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ABSTRACT

Quantitative risk analysis (QRA) is an integral and essential part of risk analysis, which
quantifies the risk of any unwanted events in industrial process facilities. However, the
application of QRA in the industrial process facility is stil limited. One major barrier is

handling uncertainties while performing QRA using available techniques. Other

portant weaknesses include unrealistic assumptions and the absence of a dynamic
aspect in QRA. These weaknesses undermine the eredibility and uility of the output
results from QRA.

Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are two common and

important techniques of QRA for evaluating the likelihoods of unwanted occurrences.

‘Traditionally, both techniques impose two major assumptions to simplify the analy
“The first assumption is related to the likelihood values of input events, and the second
assumption is concerned about interdependence of events (for ETA) or basic-events (for
FTA). FTA and ETA both use crisp probabilities; however, to deal with uncertainties, the

probability distributions of likelihoods of input events can be assumed. These probability

distributions as well as the crisp probabilities are often hard to come by, and even if

available, they are subjected to different types of uncertainties including incompleteness

(partial ignorance) and imprecision. Furthermore, both FTA and ETA assume that events
(or basic-events) are independent. In practice, these assumptions are often unrealistic and

introduce data and model uncertainties while performing FTA and ETA.

Bow-tie analysis has recently gained popularity as another important technique for
QRA. It can combine both FTA and ETA techniques and describe the total accident

scenarios for an unwanted event, also called a critical event (CE), in a common diagram

with two parts: the first corresponds to a fault tree defining possible causes leading to the
CE and the second represents an event tree to reach possible consequences of the CE.
Unfortunately, in spite of having this feature, the application of bow-tie analysis in QRA
is still limited to a graphical representation of causes and consequences for the unwanted

event.



o overcome the challenges of QRA, this research explores uncertainty handling
approaches for analyzing the fault tree and event tree, which further extends to bow-tie
analysis for developing a generic framework utilizing different techniques for QRA.
First, fuzzy- and evidence theory- based approaches have been developed to express the
uncertainties related to data and model inadequacy of input events (events or basic
events) in FTA, ETA and Bow-tie analysis. Second, an updating inference comprised of
another two approaches, fuzzy-bayesian and IAE (integrity of available evidence)
approaches, has been developed to integrate the dynamic aspect in QRA. In addition to
these approaches, a sensitivity analysis method has also been developed for bow-tie
analysis to identify the important risk contributors and evaluate corresponding risk
reduction.

Applications of the developed frameworks, approaches and updating inferences
have been explored in four different illustrative examples. The first example is the event
tree analysis of an “LPG release” where the likelihoods of different outcomes of the event

tree are determined in an uncertain data environment. In the second example, two

separate sub-examples, i.c., “fault tree of a runaway reaction and “event tree of an LPG
release” are considered to describe the utility of the developed approaches in case of data
and model uncertainties. The third example discusses the application of the developed
framework and approaches for bow-tie analysis of the BP Texas city accident. In the final
example, updating approaches have been used in the bow-tie analysis of an offshore oil &
gas process facility. In these examples, the likelihood of occurrence has been estimated
for the unwanted event, critical event and outcome events, and the important risk
contributors have been also determined. The analysis of these results helps to perform a

systematic QRA in uncertain and dynamic conditions, and to measure the risk and likely

ties.

Tosses associated with an unwanted occurrence for industrial process fi

Keywords: Quantitative risk analysis (QRA). uncertainty, interdependence,
likelihoods, fault tree analysis (FTA), event tree analysis (ETA), fuzzy set, evidence
theory, Bow-tie, and updating
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Chapter 1: Introduction and overview

CHAPTER 1

Introduction

1.1 Risk analysis of industrial facility

An industrial process facility comprises a number of interacting elements termed as sub-

systems, smallest-subsystems and components that i

unison assist the system to perform

its main purpose. A sample flow diagram of a diesel hydro-water flare system is provided

Figure 1.1 that demonstrates the interag

n between the different elements in a typical

. Depending on the type of services, the faci

dustrial faci (system) can be a

nuclear plant, oil & gas facility, chemical plant, acrospace industry, manufacturing

facility or other industrial facility. Among these, the vulnerabilities of nuclear, oil & gas
and chemical plants can be significantly higher since during the period of operation, these
plants usually deal with a large inventory of hazardous materials such as radioactive,
flammable hydrocarbon, toxic and fugitive chemical compounds (Crowl and Louvar,
2002). Moreover, most of the time, the process area of these industries is highly
congested due to complex piping systems, reactors, and other subsystems, including high
and low-pressure compression, separation, storage, blending, and mixing units, and
necessary components such as 1,2,3-way valves, relief valves, flanges, gauges, sensors,

and 5o on. These operating conditions can be highly vulnerable, and an oceurrence of a

single event such as fugitive emissions, toxic releases, or a valve leakage may escalate

different adverse consequences and entail major losses to the facility (Modarres, 2006).
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‘The consequences of such occurrences are often severe and exceedingly damaging and
destructive to people, environment, economy and normal operating condition of the

facility.

Figure 1.1: Process flow diagram of a typical industrial facility

Colloguially any unwanted or undesired occurrence in the facility is termed as an
incident, Hazards generally refer to those events that have the potential to cause an
incident or accident. An accident is a resulting outcome of an occurrence of a single
incident or multiple incidents or events. Risk analysis is widely recognized as a
systematic process to model the probable accident scenarios for the industrial facility and

quantify the losses and ina of risk 2004). It

has now become a common term which has various implications and is usually defined as
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a combination of the likelihood of occurrence of an unwanted event (accident) and its
consequences. Alternatively, it can also be defined with the following explanations:

Kaplan and Garrick (1981) define “risk as a set of scenarios (occurrences), each of

‘which has a probability (likelihood) and consequences™.
Kumamoto and Henley (1996) define “risk as collections of likelihoods and likely
occurrences”.

AIChE (2000) defines “risk as a combi

tion of probability of the occurrence and
its consequences”.

Crowl and Louvar (2002) define “risk as a probability of a hazard resulting in an
accident”.

Ayyub (2003) defines “risk as a characteristic of an uncertain future and is neither a
characteristic of the present nor past. It results from a hazardous event or sequence of

hazardous events referred to as causes and if it occurs, results in different adverse

consequences”.

Bedford and Cook (2001) define “risk with two particular elements: hazard (a

source of danger) and uncertainty (quantified by probability).

-

involved in a potential accident o incident is evaluated based on systematic
analysis which usually comprises a number of steps including a detailed qualitative and
quantitative evaluation (Modarres, 2006; Markowski et al., 2009). A detailed risk

analysis is always designed to answer three fundamental questions about an occurrence in

a facility: (1) what can happen and why? (2) what are the likelihoods?, and (3) what are

the consequences? (Modarres, 2006). Four major steps, namely: hazard identifications,
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consequence assessment, likelihood assessments and risk characterization have to be

ions

conducted in a comprehensive risk analysis in order to get the answers to these que:

(Ferdous, 2006). Figure 1.2 provides the logical connection between these steps for a risk
analysis. In risk analysis, the first step, hazard identification, identifies the potential

events or hazards that cause an accident or incident to happen. The second step,

consequence assessment, defines the possible outcomes along with the measurement of
degree of negative effects observed duc to such outcomes. The third step, likelihood
assessment, provides an assessment of expected frequency (rate of occurrence) or
probability (chance of occurrence) of occurrence of an accident as well as outcome
events. The final step, risk characterization evaluates the risk associated with an accident
as a function of its consequence and probability (or frequency) of occurrences, and

s the major sources of risk.

Qualiatve evalustion | __Quantiative evaluation
ni. ;
i

Hazard Risk
Identification

Risk evaluation

Likelihood estimation

Consequence evaluation
i

source.

Figure 1.2: Steps in risk analysis (Ferdous, 2006)
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12 Significance of risk analysis

An industrial facility can never be completely safe, and cannot be totally risk free.

However, an appropriate risk analysis improves the degree of inherent safety and ensures
the maintenance of a risk level that is as low as reasonably practicable (ALARP). A
study of HSE (1996) and Mansfield et al. (1996) revealed that around 80% of industrial
accidents start from major or minor incidents during a process operation. The potential
source of these incidents includes riser or process leaks, fire, explosion, pipeline rupture,
vessel rupture, chemical release, or design faults of a facility (Pula, 2005, Ferdous 2006).
Rapid industrialization can be a threat for increasing these sources of risky incidents and
morcover, their inadequate control also increases the probability of oceurrence of
industrial accidents. These are reflected in a few industrial accident examples that have

oceurred in the last few decades, such as the Flixborough, England accident, which cost

the lives of 28 people, the whole plant and many injuries; and the Bhopal India accident,

which killed more than 2000 ci

jans and injured over 20,000 (Crowl and Louvar, 2002).
A massive explosion in Pasadena, Texas on Oct. 23, 1989, resulted in 23 fatalities, 314
injuries, and capital loss of over $715 million (Lees, 1996). On March 23, 2005, the
Isomerization unit explosions of British Petroleum, Texas City, killed 15 people and
injured over 170 persons (BP, 2005; Mogford, 2005, CSB, 2007). In a recent accident, on
August 10, 2008, heavy explosions at the Sunrise propane storage facility, Toronto,

caused 2 peoples’ death, and 1000 people were evacuated (CBC,2008). The investigation

tor

team of BP's Texas city explosion has revealed that the inappropriate level in

design of the Raffinate Splitter was one of the main contributors to this accident
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(Mogford, 2005, CSB, 2007). Similarly, the history of all previous industrial accidents

cledrly identifies that most of these accidents occurred due to improper identification of

risk contributors and correl:

catastrophic accidents mentioned above rarely happen in an industrial facility, but minor
incidents commonly occur on a day to day basis and result in many occupational injuries
and illnesses, and cost billions of dollars every year. An effective risk analysis and safety

management strategy can easily restrict and mitigate the occurrence of these types of

accidents for industrial facilities.

People today are very aware of industrial risks, and there is pressure to develop a
systematic methodology for estimating financial and environmental risks. The ultimate

goal of any risk management plan is to control risk as well as to prevent the major or

minor incidents that oceur in process faci

Institute of Chemical Eny

analysis strategy for the chemical process industry. Now all developed countries follow
specific guidelines for industrial safety to maintain risk below a desirable level (such as
ALARP). Crowl and Louvar (2002) mentioned that more than 50 federal regulations of
developed countries are directly related to process safety. A few safety management
organizations such as the Occupational Safety and Health Administration (OSHA), the
: Process Safety Management (PSM), the Environmental Protection Agency (EPA) and the

w Risk Management Program (RMP) have generally worked to introduce the miti

industri

Analysis) for federal or state regulations (Ferdous, 2006).

ns of these contributors with an accident. However, the

ies on a daily basis. In 2000, the American

ers (AIChE, 2000) developed guidelines for quantitative risk

risk into the SIL (Safety Integrity Level) or LOPA (Layer of Protection



13 Risk analysis methodology

Risk analysis can be qualitative and quantitative. It estimates and predicts the risk
associated with unwanted events, measures societal risk, individual risk, potential loss of
life, probability of an accident, and reliability of a system. Qualitative evaluation is
usually performed at cach stage of system development to identify the possible hazards
with relevant causes. Most of the traditional qualitative evaluation methods, e.g. HAZOP

(Hazard and Operability Study), Functional Hazard Analysis, Safety Review, Checklist

Analysis, Relative Ranking, “What-if” Analysis, Preliminary Hazard Analysis (PHA),

and Failure Modes and Effects Analysis, are desc

ve and generally used for
identifying possible system hazards (Wang, 2004; Modarres, 2006). Normally these

methods are used in preparation for consequence analysis or failure frequency analysis

‘modeling of the risk analysis process, and also when a more detailed study is not required

(Hauptmanns, 1988; Lees, 1996, 2005). Afier identifying the possible hazard scenarios of

a system, the principal task of risk analysis is to determine the logical causes and

consequences for the identified hazard scenarios and to evaluate the risk in a quantitative
manner for the unwanted events.

Quant

ive risk analysis (QRA) for a process system can either be deterministic or
probabilistic (Wang, 2004, Ferdous 2006, 2009). The deterministic methods focus on
consequence assessment (such as worst-case scenario analysis), while the probabilistic
approaches consider both frequency and consequence. The probabilistic approach of
QRA evaluates risk for an industrial facility in terms of its numerical evaluation of

consequences and frequencies of an accident or an incident. Probabilistic data and
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information about the possible hazard scenarios of an accident are the main required
parameters of probabilistic QRA. The final outcome of QRA is a numerical evaluation of
the overall facility in terms of calculating the probability of occurrences of potential
hazards and their contributions towards risk.

A variety of techniques including Fault Tree Analysis, (FTA), Event Tree Analysis
(ETA), Cause-Consequence Analysis (CCA), Human Reliability Analysis (HRA) and the

latest technique, “Bow-tie” analysis have been used in QRA to perform risk analysis

(CCPS, 1992; Lees, 1996, Badreddine and Amor, 2010). This thesis focuses on

improvements in the evaluation strategy of fault tree, event tree and bow-tie diagrams for
quantitative treatment of risk analysis. Brief overviews of FTA, ETA and bow-tie
analysis are presented in different sections and chapters of this thesis. Some fundamentals
about FTA ETA and bow-tie analysis techniques have been described in the following
sections. The evaluation and analysis strategy of these techniques is discussed in

Chapter 2.

1.4 FTA, ETA and Bow-tie analysis

FTA, ETA and bow-t ly used for

e analysis are diagrammatic methods and extens
investigating the potential risk of events, especially where process safety and risk
management is a major concern (Kumamoto and Henley, 1996; CMPT, 1999; Crowl and

Louvar, 2000; Lees, 2005; Modarres, 2006; Badreddine and Amor, 2010). An event tree

construction starts with an unwanted event, such as an initiating event, and works
forwards 1o its consequences; whereas a fault tree starts with an unwanted event (top-

event) and works backwards to its causes (Haasl, 1965; Vesely ef al., 1981; Hauptmanns,
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1980, 1988; AIChE , 2000; Andrews and Dunnett 2000). In the bow-tic diagram, the

tiating event and unwanted event are tied to a single common event, and the causes and
consequences of such an event are presented on the left and right sides of the diagram
(Cockshoti, 2005; Chevreau e al, 2006; Duijm, 2009; Markowski er al., 2009;
Badreddine and Amor, 2010). The quantitative evaluation of ETA estimates the

likelihood (frequency or probability of occurrence) of possible outcomes for the initiating

event. On the other hand, FTA quantitatively measures the likelihood (probability of
oceurrence) of the unwanted event, as well as the contribution of different causes to that
event. Like FTA and ETA, bow-tie analysis estimates the likelihood of occurrence of
outcome events in an integrated way with the development of a logical relationship
among the causes and consequences of an occurrence in the industrial facility
(Markowski et al., 2009; Badreddine and Amor, 2010). In QRA, the following basic
terminologies are used to perform FTA, ETA and bow-tie analysis in the risk evaluation

process.

1.4.1 Basic terminology

g event: Any unwanted, unexpected o undesired event (e, system o

equipment failure, human error or a process upset, toxic or flammable release) refers to
the initiating event for the event tree.

Events: The events following the initiating event are termed as precursor events, or

sometimes termed only as the events for the event tree (e.g., ignition, explosion, release

drifting).
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Outeome events: The possible effcts, scenarios or outcomes of an initiating event, are
known as outcome events (e.g., fireball, vapour cloud, explosions).

Top-event: The unwanted event that is placed at the top in a fault tree, and further
analyzed to find the basic causes, is known as the top-event.

Basic-event: The basic causes that are not further developed or defined are known as
basic-events (e.g., equipment or components failure, human failure, external event). It

represents the basic causes for the fault tree.

Intermediate Events: An event in the fault tree that can be further developed by basic-
events is known as an intermediate event.

Cri

I events: The

g and unwanted event is commonly termed as a eritical
event in the bow-tie analysis.
Input events: Bow-tie analysis uses a common term “input events” to describe the
causes and consequences for a critical event.

For simplicity, instead of using basic-event and event for FTA and ETA,
respectively, henceforth in the text the common term “event” is used, unless stated
otherwise.

142 Challenges in FTA, ETA and Bow-tie analysis

ETA uses the combination of events and their probability to evaluate frequency or

probability of occurrence of possible outcome events following the ing event,

whereas FTA uses the sequence and the probability of basic-events to estimate
probability of a top-event. In bow-tie analysis, the probability of corresponding input

events in the fault tree and event tree part are employed to determine the probability of



the critical event and outcome events, as well as the contribution of input events leading

to a critical event and outcome events.

Common techniques in QRA often make two major assumptions in order to

simplify the risk evaluation strategy of the industrial facility. First, the probability of

occurrence for the basic-events, events or input events is assumed to be crisp and
precisely known (Vesely et al, 1981; CMPT, 1999; Sadiq et al,, 2008). Secondly, the
interdependencies among all kinds of input events in FTA, ETA or bow-tie are
independent (CMPT, 1999; Lee, 2005, Modarres, 2006; Sadiq ef al., 2008). In practice,
because of variant failure modes, design faults, poor understanding of failure
mechanisms, as well as the vagueness of system phenomena, it is often difficult, if not
impossible, to acquire precise probability data for the industrial components (Sawyer and
Rao, 1994; Lin and Wang,1997; Wu, 2004; Yuhua and Datao, 2005). Sometimes it is not
even easy to accumulate the data at all for every component. Further, particularly for an
industrial process facility, it s not necessarily true that the relationships among the events
are independent (Ferson et al., 2004; Sadiq et al., 2008).
15 Scope of research
‘The scope of the present research involves resolving the above mentioned challenges to
carry out a reliable QRA. It includes:
i, Relaxing the assumptions related to the assignment of crisp likelihood and
relationships in different techniques of QRA. The first assumption s related to
the data uncertainty, while the second assumption is related to the dependency

or model uncertainty. These assumptions limit the application of QRA to only
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i,

two specific conditions: firstly, when “enough’ data about a component’s
failure or event’s occurrence are available, and secondly, when the subsystems
and components act independently in an industrial system.

Relaxing the traditional assumptions in the bow-tie analysis. Bow-tie analysis
inherits the assumptions of FTA and ETA. These include the event’s
independence and data uncertainty.

Introducing the dynamic aspect in QRA. The traditional QRA ither using
bow-tie or FTA and ETA is unable to update the risk with time as new

evidence or information becomes available.

. Introducing fuzzy and evidence theory based formulations to handle

uncertainties in QRA. The traditional QRA s often challenged with subjective
and incomplete information, leading to an unreliable risk estimate. Fuzzy set

theory helps to overcome subjective uncertainty in the information, whereas

evidence theory helps to overcome incompleteness in the information. Thus,

use of these formulations enhances overall reliability of the risk estimate.

1.6 Research objectives

The overall objective of the research is twofold; first, to address different kinds of

uncertainties in quantitative risk analysis, and second, to conduet dynamic risk analysi

In order to achieve this, this research explores the methodologies and approaches for

and incorporating the dynamic aspect.

characterization of uncertainties, making use of expert knowledge for the missing data,
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More specifically, the research has the following objectives:

[1] to develop a quantitative framework for addressing the uncertainty issues in

FTA and ETA. This includes:

« development of a fuzzy-based approach and evidence  theory-based
approach to deal with the data uncertainty.

« development of empirical equations to define interdependent relationships
among the events or basic-events during analysis in order to address the
model or dependency uncertainty.

2] to develop a framework for bow-tie analysis, which includes

o development of a qualitative framework for constructing a bow-tie
diagram to represent structural linkages among causes and consequences
of an occurrence.

« development of a quantitative framework for analyzing the bow-tie under

different uncertainties.

o development of a systematic sensitivity analysis approach to predict and
identify the most important input events as risk contributors.
[3] to develop an updating inference for revising and improving carlier analysis

with better confidence by incorporating new industrial data or information

into the analysis.

[4] to demonstrate the utlity of the developed approaches and methodolog

industrial application through illustrative examples or case studies.
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Prototype computer codes are programmed in the Excel and MATLAB
environment to demonstrate the applicability of the developed approaches using
illustrative examples. An electronic appendix with all developed simulation codes and
analysis results is added at the end of this thesis. The ultimate goal of this research is to

develop a standard QRA tool through a computer package and to guide decision makers

toward more formal and more robust analysis to prevent minor incidents and major

accidents, and reduce risk in an industrial facility.

1.7 Thesis ove

A manuscript based thesis has been written to describe the entire work of the developed

research. It combines four manusc

four different chapters (i.c., Chapters 3, 4, 5

of

and 6) following the thesis writing guidelines approved by Memorial Universi

Newfoundland. The logical connections between the four chapters are provided, as the
first two manuseripts, published in two different journals, individually assist to achieve

the first objective of the thesis; and the last two manuscripts, submitted to two different

journals, separately help to achieve the second and third objectives of the thesis. The case

studies described in each manuscript individually assist to achieve the fourth objective of

the thesis. The organizational structure of the entire thesis is shown in Figure 1.3 and the

overview of different chapters is discussed hereafter:

Chapter 1 introduces a broad overview of risk analysis, its methodologies, th
significance and the current practices. Basic definitions and assumptions for traditional

techniques of QRA are also discussed. Finally, the current challenges in QRA are

discussed and the research objectives are




Chapter 1: Introduction and overview
Chanter 1: Introduction
Chanter 2: Literature Review
Chapter 3: Development of Chapter 4: Development of approaches
approaches to handle data to formulate data and model/dependency
uncertainty in ETA uncertainty in ETA and FTA
Chapter 5: Extension of developed approaches

for bow-tie analysis under uncertainty

Chapter 6: Updating approaches for bow-
tie analysis when new data become
available

Chapter 7: Conclusions and
Future research

Figure 1.3: Thesis organization

Chapter 2 provides a discussion of uncertainty related issues in the context of the

techniques used in QRA, especially FTA, ETA and bow-tic analysis. The recent literature

reviews on available techniques and methods are also discussed.



Chapter 3, Chapter 4, Chapter 5 and Chapter 6 comprise four different rescarch

papers which ually explore the frameworks, methodologies, and approaches to
handle uncertainty, and integrate the dynamic aspects in FTA, ETA and bow-tie analysis.
Two of these papers, have already been published and others have been submitted for
publication in international journals.
Research paper I
Handling data uncertainties in event tree analysis (2009). Process Safety and
Environment Protection, 87(5):pp. 283-292.
Research paper 2
Fault and Event Tree analyses for process systems risk analysis: uncertainty
handling formulations (2011). Risk analysis: an international journal, 31(1):
Pp86-107.
Research paper 3
Analyzing system safety and risks under uncertainty using a bow-tie diagram: an
innovative approach. Process Safety and Environment Protection (submitted for a

tion, November, 2010).

journal publi
Research paper 4
Handling and updating uncertain information in bow-tie analysis. Journal of Loss
Prevention in the Process Industries (accepted).
Chapter 7 provides the summary and conelusions, and describes the originality of

the research. In addition, recommendations for future research are provided.
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CHAPTER 2

Literature Review

2.1 Introduction

n covers the discu

(0 three sections. The first sect

dex

The literature review n
of different steps involved in traditional FTA, ETA and bow-tie analysis in relation to
performing QRA for an industrial facility. The second section discusses the types of
uncertainty involved at various stages of QRA using FTA, ETA and bow-tie analysis.

Various formulations to handle uncertainty are also deseribed. Finally pros and cons of

different uncertainty formulations are reviewed.
22 FTAETA and Bow-tic analysis

FTA, ETA and bow-tie analysis have been extensively used as important techniques of
QRA for developing graphical relationships of different causes, consequences and

unwanted events that may lead to accidents in the industrial facility (AIChE, 2000;

Ferdous 2006, Kalantarnia, 2009). These techniques help to minimize risk associated
with these accidents. Fault tree and event tree develop graphical models of causation and
consequences for the unwanted events (AIChE, 2000; Modarres, 2006), whereas the bow-

tie analysis goes one step further and develops an integrated logical structure from causes

to consequences (Cockshott, 2005; Markowski ef al., 2009). The fundamentals to develop
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and perform these techniques for industrial facilities are discussed in the following

sections.
221 FTA technique

Haasl et al. (1965) proposed the FTA technique and applied it to a wide variety of
problems including industrial safety and reliability assessment. Since then the application
of FTA has proliferated in every sector, especially where safety and risk analysis of

process systems are major concerns. FTA technique comprises the following steps:

. Faul tree development: A fault tree builds graphical relationships among the events
and an unwanted event using logic gates. The unwanted event, termed a ‘top-event’,
is placed at the apex of the tree. Toxic chemical or flammable gas release, fire,
explosion, component rupture and malfunction are a few examples of a top-event.
Beginning with the top-event, the events and the intermediate events are
hierarchically placed at different levels until the required level of detail is reached.
The interactions between the top-cvent and the other events (e.g., basic-events,
intermediate events) are usually expressed using the *AND” or “OR” gate (Veseley

et. al., 1981). The events are placed at the bottom of the tree, and the intermediate

events, which can be further developed using the combinations of events or gate
events, are placed in between. A simplified fault tree diagram of a reactor shut down

system is shown in Figure 2.1 (AIChE, 2000).
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Shutdown

Pressurs tramsmiers|
signal i

Figure 2.1: Fault tree diagram of a reactor shutdown system

2. Qualitative evaluation: This identifies failure modes and weakest links in a fault tree.
“The failure mode refers to the minimal cutsets (MCSs), which are a combination of
basic events (BE), and shows the shortest pathway that leads to the fop-event. Top-

down approach and bottom-up approach are two simy

ified algorithms generally
preferred to determine the MCSs for a simple fault tree (Hauptmanns, 1988;
Kumamoto and Henley, 1996; Bedford and Cook, 2001). The MCSs using the top-

‘down algorithm for the fault tree diagram are shown in Table 2.1.
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‘Table 2.1: Minimal cutsets (MCSs) for the fault tree

Cut Sets (€) MCSs

c BE,

(e BE;

Cs BE;  BEy

[ BE;  BE,  BEs

Cs BE, BEs  BE,

Cs BEs _ BEs __ BE; _ BEs

3. Quant

ve evaluation: Quantitative evaluation: Traditionally, crisp probability
values are used to determine the probability of the top-event based on the structure of
the fault tree from bottom to top-event (Lawely, 1980; AIChE, 2000). Equations 2.1
and 2.2 are used to evaluate the “OR” and *AND" gate operations, respectively. For
the fault tree shown in Figure 2.1, the top-event probability (Pror) is estimated to be
0.191. In addition, the quantitative evaluation also helps to rank MCSs for a fault tree

(Veseley et al., 1981.

n —l'[(l-l’m,,) @n
2

Paw =[1Pse, @2
]

222 ETA technique
Process systems in nuclear and chemical industries use ETA o evaluate the effectiveness
of installed protective systems and to determine the possible effects in case of failure

(Ramzan et al,, 2007). Rausmussen (1975) and Arendt (1986) used ETA in pre-incident
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and post-incident applications for the process facility. The following steps are usually
used to perform ETA in process systems:

1. Event tree development: Contrary 1o the fault tree, event tree construction starts with

the initiating event and proceeds us reaches the final consequences. It is simpler

than the fault tree, since instead of using logic gates, the initiating event uses
dichotomy (Principle of Excluded Middle) i.c., success/ failure, true/ false or yes/no,
to propagate the events’ consequences in different branches of the tree (AIChE, 2000;
Lees, 2005). An example of an event tree diagram for a flammable gas release is

shown in Figure 2.2.

Qualitative Evaluation: The individual paths that are followed by the different

branches identify the possible outcome events for a particular i

itiating event. For the
initiating event, the qualitative evaluation categorizes the credible consequence as a

precursor event at different branch points and the possible effect as an outcome event

at the end point of the event tree. This evaluation helps to recognize the additional
safety systems requirement for a process facility to achieve lower, targeted likelihood
of occurrence of an untoward event. The qualitative analysis for the flammable gas

release event tree is summarized in Table 2.2.
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‘Table 2.2: Qualitative analysi
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igure 2.2: Event tree for flammable gas release

events (i)

Explosion

Fireball

Explosion at Y

Fireball at Y

of flammable gas release event tree

Events Name

Name

Initiating event

Flammable gas release from a gas process unit

Precursor events

Ignition
Explosion
Release drifting by wind to Y
Explosion at Y

Outeome event

Explosion
Fireball
Explosion at Y
Fireball at Y
Gas dispersion from release point
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3. Quantitative evaluation: Quantitative evaluation estimates the frequency of an
outcome event and ranks the consequence severity of outcome events for an event

tree.

e the FTA, the deterministic approach in ETA also uses crisp data for the
events’ probability (precursor events) to calculate the frequency of outcome events
using Equation 2.3. Based on probabilities assigned in Figure 2.2, the frequency of

outcome events is calculated (Table 2.3).

21 Pg 23)
i1

Table 2.3: Outcome events’ frequency of flammable gas release event tree

Outcome Event Frequency
Explosion 6.10E-06
Fireball 5.50E-05
Explosion at Y 240E-06
Fireball at Y 270E-07

Gas dispersion from release point__4.10E-06

223 Bow-tie analysis technique
Since the early nineties, bow-tie analysis has become a well accepted technique,
especially when the Royal Dutch/Shell Group developed it for the Piper Alpha disaster
(RPS, 2009). Currently, this technique has been used as a constructive risk management
tool in many industrial facilities (Dianous and Fiévez, 2006; Duijm, 2009; Badreddine
and Amor, 2010). The interest in using the bow-tie concept is increasing daily since the
unwanted consequences of an initiated accident can be pictorially analyzed from the root

causes of such an occurrence. A brief review of the bow-tie technique is provided below.
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i

2.

Bow-tie development: The bow-tie diagram is developed for a critical event. A
complete scenario from basic reasons to probable outcomes of the critical event is
structured in two parts of the diagram. The left side of the diagram represents basic

causes of occurrence whereas the right side represents the possible consequences. A

sample graphical structure of the bow-tie diagram is presented in Figure 2.3.

||= Basic R _i Probable C |

Critical Event
(e.g., Coolant loss,
reactor shutdown,
filmable release),

First part Second Part

igure 2.3: Structure of a “Bow-tie” diagram
Evaluation: A Fault tree model is used to analyze the left part of the bow-tie diagram,
which basically describes the various parallel and sequential combinations of faults,
failures and errors (causes) resulting in the occurrence of a critical (top) event. In
order to represent the possible consequences, the event tree model is used to analyze
the right part of the diagram (Markowski ef al., 2009; Badreddine and Amor, 2010).
Once the bow-tie has been constructed, the quantitative evaluation is subsequently

carried out with the equations and operations used in FTA and ETA. Assuming the
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independence of basic causes, the MCSs based evaluation uses Equations 2.4-2.6 to

perform bow-tie analysis (Markowski ef al., 2009).

ﬁ(l =G ) 24

@5

Pog, = Pepx[ 1 7, @6
il

In the above equations NC is the total number of MCSs (C) and m is total number of

outeome events (OE) of the bow-

23 Uncertainty in QRA

231 Types of uncertainties

FTA, ETA and Bow-tie analysis are important techniques used to perform QRA. The

nally assume all input

credibility of these techniques is extremely important, They tradi

variables (c.g., basic events, events or input events) are crisp or deterministic and don’t

consider interdependencies among variables. The point estimate of risk can be quite
conservative (precautionary principle) (Hammonds ef al, 1994). In practice, an industrial
facility has a large number of components, sub-systems, systems and control mechanisms

which may lead to uncertainties in the prediction of outcome events, and they are

represented as different end events for the bow-tie diagram. Similarly, the top-event or

the critical event in a fault tree may occur due to large numbers of combinations of failure




modes and components involving two or more events. Therefore, the likelihoods of
occurrence of the critical event or outcome events may randomly change according to the
behaviour of process components or the nature of unwanted events. Moreover, especially
in the carly design stage of process systems, when statistical data for the events are not
available, the experts’ knowledge o experience is often used alteratively.

Uncertainty is such an unavoidable and inevitable term in risk analysis that it often

challenges the eredibility and utlity of output results from QRA (Abrahamsson, 2002).
Without an appropriate definition and classification of uncertainties involved in different
stages of QRA, the practical use of the output results in absolute terms becomes limited.

ies are classified as two types, aleatory (or stochastic) and epistemic

Broadly, uncertai
(or knowledge-based) uncertainty (Apostolakis, 1990; Thacker ef al., 2003; Helton, 2004;
Daneshkhah, 2004; Ayyub and Klir, 2006). The most important distinction between these
W0 types of uncertainty is that aleatory uncertainty means the objective or stochastic
uncertainty which may occur due to the natural variation or randomness or inherent
variability of the system (Agarwal e al., 2004). Aleatory uncertainty is irreducible
(Abrahamsson, 2002). Epistemic uncertainty, on the other hand, refers to subjective or
knowledge-based uncertainty, that may arise due to incompleteness and imprecision

(Baraldi and Zio, 2008). Epistemic uncertainty can be reduced by collecting more data

and knowledge (Abrahamsson, 2002). Since the likelihoods and the interdependence
among the input events are often missing and depend on experts’ judgments, both

aleatory and epistemic uncertainty can appear in the FTA, ETA and bow-tie analysis.
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232 Uncertainty-based formulations

c izati ion, propagation, and i ion are the key factors to
formulate the uncertainty for QRA (Hammonds er al,, 1994, Ferdous 2009). The

uncertainty formulation assists the risk analysis to propagate and analyze the uncertainty,

and estimates the effect of data error in the final result (likelihood of a critical event and

output events). Several techniques have been developed to formulate the uncertainty for

risk analys

which are summarized in Table 2.4 (Wilcox and Ayyub, 2003). Some of

these, especially evidence theory, have not been tested much on FTA, ETA and bow-tie

analysis (Ferdous ef al., 2009b, 2011). The main focus of this study is to utilize fuzzy set
theory and evidence theory for addressing and handling the uncertainties in FTA, ETA

and bow-tie analysis.

Monte Carlo Simulation (MCS), based on probability theory has been used
extensively in characterizing the aleatory uncertainties (Suresh ef al., 1996, Vose, 2008).
“This technique sometimes extends to “higher order MCS” for addressing both types of
uncertainties in QRA (Baraldi and Zio, 2008). The outer loop of “higher order MCS”
generates random samples to address epistemic uncertainty, whereas the inner loop
generates random samples to characterize aleatory uncertainty for the uncertain input
parameters (Rao ef al., 2007). Besides probability theory, fuzzy sets and evidence theory
have recently been used in many engineering applications, especially where expert
knowledge is preferred as an alterative to define the input parameters (Cheng, 2000;

Sentz and Ferson, 2002; Wilcox and Ayyub, 2003; Bac ef al., 200

garwal et al., 2004;

Ayyub and Klir,, 2006 ; Ferdous ef al., 2006, 2009).
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‘Table 2.4: Uncertainty types and formulations

Types Nature Techniques

Stochastic, Objective,  Probability theory

Alealory irrgucible, Random  Evidence theory (random sets)

Fuzzy set theory
Evidence theory (random sets)
Info-gap theory

p-boxes

Imprecise, Incomplete,
Epistemic  Ambiguous, [gnorant,
Inconsistent, Vague

24 Uncertainty analysis i

QRA
In a comprehensive risk analysis, the aleatory and epistemic uncertainty can be further
classified into three more different sub-categories, which are introduced at different

stages of the analysis (Markowski ef al., 2009). According to the sources and natures of

the uncertainty, three sub-categories include data unce

y, model uncertainty and
quality uncertainty (Abrahamsson, 2002; Markowski ef al., 2009). Table 2.5 provides
detailed descriptions of these three categories of uncertainty. Quality uncertainty is

sometimes defined as completeness uncertainty and is usually introduced due to the

incomplete and incomprehensive evaluation of hazards. The data and model uncertainties
are respectively known as parameter and dependency uncertainty, which arise due to
insufficient or missing data and consideration of invalid or unrealistic assumptions (e.g.,
independent). A recursive effort is usually required when performing the HAZOP,
HAZID, and FMEA to reduce qualiy uncertainty in risk analysis (Skelton, 1997; AIChE,

2000; Crowl and Louvar, 2002). At this stage, a point needs to be cleared; that the

reduction or minimization of quality uncertainty for risk analysis is not an important

concemn for this thesis. Daa and model uncertainty in FTA, ETA and Bow-tic analysis

28
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are two major concerns in this study. Several formulations and techniques to deal with
these types of uncertainties have been developed so far, which are discussed below in the
following sections.

‘Table 2.5: Source of uncertainty in risk analysis

5 Category of uncertainty
Steps  Objectives  Techniques
- i S Complet Modeling meter
Taentity the
g possible hazards, nabil [Hpmeioqon
£ 'd’:m:'l,,:“"" HAZOR i, :“:“',;’_'ﬁ Wrong inenton vagenes in
menve LT skdal ISR
accident scenarios
A9)
o Define the possible Improper,
g5 outcomes, Measure imprecise and Lack or inadequacy
B8 deprecofadverse  Comseduence quate models  or vagueness
F3  impacton health, forsource terms, in values for model
52 propenyand disp varables

environmental physical effects

. o
] of events, Wronganalyis  Unavailble dat
BE o byl s SO
His accident bow-ieanaysis R

t
outcome cases relationships

Timied
£ assumptions innadequacy in Insufficient and
Risk indexes,risk exte olection 06 imited data on

ST Mo Ry, S appoprinte sk
) SLLOPA ™ momm el s
H aph population

interpretation of
ol eriteria

241 Data uncertainty

TA and bow-tie

‘The failure and the occurrence probabilities of input events in FTA,

analysis are difficult to measure and accuracy in their estimates is often questionable

because “enough’ data are often hard to acquire. The probability and fuzzy set theories
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have been used in the last few decades to overcome the situation effectively. Though the
techniques are capable of addressing random or subjective uncertainty in a limited
context, these are unable to handle the interdependent relationships, which may exist to

any extent between the basic-cvents, evens or input events.

2411 Probabiliy theory
Probability theory is the most common technique. To avoid the mathematical complexity
in the analytical methods of probability theory, Monte Carlo Simulation has preferably
been used to address uncertainties due to randomness in the estimates of input parameters
(e.g., events probability) (Hammonds ef al., 1994; Abrahamsson, 2002; Wilcox and
Ayyub, 2003; Vose, 2008). Ordinary MCS uses three basic steps: i) define the probability
density function (PDF) for uncertain parameters, i) generate the random sample from the
selected PDF, and iii) use the generated random sample in the model to produce the PDF

for the output (Hammonds ef al., 1994;Vose, 2008). In Figure 24, the uncertainty

analysis using MCS is schematically described.
Hauptmanns (1988) provided an MCS methodology for fault tree analysis.
Kumamoto and Henley (1996) also demonstrated a few examples of uncertainty analysis

in FTA using MCS.

larly, Suresh e al. (1996) addressed the data uncertainties (event

probability) and analyzed the fault tree using MCS. Baraldi and Zio (2008) demonstrated

the use of MCS in ETA.
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pdf for uncertain quantities

A A

P

Model

Risk

Output pdf
Figure 2.4: Uncertainty analysis using MCS

2412 Fuzy set theory

Zadeh (1965) first introduced the concept of fuzzy sets and since then thousands of
papers and books have been published to deseribe its application. Among them, Ross
(1995, 2004), and Ayyub and Klir (2006) especially elaborated the discussion of fuzzy
set theory for engineering applications. Other works that include Kenarangui (1991);
Rivera ef al. (1999); Huang et al. (2001), and Wilcox and Ayyub (2003) also attempted to

exploit fuzzy set theory in ETA. They used fuzzy numbers to express the event’s
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probability and used the extension principle to determine the frequency of the outcome.

events. Tanaka ef al. (1983), Misra and Weber (1990), Singer (1990), Sawer and Rao
(1994), Suresh et al. (1996), and Wilcox and Ayyub (2003) used fuzzy set theory to
define the probability of events and analyze the fault tree using fuzzy arithmetic

operations.

Cockshoti (2005), Dianous and Fiévez (2006), and Duijm (2009) described and

developed the probab

ic model for bow-tie analysis. This model helps to mitigate and
define and mitigate the pathways of an accident occurrence by evaluating the likelihoods
in a crisp boundary. Markowski e/ al. (2009) attempted to exploit fuzzy logic for the
bow-tie analysis, which is limited to only capturing subjective uncertainty, and unable to
characterize uncertainty due to inconsistent, incomplete and conflicting data as well as

the interdependence of input events in QRA techniques. Baderddine and Amor (2010)

proposed a probabilistic dynamic model for bow-tie analysis to study the impact of

different input events of bow-tie to limit the oceurrence of the top-event (so called ritical
event) and also to reduce the severity of its consequences in a more realistic and dynamic
manner.

Fuzzy set theory s able to address the uncertainties that are induced due to
subjective and qualitative expert judgments. The imprecision (vagueness) in the estimate
is expressed using a fuzzy number, which can have atriangular or trapezoidal
membership function. The fuzzy numbers are used in fuzzy arithmetic operations to

propagate uncertainties and obtain the fuzzy number for an output event. Uncertainty
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s using the fuzzy numbers for an output event 7, following the

(#, Py, P,) is shown in Figure 2.5.

Fuzzy numbers for uncertain quantities

LA

Model

%
4

Output fuzzy number
Figure 2.

uzzy set theory for uncertainty formulation

24.1.3  Evidence theory

Besides probability theory and fuzzy set theory, evidence theory has been use
analysis (Guth, 1991; Liu et al,, 2005; Ayyub and Klir, 2006). The motivation for the

development of this theory was to characterize the uncertainty caused by partial
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ignorance, knowledge deficiency or inconsistency about a system provided by different

experts (Sadiq ef al., 2006; Wang e al., 2006). Unlike traditional probability theory,

evidence theory considers the subjective proba assigned by an expert as evidence
and allocates them to the corresponding subsets of a power set. The unassigned mass due

10 unknown information is assigned as a mass for ignorance subset (as opposed o the

Bayesian approach that distributes missing evidence in remaining disjointed subsets). The

important features of evidence theory are:

Individual beliefs from different sources can be expressed through the probability

mass function that may bear incompleteness from partial o full ignorance,

A belief interval (a boundary of probability cstimation) can be obtained for each

uncertain parameter, and

Bias from a specific source can be avoided and conflicts among different sources
can be resolved through a belief structure (Sentz and Ferson, 2002).
Evidence theory generalizes classical probability theory through a belief interval
constructed by assigning upper and lower bounds for probabilities (Guth, 1991). It uses
four basic constituents: frame of discernment (FOD); basic probability assignment (bpa);

Belief measure (Be), and Plausibility measure (PI) to characterize the quality of

uncertainty, such as probability of basic-events, events or input events (Sadiq e al.,
2006). The theory also includes reasoning based on the rule of combination of degrees of

belief according to different evidence.
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For a given FOD, (@) in Figure 2.6, bpa (mass)

ributed over the set of all possible
subsets of ©: the power set of © and written 2°. The unassigned mass, caleulated by 1-m
() -m (~p), is assigned to the belief mass for the ignorance subset.

) Ignorance
i Py subset
{mul set, p, ~p, (p. ~p)} P 1

Bel (not p)

Figure 2.6: Formulation of uncertainty using evidence theory

2.4.1.4 Comparison of different theories
“The pros and cons of different uncertainty formulations are summarized in Table 2.6.
However, the traditional method is highly desired in FTA, ETA and bow-tie analysis
since the analysis complexity, input data requirement, and analysis time are minimum for
this method and the method is also well accepted (AIChE, 2000; Abrahamsson, 2002)
“The traditional method is incapable of handling any kind of data uncertainty, which most
of the time provides an unreliable analysis for FTA/ETA/Bow-tie analysis (Yang and
Suzuki, 1995; Abrahamsson, 2002). Probability theory is the most common method to

address random uncertail

ies (Vose, 2008; Ren etal., 2009). However, this requires
sufficient empirical information to derive the PDFs for the inputs (Hammonds et al.,
1994; Wilcox and Ayyub, 2003; Abrahamsson, 2002; Chojnacki, 2005, Ferdous, 2009).
Moreover, the classical MCS framework cannot differentiate random and subjective

uncertainties in the uncertainty analysis (Berztiss, 2001; Abrahamsson, 2002). Using

35
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fuzzy set theory and evidence theory, uncertainty analysis can be performed with
subjectively assigned fuzzy numbers and basic probability assignments (bpas) by the
experts (Wilcox and Ayyub, 2003, Ferdous, 2009). The fuzzy numbers are sufficient to
address the subjective uncertainty, when the empirical information is sparse or
completely unavailable for the uncertain parameters (Chojnacki, 2005; Ren ef al., 2009;
and Ferdous, 2006, 2009). Unlike probability and fuzzy set theory, the bpa in evidence

theory

appropriate to represent uncertainty associated with ignorance and
incompleteness of expert knowledge, and able to generalize the overall uncertainty in a
belief interval (Bae e al., 2004; Chojnacki, 2005). In some cases, the fuzzy arithmetic

th

and evidence theory-based formulations are still not well-defined, which often
acceptability in risk analysis.

‘Table 2.6: Comparison of different theories

Characteristics Traditionat  Probability - Fuzzyset - Evidence
theory theory theory

“Analysis complexity T 3 2 2

Data requirement 1 1 2 2

Handling data uncertainty 5 5 i )

due o subjectvity

Handling data uncerainty

due to incomplete and 3 3 2 1

inconsistent information

propagating different " . . 5

uncertaintics 2

Simplicity in the

interpretation of results J g 3 2

Data aggregation 3 3 2 1

Analysis time | 3 2 2

Theory acceptance | 2 3 3
3t Least desired; 2: Moderately desired; 1: Highly desired
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242 Dependency uncertainty
“The independence assumption might be convenient, but it s not always realistic for FTA,

ETA and bow-tie analy:

in QRA (Ferson, et. al., 2004). Vesely et al. (1981) showed
several examples of FTA where the events are not generally independent. The
dependency among the different events may be positively or negatively correlated. In

order to define various kinds of event interdependencies, Ferson ef al. (2004) used the

Frank copula, whereas Li (2007) proposed a dependency factor based fuuzzy approach to

address the dependency uncer

inty. Pearson correlation is used in Frank copula that

describes the full range of dependenci from perfect dependence to opposite
dependence (Sadiq ef al., 2008). Li's method uses fuzzy numbers to define the

dependency factor among the events (Li, 2007).
25 Updating risk analysis

“The dynamic aspect in risk analysis is a fairly new concept and has become an integral
part of quantitative risk analysis. This special feature provides an inference in QRA to
update the analysis recursively considering the knowledge o data of an occurrence in the
industrial facility as a function of time (Kalantarnia ef al., 2009 and 2010; Yang ef al.,
2010). Updating risk analysis basically refers to this dynamic feature of risk analysis
which has the ability to revise the likelihoods assessment of QRA when new expert
knowledge or new data become available (Yang ef al., 2010). The probability of basic-
events, events and input events in FTA, ETA and bow-tie analysis dynamically changes
every time since the failure of components and subsystems in an industrial facility can

oceur randomly, and the accident escalation factors change frequently (Kalantarnia et al.,
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2009 and 2010). In a real time risk analysis, the probabilities for the input events in
different QRA techniques must be updated with available new knowledge. The resulting

analysis attained after using the updated probabil

s s referred to as posterior risk

analysis. Bayes' theorem in Equation 2.7 uses the traditional probabi

theory for

continually updating whenever new data aceumulate (Sandar and Badoux, 1991; Bedford
and Cook 2001; Modarres, 2006; Vose, 2008; Yang et al., 2010). The common difficulty
of the Bayes” theorem lies in the normalizing constant, the denominator of Equation 2.7,
which is required to be integrated over a valid domain of the uncertain parameters being,
estimated (Vose, 2008). Selecting a prior conjugate for a given PDF allows the
simplification of characterizing the resulting posterior distribution, without the necessity
of performing any integrations or complicated mathematics (Fink, 1997 Ferson 2005).
However, this limits the flexibility of implementing Bayes” theorem for using other kinds
of PDFs that are excluded from conjugate prior families (Fink, 1997; Ferson 2005).
h(p)d/ p)
’jh(pwd/mdp

Sptd

@n

where, p is the uncertain parameter of interest, (7

Jous prior PDF and /
() is the likelihood function based on real time data d.

2.6 Proposed frameworks

The “higher order MCS” can be used to deal with both aleatory and epistemic
uncertainties separately (not discussed in this study) only when sufficient data are

available to distinguish both types of uncertainties using PDFs. However, it may be
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possible to characterize PDF for aleatory uncertainty, but characterizing PDFs for

epistemic uncertainty is not a trivial task (Baraldi and Zio, 2008). Fuzzy sets and

evidence theory can deal with these limitations. In Chapters 3 the fundamentals of these
1w theories are presented. The on-going research aims to integrate these two theories

(fuzzy set theory and evidence theory) to charaterize different kinds of uncertainties in

FTA and ETA for the process system. To deal with data uncertainty, fuzzy set theory

employed to deal with linguistic/subjective uncertainties while evidence theory is used to
handle ignorance, incompleteness and inconsistency in expert knowledge. It also

proposes a dependency coefficient to deal with dependency uncertainty in FTA, ETA and

bow-tie analysis. Further, updating inferences integrated with fuzzy and evidence theory
are used o explore the dynamic aspect in FTA, ETA and bow-tie analysis.

Four frameworks, i.c., ETA with uncertainty, FTA and ETA with uncertainty, Bow-

tie analysis, and updating risk estimate in bow-tie analysis have been developed in the
following four chapters to develop uncertainty and dynamic risk analysis-based
methodology for QRA. Each chapter has been published as a paper and comprises a
specific task as shown in Figure 2.7. The contents of the chapters are focused on the

development methodology and approaches of for the mentioned techniques of QRA to

accomplish the objectives of the thesi
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Framework for Quantitative Risk Analysis (QRA)

Techniques for QRA.

Chapter 4 Paper2

\ /
S

Gnmewnﬂ{ for ETA under mm.mﬂ ﬂummm for ETA and FTA under uncertainty

Chapter 3 Paper |

« Event tree development  Faultree and Event tree development

* Data uncertainty * Data and model uncertaint,
o Fuzzy-based approach for ETA o Fuzzy-based approach for ETA and FTA
© Evidence theory-based approach o Evidence theory-based approach for ETA

[ J

Chapter 5 (" Framework for Bow-tie under uncertainty

Bow-tie development
‘Data and model uncertainty
o Fuzzy-based approach for bow-tie

alysis
o Evidence theory-based approach for
bow-tie analysis

Paper 3
Sensitivity analysis

Framework for updating bow-tie analysis

Bow-tie development

Data and model uncertaint

o Fuzzy-based approach for bow-tie
analysis

o Evidence theory-based approach for
bow-tie analysis

Updating inference

o Fuzzy-Bayesian approach

o IAE-based evidential avoroach

Chapter 6

Paper 4

Figure 2.7: Positions of the papers 14 for methodology and approaches development
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Preface

‘The manuseript developed for this chapter provides an extensive review of different types

and sources of uncertainties, and theorics to handle the uncertainties for ETA. Based on
the review, a quantitative framework with two different approaches has been developed
for handling data uncertainty in ETA. A version of this manuscript has been published in

the Journal of Process Safety and Environmental Protection.

The co-authors, Drs Khan, Sadiq, Amyotte and Veitch, motivated the principal

author, Refaul Ferdous, to develop the research on the entitled topic and helped him to

conceptualize the techniques and theories available for this topic. The principal author

conducted an extensive literature review and developed the overall concepts and

framework, and identified the ions and challenges in current techniques. In

addition, he also carried out a case study to demonstrate the uility of the developed
approaches and framework in an industrial example, and wrote a manuscript for this
topic. The co-authors reviewed the approaches and manuscript, and provided the

necessary suggestions and comments for the manuscript.
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Abstract
Event Tree Analysis (ETA) is an established risk analysis technique to assess likelihood

(in a probabilistic context) of an accident. The objective data available to estimate the

elihood is often

g (or sparse). and even if available, is subjected to
incompleteness (partial ignorance) and imprecision (vagueness). Without addressing
incompleteness and imprecision in the available data, ETA and subsequent risk analysis
give a false impression of precision and correctness that undermines the overall
credibility of the process. This paper explores two approaches to address data
uncertainties, namely, fuzzy sets and evidence theory, and compares the results with

Monte Carlo simulations. A fuzzy-based approach is used for han

¢ imprecision and
subjectivity, whercas evidence theory is used for handling inconsistent, incomplete and
conflicting data. Application of these approaches in ETA is demonstrated using a
example of an LPG release near a processing facility.

Keywords: Data uncertainties, fuzzy-based approach, evidence theory, event tree

analysis, and Monte Carlo simulations.
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3.1 Introduction

Event Tree Analysis (ETA) represents a logic combination of various events that may

follow from an initiating event (e.g., an accident event such as LPG release). The

ating event of the tree uses dichotomous conditions, i.c., success/ failure (true/false or
yes/no) to propagate the event consequence in different branches of the tree (AIChE,
2000; Lees, 2005). Each individual path that is followed by the different branches

eventually identifies the possible outcome events via developing an event-consequence

model. In risk analysis, the event-consequence model and the outcome events are

successively used in pre-incident application, to examine the incident precursors and
post-incident application, and to identify the possible hazards (outcome events) for an
accidental event (CMPT, 1999; AIChE, 2000).

Qualitative analysis in an event tree identifies the possible outcome events of an
initiating event, whereas quanitative analysis estimates the outcome event probability or
frequency (likelihood) for the tree. Traditionally, quantitative analysis of an event tree
uses crisp probabilities of events to estimate the outcome event probability or frequency

(Kenarangui, 1991; Lees, 2005; Ferdous, 2006). In practice, it is difficult and expensive

10 oblain precise estimates of event probability because in a majority of cases these

estimates are the result of an expert’s limited knowledge, incomplete information, poor

quality data or imperfect interpretation of a failure mechanism. These unavoidable issues
impart uncertainties in the ETA and make the entire risk analysis process less credible for

decision-making.
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In a general taxonomy of uncertainty, aleatory and epistemic uncertainties arc the
major classes (Thacker ef al., 2003; Ayyub ef al., 2006). Aleatory uncertainty accounts

for natural variation or randomness in the behavior of a system and in the case of data

availability, probability-based approaches are found to be the best choice (Agarwal ef al.,
2004). On the other hand, epistemic uncertainty accounts for ambiguity and vagueness

that

s due to incompleteness and imprecision. To describe uncertaintics in input data

(ie., event likelihood) and propagate them through ETA, probability-based approaches
such as Monte Carlo simulations (MCS) have been traditionally used (Bae ef al., 2004).

‘This approach requires sufficient empirical information to derive probability density

ox et al.,

functions (PDFs) of the input data, which are generally not available (
2003). As an altemative to objective data, expert knowledge/judgment is used, especially

when the data collection is cither difficult or very expensive (Rosqvist, 2003).

Expert judgments are qualitative/linguistic in nature and may suffer from
inconsistency if lack of consensus among various experts arises. The classical
probabilistic framework is not very effective to deal with vague or incomplete/
inconsistent concepts (Druschel ef al., 2006). Abrahamsson (2002), Thacker ef al. (2003)
and Wilcox ef al. (2003) discussed methods to handle uncertainties in expert judgment
and o interpret them for the purpose of conducting risk analysis. Fuzzy sets and evidence
theory have proven effective and efficient in handling these types of uncertaintics

(Cheng, 2000; Sentz ef al., 2002; Wilcox et al., 2003; Bae ef al., 2004; Agarwal ef al.,

2004; Ayyub et al., 2006).
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‘The mai

focus of this paper is to deseribe di

ferent types of uncertainties in ETA using
approaches such as fuzzy set theory and evidence theory, where the former is employed to
deal with linguistic/subjective uncertainties of event probabilities, and the latter is used to
handle incomplete/partial ignorance of expert knowledge (Figure 3.1). To demonstrate the

applicability of these approaches, a case study for LPG release is revisited (Lees, 2005).

Identify initiating event, consequence and

Tdentification of follow-up consequence and
outcome events for the accidental event

Event tree construction

Propagation of consequence of events probabilty
in a tree using “Success™ and “Failure” in upward

1d downward branch respectively

T Uncertainty analysis in event tree

Categorize the uncertainty n expert knowledge (0
define events probabi

Uncertainty handling in
Event-Tree Analysis l—l—l

Multi-expert knowledge

"« Incomplete information

« Linguistic uncertainty
 Expert’s ignorance & conflicts

« Subjective uncertainty

Fuzzy-based approach Evidential-based approach

« Defining event's probability using fuzzy number
 Determine outcome event probability as fuzzy
number

Definition of frame of discernment
Assignmentof bpas for the event
Knowledge ageregation o defne event probbilty

. events|

Estimation of oulcome even frequency for ETA under
uncertainty

Figure 3.1: Framework for ETA under uncertainty
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3.2 Fuzzy set theory

Zadeh (1965) first introduced fizzy sets in his pioneering work, where he argued that
probability alone is insufficient to represent all types of uncertainties because it lacked
the ability to model human conceptualizations of the real world. Fuzzy-based approaches

to exist,

introduce robustness into systems by allowing a certain amount of imprec
thus paving the way to represent human linguistic terms as fuzzy sets, hedges, predicates

and quantifiers (Rivera ef al., 1999). During the last ~45 years the success of fuzzy-based

systems has led to their general acceptance in various engineering d

Fuzzy logic provides a language with syntax and semantics to translate qualitative

knowledge/judgments into numerical reasoning. In many enginering problems, the

information about the probabilities of various risk items is vaguely known or assessed.
“The term computing with words has been introduced Zadeh (1996) to explain the notion

of reasoning linguistically rather than with numerical quantities.

Fuzzy-based approaches help in addressing defic inherent in binary logic.

They effectively deal with imprecision that arises due to subjectivity/vagueness, and are

helpful o propagate uncertainties throughout the risk analysis and decision-making

process. Fuzzy-based approaches are a generalized form of interval analysis used to
address uncertain or imprecise information. A fuzzy number describes the relationship
between an uncertain quantity p (c.g., event probability) and a membership function s,
which ranges between 0 and 1. A fuzzy set is an extension of the traditional set theory (in

which p is either a member of set P or not) so that p can be a member of set P with a

certain degree of membership 4 Any shape of a fuzzy number is possible, but the
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selected shape should be justified by available information (if it is normal, bounded and
convex). Generally, triangular or trapezoidal fuzzy numbers (TFN or ZFN) are used for
representing linguistic variables (Kenarangui, 1991; Rivera and Baron, 1999).

“The following sub-sections describe the steps to analyze an event tree using fuzzy

set theory. In the proposed approach, the subjective judgment of event probability is

assumed linguistic and described u:

'z a TEN. The fuzzy probabilities of initating are

then used to estimate the outcome event probabi

that is also estimated as a fuzzy
number. The fuzzy-based approach used for ETA comprises the following three steps:

1. define event probability using TFNs,

2. determine outcome event probability as a TFN, and

3. defuzzify outcome event frequency as a crisp number (point estimate)

3.2.1 Define event probability using TFNs (fuzzy numbers)

Experts prefer to use linguistic expressions (such as likely, probable, improbable) rather

than numerical expressions to justfy the probability of an event (Ayyub et al., 2006). An
expert’s linguistic judgment is assigned a TFN. A typical TFN for an uncertain quantity

(e.g. event probability) is shown in Figure 3.2. The TFN is a vector (pL, pm pi) that

represents the minimum, most likely and maximum values of event probability, whereas
the a-cut level is a degree of membership 4p. For a TFN, nested intervals 7, can be

generated by incrementally changing the a-cut levels as follows:

By={a;.py. g} 1L2...,n @an
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o
Hp 08 a-cut level
04 / \
0 |
0 !
0 035 pL Pm PROSS 1
TFN of event probabi
Figure 3.2: TFN to represent event probability

The present study used cight qualitative grades represented by TFNs (Figure 3.3) to
express the linguistic probabilities. The cight grades are Highly improbable (HI), Very
improbable (V1), Rather improbable (R1), Improbable (1), Probable (P), Rather probable
(RP), Very probable (VP). and Highly probable (HP).

m___vi 1 R R P e wp

0 0045005 0.10 0.5 035 040 045055060 065 0.850.90 095 0.955

Figure 3.3: Mapping linguistic variables on fuzzy scale

3.2.2 Determine outcome event probability as a TFN (fuzzy number)

Membership function (ur) €[0, 1] of a TFN represents uncertainty in the event
probability (Li, 2007). The a-cuts are used to determine fuzzy intervals (i.e., nested

intervals in a fuzzy number) with a membership grade (1) greater or equal to the @-cut
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value (Wilcox et al., 2003). In a TFN, the membership function uses the following

relationship to determine the interval at the a-cut level:
Po= [pva(py=p)re-alpe-p.)] 62)
Fuzzy arithmetic operations are used to determine the outcome event probability,
which is based on the extension principle (Rivera et al., 1999). An alternative method a-

cut formulation is also used in fuzzy arithmetic for simplifying the analysis (Lai ef al.

ler et al., 2005; Li, 2007). In ETA, the membership function (ur) representing
the degree of uncertainty in event probability can either be the same or different for the
events in a specific path. This study uses two methods, the random a-cut and predefined
acut, 1o describe these situations for ETA. The former method uses the extension

principle and the later method uses a-cut formulation to calculate the outcome event

probability. ETA essentially requires two operations, multi

calculate the outeome event probability (Rivera f al., 1999). For event probabilit

and P; (represented by two TFNs), the fuzzy arithmetic operations of these two methods

are described in Table 3.1.

‘Table 3.1: Fuzzy arithmetic for event tree analysis

Fuzzy arithmetic _Operation Equations
- pixps O XPmin{y GO PID] b ePp;er
Extension principle
prapy (@ APminGy @R (PD] b ehop ek
 bucra p1uxPay:Prix p2e)
a-cut formulation
Piat P2 [p1y+ Poy-Pig+ Pae)




Chapter 3: Event Tree Analysis

3.2.3 Defuzzify frequency as a crisp

Defuzzification transforms a fuzzy number into a crisp value (Klir ef al,, 2001). Many
defuzzification methods are available in the literature (e.g., Klir ef al., 2001; Ross, 2004).
The weighted average method is a computationally efficient method (Ross, 2004; Khan ef
al., 2005). The following equation is used for defuzzification of outcome event
probability or frequency.

3 Py 7]
By = —Z )%(P? (33)

3.3 Evidence theory (Evidential reasoning)
Multiple expert (multi-expert) knowledge can provide more reliable information for an
observation (e.g., an event probability) than a single expert. The knowledge and

ignorance cannot be absolute, are socially constructed and negotiated (Ayyub, 2001), and

often suffer from incompleteness and conflict. These uncertainties in knowledge

acquisition can be minimized through a proper aggregation process that leads to
consensus and an agreement in multi-experts knowledge.

Event tree analysis takes into account the degree of ignorance and degree of
disagreement (conflicts), while aggregating expert knowledge from multiple sources. A

Bayesian approach and evidence theory are widely known in risk analysis for this

purpose and play an important role in the management of uncertainties, especially where

multi-

xpert knowledge is desired in a decision-making process (Yang ef al., 2004). The

Bayesian approach is based on probability theory; it aggregates data without
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differentiating aleatory and epistemic uncertainties. Moreover, it requires priori

information which sometimes limits its application to updating existing information

(Sadiq et al., 2006). Therefore, when the ignorance or conflicts are significantly high, a
Bayesian approach may not properly aggregate multi-expert knowledge. Evidence theory
addresses these issues effectively and is able to combine multi-expert knowledge by
taking into account ignorance and conflicts through a belief structure (Lefevre et. al.,
2002: Bae et al., 2004; Sadiq et al., 2006)

331 Fundamentals

Evidence theory was first proposed by Dempster (1967, 1968) and later extended by
Shafer (1976). This theory is also called Dempster-Shafer Theory (DST) (Sentz ef al.,
2002; Li, 2007). DST uses three basic parameters, i.e., basic probability assignment
(bpa), Belief measure (Bel), and Plausibility measure (PI) to characterize the uncertainty

in a belief structure (Cheng, 2000; Lefevre e al., 2002; Bac ef al., 2004). The belief

structure represents a continuous interval [belief. plausibility] in which true probability
may lie. A narrow belief structure indicates more precise probabilities. The main
contribution of DST is a combination rul to aggregate multi-expert knowledge according
o their individual degrees of belief.

In evidence theory, frame of discernment Q is defined as a set of mutually exclusive
clements that allow having a total of 2 subsets in a power set (P), where 11 is the
cardinality of a frame of discernment. For example, if Q = (T, F}, then the power set (P)

includes four subsets, ic., {@ (a null set). {T}, {F}, and {T, F}}, as the cardinality is

two. The following discussion builds the fundamentals of DST that are used in this study.

61



The basic probability assignment (bpa), sometimes known as belief mass, is
denoted by m(p,). The bpa represents the proportion of knowledge to every subsct () of
power set (P) such that the sum of the proportion is 1. The focal elements, ., pic P with
m(p) >0, collectively represent the acquired knowledge from expert elicitation. The bpa

can be characterized by the following equations:

m(p)—> [01] ;m@)=0 ; mp; G4
b

The belief (Bel) measure, sometimes termed as lower bound for a set p;  is defined

as the sum of all the hpas of the proper subsets py of the set of interest p, i.¢., ps< pi. The
relation between bpa and belief measure is written as:
Bel(p)= 3 mp,) 69
Iy
3 i

“The upper bound i.c., the plausibility (Pl) measure for a set p is the summation of
bpas of the sets py that intersect with the set of interest, pyi.e..px 1 py # . Therefore, the

relation can be written as:

Pip)= Y m(py) 06
pope®

3.3.2 Rule of combination — making inferences

“The knowledge obtained from multiple experts requires aggregation to be used for useful

ETA. The combi

jon rules allow aggregating the individual beliefs of multi-experts.
“The most common combination rule was first proposed by Dempster & Shafer (DS),

which is also known as the DS combination rule. Many modifications of the DS rule of



Chapter 3: Handling data uncertainties in Event Tree Analysis

combination have been reported. The most common modifications include Yager, Smets,
Inagaki, Dubois and Prade, Zhang, Murphy, and more recently Dezert and Smarandache
(Sadiq et al., 2006). Detailed discussions on these rules can be found in Dezert and
Smarandache (2004),

In this study, DS and Yager combination rules are discussed in detail and compared
in the LPG event tree case study. To combine multi-expert knowledge, combination rules
use the following orthogonal sum (Equation 3.7).

My =m ©my @ my®. -@m, an

where the symbol ® represents operator of combination.

1. DS combination rule:

“The DS combination rule uses a normalizing factor (1-4) to develop an agreement among
the acquired knowledge from multiple sources, and ignore all conflicting evidence
through normalization. Assuming that the knowledge sources are independent, this
combination rule uses AND-type operators (product) (Sadiq et al., 2006). For example,
if the my (p) and m; (py) are two sets of evidence for the same event collected from two
independent sources, the DS combination rule uses the following relation to combine the

evidence.

0 Jorp, =

[m @m)p)= 68

el 3 (pa)<my(py)
ParPL=P;

Tk Jorp #d
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In the above equation, .2 (p) denotes the combined knowledge of two experts for
an event, and k measures the degree of conflict between the two experts, which is
determined by the factor:

k= Y mylpgmyy)
PaNpy=®
2. Yager combination rule:
Zadeh (1984) pointed out that the DS combination rule yields counterintuitive results and
exhibits the numerical instability if conflict is large among the sources (Sentz et al.,
2002). To resolve this issue, Yager (1987) proposed an extension of the combination rule.

The modi

fied combination rule is similar to the DS combination rule except that it

assigns conflicting mass to be part of ignorance € instead of normalization. However, in

0 (or les) conflicting cases, the Yager combination rule (Equation 3.9) exhibits similar

results as the DS combination rule.

0
Jor p, =
m(pa)xmy(py) "
[my$m:1ﬂ, = Pu"%fv, “ " Jorp#Q (3.9)
2 (pa)xmy(py)+k Jor p,

ParPy=r;

In ETA, different experts can provide the probability of an event, and each expert

uses hisher belief or knowledge to justify the assessment that may be incomplete and be

in conflict with the others. In an evidential reasoning framework, partial ignorance refers

to assigning probability mass to frame of discernment, ic., {T, F}. The conflict among
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the sources s handled through combination rules as discussed above. The following sub-

sections describe the steps to analyze an event tree using evidential theory.

3.3.3 Definition of frame of discernment

Traditionally the outcomes of event trees are dichotomous, i.¢., {T} and {F}. Therefore
the frame of discernment © is {T, F} that leads to four subsets in a power set () that
includes {@, (T}, (F}, (T, F}}.

3.3.4 Assignment of bpas for the event

“The bpas or belief mass for cach individual event is acquired from the different sources.
Explicitly, the assigned bpas represents the degree of expert belief for cach subset, and
implicitly, it represents the total evidence to clarify the event probability. For example, an

expert may report that the occurrence probability of an event is 80% true and 10% false.

Mathematically, this can be written as m({T}) = 0.8, m({F}) = 0.1 and m({T, F}) = 0.1,
because, m((T, F}) = 1 - m({T}) - m({F}).

3.3.5 Knowledge aggregation to define event probability

“The redundant knowledge from different sources is aggregated using either DS (Equation
3.8) or Yager (Equation 3.9) combination rules. Unlike the DS combination rule, the
Yager combination rule does not rely on non-conflicting evidence [i.c., (1-6)] to

normalize the joint evidence (Sadiq et al., 2006). Thus, for a high conflict case (i

higher k value), the Yager combination rule gives more stable and robust results than the
DS combination rule. In the case of a higher degree of conflict (k), the Yager rule of

combin:

is preferred.
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Now, consider another expert report of the same event probability with m({T}) =
0.6, m({F}) =03 and m({T, F}) = 0.1. These two independent assessments for the same
event can be combined using the DS and Yager combination rules (Table 3.2). The belief
structure for the true probability of the event obtained by DS and Yager combination
rules are [0.89, 0.9 and [0.62, 0.93], respectively.

jon source probability

Table 3.2: Evidence combination for
my| T R (T, F}
m 06 03 0.1
[T 08 [im=048 @=024 (1)=0.08
{F} 0.1 @=006 (F}=0.03 (F}=0.01
R 0.1 | (T}=006 (F}=0.03 (T.F}=0.01
k 03
mmz'hrrgﬂ(‘m Imae) | oz oo 001
mis(DS) 089 [ 0014
i (Yager) 062 007 031

3.3.6 Belief structure and “Ber” estimation for outcome events

The i d from the belief and plausibility measures gives the belief structure

terval obtai

of expert knowledge. The belief structure takes into account the ignorance and conflicts
in multi-expert knowledge and provides a range for the event probability. “Ber” estimate

ilar to defuzzification), which can be

gives a point estimate in belief structure (:

estimated by the following equation.

m(p;)
bet(P)= Y —L- 3.10
rep; 1pil G0
66
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where |p is the cardinality (number of elements) in the set pi. In the continuation of
the previous example, the “bet” estimate for the true probability obtained from the DS

rule combination can be calculated as:

bet(P)=

mUTY  mETEY 089 0014 oo
1 2

1 2

‘The denominators 1™ and “2" represent the cardinality in the respective subsets.

3.4 LPG release - an example of event tree analysis
LPG is a highly flammable gas. Any significant amount of LPG release may lead to fire
and explosion in the presence of an ignition source. To demonstrate the proposed
approaches, a case study of LPG release at a Detergent Alkylate Plant (DAP), which was

carlier reported by Lees (2005), is re-visited (Figure 3.4). This study revised the event

tree and constructed the tree started from an initiating event of a large LPG release. The
released LPG on ignition may cause cither an explosion or fireball in the vicinity of the
release point. The explosion causes the vapor cloud as an outcome. If there is no ignition,
then the release drifts towards the DAP and may cause a delayed explosion at the DAP,
which also causes another vapor cloud depending on the wind direction. From the LPG
release point, the LPG vapor may drift in some other direction if there is no explosion at
the DAP. Four events are identified: ignition, explosion, wind to DAP, and a delayed
explosion at DAP. It was assumed that these events are mutually exclusive, and the event
probabilites are propagated into the different branches of the tree. Each branch gencrates

a path that may lead to a specific outcome event,
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Large LPG

Delayed Explosion
Release atDAP

| o | o | o oar

A
wind directon)

1r09
(L0 B Fireball

Vapordoud
(Dcpendenton
wind direction)

068410

LPG Vapor
» (From DAP

P01

(1706
Py LPG Vapor

(From release:
point)
Figure 3.4: Event tree for LPG release

For the case study of LPG release in the vicinity of the DAP, five possible outcome

events were identified. Assuming the events are independent; the probability of a path or

an outcome event is calculated by multiplying the probabilites associated with this path.
Equation 3.1 is a general equation to caleulate the outcome event frequencies. J in this

equation denotes the frequency for the initiating event and outcome events.
A=A ’]j[l P Gan

In addition to the proposed approaches (fuzzy-based and evidence theory), Monte
Carlo simulations  (traditional uncertainty analysis) and a deterministic approach
(traditional crisp analysis) were also performed for ETA of LPG release.

341 Deterministic approach
‘This traditional approach provides a quick analysis and uses crisp probabilities in each

branch or path of the event tree. It uses Equation 3.11 to calculate the outcome event
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frequency for the event tree. Based on assigned probabilities (Figure 3.4) the outcome
event frequencies for LPG release are calculated, which are crisp numbers (Table 3.3).

Table 3.

: Outcome event frequency of the LPG release event tree

Outcome Event  Frequency () Events/yei

A As 6.10E-06

B i 5.50E-05

c 1Y 2.40E-06

D I 2.70E-07

E o 4.10E-06
3.42 MCS-based approach

Monte Carlo Simulation (MCS) is one of the most common techniques for probability-

based uncertainty analysis (Abrahamsson, 2002). It is based on random sampling from

predefined PDFs (in our study, triangular shape PDFs are used similar to TFNs). We used
5000 iterations to obtain PDFs of the outcome events. The frequencies for the outcome
events were calculated using Equation 3.11. The 90% confidence intervals for all
outcome events of the LPG event tree are summarized in Table 3.4. This approach

assumes that uncertainties arise only due to randomness in the occurrence of events.

‘Table 3.4: Outcome event frequency by MCS-based approach

90% confidence interval Median value
Outcome Event

Lower Bound  Upper Bound (@50% )
A 1.958E-06 1024E-05 6.100E-06
B 4.935E-05 6.090E-05 5512605
c 7353607 415106 2443E-06
D 3.057€-10 S5467E-07 2.736E-07
E 1.300E-06 6.850E-06 4.080E-06
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343 Fuzzy-based approach
The revised event tree with fuzzy linguistic variables is illustrated in Figure 3.5. This
approach uses the two different methods, namely, predefined a-cut and random a-cu to

perform fuzzy arithmetic.

Large LPG " Delayed Explosion
=i ket Ignition [ Explosion | Wind to DAP b Outcome
Vi o o Vaporclowd
""" (dependentor
wind dirction)
Ve
7B Firchal
A0.68:10¢ L
oY . Vapor cloud
—_— ve po gl
wind direction)
'
v LPG Vapor
v P Grom DAP
source)
L PELEGVapor
(From elease
point)

Figure 3.5: Event tree wi

ic fuzzy variables

3.4.3.1 Predefined a-cut

In this method, a preferred a-cut level (ic., a pre-defined membership function) is

maintained through all the events. The probabilities for the outcome events are then

estimated using a-cut based fuzzy formulation (Table 3.1). For example, the path leading

10 the outcome event “A”, shown in Figure 3.5, is followed by two events. The
probabilities of these two events are linguistically expressed and assumed to be “Very
Improbable” and “Very Probable”. These two variables are assigned TFNs (based on

Figure 3.3), and then the TN for outcome event “A™ is calculated. The TFNs of the

70
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for the LPG release event tree are shown in Figure

input events and outcome event
3.6. Ata specific a-cut level, the TFN for the outcome events is defuzzified to obtain the
crisp probability for the event. Table 3.5 provides the defuzzified frequencies of outcome
events for the LPG release event tree.

Very Improbable  Very Probable

00624 0.045 01149 0.15 085 0955
Predefined a-cutin TFNs of event probabiliy

Figure 3.6: Outcome event probability for “A”

Table 3.5: Defuzzified outcome event frequency of LPG release event tree

- Defuzzified outcome events frequency (events/yr)
A

B ) D E
010 6135E-06 5.5S4E-05 2284E-06 3.027E-07 5.406E-06
030 6O7SE-06 S.548E-05 2.095E-06 2577E-07 5.235E-06
050 6030E-06 5.543E-05 191SE-06 2217E-07 5.106E-06
070 6O00E-06 5.540E-05 1.743E-06 1932E-07 5.021E-06
090 S985E-06 S.539E-05 1.577E-06 1.709E-07
100 5984E-06 5.539E-05 1496E-06 1.616E-07 4.973E-06

3.4.3.2 Random a-cut
In this method, the membership functions (up) for the events in a path are changed

randomly (as with MCS). The outcome event probability that is followed by this path is
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calculated using fuzzy arithmetic. An example for this case is shown in Figure 3.7. In the

same way, the outcome event frequencies for the event tree are estimated using Equation

is shown

3.11. For demonstration purposes, the fuzzy interval for the outcome events *

in Figure 3.8

0.15 085

Random a-cut in TFNs of event probability

Figure 3.7: Outcome event probability for “A™

Minimum = 5.11 E-05
Most lkely = 554 E-05
Maximum = 5,99 E

z

Membership Function

s

0.00
S05E-05  S2SE-05  SASE0S  S65E-05  S8SE0S  6OSE0S

Outcome event frequency

Figure 3.8: Fuzzy intervals for out come event “B”
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3.4.4 Evidence theory-based approach

les evidence obtained from two unbiased and independent experts. The

Table 3.6 pro

belief structure for the outcome events of LPG release is provided in Table 3.7. The

belief structures obtained for the outcome event “B" by using both combination rules are

plotted in Figure 3.9. Figure 3.9 shows that for the same outcome event “B", the Yager

combination rule provides a larger belief structure for the outcome event “B" than the DS
combination rule.

‘Table 3.6: Different expert’s knowledge for events

my m

Events
M\ (LK M F (LK
Ignition 08 01 01 06 03 01
xplosion 01 08 01 005 08 0I5
Wind to DAP 04 05 01 05 04 01
Ignition Explosion at DAP_0.85 0.1 0.05 08 0.1 0.

Table 3.7: Belief structure for the outcome events

Outcome event frequency (event/yr)

Outcome Event Yager

Belief __ Plausibility  Belief __ Plausibility
A HF release L71E-06  278E06  10SE06  1.01E0S
B Fircball STSES  SOSE0S  3SAE0S  6.ITE-05
€= HF release drifting north-cast 322606 38E06  LIE06  1L79E-0S
D- Drifling Cloud LO0E07  142B-07  345E-08  3.58E-06
E- Drifting Cloud 334E06  395E-06  13SE-06  183E-05
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7.00E-05
O Belief (Bel)

& Plausibility (P
soop.0s| @ Plasiviliy P

5.00E-05

4.00E-05

3.00E-05

Outcome Event Frequency

200605

1L00E-05

Yager combination rule

0.00E+00

B: Firchall B Firchall

Figure 3.9: Belief structure of outcome event “B

3.5 Summary and conclusions

Uncertainty in ETA arises due to subjectivity, incompleteness (partial ignorance) or

inconsistency in acquired knowledge of event probabilities. The proposed framework

(Figure 3.1) uses two different approaches, fuzzy-based and evidence theory, to address

different types of uncertainties that are not generally addressed explicitly using the
available approaches. The traditional approach for ETA is deterministie and does not
consider any kind of uncertainty in the analysis. If the PDFs are ‘reasonably known’,
MCS can be the best approach to estimate and propagate uncertainties, especially 2D-
MCS which can deal with aleatory and epistemic uncertainties separately (not discussed

in this study). Risk analysis generally requires expert knowledge, as PDFs and crisp
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estimates of event probabilities are unknown or partally known. Neither the deterministic
approach nor the MCS-based approach effectively deals with this kind of uncertainty.

In the fuzzy-based approach, the TFNs are assigned to linguistic and subjective
judgment of expert knowledge using a membership function 4. The predefined a-cut
method uses intervals based on a predefined membership level in performing fuzzy

arithmetic, whereas random a-cut uses fuzzy intervals based on random selection of

memberships for the events in a specific path.

In the evidence theory- based approach, the bpas are assigned to define the degree
of ignorance and belief of expert knowledge to clarify event probabilities. The
incomplete and_ inconsistent baps from multiple sources are combined by using
combination rules of evidence theory. The Yager combination rule yields more robust
results in the context of having high conflicts in the sources. Consequently, this rule
provides more appropriate results for ETA under uncertainty, leading to lower values for
the belicf measure and higher values for the plausibility measure compared to the DS
combination rule.

A comparative view of different approaches used to obtain the frequency for the

outcome event

" is shown in Table 3.8. The percentage deviation (D) in the results is

estimated using a “base value of events probability”. The “base value of events
probability” refers to the probability of events that do not include any deviation while

n is introduced in

analyzing the event tree for LPG release. For example, if 10% dev

the initiating event probabi tic

(LPG release event tree) in the case of the determinis

approach, approximately 9 % deviation in the frequency of the outcome event “B” is
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observed. In contrast, the fiuzzy-based approach gives more robust results, i.e., ~0.003 %

deviation for the same (10%) deviation in initiating event probability. The MCS-based

n for the same scenario. The nce theory-based

approach yields ~0.8 % devi
approach yields ~6 % deviation in estimating frequency for the same event, It is
emphasized, however, that evidence theory accounts for expert ignorance in defining the
event probability, which cannot be dealt with using the other approaches.

Table 3.8: Estimated deviation in the final results by different approaches

Frequency of outcome event “B”

Fuzzy interval /Belief structure Defuzzification/ »
j— (with 10% deviation) Sber” estimationMean_
LefvBelietn  Right/Plausibilityy  Fstimated  Estimated  Deviation)
Lower Bound  Upper Bound  ioh 0% with no
deviation  deviation
Fuzzy-based SATE0S 560E-05 SSHE0S SSIE0S  0.003%
Evidence theory-based  4.96E-05 2.34E-04 TL42E-04 CLSOE-04  6.05%
MCS-based 550805 557605 SSIE0S SA9E0S  0.80%
Deterministic SOIE0S  SSIE0S  9.0%

* Deficification fr the ficzy-based approach, the bet estimation fo the evidence heory-based approach and mean
Jor the MC? B

“Two aspects of the proposed approaches could be further explored in the future. First,
the assumption of “independence’ among events is often unrealistic, and can be handled
using ‘fuzzy measures’ or extensions of the DS rule of combinations. Second, the
possibility of dealing with subjectivity (using fuzzy-based approach) and incompleteness
(evidence theory) as a single formulation (hybrid soft computing methods, ¢.g., Fuzzy-

Dempster-Shafer) can assist in developing a more generic framework for ETA.
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CHAPTER 4

Fault and Event Tree Analyses for Process Systems
Risk Analysis: Uncertainty Handling Formulations
Refaul Ferdous, Faisal Khan, Rehan Sadig', Paul Amyotte® and Brian Veitch
Faculy of Engineering & Applied Science, Memorial University,

School of Engincering, The University of British Columbia Okanagan
“Department of Proct iversity

Preface
In the first few sections of the manuscript, the traditional assumptions and techniques
along with the associated uncertainty issues in ETA and FTA are discussed. The
subsequent sections describe the development of proposed approaches o overcome the
current limitations and uncertainty issues for FTA and ETA. A version of this

‘manuscript has already been published in the Journal of Risk Anal

All authors worked as a team in developing the research and manuscript for this

chapter. The principal author conceptualized the problem based on an extensive literature

review, and developed the framework and approaches for ETA and FTA with the help of
the other team members. The application of the developed approaches has also been
illustrated by the principal author through two separate industrial examples.

‘The co-authors, Dr(s) Khan, Sadiq, Amyotte and Veitch, supervised and critically

reviewed the approaches and their application o the process facility. They also provided

valuable comments and corrections to improve the quality of the manuscript.
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Abstract

Quantitative risk analysis (QRA) is a systematic approach for evaluating likelihood,
consequences, and risk of adverse events. QRA based on Event (ETA) and Fault Tree
Analyses (FTA) employs two basic assumptions. The first assumption is related to
likelihood values of input events, and the second assumption is regarding

interdependence among the events (for ETA) o basic-events (for FTA). Traditionally

FTA and ETA both use crisp probal

ies; however, to deal with uncertainties, the
probability distributions of input event likelihoods are assumed. These probability
distributions are often hard to come by and even if available, they are subject to

completeness (partial ignorance) and imprecision. Furthermore, both FTA and ETA

assume that events (or basic-events) are independent. In practice, these two assumptions
are often unrealistic.

This article focuses on handling uncertainty in a QRA framework of a process

system. Fuzzy set theory and evidence theory are used to describe the uncertainties in the
input event likelihoods. A method based on a dependency coefficient is used to express
interdependencies of events (or basic-events) in ETA and FTA. To demonstrate the
approach, two case studies are discussed.

Keywords: Quantitative risk analysis (QRA), uncertainty, interdependence, likelihoods,

fault tree analysis (FTA) and event tree analysis (ETA).
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4.1 Introduction
Process systems in chemical engincering are infamous for fugitive emissions, toxic
releases, fire and explosions, and operation disruptions. These incidents have

considerable potential to cause an accident and incur environmental and property

damage, economic loss, sickness, injury or death of workers in the vicinity. QRA is a
systematic approach that integrates quantitative information about an  incident and
provides detailed analysis that helps to minimize the likelihood of occurrence and reduces

its adverse consequences. QRA for process systems is a difficult task as the failures of

components and the consequences of an incident are randomly varied from process to
process. Further, for a process system comprised of thousands of components and steps, it

is difficult to acquire the quantitative information for all components (Ferdous er al.,

2009a). Finally, the interdependencies of various components are not known and are
generally assumed to be independent for the purpose of simplicity.

Event Tree Analysis (ETA) and Fault tree Analysis (FTA) are two distinct methods
for QRA that develop a logical relationship among the events leading to an accident and
estimate the risk associated with the accident. The term “event” is frequently used in
place of the term “accident” in the analyses of fault trees and event trees for QRA
(Spouge, 1999). ETA is a technique used 1o describe the consequences of an event
(initiating event) and estimate the likelihoods (frequency) of possible outcomes of the
event. FTA represents basic causes of occurrence of an unwanted event and estimates the
likelihood (probability) as well as the contribution of different causes leading to the

unwanted event. In FTA, the basic causes are termed basic events, and the unwanted
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event s called the top event (Haasl, 1965; Vesely et al., 1981; Hauptmanns, 1980, 1988).
Kumamoto and Henley (1996) provide a detailed description of fault tree development
and analysis for a process system.

In the event tree, the unwanted event is named as an initiating event, and the
follow-up consequences are termed as events or safety barriers (AIChE , 2000). The ETA

represents the dichotomous conditions (e.g., success/ failure, true/ false or yes/no) of the

initiating until the subsequent events lead to the final outcome events (AIChE, 2000;

Andrews and Dunnett, 2000, Ferdous ef al,, 2009b). AIChE (2000) and Lees (2005)

d procedure for constructing and analyzing the ETA for a process

system.

Event and fault trees help to conduct the QRA for process systems based on two

major assumptions (Spouge, 1999). Firstly, the likelihood of events or basic-events is
assumed to be exact and precisely known, which is not very often true due to inherent
uncertainties in data collection and defining the relationships of events or basic-events
Sadiq et al., 2008, Ferdous ef al, 2009a). Moreover, because of variant failure modes,
design faults, poor understanding of failure mechanisms, as well as the vagueness of
system phenomena, it is often difficult to predict the acquired probability of basic-
events/events precisely (Yuhua and Datao, 2005). Secondly, the interdependencies of
events or basic-events in an event tree or fault tree are assumed to be independent, which
is often an inaccurate assumption (Ferson ef al, 2004). These two assumptions indeed
misrepresent the actual process system behaviors and impart two different types of the

uncertainty, namely data uncertainty and dependency uncertainty, while performing the
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QRA using FTA and ETA. In an attempt to circumvent the data uncertainty in risk
analysis, a number of research works have been developed by Tanaka et al. (1983); Misra
and Weber (1990); Singer (1990); Kenarangui (1991); Sawyer and Rao (1994); Suresh et
al. (1996); Rivera and Barn (1999); Huang ef al. (2001); Wilcox and Ayyub, (2003);
Yuhua and Datao (2005) and Ferdous er al. (2009, 2009b) to facilitate the

i of the likelihood of the

accommodation of expert judgment/ knowledge in quanti
basic-events/events for QRA. Sadiq ef al. (2008), Ferson ef al. (2004) and Li (2007)
proposed methods to describe the dependency uncertainty among the basic-events/ events.
Fuzzy-based and evidence theory-based formulations have been proposed and
developed to address data and dependency uncertainties in FTA and ETA. The

interdependencies among the events (or basic-events) are described by incorporating a

dependency coeflicient into the fuzzy- and evidence theory-based formulations for FTA/
ETA. Expert judgment knowledge can be used to quantify the unknown or partially
known likelihood and dependency coeflicient of the events (or basic-events).

42 Fault and event tree analyses in process systems

The traditional fault and event trees can be analyzed either deterministically or

probabilistically. The deterministic approach uses the crisp probability of events (or
basic-events) and determines the probability of the top-event and the frequency of
outcome events in the fault and event trees, respectively. The probabilistic approach
treats the crisp probability as a random variable and describes uncertainty using

probability density functions (PDF) (Sursh et al,, 1996; Wilcox and Ayyub, 2003; and

Ferdous ef al, 2009b). Traditionally, the probabilistic approach uses Monte Carlo

R ¢ T PR Py
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Simulation (MCS) to address the random uncertainty in the inputs (i., probability of
basic-events or events) and propagate the uncertainty for the outputs (Abrahamsson,
2002). The PDFs for the inputs can be derived from historical information, but are often
rare especially when the process system is comprised of thousands of components

(Kenarangui, 1991)

stic

With an assumption that the events (or basic-events) are independent, determi
and probabilistic approaches use the equations in Table 4.1 to analyze the fault and event
trees. P denotes the probability of i* (i =1, 2, 3...n) events (or basic-events), P and Py,
respectively denotes the “OR” and “AND” gate operations, and 4, denotes the frequency

for the

ing event and the outcome events.

‘Table 4.1: Equations uses in traditional FTA and ETA

QRA method Equation

Two examples - an event tree for “LPG release” (Figure 4.1) and a fault tree for

“Runaway reaction” (Figure 4.2) - are considered o illustrate the use of deterministic and

probabilistic approaches in QRA for the process system. The event and fault trees for
these two examples were carlier studied respectively in Lees (2005) and Skelton (1997).

The deterministic approach provides a quick analysis if the probabilities are known

accurately (Ferdous ef al., 2009b). Based on assigned probabilities (Figure 4.1 and Table
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4.2), the frequency of outcome events for “LPG release event tree™ and the probability of
top-event for “Runaway reaction fault trec™ are calculated as crisp values (Table 4.3). In
the probabilistic approach, triangular PDFs are assumed to perform MCS (N = 5000
iterations) and the PDFs for the outcome events frequency and the top-event probability
are determined based on this assumption. The 90% confidence intervals for the outcome
events of the “LPG event tree” and top-event of “Runaway reaction fault tree” are
summarized in Table 4.4 and Figure 4.3, respectively.

tgnition | Explosion | Wind to DAP | Delayed explosion | o
() () DAP (E))

L |
release (IE) (E)

P01 Vapor cloud
PoA
P09 wind direction)

Po B Firchall
A-0.68410% (1-P)=09
P09 Vapor cloud
P1 € (Dependent on
P04 wind direction)

s LPG Vapor
& D{me DAP source)

a-P)-o0.1

L ) E PG Vapor
(1-P)=06 (From release point)

vent tree for LPG release
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ault tree for runaway reaction in a reactor

‘Table 4.2: Basic-events causing the runaway reaction

Symbol _ Basic-event Probability of basic-event
Pump Fails 02
Line Block 001
No Cooling Water ol
Low Coolant Flow 0.01
High Temp 001
Dump Valve Fails 0.001

formulations
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‘Table 4.3: Deterministic results for FTA and ETA

LPGrelease  Frequency ofoutcome A B c D L

event tree events (events/yr)
6.1E-06 SSE-05 2406  27E-07 4.IE-06

Runaway reaction

Fietiss Probability of top-event

Table 4.4: Frequency determination of outcome events using MCS.

90% Confidence Interval

Outcome events Lower bound Upper bound ..M“m" .
(50" percentile)
(5™ percentile) (95" percentile)

A 1.958E-06 1024E-05 6.100E-06

| 5 4o3se0s 60005 ssiaes
‘ (o 7353607 4151E-06 2443606
D 3.057E-10 S46TE-07 2736607

! E 1.300E-06 6.850E-06 4.080E-06
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Figure 4.3: 90% confidence interval for top-event probability

4.3 Uncertainty in FTA and ETA

FTA and ETA require probability data of events (or basic-events) as inputs to conduct a
comprehensive QRA for a process system. Since most of the time the crisp data as well
as PDFs are rarely available for all events and basic-events, expert’s judgment/
knowledge are often employed as an alternative to the objective data (Yuhua and Datao,
2005). Two types of uncertainties, namely aleatory and epistemic uncertaintics, are

usually addressed while using the expert’s knowledge in QRA Thacker and Huyse, 2003;

Ayyub and Klir, 2006; Ferdous et al., 2009b). Aleatory uncertainty is a natural variation,
randomness o heterogeneity of a physical system. It can be well described using

probabilistic methods if enough experimental data are available to support the analysis
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(Agarwal et al, 2004). Epistemic uncertainty means ambiguity and vagueness, ignorance,
knowledge deficiency, or imprecision in system behaviors.

In QRA, it is important to characterize, represent, and propagate the uncertainty

accurately in order to get a reliable analysis. However, when the input PDFs arc

‘reasonably known’, MCS can be used to estimate and propagate the uncertaintics,

especially two dimensional MCS which can effectively deal with both aleatory and

epistemic uncertainties (not discussed here) (Baraldi and Zio, 2008). If knowledge is

limited for definition of the PDFs, probabilistic approaches might not be the best choice

to handle the uncert

y in QRA (Druschel et al. 2006). In addition, the independence
assumption of events (or basic-events) might be convenient to simplify the FTA or ETA,
however it is not always true for all cases (Ferson e al,, 2004). This assumption in fact is
adding other kind of uncertainty, i.c., the dependency uncertainty, during the analyses.
Vesely et al. (1981) shows several cases of FTA in where the independent assumptions of
basic-events are not valid.

Fuzzy set and evidence theories have recently been used in many engineering
applications where expert knowledge is employed as an alternative to crisp data or PDFs
(Sadiq et al. 2008, Wilcox and Ayyub, 2003; Bac et al, 2004; Agarwal ef al, 2004;
Ayyub and Klir, 2006). Fuzzy set theory is used to address the subjectivity in expert
judgment. Whereas, the evidence theory is more promptly employed in handling the
uncertainty arise due to ignorance, conflict and incomplete information. In addition to
describe the dependency uncertainty among the basic-events in FTA, Ferson ef al. (2004)

described the Frank copula and Frechet's limit For known dependency, the Pearson
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correlation in Frank copula describes the full range of dependenci from perfect

dependence o opposite dependence (Sadiq ef al, 2008). Li (2007) proposed a

dependency factor based fuzzy approach to address the dependencies in performing risk
analysis. Li (2007) uses fuzzy numbers to define the dependency factor among basic-
events.

In this article, the probabilitics of events (or basic-events) and their dependency

coeffici

nts are treated as fuzzy numbers or bpas, which are derived through expert
knowledge. Fuzzy set and evidence theories along with dependency coefficient are used

to explore the data and dependency uncertainty in ETA/ FTA. The fuzzy numbers in

fuzzy set theory describe linguistic and subjective uncertainty while bpas in evidence
theory are used to handle ignorance, incompleteness and inconsistency in expert

knowledge. A generic framework

shown in Figure 4.4 illustrating the use of fuzzy set
theory and evidence theory to handle two different kinds of wnceraintics in FTA and

ETA. The following sections describe the fuz: theory and the evidence theory with

respect to handling uncertainties.

44 Fuzzy set theory

Zadeh (1965) introduced fuzzy sets that have recently been applied where probability
theory alone was found insufficient to represent all types of uncertainties. Fuzzy sct
theory is flexible in describing linguistic terms as fuzzy sets, hedges, predicates and
quantifiers (Khan and Sadiq, 2005). Fuzzy set theory is an extension of traditional set
theory, which represents imprecise values as fuzzy numbers and characterizes the

uncertainty using a continuous membership function (4).

91
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Initiating event, precursor events for event tree and
the top-event, basic events for the fault ree

Fault tree development Event tree development
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Figure 4.4: Framework for FTA and ETA under uncertainty
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4.4.1  Fundamentals
Fuzzy numbers are used to describe the vagueness and subjectivity in expert judgment
through a relationship between the uncertain quantity p (¢ event or basic event

probability) and a membership function  that may range between 0 and 1. Any shape of

a fuzzy number is possible, but the selected shape should be justified by available
information (but it should be normal, bounded and convex). Generally, triangular or
trapezoidal fuzzy numbers (TFN or ZFN) are used for representing linguistic variables
(Kenarangui, 1991; El-Iraki and Odoom, 1998; Rivera and Barén, 1999; Cheng, 2000). In
this study, we used triangular fuzzy numbers (TFN) in which the fuzzy intervals are
derived using a-cuts. Figure 4.5 shows a TFN in which fuzzy intervals are estimated

using Equation 4.1. The values p. pm, and py below represent the minimum, most likely

and maximum values, respectively, in an interval 7 .

2= lpi+alpn=p)pe-alpe-pa)l @n
Fuzzy set theory uses the fuzzy arithmetic operations based on a-cut formulation to
manipulate fuzzy numbers (Lai ef al, 1993; Siler and Buckley, 2005; Li, 2007).
Traditional fuzzy arithmetic operations assume that the events (or basic-events) are
independent and use equations in Table 4.5 for fault tree and event tree analyses (e.g.,

Tanaka ef al., 1983; Lai et al., 1993; Misra and Weber, 199

ivera and Baron, 1999;

Kenarangui, 1991; Singer, 1990; Sawyer and Rao, 1994; Suresh et al., 1996 and Wilcox

and Ayyub, 2003).
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a-cut level
4

A

0 03P pm PROSS
TR of events probability

Figure 4.5: TFN to represent the probability of events (or basic-events)

‘Table 4.5: Traditional a-cut based fuzzy arithmetic operations

Method Operation acut formulation
Frequency estimation A= ax[Twf.p)
[E
ETA PyxP, 5 I-Ip" ip% = 1‘[‘,.”?
7, =% o=t
SOR” gate a-pg)ing fl']kuw’,;»
FTA o L
“AND" gate = ]'[p"z ipg= 1'[p:”‘i

442 Fuzzy-based approach for FTA/ETA

I the proposed fuzzy-based approach, the probability of events (or basic-events) can be
defined linguistically and described using TFN. The interdependence of events (or basic-
events) is defined linearly using a dependency coefficient (C,) that can also be described
using a TFN. Fuzzy probability and dependency coefficients are used to determine the
probability of top-event and the frequency of outcome events in fuzzy terms. The fuzzy-

based approach is comprised of the following three steps:
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1. Definition of input probability and dependency coefficient using TFN

2. ination of likelihood of ET/ FTA)asa TFN

3. Defuzzification

4.4.2.1' Definition of input probability and dependency cocfficient using TFN
Experts are more comfortable using linguistic expression rather than numerical judgment
when they are asked to define an uncertain quantity like the probability of occurrence of
events (o basic-events) and dependency coefficients (Ayyub and Klir, 2006). In order to
capture these linguistic expressions, eight linguistic grades are defined in the proposed
approach (Figure 4.6). It include: Very Highly (VH), Very Low (VL), Moderately High

(MH), Moderately Low (ML), Low (L), Moderate (M), High (H), Rather High (RH).

Theses grades can be used to assign the probability of events (o basic-events) for ETA

(or FTA).

0 0045005 000 0.15 035 040 050055060 0.65 085609 0.95 0.955

Figure 4.6: Mapping linguistic grades for FTA and ETA

As mentioned earlier, the traditional methods of FTA and ETA assume that the

events in an event tree and the basic-events in a fault tree are independent. However, in

95
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practice, the i ies among the events (or basi

5) could be ranged from
perfectly dependent to oppositely dependent. A scalar quantity € [+1, -1] may describes
the dependency between two events, where the scalar quantity +1 refers to perfect
dependence and -1 refers to opposite dependence (Ferson et al.,2004). More specifically
the positive dependence belongs to an interval [0, +1], whereas the negative dependence
belongs to an interval [-1, 0). However, various levels of dependency are possible in

between the events (or basic-events). The current work explores only the positive

dependence of events (or basic-events) at each node in FTA (or ETA). Six linguistic
grades are used in this study to describe the different levels of interdependencies among

the events and basic-events that

clude: Perfectly Dependent (P), Very Strong (VS),
Strong (S), Weak (W), Very Weak (VW) and Independent (1). The left bound (Csr) and

the right bound (Cse) in Table 4.6 are representing the TFNs boundary for the

dependency coefficients.
Table 4.6: Scale ize the i among the bs

Linguistic Minimum Maximum
grade [N ripton (Ca) __ bound (Car)

P Perfect dependence between the events 1.000 1.000

Vs Very strong dependence , but not fully dependent 0.800 0.995

s Strong dependence, but not too strong 0.450 0850

w Weak dependence, but not too weak 0.150 0.500

VW Very weak dependence, but not fully independent 0.005 0200

1 Perfect independence between the events 0.000 0.000
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4422 Determination of likelihood of outcome event and top-event as a TEN

‘The dependency coeflicient Cy defines the dependence of the events (or basic-events) at
cach node of a fault and event tree (Table 4.6). The modified fuzzy arithmetic with the
empirical relation for FTA and ETA are described in Table 4.7, where C; = 1 refers to
perfect dependence and Cy = 0 refers to complete independence among the event (or
basic-events).

‘Table 4.7: Modified a-cut based fuzzy arithmetic operations

Method Operation a-cut formulation
Frequency IR - PR
estimation i} (A
ETA [l (-C5)x(1-p] )}x,rj,
ey

=[l—(1—('dki><(l-/'”)}xF:,,

{l—u )X u—:‘j;L)xn,"L]}

POR'P,
{l a-pi{i-0-c, )xn,,,}}
FTA
{[l—(lﬂ - )x(lprL):pr:L}
"AND'P,

—(|—(3R)X(I—[J7R):|xp2R}

4.4.2.3 Defuzzification
Defuzzification transforms the fuzzy number into a crisp value (Klir and Yuan, 2001).

The erisp value is useful in evaluating the rank of outcome events® frequency for ETA
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and calculating the contribution of basic-events leading to the top-event FTA A numbers
of defuzzification methods including max membership principle, centroid method,
weighted average method, mean max membership, center of sums, center of largest arca
and first (or last) of maxima, are available in the literature (Klir and Yuan, 2001; Ross,
1995, 2004). The weighted average method is comparatively easy and computationally

efficient to implement (Ross, 2004; Khan and Sadig, 2005). The folloy

2 equation for
the weighted average method is used to defuzzify the obtained fuzzy numbers for the
event tree and fault tree outputs (Ross, 2004).

27
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45 Evidence theory (evidential reasoning)
Multi-source knowledge can provide more reliable information about the probability of
events (or basic-event) than a single source. Knowledge can never be absolute as it is
socially constructed and negotiated and often suffers. incompleteness and_ conflict
(Ayyub, 2001). Evidence theory has alternatively been used in many applications,
especially when the uncertainty is due to ignorance and incomplete knowledge (Sadiq et

al., 2006; Wang ef al., 2006). The main advantages of evidence theory are:

individual belief, including complete ignorance, can be assigned,
2. an interval probability can be obtained for each uncertain parameter, and
3. multi-source information can be combined that helps to avoid bias due to

some specific source (Sentz and Ferson, 2002).
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45.1 Fundamentals

Evidence theory was first proposed by Dempster and later extended by Shafer. This
theory is also known as Dempster-Shafer Theory (DST) (Sentz and Ferson, 2002; Li,
2007). DST uses three basic parameters, i.e., basic probability assignment (bpa), Belief
measure (Bel), and Plausibility measure (PI) to characterize the uncertainty in a belief
structure (Cheng, 2000; Lefevre ef al, 2002; Bac ef al, 2004). The belief structure
represents a continuous interval [belicf, plausibility] for the uncertain quantities in which
the true probability may lie. Narrow belief structures are representative of more precise
probabilities. The main contribution of DST is a scheme for the aggregation of multi-

source knowledge based on individual degrees of belief.

4511 Frame of discernment

Frame of discernment (FOD) Q is defined as a set of mutually exclusive elements that
allows having a total of 2" subsets in a power set (), where || is the cardinality of a
FOD. For example, if @ = (T, F}, then the power set (P) includes four subsets, i.., {® (a

null set), {T}, {F}, and {T, F}}, as the cardinality is two.

4.5.1.2 Basic probability assignment
“The basic probability assignment (5pa), also known as belief mass, is denoted by m(p).
The bpa represents the portion of total knowledge assigned to the proposition of the

power set (P) such that the sum of the proposition is 1. The focal clements,
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P, € Pwith m(p) > 0 collectively represent the evidence. The bpa can be characterized

by the following equation:

m(p )= (011 sm@)-> 0 5 ¥ m(p) @3)
PSP

For example, suppose an expert reports that the occurrence probability of an event

in ETA is 80% true and 10% false. For this example, the baps of every subsct of m(p,)

can be written as m(T) = 0.8, and m(F) = 0.1. The unassigned hpa is referred to the set
m(@) = m(T, F) = 0.1.This is because, the unassigned bpa is taken as ignorance, which is

usually represented by the subset m{€}(Sadiq et al., 2006).

.3 Belicf measure
“The Belief (Bel) measure, sometimes termed as the lower bound for a set p, is defined as
the sum of all the bpas of the proper subsets p of the set of interest py ic..ps < pi. The
relationship between bpa and Belief measure is written as:

Bel(p)= 3 m(p,) )
resn

‘The Belief measures in the above example are given by:
Bel(T) = m(T) = 0.8 Bel(F) = m(F) = 0.1 and Bel(T, F) = m(T) + m(F) + m(T. F) = 1.0
4.5.1.4 Plausibility measure

“The upper bound, i

. the Plausibility (P}) measure for a set p, i the summation of bpas

of the sets py that intersect with the set of interest p, i pe ) pi # @. Therefore, the

relationship can be written as:
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P'(P'):pkéw"'("*) 5

‘The Plausibility measures for the above example are given by:
PIUT) = m(T) +m(T, )= 0.8 +.01 =09

PI(F) = m(F) + m(T, F) = 0.1 + 0.1 = 0.2 ;and PI(T, F)= 1.0

4.5.1.5 Rule of combination for inference

1al beli

The combination rules allow aggregating the i 5 of experts and provide a
combined belief structure. DS combination rule is the fundamentals for all combination
rules. Many modifications of the DS rule of combination have been reported. The most
common modifications include those by Yager, Smets, Inagaki, Dubois and Prade,
Zhang, Murphy, and more recently by Dezert and Smarandache (Sadiq ef al., 2006).
Detailed discussions on these rules can be found in Dezert and Smarandache (2004). In
the current study, DS and Yager combination rules are discussed in detail and used in
developing the evidence theory-based approach for FTA and ETA.

DS combination rule: The DS combination rule uses a normalizing factor (1-k) to
develop an agreement among the acquired knowledge from multiple sources, and ignores
all conflicting evidence through normalization. Assuming that the knowledge sources are
independent, this combination rule uses the AND-type operator (product) for aggregation
(Sadiq et al., 2006). For example, if the m; (p,) and my (ps) are two sets of evidence for
the same event collected from two different experts, the DS combination rule uses the

following relation to combine the evidence.
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Jor p,
m(p)= 46
T Emaxmny) )
L] Jor p, £ ®
Tk P

In the above equation, 711 (p) denotes the combined knowledge of two experts for

the event, and k measures the degree of conflict between the two experts, which

determined by the factor k.

k Somi(pa)xmy(py) “@n
Panpy=®

Yager combination rule: Zadeh (1984) pointed out that the DS combination rule

elds counterintuitive results and exhibits the numerical instability if conflict is large

among the sources (Sentz and Ferson , 2002). To resolve this issue, Yager (1987)
proposed an extension, which is similar to the DS combination rule except that it does not
allow normalization of joint evidence with the normalizing factor (1-4). The total degree
of conflict (k) is assigned to be part of ignorance 2 (Sadiq et al,, 2006). However, in a
non- (or less) conflicting case, the Yager combination rule exhibits similar results as the
DS combination rule. For high conflict cases (i.c., higher k value), it provides more stable

and robust results than the DS combination rule (Ferdous ef al., 2009b).
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0
for p,=®
Sm(pa)xmy(py)
m(p)=y Parpy=r; Jorp,#Q (4.8)
Yo (pa)xmy(py)+k Jor p, =2

ParPy=p;
In the above example, if we assume another expert reports new evidence for the
same event: m ({T}) = 0.6, m ({F}) = 0.3 and m ({T, F}) = 0.1. Both bodies of evidence

are combined using DS and Yager combination rules. The aggregation of the knowledge

is performed using Equations 4.6 and 4.8. Equations 4.3 and 4.4 are used to obtai

combined belief structure of the event (Table 4.8).

‘Table 4.8: Modified a-cut based fuzzy

m [} {F} (T, F}
m 0.10
m 080 {T)=0.08
" 0.10 {F}=001
(T,F) 010 {T.F}=001
k
m(pa )ma(pp) 062 0.07 001
PanPh=pi
2 (DS) 089 ol 0014
i (Yager) 0.62 0.07 031
Belief Structure
Rules of combination
sy | pn | e [ P
DS rule 089 0.90 0.10 o
Yager rule 062 0.93 007 038
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452 Evidence theory-based approach for FTA/ ETA
Expert knowledge is used to define the probability of occurrence and dependency
coefficient of events (or basic-events). Each expert may have their own belief or
knowledge that may be incomplete and that may be in conflict with the others. In an
evidential reasoning framework, the ignorance in an evidence is assigned to a subset
m(@). The conflict among the sources is dealt with using combination rules as discussed
above. The following sections describe the steps of the evidence theory-based approach

to analyze the event tree/fault tree under uncertaintics.

4.5.2.1 Definition of frame of discernments

Three different FODs for three uncertain quantities in FTA and ETA including the

probability of events, the probability of basic-events and the dependency coeflicient (C.))
are used to acquire the belief masses from different experts. The subsets for the FODs are
generated based on the cardinality of each FOD (€.

Traditionally, the consequences of events in event tree analysis are dichotomous,
iie., {T) and {F}. Therefore the FOD for ETA is defined as @ {T. F} that leads to four
subsets in a power set (P) that includes {®, {T}, (F}, {T, F}}.

“The operational state of a system is usually defined on the basis of evaluating the
success (S) or failure (F) state of basic components (Vesely et al., 1981; Hauptmanns,
1980, 1988). Hence, the occurrence probability of a basic-event in FTA can be described

g the FOD © =(S, F}. As the cardinality is two for the FOD, the power set (P) of

each event is comprised of four subsets that includes {@, {S}, {F}, {S, F}}.
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Six qualitative grades of dependency are categorized in current study to describe
interdependences through dependency coefficients for FTA or ETA. The notations of

these grades are: Independent (I); Very Weak (M;

: Weak (W); Strong (); Very Strong
(VS); and Perfect dependence (P). The FOD for this case consists of six cardinal

elements which is represented by ©

P, VS, S W, VW, 1}.

4.5.2.2 Assignment of bpas to basic-events/events

The bpas or belief masses for the events (or basic-events) and the dependency

coefficients (C) are elicited using the expert’s knowledge. Assuming that the knowledge
sources are independent, the bpas are assigned to particular subsets of each FOD.
However, for the dependency coefficient, experts knowledge are collected only for the

subsets (P}, (VS}, (S}, (W}, {VW}, (I}, and {Q). The bpas for each subset

dividually represent the degree of belief of cach expert, and implicitly, it represents the
total evidences that support the probability of occurrence of an event (or a basic-event)

and a dependency coefficient (Cy).

4.5.2.3 Belief structure and Bet estimation
The combination rules allow merging the knowledge from different sources as coherent
evidence. These rules help to account ignorance into the knowledge and resolve conflicts
among the sources. The DS (Equation 4.6) or Yager (Equation 4.8) combination rules are
used in the current study to aggregate collected knowledge from different sources.
Equations 4.4 and 4.5 are then used to derive the belief and plausibility measure for the

probability and dependency coefficients of events (or basic-events) .The belief and
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plausibility measure for six kinds of dependencies (in cach node of FTA or ETA) are

normalized to attain a generalized belief structure. Information in Table 4.6, which
represents the belief and plausibility for each kind of dependency, s used for normalizing
the belief structure of dependency coefficient for cach node. Subsequently, equations
shown in Table 4.9 are used to estimate the likelihoods of outcome events and top-event

for the ETA and FTA, respectively.

“Bet” provides a point estimate in belief structure (similar to defuzzification),
‘which is often used to represent the crisp value of the final events. It is estimated based

on the following equation:

m(p)
Bet(P)= ‘
o

“.9)
where, where, |p/ is the cardinality in the set p. For the example, the “Ber”
estimate for the belief structure obtained using the DS combination rule is calculated as.

_m(@)  mrF)
Bet(Py) =2

‘The denominator:

*and 2" represent the cardinal

the respective subsets.
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‘Table 4.9: Equations to analyze the event and fault trees.

Method Operation Formulation |
Frequency 90T
T
o Bel(r,, )= {I e B(C, el Bei p )}:|>< Bel(P,)
e,
= {. e k- W,,;]x e
Bel(P, ) =1-{1- Bel(P}x {u -{- Iiul(('d)]x Bel(P, iJ
Pl "OR”". "I
e, 0= —¢1-rum){u—lnfp/(("l)[xz-urzw}
FTA
Bel(r,)=| 1k Bel(C e §-Betcr ) | ety
P Aoy
AN,
re { I )}}x re)

46 Application of developed approaches
The same examples discussed earlier in Section 4.2 are studied in detail here using both
fuzzy-based and evidence theory-based approaches.

4.6.1 LPG release - event tree analysis

4.6.1.1 Fuzy-based approach

The revised event tree with fuzzy probabilities is illustrated in Figure 4.7. In the fuzzy-
based approach, the probability of events (or basic-events) and their dependency

coefficients (C,) are defined using TFNs. The frequency for the outcome events are then
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estimated using the a-cut based fuzzy formulations developed in Table 4.7. For example,
the path leading to the outcome event “A” is followed by the two events. The probability
and the coefficient of dependency (Cy) of these two events are linguistically expressed,
which are respectively assumed to be “Moderately Low (ML)", “Moderately High (MH)”
and “Strong (S)". The assigned linguistic expressions for these two events are converted

nto TFNs (based on Figure 4.6 and Table 4.6). The TFN for the outcome event “A™

(shown in Figure 4.8) is derived using the empirical equations described in Table 4.7.
Using numerous trials for event dependency at each node of the LPG event tree, the

uncertainty ranges (i.c., fuzzy interval) for the outcome event “A™ are estimated (shown

in Figure 4.9). It can be observed that the uncertainty ranges are varied according to the

change of event dependency at each node of the event tree.

LargeLPG | lgnition | Explosion | Wind (0 DAP | Delayed explosion
) [ = £) aDAP(Ey | e

()

ML o a Vaporclowd

>

MH

Po B Fireball

A-068410*
mu Vapor cloud

LPG Vapor
NS L (From DAP.
ML source)

Py E - LPG Vapor

" (From release:

point)

Figure 4.7: Event tree with fuzzy linguistic grades
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10 ML

0.045 0.15 046 076 085 0955

Figure 4.8: TFNs of outcome event “A” with “Strong” dependency
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Figure 4.9: Uncertainty in outcome event's frequency “A™

4.6.1.2  Evidence theory-based approach
To demonstrate the evidence theory-based approach, experts’ knowledge from two

unbiased and independent sources is considered for determining the probability as well as
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the dependency coefficients of events for ETA. The elicited knowledge from the sources

is shown in Tables 4.10 (a) and 4.10 (b).

Table 4.10(a): Experts’ knowledge on the probability of events

Expert 1 (m)

Expert2 (m)

Symbol Events’ name
T (F (LF (T} (F (TF

Igni 080 010 010 060 030 010
Explosion 0.10 080 010 005 080 0.5

Wind to DAP 040 050 010 050 040 0.10
Ei__Ignition Explosion at DAP_0.85 0.10 005080 0.10_0.10

(b): Experts’ knowledge on interdependence of events at different nodes

e W £ E oz EE o5 8
T N 0I5 000 030 010 000 000 045
- N2 000 030 020 000 0.0 000 040
I N3 040 000 020 o000 000 020 020
o N4 050 020 000 000 000 020 0.10
7 N 030 000 020 015 000 000 035
1 N2 020 030 000 000 000 015 035
E N3 000 02 040 000 020 000 020
o N 000 030 040 000 020 000 0.10

DS and Yager combination rules are used to aggregate and determine the belicf

structures of probability and dependency coefficients of events for the ETA. Table 4.1

lists the beli

tree (Figure 4.1). Th

the belief structures for the outcome events of LPG release. Two different kinds of
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structures of events and dependency coefficients for the LPG release event

belief structures and the equations in Table 4.9 are used to derive
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dependence, i.c.. independent and dependent are considered while estimating the belief
structures for the outcome events. The results are presented in Table 4.12. An order of

magr

itude difference is observed in the “Bet ” estimation for the outcome event “E”. This

difference signifies the importance of defining the dependency relationships in ETA.

Table 4.11: Belief structures for the probability and interdependence of events
Reference in DS rule of combination Yager rule of combination
the event tree Bel Pl Bel »
T 0.8857 0.9000 0.6200 0.9300
F 0.1000 0.1143 0.0700 0.3800
T 0.0284 0.0455 0.0250 0.1600
F 0.9545 09716 0.8400 0.9750
o T 06970 07273 0.4600 0.8200
F 02727 0.3030 0.1800 0.5400
% T 0.9641 09701 0.8050 09750
00299 0.0359 0.0250 0.1950
N1 02549 07450 0.1605 0.8395
N2 02755 07245 0.1526 0.8474
N3 03150 0.6849 0.0769 09230
N4 04013 0.5987 0.0512 0.9488
for
v Vs s W W [
N B 0305 0000 03 oist 0000 000
” o511 0207 osi1 0361 0207 0207

(1305¢10+080+ 0334045+ 01540154 0x 00054 0x0)
Belic o258

(0514140200995 0.54K088+0360.5+020%0.210+0.207) p
(0,305 00,801 0.3340.451 0,154 015+ 0x 0,008 (0,554 0.2070.995 0.5 KO85 0.36 K0.5+020%0.2)

i

“True and F-False
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‘Table 4.12: Outcome events frequency for two kind of interdependence of events

Interdependence of events

Independent Dependent
Outcome ~
events Belief structures Belief structures
(Yager-rule of combination) Bet (Yager-rule of combination) Bet
Bel 7l Bel Pl

A LOS4E-06 1012605 [ *5.586E-06 | 1.153E-06 1076E-05 5.958E-06
B 3SAIE0S  666E-0S | 4854E05 | 387IE05  6.559E-05 5216E-05
6 1763E-06  2066E-05 [ LI21E-05 | 6.186E-06  6.556E-05 3.587E-05
D SATAE-08 4132606 | 2003806 [ 1921E-07 131E05 6.6526-06
E 8568E-07  1.395E-05 | 7.405E-06 | 1733E-06  3497E-05 1.835E-05

“Belief structureof outcome event "A” is [1.054E-06, 1012E-05]. So,m ()= 1.0S4E-06, and T F) = 9.064E-06
mD  mTH _L0SE-06 9064E-06
1 2 i 2

Bet(A) = = 5.586E - 06

The difference of using the DS and Yager combination rules is shown in Figure
4.10.  In the figure, different kinds of dependencies are labeled on the x-axis. The belief

and plausibility measure for each kind of dependency is plotied on the y-axis. The

lered as the belief

minimum and maximum values presented in Table 4.6 are con
structure of dependency coefficient for cach kind of dependency. The shaded areas in
Figure 4.10 represent the belief and plausibility measures for the outcome event “A”.
These areas show that the Yager combination rule measures a large belief structure in
comparison to the DS combination rule. Hence, an interpretation can be made that the
Yager combination rule yields more conservative results (ic., a larger belief structur) in

the context of existing high conflicts in the sources.

"2
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DS rule of combination

4.000E-06.

3.000E-06

Belief structure
£
2

1.000E-06

0.000E+00
1 w B Vs P

Interdepence of events

Yager rule of combination

1.400E-05
A
@ BekA)

1.200E-05
1.000E-05
8.000E-06
6.000E-06

Belief Structure

4.000E-06

2.000E-06

0.000E+00

1 w s vs 3
Interdepence of events

Figure 4.10: Belief structure representing the frequency for outcome event “A™
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462 Runaway reaction - fault tree analysis

4.6.2.1 Fuzy-based approach
To demonstrate the fuzzy-based approach for FTA, the probability of basic-events and

their dependencies are defined using expert linguistic expressions. The linguistic

expressions are converted into TFNs. The linguistic expressions and the corresponding
TNs are given in Table 4.13. A total of seven different trials and the fuzzy arithmetic
operations (described in Table 4.7) are used to evaluate the TFN for the top-event, The

trials are categorized based on different assumptions of dependencies at each node of the

fault tree. The TFNs of the top-event for the different trials are shown in Figure 4.11. In

trial 7, when perfect dependencies are assumed, the top-event probability bears the

maximum uncertainty. Contrary o trial 1, when the events are assumed independent, the

y bears the smallest uny

top-event probal

‘Table 4.13: Expert’s knowledge on the probability of basic-events

Event Lingubtic TENS

BE, 7 (©.1.025.04)

BE; L (00.025,0.05)

BE, ML (0045,00975.0.15)

BE, v (00.025,0.05)

BES i 0,0.025,0.05)

BE, i (0,0.025.0.05)
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Dependency of basic-events in TRNS of top-event
different Nodes (N) probability
Trials (D N-1__N2 N3 N4 (PP Py

1 1 1 1 I (0,0.013,0.027)
VW VW VW VW (0,0.061,0.122)
WoOWw W W (0,0.122,0244)
Vs s WoW o (0,0121,0243)

s s S S (0,0.179,0359)
VS VS VS VS (0,0.199,0.399)

P P P P (0,0.200, 0.400)

o w e woe

o8
o7

06

os

04

03

02

o

o . - . S 5 S
00 000 00 010 X0 020 030 030 04w

Top-event's probabilty

Figure 4.11: Uncertainty representation for top-cvent using different trials
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4.6.2.2 Evidence theory-based approach
“The fault tree for the runaway reaction as shown in Figure 4.2 is studied to demonstrate
the application of evidence theory-based approach in FTA. The probability of basic-

events and the dependency coefficients for the fault tree are obtained from two

independent sources. Tables 4.10 (b) and 4.14 show the experts’ knowledge for defining
the probability and dependency coefficients of basic-events for the FTA.

‘Table 4.14: Multi-source knowledge for the probability of basic-events

Expert 1 (m) Expert 2 (m)

R L ) (S} SF)
BE; 0.150 0750 0.100 0250  0.650 0.100
BE; 0020 0800 0.180 0015 0.900 0.085
BE; 0200 0700 0.100 0.100 0.800 0.100
BE, 0015 0950 0035 0025 0950 0.025
BE; 0015 0900 0085 0010 0980 0010
BE, 0002 0950 0048 0001 0940 0059

°S - Success and F - Failure

DS and Yager combination rules are used to aggregate the knowledge and estimate
the belief structures for the basic events and dependency coeflicients. The belief structure
of the top-event is then calculated by using the equations in Table 4.9. Table 4.15 shows
the belief structure and the “Bet” estimate of the top-event for two combination rules. A
total of seven trials are performed using different assumptions of interdependence
between the basic-events. The belief structure for each kind of dependence is defined in
Table 4.6. Table 4.15 indicates that the uncertainty in calculating the belief structure and

“Bet" estimate vari rdingly with the change of i different nodes.
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Table 4.15: Belief structures and “Ber " estimations of top-event for different trails

Dependency of basic- Belief structure of top-event’s probability

Trials  events at different
nodes DS rule Yager rule

@™

Nl N2 N3 N4 Bel » Bet Bel r Bet
0T 1 344005 6234E04 3289E-04 2579E05 3942603 1.984E-03
2 VW VW VW VW 3SOSE-0S  386SE-02  1.934E-02 LIBIEO1 56661
30W W W W 96S0E05  S204E-02 4152602 2441E01  1.221E01
40 VS S W W I998E04 820202 4ISGE-02 L772E-04 2483E-01 1.242E-01
5 S S S S 2506E-04 LISIE-0l S768E-02 2440E-04 34SS8E-01 1.730E-01
6 VS VS VS VS JIGTE-04 1222E01 6126E-02 3.160E-04 3718E-01 1.860E-01
7P PP P 2000E-04 1224E-01 6130E-02 2000E-04 3.725E-01 1.864E-01

“P-Perfect dependence, VS - Very Strong, S-Strong, W - Weak, VW - Very Weak and 1 - Independent

47 Uncertainty-based

“The level of uncertainty associated with a system is proportional to its complexity, which
arises as a result of vaguely known relationships among various entities, and randomness

in the mechanisms governing the domain. Sadiq ef al. (2009) deseribed complex systems

such as environmental, socio-political, engineering, or economic systems, which involve
human interventions, and where vast arrays of inputs and outputs could not all possibly
be captured analytically or controlled in any conventional sense. Moreover, relationships
between causes and effects in these systems are often not well understood but can be
expressed empirically. Typical complex systems consist of numerous interacting factors

or concepts. These systems are highly non-linear in behavior and the combined effects of

contributing factors are often sub-additive or super-additive. The modeling of complex

dynamic systems requires methods that combine human knowledge and experience as

n7
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well as expert judgment. When significant historical data exist, model-free methods such
as artificial neural networks (ANN) can provide insights into cause-effect relationships
and uncertainties through leaming from data (Ross, 2004). But, if historical data are
scarce and/or available information is ambiguous and imprecise, soft computing

techniques can provide an appropriate framework to handle such relationships and

uncertainties. Such techniques include probabilistic and evidential reasoning (Dempster-

Shafer theory), fuzzy logic and evolutionary algorithms (Sadiq ef al., 2009). Table 4.16

provides a qualitative comparison between five soft computing techniques including

artificial neural networks (ANN), decision trees (DT), fuzzy rule-based models (FRBM),
Bayesian networks (BN) and cognitive maps/ fuzzy cognitive maps (CM/ FCM). Central

o this comparison is an assessment of how each technique treats inherent uncertaintics

and its ability to handle interacting factors that encompass issues specific to engineering
systems (Sadiq et al., 2009).

Qualitative and quantitative comparisons have been performed in this section to
investigate the features and uncertainty handling abilities of different tools and the
proposed approaches for FTA and ETA. The qualitative comparison presented in Table
4.17 illustrates that most of the tools such as Relex V7.7 (2003), RAM Commander 7.7
(2009) and PROFAT (1999) are unable to handle dependency uncertainty. Except for
PROFAT, the other tools cannot handle subjective uncertainty in the fault and event trees
for a system. PROFAT (1999) is a fuzzy based tool that can handle subjective
uncertainty; however, it fails to account for epistemic uncertainty owing to ignorance or

incompleteness of an expert’s knowledge.
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‘Table 4.16: Comparison of various techniques for complex systems (Sadiq et al., 2009)

Soft computing techniques

Attributes Deckion e, Al Bayesian s
ree based neworks "Mk “’i’;‘:‘

Network capability N % N H vH!
Ability to express causality H M N H VH
Formulation transparency H H N H vH
Ease in model development H M M M VH
Ability to model complex systems M H VH H vH
Ability to handle qualitative inputs ~ H H N H VH
Scalability and modularity L L vt H Vi
Data requirements H L VH M i
Difficulty in modification VH H M L N
Interpretabiliy of results VH VH VH VH H
Learning/training capability H M VH" H H?
“Time required for simulation j L H L L
Maturity of science VH H H VH M
Ability to handle dynamic data L H H H M
Examples of hybrid models (ability 1/ o Vi " m

to combine with other approaches)

Ratings: N = No or Neligible; VL = very low; L = low; M = medium; H = high; VH = very high
1 Structure is hierarchical
is a major problem and for network systems

3G
4 Can handle feedback loops
5 Generally referred to as black box models
6 ANN needs to be retrained for new set of conditions
7 Venycay o expand,becauseslgoritm i i h forn of matixsebra
‘generally soft in nature.

H eclniguet o3 FuzzyC means

10 Algorithms, .g., Hebbian le

10 Al .oy Mg e Mk sl s ks
ing ANNs

fuzzy models

|i Has a potentialto be used with othe sof techniques
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Table 4.17: Qualitative comparisons of proposed approach with available FTA/ETA tools

: "RAM

Uncertainty "t;‘“’:);’;" commander  PROFAT (1999)  1roPoses
7.7 2009) Approac

Subjective (fuzzy- 2 s
— NC Ne c c
Incompleteness
(evidence based) Ne Ne = ¢
Dependency NC Ne NC c

'4 commercial software, * not considered and* considered
Another type of uncertainty arises due to lack of information on dependencies
among events. Traditional fault tree analysis uses a default assumption of “independence™

events to determine the joint probability (risk) of a parent event. This

among the ri

assumption simplifies the analysis, but may not be very res The relationship

between risk events may be positively or negatively correlated (or independent). In the

probability of their conjunction is a

case of two independent events X and Y, the joi

simply a product of their individual probabilities (Ferson et al., 2004; Sadiq et al., 2008).
There exist many different methods to express correlation (dependence) but the Frank

model (copula) is the most common.

lar to Li's (2007)

Simple dependency coefficient based empirical relations [si
approach] embedded within the proposed approach can concurrently handle the
dependency uncertainty in fault and event tree analyses. The proposed approach
successfully accounts for the subjective uncertainty using a membership function and

evaluates the uncertainty range as a fuzzy interval. The evidence theory based-approach
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can describe the epistemic and aleatory uncertainties in experts’ knowledge using bpa
and is able to provide a measure of uncertainty using belief structures.

Relax V7.7 (2003) and RAM Commander 7.7 (2009) are two useful tools for

reliability and safety engincering. The probability of top-event for the “Runaway reaction

fault tree” and the frequency of outcome events for the “LPG release event tree” have
been analyzed using these tools for the same input (Figure 4.1 and Table 4.2). Results
(Table 4.18) show that by introducing 10% uncertainty into the input data, these two tools

accumulated about 19 % and 9 % of uncertainty on the caleulated top-event’s probability

and outcome event's frequency of “B”. The original input data (Figure 4.1 and Table 4.2)
are reduced by 10% to introduce the uncertainty into the analysis. The traditional
(probabilistic) methods used predefined PDFs to describe the uncertainty in the input data
(i.¢., the probability of basic events or events in FTA or ETA). When the erisp data or the
PDFs for the input data are not known or limited (a very common situation in process
systems), the FTA or ETA are highly dependent on expert knowledge. In these situations
traditional tools and probabilistic approaches are not helpful. This makes the FTA/ ETA
less credible. Both fuzzy set theory and evidence theory are not limited by availability of
detailed data. The results using both approaches are presented in Table 4.18. An expert
knowledge and assumption of independence among events (or basic events) are used in
calculating the top-event probability and outcome events frequency. In fuzzy-based
approach, the uncertainty is assigned using the membership function. The TFNs
corresponding to 90% membership are considered as input data for the analysis. In

evidence theory-based approach the uncertainty is allocated through the unassigned mass
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(as ignorance) of the power set. For the 10% uncertainty in the basic event probabilitis,

the evidence theory-based approach estimates about 9% and 8% uncertainties in the

response, i.e., [2.55%10%, 3.16x10] and [4.46x10°, 5.63x10°°], respectively. Similarly,

in fuzzy-based approach measures less than 1% uncertainty results in the response (top-

event’s probabi

ty as well as outcome event’s frequency “B”.) with corresponding fuzzy
intervals of [7.38%10”, 1.01x10?] and [5.47x10°%, 5.60%10°].

Table 4.18: Quantitative comparison of FTA/ETA tools

Determination of probability of top-event for “Runaway reaction fault tree”

Commercial packages

uzzy-bas Evidence theory- based
Relex V7.7 2003) | RAM commander 7.7 | pefuzzified value Bet estimation
009)
No 10% No 10%
Uncertainty Uncertainty | Uncertainty _Uncertainty Uncertainty _Uncertainty

306E-04  2.55E-04 | 341E-04  274E-04 [ 87103 876E-03 | 3.16E-04  2.86E-04

Determination of frequency of outcome events for LPG release

Bales 77,2000 Fuzzy-based Evidence theory-based
RAM commander 7.7 |
Onitsoiss o Defuzzified value Bet estimation ‘
pos 1
No 10% 10% No 10%
Uncerainty Uncertainty | Uncertainty _ Uncertainty | Uncertainty  Uncertainty
A | 612606 495606 | SOBE06  SOOE06 | 6206 836E-06
B | ssieos  soieos ssipos | SSIEOS  s0SE0S
¢ | 24sE06 376806 LS8E06 | 245E06 36006
b |27m800 ssmor e | 27807 664E07
6| sose06 827606 498606 | 408E06 57906

48 Results and discussion

Two types of uncertainty, namely data and dependency

uncertainty, were explored.

Expert knowledge in terms of fuzzy ling:

grades and bpas was used instead of
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assigning the likelihood and  interdependencies of basic-events/events as  crisp

probabilities for FTA/ETA. The dependency coefficient in each node of the fault tree and

event tree addressed the dependency uncertainty and described the relationships among

the basic-events/events. Fuzzy linguistic grades were assigned to TFNs and a-cut based

fuzzy empirical relations of the fuzzy-based approach were used to handle the linguisti

and subjective uncertainty in expert knowledge. For multi-source knowledge, the

incomplete and inconsistent baps were combined by using combination rules. The

dependency coefficients in evidence theory-based empirical relations were used to
describe the dependency uncertainty and analyze the fault tree and event tree under
uncertainty due to inconsistent, incomplete and partial ignorance of multi-source
knowledge.

‘The developed approaches were applied to two case studies: “LPG release event
tree” and “Runaway reaction fault tree”. The interdependencies among the events (or
basic-events) were varied in each node of the fault tree or event tree. The impacts of the
interdependencies were observed so as to understand the effects of the dependencies of
events (or basic-events) in FTA/ETA for process systems. For two dependence cases of
basic-events/events, Independent and perfectly dependent, the output results for the FTA
and ETA are provided in Tables 4.19 and 4.20, respectively. It can be observed in the
first three rows of Table 4.19 that the results remain almost the same. However when
dependency was considered (fourth row in Table 4.19), the results varied by an order of

magnitude. This highlights the importance of dependencies in ETA.
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‘Table 4.19: Summary of ETA results

Dependency  Frequency of outcome.
Apgroach of events event “A”
Deterministic approsch Independent 612606
90%  confidence
MCS-based interval depeneny (19605 102E:08)
approach ia
Median 610606
Fuzzy interval (260E-06, 9.74E-06)
) Independent
e Defuzzified value 6.17E-06
N retety 7805, 649505)
h
Loas Defuzified value G 6.14E-05

The results in Table 420 are inconsistent mainly because of different types of
uncertainties modeled in the different approaches. The perfectly dependent case in FTA
determines the probability range for the top-event as [0, 0.400], which is a maximum in
comparison to the independent case for representing the uncertainty. It can also be
observed in Table 4.20 that when the basic-events are perfectly dependent, the point
estimate (defuzzified value) of the top-event exhibits a higher ordered magnitude in
comparison to the deterministic approach and MCS-based approach. This confirms the
significance of including the dependencies of the basic-events in FTA. Similar
observations of using the evidence theory-based approach for FTA/ETA (Tables 4.12

and XV) confirm that a reliable and robust result cannot be attained without considering

the interdependencies of events (or basic-events).
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‘Table 4.20: Summary of FTA results

Dependency of  Top-event’s probability
Appreach ic-events (Prog)
Deterministic approach Independent 3.16E-04
90% Confidence
' ; (824E:05, 2.31E-04
MCS-based interval Independent 4
approach
Median 130E-04
e s
N Fuzzy interval (0,270-02)
biciiian Independent
i Defuzzified value 135
Fuzzy interval 0. 4.00E-01
Fuzzy-based ey taisevl Perfectly ¢ )
approach Dependent

Defuzzified value

49 Conclusions
FTA and ETA are two fairly established techniques; however, the uncertainty in defining

the probabilities and the ips of events (or b can lead to

results for QRA. The traditional approaches require the known probability and the
independence assumption of events (or basic-events), which are rare and often unrealistic
for process systems. Two different approaches to handle these types of uncertainties in
FTA and ETA are derived in this study by combining expert knowledge with fuzzy set
theory and evidence theory. The application of these approaches to two different case
studies shows the proposed approaches are more robust to handle the uncertainty in QRA

for the process systems in the following ways

Fuzzy-based approach and evidence theory-based approach properly address the

uncertainties

expert knowledge and analyze the event trees or fault trees

associated with different kinds of uncertainties in expert knowledge.
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Introduction of dependency coefficient in the fuzzy- and evidence theory-based

approaches describes i ies among the events (or basic ina

fault tree/event tree.
“The proposed approaches can be applied to FTA/ETA for any process systems
that have data and dependency uncertainties.

Including the negative dependencies of events (or basic-events), and combining
the subjectivity (using fuzzy-based approach) and incompleteness (evidence
theory) into a single approach, e.g., Fuzzy-Dempster-Shafer, may offer additional

future improvement to the approaches developed here.
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Analyzing System Safety and Risks under Uncertainty
using a Bow-tie Diagram: an Innovative Approach
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Preface

“The developed manuscript for this chapter provides a detailed description of bow-tie

analysis including its construction and evaluation procedure for industrial facilities. A

version of this manus Safety and

it has been submitted to the Journal of Proc

Environmental Protection for possible publication.

“The principal author and the co-authors worked together to develop the research
and manuscript for this chapter. The co-authors provided directions ~and
recommendations to develop the framework and approaches for bow-tie analysis.

“The principal author designed a case study to demonstrate the applicability of the
developed framework and approaches. He developed the Matlab code to simulate the
case study and generate the results for interpretation. The co-authors monitored the
progress, and investigated and reviewed the output results. The principal author prepared
an initial draft of the manuseript, which was later consecutively revised and improved

based on the suggested comments and corrections by the co-authors.
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Abstract

A bow-tie diagram combines a fault trec and an event tree to represent the risk control

parameters on a common platform for mitigating an accident. Quantitative analysis of a
bow-tie is still a major challenge since it follows the traditional assumptions of fault and
event tree analyses. The assumptions consider the crisp probabilities and “independent”
relationships for the input events. The crisp probabilities for the input events are often
missing or hard to come by, which introduces data uncertainty. And, only the assumption
of “independence™ introduces model uncertainty. Elicitation of expert’s knowledge for
the missing data may provide an alternative; however, such knowledge incorporates
uncertainties and may undermine the credibility of risk analysis.

“This paper attempts to accommodate the expert’s knowledge to overcome missing
data and incorporate fuzzy set and evidence theory to assess the uncertainties. Further,
dependency coefficient-based fuzzy and evidence theory approaches have been

developed to address the model uncertainty for bow-tie analysis. In addition, a method of

sensitivity analysis is proposed to predict the most contributing input events in the bow-
tie analysis. To demonstrate the utility of the approaches in industrial application, a bow-
tie diagram of the BP Texas City accident is developed and analyzed.

Keywords: Quantitative risk analysis (QRA), uncertainty, interdependence,

ihoods, fault tree analysis (FTA) and event tree analysis (ETA).
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5.1 Introduction

“Accident” is the term often used for the occurrence of a single event or a sequence of
events that cause undesired consequences. These undesired consequences may be
environmental damage, property damage, economic loss, sickness, injury or death.
“Risk” is a function of a set of scenario(s). likelihood of occurrence () and the
consequences themselves (¢) (Kaplan and Garrick, 1981; AIChE, 2000).
Risk =g (s ¢./)

Risk analysis s a systematic approach that gathers and integrates qualitative and

quantitative information of potential causes, consequences, and likelihoods of adverse

events. Likelihood of an event refers to a quantitative measurement of occurrence, which

is expressed either as frequency or probability of occurrence. Fault tree analysis (FTA)

and event tree analysis (ETA) are two well established techniques in performing risk
analysis for a system. From a risk analysis perspective, a fault tree develops a graphical

model for a pa

ular system through exploring the logical relationship between the
causes and occurrence of an undesired event, typically termed as basic events, and a top
event (Vesely et al., 1981; Hauptmanns, 1980, 1988). It uses the likelihoods of basic
events as input event data and determines the likelihood of the top event. The event tree

constructs a graphical model of consequences considering the undesired event as an

initiating event and identifies possible outcome events at the end (Lees, 2005). The
initiating event propagates through a number of intermediate consequences, which are
termed as events. Each event represents a barrier to escalate the consequences of the

initiating event until the final outcome events are identified (AIChE, 2000). Like FTA,
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ETA also considers the likelihoods of events and initiating event as input event data and
estimates the likelihoods for the outcome events. Traditional FTA and ETA assume the
input events (probability) data are “precisely” known and the independence of the input

events (i.c., basic events and events) are independent (CMPT, 1999; Sadiq et al, 2008;

Ferdous et al., 2009b, Ferdous et al., 2010). However, the:

assumptions are often

unrealistic and lead to erroneous conclusions and defy the purpose of risk analysis

(Ferson et al., 2004; Sadiq et al., 2008; Ferdous et al., 2009b; Markowski et al., 2009,
Ferdous et al,, 2010).

FTA and ETA distinetly investigate the causes and the consequences of an
undesired event for a system. A bow-tie diagram is a combined concept of risk analysis

that integrates a fault tree and an event tree on the left and right side of the diagram to

represent the risk control parameters such as causes, threats (hazards) and consequenc

on a common platform for mitigating an accident. The quantitative analysis of a bow-tie
diagram determines the likelihoods of the undesired event as well as the outcome events.

Cockshoti (2005), Chevreau et al. (2006), Dianous and Fiévez (2006), and Duijm (2009)

describe the procedure of bow-tic analysis in detail. However, they did not consider the

associated uncertainties in quantitative evaluation. In the last few years, the bow-tie
method has gained acceptance as a credible risk and safety management tool because of
the following advantages.

« provides a graphical representation of accident scenarios,

« provides explicit linkages between the causes and the potential outcomes,

 connects possible outcome events with the undesired event and basic events,



provides guidance throughout, stating from basic causes to the final

consequences, and

provides systematic help in performing comprehensive risk analysis and safety
assessment
“The common objective of any safety assessment and risk analysis technique is to
assure that a process or a system is designed and operated to meet “accepted risk” or a
“threshold” criterion such as ALARP (Skelton, 1997; Markowski et al., 2009). These
techniques follow several systematic steps: hazard analysis, consequence analysis,
likelihood assessment and risk estimation (AIChE, 2000). In each step different

approaches may be used, that collectively guide towards estimating the risk, safety and

reliability of a system. FTA and ETA individually assist the risk and safety assessment by

providing a qualitative hazard analysis and a detail quantitative assessment of likelihood

(CMPT, 1999). However, unceriainties hinder FTA and ETA in performing meaningful

quantitative analyses. Characterization, representation, and propagation of uncertainties
are important and also vital for bow-tie analysis, since the credibility of the analysis
fundamentally depends on the FTA and ETA.

Uncertainty is inherent and unavoidable in performing risk analysis since it belongs

to the physical variability of a system response and also to the lack of knowledge about

the system (Markowski et al., 2009). In general taxonomy, the uncertainty due to natural

variation or random behavior of a system is named aleatory uncertainty, whereas the
uncertainty due to lack of knowledge or incompleteness is termed epistemic uncertainty

(Bae et al., 2004, Ferdous et al., 2010). These two types of uncertainty can be introduced
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from any of the three different sources represented in Figure 5.1 (Henley and Kumamoto,
1996; AIChE, 2000; Fredous, 2006). According to Figure 5.1, the sources of uncertainty
can be classified as data uncertainty, model uncertainty and quality uncertainty. Quality
uncertainty refers to the complete and comprehensive evaluation of hazards, including

the identification and description of their relationships in developing the fault and event

tree. Recursive effort and the implementation of HAZOP, HAZID, and FMEA can reduce

kind of uncertainty for risk analysis (Skelton, 1997; AIChE, 2000; Crowl and
Louvar, 2002). It should be noted that the current paper does not address this type of
uncertainty while analyzing the bow-tie method. The main objective of this paper is to
develop a generic framework for bow-tie analysis under uncertainties, which includes
exploiting appropriate techniques to handle data uncertainty and introducing the
interdependence of input events to explore model uncertainty. In addition, a method for
sensitivity analysis has been proposed to identify the most important input events and

measure the risk for the corresponding events in bow-tie analysis.

{ ! 1

Models uncertainty Data uncertainty Quality uncertainty
« Model adequacy + Incomplete, inconsistent or * Konvetg deimey shota
« Mathematical and imprecise data
i i ¥ ® . Emr in huxn‘l hlenlnﬂumn

in the model * Muli-source data « Incorrectness i nof
. i « Vag. fequacy in

of the model input data interactions.

Figure 5.1: Sources of uncertainty (Ferdous, 2006)
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52 Bow-Tie analysis

Bow-tie analysis is an integrated probabilistic technique that analyzes accident scenarios

in terms of assessing the probability and pathways of occurrences (Duijm, 2009). It is
intended to prevent, control and mitigate undesired events through development of a
logical relationship between the causes and consequences of an undesired event (Dianous
and Fiévez, 2006). The fundamentals of bow-tie analysis are described in the following
sub-sections.

521 Basic clements

A bow-tie

igure 5.2 shows the rel;

gram comprises five basic clements.
among these elements.

o Couses: The causes are the fundamental reasons that result in failures,

malfunctions, faults, or human error at a component level. These reasons are

termed basic events (BE).

Fault Tree (FT): FT graphically represents the path of causation leading to an

undesired event. The undesired event is the top event and the interactions of different

causes are described using basic events, intermediate events and logic gates.

Critical Event (CE): In a bow-tie diagram, the top-event of a FT s the initiating

event for an ET. This event is called a critical event in the bow-tie.

Event Tree (ET): ET sequences the possible consequences of the CE considering a

dichotomous barrier (i.c., success/failure, true/false, or yes/no) of safety function
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(e, alarm, automatic shutdown) or accident escalation factor (e.g. ignition,
explosion, dispersion).

« Outcome events (OF): The final consequences resulting from  systematic
propagation of a CE through the barriers are named outcome events.

Pre-event side: FT development ] Post-event side: ET development

Figure 5.2: Elements of a “Bow-tie” diagram
(BE-Basic Events; "E-Intermediate Evens; “CE- Criical Event;and ‘OF-Outcome Events)

5.2.2 Construction

The construction of a bow-tie diagram follows the same basic rules as required in
development of FT and ET. The FT is placed on the left side of the diagram; it starts with
the criical event (i.c., top event) and diverges until the basic or intermediate causes are
described in terms of basic events with the use of logic gates (e.g., AND and OR gates).

The right

e of the bow-tie diagram corresponds to ET development, which begins from

the critical event as the initiating event and follows the sequences of events

(consequences) to reach the outcome events. Based on coupled FT and ET, all causes
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and consequences related to a critical event are clearly and jointly identified on the bow-
tie diagram (Figure 5.2). Many researchers including Cockshoti (2005), Chevreau et al.
(2006), Dianous and Fiévez (2006), and Markowski et al. (2009) and Duijm (2009) have

illustrated the following basic rules for bow-tie construction:

« Output of a Fault Tree (i.c., top event) is the starting point (ic..

for the Event Tree.

FT and ET are linked to a common critical event.

‘Typical causes are identified and placed on the pre-event side (leftside of diagram).

Credible scenarios and outcomes are depicted on the post-event side (right side of

diagram).

All branches from the pre-event side converge towards the critical event and the

side diverge until all possibl identified.

523 Analysis

Once the bow-tie diagram is constructed, quantitative analyses can be performed

following the traditional assumptions and mathematical operations (Table 5.1) for FTA

and ETA. Hassal (1965), Veseley et al. (1981), Henley and Kumamoto (1996), AIChE

(2000) and Ferdous et al. (2006, 2009, 2010) describe the traditional conjunction

operation for “OR™ gates and the intersection operation for *AND" gates for FTA and
ETA. The quantitative evaluation to determine the likelihoods of the top event and
outcome events for FTA or ETA is often challenging and highly dependent on the quality

of knowledge about the system and availabi

of precise data such as probability and
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terdependence of input events. The precise probability values of input events are rather

scarce and are either typically missing or difficult to acquire (Pan and Yun, 1997).

Table 5.1: Equations used in traditional bow-tie analysis

Approach Operation Equation

ETA Intersection P =[] 2

Conjunction o =1-[1 (1= P)
FTA ot
Intersection Py =[1 P,
2]

5.3 Bow-Tie analysis under uncertainty

Data and model uncertainty are common and generally unavoidable. In a majority of

cases, the likelihoods of input events are often missing or limited, and lead to data
uncertainty (Sadiq et al., 2008; Ferdous et al., 2009, 2009b, 2010). On the other hand,
deficiencies in addressing the interdependence of input events in formulation of the
conjunction and intersection operations introduce model uncertainty. Bow-tie analysis
combines the operations of FTA and ETA and determines the likelihood of a critical
event as well as the outcome events. Hence, any unaddressed uncertainties in FTA and
ETA eventually propagate to the final estimation of bow-tie analysis. A number of
theories including probability theory, fuzzy set theory and evidence theory have been
proposed to describe uncertainties in risk analysis (Abrahamsson, 2002; Sentz and
Ferson; 2002, Wileox and Ayyub , 2003; Ferdous et al,, 2009, 2009b,2010). Monte
Carlo Simulation (MCS) is one of the most popular and common techniques in

probability theory (Abrahamsson, 2002; Wilcox and Ayyub, 2003). MCS is a sampling
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technique that  requires probability density functions that are cither derived from

historical data or are assumed. However, these probability density functions are difficult
10 obtain (Wilcox and Ayyub, 2003). Expert judgmentknowledge is often employed as
an alternative source of objective data to avoid data uncertainty in ETA and FTA. This

elicited judgmentknowledge may be subjected to imprecision, vagueness,

incompleteness and incor

stency (Ayyub and Klir, 2006; Ferdous et al., 2009b, 2010).
In an attempt to circumvent these types of uncertainties in ETA and FTA, many

rescarchers including Tanaka et al.(1983), Misra and Weber (1990),

inger (1990),
Kenarangui (1991), Sawyer and Rao (1994), Suresh et al. (1996), Rivera et al(1999),
Huang et al.2001), Wilox and Ayyub (2003), and Ferdous et al. (2009, 20095.2010)
have explored different methodologies. Markowski et al. (2009) specifically developed a
fuzzy-based approach for bow-tie analysis; however, this approach is not capable of
capturing uncertainty due to ignorance, incompleteness and inconsistency in the

knowledge. Further, this approach was unable to characterize model uncertainty that

s due to the assumption of independence among the input events in FTA or ETA.

A generic framework for bow-tie analysis has been proposed in Figure 5.3 that can

handle data and model unce in risk analysis. Two different approaches, fuzzy-
based and evidence theory-based are developed and used in the framework to address the

different kinds of uncertainties in bow-tie analysis. Fuzzy-based approach is used to

address the uncertainty due to vagueness, imprecision and subjectivity in an expert’s

knowledge, whereas evidence theory is used for handling inconsistent, incomplete and
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conflicting evidence elicited from the different experts. To describe the interdependence of

input event

(Coh
Deseribe he
relationship using
Identify the
o Thentity possible
|—,—| consequences s
[Gentiy the BEs thal 1
e e Propagates initiating | 3.
: - eventthrougha | &
uences of possible | 3
Tremedile H
events (IE) é
H
H
Taenity he g
event a acrifcalevent
It
aul Tree (FT) Event Tree
Development ()
tie™ analysis: under
uncertainty
Quantitative
[ Dat; rtaing: ] [ ]

Expert’'s knowledge to define
« Likelihood of BEs in FT
ol in

Expert’s knowledge (o define
« Interdependencics of BEs in FT
. fevents

Bow-tie™: Output
« Likelihood of CE.

« Likelihood of OF:
« Sensitivity Analysis
« Contribution of BEs

Figure 5.3: Proposed framework for Bow-

i analysis

144



A dependency coefficient (C) within the range of scalar quantity € [+1, -1] may

describe the possible kind of interdependencies among the input events. The scalar

quantity Cy = +1 refers to perfect dependence, Cy = 0 refers to independence, and Cy =
refers to the existence of opposite dependence among the input events (Ferson et al.,
2004; Li, 2007). The fundamentals and details of the proposed approaches are
subsequently described in the following sub-sections.

531 Fundamentals

“The basics of fuzzy set theory and evidence theory are discussed in this section.

S5.3.1.1 Fuzzy set theory

Zadeh (1965) first introduced fuzzy set theory in his pioncering work, where he argued
that traditional probability theory alone is insufficient to represent all types of
uncertainties because it lacked the ability to model human conceptualizations that may
occur i practice. Fuzzy set theory is able to capture subjective and vague uncertainty and
can be viewed as an extension of traditional set theory (Ferdous et al., 2009b, 2010). It
provides a language with syntax and semantics to translate qualitative
knowledge/judgments into numerical reasoning. For many engineering applications
including safety assessment and risk analysis, fuzzy set theory is now a well-accepted and
established technique, especially with respect to handling vagueness. Ross (1995, 2004)
and Ayyub and Klir (2006) elaborate on the foundations and arithmetical operations of

this technique for engineering applications.
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Fuzzy set theory uses fuzzy numbers to exploit the numerical relationship between
an uncertain quantity p (e.g., basic events, or event probability) and a membership
function, which ranges between 0 and 1. A fuzzy number can be formed by any normal,
bounded and convex function, e.g., triangular, trapezoidal and Gaussian  shapes.
However, the selection of a function essentially depends on the variable characteristics,
available information and expert’s opinion. Triangular or trapezoidal fuzzy numbers
(TEN or ZEN) are commonly preferred due to their simplicity. In the current paper, TFNs
are used to quantify the subjective and vague uncertainty in an expert’s knowledge. For

example, a TFN (Figure 5.4) is the simplest possible shape that can express the

uncertainty in the likelihood estimates of input events and dependency coefficients for
interdependence. A TFN is a vector (pr, pm pu) that can be represented by a lower
boundary, most likely value, and upper boundary. The a-cut in a TFN represents the

degree of membership or confidence about the uncertainty in a quantity.

accut level
4

A\

O 035 pm PROSS |
TEN of events probability

Figure 5.4: TN representing the uncertainty of likelihood of an input
5.3.1.2 Evidence theory
Evidence theory evolved during the 1970s through the combined effort of Dempster and

Shafer (Yang and Kim, 2006; Sentz and Ferson, 2002). The motivation behind the
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development of this theory was to characterize the uncertainty caused by partial
ignorance, knowledge deficiency or inconsistency about a system by the expers (Sentz

and Ferson, 2002, Sadiq et al., 2006; Wang et al., 2006). Unlike tradi

nal probability

theory, evidence theory considers the subjective probabilities assigned by an expert as
evidence and allocates them into the corresponding subsets of a power set. The

unassigned probability due to missing information is assigned to the ignorance subset (as

opposed to the Bayesian approach that distributes missing evidence in remaining disjoint

subsets) (Sentz and Ferson, 2002; Sadiq et al., 2006). Sentz and Ferson (2002) have

described the following advantages of evidence theory.

jual belief can be expressed by probability mass function that may bear
incompleteness from partial to full ignorance,
« a belief interval (similar to interval probabilities) can be obtained for cach

uncertain parameter, and

bias from a specific source can be avoided and conflicts among different sources

can be resolved through a belief structure.
Evidence theory uses three basic measures - basic probability assignment (bpa),
Belief (Bel), and Plausibility measure (PI) - to characterize the uncertainty in a belief
structure (Cheng, 2000; Lefevre et al., 2002; Bae et al., 2004, Ferdous et al., 2010). The
belief structure s a continuous interval [belicf; plausibility] in which a true probability
may lie. A narrow belief structure indicates more precise probabilities. The evidence
theory also provides reasoning-based combination rules, which allow the aggregation of

different beliefs provided by different experts (Sadiq et al., 2006, Ferdous et al., 2010).
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Evidence theory characterizes the uncertainty in a parameter (c.g., likelihood of
basic event, event and dependency coefficient) with a definition of frame of discernment
(FOD). The FOD is a set of mutually exclusive elements that allows having a total of 249
subsets in a power set (P), where 11 is the cardinality of the set. For example, two
cardinal elements, True (T) and False (F), can be represented by a FOD Q = {T, F} and
‘may contain four subsets, i.e., { @ (a null set), {T}, {F}, and {T, F}}. The last subset, {T,
F}, accounts for the ignorance of an expert’s knowledge which arises due to incomplete
and lacking information about a system. The following equations in evidence theory are
generally used to develop a computable methodology using the expert’s knowledge.

« bpa: The basic probability assignment (bpa) refers to the subjective probability
for a proposition, and is denoted by m(pi). It provides the supporting evidence for
each subset of a power set.
m(p)=> [01] ;m(@)> 0 ; ;rm<p,)=l 6.

i
Bel: Belief measure (Bel) represents the lower bound belief for a set py and is

defined as the sum of all the hpas proper subsets py of the set of interest p, i.¢., pi

S pe

Bel(p)= 3, m(p,) 62)
=

PI: Plausibility measure (PI) represents the upper bound belief for a set p, and is

the summation of hpas of the sets py that intersect with the set of interest p,

P

p# o,

Pi(p) = m(p,) 5.3
i py'%,w L ©2)
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532 Ap

ion of uncertainty approaches in bow-tie analysis

Both the fuzzy-based and evidence theory-based approaches have been considered to
handle data and model uncertainties in bow-tie analysis. The likelihoods of the input
events and their interdependency relationships are defined by fuzzy numbers or bpas .
Expert knowledge from a single or multiple sources is employed to elicit the fuzzy
numbers or hpas. A dependency coefficient (C) has been introduced to describe the
interdependence of input events (basic events and events) in the bow-tie. The fuzzy
numbers address the linguistic and subjective uncertainty whereas bpas in evidence
theory explores the uncertainty due to incompleteness and inconsistency in the expert’s
knowledge. The following two sections elaborate the stepwise methodology development

of fuzzy-based and evidence theory-based approaches.
5.3.2.1 Fuzzy-based approach

In the proposed fuzzy-based approach, the likelihoods of input events are defined

linguistically using TFNs. The interdependence of input events is defined lincarly using a

dependency coefficient (Cy) that can also be derived using the TFN. The fuzzy-based

approach is comprised of the following four steps:

1. Fuzzy numbers to define likelihoods of input events: Experts are more comfortable
using linguistic expression rather than numerical judgment when they are asked to
define an uncertain quantity like the likelihoods of input events or dependency
coefficients (Ayyub and Klir, 2006). In order to capture these linguistic expressions,
cight linguistic grades have been proposed to define the likelihoods of input events

(Figure 5.5). However, the lower and upper boundary of TFNs for cach kind of
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linguistic grade can be varied according to the defi

n of a system. The proposed
rades are Very High (VH), Very Low (VL), Moderately High (MH), Moderately Low
(ML), Low (L), Moderate (M), High (), Rather High (RH). The likelihood or

probability of input events for the bow-tic can be assigned using these grades

i VLML L M RH H

Vi

00045005 000015 035 040 0.45 055060 0.65 085609 0.95 0955

Figure 5.5: Mapping ling

ic grades on fuzzy scale

. the events or basic events)

In practice, the interdependence of input events (.
can lie anywhere in the range from perfect dependence to opposite dependence
(Ferdous et al,, 2010). The positive dependence belongs to the interval [0, +1],
whereas the negative dependence belongs to the interval [-1, 0] (Ferdous et al., 2010).
Five linguistic grades are introduced in this study to deseribe the five types of positive
dependence of input cvents that include: Perfect Dependence (F), Strong (S),
Moderate (M), Weak (W) and Independent (. A similar linguistic grade with a
negative sign defines the negative dependence for the input events. The dependency
coefficient (Cy) categorizes the different kinds of dependence with a numerical range
bounded with the lower (Cy:) and upper (Cac) values. The ranges in Figure 5.6 are

considered in constructing the TFNs for the dependency coefficients.
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Figure 5.6: Lower (Cz) and Upper (C) bounds for each kind of dependency

2. Aggregation of fuzzy numbers: Aggregation provides an agreement among the
conflicted knowledge provided by different experts (Lin and Wang, 1997). Wagholiar
(2007) summarized a number of aggregation operations  including minimum,
maximum, arithmetic mean, median, quasi-arithmetic mean, symmetric sum and -
norm for aggregating the fuzzy numbers. The weighted average method is the most
common method, which allows the aggregation according to prior weights on the
arguments. The weighted average equation for aggregating m experts' knowledge in

fuzzy numbers can be defined as:

G4
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where P s the fuzzy number of uncertain input event i elicited from expert j, n is the
number of input events, m is the number of experts, w, is a weighting factor assigned
for expert j and P, is the aggregated fuzzy number. The same equation can also be

used in aggregating the fuzzy numbers of dependency coefficients provided by m

experts.

Determination of likelihood of critical event and outcome events: Fuzzy arithmetical

operations are required to calculate the likelihood of a critical event and the outcome
events for bow-tie analysis. The dependency coefficient-based fuzzy arithmetic
operations have been developed and proposed for the bow-tie analysis. Table 5.2

summarizes the modified fuzzy arithmetic with relative equations.

‘Table 5.2: Modified fuzzy arithmetic operations

Operation Evaluation Formulation
Likelihood of outcome " (p® . p
events (OF) Fo =[] Wi-Pi)

AR A

!
]

-a£Co)x(- )]x,.;?

Conjunction

B o :{Hu.,.“)x[uuc“ <p
3 "OR'P, {

-(l-pfk)x[ ~(£Ch)x PG,

7

Intersection

}
}
’(H:C:I‘)x(lfl'” "}
o

3
=%

“"is applied for
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4. Defuzzificatio

Defuzzification transforms the fuzzy numbers into a crisp value (Klir
and Yuan, 2001). The crisp value is useful in determining the ranks of likelihood of

outcome events and calculs

& the contribution of basic events leading to the er
event and outcome events in bow-tie analysis. A number of defuzzification methods
including max membership principle, centroid method, weighted average method,

mean max membership, center of sums, center of largest area and first (or last) of

maxima, are available (Klir and Yuan, 2001; Ross, 2004). The weighted average
method is comparatively easy and computationally eflicient. This method is used to
defuzzify the fuzzy numbers for the bow-tie analysis (Ross, 2004; Khan and Sadiq,
2005).

ZHp
s DYRGE

(5.5

5.3.2.2 Evidence theory-based approach

Different experts may have different beliefs that may be incomplete and conflict with
each other. Evidential reasoning can address the incompleteness, inconsistency and

ignorance in the experts’ knowledge. The theory allocates the missing bpa to the

ignorance subset, i.¢., m () and deals with the conflicts among the sources by employing
combination rules (Ferdous et al., 2010). The following sections describe the steps of the

evidence theory-based approach for bow.tie analyss.

Definition of frame of discernments: Three different FODs for three different
uncertain parameters (i.c., likelihood of events and basic events, and dependency

coefficient (Cg)) are defined to acquire evidences as bpas from the expert’s
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knowledge. The subsets for each kind of FOD are generated based on their cardinality
in the FOD ().

Traditionally, the of an event is di and considers the

binary situations, i.c., True (T) or False (F), Yes (Y) or No (N) and Success (S) or

Failure (F), to propagate the consequences for identifying the outcome events.
Therefore, the FOD for an event can be defined as £ (S, F} that leads to four subsets
ina power set (P) that includes { @, {S}, {F}, {S, F}}.

“The operational state of a system is usually defined on the basis of evaluating the
success (S) or failure (F) state of basic components (Vesely etal., 1981). The basic
components termed as basic events can be described with the FOD @ =(S, F}
(Hauptmanns, 1980, 1988). As the cardinality is two for this FOD, the power set of
each basic event is comprised of four subsets that include (@ {S}, {F}, (S, F}}.

Nine qualitative grades are categorized in the current study to describe positive

and negative dependence of input events for bow-tie analysis. The notation of these

grades are: Opposite dependence (P); Negatively Strong (S); Negatively Moderate

(M); Negatively Weak (W); Independent (1); Strong (S); Moderate (M); Weak (W);

and Perfect dependence (P) . The FOD for this case consists of nine cardinal

elements which can be represented by 2 = (P, §, M, W', I, §, M, W, P}.

Determination of hpas: The experts’ knowledge has been used to acquire the hpas or
belief masses 1o define the likelihoods of the input events and dependency
coefficients. Assuming that the knowledge sources are independent, the bpas are

assigned 1o particular subsets of each FOD. However, to define the dependency
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coefficient, expert knowledge is collected only for the subsets {P-}, {S-}, {M-}, {W-},
(S}, (M}, {W}, {P}, and {Q}. The bpas in each subset individually represents the
degree of belief for each expert, and implicitly represents the total evidence that
supports the definition of likelihoods of input events (i.c., events or basic events) and
dependency coefficients (Cd).

Combination of knowledge: The combination rules in evidence theory allow
aggregation of different degrees of belief from different expert’s knowledge and
provide a combined belief structure (Ferdous et al., 2010). The Dempster and Shafer
(DS) rule is the fundamental combination rule developed in evidence theory. A
number of modifications of the DS rule on the basis of minimization and
normalization of conflicts among the different sources have been reported (Sentz and
Ferson, 2002; Sadiq et al., 2006). The most common modifications include those by
Yager, Smets, Inagaki, Dubois and Prade, Zhang, Murphy, and more recently by
Dezert and Smarandache (Sadiq et al., 2006). Detailed discussion and comparisons of
these rules can be found in Dezert and Smarandache (2004). To address two extreme
cases of conflictions, high-conflict and non-conflict issues in the experts’ knowledge,
DS and Yager combination rules are used in this study. The details of these two rules
are given below.

a. DS rule of combination: DS combination rule uses a normalizing factor (1-k) to

develop an agreement among the acquired knowledge from multiple sources,
and completely ignores the conflicting evidence through normalization. The

combination rule uses the AND-type operator (product) for aggregating
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knowledge from independent sources (Sadiq et al., 2006). For example, if the
my (pa) and my () are two sets of evidence for the same event collected from
two different experts, the DS combination rule uses the following relation to

combine the evidence.
Jor p, =

m(p)= X
P S (pa)xmy(py) g
ok for p,#®

k

In the above equation, 1> (1)) denotes the combined knowledge of two
experts for the event, and k measures the degree of conflict between the two
experts, which is determined as:

k= Xmpa)xmy(py) [EX))
Parry=

Yager rule of combination: Zadeh (1984) pointed out that the DS combination
rule yields counterintuitive results and exhibits numerical instability if the
conflict among the sources is large (Sentz and Ferson, 2002). To resolve this
issue, Yager (1987) proposed an extension, which is similar to the DS
combination rule except that it does not allow normalization of joint evidence
with the normalizing factor (1-k). The total degree of conflict (k) is assigned to
the ignorance subset (Sadiq et al., 2006). However, in a non- (or less)
conflicting case, the Yager combination rule exhibits similar results as the DS

combination rule. For high-conflict cases (i.c., higher k value), it provides
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comparatively more stable and robust results than the DS combination rule

(Ferdous et ., 2009b, 2010).

0
for p,=b
Sm(pa)xm,(py)
ma(p)=1 paney=p; Jor p,#Q (58)
Yom(pa)xmy(py)+k for p,

PaPPy=P;
4. Belief structure and Bet estimation: Belief structures for the uncertain parameters
including input events and dependency coefficients are derived using the assigned

bpas, combination rules, and equations of Bel and P measures. In order to attain a

generalized belief structure, the belief and plausibility measures for coefficients are
normalized. The ranges depicted in Figure 5.6 and the belief structures of each kind
of dependence are employed for normalizing the final belief structure. Equation 5.9
refers to the normalization technique that is used to determine the belief structure of
the dependency coefficient for the input events. Table 5.3 is then applied to calculate
the likelihoods of a critical event and the outcome events for the bow-tie analysis.

3 BelC, .,

2 Bel(C,)Cp, + X PUC,)C

Bel(C,

N 59
Y PUC,)C,

3 Bel(C,)xCy, +i PUC,)XCy,
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where, Bel(Cs) and PI(Ca) are the belief and plausibility measures for each kind of
dependency (e.g, P, S, M.I); Ca and Cay; are the lower and upper bounds for each
Kind of dependency depicted in Figure 5.6 (¢.g., for S, Cat, = 0.7 and Cy=0.995)

“Bet” represents a point estimation based on belief structure (similar to

defuzzification). It can be determined using the following equation:

m(p,)
Be(P)= Yy, —1 (5.10)
ncp 1l
where, o is the cardinality in the set p,

Table 5.3: Dependency coefficient based equations

Operation aluation Formulation
ikelihood of n
oukome vnts Pos =[] [Betcr.pir)]
(OE) -k
Intersection “Bel(r,,) :{ fx Bel(C, - uel(l',\}]x Bel(P,)
FxF,
e, =[|-{| + l'/(cd;}x ﬁ rA(l',)l]x PIP)
Bel(P,, ) =1-{1- Bel(p, »}x[l ~fepeicc ﬁ)}x Bel(P, )]
Conjunction B"OR"P,
PP, ) =1-{0- PR, ))xi:l {l £PIC, )}x mu-))]

,,L.,(pw,)_[..L,wd,;x{..B,,(p,)}]xmm

Intersection  P,"AND"P,

o
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5.3.2.3 Sensitivity analysis

Likelihood assessments in bow-tie analys

provide a numer

1 approximation of

occurrence of the critical event and outcome events without  ides

ing the most

nificant contributing input events (Ferdous et al., 2009). Sensitivity analysis (SA) is a

systematic approach that can provide a quantitative evaluation to identify the weakest
links and better design altematives of a system, as well as the important sources of
variability and uncertainty in the risk analysis (Contini et al., 2000; EPA, 2001; Sadiq,

2001).

SA can be performed using analytical, statistical and graphical methods (Frey and
Patil, 2002). Frey and Patil (2002) discuss and review the advantages and disadvantages
of each method. The statistical method for SA allows the variation of one or more input
events at a time and measures the contributions of each input event on the output event.
The analytical method evaluates the sensitivity of an input event while other input events
remain constant. The graphical method provides a visual representation of contributions.

of each input event to an output event. The proposed SA method for bow-tie analysis is

d of the following two steps:

i, Contribution of input events: Determination of the correlation coeficient i the initial
step to caleulate the contribution of ach input event in causing the output events. The
s the correlation coefficient if random values

traditional statistical method unde;

of input and output are clustered together (Sadiq, 2001). Spearmen’s rank correlation
coefficients offer an alternative to avoid such situations (Sadiq, 2001). In this method,

the random values are generated from the defined distributions and ranked after
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sorting the values in ascending order. The calculated output events also need to be
ranked in the same way. By definition, the rank correlation coeflicient may vary from

1 and -1, and can be determined using the following equation (Lohman et al., 2000).

N

>(1,-1Yo,-0)

i=123, (5.11)

where, RE, refers to the rank correlation coefficients, N to the total number of
random values, /,; and O; denote the ranks of input and output events, respectively,
and I, and Oi represent the mean rank of /,;and Oy.

“The rank correlation coefficients are squared and normalized to 100% in order to
estimate the percent contribution of input events leading to an output event (Maxwell
and Kastenberg, 1999). A graphical plot, typically named as a tomado plot, can then
be drawn to represent the relationships of the input events causing the output events.
Risk reduction: Risk reduction provides a numerical estimation of deducing risk in
the output events if the likelihoods of the contributing input events are reduced to a

level. It is a difficult task to identi

the most important input events for large

and complex system in order to mitigate the overall system risk. The tornado plot,
which graphically represents the correlation of the input events to an output event, is

integrated to enhance this task for bow-

e analysis. As the proposed approaches for

bow-tie analysis provide interval estimation for the output events (ic., the critical

event and the outcome events), the risk reduction in this case cannot be estimated as a

point value (Suresh et al., 1996). The present work proposes an interval based
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Chapter 5:

estimation (Equation 5.12) to measure the percentage of risk reduction in the

corresponding output event, This equation is developed by following the basic

principle of Bimbaum importance measures, which estimate the importance using the
difference between the unavailability of a system including and excluding the
contributed input events in the calculation (Suresh et al., 1996). Tanaka et al. (1983)

and Lai et al. (1993) also use a si

lar equation to measure the improvement index of

cach input event in fuzzy measures
RQ.0)=Y (0" -0)+(0'-0) (5.12)
where R, is the risk reduction in an output event, O refers to the likelihood of the

output event while the occurrences of all input events are considered, O; denotes the

lihood of the output event while the likelihood of the input event  is reduced to a
certain level, and b refers to the number of values in an interval. For example, the
TEN uses three values, pr, pa, pus (Figure 5.4), and a belief structure exploits two
Values to represent the uncertainty.

5.4 Explosion at BP Texas city refinery: an illustrative example

On March 23, 2005, a massive explosion and fire erupted in the BP refinery, located 30

miles southwest of Houston in Texas City, Texas. This accident caused fifteen fatalities
and injured over 180 people (CSB 2007, 2008). BP (2005) and CSB (2007) have
published a detailed investigation report of the accident. The fire and explosion oceurred
in the refinery during restart of the ISOM unit, as shown in Figure 5.7, and involved the

Raffinate splitter, Blowdown drum and stack as a part of daily operation (CSB, 2007 and
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2008). Khan and Amyotte (2007), and CSB (2007) present a detailed process description
and quantitative risk assessment study. As noticed in CSB (2007, 2008), the explosions

occurred due to a significant release of high flammable hydrocarbon from the blowdown

drum and stack, which did not have a flare system. The released hydrocarbon

immediately formed a vapor cloud and exploded in the presence of a suspected ignition
source of an idling diesel pickup truck located about 25 ft away from the blowdown drum

(CSB, 2007 and 2008). Considering the highly flammable hydrocarbon release as a

critical event, a bow-tie diagram for the BP accident has been constructed in Figure 5.8.

‘Table 5.4 gives the identified causes as basic events and consequences. Two references,
CSB (2008) and Yang et al. (2010), have been used to derive the information in Table
5.4. The proposed uncertainty-based bow-tie analysis was performed to analyze the risk
of the possible outcomes of the BP accident. The implementation of the proposed bow-tie
analysis will provide an opportunity to reinvestigate the events and possible pre-events to

such accidents in the future.
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Figure 5.8: “Bow-tie” diagram for BP Texas City refinery accident




‘Table 5.4: Identified causes and consequences for BP Texas City refinery accident

Bow-tie Bow-tie Bow-tie

Basic events Events Outcome events
reference reference reference
e ) apor [ Vapor Cloud
o B | Clouds OF1 | Explosion (VCE)
Drifting
BE, [ LAL2 fuls Vapor Fire

Clouds

o [ L7 fils eading . Flammable HC
BE | low B | por Cloud
.| Low flow alarm o HC Vapor Cloud
BEC g YOE /Fis over ISOM unit
| remperature .| pos A
BEs | alarms ignored i | explosion fire [ OFs [ Pool fire
BE, | RV-6 fils to close O, | Poolof HC

BE;, | Pump fails

RV-1.2,3 (Relief
valves) fail to close

BEy

BE, | V-6 fails to open

BE, | LAH-3 fails

541 Fuzzy-based approach
Elicited knowledge from two experts was used to define the likelihoods of input events
for the bow-tie analysis (Table 5.5). Equal weights were assigned to both experts and
expert aggregated values were estimated as shown in Table 5.5. To calculate the

likelihood of the critical event and outcome events, fuzzy arithmetic operations described

in Table 5.2 were applied. Seven different trials based on different interdependence
assumptions for the input events at nodes N-3, N4 and N-8 were performed while

estimating the likelihoods. In Table 5.6, the TFN of the dependency coefficient for a
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single trial and the executed operations in each node are presented. For the different
trials, the uncertainties in the estimates of the likelihood of the CE (eritical events) and
O, (outcome event 1) were measured and are shown in Figure 5.9. It s obvious that the
interdependence of input events has a strong influence over the measurement of
uncertainties for the output events (e.g., CE or OEs). In trial 7, when perfect dependences
are assumed, the likelihood estimates for the CE bear the maximum uncertainty. Contrary
o tral 1, when the input events are assumed as independent, the likelihood of CE bears
the smallest uncertainty.

‘Table 5.5: Expert knowledge in fuzzy scale for the input events of Bow-tie

Input _ Linguistic grades Likelihood as TFN (1 pa, p1) Aggregated TFNs
Events gypert 1 Expert2 Expert | Expert 2 (Pr.pm PO}
BE, M RH  (03500.450,0.550)  (0.450,0.550,0.650)  (0.400,0.500,0.600)
BE, M L (035004500.550)  (0.100,0.2500.400)  (0.22503500.475)
BE, M H o (035004500550)  (0.600,0.750,0900)  (0.475,0.600,0.725)
BE, RH L (045005500650)  (0.10002500400)  (0.275,0400,0.525)
BE; L RH  (0.1000250,0400)  (0.450,0.550,0.650)  (0.275,0.4000.525)
BE, L VL (010002500.400)  (0.0000.0250.050)  (0.050,0.138,0.225)
BE, VL ML (0.00000250050)  (0.0450.097,0.15)  (0.023,0.061,0.100)
BE, ML L (00450.0970.150)  (0.1000.2500.400)  (0.073,0.174,0.275)
BE, ML L (004500970.150)  (0.1000.2500.400)  (0.073,0.174,0.275)
BE M RH  (03500450,0.550)  (0.450,0.550.0.650)  (0.400,0.500,0.600)
E MH VH (085009020955  (0.950,0975,1.000)  (0.900,0.939.0978)
E vH Ho (0950097510000  (0.600,0.750,0900)  (0.7750.863.0.950)
E VH MH  (09500975,1.000)  (0.8500.9020.955)  (0.900,0939,0.978)
E H RH  (0.60007500900)  (0.450,05500650)  (0.5250.650,0.775)
Es MH RH (085009020955  (0.450,0.550.0.650)  (0.650,0.726.0.803)
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Table 5.6: Dependency of input events (irial 3)

Linguistic grades Dependency
Nodes  Operation ————————— coefficient as TFN
Expert-1 (Car Cam Car)
Nl Intersection 1 (0.000,0.000,0.000)
N2 Intersection 1 (0.000,0.000,0.000)
N3 Intersection vs (0.800,0.898.0.995)
N4 Intersection s (0.450,0.650,0.850)
N5 Conjunction 1 (0.000,0.000,0.000)

N-6  Conjunction Refer to Table 5.6(a) ~(0.000,0.000,0.000)

N-7 Conjunction 1 (0.000,0.000,0.000)
N-8 Conjunction w (0.150,0.325,0.500)
N9 Intersection 1 (0.000,0.000,0.000)
N-10 Intersection 1 (0.000,0.000,0.000)
N-11 Interse 1 (0.000,0.000,0.000)
N-12 Intersection 1 (0.000,0.000,0.000)
N-13  Intersection 1 (0.000,0.000,0.000)
‘Table 5.6(a): Dependency matrix of input events at N-6
BE, | BE, | BE,

BEs 1 1

BEs 1 1

B, I I

542 Evidence theory-based approach
In order to demonstrate the evidence theory-based approach, two unbiased and

independent experts were engaged to define the likelihoods as well as the dependency
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coeflicients of the input events. Tables 5.7 and 5.8 provide the expert knowledge for
these two parameters.

Table 5.

Expert knowledge on the likelihood of input events

Expert 1 (m) Expert2 (m;)
Input Events

18} {F} SF S} F} (SF

BE, 0300 0.500 0200 0300 0210 0490
BE; 0200 0330 0470 0200 0433 0367
BE; 0450 0250 0300 0400 0350 0250
BE, 0240 0370 039 0240 0370 0390
BE, 0310 0430 0260 0310 0430 0260
BE, 0020 0650 0330 0015 0115 0870
BE; 0027 0685 0288 0027 0069 0905
BE, 0073 0450 0477 0063 0650 0287
BE, 0065 0650 0285 0043 0550 0407
BEj 0300 0500 0200 0300 0210 0490

E 0800 0.100 0100 0600 0300 0.100
E; 0500 0.140 0360 0600 0250 0.150
E; 0650 0100 0250 0550 0200 0250
Eq 0300 0300 0400 0500 0200 0300
E 0450 0.150 0400 0500 0250 0250

‘Table 5.8: Expert knowledge for the dependency coefficient at different nodes

Possible kind
Node o~ - c C » = = - - =
& vy & B £ 2 E g E 88 8 &

N3 000 0250 0100 000 0.100 0.150 0.100 0.140 0000 0.060
T N4 0000 0150 0120 0150 0200 0.100 0.100 0.140 0.000 0.040
N8 0.000 0.000 0200 0200 0.100 0.150 0240 0.100 0000 0010
N3 0000 0000 0200 0.150 0.050 0.150 0300 0000 0000 0.150
N4 0.000 0270 0130 0.100 0.050 0.080 0200 0.100 0.000 0.070
N8 0000 050 0190 0150 0.000 0.150 0100 0.140 0000 0.120

Ex-2
(m3)

P - Opposite dependence, § - Negatively Strong, M - Negatively Moderate, W-- Negatively Weak, 1 -
Independent, S - Strong, M - Moderate, W- Weak, P - Perfect dependence and £2-Ignorance subset
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Chapter 5:

“The experts’ knowledge egated using the DS and ination rules.

After aggre

jon, the final belief structure of dependency coefficients for nodes N-3, N-
4 and N-8 were determined by using Equation 5.9. For the others nodes, the

interdependence among input events were considered to be independent. Table 5.9

illustrates the belief structures for the input events and dependency coeflicients for nodes
N-3, N-4 and N-8. Equations in Table 5.3 were then used to derive the belief structures of
likelihood of the critical event and outcome events for the bow-tie analysis

‘Table 5.9: Belief structures of input events and dependency coeflicients

Input Events DS rule of combination Yager rule of combi
or Nodes (N) Bel Pl Bel Pl
0377 0502 0297 0.608
0245 0.448 0207 0533
0556 0657 0413 0745
0298 0483 0245 0575
0351 0443 0257 0592
0023 0314 0023 032
0034 0300 0033 0314
0060 0208 0056 0268
0044 0.168 0042 0221
0377 0502 0297 0,608
0.100 014 0070 0380
0.185 0253 0.146 0409 ‘
017 0.193 0005 0343
b4 0291 0443 0230 0560
Es 0215 0339 0175 0463
N3 0075 007 <0007 0.105
Nt 0126 0017 0,008 0.103
N 0051 0112 -0.004 0.109
*The for the failure () ofi
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Table 5.10 presents the results of estimated likelihoods of the critical event (CE)

and outcome events for the bow-tie diagram shown in Figure 5.8. For the different types

of dependencies, the variations of uncertainty in the bet estimates were measured and are

summarized in Table 5.11. An observation can be made from Table 5.11 that the ber

estimation of the critical event varies significantly with the change of interdependence
assumptions for the input events.

‘Table 5.10: Likelihood of critical event (CE) and outcome events for the Bow-tie

DS Yager rule of
Bowtie Nameofoutcome combmation  combi
Reference events
Bl __P__Ba___PM
CE Hydrocarbon 457 0820 0398 0895
release
Vapor Cloud
OF g cluery 0136 0381 0082 0495
OE, Fire 0071 0238 002 0360
Flammable HC
OF, ViarCiow. 003 0117 0014 0263
HC Vapor Cloud
op,  MCViporClowd ogrs 0189 00% 0340
OE, Pookfic 0030 0074 0015 0281
OE, PoolofHC 0010 0032 0005 0.157
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‘Table 5.11: Likelihood of critical event (CE) for different kinds of dependencies

Interdependences of input

events in assigned Nodes (N) ik o

TN NN i onton
1 i [ [ 0,661 0652
2 s = & 0531 0534
30M MM 0570 0572
aw oW W 0643 0639
s s s s 0529 05312
5 PP P 0.489 0.497

So.m(F) =0475,and miS, F)=0375.

mF) mS.FH) 0475 0375
BaC)y= M O 2 2 2 <066

‘The difference in using the DS and Yager combination rules for estimation of the

[ igure 5.10. For the same outcome event,

ood of outcome event (OF;) is plotte:
the shaded area indicates that the Yager combination rule provides a large belief structure
in comparison to the DS combination rule. Therefore, an interpretation can be made that

a larger belief

the Yager combi rule yields more conservative results (i

h conflicts in the sources of knowledge.

structure) in the context of existing hi
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Beleif structure

DS-rule Yager-rule

Figure 5.10: Belief structure to represent the likelihood of OF; (VCE)
5.5 Results and discussion
CSB (2007) investigated a number of causes and consequences for the BP accident at
“Texas City. In Table 5.4, some important causes and consequences have been identified
as input events for the BP accident bow-tie analysis. The investigation report identified
the interdependence relationships of the mechanical component failures and the operator
failures as important factors causing the failure of the ISOM unit at BP. Since the

likelihoods and the interdependence of most of the input events are unknown for the

dent, conducting bow-tie analysis in such uncertain conditions is challenging. Fuzzy-

based and evidence theory-based approaches have therefore been carried out to analyze
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the bow-tie under such uncertain conditions. The demonstration of these two approaches
in bow-tie analysis has been described in the previous section.

Two types of uncertainties namel

data and model uncertainty, are explored while

analyzing the bow-tie for the BP accident.

icitation of experts’ knowledge and their
aggregation are used to minimize the data uncertainty while defining the likelihoods or

dependency coeflicients for the input events. The dependency coefT

nts are assigned to
address the model uncertainty and describe the interdependence of input events for the
bow-tie analysis.

For example, to address the interdependence of components for the ISOM unit in

Figure 5.8, different types of dependency at N-3, N-4 and N-8 were as

igned in the
corresponding basic events while calculating the likelihood of hydrocarbon release (CE)

and outcome events (OEs) for the BP accident (Table 5.4). The output results are

depicted in Table 5.10 and Figure 5.9. A significant variation is observed in the estimates
of likelihoods for the critical event as well as outcome events while the interdependence

at N-3, N-4, and N-§ is van

ed. For example, see trial 7 in Figure 5.9; here perfect

dependence is assigned in the nodes, and the likelihood estimates of the outcome events.

as well as the critical event bear the may

um uncert

contrary to trial 1,

when the input events are assumed to be independent and the likelihood estimates of

these events bear the smallest uncer

inty. Similar observations are noted in Table 5.11;

about 24% (Y.

ser rule) variation is observed in the bet e

imation of the critical

event while the interdependence of input events is varied from independent to perfect

dependence.
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The tomado plot in Figure 5.11 highlights the failure of LAH-3, RV-1

3,6 and
V-6 as the most significant contributing input events causing the oceurrence of OE;, the
vapor cloud explosion. Independent relationships among the input events and a thousand

trials were used to perform sensitivity analysis for the bow-tie. The re:

lts are provided

in Table 5.12 and illustrate that 41% risk can possibly be reduced for the OF; (using

fuzzy-based approach) if the likelihood of the

put event LHL-3 is reduced by about
20%.

Table 5.12: Risk reduction on OE; for the most contributed input events.

Most contributed Risk

input event - Original 20 % devalued the  reduction
Liplksoginsenrs Likelihood likelihood per
devalued

Symbol  Name

Fuzzy numbers

(0.050,0.138,0225)  (0.040,0.1100.180)  3.39%
V-6 _(Pnpmp0)

BEG6  fails to

Belief DS rules 10.023,0.33] [0.018,0.251] 3.57%
close structure
(peipy  Yowernies (00230322 (00180257 265%
Fuzzy numbers (00730.1740.275)_ (005801390220 4.54%
BES Belier DS rules 0.060,0.208] 0080167 285%
SUUCIUIE  yager rules  [0.056,0.268] [0.044,0215] 231
Fuzzy numbers (0.073,0.174,0275)  (0.058,0.139,0220)  4.54%
Pumy
BES (P Thlier  DSmules [0.044,0.168] 10.035,0.135] 2.14%
SIUCIUIE  yager rules  [0.042,0.221] [0.033,0.177] 1.76%
Fuzzy numbers (0.400,0.500,0.600) (0.320,0.400,0.480)  41.13%
LA
Bel0  EAMY e Dsmle 0.377,0502] (030204021 1654%
SITUCIUIE  yager rules  (0.297,0.608] [0.238,0.486] 10.88%
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Percentage contribution to OE, (VCE)

0% 10% 20%

Input events

o 1 3 3 e 4 3 o e 700 8 0t 9]0t o

[Seriest [0.00%| 1.34% 0.00% | 4.03%] 0.179% | 14.69 | 2.88%] 23.14 | 14.69 | 39.07

Figure 5.11: Tomado plot for OF,
A comparison of the proposed and traditional approaches was performed based on

handling uncertainty in the input events. Table 5.5 provides the basic data for carrying

out the comparisons. Equations in Table 5.1 are used to estimate the likelihood of

n, the

outcome event 1 (OE;) using the traditional approach. To check the error propaga

interdependence of input events (ic., basic events or events) is assumed to be
independent and the percentage deviation (D) for the OF, is measured with 20%

introduction of uncertainty in the basic input data. In the fuzzy-based approach, the
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assigned using the membership function and the TFNs corresponding to

uncertainty
80% membership grade are considered as input-event data. The evidence theory-based

terms of bpa for the unassigned mass to the power

approach allocates the uncertainty i

inty

set. The analysis results are shown in Table 5.13, which shows that with 20% uncer

in the input-event data, 65% deviation is obtained while estimating the likelihood of O,
using the traditional approach. The fuzzy- and evidence theory-based approaches

measured almost 0.25% and 9% deviation for the same outcome event.

‘Table 5.13: Error propagation for different approaches

Likelihood of VCE (OE;)

“Defuzzified value/ Bet / Deterministic
Approaches estimation (Percentage
Deviation)
dmated with 20%  Estimated with no,
uncertainty uncertainty
Fuzzy-based 0413 0412 024%
Evidence  theory- £ 3
o 0328 0360 8.88%
Traditional 0.126 0360 65.00%

* Defiuzzified estimaton for the fuzy-based approach, the Bet measure for the cvidence theory-based approach and

5.6 Conclusions

Bow-tie analysis is a relatively new tool for safety assessment and risk analysis of a

system. Uncertainties in input data and model adequacy for bow-tie analysis are still a

major concern and may mislead the decision-making process. To address the uncertainty

ate the risk, fuzzy-based and evidence theory-based approaches along

as well as mit

with a sensitivity analysis technique were developed for bow-tie analysis. The proposed
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approaches accommodate the following features that permit conducting risk analysis for

any systems under uncerainty.

Knowledge acquisition offers an alternative to overcome missing data and lack of

information about a system. The proposed fuzzy- and evidence theory-based

approaches can accommodate experts’ knowledge and facilitate risk analysis

under situations of missing data and existing relationships among the input events.

The aggregation rules and combination rules embedded within these approaches

minimize uncertainty by providing consensus knowledge.

Special treatment procedures are req

d to explore different types of inherent
uncertainties in the experts’ knowledge. The fuzzy-based approach can properly

address the subjective uncertainty and the evidence theory-based approach can

appropriately address the uncertainty due to  ignorance and inconsistency

associated in the expert’s knowledge.

Introduction of a dependency coeflicient in the fuzzy- and evidence theory-based

hes can explore the different kinds of interdependence among input events

approa

and addresses the model uncertainty for bow-tie analy
The proposed approaches can apply to safety and risk analysis of any systems that

are encountered with data and model uncertainty.

Sensitivity analysis can identify the mos & input events for

the output events in bow-tie analysis and provide an evaluation to mitigate the

ntage of risk reduction for a system.

pe

178



ty and minimize error

* The developed approaches can handle the uncertai
accumulation in likelihood estimation of output events
Updating the likelihoods and/or the interdependencies of input events with newly
arrived information is another important aspect of obtaining credible outputs from risk
analysis. Integration of a Bayesian updating mechanism can be considered as a future

extension of the developed approaches.
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Preface

The chapter presents uscript which developed a methodology for characterizing
uncertainty, aggregating expert knowledge, and updating prior knowledge for a bow-tie
analysis. A version of this manuscript has been submitted to the Journal of loss
Prevention in Process Industries for possible publication.

The principal author formulated the approaches for developing the methodology

and designed a case study for deseribing the utility of the methodology. The co-authors

supervised the methodology ~development, reviewed the technical aspeets and

investigated the output results of the case study. They also pro

corrections and guidelines to improve the quality of the manuseript.
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Abstract

Bow-tie analysis is a fairly new concept in risk assessment that can describe the

hazards and

relationships among different risk control parameters, such as cau

consequences to mitigate the likelihood of occurrence of unwanted events in an industrial

system. It also facilitates the performance of quantitative risk analysis for an unwanted

event providing a detailed investigation starting from basic causes to final consequences.

The credibility of quantitative evaluation of the bow-tic is sill a major concern since

uncertainty, due to limited or missing data, often restricts the performance of analysis.

The utilization of expert knowledge often provides an alternative for such a situation.

related to incompleteness (partial

However, it comes at the cost of possible uncertainti

nsus (if multiple expert

ignorance), imprecision (subjectivity), and lack of con
judgments are used). Further, if the bow-tie analysis is not flexible enough to incorporate

new knowledge or evidence, it may undermine the purpose of risk assessment.

Fuzzy set and evidence theory are capable of characterizing the uncertainty
y ry

associated with expert knowledge. To minimize the overall uncertainty, fusing the

knowledge of multiple experts and updating prior knowledge with new evidence are

in the knowledge. This paper

equally important in addition to addressing the uncertainti

gregate knowledge and update

proposes a methodology to characterize the uncertainti

. A case

f new data become available for the bow-tie analys

prior knowledge or eviden

ty has also been developed

study comprising a bow-te for a typical offshore process f
10 describe the uility of this methodology in an industrial environment.

dating, fi

Keywords: Uncertainty, bow-
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6.1 Introduction

Risk and safety assessment is a systematic and scientific way to predict and prevent the

occurrence of an accident in an industrial system (Khan and Abbasi, 2001). A number of
qualitative and quantitative techniques including HAZOP analysis, Fault Tree Analysis
(FTA) and Event Tree Analysis (ETA) have been used for risk assessment (Khan and
Abbasi, 1998). However, all of these techniques share a common objective, which is to
provide an assurance that a process or a system is designed and operated under an
“accepted risk” or a “threshold” criterion such as ALARP (As Low As Reasonably
Practicable) (Skelton, 1997; Markowski et al., 2009). A systematic risk assessment
technique follows four basic steps: hazard analysis, consequence analysis, likelihood
assessment and risk estimation (AICRE, 2000). In each step, different techniques
mentioned earlier may be used, which collectively guide toward estimating risk and

ensuring system safety. FTA and ETA are two well established techniques that

individually assist the risk and safety assessment by providing both a qualitative analys
of hazards identification and a detailed quantitative evaluation of likelihood assessment
for undesired events (Spouge ,1999; Crowl and Louvar, 2002; Modarres, 2006).

FTA provides a graphical relationship between the undesired event and basic caus

of such an occurrence (Hassal, 1965; Vesely ef al., 1981; Hauptmanns, 1980, 1988;

Kumamoto and Henley, 1996). The undesired event and basic causes in FTA are

typically termed as a top-event and b ely. Unlike FTA, ETA is a

events, respe
‘graphical model of consequences that considers the unwanted event as an initiating event

and construets a binary tree for probable consequences with nodes representing a set of
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success or failure states (AIChE, 2000; Huang ef al., 2001; Lees, 2005; Modarres, 2006),

The follow-up consequences of th ing event in ETA are usually termed as events

or safety barriers, and the events generated in the end states are known as outcome events

(AIChE , 2000). Both techniques use the probability of (e.g. failure or success) basic
events and events as quantitative inputs and determine the probability of occurrence for
ments (Crowl and Louvar,

the top-event as well as outcome events for likelihood ass:

2002; Modarres, 2006). Bow-tie is a combined concept that integrates both techniques at

a common platform, considering the top-event and initiating event as linked to a common

event called a critical event (Cockshott, 2005, Chevreau ef al. 2006, Dianous and Fiévez

2006, D

jim 2009, Markowski ef al., 2009, and Ferdous er al., 2010). A sample

schematic of a bow-tie diagram is given in Figure 6.1 Like FTA and ETA, bow-tie

analysis also uses the probability of failure of basic events as input events in the FTA site

and the probability of occurrence (either fuilure or suceess) of events as input events on
the ETA site for evaluating the likelihood of critical and outcome events (Markowski er
al,, 2009, and Ferdous ef al., 2010). Ferdous et al. (2010) provide a detailed description

of the advantages, construction and analysis strategy of the bow-tie methodology as a

safety and risk assessment tool for industrial systems.
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Pre-event side:

T development | Post-event side:

T development

Success

ments of a bow-tie diagram

(BE-Basic Event; E-Intemediate Event; ‘CE- Critcal Event; and ‘OE-Outcome Event)

For quantitative bow-tie analysis, the probabilities of input events are required to be
known cither as precise crisp data or defined probability density functions (PDFs), if
uncertainty needs 1o be considered (Markowski e al., 2009; Ferdous et al., 2010). The

crisp data or PDFs are often difficult to come by and even if these arc available, precision

of

data has many inherent uncertainty issues, such as variant failure modes, design

faults, poor understanding of failure mechanisms, as well as the vagueness of system

phenomena (Ayyub, 1991; Sawyer and Rao, 1994 Yuhua and Datao, 2005; Wu, 2006,

Sadiq et al., 2008; Ferdous et al., 2009, 2009b, 201 1). Sin

in a majority of cases, crisp
data as well as PDFs are rarely available, elicitation of expert knowledge is often
employed as an altemative to the acquisition of objective data (Ngyun, 1987; Ayyub,

2001; Yuhua and Datao, 2005; HE et al., 2007).
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Uncertainty is inherently unavoidable since it belongs to the physical variability of

a system and data unavailability about the system resulting from lack of knowledge or

limited information (Ayyub, 1991; Markowski e al., 2009). The uncertainty due to
natwral variation or randomized behaviour of a physical system is called aleatory
uncertainty, whercas the uncertainty due o lack of knowledge or incompleteness is
termed epistemic uncertainty (Bae ef al., 2004). Fuzzy sets and evidence theory have

been proven to be effective and efficient at handling these types of uncertainties in

expert knowledge-based analysis (Bouchon-Meunier ef al., 1999; Fagin and Halpern,

1991; Cheng, 2000; Sentz et al., 2002; Wilcox et al., 2003; Boudraa et al., 2004; Bae et

al., 2004; Agarwal et al., 2004; Ayyub et al., 2006). However, these theories alone are

not capable of updating the likelihoods assessment when a new expert judgement

becomes available.
Ferdous et al. (2010) developed a framework utilizing fuzzy set and evidence
theory to resolve the uncertainties due to employment of expert knowledge in defining

the likelihood and interdependence of input events for bow-tie analysis. This framework

is intended only for addressing the data and model uncertainty, which are subjected to

It is unable to

missing data and interdependent relationships among the input eve

if new

update the risk estimate of the critical and outcome events in bow-tie analys

knowledge or information about an input event is discovered. The current paper s mainly

focused on the particular methodology development of implementing an updating

mechanism along with the characterization of uncertainty and aggregation of multiple

experts” knowledge for bow-tie analysis. The developed methodology helps to address
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the uncertainty, which occurs in likelihoods assessment and more importantly, updates

the analysis recursively if any new knowledge or information is available.

62

analysis under uncertainty

Incorporation of expert judgments can help in conducting knowledge-based risk analysis

for a complex system. This is especially useful when quantitative information such as the
probability of input events is missing or limited (Clemen and Winkler, 1999; Rosqvist,
2003; Ferdous ef al,, 2009b, 2011). Unfortunately, expert knowledge is often incomplete,

(Misra and

inconsistent, vague, or imprecise. This introduces uncertainty in risk analy:
Weber, 1989; Yuhua and Datao, 2005). In order to recognize this kind of uncertainty and
0 effectively consider its implications for risk analysis, several formal techniques have
been developed (Wilcox and Ayyub, 2003). These techniques can be applied in any

quantitative risk analysis model such as fault tree, event tree and bow-tie for uncertainty

evaluation. The employment of these techniques is usually categorized based on the type
and nature of uncertainty as stated in Table 6.1. Probability theory based Monte Carlo
Simulation (MCS) is the most popular among these techniques for conducting uncertainty
evaluation (Abrahamsson, 2002; Wilcox and Ayyub, 2003). This sampling based
technique requires known PDFs, which are generated from historical data, and is unable
to properly address the uncertainty if the knowledge is highly subjective, vague,
incomplete or inconsistent (Wilcox and Ayyub, 2003; Druschel et al., 2006).

charact

Three different aspects: tion of uncertainty, ii) aggregation of

multiple experts knowledge if any, and iii) updating the likelihood with new knowledge,

must be considered while formulating the uncertainty of a comprehensive risk analysis,
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especially when the risk and safety criteria are evaluated based on utilization of expert
knowledge. The first aspect, characterization of uncertainty, is essential for categorizing
the nature of uncertainty inherited in expert knowledge. Fuzzy numbers in fuzzy set
theory and basic probability assignments (bpas) in evidence theory are usually employed
10 address such types of uncertainties. The second aspect, aggregation, is necessary for

building a compromise between conflicting data when a lack of consensus arises among

the different experts (Lin and Wang, 1997). Dezert and Smarandache (2004) summarized

a number of combination rules for evidence theory and Wagholiar (2007) described
aggregation techniques for fuzzy set theory that allow fusion of knowledge from different

sources. The final aspect, updating, is introduced for incorporating new knowledge with

the prior knowledge to obtain an updated likelihood assessment for the analysis. This
provides an inference in risk analysis by making a bond between prior knowledge and
new knowledge. For cach updating, the updated knowledge of the input events is
recursively used as new inputs in the risk analysis model (¢.g., bow-tie) to attain a revised
estimation for likelihood assessment (Freson, 2005).

Table 6.1: Uncert

y categories and theories

Type Nature Theory
" Stochastic, Objective, Probability theory
Aleat ertaint; e
AOTY UNCETINY trreducible, Random and Evidence theory
Imprecise, Incomplete, Possibility theory, Fuzzy
Epistemic uncertainty  Ambiguous,  Ignorance, set theory and Evidence
Inconsistent, Vague theory
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6.3 Methodology for uncertainty management

‘The uncertainty-based approaches for ETA, FTA and bow-tie analysis have already been

developed (Ferdous et al., 2010; 2011). The current work is an extension of the previous
developments. In this paper, we attempt to combine the three important aspects of
uncertainty management: a) characterization of uncertainty, b) aggregation of multiple
expert knowledge, and ¢) updating prior knowledge for risk analysis. The paper discusses
the methodology development for bow-tie analysis, which also encompasses FTA and
ETA. In the first step, characterization of uncertainty is developed to address the different
kinds of uncertainty in the expert knowledge. Aggregation of knowledge is performed to
merge the knowledge from different experts. The updating is integrated for revising the
prior knowledge when new information becomes available. The framework developed in
Figure 6.2 provides the relationship among the three steps of the proposed methodology.

Detailed descriptions for each step are discussed in the following sections.
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631 Characterization of uncertainty

Expert knowledge offers a better aliernative when crisp probability or the PDFs for the

input events are not accurately available. Therefore, uncertainty characterization is
important in bow-tie analysis as expert knowledge is never absolute and may include

different types of uncertainty (Bouchon-Meunier et al, 1999; Ayyub, 2001). To

effectively minimize uncertainty, the technique for uncertainty formulation needs to be
explored in accordance with the nature of uncertainty existing in the objective data. In the
proposed methodology, fuzzy set theory is explored to deal with uncertainty due to
vagueness, imprecision and subjectivity in the expert knowledge. Evidence theory is
employed to handle uncertainty due to ignorance, incompleteness, and conflicting

evidence (Ferdous, 2009b; 2011). The fundamentals of these theories and uncertainty
characterization are described in the following sub-sections.

6.3.1.1 Fuzzy Set Theory

Zadeh (1965) first introduced fuzzy set theory in his pioncering work, where he argued
that traditional probability theory alone s insufficient to characterize all types of
uncertainty associated with human conceptualizations of the real world. Fuzzy set theory
is specially designed to provide a language with syntax and semantics to translate
qualitative knowledge/judgments into numerical reasoning and to capture subjective and
vague uncertainty (Tanaka ef al., 1983; Weber, 1994; Abrhamson, 2002; Wu, 2006).
Ross (1995; 2004) and Ayyub & Klir (2006) described the foundation and arithmetic
operations of fuzzy set theory and its implications for engincering systems. for

characterization, representation and evaluation of uncertainty in risk analysis.
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Fuzzy number: Fuzzy set theory uses fuzzy numbers to capture the imprecision or

vagueness in expert assessments (Lin and Wang, 1997). The membership function of a

fuzzy number exploits the numerical relationship for an uncertain quantity p (e.g
probability of input events) ranging between 0 and 1 (Sawyer and Rao, 1994). Any type

of ‘membership function including normal, bounded and convex functions, e.g.,

iangular, trapezoidal and Gaussian shapes, can be considered for the formation of a
fuzzy number. However, the selection of a function essentially depends on the variable
characterization and available information. In the current paper, a TFN is used to quantify
subjectivity in the expert knowledge. A TFN can be described by a vector (pL, pm, pU)
that represents the lower boundary, most likely value, and upper boundary. The a-cut for

a TPN represents the degree of membership of py in the set P. The membership function

of a TFN can be described as:

Ll PSP SPa
Pu=p
#p(py Pu-ps PSSPy .1)
Pu=Pu
0 otherwise

Risk analysis often articulates expert knowledge/judgment in terms of linguistic
Variables such as very high, high, very low, low, etc. (Ayyub,1991; Wu.2006, Sadiq et al,
2007). Ayyub and Klir, (2006) have provided a chart to define the lower and upper
boundary for such variables. Considering the most likely value as an average of these two

boundaries, TFNs can be used to represent these types of linguistic variables (Lee, 1996;
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Lin And Wang, 1997; Sadiq et al., 2008). For example, eight linguistic variables, e.g.,
Very High (VW), Very Low (VL), Moderately High (MH), Moderately Low (ML), Low

(L), Moderate (M), High (H), Rather (R), have been proposed in present study to

describe expert knowledge for defining the probability of input events. The TFNs of these
variables are represented in Figure 6.3 and as an example, the membership functions for
Low (L), Moderate (M) and High (H) are illustrated below:

™ VLML L M RHH MH VH

0 0045005 010015 035 040 045055060 0.65 085609 095 0955

Figure 6.3: Mapping linguistic grades on fuzzy scale

x(p,=0.) 01<p, <025

015
#ulp)= |*ﬁx(p/70.25| 025<p, <04 62
o otherwise
1
107 —039) 035<p, <045
Hulp)= x(p,-045) 0455 p, <055 ©3)

0 otherwise
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1
——x(p, ~0.60 06<p, <0.
s ) Py S0T5

Hy(py)= (6.4)

%x(p/ -075)  075<p, <09
0 otherwise

The fuzzy boundaries of a TEN (i.c., lower and upper boundary) may also be
determined from the point of most likely value and error factors (EF) if the rigid fuzzy
scale, developed in Figure 6.3, is unable to map the subjective uncertainty of an expert
(Huang, 2001). Error factors represent the degree of imprecision associated with experts’
knowledge. The magnitude of error factors is often reported along with the most likely
value in the literature (Liang and Wang (1993); Huang (2001). Liang and Wang (1993);
Suresh et al. (1996) and Huang (2001) proposed the equations to determine the fuzzy
boundaries of a TFN. The equations also have flexibility to consider the error factors
based on direct expert judgment. Equations 6.5 and 6.5b have been derived for two
different conditions (i.c., most likely value less than 0.5 o greater than or equal to 0.5) in
this study to construet the TFN. Khan and Abbassi (1999) and Ferdous ef al. (2009a)
derived similar equations for trapezoidal fuzzy numbers (ZFN). As an example, the TFN

representing an imprecise probability of an input event around 0.2 (most likely

probability)” is illustrated in Figure 6.4 and the membership function for this fuzzy

number can be derived as Equation 6.6:
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1
.08
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& |
£ 06
£
§
E 04
g 02 BF | EF
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0
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Probability of failure (p )
Figure 6.4: TFN represented with eror factor (EF)
= p, %05
= Pu 0<p, <050 (6:52)
= paxLS
1
» 05<p, <10 (6.56)
i
Shox(p,-010) 0.10< p, <020
=1y ﬁx(pﬁozu) 020< p, 030 ©6)
0 otherwise
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6.3.1.2 Evidence theory

The theory of evidence evolved during the 1970s with the joint effort of Dempster and
Shafer (Vang and Kim, 2006; Sentz and Ferson, 2002). This theory enables
characterization of uncertainty due to partial ignorance or knowledge deficiency in expert
judgment (Sentz and Ferson, 2002; Kulasckere ef al., 2004; Sadiq ef al., 2006; Wang et
al., 2006). Unlike traditional probability theory, evidence theory allows the allocation of
subjective probabilities, supporting the evidence of expert belicf, in corresponding
subsets of a power set. The unassigned probability (ignorance) is distributed to an
ignorance subset, as opposed to the Bayesian approach, that distributes missing evidence
in remaining disjoint subsets (Sentz and Ferson, 2002; Sadiq ef al., 2006)

Basic probability assignment (bpa): Evidence theory characterizes uncertainty

starting with a definition of frame of discernment (FOD). The FOD represents a set of
mutually exclusive elements that allows a total of 21621 subsets in a power set (P), where
1021 is the cardinality of the set. The functional state of an input event can be classified in
two states: success (S) or failure (F); available or unavailable (Vesely et al., 1981;
Stamatelatos, 2002). Therefore, the FOD to characterize the uncertainty of the input event
for bow-tie analysis can be defined as @ S, F} that leads to four subsets in a power st
(P), including {® , (S}, (F}. {S.F}}.

In evidence theory, the basic probability assignment (bpa), denoted by m(p), is
used to distribute the probability provided by the expert for cach subset belonging to the

power set, P (Druschel ef al., 2006). The unassigned bpa, i.c., m(2) =1- m(S) - m(F)
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accounts for the ignorance or incomplete information in the expert knowledge (Sadiq ef
al., 2006; Ferdous ef al., 2009b).

A belief structure in evidence theory s used to generalize the total uncertainty in an
interval bounded by belief (Bel) and plausibility (P)) measures. Bel (P) represents the
lower bound of a belief that measures the minimal support for a particular subset, p. PI(P)
represents the upper bound of the belief that determines the maximal support for the

subset, p. The belief structure for an uncertain parameter like likelihood of

can be characterized by the following bpa function.

m(p)->[0,1] where, m(@)>0and Y. m =1 6.7)
! y=4

The Bel and P/ measures for the bel

f structure can be determined by the following

equations:
Bel(p)= 3 m(p,) ©8)
P
Pl(p)= mp,) (6.9)
’ p,ﬁzplsw :

6.3.2 Aggregation of multiple experts knowledge

Knowledge can never be absolute as it is socially constructed and negotiated (Ayyub,
2001). It often suffers from inconsistency since different experts may have different
perceptions that may be incomplete and conflict with each other. However, knowledge
from multiple experts always provides a beter approximation than knowledge from a

single expert. In order to incorporate different experts’ knowledge in risk analysis, the
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knowledge from different sources needs to be aggregated before performing the bow-tic
analysis (Huang ef al., 2001). The following two sub-sections provide the methods of

aggregation of fuzzy numbers or bpas to define the probability of input events in bow:

analysis.
6.3.2.1 Fuzzy numbers aggregation

Aggregation provides a mutual agreement and minimizes the conflict among the different
sources (Lin and Wang, 1997). A number of methods, e.g., max-min, arithmetic
averaging, quasi-arithmetic means, weighted average method, fuzzy Delphi method,
symmetric sum and t-norm, are available to aggregate multiple experts’ knowledge in the
form of fuzzy numbers (Huang et al., 2001; Sadiq et al., 2007; Wagholiar, 2007). The
weighted average method is the simplest method allowing aggregation according to prior
weights of the arguments. It uses the following equation for aggregating m experts’

knowledge.

(6.10)

where P is the linguistic expression of uncertain input event i elicited from expert
Jj» m is the number of input events, m s the number of expers, w, is a weighting factor
corresponding to expert j and P, is the aggregated fuzzy number. For equally weighted
knowledge, the weighted average method gives a similar estimation to the arithmetic

averaging method.
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6.3.2.2 Knowledge aggregation

For identical FODs, the combination rules in evidence theory allow one to aggregate
different knowledge from different sources and provide the combined belief structure
(Premaratn et al,, 2003; Ferson et al,, 2004; Sadiq et al., 2007). The Dempster and Shafer
(DS) rule s the most fundamental of all the combination rules developed. However, a
number of modifications to the DS rule have been exceuted based on minimization and
normalization of conflicts among sources (Sentz and Ferson, 2002; Sadiq ef al., 2006).
“The most common modifications include those by Yager, Smets, Inagaki, Dubois and
Prade, Zhang, Murphy, and more recently by Dezert and Smarandache (Sadiq ef al.,
2006). Detailed discussions and comparisons of these rules can be found in Dezert and
Smarandache (2004). In the current study, to address two extreme cases of conflicts i.e.,
high-conflict and non-conflict issues in experts’ knowledge, the DS and Yager
combination rules have been used for the purpose of knowledge aggregation. The details

of these two rules are given below.

DS rule of combination: The DS combination rule uses a normalizing factor (1-k)
to develop an agreement among the acquired knowledge from multiple sources, and
completely ignores the conflicting evidence through normalization (Ferson ef al., 2004;
Sadiq et al., 2007). The combination rule uses the AND-type operator (product) for
aggregating knowledge from independent sources (Sadiq ef al., 2006). For example, if

the my(py) and my (py) are two sets of knowledge for an input event collected from two

different experts, the DS combination rule uses the following equation for aggregation.

205



Chapter 6: ind updating uncertain information in bow-tie analysis

L Jorp,=®

()= :
" S paxmpy) @1n

Panpy

Tk for p, =

In the above equation, 1.2 (1) denotes the combined knowledge of two experts for

the event, and k measures the degree of conflict between the two experts, which is

determined as:
k= Y m(pa)xm(py) (6.12)
Parpy=®

Yager rule of combination: Zadeh (1984) pointed out that the DS combination rule
may yield counterintuitive results, and exhibits numerical instability if the conflict among
the sources is large (Sentz and Ferson, 2002). To resolve this issue, Yager (1987)
proposed an extension in Equation 6.13, which s similar to the DS combination rule

except that it does not allow normalization of joint evidence with the normalizing factor

(1-4). The total degree of conflict (k) is assigned to the ignorance subset (Sadiq ef al,

2006). However, in a non- (or less) conflicting case, the Yager combination rule exhibits

similar results to the DS combination rule. For high conflict cases (i.c., higher k value), it
provides comparatively more stable and robust results than the DS combination rule

(Ferdous et al., 2009b).
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0
Jorp,=%
m(pa)xm;(py)
pmg o ! forp#Q (6.13)
Do (pa)xm(py)+k forp,=Q

PaCPy=p;
633 Updating prior knowledge
Conditioning is the basic operator for the updating process in probability theory. It
provides a recursive way to update prior knowledge conditional to given knowledge
(Fagin and Halpern, 1991; Moral and Campos, 1991 Premaratne et al., 2009). Moral and
Campos (1991) distinguished the difference between combination and conditioning as

combination is a process of merging input of two or more sources of information,

whereas conditioning is a restriction of an piece of information that is utilized while the

knowledge is updated an another verified new information. The classical

probability framework alone is not sufficient for updating the prior probability with

incoming knowledge (Nygan, 1987; Chou and Yuan, 1993; Ferson, 2005). Bayes’

theorem described in Equation 6.14 provides such an inference for accumulating and
updating knowledge based on new given information (Ferson, 2005). Since expert

knowledge is often scaled as fuzzy numbers, the integration of Bayes' theorem with

fuzzy set theory is essential to update unces

formation in risk analysis. Chou and
Yuan (1993), Taheri and Behboodian (2001) and W (2006) proposed applications of the
fuzzy-Bayesian method in hypotheses testing and structural reliability. In the current

work, the fuzzy-Bayesian method is extended for bow-tie analysis considering that the
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likelihood of input events is not defined precisely by the experts. Unlike the fuzzy-

Bayesian approach, conditional notation within the context of evidence theory supports

the updating process of a prior mass or belief based on a given proposition (Premaratne er

al., 2003; Kulasekere ef al., 2004). 1

s also allows updating the Bel and Pl measures for
an input based on the conditional probability (Fagin and Halpern, 1991).

P(E/IE)x PUE,)
P(E)

PUE, I E)= 2,

(6.14)

where, IE, is the i* uncertain input event, for which likelihood is defined as prior
knowledge P(IE). P (IE/E) is the posterior knowledge of the input event given new
expert knowledge £, and P (E/IE) the conditional probability for the event following a
defined PDF. The denominator of the above equation is called the normalization factor,
which can be calculated by the law of total probability (Chou and Yuan, 1993; Ferson,
2005). However, the computation of the normalization factor depends on the aspect of
implementation of Bayes' theorem. For bow-tie analysis, it can be calculated using
Equation 6.14a, since the likelihood of components in FTA or barriers in ETA
(commonly termed as input events in bow-tie analysis) are evaluated on the basis of the
conditional sucess or failure state of the event

P(E)= PEVIE,)PUE,) + P(E/ IE, )P(IE, ) (6.142)
6.3.3.1 Fuzzy-Bayesian approach

A fuzzy-Bayesian approach can be used to compute the posterior or updated probability
incorporating new subjective knowledge into prior information. The Bemoulli-equation

(Equation 6.15) in probability theory is unable to address subjective, imprecise, or vague
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uncertainty, since the random variable P, used to describe the likelihood of an input event
1 may not be exactly unity (event /£ oceurs ) or zero (event IE; does not occur) (Chou
and Yuan, 1993). Moreover, the Bayes' theorem given in Equation 6.14 does not
consider such fuzziness in the input data (Itoh and itagaki, 1989). The fuzzy-Bayesian
approach referenced by Ttoh and ltagaki, (1989); Chou and Yuan, (1993); and Carausu
and Vulpe, (2001) is appropriate when the likelihood of input events in bow-tie analysis
is defined through fuzzy numbers. The proposed fuzzy-Bayesian approach for updating
the prior knowledge as well as for computing the posterior probabilities of bow-tie
analysis are described in the following discussions.
PUE)=8(p,)P(p, =0)+8(p, ~DP(p, =1) (6.15)
where, () is the dire delta function, and Py is the random variable. In fuzzy

measure, s considered as a fuzzy number and represented by a membership function.

As an example, if an expert says the probability of an input event Z£; is “Low”, then the
‘membership function for this event can be expressed by Equation 6.3. For a continuous
fuzzy number, the dirac delta function in Equation 6.15 can be written as Equation 6.16

(Chou and Yuan, 1993).

PUE

[t 8, (6.16)

where, 41, (p,) is the fuzzy number corresponding to the failure probability of input

event JE, and g(p,)is the defined PDF forp,.The conditional probability in Bayes’
theorem can accordingly be revised for fuzzy measure as Equation 6.17.

PENE)= [ 1 (P8, (P)) ©17)
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‘The substit

ion of Equations 6.16 and 6.17 in Equation 6.14 yields Equation 6.18,
that eventually computes the posterior probability for input event /£ based on the given
new expert knowledge E.

[vaﬂ, ®)g,, ,,(p/w]xmm

PUE, 1 E)= e (©.18)

where,
PO=[[ w0, 00, )}xl’us.)»f[j,d, PRI )}XI'UE/)

In fuzzy arithmetic, the complement (i.c. probability of success) of the failure
probability is determined by Equation 6.19.

PUE,

~1E,1=01- pi A= piy 1= Py 619

where, P(IE, s the complementary probabi

of IE, pf, ply and pf, are the
left, most-likely and upper values respectively representing the failure probability (/E7)
as TFN.

Experts’ knowledge is used to assign the probability of occurrence for the input
events in bow-tic analysis. Figure 6.3 is used for constructing the membership functions
if the probability values are defined using linguistic variables (e.g.. VH, VL, MH, etc.).
The probability values defined with an error factor such as “about 0.20", “about 0.15",
“about 0.30°, etc., are expressed with the membership functions developed using
Equations 6.5 and 6.5b. The conditional PDF representing the likelihood of aceurrence
of an event is usually derived from a set of historical data and fitted to a particular

distribution such as exponential, weibull, normal, lognormal, etc.. (Ebling, 1997;
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Stamatelatos, 2002). In normal operating conditions, exponential distribution s
commonly preferred since in that region the likelihood of occurrence of an event follows
a constant trend (Ebling, 1997; Crowl and Louvar, 2002, Stamatelatos, 2002) The

developed fuzzy-Bay es exponential distribution

approach for bow-tie analysis

(as shown in Figure 6.5) as the conditional PDF function to update prior knowledge
whenever new expert knowledge is obtained to define the probability occurrence of input

events.

100 ==

PDF

Probability of occurrence
Figure 6.5: Exponential PDF representing sate of input events

6.3.3.2 IAE-based evidential updating

Initial knowledge is typically very buggy, incomplete, and weak (Richardson and

Domingos, 2003). The belief structure, representing the range of uncertainty, recursively

requires updating with incoming knowledge or evidence in order to 0

strategy conditional to given evidence (knowledge) i
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proposed in the current study based on the premise (similar to Kulasekere ef al., 2004)
that updated belief conditional to given evidence is taken to be a linear combination of

the originally assigned belief and the conditional belief. Fagin and Halpern (1991)

derived the conditional measures by narrating the continual notations in the inner and
outer measures to DS notation. Moral and Campos (1991); Premaratne ef al. (2003,

2009); and Kulasekere ef al. (2004) explored a number of the expressions to determine

the condi

nal measure and update the belief structure (i, [Bel(lE), PI(IE)). Equation
620 is one of the expressions that promptly uses evidence theory to measure the
conditional belicf.

Bel(IE, N E)

el([E, | By = ———— 2t
Bl ) = Gl OE, o~ By + PUCE~ TE,)

(6.20)

where, Bel (IE(E) is the conditioning of input event probability /£, with respect to

new evidence £ . E represents the complementary event of E. In a similar manner, the

counterpart of Equation 6,20 measures the conditional plausibility. For updating the prior
belief and plausibility of an input event of /£, the linear combination of Bel(lE) and Bel

(IE(E) yields Equations 6.21 and 6.22. The updated probability of input events derived

using these equations is then finally used to revise the risk estimate of bow-tie analysis.
Bel, (E,) = a, Bel(IE,) + f3, Bel(IE, | E) (©21)
PIL(IE,) = a, PICE) + f3, PIIE, | E) (622)

where,, and /3 refer to the weighting parameters, dependent on the conditioning

proposition of E. Bel,(IE,) and Pl,(IE,)denote the updated belief and plausibility
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measure conditional to . The summation of the w

ing parameters has to be unity,
since m(IE)> [0,1] provided m, (¢)=0

The weighting parameters in the above equations basically measure the inertia of
the prior evidence for the updating process. Premaratne ef al. (2003) and Kulasekere ef
al. (2004) validated the conditioning based updating strategy referred in Equations 6.19

and 620 by providing different appealing propes

. Several strategies to measure

weighting parameters have been reported by Kulasekere ef al. (2004). In particular, it is a

reasonable assumption that the updated belief measure can never be more than the

updated plausibility measure, i.

Bely (IE) < PI (IE)) (Kulasckere et al., 2004). The

IAE-based (integrity of available evidence) strategy in Equation 6.23 calculates the

weighting parameters that allow the increment of Bel (1) maximum fo Pl (IE).

PICE)
= Bel(E) Jor Bel(E) < PAE) <1 623)

(
arbitary in [0,1]

6.4 Application of proposed methodology to bow-tie analysis
Fuzzy numbers and bpas in the proposed methodology help to characterize the
uncertainty associated with expert knowledge for bow-tie analysis. Based on this
characterization, either the fuzzy weight average method or combination rules can be
employed to unite the knowledge from multiple sources if there are any. Ferdous et al.
(2010) derived the intersection and conjunction operations to perform bow-tie analysis
under different uncertainties with respect to expert knowledge. These operations are also

capable of addressing uncertainty regarding the interdependent relationship among input
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events. For independent cases, these operations can be simy

fied as the equations
depicted in Tables 6.2 and 6.3,

‘Table 6.2: Fuzzy arithmetic operations for bow-tic analysis
Operation Evaluation Formulation

klteodstoseone 1, = [lipg. 1=
Intersection

Conjunction F,UF Y )

Intersection
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Table 6.3: Evidence reasoning operations for bow-tic analysis

Operation Evaluation Formulation
Likelihood of o1
outcome events (OF) Tog =L JUBIT).PIF)]
Intersection Bel(P,,) EEEI(I’, )

e, )= ﬁPI(P)
=l !

Bel(P,,) lﬁ[ld}yl(l’,)]
Conjunction
rie ) fl[l-m(l:)]
Bel(P,,) ﬂl]el(l”)
Inersection P, NP, N....n P,

PIP_ ) ﬁ PI(P)
=1 !

ou

A bow-tie for a typical offshore oil and gas process facility, shown in Figure 6.6,
has been developed to demonstrate the utlity of the proposed methodology in industrial

applications. On an offshore oil and gas process facility, gas leakage is a common issue;

incident may subsequently lead to different credible aceidents such as vapor cloud
explosion (VCE), fire, explosion and BLEVE. Khan ef al. (2002) proposed a risk-based

safety design and assessment method for offshore

s to mitigate the risk of such
accidents for different process units. They also provided a detailed process description

and iden

a number of possible causes as basic events that directly or indirectly

enhance the occurrence of credible accidents in an offshore facility. Table 6.4
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summarizes some of the possible causes as input events for the bow-tie development. In
addition to possible causes, other input events are listed in Table 6.4 to describe the likely

consequences of a gas leak occurrence on an offshore facility. The developed bow-tie

diagram for the facility

illustrated in Figure 6.7. In Figure 6.7, the leakage from the

facility is considered as a critical event and the causes and consequences of such an

cident are depicted as input events. The models for characterization, aggregation and
updating uncertainty in risk estimates are applied to the bow-tie to determine the
likelihood of possible outcomes. Different uncertain conditions including the use of
expert knowledge for missing data, knowledge from multiple experts, and new

knowledge for

put events are considered while performing the bow-tie analysis.

To flare

Wellhead feed To gas flare

Crude il

Gas condensate

Purified
dry gas.

Oily water separator

Gas compression

Figure 6.6: Process flow diagram of a typical offshore faci
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Table 6.4: Identified causes and consequences for offshore facility

Input event | Bow-tie reference Deseription

BE, Leak from joints
BE, Leak from main pipeline
BE; Leak from joints
BE, Leak from main pipeline

i BE, Leak from vessel

E b Lesk fom et s
BE; Leak from pipe connec
BE, Leak from safety valves
BE, Leak from release valves
By Leak from control valves

E/ Vapor cloud

H E; Tgnition

& Es Drifting vapor cloud
[ Fire in other units
CE Leakage from unit

Vapor cloud  explosion

H (VCE)

5 VCE flowed by fire

H OF; Fire

H OE, Dispersed vapor cloud

ve

red by other units

Vapor cloud over the unit
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65 Results and analysis

‘Two different kinds of knowledge (subjective and incomplete) from two different sources
were considered while performing the bow-tie analysis. The expert knowledge for the
input events is presented in Tables 6.5 and 6.6. The uncertainty due to subjectivity was
addressed by fuzzy numbers and aggregated using the weighted average method by
assigning equal weights for both experts. The hpas in evidence theory considered the
incomplete knowledge as ignorance while characterizing the uncertainty and distributing
it as an unassigned mass to the power set. DS and Yegar combination rules were applied
while combining the two different experts” knowledge for the input events.

Table 6.5: Expert knowledge in fuzzy scale for the input events of bow-tic

Input S Linguistic grades Likelihood as TFN (¢, pu. 1) Aggregated TFN
Events (For Pr.pmp0)
S} Expert! Expert2 Expert 1 Expert 2
BE, F VL 003" (0.0000.0250050) (0.0150.030.0.045) (0.011,0.0350.059)
BE, F ML VL (0.0450.0980.150) (0.0000.025.0.050) (0.023,0.061.0.100)
BE,  F 003" VL (0.01800350053) (0.000,0.0250050) (0.0080.0280.048)
BE, F 0065 ML (0.033,0.0500.098) (0.0450.0980.150) (0.03500740.113)
BE, VL ML (0.000,0.0250.050) (0.0450.098,0.150) (0.023,0.061,0.100)
BE, F 000" VL  (0.0500.1000.150) (0.000,0.0250.050) (0.025.0.0630.100)
BE, ML L (0.04500980.150) (0.100,0.2500.400) (0.073,0.174,0.275)
BE, F 004" VL (0.0200.0400.060) (0.000,0.0250.050) (0.018,0.037.0.05)
BE, F VL 00457 (0.000.0.0250.050) (0.023.0.0450.068) (0.010,0.033.0.055)
BE,  F 005" VL  (0.02800550.083) (0.000,00250.050) (0.014,0.0400.066)
Es MH Ho (085009020955 (0.600,0.750,0900) (0.900,0.939,0.978)
E S H 097 (0.600,0.750,0900) (0.850,0.900,0950) (0.725,0.826,0.928)
B s H 08" (0.600,0.750,0900) (0.700,0.800,0.900) (0.550,0.663,0.775)
B s MH H__ (0.850.0.902,0955) (0.600,0.750,0.900) (0.725,0.826,0.928)
. mark refer
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Table 6.6: Expert knowledge on the likelihood of input events

Expert 1 (m) Expert 2 (m)
Input Event

5} (M SH S () (K

BE; 0.800 0050 0.150 0850 0.043 0.107

BE, 0900 0025 0075 0800 0070 0.130

BE; 0850 0030 0120 0750 0065 0.185

BE, 0670 0068 0262 0730 0045 0225

BEs 0.650 0065 0285 0750 0050 0.200

BEq 0.800 0.100  0.100 0.600 0.140 0.260

BE; 0.650 0.100 0250 0700 0.150 0.150

BEy 0.750 0050 0200 0780 0035 0.185

BEy 0850 0025 0.125 0780 0.100 0.120

BEj 0.850 0.080 0.070 0650 0.095 0255

E 0870 0.100 0030 0780 0.150 0.070

Ey 0.650 0200 0.150 0850 0.100 0.050

Ey 0.600 0300 0.100 0700 0200 0.100

Eq 0750 0.150  0.100  0.650 0.200 0.150

The aggregated knowledge

illustrated in Tables 6.5

and 6.7 was employed to

determine and evaluate the likelihoods of different outcomes for the offshore facility. The

results are presented in Table 6.8 and Figure 6.8. In Table 6.8, with the available prior

knowledge, the DS combination rule estimated the belief structures of leak occurrence as

[0.290-0.501] for the offshore facility, and VCE as the most likely consequence which

measured the highest probability of occurrence as [0.261-0.456]. For the same critical

event and outcome event, the Yager combination rule estimated a large belief structure in

comparison 1o the DS combination rule. Therefore, it can be casily interpreted that the

Yager combination rule yields more conservative results (i.c., a larger belief structure) in

the context of existing high conflicts among the sources.

220



Chapter 6: Handling and updating uncertain information in bow-tie analysis

Table 6.7: Belief structures of input events

DS rule of combination

Yager rule of combination

Bel Pl Bel

Pl

B F S|

F S|

F s F

*BE,  0.9675 00151 0.9849
BE; 09782 00112 0.9888
BE; 09593 00166 0.9834
BE, 09032 00328 09672
BE; 09048 00332 0.9668
BE, 09034 00652 0.9348
BE, 08739 00811 09189
BE 09412 00193 09807
BE, 09632 00201 0979
BEp 09395 0.0400 09601
Ey 09639 00335 09665
Er 09314 00588 09412
By 08209 0.1642 08358
Eq 08837 0.0963 09037

00325 [ 0.8931 0.0140 09861 0.1069
00218 [ 0.8970  0.0103 09898 0.1030
00407 | 08848 0.0153 09847 0.1153
0.0968 | 08311 0.0302 0.9699 0.1689
0.0952| 08313 0.0305 09695 0.1688
0.0966 | 0.7480  0.0540 0.9460 02520
0126107275 00675 09325 02725
00588 | 08798 0.0180 09820 0.1203
00369 | 08625 0.0180 09820 0.1375
0.0605 | 08148 0.0347 09654 0.1853
0036107629 00265 09735 02371
0.0686 [ 07125 0.0450 09550 02875
01791 05500 01100 0.8900 0.4500
0.1163 [ 06650 00725 09275 0.3350

Table 6.8: Likelihood of critical event and outcome events

e Sruleof  Yager ruleof
R:feren::e ‘"'":v::l': COME__ combination combination
Bel Bl P
e Lt o0 oo 020 o85S
Vapor Cloud
OB, o gy 02005 04559 0.1402 0765
OB, veEMowedby 0119 00251 0.0032 01930
OFE,  Fire 00013 00032 0.0004 0.0697
op,  DissensedVapor 0057 0006 00010 0.1052
Cloud
OE; 00086 00164 00045 0.1837
OF,  VCovertheunit 00009 00021 00005 00663
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Chapter 6: Handling and updating uncertain information in bow-tie analysis

“The likelihood of the different outcome events for the bow-tie analysis depends on
the failure probability of the critical event, as well as the probability of occurrence of

subsequent events. Any new knowledge or evidence incorporated with prior information

of the input events in bow-tie analysis may provide a different likelihood assessment for
the critical event and outcome events. The updating mechanism developed in this study is

able to capture the new knowledge and provide updated likelihood for the input events,

al event, and outcome events. As a continuation of bow-tie analysis for the offshore
facility, new knowledge for a few selected input events is considered in Table 6.9. The
developed fuzzy-Bayesian and IAE-based evidential updating approaches estimated the
new probability for these events and provided the updated values as shown in Table 6.10.
“The bow-tie for the offshore facility is reevaluated based on these updated probabilities
that provide a revised estimation (depicted in Figure 6.8 and Table 6.11) for leak
occurrence and the outcome events. In Figure 6.8, both the prior and updated fuzzy
numbers of leak oceurrence and the likelihood of outcome events are illustrated. Figure

6.8 shows that the VCE is the most likely consequence, and the prior most likely value of

VCE (measured in a fuzzy number) exhibits 28% deviation when revaluated with the

updated knowledge. Table 6.11 represents the updated belief structures for the critical

event and outcome events for the bow-tic of the offshore facility. In Table 6.11, it can be

observed that the belief estimation, incorporated with the new knowledge, for the
outcome event OF, is updated almost 22% in comparison to the value calculated in Table

68.
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Table 6.9: New knowledge for selected input events

New Expert grade

Belief Structure

B S
Linguistic  TFN (o, pupi)  Bel Pl
*F (0.010,0.020,0.030)  0.020 0.045
F (0.045,0.098,0.150)  0.090 0115
F (0.100,0.2000.300)  0.070 0.150
F (0.045,0.098,0.150) 0043 0.085
F (0.023,0.045,0.068) 0068 0.160
s (0.850,0.902,0.955) 0856 0950
s 085" (0.775.0850,0925) 0.750 0.880

* F- fuilure state of input events and S- success state of input events

Table 6.10: Updated knowledge for the selected input events

Belief Structure
Tnput
Event  TFN@LPwp) DS combination rule  Yager combination rule
Bel P Bel P
BE; (0.001,0.003,0.006)  0.0110 0.0225 02545 0.841
BE; (0.005,0.015,0.027)  0.0649 0.0972 0.1665 0.6919
BE; (0.032,0.078,0.124)  0.0777 0.1348 0.0025 0.2475
BE,  (0.002,0.0080.016)  0.0197 0.0383 0.0002 0.1128
BEip  (0.001,0.005,0.009)  0.0378 0.0673 0.0006 0.1485
Ey (0.926,0.954,0981)  0.9334 0.9393 0.0053 0.1681
Eq (0.650,0.775,0.900)  0.8852 0.9024 0.0004 0.0766
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‘Table 6.11: Updated likelihood for critical event and outcome events

i DSruleof  Yager rule of
Bow-tie  Name of outcome  combination __combination
event | ———

Reference
Bel Pl Bel Pl

ce  Leskage fromthe o053 o511 02545 0841
r Cloud

ay
Explosion (VCE) 02567 0464 0.1665 06919
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Vapor cloud over
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In order to investigate the nature of the updating approach, the updating of input
events was performed fifieen times using the fuzzy-Bayesian approach. The trend of
uncertainty range for each update was estimated and observed while evaluating the

likelil

0od of the critical event and outcome events. In each instance of updating, a few
arbitrary input events were considered and the prior probability of these events was

updated with random new knowledge. The uncertainty range for cach update was

measured by accounting for the difference in fuzzy boundaries of TFN and plotted in
Figure 6.9. The decreasing trends of the uncertainty range for the ritical event (CE) and
outcome events (OE) in Figure 6.9 clearly show that the uncertainty in the final estimate

decreases when the number of updates increases for the input events.
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Figure 6.9: Trends of uncertainty range for different number of updates
6.6 Summary and conclusions

Bow-tie analysis s a tool for predicting and analyzing safety and risk for industrial

systems. It integrates two well-established techniques

FTA and ETA) for

quantitative risk assessment, it provides an explicit view starting from basic causes to the

final consequences of accident scenarios, and it connects possible outcomes of accident

scenarios with the critical event and the input events to perform a systematic and

comprehensive risk analysis and safety assessment. The quantitative analysis of a bow-tie
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still has difficulty in estimating the precise occurrence probability of a eritical event as

well as outcome events, as the probability of occurrence for input events are often
missing and estimated using expert knowledge. Expert knowledge is habitually subjected
10 the uncertainty of incompleteness (partial ignorance) and imprecision (vagueness). The
inherent uncertainties (.c., missing data, natural uncertainties in the expert data, multiple
sources of expert data, and incoming knowledge) create challenges to improving the
credibility of bow-tie analysis.

A methodology that integrates the characterization of uncertainty, aggregation of

different experts” data and updating prior knowledge is developed in the current paper to

enhance and improve the overall performance of a bow-tie analysis. The application of

this methodology has been demonstrated in bow-tie analysis on a typical offshore process

facility. From the analysis, it has been observed that the likelihoods of a critical event and

outcome events were computed in a range of values that generalize the total uncertainty

associated with expert knowledge. Moreover, incorporating new knowledge or evidence

o0 the input events yields an updated value and provides revised likelihood estimates for a
critical event and outcome events. Finally, the developed methodology accommodates the

following features which are useful in conducting a systematic risk assessment:

Supporting the expert-knowledge elicitation process as a heuristic option for

obtaining and updating uncertain information in bow-tie analysis.

Accounting for different Kinds of uncertainties in expert data while

performing likelihood assessment for bow-tie analysis.
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3. F

ating the aggregation and rules of combination techniques to minimize

existing conflicts and data inconsistency in different sources of knowledge.

IS

. Providing compati

lity to update the analysis recursively whenever new
knowledge becomes available for likelihood assessment in bow-tie analysis.

In the future, this work will be extended towards introducing a similar type of

updating approach for describing the interdependent relationships among input events.

The different types of conditional PDFs such as weibull, lognormal, normal and others

may also be considered in this future extension to explore a more robust fuzzy-Bayesian

ipdating approach for bow-te analysis
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CHAPTER 7

Conclusions and Future Research

FTA, ETA and Bow-tie analysis are important techniques for QRA to evaluate, and

predict occurrence of accidents for industrial process facilities. Uncertainties are
unacceptable and unavoidable, and often undermine the overall purpose of QRA. The
uncertainties in QRA are manifested due to insufficient or limited data, unrealistic

assumptions, and lack of dynamic nature of risk estimates. Comprehensive frameworks

and approaches thus still need to be developed for QRA which can incorporate expert

knowledge as an alternative to limited or missing data, characterize and propagate

uncertainties, aggregate multiple-source knowledge, and integrate dynamic aspets into
risk calculations
7.1 Summary and conelusions

Literature review (Chapter 2), highlights the limitations associated with the existing QRA

methods for industrial process facilities. Most of the previous studies were specific, cither
following the traditional assumptions or unable to address different types of uncertainties.
Furthermore, they were developed for specific methods or approaches, which thus limit
their applicability, if a different kind of uncertainty or new knowledge or data become

available. The hurdles for developing a comprehensive risk analysis framework include:

i) development of appropriate approaches to formulate different kinds of uncertainties,

and ii) integration of appropriate method to enhance dynamic qualities in isk estimates
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“This study adopted two different theories, namely fuzzy set and evidence theory, to

develop uncertainty-based formulations for FTA, ETA and Bow-tie analysis, and

updating approaches to integrate dynamic aspect in QRA. The present research is mainly
focused on the following objectives: (1) development of a quantitative framework for

handling different types of uncertainty in FTA and ETA, (2) development of a

comprehensive framework for bow-tie analysis including uncertainty, (3) integration and

development of updating inference for incorporating dynamic aspect in the risk analysis,
and (4) applications of developed methodologies and approaches in different case studies.

Keeping these objectives in perspective, the following conelusions have been achieved.

1. Two types of uncertainty, namely data and dependency uncertainty, were identified
while analyzing a fault tree and event tree following the traditional assumptions. A
quantitative framework based on fuzzy and evidence theory was proposed in Chapters
3 and 4 to handle these kinds of uncertainties in FTA and ETA. This framework
utilizes the expert knowledge to overcome the data uncertainty in FTA and ETA. The
dependency coefficient in each node of the fault tree and event tree was used to
address the dependency uncertainty and to deseribe the interdependence of basic

events/events. In the fuzzy-based approach, the probabil

ies of events, as well as the

dependency coefficient (Cy) of events were defined linguistically using the fuzzy

scale comprised of TFNs. The vagueness and subjectivity of the expert knowledge
were described employing the extended a-cut based fuzzy empirical equations during
analysis with the fault tree and event tree. In the evidence theory-based approach, the

bpas were assigned based on expert knowledge. The incomplete and inconsistent
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~

baps from multiple sources were combined using the DS and Yager combination
rules. The evidence theory-based empirical relations were then used to address
uncertainty related to multiple experts’ knowledge and the interdependence of basic
events/events. OF the two combination rules, the Yager combination rule provided

more reliable aggregation in the context of having high conflicting information in the

multiple sources. Consequently, this rule yielded more appropriate results for
FTA/ETA with uncertainty, leading to a lower value in the belief measure and a
higher value in the plausibility measure compared to the DS combination rule. The
developed approaches are flexible to accommodate the expert knowledge and to
handle a wide range of uncertainties associated with the knowledge in case of missing
data. These approaches are unique and allow the description of six different levels of
interdependence among the basic-events/events.

In Chapter 5, fuzzy and evidence theory-based approaches were extended to develop

acomprehensive framework (i.

) for performing bow-tie

. qualitative and quantitati
analysis under data and model (dependency) uncertainty. First the weighted average
method in the fuzzy-based approach was adopted to aggregate the fuzzy numbers
assigned by different experts. Second, the developed empirical relations in fuzzy and

evidence theory based approaches were modified and extended to address both

posi

and negative dependence. Finally, sensi

analysis (SA) comprising two

steps were proposed to identify the most contributing input events and estimate the

risk reduction for the corresponding events for bow-tie analysis. The developed
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framework can also provides a qualitative guideline to construct a bow-tie diagram
for any unwanted events stating from the basie causes to s final consequences.

Two updating approaches, namely Fuzzy-Bayesian and IAE-based evidential
approaches were developed in chapter 6 to incorporate the dynamic aspects and
update the prior knowledge for bow-tie analysis. In both updating approaches, first
information s considered as prior knowledge. The fuzzy-Bayesian approach uses the
TENs to describe the subjectivity for the prior knowledge, and employs. the
exponential distribution as a conditional PDF for updating the prior knowledge. On
the other hand, the IAE-based evidential updating approach computes the belief
interval, comprised of the belicf and plausibility measures, of the posterior knowledge
based on the conditional ratio measured from prior belief and plausibility measures.
‘The bpa in the evidence theory-based approach initially characterizes the uncertainty

cor

due to incompleteness, deficiency an tency in the knowledge, and measures

the belief interval of the prior knowledge. The two updating inferences along with the

uncertainty based formulations, i

.. fuzzy and evidence theory based approaches are
useful to perform likelihood assessment in an uncertain and dynamic environment for
risk analysis. The approaches are capable to incorporate new knowledge with prior

knowledge and provide revised probability estimation for bow-tie analysis. The

application of these approaches can also be extended in developing a real time risk
analysis profile for the industrial facility by calculating the new likelihoods for each

time when new information becomes available.
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4. Applications of developed frameworks, approaches and updated inferences have been
demonstrated in four case studies and described in Chapters 3, 4, 5 and 6. Concluding
remarks and a short overview of each case study are described below.

a) Chapter 3: the utility of the developed framework and approaches for ETA was
demonstrated in the study of “LPG release at a Detergent Alkylate Plant (DAP)”. An
event tree model and analysis for the LPG release was reconstructed and reevaluated
in order to compare the error robustness of traditional techniques and developed

approaches in data uncertainty. It was thereby observed that, for 10% error in the

probability of the initiating event (LPG release event tree), the dete ic approach
exhibited approximately 9% deviation in the frequency estimation of the outcome
event “B” for the LPG release event tree. In contrast, the fuzzy-based approach gave

more robust results, i.c., ~0.003% deviation for the same percentage of error in the

ating event. The MCS-based approach yielded ~0.8% deviation, while the
evidence theory-based approach calculated ~6% deviation for the same scenario. It is

emphasized, however, that evidence theory takes into account the ignorance of expert

knowledge while defining the probability of events, which the other approaches
cannot deal with.
b) Chapter 4: the second case study, with two separate sub-examples (event tree for

“LPG release’

ful tree for “Runaway reaction”), was demonstrated and analyzed to
illustrate the compatibility of developed approaches for ETA and FTA instead of
traditional techniques. Besides checking the error robustness of the developed

approaches, a detailed comparative study for different techniques of FTA and ETA
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was performed. Two additional comparisons in handling dependency uncertainty with
the available and developed approaches were also performed for different
assumptions of interdependence in FTA and ETA. For two dependence cases, i.c.,
independent and perfectly dependent, the output results of FTA and ETA were
examined and compared for the different approaches. The comparisons of the “LPG
release™ event tree example revealed that all approaches including the developed
approaches provided similar results when the independence assumption was
considered. However, when perfect dependence was employed, a higher order of

magnitude was estimated while calculating the probability of outcome events using

the developed approaches. A similar observation was found for perfect dependence of
basic-events for the FTA of “Runaway reaction.” These two observations confirmed
that relaxing the dependency assumption introduces significant errors in the output
results, and the traditional approaches are not capable to address this type of
uncertainty. Therefore, the developed approaches are more comprehensive and
extensive than the traditional approaches, which provide a reliable and robust result in

the situ:

i of data and model uncertainty for FTA and ETA.
©) Chapter 5: for the third case study, a bow-tie diagram of the BP Texas city
accident was constructed following the developed framework and analyzed using the
developed approaches. It was observed from the case study that, while the
interdependence of input events varied from independence to perfet dependence, the
uncertainty measured in the probability of the critical event (CE) and output events

(OEs) ranged from minimum to maximum uncertainty. A conclusion was drawn that
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the interdependence has a strong influence over the measurement of uncer
the likelihood (probability) estimates of OFs. To check the robustness of handling

data uncertainty, a comparative analysis was performed using the developed and

traditional approaches for the bow-tie. In the comparison, the same BP case study was

carried out and the error propagation for cach approach was observed for a specific

“OE;”. Analysis of this comparison revealed that introduction of 20%
uncertainty in the input-event data lead to 63% deviation in the likelihood estimates
of OE; while employing the traditional approach. The fuzzy and evidence theory
based approaches measured almost 0.25% and 9% deviation for the same OE. Aside
from this comparison, a tomado plot was developed using the proposed SA method
for identifying the correlations of input events leading to the occurrence of OF. The
demonstration of SA method in the case study also helped to conclude that a

of occurrence of OFs could be ated if the

significant percentage of

ihood for the highest contributi ut events may be reduced to a desired

percentage.
d) Chapter 6: the last case study was illustrated on an offshore oil & gas processing
facility to deseribe the uility of the developed and updated approaches for bow-tie
analysis. The updating approaches were demonstrated only for the bow-tie
application. They can also be encompassed with the FTA and ETA. Knowledge from
two different sources, along with the subjectivity and incompleteness uncertainty, was
considered while performing bow-tie analysis for the case study. The fuzzy weighted

average method with the assignment of equal weights on both sources and DS and
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Yegar combination rules were applied to aggregate the knowledge for input events.
“The corresponding probability for the CE (gas leakage) and the OEs was determined
using combined knowledge and developed approaches. To demonstrate the

applicability and validity of the updated approaches, a few arbitrary input events of

the bow-tie were considered and the prior probabilities of these events were updated
with some random new knowledge. The trend of the uncertainty range for each
update was estimated and observed while evaluating the probability of CE and OFs.
The decreasing trends of uncertainty range for CE and OEs confirmed that the
uncertainty in the final estimate decreases when the number of updates increases for
the input events. The updating inference is useful to enhance the dynamic nature and

performance of QRA by adding new knowledge or industrial data to the prior anal

and improving the earlier analysis with heightened confidence. These approaches are
also useful for performing a real time analysis using the updated information and
rectifying the likelihood assessments of input events and OEs that may escalate to an

accident.

ally, the general conclusion of the developed approaches can be described using
‘Table 7.1. Table 7.1 provides the comparisons of different approaches in perspective of
handling and updating the analysis of fault tree, event tree or bow-tie for QRA. It is
evident from the table that, for the most part, the proposed approaches is more advanced

than the traditional methods.
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Table 7.1: Different approaches for FTA/ETA/Bow-tie analysis

Approaches  Input data Assumptions ”"“"'l;'l')‘:_':i'n';‘“
« Assigned values e exact &
i « Incapable of describi
Traditional  Usecrisp  and precise. ol
approach value o Basic events fevents finput

« Unable o update prior analysis
events are independent. pdata y:

“ PDFS are knownand well 1l the random uncertainties

Traditional are properly handled. The other
MCSbased  Use PDFs types of uncertainties cannot be
‘approach « Basic events /events /mpu! deseribed,

events are indey 1 "
pend » Unable to update prior analysis

« Data uncertainty along with
aleatory and epistemic
uncertainty, and model (or

o TFNs are elicited using
expert knowledge

Proposed Use TFNs  * basic
spachss. ochpal events fevents finput propesty boaddremsod
events can be ranged from .
« Able 0 update the prior
perfect 0 opposite. oot o
i analysis whenever new

Knowledge becomes available.

7.2 Originality of thesis

‘The main contribution of this thesis is twofold. First, two different approaches are being

embedded in the developed frameworks for ETA, FTA and bow-tie analysis to handle

n to these approaches, a

data and dependency (model) uncertainty in QRA. In addit

sensitivity analysis method has also been developed for identifying the important risk

contributors and providing an evaluation of possible risk reduction for bow-tie analysis.
Second, to incorporate the dynamic aspects in QRA, two updating mechanisms are
integrated with the developed approaches. The originality and significance of the thesis is

further described with the following features, which include:
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« Supporting the elicitation process of expert knowledge 1o overcome the data
uncertainty issues in FTA, ETA and bow-tie analysis.
« Adopting a dependency coeflicient to describe a wide range of interdependence

for addressing model uncertainty in FTA, ETA and bow-tie analysis.

« Enha

2 the process to identify the important risk contributors and mitigate risk
for industrial facilitics.
« Providing the compatibility for QRA in updating and rectifying the analysis

recursively whenever new knowledge becomes available.

e Promoting the applicability of QRA for any industrial facilities that endure data

and model (or dependency) uncertaintics.

7.3 Future research

Based on this research following recommendations for future work can be made:

731 New frameworks

i. The present study encourages the use of the implication of expert knowledge as

an altemative option to limited or missing data. A conceptual framework that
describes the procedural steps of the knowledge elicitation process requires to be
developed to maintain the quality and eredibility of knowledge. Knowledge from
multiple sources provides more reliable predictions about an uncertain parameter.
Hence, a graphical format to support the knowledge elicitation process, and a
scoring or voting system to facilitate the prioritization of knowledge, need to be

integrated into the framework. These integrations will basically help to calculate
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I

the assignment of weights for each expert, and perform an interactive risk anal

more specifically for a particular system.

“This research intended to formulate the uncertainty for FTA, ETA and Bow-tie
analysis, and enhance the performance of risk analysis in an uncertain and
dynamic environment. However, risk is defined as a function of both consequence
and frequency. FTA, ETA and Bow-tie analysis are normally used to estimate the
probability of concered incidents and events. An effort is still required to
develop a framework that will integrate both consequence and frequency
estimation for an unwanted event and provide an overall isk estimation.
Improvement in the developed approaches

The present research used triangular distribution to address random uncertainty in
the MCS-based approach for FTA and ETA. In future research, the other types of
distributions including exponential, weibull, normal and lognormal (commonly
preferred in modeling the failure data for the basic components or oceurrence of
an event) can also be considered to perform a more comprehensive comparison
among the different uncertainty-based approaches for FTA and ETA.

Two types of uncertainty, data and model (or dependency) uncertainty, were
considered in this study to explore the uncertainty-based approaches for the FTA,
ETA and bow-tie. Another kind of uncertainty, which may be defined as
structural or completeness or quality uncertainty subjected to the incorrectness
and inappropriateness of structuring a fault tree or bow-tie for an unwanted event,

can also be considered in future research.
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‘The developed uncertainty based formulations in fuzzy and evidential approaches
was explored only for the “AND" and “OR” logic gates of FTA and bow-tie

analysis. In future research, these formulations can be further extended towards

developing the formulations for the other types of gates, such as, “Exclusive OR”,
“PRIORITY AND", “INHABIT”, which will partly help to model the structural

uncertainty while performing risk analysis using FTA and Bow-tie analysis.

. Two distinct approaches, namely fuzzy- and evidence theory-based approaches,

were developed in this study to handle subjective and incompleteness uncertainty.
In future, both kinds of uncertainties can be considered together using hybrid soft
computing methods such as Fuzzy-Dempster-Shafer is required.

An inference for updating the prior knowledge of interdependence is required to

be developed in future in order to comprehend the applicability of developed

approaches for FTA, ETA and bow-tie analysis.

. Different conditional PDFs such as weibull, lognormal, normal may also be

considered to explore a more robust fuzzy-Bayesian updating approach.
Analytical Hierarchy Process (AHP) can be considered in future to determine
weight of expert’s knowledge in aggregating the fuzzy numbers from different

experts.

249



Electronic Appendix

Please find the attached CD.






e 1OR RHO. )
< T

JuL 18 197
o, g
L NEWROUNDLE







	0001_Cover
	0001a_Inside Cover
	0001b_Blank Page
	0002_Title Page
	0003_Abstract
	0004_Page iii
	0005_Acknowledgments
	0006_Table of Contents
	0007_Page vi
	0008_Page vii
	0009_Page viii
	0010_Page ix
	0011_Page x
	0012_Page xi
	0013_List of Tables
	0014_Page xiii
	0015_Page xiv
	0016_List of Figures
	0017_Page xvi
	0018_Page xvii
	0019_Page xviii
	0020_List of Abbreviations
	0021_Introduction
	0022_Page 2
	0023_Page 3
	0024_Page 4
	0025_Page 5
	0026_Page 6
	0027_Page 7
	0028_Page 8
	0029_Page 9
	0030_Page 10
	0031_Page 11
	0032_Page 12
	0033_Page 13
	0034_Page 14
	0035_Page 15
	0036_Page 16
	0037_Page 17
	0038_Page 18
	0039_Page 19
	0040_Page 20
	0041_Page 21
	0042_Page 22
	0043_Page 23
	0044_Page 24
	0045_Page 25
	0046_Page 26
	0047_Page 27
	0048_Page 28
	0049_Page 29
	0050_Page 30
	0051_Page 31
	0052_Page 32
	0053_Page 33
	0054_Page 34
	0055_Page 35
	0056_Page 36
	0057_Page 37
	0058_Page 38
	0059_Page 39
	0060_Page 40
	0061_Page 41
	0062_Page 42
	0063_Page 43
	0064_Page 44
	0065_Page 45
	0066_Page 46
	0067_Page 47
	0068_Page 48
	0069_Page 49
	0070_Page 50
	0071_Page 51
	0072_Page 52
	0073_Page 53
	0074_Page 54
	0075_Page 55
	0076_Page 56
	0077_Page 57
	0078_Page 58
	0079_Page 59
	0080_Page 60
	0081_Page 61
	0082_Page 62
	0083_Page 63
	0084_Page 64
	0085_Page 65
	0086_Page 66
	0087_Page 67
	0088_Page 68
	0089_Page 69
	0090_Page 70
	0091_Page 71
	0092_Page 72
	0093_Page 73
	0094_Page 74
	0095_Page 75
	0096_Page 76
	0097_Page 77
	0098_Page 78
	0099_Page 79
	0100_Page 80
	0101_Page 81
	0102_Page 82
	0103_Page 83
	0104_Page 84
	0105_Page 85
	0106_Page 86
	0107_Page 87
	0108_Page 88
	0109_Page 89
	0110_Page 90
	0111_Page 91
	0112_Page 92
	0113_Page 93
	0114_Page 94
	0115_Page 95
	0116_Page 96
	0117_Page 97
	0118_Page 98
	0119_Page 99
	0120_Page 100
	0121_Page 101
	0122_Page 102
	0123_Page 103
	0124_Page 104
	0125_Page 105
	0126_Page 106
	0127_Page 107
	0128_Page 108
	0129_Page 109
	0130_Page 110
	0131_Page 111
	0132_Page 112
	0133_Page 113
	0134_Page 114
	0135_Page 115
	0136_Page 116
	0137_Page 117
	0138_Page 118
	0139_Page 119
	0140_Page 120
	0141_Page 121
	0142_Page 122
	0143_Page 123
	0144_Page 124
	0145_Page 125
	0146_Page 126
	0147_Page 127
	0148_Page 128
	0149_Page 129
	0150_Page 130
	0151_Page 131
	0152_Page 132
	0153_Page 133
	0154_Page 134
	0155_Page 135
	0156_Page 136
	0157_Page 137
	0158_Page 138
	0159_Page 139
	0160_Page 140
	0161_Page 141
	0162_Page 142
	0163_Page 143
	0164_Page 144
	0165_Page 145
	0166_Page 146
	0167_Page 147
	0168_Page 148
	0169_Page 149
	0170_Page 150
	0171_Page 151
	0172_Page 152
	0173_Page 153
	0174_Page 154
	0175_Page 155
	0176_Page 156
	0177_Page 157
	0178_Page 158
	0179_Page 159
	0180_Page 160
	0181_Page 161
	0182_Page 162
	0183_Page 163
	0184_Page 164
	0185_Page 165
	0186_Page 166
	0187_Page 167
	0188_Page 168
	0189_Page 169
	0190_Page 170
	0191_Page 171
	0192_Page 172
	0193_Page 173
	0194_Page 174
	0195_Page 175
	0196_Page 176
	0197_Page 177
	0198_Page 178
	0199_Page 179
	0200_Page 180
	0201_Page 181
	0202_Page 182
	0203_Page 183
	0204_Page 184
	0205_Page 185
	0206_Page 186
	0207_Page 187
	0208_Page 188
	0209_Page 189
	0210_Page 190
	0211_Page 191
	0212_Page 192
	0213_Page 193
	0214_Page 194
	0215_Page 195
	0216_Page 196
	0217_Page 197
	0218_Page 198
	0219_Page 199
	0220_Page 200
	0221_Page 201
	0222_Page 202
	0223_Page 203
	0224_Page 204
	0225_Page 205
	0226_Page 206
	0227_Page 207
	0228_Page 208
	0229_Page 209
	0230_Page 210
	0231_Page 211
	0232_Page 212
	0233_Page 213
	0234_Page 214
	0235_Page 215
	0236_Page 216
	0237_Page 217
	0238_Page 218
	0239_Page 219
	0240_Page 220
	0241_Page 221
	0242_Page 222
	0243_Page 223
	0244_Page 224
	0245_Page 225
	0246_Page 226
	0247_Page 227
	0248_Page 228
	0249_Page 229
	0250_Page 230
	0251_Page 231
	0252_Page 232
	0253_Page 233
	0254_Page 234
	0255_Page 235
	0256_Page 236
	0257_Page 237
	0258_Page 238
	0259_Page 239
	0260_Page 240
	0261_Page 241
	0262_Page 242
	0263_Page 243
	0264_Page 244
	0265_Page 245
	0266_Page 246
	0267_Page 247
	0268_Page 248
	0269_Page 249
	0270_Page 250
	Z002_Blank Page
	Z003_Inside Back Cover
	Z004_Back Cover

