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Abstract

A real-time human face tracking system has been developed at the Multimed ia

Communication Laboratory of Memorial University of Newfoundland to investigate fast.

efficient. reli able and flexible face finding and tracking techn iques . By subtracting a well-

maintained background from an incoming image. an object and background segmentation

map can be constructed. The foreground object is outlined by a "draping" 0 perationon

the segmentation map. Once the drape is settled , an innovative headidentificationmethod

consis ting of exhausting head searc hing followed by head merging achieves accurate

head extr act ion and identification. In order to tackle the problems assoc iated with

variations in lighting. local and global background movements and shadows in the

background scenes . a multi-state backgroundself-generatingladjusting method is applied .

This allows the system to switch automatically between background formation and

simple face tracking. The draping is applied on the inter-frame variance of incoming

images toidentify moving areas and thus to generate the background. Median filtering.

multiple direction draping and polynomial interpo lation are developed andincorporated

into this system to overcome the possible pitfalls in the resultant drape . The background

is updated automatically in real time once the changes in the background are detectedto

exceed a given threshold . Experiments show that the new real-time syste m is a robust and

effective tool for extracting human heads from a very complex non-stationary

background.
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Chapter One

Introduction

Real-time face tracking is currently an active research area in the computer vision

community due to the possibility of being able to tackle more complex problems using

readily available fast computers. A robust real-time face tracking system has many

practical applications such as advanced video communication, virtual reality interfaces,

smart rooms. very low bandwidth video compression, human computer interaction and

security monitoring. All of these have in common the need to track and interpret the

human body. especially the human face (Wren et al. 1996). Face trackingcan be usedt 0

reduce communication bandwidth by locating and transmitting only the fraction ofa

video frame containing the speaker's face. In a human compuler interactionapplication.

face tracking can be used to direct the computer's attention loa user and increase the

probability of the computercorrectly recognizing the user's facialexpressions. gesture-or

speech. In video conferencing, it is desirable 10 have a computer-controlledcamera 10

isolate the image ofaspecial lalker within a frame. adjusting for orientationand rangeas

well as compensating for any sourcemotion. A video surveillanceand monitoringsystem



requires face tracking to be achieved in various situations such as Iighting change ,

shadows. presence of moving elements in the background scene, ands oon .

To address this need, a fast and reliable real-time face tracking system was

developed in the Multimedia Commun ication Laboratory (MCL) at Memorial University

of Newfoundland (MUN) . Figure 1.1 presents the system setup. The computerized

camera system consists of a digital camera and a personal computer equipped with an

image grabbing and image-processing system.

Figure 1.1 Schematic diagram of MCL real-time face tracking system

1.1ProblemStlltement

This research aims to create a robust, adaptive real-time face tracking system that

is flexible enough to handle variations in lighting, global baclcground movement,mo ving

objects in background scene, and any other arbitrary changes in the observed scene.

Regular human faces in nonnal standing/s itting postures are of interest in this study.



Background subtraction is an effective and fast tool to locate foregrou ndobjectsand

hence it is used as the major technique of the face tracking system . It functions by

subtracting a pre-selected background from the incoming image to recover the

foreground objects . The significant advantage of this method is its low computational

cost and therefore it can be easily implemented for real-time application. This method

works accurately for stationary background scenes . Problems arise when the background

becomes non-stationary due to changes in the background scene andsi milarities between

the foreground and the background present. The background changes Can be categorized

Global background movements due to camera shifting. shaking. zoom in and out

Localbackgroundchangesduetolocalmovemem inthebackgroundscene

Lighting changes

These problems presented in the background scene make it very difficult to

accurately recover the desired foreground by using simple background subtraction and

may lead to a catastrophic failure of the whole system. In addition.jhe systemisrequired

to track multiple heads at various postures and layouts from a complex background scene.

This thesis describes areal-time face tracking system that can switch back and

forth automatically between two states depending on the background information. The

two states are headtraeking and background formation . The first state applies when a



stable background estimate has been acquired. The second state applies at start-up or

when the background changes, when it works to progressively build a background

estimate by analyzing foreground movement. !n chapter one, the entire system setup is

introduced, together with its basic working principles. Problems associated with

applications of the system are also addressed. Chapter two is a review of previous work

in the relevant areas. Draping is identified as a useful tool for outlining the foreground

object. Based on the reviewed works, techniques for background maintenance are

proposed. Chapter three describes the principle of draping and its modification and

improvement to suit our use. Chapter four presents an innovative head searching and

merging technique developed in this study for head tracking, as well as gives some

typical experimental results, Chapter five describes the multi-state real-time system,

along with techniques for tackling the chang ing background. Additionally, typical

experimental results are presented and discussed . Chapter six concludes my thesis and

offers directions for further study.



Chapter Two

LiteratureReview

A system for object tracking must consist of a camera to capture images, a frame

grabber, a processor and a set of techniques to process the image, inorder to search the

image for important features, and then use these features to determine the location of the

object Techniques for people tracking have been studied extensively . Some of the

relevantworksfromliteraturearereviewed,analyzedanddiscussedinthischapter.This

review begins with the introduction of some real-time people tracking systems, and is

followed by descriptions of face tracking based on background subtraction and various

methods for background maintenance and modeling to recover a complete foreground

object Skin color filtering is also an effective tool for identifying human faces from a

color image. Skin color based face finding methods are reviewed in section 2.3. Three-

dimensional head tracking is a newly emerging research activity and has been growing

rapidly in the last decade because of the exponential advance in computerpower. In order

to extract three-dimensional parameters, a model that can encode head orientation and



position is often required. Some three-dimensional face models for facilitating three-

dimensional face trackingare presentedin section 2.4.

2.1 PeopleTrackIngSystems

A variety of people tracking systems have been developed in the past. Wrenet al.

(1996) proposed a real-timesystem called Pfinder(person finder}for searchingarbitrarily

complex scenes for single people using a fixed camera, Pfinderemploys amulti-class

statistical model of color and shape to segment the people from the backgroundscene .lt

can find and track a human's head and hands under a wide range of viewing conditions,

Pfinder canberegardedasadescendantofthevisionroutinesotiginallydeveloped for

the ALIVE system (Darrel et al. 1994). It is also related to body-tracking research using

both kinematic models (Rehg and Kanade 1994; Rohr 1994; Gavtila and Davis 1995)and

dynamic models (Pentland and Horowitz 1991; Metaxas and Terzopolous 1993).

Functionally, Pfinderis mostclosely related to the work of Bichsel (1994}and Baumberg

and Hogg (1994) in which the person is segroentedfrom the background in real time

using only a standard workstation.Pfindermakes several domain specific assumptionsto

enable the vision task traetable. Its performancedegrades when these assumptions do not

hold. Also, due to the assumptions on which it is built, Pfinder cannot tackle large,

sudden changes in thebackground,anditcanonly work for one user in the scene.

KidsRoom (Bobicket aI. 1996; Intilleet al. 1997)isaperceptually-based,mul ti-

person and fully-automated people tracking system. It is built on a "closed world"

assumption, which defines a region of space and time where the specific context of what



is in the region is assumed 10 be known. Its people tracking system uses an overhead

camera view of the space in order to minimize the possibility of one object occluding

another. Lighting is assumed to remain constant during the time when the tracker is

operating. Background subtraction is used to segrnent objects fromt he background. and

foreground pixels are clustered into two-dimensional blob regions. The system then maps

each person known to be in the room with a blob in the incoming image frame. It uses

colors. velocity estimation, and size information to disambiguate the match when the

blobs later separate. These regions can be tracked in real-lime domains where object

motions are not smooth or rigid. and where multiple objects are interacting, The system

is. however, overly reliant on blob data. which may not always be reliable. The second

limitation of this system is that it has no mechanism for handling the slow variation of

image features while objects are merged in a large closed world. The third lirnitation is

that its matching algorithm can lead to some bad matches.

W'(HaritaogluetaI.1998a)isareal-timesystemfortrackingpeopleandtheir

body parts in monochromalic images. It constructs dynamic models of people's

movements to detect what they are doing, and where and when they act. It employs a

combination of shapes (shape, hands, feel. and torso) to create models of people's

appearance so that they can be tracked through interactions such asocclu sions (who is in

the scene?). The models are constructed by using a "cardboard" human model ofa person

in a standard upright pose.This limits the application of this technique to trackingpeople

in an upright-standing posture. Horprasertetal. (1998) later extended their W" methodto

allow operations en color images by using a new background subtraction technique.



Multiple camerasareusedto observeaperson inthismethod.Silhouetteanalysis and

template matching then achieve a real-time three-dimensional estimation of human

posture. The estimated body postures are reproduced in a three-dimensional graphical

character model by deforming the model according to the estimated data Dynamics and

kinematics models of human body and linear Kalman filtering are ulilized to help the

tracking process as well as to interpolate somejointlocalions. The real-time three-

dimensional computer vision system provides the user with control over the movement of

a virtual computer graphics character. The application of this technique is,however, still

limited to the upright-standing posture.

In an effort to incorporate other generic postures, Haritaoglu et al. (1998b)

developed a monocular system called Ghost, which functions under the control ofw'. It

can estimate a variety of human body postures and detect body parts in real time. It

constructs a silhouette-based body model to determine the location of the six main body

pans (head, two hands.two feet and the torso) while a person is in a number ofpo stures.

It combinesh ierarchicalbodyposeestimation,aconvexhullanalysis of the silhouette,

and a partial mapping from the body parts 10 the silhouette segments using a distance

transform method that does not violate the topology of the human body. The algorithm

developed works not only in the upright-standing posture but also in other generic

postures. The hierarchical posture representalion includes main postures (standing,

sitting, crawling-bending, and laying-down) which are further sub-classified into one of

three view-based appearances (front-view,left-side,andright-side). Shadowsappearlng



in the silhouette might give rise to difficulty in locating body parts that are too close to

the ground.

Turk (1996. 1998) proposed a real-time head tracking system based on draping.

Draping simulates a row of point masses connected to each neighbor by a spring . Gravity

pullsthedrapedownoverthethresholdedforegroundobjectwhiletheforeground pixels

collectively hold the drape in place. The draping is applied on the peopleandbackground

segmentation map to produce a "head and shoulders"silbouette. Once the people outline

("drape") settles it can be used to locate people's heads. All theseprocedurescanbedone

in real time on a standard low-end Pc. The resultant drape can be used in a coarse posture

and gesture recognition . The significance of this method is its tolerance to a reasonable

arnountofnoise and holes presented in the segmented images.

Olson (1997) developed a general purpose system for moving object detection

and event recognition in which the moving objects are detected using change detection

andarctrackedbasedonfirSI.orderpredictionandnearestneighbormalching.Evenlsare

recognizedbyapplyingpredicalestoagraphfonnedbylinkingcorrespondingobjeclsin

2.2 BackgroundSubtractionand BackgroundMaintenanceTechniques

Perhaps the most often used facetraeking method is background subtraction, in

which the foreground pixels are separated from the background pixels by a simple image

subtraction . All the systems discussed in section 2.1 are based on backgroun dsubtraction.

Background subtraction is straightforward and conceptually simple . However, the



difficultpart oflh ismethod isnotthesubtraction,butthemaintenanceofabackground

model (Toyama et aI. 1999). The success oflhis method depends heavily on the accuracy

oft he modeled hackground. The background maintenance must be ableto deal with the

problems associated with lighting change and both regional and global movements of the

background. A standard method ofbackgroundmaimenance is background averaging. In

this method, the images are averaged over time 10 produceabackground approximation

that is similar to the current static scene except where motion occurs. While this is

effective in situations where objects move continuously and the background is visible for

a significant portion of the time, it is not robust to scenes with many moving objects,

particularly if they move slowly. It also cannot handle bimodal backgrounds;i t recovers

slowly when the background is uncovered, and has a single predeterminedthresholdfor

the entire image.

Wren et at. (1996) used a mean and covariance method to model the image

background as a texture surface. lnthismethod,themeanandcovariancepixel values are

continuously updated to adapt the changing background. Each point on the texture

color distribution of each pixel is modeled with Gaussian distribution describedbyafull

covariancematrix.lneachfrarne ,visiblepixelshavetheirstalisticsrecursivelyupdated

using a simple adaptive filter. This allows compensation for changes in lighting and

object movement. Stafford-Fraser (1996) proposed two methods for background

formation. One way of constructing an evolving background frame is to use the average

pixel values of a number of preceding images; the other is to capture a number of



"background" frames during the application. Stafford-Fraser calculated the mean and

standard deviation of the values at each pixel position. The mean is used to initialize the

frame and the standard deviations are combined with a global thresholdvalue to give a

threshold that is specific to that pixel position. The eigenbackground method (Pentland

1994; Oliver et al. 1999) collects images of motionless background and then uses

principle component analysis (PCA) todetennine the mean and variancesovertheentire

sequence (whole images as vector). The incoming images are projected onto the PCA

subspace . Differences between the projection and the cunrent image greater than a

threshold are considered as foreground .

Haritaogluetal. (l998c) used a temporal derivativemelhod to tackle changing

backgrounds . In the training stage. both the minimum and the maximum values of each

pixel are saved along wilh the maximum inter-frame change in intensity at each pixel,

Any pixel that deviates from its minimum or maximum by more than the maximum inter-

frame change is regarded as background. In addition. statistical tools are usedtodealwith

changing backgrounds . In the mixture of Gaussian method (Wren et al. 1996; Friedman

and Russell 1997; Grimson et al. 1998). a pixel-wise mixture of three Gaussians models

the background. with each Gaussian weighted according to the frequency wilh which it

explains (±2a) the observed background. The most heavily weighted Gaussians that

explain over 50% of past data are considered as the background . The background

maintenance method proposed by Nakai (1995) is based on Bayesian decision theory.

Pixel value probability densities. represented as normalized histograms. are accumulated

overtime. and the background is detenninedby a maximum ofaposteriori criterion.



The Wiener filter is a linear predictor based on a recent history of values. Any

pixel lhatdeviates significanllyfromitspredicled value isregardedasforeground. The

Jinear prediclion method works well for periodically changing pixels. Its main advanlage

is that it reduces the uncertaint y in a pixel 's value by accounting for how it varies with

time. To handle changing backgrounds, the prediction coefficients are recomputed for

every new frame. Based on this concept , Toyama et aI. (1999) developed Wallflower, a

three-component system for background maintenance, In this technique, the pixel-level

componenl perfonns Wiener fillering lo make probabilistic predictions of the expected

background; the region-level component fills in homogenous regions of foreground

objects; and the frame-leve l component detects sudden, g!obalchanges inthe imageand

swaps in beuer approximations of the background. The application of this method must

satisfy the following requirements : (i) semantic differentiation of objects should not be

handled; (ii) background subtract ion should segment objects ofinteresl when they first

appear in a scene; (iii) an appropriate pixel-level stationary criterion shouldbedefined;

(iv) the background model must adapt to both sudden and gradual changes in the

background; and (v) background models should lake into account changes at differing

spatial scales.

Dynamic contours, or snakes , provide an effective method fortraeking complex

moving objects for segmentation and recognition purposes. Snakes track object

boundaries by minimizing the sum of an external force from a local image measure , and

an internal force from a shape dynamics model. The external force drives the dynamic

contour according to the current image appearance while the internal forceincreasesthe



spatial and temporal continuity of the tracked boundary. When the boundary to be tracked

is an occluding boundary, the dynamic contour confuses background texture for the

desired boundary . To compensate for this shoncoming, dynamic contours often rely on

detailed object shapes or motion models to distinguish between the boundary of the

tracked object and other boundaries in the background (Terzopolous andSzeliski 1992;

CootesetaI.1993;BlakeandIsadI994). An alternative solution proposed by Covell and

Darrell (1999) uses simple contrast measures for the external energy terrn of dynamic

contour models without detailed object models . The image model developed by them,

called radial cumulative similarity (RCS), describes the local contrast pattern but is

largely insensitive to the changes in background contrast. The use ofRCS enables the

occluding boundaries to be tracked in a cluttered scene. with the simplest ofintemal

2.3 SkinColorBeNd Fet» TrackingMethod

A different approach for locating and tracking a face is by searching for skin

color . Color is a feature of the human face. Skin color based face tracking has several

advantages . First, processing color is much faster than processing other facial features.

Second, undercenain lighting conditions. skin color is orientation invariant. Yang and

Waibel (1996) developed a real-lime facetraeking system by incorporating three models,

AstQchasticmodelisdevelopedtocharacterizetheskincolordistributionsofthehuman

face, which providessufficientinforrnation for tracking a human face in various poses

and views. A motion model is used to estimate image motion and to predict a search



window. A camera model is used to predict and to compensate for camera motion. The

system can track a person 's face while the person moves freely in a room. Qian et al.

(l998) presented a statistical-based algorithm forestimatingthe position and size ofa

face in a complex background. The estimations are derived from two one-dimensional

histograms in two orthogonal directions obtained by projecting the result of skin color

filtering. The projection histograms can be interpreted as the spalial distributio nsofthe

skin pixels along the corresponding directions . The proposed method uses a linear

Kalman filter and a simple nonlinear filter to perform smooth tracking and to remove

jitter. This algorithm is computationally simple and is robust against cracks or gags

within the face region .

Darrell et al. (1998) proposed a complete passive and non-invasive method for

real-time person tracking in crowded andlorunknown environments using an integration

of multiple visual modalities . This system combines stereo , color, and face detection

modules. Dense. real-time stereo processing is used to isolateobjectsfromotherobjects

andpeopleinthebackground.Skin-hueclassificationidentifiesandttaekslikelybody

pans within the silhouetteofa user. Face pattern detection discriminate s and localizes the

face within the identified body parts. Faces and bodies of users are ttaekedovershort-

term, medium-term and long-term. respectively. Short-term tracking is performedusing

simple region position and size correspondences. while medium and long-term tracking

are based on the statistics of user appearance.

Another standard approach to finding faces in still images is based on someri gid

features common to all face patterns, such as two dark eyes, brightnoseridgeandthe



spatial layout of facial organs (Qing and Robinson 1999). This technique can accurately

identify human heads from stationary backgrounds. However, this approach is usually

computationally expensive and hence itis difficult to use in real time.

2.4 Three-DimensionalFace Tracking

Extensive research has been conducted on locating and tracking human heads and

recognizing poses and facial expressions. Most often face detection is considered as a

two-dimensional problem where facial features, facial color, and the shapes of the face

are obtained from the image plane for locating the head (Pentland etal.1994;Rowleyet

al, 1998). To extract three-dimensional parameters, a model that can translate head

orientation and position is often required. Azarbayejanietal. (1993) used feature point

tracking projected on an ellipsoidal model to track the head position. A drawback of

feature point tracking is that tracking fails when the feature points are lost due to

occlusions or lighting variations. New feature points are required at the cost of excessive

error accumulation. Iebaraand Pentland (1997) also used feature point trackingbut with

automatically located head features like eyes and mouth comers . The three-dimensional

position of the feature points is estimated using a structure from a motion technique that

pools position information over the image sequence with an extended Kalman filter. The

estimate of the feature point position is filtered using Eigenfaces to restrict the

measurements to match an expected facial geometry.

Basu et al, (1996) coupled an ellipsoidal model with general optical now

computation for tracking. The optical now algorilhm estimates the two-dimensional now



field from image intensities. Optical flow is first computed independently of face position

and orientation using a gradient-based method. In this method, the velocityiscomputed

from a filtered version of the image. Then the motion of an ellipsoidal mesh regularizes

the flow. The method's strengths are also its weakness . It copes well with large head

rotations since it does not rely on any fixed features. For the same reason, it has no means

to ground the mode! to the face; thus the error accumulates and the mesh slowly drifts off

Black and Yacoob (1995) proposed a rectangular planar patch under affine

transformation as a face model. In this model, similar patches are attached to the

eyebrows and the mouth. The movements of the underlying facial patch are followed to

detect differential movements of the facial parts. The Iimitationofusing affine motion is

that it has no concept of self-occlusion taking place at the sides of the headandaround

the nose. Affine transformations can also distort the frontal face image when they are

used to model large rotation .

Cascia et al, (1998) employed a textured cylinder as a head model. The technique

uses a dynamic texture for tracking . The lack of fixed features may lead to error

accumulation although confidence maps are used to minimize this problem. DeCarlo and

Melaxas(l996)usedapolygonalheadmodelthatishand-positionedonthesubject's

face. This technique extracts optical flow at some feature points and regularizes it by the

model movements . The measurements are stabilized using a Kalman filter. The use of the

optical flow leads to a similar error accumulation as does the method used by Basue tal .



(1996). Both techniques used face edge information to prevent apossibledivergence.

Face shape and facial expressions can also be extracted by both methods.

Schtidletal.(I998)developedathree-dimensionaltexturedmodelofthehuman

head under perspective projection to track a person's face. The system is hand-initialized

by projecting an image of the face onto a polygonal head model. The head tracking is

achieved by finding six translation and rotation parameters 10 registerthe rendered

images of the textured model with the video images. These parameters are found by

mapping the derivative of the error with respect to the parameters to intensity gradients in

the image. An error minimum is found by using an estimator to pool the information and

perform gradient descent. The limitation in this method is the model's inflexibility and its

set of parameters fail to make it closely resemble reality.

In summary. this review of the previous work indicates that most of the systems

are still vulnerable to sudden background changes due to illumination change and

locaVglobalbackgroundmovemenlS.Thepurposeofthisstudyis:

l. To develop a real-time system that can accurately identify human heads from

versatile background scenes.

2. To develop techniques that are able to automaticallybuild,updale and maintainthe

background. The method must be reliable and effective intaclding both gradual and

sudden background changes, particularly due to lighting variations, local/global

background movements and shadows.

3. To develop an effective, robust and accurate head tracking technique,which is also

flexible and adaptive to various situations.



4. To test and verify the performance and robustness of the system under various

background scenes.



Chapter Three

Basic Scheme· Draping

In this chapter . simple background and object segmentation and draping

techniques are introduced. The noise in the image associated with light flickering.

shadows. etc. presents difficultie s for accurate head tracking through background

subtraction . An innovative draping method was. therefore. developed to overcome these

difficulties and highlight the foreground outline. By proper adjustment of the drape

parameters , the influence of noise can be overcome to a great degree.

3.1 Backgroundand ObjectSegmentllt/on

Backgroundsubtraclionsubtraetsthebackgroundfromtheincomingimageand

hence extracts the difference between the two images. This method is effective for head

tracking if the background is relative ly stationary and the foregroundobjcct is sufficiently

different from the background . The particular feature of this technique is thaI it interprets

the image difference as the foreground object , which makes it very difficult to use in



practice . Noises induced by global and local background movement s,illuminationchange

and light flickering , and holes resulting from the subtraction of similar colors in the

images will be inevitably misinterpreted as the foreground objects. Background

averaging can partially eliminate these influences . The averagedbackground is obtained

from a sequence of pre-captured background images . Figure 3.1a and b show two images

from the captured background image sequence . The author deliberately waved a book

shown in the middle of Figure 3.1b. The background image (Figure 3.1c) averaged from

nine similar images minimizes this movement significantly. The book is no longer visible

in the average image (Figure 3.1c).

(a) (b)

• a

(c)

Figure 3.1 Background sequence and averaged image

Background and object segmentation can effectively separate thedifference in the

incoming image from the background . Figure 3.2a is the incoming image and Figure 3.2b

is the resultant background and object segmentation map. Figure 3.2b shows that the

moving foreground object is separated from the complex background along with some

noiseresultingfromtheilluminationchangeintheroom.Simplebackgroundsubtraction



exhibits high sensitivity to background variation and illumination change . A more

accurate and robust technique is, therefore , required to correctly identifythe foreground

object from the object and background segmentation map. Draping is a useful technique

to construct a head and shoulder's silhouette on the foreground objec t(Turk 1998) due to

its good acceptability of noise and holes in the image . The mathematical model of

draping is described in this context, along with detailed implement ationprocedure s.

_.
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(a) (b)

Figure 3.2 Incoming image and segmentation map

3.2 Principle of draping

Noise and holes may result in the object and background segmentation map

becauseofchangingbackground,varyingilluminationand similarities between images .

This gives rise to considerable difficulty in extracting the correct foreground objects from

the background by using a simple background subtraction because the noise and holes are

inevitably misinterpreted as foreground objects . The literature review in chapter three

indicates that the draping method can tolerate a reasonable amount of noise and holes

presented in the segmented map (Turk 1998). This innovative technique is, therefore ,



modified and improved in this context as the major technique to extraCl the foreground

objects from the background. The development of this method is inspired by the

mechanism ofa physical c1rape.It functions by forming a flexible one-dimensional sheet

(drape) with simulated point masses connected by springs as shown in Figure3.3 .

Figure 3.3 The initial c1rape

Every point mass is assumed to be subjected to a gravity force (W) induced by

eachpoinlmass(m)andelaslicforces(ft)generaledbyspringsprovidedthat there is one

pixel displacement and supporting force lis) provided by each foreground pixel. The

mathematical representations oflhe spring force is as follows:

(3-1)

where {« is the induced spring force by one pixel displacement and N is the number of

displacements measured in pixels due 10 the unalignedrwoneighboringpointmasses.

When theclrape is loweredfromlhetopoflheimageduetogravily,lhe foreground

object pixels collectively supportlhe drape. In this case, lhesepixelsundemealh act like a

solid supporting column. The pixels below lhe first contacting pixel collectively



contribute supporting force to that pixel. Only the continuously connected pixel chain

with the first pixel is. however . included as the solid mechanical column. Meanwhile. the

springs between the neighboring point masses are stretched and hence induce the spring

force. which is linearlyproponionaltolhespringdisplacemenl. If the supporting force of

the object pixel exceeds the total effect of the downward gravitational and spring forces.

the drape will rest on that pixel (Figure 3.4). The corresponding pixel trapped by the

drape is regarded as the foregroundobjecl. Otherwise, the pixel fails to hold the drape at

that location and the correspond ing pixel is regarded as the noise. The drape will pass that

pixel and drop along that column to the next closest foreground pixel. The process

continues until the entire drape is eventually held stationary by the groupeffort of the

foreground object . In this manner . me drape provides a clear outline of the moving

foreground objects .

Figure 3.4 The deforrned drape

3.3 Algorithm for draping

The original draping method proposed by Turk (1998) applies the draping on a

thresholded background and foreground segmentation image . In this study,thedrapingis



exter.dedandimprovedforusedirectlyonbackgroundandsegmentationimagesandon

the variance of the incoming images. In order for the draping method to function as

expected. the drape must be able to discriminate between noise and the desired

foreground object. This is achieved by carefully selecting the valuesofpointmass,spring

constant and supporting force contributed by each pixel. A trial-and-error process is

employed in this study to determine the optimal combination of these values.Dnce the

proper parameters are determined, the mathematical model can be implemented through

the following steps:

1. Suppose that there exist point masses (m)at the top of each column of pixels in the

difference image. each connected to its neighbors by a spring with a springconstant

(k) as shown in Figure 3.4.

2. For each point mass. calculate the vertical force exerted by its neighbors (it will be

none if they are aligned) and the collective "force" exerted by the segmentedbinary

foreground object (none if there is no foreground at that pixel. aconstant value if

there is foreground there).

3. If this vertical force is upwards above a small threshold (1.0) than the point mass.

then the point mass docs not move down to the next row in the next iteration (jump to

step 5). Otherwise. the point mass moves down to the next row for the next iteration.

4. Once tltiscalculation is performed for the entire row of point masses. update their

positions (most of them will move down one row, as decided in step 3).

5. Go back to step 2 and repeat for the updated positions of the point masses.



6. Stop iterating when the point masses have all (or mostly) stopped moving, or when

they hit the bottom of the image.

The point mass, the spring constant, the upward force of the foreground and the

threshold value are determined experiment ally 10 achie ve a best draping result . Figure 3.5

shows atypical example obtained from the above operatio n. Figure 3.5a is the resultant

draping resting on a person and Figure 3.5b shows the person outlined by the

corresponding drape .

(a) (b)

Figure 3.5 Draping and the head and shoulder silhouette

3.4 Implementation of Draping

The implementation of drapin g can be best illustrated by referring to a typical

example in which a user is silting in front of the camera with some background and

illumination changes. Figure 3.6 presents differe nt stages of the consequent draping

operation . The drape initially drops from the top of the image segmentation map due to

the gravity (Figure 3.6a) . At first, it forrns a straight horizontal line as shown because it



has not made contact with the foreground object at this position. The noise presented in

the image is only composedofa small cluster of floating pixels with little or no solid

support from underneath . The drape eventually overcomes that noise because the noise is

unable to develop sufficient supporting force to sustain the total effect of gravitational

and spring forces. When the point masses of the drape hit the solid foreground object. the

drape rests on the object because the collective supporting force developed at this stage

exceeds the total effect of the gravity and elastic forces by the giventhreshold (Figure

3.6b). After several iterations, the drape eventuall y rests on the foregro und object.

providing a clear outline of the user (Figure 3.6c).Thi s technique exhibits great tolerance

of noise and holes presented in the image segmentation map because they cannot

generate sufficient collective forces 10 support the drape .

(a) (b)

Figure 3.6 Mechani sm of draping

(c)

Experiments were conducted in order to determ ine the parameter values for

achieving a good drape . Dimensi onal analysis was emp loyed to analyze the problem .

Thi s analysis is based on the principle of Fourier's dimen sional homogeneit ytheory.The



analysis results in a dimensionless functional equation . This use or this equation can

tremendouslysimplirytheproblemandprovideguidelinesrorthedesignorexperiments

and the presentation or results . The Buckingham method (Buckingham 1914) is used to

analyze the problem. The initial step is to establish the original functional equation . The

supporting force provided by unit pixel ifs)can be related with the weight of unit point

mass(W) and unit spring force if,)as follows:

f s=g(W,f,) (3·2)

Equation (3-2) has the dimension of [Newlon/pixel) . The dimensionless functional

equation can be obtained by combining the terms in equation (3-2) 10 get the final

dimensionless functional equation as follows:

(3-3)

Dimensional analysis indicates that.!!. and Is: an: the two independentr: f,

parameters . To investigate the parameter values for good draping , draping is allemptedon

a series of combinations of the two parameters and the results are plotted in Figure 3.7.

The analysis conclude that as long as the parameters fall within this narrow band shown

as a blue circle in Figure 3.7. a good drape will result.



The draping method is computationally simple and hence speedup can be

achieved in tracking the head. This makes this system suitable for using in real time. For

a 160xl2 0 pixels image. it takes 0.05 seconds to process the draping. Comparing the

frame rate of3 frames per second. this processing speed allows the head to be tracked

promptly in real time.

Figure 3.7 Selection of draping parameters



ChapterFour

From Drapeto Description

The literature review reveals that the most commonly used techniques for head

locating are color-based (Yang and Waibel 1996;Qianet al. 1998)and templale-based

face trackings (Pentland and Horowitz 1991;Wrenetal.1996;Haritaogluetal. l998a.

1998b. 1998c;Horprasenet al. 1998). The color-based technique uses colorfiheringto

identify face skin. which is susceptible to variation in lighting conditions, skin color,

background image. etc. The template-based method involves the creation of human

models, which may not always match the postures and gestures of the people in practice.

The significant advantages of the draping method over the above methods are its

computation simplicity and good noise acceptability. The incorporation of this method is

just the first step to a robust and effective real-time head tracking system.

Once the person's outline (drape) is senled,i tc an be used to locate the person's

head. At the initial stage of the study, a simple head tracking method based on

background subtraction and head ratio was developed. However, this method has

difficulty in extracting heads from an incompletely recovered foreground. An innovative



and simple head tracking technique consistingofa drape interpolation foilowed by a head

merging was developed eventually to achieve an accurate head locating . Experiments

were conducted on a variety of typical images. The results indicate thar the new

technique is effective . efficient and robust. In this chapter . both teehniquesaredescribed

along with several typical results.

4.1 In/tlllimethodfor 10000ting II person" helld

At the initial stage of the study. a simple method for locating the head was

developedbasedontheheadgeometryandthefirst-andsecond-orderderivativesofthe

drape. The head tracking was achieved by generating a rectangular bolt circumscribing

the tracked head. The procedure of this method is as follows :

I. The highest point in the drape is first identified to determine the top border.

2. Starting from this point. both the first-andsecond-orderderivativesofeach point

along the two sides are calculated, The first point on each side whosesecond-order

derivative changes the sign and first-order derivative is greater than a given threshold

(4) is used to determine the left and right borders.

3. The head bottom border is estimated based on the averaged human head ratio. A

rectangular bolt can. therefore. be generated based on this ratio .

A typical result arrived at from this method is shown in Figure 4.1. Figure 4.1a is

the image segmentation map showing the resulting drape and the identified four border

points Iindicated as solid rectangles ). Figure4.2b shows the corresponding rectangular

bolt determined by these fourpoinlS in the original incoming image.



(a) (b)

Figure 4.1 Captured person's head from the drape using the initial method

This process is efficient in computation and simple in concept. Theseadvantages,

on theotherhand,also limit its efficiency and accuracy in broader applications . Fora

particular 'circumstance (Figure4.2),this method fails to track the head from the image

segmentationmap.Partofthedrapepenetratesthehead,resultingin a notch on the top of

the head. This can be explained by analyzing the mechanism of this method in detail. The

background used by this method is the average ofa sequence of pre-captured frames

(Figure4.2a).Theforegrounddetectioniscarriedoutbysimplysubtractingtheresultant

background from the incoming image. Apparently, this operation will inevitably erase

those parts of the foreground having similar colors to the correspondi ngbackground.As

in Figure4.2b,the painting on the wall has a similar color to the person's hair. Therefore,

the part of the head overlapping with the painting has been erased by the subtraction as

shown in Figure 4.2c. Figure4 .2dshows the resultant drape with a notch on the top of the

head. A rectangular box cannot be located in this case becausethe drape profile does not

match the head profile assumed in the scheme. In addition,thistechnique has difficulty in



identifying multiple heads from the drape. Further improvement of this system is,

therefore, carried out to tackle these types of problems by using a drape interpolation and

compounding method.

(a)

(c)

(b)

(d)

Figure 4.2 Image subtraction showing incompletely recovered head

4.2 Drape interpolat ion and compounding method

The initial derivative-based head tracking method and its limitationshavebeen

discussed in section 4.1. Techniques for identifying an incomplete head and multiple

heads from a complex drape with more complicated background must be developed in

order to improve its robustness and portability .



The undisturbed one-dimensional drape is a horizontal straight hne with uniform

intervals between the neighboring point masses. When the drape is settled on the

foreground objects, these intervals are stretched unevenly according to the particular

profile of the human head (Figure 4.3a). As can be observed, the drape is stretched

significantly along the two sides of the head. along the two shoulders. and inside the

notches of any incompletely recovered foreground objects . The resultingdiscontinuityin

the drape makes it difficult to conduct an accurate image process . The drape line must.

therefore, be connected and smoothed . This is achievedbyusinglinearinterpolation .The

resulting drape makes the stretched parts smoothly connected (Figure 4.3b).

(a) (b)

Figure 4.3 Original drape and its corresponding smoothed drape

After the drape has been smoothed by linear interpolation. the following head

searching scheme has been developed to track the person's head:



1. Scan the entire image from top to bottom (Y direction) . At each row, the direction of

the scanning is from left to right (X direction) . This operation starts fromthetop-Ieft

comer of the image.

2. When any point. which does not belong to any existing head objects, from the

smoothed drape is found.create a head object composed of the point itselfandaJlits

neighboring continuously connected points if any. For this headob[ect, define the

leftmost point as HeadLeftand the rightmost point as HeadRightfor the current row.

The newly created head object is regarded as a potential head. The criterion for

classifying if the current points belong to any existing head is as follows:

If the leftmost point of the considered points is zero or one pixel to the right of the

HeadRightof the head created in the previous row, they are regarded as pan of the

head in the previous row. The current rightmost point is defined as the HeadRightof

the current row. If the rightrnost point of the considered points is zero or one pixel to

the left of the HeadLeftofthe head created in the previous row, they are regatdedas

the pan of the head in the previous row. The current leftmost point is definedasthe

Headl.eft of the current row. Otherwise, create a new head object in the current row.

The following pseudo code can be used to implement this process:

total=O;
flag = 0;
for(headNum = 0; headNum < total; headNum++l {
(

if(heads[headNum] .start[y-ll == end...point
II heads [headNuml .start[y-ll == end...poi n t+ l)
(

heads [headNuml . start [y] = start...point ;
flag = 1;



if( heads[headNumj .end[y-lj == start point
I I heads [headNum] . e n d [ y- l j ~~ start-paint-I)
{ -

heads[headNum) .end[yj = end point ;
flag ~ 1 ; -

)
if (flag ~~ OJ{

cu r rent head ~ heads .NewHead() ;
current-head->start[yj = start point ;
current-head ->end[yj = end point ;
tatal++; -

3. Repeat step 2 until the entire image has been scanned.

Figure 4.4 Head identification

This head searching technique can capture almost any wrinkles. notches and

sudden variations that occurred in the drape. A number of potential heads can often be

created as a list named HeadListthrough this exhausting head searching scheme. For the



image shown in Figure4.3,fourpotential heads can be identified . They are labeled as A

(red), B (green), C (blue) and D (pink) in Figure 4.4 to indicatei ntermediate head regions

surrounded by rectangularboxes,

Most of the ident ified potential heads are,ofcourse, not true heads,but maybe

only partofa truehead. They need to be merged to form the true head. An innovative

technique was developed to carry out the head merging. The merging process consistso f

two stages, with each stage tackling different situations.

Stage I: The first stage is designed to tackle potential heads withonlyafewpoints .ll can

also be regarded as the preparation operation for the second stage. We define a threshold

(50 pixels) for head size. Any identified head that is less than this threshold is assumed as

a false head. Therefore, if the dimension of a potential head is less than this threshold,i t

will be merged into its neighboring head. This in-process decision rules 0 utthetinyfalse

heads due to the wrinkles in the drape and heads that are too far away from the camera.

The head size Ihresholdcanbe adjusted according to image size . The newly merged head

needs to update its HeadLeftand HeadRighrfor each row with the leftmostand rightmost

points of the meroed pixels at that row. Once the operations at this stage have been

completed, the small potential heads such as wrinkles and notches have been merged to

form large potential heads. By using the first stage merging, head B in Figure 4.4 is

merged with its left neighbor , head A, 10 generate head AB shown in Figure 4.5 because

its size is notsufficienlly large (less than the threshold) to be considered as ahea d.



Figure 4.5 Stage [ merging showing head B to be merged with head A

Stage II: The large heads resulting from stage I are considered at this step. Judgements

on whether they need to be further merged are first carried out. The judgement is based

on both the slope and the dimension of the head. The head slope isd efined as the slope of

the straight line connecting the starting and ending pixels of the potential head. Once the

slopes are calculated for all potential heads. a merging operation will be followed. This

process is carried out over the entire drape from left to right. A head with ane gative slope

will merge with its neighboring head with a positive slope if the dimension of either of

the heads is less than a threshold (600 pixels). This merging generates a new potential

head object in Headlist, This process will continue until no further merging is possible.

Through stage II merging, head AB in Figure 4.5 merges with head C as a new potential

head ABC. \lead ABC then further merges with D to generate head ABCD. The two new

heads are created as new head objects in Heudl.i st. The resultant heads ABC and ABCD

are shown in Figure 4.6, together with the previous heads.



Figure 4.6 Stage II merging showing the newly merged heads

The above head searching and merging operations can often generate a numberof

potential heads. A method is needed to identify and extract the true heads from these

potential heads. This can be achieved by the following head identificationmet hod.

1. Calculate the width of each row for each potential head by subtracting its lf eadLeji

from its HeadRight if both exist. The Headl.ist is updated with the resultant

HeadWidth . Figure 4.7 shows the updated potential heads from Figure 4.6.

Comparing with Figure 4.6, the areas occupied by heads AB, C, 0 and ABC are

reducedsignificanllybecausethevalidHeadWidthcanonlybefound in these parts of

the image.

The resulting width against row number function is then smoothed by five-point mean

filtering and is plotted with the abscissa as the row number and theordinate as the

row width.Typical plots of this function are shown in upper part ofF igure4 .8.



3. Compute the second-order derivatives of the resultant curves. The bottom part of

Figure 4.8 shows the resultant second-order derivatives . Any two neighboring

negative and positivepeaksareconsideredasa pair.

Figure 4.7 The updated potential heads

4. Marching from the left end of the HeadWidth curves, when a second-order derivative

pair is found, define the value of width, where the positive peak is achieved , as

Wtdth of Head, and the distance from the top of the current head to where the

positive peak is achieved as HeightofHead.

5. Calculate the ratio of HeightofHead to Width_of-Head. If the ratio is within a

given threshold (1.5), and both the Width_of-Head and the HeighlofHead are

greater than one given threshold (l 2 pixels),stop thissearch and generate a

rectangular box based on the current Height_oLHead and Width_of-Head

Otherwise, search the next pair and repeat step 4 until the right end of the curve has
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Figure 4.8 HeadWidlh functions and their second-order derivatives

6. Several such rectangular boxes maybe located and some oflhem may overlap one

another . An averaged rectangular box obtained from these overlapped boxes is

eventually regarded as lhehead's location. Figure 4.9 shows the final head location

box processed from Figure 4.8 by using this method,

Theuniquefeatureoflheabovetcchniqueisloleavelhemajordecisionforlhetrue

heads to the last step oflhe entire process. This can avoid losing any useful information.

The head size by which we make final decision can be adjusted according 10 lhes izeof

the image used

The method shows a significant improvement over the initial head tracking on

both accuracy and robusmess. Asdiscussedpreviouslyinsection4.1,lhe initial method



failed to track the head from Figure 4.2a due to the notch which appeared 0 n the top of

the head. Using the improvedmethod,the head has been successfullycaptured,asshown

in Figure 4. lOb. Figure 4. lOa shows the interpolated drape. Figure4.1Ocandd showthe

HeadWidth-row number curves, along with the corresponding second-order derivatives .

Five potential heads can be found,each having its corresponding HeadWidth-rownumber

curves. Only the curves for the two significant heads are shown int hesefigures.

Figure 4.9 Captured head through the improved method

This technique can also effectively track multiple heads from a complex

background. For the case of two people in the scene, the interpolated drape is generated

(Figure4.lla). Initially, several potential heads are identified from the interpolated drape.

The Headwidth-row curves were produced for all the large heads (Figure 4.11c, d, e and

f) . Only two heads are identified (Figure 4.11b) , with the corresponding rectangular

boxes accurately capturing the two heads.



(a) (b)

(c) (d)

Figure 4.10 Tracking an incomplete head using the improved method
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Figure4.11 Tracking two heads using the improved method



4.3 Experiments and Results

Experiments have been conducted on a variety of cases to test the effectiveness

and accuracy of the improved method. Figure 4.12 illustrates the application of this

method on various cases of single head tracking. The resultant drape, head width and the

tracked head in the incoming image are shown for each case. The small peak in the left of

image 4.12a was successfu lly identified as a false head. The local light llickeringgives

rise to a large plateau in the drape shown in Figure 4.12b. Although its magnitude is

significant, the technique can identify it as a false head because its particular shape and

parameters do not match those ofa true head. The chair in Figure 4.12c was captured as

the foreground object because the user deliberately moved it. The part of drape caused by

the chair was successfully ruled out. This method can also successfully identify the true

head even though there are substantial small peaks, notches and wr inklespresentedinthe

drape (Figure 4.12d).

rA
(a)



(b)

(c)

(d)

Figure 4.12 Experiments of tracking a single head using the improvedmethod
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Figure 4.13 presents the application of this method for tracking two heads. Also,

the resultant drape, head width and tracked heads are shown for each casc. Figure4.13a

blocks part of the shoulder of the other. The chair was also moved. The head of the user

behind overlaps with a black painting on the wall. The technique successfully identifies

two true heads from the resultant irregular drape. The two users switched their position

and part of the shoulder of the behind user is not captured in Figure 4.13bas expected. ln

figure 4.13c, the heads of the two users differ significantly because one user moved

farther away from the camera. In addition. the front user blocked the behind user's

shoulder. In figure 4.13d, one user moved out of the screen with the behind user' s

shoulder left. In all the above circumstances, the improved method has identified the true

heads accurately and precisely.

(a)



(b)

(e)

(d)

Figure 4.13 Experiments oftraeking two heads using the improved method



However. in very few occasions (one out of a few hundred images), this system

may lose its accuracy due to the uncertainty associated with the identification of the

second-order derivative peak pairs. This misjudgment of the pairs may result ina head

box either oversized or undersized from the true head. For the resultant drape shown in

Figure 4.14a. the Headu'idth-rove number curve has some small local fluctuations

(peaks). which gives rise to uncertainty in determin ing the correct peak pairs. The

misjudged peak pairs result in two oversized head boxes (Figure 4.14c). However, this

problem can be overcome by increasing the iterations at the sacrifice of more

computation time. Figure4.14d shows the result at 40 iterations. In this case, the heads

can be located accurately.

(a)

r
01' "

(b)

(c) (d)

Figure 4.14 Bad case I



This system can also lose its accuracy when the users in the scene are overlapped

as shown in Figure4.15a . In this case , only one true head is interpre ted from the resulting

drape (see Figure4.15b) . This is the common limitation of the background subtraction

method itself . Two heads may be extracted if we incorporate face feature method into this

system . However , this method is computational expensive and will slow down the

performance of this system. This type of situation is, therefore , not tackled by this

(a) (b)

Figure 4.15 Bad case 2



ChapterFive

Dealingwith Changesin Background

After the success of the first stage improvement , the focus of the studywasthen

steered to tackling the problems associated with a change of background . The

background image can change suddenl y fora variety of reasons. Global movementofthe

background may bedue to accidenta l camera movement, camera zoom in and out, etc. It

is therefore inappropriate to use a pre-selected background to recover theforeground

object through background subtraction , The background to be subtracted must be re

initialized automatically . To address the problem of background change that happens

infrequently and instantaneously, we can use foreground movement to tentatively identify

background regions. That is, rather than trying to estimate the amount of background

shift (which may be impossible) we begin by assuming that the entire new background is

unknown, and wait for foreground movement. Note that this method works only for rare,

instantaneous background change , not for continuous camera movement, but such

infrequent changes are exactly those that pose a problem for a background- subtraction

tracking system. A multiple-state system of progressively generating background from



the inter-frame variance of incoming images has been developed. The system functions

once changes in the background scene are detected. The draping is used on the resultant

inter-frame variance map to extract the movement of a person's head and the part of the

image outside the settled drape is assimilated to a background map. The background

rebuilding process continues until the unassigned "Don't know" area is below a threshold

(300 pixels). This system also incorporates median filtering, multiple draping and

polynomial interpolation in an effort to tackle the problems associated with ab ad drape.

In this chapter, the problem of assimilating a new background is addressed,

together with the descriptions of the multiple-slate system and the mechanisms of median

filtering, multiple draping and polynomial interpolation. These three methods aim to

improve the inter-frame variance map such that the draping can outline the desired

foreground objects, The draping used in this chapter differs from that used inchapterfour

with the values of parameters. Therefore, these three methods Can achieve good results

when they are used in the inter-frame variance map but not in the foreground and

background segmentation image.

5.1 MUltIpleStlIte System

The problem of changing background handling was addressed by using a

multiple-state background formation system. In the first state. the backgroundisknown,

and face tracking happens by the simple background subtraction discussed in chapters

three and four. Meanwhile. the incoming background is compared with the stored

version, and if they differ significantly, the system assumes that the background has



changed (perhaps because the camera has moved, or the lighting has changed). Such a

change forces the system into the next state, where it attempts to buildanewhackground.

The steps in this background-building process are as follows:

l. The system captures several incoming images-usually four or five frames. These

frames possess sufficient information if the foreground object (assumed 10 be a

person) is in motion. This requirement for "sufficient information" is verified by

measuring the globai variance between frames. If this is high enough. then local

variances are calculated at each pixel and thresholded 10 produce a "variancemap".

The purpose of thresholding in this case is to rule out noise due to Iightingchangesto

extract the person's movemeru. Jf ihe global variance is not high enough, then a

funherset of frames are captured and the process is repeated.

2. Draping is applied to the inter-frame variance map. Because the person moves, there

will be a high-variance border surrounding the person. This can be found by draping,

just as previously described in chapter three, so the difference between the foreground

and the background is found. The parameters of draping are adjusted so that the drape

can be held in place by the variance. The draping method is now extended and

improved to apply on the variance of the incoming images to identify movingareas

and thus separate foreground objects from the background,

3. lfa good drape results, every point outside the drape can be assumed 10 belong to the

background, These points are loaded into the background image setup area. The

points below the drape are assigned "Don't know" values in the background image.



4. If the total area of "Don't know" points in the background image is smallerthanthe

given threshold. the system switches back to its simple backgrcund-subtraction

operating mode. lf not, then background building continues:v ariance is re-calculated.

anew variance map is generated. the drape is applied. and points outside are added to

the background image. Inthis manner, as the foreground object moves, "Don't know"

points in the background image are progressively replaced with new pixels of

uncovered background.

Figure5 .lillustratesthedifferentslagesofthebackgroundfonnationprocedure

describedabove .Theinler-framevariancemapisgeneraledfromseveralimagesandthe

variance is calculated as shown in Figure 5.1a.lfthe global variance is greater than a

given threshold (30),draping is applied on lhis variance map (Figure 5. lb). The person's

head can be located in the box through this process as shown in Figure 5.lc . In the

meantime. this drape is used to identify the background areas. The pan outside lhedrape

is loaded as the background setup (Figure 5.ld) .

After several iterations, the white ("Don't know") area becomes smaller and

smaller until it is less than the given threshold. Potentially lhe while area can be

completely eliminated if the iteration is sufficiently long. However, lhe lhreshold is taken

asthestoppingconditioninordertobeabletocarryoutthisoperationfastenoughtobe

used in real time. Experiments demonstrate lhatlhe influence ot this residual areaonlhe

final result can be negligible. At lhis stage, the background setup is regarded as finalized

(Figure 5.le) . The person's head can then be extracted effectively by subtraeting the

resultant background map fromlhe incoming image (Figure 5.1f).



(d) (9)

Figure 5.1 Multiple state face tracking system

5.2 System Improvement

The background-building scheme described in section 5.1 works satisfactorily if

the borders of high variance around moving objects are well defined . Often . however,

because of small movement, and similar shading between foreground and background ,

the borders are broken . This makes it difficult to recoverthe complet eforeground object

by simply applying the technique described in section 5.1. Partofthe foreground object is

inevitably misinterpreted as the background and is introduced to the backgr ound map.

Several technique s have been investigated and attempted for correcting this problem .

Among them. median filtering , mult iple direction draping and polynomial interpol ation

yield satisfactory impro vements. The difference among the three methods lies in their

strategies for approximating the foreground outline from the drape .



5.2.1 Media n filtering

The median filter sons the values of all points that are neighbors of the highest

point of each column in the inter-frame variance map. The median value of the list is

selected as the new value of this point. Seven points are used as the neighbors of this

point. This strategy can remove peaks of both high and low values without flattening

value steps, which separate variance value regions . The variance matrix is updated with

these new values . This process often needs to be iterated several times. Draping is finally

applied on the newly generated inter-frame variance map. This method can improve the

system to a certain degree although it cannot completely solve theproblem.Figure5.la

shows the inter-frame variance map. Figure 5.1b is the original drape settling on the inter-

frame variance map. The drape penetrates pan of the head. A notch appear son the left of

the head because pan of the head has a similar color with the background andthismeans

the head movement is not captured by the inter-frame variance map. By using the median

filteringmethod,anewvalueofthehighestpointofeachcolumnisadded to the inter-

frame variance map. The result is improved as shown in Figure 5.2c.

(a) (b)

Figure 5.2 Result of median filtering

(c)



5.2.2 Mu ltiple direction draping

Multiple direction draping allows draping from top. left and right threedirections

of the inter-frame variance map respectively 10 yield a normal upperdrape,aleftdrape

and a right drape. The background map is generated from these three drapes. The part of

the incoming image that is outside the outmost area of the three drapes is loaded as the

background image. The residual area in the background is assigned as "Don' t know"

value. Figure 5.3 illustrates the mechanism of the multiple direction draping method. The

drape is shown as the dashed line in the images. Figure 5.3a and Figure 5.3c show the

draping operation from left and right respeclively. Figure 5.3b is thecombineddraping

from all three directions in the inter-frame variance map. Notice that the person 's head

cannot be fully recovered due to the notches on the top of the head if we only apply

normal (up-down direction) draping. Consequently an accurate background map cannot

be constructed because this part of the head is introduced to the background. The multiple

direction draping overcomes this satisfactorily as shown in Figure5 .3b.

(a) (b) (c)

Figure 5.3 (a) Left draping (b) Combined draping (c) Right draping



5.2.3 Polynomial inlerpolatlon

This method starts by finding the highest point in each column of the inter-frame

variance map. If the difference between any point with its neighbor in the highest point

array is greater than a given threshold (lOpillels), it is regarded as an isolated point and is

discarded . The remaining points forrnanew array. Applying polynomial interpolationon

this new array results in a smooth curve. The inflection points are located and connected

by straight lines. These straight lines are pUI back into the inter-frame variance map.

Draping is applied on the new inter-frame variance map. We can modify the background

image from the resulting drape . The portions of the incoming image whose positions are

above the drape are regarded as the background image, The portions of the incoming

image whose positions are under the drape are assigned as "Don 't know" regions. The

background image modification continues until the "Don 't know" region is smaller than

the given thresholdThe object segmentarion map can, therefore , be generated from the

background image and the current incoming image. The head can then be located by

applying another draping on this segmentation map.

Figure 5.4 shows the mechanism of the polynomial interpolation technique.

Figure 5.4a is the original drape on the inter-frame variance map. The drape cannotc over

the entire head, The dashed drape occupies part of the head area as shown in Figures

5.4a. Figures 5.4b and 5,4c show the results after the polynomial interpoladon. In Figure

5.4b,we locale the high inflection points of the curve constructed from the highest points

of each column in the inter-frame variance map. Interpolating the inflection points

bridges the gaps of the head. The draping is then applied on Figure 5,4b 10 I11leout the



unexpected interpolation points . Figure 5.4c is the improved drape . Meanwhile the

background is generated accordingly.

The problem of background change is very difficult to solve because the

situations resulting from the change are diverse and complex . The approachesdeveloped

so far in this context yield satisfactory resuits, enabling this human face tracking system

to tackle problems with a substantia l amount of illumination change and global

r:
(a) (b) (c)

Figure 5.4 (a) Original draping (b) Polynomia l interpolation (c) Improved draping

5.3 Interface Descr iption

This real-time face tracking system was implemented using C++ and MCLGaliery

(Cheng and Robinson 1998) in a Pentium II 200MHz personal computer. A graphic user

interface was developed to facilitate the visualization and control of the entire face

tracking proces s. This interface consists of six image window s and five control buttons .

The six image windows are MCLBitmap (displaying the captured head), MCLVideo

(displaying the incoming image from camera), Backgr ound/ormation image , Left drape,



Combined drape and Right drape. The five control buttons are Capture Background,

Stan People Detection, Load Background, Load File and Show Average , which are all

self-descriptive. Figure 5.5 shows this interface processing an example image . The

background formation in this case is achieved by using multiple draping method. By

pressing Start People Detection button, we can switch among polynomial interpolation ,

median filtering and multiple draping background formation methods . The dynamic

states of the incoming image, modeling background, original draping,improveddraping,

foreground/background segmentation map and the tracked head are displayed in the

corresponding windows .

Figure 5.5 Graphic user interface showing example images



5.4 Experlmenr. lind Results

A series of experiments have been carried out to test the effectiveness and

accuracy of the improved system. The three background formation methods are tested

and compared against a common inter-frame variance map as shown in Figure 5.6a.

There is a notch appearing on the lOP of the head because ofa small movement. and

similar shading between the foreground and background . The original drape penetrates

into this notch as shown in Figure 5.6b. This pan of object will be misinterpreted as

background if the background is formed from the original drape. Medianfiltering using

three iterations can pani allyrecoverthis pan of the object as foreground (Figure5.6c).

Better improvement can be achieved by more iterations at the sacrifice of the

computation time. The result of multiple draping is shown in Figure 5.60. together with

its left drape (Figure 5.6d) and right drape (Figure 5.6f). The combined drape, which is

the outmost pan of the three drapes, can nearly recover the entire notch as the foreground

(see Figures 5.6d.e and f). The smoothed drape by using polynomial interpolation is

shown in Figure 5.6g. which also indicates a significanl improvement. For the three

methods used jnedian filtering can recover most of the notch back as the foreground.

Both multiple draping and polynomial interpolation result in a significant improvement ,

and using these two methods . almost the entire background can be recovered.

The improved system can track the human head accurately and quickly in real

time. The background formation is switched on whenever the difference between the

consequent frames is sufficiently great. Figures 5.7. 5.8 and 5.9 are animage sequence

showing the system performance at frames 5. 50 and lOO.The inter·frarne variance map



shown in Figure 5.7a is obtained from the first five consequent images. Figure 5.7b

shows the effect of multiple draping applied on this inter-frame variance map. The

resultant multiple drapes are shown in Figure 5.7b. The recovered "Don' t know" region

is shown as the white patch in Figure 5.7c, which occupies a significant portion of the

image. Meanwhile, the incoming image (frame 5) subtracts the current background 10

yield a segmented image and then the draping is applied on it (Figure 5.7d). The head is

identified as shown in Figure 5.7d. Since the "Don' t know" area is very large at this

stage, the background formation needs to be continued . The background formation is

estimated from every five consequent frames, while the backgroundsubtraetion andhead

tracking is performed at frame rate. Figure 5.8 shows the system performance at frame

50. Figure 5.8a is the inter-frame variance map resulting from frame % to frame 100. The

multiple draping and the resultant "Don 't know" area are shown in Figure 5.8b and c

respectively . At this stage, the "Don't know" area shown in Figure 5.8c is reduced

significantly after several times of background formation . The updated background is

subtracted from the incoming image, followed by a drap ing (Figure 5.8d). The head

border locates the head more accurately than it does at frame 5 because the updated

background is much closer 10 the true background . This process repeats for frame 100

shown in Figure 5.9. The generated background shown in Figure 5.9c is very close to the

true background with only a small patch of "Don' t know" area. The system detects this to

be less than the given threshold and regards it as the true background . It will switch on its

backgro und formation mode ifi l detects that the differenceberween the consequence



images is greater than the given threshold. Figure 5.9d shows the accurately tracked

(a)

(d)

(b)

(e)

(g)

Figure 5.6 Comparison of three methods

(f)

(c)



(a)

(c)

(b)

(d)

Figure 5.7 System performance at frame 5

(a)

• II

(c)

(b)

(d)

Figure 5.8 System performance at frame SO



(a)

(d)

(b)

(e)

Figure 5.9 System performance at frame 100



ChapterSix

Conclusionsand FutureWork

A real-time face tracking system has been described in the preceding chapters .

This chapter concludes the author's thes is work and points out the possible directions of

A real-time face tracking system has been developed to track upright people ' s

heads from various complex background scenes. The system setup consists of a digital

camera. a personal computer and supporting face-tracking tools, A graphical user

interface was also designed that allows the user to interact conveniently with the system .

Combiningwithbackgroundsubtraclion, a draping technique was idenlified as thebasic

head tracking method. The draping method has been modified and extended throughout

the study aiming at constructing head and shouldersilhouenes of the foregrou ndobjects.

This enables accurate recovery of the desired foregroundobjeclS from the segment alion



map without including noise from the background scene. Once the drape issellied.an

innovative head identification method consistingofa drape interpolation followed by a

head merging was investigated to achieve an accurate head extraction. A significant

amount of effort was focused on background formation because the accuracy of the

system depends substantially on the background maintenance. A multiple state system

was proposed to tackle the changes happening in the background scene. This system can

switch automatically between background formation and face trackingdepen ding on the

detected background information. The dynamic background formation process continues

until the "Don't know" area in the generated background is below the threshold and

resumes whenever the difference between the incoming background and the generated

background become significant. Median filtering. multiple draping and polynomial

interpolation were also incorporated into the system to deal with problems associated

with a bad drape. This system is implemented in a Pentium II 200 MHz personal

computer. In the current selling, this system can process three frames (160x12o pixels

image) per second. A variety of experiments have been carried out in the course of the

study to test and verify the system's accuracy and robustness. which are also presented

throughout the thesis. In summary. the major contributions of the thesis are:

1. Designing and developing a real-time face tracking system.

2. Modifying and extending the draping method so that it can be used on both an inter-

frame variance map and the original segmentation map. The improved draping

method is proved to be more flexible and robust than its predecessor.



3. Developing an innovative face tracking method consisting of an exhausting head

search scheme followed by head merging. This method significantly improves the

accuracy of face location and identification of the system.

4. Developing a multi-state fully automatic background formation technique to tackle

both gradual and sudden backgroundchanges.Thistechniquegreatlyimp!Ovesthe

system's stability, efficiency and reliability of the background maintenance under

diverse and complex situations , and hence allows accurate recovery of the correct

foreground objects .

5. Conducting a significanl number of experiments under various situations to test and

verify the system performance . Experiments indicate that the real-time face tracking

system can function well despite the variation in lighting, both local and global

background movements and shadows in the background scene.

Although the system performs successfully under a variety of background scenes,

it maybe further improved. The possible alternatives include:

l. [nsteadofusing median filtering, some other filtering technique can be used 10

process the inter-frame variance map.

2. UsingGsnakesdynamiccontourtoextracttheboundaryoftheforegroundobjeclsas

it relies on detailed object-shape or object-motion models to distinguishbelW een the

foreground and the background.



3. A fixed numberof iterations is used in smoothing the HeadWidth-row curve

disregarding the results of the curve fitting. The system can befunheroptimizedifit

can automatically determine the iteration requirements depending on the different

4. Thesystemcanbefunherupdatedbyincorporalingaddilionalfunclionstorecognize

gestures, postures and body pans.
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