GEOCHEMISTRY, MICROSTRUCTURE AND GROWTH BANDING IN Stylaster campylecus parageus AND Primnea pacifica- IMPLICATIONS FOR COMMONLY OBSERVED DEEP SEA CORALS AS PALEOCEANOGRAPHIC ARCHIVES

Geochemistry, microstructure and growth banding in *Stylaster campylecus parageus* and *Prinnoa pacifica*- Implications for commonly observed deep sea corals as paleoceanographic archives.

By

[©] Renita Aranha

A thesis submitted to the School of Graduate Studies in partial fulfillment of the

requirements for the degree of Master of Science

Department of Earth Sciences

Faculty of Science

Memorial University of Newfoundland

December, 2010

St. John's

Newfoundland

Abstract

A selerochronological study of two common cold-water consls from the Northeast Pacific, Sylaster campylecus paragent and Prinnose pacifics, was performed on specimens collected in 2008 from Dison Entrance, BC, and the Olympic Coast National Marine Sanctuary, Washington State. SEM imaging of *S. campylecus* revealed the presence of growth banding and extensive skeletal remineralization. Profiles of Na'Ca, Mg/Ca, Sr:Ca and Ba'Ca could, however, be obtained with Secondary Ion Mass Spectrometry. Sr:Ca values were observed to display two maxima over distances covering approximately 12 growth bands, with corresponding minima in Mg/Ca and Na'Ca. These cyclical co-variations were interpreted to be primarily influenced by surface water productivity. This cyclicity in the trace element profiles, in the context of a documented binnual increase inproductivity, suggested that the growth hands are monthly.

The average radial growth rate of *S. campylecus* was $1.4 \pm 0.1 \text{ mm} \text{yr}^4$, and the average axial growth rate was $17.3 \pm 1.1 \text{ mm} \text{yr}^4$. Temperature changes cannot account for the variation in Mg/Ca and St/Ca in either *S. campylecus* or *P. pacefflea*. These variations appear instead to be modulated by surface water productivity. The annual radial growth rate of *P. pacefflea* varied between 0.23 and 0.58 mm yr⁴ in the samples studied - considerably higher than growth rates of a similar species in the North Allantic. Geogramitic variation in growth rates is likely influence by originary moduletivity.

Dedicated to my parents

Acknowledgements

I would like to express my hearfelt gratitude to my supervisors, Dr. Graham Layner and Dr. Evn Edinger, their vision and constant guidance made this work possible. For his patience, advice and several helpful conversations about the SDMS and corals, I an indebted to Glene Piercey.

For helping me with SEM imaging, I am grateful to Michael Shaffer. For making my work at CREAT easier through their constant support and advice; I'd like to thank my MAF-ICI family: Nancy Leawood, Rebecca Iam, David Grant, Michael Tubrett, Alan Maximchuk, Kate Souders and Marsha Roche. I am also grateful to Owen Sherwood and Ben Lowen for their input and interest in the project. I thank Tom Guidderson for his help with the radiocathon dating. I am grateful to Rick Soper and Kier Hisock for their hey with sectioning and polishing.

A big thanks to Stephanie Lassille and Takuzwa Matani for keeping me entertained through the past two years. I am extremely grateful to have met you lovely girls here in St John's; there has never been a dull moment since.

Finally, and most importantly, for their love, kindness and infinite emotional support I am forever indebted to my Glean, my parents Violet and John Aranha, my brothers Rohan and Alan Aranha, and my grandpa Mathias D'souza.

This project was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Healthy Oceans Network (CHONe).

Table of contents

Abstract	ii
Acknowledgements	iv
Table of Contents	v
List of Figures	ix
List of Tables	xvii
List of Appendices	xix
Chapter 1: Introduction	1-1
1.1 Distribution and habitat of cold water corals	1-1
1.2 Lifespans, growth rates and fragility of deep sea coral ecosystems	1-2
1.3 Cold water corals as paleoclimate proxies:	1-3
1.4 Stylasterid corals:	1-4
1.4.1 Classification and biogeography of Stylasterids	1-4
1.4.2 Growth banding and geochemistry	1-7
1.5 Primnoid corals	1-8
1.5.1 Classification and biogeography of Primnoids	1-8
1.5.2 Growth banding and geochemistry of Primnoids	1-10
1.6 Aims	1-12

1.7 References

Chapter 2: Microanalytical evidence for monthly growth banding and	
an intact record of sea surface productivity in Stylaster campylecus parageus	
2.1 Abstract	
2.2 Introduction	2-2
2.3Material and Methods	2-4
2.3.1 Field collection of specimens	2-4
2.3.2 X-ray diffraction	2-6
2.3.3 Growth band imaging, counting and microstructure analysis	2-7
2.3.4 Trace element analysis	2-8
2.4 Results	2-10
2.4.1 X-ray diffraction	2-10
2.4.2 Microstructure imaging and analysis	2-10
2.4.3 Trace element microanalysis	2-17
2.4.3.1 Range of trace element values	2-17
2.4.3.2 Relationship between Na/Ca, Mg/Ca, Sr/Ca and Ba/Ca	2-19
2.4.4 Results of growth rate analysis (Band counting) and comparative	
growth rate study.	2-29
2.5 Discussion	2-34
2.5.1 Trace elements:	2-34
2.5.1.1 Primary control on trace element variation in S. campylecus	2-34
2.5.1.2 Oceanography of the Olympic Coast National Marine Sanctuary	2-38

1-13

2.5.1.3 Expected and observed Trace element variations in S. campylect	us 2-39
based on the oceanography of the region.	
2.5.2 Possible mechanism for monthly growth banding in S. campylecus	2-42
2.6.3 Growth rate	2-43
2.6.4 Implications of observed SEM textures	2-44
2.6.5 Implications of Stylaster mineralization for choice of analysis methods	2-45
2.6 Conclusions	2-46
2.7 References	2-48
Chapter 3: Growth rate assessment, high resolution trace element	3-1
microanalysis and potential paleoclimate proxies in Primnoa pacifica	
3.1 Abstract	3-1
3.2 Introduction	3-2
3.3 Materials and Methods	3-4
3.3.1 Field collection of specimens	3-4
3.3.2 Radiocarbon dating	3-6
3.3.3Growth rate estimation	3-10
3.3.4 Sample preparation for trace element analyses	3-11
3.3.5 Trace element analysis	3-11
3.4 Results	3-14
3.4.1 Radiocarbon results	3-14
3.4.2 Growth rate results	3-18

3.4.3 Trace element results	3-23
3.5 Discussion	3-31
3.5.1 Trace elements	3-31
3.5.1.1 Primary control on trace element variation in P. pacifica	3-31
3.5.1.2 Oceanography of the Olympic Coast National Marine Sanctuary	3-36
3.5.1.3 Expected and observed Trace element variations in	3-37
P. pacifica based on the oceanography of the region	
3.5.2 Growth rate	3-39
3.5.3 Radiocarbon dating:	3-39
3.6 Conclusions	3-40
3.7 References	3-42
Chapter 4: Summary and Conclusions	4-1
4.1 Research highlights	4-1
4.1.1 Stylaster campylecus parageus	4-1
4.1.2: Primnoa pacifica	4-2
4.2 Implications of results	4-3
4.2.1: Stylaster campylecus parageus	4-4
4.2.2: Primnoa pacifica	
4.3 Directions for future work	4-5
4.4 References	4-6

List of Figures

Figure 1.1: The biological classification of Stylasterids. Stylaster campylecus parageus
(Fisher,1938) is the Stylasterid species studied herein1-4
Figure 1.2: An image of Stylaster campylecus parageus obtained by ROPOS in July
2008 (Dixon Entrance, Northeast Pacific)1-6
Figure1. 3: Global distribution map of Stylasterids (Cairns, 1992a)1-6
Figure 1.4: The biological classification of Primnoids. Primnoa pacifica is the Primnoid
studied herein
Figure 1.5: An image of Primnoa pacifica obtained by the ROPOS during the 2008 cruise
in the Dixon Entrance, Northeast Pacific (Depth: 245m)1-10
Figure 1.6: Basal cross-section of Primnoa pacifica showing growth banding. The darker
growth bands are composed of gorgonin (horny protein). The alternating light segments
are calcite
Fig 2.1: (A) Two colonies of Stylaster campylecus parageus in the Dixon Entrance. (B) A
specimen of Stylaster sp being collected by the ROPOS in July 2008 from the Dixon
Entrance
Fig 2.2: Location of the coral collection sites in the Northeast Pacific2-5
Figure 2.3: Sample 235 of Stylaster campylecus parageus. The green line indicates the
location of an individual basal cross-section2-7
Figure 2. 4: Basal cross sections of Stylaster campylecus parageus viewed under
reflected light showing faint growth bands. All the white scale bars are 1mm long2-12

Figure 2.6 : A composite SEM image of the radial cross-seection of specimen 232 of Stylaster campylecus parapeus showing growth banding in the coral skeleton. This image is a composite of 52 individual high resolution images compiled with MLA software. The white scale bar is 1mm long. The white circle indicates the region where a new branch growth was initiated. It has been noted that this latter region, like the central region of the basal cross-section, is densley overprinted with secondary aragonite aggregates. The white square indicates an area where several growth bands overlap Figure 2.7: (a) Primary growth, Fan shaped arrangements of aragonite needles, defining individual growth bands. (b) Semi circular aggregates of aragonite that overprint the primary growth, (found mainly towards the center of the skeletal corss-section and in regions of branch initiation). (c) Magnified image of the area indicated by the white souare in Figure 5b showing the aggregates of aragonite that overprint the primary growth in the coral skeleton. (d) Partially filled growth canals on the surface of the basal cross section. SIMS analyses spots visible in figure have been modified by subsequent sample etching.. 2-16 number of bands for Sample 235. The x-axis starts at the outermost edge of the coral i.e

xi

the time of collection July -2008. The error bars are 10. The profile is incomplete because the SIMS spots corresponding to certain growth bands were on remineralized material and were thus eliminated while constructing this profile. The SIMS data is unsmoothed, The grey areas are areas of extensive remineralization. The vertical lines in the graph are representative of the edges of growth bands. b: A composite SEM image of sample 235 representing the area where the SIMS transect is located. The red circle in the figure is an Figure 2.12: a Sr/Ca mmol/mol (left axis) and Mg/Ca mmol/mol (right axis) vs. time 41 (months) for Sample 241. The x-axis starts at the outermost edge of the coral i.e the time of collection July -2008. The error bars are 10. The profile is incomplete because the SIMS spots corresponding to certain months were on remineralized material and were thus eliminated while constructing this profile. The SIMS data is unsmoothed. The grey areas are areas of extensive remineralization. The vertical lines in the graph are representative of the edges of growth bands. b: A composite SEM image of sample 241 representing the area where the SIMS transect is located 2-26 Figure 2.13: The variation in average Mg/Ca mmol/mol (grey-right axis) and average. Sr/Ca mmol/mol (black-left axis) per band in (a) sample 232 transect 2 (b) sample 232 transect 1 (c)sample 235 (d) sample 241. All the trace element ratios are plotted against growth bands as well as the interpreted time in months starting from July 08 to May 07. Data does not exist for the grey areas due to remineralization. The dotted black lines across the graph are bulk Sr/Ca values for each coral and the dotted grev lines are bulk Mg/Ca values for each coral. All error bars are iSD.....

Figure 2.14: The variation in Mg/Ca mmol/mol (grey-right axis) and Sr/Ca mmol/mol (black-left axis) ratios in (a) sample 232 transect 2 (b) sample 232 transect 1 (c) sample 241. All the trace element ratios are plotted against number of growth bands as well as the interpreted time in months starting from July 08 to May 07. Data does not exist for the grey areas due to remineralization. The dotted black times across the graph are bulk Sr/Ca values for each cend and the dotted grey lines are bulk Mg/Ca values for each cend. The error bars are 15D. 2.28

Figure 2.15: The variation in Na/Ca mmol/mol (grey-left axis) and Se/Ca mmol/mol (bluck-right axis) ratios in (a) sample 232 transect 2 (b) sample 232 transect 1 (c) sample 235, (d) sample 241. All the trace element ratios are plotted against number of growth bands and interpreted time in months starting from July 08 to May 07. Data does not exist for the grey areas due to remineralization. The dotted black lines across the graph are bulk StrCa values for each coral and the dotted grey lines are bulk Na/Ca values for each cord

Figure 3.1: The three growth zones in Primnoa pacifica (a) central rod (b) middle zone
of alternating calcite and gorgonin (c) calcite cortex. UV light microscopy. Sample #
R1165-002
Figure 3.2: Coral collection sites in the Northeast Pacific3-5
Figure 3.3 (A): A living colony of Primnoa pacifica. This picture was obtained by the
ROPOS from the Dixon Entrance area. (B) The ROPOS collecting a dead colony of
Primnoa pacifica from the Dixon Entrance
Figure 3.4: The three colonies of Primnoa pacifica chosen for radiocarbon dating and
SIMS analyses and their corresponding basal cross-sections (photographed under UV
light). Sample R1162-0016 (top), sample R1165-002 (middle) and sample R1162-0015
with red and yellow markers indicating the position of the gorgonin rings which were
isolated for 14C dating
Figure 3.5 (A): Black lines indicating where the cross section was cut (B) the pieces of
the cross section obtained after cutting the cross section.(C) The calcite cortex
of the cross section mounted in the SIMS sample holder
Figure 3.6: 65-02 (A), the outer most ring dated on sample R1165-002.Radiocarbon
dating indicated that this ring is modern (post 1958) in age3-15
Figure 3.7: (a) Sample R1165-002 (b) Sample R1162-0015 (c) Sample R1162-0016.
Distance (from the center of the coral-center is at 0mm) vs reservoir corrected
radiocarbon years. The radiocarbon age of the outermost ring was considered valid in
calculating the age based on band counting. The error bars (1σ) for the age based on band
counts are smaller than the size of the symbol in the graph

Figure 3.8 Growth rate (mm/yr) vs Age of the coral for *P. Pacifica*. The error bara are 1 a. Dixon entrance corals are represented by black markers and OCNMS corals are represented by grey markers. The dotted line represents the average growth rate of all corals. 3-22

Figure 3.11: Sample R1162-0016-Mg/Ca and Sr/Ca natios plotted vs time (years). Data is missing in the areas where visible gargonin rings cut across the calcite cortex. Error bars are a to. The data presented has been smoothed using a second degree SavitAycology fiber. 3-27

List of Tables

Table 2.1: Sample locations for S. campylecus2-6
Table 2.2: Summary of maximum ranges in trace element analysis results from samples
232, 235 and 241
Table2. 3: Correlation coefficients between various elemental ratios. The p values
indicate that the R value is statistically significant at the 1 % level in all cases except
sample 241 in which it is statistically significant at the 5 % level2-20
Table 2.4: Growth characteristics of Stylaster campylecus parageus. All errors are
±1σ
Table 2.5: Summary of published growth rates for modern deep sea corals2-34
Table 3.1 (Left) a: Sample locations of the dead specimens of Primnoa pacifica collected
in July, 2008 from the OCNMS. Table 3.1b: The areas, location and reservoir ages from
which an average reservoir age was calculated for our study3-8
Table 3.2: Radiocarbon ages of the P. pacifica samples (gorgonin rings). Rings labelled
65-02 are from sample R1165-002, rings labelled 62-15 are from sample R1162-0015
and rings labelled 62-16 are from sample R1162-0016. Samples labelled (A) or (1) are
from the outermost (towards the outer edge of the coral) gorgonin ring and then 2,3etc
are ring samples obtained in serial order moving towards the center of the
coral 3-17

Table 3.3: Growth rate data and calculations for P. pacifica. The total number of bands		
calculated when the average growth rate is extrapolated over the entire radius of the P.		
pacifica is equal to the coral age in years		
Table 3. 4: Comparison of the growth rate from the calcite cortex and the gorgonin/		
calcite part (mixed zone) of the coral skeleton for samples R1156-0016 and R1162-		
Table 3.5: Growth rates of deep sea Primnoids3-21		
Table 3.6: Summary of mean values and ranges of SIMS trace element results3-24		
Table 3.7: Correlation coefficients for Sr/Ca and Mg/Ca in P. pacifica samples. The p		
values indicate that the R value is statistically significant at the 1 % level in all		
cases 3-25		

List of appendices:

APPENDIX A: X-ray diffraction patterns	
APPENDIX B: Image Appendix	B-1
APPENDIX C: SIMS data	C-1
APPENDIX D: Supplamental CD with SEM imagae	attached CD

xix

CHAPTER 1: INTRODUCTION

Zoxanthellate corals have been used in paleoceanographic reconstructions for decades. However, since they mostly occur between 30% and 30% latitude in relatively warmer waters (Hughes et al. 2003), the elimate records preserved by them have reduced significance for non-equatorial processes (Smith et al. 2000). Azooxanthellate cold water corals on the other hand have several unique traits that make them potentially useful for a range of poleoceanographic applications especially in higher latitude regions where sources of paleoceanographic atar sparser (Lazier et al. 1999, Smith et al. 2000).

1.1 Distribution and habitat of cold water corals:

Azooxanthellate cold water corals mainly comprise a variety of enidarians, including Scleractinians (the stony corals, including solitary and colonial species), Octocorals (true soft corals) including Aleyonaceans (soft corals, usually without stiffened branches), Gorgonians (fan corals, usually with stiffened branches), and Pennatulaceans (sea pens), Antipatharians (black corals), Stylateridi, (members of the Hydrozoa, the lace corals), some Zoanthids and Hydractiniids (Pretwald et al, 2004; Cairns, 2007). They are generally found to inhabit areas where the ocean water temperature is hetween 4° C and 12°C (Roberts et al, 2006) and can be found at depths of up to 6200m (Cairns, 2007; Stanley and Cairns, 1988). The highest density of cold water corals is presently documented in the Northeast Atlantic Ocean. However, this is probably due to the hicker intensive or rhater breach in this records to date. The evolution totottially be found in considerable numbers in all oceans and can be expected at greater water depths in relatively warmer regions (Freiwald et al, 2004).

Cold water corals generally grow on hard substrates, in areas where strong bottom currents control the sedimentation and food supply (Freiwald et al, 2004). They probably mainly derive nutrition from detrial particulate organic matter (POM) and zooplankton (Shewwood & Rusk, 2007). Some hypotheses suggest that the distribution of cold water scheractinian corals is dependent on the depth of the Aragonite Saturation Inforzion (ASH). The ASH in the Northeast Atlantic Ocean is more than 2000m deep and this is proposed as the reason why a larger number of cold water corals are found in the North Atlantic as compared to the North Pacific Ocean- where the ASH is less than 600m deep in places (Guinotte et al, 2006). A recognized centre for scleractinian species diversity in azooxanthellate coreals occurs in the waters surrounding the Philippines, where 160 opecies of azooxanthellate scherecinian corals have been identified (Roberts et al, 2006).

1.2: Lifespans, growth rates and fragility of deep sea coral ecosystems:

Zoamhids, Antipatharians and Gorgonians have some of the longest lifespans of any corals (Sherwood & Risk, 2007). Some deep sea Gorgonians and Antipatharians are known to live for hundreds of years (Williams et al, 2005; Sherwood et al, 2006). The growth rates of most deep sea corals are several times lower than tropical corals (Druffel et al. 1995; Sherwood R Kisk, 2007; Berwood E Kälmser, 2009).

Due to their slow growth rates and long lifespans, these corals are extremely susceptible to damage from deep-sea trawling (Krieger, 2000; Hall-Spencer et al.2002). Since many deep sea corals form nursery habitats for commercially important fish (Freiwald et al, 2004), accurately determining the growth rate of deep sea corals is very important in order to assess the recovery time of coral habitats from possible damage due to deep sea trawling and similar anthropogenic disturbances.

Even though the growth rates of most deep sea corals are lower than tropical corals, there can be a large variation in the comparative growth rate of different species of cold water corals (Andrews et al, 2002; Gass & Roberts, 2006; Sherwood & Edinger, 2009). Growth rates of deep sea corals could be controlled in part by tidal currents (Sherwood & Edinger, 2009), POM flux (Roark et al, 2005) and other, undetermined factors.

One of the aims of this thesis is to determine primary factors controlling growth rates in two species of these corals from the same region.

1.3 Cold water corals as paleoclimate proxies:

Their long lifespan, in addition to their wide global distribution, give cold water contas the potential to record paleoclimate data at all latitudes and to provide useful clues to the changes that occurred in deep and intermediate water masses in the past. Consequently cold water corals are of particular value in places where other paleoclimate provides are scarce.

Stable isotope determinations in certain deep sea corals have been used to iuccessfully interpret paleotemperatures (Smith et al. 2000) and ocean circulation changes (Smith et al. 1997). Trace elements profiles from some octocorals have also been upd to interpret optioemperatures (Thresher et al. 2004; Sherwood et al. 2005a). The main objective of this study is to assess the growth rates and potential paleoceanographic significance of two commonly observed cold water coral species in the Northeast Pacific Ocean through growth band imaging and analysis of the trace element geochemistry of their skeletons.

1.4 Stylasterid corals:

1.4.1 Classification and biogeography of Stylasterids:

Figure 1.1: The biological classification of Stylasterids. *Stylaster campylecus parageus* (Fisher, 1938) is the Stylasterid species studied herein

1-4

Most commonly studied calcified midarians belong to the Order Anthozoa. Stylasterids (Family: Stylasteridae) belong instead to the Class Hydrozoa. All Stylasterids are azoexamthelate (Cairns, 1992b). Stylasterids have an extensive global distribution (Figure 1. 3). They are most commonly found off small 'low' islands, atolls, archipelagos, semousts, offshore reefs and submarine ridges.

They seem rare proximal to continental land masses or 'high' continental islands. Their distribution is reported to follow plate boundaries and is empirically associated with geothermal hot spots beneath the oceanic crust. The highest Stylasterid species diversity is reported along the Norfolk, Kermadee, and Macquarie Ridges as well as around New Zealand (Caims, 1992b). They have been reported at latitudes an high as 58°17'N in the North Pacific and 68°30'N in the North Atlantic. Stylasterids have been found in water temperatures varying from -1.5°C to 30° C and at depths varying from 0m to 2103m (Caim & Macintyre, 1992a).

Figure 1.2: An image of *Stylaster campylecus parageus* obtained by *ROPOS* in July 2008 (Dixon Entrance, Northeast Pacific)

Figure1. 3: Global distribution map of Stylasterids (modified from Cairns, 1992b).

1.4.2 Growth banding and geochemistry:

Most species of Stylasterids have aragonitic skeletons. Seven species are known to have calcitic skeletons. A few species are also known to have variable percentages of both calcite and aragonite in their skeletal framework. The calcitic species are generally found in areas where the water temperature is lower than 13°C (Cairns & Macintyre, 1992a).

Growth banding has been documented in some Stylasterids. Errina dabmeyl was noted to have finit growth bands (Wishak et al. 2009). Stylaster errindescent is reported to show growth increments as well (Andars et al. 2007). The temporal significance of these growth bands is unknown, and none of the previously observed growth bands in Stylasterids have been explicitly verified as annual or otherwise.

A recent study on the biomineralization of *Errina dahneyl* (a deep sea Stylaterid) revealed that, during the organism's growth, a steady dissolution and reprecipitation of skeletal material occurs in the central canals of the skeleton (Wisshak et al, 2009). This reprecipitation would appear to severely complicate the use of radioarbon or ²¹⁰Pb dating to estimate the age and growth rate of these corals. The associated skeletal modification also likely alters the stable isotope and/or trace element profiles of these corals, making them potentially less reliable as geochemical archives, depending on the scale of ampling (Wisshak et al, 2009).

Studies by Weber & Woodhead (1972) indicated that tropical hydrocorals precipitate their skeleton close to equilibrium with sea water. Further, preliminary studies on the stable isotope geochemisity of *Stylaster enheucens* (Andurs et al, 2007) and Stylaster sp (Mienis, 2008) have indicated that these organisms show cyclic variability in their δ^{18} O and δ^{13} C profiles, and it has been proposed that this cyclicity might be annual.

Their broad geographic distribution and depth distribution, abundance and large temperature tolerance makes Stylasterids potentially useful as monitors of occanographic change. A study of their growth rates, longevity, skeletogenesis and geochemistry should therefore, provide useful insights into this potential.

1.5 Primnoid corals

1.5.1 Classification and biogeography of Primnoids:

Primnoids are gorgonian cotoorals. They are so called because they have an arborescent skeleton partially comprised of a horny proteinaceous material called gorgonia. They have polyps with eight hollow, marginal and usually pinnate tentacles. Their sclerites are calcareous (Brusca & Brusca, 1900).

A total of 233 valid species belong to Family Primnoidae. These corals usually form large colonies. For example the genus *Primnoa* forms colonies up to 2m high and 7m wide (Caims & Bayer, 2009).

The living colonies are usually brightly coloured (Figure 1.5). Primnoids occur worldwide at depths of 8m to 5850 m, with very rare occurrences in shallow water (i.e < 8m), although they are a dominantly deep sea family (Cairns & Bayer, 2009). Genus Primmou occurs extensively in the northern boreal Pacific and Atlantic, sub-Antarctic, South Pacific and is very common in waters surrounding the Aleutian islands (Cairns & Bayer, 2005).

Figure 1.4: The biological classification of Primnoids. Primnoa pacifica is the Primnoid studied herein

Figure 1.5: An image of *Primnoa pacifica* obtained by the *ROPOS* during the 2008 cruise in the Dixon Entrance. Northeast Pacific (Depth: 245m)

1.5.2 Growth banding and geochemistry of Primnoids:

Primmoids are known to have a long lifespan (up to 700 years; (Sherwood et al, 2006). The skeletal structure of most Primmoids includes calcaroous segments usually composed of calcite, which alternate with thin hormy intercalary plates (Brusca & Brusca, 1990). These alternations manifest as growth bands in cross sections of the skeleton (Figure 1.6). These growth bands are known to be annual in at least two species: *Primmo recoductomist* and *Primmo* parcifico (Andrews et al, 2002; Sherwood et al. 2005).

Figure 1.6: Basal cross-section of *Primnoa pacifica* showing growth banding. The darker growth bands are composed of gorgonin (horav protein). The alternating light segments are calcite.

An analysis of the 8¹⁴O and Sr/Ca in the skeletal calcite of *Primosa reseducformis* has indicated that growth related kinetic effects may have a major impact on these variables (Heikoop et al, 2002). Preliminary studies on *Primosa reseducformis*, indicate that skeletal variation in Mg/Ca may be controlled by seawater temperature (Sherwood et al, 2006a).

Their longevity, annual skeletal banding and vide geographic distribution make Prinnolds of interest from the standpoint of paleoceanography. Trace element studies of their calcitic skeletons provides a useful initial step in exploring the potential of Prinnoid species as padeoceanographic monitors.

1.6 Aims and Objectives:

The general aim of this study is to assess the utility of two commonly observed cold water corals in the Northeast Pacific ocean as paleoceanographic archives.

The detailed aims are as follows:

- To study the skeletal microstructure, growth rate and longevity of Sylaster campylecus parageus in order to determine its suitability for paleoclimate reconstructions.
- To determine an appropriate technique to obtain meaningful geochemical profiles from *Stylaster campylecus parageus* in spite of skeletal remineralization/reorganization observed during its growth.
- To determine the periodicity of growth banding in the skeleton of Stylaster campylecus parageus.
- 4. To assess the potential paleoceanographic record in Sylaster campylecus parageus and Primma pacifica, available through microanalytical determinations of Sr Ca, Mg Ca, Na/Ca and Ba/Ca profiles across the basal cross-sections of these corals and to interpret the effects of physical or biological variables on these trace element profiles. (The physical variables mainly include temperature, salinity and POM flux. The biological variables mainly include the growth rate of the coral.)
- 5. To compare the growth rate of *Primnoa pacifica* collected from different sites in the Pacific Ocean, and to the documented growth rate of *Primnoa resolacformis* from the Northwest Atlantic Ocean.

1.7: References:

Andrews, A.H., Cordes, E., Heifetz, J., Cailliet, G.M., Coale, K.H., Somerton, D., Munk, K. and Mahoney, M. (2002) Age and growth of a deep sea, habitat-forming octocorallian (*Primoso* sp.) from the Gulf of Alaska, with radiometric age validation. *Hydrobiologia* 471: 101-111

Andrus, C.F.T., Romanek, C.S., Sedberry, G.R. (2007) Incremental growth in a deep-sea hydrocoral. *1st Int Sclerochronology Conf*, St. Petersburg, FL, 17–21 July 2007, p 3

Brusca, R.C. & Brusca, G.J. (1990) Invertebrates. Sinauer Associates, Sunderland

Cairns, S.D., Macintyre I.G. (1992a) Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria:Hydrozoa). *Palaios* 7: 96–107.

Cairns, S.D. (1992b) Worldwide distribution of the Stylasteridae (Cnidaria: Hydrozoa), Sci Mar 56: 125–130.

Cairns, S.D., Bayer, F.M. (2005) A review of the genus *Primnoa* (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. *Bull. Mar. Sci.* 77, 125–256.
Cairns, S.D. (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. *Bull Mar Sci* 81: 311–322.

Cairns, S.D., Bayer, F.M. (2009). A generic revision and phylogenetic analysis of the Primnoidae (Cnidaria: Octocorallia). *Smithson Contrib Zool* 629:1–79.

Druffel, E. R. M., Griffin, S., Witter, A., Nelson, E., Southon, J., Kashgarian, M., &Vogel., J(1995) Gerardia :Bristlecone pine of the deep-sea? *Geochim. Cosmochim. Acta* 59:5031-5036.

Fisher, W.K. (1938). Hydrocorals of the North Pacific Ocean. Proceedings of the United States National Museum, 84 (3024):493-554.

Freiwald, A., Fosså, J. H., Grehan, A., Koslow, T., Roberts, J. M.(2004) Cold-Water Coral Reefs Out of sight – no longer out of mind. United Nations Environment Programme–World Conservation Monitoring Centre, Biodiversity series no 22

Gass, S.E., Roberts, J.M. (2006) The occurrence of the cold water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North sea: colony growth, recruitment and environmental controls on distribution. Mar Pollul Bull 52: 549–559 Guinotte, J.M., Orr, J., Cairns, S., Freiwald, A., Morgan J.L., and George, R. (2006) Will human induced changes in seawater chemistry alter the distribution of deep-sea seleractinian corals? *Front Ecol Environ*; 4(3): 141–146

Hall-Spencer, J., Allain, V., J. H. Fossa (2002), Trawling damage to Northeast Atlantic ancient coral reefs, Proc. R. Soc. Lond., Ser. B: *Biol. Sci.*, 269, 507–511

Heikoop, J.M., Hickmott, D.D., Risk, M.J., Shearer, C.K., Atudorei, V. (2002) Potential climate signals from the deep-sea gorgonian coral *Prinnoa resedacformis*. *Hydrobiologia* 471:117-124

Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guidherg, O., Jackson, J. B. C., Kleypas, J., Lough J. M., Manhall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., and Roughgarden, J. (2003) Climate change, human impacts, and the restilence of coral reefs. *Science* 30(1920903)

Krieger, K.L., Wing, B.L., (2002) Megafauna associations with deepwater corals (Primnoa spp.) in the Gulf of Alaska. *Hydrobiologia* 471, 83–90.

Lazier, A.V., Smith, J.E., Risk, M.J., Schwarez, H.P. (1999) The skeletal structure of Desmophyllum cristigail1 - the use of deep-water coruls in sclerochronology. *Lethala* 32: 119-130 Mienis, F. (2008) Environmental constraints on cold-water coral growth and carbonate mound formation. PhD thesis, Vrije Universiteit Den Burg, Amsterdam

Roark, E.B., Guilderson, T.P., Flood-Page, S.R., Dunbar, R.B., Ingram, B.L., Fallon, S.J. and McCulloch, M.T. (2005) Radiocarbon-based ages and growth rates for bamboo corals from the Gulf of Alaska. *Geophys Res Lett* 32:104606

Roherts, J.M., Wheeler, A.J. and Freiwald, A. (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. *Science* **312**:543–47

Sherwood, O.A., Heikoop, J.M., Sinclair, D.J., Sott, D.B., Risk, M.J., Shearer, C. and Azetsu-Kott, K. (2005a) Skeletal Mg/Ca in *Prinnoa resolacformis*: relationship to temperature. In: Freiwald A, Murray JM (eds) *Cold-water corals and ecosystems*. Springer, Berlin, p. 1061–1079

Sherwood, O. A., Scott D. B., Risk, M. J., and Guilderson, T. P. (2005b). Radiocarbon evidence for annual growth rings in the deep-sea octocoral *Primnoa reseducformis*. Mar. Ecol. Prog. Ser. 301: 120–134.

Sherwood, O.A., Scott, D.B. and Risk M.J. (2006) Late Holocene radiocarbon and aspartic acid racemization dating of deep-sea octocorals. *Geochim Cosmochim Acta* 78:2806–2814 Sherwood, O.A. and Risk, M.J. (2007) Deep sea corals: New insights into paleoceanography. In: Hillaire Marcel, C, , de Vernal A (eds) *Proxies in Late Cenozoic Paleoceanography*. Amsterdam; London: Elsevier, epp 491-522

Sherwood, O.A. and Edinger, E. (2009) Ages and growth rates of some deep-sea gorgonian and anthipatharian corals of Newfoundland and Labrador. *Can J Fish Aquat Sci* 66: 142–152

Smith, J.E., Risk, M.J., Schwarez, H.P. and McConnaughey, T.A. (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. *Nature* 386, 818 – 820

Smith, J.E, Risk, M.J., Schwarcz, H.P., McConnaughey, T.A. and Keller, N. (2000), Paleotemperatures From Deep-Sea Corals: Overcoming'Vital Effects' *Palaias*, 15, 25–32

Stanley, G.D., Jr. and Cairns, S.D. (1988) Constructional azooxanthellate coral communities: an overview with implications for the fossil record *Palaios* 3,233-242.

Thresher, R., Rintoul, S.R., Koslow, J.A., Weidman, C., Adkins, J.F. and Proctor C. (2004) Oceanic evidence of climate change in southern Australia over the last three centuries. *Geophys Res Lett* 31:L07212 Weber, J. N. and Woodhead, P. M. J. (1972) Stable isotope ratio variations in nonscleractinian coelenterate carbonates as a function of temperature. *Mar. Biol.*, 15, 293-297

Wisshak, M., López Correa, M., Zibrowius, H., Jakobsen, J., and Freiwald, A. (2009): Skeletal reorganisation affects geochemical signals, exemplified in the stylasterid hydrocoral *Errina dabnevi* (Azores Archipelazo), *Mar. Ecol.-Prog. Ser.*, **397**, 197–208

Williams, B., Risk M.J., Sulak, K., Ross, S., & Stone, R. (2005) Deep water Antipatharians and Gorgonians: Proxies for biogeochemical processes. *Proceedings of the* 3rd International Symposium on Deep- sea corals (p.70) Miami, USA CHAPTER 2: Microanalytical evidence for monthly growth banding and an intact record of sea surface productivity in *Splaster compilecus parageus*. Chapter Status: For submission to Goochimica et Cosmochimica Acta Renita Aranha¹¹, Graham Lawe¹, Forn Kindner^{1,2} Glem Piercev³

¹ Department of Earth Sciences, Memorial University of Newfoundland, St John's, Canada, NL AIB3X5

² Departments of Geography & Biology, Memorial University of Newfoundland, St John's, Canada, NL A1B3X5

³ CREAIT, Memorial University of Newfoundland, INCO Innovation Center, St John's, Canada, NL A1B3X9

2.1 Abstract:

Splaster compylecus paragens, a deep sea Stylasterid, is widely distributed in the Northeast Pacific Ocean (Fisher, 1938; Caims, 1992a). Live colonies of Splaster campylecus paragens were collected between depths of 250 and 350m, offshore from NW British Columbia, Canada and NW Washington State, USA. SEM imaging on ethed basal cross sections revealed that the skeletal material was extensively overprinted with secondary aragonite, particularly nearing the center of the coral. In spite of this observed overprinting, it was possible to obtain profiles of Na'Ca, Mg'Ca, Sr/Ca and Ba'Ca from skeletal cross sections of Splaster campylecus paragens using SIMS (Secondary Ion Mass Spectrometry). Desiriled SEM images helped recognize individual SIMS spot analyses that contained secondary aragonite. Broader scale SEM imaging revealed the topolate of visibat correlation wishib in transmitted or reflected light. Se'Ca values were observed to display two maxima over distances overing approximately 12 growth bands, with corresponding minima in Mg/Ca and Na/Ca. These cyclical co-variations were interpreted to be primarily influenced by surface water productivity. Based on the cyclicity noted in the Na/Ca, Mg/Ca and Se/Ca profiles, and the biannual increase in productivity documented in the area of collection (Landry et al, 1998), it was determined that the growth bands are monthly.

An average radial growth rate of $1.4 \pm 0.1 \text{ mm yr}^1$ (1e) was obtained based on counting growth bands in the skeletal cross-sections. The axial growth rate calculated was $17.3 \pm 1.1 \text{ mm yr}^1$ (1e). The age of the corals, based on the growth banding, varied from 3 to 5 years.

2.2 Introduction:

Scleractinian corals, both zooxanthellate and azooxanthellate, have been studied extensively for paleoclimate and paleoceanographic records (Gagan et al, 2000; Sherwood & Risk, 2007; Smith et al, 2000; Dunbar et al, 1994). By contrast, Stylasterids (lace corals), have received little attention for their potential as paleoclimate recorders. Stylasterids have an extensive global distribution. They are most commonly found off small 'low' islands, atolls, archipelagos, seamounts, offshore reefs and submarine ridges. They seem rare proximal to continental land masses or 'high' continental islands. Their distribution is reported to follow plate boundaries and is empirically associated with gothermal hot spots beneath the oceanic crust (Caims, 1902). They have been reported at latitudes as high as 58°17'N in the North Pacific and 68°30'N in the North Atlantic. Stylasterids have been found in water temperatures varying from -1.5°C to 30° C and at depths varying from 0m to 2103m (Cairns, 1992a).

Most species of Stylaterids have aragonitic skeletons. Only seven species are known to have calcitic skeletons. A few species are also known to have variable percentages of both calcite and aragonite in their skeletal framework. The calcitic species are generally found in areas where the water temperature is bolw 157 (CSIRs, 1992a).

Growth banding has been documented in some Stylasterids. Errina dahneyi was noted to have faint growth increments (Wisshak et al, 2009). Stylaster erubscients is reported to show growth increments as well (Andurs et al, 2007). None of these growth bands have been explicitly verified as annual or otherwise.

Their broad geographic and depth distributions, abundance, and wide temperature tolerance makes. Stylatetride potentially useful as monitors of oceanographic change. Studies by Weber & Woodhead (1972) indicated that tropical hydrocorals precipitate their skeleton close to equilibrium with sea water. Further, preliminary studies on the stable isotope geochemistry of *Splaster erubescens* (Andurs et al, 2007) and *Splasters ap* (Meines et al, 2008) have indicated that these organisms show cyclic variability in their a⁴⁰ On ad b¹⁰ C moriles, and it has been proposed that this cyclicity might be annual.

The recent study by Wisshak et al, (2009) on examples of the cold water Stylasteric *Errina dalmosi* from the NE Atlantic showed that during the organism's growth, a steady dissolution and reprecipitation of skeletal material occurs in the coral skeleton. This reprecipitation would appear to severely complicate the use of radiocarbon or ²⁰7b during to suimate the age and growth rate of these cords. The associated skeletal

modification also likely alters the stable isotope and/or trace element profiles of these corals, making them potentially less reliable as geochemical archives, depending on the scale of sampling (Wisshak et al, 2009).

In this paper, we study the trace element geochemistry, skeletal organization pattern and growth banding in *Stylaster compylecus parageus* in order to better understand the mechanism of skeletal growth in this coral and to further our understanding of the use of these corals as paleoceanographic archives. The skeletal structure of *Stylaster compylecus parageus* was characterized through SEM imaging of appropriately etched basal cross sections. Detailed geochemical profiles of these same sections were then obtained using SIMS.

2.3 Material and Methods:

2.3.1 Field collection of specimens:

Live specimens of *Stylaster campylecus parageus* were collected in July 2008 using the Remotely Operated Vehide (ROV) *ROPOS* deployed by Canadian Coast Guard Ship *John P. Tully* (Figure 2.1, Table 2.1). These corals were collected as a part of the CHONE (Canadian Healthy Oceans Network) Pacific Coral and Sponge Project. Most of the specimens were collected from Learmonth Bank, Dison Entrance and from the Olympic Coast National Marine Sanctuary (OCNMS) in the Northeast Pacific Ocean (Figure 2.2). All specimens were collected between depths of 250 and 350m. Only the specimens outlected from the COMS were used in this study.

Fig 2.1: (a) Two live colonies of Stylaster campylecus parageus in the Dixon Entrance. (b) A specimen of Stylaster sp being collected by the ROPOS in July 2008 from the Dixon Entrance.

Fig 2.2: Location of the coral collection sites in the Northeast Pacific.

Sample	Latitude	Longitude	Depth	Date of	Distance
number	(8)	(w)	(m)	(dd/mm/yyyy)	(km)
232	48° 8' 34.8"	-125° 11' 6"	>310	13/07/2008	~35
235	48° 8' 39.6"	-125° 11' 0.6"	304	13/07/2008	~35
237	48 °8' 6"	-125° 11' 1"	294	13/07/2008	~35
238	48° 8' 37.4"	-125° 11' 3.7"	292	13/07/2008	~35
241	48° 8' 37.2"	-125° 11' 3.6"	291	13/07/2008	~35

Table 2.1: Sample locations for S. campylecus.

2.3.2 X-ray diffraction:

X-ray diffraction (XRD) was used to ascertain the bulk mineralogy of the skeleton of Splaster campylecus parageas. Three 1 g samples of whole skeleton (from samples 232, 215 and 241) were erushed into a fine powder using a ceramic mortar and pestle. An aliquet of powder from each sample was placed into separate pack mount sample holders for analysis using a Rigaku Ultima IV XRD instrument. The software JADE with an International Center for Diffraction Data (ICDD) database was used to match the resultant diffraction pattern.

2.3.3 Growth band imaging, counting and microstructure analysis:

In order to assess the presence of growth bands in samples of So/Jatter camp/secass.paragaes, 2.5.3-mm thick natial sections were cut from unbranched regions along the base of the skeleton (Figure 2.3) using a water lubricated thin kerf diamond blade, mounted on a Buehler Isomet low speed saw. These sections were then individually embedded in Buehler Epothin, a two-component epoxide (Reisni-Hardemer = 10:3.9 by weight). The easts were ground using Buehler CarbiMet2 120-600 grit SiC wetidry papers and then polished on a Struers TegraPol 31 lapping wheel using Struers 6µm diamond suspension. Following this they were manually polished using 0.5 µm and 0.03 µm Buehler Alpha Micropolish II deagdomerated alumina on Buehler ChemoMet cloth. After polishing, the sections were digitally photographed in transmitted light under a Zeiss Stemi 2000-C stereoscopic microscope (Figure 2.4). The sume polished sections were also later used for SIMS analyses.

Figure 2.3: Sample 235 of Stylaster campylecus parageus. The green line indicates the location of an individual basal cross-section.

In order to reveal the growth bands clearly and to assess the microstructure of the skeleton of *S. campylecus*, the surface of the polished sections embedded in epoxy were etched with 0.1N HCI for 70 minutes. These sections were then carbon coated and imaged using the secondary electron mode of a Quanta 400 Environmental Scanning Electron Microscope equipped with mineral liberation analysis (MLA) software. Several high resolution SEM images of each basal section were collected and detailed composite images were assembled using a function in the MLA software package (Figure 2.5a, 2.6, Appendix B, D). The brightness and contrast of each composite image was then adjusted using Adobe Photoshon C33 in order to maximize the learity of the growth bands.

The coral sections were later etched with 0.1N HCl for a longer period of time (>70 minutes), as well as stronger HCl (>0.1N) and similarly imaged with a SEM in order to reveal the presence of more growth features (Figure 2.5b).

The growth bands (as seen on the composite SEM images), were counted by three amateur ring counters. Growth bands were counted along the entire radial axis of each sample, including bands evident in the remineralized center.

2.3.4 Trace element analysis:

Mg/Ca and SrCa in coral skeletons are very commonly used as proxies for sea surface temperatures in reef-forming tropical corals (e.g., Cohen et al., 2006; Mitsuguchi et al., 1996). Although their behaviour during skeletal growth, and their utility as proxies for seawater temperature or chemical variations, has been examined in far less detail in the available literature, Na/Ca and Ba/Ca also vary systematically in many types of marine biomineralization (Boyle 1981; Lea et al. 1989; Lea & Boyle, 1990; Amiel et al, 1973). A Cameca IMS 4f Secondary Ion Mass Spectrometer (SIMS) was used to perform high spatial resolution spot analyses of Na'Ca, Mg'Ca, Src'Ca and Ba'Ca in detailed traverses across the polished baal cross-sections from three specimens of *S campricas*.

SIM5 transects began at the outermost edge of each basal cross section and ended at its center. The traverses were between 3 mm and 13 mm long and centers of individual SIM5 spots were spaced 25 µm apart. The longest transect had 459 SIM8 analyses spots while the shortest one had 121 analyses spots. Two parallel sets of SIM8 analyses were performed on sample 232.

SIMS analyses utilized bombardment of the samples with primary ¹⁸O' ions accelerated through a nominal potential of 10 kV. A primary ion current of 3.0-6.0 nA was critically focused on the sample over a spot diameter of 10-20 µm.

Sputtered secondary ions were accelerated into the mass spectrometer through a nominal potential of 4500 V. Secondary ions were energy filtered using a sample offset voltage of .80 V and an energy window of 60eV to suppress isobarie interferences. Prior to each analysis, the spot was pre-sputtered for 120 s. This was designed to eliminate contamination from the 500Å gold coat and also to penetrate the damaged and homogenized surface layer of the mechanically polished sample. Analytical craters were thus tyrically < 20am diameter and <2 un deep at the completion of each analysis.

Each analysis involved repeated cycles of peak counting on ${}^{13}Na^4$ (25), ${}^{24}Mg^4$ (6 s), ${}^{12}Ca^4$ (2 s), ${}^{35}Sr^4$ (4 s), ${}^{139}Ba^*$ (10 s), as well as counting on a background position (22.67 Da; 1s) to monitor detection noise. A small wait time (0.2 – 0.5 s) was added

between each peak switch for magnet settling. For this study, 15 cycles of data were collected over 546 s, for total analysis times of <10 minutes per spot, including presputering. Typical signal on the ${}^{42}Ca^{+}$ reference peak was 10,000-25,000 cps.

The Memorial IMS 4f is equipped with a High Speed Counting System (Pulse Count Technology Inc.) that produces dark noise background of less than 0.03 cps (2 counts per minute) when used with an ETP133H discrete dynode electron multiplier. Overall system dead time in pulse-counting mode is 14 ns. This system also produces very low detection limits for the elements studied. The elemental detection limits based only on the uncertainty in correcting for detector dark noise (0.03 cps) are typically 1 ng.g⁴, 2 ng.g⁴ for Mg. 2 ng.g⁴ for Sr and 2 ng.g⁴ for Ba. The error of individual spot analyses was estimated using the standard error of the mean of n cyclical measurements of each ratio during an analysis (internal precision).

2.4 Results:

2.4.1 X-ray diffraction:

The XRD patterns (Appendix A) indicated that the skeleton of *S. campylecus* is composed wholly of aragonite.

2.4.2 Microstructure imaging and analysis:

Initial observation of the polished basal cross-sections with low magnification reflected light microscopy showed only faint growth bands (Fig. 2.4). These growth bands appeared very diffuse and were apparent to different degrees in the specimens pictured in Figure 2.4. Samples 241 and 223 showed more distinct growth bands than the others. However, the composite SEM images obtained on acid etched (0.1N HCl, 70 minutes) samples showed sharp, distinct growth bands (Fig. 2.5a, Fig. 2.0). It was noted that etching the cross-sections in stronger acid (-0.1N HCl), or etching for a longer period of time (-70 min) in 0.1N HCl, made the growth bands less evident in the SEM images; however this process made an anastomosing pattern of growth canals more evident (Fig 2.5b).

Figure 2.4: Basal cross sections of *Stylaster campylecus parageus* viewed under reflected light showing faint growth bands. All white scale bars are 1 mm long.

Figure 2.5 (a) Composite SEM image of the radial cross-section of Corril 241 (etched for 70 minutes in 0.1 N HCl) showing distinct growth banding. Growth banding is visible even in the central region of the cross-section where a dense overprinting of primary growth with secondary argonite aggregates occurs (circled in white). (b) Composite SEM image of Corral 241 (etched for over 70 minutes). Growth banding is more obscure to the anatomous pattern of growth canadi is more distinct.

region of the basal cross-section, is densely overprinted with secondary aragonite aggregates. The white square indicates an area where several the coral skeleton. This image is a composite of \$2 individual high resolution images compiled with MLA software. The while scale bar is 1mm Figure 2.6 : A composite SEM image of the radial cross-section of specimen 232 of Stylaster campilecus parageas showing growth banding in long. The white circle indicates the region where a new branch growth was initialed. It has been noted that this latter region, like the central growth bands overlap.

Three notable textures were observed with SEM (Fig. 2.7):

- (1) Fan shaped arrangements of angonite needles reflecting primary growth (Fig.2, 7a). Growth bands occur where adjacent bundles of fan shaped needles terminate. The growth bands appear to become narrower towards the center of the coral.
- (2) Circular and semi-sircular aggregates of angonite that overprint the primary growth (Figs. 2.7 b, c). This texture is pronounced in the central region of the basal section of the coral (Fig.2.5 Fig.2.6), and also observed in regions that surround the initiation of new branch growth (Fig.2.6).
- (3) Growth canals that appear as a dense anastomosing network throughout the coral skeleton (Figs. 2.5b, 2.6, 2.7d). These growth canals are wholly or partially in-filled with secondary aragonite.

No textures were revealed, even at this degree of magnification which appear to correspond to centers of calcification for the primary growth of aragonite.

Figure 2.7: (a) Primary growth. Fan shaped arrangements of aragenic needles, defining individual growth hands, (b) Seni circular aggregates of aragonite that overprint the primary growth, (found mush towards the center of the skeletar consection and in regions of branch initiation). (c) Magnified image of the area indicated by the white square in Figure 5b showing the aggregates of aragonite that overprint the primary growth in the cental skeletim. (d) Partially filled growth canals on the surface of the basal cross section. SIMS analyses spots visible in figure have been modified by subsequent sample childing.

2.4.3 Trace element microanalysis:

2.4.3.1 Range of trace element values:

The initial SIMS transects were designed to avoid the obvious infilled growth canals emerging on the surface of each cross section. Nonetheless, in SEM images taken after the SIMS analysis and subsequent etching it was apparent that some SIMS analyses spots were wholly or partially within the texturally distinct overprinted material (Fig. 2.8). These analyses were eliminated from the dataset for primary growth skeleton based on the fact that they were within the secondary angonite aggregates or the infilled growth canals (Fig. 2.8). In the three specimens analyzed in detail, the SrCa ratios varied between 7.25 and 9.26 mmol.mol⁴, Mg/Ca ratios between 1.74 and 3.03 mmol.mol⁴, Ba/Ca ratios between 0.066 and 0.023 mmol.mol⁴, and Na/Ca ratios between 27.2 and 48.7 mmol.mol⁴ (Table 2.2). The trace element values of the SiMS analyses corresponding to the secondary argonite were also well within the range of the trace element values between di mol more growth.

Sample number	Sr/Ca (mmol.mol ⁻¹)	Avg Sr/Ca	Mg/Ca (mmol.mol ⁻¹)	Avg Mg/Ca	Ba/Ca (mmol.mol ⁺)	Avg Ba/Ca	Na/Ca (mmol.mol ⁻¹)	Avg Na/Ca
232- transect	7.25-9.00	8.40	1.74+3.64	2.99	0.0065- 0.0149	0.0087	33.2-43.6	40.5
232- transect	7.52-8.73	8.32	1.89-3.29	2.52	0.0096- 0.0151	0.0121	27.2-43.3	38.0
235	7.80-9.26	8.61	1.81-3.15	2.54	0.0082- 0.0125	0.0101	37.5-48.7	44.8
241	7.62-8.84	8.40	2.68-3.93	3.35	0.0115- 0.0230	0.0134	32.7-46.0	44.8

Table 2.2: Summary of maximum ranges in trace element analysis results (Samples 232, 235 & 241).

Figure 2.8 a: SIMS spot within primary growth (included in analysis). b: SIMS spot within growth canal (excluded from analysis). The sample was etched after SIMS analysis. The white scale bar is 100µm long.

2.4.3.2 Relationship between Na/Ca, Mg/Ca, Sr/Ca and Ba/Ca:

A significant inverse correlation between Mg/Ca and Sr/Ca was noted in all three specimens analyzed. A significant positive correlation was also noted between the Na/Ca and Mg/Ca ratios (Table 2.3). The correlation coefficient (r) in these cases does not yield a perfect 0.99 value, nor is one necessarily expected, due to the large sample size (therefore large degree of freedom, (degree of freedom = sample size-2)). The p values in all samples is below 0.05; which indicates that the 'r' value is statistically significant at the at the 5% level.

Sample number	R value (Mg/Ca vs Sr/Ca)	R value (Mg/Ca vs Na/Ca)	Degrees of freedom (sample size-2)	P value (Mg/Ca vs Sr/Ca)	P value (Mg/Ca vs Na/Ca)
232 transect 1	-0.28	0.61	76	0.0144	<0.0001
232 transect 2	-0.40	0.27	136	< 0.0001	0.0017
235	-0.57	0.74	126	< 0.0001	< 0.0001
241	-0.33	0.33	39	0.0351	0.0351

Table 2.3: Correlation coefficients between various elemental ratios.

When the raw SIMS data are plotted against corresponding growth bands, cyclicity in the trace element profiles is apparent over many intervals. In Figure 2.9, broad cyclicity is apparent from anti-correlation of Mg/Ca and Sr/Ca profiles for growth bands 16 to 24. Similar broad cyclicity is apparent in Figure 2.10 for growth bands 1 to 14 and 21 to 34. In Figure 2.11 such cyclicity is apparent for bands 41-50.

Thus, in portions of transects where a sufficient density of SIMS spots were available in primary growth skeleton, average (W) values of all spot analyses collected within a given band were obtained. The W values for each ratio were then plotted against corresponding growth bands (Figure 2.13a-d), revealing a much more obvious cyclical inverse correlation between Mg/Ca and Sr/Ca. The grand mean (X) of all analyses in each traverse are also shown as horizontal dotted lines in Figures 13 a-d. Further, graphs of the minima and maxima for Mg/Ca, Sr/Ca and Na/Ca for each band (with respect to the pertinent grand mean) were plotted against the number of growth bands (Figs 2.14 – 2.16). The anti-correlation between Mg/Ca and Sr/Ca is more apparent in Figs 2.1.3-2.15 where data has been reduced to a mean trace element value for each band and compared to the sample mean for each trace element value.

In Figure 2.14 and Figure 2.15 it seems that the Na/Ca, Mg/Ca and Sr/Ca display two apparent cycles within a span of approximately 12 bands.

Figure2.9: Sample 232 (Transect 1). a: Sr/Ca (left axis) and Mg/Ca (right axis) is: Number of growth bands for Sample 232 (Transect (). The x-axis starts at the outermost edge of the coral i.e., the time of collection July -2008. The vertical lines in the graph are representative of the edges of growth bands. The error bars are 16. The profile is incomplete because the SIMS spots corresponding to certain growth bands were on remineralized material and were thus eliminated while constructing this profile. The SIMS data is ansmoothed. The grey areas are areas of extensive remineralization. b: A composite SEM image of sample 232 representing the area where the SIMS transect is located.

for Sample 232 Transect 2. The x-axis starts at the outermost edge of the coral i.e the time of collection July -2008. The vertical lines in the graph are representative of the sharp edges of growth hands The error bars are 16. The profile is incomplete because the SIMS spots corresponding to certain growth bands were on remineralized material and were thus eliminated while constructing this profile. The SIMS data is unsmoothed. The grey areas are areas of extensive remineralization. b: A composite SEM image of sample 232 Figure 2.10: Sample 232 (Transect 2) a: Sr/Ca mmol.mof⁻¹ (left axis) and Mg/Ca mmol.mof⁻¹ (right axis) vs. Number of growth bands representing the area where the SIMS transect is located.

starts at the outermost edge of the coral i.e the time of collection July -2008. The vertical lines in the graph are representative of the sharp The error bars are 16. The profile is incomplete because the SIMS spots corresponding to certain growth bands were on remineralized material and were thus eliminated while constructing this profile. The SIMS data is unsmoothed. The grey areas are areas of extensive remineralization. b: A composite SEM image of sample 235 representing the area where the SIMS transect is located. The white circle in the figure is an area of extensive remineralization where new branch growth is initiated. edges of growth bands.

Figure 2.12: Sample 241. a: Sr/Ca mmol.mol¹⁴ (left axis) and Mg/Ca mmol.mol¹⁴ (right axis) vs. time (months) for Sample 241. The xaxis starts at the outermost edge of the coral i.e the time of collection July -2008. The vertical lines in the graph are representative of months were on remineralized material and were thus eliminated while constructing this profile. The SIMS data is unsmoothed. The grev areas are areas of extensive remineralization. b: A composite SEM image of sample 241 representing the area where the SIMS the sharp edges of growth bands. The error bars are 16.The profile is incomplete because the SIMS spots corresponding to certain

Figure 2.13: The variation in average Mg/Ca mmol.mo²¹ (grov-pih axis) and average SrCa mon.mo⁴ (black-fit axis) per band in (s) sample 221 transvert [G sample 22]. So maple 241. All the trace element ratios are plotted against growth bands as well as the interpreted time in months straing from 140 §8 05 Mg/C). Data does not critis for the gray areas due to remineralization. The dotted black lines across the graph are bulk SrCa values for each corral and the dotted gray into a values for each corral. All error bars red.

Figure 2.14: The variation in MgCa mmol.mof' (groy-right axis) and SrCa mmol.mof' lobel-keft axis) ratios in (a) sample 321 transact (a) sample 122 transact (b) sample 241. All the trace element ratios are plotted against number of growth bands as well as the interpreted time in molter starting from July 60 May 07. Data does not exist for all we regt areas take to reminerization. The dotted black lines across the graph are balk SrCa values for each coral and the dotted grey lines are bulk MgCa values for each orar. It were nor han are to remove the ratio of the start of

Figure 2.15: The variation in NaCa mmol.mori¹ (gray-fef axis) and SrCa mmol.mori¹ (black-right axis) ratios in (a) sample 322 transect (a) sample 322 (a) sample 322 (a) sample 322 (a) sample 323 (a) sample 323 (a) sample 323 (a) sample 324 (a

Figure 2.16: Bar graphs for Ba/Ca (mod.mol') ye number of growth bands and interpreted time in months for (a) sample 232 transect 1 (b) sample 232 transect 2 (c) sample 235 (d) sample 241. All the trace element ratios are plotted against time in months starting from July 08 to May 07. Data does not exist for certain months due to remineralization. The dotted back are bulk Ba/Ca values for each transect. The dotted reve lines are Ra'Ca detection limits for the SIMS. The error bars are to

2.4.4 Growth rate analysis (Band counting) and comparative growth rate study:

It was noted during SEM imaging that growth bands were discernible even in the highly remnineralized centers of the cross sections (Figs. 2.5a, 2.6). These are likely remnant anagosite structures that are visible in spite of the extensive overprinting with secondary angonite. The growth bands observed towards the center of the coral were generally narrower in width than the growth bands observed towards the center of the coral were generally narrower in width than the growth bands observed towards the couter edges (Fig 2.5a, Fig 2.6, Appendix B). Further, the distance between any two growth bands can vary widely depending on radial direction. As in the example in Figure 2.6, two or more growth bands can virtually overlap at certain areas in the cross-section. Sample 235 had the most number of bands (534±15), sample 241 had the least number of bands (54±1) (7bale 2.4). The typical counting error was 6 in figs (10 on an average of 45 total infigs.

Based on monthly growth banding the average age of the samples of *S. campplecus* is 45 months, or approximately 4 years. The lifespan of the oldest sample (235) was 53+9 months (-4-5 years). The axial and radial growth rates calculated for all five samples studied are sammarized in Figure 2.17, and overlap within the range of error. The average radial growth rate obtained was 1.4 ± 0.1 mm.yr⁴. The average axial growth rate (i.e., vertical extension) was calculated as 17.3 ± 1.1 mm.yr⁴ (Table 2.4).

The observed axial growth rate of *Scampylecus* is comparable to in situ observations of axial growth rates in the deep sea seleracimian cords *Laphella pertusa* and *Mathepora aculata* (Gass & Roberts, 2006; Orejas et al, 2007). Though the axial growth rate of *Scampylecus* appears to be generally higher than the reported growth rates for other Scatasticit like *Errina Datheria* and *Errina nonzectaniaus* (*Chone & Stratiford*, 2002; Miller et al, 2004; Wisshak et al, 2009); it is not the highest reported axial growth rate among Stylasterid corals - a single colony of *Errina novaezelandiae* was reported to have an axial growth rate of 680 mm.yr¹ (Miller et al, 2004).

Although no other published data exist for radial growth rates in Stylasterid corals, the radial growth rate of *S. campylecus* apprears appreciably higher than published data for other types of deep sea corals (Table 2.5).

Figure 2.17 (a) Radial growth rate (mm.ye¹) for *S. campylecus* vs. Sample age (in years) (b) Axial growth rate (mm.yr³) vs. Sample age (in years) for *S. campylecus*.
Axial growth rate (mm.yr ¹)	14.8±1.5	16.2±2.8	21.4±1.7	18.1±0.4	15.9±0.5
Radial growth rate (mm.yr ⁴)	1.2±0.3	1.5±0.5	1.8±0.3	1.04±0.03	1.2±0.3
Age (months)	49±9	53±15	37±5	50±1	35±1
Min Band width (mm)	0	0	0	0	0
Max Band width (mm)	0.42	0.27	0.27	0.32	<u>0.65</u>
Mean band width (mm) min radius	0.059	0.052	0.072	0.069	0.043
Mean band width (mm) max radius	0.142	0.195	0.235	0.103	0.154
No. of bands (±1 \sigma)	49±9	53±15	37±5	50±1	35±1
Colony height (mm)	60.1	71.4	66.1	74.9	46.6
Basal radius (mm) minimum	2.95	2.77	2.67	3.47	1.50
Basal radius (mm) maximum	6.92	10.31	8.68	5.10	5,44
Sample number	232	235	237	238	241

Table 2.4: Growth characteristics of Sylaster campylecus parageus. All errors are $\pm 1\sigma$.

Species name	Radial growth rate (mm.yr ⁻¹)	Axial growth rate (mm.yr ⁻¹)
S. campylecus (this study)	1.4 ± 0.1	17.3 ± 1.1
Errina Dabneyi (Wisshak et al , 2009)		4 - 6
Errina novaezelandiae (Chong & Stratford, 2002)		3.1±0.6 (calcein tagging method) 8.0±0.9 (stereo photography method)
		2.7±1.1 (net growth rate)
Errina novaezelandiae (Miller et al, 2004)		7 (net growth rate) 680 (max growth rate recorded in one colony)
Lophelia Pertusa (Orejas et al, 2008)		15 - 17
Madrepora oclulata (Orejas et al. 2008)		3 -18
Lophelia pertusa (Gass and Roberts, 2006)		26± 5
Lophelia pertusa (Brooke &Young, 2009)		2.44-3.77
Primnoa resedaeformis (Sherwood & Edinger, 2009)	0.083±0.006	26.1±4.5
Stauropathes arctica (Sherwood & Edinger, 2009)	0.075±0.110	12.7±3.3
Keratoisis ornata (Sherwood & Edinger, 2009)	0.033±0.011	9.3±0.8
Paramurecia spp (Sherwood & Edinger, 2009)	0.215±0.037	5.6±0.5

Table 2.5: Summary of published growth rates for modern deep sea corals.

2.5: Discussion:

2.5.1 Trace elements:

2.5.1.1 Primary control on trace element variation in S. campylecus:

Mg/Ca and Se/Ca ratios from tropical corals have increasingly been used as proxies for sea surface temperatures (SSTs) (Smith et al., 1979; Mitsugachi et al., 1996). Preliminary studies on *Primosa resolaciformis*, a deep sea octocoral, indicate that Mg/Ca variations in the calcile cortex region of this coral are likely controlled by temperature (Sherwood et al., 2005a). Se/Ca variations in *Laphelia perinae*, (a shallow dwelling cold water sclenectrinian) may also be controlled in part by temperature (Cohen et al, 2006).

The temperature dependence of SrCa in most recf-forming tropical corals is between – 0.08 and -0.10 mmol.mol⁺*C⁺ (de Villiers et al. 1994; Gastani & Cohen, 2006). Cold water scheractinian corals like *Laphelia pertusa* have a more extreme SrCa sensitivity: approximately -0.18mmol.mol⁺¹ (Cohen et al. 2006). The temperature dependence of SrCa in abiogenic aragonite, however, is only -0.039 mmol.mol^{-1,a} C⁻¹ (Cohen et al. 2006).

In contrast to shallow tropical ocean waters, the average annual temperature variation is less than $\pm 1^{\circ}$ C in the ocean floor locations where our samples of *S. campylecus* were collected (Boyer et al, 2009). Although, there are no continuous temperature profiles available of the area of collection at a depth of 300m, the highest temperature profiles available of the area of collection at a depth of 300m, the highest temperature recorded through CTD casts, during the last 70 years is 6.9 °C and the lowest is 5.4 °C (Boyer et al, 2009). If the variations of 57c croptord in Table 2.2 were

attributed solely to this maximum observed temperature range of 1.5 °C, it would imply a temperature dependence of approximately -2.8 mmol.mol⁺₁°C⁺, almost thirty times more sensitive than observed in any tropical coral, and fifteen times more than that for the cold water scleractinian *L. perstusa*. It is implicit, therefore, that factors other than temperature likely exert a major control on the variation in SrCa ratios observed in *S. compriseas*.

A significant inverse correlation between Mg/Ca and Sr/Ca was noted in all three specimens of S, campy/ccut. Precipitation experiments carried out to investigate the partitioning of alkaline earth elements (Mg², Ca²⁺, Sr²⁺ and Ba²⁺) between abiogenic aragonite and sea water (as a function of temperature) indicate that Mg/Ca and Sr/Ca both decrease with increasing temperature and are thus expected to be positively correlated in abiogenic processes (Gaetant & Cohen, 2006).

A twelve month record of Mg/Ca, Sr/Ca and Ba/Ca from the skeleton of *Diploria* lahyrinthfjornia (a sclenctinian zoosanthellate coral collected from Bernuela) showed that Mg/Ca and Sr/Ca ratios were inversely corelated to each other and Mg/Ca was positively correlated to SSTs recorded in the region (Gaetani & Cohen, 2006). In another study, on the cold water coral *Lophelia perina*, a similar inverse correlation between Mg/Ca and Sr/Ca ratios in *D. lahyrinthfjormis* and *L. perinas* cannot be explained by the iselaviour of abiogenic aragonite in the precipitation experiments described above (Gaetani & Cohen, 2006; Cohen et al, 2006). Calculations performed in the 2006 study by Gaetani and Cohen indicate that, at a constant temperature, when 'precipitation efficiency' increases (i.e. increase in the mass fraction of aragonite precipinated from the SrCa variance (i.e. increase in the mass fraction of aragonite precipitated from the SrCa variance increase in the scrCa and Bs/Ca values simulaneously decrease. In *L. pertusa* the oscillations in the Sr/Ca ratios could be reproduced by doubling the assumed precipitation efficiency, coupled with the observed temperature dependence of the partition coefficients determined from the abiogenic argonite (Cohen at 2, 2006).

Since a extremely small degree of the variation observed in the SrCa ratios in the S. campylecus can be realistically attributed to temperature, the observed changes in SrCa and Mg/Ca (Table 2.2) ratios and their inverse correlation would call for substantial variations in skeled receiptation of telenove during the growth of the corol.

In biogenic angonite growth, a change in precipitation efficiency (i.e., mass of aragonite precipitated/growth rate of biogenic aragonite) occurs due to changes in the saturation state of the calcifying fluids. In tropical corals this change in saturation state is linked to zooccanthellate photosynthesis which is, in turn, linked to changes in temperature and sunlight (Chone & McConnaughey, 2003; Cohen et al. 2006). Since any change in precipitation efficiency would be primarily reflected as a change in the observed growth rate of the coral, factors controlling growth rate are indirectly coupled to the trace element changes observed in *S. campylecus* and similar deep sea corals. Observations of *Sr*:Ca ratios in *Corallium rubrum* (deep sea coral) indicate that *Sr*:Ca ratios vary with skeletal density viz, indirectly coupled to growth rate (Weinbauer et al., 2000). It has also been suggested that the cyclicity in *Sr*:Ca in deep sea bamboo corals can be used as an indicator of corwth rate, rather that temperature (Raork et al., 2005).

While no changes in light occur at a depth of ~ 300m (from where *S. campylecus* was collected), and the change in temperature in the area of collection is negligible; the primary factor driving changes in the growth rate would likely be changes in food

availability (Miller, 1995; Ferrier-Pages et al., 2003; Houlbreque et al., 2003; Houlbreque et al., 2004; Roark et al., 2005; Weinbauer et al., 2000). We therefore suggest that the changes in 5r/Ca and Mg/Ca in the skeleton of *Scampylecus* are reflective of surface ocean productive hornges.

Even though little is known about the feeding habits of most deep sea corals, it is well established that seveni corals, including zooxamhellate species, can meet part of their energy requirements by preying on zooplankton, phytoplankton, pico-nanoplankton, dissolved organic matter and particulate organic matter (Tisounis et al, 2010; Ribes et al, 2003; Miller, 1995; Ferrier-Pages, 2003; Houlbreque et al, 2000; Houlbreque et al, 2003; Miller, 1995; Berrier-Pages, 2003; Houlbreque et al, 2000; Houlbreque et al, 2004; Multiple isotope analysis of two commonly occurring cold water corals, *Laphella pertuas* and *Materpora oculata*, indicated that they might be omnivores and may primarily feed on mesorooplankton (Duineveld et al., 2004; Kiriakoulakis et al, 2005). Stable isotope (6¹³C and 6¹³N) analysis indicated that *P. rescalaeformis* likely feeds on phytoderitius supplemented by mesozooplankton (Sherwood et al., 2008). A previous study on *P. pacifica* suggested that it likely feeds on the same trophic level as *P. rescalaeformis* (Sherwood, 2005c). Since cold water corals cannot depend on any symbiotic algae for energy, they likely derive almost all of their nutrition from one or more of the other sources metitomed above.

In controlled laboratory experiments on Stylophora piotillata (a zooxanthellate scleractinian coral) it was noted that that an increase in plankton feeding under constant water temperature increased the rate of both skeletal and tissue growth of the coral. This occurred under both light and dark conditions, indicating that feeding has a direct effect on the mass fraction of skeletal material precipitate in the above of light or the mass fraction of skeletal material precipitate in the above of light or

temperature changes. (Miller, 1995; Ferrier-Pagès, 2003; Houlbrèque et al, 2003; Houlbrèque et al, 2005). It was also noted that in *Stylophora pistillata* the amount of food ingested was proportional to food density and that the coral never reached a saturation of feeding capacity in the experiments (Ferrier-Pagès, 2003). Growth rates almost equivalent to tropical corals were noted in *Lophelia permua* and *Madrepora Oculata* specimens stored in dark conditions in aquaria and fed exclusively with zooplankton - with temperature variation during the experiments controlled to ~40.5°C (Orejas et al, 2008). Thus, in the absence of light, zooxambellae, or substantial temperature variations, a change in the feeding of the coral should be the major factor modulating the skeletal precipitation efficiency and, consequently, the trace element values. If the mass fraction of angonite precipitated increases at a fixed temperature then we would expect to observe a decrease in the SrCa ratios and an increase in the MgCa ratios of the aragonite (Gatani & COhen, 2006).

2.5.1.2 Oceanography of the Olympic Coast National Marine Sanctuary:

The waters of OCNMS, are subject to changes in physical, chemical and biological properties due to the California Current system (CCS) (Hickey et al. 2000). The CCS mainly includes the southward California Current, the wintertime northward Davidson Current, and the northward California Undercurrent (Hickey & Banas, 2003). The California Undercurrent (CUC) is of special interest with respect to our samples because it is very active in the area of collection, it is continuous at depths of about 100-400 m and likely carries larval fish, invertebrates and even phytoplankton seed stock

(Hickey & Banas, 2003). The intensity of the CUC is known to attain its maximum values in late spring and early autumn (Collins et al, 2003), and is the source of much of the nutrient-rich water supplied to the shelf during coastal upwelling (Hickey & Banas, 2003).

The sessonal upwelling (Huyer, 1983) in this area favours a large spring plankton bloom, followed by a smaller autumn plankton pulse (Anderson, 1964; Landry et al, 1989; Thomas & Strub, 2001). Landry et al (1989) have reported an increased concentration in chlorophyll twice a year offshore of Washington State (between 50 to 90 km); one of these episodes occurs between February and April and the other in October. Thomas & Strub (2001) observed that, in the Pacific Northwest, chlorophyll concentrations greater than 2.0 mg.m³ extend further offshore in late spring-summer (May-June) and that a second offshore extension occurs in late summer (September).

2.5.1.3 Expected and observed Trace element variations in S. campylecus based on the oceanography of the region:

Given that *S. campylecus* likely feeds on the downward flux of particulate organic matter, plankon and similar sources, measured 5e/Ca and Mg/Ca ratios should respond to changes in the skeletal growth brought about by changes in food availability. Studies of the primary production, new production and vertical flux of organic carbon in the eastern Pacific have indicated that production and vertical flux are directly related (pace et al. 1987; Loubrec & Faridukin, 1999). The biannual increase in food flux (due to the two plankton blooms noted in the area) is hypothesized to provoke an increase in the growth rate of *S. campylecus* – coupled with a concomitant increase in the precipitation efficiency of the calcifying fluid in the skeleton of *S. campylecus*. This increase in precipitation efficiency should then be reflected as a decrease in Srice ratios accompanied by an increase in MgCa ratios in the skeleton. The biannual increase in food availability (due to the two plankton blooms per year) should thus theoretically be observed as two complementary cycles per year in detailed MgCa and SrCa profiles – one in late spring-summer (March-June) and another in Spt-Oct each year.

In the trace element profiles in the skeleton (figure 2.15-2.17) it was noted that minima in SrCa occut twice in a distance covering approximately 12 growth bands, with Mg/Ca and Na/Ca showing a complementary behaviour. If the growth bands are interpreted as monthly in creating the time axis for trace element profiles - it becomes evident that in the spring and early fall months (around May and September-October) the trace element profiles show a drop in SrCa with a simultaneous increase in Mg/Ca (Figure 2.14), Na/Ca behaves similarly to Mg/Ca in all samples except coral 241– which has the smallest windows of unreminentized skeleton of the three samples.

Taking into consideration the monthly time axis in Figure 2.14, it is quite apparent that there is a peak in the MgCa natios accompanied by a dip in the SrCa in Sept 07 in Coral 232 (transect 1 and transect 2). A peak in MgCa is also noted in Sept 07 for Sample 235, however, a simultaneous dip in SrCa is not noted. Data for Sept 07 is missing in sample 241, however the lowest MgCa value is recorded in Nov 07. Thus, it is noted that in the sorting and early dall months (-Anni-Maw and -September-October) the

trace element profiles show a drop in St/Ca values with a simultaneous increase in Mg/Ca. Conversely Mg/Ca values decrease and St/Ca values increase in the winter months.

Na/Ca closely tracks the behaviour of Mg/Ca in all samples except coral 241 – which has the smallest windows of unremineralized skeleton of the three samples (Figure 2.15).

BuCa (Figure 2.16a) shows elevated values in April 08 and October 07 in Coral 232 transect 1. It also shows elevated values in coral 235 (Fig. 2.16c) during September and October 07. Such an elevated value in BaCa is also noted in May 08 and April 08 in coral 241 (Figure 2.16 d). Thus, BaCa is elevated in spring and early fall months. This sessonal trend in BaCa, however, is not clearly apparent in Coral 232 transect 2.

Detailed profiles of contemporaneously harvested samples may not match, due to small differences in conditions, growth rates and the difficulty of enumerating every band with perfect accuracy. In future, multi-sample studies of individual colonies or near neighbours might assist in everifying such correlations.

An increase in BaCca is a strong indicator of cold upselling waters (Lea et al. 1989). The seasonal upselling in this area that favours the plankton blooms (Landry, 1989) likely causes the elevated values in BaCca observed in *S. campylecus*. All the above factors strongly suggest that the growth banding is likely monthly.

These observations also suggest that the Na/Ca, Mg/Ca, Sr/Ca and Ba/Ca ratios are responding primarily to changes in food availability. The assumption that the growth banding in *S. camprolecus* is monthly appears valid based on the fact that the expected changes in SrCa and MgCa due to changes in food availability closely match the observed changes in SrCa and MgCa. However, the current dataset does suffer incompleteness due to remineralization. If the growth bands are assumed instead to be annual then the cyclical patterns in the trace element profiles call for cycleity in food availability or primary production that must occur twice in approximately 12 years. An inter-annual variation in food flux or primary productivity of this periodicity is not documented in the available literature. If bands are instead some other sub-annual frequency, then there is no logical explanation for this frequency apparent in current literature. Further, it seems unlikely that banding is wholly random, and not driven by some cyclical external force.

In order to further validate this apparent monthly banding, it would be useful to perform similar geochemical analyses on a specimen of Stylaster from an area with a different surface productivity and or temperature regime. It would also be useful to perform detailed multi-specimen radial sampling of individual *Scampylecus* colonies from a single location in order to search for matching patterns in growth banding and/or trace element profiles. Timed harvesting experiments, designed in order to determine the exact radial growth rate of the coral, followed by detailed radial sampling and microandvists could confirm the exact netodicity of the growth bandis.

2.5.2 Possible mechanism for monthly growth banding in S. campylecus:

It was noted in a study by Hernandez-Leon et al. (2002) that zooplankton biomass north of the Canary Islands was greatly influenced by lunar illumination. Zooplankton biomass was noted to be significantly greater during the second quarter of the moor's cycle, and decreased dramatically immediately after the full moon. This implied link between the synodic lunar month (29.55 days) and cyclicity in zooplankton biomass was cited as an explanation for the approximate 30 day periodicity noted in gravitational flaxes in waters south of the Canary Islands (Khirpounoff et al., 1998). Due to the dependence of deep sea coral growth on Particulate Organic Carbon (PCC) flux, it is likely that the influence of the synodic lunar month on zooplankton biomass could induce the observed monthly banding in deep sea corals like *S. campylecan*. The dramatic decrease in zooplankton that follows the full moon could provoke sharp handing observed in the SEM images of the corals. Roark et al., 2005 also observed apparent hunar growth banding, in deep sea banboo corals form the Galf of Alaska, and invoked the above explanation as well.

2.5.3 Growth rate:

Based on the conclusion that the growth bands are monthly, the average axial growth rate for *S. campylecus* is $17.3 \pm 1.1 \text{ mm.yr}^4$. The average radial growth rate obtained was $1.4 \pm 0.1 \text{ mm.yr}^4$.

The axial growth rate of *Scompilecus* reported here is generally higher than the linear growth rates reported for the two species of Stylasterids previously documented (Table 2.5). Further, there is no evidence that *Scompilecus* has an unusually fast growing juvenile stage. As described above, initial growth banding (nearing the center of the skeletal cross-section) is, in fact, generally narrower than subsequent banding in the samples studied. The highest reported growth rate for a Stylasterid is reported by Miller et al. 2004. They reported an annual axial growth rate of 680 mm for one of the specimens of *Errina* nonvacelandiae studied However, they reported a net growth rate of 7 mm.yr⁻¹ for this species in general.

Scamplylecus specimens used in this study are from the Olympic Coast National Marine sanchary, which lies in the California Current System. The California current system is one of the most productive cosystems in the world (Carr, 2002). Since the growth of most deep sea coralis is dependent on POM flux, it is likely that the relative higher productivity in the NE Pasifie is likely the dominant cause of the higher growth rates observed in *Scampylecus*. The observed faster growth rate is also consistent with the common observation that Stylasterids are one of the first species observed (in ROV videos) to recolonize an area after bottom trawling activities have ceased (Athlaus et al. 2009; Williams et al. 2010). Hhanding were annual, the implied axial growth rate would be only 1.4 mm, yr²¹, which would make it extremely difficult to notice a Stylasterid only a few years by remote sensing.

2.5.4 Implications of observed SEM textures:

The overprinting of primary growth with circular and semi-circular aggregates of secondary aragonite, combined with the infilling of the network of growth canals with secondary aragonite, militates against using traditional radiometric dating methods on *S*. *campylecus*. The nature of remineralization in *Scampylecus* is also distinct in some ways from that dissect all *incrime Databaset*. In *Berina Database*, the cere was not densely overprinted with secondary aggregates of angonite (Wisshak et al. 2009) unlike *Scampylecus*. Due to this dense overprinting with secondary angonite at the center of the *Scampylecus* skeleton, it would appear impossible to obtain even a minimum ago of the could by adjournerist dating of the skeletal cere.

The widespread presence of reprecipitated material also severely complicates the use of traditional mechanical microdrilling methods in studying the geochemistry of this coral. In order for the geochemical data from *S. computens* to be potentially useful for paleoceanographic purposes one is compelled to use microanalytical techniques that allow tranetd analysis of primary skeletal growth.

Since reprecipitated earborate is also biologically mediated by the organism, the trace element values of this non-primary material did not show a distinct signature (i.e., depletion or enrichment beyond the normal range of primary skeleton) and only textural criteria, as observed in the SEM images, could be used to distinguish between primary and secondary growth.

2.5.5 Implications of Stylaster mineralization for choice of analysis methods:

The unusual biomineralization pattern of Stylaster, in which the skeleton is reprecipitated as secondary angonite aggregates, clustered most commonly at the centre of the cortal skeleton, makes it more difficult to obtain paleoceanographic records. Our approach, of combined SEM imaging and SIMS microanalysis, was able to provide useful geochemical data from the skeleton along a growth transect where more traintional sampling methods would have had instificient spatial resolution. For this reason, microdrilling or LA-ICP-MS would be expected to yield goexhemical results of equivocal paleoceanographic significance in *Stylator campplexus parageux*. The average volume consumed by microdrilling is anywhere from 50 µg to 6 mg, and the diameter of the drilled hole will be at least 0.2mm. Thus, the probability of including the scondary representation material is extremely high. Even with LA-ICP-MS the analyses spot would typically be at least 50 µm in diameter and would use 1µg of material, based on a crater depth of 5 µm (e.g., Fallon et al. 1999). However, SIMS is capable of producing an analysis spot that is just 10 µm in diameter and 5µm deep, requiring less than 10 ng of material for the analyses (Layne & Cohen, 2002). The high spatial resolution of the SIMS is thus effective in obtaining meaningful goechemical profiles from *S. campeterea*.

2.6 Conclusions:

Since Stylaster campylecus parageus appears to remineralize its skeleton as it grows, it creates unique challenges in obtaining meaningful geochemical data. In particular, the remineralization precludes validating the age or growth rate of the coral through traditional radiometric methods. However, using SEM and SIMS it is possible to obtain useful trace element profiles from these corals. The NaCa MgCa, SriCa and Ba/Ca profiles of modern S. campylecus appear to be strongly controlled by surface water preductivity – reflecting twice annual planktonic blooms in overlying surface waters This value indicates that erowth bask in Strater camprocaracear are monthly, based on this seasonal cyclicity in the Sr/Ca and Mg/Ca profiles - with obvious implications for the interpretation of growth rates.

Stylaster specimens up to 10 cm high had apparent ages of 5 years or less. The average axial growth rates of the samples studied was 17.3 ± 1.1 mm, yr⁴ and the average radial growth rate was 1.4 ± 0.1 mm, yr⁴. The radial growth rate of *S. campylecus* is much higher than those published for other deep sea carclas. However, this higher growth rate is empirically validated by the fact that Stylasterids are one of the earliest recolonizing species observed after an area has been bottom travled. The identification of monthly periodicity in the growth banding of *S. campylecus* is especially valuable because it provides a means to establish age and longevity for a species which cannot be dated through traditional radiometric methods.

In order to confirm the monthly periodicity of the growth bands it would be useful to perform similar geochemical analyses on specimens of Stylaster from an area with a different surface productivity and or temperature regime. It would also be useful to perform more detailed radial sampling of individual *Scampylecus* colonies from a single location in order to search for matching patterns in growth banding and/or trace element profiles. Timed harvesting experiments designed to determine the exact radial growth rate of the coral, followed by detailed radial sampling and microanalysis would help confirm the periodicity of the growth bands.

2.7 References:

Althaus, F., Williams, A., Schlacher, T.A., Kloser R.J., Green, M.A., Barker, B.A., Bax, N.J., Brodie P., and Schlacher-Hoenlinger, M.A. (2009) Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. *Mar. Ecol. Prog. Ser.*, 397, 279– 294.

Amiel, A. J., Friedman G. M., and Miller, D. S. (1973) "Distribution and nature of incorporation of trace elements in modern aragonitic corals⁴," *Sedimentology* 20, no. 1: 47-64.

Anderson, G. C. (1964) The seasonal and geographic distribution of primary productivity off the Washington and Oregon coasts. *Linnol Oceanogr*, 9, 284-302.

Andrus, C.F.T., Romanek, C.S. and Sedberry, G.R. (2007) Incremental growth in a deepsea hydrocortal. *1st Int Sclerochronology Conf. St. Petersburg*, FL, 17–21 July 2007, p 3 (Abstract)

Boyer, T.P., Antonov, J. I. Baranova, O. K., Garcia, H. E., Johnson, D. R., Locamini, R. A., Mishoney, A. V., Seidov, D., Smolyar, I. V., and Zweng, M. M. (2009): World Ocean Database 2009, Chapter 1: Introduction, NOAA Adus NESDIS 66, Ed. S. Levitus, U.S. Gow, Printing Uffice, Wash., D.C., 216 pp. OVD

Boyle, E. A., (1981) "Cadmium, zinc, copper, and barium in foraminifera tests," *Earth. Planet. Sci. Lett.* 53, no. 1: 11-35.

Brooke, S. and Young, C.M. (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397:153-161

Bograd, S. J., and Lynn, R. J. (2003). Anomalous Subarctic influence in the southern California Current during 2002. *Geophys. Res. Lett.* 30 (15):8020.

Cairns, S.D., Macintyre, I.G. (1992a). Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria:Hydrozoa). *Palaios* 7: 96–107.

Cairns, S.D., (1992b). Worldwide distribution of the Stylasteridae (Cnidaria: Hydrozoa), Scientia Marina 56: 125–130.

Cairns, S.D. and Bayer F.M. (2009). A generic revision and phylogenetic analysis of the Primnoidae (Cnidaria: Octocorallia). *Smithson Contrib Zool* 629:1–79.

Carr, M.-E. (2002). Estimation of potential productivity in Eastern Boundary Currents using remote sensing, *Deep Sea Res.*, Part II, 49, 59–80.

Chong, A.K., Stratford, P. (2002) Underwater digital stereoobservations technique for red hydrocoral study. *Photogramm Eng Remote Sens* 68:745–751 Cohen, A., McConnaughey, T. (2003) Geochemical perspectives on coral mineralization. *Rev Mineral Geochem* 54:151-187

Cohen, A.L., Gaetani, G.A., Lundalv, T., Corliss, B.H., George, R.Y. (2006). Compositional variability in a cold-water scleractinian, *Lophelia pertusa*: new insights into "vital effects". *Geochem. Geophys. Geosyst.* 7, Q12004

Collins, C. A., L. M. Ivanov, and O. V. Melnichenko (2003), Seasonal Variability of the California Undercurrent: Statistical Analysis based on the Trajectories of Floats with Neutral Buoyancy, *Phys. Oceanogr.*, 13(3), 135–147.

de Villiers, S., Shen, G.T., Nelson, B.K., (1994). The StrCa-temperature relationship in coralline aragonite: influence of variability in (Str/ Ca)seawater and skeletal growth parameters. *Geochim. Cosmochim. Acta* 58 (1), 197–208.

Duineveld, G.C.A., Lavaleye, M.S.S., Berghuis E.M. (2004) Particle flux and food supply to a seumount cold-water coral community (Galicia Bank, NW Spain). *Mar Ecol Prog* Ser 277:13–23

Dunbar, R. B., Wellington, G. M., Colgan, M. W. and Glynn P. W. (1994), Eastern Pacific sea surface temperature since 1600 A.D.: The δ¹⁸ O record of climate variability in Galapagos corals, *Paleoceanography*, 9, 291–315 Fallon, S. J., McCulloch, M. T., van Woesik, R., and Sinclair, D. J. (1999) Corals at their latitudinal limits: laser ablation trace element systematic in *Porites* from Shirigai Bay, Japan, *Earth Planet, Sci. Lett.* **172**, 221–238.

Ferrier-Pagés, C., Witting, J., Tambutté, E., Sebens, K.P. (2003) Effects of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral *Stylophora pistillata. Coral Recfs* 22:229–240

Fisher, W.K. (1938). Hydrocorals of the North Pacific Ocean. Proceedings of the United States National Museum, 84 (3024):493-554.

Gaetani, G. A., and A. L. Cohen (2006), Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies, *Geochim. Cosmochim. Acta.* 70, 4617–463

Gagan, M.K., Ayliffe, L.K., Beck, J.W., Cole, J.E., Druffel, E.R.M., Dunbar, R.B., Schrag, D.P. (2000) New views of tropical paleoclimates from corals. *Quat Sci Rev* 19:45–64

Gass, S.E., Roberts, J.M. (2006) The occurrence of the cold water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North sea: colony growth, recruitment and environmental controls on distribution. Mar Pollut Bull 52: 549–559 Hernandez-Leon, S., Almeida, C., Yebra, L., Aristegui, J. (2002), Lunar cycle of zooplankton biomass in subtropical water: Biogeochemical implications, J. Plankton Res., 24, 935–939.

Hickey, B.M., Banas, N.S., (2003). Oceanography of the Pacific Northwest coastal ocean and estuaries with application to coastal ecosystems. *Estuaries* 26 (48), 1010–1031.

Hickey, B., MasFadyen, A., Cochlan, W., Kadela, R., Bruland, K. and Trick, C. (2006). Evolution of chemical, biological, and physical water properties in the northern California Current in 2005: Remote or local wind forcing?, *Geophys. Res. Lett.*, 33, L22502, doi:10.1029/2006.1026782.

Houlbrèque, F., Tambutté, E. and Ferrier-Pagès, C. (2003). Effect of zooplankton availability on the rates of photosynthesis, tissue and skeletal growth of the seleractinian coral Stylophora pistillata J. Exp. Mar. Biol. Ecol. 296, 145-166.

Houlbréque, F., Tambutté, E., Allemand, D., Ferrier-Pagès, C. (2003) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillana. J Exp Biol 207:1461–146

Huyer, A. (1983) Coastal Upwelling in the California Current System. Prog. Oceanogr. 12:3 259-284 Khripounoff, A., Vangriesheim, A. and Crassous, P. (1998) Vertical and temporal variations of particle fluxes in the deep tropical Atlantic. *Deep-Sea Res.* 1, 45, 193–216.

Kiriakoulakis, K., Fisher, E., WolV, G.A., Freiwald, A., Grehan, A. and Roberts JM (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. In: Freiwald A, Roberts JM (eds) Caldi-auter corals and ecosystems. Springer, Berlin, pp 715–729

Landry, M.R., Postel, J.R., Peterson, W.K., Newman, J. (1989). Broad-scale distribution patterns of hydrographic variables on the Washington Oregon shelf. In: Landry, M.R., Hickey, B.M. (Eds.), *Coastal Oceanography of Washington and Oregon*. Elsevier, Amsterdam (Observe) 1.

Layne, G.D. and Cohen, A.L.(2002) Advantages of Secondary Ion Mass Spectrometry for trace element studies of marine biomineralization, *Geochim. Cosmochim. Acta*, 66, A436 (abstr.)

Lea, D.W., Shen G.T., Boyle E.A., (1989) "Coralline barium records temporal variability in equatorial Pacific upwelling," *Nature* 340, no. 6232 : 373-376. Lea, D.W., and Boyle,E.A. (1990) Foraminiferal reconstruction of barium distributions in water masses of the glacial oceans, *Paleoceanography* 5 : 719–742.

Loubere, P., Fariduddin, M., (1999) Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on timescales from centuries to millennia. *Global Biogeochem. Cycles* 13,115°133.

Mienis, F. (2008) Environmental constraints on cold-water coral growth and carbonate mound formation. PhD thesis, Vrije Universiteit Den Burg, Amsterdam

Miller, KJ., Mundy, C.N., Chadderton, W.L. (2004) Ecological and genetic evidence of the vulnerability of the shallow-water populations of the stylasterid hydrocoral *Errina* novaezelandiae in New Zealand's flords. *Aquat Conserv* 14:75–94

Orejas, C., Gori, A., and Gili, J. M.(2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria, Coral Reefs, 27, 255

Pace, M. L., 'Knauer, G. A., Karl D. M., and Martin, J. H. (1987) Primary production, new production, and vertical flux in the eastern Pacific Ocean. *Nature*, 325, 803-804. Miller, M. W (1995) Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. *Mar Ecol Progr Ser* 122:217-225.

Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., Isdale, P.J. (1996) Mg/Ca thermometry in coral skeletons. *Science* 274, 961-963

Orejas, C., Gori, A., and Gili, J. M. (2008): Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria, Coral Reefs, 27, p. 255

Ribes, M., Coma, R., and Gili, J. M. (1999) Heterogenus feeding n benthic suspension feeders : The natural diet and feeding rate of the temperate gorgonian *Paramuricea clavata* (Chidaria:Octocorallia) over a year cycle. *Mar Ecol Prog Ser*, 183,125-137

Ribes, M., Coma, R., and Rossi, S. (2003) Natural feeding of the temperate asymbiotic oetoeoral gorgonian Leptogorgia sarmentosa (Cnidaria:Oetoeorallia). Mar Ecol Prog Ser 254,141-15

Roark, E.B., Guilderson, T.P., Flood-Page, S.R., Dunbar, R.B., Ingram, B.L., Fallon, S.J. and McCulloch, M.T. (2005) Radiocarbon-based ages and growth rates for bamboo corals from the Gulf of Alaska. *Geophys Res Lett* 32:1.04606 Sherwood, O.A., Heikoop, J.M., Sinclair, D.J., Sott, D.B., Risk, M.J., Shearer, C. and Azetsu-Yoott, K. (2005a) Skeletal MgCa in *Prinnoa resedacformis*: relationship to temperature. In: Freiwald A, Murray JM (eds) *Cold-water corals and ecosystems*. Springer, Berlin, p. 1006–1079

Sherwood, O.A., Heikoop, J.M., Scott, D.B., Risk, M.J., Guilderson, T.P. and McKinney, R.A. (2005b) Stable istopic composition of deep sea gorgonian corals *Primnos* spp.: a new archive of surface processes. *Mar Ecol Prog Ser* 301:135–148

Sherwood, O.A., Heikoop, J.M., Scott, D.B., Risk, M.J., Guilderson, T.P. and McKinney, R.A. (2005c) Stable istopic composition of deep sea gorgonian corals *Primnoa* spp.: a new archive of surface processes. *Mar Ecol Prog Ser* 301:135–148

Sherwood, O.A., Scott, D.B. and Risk, M.J. (2006) Late Holocene radiocarbon and aspartic acid racemization dating of deep-sea octocorals. *Geochim Cosmochim Acta* 70:2806–2814

Sherwood O.A., Jamisson, R.E., Edinger, E.N. and Warcham, V.E. (2008) Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: examination of trophic, depth and spatial effects. *Deep-Sea Res 1* 55:1392–1402 Sherwood, O.A. and Edinger E. (2009) Ages and growth rates of some deep-sea gorgonian and anthipatharian corals of Newfoundland and Labrador. *Can J Fish Aquat* Sci 66: 142–152

Smith, S.V., Buddemeier, R.W., Redalje, R.C., Houek, J.E., (1979). Strontium-calcium thermometry in coral skeletons. *Science* 204 (4391), 404–407.

Smith, J.E., Risk, M.J., Schwarcz, H.P., McConnaughey, T.A. and Keller, N. (2000), Paleotemperatures From Deep-Sea Corals: Overcoming'Vital Effects' *Palaios*, 15, 25–32

Tsounis, G., Orejas, C., Reynaud, S., Gili, J.M., Allemand, D. and Ferrier-Pagés, C. (2010) Prey-capture rates in four Mediterranean cold water corals. *Mar Ecol Prog Sor* 398:149-155

Thomas, A. C., and Strub, P. T. (2001) Cross-shelf phytoplankton pigment variability in the California Current, *Cont. Shelf Res.*, 21, 1157–1190.

Thomas, A. C., Strub, P. T. and Brickley, P. (2003), Anomalous satellite measured chlorophyll concentrations in the northern California Current in 2001 – 2002, *Geophys. Res. Lett.*, 30(15), 8022 Weber, J. N. & Woodhead, P. M. J. (1972) Stable isotope ratio variations in nonseleractinian coelenterate carbonates as a function of temperature. *Mar. Biol.*, 15, 293-297

Weinbauer, M. G., Brandstatter, F. and Velimirov, B. (2000), On the potential use of magnesium and strontium concentrations as ecological indicators in the calcite skeleton of the red coral (Corallium rubrum), *Mar. Biol.*, **137**, 801–809.

Wheeler, P. A., Huyer, A. and Fleischbein, J. (2003), Cold halocline, increased nutrients, and higher chlorophyll off Oregon in 2002, *Geophys. Res. Lett.*, 30(15), 8021

Wisshak, M., L'opez Correa, M., Zibrowius, H., Jakobsen, J., and Freiwald, A.: Skeletal reorganisation affects geochemical signals, exemplified in the stylasterid hydrocoral *Errina dalmeri* (Azores Archipelago), *Mar. Ecol.-Prog. Ser.*, 397, 197–208, 2009

Williams, A., Schlacher T.A., Rowden, A.A., Althaus, F., Clark, M.R., Bowden, D.A., Stewart R., Bax, N.J., Consalvey, M. and Kloser, R.J. (2010) Seamount megabenthic assemblages fail to recover from trawling impacts. *Mar Ecol*, **31**(Suppl.), 1835–199.

CHAPTER 3: Growth rate assessment, high resolution trace element microanalysis and potential paleoclimate proxies in *Primnoa pacifica*.

Chapter Status: For submission to Deep Sea Research

Renita Aranha^{1,*}, Graham Layne¹, Evan Edinger^{1,2} Glenn Piercey³

¹ Department of Earth Sciences, Memorial University of Newfoundland, St John's, Canada, NL, A1B 3X5

² Departments of Geography & Biology, Memorial University of Newfoundland, St John's, Canada, NL AIB 3X5

³ CREAIT, Memorial University of Newfoundland, INCO Innovation Center, St John's, Canada, NL AIB 3X9

3.1 Abstract:

Prinnoa pacifica is one of the most commonly observed habitat-forming deep sea corals in the Northeast Pacific Ocan (Edinger et al, 2008). Similar species of Prinnoids in the North Atlantic have shown some promise as paleotemperature archives (Sherwood et al, 2005a). During the 2008 Canadian Healthy Oceans Network cruise to NV hritish Columbia, Canada and NW Washington State, USA several dead specimens of dead Prinnoa pacifica were collected for the purpose of assessing their growth rate, longevity and their possible utility as paleoceanographic archives. Our study indicates that the Mg/Ca and SerCa ratios in the calcite cortex region of the skeleton of Prinnoa pacifica are likely modulated by surface-water productivity ehanges. One of the specimens of Prinnoa pacifica analyzed shows extensive evidence of possible tanhonomic allerenet chemistry attenden. Bite Au Ce or arts stage diagenesis. Thus, trace element microanalysis is also valuable in recognizing incipiently fossilized specimens of *Primnoa pacifica* that should not be used for paleoclimate reconstructions.

The radial growth rate of *P*_{pacef}/ca was assessed by counting growth bands in the skeletal cross sections, as this species is known to secrete annual growth bands (Andrews et al. 2002). Banding in the calcite cortex (calcitic part of skeleton) indicates a very similar growth rate to that calculated in the gorgonnivalcite mixed zone, despite the implied change in skeletal growth mode. The annual average radial growth rates for a closely related species (*Primnoa pacifica* studied varies between 0.23 and 0.58 mm.yr⁴. These growth rates are more than four times higher than recorded growth rates for a closely related species (*Primnoa rescdacformi*) from the Hudson strait and Northeast channel in the North Atlantic. This higher growth rate can be attributed to the relatively higher productivity in the Northeast Pacific Ocean (Thomas et al. 2003); Jones & Anderson 1994; Carr, 2002). The growth rates for *P nacifica* reported in this study support previous studies in this region (Andrews et al. 2002), indicating that these cords are slow to recover from potential damage due to traving and other disturbances.

3.2 Introduction:

Primma pacifica, like its Atlantic counterpart Primma resolutformit, is a gragonian coral with a skeleton composed of three distinct growth zones. It has an inner central rod, a middle zone composed of both calcite and gargonin, and an outer zone, the calcite cortex, which contains very little coronomic fiberwood et al. 2005b; Figure 3.1). Smaller colonies only display two growth zones - the calcite cortex being absent. The growth bands can be clearly seen as intercalations of calcite and gorgonin in the second growth zone. More diffuse growth bands can also be recognized in the calcite cortex. These growth bands are known to be annual in *Primmoa paceflect* (Andrews et al, 2002) as well as in *Primmoa reselud/ormis* (a closely related species) based on radiometric dating (Sherwood, 2005b). Primnoids are known to have long life spans (up to 700 yrs; Sherwood et al, 2006). Recent analysis of $\delta^{10}O$ and Sr:Ca in the skeleton (calcite) of *Primmoa reseduaformis* has suggested that growth related kinetic effects might have a major impact on these variables (Heikoop et al, 2002). Preliminary studies on *Primmoa reseduaformis* indicate that the variation in Mg/Ca in its skeleton may be controlled by temperature (Sherwood et al, 2005b).

Their longevity, annual skeletal banding and wide geographic distribution makes Primnoids potentially interesting from the standpoint of paleoceanography. The purpose of this paper is to assess the paleoceanographic significance of *Primnoa pacifica* by studying the trace element (NaCa, MgCa, SrCa and BaCa) variation in the calcitic portion of the skeleton (cortex) coupled with an assessment of its growth rate and longevity. The regional variation in the growth rate of *Ppacifica* and *Presedadormis* is also studied herein. Since *P. pacifica* is known to be a habitat forming deep sea coral (Andrews el. 2002); an accurate determination of its growth rate is extremely important in order to gauge habitat recovery time after damage occurs due to deep sea traviling and smillar disturbances.

Figure 3.1: The three growth zones in Primnoa pacifica (a) central rod (b) middle zone of alternating calcite and gorgonin (c) calcite cortex. UV light microscopy. Sample # R1165-002

3.3 Materials and Methods:

3.3.1 Field collection of specimens:

Several dead colonies of *Primma pacifica* were collected in July 2008 from Dixon Entrance and the Olympic Coast National Marine Sanctuary (OCNMS) using the Remotely Operated Vehicle (ROV) *ROPOS* deployed from the Canadian Coast Guard ship John P. Tuly (Table 3.1 Figs. 3.2 & 3.3). The specimens were collected from a depth of approximately 300m and were frozen immediately after collection to prevent further degradation (Figure 3.3b). These corals were collected as a part of the Canadian Healthy Oceans Network (CHONE) Pacific Coral and Sponge Project.

Figure 3.2: Coral collection sites in the Northeast Pacific

Figure3. 3(A): A living colony of *Primnoa pacifica*. This picture was obtained by the *ROPOS* from the Dixon Entrance area. (B) The *ROPOS* collecting a dead colony of *Primnoa pacifica* from the Dixon Entrance area.

3.3.2 Radiocarbon dating:

Three colonies of P. pacifica were chosen for radiocarbon dating (Figure 3.4). These colonies were chosen for their relatively large calcite cortex region and macroscopically non-degraded skeletons- features that would permit detailed SIMS analysis of the calcite cortex along with corresponding 14C dating of the gorgonin rings. All three colonies selected for 14 C dating were from the OCNMS. Washington State, USA. The colonies were dead when collected, and had almost no soft tissue on their outer surface. However, based on their relatively non-degraded appearance it was initially assumed that the colonies had died recently (within the last 10 years) (Fig. 3.4). Thus, it was expected that the colonies would record the radiocarbon bomb spike that occurred between 1958 and the early 1970s. Basal cross-sections of the three colonies were cut using a rock saw. Up to seven gorgonin rings were isolated from each cut sample using the method described by Sherwood et al (2005b) (Fig. 3.4). Each isolated gorgonin ring was packaged separately and then 14C dated at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory, California, The quoted radiocarbon age in Table 3.2 is in radiocarbon years using the Libby half life (5568 years) and following the conventions of Stuiver and Polach (1977).

The radiocarbon age of marine organisms reflects the time of CO₂ uptake by the surrounding ocean rather than the time of death of the organism. This effect, called the marine reservoir effect has to be accounted for when calculating the calendar age (Staiver et al., 1993). In order to convert the raw radiocarbon data into calendar years, a site specific reservoir effect was calculated. The site specific reservoir effect at the OCNMS was calculated as 693-76, based on the average reservoir effect documented for seven non-estuarine areas in the Northeast Pacific close to the area of collection (Table 3.1b) (McNeely et al. 2006). This reservoir age was subtracted from the $(\delta^{11}C$ -corrected) ¹⁴C age and this resultant age was converted to calendar years using the Inteal09 calibration dataset (Reimer et al. 2009) via the CALIB 6.0 Radiocarbon Calibration Program (http://calib.pada.eauk/calib.eauh.htm).

Latituc	-125.55	-125.5	-125.55	00 301	2007		-125.5	-125.55		-125.54
Location	Ucluelet, BC	Forbes Is., BC	Ucluelet, BC	-	Channel, BC		Forbes Is., BC	Ucluelet	Hbr., BC	Amphitrite Point, BC
Death of	collection (m)	310	312	266	290-300	393	201	248	381	382
Lonoitude		-125.182W	-125.182W	-125.238W	-125.183W	-132.861W	-133.142W	-133.155W	-133.023W	-133.024W
Latitude		48.143N	48.143N	48.147N	48.135 N	54.379N	54.444N	54.456N	54.569N	N695-95
Samole	number	R1162-0015	R1162-0016	R1162-0005	R1165-0002	R1153-0003	R1155-0012	R1155-0013	R1156-0004	R1156-0006

Location	Latitude	Longitude	
acluelet,	cc:c71-	48.95	
Forbes Is., BC	-125.5	48.94	
licluelet, BC	-125.55	48.93	
David Channel, BC	-125.32	48.99	
Forbes Is., BC	-125.5	48.94	
Ucluelet Hbr., BC	-125.55	48.93	
Amphitrite Point, BC	-125.54	48.92	

Table 3.1a (Left); Sample locations of the dead specimens of *Primmos pacifica* collected in July, 2008 from the OCNMS. Table 3.1b: The areas, location and reserveir ages from which an average reservoir age was calculated for our study.

3.8

Figure 3.4: The three colonies of *Primnoa pacifica* chosen for radiocarbon dating and SIMS analyses and their corresponding basal cross-sections (photographed under UV light). Sample R1162-0016 (top), sample R1165-002 (middle) and sample R1162-0015 with red and yellow markers indicating the position of the gorgonin rings which were isolated for ^{1/2} C dating.
3.3.3 Growth rate estimation:

The radial growth banding in the second growth zone (consisting of alternating gargarian and calcile) of *Primuoa pacefica* can be observed quite clearly in polished crosssections when photographed under UV light (Figs. 3.1, 3.4). Since these growth bands are known to be annual (Andrews et al. 2002) longevity estimates were made by counting the number of bands in the gargarianizative zone. Three independent readers counted rings in this zone for each colony. The average number of bands for each colony was then divided by the length of the traversing radius of this zone only to obtain the average annual growth rate was extrapolated over the length of the whele radius (including the calcite cortex region). Axial growth rates could not be determined accurately as most colonies were broken and framement after detain and before colection.

Normal light and UV illuminated photomicroscopy were not successful in clearly imaging the bands in the outer calcile cortex region of *P. pacifica*. In order to better enumerate the banding in the calcite cortex region, cross sections from the base of the colonies were mounted on 25mm x 75mm or 59mm x75mm glass plates, (depending on the size of the section) thin sectioned to 100 µm and petrographically polished. These polished thin sections were then scanned using a HP Scanjet 3970 scanner. The scans were performed using the greyseale "photograph' setting at 2400 PT resolution.

3.3.4 Sample preparation for trace element analyses:

Cross sections between 3mm and 5mm in thickness were rock awan from the base of the same three colonies selected for ndiocarbon analyses. These cross sections were then cut into transverse strips using a thin kerf Buehler Isomet low speed diamond blade saw (Fig.3.5A). The calcitic cortex portion was subsequently isolated by simply breaking the gorgonin portion off by hand from the transverse strips (Fig. 3.5B). A corresponding continuous strip of the calcitic cortex could then be mounted into the 1° diameter SIMS sample ring (Figure 3.5C) - an aluminum ring with an outer diameter of 1 inch (25.4mm). The SIMS samples were embedded in the ring using Buehler Epothin Epoxide (Resin:Hardener; 10.3.9). The casts were polished using Buehler CarbiMet 2 120-600 grit silicon carbide werdry sandpaper and then subsequently on a Struers TegraPiol 31 lapping wheel using a 6µm Struern diamond polish. Following this they were manually polished on Buehler ChemoMet cloth using 0.5 µm and 0.03 µm Buehler Alpha Micropolish II desgglomented alumina.

3.3.5 Trace element analysis:

Mg/Ca and StrCa in coral skeletons are very commonly used as proxies for sea surface temperatures in reef-forming tropical corals (e.g., Cohen et al. 2006; Mitsuguchi et al. 1990; Although their behaviour during skeletal growth, and their utility as proxies for seawater temperature or chemical variations, has been examined in far less detail in the available literature, Na/Ca and Ba/Ca also vary systematically in many types of marine biomineralization (Boyle, 1981; Lea et al, 1989; Lea & Boyle, 1990; Amiel et al, 1973). A Cameea MMS 47 Secondary Ion Mass Spectrometer (SIMS) was used to perform high spatial resolution (~25 µm) spot analyses of Na/Ca, Mg/Ca, Se/Ca and Ba/Ca in detailed traverses across the polished basal cross-sections from three specimens of *P*. *pacefilea*.

Individual SIMS transacts began at the outermost edge of the calcite cortex region and ended at the beginning of the gorgonin/calcite mixed zone. The traverses were 7 mm to 11mm long and individual SIMS spots were spaced 25µm apart. Visible gorgonin rings were avoided during analysis. Each coral consequently had between 303 and 367 SIMS analysis spots, depending on the length of the SIMS transect.

SIMS analyses utilized bombardment of the samples with primary ¹⁶O' ions accelerated through a nominal potential of 10 kV. A primary ion current of 3.0-6.0 nA was critically focused on the sample over a spot diameter of 10-20 µm.

Sputtered secondary ions were accelerated into the mass spectrometer through a nominal potential of 4500 V. Secondary ions were energy filtered using a sample offset voltage of -80 V and an energy window of 60eV to suppress isobarie interferences. Prior to each analysis, the spot was pre-sputtered for 120 s. This was designed to eliminate contamination from the 500Å gold coat and also to penetrate the damaged and homogenized surface layer of the mechanically polished sample. Analytical catters were thus tovically <20m diameter and <20m diener the totical surface and such analysis.

Each analysis involved repeated cycles of peak counting on ${}^{23}Na^*$ (2.5), ${}^{24}Mg^*$ (6 s), ${}^{42}Ca^*$ (2 s), ${}^{85}Sr^*$ (4 s), ${}^{139}Ba^*$ (10 s), as well as counting on a background position (22.67 Da; 1s) to monitor detection noise. A small wait time (0.2 – 0.5 s) was added

between each peak switch for magnet settling. For this study, 15 cycles of data were collected over 546 s, for total analysis times of <10 minutes per spot, including presputering. Typical signal on the $^{13}Ca^{+}$ reference peak was 10,000-25,000 cps.

The Memorial IMS 4f is equipped with a High Speed Counting System (Puise Count Technology Inc.) that produces dark noise background of less than 0.03 cps (2 counts per minute) when used with an ETP133H discrete dynode electron multiplier. Overall system dead time in pulse-counting mode is 14 ns. This system also produces very low detection limits for the elements studied. The elemental detection limits based only on the uncertainty in correcting for detector dark noise (0.03 cps) are typically 1 ng g^{1} , 2 ng g^{2} for Mg, 2 ng g^{3} for Sr and 2 ng g^{2} for Ba. The error of individual spot analyses was estimated using the standard error of the mean of n cyclical measurements of each ratio during an analysis (internal precision).

Figure3. 5 (A): Black lines indicating where the cross section was cut (B) the pieces of the cross section obtained after cutting the cross section.(C) The calcite cortex of the cross section mounted in the SIMS sample holder

3.4 Results:

3.4.1 Radiocarbon results:

Radiocarbon ages (Table 3.2) indicated that all of the rings analyzed, except sample 65-02 (A), were pre-bomb (i.e., formed prior to 1958). Almost all resultant reservoir corrected radiocarbon ages were within error of each other. Sample 65-02 (A) (Figure 3.6), the outernost ring in specimen R1165-002, was of modern (post-bomb) age. The reservoir corrected radiocarbon ages do indicate, however, that none of the samples died more recently than 30 years ago. Specimen # R1165-002 of *P. pacifica* has been dead for at least 30 years, specimen # R1162-0015 has been dead for at least 45 years.

In aggregate, the samples belonging to coral R1162-0015 showed a discernible growth trend in radiocarbon age: with older radiocarbon ages for samples that were closer to the center of the coral (Table 3.2, Figure 3.7b). However, the slope of the growth trajectories obtained through fitting the reservoir corrected radiocarbon ages for this sample is steeper than that obtained from annual band counting (Figure 3.7 b; see discussion below). Sample R1165-0016 and Sample R1165-002 did not show any discension (in the radiocarbon yaras (Figure 3.7 a, c).

Figure 3.6: 65-02 (A), the outer most ring dated on sample R1165-002.

Figure 3.7 (a) Sample R1165-002 (b) Sample R1162-0015 (c) Sample R1162-0016.

Distance (From the center of the coral. Center is at 0 mm) vs reservoir corrected rudiocarbon years. The radiocarbon age of the outermost ring was considered valid in plotting the age based on band counting. The error bars (10) for the age based on band counts are smaller than the size of the symbol in the graph.

Sample number	Distance from the center of the coral(mm)	Band number from the center	A ^M C	¹⁴ C age	³⁴ C age error ±	¹⁴ C age after reservoir correction 693±76	Calibrated age with 1 or error
65-02 A	31.7	51	50.4	>Modem	NIA	Modern- post 1968	NA
65-02 (1)	15.1	24	-101.7	960	8	167±82	1663-1952
65-02 (2)	11.9	19	-94.2	796	8	102±82	1684-1954
65-02 (3)	10.5	17	-103.1	875	8	182±82	1650-1952
65-02 (4)	4.6	00	-46.7	230	8	37±82	1694-1955
65-02 (5)	3.2	2	-100.3	850	98	157±82	1666-1952
65-02 (6)	1.2	-	-98.5	835	8	142±82	1670-1952
62-15 (1)	29.0	3	-81.8	685	8	-8±82	NA
62-15 (4)	22.9	51	-93.6	790	8	97±82	1684-1954
62-15 (5)	21.1	47	-98.2	810	35	117±84	1682-1953
62-15 (6)	17.0	35	-96.1	810	8	117±82	1682-1953
62-15 (10)	6.0	12	-102.4	870	30	177±82	1654-1962
62-15(11)	4.0	7	-103.6	88	8	187±82	1848-1962
62-16(1)	3.60	9	6.86-	820	8	127±82	1681-1963
62-16 (2)	2.80	48	-95.1	805	8	112±82	1683-1963
62-16 (3)	1.70	28	-97.0	820	8	127±82	1681-1963
62-16 (4)	1.33	22	-102.4	865	8	172±82	1660-1952
62-16 (5)	0.67	11	-96.1	810	8	117±82	1682-1953
62-16 (6)	0.48	5	-996	815	8	122±82	1650-1952
Table 3.2: Radiocarbon a	ages of the P.	pucifica sat	mples (20	rgonin rings). Ri	ings labelled 65-6	12 are from sample R1165-0	02, rings labelled 62-15

are from sample R1162-0015 and ring's labelled 02-16 are from sample R1102-0016. Sample tabelled (A) or (1) are from the outermost of the sample R1102-0015 and ring's and then 2.3.4.—ett are fring samples obtained in serial order moving towards the center of the occas.

3.4.2 Growth rate results:

All the growth rates listed in Table 3.3 and summarized in figure 3.8 are calculated from band counting results in the gorgonin/calcite mixed zone. The growth banding in the calcite cortex was also clearly imaged in only two of the six *P* pace/fica samples that were thin sectioned and scanned. Therefore a separate growth rate estimate involving the calcite cortex region was also possible for these samples. It was observed (Table 3.4) that the growth rate in the calcite cortex is quantitatively identical to the growth rate in the soronin/calcite zone in these samples.

The average radial growth rate of *Primnoa pacifica* specimens from the Dixon entrance is $0.323 \pm 0.084 \text{ mm.yr}^{-1}$ (1 σ). The average growth rate of *Primnoa pacifica* from OCNMS is $0.362\pm0.023 \text{ nm.yr}^{-1}$ (1 σ).

The lowest calculated average growth rates of *Primnoa pacifica* from the Dixon entrance in this study is similar to the growth rates calculated for *Primnoa pacifica* from the Gulf of Alaska by Andrews et al. (2002) (Table 3.5).

Primnoa pacifica was formerly thought to be the same species as Primnoa rescaladormia (Cairna & Bayer, 2009). Notwithstanding this, the growth rates of Primnoa rescaladormia from the Atlantic Ocean (Sherwood & Edinger, 2009; Table 3-5) is more than 4X lower than the growth rate of Primnoa pacifica determined in this study. Comparison of growth characteristics of P. pacifica and P resolution from various locations, as compiled in Figure 3-9, indicates that the samples from different locations follow similar locations is follow similar locations is follow similar locations in the study. through the four specimens of *P.pacifica* with the largest radius in Fig. 3.9; indicating the upper limit of growth rates in our study.

Age (years) ±1 o		75±15	51±11	62±10	8744		46±26	34±11	119±47	22±6	49±13
Average radial growth rate (mm.yr ¹)		0.414±0.061	0.319±0.061	0.328±0.032	0.386±0.076		0.216±0.076	0.579±0.132	0.303±0.067	0.231±0.046	0.288±0.08
Band width- (Min radius) (mm)		0.352	0.258	0.294	0.309		0.129	0.446	0.236	0.185	0.206
Band width (Max radius) (mm)		0.474	0.381	0.361	0.462		0.302	0.713	0.371	0.277	0.368
Average number of bands counted (±1 \sigma)		45±2	31±2	40±2	21±4		46±4	3412	30±3	22±2	16±1
Radius of gorgonin banded zone (mm) Minimum		16.0	21.0	11.7	6.5		6.0	15.0	7.0	4.0	3.3
Radius of gorgonin banded zone (mm) Maximum		21.5	12.0	14.3	9.7		14.0	24.0	0.11	6.0	5.9
Basal radius (mm) Minimum		26.7	16.0	18.0	32.0		6.0	15.0	26.0	4.0	11.5
Basal radius (mm) Maxiraum		35.6	17.0	22.7	35.0		14.0	24.0	46.0	6.0	16.7
Sample number P. pacifica	OCNMS	R1162-0015	R1162-0016	R1162-0005	R1165-0002	Dixon Entrance	R1153-0003	R1155-0012	R1155-0013	R1156-0004	R1156- 0016(branch 1)

Table 3.3: Growth rate data and calculations for P. pacifica. The total number of bands calculated when the average growth rate is

extrapolated over the entire radius of the P. pacifica is equal to the coral age in years.

Sample	Bands counted in a part of the calcite cortex	Radial length along which bands were counted (mm)	Radial growth rate (in calcite cortex) mm.yr ⁻¹	Radial growth rate (in gorgonin/calcite region) mm.yr ¹
R1156- 0016	7	2.3	0.29±0.04	0.29 ±0.08
R1162- 0015	24	10.0	0.38±0.04	0.41 ± 0.06

Table 3.4: Comparison of the growth rate from the calcite cortex and the gorgonin/calcite part of the c oral skeleton for samples R1156-0016 and R1162-0015.

Sample	Radial growth rate (mm.yr ⁻¹)	Reference
Primnoa pacifica Dixon entrance	0.32 ±0.08	This study
Primnoa pacifica OCNMS	0.36 ± 0.02	This study
Primnoa pacifica Gulf of Alaska	0.18±0.03	Andrews et al,2002
Primnoa resedaeformis North Atlantic	0.08±0.01	Sherwood & Edinger, 2009

Table 3.5: Growth rates of deep sea Primnoids

Figure 3.8: Growth rate (mm.yr¹) vs Age of the coral for *P. pacifica*. The error bars are 1σ. Dixon entrance samples are represented by grey markers and OCNMS samples are represented by black markers. The dotted line represents the average growth rate of all samples.

Figure 3.5: Comparison of radial growth rates of *Lexotophysical* (mode from the Hushows trait (Skervers Reference). The second secon

3.4.3 Trace element analysis:

In the three specimens analyzed in detail by SIMS, the SrCa varied between 2.04 and 3.14 mmol.mol⁻¹, MgCa varied between 706 and 136 mmol.mol⁻¹, Ba/Ca varied between 0.0036 and 0.0550 mmol.mol⁻¹ and Na/Ca varied between 164 and 53.1 mmol.mol⁺¹ (Table 3.6). These values are summarized, along with their means, in Table 3.6. Mean Mg/Ca and Na/Ca values are similar for Samples R1162-0015 and R1162-0016, but distinctly lower for Sample R1165-002. Table 3.7 shows that there is a weak, but statistically valid, inverse correlation between Mg/Ca and SrCa for samples R1165-0016, but distinctly lower for Sample R1165-002. Table 3.7 shows that there is a weak, but statistically valid, inverse correlation between Mg/Ca and SrCa for samples R1165-0016, but distinct a positive correlation for sample R1162-005. The correlation coefficient (r) in these cases does not yield a perfect 0.99 value, nor is one necessarily expected, due to the large sample size (therefore large degree of freedom, (degree of freedom – sample size2.)). The p value for all samples is 5 0.05; which indicates that the r⁻¹ value is statistically vignificant at the 5 % level.

Detailed trace element profiles (Figs. 3.10-12) are plotted against a time axis (years before death; year of death = 0). Time was calculated based on the average annual radial growth rate. The smoothed data lines in Figures 3.10-3.12 were produced using a Savitzky-Golay type generalized moving average with filter coefficients determined by an uweighted linear test-squares regression and a second degree polynomial model.

Sample number	Sr/Ca range (mmol. mol ⁻¹)	Sr/Ca (mean)	Mg/Ca range (mmol.mo I ⁻¹)	Mg/Ca (mean)	Ba/Ca range (mmol. mol ⁻¹)	Ba/Ca (mean)	Na/Ca range (mmol. mol ⁻¹)	Na/Ca (mean)
R-1162-0015	2.27- 3.14	2.71	81.3-125.8	103.5	0.0046- 0.0313	0.0179	22.5- 37.4	29.9
R-1162-0016	2.04- 2.97	2.50	76.2-136.6	106.4	0.0053- 0.0115	0.0084	16.4- 53.1	32.6
R-1165-0002	2.18- 2.61	2.39	70.6-92.2	81.4	0.0036- 0.0550	0.0293	17.9- 26.8	22.4

Table 3.6: Summary of mean values and ranges of SIMS trace element results.

Sample number	R value	Degrees of freedom	P value
R1162-0015	-0.18	368	0.0006
R1162-0016	-0.13	334	0.015
R1165-0002	0.29	301	0.0001

Table 3.7: Correlation coefficients for Sr/Ca and Mg/Ca in P. pacifica samples. The p values indicate that the R value is statistically significant at the 5% level in all cases.

Figure3.(10: Sample R116.2-0015-Mg/Ca and S5/Ca ratios vs time (years). Time was calculated by extrapolating average annual radial growth rate over the eakite cortex. Error bars are ±10. The profile starts from the time of death of the organism (i.e. the outer edge). The data presented has been smoothed using a second degree Savitzky-Golay filter.

Figure 3.11: Sample R1162-0016-Mg/Ca and Sr/Ca ratios plotted vs time (years). Data is missing in the areas where visible gorgonian rings cut across the calcite cortex. Error bars are ±16. The data presented has been smoothed using a second degree Savitzky-Golay filter.

Figure 3.12: Sample R1165-0002 –MgCa and Sr/Ca ratios plotted is time in years. Error bars are ±16. The data presented has been sm using a second degree Savitzky-Golay filter.

In all three samples analyzed there appears to be some degree of cyclicity in the Mg/Ca and St/Ca profiles. The Mg/Ca and St/Ca ratios in sample R1162-0013 (Figure 3.10) show an obvious long period inverse correlation, which is also reflected in Table 3.7. A major simultaneous spike in Mg/Ca and St/Ca occurs at the beginning of the profile (green shaded area—between year 2 and 3). This spike corresponds to the SIMS analyses spots that passed over a thin gorgonin ring (Figure 3.13). These analyses spots were excluded from the statistical analysis in table 3.7. and the summary in table 3.6.

Figure 3.13: SIMS transect that crossed over a thin gorgonin ring in Sample R1162-0015 (right) and R1162-0016(rh). Both the gorgonin ring and the immediately surrounding area show an increased value of Mg/Ca and SrCa in spot analyses. The black scale bar is 1mm long. The red arrows indicate the position of the gorgonin ring.

In both samples R1162-0015 and R1162-0016 (Figure3.10-3.11) a single large dip in Sr/Ca values is noted, with a simultaneous spike in Mg/Ca (indicated by yellow arrows in the Figs. 3.10 & 3.11). This excursion in trace element values noted between year 6 and 7 in sample R1162-0015 and year 7 and 8 in R11162-0016, is not associated with any specific contamination or growth feature in the cross-section. It is very distinct from the profile obtained when the SIMS analyses post crossed the ozoronin ring (areen shaded area); as there is a negative excursion in Sr/Ca values; not a positive excursion as seen when the analyses crossed a gorgonin ring.

Ba/Ca and Na/Ca do not show any distinct cyclicity in the SIMS profiles of any of the samples analyzed. This lack of cyclicity is probably due to the fact that Na/Ca and Ba/Ca are not only dissolved in the skeletal material but are also present within the skeleton as surface contaminants and/or particulate inclusions. Their patterns do no searsendily interpretable in *P*, *pacifica* as those observed for Mg/Ca and Sir/Ca.

3.5 Discussion

3.5.1 Trace elements:

3.5.1.1 Primary controls on trace element variation in P.pacifica:

The skeletal morphology of *Primnoa reseducformis* is indistinguishable from that of *Primnoa pacifica*, and they were formerly considered to be the same species (Cairns & Bayer, 2009). Sherwood et al (2005b) analyzed the bauk skeletal composition of several specimens of *Primnoa reseducformis* from the North Atlantic and found that the average balk skeletal MgyCa varied between 86 and 118 mmol.mol⁻¹. Comparison of individual sample values to hydrographic temperature at their sites of collection yielded the relationship MC2 (mmol.mol⁻¹) = 5c(1.4) T (C1) ~ C4(=10).

The skeletal Mg/Ca in samples of *P. pacefloc* analyzed in this study, varied between 70 and 136 mmol.mol⁻¹, with averages of 103, 106 and 81 mmol.mol⁻¹ in the three samples studied in detail. If we simply apply the Sherwood et al (2005) temperature relationship to Mg/Ca profiles obtained in this study we obtain implied temperature variation of -3.5 °C to 12.4 °C in sample R1162-0015, -2.4 to 14.4 in sample R1162-0016 and -1.2 to 5.0°C in sample R1163-0002. Of course, the stated errors accuracy (not including intercept) of this equation exceeds the maximum temperature variation expected in the past 70 years, by CTD casts, is 6.9 °C, and the lowest is 5.4 °C (Boyer et al, 2009). Thus the Sherwood et al (2005) relationship seems unlikely to accurately discern temperature variations from our samples of *P. pacifica* Further, it would appear that temperature variation alone cannot account for the range of observed variation in Mc corollic of the samples touties therein. The temperature dependence of SrCa in most reef-forming tropical contals is between -0.08 and -0.10 mmol.nmol¹/pC (de Villers et al. 1995; Gaetani & Cohen, 2006). Cold water sclenactinian cortals like *Laphelia portusa* have a more extreme SrcCa sensitivity: approximately -0.18 mmol.mol¹¹ (Cohen et al. 2006). The temperature dependence of SrCa in ablogenic carbonate, however, is only -0.039 mmol.mol¹/p C (Cohen et al. 2006).

If the variations of SrCa reported in Table 3.6 were attributed solely to the observed temperature variation in the sampling areas, it would imply a temperature dependence of approximately $0.74 \text{ mmol.mol}^{1/\mu}$ C, seven times more sensitive than observed in any tropical coral, and four times higher than that for the cold water scleractinian L *pertuax*. It is implicit, therefore, that factors other than temperature may wert a major control on the variation in SrCa ratios observed in *P*, *pacifica*.

A significant inverse correlation between Mg/Ca and Sr/Ca was noted in two of the three specimens of *P*, *pacifica* analyzed. Precipitation experiments carried out to investigate the partitioning of alkaline earth elements (Mg²⁺, Ca²⁺, Sr²⁺ and Ba²⁺) between abiogenic carbonate and sea water (as a function of temperature a) indicate that Mg/Ca and Sr/Ca both decrease with increasing temperature and are thus positively correlated (Gaetani & Cohen, 2006). However, a twelve month record of Mg/Ca, Sr/Ca and Ba/Ca from the skeleton of *Diploria labyrinthformis* (a scleractinian zooxanthellate coral collected from Bermuda) showed that Mg/Ca and Sr/Ca ratios were inversely correlated to each other and Mg/Ca was positively correlated to SSTs recorded in the region (Gaetani & Cohen, 2006). In another study, on the cold water coral Lophelia perturs, a similar inverse correlation between Mg/Ca and Sr/Ca was noted (Cohen et al. 2006). The

magnitude of oscillations in both Mg/Ca and Sr/Ca ratios in *D. labyrithliformis* and *L. pertuaa* cannot be explained by the behaviour of abiogenic carbonate in the precipitation experiments described above (Gaetani & Cohen, 2006; Cohen et al, 2006).

Calculations performed by Gaetani & Cohen (2006) indicate that, at a constant temperature, when 'precipitation efficiency' (i.e. increase in the mass fraction of carbonate precipitated from the calcifying fluid) increases then MgCa values increase and SriCa ratios could be reproduced by two-fold variation of the assumed precipitation efficiency, coupled with the observed temperature dependence of the partition coefficients determined from the abiogenic aragonite (Cohen at al, 2006).

Since only an extremely small portion of the variation observed in the SrtCa ratios in the P. pace/foc can be attributed to temperature changes, the observed changes in SrtCa and Mg/Ca (Table 3.6) ratios would call for substantial variations of precipitation efficiency through the annual growth cycle.

In biogenic carbonate growth, a change in precipitation efficiency (i.e. mass of carbonate precipitated/growth rate of biogenic carbonate) occurs due to changes in the saturation state of the calcifying fluids. In tropical corals this change in saturation state is linked to zooxambellate photosynthesis which is, in turn, linked to changes in temperature and sunlight (Cohen & McConnaughey, 2003; Cohen et al, 2006). Since any change in precipitation efficiency would be primarily reflected as a change in the observed growth rate of the coral, factors controlling growth rate are indirectly coupled to the trace element changes observed in *P. pacifica* and similar deep sea corals. Observations of Sr/Ca ratios syn in the deep sea cond *Conflution rulema* indicate that Sr/Ca ratios say with skeletal density; i.e., they are indirectly coupled to growth rate (Weinbauer et al. 2000). It has also been suggested that the cyclicity of SrCa in deep sea bamboo corals can be used as an indicator of growth rate, rather than being coupled directly to temperature (Roark et al, 2005).

While no changes in light occur at depths of –300m (from where *P. Pacifica* was collected), and the variations in temperature in the area of collection are negligible, the primary factor driving changes in the growth rate is most likely changes in food availability (Miller 1995; Ferrier-Pages, 2003; Houlbreque et al, 2003; 2005).

Even though little is known about the feeding habits of most deep sea corals, it is well established that several corals, including zooxanthellate species, can meet part of their energy requirements by preying on zooplankton, phytoplankton, pico-tamplankton, dissolved organic matter and particulate organic matter (Tsounis et al, 2010; Ribes et al, 2003; Miller, 1995; Ferrier-Pages, 2003; Houlbreque et al, 2003; Houlbreque et al, 2004; Shible isotope analysis of two commonly occurring coil water corals. *Laphella pertuan* and *Madrepora oculata*, indicated that they might be omnivores and may primarily feed on mesorooplankton (Duineveld et al., 2004; Kiriakoulakis et al, 2005). Stable isotope (d¹⁰C and d¹¹N) analysis indicated that *P. resedaeformis* likely feeds on phytodetritus supplemented by mesozooplankton (Sherwood et al. 2008). A previous study on *P. pacifica* suggested that it likely feeds on the same tophic level as *P. resedaeformis* (Sherwood, 2005c). Since cold water corals cannot depend on any symbiotic algae for energy, they likely devive almost all of their nutrition from one or more of the other sources metidione above. In controlled laboratory experiments on *Stylophora picilluta* (a zooxanthellate scleractinian coral) it was noted that that an increase in plankton feeding under constant water temperature increased the rate of both skeletal and tissue growth of the coral. This occurred under both light and dark conditions, indicating that feeding has a direct effect on the mass fraction of skeletal material precipitated in the absence of light or temperature changes. (Miller,1995; Ferrier-Pages, 2003; Houlthrèque et al, 2003; Houlthrèque et al, 2005). It was also noted that in *Stylophora pixillata* the amount of food ingested was proportional to food density and that the coral never reached a saturation of feeding capacity in the experiments (Ferrier-Pages, 2003). Growth rates almost equivalent to tropical corals were noted in *Lophelia pertuan* and *Madrepara Oculata* specimens stored in dark conditions in aquaria and fed exclusively with zooplankton - with temperature varianton during the experiments controlled to --0.5°C (Orejas et al, 2008).

Thus, in the absence of light, zoosanthellae, or substantial temperature variations, a change in the feeding of the coral should be the major factor modulating the skeletal precipitation efficiency and, consequently, the trace element values. If the mass fraction of carbonate precipitated increases at a fixed temperature then we would expect to observe a decrease in the SriCa ratios and an increase in the Mg/Ca ratios of the carbonate (Gatenia & Cohen, 2006).

3.5.1.2 Oceanography of the Olympic Coast National Marine Sanctuary:

The waters of OCNMS, are subject to changes in physical, chemical and biological properties due to the California Current system (CCS) (Hickey et al., 2006). The CCS mainly includes the southward California Current, the wintertime northward Davidson Current, and the northward California Undercurrent (Hickey & Banas, 2003). The California Undercurrent (CUC) is of special interest with respect to our samples because it is very active in the area of collection. It is continuous at depths of about 100-400 m and likely carries larval fish, invertebrates and even phytoplankton seed stock (Hickey & Banas, 2003). The intensity of the CUC is known to attain its maximum values in late spring and early autumn (Collins et al, 2003), and is the source of much of the nutrient-rich water supplied to the shelf during coastal upwelling (Hickey & Banas, 2003).

The seasonal upwelling (Huyer, 1983) in this area favours a large spring plankton bloom, followed by a smaller autumn plankton pulse (Anderson, 1964; Landry et al, 1989; Thomas & Strub, 2001). Landry et al (1989) have reported an increased concentration in chlorophyll twice a year offshore of Washington State (between 50 to 90 km); one of these episodes occurs between February and April and the other in October. Thomas & Strub (2001) observed that, in the Pacific Northwest, chlorophyll concentrations greater than 2.0 mg m³ extend further offshore in late spring-summer (May-Lune) and that ascond offshore vetexion occurs in late summer (Steneberbert). 3.5.1.3 Expected and observed Trace element variations in P.pacifca based on the oceanography of the region:

Given that P. pacificar likely feeds on the downward flux of particulate organic matter, plankton and similar sources; the measured Sr/Ca and Mg/Ca ratios should respond to changes in the skeletal growth brought about by changes in food availability.

In reviews of the primary production, new production and vertical flux of organic carbon in the eastern Pacific it has been argued that production and vertical flux were directly related (Pace et al. 1987; Loubere & Fariduddin, 1999).

The biannual increase in food availability (due to the two plankton blooms per year) should theoretically be observed as two cycles per year in Mg/Ca and Se/Ca profiles. While an inverse correlation is apparent in Sr/Ca and Mg/Ca profiles in Figures 3.0 and 3.1, a shound sevicity is not obviously resolved.

There are suggestions in our data that *P. paceflear* may also record more abrupt events. A particularly drastic decrease in SrCa values is noted along the SIMS profile in R1162-0016 (between year 6 and 7) and R1162-0015 (between year 7 and 8) (indicated by the yellow arrows in Figs. 3.10 and 3.11). This decrease in SrCa is accompanied by a simultaneous increase in the MgCa ratios. This could be attributed to a single period of increased growth due to substantial increase in the availability of food. This single period of increased growth occurs ~7 years before death in sample R1162-0015 and ~8 years before death in sample R1162-0016. The corals were collected during the same R0POS dive from adjacent areas. It is likely that both *P. paceflear* samples have recorded the same event. Thus the trace element profiles may provide a unique method of correlating growth patterns in corals from proximal colones. A substantial, unusual increase in phytoplankton biomass was recorded in the waters off Washington, Oregon and British Columbia in the spring of 2002 (Wheeler et al, 2003; Thomas et al, 2003) due to the invasion of cool, saline subarctic waters (Freeland et al, 2003; Bograd & Lyan, 2003). A similar event could have occurred during the lifetime of R1162-0016 and -0015, leading to the spike in the Mg/Ca and decrease in the Sr/Ca. Thus, *Primnoa pacifica* may be useful in recording short term changes in productivity in the ocean, which reflect basin-scale changes in circulation. This attribute would be most useful in samples harvested live, where exact year of death is easily established.

The seasonal upwelling in this region is also influenced greatly by ENSO events, and a reduction in the nutrients and chlorophyll standing stock is known to occur in association with ENSO events (Carr, 2002; Corwith & Wheeler, 2002). A strong ENSO event should be recorded as a dramatic dip in the Mg/Ca ratios with a simultaneous spike in the StrCa ratios in response to decreased productivity. Thus if a coral could survive through a strong ENSO event it might also record changes occurring in surface productivity due to the changes in upwelling.

In sample R1165-002 the Mg/Ca and Sr/Ca ratios show a significant positive correlation and lower mean values for Mg/Ca and Sr/Ca, respectively, than the other two samples. This relationship is the same as that expected as a consequence of abiogenic carbonate precipitation (Gaetani & Cohen, 2006). The positive correlation between Mg/Ca and Sr/Ca noted in sample R1165-002 is thus indicative of the possibility that the calcite has been modified after the death of the coral and abiogenic calcite has substantially altered or replaced virtually the entire primary calcitie sketoon of R1165-

002. This replacement most likely occurred due to diagenetic alteration after the death of the coral. Thus, such a sample of *P. pactifica* is generally undesirable for use in paleoceanographic reconstruction. Use of SIMs microanalysis to assess the polarity of correlation between Mg/Ca and St/Ca in this species appears to be a useful test to quickly assess if individual samples have undergone partial or wholesale taphonomic alteration. If the Mg/Ca and St/Ca ratios are positively correlated, then such samples should be avoided in geochemical studies.

3.5.2 Growth rate:

The lowest radial growth rate recorded in this study was 0.22 \pm 0.09 mm,yr¹ for a sample of *P*. puc/floa from the Dixon entrance. This value closely matches the radial growth rate (0.18 \pm 0.03 mm/gr¹) for a colony of *P*. puc/floa from the Dixon entrance studied by Andrews et al, 2002. The growth rates for *P*. puc/floa reported here thus support the conclusions of this previous study that these corals are slow to recover from damage due to travaling and other disturbances

The average growth rate of P. resolutions from the North Atlantic (Table 3.4) are at least four times lower than the average growth rate of P. *paceflow* obtained in this study. Sherwood & Edinger (2009) attributed regional differences in growth rate of P. *resolutionforms* in the North Atlantic to differences in the intensity of tidal currents, suggesting that faster growth rates cord us to stronger tidal currents.

The California undercurrent is active in the region where samples of $P_{pacifica}$ for this study were collected. The peak speed of this current is 30 to 50 cm s⁻¹. This peak speed is generally lower than tidal current speeds reported for Hudson Strait and the NE Channel (Sherwood & Edinger, 2009). Thus, current velocity alone cannot account for the large difference in growth rate with respect to the other locations.

The California current system is one of the most productive ecosystems in the world (Carr, 2002). Since growth of most deep sea corals is dependent on POM flux, it is likely that the relative higher productivity in the NE Pacifie is the likely dominant cause of the higher growth rates of *P. pacifica* in comparison to *P. reselacionnis* from the Hudson strait and NE channel (Jones & Anderson, 1994; Carr, 2002; Thomas et al, 2003b).

3.5.3: Radiocarbon dating:

Since the radiocarbon ages of most of the samples were pre-bomb, and within error of each other, a precise age determination was not possible. It can be concluded, however, that none of the samples died recently (within the past 30 years).

3.6 Conclusions:

The annual radial growth rate of *Primmoa pacifica* calculated in this study is 0.23 to 0.58 mm,yr¹. The lowest reported growth rate closely coincides with the previously reported growth rate for *P. pacifical* from the Dixon entrance (Andrews el al, 2002). This leads further support to studies indicating that recovery time from damage due to trawling and similar distructores are high for this species (Andrews et al, 2002).

It was noted that growth rates in the calcite cortex and gorgonin/calcite mixed zone are virtually identical, thus indicating that the growth rate of the coral remains constant inspite of a change in the skeletal growth mode. Clear images of the growth rings in the calcite cortex region could not be obtained through radiational reflected light imaging. Scanning polished thin sections of *P. pacifica* using a HP Scanjet 3970 scanner proved to be of immense value in obtaining clear images of growth rings in the calcite cortex.

Because the growth rings that were isolated for radiocarbon dating were pre-bomb in age, it was extremely difficult to obtain a precise age for each ring, as calibrated most ages were well within error of each other. However, sample R1162-0015 appears to present a discernible growth trajectory (Figure 3.7) and this trajectory is not incompatible with the longevity of this sample deduced from growth ring counting.

The Mg/Ca and Sr/Ca ratios in this coral are likely controlled by surface water productivity changes rather than ocean bottom temperature. The changes in Mg/Ca and Sr/Ca thus have potential to record major changes in productivity, which in turn can provide evidence of other large scale annual and decadal changes in hydrographic conditions (cg., El Nino).

The relationship between Mg/Ca and Sr/Ca ratios can be used as an indicator of whether sub-fossilized specimens are still useful for radiocarbon dating or geochemical analysis - a significant positive correlation between these ratios indicating an abiogenic alteration in the calcite skeleton after death. While performing geochemical analyses on the calcite in *P. pacifica* it is extremely important to recognize thin gorgonin rings in the calcite cortex, as analyses performed proximal to these rings show large and deceptive positive excursions in trace element values.

3.7 References:

Amiel, A. J., Friedman, G. M., and Miller, D. S. (1973) Distribution and nature of incorporation of trace elements in modern aragonitic corals. *Sedimentology* 20, 1: 47-64.

Anderson, G. C. (1964) The seasonal and geographic distribution of primary productivity off the Washington and Oregon coasts. *Linnol Oceanogr.* 9, 284-302.

Andrews, A.H., Cordes, E., Heiferz, J., Cailliet, C.M., Coale, K.H., Somerton, D., Munk, K. and Mahoney, B. M.(2002). Aga and growth of a deep sea, habitat-forming octocorrallian (*Primosa* sp.) from the Galf of Alaska, with radiometric age validation. *Hytorbiology* at 91: 101-111

Boyer, T.P., J. L. Antonov, O. K. Barnnova, H. E. Gurcia, D. R. Johnson, R. A. Locamini, A. V. Mishonov, D. Seidov, I. V. Smolyar, and M. M. Zweng. 2009: World Ocean Database 2009; Chapter 1: Introduction, NOAA Atlan NESDIS 66, Ed. S. Levitus, U.S. Gov, Frinting Offices, Wash. D.C., 21 Gen. p. D/D

Boyle, E. A., (1981) Cadmium, zine, copper, and barium in foraminifera tests," *Earth. Planet. Sci. Lett.* 53, 1: 11-35.

Bograd, S. J., and R. J. Lynn. (2003). Anomalous Subarctic influence in the southern California Current during 2002. *Geophys. Res. Lett.* **30** (15):8020. Cairns S.D. and Bayer F.M. (2009). A generic revision and phylogenetic analysis of the Primnoidae (Cnidaria: Octocorallia). *Smithson Contrib Zool* 629:1–79.

Carr, M.-E. (2002), Estimation of potential productivity in Eastern Boundary Currents using remote sensing, Deep Sea Res., Part II, 49, 59–80.

Cohen, A., McConnaughey, T. (2003) Geochemical perspectives on coral mineralization. Rev Mineral Geochem 54:151-187

Cohen, A.L., Gaetani, G.A., Lundalv, T., Corliss, B.H., George, R.Y., (2006). Compositional variability in a cold-water scleractinian, *Lophelia pertusa*: new insights into "vital effects". *Geochem. Geophys. Geosyst.* 7, 012004

Collins, C. A., Ivanov, L.M. and Melnichenko, O.V. (2003), Seasonal Variability of the California Undercurrent: Statistical Analysis based on the Trajectories of Floats with Neutral Buovanev, *Phys. Oceanogr.*, **13** (3), 135–147

Corwith, H., and Wheeler, P.A. (2002), El Nin'o related variations in nutrient and chlorophyll distributions off Oregon, *Progr. Oceanogr.*, 54, 361–380.

Duineveld, G.C.A., Lavaleye, M.S.S., Berghuis E.M. (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). *Mar Ecol Prog* Ser 277:13–23 Edinger, E., Bouillier, J., Workman, G. Coral Distributions around Learnworth Bank, Northern Hrishsh Columbia, Canada: Influence of Surficial Geology and Tidal Currents Deep Sea Coral Symposium. 4th International Symposium on Deep Sea Corals, 2008 Wellington, New Zealand 928 Abstract or 6.04

Ferrier-Pagés C, Witting J, Tambutté E, Sebens KP (2003) Effects of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral *Stylophora pistillata*. *Coral Reefs* 22:229–240

Freeland, H. J., G. Gatien, A. Huyer, and R. L. Smith (2003), Cold halocline in the northern California Current: An invasion of subarctic water, *Geophys. Res. Lett.*, 30(3), 1141.

Gaetani, G. A., and A. L. Cohen (2006), Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies, *Geochim. Cosmochim. Acta*, 70, 4617–463

Heikoop, J.M., Hickmott, D.D., Risk MJ, Shearer CK, Atudorei V (2002) Potential climate signals from the deep-sea gorgonian coral *Prinnoa resedacformis*. *Hydrobiologia* 471: 117-124 Hickey, B.M., Banas, N.S., (2003). Oceanography of the Pacific Northwest coastal ocean and estuaries with application to coastal ecosystems. *Estuaries* 26 (48), 1010–1031.

Hickey, B., A. MacFadyen, W. Cochlan, R. Kudela, K. Bruland, and C. Trick (2006), Evolution of chemical, biological, and physical water properties in the northern California Current in 2005: Remote or local wind forcing?, *Geophys. Res. Lett.*, **33**, L22S02.

Houlbrèque, F., Tambutté, E. and Ferrier-Pagès, C. (2003). Effect of zooplankton availability on the rates of photosynthesis, tissue and skeletal growth of the scleractinian coral Stylophora pistillata J. Exp. Mar. Biol. Ecol. 296, 145-166.

Houlbrèque, F., Tambutté E, Allemand D, Ferrier-Pagès C (2005) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stelophora pistillata, J Exp Biol 207;1461–1469

Huyer, A. (1983) Coastal Upwelling in the California Current System. Prog. Oceanogr. 12:3 259-284

Jones, E. P. & Anderson, L. G. (1994). Northern Hudson Bay and Foxe Basin water masses, circulation and productivity. *Atmos. Ocean* 32: 361-374

Khripounoff, A., Vangriesheim, A. and Crassous, P. (1998) Vertical and temporal variations of particle fluxes in the deep tropical Atlantic. *Deep-Sea Res.* 1, 45, 193–216.
Kiriakoulakis, K., Fisher, E., WolV, G.A., Fréiwald, A., Grehan, A. and Roberts, J.M. (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their natrition. In: Freiwald A, Roberts J.M. (eds) Cold-suler corals and ecosystems. Springer, Berling, pp. 15–729

Layne, G.D. and Cohen, A.L., (2002), Advantages of Secondary Ion Mass Spectrometry for trace element studies of marine biomineralization, *Geochim. Cosmochim. Acta*, 66, A436 (abstr.)

Lea D.W., Shen G.T., Boyle E.A., (1989) "Coralline barium records temporal variability in equatorial Pacific upwelling," *Nature* 340, 6232: 373-376.

Lea, D.W. and Boyle, E.A. (1990), Foraminiferal reconstruction of barium distributions in water masses of the glacial oceans, *Paleoceanography* 5: 719–742.

Loubere, P., Fariduddin, M., (1999). Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on timescales from centuries to millennia. *Global Biogeochem. Cycles* 13,115-133.

Landry, M.R., Postel, J.R., Peterson, W.K., Newman, J., (1989). Broad-scale distribution patterns of hydrographic variables on the Washington Oregon shelf. In: Landry, M.R., Hickey, B.M. (Eds.), Coastal Oceanography of Washington and Oregon. Elsevier, Amsterdam (Chapter 1).

McNeely, R., Dyke, A. S., and Southon, J. R. (2006) Canadian marine reservoir ages, preliminary data assessment, Open File 5049, pp. 3. Geological Survey Canada.

Miller, M. W. (1995). Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. *Mar. Ecol. Prog. Ser.* **122**:217-225.

Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., Isdale, P.J., (1996) Mg/Ca thermometry in coral skeletons. *Science* 274, 961-963

Orejas, C., Gori, A., and Gili, J. M.(2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria, Corol Reefs, 27, p. 255.

Pace, M. L., 'Knauer G. A., Karl, D. M., and Martin, J. H. (1987) Primary production, new production, and vertical flux in the eastern Pacific Ocean. *Nature*, 325, 803-804.

Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsoy, C., Buck, C.E., Bur, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McComme, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J. and Weyhenmeyer, C.E. (2009) INTCAL 09 and MARINE09 Raadiocarbon age calibration curves, 0-50,000 vears Cal BP, *Radiocarbon*, 51 (4), 1111-115

Ribes, M., Coma, R., and Giil, J.M. (1999)Heterogenus feeding in benthic suspension feeders : The natural diet and feeding rate of the temperate gorgonian *Paramuricea clanuta* (Chidaria,Octocorallia) over a year cycle. *Mar Ecol Prog Ser*, 183, 125-137 Ribes, M., Coma, R., and Rossi, S. (2003) Natural feeding of the temperate asymbiotic octocoral gorgonian *Leptograpia sarmentosa* (Chidaria:Octocorallia). *Mar Ecol Prog Ser* 254, 141-15

Roark, E.B., Guilderson, T.P., Flood-Page, S.R., Dunbar, R.B., Ingram, B.L., Fallon, S.J. and McCulloch, M.T. (2005) Radiocarbon-based ages and growth rates for bamboo corals from the Gulf of Alaska. *Geophys Res Lett* 32:L04606

Sherwood, O.A., Heikcop, J.M., Sinclair, D.J., Scott, D.B., Risk, M.J., Shearer, C. and Azetus-Scott, K. (2005) Skeletal Mg/Ca in *Primmon reseductormics:* relationship to temperature. In: Freiwald A, Murray JM (eds) *Cold-nuter corals and ecosystems*. Springer, Berlin, p. 1061–1079

Sherwood, O.A., Heikoop, J.M., Scott, D.B., Risk, M.J., Guilderson, T.P. and McKinney, R.A. (2005b) Stable istopic composition of deep sea gorgonian corals *Primnoa* spp.: a new archive of surface processes. *Mar Ecol Prog Ser* 301:135–148

3-48

Sherwood, O.A., Heikoop, J.M., Scott, D.B., Risk, M.J., Guilderson, T.P. and McKinney, R.A. (2005c) Stable istopic composition of deep sea gorgonian corals *Primnoa* spp.: a new archive of surface processes. *Mar Ecol Prog Ser* 301:135–148

Sherwood, O.A., Scott, D.B. and Risk, M.J. (2006) Late Holocene radiocarbon and aspartic acid racemization dating of deep-sea octocorals. *Geochim Cosmochim Acta* 70:2806–2814

Sherwood O.A., Jamieson, R.E., Edinger, E.N. and Wareham, V.E. (2008) Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental alope: examination of trophic, depth and spatial effects. *Deep-Sea Res 1* 55:1392–1402

Sherwood, O.A. and Edinger E. (2009) Ages and growth rates of some deep-sea gorgonian and anthipatharian corals of Newfoundland and Labrador. *Can J Fish Aquat* Sci 66: 142–152

Smith, S.V., Buddemeier, R.W., Redalje, R.C., Houck, J.E., (1979). Strontium-calcium thermometry in coral skeletons. *Science* 204 (4391), 404–407. Stuiver, M., Polach, H.A., (1977). Discussion: reporting 14 C data. Radiocarbon 19, 355– 363

Tsounis, G., Orejas, C., Reynaud, S., Gili, J.M., Allemand, D., Ferrier-Pagès, C. (2010) Prey-capture rates in four Mediterranean cold water corals. *Mar Ecol Prog Ser* 398:149-155

Thomas, A. C., and P. T. Strub, (2001) Cross-shelf phytoplankton pigment variability in the California Current, *Cont. Shelf Res.*, 21, 1157–1190.

Thomas, A. C., Strub, P. T. and Brickley, P. (2003a). Anomalous satellite measured chlorophyll concentrations in the northern California Current in 2001 – 2002, *Geophys. Res. Lett.*, 30(15), 8022

Thomas, A.C., Townsend, D.W., Weatherbee, R., (2003b). Satellite measured phytoplankton variability in the Gulf of Maine. Cont. Shelf. Res. 23, 971–989

Reimer, P.J., Baillis, M.G.L., Band, E., Bayliss, A., Besk, J.W., Blackwell, P.G., Bronk Rammey, C., Buck, C.E., Burn, G.S., Edwards, R.L., Fredrich, M., Grootes, F.M., Guilderson, T.P., Hights, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaitser, K.F., Kromer, B., McCormar, F.G., Manning, S.W., Enimer, W.N., Richard, D.A., Southon, J.R., Talamo, S., McCormar, S.G., Manning, S.W., Enimer, W.N., Richard, D.A., Southon, J.R., Talamo, S., Koroman, S.M., Steiner, B.W., Ristor, M., Starkov, D.A., Southon, J.R., Talamo, S., Koroman, E.G., Manning, S.W., Enimer, D., W., Richard, D.A., Southon, J.R., Talamo, S., Koroman, E.G., Manning, S.W., Enimer, D., Kurn, K.J., Kator, K.J., Kurn, S.J., Kurn, S. Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E.(2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0– 50,000 years cal BP. *Radiocarbon* 51(4):1111-1150.

Weber, J. N. & Woodhead, P. M. J. (1972) Stable isotope ratio variations in nonseleractinian coelenterate carbonates as a function of temperature. *Mar. Biol.*, 15, 293-297

Weinbauer, M. G., Brandstatter, F., and Velimirov, B. (2000), On the potential use of magnesium and strontium concentrations as ecological indicators in the calcite skeleton of the red coral (Corallium rubrum), *Mar. Biol.*, 137, 801–809.

Wheeler, P. A., Huyer, A. and Fleischbein J. (2003), Cold halocline, increased nutrients, and higher chlorophyll off Oregon in 2002, *Geophys. Res. Lett.*, 30(15), 8021

CHAPTER 4: SUMMARY AND CONCLUSIONS

Since many deep sea cords live in environments that are not subject to major temperature or illumination changes, identifying the dominant factors influencing changes in the composition of the skeltal material is of utmost importance in understanding their application as paleoceanographic archives. One of the aims of our research was to be able to identify these factors.

In our detailed study of two species of corals from the Dixon entrance and the Olympic Coast National Marine Sanchary, we have determined that the changes in trace element geochemistry are highly reflective of surface water productivity changes. Since changes in productivity are greatly influenced by upwelling in the Northeast Pacific, it is highly likely that these corals are capable of preserving records of the basin scale changes.

4.1 Research highlights:

4.1.1 Stylaster campylecus parageus:

It was observed that *Stylaster campylecus parageus* remineralizes its skeleton as it grows. However, using SEM and SIMS it is possible to obtain useful trace element profiles from these corals, despite this remineralization.

SEM imaging on etched basal cross sections clearly revealed growth banding in the coral skeleton, otherwise not visible using traditional imaging methods. SrCa values seemed to increase twice within a distance covering approximately 12 growth bands, while the opposite behaviour was noted in Mg/Ca and Na/Ca. The temperature variation in the area of collection is less than ± 1 °C; and could not account for this observed variation in individual trace element values. These variations in trace element values were determined to be primarily influenced by surface water productivity. Based on the observed cyclicity in the Na/Ca, Mg/Ca and Sr/Ca profiles, and the reported biannual increase in productivity that occurs in the area of collection (Landry et al, 1999), it was determined that the arowth hands are monthly.

The radial growth rate of *S. campylecus* was observed to be higher than those published for other deep sea corals. Its axial growth rate was comparable to other deep sea corals.

4.1.2: Primnoa pacifica:

The lowest reported growth rate for $P_{pocifica}$ in this study is similar to that previously reported for $P_{pacifica}$ from the Dixon entrance (Andrews et al, 2002). It was demonstrated that clear images of the growth rings in the calcite cortex region of this Primoid could only be obtained by transmissive scanning of polished thin sections of $P_{pacifica}$ using a high resolution flat-bed scanner. An independent estimation of the growth rates could consequently be obtained from the calcite cortex, and indicated that growth rates of the calcite cortex are similar to the growth rates of the gorgonin/calcite mixed zone.

The relationship between Mg/Ca and Str/Ca ratios can be used as indicator of whether the skeletal material has undergone early stage digenesis or alteration. A

4-2

significant positive correlation between these ratios indicate abiogenic alteration of the calcite akcleton, probably during post-mortem early diagenesis. It was noted that SIMS analyses performed proximal to the gorgonin rings show large positive excursions in trace element values.

The Mg/Ca and Sr/Ca ratios in this coral are likely controlled by surface water productivity changes rather than ocean bottom temperature.

4.2 Implications of results:

4.2.1: Stylaster campylecus parageus:

The remineralization observed in the skeleton of *Scampylecus* precludes validating the age or growth rate of the coral through traditional radiometric methods. Using SIMS and SEM imaging appear to be the only viable method of obtaining geochemical profiles from *Scampylecus* exclusively from non-remineralized areas. The identification of monthly periodicity of the growth banding in *Scampylecus* is seecially valuable because it novides an alternative method to determine the lifestan of

a species which cannot be dated through traditional radiometric methods.

The higher radial growth rate calculated in *S.campylecus* is empirically validated by the fact that Stylasterids are one of the earliest recolonizing species observed after an area has been bottom trawled (Althaus et al, 2009; Williams et al, 2010).

4.2.2: Primnoa pacifica:

While performing geochemical analyses of the calcite in *P. pacefilea* it is extremely important to recognize thin gorgonin rings in the calcite cortex, as analyses performed proximal to these rings show large positive excursions in trace element values. A significant positive correlation between Mg/Ca and Sr/Ca ratios indicate an abalesenalteration in the calcite skeleton after death. If such an observation is noted in any speciment of *P. pacefice* it is likely unsuitable as a paleoceanographic archive.

The similar growth rate obtained in the gorgonin/calatite mixed zone and the calcite cortex indicates that the growth rate of the coral remains constant in spite of a change in the skeletal growth mode. This validates that this assumption can be used to extrapolate ages in growth ring and aging studies of Primnoid species where only mixed (grognini-calcito) zone rings are contexed.

The close similarity in the growth rate reported in this study and the single previously determined growth rate for this species, lends further support to studies indicating that recovery time from damage due to trawling and similar disturbances are high for *P pacifica* (Andrews et al. 2020).

The growth rate of *Ppucifica* determined in this study is at least 4 times higher than the growth rate reported for a similar grogonian species in the North Atlantic. This higher growth rate is likely due to the relatively higher productivity in the area where our samples of *Ppucifica* were collected.

The changes in skeletal Mg/Ca and Sr/Ca have potential to record major changes in productivity, which in turn can provide evidence of other large scale changes in hydrographic conditions (eg: El Nino).

4-4

4.3 Directions for future work:

It would be informative to analyze the δ^{10} O values using SIMS, in profiles that are coincident with the current trace element profiles in the samples of *S. campplecus* and *P. pacifica*. Such analyses would help confirm that there are no exclusive short duration changes in water temperature that are recorded by the coral, δ^{10} O is greatly sensitive to temperature variation (Smith et al., 1997), if the δ^{10} values are constant through the profile it would further clarify that surface biological productivity variation is the primary control on sechemistry in *S. camprecas*.

In order to confirm the monthly periodicity of the growth bands in Scampylecus it would be useful to perform a similar geochemical analyses as described in Chapter 2 on a specimen of Stylaster from an area with a different surface productivity and/or temperature regime. It would also be useful to perform detailed radial sampling of individual Scampylecus colonies from a single location in order to search for matching patterns in growth banding and/or trace element profiles.

Timed harvesting experiments designed to determine the growth rate of the coral followed by detailed radial sampling and microanalysis could explicitly confirm the periodicity of the growth bands.

It would also be useful to perform trace element analyses, similar to those described in Chapter 3 of this thesis, on a sample of *P* pareflar that was collected live (hut was relatively long lived) from waters off Washington or Oregon and lived through the uper 2002, In the sering of 2002 the phytophatknot biomass more than doubled due to an invasion of cold halocline waters (Wheeler et al, 2003; Thomas et al, 2003; Preeland et al, 2003; Bograd & Lynn, 2003). If one could perform a high resolution transect of Mg/Ca and Sr/Ca including the year 2002 in the calcite cortex of $P_{pacefleca}$, it should show a spike in Mg/Ca values and a simultaneous drastic dip in Sr/Ca values corresponding to this year. Such an observation would confirm that $P_{pacefleca}$ is capable of recording basin scale changes in circulation patterns that directly or indirectly influence productivity channes.

4.4 References:

Althaus, F., Williams, A., Schlacher, T.A., Kloser, R.J. and others (2009) Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. *Mar Ecol Prog* Ser 397:279-294

Andrews, A.H., Cordes, E., Heifer, J., Cuilliet, G.M., Coule, K.H., Someton, D., Munk, K., Mahoney, B. M. (2002) Agg and growth of a deep sea, habitat-forming octoornallian (*Primosa* sp.) from the Gulf of Alaska, with radiometric age validation. *Hydrobiologia* 471: 101-111

Bograd, S. J., and Lynn, R. J. (2003). Anomalous Subarctic influence in the southerm California Current during 2002. *Geophys. Res. Lett.* 39 (15):8020. Freeland, H. J., Gatien, G., Huyer, A. and Smith, R.L. (2003), Cold halocline in the northern California Current: An invasion of subarctic water, *Geophys. Res. Lett.*, 30(3), 1141.

Landry, M.R., Postel, J.R., Peterson, W.K., Newman, J. (1989). Broad-scale distribution patterns of hydrographic variables on the Washington Oregon shelf. In: Landry, M.R., Hickey, B.M. (Eds.), Coastal Oceanography of Washington and Oregon. Elsevier, Amsterdam (Chapter 1).

Smith, J.E., Risk, M.J., Schwarez, H.P. and McConnaughey, T.A. (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. *Nature* 386, 818 – 820

Thomas, A. C., Strub, P. T. and Brickley P. (2003), Anomalous satellite measured chlorophyll concentrations in the northern California Current in 2001 – 2002, *Geophys. Res. Lett.*, 30(15), 8022.

Wheeler, P. A., Huyer, A. and Fleischbein, J. (2003), Cold halocline, increased nutrients, and higher chlorophyll off Oregon in 2002, *Geophys. Res. Lett.*, 30(15), 8021

4-7

Williams, A., Schlacher, T.A., Rowden, A.A., Althaus, F., Clark, M.R., Bowden, D.A., Stewart, R., Bax, N.J., Consalvey, M. and Kloser, R.J. (2010) Seamount megabenthic assemblages full to recover from trawling impacts. *Marine Ecology*, 31(Suppl. 1), 183–199.

Figure 1: X-ray diffraction result for Sample 232

ł

A-2

SEM images of Stylaster campylecus paragens

Sample 241:

Figure 1. Composite SEM image of radial cross-section of Sample 241 of Spilaster comprisers parageus (etched for 70 minutes with 0.1N HCI).

Figure 2 :Composite SEM image of radial cross-section Sample 241 of Splaster campylecus parageus (etched for more than70 minutes with 0.1N HCI).

Figure 3 : SEM image of Sample 241 of Stylaster campylecus parageus (a) growth band (dotted lines are used to indicate the position of the growth band (b) fan shaped aragonite needles.

Figure 4: Sample 241 : (a) Edge of growth canal (b, c) Center of the coral- extensively remineralized with aragonite overprinting primary growth (d) Image of a growth canal surrounded by secondary aragonite.

Figure 5: Sample 241 - SEM images of a growth canal over the SIMS transect

Figure 6. Composite SEM image of radial cross-section Sample 232 of Stylaster compylecus parageus (etched for 70 minutes with 0.1N HCD).

Figure 7: Sample 232 : (a) Growth band (b) Center of the coral- extensively remineralized with aragonite overprinting primary growth (c, d) Image of a growth canal next to the SIMS transect Figure 8. Composite SEM image of the radial cross-section of Sample 238 of Stylaster campylectus parageus (etchod for 70 minutes with 0.1N HCI).

Figure 9 : Composite SEM image of radial cross-section Sample 237 of Sylaster campylecus parageus (etched for 70 minutes with 0.1N HCl).

Figure 10: Composite SEM image of radial cross-section of Sample 235 of Stylaster campylecus parageus (etched for 70 minutes with 0.1N HCI).

Figure 12: (a, b) Growth banding in Sample 235 of S campylecus

1	2
į	5
5	5
0	0
ł	2
5	Ş
1	5
ē	2
1	
	2
i	
-	Ş
- D -	101 7.00
and for D	101 F1F1
C date for D -	NALT TOT LIDE C
CINC Jobs for D	MALT TO LEAD OF ALL OF
C. CIMC Join for D	C OLVIO UNU IN LUI L'M
DIV C. CIMC Jate for D	OLA C. SLAIS UND. IN LUC
DUNIN C. CIMC Job G. D.	ENDLY C. SLYIS UND 101 L.M.

File name	885r/42Ca	250	24Mg/42Ca	8	1388a/42Ca	220	23Na/42Ca	052	Distance from outer edge	
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		(mn)	
Primnos_2_@1	2.7365	0.0779	1660.96	3.8933	0.0078	0.0025	31.1587	1.2124	0	
Primnoa_2_@2	2.6455	0.0573	97.0619	2.6840	0.0066	0.0073	30.7253	0.6189	25	
Primnoa_2_@3	2.7080	0.0734	94.7317	2.4985	0.0056	0.0037	29.7148	1.2427	50	
Primnoa 2 @4	2.7084	0.0671	95.8129	3.4716	0.0054	0.0025	29.4796	0.9438	75	
Primnoa_2_@5	2.6648	0.0649	96.5341	2,4992	0.0070	0.0036	29.4859	0.6357	100	
Primnoa_2_@6	2.6440	0.0823	97.2888	2.8526	0.0057	0.0017	29.9898	0.6707	125	
Primnoa_2_@7	2.6238	0.0729	98.0269	2.8535	0.0059	0.0008	30.0481	0.8066	150	
Primnoa_2_@8	2.6349	0.0613	91 2350	3.1489	0.0054	0.0015	27.8023	0.6205	175	
Primnoa_2_@9	2.5689	0.0670	92.6241	2.8664	0.0067	0.0010	29.3419	0.7355	200	
Primnoa_2_@10	2.5399	0.0546	97.6102	2.8568	0.0064	0.0015	31.4372	0.7387	225	
Primnoa 2 @11	2.6096	0.0466	98.4615	2,8680	0.0068	0.0010	32.1503	1.2738	250	
Primnoa_2_@12	2.6096	0.0409	95.5166	3.5592	0.0057	0.0011	31.3117	0.5416	275	
Primnoa_2_@13	2.5835	0.0415	94.2611	2,8891	0.0061	0.0013	29.6847	0.3771	300	
Primnoa_2_@14	2.5555	0.0563	93.8878	2.2470	0.0066	0.0013	29.6831	0.6213	325	
Primnoa_2_@15	2.5951	0660.0	91.1113	3.0259	0.0066	0.0009	30.1270	1.1576	350	
Primnoa_2_@16	2.6877	0.0802	93.4663	2.6203	0.0058	600000	31.1929	0.6551	375	
Primnoa_2_@17	2.6648	0.0705	90.9350	2,2004	0.0061	0.0012	29.5023	0.6457	00*	
Primnoa_2_@18	2.6418	0.0959	99.2535	4.5733	0.0058	0.0011	32.8245	1.3240	575	
Primnoa_2_@19	2.6093	0.0744	92-9754	4.5344	0.0050	0.0012	31.3481	1.3902	600	
Primnoa_2_@20	2.6600	0.0707	92.2036	3.2140	0.0059	6000'0	32.2951	0.6500	625	
Primnoa_2_@21	2.6235	0.0649	92.6790	3.2185	0.0061	0.0016	32.1066	1.0918	650	
Primnoa_2_@22	2.6929	0.0652	87.7556	2.1979	0.0066	0.0013	31,4806	0.5918	675	

File name	885r/42Ca	250	24Mg/42Ca	250	1388a/42Ca	250	23N5/42Ca	250	Distance
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		(nm)
Primnos_2_@23	2.6345	0.0813	87.8651	2.5920	0.0063	0.0024	29.9063	0.4025	700
Primnoa_2_@24	2.6570	0.0718	91.9349	2.6561	0.0063	0.0020	30.2430	0.7824	725
Primnoa_2_@25	2.6237	0.0433	92.1690	3.8503	0.0061	0.0021	29.6376	0.8704	750
Primnoa_2_@26	25795	0.0430	1651.26	2.4806	0.0063	0.0024	32.1805	0.9377	775
Primnoa_2_@27	2.5670	0.0465	91.5847	3.0122	0.0063	0.0011	31.2597	0.5105	800
Primnoa_2_@28	2.5210	0.0663	84.8944	2.7171	0.0076	0.0016	27.1459	0.6503	825
Primnoa_2_@29	2.4963	0.0564	84.8182	3.4199	0.0075	0.0017	28.4912	0.6972	850
Primnoa_2_@30	2.4679	0.0531	84.9854	2.6046	0.0071	0.0020	29.0490	0.5604	875
Primnoa_2_@31	2.5578	0.0622	88.5422	2.3065	0.0067	0.0014	29.3786	0.5844	006
Primnoa_2_@32	2.6004	0.0549	92.1369	3.7326	0.0053	0.0012	30.2814	1.0370	925
Primnoa_2_@33	2.5433	0.0829	91.1301	2.9436	0.0063	0.0013	30.4992	0.8367	950
Primnoa_2_@34	2.5709	6760'0	84.5974	2.0279	0.0073	0.0036	29.1306	1.0938	975
Primnoa_2_@35	3.1353	0.0628	81.3282	2.2259	0.0075	0.0012	31.1126	0.9269	1000
Primnoa_2_@36	2.7086	0.0718	121.2402	8.3490	0.0065	0.0013	31.1982	1.0725	1025
Primnoa_2_@37	2.8011	0.0706	148.2906	7.2698	0.0054	0.0016	26.1836	0.7813	1050
Primnos_2_@38	2.7644	0.0693	143,4280	5.9399	0.0052	0.0014	23.6886	0.4693	1075
Primnos_2_@39	2.6010	0.0800	102.4124	3.9033	0.0064	0.0014	25.0629	0.8804	1100
Primnoa_2_@40	2.5367	0.0620	92.7346	3.3038	0.0071	0.0012	28.7706	0.7720	1125
Primnoa_2_@41	2.5255	0.0905	95.9643	2.5598	0.0059	0.0010	29.8455	1.2812	1150
Primnoa_2_@42	2.6060	0.0840	93.1799	3.1534	0.0058	0.0015	28.6744	1.1344	1175
Primnoa_2_@43	2.5970	0.0696	93.6811	2.8708	0.0059	0.0012	29.5578	0.9638	1200
Primnoa_2_@44	2.5705	0.0822	90.7910	4.3828	0.0062	0.0013	29.1143	1.4142	1225
Primnoa_2_@45	2.5775	0.0915	87,4663	2.2021	0.0070	0.0021	28.1343	0.7713	1250

Ś

Pile name	BBSr/42Ca	062	24Mg/42U8	250	13888/4208	067	25N8/42Ca	062	Distance
									from outer edge
	mmol/mol		mmol/mol	anton Succession	mmol/mol		mmol/mol	STADOLANS	(mn)
Primnoa_2_1@1	2.5638	0.1283	87.3744	5.2519	0.0059	0.0013	28.8212	1.1045	1275
Primnoa_2_1@2	2.5713	0:0930	91.5578	4.0318	0.0056	0.0019	31.1013	0.7959	1300
Primnos_2_1@3	2.6026	0.1487	94.0290	3.6082	0.0056	0.0011	30,4337	0.8309	1325
Primnoa_2_1@4	2.5311	0.0896	98.4652	3.9312	0.0061	0.0012	31.3376	1.0770	1350
Primnoa_2_1@5	2.6168	0.0772	92.2841	3.7594	0.0057	0.0010	29.9360	1.0158	1375
Primnoa_21@6	2.6294	0.0785	1919.98	3.7723	0.0061	0.0013	29.6745	1.2229	1400
Primnoa_2_1@7	2.6004	0.0720	93.3355	3.9362	0.0060	0.0013	30.3378	0.6364	1425
Primnoa 2 1@8	2.5463	0.0589	90.5579	3.8213	0.0070	0.0013	29.2674	0.9683	1450
Primnoa_2_1@9	2.5339	0.0416	89.1851	4.5959	0.0071	0.0021	28.4193	0.4474	1475
Primnoa_2_1@10	2.5342	0.0987	90.6569	3.3140	0.0065	0.0024	28.9648	0.6233	1500
Primnoa_2_1@11	2.5043	0.0748	94.0982	3.3317	0.0056	0.0013	29.6447	1.4635	1525
Primnoa_2_1@12	2.5299	0.0907	95.0509	3.9546	0.0058	0.0016	29.9655	0.8047	1550
Primnoa_2_1@13	2.5343	0.0786	96.2799	4.1267	0.0056	0.0010	30.4007	0.9157	1575
Primnoa_2_1@14	2.5628	0.0757	96.0103	3.6014	0.0060	0.0014	29.6595	1.1715	1600
Primnoa_2_1@15	2.5819	0.0706	92.4335	4,8374	0.0062	0.0014	28.5910	0.7695	1625
Primnoa_2_1@16	2.6106	0.0710	94.5828	5,0045	0.0058	0.0011	30.1093	0.5792	1650
Primnos_2_1@17	2.5589	0.0979	98.8035	4.7163	0.0056	0.0011	30.9428	0.7909	1675
Primnos_2_1@18	2.5778	0.1171	98.2927	3.8229	0.0060	0.0015	30.5630	1.3803	1700
Primnoa_2_1@19	2.5479	0.1013	100.4366	3.2419	0.0242	0.1297	31.5385	1.4233	1725
Primnoa_2_1@20	2.6039	0.1040	93.2417	4.9692	0.0087	0.0088	27.4281	1.2980	1750
Primnoa_2_1@21	2.6125	0.1130	95.3727	4.0128	0.0063	0.0012	28.7377	0.8192	1775
Primnos_2_1@22	2.6455	0.1076	96.9022	4.3554	0.0052	0.0021	28.8156	1.1151	1800
Primnos_2_1@23	2.6394	0.1325	95.4628	3.4810	0.0058	0.0036	28.9208	1.5512	1825
Primnos_2_1@24	2.5617	0.1219	97.2905	4.4134	0.0056	0.0013	29.2614	0.9615	1850
Primnoa_2_1@25	2.5372	0.0924	98.1080	3.9915	0.0060	0.0017	28.7271	1.2607	1875

÷ C

File name	885r/42Ca	250	24Mg/42Ca	250	138Ba/42Ca	250	23Na/42Ca	250	Distance
									trom outer edge
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		(mn)
Primnoa 2 1@26	2.5194	0.1341	96.6792	5.9928	0.0055	0.0012	30.0874	1.7083	1900
Primnoa_2_1@27	2.6093	0.0971	96.8260	4.8481	0.0056	0.0014	30.8544	0.7570	1925
Primnoa_2_1@28	2.5806	0.0923	99.6467	5.3840	0.0056	0.0019	32.3971	1.2475	1950
Primnoa_2_1@29	2.5997	0.0795	97.5388	5.5001	0.0052	0.0019	31.0330	1.0110	1975
Primnoa_2_1@30	2.6259	0.1407	96.3281	6.1248	0.0057	0.0012	30,8513	0.7264	2000
Primnoa_2_1@31	2.6383	0.1056	96.4598	2,9009	0.0062	0.0015	30.7359	2.1215	2025
Primnoa_2_1@32	2.5990	0.1268	97.5416	4.2577	0.0061	0.0016	31.5545	0.9164	2050
Primnoa_2_1@33	2 5802	0.0945	97.3616	3.1244	0.0061	0.0020	31.4779	0.8448	2075
Primnoa 2 1@34	2.6051	0.1022	93.1141	4.1882	0.0060	0.0017	29.3059	0.7116	2100
Primnou_2_1@35	2 5939	0.0919	94.0759	4.5762	0.0052	0.0012	31.7755	1.0675	2125
Primnos 2_1@36	2.5683	0.0860	96.5921	3.9144	0.0061	0.0079	32.6260	1.0670	2150
Primnos_2_1@37	2.6338	0.0966	96.9019	4.1340	0.0053	0.0019	31.3822	0.6614	2175
Primnos_2_1@38	2.6284	0.1023	95.8569	4.4059	0.0057	0.0011	31.0518	1.5364	2200
Primnos 2 1@39	2.6201	0.1190	92.8131	5.3689	0.0065	0.0012	29.2231	0.6786	2225
Primnos 2 1@40	2.6411	0.0995	94.2438	4.5359	0.0062	0.0010	28.8781	0.5975	2250
Primnoa 2 1@41	2.6123	0.1088	97.6431	5.5774	0.0065	0.0017	30.2878	1.1780	2275
Primnoa_2_1@42	2.5888	0.0958	98.1513	S.0051	0.0057	0.0016	30.6250	0.9951	2300
Primnoa_2_1@43	2,6095	0.1114	94.4831	5.8587	0.0057	0.0015	28.9933	0.8874	2325
Primnoa_2_1@44	2.6161	0.1481	95.8915	5.5010	0.0065	0.0087	29.3750	0.9562	2350
Primnoa_2_1@45	2.6552	0.0923	92.6016	4.3098	0.0054	6000'0	29.2182	1.4863	2375
Primnoa 2 1@46	2.6259	0.1214	96.4316	S.0001	0.0053	0.0014	31.0039	0.8315	2400
Primnoa 2 1@47	2.5815	0.1349	98.3143	61649	0.0054	0.0015	30.1568	0.8787	2425
Primnoa_2_1@48	2.6281	0.0733	95.3029	609519	0.0061	0.0013	30.7619	1.1176	2450
Primnoa 2 1@49	2.6616	0.1308	92.8700	5.4583	0.0056	0.0017	30.5066	1.0782	2475
Primnoa_2_1@50	2.6698	0.1779	94.2079	3.6384	0.0060	0.0013	30.3914	1.4136	2500

÷.

File name	885r/42Ca	250	24M8/42Ca	250	138Ba/42Ca	25D	Z3Na/42Ca	250	Distance
									from outer edge
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		(mn)
Primnoa_2_1@51	2.6597	0.0880	98.8512	4.6996	0.0054	0.0015	31.5655	1.4770	2525
Primnoa_21@52	2.6371	0.1299	101.2050	4.1443	0.0056	0.0017	31.7636	1.4613	2550
Primnoa_2_1@53	2.6310	0.1063	105.7117	6.9902	0.0048	0.0016	32.3607	0.8957	2575
Primnoa_2_1@54	2.6450	0.1203	109.4276	6.6723	0.0052	0.0012	34.0171	1.0457	2600
Primnoa_2_1@55	2.6037	0.0806	103.1957	5.9634	0.0050	0.0013	32.0800	1.5041	2625
Primnoa_21@56	2.6405	0.1223	100.2300	6.1707	0.0057	0.0012	32.0481	1.1308	2650
Primnoa_2_1@57	2.6499	0.1176	98.7658	5.2458	0.0055	0.0013	33.0679	1.0075	2675
Primnoa_2_1@58	2.5548	0.1266	98.9856	6:0659	0.0061	0.0013	31.5536	1.2479	2700
Primnoa 2 1@59	2.5940	0.1068	102.7687	5.7039	0.0052	0.0012	34.9034	1.7177	2725
Primnoa_2_1@60	2.5553	0.1209	98.7191	4.3653	0.0060	0.0013	30.7486	1.2068	2750
Primnos 2 1@61	2.5835	0.0930	99.2964	6.0430	0.0056	0.0014	29.9441	1.5022	2775
Primnoa_2_1@62	2.4981	0.1167	103.7728	5.9346	0.0054	6000'0	31.2320	1.3655	2800
Primnoa_2_1@63	2.5524	0.1609	100.8215	5.5781	0.0054	0.0012	29.6352	1.6527	2825
Primnoa_2_1@64	2.5328	0.1260	104.5334	6.6178	0.0057	0.0018	31.4046	1.4088	2850
Primnoa_2_1@65	2 5866	0.1461	99.1657	5.7668	0.0058	0.0017	30.4299	1.5223	2875
Primnoa_21@66	2.5862	0.1232	96.6331	5.4837	0.0065	0.0012	29.8208	1.2931	2900
Primnoa_2_1@67	2.5405	0.1376	97.0235	5.7644	0.0063	0.0014	28.9876	1.4129	2925
Primnos_2_1@68	2.5525	0.0952	98.7465	8.0085	0.0062	0.0015	29.7983	1.2502	2950
Primnoa_2_1@69	2.5326	0.1157	98.6134	6.9516	0.0057	0.0011	29.8031	1.2523	2975
Primnoa_2_1@70	2.5062	0.1438	101.8439	6.6504	0.0047	0.0012	30.6911	1.0785	3000
Primnoa_2_1@71	2.5275	0.1291	99.8410	6.7553	0.0061	0.0010	29.6290	1.6122	3025
Primnoa_2_1@72	2.4886	0.1135	95.3200	6.6211	0.0064	0.0016	29.0128	1.2454	3050
Primnoa_2_1@73	2.6017	0.0401	93.7998	1.9706	0.0063	0.0017	31.3912	0.6479	3075
Primnoa_2_1@74	2.4262	0.2061	101.6928	9.3229	0.0058	0.0015	28.0991	1.4844	3100
Primnoa_21@75	2.4852	0.1516	100.6516	7.8959	0.0059	0.0011	29.8524	1.2250	3125

C- 5 -

File name	885r/42Ca	250	24Mg/42Ca	250	1388a/42Ca	250	23Na/42Ca	2SD	Distance
									from outer edge
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		(mu)
Primnoa_2_1@76	2.4671	0.0895	103.6303	8.0522	0.0052	0.0012	31.2612	1.1775	3150
Primnoa_2_1@77	2.5147	0.1093	102.9377	6.8031	0.0054	0.0010	30.6333	1.1142	3175
Primnoa_2_1@78	2.5437	0.1045	100.9551	7.7038	0.0053	0.0016	29.1214	1.6342	3200
Primnoa_2_1@79	2.2693	0.0462	125.8174	10.2005	0.0053	0.0016	27.3113	1.5666	3225
Primnos_2_1@80	2.2687	0.0785	120.2033	6.0175	0.0055	0.0070	26.9910	0.4764	3250
Primnos 2_2@1	2.6238	0.0509	93,8113	2.9513	0.0061	0.0011	26.7670	0.5043	3275
Primnos_2_2@2	2.6252	0.0449	92.3985	1.7458	0.0066	0.0014	24.2682	1.0352	3300
Primnos_2_2@3	2.6143	0.0531	89.3460	1.9779	0.0068	0.0016	24.5320	1.0510	3325
Primnoa_2_2@4	2.5936	0.0417	88.1591	1.4587	0.0070	0.0016	26.2306	0.6558	3350
Primnoa_2_2@5	2.6052	0.0646	92.6453	1.8908	0.0054	0.0012	25.4949	0,4034	3375
Primnoa_2_2@6	2.6219	0.0629	93.0708	1.2353	0.0061	0.0018	25.6734	1.6713	3400
Primnoa_2_2@7	2.6486	0.0513	93.9515	1.6812	0.0068	0.0013	28.4038	0.9696	3425
Primnoa_2_2@8	2.6576	0.0375	95.4313	1.7664	0.0058	0.0014	25.3964	0.4117	3450
Primnoa_2_2@9	2.6778	0.0491	95.7109	2.0699	0.0060	0.0007	24.8794	1.2168	3475
Primnoa_2_2@10	2.6431	0.0493	91.9292	1.7689	0.0133	0.0365	25.4871	1.1926	3500
Primnoa_2_2@11	2.6484	0.0458	93.4476	1.3917	0.0085	0.0095	26.4598	0.6455	3525
Primnoa_2_2@12	2.6624	0.0544	95.0511	2.0190	0.0064	0.0009	26.0251	0.4038	3550
Primnoa_22@13	2.5900	0.0608	97.5386	1.6223	0.0068	0.0013	27.8457	1.1723	3575
Primnoa_2_2@14	2.6058	0.0321	98.2639	1.5719	0.0102	0.0283	28.4829	0.6362	3600
Primnoa_22@15	2.6488	0.0474	94.8694	1.5931	0.0055	0.0011	24.8867	0.3712	3625
Primnoa_2_2@16	2.6666	0.0325	94.4212	2.2280	0.0062	0.0013	25.3655	0.8988	3650
Primnoa_2_2@17	2.6467	0.0601	91.2881	0.9002	0.0063	0.0011	26.9467	0.9981	3675
Primnoa_2_2@18	2.6107	0.0314	92.7524	1.4388	0.0064	0.0011	25.2304	0.3354	3700
Primnoa_2_2@19	2.5914	0.0381	93.4247	1.8871	0.0069	0.0009	24.5076	0.5572	3725
Primnos_2_2@20	2.5223	0.0420	96.4957	1.3252	0:0030	0.0149	27.5864	1.8773	3750

C- 6 -

File name	885r/42Ca	250	24Mg/42Ca	250	138Ba/42Ca	250	23N8/42Ca	250	Distance	
									from outer e	ege
	mmol/mol		mmol/mol		mmo//mol		mmol/mol		(mn)	Contraction of the local distribution of the
Primnoa_2_2@21	2.6123	0.0415	92 9818	1.1284	0.0060	0.0011	27.0720	0.6387		3775
Primnoa_2_2@22	2.6221	0.0476	96.8572	1.7576	0.0057	0.0014	26.3042	0.6675		3800
Primnoa_2_2@23	2.7412	0.2392	92.9136	2.1928	0.0124	0.0484	24.5474	1.0368		3825
Primnoa_22@24	2.6863	0.0467	92.7559	1.6536	0.0232	0.0716	26.7266	0.7913		3850
Primnoa_2_2@25	2.6892	0.0449	88.7953	11011	0.0067	0.0012	26.0712	0.3531		3875
Primnoa 2 3@1	2.6760	0.0628	90.8418	1.7193	0.0135	0.0516	27.4041	0.8470		3900
Primnoa 2 3@2	2.6653	0.0738	91.5713	1.7300	0.0121	0.0358	26.5383	0.5060		3925
Primnoa 2 3@3	2.6883	0.0444	88.4799	2.1461	0.0108	0.0302	24.6979	1.3638		3950
Primnoa 2 3@4	2.6323	0.0794	89.4450	1.4150	0.0108	0.0298	27.0382	1.3085		3975
Primnoa_2_3@5	2.6345	0.0567	89.3225	1.8096	0.0082	0.0088	26.4507	0.7579		4000
Primnoa 2 3@6	2.6069	0.0659	94.9319	1.1421	0.0067	0.0035	27.1120	0.9183		4025
Primnoa 2 3@7	2 5323	0.0700	96.0389	1.6015	0.0070	0.0041	26.9858	1.4879		4050
Primnoa 2 3@8	2.6339	0.0572	92.3640	1.2722	0.0064	0.0038	27.1386	0.4927		4075
Primnoa_2_3@9	2.6152	0.0512	94.4993	1.9572	0:0050	0.0012	26.0805	0.3173		4100
Primnoa_2_3@10	2.6403	0.0648	87.3244	3.7930	0.0075	0.0011	24.9228	0.8244		4125
Primnoa_2_3@11	2.6030	0.1675	89.0253	9.1279	0.0056	0.0031	25.8530	4.1795		4150
Primnoa_2_3@12	2,4691	0.0964	97,4505	4.5881	0.0067	0.0014	27.5144	0.7868		4175
Primnos_2_3@13	2.4760	0.1229	102.6032	5.5152	0.0062	0.0025	26.5245	0.6064		4200
Primnoa_2_3@14	2.4992	0.1243	103.1920	4.4752	0.0116	0.0420	28.0382	1.8383		4225
Primnoa_2_3@15	2.5331	0.1384	0717.66	5.1992	0.0061	0.0021	29.0388	1.1036		4250
Primnoa_2_3@16	2.5577	0.2025	95.6718	3.7552	0.0064	0.0025	25.0091	1.0063		4275
Primnoa_2_3@17	2.5695	0.1166	90.7081	3.6431	0.0101	0.0271	22 5181	1.2765		4300
Primnoa_2_3@18	2.5380	0.0966	92.7172	5.4781	0.0083	0.0144	25.2578	1.2843		4325
Primnoa_2_3@19	2.5089	0.0652	95.0736	5.2247	0.0078	0.0107	27.1003	0.7472		4350
Primnoa_23@20	2.4944	0.1175	96.2362	5.2540	0.0070	0.0028	24.5015	0.5632		4375
File name	885r/42Ca	250	24Mg/42Ca	250	1388s/42Ca	250	23Na/42Ca	250	Distance	
----------------	-----------	---------------------	-----------	--------	------------	--------	-----------	--------	-----------------	
									from outer edge	
	mmol/mol	and a second second	mmol/mol		mmol/mol		mmol/mol		(mn)	
Primnoa_23@21	2.5466	0.1081	101.0889	5.0685	0.0059	0.0027	28.4757	1.3866	4400	
Primnoa_23@22	2.5033	0.1105	98.8887	5.7130	0.0086	0.0182	26.2557	1.5286	4425	
Primnoa_23@23	2.5199	0.0803	105.1856	3.7690	0.0073	0.0137	28.7803	0.9282	4450	
Primnos_2_3@24	2.5634	0.1258	98.0845	4.4460	0.0054	0.0018	24.9308	1.4839	4475	
Primnoa_2_3@25	2.5197	0.1362	104.2841	4.1273	0.0055	0.0026	28.7104	2.0459	4500	
Primnoa_2_3@26	2 5287	0.1237	101.4069	6.6186	0.0052	0.0020	26.4270	1.0097	4525	
Primnoa_23@27	2.5789	0.0804	97.9720	5.2633	0.0059	0.0019	24.3985	0.9866	4550	
Primnoa_2_3@28	2.6132	0.0906	95.7131	5.2882	0.0145	0.0609	25.3550	1.2214	4575	
Primnoa_2_3@29	2.5847	0.1488	94.8766	3.6351	0.0117	0.0194	25.0615	1.5162	4600	
Primnoa_2_3@30	2.5112	0.0961	100.8636	S.0021	0.0070	0.0018	27.0131	0.4932	4625	
Primnoa_2_3@31	2.5828	0.1141	95.9812	4.0479	0.0092	0.0056	23.5191	0.9441	4650	
Primnoa_2_3@32	2.5496	0.1054	95.9887	4.1651	0.0067	0.0035	25.2872	1.7756	4675	
Primnoa_2_3@33	2.4851	0.0968	101.9666	5.2527	0.0083	0.0121	29.5776	0.9581	4700	
Primnoa_2_3@34	2.4399	0.1062	100.9875	5.0349	0.0185	0.0453	25.6391	0.7973	4725	
Primnoa_2_3@35	2.4202	0.0512	94.4028	4.3063	0.0065	0.0036	23.3045	1.4260	4750	
Primnoa_2_3@36	2.4056	0.0782	88.4979	3,8797	0.0073	0.0032	24.9283	1.3041	4775	
Primnoa_2_3@37	2,4103	0.0974	98.1928	4.7956	0.0062	0.0025	26.5714	0.8783	4800	
Primnoa_23@38	2.4160	0.0777	95.9262	5.6371	0.0072	0.0071	25.8504	1.1229	4825	
Primnoa_2_3@39	2.4824	0.0747	92.0512	4.7600	0.0188	0.0495	23.9563	1.2539	4850	
Primnoa_2_3@40	2.3821	0.0947	94.2502	4.0757	0.0088	0.0152	24.7584	0.7808	4875	
Primnoa_2_3@41	2.4255	0.0843	92.6818	4.1789	0.0094	0.0147	22.9147	0.4490	4900	
Primnoa_2_3@42	2.4387	0.0746	91.0590	5.7914	0.0069	0.0015	24.0727	1.2692	4925	
Primnoa_2_3@43	2.4433	0.1252	90.2212	3.5446	0.0061	0.0018	25.2739	0.8152	4950	
Primnoa_2_3@44	2.3502	0.0957	93.7298	4.4963	0.0066	0.0020	26.0278	0.6019	4975	
Primnoa_2_3@45	2.3655	0.0715	92.4628	4.8510	0.0065	0.0046	24.7296	1.5623	2000	
Primnoa_23@46	2.4142	0.1115	94.0350	3.0147	0.0068	0.0049	26.0910	1.6357	5025	

ŝ

File name	885r/42Ca	250	24Mg/42Ca	250	1388a/42Ca	220	ZBNa/42Ca	250	Distance
									from outer edge
	mmol/mol		mmo//mol		mmo//mol		mmol/mol		(mm)
Primnos 2 3@47	2.4279	0.0995	94.1677	4.6759	0.0054	0.0038	25.8268	1.1408	5050
Primnoa 2 3@48	2.5034	0.1030	96.5804	3.6686	0.0051	0.0023	24.2989	0.7989	5075
Primnoa_2_3@49	2.4232	0.1003	94.1713	4.1465	0.0124	0.0147	25.5862	1.5475	5100
Primnoa_2_3@50	2.4438	0.0923	95.1686	3.2093	0.0065	0.0021	26.3158	13981	5125
Primnoa_2_3@51	2,4171	0.1316	90.7296	4.0340	0.0107	0.0278	24.5801	0.3862	5150
Primnoa_2_3@52	2.4778	0.1190	100.0807	4.0287	0.0102	0.0281	25.3076	1.5172	5175
Primnoa_23@53	2.5064	0.1390	94.7526	3.4950	0.0061	0.0025	26.4757	1.8784	5200
Primnos_3@54	2.5180	0.0950	97.7183	4.3667	0.0061	0.0042	27.3994	0.7282	5225
Primnoa_2_3@55	2.5323	0.0917	94.6422	3.5704	0.0062	0.0014	23.6969	0.6953	5250
Primnoa_2_3@56	2.5687	0.1501	93.0273	3.7162	0.0067	0.0026	24.2826	1,4858	5275
Primnoa_2_3@57	2.5634	0.0763	95.5037	5.2598	0.0089	0.0139	27.9803	0.8072	5300
Primnoa_2_3@58	2.5806	0.0761	6867-16	5.5571	0.0069	0.0085	27.0982	0.4611	5325
Primnoa_2_3@59	2.5753	0.0819	101.6598	4.7368	0.0061	0.0021	26.1351	1.5637	5350
Primnoa_2_3@60	2.5436	0.0500	98.1679	4.5988	0.0089	0.0209	26.8536	1.4875	5375
Primnoa_2_3@61	2.5728	0.1837	99.0552	4.6803	0.0067	0.0025	27.6766	0.6089	S400
Primnoa_2_3@62	2.4936	0.1085	99.4718	4.3384	0.0069	0.0027	24.3364	0.5221	S425
Primnoa_2_3@63	2.5066	0.0641	96.1940	4.5589	0.0067	0.0023	24.0381	1.2098	\$450
Primnoa 2 3@64	2.5715	0.0830	92 9360	4.1539	0.0133	0.0524	25.3238	0.5598	5475
Primnoa 2 3@65	2.6079	0.1042	92.9559	4.0364	0.0313	0.1782	23.5937	0.5894	5500
Primnoa_2_3@66	2.5520	0.0490	102.9192	5.4862	0.0067	0.0024	26.9429	1.3426	5525
Primnoa_2_3@67	2.5715	0.0775	97.9918	5.0086	0.0070	0.0095	26.3418	1.3857	5550
Primnos_2_3@68	2.5036	0.0903	102.0356	5.3461	0.0063	0.0026	26.5115	0.5131	5575
Primnoa_2_3@69	2.4754	0.0721	105.1205	4.3061	0.0134	0.0351	27.0501	1.1012	5600
Primnos_2_3@70	2.4407	0.0672	92.1776	5.2923	0.0117	0.0282	24,8284	1.3151	5625
Primnoa_2_3@71	2,4437	0.1549	95.8087	2.7586	0.0078	0.0123	24.6285	0.8250	5650
Primnoa_2_3@72	2.4143	0.0928	98.9676	4.0364	0.0067	0.0012	25,6934	0.9134	5675

6.0

File name	88Sr/42Ca	200	24Mg/42Ca	250	1388a/42Ca	250	23Na/42Ca	250	Distance	1
									from outer e	dge
	mmol/mol		mmel/mol		mmol/mol		mmol/mol		(mm)	
Primnoa_2_3@73	2.5245	0.0846	95.1535	4.2806	0.0066	0.0017	23.8709	2.0101		5700
Primnoa_2_3@74	2.5725	0.0730	93-2996	4.1597	0.0060	0.0019	26.0943	1.1395		5725
Primnos_2_3@75	2.5004	0.0975	99.6214	4.7699	0.0119	0.0408	27.4824	0.7988		5750
Primnoa_2_3@76	2.5235	0.0695	99.6182	4,8250	0.0064	0.0026	26.5952	0.8706		5775
Primnoa 2 3@77	2 5409	0.1205	93.6817	3.1187	0.0084	0.0095	25.0981	1.5972		5800
Primnoa 2 3@78	2 5859	0.0650	91,6891	3.6671	0.0146	0.0217	25.0949	0.9239		5825
Primnoa_2_3@79	2 6116	0.1305	93.5261	3.7861	0.0067	0.0022	24.3873	0.3754		5850
Primnoa 2 3@80	2 5478	0.0578	100.4074	5.2882	0.0075	0.0063	26.3396	1.2769		5875
Primnoa_2_3@81	2.5531	0.0776	67.27.62	4.9595	0.0062	0.0016	27.2631	0.9757		5900
Primnoa_2_3@82	2.5697	0.0843	100.5930	2.7867	0.0073	0.0066	28.0474	1.0609		5925
Primnoa_2_3@83	2.5577	0.1156	1588.66	4.9092	0.0055	0.0045	25.3336	1.2465		5950
Primnoa_2_3@84	2.4744	0.0604	91.2710	4.3138	0.0068	0.0018	24.9697	1.4323		5975
Primnoa_2_3@85	2.5730	0.0732	91.4712	4.1207	0.0095	0.0197	27.5929	1.0761		6000
Primnoa 2 3@86	2.5390	0.1111	98.5821	3.2294	0.0134	0.0457	27.4090	0.5866		6025
Primnoa_2_3@87	2.5693	0.0760	94.0360	3.5748	0.0066	0.0040	24.7401	1.3392		6050
Primnoa_2_3@88	2.5304	0.0742	90.5357	1.9302	0.0070	0.0020	25.4402	1.4552		6075
Primnoa_2_3@89	2.5656	0.0854	90.5309	2.7944	0.0068	0.0017	26.2729	0.5057		6100
Primnoa_2_3@90	2.5420	0.0440	95.8230	2.9057	0.0109	0.0340	26.1533	0.6999		6125
Primnoa_2_3@91	2.6825	0.0369	96.3651	2.4628	0.0057	0.0013	26.9413	1.5716		6150
Primnoa_2_3@92	2.6714	0.0808	96.5284	2.3149	0.0077	0.0158	27.7334	0.8320		6175
Primnoa_2_3@93	2.6792	0.0826	97.6251	2.3327	0.0059	0.0017	25.5535	0.6583		6200
Primnoa 2 3@94	2.6702	0.0572	99.1638	3.0874	0.0069	0.0047	27.9386	1.2054		6225
Primnoa_2_3@95	2.6562	0.0591	99.4724	2.3653	0.0063	0.0011	30.3844	0.9479		6250
Primnoa_2_3@96	2.6582	0.0925	97.8085	2.6629	0.0066	0.0016	29.2449	0.9250		6275
Primnoa 2 3@97	2.6288	0.0903	100.8222	2.5430	0.0071	0.0036	29.3159	1.0572		6300
Primnoa_2_3@98	2.6171	0.1037	100.4585	3.0527	0.0070	0.0013	29.7804	1.0690		6325

C-10-

File name		885r/42Ca	250	24Mg/42Ca	250	1388a/42Ca	250	23Na/42Ca	250	Distance	Contraction of the
										from outer	edge
		mmol/mal		mmol/mol		mmol/mol		mmal/mol		(mn)	
Primnoa_2_3@99		2.6739	0.0647	92 3571	3.1361	0.0086	0.0119	28.6975	0.4079		6350
Primnoa 2 3@100		2.6557	0.0654	95.4255	2.0454	0.0068	0.0015	28.5963	0.6649		6375
Primnos 2 4@1	2.6317	0.0428	98.8304	1.4935	0.0064	0.0052	30.1568	1.6436	6400		6375
Primnoa_2_4@2		2.6594	0.0676	96.0917	1.8926	0.0065	0.0015	28.9620	1.5304		6425
Primnoa_2_4@3		2.6507	0.0643	95.5146	1.8936	0.0079	0.0134	29.0031	0.4397		64S0
Primnoa 2 4@4		2.6638	0.0792	97.7968	1.7997	0.0065	0.0063	28.1278	0.7999		6475
Primnoa 2 4@5		2.6930	0.0531	913160	2.4742	0.0061	0.0025	28.2815	1.1041		6500
Primnoa 2 4@6		2.6911	0.0940	96.2569	1.5234	0.0077	0.0125	30.0206	1.0829		6525
Primnoa 2 4@7		2.6848	0.0708	99.2247	2.5142	0.0059	0.0010	29.6979	0.5279		6550
Primnoa_2_4@8		2.7289	0.0450	99.1886	2.5974	0.0061	0.0013	28.2642	1.0237		6575
Primnoa_2_4@9		2.7156	0.0507	99.54SS	3.2430	0.0057	0.0013	30.3613	1,1157		6600
Primnoa_2_4@10		2.6976	0.0450	97.4992	2,5664	0.0065	0.0014	28.9580	0.5498		6625
Primnoa_2_4@11		2.6658	0.0679	97.9984	2.8656	0.0073	0.0119	28.0300	0.3788		6650
Primnoa_2_4@12		2.6604	0.0422	97.6519	2.1160	0.0079	0.0118	28.9965	1.3864		6675
Primnoa_2_4@13		2.6406	0.0814	94.6506	6266-0	0.0066	0.0011	29.3900	1.4589		6700
Primnoa 2 4@14		2,5890	0.0732	96.4457	1.0996	0.0078	0.0111	28.6062	0.8135		6725
Primnoa 2 4@15		2.6185	0.0488	93.9669	2,3499	0.0073	0.0087	26.8862	1.0811		6750
Primnoa_2_4@16		2.7276	0.0547	98.2505	1.3208	0.0063	0.0010	28.8756	1.6892		6775
Primnoa_2_4@17		2.7743	0.0451	97.1874	1,6097	0.0062	0.0027	30.0726	0.5787		6800
Primnoa_2_4@18		2.7575	0.0455	102.3166	1.6803	0.0064	0.0024	30.9776	0.6661		6825
Primnoa_2_4@19		2.7665	0.0468	105.4446	1.4141	0.0058	0.0010	31.5940	1.6202		6850
Primnoa 2 4@20		2.7285	0.0697	103.9029	1.7345	0.0063	0.0010	32.3685	1.2777		6875
Primnoa_2_4@21		2.7091	0.0467	98.9024	17779	0.0067	0.0045	31.9543	0.7306		0069
Primnoa 2 4@22		2.7021	0.0377	1686.85	2.0972	0.0085	0.0150	29.8775	0.4643		6925
Primnoa 2 4@23		2.6912	0.0541	96.8861	1.4130	0.0068	0.0014	30.7621	1.4405		0569

C-11-

File name	885r/42Ca	250	24Me/42Ca	250	1388a/42Ca	250	23Na/42Ca	250	Distance
									from outer edse
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		(mn)
Primnos 2 4@24	2.6325	0.0500	1260.0951	11901	0.0067	0.0016	28.3014	0.6253	6975
Primnoa_2_4@25	2.6401	0.0582	91 2388	1 3396	0.0067	0.0009	27.2778	0.5494	7000
Primnoa_2_4@26	2.6649	0.0381	89.5474	1.8204	0.0074	0.0076	27.3449	1.0271	7025
Primnoa_2_4@27	2.7193	0.0414	92.7630	2.5238	0.0065	0.0010	29.5397	0.6354	7050
Primnoa 2 4@28	2.6659	0.5683	96.2470	3.4770	0.0057	0.0046	30.2250	1.5272	7075
Primnoa 2 4@29	2.7255	0.0391	95.7311	1.2307	0.0054	0.0012	29.0652	0.4368	7100
Primnoa 2 4@30	2.6898	0.0430	103.3109	1.2880	0.0051	0.0018	32.2871	1.2702	7125
Primnoa_2_5@1	2.5758	0.0713	94.6595	3.8252	\$600.0	0.0192	26.6232	1.0245	7150
Primnoa 2 5@2	2.6049	0.0528	90.7340	1.0176	0.0081	0.0096	27,8409	0.9474	7175
Primnoa_2_5@3	2.5666	0.0479	91.0635	3.3434	0.0051	0.0011	29.5073	0.7042	7200
Primnoa 2 5@4	2.6363	0.1269	86.7398	2.5339	0.0087	0.0170	29.0643	0.5894	7225
Primnoa_2_5@5	2.6814	0.0695	87.1623	1.8989	0.0068	0.0019	29.3800	1.2929	7250
Primnoa 2 5@6	2.7486	0.0799	85.9259	1.9476	0.0068	0.0010	31.0478	0.3240	7275
Primnoa_2_5@7	2.7299	0.1182	86.5602	2.1991	0.0067	0.0018	31.7473	1.1928	7300
Primnoa_2_5@8	2.6767	0.0878	87.2005	1.5752	0.0066	0.0015	29.7643	1.1476	7325
Primnoa_2_5@9	2.6591	0.0956	93.0198	2.1076	0.0064	0.0022	31.3668	1.1926	7350
Primnoa_2_5@10	2.6432	0.0554	91.6703	2.2971	0.0084	0.0138	32.0200	1.1363	7375
Primnoa_2_5@11	2.6823	0.0642	90.8695	17947	0.0064	0.0012	30.1213	0.9155	7400
Primnoa_2_5@12	2.6458	0.0642	95.9208	1.2628	0.0065	0.0013	31.3702	1.7214	7425
Primnoa_2_5@13	2.6631	0.1028	96.7514	3.0660	0.0059	0.0016	32.3900	0.9345	7450
Primnoa_2_5@14	2.6669	0.0574	95.8861	1.9304	0.0064	0.0015	32,4032	0.5175	7475
Primnoa_25@15	2.6694	0.0539	100.3266	3.0974	0.0064	0.0017	30.2444	0.4573	7500
Primnoa_2_5@16	2.6758	0.0666	102.5050	2,6247	0.0058	0.0015	30.8738	1.2076	7525
Primnoa_2_5@17	2.6364	0.7171	86.9073	20.7123	0.0060	0.0035	28.7893	11.6966	7550

C-12-

								from outer	
mmol/mol		mmol/mol		mmol/mol		mmol/mal		edge (um)	
2.6469	0.5468	87.0673	2.6679	0.0081	0.0127	31.5401	0.6050	7575	
2.7338	0.0547	92.2553	2.5684	0.0071	0.0011	33.6528	1.2162	7600	
2.7144	0.0749	97.3370	2.7803	0.0070	0.0012	35.2068	0.8393	7625	
2.7156	0.0875	95.0302	1.2140	0.0086	0.0105	35,0699	2.0734	7650	
2.7116	0660.0	98.2050	2.1214	0.0062	0.0013	33,4030	1.7868	7675	
2.7329	8060.0	94.6317	1.6456	0.0064	0.0014	31.9104	2.0223	7700	
2.7016	0.0894	98.6882	1.6082	0.0088	0.0174	32.4720	1.0884	7725	
2.7036	0.0660	98.5704	2.7711	1600.0	0.0288	29.4096	0.5774	7750	
2.7342	0.0565	100.5979	3.7206	0.0060	0.0011	30.9792	1.4110	2775	
2.7125	0.0794	100.7634	1.5576	0.0052	0.0009	33.1995	1.3401	7800	
2.6917	0.0588	100.5962	2.7073	0.0051	0.0008	32.3486	0.6716	7825	
2.7028	0.0520	97.0023	3.0246	0.0074	0.0099	29.2168	1.0555	7850	
2.7051	0.0585	94.2351	2.6999	0.0064	0.0029	28.1394	1.2424	7875	
2.6217	0.0790	103.6721	3.1911	0.0066	0.0019	33.1135	0.6530	7900	
2.6406	0.0433	100.3359	2.9635	0.0137	0.0203	30.7470	0.3772	7925	
2.6878	0.0950	95.9283	2.1090	0.0076	0.0038	33.7150	1.8885	7950	
2.7315	0.0500	\$95.9404	2.2121	0.0115	0.0149	37.3755	0.7561	2161	
2.7232	0.0561	99.8382	2.1861	0.0094	0.0089	31.3501	1.0989	8000	
2.7095	0.0649	102.0061	1.8227	0.0077	0.0083	34.9932	0.8383	8025	
2.6640	0.0811	95.2048	2.0141	0.0069	0.0017	31.8645	1.9016	8050	
2.6457	0.0861	90.4816	1.9381	0.0147	0.0265	28.1844	0.3757	8075	
2.6554	0.0631	95.3456	2.7434	0.0081	0.0069	29.4818	0.6220	8100	
2.6685	0.0400	94.1496	2.5346	0.0084	0.0149	30.7954	1.2540	8125	
2.6808	0.0396	95.1163	2.4454	0.0097	0.0140	32.7392	0.7514	8150	
2.6275	0.0620	94.3853	2.1918	0.0074	0.0057	30.6930	0.6701	8175	
2.7261	0.0650	90.6474	3.5362	0.0219	0.0365	28.3591	0.9759	8200	
	mmed/mei 2.2445 2.2445 2.7344 2.7345 2.7345 2.7345 2.7345 2.7345 2.27345 2.27345 2.2605 2.26640 2.27644 2.26640 2.27644 2.27644 2.26640 2.27644 2.27644 2.26640 2.27644 2.27644 2.27644 2.27644 2.27644 2.27644 2.27644 2.27644 2.26640 2.26640 2.26640 2.27644 2.26640 2.27644 2.27644 2.27644 2.27644 2.27644 2.27644 2.27644 2.27764 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.276640 2.277640 2.277640 2.277640 2.277640 2.277640 2.277640 2.277640 2.277640 2.277640 2.277640 2.2776400 2.2776400 2.2776400 2.2776400 2.2776400 2.2776400 2.2776400 2.2776400000000000000000000000000000000000	2006/002 2019/0 2019/2	Annotation Contrast	Antion Antion Antion 2.46 0.454 0.549 2.549 2.731 0.046 2.549 2.540 2.731 0.046 2.549 2.544 2.731 0.046 2.549 2.544 2.7315 0.046 7.249 2.544 2.7316 0.046 7.549 2.544 2.7316 0.046 9.549 2.544 2.7316 0.046 9.649 2.544 2.7317 0.046 9.649 2.744 2.7317 0.046 9.649 2.744 2.744 0.046 9.649 2.744 2.744 0.046 9.649 2.744 2.744 0.046 9.649 2.744 2.744 0.046 9.644 2.744 2.744 0.744 9.744 2.744 2.744 0.744 9.744 2.744 2.744 0.744 9.744 2.744 2.744 9.744	Montesile Antional and an antional and antional and antional and antional and antional and antional anti	Antion Antion Antion Antion Antion 2339 0.00 3.40 0.00 0.01 0.01 2339 0.00 2.40 0.01 0.01 0.01 2330 0.00 2.40 0.001 0.01 0.01 2330 0.00 2.40 0.001 0.01 0.01 2340 0.001 0.001 0.001 0.001 0.01 2340 0.001 0.001 0.001 0.001 0.001 2341 0.001 0.001 0.001 0.001 0.001 2341 0.001 0.001 0.001 0.001 0.001 2341 0.001 0.001 0.001 0.001 0.001 2341 0.001 0.001 0.001 0.001 0.001 2341 0.001 0.001 0.001 0.001 0.001 2341 0.001 0.001 0.001 0.001 0.001 2341 0.001 <td>Montane Annual and and and and and and and and and and</td> <td>Antional and an antional and antional and antional antioperational antional antional antioperational antio</td> <td>Mode Mode <th< td=""></th<></td>	Montane Annual and	Antional and an antional and antional and antional antioperational antional antional antioperational antio	Mode <th< td=""></th<>

C-13 -

File name	885r/42Ca	250	24Mg/42C8	052	1388a/42Ca	250	23Na/42Ca	22	Distance	
									from outer i	eoge
Strange - Constant Strange	mmo/mol		mmol/mol		mmo//mol		mmo/mol		(mn)	
rimnoa_2_5@44	2.7019	0.0875	88.5787	1.7675	0.0071	0.0054	29.2133	1.1270	8225	
rimnoa_2_5@45	2.7240	0.0629	88.7522	1.0976	0.0076	0.0020	71917	0.5461	8250	
rimnoa_2_5@46	2.6438	0.1093	90.4562	23294	0.0123	0.0201	27.3813	0.6856	8275	
rimnoa_2_5@47	2.6534	0.0533	111100	2.3449	0.0058	0.0137	27.9876	1.0610	8300	
rimnos_2_5@48	2.5716	0.0610	93.6541	2,4404	0.0129	0.0207	29.0223	1.0156	8325	
rimnoa_2_5@49	2.5682	0.0460	96.1216	1.6971	0.0087	0.0069	28.3768	0.5227	8350	
rimnoa_2_5@50	2.6621	0.0771	93.8268	2.1046	0.0063	0:0040	28.7865	0.9147	8375	
rimnoa_2_5@51	2.7433	0.0818	93.5524	2.6167	0.0061	0.0020	31.0626	0.9021	8400	
rimnoa_2_5@52	2.7233	0.0704	96.3417	2.9201	0.0067	0.0032	31.9685	0.5136	8425	
rimnoa_2_5@53	2.7162	0.0643	97.8945	2.0239	0.0093	0.0148	30.9653	0.5881	8450	
rimnoa_25@54	2.7111	0.0718	96.8418	3.3326	0.0128	0.0330	29.1415	1.2097	8475	
rimnoa_25@55	2.6647	0.0667	97.2008	1.7903	0.0062	0.0057	29.8903	1.1691	8500	
rimnoa_2_5@56	2.6598	0:0940	99.2022	2.0900	0.0107	0.0158	30.8374	0.6026	8525	
rimnoa_2_5@57	2.6485	0.0569	91.6531	2.0218	0.0071	0.0043	29.0296	1.1965	8550	
rimnoa_2_5@58	2.6864	0.0263	95.5989	2 3011	0.0077	0.0086	28.3922	0.4897	8575	
rimnoa_2_5@59	2.6974	0.0729	1285.06	2.2537	0.0061	0.0043	30.1291	0.5710	8600	
rimnoa_2_5@60	2.6808	0.2223	92.7874	2.8454	0.0114	0.0299	28.3626	0.5165	8625	
rimnoa_2_5@61	2.6062	0.0884	97.1336	3.0527	0.0108	0.0175	27,8820	1.3817	8650	
rimnoa_25@62	2.6142	0.1051	98.6457	2.8588	0.0063	0.0017	31.3164	1.6912	8675	
rimnoa_25@63	2.6867	0.0521	100.0537	1.7034	0.0059	0.0013	33.5956	0.4512	8700	
'rimnoa_2_5@64	2.7239	0.0599	94.2401	3.8008	0.0085	0.0206	29.4275	0.7884	8725	
rimnoa_2_5@65	2.6835	0.0618	95.8953	3.3813	0.0059	0.0022	31.1439	1.0418	8750	
rimnoa_2_5@66	2.6562	0.0478	100.1996	2.7800	0.0061	0.0012	32.8683	0.8953	8775	
rimnoa_2_5@67	2.6822	0.0584	100.7731	2,3788	0.0100	0.0133	31.4141	0.7874	8800	
rimnoa_2_5@68	2.5447	0.0879	88.8900	1.9731	0.0076	0.0012	26.9468	1.6702	8825	
rimnoa_2_5@69	2.5671	0.0918	86.4227	1.8651	0.0077	0.0114	29.3967	0.9688	8850	

C-14-

File name	2021/47C22	250	24Mg/42Ca	DO	13885/4203	100	23N8/42U3	002	Distance	1
	I among the second		man I amont		man of famol		mand land		from outer ed	e a
The second se	mmoi/moi	BIOD NOT ST	штоуты	A CONTRACTOR OF	mmournai	THIS STREET	mmoymor		(um)	8
2 5@70	2.6116	0.0588	89.2495	3.3016	0.0074	0.0013	28.3123	0.6003	8875	
2 5@71	2.7128	0.0682	94.4955	3.1507	0.0059	0.0015	30.1104	0.7045	8900	
2 5@72	2.6735	0.0581	94.9475	2.6912	0.0057	0.0007	31.3783	1.0992	8925	
2_5@73	2.7143	0.0748	98.5396	3.2864	1600.0	0.0208	31.5303	0.7902	8950	
2_5@74	2.6688	0.0491	94.3532	1.2387	0.0059	0.0016	30.6613	0.5116	8975	
2_5@75	2.6290	0.0857	94.2624	2.2690	0.0061	0.0011	31.2353	1.4484	0006	
2_5@76	2.6432	0.0729	99.0467	2.4256	0.0060	0.0021	33.7976	1.0948	9025	
2_5@77	2.7540	0.0684	102.8642	2.1127	0.0076	0.0131	31.8913	0.8157	9050	
2_5@78	2.7199	0.0592	95.3567	2.7675	0.0078	0.0130	28.9822	0.7607	9075	
2_5@79	2.7840	0.0507	90.0108	2.9513	0.0069	0.0009	30.4220	0.9276	9100	
2_5@80	2.7463	0.1134	89.1301	1.9417	0.0082	0.0078	31.8104	0.8438	9125	
2_5@81	2.6800	0.0678	97.0300	1.6932	0.0087	0.0198	32.9649	0.5485	9150	
2_5@82	2.7377	0.0535	88.6592	2.1029	0.0088	0.0143	28.8240	1.4128	9175	
2_5@83	2.7498	0.0714	91.6654	1.7589	0.0060	0.0013	30.9262	1.1291	9200	
2 5@84	2.7410	0.0566	94.6814	2.9402	0.0103	0.0221	31.6705	0.7202	9225	
2 5@85	2.7593	0.0699	97.2937	2.6983	0.0064	0.0048	31.6866	0.4810	9250	
2 5@86	2.7498	0.0863	103.4267	2.5372	0.0059	0.0015	33.2887	1.9190	9275	
2_5@87	2.7257	0.1220	104.3090	4.5627	0.0082	0.0180	33,8920	2.4338	0026	
2_5@88	2.7289	0.0834	103.0582	2.7773	0.0059	0.0010	33.9888	0.8890	9325	
2_5@89	2.7760	0.0987	103.8500	3.5997	0.0067	0.0039	34.2616	1,8391	9350	
2_5@90	2.7117	0.0537	97.6412	2.7378	0.0069	0.0051	33.3555	1.0038	9375	
2 5@91	2.7203	0.0350	92.0732	3.4747	0.0070	0.0028	30.1956	0.9066	9400	
2 5,602	2 5078	0.0840	89.9960	2.3980	0.0100	0.0135	27.9396	0.4963		

10000

C-15-

-	
22	
-	
-	
~	
10	
20	
-	
~	
_	
-	
-	
~	
-	
- 64	
- 12	
×0	
-	
-	
~	
-	
- 32	
- 0	
-	
~	
- 14	
- 0	
- 51	
~	
-	
-	

File name	885r/42Ca		24Me/42Ca		1388a/42Ca	250	23Na/42Ca		distance .
	mmol/mol		mmo//mol		mmol/mol		mmol/mal		шщ
primno1@1	2.488113	0.199611	92.14039	7.59062	0.00704	0.001051	38.32427	0.43164	0
primno1@2	2.505603	0.115302	88.57085	5.18562	0.007199	0.000807	36.94684	1.139458	25
primno1@3	2.5330555	0.114059	88.05946	4.728689	0.005833	0.000508	37.02369	0.447698	50
primno1@4	2.53871	0.101993	91.72063	4.663393	0.005865	0.001334	36.39724	0.313127	75
primno1@5	2.548418	0.113568	94.12588	4.738293	0.005709	0.000823	35.82802	1.541521	100
primno1@6	2.579289	0.10776	95.64839	3.975503	0.005702	0.000996	36.36142	1.227153	125
primno1@7	2.546681	0.107646	92.81929	3.666075	0.005798	0.000942	35.08953	0.77436	150
primno1@8	2.487681	0.124284	83.88142	3.926998	0.006843	9600070	34.24633	0.619491	175
pmmo1@9	2.507715	0.090306	83.22673	3.79718	0.00549	0.000539	36.7538	1.538517	200
primno1@10	2.539261	0.085905	83.73845	3.812861	0.006269	0.000751	35.46223	1.154915	225
primno1@11	2.513599	0.111421	86.46207	3.8305	0.006329	0.000977	35.04498	0.472257	250
primno1@12	2.531863	0.119907	86.54841	3.95445	0.006859	0.001021	32.23853	0.737069	275
primno1@13	2.887763	0.100335	94.72446	5.431279	0.007103	0.00057	39.51254	0.319858	300
primno1@14	2.771385	0.114776	122.9378	6.263274	0.00637	0.000819	40.81466	0.553036	325
primno1@15	2.783147	0.11913	137.1684	6.536296	0.00637	0.000997	35.8676	0.927635	350
primno1@16	2.544594	0.074621	85.0436	3.511876	0.006198	0.000383	33.06715	1.25312	375
primno1@17	2.615313	0.07606	118.0975	6.313951	0.005407	0.00113	30.50633	0.301587	400
primno1@18	2.509606	0.089945	100.766	4.443973	0.006539	0.000764	33.29258	0.420951	425
primno1@19	2.461936	0.109845	93.27522	3.493109	0.005548	0.000951	38.87381	0.383355	450
primno1@20	2.4866	0.082855	89.57371	3.900892	0.006397	0.000768	36.0793	0.416398	475
primno2@1	2.497883	0.088073	81.55057	2.321814	0.006863	0.000633	32.823	0.298457	500
primno2@2	2.460356	0.1021	83.58891	3.634587	0.006944	0.00085	32.71734	1.356041	525
primno2@3	2.492442	0.097027	84 24592	3.34987	0.006687	0.000753	33.69078	1.075965	550

C-16.

	885r/42Ca				1388a/42Ca			250 di:	tance
	mmol/mol		mmol/mol		mmo//mol		mmol/mol	h	
primno2@4	2.526374	0.064269	84.83257	3.518204	0.006283	0.00076	35.28968	0.450114	575
primno2@5	2.463884	0.09068	84.9939	3.230553	0.006475	0.000859	34.62912	0.51262	600
primno2@6	2,450533	0.083133	86.2732	3.270498	0.006506	0.00112	34.68325	1.142847	625
primno2@7	2.482326	0.089743	86.09291	3.327964	0.006377	0.000869	35.43978	0.625028	650
primno2@8	2.558742	0.080665	84.51974	3.241744	0.006307	0.000594	34.87645	0.479236	675
primno3@1	2.51623	0.071659	83.40127	3.033811	0.006301	0.000524	36.68447	0.335651	700
primno3@2	2.555208	0.078273	83.09151	2.554261	0.006237	0.00067	36.57898	0.254159	725
primno3@3	2.496997	0.086796	87.88264	2222242	0.006299	0.000759	39.77813	0.4651	750
primno3@4	2.573341	0.06567	86.54384	2.825787	0.006029	0.000607	37.29371	0.777686	775
primno3@5	2.604978	0.061994	85.10047	2.591178	0.006334	0.000649	37.43075	0.919907	800
primno3@6	2.58616	0.051567	85.07815	2.592367	0.00607	0.000543	37,85622	0.385054	825
primno3@7	2.615341	0.0567	82.69702	2.138408	0.006833	0.000542	36.21031	0.658932	850
primno3@8	2.575944	0.067035	82.03888	2.72003	0.007063	0.001123	35.98838	0.877996	875
primno3@9	2.538992	0.064212	83.63567	2.781069	0.006902	0.000894	36.53196	0.825496	906
primno3@10	2.605433	0.07453	85.32583	2.312752	0.006119	0.000549	38.7795	0.544198	925
primno3@11	2.60797	0.069586	84.91313	1.949214	0.005891	0.00053	40.04705	0.465577	950
primno3@12	2.592239	0.048469	83.30193	4.63866	0.007144	0.000391	49,46659	9.507675	975
primno3@13	2.52743	0.07408	84.03276	1.886581	0.006682	0.000614	38.34981	0.587614	1000
primno3@14	2.55113	0.044487	84.12056	2.018169	0.006093	0.000935	36,44124	0.306047	1025
primno3@15	2.591223	0.056646	83.67726	1925433	0.005782	0.000877	37.61268	0.38301	1050
primno3@16	2.593315	0.062555	85.08157	1.944047	0.00564	0.000627	38.93495	0.425721	1075
primno3@17	2.564697	0.086676	84.76291	2.261335	0.006187	0.000778	35,44015	0.828861	1100
primno3@18	2.54797	0.047241	85.6664	1.80376	0.006165	0.00031	36.45578	0.798318	1125
primno3@19	2.683514	0.050791	84.89647	2.026426	0.005577	0.00055	37.21099	0.7503	1150
primno3@20	2.62216	0.053752	85.91297	1.750289	0.005864	0.000573	35.5012	0.454253	1175
primno3@21	2.553616	0.043457	87.70886	2.579081	0.006108	0.000901	37.0502	0.692587	1200

C-17-

	9774/2008		6775/BM47						stance.
	mmol/mal		mmo//mol		mmo//mol		mmol/mol		u
primno3@22	2.529122	0.047991	84.02558	1.661491	0.006119	0.00068	36.33518	0.308056	1225
primno3@23	2.532006	0.062799	86.44154	1.637113	0.00625	0.000914	39.95834	0.933862	1250
primno3@24	2.54615	0.056052	78.99382	1.351169	0.007263	0.000821	35.54101	0.350215	1275
primno3@25	2.583001	0.042498	77.45322	2.089123	0.006897	0.000978	35.58835	0.30228	1300
primno3@26	2.518492	0.073679	81.73123	1.692781	0.007049	0.000559	38.74897	0.922507	1325
primno3@27	2.567989	0.057522	82.69884	2.09923	0.006911	0.000589	38.24275	0.652821	1350
primna3@28	2.560187	0.049799	78.60191	1.346226	0.007383	0.000493	34.42236	0.49289	1375
primna3@29	2.525923	0.054156	76.69165	1.917797	0.00749	0.000714	34.26821	0.189213	1400
primno3@30	2.464992	0.043033	81.41566	1.436701	0.007058	0.000613	37.21601	0.276779	1425
primno3@31	2.542364	0.054392	81.41596	1.674113	0.006453	0.000695	35.8798	0.553805	1450
primnoa4@1	2.780376	0.03836	83.02832	1.5011	0.006974	0.000521	20.08249	0.515782	1475
primnoa4@2	2.695043	0.045732	84.34995	0.617001	0.007244	0.000442	20.62044	0.179738	1500
primnoa4@3	2.777378	0.03001	79.32925	1.011271	0.007922	0.000452	20.11945	0.143136	1525
primnoa4@5	2.817445	0.022243	86.61233	1.386197	0.006424	0.000309	19.17344	0.291317	1550
primnoa4@6	2.796551	0.029973	87.78746	1.590999	0.006498	0.000798	20.12012	0.314218	1575
primnoa4@7	2.772043	0.027652	83.43754	1.758937	0.007615	0.000398	18.72479	0.27194	1600
primnoa4@8	2.862753	0.026381	80.81078	1.48885	0.007083	0.00071	19.00471	0.237533	1625
primnoa4@9	2.872909	0.030923	85.19525	0.966823	0.006239	0.000592	20.31243	0.388237	1650
primnoa4@10	2.789774	0.030655	84.94721	1.799354	0.006548	0.000643	20.12931	0.437023	1675
primnos4@11	2.842003	0.029813	82 83353	0.848489	0.006888	0.000581	18.44191	0.138013	1700
primnoa4段12	2.850942	0.024572	79.99298	0.441936	0.007265	0.00048	18.5898	0.128746	1725
primnoa4@13	2 810196	0.037827	84.5677	1.645654	0.007355	0.000543	20.18134	0.130711	1750
primnoa4@14	2.770291	0.02868	83.171.49	1.176774	0.007087	0.00057	19,80957	0.256812	1775
primnoa4@15	2.702064	0.020815	81.1564	0.631182	0.007954	0.000395	20.40403	0.252463	1800
primnoa4@17	2.740994	0.02432	82.98373	1.004982	0.007247	0.000512	20.99602	0.242308	1825
primnoa4@18	2.781608	0.02849	83.61921	0.724938	0.006989	0.000686	20,605	0.116821	1850

C-18-

File name	885r/42Ca		24Mg/42Ca		1385a/42Ca				distance
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		mm
primnoa4@19	2.771.75	0.034929	86.54061	1.86592	0.00683	0.000598	21.36221	0.300655	1875
primnoa4@20	2.781603	0.049449	86.46383	2.376223	0.006782	0.000709	21.22577	0.390286	1900
primnoa4@21	2.778961	0.036282	84.90769	1.50686	0.00716	0.000672	20.55337	0.185622	1925
primnoa4@22	2.844137	0.039062	77.08022	1.852981	0.008683	0.000916	17.67757	0.195585	1950
primnos4@23	2.76831	0.024246	83.93368	0.500555	0.007236	0.000502	20,43737	0.195282	1975
primnos4@24	2,838394	0.021405	76.18587	0.379315	0.008501	0.000581	17.54924	0.091057	2000
primnoa4@25	2,831905	0.031547	79.67025	1.022747	0.007384	0.000702	19.16865	0.085803	2025
primnoa5@1	2.796755	0.027944	83.707	1 844195	0.006829	0.000589	19.41336	0.315176	2050
primnoa5@2	2.78226	0.052857	86.06212	1.515596	0.007008	0.000851	19,40348	0.228064	2075
primnoa5@3	2,809016	0.0485	83.27435	1.033108	0.007366	0.000671	19.01184	0.079749	2100
primnoa5@4	2.891879	0.047497	80.74642	1.590054	0.007588	0.000733	18.59221	0.371107	2125
primnoa5@5	2.835816	0.044493	83.32544	1 285459	0.007667	0.000774	19.33884	0.14512	2150
primnoa5@6	2,815505	0.03165	83.99051	1.157096	0.007807	0.000637	19.37009	0.202002	2175
primnoa5@7	2.799763	0.042469	83.85857	0.65791	0.007556	0.000767	18.71493	0.168236	2200
primnoa5@8	2.858418	0.02941	84.32029	1.567421	0.007389	0.00044	19.19969	0.296501	2225
primnoa5@9	2.773547	0.030015	87.38458	1.425598	0.007065	0.000555	20.11303	0.169488	2250
primnoa5@10	2.797005	0.052217	81.8342	1.204846	0.007417	0.000592	18.63122	0.190689	2275
primnoa5@11	2.742296	0.055095	81.37647	1.397413	0.007538	0.000627	18.89365	0.073894	2300
primnoa5@12	2.673616	0.03211	78.36829	1.241011	0.007864	0.001226	19.16302	0.175295	2325
primnoa5@13	2.650727	0.023872	77.00459	0.831045	0.008564	0.000454	19.88014	0.178648	2350
primnoa5@22	2.769259	0.042795	95.20056	3.732109	0.007583	0.000691	16.35075	0.718748	2650
primnoa5@25	2.738661	0.04762	87.66697	2.437379	0.007165	0.00055	20.04731	0.503809	2675
primnoa5@26	2.755435	0.035694	87.504	1.386447	0.006845	0.000607	21.01105	0.24486	2700
primnoa5@27	2.744071	0.037762	86.50773	2.422364	0.007317	0.000893	20.1457	0.311768	2725
primnoa5@14	2.760452	0.073949	86.21702	1.520902	0.006588	0.000568	19.72611	0.234457	2750
primnoa5@15	2.824449	0.041816	86.8136	1.611364	0.006487	0.000529	20.28481	0.233725	2775

C-19-

File name	88Sr/42Ca		24M/6/42Ca		1388a/42Ca		23N8/42C8	2SD d	stance
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		E
primnoa5@16	2.834578	0.073406	87.48933	1.494016	0.006848	0.000181	20.64943	0.331006	2800
primnoa5@17	2.826184	0.056914	88.36564	1.963385	0.006973	0.000327	20.70297	0.867328	2825
primnos6@2	2.770344	0.028736	90.90075	1.174133	0.006437	0.000917	21.23504	0.420059	2850
primnos6@1	2.758291	0.041468	91 20193	1 393595	0.006762	0.000593	20.80969	0.358659	2862
primnoa6@3	2.774093	0.074389	86.17356	1 381502	0.007044	0.000871	19.38467	0.251501	2887
arimnoa6@4	2.743677	0.069364	87.96866	2.164476	0.007258	0.000968	20.84436	0.188955	2912
primnoa6@6	75272717	0.06893	50.29832	2.611759	0.00718	0.000561	20.10841	0.179327	2937
primnoa6@8	2.757094	0.06448	89.23007	2.788591	0.007199	0.000791	20.58823	0.776132	2962
primnoa6@9	2.754523	0.082124	87.64982	3.333058	0.007003	0.001055	21.43589	1.381914	2987
primnoa6@10	2.82207	0.034472	84.72213	0.891289	0.006877	0.000651	20.08636	0.443493	3012
primnoa6@11	2.785606	0.065859	84.39235	2.531429	0.006933	0.000799	19.5767	0.206183	3037
primnoa6@12	2.793391	0.074512	84.50496	2,44619	0.006509	0.000546	19.86768	0.228865	3062
primnoa6@13	2.768134	0.090535	86.72911	2,447991	0.006662	0.000755	20.22751	0.125884	3087
primnoa6@14	2.761837	0.066139	86.27399	3.097892	0.006759	0.0008	19.78222	0.097116	3112
primnoa6@15	2.751513	0.10538	87.12573	2,46456	0.007287	0.000867	19.94957	0.274026	3137
primnoa6@16	2.800795	0.083364	84.05697	2.342637	0.007544	0.000806	19.38683	0.172191	3162
primnoa6@17	2.825193	0.077555	85.51416	2,608837	0.00728	0.000532	18.72717	0.153819	3187
primnoa6@18	2.730036	0.095646	93.82836	6.207583	0.0072	0.000777	19.44885	0.203207	3212
primnoa6@19	2.724507	0.086864	90.70164	2.697767	0.007391	0.001069	19.98221	0.202339	3237
primnoa6@20	2.697996	0.070704	95.32539	7.014975	0.006984	0.000595	20.71206	0.167192	3262
primnoa6@21	2.756558	0.079291	90.32742	2.982163	0.006722	0.000282	20.78994	0.137088	3287
primnoa6@22	2.764663	66066010	94.25092	2.736573	0.006668	0.000987	21.73941	0.320997	3312
primnoa6@23	2.764479	0.089676	94.20294	2.351829	0.00662	0.000672	22.04929	0.217816	3337
primnoa6@24	2.774361	0.073787	95.35798	4.235421	0.006434	0.000862	20.29319	0.333159	3362
primnoa6@25	2.708166	0.078604	84.63014	2.589635	0.007956	0.000945	17.77871	0.128729	3387
primnoa6@26	2.780233	0.021738	92.39778	0.657572	0.006657	0.000841	20.14932	0.235044	3412

C-20-

File name	88Sr/42Ca mmol/mol		24Mg/42Ca mmol/mol		138Ba/42Ca mmol/mol		23Na/42Ca mmol/mol		astance am
primnoa6@27	2.79317	0.023278	82.37812	0.913318	0.007808	0.000617	17.61602	0.238035	3437
primnoa6@28	2.7622	0.082946	83.97897	2.664653	0.007194	0.000493	19.4656	0.207464	3462
primnoa6@29	2.741038	0.07327	86.74911	2.413124	0.006606	0.000587	20.42781	0.199757	3487
primnoa6@30	2.719376	0.088492	89.1429	3.407407	0.006549	0.000532	20.16782	0.309811	3512
primnoa6@31	2.720427	0.124835	88.40476	2.385167	0.007324	0.001066	19.65342	0.193249	3537
primnoa6@32	2.828184	0.090385	86.08597	3.143305	0.007492	0.000624	18.6415	0.198821	3562
primnoa6@33	2.798991	0.081907	85.47143	2.569979	0.00719	0.000965	18.79541	0.123674	3587
primnoa6@34	2.774268	0.081759	90.28872	2.377691	0.007154	0.000697	20.71718	0.120385	3612
primnoa7@1	2.653086	0.124381	96.93193	5.531235	0.006959	0.000745	21.94953	0.435876	3637
primnoa7@2	2.678348	0.092717	91.84136	3.182269	0.00696	0.000749	21.1231	0.362445	3662
primnoa7@3	2.676636	0.084648	91.90452	4.850392	0.007098	0.000829	20.84859	0.303614	3687
primnoa7@4	2.639032	0.087539	93.12422	3.177617	0.007175	0.001089	21.2148	0.361628	3712
primnoa7@5	2.670685	0.096789	87.90472	3.134783	0.006756	0.000373	19.63721	0.743111	3737
primnoa7@6	2.586973	0.096642	87.31952	3.787435	0.00797	0.001716	19.96035	1.049629	3762
primnoa7@7	2.628929	0.106442	86.9034	3.581908	0.006852	0.001221	19.98379	1.009427	3787
primnos7@8	2.675731	0.095649	90.10769	3.254479	0.006874	0.000847	22.23169	0.76266	3812
primnoa7@9	2.692958	0.096138	87.95196	3.806993	0.006752	0.000753	21.1403	0.742199	3837
primnoa7@10	2.64976	0.085953	90.13959	3.339117	0.006834	0.000671	21.61484	0.914732	3862
primnoa7@11	2.618006	0.122156	88.98132	3.119652	0.006637	0.001105	20.91082	0.763285	3887
primnoa7@12	2.638531	0.100042	86.75674	3.054327	0.007045	0.001309	20.14724	1.076482	3912
primnoa7@13	2.673031	0.10941	87.54896	3.382569	0.007556	0.000782	20.90628	1.718969	3937
primnoa7@14	2.734817	0.115916	90.29055	3.879587	0.007176	0.000921	20.4414	1.012309	3962
primnoa7@15	2.740322	0.083337	95.0873	5.511998	0.006482	0.000844	21.65381	1.289362	3987
primnoa7@16	2.692407	26660.0	97.08824	3.734805	0.006274	0.000589	21.46989	0.852641	4012
primnoa7@17	2.698617	0.088503	97.64072	3.69984	0.006207	0.000622	22.02921	1.226078	4037
primnoa7@18	2.697461	0.090494	99.86794	3.790134	0.006469	0.000947	22.01395	1.097766	4062

C-21-

File name 80	85r/42Ca		24Mg/42Ca		1388a/42Ca				anne
E	mei/mol		mmo//mol		mmol/mol		mmol/mol	mu	
primnoa7@19	2.640511	0.118538	\$9.77494	6.255005	0.007102	0.001095	21.14025	1.342967	4087
primnoa7@20	2.649569	0.111752	92.33701	3.920206	0.007181	0.000865	20.93887	1.224247	4112
primnoa8@1	2.64494	0.090349	172355.08	3.659623	0.00673	0.000485	20.08361	0.870973	4137
primnoa8@2	2.626546	0.114428	93.86649	5.406862	0.006313	0.000484	21.18562	1.534786	4175
primnoa8@3	2.619322	0.143207	94.03144	3.428559	0.006499	0.000544	21.36113	1.024057	4200
primnoa8@4	2.631884	0.085209	95.58231	3.3561	0.006653	0.000646	21.72078	1.107053	4225
primnoa8@5	2.618697	0.108546	97.27632	3.95172	0.006552	0.000662	22.39392	1.134286	4250
primnoa8@6	2.642146	0.06562	95.46708	4.498705	0.006806	0.001073	22.07258	1.432129	4275
primnoa8@7	2.626621	0.10157	92.32457	3.672226	0.00663	0.000426	21.24055	1.399213	4300
primnaa@@8	2.636721	0.103417	95.90426	5-522048	0.006536	0.000751	22.05685	1.859999	4325
primnoa8@9	2.626414	0.116875	98.21564	4.697233	0.006304	0.000596	24.66707	2.37004	4350
primnoa8@10	2.656852	0.06307	96.80093	5.106635	0.006499	0.000442	21.51538	1.829854	4375
primnoa8@11	2.644361	0.084779	97.0147	3.563925	0.006351	0.000521	20.41692	1.296537	4400
primnoa8@12	2.644933	0.116226	95.16418	3.051393	0.00685	0.000781	19.62567	0.979495	4425
primnoa8@13	2.626232	0.093591	94.14891	3.965113	0.006822	0.000767	20.27893	1.945377	4450
primnoa8@14	2.606061	0.08596	94.77328	3.890571	0.006831	0.000779	21.13455	1.727756	4475
primnoa8@15	2 5619	0.08321	95.82942	3.943025	0.007082	0.000929	21.45586	1.618629	4500
primnea8@16	2.600391	0.07203	95.80809	4.202337	0.006498	0.000841	20.91158	1.366267	4525
primnoa8@17	2.634533	0.110142	96.57068	3.871485	0.006534	0.000715	19.89239	1 339244	4550
primnoa8@18	2.596726	0.086898	99.71494	4.369624	0.006543	0.001014	21.50474	1.691718	4575
primnoa9@1	2.588931	0.130158	92.7188	3.970178	0.006975	0.000756	19.8162	1.025433	4600
primnoa9@2	2.624226	0.090752	91.86324	3.905554	0.007183	0.000854	20.11924	1.484493	4625
primnoa9@3	2.583932	0.105046	94.68722	4.523675	0.007033	0.000587	22.04752	1.956811	4650
primnoa9@4	2.576506	0.071271	96.64634	5.766037	0.006654	0.000679	22.13695	1.92419	4675
primnoa9@5	2 521415	0.108161	57.94972	4.070951	0.008297	0.000748	21.76691	1.440764	4700
primnoa9@6	2.496486	0.10457	92.51316	4.032203	0.007539	0.000817	21.50428	2,494711	4725

C- 22 -

	885r/42Ca		24Mg/42Ca				23Na/42Ca		noe
	mmol/mol		mmo/mol		mmol/mol		immol/mol	mu	
primnoa9@7	2.514537	0.10212	16196-06	3.759609	0.007563	0.000623	21,49309	1.922636	4750
primnoa9@8	2.567712	0.11208	93.11848	3.935289	0.006697	0.00069	21.29485	1.574917	4775
primnoa9@9	2.626078	0.112203	96.11565	3.976748	0.006668	0.000664	21.89297	1.612789	4800
primnoa9@10	2.633747	0.112749	98.97396	4.776422	0.006643	0.000783	22.74988	1.702472	4825
primnos9@11	2.604746	0.109126	100.4751	5.175883	0.006602	0.000838	23.21094	1.856173	4850
primnoa9@12	2.600651	0.099079	104.5539	5.12272	0.005496	0.000411	22.82346	1.638759	4875
primnoa9億13	2.619609	0.082001	104.8037	5-527289	0.006496	0.000442	22.43795	1.70508	4900
primnoa9億14	2.596977	0.134906	1891.66	4.470174	0.006878	0.000609	21.53084	1.814949	4925
primnoa9@15	2.572821	0.103681	96.23846	4.299066	0.007358	0.000595	20.93141	1.889571	4950
primnoa9@16	2.568047	0.088729	100.8325	6.291038	0.006723	67600010	22.10311	2.62402	4975
primnoa9億17	2.57405	0.12439	101 5379	5.264018	0.006246	0.000829	22.21496	1.928362	2000
primnoa9@18	2.639794	0.085581	103.9449	4.415414	0.006148	0.000741	23.24288	1.356817	5025
primnoa9@19	2.668081	0.123895	102.8389	4.612654	0.005882	0.001037	23.0136	1.763783	5050
primnoa9@20	2.65961	0.096825	102.687	4.716887	0.005875	0.001115	22.28291	1.352889	5075
primnoa9@21	2.644932	0.139961	103.1164	5.154881	0.005804	0.000399	21.9568	1.523116	5100
primnoa9@22	2.633682	0.128462	103.5972	6.20256	0.006195	0.000722	23.05138	2.015524	5125
primnoa9@23	2.5869	0.135787	103.5889	5.383676	0.006423	0.000502	22.83597	1.396995	5150
primnoa9@24	2.553816	0.129743	98.06431	4.301334	0.006571	0.000699	23.19359	1.596407	\$175
primnoa9@25	2.563143	0.119691	97.89452	4.598235	0.007988	1600010	45.6103	2.490311	5200
primnoa9@26	2.539257	0.133839	98.92782	6.052867	0.007529	0.001177	37.36437	0.8603	5225
primnoa9@27	2.594212	0.12381	96.54282	3.642481	0.007097	0.000936	23.53477	1.581052	5250
primnoa9@28	2.537639	0.095804	97.73181	4.402329	0.006517	0.000639	22.10974	1.839243	5275
primnoa9@29	2.537944	0.092949	101.0657	4.498055	0.00782	60600010	21.99645	1.565957	5300
primnoa9@30	2.561427	0.089544	95.96455	3.585921	0.007139	0.001116	21.77287	1.404447	5325
primnoa9@31	2.589268	0.108609	94.45093	4.524362	0.007377	0.000671	21.59528	1.950282	5350
primnoa9@32	2.592989	0.079083	101.9155	4.678134	0.007431	0.001403	21.57143	2.024019	5375

C-23-

File name	885r/42Ca		24Mg/42Ca		1388a/42Ca		23Na/42Ca	ZSD dist	ance
	mmol/mol		mmo//mol		mmol/mol		mmol/mol	mu	
orimnoa9@33	2.551018	0.122793	95.61935	4.482897	0.007127	0.001137	22.43966	2.466094	5400
orimnoa9@34	2.539108	0.120677	97.81152	4.245807	0.006722	0.00095	23.48004	2.642844	5425
primnoa9@35	2.505096	0.124335	99.10788	4.763681	0.00653	0.000675	23.37714	2.263011	5450
primnoa9@36	2.533866	0.116638	99.41644	4.579227	0.006314	0.000628	23.30617	1.949109	5475
orimnoa9@37	2.548062	0.085044	102.456	6.93914	0.006416	0.0008	23.14302	1.875342	5500
orimnoa9@39	2.568561	0.113329	87626.96	5.32015	0.006228	0.000567	23.41828	2.155283	5525
orimnoa9@40	2 58011	0.095188	99.92584	5.118187	0.006454	0.000685	22.91542	1.961984	5550
orimnoa9@41	2.540171	0.13882	99.27311	5.584411	0.006678	0.000413	22.52191	2.708477	5575
orimnoa9@42	2.548466	0.112066	94.71405	4.275249	0.006872	0.000667	20.97538	2.093736	2600
orimnoa9@43	2.526948	0.133108	93.87464	4.420745	0.007039	0.000718	21.91444	2.318985	5625
orimnoa9@44	2.523764	0.098513	96.80356	4.248528	0.006427	0.001003	23.95212	2.195237	5650
orimnoa9@45	2.5599	0.10878	58.28167	4.950238	0.006146	0.000568	23.62981	2.283498	5675
orimnoa9@46	2.619323	0.134377	58.67808	6.219898	0.005864	0.000733	22.61745	1.875331	S700
orimnoa9@47	2.663085	0.079291	99,49126	5.151835	0.006429	0.000873	22.31228	2.113886	5725
orimnoa9@48	2.631558	0.120398	19608/65	4.524078	0.005414	0.000688	22.48699	1.984927	5750
orimnoa9@49	2 592074	0.102921	102.0443	5.083185	0.005808	0.001065	23.21423	2.354687	5775
orimnoa9@50	2 580884	0.127294	102.1555	6.100303	0.005412	0.000858	22.67426	2.539835	5800
primnoa9@51	2.556537	0.115318	103.396	5.969514	0.008562	0.001223	22.33958	2.999518	5825
primnoa9@52	2.55097	0.128549	104.0124	5.180818	0.00688	0.000527	23.74754	2.643136	5850
primnos10@1	2.804028	0.056079	92.18957	1.335754	0.007726	0.002915	38.60116	0.872793	5875
primnoa10回2	2.76207	0.060031	93.57651	1.624626	0.006921	0.002615	38.84261	1.001823	5900
primnoa10@3	2.758319	0.056684	94.86282	2 529218	0.007378	0.002445	43.16836	1.34625	5925
primnoa10@5	2.758372	0.055481	92.60593	2.132983	0.007217	0.002499	43.12334	1.530091	5950
primnoa10@6	2.683675	0.059665	92.43972	2 892566	0.008322	0.003424	43.54162	1.223403	5975
orimnoa10億7	2.672059	0.062661	92.06661	1.771057	0.008751	0.003204	43.97798	1.299149	6000
primnoa10@8	2.641993	0.084018	96.03199	2.075262	0.009041	0.003092	45.03233	1.433693	6025

C- 24 -

	885r/42Ca		Mg/42Ca				23Na/42Ca		ante
	mmol/mol		mmol/mol		mmol/mol		mmol/mol	Lin	
primnoa10@9	2.64481	0.080375	97.47927	3.613591	966700.0	0.002987	45.18567	1.458087	6050
primnoa10@10	2.642609	0.076082	101.9213	2.55581	0.007419	0.003612	44.17777	1.223006	6075
primnoa10@11	2.651075	0.079339	97.60116	4.213887	0.006632	0.004814	44.82298	1.855274	6100
primnoa10@12	2.618599	0.128733	58.10015	4.19605	0.008482	0.004243	42.38826	1.539747	6125
primnoa10@13	2.560229	0.08404	109.935	5.869811	0.007556	0.002961	46.00046	3.099967	6150
primnos10@14	2.483807	0.079346	112.7846	8.137034	0.005894	0.002248	47.45421	3.562901	6175
primnoa10@15	2.520995	0.136084	103.3741	5.331493	0.00849	0.004679	43,49186	3.131204	6200
primnoa10@16	2.552422	0.112159	97.17026	4.25134	0.009348	0.003714	42.33087	2.179929	6225
primnoa10@17	2.354427	0.091023	108.4376	10.2163	0.007468	0.005121	42.69064	1.975773	6250
primnoa10@18	2.251454	0.127961	118.5733	8.768888	0.007833	0.006167	45.67001	5.685613	6275
primnoa10@19	2.038944	0.071245	136.6116	9.157569	0.007306	0.007128	48.0786	15.11537	6300
primnos10@20	2.730009	0.067802	37.97825	5.58429	0.007407	0.003175	43.08029	1.239322	6325
primnos10@21	2.780143	0.065064	93.87371	1.515942	0.007521	0.002097	44.89156	1.791387	6350
primnos10@22	2.881479	0.058763	93.83244	2.793539	0.006799	0.002338	44.24458	2.065222	6375
primnoa10@23	2.827195	0.041297	95.79368	3.049358	0.00659	0.001551	44.22233	2 202091	6400
primnoa10億24	2.7635	0.124725	\$9.57954	2.452704	0.006536	0.002347	47.69633	2.048131	6425
primnoa10@25	2.653074	0.092497	108.4677	5.989115	0.006496	0.003716	S0.02121	4.49062	6450
primnoa10@26	2.827613	0.055522	102 9351	1.838076	0.006626	0.002275	46.91407	0.569444	6475
primnoa10@27	2.820785	0.052892	101 231	2.124725	0.006713	106200.0	45.93163	0.894402	6500
primnoa10@28	2.759141	0.036157	105.3431	2.732485	0.006873	0.002206	48.58882	1.229437	6525
primnos10@29	2.7173	0.053178	91.31961	2.587697	0.00781	0.001254	40.74517	1.21957	6550
primnoa10@30	2.697103	0.037079	88.5196	1.297721	0.007886	0.001592	40.23296	0.762558	6575
primnoa10@31	2.711364	0.05098	93.16559	1.803696	0.007636	0.001703	41.70938	0.85913	6600
primnoa10@32	2.736369	0.035921	88.74172	2.118643	0.007367	0.002095	39.98502	1.281978	6625
primnoa10@33	2.73468	0.057525	91.77505	2.94343	0.007499	0.002214	37.9308	1.895414	6650
primnoa10@34	2.679462	0.071999	89.8826	1.081789	0.00637	0.001064	42.24009	0.941369	6675

C-25-

File name	885r/42Ca	250	24Mg/42Ca	052	138Ba/42Ca		23Na/42Ca	2SD diste	ance
	mmol/mol		mmol/mol		mmol/mol		mmol/moil	mu	
primnoa10@35	2.78966	0.052276	93.30119	2.523545	0.006866	0.001713	42.54306	0.992083	6700
primnoal1@1	2.832496	0.095839	93.89441	2.921222	0.005874	0.000982	43.56202	0.80604	6725
primnoal1@2	2.876247	0.07101	99.62021	2.581004	0.006173	0.00102	46.33501	1.08783	6750
primnoa11@3 (version 1)	2.851964	0.048497	95.51416	2.308395	0.006379	0.001433	44.38358	1.366395	6775
primnoa11@4 (version 1)	2.867502	0.04662	96.77321	2.509773	0.00615	0.002251	45.48581	0.93485	6800
primnoa11@5 (version 1)	2.797285	0.068512	100.321	2.105439	0.006158	0.001323	47.37709	1 254476	6825
primnoa11@6 (version 1)	2.744784	0.063734	103.3703	1.989683	0.006361	0.00103	47.97616	1.2558	6850
primnoa11@7 (version 1)	2.701584	0.108125	99.186	1.121359	0.006767	0.001795	46.35524	0.951338	6875
primnoa11@8	2.690128	0.063876	90.96509	2.892591	0.007407	0.001478	43.17475	1.320318	6900
primnoa11@9	2.670173	0.070215	93.44058	2.043325	0.007779	0.002927	44.84123	1.555993	6925
primnoa11@10	2.681469	0.076046	89.88443	2.846703	0.006713	0.001687	45.23661	4.052216	6950
primnoa11@12	2.780649	0.056222	93.57487	1.730218	0.007044	0.002451	46.21492	5.974663	6975
primnoa11@13	2.634533	0.055286	103.0311	1.950967	0.006694	0.003225	48.57376	3.096099	7000
primnoa11@14 (2.633213	0.152208	106.1744	7.930141	0.006347	0.0031	47.70875	1.256017	7025
primnoa11@15	2.714553	0.062874	98.31485	2.204765	0.008007	0:00209	45.39662	1.078488	7050
primnoa11@16	2.808808	0.045082	94.85902	2.051805	0.006954	0.003099	41.46368	1.072027	7075
primnos11@17	2.724839	0.077944	95.51628	1.750856	0.007847	0.002046	44.03416	1.34766	7100
primnos11@18	2.744397	0.054957	92.58967	2.445286	0.007785	0.001814	45.03026	2.007451	7125
primnca11@19	2.732371	0.044121	1955.68	3.270202	0.006835	0.001406	44.56257	1.376149	7150
primnoa11@20	2.857016	0.045581	88.52366	1.454587	0.007185	0.000978	43.96332	0.796342	7175
primnoa11@21	2.824967	0.060622	94.06267	2.60133	0.007679	0.002756	46.81427	1.220965	7200
primnoa11@22	2.830791	0.057429	95.92229	1.213151	0.006955	0.002294	45.38788	1.438668	7225
primnoa11@23 (version 1)	2.84281	0.07204	89.64473	1.540539	0.007283	0.001616	43.94623	1.329104	7250
primnoa11@24	2.880205	0.03783	90.92922	1.413394	0.007004	0.001145	41.94397	1.407928	7275
primnoa11@25	2.869283	0.061262	93.03824	1.157308	0.006352	0.001402	43.49002	0.930463	7300
primnoa11@26	2.822817	0.052651	95.80292	1.623452	0.006835	0.002303	42,8052	1.407107	7325

C-26-

	8351/4268		24112/42/3		1388a/42Ca		Z5N8/42Ca	220 022	ance
	mmol/mol		mmol/mol		mmol/mol		mmol/mol	mu	
primnos11@27 (version 1)	2.649794	0.068876	103.3386	2.15447	0.006662	0.002647	47.55121	1.269412	7350
primnos12@1 (version 1)	2.76715	0.059933	94.04436	2.765186	0.006672	0.000808	47.37667	1.676488	7375
primnoa12@2 (version 1)	2,81591	0.060285	87.92784	1.253518	0.006813	0.001235	42.65513	0.730184	7400
primnoa12@3	2.802984	0.033896	88.9378	0.927815	0.007218	0.00111	41.65601	0.683035	7425
primnoa12@4	2.797855	0.049227	89.92407	2.094594	0.007171	0.001666	43.12887	1.950514	7450
primnoa12@5	2.763757	0.070037	91.89612	1.245122	0.007375	0.001501	43.4039	0.750719	7475
primnoa12@6	2.76598	0.049027	94.07833	1.590737	0.006676	0.000997	43.872	1.275082	7500
primnoa12(@7 (version 1)	2.694402	0.040509	92.10839	1.318836	0.007021	0.001182	42.41658	1.073794	7525
primnoa12(Ø8 (version 1)	2.666644	0.060209	90.76867	1.191172	0.007332	0.001097	40.95223	0.73043	7550
primnoa12(89 (version 1)	2.726335	0.07468	89.38303	1.462512	0.006742	0.001477	41.04797	1.016383	7575
primnoa12@10 (version 1)	2.746405	0.065766	90.20292	1.997467	0.006434	0.001815	41.11745	1.582916	7600
primnoa12@11 (version 1)	2.753579	0.065476	96.477	1.838012	0.005964	0.001286	43.74414	1.355039	7625
primnoa12@12 (version 1)	2.781706	0.051007	111.2328	3.563618	0.006301	0.001227	47.55879	1.37589	7650
primnoa12@13 (version 1)	2.783887	0.048141	102.4546	1.646946	0.005608	0.001405	47.5924	1.087719	7675
primnoa12@14 (version 1)	2.874049	0.070869	93.20549	1.550832	0.005994	0.001652	43.62549	1.401252	7700
primnoa12@15 (version 1)	2.838324	0.062269	88.31383	2.915779	0.006435	0.001736	41.54579	1.353691	7725
primnoa12@16 (version 1)	2.83322	0.064324	94.35294	0.924768	0.006536	0.002313	42.52586	0.562313	7750
primnoa12@17 (version 1)	2.844719	0.030766	86.42451	1.093595	0.0074	0.002449	41.35427	0.49297	7775
primnoa13@1 (version 1)	2.802166	0.047987	86.99466	0.731523	0.007444	0.002404	41.27472	0.618029	8200
primnoa13@2 (version 1)	2.828738	0.050313	86.52108	1.399234	0.006707	0.001399	40.12192	0.647035	8225
primnoa13@3 (version 1)	2.805808	0.080519	92.57845	1.927443	0.007453	0.001059	40.38064	0.700728	8250
primnoa13@4	2.788254	0.056408	93.28324	2.560961	0.00679	0.001806	42.2608	1.465844	8275
primnoa13@5	2.725835	0.035213	93.79831	1.742383	0.006278	0.000849	42.90328	1.423058	8300
primnos13@6	2.778156	0.044964	98.29728	1.178037	0.005663	0.000976	44.18912	0.962836	8325
primnos13@7	2.760683	0.063141	96.98678	1.431219	0.006059	0.000797	45.56855	0.953269	8350
primnos13@8	2.787893	0.063339	93.62141	1.503424	0.006228	0.001329	44.09722	1.322384	8375

C- 27 -

File name	885r/42Ca	25D	24M6/42Ca	25D	138Ba/42Ca	250	23Na/42Ca	25D dis	ance
	mmal/mol		mmoi/mol		mmol/mal		mmol/mol	pur	
primnoa13@9 (version 1) primnoa13@10	2.745985	0.041878	95.94677	1.260801	0.006238	0.001814	44.20654	0.986539	8400
(Autosaved)	2.756856	0.028438	97.03254	3.762863	0.005965	0.001242	42.40244	0.91816	8425
primnoa13@11 (version 1)	2.78101	0.039566	9137147	1.093034	0.00709	0.001698	48.17267	2.644645	8450
primnoa13@12 (version 1)	2.792536	0.078279	85.58128	0.783968	0.007859	0.001705	42.75178	2.399575	8475
primnoa13@13 (version 1)	2.819547	0.041522	84.36379	1.626792	0.007276	0.0012	38.40894	0.518007	8500
primnoa13@14 (version 1)	2.872867	0.064497	97.33459	2.562376	0.00724	0.001928	53.06988	1.226525	9038
primnoa13@15	2.895204	0.046577	93.05247	1.371312	0.007341	0.002173	48.65913	0.732736	9050
primnoa13@16 (version 1)	2.86325	0.054496	102.1312	1.855464	0.007019	0.001948	52.4957	1.30764	9075
primnoa13@19 (version 1)	2.892591	0.059107	95.27243	2.301525	0.006911	0.002147	48.49549	1.047053	9100
primnoa13@20 (version 1)	2.853742	0.078322	98.38732	1.945138	0.006451	0.001552	48.64974	1.077017	9125
primnoa13@21	2.896129	0.050619	93.76341	1.57298	0.007223	0.001379	47.51187	1.769884	9150
primnoa13@22	2.881676	0.067897	100.6132	4.692733	0.007108	0.001171	45.46224	1.165354	9175
primnoa13@24	2.862917	0.060358	94.28494	2.202621	0.007488	0.004736	42.76558	0.720868	9200
primnoa13@25	2.768676	0.068466	91.0349	2.37425	0.011588	0.00334	48.28857	0.865686	9225
primnoa13@26	2.756104	0.062226	90.09728	2.127262	0.00745	0.001343	48.64211	1.35157	9250
primnoa13@27	2.808008	0.078207	96.13174	1.231504	0.006675	0.00365	47.62159	1.262237	9275
primnoa13@28	2.796722	0.086146	96.32861	2.003307	0.006217	0.001396	48.69085	0.708452	0026
primnoa13@29	2.828299	0.072805	104.024	4.091308	0.00748	0.001993	78.48631	64.06148	9325
primnoa13@30	2.866976	0.064567	17168.66	1.424441	0.006593	0.008048	52.0659	1.129458	9350
primnoa13@31	2.900083	0.096509	100.4891	1.507424	0.006099	0.000793	50.07924	0.801852	9375
primnoa13@32	2.873284	0.076871	96.51813	1.393259	0.006403	0.003979	47.67859	0.581206	9400
primnoa13@33	2.876513	0.049666	100.4758	4.029408	0.005914	0.000893	47.39069	0.82622	9425
primnoa13@34	2.890822	0.057451	105.0898	2.514983	0.006043	0.002023	51.04505	0.944209	9450
primnoa13@35	2.925354	0.048564	102.6382	3.746725	0.006178	0.001773	48.30019	0.510943	9475
primnoa13@36	2.913833	0.051424	99.61743	1.40218	0.006684	0.001121	45.29493	0.756348	0056
primnoa13@37	2.892388	0.051921	98.0049	2.06429	0.006604	0.001956	44.79206	1.125636	9525

C-28-

	8351/47(3		entelever				23Na/42Ca		ance
	mmol/mol		mmoi/mol		mmol/mal		mmol/mol	mu	
primnoa13@38	2.810741	0.058862	100.6808	2.50478	0.006408	0.001454	46.37533	0.800754	9550
primnoa13@39	2.844819	0.056955	96.35489	1.815006	0.00659	0.001097	44.32098	0.738351	9575
primnoa13@40	2,828152	0.05306	96.62964	1.444526	0.007009	0.001118	43.06748	0.698282	9600
primnoa13@41	2.826865	0.052716	100.7216	1.884247	0.007345	0.001408	43.80095	1.002985	9625
primnoa13@42	2.792853	0.050801	93.83441	1.971369	0.007369	0.002322	45.13436	0.725205	9650
primnoa13@43	2.842724	0.048028	93.91526	1.354418	0.006586	0.00198	45.74336	0.621198	9675
primnoa13@44	2.871006	0.058821	100.6392	1.682488	0.005957	0.001648	47.55832	1.106494	9700
primnoa13@45	2.835176	0.05916	105.3125	2.409072	0.00644	0.003549	48.51185	1.376336	9725
primnoa13@46	2.854503	0.032584	99.21819	1.189066	0.006231	0.000869	49.40467	0.741412	9750
primnoa13@61	2.872081	0.059514	99.71321	2.586697	0.006314	0.001664	51.1615	1.811712	9775
primnoa13@62	2.837463	0.069325	94.41665	4.550651	0.006562	0.000852	42.3289	1.855793	0086
primnoa13@47	2.919126	0.056393	103.5835	3.147326	0.005948	0.001146	49.5776	1.332778	9825
primnoa13@48	2.90575	0.062699	107.2319	1.559105	0.006307	0.001482	49.45715	0.928533	9850
primnoa13@49	2.852738	0.031911	111.8962	1.266518	0.011283	0.016691	50.50143	1.450277	9875
primnoa13@50	2.764125	0.054516	100.0015	1.611786	0.007058	0.00162	43.72577	0.57907	0066
primnoa13@51	2.693697	0.042874	93.51257	1.423609	0.006246	0.001457	42.72116	1.415777	9925
primnos13@52	2.847116	0.03641	89.84075	1.227775	0.007579	0.001071	41.62647	0.641278	10806
primnos13@53	2.840512	0.048054	92.77709	1.503078	0.007319	0.001363	43.64303	0.951868	10825
primnoa13@54	2.884486	0.056832	91.43887	2.72648	0.006958	0.001623	43.78297	1.020404	10850
primnoa13@55	2.833446	0.033499	95.34317	2.200979	0.006755	0.001206	45.14959	0.95073	10875
primnoa13@56	2 903105	0.054336	100.4312	1.554691	0.006415	0.001504	47.10175	1.125669	10900
primnoa13@57	2.915454	0.031332	103.1295	2.240876	0.007983	0.002977	50.67911	0.626721	10925
primnoa13@58	2.968243	0.072917	105.2084	2.751761	0.006464	0.002652	48.03516	0.900057	10950
primnoa13@59	2.946326	0.080017	103.4249	2.076881	0.005	0.003374	45.66655	1.016784	10975
primnoa13@60	2.929606	0.075472	107.0808	1.344628	0.005985	0.002777	46.65507	1.18707	11000
primnoa14@1	2.909962	0.045637	107.763	1.226431	0.005904	0.001392	47.1586	0.795863	11025

C- 29 -

File name	885r/42Ca	250	24Mg/42Ca	250	1388a/42Ca	250	23Na/42Ca	25D dis	tance
	mmo/mol		mmol/mal		mmol/mol		mmol/mol	m	
primnoa14@2	2.935471	0.072232	107.8661	2.455648	0.005348	0.002054	47.05596	0.875643	11050
primnoa14@3	2.881742	0.088087	105.7869	2.286999	0.006017	0.001551	46.52779	0.875787	11075
primnoa14@4	2.824178	0.059034	97.04151	1.849205	0.006443	0.001206	46.24647	1.034127	11100
primnoa14@5	2.900385	0.036166	99.32627	2.078886	0.00639	0.001381	45.61429	1.145379	11125
primnoa14@6	2.851585	0.075805	98.074	2.727811	0.006579	0.001469	45.09642	1.633389	11150
primnoa14@7	2.857591	0.067603	104.2094	3.7006	0.006208	0.001703	47.31688	1.532943	11175
	Rows highli	ghted in gre	y are the analy	tes correspot	ading to the gor	gonin ring			

P.pacifica SIMS data (R1165-002)

Cila .									
name	885r/42Ca	250	24Mg/42Ca	052	1388a/42Ca	250	23Na/42Ca	250	Distance
	mmol/mol		mmol/mol		mmol/mol		mmol/mol		ш
prim_5_2@1	2.302624	0.037579	80.76357	1.160322	0.005777	0.001804	20.53702	0.195987	0
prim_5_2@2	2.317904	0.045607	79.24076	2.765157	0.005507	0.000954	21.01578	0.862697	25
prim_5_2@3	2.326854	0.047224	81.74069	1 591654	0.007731	0.01395	22.40508	0.407478	20
prim_5_2@4	2.351142	0.042165	82.80044	0.805478	0.006278	0.002701	21.17351	0.320168	75
prim_5_2@5	2.469093	0.114962	77.48177	1.752047	0.006558	0.005004	20.5551	0.280181	100
prim_5_2@6	2.344671	0.063308	80.09677	0.749472	0.005931	0.000791	19.28211	0.500983	125
prim_5_2@7	2.301889	0.023307	80.72352	1.166186	0.006857	0.002091	20.32398	0.740077	150
prim_5_2@8	2.301366	0.041043	78.20721	2.140717	0.018319	0.053863	20.06977	0.331257	175
prim_5_2@9	2.314328	0.058203	17060.67	1.952341	0.005767	0.001119	21.14844	0.239401	200
prim_5_2@10	2.323295	0.057081	79.63985	1.735202	0.005296	0.000582	20.36581	0.878541	225
prim_5_2@11	2.326579	0.02879	78.29855	1.361698	0.005967	0.000729	20.19446	0.556914	250
prim_5_2@12	2.375208	0.045441	77.96192	1.386153	0.006637	0.013681	18.89807	0.267928	275
prim_5_2@13	2.383423	0.038919	78.49422	2.277961	0.005564	0.002397	19.58927	0.256596	300
prim_5_2@14	2.260096	0.028462	83.13858	0.925138	0.005377	0.001221	20.65598	0.262885	325
prim_5_2@15	2.389709	0.038531	74.5149	1.617355	0.006248	0.001328	20,4865	0.527858	350
prim_5_2@16	2 385897	0.040049	80.40978	1.823263	0.005388	0.000819	23.14515	0.239273	375
prim_5_2@17	2.400874	0.060249	79.61094	1.144951	0.005624	0.001089	21.13954	0.378375	400
prim_5_2@18	2 331458	0.073745	83.16452	3.205249	0.005033	0.001703	21.80279	0.608803	425
prim_5_2@19	2.281502	0.05198	87.45864	0.84114	0.005852	0.005665	22.01703	0.398419	450
prim_5_2@20	2.376573	0.044559	78.46752	1.714853	0.006976	0.002938	19.1018	0.358033	475
prim_5_2@21	2.355683	0.02588	78.78856	1.194966	0.005538	0.002453	21.05677	0.80671	200
prim_5_2@22	2.302919	0.042466	81.18499	1.870132	0.006334	0.008287	20,60406	0.325773	525

file name	885r/42Ca		24Mg/42Ca	250	13884/42Ca	250	23Nb/42Ca		listance
	mmal/mol		mmol/mol		mmol/mol		mmol/mol	H CONTRACTOR	E
prim_5_2@23	2.367256	0.056819	80.72508	1.360249	0.015416	0.040647	21.6163	0.627938	550
prim_5_2@24	2.328904	0.083864	85.92163	1.996011	0.005661	0.001347	22.89948	0.571373	575
prim_5_2@25	2.331807	0.016221	72.49452	1.97788	0.006028	0.00085	19.9315	0.250002	600
prim_5_2@26	2.39155	0.034572	73.70462	1.087233	0.006262	0.003315	19.53699	0.370963	625
prim_5_3@1	2.187379	0.063249	76.55419	1.285615	0.005916	0.004251	20.76671	0.289761	750
prim_5_3@2	2.326625	0.032301	75,81195	0.98511	0.00522	0.003972	18.27353	0.280427	775
prim_5_3@3	2.229817	0.024844	82.13593	1.145295	0.005986	0.004032	21.69968	0.407972	800
prim_5_3@4	2.372097	0.028054	78.20803	2.07896	0.00476	0.002341	20.49805	0.362708	825
prim_5_3@5	2.413698	0.035835	78.3802	1.167637	0.005411	0.002006	18.8698	0.142345	850
prim_5_3@6	2.409893	0.043959	77.11242	0.783514	0.005567	0.004628	19.24427	0.386112	875
prim_5_3@7	2.34312	0.12178	83.7657	1.83195	0.005745	0.002716	20.70233	0.160381	006
prim_5_3@8	2.351981	0.057544	78.36334	2.143693	0.006055	0.002912	19.53926	0.184503	925
prim_5_3@9	2,400705	0.021156	74,81362	0.816219	0.006626	0.003438	19,44159	0.406662	950
prim_5_3@10	2 378542	0.036977	83.76643	1.107768	0.0077774	0.02098	22.51634	0.49735	975
prim_5_3@11	2,418162	0.036547	81.6263	2.034648	0.03058	0.187975	21.3282	0.265356	1000
prim_5_3@12	2.442237	0.065519	85.10204	1.098747	0.004668	0.004185	22.96517	0.33952	1025
prim_5_3@13	2.429911	0.039863	86.5745	1373416	0.005573	0.002556	22.57233	0.314966	1050
prim_5_3@14	2.353338	0.03213	92.15477	2.034652	0.003617	0.002748	24.07212	0.347139	1075
prim_5_3@15	2.32413	0.052651	90.62097	2 904661	0.004757	0.002933	23.21984	0.489867	1100
prim_5_3@16	2.389433	0.077056	192951	3.367978	0.005999	0.003286	21.68542	0.687919	1125
prim_5_3@17	2.471929	0.045651	78.10775	1.266957	0.004651	0.003252	21.66102	0.274166	1150
prim_5_3@18	2.467857	0.068669	80.76674	1.906967	0.005614	0.003395	20.78191	0.185583	1175
prim_5_3@19	2.432456	0.046049	86.21486	1.879994	0.00507	0.001769	21.51193	0.361575	1200
prim_5_3@20	2.454651	0.064927	85.44491	1.497968	0.003828	0.002408	21.09622	0.313684	1225
prim_5_3@21	2.444037	0.03006	83.93325	1.156594	0.005584	0.003091	20.88417	0.341805	1250
prim_5_3@22	2.424238	0.036511	78.16825	0.774885	0.006074	0.003081	19.03557	0.323179	1275

C-32-

File name	885r/42Ca mmol/mol		24Mg/42Ca mmo//mol		1388s/42Ca mmol/mol		23Na/42Ca mmol/mol		Aistance um
prim_5_3@23	2.358091	0.044662	82.39016	1.817182	0.005813	0.00292	21.79568	0.321651	1300
prim_5_3@24	2.455346	0.048974	78.55621	2.412921	0.004907	0.003643	20.90675	0.39391	1325
prim_5_3@25	2.375287	0.03918	87.29126	2.036753	0.005045	0.00193	22.61993	0.6742	1350
prim_5_3@26	2.381256	0.033261	86.22973	1.018668	0.005276	0.001715	21.89562	0.452199	1375
prim_5_3@27	2.397089	0.048901	77.76923	2.855928	0.005572	0.002762	20.24977	0.402385	1400
prim_5_3@28	2.397275	0.027008	75.04757	1.613129	0.005615	0.002555	19.66779	0.404887	1425
prim_5_3@29	2.36613	0.095348	80.08589	1.157445	0.005971	0.005045	20.92415	0.497008	1450
prim_5_3@30	2.389584	0.024056	76.95546	0.834478	0.007529	0.004045	20.61459	0.288546	1475
prim_5_3@31	2.300898	0.030719	84.0938	1.971515	0.005845	0.002667	22.74008	0.384734	1500
prim_5_3@32	2.40379	0.049021	78.12953	0.584919	0.004929	0.002635	20.11739	0.509953	1525
prim_5_3@33	2.422887	0.053166	79.56296	1.845162	0.004735	0.002379	21.11637	0.263407	1550
prim_5_3@34	2.422681	0.135832	81.68842	1.267881	0.006398	0.002485	21.93715	0.474903	1575
prim_5_3@35	2.393064	0.052021	79.47136	1.292498	0.005396	0.002781	21.51461	0.376748	1600
prim_5_3@36	2.344349	0.068838	82.74772	1.307202	0.005282	0.002673	22.52305	0.412613	1625
prim_5_3@37	2.407356	0.046708	76.85246	1.731226	0.00632	0.002483	21.55223	0.327278	1650
prim_5_3@38	2.397275	0.031166	75.4449	1.176175	0.005303	0.00294	20.30072	0.20424	1675
prim_5_3@39	2.407862	0.052338	77.46142	1.876337	0.005928	0.002972	21.95172	0.320132	1700
prim_5_3@40	2.432957	0.047993	74.93944	1.624704	0.005493	0.002132	19.22697	0.309467	1725
prim_5_3@41	2.389219	0.030396	77.90024	1.546691	0.006364	0.003785	20.72453	0.25346	1750
prim_5_3@42	2.378491	0.067403	83.01871	3.096243	0.004866	0.003537	20.82502	0.361908	1775
prim_5_3@43	2.331228	0.075166	82.41626	1.39773	0.005109	0.004339	20.91718	0.696317	1800
prim_5_3@44	2 385874	0.066075	76.97761	1.819659	0.006977	0.004324	19.4538	0.439472	1825
prim_5_3@45	2,403361	0.051164	77.54309	1.967344	0.005592	0.004361	20.45176	0.336387	1850
prim_5_3@46	2.349139	0.040727	78.04525	1.924275	0.00637	0.002666	22.09154	0.392117	1875
prim_5_3@47	2.371741	0.042689	78.73806	1.992076	0.005616	0.00135	20.81444	0.584917	1900
prim_5_3@48	2.280659	0.049304	80.45894	2.731539	0.005216	0.002628	21.24142	0.576531	1925

C- 33 -

File name	885r/42Ca mmol/mol		24Mg/42Ca mmol/mal		1388a/42Ca mmol/mol		23Na/42Ca mmol/mol	25D D	listance m
rim_5_3@49	2.3002	0.048247	77.98915	1.002706	0.00695	0.003926	21.19603	0.400047	1975
rim_5_3@50	2.265407	0.043292	76.51845	1.975465	0.006124	0.004122	20.89932	0.254263	2000
rim_5_3@51	2.308828	0.063851	71.2436	2.406012	0.006767	0.002684	19.20009	0.503104	2025
rim_5_3@52	2.263825	0.036772	78.17226	1.327876	0.006986	0.003576	21.31484	0.30905	2050
rim_5_3@53	2.432249	0.045281	81.94821	1.500817	0.004506	0.002401	20.12819	0.210588	2075
nim_5_3@54	2.304309	0.044331	77.78529	2.041595	0.005083	0.002231	20.71352	0.474886	2100
nim_5_3@55	2.374624	0.028096	73.12557	1.901202	0.00537	0.002417	18.91413	0.251522	2125
xim_5_3@56	2.327704	0.030363	73.05049	1.319581	0.006017	0.00363	18.64214	0.235724	2150
xim_5_3@57	2.269887	0.033238	77.67509	1.255916	0.006897	0.003397	20.43216	0.180027	2175
orim_5_3@58	2 351056	0.212994	80.46021	2.352261	0.005001	0.003196	20.0325	0.2524	2200
orim_5_3@59	2 284569	0.080642	80.45999	0.874921	0.00555	0.003433	20.83954	0.408624	2225
orim_5_3@60	2.282354	0.054846	75.07141	1.305418	0.006282	0.002901	19.30065	0.373545	2250
orim_5_3@61	2.259463	0.03741	72.56006	1.963856	0.006492	0.003571	18.58242	0.202655	2275
orim_5_3@62	2.263814	0.041177	75.67879	1.994706	0.005705	0.002757	20.24807	0.262929	2300
orim_5_3@63	2.397514	0.080352	75.68656	1.417852	0.005656	0.00231	19.41517	0.389094	2325
orim_5_3@64	2.380756	0.058757	77.18383	1.751812	0.0557	0.36674	19.94252	0.400144	2350
prim_5_3@65	2.270887	0.068824	84.60367	2.741412	0.006581	0.001749	22.08316	0.445792	2375
prim_5_3@66	2.421235	0.123667	80.98661	2.234174	0.01556	0.079278	20.67598	0.226541	2400
prim_5_3@67	2.369704	0.056027	81.88779	1.799145	0.005061	0.00255	21.1475	0.34187	2425
prim_5_3@68	2.339344	0.063634	87.09259	1.783471	0.029266	0.163438	24.2127	0.48954	2450
prim_5_3@69	2.417614	0.055191	77.07217	1.495052	0.00597	0.002438	19.59343	0.295031	2475
prim_5_3@70	2.417229	0.050087	78.14321	2.06907	0.005309	0.003188	19.93143	0.379786	2500
prim_5_3@71	2.457018	0.091882	74.29153	1.118587	0.00548	0.003931	18.03842	0.448031	2525
prim_5_3@72	2.450844	0.036406	76.22489	2.173608	0.005096	0.003725	18.76706	0.249382	2550
prim_5_3@73	2.436342	0.063392	80.70811	1.81442	0.004935	0.002047	19.84184	0.688656	2575
prim_5_3@74	2.400157	0.07489	84.15548	1.810877	0.005595	0.004337	20.43886	0.19371	2600

C- 34 -

File name	885r/42Ca	250	24Mg/42Ca	250	1388a/42Ca	250	23Na/42Ca	250	Distance
	mmal/mal		mmol/mdl		mmol/mol		mmol/mol		mm
prim_5_3@75	2.406152	0.026877	86.57844	2.012379	0.005365	0.002437	20.71054	0.318505	2625
prim_5_3@76	2.345784	0.073679	86.80787	1.442384	0.0047	0.0026	21.47381	0.475247	2650
prim_5_3@77	2.392744	0.052519	80.46686	2.81514	0.005822	0.001151	18.37957	0.372023	2675
prim_5_3@78	2.414475	0.052133	76.25564	1.094525	0.006217	0.003105	18.52875	0.400534	2700
prim_5_3@79	2.410155	0.033728	77.01968	1.389952	0.006604	0.003032	19.32609	0.43956	2725
prim_5_3@80	2.319926	0.069957	81.75388	1.797087	0.006073	0.002682	20.83962	0.228548	2750
prim_5_3@81	2.394554	0.062122	80.81873	1.220809	0.005566	0.002562	21 31333	0.363524	2775
prim_5_3@82	2.417021	0.071604	78.79176	1.240266	0.006345	0.00349	19.52098	0.645185	2800
prim_5_3@83	2.337214	0.055362	77.98475	1.415897	0.024075	0.130639	20.22716	0.321481	2825
prim_5_3@84	2.363878	0.071934	73.59313	1.554332	0.005648	0.003317	20.22374	0.269348	2850
prim_5_3@85	2.400848	0.05521	77.04155	1.255454	0.0057	0.00596	20.08557	0.308851	2875
prim_5_3@86	2.37096	0.033284	82.27887	1.666189	0.005659	0.003404	20.84204	0.270978	2900
prim_5_3@87	2.343999	0.048653	77.98545	1.935095	0.005571	0.002495	17.92913	0.166164	2925
prim_5_3@88	2 3941	0.093054	78.30302	1.106146	0.005765	0.002442	19.1428	0.607974	2950
prim_5_3@89	2.340378	0.047701	819486	1.9237	0.006517	0.002623	21.5422	0.567907	2975
prim_5_3@90	2.415923	0.266275	77.35047	1.421198	0.005734	0.002696	20.27288	0.527601	3000
prim_5_3@91	2 387295	0.049055	80.09632	2.358668	0.004932	0.002192	20.00241	0.226784	3025
prim_5_3@92	2.400006	0.090683	17.38071	2721972	0.005702	0.003559	21.31738	0.703916	3050
prim_5_3@93	2.413519	0.054793	79.45586	1.539816	0.004942	0.002511	20.7626	0.301574	3075
prim_5_3@94	2,41913	0.044937	77,83776	2.595253	0.006726	0.004127	19.97752	0.385157	3100
prim_5_3@95	2.397306	0.043083	74.79294	1.492339	0.005884	0.002625	18.25821	0.318712	3125
prim_5_3@96	2.420303	0.04692	75.25319	1 306562	0.006038	0.004071	18.9968	0.472093	3150
prim_5_3@97	2.437665	0.056939	73.51431	2.067476	0.005636	0.002956	19.44285	0.321957	3175
prim_5_3@98	2.463795	0.043598	74.7316	1.614432	0.005917	0.003694	18.93169	0.329403	3200
prim_5_3@99	2.397916	0.058179	78.75624	1.66278	0.005665	0.002653	20.67558	0.249787	3225
prim_5_3@100	2.420698	0.046387	82.00368	2.507945	0.005571	0.005243	20.85049	0.316355	3250

C-35-

C-36-

885	/42Ca		24Mg/42Ca mmol/mol		13884/42Ca mmol/mol		23Na/42Ca mmol/mol		Distance
64589 0.0	2	88633	80.94251	1.424927	0.005665	0.005039	21.39632	0.493389	3925
04786 0.0	0	96985	76.07158	1.863632	0.007772	0.0164	19.3789	0.313191	3950
47833 0.07	2	38086	80.63341	1.604752	0.006313	0.00066	21.17763	0.419525	3975
24159 0.0	2	76399	84.74105	2.749031	0.012953	0.056589	21.5965	1.054973	4000
96474 0.03	ġ.	19040	85.23745	2.23957	60690010	0.000563	23.13916	0.381407	4025
86868 0.1	9	10464	82.14426	2.067917	0.005116	0.000799	22.09677	0.268682	4050
16782 0.0	3	9553	78.09696	1.976837	0.005811	0.001078	20.96594	0.381113	4075
86513 0.0	3	4136	76.98019	2.289035	0.005833	6600010	20.7128	0.292758	4100
96167 0.04	00	5028	76.40094	2.475855	0.007946	0.01455	21.88485	0.411156	4125
42438 0.06	00	3982	80.10008	2.874334	0.008325	0.018373	22.60468	0.329419	4150
44298 0.056	000	1278	78.06746	2.147121	0.006267	0.000678	22.48719	0.27927	4175
44757 0.070	02010	017	80.85435	2.261663	0.005729	0.001345	22.77401	0.474068	4200
24139 0.053	0.053	988	79.88205	2.304748	0.010456	0.036719	21.34304	0.463342	4225
22485 0.071	1200	895	78.70994	2.290919	0.00584	0.00126	21.30201	0.49501	4250
10061 0.072	0.072	171	83.34141	2.162766	0.007731	0.019903	22 22377	0.370267	4275
40692 0.078	3.078	1108	79.11699	1.649038	0.007423	0.015174	21.01825	0.494936	4300
0.061	0.061	676	80.79109	3.149061	0.00531	0.00117	21.52586	0.293947	4325
18514 0.05	0.05	5529	80.96619	2.305247	0.008693	0.022868	21.97698	0.29885	4350
50154 0.04	0.04	3207	78.72387	2.366616	0.0151	0.040065	20.99724	0.243864	4375
16501 0.05	0.05	6428	81.26667	2.058074	0.013115	0.029674	22,49383	0.262717	4400
17046 0.07	201	3193	81.68659	2.850913	0.005581	0.001755	22,45161	0.302531	4425
01037 0.05	0.05	3358	84.12521	2.612527	0.01186	0.028365	24.17465	0.52093	4450
183583 0.06	8	56935	83.27769	1.750964	0.00561	0.002488	23.01848	0.385601	4475
123177 0.05	20	5876	85.24792	2.566291	0.005577	0.000844	23,87724	0.365118	4500
116048 0.0	0	74562	76.43337	2.539008	0.009793	0.029288	20.7963	0.268306	4525
19411 0.05	00	1601	76.50062	1.406745	0.006905	0.003592	21.57868	0,499401	4550

C-37-

File name	885r/42Ca	250	24Mg/42Ca	052	1388a/42Ca		23Na/42Ca		Distance
	mmaymen		mmaymore		Long of Lines		THIN WILLIAM		
@24	2.449372	0.090427	17.7667	1.9927555	0.005019	0.000925	21.65145	0.463051	4575
@25	2,431941	0.059072	81.34167	2.783241	0.008004	0.018366	22.39402	0.405058	4600
5@26	2.431141	0.077561	82.7277	2.357356	0.00676	0.00948	22.09215	0.366925	4625
5@27	2.429797	0.045847	81 28267	2.12728	0.007902	0.016511	21.61699	0.468	4650
5@28	2.498894	0.13489	78.00921	3.012452	0.010421	0.031747	19.26796	0.179713	4675
5@29	2.443699	0.058152	74.63938	2.344009	0.006249	0.001126	19.73912	0.687092	4700
5@30	2.377107	0.048114	77.15476	2.515114	0.008298	0.016191	21.51428	0.346342	4725
5@31	2.366014	0.051665	73.64531	2.134914	0.012525	0.02147	19.8647	0.44046	4750
5@32	2.353539	0.056417	79.30257	2.956443	0.006027	0.000632	22.52928	0.275183	4775
5@33	2.454764	0.072103	79.45457	2,89925	0.00728	0.01063	22.8226	0.168651	4800
5@34	2.515793	0.070278	80.96467	2.117121	0.007949	0.020177	22.90134	0.40941	4825
5@35	2.531632	0.051417	81.35903	1.92827	0.005613	0.001085	22.97872	0.428805	4850
5@36	2.476141	0.043066	82.69298	2.918282	0.012494	0.027305	21.80633	0.251495	4875
5@37	2.46938	0.059098	84.74192	2.374015	0.005575	126000.0	22.91806	0.446431	4900
5@38	2.437546	0.06659	87.05151	2.323271	0.007263	0.015398	24.24349	0.453316	4925
5@39	2.482232	0.070449	84.24341	1.74355	0.005151	0.000768	23.43138	0.551023	4950
5.840	2.442446	0.065479	90.88999	2.908061	0.005607	0.001066	24.16548	0.539562	4975
5.641	2.493951	0.074499	85.94863	2.786282	0.005541	0.00085	22.70927	0.146086	5000
5.642	2.473903	0.055627	84.32533	2.401032	0.005552	0.000974	21.51578	0.263356	5025
5.6943	2.438187	0.068944	87.51033	1.945618	0.005434	0.000975	22.08526	0.566334	S050
58944	2 396694	0.058498	78.61571	2.526231	0.007781	0.017139	22.23808	0.385443	5075
58945	2 514516	0.065573	80.14952	2.831283	0.005582	0.000504	23.16273	0.282159	5100
58946	2 564884	0.077127	83.23147	2.148804	0.006497	0.011949	25.46004	0.317771	5125
5@47	2 537444	0.056408	83.33609	2.400191	0.005166	0.002746	25.3053	0.243345	5150
5@48	2.50068	0.060076	82.68257	1.955812	0.01255	0.050433	25.21922	0.371166	5175
5@49	2.527959	0.069066	87.38374	2.179455	0.005755	0.000907	26.79602	0.374379	5200

C-38

Distance	mm	5225	5250	\$ \$275	5300	5325	\$ \$350	5375	5400	S425	3 5450	5 5475	7 5500	2 5525	7 5550	5575	8 5600	3 5625	\$ 5650	2 5675	\$ \$700	7 5725	9 5750	7 5775	5800	1 5825	0000
		0.332836	0.509445	0.437936	0.474322	0.462045	0.288112	0.336494	0.421895	0.45376	0.289205	0.305245	0.520803	0.458632	0.717187	0.468736	0.971696	0.382365	0.350674	0.584272	0.471164	0.458503	0.722005	0.75297	0.479884	0.52441	0 322184
23Na/42Ca	mmo//mol	25.28938	25.99306	25.96107	26.0032	24.64999	23.05829	24.1635	25.81357	23.73108	23.23594	24.51901	23.66855	24.60347	24.83179	24.1989	23.1509	23.64561	22.74064	23.6945	24.23277	22.42156	21.93652	21.97282	21.01959	20.13178	18.7517
		0.000892	0.000958	0.001324	0.000854	0.016402	0.028522	0.000966	0.000908	0.000747	0.002235	0.008571	0.036326	0.00126	0.034773	0.01179	0.000743	0.000724	0.034628	0.011962	0.000625	0.022054	0.000888	0.001121	0.022078	0.00103	0.001127
1388a/42Ca	mmo//mol	0.00506	0.005207	0.005662	0.005611	0.009427	0.009356	0.006584	0.005828	0.005381	0.005173	0.005774	0.014254	0.004633	0.009651	0.007627	0.005194	0.005197	0.013955	0.006664	0.005224	0.008187	0.005632	0.00605	0.010998	0.006071	0.006952
		2,465584	2.437927	2.55779	1.983515	1.792207	2.968546	2.460662	2.080074	2.138936	2.872022	2.200368	1.693753	3.019433	1.471694	2.578357	1.207351	2 22522	3.058502	2 308514	3.423538	2,82794	4.106372	1.90608	2.384163	3.22318	2212275
241/g/42Ca	mmol/mol	86.47301	88.92023	87.77197	87.89312	86.32967	81.63287	76.7425	81.08365	83.09303	81.31876	86.66935	86.84295	86.0645	85.66985	84.23889	79.73334	81.44213	80.73102	85.2859	91.35262	86.06241	83.47975	83.20778	79.13852	76.9061	71 37857
		0.048947	0.074029	0.07805	0.076324	0.077323	0.065338	0.061315	0.063022	0.069266	0.056067	0.054431	0.06497	0.056769	0.065797	0.053222	0.107043	0.069533	0.057025	0.0588838	0.060868	0.065047	0.097979	0.084344	0.10936	0.11287	0.058725
885r/42Ca	mmol/mol	2.5323	2.529521	2,481167	2.497108	2.503808	2.490478	2.44832	2.4753	2.509775	2.484735	2.481239	2.469116	2.450635	2.513212	2.58193	2.586268	2.612794	2.587331	2.538679	2.482353	2.538161	2.417493	2.429353	2.437368	2.430012	2,448477
File name		prim_5_5@50	prim_5_5@51	prim_5_5@52	prim_5_5@53	prim_5_5@54	prim_5_5@55	prim_5_5@56	prim_5_5@57	prim_5_5@58	prim_5_5@59	prim_5_5@60	prim_5_5@61	prim_5_5@62	prim_5_5@63	prim_5_5@64	prim_5_5@65	prim_5_5@66	prim_5_5@67	prim_5_5@68	prim_5_5@69	prim_5_5@70	prim_5_5@71	prim_5_5@72	prim_5_5@73	prim_5_5@74	prim 5 5/875

C- 39 -

File name	885r/42Ca mmol/mol	25D	24Mg/42Ca mmol/mol	250	1388a/42Ca	250	23Na/42Ca mmol/mol	25D	Distance
5 5@76	2.478905	0.123611	81.66327	2.995697	0.008153	0.019651	21.22758	0.349267	5875
5_5@77	2.447388	0.059906	91.43396	3.021581	0.005342	0.001428	24.27129	0.388397	5900
5_5@78	2.453615	0.088619	85.54269	3.35327	0.005365	0.000762	21.98412	0.59856	5925
5_5@79	2.507531	0.067665	88.67763	4.768244	0.009201	0.029217	23.95053	0.774763	5950
5_5@80	2.400647	0.092749	84.17948	2.740792	0.005917	176000.0	23.54028	0.474723	5192
15.5@81	2.444189	0.073398	81.74544	3.3262	0.005699	0.001048	23.70221	0.71575	6000
n_5_5@82	2.442387	0.103996	81.32788	2.909807	0.006277	0.007347	23.26305	0.475216	6025
n_5_5@83	2.428629	0.06438	81.04021	2.106555	0.007407	0.010922	22.7614	0.605798	6050
n_5_5@84	2.467613	0.068255	74.79154	3.137261	0.006557	0.000771	21.27495	0.458593	6075
n_5_5@85	2.450104	0.101174	78.05801	1.371108	0.006188	0.001063	2134017	0.917015	6100
n_5_5@86	2.431061	0.06779	79.82828	2.283354	0.0059	0.001219	21.54507	0.492523	6125
n_5_5@87	2.437428	0.059213	79.89398	3.443088	0.013423	0.046933	20.50648	0.251491	6150
n_5_5@88	2.427015	0.066539	76.62446	2.783956	0.006254	0.001111	19.12112	0.341486	6175
n_5_5@89	2.483274	0.085845	78.29464	1914414	0.007855	0.020441	21.86604	0.54062	6200
n_5_5@90	2.506597	0.092181	78.4427	2.202379	0.005048	0.000927	21.75372	0.73119	6225
5_5@91	2.486832	0.033319	79.69528	2.778253	0.008561	0.014455	22.03794	0.314585	6250
25@92	2.467067	0.073763	84.44247	2.996127	0.008176	0.022889	22.9186	0.503416	6275
5_5@93	2.449116	0.048544	86.16584	2.208101	0.007829	0.019288	23.3989	0.551191	6300
1.5.5@94	2.484135	0.048681	87,90599	2.695317	0.004626	0.002478	24,41528	0.479003	6325
1.5.5@95	2.458867	0.046586	90.48068	3.670524	0.005256	0.000951	24.80147	0.286663	6350
n_5_5@96	2.483263	0.069619	83.65596	2 334482	0.007087	0.015967	22.11663	0.466563	6375
15_5@97	2.489369	0.042263	82.12197	2.566349	0.011394	0.044993	21.85919	0.440572	6400
5_5@98	2.422188	0.054228	87.89755	2.673264	0.01302	0.038923	23.51808	0.487461	6425
1.5_5@99	2.512352	0.145579	82.43486	3.050316	0.009241	0.028949	21.5245	0.235816	6450
1.5.5@100	2.515056	0.161574	85.67306	1.803282	0.005917	16000'0	22.04468	0.513293	6475
1.5_6@1	2.456539	0.059537	83.80081	0.893153	0.00618	0.005374	22.38401	0.396557	6500

C-40

File name	885r/42Ca	250	24Mg/42Ca	250	1388a/42Ca	250	23Na/42Ca	250	Distance
	mmol/mel		mmol/mot		mmol/mol		mmol/mol		hm
prim_5_6@2	2.383066	0.072656	90.15818	2.025799	0.006898	0.013663	22.23863	0.327806	6525
prim_5_6@3	2.395032	0.043473	85.42607	2.496288	0.005486	0.001163	21.15086	0.378122	6550
prim_5_6@4	2.467504	0.118407	83.2892	2.102741	0.005441	0.000729	23.09958	0.398041	6575
prim_5_6@5	2.511347	0.062005	82.29482	1.731277	0.008046	0.021957	22.49493	0.402368	6600
prim_5_6@6	2.52959	0.067361	82.50755	1.715904	0.005141	0.003944	22.04446	0.561851	6625
prim_5_6@7	2.537804	0.107001	87.35658	1.914445	0.005199	0.000638	22.89929	0.321396	6650
prim_5_6@8	2.501262	0.05128	89.45906	2.854188	0.005089	0.000921	23.49223	0.336173	6675
prim_5_6@10	2.408654	0.06636	82.0611	2 216593	0.005641	0.000777	21.80452	0.538506	6700
prim_5_6@11	2.400337	0.038469	76.95046	10622.2	0.008167	0.013342	19.25388	0.256861	6725
prim_5_6@12	2.365972	0.052004	77.07232	2.608476	0.011837	0.028987	20.43903	0.243848	6750
prim_5_6@13	2.431734	0.041711	79.2728	1.326286	0.008219	0.017504	22.52137	0.465271	6775
prim_5_6@14	2.459651	0.051387	81.15034	2.075458	0.008845	0.022198	22.05341	0.48176	6800
prim_5_6@15	2.464389	0.050898	79.20061	2.935157	0.005617	0.00099	21 23996	0.117443	6825
prim_5_6@16	2.46748	0.048511	78.93426	2.798666	0.010756	0.020469	20.25881	0.211047	6850
prim_5_6@17	2.448071	0.069058	83.39336	2.675107	0.005758	0.002295	22 96219	0.354136	6875
prim_5_6@18	2.484958	0.049971	78.35385	1 582658	0.00636	0.007112	21.14922	0.484622	6900
prim_5_6@19	2.443988	0.055014	79.40606	1.794733	0.012594	0.026806	22.49979	0.746215	6925
prim_5_7@1	233552	0.111603	73.10203	1.213462	0.006417	0.001617	19.69027	0.540536	6950
prim_5_7@2	2.302708	0.048452	77.86372	1.508608	0.008764	0.021713	21.52413	0.345935	6975
prim_5_7@3	2.42107	0.059043	70.63916	1.761648	0.005905	0.001194	19.21737	0.315564	7000
prim_5_7@6	2.582932	0.051303	81.38266	2,412991	0.007393	0.019518	24.15253	0.50458	7150
prim_5_7@7	2.570659	0.087338	80.26526	1.949109	0.007662	0.019136	24.47033	0.411948	7175
prim_5_7@8	2.599424	0.082123	81,89813	3.298242	0.008031	0.021138	25.04639	0.669309	7200
prim_5_7@9	2.602358	0.06381	82.2188	1.678749	0.009859	0.03172	23.22426	0.467835	7225
prim_5_7@10	2.51122	0.061473	87.05327	3.298598	0.005148	0.001367	24.52464	0.530582	7250
prim_5_7@11	2.488068	0.062934	89.68939	3.526416	0.005208	0.001024	25.07099	0.364784	7275

File name	885r/42Ca		241/6/4203		1388a/42Ca	250	23Na/42Ca		Distance
	mmol/mel		mmo//mol		mmol/mol		mmol/mol		mm
prim_5_7@12	2.518807	0.050077	80.40267	2.448583	0.007937	0.016514	22.79357	0.332065	7300
prim_5_7@13	2.40897	0.041186	82.90464	1.373865	0.005513	0.000645	22.46314	0.509081	7325
prim_5_7@14	2.433665	0.067228	78.91807	0.970562	0.01149	0.022281	20.98896	0.517719	7350
prim_5_7@15	2.495948	0.061362	75.80384	1.700254	0.02673	0.086856	21.61402	0.509544	7375
prim_5_7@16	2.525675	0.087712	81.28651	2.228525	0.005905	0.001008	22.9286	0.366211	7400
prim_5_7@17	2.496743	0.072645	83.7061	2.050726	0.008871	0.025504	23.17747	0.39115	7425
prim_5_7@18	2.467096	0.090434	86.43277	1.856534	0.005737	0.001117	24.1525	0.483811	7450
prim_5_7@19	2.5643	0.076352	81.51517	2.315535	0.009258	0.030855	22 82964	0.278902	7475
prim_5_7@20	2.608993	0.052091	83.12709	137346	0.010373	0.037547	23.32474	0.75039	7500
prim_5_7@21	2.585384	0.058406	86.97906	2.115006	0.007481	0.018893	25.45252	0.323889	7525
prim_5_7@22	2.597951	0.054268	84.17343	2.683665	0.007848	0.009612	24.31384	0.338852	7550
prim_5_7@23	2.604936	0.153575	83.93691	1.696142	0.004794	0.001496	24.99292	0.597273	7575
prim_5_7@24	2.557973	0.063384	84.86489	2.823045	0.005523	0.001235	23.70035	0.449436	7600
prim_5_7@25	2.457733	0.077204	80.65567	1.731195	0.009303	0.026438	21.51289	0.497865	7625
prim_5_7@26	2.357378	0.063733	80.46665	1.833009	0.006074	0.002215	20.63853	0.541998	7650
prim_5_7@27	2.424741	0.088122	78.12587	2.866338	0.006315	0.001177	20.9068	0.631065	7675
prim_5_7@28	2.409092	0.089119	73.65123	2.663877	0.008421	0.016875	19.30971	0.418899	7750
prim_5_7@29	2.443374	0.055828	83.27994	2.824822	0.005237	0.001032	25.01176	0.446591	STIT
prim_5_7@30	2,485007	0.063662	83.75201	2.437896	0.00834	0.021363	23.34142	0.516529	7800
prim_5_7@31	2.478823	0.067347	85.89452	2.62012	0.008714	0.022372	22.58573	0.420808	7825
prim_5_7@32	2.511868	0.106444	81.63414	1.670567	0.005793	0.001028	21.27756	0.332352	7850

C-42-

S.campylecus (232 transect 1) SIMS data:

Rows highlighted in grey are SIMS analyses corresponding to remineralized regions in the coral skeleton:

ue name	885r/42Ca		24Ms/42Ca		1388a/42Ca		23Na/42Ca			
	mmal/mai		mmal/mal			Ba		Ba	Na	
232.1	8.335522	0.07111	3.221186	0.097052	0.010547	0.000554	42.624	0.000554	0.266943	0.244487
232.2	8.021379	0.063018	2.452932	0.038964	0.007676	0.000487	36.759	0.000487	0.583807	0.267589
232.3	8.301606	0.086872	3.091297	0.06344	0.008515	0.000592	42.039	0.000592	0.758937	0.307632
232.4	8.496026	0.073014	3.210438	0.117078	0.008906	0.000650	41.546	0.000650	0.602253	0.343055
232.5	8.560907	0.072707	3.277721	0.183371	0.014908	0.004148	41.276	0.004148	0.545178	0.381558
232.6	8.359632	0.080936	3.177579	0.03229	0.008192	0.000613	41.045	0.000613	0.392094	0.424682
232.7	8.214982	0.625754	3.087836	0.065284	0.008079	0.004493	40.571	0.004493	0.850441	0.450864
232.8	8.228412	0.071911	3.294163	0.030236	0.008505	0.000657	42.837	0.000657	0.49945	0.495528
232.9	8.455439	0.06408	2.960538	0.049235	0.009028	0.000445	41.285	0.000445	0.8112	0.537111
232.10	8.360824	0.095612	2.951479	0.036162	0.007858	0.000317	40.672	0.000317	0.577741	0.578694
232 11	8.439433	0.0999655	2.763394	0.040497	0.007971	0.000372	39.124	0.000372	0.470883	0.617197
232 12	8.381370	0.111579	2.946744	0.034371	0.0006696	0.000485	40.557	0.000485	0.549874	0.648
232 13	8.434916	0.078033	2.987307	0.026769	0.007934	0.000313	39.616	0.000313	0.396022	0.677262
232 14	8.572302	0.079607	2.937983	0.02227	0.008405	0.000686	39.896	0.000686	0.518991	0.698824
232 15	8.377386	0.144907	2.673246	0.058142	0.008461	0.000460	39.316	0.000460	1.602281	0.735787
232 16	8.334933	0.121301	2.950152	0.025547	0.008522	0.000631	41.444	0.000631	0.695401	0.77121
232 17	8.587762	0.124107	3.024986	0.035895	0.009657	0.000550	41.921	0.000550	0.523695	0.810483
232 18	8.575420	0.078818	2.974965	0.033095	0.009571	0.000519	41.922	0.000519	0.472687	0.845906
232 19	8.540107	0.068235	3.002538	0.055091	0.008980	0.000428	42.017	0.000428	0.700186	0.879789
232 20	8.397652	0.121989	3.236145	0.029574	0.008462	0.000413	42.345	0.000413	1.027382	0.914442
232 21	8.370696	0.111087	3.042484	0.034897	0.008188	0.000389	42.040	0.000389	0.652226	0.952945
232 22	8.122499	0.106233	3.100924	0.050501	0.007959	0.000396	41.546	0.000396	0.814481	0.986828
232 23	8.251648	0.080198	2.527486	0.027259	0.008030	0.000514	37.258	0.000514	0.366056	1.025331
uzme	885r/42Ca		24Mg/42Ca		13883/4203		ZBNS/42Ca			distance
--------	-----------	----------	-----------	----------	------------	----------	-----------	----------	----------	----------
	mmol/mcl		mmol/mol		mmol/mal	23	mmol/mol	8	Na	mm
232 24	8.244557	0.120811	2.213672	0.046308	0.007328	0.000394	36.370	0.000394	0.344388	1.062294
232 25	8.891591	0.075235	2.309754	0.033235	0.008599	0.000332	36.753	0.000332	0.310447	1.099257
232 26	8.344565	0.071448	2.466471	0.020726	0.008108	0.000294	39.369	0.000294	0.435014	1.13391
232 27	8.237313	0.098415	2.858342	0.119278	0.008465	0.000308	41.156	0.000308	0.720849	1.173183
232 28	8.566004	0.109168	2.903543	0.02624	0.009316	0.000401	41.378	0.000401	0.382722	1.207066
232 29	8.429160	0.365326	2.495311	0.068861	0.008633	0.001627	39,445	0.001627	2.154826	1.24403
232.30	8.466278	0.066319	2.667905	0.041661	0.008361	0.000441	40.250	0.000441	0.371066	1.2833
232 31	8.301428	0.10382	2 966444	0.034421	0.007708	0.000529	41.256	0.000529	0.4914	1.32489
232 32	8.306151	0.069307	3.036077	0.044399	0.007944	0.000623	41.220	0.000623	0.355629	1.35723
232 33	8.527908	0.123927	2.897967	0.022299	0.0085399	0.000433	40.565	0.000433	0.419353	1.24403
232 34	8.467176	0.075705	2.745915	0.027715	0.007940	0.000411	39.953	0.000411	0.388399	1.2833
232 35	8.483846	0.096336	2.660817	0.043955	0.008318	0.000503	39.273	0.000503	0.517867	1.47813
232 36	8.118640	0.059374	1.748039	0.015368	0.006519	0.000525	33.153	0.000525	0.344082	1.52048
232 37	8.666135	0.093145	3.356748	0.253221	0.010629	0.000195	42.608	0.000195	0.595962	1.55667
232 38	8.597675	0.059184	3.130391	0.043259	0.007692	0.000308	39.847	0.000308	0.544245	1.59518
232 39	8.396189	0.130939	2.834301	0.020763	0.007446	0.000467	38.277	0.000467	0.627031	1.63368
232 40	8.661685	0.100451	3.235027	0.311032	0.007984	0.000312	38.281	0.000312	0.547895	1.68142
232 41	8.489035	0.09122	2.549337	0.065761	0.007620	0.000405	37.199	0.000405	0.504909	1.71839
232 42	8.205245	0.725844	2.812822	0.15527	0.007549	0.002943	38.565	0.002943	2.104533	1.75766
232 43	8.400171	0.115654	2.717075	0.043531	0.008673	0.000381	38.872	0.000381	0.672364	1.80078
232 44	8.460270	0.097373	3.785904	0.19223	0.009120	0.000625	37.954	0.000625	0.639919	184314
232 45	8.422945	0.096684	2.706881	0.026742	0.008803	0.000720	39.789	0.000720	0.608882	1.88241
232 46	8.348253	0.058311	2.947595	0.060709	0.008158	0.000628	40.519	0.000628	0.297128	192322
232 47	8.192201	0.122152	3.037612	0.028137	0.007948	0.000663	41 188	0.000663	0.905181	1.96712
232 48	8.238541	0.114998	3.063693	0.03325	0.007854	0.000325	41.689	0.000325	0.503022	2.01178
232 49	8.352765	0.114353	2 563144	0.32835	0.008312	0.000959	37.986	0.000959	0.486889	2.05953

name	885r/42Ca	250	241/g/42Ca		13882/42Ca		23Na/42Ca			distance
	mmol/mal		mmol/mol		mmol/mal	3	mmol/mol	Ba	N3	mm
232 50	8.252335	0.111935	2 892313	0.070272	0.007483	0.000651	40.396	0.000651	0.511271	2.09649
232 51	8.490948	0.111309	3.135351	0.047855	0.008894	0.000331	40.757	0.000331	0.576766	2 13499
232 53	8.390957	0.087195	3.011804	0.030714	0.008836	0.000594	41.513	0.000594	0.51889	2.1758
232 54	8.249865	0.079176	3.229715	0.033738	0.009362	0.000629	43.515	0.000629	0.707163	2.21046
232 55	8.148506	0.289462	3.086817	0.048936	0.008758	0.000633	42.381	0.000633	1.142926	2.23202
232 56	8.736219	0.157856	2.870696	0.035289	0.009186	0.000592	40.138	0.000592	0.799243	2.26436
232 57	8.680603	0.151376	2.939963	0.030885	0.008487	0.000744	40.402	0.000744	1.178069	2.30286
232 58	8.029362	0.282118	3.501314	0.370435	0.009411	0.004046	42.700	0.004046	3.009526	2.34368
232 59	8.141195	0.090345	3.313233	0.044232	0.007658	0.000548	42.660	0.000548	0.785924	2.36909
232 60	8.481102	0.437675	2.941883	0.108008	0.008275	0.001040	41.252	0.001040	1.540688	2.41683
232 61	8.284436	0.099374	3.207475	0.059838	0.008672	0.000417	42.328	0.000417	0.992766	2.45765
232 62	8.140915	0.209862	2.936243	0.688576	0.007759	0.003343	40.693	0.003343	4.201519	2.49923
232.63	8.628727	0.124797	2.701473	0.092689	0.010486	0.001254	40.060	0.001254	0.244753	2.53927
232 64	8.701196	0.072279	2.671708	0.026541	0.008527	0.000390	39.250	0.000390	0.500235	2.57855
232 65	9.004592	0.071027	2.687340	0.026589	0.009349	0.000522	39.611	0.000522	0.443814	2.61705
232 66	8.347334	0.139863	2.716097	0.022824	0.008239	0.000642	39.659	0.000642	0.715008	2.64554
232 67	8.397931	0.094537	2.707266	0.027967	0.007900	0.000630	40.181	0.000630	0.557019	2.68559
232 68	8.191939	0.067331	2.932445	0.02992	0.007189	0.000543	41.655	0.000543	0.468815	2.72024
232 69	8.480993	0.074248	3.035330	0.020712	0.007832	0.000576	41.175	0.000576	0.407635	2.75566
232 70	8.619019	0.164185	2.933083	0.025106	0.008269	0.000397	40.392	0.000397	0.708776	2.78877
232 71	8.478348	0.244223	2.820537	0.035768	0.008928	0.000602	39.935	0.000602	1360655	2 83036
232 72	8.450425	0.258756	2.809342	0.203437	0.009122	0.001831	41.183	0.001831	1.954511	2.87733
232 73	8.343528	0.093083	2.821788	0.087158	0.009003	0.000822	41.522	0.000822	1.105144	2.90274
232 74	7.259481	1975436	3.343112	0.350016	0.007712	0.007712	39.148	0.007712	9.662672	2.9451
232 75	8.368051	0.149025	3.147837	0.050547	0.008965	0.006965	40.283	0.008965	0.649552	3.00516
232 76	8.118606	0.184898	3.201607	0.125171	0.008315	0.008315	40.599	0.008315	0.869503	3.05522

file										
omen	885r/42Ca		24Mg/42Ca		13882/4203		23Na/42Ca			distance
	mmel/mat		mmol/mol		mmol/mol	8	mmol/mol	Ba	Na	mm
232.77	8.087438	0.276112	3.480198	0.074815	0.007892	0.007892	41911	0.007892	0.652875	3.10912
232.78	8.503356	0.129704	2.9390666	0.053538	0.009084	0.009084	38.688	0.009084	0.503375	3.15763
232.79	8.237517	0.232067	3.216521	0.107076	0.009300	0.0093	41577	0.0093	2.147929	3.20846
232.80	8.319673	0.160872	2.473388	0.02546	0.042159	0.042159	35.878	0.042159	0.506105	3.25543
232 81	8.389832	0.173104	2.872177	0.045984	0.007782	0.007782	38.101	0.007782	0.85276	3.30241
232 82	8.617122	0.129426	2.859544	0.079492	0.008354	0.008354	37.450	0.008354	0.596841	3.35246
232 83	8.507738	0.161029	3.047930	0.033372	0.009369	0.009369	39.511	696600.0	0.771054	3.39866
232 84	8.526700	0.135832	3.108509	0.069727	0.009421	0.009421	40.945	0.009421	0.577228	3,44179
232 85	8.495350	0.191437	2.951025	0.080223	0.005078	0.009078	39.890	0.009078	0.771139	3,48645
232 86	8.396178	0.188399	2.909487	0.046951	0.008435	0.008435	39.068	0.008435	1.130032	3.53728
232 87	8.575179	0.159175	3.072815	0.030795	0.008890	0.00689	40.346	0.00889	0.787156	3.57963
232 88	8.715956	0.156823	2.958722	0.03752	0.009577	0.009577	39.953	0.009577	0.850234	3.62891
232 89	8.550081	0.190269	2.916873	0.041817	0.008742	0.008742	38.741	0.008742	0.799828	3.6705
232 90	8.818390	0.18479	2.718471	0.035152	0.009904	0.009904	38.223	0.009904	0.816119	3.71824
232 91	8.562182	0.138954	3.008998	0.019941	0.009556	0.009556	40.569	0.009556	0.766209	3.74827
232 92	8.329921	0.16278	3.204382	0.071409	0.008716	0.008716	42.244	0.008716	0.887831	3.79602
232 93	8.502446	0.169555	3.094763	0.033097	0.008906	0.008906	40.811	0.008906	0.811611	3.84607
232 94	8.249668	0.104898	3.151922	0.031362	0.008338	0.006338	41.233	0.008338	0.665799	3.88996
232 95	8.269508	0.149486	3.435237	0.023743	0.009001	0.009001	43.621	0.009001	1.160998	3.93386
232.96	8.630193	0.100021	3.060686	0.043982	0.009933	0.009933	41.244	0.009933	0.524364	3.97467
232 97	8.583648	0.044654	3.194233	0.028859	0.010073	0.010073	41.752	0.010073	0.594609	4.01317
232 98	8.514222	0.144874	2.861413	0.107841	0.009023	0.009023	38.568	0.009023	0.67359	4.05245
232 99	8.622385	0.225503	3.164514	0.058278	0.011417	0.011417	41.297	0.011417	0.447656	4.10096
232 100	8.458907	0.074761	3.054822	0.042817	0.009073	0.009073	41.402	0.009073	171706.0	4.14871
232 101	8.649241	0.185991	2.940949	0.1178	0.009313	0.009313	33.525	0.009313	1.030724	4.19953
232 102	8.833550	0.178559	3.287907	0.280603	0.009418	0.009418	40.035	0.009418	0.626653	4.23033

THE OWNER WHEN PARTY IN COMPARING PARTY INTE PARTY I										
name	885r/42Ca		24Mg/42Ca		1388a/42Ca		23Na/42Ca			distance
	mmol/mal		mmel/mol		mmol/mol	3	mmol/mol	B2	Na	mm
232 103	8.409051	0.08364	2.988936	0.030928	0.008737	0.008737	41.154	0.008737	0.811085	4.27731
232 104	8.399508	0.092512	3.169848	0.028568	0.009417	0.009417	42.077	0.009417	1.059934	4.3212
232 105	8.721751	0.104662	2.938410	0.041679	0.010999	0.010999	39.767	0.010999	0.761412	4.37587
232 106	8.527214	0.182388	2.979196	0.036784	0.008608	0.008608	40.233	0.008508	1.106137	4,41515
232 107	8.432652	0.095543	3.131984	0.037959	0.008297	0.008297	41.732	0.008297	0.739998	4,44287
232 108	8.766948	0.135778	2.953049	0.037298	0.009201	0.009201	40.236	0.009201	0.519187	4,47521
232 109	8.610788	0.244526	2.789220	1.424327	0.009214	0.009214	37.168	0.009214	0.81724	4.5245
232 110	8.417758	0.14619	2.163854	0.042293	0.009260	0.00926	35.532	0.00926	0.494865	4.563
232 111	8.433846	0.06961	2 938636	0.03319	0.009292	0.009292	42.164	0.009292	0.49784	4.6015
232 112	8.304953	0.122681	3.205776	0.041596	0.009272	0.009272	42.609	0.009272	1.019763	4.63693
232 113	8.383056	0.189336	3.263550	0.038264	0.008749	0.008749	41.801	0.008749	1.025259	4.67466
232 114	8.527034	0.200262	3.111075	0.036232	0.009426	0.009426	41.356	0.009426	0.754137	4.71778
232 115	8.496942	0.157441	3.238468	0.039598	0.009558	0.009558	42.399	0.009558	0.934858	4.75783
232 116	7.998858	0.064469	3.782837	0.033325	0.0081800	0.00818	112.85	0.00818	0.566659	4.79094
232 117	7.971216	0.316355	3.853869	0.069327	0.010136	0.010136	39.561	0.010136	1.529038	4.83252
232 118	8.016756	0.376672	3.434500	0.044371	0.008849	0.006849	37.424	0.008849	1.533502	4.86794
232 119	8.164202	0.333589	3.479169	0.265221	0.009508	0.009508	37.573	805600.0	1.515296	4.90722
232 120	8.182415	0.295193	3.568449	0.083478	0.010194	0.010194	39.317	0.010194	1.224529	4.94418
232 121	8.093531	0.337225	3.647641	0.079089	0.010418	0.010418	40.070	0.010418	1.635372	4.98499
232 122	8.028426	0.251929	3.482583	0.140473	0.008818	0.006818	37.975	0.008818	1.060652	5.02966
232 123	8.118053	0.298123	3.374157	96560.0	0.009059	0.009059	38.172	0.009059	1.406092	5.06662
232 124	8.265742	0.297468	3.513003	0.105558	0.010490	0.01049	39.654	0.01049	1.672786	5.11051
232 125	8.295405	0.306735	3.065011	0.046979	0.010262	0.010262	37.733	0.010262	1.619451	5.15056
232 126	8.150139	0.342534	3.496063	0.05074	0.005839	0.005839	39.527	0.009839	1.726258	5.19522
232 127	8.096040	0.290057	3.677897	0.085537	0.010347	0.010347	40.532	0.010347	1.655591	5.23372
232 128	8.026449	0.291793	3.831467	0.122717	0.010298	0.010298	41.424	0.010298	1.679742	5.27685

-										
name	885//42Ca		24Mg/42Ca		1388a/42Ca		23Na/42Ca			distance
	mmol/mcl		mmol/mol		mmol/mol	Ba	mmol/mol	Ba	Na	mm
232 129	8.105417	0.285145	3.697075	0.055705	0012890	0.01289	40.960	0.01289	1.953996	5.31997
232 130	8.065678	0.209984	3.586401	0.085066	0.010656	0.010656	40.414	0.010656	1.414346	5.36386
232 131	8.137685	0.105769	3.386254	0.131405	0.007794	0.007794	40.619	0.007794	0.643317	5.39929
232 132	8.186529	0.275301	3.498709	0.095777	0.0096999	0.009699	40.685	669600.0	136479	5.43856
232 133	8.250188	0.27342	3.125551	0.110409	0.010397	0.010397	39,046	0.010397	0.854855	5.47167
232 134	8.180795	0.334759	2 998190	0.086566	0.009266	0.009266	38.123	0.009266	1.520677	5.51403
232 135	8.257824	0.2188833	2.681125	0.193629	0.003835	0.009835	37.073	0.009835	0.765068	5.55638
232 136	8.210306	0.198575	3.046089	0.082646	0.009502	0.009502	40.087	0.009502	1.050959	5.5918
232 137	8.290170	0.185217	3.203206	0.464471	0.009417	0.009417	39.672	0.009417	0.469643	5.63108
232 138	8.345091	0.191512	2.526090	0.098478	0.008971	0.008971	37.273	0.008971	0.530571	5.67189
232 139	8.267515	0.162073	2.632417	0.068437	0.008767	0.000949	38.032	0.000949	1.045818	5.71116
232 140	7.961333	0.36505	2.082662	0.032297	0.008055	0.000919	33.858	0.000919	1 210192	5.74274
232 141	8.279458	0.039902	2.690980	0.017236	0.009011	0.000402	38.419	0.000402	0.490639	5.7874
232 142	8.703649	0.260181	2.700153	167920.0	0.010118	0.000886	37.637	0.000886	0.671818	5.82975
232 143	8.484644	0.176087	3.054954	0.037936	0.005929	0.0013	40.917	0.0013	0.846801	5.86364
232 144	8.199779	0.305526	3.210113	0.161546	0.009313	0.001253	40.827	0.001253	1.084982	5.89829
232 145	8.487895	0.159215	2.596176	0.07965	0.009243	0.000778	37.101	0.000778	0.586281	5.93756
232 146	8.192449	0.166028	2957549	0.046926	0.009170	0.000951	39.673	0.000951	0.668348	5.96913
232 147	8.260818	0.208308	2.967736	0.073145	0.009225	0.000755	39.996	0.000755	0.897636	6.00764
232 148	8.309137	0.246841	2 949225	0.061182	0.009343	0.001002	39.813	0.001002	0.804318	6.0446
232 149	8.265000	0.289288	3.024351	0.13166	0.009383	0.001055	39.478	0.001055	1.06595	6.08387
232 150	8.169186	0.239619	2.896286	0.095463	0.008822	0.001267	38.792	0.001267	1.273999	6.12623
232 151	8.445863	0.276256	3.013131	0.320923	0.008951	0.00183	38.862	0.00183	0.666933	6.17012
232 153	8.163134	0.473724	2.780201	0.796748	0.008500	0.001913	37.604	0.001913	1.016672	6.22017
232 154	8.066610	0.09655	2.429072	0.026336	0.007083	0.000275	35.586	0.000275	0.680904	6.26022
232 155	8.133826	0.105696	2.385551	0.042596	0.007400	0.00079	35.982	0.00079	0.782572	6.29256

amen	885r/42Ca		24Mg/42Ca		138Ba/42Ca		23Na/42Ca			distance
	mmol/mal		mmol/mol		mmol/mol	Ba	immol/mol	Ba	Na	mm
232 156	7.941652	0.187321	2.842019	0.050791	0.007538	0.001063	38.596	0.001063	1.069538	6.3172
232 157	7.993822	0.272806	3.206713	0.056461	0.006680	0.000675	41.219	0.000675	1.49729	6.35186
232 158	7.868929	0.158724	3.332091	0.05871	0.006648	0.00113	42.091	0.00113	0.838779	6.38343
232 159	8.130483	0.081107	3.173783	0.152259	0.008375	0.000654	41.024	0.000654	0.454152	6.41654
232 160	8.155319	0.185487	3.189049	0.042486	0.008996	0.000898	40.536	0.000898	0.672248	6.44888
232 161	7.913035	0.262506	3.222671	0.19266	0.008570	0.001415	39.887	0.001415	1.339459	6.48739
232 162	8.046613	0.207256	3.026843	0.31578	0.008096	0.000876	38.922	0.000876	1.128062	6.51203
232 163	7.825480	0.179259	3.277140	0.066719	0.007822	995000.0	41.938	996000.0	0.959963	6.54976
232 164	7.943275	0.168637	2.443398	0.04859	0.006735	0.000675	36.979	0.000675	0.831795	6.5898
232 165	7.867730	0.214351	2.432870	0.147714	0.007731	0.001304	35.679	0.001304	0.887298	6.61984
232 166	7.632586	0.192755	3.083535	0.159212	0.007588	0.000768	40.626	0.000768	1.059207	6.65449
232 167	8.153225	0.148039	2.450641	0.540961	0.007418	0.000522	35.879	0.000522	0.839088	6.68606
232 168	7.768784	0.131476	3.288198	0.057762	0.007430	0.000618	42.164	0.000618	0.88227	6.7107
232 169	7.894467	0.100419	2.901055	0.044787	0.008369	0.000566	39.708	0.000566	0.466133	6.75383
232 170	7.830969	0.424024	2.862780	0.469905	0.009611	0.002638	37.305	0.002638	2.000066	6.7931
232 171	7.572414	0.300006	2.952790	0.490094	0.007844	0.002006	38.528	0.002006	1.144151	6.82467
232 172	7.526520	0.235453	2.551180	0.08452	0.008346	0.000917	37.672	0.000917	0.801862	6.84855
232 173	7.678048	0.319428	2.922301	0.444674	0.009313	0.002399	37.843	0.002399	1.589708	6:30339
232 174	7.967397	0.258691	3.030338	0.105707	0.009415	0.001105	40.142	0.001105	1.228566	6.94557
232 176	7.797760	0.281637	2.938085	0.259371	0.008555	0.000738	39.313	0.000738	1.157671	6.98716
232 177	8.080129	0.300609	9.884770	1.710855	0.052515	0.005421	39.422	0.005421	1.531264	6.99255
232 178	7.984201	0.316514	3.584686	0.172267	0.009641	0.002808	42.641	0.002808	1.910575	7.01565
232 181	7.420415	0.306207	3.110250	0.18728	0.008175	0.00108	40.545	0.00108	0.987395	7.05261
232 182	8.400099	0.254622	3.527684	0.18827	0.010879	0.001661	41.587	0.001661	1.135266	7.08418
232 183	8.222623	0.147334	3.217160	0.137388	0.009785	0.001463	41.189	0.001463	0.801447	7.1173
232 184	8.426417	0.322831	3.075725	0.135534	0.010020	0.001225	635.65	0.001225	1.508304	7.1558

C-49-

S.campylecus (232 transect 2) SIMS data

eralized regions in the coral skeleton; Rows highlighted in grey are SIMS analyses corre

File name	885r/42Ca mmol/mal	250	24Mg/42Ca mmol/mol	220	1388a/42Ca mmol/mol	250	23Na/42Ca mmol/mol	250	Distance
coral_232_b@1	7.988339	0.086547	2.285679	0.053818	0.009495	0.000847	37.30332	0.387921	0.288513
coral_232_b@2	7.89841	0.225481	2.601403	0.046107	0.011872	0.002276	38.8939	0.49089	0.305408
coral_232_b@3	8.099336	0.17087	2.674077	0.340673	0.010836	0.001615	38.8962	0.337106	0.33075
coral_232_b@4	8.205664	600060.0	2.721724	0.159391	0.011713	0.001776	40.70072	0.625094	0.354684
coral_232_b@5	8.212811	0.152356	2.715142	0.037162	0.012263	0.001666	39.68983	0.377699	0.374394
coral_232_b@6	8.146848	0.169794	2.780297	0.054662	0.012417	0.002984	40.42435	0.398393	0.401144
coral_232_b@7	8.307743	0.098042	2.505152	0.236391	0.010844	0.002653	38.18255	0.249883	0.43071
coral_232_b@8	8.141986	0.074959	2.656685	0.028167	0.010459	0.001739	39.92583	0.3668	0.454644
coral_232_b@9	7.99351	0.203793	2.702657	0.040864	0.011254	0.001903	39.19002	0.496607	0.481394
coral_232_b@10	8.116547	0.264603	2.831095	0.022756	0.01142	0.001713	41.2598	0.499529	0.516591
coral_232_b@11	8.08781	0.121573	2.877081	0.036324	0.011157	0.002087	42.05524	0.361817	0.539117
coral_232_b@12	6.932384	0.167036	S.684478	4.839996	0.030641	0.012791	3824495	3.695373	0.571499
cor8 _232_b@13	8.377236	0.130858	2.531876	0.127369	16061010	0.002233	666E0'6E	0.637556	0.591209
coral_232_b@14	8.315681	0.132892	2 885165	0.342942	0.010753	0.001326	39,63609	0.253859	0.622183
coral 232 b@15	8.218407	0.109796	2351467	0.047342	0.010977	0.001309	38.34543	0.405584	0.636262
coral_232_b@16	8.139413	0.113894	2.477995	0.028389	0.010799	0.001849	39.0378	0.394072	0.665827
coral_232_b@17	8.184395	0.110251	2 564853	0.035635	0.011315	0.0009	39.6904	0.510765	0.68413
coral_232_b@18	8.158349	0.059738	2.69486	0.312131	0.010662	0.002217	38.77354	0.293281	0.712288
coral_232_b1@1	7.914976	0.193669	2,649221	0.067398	0.010712	0.002101	29.01523	1.147441	0.734814
coral_232_b1@2	8.332772	0.158524	2.573674	0.023857	0.011518	0.002438	30.06662	2.295985	0.754525
coral_232_b1@3	8.295363	0.050015	2.590258	0.017565	0.011548	0.003817	31.99196	0.156927	0.78409
coral_232_b1@4	8.346815	0.132574	2.471337	0.013631	0.01052	0.003131	30.76175	0.182447	0.81084
coral_232_b1@5	8.237685	0.131326	1.917192	0.042179	0.010495	0.002202	27.21512	0.188444	0.831958

C- 50 -

distance from the edge in mm	0.862932	0.889682	0.915024	0.936142	0.962892	0.992458	1.012168	1.033287	1.062852	1.089602	1 119168	1 141694	1.159997	1 189563	1.216312	1.243062	1.261365	1.283891	1.310638	1.335988	1.359918	1.388078	1.412718	1.438758
55	0.210228	0.226239	0.277547	0.330947	0.173211	0.185017	0.217788	0.196769	0.272758	0.160711	1357581	0.315671	0.204809	1.842961	0.317369	0.232931	0.289343	0.216522	0.331399	0.279496	0.234874	2.517953	0.2200259	0.336516
23Na/42Ca	29.99558	31.36287	29.7076	27.35049	30.69572	32.69818	33.28571	29.90404	30.57793	30.11705	30.36981	27.30544	29.51237	33.8698	33.33603	32.84529	33.10831	32.84864	33.11514	32.94642	33.14407	36.71111	30.18231	30.64251
250	0.002539	0.002634	0.001937	0.004705	0.012082	0.003078	0.001992	0.002224	0.002097	0.00284	0.004142	0.003665	0.003687	0.003185	0.002947	0.005315	0.00257	0.00258	0.002522	0.001957	0.004268	0.012562	0.003336	0.00367
1388a/42Ca mmdl/mdi	0.013508	0.013138	0.011616	0.018288	0.048123	0.01134	0.012348	0.011903	0.012669	0.012184	0.014009	0.011128	0.011667	0.012465	0.014132	0.012972	0.013668	0.013224	0.01223	0.011653	0.013819	0.041225	0.012135	0.012905
25D mmol/mol	0.084708	0.031361	0.038043	0.01939	0.445122	0.017744	0.034964	0.034341	0.041068	0.046862	0.326813	0.057069	0.039653	0.357648	0.064084	0.071202	0.0314	0.036155	0.029924	1/0.0	0.035657	1.079149	0.0496655	0.042759
24Nej42Ca mmoj/moi	2.394411	2.453892	2 172232	1 919335	2.775399	2.522441	2.595979	2.19324	2.258688	2.1785	2.401449	1.661402	1.895099	2.372862	2.266389	2.399137	2.507128	2.52288	2511705	2.564907	2.994507	3.632379	2 129409	2.299538
25D mmol/mol	0.188295	0.140554	0.18572	0.150558	0.092821	0.056182	0.094573	0.13713	0.142532	0.162333	0.18345	0.100276	0.143844	0.2148	0.178716	0.143463	0.159177	0.189064	0.17818	0.152718	0.134721	0.148293	0.129343	0.220473
885r/42Ca	8.4057	8.458758	8.278197	8.262263	8.397472	8.41617	8.305366	8.228368	8.474819	8.21269	8.085527	8.265172	8.51547	8.362233	8.202433	8.323009	8.393879	8.51424	8.566874	8.418289	8.358938	7.992481	8.586928	8.438421
File name	coral 232 b1@6	coral 232_b1@7	coral_232_b1@8	coral_232_b1@9	coral_232_b1@10	coral_232_b1@11	coral_232_b1@12	coral_232_b1@13	coral_232_b1@14	coral_232_b1@15	coral_232_b1@16	coral_232_b1@17	coral_232_b1@18	coral_232_b1@19	coral 232_b1@20	coral 232 b_2@1	coral 232 b 2@2	coral 232 b 2@3	coral_232_b_2@4	coral_232_b_2@5	coral_232_b_2@6	coral_232_b_2@7	coral 232 b 2@8	coral_232_b_2@9

C-51-

	1.468328	1.488738	1.510558	1.538718	1.568288	1.594328	1.617558	1.644308	1.669658	1.694998	1.727378	1.747788	1.775948	1.794248	1.822408	1.843528	1.866058	1.906178	1 924478	1.958978	1 990648	2.014588	2.043448	2.066678
	0.492066	0.341918	0.219277	0.235943	0.18724	0.530962	0.190308	0.286847	0.198101	0.199362	0.594232	0.594705	0.441944	0.40742	0.582285	0.401029	0.276897	0.490844	0.28382	0.337751	0.362092	1.114697	0.453474	0.632398
23Na/42Ca	32.19985	32.57188	32,80597	31.19364	30.03808	33.40517	32.0591	32.09258	33.73301	40.08826	43,41718	36.05085	37.99209	38.63218	39.03878	37.44124	38.55626	35.2741	34.96659	32.67153	32.39702	37.79315	37.81551	38.84369
	0.004099	0.002819	0.002542	0.004677	0.002931	0.004513	0.003159	0.002626	0.002801	0.003652	0.006223	0.003521	0.004027	0.003883	0.004456	0.003991	0.003396	0.002182	0.004806	0.002375	0.003113	0.005053	0.005398	0.002373
1388a/42Ca mmol/mpi	0.013581	0.013827	0.01416	0.012211	0.012538	0.016868	0.01426	0.012921	SESETO D	0.013243	0.018578	0.010705	0.013483	0.013664	0.014904	0.013104	0.013535	0.009449	0.01102	0.010484	0.011704	0.01483	0.013221	0.010774
	0.081593	0.073752	0.0401	0.067516	0.025471	266060.0	0.046643	0.056457	0.073362	0.078075	0.657233	0.035011	0.065145	0.077009	0.077008	0.046006	0.04205	0.020166	0.028114	0.0565255	0.143732	0.703292	1.080565	0.322385
	2.427679	2.44333	2.399038	2.146001	2.026065	1680262	2,489943	2.491475	2.54728	3.048681	3.642194	2.310671	2.526695	2.568463	2.392373	2.129613	2.259622	2.801556	2.655051	2.168544	231482	3.958074	3.656479	2.969901
	0.164072	0.137473	0.14381	0.088225	0.150677	0.149104	0.14113	0.192925	0.211006	0.242598	0.279317	0.090565	0.134764	0.283589	0.2334	0.215695	0.165186	0.068106	0.19712	0.187835	0.324801	0.200567	0.250322	0.218639
885r/42Ca	8.488906	8.47801	8.567885	8.501225	8.425189	8.792956	8.630708	8.37429	8.435721	8.574159	7.9477298	8.160376	7.953985	8.009505	8.144439	8.323855	8.288747	305155.1	7.772004	7.520619	7.50667	7.409834	7.474115	7.52814
	coral_232_b_2@10	coral 232 b 2@11	coral 232 b 2@12	coral_232_b_2@13	coral_232_b_2@14	coral_232_b_2@15	coral_232_b_2@16	coral_232_b_2@17	coral_232_b_2@18	coral_232_b_2@19	coral 232_b_2@20	coral_232_b_3@1	coral_232_b_3@2	coral_232_b_3@3	coral 232 b 3@4	coral_232_b_3@5	coral 232 b 3@6	coral_232_b4@1	coral_232_b4@2	coral_232_b4@3	coral_232_b4@4	coral_232_b4@5	coral_232_b4@6	coral_232_b4@7

C- 53 -

distance from the edge in mm	2.703748	2.736128	2.766398	2.788218	2.808638	2.841718	2.868468	2.889588	2.911408	2.937458	2.966318	2.990258	3.013488	3.035308	3 066278	3.093028	3.121188	3.135968	3.165538	3.189468	3.215518	3.244378	3.268308	3.290838
	0.338839	0.379449	0.229243	0.39591	2.632182	0.462382	0.400081	0.429457	0.224141	0.844133	0.270336	0.371991	0.248658	0.268546	0.872925	0.4919	0.443874	0.211662	0.174386	1.045233	3.60217	3.783787	0.325212	0.281928
23Na/42Ca	36.08137	32.06465	34.8157	37.26409	40.10802	39.34556	39.5788	39.97939	40.35373	40.5761	36.03403	1770.04	39.82581	40.07358	39,36265	38.38661	40,47304	39.73022	39.35662	42.27262	41.78765	36.70289	39.56038	38.51955
	0.002434	0.003377	0.003009	0.002636	0.004433	0.002548	0.002961	0.002794	0.002155	0.00413	0.004346	0.001925	0.001585	0.001685	0.003576	0.003087	0.002139	0.004768	0.002011	0.004753	0.008815	0.005248	0.003073	0.002334
(388a/42Ca	0.011388	0.010392	0.011306	0.010726	0.011924	0.011252	0.011444	0.012308	0.012476	0.013213	0.010008	0.011363	0.011603	0.010603	0.012116	0.012374	0.011213	0.011932	0.011343	0.01342	0.017741	0.017003	0.012831	0.011031
	0.073189	0.534437	0.059146	0.140258	0.08957	0.101213	0.050395	0.033384	0.033633	0.050141	0.055586	0.058	0.047823	0.06334	0.306427	0.020803	0.033607	0.042584	0.080405	0.325322	1.555943	1.577539	0.130383	0.240949
	2.106178	2.094018	2.042511	2240306	2 546514	2.842366	2.430157	2 394872	2.428442	2.384342	1.990815	2.321642	2.422738	2.446514	2.570916	2.098965	2.400427	2.456876	2.455497	3.292975	4.819936	3.484014	2 650847	2.605023
	0.251964	0.142705	0.053947	0.082231	0.43621	0.124645	0.149066	0.106196	0.086881	0.174816	0.150359	0.146807	0.095815	0.068007	0.040111	0.146958	0.203183	0.098992	0.142509	0.12562	0.289709	0.102897	0.100274	0.146913
885r/42Ca	8.413282	8.109111	8.360563	8.190502	7.943733	8.191133	8.345304	8.251317	8.200024	8.205702	8.22017	8.390381	8.464279	8.3858	8.336238	8.381756	8.211837	8.331092	8.397928	8.381545	7.639295	7.827027	8.367238	8.457395
	coral_232_b6@2	coral_232_b6@3	coral_232_b6@4	coral_232_b6@5	coral 232 b6@6	coral_232_b6@7	coral_232_b6@8	coral_232_b6@9	coral 232_b6@10	coral 232_b6@11	coral_232_b6@12	coral_232_b6@13	coral 232_b6@14	coral_232_b6@15	coral_232_b6@16	coral_232_b6@17	coral_232_b6@18	coral_232_b6@19	coral 232_b6@20	coral 232_b6@21	coral_232_b6@22	coral_232_b6@23	coral 232_b6@24	coral 232_b6@25

File name	885r/42Co	250 mmol/mol	24Mg/42Ca mmol/mol	25D mmo//moi	1388s/42Ca mmol/mel	8	23Na/42Ca	250	distance from the edge in mm
coral_232_b6@26	8,413352	0.128886	2.438738	0.047928	0.011056	0.003483	39.3054	0.245667	3.314768
coral 232 b6@28	8.353896	0.149085	2.465889	0.037537	0.011849	0.001572	39.29746	0.35917	3.366158
coral_232_b6@29	8.313998	0.134603	2.737734	0.049314	0.013686	0.003415	41.03647	0.490471	3.392908
coral_232_b6@30	8.376415	0.149141	2.686369	0.071927	0.015138	0.004924	41.33873	0.441384	3.414728
coral_232_b6@31	8.315966	0.13914	2.691834	0.134864	0.014032	0.003714	42.6367	0.909456	3.442888
coral 232 b6@32	8.315298	0.101662	2.587747	0.051182	0.012833	0.004705	41.85774	0.316614	3.468938
coral_232_b7@1	8.428985	0.096932	2.44455	0.046367	0.011568	0.00346	40.51341	0.655829	3.507658
coral_232_b7@2	8.598849	0.140146	2.409707	0.034706	0.011888	0.004831	39,46213	0.375133	3.537218
coral_232_b7@3	8.718996	0.137534	2.452119	0.05867	0.012341	0.003941	39.461	0.172795	3.556228
coral 232_b7@4	8.674554	0.083851	2 291833	0.033292	0.01134	0.001666	38.9585	0.198716	3.582978
coral 232 b7@5	8.509385	0.123664	2.249511	0.103238	0.01079	0.002728	37.93659	0.651112	3.605498
coral 232_b7@6	8.538858	265660.0	2.47443	0.054459	0.011516	0.003067	39.47268	0.603664	3.628728
coral_232_b7@7	8.57226	0.15184	2.728842	0.210665	0.012486	0.00363	40.44799	0.477099	3.651258
coral 232 b7@8	8.682661	0.204291	2.903102	0.527046	0.013916	0.004562	41.1224	0.403452	3.675898
coral_232_b7@9	8.732195	0.133257	2.479549	0.058376	0.012615	0.003324	39.89347	0.353027	3.704058
coral_232_b7@10	8.631839	0.058841	2.432897	0.031469	0.011649	0.002176	39.15565	0.21109	3.732208
coral_232_b7@11	8.600085	0.134931	2.371326	0.033967	0.011739	0.003139	39.02573	0.296035	3.756148
coral_232_b7@12	8.532403	0.126894	2.435588	0.036731	0.012347	0.00381	39.55526	0.32648	3.773748
coral_232_b7@13	8.411558	0.217513	3.30915	2.162791	0.015269	0.006121	38,66672	2.020169	3.805418
coral 232 b8@1	8.021002	0.178564	2.341161	0.101712	0.011005	0.00161	34.34369	0.394629	3.824428
coral_232_b8@2	8.272901	0.244627	2.566038	0.093954	0.012492	0.003706	36.47066	0.834641	3.843438
coral_232_b8@3	8.399554	0.124736	2.567429	0.068331	0.012458	0.001834	38.09406	0.225741	3.871598
coral_232_b8@4	8.210662	0.094806	2.620015	0.040654	0.012028	0.001486	38.81375	0.4791	3.894828

C-55-

distance from the edge in mem	3.921578	3.946208	4.024348	4.044058	4.074328	4.094748	4.116568	4.141208	4.162318	4.191888	4.222858	4.241168	4.272838	4.302408	4.320708	4.342528	4.367168	4.389698	4.418558	4.441788	4.467838	4.490358	4.510068
8	0.382796	0.320825	0.284016	0.287978	0.455903	0.569131	0.392264	0.337481	0.602364	0.890975	0.325349	0.49682	0.554109	0.698052	0.386202	0.37423	0.468237	0.247816	0.569733	0.252978	0.378885	0.314979	0.212121
23Na/42Ca	39.39788	39.43256	39.25994	39.06844	39.60617	39.58124	39.44146	38.20588	39.90919	40.85582	40.32163	40.01423	37,80507	38,86108	38.07012	38.57171	40.11479	41,44641	40.86727	40.14875	39.70921	38.78554	38.41935
R	0.001993	0.00268	0.002321	0.002248	0.003258	0.001525	0.002037	0.001223	0.002719	0.002538	11520010	0.002701	0.00202	0.003437	0.003258	0.001854	0.00274	0.001921	0.001133	0.002148	0.001808	0.002114	0.001161
388a/42Ca emol/mol	0.012514	0.013297	0.013035	0.012807	0.012734	0.01165	0.012081	0.01386	0.012515	0.012558	0.016394	0.016163	0.024768	0.014473	0.012975	0.012031	0.0134	0.012902	0.013067	0.01357	0.014612	0.011055	662010.0
25D mm0/moi	0.05234	0.061402	0.112581	0.083348	0.070373	0.052793	0.04427	0.067335	0.134416	0.078915	0.159242	0.763778	0.470532	0.407836	0.154386	0.047844	0.190963	0.068497	0.03591	0.069783	0.059522	0.071637	0.039199
tatily/42Ca	2.769176	2.722017	2.771302	2.721178	2.708334	2.568364	2.528039	2.477601	2.682002	2.754419	3.282465	3.486956	2.718431	2.771597	2.507489	2.502491	2.732964	2.723888	2.923135	2.723259	2.688202	2.514117	2.485156
25D mmol/mol	0.216933	0.281818	0.187077	0.244581	0.325115	0.215056	0.136503	0.339987	0.298362	0.233554	0.136413	0.18409	0.305285	0.208165	0.152163	0.216951	0.248453	0.234068	0.149759	0.193289	0.321895	0.222536	0.110282
885/142Ca	8.087648	8.217533	8.244495	8.127354	8.206167	8.343343	8.376907	8.159351	8.156889	8.413037	8.543118	8.464413	8.268463	8.248787	8.38961	8.260006	8.21767	8.444024	8.450226	8.340797	8.155023	8.274353	8.318942
File name	coral_232_b8@5	coral_232_b8@6	coral 232 b8@8	coral_232_b8@9	coral_232_b8@10	coral 232_b8@11	coral_232_b8@12	coral 232_b8@13	coral_232_b8@14	coral 232 b8@15	coral 232_b8@16	coral 232_b8@17	coral_232_b8@18	coral_232_b8@19	coral_232_b8@20	coral_232_b8(021	coral_232_b8@22	coral_232_b8@23	coral 232 b8@24	coral_232_b8@25	coral_232_b8@26	coral 232_b8@27	coral_232_b8@28

C- 56 -

	4.526258	4.556528	4.579758	4.608628	4.633258	4,662128	4.686758	4.715628	4.745188	4.762788	4 793058	4.809248	4.839518	4.861338	4.886678	4.911318	4.937368	4.962708	4.985938	5.011988	5.030288	5.058448	5.085198	5.138698
	0.411607	0.476786	1.151715	0.381445	0.925618	0.616228	0.817908	22.35479	0.640702	0.508896	0.414353	0.541424	0.508582	0.403392	0.52795	0.699308	0.269106	0.591225	0.856479	0.47444	0.451333	0.538673	0.724743	0.439349
Z3Na/42Ca	38.81738	38.71397	39.84383	38.1716	40.28482	39,68581	39.88096	42.5386	40.53205	41.12992	38.38858	37.37518	38,66036	38.00031	39.45769	40.11621	40.48635	39.35367	38.67299	40.29049	41.06065	43.17104	38.99471	39.19154
	0.002382	0.003146	0.002947	0.000672	0.001671	0.001265	0.002657	0.013307	0.00209	0.002691	0.002296	0.001368	0.001534	0.001655	0.002957	0.001194	0.002385	0.001944	0.001934	0.001796	0.001951	0.002933	0.001297	0.001976
1388a/42Ca	0.011718	0.012607	0.01288	0.010388	0.012352	0.012133	0.012654	0.012922	0.013357	0.012854	0.011824	0.010722	0.010864	0.011585	0.013542	0.011963	0.01266	0.012206	0.011294	0.011077	0.011818	0.014205	0.011178	0.010509
	0.028243	0.042217	0.043133	0.072208	0.041145	0.05357	0.767724	0.924945	0.118515	0.074137	0.110441	0.048996	0.049577	0.13716	0.223431	0.041711	0.0444	0.070955	0.035905	0.036656	0.041995	0.109297	0.128102	0.055879
24Mg/42Ca	2.585104	2.59899	2.628686	2.660588	2.656165	2 606119	3.067217	2.679747	2.757599	2.734154	2 403754	2.21834	2.441431	2.363576	2 565797	2.582109	2.694484	2.579109	2.367133	2.660003	2.7331	2.981528	2.506479	2.507909
	0.252237	0.336053	0.235681	0.118923	0.189446	0.160585	0.112404	0.832819	0.329862	0.200839	0.149894	0.100221	0.250113	0.183997	0.139061	0.166842	0.329458	0.239393	0.194785	0.145744	0.098805	0.281414	0.230837	0.186181
	8.239607	8.18999	8.281007	8.295501	8.113916	8.148326	8.30399	8.101933	8.198014	8.295707	8.385372	8.310656	8.360047	8.283665	8.404441	8.291925	8.233731	8.336266	8.198206	8.312409	8.296674	8.167685	8.218084	8.249293
Fåe name	coral_232_b8@29	coral 232_b8@30	coral 232 b8@31	coral_232_b9@1	coral_232_b9@2	coral_232_b9@3	coral_232_b9@4	coral_232_b9@5	coral_232_b9@6	coral_232_b9@7	coral_232_b9@8	coral_232_b9@9	coral_232_b9@10	coral_232_b9@11	coral_232_b9@12	coral_232_b9@13	coral_232_b9@14	coral_232_b9@15	coral_232_b9@16	coral_232_b9@17	coral_232_b9@18	coral_232_b9@19	coral_232_b9@20	coral_232_b10@1

C-57-

distance from the edge in mm	5.161928	5.187268	5.214018	5.239358	5.264698	5.287928	5.311158	5.338618	5.367478	5.387888	5.423088	5.462508	S.473768	5.488558	5.514598	5.542758	816072.2	5.589928	5.618078	5.643428	5.668768	5.691998	5.713818	5.746908
250	0.840268	0.40781	0.30481	0.477168	0.390112	0.460362	0.471902	0.25961	0.341826	0.573907	0.491264	0.633854	0.559044	0.371359	0.673479	0.320657	0.860525	0.30659	0.40733	0.472357	0.498094	0.563435	0.67137	0.444028
E)CA/ENEZ	39.272	38.08419	38.7057	34.59575	36.00384	35.83371	38.56025	39.7386	40.00327	40.04205	39.88075	38.97171	34.15676	37.90699	39,40168	37.66743	32.15236	35.96744	37.35862	38.44451	39.05075	29.28008	31,46461	39.41118
95	0.00272	0.002371	0.001511	0.001826	0.001751	0.002643	0.002769	0.001797	0.002943	0.001691	0.002354	0.001102	0.002377	0.001674	0.002421	0.002047	0.0055	0.002054	0.001604	0.00113	0.002996	0.011188	0.002536	0.001344
1388a/42Ca	0.011252	0.012467	0.011596	0.010274	0.011616	0.012215	0.013162	0.012085	0.011956	0.011976	0.012548	0.012011	0.01387	0.010604	0.011644	0.012178	0.013083	0.01073	0.011209	0.011108	0.011736	0.024556	0.011163	0.011287
25D mmo/mei	1.884346	0.038356	0.031198	0.026253	0.101533	0.154419	0.099789	0.034633	0.046563	0.047205	0.047685	0.064101	0.409155	0.030673	0.045609	0.04456	1374721	0.062231	0.058614	0.078773	0.203399	0.659671	0.2777145	0.081249
Athy/42Ca mmol/mol	3.379905	2.460377	2.473237	2.124082	2.165839	2 352359	2.504929	2.617566	2.621954	2.560095	2.583432	2.784282	2360652	2.567498	2.699303	24211	2.159382	2.077867	2 262443	2.530626	2.679063	3.8927	2.07927	2.540527
25D mmcl/mal	0.198446	0.213794	0.266456	0.173007	0.236185	0.29314	0.179041	0.156838	0.208157	0.215542	0.205651	0.170274	0.302883	0.100638	0.141697	0.169032	0.290545	0.078973	0.117997	0.105603	0.149094	0.258746	0.2125	0.157405
885/42C3	8.011246	8.528785	8.251193	8.354962	8.302401	8.274144	8.496514	8.383013	8.300748	8.243478	8.356775	8.136939	7.810772	8.226702	8.181959	8.218872	8.113805	8.269708	8.499596	8.399675	8.378643	7.675434	8.124579	8.378783
Fiş name	coral_232_b10@2	coral_232_b10@3	coral_232_b10@4	coral 232 b10@5	coral 232 b10@6	coral 232 b10@7	coral 232 b10@8	coral_232_b10@9	coral 232 b10@10	coral_232_b10@11	coral 232_b10@12	coral 232 b11@1	coral_232_b11@2	coral 232_b11@3	coral 232_b11@4	coral_232_b11@5	coral_232_b11@6	coral 232 b11@7	coral_232_b11@8	coral 232 b11@9	coral 232_b11@10	coral_232_b11@11	coral 232_b11@12	coral 232_b11@13

C- 58 -

from the edge in	mm	5.768728	5.791248	5.813778	5.837708	5.860238	5.887688	5.908808	5.933448	5.952458	5.984838	6.006658	6.030588	6.053828	6.074938	6.105918	6.124918	6.150968	6.179828	6.198838	6.225588	6.266418	6.302318	6.325548	6.348068
		0.624184	0.513166	0.371626	0.697422	0.659368	0.642332	0.691629	0.98098	0.858042	0.624542	0.649737	0.343745	0.612782	0.974362	1.195056	7.347513	1 107102	1.383905	0.984115	1.077901	0.354991	3,482962	1.834371	0.956458
	23Na/42Ca	38.22003	38.59694	38.90902	38.80527	40.02433	41.18494	41.18638	39.06653	35.3448	35.75108	38.11388	39.67324	35.71778	38.16172	37.13559	41.28221	34.95565	40.6913	38.92919	37.29069	40.34133	21.00041	19.65909	33.12629
		0.001205	0.001469	0.001409	0.001454	0.000963	0.000773	0.001013	0.000834	0.001408	266000.0	0.001073	0.002057	0.001022	0.001538	0.001619	0.012939	0.001622	0.001917	0.001543	0.002907	96210010	0.009272	0.006888	0.001678
		0.011414	0.011518	0.010923	0.011953	0.012152	0.011958	0.012646	0.012017	0.010899	0.010598	0.01128	0.011727	0.011144	0.012216	0.011191	0.046495	0.013073	0.012043	0.011658	0.01212	0.012755	0.015303	0.013632	0.011883
		0.036424	0.05775	0.051475	0.073856	0.059928	0.068811	0.085115	0.074681	0.059968	0.041536	0.057615	0.054818	0.06425	0.073948	0.049637	3.476296	0.080622	0.094348	0.117369	0.108255	0.08053	2.956381	1.741627	0.171719
		2.314833	2 305292	2.511119	2.339656	2.529593	2.677004	2.657028	2.351768	2.043306	1.963846	2.242597	2.362956	2.050748	2.32715	2.116483	10.78437	2.085792	2.575312	2.3009	2.162493	2.701163	3.059165	2.075696	1.802547
		0.158182	0.123509	0.165053	0.139328	0.2568	0.152191	0.081381	0.204413	0.16214	0.177103	0.162077	0.218181	0.230528	0.210994	0.270704	0.195232	0.250214	0.195731	0.134622	0.188762	0.125651	0.313013	0.110736	0.087678
		8.294648	8.54877	8.437711	8.525512	8.517313	8.482284	8.471679	8.536367	8.577267	8.59528	8.373697	8.25019	8.260202	8.357666	8.413189	7.142323	8.596361	8.328971	8.303635	8.38543	8.337777	7.601809	7.318643	8.44001
		coral_232_b11@14	coral 232 b11@15	coral_232_b11@16	coral_232_b11@17	coral_232_b11@18	coral_232_b11@19	coral_232_b11@20	coral_232_b11@21	coral_232_b11@22	coral_232_b11@23	coral_232_b11@24	coral_232_b11@25	coral_232_b11@26	coral_232_b11@27	coral 232 b11@28	coral_232_b11@29	coral 232 b11@30	coral_232_b11@31	coral_232_b11@32	coral_232_b11@33	coral_232_b12@1	coral 232_b12@2	coral 232 b12@3	coral 232 b12@4

C- 59 -

							E)27/PNEZ		
coral_232_b12@5 coral_232_b12@6	8.279782 8.295774	0.088049 0.122433	2.484793 2.500079	0.040644	0.012108 0.01192	0.001604 0.001376	40.60765 40.96348	0.188397 0.597414	6.373418
coral_232_b12@7	8.024671	0.108568	2.737201	SYSEED.D	0.010782	0.002557	40.1286	0.359803	6.431838
coral_232_b12@8	7.678442	0.111218	2.576921	9065300	0.010031	0.001578	38.49602	0.306368	6.470558
coral_232_b12@9	8.052962	0.155644	2.428745	0.059881	11160000	0.000684	38.34944	0.821422	6.499418
coral_232_b12@10	8.016066	0.091101	2.49716	0.046326	0.011206	0.001375	38.77472	0.45614	6.531098
coral_232_b12@11	8.113619	0.122338	2.080065	0.028875	678600.0	0.001717	36.5023	0.302786	6.547988
coral_232_b12@12	7.998981	0.077631	1.744147	0.021802	162600.0	0.000826	34.36347	0.239261	6.573338
coral_232_b12@13	8.364572		1.893225	0.060874	0.009795	0.001037	36.3385	0.158844	6.597268
coral_232_b12@14	34677948	0.255801	2.378883	0.563008	0.014818	0.004539	35,84638	1.544105	6.630358
coral_232_b12@15	8.319183	0.109034	1.924343	11911.0	1010.0	0.000972	34.20233	0.325577	6.679628

S.campylecus: Sample 235

neralized regions in the coral skeleton: onding to remi Rows highlighted in grey are SIMS analyses corresp

	885r/42Ca	250	24Mg/42Ca	250	1388a/42Ca		23Na/42Ca		distance
			mmel/mol		mmol/mol		mmol/mai		mm
coral_235_b1@1	8.296893	119031	2.642948	0.017811	0.008743	0.000439	37.94632	0.263579	13.46718
coral_235_b1@2	8.284825	0.247833	2.612451	0.019937	0.008821	0.000722	39.88279	0.563162	13,42988
coral 235 b1@3	8.355323	0.221993	2.772742	0.025069	0.009312	0.000396	40.03198	0.609576	13.40968
coral 235 b1@4	8.35843	0.184509	2.676385	0.016587	0.008928	0.000904	41 16055	0.52146	13.37248
coral 235 b1@5	8.418696	0.166483	2.661249	0.044756	0.009528	0.000662	42 19653	1.275397	13.35688
coral 235 b1@6	8 533307	0.157165	2.131594	0.026476	0.008996	0.000766	38.12363	0.746605	13.31806
coral 235_b1@7	8.55825	0.138225	2.588406	0.0261	0.010629	0.000444	41.87152	0.554376	13.29328
coral_235_b1@8	8 582362	0.198804	2.44232	0.023674	0.009381	0.000761	40.3965	0.371738	13.27148
coral 235_b1@9	8.529653	0.181257	2.557924	0.019606	0.009693	0.00052	41 68721	0.633904	13.23578
coral 235 b1@10	8.513889	0.152667	2 542509	0.025906	0.010111	0.000555	42.10068	0.833841	13.20938
coral 235 b1@11	8.649052	0.08394	2.348561	1/1610.0	0.010495	0.000796	41 03608	0.693966	13.18918
coral_235_b1@12	8.596453	0.167291	2.55123	0.016516	0.010408	0.000875	42.38503	0.328743	13.15658
coral_235_b1@13	8.779736	0.154433	2 209702	0.016945	0.01011	0.000805	39.61207	0.402931	13.13478
coral_235_b1@14	8.644425	0.091146	2.680715	0.022619	0.010676	0.000898	42 56281	0.548241	13.11308
coral_235_b1@15	8.732397	0.099365	2.639839	0.01786	0.011248	0.000975	43,26022	0.460002	13.08508
coral_235_b1@16	8.654149	0.12044	1.894577	0.016855	0.009133	0.00054	37.34634	0,427587	13.05178
coral_235_b1@17	8.754929	0.131545	2.19895	0.018114	0.010088	0.000539	39.51378	0.59076	13.04008
coral_235_b1@18	8.636061	0.130795	1.803925	0.018441	0.009298	0.000441	36.10511	1.020964	13.01208
coral_235_b1@19	8.791207	0.122246	1.589089	0.0189	0.008683	0.001063	35.1806	0.402012	12.98418
coral 235 b1@20	8.55379	0.173411	2.507912	0.037759	0.01043	0.000885	43,43464	1.099077	12.95468
coral_235_b2@1	8.143549	0.280205	2.518666	0.047739	0.009319	0.001383	41.09918	2.084981	12.91888
coral_235_b2@2	8.497459	0.295028	2.674946	0.026448	0.009599	0.000861	42,09939	0.318024	12.88168

coral_235_b2@3	8.691983	0.183245	2.588777	0.03134	0.009267	0.000998	41 35153	0.442274	12.85838
coral 235_b2@4	8.707689	0.182114	2.556551	0.024955	0.009458	0.000829	41 51058	0.272785	12.83198
coral 235_b2@5	8.699248	0.234663	2.561165	0.023477	0.003877	0.000853	42 19505	0.657193	12.80558
coral_235_b2@6	8.594733	0.374309	2.606794	0.037863	0.009759	0.000729	42,7975	0.683407	12.77448
coral_235_b2@7	8.625549	0.251413	2322545	0.032527	0.009424	0.000832	41 06691	0.369718	12.74648
coral_235_b2@8	8.629888	0.257062	2.107388	0.022152	206600.0	0.000418	392922.95	0.625738	12.71548
coral_235_b2@9	8.413703	0.215672	2.324138	0.026573	0.009497	0.000715	41.51671	0.601826	12.68908
coral_235_b2@10	8.570313	0.19815	2.536651	0.023264	0.009264	0.001211	42.17275	0.474198	12.66418
coral_235_b2@11	8.701733	0.189948	2.579105	0.027192	0.009237	0.001476	42.92482	0.550986	12.64248
coral_235_b2@12	8.674382	0.2238555	2.350731	0.013469	0.009326	0.000871	41.75659	0.519738	12.61448
coral_235_b2@13	8.660421	0.227471	2.565688	0.026479	0.009452	0.000685	43.32691	0.370784	12.59118
coral_235_62@14	8.677889	0.226988	2.732611	0.044133	0.009928	0.000686	44.59867	0.733346	12.56948
coral_235_62@15	8.613208	0.251622	2.736289	0.022998	0.01075	0.001389	45,45992	0.716124	12.53838
coral_235_b2@16	8.69057	0.169545	2.734563	0.027654	0.011143	0.001156	45.87681	0.7037	12 51818
coral_235_b2@17	8.699412	0 230534	2.775257	0.037469	0.011213	0.000359	46.8369	0.843703	12.49178
coral_235_b2@18	8.640518	0.188146	2.76492	0.037069	0.011149	0.000437	46.78571	0.487426	12.47008
coral_235_b2@19	8.500324	0.293199	2.737982	0.019629	0.010694	0.000778	47.9567	0.854328	12.43588
coral_235_b2@20	8.661073	0.212895	2.551999	0.019353	0.01129	0.000852	46.70201	0.996052	12,41418
coral_235_b2@21	8.736858	0.207895	2.527579	0.03203	0.011118	0.000618	45.3257	0.725562	12.39088
coral_235_b2@22	8.654196	0.240525	2.553493	0.062596	0.009649	0.000977	43.56142	0.46825	12.36758
coral_235_b3@1	7.693758	0.362619	1.581202	0.083264	0.00913	0.001247	32.20578	1.339683	12.33488
coral_235_b3@2	7.79832	0.400323	1419619	0.236762	0.014801	0.003629	31,60017	1.72784	12.29608
coral_235_b3@3	8.17762	0.315706	2.763131	0.065341	0.009547	0.000819	43.93816	1.686305	12.25728
coral_235_b3@4	8.265736	0.345896	2.589316	0.058154	0.009117	0.000785	43.51896	1.374448	12.22158
coral_235_b3@5	8 382852	0.305361	2.849601	0.034768	62860010	0.000605	45.81392	2 548697	12.17958
coral 235 b3@6	8 323572	0.338809	2.872847	0.045586	56000	0.001239	47.31255	2 217267	12.13768

C-62-

					mmol/mol				
coral 235 b3@7	8.421399	0.309262	2.763755	0.019287	0.009894	0.001226	45.59016	1.069857	12.11438
coral 235 b3@8	8.289132	0.23287	2.438179	0.029436	0.008949	0.001317	41.79846	0.704453	12.08018
coral_235_b3@9	8.39428	0.225288	2.542748	0.028994	0.009329	0.000929	42 14591	0.313554	12.05688
coral_235_b3@10	8.429139	0.208379	2.650228	0.048457	0.00963	0.000892	44.39849	0.989164	12.03978
coral_235_b3@11	8.457825	0.217126	2.614433	0.061353	0.009494	0.00089	45.26057	1.367559	12.01498
coral_235_b3@12	8.31341	0.237842	2.132212	0.037866	0.008586	16600070	40.85804	0.74727	11.98388
coral_235_b3@13	8.357078	0.124929	2.428927	0.056017	0.009858	0.00102	43.83616	1.347898	11.96218
coral_235_b3@14	8.401905	0.218637	2.394852	0.050298	0.009888	0.001105	44.32818	1.183115	11.92488
coral_235_b3@15	8,446402	0.175965	2.237733	0.039673	0.009196	0.001062	43.53845	1.122357	11.90318
coral_235_b3@16	8,446195	0.165588	2.280412	0.024951	0.006911	0.000915	44.68632	2.072965	11.87828
coral_235_b3@17	8.234508	0.221466	2.005241	0.070314	0.008339	0.000838	41.33521	1.641611	11.85498
corsi_235_b3@18	7.906614	0.22122	2.451603	0.055816	0.008458	0.000716	45.74823	1.801458	11.82238
coral_235_b3@19	7.921406	0.191429	2.046861	0.022984	0.007761	0.000745	39.8598	1.110141	11.79748
coral 235_b3@20	8.212982	0.214037	0.847882	0.021079	0.005773	0.000382	26.06561	0.430677	11.77738
coral 235 b4@1	8.259717	0.128159	0.917655	0.011909	0.005754	0.000836	25.79242	0.315079	11.72758
coral 235_b4@2	8.249618	0.259293	2.192004	0.013608	0.008327	0.001107	43 11879	0.686062	11.70598
coral_235_b4@3	8.290847	0.237203	2.278676	0.047305	0.008672	0.001126	42.7693	0.521524	11.68568
coral_235_b4@4	8.190892	0.203352	2.438196	0.032876	0.008626	0.000543	45.10906	0.483197	11.65928
coral_235_b4@5	7.884795	0.189233	2.677499	0.044392	0.008493	0.00091	46.84694	0.714951	11.63758
coral_235_b4@6	7.994105	0.21236	2.804812	0.02736	0.008599	16010070	46.34231	0.432927	11.60648
coral_235_b4@7	8.478757	0.195003	2.14302	0.035348	0.009085	0.000925	41.89145	0.448882	11.57698
coral 235 b4@8	8.66199	0.203347	1.731344	0.020539	0.008551	0.000985	37.58543	0.237883	11.55368
coral_235_b4@9	8.462715	0.224173	1.42431	0.033444	0.007636	0.000903	31.88134	0.313546	11.53188
coral_235_b4@10	7.887885	0.168113	1.040287	0.021424	0.006227	0.001019	26.52966	0.313573	11.51178
coral_235_b4@11	7.380134	0.14516	0.643991	0.011338	0.004745	0.000666	22.11069	0.336972	11.48848
coral 235 b4@12	7.600356	0.114778	0.527005	0.010299	0.004875	0.000589	21.94197	161026.0	11.46048

C-63-

File name									
		mmo/mai	mmel/mal	malmo	mmo/ma	un			
coral_235_b5@1	7.883535	0.378633	2.721365	0.067757	0.008876	0.001039	39.99651	0.28359	11.40458
coral_235_b5@2	8.257652	0.323995	2.338681	0.062235	0.009009	0.001232	39.36117	0.61157	11.36268
coral_235_b5@3	8.313042	0.357742	2.481674	98555010	0.009212	0.001268	41 40292	0.542824	11.32998
coral_235_b5@4	8.34247	0.261847	2.465847	0.038142	0.009283	0.000637	42.08782	0.582103	11.30518
coral_235_b5@5	8.337301	0.230594	2.452613	0.03414	0.009076	0.000913	42.26182	0.349138	11.27408
coral_235_b5@6	8 281639	0.259094	2.540111	0.048677	0.008759	0.001142	43.52002	0.39833	11.25548
coral_235_b5@7	8 345399	0.31726	2.517212	0.060739	0.009372	0.001128	43.86939	0.423132	11.23058
coral_235_b5@8	8.274404	0.224669	2,813511	0.063873	0.009707	0.001224	46.33775	0.792371	11.18708
coral_235_b5@9	8.316118	0.239238	2.743062	0.044229	0.009822	0.000695	45.1252	0.590881	11.17008
coral_235_b5@10	8.477452	0.235435	3.152021	0.390324	0.010792	0.00100.0	44.04877	0.416785	11 14518
coral_235_b6@1	7.800902	0.425056	2.960779	0.057614	0.008281	0.001815	43.66984	0.991542	11 09708
coral_235_b6@2	7.984929	0.466336	2.916859	0.0688	0.008315	0.000687	44.30741	1.00013	11.05978
coral 235 b6@3	7.897404	0.415659	2.355886	0.04836	0.003017	0.001841	39.99339	0.493741	11.03488
coral 235 b6@4	7.550794	0.502454	1.832746	0.041831	0.00706	0.001348	35.72391	0.197671	10.95108
coral_235_b6@6	8.253468	0.438545	2.64879	0.080261	0.009661	0.000827	44.1481	0.840189	10.91838
coral_235_b6@7	8.358657	0.353454	2.483582	0.030481	0.009604	0.001013	42 36239	0.306297	10.87808
coral_235_b6@8	7.517941	0.38833	2.180218	0.080975	0.007871	0.000915	36.74269	0.559643	10,85628
coral_235_b6@9	8.206649	0.473132	2.581741	0.070377	0.009735	0.001056	46.69767	0.493811	10.78798
coral_235_b6@10	8.104423	0.420135	2.325525	0.076265	0.009292	0.001602	42.9114	0.241298	10.73978
coral 235_b6@11	8.134773	0.251566	2.556275	0.068633	0.009196	0.000948	46.27858	0.465186	10.71958
coral_235_b6@12	8.008756	0.376461	254542	0.051004	0.008956	0.000937	46.86487	0.385192	10.69628
coral 235_b6@13	8.133618	0.29937	2.380312	0.018615	0.008916	0.001244	44.89848	0.478288	10.67298
coral_235_b6@14	8.172654	0.280572	2.286939	0.017922	0.008661	0.000467	43.54435	0.368425	10.64198
coral_235_b6@15	8.146129	0.302988	2.425879	0.0576	0.008966	0.00088	44.8617	0.428827	10.62018
coral_235_b6@16	8.140534	0.379872	2.531963	0.084235	0.009002	0.001034	45,86058	0.745555	10.60308
coral_235_b6@17	8.364071	0.34393	2.513031	0.055319	0.009136	855000.0	44.66614	0.293236	10.57048

C-64-

Distance		10.54258	10.50998	10.47888	10.44468	10,40738	10.33288	10.29558	10.27228	10.24748	10.22108	10.19464	10.17445	10.13717	10.10766	10.0797	10.02068	9.995835	9.959335	9.933715	9.910415	9.887895	9.860715	9.839745	9.810235	9.794705	9.770625
		0.414957	0.418325	0.383628	0.847336	0.289602	0.689246	0.306835	0.448851	0.445795	1.108328	2 39093	2.788803	0.957507	1.276529	0.704213	1.266378	0.72403	0.2997	0.512036	0.610006	0.42857	0.339632	0.527469	0.297623	0.324495	0.563046
		43.87403	42.50652	43.7648	45.44178	42,60549	45.02767	44.67572	46.22086	45.64426	41.86235	36.43229	40,87489	45.58915	46,44628	44.71545	44.28372	43.35335	44.15908	45.69996	45.40061	45.53919	45.74751	45.29761	45.45435	44.81125	42 51918
	mm	0.001239	0.001227	0.00103	0.001691	0.001001	0.001022	0.00167	0.000885	0.001411	0.001225	0.004012	0.003512	0.001975	0.001354	0.000631	0.001518	0.001178	0.001312	0.001595	0.001031	0.000529	0.000671	0.001264	0.001014	0.00113	0.001167
		0.009524	0.008645	0.009007	0.008214	0.009644	0.011006	0.00954	0.010345	0.010964	0.011565	0.011724	0.012172	0.012207	0.01173	0.01103	0.011948	0.009781	0.00972	0.009217	0.009987	0.009925	0.010015	0.010087	0.010874	0.011183	0.010067
		0.05038	0.0555555	0.054735	0.10905	0.099423	0.118231	0.072742	0.058272	0.067323	0.089421	0.24567	0.199637	0.087022	0.104418	0.068022	0.170448	0.068978	0.062946	0.040212	0.085285	0.066942	0.036674	0.048237	0.048927	0.026651	0.038729
		2.436258	2275795	2.462613	2.693048	2.481583	2.587403	2,60581	2777273	2.617467	2 254311	1.970334	2 342345	2.493019	2,60365	3.028647	2.754742	2.683114	2.761154	2.852939	2.742707	2.674055	2.61037	2.528931	2,489639	2.464602	2.278244
		0.352799	0.235604	0.324373	0.481866	0.416289	0.453502	0.447079	0.370359	0.294288	0.356665	0.345439	0.40957	0.334269	0.308667	0.410111	0.372264	0.34397	0.317957	0.366475	0.46318	0.340796	0.23838	0.250951	0.258069	0.234794	0.204313
885s/42Co		8.60095	8.560247	8.496664	8.057733	8.394783	8.451991	8.363767	8.316353	8.439871	8.282645	8.192351	8.002363	8.557293	8.415673	8.007779	8.245687	8.428914	8.460116	8.327763	8.357823	8.350184	8.432315	8.541397	8.635304	8.747805	8.681548
file name		coral 235_b6@18	coral 235 b6@19	coral_235_b6@20	coral 235 b7@1	coral_235_b7@2	coral_235_b7@3	coral_235_b7@4	coral_235_b7@5	coral_235_b7@6	coral_235_b7@7	coral_235_b7@8	coral_235_b7@9	coral_235_b7@10	coral_235_b7@11	coral_235_b8@1	coral_235_b8@2	coral 235_b8@3	coral 235 b8@4	coral_235_b8@5	coral 235_b8@6	coral_235_b8@7	coral_235_b8@8	coral_235_b8@9	coral_235_b8@10	coral_235_b8@11	coral_235_b8@12

C-65-

File name	885r/42Ca		24Mg/42Ca				23N=/42Ca		
		mmol/mot	mmol/mai	mmol/mol	mmol/mol	mm			
coral_235_b8@13	8.656287	0.244493	1.814921	0.024711	0.006708	0.001088	37.78816	0.471787	9.741115
coral_235_b8@14	8.477231	0.262214	1.746945	0.027338	0.008385	0.000633	37.18046	0.248204	9.713155
coral_235_b8@15	8.561727	679706.0	2.504041	0.059461	0.010006	0.000785	44.90606	0.422287	9.690635
coral_235_b8@16	8.572443	0.318022	2.478409	0.055023	0.009698	0.000749	16212.95	0.556861	9.659575
coral_235_b8@17	8.419016	0.271527	2.357064	0.046091	0.008913	0.001263	44.08863	0.422118	9.630835
coral 235_b8@18	8.569174	0.320509	2.131886	0.032683	0.008751	0.001094	42.34686	0.33163	9,603665
coral_235_b8@19	8.612147	0.337591	2.126641	0.057284	0.008944	0.001452	42.09698	0.350189	9.585795
coral_235_b8@20	8.495862	0.236395	2328695	0.035425	0.009268	0.000806	44.28386	0.302676	9.561725
coral_235_b8@21	8.29923	0.356892	2,488389	0.030845	0.009892	0.000854	45,43024	0.427216	9.533765
coral 235 b8@22	8.542829	0.32461	2.494356	0.049216	0.010013	0.001399	44.79688	0.449673	9.503485
coral 235_b9@1	8.844547	0.065426	2.50991	0.018395	0.010919	0.001176	43.5381	0.395601	9.482515
coral_235_b9@2	8.751311	0.102205	2.70222	0.045015	0.010968	0.001195	45.5482	0.523297	9.473975
coral_235_b9@3	8.86258	0.112065	2.695502	0.028022	0.012031	96600010	46.01964	0.300313	9.456885
coral_235_b9@4	8.630968	0.206375	2.724269	0.044095	0.010805	0.000845	46.36204	0.307594	9.431255
coral_235_b9@5	8.53214	0.251828	2.671585	0.034779	960010	0.001006	46.20272	0.504005	9.407955
coral_235_b9@6	8.918555	0.208351	2.502753	0.037664	0.009987	0.001107	44.04777	0.37387	9.378445
coral_235_b9@7	9.11768	0.186537	2.460899	0.037525	0.010265	0.001051	43.57461	0.197509	9.349715
coral_235_b9@9	9.110208	0.148018	2.524779	0.026552	0.010433	0.001538	44.04193	0.41628	9.326415
coral_235_b9@10	8.965097	0.288311	2.521526	0.031989	0.009915	0.000935	43.7245	0,431891	9.296905
coral_235_b10@1	8.93661	0.305302	2.541988	0.039081	0.011733	0.001061	45.78053	0.424972	9.268955
coral_235_b10@2	8.896916	0.174184	2.623172	0.029079	0.011574	2600010	46.90397	0.428194	9.219245
coral_235_b10@3	8.849542	0.1525	2.562288	0.032531	0.011216	0.001128	46.05021	0.436372	9.191295
coral_235_b10@4	8.789412	0.194029	2.552412	0.015284	0.010621	0.001064	45.3177	0.404789	9.177315
coral_235_b10@5	8.769297	0.217085	2.425248	0.023595	0.009426	0.001446	44.63057	0.426084	9.149355
coral 235_b10@6	8.76373	0.22007	2.514908	0.021714	0.009946	0.000789	45.55594	0.467573	9.115185
coral_235_b10@7	8.91931	0.207083	2 551836	0.047596	0.009931	0.000962	45.70077	0.625145	9.091885

al 235 b10@8	8.858804	0.264355	-2.346362	0.033935	0.009575	0.004635	43.76145	0.351887	9.079465
al 235 b10@9	9.075516	0.324022	2.384561	0.031191	0.010503	0.000982	45.19115	0.424483	9.051505
al_235_b10@10	8.916317	0.270116	2.124285	0.070715	0.010631	0.001198	41.11989	0.690091	8.990935
ral_235_b10@11	8.9478	0.289846	2 588839	0.033067	0.011637	0.000682	47.35791	0.255543	8.959865
ral_235_b10@12	8.777409	0.242291	2.508406	0.032733	0.010976	0.00118	45.67277	0.291802	8.936575
ral_235_b10@13	8.834646	0.226472	2.460847	0.018893	0.010148	0.00068	44.92348	0.422258	8.903955
ral_235_b10@14	8.678671	0.402297	2.585525	0.030969	0.010085	0.000828	46.02401	0.630218	8.880655
ral_235_b10@15	8.742816	0.288318	2.37023	0.033073	0.009429	0.001115	43.72838	0.414222	8.855805
ral 235 b10@16	8.787319	0.167489	2.359906	0.04739	0.009362	0.001455	43,45331	0.469638	8 829405
ral 235 b10@17	8.869445	0.293459	2.395137	0.036636	0.010772	0.000612	43.98794	0.548167	8.795235
ral_235_b10@18	8.787395	0.205825	2.591751	0.025234	0.011547	0.000483	46.36341	0.299224	8.764165
Iral_235_b10@19	8.647705	0.402455	1.882627	0.051116	0.008952	0.001483	38.72462	0.393999	8.739315
Iral 235_b10@20	8.722127	0.279674	2.293442	0.0649	0.009253	0.000942	43.27921	0.31376	8.692725
Iral 235_b10@21	8.868627	0.257766	1.547353	0.048562	0.008428	0.00098	36.02058	0.261522	8.666315
Iral 235 b10@22	9.106086	0.202212	1.929226	0.026813	0.009575	0.001341	40,41063	0.336098	8.644575
Iral_235_b10@23	8.712031	0.306885	2.592142	0.047683	0.009808	0.007216	46.41969	0.405218	8.610405
ral 235_b10@24	8.70143	0.12603	2.576413	0.040348	0.008934	0.000722	46.69526	0.499326	8.587105
ral_235_b10@25	8.928307	0.32091	1.654296	0.025121	0.008779	0.001518	37.52534	0.22068	8.559145
ral_235_b10@26	8.641531	0.217415	1.295644	0.067614	0.008231	0.000711	29.92872	0.486104	8.529635
ral 235_b10@27	8.860769	0.200165	2.004469	0.019564	0.009957	0.001173	40.85113	0.443828	8.504785
stal_235_b10@28	8.831485	0.23162	2.406569	0.040234	0.010175	0.001177	45.33201	0.307588	8.481485
stal_235_b10@29	8.831551	0.204865	2.543692	0.022074	0.011058	0.000699	46.83819	0.629184	8.456635
oral_235_b10@30	8.878046	0.167162	2.54163	0.021896	0.011028	0.001541	46.34758	0.345638	8.430235
ral_235_b10@31	8.799738	0.181991	2.481665	0.042909	0.010551	0.000939	45.70992	0.441852	8.400725
ral_235_b10@32	8.54489	0.188476	1.67459	0.129906	0.008447	0.000801	35.28771	1.53978	8.372765
ral_235_b10@33	8.11199	0.452455	1.614581	0.190309	0.008057	0.000931	31,49659	1.482366	8.344805

C- 67 -

coral_235_b10@34	8.648201	0.20421	2.370403	0.041546	0.009422	0.000771	44.15407	0.360255	8.316855
coral_235_b10@35	8.828679	0.28682	2 548687	0.033846	0.010099	0.001104	45.34761	0.437931	8.293555
coral_235_b10@36	8.580834	0.186879	2 528424	0.050514	0.009244	0.000574	45.43311	0.483876	8.267145
coral_235_b10@37	8.63511	0.241614	2.387897	10962010	0.005061	0.00084	44.4038	0.694619	8.236085
coral_235_b10@38	8.861373	0.228584	2 32267	0.028507	0.009664	0.001124	44.16498	0.436708	8 212785
coral_235_b10@39	8.876765	0.17232	2.498296	0.023923	0.010062	0.001519	46.3361	0.507421	8.186385
coral 235_b10@40	8 39899	0.103817	194552	0.042299	0.00913	0.000702	45.05543	0.468448	8 159975
coral 235_b11@1	8.501118	0.326207	2.800133	0.051706	0.009721	0.000686	43.63832	0.703004	8.141345
coral_235_b11@2	8.715466	0.204139	2.683966	0.042377	0.01073	0.000767	42.71323	0.189784	8.119595
coral 235_b11@3	8.182195	0.181356	2.673683	0.035253	0.009675	0.000687	43.17347	0.466028	8.085425
coral_235_b11@4	8.461674	0.181428	2.666331	10.03037	0.009439	0.001081	44.21022	0.699123	8.061355
coral_235_b11@5	8 541354	0.144962	2.079243	0.035765	0.008639	0.000568	39.27569	0.451983	8.030285
coral_235_b11@6	8.556892	0.149199	2.776194	0.030539	0.009871	0.00061	45.22738	0.376892	8.004665
coral_235_b11@7	8.484785	0.116592	2.795626	65606010	0.009854	0.001094	45.50636	0.363576	7.978255
coral_235_b11@8	8.373982	0.196025	2.784827	0.05993	0.008954	0.00074	45.15901	0.421444	7.954185
coral_235_b11@9	8.698216	0.158343	2.542479	0.022673	0.009644	0.000768	43,47211	0.379822	7.928555
coral_235_b11@10	8.836501	0.192682	2.459721	0.055661	0.010445	0.001055	42.60209	0.394208	7.904485
coral_235_b11@11	8.579953	0.130692	1.812477	0.028668	0.008782	0.000887	37.32688	0.317079	7.878075
coral 235 611@12	8.763291	0.242079	2.4276	0.019259	0.010609	0.000725	43,46603	0.390725	7.850125
coral_235_b11@13	8.606487	0.128094	2.67149	0.031524	0.010096	0.00058	44.88991	0.426069	7.823715
coral 235_b11@14	8.650584	0.139069	2.453965	0.031351	0.010172	0.001198	43.15063	0.340731	7.800415
coral_235_b11@15	8.992783	0.183485	1.772147	0.025937	0.00935	0.000704	38.3579	0.295425	7.773235
coral 235 b11@16	8.737686	0.120583	2 384145	0.019019	0.009945	0.0008	42,49942	0.466889	7.748385
coral 235 b11@17	8.620457	0.179568	2.72967	0.036651	0.009674	0.001036	45.95097	0.291649	7.724315
coral 235 b11@18	8.583911	0.169666	2,67726	0.048313	0.009927	0.00121	44.77037	0.681099	7.697135
coral 235 b11@19	8.592005	0.225554	2.128482	0.03636	0.009807	0.000678	40.61548	0.381139	7.673055

C-68-

Fle name									
					mmal/mol				
coral 235 b11@20	8.960066	0.12648	2 09869	0.056822	0.009655	0.001005	40.56665	0.399988	7.647435
coral_235_b12@1	8.944498	0.032725	2 382936	0.04169	0.010257	0.001049	43.60302	0.338713	7.612485
coral_235_b12@2	8.966806	0.142601	2.513945	0.020686	0.011907	0.000877	45.05554	0.534352	7.580645
coral_235_b12@3	8.809797	0.133132	2.601185	0.037281	0.011507	0.00127	44.80184	0.332591	7.554235
coral_235_b12@4	8.824316	0.162283	2.563835	0.027563	0.010518	0.000857	44.01179	0.279778	7.534825
coral_235_b12@5	9.018988	0.09263	2.510496	0.029453	0.010507	0.001115	44.2004	0.370827	7.505315
coral_235_b12@6	8.851927	0.142372	2.549053	0.040215	0.010531	0.00139	44.143	0.485856	7.485125
coral_235_b12@7	8.881611	0.131595	2.423012	0.035074	0.013852	0.001852	43.5706	0.395022	7.457165
coral_235_b12@8	9.10361	0.206322	2.275538	0.038612	0.011108	0.000914	43.48751	0.375602	7.426875
coral_235_b12@9	8.850355	0.180011	2.661195	0.029197	0.011825	0.000914	46.72901	0.424285	7.401255
coral_235_b12@10	8.405394	0.145656	2.58702	0.036851	0.010546	0.000806	47.07391	0.646376	7.370965
coral_235_b12@11	8.702638	0.152829	2.452055	0.030045	0.010296	0.001511	45,44369	0.480082	7.345335
coral_235_b12@12	8.79345	0.174457	2.531491	0.030132	0.010417	0.001031	45.7814	0.480433	7.287095
coral_235_b13@1	8.656829	0.218024	2.737161	0.098369	0.010498	0.000501	44.54164	0.726278	7.259135
coral_235_b13@2	9.13133	0.230401	2.463592	0.048039	0.011135	0.001356	42.54278	0.380839	7.197005
coral_235_b13@4	8.955451	0.201861	2.694243	0.110595	0.011155	0.001388	45.27829	0.490379	7.177595
coral_235_b13@3	8.648048	0.173937	1.493192	0.029996	0.008819	0.000539	35.46253	0.430932	7.140315
coral_235_b13@5	8.713973	0.187021	2.612319	0.03614	0.011235	0.00151	45.52855	0.432501	7.108475
coral_235_b13@6	8.519367	0.099304	2.680032	0.037503	0.010906	0.00093	46.06061	0.434044	7.086735
coral_235_b13@7	8.871377	0.152034	2 252245	0.031012	0.00993	0.001742	42.35388	0.261034	7.054985
coral 235 b13@8	9.371843	0.149465	2.078365	0.034221	0.010242	0.001411	41.05165	0.325418	7.039365
coral_235_b13@9	8.966547	0.09042	2.269548	0.029139	0.010551	0.00046	42.81887	0.408573	7.007525
coral_235_b13@10	9.082538	0.110271	2.299274	0.029861	0.010284	0.000494	43.2476	0.377658	6.981115
coral_235_b13@11	9.013702	0.174433	2.349118	0.024308	0.010972	0.000681	44.1202	0.319747	6.950055
coral_235_b13@12	8.843353	0.168467	1.886684	0.018562	0.009405	0.000985	40.36026	0.304458	6.925975
coral 235_b13@13	8.794067	0.15047	1.987291	0.030068	0.010001	0.002797	40.71118	0.319648	6.898795

C-69-

Filename									
coral_235_b13@14	8.877989	0.109824	2.585731	0.030518	0.010389	0.000943	45,46783	0.38926	6.872395
coral 235 b13@15	9.015753	0.099878	1.585662	0.025227	0.009554	0.000872	37.89681	0.436712	6.852975
coral 235_b13@16	8.939786	0.156185	2320524	0.027608	0.010539	0.001084	43.20767	0.546633	6.797065
coral_235_b13@17	8.855191	0.125681	1.546974	69622010	0.009233	16500070	35.25168	0.74538	6.772985
coral_235_b13@18	9.09295	0.135397	2.539202	0.040517	0.011212	1600010	46.54472	0.519453	6.745035
coral_235_b13@19	9.139352	0.192119	2.40958	0.027659	0.012191	0.00149	46.14063	0.80337	6.714355
coral_235_b13@20	9.136618	0.156994	2.291639	0.022354	0.011087	62600000	44.95316	0.374731	6.692615
coral_235_b13@21	9.099103	0.156321	2.085972	0.027475	0.011209	0.001018	43.34437	0.501147	6.673975
coral_235_b13@22	9.176828	0.118547	2 32498	0.03442	0.012423	0.001394	45.64472	0.673128	6.644075
coral_235_b13@23	9.149533	0.21852	2.2087725	10622010	0.01132	0.000828	43.97314	0.480061	6.625055
coral_235_b13@24	8.83645	0.092659	121495	0.023412	0.007752	0.000894	33.96599	0.340667	6.609135
coral_235_b13@25	9.036131	0.153686	1.909964	0.030081	0.009774	0.000919	40.744	0.538821	6.585055
coral_235_b14@1	8.923172	0.101024	2.369417	0.041908	0.010327	0.001256	42.00955	0.23344	6.560595
coral_235_b14@2	8.659956	0.150945	2.742362	0.031473	0.01084	0.000774	45.62818	0.43155	6.534965
coral_235_b14@3	8.746024	0.169037	2.733198	0.033141	0.01052	0.000745	45.71669	0.31554	6.507005
coral_235_b14@4	8.771452	0.171643	2.654078	0.050328	0.009643	0.000753	46.04179	0.559359	6.481385
coral_235_b14@5	9.079602	0.178701	2,48,4089	0.061637	0.011699	0.00058	45.12201	0.605193	6.454585
coral_235_b14@6	8.949542	0.116343	2.526361	EEOSEO:0	0.011127	0.001181	44,88452	0.440654	6.424305
coral_235_b14億7	8.957531	0.131835	2.50725	0.031223	0.011432	0.000693	44.9055	0.375866	6.389355
coral_235_b14@8	8.938928	0.130405	2.449038	0.024998	0.011328	0.000661	45.55079	0.25499	6.373825
coral_235_b14@9	8.813189	0.145269	2 329332	0.028811	0.011253	0.00071	45,81732	0.555461	6.348195
coral_235_b14@10	8.636265	0.129738	2.39173	0.030835	0.010778	0.000463	46,62169	0.423544	6.324125
coral_235_b14@11	8.650098	0.157382	2 291563	0.0232277	0.011083	0.001195	45.53979	0.435684	6.292285
coral_235_b14@12	8.702813	0.131763	2.120813	0.054154	162600.0	0.001001	43.56744	0,695058	6.264325
coral_235_b14@13	8.651119	0.184304	2.013318	0.035779	0.008724	0.000902	41.68009	0.537223	6.218505
coral_235_b14@14	9.087663	0.149578	2437794	0.016915	0 011599	0.001266	46.32175	0.5555565	6.197535

C-70-

File name									
			mmol/mol		mmol/mol				
coral 235 b14(915	8.937919	0.200756	2.604847	0.045418	0.010465	0.001019	47.03138	0.50524	6.165695
coral 235 b14@16	8.863956	0.239671	2,468421	0.047219	0.009965	0.001	45.96821	0.602617	6.148615
coral_235_b14@17	8.434839	0.198325	1.435982	0.062969	0.008243	0.000678	35.55027	0.415396	6.115995
coral_235_b14@18	8.934247	0.115634	2.406667	0.026025	701010.0	0.00116	45.20621	0.702804	6.091925
coral_235_b15@1	8.825145	0.069024	2.171617	0.031508	0.009636	0.001344	43.35345	0.69143	6.064745
coral_235_b15@2	8.685139	0.105172	1.471685	0.020766	0.007793	0.000713	36.60981	0.640281	6.049205
coral_235_b15@3	9.033975	0.119174	1.530703	0.032129	0.00782	0.000725	37.55254	0.445283	6.024355
coral 235_b15@4	8.899363	0.091817	2.329771	0.038663	0.009664	0.000807	44.73217	0.571572	5.993295
coral 235_b15@5	8.654541	0.145452	2.508774	0.059192	0.009541	0.00139	46.66272	0.903919	5.963785
coral_235_b15@6	8.778536	0.110876	2.489662	0.030081	0.01002	0.000915	45.99537	0.227817	5.940485
coral_235_b15@7	8.649159	0.140222	2.347815	0.031009	0.008704	0.001098	44.63455	0.378536	5.912525
coral 235 b15@8	8.525961	0.115327	2.38958	0.045279	0.008362	0.001119	45.3947	0.428174	5.889235
coral_235_b15@9	8.487209	0.267124	1.166473	0.058663	0.008308	0.000924	32.53998	0.788459	5.861275
coral_235_b15@10	8.940506	0.16256	1.653793	0.028651	0.00872	0.000687	36.9278	0.414073	5.837975
coral_235_b15@11	8.804455	0.108529	2.451267	0.033313	0.010365	0.000669	46.22769	0.278649	5.763425
coral_235_b15@12	8.797767	0.103444	2.271449	0.045628	0.009739	0.000724	44.74384	0.745494	5.732365
coral_235_b15@13	9.157465	0.152916	2.194693	0.02551	0.010005	0.001269	44.0435	0.439062	5.705955
coral_235_b15@14	8.796661	0.195971	1.814652	0.019529	0.008756	0.00138	37,849	0.656051	5.681105
coral_235_b15@15	8.735746	0.178815	2.450804	0.186191	0.010285	0.000887	40.7323	1.258689	5.656255
coral 235_b15@16	9.052785	0.120751	2.485615	0.030918	0.010096	0.000851	45.697	0.343825	5.586365
coral 235 b15@17	9.020971	0.110746	2.506314	0.019539	0.010221	0.00051	45.73902	0.294375	5.553745
coral_235_b16@1	9.002745	0.207076	2.319298	0.040779	0.010035	0.001081	43.52326	0.696175	5.521125
coral_235_b16@2	8.819175	0.234453	2.650943	0.029127	0.009842	0.001076	45.89693	0.306973	5.497835
coral_235_b16@3	8.911035	0.172463	2.746565	0.027304	0.009929	0.001048	46.7864	0.344831	5.472975
coral_235_b16@4	8.922331	0.154397	2.79652	0.044117	0.010895	0.001041	47.02613	0.453217	5.438805
coral_235_b16@5	8.903757	0.11487	2.683982	0.049295	0.010859	0.000957	46.38704	0.632523	5.417065

C-71-

		mmo//mol	mmol/mol	mmo/(mol	mmo//moi				
coral_235_b16@6	8.947562	0.269635	2 690159	0.039558	0.010834	0.001753	46.99946	0.626316	5.398425
coral_235_b16@7	8.651922	0.130367	2.274809	0.029805	0.009972	0.001373	42.53398	0.411606	5.375125
coral_235_b16@8	8.801745	0.241086	1456737	0.023687	0.008735	0.001019	35.45851	0.615529	5.345615
coral_235_b16@9	8.74103	0.244856	1.75262	0.020175	0.00878	0.000895	38.56499	0.527331	5:309895
coral_235_b16@10	8.550983	0.174181	1 669587	0.016678	0.008399	0.001173	37.02273	0.519361	5.285045
coral_235_b16@11	8.581588	0.160772	1.23277	0.017159	0.007989	0.000537	32.41085	0.292467	5.260195
coral_235_b16@12	9.171818	0.164424	2 26697	0.014744	0.011033	0.000853	44,43289	0.340162	5.161565
coral_235_b16@13	9.0396222	0.178528	2.150227	0.035141	0.010058	0.001355	43.20483	0.358648	5.139045
coral_235_b16@14	9.085384	0.207109	2,4584	0.033804	0.01102	0.00104	46.65111	0.711893	5.113415
coral_235_b16@15	8.979662	0.17782	2.575422	0.028078	0.010743	0.001505	46.79859	0.617141	5.087785
coral_235_b16@16	8.927791	0.156209	2 685369	0.046148	0.011148	0.000769	47,40524	0.327521	5.056825
coral 235_b16@17	9.005099	0.171085	2.456985	0.028393	0.009667	0.001574	45.28039	0.397	5.046635
coral_235_b16@18	9.263094	0.248981	2.348484	0.021547	0.011582	0.000917	44,40164	0.380016	5.019445
coral_235_b16@19	9.203022	0.166737	2293025	0.027694	0.012015	0.001408	44,41187	0.396909	4.989945
coral_235_b16@20	8.978044	0.168283	2.297739	0.026483	0.010605	0.000726	43.07536	0.389335	4.967415
coral_235_b16@21	8.868344	0.164579	2.210556	0.036376	0.010306	0.000863	42.29713	0.411242	4.943345
coral_235_b16@22	8.969889	0.114058	2.363542	0.04144	0.010412	0.001058	44.6467	0.487572	4.913835
coral_235_b16@23	9.062987	0.131017	2.246419	177240.0	0.010343	0.00062	43.84545	0.33253	4.892865
coral 235_b16@24	9.208925	0.158689	2.322131	0.035042	0.012465	0.000806	45.12478	0.588399	4.861805
coral_235_b16@25	8.963771	0.157947	1.710836	0.075519	0.00581	0.001425	38.85739	0.438228	4.802785
coral_235_b16@26	9.105688	0.100605	2.078551	0.030124	0.011352	0.001053	41.84375	0.354481	4,776375
coral_235_b16@27	8.922721	0.145113	2346735	0.053109	0.010219	0.001314	45.19055	0.686288	4.748415
coral_235_b16@28	8.794443	0.183075	2 460178	0.043232	0.009755	0.000852	45.60249	0.469626	4.731335
coral_235_b_17@1	8.371405	0.337553	2.908443	0.052384	0.009778	0.000617	45.07189	0.43968	4.701825
coral 235_b_17@2	8.541777	0.227417	2.810457	0.046158	0.010072	0.001062	45.17164	0.424355	4.666105
coral 235_b_17@3	8.690089	0.222861	2.768775	0.037574	0.010301	0.00111	45.70913	0.312905	4.638145

C-72-

Fle name	885s/42Ca						23Na/42Ca		
coral 235 b 17@4	8.508649	0.289177	2 64555	0.085347	0.010584	0.000555	46.6253	0.892299	4.591545
coral 235 b 17@5	8.440336	0.210467	2.640073	0.048606	0.01043	0.001165	48.67533	1.411567	4.566695
coral 235_b_17@6	8.543319	0.271794	2.207934	0.031588	0.009541	0.001114	42.85459	0.748214	4.537965
coral_235_b_17@7	8.952393	0.205493	1.862435	0.046262	0.009403	0.001154	39.13113	0.426439	4.513885
coral_235_b_17@8	8.674108	0.281969	2,489174	182850.0	0.010874	0.000762	46.0993	0.39531	4,492925
coral_235_b_17@9	8.605562	0.236345	2.490703	0.050949	0.010207	1000	45,62537	0.459674	4,433125
coral 235_b_17@10	8.511363	0.251477	2.607302	0.037578	0.010567	0.001591	47.03561	0.59202	4.384205
coral_235_b_17@11	8.804156	0.218401	2 322641	0.036195	0.009756	0.000966	43.7785	0.345457	4.297995
coral_235_b_17@12	8.744417	0.355699	2310467	0.023175	0.009981	0.001261	44.78524	0.420935	4.252955
coral_235_b_17@13	8.800375	0.234962	2.304639	0.047036	0.01071	0.001426	44.32321	0.645123	4.231215
coral 235_b_17@14	8 813854	0.211889	2.494689	0.030005	0.010124	0.000928	46.03416	0.219588	4.208685
coral 235_b_17@15	8.770705	0.125408	2.557992	0.0619	0.010219	0.001245	46.90994	0.721944	4.170635
coral 235 b 17@16	8.735803	0.217283	2.461254	0.055371	0.010004	0.001046	45.8771	0.455589	4.148895
coral 235_b_17@17	8.74691	0.177716	2.53483	0.032676	0.010494	0.00065	46.67654	0.411475	4.124045
coral 235_b_17@18	8.862897	0.173571	2.527496	0.053107	0.010472	0.000778	46.56214	0.335469	4.103075
coral_235_b_17@19	8.539387	0.269148	1.928874	0.065976	0.008952	0.001232	39.0425	0.515494	4.037065
coral_235_b_17@20	8.115028	0.218077	1.120606	0.037705	0.006901	0.000803	32.27671	0.295807	4.002115
coral_235_b_17@21	8.314451	0.168124	2,44462	0.051655	0.009123	0.001247	46.78948	0.734687	3.974935
coral_235_b_17@22	8.596852	0.188115	1.304773	1604000	0.007745	0.001098	34.90759	0.328484	3.943095
coral_235_b_17@23	8.324803	0.115339	3.181155	1275916	0.025751	0.011563	39.93318	0.99216	3.917465
coral_235_b_17@24	8.771253	0.170412	1.232626	0.019173	0.007936	0.000939	34.55793	0.351107	3.900385
coral_235_b_17@25	8.991317	0.221173	1.871833	0.028152	0.00936	0.000674	41.42645	0.304018	3.895725
coral 235_b_18@1	8.598451	0.140431	2.42715	95555010	0.0096006	0.000988	46.00436	0.525828	3.870095
coral_235_b_18@2	8.570769	0.192871	2.45853	0.048238	0.009738	0.001098	47.51331	0.587324	3.848355
coral 235 b 18@3	8.633316	0.213483	2,440508	0.012517	0.010508	0.001227	47.19103	0.616932	3.814965
coral 235 b 18@4	8.888523	0.181408	1.655764	0.024798	0.009124	0.000594	39.02717	0.403041	3.793215

C-73-

coral 235 b 18@5	8.935197	0.216097	1.512293	0.011329	0.008763	0.000481	37,83987	0.284131	3.745065
coral_235_b19@1	8.464973	0.102417	2.610883	0.048199	0.009489	0.001155	42 52521	0.546159	3.712445
corsi_235_b19@2	8.515453	0.193666	2.391659	0.046865	0.009376	0.000775	42 22056	0.473376	3.685265
coral_235_b19@3	8.638583	0.216489	2.248434	0.0259255	0.015658	0.001566	42 25148	0.373023	3.660415
coral 235 b19@4	8.556524	0.19084	2.654372	0.028558	0.010886	8601000	46.45743	0.650774	3.640225
coral_235_b19@5	8.571333	0.149696	2.782178	0.052368	0.010145	0.000934	47.00844	0.310229	3.608385
coral_235_b19@6	8.473021	0.206114	2.791123	10.03084	0.003988	0.000899	47.31881	0.345257	3.584305
coral_235_b19@7	8.517037	0.206426	2.664871	0.023524	10550010	0.000935	46,66708	0.343347	3.562565
coral_235_b19@8	8.864039	0.180643	2.126245	0.041209	1050010	0.000684	41.19771	0.678676	3.527615
coral 235 b19@9	8.530361	0.244326	1.872658	0.043141	0.008962	0.001111	39.08824	0.657042	3.506655
coral 235 b19@10	8.821838	0.177391	2.399975	0.029397	0.009692	0.001522	45.50472	0.347326	3,480245
coral 235 b19@11	8.6665555	0.20405	2.515593	0.039246	0.009273	0.00122	46.04693	0.427098	3.450735
coral 235 b19@12	8.85708	0.1637	2.327342	0.03005	0.009259	0.000731	44,45802	0.479707	3.424335
coral 235 b19@13	8.798386	0.224729	2.497611	0.031974	0.009496	0.001113	46.6804	0.495207	3,403365
coral 235 b19@14	8.865657	0.119948	2.53178	0.031628	0.009557	0.000822	46.54258	0.502022	3.376965
coral 235 b19@15	8.824868	0.174736	2.619194	0.047312	0.010116	0.001231	47.63731	0.596807	3.355215
coral_235_b19@16	8.58568	0.211473	2.205382	0.062894	0.00933	0.000785	42,41503	0.737154	3.330365
coral_235_b19@17	9.095603	0.234982	1.967431	0.033418	0.009591	0.00077	41.94045	0.357554	3.293085
coral_235_b19@18	8.655849	0.131874	2.625281	0.045845	0.00947	0.000894	48.30303	1.035586	3.270565
coral_235_b19@19	8.664634	0.189935	2.202529	0.100352	0.010016	0.000726	43.11249	0.752543	3.237175
coral 235 b19@20	8.973136	0.210586	2.181498	0.037277	0.010261	0.000498	43.55449	0.37366	3.212325
coral 235 b19@21	8.873066	0.135195	2.508493	0.038268	0.009657	0.000665	47.07709	0.852673	3.185915
coral 235_b19@22	8.958573	0.139074	2.23275	0.045762	0.010407	0.00049	45.02812	0.572039	3.162625
coral 235_b19@23	8.896051	0.161958	2.443156	0.049808	0.010474	0.000812	46.82993	0.755707	3.143985
coral 235_b19@24	8.804538	0.136328	2.112946	0.026552	0.010236	0.000883	42.93871	0.419552	3.120685
coral 235 b19@25	8.812007	0.294896	2.248796	0.033162	0.009964	0.001108	44.72423	0.405357	3.057005

	885r/42Ca								
					mmo//mol				
coral 235 b19@26	8.77609	0.197318	2.475214	0.06551	0.010004	0.000919	46.50232	0.694288	3.034485
coral_235_b19@27	9.06083	0.15565	2.442872	0.092554	0.012482	0.003255	45.83765	1.236114	3.001095
coral_235_b19@28	9.050048	0.192546	2.160114	0.025418	0.010104	0.001177	44.08834	0.589044	2.973915
coral_235_b19@29	8 94857	0.200789	2.380124	0.028069	0.009902	0.000564	46.18502	0.360613	2.956045
coral_235_b19@30	8.924705	0.117335	2.409944	0.059844	0.009983	0.001178	45.67272	0.548023	2.929645
coral 235 b19@31	8.688494	0.185971	2.206172	0.076398	0.009446	0.001057	43.51426	0.749287	2.901685
coral 235 b19@32	9.013446	0.133224	2.168776	0.036734	0.009278	0.000786	43.95524	0.173066	2.873735
coral 235 b19@33	8.87066	0.1764	2.401271	0.024259	0.009845	0.000832	45.9583	0.589993	2.847325
coral 235 b19@34	8.620266	0.207825	2.607259	0.034563	0.009965	0.000923	47.76418	0.524213	2.825585
coral_235_b19@35	8.728208	0.172967	2.458923	0.026468	0.009294	0.001116	45.82853	0.406053	2.790635
coral_235_b19@36	8.278367	0.241141	1.630705	0.034848	0.008088	0.001265	35.6519	0.65107	2.773555
coral 235 b19@37	8.787311	0.134731	2 200153	0.03882	0.009359	0.000687	43.10881	0.410679	2.748705
coral 235 b19@38	8.753545	0.119401	2334927	0.05358	0.009413	0.000935	44.68468	0.386138	2.723075
coral_235_b19@39	8.830243	0.16664	2.482709	0.027698	0.009468	0.000892	46.95854	0.418935	2.696665
coral 235_b19@40	8.747315	0.221047	2.667921	0.047744	107900.0	0.000634	48.31433	0.558244	2.664055
coral 235 b20@1	7.825801	0.399939	3.126827	0.084032	0.008202	0.000936	45.31496	1.125862	2.643865
coral_235_b20@2	8.127548	0.366358	3.011049	0.047535	0.009131	0.001051	45.09148	0.483707	2.619785
coral_235_b20@3	8.247249	0.23968	2.792634	0.05998	0.008231	0.00113	44.95984	0.731245	2.589495
coral_235_b20@4	8.387736	0.353296	2.656788	0.049894	0.00863	0.001468	52.24886	0.717592	2.562315
coral_235_b20@5	8.526115	0.332425	2.570819	0.058419	0.008914	0.000661	44.47291	0.52106	2.529705
coral_235_b20@6	8.565313	0.254563	2.643381	0.079148	0.009027	0.001238	46.32545	0.891358	2.503295
coral_235_b20@7	8.613047	0.255532	2.622942	0.080389	0.009702	0.000964	47.85536	0.953016	2.472235
coral_235_b20@8	8.898778	0.256815	2.388663	0.064597	0.009999	0.001275	45.19316	0.824653	2.445835
coral_235_b20@9	8.641218	0.213727	2.633769	0.067416	0.010003	0.0017	47.32536	1.017659	2.423305
coral 235_b20@10	8.653768	0.217349	2.576666	0.052628	0.01029	0.000786	46.27574	0.779736	2.391465
coral_235_b20@11	8.705751	0.233713	2 55111	0.060326	0.009641	0.000803	44.97121	0.698971	2.359625

C-75-

coral_235_b20@12	8.831715	0.301478	2.628217	0.041996	0.01034	0.001002	46.5168	0.411896	2.321575
coral_235_b20@13	8.60689	0.277001	2 331846	0.04479	0.009591	0.000872	44.5667	0.730594	2 299835
coral_235_b20@14	8.932146	0.215181	1870096	0.039477	0.008968	0.00089	40,40817	0.585617	2276535
coral_235_b20@15	8.828589	0.244092	1657785	0.02794	0.009302	0.000876	39.43172	0.647469	2243915
coral_235_b20@16	8.984643	0.229143	1.45962	0.082165	0.009637	0.001021	35.33091	1.186395	2.173245
coral_235_b21@1	8.757479	0.163968	2234415	0.025342	0.009323	0.001335	43.78294	0.417665	2.129755
coral_235_b21@2	9.424949	0.285997	1.8753	0.033493	0.009468	0.001255	40.05169	0.573314	2.101805
coral_235_b21@3	8.971201	0.170516	2.002741	0.047822	0.009853	0.000979	41.15761	0.522344	2.081605
coral_235_b22@1	8.868609	0.133955	2.564161	0.045834	0.010985	0.001113	46.39082	0.398249	2.062975
coral_235_b22@2	8.915686	0.163596	2.726967	0.032992	0.010747	0.001051	48.07835	0.732928	2.038125
coral_235_b22@4	8.840614	0.09593	2.585582	0.047413	0.011005	0.000921	46.68935	0.319775	1.979095
coral_235_b22@5	8.856054	0.263177	2.058531	0.018286	106600-0	0.000707	41.67143	0.720545	1.955025
coral_235_b22@6	8.913835	0.263998	2.505739	0.042443	0.009985	0.001341	\$5.79927	0.629941	1.922405
coral_235_b22@7	8.951335	0.147827	2.61461	0.035039	0.009668	0.000743	46.78703	\$0606ET0	1.902995
coral_235_b22@8	8.968743	0.2553352	2.601137	0.032287	11160010	0.001254	45.96644	0.851094	1.874265
coral_235_b22@9	9.329801	0.119538	2.4696	0.027163	0.010561	0.001622	43.56848	0.442246	1.822225
coral_235_b22@10	8 82472	0.246433	2.567682	0.047324	0.010155	0.00121	46.29039	0.63166	1.789615
coral 235 b 23@1	8.713669	0.2553398	2.218293	0.066985	0.009796	0.000954	40.7716	0.321283	1.760105
coral_235_b_23@2	8.770861	0.207205	1.840835	0.106522	0.009412	0.000603	37.19989	0.446644	1732925
coral_235_b_23@3	8.966579	0.195478	2.004978	0.024396	0.010281	0.001196	39.77108	0.384501	1.706515
coral_235_b_23@4	8.578136	0.214479	2.199206	0.033787	0.009404	0.001229	41.51161	0.467522	1.684775
coral_235_b_23@5	8.389376	0.205839	2.468761	0.065779	0.009508	0.000829	44.17822	0.549533	1.657595
coral_235_b_23@6	7.88339	0.212644	4.393342	0.618452	0.009681	0.001644	41,41817	0.472909	1.628085
coral_235_b_23@7	8.335591	0.134601	2.701748	0.031165	0.009547	0.000692	46.77529	0.252086	1.606335
coral_235_b_23@8	8.325319	0.189081	2 541508	0.084916	85500'0	0.001143	45.83132	0.429152	1.570615
coral_235_b_23@9	9.154133	0.211569	2 154183	0.041318	0.010662	0.000676	43.86549	0.41291	1 422285

		mmol/mol	mmol/mol	mmol/moi	mmol/mol				
coral_235_b_23@10	8.575532	0.16428	2.569249	0.042067	0.011205	0.001114	44,13203	0.203239	1.399765
coral_235_b_23@11	7.999311	0.160308	2.423968	0.059096	0.008597	0.00094	44,85685	0.522618	1.374135
coral_235_b_23@12	8.274165	0.22871	2.159894	0.045039	0.008854	0.001203	43.61054	0.776672	1.354725
coral_235_b_23@13	8.564513	0.194984	2.040554	0.022204	0.009743	0.001019	42.76436	1.373766	1.329095
coral 235 b 23@14	7.900657	0.186817	2.521152	0.051851	0.008686	0.001331	45.83755	0.623594	1.307345
coral 235 b 23@15	1658957	0.184592	2.439132	0.032703	0.008626	0.000724	43,40895	1.155452	1.273175
coral_235_b_23@16	9.212053	0.218398	1.741894	0.035145	0.010633	0.000721	39.28183	0.998677	1.212993
coral_235_b_23@18	9.189788	0.156567	1.56036	0.06847	0.010382	0.000612	38,18959	0.480003	1.189307
coral_235_b_23@19	8.749313	0.31418	6.583167	0.820455	0.015367	0.002196	51.54915	22.4641	1.15669
coral_235_b_23@20	9.456446	0.208005	1 996485	0.032966	0.011461	0.001181	40.58333	0.712779	1.134946
coral_235_b_23@21	9.423308	0.212268	1.584744	0.045705	0.010152	0.001016	37.48156	0.723214	1.114366
coral_235_b_23@22	9.035466	0.145309	1.593892	0.032833	0.009626	0.000696	38.12829	0.866172	1.065633
coral_235_b_23@23	9.527312	0.32641	1.686335	0.021247	0.011158	0.000965	39.553	0.813486	1.060393
coral_235_b_23@24	8.594179	0.219439	2.467528	0.07992	0.010929	0.001302	45,13566	0.635891	1.033213
coral_235_b_23@25	8.080956	0.153421	2.576073	0.055186	0.00933	0.000862	48.62603	0.827589	1.000984
coral_235_b_23@26	8.839495	0.167045	1.708767	0.050394	0.008928	0.000835	40.21828	0.498973	0.978463
coral_235_b_23@27	9.534783	0.161648	1.541077	0.017812	0.009719	0.001286	38.50988	0.557101	0.948564
coral_235_b_23@28	9,450983	0.15983	1.588069	0.023884	0.010625	0.0005	39.42747	0.678563	0.925267
coral_235_b_23@29	9.341302	0.232351	1.551782	0.038837	0.010497	0.001079	37.05276	0.492952	0.901192
coral_235_b_23@30	9.302403	0.12226	1.737346	0.03363	0.010403	0.001219	39.97397	0.620516	0.877506
coral 235 b 23@31	8.87391	0.16958	1.750701	0.040078	0.009615	0.000836	40.7499	1.291099	0.850326
coral_235_b_23@32	8.349767	0.209248	2.089812	0.043932	0.009474	0.001201	42.78812	0.831643	0.845666
coral_235_b_23@33	8.063757	0.150273	2.526733	0.082522	0.009269	0.000581	47.44282	0.458112	0.820815
coral_235_b_23@34	8.262408	0.198743	2.377077	0.027527	0.008977	0.000779	47.79547	0.520574	0.797518
coral_235_b_24@1	8.497177	0.086875	2.314896	0.027525	0.011671	0.004439	45.33863	0.230717	0.764513
coral_235_b_24@2	8.259287	0.151268	2.568369	0.05718	0.010388	0.002307	47.39256	0.322724	0.741215

c- 77 -

File name	885s/42Ca						23Na/42Ca		
		mmo//mol	mmol/mol	mmo//mol	mmol/mol				
coral_235_b_24@3	8.645384	0.239538	2 391017	0.051878	0.010582	0.000628	46.15854	0.306263	0.710151
coral_235_b_24@4	8.744396	0.252983	2 293231	0.060489	0.010148	0.001049	46.39697	0.797975	0.686077
coral_235_b_24@5	8.591762	0.275263	2.205035	0.037263	0.009324	0.001222	47.68581	2.64528	0.652684
coral_235_b_24@6	8.412983	0.266303	2.383243	0.067748	0.008914	0.001279	47.72464	3.686225	0.625503
coral_235_b_24@7	8.273214	0.225839	2.556104	0.111633	160100	0.002172	50.41221	3.903557	0.598322
coral 235_b_24@8	8.542067	0.228202	2.508385	0.077882	0.011015	0.001032	47,8434	1.569266	0.575801
coral 235 b 24@9	8.636956	0.34527	2.183085	0.053843	0.011395	0.000638	44.54648	1.497597	0.550174
coral_235_b_24@10	8.751154	0.214928	2.158153	0.11877	0.010567	0.001045	44.51355	2.736256	0.526099
coral_235_b_24@11	8.604881	0.255033	2.245633	0.027263	0.010012	6600010	43.84504	0.602462	0.495036
coral_235_b_25@1	9.143734	0.240015	2.0633	0.017399	0.011145	0.001455	42.74423	0.288211	0.469408
coral 235_b_25@2	160968.6	0.280742	1.801409	0.032403	0.012868	0.001557	41.74012	0.448178	0.443781
coral 235 b 25@3	8.952643	0.205821	2.269058	0.021708	0.010934	0.001126	44.85188	0.580824	0.420483
coral 235 b 25@4	8.802575	0.305736	2.402934	0.052111	0.011214	0.000672	46.1477	0.487379	0.397186
coral 235_b_25@5	8.890782	0.320353	2 20595	0.062175	0.01192	0.001819	46.3317	0.582237	0.369228
coral 235_b_25@6	8.893978	0.099405	2325666	0.086815	0.01246	0.001163	47.35121	0.895489	0.342824
coral_235_b_25@7	8.736356	0.156533	2.147958	0.081588	0.011945	0.001125	45.05554	0.9084	0.31642
coral_235_b_25@8	8.910951	0.291895	2 232456	0.019073	0.011066	0.000962	43.26266	0.624338	0.292346
coral_235_b_25@9	8.874642	0.183659	2.243815	0.068158	0.010931	0.001018	42.98789	0.549458	0.269825
coral_235_b_25@10	8.89079	0.247186	2.245597	0.052247	0.011346	166000010	43,75413	0.488164	0.239538
coral_235_b_25@11	9.124964	0.234707	1.880693	0.037647	0.010829	0.001094	40.53175	0.576811	0.214

C-78.

S.campylecus Sample 241: SIMS data:

Rows highlighted in grey are SIMS analyses corresponding to remineralized regions in the coral skeleton:

File name	885r/42Ca mmol/mol		24Mg/42Ca		138Ba/42Ca mmol/moi		23Na/42Ca mmol/mol		distance
coral 241 b1@1	7.629555	0.267782	3.927086	0.047155	0.011762	0.001578	39.97623	0.642323	0.059846
coral 241_b1@2	7.772511	0.292869	3.786059	0.073307	0.011873	0.001603	40.71981	0.605594	0.084014
coral 241_b1@3	8.07611	0.210853	3.703824	0.106174	0.012403	0.001308	40.03749	0.977733	0.117537
coral_241_b1@4	8.094659	0.173416	3.427742	0.159993	0.013623	0.001639	38.72186	1.049434	0.154957
coral 241 b1@5	8.181718	0.223009	3.244301	0.05408	0.013397	0.001164	37.66081	0.713279	0.178345
coral_241_b1@6	8.201541	0.250313	3.223705	0.097346	0.013279	0.001715	39.39715	0.580286	0.204851
coral 241 b1@7	8.019149	0.270852	3.39084	0.102179	0.014312	0.001858	41.69142	0.952592	0.232917
coral_241_b1@8	8.03491	0.183407	3.004259	0.063599	0.013254	0.001434	39,47596	0.777136	0.262541
coral 241 b1@9	8.017194	0.199465	3.628226	0.11349	0.019234	0.003383	43.3566	1.731343	0.295284
coral_241_b1@10	8.246486	0.319548	3.080472	0.078443	0.016655	0.003818	40.34991	0.918287	0.32335
coral_241_b1@11	8.234672	0.173579	3.405496	0.12843	0.017533	0.003515	41.83382	0.961417	0.354534
coral_241_b1@12	8.144933	0.279963	3.708115	0.109947	0.015356	0.003151	42.27536	0.754878	0.384938
coral_241_b1@15	8.618276	0.116306	3.268944	0.081769	0.014321	0.001982	41.78533	0.984737	0.417681
coral_241_b1@16	8.512753	0.100895	3.253994	0.089318	0.013585	0.001578	41.37562	0.500274	0.448085
coral 241 b2@1	8.503857	0.12975	3.280266	0.052889	0.012674	0.001301	43.18118	0.463398	0,475371
coral_241_b2@2	8.555581	0.094909	3.348448	0.035919	0.014112	0.001651	43.7044	0.758243	0.49564
coral 241_b2@3	8.550095	0.089578	3.351675	0.073779	0.014096	0.001026	44.09077	0.73062	0.528383
coral_241_b2@4	8.778061	0.135348	3.394525	0.066454	0.013459	0.001433	43.96601	0.795878	0.55411
coral_241_b2@5	8.588903	0.143594	3.498059	0.044804	0.013718	0.001375	43.3016	0.639817	0.580616
coral_241_b2@6	8.557485	0.079889	3.366752	0.032529	0.011545	0.000731	41.64082	0.222936	0.601665
coral_241_b2@7	8.717245	0.133474	3.499214	0.058715	0.012801	0.00089	43.37671	0.632046	0.625833
coral_241_b2@8	8.844666	0.175335	3.453834	0.074289	0.013816	0.001074	43.08092	1.055	0.65078

C-79-
	885s/42Ca mmol/mol								d stance
coral_241_b2@9	8.73566	0.083832	3.310845	0.057443	0.012765	0.001065	42.12795	0.523538	0.682743
coral_241_b2@10	8.543818	0.122619	3.164297	0.040365	0.012	0.001167	41.77319	0.53203	0.70847
coral_241_b2@11	8.406187	0.206498	2.860917	0.67825	0.018056	0.006603	37.9239	1.418812	0.733417
coral_241_b2@13	8 316919	0.118853	5.046068	0.828821	0.023039	0.006797	43.41833	0.821339	0.787989
coral_241_b3@1	8.608947	0.064631	3.461112	0.074271	0.013156	0.000699	41.73156	0.377758	0.815274
coral_241_b3@2	8.464816	0.07644	3 290251	0.067126	0.011586	0.000858	40.44933	0.45127	0.839442
coral_241_b4@1	8.338755	0.122145	3.674618	0.028425	0.012609	0.000533	39,48619	0.182884	0.863609
coral_241_b4@2	8.2071	0.144724	3.282566	0.039766	0.012098	0.001388	38.36574	0.311173	0.889336
coral_241_b4@3	8.401841	0.030245	3.526521	0.078155	0.012266	0.001298	39.63677	0.216734	0.915842
coral_241_b4@4	8.369464	0.132359	3.544077	0.078609	0.013654	0.001766	40.06851	0.364448	0.961838
coral_241_b4@5	8.231226	0.069234	3.600898	0.074686	0.013258	0.001856	42.02724	0.319314	7766.0
coral_241_b4@6	8.344972	0.132032	3.159674	0.062798	0.012685	0.00091	40.04126	0.249734	1.024206
coral_241_b4@7	8.405227	0.141839	3.633411	0.04881	0.013307	0.001878	42,49497	0.285717	1.05461
coral_241_b4@8	8.406746	0.086878	3.675699	0.06529	0.013188	0.000976	43.61423	0.332956	1.075658
coral 241 b4@9	8.310234	0.111886	3.591781	0.046777	0.011825	0.001676	41.70733	0.439661	1.107618
coral_241_b4@10	8.400966	0.113218	3.464005	0.064618	0.011871	0.001755	41.25062	0.280581	1.127108
coral_241_b4@11	8.417656	0.07685	2.977126	156060.0	0.011856	0.000752	39.49927	0.511402	1.152058
coral 241_b4@12	8.484934	0.036698	3.046244	0.056803	0.011535	0.001285	39.99645	0.381877	1.180908
coral_241_b4@13	8.748041	0.148674	3.320605	0.025504	0.013623	0.001087	41.95755	0.221854	1.207408
coral_241_b4@14	8.512512	0.105303	2.918462	0.062335	0.01253	0.00111	40,47477	0.35079	1.264318
coral 241_b4@15	8.75826	0.069448	2.930089	0.062847	0.013035	0.000873	40.37621	0.310159	1.292388
coral_241_b4@16	8.391719	0.078576	3.049038	0.034854	0.013266	0.000884	42.32192	0.239415	1.317338
coral_241_b4@17	8.374865	0.099452	3.089354	0.048002	0.013245	0.000806	43.14408	0.292148	1.350858
coral_241_b4@18	8.387215	0.071475	3.452851	0.057441	0.012893	0.001001	43.25688	0.269598	1.372688
coral_241_b4@19	8.484202	0.058194	3.260856	0.034031	0.012168	0.000583	43.56289	0.313496	1.403868
coral_241_b4@20	8.446738	0.053618	3.266084	0.098486	0.012268	0.000552	43.13492	0.349712	1.428038

C- 80

coral_241_b5@1	8.197871	0.27622	2.689503	0.333085	0.013578	0.003007	38.47402	2.434217	1.457658
coral_241_b5@2	8.259662	0.121065	3.440526	0.101012	0.01258	0.00075	42.69335	0.302639	1.490408
coral_241_b5@3	8.370069	0.09051	3.519205	0.075465	0.013442	0.001427	44.16443	0.264788	1.515348
coral_241_b5@4	8.425179	0.05101	3.223173	0.036576	0.012952	0.000757	43.25898	0.27057	1.535618
coral_241_b5@5	8.417712	0.055273	3.027476	0.054328	0.013198	0.001426	42.31545	0.385136	1.551988
coral_241_b5@6	8.347751	0.062059	2.940584	0.064298	0.012422	0.001175	41.64558	0.217195	1.581618
coral_241_b5@7	8.388512	0.059845	3.29064	0.047533	0.013374	0.001717	44.52536	0.207169	1.607348
coral_241_b5@8	8.363898	0.070626	3.158985	0.050195	0.013274	0.001218	43.93334	0.276627	1.636188
coral_241_b5@9	8.531214	0.065597	2,830598	0.075352	0.012992	0.000675	41.92172	0.510766	1.665038
coral_241_b5@10	8.689156	0.152607	2,829993	0.115385	0.013592	0.000856	41.13801	0.501439	1.688418
coral_241_65@11	8.011638	0.139618	2.94176	0.151824	0.013292	0.001454	41.69053	0.448583	1.714148
coral_241_b5@12	8.336164	0.09242	3.52671	0.076922	0.013109	0.001544	45,63416	0.22845	1.744548
coral_241_b5@13	8.317839	0.129595	3.08761	0.068537	0.012954	196000/0	40.13647	0.598007	1.773398
coral 241 b5@14	8.458757	0.081077	3.579973	0.082992	0.012069	0.00227	45.20887	0.189286	1.802238
coral 241 b5@15	8.642789	0.108449	3.406754	0.095065	0.013571	\$06000'0	42.69016	0.362009	1.852138
coral 241 b5@16	8.571775	0.117412	3.469919	0.156305	0.013935	0.001222	44.02457	0.530526	1.880978
coral 241 b5@17	8.501399	0.057538	3.325908	0.042479	0.013041	0.000661	44.14465	0.479005	1.906708
coral_241_b5@18	8.345766	0.090216	3.345699	0.054954	0.013345	0.001101	45,41439	0.292394	1.941008
coral_241_b5@19	8.566047	0.056436	3.468158	0.080009	0.015124	0.001782	45,56258	0.45669	1.967518
coral_241_b5@20	8.476285	0.073413	3.437297	0.055305	0.014338	0.001446	45,94872	0.233883	1.992468
coral_241_b5@21	8.462766	0.076763	3.351915	0.040157	0.014308	0.000646	45,48142	0.363963	2.024428
coral_241_b5@22	8.652146	0.171488	3.165667	0.063391	0.013955	0.001777	45.02057	0.400716	2.047818
coral_241_b5@23	8.526001	0.040298	3.42712	0.096661	0.014492	0.0013	45.3188	0.583998	2.078998
coral_241_b6@1	8.111605	0.167378	3.505381	0.092417	0.014082	0.001013	40.07997	0.603144	2.105508
coral_241_b6@2	8.187176	0.287071	3.499989	0.121049	0.013952	0.001165	40.73965	0.309814	2.148378
coral 241 b6/03	8.008073	0.222489	3.500347	0.173678	0.012354	0.000756	40.45024	0.498538	2.184248

C-81

	mmol/mol								
coral_241_b6@4	8.049435	0.237603	3.300223	0.091877	0.011566	0.000985	40.58206	0.191896	2.214648
coral_241_b6@5	8.064419	0.189493	3.572288	0.114693	0.013739	0.000709	41.96797	0.41669	2.242718
coral_241_b6@6	7.558017	0.256988	5.615741	4.077962	0.017871	0.005753	38.96015	2.718984	2.267658
coral_241_b6@7	8.183821	0.168547	3.374972	0.074228	0.014001	0.001572	42.19216	0.276185	2.296508
coral_241_b6@8	8.153159	0.113301	2.733038	0.317591	0.044537	0.00254	36.38671	66770E.0	2.323008
coral_241_b6@9	7,886853	0.141193	2 33074	0.166906	0.014942	0.000866	35.28666	0.295613	2.353418
coral_241_b6@10	8.554744	0.164372	2.960358	0.101763	0.016471	0.002374	37,74819	0.319626	2.384598
coral_241_b6@11	8.466035	0.187583	3.781002	0.289015	0.016347	0.001856	37.77979	0.46441	2.411888
coral_241_b6@12	8.309394	0.161378	4 569647	0.825757	0.024714	0.002872	39.79588	0.626767	2.439948
coral_241_b6@13	8.44473	0.219692	3.256599	0.228452	0.015391	0.001225	40.19403	0.509269	2.468798
coral_241_b6@14	8.555012	0.212201	3.337349	0.162636	0.015787	0.001429	42,45162	0.358575	2.496858
coral_241_b6@15	8.565273	0.191637	3.336105	0.06249	0.014696	0.001301	43.003	0.359259	2.522588
corsi_241_b6@16	8.608075	0.172582	3.506133	0.065334	0.015333	0.001086	43.12791	0.521838	2 549878
corsi_241_b6@17	8.674833	0.14434	3.560384	0.111314	0.014869	0.00057	43.4975	0.227474	2.576378
corsi_241_b6@18	8.703462	0.196464	3.460961	0.066546	0.014252	0.00144	43.06006	0.468297	2 602108
coral_241_b6@19	8.71954	0.214257	3.272898	0.391754	0.019255	0.003188	40.47392	179127.0	2.630168
coral_241_b6@20	8.730167	0.096932	3.284198	0.123799	0.016313	0.001802	41.71728	0.31257	2.658238
coral_241_b7@1	8.827025	0.090733	3.346549	0.061809	0.014194	0.000997	42.33463	0,494504	2.679288
coral_241_b7@2	8.725574	0.300853	3.310492	0.122954	0.015168	0.001651	41 54673	0.463826	2.705798
coral_241_b7@3	8.736581	0.178981	3.154658	0.068321	0.014637	0.001205	40.69896	0.521071	2.743998
coral_241_b7@4	8.396589	0.143904	2.025784	0.11244	0.014708	0.002378	32.74219	0.136493	2.772058
coral_241_b7@5	8.677153	0.190792	2 986191	0.069372	0.013141	0.001386	39.72904	0.293618	2.803238
coral_241_b7@6	8.598944	0.110591	3.339751	0.041941	0.012223	0.000864	42.16005	0.215571	2.832068
coral_241_b7@7	8.699021	0.158594	3.157824	0.059408	0.012353	0.001331	40.89488	0.343008	2.857818
coral_241_b7@8	8.688235	0.16487	3.083199	0.091774	0.013249	0.001707	40.26443	0.294196	2.882758
coral_241_b7@9	8.895775	0.147107	3.127689	0.034006	0.013474	0.001241	41.14555	0.289788	2.911608

C-82-

		mmol/moil	mmol/mol						
coral_241_b7@10	8.702072	0.148318	3.279367	0.152528	0.013418	0.001183	41.87358	0.446369	2.938888
coral 241_b8@1	7.611906	0.328649	3.702021	0.07436	0.011382	0.000868	37.07402	0.815545	2.963058
coral 241 b8@2	7.802792	0.250885	3.601428	0.07296	0.011674	0.001837	37.20322	0.589066	2.991908
coral_241_b8@3	7.896396	0.217232	3.743105	0.038961	0.013221	0.001607	38.90228	0.601032	3.020748
coral_241_b8@4	8.119341	0.244885	4.198293	0.116091	0.039016	0.012518	40.65205	0.780948	3.050378
coral_241_b8@5	8.075207	0.209515	3.994057	0.282183	0.046126	0.019384	40.67987	0.891804	3.072978
coral_241_b8@6	8.026939	0.224114	3.775409	0.161453	0.015489	0.002781	40.5048	0.749243	3.094808
coral_241_b8@7	8.223484	0.181355	3.701591	0.351815	0.017373	0.002633	39.6441	0.921228	3.137688
coral_241_b8@8	7.771432	0.234059	3.255595	0.232439	0.016901	0.004412	35.96521	0.696695	3.156398
coral_241_b8@9	8.105698	0.196325	3.721584	0.091376	0.013335	0.00209	40.56415	0.40669	3.182128
coral_241_b8@10	8.240111	0.300327	3.392798	0.10755	0.0151	0.003923	38.81786	0.398748	3.201618
coral_241_b8@11	8.122369	0.226417	3.40999	0.069473	0.014292	0.001704	39,48105	0.384785	3.229678
coral_241_b8@12	8.288335	0.2348	3.547518	0.047836	0.01686	0.001196	40.72307	0.316958	3.247608
coral 241 b8@13	8.279622	0.248657	3.110988	0.046868	0.012591	0.001535	38.11785	0.416565	3.281138
coral_241_b8@14	8.3466	0.160993	3.168993	0.072414	0.013805	0.001022	39.06595	0.629666	3.318558
coral_241_b8@15	8.279372	0.217114	3.328181	0.068592	0.013916	0.002259	40.16069	0.2859	3.328688
coral_241_b8@16	8.341245	0.216459	3.328674	0.097596	0.013009	0.001368	40.2125	0.492532	3.342718
coral_241_b8@17	8.181007	0.245625	3.52752	0.085195	0.014157	0.001596	42.09193	0.507674	3.374688
coral_241_b8@18	8.277652	0.199224	3.472928	0.097181	0.01541	0.002118	41,96661	0.392779	3.415228
coral_241_b8@19	8.325726	0.185616	3.068068	0.139895	0.014493	0.00172	39.54342	0.581024	3.474478
coral 241_b8@20	8.318578	0.165017	3.099582	0.093483	0.014528	0.00178	41.15314	1.055463	3.497858

C- 83

Sample 232 transect 1 S.campylecus:

Average values of Na/Ca, Mg/Ca, Sr/Ca and Ba/Ca used in figure14 and Figure 17.

werage per	190	Average per band	ISU	Average per band	ner	Average per band	nci	analyses	from edge
8.387944467	0.172962907	3.182778618	0.094943	0.011493852	0.003415	40.92347088	0.352841	2	4
8.39903064	0.047232208	3.026014159	0.053706	0.008733342	0.000178	41.66743545	0.297384	9	S
8.393934821	0.125934228	2.47514481	0.110765	0.008105817	0.000222	38.18125111	0.906373	ŝ	2
8.436742457	0.054017384	2.820398598	0.138491	0.008247727	0.000352	39,42698346	0.837315	10	80
8.338577501	0.055615465	2.978226336	0.074191	0.008331566	0.000217	40.78861555	0.319678	LO .	6
8.372585318	0.116978167	3.106717945	0.093764	0.00900569	0.000151	41.77476781	0.5441	9	10
8.302244422	0.085325938	3.099708515	0.095235	0.008091145	0.000256	41.73317344	0.367961	3	11
8.485483858	0.100490188	2.827433872	0.054951	0.008133018	0.000225	40.3269551	0.291589	00	12

C- 84 -

Sample 232 transect 2 S. campylecus:

Average values of Na/Ca, Mg/Ca, Sr/Ca and Ba/Ca used in figure14 and Figure 17.

from edge	e	4	9	2	90	6	10	12	13	
analyses	4	4	90	9	s	7	4	9	ŝ	
15D	0.647566	2.516151	0.633851	0.634216	0.41478	1.093406	0.191692	0.576929	0.251502	
Na/Ca mmol/mol Average per band	39.63954929	37.71444135	30.87379773	32.58674122	30.9180759	36.11775728	39.18736873	39.18662625	40.06544601	
ISD	0.000215	0.000145	0.000318	0.000358	0.000349	0.00043	0.000412	0.000409	0.000397	
Ba/La mmol/mol Average per band	0.01099416	0.010929183	0.011731011	0.013021304	0.012557783	0.013096083	0.010779139	0.012556051	0.011919741	
150	0.067274	0.075156	0.081348	0.094575	0.05526	0.0874	0.19126	0.096606	0.028828	
Mg/Ca mmol/mol Avetage per band	2.673897438	2.652802161	2.416181398	2.208989191	2.222769458	2.396640463	2.76747976	2.516523264	2.49714687	
1 Sd	0.064647	0.053862	0.031662	0.048818	0.021069	0.0874	0.19126	0.096606	0.028828	
La noV/mol erage per nd	8.139946408	8.096988693	8.344012863	8.385210617	8.494889671	8.248781091	7.91785921	8.428139493	8.230799937	

C-85-

Sample 235 S. campylecus: Average values of Na/Ca, Mg/Ca, Sr/Ca and Ba/Ca used in figure 2.13

pues		Average per band		prog		pued		analyses.	edge
8.713847361	0.064688	2.418738785	0.070923	0.009362031	0.000658	45.31495738	0.680412	2	đi
8.876482106	0.074115	2.416036009	0.131829	0.009689192	0.000323	44.35999058	1.191457	2	10
9.134096832	0.128998	2.402734354	0.054251	0.01062474	855000.0	44.84101923	0.439374	2	11
8.75505847	0.123724	2.579977209	0.100577	0.010543016	0.000332	45.46356103	0.577654	2	12
8.641033899	0.081257	2.542182351	0.042895	0.010263445	0.000164	46.60754805	0.367022	m	13

C-86-

Sample 241 S. campylecus: Average values of Na/Ca, Mg/Ca, Sr/Ca and Ba/Ca used in figure 14 and Figure 17.

ad age ber		Average per band		Average per band		Average per band		analyses	from	dge	688
7.826058426	0.131661	3.805656317	0.065191	0.012012435	0.000198	40.24451171	0.238307			1	
8.311091619	0.104875	3.365756677	0.132145	0.015966346	0.000707	41.56110514	0.41851	4		2	
8.646503145	0.051594	3.318555359	0.076127	0.013520094	0.000707	42.14888705	0.671581			3	
8.350545794	0.031818	3.492916269	0.085497	0.013034201	0.000247	40.85375017	0.584314			S	
8.451126125	0.046126	3.146518615	0.069621	0.012649829	0.000198	41.54945528	0,4772	11		2	
8.448433378	0.055322	3.095000775	0.113475	0.013182726	0.000173	42.88807364	0.603952			00	

C-87-

