf, (|3]) = 0. This completes

the proof.




Chapter 4

Numerical Algorithm

To implement our method, we need an efficient numerical algorithm. Variyath (2006)

that resulted in high bias.

reported some computational issues with over-penalization

‘We maximize the PEL with respect to 8 using a modified Newton-Raphson algorithm.

At each iteration of the Newton-Raphson method, we compute the Lagrange multi-
Sitt

plier for an updated value of 8. Ch , and W (2002) proposed a modified

Newton-Raphson algorithm for computing the Lagrange multiplier for a given value of
the parameter. This method is numerically stable, which is useful in this application.
‘The numerical algorithm given in Scction 4.1 and 4.2 can be easily extended to pe-
nalized adjusted empirical likelihood, by adding a pseudo-value g1 (8) = ~a,7,(8),

where a, is a positive constant.
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4.1

The Lagrange multiplier A is estimated by solving the equation

" u)
Yianm "

for a given set of vectors g;(@), i = 1,2,...n. Note that the above equation is the

derivative of R with respect to A for a given 3, where

R=Ylog {1+ 2T0(8)). (a1)

In the empirical likelihood problem, the solution must satisfy the condition that

‘The modified Newton-Raphson algorithm for esti

as follows:

1

1+ Agi(B) >0, i

ating A for a given value of 8 is

Set A°=0,c=0, *=1,e=le—08 and B = 3"

Let R* and R™ be the first and second partial derivatives of R given in (4.1)

with respect to A, which are given by

»

S e S [ o) (B)
Slaam) ;[(Hﬂg‘w»’}

Compute RN and R™ for A = A° and let A(X) = — [R] ™" @

If A(X)] < € stop the algorithm and report, X' otherwise continue.

Computation of Lagrange Multiplier
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3. Caleulate 8 = v"A(X). If 1+ (X° = 6°)gi(8) < 0 for some 4, let 7*

50 to Step 2.

Set AH =

— 6% c=c+1,and 1 = (c+1)7} and go to Step 2. Step
2 will guarantee that p; > 0 and the optimization is carried out in the right

direction.

4.2 Algorithm for Optimizing Penalized Empirical
Likelihood

Let A(8) be the estimated value of A for a given 8. We maximize the PEL defined in
(3.6) over B. We use the modified Newton-Raphson algorithm proposed by Fan and
Li (2001). Note that the penalty function py(|3;|) is irregular at the origin and may
1ot have a second derivative at some points. Special care is needed in the application
of the Newton-Raphson algorithm. Here too, the penalty function is locally approx-
imated as detailed in Section 2 as proposed by Fan and Li (2001). We assume that
the profile empirical log-likelihood function is smooth with respect to 3 so that its

first two partial derivatives are continuous. Thus, the first term in the profile empiri-

cal log-likelihood can be locally approximated via Taylor’s expansion. Therefore, the
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‘maximization problem can be reduced to a quadratic maximization problem, and the
Newton-Raphson algorithm can be used. The modified Newton-Raphson algorithm
for estimating B uses quadratic approximation of the profile empirical log-likelihood
function. An algorithm for optimizing the penalized empirical likelihood, similar to

‘ that in Fan and Li (2001), is as follows:

1. Set B=p" and € = le - 08.

‘ 2. Let A = A(B) be the estimated value of A.

3. The parameter 8 is computed iteratively and the solution at the (k + 1)*

iteration is given by

B = B8 — (W(BY) 4 nxi(BY) T (WA(BY) +nUs(8Y)}  (42)
where W(8) is the profile empirical log-likelihood ratio function defined in (3.5),

W WB) as FWE)
ey

opap”
and Us(8*) = £5(8*)B".

" "
Eﬁ(‘,&J:(,iw[m;‘\’T{ ﬂ,uﬂ n]

Note that to compute W# and W#, we need to estimate the Lagrange multi-

plier A(8) as per Section 4.1.

1f min |B%*) — B®| < ¢ stop the algorithm and report B**V; otherwise

-

k+1and go tostep 3.
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We examine the simplified expressions for W# and W2 as follows. Let R®, R, and
R be the first and second partial derivatives of (4.1) with respect to 8 and A

GON | pon s~ [_aOAT_ ]| _ [dBMW (B
(‘+X’y(ﬁ)) Z{[(H»\Ty‘(ﬁ))] [(Hx’y;(ﬂ)}’ ]}

and

=3 [L XT0B)(B) - dlBNa( B
Rﬂl’g[ {1+ ATg(8))° }

Now the first derivative of V() with respect to 3 is

_— 201" 4(8) + (AN ]

= , (1 + X (B)aB)}
_ [2O] gy
- [ 8 ] .
Note that for A = A(8), R* = 0. Therefore,
Vo - o (43)

Similarly, the second derivative of W(8) with respect to B is

"+ atonor )

P ) {538 e + 20 2

W -
T+ XT(BwB)y

i {[50]" 00+ aimam} {[32] 009+ tmam)
ESvEmE
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G INB) YOI "
X } n“[ ]+2[—05 ] RP*+ R,

E

Following Owen (2001), a local quadratic approximation to R leads to
B _ (a1 pon
[5] = e,
so that
WO = 0 () R g

Optimization over 3 is easier if W9 is negative definite. The second term in (4.4) is

negative semidefinite, but the first term R%9 might not be.

4.3 Selection of Thresholding Parameters

The SCAD penalty function involves two unknown parameters, & and a. In prac-
tice, we could search for the best pair (5,a) over a two-dimensional structure using
cross-validation (CV:; Stone, 1074) or generalized cross-validation (GCV; Craven and

Wahba, 1079). However, this is computationally expensive. From the Bayesian point

of view, Fan and Li (2001) suggested using a = 3.7, and this value will be used
throughout our simulation studies. Let the empirical likelihood ratio function evalu-

ated at B and A(B) be
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wB)= {Dogu + x(ﬁmis)}
Then, we define the GCV criterion to be

GCV(s) = (45)

w(B)
n[l—e(8)/n*"
where e(8) is the effective number of regression coefficients given by
o0 = u{[wd+ zp)]” W
where WP8(3) is the second derivative of the profile empirical likelihood function

with respect to B (sce (4.4)) evaluated at 3, tr denotes the trace of a matrix. We

choose the tuning parameters 6 to minimize GCV(5).

4.4 Standard Error Formula

The standard errors for the estimated regression parameters can be estimated di-
rectly because we are estimating the parameters and selecting the variables at the
same time. Following the conventional technique in the likelihood setting, the corre-
sponding sandwich formula can be used as an estimator for the covariance matrix of

the estimates J:

@)= (3@ +nza)] @ {sw @B} (8w R +uid)
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The covariance matrix of the estimates can be simplified to

@A) = [aw @) + @) [Z(uﬁ.)’g,(t?)g.’(ﬂ)] [a2wi@) + )]




Chapter 5

Simulation Studies

We conducted a performance analysis based on a series of Monte-Carlo simulations

in linear regression, Poisson regression, and logistic regression and also applied our
method to a real-data example. In the simulation studies we compare our method

with the penalized-likelihood SCAD method. Our performance measures for these

comparisons are the median of the relative model error (MRME), the average number
of estimated zero coefficients that are initially set to zero, and the average number

of zero coefficients that are not initially set to zero. We also compare the estimated

values of the nonzero coefficients and the corresponding standard errors.
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Median Relative Model Error (MRME)

Following Tibshirani (1996), we compare the median of the relative model error (Fan

and Li, 2001) rather than the mean relative model error because of the instability of

the best-subset variable selection. The model error for the linear model is defined by
o (5 AT e 3
ME(B) = (p-8) BXX)(5-6)
‘The error for the selected model is compared to the error of the full model. For each

variable selection method, we computed the median of the relative model error, and

this is reported in the simulation studies.

5.1 Linear Regression Model
Consider a linear model of the form

=XB+oq (5.1)

with 8= (3,15,0,0,2,0,0,0)7 where X, = (;,,2s,,. .. 7;,) is a vector of covariates
and p = 8. The components of X and e are standard normal, the correlation between

; and z; is 0.5/, and o=1. The least-squares estimate of 3 is given by

BL.~=[ X’X} Zx'./, [X7x] Xy, 6:2)
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The estimating equation for 3 is given by

9(8)= 3" XT [y - X6 = 63

and the first derivative of the estimating equation g(8) with respect to 3 is
JB)=-Y XX,
=
We simulated 10000 data sets with n = 60 observations from the above model with the
components of X and e being standard normal. This is the model used by Tibshirani
(1996). Our penalized-empirical-likelihood SCAD (PELSCAD) is compared only with
SCAD since Fan and Li (2001) reported that SCAD performs better than LASSO
and other information-theoretic approaches. Following Tibshirani (1996) and Fan
and Li (2001), the performance of these methods was assessed based on MRME and
the number of zero coefficients. We also repeated the entire study with sample size
1= 100. The MRME values based on 10000 simulated data sets are summarized
in Table 5.1. It also reports the average number of zero and nonzero coefficients
The column labeled “Correct” gives the average number of estimated zero coefficients
that were initially set to zero, and the column labeled “Incorrect” gives the average
number of zero coefficients that were not iitially set to zero. The estimated values of
the nonzero coeffcients and the corresponding standard errors are reported in Table

5.2. From Table 5.1 we see that for n = 60 the MRME of SCAD is slightly smaller
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than that of PELSCAD, and for both methods the average number of zero coefficients
is close to the target of five. When the sample size increases to 100, the MRME of

PELSCAD is low compared to that of SCAD. The average number of zero coefficients

is again close to five. This clearly indicates that both methods perform well when a

parametric model is available.

Method MRMEY% _Avg. no. of zero coefficient:
forrect_Tncorrect

=60, o=1

SCAD 35.57 461 00

PELSCAD _ 36.52 461 00

n=100, =1

SCAD 4150 48 00
PELSCAD _ 34.55 49 00

Table 5.1: Simulation results for lincar regression model

0,
SCAD 3015 1474 2003
(0.167) (0.195) (0.136)
PELSCAD 3002 1496 1999
(0.163) (0.170) (0.141)

00, =1
SCAD 3027 1442 2.003

(0.139) (0.185) (0.104)
PELSCAD 2999 1499  1.999

(0120) (0.124) (0.104)

Table 5.2: Linear regression model: Estimates of nonzero coefficients with corre-
sponding standard errors in parentheses
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5.2 Poisson Regression Model

In this section, we consider the performance of our method when the parametric

model is misspecified, in the context of a Poisson regression model. Let 41,12, U
be n independent responses, each of which follows a Poisson distribution. The rela-
tionship between the mean and variance is given by E() = s = Var(y).

Let w7 = (i, i, s jtn). Let X e the design matrix and assume that the compo-

nents of X are standard normal. Assume also that

log(p) = XB

where 3 € RY is the vector of regression coefficients. Then, the log likelihood function

for B is given by
1B:y] = Y (0 XiB - exp(XB)} (5.4)
The estimating equation for 3 is given by

9(B) = 3_ X[ (s — exp(X:B))

and the first derivative of the estimating equation g(3) with respect to 8 is

§(8) ==Y exp(XiB)XT X
=1
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We gencrate over-dispersed Poisson count data y using the model specified through

a conditional density given by

Tl = S S, g ©5)

with u; & random variable such that E(u;) = 1 and Var(u) = . Marginally, we have
E(y) = p and Var(y) = (1 + pw). The distribution of u is chosen to be gamma.
with parameters (w, 1/) with w being the over-dispersion parameter. However, the
parametric likelihood and empirical likelihood are constructed under the assumption

that there is dispersion. We consider a f generalized linear model

such that

log(i) = Bo + Pray + Bawa + Byzs + Baxs

with f = (0.5,0.5,0.6,0,0). The covariates X = (1, 2,75, 24) are generated from a

multivariate normal distribution with mean zero, and the correlation between x; and

iy 18 05471, We choose four levels of over-dispersion: w = 0,1/8,1/6,1/4. Note that,

when w

we use ordinary Poisson regression model to generate the responses.
Where as for w > 0, we use the conditional density model (5.5) to generate the
responses. This is the simulation model used by Variyath, Chen, and Abraham (2010).
In cach simulation, we gencrate n = 100 observations for the response y from the

conditional distribution specified earlier. For each model, we analyze 10000 simulated
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data sets. The MRME and the average number of zero and nonzero coefficients over
10000 simulated data sets are summarized in Table 5.3. The estimated values of
the nonzero coefficients and the corresponding standard errors are reported in Table
5.4. From Table 5.3 we see that when there is no over-dispersion (w = 0), the
MRME of PELSCAD is smaller than that of SCAD. The average number of zero
coefficients for PELSCAD is closer to the target of two in all cases. When the over-
dispersion increases, PELSCAD performs better than SCAD. From Table 5.4 we see
that the nonzero parameter estimates of PELSCAD are close to the true values and
the SCAD estimates are not as close. Note that in PELSCAD, we did not model the

over-dispersion.

Method MRMEY% _Avg. no. of zero coefficients
orrect_Incorr

w=100, w=0
SCAD 7942 141 0.0004
PELSCAD 5849 174 0.0001
=100, w=1/8
SCAD

8624 124 00010
PELSCAD 6890 161 0.0003
n=100, w=1/6
SCAD

89.91 119 00012
PELSCAD _ 65.86 161 0.0005
n=100, w=1/4
SCAD

88.61 112 0.0028
PELSCAD _ 69.95 162 0.0033

Table 5.3: Simulation results for Poisson regression model
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Method B A A
0455 0502 0611
0.113) (0.089) (0.087)

PELSCAD 0.515 0.498 0.601
0.089) (0.078) (0.088)

n=100,

SCAD 0450 0492 0.602
(0.127) (0.115) (0.115)

PELSCAD 0502 0495 0589
(0.106) (0.106) (0.108)

=100,

SCAD 0448 0488 0.601
(0.134) (0.123) (0.122)

PELSCAD 0.506 0.497 0.587
(0.107) (0.107) (0.113)

=100,

SCAD 0444 0483 0507
(0139) (0.135) (0.134)

PELSCAD 0482 0495 0597
(0.124) (0.127) (0.120)

Table 5.4: Poisson regression: Estimates of nonzero coefficients with corresponding

standard errors in parentheses
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5.3 Logistic Regression Model

Let 41,2, s U be n independent Bernoulli trials with mean and variance E(y;) = m;
and Var(y,) = m(1 - ), where 77 = (w1, 72,... 7). Let X be the design matrix

and B ap x 1 vector of regression coefficients. Assume that

o
The log-likelihood function for 3 is
UB:y) = Y (X~ log 1 + exp(X,B)]}. (56)
=l

The estimating function for 8 can be written

where

__ exp(XiB)
tT T exn(XiB)}

n
The first derivative of the estimating function g(8) with respect to B is
¢(8) ==Y w1 -m)XTX.
=
We generate n=200 observations for the response y from the model

i ~ Bernoulli{p(X,8)},
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where

exp(XiB)
T+exp(X,B)"

»XiB)
and the first six components of X and B are as for the linear regression model
discussed in Section 5.1 The last two components of X are assumed to have a

Bernoulli distribution with probability of success 0.5. All covariates are standardized.

We repeat the simulation studies for n = 500 and n = 1000. Fan and Li (2001) used

& similar logistic regression model for comparison purposes. The simulation results

are summarized in Tables 5.5 and 5.6. From Table 5.5 we see that PELSCAD has a
smaller MRME than SCAD for all sample sizes. If the sample size is increased, the

MRMES are closer to eacl

other and the average mumber of zero coefficients is also

closer to the target value of five. Overall, the PELSCAD method performs well in

this case too.

5.4 Australian Health Survey

We consider the data set for doctor visits from the Australian health survey of 1977-
78. It contains health information for 5190 single adults where the young and old have
been oversampled. The data st is also available in the “R” statistical software (in

the faraway library). We apply variable selection methods under Poisson regression
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Method MRMEY% _Avg. no. of zero coefficients
Correct_Incorrect

n=200, =1

SCAD 67.01 483 00110

PELSCAD 5425 486 0.0031

n=500, =1

SCAD 57.07 499 0.0004

PELSCAD 5641 484 0.0000

n=1000, =1

SCAD 55.80 500 0.0000

PELSCAD 5333 498 0.0000

Table 5.5: Simulation results for logistic regression model

Method
n=200, 0=1
SCAD

PELSCAD

PELSCAD

n=1000,
SCAD

PELSCAD

Table 5.6: Logistic

sgression model:
sponding standard errors in parentheses

B B

1705
(n 503)
662

3.450
(0.660)
3.276

(0.703) 10 455)

3211 1.605

(u 168)

Estimates of no

Bs

2301
(u 493)

(n aiﬂ)

2.138
(u 249)

(0.175)

o coefficients with corre-
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to this data sct. The response of interest is the health of adults, which is measured
in terms of the number of consultations with a doctor or specialist in the previous
two weeks (y). In addition, we have several measures of health service utilization and

socio-economic parameters. Cameron ct al. (1988) analyzed this data set using an

economic model of the joint determination of health service use and health-insurance
choices in Australia. Cameron and Trivedi (1986) studied this data set in a different
context. Our main objectives are to model the relationship between the response and
the covariates and to identify the simplest model that gives a clear picture of the
data-generating structure. A short description of the variables is given in Table 1.1

of Chapter 1.

The mean of the response, number of doctor visits, is 0.302 and the standard de-

viation is 0.798. The data indicate that there is over-dispersion. The estimates of the

Poisson regression coefficients are given in Table 5.7. From this table, we see that ill-
ness (Xy) and actdays (Xy) are statistically significant. The covariate sex (X,) is also
marginally significant, indicating that female patients visit doctors more frequently
than male patients do. We use penalized-empirical-likelihood SCAD (PELSCAD)
and parametric SCAD to select the significant covariates for this real-data example.

We compare the results with information-theoretic approaches such as AIC and BIC
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in their empirical-likelihood versions. The selected covariates, the corresponding es-
timates of the regression parameters, and their standard errors are listed in Table 5.8
for each method. From this table, we sec that SCAD and PELSCAD identified the
covariates age (Xa), illness (Xy), actdays (Xa), and hscore (Xi0) as important and
forced regression coefficients of the other variables to zero. Note that the empirical-
likelihood version of BIC (EBIC) selected the simplest model whereas AIC selected
the largest model. These results are useful for understanding the data-generating

mechanism and for prediction.

Variablos __Coefficients _Standard Error_zvalue P2 > 2|
-2.2238 0.1898 11716 <10e-16
01569 0.0561 2795 00052
10563 10007 1055 0.2012
08487 10778 0787 0.4310
-0.2053 0.0884 -2.323 0.0202
01282 00716 1720 0.0855
204400 01798 2447 00144
0.0798 0.0921 0.867 0.3861
o 01869 00183 10227 <1016
XyActdays 01268 00050 25,198 <10e-16
Xy-Hscore 00301 00101 2079 0.0020
Xy-Cheondl 01141 00666 1712 0.0869
Xi-Cheond2 01412 0.0831 L1698 0.0896

Table 5.7: Estimates of Poisson regression coefficients for full model
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Variable _AIC___FAIC __BIC ___EBIC __SCAD _ PELSCAD
Intercept  -2.0801 -2.2049 -2.2444 20486 -2.010 -1.9952
(0.1008) (0.0691) (0.0679) (0.0517) (0.0626) (0.0191)
X 01620 02003 02056 02627
(00558)  (0.0542) (0.0542) (0.0527)
Xa 03551 05168 0.5694 09970 11507
(0.1432) (0.1319) (0.1307) (0.1231) (0.0462)
X -0.1998
(0.0843) — — - — -
Xs 0.0837 == — = =
(0.0535)
Xs 04696 -0.4375
(0.1764) (0.1731) — - — —
Xs 1861 01988 0.1997  0.2303  0.0638  0.0204
(0.0183) (0.0175) (0.0175) (0.0165) (0.0044) (0.0004)
Xo 01266 01277 01279 01363 01299 01371
(0.0050) (0.0049) (0.0049) (0.0045) (0.0041) (0.0033)
X 0.0311 0.0334 0.0320 0.0127 0.0047
(0.0050) (0.0049) (0.0049) (0.0016) ~ (0.0003)
Xu 01211 — - - - -
(0.0664) — - - -
Xia 0.1589 =
(0.0818) ~

‘Table 5.8: Estimates of Poi
parentheses, for model ide

m regression coefficients, with their standard errors in
ed by different variable selection methods




Chapter 6

Variable Selection for Cox’s

Proportional Hazard Model

Variable selection is an important problem in survival analysis. In practice, many co-

variates are potential risk factors and at the initial stage of the modeling, we normally
introduce a large number of predictors. Thus, the selection of significant risk factors

plays a crucial role in survival analysis. We focus our attention on Cox’s proportional

hazards model with right-censored survival data (Lindley, 1968).

Bayesian model-selection procedures for survival analysis have been proposed by
Faraggi and Simon (1997) and Faraggi (1998). Ibrahim, Chen, and MacEachern

(1999) proposed a full Bayesian variable selection procedure for the Cox model by
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specifying a nonparametric prior for the baseline function and a parametric prior for
the regression coefficients. Bayesian variable selection procedures are simple, but hard
to implement especially in high-dimensional modeling because of the computational

burden of the calculation of the posterior model probabilities. Some traditional vari-

able selection criteria such as AIC and BIC can easily be extended to survival analysi

Volinsky and Raftery (2000) extended BIC to the Cox model. Other traditional vari

d I as stepwise deletion and best-subset selection are useful

in practice. However, they suffer from several drawbacks, the most severe of which is

a lack of stability (for more details see Chapter 1). Tibshirani (1997) extended the

LASSO variable selection procedures to the Cox model. Fan and Li (2002) derived a

nonconcave penalized partial likelihood for the Cox model and illustrated the oracle
properties of their procedures.

In this chapter, we introduce the penalized empirical likelihood for Cox's propor-

tional h

zards model. A comprehensive review of empirical likelihood has been given

in Chapter 3. There are many recent studies of EL for survival analysis. Empirical

likelihood has many nice properties, including the ability to carry out hypothesis tests

and construct confidence intervals without estimating the variance. This is possible

because the EL ratio does not involve the unknown variances and the limiting distri-

bution of EL is chi square. This feature has been useful in survival analysis because
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variance estimation can be difficult in these problems. In EL, we need not estimate
the variances which makes many inference procedures practical. We now introduce

in detail the survival function, hazard function, and right-censored data of survival

analysis

Survival Function

Let T be a nonnegative random variable with distribution function f representing the

failure

ime of an individual from a homogencous population. The survival function

is & tool to describe time-to-event phenomena. It captures the probability of an

individual surviving beyond a specific time £. It is defined as
S(t)=Pr(T>1)=1-Pr(T <1)

~F(t).

S(t) is referred to as the reliability function in the context of failure time. 1f 7'is a
continuous random variable, then S(#) is a continuous and monotonically decreasing

function. The survival function can be written
S(t)=Pr(T21) =/ Jwydu.

Thus,

as(t)
dt
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Hazard Function

The hazard function s a fundamental quantity in survival analysis. This function is
Known as the conditional failure rate in reliability. The hazard rate is defined by

 PST<t+AT>1)

h) = fim, At :

1 7 is a continuous random variable, then we can show that

_ (1) _ —d(S@)]
bt) = 55 5

A related quantity is the cumulative or integrated hazard function H(t), defined by

H(t) = [ h(w)du = —In[S()]

Thus, for continuous lifetimes, ‘
.

S(t) = exp[~H(1)] = exp {— / h(u)du] ‘
o

Right Censoring

In survival analysis, censoring refers to data that are missing for some random reason. ‘
If the birth and death dates of a individual are known, then the lifetime is known.
However, we may know only that the date of death is after for some date; this is
called right censoring. Right censoring occurs for those individuals whose birth date

is known but who are still alive when they are lost to follow-up or when the study
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ends. These censoring times may vary from individual to individual.

In right censoring, for a specific individual under study, we assume that there is a

lifet

e T and a right-censoring time C. The T’ are random variables with density

function f() and survival function S(t). The exact lifetime 7" of an individual is

less than or equal to C. If T is greater than C, then the ind

dual is a survivor,
and his or her event time is censored at C. The survival data can be conveniently

represented by pairs of random variables (7, 8), where § indicates whether the lifetime.

T corresponds to an event (§ =

) or i censored (8 = 0), and Z is equal to T if the
lifetime is observed, and to C'if it is censored, i.e., Z = min{7, C}

We construct the likelihood function for right censoring as follows. For § =0,

Pr(Z = CJ6 = 0)Prls = 0] = Pr[§ = 0]
= Pr(z > C] = $(0).
Ford=1,
P(2,6=1)=PrlZ =T\ = 1)Prls = 1]
=Pr(z=TIT<CIPr{T < C)

- [ 2] u-s@1- )

“This can be combined into a single expression,

Pr{zd) = 70} [S())'"
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For a random sample of pairs (Z,6),i = 1,...,n, the likelihood function can be

written

L =TT Priso ) = [TV GG
o

6.1 Proportional Hazards Model

Let T,C, and X be respectively the survival time, the censoring time, and the

associated covariate values. Let Z = min{T,C) be the observed time and 6 =
I(T < C) be the event indicator (5 = 1 if the event has occurred and § = 0 if the
lifetime is right-censored). We assume that 7 and C are conditionally independent
given X and the censoring system is noninformative.

Our observed data {(X,Z,8) i = 1,...,n} are a random sample from a certain

population (X, Z,8). The complete likelihood of the data is given by

L= [TUx sz

‘
= TT[4288] st

= [T nzIX0)" (X ).
The complete likelihood simplifies to

L= TTtzixof [ew(-#zix)) ©
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To present this likelihood function clearly for Cox’s proportional hazards model, we
need more notation. Let 7, < 75... < 7 denote the ordered observed failure time
corresponding o t1,ta, .., t. Let (j) be the label for the item failing at 7;, and let

the covariates associated with N failures be X (1), X2, ... X(v). Let R; denote the

risk set immediately before time 7, defined by
Ry={i: %>}
Consider the proportional hazards model proposed by Cox (1975).
(1 X) = ho(t) exp(X B),

where X is a p x 1 vector of covariates, 3 is p x 1 vector of parameters, and ho(t)

is the baseline hazard function. The likelihood in (6.1) becomes
L =T] [ho(Zy) exp(X 98)] [ ] exp{—Ho(z) exp(X.B)} ©2)

where Ho(s) is the cumulative baseline hazard function. In the Cox proportional
hazards model, the baseline hazard function is unknown and is not parameterized.
Following the idea of Breslow (1975), consider the “least informative” nonparametric
model for Ho(+), in which Hy(t) has a possible jump h; at the observed failure time

7. More precisely, let
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Holt) = th,l(f, <t).
=

Then
x
Ho(Z) = Y_hil(i € Ry). (63)

=t

Using (6.3), the log-likelihood of (6.2) becomes

» " (N
((ho(2)) = Y {los(hy) + X8} = 3 {ZM(: € R,)exp(x.ﬁ)}» (6.4)
= =l b=

Taking the partial derivative of ((ho(Z)) with respect to h; and equating to zero gives

1
{2 »xn(x(/n}
=

Substituting f; into (6.4) and removing the constant term —N, we can write the

e

partial log-likelihood as

~
W=y [xmﬂ —log {Z»xp(x,ti)}] 1

ek,

An equivalent way of writing the partial loglikelihood is

“s) = 26 [Xﬂ—log{ZMp(XLﬂ)Y:(Zx)}] (6.5)
i T

where Y;(u) = I(Z; > u) indicates whether or not the i*" individual is at risk at time

4. Taking the partial derivative of (6.5) with respect to 8 and equating to zero gives
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the estimating equation for 3. This can be written

. > (X BVZ)XT
98 =Y & | X - L (66)
3 exp(XiB)Yi(Z)
T

The empirical likelihood method has been extended to linear regression with cen-
sored data (Qin and Jing, 2001a; Li and Wang, 2003; Qin and Tsao, 2003). It has also
been adapted for semiparametric regression models, including partial linear models
(Leblanc and Crowley, 1995; Shen, Shi, and Wong, 1999; Qin and Jing, 2001b; Lu,
Chen, and Gan, 2002; Wang and Li, 2002). We propose a nonparametric version of
the penalized-likelihiood variable selection method in survival analysis, replacing the
parametric likelihood by the empirical likelihood. Following equation (3.6), we can
write the penalized empirical log-likelihood function for Cox's proportional hazard

model as

L0 = -3 [los1+ 3" (8)08))] - ©n

=

where py(#) is the SCAD penalty function defined in (2.2) and g(8) is defined in

(6.6). The penalized empirical likelihood estimate of B is derived by maximizing

(6.7) with respect to 3, with the proper choice of the tuning parameters involved in
the SCAD penalty function. For the maximization, we used the modified Newton-

Raphson algorithm discussed in Chapter 4. During the maximization, many of the
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insigificant estimated coefficients are forced to zero and hence their corresponding
variables do not appear in the model. This achieves the objective of the variable

selection.

6.2 Simulation Studies

Fan and Li (2002) conducted a series of Monte-Carlo simulations for Cox’s propor-
tional hazards model and showed that the penalized-likelihood variable selection us-

ing SCAD has better performance than the LASSO, HARD, best-subset, and Oracle

variable selection methods. Consider the exponential hazard model

h(t1X) = exp(XB),

with B, = (0.8,0,0,1,0,0,0.6,0)7. Let the correlation between z; and z; be p"~/I.
The distribution of the censoring time is exponential with mean U exp(X ,), where
U is randomly generated from the uniform distribution over [1,3] for each simulated

data set, so that about 30% of the data are censored. We simulated 1000 data

sets consisting of n =75 and 100 and p = 0.3 and 0.5 from the exponential hazard
model with the components of X being standard normal. ‘This model is used by Fan

and Li (2002). The model errors of our procedures are compared to those of Cox's

estimates. The median of the relative model error (MRME) and the average number
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of zero coefficients over 1000 simulated data sets are summarized in Table 6.1. The
estimated values of the nonzero coefficients and the corresponding standard errors
are reported in Table 6.2

From Table 6.1 we sce that when p = 0.3 and n = 75 or 100 the MRME of PELSCAD
is smaller than that of SCAD and the average number of zero coefficicnts is closer to
the target of five. From Table 6.2 we see that the nonzero parameter estimates of
PELSCAD and SCAD are close to the true values and their corresponding standard

errors (given and 6.4,

n parenthes:

). Similar results hold for p = 0.5; see Tables

This clearly indicates that PELSCAD performs well compared to SCAD.

Method MRME _Ave. no. of 0 coefficients
Correct_Incorrect

n=75, p=03

SCAD 4458 443 0.000

PELSCAD 1977 498 0.049

w=100, p = 0.3
SCAD 3720 462 0000
PELSCAD 22.05 5.00 0.017

Table 6.1: Simulation results for Cox's proportional hazards model
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Method B By

0827 L1042  0.595
(0.186) (0.180) (0.219)
083 L048  0.616
(0.178) (0.185) (0.226)

0.825 1.029 0.605
(0.148) (0.148) (0.161)

PELSCAD 0821 L. 0.6

(0.144) (0.145) (0.181)

Table 6.2: Cox’s proportional hazards model: Estimates of nonzero coefficients with
corresponding standard errors in parentheses

Method MRME _Ave. no. of 0 coeffici
Correct_Tncorrect

n=75, p=05
AD

SC 459 456 0025

PELSCAD 2258 488 0046
=100, p = 05

SCAD 3751 473 0008

PELSCAD 2069 497 0014

Table 6.3:

imulation results for Cox's proportional hazards model
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B B By

0828 1042 0595
0.187) (0.203) (0.225)
0844 1046 0616

(0.184) (0.197) (0.229)

0818 1.028 0.600
0.145) (0.153) (0.174)
PELSCAD 0830 1038  0.620
(0.142) (0.164) (0.165)

Table 6.4: Cox’s proportional hazards model: Estimates of nonzero coefficients with
corresponding standard errors in parentheses

6.3 Lung Cancer Example

We now apply our variable selection method to the lung-cancer data set. The data set,
lung.data, is available in the “R” statistical package (in the SIS library). This data

set contains information on 137 subjects, such as survival time and censor status, as

well as information on six covariates. The covariates are Xy =trt (1=standard treat-

ment and 2=test), X» = celltype (1=squamous, 2=smallcell, 3=adeno, and d=large),
Xy = karno (Karnofsky performance score), Xy = diagtime (months from diagnosis

rior (prior therapy: 0=no and

to randomization), X5 = age (in years), and X =)

es).

“The regression estimates of the full Cox’s proportional hazards model are given in
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Variables __Coelficients _Standard Error_z-value P[Z > 2]

Xitrt 0.1138 00941 1206 02279
Xy-celltype 01383 00828 1670 0.0949
Xgkamo  -0.7080 0.1082 6541 <10e-11
Xi-diagtime 0.0230 00962 0239 0.8113
X-age 00384 0.0965 0398 0.6907
Xgprior _-0.0358 01017 0352 0.7246

‘Table 6.5: Estimates of Cox's proportional hazards model coefficients for full model
‘Table 6.5. From this table, we sec that the Karnofsky performance score (X) i statis-
tically significant. We now use the penalized-empirical-likelihood SCAD (PELSCAD)
and SCAD procedures to select the significant covariates for this real-data example.
The selected covariates and the corresponding estimates of the regression parameters
with their standard errors in parentheses are listed in Table 6.6. From this table, we
see that SCAD and PELSCAD identified only the covariate Karnofsky performance
score (Xy) as important; the other variables were not selected in the final model.
‘These results are useful for understanding the data-generating mechanism, for fitting

a simple model, and for prediction.
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Variables __SCAD __ PELSCAD
Xi-trt = =

Xocelltype -
‘ Xykarmo 06713 -0.6672
(0.0017) (0.1220)

Xi-dingtime  — -
Xs-age — =

Xg-prior —

Table 6.6: Estimates of regression coefficients in Cox’s proportional hazards model




Chapter 7

Conclusion

In this chapter, we summarize our contributions to variable selection. We proposed
a penalized variable selection approach based on the empirical likelihood (EL), a
nonparametric likelihood sharing many of the properties of the parametric likelihood.

In our method we do not need to specify the parametric family of the distribution

to do the inference. We defined the profile empirical likelihood based on a set of

estimating equations and developed penalized-empirical-likelihood variable selection.

We discussed the asymptotic properties of our method in detail. We also proposed an
algorithm for the implementation of the new method. Simulation studies showed that

1 when a parametric model is available its performance

our method is consistent a

s comparable to that of the existing method for linear regression, Poisson regression,
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and logistic regression. When the parametric model is misspecified, our method
outperforms the existing method. We also applied our method to survival analysis

to investigate variable selection in Cox’s proportional hazards model. Our simulation

showed that PELSCAD performs as well as SCAD.
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