








PENALIZED EMPIRICAL LIKELIHOOD

BASED VARIABLE SELECTION

by

@ T ha rs han na N ad a ra j a h

A thesis sulnniiicd to the School o] Graduaie Stiulies

in portiol julfiilment o] the requiremcni jor the Deqrce oj

Master o] Science in Statistics

Dep ar tm cn t of M a th em a t ics and St a ti st ics

M e mor ia l Univ er s ity of N ewfonnd la nd

Newfoundl and , Canada .July 2011



Abstract

Variab le selection is an important topic in high-dimensional sta t ist ical modelingves-

peciallyin generalizerllin earmodels. Several variable sc!ection proced ureshave been

devc!oped in thelitera tur e, includ ing the sequential approach,prediction-error ap-

proach, and information -t heoret ic approach. All of these arc computa tionally ex-

pensive. A new met hod based on penalized likelihood has been lauded for its corn-

pnt ati onal efficiencyand st abilit y. In this approac h the variable selectio n and the

est imat ion of th e coefficients are car ried out simulta neously, Th e param etr ic likeli-

hood is a crucia l component , but in many sit nations a well-defined paramet ric likeli-

hood is not easy to const ruct. To overcome this problem, Variya th (2006) proposed

a penalized-empirical-likelihood (PE L) based varia ble select ion where emp irical like-

lihood is const ructe d based 011 a set of esti mati ng equat ions. We investigate the

,.,y mpto ticpropertiesofthe newmethod ,a nd developanalgorithmforestimati ngthe

parameters. Our simulat ion st udies show t hat when a param et ric model is availab le,



PEL-bascd variable select ion gives rcsnlts similar to those achieved by parametric-

likelihood variable selection. Th e fonn er method outperforms thc latt er when the

paramctricmodelismisspecificd.\Ve extcnd our appro achtovariable selection in

Cox's proportional hazard model.
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Chapter 1

Introduction

1.1 B ackground of Variable Selecti on

Variab le select ion is an import ant topi c in stat ist ical modeling, espec ially in general-

izcd linear models (GLtvI). In practi ce, a large number of covariates, (X " X 2, . .. , X p ) ,

arc believed to have a ll inftucnceon the response variah le y of intcrest . However , some

covariatcs havc no influcnccor a wcak influence, and a regression mod el t hat includes

all the covariate, is not advi sable, Exc!udingthe unimportant covari at e,re",ltsin a

simpler model with bett er interpretive and predictive value.

Th e prob lem of identifying a submodel t ha t adequat ely mod els th e response is

genera lly referredtoastheva riables eleetion problem. Sta tist ica llys pea king, variable



selec t ion is a way to redu ce th e complexity of t he mod el, in some cases by acce pt ing

a sma ll amount of bias to impro ve the precision . Th e ma in adva ntages of selectin g a

o Th e int erpr et ati on of a large mod el can be difficul t .

o Th epredicti on accur acymaybcimproved bydropping rednnd ant andirrelevan t

o Knowing which variables are significant gives insight int o th e natur e of th e

prediction probl em and allows a better und erstanding of th e final mod el.

o It is cheap er to IIlcasl1rcarcduccdsctofvariab lcs.

For exa mple, conside r th e doctor-visit data from th e Austr ali an hea It h survey of 1977-

78, which is discussed in det ail by Cam eron a nd Trivedi (1998). Th e dat a set consists

of a response vari abl e (the numb er of doctor visit s in the previous two weeks by an

ad ult) and twelve covariates , includin g health indi cator s and genera l factors, which

arc list ed in Table 1.1. O ur goal is to mod el th e relation ship between th e resp onse

and thecovariat es . Th e mod el wit h all eovariates is not intere sti ng since it is difficuIt

to inter pret a nd will have poor predi ction precision. We aim to find a simpler mode l

that gives a reason able description of th e dat a-generating mechanism . Th e initi al

ana lysis of and vari abl e select ion for t his data set arc discussed in Chapter 5. In



the next subsec t ion we will discuss commonly nscd rcgrcssion mo de ls andcst imat ion

procedur es where vari abl e selectio n is considered impo rta nt .

Descrip tion
y-Dvisits
X l-Sex
X 2-Age
X,,-Agcsq
.I\ ",- I llCOm c

X.- Levyp lns
XG-Freepoor

X7-Frccrcpa

X 8-Illness
Xg-Actd ays
XIO-Hscorc

X u- Ch condl
X l2-Ch cond2

Num ber of doc tor visi ts in previous two weeks
1 if Icmale, 0 if male
Age in years divid ed by 100
Age squa red
Annu al income in Aust rali an doll ars divi ded by 1000
1 if covered by priva te hea lth insuran ce; oot herwise
1 if covered by government because low income,
recent immi grant , unemployed ; Ootherwi~e

1 if covered free by govefllm ent becan se clderly, disab ility pension,
invalid vetera n, or fam ily of deceased veteran; O ot.herwisc
Number of illucsscs ln previous z weeks, wit.h5 or more coded I.'5
Numbcrof days ofred ucedactivit.y in previous2wecksduct.o illnessor injnry
Ge nera l heal t h questionn aire score using Goldberg's meth od ;
high scorc iudi cat os had hcalth
1 if chroni c condit.ion(s ) hut. not. limited in act ivity ; O oth erwisc
1 if chro niecondit ion(s ) and limited in act ivity; 0 ot herwise

Table 1.1: Response and covariates of do ctor-visit data

1.1.1 Linear Mo de ls

Linear mod els have been t he mainstay of statistics for thir ty yea rs a ndrcmainone

ofo nr most com mon ly used statist ical too ls. In linca r lllodels, the data are modeled

using linear functions of th e covar iates , and the unknown para meters are est ima ted

from t he dat a . For a given data set {Yi; Xil l ... t Xip } :~ 1 ofn units/ subjects, a Iinca r



1.1 BA CK GROU ND OF V ARI ABLE SEL ECTIO N

regression mod el ass umes th at tho relati onship between th o rospo nsc varia blc p, and

t he p dimcn, ionalrcgressors Xi is linca r. Thu s, t he mod el has the form

(1.1)

whcre e is th e error te rm, X is an n xplUatri x of covariat c vall1Cs, and{3is a vcctor

of unkno wn parameters to be estimate d. A violat ion of th c linearity assumpt ion

between th e response and the exp lanat ory varia bles or th cdistr ihut ional ass umption

of thc randomcrror may incrcascthc modclvariat ion. Th e meth od of least squares

is th e most popul ar met hod for est ima ting the rcgression par ameters, Thi s approac h

minimi zes th e residua l sum of squares,

In m atrix form, the r e sidu a l SUIll of s q uares can b e w r it ten

RSS({3) = (y - X{3 f "(y - X{3 ).

Hence, th eordinarylcast- squares estim at e of{3is givell by

and thc fitt ed values at the trai ning input s are

(1.2)

(1.3)



If we assume that € ~N(O , a2 I,, ) , then the likelihood function of y can be writt en

Let €((3,a 2 ) = log L((3, a2 ) , then the part ial derivative of €((3, a 2) with respect to (3

est imate of (3.

1.1.2 Gen eraliz ed Linear Mod el (GLM)

Genera lized linear models arc defined hy Nolder and Wedderburn (1972).

include linear regress ion mod els, logist ic and probit models for categorica l responses,

and log-linear models. For all th ese modcls, a linear relat ionship is assumed between

the response variable y and covariates X through some link Iuuct ionv Tb c condit ional

expec ta t ion of y given X is specified as

JL= E(yIX) = g(X (3), (1.4)

where g(*) is a known Iink functi on and f3 is the vector of regression parameters .

A GLM includes a random component specifying the condit iona l dist ribution of the



1.1 B ACK GRO UND OF V AR IABLE SEL ECT IO N

rcspon scvariablc y givcllthc cxplanatory variahlc.Thaditionally,thcralldolIl COlll-

ponent is a memb er of an exponentia l-family dist ribntion such as the Gaus sian , bi-

nomial, Poisso ll, gallllll a,or invcrsc-Gallssian. Th e estim ation proceeds by defining a

measure of goodness- of-fit between th e observed dat a and th e fitt ed values generate d

by th e model. T he parameter est imates arc th e values th at minimi ze th e goodness-

of-fit crite rion. We prim arily estimate the param eters by maximizing the likelihood

for the observed da ta. T he log-likelihood based on a set of independent observa tions

Yll Y'l.,· · · , Yn is

The goodn ess-of-fit crit erion is

D (Y; IL) =2f (y; y ) - 2f (/l ; Y );

it is called the scaled deviance. Note that e(y; y) is the maximum likelihood for an

exact fit in which the fitted values arc equal to th e observed dat a , and it docs not

depend on the param eters. Maximi zing f (/l ; Y) is equivalent to minimizing D (y ; /l )

wit h resp ect us u , subjec t to the constra ints imposed by the mod el.



1.1. 3 Quasi-Lik elih ood (QL)

When th ere is insufficient inform ation about th e dat a for us to specify aparam etri c

model, quasi-likelihood is often used.ln th is sitllation we can develop th e stat ist ical

analysis based on approximat ions to the likelihood, and we concentrate 0 11 ca..ses

where t he observations are indep endent. Suppose we have a vector of independent

responses , y , with mean u and covariance diagonal matrixa2V(J-L ). \VCassume tha t

{t is a function of covariates and some regression pa ram eters (3. To const ruct th e

quasi-likelihood , we st ar t by looking at a single compon ent y of y . Under th e above

condit ionsv t he funct ion

has th e following prop erti es:

E(U) = 0, V(U ) = a2~ (ll ) ' and -E (!Jjf;) = a2~ (jl) '

Most ofthefirst- orderasympt otictheory concernedwiththe likelihood is based on

th ese prop erti es. It is therefore not surprising th at

Q (/l ; y ) = [:'~(:)dt

behaves like a log-likelihood functi on for I' ; this is called th e quas i-likelihood. Th e

quasi-likelihood for complete data is



Q(JI;Y ) = t Q(/I;;Y;).

T ho quasi-deviance function for a single observation can be writte n

Th e quasi-likelihood estimat ing equa tion, for the regression parameter' (3 are ob-

ta ined by differenti atin g Q(JI;Y ). Th ey can be writte n in th e form U(/J) = 0, where

U((3) = DTV-~~Y - JI)

is ca lled thc quasi-score function and D is t he derivat ive of JI((3) with respect to (3.

T he Ncwto n-Raphson met hod is widely used to estimate thc parameters.

1. 2 Va riable Selecti on M et ho ds

Th e main objcc t iveofmriableselcct ionmethods is to identi fy a simpler adequa te

model that is easier to interpret th an tb efull model. In linear models, t he submodel

rclat es t hcresponsevariable yto a sub set of comp onent s of X intheform

y =X(S)(3(S) + f

where X (s) is a subse t of the components of X , (3(s ) is a vector of thc correspond-

ing regression parameters, and s ~ (1, 2, . .. , p) . Th e variable selection problem



is to find th e bcst sub set B such that thesuhmodcl is opt ima l accord ing tosome

cri terion t hat gives a good descripti on of th e dat a-generati ng mecha nism. Several

meth ods have been develop ed ill th e literatur e for th eidcnti ficati on of th e hcst

sub mod el. Th ese met hods ca n be broad ly classified into four ca tego ries: seq uen-

t ialapproac hes , predict iou-errorapproac hcs, informa t ion-t hcoret icapproac hcs,and

penali zed-likelihood a pproac hes. In th e next sec t ion we will discuss ex ist ing vari able

select ion proc ed ures and their adv ant ages and disadvantages.

1.2 .1 Sequen t ial Approach es

T he sequent ial ap proac hes were developed in the ear ly 1960s when computi ng ro-

sourc es were limited . In these approac hes , on ly some of the possib le submodc ls are

evaluated to identif y the best mode l. In the forwa rd- select ion approach, we sta rt

with au inter cept mod el a nd add th e variabl es one at a tim e. At each ste p, each vari-

able tha t is not alrea dy in th e model is tcst ed for incl usion , a nd t he mostsiguificant

variable is added to th emod cl. Thi s pr ocess cont inues unt il none of th e remaining

variables are significant when added to t he mod el or t here are no more variahl es. Be-

cause of the complexity t ha t a rises from th e natur e of thi s pro cedur e, it is essent ially

imp ossible to contro l th e error rat e.

Forward sclcctionhasdrawhacks,including th efactthat addition of all ew variabl e



lIlay change th e signifieance of one or lllore variablcs al ready includedin thelllodel.

An alternative approac h is backward elimination. In t his approa ch, we sta rt a model

wit h all tbe varia bles of interest . Th en the leas t importa nt vari ab le is dropp ed , pro-

vided it is not significant . We cont i nue th is process by succcss i\'ely rL~ fi t t i ng red nccd

models and applying the sa me rule nntil a ll the variables remainin g in the model are

stat ist ically significant. Backward eliminat ion also has dr awbacks, Sometimesvari -

abies t hat are dropped would be significant in the final redu ced model. Th is suggests

that a compromise between forward selection and backward elimina tion should be

Efroymsou (19GO) proposed a stepwise-regression approa ch t hat is a combina tion

of t he above two approaches. T his meth od uses forward selection , bu t after the add i-

tionof each variable, backward elimina tion is applied to potentially remove vnriables

already in the model. Stepwise regression does not guara ntee to find an opti mal

submodel. Tb e sequenti al app roaches are compu tat ionallylessdelllandin g th an the

1.2.2 Pr edi cti on-Error A pproach

Anot her approac h to variable select ion is to choose the sub model with t he best ability

to pred ict a fut ure response. Meth ods using t he prediction-er ror approa ch, such as



cross-validat ion a nd bootst rap, ar e compnta t iona lly int ens ive. Cro ss-validati on has

been well st ud ied as a basis for mod el select ion by St one (1974). In cross-validat ion,

we com pnte t he predicti on er ror of all snhmodcls. We split th e dat a into [( parts of

roughly equa l sizes and est imate the prediction error for one part of th e dat a based

on t he fitt ed submode l using the rema ining (1( - 1) part s . We th en combine all J(

est imates of t hc prcdict ioncrro r forcachs ubmode l. Th e sub mod cl with th e minimum

pred ict ion crro r is selected .

Let k : {1, 2, ... , n } >-+{1, 2, ... , [( } he an indexin g functi on thatindicates the

par tit ion to which each observatio n is allocated by th e randomi zati on . Th e case

est imators are approx ima tely unbiased for th e t rue prediction error, bu t th ey can

have a high var iance and t he computa t iona l burden is also high . In genera l, five- or

ten-fold cross -valida t ion is recomm end ed (SL'C Breiman and Spector , 1992; Kohavi,

1995).

Bickel and Freedm an (1982) suggeste d that condit iona l boot st rap be used for

variab le selection. T he bootst ra p is a genera l tool for assessi ng stat ist ical accuracy .

Suppose we wish to fit a mod el to a set of train ing dat a . Th e basic idea is to ra ndo mly

draw dat a sets with rep lacement from t he t ra inin g data , eachofthesa me size as t he

origina l tra iningsct. Th is procedur e repeated a large numb er of tim es. Th en we refit



th c mod cl to cach of t hc bootst rap samp le sets and oxaminc the bchavior of thc fits.

Th ese methods are computer- intensive and tend to be impract ica l ifwc havc to

fit more th an 15- 20 mod els or if th c sa mple size is lar ge. However, cross- valida t ion

offers an intercstin g alt ern ative for model selectio n . In some sit uati onsthepredict ion

error is not well defined (for exa mple, in genera lized linea r mo dels) an d th crcforc

th ese meth ods ar e not applicable.

1.2 .3 Infor m ati on- Th eor et ic A pproach

In th is sccti on , we briefly int rodu ce the most commonly used inform ati on- th eorct ic

model select ion approac hes: the Akaike informatio n crite rion (AIC) and Bayesian

informat ion critcrion (BIC ). Th esc mcth ods a rc appli cab lc whcn a well-defined para-

metri c mod el is available. Wc will also discuss nonparam et ric versions of AIC an d

Akaike I n fo rm a t io n C r iterion (A IC)

Kullb ack and Leibl cr (1951) int rod uced thc Ku llback-Lcibler (K-L) "dist ance" or

"informat ion" between t\VO mod els. Let j alld g be cont inuous dist rib uti on funct ions ,

th en th e K-L inform ation bet ween mod els j' andg is defined to bc

I (j, g ) = Jf (x) log [~~~;~ ) ] dx .



Th e nota tion [ (J ,y ) de notes t he distance from a to f. However , th e K-L distance

can not be computed with out full knowledge of bot h f and the para meter 0 for each

candidate model Yi(:rIO). Akaik e (1973, 1974) found a simple relationship between

the K-L distance and Fisher 's max imized log-likelihood functio n. Aka ike also found

a rigorous way to estimate the K-L inform ati on , based on th e cmpi rical log-likelihood

funct ion at its maximum point . We represent th e full model with p para meter s as

Akaike formul ates th e prob lem of stat ist ical model identificati on as the selection of

asubmodel f (y, X, (3,), where the par ticular restricted model is defined by t hecon-

straints ri.•+ 1 =;3.•+2= ... =;3p= 0, so that

model(s ) : f (y , X ,(3.•), (3.• =(;31.;32, . . ;3" O,.. . ,of

where s is the numb er of parameters and (3, is a subspace of )R" . Let /3, be the

maximum likelihood est imate under model(s), th en t he log-likelihood funct ion is given

by

AlC(s ) = -2£(/3. ) + 2k



where k is t he cardina lity of 8 . Under thi s criter ion we choose th e mod el wit h the

Bayesian Inform at ion C ri t e r ion (B IC)

Schwarz (l !J78) suggested nsing a Bayesian approac h to the model select ion problem.

T his met hod resu lts in a criter ion tha t is similar to AIC. It is based on the penalized

log-likelihood funct ion evalua ted at the maximum likclihood est imate for the model.

T he penalt y term in th e BIC obta ined by Schwarz (1!J78) is the AIC penalty term

k multiplied by ~log(n ) , where n is the sample size, Similar ly to AIC, the BlC of a

submodel is defined to be

BlC(s) =-2f(iJ,) + kl og(n).

T he submodel with th e min imum BlC value is selected. It has been observed th at

minimizing AIC docs not produce asympt ot ically consisten t est imates of the correct

mod el. In contrast , BlCis consist ent .

M nllow 's Cs C r it c r ton

Mallow's Ci. is a techniqu e for model selection in regression proposed by Mallows

(l!J73, 1!J!J5). Th e C, sta t istic is a criterion to assess the fit when models wit h



different numbers of param eters arc be ing compared. Th e Mallows cr iterion for a

where RSS(s) is the residua l sum of sqnares and k is the car dina lity of s. Usnally

Ck is plott ed aga inst k for t he collection of subset models of various sizes under

conside ra tion. Accept able models (minimizing the total bias of th e predicted values)

lire t hose for which Ck approaches th e value k.

In summary, the inform atio n-t heoret ic approaches are based 0 11 Strongparametric

mode! assumpt ions . In GLMs and QL, the model is frequently spec ified by a set of

cst imating equations und we rnay not have fully spec ified param etri c ussumpt ions.

Hence, these method s can not be used directly. One solut ion is to usc nonp arnmctr ic

theoretic npproach is th o computa t iona l burden of fittin g all possiblc submodels.

In the next sect ion, we discuss th e empiricnl-likelihood-based inform ation- t.heoret.ic

approac h for variable select ion proposed by Variyat h, Chen, and Abrah am (2010).

Empirica l-Likelihoo d- Base d Inf ormation-Theor eti c Approach

Variyath , Chen, lind Abrah am (2010) developed an information-th eoretic approac h

to variable selection bas ed on a nonp aramet ric likelihood , for usc when 1I well-defined



pa ra metric model is not ava ilab le. Th ey rcplaccd th c param et ric likelihood by thc

cmpirica l likelihoo d a nd invest iga ted thc usc ol empiricnl-likelihoo d- bused AlC aud

Ill C. Th e empirica l-likelihood-based AlC is defined to be

EAlC(s ) = 11'(,8., ) + 2k ,

whcrc ll' (,8, ) =2£EL(,8,) is thecmpirica l-likelihood rati o function for the submo de l.

Similar ly, the empirica l-likelihood-based BICis defiued to be

EIllC(s)= 1I' (,8, ) + k log(n ).

T hc bes t model is idcu ti ficd as t hc mod cl with thc miuimum value of EAlC (or

EIll C) over a ll possib le sulnnode ls. More det ailsofthe empir icallikelihood ar e givcu

in Cha pter 3. Variyath , Chcn, au d Abrah am (2010) show that the empirica l and para-

metric likelihood-based AIC and BIC have first-ord er asy mp tot ic pro pert ies. Th eir

simulat ion st ud ies show t hat when a par amet ric likelihood ex ists, thc two meth ods

have similar performance. Th e empirica l-likelihood- based approac h is superior when

thcpara mctr ic mod cli s misspccificd.

In t hc iuform ation-th coret ic ap proach a complete evaluat ion of all the subruodels is

necessar y, As thc lllllllbcr of covariatcs incrca...,cs , the computa t ioual burden becomes

more severe, To avoid the evaluat ion of a ll the submo de ls, a new pena lized-likelihood

variable select ion approac h has recent ly been developed .



1.2.4 Pen ali zed-Lik elih ood A pproac h

Th e idea of penalizati on is very useful ill sta t ist ical modeling parti cularly ill high

dimensional vari able selection , Most tradi tional variab le selection procedur es such

I.' AIC, Mallow's Ck , and BIC use a fixed penalty based on t he size of th e model.

However , all these procedur es usc eit her stepwise or subset -select ion procedur es to

select th e variab les. T hese selection procedur es make the pro cedur es computat iona lly

intensive and unstable. Toovercomethe ineffieiencies of tra ditio nalvariable selcct ioll

procedur es, Fan and Li (2001) prop osed a unified approa ch via nonconcave penal-

izcd least squares. T his meth od auto mat ically and simulta neously selects variables

and est imates th eir coefficients. Th e leas t absolute shrinkage and selection operato r

(LASSO) proposed by Ti bshiran i (1996, 1997) is anot her variant of the penalized-

likelihood approa ch. Fan and Li (2001) applied th e pena lized-likelihood approach to

lillearregression , robustlinear regression, and generalized linear models. T hey show

th at the pro posed penalized-likelihood estimator wit h the smoothIyclipped absolute

deviation (SCAD) penalty function (defined in Chapter 2) outper forms all the sub-

set and information-th coretiemriable sclcction procedur es in te rms 0 f comput ati onal

cost and sta bility. Th e SCAD improves the LASSO by red ucing t he estimation bias .

Fur t hermore, th ey show that th e SCAD possesses oracle prop erti es with a proper

choice of the tu ning parameters. Th e true regression coefficients th at a rc zero are



automatically shr unk tozcro, and the remaining coefficients arc sinmltancously est i-

mat ed . Hence, t he SCAD and its prop erti es are ideal procedu res for vari able select ion,

at leas t from a th eoreti cal point of view. T his encourages us to investi gat e SC AD

pro pert ies in nonparamet ric-likelihoodsett ing.

1.2 .5 Motivat ion for N ew Approach

Several methods have been developed to select the best submodel, Th e sequent ial

approac hes arc computa tiona lly less demandin g as the numb er of covariates increases ,

bu t th e identi fica tion of the opt imal mod el is not guara ntee d. Th e simplest and

most widely used variable selection method is cross-va lida t ion. In some situat ions

the predict ion erro r is not well defined, for exa mple in genera lized linear mod els,

whichl imit sthe appli cat ionof t histechniqu e. lnform ation-th eoreti c variabl e select ion

methods such as AIC and mc arc based on th e param etri c likelihood . T hese two

cr iter ia can not be applied without full knowledge of the param etri c mod el. If the

mod el is not well defined , we can usc empirica l-likelihood-base d AIC and mc. In

some sit ua t ions , th e number of possible submode ls is large, and th e computa tio nal

cost beco messubsta nt ial ifallthesubmode ls must beevalua ted . Methods based on

penalized likelihood such as LASSO and SCAD have superior computa t iona l efficiency

and sta bility . SC AD impro ves on LASSO by reducing the est imat ion bias a nd it



1.3 PROPOSED ApPROACH TO VAH IAllLE SELE CTION

satisfies th e oracle prop erti es. Th e parametri c likelihood is a cruc ial componentof

t hese meth ods. As discussed earlier, the parametri c model is not well defined in many

cascs , lilllit ingtheapplicat ion of the methods . Weinvestigat e theprop ertics ofS CAD

in a nonp aramet ric set t ing, where instead of the param etri c Iikelihood , we nsethe

empirical likeliho od based on a set ofcst imating equa tions.

1.3 Proposed Approach to Variable Selection

Likelihood meth ods playa maj or role in stati st ical ana lysis. T hey can he used to

the problems arising when the da ta are incompletely observed , distort ed , or sampled

with a bias. Th ey can be used to pool information from different data sour ces. One

prohlclll with paramctriclikclihoodinfcrence is therisk of lllodcl mis-spccifica tion.

Snchllli s-specificati on can callselik elihood-b ased cst imatestobeineffi cient. To avoid

the risk of model mrs-specificat ion, a nonparam ctri c meth od can bo uscdTnstcad of

para metr ic likelihood ,we nsc nonpara mctriccmpirical likelihood inthc pena lized-

Iikclihoodvariablc sclcction oppr ooch.



1.3 PROPOSED ApPROACH TO VAR IABLE SEL ECTIO N

1.3 .1 Empirical Likelih ood (EL)

Owen (1988) introdu ced th c cmpiri cal likelihood . Empiric allikclihood is a nonpara-

mctri cmcth od of st at istica linference. It allows us to use likelihoodmcthods withont

assuming that th e data comc from a known distri buti on. Th e empirical likelihood

method combines th e reliabi lity of ncnparamctr ic method s wit h t he flcxibility and

effect ivcness oft hc likclihood approach.

Let Yt , !J2, ··, !flt be a random sample from a cumulat ive distribution function

Pi = p ry = Yi) = F (Yi) - F (Yi- )

be t ho probabi lity mass assigned tOYi. T hc cmpiric al likclihood function defined by

Owen (1988) is

Maximi zing

R(F) = log {L(p )} = ~log(P;)

n, = Il leads to v', = - T hcmaximum empiri cal likelihood

F(y) = ~PJ(Yi :'::: y) = F,,(y),



whcrc Jt») is t he indi cator function. Th c clllpiricaldistr ibliti onflincti on bascd on a

ra ndom sample is

F,, (y) =~t/(Y; :5 Y) ,

Stati sti cal inference on the param eters can be based on t he profile empirica l likelihood .

For exa mple, if we are interested in inforcnce on tho meanv say rz, wcdcfinc thc profile

empirical log-likelihood forlL to be

( (ll)=snp {t 10g(1';): 1'; > 0, ;= 1, 2, ... , 71; t 1'; = 1, t 1'i(Yi -IL) = O} .

Owen (1988, 1990,2001) proved t hat thc empir ical likelihood ra tio fnnction has lUI

asymptotic X2 distrib ution when u ee n- , t hc tru e value. T his resu lt is useful for In-

fcrCllCc ollthcparamctcrs , sllch a....,tcst ing hypot hcscsand constf l1ctill g a confidcncc

region for It. Note t ha t there is no need to est imate a scale param eter in the con-

st ruct ionoftheconfirlcncc intcrval, and th e confidence regions arcnotncccssar ily

symmetric becau se of the da ta-d riven approac h. Because of t hese prop erties , the EL

meth od has become popul ar in thcs tat ist ical literatu re and has been cxtc ndcd to lin-

car regression models (Owen, 1991; Chen, 1993, 1994), genera l est imntiug cq ua tions

(Qiu aud Lawless , 1994), survival ana lysis (T homas and Grunk emeier , 1975;Li , 1995;

Mur phy, 1995), survey sampling (Chen and Qin , 1993; Chen, Sitt er, and WlI, 2002)

and tim e series (Monti . 1997).



1.3.2 Penaliz ed Empirical Likelih ood (PE L)

As discussed earlier, penalized-likelihood-b ased variable select ion can be applied only

when we have a well-defined para metri c mod el. When we are not sure about t he para -

metri c model, but the parameters can be esti mat ed by a set of est imatin g equa tions,

\\'e eanuse an EL based on a set of esti mating equations. So ll'e propose to replace t he

parametric likelihood by t he empirica l likelihood to define a nonparametr ic version

of the penalized likelihood met hod . We discuss t he asymptot ic properti cs of th e rc-

gression estimates, and we develop an algorithm for estima ting the param eters. Our

simulation st udios show tha t when a parametri c model is available, PEL-b ased vari-

able select ion gives resu lts similar to those achieved by paramet ric-likelihood variable

selection, T he former meth od outp er forms t he latt er when the parametri c model is

misspecified. We extend our approach to Cox's prop ortional hazard s model. We also

apply our met hod to an Austra lian heal th survey and a lung-cancer da ta set ,

1.4 Outline of th e Th esis

T hemain obj ect ive of this thesis is to make a contribut ion tovar iable selcct ion. We

mainly focus on penalized-empirical-likelihood variable select ion. In Chapter 2 we

briefly discuss variab le select ion via the nonconcavc penalizcd likelihood proposed



by Fan and Li (2001). In Cha pter 3, we introdu ce tho cmpir ical Iikelihood and its

chara ctcrist ics.Wedescribcourpenalized-elllpirical-likeIibood variab le selcction and

discuss its asymptotic properties. Tho algorithm is given in Cbapt.cr 4. In Chapt.cr

5 we provide simulation studies to compare the performanccof empirical-likelihood

variable selection with pcnalizcd-param ctr ic-likelihood SCAD, in t.hc cont.cxt of lincar

regression, Poisson regression , and logistic regression, We also app ly our method to

thc Austra lian health survey. In Chapt er 6, we discuss thc implementation of PEL in

Cox's proportio nal hazard modcl. Our concludingrcmarks arc givcn in Chaptcr 7.

-=-



Chapter 2

Variable Selection via N onconcave

Penalized Likelihood

A new class of variabl e selection methods based on a nonconcave peualized-l ikelihood

approac h was propo sed by Fan and Li (2001) and Tibshirani (1996). Th ese methods

arc superior to traditional method s because of t heir computat ionalefficiencyand

sta bility. The var iab le select ion and the estima tion of th e regression param eters are

carr iod out simulta neously. T hat is, insignificant variables arc removed by estimating

th eir regression param eters as zero. These method s work reason ab ly well in high-

dimensional probl ems. In th is chapt er , we will introdu ce th e penalized-likelihood

var iab le select ionproposedbyFan andLi (2001) inthe cont extof alinear model.



Yi = X i{3 + f ;, i= I , 2,

where X i E RP is a vector of covariates and (3 E 'RP a vector of parameters .

a..;sume t ha t thecollccterl data {(X i,Yi)} are independentsamplesandydX ; has

densitY!(Yi; X ;{3). A genera l form of t he penalized likelihood proposed by Fan lind

Li (2001) is defined by

(2.1)

wheref( y,; X i{3) is th e condit iona l log-likelihood ofy dX i, l'J(*) is a penalt y function,

nnd ri is thc tnuing paramctcr .

In linear regression models, if the columns of t he design matri x X are 0 rthonorm al

then it is easy to show that the best -subset selection meth od and the st epwise elimi-

na tiou method are equivalent to penal ized lcast-squares cst imat ions with the HARD

thresholding pena lty proposed by Fan (1997) lind Antoniadis (1997). Thi s penalty is

l' , (IIII) =02_( IIII - o)2J (11i1< 0).

For a large value of 1111 , the HARD thresholding penalt y does not overp enalize. Th e

LASSO penal ty functio n is the L,- penalty, l',(llIi) = olll!. prop osed by Donoho and



VARIAB LE S ELE CTIO N VIA N ONCONCAVE PE NAL IZED LIKELIIIOOD

.John stonc (1994) in the wavelet sett ing a nd ex te nded by Tib sh ira ni (1996)to gcncral

likelihood set t ings. Th e penalt y functio n used in ridge regress ion is th e L2 penalty,

PJ(lO/) =<51012 Accordin g to Fan a nd Li (2001),agoodpenaltyfnnct ionshould rcsnlt

in a n est imato r with th e following t hree oracle pro pert ies:

L Unbiase dness: To avo id unn ecessar y modeling bias , th c cstim ator is nearly un-

bia..sed when th e tru e unkn own param eter is lar ge.

2. Spar sit y : Thi s is a thresh oldin g rule th at autom atic ally sctssmall est ima ted

cocfficicnts tozcro to rcd ucc thc lllodclcomplcxity.

:l . Cont inuity: Thi s pro pert y climina tcs unn ecessary variat ion in thc model pre-

However , th e penalt y functions L" L2, and HARD do not sat isfy all thr ee cond it ions.

A simplc pc na lty function sa t isfying all t hrcc is thc SCAD penalt y prop osed by Fan

(1997) . Its first derivati ve is

p~ ( Ii ) = <5 {1 (1i~ <5) + (~~ :;; 1(0 ) <5) } for some a > 2 and e> O. (2.2)

Necessa ry condi tio ns for the unbiasedness , spars ity, and contin uity of th c SC AD

penalty have been proved by Ant oui adi s and Fan (2001). Thi s pcnal ty fnncti on

involves two unkn own paramet ers a and d.



V ARI AB LE S EL ECTIO N VIA N ONC ONC AVE P E NALIZED L IKE LIHO OD

Lp penallies (p=1,2, 0.3)

§ P=1
p=2

::- P=O.3

---

Figure 2.1: Lp penalty fnnct ion

As shown in Figs. 2. 1 and 2.2, all the penalty functions are singular at the origin,

sat isfying 1'8(0+) > O. T his is the necessary condit ion for sparsity in variable so-

leetion. As shown in Fig. 2.2, t he HARD and SCAD penalties arc consta nt when

{3is }argc, indica ting t ha t th ere is no excessive penalizat ion for large regress ion co-

efficients. However, SCAD is smoother than HAn D and hence yields a continnous



Figur e 2.2: SCAD and HARD penalty functi ons

Let {3o= ({3;o,{3"io)T be t he true value of {3. Wi th out loss of genera lity, we assume

that{3 20 = Oand all cOIllpOllellts of {3lO are llonzero. Let I ({3o) be the Fisher inform a-

tion matri x and let I ,({3IO' O) be the Fisher illformati on given {320 = 0. Undersome

regular ity condit ions, Fall and Li (2001) show th at th e estimat e of the rcgrcssion pa­

rameter based on the SCAD penalty, /3 = (/3~. ,/3~") T , sa tisfies th e oracl e propert ies



2.1 LOCAL QUADRATIC ApPROXIMATIONS ANDSTANDARDERRORS

for a certa in choicc oftuning parameter (J, a),sincc

!32 ~ O and .,fii(!3, - {3IO)-E..t N (O, I,'({3lO'O)) .

Th c SCAD penalty fnnction involves two unkn own param eters, J and n. In practice,

we could sea rch for the best pair (J , a) over a two-dim ensional stru ctur e using cross-

validation (CV) or genera lized cross-valida t ion (GCV; Craven and Wahba , 19i9 ).

However , thi s would be comp uta tionally expensive. From a Bayesinn point of view,

Fan and Li (2001) snggcstcd scttin ga =3.iand using GCV to select the best value

2.1 Local Quadratic Approximations and Standard

Error s

Th cpcnalt yfunctionp6(113j l) is irregnlar at th e origin and docs not have continuous

second-order derivatives a t some point s. Special ca re is needed in th c application of

the Newton-R aph son algorithm, Fan and Li (2001) locally approximate t he SCAD

penalt y function by quadr ati c functions as follows. Supp ose our init ial value{3o is

closctothcmllXimi zer of (2.1). lf l3joi svcrycloscto zcro ,thensct !Jj = O,o thcrwisc,

thcpcllalt YP6(ll3j l) can be locally approximated by th e quadrati c functions via
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whcn f3j i'0. In ot her words .

A disad vant age of thi s approximat ion is that once a coefficient has bee n shrunk to

zero, it will stay at zcro . However, this mcth od significantly redu ces t hc compu-

tati onal burd en . Now we assume th at t he first two par tia l derivat ives of the log-

likelihood function are continuous, so that it is a smooth function with respect to

(3. T hcfirst tcrm in (2. 1) can be locally approximated by a quadr ati c function via

Taylor's expansion. T he max imizat iou prob lem (2.1) can be red uced to a quadratic

maximization problem and t hc Ncwto n-Rap hsou algor ithm can be used , Th erefore,

(2. 1) can be locally approxim ated by

C((30)+ M ((3of ((3 - (30) + ~ ((3 - (3oft::, 2C((30)((3 - (30) - ~n(3TE6 ((30 )(3 , (2.3)

where t::,C((3o) = DC~~o), t::,2C((30) = ~~;;~) .

T hc quadra t ic maxim izat ion problem (2.3) is solved via t hc Newto n-Ra phson alga-

rithm . In this algorithm, t he upda te at t he (k+ I)'h itera tion is

(3'+ 1 = (3k - [t::,2C((3k) - nE 6((3k)r
l

[M((3k) - IlU6((3k)]

( k . [Po(If3m /1Wf3;D ] (I>k) " (l>k)l>kwhcrcE6 (3)= dlllg ~" "'~ andU6 1-' =u6 1-' 1-"



2.1 LOCAL Q UADRATIC ApPROXIMATIONS ANDSTANDARD ERRORS

Th e sandwich formula for the sta nda rd errors of the estimated param ete rs exists

immediately because th is meth od estimates th e param et ers and selects th e variab les

at t he same time. The sta ndar d errors of the estima ted paramet ers are given by

Fan and Li (2001) conducte d a ser ies of Monte- Carlo simulations in linear regression,

robust regression, and logist ic regression and showed t hat the pena lized-likelihood

variable select ion using the SCAD penalt y performs bett er than t he LASSO, HAnD ,

and informa tion-theoret icapproae hes.



Chapter 3

Variable Selection via Penalized

Empirical Likelihood

Th e empirical likelihood meth od is a powerful inference tool wit h pro mising appli-

cutions In many areas of sta t ist ics. In this chapte r, we briefly intro du ce th e basic

concept of empirical likelihood . Wc th clldiscnss thepellalizcd-empirical-likclihood



3. 1 EMPIRICAL LIKELIlIOOD (E L)

3.1 Empirical Likelihood (EL)

We first out line t he empirical likelihood as d iscussed by Owe n (19SS, 1990). Fora

givcJl ralldomsa mplcY l ,Y2"" ,Yn froman unkuowu distributioIlft11lctionF(y),thc

emp irical likelihood functio nofFisdefined to be

where Pi = F({Yi} ) = Pr (}i = Yi)' Th e cmpirical likelihoo d is maximized with ou t

any fur ther informa t ion abo ut the empirica l d ist ribut ion func t ion F

wher e 1(. ) is t he indicator funct ion and t he inequal ity is expresse d compo nentwise.

In gencra l, it is mor e common to work wit h th e empiri cal log-likelihood

(3.1)

subjec t to the constraints BPi= 1 and Pi > 0, i = 1, 2, . . I n. Suppo se we want to

illvc...,tigatcillferellce oll thc paramcters llud cr thc a.."is llIllptioll th at F isamcmhcrof

a nonp ar a metri c dist ribut ion fam ily F , say It = T (F) for some funct ional T of the

dist ribut ion . Inference for para meter It can he obta ined using the likelihood approa ch,

if we know the likelihood value a t I" For a given va lue of u, th e population F E F

is such that T (F ) = I" Th e task is to choose the F th at bes t repr esent s I" T he
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notion of profilc likclihood is to find thc Fat which thccmpirica l likclihood attai ns

the maximum value amo ng the set ofT(F) = It. Th e profile empirical likclihood

funct ion is defined to bc

L,,(ll ) = Sli p {L ,,(F ) IT( F) = 1', F E F} .

Wc can constru ct th clikclihood infcrcncc on l' based on L,,(ll ). Thi s likelihood has

similar prop ert ies to its par am etri c counte rpa rt . Since Ln(JI} $n-" , it is convenient

to sta nda rdize L,,(l l ) by dcfiningthc likelihood ratio functi on to be

R(F ) = n" L,,(l t),

and it is easily shown t hat thi s can be writt en as

R(F) = D"P;'

Th e likelihood ra tio function has a maximum value of I. For simplicity, we can

perform inforence on anyfunction Flisingthcpopulatiolllllcau p, = (/ll , 112, · · · , 11d) ,

viathc pro filccmp irical likclihood. Th c profilc cmpi ricall og-likelihood for 11isd cfincd

f(lt) =sup { 1,,(F ) : Pi > O,i =1, 2, .. . ,11; ~Pi =I , ~Pi (Y; - 11)=o}. (3.2)



3.1 E~IPIlUCAL L IKELIHOOD (EL )

We cau compute j'(u} by meximizing { t IOg(Pi)} by the Lagrangcmultiplicr

mcth od under the above constraints. Thc Lagrange multipli er mcthod is very cf-

fcctivefor this constraint maximization problem. Define

whcrc >' (vcctor-valncd )and 1 arcL agrangcm nltiplicrs. By scttin g thcp arti ald criva-

tive ofG with respect top; to zero, wc gct

1;'= n { I + >';'(Yi- ll) } ' for i = 1, 2,

and thc Lagrange mult iplier >. = ~(I ' ) is thc solution of

Therefore, we can writcthc profilccmpirical likelihoodfunctio n as

(( ' 1) = - n log(n ) - t 10g(1 + >.T(I')(Yi - JL» .

Noww cdcfinetheprofilc empirical log-likclihood rati o function tobc

W (JL) = t log(npi) = t Jog [I + >.'1'(I')(Yi - '1)].
Owen (1990) showed that, when 110 is the tru e population mean , 211'(/10) -.E..; X~

asn---too,simiiar to thc parametric likelihood rat io function of Wilks( 1938).

This result is useful for hypothesis tests on parameter n and for thc const ruct ion of

JOO(J- a )% confidenccrcgions, defined by
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where x?L(1 - a) is the (1 - o )" quant ile of the chi-square distribution with d de-

grees of frcedom. This is different from t he confidence intervals bas ed on a norma l

approximat ion.

3.2 Penalized Empirical Likelihood based Variabl e

Selection

Owen (1991) first considere d EL for linear models. EL confidenceregions for regres-

sion coefficients in linear models were st udied by Chen (1994). We consider a linear

model of t he following form

lIi= X if3+fi, ;= 1,2,

where X i E'R P is a vector of' covariates and {j E'RP a vecto r of' para meters .

assume th at the lIdX is are condit iona lly independent . We also ass ume that thc crror

term e, is independ ent and identically d istr ibute d wit h mean zero and finite variance

(]2. T hus, E(lId X;j = x if3 is the condit iona l mean function and Var(yd X i ) = (]2 .



3 .2 P ENALI ZED E MPIRICAL LIKE[,1JIOOD BASED V AR IA BL E S EL ECTI ON

Following Owen (1991) and Qin and Lawless (1994), we can exte nd t he emp irical like-

lihood infereneesfor linear modelsbased on a set of estim atingfllnetions y(y ,X,{3).

Assume th at t he genera lized linear modcl is defined hy E[Y(Yi, X i,{3)] = 0. In gen-

era l,.q is a vector of l' x 1 est imating functions. Th e pro file empirical log-likelihood

func t ion of d is dofincd by

f({3)=SllP [~ lOg(l'i): l'i > 0,i=I ,2 , .. . ,n; ~l'i = l , ~ l'iY (Yi ,Xi ,{3 ) =ol

Usingthc Lagra ngemlllt iplier mct hod disellssed ill Sect ion 3.1, we call define

where X (vector valued) and 1 are Lagrange multipl iers. Sett ing th c par tial der ivative

ofG with respect ui p, equal to zero gives

l;i = n { I+ 5/Y~Yi ' X i, (3)}' for i = 1, 2,

where th e Lagrange mu lt ip lier X = ).({3)is the solut ion of

~ 1 /;~~~: '~:,(3 ) = 0.

T his lcadsto the pro filcempiriea l log-like1ihoodfllnetion

f({3) = -n log(n) - ~lOg(1 + ).T({3)y(Yi, X i ,{3))

(3.3)

(3.4)



andthc profilccmpiri ca l log-likclihoodratiofnnctio n is dcfincdtobc

1I' ({3) = ~ log(n[i;) = ~ log(! + >.T({3)g(Yi' X ;,{3)). (3.5)

Now we define th e penalized empirical likelihood estimatorof {3as the maximizer of

L({3) = - nl og(n ) - ~ [log(! + >.T({3)9(Yi, X i,{3ll] - nt P. (I{3j ll

= e({3)-n t p· (I{3jll (36 )

wit h rcspcctto {3, whcrc p.(*) isthcpcnalt yfnnctio n. Wc cannsc any of thc pcnalty

functions discussed in Chapter 2. Var iyath (2006) first introd uced th e P EL, but

reported some computational issues wit h over-penalizat ions. We lISC t.he cont inuous

diffcrcnti al smoot hly clipped absolute deviati on (SCAD) penalt y functi on with two

unkno wn tunin g param et ers (,s,Il) proposed by Fan and Li (200! ) and defined in

(2.2). In t he uext sect ion we will discuss t he distribution prop crti cs of thcpcnalizcd

cmpirica l likelihoodestimatcs of (J dcrivcd by Variyath (2006). Th c algorithm for thc

penalized empirical likelihood will be d iscussed in the next chapte r.

3.3 Di stributional Properties

Variya th (2006) st ated and proved theorems in connect ion with PE L; wc reproduce

them here. Let {30 = ({3io, {3~)T be thc tru e value of {3 with vector lengths of k



and p -k respec t ivcly. Withontloss of genera lity, wc ess umc t hat fi j, = o and all

compo nentsof f3lOare nonzero. Let I( f3o) bethe Fisher informa t ion matr ix and let

I I (f3111, 0 ) be th e Fisher inform ation given f3,o = 0 . Und er some reg ularity condit ions ,

our pena lized empirica l likelihood SCADestima tor /3 = (/3~ , /3~) 'l' sat isfies th e oracle

properties for a certain choice of th e tuning parameters (S,lL). Hence, it is ca..sy to

prove tha t.

/3,...!:..t 0 an d ..;ii(/31-f3IO ) -!3...,N(0 , Ii I(f31O'0) ).

Th e following th eorem proves t ho existe nce of a local maximizer of th e penalized

empirica l likelihood L(f3).

T heore m 3 .3. 1 ( Variyath , 2006) Suppose (Yi, X i) ,i = 1, 2, . . ,n is a se t of in de-

pend ent and iden tica lly dis triinu ed rand oni vec tors . Letgi(f3) = g (Yi , X i ,f3) be the

estim atingfllnction8 f or f3E R.PslIchthat forenchi= 1, 2, .. . n,

E {gi(f30)} = 0

[or some Bs. Al80 asslIme tha t

(i) V = E {g (f3o )g'l'(f3o) } is positive definite,

(ii) OX;;)is con tinu ous in f3 in a neighborhood off3o ,

(iii) the rank of E { OX;;)}is l' in a nei ghborh ood of f3o,



(iv) Ih ere exisls same juncti01~. G(y, X ) such Ihal inaneighbarhaad aj{3o ,

ID:;:) 1 < G( y , X) , IIg(y, X ,{3)1I3 < G( y , X)

such Ihal E [G( y , X )] < 00 . Th e tuning param eter <5 is chose n as a ju nction

oj n such that lIIax (P6..I,Bjnl : ,Bjn i 0) --; 0 as n --; 00. Th en there ex­

ists a local maxi mi zer 13 o] L({3) such that 1113 - ,Boll= Op(n - I
/
2 + bnl. where

T heorem 3.3.1 ShOWH that for an ap propriate choice of e.; t here exist s a root -n eon-

siste nt penalized empirical likelihood estimator. Th e following len nnn shows that this

est imator must have the spars ity prope rt.yi32 = 0.

Lemma 3.3. 2 ( Vari yath, 2006) SUPlJOse (y" X i ), i = 1, 2, .. , n is a set o] itule-

pend ent andident icallydist ribut ed1Tlwl am vectors. Letg;{(3) = g(Yi, X ,, {3) be the

estimating ju nct ion jor{3 E R." such that , j ar each i = 1,2.

E {g,({3o)} = 0

[or som e {3o. Also assum e that

(i) If =E{g({30)gT({30)} is posiiioe defi ni te,

(ii) D: ;:) is con tinuous in{3 in a neighbarhaad aj {3o,



(iii) IhemnkOfE {Dg;:' ) } is p in aneighborhood of {3o,

(iv) Ihere exists somefnnctioll.<C (y , X ) .m chlhal in a neighborhood of{3o ,

IDg;:') 1< C(y, XJ,lIg(y, X ,{3)11 3 < C( y , X)

sucli that E [C (y , X )) < 00.

(3.7)

If 6" -7 0 and y'ii6 " -7 00 , then with ]J1'Obability tending to 1, for' any given (3,

.m tisf ying ll{3, - {3wll= Op(n - I/2) and any cons tant C ,

Using t he above lemm a, one can prove t he following theorem on t he asymptotic

normality of th e empir icallikelihood cstim at e.

T heor em 3 .3.3 ( Variyath,2006) /n additian to the conditions of Theorem3.3. 1 and

Lemma 3.3.2, snppos e tha t ~;}:~ is continuous in {3 in a neighborhood of the tm e

valne of (3o an d is bounded by some int egmble [unc tion C ry , X ). Then



where i3 is tlie peualized empiric al likeli hood estima te of,8 and

~ = [E { D.~~~) )r{ E {g(,8o)rl (,8o)}-I}E { D~~o)} ] - 1.

3.4 P en aliz ed Adjust ed Empirical Likelihood

Computa tion of lV(,8) for a given value of,8 may lead to some technical problem.

T he solution for A must sa tisfy { 1 + >.T(,8)g(Yi' X i, ,8)} > 0 for all i = I, ... , n . A

necessary and sufficient condit ion for its existe nce is that the vecto r 'O'isan inncr

point of t he convex hull of {g(Yi,Xi, ,8),i = I , ... ,n}. Th e true parameter value ,8o

is the unique solution of E [g(y , X , ,8)]= 0. I3ut , under somc momcnt conditions on

g(y , X , ,8) (Owen, 2001), t he convex hull {g(Yi, X i,,6), i = I, .. . ,n } conta ins 0 as

its inner po int with probability 1 as n -t 00 . When ,8 is not close to Bg, or when

n issmall, there isaconsiderablechance t hat thesolutionof(3. 4) does not exists.

To avoid t his probl em, Chen, Variyat h and Abraham (2008) intro duced the adjuste d

empirical likelihood.

Denote 9i(,8) = 9(Yi, X i,,8) and y,,(,8) =*t 9i(,8) for any given ,8.

posltl ve constn nt c.iriefine

9,,+1(,6) = -~ {; 9i(,8)

= -a" Y,,(,8)·



Now t he adju st ed pr ofile empiri cal log-likelih ood ratio fuucti on is defin ed as

[

,,+1 ,,+1 ,,+1 ]
W' (,B ) = ~np 8Iog[ (n +I )l' il : l'i >0 ,i =I ,2, . . . ,n + l ; 8I'i =l , 8 PiYi(,B) = 0 ,

= ~ log [l+ ,\T (,B) Yi (,B) ] ,,+1

with ,\ = '\ (/3) bein g th e solut ion of 8 1 +Y~(f;'(,B) = O. Note t ha t now 0 always

lies inside th e convex hull of {Y(Yi' X i, ,B),i = I , ... ,n}. T he adju st ed empirica l log-

likelihoo d ratio fun cti on is well defined afte r adding a pscud o-valuc Y,,+l(,B). Fora

wide rangeofa,,, W '( ,B) havcsame firstorderasylllptot ic propert ics of W( ,B) (see

Chen et al . , 2008). We exte nd thi s idea of penali zed adju st ed em pirica l likclihood t0

avoid th e techni cal p roblem of non-ex iste ncc of solution to (3.4) for any given value

of ,B.

Nowwc dcfinc t he pcnalizcd adjllstedelllpirical likclihoodcst illla tor of ,B as th e max-

(38)

with resp ect to,B , WbereI'6(*) is the penalt y funct ion defined in (2.2). Thi s adj ust-

ment is parti cularly useful because even for some und csirnbl e va luos of d and tunin g

parameters , the proposed algorithm guarantees a solut ion, Now, \VC ca ll show that

thcpena lizcd adj ust ed empirical likelihood has t he same asy mptot ic prop erti es ns



3.4 P ENALI ZED A DJ UST ED E MPIR ICA L LI K ELlilOOD

thcpcnalizcd clllp iricallikclihooddctailcdin Scction3 .3. Wc Htat c andprovc thcfol-

lowing theorems and lemma to show tha t thcpenal ized adjusted empiricallik elihood

est imates have ora cle propert ies.

T heo rem 3.4. 1 Sup pose (Yi, X i ), i = 1, 2, .. , 11. is a set of independent and ulenti-

cally dist ributed mndorn uectors. Let gi(13) = 9(lIi, X i ,13) bc tlie estimaiin q junctions

for 13E R'p such thatforeach i = I,2 , ... n,

E {gi(13o)} = 0

fo r some 130'

(i) V = E {g(13o)gT(13o)} is positive definite,

(ii) Dg;) is cont inuo us in 13in a neighborhood of 130,

(iii) the m nk of E { Dg;) } i8 P in a neighborhood of 130,

(iv) there exists som e functions G (y , X ) sucli that in a neighborhood 0f13o,

I Dg;) 1 < G( y , X) , Ilg(y, X ,13)II" < G (y , X )

such that E [G(y , X) ] < 00 . The tuning l'amm eterJ is chosen. as a function of

Tn suc h. that Illax(p:l,..l!3jol: !3jo oj 0) ---+ 0 as Tn ---+ 00 , uihere Tn = n + 1 . Then



there exists a localrnaxirnizer13oj U (,B) such that 1113- /3011= 0 ,,(rn- I
/
2 + Ii", ),

wher·eli",= max(l'U/3jol:/3 jo"/ O).

Let It", = rn- I /
2 + Ii", . It is sufficient to show that for any E > 0, t here exists a large

enonghCsuchtha t

Pr {sup L' [(,Bo+ a",u );lIull = C] < L' (,Bo)) 2':1 - E. (3.9)

This implies th at for large rn with prob ab ility at leas t 1 - E, there exists a local

maximizer in t he ball [(,Bo+ a",u ); Ilull = CI. Hence, there exists a local maximizer

such that 1113- ,Boll= O"(n,,, ). Let

D;,,(u ) = L' (,Bo+ a",u) - U (,Bo)'

D;,,(u ) = {f' (,Bo+ a",u) - f'( ,Bo)) - {l', (,Bo+ n",u) -l',(,Bo))

= { f' (,Bo+ a",u) - e'( ,Bo)) -111~ {l', (I,Bjo+ a",ul) - l', (I,B,ol)},

where I; is the numborof components in ,BIO' T he Lagrange multi plier in A(/3o) can

be expressed as



3.4 PE NALIZED ADJ USTED EMPllli CAL LI KELIIIOOD

- C({30) = tlOg{l + ..\T(.Bo)9i({30)} +op (1)

= t ..\T(.Bo)9i({311) - ~t [..\T(.BO)9i({30)]
2
+ op(1)

= *g:': ({30 ) \~;;I ({3o )gm ({3o ) + Op (1 ) .

Similarly,



Now, letting

(3.10)

It can eas ily be shown t hat ~ ist.heasympt.ot.icvariallceofvm(j; -{3o ), und so t.he

representat ion is sim ilar tonormalizcd parametric likelihood . Bythcccnt.rallimit.

th cor em,f'im({30) isOp (m- 1
/

2
), thu s the first term on th e right-h and side of (3.10) is

of order Op(ml / 20 m) = Op(mo~. ) . By select ing a large C, th e second tcrm domin at es

th e first term uniforml y in llu j] =C. Th e third term is bound ed by

Thi s is a lso dominat ed by the second term in (3. 10). Hence, by choos ing a sufficient ly

large value ofC, (3.9) holds. Thi s completes the proof. Th corem 3.4.1 shows that

for an appropriate choice ofJ" o t here exists a root-rn consistent penalized empirical
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likelihood estima tor. Th e following lemma shows th at t his est imator must have t he

sparsity property !32 = 0.

Lemma 3.4.2 Suppose (Yi , X i )' i = 1, 2, . . , 'II is a set of in dependent an d iden tica lly

dist ribn ied rando m vcc tors . Let gi({3) = g(Yi, X i, {3) be the cstima tinq j uncti on Ior

{3ERi' such tha t, f or' each i = 1, 2 , . . . , n,

E {gi({30)} = 0

fOT 8om e {30'

(i) V = E { g({3o)r/" ({3o)} is positive defin ite,

(ii) ag;::') is con tinu ous in {3 in a neighborhood of {3o,

(iii) the m nk Of E { ag;::' ) } is p in a neighbor-hood of {3o,

(iv) there exis ts some ju nct ions G (y , X ) sucli tha t in a nei ghboThoodof {30 ,

lag;::' ) I < G( y , X ), Ilg(y, X, {3)II" < G (y , X )

sucli that E [G (y , X )] < 00 .

(3.11)
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wher-e77l=n + 1. If t5m ..... O and,fiiit5m -tOO, then with probability ten ding to 1, f or

any given f3, satis f yingll f3, - f31011 = 0 ,,(711 - 1
/

2
) and any cons tantC ,

FollowingFan andLi (2001)inproving thisLclJlma,i tis sufficicntto show th at forf3

satisfying f3,-f31O = Op(771- 1/ 2) and for SO IJlC small f " = C m- ' /2, and j = "'+ 1, . .. , 1',

iJ~;:) < 0 for 0 < o,< f m

for -fm < (3j < 0. (3.12)

Due to t hccondition onl'" ,,( If3I), th c tas k is equivalent to showing that , uniformly

inf3 ,

Th at is, the slope around t he trne value of f3 is low compared to t hc slope of t he

penalty. Now

where we rcgard A and g; as funct ions of a specific component of f3 for simplicity.



Since f31- f310= 01'(m- 1/2
) , it is simple to show that we st ill have

Helice,

uniformly in both i = 1, 2, . . , m and {3. Thus we have

ID~~) Is II,\T(f3j )II~ IID~~j) II[1+ ",,( I)]

= 0,,(m- I
/

2)0I' (m)[1+ ",,(I)]

= 0 ,,(m l / 2 ) .

Using the above results, for each component of {3we have

Using the assumpt ion (3.11), .fi1i8", -; 00 and 8m -; 0, th e sign of the derivative

is completely determined by that of f3j. Hence (3.12) holds. Th is completes the

proof. Using the above lemma, we can prove the following theorem on the asymptot ic

norlIlality of the adjusted elIlpirical likelihood estilIlat e.



T heo rem 3.4. 3 In addition to the conditions of Theorem 3.4.1 and Lemma 3.4·2 ,

suppose th e second derina iiues of each com ponen t ofg , say g[k J, D~~;] , a I' x I'

matrixwith the(ij)thentry~:+ , iscontinuollsin {3inaneighbo:,.hoodof {3,"and

is boun ded by some in tegrable fun ction Cry , X ). Then

wheTe !:Ji sthepenalizcdernpir'icttllikeli hoodestimate of {3 an d

A= [E{ D~~)o )r{E{ g({30)gT({3o) } - )} E{ D~~o)}] - I .

Due to th e sparsity prop ert y given in Lemma 3.4.2, it is soeu that tho penalized

adjusted empirical likelihood estimat or with propel' tuning parameterri ., maximizes

L' {({3" Of} with respcct to d .. Hence,
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Fornotational siIllPlici ty,Wedonotdifferentiate~ and~fortherest ofthe

pro of. Th at is, we present our proof as if k: = 1'. If we ex pand t hese functions at

(13= 130,>'= 0), we have

Li.",(J3,,\ ) = Li.m(I3I"0 )

+ [ Li ,",~:o , O)] (13- 130) + [ Li ,,~~;, O) ] (,\ _ 0) +o p(o",) = 0,

Li,m(J3,'\ ) = Li,,,,(130,0)

+ [ Li,",~o , O ) ] (13-130) + [ Li.,~~;, O) ] (,\ _ 0) + 0
1
,(0", ) = a

where 0", = 1113 - 130 11 + 11 '\11, Th e partia l derivati ves in the above ex pa nsions ar e

Li . ",~o,O) = ~~ DgD~o ) -t _E { Dg~;o ) } ,

Li,mi[;,,0'O) = ~t gi(l3o)gi( l3o) -t E {g(l3o)gT(l3o)},

Li, ,,,~o,O) = p:;", (I l3o l) ,

Li,",i[;,,0'O) = ~t{DgD~o ) }T -t E { Dg~;o)r,
Th erefore,



Since L; ,,,,(I3IO' 0 ) = 9",(130 ) = Op(m- 1
/
2

) , we can easily show tha t J", = Op(m- I
/
2

) .

Wh en 1"L (1131) --+0 as m --+00, th e limiti ng distribu tion of /31- 1310will be asynip-

totically normal vi.c.,

and 5;': = -~ - I is th e (2, 2)'" element of 5;;,1 assuming p'L(1131) = O. Thi s completes

the pro of,



Chapter 4

Numerical Algorithm

To implement our meth od , we need an efficient num erical a lgorithm. Variyath (2006)

reported some computat iona l issues wit h over-pena lizations that resulted in high bias .

We maximize the P EL with respect to (3using a modified Newto n-Rap hson algorit hm.

At each iterat ion of the Newton-Raphson meth od , we compute the Lagrange mult i-

plier for an upd ated valueof {3. Chen, Sitte r , and Wu (2002) prop osed a modified

Newton-Ra phsonalgorithm forco mputingthe Lagra nge lllult iplier for a given value of

the param eter. Thi s meth od is num erically sta ble, which is useful in th is applicati on.

T he numerical algorit hm given in Sect ion 4.! and 4.2 can be easily exten ded tope-

na lized adjusted empirical likelihood , by addin g a pseudo- value g,,+I({3) = - a"g,,({3),

where an is a posit ive constant.



4.1 Computation of Lagrange Multiplier

Th e Lagrange mnlt iplier >..is est imate d by solving th e equa tion

for a given set of vecto rs y,({3), i = 1,2 , . .. 11. Note that th e above equa tion is the

derivat ive of flwi th respect to >"for a given {3, where

(4.1)

In th e empirical likelihood probl em, the solution must sa tisfy th e condition tha t

1 + >..Ty,({3) > 0, i= 1,2 , ... 11.

T he modified Newto n-Ra phson algorithm for est imating >..for a given value of {3 is

1. Set >'" = 0, C= 0, 'l = 1, e = l e - 08, and {3= (30.

2. Let R" and R"" be th e first and second parti al derivati vcs of fi givcn ill (4.1)

with respect. to A, which are given by

Compute R"and flu for >..= >'" and let. 6. (>..' ) = - [R""r ' R".

If 116.(>"' )11< e stop th e algorithm and report. >"' ; oth erwise cont inue.



3. Calculate li c = 'I t.( N) . If 1 + (A' - (j')Yi({3) :::;0 for some i , let -( = f and

go to Step 2.

4. Set Ac+1 = AC
- li' , c = c + I , and 1 c+1 = (c + 1)- 4 and go to Ste p 2. Step

2 will guarantee t ha t Pi > 0 and th e optimization is carr ied out. in the right

4.2 Algorithm for Optimizing Penalized Empirical

Likelihood

Let.,X(iJ) be t he est imate d value of A for a given {3. We maximi ze th o P EL defined in

(3.G)ove r {3. We use the modi fied Newton-Ra phson algorit hm proposed by Fan and

Li (2001). Not e t.hat. th e penal ty funct.ion l',(l iJjl) is irregular at. the origin and may

not have a second der ivative at some points. Special care is needed in r.he npp lication

of t he Newto n-Ra phson algorithm. Here too, th o penalty funct ion is locally approx-

imntcd as detai lcd in Sect.ion2as proposed by Fanand Li (2001). We ass ume that

the profile empirical log-likelihood funct ion is smoot h with respect. to {3 so that its

first. t.wopart.ialderivat.ivesare cont.inuous. Th us, t.hefir st term in the pro file empiri-

cal log-likelihood can be locally approxima ted via Taylor 's expans ion. Th erefore, the



maxi mizat ion problem can be reduced to a quad ra t ic maximization I' rohlcm, andthc

Newto n-Raphson algorit hm can hc used. T he modified Newto n-Raphson algorithm

for csti mating (3u sesquadra tic app roximati on of the profilc em piricall og-likclihood

functi on . An algorithm for opt imizing th e penalized empirical likelihood , similar to

that in Fan and Li (2001) , is as follows:

1. Set (3 = (30, and e e- Ic - OS.

2. Let 5. = A(,B) be the est imated value of A.

3. Th e param eter (3 is computed itera tively and the solution at th e (I.:+ I )'"

iter at ion is given by

where \V ((3) is the profile empirical log-likelihood ratio function defincd in (3.5),

11'1' = Dl~;,(3) , 11'1'1' = ~~~~) ,

((3k) . [PJ(il3flJ PJ ( I ,Bl~ lJ ] 1U ((3k) c- ((3")(3kE; ee diag ~, ... ,~ , a ll{ ; = u ; .

Note t hat to compute \V I' and IV I'I' , wenccd to estima te the Lagrangcmulti-

plier 5.(,8) as per Sect ion 4.1.

4. If min l(3(k+ll _ (3(kl l < e stop the algorithm and report (3(H I); oth erwise I.:=

1.:+ 1 and go to ste p 3.



We examine the simplified expressions for IV I3 and IV I3I3 as follows. Let RI3, RI3I3, and

RI3A be the first and second parti al derivatives of (4.1) with respectto {3and '\

Now the first derivative of 1V({3) with respect to{3 is

Note that for ,\ = 5.(,8), RA = o. T herefore,

(4.3)

Similarly, thesecond derivati ve of W({3) with respect to {3 is

" [ (1 +,\"I' (,8 )9i ( {3 ) } { [~] [gi({3)f +2 g;({3) [~r + g;'({3),\(,8)"I' } ]

11'1313 = 8 {I + ,\"I'(,8)gi({3)F

_ " [ { [~rgi({3 ) + g;({3),\ (,8)} { [~rgi ({3 ) + g;({3)'\( ,8)}"I']

8 {l + ,\"I'(,8)gi({3))2



Following Owen (2001), a local quadratic approximat ion to R leads to

(4.4)

Op timization over {3 is easier if WI313is negativ e definite. Th e second term in (4.4) is

negati ve semidefinite , hn t th e first term RI3I3 might not be.

4.3 Selection of Thr esholding Paramet ers

Th e SCA D penalty funct ion involves two unk nown para meters, <5and a. In prac-

tice, we could search for the best pair (o,a) over a two-dimensional structure using

cross-validation (CV; Stone, 1974) or genera lized cross-valida t ion (GCV; Craven and

Wahb a, 1979). However , thi s is computationally expensive. From t he I3ayesianpoint

of view, Fan and Li (2001) suggested using a = 3.7, and this value will be used

thro ughoutonr simula tion studics. Lct theclllpirical likelihoodratio function evalu-

at edat(3and ),.(/3) be



11'(13) = { t IOg(1 + >..(fW 9i(13)} .

T hen, we define theGCV criterion to be

GCV(J)=~
n [l- e(J )/ll f'

where e(J ) isthe elfective nnmberof regression coelficients given by

(4.5)

where ll' tltl(13)isthe secondderivat ive oftheprofile empirica l likelihoodfllllction

wit h respect to {3 (see (4.4)) cvaluatcd at B, t r dcnotcs thc tra cc of a matri x. Wc

choose th e t uning par ameters d to millimize GCV(J ).

4.4 Standard Error Formula

T he sta ndard errors for the esti matcd regression parameters can be est imated di-

rectly because we are est imati ng the parameters and selecti ng t he var iables at t hc

same ti me. Following t he conventiona l techniq ue in the likelihood sett ing, t he corre-

spond ingsandwichforlllula callbc llscd a.."i an est imat.or fort hccovarianccmatrix of

t he est imates {J:



Thc covarianccmatri x of t.hc csthnatcs cau hc simplified to



Chapter 5

Simulation Studies

We conducted a performance analysis based 0 11 a series of Monte-Carlo simulat ions

in Iinear regression, Poisson regression, and logistic regression and abo applied our

met hod to a real-data example. In the simulation studies we compare our met.hod

wit h t he penalized-likelihood SCAD met hod . Our performance meas ures for these

comparisons arc t he median of the relat ive model error (MRME) , th o averago number

of est imated zero coeflicients that are initially set to zero, and r.he average number

of zero coellicients that. nrc not. init ially set to zero. \Ve also compare t he estimated

valucs of thc IlOllzcroco cfficiclltsalld thc colTcspondingstandard en ors



M ed ian R e la tiv e Model Error (MRME)

Following Tib shir ani (1996), we comp arcthclllcdian ofthcrelativ cmod cl cr ror (Fan

and Li, 2Q(1l) rathe r than the mean relati ve mod el error because of the instab ility of

thc best-su bset variable select ion. T hc mode lcrror for t he linear mo dcl is dcfincd by

ME(i3 )= (i3 -13f E(X'l'X )(i3 -13) .

T he erro r for th e selected mod el is compared to the erro r of the fnll mod el, For each

variable select ion met hod , we compute d thc median of thcrclat ivc modcl error , an d

this is reported in the sirnulat ion studies.

5.1 Lin ear R egression M od el

Yi= X;f3+ U fi (5 1)

wit h 13= (3, 1.5, O,O,2, O,o, Ofwbcrc X i = (:ci" :ri,, .. ,"'i,,) is a vecto r of covar iates

an d p e- S. The compOllclltsof X and€are stalldardll ormal,t he corrclationbetween

Xi and z , isO .5Ii - j l , and U =1. T hc lcast- sqllarcs cstirnatc of13i s givcn by

_ [ " t: ]-1" T T -I 'l'13LS = ~XiXi ~Xi Yi = [X X ] X y . (5.2)



Th e est imat ing eqnati on for{3 is given by

g({3)= t X ; [Yi- X ;{3]=0

and the first derivativ e of th e cst imating equat ion g({3) with respectto{3 is

g'({3) = - txrXi'

(5.3)

component s of X and e being standard normal. Thi s is th e model used by Tib shiran i

(1996). Our penali zed-em pirical-likelihood SCAD (PE LSCAD) is compared only with

SCA D since Fan and Li (2001) report ed that SCAD performs bett er than LASSO

and oth er information-th eoretic approach es. Following T ibshiran i (1996) and Fan

and Li (2001), t he performance of these met hods was assessed based on ~I1U"E and

th e numb er of zero coefficients. We also repeat ed the entire study with sample size

ill Table 5.1. It a lso report s th e average numb er of zero and nonzero coefficients.

Th e column lab eled "Correc t" gives the average numb er ofcst imate d zero coefficients

th at were initially set to zero, and the column labeled "Incorrect" gives the average

number of zero coefficients th at were not initi ally set to zero . T he estiruated values of

th e nonzero coefficients and the corrcspondin g stand ard error s arereported in Table

5.2. From Table 5.1 we see tha t for II = 60 t he MRME of SCAD is slight ly smaller



than t hat of P ELSCAD , and for bot h meth ods t he average number of zero coefficients

is do se to t he target of five. When the sample size increases to 100, th e MR~IE of

PELSCAD is low compared to th at of SCAD . The average numb er of zero coefficients

is again do se to five. Thi s d early indica tes that both method s perform well when a

parametri c model is ava ilable.

l'vIRME% Avg. no. of zero coefficients
Correct Incorr ect

n=60 ,a= 1
SCAD 35.57 4.61 0.0
PEL SCAD 36.52 4.61 0.0
n=lOO,a= 1
SCAD 41.50 4.85 0.0
P ELSCAD 34.55 4.95 0.0

Table 5.1: Simulation resu lts forlinear regression mod el

Met hod (3, (32 (3"
n= 60, a= 1
SCAD 3.015 1.474 2.003

(0.167) (0. HJ5) (0.136)
3.002 1.496 1.999
(0.163) (0.170) (0.141)

ueel.Hll, a= 1
SCAD 3.027 1.442 2.003

(0.139) (0.185) (0.104)
2.999 1.499 1.999
(0.120) (0.124) (0.104)

Estimates of nonzero coefficients with corre-



5.2 Poisson R egression Model

In this sec t ion , we consider the performance af oul' method W hC H the parametric

model is misspecified , in th e cont extof a Poisson regression mod eI. Lct Yl, Y2, ..., Yn

be n independ ent respon ses, each of which follows a Poisson dist ribu tion. Th o rela-

tionship between t he mean and variance is given by E(Yi) = Ii i = Var(y,) .

Lct /lT = (,l l , 112, ... ,l ln). Let X bcthcdcsign matrix and assume th at th c compo-

whcrc,t3 E RP is the vcctor of rcgrc"io!lcoe fficicnts. Th cn ,tbe loglik cliboodfllnction

for,t3i s givcnby

1[,t3 ;y] = t {YiX i,t3- exp(X i ,t3)}.

T he estimat ing equa tion for,t3i s given by

g(,t3) = t X i"(Yi - exp(X i ,t3))

and th e first derivative of the estimat ing equat ion g(,t3) with respe ct to,t3is

g'(,t3)= - t exp(X i ,t3)X{X i .

(5.4)



We generate over-dispe rsed Poisson count dat a y uslng t he modcl specificd through

a condit iona l density given by

i= 1,2 , ...,n (5.5)

with u, a rand om variable such th at E(u,) = 1 and Var(u, ) = w. Marginally, wc have

E(y ) = I' and Var (y ) = 1'(1 + I' w ). Th e distribution of u is chosen to bc gamma

with parameters (w, l /w) wit h w being the over-dispersion paramet er. However, the

param etric likelihood and empirical likelihood are const ructed und erthe assumption

th at t here is no over-dispersion. Wc consider a four-covariate gcncra lizcd linea r model

with (3= (0.5, 0.5, 0.6, 0, 0). Th e covariat cs X = (x l, x2, x3, x4) aregencra tcdfroma

lllultivariatc Ilormaldistr ibutionwithmcanzcro, and thc corrcla t ion bctwcen z , and

l'i is O.5I' -i l. We choose four levels of over-dispersion: w = 0, 1/8, 1/ 6, 1/ 4. Note that

whe n w = 0 , we usc ordinary Poisson regressio n model to generate the respon ses.

Wh ere as for w > 0, we use th e condit iona l density model (5.5) to generate the

responses . T his is thes iIllulat ion Illodel llsed by Var iyat h, Chen, and Abr aham (2010).

In each simulation, we generate n = 100 observations for th e resp onse y from th e

condit iona l distribution specified earlier. For each model, wea nalyze lOOOOsiIllulated



data sets. Th el\lRl\ lE and th e average numb er of zero and non zero coefficients over

th e nonzero coefficients a nd t he correspo nd ing sta nda rd errors are rep ort edinTahle

5.4. From Tabl e 5.3 we see that when th ere is no over-disp ersion (w = 0), th e

1\1R1\1Eof P ELSCAD is smaller th an th at of SCA D. T he avera ge nnmh er of zero

coefficient , for P ELSCAD is closer to th e target of two in all cases , W hen th e over-

disp ersion increase" PE LSCAD perform , bett er than SC AD. From Tabl e 5.4 we sec

that t he nonzero para met er esti mate , of PE LSCA D ar e close to the tru e values and

the SC AD estimates are not as close. Not e tha t in PE LSCAD, we did not model th e

over-dispers ion.

MR l\lE % Avg. no. ofzerocoefficicnts
Corr ect Incorrect

1l- 100, w-0
SCAD 79.42 1.41 0.0004
PE LSCA D 58.49 1.74 0.0001
n=100, w=I / 8
SCAD 86.24 1.24 0.0010
PELSCAD 68.90 1.61 0.0003
n-100, w- I /6
SCAD 89.91 1.19 0.0012
P ELSCAD 65.86 1.64 0.0005
1l=100 , w= I/4
SCAD 88.61 1.12 0.0028
P ELSCAD 69.95 1.62 0.0033

Tabl e 5.3: Simu lati on resul ts for Poisson regression mod el



Meth od (32 (3"
n=lOO, w=O
SCAD 0.502 0.611

(0.113) (0.089) (0.087)
0.515 0.498 0.601
(0.089) (0.078) (0.088)

n- 100,w -I/8
SCAD 0.450 0.492 0.602

(0.127) (0.115) (0. 115)
0.502 0.495 0.589
(0.106) (0.106) (0.108)

n= 100,w = I/6
SCAD 0.448 0.488 0.601

(0.134) (0.123) (0.122)
0.506 0.497 0.587
(0.107) (0.107) (0.113)

n- 100, w-I/ 4
SCA D 0.444 0.483 0.597

(0.139) (0.135) (0.134)
0.482 0.495 0.597
(0. 124) (0.127) (0. 129)

Table 5.4: Poisson regression: Est imates of nonzero coefficients with corresponding
sta nda rd erro rs ill pare nt heses



5.3 Log isti c R egr ess ion Model

Lct YI , !J2, .. . , Yn bo n ind epend cnt Bern oulli tr ials with mean an d variance E(Yi) = 1rj

ann Var (y, ) = 11",(1 - 11",), where rrT = ("1,11"2 , ...,11",,). Let X be the design matri x

and (3 ap x 1 vector of regression coefficients. Assume that

log [1 : ' 11",] = X ,(3.

Th clog-likclihood funct ion for (3 is

1((3;y) = t {y,X ,(3- log [1 + cxp(X,(3)]}. (5.6)

T hc est ima t ing fnnction for (3 can be writte n

g((3)= t x;(y' -1I"')'

cxp(X ,(3)
11", = {l + cxp(X ,(3)} .

Th e first der ivati ve of th e est imat ing functi on g((3) with res pect to (3 is

g'((3) = - t 11",(1 - 1I",)X r X.

Wc gcnera te n= 200 observat ionsfor th c respon se yfrom th e mod el

y,~ Bernoll ll i {p (X,(3)} ,



I' (X ;{3) = 1 :X,:~:r::{3)'

and th e first six components of X and (3 are as for the linear rcgrcssion model

discussed in Sectio n 5.1. Th e las t two compo nents of X are ass umed to have a

f3ern onlli distr ibnt ionwith pro bab ilityof snccess O.5. All cova riatcs are sta nda rdized

We repeat th e simnl at ion stn dies for n = 500 an d n =1000. Fan and Li (2001) used

a similar logistic regression model for comparison pur poses. T he simulat ion resu lts

are summarized in Tab les 5.5 and 5.6. From Tab le 5.5 we see th at P ELSCAD has a

sma ller rvlRME than SC AD for all sa mple sizes. If th e sa mple size is increas ed , t he

MR rvlE s ar e closer to each other and t he average num ber of zero eoefficients is also

closer to the target value of five. Overa ll, th e P ELSCAD met hod performs well in

5.4 Au str alian Health Survey

We cousider th e data set for doctor visits from the Aust ralian heal th survey of 1977-

78. It conta ins heal th informat ion for 5190 single adults where t heyoung and old have

beeu oversampled . T he da t a set is also available in the "R" sta tis t ica l softwa re (in

the farawa y libra ry ). \Ve apply variable select ion method s under Poisson regression



5.4 AUSTRALIAN HEALTH SURVEY

MRME % Avg. no. of zero coefficient,
Correct Incorrect

n= 200, a =1
SCA D 4.83 0.0110
P ELSCAD 4.86 0.0031
n= 500, a =1
SCA D 57.07 4.99 0.0004
P ELSCAD 56.41 4.84 0.0000
n=10 00, a =1
SCA D 55.86 5.00 0.0000
PELSCAD 53.33 4.98 0.0000

Tab lc5.5: Simulation result s for logistic regression mode l

Met hod /31 /32 /35
n=2 00, a= 1
SCAD 3.450 1.705 2.301

(0.660) (0.503) (0.493)
3.276 1.662 2.186
(0.703) (0.455) (0.520)

n= 500, a= 1
SCA D 3.211 1.605 2.138

(0.331) (0.249) (0.249)
3.087 1.55 2.06
(0.355) (0.246) (0.263)

n=1000 , a=1
SCAD 3.132 1.568 2.088

(0.224) (0.164) (0.166)
3.034 1.519 2.024
(0.238) (0.168) (0.175)

Esti mat es of nonzero coefficients with corre-



to thi s data set. The resp onse of interest is the health of adults , which is measur ed

in terms of th e nu mber of cOll'tl ltations with a doctor or specialistin t he previous

two wecks Iu ), In acldition, wch avc scveral mea..o;;urcs ofl lCalth scrvicc lltilization and

soc io-econom ic panu net ers. Ca meronet al. (l( )88) ana lyzed this dataset using an

economic mod el of the jo int determ ina tion of health serv ice use a nd heal th -insurance

choices in Aust ra lia . Cameron and Tr ivedi (1986) st udied this dataset in a different

contex t . Our main obj ecti ves ar e to mod el th e relatio nship between the resp onse and

the covariatcs a nd to ident ify the simplest model t ha t gives a clcar pictur e of th e

data-generati ng struc ture . A short descript ion of th e varia bles is given in Tab le 1.1

of Cha pte r 1.

T he mean of the respo nse , number of doctor visits , is 0.302 a nd t he sta ndar d de-

viat ion is O.798. T he dat a indicate that th ere is over-dispers ion. T he est imates of the

Poisson regress ion coefficients are given in Tab le 5.7. From this ta blcvwo scc t hat ill-

neso (X s) and actdays (Xu) are sta t ist ically significant . T he covariate sex (X ,) is also

marginally significant , indicat ing that female patients visit doctors more frequent ly

tha n ma le pat ients do. We use penalized-empi rical-likelihood SCA D (PE LSCAD)

and param etr ic SC AD to select th e significant covariates for this real-dat a exa mple.

We compa re th e results with information-theoretic app roac hes such as AIC and mc



in th eir empirical-likelihood versions. T ho selcctcd covariate s, the corrosponding es-

tim ntes of th e regression param eters, and th eir sta ndard errors areli st edin Tabl e 5.8

for each met hod . From thi s table, we see tha t SCAD and PELS CAD identified the

covariate» age (X2 ) , illness (X s), actdays (X9 ) , and hscore (X IO ) as impor ta nt and

forced regression coefficients of th e oth er variables to zero. Note th at. the empirical-

likelihood version of BIC (EBIC) selected the simplest. model whereas AIC selected

the largest model. Th ese resul ts are useful for und erstanding th e dat a-generating

mechani sm and forprediction.

y-Dvisits
X ,-Sex
X 2-Age
X3-Agesq
X,- Incomc
X5-Levyplu s
"-Y"6- Freepoor
X7-Freer epa
Xs-Illness
X9-Aet.days
4\ 10- Hscore
X,, -Chcond l
X ' 2-Chcond2

Coefficients Sta ndard Error z-value
-2.2238 0.1898 -11.7IG
0.15G9 0.0561 2.795
1.05G3 1.0007 1.055

-0.8487 1.0778 -0.787
-0.2053 0.0884 -2.323
0.1232 0.07IG 1.720

-0.4401 0.1798 -2.447
0.0798 0.0921 0.8G7
0.18G9 0.0183 10.227
0.12G8 0.0050 25.198
0.0301 0.0101 2.979
0.1141 0.OGG6 1.712
0.1412 0.0831 1.698

P [Z > z]
< 1Oe-16

0.0052
0.2912
0.4310
0.0202
0.0855
0.0144
O.38Gl

< 10e- IG
< lOe- IG

0.0029
0.0869
0.089G

Tab le 5.7: Est ima tes of Poisson regression coefficients for full mod el



Variable AIC EAIC BIC EI3IC SCAD PELSCAD
Intercept -2.0891 -2.2049 -2.2444 -2.0486 -2 .010 - 1.9952

(0.1008) (0.0691) (0.0679) (0.0517) (0.0626) (0.0191)
X I 0.1620 0.2003 0.2056 0.2627 -

(0.0558) (0.0542) (0.0542) (0.0527) -
X 2 0.3551 0.5168 0.5694 - 0.9970 1.1507

(0. 1432) (0.1319) (0.1307) - (0.123 1) (0.0462)
X.I -0.1998 -

(0.0843) -
X 5 0.0837 -

(0.0535) -
Xn -0.4696 -0.4375 -

(0.1764) (0.1731) -

Xx 1.1861 0.1988 0.1997 0.2303 0.0638 0.0204
(0.0183) (0.0175) (0.0175) (0.0165) (0.0044) (0.0004)

X 9 0.1266 0.1277 0.1279 0.1363 0.1299 0.1371
(0.0050) (0.0049) (0.0049) (0.0045) (0.0041) (0.0033)

X IO 0.0311 0.0334 0.0320 - 0.0127 0.0047
(0.0050) (0.0049) (0.0049) - (0.0016) (0.0003)

X II 0.1211 -

(0.0664) -
X. 2 0.1589 -

(0.08 18) -



Chapter 6

Variable Selection for Cox's

Proportional Hazard Model

Variablcs elcction is an impor tan t problem in surviv al ana lysis. In pra ctice, many co-

variates are potential risk factors and at the initial stage of the modeling. we norm ally

int rodu cc alargenumbcr ofprcdictor s. Thu s, the sclccti on of significan t risk factors

plays a cruc ial role in survival ana lysis. We focus our a t tention on Cox 's proportional

hazard s model with right- censored survival data (Lindley, 19G8).

Bayesian model-selection procedur es for survival ana lysis have been proposed by

Faraggi and Simon (1997) and Faraggi (1998). Ibrahim , Chen, and r-lacEac heru

(1999) prop osed a full Bayesian variable selection pro cedur e for the Cox model by



V ARIABL E SEL ECTIO N FOR CO X ' S PROPORTIONA L H A ZARD MODEL

specifyinga nonpara metric priorfor the baselinefunctionanda para metric prior for

t he regression coefficients. Bayesian variable selection proced ures are simple, but hard

to implement especia lly in high-dimensional modeling because of t he computa tional

burden of the calculat ion of th e posterior model proba bilities. Some tradit iona l vari-

able select ion criter ia such as AIC and BIC can easily be ext ended to surv ival analysis.

Volinsky and Raftery (2000) extended BIC to the Cox mod el. Ot her trad it ional vari-

ab le select ion pro cedur es such as ste pwise deletion and best-subset selection are useful

in practice. However , th ey suffer from several drawbacks, the most severe of which is

a lack of sta bility (for more details see Chapter I ). Tib shi rani (1997) exte nded the

LASSO var iable selection procedur es to th e Cox model. Fan and Li (2002) derived a

nonconcavepenalized partial likelihood for th e Cox mod el and illustra ted the oracle

pro pert ies of their procedu res.

In this chapte r, we introduce th e penalized empirical likelihood forCox's propor-

t ioual hazards rnodcl. A comprehensive review of empirical likelihood has been given

in Chapter 3. Th ere are many recent studies of El. for surv ival ana lysis. Empirical

likelihood has many nice prop ert ies, including the ability to carry 0 ut hypoth esis tests

and construct confidence intervals without est imating the var iance. This is possible

because t he EL rat io does not involve the unknown variances and t he limiti ng dist ri-

but ion ofEL is chi square. T his feat ure has been useful in survival ana lysis because



VA RIAIlL E SELE CT ION FO R C OX'S P ROP ORT IONAL H AZARD MODEL

variance est imat ion can bcdifficult in these problems. In EL, we nccd notest imat e

th e variances which makes many inference procedures pract ical. \Ve now introduce

illdctailthc sllrvivalfullct ioll,hu;t,urdfutlctioll, Hndright-ccIlsorcd data of survival

analys is.

Lct Tbc a nonn egat ivc fan dom variablc withdistribu tionfunction f rcprcsenting thc

failure time of an indi vidual from a hornogcncous pop ulat ion. T he surv ival function

is a too l to describe time-to-event phenomena. It captures the prob ability of an

individual surviving beyond a specific t ime t. It isdcfincd as

S(t) = Pr (T 2: t ) = 1 - P r (T < t)

= I - F (t ).

S(t) is referred to ns thcreliability function in thc context of failure time. IfTis a

cont.inuous rnndo m variablc, t hen S(t) is a contiullOlls ano mo llotolli cally dccrcfl..')ing

functi on. Th e survival function can bewrit tcn

S(t) = Pr (T 2: t) = [ '" f (u)du.

Th us,

f (t ) = _d~;t).



VAR IAULE SELE CTION FOR COX ' S P ROPORTI ONA L H AZAR D M ODEL

Th chazardfunctionis afnndalllcnt alqnanti tyin slITvival an alysis . This function is

known as th e conditionalfaillll'c Tlltcinrcliahili ty. Th e hazard rat e is defined by

,,(t) = 2i~o P [I < T :s~7 ~I IT ~ II.

1f T is a cont inuous rando m var iabl e, th en we call show t hat

" (1) = fffi = -<l h:l~(x ) l.

A relat ed qua nt ity is thc cumulat ive or intc gratcd hazard function lI (t ),dcfincd by

lI (t ) =l' " (ll )rlu = - In[5(1)1·

Thu s, for cont inuous lifet imes ,

5( 1) = CX!' [- H (t) 1= exp [-1' " (ll )<lll] .

Right Ce nso r ing

In survival ana lys is, censor ing refers to dat a th at a rc missing for some rand om reason .

If th e birth and death dat es of a individu al a re known , th en th e lifet ime is known .

However, we may know only th at thc dat e of death is afte r for SO IllC dat e; th is is

callcd rightccnso ring. ni ght ccnsorin g occllTsforthosc individuals whoscbirthdatc

is known bu t who arc st ill alive when t hey are lost to follow-up or when th e st udy
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ends. T hoso ccnsor ing t uncs may vary from individua l to indi vidu al

In right censor ing, for a specific individual under st udy, we ass ume th at t here is a

lifetime T and a right-censoring tim e C . T he T'« are random variables with density

funct ion I(t) and surv ival functi on 5 (t ). T he exact lifetime T of an individu al is

less than or equal to C. 1f T is greater than C, then the individual is a surv ivor,

and his or her event time is censored at C. T he surviva l data CHn bc couvenient ly

represented by pa irs of random variables (T,6), where 6 indicates whct her th e lifet ime

T corres ponds to an event (6 = 1) or is censored (6 = 0), and Z is equal to T if th e

lifetim e is observed , and to C if it is censored, i.e., Z = min{T , C }.

We const ruct t he likelihood func tion for right censoring as follows. For6 = 0,

P[Z ,6 = 0] = Pr[Z = CI6 = 0]Pr [6 = 01= Pr [6 = 0]

= Pr [Z > C] = 5(C).

For 6= 1,

P [Z,6 = 1] = Pr [Z = TI6 = I ]Pr [6 = I]

= Pr[Z = TIT ::; C]Pr [T ::; C]

= [1 !~ic)] [1- 5(C)] = I( z).

This eau bc combincd iuto a slngle exprcssion,



6 . 1 P ROPORTI ONAL H AZAHDS MODEL

For a rand om sample of pairs (Zi,o,),i = 1, . . ,n, th e likelihood fuuctiou call be

6.1 Proportional Hazards Model

Let T ,C, and X be respect ively th e survival tim e, the ccnsoring tim e, and t he

associated covariate va lues , Let Z = mill{T , C} be the observed time and 8 =

I (T :::; C ) be the event indicator (0 = 1 if t he event has occurred and 0= 0 if the

lifetime is right-censored}. We assume thatT alldC are couditioually illdepelldeut

givcn X alldtheccnsoringsystem is IlOllillformative.

Our observed data { (X i , Zi ,Oi ) : i =1 , .. . ,n ) are a random sample from a corta in

popula tion (X , Z, O). Th e complete likelihood of the data is giveu by

L = IT [J(Zi IX i ))" [S(Zi IX i )]H ,

= D[~i~: :~: ; r [S(ZdX;) ]

= D[h(ZiI Xi)]" [S(Zd X i)].

Th e complete likelihood simplifies to

L = D[h(ZiI Xi )]" Doxp] - H (ZdX i)) . (6.1)



To present thi s likelihood function clearly for Cox's prop orti onal hazard s model, we

need more notation. Let T l < T2 .. . < TN denote the ordered observed failure t ime

corresponding to t" t2 , •. . ,t " .Let (j )bethelab elfortheitemfailing at Tj, and let

t he covariates associa ted with N failures be X (I), X (2), . . , X (N). Let Hj denote the

risk sctilllmediat elybeforc tim cT j ,dcfinedby

Consider the prop ortional hazard s model prop osed by Cox (1!J75):

h(t IX ) =ho(t )cxp (XI3) ,

whcrc x Ti s ap x 1 vector of covariate s, f3 is p x 1 vector ofparamctcrs, andho(t )

is the baseline hazard function . Th e likelihood in (G.l) becomes

where Ho(- ) is th e cumulat ive baselin e hazard function . In th e Cox prop orti onal

hazards model , the ba..seline hazard function is unknown and is not parameterized .

Following the idea of Breslow (1!J75), consider thc "least infor inat.ive" nonpar ametri c

model for Ho(- ), in which Ho(t ) has a possible jump nj at tho observed failure time

Tj. l\!oreprecisely, let
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Using (6.3), the log-likelihood of (6.2) becomes

(6.3)

Taking thepar tialderivati ve of f (ho(Z )) with rcspect tohj and e'1uatin g to zero gives

Substit ut ing ilj into (6.4) and removing the consta nt term -N, we can write the

partial log-likelihood as

f ({3) = t [X (j){3 - log {I: eXP(X; {3)} ].
1= 1 iE Rj

An equivalent way of writ ing the partial log-likelihood is

f ({3) = t di [X ;{3- log {~ eXP(x/{3)y,(Z;) } ] (6.5)

where }'i(lt) = I (Zi 2:lt ) ind icat cs whct hcr or not th c i'" indiv idual is at risk at t ime

11. Takingthe part ialderivativeo f(6 .5)withrcspec tto {3a ndeqna ti ng to zcro givcs



G.1 PROPORTIONAL H AZARDS 1\IODEL

th c estim atin gcquation for{3 . T his can bcwrittcn

-i [ T ~ eXP(X,f3)Yi(z.)XT]
g({3) - L O' X i n •

.= 1 ~ cxp (X,f3)Yj(Z.)

(G.G)

Thecmpirica l likelihood meth od has bccn extended to linear regression with ccn-

sored dat a (Qin and J ing, 2001a ; Liand Wallg,2003; QinandTsao ,20 03). It has also

beenadaptedfor scmiparamctricregrcssioHm odcls,illcludingpart ial linear models

(Lcblancand Crowley, HI95; Shcn, Shi, and WOlIg, l !l!l!l; Qin and .Jing, 2001b; Lu,

Chcn, and Gan , 2002; Wang and Li, 2002). We propose a nonparametri c version of

thn pnnalized-Iikelihood variables elcction met hod in surv ival analysis, replacing the

paramet ric likelihood by t hccmpiriea l likelihood. Following equat ion (3.G), we can

write t he pena lized empirical log-likelihood function for Cox 's proportional hazard

where 1'. (*) is th e SCAD penal ty function defined in (2.2) and g({3) is defined in

(G.G). Th e penalized empirical likelihood estimate of {3 is derived by maximi zing

(G.7) with respect to{3 , wit h the proper choice of th e tunin g paramet ers involved in

the SCAD penal ty funct ion. For thc maximization, we used th e modified Newton -

Raphson algorit hm discussed in Chaplcr4 . Duri ng th e max imizati on, many of the



6.2 S IM ULATIO N ST UDI ES

insiguificaut est imatcd coefficients arc forced to zero and hence th cir corrcspoud ing

variables do not appea r in t he model. Thi s achieves the objective of t he variab le

6.2 Simulation Studies

Fan and Li (2002) cond ucted a series of Monte-Car lo simulations for Cox's propor-

t ional hazard s model and showed that t hc penalized-likelihood variable select ion us-

iug SCAD has bett cr perfor mance th an the LASSO, HARD, bes t-sub set , and Oracle

variable selection meth ods. Consider the exponent ia l hazard mode l

h(tIX ) = exp (X 13),

with 130 = (0.8, 0, 0, 1, 0, 0, 0.6, of. Let the corre lat ion between Xi aud z , be p1i- j l.

T he distribu tion of t he censoring tim e is exponential with mean U exp(X 130 ) , where

U is ra udomlygeuera tedfrom t he uniform distribut ionover[1,3] foreach simulated

da ta set , so th at about 30% of the dat a are censored. We simnlated lOOO data

sets cousist iug ofn = 75 and 100 and p = 0.3 and 0.5 from the exponent ial hazard

model with the components of X being standard norm al. T his model is used by Fan

and Li (2002). Th e model errors of our procedures are compared to those of Cox's

est imates. Th e median of the relati ve model erro r (l\lRl\IE) and t he average numb er



of zero coefficients over 1000 simulate d dat a sets arc summa rized in Table G.l. T he

estima ted values of the nonzero coefficients and t he corres ponding sta nda rd errors

arc reportcd inTablcG.2.

From Table G.1 we see tha t when p = 0.3 and n = 75 or 100 the MRME of PE LSCAD

is sma ller th an that of SCAD and t hcaveragc numberof zero coefficients is closer to

t hc target of five. From Tab le G.2 we see that the nonzero parameter est imates of

P ELSCAD and SCA D are close to the true values and their corresp onding standard

errors (given in pare nt heses). Similarresults holdfor p= 0.5;sccTablcsG.3and G.4.

Thi s clearly indicates t ha t P ELSCAD performs well compare d to SCAD.

MlUvlE Avc. no. of Ocoe fficicnts
Correct Incorrect

n-75, p- 0.3
SCAD 44.58 4.43 0.000
P ELSCAD 19.77 4.98 0.049
n=100 ,p =0.3
SCA D 37.21 4.G2 0.000
P ELSCAD 22.05 5.00 0.017

Table G.1: Simulatio n resu lts for Cox's prop ortional hazard s model



Method /31 /32 /35
n- 75, p -0.3
SCAD 0.827 1.042 0.595

(0.186) (0.180) (0.219)
0.834 1.048 0.616
(0.178) (0.185) (0.226)

n-100, 1'-0.3
SCAD 0.825 1.029 0.605

(0.148) (0.148) (0.161)
0.824 1.030 0.611
(0.144) (0.145) (0.181)

Estimates of nonzero coefficients with

MRME Ave. no. ofOcoeflicients
Correct Incorrect

n= 75, p =0.5
SCAD 41.59 4.56 0.025
PELS CAD 22.58 4.88 0.046
n-100,p -0.5
SCAD 37.51 4.73 0.008
PEL SCAD 20.69 4.97 0.014

Table 6.3: Simulat ion results for Cox's proportion al hazards model



n= 75, p =O .5
SC AD

(32 (35

0.828 1.042 0.595
(0.187) (0.203) (0.225)
0.844 1.046 0.616
(0.184) (0.197) (0.229)

n-lOO ,p -0.5
SC AD 0.818 1.028 0.600

(0.145) (0.153) (0.174)
0.830 1.038 0.620
(0.142) (0.164) (0.165)

Cox's pr oport ional hazards model: Estimatcsofnollzcrococfficicntswith

6.3 Lun g Cance r Example

We now apply our var iable select ion met hod to th e lung-cancer da ta set. T he data set ,

lung.da ta , is ava ilable in the "R" statistica l package (in th e SIS libra ry). T his dat a

sctcollta ins illformatiollon 137subjccts,sllchassurvivaltimc and consorstatu s, HS

well as inforrnat ion on six covariatcs . T he covaria tcs ar c X t = tr t ( l =stallda rd treat -

ment and 2= test ), X 2 = celltype (I=sqllamolls, 2=s ma llcell, 3=a deno , and 4= large) ,

x" = karn o (Ka ruofsky perform ance score) , X , = d iagtim e (months from diagnosis

to ra ndo mizat ion) , X5 = age (in years), and X" = prior (pr ior t hera py: O= no and

I = yes).

Th e regression est ima tes of the fnll Cox 's prop orti onal hazard s model are given in



X,-trt 0.1138 0.0944
X2- celltype 0.1383 0.0828
X,,-karno -0.7080 0.1082
X4-diagtiIlle 0.0230 0.0962
Xs-age -0.0384 0.0965
X6-prior -0.0358 0.1017

z-value P [Z > z]
1.2060.2279
1.6700.0949

-6.541 <1 0e-ll
0.2390.8113

-0.398 0.6907
-0.352 0.7246

Table 6.5: Estim ates of Cox's proportional hazards model coefficients for full model

Tahle6.5. From th is table, wesec th at the Karnofsky perform ance score (X3 ) is stat is-

tically significant . We now lise the penalized-empiri cal-likelibood SCAD (P ELSCAD)

allll SCAD procedur es to select th e sign ifican t covari at es for thi s real-dat a example.

The selected covariat esandthecorrespon ding estimatesoftheregression param eters

with thei r sta nda rd errors in parent heses arc listed in Tab le 6.6. Fromthistah lc,w c

sec that SCAD and PELS CAD identified only th e covariate Kam ofsky performance

score (X,,) as important ; tbeother varia bles wcrc not selecte d in tbefina l model.

Th ese resul ts a re useful for und erstandin g t he da ta-generatin g mechanism, for fitt ing

lIs implc model,andfor pred iction.



6 .3 L UNG C ANCER E XAMPLE

Variabl es SCAD

X2- celltype -

X,,-karno -0.6713 -0.6672
(0.0917) (0 .1220)

X4-diagtim e -

X5-age

Xo-prior

Tab le 6.6: Esti mat es of regr ession coefficients in Cox's proportio na l haza rds mod el



Chapter 7

Conclusion

In this chapter , we sununarlzc our contri but ions to variab lc selcctiou. \ Vc propo sed

a penalized vari able selection approa ch based on t he empirical likelihood (EL), a

nonparametri c likelihood sharing many of t he properties of thc parametri c likelihood.

In our meth od we do not need to specify t he para metric famil y of th e distr ibut ion

to do the inference. Wcdcfincd thc profilc cmpi ricallikclihoodbascd on a sct of

est imating equa tions and developed penal ized-emp irica l-likelihood variab le select ion.

Wc discussed the asymptotic propert ies of oUfm ethodin deta il. We also proposed an

algorit hm for th cimplcment atioll ofthcn cw met hod. Slmnlati on st udics showed t hat

0 111' method is consiste nt and whcn a parametric model is available its perform ance

is compar ab lc to t hat ofthe exist ing mcth od forlincarregrcssion , Poisson regression,



and logist ic rcgrcssion. Wh cn th c paramctric modcl is misspccificd , our mcth od

olltperforms theexist ing method. Wc also applied our met hod to survival ana lysis

to invcstigat e variable select ion in Cox's proportional hazards mod el. Our simulat ion

showed tha t P ELSCAD performs as well as SCAD.
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