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Abstract

A real-time human face tracking system has been developed at the Multimedia
Communication Laboratory of Memorial University of Newfoundland to investigate fast,
efficient, reliable and flexible face finding and tracking techniques. By subtracting a well-

maintained background from an incoming image, an object and background

map can be constructed. The foreground object is outlined by a “draping” operation on

map. Once the dray led, an i identification method
consisting of exhausting head searching followed by head merging achieves accurate
head extraction and identification. In order to tackle the problems associated with

variations in lighting, local and global background movements and shadows in the

background scenes, a mult-sta ing/adjusti is applied.
This allows the system to switch automatically between background formation and
simple face tracking. The draping is applied on the inter-frame variance of incoming
images 1o identfy moving areas and thus to generate the background. Median filtering,
multiple direction draping and polynomial interpolation are developed and incorporated
into this system to overcome the possible pitfalls in the resultant drape. The background
is updated automatically in real time once the changes in the background are detected to
exceed a given threshold. Experiments show that the new real-time system is a robust and
effective tool for extracting human heads from a very complex non-stationary

background.
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Chapter One

Introduction

Real-ime face tracking s cumrently an active research area in the computer vision
community due to the possibility of being able to tackle more complex problems using
readily available fast computers. A robust real-time face tracking system has many
practical applications such as advanced video communication, virtual reality interfaces,
smart rooms, very low bandwidth video compression, human computer interaction and
security monitoring. All of these have in common the need to track and interpret the
human body. especially the human face (Wren et al. 1996). Face tracking can be used to
reduce communication bandwidth by locating and transmitting only the fraction of a
Video frame containing the speaker's face. In a human computer interaction application,

face tracking can be used to direct the compuler's attention t0 a user and increase the

P the comput y i ’s facial expressions, gesture, or
speech. In video conferencing, it is desirable to have a computer-controlled camera to
isolate the image of a special talker within a frame, adjusting for orientation and range as

well ing for any ion. A vi nd




requires face tracking to be achieved in various situations such as lighting change,
shadows, presence of moving elements in the background scene, and so on.

To address this need, a fast and reliable real-time face tracking system was
developed in the Multimedia Communication Laboratory (MCL) at Memorial University
of Newfoundland (MUN). Figure 1.1 presents the system setup. The computerized
camera system consists of a digital camera and a personal computer equipped with an

image grabbing and image-processing system.

Camera

=819

Parsonal
Computer

Figure 1.1 Sch di of MCL real-time face tracking syste

1.1 Problem Statement

This research aims to create a robust, adaptive real-time face tracking system that
is flexible enough to handle variations in lighting, global background movement, moving
objects in background scene, and any other arbitrary changes in the observed scene.

Regular human faces in normal standing/siting postures are of interest in this study.



Background subtraction is an effective and fast tool to locate foreground objects and
hence it is used as the major technique of the face tracking system. It functions by
subtracting a pre-selected background from the incoming image to recover the
foreground objects. The significant advantage of this method is its low computational
cost and therefore it can be casily implemented for real-time application. This method
works accurately for stationary background scenes. Problems arise when the background
becomes non-stationary due to changes in the background scene and similarites between

the foreground and the background present. The background changes can be categorized

as follows:

- Global background movements due to camera shifting, shaking, zoom in and out

- Local background changes due to local movement in n
- Lighting changes
- Shadows

These problems presented in the background scene make it very difficult to
accurately recover the desired foreground by using simple background subtraction and
may lead to a catastrophic falure of the whole system. In addition, the system is required.

o track multiple heads at various postures and layouts from a complex background scene.

1.2 Structure of Thesis
‘This thesis describes a real-time face tracking system that can switch back and
fonth automatically between two states depending on the background information. The

two states are head tracking and background formation. The first state applies when a



stable background estimate has been acquired. The second state applies at start-up or
when the background changes, when it works to progressively build a background
estimate by analyzing foreground movement. In chapter one, the entire system setup is
introduced, together with its basic working principles. Problems  associated with
applications of the system are also addressed. Chapter two is a review of previous work
in the relevant areas. Draping is identified as a useful tool for outlining the foreground
object. Based on the reviewed works, techniques for background maintenance are
proposed. Chapter three describes the principle of draping and its modification and
improvement o suit our use. Chapter four presents an innovative head searching and
merging technique developed in this study for head tracking, as well as gives some
typical experimental results. Chapter five describes the multi-state real-time system,
along with techniques for tackling the changing background. Additionally, typical
experimental results are presented and discussed. Chapter six concludes my thesis and

offers directions for further study.



Chapter Two

Literature Review

A system for object tracking must consist of a camera o capture images, a frame
grabber, a processor and a set of technigques to process the image, in order to scarch the
image for important features, and then use these features to determine the location of the
object. Techniques for people tracking have been studied extensively. Some of the
televant works from literature are reviewed, analyzed and discussed in this chapter. This
review begins with the introduction of some real-time people tracking systems, and is
followed by descriptions of face tracking based on background subtraction and various
methods for background maintenance and modeling to recover a complete foreground
object. Skin color filtering is also an effective tool for identifying human faces from a
color image. Skin color based face finding methods are reviewed in section 2.3. Three-
dimensional head tracking is a newly emerging research activity and has been growing
capidly in the last decade because of the exponential advance in computer power. In order

10 extract three-dimensional parameters, a model that can encode head orientation and



position is often required. Some three-dimensional face models for facilitating three-

dimensional face tracking are presented in section 2.4.

2.1 People Tracking Systems

A variety of people tracking systems have been developed in the past. Wren et al.
(1996) proposed a real-time system called Pfinder (person finder) for searching arbitrarily
complex scenes for single people using a fixed camera. Pfinder employs a multi-class
statstical model of color and shape to segment the people from the background scene. It
can find and track a human's head and hands under a wide range of viewing conditions.
Pfinder can be regarded as  descendant of the vision routines originally developed for
the ALIVE system (Darrel et al. 1994). It is also related to body-tracking research using
both kinematic models (Rehg and Kanade 1994; Rohr 1994; Gavila and Davis 1995) and
dynamic models (Pentland and Horowitz 1991; Metaxas and Terzopolous 193).
Functionally, Pfinder is most closely related to the work of Bichsel (1994) and Baumberg
and Hogg (1994) in which the person is segmented from the background in real time
using only a standard workstation. Pfinder makes several domain specific assumptions to
enable the vision task tractable. Its performance degrades when these assumptions do not
hold. Also, due to the assumptions on which it is built, Pfinder cannot tackle large,
sudden changes in the background, and it can only work for one user in the scene.

KidsRoom (Bobick et al. 1996; Intill et al. 1997) is a perceptually-based, multi-
person and fully-automated people tracking system. It is built on a “closed world”

assumption, which defines a region of space and time where the specific context of what



is in the region is assumed to be known. Its people tracking system uses an overhead
camera view of the space in order to minimize the possibility of one object occluding
another. Lighting is assumed to remain constant during the time when the tracker is
operating. Background subtraction is used to segment objects from the background, and
foreground pixels are clustered into two-dimensional blob regions. The system then maps
each person known to be in the room with a blob in the incoming image frame. It uses
colors, velocity estimation, and size information to disambiguate the match when the
blobs later separate. These regions can be tracked in real-time domains where object
motions are not smooth or rigid, and where multiple objects are interacting. The system
is. however, overly reliant on blob data, which may not always be reliable. The second
limitation of this system is that it has no mechanism for handling the slow variation of
image features while objects are merged in a large closed world. The third limitation is
that its matching algorithm can lead to some bad matches.

W* (Haritaoglu et al. 1998a) is a real-time system for tracking people and their
body pans in monochromatic images. It constructs dynamic models of people’s
movements to detect what they are doing, and where and when they act. It employs a
combination of shapes (shape, hands, feet, and torso) to create models of people’s
appearance 5o that they can be tracked through interactions such as occlusions (who is in
the scene?). The models are constructed by using a “cardboard” human model of a person
in a standard upright pose. This limits the application of this technique to tracking people
in an upright-standing posture. Horprasert et al. (1998) later extended their W* method to

allow operations cn color images by using a new background sublraction technique.



Multple cameras are used to observe a person in this method. Silhouette analysis and
template matching then achieve a real-time three-dimensional estimation of human
posture. The estimated body postures are reproduced in a three-dimensional graphical
character model by deforming the model according to the estimated data. Dynamics and
kinematics models of human body and linear Kalman fltering are utilized to help the
tracking process as well as 1o interpolate some joint locations. The real-time three-

dimensional computer st ides the user with control over

a virtual computer graphics character. The application of this technique is, however, still
limited to the upright-standing posture.

In an effort to incorporate other generic postures, Haritaoglu et al. (1998b)
developed a monocular system called Ghost, which functions under the control of W*. It
can estimate a variety of human body postures and detect body parts in real time. It
constructs a silhouette-based body model to determine the location of the six main body
parts (head, two hands, two feet and the torso) while  person is in a number of postures.
It combines hierarchical body pose estimation,  convex hull analysis of the silhouette,
and a partial mapping from the body pars to the silhouette segments using a distance
transform method that does not violate the topology of the human body. The algorithm
developed works not only in the upright-standing posture but also in other generic
postures. The hicrarchical posture representation includes main postures (standing,
sitting, crawling-beading, and laying-down) which are further sub-classified into one of

three view-based appearances (front-view, left-side, and right-side). Shadows appearing



in the silhouette might give rise to difficulty in locating body parts that are too close to
the ground.

Turk (1996, 1998) proposed a real-time head tracking system based on draping.
Draping simulates a row of point masses connected to each neighbor by a spring. Gravity
pulls the drape down over the thresholded foreground object while the foreground pixels
collectively hold the drape in place. The draping is applied on the people and background
segmentation map to produce a “head and shoulders” silhouette. Once the people outline
(“drape”) setles it can be used to locate people’s heads. All these procedures can be done:
i real time on a standard low-end PC. The resultant drape can be used in a coarse posture
and gesture recognition. The significance of this method is its tolerance to a reasonable
amount of noise and holes presented in the segmented images.

Olson (1997) developed a general purpose system for moving object detection
and event recognition in which the moving objects are detected using change detection
and are tracked based on first-order prediction and nearest neighbor matching. Events are
recognized by applying predicates to a graph formed by linking corresponding objects in

successive frames.

22 and

Perhaps the most often used face tracking method is background subtraction, in
which the foreground pixels are separated from the background pixels by a simple image
subuaction. All the systems discussed in section 2.1 are based on background subtraction.

Background subtraction is straightforward and conceptually simple. However, the



difficult part of this method is not the subtraction, but the maintenance of a background
model (Toyama et al. 1999). The success of this method depends heavily on the accuracy
of the modeled background. The background maintenance must be able to deal with the
problems associated with lighting change and both regional and global movements of the
background. A standard method of background maintenance s background averaging. [n
this method, the images are averaged over time to produce a background approximation
that is similar 1o the curent static scene except where motion occurs. While this is
effective in situations where objects move continuously and the background is visible for

a significant por

n of the time, it is not robust to scenes with many moving objects,
partcularly if they move slowly. It also cannot handle bimodal backgrounds; it recovers
slowly when the background is uncovered, and has a single predetermined threshold for
the entire image.

Wren et al. (1996) used a mean and covariance method to model the image
background as a texture surface. [n this method, the mean and covarianee pixel values are
continuously updated to adapt the changing background. Each point on the texture
surface is associated with a mean color value and a distribution about that mean. The
color distribution of each pixel is modeled with Gaussian distribution described by a full
covariance matrix. In each frame, visible pixels have their statistcs recursively updated
using a simple adaptive filter. This allows compensation for changes in lighting and
object movement. Stafford-Fraser (1996) proposed two methods for background
formation. One way of constructing an evolving background frame is to use the average

pixel values of a number of preceding images; the other is to capture a number of



“background” frames during the application. Stafford-Fraser calculated the mean and

standard deviation of the values at each pixel position. The mean is used to initialize the
frame and the standard deviations are combined with a global threshold value to give a
threshold that is specific to that pixel position. The eigenbackground method (Pentland
1994; Oliver et al. 199) collects images of motionless background and then uses
principle component analysis (PCA) to determine the mean and variances over the entire
sequence (whole images as vector). The incoming images are projected onto the PCA
subspace. Differences between the projection and the current image greater than a
threshold are considered as foreground.

Haritaoglu et al. (1998c) used a temporal derivative method to tackle changing
backgrounds. In the training stage, both the minimum and the maximum values of each
pixel are saved along with the maximum inter-frame change in intensity at each pixel.
Any pixel that deviates from its minimum or maximum by more than the maximum inter-
frame change is regarded as background. In addition, statstical tools are used to deal with
changing backgrounds. In the mixture of Gaussian method (Wren et al. 1996; Friedman

and Russell 1997; Grimson et al. 1998), a pixel-wise mixture of three Gaussians models
the background, with each Gaussian weighted according to the frequency with which it
explains (£20) the observed background. The most heavily weighted Gaussians that
explain over 50% of past data are considered as the background. The background

maintenance method proposed by Nakai (1995) is based on Bayesian decision theory.

1 value probability densities, represented as normalized histograms, are accumulated

over time, and the determined b imum of a-




‘The Wiener filter is a linear predictor based on a recent history of values. Any
pixel that deviates significantly from its predicted value is regarded as foreground. The
linear prediction method works well for periodically changing pixels. Its main advantage
is that it reduces the uncertainty in a pixel's value by accounting for how it varies with
time. To handle changing backgrounds, the prediction coefficients are recomputed for
every new frame. Based on this concept, Toyama et al. (1999) developed Wallflower, a
three-component system for background maintenance. In this technique, the pixel-level
component performs Wiener filtering to make probabilistic predictions of the expected
background; the region-level component fills in homogenous regions of foreground
objects: and the frame-level component detects sudden, global changes in the image and
swaps in better approximations of the background. The application of this method must
satisfy the following requirements: (i) semantic differentiation of objects should not be
handled: (i) background subtraction should segment objects of interest when they first
appear in a scene; (iii) an appropriate pixel-level stationary criterion should be defined;
(iv) the background model must adapt to both sudden and gradual changes in the
background; and (v) background models should take into account changes at differing
spatial scales.

Dynamic contours, or snakes, provide an effective method for tracking complex
moving objects for segmentation and recognition purposes. Snakes track object
boundaries by minimizing the sum of an external force from a local image measure, and
an intermal force from a shape dynamics model. The exteral force drives the dynamic

contour according to the current image appearance while the internal force increases the



spatial and temporal continuity of the tracked boundary. When the boundary to be tracked
is an occluding boundary, the dynamic contour confuses background texture for the
desired boundary. To compensate for this shoricoming, dynamic contours often rely on
detailed object shapes or motion models to distinguish between the boundary of the
tracked object and other boundaries in the background (Terzopolous and Szeliski 1992;
Cootes et al. 1993; Blake and Isad 1994). An altemative solution proposed by Covell and
Darrell (1999) uses simple contrast measures for the extemal energy term of dynamic
contour models without detailed object models. The image model developed by them,
called radial cumulative similarity (RCS), describes the local contrast patter but is
largely insensitive to the changes in background contrast. The use of RCS enables the
occluding boundaries to be tracked in a cluttered scene, with the simplest of intemal

energy terms.

2.3 Skin Color Based Face Tracking Method

A different approach for locating and tracking a face is by searching for skin
calor. Color is a feature of the human face. Skin color based face tracking has several
advantages. First, processing color is much faster than processing other facial features.
Second, under certain lighting conditions, skin color is orientation invariant. Yang and
‘Waibel (1996) developed a real-time face tracking system by incorporating three models.
A stochastic model is developed to characterize the skin color distributions of the human
face, which provides sufficient information for tracking a human face in various poses

and views. A motion model is used to estimate image motion and to predict a search



window. A camera model is used to predict and to compensate for camera motion. The

system can wack a person's face while the person moves freely in a room. Qian et al.
(1998) presented a statistical-based algorithm for estimating the position and size of a
face in a complex background. The estimations are derived from two one-dimensional
histograms in two orthogonal directions obtained by projecting the result of skin color
filtering. The projection histograms can be interpreted as the spatial distributions of the
skin pixels along the corresponding directions. The proposed method uses a linear
Kalman filter and a simple nonlinear filter to perform smooth tracking and to remove.
jiter. This algorithm is computationally simple and is robust against cracks or gags
within the face region.

Darrell et al. (1998) proposed a complete passive and non-invasive method for
real-time person tracking in crowded and/or unknown environments using an integration
of multiple visual modalities. This system combines stereo, color, and face detection
modules. Dense, real-time stereo processing is used to isolate objects from other objects
and people in the background. Skin-hue classification identifies and tracks likely body

pans within the si a user. Face iscrimi ind localizes the

face within the identified body parts. Faces and bodies of users are tracked over short-
term, medium-term and long-term, respectively. Short-term tracking is performed using
simple region position and size correspondences, while medium and long-term tracking
are based on the statistics of user appearance.

Another standard approach to finding faces in still images is based on some rigid

features common to all face pattemns, such as two dark eyes, bright nose ridge and the



spatial layout of facial organs (Qing and Robinson 1999). This technique can accurately
identify human heads from stationary backgrounds. However, this approach is usually

computationally expensive and hence it is difficult to use in real time.

2.4 Three-Dimensional Face Tracking

Extensive research has been conducted on locating and tracking human heads and
recognizing poses and facial expressions. Most often face detection is considered as a
two-dimensional problem where facial features, facial color, and the shapes of the face
are obtained from the image plane for locating the head (Pentland et al. 1994; Rowley et
al. 1998). To extract three-dimensional parameters, a model that can translate head
orientation and position is often required. Azarbayejani et al. (1993) used feature point
tracking projected on an ellipsoidal model to track the head position. A drawback of
feawre point tracking is that tracking fails when the feature points are lost due to
ocelusions or lighting variations. New feature points are required at the cost of excessive
error accumulation. Jebara and Pentland (1997) also used feature point tracking, but with
automatically located head features like eyes and mouth comers. The three-dimensional

position of the feature points

estimated using a structure from a motion technique that
pools position information over the image sequence with an extended Kalman filer. The
estimate of the feature point position is filtered using Eigenfaces (o restrict the
‘measurements to match an expected facial geometry.

Basu et al. (199%) coupled an ellipsoidal model with general optical flow

computation for tracking. The optical flow algorithm estimates the two-dimensional flow



field from Optical flow is face position
and orientation using a gradient-based method. In this method, the velocity is computed
from a filtered version of the image. Then the motion of an ellipsoidal mesh regularizes
the flow. The method's strengths are also its weakness. It copes well with large head
fotations since it does not rely on any fixed features. For the same reason, it has no means
10 ground the model (o the face; thus the error accumulates and the mesh slowly drifts off
the face.

Black and Yacoob (1995) proposed a rectangular planar patch under affine
transformation as a face model. In this model, similar patches are attached to the
eyebrows and the mouth. The movements of the underlying facial patch are followed to
detect differential movements of the facial parts. The limitation of using affine motion is
that it has no concept of self-occlusion taking place at the sides of the head and around
the nose. Affine transformations can also distort the frontal face image when they are
used to model large rotation.

Cascia et al. (1998) employed a textured cylinder as a head model. The technique
uses a dynamic texture for tracking. The lack of fixed features may lead to error
accumulation although confidence maps are used to minimize this problem. DeCarlo and
Metaxas (1996) used a polygonal head model that is hand-positioned on the subject's
face. This technique extracts opical flow at some feature points and regularizes it by the
model movements. The measurements are stabilized using a Kalman filter. The use of the

optical flow leads to a similar error accumulation as does the method used by Basu et al.



(1996). Both techniques used face edge information to prevent a possible divergence.
Face shape and facial expressions can also be extracted by both methods.

Schidl et al. (1998) developed a three-dimensional textured model of the human
head under perspective projection to track a person's face. The system s hand-initialized
by projecting an image of the face onto a polygonal head model. The head tracking is
achieved by finding six translation and rotation parameters to register the rendered
images of the textured model with the video images. These parameters are found by
mapping the derivative of the error with respect to the parameters to intensity gradients in
the image. An error minimum is found by using an estimator to pool the information and
perform gradient descent. The limitation in this method is the model's inflexibility and its
set of parameters fail to make it closely resemble reality.

In summary, this review of the previous work indicates that most of the systems
are sill vulnerable to sudden background changes due to illumination change and
local/global background movements. The purpose of this study is:

L. To develop a real-time system that can accurately identify human heads from
versatile background scenes.

2. To develop techniques that are able to automatically build, update and maintain the
background. The method must be reliable and effective in tackling both gradual and

sudden background changes, particularly due to lighting variations, local/global

background movements and shadows.

To develop an effective, robust and accurate head tracking technique, which s also

flexible and adaptive to various situations.



4. To test and verify the performance and robustness of the system under various

background scenes.



Chapter Three

Basic Scheme - Draping

In this chapter, simple background and object segmentation and draping
techniques are introduced. The noise in the image associated with light flickering,
shadows, etc. presents difficulties for accurate head tracking through background
subtraction. An innovative draping method was, therefore, developed to overcome these
difficulties and highlight the foreground outline. By proper adjustment of the drape

parameters, the influence of noise can be overcome to a great degree.

3.1 Background and Object Segmentation

Background subtraction sublracts the background from the incoming image and
hence extracts the difference between the two images. This method is effective for head
racking if the background is relatively stationary and the foreground object is sufficiently
different from the background. The particular feature of this technique is that it interprets

the image difference as the foreground object, which makes it very difficult to use in



practice. Noises induced by global and local background movements, illumination change
and light flickering, and holes resulting from the subtraction of similar colors in the
images will be inevitably misinterpreted as the foreground objects. Background
averaging can partially eliminate these influences. The averaged background is obtained
from a sequence of pre-captured background images. Figure 3.1a and b show two images
from the captured background image sequence. The author deliberately waved a book
shown in the middle of Figure 3.1b. The background image (Figure 3.1c) averaged from
nine similar images minimizes this movement significantly. The book is no longer visible

in the average image (Figure 3.1c).

Figure 3.1 Background sequence and averaged image

Background and object segmentation can effectively separate the difference in the
incoming image from the background. Figure 3.2 is the incoming image and Figure 3.2b
is the resultant background and object segmentation map. Figure 3.2b shows that the
moving foreground object is separated from the complex background along with some

noise resulting from the illumination change in the room. Simple background subtraction



exhibits high sensitivity to background variation and illumination change. A more
accurate and robust technique is, therefore, required to correctly identify the foreground
object from the object and background segmentation map. Draping is a useful technique
to construct a head and shoulder’s silhouette on the foreground object (Turk 1998) due to
its good acceptability of noise and holes in the image. The mathematical model of

draping is described in this context, along with detailed implementation procedures.

(@) (b)

Figure 3.2 Incoming image and segmentation map

3.2 Principle of draping

Noise and holes may result in the object and background segmentation map
because of changing background, varying illumination and similarities between images.
This gives rise to considerable difficulty in extracting the correct foreground objects from
the background by using a simple background subtraction because the noise and holes are
inevitably misinterpreted as foreground objects. The literature review in chapter three
indicates that the draping method can tolerate a reasonable amount of noise and holes

presented in the segmented map (Turk 1998). This innovative technique is, therefore,



modified and improved in this context 25 the major technique to extract the foreground
objects from the background. The development of this method is inspired by the
mechanism of a physical drape. It functions by forming a flexible one-dimensional sheet

(drape) with simulated point masses connected by springs as shown in Figure 3.3.
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Figure 3.3 The initial drape:

Every point mass is assumed to be subjected to a gravity force (W) induced by
each point mass (m) and elastic forces (f;) generated by springs provided that there is one
pixel displacement and supporting force () provided by each foreground pixel. The

mathematical representations of the spring force is as follows:
Fe=fe N @-n

where fi i the induced spring force by one pixel displacement and N is the number of
displacements measured in pixels due to the unaligned two neighboring point masses.
When the drape is lowered from the top of the image due to gravity, the foreground
object pixels collectively support the drape. In this case, these pixels undemeath act like a

solid supporting column. The pixels below the first contacting pixel collectively



contribute supporting force o that pixel. Only the continuously connected pixel chain
with the first pixel is, however, included as the solid mechanical column. Meanwhile. the
springs between the neighboring point masses are stretched and hence induce the spring
force, which is linearly proportional to the spring displacement. If the supporting force of
the object pixel exceeds the total effect of the downward gravitational and spring forces,
the drape will rest on that pixel (Figure 3.4). The corresponding pixel trapped by the
drape is regarded as the foreground object. Otherwise, the pixel fails to hold the drape at
that location and the corresponding pixel is regarded as the noise. The drape will pass that
pixel and drop along that column to the next closest foreground pixel. The process
continues until the entire drape is eventually held stationary by the group effort of the
foreground object. In this manner, the drape provides a clear outline of the moving

foreground objects.

Figure 3.4 The deformed drape

2.3 Algorithm for draping
“The original draping method proposed by Turk (1998) applies the draping on a

thresholded background and foreground segmentation image. In this study, the draping is



extended and improved for use directly on background and segmentation images and on
the variance of the incoming images. In order for the draping method to function as
expected, the drape must be able to discriminate between noise and the desired

foreground object. This is achieved by carefully selecting the values of point mass, spring

constant and supporting force contributed by each pixel. A trial-and-error process is
employed in this study to determine the optimal combination of these values. Once the
proper parameters are determined, the mathematical model can be implemented through

the following steps:

Suppose that there exist point masses (m) at the t0p of each column of pixels in the
difference image, each connected to its neighbars by a spring with a spring constant

(k) as shown in Figure 3.4.

For each point mass, calculate the vertical force exerted by its neighbors (it will be
none if they are aligned) and the collective “force” exerted by the segmented binary
foreground object (none if there is no foreground at that pixel, a constant value if

there s foreground there).

I this vertical force is upwards above a small threshold (1.0) than the point mass,
then the point mass does not move down to the next row in the next iteration (jump to

step 5). Otherwise, the point mass moves down to the next row for the next iteration.

-

‘Once this calculation is performed for the entire row of point masses, update their

positions (most of them will move down one row, as decided in step 3).

Go back to step 2 and repeat for the updated positions of the point masses.



6. Stop iterating when the point masses have all (or mostly) stopped moving, or when
they hit the bottom of the image.

‘The point mass, the spring constant, the upward force of the foreground and the
threshold value are determined experimentally to achieve a best draping result. Figure 3.5
shows a typical example obtained from the above operation. Figure 3.5 is the resultant
draping resting on a person and Figure 3.5b shows the person outlined by the

corresponding drape.

(@) (b)

Figure 3.5 Draping and the head and shoulder silhouette

3.4 Implementation of Draping

‘The implementation of draping can be best illustrated by referring to a typical
example in which a user is sitting in front of the camera with some background and
illumination changes. Figure 3.6 presents different stages of the consequent draping
operation. The drape initially drops from the top of the image segmentation map due to

the gravity (Figure 3.6a). At first, it forms a straight horizontal line as shown because it



has not made contact with the foreground object at this position. The noise presented in
the image is only composed of a small cluster of floating pixels with little or no solid
support from underneath. The drape eventually overcomes that noise because the noise is
unable to develop sufficient supporting force to sustain the total effect of gravitational
and spring forces. When the point masses of the drape hit the solid foreground object, the
drape rests on the object because the collective supporting force developed at this stage
exceeds the total effect of the gravity and elastic forces by the given threshold (Figure
3.6b). After several iterations, the drape eventually rests on the foreground object,
providing a clear outline of the user (Figure 3.6c). This technique exhibits great tolerance
of noise and holes presented in the image segmentation map because they cannot

‘generate sufficient collective forces to support the drape.

(a) ®) ©

Figure 3.6 Mechanism of draping

Experiments were conducted in order to determine the parameter values for
achieving a good drape. Dimensional analysis was employed to analyze the problem.

This analysis is based on the principle of Fourier's dimensional homogeneity theory. The



analysis results in a dimensionless functional equation. This use of this equation can
tremendously simplify the problem and provide guidelines for the design of experiments
and the presentation of results. The Buckingham method (Buckingham 1914) is used to
analyze the problem. The initial step is to establish the original functional equation. The
supporting force provided by unit pixel (fs) can be related with the weight of unit point

mass (W) and unit spring force (f) as follows:

fi=8W.fo) @2)

Equation (3-2) h i f ixel]. Th i functional

equation can be obtained by combining the terms in equation (3-2) to get the final

dimensionless functional equation as follows:

LoV
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Dimensional aalyss indicats hat 7= and - are the two independent
e e
parameters. parameter values for ing, draping is attempted on

a series of combinations of the two parameters and the results are ploted in Figure 3.7.
“The analysis conclude that as long as the parameters fal within this narrow band shown

a5 a blue circle in Figure 3.7, a good drape will result



The draping method is computationally simple and hence speedup can be
achieved in tracking the head. This makes this system suitable for using in real time. For
a 160x120 pixels image. it takes 0.05 seconds to process the draping. Comparing the
frame rate of 3 frames per second. this processing speed allows the head to be tracked

promptly in real time.

x8aaorpe N x
| oGuaDame X x x
X x x éaégggg
x k% B8gixx
o Y § 5: é S gaxenx
X o 8% o«
H § %8 «x
oo g X xx x xx x
oo
B o -
i

Figure 3.7 Selection of draping parameters



Chapter Four

From Drape to Description

‘The literature review reveals that the most commonly used techniques for head
locating are color-based (Yang and Waibel 1996; Qian et al. 1998) and template-based
fuce trackings (Pentland and Horowitz 1991; Wren et al. 1996; Haritaoglu et al. 1998a,
19980, 1998c; Horprasert et al. 1998). The color-based technique uses color filtering to
identify face skin, which is susceptible to variation in lighting conditions, skin color,
background image, etc. The template-based method involves the creation of human
models, which may not always match the postures and gestures of the people in practice.
The significant advantages of the draping method over the above methods are its

computation simplicity and good noise acceptability. The incorporation of this method is

Just the first robu

Once the person’s outline (drape) is settled, it can be used o locate the person’s
head. At the initial stage of the study, a simple head tracking method based on
background subtraction and head ratio was developed. However, this method has

difficulty in extracting heads from an incompletely recovered foreground. An innovative



and simple head tracking technique consisting of a drape interpolation followed by a head
merging was developed eventually 1o achieve an accurate head locating. Experiments
were conducted on a variety of typical images. The results indicate that the new
technique i effective, efficient and robust. In this chapter, both techniques are described

along with several typical results.

4.1 Initial method for locating a person’s head

At the initial stage of the study, a simple method for locating the head was
developed based on the head geometry and the first- and second-order derivaives of the
drape. The head tracking was achieved by generating a rectangular box circumscribing

the tracked head. The procedure of this method is as follows:

‘The highest point in the drape is firstidentified to determine the top border.

Starting from this point, both the frst- and second-order derivatives of each point
along the two sides are calculated. The first point on each side whose second-order
derivative changes the sign and first-order erivative is greater than a given threshold

(4)is used to determine the left and right borders.

The head bottom border is estimated based on the averaged human head ratio. A
rectangular box can, therefore, be generated based on this ratio.

A typical result arrived at from this method is shown in Figure 4.1. Figure 4.la is
the image segmentation map showing the resulting drape and the identified four border
points (indicated as solid rectangles). Figure 4.2b shows the corresponding rectangular

box determined by these four points in the original incoming image.
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gure 4.1 Captured person’s head from the drape using the initial method

‘This process is efficient in computation and simple in concept. These advantages,
on the other hand, also limit its efficiency and accuracy in broader applications. For a
particular Circumstance (Figure 4.2), this method fails to track the head from the image
segmentation map. Part of the drape penetrates the head, resulting in a notch on the top of
the head. This can be explained by analyzing the mechanism of this method in detail. The
background used by this method is the average of a sequence of pre-captured frames
(Figure 4.2a). The foreground detection s carried out by simply subtracting the resultant
background from the incoming image. Apparently, this operation will inevitably erase
those parts of the foreground having similar colors to the corresponding background. As
in Figure 4.2b, the painting on the wall has a similar color to the person’s hair. Therefore,
the part of the head overlapping with the painting has been erased by the subtraction as
shown in Figure 4.2c. Figure 4.2d shows the resultant drape with a notch on the top of the
head. A rectangular box cannot be located in this case because the drape profile does not

match the head profile assumed in the scheme. In addition, this technique has difficulty in



identifying multiple heads from the drape. Further improvement of this system is,
therefore, carried out to tackle these types of problems by using a drape interpolation and

compounding method.
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Figure 4.2 Image subtraction showing incompletely recovered head

4.2 Drape interpolation and compounding method

‘The initial derivative-based head tracking method and its limitations have been
discussed in section 4.1. Techniques for identifying an incomplete head and multiple
heads from a complex drape with more complicated background must be developed in

order to improve s robustness and portability.



The undisturbed one-dimensional drape is a horizontal straight line with uniform
intervals between the neighboring point masses. When the drape is settled on the
foreground objects, these intervals are stretched unevenly according to the particular
profile of the human head (Figure 4.3a). As can be observed, the drape is stretched
significantly along the two sides of the head, along the two shoulders, and inside the
notches of any incompletely recovered foreground objects. The resulting discontinuity in
the drape makes it difficult to conduct an accurate image process. The drape line must,
therefore, be connected and smoothed. This is achieved by using linear interpolation. The

resulting drape makes the stretched parts smoothly connected (Figure 4.3b).
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Figure 4.3 Original drape and

After the drape has been smoothed by linear interpolation, the following head

carching scheme h person’s head:



Scan the entire image from top to bottom (Y direction). At each row, the direction of
the scanning is from left to right (X direction). This operation starts from the top-left
‘comer of the image.

When any point, which does not belong to any existing head objects, from the
smoothed drape is found, create  head object composed of the point itself and all its
neighboring continuously connected points if any. For this head object, define the
leftmost point as HeadLeft and the rightmost point as HeadRight for the current row.
The newly created head object is regarded as a potential head. The criterion for

classifying if the current points belong to any existing head is as follows:

If the leftmost point of the considered points is zero or one pixel to the right of the
HeadRight of the head created in the previous row, they are regarded as part of the
head in the previous row. The current rightmost point is defined as the HeadRight of
the current row. If the rightmost point of the considered points is zero or one pixel to
the left of the HeadLeft of the head created in the previous row, they are regarded as
the part of the head in the previous row. The current leftmost point is defined as the
HeudLeft of the current row. Otherwise, create a new head object in the current row.

The be this process:

total = 0;

flag = 0;
for (headNum = 0; headNum < total; headNume+)

if (neads [headNum] .start[y-1] == end_p
|| heads(headNum] .start(y-1] == end_pomuu

heads (headNum] . start(y] = start_point;
flag = 1;



}

start_point

if( heads[headNum] .end[y-1]
I start_point-1)

heads [headNun] . end [y-1]

(
heads [headNun] .end[y] = end_point;
flag - 1;

}

)

if(flag == 0){

current_head = heads.NewHead () ;
current_head->start[y] = start_point;
current_head->end[y] = end_point;
total++:

3. Repeat step 2 until the entire image has been scanned.

Figure 4.4 Head identification

This head searching technique can capture almost any wrinkles, notches and
sudden variations that occurred in the drape. A number of potential heads can often be

created as a list named HeadList through this exhausting head searching scheme. For the



image shown in Figure 4.3, four potential heads can be identified. They are labeled as A
(red), B (green), C (blue) and D (pink) in Figure 4.4 to indicate intermediate head regions
surtounded by rectangular boxes.

Most of the identified potential heads are, of course, not true heads, but may be
only part of a true head. They need to be merged to form the true head. An innovative
technique was developed to carry out the head merging. The merging process consists of

two stages, with each stage tackling different situations.

Stage I: The first stage is designed (o tackle potential heads with only a few points. It can
also be regarded as the preparation operation for the second stage. We define a threshold
(50 pixels) for head size. Any identified head that is less than this threshold is assumed as
a false head. Therefore, if the dimension of a potential head is less than this threshold, it
will be merged into its neighboring head. This in-process decision rules out the tiny false:
heads due to the wrinkles in the drape and heads that are t00 far away from the camera
“The head size threshold can be adjusted according to image size. The newly merged head
needs to update its HeadLeft and HeadRight for éach row with the leftmost and rightmost
points of the meryed pixels at that row. Once the operations at this stage have been
completed, the small potential heads such as wrinkles and notches have been merged to
form large potential heads. By using the first stage merging, head B in Figure 4.4 is

merged with its left neighbor, head A, to generate head AB shown in Figure 4.5 because

its size is not sufficiently the head.



Figure 4.5 Stage I merging showing head B to be merged with head A

Stage II: The large heads resulting from stage I are considered at this step. Judgements
on whether they need to be further merged are first carried out. The judgement is based
on both the slope and the dimension of the head. The head slope is defined as the slope of
the straight line connecting the starting and ending pixels of the potential head. Once the
slopes are calculated for all potential heads, a merging operation will be followed. This
process is carried out over the entire drape from lefl to right. A head with a negative slope
will merge with its neighboring head with a positive slope if the dimension of cither of
the heads is less than a threshold (600 pixels). This merging generates a new potential
head object in Headlist. This process will continue until no further merging is possible.
‘Through stage 11 merging, head AB in Figure 4.5 merges with head C as a new potential
head ABC. Head ABC then further merges with D to generate head ABCD. The two new
heads are created as new head objects in HeadList. The resultant heads ABC and ABCD

are shown in Figure 4.6, together with the previous heads.



Figure 4.6 Stage 11 merging showing the newly merged heads

“The above head searching and merging operations can ofien generate a number of

potential heads. A method is needed to identify and extract the true heads from these

potential heads. This can be achieved by the following head identification method.

. Calculate the width of each row for each potential head by subtracting its HeadLeft

from its HeadRight if both exist. The HeadList is updated with the resultant
HeadWidth. Figure 4.7 shows the updated potential heads from Figure 4.6
Comparing with Figure 4.6, the arcas occupied by heads AB, C, D and ABC arc
reduced significantly because the valid HeadWidth can only be found in these parts of
the image.

“The resulting width against row number function is then smoothed by five-point mean
filtering and is plotted with the abscissa as the row number and the ordinate as the

row width. Typical plots of this function are shown in upper part of Figure 4.8



3. Compute the second-order derivatives of the resultant curves. The bottom part of
Figure 4.8 shows the resultant second-order derivatives. Any two neighboring

negative and positive peaks are considered as a pair.

Figure 4.7 The updated potential heads

4. Marching from the left end of the HeadWidth curves, when a second-order derivative
pair is found, define the value of width, where the positive peak is achieved, as

Width_of Head, and the distance from the top of the current head to where the

positive peak is achieved as Height of Head.

Calculate the ratio of Height of Head to Width_of Head. If the ratio is within a
given threshold (1.5), and both the Width_of Head and the Height_of Head are
greater than one given threshold (12 pixels), stop this search and generate a
rectangular box based on the current Height_of Head and Width_of Head.
Otherwise, search the next pair and repeat step 4 until the right end of the curve has

been reached.
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Figure 4.8 HeadWidth functions and their second-order derivatives

6. Several such rectangular boxes may be located and some of them may overlap one
another. An averaged rectangular box obtained from these overlapped boxes is
eventwally regarded as the head's location. Figure 4.9 shows the final head location

box processed from Figure 4.8 by using this method.

‘The unique feature of the above technique s o leave the major decision for the true
eads to the last step of the enire process. This can avoid losing any useful information.
The head size by which we make final decision can be adjusted according to the size of
the image used.

‘The method shows a significant improvement over the initial head tracking on
both accuracy and robustness. As discussed previously in section 4.1, the nitial method



failed to track the head from Figure 4.2a due to the notch which appeared on the top of
the head. Using the improved method, the head has been successfully captured, as shown
in Figure 4.10b. Figure 4.10a shows the interpolated drape. Figure 4.10c and d show the
HeadWidth-row number curves, along with the corresponding second-order derivatives.
Five potential heads can be found, each having its corresponding HeadWidth-row number

curves. Only the curves for the two significant heads are shown in these figures.

&

Figure 4.9 Captured head through the improved method

This technique can also effectively track multiple heads from a complex
background. For the case of two people in the scene, the interpolated drape is generated
(Figure 4.11a). Initially, several potential heads are identified from the interpolated drape.
‘The HeadWidth-row curves were produced for all the large heads (Figure 4.11c, d, e and
). Only two heads are identified (Figure 4.11b), with the corresponding rectangular

boxes accurately capturing the two heads.
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Figure 4.10 Tracking an incomplete head using the improved method
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Figure 4.1 Tracking two heads using the improved method



4.3 Experiments and Results
Experiments have been conducted on a variety of cases to fest the effectiveness

and accuracy of the improved method. Figure 4.12 illustrates the application of this

‘method on various cases of single head tracking. The resultant drape, head width and the

tracked head in the incoming

age are shown for each case. The small peak in the left of
image 4.12a was successfully identified s a false head. The local light flickering gives

ise {0 a large plateau in the drape shown in Figure 4.12b. Although its magnitude is

significant, the technique can identify it as a false head because its particular shape and
parameters do not match those of a true head. The chair in Figure 4.12¢ was captured as
the foreground object because the user deliberately moved it. The part of drape caused by

the chair was successfully ruled out. This method can also successfully identify the true

head even though there are substantial small peaks, notches and wrinkles presented in the

drape (Figure 4.124).
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Figure 4.12 Experiments of tracking a single head using the improved method



Figure 4.13 presents the application of this method for tracking two heads. Also,
the resultant drape, head width and tracked heads are shown for cach case. Figure 4.13a
shows two users, one closer to the camera than the other with head aslant. The front user
blocks part of the shoulder of the other. The chair was also moved. The head of the user
behind overlaps with a black painting on the wall. The technique suceessfully identifies
two true heads from the resultant irregular drape. The two users switched their position
and part of the shoulder of the behind user is not captured in Figure 4.13b as expected. In
figure 4.13c, the heads of the two users differ significantly because one user moved
farther away from the camera. In addition the front user blocked the behind user’s
shoulder. In figure 4.13d, one user moved out of the screen with the behind user’s
shoulder left. In all the above circumstances, the improved method has identified the true

heads accurately and precisely.
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Figure 4.13 Experiments of tracking two heads using the improved method



However, in very few occasions (one out of a few hundred images), this system
may lose its aceuracy due to the uncertainty associated with the identification of the
second-order derivative peak pairs. This misjudgment of the pairs may result in a head
box either oversized or undersized from the true head. For the resultant drape shown in
Figure 4.14a, the HeadWidih-row number curve has some small local fluctuations
(peaks), which gives rise to uncertainty in determining the correct peak pairs. The
misjudged peak pairs result in two oversized head boxes (Figure 4.14c). However, this
problem can be overcome by increasing the iterations at the sacrifice of more
computation time. Figure 4.14d shows the result at 40 iterations. In this case, the heads

can be located accurately.

@ (b)

Figure 4.14 Bad case |



This system can also lose its accuracy when the users in the scene are overlapped
as shown in Figure 4.15a. In this case, only one true head is interpreted from the resulting
drape (see Figure 4.15b). This is the common limitation of the background subtraction
method itself. Two heads may be extracted if we incorporate face feature method into this
system. However, this method is computational expensive and will slow down the
performance of this system. This type of situation is, therefore, not tackled by this

system.

(a) ()

Figure 4.15 Bad case 2



Chapter Five

Dealing with Changes in Background

After the success of the first stage improvement, the focus of the study was then
steered to tackling the problems associated with a change of background. The
background image can change suddenly for a variety of reasons. Global movement of the
background may be due to accidental camera movement, camera zoom in and out, etc. It
is therefore inappropriate to use a pre-selected background to recover the foreground
object through background subtraction. The background o be subtracted must be re-

initialized automatically. To address the problem of background change that happens

infrequently we can movement to y

background regions. That is, rather than trying to estimate the amount of background
shift (which may be impossible) we begin by assuming that the entire new background is
unknown, and wait for foreground movement. Note that this method works only for rare,
instantaneous background change, not for continuous camera movement, but such
infrequent changes are exactly those that pose a problem for a background-subtraction

tracking system. A multiple-state system of progressively generating background from



the inter-frame variance of incoming images has been developed. The system functions
once changes in the background scene are detected. The draping is used on the resultant
inter-frame variance map to extract the movement of a person’s head and the part of the
image outside the seuled drape is assimilated to  background map. The background
rebuilding process continues until the unassigned “Don’t know” area is below a threshold
(300 pixels). This system also incorporates median filtering, multiple draping and
polynomial interpolation in an effort to tackle the problems associated with a bad drape.
In this chapter, the problem of assimilating a new background is addressed,

together with the descriptions of the multiple-state system and the mech: median

filtering, multiple draping and polynomial interpolation. These three methods aim to
improve the inter-frame variance map such that the draping can outline the desired
foreground objects. The draping used in this chapter differs from that used in chapter four
with the values of parameters. Therefore, these three methods can achieve good results
when they are used in the inter-frame variance map but not in the foreground and

background segmentation image.

5.1 Multiple State System

The problem of changing background handling was addressed by using a
multiple-state background formation system. In the first state, the background is known,
and face tracking happens by the simple background subtraction discussed in chapters
three and four. Meanwhile, the incoming background is compared with the stored

version, and if they differ significantly, the system assumes that the background has



changed (perhaps because the camera has moved, o the lighting has changed). Such a
change forces the system into the next state, where it atempts to build a new background.
‘The steps in this background-building process are as follows:

L. The system captures several incoming images — usually four or five frames. These
frames possess sufficient information if the forcground object (assumed to be a
person) is in motion. This requirement for “sufficient information” is verified by
‘measuring the global variance between frames. If this is high enough. then local
variances are calculated at each pixel and thresholded to produce a “variance map”.

‘The purpose of thresholding in this case is to rule out noise due to lighting changes to

extract the person’s movement. If the global variance is not high enough, then a

further set of frames are captured and the process is repeated.

Draping is applied to the inter-frame variance map. Because the person moves, there
will be a high-variance border surrounding the person. This can be found by draping,
just as previously described in chapter three, so the difference between the foreground
and the background is found. The parameters of draping are adjusted so that the drape
can be held in place by the variance. The draping method is now extended and

improved to apply on the variance of the incoming images to identify moving areas

and thy objects from o

1f a good drape results, every point outside the drape can be assumed to belong to the
background. These points are loaded into the background image setup area. The

points below the drape are assigned “Don’t know" values in the background image.



4. If the total area of “Don't know"” points in the background image is smaller than the
given threshold, the system switches back to its simple background-subtraction
operating mode. If not, then background building continues: variance is re-calculated,
a new variance map is generated, the drape is applied, and points outside are added to
the background image. In this manner, as the foreground object moves, “Don’t know”
points in the background image are progressively replaced with new pixels of
uncovered background.

Figure 5.1 illustrates the different stages of the background formation procedure
described above. The inter-frame variance map is generated from several images and the
variance is calculated as shown in Figure S.1a. If the global variance is greater than a
given threshold (30), draping is applied on this variance map (Figure S.1b). The person's
head can be located in the box through this process as shown in Figure 5.1c. In the
meantime, this drape is used to identify the background areas. The part outside the drape
is loaded as the background setup (Figure 5.1d).

After several iterations, the white (“Don't know") area becomes smaller and
smaller until it is less than the given threshold. Potentially the white area can be
completely eliminated if the iteration is sufficiently long. However, the threshold is taken
as the stopping condition in order to be able to carry out this operation fast enough to be
used in real time. Experiments demonstrate that the influence of this residual area on the
final result can be negligible. At this stage, the background setup is regarded as finalized

(Figure 5.1¢). The person’s head can then be extracted effectively by subtracting the

ultant background he i i gure 5.10).
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Figure 5.1 Multiple state face tracking system

5.2 System Improvement

‘The background-building scheme described in section 5.1 works satisfactorily if
the borders of high variance around moving objects are well defined. Often, however,
because of small movement, and similar shading between foreground and background,
the borders are broken. This makes it difficult to recover the complete foreground object
by simply applying the technique described in section 5.1. Part of the foreground object is
inevitably misinterpreted as the background and is introduced to the background map.
Several techniques have been investigated and attempted for correcting this problem.
Among them, median filtering, multiple direction draping and polynomial interpolation
yield satisfactory improveménts. The difference among the three methods lies in their

strategies for approximating the foreground outline from the drape.



5.2.1 Median filtering

The median filter sorts the values of all points that are neighbors of the highest
point of each column in the inter-frame variance map. The median value of the list is
selected as the new value of this point. Seven points are used as the neighbors of this
point. This strategy can remove peaks of both high and low values without flattening
value steps, which separate variance value regions. The variance matrix is updated with
these new values. This process often needs to be iterated several times. Draping is finally
applied on the newly generated inter-frame variance map. This method can improve the.
system o a certain degree although it cannot completely solve the problem. Figure 5.1a
shows the inter-frame variance map. Figure 5.1b is the original drape settling on the inter-
frame variance map. The drape penetrates part of the head. A notch appears on the left of
the head because part of the head has a similar color with the background and this means
the head movement is not captured by the inter-frame variance map. By using the median
filtering method, 2 new value of the highest point of each column is added to the inter-

frame variance map. The resultis improved as shown in Figure 5.2c.
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Figure 5.2 Result of median filtering



5.2.2 Multiple direction draping

Multiple direction draping allows draping from top, left and right three directions
of the inter-frame variance map respectively to yield a normal upper drape, a left drape
and a right drape. The background map is generated from these three drapes. The part of
the incoming image that is outside the outmost area of the three drapes is loaded as the
background image. The residual area in the background is assigned as “Don’t know”
value. Figure 5.3 illustrates the mechanism of the multiple direction draping method. The
drape is shown as the dashed line in the images. Figure 5.3a and Figure 5.3c show the
draping operation from left and right respectively. Figure 5.3b is the combined draping
from all three directions in the inter-frame variance map. Notice that the person’s head
cannot be fully recovered due to the notches on the top of the head if we only apply
normal (up-down direction) draping. Consequently an aceurate background map cannot
be constructed because this part of the head is introduced to the background. The multiple

direction draping overcomes this satisfactorily as shown in Figure 5.3b.
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Figure 5.3 (a) Left draping (b) Combined draping (c) Right draping



5.2.3 Polynomial interpolation

‘This method starts by finding the highest point in each column of the inter-frame
variance map. If the difference between any point with its neighbor in the highest point
array is greater than a given threshold (10 pixels), it is regarded as an isolated point and is
discarded. The remaining points form a new array. Applying polynomial interpolation on
this new array results in a smooth curve. The inflection points are located and connected
by straight lines. These straight lines are put back into the inter-frame variance map.
Draping is applied on the new inter-frame variance map. We can modify the background
image from the resulting drape. The portions of the incoming image whose positions are
above the drape are regarded as the background image. The portions of the incoming
image whose positions are under the drape are assigned as “Don’t know" regions. The
background image modification continues until the “Don't know" region is smaller than
the given threshold. The object segmentation map can, therefore, be generated from the
background image and the current incoming image. The head can then be located by
applying another draping on this segmentation map.

Figure 5.4 shows the mechanism of the polynomial interpolation technique.
Figure 5.4a is the original drape on the inter-frame variance map. The drape cannot cover
the entire head. The dashed drape occupies part of the head area as shown in Figures
5.4a. Figures 5.4b and 5.4c show the results after the polynomial interpolation. In Figure
5.4b, we locate the high inflection points of the curve constructed from the highest points
of each column in the inter-frame variance map. Interpolating the inflection points

bridges the gaps of the head. The draping is then applied on Figure 5.4b to rule out the



unexpected interpolation points. Figure 5.c is the improved drape. Meanwhile the
background is generated accordingly.

The problem of background change is very difficult to solve because the
situations resulting from the change are diverse and complex. The approaches developed
50 far in this context yield satisfactory results, enabling this human face tracking system
t0 tackle problems with a substantial amount of illumination change and global

movement.

(a) (b) (c)

Figure 5.4 (a) Original draping (b) Polynomial interpolation (c) Improved draping

5.3 Interface Description

This real-time face tracking system was implemented using C++ and MCLGallery
(Cheng and Robinson 1998) in a Pentium If 200MHz personal computer. A graphic user
interface was developed to facilitate the visualization and control of the entire face
tracking process. This interface consists of six image windows and five control buttons.
The six image windows are MCLBitmap (displaying the captured head), MCLVideo

(displaying the incoming image from camera), Background formation image, Left drape,



Combined drape and Right drape. The five control buttons are Capture Background,
Start People Detection, Load Background, Load File and Show Average, which are all
self-descriptive. Figure 5.5 shows this interface processing an example image. The
background formation in this case is achieved by using multiple draping method. By
pressing Start People Detection button, we can switch among polynomial interpolation,
median filtering and multiple draping background formation methods. The dynamic
states of the incoming image, modeling background, original draping, improved draping,
foreground/background segmentation map and the tracked head are displayed in the

corresponding windows.
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Figure 5.5 Graphic user interface showing example images



5.4 Experiments and Results

A series of experiments have been carried out (o test the effectiveness and
accuracy of the improved system. The three background formation methods are tested
and compared against a common inter-frame variance map as shown in Figure 5.6a
There is a notch appearing on the top of the head because of a small movement, and
similar shading between the foreground and background. The original drape penctrates
into this notch as shown in Figure 5.6b. This part of object will be misinterpreted as
background if the background is formed from the original drape. Median filtering using
three iterations can partialy recover this part of the object as foreground (Figure .6c).
Better improvement can be achieved by more iterations at the sacrifice of the
computation time. The result of multiple draping is shown in Figure 5.6e, together with
its left drape (Figure 5.6d) and right drape (Figure 5.6f). The combined drape, which is
the outmost part of the three drapes, can nearly recover the entire notch as the foreground.
(see Figures 5.6, ¢ and ). The smoothed drape by using polynomial interpolation is
shown in Figure 5.6g, which also indicates a significant improvement. For the three
‘methods used, median filtering can recover most of the notch back as the foreground.

Both multiple draping and polynomial interpolation result in a significant improvement,

and using almost i be d.

‘The improved system can track the human head accurately and quickly in real
time. The background formation is switched on whenever the difference between the
consequent frames is sufficiently great. Figures 5.7, 5.8 and 5.9 are an image sequence
showing the system performance at frames 5, 50 and 100, The inter-frame variance map



shown in Figure 5.7a is obtained from the first five consequent images. Figure 5.7b
shows the effect of multiple draping applied on this inter-frame variance map. The
resultant multiple drapes are shown in Figure 5.7b. The recovered “Don’t know” region
is shown as the white patch in Figure 5.7c, which occupies a significant portion of the
image. Meanwhile, the incoming image (frame S) subtracts the current background to
yield a segmented image and then the draping is applied on it (Figure 5.7d). The head is
identified as shown in Figure 5.7d. Since the “Don’t know” area is very large at this
stage, the background formation needs to be continued. The background formation s
estimated from every five consequent frames, while the background subtraction and head
tracking is performed at frame rate. Figure 5.8 shows the system performance at frame
50. Figure 5.8 is the inter-frame variance map resulting from frame 96 to frame 100, The
multiple draping and the resultant “Don’t know" area are shown in Figure 5.8b and ¢
respectively. At this stage, the “Don’t know” area shown in Figure 5.8c is reduced
significantly after several times of background formation. The updated background is
subtracted from the incoming image, followed by a draping (Figure 5.84). The head
border locates the head more accurately than it does at frame § because the updated
background is much closer to the true background. This process repeats for frame 100
shown in Figure 5.9. The generated background shown in Figure 5.9c is very close to the
true background with only a small patch of “Don’t know area. The system detects this to
be less than the given threshold and regards it as the true background. It will switch on its

background formation mode if it detects that the difference between the consequence



images is greater than the given threshold. Figure 5.9d shows the accurately tracked

human head.
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Figure 5.6 Comparison of three methods
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Figure 5.7 System performance at frame 5
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Figure 5.8 System performance at frame 50
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Figure 5.9 System performance at frame 100



Chapter Six

Conclusions and Future Work

A real-time face tracking system has been described in the preceding chapters.
‘This chapter concludes the author’s thesis work and points out the possible directions of

further work.

6.1 Conclusions

A real-time face tracking system has been developed to track upright people’s
heads from various complex background scenes. The system setup consists of a digital
camera, a personal computer and supporting face-tracking tools. A graphical user
interface was also designed that allows the user to interact convenienty with the system.
Combining with background subtraction, a draping technique was identified as the basic
head tracking method. The draping method has been modified and extended throughout
the study aiming at constructing head and shoulder silhouettes of the foreground objects.

“This enables accurate recovery of the desired foreground objects from the segmentation



map without including noise from the background scene. Once the drae is seted, an
innovative head identification method consisting of a drape interpolation followed by a
head merging was investigated to achieve an accurate head extraction. A significant
amount of effort was focused on background formation because the accuracy of the
system depends substantially on the background maintenance. A multiple state system
was proposed to tackle the changes happening in the background scene. This system can
switch automatically between background formation and face tracking depending on the
detected background information. The dynamic background formation process continues
until the “Don’t know” area in the generated background is below the threshold and
tesumes whenever the difference between the incoming background and the generated
background become  significant. Median filtering, multiple draping and polynomial
interpolation were also incorporated into the system to deal with problems associated
with a bad drape. This system is implemented in a Pentium I 200 MHz personal
computer. In the current setting, this system can process three frames (160x120 pixels
image) per second. A variety of experiments have been carried out in the course of the

study (o test and verify the system's accuracy and robustness, which are also presented

throughout the thesis. In summary, the major contributions of the thesis are:

. Designing and developing a real-time face tracking system.

Modifying and extending the draping method so that it can be used on both an inter-
frame variance map and the original segmentation map. The improved draping

method is proved to be more flexible and robust than its predecessor.



3. Developing an innovative face tracking method consisting of an exhausting head
search scheme followed by head merging. This method significantly improves the
accuracy of face location and identification of the system.

4. Developing a multi-state fully automatic background formation technique 1o tackle
both gradual and sudden background changes. This technique greatly improves the
system's stbility, efficiency and reliability of the background maintenance under
diverse and complex situations, and hence allows accurate recovery of the corect
foreground objects.

5. Conducting a significant number of experiments under various situations to test and
verify the system performance. Experiments indicate that the real-time face tracking
system can function well despite the variation in lighting, both local and global

\d shadows in the background

6.2 Future Work

Although the performs a variety of
it may be further improved. The possible altematives include:
1. Instead of using median fitering, some other filtering technique can be used to
process the inter-frame variance map.
2. Using Gsnakes dynamic contour to extract the boundary of the foreground objects as
it relies on detailed object-shape o object-motion models to distinguish between the

foreground and the background.



3

-

A fixed number of iterations is used in smoothing the HeadWidh-row curve
disregarding the results of the curve fitting. The system can be further optimized if it
can automatically determine the iteration requirements depending on the different
situations.

‘The system can be further updated by incorporating additional functions to recognize

gestures, postures and body parts.
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