CENTRE FOR NEWFOUNDLAND STUDIES

DOUGLAS J. SCHILLINGER













INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM fiims.
the text diractly from the orginalor copy suomited. Ths, some thesis and
dissertation
computer printer.

3 Y type

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quaiiy ilustrations
and_ photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these wil be noted. Also, if unauthorized

Oversize materials (e.9. maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from leftto right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quaiiy 6" x 9 black and white

are availabe for any lustrations appearing
in this copy for an additional charge. Contact UMI directl to order.

& Howell Information and Leaming
mNammm Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI



1+l

National Li nationale
of Canada &

Acquisitons and Acquisions et
Bibllographic Services  services bibiographiques
395 Wellogon 265, Welingon

swoet
Orawa ON KIA 084
Canaca

‘The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it

L’auteur a accordé une licem:e non
exclusive permettant &

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cefte thése.
Ni la thése ni des extraits substanticls

may be printed or otherwise de celle-ci ne doivent étre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-55540-2

Canadi



Wind Speed Estimates and Precipitation Detection Using
Ambient Sound in the Ocean

by

© Douglas J. Schillinger
B.Sc.(Hon) (University of Guelph, Guelph, Canada) 1998

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Physics and Physical Oceanography

Memorial University of Newfoundland

June 2000

St. John's Newfoundland



Abstract

“This thesis explores the relationship between ocean ambient sound levels, wind speed
and rain. It has long been known that these surface processes generate sound in the
ocean, but the development of accurate algorithms has been complicated by the dif-
ficulty in obtaining location independent sound levels.  Here, absolute source level
estimates are achieved by modelling the sources as an infinite field of dipoles at
the surface, and accounting for acoustic absorption and reflection from the ocean
floor. It s shown that bottom reflections are an important component in elevating
sound levels at frequencies below 35 kHz. Knowing absolute source levels, these
sound levels can be used to estimate both wind speed and detect the occurrence
of precipitation. It is shown that the wind-only generated ambient sound spectrum
hus & mean slope of -18 dB/decade and ranges from -16 to 20 dB/decade corre-
sponding o wind speeds from 0 to 20 m s~" for frequencies from 1 to 10 kHz. The

spectral slope at frequencies greater than 10 kHz depends upon wind speed. Ex-
g estimation algorithms are shown to overestimate the speed for wind speeds
below 10 m s~ but underestimate wind speeds above 10 m ™' and that there is

a maximum sound level which limits wind speed estimation for frequencies above
10 kHz. A wind speed dependent correction for the existing algorithms is proposed
which gives accuracies +1.3 —~2 m s~ depending on deployment characteristics and
sampling parameters. The accuracy of precipitation identification is limited by the
wind speed and the precipitation type. Precipitation classified as Rain by the World
Meteorological Organization (WMO) is detectable via acoustic means. Sub-division
of the classification of the WMO categories shows that 50% = 10% of ‘Continuous
Rain’ and 23%£12.5% of ‘Intermittent Rain’ are detectable using the ambient sound
spectra.
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Chapter 1

Introduction

In the ocean. sound travels ively unimpeded
waves suffer great attenuation. As a result, the generation and propagation of sound
in the ocean is of great importance as sound is the principle mechanism of nay-
igation and communication. With the advent of submersible vessels, the study of
sound in the ocean has become relevant to military applications. Recent technologies
and new understanding of ocean acoustics have expanded this field to metcorolog-
ical and oceanographic applications. Two of these new applications are estimating
wind speed and detecting precipitation from subsurface hydrophones using the very
sources of sound which were historically a nuisance to hydro-acoustic operations ~
Ambient Sound.

the id us. Weather

prediction is arguably the most important aspect of meteorology to marine opera-
tions but recent environmental concerns, specifically global warming, have increased
the importance of collecting meteorological data. However, collecting accurate wind
speed data and rainfall data on land can be problematic. Ensuring that measure-

ments are not affected by local topography or man made structures, including the



data collecting devices themselves, is difficult. This problem is magnified at sea
where waves. spray and ice can affect surface buoys. Compounding this problem, the

oceans represent 70% of the Earth’s surface, and collecting meteorological data from

the open ocean is of the importance. Many existing e cquipt

record sound over the frequency range of wind-generated and precipitation-generated
ambient sound. In some sense, while studying other phenomenon, you can get the
wind speed at the surface for free. A more down-to-earth appraisal is that using

ambient sound to measure wind speed and precipita

n represents an alternative
means of meteorological data collection.
While previous studies of ambient sound as generated by wind (Knudsen et al.

1948: Wenz 1962; Shaw et al. 1978; Evans and Watts 1982; Vagle et al. 1990) and

precipitation (Franz 1939; Lokken and Bom 1972; Nystuen 1986, 1987; Medwin et al.
1992) have been limited in duration, recorded sound bandwidth, and wind speeds, the
present data include the ambient sound spectra for wind speeds from 1 to 21 ms~"
and coincide with a variety of meteorological events, for example, ‘rain, “drizzle’ and

“fog.” Using this unique data set, the aceuracy of two exis

sting wind speed equations,
from Vagle et al. (1990) and Evans and Watts (1982), are compared to the accuracy
of a wind speed algorithm developed using the present data. The performance of
these three equations are quantified for frequencies from 1 to 72 kHz by contrasting
the mean and standard deviation of the absolute error in the wind speed estimate
from the Sound Source Levels (SSL). Coincidental to the wind speed estimates over
the entire spectrum is the behaviour of the spectral slope with wind speed. To
characterize this behaviour. comparisons of the spectral slope between two data sets

are made over three spectral regions. One result of the non-lincar spectral slope of



ambient sound from 1 to 72 kHz is that there exists a maximum resolvable wind
speed for frequencies greater than 10 kHz.

In addition to placing limits on the accuracy of wind speed estimates and
characterizing the spectral behaviour with wind speed. the effects of both wind
speed and rainfall rates on the acoustic signature over frequencies from 1 to 72 kHz

are explored. The effects of precipitation and wind are studied by comparing the

de using of
dominated ambient sound spectra to two reference records of precipitation. These
identifications are classified as either correct or incorrect and are further divided into
correet identifications categorized by wind speed and precipitation type.

The ambient sound data presented here were recorded by the Ocean Ambi-
ent Sound Instrumentation System (OASIS) at Ocean Weather Station Mike (OWS
Mike). The OASIS device consists of an RD Instruments (RDI) Broadband upward-
looking ADCP and an International Transducer Corporation (ITC) Hydrophone,
model number 6050-C. OWS Mike s a weather station located 210 km west of
Bergen. Norway (at 66°N, 2°E), as shown in Figure 1.1. The weather station is
described in Gammelsroed et al. (1992).

The present data spans 37 days in 1996, from Julian day 137 to 174 (mid-May
until mid-June), and spans 74 days in 1997, from Julian day 111.8 to 185.8 (mid
March to the beginning of July). During the deployment, several storms are ob-
served over the instrument. From OWS Mike, a complete meteorological record is
available. as well as wind speed records from a ship-mounted anemometer. Quantita-
tive measurements of rainfall rates from an Optical Rain Gauge (ORG) are available

for the 1997 deployment.
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Figure 1.1: The location of Ocean Weather Station Mike (OWS Mike), 210 km west

of Bergen. Norway (at 66°N, 2°

1.1 Thesis Outline

Chapter 2 outlines general theory for sound propagation in water, the generation
of sound by air bubbles and the scattering potential of air bubbles. This theory is
completed by a literature review of the study of wind-only ambient sound and the
ambient sound generated by falling raindrops. The historical research on bubble
entrainment and precipitation are also reviewed.

Chapter 3 is devoted to the signal processing and data acquisition of the OASIS
instrument. This instrument provides both the intensity of ambient sound, and the
backscatter intensity from an upward-looking ADCP for the purpose of determining
wind diection. Wind direction estimation is not discussed in this thesis. For a
detailed explanation of wind direction estimation from the ADCP data at OWS
Mike using the data from 1996 and 1997 see Zedel et al. (1998). For an overview of

the technique for determination of the wind direction see Zedel et al. (1996).



Chapter 4 explores the determination of a universal wind speed from ambi-
ent sound equation. The coefficents of this equation are determined, and their
beha

four with frequency are examined. This frequency dependent wind speed es-
timation equation is compared to two existing frequency independent methods of
estimating wind speed by examining the standard deviation and mean of the time
series of the error in wind speed estimation. Further to wind speed estimation, three
methods of improved wind speed estimation are contrasted: time averaging, spectral
averaging, and a wind speed dependent correction factor. In addition to the wind
speed estimates, the spectral behaviour with wind speed for three separate regions of
the ambient sound spectrum is examined. Finally, the maximum wind speeds which
can be estimated from SSL are determined for all frequencies, and these results are
compared to those presented by Vagle et al. (1990).

Analysis of Precipitation Identification from ambient sound Algorithms (PIAs)
is given for two different algorithms in Chapter 5. The acoustic observations are
compared to visual records from crew members of OWS Mike, as recorded following
the World Metcorological Organization (WMO) observing standards. The 100 WMO
weather observation conditions are re-categorized into eight new sub-categories so
that the acoustic observations can be compared more easily. These sub-categories are

then compared to the ORG data in 1997. The suceess of precipitation identification

from am!

t sound is analyzed by wind speed and precipitation category.



Chapter 2

Literature Review

2.1 Introduction

There are many applications involving sound in the ocean. Most of these applications
are active: that is. a pulse of sound s emitted from a source and changes in the signal

are noted at a receiver. The most familiar of these applications is Sound Naviga-

tion and Ranging (SONAR), which entails locating objects in the water through the
detection of reflected sound. This simple technology has many oceanographic appli-
cations: for example, it can be used to study ocean currents using Acoustic Doppler
Current Profilers (ADCPs), to measure ocean depths via depth sounders and to find
fish. In addition, variations in the travel time of sound through the ocean can be
measured via an array of hydrophones to measure the ocean’s temperature (as in
acoustic tomography).

Limitations are placed on these applications by the background sound in the
ocean, specifically referred to as ambient sound. Ambient sound in the ocean is
the sound a hydrophone (or an underwater microphone) in the absence of artificial
sound sources. Knowledge of the magnitude and location of the source of ambient

sound in the ocean is important in hydro-acoustic applications because in active



applications sound at the receiver other than the active signal (the ‘ping’) must be
minimized. As a result, ambient sound has historically been classified as ‘noise’ along
with electrical and mechanical noise from the apparatus. While some authors refer
to this background sound in the ocean as ambient noise, others are more deliberate
in their description and make the distinction that this signal is not “noise’ but rather
sound generated by an identifiable source.

There is additional value in knowing the magnitude and location of ambient
sound (e.g., the infinite plane of dipole sources at the surface generated by wind),
in that the directionality of the ambient sound can be used to create passive sub-
surface images (Potter 1993). This application is called Ambient Daylight T (Potter
1993). and works in a similar fashion as ensuring a bright light source s behind the
photographer and in front of the subject in photography.

w

ile knowing the wind speed and the rainfall rate a-priors is important for
active hydro-acoustic applications and passive imaging one question remains: can
the ambient sound signal be interpreted confidently enough to determine surface
meteorological conditions accurately?

‘The measurement of the wind speed at the ocean surface is important because
the wind stress at the surface transfers momentum from the atmosphere to the ocean.
Since the wind stress at the surface of the ocean varies approximately in proportion
t0 the wind speed squared, accurate measurements of wind speed are needed. Ocean
storms provide momentum transfer from the atmosphere to the ocean which leads to

significant mixing of water properties throughout the water column. Precipitation

is another important ocean surface process; it provides a fresh water input to the

seas and oceans. This input is an important component influencing convection, sea-



ice formation and the large-scale thermohaline circulation. However, 80% of the
precipitation is over the oceans, where only 10% of the weather stations are located
(Nystuen 1986). Many of these weather stations are located on islands which affect

the weather systems which pass over them. Subsequently, there is an immediate

need to study precipitation and storms as they oceur in the open ocean with no land
masses present to affect them.

It is difficult to collect this meteorological data at sea. Some problems asso-
ciated with using surface buoys to collect wind speed and rain-fall data are: waves,
ice, spray and submersion. Specifically, measuring wind speed at the ocean’s surface
is difficult because of the troughs created by waves. Ship-mounted anemometers
must be deployed with care to ensure there is no interference by the superstruc-
ture with the wind measurements. The threat of ice forming on sutface buoys and
pack ice damaging equipment are potential problems in colder climates. In addition,
rain-gauges and drisdrometers are subject to spray and possible submersion, making
accurate measurements difficult.

tion cause characteristic ocean sounds which

Both wind stress and preci

can be used as an alternative means of studying these ocean surface processes. Sub-
surfuce listening systems have an additional advantage over surface deployed instru-
ments, in that they spatially average over an area of radius equal to the depth of the

instrument.
2.2 Sound In Water

To begin with we must define the physical phenomenon known as sound. Sound in

a fluid (o solid) is the longitudinal motion of particles in that medium. Any mech-



anism which causes a change in pressure creates sound in a compressible medium.
Often in oceanography, the ocean s assumed to be incompressible. However, if the
medium were incompressible, the speed of sound would be infinite in that medium,
50 in ocean acoustics this assumption in not reasonable. The rate of change in pres-
sure defines the frequency of the sound and the frequency determines how the sound
wave interacts with its surroundings. The sound wave is a progression of areas of
compression and rarefraction. An area of compression is where particles are pushed
closer together compared to when the sound wave is absent, while rarcfraction is an
area where the particles are further apart than in the absence of the sound wave.
An example of a longitudinal wave similar to sound waves can be demonstrated in
a stretched spring: bunch a number of coils together at one end, and upon release
this area of compression travels the length of the spring.

There are numerous sources of sound in the ocean. ranging from sounds made
by living organisms to sounds created by breaking waves. Table 2.1 presents some

sources of underwater ambient sound and the frequencies over which they are gen-

erated

Frequency Source

10-100 Hz. Microseism
50-500 iz Shipping

120+ kHz | Wind |
10-20+ kHz Precipitation

110 kHz_| Fish and Crustaceans
50+ Kz “Thermal Noise

Table 2.1: Examples of sources and frequency ranges of underwater sound.

To study the characteristics of ocean ambient sound, the generation and prop-



agation of sound in salt water must be explained. To begin, consider the generation

and propagation of sound in fresh water.
2.2.1 Generation and Propagation of Sound

A time-dependent pressure can propagate as either a plane or spherical wave. Fol-
lowing the approach of Burdic (1984), consider an infinite plane at zo in yz, and
apply a force in the x-direction. For a plane wave, assume that the applicd pressure
is equal over the whole plane. As a result, there will be a slight change in volume
to the right of the plane, with the plane moving some distance A€ along the x-axis.
‘The change in volume is y A€ and the strain is then
"
%— =Af. @1

The stress is given by the change in pressure and the ratio of stress to strs

given
by the bulk modulus B. The change in pressure, Ap, resulting from the displacement
A€ can be written as

Ap=-BAE. (22)

If the change in plane position is dependent on z and if Af < 1, then the

pressure is given by

p=-B%. @3
Using Newton's second law
Flz.t) = -mafz,t), (24)
op(z,t) _ _ du(at) .
il - 2l (2.3)
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where u is the velocity of the plane. Strain will also be time varying. The time

derivative of Equation 2.3 becomes

(2.6)

where

uzt) =

27)

2(z.t)
ot

Changing the order of differentiation in Equation 2.6, and substituting Equation 2.7

in as the time rate of change of € gives

u_ _1op
ReER (28)

Using the time derivative of Equ:

n 2.8 and Equation 2.3 then we can find the
one dimensional wave equation:

& &p
G 29

Using standard differential equation solutions there exists a forward and backward

traveling wave with the form

pl@t)=p (:—(z+k.]‘/§)+m(r+(z+ku \/g) (2.10)

where py and py are arbitrary functions, &, and k; are the wave numbers for the

fuy

ions, and the wave speed is ¢ = (£)1. Note that c is not the speed of the
particles since in a longitudinal wave there is no net translation of the particles, but
rather the speed of the energy propagation.

The pressure can be generalized in three dimensions as

1= L0
=g (211)

1



‘The plane wave solution is a special case of Equation 2.11 where the partial deriva-
tives with respect to = and y are both equal to zero. In general, for spherical waves

it is convenient to represent the solution in spherical coordinates. Doing so gives

2

had (2.12)

which is equivalent to

(213)

(2149

where f, and fy are arbitrary functions, k\ and ; are the wave numbers for the

functions. and the wave speed is

s
RO
It must be noted that both the diverging and converging spherical waves dis-

sipate as !, whereas the plane wave does not. Also, the converging wave has a sin-

gularity at r = 0 that is generally ignored in acoustic modeling, with the arbitrarily

large pressure at r =

for the outgoing wave handled by the acoustic displacement
at r being small with respect to r (Burdic 1984).

2.2.2 Relaxation Processes

A more realistic model of sound passing through water includes a time-dependent re-
laxation parameter in addition to Hooke's law in Equation 2.3. This time-dependent
addition models the delay in the pressure change caused by the passing pressure
front as a result of three physical processes. These processes are thermal relaxation.
structural relaxation and chemical relaxation. Physically, they represent changes in

12



vibrational o rotational energy, changes in phase or structure, and ionie dissociation
corresponding to periods of rarefraction and compression.

Adding the relaxation effect to Equation 2.3 makes the pressure change take

the form
d.
Ap=c2ap+5932 (.15)
dt
where b is constant. Using Equation 2.15, Equation 2.13 becomes
FAp . PAp 1A
5 oot @ on @.16)
This equation can be solved if a solution of the form
Ap=pet (217)
s assumed. Substituting this assumed solution into Equation 2.16 gives
Pp. w
S+ ivn) = -5 (2.18)

The spatial behaviour of density p,, can be assumed to vary as p, x e~5*+0:)%, with
& being the wave number. Using the spatial dependence in Equation 2.18, and by

considering real and complex components separately, the exponential attenuation

rate is
Wit
o= Ero 219)
Assuming ¢ = ¢,. where c, is the phase speed, and defining a relaxation frequency
fr = 72 the exponential relaxation parameter can be written as
_(&hfo) S 55
“ETRer L
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with units of nepers per meter. For frequencies less than J, the attenuation is
proportional to f? and approaches a constant for frequencies above ;.

‘The relaxation time is found by considering the case where a pressure of Ap is
applied until ¢ = 0, at which point the pressure is released and from then on Ap = 0.

In this case, Equation 2.15 becomes

dd) _ & 2o
7 dt @)
and is integrated to give
Ap=Apmetn (222)
n '% (2.23)

where 7, is the relaxation time parameter.

2.2.3 Effect of Salinity and Temperature on the Speed of
Sound

In addition to the effects that salinity and temperature have on the relaxation pa-
rameters and therefore the frequency dependent absorption of sound. both salinity
and temperature directly affect the speed of sound in water. The temperature of the
ocean ranges from -4 to 30°C, while the salinity varies from 32 to 35 practical salinity
units (psu). The variability in temperature and salinity occurs in both horizontal
and vertical directions and must be considered in ocean acoustics.

While some oceanographic applications assume that the ocean is an incom-
pressible medium, this assumption is not applicable to ocean acoustics. If ocean
water was incompressible, the speed of sound in the ocean would be infinite. The

compressibility of water is affected by the temperature and, to higher orders, by salt

1



content. In addition to temperature and salt content, the speed of sound increases
with increasing pressure (ie., the depth in the ocean). Pickard and Emery (1996)

give an empirical equation for the speed of sound as

€= 149+ 46T ~0.557% + 1.4(S - 35) + 0.017D (2.24)

where T is the temperature in degrees Celsius, S is the salinity in psu, and D is
depth in metres (m). The speed of sound in water increases with T, S. and D. and
this combination leads to a variety of speed of sound distributions with depth. where
e=cfz).

One common result of the stratification of density in the ocean is the formation
of sound channels. Sound refracts as it encounters a change in density and, as a result,

it changes direction as it passes through the ocean. Consider a two-layer system:

sound traveling downward from the upper laver would refract as it entered the second
medium. I the lower medium had a larger speed of sound than the upper layer, the
sound would bend towards the vertical, as dictated by Snell’s law. On the other
hand. if the medium below had a lower speed of sound, the downward traveling ray
would bend towards the horizontal. To illustrate this, sound can be modeled using

ray theor

v, in which a sound wave is represented by a line perpendicular to the wave
fronts (the ray), pointing in the direction propagation of the wave front. Using ray

theory

ud an infinite distribution of layers with the density in each layer decreasing
with depth, the sound would refract towards the horizontal for ach plane it passed
through. so that a downward traveling ray would bend and eventually travel upward.
If the density increases with depth then a downward traveling ray would progress
towards traveling straight downwards.

A typical sound-speed profle and sound channel are shown in Figure 2.1. taken

15



from Clay and Medwin (1977). All sound originating at the depth of the density

Figure 2.1: Sound refraction due to vertical distribution of the speed of sound, as
shown in Clay and Medwin (1977).

minimum would be trapped in the channel. The temperature and salinity distribu-
tion therefore has a tremendous impact on ocean acoustics and the interpretation of
ambient sound. The concentration of air bubbles in the water also affects the speed

of sound in water (see Brekhovskikh and Lysanov (1991, pp 238), §2.3).

2.3 Scattering and Absorption of Sound by Air
Bubbles in Water

The presence of air bubbles near the water surface is relevant to the study of am-
bient sound. Their importance at the surface is threefold. First, individual bubbles
generate sound when they are created or deformed. The intensity of sound from
acoustically active bubbles at the surface is magnified by the surface which is a per-
fect reflector and, as a result, the bubbles emit sound as a dipole source (see §2.3.2).

Second, bubbles are efficient scatterers of sound at their resonant frequency. A large

16



number of bubbles at the surface, common in near shore surf zones but also in the
open sea during high winds, can result in large attenuation at certain frequencies.
‘Third, the presence of bubbles increases the void fraction (the ratio of air to water
in a given volume) which changes the speed of sound. As a result, there exists the

possibility of a wave guide present at the surface.
2.3.1 Breathing Mode Frequency

As noted. bubbles are efficient sound scatterers, particularly at resonance, and emit
sound when they are created or when they are given energy through mechanical
deformation. To examine resonant frequency, a spherical bubble of radius a. which
is much smaller than the wavelength of the sound wave in water. is considered
Following the approach of Brekhovskikh and Lysanov (1991). the incoming pressure

intensity p; and the outgoing pressure p, are assumed to have the form

pi=det (2.25)

po= Bouneen 22

where A and B are amplitudes to be determined from boundary conditions, R is
a radius from the centre of the bubble to some arbitrary point, w is the angular
frequency, and i = y/=1. Assuming the incoming pressure is incident from far
enough away that it can be considered planar, it acts equally over the whole bubble
removing any spatial dependence in Equation 2.25. Consider the adiabatic case.

where

(227)



The time-dependent volume change from the initial volume Vs caused by the incom-
ing pressure change p, is given by
av Jdr G
oS ATe g =Araty (2.28)
where ¢, is the radial component of the velocity at the surface of the bubble and a

is the radius of the bubble. The time derivative of the adiabatic Equation 2.27 is

(229)

(2.30)

If shear viscous stresses and surface capillary tension can be neglected, then

the boundary conditions are

(2.31)

(232)

where v, and v, are the velocity components due to the incoming and outgoing pres-
sure fields respectively. Recall that the radius is much smaller than the wavelength
of the incoming sound. As a result the acoustic pressure is constant over the surface
of the bubble. This means

mx Bt @33)

As a result. v, = v, where v, is given by the rate of change of p, with respect to R.

18



Equating 2.30 to 2.31, and substituting

Y
w=u=gh (2.34)

the amplitude of B with respect to A i given by
_“gg-n: "‘"""’B(xka-ne'“ (2.35)

Note that ka < 1, and e#* & 1 + ka so

(2.36)
where
Jo= (34} (237)
SRR TT I .
In the ocean. pressure can be approximated by
=10°(1+0. (2:38)

where  is the depth in metres, and py is the pressure in Pascals (Pa). For an ideal
s

7=14. (239)
The density of the ocean can be approximated by

= wzsm—,, (2.40)
and as a result Equation 2.37 for the ocean becomes

p= —aroat (241)
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where a is the radius of the bubble expressed in centimetres, and z is the depth of
the bubble in metres.

Any bubble which is not created symmetrically will oscillate and emit sound
at the frequency fy, as it is driven by pressure forces to become spherical. fo is
the breathing mode frequency of a bubble (also called the Minnaert frequency, see
Minnaert (1933) cited in Leighton (1994)). The energy centred at the resonant
frequency is governed by the damping parameters which are discussed in §2.3.3. The
damping parameter is equal to the width of the resonant peak divided by the peak
frequency (Clay and Medwin 1977, pp 198). The damping parameter is discussed in

3. Figure 2.2 shows the resonant bubble radii for frequencies from 1 to 72 kHz.

52

[y

Figure 2.2: Bubble radius in jm and corresponding Minnacrt frequency in kHz.



2.3.2 Dipole Source: Bubbles Near a Perfect Reflecting Sur-
face

Acoustically active bubbles entrained by breaking waves at the surface will remain
close (within an acoustic wave length) to the surface duc to buoyancy forces. As a
result. the effects of the ocean’s surface on acoustic sonrces near the surface must be
investigated

The surface of the ocean is a near perfect acoustic reflector because of the large
density difference between air and water. Consequently, oscillating bubbles near the
surface of the ocean radiate sound in a dipole pattern in the far field. The bubble
and its reflection in the ocean’s surface are two closely spaced sources as viewed by
a recciver at a depth much larger than the separation of the bubble and it's image.
Figure 2.3 from Clay and Medwin (1977, pp 452) shows this geometry.

5

ir,1

Figure 2.3: Geometry of a dipole source: two monopole source separated by { < k.
where k is the wave number, taken from Clay and Medwin (1977).



‘The mathematical summation of the two sources gives

P=pitp @42

As a result of the density difference between air and water, the surface acts as a
pressure release surface. The image will be exactly out of phase with the bubble, so

that

v ettty
pu 24 (__

otk

2.43
ir R Ry 1243
When R 3> I, where | is the separation between the source and its reflection (or, in
general, the two sources), Ry = R, = R. Assuming that the receiver is sufficiently

far from the two sources, then

Pa= %sw-“’ 2isin (gcnso) (244)
The coefficient in front of the sine term is the pressure of the monopole source for
ka < 1 at R > a. When the wave number is much less than the separation between
the source and its image (or more generally the separation between two sources),

then,
[pal = [Pl kI 03 (2.45)

For the dipole sources listed in this thesis, the monopole intensity (or pressure)
and the kl < 1 term will be incorporated into an Iy term. so that only the cosine

squared directionali

is modeled. This model is reasonable since all bubbles will be

close enough to the surface to ensure kl < 1.



2.3.3 Scattering Cross-Section

Not only do bubbles generate sound when they are created or deformed but they also
s-atter sound, particularly at their resonant frequenciss. To describe the acoustical
power scattered by the bubble or, more aptly the acoustical power scattered through
a surface normal to the direction of the incident wave, it is useful to define the
scattering cross-section of the bubble. By definition, the scattering cross-section is
the ratio of incident acoustic power to outgoing acoustic intensity. Mathematically,

this is defined by

(2.46)
Substituting

»” %

Fan 2.4

200 (247)
into Equation 2.46, o, can be expressed by

2
a (248)

If heat exchange and viscous shear are neglected and the radius of the bubble is much
less than the wavelength of incoming sound, then the effective scattering size is more
than 20 000 times its geometric size. It should also be noted that i f is much less than
the resonant frequency fo, then g, approaches zero since the scattered energy drops
rapidly with [ ~ fo. If the frequency is much greater than the resonant frequency
then the cross-section is at most four times the geometric area, since ka < 1 for

a7
bubbles at resonance (ka = £32).

Realistically, the thermal conductivity of water cannot be neglected and the
scattering and absorption of energy by bubbles is neither purely adiabatic nor isother-

mal. In fact, as volume decreases the temperature must increase. The exchange of
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temperature happens before the volume can increase again. As a result, there is
a phase difference between the pressure and temperature fluctuations and the fluc-
tuations in volume. In other words, when volume is at its minimum, pressure and
temperature will be less than their maximum. To model this behaviour, let gamma

in Equation 2.29 be a combination of real and imaginary components given by
T=n-in. (2.49)

As a result. the pressure given in Equation 2.30 becomes

3n-inm

» iaw

(2.30)

The initial pressure po is the sum of the hydrostatic pressure, and the capillary

pressure. The new initial pressure is given by

p.,:_p,,ns (251)

where a is the surface tension, which can not be neglected for tiny bubbles where
the volume fluctuations are not adiabatic.
For a real bubble the shear viscous stresses which act at the surface of the

bubble in the radial direction must be considered. Viscous stresses result in

(232)

since the incident velocity is the same over the whole radius of the bubble. Equation

2.52 gives a new boundary condition at R = a for pressure,

a, 5
P=p+p =210 (233)



Solving for B now gives

(234)

]
"
s
P
—_
Slsy

where

in  fin

at
pwat " fn

‘The individual deltas are the damping parameters due to re-radiation (4,

of seawater (4,). and the damping due to thermal conductivity (6. Below 100 kHz, &
is dominated by the damping parameter due to thermal conductivity (Brekhovskikh
and Lysanov 1991). Figure 2.4 shows the relative magnitudes of the damping pa-

rameters, from Brekhovskikh and Lysanov (1991).

P
Y
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0" 0
Resonant Frequency (kHz]

Figure 2.4: Magnitudes of the damping parameters, from Brekhovskikh and Lysanov
(1991).



The real scattering cross-section can be written as

4ra® ”
%= P (2.38)
where
2
D % -1 (2:59)

When considering total energy absorbed or scattered by a real bubble we must
consider energy lost to thermal conductivity and shear viscosity. These losses are
incorporated in an absorption cross-section defined in a similar way to the scattering
cross-section. Both the scattering cross-section and the absorption cross-section can
be combined to define the energy loss to an incident wave due to scattering from
the bubble and absorption by the bubble. Incident wavelengths comparable to the
scattering cross-section, and the absorption cross-section will be affected by the
bubbles.

When con

ring the consequence of bubbles in the water column due to
breaking waves, the ramifications of many bubbles with different radii must be con-

sidered. The distribution of bubbles of different sizes creates the need to refer to a

volume scattering coefficient and the need to examine dispersion effects on the sound
velocity.

Interactions between bubbles can be ignored when the average spacing between
the bubbles is less than the larger of the waveleugth of sound or the square root of
the scattering cross-section. To examine the volume effects, consider n bubbles of

radius a in a unit volume. The total power is
W,=na, L. (2.60)
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If there is a distribution of bubble sizes in the volume, then the integral of the
volume scattering coefficient over the range of sizes must be calculated. As a result,

the intensity of sound decreases by the following relation

dl = -3ldr (261)

where J is the integral over the range of bubbles of n(a)c,. One solution to

Equation 261 is
1) = [0) " (262)
I(r) is the acoustic intensity of the sound wave after traveling some distance r from

the source /(0) through the layer of bubbles, which absorbs and scatters energy in

an exponential decay with 3.
2.4 Sources of Ambient Sound

As Table 2.1 showed, there are many potential sources of ambient sound at various

frequencies. Wind-generated ambient sound has a large bandwidth, extending from

a few hundred Hz (300 He) to at least 72 kiz. Ambient sound dominated by precipi-
tation extends from 10 to 25 kHz. Despite fity years of research, both the source and
exact behaviour of the spectra of ambient sound are poorly understood. However,
enough is known that the wind speed at the surface can be estimated empirically
from the ambient sound. Additionally, it is well known that periods of rain can
be identified from the ambient sound spectra; in fact, the rainfall rate can also be
determined (Medwin et al. 1992). What still needs to be addressed is the time scale
over which accurate observations of wind speed and rainfall rate can be measured

via ambient sound, and the effects of hydrophone depth on these measurements. In
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addition, the effects of t pectral averaging still need to

q . Finally,
the exact spectral behaviour over the entire range of frequencies for wind-generated

and precipitation-generated ambient sound has not been identified.
2.4.1 Ambient Sound Produced By Breaking Wind Waves

Ambient sound in the ocean extends over a large spectral range. It is generally
accepted that thermal noise dominates the spectra at frequencies higher than 50
kHz (Burdic 1984; Urick 1967). Mellen (1952) derived the formula for thermal noise

by considering the number of compressional modes of vibration in a cubical box of

volume . The frequency density of normal modes can be used to get the energy per
unit volume from the equipartition theorem. For an omnidirectional hydrophone,

the expression derived in Mellen (1952) can then be transformed to
NL=-15+20 log f (263)

where L is the thermal noise level in dB and f is the frequency in kHz. Sound
intensity levels are often reported in dB to allow addition and subtraction operations.
t0 replace multiplication and division (see Clay and Medwin (1977)).

For frequencies below 50 kHz the first description of ambient wind-only sound
was given by Knudsen et al. (1948), who noted a 5 dB/octave (equivalent to 19

dB/decade) decrease in the ambient sound level with frequency. The sound intensi

peaked at 300 Hz and extended to 30 kHz. In addition, the intensity of ambient
sound levels were observed to be directly related to the wind speed. Figure 2.3
shows a spectral plot of thermal noise and the ambient sound for different sea states,
as given by Urick (1967).

Wenz (1962) confirmed this wind-speed-ambient-sound relation and proposed
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Figure 2.5: Ambient sound spectra for various sea states (Urick 1967). The numbers
on the right vertical axis are the SSL in dB re: 1 uPa? Hz.

that the cause of wind-generated ambient sound might be oscillating bubbles en-
trained by breaking wind waves. Other hypotheses for the cause of wind-generated
ambient sound included ocean spray (Wilson 1980) and shattering bubbles in break-
ing waves (Kerman 1984).

A common theme for all hypothesis relating to the source of wind-generated
ambient sound is bubbles. Banner and Cato (1988) showed video evidence demon-
strating the mechanism for the generation of ambient sound is bubbles entrained by
breaking waves. The first attempts to capture the acoustic emissions from breaking
waves in flumes were conducted by Banner and Cato (1988), Mellville and Rapp
(1989) and Papanicolaou and Raichlen (1988). The flumes suffered from reverber-
ation, 5o absolute noise levels were unobtainable, however Banner and Cato (1988)

showed convincing high speed production and

ing acoustic signal. Continuing this work, Medwin and Beaky (1989) presented ab-
solute spectra from breaking waves in a flume with waves generated by an oscillating
plunger. so that bubbles associated with the breaking waves had no association with

wind. The bubbles produced a spectrum with a 3dB/octave decay from 1 to 20 kHz.
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Medwin and Beaky's (1989) conclusions are still important to the study of wind-only
anibient sound. They noted that while the far feld intensity varies with the depth of
the hydrophone squared (h~?), the area of observable sources at the surface as seen
by the receiver also varies with A% The increased number of observable sources at
the surface for increasing depth of receiver cancels the energy loss due to spherical
spreading from an infinite plane of dipole sources at the surface. In their paper. they

summarized years of ambient sound research by saying

“Thete s a long history of ocean noise being ‘instantly’ sensitive to the

onset of winds. Since wave height depends on the fetch and duration of

the wind. it is not the wave height that s crucial to ocean noise; it is the

presence of breaking waves. This was clearly evident in these laboratory

experiments [ ... whose] implications [are] that the ocean noise in the
frequency range 1 to 20 kHz, and perhaps at higher and lower frequencies

as well, s due to wind-only through the mediation of the spilling breakers

which are the sources of the sound-radiating bubble.” (Medwin and

Beaky 1989, p 1129)

To fully understand wind-only ambient sound, three types of wave breaking
processes must be considered. The first is the ‘plunging breaker’, which is the type
of wave breaking seen crashing in the surf zone. It occurs when the amplitude of
the wave grows to the point where gravitational forces overwhelm the wave and
results in catastrophic breaking of the wave. The second type of wave breaking is
the “spilling breaker.” This type of wave breaking is similar to the plunging breaker
except that it oceurs on a longer time scale. Also, only the crest of the wave breaks

and, in essence slides down the front of the wave. The third type of wave breaking
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involves ‘microbreaking, as outlined by Updegraff and Anderson (1991). This type
allows for parasitic capillary wave action on swell waves to entrain bubbles at the
onsct of low magnitude wind speeds. It is this microbreaking which is responsible for
ambient sound at low wind speeds. This threshold is no doubt related to the onset
of ambient sound which occurs at wind speeds less than the wind speed threshold of

white capping.

Aside from variations in the SSL produced by precipitation (see §2.4.2), Farmer
and Lemon (1984) noted deviation from Knudsen wind-only behaviour: a decrease
in signal at 14.5 and 25 kHz for wind speeds greater than 10 m 5= when compared
to the SSL at 8 kHz. From the apparent decrease in the ambient sound levels at high
frequencies, the extinction radii of bubbles was calculated, and provided evidence of
a resident bubble layer. Relevant to the creation of a resident bubble layer is the
hypothesis that the bubble size distribution near the surface can be modeled by a
power law. To this end, the exponent on the power law for bubble size distribution

was calculated from the ratio of the attenuation of the

al at two frequencies.

and was compared to the relation determined by Johnson and Cooke (1979) and
Kolovayev (1976). The experimental exponent for Farmer and Lemon's (1984) study
was between the values recorded by these two studies.

Near-surface bubble size distributions are of the utmost importance as they

scatter sound, affect the speed of sound, and generate wind-only sound. Initial mea-
surement techniques concentrated on photographic methods, until a linear acoustic
technique for sizing bubbles was presented by Medwin (1977). Several bubble sizing
studies were compared by Wu (1981). These carly studies (Kolovayev 1976: Johnson

and Cooke 1979; Medwin 1977) showed many differences. Medwin (1977) admits
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that his results may have been skewed by biological activity, while other factors such
as temperature differences and the influence of the bubble trap apparatus on the
bubbles may also have been the reason for the observed differences.

Although there has been further study of bubble size distributions, there is
still not a clear understanding of the distributions which exist in the open ocean
Sevaral other methods exist to measure bubble sizes in situ: for example, methods
based on non-linear acoustics (Leighton 1994) and acoustic resonators (Farmer et al.
1998). Further discussion of bubble sizing techniques can be found in Melville et al.
(1995).

The pi bubble layer in winds above 4 m 5! has b firmed (Dahl

and Jessup 1995; Crawford and Farmer 1987). Dahl and Jessup (1995) observed a

significant increase in the backscatter intensit

from the surface for wind speeds
above 4 my~" using ADCPs. The backscatter intensity increases with wind specd
as the resident bubble population grows. As waves break and inject bubbles into
the water column, the plume of bubbles remains and as wave breaking increases the
bubble population at the surface changes from pockets to a wide layer at the surface.

Capillary gravity waves also produce acoustically active bubbles. In an ane-
choic wave tank, production of these bubbles was observed at wind speeds greater
than 14.6 ms~", and the spectra covers a broad frequency range (from a few kHz
10100 kHz, and peaks at 4 kHz) (Kolaini et al. 1994). The exact spectral shape of
the observed spectra does not reflect the shape of in situ spectra because no bubble
layer is allowed to build. From the histograms of bubble size distributions the most
frequently occurring bubble radius is 0.1 mm, which corresponds to a resonant fre-

quency of 32 kHz, while the distribution is centred around bubble radius 0.2 mm,
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which corresponds to a resonant frequency of 16 kHz. Increasing the salinity in-
creases the number of smaller radii bubbles compared to the distribution of bubbles
observed in freshwater (Kolaini 1998).

Before there was conclusive evidence indicating the source of ambient sound o
exhaustive research on the correlation of wind speed and ambient sound Shaw et al.
(1978) suggested, although only qualitatively. that wind speed could be derived from
ambient sound through empirical calculations. Since then, there have been many
studies confirming this relation. Vagle et al. (1990) and Evans et al. (1984) both
derived empirical equations relating the ambient sound to wind speed. Existing wind
speed estimation data are limited by the range in wind speeds, and the frequencies
over which the ambient sound is recorded.

Of the existing studies, the Frontal Air-Sea Interaction Experiment (FASINE

)
(Vagle et al. 1990) is the most comprehensive. Many other data sets were employed

in calibrating the algorithms used to exclude shipping noise and precipi .

The wind speed estimating equations are also tested on the various other data sets.

One of the conelusions from iment was that there exi itical frequency
beyond which the ambient-sound-wind-speed-relation no longer exists, and that this
frequency is dependent on wind speed. The relation for the critical frequency f, with
wind speed is given by
log fe = 1.9 0.07TU (2.64)
where U is the wind speed.
‘The data collected in FASINEX were limited to frequencies below 25 kHz, and
wind speeds of 16 m s~'. In addition. the ambient sound data were not corrected for
reflections off the ocean floor, and the meteorological data is measured either away
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from the hydrophone or is measured at the surface where interactions with wave
crests can be problematic.

Nystuen and Selsor (1997) present ambient sound and wind speed data col-
lected using Acoustic Noise Sensors (ANS) drifters set to drift in the Pacific ocean.
Comparison using Vagle's wind speed estimate from ambient sound equation are
‘made to satellite observations. The ambient sound wind speed estimates show cor-

relation (r =

.91) with the satellite estimated wind speeds.

Despite the general agreement of the wind speed from ambient sound equations
« comprehensive study with wind speeds ranging from 0 to 20+ m s~! and recorded
sound frequencies from 1 to 72 kHz s required to confirm the accuracy of the wind
estimates at all wind speeds. Additionally, the time or spectral averaging necessary
for accurate wind estimates must also be investigated. Coincidental to the study
of the wind from ambient sound equation for various frequencies, the behaviour of
ambient sound spectra over the entire range of wind induced ambient sound must

be determined.
2.4.2 Ambient Sound Produced by Precipitation

Pumphrey et al. (1989) provided a brief look at the previous research on the sound
produced by a falling drop of water onto a surface of water. This research dated back
to Worthington's flash photography (1890) of falling drops on water. Several theo-

were postulated by Bragg (1920) and Mallock (1919). but the accepted theory
was finally given by Minnaert (1933) who provided the breathing mode frequency
derivation of gas bubbles in liquid that are the source of the sound generated by

falling drops. Minnaert) proposed that the sound of running water comes from bub-



bles. To come to this conclusion, he adapted the theories provided by Bragg and
Mallock. who described the airborne sound of drops hitting water (see the discussion
in (Franz 1959) for the references).

Franz's (1959) high-speed movie photography provided excellent pictures of
the process of falling drops on water as well as the sound produced by the bubble
entrainment and impact of the drop. In this study, the sound generated by the falling
drops was described as a sharp pulse attributed to the initial impact accompanied
by a slower sinusoidal decaying sound wave generated by entrained air bubbles. The
cntrainment of these bubbles was described as erratic. In addition, these oscillating
bubbles were observed to be dipole sources of sound. Franz noted that the sound
levels were proportional to drop size and impact velocity. He also provided results
from some experiments in the sound generated by spray. In this part of the study,
Franz noted that for bubbles with a radius of 0.24 em, a canopy of water formed
which prevented bubble formation. The overall sound spectra has a broad frequency
range that extended from 1 to 10 kHz.

n their study of heavy rainfall, Heindsman et al. (1935) found that the absolute
sound levels are 77 dB re 1u Pa for frequencies from 1 to 10 kHz. Further, Bom
(1969) plotted the log of rainfall rates from 1 to 25 mm hr~" against the sound level
and found a linear relation. He also speculated that the sound level depends on the
drop size and impact velocity. Lokken and Bom (1972) reported that drop size varies
with the rainfall rate, so that the ambient sound spectra reflects the distribution of
drop sizes in the precipitation. Changes in ambient sound with drop size are not
simple: the spectral character as well as the intensity of the generated sound changes

with changing drop size.



Given that raindrop size changes the acoustic signature and that the rainfall
cate changes the drop size, in principle it should be possible to determine the rainfall
rate from the acoustic signature. An algorithm to determine rainfall rates from the
acoustic signal was developed by Nystuen (1996). This algorithm involved using a
matrix of known spectrum generated by raindrops of certain sizes. It also gave an
inverse method to determine the spectral density of drop sizes and subsequently a
formula for calculating the rainfall rate (Medwin et al. 1992).

The general shape of the spectra for light rainfall was described by Serimger
et al. (1987) as a narrow peak centered about 15 kHz, with a steep slope of approx-
imately 60 dB/octave on the low frequency ascent and a slower 9 dB/octave decline
on the higher frequency side of the peak. Observed to 50 kHz, this slope is quite
different from Knudsen's wind-only slope of 5 dB/octave. This description of the
sound from rainfall also highlights the fact that the acoustic signature of snow and
hail are distinet from each other as well as from liquid precipitation.

The frequency of the spectral peak is shifted by wind and by surface waves

(Nystuen 1987). Wind affects the impact velocity as well as the angle at which the
drop strikes the surface. This angle changes the energy released on impact. The
upward velocity and phase of the wave also affect the impact velocity. If there is an
cqual probability that rain drops will strike the wave at any point, the sum of the
drops hitting the wave at all phases causes a broadening of the spectral peak. In
fact, the peak is dependent on drop impact velocity, and the spectral peak location

is given by

=342 (2:63)
U

where F, is the frequency in kHz, v, is the terminal velocity of the drop (dependent on
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drop size), and v; = /o7 + vZ, with v,, the upward component of the oceans surface
due to wave action (Nystuen 1987). The spectra Scrimger et al. (1987) described,
and the shift with wind speed as Nystuen (1987) noted, are shown in Figure 2.6,
taken from Nystuen and Selsor (1997).

traquency Gm)

Figure 26 Ambiont s spcte o various metorologial conditons. ek fom
n and Selsor (1997).

Ofuz and Prosperetti (1992) showed that certain velocities and drop sizes will

produce a conical crater in the surface of the water and that this crater will always

entrain a bubble. is dependent on the shape of the impact crat
bubbles which do not have the correct drop size will not create a crater suitable for
bubble entrainment. By plotting the terminal velocity of the drops corresponding to
the drop radius, the intersection yields a region of rain drop sizes which will entrain
bubbles provided there i
of the ocean (Medwin et al. 1992; Pumphrey et al. 1989). In addition, for large

no wind; i.e., they impact at zero angle to the surface

enough drops (e.g. diameter greater than 2.2 mm), a jet of water forms which can

subsequently entrain a bubble after drop impact. The entrainment by these jets is

dependent on the angle at which the jets hit the surface, with increased probability of
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entrainment corresponding to the increase in angle of the jet with the water (Medwin
et al. 1992)

Precipitation can be identified from the spectra by plotting the SSL at high
frequencies (e.g., 20 kHz) against the SSL at 8 kHz. The resulting scatter plots
show a lincar low-wind speed region, where the wind-only Knudsen spectral slope
is obeyed and a high wind speed region where the magnitude of this critical wind
speed varies with frequency (Vagle et al. 1990). Above the critical wind speed a
resident bubble layer begins to attenuate the sound. Periods of precipitation can be
identified by increased sound levels at 20 to 25 kHz with respect to sound levels at

8 kHz (Nystuen 1986) as shown Figure 2.7.

Figure 2.7: A precipitation identification scheme using the elevated sound levels at
25 kHz relative to 8 kHz, taken from Nystuen and Selsor (1997). “High seas’ marks
the wind speeds when bubble attenuation affects the ambient signal.

Medwin et al. (1992) provide the most detailed description of the sound signal
produced by drops of different sizes. Their results and definitions of bubble types

are given in Table 2.2. Medwin et al. (1992) classify the bubbles created on impact

38



Diameter (mm) Notes
<08 No sound

08<D<IT Type

ange xz n KHz

bubble production to ln% for incident angle 20
major component of 0.6 mm hr~"! drizzle
Mid Sized | 11<D<22 No bubble cavitation

Targe Dx22

primary hubhu puk heqmcy x
/=8 +0

fis frequency in kHz, D udnypdummr in mm
1.8 t0 8.5 kHz, for D 48 to 2.2 mm

Table 2.2: Rain drop size classification and acoustic profile.

as Type [ and Type I1. A Type I bubble is “formed at the apex of a conical crater,
which is produced by the hydrodynamic forces generated by the vertical impact of
a small drop onto a smooth, horizontal surface” (Medwin et al. 1992, p. 1614). This
bubble is the dominant source of sound in the sea for precipitation with drop size
distribution which includes small drops (e.g., those with diameters ranging from 0.8

to 1.1 mm). Larger rain drops (e, with diameter greater than 2.2 mm) generate

sound through the Type II process. Th

includes sound produced by the impact, as
well as from the oscillation of a large Type I bubble and possible smaller bubbles.
In summary, drops of water less than 0.8 mm in diameter make no sound
because the energy of impact is not enough to form a bubble on impact. As the
drop size increases the probability of bubble entrainment increases with size. and
decreases with increasing wind speed. There is another drop diameter threshold at

L1 mm. Drops between this size and less than 2.2 mm in diameter, create only
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a short-lived broadband sound from the impact and have no cavitation following
impact. This is because the crater formed does not have the proper shape to entrain
bubbles, therefore they are acoustically undetectable (Oguz and Prosperetti 1992).
Large drops (e.g., those greater than 2.2 mm in diameter) do have a probability
of entraining bubbles. For these bubbles, the probability of bubble entrainment
increases with increasing wind speed. These bubbles are responsible for sound from
1.8108.5 kHz. The frequency of the sound generated by these drops can be estimated
by an empirical relation

7=10+0s (2:66)
as determined by (Medwin et al. 1992). Precipitation has a spectrum of drop sizes
and thetefore a corresponding spectrum for the sound generated by the drops. To
put the drop sizes into perspective, meteorologists classify miniscule drops as less
than 0.4 mm in diameter and refer to this distribution as ‘Fog’. Drops greater than
0.4 mm but less than 1.0 mm in diameter are referred to as ‘Drizzle’. Combining the
meteorological definitions with the drop size study, ‘Drizzle’ should be acoustically
detectable, while ‘Fog’ should not. Rainfall rates dominated by drop sizes from
1.1 to 2.2 mm in diameter should not be acoustically detectable, as no bubbles are
entrained following impact.

The acoustic data available for study of precipitation data are limited by the
frequency range recorded as well as the wind speeds and the rainfall rates present
during the studies. Scrimger's et al. (1987) study is limited to rainfall rates of
10 mm hr=" and to wind speeds less than 5 m s~', which allows for the isolation of
precipitation ambient sound, but does not fully reveal the complexities of the signal at

higher wind speeds. Farmer and Lemon's (1984) study measured the ambient sound
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in shallow water, subsequently an absolute comparison cannot be made. However it

‘must be noted that in their study ambient sound measurements were limited to 25

KHz and recorded only in 3 frequency bins. The wind speeds were less than 13 m s
While Pumphrey et al. (1989) provide well isolated rainfall rates, their experimental
results are not from the field. Rainfall rates are produced artificially, and swell and
wind waves are not present.

Nystuen (1998) demonstrates the effect of rainfall on freshwater input using
data collected for the Acoustic Surface Reverberation Experiment (ASREX) which
spanned 87 days in the winter in the mid-Atlantic ocean. In his review, there is
evidence of bubble interference during heavy rainfall in high wind, indicated by

the lower-than-expected SSL at 20 to 25 kHz for wind-only spectra of similar wind

speeds. There is also anecdotal evidence of a reduction in wave height growth during
periods of precipitation (Nystuen 1998).

Wi

le it is known that wind speed affects the acoustic signature of precipita-

tion, and that precipitation can be identified by the acoustic signature, a complete
in situ study of the probability of detection from ambient sound is still required. In
addition to this categorical gap in the research, the high frequency spectra signature

attributed to precipitation has not been thoroughly described.



Chapter 3

Data Processing

3.1 Introduction

Absolute measurements of the intensity levels of ambient sound are modified by sev-
eral factors. This chapter will examine the following factors: hydrophone response:
ocean bottom depth; and hydrophone mooring depth. In the present study. data
was collected with the hydrophone moored at two different depths. Increasing the
depth of the hydrophone increases the spatial average over which the meteorological
estimates are determined using the ambient sound, as well as increasing the path
length for the direct sound signal from the surface to the hydrophone. To make
dB, measured

intensities must be adjusted to a 1 m measurement reference depth. In addition, the

absolute comparisons of the estimated Sound Source Levels (SSL|

processed data must account for any additional signal due to refections and atten-
uation as the sound travels through the ocean. These potential alterations to the
signal are dependent on the temperature of the water, the nature of the reflections
at the ocean bottom and the surface, as well as the depth of the water.

The accuracy of the intensity levels recorded by a hydrophone are affected by

two factors: the amount of spectral averaging and the amount of temporal averaging
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per ensemble. In the t data set, the data ata of one

ensemble recorded every

minutes in 1996, and at a sampling rate of one ensemble
recorded every 72 minutes in 1997. As such, the 1996 data set can be examined in

two w

ws. as outlined in Chapter 4. One way is to average the data into 10 minute
ensembles. and the other is to average into hourly ensembles. These two methods
are treated as separate data sets, and are referred to as 1996-10 and 1996-60. The
sampling rate directly affects the temporal scale from which comparisons between
the estimates from ambient sound can be made to the meteorological measurements
recorded by the anemometer, the crew member (via the WMO chart entry), and the
Optical Rain Gauge (ORG). The accuracy of the SSL estimates improves with more
temporal averaging.

Knowing the uncertainty in SSL measurements is important when describing
any of the following: the absolute sound levels which occur at specific wind speeds:
the absolute SSL for specific precipitation events: and SSL thresholds. The uncer-
tainty s important so that comparison of the SSL of these propertics observed in the
present data set can be made to other data sets. In addition, ambient sound in the
ocean has been characterized by a spectral slope of between -17 and -20 dB/decade
(Knudsen et al. 1948; Wenz 1962; Shaw et al. 1978). The accuracy of the SSL esti-
mates can be used to estimate an uncertainty in spectral slope so that the spectral

slope of the present data can be compared to this historical range.

3.2 Sampling Rates and SSL Estimates

In order to measure both the direction of the wind and the wind speed using a

sub-surface listening instrument, the OASIS device consists of an Acoustic Doppler

43



Current Profiler (ADCP), and an omnidirectional hydrophone (ITC model number
6030-C). For the purposes of wind speed determination and precipitation detection,
only the hydrophone data will be considered.

The instrumentation is designed so that the ADCP and hydrophone are set
t0 “ping’ and record at an appropriate delay in order to avoid any ambient sound
signal contamination from the active SONAR transmission of the ADCP. The signal
at the hydrophone s digitized at 450 kHz and converted to frequency spectra using
2 8192-point FFT algorithm. Data storage constraints preclude recording the entire
4096-point FET output, so data were averaged into bins using a constant ratio of

bandwidth to frequency. For the two data sets considered in this thesis, that r:

was
A
7

where Af is the width of the bin and f is the centre frequency. Data were recorded

3.1

in 128 bins at frequencies from 1 to 72 kHz.
The confidence interval(ci) of the FET is given
v
=SSt (32)
where 2, s the * value for v degrees of freedom at 1 - a% confidence and the
SSLisin W m2. The degrees of freedom for a real time-serics in a Bartlett window
FFT is v = 2-3- N/M, and here N/M = 8192/4096. The uncertainty in intensity
levels can be estimated using
o1 =(1-ci)SSL (33)
and is reduced by the averaging necessary to maintain Equation 3.1 which is associ-
ated with the data storage constraint. The amount of averaging for each processed

4



frequency, ny, is given by

y (3.4)

2 150

The resulting uncertainty in intensity for each recorded ensemble is reduced by the
square oot of n, 50 that the uncertainty in the intensity levels recorded in one
ensemble is

1-ci)
i

since one ensemble is the average of three samples. If further averaging is performed,

177:(

-SSL, (3.3)

in principle the uncertainty drops by /777, where n is the number of ensembles, or
frequency bins per average. However, from the averaging used to make the frequency
bins, the frequency bins are not independent, so that averaging of bins will not make
the uncertainty drop by the square root of na. The uncertainty o; is converted to

dB by
10+ log (1 £ a7) (36)

Figure 3.1 shows the uncertainty in SSL for averaging of 3, 17, and 1 ensembles

together, corresponding to the 1996-10, 1996-60, and 1997 data sets.



Figure 3.1: The percent uncertainty in ambient sound intensities, with 95% confi-
dence, for 9, 17, and 1 ensembles in each averaged spectra, corresponding o the
1996-10, 1996-60 and 1997 data sets.

A sample wind-only spectrum, recorded during a wind speed of 7.7 mst

where the constant wind-only slope of -19 dB/decade has been removed to decrease

the range of the y-axis, is shown in Figure 3.2.

Figure 3.2: Sample spectrum with the -19 dB/decade slope removed, centred about
8Kz from the 1997 ambient sound data, recorded during a wind speed of 7.7 ms™".

‘The improvement in SSL estimate with frequency is demonstrated in the spec-

tra shown in Figure 3.2 by the decrease in the random noise peaks from frequency
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10 frequency. For example, compare the 3 dB noise in the spectra for frequencies
< 4 KHz to the 1 dB peaks for frequencies > 35 kHz.

3.3 Spectral Processing

[n order to make the SSL deployment independent, so comparisons can be made to
other data sets recorded by hydrophones at different depths at different locations,
the effects of ocean depth and hydrophone placement must be calculated. The first
step in processing, however, must account for the frequency dependent characteristic
of the hydrophone (which in the present case differed between deployments).
3.3.1 Calibration of Hydrophone

Regardless of different deployment parameters. the signal from any hydrophone must
be corrected for the hydrophone's unique performance characteristic. The ITC-6030-
C hydrophones come with a factory calibration, but with the extended ambient sound

phone. The

mean from cither data set is a wind-generated signal with some constant spectral

data from each deployment ibration was obtained for the hy

slope. By examining the mean of the spectra and comparing it to the factory cal-
ibration, a new calibration response characteristic for the hydrophone during each
deployment was calculated. Figure 3.3a shows the two calibration curves and Figure
3.3b shows the differences between the 1996 and the 1997 deployments. Zedel et al.
(1998) explain how the calibration curves are calculated from the data set and com-
pare the 1996 values to the factory and lab calibrations. Figure 3.3b quantifies the
difference in the performance of the hydrophone between deployments.

The largest differences between the performance of the hydrophone in the two



o

Figure 3.3: a) Hydrophone calibration characteristics for 1997 (solid blue line) and
1996 (dashed red line) deployments. b) Difference between deployments.
deployments occur at 4, 7, 20 and 30 kHz. As Zedel et al. (1998) point out, the
difference between field and factory calibration (not shown) comes from the narrow
spectral resolution of the OASTS system compared to the factory calibrations. The
cause of the difference in performance between deployments is unknown (the same
hydrophone was used in 1996 and 1997).

3.3.2 Water Temperature, Hydrophone Depth, and Bottom

Depth

In order to make qualitative comparisons between ambient sound data recorded
at different depths, the effects of attenuation and additional signal due to bottom
eflections must be removed from the SSL (see Chapter 2). To do so, the effects of

temperature, hydrophone and bottom depth are investigated.
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‘The source of ambient sound in the ocean as generated by breaking waves and
precipitation can be modeled by an infinite plane of dipole sources located at the
ocean’s surface. Each individual dipole source radiates energy as

Iy = Iy sin*0 @3.7)

where Iy is the equivalent intensity of a monopole source and @ is the angle from

the surface. The sound field at depth D, from an infinite plane of dipole sources is

determined by integrating over the entire plane and is given by

v ja
= B sintordrds (38)
omo Jrna

cre R is the distance from the source, r is the radius at the surface, and o is the

w
angle through the plane at the surface. The geometry for the integral in Equation 3.8

is shown in Figure 3.4 with the assumption that there is no refraction. Equation 3.8

. Surface
I i .8
H 7
2H
Betiom (2H - D)/coso
Image

Figure 3.4: Geometry for a source at the surface, a distance of r m horizontally from
the hydrophone at depth D m in H m of water.

represents the contributions to the sound field from the direct path from source to
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receiver, and does not include attenuation due to chemical absorption. If attenuation

is included, Equation 3.8 becomes

i = ko i2georraran (39)
=0 Jr=o B2

where a is the frequency dependent absorption coefficient in nepersm™', and is
calculated from equations A.1, 4.3 and A5 taken from Clay and Medwin (1977)
(see Appendix A).

To solve Equation 3.8, the following substitutions are made:

R=D+r, (3.10)

2
sln‘ﬂ:%, (3.11)
r=Rcosf,dr = Rsinfdf. (3.12)

‘From these substitutions, it follows that the sound field intensity at depth D, becomes
2
I—Zwl../ sin’ @ cose™P/400 dg . (3.13)
o

An interesting result of this geometry is that the sound from an infinite plane of
dipole sources at the surface suffers no losses in intensity due to spherical spreading
below the surface. The sound field is dependent only on the depth of the hydrophone
through the absorption along the ray paths.

3.3.2.1 Bottom Interactions

Reflections of sound off the ocean floor can add significant energy to the ambient
sound levels generated by wind and precipitation for frequencies less than 35 kHz.
“This fact is true even for ocean depths of 4000 m at sufficiently low frequencies (e.g.,

less than 10 kHz), and for a broader range of frequencies (e.g., less than 35 kHz) for

depths around 1000 m. In shallow water, multiple bounce paths (i.., sound which
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reflects off both the ocean floor and the surface) can also increase the ambient sound
level.

In order to apply universal wind speed algorithms to either data set, as well as
to make comparisons between the two sets, the depth attenuation of the signal and
increased signal from bottom reflections must be accounted for. Farmer and Lenion
(1984) maintain that in deep water, bottom interactions are not important, however
it can be shown that the energy from reflections is significant at frequencies lower

than 10 kHz (see Figure 3.7

). Th y for bottom refl

reflections off the bottom and ocean surface maintain the same geometry as the

direct path, and thus use the same trigonometric substitutions thereby

climinating
spherical spreading losses.

Figue 3.4 shows the geometry for reflections of the sound off the bottom and
surface. The total path length can be calculated by considering the distance to the
image from the reflecting surface. The image of the source is located at an additional
depth H below the ocean bottom, and is 2H — D from the receiver. The path length
from the image to the hydrophone is (2H ~ D)/ cos#. For multiple reflections off the
bottom and the surface, the hydrophone is located 2H + D from the image in the
surface and the total path length is then (2H + D)/ cosf. Assuming a loss factor
at the surface of 7, and a loss factor at the bottom of 8, the equation for the sound

field at the hydrophone is now

w2
r'\'[u/ sin®§ cos6

o

(e-oDI%00 | ge-a(2H-DI/shs | 5. (-a@H=DVSns . \ip | (3.14)

This equation assumes that the reflections will maintain their dipole nature



However, variations in the ocean floor and at the surface would scatter the incident
sound. A factor of sin? , which models the directionality of the dipole, is removed
from the terms representing the reflected energy in order to model the random scat-

tering of energy. More importantly, the intensity constant I3 for upward traveling

encrgy from the sp i not be equal to th I in Equation

3.14 representing the downward traveling energy because energy must be conserved.
To derive the relation between these two intensities, consider the energy passing

through an infi

plane just above the ocean floor; it must be equal to the reflected
cnergy coming up off the ocean floor. Neglecting the attenuation term in Equation

3.14. the total energy passing down through a point on this plane is
n .
7‘;’0/ sin“!cos!dﬂ:lai (3.13)
o
The energy passing up through this point on the plane is
n
2«1;/ sind cosfdd = Ijx . (3.16)
o

Since the total energy must be conserved, Equation 3.15 must equal Equation 3.16,

s0
=21 (317)

‘The sound field generated by an infinite plane of dipole sources at the surface
of the ocean subject to specular reflections within the wave guide and chemical

absorption along the ray path at depth D is given by
n
r=2rty [ st cospeneormet s
o
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g Equation 3.18 using summation notation yields

<2
=2zl / {sin“ﬂcmh""’/"“ +
sinfl cosf (e., 01380 $ g tgl-ana /s g 0/500 $ gnng-tnamysns ) | gp

k=

(3.19)
Equation 3.19 can be simplified by noting that
o g-20n Hsin 4
Srrerete e am)
since e~ < 1. Rearranging Equation 3.20 using
(321

Equation 3.19 becomes

<
W[n/ {sin“ymsﬂ(“’/'
o

sinfeosd 1 (ﬂm... N
EEm

b) } 8. (3.22)

Equation 3.22 is a simplified form of Equation 3.18 and solutions to Equation
3,

can be determined numerically for all frequencies where the solution is called
the “response characteristic' for the deployment. The integrands of equations 3.22
(blue solid line) and Equation 3.13 (red dashed line) are shown in Figure 3.5 for
the ambient sound at 1 kHz, a 2 dB bottom loss, no loss in intensity for reflections
at the surface and a temperature of 10°C. Incorporating specular reflections off the
bottom and multiple reflections from bottom and surface increases the amount of

energy incident to the hydrophone. While absolute comparison is not possible using
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Figure 3.5: The acoustic intensity as a function of range, for no bottom reflections
using Equation 3.13 (solid blue line) and including bottom reflections using Equation
3.22 (dashed red line). Both examples had the following parameters: ocean depth of
1600 m, hydrophone depth 250 m, temperature 10°C, 3 = 0.16, 7 = 1 and frequency
of 1 kHz.

the curves plotted in Figure 3.5, the acoustic intensity when considering reflections
is more than double that when reflections are neglected at 1 kHz.

In Figure 3.5 the peak in acoustic intensity is within a circle of radius equal
10 the hydrophone depth, while in Figure 3.6 the integrand from Equation 3.22 for
hydrophone depth 100 m (red dashed line), and hydrophone depth 250 m (blue solid
line) are contrasted. This shows the change in location in peak intensities.

The response characteristic can vary with temperature through the absorption

coeffcient, ocean bottom depth, hydrophone depth, and reflection type (i.e. specular

or non-specular). The influence of these components are demonstrated in Figure
37, using 7 = 1, and 3 = .42 which represent 0 and 8 dB loss respectively. The
difference in response between dipole reflection (Equation 3.13) at the ocean’s bottom

and monopole reflection (Equation 3.22) is shown in the Figure 3.7a. The overall
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Figure 3.6: The acoustic intensity as a function of range, using Equation 3.22. Hy-
drophone depths were 250 m (solid blue line) 100 m (dashed red line). Tn both cases
the ocean depth was 1600 m, the temperature was 10°C and the frequency tested
was 1 k.

difference between specular and non-specular reflections i less than 0.12 dB, starting
a00.04dB and increasing to a peak of0.115 dB at 8 kHz, and decreasing 10 0 dB at 35
kHz. Shifting the hydrophone depth while keeping the ocean bottom depth constant

has little effect as can be noted by comparing the dashed and solid lines in Figure
37a. In contrast, changing the ocean depth while keeping the hydrophone depth
constant results in an increasing difference with increasing frequency as illustrated
by the green dash-dot line in Figure 3.7a. The increased effect of the nature of the
reflections at high frequency is a result of one simple fact: when the ocean depth
is 250 m, the high frequencies (e.g., greater than 10 kHz) interact with the bottom

before absorption along the path length he sound level.

oceurs when the hydrophone depth varies and the ocean depth is large compared to

the hydrophone depth (compare the solid blue line to the dashed red line in Figure

3.7a). The reason for this minimal difference is that hydrophone placement largely
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Figure 3.7: a) The difference between the response characteristic when specular and
non specular reflections are modelled, for depths of 250 and 1600 m with instrument,
depth of 25 and 250 m. b) Response characteristics for depth 1600 m and instrument
depth 250 m for temperatures of 0, 5, 10 and 20°C. c) Response characteristics for
10°C and instrument depth 250 m for ocean depths of 250, 500, 1000, 2000, and

for 10°C pth for instrument

4000 m. i
depths of 100, 250, 1000, and 4000 m,



affects the direct path to the hydrophone and does not affect the energy reflected
off the bottom. The frequency dependence of the difference in additional sound
signal from specular and non-specular reflection is a result of the convolution of the
increasing effect of absorption and the constant loss in reflection. For each of the
examples in Figure 3.7a the difference between reflection type is less than 0.2 dB.

Figures 3.7b to d show how the observed SSL changes as a function of frequency,
subject o various parameter changes. Changing the assumed temperature from
010 20°C results in an approximate 2 dB change in response at frequencies above
10 kHz (Figure 3.7b).

Ocean depth has a profound effect on the response characteristic as a result

of its wave guiding potential. For frequencies higher than 35 kHz and at depths
greater than 500 m. the depth dependence vanishes while at lower frequencies the
difference is approximately of 0.2 dB per depth doubling as can be seen by comparing
the 1000 m response to the 2000 m response in Figure 3.7c. The depth dependence
vanishes for large enough depths and high frequencies because the absorption effect
dominates. The reason for the depth dependence at low frequencies is the increased
path length for the reflected rays.

The depth of the hydrophone has little effect on frequencies below 10 kHz,
but has great effect on frequencies above 10 kHz, as shown in Figure 3.7d. Here,
temperature is fixed at 10°C and the ocean bottom is moved to infinity (bottom
depth set to 1000 km). It s remarkable that the strength of the signal at depth 4000
m for frequencies less than 10 kHz, indicating that ambient sound measurements
made at this depth would stil reflect surface phenomenon.

‘The response characteristics expected for the hydrophone depths, water tem-
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perature and ocean depth, for each deployment are shown in Figure 3.8. The red
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Figure 3.8: Response characteristics calculated for the 1996 deployment (blue solid
line) and for the 1997 (red dashed line) deployment with ocean depth 1600 m, hy-
drophone depth 250 m and temperature 7°

dashed line shows the 1997 response, while the blue solid line shows the response
for 1996. The difference in the response for the two deployments, which begins at
20 kHz, is 45 dB by 70 kHz. This difference is caused entirely by the change in hy-
drophone depth. Increasing the hydrophane depth increases the length of the direct
ray path which increases the effects of chemical absorption. Higher frequencies see
greater attenuation due to increasing chemical absorption with increasing frequency.
3.3.3 Sources of Uncertainty in SSL Estimates

The spectral processing necessary to account for the additional signal from bottom
and surface reflections add uncertainty to the estimates of SSL. The temperature of
the water column is not constant with depth or time, and temperature affects the
‘magnitude of absorption of sound in water. In addition, the ocean floor is quite steep
at OWS Mike, changing by 400 m in 10 km, as noted by the depth of 2000 m at the
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CTD station, and the depth of 1600 m at the OASIS mooring. The uncertainty in
SSL from these two sources of uncertainty will affect the estimates of spectral slope
as well.

3.3.3.1 Uncertainty due to Temperature Variation

Recordings taken at OWS Mike show that water temperature covers a substantial
range during the course of the deployments. These changes in temperature have
the potential to alter the apparent sound spectrum though changes in the response
characteristics (i.e., the solution to Equation 3.22). The temperature profile from a
signel CTD cast taken during 1096 shows a range of temperatures for the upper layer

of between -1 and 7°C (see Figure 3.9). The time series of temperature profiles from

el
H

<

Figure 3.9: Temperature profile from single CTD cast taken at OWS Mike during
1996.

single CTD casts in Figure 3.10 show the surface warming from 6°to 9°C during the
1997 deployment. By calculating the difference between the response curve using a
temperature of 12°C and that using 2°C the uncertainty due to temperature changes
of £5°C was determined (green dashed line in Figure 3.11). This uncertainty in
SSL due to temperature s less than 0.5 dB, and heavily dependent on frequency.

A response characteristics using the temperature profile shown in Figure 3.9 was
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Figure 3.10: Temperature profile evolution for the upper 350 m of ocean during
1997, from single CTD casts taken on Julian Day (JD) 121 (blue solid line), 165 (red
dashed line) and 178 (green dashed dot line).
calculated for each deployment. This approach was discarded in favour of using a
single representative temperature. These two approaches differed by less than 10%.
For 1996, the temperature of the upper layer varied from 0 to 7°C, while in 1997 the
‘mean temperature for the surface is 8.4°C, with a maximum temperature of 9.73°C,
and a minimum of 6.00°C. None of the temperature profiles indicate that there would
be any significant channeling of sound, s there is no temperature minimum.

The complicated shape of the uncertainty in SSL from temperature is a con-
volution of the affects due to absorption on the direct and reflected signals.
3.

2 Bottom Interactions

By calculating the effects of bottom interaction at two different depths, while keeping
the effect due to absorption constant (i.c., by keeping the temperature the same be-
tween the two), the uncertainty in SSL due to any uncertainty in depth is calculated.
To account for the slope in ocean bottom, but not to overestimate the uncertainty in
SSL, an uncertainty in bottom depth of 300 m is assumed. With the temperature

fixed at 10°C, the estimate of the uncertainty in SSL from the depth uncertainty is
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obtained from half of the difference in response between a bottom depth of 1300 and
1900 m, and is shown as the red dashed line in Figure 3.11. The total uncertainty in
SSL from uncertainties in depth and temperature is plotted as the solid blue line in
Figure 3.11. Maximum differences are less than 0.5 dB and occur at approximately

5 and 35 kHz, as a result of a decl

ing effect from reflections due to absorption of
the energy at frequencies greater than 10 kHz; in fact, for frequencies above 35 kHz,

it is as if the ocean is infinitely deep.

e B ke
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Figure 3.11: The uncertainty in SSL estimates after spectral processing due to un-
certainty in temperature (green dashed dot line), and ocean depth (red dashed line)
are shown with the combined temperature and depth uncetainty (blue solid line) as
functions of frequency.

The confidence intervals from the FFT and the uncertainties calculated here
are used later to determine the accuracy with which the spectral slope of the observed
ambient sound can be measured. The calculation of this accuracy for the spectral

slope is described in the next section, while the observed spectral slopes are described

in Chapter 4. In addition, the uncertainty in wind speed estimates from the known
sources of uncertainty are compared to the observed error in the wind speed estimates

in Chapter 4.



3.4 Uncertainty in Spectral Slopes

While wind-only ambient sound has been characterized with a spectral slope of
between -17 and -19 dB/decade (Kuudsen et al. 1948; Wenz 1062; Shaw et al. 1978),
it has been noted that at wind speeds over 10 ms~" the spectrum above 10 kHz
loses this slope (Farmer and Lemon 1984). To explore the spectral behaviour over
the bandwidth presented here, the spectrum is divided into three regions: 1 to 10
kHz. 10 to 35 kHz, and 35 to 72 kHz. These regions were chosen through visual
inspection of the ambient sound spectra. The boundary betseen the first two Regions
is 10 kHz, approximately coinciding with the frequency at which Farmer and Lemon
(1984) noted a change in spectral behaviour for high wind speeds. The boundary
between Regions two (I1) and three (II1) is 35 kHz. and was chosen because of a
consistent shift in spectral slope in the observed spectra at this frequency. This
frequency corresponds approximately to a bubble production peak between bubbles
of diameter 0.1 and 0.05 mm (or from 32 to 64 kHz) caused by capillary waves riding
on the crests of gravity waves (Kolaini et al. 1994). It is therefore reasonable to
expect the wind-generated ambient sound spectra to extend up to these frequencies.
‘The regions as well as the corresponding frequency range and bin numbers are listed
in Table 3.1.

Region | Frequency Range | Bins
1 10 kHz 1-64
il 1035 kHz__| 65-101
i} T2 kHz__ | 105129

Table 3.1: Regions used to determine the spectral slope and the number of frequency
bins in cach region.



To examine the spectral behaviour of these regions, the spectral slopes of each
egion are plotted against the wind speed estimate from the SSL (see Chapter 4). The
spectral slopes were determined using a linear regression algorithm, which returned
the estimated uncertainty associated with each spectral slope. The total uncertainty
in spectral slope is the sum (incoherent) of the uncertainty in the spectral slope as

determined using linear regression and the uncertainty in the spectral slope from the

solid line drawn in Figure 3.11. The uncertainties for each region are listed, for both
temperature and depth uncertainties (Temp/Depth) and for uncertainty from linear

regression (Mean Lin Reg), in Table 3.2,

1997
Source of o(dB/m) [ou [ 00 | 0a
Temp/Depth | 013 [0.12] 1
Mean Lin Reg 092 [ 1.14 [ 1.50
Total 093 115 1.80

T996-
Oa | 0n [ 00 [ oa
T (013 [0.12] 1
1,05 [0.24| 0.37 | 0.64
145028 [ 039 | 1.19

Table 3.2: The mean uncertainty in the spectral slope, in dB/decade, from the
random uncertainties in SSL listed as Mean Linear Regression (Mean Lin Reg),
and uncertainty in spectral slope, in dB/decade, from the temperature and depth
uncertainties (here oy, refers to the uncertainty in slope for the spectral Region n;
in Table 3.1).

Time averaging reduces the error from the linear regression by reducing the mag-
nitude of noise in the spectra, The effect of time averaging on the spectrum is
illustrated by comparing the sample spectrum for 1996-10 (solid blue line), 1996-60
(red dashed line) and 1997 (green dashed dot line) in Figure 3.12, where 1996-60 has
been shifted upwards by 5 dB, and 1997 downwards by 5 dB.
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Figure 3.12: Sample spectrum for the 1996-10 (blue), 1996-60 (red dashed), and 1997
(green dashed dot) data sets. The spectrum from 1997 has been shifted down by 3
dB, and the spectrum for 1996-60 has been shifted up by 5 dB. The wind speeds for
the three cases were: 1996-10, 7.5 m s™; 1 , 72ms™; and 1997, 72 m s

3.5 Electrical Noise Floor

When recording ambient. sound there are three factors which limit the minimum
SSL which can be recorded. The first factor is, as discussed in Chapter 2, thermal
noise that dominates at frequencies greater than 50 kHz. In addition, there exists a
minimum wind speed below which there is no dominant wind signal. Finally, in any
clectronic system there is a noise floor, that s, a constant electrical signal from the
power source which is erroneously recorded as sound by the hydrophone.

From the ambient sound spectra from 1996-10, for wind speeds less than 3
m s (red solid line), there is an apparent noise floor in the recorded ambient signal
(Figure 3.13). Urick (1967) defines the sound made by the thermal agitation of the
water molecules against the hydrophone as thermal noise (Equation 2.63). Tt has
been thought that thermal noise dominates the ambient sound signals for frequencies

above 50 kHz (Urick 1967; Burdic 1984).
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Figare 113; Average antientsound spect rom the 100610 dat s g wiod
speeds less than 3 m.s™ ine) and for wind speeds with in 0.5 m s~'of
S (blue sl Tine). Inchded s the predicted thermal nasefor requencis from
35 to 72 kHz (solid black line).

Comparing the minimum ambient sound spectra to Equation 2.63 (black solid
line) shows that the observed minimum is much louder than the predicted thermal
noise at these frequencies. Wind-only intensities should decrease by 19 dB/decade,
however, the SSL for frequencies greater than 10 kHz do not decrease, but rather
become approximately constant from 10 to 35 kHz, and increase from 35 to 72 kHz.
Tn addition, the mean ambient sound spectra for the 1996-10 (blue solid line) shows
0 sign of a noise minimum in the spectra, where the mean wind speed is 8 m/s.

The effects of this noise floor which dominates the signal at low wind speeds
are shown for the 1996-60 and 1997 data sets in Figure 3.14. The spectra plotted
in Figure 3.14 are the mean spectra for wind speeds less than or equal to 3 m s~
for the ambient sound from 1996-10 (blue solid line), 1996-60 (red dashed line), and
1997 (green dash dot line).

‘The ambient sound spectra from 1996-10 are more sensitive to the noise floor
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Figure 3.14: The average ambient sound spectrum for wind speeds less than or equal
103 ms~" for the 1996-10 (blue solid line), 1996-60 (red dashed line), 1997 (green
dashed dot) data sets.

as a result of the short. time interval and limited time averaging (compared to 1996-
60). One reason for this sensitivity might be that over short time intervals, when
the wind speed oscillates from below the wind speed threshold to above it, the effect
of the noise floor are averaged into measured wind-generated spectra, while those
recorded over over longer intervals are more likely to record either the noise floor or

wind-generated spectra.



Chapter 4

Spectral Relation of Ambient
Sound and Wind Speed

4.1 Introduction

It is well known that the wind speed at the ocean’s surface can be estimated from
the intensity of the ambient sound in the ocean (Wenz 1962; Shaw et al. 1978;
Evans and Watts 1982). There are two well known wind speed estimation equations
developed by Evans and Watts (1982) and Vagle et al. (1990). Both these empirical
relations were designed for use of Sound Source Levels (SSL) at one frequency. The
equation from Evans and Watts (1982) is for use with the SSL at 4 kHz (SSL,),
while the equation from Vagle et al. (1990) is for use with SSLs. Vagle et al. (1990)
demonstrate that these equations can accommodate SSL at any frequency /. by
adjusting the SSL; to some reference frequency using the spectral slope of wind-
only ambient sound, which is well documented to lie between -17 and -20 dB/decade.
Zedel et al. (1998) show that for the present data set, the SSL, overestimate the

wind speed, and SSLy underestimate the wind speed. As a result of t

spectral

variation in wind speed estimate, they propose using the average SSL from 1 to 10



kHz (SSLi=5) to estimate wind speed.

The accuracy of the two existing wind-speed-from-ambient-sound equations
is determined for two sampling rates, and for three different time averagings. In
addition, a new frequency dependent relation is developed. This new relation serves

two functions: i) to determine if all frequencies from 1 to 72 kHz can be shifted to

some reference frequency and give aceurate wind speed estimates; if) to improve the
accuracy in the wind speed estimate obtained using the two existing equations. The
wind speed estimates presented here are for time intervals of 10, 60 and 72 minutes.
Previous studies have made estimates using 12 hour averages.

The performance of the wind estimating equations is measured by both the
mean eror in wind speed estimate (4(U)) and the standard deviation in the error
of the wind speed estimate (o(U)). Estimates of the expected (L) and o(U,) are
calculated using the uncertainties in the coefficients from the new frequency depen-
dent wind-speed-from-ambient-sound equation, and the uncertainty in estimating
the SSL. from each data set. The calculation of the uncertainty associated with the

in the SSL measurements

coefficients is found in this chapter, while the uncertainty

were calculated in Chapter 3.

In addition to correlating the ambient sound to the wind speed, the spectral

behaviour of the ambient sound with wind speed is investigated for frequencies from

1t0 72 kHz. Farmer and Lemon (1984) noted that for wind speeds greater than
10 m s~ the SSL at 145 and 25 kHz are less than the SSL at 8 kHz would predict
given a constant spectral slope. They proposed that the mechanism for this reduction
in high frequency SSL is a bubble layer which builds up during periods of high wind

speeds and absorbs energy at frequencies corresponding to the resident bubble size.
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Vagle et al. (1990) expanded on this observation by noting that for frequencies up
t0 25 kHz, the wind speed at which the onset of absorption occurs decreases for
increasing frequencies. Their observation is represented by Equation 2.64 in Chapter
2. The relation for this critical wind speed as a function of frequency is determined
for frequencies from 1 to 72 kHe for the present data and is compared to Equation
264

To investigate the spectral behaviour of ambient sound as a function of wind
speed. the ambient sound spectrum has been broken down into three spectral regions.
These divisions are based on visual inspection of the present ambient sound spectra
in various wind conditions: specifically the frequency noted by Farmer and Lemon
(1984) above which high winds attenuate the SSL. Quantitative measurements of
the spectral relation to wind speed are presented by plotting the spectral slope of
cach spectral region as a function of wind speed. This spectral relation to wind speed
s also tested for variations in deployment parameters: hydrophone depth: sampling

rate: and ensemble averaging.
4.2 Wind Speed Estimate from Ambient Sound

For both deployments which make up the present data set, the wind speed was

measured at OWS Mil ip d t

from the ambient sound recorded by the sub-surface hydrophone will be compared
t0 the wind speed recorded at OWS Mike. The ship-mounted anemometer sampled

continuously

and recorded the average wind speed every hour. This time averaging
of the anemometer improves the correlation to the spatially averaged estimates of

wind speed made by the hydrophone.



‘The 1996 ambient sound data was collected from samples taken every 70 sec-
onds and recorded every 3.5 minutes, the 1997 ambient sound data was recorded
from samples taken every 24 minutes and recorded every 72 minutes. Therefore,
the wind estimates from the ambient sound from 1997 may not be expected to be
as strongly correlated to the anemometer data, because the ambient sound was not
sampled frequently enough to reflect short term variability in the wind speed.

In 1996 wind speeds were available in 10 minute intervals. Characteristics
of ambient sound which change on short time scales are maintained by averaging
ensembles into 10 minute intervals. This data is referred to as the 1996-10 data set.
One hour ensembles were also formed and will be called the 1996-60 data set.

In 1997, only the hourly averaged anemometer measurements were available,
while the ambient sound ensembles were recorded every 72 minutes. Consequently.
estimates of wind speed from the ambient sound are compared to the wind speed
‘measurement recorded closest to them in time. For the cases where the wind speed
measurement fell in the middle of the time interval between two ambient data en-

sembles, the measurements of ambient sound and wind speed were discarded.

421 D ination of a Dy Wind Speed
Equation

‘The wind speed estimation equation derived by Evans and Watts (1982) is based on

the relationship

=10455E+8, M1




where A and B are empirical constants. The Equation developed by Vagle et al.
(1990) uses the relation
0%

I
Uo=——

2

where s and b are empirical constants. In both equations, Uy, is the wind speed at
10 m height above the ocean surface.
For the remainder of this thesis, the wind speed equations will be referred to as

is the equation from Evans and Watts (1982)

Evans’ equation (Equation 4.3), w

shifted to 8 kHez, given by

Ui = 100005813 (43)

and Vagle's Equation (or Equation 4.4), given by

[l o

Ua 5287

To determine if shifting the SSL to a reference SSL frequency is appropriate.
linear regression was used to determine the slope and intercept of the line relating
the SSL at a given frequency to the logarithm (base 10) of the measured wind speed.
‘This approach results in frequency dependent coefficients A(f) and B(J), for which

the wind speed estimate Equation 4.1 must be modified to
Ulo(f) = 104 sSL+80) (“3)
where f is the frequency. Equation 4.5 is different from the approach used for Evans'

and Vagle's Equations, where only the constant spectral slope of wind-only ambient

sound is used to adjust the SSL.



To calculate A(f) and B() (referred to as ‘the Coefficients'), only those points
which did not alter the spectral slope over 35 to 72 kHz from its wind-only behaviour,
and those which did not elevate the SSLao with respect to the SSLg were considered
in the wind speed-ambient sound relation. These criteria eliminated data “contami-
nated” by precipitation, as will be discussed in Chapter 5. In addition, the SSL at
all frequencies other than 8 kHz were adjusted by -19 dB/decade. This correction
has the effect of Rattening the spectrum by removing the constant spectral slope of
wind-only ambient sound, and allows the Coefficients to be calculated as though at
an 8 kHz reference frequency (centred about 8 kHz), consistent with Vagle et al.
(1990).

Ambient sound is not correlated with wind speeds less than 3 ms~!(Vagle

et al. 1990: Nystuen 1998); speculation sets the wind speed threshold for the onset

of ambient sound to be lower than the wind speed threshold for white-capping, which

is approximately 5 ms~'. Dahl and Jessup (1995) detected a backscatter intensity

threshold at 4 m s~", indicating the presence of bubbles at the surface at this wind
speed. While there is no model describing this wind speed threshold for ambient
sound. the present data set exhibits this minimum value between 3 and 5 ms~'.
Noting this characteristic, the Coefficients for Equation 4.5 are determined using
wind speeds greater than 3 m s~'. Wind speeds greater than 15 m s~ were included
for the calculations of A(f) and B(f) to examine the effects of high wind speed on
the SSL at different frequencies.

Figures 4.1a and b shows how Coefficients A(/) and B() from Equation 4.5
vary with frequency. There is systematic behaviour betseen the two Coefficients for

each deployment case shown in Figure 4.1. For frequencies less than 10 kHz. there
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Figure 4.1: a) A(/) and b) B(/) from Equation 45. In both plots, the Coeffcients
were caleulated using wind speeds greater than 3 m s~', wind-only events, and ‘flat-
tened spectrum centred about 8 kHz. The 1996-10 (blue x), 1996-60 (red *), and
1997 (green A) are shown in both a) and b).
are approximately constant values for A(f) and B(f), while a frequency dependence
exists for frequencies greater than 10 kHz.

‘The sensitivity of the estimated wind speed to small changes in the Coefficients
is demonstrated in Figure 4.2.

Wind speeds are estimated using the Coefficient values for 8 kHz, and show
). the

that for SSL less than 55 dB (corresponding to wind speeds up to 10 m s
difference in wind speed estimates between any choice of Coefficients is on the order

of 1 ms™". At these low wind speeds, the estimates using the Coefficients determined
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Figure 4.2: Wind speed estimates for SSL from 45 to 65 dB using A(f), and B(f)

(from Equation 4.5) determined from the 1996-10 (blue x), 1996-60 (red *) and 1997
(green A) data sets.

from the 1997 data are greater than those using either averaged data set from 1996.

For SSL greater than 55 dB (% 10 ms™"), the difference in wind speed estimates
from the ambient sound recorded in 1996 and 1997 increases with increasing SSL (or
wind speed), reaching a maximum difference of 5 m s~ between 1996-60 and 1997.
The difference decreases to approximately 0 m s~ betuween 1996-60 and 196-10 for
SSL greater than 55 dB. At these higher wind speeds, estimates from both data sets
from 1996 exceed those from 1997. The marginal difference between the 1996-60 and
1996-10 data sets is expected, as they are both derived from the same data set.

In order to develop a universal wind estimation from ambient sound equ:

n,
the mean of the three Coeffcient functions plotted in Figures 4.1a and b are used
as the Coefficients in Equation 4.1. The frequency dependent Coeffcients which are

used in Equation 4.5 for comparison to estimates from Vagle's and Evan’s equations



are

Aig96-10 + Aigns—0 + Aiog7

A(f)
B())=

Bisse-10+ Bisss-eo + Bioon
3

where the subscripts refers to the data set from which A(f) and B(f) were deter-

mined.

Figure 4.3: Wind speed distributions measured by the ship-mounted anemometer
for the a) 1996-10, b) 1996-60, c) 1997 data sets.



In choosing universal values for the Coeffcients, it is important to consider
differences in wind speed distribution for the various data sets. From Figure 4.3, wind
speeds less than o equal to 3 m s~ account for 7%, 5% and 6.5% of the distribution
of wind speeds for the 1997, the 1996-60, and the 1997 data sets respectively. All
deployments have approximately the same percentage of wind speeds below 3 m s,
so that any difference resulting from exclusion of wind speeds in this range is not
caused by differences in the distribution of wind speeds. However, both the 1996-10
and 1996-60 data sets have more high wind speed events than does the 1997 data set.
10.1% of anemometer readings are greater than or equal to 15 ms~" in the 1996-60
data. while the 1996-10 data has 4.7% measured wind greater than 15 ms~". In

1997, less than 1% of the anemometer data is greater than or equal to 15 ms~".

422 C ison of Dy and Indepen-
dent Wind Speed Estimation

The error in the wind speed estimate is given by
Ue = Uows = Us (48)

where U, is the wind speed estimate, and Uows is the wind speed recorded by the

Two be used h

of each wind speed estimating equation; the mean error in the wind speed estimate
(u(U.)) and the standard deviation of the error in wind speed estimate (o(U.)).
The u(L.) is the mean bias of the estimate and is characteristic of the empirical
elation. but can be removed by adjusting parameters. The (L) represents the
mean variation of the estimate for all wind speeds and is a measure of the reliability

of any estimated wind speed.
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Figure 4.4: The u(Ui) (mhd) and o(.) (dashed) for: a) the 1996-10, b) 1996-60,
c) 1997 deployment. In a to c, the results using Equation 4.5 are plotted in blue,
Evans’ Equation in red, and Vagle's Equation in green.




In Figure 4.4, the wind speed estimates from Equation 4.5 (blue) are compared
0 estimates made using Evans' (red), and Vagle's (green) Equations by plotting the
(U (solid lines) and o(U,) (dashed lines).

For frequencies from 1 to 10 kHz, estimates from both Vagle’s and Evans'
equation do not show a frequency dependence in the u(L,). In 1997 there is an ap-
proximate | m s~ /decade change in the u(U.). The (U,) of Equation 4.5 shows no
general trend, although there are variations in the mean estimate in this frequency
range. For frequencies above 35 kHz all three equations show an increasing overes-
timation of the wind speed using the 1996-10 and 1996-60 data. Only Equation 4.5
increasingly overestimates as the frequency increases using the 1997 data. Both

Evans’ and Vagle's equations reach a maximum overestimation of 2.5 m s~ in 1996-

10 and 1996-60 and 1 m s~" in 1997 at 72 kHz.

There are several interesting questions which arise from examining the mean
error in the estimated wind speed for each data set. First, if the Coefficients are the
wmean values of the empirical relations for each data set then why do the mean errors
not sum to zero for all deployments? In other words, why is
Pi997(f) + tissees + Hroneio(f) # 0, YS 7 (4.9)

Second, why is there no frequency dependence in the (L) for Evan's and Vagle's
Equation as Zedel et al. (1998) observed? Third, why do Evan's and Vagle show
10 high frequency (greater than 35 kHz) dependent overestimation in 19977 These
questions are considered individually.

The sum of the mean errors for all the data sets do not sum to zero because of
the non-linear response function of the estimated wind speed (Figure 4.2) and the
specific data being used to establish the Coefficients (Figure 4.3).
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The frequency dependent mean observed by Zedel et al. (1998) was caused by
an inappropriate choice of bottom loss parameters in their model (see Section 3.3.2).
By choosing an inappropriate value for signal loss with reflection off the bottom
adjusts the calibrated signal incorrectly and introduces a frequency dependence in

the mean error. This h

possibility that the bottom . b
as the reflection coefficient, can be determined from the ambient sound at several
frequencies from 1 to 10 kHz.

The increasing overestimate with frequencies greater than 35 kHz in 1996 is
not present in 1997 because there are fewer high wind speed events in 1997. The
high wind speeds of 1996 skew the error because there exists a maximum measurable
wind speed for frequencies greater then 33 kHz. This is examined in detail in Section
AL

Wind estimates for frequencies above 10 kHz will not be considered for the
remainder of the thesis. A more complete outline of the problems of using the SSL
for frequencies greater than 10 kHz is provided in Section §4.4.1.

1fall wind speeds are included, the mean values for A(f) and B(f) using results
from each deployment and both time intervals from 1996 over the frequency range

1to 10 kHz are: 4 = 0.042 and B = —1.38. These values are within 1.0% of A,

and 3.9% of B from the adjusted version of the equation used by Evans et al. (1984)
(Equation 4.3).

The o(U) of each equation show little variation for frequencies less than 10

KHz All an ing o(U.) with v above 10 kkHz
for both 1996 data sets, while only Equation 4.5 shows an increase for frequencies

above 35 kHz in 1997. The equations can be arranged in the order of decreasing

i



o(L.): Vagle's Equation, Evans’ Equation, Equation 4.5. A more detailed examina-

tion of the (U is included in Section 4.3.3.

4.2.3 Uncertainty in Wind Speed Estimation

The uncertainty in the wind speed estimate has three possible sources: poor correla-
tion at the time/spatial scale over which the measurements were made; uncertainty

in the SSL, which in turn has several sources: or a poor model of the ambient-sound-

wind-speed relation.

Prior studies have shown that the ambient sound is correlated to wind speeds
measured as far away as 55 km (Cato et al. 1995), 50 the time/spatial scale is unlikely
to cause large effects. Unfortunately the effects of spatial averaging and sampling
frequency cannot be distinetly separated from time averaging with the present data.
The uncertainty in the wind speed estimate introduced by errors in determination of
A(f) and B(f) and in the recorded SSL are determined in this section. The accuracy
of the model for Equation 4.5 is explored in §4.3.3.

4.

1 Uncertainty: SSL
Zedel et al. (1998) state that using Vagle's Equation aceuracy in SSL of 1 dB is
needed for a 10% accuracy

in wind speed estimation. This estimate is found by
differentiating the wind speed estimate from ambient sound equation with respect
to SSL. For wind speed estimates using Equation 4.5 the uncertainty in the wind

speed estimate is given by
U = Ui~ A(f) In10-dSSL. (1.10)

To get the uncertainty in SSL, the confidence intervals from the FFT and the

uncertainty from temperature and depth errors must be included (see Chapter 3).

20



The total uncertainty in the SSL is the sum of the uncertainty in the SSL from
the FFT, and the uncertainty from temperature and depth. The total uncertainty

is given by

dSSL(f) = \Jodst + %0 (a1)

where o7.p is the combined uncertainty in the SSL due to the uncertainty in tem-
perature and depth (see Figure 3.11), and ass is the uncertainty in the SSL mea-
surement (see Figure 3.1). The dSSL, measured in dB, for the 1996-10 (blue solid
line), 1996-60 (red dashed line), and 1997 (green dash dot line) data sets are shown
in Figure 4.5.

T Freaueney G
Figure 4.5 The sum of the mean ggs;, o7 and op for ambient sound from the
1996-10 (solid blue line), 1996-60 (ved dashed line), and 1997 (green dash dot line)
data sets.

4.2.3.2 Uncertainty: A(f), B(f)

Zedel et al. (1998) chose to ignore the uncertainty in the estimation of A(/) and
B(f), however, small changes in A(f) and B(/) do lead to large differences in wind
speed estimates (Figure 4.2). While it is not clear that it is appropriate to consider

the uncertainty from A(f) and B(f) as coherent (recall the systematic behs
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shown in Figure 4.1), the uncertainty in SSL from uncertainty in A(f) and B(f)

can be estimated by

o(Un) =04 +05, (4.12)
where
(4.13)
(.14)
and
(415)
(4.16)

When calculating the Coefficients using regression, the uncertainty in the estimated
Cocfficients are also calculated. The mean uncertainty for each frequency was cal-
culated from the uncertainty for each of the data sets. For all three data sets the
percent uncertainty for A(f) (solid blue line) and B(f) (red dashed line) are shown
in Figure 4.6, where the uncertainty in A(f) has been multiplied by 10 to make the
scales comparable. The percent uncertainty in A(f) i less than 1% for all frequen-
cies, while the percent uncertainty in B(f) is 3% for frequencies between 1 and 20
kHz. The percent error begins to increase slowly with increasing frequency 20 kHz,
reaching 5% at 50 kHz. At 50 kHz the percent error increases rapidly, reaching a
maximum value of 1% at 72 kHz. The percent error in A increases rapidly for
increasing frequency at 50 kHz, reaching a maximum of 0.2 %.

One source of the uncertainty in the coefficients relating wind speed to the

ambient sound levels might be the limited correlation between wind speed and am-
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Figure 4.6: The percent uncertainty in A(/) multiplied by ten (blue solid line), and
BUJ) (red dashed line).
bient sound. Recall that at any given instant the sound recorded by a sub-surface

hydrophone may be louder or quieter than the wind speed might indicate. At some

time

interval, the L recorded by the hydropl mean amount
of wave breaking which is characteristic of the mean wind speed. Another potential
cause for this uncertainty is the potential time lag between any increase in wind
speed and the subsequent increase in ambient sound in the ocean.

4.2.3.3 Uncertainty: Wind Speed Estimate

By plotting the uncertainty in the wind speed estimate from both the uncertainty
in SSL (blue line) and the uncertainty in A(f) and B(/) (red line) in the same
plot, the magnitude of both sources of uncertainty are compared in Figure 4.7. The

uncertainty arising from the uncertainty in the SSL has been multiplied by 10. The

uncertainties in the Coefficients result in larger u(U,) (solid line) and o(U,) (red
dashed) than do uncertainties from SSL for both 1996-10 and 1996-60 where time

averaging of several spectra (3 and 17) reduces the uncertainty in SSL.



Flgure u 7: The expected mean error in wind speed estimate from both the uncer-

L and the uncertainty in Coeffcients A(f) and B(J). The u(L,)(solid
lne) an (L) (dashed ine) e both included for the 2) 199-10, ) 1996.80, and
c) 1997 data sets.




4.

3.4 Uncertainty: The Model

The form of Equations 4.3 and 4.5 assumes that the relation between the logarithm
of the wind speed and ambient sound is linear. Any systematic error caused by
deviation from the assumed model of the ambient-sound-wind-speed relation would
tesult in a wind speed dependent error. For the present data set, the y and o(U)
using Vagle's modified form show no improvement over estimates from the form of
Equation 45. The wind speed from ambient sound equations can be arranged in the
order of descending 4 and o(U.): Vagle's Equation; Evans’ Equation; and Equation
4.5,

To examine the effects of the magnitude of the wind speed on the wind speed
estimate, the error in the wind speed estimate (Equation 4.8) is plotted as a function
of the cstimated wind speed in Figure 48: the precipitation events identified by
the algorithms to be presented in Chapter 5 are plotted in red. In Figure 48,
precipitation during high wind speeds leads to more accurate estimates of wind
speeds in 1996-10. This phenomenon is not repeated in 1996-60 or 1997, indicating.
that this phenomenon occurs at a short time scale and is sensitive to both time
averaging and infrequent sampling rates. Pechaps the results observed in 1996-10
are caused by additional low frequency (< 10 kHz) SSL added by the precipitation
signal.

In 1996, the mean wind speed estimate using the SSL from 1 to 10 kHz in

Equation 4.3 ind speed below 10 m s~! and P

above 10 ms~!, as shown in Figure 4.8a and b. Figure 4.8 shows a similar relation

between wind speed and the error in wind speed estimates using the 1997 d

Improved wind estimates using this wind speed dependence in error are included in
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Figure 4.8: Error in mean wind speed estimate using frequencies from 1 to 10 kHz in
Equation 4.5 compared to the estimated wind speed, for the ) 1996-10, b) 1996-60,
and ¢) 1997 data sets. Red dots are spectrum contaminated with precipitation as
identified by the algorithms in Chapter 5, blue dots are the estimates for wind-only
spectrum.
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4.3 Improvements in Wind Speed Estimates

If the error in the wind speed estimates were due only to the uncertainty in the
SSL estimates, better wind speed estimates could be derived by either spectral av-
eraging or time averaging. Improvements based on time averaging are explored by
comparing the results from the three data sets. In addition. the wind speed esti-

mates are

lculated using spectral averages of SSL. Both forms of averaging reduce
the variation in the wind speed estimate by reducing noise in the ambient sound
measurements. Finally. the systematic mean error can be removed by introducing a

wind speed dependent correction term.
4.3.1 Spectral Averaging

To reduce the variance in the SSL, the mean SSL is used in Equations 4.3 and 4.4 [n
general, a non-linear transformation (e.g., the SSL to wind speed equation) has the
effect of magnifying variance. As a result, averaging the data before the non-linear
operation is more effective at reducing the overall variance than averaging the data
after the non-linear operation (ic., caleulating the mean SSL and then computing
the wind speed is preferable to computing the mean wind speed from single frequency
SSLs). This approach in not an option for Equation 4.5; using the mean SSL in
Equation 4.5 would require new values for the coustants A and B. Instead, the mean
wind speed estimate using the SSL for frequencies from 1 to 10 kHz is used to reduce
the variance in that estimate.

The upper bound of the frequency used in either the wind speed average or



the average SSL must be selected accounting for the possibility of signal absorption
by bubble clouds at high winds. For the present data this bound has been set to
10 kHz. This frequency threshold for high wind speed corresponds to the frequency
noted by Farmer and Lemon (1984). Assuming ‘contamination’ from shipping sound
is not present, the lower bound is set to 1 kHz.

The mean (L) and o(U,) for the estimates obtained using the average SSL

or average wind speed estimates are listed in Table 4.1. To determine if the spectral

Table 4.1: The u(U.) and o(U) when the SSLi=ry is used in Equations 4.3 and 4.4,
and the mean wind speed estimate using SSLi to SSLyo from Equation 4.5. Results
for 1996-10. 1996-60 and 1997 are listed.

averaging improved the wind speed estimate at frequencies less than 10 kHz, the
difference between (L) obtained using the spectral average and the (L) obtained

using SSLy is considered (Figure 4.9).

1= 0a (17)

where 7, is the standard deviation determined when wind estimates are obtained

anday i deviati ined using the SSL,.

From this definition, positive / indi
used.

wes a reduction in the o(U) when averaging is



9: The relative improvement in o(U) when mean values of SSL and wind
speed estimates are used to estimate wind speed compared to the SSL at individual
frequencies, using Equation 4.5 (blue solid line), Evans’ (red dashed line) and Vagle's
(green dash dot line) Equations. Results from the a) 1996-10, b) 1996-60, and c)
1997 data sets are shown.



‘The reduction in o(U) obtained for Vagle's and Evans’ equations follow simi-
lar trends for frequencies less than 10 kHz in each of the 1996-10, 1996-60 and 1997
data sets. For 1996-10 and 1996-60 there is a decreasing improvement for increasing
frequency. Using the 1996-10 data, spectral averaging reduces the o(U) obtained
using SSL; by 1, 0.7 and 0.2 m s~ for Vagle's equ

fon, Evans' equation and Equa-
tion 4.3 respectively. By 10 kHz, the o(U) for both Evan's equation and Equation
45 improves by 0.2 ms™" while the o(U) for Vagle's equation is no better than the
estimate obtained using SSLi.

Using the 1996-60 data, spectral averaging reduces the (L) by

5. 0.4 and

0.15 ms~" for Vagle's equation, Evans’ equation and Equation 45 at 1 kHz re-

spectively. For frequencies between 2 kHz and 4 kHz. there is no improvement in
the wind speed estimate using Equation 4.3. For frequencies above 5 kHz, Evan’s
cquation does not improve when spectral averaging is used, while the o(U,) from
Vagle's equation becomes larger for increasing frequency. The o(L’) from Equation
45 declines with increasing frequency above 5 kHz.

Using the data from 1997, the o(U) of Equation 4.5 is reduced by 0.5 m s~
at 1 kHz and follows an approximately linear relation with frequency, reaching im-
provement of 0.3 ms™" at 10 kHz. A similar linear relation is obtained for Vagle's
and Evans’ equations, however they both show identical spectral structure. At 1
kHz the reduction in the o(U,) is 1.2 and 1 ms™" for Vagle's equation and Evans’
equation respectively, while at 10 kHz the reduction is 0.8 and 0.6 m s~'. Examples
of the spectral structure are the three peaks at frequencies less than 2 kHz.

Further comparison of the deployments is presented in the next section, how-

ever the data sets can be organized by the magnitude of the overall reduction in
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creasing order: the 1996-60 data set; the 1096-10 data set; the 1997 data
set. Arranging the data set in this way indicates the increasing importance of av-
eraging, as the 1997 data set was recorded with the hydrophone at shallower depth
than 1996 (100 m compared to 250 m). In ad

ion, there was no time averaging
used in 1997. Unfortunately, the present data set does not allow for the contribution

of these variables to be distinctly separated.
432 Time Averaging

The effects of time averaging on o(U.) are evaluated by comparing the individual
plots for 1996-10 and 1996-60 of o(U) in Figures 4.4 and b. To illustrate the
reduction of the variation in the estimate, the plot of the standard deviation in the

wind estimate using 1996-60 is subtracted from 1996-10 in Figure 4.10.

010 = im0 (418)

sty St s )

Freauency G

Figure 4.10: The improvement in (U) when 17 ensembles are averaged instead of
only 3. using Equation 4.5 (blue solid line), Evans' (red dashed line) and Vagle's
(green dash dot line) Equations.

The o(U,) for estimates using the 1996-60 ambient sound data is lower than
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when the 1996-10 data is used for all three equations. Equation 45 has a o(U)
approximately 0.8 m s~ smaller in 1996-60 than in 1996-10. Both Vagle and Evans
show spectral variation in the improved a(U,) when 1996-60 is compared to 1996-10.
For all the equations. more improvement in o(U) is realised through ensemble (time)
averaging than through spectral averaging.

From the previous section, the 1996-60 data set, where 17 ambient sound
ensembles have been averaged, the reduction in the (U is the least. This result
indicates that the benefits (reduction in variance of the error) of time and specular

averaging do not add.
4.3.3 Systematic Wind Speed Correction

Figure 4.8 shows that there is a wind speed dependent error in the wind speed
estimate. Vagle et al. (1990) noted that when winds from 0 to 20 m s~ are included
the ambient-sound-wind-speed relation is not linear. To eliminate this systematic

error. a correction term is added to Equation 4.5 resulting in

U=

0455448 4 o(1045565) 4+ 3 (419)

The coeffcients  and 3 are determined by linear regression of the wind speed
estimate from Equation 4.5 and the error in the estimated wind speed. While this
correction term could be calculated for each equation and for each frequency, only
the mean estimate using Equation 4.5 for frequencies between 1 and 10 kHz will be
investigated. It has been shown that averaging the results using Equation 43 in this
way has the smallest o(Ue).

The error in the wind speed estimate is plotted against the estimated wind

speed (Figure 4.11). Only wind speed estimates greater than 3 m 5™ are considered.
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From the behaviour of the present data, the error can be

ded into two separate

wind speed regions. These regions are wind speeds less than 10 ms~" and those

greater o equal to than 10 m s, From Figure 4.11 the form of the correction for

wind speeds less than 10 m s™" is constant at -1.22 m s™" in all three data sets. Both

i es |

Figure 4.11: Mean wind speed correction term (black solid line) superimposed on
the scatter plot of the mean error in the wind speed estimate for the 1996-10 (blue
x), 1996-60 (red *) and 1997 (green A) data sets obtained using wind only spectrum.
Only initial wind speed estimates greater than 3 m s~ are included

a and § were calculated using linear regression for each of the three data sets at

wind speeds greater than 10 m s~. The results from the individual data sets were
then averaged to determine the common correction factor (see solid line in Figure

4.11). For wind speeds at 10 m ™' the correction factor is -1.22 m s~' and increases

to 5ms~" at wind speeds of 20 m s’

s v v v s
Comes [ioin T [owe vt [Smn, T [ toim ToacT]

Table 4.2: The u(z ) and o(U) when the SSLi=y is used in Equations 4.3 and 4.4,
and the mean wind speed estimate using SSL; to S8Ls from Fquation 4.5. Results
for 190610, 1996.60 and 1907 are isted

‘The 41 and o(U,) using Equation 4.19 for each data set are shown in Table 4.2.

While the variance listed in Table 4.2 is greater for both the 1996-10 and 1997 data
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sets than it is for the spectrally averaged results in Table 4.1, the differences are
small. For the 1996-10 data set this difference is only 0.04 m s~ (25 of the spectral
averaged result), while it is 0.6 m s~ (45% of the spectral averaged result) using the
1997 data. Most importantly, the (U) has dropped to 0.0, -0.33 and 0.12 m s~

.86 and -0.65 m ™' (see Table 4.1) for the 1996-10, 1996-60 and 1997

data sets.

4.4 Spectral Behaviour for Different Wind Speeds

It has been shown that the behaviour of the ambient sound spectra is not solely
governed by Knudsen's - 19 dB/decade relation for frequencies higher than 10 kHz
(Farmer and Lemon 1984; Vagle et al. 1990). The following four sub-sections outline
the relation between the ambient sound spectrum and wind speed.

Ambient sound levels at all frequencies are more closely correlated to changes
in SSL below 10 kHz than they are to the measured wind speed. Accordingly.
the corrected wind speed estimate obtained using the mean result from frequencies
between 1 and 10 kHz using Equation 419 is used to measure the change in spectral
slope. For reference, the approximate SSLy are included in the plots.

4.4.1 Critical Wind Speed

The critical wind speed is the frequency dependent threshold for which sound levels
decrease with increasing wind speed. This decrease in SSL for wind speeds greater
than 10 m s~ is seen as an inflection point in the scatter plot of the SSL versus
the SSLy. The magnitude of SSLy at which the maximum wind-only SSL occurs

represents the maximum wind speed which can be estimated by SSL;. Figure 412
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shows sample scatter plots for f = 35 kHz for the 1996-60 data set. The inflection

point, corresponding to the maximum SSLy, is indicated by the vertical solid line.

| S el
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Figure 4.12: Scatter plots of SSLs; as a function of SSLy (wind speed) for the
1996-60 data set The SSLs which occurs at the peak SSL; value is marked by the
vertical line.

To determine the critical wind speed. only “wind-only’ spectra were used to
climinate speetral contamination from precipitation. The mean SSLy correspond-
ing to SSL; values within 1.5 dB of the maximum SSL; were converted to wind

speed using Equation 4.19. For reference, the mean wind speeds measured by the

a meter i Figure 4.13 pl the critical wind speeds
as a function of frequency, for each frequency above 8 kHz, for both 1996-60 (a), and
1997 (b). Plotted with these figures is Equation 264 (solid blue line). The wind
speed estimates from the maximum SSLs are in blue x, while the measured wind
speed are in red circles. These figures demonstrate that Equation 2.64 is inaccurate
for frequencies above 10 kHz using the present ambient sound data. The critical
wind speed approaches a constant value for frequencies greater than 20 kHz. For
frequencies from 8 to 15 kHz Equation 2.64 is broadly consistent with the present
data. while a second linear relation for frequencies from 10 to 20 kHz is demonstrated

by the deviation of the present data from the solid line in Figure 4.13a. Vagle et al.
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gure 4.13: The critical wind speed as a function of frequency for the ensembles
from the 2) 1996-60 and b) 1997 data sets. Included in both plots is Equation 2.64
reprinted from Vagle et al. (1990) as the solid line.

(1990) could not explicitly note this behaviour, as their measurements of SSL ex-
tended to only 25 kHz. However, their value for the maximum wind speed at 25
kHz did not fall on the linear relation exhibited by the lower frequencies and would

appear to be consistent with the present result.
4.4.2 Spectral Slope From 1 to 10 kHz (Region I)

For wind-only ambient sound, a -19 dB/decade slope is assumed to characterize the
spectrum. To investigate if this constant spectral slope is maintained for all wind
speeds, the spectral slope from 1 to 10 kHz is plotted against the corrected wind
speed estimate using Equation 4.19 and the equivalent SSLy in Figure 4.14 for the
1996-10 (=), 1996-60 (b), and 1997 (c) data sets.

In all the data sets, the spectral slope varies from -17 to -20 dB/decade with

wind speed. The scatter in the plots comes from the uncertainty in estimating the
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Figure 4.14: The relation of the spectral slope in Region 1 to the SSL from the a)

1996-10, b) 1996-60, and c) 1997 data sets. The empirical linear fit for wind speeds

greater than 3 m

! for both 1996 data sets and for wind speeds greater than 6

ms~" for 1997 are included as the red solid line.



spectral slope. From Chapter 3, the uncertainty in the spectral slope in this region
for the 1996-60 data set is 0.28 dB/decade, for 1996-10 is 0.56 dB/decade, and for
1997 is 0,93 dB/decade. The decrease in the uncertainty in speetral slope between
1996-60 and 1996-10 is a result of time averaging, and is illustrated by comparing
Figures 4.14a to b: there is a substantial reduction in scatter in b.

The mean spectral slope of the wind-only data points in Region I is —18.77 +
0.56. —18.89 +0.28 and —18.10 £ 0.93 dB/decade for the 1996-10, 1996-60 and 1997
data sets. These values are equivalent within uncertainty. The spectral slope of
Region 1 has a characteristic mean spectral slope of ~18.6 + 0.4. However, there
is a wind speed dependent decrease in the spectral slope in cach data set. This is
quantified by a slope (m) and intercept (5) determined using linear regression for
wind-only data points (see Figures 4.14a to c). For comparison. these three lines are
ploted along with errors specified by the uncertainty in slope (m) and intercept (5)
given by

6=R-bnthy (420)

where R is the range of wind speeds, 6, and d are the uncertainty in the slope and
intercept determined by regression in Figure 4.15. The slope, intercept, 6,, and d;
values are given in Table 4.3

In 1997, the data shows more scatter for wind speeds less than 6 m s~! than
does the data for either 1996 data set (compare Figures 4.14 4 to c). To get a linear
relation which matched the relation for the 1996-10 and 1996-60 data based on visual
inspection of the data plotted in Figure 4.14c, wind speeds less than 6 ms~' were
excluded for the 1997 data, while only wind speeds less than 3 ms~" were excluded

for the two data sets from 1996.



el e Bl

PrTSTp—y ——

Figure 4.15: The relation of the spectral slope in Region I to the wind speed estimates
from Equation 4.19. The approximate SSLs is included as a reference and was
determined using an inverse method from Equation 4.19.

[eployment ] m [ 6a [ & [ 5
1996101 | -015] 001|173 [ 006
199660 T [ -0.13 ] 0.02 [ 1769 0.5
1997 * -0.19]0.13[-16.10[ 0.29

Table 4.3: The slope (m) and intercept (5) relating the spectral slope of Region
T to wind speed estimates from Equation 4.19 using wind-only data points. The
uncertainty in the slope (6) and intercept (&) are included. ' when estimated wind
speeds greater than 3 m s~ are used. * when estimated wind speeds greater than 6
ms~! are used.



4.4.3 Spectral Slope From 10 to 35 kHz (Region II)

The spectral slope from 10 to 35 kHz can be sorted into three distinct wind speed
ranges when plotted a3 a function of the wind speed estimate. These thice wind

speed ranges are: ) less than 3 ms™; i) between 3 and 10 m 5™ ii) greater than
10 m ™", The spectral slope of Region I1 is plotted as a function of estimated wind
speed in Figure 4.16. The clustered data points greater than 48 dB but less than
58 dB are data points where Nystuen’s algorithm detects precipitation and which
mateh the WMO (see Chapter 5). These points are excluded from the mean spectral
slopes and the empirical fits of spectral slope to wind speed in order to exclude any

contamination from the precipitation dominated spectra.
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Figure 4.16: The relation of the spectral slope in Region IT o the SSLs for the a)
1996-10, b) 1996-60 and c) 1997 ambient sound levels. The empirical fit is shown by
the red solid line. i



It has already been discussed that there is little correlation of ambient sound

to wind speeds less than 3 m s

5o the first wind speed range will not be quanti-
fied. The relation for the remaining wind speed ranges are determined using linear
regression as was Region L. As such, the uncertainty in the relations for this Region
are also given by Equation 4.20.

The slopes (m) and intercepts (b) for the relation of the spectral slope of

Region II with wind speeds between 3 and 10 ms" are given in Table 4.4. By

[deployment [ m

1996-10_|-0.76
1996-60 | -0.81
1997 | 083

‘Table 1.4: The slope (m) and intercept (b) relating the spectral siope of Region II to
the wind speed estimate using Equation 4.19 for wind speeds greater than 10 m s~
The uncertainty in slope and intercept (o7, and oy) are included.

visual inspection of Figure 4.16 this relation looks similar to that for all wind speeds
of Region 1. From Chapter 3, the uncertainty in the spectral slope of this Region s
073, 0.39, 115 dB/decade for the 1996-10, 1996-60 and 1997 data sets respectively.
The mean spectral slope for 1996-10, 1996-60 and 1997 are ~16.86 +0.73, ~17.05 %
0.39 and ~18.10 & 1.15 respectively. While these mean values are equivalent within
uncertainty for this region, only the mean slope of Region II for 1996-60 and 1997
are equivalent to the mean slopes of Region I within the estimated uncertainty. The
spectral slope of Region I s characterised by a mean spectral slope of ~17.3 %05
for wind speeds less than 10 m s~'. This mean spectral slope is different from that
of Region I for all wind speeds.

The slopes (m) and intercepts (b) for the relation of the spectral slope of Region
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11 to wind speeds greater than 10 m s are given in Table 4.5. By visual inspection
of Figure 4.1 this relation is not similar to Region I. Consistent with Farmer and
Lemon (1984), there is a decrease in spectral slope corresponding to a reduction in

SSL for frequencies between 10 and 35 kHz for wind speeds greater than 10 m s~'.

deployment | m | 0w |
1996-10 0.02] 029 026
199660 0.06 0,60 0.69
1997 | -2.30] 0.27] 3.22 |2.92

‘Table 4.5: The slope (m) and intercept (5) relating the spectral slope of Region IT to
the wind speed estimate using Equation 4.19 for wind speeds greater than 10 m s,
The uncertainty in slope and intercept (o, and 0y) are included.

‘The relations for both wind speed ranges in this Region are plotted in Figure
417 for the 1996-10 (blue solid line), 1996-60 (red dashed line) and 1997 (green
dash dot line) data sets. The uncertainty given by Equation 4.20 is shown by the

error bars. Based on visual inspection, the relations describing the spectral slope of

&7
- e e — e -

Figure 4.17: The relation of the spectral slope in Region I1 to the wind speed estimate
from Equation 4.19.

Region 11 is equivalent when comparing the data from 1996 to the data from 1997.
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4.4.4 Spectral Slope From 35 to 72 kHz (Region III)
Ambient sound at frequencies above 35 kHz is not well studied. Scrimger et al. (1987)
did make mention of the rain signal extending to 50 kHz. Urick (1967), cited in

Burdic (1984), postulates that the ambient sound signal at frequencies above 50 kHz

by thermal Figure 4.18 sh ter plot of the slope of Region
11T where a distinct wind speed dependent relation is demonstrated. The clustered
da

a points with spectral slopes less than -20 dB/decade are data points where
the Slope algorithm detects precipitation and which match the WO (see Chapter
5). These points are excluded from the mean spectral slopes and the empirical fits
of spectral slope to wind speed in order to exclude any contamination from the
precipitation dominated spectra. The relation of spectral slope to wind speed in this
Region is determined by fitting a third order polynomial to the data. A polynomial
for each data set is shown by the red line in Figures 4.18a to c. These polynomials

are described by the coefficients given in Table 4.6 and are compared in Figure 4.19.

[[Deployment a b c 4
1996-10 | ~0.03 = 0.0003 | 1.13 % 0.01 | ~15.11 £0.10 | 12.26 £0.30
1996-60 | —0.03 % 0.0009 | 1.20 % 0.03 | —15.67£0.24 | 4743 £0.70
1997 | —0.06%0.0056 | 200%0.12 | —21.76 £0.78 | 5641 £ 152

Table 4.6: The coefficients of the polynomial az® + bz? + ez + d relating the spectral
slope of Region I11 to wind speed estimate from Equation 4.19.

Here. the ercor bars are determined by the uncertainty in the spectral slope of this
Region. These values were determined in Chapter 3 to be: 143, 1.19 and 180
dB/decade for the 1996-10, 1996-60 and 1997 data sets. The wind estimates only

extend to 15 m s~ for the 1997 data. This places an upper bound on the accuracy of
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Figure 4.18: The relation of the spectral slope in Region I1I to the estimated wind
speed using Equation 4.19 for the ) 1996-10, b) 1996-60 and c) 1997 ambient sound
levels. The empirical fit is shown by the red solid line.
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the polynomial describing the wind-speed-spectral-slope relation. For wind speeds

kg BT aeL, or Wita Speed @B'or m e
Figure 4.19: The relation of the spectral slope in Region 1T to the wind speed
estimated from Equation 4.19 for the a) 1996-10, b) 1996-60 and ¢) 1997 ambient
sound levels.

between 9 and 13 m s~ these polynomials are identical within uncertainty. There
is no similarity with the spectral behaviour in this Region to either Region T or I1.
‘The difference in behaviour between Region IT and Region I1T may be related to the

increase in bubble production of capillary-gravity waves in wind speeds greater than

15 m s~ noted by Kolaini et al. (1994). At these frequencies, or for bubbles that
are of small enough radius, there s not the same attenuation at high wind speeds as
there is for bubbles corresponding to frequencies from 10 to 35 kHz. At bubble sizes
corresponding to frequencies greater than 35 kHz there is either less sound being
generated at the lower wind speeds (5 to 15 ms~"), or there is attenuation from
a resident bubble layer which forms at lower wind speeds than the resident bubble
layer predicted by Farmer and Lemon (1984). There might also be a saturation point
for the bubble layer at wind speeds of 10 ms™'. For wind speeds greater than 10
m s~ perhaps the bubble sources are mixed below the resident acoustic absorbing

bubble layer.
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4.5 Conclusions

It has been shown that the SSL for frequencies from 1 to 10 kHz shifted to a
reference frequency of 8 kHz provide accurate wind estimates using the wind-speed-
from-ambient-sound equations of Evans and Watts (1982) and Vagle et al. (1990).
Determining individual relations for each frequency (from 1 to 10 kHz) results in
smaller variation in the error of the wind speed estimate when compared to Evans’

and Vagle's equations. All three equations produce a mean error in the wind speed

estimate in this frequency range of approximately 1 ms~'. The variance in the
wind speed estimate for this frequency range depends on the sampling rate. the
spatial averaging of the ambient sound field and time averaging of the ambient sound
ensembles.

The three wind-speed-from-ambient-sound equations can be arranged in order
of decreasing o(Us) (or increasing accuracy): Vagle's equation. Evans’ equation.

Equation

5. The mean o(U.) for frequencies from 1 to 10 kHz and each data set
are approximately 3, 2.3 and 18 ms~! for Vagle's equation, Evans' equation and
Equation 4.5.

In general, Equation 4.5 shows half the o(U,) that Vagle's equation does, while
Evans’ equation is approximately midway between the two. The three data sets can
be arranged in order of decreasing mean o(U,) (or increasing aceuracy): 1996-10,
1997. 1996-60. The mean o(U) of Equation 4.3 for each data set for frequencies
from 1 t0 10 kHz is on order of 2.1, 2.0, 1.5 m s~ for the 1996-10, 1997, and 1996-60
data sets. These values represent. the accuracy with which the wind speed can be
determined for the sampling rates and spatial averaging of each data set.

Spectral averaging reduces the o(U) for the wind speed estimates from each
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of the equations. The variance in the error is reduced the most for Vagle's equation,
and shows a frequency dependence for this reduction. Spectral averaging does not
improve the estimate from SSLi as much as it does the SSL,. This result is
consistent with the amount of uncertainty in SSL recorded by the hydrophone (see
Figure 4.3). The reduction in the estimate variance using Evans’ equation s similar
to Vagle's. Averaging of the wind speed estimates using Equation 1.5 results in
approimately constant variance reduction. Only the 1997 data are improved by the
spectral averaging, where the (U] is reduced by approximately 0.4 ms~'.

Time averaging is more effective than is spectral averaging in reducing the
(L), The o(L) is 08 ms~" less for estimates from Equation 4.5 using the data
from 1996-60 than when the data from 1996-10 is used. Averaging 17 ensembles
teduces the variance in the error more than when 64 frequency bins are averaged
together.

The u(U,) is removed by adjusting Equation 4.3 by a correction factor, re-
sulting in a wind speed-from-ambient-sound-equation of the form of Equation 4.19.

Wind speed estimates using this equation result in  and o(U,) values listed in Table

Table 4.7: The () and o(U,) when the SSLr=rg is used in Equations 4.3 and 4.4,
and the mean wind speed estimate using SSLy to SSL1o from Equation 4.3. Results
for 1996-10. 1996-60 and 1907 are listed.

‘These results show that the wind speed can be estimated to an accuracy of:

20 ms™" when the data is collected every 70 seconds and averaged into 10 minute
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ensembles, with the hydrophone at a depth of 250 m; 1.6 ms™' when the data is

collected every 24 minutes and averaged into 72 minute ensembles, with the hy-
drophone at a depth of 100 m; 1.3 m s~ when the data is collected every 70 seconds
and averaged into 60 minute ensembles, with the hydrophone at a depth of 250 m.

These results are not expected. The ambient sound was collected less fre-
quently, had less spatial averaging and fower ensemble averages in 1997 than in
1996-10. yet the variance in the error in the wind speed estimate was less in 1997
than in 1996-10. This may reflect a time scale limit of between 10 and 60 minutes
for which the ambient sound levels adjust with the wind speed.

Estimates of wind speed using frequencies between 10 and 35 kHz still provide
reasonable wind speed estimates (see Figure 4.4). It has been shown however. that
at these frequencies there is a maximum wind speed which can be measured. As
a result. quoting a s and o(U) for results where the distribution of wind speeds
includes values greater than 10 m s™! is not representative of the estimate accuracy
at these frequencies.

The scatter plot of SSL versus SSLy has an inflection point. This inflection
point marks that wind speed at which there is a decline in SSL with increasing wind
speed. This wind speed is 10 m s~ for frequencies greater than 20 kHz, and follows
Equation 2.64 for frequencies from 8 to 15 kHz. This maximum wind speed means
that the wind-speed-from-ambient-sound equation is bi-valued.

A consequence of the critical wind speed is that the spectral slope of the
ambient sound spectrum is frequency dependent over the range of 1 to 72 kHz. The
spectrum is divided into three Regions based on the relation of spectral slope and

wind speed. Region I (1 to 10 kHz) has a constant spectral slope of approximately

109



-18 dB/decade. This slope varies by 4 dB/decade over a wind speed range of 0 to
20 ms™!. Region II (10 to 35 kHz) has two wind speed ranges. For wind speeds
less than 10 m s~ the spectral slope is approximately -17 dB/decade and varies by
4 dB/decade over 0 to 10 ms~". For wind speeds greater than 10 m s~ the spectral
slope dramatically decreases changing by 15 dB/decade from 10 to 20 m s™!. Region
111 (35 to 72 kHz) is unlike either Region I or IL. The spectral slope decreases by 30
dB/decade over wind speeds from 0 to 8 m s™'. Between 8 and 13 m s™" the spectral
slope of this region is approximately constant at 20 dB/decade, and then increases
as the wind speed increases.

The results presented here support the sound model used in Chapter 3 to set
the SSL to a reference level independent of location and hydrophone depth. First,
the fact that there is no frequency dependent mean error in the wind speed estimate
for frequencies between 1 and 10 kHz. Second, the critical wind speed is identical
when determined using the 1996-60 and 1997 data. Finally, the spectral behaviour

with wind speed determined using each of the three data sets is identical.
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Chapter 5

Rain Detection

5.1 Introduction

A characteri

sound is generated when drops of water strike the ocean surface. It is
through this characteristic sound that precipitation can be identified and the rainfall
rate estimated. Early studies determined that this sound was gencrated by the initial
impact of the drop on the surface and the subsequent erratic entrainment of bubbles.
It was also thought that sound levels were proportional to the raindrop diameter
and the impact velocity of the drop (Franz 1959). Experiments have confirmed
that the sound levels are proportional to drop size and impact velocity and are
dependent on the entrainment of bubbles (Medwin et al. 1992; Oguz and Prosperetti
1992: Pumphrey et al. 1989). While controlled experiments have expanded from the
study of single falling drops to a spectrum of drops simulating rainfall, current field
studies of ambient sound generated by rainfall over the ocean have been limited in
duration, bandwidth of recorded sound, location, or have been laboratary controlled

precipitation measurements (Scrimger et al. 1987; Nystuen and Selsor 1997). Of

these previous works, Scrimger et al.’s (1987) study includes the largest frequency

imited to a wind speed

range, extending from 100 Hz to 50 kHz but is unfortunately
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range of 1 to 5 m s~ Despite the existing description of the ambient sound spectra
generated by falling drops and further work describing the effects of wind speed on

the ambient spectra (Nystuen 1986), quantification of the sampling rate necessary

to identify precipitation is still required. In addition, it is still unclear how accurate
precipitation identification would be given continuous sampling for varying rainfall
rates.

The present data set is unique in the duration, frequency range, and wind
speeds of observations. For both the 1996 and 1997 deployment, meteorological

activi

¢ was recorded visually at OWS Mike following World Metcorological Or-
ganization (WMO) protocol. In 1997, automated precipitation observations were
available from an Optical Rain Gauge (ORG). The ORG determines the rainfal rate
by observing the scintillations caused by drops passing through its LASER beam.
This LASER beam is emitted at one end of the ORGs sampling area and observed
by the ORG at the other. Rain drops passing through the beam block or alter the
intensity of the LASER before it reaches the receiver, by a process similar to the light
from stars passing through the atmosphere. These scintillations are characteristic of
specific rainfall rates.

To begin this chapter, the WMO precipitation records from 1997 are compared
to the ORG data. For this comparison to be valid, it must first be determined if
the two reference records are dependent. This hypothesis is tested using a 2x2
contingency table and a x* hypothesis test (see Appendis C).

The WMO data is also reclassified into eight sub-categories describing the

type of precipitation which occurred in the ion hour. The new

‘makes statistical comparisons of successful acoustic identification possible. Both the
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WO system and the new classification system (WMO sub-categories) are presented
in Appendix D. Comparisons are then made between the hourly averaged ORG
observations and the WMO sub-categories, as well as to the acoustic identifications.

Finally two precipitation-i ion-fi bi d algorithms (PIAs)

are compared. One algorithm identifies the characteristic peak between 10 and

20 kHz (Lemon et al. 1984; Nystuen 1986), which shall be called the Nystuen Algo-
rithin (NA). The other is developed in this chapter and makes use of the slope of
the high frequency side of the peak reported by Serimger et al. (1987) and is called
the Slope Algorithm (SA).

The performance of both algorithms is compared to the WMO observations.
because this data is available for both data sets. Where possible, quantification of
rainfall rates and minutes of rainfall over the interval are presented using the ORG
data. The effectiveness of both algorithms will be explored for various sampling

intervals, precipitation types and wind conditions.
5.2 Effects of Sampling Rates

Data acquisition parameters were different between the 1996 and 1997 deployments.

In 1996 the hydrophone was set to sample for 100 ms three times every 3.5 minutes,

while in 1997 the hydrophone was set to sample for 100 ms three times every 72
minutes. This difference is significant considering the time scale for changes in pre-
cipitation. I there is no precipitation during one of the three 100 ms samples, then
no precipitation can be detected. For a precipitation event that is not continuous.
over the ensemble length, there is a finite chance of not detecting the precipitation.

The probability of detecting intermittent precipitation when the interval is sampled
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only once is given by

(3.1)

where i is the number of minutes of precipitation in N minutes. The probability
chianges when the interval is sampled more than once: for m samples the probability

of detecting intermittent precipitation is given by

)

More specifically, Equation 5.2 is the probability of detecting at least one minute of
rain out of N minutes of recorded ambient sound. and is determined by simplifying
the appropriate hypergeometric distribution

‘The sampling time also affects how the ambicnt sound data will be compared
to the metcorological data. The WMO data is recorded every hour and reflective of
the events in the past hour, while the ORG data is recorded every minute. For the
1996 ambient sound data, the 3.5 minute ensembles can be averaged into one hour
cnsembles and compared to the WMO data. The disadvantage of this approach is
that it averages out isolated precipitation signals occurring in one of the averaged
ensembles and may result in a missed identification of precipitation for that hour

(referred to as a loss in Sensitivit

see §5.4.3). For future reference this processing
wil be referred to as the 1996-60 data set (as defined in Chapter 3).

Since 10 minute wind speed data exists for 1996, the 3.5 minute ambient sound
data has been averaged into 10 minute intervals for comparison to the anemometer
data. The ambient sound spectra from this shorter averaging interval will also be
compared to the WO precipitation observations to examine the effects that aver-
aging has on the acoustic signal dominated by precipitation. This approach will be
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referred to as the 1996-10 data set.

For the 1997 data set, ambient sound was sampled 3 times every 72 minutes
and averaged to give the recorded ensemble. As a result, the 72 minute ensemble is
composed of 2 spectra from one hour, and another from an adjacent hour. Ambient
sound identifications are compared to WMO observations corresponding to the hour

in which two of the three ambient sound spectra in the ensemble occur. For the

times when the ambient sound recording is exactly in between two WMO readings.
the data arc ignored.

Comparisons to the ORG data are straightforward because the ORG recorded
rainfall rates every minute. From these rainfall rates the mean rainfall rate for any
longer interval can be calculated. An interval will be considered to have contained
precipitation, as determined by the ORG, if any one minute in that interval contained

um resolution of the

a rainfall rate greater than or equal to 0.1 mm hr=!(the mi

ORG)

5.3 The Different Precipitation Records

Recorded every minute, the ORG rainfall data represent the most comprehensive
reference for comparison with the ambient sound spectra. A comparison between
the WMO and ORG data is presented to allow a consistent comparison between
1997 data (with both WMO and ORG observations) and the 1996 data where the
ambient sound data was sampled more frequently, but for which no ORG data is

available.



5.3.1 Statistical Comparison

Do these two standard methods of identifying periods of precipitation differ statis-
tically? To answer this question, the precipitation data from the ORG data and
WO observations are summarized in a 2x2 contingency table (Table 5.1). The

ORG
Precipitation | No Precipitation

WMO [ Precipitation | 632 388
(o Precipitation [ 1301015 ]

Table 5.1: Contingency table for ORG record of precipitation to the WMO record
of precipitation.

Precipitation column under the ORG heading identifies the elements in the data for

the ORG indicated precipitation. The rows divide the ORG Precipitation
data into elements when the WMO observations simultaneously indicated precipita-
tion. and those when the WMO observations did not indicate precipitation. The No

Precipitation column divides the elements of the data when the ORG data did not

indicate precipitation, and when the WMO observation distinguishes elements as
precipitation and no precipitation. The ORG data and the WMO data provide me-
teorological information for 2166 hours, during which ambient sound was recorded
for 1129 hours. Over these 2166 hours, the two instruments simultaneously indi-
cated there had been precipitation during 632 hours and no precipitation during
1016 hours. One instrument indicated precipitation while the other did not during
518 hours. To test whether these two methods of reporting precipitation are statisti-
cally dependent. the null hypothesis that the results from the ORG are independent

of the results from the WMO is assumed. Using a x? test (see Appendix C) for the
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values in Table 5.1 results in x* = 622.6. This value s greater than the rejection
384, 50 the null hypothesis is rejected. The

two standards are statistically dependent

criteria using a 95% confidence of X

In order to quantify this dependence, a comparison parameter is defined by

= (53)

where m, is the number of times the WMO record and the ORG data simultane-
ously indicate precipitation, and r is the number of precipitation events the WMO
observations or the ORG data indicate in total. For the WMO observations
62%. and for the ORG data 2= is 83%

It is also useful to consider how often the two methods agree on the presence
and absence of precipitation. Consider

My + My

(5.4)

where m,, is the number of times the two records simultaneously indicated there
was no precipitation, and N is the total number of samples in the data set. Using
this comparison, of the 2166 intervals examined, these two methods of reporting
precipitation match 76% of the time.

‘The difference in comparison percentages is a consequence of the fact that there

are more ipitati ts in th ions than precipitati This
weighting creates a larger number of matches when considering non precipitation
events. A contributing factor that limits agreement to a 76% match s the sampling
area difference between the two methods of reporting precipitation. And, the sam-
pling area of the hydrophone is different. than the sampling radius of both the WMO

visual record and the ORG measurements. The hydrophone samples an area at the
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surface approximated by a circle of radius equal to the depth of the hydrophone,
whereas the WMO entries are limited by the distance to the visual horizon, and

the ORG measures a 304 X

76 mm? area. Although the ORG measures rainfall
at what is effectively one point in space, it averages data over a longer interval.
Precipitation is expected to oceur on length scales of approximately hundreds of
meters so, like the anemometer, over long time intervals, the ORG represents pre-
cipitation measurements over a spatial scale larger than the listening radius of the
hydrophone (see Appendix F). The WMO sampling area is also much larger than
the hydrophone’s listening area, so in reality the ambient sound data is correlated to
something on a spatial scale smaller than either the W)MO observations or the ORG
observations. Given the less than 100% agreement between the ORG and the WMO
observations the probability of detecting precipitation acoustically cannot be better

than the agreement between the WMO and the ORG, that is 76%.

5.3.2 A Simplified WMO Precipitation Classification Sys-
tem
The WO weather observation standard consists of 100 different entries correspond-
ing to the current meteorological conditions, including conditions as common as fog
and as exotic as sand storms. Many of the entries are similar in nature but are dis-
tinet depending on specific details. For example, whether the entry had occurred in
the past hour or at the time of observation. Based on these similarities, the entries
have been reclassified into eight sub-categories as follows: no precipitation of any

tpe present (0):

Intermittent Drizzle’ (1); ‘Continuous Drizzle’ (2); ‘Intermittent
Rain’ (3); “Continuous Rain’ (4); ‘Showers (3); ‘Solid Precipitation’ (hail, snow.

freezing rain etc.)(6): and "Unclassified” (9). The unclassified sub-category contains
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elements which do not fall into the six main precipitation categories (1-6). The
actual WMO descriptions and the sub-categories in which they are reorganized are
included in Appendix D.

Inorder

p: ive WMO sub- 3
the mean rainfall rate and the duration of precipitation over the hour as given by

the ORG data are shown for each WMO sub-category in Table 5.2.

Category ‘Mean Rainfall Rate | Mean Minutes of Precipitation
Tntermittent Drizzle | 13 hours mhr ‘minutes/hr
Continuous Drizzle | 18 hours 13 mm hr-T ‘minutes/hr

Intermittent Rain hours mmhr—T ‘minutes/hr
Continuous Rain_| 147 hours | 0.5 mm Ar-" ‘minutes/hr
owers hours mmhrT ‘minutes/hr

olid 186 hours mm hr" 19 minutes/ht
Unclassified 137 hours .37 mm hr—" 12 minutes/hr

Table 5.2: Rainfall rates and frequency of precipitati

ion over hour intervals, corre-
sponding to the W

MO sub-categories for the 1997 data meteorological data.

The data from this table are also represented graphically by the histograms shown
in Figure D.1 and Figure D.2. As an example of these histograms, the distribution
of minutes of precipitation per hour for “Intermittent’ (a) and ‘Continuous Rain’ (b)

are shown in Figure 5.1. Figure 5.1b shows that there is the highest probability of

precipitation over the entire hour compared to any other duration for the ‘Continu-
ous Rain’ sub-category, as noted by the approximately 1:9 ratio of any duration to
the 60 minute duration. This ratio is between 1:5 and 3:5 for ‘Intermittent Rain’
and distinguishes the intermittent category from the continuous category (Figure
5.1a). From Table 5.2, there is a larger mean rainfall rate for the ‘Rain’ categories

than for the “Drizle’ categories and a larger mean number of

utes of precipita-

tion observed during intervals identified as ‘Continuous’ rather than ‘Intermittent™
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a o

Figure 5.1: Histogram of minutes of rain for WMO sub-categories a) ‘Intermittent
Rain’ and b) ‘Continuous Rain."

precipitation. The ‘Shower” category describes precipitation events that have mea-
surable rainfall during 15 minutes of every hour, and correspond to a rainfall rate of
LAT mm =,

The “Unclassified’ precipitation describes intermittent precipitation with a

rainfall rate of 0.37 mm hr

R:

. This rainfall rate is identical to that for ‘Intermittent

* but the minutes of rain during an hour are less than those for “Intermit-
tent Drizzle. For classifying the performance of the identification algorithms. this
category will be treated as an intermittent category.

“Solid' pr

tion generates a distinet acoustic signal from wind-only o liq-

id precipitation events (Serimger et al. 1987). It is unclear if the rate of precipitation
for this category has an effect on the chance of detection. and is only included for a

cursory comparison.



5.3.3 Precipitation Distribution for 1996 and 1997

Toillustrate the different precipitati loy Figure 5.2

shows the breakdown of precipitation events by WMO sub-category for the two de-

ployments,

a -

Figure 5.2: Histogram of the number of occurrences in each WMO sub-category,
for the a) 1997 deployment and b) 1996 hourly deployment. The categories are: 0.
No Precipitation’; 1, ‘Intermittent Drizzle’ tinuous Drizzle’; 3, “Intermittent
Rain'’; 4. “Continuous Rain’; 3, ‘Showers’; 6, ‘Solid Precipitation’; 9, “Unclassified".

The main distinction between deployments i the frequent occurrence of ‘Intermittent.
Drizzle’ (category 1) in 1996 (Figure 5.2b)compared to 1997(Figure 5.2a). These
frequencies are quantified later in Table 5.9

Equation 5.2 gives the probability of detecting intermittent precipitation if
the sound levels are sampled . times over a sample interval. From the ORG data,
the number of minutes of rain in each of the 72 minute intervals is available. Us-

ing this distribution of precipitation, the probability of detecting precipitation can

be determined for the specific temporal distribution of precipitation in 1997. The
overall probability for detecting precipitation can be calculated from the sum of the
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probabilities of detecting an interval with i minutes of precipitation, sampled for
m minutes over that interval. By modifying Equation 5.2 to include the number
of intervals with i minutes of precipitation the probability of detecting intermittent
precipitation as a function of the number of samples taken is given by

(N=m)! (N-i))H()
”f'"'=“(m. )ﬁ

where H(i) is the number of observations with i minutes of rain and N

length of the interval. The resulting probal

y as a function of samples per interval

is plotted in Figure 5.3. Sampling the 1997 data set three times in a T2 minute

Number of ploa Taken e -

Figure 5.3: The probability of detecting precipitation as a function of number of
samples over a 72 minute interval given the 1997 precipitation distribution.

interval yields a 36% chance of detecting precipitation, while sampling 17 times per
72 minute interval yields an 86% chance of detecting precipitation.

Although the distribution for the 1096 data set is unknown, a similar proba-
bility distribution can be obtained. Figure 5.2 shows that there is more ‘Continu-
ous’ and ‘Intermittent Drizzle’ in the 1996 (b) WMO observations than in 1997 (a)
WMO observations. The distribution of WMO sub-categories from Figure 5.2b and
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the minutes of precipitation for each WMO sub-category from Table 5.2 define the

distribution of minutes of precipitation for 1996 as

H(i) = WMO(j) (5.6)
i={15,17,27,38,15.19,12} (57)
J=11,2,3.4.5,6,9} (58)

J is the set of WMO sub-categories indicating precipitation, 11'A/O(j) is the number
of observations in sub-category j and i is the number of minutes of rain for that
sub-category from Table 5.2. H(i) is then used in Equation 5.5 with V = 60. For
the ambient sound spectra from 1996-60, the probability of detecting precipitation
over the 60 minute interval is 99% when that interval is sampled 17 times.

‘The probabilities for detecting precipitation must be adjusted to the fact that

the ORG and WMO observations agreed 76% of the time. The total probabil

detecting precipitation is then a combination of the probabil

v from Equation 5.3
and the percent agreement between the ORG data and the WMO observations (i.e..
76%). This is given by

P(m) =

.76 - p(m) (3.9)

where p(m) is given by Equation 5.5. For 1996-60 the modified chance of detecting

precipitation is 75% and for 1997 is 43%.

5.4 Precipitati ification Algorithms (PIAs)

A sample precipitation spectrum is shown in Figure 5.4. In this figure the constant

wind-only slope of -19 dB/decade has been removed to reduce the dynamic range
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of the spectrum. Noise in the spectrum is seen as various 2 dB peaks in the red

dashed line. The blue solid line shows the spectrum after a moving average filter of

Frequency (kHz) >
Figure 5.4: Individual spectrum from 1997 data set. The red dashed line is the
raw spectra and the blue solid line is the smoothed spectrum. The wind speed
corresponding to the ensemble was 5.1 m s~

length 9 frequency bins has been applied: this processing will be discussed later. The
spectrum (raw or smoothed) shows two distinct features of ambient sound generated
by precipitation: i) the broad peak in SSL between 10 and 25 kHz; ii) the spectral
slope in Region I (from 35 to 72 kHz) which is less than -19 dB/decade.

‘The following section describes two algorithms, each of which use one of these
two features to identify precipitation from the ambient sound spectra of the present

data.
5.4.1 The Algorithms

5.4.1.1 The Modified Nystuen Algorithm
The Nystuen Algorithm (NA) identifies precipitation by the increased sound
level at 20 kHz relative to the sound level at 8 kHz. Smoothed spectra are used for the
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NA because false i when noise in the spect an anomalous

increase in the SSL at 20 kHz or a decrease in SSL at 8 kHz. To increase the
separation of SSLa and SSLs for precipitation events, the sharp noise peaks in the
spectra are removed by means of a smoothing algorithm. For points away from the
end of the spectra, an average value was computed using a moving average of variable
length. The distance in frequency bins from 8 to 20 kHz is 30 bins. The moving
average should be designed to filter variations in the signal that are shorter than
half this size. Experience suggests an optimal moving average length for smoothing
s 9 bins for the present data. A sample spectrum which has been smoothed by this
‘moving average is shown as the red solid line in Figure 5.4

The NA works by fitting two test lines to a scatter plot of the SSLy versus the
SSLy from the smoothed spectra. For wind-only spectra these points should fit a
straight line, with a slope of 1 and an intercept governed by the -19 dB/decade slope
of wind-only ambient sound. At high wind speeds (i.., above 15 m 5~') there is an
inflection point in the scatter plot (Farmer and Lemon 1984), so that an increase in
the wind speed, or increase in the SSLs, causes a decrease in SSLz. Test lines are
used to separate wind-only events from precipitation events by applying the known
spectral characteristics of ambient sound, specifically the linear relation of SSL to
wind speed and the inflection point in the scatter plots of SSL at high wind speeds.
Scatter plots of the smoothed spectra for the 1997, 1996-60 and 1996-10 data sets
are shown in Figures 5.3a, b, and ¢ with test lines indicated in green (the drizzle
line). and red (the rain line).

Attempts were made to automate the process of selecting the rain and drizzle

line using the estimated uncertainty in SSLy and SSLs. However optimal perfor-
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mance (see §5.4.3) was obtained identifying the end points of the test lines by visual
inspection.

For this algorithm, the distinction between rain and drizzle comes from the
difference in rain-drop size. Rain (or large drops) adds a significant amount of
energy to the lower frequency SSL and therefore raises the 8 kHz SSL relative to
20 kHz. thereby flattening the spectrum. Drizzle significantly raises the SSL at 20
kHz without affecting the signal at 8 kHz. Examples of drizzle and rain dominated
ambient sound spectra are shown in Figure 2.6 from Chapter 2.

A third test line, called the ‘apex line’, can be included if necessary to separate

the region that forms in the apex of the triangle subtended by the ‘Drizzle’ and ‘Rain
line’ from wind-only SSL in the scatter plot. Physically, the apex line s the maximum
SSLug intensity for wind-only events and is shown as the horizontal red dashed line

in the three scatter plots of SSLz versus SSLs. The apex line becomes necessary as

tor in the plot lengthens the radius of curvature at the inflection point creating
a larger area in the triangle formed by the maximum SS Ly, the ‘Rain Line and the

Drizzle Line.’ The apex line is only needed in the 1996-10 data set.

Table 5.3: The SSL in dB for the end points of the test lines used by the NA for the
1997. 1996-60 and 1996-10 data sets.

Test line parameters for 1996-10, 1996-60 and 1997 are shown in Table 5.3. For
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Figure 5.5: Scatter plot of the SSLy versus SSLy for ) 1997, b) 1996-60, and
©) 1996-10 data sets. The precipitation identification lines are shown: high seas
inflection point. (vertical red dashed line); maximum SSLay or ‘apex line’ (horizontal
dashed line); ‘drizzle line’ (green solid line to the left of high sas); and ‘rain line’
(red solid line to the right of high seas).

127



cach data set, the test line end points as well as the maximum wind-only SSLy and
the SSLg at the inflection point are similar in value. All x-coordinates (DX1, DX2,
RXI. RX2 and High Seas) have an uncertainty equal to the uncertainty in SSLs
The y-coordinates (DY1, DY2, RYL, RY2 and Max 20 kHz) have an uncertainty
equal to the uncertainty in SSLy. The uncertainty in the SSLy for the 1996-10,
1996-60. and 1997 data sets are  0.49, 043, 0.62 dB respectively. Comparing the
1996-60 test line points to the 1997 test line points, within the experimental un-

certainty only D X2 and R X1 values are identical. The uncertain

in the SSLx
for the 1996-10, 1996-60, and 1997 data sets are % 0.32. 0.28 and 0.40 dB. Within

the experimental uncertainty, only the DY?2 and Max 20 kHz points are identical
That these test lines cannot be set by shifting them by a common value proportional
to the expected uncertainty means that a simple automated scheme which maxi-
mizes precipitation identification is not possible with this approach. It is, however,
encouraging that all the values are identical within twice the uncertainty in both
coordinates (93% confidence).

While the argument can be made that identifying the test lines by slope and

intercept would make comparison between deployment examples more clear, iden-

ing the test lines by physically significant sound levels serves two purposes: i),

choosing physi

lly significant intensities of sound at specific frequencies allows for

easy identi of the ical events which cause ths ic inten-

sty features; i), choosing the end points is easier to do from the scatter plots.
Averaged spectra of correct (solid blue line) and incorrect (red dot dashed
line) precipitation identifications made by the NA are shown in Figure 5.6. These

two spectra are not visibly different; there is a pronounced peak between 10 and
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20 kHz in both spectra. The mean sound spectra for precipitation not identified
by the \

A (green dashed line) has a constant spectral slope and therefore reflects
wind-only conditions. The similarity of the missed identifications to the wind-only
spectra indicates that this algorithm cannot identify all precipitation. although the
exact cause is not clear from this data. The similarity of correct and incorrect
identifications indicates one of three possibilities: 1) there is a time dependent decay
of the precipitation generated sound o that the NA identifies precipitation when the
WO does not: 2) this technique is sensitive to spray and splashing which might
lead to false identification; 3) precipitation sound is entering the listening radius
from outside the sampling area of the WMO.

The ambient sound spectra for correct identifications made by the NA but

classified as drizzle (solid blue line) and rain (red dashed dot line) o differ (Figure

In this comparison, the wind-only ambient sound spectra (dashed black line)

includes only wind speeds greater than 12 m.5™! in order to illustrate the difference of
the rain sound spectra. This difference is that both have similar SSLs at 8 kHz, but
the rain spectra has elevated SSL at 20 kHz compared to the wind-only sound spectra.
For rain generated ambient sound there is no attenuation in the SSL during wind

speeds greater than 12 m =1 for frequencies from 10 to 35 kHz as noted by Farmer

and Lemon (1984). The high wind speed threshold was chosen as 12 m s~ and not
10 m.s™" because this choice more clearly demonstrates the distinction between the

rain and wind-only sound spectra.
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Figure 5.7: The mean smoothed ambient sound spectra for drizzle identifications
made by the NA (solid blue line), rain identifications made by the NA (red dot
dashed line) and wind-only spectra for wind speeds greater than 12 m s~ (dotted
black line) from the 1997 data set.



5.4.1.2 The Slope Algorithm (the SA)
The SA uses the distinct spectral slope from 35 to 72 kHz (Region 1) to distinguish
wind-only it those with precipitation. Although

this frequency changes with wind speed (see §4.4.4), it s still possible to distinguish
the slope from spectra generated by the wind-only mechanism from those that were
recorded during precipitation. Figures 5.8 b, and ¢ show the scatter plots of the
SSLy=rg versus the spectral slope from 35 to 72 kHz for the 1997 and 1996 data.

Three lines are used to distinguish wind-only ambient sound from that dom-
inated by precipitation. The first line is the *Apex Line’, which is the horizontal
line corresponding to the minimum value for wind-only slopes in Region II1. The
other two lines are entered by choosing their end points. and are distinguished in
the same manner as the ‘Rain’ and “Drizzle’ lines are for the NA: by the inflection
point in the spectrum identified by Farmer and Lemon (1984). To distinguish the
‘Rain’ and ‘Drizzle’ lines between algorithms. the algorithm name for which the line
is used shall accompany the line name (i.e., ‘Nystuen’s Rain line,” or the ‘Slope Rain
line’). The end point method for the test lines is used for reasons identified when
describing the NA.

The parameters used to choose these test lines for the 1997 and 1996 ambient
sound data are given in Table 5.4 and do not show continuity between data sets.

The inty fa the: e e 3

from 35 to 72 kHz for the 1996-10, 1996-60 and 1997 ambient sound spectra which are
£ 145, 1.19 and 1.80 dB/decade, respectively. The uncertainty in the x-coordinate
is given by the uncertainty in the SSLs for the 1996-10, 1996-60, and 1997 data sets
which are  0.49, 0.43, 0.62 dB respectively. The values of DY1, D X2, RY1 and
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Figure 5.8 Scatter plot of the slope of Region ITT kHz versus SSLi=ry for the a)
1997, b) 1996-60, and ¢) 1996-10 data sets. The precipitation identification lines
are shown: high seas roll over (vertical red dashed line); minimum spectral slope or
‘apex line’ (horizontal dashed line); ‘drizzle line’ (green solid line to the left of high
seas); and ‘rain line’ (red solid line to the right of high seas)
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Parameter
D XLY1
73

Y1
Y2
as in 4B

Table 5.4: The SSL in dB for the end points of the test lines used by the SA for the
1997. 1996-60 and 1996-10 data sets.

RY'2 are not within the expected uncertainty in SSL when the test line end points
for 1996-60 and 1997 are compared. However, there is consistency for the DY'1 and
RY'L: they are always equal to the *Minimum Slope’ coordinate. The high seas
inflection point is identical within uncertainty for all deployment examples. For this
algorithm there is no simple scheme to select the test lines in order to maximize the

precipitatio

ntification using the expected uncert

oy for the scatter plot.

Averaged ambient sound spectra for correct (solid blue line) and incorrect (red
dashed dot line) precipitation identifications made by the SA are shown in Figure
5.9. These two spectra are visibly different: the spectral slope of correct identifica-
tions is steeper than those for incorrect identifications. The mean sound spectra for
precipitation not identified by the SA (green dashed line) resembles the mean wind-
only ambient sound spectra (black dashed line). The similarity of the wind-only

spectra and the missed precipit i indicates that all

cannot be identified by this algorithm, although the cause of the limitation is not
identifiable from this data. The similarity of the correct and incorrect identifications
indicates one of three possibilities: 1) there is a time dependent decay of the precip-

itation generated sound so that the NA identifies precipitation when the WMO does
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not: 2) this technique is sensitive to spray and splashing which might lead to false
identification; 3) precipitation sound is entering the listening radius from outside the
sampling area of the WMO.

‘The ambient sound spectra for correct identifications made by the SA but clas-
sified as drizzle (solid blue line) and rain (green dashed line) do differ (Figure 5.10)
but not in spectral slope from 35 to 72 kHz. The sound spectra of rain and sound
spectra classified as “apex’ events (red dashed dot) are similar. In this comparison,
the wind-only ambient sound spectra (dashed black line) includes only wind speeds
greater than 12 m s~ in order to illustrate the difference of the drizzle. rain and
“apex” sound spectra from the wind-only sound spectra. For all types of precip-
itation (i.e.. rain, drizzle and ‘apex’) generated ambient sound there is a distinct

spectral slope from 35 to 72 kHz. The high wind speed threshold was chosen as 12

ms~' and not 10 m s~ because this choice more clearly demonstrates the distinction

betsween the rain and apex sound spectra and the wind-only sound spectra.
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Figure 5.9: The mean smoothed ambient sound spectra for successful precipita-
tion identifications by the SA (solid blue line), unidentified precipitation by the SA
(dashed green line), incorrect identifications made by the SA (red dot dashed line)
and wind-only spectra (dotted black line) from the 1997 data set.
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Figure 5.10: The mean smoothed ambient sound spectra for drizzle identifications
made by the SA (solid blue line), rain identifications made by the SA (green dashed
line), the ‘apex’ identifications made by the SA (red ot dashed line) and wind-only
spectra for wind speeds greater than 12 m s=" (dotted black line) from the 1997 data.
set.
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5.4.2 PIAs Based on other Spectral Slopes

The location and nature of peak in the rain sound spectrum suggests that the spec-
tral lope from 10 to 20 kHz could be used to identify periods of precipitation.
However, calculating the slope over this region does not provide a better indicator
of precipitation compared to the NA. The NA already intrinsically compares this
property. Explicit caleulation of the slope in this range is complicated by the drop
size dependent SSL peak in this frequency range. and the limited number of bins in
this frequency range. In contrast, there is no single frequency above 35 kHz which
can be compared to the SSL at 8 kHz in order to identify precipitation. Further. the
limited frequency bins in the 33 to 72 kHz region is countered with more degrees of
freedom per bin and consequently less uncertainty. In addition. there is no inflec-

tion point in the sound spectrum except when low

nal levels are obscured by the
clectrical noise minimum at low wind speed conditions.
The spectral slope from 1 to 10 kHz is insensitive to acoustic precipitation

signals

5.4.3 Comparison Parameters for PIAs

The two precipitation identification algorithms will be rated for efficiency by defin-
ing two parameters: the Sensitivity (S) and the Confidence (C). The Confidence
represents how often the indication of precipitation from the algorithms coincides
with an observation of precipitation from the reference. Either the WO observa-
tions or the ORG data could be used but for continuity, only the WO data will be
used since it is available for all data sets. The Sensitivity is a measure of how many

precipitation cvents, as identified by the WMO observations, are correctly identified
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by the algorithm. These parameters are defined as:

-3 5
c=3r (5.10)
and
m. .
§= 5 (5.11)

where s, is the number of WMO observations which indicate precipitation, n, is the

aumber of ambient sound speetra the algorithm flags as precipitation, and m, is the

number of flagged ambient sound spectra which correspond to WMO observations
of precipitation.
‘The Confidence and Sensitivity quantify two aspects of precipitation identifica-

tion. An understanding of these indicators can be gained by considering a binomial

distribution of anda sample flagged as

For a probabili

v of precipitation, p, given by

=5 (6.12)
where r is the number of precipitation events as indicated by the reference and  is
the total number of time intervals being considered. The mean number of random

samples correctly flagged as precipitation s given by

e = nap (513)

and has a standard devi

(5.14)
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A randomly chosen sample would contain no more than
1960 (5.16)

precipitation events (with a 95% confidence).
From these considerations, two new parameters can be defined to quantify how
much better the algorithms perform compared to randomly selected samples. The

first parameter s the standard normalized random variable, = . which s given by

(5.17)

= represents the difference, as a ratio of standard deviation, of the statistical mean
and the algorithm identifications m,. The second parameter to quantify performance
is the standard random variable, ¢ , which is the ratio of the number of events
correctly identified by the algorithm to the randomly selected mean and is given by
me

e

(5.18)

If ¢ were equal to one then the algorithm would have correctly selected the same

number of precipitation events as would a randomly selccted sample. From elemen-

tary statistics, for a istributed function 95% of the di:

196 0 of the mean. If ¢ > 1 but z < 1.96, then it would be unclear if the PIA
performed any better than the random sample with a 93% confidence. In order to

accommodate this 95% confidence interval in a performance parameter, define

tas (5.19)

m,
e+ 1960
which is the ratio of events correctly identified by the algorithm to the maximum
limit of the random sample with 95% confidence. This new definition of ¢ provides
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an unambiguous indication if the algorithms are selecting more precipit:

events
than a random sample from the time series of ambient sound spectra.
The uncertainty in both the Confidence and the Sensitivity are determined by

integrating

5.20)

and determining the point at which the integral is equal to 0.95. for 95% confidence.

n is the number of identifications made by the algorithm for the Confidence. and i

the number of WMO observations for the Sensitivity, i is the number of observations

correctly identified by the algorithm. p is the ratio of correct identifications made to
the total identifications for the Confidence, and s the ratio of correct identifications
made to the total WMO observations for the Sensitivity. In all cases. ¢ = 1 - p.
5.5 Observations

5.5.1 ‘Drizzle’, and ‘Rain’ Distinction

Using the parameters described in Tables 3.3 and 3.4, the distinction between ‘Driz-

2le’ and ‘Rain’ for the two algorithms is quantified using the ORG data from 1997.

t sound

For the SA, the mean rainfall rate for time intervals corresponding to aml
spectra identified as ‘Rain’ was 1.65 mm hr~", while those identified as ‘Drizzle’ had
a mean rainfall rate of 0.20 mm hr~'. These results are comparable with those ob-

tained using the NA, where the mean rainfall rate of ‘Rain’ events is 1.64 mm hr~",

and for “Drizzle’ events is 0.30 mm Ar
Using the S, the *Apex” events do not clearly fall into either ‘Drizzle’ or ‘Rain’

categories. The events identified as *Apex’ using the SA have a mean rainfall rate
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of 0.42 mm hr=" which is greater than the ‘Drizzle’ events but less than the ‘Rain’

events. There are no points within the ‘Apex’ when the NA is used for the 1997

data,
5.5.2 Overall PIA Performance

The performance of either algorithm can be measured by its gross identification of

( ty), its accurate i fon of precipi (Confidence).
andits ithin 95% confidence (). Table
summarizes the perfor fhoth the three deployment

cases. In all cases the identifications from the algorithms are compared to the mete-

orological records from the WMO observations only.

Data Set [ Algorithm | _Conhdence

I 64.0% £ [11% | |
1996 N3 69.6% £ 14.9%
T906-6
1996-6 N

1997 3

997 B

Measure of success for the two PIAs for the 1996-10, 1996-60 and 1997
data sets. The uncertainty in each column was determined using Equation 5.20 with
95% confidence.

In all data sets, the algorithms perform better than a randomly selected sam-

ple. demonstrated by the tos values in Table

At value of 1 indicates that the
algorithm identified as many precipitation events as would a randomly selected sam-
ple with 95% confidence. In all data sets both algorithms have tes > 1, indicating

that they both correctly identify more precipitation than would a randomly selected
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sample of equal size.

T itivity of either algorithm in all depl is less than the predicted

- Theoretically, the Sensitivity should approach the values given in §5.3.1
of 41% for 1997 and 74% for 1996-60. The values presented under Sensitivity in
Table 5.3 show that, in the present data, the NA detects 30% less precipitation than
predicted for 1997, while the SA detects 20% less. Both algorithms detect 60% less
precipitation than predicted during 1096. This resut indicates that certain meteo-
rological conditions, such as rainfall rate or wind speed, may affect the probability
of acoustically identifying precipitation.

5.5.2.1 Time Averaging

The effects of time averaging are explored by comparing the 1996-60 data set to
the 1996-10 data. The Sensitivity of the SA improves from 13% to L7% while the
Sensitivity of the NA drops from 14% to 10% when 3 ensembles are averaged, as
in the 1996-10 data set, than when 17 ensembles are averaged. as in the 1996-60
data set. This result shows that removing the effects of averaging the ambient sound
spectra does not make the Sensitivity approach the expected level from §5.3.1 of
745%. In addition, the Confidence of both algorithms drops: the NA sees a reduction
in Confidence of 10% while the Confidence for the SA decreases by nearly 20%.

The limited improvement in Sensitivi

and the drop in Confidence for the
1996-10 data set is expected. There is no precipitation record sampled at 10 minute
intervals available for reliable comparison. As such, the 1996-10 data set will not be
examined further.

5.5.2.2 Similarities in PIAs

To illustrate the results of the algorithms for the 1996-60 and 1997 data sets, Venn
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diagrams show the intersection of the WMO abservations and the identifications
from the both algorithms in Figures 5.11a and b.
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Figure 5.11: Venn diagram for the intersection of the sets , and WMO) for
a) the 1997 data set and b) the 1996-60 data set. z, ts5, Cnnﬁdﬂlcz and Sensitivity
are defined in §5.4.3.

The number located in the intersection of the three circles is the number of
acoustic observations for which both algorithms detected precipitation when the
WMO observation simultaneously indicated precipitation. Similarly, the number in
the area of intersection of any two circles is the number of observations that fell into
the two sets represented by the circles which intersect. For example, the number
of observations for which both the SA and the NA identified precipitation, but the
WMO observations did not, is 5 during 1997 (see Figure 5.11a).

Five of the incorrect identifications made by one algorithm overlap with the

other in 1997, while eight i A identi 1n1098. Thi

indicate correlation to an event which affects both the algorithms. Further support
to the correlation between the decrease in spectral slope and the increase in SSLao
relative to SSLy is the 41 element overlap in correct identificati ing 1997
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and the 45 element overlap observed in 1996. In 1997 there are 32 additional correct
SA identifications compared to 3 additional correct NA identifications, whereas in
1996 there are 9 more identifications made by the NA and 6 more by the SA. In
1997, the 95% confidence bound was determined to be +8 and 35 events for the SA
and NA respectively (see Equation 5.20 and Table 5.5). This result means that the
difference between the SA and the NA are statistically significant. For 1996-60, the
95% confidence bound was determined to be £6 and %7 events for the SA and NA

respectively. The difference between the NA and the SA in 1996-60 is not statistically
sigificant, however, the difference between the SA in 1997 and 1996-60 s statistically
significant. One possible explanation for the increased SA identifications in 1997 is
that the effect of precipitation on the spectral slope may be longer lasting than the
increase in SSLag, so that at the short sampling rate used in 1997, the majority of
the observed precipitation spectra have the spectral slope characteristic and not the
elevated sound level. A second possible explanation is that the SA is more sensitive

to time averaging: the number of identifications made by the SA is reduced in 1996

compared to the identifications made using the N.
In general, there is no improvement in either the Sensitivity or the Confidence
of either algorithm in 1996 compared to 1997, lending support to the theory that the

major

.y of missed identificati f drop size distribution and not

the sampling mismatch. This theory is investigated by examining the Sensitivity of

each algorithm in detail.
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5.5.3 Sens

ity of the PIAs

There are two known factors which affect the precipitation generated ambient sound
signal. The first s the drop size, which affects the probability of bubble entrainment.
If there is no bubble then there is no significant sound generated by the drop impact
(Medwin et al. 1992). The second is wind speed which increases the probability of
bubble production for large drops (Medwin et al. 1992) but decreases the probability
of bubble entrainment for small drops (Nystuen 1986). To examine the importance
of the current meteorological conditions, the results from both data sets have been
combined and then sorted into detections based on both wind speed and the type of

precipitation as defined by the WMO sub-categories in Table 5.6.

Table 5.6: Summary of correct identifications for the 1997 and the 1996-60 data sets.
sorted by wind speed and precipitation category. ! the number of ambient sound
recordings in a given wind speed range. * the number of WMO observations with
precipitation. ** the number of observations within the WMO sub-category.

5.5.3.1 By Precipitation Category

To investi

te the influence that the type of precipitation has on the ambient sound

spectrum, the detections for both deployments have been combined for each al-

gorithm based on WMO sub-category in Table 5.7. In the Totals row, the 3.8%
difference between the total identifications of the NA and the SA is statistically

significant. using 955% confidence bounds (see Equation 5.20).
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Category SA Sensitivity | NA Sensitivity | Occurrence
Tntermittent Drizzle | 6.3% % 6.25% | 6.9% % 6.25;
Continuous Drizzle | 0.0% +2.4% % E
Intermittent Rain_| 28.4% + 12.3% | 2:
| Continuous Rain_|
Sk

H|H]

=

owers
Solid Precipitation
Cndefined

Total 15.7% £ 1.4%

B
]

Table 5.7: Percentage of total precipitation correctly identified by the SA and the
NA (the Sensitivity, Equation 5.11), sorted by WMO sub-category for the 1997 and
1996-60 data sets combined. Included is the total number of precipitation intervals
in cach sub-category under the Occurrence column. The uncertainty in each column
was determined using Equation 3.20 and 95% confidence.

In general. neither algorithm is effective at identifying ‘Drizzle.’ as defined by

the WMO sub-categories. Both algorithms identify nearly 7% of the ‘Intermittent
Drizzle.’ corresponding to a 0.10 mum hr~" rainfall rate (see Table 5.2). Due to the
small sample size in this category, the uncertainty is 6.25%. There is no signif-

icant precipitation identified by either algorithm (within 95% confidence) for this

WO sub- y. Neither algorithm identifi ficant amounts of ‘Continuous

Drizzle,” which corresponds to 0.13 mm hr~". ‘Showers," which are defined as in-
termittent shown by the number of minutes of rain but have rainfall rates of 1.47

mim hr=!, are also unidentified by acoustic means. The ‘Undefined" precipitation is

inconsistently identified through the ambient sound spectra, with the NA detecting
5% and the SA 8% of the precipitation. In each of these four categories it is not clear
whether the low Sensitivity is a result of: i) the intermittent nature of the rainfall:
ii) the drop size distribution associated with the rainfall rate.

Solid" precipitation shows the largest difference between the two algorithms:
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the SA detects 10.8% more ‘Solid” precipitati does the NA, but this diff

is not significant. If a 60% confidence is assumed, where the uncertai

y is approxi-
mately half the value listed in Table 5.7, the difference is between the identifications
made by the NA and SA is significant. Regardless, neither algorithm identifies a
significant portion of this form of precipitation. This category is also intermittent
having on average 20 minutes of precipitation per hour.

The two ‘Rain’ categories show more frequent ambient sound signals corre-

sponding to precipitation. Both algorithms identify approximately 25% of the ‘In-

termittent Rain.’

‘The success rate of both algorithms s equal w

n the confidence
bounds. and distinct from 0, resulting in a minimum detection of 28.4% and 22.4%

for the SA and the NA respectively. Both algorithms detect slightly more than 50%

of the ‘Continuous Rain’ events.

These results indicate that there s a strong relation between the acoustic signal
of precipitation and the WMO sub-category.
5.5.3.2 By Wind Speed
To determine if the wind speed affects the precipitation generated ambient sound,
signal identifications for both data sets are presented for each algorithm in Table
5.8, These results show that there is only statistically meaningful differences (using

! and those less

95% confidence intervals) between wind speeds greater than 15m.
than 15 m 5™ for both the NA and the SA. This result is remarkable in that at high
wind speeds (15 to 20 ms~") the Sensitivity of both algorithms is at a maximum,
correctly identifying more than 40% of the precipitation. This results may be due
to the drop size present during the storms which generate such high wind speeds,

however, there are only 23 precipitation events in this wind speed range resulting in
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<A Sens\uvl(y [NA Sensitivity
8% £ 7.6%

s z% £38% | 5% £08%

2.3% £ 4.5 1% £ 33%
8% & 26.0% | 43.5% £ 26.0%

5.7% + 14% | 125% % Li%

.8: Percentage of total precipitation correctly identified by the SA and the
NA (the Sensitivity, Equation 3.11). peed for 1997 and 1996-60 combined.
Included are the total number of precipitation intervals in each wind speed range
(Occurrences). The uncertainty in each column was determined using Equation 5.20
and 93% confidence,

a large uncertain

of approximately 26%.
959% confidence bounds are perhaps too strict. If 60% confidence bounds were
used instead the SA identifies more precipitation in the wind speed range 10 to 15

m " than does the N3

Also, the

A shows a wind speed dependence, identifying

more precipitation in the 5 to 10 m s~ range than in either the 0 to 5 or 15 to 20

ms~" range. The Sensitivi

of the NA ranges from as low as 6.1% (wind speeds

between 10 and 15 ms~') and as high as 15.1% (wind speeds or 5 to 10 ms™').
‘The sensitivity of the SA ranges from a low of 12.3% (for wind speeds from 10 to 15
ms~!) and a high of 16.3% (wind speeds between 5 and 10 ms™!).

5.5.3.3 Effect of Sampling Rate

‘The ambient sound sampling rate affects the probability of detecting precipitation
(see §5.3.1). The importance of the sampling rate is explored by comparing the iden-
tifications made from the hourly averaged ambient sound spectra from the 1996-60
data and those from the 1997 data. Tables D.3 and D.4 in Appendix D.1 show a com-
plete break down for each deployment by wind speed and category. The Sensitivity

data from these two tables are summarized by WMO sub-category in Table 5.9.
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Table 5.9: Summary of algorithm Sensitivity sorted by WMO sub-category for both
the 1996-60 and 1997 data sets. Included are the total number of precipitation
intervals in each WMO sub-category (Occurrences). The uncertainty in each column
was determined using Equation 5.20 and 95% confidence.

Within 95% confidence bounds. there is no Sensitivity difference between the
1996-60 and 1997 data. This means that using the present data. the increased
sampling rate of the 1996-60 (sampled 31 times per hour) does no better than the
sampling rate of 1997 (sampled 3 times per 72 minutes). However. there is sub-
stantial ensemble averaging (7 ensembles) for the 1996-60 data, and no ensemble
averaging in 1997. Ensemble averaging has the effect of smoothing out the spectral
characteristics of precipitation.

The values of Sensi

ity based on wind speed range are more likely to vary
with the precipitation type within each wind speed category for each deployment
than with wind speed. Realistically, there is no relation between sampling rate and
wind speed, while there is a relation between the sampling rate and precipitation

category.
5.5.4 PIA Confidence and Wind Speed

The Confidence (Equation 5.10) of a PIA is a measure of the correct identification
rate and is shown for overall performance in Table 5.5. With a 95% confidence bound

there is no difference in the Confidence of the two algorithms.
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‘The detection method of the two PIAs depends on the spectral structure that
changes with wind speed. We might then expect PIA confidence to depend on wind
speed.

Table 5.10 shows the Confidence of each algorithm for both data sets com-

bined for four wind speed ranges. The SA makes fewer false identifications in the

10-15 m s~ wind speed range when compared to the identifications in the 3-10 m s~*

range. The NA does not reflect this trend. The 100% identification represents the

Wing - Occurrence NA Occurrence
0- T2ET% S8 £182% T
5.1 T3AE£9.6% §0.0 £ 10.5% i
10- 93.8%6.3% T89E£2L1% T
15 - 2 100% 100% 1
T EEEXAV 155 817 +78% T

Table 5.10: Percentage of correct identifications of precipitation made by the SA and
the NA (the Confidence, Equation 3.10), sorted by wind speed for 1996-60 and 1097
data sets combined. The uncertainty in each column was determined using Equation
5.20 and 95% confidence. ' the 939% confidence bound for 6 selections.

955% confidence bound for 605%  40% identifications, given the limited number of
identifications made in this wind speed range, which were only 11 and 10 identi-
fications by the SA and the NA respectively. Within 95% confidence there is no

difference between the the algorithms at any wind speed range.
5.6 Conclusions

‘There is significant correlation between two characteristics of ambient sound. These
characteristics are the spectral slope of Region III (from 35 to 72 kHz) and the ele-

vated SSL at 20 kHz (SSLx) generated by precipitation. Two distinet algorithms
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can be used to identify itation using either of these istics. [n addi-

tion to the classical detection algorithm using the SSL, the slope of Region IIT

provides an alternative means of detecting precipitation. In this §3.5, the present

data shows that limitations in detecting precipitation are placed on both algorithms
by meteorological conditions.

There is meaningful signal in the ambient sound at frequencies from 35 to 72
kHz. This signal is generated during precipitation, and oceurs in conjunction with
the precipitation signal used by the NA. In contrast, Urick (1967) stated that the
ambient sound at frequencies greater than 30 kHz is dominated by thermal noise.
The results presented here support the findings from Chapter 4 which state that the
intersection of thermal noise and ambient sound is at frequencies greater than 72
KHz when the wind speed is greater than 3 ms~" or precipitation is present.

Using 93% confidence bound, neither algorithm is effective at detecting all
forms precipitation. The overall Sensitivity (Equation 5.11) is affected by the dis-
tribution of precipitation rates. In general, only the rain WMO categories are de-
tectable via ambient sound. Both algorithms successfully identify 23%  12.5% of
“Intermittent Rain’ events, and 50%: 109 of ‘Continuous Rain’ events. However, the
cause of this limited Sensitivity cannot be determined conclusively from the present
data because the intermittent nature of the rainfall cannot be separated from the
instantaneous rainfall rate (or drop size). The limited Sensitivity is likely due to a

combination of three factors: i) the sampling rate of the ambient sound is too short

10 detect intermittent precipitation signals; ii) time averaging reduces the precipita-
tion signal by averaging intermittent precipitation signals with wind-only dominated

spectra;

v i) the rainfall rate for a given WMO sub-category varies during isolated
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precipitation events. Comparison of the 1996 data averaged to 10 minute intervals

and 60 minute intervals indicates that time averaging is not the dominant cause of

low Sensitiv

v. Comparison of the hourly averaged data sampled 51 times per hour
(1996-60) to the 1997 data set, sampled once every 24 minutes, indicates that the
sampling rate is not the dominant cause of the observed low Sensitivity. A more
frequently sampled precipitation record and a measurement of the drop size distri-
bution s required for further study of the sampling rate effect. The present data
s consistent with an evolving raindrop distribution: the rainfall rate determines
the acoustic signal; this rainfall rate will vary for a given condition changing the
probability of detection. More frequent WMO recorded observations, or preferably
disdrometer and ORG measurements, are necessary to compare to unaveraged short
time interval ambient sound data in order to rigorously test the effect of sampling
rate and time averaging.

Complementing the description of the high frequency spectral precipitation

signal is the fact that the high frequency side of the signal behaves

fferently than
the 20 kHz peak under different meteorological conditions. The SA is more effective

at identifying ‘Solid Precipitation’ than is the NA, although the SA only identifies

14% 4 10.2 of the ‘Solid’ events compared to the 3% 3 identified by the NA. One
final difference between the algorithms: the SA makes fewer false identifications,
and identifies more precipitation than does the N in wind speeds of 10 to 15 m s~
Overall. the SA identifies 3% more precipitation than does the NA.

There are oceurrences when the SA correctly identifies more precipitation than

the N,

particularly using the 1997 data (see Figure 5.1). This result might indicate

that the precipitation signal at frequencies from 35 to 72 kHz is less robust to time
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averaging than is the elevated SSLy. In the 1996-60 data set, 17 ensembles are
averaged together, whereas in 1997 there is no ensemble averaging. In both cases

each ensemble is an average of three individual ambient sound samples.



Chapter 6

Conclusion

There are many sources of ambient sound in the ocean (see Table 2.1). For fre-
quencies from 1 to 72 kHz the dominant source is wind through bubble entrainment
caused by breaking waves. Precipitation at the surface also elevates sound levels
between 10 and 25 kHz. It has been shown in this thesis that there s a distinct
spectral slope for frequencies from 35 to 72 kHz during precipitation. The sound
source here is air bubbles entrained by raindrop impacts at the surface (Pumphrey

et al. 1989; Meduwin et al. 1992). When created, pressure and tension forces drive

bubbles at their breathing mode, generating sound at frequencies related to their
radius. Smaller bubbles generate higher frequency sound (see Figure 2.2).
Acoustically active bubbles entrained by both breaking waves and drop impact
remain close to the surface. The surface is a near perfect acoustic reflector, and as
such, the bubbles generate sound as dipole sources as a consequence of the bubble’s
image through the surface. The resulting sound field can be modelled by an infinite
plane of dipole sources at the surface, although this assumption might not be valid
for intermittent rain showers. Due to this geometry, the sound field does not die off

according to spherical spreading (Medwin and Beaky 1989), but is only affected by
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chemical absorption along the path length. Sound reflected off the ocean bottom
retains this characteristic. As a result, significant energy is added to the sound field
when the bottom is not sufficiently far such that chemical absorption completely

attenuates the sound. To identify istics of wind ed or

generated ambient sound, measured Sound Source Levels (SSL) must then account
for reflections of sound off the bottom of the ocean.
As a result of the different effects of hydrophone depth, and the ocean bottom

depth. SSL must be adjusted to deployment independent levels. This adjustment

is done using a model developed here (Equation 3.22) which calculates the energy

added to the system through reflections and lost from the system by chemical ab-
sorption. Several factors are incorporated in this model: the bottom loss reflection
coefficicnt. the chemical absorption (via the hydrophone and ocean bottom depth).

the temperature (via the chemical absorption), and the nature of the reflections at

the bottom (either specular or non-specular). At the surface, the model assumes an
infinite plane of dipoles, non-specular reflection, and no refraction. By integrating
over the infini and ’ yment ‘Response’

is calculated additionally allowing for the factory determined hydrophone response.

Results of this model show that significant energy is added to the spectrum for
frequencies below 10 kHz (see Figure 3.7c). Using a bottom reflection loss coefficient
of -8 dB, there is sigaificant energy added to the sound field for frequencies less
than 10 kHz even for ocean depths greater than 4000 m. A maximum of 1.5 dB is
added for all depths at 1 kHz. The frequency range to which this energy is added
increases with decreasing water depth. Further, there is little difference whether the

reflections are specular or non-specular, accounting for a difference in Response of
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less than 0.2 dB (see Figure 3.7a). The temperature of the water does not change
the Response for frequencies less than 4 kHz. For frequencies between 4 and 10 kHz
a temperature change of 20 °C alters the Response by half a dB. This difference
increases to a maximum of 2 dB by 35 kHz for a temperature change of 20 °C (see
Figure 3.7b). The depth of the hydrophone affects the attenuation of the ambient
sound signal by increasing the path length to the surface. At mooring depths of
4000 . there is a loss greater than 18 dB for frequencies greater than 35 kHz. At
this depth, however, there is a loss of only 2 dB for frequencies between 1 and 10
kHz, indicating that accurate measurements of the ambient sound generated at the
surface can be recorded at such a large depth (see Figure 3.7d). This result assumes
no refraction of the sound which is incident near normal to the horizontal.
Uncertainty in the model arises from the uncertainty in the temperature, depth
and the measured SSL. These sources of uncertainty are calculated in Chapter 3
and estimates of frequency dependent uncertainty in SSL are shown in
(in dB). The uncert;

igure 3.11

ty in depth and temperature affcct the accuracy of spectral
slope estimates. Three spectral regions have been considered and are Regions I (1 to
10 kHz), I (10 to 35 kHz), and L1 (35 to 72 kHz) with uncertainties of 0.13, 0.12,
and 1 dB/decade respectively.

Any subsurface hydrophone records sound generated at the surface in a circle
of radius approximately equal to the hydrophone depth due to the dipole nature of
the sources. As a result, the mean sound generated by breaking wind waves in that
circle can be translated to  wind speed estimate (Knudsen et al. 1948; Wenz 1962:
Shaw et al. 1978). The mean sound level is characteristic of a given wind speed.

Due to the transient nature of breaking waves, at any instant in time this SSL could
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be louder or quieter than the istic sound proportional to the i
wind speed. However, given sufficient averaging an accurate wind speed estimate
can be determined.

If the SSL are not set to reference levels which are deployment independent, a
frequency dependent mean error in wind speed estimate results. Even if the calibra-
tion is performed correctly to the best of our ability, the wind-speed-from-ambient-
sound equations tested here (Equations 4.3, 4.4 and 4.5) result in a mean wind speed
error using the SSL from 1 to 10 kHz. The mean error can be removed by adding a

 speed dependent correction term to the wind-speed-from-ambient-sound equa-

tions.

e averaging and spectral averaging both work to reduce the variance in
the wind speed estimate. The effects of this averaging are not additive: even when
frequency effects have been removed (Equation 4.5) there is no reduction in the

variance of the estimate when both time averages and spectral averages are used. In

contrast. when only performed, variance for
is reduced by 0.4 ms™".

The equations determined by Vagle et al. (1990) (Equation 4.4) and Evans
and Watts (1982) (Equation 4.3) can be used for any frequency from 1 to 10 kHz,
by adjusting the SSL to a reference frequency. The accuracy of the wind speed
estimates are determined in part by the accuracy of the SSL measurement, so that
spectral averaging improves the wind speed estimate from the SSL at 1 kHz (SSL,)
but does not reduce the variance for the SSL for frequencies between 8 and 10 kHz
in the 1996 data set.

‘The accuracy of the mean wind speed estimate when the wind speed dependent
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error has been removed (Equation 4.19) for frequencies from 1 to 10 kiz are 199,
1.27 and 1.63 ms~" for the 1996-10, 1996-60 and 1997 data sets respectively. These
differences reflect the different deployment characteristics and sampling parameters
of each data set. The 1996 data was collected with the hydrophone at 250 m, while
the 1997 data was collected with the hydrophone moored at 100 m. In 1996, the

ambient sound field was sampled every 70 seconds while in 1997 it was sampled every

24 minutes. Two time intervals were considered in 1996: 10 minute averages (1996-
10) and hourly averages (1996-60). The more frequent sampling, larger listening
radius. and cnsemble averaging of the 1996-10 data set unexpectedly produces greater
variance than the data of 1997. It was expected that time averaging and spectral
averaging would reduce the variance, and that more frequent ambient sound samples
would provide more accurate resolution of the wind field. This result indicates that
there may be a time scale between 10 and 60 minutes over which the ambient sound
does not respond to changes in the wind speed. In other words. more frequent sound
sampling may not provide a more accurate estimate of wind speed. below some
threshold sampling rate.

It was observed that the spectral slope depends on both the wind speed and
the frequency. The spectral slope for frequencies from 1 to 10 kHz (Region I) was
observed to vary by 4 dB/decade over wind speeds from 0 to 20 ms~'. The mean
spectral slope of this region is —18.6 + 0.4 dB/decade. For frequencies from 10 to
35 kHz (Region 1), the spectral slope for winds from 0 to 10 ms™' has a mean
of ~17.3 % 0.5 and varies by 4 dB/decade. For wind speeds from 10 to 20 ms~*
the spectral slope varies by 15 dB/decade. The spectral slope for frequencies from

35 to 72 kHz (Region III) has been modelled using a polynomial of order three.



For wind speeds from 0 to 9 m s~" the spectral slope steepens from greater than 0
dB/decade to approximately -18 dB/decade. For wind speeds from 9 to 13 ms~*

the spectral slope of this Region remains constant, then increases to -10 dB/decade

at wind speeds of 20 ms

Precipitation generates sound by entraining bubbles through craters resulting
from drop impacts at the ocean surface. Not all drop sizes create craters capable of
entraining bubbles. The wind speed also affects the probability of bubble entrain-
ment. These two factors combine to create a complicated relationship, where rain
creates a different acoustic signature than does drizzle. As well, some significant

forms of precipitation do not generate any significant ambient sound. Two algo-

rithms capable of identifying precipitation via the ambient sound were presented in
Chapter 5. They are the Nystuen Algorithm (NA), which identifies the increase in
SSL at 20 kHz (SSLyo) relative to SSLs, and the Slope Algorithm (SA) developed
here, which identifies the distinct spectral slope of Region III during precipitation,
Precipitation events classified as ‘Rain’ by the World Meteorological Organi-
zation (WMO) can be identified via the ambient sound. The NA is as effective as
the SA. Neither algorithm detects more than 50%  10% of the ‘Continuous Rain'
events, and 25% % 12.5% of the ‘Intermittent Rain' events. Using the minutes of
precipitation observed by an Optical Rain Gauge (ORG) available from the 1997
data for WMO sub-categories, a larger percentage of precipitation should be identi-
tied for the more frequently sampled data from 1996 (see Equation 5.2). This result
indicates that rain detection is drop size dependent. The data show some variation
between the two algorithms in detection of ‘Solid Precipitation.” The SA detects

14% + 5% and the NA detects 3% 3% of this WMO sub-category (within 95%
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confidence bounds).

The data from 1996 averaged into 10 minute intervals do not provide more
sigificant identification of precipitation via either algorithm, indicating that the
sampling rate is not a factor in the limited detection of precipitation. However, the
averaging of the WMO observations skew these results. Further, when comparing
the data from 1996 sampled every minute but averaged into hourly intervals to the
unaveraged 72 minute ensembles from 1997, a larger percentage of identifications of
precipitation via the ambient sound are not observed. Time averaging of frequent

observations provides no enhancement over less frequently sampled observations
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Appendix A

Absorption Coefficient

In Chiapter 2, the equation describing the propagation of sound through water were
developed. In the process, the absorption coefiicient due to three chemical compo-
neats of salt water were identified. Equations describing the absorption coefficients
from these three components are included in this appendix.

The finite time response of water to a changing pressure field. causes dispersion
of sound waves in water. The phenomenon is modelled by adding a time dependent
term to Hooke's law model of sound travelling in water. This time response s
modelled by an absorption coefficient.

If the relaxation time is longer than the period of the pressure variations. then
some of the energy at this frequency is lost as heat. It is this mechanical relaxation
process which is responsible for increasing absorption with increasing frequency. In
salt water the mechanical relaxation is governed by three processes, each of which
are characterized by individual absorption coefficients. Clay and Medwin (1977)
give a complete description of all the components of the absorption coeffcient in salt
water. The three processes are: freshwater absorption (Equation A.1); absorption

by magnesium sulphate (MgSO,) (Equation A.3); and absorption by boric acid
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(Equation A.5)

41210 +33.107

ap=171-10° Wﬁ (A1)
fom =219 107 1000 (A2)
203107 frmf? -
-—m(l—lza»m 3 (A3)
J=09-15% 1000 (ad)
12107 [ f r
@0 9

whete ay. oy, and ay are the components of the absorption coefficients and fym, frs

are the resonant frequent

of magnesium sulphate and boric acid relaxation process
in kHz

The temperature of the water has a strong influence on the fresh water com-
ponent of the relaxation process. For the frequencies studied here, the dominant

components of absorption are the magnesium sulfate and boric acid components (see

Clay and Medwin (1977, pp. 100-101), o a reproduction
based on the equations above in Figure A.1 assuming 10°C).
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Freauency in kHz

Figure A.1: The relative importance o the different absorption factors in determining
the overall absorption coefficient (remake of figure from Clay and Medwin (1977),
with the axes limited to the frequency range relevant to this study).
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Appendix B

Analysis Using Unaveraged
Spectra from 1996

In Chapters 4 and 5. the unaveraged ambient sound levels from the 1996 deployment
are not used in the data analysis. They are not used because there are no wind
speed or precipitation observations to compared to. However. in Chapter 4. it was
determined that the spectral slope of the ambient sound spectrum changes with
changes in the ambient sound levels. The time scale over which these properties
change is examined using the ambient sound ensembles recorded every 3.5 minutes
during 1996.

Ambient sound levels cannot be absolutely correlated to wind speeds: the
correlation is a result of time and spatial averaging of breaking wave caused by the
wind. However, two physical properties, the spectral slope of Region IT and the
spectral slope of Region III, are directly correlated to the instaneous sound levels
below 10 kHz. The response time of these properties to changes in the sound level
are measured for time intervals as short as 3.5 minutes using the unaveraged ambient
sound data from 1996.

These recorded ensembles are averages of three measurements recorded at
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evenly spaced time intervals over the 3.5 minute total ensemble length. As such,
the ambient sound spectra are susceptible to changes in the ambient sound field at
time intervals of 70 seconds. Vagle et al. (1990) stated that to get accurate wind
estimates, the time intervals must be averaged over three hours. Chapter 4 demon-
strates that accurate wind speed estimates can be obtained for 10 minute intervals
when 3 ensembles (for a total of 9 ambient sound measurements) are averaged over
the entire 10 minute period and the spatial average occuring for the ambient sound
‘measurements is over a circle of radius of 250 m. In addition. accurate wind speed
estimates can be made from sampling as infrequently as 3 times over a 72 minute
period, for spatial averages over a circle of radius of 100 m.

From the reduction in the standard deviation of the error in the wind speed
estimate (o(U.)) that spectral averaging has on the wind estimate it was determined
that there was the least spectral variation between 2 and 4 kHz (Figure 4.9). The
spectral slopes will be compared to the mean SSL using frequencies from 2 to 4
kHz (SSLy=) because of this minima, and to cnsure that the SSL is not affected by
‘mechanism behind the changing slope of Region II.

Figure B.1 shows the auto-correlation of the SSLz (blue solid line). and
the spectral slopes of Region I (red dashed line), Region II (green dash-dot line).
and Region IIT (cyan dashed line). This figure shows that the SSLz—; has auto-
correlation coefficients greater than 0.3 for time lags of 10 hours o less Both Region

Il and Region 111 have an auto-correlation coefficient R =

.6 at time lags of 5 hours.
The spectral slope of Region I is has an autocorrelation of less then R = 0.5 for time
lag greater than 3.5 minutes. The result for the spectral slope of Region I is a

consequence of noise: the spectral slope in this region does not vary with wind speed
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[y mv—
Figure B.1: Auto-Correlation of the SSLT=1 (blue solid line), spectral slope of
Region [ (red dashed line), Region I (green dash-dot line), and Region III (cyan
dashed line) as a function of the lag in hours.

5o time series is the sum of a constant and a white noise time series. Consequently,

the auto correlation is a measure of the correlation of the n

Figure B.2 shows the cross-correlation of the SSLy= to the spectral slopes
of Region T (red dashed line), Region [T (green dash-dot line), and Region III (cyan
dashed line). This figure reflects the stationary nature of the spectral slope of Region
1T (red dashed line). There is no correlation between the spectral slope of Region [
and the SSL. In contrast, this figure shows the negative correlation of the slope
of Region 11 and Region I11 to the SSLz=z. AL zero time lag both regions have
a cross-correlation coeffcient with the SSL of R = 0.8. At a lag of 5 hours the
cross-correlation coeffcient for both regions is R = 0.6.

While the correlation plots show symmetry which indicates that the spectral
slopes may lead the SSL, it is presumed that the SSL corresponds to the generation
of bubbles, and the variation in spectral slope s an effect of the resident bubble
cloud. Tt is therefore nonsensical to consider the possibility that the spectral slope
leads the SSL.
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Figure B.2: Cross-Corvelation of the spectral slope of Region [ (red dashed line),
Region I (green dash-dot line), and Region ITT (cyan dashed line) as a function of
the lag in hours.



Appendix C

x? Hypothesis Testing for
Contingency Tables

In Chapter 5, the World Meteorological Organization (WMO) observations and ob-
servations from the Optical Rain Gauge (ORG) are compared. A standard statistical
test is used to determine if the two sets of observations are dependent. This method.
\* hypothesis testing, is outlined here.

Given two binary data sets, each with outcomes of Heads (H) and Tails (T), it
can be determined whether the two sets are independent by using a y? analysis. To
do o, the data can be presented in a contingency table, which compares how often
the outcomes of the two sets match (see Table C.1). In Table C.1, a represents the
number of times both data sets indicate result H simultaneously, b represents how
often data set 2 indicates result H when data set 1 indicated result T. Similarly, c is
the number of trials where data set 1 indicated result R while data set 2 indicated
NR. Finally, d is the number of times both data set 1 and 2 indicated result NR
simultaneously.

The null hypothesis that two sets are independent is proposed. In other words,

the outcome of the first set is in no way affected by the state of the other set. A
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Data Set 1

AT

Data Set 2 [Aa | 5]
el <]

Table C.1: Sample 2 by 2 Contingency Table

\* test is used to rejoct or accept this hypothesis. This test uses the sum of the
difference between the expected values and the actual values of the entries in the
contingency table. For this table, the ratio of 4 to # should be the same if the two
sets were independent, where N is the total number of trials. Everitt (1992) gives
the ? for such a table as

Nxf(ard—cxb)?
@ -+ d@r0 ®rd

(€1

Using a look up table, the x? value for 1 degree of freedom, and a 95% confidence
interval is 3.84. If the x* value is greater 3.84 we reject our null hypothesis and the
sets are not independent. Conversely, if the x? is less than 3.84 the hypothesis is

supported. and the data sets are independent.



Appendix D

Additional Rain Detection
Information

In Chapter 5, the meteorological observations from the World Meteorological Orga-
nization (WMO) standard are subdivided for simplicity. The entries from the WO

standard are presented here for each sub-category. In addition, histograms of the

rainfall rate and minutes of rain per hour for each sub-category are presented. Fi-
nally, the tabular data for precipitation identification for the algorithms presented

in Chapter 5 sorted by wind speed and WMO sub-category are given.

D.1 New WMO Categories: Definition, and Com-
parison to ORG data

A standard method of recording i is given by the

Meteorological Code for Ships according to the World Meteorological Organization
(WMO). The data used from this Code for Ships was Present Weather Code. The
100 categories of this code have been divided in to eight sub-categories to make

comparison to the precipitation identifications from ambient sound. These sub cat-

egories are: no precipitation (0): Intermittent Drizzle (1); Continuous Drizzle (2):

s



Intermittent Rain (3); Continuous Rain (4); Showers (3); Solid Precipitation (6):
Unclassified (9). The corresponding entries in the WMO chart for the *No Precip-

itation’ category are given in Table D.1. The other entries are listed in Table D.2.

The entries categorized as some form of precipitation are listed in Table D.2.

‘WMO [ Condition
Change of Sky During past hour
Haze, Dust. Sand or Smol
Mist and Shallow Fog
Phenomenon within SIght,but not at Ship
“Thunder, Squalls, Funnel Clouds
38| Fog in past hour
30-39 | Dust storm, Sand storm or Snowstorm
40-49 | Fog at time of Observation
98| Thunderstorm with dust o sand storm

Table D.1: The ww entries from the WMO chart for No Precipitation



0 Condition Classiication
Precipitation beyond 3 n miles (reaching surface)
reaching surface)

Rain (not Freezing)

Snow

| 23| Rain and snow mixed
Freezing Drizzle or freezing rain

Shower(s) of rain

Shiowers of snow of rain and snow

|

|
]

' rain and fail
|~ 20| Thunderstorm, with or without precipitation
Tatermittent Slight Drizzle [ Tntermediate Drizzle (1)
Continuous Slight Drizzle. Continuous Drizzle(2) _|

Vioderate Intert

ttent shgm Drizzle Tntermediate Drizzle (1) |

| 53| Moderate Continuo Z1o(2)
[ 51| Heavy Intermittent m e Tntermediate Drizzle (1]
Feavy Continuous Drizslc | Continuous Drizzlo(2)
STight Freezing drizzle Solid(6)
Moderate or Heavy Freezing drizzle
Slight Rain and Drizale Mixed

of Heavy Rain and Drizzle Mixed
t

Gontinsous Moderate -

i_| Tutermittent Heavy Rain
nuous Heavy Rain

[ 66| Slight Freezing Rain

Moderate of Heavy Froezing Rain

Slight Rain or Drizzle w(v.h oo

9| Moderate or Heavy

79_| Solid Pncxplulmn no hlllng as Slnmen
Shower

Stow

1im Rain (w/ Thuaderstorms)
Moderate or Heavy Rain(w/ Thunderstoris) | Unclassified(9)
i E

and Solid olid(6)
feavy Thunderstorms with Hail Solid(6)

Table D.2: The ww entries from the WMO chart and their corresponding Category
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D.2 ORG Comparison to each WMO sub-Category

Histograms of the rain fall rates in mm hr~" and frequency of rain fall over the
hour for each category can be made for the 1997 deployment using the ORG data.
These histograms are shown for categories 1 (Intermittent Drizzle). 2 (Continuous
Drizzle). 5 (Showers), 6 (Solid Precipitation), and 9 (Unclassified) in Figures D.1a to
© (the rate) and Figure D.2a to e (the frequency). The histograms for sub-category
3 (Intermittent Rain) and 4 (Continuous Rain) are shown in Chapter 3.

‘The rainfall rate determines the acoustic signal from the precipitation via the

raindrop size distribution. The minutes of rain per hour corresponding to the WMO.

sub-categories determines the probability of detecting precipitation based on how

many times cach hour is sampled.
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Figure D.1: Histogram of rain fall rates, as determined from by ORG, for WMO
sub-category a) Intermittent Drizzle' (1), b)'Continuous Drizzle’ (2), c)'Showers' (3),
d)'Solid Precipitation’ (6), ¢)Unclassified Precipitation’ (6).




Figure D.2: Histogram of minutes of rain, as determined from by ORG, for WMO
sub-category a) Tntermittent Drizzle’ (1), b) Continuous Drizzle’ (2), ¢) Showers' (3),
d)Solid Precipitation’ (6), ¢) Unclassified Precipitation’ (6).
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D.3 PIA Identifications for each Deployment Case

The number of correet identifications of precipitation for both algorithms for each
deployment have been tabulated by wind speed and precipitation category in tables
D.3 and D.4. The two numbers in brackets by the wind speed range are the total
number of data points in that wind speed range, followed by the number of intervals

which had precipitatio

that wind speed range. The number in brackets nest to
the category is the total number of data points within that category of precipitation.
By definition this means these points are precipitation only points. The ‘Totals' row
is the total of cach column in the table, and the “PLA Totals' are the total number

of selections made by either algorithm.
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Table D.3: Summary of correct identifications for the 1997 data set. sorted by wind
speed and precipitation category. ! the number of ambient sound recordings in a
given wind speed range. * the number of WMO observations with precipitation. **
the number of observations within the WO sub-category.

FE T P T =]
g ST z
3 i

Table D.4: Summary of correct identifications for the 1996-60 data set, sorted by

wind speed and precipitation category. ! the number of ambient sound recordings in

a given wind speed range. * the number of WO observations with precipitation.
* the number of observations within the WMO sub-category.
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Appendix E

PIA identifications compared to
the ORG

In Chapter 3. it was determined that the observations made using an Optical Rain
Gauge were statistically dependent to observations made following to the World
Meteorological Organization (WMO) protacol. For consistency of results. the WMO
observations were used in comparison to observations made using the ambient sound.

However, the ORG sampled the precipitation every minute and as such might present

a better standard to compare the acoustic identifications of precipitation in 1997.
Results using the ORG as the reference are presented here.

There is a sampling mismatch between the ambient sound recordings in 1997
and the WMO log entries from OWS Mike. The ORG data provides a convenient
means of creating a record which matches the sampling rate of the hydrophone:
by choosing the ORG entries which correspond to the three minutes at which the
hydrophone sampled. However, using the ORG as the control for precipitation in
the 1997 data set does not yield statistically different results than those obtained
using the WMO chart entries. The total number of precipitation events identified

by the ORG for the period when the hydrophone was recording was 339. This
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number can be compared to the indications of precipitation from the WMO entries
of 451. The ratio of precipitation events flagged by the ORG to those flagged by
the crew member recording the WMO log entry is 75%, which is approximately the
ratio determined earlier for the entire deployment of the ORG and OWS Mike. The
WO log entries and ORG data agreed during 261 intervals. OF the 339 ORG flagged
precipitation events, the SA correctly identified 27 ‘Drizzle’ events, 29 ‘Rain’ events,
and 7*Apex” events, compared to 31, 27. and 5 intervals when using the WMO record
only. The WO observations and ORG data agreed during 24, 26. 5 intervals. The
NA correctly identified 27 ‘Drizzle’ intervals, and 12 ‘Rain’ intervals when the ORG

data is used as the reference versus the 30 and 15 intervals identified when the WMO

bserva used . The W) i ORG data agreed
during 24, and 12 of the intervals. These results are summarized in Table E.1, and
indicate that the while the Sensitivity of the PIAs are highest when precipitation
is limited to when both the ORG data and the WMO observations simultancously

indicate precipitation, the Confidence is at it's lowest for both algorithms.

Control Tatervals | SA (86) | NAGS) |
ORG [ [ & | i |
102

Exculsive Combination | 222
Tnculsive Combination | 544

Table E.1: The correct identifications of precipitation from cither algorithm, when
the ORG data or WMO observations are used as a reference. The numbers in
brackets in the column headings are the total identifications made by the algorithms
(correet and incorrect).

“The results given in Table E.1 show that there is not better correlation with the

precipitation record given by the ORG data. The Exclusive Combination category
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are identifications made by the algorithms which correspond to both the WO and
the ORG observations. Using identifications in this cateogory, the Sensitivity of the
SA improves to 27% (50/222)from 18.2% while the N improves to 13.4% (30/222)
from 10.9%. The increase in Sensitivity is offset by a decrease in Confidence. The
Confidence of the SA drops to 68% from 76% while the Confidence of the NA drops
to 34% from 86%. The Inclusive Combination category are identifications made
by the algorithms which correspond to either the WO or ORG observations. For
identifications in this category, the Sensitivity of the SA of both the NA and the SA
drop compared to using either the ORG or WMO observations. The Confidence of
the SA improves to 89% from 76% while the Confidence of the NA drops to 82%
from 86%. The results given in Table E.L show that there is not better correlation

with the precipitation record given by the ORG data.
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Appendix F

Spatial Scale of Precipitation

Throughout this entire thesis, observations of ambient sound recorded by the OASIS
device at one location are compared to data not necessarily recorded at the exact
location of the mooring. To justify these comparisons. the length scale overwhich
these metcorological phenomenon occur s necessary.

In an ocean context, micrometeorology s not well studied at spatial scales less

than a kilometre. As such,

is hard to specify on what length scales precipitation
occurs. A few simple calculations are used to specify this spatial scale. The ORG
data provides a time series of rainfall rate recorded every minute. By calculating
the autocorrelation as a function of the lag in minutes, the time scale for which
meteorological conditions remain constant is estimated. If the ORG rainfall rate
time series is converted to a binary series using the threshold rainfall rate for the
instrument (0.1 mm hr~!), a more representative approximation of this property is
realized. The correlation plot is shown in Figure F.1. This figure shows that there
is significant correlation at a lag of 10 minutes.

Consider a precipitation event lasting one minute. Assuing that this distur-

bance propagates at speeds between 5 and 10 ms~!, which are typical values, the

186



Figure F.1: Auto-Correlation of the ORG rainfall rate as a function the lag in
minutes. ‘The ORG rainfall rate was converted to a binary time series using the
threshold for precipitation detection of 0.1 mm hr~

urbance will travel between 300 and 600 m. From the correlation-lag plot it is
reasonable to assume that precipitation events, albeit intermittent ones. will travel
nearly 5 km (10 minutes - 430 m). From this simple calculation. it is realistic to
assume that precipitation occurs over spatial scales on the order of kilometres for

this data set.
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