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Abstract

Travel time tomography calculations involving 3D velocity models have be-

come more common place during the past decade or so. Numerous meth-
ods have been developed to solve the required forward modeling problem
of boundary value ray tracing in 3D. For this problem, source and receiver

positions are known and one or more time paths are sought between the

fixed end points. Less attention has been given to the approach to model
parametrization. Traditionally, the model has been subdivided into constant

velocity cells, a process known as voxellation or cellular partitioning. A new

approach to model parametrization involving mumerically constructing the

boundary of a homogeneous subsurface geological feature is proposed here

and an efficient method for tracing rays throngh this model is presented.

minimum travel time

The ray tracing problem is solved by obtaining the

path from a fixed source to a fixed receiver, and its associated travel time, as

the solution to a nonlinear optimization problem based on Fermat's principle.

be regulated by using the area, perimeter and

The inversion technique wi

the total distance from each vertex to the center of the nmumerically defined

of model structure.

surface as measus
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Chapter 1

Introduction

The word Tomography is derived from the Greek “tomos” (section) and
“graphein” (to write) and means a picture of a cross-section of an object.
In practice, the term denotes determining the internal properties of an ob-

ject from external measurments by using rays that have passed through the

object (Sheriff & Geldart, 1995). X-ray tomography has been used for some
time in medical examinations and non-destructive testing (Sheriff & Geldart,

1995). The computer assisted tomography (CAT-scan) technique uses a se-

ries of two-dimensional X-ray images taken around a single axis of rotation

to generate a three-dimensional image of the inside of an abject (Sheriff &

Geldart, 1995)

Seismic

by transmitting very large numbers of scismic rays through them (Kearey

et al., 2002). The method borrowed its name from the medical technology

used for imaging the internal organs of a human body. The scismic imaging
method, however, was developed independently of the medical community,
and in fact was originally called the “3D Inversion Method” in the scismo-

logical community until the early 1980s (Iyer & Hirahara, 1993). The first



seismic tomography result was reported at the 1974 Fall meeting of the Amer-
ican Geophysical Union (Iyer & Hirahara, 1993). The study investigated the

subsurface structure beneath the San Andreas fault system. Within a few

years, the method was being applied to data from around the world and has

cont

nued to develop rapidly up to the present day.

involves the measurement of travel times

Seismic borehol

tomograpl
between two or more boreholes. Data is collected using one hole for the
seismic source and measuring first-arrival times using strings of geophones

(receivers) in the others. Travel times are collected at regular intervals all

the way down the hole(s) for each shot position. A simple example s shown

in Figure 1.1, where only a limited subsct of ray paths is shown

If the internal structure and physical properties of the Earth were known
precisely, the magnitude of any particular geophysical measurement could be
predicted uniquely. Thus, for example, it would be possible to predict the
travel time of a seismic wave traveling through an anomalous subsurface ore

deposit. In geophysical surveying the problem is the opposite of the above,

namely, to deduce some aspect of the Earth’s internal structure on the basi

of geophysical measurments taken at (or near) the Earth's surface (Kearey

et al, 2002). The former type of problem is known as a direct problem,

the latter as an inve

¢ problem. Direct problems are theoretically capable

of an unambiguous solution but inverse problems suffer from an inherent

non-uniqueness in the conclusions that can be drawn (Kearey et al., 2002).

The total travel times for cach ray are directly influenced by the structural




Figure 1.1: Idealized observation scheme for a simple borehole seismic
transmission tomography survey. Black dots mark receivers, red circles mark
sourees. For clarity, only the ray paths from one source to all receivers (solid
blue lines), and all sources to one recciver (dashed black lines) are shown
(After Kearey et al., 2002).

and physical properties (velocity in particular) of the rocks being investigated

and are the basic data used for interpretation. 1t is possible to turn these

measurements on their heads, that is, invert them, and extract information
about rock properties between boreholes. The resulting inversion produces a
velocity model, enabling the identification of anomalous velocity zones lying
between boreholes.

The information derived from seismic tomography may be used to predict




spatial variations in lithology, pore fluids, or rock fracturing, and the method
is therefore of potential in a wide range of exploration and engineering ap-

plications (Kearey et al., 2002). As with many geophysical methods, it can

also be applied on a variety of spatial scales, from ranges of hundreds of me-

ons of s

tres, down to engincering or archacological investigat ngle columns

smic bore-

th

s, se

in ancient buildings (Cardarelli & Nardis, 2001). In th

enario involving

hole tomography will be used to investigate a synthetic s
subsurface volcanogenic massive sulphide (VMS) ore deposits.

An important feature to any travel time inversion method is it

approac]

to model parametrization. The standard approach to model parametriza-

tion involves dividing up the medium between boreholes into cells, a process

known as voxellation or cellular partitioning (Sheriff & Geldart, 1995)(Figure

1.2). Each cell is assigned an initial seismic velocity and the time spent by
each ray in each cell is caleulated. The velocity assigned to each individual
cell can be adjusted so that the errors between the observed travel times
and the caleulated ones are minimized. Although generally the number of
abservations is much larger than the number of cells and the problem is over
determined, some cells may not have been traversed, so that their slowness

od the

cannot be determined and many of the travel paths may have travers

same subset of cells so that their individual contributions cannot be sepa-
rated (Sheriff & Geldart, 1995). These factors lead to the “smearing” of the

ilting velocity model.

In order to rectify the issucs associated with cellular partitioning, we
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Figure 1.2: Subsurface mesh consisting of 225 20m x 20m squares,

propose to parametrize a model via a mumerically defined surface consisting
of a collection of line segments in 2D and triangular facets in 3D (Figure

1.3). The position of each line segment is defined by two vertices and each

triangular facet by three. In both cases, the overall shape of the model can
be changed by manipulating the position of these vertices. In 3D, cach vertex
is shared by multiple facets and each facet edge is shared by two facets. The

surface is therefore closed and continuous.

Seismic ray tracing from a source to a receiver is a classic seismological

problem. In order to solve both the forward and inverse borehole tomography

problems in both 2D and 3D, the computation of ray paths and travel times




k)
n both 2D and 3D
e segments. Each
ellated sphere (ra-

Figure 1.3: Examples of numerically defined surfaces
Left: General 2D model defined by a collection of
line segment is defined by two vertices (blue) Right: e
dius=100m) containing 1280 triangles

are required as a first step. Traditionally, the problem of tracing rays has
been posed as a system of first order differential equations or a two point
boundary value problem (Jacob, 1970; Wesson, 1071; Pereyra et al., 1980).
In “shooting” methods of raytracing, a fan of rays is shot from one point
in the direction of the other. The correct path and travel time to connect
the two points may be approached with successivly more accurate guesses
Such solutions for two- and three-dimensional media were derived more than
10 years ago (Gubbins & Julian, 1977). “Bending” methods of raytracing

al, most likely incorrect guess.

sed by Thurber (1987) start with an init

diss

for the ray path. The ray path is subsquently bent by a perturbation method

until it satisfies a minimum travel time criterion.
Transit times for seismic waves have been calculated in a variety of

sive and tricky

ways. Generally, more complicated media require more expe

difference

schemes to find the transit times. Vidale (1988) presents a finite.




caleulation of travel tim

The travel times of the first arriving scismic
waves through any velocity structure are rapidy computed on a two- or three-
dimensional numerical grid by finite-difference extrapolation from point to

point. Although this method is attractive, it is counter-productive since we

are trying to avoid the traditional method of cellular partitioning.

In the last few decades, the ray tracing problem has also been solved via
optimization using Fermat’s principle, which consists of finding the minimum
travel time ray path between source and receiver. Different optimization tech-

niques have been used with varying degrees of Specifically, Chander

(1975) approximates the integral for the travel time by a sum and solves

for the minimum time directly. This method

only able to contend with
simple flat interfaces and can not be used to trace rays through more com-

plicated cu

ved surfaces. Also, Um & Thurber (1987) present a two point
bending optimization method based on Fermat’s principle. Convergence of

this method has not yet been established. More recently, Mao & Stuart

(1997) presented a two point ray tracing method based on Fermat's principle

assuming a piecewise linear ray path. Convergence of this method is not

always guarantecd.

Many of the methods of ray tracing introduced above will be discussed in

detail, however,

ince the primary inter

st of this paper is model parametriza-

tion as it applies to the inve

fon procedure, we simplify both the forward

and inverse problems by assuming a linear raypath from source to reciever.

To ex

uplify the inherent non-uniqueness of the inverse problem, consider




a traditional cellular subsurface model containing over 1000 cells. Through-
out the course of an inversion, the velocity assigned to each cell is adjusted
wntil the difference between the observed and caleulated travel times are
minimized. With such a large mumber of model parameters (namely the ve-

locity in each cell), there will be many different velocity combinations that

minimize the data and thus provide a solution to the inverse problem.

‘The issue of non-uniquencss can be dealt with by minimizing some mea-

sure of model structure in conjunction with data misfit, a method known

as minimum structure inversion. Of equal importance, minimum-structure
inversion procedures generally are robust and reliable.

‘Traditional implementations of minimum-structure inversion procedures
because min-

use a sum-of-squares, or by, measure of model structure. This is

imizing such a measure results in a linear system to be solved. However, the
models produced typically have a smeared-out, fuzzy character. Farquharson

(2008) introduces a modification of the typical minimum-structure inversion

algorithm that generates blocky, piecewise constant earth models more con-

sistent with our real or percieved knowledge of the subsurface. The modified
algorithm uses I;-type measures in the measure of model structure instead of

the traditional sum-of-squares, or Iy, measure.

The purpose of the work presented here is to apply a minimum structure

inversion to a model parametrized by a numerically defined surface. This sur-

face is not fixed and its position will be manipulated throughout the course

of the inves

sion. In order to prevent the surface from turning inside out, ap-



regularization

propriate measures of model structure will be choosen. These

the area and the sum of the distance

parameters will include the perimeter
from each vertex to the models’ center. The resulting inversion will be com-

ional

pared to both an l5 and non-l; minimum structure inversion of a trads

voxellated model.

rate that an inversion for a sharpe-cdged, constant

The thesis will demons
amomaly does a better job recovering synthetic data from a sharp, uniform

-structure tomographic approach. The

subsurface feature than a minim

synthetic data is consistent with the actual geology of an ore deposit. No

test of the reverse situation has been attempted, namely, inverting data gen-

erated from a feature with a smoothly varying velocity assuming a defined

is intended to provide geophysicists with a

I

shape. The resulting algor

more geology-specific inversion tool that ont-performs its tradiational coun-

terparts.

Chapter 2 begins with a discussion on the traditional L-type voxellation

method. The forward and inverse problems are outlined and numerous ex
amples are presented. The following chapter deals with voxellation using

1y

cussing in detail the forward and inverse problems. Num

type measures. Chapter 4 introduces 2D numerically defined surfaces, dis-

rous examples are

shown and these are compared to the traditional cellular approaches to model

parametrization previously discussed. The next chapter follows from the pre-
vious by outlining numerically defined surfaces in 3D. Finally. the thesis ends

with Chapter 6, which provides an overview of the research presented.



Chapter 2

2D Voxellation (lo-type measure)

2.1 The Forward Problem

The seismic ray method is applicable to high frequency seismic body waves

propagating in complex varying velocity structures (Cervany, 2001). Ray-

tracing is based on the approximation that seismic energy of infinitely high

frequency travels from source to receiver following a trajectory determined by

the raytracing equations (Vidale, 1988). Physically, these equations describe

how energy continues in the same direction until it is refracted by velocity

variations. Modeling the energy propagation through a medium by ray trac-

ing can be done by solving these equations, which are related to the velocity
model, a set of reflecting or refracting boundaries and source/receiver pairs
(Aki & Richards, 1080).

As diseussed in the Introduction, the primary interest of this thesis is
model parametrization as it applies to the inversion procedure. Thercfore,
in this chapter both the forward and inverse problems are simplified by as-
suming a straight raypath from source to reciever. Under the straight ray
buted to velocity

mation, all directional changes att ariations are

approy

10




ignored. The forward problem for striaght ray tomography can be written

generally as:

@ = Lm (@1

where d”"@ are the travel times, L is a matrix containing the distances trav-

s value (i.c the reciprocal

eled by each ray and m corresponds to the slownes
of the velocity) in each cell, which will be the model parameters sought in

the inversion. Matrix L can be written generally as:

(2.2)

h row of the matrix L corresponds to a single ray and each column to a

velocity layer.

Figure 2.1 shows the resultant ray paths through a 2500 m/s subsurface
square for a mesh consisting of 225 20m by 20m cells. Sources are shown in
red and receivers in green. There are 3 sources and 15 receivers providing 45
rays in total. The source and reciver configurations shown will be used for

g examples involving a mesh of this size. When interpreting

all the folloy

the results in subsquent sections, rays are numbered according to source from

top to bottom along the y-axis. First, the intersection points between all ray;

and gridlines were caleulated. Then the distance corresponding to each cell
was determined and subsequently multiplied by the appropriate velocity in

1




order to determine the travel-time for each ray (See Appendix A)

300 T e e e
=t ===t
L] e I .
250 =
200
E 150
=
[
50 —
e o e O
=
o e s
50 150 20 20
x(m)

Figure 2.1: Resultant ray paths for a mesh consisting of 225 20m x 20m
cells. The sources are shown in red and the receivers in green. Magenta
corresponds to a velocity of 2500 m/s while white to 2000 m/s.

Figure 2.2 shows the resultant ray paths through a 2500m /s subsurface
square for a mesh consisting of 3600 5m by 5m cells. Increasing the number of
cells results in finer discretization and a more flexible model of the subsurface
Sources are shown in red and receivers in green. There is one extra receiver
for the 3600 cell mesh and so one extra ray for each of the three sources.
“The reason for this is logistical, namely, to keep sources and recievers evenly
spaced while making sure no ray overlaps with any of the horizontal grid

lines. The source and receiver configurations shown will be nsed for all the

12



following examples involving a mesh of this size. The forward problem was !

calculated in the same manner as the mesh consisting of 225 cells

above (See Appendix A)

iscussed

150
x(m)

200 250 300

Figure 2.2: Resultant ray paths for a mesh consisting of 3600 5m x 5m
calls. The sources are shown in red and the receivers in green. Magenta
corresponds to a velocity of 2500 m/s while white to 2000 m/s.

All of the examples presented thus far involve velocity contrasts of 500

m/s. This s a typical velocity contrast exhibited by most ore deposits (Nolet,

1087). In situations where larger velocity contrasts exist (ie. 3000 m/s),
raypaths would bend and concentrate in high velocity arcas and the straight

ray approximation would thercfore be inaccurate (Sheriff & Geldart, 1995)



2.2 The Inverse Problem

2.2.1 Newton’s Method

In mathematics, Newton's method s a well-known algorithm for finding roots
of equations. It can also be used to find stationary points (such as local max-
ima and minima) of functions, as such points are the roots of the derivative
function (Bonnans et al., 2006).

We shall define a sequence , with a known initial guess zo. The hope

h satisfies f'(x. ) = 0 (Bonnans

is that the sequence limits towards z, w
et al., 2006)

‘The second order Taylor expansion of f(x) at z,, is given by

S+ Ax) = f(z) + [a)Ar + 31" @) A7 @3)
where
AT =Ty — Tne (2.4)

Equation 2.3 attains its extremum when Az solves the linear equation:

L@+ [(@)Az = 0. (2.5)

The sequence , is given by



= ;((:)) (26)

Tnyr =y

where n = 0,1,....n. Equation 2.6 will converge towards the oot of f (i.c.

)

Equation 2.6 is valid provided the f(z) is a twice-differentiable function

i, for which f(z,)=0) (Bonnans et al., 2006).

well approximated by its second order Taylor expansion and the initial guess
rq is chosen close enough to .

ized to several dimensions by

The above iterative scheme can be gene
replacing the derivative with the gradient, V/(x) . and the reciprocal of the
second derivative with the inverse of the Hessian matrix, H (Bonnans et al.,

H, is the square matrix of second-order partial

2006). The Hessian mat
derivatives of a function (i.c. it describes the local curvature of a function of

2006).

many variables) (Bonna
Given the real-valued function (2, 22, ... 2,), the gradient of f is given

by

(2.7)

If all the second partial derivatives of f exist, then the Hessian matrix of /

is the matrix
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Taking the above into consideration, one obtains the iterative scheme

Xa1 =%, — [H]™'g, (29)

where n>0. Usually Newton's method is modified to include a small step

size a > 0 instead of o = 1 (Bonnans et al., 2006),

Xns1 = X — a[H] g, (2.10)

The step length helps control how large a “jump” the algorithm takes towards

the minimum.

2.2.2  Gauss-Newton Algorithm

The Gauss-Newton algorithm is a method used to solve non-linear least
squares problems (Fletcher, 1987). Tt can be seen as a modification of New-
ton’s method for finding a minimum of a function. Unlike Newton's method,
the Gauss-Newton algorithm can only be used to minimize a sum of squares
function, but it has the advantage that sccond derivatives, which can be

challenging to compute, are not required (Fletcher, 1987).

16




In what follows, the Ganss-Newton algorithm will be derived from New-
ton’s method for function optimization via an approximation.
‘The recurrence relation for Newton’s method for minimizing a function s

of model parameters (i.e. the velocity in each cell), m, is

m*'=m'-H'g (2.11)

where g denotes the gradient vector of s and H denotes the Hessian matrix
of s (Nocedal & Wright, 1999).

A measure of the misfit between the predicted (d”™) and observed (d***)

travel times is given by

s(m) = i(nﬂ”"‘ —dg)? (212)

=

Taking r; = (do* — &), Equation 2.12 can be rewritten more compactly as

Zv'f(m) (2.13)
-

s(m)

The gradient can be written as

Elements of the Hessian are caleulated by differentiating the gradient ele-

ments, g, with respect. to m,




Y~ ([ Ori O -
H,k,);(um‘mw ) (2.15)

The Gauss-Newton method is obtained by ignoring the second-order deriva-

s,

tive terms (the second term in Equation 2.15) (Nocedal & Wright, 1999).

That is, the Hessian is approximated by

Hy =2 Jiydu (2.16)
=
where Ji; = #5 are entries of the Jacobian, J,. The gradient a

approximate Hessian can be written in matrix notation as

g=2"r, H=~ 273, (2.17)

These expressions are substituted into the Equation 2.11 above to obtain the

iterative solution to the inverse problem

m*! =m* - a(373,)"37r. (2.18)

2.2.3 Minimum Structure Inversion

‘The geophysical inverse problem with respect to cellular partitioning s non-
unique both fundamentally and numerically due to the large number of model
parameters (i.c. the number of cells). A larger number of cells means finer

discretization and is needed in order to have a more flexible model. In order to



counter this ill-posedness, a measure of some property of the model structure
is minimized in conjunction with the measure of data misfit. So find m which

‘minimizes:

® = put Xem (2.19)

asure of the data misfit and is given by:

where ; is a

a= [[Wad® - @ (220

where d* is the vector of observations, d* is the vector of data computed

for the vector m of model parameters, and W, is a diagonal matrix whose

elements are the reciprocals of the estimates of the standard deviations of

the noise in the observations (Farquharson, 2008). Also, @, is a measure of

model structure and is given by:

@m = W mif; + W, ml; (2:21)

W, and W. are given by:

19



where Ar,, and Az, are the horizontal and vertical distances measured from

the center of a cell to an adjacent one, repectively (Figure 2.3)

Ar

30
x(m)

\
% w0 0» o 0 ®
Figure 2.3: Schematic illustrating Az, and Az,.

Newton solution for §m at the n'* iteration is:

The Gauss-

TTWIW,JI + XA (WIW, + WIW.)) §m =
i H

JTWIW, (A% — &) — A (WIW,m, - WIW.m,)

where A is the trade-off parameter, which regulates the “strength” afforded

20



to the measure of model structure. \ is varied to get the appropriate misfit
The inverse problem in this case s linear and only one iteration of Equation
2,24 is required to obtain a result.

As discussed above, the Jacobian, J;;. is given by

o
Im; = Omy

o,

(2:25)

where d” and d*** are the predicted and observed travel-tin

, respect
According to Equation 2.25, the Jacobian can be described as a change in

travel

e with respect to the

change in model parameters. In this case, the

model parameters are the slowness values of each cell. For the straight-ray

case, the Jacobian is therefore equivalent to the matrix L in Equation 2.2

containing the distances traveled by cach ray (Sce Appendix A)

2.3 Results

As a note, Gaussian random noise of standard deviation equal in magnitude
to 1% of a datum was added to create all the data sets used throughout this
thesis.

The synthetic travel time obtained from a 2500m/s subsurface square
was inverted using a mesh consisting of 225 20m x 20m cells (Figure 2.4).
In order to determine the quality of the data misfit, the values in Figure 2.4
(¢) need to be compared to the corresponding noise values. Presumably,

a good fit means most of these values fall within +/- 1% of the datum
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at cach point. For example, take the first point in Figure 2.4 (). The
observed travel-time for this ray is 0.205s. Therefore, fegse — £y should fall
between +/- 0.00203s. This is indeed the case as all the values in Figure
2.4 (c) are 4 orders of magnitude smaller than this range. It can then be

stated that the synthetic and resultant travel-times correspond very well.

The background velocity obtained from the inversion also matches quite well

with its synthetic counterpart. However, although the gencral position of

the anomaly meared” along the raypaths and its veloc

s correct, it is y

is too low. A rescaled version using the maximum and minimum caleulated

velocities is shown in Figure 2.5.
In order to model more complex (and realistic) subsurface structures,
additional cells are needed. The synthetic travel-time for the same 2500m/s

subsurface square was inverted using a mesh consisting of 3600 5m x 5m

cells (Figure 2.6). Both the synthetic and resultant travel times correspond
very well. The background velocity obtained from the inversion also matches

quite well with its synthetic counterpart. Just as with the previous example,

the general location of the deposit is correct but it is “smeared” along the
raypaths and its velocity is too low. A rescaled version using the maxinum
and minimum caleulated velocities is shown in Figure 2.7. Using a greater

number of cells is advantageous in that it provides more detail and thus

better represents more complex subsurface structur

One purpose of this research is to compare the traditional cellular ap-

proach to inversion with that of a munerically defined surface. Figure 2.8




E) )
igure 2.4: Minimum structure inversion (ly-type measure) result for a
2500m /s subsurface square using a mesh of 225 20m x 20m cells: (a) Initial
input velocity model.  (b) True velocity model. (c) Difference between cal-
culated (ie. inverted) travel-time and synthetic travel-time.  (d) Resultant
velocity model
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Figure 2.5: Rescaled minimum structure inversion (Iy-type measure) result
00m /s subsurface square using a mesh of 225 20m x 20m cells: (a)
lodel. (b) True velocity model. (c) Difference between
ted) travel-time and synthetic travel-time. (d) Rescaled

o
Initial input velocity
caleulated (i.c. inv
resultant, velocity model,
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Figure 2.6: Minimum structure inversion (L-type measure) result for a
2500m /s subsurface square using a mesh of 3600 5m x 5m cells: (a) Initial
input velocity model. (b) Synthetic velocity model. (c) Difference between
caleulated (i.e. inverted) travel-time and synthetic travel-time. (d) Resultant
velocity model.




Figure 2.7: Rescaled minimum structure inversion (1-type measure) result
for  2500m /s subsurface square using a mesh of 3600 5m x 5m cells: ()
Initial input velocity model. (b) Synthetic velocity model. (c) Difference
between calculated (i.e. inverted) travel-time and synthetic travel-time. (d)

Rescaled resultant velocity model




shows the inversion results for a 23500m/s kidney-bean shaped subsurface
structure defined by twenty line segments, which will be used as a synthetic
velocity model in subsequent sections. Both the synthetic and resultant

travel times correspond fairly well. The background velocity obtained from

the inversion also matches quite well with its synthetic counterpart. Just as

s

with the pre ample, the general location of the deposit is correct but

it is “smeared”. The velocity of the deposit in this instance is again too low

A rescaled version using the maximum and minimum calculated velocities is

shown in Figure 2.
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Figure 2.8: Minimum structure inversion (Iy-type measure) result for a 2D
numerically defined shape using a mesh of 3600 5m x 5m cells: (a) Initial
input velocity model. (b) Synthetic velocity model. (c) Difference between
calculated (i.e. inverted) travel-time and synthetic travel-t

velocity model.
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Figure 2.9: Rescaled minimum structure inversion (L-type measure) result
for a 2D numerically defined shape using a mesh of 3600 5m x 5m cells: (a)
Initial input velocity model, (b) Synthetic velocity model. () Difference
between caleulated (i.e. inverted) travel-time and synthetic travel-time. (d)
Rescaled resultant velocity modcl
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Chapter 3

2D Voxellation(/;-type measure)

3.1 The Inverse Problem

The typical minimum structure inversion can be modified so that it gen-

erates more blocky, piccewise constant Earth models as opposed to fu
smeared-out ones (Farquharson, 2008). The modified algorithm uses -type
measures in the measure of model structure instead of the sum-of-squares,

or Iy, measure (Farquharson, 2008). The measure of the amount of structure

in the model, @, has the form

Pm =Y oxpi(ve) 31
T
where
v = Wi(m - m;/) (3.2)

k will vary over z and .

A general form for o, and ¢,



wl@) =Y plx;) (3.3)

where z; are the elements of the vector x, which will be vy from above, and
the summation is over all elements in the vector (Farquharson, 2008). There
are mumerous possibilities for the specific form of the measure. T choose to

use

plz) = (@ + EPr (3.4)

where ¢ is a small number and p is 1 in order to achieve an I, norm.

To minimize %, Equation 2.19 is differentiated with respect to the pertur-

bations of the model parameters, and the resulting derivatives are equated to

zero (Farquharson, 2008). Differentiating the general form of the measures

on 3.3) gives

f 3.5,
(Mnu Z’ uﬂm; 2
that is,
[ T,
%0z) _ grg, 3.6
om & (36)
where dp/06m = (Dp/dbmy.- -+ dp/06my)T, By = Ox,/dom;, and q =

(p'(ar)y-+ 0/ (@n)". Equation 3.6 ¢

1 be reformulated by introducing a

diagonal matrix:




R = diag{p/(21)/21,-+ ./ (@a) 22}, 3.7

which leads to

Bo(z)
%0l) _ pray (38)
dém

The elements of the matrix R arc

R = p(a? + &yt (3.9)

The linear system of equations to be solved at each iteration is therefore

(Compare with Equation 2.24)

ITWIR W + 5" 3 e WER Wilim = JTWIR W, (™ (3.10)
T

—d") 45" Y WIR Wi (mj — m"
T

The matricies R, as well as the Jacobian matrix, depend on the model and

are updated at each iteration (Farquharson, 2008) (Sce Appendix B).

3.2 Results

In all the examples presented in the previous chapter, the resultant veloc-

ity model appears fuzzy and smeared-out. To keep this from occuring, the
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pelified minimum structure

data from Figure 2.8 were inverted using the

algorithm involving I;-type measures discussed in the previous section(Figure

3.1). The inversion generated a more blocky resultant velocity model that is
more consistent with the synthetic velocity model. Additionally, the inverted
velocities are no longer too low and instead correspond much better to the

synthetic model. On the other hand, the resultant velocity model lacks the

Kidney bean shape of the synthetic model and also appears to be distorted
in terms of dip and location along the direction of the raypaths.

Of note, the dip is somewhat affected by the nature of the

easures
themselves. That is, the I, ;measure favors vertical and horizontal dipping

synthetic models (Farquharson, 2008)

33



L .I

@

o
H

Figure 3.1: I; inversion result for a 2D numerically defined shape using a
mesh of 3600 5m x 5m cells: (a) Initial input velocity model. (b) Synthetic
velocity model. (c) Difference between caleulated (i.e. inverted) travel-time
and synthetic travel-time. (d) Resultant velocity model.




Chapter 4

Numerically Defined Surface (2D)

4.1 Model Parametrization

The proposed inversion technique involves constructing the boundary of a

homogeneous (i.e., constant velocity) subsurface geological feature, embed-

ded in a homogencous host rock. 1 propose to parametrize a model in 2D via
a collection of line segments, cach of which is defined by two vertices (Fig-
ure 4.1). The position of each vertex will be manipulated to create different

models. The position of all vertices and the velocities of both the deposit

and host rock will be the model parameters sought in the inversion

4.2 The Forward Problem

del

As discussed in the Introduction, the primary interest of this paper is m

I zation s it applies to the inversion procedure. Therefore, in this

ram
chapter, T again simplify both the forward and inverse problems by assuming
a linear raypath from source to reciever. Under the straight ray approxima-

tion, all directional changes attributed to velocity variations are ignored




50 100 200 250 300

150
x(m)
Figure 4.1: General 2D model defined by a collection of line segments
Each line segment is defined by two vertices (blue)

When defining a geological structure via a collection of line segments in

2D, seismic ray:

1l only be traveling through a maximum of two interfaces,

While it is possible that during the inversion procedure two scgments could

cross, effectively turning the model inside out, the forward solver will detect

an extra intersection point, and subsequently shut down.
Figure 4.2 shows the resultant, ray paths through a 2500 m/s twenty-
segment subsurface kidney-bean shaped structure. Sources are shown in red

and recieve

in green. There are 3 sources and 15 receivers providing 45

rays in total. The source and receiver configurations shown will be used for




all the following examples involving 2D munerically defined surfaces. When
interpreting the results in subsquent sections, rays are mumbered from top

to bottom along the y-axis. The intersection points for each ray were cal-

culated. The distances corresponding to the host rock and the deposit were |
determined and subsequently multiplied by the appropriate velocity in order \

to determine the travel time for each ray (See Appendix C).

WV VVYYVYVYVYYYNNNN

50 100 150 200 250
x(m)

Figure 4.2: Resultant ray paths through a 2500m/s twenty-segment subsur-
face kidney-bean shaped structure. Sources are shown in red and receivers in
green. Magenta corresponds to a velocity of 2500m/s while white to 2000m/s,
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4.3 Minimization of Misfit Inversion

4.3.1 Theory

In certain instances, in particular when there are only a few model parame-
ters, the geophysical inverse problem can be solved by a simple minimization
of data misfit. This is the case in two dimensions when using only a few
line segments to define a model.  The inverse problem can be solved us-
ing the Gauss-Newton algorithm discussed previously (Equation 2.18) (See

1 the

Appendix C). In this case the model parameters, m, being sought
inversion are the x-y coordinates of each vertex and the velocity of the ore
deposit and the host rock.

In order to caleulate the Jacobian, rays are first traced through a veloc-
ity model and the subsquent travel-times are calculated. Next, cach model
parameter being sought is sequentially perturbed by a small amount and the
travel-times are again calculated. The initial travel-times are then subtraced
from these values and each result is divided by the appropriate perturba-
tion factor giving the Jacobian matrix (See Appendix C). This method for
caleulating the Jacobian applies to all the following examples involving nu-
merically defined surfaces and to avoid repitition wil not be discussed in

detail again




4.3.2  Results

Figure 4.3 shows the inversion of a six sided polygon using only the mini-
mization of data misfit and no measure of model structure. The upper left
panel shows the true model while the upper right is a picture of the starting
model or initial ‘guess’ at the solution. The lower left panel is the resulting

caleulated (ic. in-

inversion and the right shows the difference between the
verted) travel-time and the synthetic travel-time. To the right of all models
is a colorbar representing the velocity in m/s for that particular graph. The
resultant velocity model corresponds well to its synthetic counterpart. Gaus-
sian noise of standard deviation equal in magnitude to 1% of a datum was
added to the synthetic data. The values of data misfit shown in Figure 4.3

(d) all fall within + 1% of the noise for each point. In fact, these values are

This suggests a

two orders of magnitude smaller than the associated noise
good fit between the observed and calculated travel-times.
The majority of the computation time is spent adjusting the background

velocity of the model. Figure 4.4 shows the same inversion except that the

background (or host rock) velocity is no longer a model parameter being

sought but is instead known. As compared to Figure 4.3, the velocity of the
deposit is more accurately depicted and the number of iterations is decreased
by 110. While the kidney-bean shape is achieved, the resultant velocity model

s ot as “smooth” as in Figure 4.3

Although the result presented in Figure 4.3 provides a good representation

39




N |'"
B
n

o 8 2w
s Ry

Figure 4.3: Two-dimensional minimization of misfit inversion results for a
six segment model: (a) True velocity model. (b) Initial velocity model. (c)
Resultant velocity model. (d) Difference between caleulated (i.c. inverted)
travel-time and synthetic travel-time.
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Figure 4.4: Two-dimensional minimization of misfit inversion results for a
six segment model (background velocity known): (a) True velocity model. (b)
Initial velocity model. (c) Resultant velocity model. (d) Difference between
calculated (i.e. inverted) travel-time and synthetic travel-time.




of the true velocity model, the natural progression is to move towards more

complex models which can, in principle, better represent the Earth's real
subsurface. To do this, additional verticies must be inserted. Figure 4.5
shows results for the same inversion as the first above, but with the model
now consisting of ten sides as opposed to the 6 in the first example (See
Appendix D). Also, the upper right panel has been replaced by a trace of the
change in perimeter of the resultant velocity model. Figure 4.6 shows the
associated starting velocity model

As can be scen from Figure 4.5, the perimeter of the resultant velocity
model is ill-behaved and the inversion process subsequently shuts down after

only 18 iterations. Specifying the background velocity and removing it from

the sct of model parameters being sought does not improve the solution
(Figure 4.7). In order to counteract this from occuring, we switch to a

minimum structure type of inversion
4.4 Minimum Structure Inversion of a Nu-
merically Defined Surface Model

4.4.1 Measures of Model Structure

A total of three measures of model structure will be implemented. These
include the perimeter and area of the numerically defined surface as well as

the total distance from each vertex to the centroid. All three parameters will
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Figure 4.5: Two-dimensional minimization of wisfit inversion results for a
ten segment model: (a) True velocity model. (b) Resultant velocity model
perimeter trace. (c) Resultant velocity model. (d) Difference between caleu
lated (i.c. inverted) travel-time and synthetic travel-time,
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Figure 4.6: Initial velocity model for a ten segment 2D polygon.

be introduced and discussed sequentially below

The most obvious initial choice for the measure of model structure to

minimize is the perimeter, which is given by

P=Y( ) + (gisr = )% (4.1)

To close the polygon, the first and last verticies are the same, i.c., .y
t0, g (Figure 4.8)

Next, the area of a polygon is given by: (Burke, 1988)
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Figure 4.
ten segment model (background velocity known): (a) True velocity model,
(b) Resultant velocity model perimeter trace. (c) Resultant velocity model.
(d) Difference between calcnlated (i.e. inverted) travek-time and synthetic
travel-time

Two-dimensional minimization of misfit inversion results for a
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Figure 4.8: Schematic of a two-dimensional polygon.

Wi = Tina)- (4.2)

The verticies must be ordered clockwise or counterclockwise; if they are or-
dered clockwise, the area will be negative but correct in absolute value.

The centroid (or geometric center) of a plane figure is the intersection of

all straight lines that divide the 2D shape into two parts of equal moment

about the line. For a non-self-intersecting (simple) polygon, with n vertices

the coordinates of the centroid are given by

C, = s T (@ + i) @ — Tiah)

Cy = gt T (s + i) (@i — Tiars)

where A is the area (Burke, 1988). The verticies must be ordered clockwise

or counterclockwise; if they are ordered clockwise, the coordinates of the

(he sum of all the

centroid will be negative but correct in absolute value.

distances from each vertex to the centroid for a 2D shape can be written

16




generally as

C=Y (@i~ G + (w - G} (1.4)

4.4.2  Tterative Solution Procedure

The gradients of the perimeter, g,. the arca, g,, and the total distance
from each vertex to the centroid, g,, can be caleulated in Matlab using the
Symbolic Toolboz function (See Appendix E) (Matlab, 2005). Thercfore,
for a model consisting of a collection of line segments, the gradient for the
perimeter and area as well as the total distance from each vertex to the
centroid will each be a column matrix. The number of rows in this matrix
will be equivalent to the mumber of model parameters (ic. the + and y
position of each vertex as well as the velocities of the host rock and the

deposit) being sought, the last two of which will be zero as velocity is not

incorporated into either Equation 4.1, Equation 4.2, or Equation 4.4

Similarly, the Hessian of the perimeter, H,, the area, H,, and the to-
tal distance from each vertex to the centroid, H,, can also be calculated
in Matlab using the Symbolic Toolbor function (See Appendix E) (Matlab,
2005). Therefore, for a model consisting of a collection of line segments, the
Hessian will consist of an m-by-n matrix where both m and n will be equiva-

lent to the mumber of model parameters being sought. The last two columns

and rows of each Hessian matrix will be zero as velocity is not incorporated



into cither Equation 4.1, Equation 4.2, or Equation 4.1.

ated for

The Hessian and gradient matricies discussed above are subst

WIW, + WIW, and WIW,m -~ W7 W.m, in Equation 2.24, respectively.

Temporarily ignoring the matrix W, in Equation 2.24 and rearranging, the

solution to the inverse problem can be written iteratively as

mt = m + a3, + A(H, + Hy + H) 3T @™ - d™)  (45)

—A(g, + & +&))

where m are the model parameters being sought in the inversion (i.c. the

and y coordinates of each vertex as well as the velocity of the host rock and
ore deposit), J;; = e are entries of the Jacobian J,, d** and d are the
observed and predicted travel-times, respectively. A is varied until the trial

model is such that the data misfit is small enough given the noise that was

added into the data (See Chapter 2).

4.4.3 Results

t numerically defined surface inversion of

Figure 4.9 shows the subseque

ten segment velocity model involving only the perimeter as the measure of
model structure (See Appendix D). The starting model is shown in Figure
4.6, The resultant velocity model has a value of 2615 m/s, which is very

similar to the synthetic one. Both the synthetic and calculated travel-times
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ntical. Additionally, the inversion process has converged to

¢ virtually id

a minimum as there were no further changes in the model parameters with

neter in conjunction

subsequent iterations. Therefore, minimizing the pe

ion of a 2D ten

with the data misfit is an acceptable approach to the inver
segment polygon.

‘The majority of the computation time is spent adjusting the background

velocity of the resultant (or inverted) model as for the example in Section
4.3.2. This is likely due to the large effect the background velocity has on the
data misit. More specifically, a small perturbation in the background velocity

hias a dramatic effect on the travel time of a ray so the algorithm is forced to

slowly change this feature. Figure 4.10 shows the exact same inversion except
the background (or host rock) velocity is no longer a model parameter heing
sought and is instead known. As compared to Figure 4.9, the deposit has a
velocity of 2521 m/s and is therefore more accurately depicted, however, the

number of iterations is increased by 50. The perimeter trace is also less well

behaved and while the kidney-bean shape is retained, the resultant velocity

model is not as “smooth” as in Figure 4.9,

‘Ten segments worked nicely, however, it would be interesting to see how
the procedure holds up to additional line scgments. Also, more line segments
have the advantage of finer discretization and thus a more detailed model
“The exact same mininum structure inversion (including the unknown veloc-

egment polygon

ity) involving the perimeter was implemented for a twenty

(Figure 4.11). At iteration 35, two verticies switched postions and the resul-
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Figure 4.
sulfs for a ten segment, model: (a) Synthetic velocity model. (b) Resultant

ssional minimum structure (perimeter) inversion re-

velocity model perimeter trace. () Resultant velocity model. (d) Difference
between calculated (ie. inverted) travel-time and synthetic travel-time
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Figure 4.10: Two-dimensional minimum structure (perimeter) inversion
results for a ten segment model (background velocity known): (a) Synthetic
velocity model. (b) Resultant, velocity model perimeter trace. (c) Resultant
velocity model. (d) Difference between ealenlated (i.e. inverted) travel-time
and synthetic travel-time.




tant velocity model turned “inside out”. Specifying the background velocity
and removing it from the set of model parameters being sought allows the al-

gorithm to continue for a greater number of iterations (i.c. 229) but without

a substantial improvement in the solution obtained (Figure 4.

From Figure 4.11, it is obvious

at the perimeter alone will not suffice

in controlling the inversion process for more complex (i.e. greater number of
line segments) 2D models. An additional measure of model structure must
therefore be introduced.

the

The area A of a polygon (Equation 4.2) can also be computed

lengths of the sides, a1,az,....a, and the exterior angles, 0y, 0, .0, are

known (Figure 4.13). The formula is given by: (Lopshits, 1963)

A %(n,;«,xmiﬂ,) + agsin(fh +02) + -+ + aq_ysin(fy + -+ + 6, _3)] (4.6)
talagsin(8) + arsin(By +05) + -+ ay_ysin(y + -+ 0, 2)]

++ 4 anoalan-sin(0,-2)))

Figure 4.14 illustrates the change in the external angle of the involved

line segments when part of a polygon flips inside-out during an inversion.

According to Equation 4.6, the area is related to the external angles of all

the line segments. Therefore, in order to prevent this flipping of vertices from
occuring, the area is an acceptable form of model structure to be minimized

alongside the perimeter.
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Figure 4.11: Two-dimensional minimum structure (perimeter) inversion
results for a twenty segment model: (a) Initial velocity model. (b) Synthetic
velocity model. (c) Difference between caleulated (i.e. inverted) travel-time
and synthetic travel-time. (d) Resultant velocity model. (¢) Perimeter trace
(£) Area trace



Figu
results for

Two-dimensional minimum structure (perimeter) inve

fon
twenty segment model (background velocity known): (a) Initial
velocity model. (b) Synthetic velocity model. (¢) Difference between cal
culated (i.e. inverted) travel-time and synthetic travel-time. (d) Resultant
velocity model. (e) Perimeter trace. (f) Area trace.
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Figure 4.13: Schematic illustrating the external angle of a five sided poly-

gon.

its the polygon from

Minimizing the area alongside the perimeter pre

flipping inside ont but consequently shrinks the resultant velocity model

(Figure 4.15). Manipulating the trade-off parameter with regards to the

area proved extremely difficult. The “strengt afforded to the area via
the trade-off parameter remained cither too high or too low and a so-called
middle ground could not be found

Specifying the background velocity and removing it from the set of model

ultant velocity model from

parameters being sought docs not prevent the




Figure 4.14: Schematic illustrating the change in the external angle of the
it when a polygon flips inside during an invers

involved line segm

ft between

shrinking (Figure 4.16). However, it does result in a smaller mi

the synthetic and calculated (or inverted) travel-times thereby creating the

illusion of a better solution (Figure 4.17). A number of rays pass through

the background (or host rock) without traveling through the anomaly. These

rays are entirely influenced by the background velocity. Therefore, specifyin

Thi

this value leads to the apearance of a ‘better” soluti s an important

point, which needs to be taken into consideration when interpreting any and
all results.

Figures 4.15 and 4.16 show recovered models in which the anomaly ap-
pears with a velocity lower than the background, though the input velocity
was substantially faster than the background. The reason for this s likely
due to the fact the inversion algorithm got ‘stuck’ in a local minimum.

It is obvious from the previous examples that both the arca and perimeter
alone are not sufficiently useful measures of model structure. In order for the
inversion to approach a more satisfactory and geologically plausible result,

an additional property of a polygon must be considered.
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inversion
Synthetic
travel-tin
trace. (f)

4.15: Two-dimensional minimum structure (perimeter and area)
results for a twenty segment model: (a) Initial velocity model. (b)
velocity model. (¢) Difference between caleulated (i.e

d synthetic travel-time
Perimeter trace

inverted)

e (d) Resultant velocity model. (e) Area
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Figure 4.16: Two-dimensional minimum structure (perimeter and area) in-
version results for a twenty segment model (background velocity known): (a)
Initial velocity model. (b) Synthetic velocity model. (¢) Diffe
calculated (i.e. inverted) travel-time and synthetic travel-time. (d) Resultant
velocity model. (e) Area trace. (f) Perim
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Figure 4.17: Calculated travel-time (blue circles) and predicted travel-time
(red crosses) for a two-dimensional minimum structure (perimeter and arca)
inversion results for a twenty segment model (background velocity known)
(Left) and background velocity unknown (Right)

1 of the lengths from each vertex to the centroid along-

Minimizing the s
side hoth the perimeter and the area produces a much more robust and re-

re 4.18, the inversion

liable inversion algorithm. As can be seen from Fi

process converges to a minimum, signified by the leveling off of the ar
perimeter and total length to center traces. Additionally, the general shape
of the resultant velocity model matches that of the synthetic model and both

the calculated and synthetic travel-times correspond fairly well. Table 4.1

provides a comparison of multiple model properties for the synthetic and
inverted velocity models,

The majority of the computation time is spent adjusting the background
velocity of the resultant (or inverted) model. Figure 4.19 shows the exact
same inversion except, that the background (or host rock) velocity is no longer

sought and is instead known. As compared to

a model parameter heing

Figure 4.18, the velocity of the deposit is more accurately depicted and the
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Figure 4.18:

Two-dimensional minimum structure (perimeter

area and

sum of lengths to centroid) inversion results for a twenty segment model

() Resultant velocity model
(d) Difference bet alculated (i.

(b) Synthetic velocity model.

(c) Area trace.
inverted) travel-time and synthetic

travel-time. (e) Sum of the lengths of each vertex to the centroid trace. (f)

Perimeter trace
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Synthetic Model | Inverted Model
Perimeter 266.4 273.3
Area 3282 3150
Centroid (1883, 176.8) (187.2,1818)
Sum of Lengihs 1o Centroid 7321 739.0
Velocity 2000/ 1962m/5
Deposit Velocity 2500m/5 2971/

Table 4.1: Comparison of the synthetic and inverted velocity models for a
minimun structure inversion (perimeter, area and sum of lengths to centroid)
y segment, polygon

of a twe

number of iterations decreased by 80. The misfit between the synthetic

and calculated (or inverted) travel-times is also smaller (Figure 4.20). Table
4.2 provides a comparison of multiple model properties for the synthetic and

inverted velocity models when the background velocity is a known parameter.

Synthetic Model | Inverted Model
Perimeter 2716 269,
Area 3327 3379
Ceutroid (1817, 185.0) (184.5.184.9)
S of Lengths to Centroid 7362 7I0
Velocity 2000m /5 2000/
Deposit Velocity 2500m /5 2756m/s

Table 4.2: Comparison of the synthetic and inverted velocity models for a
minimum structure inversion (perimeter, area and sum of lengths to centroid)
of a twenty segment polygon (background velocity known)

The total-centroid-distance measure is essential for stabilizing the inver-
sion. The measure cannot be used on its own without the perimeter/area

measures as the resulting inversion is unstable. Figure 4.21 shows the resul-

tant velocity model for a minimum structure inversion of a twenty segment
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Figure 4.19: Two-dimensional minimum structure (perimeter, area and
sum of lengths to centroid) inversion results for a twenty segment model
(background velocity known): (a) Resultant velocity model. (b) Synthetic
velocity model. (c) Area trace. (d) Difference between calculated (i.e. in-
verted) travel-time and synthetic travel-time. () Sum of the lengths of each
vertex to the centroid trace. (f) Perimeter trace,
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Figure 4.20: Caleulated travel-time (blue circles) and predicted travel-
time (red erosses) for a two-dimensional minimum structure (perimeter, area
and sum of lenghts to the centroid) inversion results for a twenty segment.
model (background velocity known) (Left) and background velocity unknown

(Right)

polygon with only the sum of lengths to the centroid used as a measure of

model structure. The model bears no resembalance to the synthetic model
shown in Figure 4.18 (b) and on close inspection has actually flipped in on
itself. Al three measures of model structure are needed as they work in

unision to help stabalize the inversion.
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Figure 4.21: Two-dimensional minimum structure inversion result, for

twenty segment model using only total-centroid-distance as a measure of

model structure.




Chapter 5

Numerically Defined Surface (3D)

5.1 Model Parametrization

bitrary 3D shapes are often too complicated to analyze via a single mathe-
matical formula and so are divided (tessellated) into a mesh of small, easy-to-
analyze triangular facets. For example, consider first a simple sphere (Figure
5.1). The tessellation algorithm uses recursive subdivision (Matlab, 2005).
The first approximation is a platonic solid, cither an icosahedron, octahe-
dron or a tetrabedron (Matlab, 2005). Each level of refinement subdivides
each triangular facet by a factor of 4 (Matlab, 2005). At each refinement,
the vertices are projected to the surface of the sphere (See Appendix F). In
order to generate a more general initial model, the vertices of the triangular
planes will be varied randomly by hand while keeping the tessellation intact
The position of all vertices and the velocities of both the deposit and host

rock will be the model parameters sought in the inversion.




100 -100

y(m) 207200 x(m)

Figure 5.1: Tessellated sphere (radius=100m) containing 1280 triangles.

5.2 The Forward Problem

As discussed previously, the primary interest of this paper is model parametriza-
tion as it applies to the inversion procedure. Therefore, we simplify both the
1 and inve

forwa problems by assuming a linear raypath from source to

reciever. Under the straight ray approximation, all directional changes at-
tributed to velocity variations are ignored.
Assumiing a generally convex outward shape defined via a collection of tri-

angular facets in 3D, seismic rays will only be traveling through a maximum

of two interfaces.




Figure 5.2 shows the resultant ray paths through a 2500m/s subsurface
tesselated sphere of radius 100m consisting of 80 triangular facets. Sources

are shown in red and rece

vers in green. There are 3 source and receiver

sources and 2 respectively. This pro-

receive

boreholes each containing :

vides a total of 702 rays, which are numbered first from the top to bottom of
the borehole and then along the positive x-axis starting at z = 100m. The

source and receiver configurations shown will be used for all of the subsequent

amples involving 3D mumerically defined surfaces. The intersection points
for each ray were first caleulated. Next, the distances corresponding to the
host rock and the deposit were determined and subsequently multiplied by

the appropriate velocity in order to determine the travel time for cach ray

ure 5.3) (See Appendix G)

There are no doubt, many instances for which the straight ray approxi-

‘mation may not be appropriate nor desired. Before abandoning the forward

problem all together a couple of approaches to ray tracing, namely the shoot-

ing method and the minimization of travel time, will be discussed although

they won't be used in the inverse problem.

5.2.1 Shooting Method

Figure 5.4 shows an incoming ray (marked 1) striking a surface with normal
N. The incident ray makes an angle 6, (the angle of incidence) with the
surface normal. The transmitted ray T makes an angle 6, (the angle of

refraction) with the reflected normal. The incident ray, normal and refracted
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Figure 5.2: Resultant ray paths through a 2300m /s subsurface tessellated
sphere of radius 100m consisting of 80 trianglular facets embedded in a
2000m/s host rock. Sources are shown in red and receivers in green

ray all lic in the same plane (Glassner, 1989). The equation relating the angles
of the incident and transmitted ray is called Snells Law:
sin(0) _ sin(0a)

e (5.1)

where vy is the velocity of medium 1 and vy is the velocity of medium 2.
The shooting-method is an iterative procedure that uses standard initial

value ray tracing to solve a boundary-value ray tracing problem (Cervany

2001). The shooting method is ideal for situations in which we need to
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Figure 5.3: Associated travel-time for Figure 5.2 organized according to
source borehole,
find rays from a point source to a series of recievers distributed regularly or

irregularly in some region along the surface of the earth or vertically in a

borhole. We start shooting rays that hit the Earth’s surface (or sub:

face

when in a borehole) out;

 the region of recievers. Upon encountering an
interface, any directional changes due to velocity variations can be calculated
quickly and simply using Equation 5.1. The take-off angle is then varied
F

regularly in order to come closer to the reciever re igure 5.5 illustrates

the shooting method for two planar interfaces and a single point source (See

Appendix G).




Incident
Vector |

Figure 5.4: The geometry of transmission (After Glassner, 1989)

5.2.2  Minimization of Travel-time

Fermat’s principle states that a wave will take a raypath for which the trav

time is stationary with respect to minor variations of the raypath (Sheriff &

or most situations, this raypath is the one that requires

Geldart, 1995)

the least time (Sheriff & Geldart, 1995). Snell's law, Huygens' principle,

ical optics can be derived from this principle

and many other laws of geomet
(Sheriff & Geldart, 1995). An obvious consequence of this principle is that
paths of light /seismic energy traveling in a homogeneous medium are straight

lines, as a straight line is the shortest distance between two points.

Following Chander (1975), let Py to P, in Figure 5.6 be the consecutive

ay with Py representing the source and Py,

vertices of a refracted seismi
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Figure 5.5: Schematic illustrating the shooting method for two planar in-
es and a single point source (red)

the recciver. Let (x;, v, z), where i = 1, ..., n+1, be the coordinates of these

vertices, respectively. The travel time t along the ray is given by

=Yl — g+ = i) + (2= )07 (52)

where v, (i = 1, .., n+1) is the constant velocity between interfaces IF,_;

to IF, (i = 2, ..., n+1). In order to determine the path a

ray will take, we

minimize

“quation 5.2

s per Fermat's principle). The coordinates (xi, vy
21) and (a1, Y1, Zog) of the source and receiver must be known in order

to successfully trace a ray. This optimization problem is nonlinear and must




e on the

be constrained by the fact that each refraction point lies somewh
surface of the interface through which it is traveling. The minimization pro-
cedure was created and carried out in Mathematica using Newton's Method

(Mathematica, 2005) (See Appendix G).

Figure 5.6: Schematic diagram showing a refracted ray traveling between
source Py and receiver Py, Py to Py are intervening vertices numbered in
order as encountered when proceeding along the ray from source to receiver
IFy, IFy, ..., IF, are plane interfaces separating layers of constant velocity.

We are interested in tracing rays through subsurface ore deposits in order

to determine travel times which can be inverted to give information on the
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deposit’s structural orientation and physical properties. These deposits can

be modelled as complex enclosed 3D shapes represented via a collection of
triangular facets. As discussed above, we first solve the forward problem for

ate

llated sphere. Tesscllating a complex 3D shape significantly decreases

the complexity of the optimization procedure as we are tracing rays through

planes and not curved interfaces.

The full ray tracing problem for a tessellated sphere involves first choosing

a single triangular facet at random. This facet is then paired with one of the

remaining facets and a ray is traced through both for a specified source

and receiver position by minimizing the travel time in an analogous manner

to that of Chander (1975) described above. The minimization procedure is

based on the interior-reflective Newton Method and was written and executed
in Matlab (Matlab, 2005) (See Appendix G). It was then determined if the
subsequent refraction points for the resulting ray actually lay within the

choosen triangular facets. If this was the case, the travel time was recorded

and a new initial triangular facet was chosen so that the process could be
repeated for another ray. However, if the refraction points happened not to
lie within either of the triangular facets, the second one would be discarded

and a new one chosen until a suitable match was found,

A number of boundary conditions had to be implemented in order to en-
sure each ray behaved as intended. First, instead of refracting through the
second interface, a number of rays were reflected or experienced critical re-

fraction and then were reflected towards the interior of the tessellated sphere

7




(Figure 5.7). Since the minimization algorithm was only programmed to

contend with a maximum of two interfaces, these rays were allowed to pass
through a third interface unaffected. To prevent this from happening, every
ray was forced to enter a facet in the opposite direction of its outward normal
and leave in the same direction. Next, a method had to be devised to ensure
that cach refraction point did indeed lic within the specificd triangular plane.
This was accomplished by comparing the area of the specified triangle (Ar)

ith the combined area of the three triangles formed by drawing a line from

each vertex to the refraction point (A+As+As) (Figure 5.8). Only when

these two values were equal would the refraction point be accepted as real.

I 1o
m el m b

Figure 5.7: Left: example of a critically refracted ray being passing through
a third interface wnaffected. Right: example of a reflected ray passing through
a third interface unaffected.

The first attempt at tracing rays through Figure 5.1, although succe:

ful, proved too computationally expensive (on the order of 43.200 seconds

or twelve hours on a standard 1.83GHz Intel Core 2 Dell laptop). The ma-

sful

jority of this time was spent minimizing the travel time between unsuc

7



Figure 5.8: Schematic of tessellated triangular facet illustrating the method
a refraction point lay on the surface of a specified plane.

used to determine

facet pairs. In order to rectify this problem, the ray tracing algorithm was
provided with initial estimates of correct facet pairs. These estimates were

I diameter (Figure

obtained by first tracing a ray through a sphere of equa

ization algorithm searched the triangular

5.9) (See Appendix G). The mini
facets surrounding the initial estimate until a match was found. By provid-
ing these initial estimates, the computation time was significantly reduced
(approximately 7000 seconds or just less than 2 hours). The resultant ray

paths through the tessellated sphere for numerous source and recicver pairs

are shown in Figure 5.10.
The ray paths through the tessellated sphere shown in Figure 5.10 do
not. precisely correspond to those through a sphere of equal diameter. The

tessellation causes a deviation from a true spherical shape resulting in slightly

different ray paths. This being said, the travel times of the rays through the

eter are very similar (Figure

tessellated sphere and the sphere of equal dia

5.11) and the coverage is the same. Increasing the mumber of triangles will

deerease the difference in ray paths accordingly but will not have a major




.200*.
y (m) 200 x(m)
Figure 5.9: Resultant ray paths through a sphere equal in diameter to the
tesselated sphere shown in Figure 5.1. The refraction points of these rays
initial estimates for tracing rays through a tessellated sphere of
s are shown in red and the receivers in green.

were used a
equal diameter. The sou

affect on the results obtained

To reiterate, this approach to the ray tracing was not used for the in-
version in this thesis as it proved too time consuming, Instead, the forward
problem was simplified by assuming all rays traveled in a straight line from

source to reciever.
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Figure 5.10: Resultant ray paths through a tessellated sphere of radius

100m and consisting of 1280 triangular facets usin
tained by tracing rays throngh a s
shown in red and the reccivers in green.

g the initial estimates ob-

here of equal diameter. The sources are
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Figure 5.11: Comparison of the travel times of ray paths through a tessel-
lated sphere (crosses) and a sphere (circles) of equal radius. Borehole #1,
Borchole #2 and Borehole #3 correspond to all ray paths involving a source
located at z=-150,0=0 and =150, respectively.




5.3 Minimum Structure Inversion of a Nu-

merically Defined Surface Model

5.3.1 Measures of Model Structure

“The solution to the inverse problem in three-dimensions will follow the min-

imum structure method outlined in Chapter 4 for 2D models. The major
difference will be in using 3D equivalents to the 2D area, perimeter and total
distance from each vertex to the object’s centroid.

The perimeter will now be defined as the sum of the perimeter of each

triangular facet and can be written numerically as follows

i

=) + (23 = 2" + (@1 — ) + (o~ ) + (2

where i represents subsequent triangular facets.
The centroid C of a 3D object made up of a collection of N triangular

faces with vertices (a;, by, c;) can be written as (Burke, 1088)

Ry is the average of the es of the i'th face and is given by (Burke, 1988)




(ai +bi +ci)
3

A; is twice the area of the i'th face and can be written as (Burke, 1988)

15 = a:) x (e = a))l. (5.6)

The sum of all the distances from each vertex to the centroid for a 3D shape

made up of collection of N triangular faces can be written generally as

(@i = CalP + (i — G + (5 - A (

el
3

The parallelogram determined by the vectors u and v has base length

[[v]] and altitude [jul|sin6 (Figure 5.12)(Nicholson, 2003). Hence the area of

& parallelogram formed by u and v is

(lullsin@){Iv]l = flux vi| (58)

The area of a triangle is half the area of a parallelogram determined by these

vectors and is given by

%Hu x| (5.9)

In terms of a measure of model structure, the areas for each triangular facet

will be summed as follows




where i represent

[ul| sin®

v

Figure 5.12: The vectors u and v form adjacent sides of a parallelogram
(After Nicholson, 2003).

5.3.2 Iterative Solution Procedure

The gradient and Hessian of the total perimeter, P, the total area, A, and
the total distance from each vertex to the centroid, C;, were again calculated

using Matlab (Matlab, 2005) (See Appendix H) (See Section 4.

The solution to the inverse problem can be abtained by substituting the
appropriate gradients and Hessians for the 3D case into Equation 4.5. The
model parameters, m, being souglht in the inversion are the , y and =

coordinates of each vertex as well as the velocity of the host rock and ore

deposit. Again, rays are assumed to go straiglht from source to reciever

regardless of velocity variations.




One major drawback to this iterative solution procedure is computation
time. The inversion of a moderately complex set of data for a velacity model
consisting of 80 triangular facets took approximately 30 days on a standard
1.83GHz Intel Core 2 Dell laptop. While this proved frustrating, it had no

bearing on the results.

5.3.3 Results

Minimizing the total perimeter, the total area and the total distance from
each vertex to the centroid produces an anomalous region which s similar in
size and position to that of the synthetic model (Figure 5.13). This combi-
nation of regularization parameters was used in the initial inversion attempt
as they were the most successful in the 2D case (See Chapter 4). The initial
input. velocity model is shown in Figure 5.2, The velocities of the deposit

59 m/s

and the host rock caleulated (or predicted) by the inversion were 2

and 2003 m/s, respectively. This corresponds quite well to the synthetic (or
observed) velocities of 2500 m/s for the deposit and 2000 m/s for the host
rock. The fit of the predicted data to the synthetic observed data is sat-
isfactory. The convergence curves (i.c. the total perimeter, the total area,
and the total distance from each vertex to the centroid) are well-hehaved in

that they show a smooth steady decrease. While the constructed model does

appear to have a bit of an extra curve to it as compared with its synthe
counterpart, in general, the inversion was succesfull

In order to properly investigate the quality of the result detailed above
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P

Figure 5.13: Minimum structure inversion result for a 2500m/s tessellated
3D subsurface shape embedded in 2000m/s host rock: (a) Synthetic velocity
model. (b) Resultant velocity model. (c) Difference between caleulated (i.e.
inverted) travel-time and synthetic travel-time. (d) Sum of all facet arcas
trace. (e) Sum of all facet perimeters trace. () Total distance to centroid
from each vertex trace.




it must be compared to an inversion

and the merit of the inversion procedure,
without regularization. This approach does not involve the minimization of

only a simple minimization of

any measures of model structure and employs

servered and predicted data (Equation 2.18). Af-

the misfit between the obs
ter 50 iterations the synthetic model appears irregular (Figure 5.14). Upon
closer inspection, the anomolous region has actually flipped inside out on

If (Figure 5.15). Also, two of the convergence curves (the total perimeter

and the total area) are increasing while the one for the total distance from

each vertex to the centroid is actually decreasing. This indicates there is

discordance between these model properties and probably reflects the irrey

result helps put

ularity and jaggedness of the resultant velocity model. Thi

nimum structure inversion into perspective. On

the one obatined via a
a relativistic scale, the minimum structure inversion preforms significantly

better than if no regularization had been used.

For completness, Figure 516 shows the exact same minimum struct

inversion except. the background (or host rock) velocity s no longer a model
parameter being souglht and is instead known. Much of the computation

time is s

pent determining the host rock velocity and in a real-world geolog-

ical setting it may be possible to determine this value prior to completing

unre-

the seismic borehole survey. The difference between the two results i

ppears to be

markable. The misfit between the predicted and observed data

i is due to the fact that a greate

smaller due to a flatter basline. This illu:

number of rays pass through the host rock than the anomalous region.
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Figure 5.14: Minimization of misfit inversion result for a 2500m/s tessel
lated 3D subsurface shape embedded in a 2000m/s host rock: (a) Synthet
velocity model. (b) Resultant velocity model. (c) Difference betwee
culated (i.e. inverted) travel-time and synthetic travel-time. (d) Sum of all
facet areas trace. () Sum of all facet perimeters trace. (f) Total distance to
centroid from each vertex trace.




Figure 5.15: Close up of the resultant, velocity model from Figure 5.14(b).
The area where the triangular facets flipped inside-ont is cirled in red.
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Figure 5.16: Minimum structure inversion result for a 2500m/s tesscllated
3D subsurface shape embedded in a host rock of known velocity: (a) Syn-
thetic velocity model. (b) resultant velocity model. (c) Difference between
caleulated (i.c. inverted) travel-time and synthetic travel-time. (d) Sum of
all facet areas trace. (e) Sum of all facet perimeters trace. (f) Total distance
to centroid from each vertex trace




Chapter 6

Conclusions

The preceding thesis applied a minimum structure inversion to a model
parametrized by a numerically defined surface in both two and three di-

mensions. The position of the surface varied throughout the course of the

inversion. In order to prevent the surface from turning inside out, appropriate

measures of model structure were choosen. These regularization parameters

included the perimeter, the area and the sum of the distances from cach
vertex to the models” center. The resulting 2D inversion was compared to
both an I, and non-ly minimum structure inversion of a traditional voxellated
model.

Models obtained using traditional implementations of minimum-structure

inversion involving cellular partitioning procedures typically have a fuzzy

smeared-out appearence. This can be partially circumvented by modify

8
the typical minimum-structure inversion algorithm to include an I;-type mea-
sure of model structure instead of the traditional sum-of-squares, or L-type

measure. This generates a more blocky and piecewise constant earth model.

However, these models often lack the complexity needed to describe the sub-

surface and tend to smear along the direction of data collection,
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Defining a model using a mumerically defined shape in 2D and 3D is

am accepatable form of model parametrization. Regulating the inversion by

using measures of model structure allows for a robust and reliable algorithm

that preforms better than its non-regulated counterpart. The results are
‘more consistent with our real or percieved knowledge of the subsurface and

ditional cellular

do not have the fuzzy, smeared-out appearence typical of t

models using sum of squares measures.

As the primary interest of this thesis is model parametrization as it ap-

to the

wersion procedure, both the forward and inverse problems were

plificd by assuming a straight raypath from source to reciever. In order

to better understand as well as mimic the affect velocity variation has on the

inversion procedure, future studies should incorporate ray theory into the
algorithm.

There is the potential for widespread use of this inversion procedure by

tweaking how the surface is numerically defined. Parametrizing a model using

spherical harmonic low for a more smoothly varying

. for example, woule

surface as opposed to the sharp-cdged, constant anomaly used in this thesis

The inversion procedure could then be applied to a much wider variety of

geological situations.

Finally, the thesis showed that an inve

on for a sharpe-edged, constant

anomaly does a better job recovering synthetic data from a sharp, uniform

subsurface feature than a minimum-structure tomographic approach. The

synthetic data used is consistent with the actual geology of an ore deposit
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The resulting algorithm provides geophysicists with a more geology-specific

inversion tool that out-performs its tradiational counterparts.
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Appendices

Please see attached compact disc for subsequent appendices. Each appen

corresponds to a file folder. The contents of each folder are given below




Appendix A

Inversion 225 cell mesh

Inversion 3600 cell mesh

9%



Appendix B

11 type inversion 3600 cell mesh
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Appendix C

Background velocity unknown
< Forward problem 6 segments
 Jacobian calculation 6 segments

<> Inversion minimization of misfit 6 segments

Background velocity known
<+ Forward problem 6 segments
<+ Jacobian caleulation 6 segments

< Inversion minimization of misfit 6 segments




Appendix D

Background velocity unknown
< Forward problem 10 segments
< Jacobian caleulation 10 segments

< Minimum structure inversion 10 segments

Background velocity known
< Forward problem 10 segments
< Jacobian caleulation 10 segments

< Minimum structure inversion 10 segments
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Appendix E

Background velocity unknown

<+ Forward problem 20 segments
<+ Jacobian caleulation 20 segments

<+ Minimum structure inversion 20 scgments

Background velocity known
< Forward problem 20 segments
<+ Jacobian calculation 20 segments

< Minimum structure inversion 20 segments
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Appendix F

3D model parametrization
< mesh_refine
> mesh_refine_tri4
< mesh_refine_tri6
sphere_project

sphere_tri
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Appendix G

Minimization of travel time 3D
< Forward problem for a sphere
5 Forward problem minimization of travel time tessellated sphere

< Fermat’s Principle

Shooting method 3D

< Forward problem shooting method 3D
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Appendix H

3D numerically defined surface
< Forward problem 3D
» Jacobian Caleulation 3D

» Minimum structure inversion 3D tessellated surface

\
102















	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Blank page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgments
	0008_Table of Contents
	0009_Page v
	0010_Page vi
	0011_List of Tables
	0012_List of Figures
	0013_Page ix
	0014_Page x
	0015_Page xi
	0016_Page xii
	0017_Introduction
	0018_Page 2
	0019_Page 3
	0020_Page 4
	0021_Page 5
	0022_Page 6
	0023_Page 7
	0024_Page 8
	0025_Page 9
	0026_Page 10
	0027_Page 11
	0028_Page 12
	0029_Page 13
	0030_Page 14
	0031_Page 15
	0032_Page 16
	0033_Page 17
	0034_Page 18
	0035_Page 19
	0036_Page 20
	0037_Page 21
	0038_Page 22
	0039_Page 23
	0040_Page 24
	0041_Page 25
	0042_Page 26
	0043_Page 27
	0044_Page 28
	0045_Page 29
	0046_Page 30
	0047_Page 31
	0048_Page 32
	0049_Page 33
	0050_Page 34
	0051_Page 35
	0052_Page 36
	0053_Page 37
	0054_Page 38
	0055_Page 39
	0056_Page 40
	0057_Page 41
	0058_Page 42
	0059_Page 43
	0060_Page 44
	0061_Page 45
	0062_Page 46
	0063_Page 47
	0064_Page 48
	0065_Page 49
	0066_Page 50
	0067_Page 51
	0068_Page 52
	0069_Page 53
	0070_Page 54
	0071_Page 55
	0072_Page 56
	0073_Page 57
	0074_Page 58
	0075_Page 59
	0076_Page 60
	0077_Page 61
	0078_Page 62
	0079_Page 63
	0080_Page 64
	0081_Page 65
	0082_Page 66
	0083_Page 67
	0084_Page 68
	0085_Page 69
	0086_Page 70
	0087_Page 71
	0088_Page 72
	0089_Page 73
	0090_Page 74
	0091_Page 75
	0092_Page 76
	0093_Page 77
	0094_Page 78
	0095_Page 79
	0096_Page 80
	0097_Page 81
	0098_Page 82
	0099_Page 83
	0100_Page 84
	0101_Page 85
	0102_Page 86
	0103_Page 87
	0104_Page 88
	0105_Page 89
	0106_Page 90
	0107_Page 91
	0108_Page 92
	0109_Page 93
	0110_Page 94
	0111_Page 95
	0112_Page 96
	0113_Page 97
	0114_Page 98
	0115_Page 99
	0116_Page 100
	0117_Page 101
	0118_Page 102
	0119_Blank page
	0120_Blank page
	0121_Inside Back Cover
	0122_Back Cover

