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Implicit assumptionsof micro-habitat modelsare that (I) habitat limits population levels and

small-scaleinformation on habitat selection behaviours of individuals can be used to manage

populationsat largespatio-temporalscaJes (scale-up); (2) the single or few measurement scales

usedinhabitatmodelsareappropriatefor identifYjngimportanthabitats;and {3) "better"

habitatsareeharaeterisedb yahi gherdensityo rfrequency-of-use, i.e.densitycanbeusedasan

indicator of habitat quality.

(I) Basedon scope- and rate-diagramsfromfield-data and theoreticalscenarios of movement

andmonality,l conciuded thatsalmonidhabitatmodelsope rate inthe contexlofprocessest hat

may not be imponant to the problemswe would like to address. I suggestedsurveydesigns

that allowproblemsassociated withscaJe-upt o be overcome.

(2) I evaluateddistributionsofjuvenile Atlantie salmon (Salmosal ar) over a range 0fspatial

scaJesbasedonastrearn-tankstudy {spatialsealeslemto3m)andfie lddata (spatialscalesl

cmtol5m),todeterrninewhetherpatehinessoffishd istributionsoras sociationswithdepth,

watervelocityand substratedependedon spatialscaJe,to deterrnir.escaJesmostappropriateto

habitatmodels, and to comparemulti-scaleversus single-scalehabitatmodellingapproaehes.

Results indicated associations with eonspecifies, substrate, water velocity and depth

changed with spatial scale and direetion relative to water flow. Associations were most

different from random at small spatial scales(ambit radius < 50 em). Both studies

indicated thatsi ngle- and multi-scale habitat seleetion models wereequall yabletodeseribe

fish densities at small spatial scales (ambit radius< 4 m). The field-based study indicated

thatsingle-and multi-scale modelsoften failed to deseribe fishdensities at scales larger

than used in the model (scale-up).

(3) I studieddensity-dependenthabitat useby Atlanticsalmonparr basedon experimental

riverineenciosuresandfielddata. Results fromthe experimentalstudy indicated that habitat

use changedwith populationdensity. Resultsfromthe field-basedstudy were lessclearwith



someofthe resultssuggestingdensity-dependent distributionprocesses. lconcludedthat

habitatselectionby salmonparr was density-dependentand highly variable. Changesin habitat

use withdensity were most likely due to small-scalespacingbehaviour orte rritoriality.

I concludedthat quantitativemulti-scaleapproaches are important to habitat rnodelling,

identified importantresearchquestions. presentedsome novel techniquesforscalinganalyse s

and madesuggestionsto improve habitat modellingand resource management.
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PREFACE

Understanding and predicting effects of man on naturedependsonunderstandingthe

relations between organisms and their environment . To ach ieve suchan understanding,

distributions of organisms are studied relative to distributions of environmental features .

From such study, inferences are made on the processes that underlie the observed

distributions and the most important of these are expressed and linked together in a habitat

model. Habitat models simplify, summarise and describe this understand ing, and as such

are valuable to resource management and environmental impact assessments.

Inthisprefacelwillexplainwhyitisimportanttostudydistributionsandprocessesat

multiple scales, and will show how this relates to habitat modelling. To begin, I will use

two examples : one illustrating scale dependency of associations and 0 ne illustrating scale

dependencyofprocesses. Fromtheseexamples,lwillintroducethemaintopics

addressed in the thesis .

Scale dependency of associations: an example

The concepts involved in multi-scale habitat modelling are more readilyconveyedbyusing

hypothetical examples close to daily experience . Suppose we would like to understand

camping behaviour of people in order to design the best possible campground . To achieve

such an understanding, we could study the distribution oftentsrelativetothedistribution

of environmental features that are thought to be important, and we could then summarise

this understanding in a "camping model" that describes the occurren ceoftentsrelativeto

these environmental features.

We stan the project by making maps of the distribution of tents and thoseenvironmental

features thought to be important in camping behaviour , e.g. theavailabilityofwater, the



flatness of the terra in, and the availability of firewood . The maps can be drawn at different

resolutions or spatial scales.

Depending on the resolution of the maps we use, our results will vary. At a small spatial

scale ( l x l m),tentsarenegativelyasso ciated with the availability 0 fwa ter and wood and

positively with the flatness of the terrain, because campers do not put their tents in trees or

in lakes but do put them on level ground. At larger spatialscal es (IOOOxlOOOm),

however, tents are positively associated with the availability of water and wood, as water

is used for activities such as fishing, swimming or sailing, and wood isu sed for cooking

and campfires. Because small-scale flat places may often be found within larger areas that

are generally steeply sloping, such as mountains, theflatnessoftheterrainma ynotbea

good predictor at larger spatial scales. Negative associations with flatness may even be

found at these large spatial scales when mountainous areas aret he ones preferred for

recreational activities such as climbing or hiking.

These relations may be summarised quantitatively in a camping modeL Using this model,

we then may try to evaluate different areas with respect to suitability for camping.

However ,dependingonthescaleofthismodel ,ourcondusions withrespecttosuitability

willd iffer: a small-scale model may predict that desert plains are suitablefo rcamp inga s

wood and water are hardly present and the terrain is quite level; a large-scale model may

predict that mangro ve swamps are suitable for camping as trees and water are abundant .

Obviously, neither one of these conclusions is right, despite the fact that both models do

giveavalid,al though incomplete, description of how someone chooses where to place a

campsite . The problem is that camping behaviour operates at multiple scales, whereas the

modelsoperateoni yatthe scaleap propriatetotheoriginalresolution.

This example shows that associations modelled at small scales may give opposite results

from tho se modelled at large scales. This implies that a comparison of results from studies

thatdifferinmeasurementscalecannotbedone ·.,ithoutsomeunderstandingofhowscale



affects results, and that results from studies done using inconsistent measurement scales

cannot be interpreted

Scale dependency of processes : an example

Distributions of organisms are the result offour processes : mortalit y, movement,

reproduction and growth . Ifone aims to describe the distribut ion of organisms it is helpful

to have some idea of which of these processes are important and which are not . Research

couldthenbedirectedatthemoreimportantprocesses,unimportant processes could be

ignored and, from this, a simpler model could be made without sacrificing model

efficiency . However, the relative importance of different processes varies with scale. This

may be best explained using another example .

Suppose that we are interested in the distribution of mice. Tobegin,wevisualisethe

continent as a huge checke rboard with mice scattered randomly across it. Whenthecells

that compose the checkerboard are small (say Ix 1 m), changes in the number of mice over

short periods of time (say I hour) in each cell are mainly influenced by the way in which

mice run about , i.e . the distribution of mice at small space/time scales (I rn, I hour) is

dom inated by movement . By contrast , when cells are large (say IOOxlOO km) and times

arelong(saylyear),thisverysamedistributionisdominatedbymortality,insteadof

movement, as the chance an individual mouse will live and die within a single cell is larger

than the chance it will move to a different cell.

This example shows that small-scale processes may not be that relevant to describing

distributions at larger scales : A model describing movement of mice at small space/time

scales may not adequately describe this very same distribution atlarger space/time scales,

becausethedistributionofmiceattheselargerscalesisdrivenby reproduction and

mortality rather than movement . In addition, different variables maybe differentially



important in their contribution to movement and reproduction/mortality. In other words ,

what is seen at larger scales may not be simply the summation of small-scale processes .

Scaling analyses

These two examples illustrate that, depending on the scale we use to study a system, our

results and understanding of the system in terms of distributions ,associationsand

processes may differ: The associations between tents and environ mentalfeatures,the

models that summarised these associations, and the recommendations made based on these

models were all scale-dependent (example I); different processes were perceived as being

importantindeterrniningthedistributionofmice,dependingonthe scales used to study

them (example 2).

Because observational resultsvarywithscaJe, it is important to consider explicitly the

measurement scales one chooses in a study . Multi-scale analyses that explicitly evaluate

distributions, associations and processes over a range of scalescanaid in determining

which scales are most relevant in a particular problem . Consider the camping model: by

studying the associations between tents and the availability ofwaterandwoodovera

range of scales one could identify the several scales at which campingbehaviouroperates

and then, with that knowledge, make the best model to answer the question "How far is

one wilIing to travel from a tent site to gather wood or water?" Without multi-scale

analyses, the choiceofa particular measurement scale for making the model could easily

become purely personal and subjective . '

Multi-scale analyses could also help to understand how the structure and orientation of

landscapeelements-thelandscapemosaic-affectsthesuitabilityofan area for camping,

i.e. is it better for a campground to have a few large lakes ora lot ofs mailer ponds, and

how does the distribution of smaller and largerlakesaffeet the suitability ofa terrain for

camping? In addition, multi-scale approaches may act as a framework to incorporate



results obtainedat differentscales and to evaluatethe validity0 f extrapolating srnall-scale

models in order to address problemsoperatingat muchlargersca les, i.e. is it possibleto

make inferenceson the suitability for campingof very largeareas, based on observations

on the distributionof tents and environmentalfeatureswithinsuch areas (scale-up)?

Multi-scale approaches in salmonid habitat modelling and thesis questions

Salmonidsare probablyamong the best studied fish speciesin the world. Habitat models

that describe relationsbetween the occurrence of salmonids and riverine habitats are

widelyused in impactanalysesand instreamimprovement projects. Despite the

considerableresearcheffort that has gone into these models, associationsofsalmonidsand

their habitats and the processes thatgovem salmoniddistributionshavehardlybeen

studied usingexplicitquantitativemulti-scaleapproaches.

The choice of measurementscale is often based on the biologicalintuitionofthe

researcherconstrained by logistics. Forexample,previousworkhasshownthatsalmonids

seleetpositionsin streamsbasedon theircompetitiveabilitiesandthe profitabilityofpositions

interrnsofpotentialnetenergyintakerateandpredationrisk,withprofitabilityofpositions

beinglargelydeterrninedby the physicalhabitatin terrnsof cover, bottomtopographyand

currentflow pattems. As such,the areawithina streamisoftenregardedas a hierarchyof

potentialpositions, rangingfrominaccessibleto ideal,witheachfishchoosingthe most

profitablepositionthat its rank in the socialhierarchywillallow. Territoriality,small-scale

spacingbehaviouror pre-emptiveexclusionare thusassumedto regulateuseofpreferred

positionsand ~pacewhich,ifinshortsupply, areassurnedto regulatepopulationdensity.

Thus,the physicalhabitatis regardedas a templatedeterrniningdistnbution patternsoffish.

Basedon this,use of availablehabitatby salmonidsisoftendescribedat smallspatialscales

usingso-calledmicro-habitatmodellingapproaches(habitatsdescribedatscales <l m' ). But

the intuitivewishto workat thisfinescalemay haveto bechangeddependingon the resolution

of availablemapson riverinehabitatsor other logisticalconstraints,suchas the timeand



funding availablefor the study. The result is that measurement scales vary both among and

within habitat modelling studies .

The fact that measurement scales vary constitutes a problem when interpret ing, comparing

and applying results from various studies . In particular, the scale-up from habitat model to

management problem has hardly been evaluated quantitatively: Whatistherelevanceofa

model that describes the distribution offish over small-scale habitats to the density offish

in a much larger area, i.e. how relevant are small-scale models to large-scale problems?

Multi-scale analyses are needed that evaluatesalmonid distrib utions ,associationsbetween

salmonidsand their habitats, and the processes that govern salmoniddistributions. Critical

questions are: At what scales are salmonids associated with their habitats? Do multi-scale

analyses confirm the importance of scales as determined by other studies? Whatprocesses

predominate at what spatio-temporal scales? Such studies could act as a framework to

incorporate ideas from studies operating at different scales.

This thesis makes a start at multi-scale analysis ofsalmonid distributions . Processes

important to salmon distributions were stud ied over a range of spatio-ternporal scales to

determine which processes predominate at which space-time scales , as in the mouse

distribution example, and to explore the problems associated with scale-up (Chapter 2).

Atlantic salmon distributions and associations between salmon and their habitats were

studiedoverarangeofscales,asinthecampingexample,todeterminethescalesmost

important to habitat modelling (Chapter 3)_ Because use of habitats by salmonids is

generally considered a result of competition for preferred habit ats,specialattentionwas

given to effects of this process on the distribution of salmon (Cha pters3 ,4).



Chapter 1: Habitat selection behaviours in habitat modelling and

fish-habitat management

1.1. Habit at models in resource management

Anunderstandingofhoworganismsaredistributingarnongavailablehabitatsiscrucialto

managingnaturalpopulationsof animals. To achievesuchan understanding,distributionsof

organismsare srudied relativeto distributionsof resourcesand conditionsthoughttobeof

importance. Habitat modelsaim at quantifyingrelationsbetweendistributionsoforganisms

andhabitats,and as suchare an important partof resourcemanagement: Habitat modelsare

widelyusedfor a varietyof aquatic as wellas terrestrialspeciesand habitats(cf.Dueletal .

1996).

Implicit assumptionsof suchhabitat modellingapproachesare that (1) habitat limitspopulation

levels; (2) "better"habitatsarecharaeterisedbyahigherdensityorfrequen cy-of-use, Le.

densitycan be usedas an indicatorof habitat quality;(3) habitat selection isi mportantto

distributionsof organisms, i.e. thesedistributionsare largely drivenby habitatseleetion

behaviours; and (4) habitatseleetionmodelsbasedon observationsofindividualsorsmall

groupsof organismscan be used to addressproblemsat the population leveI,Le.processesthat

operateat small space-timescalesare importantto dynamicsat space-timescalesmuchlarger

thanthose of the initialobservationsandsmall-scalehabitat seleetion modelscan beused to

predict or describedistributions at largespace-timescales.

It iswellknownthatassociationsbetweeno rganismsandtheirhabitatsvarywithscale(cf.

Wiens1973, Morris 1987A-C,Piatt 1990, Syms1995, Poizatand Pont 1996)andt hat the

relativeimportance of processesvarieswiihscale(HomeandSchneider 1994). Becauseof

this, a scale-explicit approachis neededto identifyimportant processes, variables, andscales.



Nevertheless, most habitatmodellingstudies use a single or few measurement scalesand

an implicit use of scaling, despite an awareness oft hei mportanceo fs cale (cf Frissell et al.

1986, Minshall 1988, Imhof et al. l996, Lewis et al.l996, A1lan et al. 1997). The

measurement scale chosen is often not the result of aquanti tativemul ti scaleapproach,

but is based on the biological intuition of the researcher combinedwith logistical

constraints; the scale-up from observation to problemis intuitive, seldomlymadeex plicit,

and rarely quantified.

In thisthesis I show the importance of scaleto habitat modelsand resourcemanagement: 1

developseveral new scaling techniques that canbe used in habitat selection and habitat

modellingstudies. Thesetechniquesallow for aqu antitative and scale-explicitassessmentof

fish-habitat associationsandan evaluation of the importance of habitat selection to habitat

modelsand resourcemanagement. Basedonthesetechniques,Iinvestigatewhether

possibilitiesexist for improving habitat models by usingscale-explicitapproaches. Thethesis

focuseson Atlanticsalmon(Salmo salar). TheideasIpresen t,however,arenotrestrietedto

managementof salmonpopulationsalone.

1.2. Habitat models in fisheries and tish-habitatmanagement

Habitat models are widelyappliedto riverine fish populations where they find use in

stream habitat investigations and in the resolution of conflicts arising from water allocation

and hydropower development(Fausch et a!. 1988, Reiser et al. 1989, Armour and Taylor

1991). Habitat modelsare basicaIlydose-responserelations,with "habitat" as dose and

"habitat use" as response. The mathematical formof these modelsmay be multivariatemodels,

frequency-of-useeu rves, preferenceeurves,or weighted-useable-areas, withexplanatory

variables mostlyr eferring to abiotic habitatco mponents (Orth and Maughanl 982, Fausche t

al. 1988). Variablesmostcommonly included in fishhabitat models are (I) drainage

descriptors, suchas total streamlength,streamorder and stream gradient,or chemical

parameterssuch as conductivity (macro-scale variables),(2)c hannel morphometryand flow



descriptors,such as discharge,streamwidth,meanwater velocityand stream depth, or

broad-scalefeaturessuch as pools, rifllesand runs (meso-scale variables),and (3) fishmicro­

habitatdescriptors,such as water depth,water velocity, cover and substrate(micro-scale

variables)(Fauschet al. 1988). Variablesreferringto biologicalhabitatcomponents,such as

invertebrate driftor food availability, are seldomincluded, despite the faet that food availability

and drift concentrations affeetfish distributions(Jenkinset al. 1970, Griffith1974, Gibsonand

Galbraith1975, Wankowski 1981, Fausch 1984, Hughesand Oi1l1990, Hughes 1992A,

1992B). Thisfocus on physicalhabitatvariablesoriginatesfrom the faetthat othervariables

are more difficultto measureand require an often unrealistictimedemand for data-gathering

(Gore andNestler 1988). Habitat modelsmust referto variablesthat can be affectedby

managementaetions(Fauschetal. 1988). Decision-supportsystemsthat relyon habitat

models, such as the instreamflow incremental methodology(lFIM/PHABSIM, Bovee 1982,

1986, Milhousetal . 1989)often aimat relatingbioticvaluesin equivalentterms to those used

to estimateother uses of availablewater (Gore andNestler 1988).

Fishhabitatmodelscanbeclassifiedasmicro-,meso-ormacro-habitatmodels, dependingon

the spatialresolutionor "scale" of the explanatoryvariables. Micro-habitatmodelsdescribethe

distribution of individualfishover small-scalehabitat features. Meso-andmacro-habitat

modelsdescribefishdensitiesasafunetionofmediumtolarge-scalehabitatfeatures. The

distinetionbetweenmicro- ,meso-andmacro-habitatmodelsisnotweUdefined. In this paper I

willreferto micro-habitatmodelsas modelsbasedon habitatfeaturessmallerth an 1 m2,to

meso-habitatmodelsas modelsbasedon habitatfeaturesrangingfrom 1 m'to 1000m2
, i.e.

one to severaltimes the width of the river, and to macro-habitatmodelsas modelsbased on

habitatfeatureslarger than 1000 m'(\argereach, tributary, or riverscales).

Exarnplesofsalmonid micro-habitatmodelscan be found in Shirvelland Morantz(1983),

DeGraafandBain(1986) ,RaIeighetal.(1986), Morantzet al. (1987), Lambertand Hanson

(1989),Heggenes(1990) , Heggenesand SallVeit(1990), Heggenes(1991),Harrisetal.(I992)

and Nehringand Anderson(1993). Thesemodelsare generallyderivedfrom direet



observationsof individualfish,oftenobtainedby snorkellingorelectroshocking(BoveeI986).

ThespatialscalesoftheseobservationsareintherangelO-'tolm', dependingon the

precisionof positiondeterminationandresolutionofhabitatobservations. The temporalscales

of theseobservationsrangefromsecondsto severalminutes,dependingon the timespent

observingindividualfish. At these spatialand temporalresolutions,habitatusewillvary

primarilydue to habitatselectionbehavioursand individualmovements.

Examplesofsalmonidmeso-and macro-habitatmodelscan be foundinBinnsand Eiserman

(1979), Raleigh(1982), BowlbyandRoff(1986), Lankaet al. (1987), KozelandHubert

(I989A),BozekandHubert(l992),Amiro(l993),Gibsonetal. (1993)andScrutonand

Gibson(1993). Thesemodelsaregenerallybaseduponinformationon fishdensityand habitat

in riversections. This informationisobtained by removal-ormark-recaptureestimates,using

electrofishingequipment,barrier-netsorseines. Thespatialscalesof observationsthat underlie

thesemodelsare usually in the rangeof 10' to 104m2
. The temporalscalesrangefrom I sec

to morethanseveralweeks, dependingon whetherobservationalunitswereblockedoffand

hencedensities reflect an instantaneouspictureoffish densityat the observationalunit,or

whetherdensitieswere monitoredover a periodof time,e.g. as in mark-recaptureestimates

fromunclosedareas. Atthesespatialandtemporalresolutions,habitatusewillvaryduetoa

complexmixtureof movementand mortality. Somestudiesuse a combinationof micro-and

meso-macro-habitatapproaches (cf Bozek and Rahel1991)

The currentstate-of-the-anof habitatmodelswas developedlargelywithin the lasttwo

decades,and habitatmodellingtechniquesare fast changing. Habitatmodelshavebeen

developedsincetheI970 's(Fauschetal.1988),althoughb iologistshavestudiedrelations

betweenfishand theirhabitatsfora lot longer. In particular, the PHABSIMcomponentof the

InstrearnFlowIncrementalMethodology(Bovee 1982), a micro-mese-habitatmodelling

approach,is frequentlyused inwater allocationconflictsandhydropowerdevelopment(Orth

1987). Currentresearcheffortsfocuson thedevelopmentoflocal modelsfor differentriver

systemsorregions(e.g.DeGraafandBainI986,ScrutonandGibsonI993),oronan



evaluationofthespatio-temporalgenerality of models(e.g.KozelandHube111989B,

HeggenesandSaltveit 1990,BozekandRahel1992). Inaddition,effOI1S are madeto increase

the descriptiveand predictivepowerof modelsbyaddingmoreandmoredetailand realism.

Examplesare a changeinfocustowardstwo andthreedimensionaiflowmodels, the

developmentof dynamichabitatmodelsthat addresschangesin habitatsand habitat

requirementsovertime, the developmentof modelsoffish metabolismand driftfeeding,and

thedeterrninationofmicro-habitatrequirementsofstrearninseets,an impoltantsourceoffood

forfish(cf.Leclercetal.1996) .

Habitatmodellingapproacheshave beenwidelycriticised(cf.Orthand Maughan1982,Van

Home 1983,Mathuret a1. 1985, Bleed 1987, Orth 1987,Fauschet ai. 1988,Gore and Nestler

1988, Barinaga1996). In short,few effortshave beenmadeto test the predictivecapacityof

modelswithindependentdata. Thereis littleevidencethat fishesrespondto changesin model

parameters. Modelsare oftenbasedon fewdata. Observationaldata on fishdensities.

individuaifishand habitatvariablesmaybe biased. Soundstatisticalproceduresare often

overlooked. Methodsfor choosingthe best model are poor. Fishdensity rnay not be limitedby

habitat,but by otherfactorssuchas exploitation. Variablesthataremorerealisticwithrespect

to the biologyof the fish,suchas foodavailabilityandbiotic interactions, are oftenoverlooked.

Effeetsofflow alterationsmaytakemany yearsbeforethe fulJimpacton habitatsandfishmay

be recognised.whichlimitsthe possibilityto assessthesechanges. Habitatmodelsmostlyrefer

to game animaisor otherspeciesthat areof interestto the generalpublic,butignoreother

species. Temporaivariationsinhabitatandhabitatrequirementsareseldominciuded. Habitat

modelsare oftenderivedfromspecificlocationsat specificmomentsin time. Most habitat

modelsare basedon observationson habitat use in summer. Modelsrarelyinciudehabitatuse

in winter. at night,duringhightlowortlood conditions, orat placeswheresamplingisdiflicult.

Fromthis. importanthabitatsor criticallifestagesmaybe overlooked. Fishdensitymaynot be

a good indicatorof habitat quality. Synergisticeffeets amongresourcesand/orconditionsare

oftenignored.



Inspiteof manyshortcomings,habitatmodellingapproachesarestillwidely useddue to their

arguedefliciency,theirapparentsimplicityandcorrespondingease-of-use,andforlack of

betteraitematives(GoreandNestlerI988) .

1,3. Development of effective habitat models

Three aspectsof modelsareof importance:realism,precision andgeneralism(LevinsI966) .

Fromthis,the ultimatehabitatmodelwouldbe basedon functionalrelationsbetweenfishand

habitat(realism),explaina largeportionof the observedvarianceandgiverepeatableresults

(precision),andbe applicable10 differentaquaticsystemsat differentmomentsin time

(generalism).Levins(1966)proposedthat at most two of thesethreeassetscan be attained.

ThisissupportedbyfindingsofFauschetai. (1988)whoconciudedfroma reviewofa large

numberof habitatmodelsthat precisehabitatmodelsoftenstemfromrelativelyshortperiods

(oneseason)or fromsmallgeographicareas(singlestreamor watershed)and that precise

modelsoftenlackgenerality. In addition, it is importantto note thata modelisa simplification

of reality, i.e. simplicityis a model'svirtueand not necessarilyitsweakness. Complexmodels

are oftenimplicitlyfavouredover simplerones,as morecomplexmodelsseeminglytake into

accountmoreof the processesthat are thoughtto beofimportanceand fromthis,are assumed

to mimicrealitybetterthansimplermodelsdo. However,modelcomplexitymaynot

necessarilybe positivelyassociatedwithmodelrealismor precision.Whenaddingcomplexity

tomodels,e .g.toinc reasemodelrealismorprecision,wehavetobalancepossiblebenefits

with the associatedincreasein researchcosts. In addition,we haveto carefullyassessifthe

complexityof the modelcorrespondsto areal understandingof thesystemratherthanmerely

supportingsomespeculation.lngeneral, an increaseinmodelcomplexitywillput a

disproportionatedemandon the abilityof the researcherto understandanddescribemodel

componentsandinterrelationsand on modelvalidationefforts. Simplemodelsmaybe less

effectiveindescribingobservedfishdistributions(explainedvariance10wer)than more

complexmodels, but maybetterpredictdistributionswhenextrapolatedoverspaceor time,i.e.

simplemodelsmaybe morerobust (cf.Fauschetal.1988).



Therefore.itisimportanttoidentilYclearlytheobjectivesofhabilatmodelsbefore undertaking

fieldworkbyprioritisinggeneralism,realismand precision: modelsaimedatSlUdying

fundamentalmechanismsgovemingfishdistributionsin a particularwatershedmayhaveto

sacrificegeneralismforrealismand precision;modelsfor fisheriesmanagementthat are tobe

usedoverwidegeographicrangesmayhave to sacrificeprecision andlorrealismto anain

generality. The mostsuccessfulapproachfor fisheriesmanagementmay be to developmodels

that are realistic in the firstplace. Habitat modelsofdilferentcomplexityshouldbe compared

to assesseffectsof modelcomplexityon model generalismand precision. Habitat models

should aimat descnbingthe most importantprocessesfirstbeforeincludingothers. Variables

that most increasemodelprecision andlormodelgenerality,withthe leasteffectson model

complexity, shouldbe includedfirst. A theoreticalframeworkis necessarythat clearlyIinks

theoriesof distributionwithhabitatmodellingpraetices. Becauseof this,tooIsare neededthat

a1lowfor(l) a prioritisationof distributionprocessesand(2) a prioritisationofvariablestobe

included in habitatmodels. TheselWoaspectswillbed iscussedinthenextlWoseetions(l.4

andU).



1.4.Prioritisationofdistributionprocesses

The problem is to develop an understanding of the possibilities and limitationsassociatedwith

the use of small-scale observations of individual behaviours or density information on small

groups offish, to dynamics at scales relevant to management problems (scale-up) ,which

generally arise at time scales of years to decades and space scales of rivers orwatersheds(cf.

Imhofetal.I996,Richardsetai. 1996). This scale-up can be quantified as the range of the

problem relative to the resolution of the observations and can begraphically depicted ina so

called "scope-diagram" as proposed by Schneideret a1. (1997) . This approa ch is illustrated in

Figure 1.1 for a generic micro-and meso-habitat modelling stud y, assuming a river 0 fSOkm

lengthwithanaveragewidthoflOm. The lengths of the arrows connect ing data resolut ion

and problem range indicate the degree of scale-up or "scope ".
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Figure! .I . Scope-diagramillustratingscale-upin habitatmodelling. Thearrows

conneeting observation to problem relate to scale-upfromdireetobservations of fish

behaviours by snorkellinginmicro-habitat modelling; the arrowsconneetingseetion to

problemrelate to a meso-habitatmodellingapproachwhere river sectionswereblocked off

andsampledbyelectrofishing(seetext). Doned arrows indicate assumed or intuitive

scale-up. Solidarrows indicate scale-upverifiableby statistical inference.

Whensurveyingthis hypotheticalriverbysnorkellingalongtransects(typicalmicro-habitat

modellingapproach), the arrowconnecting"observation" and"transect" indicatesthe degree

of scale-up fromindividualfishobservations(10 sec, 0.01 m'') to individualtranseets(30 min;

20m"). The arrowconneeting"transect" and"all transects" indicates the degreeof scale-up

from individual transeets to a total surveyconsistingof50transeets (50·30 min,50·20 m2
).

Transeetsare generallynot surveyedconcurrently, nor are theypositionedadjacently, Rather,



transectsare positionedover the length of the river, andtransects are visited overa periodof

severaldays to weeks. AJl transects combined,ther efore.r epresentalarge r space-scale(river)

and an"average" habitat useofa longer time-scale(one week; assuming thisis the rimeneeded

to visit all SOtransects). Thisscale-upis representedby the arrowconnecting "all transects"

and"survey". Manyhabitatmodelsare derivedfroma singlesurvey donein early summer,

sinceflowconditionsinfilll,winterandspringoftenpreciudesarnpling. Therefore,anassumed

or intuitivetemporalscale-upis donebyusing information froma singlesurveyas a basison

whichto managefishpopulationsat timescalesrelevantto most managementproblems:

summer habitats are assumedto be limiting This is representedby the arrow connecting

"survey" and "problem". "Intuitive" in this context contrasts with the other scale-up

routines (core .....visit .....survey) which are verifiable using statistical inference.

Asimilarscale-up isdoneformeso-habitatmod~ls . Inthe exarnpleo fFigure l. l, fishdensities

are assessed by electrofishing in 2S seClions ofSOm length that are blocked-offwith barrier

nets priorto removalof the fish. Assumingthat sectionsweresarnpledconsecutively overa

periodof one month,the arrowconnecting"section" and"survey"indicatesthedegreeof

scale-upfromobservationsat individual riverseetionstothetotal survey(SOOm'p ersection;

2S*SOO=I2S00m'total;onemonthperiod) . The arrowconnecting"survey" and "problem",

indicates the intuitive scaleup fromthissingle survey to scalesrelevantto mostmanagement

problems.

FromFigure l.l it is obvious that for habitat modelling surveys, thedegreeof scale-upis often

considerable.as the totalareasurveyedand thetotal arnountof timespentsurveying is only a

fractionof the spatio-temporalrange associatedwithtypicalmanagementproblems(river,

watershed; years to decades). !naddition,lhevariablesofhab itatmodelsaremeasuredat

spatio-temporalscalesthat are muchsmallerthanare those of mostmanagementproblems,

especially inthe contextof micro-habitatmodelling.

The relativeimponance of processes is known to vary with spatio-temporal scales (Horne



and Schneider 1994). Because of this, small-scale behavioural processes that are

imponant to habitat selection may not necessarily be relevant at rhe larger scales of our

problemsandsmall-scalefish-habitatassociationsasdescribedinmicro-meso-habitat

models may not necessarily be impon ant to larger-scale distributions . E.g., small-scale

habitat selection models will not be elfectiveat describing dilferences in fish densities

among tributaries when these dilferences are driven by demographic processes instead of

habitat selection behaviours. Therefore , the scale-up from observat ion to problem will

have to be validated. This validation process is largely ignored in fishhabitatmodelling,in

spite of the fact that problems associated with scale-up have been recognised(cf.lmhofet

aI.1996). The reason for this is that the collection of data needed for a quantitative

evaluationofscale-upislabour intensive,aslargegeographical areas will have to be

sampled overlong periods of time. Another reason maybe a lack of knowledge of

mathematical techniques that can be used forquantitativeevaluationsofscale-up. These

problems will be further discussed in Chapter 2.

Fish are associated with their environment over a range of spatial andtemporalscales.

This is because they react to their environment at a range of scales,because processes that

alfect fish distributions operate over a range of scales and because of the propagation of

effects from one scale to another . An example of behaviour operating atmorethana

single spatial scale is the selection by salmonids for specific holdingpos itions(small -scale)

with relatively low snout velocities in areas of high current conditions (larger scale) where

drift is concentrated (Chapman and Bjomn 1969, Everest and Chapman 1972, Wankowski

and Thorpe 1979,Fausch and White 1981).Anexampleofthepropagationofelfects

across scales are the effects oftlood events and ice scour (small temporal/largespatial

scale events) on riverine fish populations (largespatio-temporal scaleeffect) (cf. Errnanet

al. 1988, Fausch and Bramblett 1991,Pearsonsetal. 1992). Althoughflashtloodsmay

have detrimental influenceson riverinesalmonid populations at the time they occur, the long-



tenneffectoffJashfJoodsmaybethatsuitablesubstratesaremaintained,thatfishspeciesare

favoured that are adapted at re-colonisingandrninirnisingexposureofvulnerabIe life history

stages(pearsonsetal.1992) ,orthatorganicmatterfromtheterrestrialenvironment is added

to the riverine ecosystem, and thus actually sustains the standing stockofsalmonids. Another

example of the propagation of effects across scaJes is the proces s of expansion and

contraction ,wherelarge-scaledistributionsareinfJuencedbysmall-scale habitat selection

processes (MacCallI990, Swain 1993, Marshall and Frank 1995) .

Because organisms are assoc iated with their environment at a rang eofspatialand

temporal scales, a comprehens ive understanding of factors affecting the distribut ion and

abundance offish can only be achieved by studying factors affectingfish distributions at a

range of scales, rather than one or even a few selected scales. From this, multi scale

habitat models may be more effective in describing associations 0 ffish with their habitats

than single scale approaches . "Effective" in this context refers to models with good

descriptiveorpredictivecapacities,basedonaselectedandsmall number of variables and

scales .

An example of this in the spatial domain is selection by salmonids for specific holding

positions with relatively low snout-water-velocities in areas 0 fhigh current conditions . A

habitat model of this behaviour will indicate anegativeassociation with high water

velocities at small spatial scales, but a positive association atlargerspatialscales. Asthere

is no single "right " scale to describe this behaviour , a multi seale approach may be more

appropriate for describing such behaviours .

Another example in the spatial domain is selection by salmon of spawning substrates. Ifsalmon

need spawning substrates in patches ofacertain rninimumsize, rivers that harbour spawning

substrates in smaller patches only may not be suitable for spawning. Further, the relationship

between spawning substrate patch size and suitability for spawning may not be linear for

patchesexceedingthesca1esofreddseither. Currentspawningsurveysgenerallyoperateat



sca1esofriversections(severaltimestheriverwidth},largelybecausesurveysaredone either

by helicopteror by a quickwalkalong the riverbank, i.e. measurementscalesare very much

determinedbylogistics. However, the scale-mismatchbetweenthe sca1eof the surveyand the

sca1eofredd-selection-behaviourmayleadto wrongfulpredictionson spawninghabitat quality

andavailability,whichmayaffectsubsequentinstreamimprovementdecisions.

An examplein the temporaldomainis the influence of hightemperatureson mortalityof

salmonids. Ifhigh temperaturepeaksoccur at the scaleof hours, mortalitymaynot be

affected. However,ifhightemperatures occur at the scaleof days, no fishmaysurvive.

Currently,themajorityofhabitatmodellingapproachestendstooperateat a single or few

selected scales. Because of this, other important scales mayhav e been overlooked. In

addition, by studying fish distributions and associations offish with their habitats over a

range of scales, rather than a single or few selected scales, one may avoid a situation

where measurement scales are chosen primarilyfrom an anthropocentric interpretation of

fishbehavioursandlife-history(cf.KotiiarandWiensI990}.

Habitat modelling maygreatly benefit from a more explicit use of scale within the context

of quantitative multi scale approaches. This would involvean assessment of how

patchiness offish distributions and habitats varies with scale and 0 fhowassociationsof

fish with their habitats vary with scale. This would help identify important processes that

affeetfish distributions and the scales at which they operate. The identification of scales at

which fish distributions are most extreme, i.e., scales at which patchiness is most different

from random and variabilityis largest, and the identification of scales of maximum

association between fish and their habitats, may help to identify measurementscalesthat

are most efficient to habitat models.

Multi scale approaches allow for an assessment of how the spatialand temporal

heterogeneityof habitatswithina landscapeor landscapemosaicinfluencesspeciesoccurrence



and habitatuse(cf: Tumer 1989). Fishhabitatmodelstend to focuson the effectsof habitat

availabilityon habitatuse but tendto ignore the effectsof the orientationand struetureof

landscapeelements,especiallythoseusedwithinlFIMIPHABSIM. Systemsthatconsistof

similarhabitalSbutwherehabitatsoccuratdifferentpatchsizesorwherehabitatsare

positioneddifferentlywithinthe landscapemayharbourdifferentspeciesand densitiesof

organisms(cf. Riemanand Mclntyre1995). Examplesincludeeffectsof habitatfragmentation

(cf.OehlerandLilVaitisI996),patchinessofresourcedistributionsanddispersionoforgarusms

onspeciesoccurrence,communitystruetureandabundance, suchas work byChamov(1976)

andParkerandStuart (1976)(MarginalValueTheorem), the HabitatTemplet,proposedby

Southwood(1977), Grime's (1974, 1979)classification of plantlifehistories,thedistinet ion

betweenrand Kseleetinghabitats(pianka1970), and theoriesrelatingto islandbiogeography

(MacAnhurandWilson 1967).

Becausespatio-temporalhabitatheterogeneityisof such importance10 habitat quality(cf.

Wiens1976), measuresof habitatqualitythat includeheterogeneitymayperformberterthan

thosewhichdo not, Severalauthorshavetriedto addressthisproblembyclassifyingstream

habitatsat multiple(hierarchical)scales(e.g. Frisselletal. 1986,Hawkinsetal.1993,lmhofet

a1.1996)t hatcanbeusedasaframeworkforevaluatingfish-habitatrelationsinriver

restorationprojects. However,thescalesintheseclassificationsareoftenbasedonan

anthropocentricinterpretationof processesand, becauseof this,maylead to a situationwhere

scalesand processesimponantto fishareoverlooked. Multiscaleanalysesbasedon empirical

studieswillbe neededto funheridentifyimponantprocessesand scales, andto evaluatethe

relativeimponance of processeswithscale. Thesevariousaspectswillbe funherdiscussedin

Chapter2 and Chapter3.



1.6. Density as indicator of habitat quality

So far, I have discussed the study of distribution patternsasameans to identify underlying

processes. However, the relation between pattern and process is notunidirec tionaland

distributionprocesses may vary with distribution pattern and density; processes induce

patterns and patterns determine processes:

Previouswork has shownthat salmonidsselectpositionsin streamsbasedon their competitive

abilitiesandthe profitabilityof positionsin terms of potentialnet energyintake rate and

predationrisk,with profitabilityof positionsbeingmuchdeterminedbythepb ysicalhabitat in

termsof cover, bottomtopography andcurrentflow patterns(Fausch 1984, Hughesand Dill

1990, Hughes1992A, 1992B,Grand 1997, GrandandDill1997). As such, thearea withina

streammay beregardedas a hierarchy of potentialpositions, rangingfrominaccessibleto ideal,

witheachfish choosingthe mostprofitablepositionthat its rankin the socialhierarchywill

allow(FauschI984,HughesI992A). Territoriality,srnall-scalespacingbebaviourorpre­

ernptiveexclusionwillthus regulateuseof preferredpositionsandspace, if in shortsupply,will

regulatepopulation density(Bohlin1977,GrantandKramer 1990). Fromthis, the physical

habitatrnaybe regardedasatemplatedeterminingdistributionpattemsoffish(Hughes

1992B).

Theseprocessessuggestthatsalrnoniddistributionsrnaybebestdescribedusingthe ideal­

despotic distributiontheoryof Fretwell(1972). Thistheorydescribeshowanirnalsselecttheir

habitatsassumingthattheyare"ideal "inknowingwhereprofitabilityishighestbutwhere

access to resourcesare governedbyterritorialbehaviours. Whenorganismsdistributeideal

despotic, the mostdesirablepositionswillbe occupiedfirst,followedbypositions in

progressivelylessdesirablehabitats. Becauseof this,the averagegainper individualmaydiffer

andhabitatusernaychangewithdensity . ·Fromthis,habitatrnodelsrnayvary withpopulation

density.



The ideal-free distribution theory (Fretwell and Lucas 1970) contrasts with this ideal-despotic

theory in that access to resources is not restricted by competitive behaviours but all individuals

are equal and "free" to move among patches without constraints or restrictions. When

organismsdistnbuteidealfree,fitnessofindividualsdeclineswithdensityasindividualsoccupy

the best habitats, the average gain per individual will stabilise to be equal in all habitats, and the

fraction ofa population in each habitat should equal the fraction ofresourcesoccurringthere

(cf. input matching; Parker 1974). When organisms distribute ideal freeamonghabitats and the

rate of resource renewal in these habitats is not affected by organisms densityordistribution

and all habitats are occupied at low population densities, then relativedensities in habitats do

not vary with population density.

When distribut ions change with density , habitat models are expect ed to change with

density as well. As a consequence, manager ial actions may vary with population level.

However, a quantitative evaluation of how impon ant density-dependent effects are

relative to density-independent effects in shaping fishdistributions has not been done.

Because of this, it is not known ifor how much habitat models change with density . This

will be further addressed in Chapter 4.

1.7. Conclusions, research questions and thesis outline

Fish distributions are the result of multiple processes operating at multipie scales. Fromthis,

fish are associated with their environment at multiple scales. Because fish are associated with

their environment over a range ofspatio-temporal scales, a comprehensive understanding of

processes affecting fish distributions can only be achieved by studying associations 0 ffishwith

habitats over a range of scales. Scaling analyses and theory can act as a framework that allows

forconnectingresultsfromstudiesoperatingatdifferentspace-times~es.

Tools for fish-habitat management maybe most successfully developed within the framework

ofrea1istichabitatmodels, Le.modelsthatarederivedprimarilyfrombiologicalknowledge



ratherthan from correlation aJone. AsfishdistributionsareultimatelytheresultofindividuaJ

decisions, an understanding of habitat selection behaviourofindividuaJswill be important to

fish habitat-management. Important research questions in this context are : (I) how do fish

perceive and reaet to their environment ; (2) is habitat use or density indicativeofhabitat

quality; (3) to what extent are fish distributions driven by habitat selection and to what extent

by other processes ; and (4) how can we extrapo late individuaJfish behaviours to scaJes

relevant to management problems?

The thesis focuses on questions 1,3 and 4 in the context ofhabitatusebyjuveniIe Atlantic

salmon in rivers. Habitat selection was defined as a process ofind ividuaJs choosing arnong

options (different habitats) based on some preference. A habitat in this context is a space

where an organism lives, with "space" referring not only to area or volume butalso to the

resources that maybe obtained and the conditions within this area orvolume.

I mostly aimed at achieving an understanding of "how" saJmonparrselecttheirhabitatrather

than "what" they are selecting for, and of the implications of habitat seleetionbehavioursto

habitat models . Habitat is described largely in terrnsofsubstrate, water depth andwater

velocity, as these are the variables most often included in habitat mod els of riverine fish

species (Orth and Maughan 1982, Fausch et at. 1988, Heggenes 1990) . My fieldwork

(Chapters 3-4) concentrated on spat ial analyses operating at small to intermediary scales

«100m2
) , because these are impo rtant to habitatselectionandhabitatmodellingand

becauseoflogistics.

In this thesis, I firstevaJuated the scaJe-up in habitat modelling from behaviouraJ 0 bservationto

fish-habitat problem (Chapter 2). Next, I presented a new scaJing method that can be used in

habitat selection and habitat modelling (Chapter 3.1), extended this technique using data from

an experiment done in a stream tank (Chapter 3.2), and applied the techniques developedin

Chapter 3.1 and Chapter 3.2 to a field-based study (Chapter 3.3). Chapter3islargelyfocused

on effeets of habitat selection on distribution patterns . By contrast, in chapter 3.2 and chapter



4 I showed how distribution patterns may affect habitat selection processes. This was done

by studying density-dependent habitat use, using a combination ofan experimental(Chapter

3.2,4 .I)andobservational(Chapter4.2)approach. Inthelastchapter(Chapter5)I

summarised the various studies and diseussed implications to habitat modelling and fish-habitat

management. To facilitate readability, I organised the thesis such that chapters and study

projects can be read separately. Because of this, the different chapters may show some

overlap.

The objectives of this thesis were (1) to illustrate howa variety 0 fnewlydeveloped

scaling-techniques can be used in habitat modelling andbehaviouraI stud ies; (2) to

evaluate limitations of using information on small-scaleobservations and experiments to

address problems at scales relevant to fish-habitat management; (3) to identity scales

important to habitat models for juvenile Atlantic salmon ; (4) to formalise observed habitat

selection behaviours that operate at multiple scales into explicitmultiscalehabitat

selection models ; (5) to study density-dependent habitat selection;and(6)tocompare

explicitmultiscaleapproacheswithsingiescaleapproachesinregard to their ability to

identity how fish seleet their habitats and in their ability to describeand predict fish

I hypothes ised that (1) multi scale approaches are better for unders tanding and describing

fish distributions because habitat selection behavioursthemse!vesoperateatmultiple

scales; (2) habitat use changes with density due to small-scale spacing behaviouror

territoriality of individual fish; (3) multi scale habitat models perform better than single

scale habitat models , especially when extrapolat ingsmall-scalehabitatselectionbehaviours

to density-predictions at larger spatial scales, i.e. observed andpredicteddistributionswill

be more similar when using multi-scale habitat models ; (4) small-scale behavioural

processes or small-scale fish-habitat associations will be limited forexplaininglargerscale

distributions or address ing large-scale habitat management problerns.



Chapter 2: Mortality versus spatial dynamics at multiple scales:

scaled-rate plots forsalmonidsand implications for habitat modelling

2.1. Scale-up in ecological studies

Understanding how organisms interact with their natural environment is crucial to the

management of natural populat ions. To obtain this understa nding, man uses surveys, field

and laborato ry experiments to study the distributions of organismsrelati veto

environmental factors . The relative importance of processes is known to vary with

spatio-tempor al scales (Home and Schneider 1994). Consequently, processes that are

important at the smaller scales of experiments or most field observat ions may not

necessarily be important at the larger scales of ecological problems. Developing the ability

to determine which processes predominate at anyspaceand timesca Ie would greatly

improve the efficiency of research and confidence in its generality. In tum , this should

ideally lead to more effective environmental management .

Home and Schneider (1994) recently proposed a technique to evaluatethe relative

importance of processes in a scale-explicit manner. This method can also bean aid in

scaling-up from experiments (i.e, extrapolat ing) to address environmental problems at

regional or global scales (Schneideret al. 1997). This technique compares demograph ic.

growth and kinematic rates via dimensionless ratios, which are subsequentlyusedto

indicate which processes predominate at a given scale. This procedure consists of five

steps: (1) state the quant ity of interest; (2) write a conservation equation incorporating the

sources of variability in the quantity' ; (3) form dimensionless ratios from the terms of the

equation; (4) obtain vaiues from the literature and calculate these dimensionless ratios for

"benchmark" spat io-temporal scales; (5) create a graph with "temporal scale" and

• E.g.: numberof individuals= births~ deaths+ immigration- emigration



" spatial-scale" asYand X axes, respectively, and draw contour linesseparating

spat io-temporal scales where denom inator and nominator of rates prevail. As this

te chnique uses information from a limited number of spat io-temporal scales (benchmark

scales) with interpolat ion, I will furthe r refer to th is technique as the "benchmark"

approach .

Step 1 requires that the problem be defined using quant ities such as biomass or coun t data .

The conservatio n equat ion (step 2) ensures closure of the first moment (average) of the

quant ity of interest. Forming all possible rat ios (step 3)re-normalises the terms in the

equation , i.e. the rate of change in the numerat or is measured relative to therate of change

of the denominator .

Theadvantagesofthisapproacharethatall imponantprocessesareincludedandthat

ratios are readily obtained for literature values of component rates. A disadvantage is that

interpolation between benchmarks is difficult because benchmarks arefe winnumber.

Because ofthis , rate-diagramsmayberough,approximate, and dependent on intuition.

In this chapter I extended the techn ique by using intensive compu tat ionratherthan

hand-drawn lines between benchmarks , in an individual-based Lagra ngianapproachwith

random isation (Chapter 2 .2). I illustrated this technique using severa l theoreti cal

examples first (Chapter 2 .3). Next I developed rate-d iagrams of movement versus

mortal ity for cutthroat-trout (Ol1carhyllclnls darla) and Atlantic salmon parr (Salma .<alar)

from published data (Saunders and Gee 1964, Heggenes et al. 1991) (Chapter 2.4). This

combination of examples and real data was necessary because I found that deta iled

rate -diagrams are difficult to obtain from benchmar k scales alone, panlyduetoscarcityof

movement information and partly due to difficulties associated withi nterpolationfrom

benchmark values . By first calculating rate-di agrams from relatively simple

computer -generated movement and mort ality scenarios and next combining these with

rate-diagrams from observed data, I was able to evaluate where information was lacking



and how this affects conclusions. An additional objective was to provide reference

rate-diagrams for future studies.

2.2. Scaled-rate plots: method and calculations

Themodel simulates movement and mortality of individual organisms . Based on these

FORTRAN-based simulations, critical scales are identified, i.e. space-time scales at which

movement (M, year") equals mortality (D, year"; MID = R = 1). Random numbers,

needed for several of the analyses, are generated using the FORTRAN system-supplied

random number generator, upgraded by the shuffle-routine as outlinedbyPressetal.

(1986).

Movement can be modelled along a transect (I D), in a plane (2D) , or in a volume (3D) .

For all three approaches , the main computational flow is similar. In this chapter the

computational flow for the one dimensional transect application is presented .

(I) 104 random locations were chosen along a transect (length = 1000 Ian) as initial

positions offish.

(2) The transeet was subdivided into consecut ive bins of equal length(L). For this, a

random location along the transect was chosen as a starting point . Next,Idetermined

the section or bin in which each individual fish was positioned .

To avoid the problem of having sections cut-off by either the start 0 r the end of the

transect , Iconneetedthese, leadingtoacircularorinfinitetranseet. This greatly

facilitatedcomputationsandjudgednottoaffectconclusions,given the length of the

transect. This was verified in additional analyses using longer andshortertransects.



(3) Movements and deaths of individuals were modelled for a period of time T (days),

using a random point in theannuai cycle as a start ing po int. Afte r this period of time

(T), I determined the number of organisms that had died (No), the number that were

alive and stayed within the original section (Ns), and the numberthat were alive and

moved from the original sect ion(NM) within period T . From th is, I de termined

whether Ns, exceeded No.

(4) These calculations were performed for a range (i) of sect ion lengths (Lx, x= l ,i).

(5) Calculati ons 1-4 were repeated fora range U) of time periods (Tv, y=l j) , each time

using a different random transect start ing location and a different random starti ng time

in the annual cycle.

(6) Calculations 1-5 were repeated NRR times (Number Repeat Rand om isations ; see

Table 2.1). From these repetit ions, I recorded the total number of cases where NM

exceeded No (=NCM) and the total number of cases where No exceeded NM(=NCo)

for all space-time scales (L, T) involved . IfNC Mexceeded NCo, I con cluded that

movement dominated mortality (R> I), i.e. the distribution was driven by movemen t

rather than mortality . If NC o exceeded NCM,[ concluded that mortality dominated

movement (R<I ). I determ ined crit ical scales (R=l ) using a subrout ine that compared

NCo and NCMover all spat ial scales (Lx, x= l ,i) for time scales (T v, y=l j ) separate .

Critical scales were identified from a shift ofNCM>NCo at L,.,T, to NCM<NCo at

L,._"T,_

Transect length, number of organisms and repetitions , and space- (L)andtime-(T)scales

may vary with scenario. I decided on the transect length, number of organisms and

repetitions as outlined in the text above and in Table 2.1, as resultsd idnotchange in

add itional analyses that used longer transec ts, higher numbe rs of orga nisms and more



repetitions.

In general, I recommend calculating three movemen t/mortality scenarios : (I) one

describing movement and mortality in the best poss ible manner , givenavailable

information, (2) one describing a low-movementlhigh-mortaJity scena rio, and (3) one

describing a high-movementllow-mortal ity scenario . Rate-diagrams ofthese three

scenarios can then be compared to indicate the range of plausible ou tcomes .

2.3. Scaled-rateplols:examples

I calculated critical scales for 5 movementscenarios offish distributed along the length of

a river. These scenarios were chosen to represent a range of plausible outcomes,with

movement and mortalit y ranging from very low to very high, as described in the previous

(I) Territory (TER) : Fish were modelled to occupy individual territories . Fish never left their

territories , but were free to reposition themselves within individual territories. Thiswas

modelled by randomly repositioning fish within I meter of posit ions marking the centre of

individual territories at each time step of the calculation. "Territory" in this context does

not refer to an area that is defended and territories may overlap.

(2) Diumal movement(DM): To mimic diurnal movements within a home range, individual

fish were modelled to move along the length of the river according to a sine functionwith

anarnplitudeoflOO mand a wavelength of24 hours.

(3) Seasonal movement (SM) : Individual fish were modelled to move along the length of the

river, according to a sine fimction with an amplitude of 1000 m and a wavelengthofone



(4) Total-/(TSIN): Fishweremodelledto displayterritorial-, diumal-,and seasonal

movementscombined: territorieswereoccupied(I) and positionsmarkingthecentreof

individual territorieswererelocatedbasedon the sinefunctionsof2-3 .

(5) Total-2 (TSQi: Fishwere modelledas for TSIN. However, insteadof sinewavesfor

diurnalandseasonalmovements,squarewaveswereused.

Criticalscaleswerecalculatedfor eachof these 5 behaviours,withthe relativerate of

mortalitymodelledat 0.5 year" (TER-M50; OM-M50;SM-M50; TSIN-M50andTSQ-M50

respectively)and 0.75 year" (TER-M75; OM-M75; SM-M75; TSIN-M75andTSQ-M75

respectively; see Table2.1). In addition, I calculatedcriticalscalesfor TER-M50; OM-M50;

SM-M50; TSIN-M50andTSQ-M50, with5% of thefishbeingrandomlyrelocatedwithin100

m of their positionsas determinedby TER, OMandSM, for every24 hours(TER-M50/R;

OM-M50/R;SM-M50/R;TSIN-M50IRandTSQ-M501Rrespectively). I willexplainlaterin

Chapter2.3 whyI chosethisdispersionlevel. Estimatesof criticalscaleswere donefor

spatio-temporalscalesrangingfrom3 hoursto 2 yearsand 1emto 100Ian.

Table2.1 summarisesthe scenarios. Figures2.1-2.5 displaythe results. Thelinesinthese

figuresconsistof allcriticalvaluesofR(i.e. , R=I), separatingspace-timescaleswhere

movementdominates(R>I) fromspace-timescaleswheremortalitydominates(R<I).

• These movementscenarios were based on a combination offield experienceof the author and
informationfromtheliterature(mostnotablySaundersandGeel964andHeggenesetaI.1991).
In addition,J. Hutchings(pers. comm.) confirmedthatthe movementscenariosweregenerally
supportedby resultsfroma studyonbrooktroutmovements in theCapeRacearea0f
Newfoundland withtheexceptionofthediurnalmovements, whichwereprobablyoverestimated.



Table 2.1. Scenariosused for calculating criticalscalesof movement versus mortality.

Scenarioscompriseda combination of movementand mortality(RMR, year") . Movement

behavioursincluded: Territoriality(TER-), diurnal movement(OM-), seasonalmovement

(SM-) and randombehaviours(IR), as explainedin the text. For TSQ-*, diurnaland seasonal

movement were modelledusingsquare waves. For allother scenarios,diurnaland seasonal

movements were modelledusing sinewaves. NRR refers to the numberof repeat

randomisationsused to estimate criticalscales.

TER S '0 RMR NRR
yes no no TER-M50 0.50 100
yes no no TER-M75 0.75 100
:tes no yes TER-M501R 0.50 100

5
yes no no DM-M50 0.50 500

no yes no DM-M75 0.75 500
6 no yes yes DM·M501R 0.50 500
7 no yes SM-M50 0.50 100
8 no no yes no SM-M75 0.75 100
9 no no yes yes SM-M501R 0.50 100
10 yes yes yes TSIN·M50 0.50 500
I I yes yes yes no TSIN-M75 0.75 500
12 yes yes yes yes TSIN-M501R 0.50 500
13 yes yes TSQ·M50 0.50 2000
14 yes yes no TSQ-M75 0.75 2000
15 yes yes yes TSQ-M501R 0.50 2000



Figure2 .1showstherate-diagrams

for fishdisplayingterritorial

behaviour(TER). The"jagged"

outline of the linesare the resultof

the approximation routineused to

detenninecriticalscales.lngeneral ,

movement dominated at small

space-time scales and monality

dominated at largespace-time

scales. Monalityalwaysdo minated

overmovernentat time scaleslarger

thanoneyearforTER-M50 and

TER-M501Rand at time-scales

larger lhan I83 days for TER-M75.

The reasonfor this is that 50"/0of

the fishdied during intervalsof one

yearforTER-M50 andTER-M501R

(monality=O.5year·') and 50%

during intervaJso f 183 days for

TER-M75 (monality=O.75 year").

During longer intervaJs, more than

50"/0 of thefishdied and, becauseof

this, monalityalwaysdominatedat

thesetime-scales. During shoner

spatial scale (ml

'00
TER·MSO R<1

J\
'00

TER·M7S R<1

Figure 2.I. Criticalscalesof territorialfish. Scenarios

include TER-M50 (top, 50"/0mortality per year),

TER-M75(middle,75% mortality per year) and

TER-M501R(bottom,50"/0 mortalityper year +

randommovements). Territorialbehavioursare

modeUedas explainedin thetext. (R=movement

(year·l)versusmonaIity(year·').)
l-- ----' intervals,dominationofmo vement

over mortalitydependedon space-timescale. The differencein monalityofO.5year ·1

(TER-M50) and0.75 year " (TER-M75) resulted ina minor shiftto the leftand a majorshift

downof the lineof criticalvaluesfromTER-M50 to TER-M75. Note that movementmay

dominateovermonaIityat spacescales much larger thanthat of the sizeof individual



territories, especially when time-scalesare small. TER-M501Ris largely detennined by random

behaviours, with linle inlluence of territoriality.
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Figure 2.2. Critical scalesoffish displayingdiumal

mo~ements. Scenariosinclude DM-M50 (top, 50%

mortalityper year). DM-M75 (middle, 75% mortality

per year)and DM-M501R(bottom.50"IomortaIityper

year + randommovements). Diumal movementsare

modelledusing sinewaves, as explainedin the text, (R

= movernent(year") versus mortality (year") .)

r----- - ------, Figure2.2showstherat~-diagrams

for fishdisplayingdiumal

movements(DM). The "jagged"

outlineof the linesare primarilydue

tod iumalmovementsandonl ytoa

approximation routine used: no fish

movedat time-scalesof 1,2,3•...

day, and movement is maximalat

time-scales of 0.5, 1.5, 2.5•... day.

Fromthis. diumal movements

induced a characteristic regular

pattern with a wavelength of l

day-scale. The small wavelengthof

this regular pattern, in combination

withthe resolution of the Y-axis

(temporal scale),makest he linesof

criticaJvaJues(R=I) appear as a

broadblackband. This is further

illustrated in Figure 2.2 by

expandingpertions of the graphs for

temporalscalesof 95 to 100 days.

Asinthepreviousfigure,deminance

of movementover mortality is

L-- --' restrietedto smallerspace-time

scales.Again,we see a dominanceofmertality ever movementat timescales longerthan one

year for DM-M50, DM-M50IR and at timescales longerthan 183daysfer DM-M75. The

differencein mortalityof 05 year " (DM-M50) and 0.75 year" (DM-M75), resulted in a



minorshiftto the left and a majorshiftdown of the lineof criticalvaluesfrom DM-M50 to

DM-M75. The rate diagramof DM-M501Ris largely determined by randombehavioursat

space-tirnescalesleftof the band of critical values. Atiarger space-timescales,dium al

movementsdeterminetherat e-diagram. An impression of this can also be obtainedby

overlayingthe rate-diagramsofDM-M50 andTER-M501R: movementdominated mortalityin

DM-M501Rat scaleswhere either one or both of the rate diagramsofTER-M501Rand

DM-M50lRindicated that R>I . The level of dispersionwas chosen such that this

overlay-procedurecould be illustrated.



spatlal scale (m)

Figure2.3. CriticalscaIesoffish displayingseasonal

movements. ScenariosindudeSM-M50(top,50"1o

mortalityper year),SM-M75(middle,75% mortality

per year)and SM-M501R(bottom,50"10mortalityper

year+randommovements). Seasonalmovementsare

modelledusingsinewaves,as explainedin the text. (R

= movement(year·l ) versusmortality(year·I
) .)

~-----------, Figurez.Lshows rherate-diagrams

for fishdisplayingseasonal

movements(SM). The 'jagged"

outlineof the linesare the resultof

the approximationroutineused.

Similarto the previousfigures,

movementdominatedat smaller

scalesand mortalityat largerones.

The linesof criticalvaluesare all

shiftedto the rightcomparedto

Figure2.2. Thisis becausethe

seasonalitylead to larger-scale

movementsover the rangeof

temporalscaIesstudied. Again,

mortalitydominatedmovementat

timescaIeslongerthanone yearfor

SM-M50,SM-M50IRandat time

scaleslongerthan183daysfor

SM·M75. SM·M501Rresembled

SM-M50,asmovementof

SM-M50lRisdominaledby

seasonalmovements,withlittle

effectof randombehaviours



be obtainedbyoverlaying

TER-M50.DM-M50 andSM-M50;

TSIN-M75canbe obtainedby

overlayingTER-M75,DM-M75 and

SM-M75;TSIN-M50lRcanbe

obtainedby overlayingTER-M50IR,

DM-M501Rand SM-M501R. The

rate-diagramsof Figure2.4 are

determinedbyeitherdiurnal

movementsor seasonalmovements,

dependingon space-timescale. E.g.

TSIN-M50 resemblesSM-M50at

timescalesrangingfrom 10days to

355 days as seasonalmovements

predominate. For other space-time

scalesthe rate-diagramis determined

by a combinationof diurnaland

seasonalmovements,withlittle

R<'

IL
l

1/ I

spatlal scale (m)

Figure2.4. Criticalscalesof territorialfishdisplaying

diurnalandseasonalrnovements. Scenariosinclude

TSIN-M50(top,50%mortaiityperyear).TSIN-M75

(middle, 75% mortalityperyear)andTSIN-M50IR

(bonom,5O"/omortalityperyear+random

movements). Diurnalandseasonalmovementsare

modelledusingsine waves,as explainedin the text. (R

= movement(year'l)versusmortality(year").)

r---------, Figure2.4showstheratediagrams

for fishdisplayingterritorial

behaviours, diurnal-andseasonal

movements combined. As inthe

rate-diagramofDM-M50lR,an

impressionof these figurescanbe

obtained by the overlay-procedure

mentionedabove: TSIN-M50can



Figure2.5. CriticalscaJesofterritorialfishdisplaying

diurnaland seasonalmovementsusingsquarewaves.

ScenariosincludeTSQ-M50(top, 50% mortalityper

year), TSQ-M75(middle,75% mortalityper year) and

TSQ-M501R(bottom,50%mortalityper year+

randommovements). (R = movement(year")versus

spatJalscaJe(m)

mortality(Year-I).)

,.-----------, Figure2.5 shows the rate diagrams

for fishdisplayingthe behavioursas

inFigure 2.4,but withseasonaland

diurnalmovementsbasedon square

waves,ratherthan sinewaves. This

mimics a situationinwhichseasonal

and diurnalshiftsare moreabrupt

than in Figure2.4. Shiftsoccur

duringshort periodsofaet ivity,

followedbyrelative inaetivity. From

this,thebandsofcriticalvaluesare

muchwiderthan thoseof Figure

2.4. For timescaJesrangingfrom

100-250days, the rate diagramsare

determinedbyseascnalmovements.

Forothertime-scaJes,the

rate-diagramsarelargeiydetermined

byeitherterritoriality,diurnal

movementsor randombehaviours,

dependingon space-timescale. This

can be seenbyoverlayingFigures

2.5 and 2.1. Atspace-timescaJes

leftof the lines of criticalvaluesof

Figure2.I ,rate-diagramsofFigure

2.5 are determinedby territorialityl.- ---'

(TSQ-M50, TSQ-M75) and/or randombehaviours(TSQ-M501R). At largerspace-time

scales,diurnalmovementsprevaiL

As expected, movementdominatedmottalityat smallspace-timescales, and mortality



dominatedmovementat largespace-timescales(Figures2.1 - 2.5). Movement often

dominatedmortalityat spatialscalesthat are severalorders of magnitudelarger than of

movementsof individuals, especially at smallertimescales. The lineof criticalvalues

separating dominanceof movementfrom dominanceof mortalitywere complex(Figure2.5),

orsimple(Figure2 .1),dependingontheprocessesinvolved. Complexlinesoccurred

especiallywhen distributionswere the result of periodicprocesseswith small wavelengths.

Simplelinesin rate-diagramsallowedfor an easyseparationof dominancescales (R>l vs.

R<l) . Complexlinesallowedfor this as well,but in additionto scaleswhere movementclearly

dominatedover mortalityand scaleswhere mortality clearlydominatedover movement, scales

existedwheredominancerapidlychanged with smallchangesin scale. These scales appear in

the figuresas broadbands. Inthesesituations,threedominanceregionscanbe identified:R>I ,

R<I, R"'I) . The figuresshow that a combinationof processesmay lead to characteristicrate

diagrarns,that rate diagrarnscannot be drawnfrom fewbenchrnarkscaleswith anyaccuracy,

that computationalboundariesdo not alwaysmatch intuited boundaries,andthat

computationalmethodsare requiredto identifythe boundarybetween scaleswhere movement

prevails,and scaleswhere mortalityprevails.

2.4. Scaled rate plots: juvenile Atlantic salmon

Mortalityof salmonidsfrom egg to hatchinghas been reported to generallyfaJlwithinthe

rangeof 10 to 25%; mortalityfrom emergenceto the end of the firstgrowing season from 70

t090"1o,and in subsequentgrowingseasonsfrom 25-50%peryear(cf. Mills 1989). Few

quantitativeinforrnationis availableon how mortalityvaries with season 0r tirne-of-day,

althoughwe do know that mortalityis relatedto temperature, season, stream discharge, water

chemistry, etc., whichare all subjectto diurnaland seasonalcycles(Gibson 1993).

In spite of the fact that a considerablenumberof papersonsalmonid rnavementhavebeen

published(cf Northcote 1984. 1992),liltlequantitative inforrnationis availableon the

consequencesof thisprocess on production and standingstock. We do have age neral



impressionof the timingand directionof movementprocessesover theseason(cf Youngson

etal.I983,HutchingsI986),butlittlequantitativeinformationisavailableonhowthisaffects

the distributionorproduetionofsalmonidbiomassin the river. Mcst studieson salmonid

movementseemto indicatethat the extentof the movementis ratherlimitedevenover longer

periodsof time,exceptin spawningseason. The generalconsensusamongresearchersis that

the majorityofjuvenilesalmonidsmoveverylittle: homerangesof varioussalmonidspecies

are reportedto varyfrom5-200meteralongthe riverlength,withmosthome-rangescovering

a fewtensof meters(Saundersand Gee 1964, Heggenes1988,Heggeneset a1. 1991,

Northcote 1992). Evenwhensalmonidsare introducedandcompetitionis low,dispersioninto

uri-colonisedareasseemsto be a slowprocess(HeggenesandBcrgstram 1991).

It isdiflicultto deriveexplicitrate-diagramsforjuvenilesalmonidsfromavailabIe information.

Thisis inpart dueto the faetthat informationiscolleetedorpresentedat one time-scaleonly

(movementoverone year, seasonetc.) or for groupsoffish, ratherthanindividuals. Such

informationcannotbe interpretedat multiplescales. Becauseofscarcityofmovement

information,Figures2.1 to 2.5 were usedto obtainan impressionofpossiblesalmonidparr

rate-diagrams. Assumingthatmortalityrangesfrom0.5 to 0.75 year" for 0+11+salmonparr

(cfGibsonI993)andassumingthatmovementwillmostlikelybelargerthanthatofscenario

TER-M50,but smallerthanthat ofTSQ-M501R,salmonparr rate-diagramsmaybe obtained

byoverlayingthe rate-diagramsofTER-M50,TER-M75,TSQ-M75, and TSQ-M501Rin

Figure2.6. Fromthis, a firstguesswasthat the lineof criticalvaluesresidedsomewherewithin

thebandR eelofFigure2.6(leftfigure). Thisfigurealsoincludesthe scope-diagramof Figure

I.1(re-scaledforID).





One of the few studiesthat allowsfor a multi-scaleinterpretation is a study by Heggenesetal .

(1991) on cutthroat trout. Forthis study, trout were sampledfortnightly over a periodofeight

months (1anuary-August) ina smallriver (about 2.6 mwidthaverage). Alltrout were marked

individuallyand individualtrout positionsdeterminedrelative to bencJunarkspositionedalong

the lengthof the river. Trout movementwas limited. Overanaveragefortnightlype riod,

68.3% of the fishwere recaptured within 10m off theiroriginalposition; only 17.9% had

moved more than 50 m. This pattern of movementdid not seem to vary muchover the season

or with perind in between markand recapture. A similarstudy on salmonparr movement

during summerto earlywinter from Saunders and Gee (1964) indicatedmovementssimilar to

thoseofHeggenesetal. (1991)(seebelow).

Based on the information from these two papers, I derivedthe rate diagramsof Figure 2.6. For

this,IusedtheprocedureasoutlinedinClupter2.2. Mortaiitywasmodelledas25%,50"1o

and 75% per year. Movementfor cutthroat-trout (Heggeneset a1. 199J) was modelledby

randomlyrepositioning32.4% of the fishwithinone meter of originalpositionalongthelength

of the river; 15.6% within 1-3 m; 15.2% within3-10 m; 6.8% within 10-20m; 12.1% within

20-50m ;and 17.9%within50-400m. Movementof salmen parr (Saunders and Gee (964)

was modelledby randomlyrepositioning13.3%of the fishwithinone meterofori ginalposition

along the lengthof the river; 24.0%withinl-3m;37 .3%within3-JOm;21.3%within 10-20

m; 1.3% within20-50 m; and 2.7% within50-400 m. Movementdirection

(upstreamldownstrearn)ofindividualfishwas determinedby randorrcsation, Thisdistribution

scenario was used independentof time-period. From this, I estimatedcriticalscales withinthe

samplingintervaiandstudyrangeofHeggenesetal ( I99I ) (14 days to 8 months). Note that

the implicitassumptionof this procedure is that fish that were not recaptured displayed the

same movementsas those recaptured.

The criticalscalescalculatedfrom Heggeneset a1. (J991) and Saundersand Gee (1964) are

within the expected range of the left figure ofFigure 2.6. Figure2.6 shows that thefish

observationsand the scalesof variablesin habitatmodelsrefer to scaleswheremov ement



predominates. Thisinfonnationis subsequentlyusedfor managementproblemsat scaleswhere

mortalitypredominates.Thischangeindominancewithscale-upunderlinesthe fact that

researchis neededthat explicitlyexaminesifiarge-scaledistributionsmaybeinferred from

small-scaleobservations:movementand habitatselectionbehavioursmayexplainsmall-scale

observationsquiteweU,as theseprocessespredominateat thesescales,butmaybeo flimited

importanceto large-scaledistributionswheremortalitypredominates. However, Figure2.6

alsounderlinesthe factthat movementmaybeimportantto dynamicsat scaleslargerthan

individualfishmovements. Thisunderlinesthe importanceof movementandhabitatselection

studiesfor an understandingof distributionprocesses.

It could be argued that the individual-basedapproach produces rate-diagrams that are

more detailed than our understandingof populationprocesses involved. My experience

with this method so far, however, is that even a combinationof rather cartoon-like

descriptionsof the various processes involvedailows for reliableinferencesat scales most

important to researchproblems. Figure 2.6 shows that critical scales differed among the

movementscenarios,but these differencesoccur at space-timescales that are muchlarger

than those of most fieldobservations,and muchsmailerthan those of manyenvironmental

problemswe would like to address. From this, uncertaintywith respect to movementdid

not lead to uncertaintywith respect to dominanceofprocessesatthe scales most relevant

to research: noneofthedotsinthescope-diagramsofFigure2.6arewithintherangeof

scales where dominancevaried with movementscenario.

2.5. Rate-diagramsinhabitatmodeJling

Ratediagramscanbeusedtoidentiryimportantresearchproblemsandappropriate

samplingscales and make explicitthe scalesand scopeofobservations. surveys,

experimentsand problems(Home and Schneider1994). Iwiil illustratethis based on the

infonnationpresentedinFigure2.6:



Infonna liononhabilatusebysalmonidsi smostly obla inedfromfieldobservationsor

experimentsdone at scaleswheremovementpredominates. whereasmanagement

proble ms are at scales where mortal ity dominates. Becauseofthis,availableinfonnation

may not necessarily apply to processes occurring at the scales of the problems we would

like to address(cf. Minns et aJ.I996),andthescale-up frominfo nnatio n to problemwill

have to be validated. Rate diagrams can aid in this validat ion process.

For example, sarnpling could be done using many repetitions but over a small area, or

using few repetitions but with more sampling units distributed over awidera rea. The first

approach will pennita greate r con fidence in observations at the study area, as the number

of repeat- observ ations is larger, but the scope of the survey is reiat ivelysmall . By

contrast, the second will penn it less confidence in observations at individualsampling

units, bUI the scope of the study will be considerablyla rger(cf. Schneider I994).

Preferably , surveys or experiments should be designed such that extrapolat ionofresults is

possible to scales where the same processes predominate that are relevant to the

ecological problems we would like to addres s. Rate-dia grams that include the scale and

scope of observations and surveys will make explicit important infonnat ion needed for

such experiment and survey designs. This is illustrated in the Scope-diagrams of Figure

Extrapolation from "observation" and "section" (movement predominates) to scales where

mortality predominates ("survey") is possible, provided that sarnpling isdoneovera

long-enough time period and with sect ions located throu ghout a large enougharea. If

sections are located closer together or when sampling is done duringashorterperiod,the

dots in Figure 2.6 that indicate the survey-sca les will be positioned within the band of

critical scales (R"'l ) or at scales where movement predominates (R> l ) . That is, processes

different from the ones operat ing at the scales of our problems detenn ine the observed

distribu tions.



From Figure 2.6 and the dots that indicate survey-scales it may seem that most habitat-use

surveys will allow for an extrapolation to scales where mortality predominates . However,

since sections are often visited consecutively and by a single visit,itwillbedifficultto

separate effects of time, time-scale, space and space-scale. Thatis,itwillbedifficultto

ascertain whether fish-habitat associations observed at large spatial scales are due to

changesindistributionprocesseswithtimeorduetoprocessesoperatingat large spatial

scales. By contrast , a survey where sections are located within arepresentativepartofthe

river and where sections are visited repeatedly over a long enough period would allow for

a scale-up to scales where mortality predominates (e.g . lengthofrepresentativeriver

section = 5 km; period = 3 months; see Figure 2.6, middle, right). This scale-up would

involve an explicit evaluation of how well larger-scale distributions offish could be

described from small-scale associations. Iamnot.awareofstudiesthatexplicitlyaddress

this question and that operate over a range of scales. However, results from several

papers indicate larger scale distributions are subject to processes different form the ones

that underlie small-scale associations (e.g. Jackson and Harvey 1989,RabeniandSowa

1996). In addition, several studies have indicated that there is no significant relationship

between weighted usable area, an index of habitat quality based 0 nsmall-scalefish,and

habitat observations, and standing stock (large-scale distributions)(c[OrthandMaughan

1982, Conder and Annear 1987, Shirvell 1989, Bourgeois et al. 1996), although some

studies did find such a relationship (Stalnaker 1979,OrthandMaughanI982). This may

suggest that possibilities for using small-scale observations orh abitatmodels to infer

larger scale fish distributions (scale-up) are limited. A careful examination of scale-up in

habitat modelling is important. to identify processes and researchquestions important to

fish-habitat management.



2.6. Rate-diagrams in ecological studies

The individual-b ased techn ique differs from thebenchmarktechnique proposed by Horne

and Schneider (1994) . The benchmark approach uses information on processes at several

specific spat io-ternporal scales . However, informatio n at one benchmark may be available

at a different moment in the season or location than information at other benchmarks, and

combining information at a certain benchmark scale from informatio n derived from various

moments in season or locations becomes diflicult. Because of this, interpretation of

dominance of processes may change not only due to differences in scale,butalsodueto

differences in time and location . Consequently, benchmark rate-diagrams may be rough

and approximate. This problem does not apply to the individual-based approach.

The individua l-based approach as outlined leads to rate-d iagram s that are independent of

the initialdistributionordensityoftheorganisms,providedthe processes involved are

density-independent (cf. results do not change when increasingtransectlength,numberof

organ isms, orclumpedness of initial distribution: see Chapter 2.2). Theindividual-based

approach can be adjusted to incorporate density-dependent proc esses . However, results

may then vary with distribution and density of organ isms .

Theindividual-basedapproachleadstorate.diagramsthatarealso independent oflocation

or timeof observation, i.e. "time" and" time-scale" aswellas"location"and"space-scale"

areeffectivelyde-coupledbyrandomisingtransect-startandstarting-time in the dynamic

simulations. Often, however, we may be interested in developing rate-diagrams for

specific locations or specific moments-in-time, as when interested in dominance of

processes at a specific location ora spec ific point in the season . Theindividual-based

approach can be adjusted to develop such rate-diagrams. This would requ ire that in the

calcu latio ns either location is fixed , i.e. we do not use a randomisedtransect-start,and

starting-timeofthesimulations isdeterminedbyrandomisation,orthat time is fixed and

transect-start is determined by random isation . This would re-esta blish the coupling



between space and space-scale and time and time-scale. An example of where such

time-specific or location-specific rate-diagrams are of use is selection for appropriate

measurement scales for quantifying mortality in a particular moment in the season.

Another example is the determination of the areaofa nature-reserve needed to protect a

varietyoforganisms. The area of this reserve could be determined such that movement

out of the reserve is small compared to the mortality as experienced within the reserve

(ratio : movement/mortality). Another possibility may be to use the ratio FnatIFman,

which would scale the natural mortality of organisms within the reserve (Fnat, day-I) to

the human-induced mortality (Fman, day-I) as experienced by organisms that were

originally within the reserve, but happened to cross the reserveboundary. Assumingthat

Fmanshouldbesmall(e.g.onetenth)comparedtoFnat,crit icalscales could be calculated

(scales where Fman = 10* Fnat) thus determining the reserve area neededto protect these

organ isms over a range of time periods (time-scales). Such rate-diagrams could be

developed for all organ isms to be protected with this reserve. By overlaying these, one

could assess which species would be protected and which ones not at a given reserve area.

Eco logical research can be made more efficient by carefully considering at what moments

in time or at what locations observations should be done, e.g. by sampling at locations and

moments that are important to life history or by sampling at locations and moments where

variance is greater or density higher. Parallel to this, ecological research can be made

more efficient by carefully considering at what spatio-temporal scales observations should

bedone,e .g.bysamplingatscaleswherevarianceisgreateroratscales where processes

predominate that are important to the problems we would like to address . Rate- and

scope-diagrams make this decision process explicit. In this context, I consider rate-and

scope-diagrams as complementary to Stommel-diagrams (Stommel 1963, Haury et al.

1978): rate-diagramsdepicttheimponanceofprocessesoverspatio-temporalscales;

Stommel-diagrams depict variability over spatio-temporal scales; scope-diagrams allow

for weighting pros and cons of various survey designs, given informationmadeexplicitby

rate- and Stornmel-diagrams. By using information from Stomrnel-, rate-, and



scope-diagrams in comb ination, I expect efficiency of research to improve.

Scaled rate-diagrams are useful in judging the relevance of spat ially and temporally limited

data to larger scale questions . Intensive computat ion based on theoretical but plausible

scenarios uncovered features that are difficult to detect with bene hmarkmethods.

Information on individual movement is important to development of rate -diagrams.



Chapter 3: Multi-scaleanalysesofhahitatusebyjuvenileAtlantic

3.1. New technique describing spatial scaling and hab itat selection in riverine

3.1.1.1. Scale in ecological studies

Ecological studies aim at achieving an understanding of the processesthat alfectthe

distribution and abundance of organisms. To achieve such an understanding, distributions

of organisms are studied relative to distributions of environmentalfeatures. Thisgenerall y

involves an evaluation of the level of heterogene ity or patchinessoforganismdistributions

(uniform, random, clumped), and an evaluation of associat ions of organisms with their

habitats (positive, negative). However , distributions of organ isms are the result of

multipleprocessesoperatingoverarangeofspatio-temporalscales, and patchiness and

associations will vary with measurement scaJe. Because of this, an understanding of

distributionprocessescanbebestachievedbystud yingd istributions of organ isms and

habitats over a range of scales rather than at a single scale.

The influence of scale on ecological studies has long been recognised. Recentpublications

re-iterate the importance of scale (Addicolt et al. 1987. Wiens 1989, Menge and Olson

1990, Holling 1992, Levin 1992, Home and Schneider 1995). Nevertheless , most

ecological studies use a single or few measurement scales and a rather implicit use of

scaling: The measurement scale chosen is often not the result ofa quant itative multi-scale

approach , but is based on biological intuition of the researchercombined with logistical



Single-scale appro aches to mult i-scale problems arise fora combinat ion of reasons. T he

first reason is that "scale" has num erou s meaning s in the ecolog ical Iiterature . In th is

thes is, I define "scale" as "the reso lution within the range ofa mea sured quantity"

(Schneider 1994). A second reason could bean unfamiliarity among ecolog ists with the

mathe matical tool s available to deal with scaling, in spite of several publ ications on the

subject (platt and Denman 1975, Ripley 1981, Greig-Sm ith 1983, Upton and Finglet on

1985,LegendreandFortin 1989, Schneider 1994, Horne and Schne ider 1995). Athird

reason is that multi-scale analyses often requ ire large datasets coll eeted over a range of

scales. This has confined most emp irical multi-scale analyses to stud ies based o n

teehniquessuehasechosoundingorremote sensing, whichgenerate large amounts of

data (e .g . Weber et al. 1986, Horne 1994).

A numbe r of mathemati cal tool s are available to asses s patehinessoffishdistribut ionsand

association s offish with habitats at a range of scales . Some of these tools can be used to

cover a fixed number of scales; others can be used to examine a wide rangeofseales

simultaneously. To assess patch iness at a fixed scale , a variety of indices were deve loped

based on variance to mean rat ios, such as Mori sita's index (Morisita l 959), Lloyd 's index

of mean crowd ing (Llo yd (967) , or the exponent of Taylor 's Powe r law (Taylo r 196 1).

Correlat ion, regress ion, and frequenc y analyses can be used to ass ess associations of fish

with habitats at a fixed scale. These techn iques are gene rally not ap plied o ver a range of

scales , alth ough ali can be. Methods that examine patchiness over a range of scales are

pattern analysis (Greig-Smith 1983), correlograms and variograrns (Sokal and Oden 1978,

Ross i et al. 1992) , variance analysis on hierarch ical models (e .g . Do wnes et al. 1993),

second-order neighbourhood analysis (Getis and Franklin 1987, Muotka and Penttinen

1994), M oran' s-I(Sokal and Oden I978),and speetr al analysis (p 1att and Denman I9 75).

Coherence analysis explicitly examines associat ions over a range of scale s (Chatfield

1980) .



3.1.1.2. Scale in habitat models and fish habitat management

Habitat models aim at describing relations between fish and their habitats. These models

are widely used, especially for management of riverine fish populations(FauschetaJ.

1988). Scale is known to be important to fish habitat management and fish habitat models

(c.f.FrisselletaJ. 1986, Minshall 1988, FauschetaJ. 1994, Lewis et aJ. 1996, Minns et aJ.

1996,AJlanetaJ.1997). Recently, several studies have used explicit multi-scale

approachestostudyfishpopulations(e .g.Syms 1995. Poizat and Pont 1996, Richardset

aJ.1996). Howeve r, these studies operated at a few selected scales only and other

important scales may have been overlooked. In general, papers on fish habitat and scale

tend to be theoretical, rather than empirical; habitat models are charaeterisedbyarather

informal treatment of scale, with variables measured at a single orafewselectedscales.

This informal treatment may be due to a lack of mathematical techniques that are suitable

for studying fish in rivers in addition to the reasons outlined int he previous section.

Multi-scale analyses at a fixed set of scales only provide information at these scales and no

information is obtained on intermediary scales. Pattemanalysis,correlogramsand

variograms,speetralanalysisandcoherenceanalysiscouldtheoretically be used to cover a

wide range of scales. However, use of these methods is limited in empirical studies

because methods based on variance analysis are sensitive to low densities where zeros are

common (Fasham 1978, Upton and Fingleton 1985), and because of the irregular system

boundaries of riverine habitats: two-dimensional spectral analysis or two dimensional

coherenceanalysiscanonlybeusedforrectangulardistributionmaps; irregularity of

system boundaries limits the use of pattemanalysis because of the diflicultyofpositioning

random or nested quadrates.



3.1.1.3. Transeclversusgrid-syslemapproaches

Habitat seleetion studies generally opera te from spatial scalesfarsmallerthantheriver

width (micro-habitat modelling) to several times the river width (meso-ormacro-habitat

modelling). To cover this range of spatial scales in multi-scale analyses, the measurement

resolution will have to be high. However, at high resolutions , many of the bins or cells

thatcomposethetransectorgrid-systemwillbeempty, i.e. inman yofthebinsnotishwill

be observed . This may prevent interpretation of data at small spatial scales.

Thissensitivitytozero-observations variesamongtranseetandgridsystem approaches .

Transec tandgridsystemsarecharacterisedbytheirlength, width,resolutionandrange.

When using a transect approach, it makes sense touse a transect width that is similar to

the length of the bins within the transect at the highest transect resolution,unlessthisbin

length is larger than the river width. In this case transect width equals river width and bin

length maybe larger than transect width. Because of this, when decreasing the spatial

resolution of data from grid systems, the occurrence of zeros declines more rapidly than in

a transect approach. For example, halving the transect resolution will double the average

number of observations per bin, but doubling the width ofsquarecells in a grid system

approach will quadruple the number of observations percell . Because of this.jnulti-scale

analyses at high spatial resolutions in environments oflow densitiesmaybemoreeffective

when using grid-based rather than transect systems.

3.1.1.4.0bjeclives

I present a new quantitat ive multi-scale approach, based on agrid-sys temapproach,for

analysing patchiness offish distributions and associationsoftish with habitats over a wide

range of spatial scales, from far smaller than the river width to several times the river

width. This method is based on frequency analysis with randomisation . The method will

be illustrated using simulated fish distributions as well as tielddatacolleetedinNorth



HarbourRiver,Newfoundland ,in 1994.

3.1.2.1. Study site

North Harbour River is located on the Avalon Peninsula of Newfoundland, Canada

(47°12'0" N, 53°37'30" W). The river drains a watershed of73 km2
, consisting of boreal

forest and open bog underlain by Precambrian sedimentary rock. The fish community in

North Harbour River is composed of Atlantic salmon, Sa/mo sa/or, brook trout ,

Salvelinusfontinalis, brown trout, Sa/rnatrutta, threespine stickleback, Gas/eros/ells

aculeatus, and American eel, Anguilla rostra/a. The river is further described by DeGraaf

and Bain (1986) . The study reach was approximately 5 km upstream from the river mouth

and consisted ofacombination ofriffie , run and pool habitats. The length of the study

reach was 120 m and the average width 9 m. The fish community at the study site is

predominantly juvenile Atlantic salmon. Brook and brown trout were relatively rare

«10% by number).

3.1.2.2. Habitatmapping

The study reach was mapped for substrate, water depth (em), water velocity (em sec")

and cover, although in this chapter only the depth data are used. These habitat

observations were evenly distributed over the study reach. For this, I established an

XY-gridcovering the study section using measuring tapes and T-postsas referencepoints.

To facilitate the taking of evenly distributed habitat observations , I used a l mtPv'C

frame, divided into 4 (50*50 em) and 9 (33*33 cm) cells with coloured twine. Theframe

was positioned in the XY-grid, using measuring tapes and the reference T-posts . Next,

the habitat observat ions were done at the centre of the cells withinth e frarne: substrate



andcoverweremappedwitharesolutionof90bservationspersquaremeter; depths were

mapped with a resolutionof4 observations per square meter. Water velocities (at 60% of

depthandbottom)weremappedwitharesolutionofl observation per square meter,

without the use ofa frame.

Fish distribution surveys were made on 17 August and 25 August, 1994. One survey took

approximately6hours(10.OOh-16.00h). The weatherconditions,flowconditionsand

water temperatures during the surveys were similar. The water temperatures during the

course of both surveys varied from 16(10 .00h)t021 °C(16.00 h),whichisnormal at

this time of year.

Fish were observed by snorkelling in an upstream direction in a zigzag pattem to minimise

disturbance offish. Observed fish positions were identified by using numbered weights.

Data recorded during snorkelling included: species, age class (0+, 1+,2+,>2+,estimated

from size), height above bottom (em), and activity (moving, holding position). All fish

observed were recorded . The numbered markers were mapped relative to the XY-grid, to

thenearest5cm. Watervelocities,snoutvelocities(cmsec"),depth(cm),coverand

substrate were mapped at locations of markers.

Both the habitat mapping and the fish distribution surveys were done at a discharge

estimated at 0.25 m' s", as this was the most prevalent discharge in the summer of 1994.



3.1.2.4. Computational procedures

A FORTRAN program was written to address a series of questions.

How are fish positioned relative to each other? This was addressed by

computingspatialautocorrelationsoffishpositions.!jishtojish)

How are fish of group 1 positioned relative to fish of group 2? This was

addressed by computing spatial associat ions between positions of two

groups offi sh (cohorts , species). (group 1 to group 2)

How are fish distributed relative to a previously recorded distribution?

Thiswasaddressedbycomputingspatialassociationsbetweenfish

positions recorded on separate surveys. (temporaf)

How are fish distributed relative to the distribut ion of aha bitat feature?

This was addressed by computing spatial associations offish positionswith

habitat features. (fish to habitat)

How are habitat features positioned relative to each other? Thiswas

addressed by computing spatial autocorrelationsofhabitatfeatures.

(habitat to habi/at)

In the following text , these quest ions will be referred to as component s l- S, The

computat ional flow was similar for each component. as demonst rated below by an

example based on component 4 (lishto habitat) . Figure 3.1. 1 shows the steps involved in

the multi-scale program .



Figure3 .!.!. Flow of calculations used to investigate associations offish

with habitats over a range of spatial scales.

Component 4 (fish to habitat) compares differences in the habitat surrounding observed

fishpos itionswiththehabitatsurroundingcomputer-generatedrandomfishpositions.

This comparison is made avera range of ambit radii (Figure 3.1.2).



Figure 3.1.2 . Illustration of the ambit conc ept .

Multi-scale analyses can be done at increasingly larger

ambit radii (RJ-R2-R3 ) or at increas ingly larger

distance slots (Ra-Rb-Rc) .

First, the Contact of each observed individual fish with the habitat feature of interest is

calculated as the percentage occurrence ofa specified class ofa habitat variable (e.g.

depth class, substrate class) from a map of evenly pos itioned habitat obse rvations , i.e.

based on a uniforrn grid. Next , the average Contact is calculated by averaging the Con tact

across all individual fish observations:

Co bs.. = f, • f~/fJt; Equation L l .I



Co" ,: average Contact offish with specified habitat at ambit

total number offish observed

Nh,r: number of observations of specified habitat within distance i

from fish positionf

total number of habitat observations within distance i from

fishpositionf

To evaluate the observed Contact relative to a random outcome, a randomised fish

distribution is created by randomly repositioning all fish within the grid for each survey

separatel y. The random distributions were created using the FORTRAN system-supplied

random number generator, upgraded using the shuffie procedure(pressetal.1986)to

breakup possible sequential correlations . From the randomised distributions, the average

Contact(C~o)iscalculatedforeachsurveyandasanaverageofallsurveys. This

procedure is repeated 500 times, i.e. 500 randomised distributions are created each leading

to different estimates of'Ca.. For each of these 500 randomiseddistributions, Co'"is

compared to Cs. . Fromthis ,p-valuesarederivedthatcanbeusedasselectioncriteria to

test iftheRelativeContactissignificantlydifferentfromO,i.e. iftheobserveddistribution

is significantly different from the randomised distribution. Finally, an average Cnois

calculated based on all 500 observat ions of'Cg. , From this, the Relat ive Contact at radius

iiscalculated(RC;):

EqUQlioIl3.1.2

The Relative Contact presented over a range of ambit radii describes how fish are

associated with habitat features over a range of spatial scales.

The procedure for components 1,2 ,3 and 5 differs slightly from component 4 (fish to



habitat) . For analyses aimed at investigating spatial autocorrelations offis hposit ions

(componentl ,fishtofish),oranalysesaimedatinvestigatingspatialassociationsof

different fish populations (component 2,groupI to group 2; component3,temporal),

Contact is quantified by using fish densities. To obtain density estimates, the program

createsauniforrndistributionofdummypositio nswithinthestudysite. The ratio offish

observations versus dummy positions is subsequently used as an estimate offish densities.

E.g . if400 dummy positions are created per square meter, onefishobservation to 200

dummy positions indicates a density of 0.5 fish m".

To facilitate a compatison of separate surveys for component I (fish to fish), which may

differ in the number offish observat ions, all density estimates are re-scaled asa percentage

of the number offish observed per survey minus one(l was subtracted because this

percentage refers to the number of conspecifics). For component 2 (group I to group 2)

and 3 (temporal) ,alldensitiesarere-scaledasapercentageofthe total number offish

observed per survey. C... will therefore provide an estimate of the Contact of an average

fish in a particular group with the other fish of the same group (componentl ,fishtofish)

or with fish of another group (components 2 (group I to group 2) and 3 (temporal» . The

randomised fishd isttibut ions in components 2 (group I to group 2) and 3 (temporal) are

created by randomly repositioning only one of the two fish groups . Forcomponent5,the

randomised disttibution is created by randomly allocating the habitat observations to the

positions where these habitat observations were made, using sampling without

replacement . Note that in a situation of2 surveys, 3 estimates for RC are obtained per

ambit radius in components I (fishtofish),2(group Itogroup2)and4(fishtohabitat)

(one for each survey separate and one based on both surveys) . One estimate per ambit

radius is obtained for components 3 (tempora l) and 5 (habitattohabitat) .

Analyses are done both over a range of ambit radii at increasingly largerambitradiiandat

increasingly larger distance slots, as illustrated in Figure 3.1.2. The smallest ambit radius

will differ among analyses, dueto differences in resolution of them apping of the habitat



and fish distributions . For associat ions offish positions, thesmallestambitradiussho uld

exceed 5 em to ensure that at least one other possible fish position is within the ambit of

each possible fish position. For associations offish with depth, the smallest ambit radius

shouldexceed36cm(=~)toensurethatatleastonedePthobservation is

within the ambit of each possible fish position. For analyses aimed at spatial

autocorrelation of depth observations, the smallest ambit radius shouldexceed50cmto

ensure that at least one other habitat observation is within the ambit of each habitat

The value of Relative Contact allows positive associations (RC>O) to be distinguished

from negative associations (RC<O). ARelativeContactofl indicatesthattheaverage

fish observed has 10 times more contact with a particular habitat feature compared to an

average fish of the randomised distribution. A Relative Contact of-I indicates that the

average fish observed has 10 times less contact with a particular habitat feature compared

to an average fish from the randomised distribution. The RC is therefore more readily

interpretable than the Habitat Preference Indices used in manyh abitat selection studies.

3.1.2.5. Analyses

Components I (fish to fish) and 5 (habitat to habitat) were tested, usingtheprogramona

totalof290 fish that was evenly distributed within 6 randomlypositionedclustersor

"schools" in a 100'100 m area (=group I fish). The minimum distance between group I

fish in a school was \.5 m and schools were arbitrarily assumed to approximate circles

with a radius of6 m. Relative Contact was quantified at increasingly larger ambit radii.

The Relative Contact was expected to show a minimum at small spatial scales (ambit

radius <\.5 m, RC<O)due to the minimum fish distance, and a maximum at intermediate

spatial scales (ambit radius = 2-6 rn, RC>O)due to schooling . The Relative Contact was

expected to decline to 0 at spatial scales larger than 6 m because 0 ftherandom

positioning of schools .



Components 2 (group I to group 2) and 3 (temporal) were tested by using the program to

an additional 292 fish that were evenly distributed within the same grid within 6 randomly

positioned schools. There was no overlap between schools . Minimum distance between

fish and school radius was similar to the test of components I (fish to fish) and S (habitat

to habitat) . Relative Contact between fish of group I with fish of group 2 was quantified

at increasingly larger ambit radii. The Relative Contact was expected to show a minimum

at small spatial scales (ambit radii <10 m, RC<O)due to the spatial separation of schools.

The Relative Contact was expected to approach 0 at ambit radii larger than 10 m, as

schools were randomly positioned.

To test component I (fish to fish) against an observed situation, the spatial autocorre lation

of the 0+ salmon distribution of both surveys in the North Harbourriverstudy reach was

investigated . It was expected that the RC would be negative at small ambit radii «IS cm)

due to spacing behaviour and competitive interactions . At larger ambit radii (IS cm - 2 m)

a positive and gradually declining RC was expected due to selection by the 0+ salmon for

primarily small-scale «I m2
) environmental features .

To test component 4 (fish to habitat) against an observed situatio n,thedepthpreference

of the 0+ salmon was investigated over a range of spatial scales (maximum ambit

radius=IOm)usingthedistributiondataofbothsurveys. Depth observations were re­

scaied into 6 depth classes: class I: depth [0-4] cm;class2: <4-8] cm; class3 :<8-16]cm;

class 4: <16-32] cm; class S: <32-64] cm; class 6: >64 cm. It was expected that the 0+

salmon would be positively associated with the interrnediatedepth classes (16-32 cm) and

negativelyassociatedwiththeshallowdepthclasses(0-8cm)atsmall spatial scales. as

observed in other studies (DeGraaf and Bain 1986, Heggenes 1990). Atlargerspatial

scales, however(>4-7m),thereversewasexpected duetoavoidance of pool areas and

selection forriffielrun areas by the fish.



To test component 4 (fish to habitat) against a known situation, the 0+ salmon were

randomly re-positioned within the North Harbour river study section for both surveys.

Associations of these distributions with depths were investigatedoverarangeofspatial

scales (maximum ambit radius=IO m). It was expected that the RC would not be

significantly different from 0 across all spatial scales investigated.

I observed a total of977 juvenile salmon, 47 brook trout, and 8 brown trout during both

surveys. Fish distributions were similar on both surveys. Figure 3.1.3 illustrates the

distributions of the 0+ juvenile salmon on 17 August and 25 August, 1994. The percent

occurrence ofthe depth classes 1-6 was 7%,12%,26%,39%,15%, and 1% respectively.
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Figure 3.1.3 . Distribution of 0+ Atlantic salmon, as observed by snorkellingon 17

August and 25 August, 1994, in North Harbour River, Newfoundland , Canada .

I detected scale-dependent patterns in the simulated distributions of the schooling fish

(Figure 3.1.4 ): The Relative Contact for the spatial autocorre Jations of group 1 fish

showed a minimum at small spatial scales (ambit radius < 1.5 m, RC<O) and a maximum at

intermediate spatial scales (ambit radius = 2-6 m, RC>O). The Relative Contact declined

to u at larger spatial scales. The Relative Contact for the spatial associat ions between the

first and the second group of schooling fish showed a minimum at small spatialscales



(ambit radius < 10 rn, RC<O). At larger spatial scales (ambit radius > 10 m) the RC

approachedO.
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Figure 3.1.4. Spatial autocorrelation of group one fish positions ( 1) and

spatial association of group one with group two fish positions (2) at

increasingly larger ambit radii, quantified in terrns of Relative Cont act' .

When applied to field data, the multi-scale approach showed that the 0+ salmon

distribution was not significantly different from random at small spatial scales (ambit radii

< 0.2 m) (Figure 3.1.5) . At larger spatial scales the distribution of 0+ salmon was

clumped (RC>O). The RC reached a maximum at an ambit radius of 0 .7 m (RC=O.43) .

The 0+ salmon were negatively associated with.shallow depths (0-8 em) and posit ively

with interrnediatedepths (8-32 em) at small spatial scales (RC=-0 .66 and 0.19 for depth



class I and 4 respect ively, at an ambit radius of40 em, Figure 3.1.6) . However, at large

spatial scales (ambit radii> 4-6 m) the 0+ salmon were positively associated with shallow

depths (RC=O.IOand 0.08 for depth class I and2respectivelY,atanambitradiusoflO

m). The associations were most different from random at small spat ial scales. The

random ised 0+ salmon distributions were not significantlyassociated with any of the depth

classes (Figure 3.1.7).

. Note that low numbersof conspecifics at small ambit radii can often be found by chance alone.
Le. in theabsenceof spacing behaviour.Fromthis, thelargeandnegative RCmeasuresat small
ambit radii were not-significant.
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Figure 3.1.5. Spatialautocorrelationof 0+ Atlanticsalmondistributionson 17and 25

August, 1994, in NorthHarbour River, at increasinglylargerambitradii,quantifiedin

terrnsofRelati veContact.
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Figure 3.1.6. Spatial association of the 0+ juvenile salmon with depth as observedon 17 August

and 25 August , 1994, in North Harbour River, Newfoundland, Canada. Spatial associations were

quantified in terms of Relative Contact for a range of depth classes atincreasinglylargerambit

radii. Closed dots represent "significant" positive associations , open dotsrepresent"significant"

negative associations . Ascreeningcriterionofa=O.Olwasusedtoseparate"significant"from

"non-significant't relations,
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Figure 3.1.7. Spatial associationoftherandomised 0+ juvenile salmon with depth,from

observat ions on 17 August and 25 August, 1994, in North Harbour River, Newfoundland,

Canada . Spatial associat ions were quantified as the Relative Contact witharangeofdepthclasses

at increasingly larger ambit radii. None of the Relative Contact estimates was "significantly"

different from zero . A screening criterion ofcx=O.OI was used to separate "significant" from

"non-significantv relations.



Fish are associated with their environment over a range of spatial scales. This is because

fish distribut ions are the result of multiple processes that operate over a range of scales,

because fish react to their environment at a range of spatial and temporal scales, and

because of the propagat ion of effects from one scale to another. An example of selection

behaviour operating at more than a single spatial scale is the selection by salmonids for

specific holding positions (small-scale) with relatively lowsnout velocitiesinareasofhigh

current cond itions (larger scale) where drift is concentrated (Chapman and Bjomn 1969,

Everest and Chapman 1972, Fausch and White 198 1). Examples of the propagat ion of

effects across scales are the effect of small-scale refuge locations (small spatial scale

event) for rare flood events or ice scour (small temporal f large spatialscaleevents)for

fish occupying a much larger area (large spatio-temporal scaleeffect) (Errnanet al. 1988,

FauschandBramblett 1991,Pearsonsetal.1992),andtheprocessofexpansionand

contraction , where large-scale distributions are influenced by small-scale habitat selection

processes (MacCalll990, Swain 1993, Marshall and Frank 1995).

Because organisms are associated with their environment at a range ofs patialand

temporal scales , a comprehensive understanding of factors affectingthe distribution and

abundance offish can only be achieved by studying factors affectingfishdistributionsata

rangeofscales,ratherthanoneorevenafewselected scales. In additionmulti-scale

approaches can potentially serve to integrate knowledge obta ined from studies operating

at a wide variety of spatial and temporal scales, such as micro-habit atstudies,macro­

habitatstudies,stock-recruitmentstudiesandmovementstudies.

The proposed multi-seale technique offers several advantages 0ver existing techniques .

Relative Contact measures are readily interpretable . The program concept is simple. The

technique can be used over any range of spatial scales in anen vironment with irregular

boundaries . The distribut ion of the statist ic needed for significance testing is generated



within the program. The technique can be used to analyse associations offish with

habitats as well as to test for patchiness. Results based on various distribution surveys can

be assimilated into the analysis. The model is easy to apply to transect data .

Disadvantages of the method are that the analyses require much computing time for

analyses where density estimates are obtained by high resolution dummy positions . The

habitat mapping has to be done at evenly-spaced positions and is labour intensive. Agrid

systemapproachgenerallyassumesthatthedistributionalheterogeneityisisodiametric. In

riverinehabitats,however,thedistributionalheterogeneityislikely to be elongated in the

flow direction. A transect approach would be amenable to test if patterns differ among

transect orientations . However, the fish distribution in riverine habitats is inherently 2

dimensional rather than linear. Inadd ition, :tisimportanttonotethatthestudyreachhas

two types of boundaries: a real boundary by way of the shorelines and an imposed

boundary by way of the start and end of the study reach. Intheanalyses,itisassumed

that the region outside the imposed boundaries has a spatial patternsimilarto that of

nearby areas within the boundaries . If this assumption cannot be met, the results should

be limited to the areas that are located at a distance of the ambit radiusofinterestfromthe

imposed boundaries . The problem of imposed system boundaries applies to any

multi-scaJeapproach,suchasspectralanalysis, pattern analysis and second-order

neighbourhood analysis.

The Relative Contact method has similarities with the Potential Contact method , as

proposedbySchneideretal.(1987,SchneiderI994)andwithLloyd's (1967) measure of

per capita contact rate. Potent ial Contact is calculated based on local abundances of

organisms and an environmental factor CEi N x and L i Zx respectively) over a series of

n consecutive bins or quadrates of size i (m or mi respectivelyrrange v nsl) :



PCi=En .E i~ri~ iZr

PCi=Potential Contact at bin or quadrate size i

EqIlQl ion 3. / .3

If the environmental factor refers to the number of conspecifics (Z=N-I),thenPotential

Contact is identical to Lloyd's measure of per cap ita contact rate withconspecifics.

In the Relative Contact method, associations are calculated usingamb its centred around

positions of individual organ isms. By contrast, Pote ntial Contact measures and Lloyd 's

index are calculated using geograph ic units such as transects or quadrates that are not

centred on individuals. Therefore , the Relative Contact method is more focused on

individuals and howthey perceive and react to their environment, which maybe appealing

to individual-based studies. A further advantage of the Relative Contact method over

Potent ial Contact methods and Lloyd's index is that the Relative Contac t method allows

for an easy creation of organism distributions by compute r accord ing to specified habitat

selection rules. Merits of this application, as well as detailed calculation procedu res,will

be outlined in Chapter 3.2 and 3.3.

The Relat ive Contact method has similarities with second-orde r neighbourhood analyses

(c.f. Ripley I981, Getis and Franldin198 7, Muotka and Penninen1 994). Howe ver,

second-order neighbourhood analyses are generally confined to analyses within the

context of componen ts 1 (fish to fish) and 2 (group 1 to group 2). In addition, advantages

of the proposed method are that because of the random isation schemeused,boundary

corrections are not necessary and the method is easily applied in systems having irregular

boundaries . The mathematical equat ions underlying second-orderneighbourhoodanalyses

are less easy to interpret , especially for non-statistic ians, whereas the method based on



Relative Contact with randomisation makes sense intuitively and would probably appeal to

behavioural ecologists. The symmetry of Relat ive Contac t measures (avoidance versus

preference) , when compared to the K-function ofsecond-orderneighbourhoodanalyses

(Ripley 1981) is appealing for a graphic display of results (cf. RC=1 versus RC=-l) .

1 have shown that the proposed multi-scale approach detects differences inpatchinessof

fish distribut ions and associations offish with habitats at variousspatialscales insimulated

as well as in field data. Conclusions with respeet to fish-habitat associations , as well as

spatial (auto)correlations offish distributions varied from positiveatonescaletonegative

atanother(Figures3 .1.4-6) , indicatingeitherpreferenceoravoidancebehaviour,

respectively.

The changes in patchiness of the 0+ salmon distributions across spatialscaleswere

probably due to a combinat ion of habitat select ionforsmall-scaleenvironmentalfeatures,

to small-scale spacing behaviour , and possibly to competiti ve interact ionsatsmallspatial

scales (Figure 3.1.5) . At small spatial scales, the 0+ salmon preferred interrnediatedepths

and avoided shallower and deeper areas, but preferred shallow dept hs at larger spatial

scales (Figure 3.1.6). Thispattem isprobablyduetoacombinationofavoidanceof

shallowdepthsatsmallspatialscales,preferenceforriffieareasthat have a high number of

shallowdepthobservations,andavoidanceofpoolhabitats.

These results show that conclusions with respect to the distribution ofj uvenilesalmon

depend on scale. A micro-habitat approach would lead to the conclusion that 0+ salmon

avo id shallow depths (RC<O, Figure 3.1.6) and that 0+ salmon distributio nsarerepulsed

(RC<O,Figure3 .1.5) . A meso-habitat approach would lead to the conclusion that juvenile

salmon prefer shallow depths (RC>O, Figure 3.1.6) and are clumped (RC>O, Figure 3.1.5) .

In add ition, they show that multi-scale techniques mayallowforanidentification of scales

that are most elfective in explaining observed tish distributions : IntheNonhHarbour

River study, thehabitatseleetion seemed primarily aimed atsmall-scaJehabitatfeatures



« I m' ) as the patchiness of the fish distributions and associations offish with depths were

most extreme at small spatial scales. Therefore, a micro-habi tat approa ch « I m' ) is likely

to be more effective compared to a meso-hab itat approach (> 100 m') .

These results imply that the scale of measurement will detenmineth eperceivedrelative

import ance ofa habitat variable in habitat selection behaviour . Therefore , Hab itat

Suitability Indices and Habitat Use indices, commonl y used in habitat modelling

approa ches, must also depend on scale. From this, it follows that managerial act ions may

differ based on the scale of measurement of the stud y used to support managerial

dec isions. The results also emphas ise the fact that interpreta tion of result s should be

limited to the spat ial scales over which the study was conduc ted.

A single- sca le approach in habitat modelling, be it either a "macro" or "micro" approac h,

fails to apprec iate that organ isms may be assoc iated witht heir environmentoverarange

of spatio-temporal scales . Current habitat models may be impro ved by a more explicit use

of scale . This may improve poss ibilities for assess ing and prescrib ing habitat requirements

offish. Future habitat select ion studies should focu s on the identification of spatial scales

that are most effective (see Chapter 1.3-5) in expla ining observedfishdistribut ions.



3.2. Habitat selection by juvenile Atlantic salmon: a test for density-dependent

habitat use at multiple scales from stream tank observations

Habitat models aim at quantifying relations between organisms and their environment and

as such are important to the management of renewable resourc es. These models are widely

applied to riverine tish populat ions where theytind use in stream habitat investigations and

in the resolutionofcontlicts arising from water allocat ion and hydropower development

(Fauschet al. 1988. Reiser et al. 1989, Armour and Taylor 1991).

As distributions of organisms result to a large extent from individual decisions(Krebsand

Kacelnik 1991), an understanding of habitat selection behaviours offish wiIIbe important to

fish habitat models and fish habitat-management. Important research questions in this context

are: (I) how do fish perceive and reaetto their environment; (2) how are Iirnitedresources

distributed among competitors; (3) is habitat use or fish densitytrul yindi cativeofhabitat

quality; (4) to what extent are fish distributions driven by habitatselecti on behaviours and to

what extent by other processes; and (5) how can individual tishbehaviours be extrapolated to

scalesrelevanttomanagernentproblems? In this stud y I address the first two of these

quest ions by studying density-dependent habitat selectionbyjuvenileAtianticsalmon

(Salmo salar) in an artificial stream tank . The habitat there was described in terms of

substrate, water depth and water velocity, the variables most often includedinhabitat

models of riverine fish species (Orthand Maughan 1982, Fauschetal.1988,Heggenes

(990) .

This study differs from previous studies on density-dependent habitatselectionby

salmonids (e.g . Elliott 1986, Rodriguez 1995) or from Atlantic salmon habitat mode lling

studies in general (e.g. DeGraaf and Bain 1986,Heggenes (990),inthat associations of

fish with habitats were stud ied within the context of an explicit multi-scale approach:



Associations offish with habitats were studied over a range of spatialscales,ratherthanat

a single or a few selected scales . I believe that a multi-scale approach is more appropriate

for describing how fish perceive and react to their environment becau sehabitatselection

behaviours themselves operate at multiple scales. An example is selection by salmonids

for specific holding positions (small-scale) with relatively low snout velocities in areas of

high current conditions (larger scale) where drift is concentrated (Chapman and Bjomn

1969, Everest and Chapman 1972, Wankowski and Thorpe 1979, Fausch and White

1981) . Subsequently, this behaviour maybe best identified and madeexplicit within the

context of quantitative multi-scale techniques, i.e. amulti-scaleproblemisbeststudied

using a multi-scale approach.

The objectives of this study were : (1) to illustrate how a varietyofnewlydeveloped

scaling-techniquescanbeusedinhabitatmodellingandbehavioural studies; (2) to identity

scales important to habitat models for juvenile Atlantic salmon; (3) to forrnalise observed

habitat seleetion behaviours that operate at multiple scales into an explicit multi-scale

habitat seleetion model; (4) to study changes in habitat use with changing density; andeS)

to compare multi-scale approaches with single-scale approaches in regard to their ability

toidentityhowfishselecttheirhabitatsandintheirabilitytodescribe and predict fish

distributions .



The stream tank I used for the experiment is located at the Department of Fisheries and

Oceans in St. John's ,Newfoundland ,Canada (see Figure 3.2.1). This tank has an oval

shape and consists of two sections that are separated by plastic wire-mesh screens. One

sectionisusedforobservingfish,theothercontainsapaddle-wheel,connectedtoan

electric motor, that can be used to create a clockwise current, The observational section

(14.4m 2)furtherconsistsofawideandshallowpart(riffiehereafter;6 .9m'),awideand

deeppart(poolhereafter;5 .0m ') ,andanarrowandshallowpart(runhereafter;2.5m 2
;

see Figure 3.2.1).
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Figure3 .2.1. Tank habitat and fish distributions . Black dots in the left figure refer to

positions of cobble-stones. Contour lines on habitat use by fish in the stream tank were

based on all 3888 fish observations : I averaged fish densities within 30 cmcircles

surrounding all 15492 possible positions in the tank, whichweresubsequentlyre-scaled

using a uniform transformation . XY-grid-systems oriented relative to water flow, used for

calculations as explained in the text , are depicted in the left figure for two positions .

The bottom of the tank was covered with gravel (8-16 mm), on top of which 1 positioned

small cobble-stones (64-128 mm)grouped in patches of different size. In addition, I

positionedlight-colouredgravel ina30cm*30cmgridpatterntofacilitate determination

offish positions . Water flow and depths were kept constant. Light conditions were

controlled by anificial lights and an electronic timing device (16 h. oflightand8h.of

darkness). The tank was enclosed by black plastic to block external light. Temperatures

were maintained at 15-16°C. Substrate , water depth (em), and water velocities (at 60%

depth and at 5 cm off the bottom, ern 5') were measured at evenly distributed locations in

the tank using a resolution of 100, 25 and 4 observationspersquarefootrespeetively.



Water velocities were measured using an electronic flow-meter (FLO-MATE , Model

2000, Marsh-McBimeylnc.). Figure 3.2.1 shows the tank habitat in terms of substrate

(gravel/cobble) , water depth (range : 26-72cm) and water velocity atbotlom(rangeO-48

cms')andat60%depth(range:0-63cms l
) .

Fish were observed through windows from within the centre of the tank. To minimise

effects of the observer on tish behaviours, this centre was kept dark and windows were

covered with black mesh. Tofurtherobscuretheobserverfromthefish's view,ltixed

black plastic on top of this mesh, leaving a narrow slit forobservations.

3.2.2 .2. Experimental procedures

The experiment took place from 18/08 /95 to 05110/95 . Wild Atlantic salmon (fork-length

10.5-11.5 cm) were collected by electrofishing in North Harbour River, Newfoundland

(47"12'N, 53'37'W), and kept in a hoJdingtank (up to two weeks) prior to introduction

into the stream tank. Fish were introduced into the tank at three different densities: 0.21,

0.63, and I.Om·2(Le.3 ,9andI5tishrespectively). Each density was repeated once (six

introductions in total). These densities were chosen to represent a range of densities

found in Newfoundland rivers (Gibson et al. 1993). Individual fish were used only once.

Afteranacclimationperiodoftivedays,tishwereobservedforthreedays during two 2.5­

hourperiodsinthemomingandintheaftemoon(10.00-12.30h. /14 .00-16.30h.),and

a one-hour period in the evening duringdarkness(l9.00-20.00 h.; tankwasdarkby

18.00 h.). Night-time observations were made using a small flashlight. Fish were fed with

chopped squid, which was taken eagerly, at 12.00 h, 16.00 hand 19.30h. Observations

were made by surveying the tank every 10 minutes in an upstream direction.Forthe

lowest two densities, similar downstream surveys were done as well to assess possible

effects of the survey direction on results . These were done every 10 minutes and in

between upstream surveys.



I recorded the snout-positions offish at first encounter on maps of the tank. Thesewere

later digitised using a 3 em resolution (nearest 0.1 foot) . In addition, I noted the distance

of the fish fromthebotlom(cm),theorientationofthefishrelativeto the current, as well

as various behaviours during a 10 second period after first encounter. Thesebehaviours

includedaggressivebehaviours(atlackldefence),feedingbehaviours(yes/no),and

movement (yes/no). At the lowest two densities, I was able to distinguish individual fish

from differences in natural coloration patterns.

3.2.2.3. Analyticalprocedures

I analyzed the data to address a series of questions :

1. (Habitat selection) How are fish associated with their habitats: What variables were

selectedforandatwhatspatialscale(s)?

2. (Habitat model) What is the best way to incorporate associations offish with habitats

intoaformalhabitatmodeldescribingandpredictingfishdistributions?

3. (Expanston and contracuom Does habitat use change with density and if so, how

strong is this effect?

4 . (Fishbehaviollr) Are fish behaviours (aggression, feeding, movement) different

among preferred and avoided habitats, and do fish behaviours change withdens ity?

5. (Scaling approach) To what extent does an explicit multi-scale approach improve our

understanding of habitat selection behaviours offish, relative to a single-scale

approach?



The analytical procedures related to these fivequestionsareoutlinedbelow. Analyses

were done using FORTRAN and SAS (SAS 1988). Random numbers, needed for several

of the analyses, were generated using the FORTRAN system-supplied random number

generator, upgraded by the shu!l1e-routineas outline by Press etal.(1986).

To facilitate computations, I interpolated depth and watervelocitiesto the resolution of

fish and substrate distribution maps (100 per square foot) . This was done based on the

inverse distance of measurements located within a distance oflf2 foot (water velocity) or

1/5 foot (depth) . Next, water depths were re-scaled into two classes (s 40 em; > 40 em)

and water velocities into 7 classes ([0,5] , <5,10], < 10,20], <20,30],<30,40],<40 ,50],

>50 em s').

For the analyses I only used the upstream observations collected in the two-hour time

periodslO.00-12.00and 14.00-16.00. This was done as I was uncertain about the

effect of the observer on fish distributions during night-time observations and because

accuratedeterminationofindividualfishbehavioursandpositionswas difficult to quantify

immediate1yafterfeeding.

lao Habitatsefection,omnidirectional

I quantified associations offish with substrate, watervelocities,depthandconspecifics

over a range of spatial scales using measures ofRelativeContact(RC). Thisstatistic

compares observed densities of conspecifics or habitat features surrounding individual fish

positions (DO; # m·2) with similar densities obtained from computer-generated random

fishdistributions(DR;#m·2) . These comparisons can be made for a range of ambit radii

(S)which define circles surrounding individual fish positions(seeChapter3 .l) . From this,

a scale-dependent description of habitat use is obtained :

Equation 3.2./



For example. RC,=2 indicates that at ambit radius S, an average fish has lO'timesmore

contactwithconspecificsoraspecifichabitatfeature(depth. watervelocityorsubstrate

class). than in a case where fish are randomly distributed. This statistic allows positive

associat ions (RDO to be distinguished from negative associations (RC<O)and random

(RC=O) from even (RC<O.repulsion) or clumped (RDO) distributions. DRs can be

obtainedbyaveragingresultsofalargenumberofrandomisedfishdistributionsorby

averagingresultsforaIl15492possiblepositionsinthetank.!nthisstudy.!usedthislast

approach . Density estimates were obtained by assuming a 3.048*3.048 em area (0.1*0.1

foot)aroundaIl15492possiblefishpositions.P-values.used toassessifassociations

differed significantly from random. were obtained from 500 randomised fish distributions.

Because of the oval shape of the tank. ! had to use a set of subroutinesthatallowedfor

calculatingshonestdistances "aroundthebendofthetank".e .g.when calculating the

distance between a location in the run and a location in the riffie habitat. Amorecomplete

descript ion of the Relative Contact method is provided in Chapter 3. 1. !analyzed

associations offish with conspecifics, water velocities. depth and substrate at ambit radii

rangingfromOt0350cm(0.1.5.10.15 .20.25•...•350cm). Analyses were done for all

six introductions separately. as well as based on all introductionscombined .

lb . Habitatselection,directional

To assess possible anisotropy in associations offish with habitats or conspecifics.!

devised a statistic inspired by RC measures and exhaustive non-ergodic

cross-correlograms(RossietaI.1992). ! called this stat istic RCEX (exhaustive measure

of Relative Contact) :

RCEXLAG- X,LAG-Y = LOGIO( D 0 l.-IG- x ,l..-lG- Y) - LOGIO(DRLAG- X .l.AG-Y)

Equation 3.2.2



RCEXcompares observed densities of conspecifics or habitat features at various spatial

lags surrounding observed fish positions with similar densities 0 btainedfrom

computer-generated random fish distributions, and allowsforascale-explicit

two-dimensional appraisal of the data 's spatial dependence . For example, RCEX.,.• , =-1

indicates that an average fish has 10 times less contact with consp ecificsoraparticular

habitat feature at lag -I in the X-direction and lag +3 in the V-direct ion. Note that RC is

calculated at increasingly larger ambit radii, whereas RCEX is calculated at consecut ive

lags, and that RCEX measures are directional, whereas RC measures are not. Also note

that RC and RCEX measures are similar at spatial scales approaching 0 ern,

RCEX measures are most easily obtained from rectangular distribution maps. This is

obviously not the situation in the stream-tank. However,intheanalysestheX-and

Y-directionsdid not refertotheX-Ygrid system of the tank (c.f. Figure3.2.1),buttoa

grid system relative to water flow and fish-position: The 90° and 270° directions referred

to directions directly into and with the current respectively; The 0° and 180° directions

referred to directions perpendicular (left and right) to the current . This grid system is

different among fish positions in the tank (see Figure 3.2.1). Reliable estimates ofRCEX

require a large number offish observations. Therefore, I onlyperforrned these analyses on

observations of all six introductions combined.



Based on the results of the previous section, I deve loped a formal model to describe

habitat use by fish in the tank. Preferably, such a model would comb ine realism (model

parallels habitats as experienced by the fish) and simplicity (fewvariables inciuded,few

ciasses per variable) with strong descript ive capabilities (observed and predicted

distributions or habitat use sirnilar). Todevelopsuchamodel,Idevisedamethodbased

on the RC statist ic that paralleled stepwise multiple regressio n. First I decided on an

initial model that combined the variable thought to be most important, measured at a scale

wher e associations were most extreme (i.e., RC measures of the different ciasses most

different from 0) . Next , I created fish distributions based on this model. Fishwere

distributedbyrandomisationwithallpositions inthetankhavingadifferent probability of

being selected (154 92 positions in total ). This probab ility (p pos. ,; i=l -l5492) was

determinedbyaweightgi ventoeachposition(WPOs.,)andthetotaI of all weights of all

poss ible positions (WTOT),with WPOs-, determined by the Relative Contact associated with

the habitat at this position as of the initial model :

PpOS=i = ::~ = f5i~I:C;:::"' J = lO R,:;;;""
j=l

Equaiton s.z.s

With this done, I then compared densities of habitat features surr ounding observed fish

positions (DO) with similar densities surrounding these compute r-generateddistributions

(DO) , in a manner similar to equat ion 3.2.1. Th is was done over a range of ambit radii

(S) :

Equauon s.z.«

From this, RCD values that differ from 0 indicate that addit ional habitat selection



behavioursmayhavelobeincluded inlolheinilialhabilalmodel: additional variables may

havelObeinciuded,orlhesamevariabledefinedalmulliplescalesrather than a single

one,oracombinationofbolh. Forexample,fishdistributionscouldbegenerated

according to observed habitaluserelatedtowatervelocity,and evaluated by means of the

RCD statistic as a function of depth . Positive values ofRCD for a particular depth class

maythenindicatethatthisdepthisseleeted,evenaftercorrecting for selection for water

velocities, i.e. habitat selection behaviours are directed towards both depth and water

velocity. Thismethodisofuseinaenvironmentwherehabitatvariablesareeorrelated(ef.

Richards 1982),whenhabitatsareperceived inanon-independentmannerbyfish (cf.

OrthandMaughanl982),orwhenhabitatselectionbehavioursoperate at more than a

single scale.

3. Expansionand contraction

lhypothesisedthatwhenpopulationdensities inerease,primaty(high density) habitats are

occupied first and secondary (low density) habitats mostly after primaryhabitats are filled.

The implication is that densities at seeondary habitats will increase more with population

level than will densities in primary habitats. To address this hypothesis, I first estimated

the slopes of the equations relating the numberoffish(N) in the different habitats (H) as

identified in the previous section(NH) to the total number offish in the tank (NPOp)':

Equalion3 .2.5

lfo;=1 for all habitats, habitat use responded proportionally with introductiondensity, i.e.

• Throughout this thesis a varies constants were used to prevent taking a log of 0 . This was the
result of the following procedure: Constants wercchosen as one tenth of the smallest observed
value,exciudingO,androundedlothenearestlO'(I=integer). Next additionalanalysesweredone
using a constant that was one order of magnitude larger and one order of magnitude smal lertoscc
whetherresultsvaried with this constant. Theseadditionalanalyseswereoot reportedin this
thesis, but indicatedthat resultsdid not varywiththis constant.



habitatusewasindependentofintroductiondensity(cf.MyersandStokes1989). Each

estimate of'S, is based on six observations . TheconstantofO.llishpreventedtaking

10g,,(0) . This value represents a subjective assessment of habitat use foru noccupied

Next, I analyzed whether 0;, a series of slopes, was negatively correlated with the Relative

Contactofthelishwiththehabitatsasidentiliedin section 2 (RCH),with RCHcalculated

based on the average percentage oflish observations in these habitats for all six

introductions separate (pOH.p)and the percentage oflish in these habitats assuming a

random distribution over the surface area of the tank (PRH):

onegativelycorrelatedwithRCliwouldsupportmyhypothesis,i.e.use of habitats that are

preferred at low densities (RCH>O)does not change much with density, whereas use of

habitats that are avoided at low densities (RCII<O)increases with density. Inthese

analyses, 0; were weighted by the inverse of the associated MSERROR. r. Note that Equation

3.2 .6 and Equation 3.2 .1 are similar, only that Equation 3.2.6 gives an equal weight to the

six introductions in determining RC, whereas Equation 3.2.1 gives more weight to the

higher density introductions .

To quantify the relative imponanceofdensity dependent changes in habitat use to habitat

models, I related the percent offish observations in the habitats identified as described

under section 2 for introductions separately (PO'LP) , to the variables"Habitat"(class

variable), "Introduction Density" (ratio variable) and the interaction of these lWO

variables, using the GLM procedure in SAS and type I SS (SAS 1988). Next , the percent

variance explained by the different levels in this model was used to assess possible



improvement of the descript ive power of habitat models by incorpor atingdensity

dependent behaviours: When habitat use changes strongly with introduction density, the

interaction term will be large compared to the variable "Habitat" . I stress that this

approach was not meant for significance testing, but was solely intended 10 obtain an

impression ofthe relative imponance of changes in habitat use withdens ity.

In addition, I studied the possible extent of changes in habitat use with density in the

stream tank, in a situation where habitat selection behaviours do notchange with density

but where habitat use and distributions change with density due to compet itive exclusion

and territorial behaviours . Forlhiscompuler-based sludy,lgenerateddislribulionsbased

onasinglehabilalselectionmodelanddifferentterritories,a ndcompared differences in

habitat use with territory size. First, I calculated the Relative Contact oftish with the

habitatsidentitied in section 2, using the low-introducrion-level-observations only (3 tish).

Next, I distributed 54000 tish over the tank habitat for the high densitys ituation(15tish),

withthechanceofanindividualpositionbeing selected,determined by the Relative

Contact associat ed with the habitat at this position (see section2) and the distribution of

conspecitics. The tirst tish of each computer generated introduction (54000115=3600

introductions) was distributed based on habitat and RC only, as describedabove. The

secondtishwasdistributedinthis manneraswell,butafterchoosi ng aposition, l

evaluated if territories overlapped . Ifso ,lre-sampledthesecondfishpositionuntiia

position was selected without overlap of territories . This procedure was repeated up to

andindudingthel5thfishposition,withnoneoftheterritoriessurroundingindividualfish

positions overlapping. Next , I compared the habitat use of the observed and

computer-generated distribut ions: If observed and computer-ge nerated distributions were

similar,evenwhenusinglargerterritories,thetankhabitatmaynotbe suitable to study

density-dependent habitat use as preferred habitats are too farseparated and readily

available, so fish seldom have to compete to occupy primary locations. From this, one

might conc lude that competit ive exclusion may not lead to expansion and contraction.

(The number of 54000 was chosen rather arbitrarily. Unpublished data indicate that



increasingthisnumberwouldnothavealteredtheresultssignificantly.)

I studied whether the numberofaggressive(attack/defence),movement,andfeeding

behavioursperfishobservation(attack/defence) changedwithintroductiondensity.ln

addition,lstudiedwhetherthenumberofaggressive(attack/defence),movement,and

feeding behaviours per fish observation (attac k/defence) differed among preferred and

avoided habitats .

5. Scaling approach

Multi-scale approaches to habitat modelling may give a different impression of how fish

perceive and react to their environment than single-scale appr oachesdo. These

differences may result in different variables being ident ified as importantand the scales at

which variables are measured . but may also result in differences wit h respect to the ability

ofh!'bitat models to describe fish distribut ions from habitat associations . lfahabitat

model accurately describes the rules according to which fish perce iveandreaettotheir

environment and if fish distributions are primarily driven by these behaviours ,

computer-generated distributions according to theseruleswouldbe verysimilarto

observed distributions, regardless of the scale at which these distribut ionsaremeasured.

lfahabitatmodeldoesnotaccuratelydescribetheserules,computer-generated

distribut ionswouldbedifferentfromobserveddistribut ions,especially if distributions are

measured at scales different from the scale(s) of the model.

To evaluate how well larger scale distributions can be predicted fro rn either a single-scale

micro-habitat modelling approach ora multi-scale approach , I gene rated distribut ions for

each of these two approaches, as described in the previous sect ions (54000 fish posit ions) .

Next ,lcomparedtheobservedandcomputer-generatedfishdistributions at the scale of



pool, riffie, and run . If the multi-scale approach had superior descriptive capacities, the

differences between the observed and predicted habitat useatthescaleofpool,riffieand

run would be small compared to a similar comparison from a single-scale approach. These

analyses were done with RC measures obtained from introductions separately as well as

from all fish observations combined

Surveys generally took 45 seconds (lowest fish density) to 4-5 minutes(highestfish

density) . Fish seemed to select fora set of fairly specific small-scalelocations within the

tank, which were rather similar for all six introductions . These locations are illustrated in

Figure 3.2.1 : fish intheriffieweremostlypositionedatspecificlocationsalongthe inner

side of the tank ; fish in the pool section were mostly positioned in a fairly distinctarea

around (X=2 m, Y=7.2 m) and just upstream of the transition pool/run ; fish in the run

section were mostl y positioned in areas surrounding (X=2 .5, Y=5.5), (X=2 .8, Y=2.8), and

(X=2.5 ,Y=1.8).

Fish were negatively associated with each other at small spatial 5cales (arnbitradius<50

em; RC<O; see Figure 3.2.2, omnidirectional approach) , but distributions were similar to

random distributions at larger spatial scales (ambit radius> 50 em; Ro.O). Avoidance

was strongest at ambit radii smaller than 15-20 cm, and was anisotropic (see Figure 3.2.2,

exhaustivedirectionalapproach),withanelongationofinterfishdistances in the 220° and

40° directions . Patchiness offish distributions were most extreme at small spatial scales

(RC most different from 0, i.e, RC>O or RC<O).
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Figure 3.2.2. Associationsoffishpositions inthestreamtank, quantifiedb ymeansof

Relative Contact (RC) and Relative Contact Exhaustive (RCEX) over a range of spatial

scales. For an explanation ofRCIRCEX: see text. RCEXlRC estimates were significant

(p<0.05) at ambit radii < 40 cm; Much of the patterns at larger spat ial scales were

significant as well. I did not further illustrate this, as I consideredgeneral trends in

patterns more interest ing than the significance of individual points composing patterns .

TheomnidirectionalapproachasofFigure 3.2.3suggeststhatfishstronglya voidedcobble

at small spat ial scales (ambit radii < 15 cm; RC«O), but reacted indifferently to cobble at

larger spatial scales (ambit radius > IS cm; RC=O) (see Figure 3.2.3 : RC). However , the

directional approach of Figure 3.2.3 suggests that associations withcobblewerestrongly

anisotropic , with negative associations at small spatial scales (ambit radii<.5-IOcm) ,

positive associations at lags of 15·30 cm in the 30° and 150° directions, and positive

associations at lags of 30-40 cm inthe 225° and 315° directions . Associations offish with

cobble were most extreme at small spatial scales.
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Figure 3.2.3. Associations of fish with cobble in the stream tank, quantified by meansof

Relative Contact (RC) and Relative Contact Exhaustive (RCEX) over a range of spatial

scales. (For an explanation of RCIRCEX : see text. ). All patterns were significant

(p<0.05) at ambit radii < 25 cm (left figure) r < 50 cm (right figure) Much of the patte rns

at larger spatial scales was sigoificant as well. ld id not further illustrate this, as l

considered general trends in patterns more interesting than the significanceof individual

points composing patterns.

Associations with depth were most extreme at small spatial scales, with deeper locations

(>40 cm) being avoided and shallow locations (S40 em) preferred for all of the six

introduClions(seeTable3 .2.l ,Figure3 .2.4) . ldidnotcalculateassociations usinga

directional approach (RCEX) for lack of small-scale depth-variations in the tank, I

assigoedthe depthsofthe transitionzonesbetweentherifflelpooland poollrun sections to

a separate class (<40,60] cm) in Figure 3.2.4 and Table 3.2.1. This was done for

illustratio n purposes . For all other analyses in this study I used the classes "s 40 cm"and

">40 cm" because of the similarity in the patterns of the classes "<40,60j cm" and ">60



em" at small spatial scales.
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Figure3 .2.4 Associat ions offish with depths in the stream tank, quanti fied by

means of Relative Contact (RC) over a range of spatial scales. Foran

explanat ionofRC:seetext . All pattern s were significant (p<0.05) at ambit rad ii

< 30 cm; Muchof the pattern s at larger spatial scales was significant as well. I

did not furthe r illustrate this, as I considered general trends in patte rnsmore

interest ing than the significance of individual po ints compos ingpa Item s.



Table 3.2.1. Associations offish with water depths quantified by means of Relative

Contact(RC)at5cmambitradii(seetext)foreachofthe6 introduct ionsseparate.

Positive associations (RC>O)are printed in bold.

~~nsity :.~~<O ~C;;.60 ' ~~,7
low 0.13 -1.23 -0.38
medium 0.11 -1.06 -0.31
medium 0.10 -0.25 -0.31
high 0.04 0.04 -0.14

~~T'-'-- " '--~:~~"'-" -' -~:~9-'--'-" '-":H6""-"

Based on an omnidirectional approach (RC), associations with water velocities were most

extreme at small spatial scales( see Figure 3.2.5), except for associationswi thw ater

velocities of 0 to 5 em 51, which were most extreme at ambit radii of20-30 em (water

velocity at bottom) and 40-60 em (water velocity at 60% depth) . This "dip" was observed

for all medium and high density introductions, but not for the low density observations.

Analyses on all fish observat ions combined indicated that water veloclties or s to to cm s"

and 40 to 50 em 5' were preferred, and water velocities of 0 to 5 em 5", 10 to 20 em 5'

and larger than 50 em 5 'wereavoided (see Figure 3.2.5) . However ,considerable

variation in associations existed among introductions , especiallyforwatervelocitiesof20

to 40 em 5 1(see Table 3.2.2). An exhaustive directional approach (RCEX) indicated that

these associations were anisotropic . The main results of these analyses were:

Associations with water velocities of 0-5 em 51 (both at bottom and at 60% depth) tended

to become more negative in the 3150-450 directions (towardsouteredgetank) (see Figure

3.2.6); Associationswithwaterveiocitiesof5tolOcm51andlOt020cm5'(both at

bottom and at 60% depth) were most positive at lags of 0 to IS em, i.e. directly at the

position of the fish (see Figure 3.2.6). Associationswithwatervelocitiesof20t030cm

5' and 30 to 40 em 51 were anisotropic, but patterns were rather irregular and difficult to

describe. This may be due to differences among introductions and because most RCEX



values were fairly close to 0, as also illustrated in Figure 3.2.5 and TabIe 3.2.2 for small

spatial scales. Associations with water velocities of 40 to 50 cm s't fboth at bottom andat

60% depth) tended to become more positive in the 20°-40° and 190°-240° directions

(toward s edges of tank, see Figure 3.2.6). Associations with water velocities larger than

50 cm s·' (at 60% depth) were most negative at lags of 20 to 40 ern in the 135°_225°

directions (towards inner edge tank; see Figure 3.2.6);

water velocity
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Figure 3.2.5 Associations offish with water velocities at5 cm from the bottom (Figure

5a) and at 60% of depth (Figure 5b)i n the stream tank, quantified by means of Relative

Contact(RC) over a range of spatial scales. ForanexplanationofRC:seetext. Mostof

thepanerns weres ignificant(p <0.05). I did not further illustrate this, as 1 considered

general trends in pattems more interesting than the significance of individualpoints

compos ingpalterns
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Figure 3.2.6 Associations offish with water velocity classes [O,S], <S,10], <40,SO] and

>SOcm S' measured at 60% depth (Figure 3.2.6a-drespectively), quantifiedb ymeansof

Relative Contact Exhaust ive (RCEX) over a range of spatial scales. Most of the patterns

of Figure 3.2.6 were significant (p<O.OS). fdid not funher illustrate this, as I considered

general trends in patterns more interesting than the significance 0 findividualpoints

composing patterns.



Table 3.2.2. Associations offish with water velocities (cm s·') close to the bottom (WB)

and at 60% depth (W6), quantified by means of Relative Contact (RC) at 5 cm ambit radii.

Positive associations (RC>O) are printed in bold.

low -0.31 0.08 0.05 0.01 -0.02 0.22 -1.30
low W6 -0.24 0.53 -0.05 -0.12 -0.14 -0.41 -4.96
medium W6 0.17 0.09 -0.08 -0.06 -0.16 0.23 -0.27
medium W6 0.03 -0.02 -0.42 -0.37 0.22 0.32 0.29
high W6 -0.19 0.25 -0.13 0.07 -0.03 0.08 -0.23

~~~
W6 -0.06 0.12 -0.14 0.09 -0.01 0.04 -0.01
W6 -0.03 0.17 -0.14 -0.01 0.01 0.14 -0.07

An initial model ident ified habitats based on a combination of substrate and water velocity

at the bottom . For substrate I used 3 different classes: Class! referred to situations

where cobble was present directly at positions ; Classes 2 and 3 referred to situations

where cobble was not present directly at positions, with Class 2 referringtopositions

wherecobblewaspresentinfourlOcm'IOcmareassurroundingpositions, and Class 3

referring to positions where cobble was not present in anyoneoftbeseareas,withcentres

of these areas located at a distance of20.6 cm in the 14° and 166° directions (relative to

water flow) and a distance of32.0 cm in the 231° and 309° directions . These classes were

so defined to describe the avoidance of cobble at small spatial scales(Figure3 .2.3Ieft),

and preference for cobble at larger spatial scales (Figure 3.2.3 right) .



In addition, I identified 7 water velocity classes. Class I referred to positions where water

velocities were ~5 cm 5' and average water velocities within an ambit radius of2 5 cm

were ~5 cm 5 ' as well; Class 2 referred to positions where water velocities were ~5 cm

5 ' and average water velocities within an ambit radius of2 5 cm were >5 cm 5' . Classes

3-7were identicaltotheclassesusedforwatervelocitieslargerthan5cm5',and

measured directly at fish positions. Classes I and 2 were used to describe the differences

in associations offish with low-water- velocity positions in areas oflow water velocity and

low-water-velocity positions in areas of higher water velocities, as indicated by the

previously mentioned "dip" of Figure 3.2.5:

From this, the initial model identified (3 ·7 =) 21 possible habitat classes. All of these were

present in the tank. Ic reated fishd istributionsfromRCmeasuresandthese2 1habirats

for the six introductions separately to test whether additional variablesormeasurement

scales may need to be included in the model. These computer-generated distributions

indicated that, fo r all sixintroductions, shallow areas(~40cm) were preferred over deeper

areas, in addition to the habitat selection behaviours as defined bytheinitialmodel

(RCOSHALLOW>O). These associations were most extreme at small spatial scales and are

summarised in Table 3.2.3 for ambit radii of 5 cm. These computer-generated

distribut ions also indicated additional habitat selection behaviours direeted to wate r

velocities at 60% depth, as RCO values were often different from 0 especially at small

spatial scales. However, these associations differed considerablyamongintroduetions (see

Table 3.2.4). No additional associations were found with depth or water velocity at

bottom at any scale (RCO",Ofor ambit radii of 0·350 cm).



Table 3.2.3. Associations offish with water depths (em) quant ified by means of Relat ive

Contact (RCO) at 5 cm ambit radii (see text) . Positive assoc iations (RCO >O) are printed

in bold .

Density RCD, ...= RCD",, =
low 0.07 -0.16
low 0.12 -0 .47
medium 0.08 -0.33
medium 0.04 -0.15
high 0.03 -0.06
high 0.06 -0 .14

Table 3.2.4 . Associa tions offish with water velocities (ern 5 ') at 60% of depth , quantified

by means of Relat ive Contact (RCO) at 5 cm ambit radii (see text). Positive assoc iations

(RCO >O) are printed in bold.

~:Sity ~CI~!O " :;~<" O! ~~~< I O. :O ! ~~l~<:O.3O ! :~~<lO "' ! :;~<... sot
RCD.,.
·1.27

low -0.32 0.32 -0.19 -0.04 0.22 -0.05 -4.63
medium 0.21 0.00 -0.11 0.02 -0.03 0.23 -0.32
medium 0.41 0.00 -0.30 -0.21 0.19 0.06 0.00
high -0.19 0.18 -0 .09 0.12 -0.03 0.01 -0.27
high -0.Q3 0.05 -0.16 0.11 0.02 0.06 0.03

Based on these results , I decided on a formal habitat model that includedthevariables

substrate(3c1asses),water velocityatbottom (7 classes)anddepth(2classes),with

substrate and water velocity at bottom defined at multiple scales . 35 of all 42 (=3*7*2)

possible habitats were present in the tank. I did not include (scale-dependent) associat ions

offishwithwater velocitiesat60%depth inaformalmodel,becauseof the differences

among introductions as described in Table 3.2.4 and becaus e inclusion would greatly

increase the number of habitat classes.



Habitat use at upstream surveys was very similar to habitat use at downstreamsurveys.

The percent fish observations in the 35 habitats identified abovewere similar to

percentages in the downstream surveys (n=35; p=O.OOOI;r"=0.967 , 0.994, 0.981 and

0.961) for the two low-densities and the two medium-densities respectively).

3.2.3.3. Expansion and contraction

Thepercentfishobservationsinpool,riflle, and run did not change with density in the

tank(pool:r=0 .673,p=0.143;rime:r=-0 .545,p=0.264;run :r= 0.246,p=O .639;n=18) .

Prior to calculating 0;, I removed observations on habitats that were never occupied (7

habitats) as S, could not be estimated for these . Based on the remaining information, 0 was

nots ignificantlyassociatedwithRC,, (n=28,r=-0.159,p=OAI2).

Incorporating density dependent changes in habitat use into aden sity-independent

distribution modelled to a minor improvement of predictions: POH,Pwas significantly

associated with the variables Habitat, Introduction Density and (Habitat)*(lntroduction

Density)(n=21O.r"=0.761,p=0.OOOl) ,with70%ofthevarianceinPO".p explained by the

variable"Hab itat"(df=34,p=0.OOOI),0%bythevariable "IntroductionDensity"(df=l ,

p=1.00),and6%bythe interactionterm(df=34,p=OA74) .

Table 3.2.5 shows that habitat use was unlikely to change with density,evenwhen

territories were large: RCH"cri''''Y ,o<mwas strongly correlated with RCH,<ari""Y ' S .. ", <m

(n=35,p<0.001,r2>O.98foraliterritorysizes). Idid have some indication that

distributionschangedforterritorieslargerthan20-25cm,asthepercent of the variance in

RCH,~ni""Y ,x<m explained by the line RCH,'<ni,..,. -X<m=RCH."'",..,. -0 <m (Y=X) decreased for

territories larger than 20 cm, but these changes were minor.



T able 3.2.5 . Similarity of distributio ns generated assuming the low-density rulesofhabitat

seleetionand differentterritories. Territories were simulated using ambit radii of5 to 40

em. Summarystatistiesincludeintereep t( Int.), slope, andassoeiated standard errors (s .e.)

of the relationship between RClt","~", -O,m and RClt,,,"~,,, -,,o'o om(n=18 ; p<O.OOI for all

analyses), as well as thepereen t varianee(pEy _x) explained by the lineY=X(model:

pereent observed=pereentpredieted).

Ambit Radius r' Int.
~1~6~

s.e.Jot .
~·.~2~I;pe PEy•x

5 0.973 0.016 0.0755 99.9
10 l.000 0.011 l.003 0.0037 0.0014 99.9
L5 0.986 0.034 0.994 0.0552 0.0204 99.6
20 l.000 0.034 l.008 0.0097 0.0036 98.6
25 0.999 0.043 l.01O 0.0127 0.0047 96.9
30 0.999 0.056 1.014 0.0164 0.0061 93.5
35 0.984 0.014 1.010 0.0600 0.0224 89.1
40 0.997 0.070 1.016 0.0258 0.0096 82.1

Table3 .2.6summarisestheobservedfishbehav iours.lngeneral,fishwerestationaryand

periods ofinaetivitywere interrupted with sudden short bursts ofa etivity,withfish

movingand displayingaggressiveimeraClions. Feedings led to a temporary disruption of

fish distribu tions, with many of the fish moving into the riffie area . After moveme nt,

individual fish often moved back to their original posit ions. This is also evident from

Figu re 3.2 .7, which indicates that even after a period of3 days, 8% oft heti sh were

observedwithin5cmoftheiroriginalpositions.

Three regions can be identified from Figure 3.2.7 : For spatia l seales of 0-5 em, the chance

ofobservingatishwithinthepartieu lar distanceoff theorigi nal positioni ncreaseswith

spat ial sea le; For spatial scalesof5 to 20 em this chance is relativ ely invariable; For

spatial seales larger than 20 em, this chance increases with spat ialseale. Analyses as in



Figure 3.2.7 for introduct ions separate ly, indicated that low-density distributions were

more stable than medium density distributions for temporal scales of 10 - 60 min (within

feedings),asthelinesoflow-density distributionswerealliocated abovethelinesof

medium-density distributions. Stability oflow and medium density distributions was

comparable for temporal scales exceeding 60 min.
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0.1 1

Spatial Scale (m)

0.8
region3

region2 :::!!Ia

~::~
0.2~lJ'
o.o~

0.01

Figure3 .2.7. Moveme nt of individual fish as a function of

spatio-tem poral scale. Lines refer to the chance (P)of

observing an individual fish within a certain distance (Spatial

Scale) ofit'soriginal position after a certain period of time

(temporal scale), for periods of 10, 20, 30, 40. SO, 60 min, 4h,

1 day and 2 days (top to bottom lines respectively). Figure

based on all low and medium density introductions (n=I728).



Table 3.2.6. Summary of stream tank observations. Variables include: number offish in

tank(Ntank); total number of observations (Ntot) ; numberofanack(Nan) and defense

behaviours(Nde!) ; number of observations offish moving (Nmov) and feeding (Nfeed).

Fish were mostly positioned on top of, or within a few ernoff the bottom . Introductions

variedconsiderablywithrespecttothedisplayofaggressive,movemen tandfeeding

behaviours (Table 3.2.6). IdidnotobselVesignificantchanges inthenumberof

aggressive, movement or feeding behaviours per fish withintroduction density (Table

3.2.7),ordifferenceswithrespeettotherelativeincidenceofthesebehavioursamong

preferred and avoided habitats (Table 3.2.8).

Table3 .2.7. Changes in fish behaviours with introduet iondensity . Variables include:

Relativeincidenceofaggressivebehaviours(RIagr),whichincludedattacks(RIan)and

defence (RIde!) behaviours, and movement (RImov) and feedingbehaviou rs(RIfeed) .

Relative Incidence is calculated as the total number of observed behaviours divided by the

total number offish in the tank. Resuhs from linear regression (n=6).

ResponseVariable

~:~
RIdef
RImov
RIfeed

0.2670.609
0.2640.613
0.2700.605
0.0290.957
0.4340.389



Table 3.2.8. Differences in fish behaviours among preferred (RDO) and avoided (RC <O)

habitats . Variables include : Relative incidence of aggressive behaviours (RIagr),which

included attacks Ilclatt) and defence (RIdet) behaviours, and movement (RIm ov)and

feeding behaviours (RIfeed). Relative Incidence is calculated as the total number of

observed behaviours divided by the total number offish observation sperhabitattype

(preferred/avoided habitat) . Results from analysis of variance (n=12) .

3.2.3.5. Scaling approach

Multi-and single-scale approaches (21 and 35 habitat classes, respectively) were equally

abletodescribehabitatuseatthescaleofpool,riffle , and run (see Table 3.2.9). Habitat

models from separate introductions were similar to observed distributions (pE y.,,=96%,

bothforsingle-andmulti-scaleapproach). Habitat models from all observations

combined were less able to describe the observed distributions (pE y.,,=76% for both

single- and multi-scale approach). Habitat models derived from low-density observations

thatincludedterritoriality(ambitradius20cm,c.f.Figure3.2.2)andsimilarhabitat

models that did not include territoriality were equally able to describe habitat use at the

scale of the pool, riffle and run (pE y.,,=77% for multi-scale approaches; PEy.x=70-72%

for single-scale approaches) . A model where fish were randomly distributed over the

surface of the tank described observed distributions at the scale oft hepool/rifflelrunleast

well (pE y.x=54%).



Table 3.2.9. Similarity of observed and modelled distributions in the stream tank at the

scaleofpoollrifflelrun. Distribution models were derived from observed habitat use

(DATA) in terms of substrate, water velocity and depth, ofintroductionsseparate(SEP),

and of the two low-density introductions (LOW) or all observations (TOT ) combined;

using either a Single-Scale (SS) orMulti-Scale(MS) approach; and with or without

incorporating territorial behaviours (ambit radius 20 em; NOTERRJTERR), as explained

in the text. Distribution model "Random" refers to a model where fish were distributed

randomly over the surface of the stream tank. Summary statistics include intercept (Int .),

slope,andassociatedstandarderrors(s.e.),oftherelationshipbetweentheobservedand

predicted percentage offish in the pool, riflleand run, as well as the percentvariance

explained by the line Y=X(pEvox; model: percent observed = percent predicted) .

~oi;:r-······- ··P-':\'I.~--_···_··i:·575----~-5\09··_ ·_··f.~ii-···_·6~Tii~~··_·-+i8~~P.!:..--- ·{r~r·o..
SS-NOTERR SEP 0.964 -0.012 1.037 0.0196 0.0499 96.3
MS-NOTERR SEP 0.963 -0.021 1.064 0.0204 0.0524 96.0
SS-NOTERR TOT 0.775 -0.042 1.127 0.0569 0.1519 76.5
MS-NOTERR TOT 0.773 -0.053 1.158 0.0585 0.1570 75.9
SS-NOTERR LOW 0.770 0.078 0.766 0.0437 0.1045 69.8
SS-TERR LOW 0.778 0.071 0.788 0.0436 0.1053 72.2
MS-NOTERR LOW 0.786 0.043 0.871 0.0456 0.1l35 76.9
MS-TERR LOW 0.791 0.043 0.870 0.0450 0.1118 77.3

3.2.4.1. General findings

This study showed that juvenile salmon were associated with habitatsoverarangeof

scales, rather than a single charaeteristic scale. Associations with conspecifics, substrate,

water velocity, and depth were scale-dependent , were generally most extreme at small

spatial scales (ambit radius <50 ern), and were often anisotropic. Fish were sensitive to

contrasts in habitat features within an area of 40-50 cm surroundingpositions : Positions



were often selected for or avoided notsolelybecauseofcharaeteristies of the habitat

directly at positions, but because of the habitat at these positions in concert with

surrounding habitats.

These results underline the importance of spatial heterogeneity of the landscape mosaic to

habitat quality,with spatial heterogeneity having two components : (I) the complexity in

composition,whichisnon-spatial,and(2)configuration,whichis spatial (Li and Reynolds

1994). Current habitat models account for the first component, as habitatpreferenceis

known to be a function of habitat availability (cf. DeGraaf and Bain 1986, Heggenes

1990),butgenerallyignorethelatter.

Ignoringhabitatconfigurationandeffectsofscaleonheterogeneityinhabitatmodelling

may limit effectiveness of managerial decisions based on these models (see Chapter 1.5).

To incorporate both complexity as well as configuration in the spatiaJdomain,

spatially-explicit analyses offish and habitat distributions are necessary. Thecurrentshift

in research focus from one-dimensional towards two-dimensional flow-models may aid in

this as well (cf.Leciercetal. 1996). Asheterogeneityoccursoverarangeof

spatio-temporalscales,multi-scaleapproachesmayservetoidentify important scales and

processes and allow for incorporating both complexity as well as configurationinhabitat

models. From this, habitat models and management decisions may be improved.

I did not observe significant changes in habitat use with introductio ndensity. Relative

incidences of aggressive , movement and feeding behaviours didn otdiffersignificandy

among densities or among preferred and avoided habitats . Additional analyses suggested

that observed spacing behaviour or territoriaJity was unlikely to cause changes in habitat

use in the tank, as preferred locations were distributed such that 0 ccupationofthese

locations was possible without interference competition or pre-emptiveexclusion,evenat

high densities (cf. Figure 3.2.2, Table 3.2.5) . To observe changes in habitat use with

density,higherdensitiesoffishshouldhavebeenused,usinglargerfish having larger



territories or larger scale spacing behaviour, or by creating an environment having less

preferred locations, positioned in closer proximity (cf. Grant andKramer1990).

Severalother studieshaveaddresseddensity-dependenthabitatselectionby salmonids. Elliott

(1986)observeddensitydependenthabitatselectionby trout (Salmon tru Ita). Rodriguez

(1995)studieddensitydependentinteraetions between sympatricsalmonand brook charr

(Salvelirrusfontinalis)basedon12pooVrimepairs,andconcludedthatinterspecific

interactionschangedhabitatprefereneeamongpoolsand rimeswith density,butintraspecifie

interaetionsdidnot . Bult (Chapter4.I) observeda shiftin habitat preferenceof salmonparr

from run to pool habitatswithdensity. This study (Chapter3.2) contrasts with these other

studiesinthatnodensity-dependenthabitatseleetionwasobserved,which maybe due to the

distributionof preferredhabitatswithinthe tank as outlinedpreviously. It is interestingto note

that allof these previousstudiesused a singlelarge-scaleapproach(habitat interrns of pool,

rime, run). However, the resultsof thisstudy suggest that fishbehavioursare primarily

direetedtowards habitatfeaturesat muchsmallerspatialscaJes. From this, habitat

classificationsbasedon broadscaJefeaturesmaynot necessarilyreflectthe habitatas

experiencedby fish,whichmayIirniteffectivenessof habitatmodelsbased on these

classifications.

3.2.4.2.Specincnndings

Fishreaeted indifferentlytoconspecificsatlargerspatia1scale5 (ambit radius> 50 em),

but seemed to avoid each other at smaller spatial scales (ambit radius < 50 em).

Avoidance was most extreme for ambit radii < 15-20 em, which is most likelydue to

spacing-behaviour or territoriality.

Fishreaeted indifferentlytocobbleatlargerspatialscales(ambit radii>40 em), i.e. areas

with and without cobble were equally favoured. When cobble was present within an ambit

radius of40 em, fish were positioned in a characteristic manner reiativetosurrounding



cobble-stones . Fish were seldom positioned directly above cobble-stones (see Figure

3.2.3). Similar behaviours may have been observed by Rimmer et a1.(1984) who reported

salmon parr being associated with specific "home stones" . However, in this study

(Chapter3 .2),fishwerenot positioned on top, but adjacent to preferredstones.

Fishwereassociatedwithwatervelocitiesoverarangeofspatialscales. Fish

differentiated low-water-velocity positions in areas oflowwater velocities from

low-water-velocity positions in areas of higher water velocities(seeFigure3 .2.5). Fish

preferred water velocities of <40,50] em s", but maximised contact with these water

velocities not at small spatial scales, but at larger spatial seales(30-50cm; seeFigure

3.2.6c). Fish avoided high water velocity positions (>50 em s") located to the right

(relative to waterflow) of high water velocity areas (>50 em s"; seeFigure3 .2.6d).

Associations with water velocities of<5 , 10] em s' were most extreme and positive (i.e.

RC(EX) maximal) at the position of the fish (small scale). These may indicate a selection

for specific holding positions with specific low snout velocitiescl oseto high current

conditions (larger scale) where drift is concentrated (cf. Chapman and Bjornn 1969,

EverestandChapmanI972,FauschandWhiteI981),andanavoidanceofexcessive

watercurrentsbecausepositionholdingistoodifficultorenergeticallyunfavourable:

Contact with velocities of<5,10] em s-I were maximised at small-scale "snout-" positions;

Contact with water velocities of<40,50] em s' was maximised at larger spatial scales, as

fish may veer into these preferred water velocities to capture food from positions of lower

water velocities. Duetotheshapeofthestreamtank,watervelocitiesattheouteredgeof

the tank were larger than at the inner edge, and so positions locatedtotherightofavoided

high flow locations are likely to be of even larger flows and avoided evenmore,leadingto

the pattern ofFigure3 .2.6d. The slight oval shape of the area in Figure 3.2.2 that indicates

spacingorterritorialbehavioursmaybecausedbythisaswell,asdefenceofholding

positions maybe easiest in a downstream direction towards the inneredgeofthetankor

an upstream direetion towards the outer edge of the tank. These results suggest

behavioursaimedatmaximisingenergyintake(cf.BachmanI984,Fauschl984)andare



in line with findings of Heggenes (1990) who reported from an extensive Iiteraturereview

that salmon parr generall y avoided slow -flowing areas « 5 em 5' ), preferred water

velocities in the range of 5-25 em 51 (nose velocity; fish of 7-10 em),andavoided

Distributions of individual fish were more similar (stable) when the period in between

distribution surveys was small (small temporal scales) and when mapped using larger

spatial scales (Figure 3.2 .7). Thiswasexpected ,butanexplicitdescriptionofhow

stabilit y offish distributions changes with spatio-ternporal seale,asofFigure3 .2.7,may

provide cues to habitat selection behaviours : The sudden change in the slope of the lines

atthetransitionbetweenregionsl/2(SpatiaIScale=5cm),therelativeflatnessofthe

Iinesinregion2andthesuddenchange intheslopeofthelinesatthe transition between

regions 2/3 (Spatial Scale =20 em) may be due to fish being position ed at a particular

location with in a larger area, e.g. at the centre of territories, with the transition between

regions 2/3 indicating the size of these larger areas and the trans ition between regions l/2

indicating the accuracy with which fish were pos itioned within these larger areas. Note ,

however, that the patterns of Figure 3 .2.7 at spatial scales smaller than 5 em may also be

partly due to sampling errors assoc iated with the accuracy offish posi tionmeasurements

of the observe r. The difference in stability of low (more stable) and medium density

distributions (less stable) for temporal scales oflO to 60 min, and the similarity in stability

at larger temporal scales, maybeduetotheeffectoffeedingonredistribution offish at

the larger temporal scales and a less changeable distributionoflow dens ity distribut ions at

smaller temporal scales in between feedings . In addition , inforrnationfrom analyses as

summarised in Figure 3.2.7 may assist in deterrnining limitat ions asso ciatedwith the

extrapolation of small-scale habitat seleet ion observat ions to add ressproblemsatthe

largerspatio-temporal scales that are relevant to fishmanagement (see Chapter 2) .



As measurement scale can have a profound influence on results and interpretations (Wiens

1989,MengeandOlsonI990,LevinI992,HomeandSchneiderI99S),a careful

consideration of scale is important to habitat models. Habitat models effective for

resource management problems should focus on a description of the more important

processes first before including others. Multi-scale descriptions of distribution patterns of

organismsandtheirhabitatsmayservetoidentifYimponantprocesses and the scales at

which they operate . Rate-diagrams , which rank processes by importance as a function of

spatio-temporalscale(HomeandSchneiderI994),mayfunheraidinidentifYing

important processes . Important processes should be described at scales most efficient to

habitat models. This may be best achieved by concentrat ing on scales where distributions

and associations are most extreme, i.e. different from random (Schneider 1994). When

measurement scales are different from scales relevant to management problems , a careful

consideration of the validity of extrapolating information acrossscalesisimponant(cf.

Dayton and Tegner 1984,Carpenteretal. 1995,SchneideretaL 1997,seeChapter2).

In this study, associations were generally most extreme at small spatial scales. This

suggest that small-scale approaches maybe more efficient than larger-scale approaches to

describe distributions offish relative to habitats . Because associations offish with habitats

changed rapidly with spatial scale, especially for ambit radii of 0-SOcm, a clearly defined

measurement scale may be crucial to habitat selection studies: small variations in

measurement scales may have strong effects on habitat models . The use of ill-defined or

variable measurement scales in habitat modelling is unfortunately rather prevalent. The

scales of substrate and cover measurements are most often ill-defined and these

measurements may often be autocorrelated over much smaller spatial scales than e.g.

water velocity or depth . Because of this, slight variations in measurement scale may result

in large differences among fish-substrate or fish-cover associations. Subsequently ,

substrate and cover are less likely to be consistently identified as irnportant, compared to



watervelocityanddepth,evenifhabitatselectionbehaviourswere similar among studies.

3.2.4.4. Scale-up in habitat models

Most ecological studies operate at relatively small scales,especiallythoseinvolving

experimental manipulations (seconds to years; cm'to regional scales) . However , most

ecological problems operate at much larger scales (years to decade s;nationaltoglobal).

Fromthis,adiscrepancyexistsbelWeenthescalesofourinformationand problems (cf.

LimaandZollnerI996,Schneideretal.I997). An ability to translate fine-scale

informationacrossscaiescouidfacilitatethedevelopmentofamechanistic explanation of

distribution patterns and processes, which in turn would greatlyfacilitate the resolution of

questions relating to resource management. An inability to predict larger scale

distributions from small-scale information may indicate thatdiffe rent processes are

involved and that important information maybe missing (Horne and Schneiderl994,cf.

WithandChristI996,seeChapter2). In this context it is interesting to note that several

studies have shown that weighted usable area, a measure of habitat quality based on small­

scale(space/time)observationsonfishdistributions,maynotbeagoodpredictorof

standingstock inriversections(cf.OrthandMaughanI982,Bowlbyand Roffl986,

ConderandAnnearl987,PajakandNeves 1987,HubertandRahei 1989, Shirvell1989 ,

Bozek and Rahel 1991,Bourgeoisetal. 1996),althoughsomestudiesdidfindsucha

relationship (Stalnaker 1979, Orth and Maughan 1982). This may suggest that small-scale

habitat seleetionprocesses cannot simply be extrapolated to larger spatio-temporal scales:

large-scale fish distributions are not the result ofa simple composite of small-scale habitat

selection processes; habitat models may be able to indicate where fish will be, but not

how many will be present (cf. Onh 1987).

Results from this study suggested several habitat selection behaviours operating at

multiple spatial scales rather than a single one. Because of this, multi-scale models were

initially expeeted to perform better than single-scale models, especially at the larger scales



of pool, riffle and run. However, further analyses revealed that a multi-scale habitat model

was not better than a single-scale model in describing distributions of fish at the these

larger spatial seales. This maybe due to habitat selection behaviours being aimed

primarily at small-scale habitat features that were already included in the single-scale

model, because of the small spatial scope of the study (limited rangeofscales),and

because the tank consisted of only a single pool, riffle and run. For example, the variable

depthinthesingle-andmulti-scalemodelswilleffectivelyseparatethe pool from the run

and riffle , regardless of the availability of other habitat features within the pool. Because

of this, most of the differences between the single and multi-seale approaches are related

to howlish are distributed among riffle and run.

Stream tank observat ions are relatively easy to obtain and study conditionsarelargely

under the control of the researcher. Hence, a large number of observations can be

obtained from clearly detined conditions . Astreamtankisofcourseacaricatureofa

natural river and results maybe an artefact of the tank habitat rather than being indicative

of general and realistic "natural" habitat selection behaviours.Forageneraltreatiseon

this see e.g. Diamond (1986) . Because of this, results obtained from tank observations

should not be extrapolated to more natural systems without validation againsttielddata.

Strearn tank studies are neverthe less an important addition to tield-based habitat selection

studies, as they allow for detailed information under controlled conditions and

development of mathemat ical techniques, such as the ones used here, which may aid in the

design of subsequent field studies. For example, the results indicated that small-scale

habitat variations within an area of40-50 em surround ing tishpositionsareimportantand

that associat ions oflish with habitats rapidly change with scale and direction within this

area . From this, I suggest a possible tield study design that compares high-resolution

habitats maps of areas within 50-100 cm surrounding observed tish positions, to similar

maps from random positions. This comparison can be done using the scaling-techniques



as outlined in this study .

Multi-scale approaches lead to a more complete and better underst andingofbehavioural

processes and habitat selection than single-scale approaches. A clearly defined use of

measurement scale is crucial to habitat modelling, as associations changed rapidly with

spatial scale. Multi-scaleapproacheswerenotbetterthansingle-scaleapproachesin

describing fish distributions .

Classic micro-habitat models operate at a single or few selecte dscalesandignorethe

effeets of the orientation and struetureoflandscape elements on habitat quality. Theresults

indicated that habitat selection behaviours operated at multipie scales and underline the

imporlancetofishdistributionsofstruetureandorientationofhabitats within the

landscape mosaic . Becauseofthis,single-scaleapproachesmaybelimitedinidentit)ing

important habitats .

Strongspatio-temporalheterogeneityischaraeteristicofrivers,especialIywhencomparedto

lakes and other aquatic habitats, with wide variations in temperature, depthandwaterflow

over short spatio-temporal scales. Species inhabitingthese environments are adapted to this

heterogeneity and managementaetions resulting in a more predietable and less heterogeneous

environment may diminish the very uniqueness of the habitats and species theyintend to

proteet(cf.Barinagal996). Multi-scale approaches as described in this study may aid in

incorporating habitat heterogeneity in habitat models by identifying important scales and

processes. From this, multi-scale habitat models may be better at evaluating how organisms

are associated with their habitats and be more efficientfor resource managementthan

single-scale habitat models. Future habitat modelling studies should focus on the

identificationofspatio-temporalscalesthataremosteffectiveinexplaining observed fish

distributions .



3.3. A multi-scale analysis of habitat use by juvenile Atlantic salmon and brown

trout in two Newfoundland rivers

Models that quantify the importance of habitats to organisms are widelyusedinresource

management. Often , these models are based on behavioural observat ionsofindividual

organisms obtained at small spat io-temporal scales , with relations between organism and

habitat defined at a single or few measurement scales . This type of information is often used

to address problems that occur at a range of much larger spatio-ternporal scales, i.e.atthelevel

of populations, with time scales from years to decades and spatial scales from regionalto

global . The implicit assumpt ion is that organisms are associated with their environment at

specific "characteristic" space and time scales, that small-scalebehavio ural processes are

largelyresponsibleforthedistributionsweobserve,andthatthesesmall-scale behavioural

processes can be easily extrapolated to address resource managementproblems operat ing at

much larger spatio- temporal scales (cf. Dayton and Tegner 1984, Carpenter et aI. 1995, Lima

and Zollner 1996, Schneider et aI. 1997).

An example is the application of micro-habitat models to management 0 friverinefish

populat ions in North America, such as PHABSlM!IFIM (Bovee 1982. 1986 , Milhous et

al. 1984 , 1989) . Thesemodelsrelatefishdensitiesorfrequency-of-usetoriverinehabitats,

and assume that a higher density orfrequency-of-use corresponds to a "better"habitat(cf.

Fauschetal. 1988 , ReiseretaL 1989 , Annourand Taylor 1991) . Infbrmation used In these

models is often obtained by direct observation of individual fish and from habitats measured at

smallspace-timescales«lm2,fewsecondsofobservationperindividualfish). Subsequently ,

thisinforrnation isusedtoaddressproblemsattheleveloffishpopulations,attimescalesfrom

years to decades and spatial scales oftnbutaries to rivers and watersheds . This process of

"scale up" can be graphically represented in a "scope-diagram", as proposed by Schneider etal.

(1997) (see Figure 1.1 and 2.6) .



The rationale behindthis focus on smallspatio-temporal scales ist hat distributionsof

organisms are to a large extentthe resultof decisionsmadeby individuals(Krebsand Kacelnik

1991)whichgenerallyoperateat smallspace-timescales. However, organismsare knownto

selecttheirhabitatsat morethana singlespatio-temporalscale. An exampleis selection by

salmonidsforspeciticholding positions(smallscale) with relatively low snout velocities in

areas of high current conditions(larger scale) where drift isconcentrated (Chapmanand

Bjomn 1969. Everest and Chapman1972. Wankowskiand Thorpe 1979, Fauschand

White 1981. see Chapter 3.2). Inaddition. distributionsof animalsare knownto be the

resultof multipleprocessesoperatingovera rangeof scales(Wiens1989•Home and

SchneiderI994,1995),ratherthanbeingthesoleresultofhabitatselection processesoperating

at a singJescale. Thus,it is importanttoevaluatewhichscaleo rscalesaremostappropriatet0

habitatmodellingand fishhabitatmanagement.Importantresearchquestionsare: (1) how do

tishperceiveand react to theirenvironment?(2)howarelimitedresourcesdist ributedarnong

competitors? (3) is habitatuseor fishdensitytruly indicativeofhabitatquality?(4) to what

extentare fishdistributionsdrivenby habitat selectionbehavioursandto what extentby other

processes? and (5) howcan individual fishbehavioursbe extrapolatedto scalesrelevantto

managementproblems?

In this study. I addressquestion I and, to a lesser extent, question 5, by studyinghabitat

selectionby juvenile Atlanticsalmon(Sa/mesalar) and brown trout (Sa/me Intlla) . The

objectiveswere (1) to illustrate how a variety of newlydevelopedscaling-techniquescan

be used in habitat modellingand behavioural studies; (2) to identify spatial scales

important to habitat modelsfor juvenile Atlanticsalmon; (3) to formalise observed habitat

seleetionbehaviours in an explicitmulti-scalehabitat selection model; and (4) to compare

explicitmulti-scaleapproacheswith single-scaleapproaches in regard to their abilityto

identify how fish select habitats and to describe and predict fishdistributions, in particular

when used to address problemsat space-scaleslarger than those 0findividual



I hypo thes ised that a mult i-scale approach is bett er for describing fishdistributions

because habitat selection behaviou rs themselves operate at mult ipIe scales . Subsequen tly,

this beha viour may be best identified and made explicit within the context of quantitat ive

multi-scale techniques, i.e. a mult i-scale problem is best studied using a multi-sca le

approach.

This stud y differs from previous studies on habitat selectio n and habitatmodellingof

salmonids in tha t assoc iations offish with habitats were studied within the co ntext of an

explicit multi-sc ale approa ch. Th is stud y differs from the few previous stud ies on habitat

usebyfishthatoperaledatmul tiple scales (cf.Syms 1995 , Poizat and Pont 1996,

Richa rds et al. 1996) in that asso ciations of fish with habitats were stud ied over a range of

spat ial sca les, rathe r than at a few selected scales . The present stud y is a compan ion piece

to a previou s stud y on habitat use by salmon from stream ta nk obse rvat ions(Chapter3 .Zl,

which allowed for an evaluat ion of the relevance of some ofthestream-tank results to

3.3.2.1. Study sites

Selected sites we re stud ied in North Harbour River (47°IZ' O· N, 53°37 '30" W) and North

Arm River (47° 2Z' ZO· N, 53° 10' O· W), both located on the Avalon Pen insula of

Newfoundland, Canada . These rivers are of similar size, having axial lengthsof lZ.9and

17.4 km, and dra inage area s of 72.5 and 86 km', respect ively. Watersheds consist of

boreal forests and bog lands, underl ain by Precambrian rock . Fish communit ies are

composed of Atlantic salmon Salmo sa/or, brook trout Salvelinu s font inalis, brown trout

Sa/mo trutta , threespine stickleback Gasterosteus aculeatus, and American eel Anguil/a

rostrata . The rivers are further described by DeGraafand Bain(1986).



Study sites were visited in 1994 (North Harbour River) and 1995 (NorthHarbour River,

North Ann river). In 1994,1 studied one large section in North Harbour River (length

120 m, average river width 9 m). In 1995, I studied 3 smaller sect ions in North Harbour

River and 3 smaller sections in North Ann river. Lengths of these sections varied from 10

to 16m . Averageriverwidthatthesesectionsvariedfrom6to 14m . The total surface

area of the riverine habitat surveyed in North Harbour River in 1994 and1995was1130

m'and286m'respeetively. The total surface area of the riverine habitat surveyed in

North Ann river in 1995 was 356 m' . (See Table 3.3.1) Distance between sections varied

from 10 to 30 m. The North Harbour River sections were all located within the larger



Table 3.3 .1. Description of study sites in North Arm River (N AR) and North Harb ou r

River(NHR.)inI994andI995,interms oflength, avera ge widt h,surfacearea, water

depth and water veloc ity (average , stand ard deviat ion and maximum). The 1995 surveys

were do ne over a range of flow cond itions. Sitesconsistedof combi nat ions ofpool,riffl e

and run habitats .

Yr. River Site Habita t Length Width Area Depth Depth Depth Wvel Wvel Wvel

• vg. aV2· s.d. max. avg. s.d, max•

(m) (m) (m') (em) (em) (em ) (ems ") (em , ') (ems')

94 NHR 1 pool 120 9 1130 20.2 12.8 133 12.9 12.7 74

rime

run

95 NHR 1 rime 14 7 93 14.5 7.5 35 14.7 12.1 48

96 15.2 7.7 36 15.3 12.2

2 pool 14 8 109 30.0 14.6 67 5.7 5.3 42

110 30.6 14.9 68

3 run 10 9 80 16.9 10.2 44 11.0 8.4 31

9S NAR I pool 11 14 154 27.1 13.3 66 1.9 1.9 8

flat 162 36.1 14.5 76 10.7 11.5 38

2 run 13 6 77 19.7 11.6 5 1 7.4 9.5 41

79 30.7 12.4 63 31.3 28.7 9 1

3 pool 16 7 110 17.1 10.9 54 5.6 6.2 24

rime 115 31.8 11.7 70 28.8 2 1.6 81

Stud y sites were chosen on the basis of ( 1) representatio n of a range of riverine habita ts in

terms of wa ter flow, depth and substrat e, (2) easeofs norkelling, and (3 j dens ities of

j uvenile At lantic salmo n sufficient ly high 10 allow for the type ofanaiyses as of this stud y.

Stu dys ilesconsisledofa comb inalionofpool, riffleandrunhabitals, wilh substra les

ranging fro msand and sill lo grav el,co bble and large boulders (see Ta ble 3 .3 .1-2). The



water was clear with visibility always more than 4 m.

Table 3 .3 .2. Substrate composition (%) at study sites in North Harbour River (NHR) and

North Ann River(NAR) in 1994 and 1995.

NHR

NAR

3.3.2.2. Babitatmapping

30

37 25

12

Sect ions were mapped for substrate, water depth (em), and water velocity (em Sl). These

are the variables most often included in habitat models of riverine fish species (Orthand

Maughan 1982, Fausch et aJ. 1988, Heggenes 1990). Water velocities were mapped at

60% depth, using an electronic flow meter (FLO-MATE, Model 2000, Marsh-Mclsirney

Inc.). Substrate was identified as : (1) silt: nogrittyfeelingwhenrubbedbetweenfingers,(2)

sand: gritty feeling when rubbed between fingers, (3) fine gravel : 2·8 rnm, (4)gravel:8·16rnm,

(S)smallpebble:16-32rnm,(6)pebble:32-64rnm,(7)smallcobble:64.128rnm,(8)cobble:

128·256rnm, (9) large cobble : 2S6·384 mm, (10) boulder : 384·S12 rnm, (11) largeboulder:

>SI2rnm, and (12) bedrock .

For the habitat mapping, I established XY-grids covering the stud ysections,using

measuring tapes and T-postsas reference points. Habitat observations were evenly

distributed over the study reach . To facilitate the takingofevenlydistributedhabitat

observations, I used a I rn2pVC frame , divided into4(SO em * SOern) and 9(33cm*33

em) cells with coloured twine . The frame was positioned in the XY·grid using measuring



tapes and the reference T-posts . Next , the habitat measurements were done directly at the

centre ofthe cells within the frame. Substrate was mapped with a resolution of9

measurements per square meter . Depth was mapped with a resolut ion of 4 measurements

per square meter (1994) or 9 measurement s per square meter (1995) . Water velocities

were mapped with a resolut ion of 1 measurement per square mete r, without the use ofa

lil1994,substrate ,depthandwatervelocityweremeasuredonceata discharge estimated

at 0.25 m' 5' , which was the most prevalent discharge in the summer of 1994. In 1995,

substrate and depth were measured twice in North Arm River to assess repeatability of

habitat mapping, and once in North Harbour River. Water velocities were measured 4

times at all of the co-ord inates in the XY-grids over a range ofdischarge levels, ranging

from just lower than the lowest discharge observed during fish distributionsurveystojust

higher than the highest discharge observed . Basedonthese,Icreateda2dimensionai

flow-model by relating the water level at independent fixed reference points (4 reference

points per section) to water depths and water velocities at the co-ordinatesinthe

XY-grids, using linear regress ion (separate regress ion equation perco-ordinate;n=4per

co-ordinate) . An addit ional independent survey for water velocity was done to testth is

flow model. The change in surve y design from 1994 to 1995 was meant to prevent a

situation where much effort was spent initially to create habitat maps at a set water level,

but where subsequent adverse weather conditions prevented fish distribut ionsurveysbeing

done at this particular water level. I concentrated on North Arm River in 1995 because

visibility in North Harbour River rapidly deteriorates at elevated water levels, whereas

visibility in North Arm river is always excellent (>4 m), even during flood events.



In 1994, two fish distribution surveys were done in North Harbour River. These surveys

were done at the same water level as that of the habitat mapping. Each survey took

approximately 6 hours (10.00 - 16.00 h). The weather conditions (sunny, warm), flow

conditions (discharge=O.25 m' 5 '), and water temperatures (16 - 21°C) were similar

during the surveys (see Table 3.3.3).

In 1995, two fish distribution surveys were done in the North Harbour River seetionsand

16 fish distribution surveys were done in the North Arm River sections. The two 1995

North Harbour River surveys were done at similar weather (partly cloudy, warm), flow

(discharge=0 .15-0.16m'5') ,and temperature (16-21°C)conditions. One survey took

approximately 2 hours. Flow conditions and water temperature s during the 16 North Arm

River surveys varied widely, with temperature ranging from IOt 023 °Cand discharge

ranging from 0.07 m' s" (very low water level) to 0.53 m' 5' (high water level) (see Table

3.3.3; Figure 3.3.1). Two of the 1995 North Arm River surveys were done at night

(22 .00 - 23.00 h)wit h thea idofa flashlight. All others were done in late-moming (IO.OO

- 13.00h) . Surveyst hereg eneraily tookone hour.



Table 3.3.3. Summary offish distribut ion surveys in Nonh Harbour River (NHR) and

North Ann River (NAR) in 1994 and 1995. Descriptive statistics include start ing-time of

eachsurvey(h) ,temperature("C),discharge(m',I),totalnumbersofallsalmonids

(Ntot) , Atlantic salmon (Nsalmon), brook trou t (Nbrook) and brown trout (Nbrown) .

Numbers of 0+ fish are show n in brackets . North Harbour River surveys are shown in

Temp

17/08194 NHR 487(182) 18(3) 1(0)

25/08194 NHR 10.00 16-21 526 490(209) 29(5) 7(0)

03/07/95 NAR 11.00 14 39 16(2) 0 23(12)

06/07/95 2 1 0.16 54 16(2) 32(10)

0.09 55 30(7) 23(7)

17/07/95 9(2) 16(3)

20/07/95 14(4) 16(4)

24(6) 22(2)

35(9) 37(10)

28/07/95 45(13) 18(8)

31107/95 NAR 36(7) 27(12)

NAR 32(12) 25(14)

NHR 148(39) 2(1) 2(0)

NHR 16 0.15 124(41) lI (5) 2(0)

NAR 0.26 35 14(3) 0 21(7)

NAR 22 12(5) 10(2)

NAR 10.00 21 9(3) 12(4)

NAR 22.00 26(0) 16(0)

NAR 21(1) 13(0)

NAR 5(3) 7(4)

1594(551) 60(14) 330(109)
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Figure3 .3. !. TemperalUre (°C) and discharge (m' s·' ) during the 1995

day-t ime surve ys in North Ann River . Numbers (#) refer to the total number

of Atlantic salmon (5) and brown trout (T) observed , with the number of 0+

fish shown in brackets. Group 1-4 refers to group ing of'observations prior tc

analyses .

Fish were observed by snorkelling in an upst ream direct ion in a zigzag pattern to minimise

disturban ce. Observed fish positions were marked using numbered weights. Data

recorded when snorkelling included: species (Atlant ic salmon, brook trout , brown trout ),

age class (0+, 1+,2+, >2+; estimated from size), height above bottom (em), and act ivity

(moving, hold ing position). All fish observed were recorded . The numbered markers

were mapped relative to the XY-grid , to the nearest 5 cm. Water velocities, snout

velocities (e rn sec" ), depth (cm), cover and substr ate were mapped at locations of markers

that indicated positions of fish that did not move. To assess repeatab ility of fish-po sit ion

measurement s, a sample of markers was measured twi ce, with the first and second of these



measurements done by different persons. Measuring tapes, used to establish the

XY-grids, were taken down and reinstalled prior to taking second measurements .

3.3.2.4. Research questions

I analyzed the data to address a series of questions . Italicised phrasesreferfor

convenience to sections later identified in the Results section:

l. (Patchiness offish distributions) How are fish positioned relative to each other?

I hypothesised that fish were negatively associated with conspecificsatsmall spatial scales

«0.3 m),dueto spacing behaviour or territoriality, andpositivel yassociatedatlarger

spatial scales with associations being most positive at scales rangingfrom0.5t02m,due

to selection for small-scale habitat features .

2. (Associations of fish distributions) How is one group offish (age class, species)

positioned relative to another?

I hypothesised that fish were negatively associated with other fish at srnall spatial scales

«0.3 m)dueto spacing behaviour or territoriality . At larger spatial scales, associations

were expected to be positive for groups offish with the same attributes(age, species), and

therefore negative for fish groups with different attributes.

3. (Habitat associations) How are fish associated with their habitats: which variables

were selected for and at what spatial scale(s)?

I hypothesised that habitat features were selected at more than a singlescale,butthat

habitat selection behaviours were primarily directed towards small-scale (<30 em)

environmental features . That is, I expected associations to bescale-dependent, with.



associations being most different from random (extreme) at small spatial scales.

4. (Habira/model) What is the best way of incorporating associations offish with

habitats into a formal habitat model to describe and predict fish distributions? Which

variables should be included and at what spatial scales? To what extent does an

explicit multi-scale approach improve our understanding of habitat selection

behavioursoffish,relativetoamoreclassicsingle-scaleapproach?

Iexpectedthatanexplicitmulti-scaleapproachandhabitatmodel would lead to abetter

understanding of habitat selection processes. Fromthis,explicitmulti-scalehabitatmodels

were expected to perform better than single-scale habitat models, especially when

extrapolating small-scale habitat selection behaviours to density-predictions at larger

spatialscales,suchasriversectionsorbroad-scaleenvironmentaI features such as pools,

riff1esandruns. Le., observed and predicted fish distributions will be more similar for

multi-scale approaches .

The analytical procedures related to these four questions are out lined below. Analyses

were done using FORTRAN and SAS (SAS 1988). Random numbers, needed for several

of the analyses, were generated using the FORTRAN system-supplied random number

generator, upgraded by the shuf!le-routine as outline by Press eta1.(1986).

3,3.2.5. Scalinganalyses,omnidireclional

Associationsofindividualfishwithsubstrate,watervelocities,depth,andotherfishwere

studied over a range of spatial scales using measures ofRelativeContaet(RC),asoutlined

in Chapter 3.1. This stat istic compares observed densities offish or habitat features

surrounding individual fish positions (DO; # mo2
) , with similar densities obtained from

computer-generated random fish distributions (DR; # mo2
) . These comparisons can be

made fora range of ambit radii (S), Le.circlessurroundingindividualfishpositions.



From this, RCsservesasascale-dependentmeasureofassociation:

Res = LOGJO(DOs +10-6
) - LOGJO( DRs + 10-6

) Equatton s.s .I

The statistic allows positive associat ions (RC>O) to be distinguished from negat ive

associations (RC<O) and random (RC=O) from clumped (RC>O) distributions . For

example, RCs=1 indicates that at ambit radius S, an average fish has 10 times more

contact with conspecifics or a specific habitat feature (depth, wate r velocity or substrate

class), than if fish were randomly distributed .

The constant of 10""(Equation 3.3.1) prevented taking 10g,o(0)and was chosen such that

RC measures were not affected, other than in situations where DO=O m·' . These latte r

situations could easily be identified from the program output, with RC ranging from -3 to

-6, depending on DR. DRs was obtained by averaging results for all possible positions.

Density estimates were obta ined by generating evenly-distributed dummy-positions with a

resolution of 400 m' and assuming a 400" m' area around all dummy-positions .

P-values, used to assess whether associat ions were significantly different from random ,

were obtained from 500 randomised fish distribut ions (see Chapter 3.1).

3.3.2 .6. Scaling analyses, directional

Possibleanisotrop yinassociationsoffishwithhabitats,conspecifics,orotherfish

distributions was studied using the RCEX statistic (exhaustive measure of Relative

Contact,seeChapler3 .2):



RCEXUG -X,LAG-Y = LOG lo(DO u G-x ,LAG-Y )- LOG lo(DRUG _X,LAG- Y)

EqUQlion3 .3.2

RCEXcompares observed densities offish or habitat features at various lags surround ing

observed fish positions with similar densities obtained from cornputer-generatedrandom

fishd istributions,andallowsforacomprehensivescale-explicit two-dimensionalappraisal

of the data 's spatial dependence . For example, RCEX. ,. •, =-1 indicates that an average

fish has 10 times less conta ct with conspe cifics or a part icular habitat feature at lag e l in

the X-direct ion and lag +3 in the Y-direction. Note that RC is calculated at increasingly

larger ambit radii, whereas RCEX is calculated at consecutive lags, and that RCEX

measures are directiona l, whereas RC measures are not. Also note that RC and RCEX

measures are similar at spatial scales approach ing 0 ern pro vided the lag-interval chosen is

RCEX measure s are most easily obta ined from rectangular distribution maps. Fish- and

habitat-d istribution maps from rivers are generally not rectangular. However , in the

analyses the X- and Y-directions did not refer to the X-Y grid system of the river as based

on the T-posts and measuring tapes , but to a grid system relative to fishpositionand

waterflow: The 90° and 270° direct ions referred to directions directly into and withthe

current , respect ively; the 0° and 180° directions referred todirectionsperpendicularto

the current. This grid system differs among fish positions in the river.

3.3.2.7. Habitatmodelandscalingapproach

Basedonresultsofanalysesasoutlined intheprevioussection,!developed a formal

model to describe habitat use by fish in rivers. Preferabl y, such a model would combine

realism (model parallels habitats as experienced by the fish) and simpIicity (few variables

included, few classes per variable) with strong descript ive and predictivecapabilities

(observed and predicted distributions or habitat use similar). To develop suchamodel,!



devised a method based on the RC statistic that paralleled stepwise multipie regression.

First, I decided on an initial model that incorporated the variable thought to be most

important. measured at a scale where associations were most extreme(i.e. RCmeasuresof

the different classes most different from 0). Next. I created fish distributions based on this

mode l. For this. fish were distributed by randomisation with all positions in the river

having a different probability of being selected (npositionsintotal). Thisprobability

(PPOS' i; i=l-n) was determined by a weight given to each position (WPOS' i) and the total of

aliwe ightsofalipossiblepositions (WToT),withWPOS'ideterminedbytheRelative

Contact associated with the habitat at this position (HAB POs. i) as ofthe initial model :

Equation 3.3.3

Next, I compared densities ofhab itat features surround ing observed fishpositions(DO)

with similar densities surround ing these compute r-generated distribut ions(DD),ina

manner similar to Equation 3.3.1. This was done over a range of ambit radii (5):

sco, = LOG/o(DOs +l O-(i)- LOGto(DDs +10-6 ) Equatian3.3..1

From this, RCD values (Relati ve Contact of fish positions Distribu ted by computer) that

differ from 0 may indicate that additional habitat select ionbehaviours have to be included

into the initial habitat mode l. This can relate to inclusion of additional variables, to

inclusion of the same variable but defined at multiple scales, or to acombination of both.

For example, fish distribut ions could be generated accord ing to observedhabitatuse

related to water velocity and evaluated by means of the RCD stat istic as a funct ion of

depth . Posit ive values ofRCD fora particular depth class may then indicatethatthis

depth is preferred , even after correcting for selection for water velocit ies, i.e. habitat

selection behaviours are directed tow ards both depth and water velocity. This method is



clearly of use in an environment where habitat variables are correlate d(cf.RichardsI982),

when habitats are perceived in anon-independent manner by fish (cf.OrthandMaughan

1982),orwhenhabitatselectionbehavioursoperateatmorethanasinglescale.

To evaluate how well fish distributions canbedeseribed using eitherasingle-scalemicro­

habitat modelling approachora multi-scaleapproaeh, I generated distributions (lO'fish)

for each of these two approaches, asdeseribedabove. Next,lcomparedthedensitiesof

the observed and computer-generated fish distributions avera rangeofspatialseales. For

this,lehoselO'randompositionswithintheexperimentalseetionS,deterrninedthe

densitiesofobservedandeomputer-generatedfish-distributions(% total population m·2)

for a range of ambit radii surrounding these random positions and computedthe

eorrelation coefficient between these two densities. This proeedurewas repeated at the

scale of pool, riffieandrun, after dividing the experimental reaehes into these three habitat

classes. If the multi-scale approach had superior deseriptive eapaeities compared to a

single-scale approach, the dilferenees between observed and predicteddensitieswouldbe

smallerandcorrelationcoefficientspositiveandhigherforthemulti-sealeapproach. lwas

especially interested in the descriptive capacities of models ford escribing fish densities at

spatial scales larger than those used in the model.

3.3.2.8 , Computational procedures

Priortoanalyses,lre-scaledwaterdepthsinto7 classes ([0, 6],<6,12],<12,24],

<24,36],<36,48], <48,60] , >60 cm}, substrate into 8 classes «I) fines: <4 mm; (2)

gravel : 4-16 mrn: (3) small pebble: 16-32 mm; (4) pebble: 32-64 mm; (5) small cobble:

64-128mm; (6) cobble: 128-256mm; (7) boulder: 256-5l2mm ; (8) large boulder/bedrock :

>512mm} and water velocities into 7 classes ([0,3], <3,6],<6,12],<12,24],<24,36],

<36,48] , >48 em Sl}. Age classes were re-scaled into 2 classes: (I) 0+; (2) >0+. Depth

and substrate were measured twice in 1995: for the analyses 1 used the first substrate

distribution map and the average from the first and second depth distributionmaps.



Foranalys~sofassociationsandpatchinessoftishdistributions(Questions 1-2; see

Chapter 3.3.2.4), observations were combined into 3 groups: (1-2) North Harbour River

1994, 1995; (3) North Ann River 1995. To facilitate computations based on surveys with

different densities, density estimateswerere-scaled as a percentageofthetotalpopulation

observed (Question 2: associations oftish distributions) or the total population minus one

(Question I: patchiness oftish distributions) (see Chapter 3. I) . For analyses on habitat

associations (Questions 3-4), observations were combined into 6 groups : (1) North

Harbour River, 1994; (2) North Harbour River 1995; (3-6) North Arm River 1995, based

on temperature and discharge (see Figure 3.3.1). 1did not use the two 1995 North Ann

Rivernight-timeobservationsastishreactedtotheobserverandlcouldnotjudgethe

effects of this on tish distributions.

To compute RC (and RCEX) for these groups based on multiple surveys, one could either

tirstcalculateRCforsurveys separately and average these (appro achl),oronecouldtirst

calculate DO and DR for surveys separately, average these and then calculate RC

(approach 2). Thetirst approach is to be preferred especially when habitat availabilityor

survey area differs among surveys, but does have the disadvantagethatwhenfewtish

were observed in any of the surveys, DO may be 0 at small spatial scales for some ofthe

habitat classes, From this, RC will be strongly negative (-3 to-6) and will highlyinflue nee

the averaged RC based on all surveys combined. One could try to solve this problem by

changing the constant (10"') or the weight given to individual RC estimates, but this may

lead to results that are highly influenced by this constant. The second approach does not

have this disadvantage, as most often at least onetish was observed in any of the habitat

e1asses,which makes the RC estimate much less dependent on the constant of 10".

However , when habitat availability or survey area differs among surveys, the averaged DR

may not correspond to the habitat as experienced bytish observed during these surveys.

From this, the second approach is to be preferred when fewtishwere observed during

surveysandwhenhabitatavailabilityandsurveyareasaresimilararnongsurveys. In this



study, I used the second method because of the low densities observed in North Arm river

(see Table 3.3.3). I used the fish numbers of individual surveys as weighting-factors when

calculating the average DO and DR. Differences between the two calculation methods

will be small for the 1994 and 1995 North Harbour River surveys, as densities were similar

amongsurveyswithingroupsandmuchhigherthaninNorthArmRiver,andbecause

survey areas and flow conditions did not differ among surveys within groups. The

grouping procedure for the North Arm River surveys further ensured that percent

occurrenceofdepth,substrateandwatervelocityclassesandsurvey areas were similar

among surveys. For computations where fish positions were generated according to

habitat specific distribution rules, RC and RCD for survey groups were calculated using

the habitat map that corresponded to the average water level within survey groups .

Analyses were completed over a range of ambit radii (up to 15 m). The smallest ambit

radiusdifferedamonganalyseswithresolutionofhabitatdistributionmaps. For

associations offish with habitat features measured using a resolutionoflm·2(water

velocitY),thesmallestambitradiuswas75 em so as to ensure that at least one habitat

observation was within the ambit of each possible fish position. For associations offish

withhabitatfeaturesmeasuredusingaresolutionof4m·2(depth,substrate)and9m·2

(water velocity), the smallest ambit radii were 40 and 25 em, respectively. From habitat

measurements taken at snout positions of inactive fish, an additional RC was calculated for

these fish assuming an ambit radius ofl em.

Agraphic representation of results was focused on the 1994 NorthHarbour River surveys,

asthesearebasedonamuchlargernumberoffish,comparedtotheothersurvey-groups.

Results from survey-groups other than the 1994 North Harbour River surveys will be

discussed in relation to the 1994 North Harbour River surveys. I concentrated not on

individual RC(EXl values as such, but on (dis)similarities ofpattems ofthe various

survey-groups as apparent from all RC(EXl values calculated across habitatclassesand

spatial scales. Aselectioncriterionof5% was used to separate "significant" from



" non-significant't effects .

During the two 1994 Nort h Harbour River surve ys, a total of 1033 fish was observed

(95% salmon, 5% brook trout , <1% brown trout , < I% unknown) . During the two 1995

North Harbour River Surveys, a total of289 fish was observed (94% salmon, 5% brook

trout , 1% brown trout) . Mean densities for all species were the same for all surveys (0.5

m·') . A visual inspection of the fish distribution maps suggested that distributions were

similar among surveys within years, with both 0+ and older fish located in or around the

thalweg of the river and 0+ fish in shallower locations along the riverbanksaswell.

During the 14 North Arm River day-time surveys in 1995, a total of 597 fish was observed

(50% salmon , 48% brown trout , 0% brook trout, 2% unknown) . I observed more fish

when temperatures were higher and discharge was lower (Tables 3.3.3-4, Figure 3.3.1). A

visual inspection of the fish distribution maps suggested that distributions were similar

among surveys, with both 0+ and older fish located in or around thethalwegoftheriver

and 0+ fish in shallowe r locations along the river banks as well. This pattern did not seem

to change with discharge or temperature.



Table 3.3.4. Tot al number of fish observed during the 1995 North Arm River day-time

surveys as a function of temperarure PC) and discharge(m' 5 ') (r=o .807, n= 14,

p<O.OOI). Residualsw eren ormaUydistributed.

Type III 55 Mean5 quare

Temperature

Discharge

Temperature-Discharge

Repeated fish position measurements indicated that 70% of these were identical; 27% of

second measurements differed by 5 cm from first measurements (either in X or Y

directions); and 3% differed by 10 cm from first measurements (n=74 co-ordinate s,

measured twice). Repeated substrate measurements indicated that 84% of second

measurements were identical to first measurements (n=3096). Depth (cm) as predicted by

the flow model was significantly correlated with independent repeated depth

measurements (n=2885, p<O.OOl , r=0.864). 59% of these independent depth

measurements were identical in terms of depth class to predictions from the flow model.

Wat er velocity (cm s") as predicted by the flow model was significantly correlated with

independentrepeated water velocitym easurements (n=246,p <0.001,r=O .90 1). 59% of

these independent water velocity measurements were identical in terms of water velocity

class to predictions from the flow model. For several of the analyses below I compared

results from first and second depth and substrat e maps. A visual inspeetionoflhese

showed that patt erns were similar.



Salmon and brown trout were negatively associated with conspecificsat small spatial

scales(ambitradius<IO-20cm)butposilivelyassociatedatlargerspatialscales.

Associationsweremostpositiveforambitradiiofl5to30cm(Figure3 .3.2) . This

pattern was apparent for all survey groups and age classes.

Figure 3.3 .2. Spatial autocorrelation of Atlantic salmon parr and brown trout distributions

(0+, >0+), as observed in North Harbour River in 1994 and 1995 (NHR-94; NHR-95) and

North Arm River in 1995 (NAR-95), quantified in terms of Relative Contact for ambit

radii ranging from 5 em to 15m.

The RC values of -3 to -4 of Figure 3.3.2 indicated no conspecifics were observed within

the corresponding ambit radii. These negative values may be obtained by chance alone ,

especially for ambit radii approaching 0 em. Forexample,assumingarandomposition

choice, it is unlikely that 2 fish will occupy the same position because of the large number

of possible positions involved. Because of this, I aimed at evaluating whether the drop in

RC to RC=-3 to -4 for ambit radii less than 30 em was indicative of small-scale avoidance

behaviour or due to chance alone. To do this, I generated random fish positions within in

a square area (AREA. m'J. such that the total number offish distributed (Ndis)



correspondedtothoseobserveda tindi vidualsurveysandthedensitiesin thisarea(Ddis)

corresponded to the fish densities associated with the "peaks" in RC from Figure 3.3.2

( Ddis =JORCpeak ; AREA =Ndis / Ddis ). Next, I calculated RCs for these distributions,

in a manners imilar to the calculations as of Figure 3.3.2, and evaluated whether no

conspecitics were observed for ambit radii ranging from 5 to 30 cm. This was repealed

10' limes. Fromthis,p-valueswereobtainedthatindicatedthechanceofhavingno

conspecifics within a particular ambit radius due to chance alone within patches as

indicated in Figure 3.3.2. These analyses showed that the chance of having no

conspeciticsduetochanceal onea ta 10 cm ambit radius was smaller than 0.05 for all of

theline so fF igure 3.3.2,wi thth eexceptionoftheI995 0+salmondistributions inNorth

Figure 3.3.3 shows that spatial autocorre lations of the 1994 North Harbour River salmon

(0+,>0+) positions were anisotropic. Salmon were concentrated in patches that were

elongated in directions parallel to water flow: RCEX values more rapidly declined towards

RCEX=O in directions perpendicular to water flow than in other directions, especially for

>0+ salmon. Fish numbers of surveys other than 1994 North Harbour River were so low

that results as in Figure 3.3.3 werediflicult to interpret . Nevertheless they did not seem to

indicatethatpatlernsditreredfromthepatlernsasdescribedabove ,both for salmon as

well as for brown trout . Note that the discrepancy between RCEX and RC for spatial

scales approaching 0 ern, as apparent from Figures 3.3.2 and 3.3.3 (RCEX>O, RC<O), is

due totheratherla rgelag- interval ( lm)used. Tbis lag-interval was necessary because of

thelo wtish numbers involved. Also note that analyses in Figure 3.3.3 (RCEX) generally

require many more fish observations to allow for interpretat ion, compared to analyses in

Figure 3.3.2(RC).
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Figure 3.3.3. Autocorrelat ion of 0+ and older Atlantic salmon parr distributions asa

function of spatial-scale and direction relative to waterflow fromobservationsinNorth

Harbour River in 1994 (NHR-94) , quantified in terms of Relative Contact Exhaustive

(RCEX).

Salmon aged 0+ year were negatively associated with 1+ salmon at ambit radii smaller

than IOt030 em but positively associated with one another at largerspatialscalesforall

three survey groups (North Harbour River 1994, 1995; North Arm River 1995; see Figure

3.3.4). Associations were most positive for ambit radii of 15 to 30 em. RC was not

significandyd ifferent(p<O.05)fromOforambitradiismallerthanI5(NorthHarbour

River 1994), 25 (North Harbour River 1995) and 40 em (North Arm River 1995),b ut

significandydifferent from 0 for larger ambit radii. Trout aged 0+ year were negatively

associated with 1+ trout at all ambit radii (North Arm River 1995; see Figure3 .3.4),with

RC significant (p<0.05) for ambit radii of 1.5 to 7.5 m. Salmon aged 0+ year were

negatively associated with 0+ brown trout in North Arm River in 1995 for ambit radii < 25



em and positively associated for ambit radii of25 em to I rn. At larger spatial scales, RC

approached O. Few of these RC measures differed significantlyfrom 0 (p<0.05;

significant: ambit radii 30-35 em). >O+ Salmon were negatively associated with> O+

brown trout in North Arm River in 1995 for ambit radii < 2 m. At larger spatial scales,

RC approached O. Few of these RC measures differed significantlyfrom 0 (p<0.05;

significant: ambit radii 40-45 em, 100-170 em). In short: 0+ Salmon and >0+ salmon,

and 0+ salmon and 0+ trout were found at the same locations. 0+ Trout and >0+ trout,

and >0+ salmon and >0+ trout were found in different areas. Fish always avoided each

other at very small spatial scales (ambit radii <10 em).

Figure 3.3.4. Associations of 0+ and >0+ salmon and trout distributions in North Arm

River (NAR) and North Harbour River (NHR) from distribution surveys in 1994 and 1995

(left 2 figures: omnidirectional approach (RC); right figure: directionalapproach

(RCEX)) .

I only applied the directional approach (RCEX) to 0+ - >0+ salmon distributions from the

1994 North Harbour River surveys because oflow fish numbers in other surveys. Results

indicated that associations between 0+ and >0+ salmon were anisotropiC,withmore >O+

salmon at positions in 270° to 90° directions from 0+ salmon positions. than in other

directions (Figure 3.3.4).



Associa tions of 0+ salmon with substrate , water velocity, and depth were calculated in

terms ofRC for the 1994 and 1995 NOl1hHarbour River surveys. 0+ Salmon

distributions from NOl1hArm River were not analyzed because oflow fish-numbers (see

Figure 3.3.1) . Results are summarised in Table 3.3.5 . In general, associations were

scale-dependent and most extreme at small spatial scales. Shallow depths « 12 em) were

avoided for ambit radii <5-7 mbut were preferred at larger spatial scales. Intermediate

depths (12-36 em) were preferred and larger depths avoided (Figure 3.3.5). Lowwater

velocities were avoided «12 em s'' ). Higher water velocities were preferred, but with a

shift from preference to avoidance for the highest water velocit iesatambitradiiof2-3m

(Figure 3.3.6) and a local maximum in associations with water velocity class 4 (1995,

12-24 em s' ') and 5 (1994 , 24-36 em s' ') at ambit radii of 1-4 m. Fines (class 1) were

avo ided at ambit radii> 30 em for 1994 NOl1hHarbour River 0+ salmon and at all ambit

radii for 1995 NOl1hHarbour River 0+ salmon. (Large) boulders (class 7-8) were also

avoided . Fish reacted indifferently towards intermediate substrates (Figur e3 .3.7) . ForO+

fish that were stationary , an additional RC could be calculated from habitat measurements

taken at the position of these fish (ambit radius approaching 0 em). Results from these

analyses indicated thatpattems were similar to those described above,butwith

associationsbeingmoreextremeforambit radiiapproachingOem(Figure3 .3.5) .



Table 3.3.5. Summary of associations of 0+ salmon with the variables (V) depth (0),

watervelocity(W) and substrate(S) as a function of scale, quantifi ed in terms of Relat ive

Contact at increasingly larger ambit radii, from surveys in North Harbou r River in 1994

and 1995 (NHR94, NHR95) . Loc : location ; Yr: year; Nt : total # fish observed; Nst : #

stationaryfish;Np: # fish positions from stationaryfishwhereadditionalsmall-scale

LocIYr Nt Nst ND V
INHR94 391 331 197 D



Figure 3.3.5. Associations of 1994 North Harbour River salmon with depth at

increasingly larger ambitradii, quantifiedi n terms of Relative Contact.

Figure 3.3.6. Associations of 1994 North Harbour River salmon with wate r velocity

(at 60% depth) at increasingly larger ambit radii, quantifiedi n terms of Relative

Contac t (-) .



Figure 3.3.7. Associations of 1994 North Harbour River salmon with substrate at

increasingly larger ambit radii, quantified in terms of Relative Contact .

Associations of >O+salmon with substrate , water velocity and depth were calculated in

terms ofRC for the 1994 and 1995 North Harbour River surveys and group 1 and group 2

of the 1995 North Arm River surveys. Group 3-4 of the 1995 North Arm River surveys

were not analyzed becauseoflowfish-numbers (see Figure 3.3.1). Resultsare

summarised in Tables 3.3.6-7. In general, associations were scale-dependent and most

extreme at small spatial scales. Shallow depths (<24 em) were avoided at ambit radii

<7-10 m but were often preferred at larger spatial scales. Interrnediate depths (24-36 em)

were preferred . Larger depths were preferred at ambit radii <2-7 m, butoftenavoided at

larger spatial scales (Figure 3.3.5). Low water velocities were avoided «12 em s") ;

higher water velocities were mostly preferred (Figure 3.3.6). Associations with fines and

boulders were most extreme, with relative indifference towards other substrates (Figure

3.3.7). Fines were generally avoided. Large boulders were often avoided at small spatial

scales (ambit radius <50 em) but preferred at larger spatial scales. For>O+salmonthat

were stationary , an additional RC could be calculated from habitat measurements taken at

the position of these fish (ambit radius approaching 0 em). Resultsfromtheseanalyses

indicated that pattems were similar to those described above, but withassociationsbeing

more extreme for ambit radii approaching Oem and an avoidance oflar gerdepths(>48

em) and coarser substrates (cobble, (large) boulders).



Table 3.3 .6. Summary of associations of >O+ salmon with the variables (V) depth (D) and

water velocity (yl) with scale , quantified in terms of Relat ive Contact at increasing ly

larger ambits, from surveys in-North Harbour River in 1994 and 1995 (NHR94 , NHR95)

and Nort h Arm River in 1995 (NAR95) . Loc : locat ion; Yr: year, gro up : see Figure 3.3 .1;

Nt : total # fish observed ; Nst: # stationary fish; Np : # fish positions from stat ionary fish

where add itiona l small-scale habitat observations were done .

LocIYr Nt NSl No V
1NHR94 586 46 2740

NHR95 192 llO 103 0 R9'
NAR95 97 65 44 0
groupl

NAR95 76 56 56 D
f class 6-7

group 2

'"'7

NHR94 586 461 289 W
idar Ifcla'scs6-7

NHR95 192 llO 103 W NHR94
NAR95 97 65 44 W
group 1

NAR95 76 56 56 W
'idar'of':lassc;6-7

group2



Table3 .3.? Summaryofassociationsof>o+salmonwiththevariable(V)substrate(S)

as a function of scale, quantified in terms of Relative Contact at increasinglylargerambit

radii, from surveys in North Harbour River in 1994 and 1995 (NHR94, NHR95) and

North Arm River in 1995 (NAR95) . Loc: location; Yr: year; group : see Figure 3.3.1; Nt:

total # fish observed ; Nst : # stationary fish; Np: # fish positions from stat ionary fish where

additional small-scale habitat observations were done .

LocIYr Nt NSl No V
NHR94 586 46. 371

'igure

NAR95 97 65 44 S
groupl

NAR95 76 56 56 S
group!



Associations of>O+ brown trout with substrate , water velocity and depth were calculated

in terms ofRe for group I and group 2 of the 1995 North Ann River surveys. >0+

brown trout from other surveys and 0+ brown trout distributions weren otanalyzed

beeauseoflowfishnumbers(seeFigure3.3.I,Table3.3.3). For the same reason,

analyses were not repeated for stationary fish. Results are summarised in Table-3.3.8. In

general,associationswerescale-dependent and most extreme at small spatial scales.

Patterns were similar to those of>O+ salmon. Shallow depths (<24 em) were avoided for

ambit radii <7-10 m but were often preferred at larger spatial scales. Intennediatedepths

(24-36 em) were preferred. Larger depths were preferred at ambit radii < 2-7 m, but

avoided at larger spatial scales. Low water velocities were avoided «12 em s'). Higher

water velocities were mostly preferred. Fines were avoided and large boulders were

preferred .



Table 3.3.S. Summary of associations of >0+ brown trou t with the variables (V) dept h

(D) and water velocity (W) as a function of scale, quantified in terms ofReIative Contac t

at increasingly larger ambit radii, from surve ys in North Ann River in 1995 (NAR95 ).

Lac : location; Yr: year; group: see Figure 3.3.1; Nt : total # fish observed .

Locf'(r V Results
NAR95 0 * associations most extreme al small spatial sca.les
group 1 * class 1·3 avoidcd at ambit radii <7- 10 mbu t preferredat larger

spatial scales; indifTercncetowards class 4; c:lass5-7 preferred at
ambit radii < 5-7 m but avoided at larger spatial scaIes

NAR9S ·associalionsmoste.~remeatsmaJl spatialscalcs

group 2 * class 1avoidcd;c lass 2·3 avoided at ambit radii <7 -10 mbu l
preferred at larger spatial scales; indiffcrencc towards class 4; class S·
7 preferrcd at ambit radii <5·7 m but avoided at larger spatial sca les

NAR95

~~~
group 2

NAR95

~~~
group 2

• associations mostextremeat smallspatial scales
• class 1..2 avoided; indifTcrcncc:towards class 3·7; class 8 prcferred
* associations most extreme at small spatial scales
* class 1·2 avoidcd; indi fferencc lowardsclass 3·7; class 8 preferred

A directional approach based on RCEX indicated that associations of 1994 North Harbour

River salmon (0+, >0+) with depth, waterv elocitya nd substrate were generally most

extreme at small spat ial scales (lag <1 m). Pattern s inas sociationsoffish withthese

variables were elongated in direetio nswi th and against the flow direetions,asillustrated in

Figure3 .3.S for associations of the 1994 North Harbour River salmon (>0+) with depth .

Fish numbers in surveys otherthan 1994 North Harbour River were so low that results as

in Figure 3.3.S were often diflicult toi nterpret. Nevenhele ss they did not seem to indicate

that patterns differed from the patterns as described above , for salmon as well as for



Figure 3.3.8. Associations of 1994 North Harbour River salmon (>0+) with depth as a

function of spatial scale and direction relative to water flow, quantified int ermsof

Relative Contact Exhaustive (RCEX) (-).

3.3.3.4. Habitat model : multi-or single scale?

I first aimed at understanding the extent to which the scale-dependent associations , as

outlined in the previous section, were the result ofsm all-scaleha bitatselectionbehaviours

onlY,ratherthanbeingtheresultofh abitatse lectionbeha vioursoperatingoverarangeof

scales. For this, I first calculated RC for all possible depth-water velocitycombinations

(7*7=49 possible classes), using the depth and water velocity observations closest to

individual fish positions. Based on these RC measures I generated fish distributions as

out lined in the Material and Methods section. Next, I calculated RCD for associations

with substrate, water velocity and depth for the survey gro ups separate. Note that RCD

should be close to 0 for associations with depth and water velocity at ambit radii

approaching 0 em (cf Chapter 3.2.2.3). (See "Material and Method" sect ion for how a

ReD different from 0 may indicate multi-scale behaviours.)



Results from these analyses suggested that many of the assoc iations at larger spat ial scales

are the result of small-scale habitat selection behaviours , rathe rthan being the result of

habitat selection behaviours operat ing at a range of spatial scales : RCD estimates were

closerto oacross spat ial scales compa red to RC estimates (illustrate d inFigure 3.3.9 for

1994 North Harbour River salmon). Some results , howe ver, suggested habitat selection

behaviours operating at multiple scales :

For salmon (0+1>0+)and brown trout (>0+) , [ found that associat ions with low water

velocities «12 em 5.1) were negat ive and generally most extreme at ambit radii <2 m.

Positi ve associations were found with water velocity classes 5-7 (> 24 em 5") at ambit

radii of l-10 m (see Figure 3.3.9). These results, in co mbination with results in terms of

RC as outlined above, suggest that fish may differentiate between low-flow locations

within low-flow areas and low-flow locations within high-flow areas . They may also

different iate between high-flow locations within high-flow areas and high-flow locations

within low-flow areas. This behaviour cannot be described by a model based on depth and

water velocity operating at a single small-scale only.
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Figure3 .3.9. Assaciat iansaf I994NarthHarbaurRiversalman(0+,>0+)distributians,

genera ted by computer and single small-scale habitat selection rules related to water

velocity and depth, with depth, water velocity and substrate across a range of ambit radii

or spatial scales, quantified in terms of Relative Contact CRCD).

For salmon (0+1>0+)and brown trout (>0+), I found that associations with sh~lIaw depths

« 6 em) were negative for ambit radii <3 m (most extreme at 50 em to 1 m) but close to 0

at other spatial scales. In North Arm River (1994, 1995), associations with larger depths

(>36 em for 0+ salmon, > 48 em for >0+ salmon) were negative and most extreme for

ambitradii >3m(seeFigure3.3.9). Theseresults,ineambinationwithresults intermsof



RC as outlined above, suggest that fish may differentiate between shallow locations in

shallow areas and shallow locations and deeper area s, and between deeploeations indeep

areas and deep locations within shallower areas. This behaviour cannot be described by a

model based on depth and wate r velocity operat ing at a single small-scale only.

For salmon(o+I>O+), I found that associations with fines(c1ass l) weresi milar toas

described above in terms ofRC . Associat ions with larger substrates being generally close

to 0 (see Figure 3.3.9) . For brown trout (>0+) I found results similar to those in terms of

RC. These results , in combination with results in terms ofRC as outlined abo ve, sugge st

that associations of salmon and trout with fines may not be explainedb yamodelbased on

water velocity and depth alone , but that associations of salmon with (large) boulders may

have been part ly due to selection for water velocity and depth , and that associati ons of

salmon and trout with other substrates mayb e negligible.

3,3.3.5 . Habitat model ,single-versus multi-scale approaches

Based on the previous result s, I chose a single small-scale model and a mult i-scale model.

The single-sca le mode l dist inguished all possibledepth-water veloeityeombinations

(7*7=49 possible classes). The multi-scale model cons isted of5 depth classes from

shallow to deep , distinguishing shallow locat ions in shallow areas from shallow locations

in deeper areas and deep locat ions in deep areas from deep locations within shallower

areas , and 5 water velocity classes from slow to faster , distingu ishing low-flow locations

in low-flow-a reas from low-flow locat ions in higher-flow areas and distinguishing

high-flow locat ions in high-flow-areas from high-flow locat ions in low-flo w areas (5*5=25

possib le classes ): Depth 1: :S12 em at loeation and :S 12 em average depthwi thin l m

ambit radius ; Depth 2: depth <12 em at location and > 12 cm average depth within 1 m

ambit radius; Depth 3; 12-36 em at position; Dept h 4: >36 em at location and > 36 em

average depth within 3 m ambit radius; Dept h 5: >36 em at location and :s36 em average

depth within 3 m ambit radius; Water velocity 1: s 6 em 5 ' at location and s 6 em 5'



average water velocity within I m ambit radius; Water velocity 2: s 6 crn s" at location

and > 6 cm s" average water velocity within I m ambit radius; Water velocity 3: 6-24

cm s" at location; Water velocity 4: >24 em .-' at location and s 24 cm s" average water

velocity within 1 m ambit radius; Water velocity 5: >24 cm s" at location and > 24 cm .-'

average water velocity within 1 m ambit radius. To determine habitat at fish positions, 1

used the depth and water velocity observations closest to individual fish positions.

Substrate was not included to limit the number of habitat classes in the model and because

substrate-selection behaviours were mostly restricted to fines. I purposely chose a

multi-scale model consisting of fewer habitat classes compared to the single-scale model

to prevent a situation where descriptive capacities of the multi-scalea pproach would be

superior to the single-scale approach solely because of the number 0 fh abitatclasses

involved, rather than being the result of using the multiple scales.

Based on these models and associated RC measures, I generated fishd istributions as

outlined in the Material and Methods section. A visual inspection of computer-generated

and observed fish distribution maps suggested that all were similar in that fish were

concentrated in the same small-scale locations within the river (1-2 m2
) . The multi-scale

modelgenerall yperformedbenerthanthesingle-scaleapproach,especiallyat larger

spatial scales (ambit radius>4 m, Figure 3.3.10; Table 3.3.9). Neverthele ss, correlations

(r) belWeen the single- and multi-scalec omputer-generated distributions and observed

distributions were often small and sometimes even negative at spatial scales larger than

those of the model (see Figure 3.3. 10, Table 3.3.9), in spite ofa much higher and positive

corre lation between computer -generated and observed distributions atsmall spat ial scales

(r=O.5 to O.8 at ambit radii< 4 m). I tried several additional models with various

depth/water velocity classes defined at various spatial scales, but wasunableto develop a

model that perforrned well at small as well as at larger spatial scales for all survey gro ups.



Table 3.3.9. Corre lation (r) between observed fish densit ies (% tota l popu lation m-') and

fish dens ities generated bysin gle- (SS ) and mull;-scale(M S) habitat selecticn models . at

thespalials cales ofpool, riffieandrun, ford islribulions ofbrown troul (>0+) and salmon

(0+, >0+) in North Harbour River (NHR : 1994, 1995) and North Arm River (NAR:

1995). (n: # fish observed ; group : see Figure 3.3. 1)

Species

0+ 391 NHR

0+ 80 NHR

586 NHR

192 NHR

97 NAR-groupl

76 NAR-group2

78 NAR-group I

57 NAR-group2

0.91

1995 '{).57 .{).27

1995 0.19

1995 0.63

1995 0.92

.{).47



Figure3 .3.10. Correlation (r (-»between observed fish densities (% total population m")

and fish densities generated by single-and multi-scale habitat selection models asa

function of spatial scale (ambit radius, m) for distributions oft rout (>0+) and salmon (0+,

>0+) in North Harbour River (1994 , 1995) and North Arm River (1995) . For comparison

Iaddedresultsofasimilaranalysis, relating the densities of 0+ salmon of the first visit in

North Harbour Riverin 1994 to those of the second visit.

Associationsofindividualsalmonandtroutwithotherfish,substrate,watervelocity,and

depth were highly scale-dependent, and most extreme at small spatial scales (ambit radii <

50cm). In addition, scale-dependency of associations changed with direction relative to

waterflow. Associationswithdepth,watervelocity,andsubstrateatlargerspatialscales

were to a large extent the result of small-scale habitat selection behaviours ,butwithsome

selection behaviours operating at multiple-scales rather than atasingleone: fish seemed



to differentiate between shallow positions in shallow areas and shalIowpos itionsindeeper

areas, deep locations in deep areas and deep locations within shallower areas. low-flow

positions in low-flow-areas and low-flow positions in high-flow areas, and high-flow

positions in high-flow-areas and high-flow positions in low-flow areas (cf. riffle-run versus

pool habitats); 0+ salmon of the 1994 North Harbour River survey avoidedfinesatlarger

spatialscales(ambitradii>30cm),butwereindifferenttofinesatsmallerspatialseales ;

>O+salmonoftenavoidedlargersubstrates(cobbletolargeboulder) at small spatial seales

(ambitradii<40cm),butoftenpreferredlargersubstratesatlarger spatial scales. Single­

and multi-scale habitat selection models were equally well able to describe small-scale fish

distributions (ambit radii < 4 m). Multi-scale models were often better at explaining these

distributions at larger scales (Figure 3.3.10; Table 3.3.9). However,bothsingle-and

multi-scaleapproachesoftenfailedtodescribedistributionsatspatial scales much larger

than those used in the models, even when larger scale distribut ions were described in

terrns of relatively homogenous broad-scale features such aspooIS,riffles,andruns.

These results indicate behaviours primarily directed towards small-scale habitat features «
1 m2

) , probably aimed at maximisingenergy intake (cf. Bachman 1984, Fausch 1984) by

seiection for specific holding positions with low snout-velocities close to higher current

conditions (larger scale) where drift is concentrated (cf. Chapman and Bjomn 1969,

Everest and Chapman 1972,FauschandWhite 1981),andanavoidanceofexcessive

watercurrentsprobablybecausepositionholdingistoodifflcultor energetically

unfavourable. Duetothesebehaviours,fishwereconcentratedinpatches. These patches

were elongated parallel to water-flow. This elongation was apparent more so for >0+

salmon and >0+ trout than for 0+ salmon. This difference is likely due to older fish being

concentrated in the centre of the river where flow is higher and depths larger (run type

habitat),whereasO+fishareprimarilyfoundinshaliowerriffle-typeriversections,using

more of the cross-section of the river. Spacing-behaviourorterritorialitytimherreduced

theclumpedness offish within these patches at small spatial scales (ambit radius 10-30

em).



Results at small spatial scales were in line with findings ofa micro-habitatstudy on trout

and salmon done earlier in these rivers (DeGraaf and Bain 1986). They support findings

of Heggenes (1990), who reported from a literature review that salmon parr generally

avoided slow flowing areas «5 em s"), smaller substrates, deep low-flow areas and

fast-flow habitats, and preferred water velocities in the range 0 f5-25cmsl
. A

differentiation by fish between low-water-velocity-positions in areas of low water

velocities and low-water-velocity-pos itions in areas of higher water velocities as well as an

avoidanceoflargersubstratesatsmallspatialscales (streamtank:ambitradius <15cm;

this study: <30-40 em) shifting to indifference or preference at 1argerspatialscaleswere

also found in the stream-tank study reported earlier (Chapter 3.2). However, the

low-resolut ion of the water velocity maps used in this field-basedstudy(lm'2)didnot

allow me to clearly identify the scales at which this behaviour opera ted, in contrast to the

the stream-tank study (area : 30-50 cm ambit radius; resolution water velocity

measuremenrsr-n m") .

The low-resolut ion of the flow-map also limits analyses along thelinesofFigure3.3.9

(ReO), because water velocities at co-ordinates (XY-grid) closest to fish positions, used

forgeneratingthedistributionsofFigure3 .3.9,maynotaccurately reflect water velocities

as experienced by fish. From this, I interpret the results of Figure 3.3.9 as suggesting that

habitat selection behaviours operate at multiple scales, butstill do not provide solid proof

for this type of behaviour. More convincing in this respect are results from analyses along

the lines of Figure 3.3.5-8 (RC),which, for example, suggest for 0+ salmon that contact

with water velocity class 5 (24-36 em . ') is maximised at ambit radii of 1-4 m. However,

without analyses as in Figure 3.3.9 it is impossible to ascertain whether associations as in

Figures 3.3.5-7 are indeed due to habitat selection behaviours that operate at multiple

scalesorduetosingle-scalehabitatselectionbehaviours,theeffectofwhichistogenerate

characterist ic patterns at larger spatial scales. Further study based on a high-resolution

flow-model may be needed to address this problem. Because ofsintilarities in results



fromthestream-tankstudyandthisfield-basedstudy,lconciudedthat habitat selection

behaviours mostlikelyrlid operate at multiple scales in this field-based study as well.

Concerns with respect to the use of low-resolution flow measurements also apply to the

analyses of Figure 3.3.10. However, a low-resolution flow-map was expected to lead to a

reduct ioninthecorrelalionbetweenobservedandcomputer-generateddistributionsat

small spatial scales in particular, whereas effects will be minimal at larger spatial scales.

From this, the reduct ion incorrelation(r) from ambit radii of 2tolm inFigure3.3.10

may be due to the low-resolution flow measurements , whereas the reduction in r at ambit

radii larger than 4 m is most likely due to a mismatch between the habitat selection

behaviours of the fish and the model used to describe these behaviours.

3.3.4.1. Implications of results

Associations varied with spatial scale. From this, conclusions with respect to the

distribution and habitat use by juvenile salmon and trout will depe ndon scaJe as well.

From this, micro-habitat «1 ml
) and macro-habitat (> 100 m2

) modelling approaches may

lead to different management actions. This is especially a problem when variables are

considered separately, as is current practise when using the univariate functions within

lFlM (cf. Bovee 1986, Gore and Nestler 1988). For example, at small spatial scales,

salmon avoided shallower areas, but preferred shallow depths atlargerspatialscales

(Figure 3.3.5). This is probably due to a combination of avoidance of shallow depths at

small spatial scales, preference forriftle areas that have a high numberofshallowdepth

observations and where flow is high, and avoidance of pool habitats where flow is low.

From this, a habitat model based on a combination of water velocity and depth may be

able to explain much of this pattem using a single and small spatialscaleonIy,butwhen

considering depth separately, a multi-scale approach is needed.

Because associations offish with habitats change rapidly with spatialscale, especially for



ambitradii <lm,measurementscalesneedtobeclearlydefinedforobservationson

habitat selection in habitat modelling studies. The use ofill-defined and inconsistent

measurement scales in habitat modelling, however, is unfortunately rather prevalent. This

is the case especially for substrate, which is often measured based 0 n dominance within

ill-defined areas surrounding fish positions. Inconsistent and ill-defined measurement

scaleslimittheefficiencyofvariablesfordescribinghabitatuse inhab itatmodelsof

individual studies, and a comparison of findings among studies.

1 found micro-position models often lost their predictive capacityat scales larger than the

resolutionofthemodel,despitethelimitedspat ialscopeofthisstudy. This may indicate

that selection for important larger-scale habitat features was overlooked,orthat

small-scalehabitatfeatureswereoverlooked,theeffectof whichis most apparent at larger

spatial scales. This has important implications for the use of micro-habitat models for

resource management, as these models are often used to address problems occurring at

scales much larger than those of individual fish observations (see Figure3 .3.!). An

example is an impact analysis for a hydro-dam, using micro-habitat modelling techniques .

Such an analysis is primarily aimed at long-term effects on fishpopu lations in the entire

river, instead of being aimed at small-scale distributions offish within the river. However ,

results from this study indicate that a micro-habitat model may predict quite well where

fish will be positioned within a river after installation of the dam, but this inforrnation may

not be that easy to translate to effeets at larger spatial scales (cf. Orth 1987).

A discrepancy between observed and computer-generated distributionswas also apparent

when larger-scale distributions were described in terrns of pools, riflles, and runs. The

reason for this may be that the classification of riverine habitats in terrns of (assumed

homogeneous)pool,riffie , and run habitats, does notadequatelyreflectthehabitatas

experiencedbyfish,asfishprimarilyseleetforsmall-scalefeatureswithinthesehabitats

and because average depth and averagewatervelocity,usedtoseparatepoolsfromriffies

andruns,doesnotretleetthesmall-scalehabitatheterogeneitywithinthesegrossfeatures.



Bystudyinghabitatselectionbehavioursatthescaleofpool,riffie ,a ndrun,onlyan

indirect impression offish behaviours will be obtained.

The problem of scale-up should become a central focus of habitat modelling (see Chapter

2). lshouldpointoutthatcurrenthabitatmodellingstudiesfocusonhowtoextrapolate

models derived from one river to another, or from one moment in time to another, but that

these analyses are different from the scaling analyses 1 propose int hat the former relate to

"timell and "location" whereas the latter relate to "time· scale" and "space..scale",which,

althoughrelated,aredifferentissuesaltogether(cf.Schneider 1994). That is, the former

relateto how associationsdifferamongriversystemsor momentsin time, the latterrelate

to how large spatio-temporal scale distributions can be describedusingsmall

spatio-temporal scale observations and associations .

3.3.4.2. ScalingapproachesinhabitatmodelJing

Scale is increasingly recognised as being important to habitat modelsandmanagementof

riverinefishspecies(e.g.FrisselletaI.1986,MinshaIl1988 ,Lewisetal.1996,AlIanetai.

1997),butfewempiricalandquantitativemulti-scalestudiesonhabitat use by fish have

been done . Recently,severalstudieshaveusedmulti-scaleapproachestostudyfish

distributionsandhabitatuse(e.g.Syms 1995, Poizat and Pont 1996,Richardsetal. 1996).

The difference between the approach in this study and theseothermulti-scaleapproaches

isthattheproposedapproachisbasedonanindividual-basedconcept operating over a

range of spatial scales, instead of using fish densities analyzed at a few selected scales. By

analyzing distributions over a range of scales, one reduces the chances that important

scaleswereoveriooked or that analyses were confined to scalesdet ermined from an

anthropomorphic interpretation offish behaviours and life-history. Althoughtheanalyses

can be used for organisms that may not-select their habitat, such asplants,theapproach,

whenusedforfish,tendstofocustheresearcheronhowindividuals perceive and react to

their environment and effects of these small-scale behavioural processesonlargerscale



distributions . Individual behaviours are central to the approach , Iarger scale distributions

are explained in terms of small-scale behavioural processes , and the line-of-thought is very

much from small-scale to large-scale processes.

The focus on individuals and small-scale behavioural processesofthe Relative Contact

method may make the approach more suitable for desc ribing distributions that are

primarily driven by behavioural processes , as these are ultimately the result of small-scale

individual decisions ratherthan of groups offish . In addition, the Relative Contact

methodallowsforaninterpretationatscalessmallerthanpossiblewhenusingapproaches

based on density-information and variance-analysis (see Chapter 3.1). However ,hab itat

selection behaviour is not the only process that underlies fish distributions :distributions

are the result of multiple processes that operate over a range ofsc ales (Wiens 1989,

MengeandOlsonI990,LevinI992,HomeandSchneiderI994,1995); processes that

operate at one scale can have effects at other scales as well; the relative importance of

processesvarieswithspatio-temporal scale (Home and Schneider 1994); the relative

importance of habitat selection behaviour diminishes at largerspatio-temporal scales Icf

Chapter 2). In addition, small-scale observat ions may often be moredifficulttoobtainthan

larger-scale information, especially when the scope of these observations is large (cf.

descriptionofariverintermsofpool,riffle, and run habitat versus small-scale water

velocity gradients) . From this, the approach based on Relative Contact may not always

bemostefficient,especiallyatlargespace-timescales .

A careful consideration ofa combination of mathematical techniques is probably most

suitable to study fish in rivers, with the approach based on Relative Contact covering the

small to intermediate spatial scales «103 m) and others covering the larger spatial scales.

In this context are important research questions : How does the relative importance of

behavioural processes changewithspatio-temporal scale? How do small-scale processes

affeet large-scale distributions and vice versa?



Classic micro-habitat mode!s generally operate at asingJe or few selected scales, using

small-scale observations on individual fish «m', seconds) to address problems occurring

at much larger spatia-temporal scales (rivers, years) . The results of Chapter 3.3 indicated

that habitat selection behaviours operate at multiple scales ratherthanasingleone.

Single- and multi-scale micro-position models were equally able to identify the small-scale

locations within riversthatarepreferredbyfish,butboth modelling approaches were

limited when used to make density predictions at larger spatial seales(>50-100m'). This

implies that important processes and associat ions may have been 0 verlookedandthatthe

scale-up from individual fish observation to management problem may be more difficult

than is realised by most fish-habitat managers using micro-habitat modelling techniques .

Large-scaJefish distributions may not be the result ofa simple compositeofsmall-seale

behavioural processes . More research should be directed towards this problem of

scale-up . Multi-scale approaches will be crucial to this .

Strongspatio-temporalheterogeneityiseharaeteristicofriverswithwidevariationsin

temperature , depth, and waterflow over short spatio-temporal scales,especi ally when

compared to lakes and other aquatic habitats. Speciesinhabitingtheseenvironmentsare

adapted to this heterogeneity and habitat modeUingapproaches that resuit in a more predictable

andlessheterogeneousenvironrnent,suehasPHABSIM/IFlM(BoveeI982,1986,MiIhouset

a1.1989),maydiminishtheveryuniquenessofthehabitatsandspeciestheyintend to protect

(cf.Barinaga1996)astheyconcentrateonhabitatavailabiJityanddonottakeinto account the

importanceofspatio-temporalhabitatheterogeneitytofish. Muiti-scaleapproachessuchas

thosedescribedinthisstudymayaidinincorporatinghabitatheterogeneityinhabitatmodelsby

identifYingimportant scales and processes. From this, multi-scale habitat models may be better

than single-scale habitat models at evaluating how organisms are associated with their habitats

and bemoreellieient for resource management.



Thescaleofmeasurementwilldeterminetheperceivedrelativeimportance ofa habitat

variable in habitat selection behaviour. Therefore , Habitat Suitability Indices and Habitat

Use indices, commonly used in habitat modelling approaches , must also depend on scale.

From this, it is clear that managerial actions will differ based onthescaleofmeasurement

of the study used to support managerial decisions. Future habitat modelling studies should

focus on the identification of spatio-temporal scales that are mosteffectiveinexplaining

observed fish distributions. A clearly defined use of measurement scale is crucial to

habitat modelling. Interpretation of results should be limited to the spatial scales over

which the study was condueted.



Chapter4: Density-dependent habitat selection by juvenile Atlantic salmon

4.1. Density-dependenthabitatseledionbyju venileAdanticsalmoninexperimental

Organismdensity is oftenused to identifyimportanthabitats andas an indicatorof habitat

quality(for a discussion:Van Home 1983). In fisheriesmanagement, relationshipsbetweenfish

densityand habitat are oftenmathematicallydescribedin habitatmodels. Microhabitatmodels

describethedistributionofindividualfishoversmall-scale«lm2)habitatfeatures; macro­

habitat modelsdescribefishdensitiesas a functionof intermediate to large-sealehabitat

features(>10m 2
) .

Inspiteofthewidespreaduseofhabitatmodellingtechniquestopredietfishdistributions,

someunderlyingassumptionsare seldomexplicitlystated, testedordiscu ssed,withmost

researcheffortseeminglyfocusedonthedevelopmentoflocalmodelsford ifferentriver

systemsor regions(e.g. DeGraafandBain 1986),oronthespatio-temporalgeneralityof

models(e.g. BozekandRahe11992). Two implicit assumptionsin habitatmodellingare that

( I) organismdensityandhabitat qualityare positively correlatedandthat (2) habitatseleetion

does notchangewithdensity. Theobjeetive of thisstudywasto investigate ifuse of pool,

rifI1eandrunhabitatsbyjuvenileAtlanticsalmon(SalmosalarL.)isaffectedbypopulation

density.

Previouswork hasshownthatsalmonidsseleetpositionsin streamsbasedontheircompetitive

abilitiesandthe profitabilityof positionsin terms of potentialnetenergyintake rateand

predationrisk,withprofitabilityof positionsbeingmuchdeterminedby the physicalhabitatin



terms of cover, bottomtopographyand currentflow patterns(Fausch 1984, Hughesand Dill

1990, Hughes 1992A,1992B,GrandI997 ,GrandandDiIl1997). As such, the area withina

stream rnay be regarded as a hierarchyof potential positions, ranging from inaceessible lo ideaJ.

with eachfishchoosingthe most profitablepositionthat its rank in the socialhierarchywiII

allow(Fausch 1984, Hughes 1992A). Temtoriality,small-scalespacingbehaviourorpre­

emptive exclusion WIllthus regulale use of preferredpositionsand space, if inshort supply, will

regulatepopulationdensity(Bohlin 1977, Grant and Kramer 1990). From this, the physical

habitat rnay be regardedas a templatedeterminingdistributionpatterns offish (Hughes

I992B).

These processessuggestthat salmoniddistributions maybe best describedusing the ideaJ­

despotiedistribution theoryofFrerwell (1972). This theorydescribeshow animalsselect their

habitatsassumingthat they are "ideal" inknowingwhere profitabilityis highestbut where

accessto resourcesare governed byterritorialbehaviours. Whenorganismsdistributeideal

despotie, the most desirablepositionswillbe oeeupiedfirst, followedbyp ositionsin

progressivelylessdesirablehabitats. Becauseofthis,theaveragegainperindividualrnaydiffer

and habitatuse mayehange with density. Fromthis,habilalmodelsrnayvarywithpopulalion

density.

The ideal-free distributiontheory (Fretwelland Lucas 1970)contrastswith this ideal-despotic

theory in that accesslOresources is not restrietedbyterritorialbehaviours but all individuals

are equal and "free" to move arnong patcheswithoutconstraintsorrestrietions. When

organismsdistributeidealfree, fitnessof individuals declineswith densityas individualsoccupy

the best habitats, the averagegain perindividualwillstabiliseto be equaiin allhabitats, and the

fraetion ofapopulation in each habitatshouldequal the fraction of resourcesoccurringthere

(cf. input matching;Parker 1974). Whenorganismsdistribute idealfreearnong habitatsand the

rate of resourcerenewalin these habitats is not affectedby organismsdensityor distribution

and all habitats are occupiedallowpopulationdensities, then relativedensitiesin habitatsdo

not vary with populationdensity.



We hypothesisedthat rifflesand runswould offerthe best feedingpositions for parras driftis

eoneentratedinthesehabitats , eventhoughthere are areas fnthese habitats that are relatively

inhospitable due to high waterv eloeities. Byeontrast, parr can occupy most of the total area

of pool habitat with low energyexpenditure, but the "quality" of individualpositionsin these

areas may not be as highdue to the lackof large water veloeity gradients(Fausch 1984,

Hughesand Dill 1990). Becauseof this, we expectedparr to be most dense in riffleor run

habitatatlowoveralldensities,butpooIswouldsupportmoreparrathigher densities. This

proeess maybe bestdeseribedusingideal-despotie, rather than ideal-freetheory.

4.1.2,1. Study site

Thestudy waseondueted inanabandonedspawningehannelintheNorthHarbourRiveron

theA valonPeninsulaofNewfoundland,Canada(47'12'N,53'37'W),inlateAugusttoearly

Oetoberofl993 and 1994. This channelwasused as part ofanexperimental transplantof

pinksalmon(Oncorhynclnlsgorbllscha) in the latefiftiesand sixtiesIl.ear 1975). Theehannel

parallelsthe mainstem of North HarbourRIverfor a distanceof about 550m. The width of

the channelrangesbetween l.S-S m and a sluieeat theimakeallowed foreontrol of water

flow. North Harbour River is furtherdescribedbyDeGraafand Bain(\ 986).

Three seetionsof the ehannelwere blockedoffbymetal postsand wire mesh(114inch,zine

coated). Seetionswere approximately25 meterslong and had a surfacearea ofappr oximately

100m2
• Withineaehseetion,ariffielrunlpoolsequeneewas created. The sequence of the

habitats(riffielrunlpool)withinthemainseetionswas varied: travellingalong the channelin an

upstrearndireetion,thefirstseetion(seetionlhereafter)eonsistedofarun friffiefp001

sequenee,thesecondsection(seetion2)ofarifflefpool frunsequence ,andthethirdsection

(seetion3) ofapool friffie f run sequence.



To detennine the surfacearea of subsections (= habitat within section), the lengthofeach

subsection was measured at three equallyspaced transects parallelto the flowand the width

wasmeasunedate verymeterperpen dicular tot he flow,aJlt ot he nearest O.05m. Substrate

(according to the AmericanGeophysicalUnion as in Plans et aI. (1983», water depths (m) and

water velocitiesIm s"; at 60"/0of depth) were measuredin allsubsections at sevenequidistant

points infour equally-spacedtransects, established perpendicular to the flow.

The average surface area of pool, riflle and nun sections was 46.7m ' (range: 41.5-51.3m' ),

37.4 m'(ran ge:33 .1-41.9m')an d 19.2m'(range:15.3-24.6 m') respec!ively. The average

depth of pool, riflleand runsections was 28.4. 10.6 and 22.8 cm respectively. Thea verage

water velocityof pool, riflleand runsections was 7.1. 25.5 and26 .5cm .s ' respectively. The

substratein the channelconsisted primarily of coarseto very coarsegravel (16-64 mm). I

randomlyplaced10 particlesof largecobble(128-256 mm)into each subsection to increase

smallscalehabitat variation.

4.1.2.2. Experimental procedures

Atlantic salmonparr were introducedinto the threeexperimentalsections at densitiesofO.I ,

0.25, 0.5, 0.75, and 1.0fishm"in 1993 and at densitiesof 0.1. 0.25, 0.5, 0.6,0 .75, 1.0and

1.25m·' inI 994. Thisrangeof densities issimilarto the rangeof densitiesofl + and older parr

observedin variousstationsin two nearbyrivers(Northeast TrepasseyBrook and Freshwater

River; Gibsonetal . 1993). Prior to introducingfish,all fish presentin the experimental

sectionswereremoved .lnl993,eachdensity wasrepeated withineachsection.Inl994each

density was establishedonce within each section. The sequenceof input densities was varied

randomlywithineachsection.

The lengtbsof theparrused intheexperimentvariedfium 7.0toll.5cminfork-length

(mostly 1+ fish). Fishwerecaughtby electrofishinga varietyofpoo~riflleandnunhabitats.



Thesewere locateddownstreamof the entranceto the spawningchannelto minimisepossible

homingbehaviorafter introduction(cf.SaundersandGeeI964).inI993a1lfishwere

anaesthetised(MS222),measured, weighedand markedwithanadiposefin-clipbefore

introduction intothe sections. In 1994the fishwere introducedintothe sectionsimmediately

aftercapture,withoutfurtherhandling. Thedifferenceinprocedureswasnecessarybecauseof

the higherafternoonwater temperaturesin 1994,whichmadethe fishmoresensitiveto

handling.andbecauseof'logistics, The markingin 1993allowedus to checkfor holesin the

fencingmaterialandto determineiffish caughtfor introductionhadbeenusedpreviously.No

fishwere introduced that were knownto have beenusedpreviously. At introduction, fishwere

evenlydistributedover thesurfaceof the experimentalsections.

Afterathree-daypenod,thehabitatswithineachexperimentalsect ionwereblockedwith

barriernets. Thesenetshad heavychainsattachedto thefootropeswhichallowedus to block

the habitatscompletelywithinIWO secondsandminimisedparr redistribution. Allfishwere

thenremovedby electroshockinguntilno morefishwerecapturedevenafter repeatedpasses.

The downstreamsection 1was alwaysemptiedfirst, followedbysections2 and3. I didnot

varythis sequencebecausemyactivitiesinthe channelcausedsuspensionof siltand debris.

Fishwere removedfromthe sectionsin the morning. Inthe afternoon,newfishwere caught

for introductionandwerereleasedintothe sections.

At the timeof removal, watertemperatureandwater levelwererecordedat a fixedlocationin

the pool subsections. Thedischarge(I s')inthe spawningchannelwasmeasuredat different

water levelsto establisha relationshipbetweendischargeandwater level.

On severaloccasionsthe enclosuresdid notwork properly, withfishescapingore nteringthe

experimentalsections. I triedto repeatobservationswherethe enclosureshadobviously

malfunctioned. 46 observations,out ofa total of60, wereeventuallyusedin the analyses,after

removalof observationswherethe enclosurewas not consideredto haveworked.



4.1.2.3. Acclimation period

I conductedlWO experimentsto assessifa3 day acclimationperiodwas suflicienttoestablisha

stablefishdistributionand to detennineifthe locationwhere fishwere introducedinfluenced

the finaldistribution. In the firstexperimentfishwere introduced by evendistribution overt he

surfaceof the sections and theacclimationperiodwas varied from3 to 13 days. In the second

experimentfishwere introducedindifferentlocationswithinthe experimenta1sections

(upstream,downstream,even)and removedafter3 days.

A generaleffectof acclimationperiodor introduction methodon the distributionofthefish

was not detectable(Bult,unpublisheddata). However, the acclimationperiodmighthave

affectedthe fishdistributionsinsection2. withfishmovingfromthe runto the poolhabitatat

longeracclimationperiods. The introductionmethodmighthave affectedthe distributionsin

section3,withmorefishintheupstreamsubsectionatupstream introductions,butupstream

introductionscoincidedwithhighertemperaturesandtemperatureeffectscouldnotbedearly

separatedfromintroductioneffects.



4.1.2.4. Calculation procedures

Idid notanalysemy data by explainingthedensityin one habitatas afunetionof

the densityina contrasting habitat, an approach often used whenstudyingdensity

dependenthabitat selection(cf Rodriguez1995). I didthis becausehabitat

densitiesof individual removalswerenot independentin myexperiment. I

quantifiedseleetion ofparrfo rpool,riflleand run habitat byusingseleetionindices

(SI):

SI,, /.,,2 = loglo ( Dill + 0.01) - log/ o ( D" l + 0.01) Equation s. I. I

SI"-h2: SeleetionIndex(-),quantif)ing seleetionforhabitat I over habitat2

fishdensityin habitat I (# m·2)

Ifthedistributionoverhabitatsisproport ional,Le.an x-foldincreaseindensity in the run

habitatduetoanincreaseinpopulationdensityshowsan x-foldincreaseinthe poolhabitatas

well,seleetionindicesdonotchangewithpopulat iondensity. If'habitatselection isdensity

dependent, selectionindices varywithpopulationdensity.

Theexplanatoryvariables discharge and seetiondensity were re-scaledusing a logarithmic

transformation. Transformationsweredoneassuminga multiplicativeeffeetonseleetion

indices. To avoidspuriouscorrelations, seleetionindiceswere analysedas afunetion of the

seetiondensityatintroduetionrather thanat removal. Thiswas validbecausethe overall

densityat introduction didnot varyconsiderably fromthe densityat removal,asIremoved

observationswheretheenclosuredidnotworkproperlyandfishwereabIe to enteror escape

theexperimentalseetions.



To facilitatea comparison of changes in the distribution of the fish among sections and years

duetotemperature,dischargeorfishdensities,seleetionindiceswerere-scaledrelativetothe

averageseleetion index observed perseetionperyear:

Equation s.l .I'

RSlhI..."", .;: RelativeSeleetionlndex(-),quantifYjngSl hI-h2 ofobservationi in

seetionsin yearY,relativetotheaverageobservedSlhI-h2 ofseetions

in yeary (SIhl..."" , ,;}.

numberofobservationsonsections inyear y

For analyses based on relativeseleetionindices, the explanatory variables temperature (TMP),

discharge(DIS) ,andseetiondensity(DE)werere-scaledrelativetotheaveragetemperature,

discharge and density per section per year:

~7MP/
(7MPad; ~ 7MP, -~

%IOgto(D/S/)

DISad; ~ loglO(DIS,) - ---

%loglO(DE)

DEad; ~ logto(DE ,) - ---

Equation s.l.B

Equation u.lA

Equation s.I.B

The use of relative seleetion indices and the re-scaling of equations 4.1.3-5 focused the analyses

on changes in habitat use relative to devianciesfrom the average conditions withineachseetion



and year, and was done because I was primarily interested in changes in selection indices due to

changes in water temperature , discharge and density,ratherthan differences in seleetion indices

arnongseetionsandyears, and because a clearse paration of seetion and year effeets from

temperature , discharge and densityeffeet swas not possible. This is because temperatures in

seetion 3 were always higher than in sections I and 2, and temperature s in seetion 2 were

a1wayshi gher than in seetionl,duetothesequence inwhich seet ionsweresampled in the

course of the day. The average discharge, temperature and seetion density varied arnongyears .

In addition,theunbalanceddesign oftheexperiment,especiallyafter remo va1ofseveralofthe

observations because ofmalfunet ioning of the enc1osures,prec1uded a c1ears eparationof

effeets.Theuse ofrelat iveseleetianindices, ratherthanseleetian indices,andthere-scaled

temperature ,sect iandensityanddischarged ata,fac ilitated analysisaimed at general changes in

habitat selection behaviour due to temperature , discharge and density,but was less suitable for

analyses aimed at revealingd itferences between sections and years.

Cond ition Factors (CF) of individual fish were calculated as the residualsafalaglO(length

(cm» versus lag,o(weight (g» regression analysis, using data from 1993. I tested fa r

ditferences between the condit ion offish at intradueti on and at remavalbymeansafat-testan

thed itferences in average CF of fish at introduction and removal. In addition, I tested iffish in

the poo l, riffle and run habitats differed in length or CF and if these differences were subject to

changes in overall densities. For these analyses I used data from both 1993 and 1994 and

subtraetedtheaverageCFandlengthsaffish inthepool,riffleandrunhabitatsframthe

average observed CF and length of all fish within each removal event (=RCF and RL

respect ively).

Analyses were done using SAS statistical software (SAS 1988) . Residual analyses involved a

visual check for patterns in plots of residual versus predicted values, as well as testsfar

normality. Tests for normality involved both a visual check and the Shapiro-Wilksstatistic

(a =O.05). Ifres idualsdeviatedfromnarmality,p-valueswe reobtainedbyrandamisatianta

test the significance ofetfeetsafhabitat variables on fish densities: Observations on response



variableswererandomised 5000 times, using sampling without replacement, with observations

of explanatory variables held constant. Ap-vaIuewasobtainedbycalculatingtheproportionof

randomisationswithF-ratioslargerthantheobservedF-ratio.A5%levelwasusedasa

screening criterion to separate "significant" effects frorn vnon-significant" effects.

In 1993, the temperature at removal varied from 13.0 to 19.0°C, (mean=15.9, sd=1.6) and the

dischargevariedfrom69toI651.s·'(mean=121,sd=29) . In 1994, the temperature at removal

variedfromll .OtoI9YC,(mean=13.9,sd=2 .3),andthedischargevariedfrom79t0 1311.s·\

(mean=93,sd=12).

The run habitat was preferred over the pool habitat, and the pool habitat was preferred over the

rime habitat in all sections . Few fish were observed in rime habitats and most fish were

observed in the run and pool habitats. The average density in the run habitat was2.6 times the

densityinthepoolhabitat(averageSlpoor~=0.42),and24.5timesthedensityin the rime

habitat (average SI.un-=1.39).

Density significantly affected SIpoor_,with more fish moving from the run to the pool habitat at

highersectiondensities(Figure4.1.1:Table4.1.I :analysisl,p=0.01l,n=46). This effect was

similararnongalisections(interaetiondensity*Slpool_non-significant). Figure4.1.1shows

that in sections 1 and 3 a selection for runs (SIpool_negative) at low section densities shifted

towardsaselectionforpools(SIpool~positive)athighersectiondensities. Seetiondensities

didnotsignificantlyaffectSlrill1_ andSIrilII..... r.DischargedidnotsignificantlyaffectSI_

SIrilII_orSinm...... (p>0 .082,n=46).WaterternperaturessignificantlyaffectedSI"..."...,and

SI"""",""with fish moving from the rime to the run and ftomthe pool to the run habitat at

higher temperatures (Table 4.1.1: analysis 2) . EffectsoftemperatureonSI.... _differed

significantiyarnongseetionsandyears,whileeffectsoftemperatureonSIriJIl_weresimilar

among sections and years . A model including the variables section, year, temperature, density



and all possible inleraetion terms, showed none of'the variables 10 besignificanl forSlriJl1o.pool

andSlnm_(p>O.07.n=46).SI......... wasaffecledbylemperalUreanddensity.bullheseeffects

weresignificanlonlyaspartofaninleraetionlermwilhsectionand/oryear.



Table4 .J. J. Seleetionofpool versusrunhabitat (Slpoo,~),riflleversusrunhabitat(SI"",-)

and riffleversus pool habitat (SloilIl..,.,.,) byparrasafunetionofparrdensity(DE,log lO(#m -2»
andthe temperature at removal (TMP, "C) in three experimental sections (SE) in 1993 and

1994(Y) . p-Values that are displayed were based on type ill sums of squares and 46

observations. Significant etfects are printed in bold (lX=O.05).

Analysis

density

df SI,........ SIn....... SJ..........
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Figure4.1.1. Selectionof pool habitatversusrunhabitat(SI....... (-). see

text for details) at varying densitieswithinthe experimentalsectionsin 1993

(closed) and 1994(open) (n=46).

SectiondensitiessignificantlyaffectedRSI_insectionsland3andRSI_insection3,

with morefishmovingfromthe run to the pool habitat(sections I, 3) and fromthe rime to the

pool habitat(section 3) at higherdensities(Table4.1.2). Density did not affectrelative

selection indicesinsection2. Discharge affectedRSlpooI_andRSIriJIJ.,.,., in seetion 3, withfish



moving from the pool to the run and riffle habitats at higher discharges. Water temperature

significantly affected RSr,.,..~ in section 2. with fish moving from the pool to the run habitat at

higher temperatu res.



Table 4.1.2. Selection of pool versus run habitat (RSI"....,.,), riffieversus runhabitat(RSlriJJl~)

and riftleversus poolhabitat(RSlriJIIOfOOI) by parras a functionof'temperarure, dischargeand

section density: correlation coefficientsand p-vaIues (r/p). Temperature,dischargeand density

observationswere rescaledprior to analyses, as explained in the text. SignificantcorreJations

areprinted inbold (a=O.05,n : numberofobservations).

discharge density

RSI"",~

RSI~

RSlriJJk-p>ol I

RSI,gp..poo/



Whencombiningdatafromallsections,RSI".,...,..wass ignificantlyaffectedbysect iondens ity

(Figure4.1.2, Table 4.1.2) and watertemperature(Figure4.1.3, Table 4. 1.2). Astepwise

regression approach showed that RSI.........was significantly related to both temperature (n=46,

panial r'=o .129, p=O.OO8) and section density (n=46,p anial r'=o . I64, p=O.OOS):

RSI poo/-nm= (0.3482 • DE) - (0.0553· TMP) Equation ./.1.6

(n=46,r'=o.293,p=O.OOI)

RSI_ was significantlyaffected by waterte mperature (Figure4.1.3; Table 4.1.2; n=46,

r'=o.188,p=O.OO3):

RSI' iff/,-ron = --{).0862· 7MP Equations.l .Z

RS1rill1ooooI was not significantly affectedby water temperature, section density or discharge.
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Figure4.1.3. Selectionof poolhabitatversus run habitat(RSI"""'.... (-), see
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atvaryingtemperatures("C)withintheexperimentalseetions in 1993 and

1994(n=46; seetion I: circle; section 2: triangle: seetion3: square).

Temperatureswere re-scaledrelativeto the averagetemperatureper section

per year, as explainedinthe text



To obtainan impression of the relativeimportance of habitat,temperatureand sectiondensity

for the selectionbehaviourof the fish,SIpool.."and SIrilII_werecompared to <1RSIpooku>and

<1RSI"",,"-with<1RSlpool..,,and<1RSlrilII_caJeulatedbasedonequations4.1.6 and4.1.7 and

byvaryingthe temperaturesfrom 12to 19°C (<1RSltpool"", <1RSltnm_)and sectiondensities

fromO.ltol.Om·2(<1RSldpool..,,). Similaritiesinthe absolutevaluesofSland <1RSlwould

indicatethat effectswerecomparable. SIpool..", <1RSldpool.."and<1RSltpool.."were .OA2,0.35

and·0.39respectively.SlrilII_,<1RSItnm_ were-I .39and-0 .60respectively.

TheconditionfactorofparratremovaiwasO.013lessthanatintroduetion(n=25 ,T=O.8286,

p<O.OOl). ThisparailelsaI.6%reduct ioninwe ight(significant). Fishfromthe pool, riffleand

run habitatsdid notdifferinRCF(n=l 19, F2.116=I.88, p=O.157),but did differin RL(n=121,

F2.I18=23 .38,p<0 .001). Parrin pool habitatswere0.35 cm largerthan parr in run habitats

(significanI,GT2,0;=0.05). Parr in rifllehabitatswereO.2em smailerthanparr in run habitats

(not significant, GT2,0;=0.05) and 0.55 em smallerthan parrin poolhabitats(significant, GT2,

0;=0.05). RL andRCFwerenot significantly correlatedwithsectiondensities(IoglO(section

density»forthepool(RL:n=46,r-0.129,p=0.398;RCF:n=45,r-0.127,p=OAI8),riflle

(RL:n=29,r-0.044,p=O.819;RCF:n=29,r=-0 .232,p=O.226)orrunhabitats(RL :n=46,r=­

0.093,p=O.537;RCF:n=45,r=0 .152,p=O.319).

Resultsindicated that sectiondensityand temperatureaffectedhabitatuse, withparr

distributionsshiftingtowardspoolsfromrunsathigherdensit ies,andtowards runs from pools

and rifllesat highertemperatures. Riflleswere stronglyavoided,possiblydue to a lackof

overhangingcover in combinationwithshailowdepths(cf Gibson1978). The effectsof

populationdensityandtemperatureon fishdistributionswereoftencomparableto the effectof

hydromorphologicaJ differencesbetweenpooVriflleirunhabitats over the range0 fdensities

observed. As neithertemperaturenor populationdensityinforrnationare included ineurrent



habitatmodellingapproaches,a reconsiderationof thesemodelsis warranted, as temperatures

at one placeoftenvaryover morethan7°Cwithina fewhoursinsummertime(whenmost

habitatmodelsaredeveloped),andjuvenilesalmonidpopulationscanvaryinexcessofl order

ofmagnitudearnongyears(cf.KennedyandCrozier1993)

Effectsof densityand temperatureon habitatusewerefoundregardless0 ftheupstream­

downstreamsequenceof the habitatswithinthe enclosures. Thisindicatesthat habitatselection

was primarilyaimedat differencesbetweenpooVriflleirun habitats,ratherthanthe upstreamor

downstreamlocationof habitatswithinsections. Habitat use may have been affectedby

preconditioningand availabilityof habitats in the main river. However, it is unlikelythat

observeddensity-dependenteffects are the result of this as all fishwere pooled before

introductionand randomlyallocated to the experimentalsections.

Lengths of parr in pools were largest, lengths of parr in rifllessmallest. Parr lost 1.6%of

their weight duringthe experiment. I suspect that handlingis largelythe reason for this

weight reduction. rather than food scarcity,because the condition of the fishdid not vary

with section density.

These resultssuggestthat ideal despotictheorymaybe moreappropriatefor describingparr

distributionsthanidealfreetheory, as both runsandpoolswereusedat lowsectiondensities

and relativedensitiesinpoolsand runschangedwithsectiondensity. However,lacking

informationon the resourcedistributionas experiencedbythe fishandalsosmall-sealehabitat

selectionobservations,I couldnot inferwithcertaintywhichoneof thesetheoreticalmodels,

or combinationof models,wasmostappropriate. Iffishselect "idealfree"forhabitatsata

spatialsealemuchsmallerthanthat of pools, rifllesandruns, adisproportionatedistributionat

increasingpopulationdensitiesatthelargerscalesofpool,ritl1eandrunhabitatscouldresult

whensmall-sealesecondaryhabitatswithinthe largersealepooVriflleirun habitatsareoccupied

onlyafterprimarysmall-sealehabitatsare filled. Iffishselect "idealdespotic",a

disproportionatedistributioncouldresultregardlessofthespatialscaleatwhichselection



occurs. Thisal sounderi ineslheneedforquanli tarive infonnationonthe scalesa lW hich6sh

are associated with theiren vironmenl.

I suspect that the observed shift in habitat use is best described by a combination ofid ealfree

and ideal despotic behaviour occurring at small spatial scales. Runs offered relatively more

primarypositions than pools, and pools offered more intermediate qualitypositions than runs.

Primary posilions were defended 6rsl and because of lhis, habitatu se shifted fromrun s lo pools

with increasing density. Parr have been observed 10 be territorial in riflles and lessaggressive

inpo ols(Kal lebergl958,Gib son 1978,Gib son and Cunjak 1986). Ifparrdensiliesarelimited

byt erriloriality, assu ggestedb yGran lan dKrame r (1990),orby small-sca1espacing

behaviour, parr in the run habitats may have occupied primary SPOIS by ideal despot ic

behaviour, whereas parr in the pool habitats might have displayed more of an ideal free

behaviour (cf. Gotceitas and Godin 1992). From this, one may expect the larger and more

competitive individuals in the run habitat, which is contrary to my fiodings that showed that

individuals in the pool habitat were larger than those in the run habitat. Possiblythe larger

individuals occupied me deeper habitats because of competilive segregation or differences in

habilalselectionbelWeensmallerandlargerindividuals(BohlinI977, Bohlin 1978, Kennedy

andSlrangeI986),whichmay beanadaptaliontoavoidpredation.

The observed shift in selection from pool and rifllehabitat to run habitat al higher ternperatures

maybeexplainedinlermsofenergymaximisat ion. Al higherlemperatures,roulinemelabolic

rates increase and thus oxygen demands do as well (Brett 1962). Fish that hold positions on

the bottom of'run and rifflehabitats, using their pectoral 6nsandwaler eurrents, may be more

efficient in laking up oxygen than6 sh that are positioned in pool areas, as oxygen uptake for

6shinpool habitats willbemoreofan aetive process ofopereularventilation and swimming.

Rifllehab ilatswereavoided inpartieularalhigherlemperalUres,possiblybecauseofan

increased risk of predarion al loww aler levels in combinalion wilhhigh lemperalUres in these



Results differed with respect to the generality of the observedeffects. Analysesbasedon

selection indicessuggest that density affectedfish distributions only under certain conditions

(temperatures, sections,years) as no general temperature or density effectwasfound basedon

a model including section, year, density, temperature and allpossible interaction terms.

However, when temperatureand density were treated within separate models, a generaleffect

of temperatureand densitywasobserved (Table-s.Ll : analyses 1 and 2). Analysesbased0 n

relativeselectionindicesalsosuggest a generaleffectof temperatureand density on habitat use

(Table 4.1.2). Thesedifferencesmaybe partly due to the effects of section, year, densityand

temperature being confounded in combination with the unbalanced designof the experiment.

However, they may alsosuggest a limitedgenerality of results. In addition, selection indices

variedwidely, even withinsectionsandyears, and inspite of my effortsto makehabitats in the

different sections as similar as possible, largedifferenceswere found in habitat use arnong

sections{Figure 4.l.I, Table 4.1.l) .

The observedvariationin habitat use arnong sections and years maybe due to variable habitat

selectionbehaviours ora mismatch betweenthe scaleof observationsat pools, rifliesand runs

and the muchsmallerspatialscaleat whichfishselect habitats « I m'; see Chapter3). The

habitats as experiencedby fishmay therefore be seen as far more diversethan suggested by

variablesthat are basedon environmentalconditionsaveraged over largerscales. Fromthis, a

macro-habitat approach willonly give an indirect impression on habitatuse. This suggests that

a macro-habitatmodelling approach is likely to explain only a limitedportion of the observed

variation offish density observations, that modelsare not likelyto performwellwhen

extrapolated over space or time,and that managerialdecisions from habitat modelsmay be

improved when habitat models take into accountvariability or flexibility in habitat use.

Bohlin(1977, 1978) previously studieddensitydependenthabitat use bytrout (Salmotnllla).

From small-scaleexperiments(riverine enclosure of 217 m length; stream-aquarium3.6 m

length)he showed thathabitatuse of l+trout varied with populationdensity. A1soElliolt

(1986) concludedthat habitat use of trout was densitydependent. However, these studiesdid



notprovide informationonhowtheeffectofpopulationlevelon6shdistnbutionscomparedto

theeffectofthephysicaJhabital. Bohlin(1977)furthershowedthat distributionsof 1+ trout

maybeexpl ainedby intracohon competitionforterritoriesofdifferentqua1ityandthat

distributionsof 0+ trout maybe affectedby older6shby intercohort competitionor predation,

resultingindeeperareasbeingoccupiedbylarger6 sh. Bohlin(1977, 1978)alsoshowedthat

theseprocessesofintercohon competitionorpredationmayaffectO+troutabundanceat the

populationlevelas well, Le.smallspace-timesealebehaviouraJprocesseshad largespace-time

sealeeffects. Effectsof densityon distributionbysocialinteractionswerealso studiedby

Hughes(1992A, 1992B) whoshowedthatwhen numbersof Artiegrayling(Thymallus

arclicus) increase,positionsareoccupied inanorder that reflectsthedesirabilityof positions

andthe dominancerankof individuals. Socialinteractions thus regulate6sh distributionand

habitat use may vary withpopulation size. These6ndingswere in line withresultsftom my

study that showedthat habitatusevariedwithseetiondensity and that largerparr were found

inpools and smaJlerones in riflles.

Myresultscontrastwith6ndingsofRodriguez (1995), whostudieddensitydependent

interactionsbetweensympatricsalmonand brookcharr(Salvelimnfontinali s)basedonl2

pooVrifllepairs,andconciudedthat interspeci6cinteractionschangedhabitatselectionarnong

poolsand riflles with density, as charrweredisplacedfromrifllesto poolsat increasingsalmon

densities, but intraspecific interactions did not. This contrastwithmystudymaybeduetoa

limitedgeneraJity of the observedpatterns, whichin tum may be panlydue to a mismatch

betweenthe sealeof observationsat pools, riflIesandrunsand the muchsmaJlerspatialscaleat

which6sh selecthabitats(seeChapter3). TheOCCUrrence of brook charrmaybe more

indicative of the qualityof small-sealehabitatfeatures within pools and rifllesasexperiencedby

saJmonthan thede6nition of poolsand riflles itself, i.e, relationsbetweensalmonand brook

charrdensities maynot necessarily bedue 10 interspeci6c interactions alone. Inaddition,

intraspeci6c effects maybe moreeasilydetectablein the absenceofinterspeci6ceffects, i.e, in

sympatry,intraspecificeffectsaresimplyhiddenbystrongerinterspecific interactions. My

experimentaJset upwilhrepeateduseofstandardisedhabilalSshouldbemoreabletopickup



the effectofintraspecificinteraetions on habitat use and contrast thisetfectwith the effectof

the physicalhabitat itself,which may accountfor the fact that I did observedensity dependent

habitatselection due to intraspecific interactions and Rodriguez (1995) did not.

I concludedthat habitat seleetion byjuvenile Atlantic salmonparr istemperature-and density­

dependent. Parrdensities in pooVriffieirunhabitats becamemore similarat increasing

population densities. Fromthis,fluetuationsinpopulationabundancemainly induce

fluetuationsin abundancein habitats that harbour low densitiesat low overallpopulation

density (secondaryhabitats): at higher populationdensities, the occupied habitat wiUexpandto

increasingiy include secondaryhabitats;a t lower populationd ensities,th e occupied habitat will

contract into theprimary habitats. The implications are that habitat models may be expected to

varywith temperatureand population density. Therefore, habitat quality assessmentsbasedon

density information and conclusionswith respect to preferredand avoidedhabitat probably also

varywithternperatureand populationdensity,and can thereby influencesubsequentmanagerial

aetionssuch as the creationof preferredhabitats and dischargeregulations. In addition, results

illustrate that thequalityof habitatscanonly be evaluatedwithinthe contextof allavailable

habitat,ashabitatqualityisarelativeratherthan absolutemeasure(Heggenesl991),and

pointsto a fundamentalproblemof extrapolating habitatsuitabilitycriteriafromone regionor

riverto another,or fromone flowlevelto another,becauseunderditferentconditionshabitat

availabilitywillcertainly differ. Resultsvariedamongyears and experimentalenclosures,

despitecontrolledexperimentalconditions. This maybe due to variableseleetionbehaviours or

a discrepancy in spatialscalesof observations (pooVriffieirun) and habitat selectionbehaviours

«I m2
) . How fish select their habitats and how variable or flexiblethisbehaviour is, maybe

bestaddressedusing an experimentalset-up, because conditions are much incontroloft he

researcher. Additional fieldobservationsare neededto assess if resultsof such experiments

can beextrapolatedto scalesrelevant to fisheriesmanagement. Inshort,rnyresultsunderline

the need for inforrnationon habitat seleetion behaviour for fish-habitat management.



4.2. Density-dependenthabitatusebyjuvenileAtlanticsalmonandbrook trout in

two Newfoundland rivers

Macro-habitat models are widely used for the management offish populations (e.g. Binns

and Eiserman 1979, Bowlby and Rolf 1986, Fausch et al. 1988), despite several problems

that have been identified with such models (Shirvell 1989). These models describe fish

densities as a function of intermediate-to large-scale (>10 m') habitat features , mostly

referringtoabioticfactors,suchasdepth,watervelocity, and substrate (cf. Fausch etal.

1988). Habitatmodelsareusedtopredictfishdensitiesunderpresent,proposedorfuture

conditions (Fausch et al. 1988). From these models, habitat quality is often quantified in

terms of habitat suitability indices, habitat use curves, or weightedusablearea(e.g.

ScrutonandGibsonI993,StanleyandTriaI1995). Such measures are used as a basis for

detenniningmanagementpractices such as instrearnimprovements.

Inspiteofthewidespreaduseofhabitatmodellingtechniquestopredietfishdistributions,

someunderlyingassumptionsareseldomexplicitlystated,tested,ordiscussed,withmost

researchelfortseeminglyfocusedonthedevelopmentoflocalmodelsfordifferentriver

systemsorregions(e.g.DeGraafandBainI986,ScrutonandGibsonI993),oronthe

spatio-temporal generalityof models (e.g. Kozel and Huben 1989B, Heggenes and Saltveit

1990,BozekandRahelI992). One assumption is that organism density and habitat quality

arepositivelycorrelatedandthatmodelsdonotchangeaspopulationlevelsvary.

However , as habitat suitabilitydecl ineswith increasing densities,distributionsmaychange

as organisms move from one habitat to another to optimise benefits (Fretwell and Lucas

1970, Fretwell 1972,Sutherland 1983,MacCall 1990, MilinskiandParkerI991).

Therefore , conclusions with respect to limiting habitats may vary with population level.

The objective of this study was to investigate whether habitat usebysympatricAtiantic

salmon parr (Salmo salar) and brook trout (Salvelinusfontinalis) changes with population



size, and to evaluate the extent to which density-dependentprocesses are important to

habitat modelling.

I hypothesised that primary habitats that accommodate high salmonid densities will always

befilledneartosomeoptimumcarryingcapacity,butthatsecondaryhabitats that

accommodate low salmonid densities will be filled only after primary habitats are

occupied . Therefore, fluctuations in population abundance should primarilyinduce

fluctuations in secondary habitats, whereas density variability in primary habitats should be

minimal. From this, habitat models may vary with overall population density .

4.2.2 .I.Studysites

Densities of Atlantic salmon parr and brook trout were estimated at sampling stations in

two rivers in south-eastern Newfoundland : Freshwater River at Cape Race (46°38'50" N;

53°05'40" W) and Northeast Trepassey Brook (46°46'00" N; 53°21'10" W). These are

third-orderriverswithbasinareasofI6.8and2L2km2,respectively. The rivers are

located in the eastern hyper-oceanic barrenseco-region (Damman 1983)charaeterisedby

boglandsand patches of stunted boreal forest. No development has taken place in the

catchments with exception of roads near the mouths of each river. Angling is prohibited.

Northeast Trepassey Brook has a natural run ofanadromous salmon, with egg deposition

ratesofover5m-2(GibsonetaI.1993); Freshwater River does not have a natural run of

anadromoussalmon,astheriverflowsoveracliffbeforeplunging intothe ocean .

However , adult salmon were introduced into Freshwater River annually from 1985 to

1990,providingeggdepositionsinthefluvialhabitatfrom2.0 -6.0m- 2(Gibsonetal.

1993) . Both rivers have a natural population of brook trout . The growth of parr and

trout in both rivers is relatively slow, and median smolt ages for Freshwater River and



Northeast TrepasseyBrook are three and four years, respectively. Eels (Angu illa

rostrat a) are present only in Northeast Trepassey Brook, and three-spined stickleback

(Gas terosteus acuteatus y are present only in Freshwater River, Gibson et al. (1993)

present a more detailed description of the rivers.

4.2.2.2. Sampling procedures

Twenty-four fixed stations were established in Northeast Trepassey Brook and 36 in

Freshwa ter River. A variable number of these were sampled annually from 1984 to 1993

in late July or early August; 7-21 stations were sampled annually in Northeast Trepassey

Brook and 13-27 stations in Freshwater River. Each sampling station was a short reach of

relatively uniform habitat characteristics, i.e. each station was an entire run,riflle, pool or

pond, chosen to represent the range of habitat types present (Gibsone t al. 1993)andwere

located throughout the catchments. Most stations were sarnpled byele ctrofishing (see

Table 4.2 .1). A few stations were sampled with a seine as this technique was considered

more effective in areas that were deep and wide. In general, the majority offish present at

stations were caught (see Table 4.2.2).



Table 4.2.1. Sampling procedures used at stat ions in Northeast Trepassey Brook and

Freshwate r River in 1984-1993 . E r electrofishing, S: seine. Information depieted in

Bold-Italics indicate stations where mark-recapture techniques were used for density

estimates . Density-estimates at other stations were done using removal estimates .

River 84 85 86 8788 8990 91 92 93
····-.·-- ··.--.-E---.-···-·.-···-- ··.···.·······E".·········E······E··········i-·--···__ ······_- ···

2 NET E E E E E

3 NETS S SS S

4 NET E E E E

5 NET E E E E E
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9 FRW S+E S+E S+E E

10 FRW S+E S

II FRW E E E
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S+E S+E S+E S+E

S

E E

E E



Table 4,2,2, Description of habitat and fish densities at sampling stations in Northeast Trepassey Brook (NET; 5 stations) and

Freshwater River (FRW; 12 stations) , Variables include: surface area (m2
) , section width (WO, m), water velocity (WV, em

s'), water depth (DEP, em), >0+ Atlantic salmon parr (P) and trout (T) density (DEN, # fish rn") , and sampling efficiency (EFF

= 100 • number fish caught I estimated fish number), Averages (avg.) and standard deviations (s.d.) were calculated based on

average yearly station densities from sampling periods 1984-1993 for Northeast Trepassey Brook (n=lO) and 1987-1993 for

Freshwater River (n=7) , Depth and water velocity of the pond station in Freshwater River were recorded only once, Average

ands ,d,ofEFFisbasedontroutand salmon sampling efficiencies combined,

# River Habitat Area WD WV WV DEP DEP DEN-P DEN-P DEN-T DEN-T EFF EFF

, """"""""""'" """""""'" """",~y,g " "",,~yg: """~yg:., .,,_.,,,,~A """",,~,y'g:_ "",~ :~:""",,,..,,,,!'..v.g ,,, . ,,.,,' '' ''~:~:,,.. . "."""~v.ll.:,,, """."."~A,, "..",,~y'g """,~A:".
1 NET rime 267 11.2 33,6 6,24 19,6 1.43 0.304 0.123 0.016 0,011 93 II
2 NET rime 105 3.5 27.6 14.49 16.1 4,28 0.354 0.147 0.129 0,061 96 6
3 NET pool 519 12,7 7,0 2,16 59,9 11.44 0.310 0.088 0.077 0,027 86 9
4 NET run 266 9,6 23.6 10,31 28,2 3,22 0,254 0.136 0,012 0,011 84 22
5 NET rime 217 7,3 34.5 11.46 14.7 4,19 0,412 0,123 0,025 0.015 92 10
I FRW rime 202 9.1 23.4 8,98 13,9 4.14 0,254 0.287 0,101 0,060 96 10
2 FRW rime 161 7.5 32,1 13,77 14,6 4,12 0,182 0.136 0.093 0,073 97 6
3 FRW run 293 12,2 17,0 10.21 20,7 5,94 0,111 0.095 0,176 0,107 78 19
4 FRW pond 12432 0,0 44,0 0,010 0,006 0,049 0,019 62 17
5 FRW run 493 12.7 15.0 6,68 40.4 6.32 0.086 0,051 0,138 0,084 78 12
6 FRW rime 105 6.0 37.9 13,89 13,1 3.24 0.418 0.130 0.059 0,033 95 8
7 FRW rime 64 3,3 44.4 15,08 14,3 4,68 0.534 0.206 0.067 0,065 92 12
8 FRW rime 133 6.7 30,7 13,39 19,6 6.45 0,242 0,081 0.328 0,123 86 14
9 FRW run 152 8,5 11.9 7,78 23,9 2.54 0,042 0.043 0,283 0,157 78 18
10 FRW pool 569 14,7 5.5 3,83 41.7 16,86 0.063 0,034 0.272 0.094 77 10
II FRW rime 89 5.3 50.4 39,86 14,0 4,51 0.052 0,051 0,981 0.645 94 13
12 FRW rime 127 4,0 33.4 22,26 15,1 3,29 0.062 0.052 0.422 0,068 94 6



Before sampling, each station was isolated by 0.6 em square mesh barrier-nets to ensure

population closure. All fish captured were anaesthetised (CO,), measured (fork length to

the nearest mm), held in recovery baskets in the stream and releasedafterelectrofishing

was completed . Three to six passes were made through each station with seine or

electrofisher ,dependingonfishnumbersatconsecutivesweeps.

The length and width of each station was measured to the nearest 0.1 m with a measuring

tape to determine surface area (Table 4.2.2). At least five depths were recorded at

equidistant points along three transects, and water velocities (at 60% of depth) were

measured at three equidistant points on each transect. Water temperatures were recorded

immediately after isolation of the stations.

Not all stations were sampled annually and it was therefore necessarytochoosesubsetsof

the overall database for analysis. For Northeast Trepassey I used data from 5 stations

that were visited yearly from 1984 through 1993 (10 years). Thesestationswereall

located within the first 700 m upstream from the mouth of the river. For Freshwater

River, I used two data-sets: one based on 8 stations that were visited yearly from 1984

through 1993 (10 years, stations 1-4, 7-10; Table 4.2.2) and one based on 12 stations that

were visited yearly from 1987 through 1993 (7 years). These stations were all located

within the first 7 km upstream from the mouth of the river. Note that in Freshwater River

parr older than 0+ were not present before 1987 due to the stocking regime.

Iclassifiedthevariousstationsintopool,pond,riflle,andrun,basedonwatervelocityand

depth . RifllesandrunshadwatervelocitiesoverlOcm51
• Pools had water velocities

less than to cm 5' . Runs and pools were deeper than 20 cm and rifI1esless than 20 cm.

This classification was in accord with a visual and subjective description of the stations.

Abundance of parr and trout (>0+) was estimated using the generalised removal estimator

ofOtisetal.(I978). Atseveralstations,amark-recaptureprocedurewasdoneasthis



approach was considered more effective. For those , abundance was estimated us ing

Chapman 's (1951 ) modification of the Lincoln-Petersen estimat or (Table 4.2.1). I did not

estimate or use abundance of 0+ trout and 0+ parr , as these fish were small (3-6 em) and

weli able to hide under cobble at many of thes tations, and because I wasconcemed about

subsequent effeets on density estimates .

When primary habitats will always be filled close to some optimum carrying capa city and

secondary habitats will be filled only after primary habitats areoccupied,densitiesat

primaryhabitatswill increaselessthan secondaryhabitats withpopulation level (Hahitat

density and population level")and density-variability among statio ns will be less at higher

populationlevels, i.e.athigherpopulation levels,distribut ionswill expand from stations

that accommodate many parr at low populat ion levels to otherstations , leading to an

eveningoutofdensities(Densityvar iabilityandpopulationleve(). Densitiesat primary

habitats will vary less overtime because of this, but may also vary Iess over time because

densities at primary habitats are temporally more stable than secondaryh abitats, regardless

ofpopu lationleve ls(Te mporalva riability). I analyzed the data to see whet her such

relations existed for salmonids in Freshwa ter River and Non heast Trepassey. In addition,

I analyzed the exten t to which incorporati on of density-dependent habitatselection

processes may improve classic habitat modelling approaches (Habitat modelling).

4.2.2.3. Hab ita t dens ity a nd popul ation level

Iinvestigatedlocal abundanceat thescaleofastation(DE..,ti~, #m'l)with yearly

average dfishdensityatthescaleoftheriver(DEm.., #m·2)forallstations , for possible

intras pecific process es:

~:;~~~;~~ phrases above refer for convcnience to sections later under Material and Methods



Equation 4.2.1

Ifo i=\ (intraspecificstation-to-riverresponse;withi ~ \ to number of stations) , the

interpretation is that stations responded proportionallywithpopulation densit ies (cf.

Myers and Stokes 1989). Lhypothesised that Si, a series of slopes , should be negatively

correlated with the station density in the year the populat ionabu ndance in the river was

lowest, as primary habitats will always be filled close to some opt imum carrying capacity,

whereas secondary habitats will be filled only after the primary spots withintheprimary

habitat are occupied . In addition, I invest igated whether S, varied significantly among

habitat s to test if habitats responded similarly to changes In population abundance. In

these analyses, Oi were weighted by the inverse of the associated MS=" i.

Ilnvestigatedlheselectionbyparrforstations (SISA.U' i~) withyearly averaged trout

densilyatthe scaleoftheriver(DETRn,~, #m·2)forallstations, for possible interspecific

Equation 4.2.2

IfT]FO (interspecific station-to-river respo nse; withi=l to number of stat ions) , the

interpretat ion is that selection by parr for stations was not associated with the population

level of trout . If trout and parr select for similar habitats , T]i, a series of slope s,maybe

negatively correlated with the station density in the year the popu lationabundanceoftrout

in the river was lowest, as parr are driven from habitats that are primary totrout withan



increase in trout populations. If trout and parr do not affect each others distribution as

theyselectdifferenthabitatsorbecauseoflimitedinterspecific compet ition within habitats,

Tj;maynotbecorrelatedwiththestationdensityinthe yearthepopulationabundanceof

troutintheriverwaslowesl. Inaddition ,Iinvestigated ifTjivariedsignificantlyamong

habitats to test if habitats responded similarly to changes in populationabundanceoftrout.

Thiscalculationwasrepeatedfortrout(withSITR.t.I;~analyzedasafunction of

DESAn=). In these analyses, Tj; were weighted by the inverse of the associated MSaro,.;.

4.2.2.4. Density variability and population level

I studied the variation in fish densities over sampling stations far possible intraspecific

processes, using Taylor's Power Law (Taylor 1986. McArdle et a!. 1990), with variances

and means of parr and trout densities (DE) calculated over stations peryear per river:

EqIlQlion./ .2../

Ifl3,=2,thenthevariabilityoverstations isconstantfromyeartoyear. If 13,<2then the

variability is smaller in years when populations are larger, i.e. in goo dyearslow-density

stations will accommodate proportionally more fish than high-density stations , leading to

an evening-out of densities. If 13.>2then the variability is greater in years where

populations are larger, which means that in years when populations are larger, high density

stations accommodate proportionally more fish than low density stations and that in years

when populations are lower, low-density stations are less affectedthanhigh-density

stations . I hypothesised that B,<2forboth species.

I investigated the variation in fish densities over sampling stations,forpossible

interspecific processes, by relating the coefficient ofvariation(CY.) of the one species

with the yearly averaged density of the other. with CY. and means ofpa rr and trout



calculated over stations per year per river. I hypothesised that an increase in trout and

parrdensity would lead toachange inC V,ofparrand troutdistribut ionsrespectively,as

trou tar edri ven fromhab itatsthatare primary top arrwhenparrpopulationsincrease,and

vice versa (cf. Gibson 1993, Rodriguez 1995).

4.2.2.5. Temporalvariability

I studied temporal variability in fish densities at stationsforpossible intraspecificprocesses

using Taylor's Power Law (Taylor 1986, McArdle et al. 1990), with variances and means

of parr and trout densities calculated over years per station:

£qIlOli0I14 .2.5

IflJ,=2,thenthe variabilityo fthe populat ionso vert ime isconst ant. If lJ,<2then the

temporal variability is smaller at stations where densities are Iarger. IflJ ,>2thenthe

temporal variability is greater at stations where densities are larger. Lhypothesisedthat

lJ,<2, i.e.lowdensitystationsfluctuatemorethanhighdensitystationsdo.

I studied temporal variability in fish densities at stations for possible interspecific processes

by relating the coeflicient of variation (CV,) of parr and trout , calcuiated per station over

years, with the average station density of trout and parr respectively. I hypothesised that

sites that are primary to parr (accommodating high parr densities) shouldfluetuateless

over time with fluctuations in trout populations, and that sitesthat are primary to trout

(accommodating high trout densities} should fluctuate lessove rtimewith fluetuation sin

parr populat ions. Inadd ition,l investigatedwhetherCV, variedsign ificantlyamong

habitats.

To test for possible interspecific processes at the scale ofcatchments,Iinvestigated

whether the yearly averaged trout densities were correlated with the yearly averaged parr



den sities for Freshwater River and No rtheast Tr epassey Brook sepa rately, with yea rly

averag ed densities o n a log. , scale .

4.2.2 .6 . Habitatmodelling

To quant ify the extent to which habitat mode ls may cha nge due to density-de pendent

habitat sele ction, I related observed fish densities (o n a log lO· scaIe) tovarious habitat

variables using variance ana lysis based on the Genera lised Linear Mod elprocedure inSAS

and type I Sums of Squa res (SAS 1988). Habitat variables were introd uced into the

mode l using a sequence that paralleled an increasingly more com plex meso-scale hab itat

mod elling approa ch. Next, the percent age of the observe d variance at the different levels

in the model was used to asses s impro vement of the descripti ve power of the model by the

additio n of complexity (see Table 4.2.8). I stre ss that this ana lysis was not meant for

significance test ing, but was done to obtain an impressio n of how habitat models may be

improved by the inco rporation of dens ity-dependent proce sses .

Thefirstvariable includedwasthehabitattypeH (pool ,riffie,run,andpond).

This level parallels a habitat model where density estimates are providedsolely

based on habitat type , rega rdless of differences in populat ionsize.rivers,

den sity-dependent habitat selection , or o ther factor s

The second and third variables were R (Freshwater River ; Northeast Trepas sey

Bro ok) and R*R The se levels parallel impro vemen t of the model by river- specific

respon ses to habitats.

The fourth variablewasS (stat ion ). This level repre sents seleet ion of habitats at

specifi c stations , not represented by levels 1-3 . If this level (S) explains much of

the variance and the first level (H) does not, the habitat classification used maybe

improved by a classification that bette r para llels the habitat as experie ncedby

individual fish.

The fifth variable wa s the avera ge density (on log -s- scale) as observed per riverper



year (LDESA for parr, LDETR for trout ; used to explain observed parr and trout

densities respect ively). This level parallels proport ional changes in station densities

due to changes in population level (cf. 0,=1; CV.does not vary with population

level;/l,=2 ; habitat selection independent of population leveI).

The sixth variable was LDESA"S or LDETR"S for explaining the parr and trout

densit ies respect ively. This level represents intraspecific density-dependent

processes(cf.o,,"I ;CV.varieswithpopulationlevel ;/lro2 ;d istribution

disproport ional; habitat selection is density-dependent).

The seventh variable was LDETR or LDESA for explaining the trout and parr

densities respecti vely. This level represents proportional changes in stat ion density

of one species due to changes in populat ion level of the other , andaddressesthe

question of whether the population level of one species was affectedbythe

populat ion level of the other.

The eighth variable was LDESA·S and LDETR"S for explaining the trout and

parrdensities,respeetively. This level represents disproportional changes in

dens ities at stations of one species with changes in population leveloftheother,

and addresses the question of whether the distribution over stations of one species

was affected by the population level of the other species (cf. CV.varies with

population level).

The ninth variable was LDESA "LDETR"5, a level which represents possible

higher orde rintra-and interspecific density-dependent processe s.

One crit icism of this approach may be that it explains selection for stat ions first (levels

1-5) before including dens ity dependent effects (levels 6-9) which may give these variables

an advantage over others in explaining the observed variance, andthat variables such as

station and river have no transferability to other studies ormeaning to habitat models.

Howe ver, I did not have data from enough stations to develop reliabIe (density-dependent)

habitat models . In addition, the main objeetive of the approach was to scale the effeets on

fish distributions of habitat features that were stable over time (station effects) to effects of



varying population levels. Some of these station effects maybe reflected in habitat models

by using more genera l descriptor variables, but not all. Some of the density-dependent

effects may be reflected in density-dependent habitat models, but notall . Station effects

will have to be included in the model first to allow for scaling the effects of these with

density-dependenteffects.lnshort, one should consider the aboveapproachonl yasa

crude and limited approach to scale density-dependent with density-independent effects.

Interpretations will have to be done in light of the resuitsfrom theother analyses.

4,2.2.7. Calculalionprocedures

Analyses aimed at describing the trout distributions in Freshwater River were done using

the two Freshwate r River data-sets (8 stations, 10 years; 12 stations, 7 years). Analyses

aimed at describing the parr distributions in Freshwater River were done using the data-set

from I2 stations and7years only,asn o parr othert hany oung-of-the-yearwere present in

Freshwater River before 1987.

Taylor Power Plots were analyzed by randomisation (Manly 1991). Observat ions on the

response variable were randomised 5*10' times with thee xplanatory variable held

constant , using sampling with replacemenl. A p-value was obtained by calculating the

proport ion of randomisations with an r'greater than or equal to the r'oftheobserved

distribution.

To test if the slope of the Taylor Power function differed from 2, I used a randomisation

approach as well. Regress ion analysis was done on randomly selected observed

combinations of variances and means, using sampling with replacement and withthe

number of randomised observations being equalt o the number of observations in the

original analysis. Confidence limits for slopes were determined from 5*10' of such

randomisedregressionanalyses. P-valueswereobtainedb ycalculatingtheproportionof

slopes, obtained by randomisat ion, that exceeded 2 for analysis on powerfunctionswith



an observed slope smaller than 2, and the proportion of slopes thatwerelessthan2for

analysis on power funct ions with an observed slope larger than 2. Analyses of Taylor

Powe rfunet ions were done for each river separately as well as on data from both rivers

combined. To calculate slopes, and confidence limits and p-valuesfor s lopes from data

from both rivers combined, I averaged the slopes for the two riversin eachrandomised

regression analysis.

Random isations were done using the FORT RAN system-supplied rando m number

generator, upgraded usingt hes huffie procedure (pr ess et aI. 1986) to break up possible

sequent ial correla tions. AJI other analyses were don e usingS AS statistical software (SAS

1988). Residual analyses involved a visual check for patterns in plotsofresidualv ersus

predicted values, as well as tests for norrnality. Tes ts for norrnality invo lved a visual

check and the Shapiro-Wi lks statist ic (cx=O.OS). Ifresi dualsde viated fromnorrnalityand

anyofthep-values intheanalyses wereless than O.2S,p-values were obtained by

randomisat ion in SAS: Observat ions on response variables were random ised 1000 times

with the explanatory variables held consta nt, using sampling withou treplacement. A

seleetioncriterionofO.2Swasusedtodecide ifdataweretobere-analyzedby

randomisation, because randomisations in SAS were time-consuming and differences in

p-values obta ined by random isation and under the assumption ofn ormality were small.

Therefore , I assumed that this proce dure did not lead to an increas e in the occurrence of

type II errors . ForalianalyseslusedaS% level as a screening criterion to separat e

"significant" effects from "non-significant" effects.

Water depth and water velocity at stations were strongly negat ively correlated, both in

Fresh waterRiver (r=-0 .83I, p=O.00I ,n =12) and NortheastTrepasse yBrook (r=-0 .962,

p=O.009,n =S). Because of these correlations and becausefewpooVpond hab itats were

visited, I onlys tudied the effeet ofthe riverineha bitat on o;,B., and CV, by means of the

variables water depth and water velociry separately, rather than using theciassification in

terrns ofpooVriffielrunipo nd ora model including both water velocity as well as wate r



depth.

Stations in Northeast Trepassey Brook comprised one pool, one run, and three riffles

(Table 4.2.2). No pond data were included. Average parr densities (overS stations)

varied from 0.145 m"(1991 ; s.d. = 0.098) to 0.456 m"(1993; s.d. =0 .067); Average

trout densities varied from 0.030 m"(1986; s.d. =0 .024) to 0.077 m"(1993; s.d. =

0.056) . StationsinFreshwaterRivercomprisedonepond,onepool,threerunS,andseven

riffles. Average parr densities varied from 0.064 m' (1993 ; s.d. = 0.076) to 0.277 m'

(1987;s.d.=0.312)(period1987-1993, 12 stations); Average trout densities varied from

0.178m ·'(1989;s.d. =0 .221) to 0.469 m"(1993 ; s.d. =0 .648)(period 1984-1993,7

stations) . Trout densities in Freshwater River were higher than in Northeast Trepassey

Brook. Parr densities in Northeast Trepassey were higher than in FreshwaterRiver.



4.2.3.1. Habilaldensityandpopulalionlevel

Stations accommodat ing high parr densities al low parr population Ievels responded less

10 an increase in parr populat ion levels Ihanstalions accommodal inglo wparrdensiliesal

low populat ion levels, as 0; was negatively associated with the staliondensity inlheyear

the populat ion abundance in the river was lowest (Table 4.2.3). No such relationship was

found for trout . Trout densities at deeper and low flow stations responded less to an

increase in population level than densities at high flow and shallow stat ions, as 0; was

significantly correlated with water depth Inegative) and waterv elocity (positive) (Table

4.2.3). ld id not observe any such relationship for parr. Relations between oand density,

depth or water velocity did not vary among rivers (interaction terrn non-significant;Table

4.2.3).

Selection by trout for station s did not vary with population levels of parr or vice-versa

(Table 4.2.4). 11did not vary with water depth or water velocity (Table 4.2.4).
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4.2.3.2. Density variability and popula lion level

Variability of parr densities among stations was less at higher populationle velsofparrin

Freshwater River (13.<2, Table 4.2.5). but not so in Northeast Trepasse y River, or when

data from both rivers were combined. No such relationship was found for trout .

Variability of parr densities over stations did not vary with trout populationlevel s .

Variability of trout densities over stations did not vary with parr populationlevels. (Table

4.2.6).
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4.2.3 .3. Temporalvariabilily

Stat ions accommodating low trout densities varied more over time than stations

accommodating high trout densities (1J.<2, Table 4.2.5) in Northeast Trepassey Brook and

for the combined data-set of Nonhea st Trepassey Broo k and Freshwater River. No such

relationship was found for Freshwater River alone. Variabilityofparrdensitiesove rt ime

at stations was not affeeted by parr densities at these stations .

Variability of parr densities at stations over time did not change with mean station density

of trout and vice-versa, or with water velocity or water depth (Table 4.2.7).



j ~ - - -~ - --~ --- ~

~ ~ -- - ~ -- - ~ --- ~



Yearly averaged trout densities were not significantly correlated with yearIya veragedparr

densities (r=-0.088,p =O.809,n=1 0)for NortheastTrepasseyBrook. This correlat ion was

significantinFreshwaterRiver (r=-0.815,p=O .025,n=7 ).

4.2.3.4. Habitat modelling

Density-independentetfectsexplainedmoreoftheobserveddensity variance of parr and

trout (77.2% for parr; 77.8·79 .2% for trout; levels 1-5, Table 4.2.8) than

density-dependent etfects (12.7% for parr; I 1.8-12.0% for trout ; levels 6-9,Table4.2.8).

Inthesemodels,alargeport ionofthevariance wase xplainedb ythe fourth level (stat ion),

which suggests that improvement of habitat models may be possible when using habitat

criteria that are more refined than the classification I used. As this matter was not within

the scope of this study, however, Id idnot addressthisq uestion.



Table 4.2 .8. Density of parr and trout (Ioglo(density(# .m") +0.001) as a function of

habitat(H:pool,riffie,run,pond),river(R:FreshwaterRiver,NortheastTrepassey

Brook) , station (S) and population level (LDESA for parr density; LDETR for trout

density). The percent variance explained at the various levels in the model illustratehow

density-independent effects scale to density-dependent effects (seetext).ParrlTrout l :

analysis based on data from Freshwater River 1987·1993 (7 years, 12 stat ions) and

Northeast Trepassey 1984·1993 (10 years,S stations) combined; Trout II : analysis based

on data from Freshwate r River 1984- 1993 (10 years, 8 stations) and NonheastTrepassey

1984-1993 (10 years, 5 stations) combined.

H
R
H'R
S
LDESA
LDESA'S
LDETR
LDETR'S
LDESA'LDETR'S

di 12.5~~: i~~ <o.ooi
7.0131 14.6 <0.001
0.6509 1.4 0.002

12.316225.6 <0.001
4.5205 9.4 <0.001
2.0572 4.3 0.058
0.1108 0.20.224
3.1044 6.5 0.003
0.8242 1.7 0.829

Source df SSI perc. p df SSI perc. p
H 3 1.2187 2.2 0.004 3 2.3457 5.5 <0.001
R I 17.3730 31.1 <0.001 1 17.6276 41.6 <0.001
H'R 2 2.2304 4.1 <0.001 2 2.3144 5.5 <0.001
S 10 19.1843 37.4 <0.001 6 8.4156 19.8 <0.001
LDETR 1 2.3842 4.4 <0.001 I 2.3093 5.4 <0.001
LDETR'S 16 1.2937 2.4 0.482 12 0.8852 2.1 0 .213
LDESA 1 0.0515 0.1 0.431 I 0.1824 0.4 0.D75
LDESA'S 16 2.4713 4.6 0.038 12 0.7567 1.8 0 .337
LDESNLDETR'S 17 2.5679 4.7 0.041 13 3.2790 7.7 <0.001



Several of the results suggest that habitat selection by salmonids maybe

density-dependent : (1) stations accommodating high parr densities at lowparrpopulation

levelsrespondedlesstoanincreaseinparrpopulationlevelsthan stations accommodating

low parr densities (Table4 .2.3,based on data from both rivers combined,relationshipnot

different among rivers); (2) parr densities varied less over stations at higher population

levels in Freshwater River (Table 4.2.5); (3) trout densities at deeper and low flow

stations responded less to an increase in population level thana t high-flow and shallow

stations(Table4.2.3,basedondatafrombothriverscombined,relationshipnotdifferent

among rivers) ; and (4) stations that accommodated many trout fluctuated less over time

than stat ions that accommodated fewer trout (Northeast Trepassey Brook and when based

on both rivers combined; see Table 4.2.5). Trout distributions did not seem to affect parr

distributions. However,observeddensity-dependentrelationswerebasedon6significant

results from 45 different analyses (13% success rate; Tables 4.2.3-7) and some of these

results may have been found by chance alone. In addition, Table 4.2.8 indicates that the

percent variance explained by density-independent effects is6to 7 times larger than

density-dependent effects. Therefore,Iconcludedthatresultsmayindicatesome

density-dependent relations, but they do not indicate a clear and strong effect of

density-dependent processes on salmon and trout distributions.

A clear and concise interpretation from the Northeast Trepassey and Freshwater River

data is difficult because (1) stations were not representative of available habitat; (2)

stations were sampled using a variety of techniques (electrosho cking and seining, removal

and mark recapture estimates : see Table 4.2.1) with different sampling efficiencies (Table

4.2.2) ;(3) the range in population levels in both rivers was not largeand population levels

were not high; (4) the population structure in Freshwater River was unnatural dueto the

stocking regime; and (5) few stations were sampled.



The stat ions being not representative of available habitat will affeet the estimates of

popula tion levels, but is not likely to be responsible for the density-dependent effects in the

analyses in Tab les 4.2.3-7. However, this will affeet quantification of potent ial

dens ity-dependent effects . Inconsistencies in sampling procedures and differences in

sampling efficiency will prevent a single interpretation of the analyses of Tables 4.2.3-7 .

Density estimates from stations that were sampled less efficiently or with a variety of

sampling techniques will be subject to an added source of variance duetovariable

sampling efficiencies and methods. If, in addition, densities at these stat ions were different

from stations sampled in an efficient and consistent manner, patte rns may result that are

seemingly density-dependent . Alternat ively, real density-dependent relations may not be

de tected. This is mostly of concern for analyses of Tables 5 and 7 (Ph CV.). From this,

the one significant result of Table 4.2.5 maybe an artefact of sampling methods, rather

than being indicative of density-depende nt responses: This result was largely due to data

from Northeast Trepas sey. Sampling stations 1,3 and 4 in this river were sampled

inconsisrently Imar k-recapture and removal techniques; seiningandelectrofishing). Trout

densit ies at these stations were lower. Because of this, the observat ion that trout densities

varied more over time at stat ions that accommodated lower trout densities may not

nece ssarily be due to density-dependent processes.

Dens ity-dependentresponses have previous ly been observed for brown trout (Salmo

tnllla) by Elliott (1986) and for Atlanticsalmon parr by Talbot(1994), and in the

e><perimentofChap ter4.1. Findings of this study contrast with Rodriguez ( 1995) who

obse rved an effect of interspecific interaction s on distributions of parr and brook trout but

did not observe intraspecific interactions. Findings also contrast with Gibson ( 1993) who

suggested that distributions of salmonids are considerablyaffeeted by interspe cific

interactions. These variable results maybe partly due to a mismatch between the seaIe of

observa tions at pools, riffies and runs and the much smaller spatial scale at which

individualfi sh actually seleet for habitats(c( Fausch I984, Hughes 1992 A, 1992B,Hili

and Gro ssman 1993, see Chapter s 2, 3) . Due to this scale mis-match, only an indirect



impression can be obtained of the processes involved.

Habitat selection may be an important proces s govern ing fish distribut ions at smaller

spatial scales. Howeve r,hab itat selectionb y individualsma ybeoflesser importanee ,

relative to other processes , for describing fish distributions at Iargerspatial scales (see

Chapter 2). For example, if fish select riffles to feed in and ifpools serve as covermainly

during flood events, riffles will be selected over pools at small spatio-temporal scales.

However ,i f reeumngfloodeventsd iminishfishpopulationsintributaries conta ining few

pools ,p ositiveass ociationsoffishwithpoolsma yb efound atlargerspatio-temporal

seales as tributaries conta ining few pools will accommodate only a few fish. Positive

associat ions with riffies will then be found at small spatio-ternporal scales due to habitat

select ion; negative associations with riffles will be found at large spatio-tempor al seales

due to differential mortality. Thise xample illustra test hat assoeiationsdependon scale(cf.

Moms 1987A, Mom s 1987C, Pia1l 1990, Mom s 1992, Fauseh et a11994, see Chapter 3)

and that the relative importance of various proce sses in shaping observed distribut ions of

fish may depend on scale as well (ef. Home and Schneider 1994, see Chapter 2). That is,

habitat selection is a scale-dependent process (Mom s 1987A,c). Because of this, results

ofsmall-sealeexperimentssuehasinChapter4. lorfieldobservations on adjoining or

closely located habitats (ef. Elliott 1986, Rodriguez 1995),although valuableforobtaining

anunderstand ingofsmall-scale behaviouralproeesses,maybediftkuIttoeXlrapolateto

larger spatio-temporal scales. When sampling stat ions are farther separated , (large-scale)

processes other than (small-scale) habitat selection may become more important and,

although the effects of small-scale habitat selection by individuals rnay propa gate across

scales, this propagation may be limited and not immediate.

The observed changes in habitat use can be explained in terms of the ideal free distribution

(Fretwell and Lucas 1970, MacCall 1990) andlorthe ideal despotic distribution(Fretwell

1972) . As salmonids probably primarily (but not solely) select for habitatsat scales

smaller than that of pools, riffles, and runs (ef. Hughes 1992A, 1992B, Hill and Grossman



1993),Isuspectthatwithincreasingdensities,firsttheprimarysmall-scale habitats

("spots") within sampling stations became occupied followed the secondaryspots,asthe

access to primary spots would have become limited with increasing densities,dueto

territoriality(cf.GrantandKramerI990),orsmall-scalespacingbehaviour(seeChapter

3). As parr have been observed to be territorial in riffles but less aggressive and

sometimes schooling in pools (Kalleberg 1958, Gibson 1978, Gibson and Cunjak 1986), a

combination of ideal despotic and ideal free behaviour is mostlikel y to be appropriate .

Due to these behaviours, selection of broad-scale features such as pools,riffies ,andruns

may change disproportionally with population density. Unfortunately, however, this

study could not address the extent to which behaviours were "ideal"orwhichstationsor

habitats were primary or secondary, for lack of an independent measureofhabitatquality

and because density may not necessarily reflect habitat quality (cf. VanHorne 1983).

I have shown that variability itself can bean interesting aspect offis h distributions and that

analysisofspatio-temporalvariabilitycanbeusedtostudyhab itatselectionbyfish. Some

of the results did indicate possible density-dependent responsesoffish. However, because

of shortcomings in the available data, I recommend additionalrese arch along the lines of

this paper but using survey designs based ona larger number of stations that are sampled

ina moreconsistentmanner.



ChapterS: Summary and conclusions

S.l .Thesiseontutandmearchquestions

Micro-habitat models that describe relationsbetweenorganisms and theirhabitats are wideIy

used to manage naturalpopulationsof animals. Thesemodels quantifyhabitat use basedon

observationsof individuals taken atasingl eo r fewsmaIls patio-ternporal scales. Decisions

basedon thesemodelsgenerally aim at the management ofgroups of organismsat large spatio­

temporal scales.

Implicit assumptions of such micro-habitat modelsare that (1: scale-up ' )habitat islimiting

population levels andsmall-scaleobservationson habitat seleetionbehaviours canbe used to

identify important habitats, i.e. small-scaleinformation on habitat usecan beused to address

large-scalequestions; (2: scaling-analyses ) the single or few measurementscalesused in

habitatmodels are appropriatefor describingdistributionsof organismsand identifYing

importanthabitats;and(3 :density-dependenthabitatselectiolllhabitatuse does not change

withdensity,andfromthis , habitatmodelsdo not varywithpopulationlevel.

Inthisthesis,Ievaluatedvariousaspectsofthesethreeassumptions for juvenileAtlantic

salmon (Salmo salar) in rivers. I hypothesised that ( I) small-scalebehaviouralprocesses

or small-scale fish-habitat associations will have limited applicabilityfor explaining larger

scale distributions or addressing large-scale habitat managementproblems; (2) multi-scale

approaches are better for understanding and describing tish distributions because habitat

selection behaviours themselves operate at multiple scales; and, because 0 ft his, (3) multi­

scale habitat models perform better than single-scale habitat models, especially when

extrapolating small-scale habitat seleetionbe haviours to density predictions at larger

• Words in italics refer for convenience to sections later in Chapter S.



spatial scales; and (4) habitat selection is density-dependentduetosmall-scalespacing

behaviouror territoriality.

5.2. Scale-up in habitat models

Ievaluatedpossiblelimitationsofscale-upinsalmonidhabitatmodels,us ingrecent1y

developedscaling-tools (scope-and rate-diagrams), field-data, and theoretical scenarioson

movementand mortality.I concludedthat observationsunderlyinghabitatmodelsare doneat

spatia-temporalscaleswheremovementdominatesbut are interpreted and usedat space-time

scaleswheremortalitydominates. Thisdiscrepancyin scalesanddominanceof processes

indicatesthat researchis neededthat explicitlyevaluatesthe validityof scale-up: habitatmodels

describeprocessesthat may not be that important tothe problemswe seekto addresswith

thesemodels. However, the resultsof thisstudyalsounderlinethe factthat movementmaybe

important to dynarnicsatscalesthat are muchlargerthanthoseof individualfishmovements.

Thishighlightsthe importanceof movementandhabitat selectionstudiesforan understanding

of distributionprocesses. I recommendedthat scale-upvalidation shouldbecomea central

focusin habitatmodelling. I suggestedsurveydesignsappropriateto suchscale-upstudies.

[seeChapter2]

5.3. Scaling analyses in habitat selection studies

I evaluateddistributionsofjuvenileAtlantic salmonovera rangeof spatialscalestosee

whetherpatchinessoffishdistributionsorassociationswithdepth,watervelocityandsubstrate

dependedon spatialscale. Thiswas doneusingdirectobservationsof individualfishfroma

strearn-tankstudy(spatialscaleslcmto3m),andfielddata(spatialscaleslcmto15m)

obtainedbysnorkellingin two differentriversin Newfoundland, Canada.[seeChapter3]

Results indicated associations with conspecifics, substrate, water velocity,anddepthwere

scale-dependentand most extreme at small spatial scales (ambit radius < 50 cm). Scale-



dependentassociationschangedwithdirectionrelativetowaterflow. I identified spatial

scales important to habitat models and formalisedobservations into explicit multi-scale

habitat selection models.

Most behaviours seemed directed towards substrate and combinationsof water velocity

and depth at small spatial scales(ambitradius<5 cm),but some resultssuggested

behaviours operating at multiplescales, rather than a singlescale: salmon parr

differentiated between shallow positions in shallow areas and shalIowpositions in deeper

areas, deep locations in deep areas and deep locationswithinsha lIowerareas(field-based

study), and between low-flow positions in low-flow-areas and low-flow positions in

high-flow areas (field-basedand stream-tank study); >0+ salmon 0ftenavoidedlarger

substrates (cobble to large boulder) at small spatial scales (ambit radii <40cm),but

preferred larger substrates at larger spatial scales (stream tankand field-based study).

Although associations occurred over a range of spatial scales, theresultsseem to indicate

that three spatial scales areimponant : (1) small-scale (ambit radius<5 em), (2)

medium-scale(15-50 ern), (3) large-scale (ambit radius = 1-5 m). The first scale is

possiblyassociated with selection for small-scaleenvironmentaI features at focal positions

(cf. nose-velocity). Associationswere generally most extreme at these spatial scales. The

second scale is possiblyassociated with territorialityor spacing behaviourandthedistance

fish move from preferred focal positions into the current forfeedi ngon passing drift and

associated selection for low-flow positions closelyadjacent to high-flow areas. Thethird

scale is possiblyassociated with the river width. This last scale was apparent from

selection for depths in the field-basedstudy and was least well defined.

Results suggest behaviours primarilydirected towards small-scalehabitat features « I

m2), probably aimed at maximisingenergy intake (cf. Bachman 1984; Fausch 1984) by

selection for specificholding positions with low snout-velocities close to higher current

conditions (larger scale) where drift is concentrated (cf. Chapmanand Bjornn 1969,



Everest and Chapman 1972, Fausch and White 1981).

Contrary to expectat ion, single- and multi-scale habitat selection models were equally well

able to describe small-scale fish distributions (ambit radii <4 m),despite observed multi­

scale behaviours (stream-tank and field-based study). This is attributed to the

predominance of selection behaviours operating at the first small-scale.

Multi-scale models seemed slightly better at explainingfishdistributions at larger spatial

scales (field-based study) . Howe ver, both single-and multi-scale approaches often failed

to describe distributions at spatial scales much larger than those used in the model, even

when larger scale distributions were described in terms of assumed homogenous

broad-scale features such as pools, riffles and runs, i.e., models performed well with

respect to describing where fish were positioned in the river (small spatial scales), but

were not well able to describe density-variability in river sections . This was surprising as

the scope of underlying surveys was small. This may indicate that the scale-up from

habitat model to fish-habitat problem may be much more difficult than assumed in current

micro-habitat modelling . Because associations varied with measurement scale, a clearly

defined measurement scale is important to habitat selection studies.

5.4. Density-dependenthabitatselection

[studieddensity-dependenthabitatusebyAtianticsalmonparr,totesttheimplicitassumption

in habitat modelling that habitat selection does not change with populationdensity . Thiswas

done in experimental riverine enclosures in the field. The experimental enclosures were made

upofpool,riffie,andrunhabitats.[ introducedarangeofdensitiesinto these enclosures (0.1

to 1.25fishm·';2years, 3 enclosures) and studied changes in habitatuseofpool,riffieand

run habitats with density . The field-based study was done using density-estimates of

juvenile Atlantic salmon and brook trout (Satveltme fontinalisv : These density-estimates

were obtained from 13-[7 fixed stations that were sampled every summer over a period of



7-10 years, in Northeast TrepasseyBrook and Freshwater River, Newfoundland, Canada.

Samplingwas done by electrofishing and seining. [see Chapter 4]

Results from the experimentalstudy indicated that habitat use didchangewithpopulation

density,withrelat ivelymoreparrinpoolsandfewer inrunsathigberpopulationdensities.

Temperatureinfluencedparr distribution,withrelatively moreparrin runsand fewerin riffles

andpoolsat higbertemperatures. Parrdistributionwas primarilyaffectedby the pool/riffle/run

habitatcontrast. Effectsofpopulationdensityandtemperatureonuseofpoo~riffleandrun

habitatwere oftenas big as effectsof the pooVrifflelrun habitatcontraston fishdistributions

over the rangeof temperaturesanddensitiesobserved. Resultsvariedconsiderably,despite

controlledexperimentalconditions.

Resultsfromthe field-basedstudy were lessclear. Onlyfew of the resultssuggestedpossible

density-dependentdistributionprocesses: stations accommodating highparr densitiesat low

parr population levelsresponded less to an increaseinparrpopulation levelthan those

with low parr densitiesin both rivers; parr densities varied less aver stations at higher

population levelsin Freshwater River. Density-dependenteffectswere much smallerthan

density-independenteffects in shapingthe salmoniddistributions in both rivers.

I concludedthat habitatseleetionbysalmonparr isdensity-dependent andhighlyvariable.

Density-dependentresponsesare most likely due to small-scalespacingbehaviouror

territoriality, theetfect of whichmayleadto density-dependent habitatuseat the largerspatial

scalesof pools,rifflesand runs,dependingon thedistributionof micro-habitats withinthese

larger-scalehabitats. Fromthis, habitatuse mayvary withpopulationlevel,especiallywhen

preferredsmall-scalepositionsare locatedinclosevicinity. Fromthis, habitat modelsare

expeetedto varywithpopulationlevelas well.



5.5. Impfications of results and suggested future research

The importance of this thesis is not that I identified new and important scales for habitat

models, as most of the results are quite in line with previous findings from other studies.

This thesis made explicit the relative importance of various habitat selection behaviours

and the scales at which they operate and show s that interpreta tion of results should be

limited to the spatial scales over which the study was conducted . In addition, the multi­

scale techniques I outl ined allow for incorporat ing information from studies that operate at

a variety of space and time scales into a comprehensive understanding offis h distribution

processes. This will be of importance for the develop ment of effective habitat models,

especially within the context of scale-up, as outl ined in Chapte r 2.

An important finding of this thesis is that small-scale habitat models may predict quite well

where fish will be, but that this does not imply that distribut ions at space-scales larger than

those of the model can be desc ribed using these small-sca le habitat models. However . th is

finding was based on data from two rivers only and should be repeated elsewhere ,

preferabl ywithinthecontextofhigher-resolut ionflow-modelsthan were possible in this

thes is. Nevertheless , I do think that this problem of scale-up is very import ant to habitat

modelling . Inability to translate information across scales indicates thatacomprehensive

unders tanding of distribut ion processes is lacking. This in tum indicates that it will be

difficult or inappropriate to make management decisions to address large space-time scale

problems from informat ion obtained at a variety of much smaller space and time scales.

Future research should bedireeted towards scale-up studies , using multi-scale approaches

both in the temporal as well as in the spatial domain, and survey designs as suggested in

Chapter 2.
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