ARHANA

VA ALAM

A CORE GENERIC META-MODEL FOR ASPECT-ORIENTED

PROGRAMMING LANGUAGES

by
© Farhana Eva Alam
A thesis submitted to the
School of Graduate Studies

in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Computer Science
Memorial University of Newfoundland
September 2010

St. John's, Newfoundland, Canada

Abstract

Aspect Oriented Software Development (AOSD) has its roots in the need to deal with
requirements that cut across the primary modularization of a software system. On the
programming level, mature, industrial-strength tools like the de-facto standard
Aspet] exist. However, on the modeling level, there is as yet lttle support for AOSD.
Previous work, which was platform specific, has provided support for only Aspect]
However, as Aspect] does not support dynamic aspect-orientation, the developed
model only provides support for static AOSD. Building on previous work, using
standard UML extension mechanisms, this research develops UML modeling support
for both static and dynamic AOSD. Comparing language and aspect-oriented features
of Aspect), AspectS and AspectML, as a first step to our generic profile, we present a
profile which supports only static part of Aspect! and AspectS. This helps us to figure
out the modeling elements that are required for dynamic profile but missing in the
current profile. As the second step, a generic but only dynamic profile (does not
provide support for static AOSD) is presented. These two profiles clearly show the
difference between static and dynamic AOP in modeling level. We use the above steps
and develop the final generic profile that allows existing UML tools to express AOSD
models. The developed model ensures modeling support for both static and dynamic
AOSD from the same profile. To verify the necessity and correctness of the profiles
used as working steps, we apply each of those to several examples. Furthermore, the

generic profile is applied to examples from Aspect] and AspectS to make sure that

can express both static and dynamic AOSD. Code generation is done by working from

the UML XMI (XML Model Interchange) format, the standard UML serialization.

“This is one of the standardized mechanisms and is therefore compatible with existing
modeling tools. Existing work has demonstrated the use of XSLT (XML Stylesheet
Language Transforms) for generating XMI to Aspect] code. We leverage that
mechanism. As a proof-of concept, we implement XSLTs that generates valid code for

our target languages (Aspect], AspectS).

Acknowledgments

I would like to express my deepest gratitude to my supervisors, Dr. Joerg Evermann
and Dr. Adrian Fiech. It has been my good fortune to have the opportunity of working
with them. I would like to thank them their remarkable help, encouragement and
support to carry on my research work.

Tam also deeply grateful for the financial support of the School of Graduate Studies,
Memorial University. Further, a special thanks to the Department of Computer
Science, without its resources and administrative help it would not be possible to
pursue my Master's degree at Memorial University. In addition, T am also grateful to

the writing center of Memorial University for checking the entire thesis.

I want to express my endless gratitude towards my parents, sister, in-law family
‘members and relatives for inspiring me with their unbound love, faith, and support to
continue my graduate school career. My sincere appreciation to my husband Refaul
Ferdous who gave me all kinds of support and taken extra care of me and our five

‘months old baby girl Waniya who was born at the middle of my thesis writing.

And finally, looking back over my study period at Memorial University, this thesis
would not be possible without the support of few peoples. Specially, I would like to
thank Morsheda Mamataz, Kamrunnahar Eamy, Nigar Sultana, Madhabi Roy, Wendy
Khandakar, Naushaba Sheikh, Asma Dewan, Negar Noor, Shazli Khan, Kazi Tayubul
Hag, Reedwanul Islam, Wasimul Bari, Shakil Abmed, Shibly Rahaman, Matthias
Tilsner, and Riobard Zhan for their moral support and help. They also have made my

life here more joyful and happy.

Boe. oAgaee T

Table of Contents
Abstract i
‘Table of C

List of Tables
List of Figures ~Error! Bookmark not defined.
Chapter 1 1
INTRODUCTION 1
11 Separation of Cross-cutting C 1
12 i Cross-cutting C 2
‘ 13 Aspect-oriented Py 3
131 AOP 4
132 AOP Language 6
1321 Basic Terminology: .. 6
| 13.22 Join Point Model. 7
I 14 Aspect-oriented Modeli 8
L5 Object 10
16 Th 10
Chapter2 13

AN OVERVIEW OF AOP LANGUAGES

21 Running Example.

22 Aspect]

221 AnOverview of Aspect)
2211 Aspect

Join Point.

Pointcut

22
222 Running Example in Aspect .
23 Aspect

231 AnOverview of Aspect

2311 i 9
2312 Join Point.
2313 Pointeut
2314 Ad
2315 Advice Qualifier .
232 Running Example in Aspects ..
24 AspectML
241 AnOverview of AspectML

Chapter 3

AorP Static and Dys i 62
31 Static AOP 62
32 Dynamic AOP.

Chapter 4

AOP LANGUAGE FEATURE COMPARISION

41 Aspect], AspectS and AspectML 2
411 Exposed Join Point Categs 5
412 Cross-cutting Ca 1
413 cts. 2
414 Pointeuts 6
415 Advi 96
416 Static Crosscuttin o

42 Discussion 100

Chapter5 105

ASPECT-ORIENTED MODELING IN UML..

5.1 Related Works 10

52 Our h, 110

53 Modeling Element I
53.1 CrossCuttingCt 111
532 Aspect 1
533 Advic 113
534 Jc it. 114

53.5 Join Point Compositi 115

119
121
CH I

0 Introducti 124
Profle for Static AOP 126

55 Profile for Dynamic AOP 128
56 Generic Profik 13
57 Comparison with Aspect) profile.... 140

APPLICATION EXAMPLE ...

61 Example-1 : Modeling SenderClassSpecific Join Point.

611 Base Model 1

612 G 1
612 ic AOP. 1
6122 Modeling Dynamic AOP

62 Example-2 : Modeling Cflow Join Point

62.1 Base Model
22, Cron-cu(ling Concern
62. ing Stati AO

6222 Modd eling Dynamic
63 Example-3 : Modeling an Empuon Join Point.
631 Base Model 160
632 G ing-cutt 161
6321 ing Static AOP. 161

6322 Modeling Dynamic AOP ..
64 Example-4 : Modeling a Property Join Point
641 Base Model
642 G ncern.
642.1 Modeling Static AOP.
6422 Modeling Dynamic AOP ..
65 Example-S : Modeling the Shopping-Cart Exampl
651 Base Model
652 G
652, c AOP.
6522 Modeling Dynamic AOP
Chapter 7

CODE GENERATION

722 isjt d JoinpointConjunction. 189
723 CFl 192
724 i 194
725 196
Chapter 8 199
Discussi 199
Chapter9 207
CONCLUSION. 207

viii

Table 2.1:
Table 22:
Tabled.1:
Tabled.2:
Table 4.

Table 4.

Tabled.5:
Table 5.1:

Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table8.1:

List of Tables

Mapping of exposed join points to poitcut designators...

Access Specificati 2

in Aspect) and Aspects 9
Exposed join point categories of Aspect], AspectS and AspectML........100
Pointeuts those are not available in AspectS and AspectML..

AspectS Pointeuts that can or cannot be emulated using Aspect]...

Imitating the Aspects join point selection using Aspect ...
Pointcuts that can be modeled using the meta-class CFlowJoinpoint.....123
Reusing elements from Aspect] Profile without modification.
from Aspect] Profile
from Aspect) Profile 148
New elements in the Generic profile. 150
Aspect] Profile VS Generic Profile ..

List of Figures

Figure 1.1: Additional codes in each method of

Figure 1.2: fa banking system (Redrawn after [1]) ()
Figure 2.1: Output of the shopping-cart program with “logging”.
Figure 2.2: An Aspect] file named HelloWorld.

Figure 2.3: A class named Testin Java ...

Figure 2.4: An example of a named pointcut (adapted from [1]..

Figure 2.5: Output of the ShoppingCart example in Aspect]

Figure 2.6: Opening system browser in Squeak...

Figure 2.7: Workspace and transcript window in Squeak ..., 29

Figure 2.8: Dynamic weaving in AspectS
Figure 2.9: Testing a method introduction using AsIntroductionAdvice .

Figure 2.10: Weaving of spect 37
Figure 2.11: Weaving of spect 3
Figure 2.12: Weaving of S Aspect 39
Figure 2.13: Weaving of 1 40
Figure 2.14: Workspa output of the I

Figure 2.15: Transcript for Class First Attribute Example...
Figure 2.16: Transcript for Class All But First Attribute Example.

Figure 2.17: Transcript for Instance First Attribute Example.

Figure 2.18: Transcript for Instance First Attribute Example.

Figure 2.19: Workspace and Transcript for Super First Attributc Example..
Figure 2.20: Transcript for Super All But First Attribute Example
Figure 2.21: Workspace codes for ShoppingCart example in AspectS.

Figure 2.22: Output for rt example in Aspect 3

Figure 2.23: The advices of Listing 2.34 were triggered whenever the functions
mentioned in the join points were called from Listing 2.35.
Figure 3.1: User interface for modified ShoppingCart program.
Figure 3.2: User interface for Dynamic ShoppingCart Program .

Figure 3.3: Output of dynamic ShoppingCart program. 6

Figure 4.1: Output of the abx I 4
Figure 4.2: output for exception handli le in SmallTalk.....78
Figure 4.3: Workspace and output for exception handling example in Aspects .

Figure 4.4: Aspect instantiation. 8
Figure 4.5 Output of in Aspect] 8
Figure 4.6: output for aspect p ple in Aspect 84
Figure 4.7 S in Aspect 9
Figure 4.8: Installing and uninstalling t 97

Figure 4.9: Result of installing and uninstalling Afier HelloWorld aspect.
Figure 5.1: Aspect] Profi
Figure 5.2: Our AOP Approach in Context (adapted from [12]

Figure 5.3: Cross cutting concern as package extension (adapted from [12)).........112
Figure 5.4: Aspect as a ck in new profil "
Figure 5.5: Advice as a cl ion in new profil 14
Figure 5.6: Joinpoint as a in new profile 115
Figure 5.7: Joinpoint compositions in the profil u7
Figure 5.8: Executi int in new profil 19
Figure 5.9 i 120
Figure 5.10: inpoi lass ext 121
Figure 5.11: CFlowJoinpoint as a class ext 1

Figure 5.12: Introduction as a class extension . 124
Figure 5.13: Profile for Static AOP.... 128
Figure 5.14: Pointcut as a structural 129
Figure 5.15: JPCollection as a structural feature extension. 131
Figure 5.16: AdviceCollection as a structural fe 13

Figure 5.17: install and uninstall as behavioral feature extension
Figure 5.18: Profile for Dynamic AOP.
Figure 5.19: Associations with the meta-classes for join point composition.

Figure 5.20: Core generic meta-model for AOP language: et
Figure 521 ion in Aspect profile[12] 141
Figure 6.1: Base model of the example with call join point .

Figure 6.2: Static model of senderCl ific join poi 154

Figure 6.3: Dynamic f senderCl fic joi 156

Figure 6.4: Base model of CFlow Join Point Example

Figure 6.5: of cflow joi

Figure 6.6: f cflow join 160
Figure 6.7: Base model of exception join point example ..

Figure 6.8: Static cross-cutting concern of cflow join point cxample...

Figure 6.9: of exception jo
Figure 6.10: Base model of property join point example

Figure 6.11: Static clvsyr:ullmg ‘concern of property join point example..
Figure 6.12: Dy ‘property join point examplg
Figure 6.13: Base model of shopping

Figure 6.14: f p I 173

Figure 6.15: Dynamic cross-cutting concern of the shopping-cart example ...
Figure 7.1: Main templates in the XSLT for Aspect)....... e 177!

Figure 7.2; Main templates in the XSLT for AspectS ...

Figure 7.3: An application of the generic profile developed in Section 6.1.2.1 .

Figure 7.4: An application of the generic profile developed in Section 6.5.2.1 .
Figure 7.5: An application of the generic profile developed in Section 6.2.2.1183
Figure 7.6: An application of the generic profile developed in Section 6.3.2.1185
Figure 7.7: An application of the generic profile developed in Section 6.4.2.1 .
Figure 7.8: An application of the generic profile developed in Section 6.3.2.2..

Figure 7.9: An application of the generic profile developed in Section 6.5.2.2..
Figure 7.10: An application of the generic profile developed in Section 6.2.2.2.....193
Figure 7.11: An application of the generic profile developed in Section 6.3.2.2 ... 195
Figure 7.12: An application of the generic profile developed in Section 6.4.2.2.....196

List of Listings

Listing 2.1 ftem cla 14
Listing 2.2 Inventory 14
Listing 2.3 ShoppingCart ck 1

Listing 2.4 Shoy 16
Listing 2.5 Test ck 16
Listing 2.6 Test ified version-2). 17

Listing 2.7 Tracedspect ASpect in ASPEct] ...
Listing 2.8 Tes class in Squeak
Listing 2.9 deliver method of Test class in Squeak..

Listing 2.10 Aspeet in Aspect
Listing 2.1 i Tass in AspectS 3l
Listing 2.12 Pointcut in Aspect 3

Listing 2.13 adviceBefore method of BeforeHelloWorld Aspec 33
Listing 2.14 ‘method of Aspect. 3
Listing 2.15 f. t 34
Listing 2.1 . Aspect 34
Listing 2.17 method of 1 36
Listing 2.18 ‘method of Aspect 38
Listing 2.19 newMethod £ Newest Class 39
Listing 2.20 AsFactorialM C 4
Listing 2.21 initiali of. ialM Class 4

Listing 2.22 other method of AsFaciorialM Class....
Listing 2.23 factorial method of AsFaciorialM Class..
Listing 2.24 method of Trace Aspect.
Listing 2.25 factorialM method of FactorialM Class .
Listing 226 Class.

Listing 2.27 factorialM method of SubFactorialM Class

Listing 2.28 of AspectSuperFin t 48

xiii

Listing 2.29 adviceTrace method of AspectSuperFirstM Aspect

Listing 2.30 Creating items in AspectML 7

Listing 2.31 Functi to Inventory 8

Listing 2.32 Functions related to Shopping Cart.. .59

Listing 233 A Function of ShoppingCartOperat 60

Listing 2.34 advices in AspectML for ShoppingCart example... 0

Listing 2.35 Codes to test the 61

Listing 3.1 Aspect Enabli Runi o

‘ Listing 3.2 Code for Start buttor 67
Listing 3.3 Code for Stop butto 8

Listing 3.4 Code for Start Log but 8

Listing 3.5 Code for Stop Log butt &

‘ 8
©

Listing 3.8 Class method. 6

Listing 3.9 Instance method 6

! Listing 3.10 The method advicel 6
Listing 4.1 Test c 3

Listing 4.2 TestAspect aspect 7

‘ Listing 4.3 Constructor in lrem cl 4
Listing 4.4 A setter method in Aspect 6

Listing 4.5 Advising the setter 6

excution join point 6

spect in Aspectl. 7

Listing 4.12 Abstract method of , t 8 ‘
\
\
\

Listing 4.13 Inherit ibstract aspect in AspectS 86
Listing 4.14 Method of t 86

Listing 4.15 senderCl ific pointcut in Aspects 87

Listing 4.16 of senderCl fic pointeut in Aspect!

Listing 4.17 cfFirstCl tcut in Aspect 8
Listing 4.18 Representation of cfFirstClass pointcut in Aspect] . .88
Listing 4.19 irstClass pointcut in Aspect 89
Listing 4.20 Tass pointeut in Aspect. 89
Listing 4.21 Using cflow pointcut of Aspect].,

Listing 4.2 cfFirstSuper pointcut in AspectS 89
Listing 4.23 per p in Aspect. 90
Listing 4.24 cfAIBUtFirstSuper pointcut in ASPECtS............. 90
Listing 4.25 irstSuper pointcut in Aspect) %0
Listing 4.26 Print it in Aspect 9.
Listing 4.27 Print tin Aspect) 9.
Listing 4.28 in Aspect 94

Listing 4.29 Emulating Listing 4.28 in Aspect)
Listing 4.30 Installing and uninstalling other aspect as part of an advice block96

Listing 5.1 Field access pointuts of Aspect)
Listing 5.2 Introducing a field and a method using ASpect!......... 125
Listing 5.3 Pseudocode for Dynamic AOP......

Listing 6.1 An example of a call pointcut in ASpectl.......

Listing 6.2 aspect in AspectS

Listing 6.3 advice of aspet. 1
Li 4D, weaving in Aspect 1L
Listing 6.5 An example of field i spectl. 16:
Listing 6.6 Emulated Aspect!’s field teuts in Aspect 16

Listing 6.7 Pseudo code that uses the elements presented in Figure 6.12....
Listing 6.8 pp example in Aspect] m
Listing 6.9 Pseudo code that uses the elements presented in Figure 6.15

Listing 7.1 Code generation for the model shown in Figure 7.3.
Listing 7.2 Code generation for the model shown in Figure 7.4.
Listing 7.3 Code generation for a model shown in Figure 7.5...
Listing 7.4 Code generation for the model shown in Figure 7.6

Listing 7.5 Code generation for the model shown in Figure 7.7.

Listing 7.6 Code generation for the model shown in Figure 7.8
Listing 7.7 Code generation for the model shown in Figure 7.9,
Listing 7.8 Code generation for the model shown in Figure 7.10...
Listing 7.9 Code generation for the model shown in Figure 7.1
Listing 7.10 Code generation for the model shown in Figure 7.12.....

Chapter 1: Introduction

Chapter 1

INTRODUCTION

1.1 Separation of Cross-cutting Concerns.

Separation of concerns (SoC) is a fundamental principle in software engineering. It
entails breaking down a program into distinct parts called concerns. Concerns are
some specific requirements that must be addressed o satisfy the overall system goal
while designing a system. A set of concens that compose the entire software system
can be classified into two categories: core concerns and cross-cutting concerns [1]
Core concerns capture the basic functionality of a system, whereas the cross-cutting
concerns capture the features shared by many of the core concerns. All programming
paradigms support some level of grouping and encapsulation of concems into
separate, independent entities by providing procedures, modules, objects, classes or
‘methods. For example, languages like C:+-+, Java and C#, which belong 10 the family
of object-oriented programming (OOP) languages, support modularizing of core
concerns. These languages can separate the concerns by encapsulating them into
objects. However, features like logging, persistence, and security disobey this form of
encapsulation as they are shared among many of the core concerns and cannot casily
be fitted into the OOP approach [1, 2, 3], Furthermore, the OOP paradigm often forces
the designer to create a coupling among the core concerns and the cross-cuting
concems in the software system. A program implemented in Java for a Shopping
Center which includes items, inventory, and carts can be a simple cxample that clearly

shows how the crosscutting concerns like logging are not modularized in OOP

Chapter 1 Introduction

implementations. We assume that the program consists of several classes like Item,

Inventory, and ShoppingCart, each of i To see which

‘methods are being executed during runtime, a programmer needs to implement some
logging feature such as print statement within each method in this program as shown

in Figure 1.1.

Additional codes in each Class

private Listcitess _items = new Vectorcltems();

public class Tavencery (

ace(s
Systen.out.princin (daces= Tavescory removeltem"sm\n INFO: Entering)

Figure 1.1: Additional codes in each method of Inventory class
The same printing statement, which can be considered as cross-cutting concern, is
added 0 all the methods. These printing statements cannot easily be modularized as a
separate entity and does not remain in the form of encapsulation. Section 1.2
illustrates the consequences of non-modularized cross-cutting concerns in software

design and implementation.

1.2 Modularization of Cross-cutting Concerns
Cross-cuiting concerns that are non-modularized ofien lead to code tangling or code
scattering. Code tangling is caused when multiple concerns are considered several

times while implementing a module. On the other hand, code scattering occurs while

iplementing a single concern in several modules. The example of the shopping-cart
program (Section 1.1) shows code scattering, since the same printing statement
logging feature is implemented in several classes. However, implementing features
like security and persistence in each class of the same example will introduce code

tangling in the same system.

A program containing cither code scattering or code tangling is always difficult to be
traced or evaluated, since adding some new code or doing some minor modifications
‘may require the programmer to edit the entire program. It also reduces the chances of
code reuse. Furthermore, developing a system with these non-modularized concerns is

e consuming and may contribute to low productivity in software

always
development [1]. For example, if someone wants to change the logging messages in
the shopping-cart example then he needs to modify all the existing print statements.
Thus code tangling and code scattering cause undesirable system complexity and

should be avoided.

1.3 Aspect-oriented Programming

There are many programming problems involving important concemns like
transactions, security, distribution, or logging where OOP techniques are not sufficient
o clearly capture all of the important design decisions the program must implement
[2, 1]. The need for modularizing and encapsulating those concerns gives rise o the
concept of aspect-oriented programming (AOP). AOP provides a new programming
technique that clearly expresses programs involving cross-cutting concerns, including

‘appropriate isolation, composition and reuse of the code [2].

Chapter 1: Introduction

1.3.1 AOP Methodology

The methodology for developing a system in AOP is similar to other methodologies.

A system developed with AOP requires the following steps [1]:

4) Identifying the concerns:
In this step, the requirements are decomposed to identify core concerns and cross-
cutting concerns of the system. For example, the core concerns of the shopping-cart
example are the concerns related to item, shopping cart, inventory and shopping cart
operator. The crosscutting concern for this example is the logging functionality that is

scattered and repeated in the core modules.

b) Implementing the concerns:
In this step, each concern identified in the previous step will be implemented
separately. For the core concerns, the base language of that particular AOP language

is chosen for implementation. On the other hand, cross-cutting concems are

iplemented separately in stand-alone units called aspects (see Section 1.3.2). For
example, if Java is chosen as the base methodology for the shopping-cart problem

then implemented s ing the logging functionality.

However, being a cross-cutting concer, logging functionality will be implemented as

a separate unit, known as an aspect.

©) Forming the final system:
In this step, the final system is formed according to some rules known as “weaving

rules” specified within the aspect. An aspect weaver, which s a compiler-like entity,

| deii skt - . R . ot

Chapter 1: Introduction

composes the final system by combining the core and crosseutting modules through a

process called weaving.

Figure 12, taken from (1], shows the difference between two different
implementations of a banking system with logging functionality. In both
implementations, the system includes several client modules such as the accounting
module, the ATM module and the database module. The first implementation is done

using OOP methodology, where the code tangling oceurs between all the modules

= 7 =y
= =
= = % B=(=

Figure 1.2: Implementation of a banking system (Redrawn after [1])

AOP ion for the same banki ight part of Figure 1.2) shows the
modularization of logging functionality where none of the clients contain code for
logging. Furthermore, logging becomes modularized as the crosscutting logging

requirements are now mapped directly only to the logging aspect. With such

ges i only the loggi the
clients. Using AOP methodology, client code remains completely isolated and

unchanged. Thus, AOP fucilitates programs with improved traceability, higher

casier

Chapter 1; Introduction

132 AOP Language Implementation

As the AOP paradigm is gaining much industry support, we have several AOP
implementations for existing programming languages. For example, Aspect) (3] for
Java, AspectC+++ for C++ [4], Aspect for C# [5], AspectS [6] for SmallTalk/Squeak
[7) and AspectML [8] for ML are some of the popular AOP language

implementations

1.3.2.1 Basic Terminology:

The followings are some standard terms used in Aspect-oriented programming:

a) Join point:

A join point is a point in the dynamic control flow of an application. Thus a join point
can for instance represent a call to a method, execution of a method, the event of
setting a field or the event of handling an exception. For example, Aspect] exposes
several categories of join points such as: method join points, constructor join points,

field ac

ation join points [1]. On the other hand, it

ss join points and class it

does not expose join points for loops, super call, throws clauses, multiple statements

and the like.

b) Pointcut:

A pointeut is a means to specify the weaving rules. It selects join points that satisfy
those rules and collects program execution context at those points. Some AOP
language implementations such as Aspect] [3] have a special language construct for
pointcuts, whereas some other languages like Aspects (9] do not have any dedicated

pointcut language

©) Advice:

Advice is a means of specifying code to run at a join point that has been selected by a

pointcut.

d) Aspect:

The combination of one or more point-cuts and advices is termed an aspect.

€) Static crosscutting:
In AOP, we often find that in addition to affecting dynamic behavior using advice, it is

necessary for aspects to affect the static structure in a crosscut

'g manner. While

dynamic crosscutting modifies the exccution behavior of the program, static
crosscutting modifies the static structure of the types—the classes, interfaces, and

other aspects—and their compile-time behavior.

1.3.2.2 Join Point Model

Each AOP implementation has its own Join Point Model (JPM) which defines three
things:

(i) When the advice can run,

(i) A way to specify pointcuts and

(iii) A means of specifying code to run at a join point.

JPMs of different AOP implementations can be compared based on the following
eriteria:
« The join points exposed,

« How pointcuts are specified,

Chapter 1 Introduction w

«The operations permitted at the join points, and

The AOP fsome of the described in detail in the next
chapter.

i
o The that can be ssed such i ‘
1.4 Aspect-oriented Modeling

Aspect-oriented modeling (AOM) supports modularization of cross-cut

at the software design level. Most AOM techniques focus on providing modeling
capabilities for the core AOSD concepts, usually as extensions to the Unified

Modeling Language (UML).

UML [10] is a standardized general-purpose modeling language in the fields of
software engineering. UML is managed, and was created by the Object Management
Group (OMG). To date UML is not only used to model application structure,

behavior, and architecture, but also business process and data structure,

UML, along with the Meta Object Facility (MOF)', provides a key foundation for
OMG's Model-Driven Architecture, which unifies every step of development and
integration from business modeling, through architectural and application modeling,

to development, deployment, maintenance, and evolution [10].

A model can be either platform-independent or platform-specific. A platform-
independent model (PIM) is a model of a software system or business system that is

independent of the specific technological platform used to implement it. A platform-

" The Meta-Object for model-driven
engineering.

specific model (PSM) is a model of a software or business system that is linked to a

specific technological platform (e.g. specific programming language, operating

system or database)

UML allows both PIM and PSM. Besides this, it provides a mechanism known as
profile. Profiles are the standard mechanism to extend UML. The profile mechanism
exists within UML so models applying a profile are fully UML compatible. A UML

‘model applying a profile is UML, and any UML tool can process it [11].

While there has been prior work on extending UML to AOM, most of the extensions
expand UML either by introducing new meta-model classes or new notation elements
without providing meta-level support. Furthermore, many of the existing AOM
approaches are programming language specific and allow modeling on the platform
specific model (PSM) level. While AOP language implementations arc rapidly
maturing, a platform independent model is necessary to increase the reusability of
system. It will also ease the communication between developers from different
backgrounds. Building on previous work [12], this research presents a core generic
meta-model, which is a profile based on the core features of some AOP languages.

Core features are selected by comparing some of the AOP language extensions,

As AOP paradigm is rapidly maturing we have AOP language extensions for many of
the existing programming languages such as Java, C, C++, SmallTalk, Haskell, ML,
PHP and XML. However, in this research we only study the features of Aspect),
AspectS and AspectML. Aspect] is chosen because it is considered as the first
complete and powerful language extension for AOP. It possesses a wide variety of

AOP language features. Features of other AOP language extensions (¢.g. AspectC,

Chapter 1: Introduction

AspeciCH+) for existing languages that follow OOP approach (E.g. C, C++) can be

considered as subsets of the features of Aspect).

Like Aspect), AspectS follows OOP approach. However, because AspectS supports
dynamic AOP (will be discussed in Chapter 3), it is also considered for this study.
“This is a fuct that the use of several languages provides some generality. As a result,
we wanted to keep a AOP language extension of an existing language (¢.g. Haskell,
ML, etc) that belongs to the family of functional language. Since AspectML is well

developed and widely used among these languages, it is also included in our study.

15 Objectives

‘The objectives of this research are:

and differences.

To study AOP languages in order to identify their similar

To develop a platform independent UML-based model (PIM), which will be a
UML profile for the AOP paradigm. The model will allow aspect modeling to be

used within existing, mature software tools.

To develop an example of a transformation from a PIM to platform-specific code.

To find a way to handle the features unique to the AOP languages that we are

studying.

1.6 Thesis Structure
Chapter 1 introduces AOP paradigm. It shows the necessity of the paradigm. It also
introduces both aspect-oriented programming and aspect-oriented modeling along

with the basic terminology used for these two.

Chapter 1: Introduction

Chapter 2 provides a broad overview of AOP languages that we study. This helps the
reader who is not very familiar with AOP to develop some idea of AOP languages. A
running example and its implementation in three different languages allow us to have
a comparative picture of the languages that we study.

Chapter 3 focuses on two different AOP approaches: static and dynamic. Since the

[that we study do not follow a singl 1 from these two, this chapter

ides a detailed of these approaches. It also d lai
between dynamic and static AOP.
Chapter 4 compares the three languages that we study. This chapter provides a
detailed overview of different features of each language. The running example is used
to demonstrate how the different languages can be used to implement a solution to the
same problem. Thus it helps to select the core features of AOP languages.
Chapter § elaborates the discussion on AOM. It includes some of the prior works
related to our research. It also aims to develop a generic UML "profile” that can be
used to model aspect-oriented syster.
Chapter 6 demonstrates the application of the developed profile. It illustrates base
‘model for five examples. The developed profile is applied to both static and dynamic
model for each example.
Chapter 7 presents code generation for cach application shown in Chapter 6. It
presents XSLTS to generate Aspect) and AspectS code from the model to which the
generic profile is applied.
Chapter 8 focuses on overall discussion on this research. It includes the importance

and limitations of the developed profile.

Chapter 1 Introduction

Chapter 9 presents the summary and conclusion of this research work. It also

highlights some possible future works that can be done by extending this research.

Chapter 2:An Overview of AOP Languages

Chapter 2

|
AN OVERVIEW OF AOP LANGUAGES ‘
2.1 Running Example ‘

‘The Shopping-Cart problem given in [1] is an example that clearly shows how code

Scattering occurs in a conventional implementation when some features such as

logging are added to it. It also reveals the necessity of modularizing cross-cutting
concerns. The basic functionalities of Shopping-Cart without logging are implemented !
using the following classes: Item class, Inventory class, ShoppingCart class,

ShoppingCartOperator class and a Test class.

Listing 2.1 represents the Jrem Class. This class models the items which can be
purchased. This class has a constructor and three public methods: get/d(), getPrice()
and 10String(). The getld() and the getPrice() methods provide the identifier and price
of the item respectively. The foSiring() method simply sets the format of an item to a

string.

Chapter 2: An Overview of AOP Languages

Listing 2.1 Item class B

public class Item

public Item(String id, float price)

_id = id;
price = price;

public String getID() (
return _id;

public float getprice() (
zeturn _price;

Tk string waziog() (
return "Item: "

The Inventory class, shown in Listing 2.2, represents the list of items available for
purchasing. This class has two public methods: addltem() and removeltem(). Both of
these methods take an item as argument which can be added to or removed from the

existing ifem inventory using these two methods.

import java.util.

public class Inventory {

private List _items = new Vector();

public void addItem(Item item) {
_itens.add (item) ;

116 ST izt i) {
items. zenove (item) ;

)’
)

‘The ShoppingCart class shown in Listing 2.3 represents the list o items in a shopping
cart of a customer. The two public methods addltem() and removeltem() are

respectively used to add items from

Chapter 2: An Overview of AOP Languages

Listing 2.3 ShoppingCart class q
import java.util.t;
public class ShoppingCart {
private List items = new Vector();
public void addIten(Item item) (
_itens. add (item) ;
¥
public void removeltem(Item item) {
stems. remove (item) ;

The ShoppingCartOperator class is used to model the operations related to
purchase. This class has two static public methods: addShoppingCartltem() and
removeShopping Cartltem(). The purpose of these two methods i to update both lists:
inventory and shopping cart. The method addShoppingCartltem() is used to model a
“purchase of an item” by adding an item o the shopping cart and deleting the same
item from the inventory. On the other hand removeShoppingCartltem() is used to
model a “return of an item” by removing an item from the shopping cart and adding it
back to the inventory. The entire ShoppingCartOperator class with all the above

mentioned methods is shown below in Listing 2.4,

Chapter 2: An Overview of AOP Languages

Listing 2.4 ShoppingCartOperator class
public class ShoppingCartOperator {
public static void addShoppingCartItem (ShoppingCart sc,
Inventory inventory, Item item) {
inventory. removeIten (item) ;
sc.addTtem (itenm) ;
)

public static void removeShoppingCartItem(ShoppingCart sc,

entory inventory, Item item) {
sc. removeltem(item) ;

inventory. addIten (item) ;

Listing 2.5 shows the Test class that tests the functionality of the classes discussed

above. This class does not print any text message as output. However, within the class,
t first, three items are added to the inventory list. Then, using the method

addShoppingCartltem of ShoppingCartOperator class, two of the previously added

item are added to the list of shopping cart, and are deleted from the list of inventory.
Listing 2.5 Test class

public class Test
public static void main(String[] args)

ShopplagCart 86 = new Shoppingcart();

inventory, iteml);
inventory, item2);
)

‘The Test class can be modified to trace some of the method execution. This can be

done in a similar fashion as in [1] by using the library class provided in Java for

Chapter 2: An Overview of AOP Languages

logging. Listing 2.6 shows the modified version of Test class with logging

functionality.
Listing 2.6 Test class (modified version-2)
inport java.util.Date;

public class Test {
public static void main(String(] args) (

Date date=new Date () ;
ut.println(date+” Test main’+'\n INFO

€ of the method's body should be same

Instead of using the Java library class Logger, for simplicity, better performance, and
code reuse (in later Sections), we use some conventional print statements in the above
example. Tn order to see the exccution information as shown in Figure 2.1, it is
required to write the same type of logging code inside each related class and its

methods.

9 NDT 2009 Test main

[aeer
e e 5 e o s ey i
;

10T 2009 Taventory adarvem

ved o 35 51134545 NOT 2005 Shoppnacactopecacor addSboppnaCarEicen

(s

Ued Ape 15 21124149 NDT 2009 Tnventoey removeltem

ved Ape 15 21:24:49 NDT 2009 Shoppngcartoperacor adashoppingCartIten

10T 2009 Taventory cemoveten

[150 MOT 2009 Shoppingcart adaivem
0r0; Encering

Figure 2.1: Output of the shopping-cart program with “logging”

Chapter 2: An Overview of AOP Languages

The repetition of this same logging code in several classes of this system is
introducing code scattering. Further modification to this system can also lead to more
forms of code scattering and code tangling. AOP language implementations provide
the techniques to solve the code tangling and code scattering problems. Brief
overviews of some of the AOP language implementations are given in the following

sections along with some examples. Our running example shopping-cart is also

implemented in each of the discussed AOP languages.

2.2 Aspect)

22.1 AnOverview of Aspect)

Aspect) [3] is a widely used, general purpose, aspect-oriented language extension to
the Java programming language. Being an extension to Java, every valid Java program
can be executed as a valid Aspect] program. Aspect] adds to Java new constructs to
specify the weaving rules programmatically: aspect, join point, pointcut, advice,
introduction and compile-time declaration. The class files produced by an Aspect)
compiler conform to the Java byte-code specification. As a result, these class files can
be executed by any compliant Java virtual machine (VM). Since it uses Java as the
base language and retains all the benefits of Java, it is easy for programmers from a
Java background to understand the Aspect) language. An Aspect] file should be saved

with .aj extension and can include constructs from Java and Aspect in it

2211 Aspeet
In Aspect), an aspect is like a class in Java. It can include data members and methods

and can have access specifications, but it cannot be instantiated directly. An aspect

Chapter 2: An Overview of AOP Languages

can have an access specifier (visibility) of “privileged” in order to read and write the
private members of the classes it is crosscutting [1]. It can extend classes and abstract
aspects, as well as implement interfaces. However, to reduce complexity, aspect
inheritance is limited to only inheriting from absiract aspects but not from concrete
aspects [3]. Morcover, an aspect can be embedded inside classes and interfaces as a
nested aspect, Figure 2.2 shows an Aspect! file where aspect HelloWorld is declared

as a public aspect. It contains a pointcut and an advice in its body. However it is

possible ify the aspect by and methods in it

public aspect HelloWorld (

pointout deliverdessage ()
: call (+ Test.deliver(..)):

before(): deliverMessage (
System.out.print ("Hello Werld!):
f

Figure 2.2: An Aspect] file named HelloWorld

22.12 Join Point

Aspect) allows adding new behavior in some special parts or areas known as join
points of a program. In Aspect], the join points are mainly exposed as: method join
points, constructor join points, field access join points, exception handler execution
join points, class initialization join points, object initialization join points, object pre-
initialization join points and advice execution join points. On the other hand, loops,
super calls, throws clauses, or multiple statements are not exposed as join points in
Aspectl. Each of the above mentioned categories of exposed join points can include

one or more types of join points. For example, the method join point category exposes

Chapter 2: An Overview of AOP Languages.

both method calls and executions. Figure 2.3 shows a Java class named 7est in which
both the method call and method execution join points are exposed when an Aspect]

file is used in parallel to select those as poineuts.

public class Test (
public static void main(String(lazgs)(
Test testenew Test():

join pornt

»

= [public void deliver() (T L
System. out.printin("Wanna leazn Aspectd?”
) AR i

Y g]

Figure 2.3: A class named Testin Java

2.2.1.3 Pointcut

In Aspect), a pointeut can both specify a single join point in a system and match a set

of join points. It can be either anonymous or named. A named pointeut is defined
using the keyword pointcut and can have access specifiers. On the other hand, an

‘anonymous pointcut can be specified as part of an advice [1].

Join points in Aspect) are specified using pointcut designators. The pointcut
designators match join points in Aspect) either by capturing join points based on the
category to which they belong or by capturing join points based on matching the
exceution circumstances under which they occur. Aspect) allows the following types

of pointeuts:

Chapter 2: An Overview of AOP Languages

a) Kinded pointcuts:

Each exposed join point mentioned earler has a specific pointcut designator, which is
used o capture a join point from the program flow. However, all of these pointcut
designators follow a particular format of syntax. As a result, they fall into the category

of kinded pointcut. Table 2.1, taken from [1] shows the mapping between cach

exposed join point and its corresponding pointcut designator.

‘Table 2.1: Mapping of exposed join points to pointcut designators

Join Point Category Pointcut Syntax
Method call call (Methodsignaturs)
‘Constructor call call (constructorsignature)
Fieid read access. get (Fieldsignature)

‘The signature to be used in each pointcut designator is clearly described in both [1]
and [13] along with examples. However, the following (Figure 24) is a simple
‘example of a named pointcut where the name of the pointcut is del i verMessage.
As the signature part contains a method signature, looking at the above table it is
clearly visible that this pointcut selects a method call join point, i.. the call to the

deliver method of Test class showed in Figure 2.3.

Chapter 2: An Overview of AOP Languages

Keyword Poinfcutmame Pointeuttype Signature

Pointeut defnition

Figure 2.4: An example of a named pointeut (adapted from 1]
b) Control-flow based pointcuts
‘These pointeuts capture join points based on the control flow of join poits captured
by another pointcut [1]. In Aspect), control-flow based pointcuts can be categorized as

follows:

i cflowp)

“The ¢flow() pointcut takes a pointeut as argument and captures all the join points in
the control flow of the specified pointcut, including the join points matching the

pointeut tself.

ii. cFlowBelow():

The cFlowBelow() pointcut takes a pointcut as argument and captures all the join
points in the control flow of the specified pointcut, excluding the join points matching

the pointeut itslf.

©) Lexicakstructure based pointcut

Lexical-structure based pointeuts capture join points occurring inside a segment of
source code of specified classes, aspects and methods [1]. There are two pointeuts in

this category:

Chapter 2: An Overview of AOP Languages

i within()
‘The within() pointeut is used to capture all the join point specified within the body of

the specified classes or aspects, including the nested classes[1].

i withincode()
The withincode() pointeuts can have the forms like withincode(MethodSignature) or
‘withincode(ConstructorSignature). They are used to capture all the join points inside a

lexical structure of a method or a constructor, as well as any local classes in them [1).

d) Execution object pointcuts
These pointcuts match the join points based on the types of the objects at execution
time. They are also used o expose the context of the specified join point. This

category consists of the following pointcuts:

i this()

this refers to the current object. Therefore, the this() pointeut selects all the join points

associated with the current object.

. target()
target refers to the object on which the method is called. The targer() pointcut is

usually used with method call join point. It is used to select the join points associated

with the object on which the method is invoked.

Chapter 2: An Overview of AOP Languages

©) Argument pointcuts (args()
The args() pointcut can expose the context at the matched join point. The empty
bracket after the name of the pointcut indicates that it does not expose the context of

the join point.

) Conditional check pointeuts (if())
Conditional check pointcut captures join points on the basis of some conditional check

at the join point [1].

2214 Advice

Advices of Aspect) are similar to methods of Java. But they have some differences as
well. Such as:

« Does not have a name

« Cannot be called directly (it s the system’s job to exceute it)

 Does not have an access specifier

Aspect allows different types of advices as a means to specify code to run at a join
point.
Advice is invoked automatically by the AOP runtime when the pointcut matches the

join point. Aspects supports following three types of advices:

) Before advice:

Befo i dding new behavi join point.

Chapter 2: An Overview of AOP Languages.

b) After advice:

After \dding new behavior specified join point.

¢) Around advice:
Around adviee has the ability to bypass the join point, allow it to execute as it is, or

exccute it with changed context

22.15 Static Crosscutting
Aspect] allows static crosscutting (also known as introduction). Introduction affects
the static structure of programs through crosscutting. Using introduction it is possible

o introduce changes to the classes, interfaces, and aspects of the system [1],

222 Running Example in Aspect]

When implementing the running example ShoppingCart in Aspectl, the base model is
kept without any logging code. As shown in Listing 2.7, the crosscutting concerns are
modularized in an aspect named Tracedspect. The pointcut named traceMethods()

selects all the method execution join points specified by the wildcards in the program

flow, except those within the lexical scope of the TraceAspect aspect.

Listing 2.7 TraceAspect Aspect in Aspect)

smport Java.ueil date;
impozt. org.a:

before() : traceMethods() (
Date date=new Date();
Signature sig = thisJoinPointStaticPart.getSignature()
Systen.out. printia datet- -

getName ()+ * "+sig.getName()+"\n

Chapter 2: An Overview of AOP Languages

INEO: Entering") ;
)
)

‘The pointcut raceMethods() is then advised by the before advice, which places the
logging code before each of the method execution specified by the pointcut itself
Figure 2.5 shows the output of the ShoppingCart example implemented in Aspect.
Although this implementation produces the same output as the one (Figure 2.4)

produced by the example implemented without aspects, the difference here is that a

programmer does not need to write logging code in each method of each class. As a
resull, in the current implementation the crosscutting concerns are modularized.
Therefore, the logging feature does not create code tangling or scattering in this

example.

NDT 2009 Test main

DT 2009 Tnventory addTtem
2009 Inventory addivem
2009 Inventory addrcem

2009 ShoppingCartOperator addshoppingCarcitem

wor
wor

wor

NDT 2009 Inventory removeltem
NDT 2009 ShoppingCazt addltem
NDT 2009 ShoppingCaztOperator addShoppingCaztitem
NDT 2009 Inventory removeItem

NDT 2009 ShoppingCart addlvem

3
TNFO: Entering

Figure 2.5 Output of the ShoppingCart example in Aspect

Ehia b bl Tk . | - ArE S . o o

Chapter 2: An Overview of AOP Languages

2.3 AspectS

231 An Overview of AspectS
AspectS [6] is an AOP implementation for the Smalltalk or Squeak’ environment. It

mainly draws on the results of two projects: Aspect)[3], and John Brant’s

[14]. In its current ion, AspectS is realized using plain
Smalltalk only, changing neither Smalltalk’s syntax nor its virtual machine. As a

result, AspeetS also complies with following language properties of SmallTalk:

Everything (c.g. class, instances of class, etc) is an object.

All communications are done using method passing between objects.

Classes inerit via single inheritance.

The default access specification is as follows:

‘Table 2.2: Access Specification

AspectS Acts like Java

Variables > Private variables
Instance method <> Public methods
Class methods > Public Static

Al the examples related to AspectS are written in this text using Squeak version 3.8

and AspectS version 0.6.6. AspectS version 0.6.6 is available in [9].

* Squeak.
in- Smalltalk, The

is a powerful

\ Chapter 2: An Overview of AOP Languages

‘The packages, classes and methods in Squeak can be found in Squeak system browser

shown in Figure 2.6.

Toar
slaied o iy prosy sior
Fiaga Lanuags siter

Figure 2.6: Opening system browser in Squeak

We create a new category named HelloWorld, Then we create a class named Test
inside the category HelloWorld as shown in Listing 2.8.
Listing 2.8 Test class in Squeak

Object subclass
instancevas

classVariableNames
poolbictionarie
category: 'HelloWorld'

A method named deliver is created as shown in Listing 2.9.

Listing 2.9 deliver method of Test class in Squeak
deliver
‘Transcript show: ' Wanna learn Aspacts 7 '

Chapter 2:An Overview of AOP Languages

The code shown in the workspace* (Figure 2.7 a) if executed, produces output in the

transcript’ window (Figure 2.7 b).

testaTest new. Vanna learn Aspects 1
st deliver.

a.Test cade for Hello World
Figure 2.7: Workspace and transcript window in Squeak

The above example was implemented using the object-oriented programming

techniques available in SmallTalk. To implement the example using AOP technique

one must make sure that the AspectS plugein is installed. The installation link is

available at [9].

23.11 Aspeets

In Aspects, aspects are units of modularity that represent implementations of
crosscutting concerns. They are identical to regular classes of SmallTalk. For
example, an aspect BeforeHelloWorld can be created in the same category of Test
class discussed in the previous section. The only difference is that they are defined as

 subclass of the class Asdspect as shown in Listing 2.10.

pces of Smallalk code to expe It can be also used
fortyping arbitrarily text to remember, such as to-do
same image.

or instructons for

yone who will use the

consale”.

Itis a kind of “system

Chapter 2: A Overview of AOP Languages

t subclass: #Beforel
instanceVariableNanas: '’
ClassvariableNames: '
pooldictionaries: '
category: 'HelloWorld'

LloWorld

Since Aspects is implemented without changing the SmallTalk syntax and virtual
machine, the language features are the same for both AspectS and SmallTalk. For

example:

Aspects can extend classes and aspects.

As Smalltalk does not support interface, aspects cannot implement interface.

. be embedded inside cl ted aspects

In AspectS, an aspect is installed by sending an install message 10 the instance of
the aspect. An installed advice can be deactivated by sending the uninstall

message to the same aspect instance.

Aspects can be directly instantiated.

‘The weaving process in AspectS happens by sending an install message to the aspect
instance (Figure 2.8). For unweaving or reversing the effect of aspect installation, the
uninstall message is to be sent the same aspect instance. Weaving and unweaving in

AspectS can be characterized as completely dynamie since it happens at untime.

Chapter 2: An Overview of AOP Languages

-
[spect-betorehellovorld nev. A nstaling aspect adviee
i e v] actvation/start weaving
aspect instalt. |
[estetest nev. [I
s eliver. o
aspect uninstan.
Uninstalling aspect /advice.
deactivation/ siop weay

Figure 2.8: Dynamic weaving in AspectS

2.3.12 Join Point

Method execution is the only join point supported by AspectS. It can be defined as an

object of As/oinPointDescriptor class (shown in Listing 2.11) or a subclass of it. The

class AsJoinPointDescriptor contains a static method argetClass:targetSelector: that

specifies the method to be selected as join point.

Listing 2.11 AsJoinPointDescriptor Class in AspectS.

Object subclass: fAsJoinPointdescriptor

clas:

poolDictionaries
category

ableNames: '*

‘Aspacts-Aspects’

2.3.13 Pointeut

A pointeut in AspectS is a set of join points. It can be assigned 10 a variable which can

then be passed as a method parameter. For example in Listing 2.12, jpset! is a

pointcut that selects the deliver method of Test class as join point.

Chapter 2: An Overview of AP Languages

Listing 2.12 Pointcut in AspectS
I3pseti]
spsets

targetselector: fdeliver)]

23.14 Advice

An advice in Aspect s an object of the AsAdvice class. This advice object can be
defined in the Squeak workspace and passed as a method parameter. Despite this, the
‘most common way to define an advice object is to define it within a special method.
‘The method is special because the name of the method starts with the prefix “advice™
and the method returns an advice object (object of any of the subclasses of Asddvice).
The subclasses of Asddvice are: AsBeforeAfierAdvice, AsAroundAdvice,
AsHandlerAdvice and AsntroductionAdvice. Aspects allows defining five different
types of advices using these subclasses of AsAdvice. Usually each advice object is

composed of the following components:

© Advice qualifier: an object of type AsAdviceQualifier which allows the
description of dynamic attributes of a pointcut related to an advice. Section 2.3.1.5

d i attributes.

« Pointeut: a set of join points or a pointcut object.

Block context: a code block which contains the crosscutting behavior along with

the context information from join points.

) AsBeforeAfterAdvice
An object of AsBeforedfterAdvice allows adding behavior before the join point, after

the join point, or both before and after the join point.

Chapter 2: An Overview of AP Languages

Listing 2. s

adviceBefore
* AsBeforeAfterAdvice
qualifier: (AsAdviceQualifis
attributes: (#receiverClassSpecific))
pointcut: [(AsJoinPointDescriptor
targetClass: Test targetSelector: fdeliver)]
r ‘arguments ‘aspect client | Transcript
(%)

The method adviceBefore, as shown in Listing 2.13, retums an object of
AsBeforeAfierAdvice. Tn the advice object the presence of a before block indicates that
this advice will place the message “Hello World” before the execution deliver method.
‘The same type of object can also be used to add behavior after a certain join point by
replacing the beforeBlock with an afferBlock. The method advicedfter in Listing 2.14
returns the object of type AsBeforedfierAdvice which has an afierBlock in it. As a

resul, this advice adds the message “Goodbye World” after the exccution of deliver

method.
Listing 2,14 e
advicentter

* AsBeforeAfteradvice
(ehdviceQualifier attributes:
pecific))
polntent [(nJoinpoincosscsiptor
etClass: Test targetSelector: #deliver))
attarmiock: [seosives ‘scgimente orpect cltent ceeturnl
Transcript show: ' Goodbye World. .1t

However, to add some behavior both before and after the join point both beforeBlock
and afierBlock should be used within the same advice object of AsBeforedfierAdvice

type.

Chapter 2: An Overview of AOP Languages.

b) AsAroundAdsice

‘The object of type AsdroundAdvice is used to modify behavior around a method
execution. The aroundBlock within the object holds the information of behavior to be
placed around the join point. The method advicedround in Listing 2.15 returns the
object of type AsdroundAdvice. This advice replaces the existing behavior of deliver
method with the message “Welcome to AspectS”

Listing 2.15 adviceAround method of AroundHelloWorld Aspect
adviceAround
~ s

ice
qualifier: by fich)
pointeut: [(AsJoinPointDescriptor
targetClass: Test targetSelector: fdeliver)]
azoundsiock: [:receiver ‘arguments ‘aspect ‘client :clientMethod |
Transcript show: 'Welcome to Aspects' .]

© AsIntroductionAdvice
The object of AsintroductionAdvice is used to introduce new behavior in the program.
For example, let us assume that we have an aspect named ntroHelloWorld under the

category HelloWorld. The method advicelntro of IntroHelloWorld as shown in L

g
2.16 returns an object of AslntroductionAdvice 1o introduce a new method named

deliver2 to a class named Test. The methods” body is defined inside the infroBlock.

Listing 2.1 Aspect
adviceIntzo
 AsIntroductionAdvice
qualifier:)
pointout: [{AsJoinPointDescriptor
targetClass: Test targetSelector: fdeliverz)]
introBlock: [ireceiver :arguments :aspect
Transcript show: 'Hello Intro'.]

Chapter 2: An Overview of AOP Languages.

Figure 2.9 shows that if we enable the IntroHelloWorld aspect, the method deliver2 is

created as it is introduced by th ionAdvice. As a proof, if we call deliver2,

the execution of this method produces the output “Hello Intro” in the transcript.
However, if we disable the aspect the AsintroductionAdvice is no more in effect. As a

result, the call to the method defiver2 ends up producing an error.

test uninstell,

e —

Figure 2.9: Testing a method introduction using AsIntroductionAdvice

Like le, within a same multiple methods
to same or different class can be introduced. However, because ecach
AslntroductionAdvice object consists of a single introBlock that defines the body of

the method or methods to be introduced; if multiple methods are introduced using the

same , all methods will body.

d) AsHandlerAdvice
An object of AsHandlerAdvice allows placing an exception handler around the
sending of a message. Besides having the components similar to the previous advices,
it includes an additional component to specify an exception class. An exception

handler block is executed only when the sending of the message results in signaling

Chapter 2: An Overview of AOP Languages

such an exception [6]. For example, assume that AspectHandler aspect is having a
method named adviceException as shown in Listing 2.17. The AsHandlerAdvice
object includes Error class as an exception. Whenever an error of type Error is

signaled, an exception is raised and handled by the handler block.

Listing 2.17 adviceException method of AspectHandler Aspect

qualifier: ateributes)
pointcut: uumnmm"m o
ss: TestHandler targetSelector: fdeliver)]

exoeption: Revar
handlerBlock: [:receiver :arguments ‘aspect :client :ex |ex signal.
Transcript show: 'Exception Handled'.]

2.3.15 Advice Qualifier
AsAdviceQualifier bas a class method named attributes which takes a set of advice

qualifier attributes. Advice qualifier attributes are grouped roughly into the following

Sender/ Cflow activation [6].

Sender/receiver aware activation can be further classified as receiver-class-specific,

pecific, sends pecific, and sender-i fic. On the

other hand, cflow activation can be further classified as class-first, class-all-but-first,

instance-first, i -butfirst, super-first, and super-all-but-f

In an advice, these attributes should be specified with certain constraints. First,

attributes must be valid. Second, a set of attributes cannot be empty. Finally, at most

be present ibute set.

) Sender/receiver aware activation

i Receiver Class Specific:

A receiver-class-specific advice affects all receivers of the message that are an
instance of a certain class [6]. For example, in Listing 2.14, Test class was the
receiver. As shown in Figure 2.10, both the instances fest and test! of Test class
receive the message deliver. Since deliver was the target selector of the receiver class
specific advice shown in Listing 2.14, both of these instances are affected by this

advice.

e
Figure 2.10: Weaving of AfterHelloWorld Aspect

Chapter 2: An Overview of AOP Languages
ii. Receiver Instance Specific:

A receiver-instance-specific advice affects certain receivers of the message that arc an

instance of a certain class. Moreover,

tances of prospective receivers should be
added to or removed from the advice’s aspect [6]. For example the advice in Listing
2.18, is a receiver-instance-specific advice. Although here the target class and target
selector are similar to the previous example, this time only specific instances that are

added as the receiver of the advice's aspect are affected by the advice.

Chapter 2: An Overview of AOP Languages.

lifier: (AsAdviceQualifier attributes
(#receiverInstancespecific)
pointeut: [Test

aftermlock: [:receiver :arguments ‘aspect :client :return|

Transcript show: ' Goodbye World. '.]

Figure 2.11: Weaving of AfterHelloWorldRIS Aspect
As shown in Figure 2.1, both the instances rest and fest/ of Test class receive the
message deliver. However, the receiver instance specific advice affects only fest, since

itis added as the receiver of AfierHelloWorldRIS aspect.

i. Sender Class Specific:

A sender-class-specific advice qualifier attribute can be specified with the code shown

below:

qualifier:

I the qualifier in Listing 2.19 is replaced with this code, the target class Test will be
affected only if the sender is of a certain class o its subclasses. Moreover, sender

classes should be added to or removed from the advice’s aspect [6].

Chapter 2:An Overview of AOP Languages

For example, as shown in Listing 2.19, fest/ of Test class is created within the body of
‘method newMethod of NewTest class and then the message deliver is sent 10 fest]. As

a result, NewTest can be considered as a sender class.

Listing 2.19 newMethod method of NewTest Class
newe:

Itest1]
tostl:=Test new.
testl deliver

Figure 2.12: Weaving of AferHelloWorldSCS Aspect
Now, as shown in Figure 2.12, the execution of deliver method s advised only when
NewTest is added as a sender class and an instance of NewTest receives the message
newMethod. Even though est2 an instance of Test class receives the same message
deliver, it is not affected with the advice since this time NewTest class is not the

sender.

iv. Sender Instance Specific

A sender-instance-specific advice affects the receivers of messages that are instances
of a certain class if senders are some specific instances of a certain sender class.
Moreover, prospective senders are to be added to or removed from the advice's aspect

[6).

Chapter 2: An Overview of AOP Languages

qualifier ses b

For example, if the qualifier in Listing 2.19 is replaced with the above mentioned
code, it will work as a sender-instance-specific advice. As fest, a particular instance of
NewTest Class (shown in Figure 2.13) is added as a sender of AfierHelloWorldSIS
aspeet, the advice affects the receivers only when the sender is fest, but not the other

instances of the same sender class.

Figure 2.13: Weaving of AfterHelloWorldSIS Aspect

b) CFlow activation

In AspectS, with a cflow advice, the activation test examines the base context chain

(Smalltalk’s stack) for one of the following conditions depending on the type of cflow

attribute specified in the advice qualifier attribute set (6]

o one or more senders with the same class as the receiver
« one or more appearances of the recciver instance in it

o asend of the current message to super

“The following is an implementation of a factorial example with object recursions to

examine and understand different types of cflow advices:

Chapter 2: An Overview of AOP Languages

‘The base class AsFactorialM for this factorial example is shown in Listing 2.20. It

consists of an instance variable and three instance level methods.

Listing 2.20 AsFactorialM Class

Object subclass: #AsFactoriald
instanceVariableNanes: 'other'
classVariableNanes:
pooldictionaries: '
category: 'ModifiedFactorial’

The method initialize: shown in L

ing 221, receives an object or instance of

AsFactorialM class and sets the value of instance variable other with the object.

Listing 2.21 initialize method of AsFactorialM Class

initialize: asFact
other :=asFact.

‘The method other: shown in Listing 2.22, whenever called, works like the previous
method.
Listing 2.22 other method of AsFactorialM Class

other: fact
other :=fact.

‘The method factorial: shown in Listing 2.23 recursively calls itself and finally returns

an integer if and only if the argument passed to it is not a negative number.

Listing 2.23 faciorial method of AsFactorialM Class
factorial: anInteger
anInteger = 0 iffrue: [~ 1
anInteger > 0 iffrue: [+ anInteger * (other factorial
1

S6LE error: 'Not valid for negative integers.'.

a

Chapter 2 An Overview of AOP Languages

To trace the above program, we create an aspect named Trace containing a method
adviceTrace (as shown in Listing 2.24). Method adviceTrace returns a receiver-class-
specific advice which is activated with the execution of factorial: method of
AsFactorialM class. This advice does not contain any of the advice qualifier attributes
of cflow type but helps to trace the method execution each time with its parameter and
returned value.

Listing 2.24 adviceTrace method of Trace Aspect

adviceTrace

* AsBeforeAfterAdvice

Transcript show: arguments printString; cr.]
afterBlock: [:receiver :arguments :aspect :client :return |
Transcript show: 'Exit with
Transcript show: return;printstring; cr.]

The codes shown on the left part of Figure 2.14 are the codes to be written in the
workspace. We create two instances fact! and fact2 of AsFactorialM class. Using the
‘method initialize: and other: we switch over between these two instances while calling

the fctorial: method recursively. The reason behind using the two instances is o

examine the differences between cflow atributes in later sections. The right part of
Figure 2.14 shows the output produced in transcript afler exccuting the code in the

workspace.

Chapter 2: An Overview of AOP Languages.

Figure 2.14: Workspace code and output of the factorial example

i, Class First

A class-first advice is activated on an object-recursion’s first method invocation [6]. If
the advice qualifier atirbute set of Listing 2.24 is replaced with the following code,

the advice will be working as a class-first advice.

qualifier: (AshdviceQualifier
attributes: { #receiverClassSpecific.fcfFirstClass. })

“This class-first advice will be triggered only when the method factorial: is invoked for
the first time by the instance of AsFactorialM class. It s to be noted that this method
invocation is class dependent. As a result, no matter how many instances are used o

invoke the method, as shown in Figure 2.15, only the frst invoeation will be advised.

(Y8 Transcript /0]

Figure 2.15: Transcript for Class First Attribute Example

Chapter 2: An Overview of AOP Languages

ii. Class All-But-First

A class-all-but-first advice will trigger activation on object-recursions other than the
first method invocation [6]. If the advice qualifier attributes set of Listing 2.24 is
replaced with the following code, the advice will be working as a class-all-but-first

advice.

qualifier: (AsAdviceQualifier
i

Class-all-but-first advice will be triggered every time except for the first time when
the method factorial: is invoked by the instance of AsFactorialM class. As this
method invocation is class dependent, no matter how many instances are used o
invoke the method, as shown in Figure 2.16, all the invocations except the first one

will be advised by this advice.

Figure 2.16: Transcript for Class All But First Attribute Example
iii. Instance First
An instance-first advice wil trigger activation on a method-recursion’s first method

invocation 6], If the advice qualifir attributes set of Listing 2.24 s replaced with the

following code, the advice will be working as an instance-first advice.

Chapter 2: An Overview of AOP Languages

qualifier: (AsAdviceQualifie
b (

n
For the factorial example, an instance-first advice will be triggered only when the
‘method factorial: s invoked for the first time by the instances of AsFactorialM class.
Since this method invocation is instance dependent, each instance will be considered
separately. Moreover, in this example, as we switch between instances of
AsFactorialM class, the first invocation by fact] with the argument 5 and the first ‘
invocation by fact2 with the argument 4 wil be advised by this instance-first advice. |
Figure 2.17, shows the output produced in the transcripts after installing an aspect

with instance-first advice.

Figure 2.17: Transeript for Instance First Attribute Example
iv. Instance All-But-First
An instance-all-but-first advice will trigger activation on a method-recursion other
than the first method invocation [6]. If the advice qualifier attributes set of Listing
2.24, is replaced with the following code, the advice will be working as an instance-

all-but-first advice.

45

Chapter 2: An Overview of AP Languages

qualifier: (AsAdviceQualifier
ibutes: (¥eeal n

For the factorial example, an instance-all-but-first advice will be triggered every time
except when the method faciorial: is invoked for the first time for each instance of
AsFactorialM class. Since this method invocation is also instance dependent, cach
instance here will be also considered separately. As a result, except for the first
invocation by fact! with the argument 5 and the first invocation by fact2 with the
argument 4, the other invocations will be advised by this instance-all-but-first advice
Figure 2.18 shows the output produced in the transcripts after installing an aspect with

instance-all-but-first advice.

[Exscution with: #(3)

[Exocution withi #(2)

[Bxscution with: #(1)
i 1

Figure 2.18: Transeript for Instance First Attribute Example
v. Super First

To activate the super-first cflow advice, the Smalltalk stack is examined for a send of
a current message 1o the super class. The advice is activated if there is no such send
[6]. For example we create a new class FactorialM with a method factorialM: as
shown in Listing 2.25. Also, we create a subclass SubFactorialM of FactorialM

(shown in Listing 2.26).

Chapter 2: An Overview of AOP Languages

factorialM: anInteger

Transcript show.

factoriald method of FactorialM class';
anInteger <= 1 if7rue: [~ 1.]

aninteger > 1 if7ue

anInteger -

[* anlnteger * (s8lf factorial
selE error

'Not valid for negative integers.'

Listing 2.26 SubFactorialM Class
FactorialM subcl #5ub

The class SubFactorialM also possesses a method named factorialM: (Listing 2.27)

from where the method factorialM: of super class (FactorialM) is called.

Listing 2.27 factorialM method of SubFactorialM Class
factoriall: anInteger

Transcript show: 'factoriald method of SubFactorialM cla:
anInteger <= 1 iffrue: [* 1.]

anlnteger > 1 ifTrue
i)

self error

[* anlnteger * (super factoriall: anlnteger
‘Not valid for negative integers

Listing 2.28 shows an advice method of AspectSuperFirstM Aspect which returns a
super-first cflow advice. Moreover, the method factorialM: of super class i.c.
FactorialM s specified as the join point in this advice.

Chapter 2: An Overview of AOP Languages

adviceSuperFirsti

Specific. fofFirstsuper})
pointcut: [(AsdoinPointescriptor
ctoriald

beforeBlock: [:zeceiver :argusents iaspect :client |
anscri;

Transcript show: lxq\ln-ntu,px}ntst(h\g, er.)
afterBlock: [:receiver :argumen
Transcript show: ‘Exit with
Transcript show: return;printstring; or.)

ct :client :return |

To test the above advice, we execute the following code as shown in the left side of
Figure 2.19. Since the Smalltalk stack is examined for the sending of a current
message faciorialM: to the super (FaciorialM) and such sending is found, super-first
cflow advice remains inactive. As a result we can only see some test messages from

the methods generated in the Transeript (right side of Figure 2.19),

rocoriit menod of sutacireit cos
FactorialM class

ecioriatt meinod of SubTacioriaid closs

Figure 2.19: Workspace and Transeript for Super First Atribute Example
vi. Super All-But-First
To activate the super-all-but-first cflow advice, the Smalltalk stack is examined for

sending of a current message (o the super. The advice is activated if such a messag is

found [6]. For example, if the qualifier in advice method shown in L

g 228, is
modified with the following codes, the advice will work as a super-all-but-first cflow

advice.

Chapter 2: An Overview of AOP Languages

qualifier: (AshdviceQualifier
ateributes: { feeal)

Now, the same code that was shown in the workspace for the previous example, if
exccuted, whenever the factorialM: of FactorialM class is called, super-all-but-first

eflow advice will be activated as shown in Figure 2.20.

{cactorialit method of SubfactorialM clase
[Execution with: #(4)
[Factoriald method of Factorial cl

[FactorialM method of SubfactorialM class

[Execution with: #(2)
[FoctorialM method of FactorialM class

M method of SubFectoriall class
Ext with: 2

Figure 2.20: Transcript for Super All But First Attribute Example

“The next section implements our ShoppingCart running example in AspectS.

232 Running Example in AspectS
While implementing the Shopping-Cart running example in AspectS, the base model
is kept without any logging code. The base model consists of four classes: As/tem,

AsInventory, AsShoppingCart and AsShoppingCartOy

“The Asltem class models the items that can be purchased. This class has a constructor
method inirialize:withprice: and three public methods: getld:, getPrice: and toString:.
The getld: and the getPrice: methods provide the identifier and price of the item
respectively. The foString: method simply sets the format of an item to a string. Id and
price of items are initialized and stored respectively in the instance variables id and

price.

Chapter 2: An Overview of AOP Languages

“The Aslventory class represents the st of items available for purchasing. This class

methods: adltem: and removeltem:. Both of these methods take an

has two pul
item as argument which can be added to or removed from the existing item inventory
using these two methods. The list of items in the inventory is represented using the

instance variable fistltems.

Cart cl he list of items in a fa customer.

methods addltem() and removeltem() are respectively used to add and

delete specific items from the shopping cart’s item list maintained by the instance

variable lstltems.

The AsShoppingCartOperator class is used to model the operations related to a
purchase. In the original example [1] this class has two static public methods to update
both the item lists of inventory and shopping cart. Since in AspeetS static or class
level methods cannot be advised, we implement these two methods as regular or

instance level methods. The method shoppingCart:inventory:addltem: takes an

tance of AsShoppingCart, an instance of Aslnventory, and the item to be added to
the ShoppingCart lst. The purpose of this method is to model a purchase of an item
by adding an item to the shopping cart and deleting the same item from the inventory.
On the other hand shoppingCart:inventory:removeltem: takes an instance of
AsShoppingCart, an instance of Aslnventory and the item to be removed from the
ShoppingCart list. This method is used to model a return of an item by removing an

item from the shopping cart and adding it back 10 the inventory.

Chapter 2: An Overview of AOP Languages

adviceLogging
- torady:
pointcut: [(AsJoinPointDescriptor

targetClass: AsInventory targetSelector: faddItem
AsJoinPointDescriptor

RsJoinPointDescriptor
#adarten:

AsJoinPointDescriptor

AsJoinPointDescriptor

#shoppingCart: inventory: addIten:
RsJoinPointDescriptor

#shoppingCart: inventory: removeItem:
beforeBlock: [:receiver :arguments :aspact :client |
Transcript show: (Date today) printString,

(Time now) printString,

(receiver class) printstring;cr.
Transcript show: ' INFO: Entering 'icr.]

The crosscutting-concerns for this example are implemented using an aspect named
AspectTrace. The advice method named adviceLogging, shown in Listing 2.29,
retums a receiver-class-specific advice that places some additional behaviors or

logging codes before and after each join point.

To test the entire example in workspace (Figure 221), we create demoAspect, an
instance of AspectTrace, and then send the install message to it. Next, an instance of
Aslnventory class is created. This instance is used to add three items in the inventory
list. Subsequently, the instances of AsShoppingCart and AsShoppingCartOperator are

created. After that, the instances of Aslventory and AsShoppingCart along with the

Chapter 2: An Overview of AOP Languages.

items to be added to the ShoppingCart are passed to the methods of

AsShoppingCartOperator class. Lastly, the aspect is uninstalled.

0pie AsShoppingCariOperator
o shoppingtart 5 inventory: inv eddieas ea.
20p shoppingCart: 3¢ inventory! inv additem: itemz.
domospect uninstall.

Figure 2.21: Workspace codes for ShoppingCart example in AspectS

‘The execution of the above code in the workspace places the logging codes before and
after each join point mentioned in the advice of AspectTrace. The output in the

transcript is shown in Figure 2.22.

Chapter 2: An Overview of AOP Languages

lction(an Asitem an Asltm an Asttem)
Amwyauo 10:18:29 pr AsShoppingCartOperator

d .-..wy 210 10:18:29 pm Asinventory.
(an Astiem an Asltom)

Figure 2.22: Output for ShoppingCart example in AspectS

2.4 AspectML

2.4.1 An Overview of AspectML

ML is a typed, functional, d language based on ML
[8). Besides providing aspect-oriented programming language features, AspectML

provides run-time type analysis and seamless integration of polymorphism. The

syntax of AspectML is an extension of the syntax of idealized AspectML [8] with

‘many common consructs following Standard ML. Anyone who is fumiliar with the

language ML and has perience with at least one d

language can easily work with AspectML. Since there are syntactical differences
between ML and AspectML, it is worth starting with some AspectML examples to get

familiar with the language.

Chapter 2: An Overview of AOP Languages

Example 1: Creating an empty list

In ML we can create an empty list as follows

~val a=(1;

ML responds with:

val a=(]:’a list

But due to syntactical issue, in AspectML the same code ends up with an uncaught
exception error. One solution to that problem could be defining a function which takes
an empty list and create an empty list and then keep the result of the function call in a

variable as follows:

“eun emptyList ((1)=01;
val cemptyList((]) ;
In the above code, a function emptyList takes an empty list and produces an empty list

as well. The result of the function call is an empty st which is kept in the variable

Example 2: Creating tuples
In ML creating a new type is very simple. We can create a type “Item” which is a
tuple of string and integer as follows in ML:

~type Itemmstring*int;

‘The above type ltem then can be used to crate items as shown below. In the following

code, iteml, item2, and item3 are three different items of type Item. Each of these

items is a tuple containing a string and an integer.

Chapter 2: An Overview of AOP Languages

~val iteml:Ttem=("1",30);
val item2:Items=("2",31);

val item3:Ttem=("3",32);

Unlike ML, we can't create a type in AspectML. However, tuples can be created by
using functions like createltem, which takes a string and an integer as argument and
produces a tuple. The following code presents the function and its uses to create items
using AspectML constructs:

“fun createltem(id:String, price:Int)=(id, price);

Aval iteml=createItem (*1",30);

Wval item2=createltem ("2",31);
vl item3=createItem ("3",32);

Example 3: Creating a list of tuples

In AspectML a list of tuples can be created as follows:

vl a=[(*17,30), ("2",31),("3",32)];

The followi that " has
detail information of the type of tuples along with its elements.
Qutput

val as((: : ("17,30) (((27,31) (C: 2 (37,3200))
val ac= :: (Sons Tot)) 1)1 (17.30)
[(Tupia (rbons String) (cone tat) THEL) 1 11 (-2 311

{cons string) (tcons 1ot) i)))1 (3732) 0 Uirupie (Foons
String) (TCons Int) THAL))

of tuple *

Example 4: Adding a new element to the existing list
In AspectML a new element can be added to an existing list. For example we can add
an clement that is a tuple of a string and an integer to the list created in previous

example as follows:

val be (47,33

Chapter 2: An Overview of AOP Languages

!
val b=((¢ 1 (“47,33)a) \
(tuple (Cons String) (TCons Int) THil)
|
\

1 bes))
)1("47,33): [(Tuple (TCons String) (TCons Int) A1)))] (*1,30)
[(Tuple (TCons String) (1Cons Int) TNil)))](*27,31):: [(Tuple

String) (fCons Tnt) TNi1)))

In the above code, “b” is a new list containing the clement (*4",33). The other

elements from previous list “a” are also present in “b"

AspectML does not have a concept known as Aspect. Besides having some syntactical

ial language constructs for advices consisting

differences to ML, AspectML has sp

ofthe body and the pointcut designators.

2.4.1.1 Join Point

In AspectML, the function call is the only exposed join point.

24.12 Pointcut

In AspectML a pointcut designator has two parts: a trigger time, which may either be
before, after, or around and a pointcut proper, which is a set of function names.
Pointeuts identify join points in the program flow. However, unlike Aspect), not the
pointeut but the advices can expose the context at the matched join point. In
AspectML, pointeuts do not have names. The join points are either described by a set
of function names or by using the keyword any. The point cut designator before
({#6#) represents the point in time immediately before executing call to the function .
Likewise, the point cut designator after (#f#) represents the point in time
immediately afler execution of the function f. The pointcut designator around (#f#])

wraps around the execution of a call to the function f (8],

Chapter 2: An Overview of AOP Languages

24.13 Advice

Advice in AspectML includes two parts, the body, which specifies what to do, and the
pointcut designator, which specifies when to do it [8]. An advice does not have a
name and cannot be called directly (it is the system’s job to execute i). It does not
have an access specifier. An advice can capture the method's context, such as the
‘method’s arguments. AspectML allows defining type-safe polymorphic advice using
pointeuts constructed from a collection of polymorphic join points [8]. The application
of advice in AspectML usually varies with the trigger time (before after, or around) of

pointeut designators.

242 Running Example in AspectML

Since AspectML is a functional language, there is no concept of classes in. it

However, it is possible to implement the methods of ShoppingCart example as

functions of AspectML. In Section 2.4.1, we have seen that how list of tuples can be
created using AspectML constructs. Here also, in Listing 2.30, we create a function
named createltem that takes id and price and produces a tuple of id and price.

According to the function definition, the datatypes of id and prices should be String

and Int, respectively. Furthermore, each tuple produced using the function createltem

will be considered as an item for this example.

Listing 230 Creating items in AspectML
fun createlItem(id:String, price:Int)=(id,

oltem ("1",30) ;
val iten2ecreatelItem ("2",31);
val iten3screateItem ("3",32);

Chapter 2: An Overview of AOP Languages.

Listing 2.31 shows two function invAddltem and invRemoveltem related to. the
Inventory of ShoppingCart example. invAddtem takes a list and an item, and produces
anew list by adding the item in it. On the other hand, the purpose of invRemoveltem is
to remove an item from the Inventory. It takes the existing inventory list and an item,

and produces a new list without that item.

Listing 231 Functions related to Inventory

fun invAddItem(invList, item)= (item::invList);

| Gdlevlatt iamniat)
(hdinvList==item) eaitiaviter)

et
val (invlistNew)=(invRemoveItem(tlinviist, item))

In the above listing, invList is an existing List. An item can be added to invList as
shown in the code. However, while removing an item from the existing list, we have
o check several cases. That is why, within the function invRemoveltem, we added
case expression and conditional statements. At first, we had to check whether the list
is empty or not. If the st is empty, there is nothing to be removed from it. Other wise

we divide the list into head and tail. Then each item in the list head is checked with

the item to be removed. Whenever the item to be removed is matched with an item in

the list, it is removed from the list.

Listing 2.32 shows two functions cartAddltem and cartRemoveltem related to the

ShoppingCart of our running example. The purpose of these two functions is similar

Chapter 2: An Overview of AP Languages

o that of the functions related to inventory. However, the list to be used in these two.

functions is the item list of ShoppingCart, not the Inventory. The function
cartAdltem takes a list and an item, and produces a new list by adding the item in it
cartRemoveltem takes the existing cart item list and an item, and produces a new list
without that item. Similar to Listing 231, in Listing 232 we have used case

statements and conditional statement.

Listing 2.32 Functions related to Shopping Cart

fun cartAddItem(cartlist, item)=(item::cartList);

fun cartRemovelItem (cartList,item)=
case (cartList)
=00
| (hdcartList: : tlcartList) =>
if (hdcartlList==item) then(tlcartlist)

val (cartlistNew)=
(cartRemovelten(tlcartList, item))

(hdcartList: :cartlistiew)

Listing 2.3 shows one of the functions related to the Shopping Cart Operator of our
running example. This function takes an inventory list, a cart list and an item as

arguments. In order o create a new inventory list and a cart list, this function uses

invRemoveltem 10 remove the item from the existing inventory list and cartAdditem to
add the item to the existing cart list. Since we will be using only this function of
Shopping Cart Operator, the other function, cartOperatorRemoveltem, is not shown

here.

Chapter 2: An Overview of AOP Languages

Listing 2.33 A Function of ShoppingCartOperator

S T

e (inv11stNew)=invRemoveItem(invList,item)
val (cartlistlew)=cartAddItem (cartlist,item)
in
(invistNew,cartlistNew)
end.

‘The previous four Listings (from Listing 230 to Listing 2.33) present the base model

for the ShoppingCart example in AspectML.

Listing 2.34 shows the advices in AspectML for the ShoppingCart example. Since
AspectML does not allow using the same advice for functions with different data
types, we use two before advices for two different categories of functions. In the first
advice, the functions invAddltem, invRemoveltem, and cartAddltem are mentioned as
the join points. In the second advice, the function cartOperatorAddltem is mentioned

as the join point.

Listing 2.34 advices in AspectML i
advice before (| finvAddItem,invRemoveItem,cartAddIteny |) (arg, s,
info) = (printin iprint “INPO: Entering v PEARC(" "%

(getFunName info)); arg)
advice before (| HcartOperatorAddI temh
(printin" ";print "INFO: Entering "
info)); arg)

Listing 2.35 shows the code to test the functionality of the above advices along with
the codes of base model. First, three items, one at a time, are added to the inventory
list. Then the function cartOperatordddltem is called to remove the item2 from the

existing inventory lst and to add to the cart ist

Chapter 2: An Overview of AOP Languages

Listing 2.35 Codes to test the program
|

let

val (newInvList)
val (newInviistl
val (newInvList2)=invAddItem(newInvListl, item3)
{1, item1)

iten2)
end;

Figure 2.23 shows the output produced after compiling the above codes in AspectML

compiler.

ver the functions

Figure 2.23: The advices of Listing 2.34 were triggered wh

mentioned in the join points were called from Listing 2.35.

6l

Chapter 3: AOP Approaches: Static and Dynamic

Chapter 3

AOP Approaches: Static and Dynamic

3.1 Static AOP

Static AOP, as implemented in Aspect) [3], requires the developer to specify all
pointeuts, advice and aspects at compile time. Usually a weaving compiler is used to
add advice code to join points. When several aspects match the same join point [15,
16], the aspects are woven in a statically-defined order. As a result, aspects cannot be
added, removed, or modified at runtime [16]. To change aspects, the system must be

recompiled [17).

‘The ShoppingCart example implemented with Aspect] in Section 2.2.2 complies with
the static AOP approach, as the example does not allow us 10 start, stop, or modify the
aspect configuration during runtime. However, a static language can approximate
dynamic adaptation through run-time checks. Figure 3.1 follows the adaptation of the
Aspect] example given in Section 2.2.2. Here, we have a user interface which comes
with switches to turn the logging on and off. Using this interface one can press the
“Start” button and see the program running without logging code. However, the
logging feature will be enabled whenever “Start Logging” button is pressed. The

logging feature can be disabled any time while the program continues to run.

Chapter 3: AP Approaches: Static and Dynamic

(538] | 000 5 e

Figure 3.1: User interface for modified ShoppingCart program

printing of the loggir related to
aspects, it secems that the modified ShoppingCart example allows enabling and
disabling the aspects during runtime. However, this is not a truly dynamic AOP

system. This dynamic adaptation i ished through run-time check

Enabled in Listing 3.1 from the base system,
‘which requires the base system o be aware of the aspects. This causes an (however
‘minimal) overhead of checking the configuration conditions. Furthermore, for more
complex control and configuration requirements, the complexity of conditional

expressions increases rapidly.

Chapter 3: AOP Approaches: Static and Dynamic

Listing 3. lwxumwwm.unum
public aspect € (
sl ket (N
piblic static veid settosbled booiesn £lag) (
censpect. loghspact. = £l

pointcut isEnabled() : if (Loghspect);
pointcut traceMathods () : execution(* *.*(..))
& !within (TraceAspact)

&6 twithin (UserInterface)

&6 twithin (PrintThread) ;

before() : traceMethods()ss isEnabled() {

Static AOP is suitable for systems that can be reconfigured and updated by stopping
and restarting. However, static AOP shows pitfalls for long running systems, where

this s not an option [17).

Using the example of a coffee ordering system illustrated in [18] and a client server

application presented in [19], [16] shows how static AOP approach s not suitable for

the applicati ing and removing 0 an object.

[20] describes a scenario taken from telecommunications, where corrective actions
need to be performed in a flexible manner on the integrated system if the system was

not initially deployed correctly.

[21), [22] and [23] were motivated by the need for dynamic adaptation of distributed
systems at runtime where the systems need to be updated with the changing

environment. Since all applications are required (o be stopped during the stop and

Chapter 3: AOP Approaches: Static and Dynamic:

restart of system software with static adaptation, static adaptation techniques are not
always suitable [21]. Moreover, dynamic or fast reconfiguration of distributed
applications is needed to handle several concems such as fault-tolerance, data
consistency, remote version updating, run-time maintenance, dynamic server lookup,
or scalability [23]. To adapt with the changed environment, there should be some

option to add or remove concerns on existing applications during runtime.

3.2 Dynamic AOP
Dynamic AOP provides support for controlling aspeets at runtime. As implemented in

Aspects and AspectML, dynamic AOP allows changes to aspects without res

arting
the program [16]. A run-time weaver is used to add advice code to the selected join
points. However, dynamic AOP is different from dynamic weaving, which allows
installing and uninstalling aspect. As Aspects does not support instantiation of aspect,

neither dynamic AOP nor dynamic weaving is allowed in it

Both dynamic AOP and dynamic weaving have some advantages;

It removes AOP overhead when aspects are not required, ¢.g. profiling or tracing

aspects on a production system.

It allows dynamic configuration of aspect behavior, ¢.g. switching from tracing to

profiling, without resetting the state of the base systems.

Ttallows aspect re-configuration depending on the state of the base system.

Itallows extensible and reusable aspect libraries.

‘The latter is a consequence of the typical implementation of dynamic AOP in which

the core pis are provided using the p coneepts. The

Chapter 3: AOP Approaches: Static and Dynamic

Aspects example above shows how advice and join point descriptors are implemented
as objects. Hence, they can be used to build generic class or object libraries. While
many dynamic AOP approaches are implemented this way, the choice of dynamic or

static AOP and providing AOP with or without language extensions, are independent.

Dynamic AOP is easier to implement in interpreted languages such as Smalltalk or
ML, although dynamic AOP versions of Aspect] exists [16]. Figure 3.2 presents a user
interfuce in AspectS environment. Although this user interface is similar to the one

shown in Section 3.1 , it allows dynamic control of aspect behavior.

Figure 3.2: User interface for Dynamic ShoppingCart Program
‘The start button, if pressed, will run the base system without the logging functionality.
However, the aspect is enabled and prints the logging information once the “Start
Log” button is pressed. In Figure 3.3, we cannot see any logging messages for lremd
since logging was inactive while adding the item to the cart. However, logging was
activated when Jfem9 was in process. As result, we can see the logging messages for

the classes InventoryD and ShoppingCartD.

Chapter 3: AOP Approaches: Static and Dynamic

a1

ey 200 254 1 o evenoers
D, vering

o Oreraiion e Tead' Tea ea’ Teas' Toa? Teas' Teald)
i ey 207 245 5 ppinecar
Fatering
e 2
ey 209 245 7m o avemoeys
Eotering

Syt — e s eaT et Temit)
i ey 207 245 5 i
savering

Figure 3.3: Output of dynamic ShoppingCart program

Although the static Aspect) implementation shown in Section 3.1 behaves exacly like
the above program, the difference here is that the base system and aspect extensions
can be enabled and disabled separately, e.g. from a separate control thread, as shown
in the following four Listings (from Listing 3.2 to Listing 3.5). This also allows the
reconfiguration of the aspect to adapt or configure the advice to change requirements

without losing state of the base system.

Listing 3.2 Code for Start button

roces
S81£ addl: 'Cart is Activated'
processl resume

Chapter 3; AOP Approaches: Static and Dynamic

Listing 3.3 Code for Stop button

18 . 2
processl terminate

Listing 3.4 Code for Start Log button
startlog
self adaz

demoAspect. install

Listing 3.5 Code for Stop Log button
stopLos

self e 1d2

demohspect. uninstall

Dynamic AOP frequently, but not necessarily, treats AOSD concepts as instances of
the primary modularization concepts. For example, advice and pointeuts are objects in
Aspects, and pointeuts are functions in AspectML. An AspectML example taken from
[8)is shown i Listing 3.6. In this example, toLog of type pc (<a b>a~>b) isa
pointeut, which is passed as an argument o the function startLogger.

Listing 3.6 Passing pointcut as argument
fun startlogger (tolog: pe(<a b> a->b)) =

let
sdvice before (|tologl) (arg, _, info) =

((print ("before : " (getPunName info) * ":" *

¢ string arg)~"\n")) ; arg)

advice atter (| tolog |) (res, _,
((print ("after " * (getFunName info) ~ " : "~
(val_to_string res) * "\n"));res)

. info) =

in) end

Chapter 3: AOP Approaches: Static and Dynamic

Asdspect. It has a constructor method newJP (Li

run-time weaver when installing the aspect.

Listing 3.7 Class Definition of AspeetLogger
Asaspect #spectiogger

Dynamic AOP allows us to build generic logging aspects that can be configured at
runtime with the set of join points to be logged. For example, in the following
codelListing 3.10), AspectLogger (Listing 3.7) is a generic logging subclass of
ing 3.8) that allows initialization
with a set of As/oinpointDescriptor objects. These are stored by the aspect (Listing

3.9) and passed to the adviceLogging function (Listing 3.10), which is called by the

umuuclumm
ageDescriptor
“UHREE now) Tpsec: aJpbescriptor; yourself

Listing 3.9 Instance method
jpset: adeDescriptor
jpset :- aJPDescriptor.

Listing 310 The method adviceLogging
adviceLogaing

N aabetorehteerhdvice

qalitior (AshdviceQualifier
Nttributes: (hreceiverclassspecitici)

baforeBlock: [izecelver sarguments :aspect
loqqAnq code hel

terBlock: lireceiver sargusents :aspect
result |

logging code here .. |

client |

client

Chapter 3: AOP Approaches: Static and Dynamic

Aspect] does not provide instantiable® and configurable aspect, advice, or pointcut
classes. It s instead based on language extensions handled by a weaving compiler.
Hence, the above examples of generic and configurable aspects and advice cannot be

implemented in Aspect).

Recent work on dynamic AOP has focused on solving a number of issues and
problems that are not well suited for static AOP implementations. Handi-Wrap is a
dynamic AOP extension for Java which allows advice to be defined compositionally

and supports run-

ime weaving [24]. PROSE (PROgrammable extensionSions of
sErvices) is a dynamic AOP approach based on Java that allows aspects to be woven,
unwoven, or replaced at run-time. PROSE supports rapid AOP prototyping and
debugging and helps developers to understand the behavior of aspects in changed
environment [25]. To address the recent demand for dynamic AOP, a new dynamic
aspect weaver called Wool is presented in [26], which makes it possible to implement
efficient dynamic AOP systems. Wool addresses the solution to the performance
penalties caused in some prior implementations. An approach for language and
platform independent dynamic AOP based upon reflection is presented in [22]. It
focuses on dynamic adaptation of distributed systems at run-time. Dynamic Aspect)
[16] considers the difficulties arising from the static scheduling strategy of Aspect)
and shows how turning to a more dynamic strategy makes it possible to order, cancel,

and deploy aspects at runtime.

instantiat or free aspects at will.

Chapter 4: AOP Language Feature Comparison

Chapter 4

AOP LANGUAGE FEATURE COMPARISION

As discussed in Section 1322 , Join Point Models (JPMs) of different AOP

implementations can be compared based on the following criteria:

‘Which join points are exposed,

How pointcuts are specified,

‘The operations permitted at the join points, and

«The structural enhancements that can be expressed.

Core JPM features e.g. method exceution, exception raising or throwing are common
across most AOP implementations. However, different languages provide concepts
beyond these core features, such as the structural enhancements of Aspect] and

AspectS. To cover a wide variety of JPM features, we examine:

« Aspect] - a static AOP approach,
 AspectS - a dynamic, object-oriented approach, and

« AspectML - a dynamic, functional approach to AOP.

Aspect) allows wide varieties of join point sclections. Based on the JPM features of
Aspect], the following sections present a comparative picture of Aspect], AspectS and

AspectML.

Chapter 4: AOP Language Feature Comparison

4.1 Aspectd, Aspects and AspectML

4.1.1 Exposed Join Point Categories
Being a member of the functional language family, AspectML only exposes function
calls as join points. However, the exposed join point categories for Aspect) and

s, some of

Aspects are not that simple. Aspect] exposes eight categories of join
which can be found in Aspects too. To understand the difference between the exposed
join point categories of Aspect) and AspectS, a detailed comparison is provided in the

following sections.

) Method join points

Aspect) exposes both method call and method execution as join points. The following
code snippet shows a pointcut that selects execution of the deliver method of Test
class in Aspect].

Pointeut deliverhessage ()
execution (* Test.deliver(.

Using AspectS, as shown below, the above example can be imitated by a
receiverClassSpecific advice, which selects Test as the targetClass and method deliver

as the targetSelector:

quittier: Gahvicaulitior

ateributes: (freceiverClassSpecific))
potntort: [{AadoinpointOuseriptan
targetClass: Test targetSelector: fdeliver)]

|
Chapter 4: AOP Language Feature Comparison
In Aspect], a call pointcut is specific to a type signature. Thus, a call of a method wil
be selected s a join point if and only if the type of caller is matched with the type
signature mentioned in the pointeut. For example, as shown in Listing 4.1, the method
deliver is called by the instance of the Test class. The method deliver is called for the
second time by an instance of Inerface. Accordingly, the method deliver is executed
twice.
public Test implements Interfacel {
public void deliver() {
ysten.out printin(*1n Test.deliver (") ;
}
public static void main(String[] args) (
Test test = new Test();
test.deliver();
Interfacel interfacel = test:
interfacel.deliver (
)

As shown in Listing 4.2, if the exccution of the method deliver is selected by a
pointcut as a join point and advised, the advice will be activated twice.

pebliadepect Beeuiepas
ore() umm-(wm Test.deliver() {
System.out.println("Advising execution of Test.deliver()");

before() : call(void Test.deliver()) (
System.out.println("Advising call of Test.deliver()");

7

Chapter 4: AOP Language Feature Comparison

Although there were two calls to the defiver method, since the call pointeut specifies
the type of a calling object, only the call from the instance of class Test is advised.

Figure 4.1 shows the output of the above example.

@ Console.
<terminated> Test (4) [Aspecti/Java
Advising call of Test.deliver()
(Aqvising execution of Test.deliver()
[1n Test.deliver

Advising execution of Test.deliver()
[1n Test.deliver()

|

Figure 4.1: Output of the above example

AspectS does not provide any construct 1o select method call as join point. Hence,

‘method execution is the only method join point in AspectS.

b) Constructor join points

Like Java/C++, object creation in Aspect] involves constructors. In Aspect)
constructors are used to create and initialize new instances. Aspect] provides pointeut
constructs to select both constructor call and constructor execution as join points. The
exceution of constructor is the constructor itself, ¢.g. the constructor of Jrem class

shown in Listing 4.3.

Listing 4.3 Constructor in lfem class.

public class It

public Item(string id, float price) {
id=id

price = price;
)

Chapter 4: AOP Language Feature Comparison

‘The call of constructor is the location of invocation of the constructor. For example,

the following will be selected as a constructor call in Aspect).

Item iteml = new Item('1", 30);

Since Smalltalk/AspectS does not have any special syntax o semantics for constructor
[27), AspectS does not allow selecting the constructor call or execution as a join point.
The functionality of the above code, written in Java, can be achieved by the following

code snippet of SmallTalk.

iteml := AsItem new.
iteml initialize: '1' withprice: 30

Here ifem, an instance of lfem class is created by using a class method rew. Also,
assigning the values of the fields’ item and price does not need the involvement of

constructor, since the values are assigned by a regular method of SmallTalk named

eswithprice:.

©) Field aceess join points
“The field access join points capture the read and write access to an instance or class
‘member of a class [1]. AspectS does not provide any pointcut constructs (o select an
instance or class member of a class directly. However, if the fields are accessed using

regular methods of SmallTalk, then field access can be advised by selecting the

exea

ion of those methods as join points. For example, in Listing 4.4, the method 1.

sets the value of the field n.

Chapter 4: AOP Language Feature Comparison

Listing 4.4 A setter method in AspectS.
n: aninteger

n i= anInteger.

Listing 4.5 Advising the setter method :
adviceSetField
* RsBeforenfterhdvice
qualifier: (AsAdviceQualifier
attributes: (#receiverClassSpecific))
pointcut: [(AsJoinPointdescriptor

n:})
beforeBlock: [:receiver :arguments :aspect :client |
Transcript show: ' "Set Field"

In Aspects, write access to the field 7 can be advised indirectly by capturing the setter

method n: as join point (Listing 4.5).

d) Exception handler execution join points
Both Aspect] and AspectS supports selection of the exception handler exccution join
points. In Aspect], an exception handler execution join point encompasses the catch

block [1].

Listing 4.6 Exception handler execution join point

package exception;

public class TestHandler {

public void deliver (){ ‘
ey (

Error errors new Brror("Eit .
throw error;

)
cateh (Error o)
System.out println(“Inside Catch b

Chapter 4: AOP Language Feature Comparison

Listing 4.6 contains a handler block, which can be captured in Aspect] by the pointcut

shown in Listing 4.7.

Listing 4.7 AspectHandler aspect in Aspect]

ackage exception;

: aspect AspectHandler (
pointcut deliverMessage (Error error):
handler (Error) &6 args (error)

&6 cflow(execution(* TestHandler.deliver(..)));
before(Error error): deliverMessage (error) {

System.out .print (error) ;
System.out.println("\n Ex

As discussed in Section 23.14 , in AspectS, an exception handler block of
AsHandlerAdvice is executed only when the sending of the message results in
signaling an exception specified in the advice itself. Since SmallTalk does not have
any special constructs for exception handling such as try or catch block of Java, a
handler block of AsHandlerAdvice encompasses the existing block of code that
handles the exception in the program. For example, as shown in Listing 4.8, if the
value of a field n is not equal to zero, the method dec is used to decrement the value of
. However, method dec signals an exception and handles it whenever the value of n
is zero. We assume that this program includes some other methods such as inc for

incrementing the value of n as well ‘

Chapter 4: AOP Language Feature Comparison

Listing 4.8 Signaling exception in SmallTalk

dec

lexception
exception .
self n: self ne
Transcript show: 'Ercep cdtser
Transcript . .
Transcript siow: self nicr.

self 5 self n -
Transcript shows self nicr.

Figure 4.2 shows the workspace code and transcript for the above example, in which

the raised exception in handled by the dec method itself

Figure 4.2: Work d output for exception handli in SmallTalk

‘The above exception handling execution can be captured as a join point in AspectS.
We assume that the AspectHandler aspect has a method named adviceException as
shown in Listing 4.9. The AsHandlerAdvice object includes Error class as an
exception. Whenever an error of type Error is signaled from the dec method, the

exception is handled by the handler block.

Chapter 4: AOP Language Feature Comparison

Listing 4.9 Advising an exception handler join point in AspectS
adviceException
“AsHandlerdvice

pointeut: [(AsJoinPointDescriptor

argetc AsCounterModified ¢ sele [

. Error

b (i [ireceiver :arguments :aspect :client ex | ex signal
Transcript show: 'Hand

Figure 43 shows the workspace code and transcript for the exception handling

example with an AsHandlerAdvice associated with it. As we can see, the advice

triggered when an exception is raised within the dec method. Moreover, the handler

block of the advice object replaces the existing handling block of dec method and
handles the exception.

aspecti= Aspectiiandier nev.
aspect install.
counter:= AstounterModified new.

counter inciinc

counter dec.
aspect uninstal.

Figure 4.3: Workspace and output for exception handling example in AspectS

€ Classis

itialization join points

In Aspect), a class initialization join point represents the loading of a class, including

the initialization of the static part, e.g class variables [1].

Chapter 4: AOP Language Feature Comparison

Listing 4.10 Class initialization in AspectS
instanceVariableNames: 'id price

poolDictionaries:
category: 'Aspects-ShoppingCart’

In Smalltalk a class initalization is done by passing arguments to the static method

of

class Obiject or ts subelasses as shown in Listing 4.10.

Since SmallTalk does not have any special syntax for class initialization and static
methods cannot be advised in AspectS, class initialization join point selection cannot

be implemented in AspectS.

1) Object initialization join points
In Java or C++, object initialization occurs when an object is created. Aspect) allows
selecting the object initialization join point to perform certain additional object

initialization [1]. However, in SmallTalk or Aspects, the object

ization is done

by sending the message new 1o a class as shown below.

iteml := AsItem new

Since new is a static method and cannot be selected as join point is AspectS, selection

of object initialization join points is not permitted in AspectS.

Chapter 4: AOP Language Feature Comparison

) Object pre-initialization join points

“The object pre-initialization join point includes the passage from the constructor that
was called first (o the beginning of its parent constructor [1], Since SmallTalk does
not have any constructors, object pre-niialization join points cannot be selected in

Aspects.

h) Advice execution join points
In Aspect, the advice execution join point includes the execution of every advice in
the system [1]. Using AspectS, execution of advice methods can be selected as join

points. However, advices are objects and can be passed as method parameters in

AspectS. Since AspectS does not provide any pointcut construet to select an object as

join point, selecting the advice method execution as a join point will not imitate the

advice execution join point of Aspect).

4.1.2 Cross-cutting Concerns

Since the primary goal of introducing aspect-orientation was to modularize cross-
cutting concern of a system o program into separate entity, each AOP language has
the concept of cross-cutting concern. Hence, this feature is common for all AOP
languages. For example, both in Aspect) and AspectS a cross-cutting concer contains
aspects in the same way as packages (for Aspect)) or categories (for AspectS) contain

classes.

Chapter 4: AOP Language Feature Comparison

413 Aspects

Since AspectML does not have any identical concept known as aspect, the aspect
related features of AspectML are incomparable with the aspect related features of
other two languages. Hence, we compare the aspects of Aspect] and that of AspectS in

the following paragraphs.

) Instantiation
As discussed in Section 2.3.1.1 , in AspectS, instances of the aspects are created by

the user. Weaving occurs by sending an install message to an instance of the aspect

For example, using AspectS, an aspect AsAbstractAspect (Listing 4.9) can be
instantiated like a regular class of SmallTalk as shown in Figure 4.4, If we create two
instances of the same aspect and install those, the advice will be activated for each of

the instances.

Ashspect.
instanceVariableNanas:
classVariableNanes
poolbictionari
category: 'HelloWorld'

absisAsAbstractAspect nev,

Figure 4.4: Aspect instantiation

Chapter 4: AOP Language Feature Comparison

On the other hand, in Aspect) by default, cach aspect is a singleton, so one aspect
instance is created automatically. Hence, unlike the aspects of AspectS, in Aspect),

the aspects cannot be directly instantiated [1].

b) Access specification

In Aspect), like the classes or interfaces of Java, the visibility of the aspects can be
specified by the access specifiers. Moreover, an aspect can have an access specifier of
“privileged” in order to read and write the private members of the classes it is
crosscutting [1]. Since SmallTalk does not allow access specification or visibility for
the regular classes, the visibility cannot be specified for the aspects of AspectS too.

“This is not an issue in AspectS, since SmallTalk does not allow access specifiers.

©) Aspect precedence
Aspect precedence specifies the ordering of aspects and advices. Ordering of advices
is important when advices of different aspects are applicable to the same join point in
the system. [1] presents an example of aspect precedence, in which both the method
enter and exit of Home class match the pointcuts of HomeSecurityAspect and
SaveEnergyAspect. In order to see the advice execution in a desired order (as shown in

is necessary to set the precedence of aspects

[Engaging
switching off 1ignts
Exicing

Encering
Switching on 1ighta
Disengaging

Figure 4.5 Output of aspect precedence example in Aspect]

Chapter 4: AOP Language Feature Comparison

In Aspect], orders of advices are specified by declaring the precedence of aspects as
shown below. In this example, HomeSecurityAspect will receive priority over

SaveEnergyAspect.

declare

Aspects does not have any special construct to declare the precedence of the aspects.
However, precedence to an aspect can be given by sending an install message o its
instance prior to sending the install message to instances of other aspects. Since, in the
workspace Figure 4.6, HomeSecurityAspect is installed prior to the installation of
SaveEnergyAspect, it will get precedence over the second. Hence, we get the desired

advice ordering as shown in Figure 4.5

aspectl;-HomeSecurityAspect new.
aspect! install

aspectzie SaveEnergyaspect nev.
spectz install,

teste TestHome nev.
test main.

aspectz uninstall.
aspect! uninstall. o

Figure 4.6: Workspace and output for aspect precedence example in AspectS

d) Nested Aspect
Tn Aspect], an aspect may be defined either at the package level, or as a static member
of a class, interface, or aspect. However, in AspectS, an aspect cannot be defined as a

‘member of other classes or aspects; they can be only defined at the package level. For

Chapter 4: AOP Language Feature Comparison

this reason unlike Aspect, the aspects of AspectS cannot be embedded inside classes

as nested aspects.

) Implementing interfaces
In Aspectl, the aspects can implement interfaces. Since SmallTalk does not support

interfuce, the aspects of AspectS cannot implement interfaces.

1) Abstract Aspeets
Both in Aspect] and in AspectS, aspects can be abstract. An aspect containing an
abstract method is an abstract aspect in AspectS. Since methodAbstract (Listing 4.12)

belongs to the aspect (Listing 4.11), is an abstract

aspect in AspectS.

v
1t subclassResponsibility

£ Extending classes and aspects:
In Aspect), the aspects can extend classes and abstract aspects, but not concrete

aspects 1, 16].

In AspectS, the aspects can inherit from both concrete and abstract aspects. For
example, all the subelasses of Asspect inherit AsAspect, which is a conerete aspect in

Aspects.

Chapter 4: AOP Language Feature Comparison

Listing 4.13 Inheriting an abstract aspect in AspectS

category: 'HelloWorld'

Moreover, ~SubAbstractdspect (Listing 4.13) inherits an abstract aspeet
AsAbstractdspect. SubAbstractAspect, which is a subclass of the abstract aspect
Asdbstractspect, implements the abstract method methodAbstract (Listing 4.12) in
Listing 4.14.

Listing 4.14 Method of SubAbstractAspect aspect

methodabstract

Transcript .

IS

4 Pointcuts

) Naming pointcut

In AspectML a pointcut is a set of functions and does not have a name [8]. However,
both in Aspect] and AspectS, the pointcuts can be cither anonymous o named. Since,
in AspectS, pointcuts are objects too, they can be named by assigning them to

variables. These named pointcuts can then be used later on in advices of aspects.

b) Types of pointeut
Aspect] allows a wide variety of pointeuts, which includes: kinded pointcuts, control-

flow based pointcuts, lexical-structure based pointeuts, execution object pointeuts,

it o S .

Chapter 4: AOP Language Feature Comparison

argument pointeuts and conditional check pointcuts. Section 22.1.3 presented a

‘general idea of the functions of each of those pointeut types.

i. Kinded pointcuts

Kinded pointeuts have similar syntax to capture each kind of exposed join point such

as in Aspect]. Section 4.1.1 provided a detailed overview of the exposed join point

categories of Aspect). In that section, we have already seen that some of those j

points, such as: method execution join point, field access join point, and exception
handler execution join point can be captured in AspectS too. We have also seen that,
the join point selected by pointcuts along with. the receiverClassSpecific advice
qualifier attribute of AspectS is similar to the method execution join point of Aspect].
Although Aspects does not have any construct to select the method calls as join point,
the join point selection by the senderClassSpecific advice qualifier attribute (Listing

4.15) of AspectS (if NewTest is added as a sender class t0 the aspect) can be emulated

by combining the call() and this() pointcut of Aspect] as shown in Listing 4.16,

Listing 4.15 senderClassSpecific pointcut in AspeetS.
waliticr: (AsAdviceQualifier
attributes: (KsenderClassspecific))
({AsdoinpointDescriptor
ZqetClass: Test targetselector: fdeliver]

Listing 4.16 Aspectd
Call (* Test.deliver(..))&6 this (NewTest) ;

However, Aspect] does not have pointcut designators that can select specific

instances. As a result, instance specific join point selection by the advice qualifier

Chapter 4: AOP Language Feature Comparison

attributes recei ific and of AspectS goes

beyond the features available in JPM of Aspect). Thus, these join point selection

cannot be emulated using Aspectl.

ii. Control-flow based pointcuts

As discussed in the subsection b of Section 2.2.1.3 , in Aspect), control-flow based
pointcuts such as: cflow() and cFlowBelow() take another pointcut as argument. The
adviee qualifier attributes c/FirsiClass, c/AllButFirstClass, ~ cfFirstinstance,
fllButFirstinstance, ¢fFirstSuper and cfAllButFirstSuper are used to specify the
control-flow based pointcut in AspectS. Some of these pointcuts of Aspects can be
emulated by combining the control-flow based pointcut of Aspect! along with some
other simple pointcuts. For example, the join point selected by the pointcut and
qualifier attribute cfFirstClass of Aspects in Listing 4.17 can be imitated by the

combination of Aspect pointcuts shown in Listing 4.18.

u-ﬂnﬂndllntchupommlnmnms

salifier: (AsdviceQualifier
attrinutes: (#recsiverclassspacific.fcfPizstClass. })
{ Asdoinpointbescriptor
tazg s AsFactoriall targetelector: ffactoriali. |]
umuun Aspectd

& execution(* AsFactorial.factorial(..))

Chapter 4: AOP Language Feature Comparison

Similarly, the join point selected by the poincut and qualifier attribute
fAlIButFirsiClass of AspectS in Listing 4.19 can be imitated by the combination of

Aspect] pointcuts shown in Listing 4.20.

4 AspectS

(AshdviceQualifier
ateributes: ([h
AsJoinPointDescriptor

targotClass: AsFactoriald targatSslector: Hfactorial

jinteut in Aspect).

cflowbelow (execution (* AsFactorialM. factorial(..)))
execution(* AsFactorialM.factorial(..)

However, no cflow related advice qualifier attribute is used in either Listing 4.17 or
Listing 4.19, the join points that are captured by the AspectS constructs can be
emulated by the Aspect] pointeut shown in Listing 4.21.

Listing 421 Using eflow pointeut of Aspectd.

celowfexecution (+ AsFactorialk factorial(-.))) 66
execution (* AsFactorialM. factorial(.

“The join point selected by the pointeut and qualifier attribute ¢/FirstSuper of AspectS
in Listing 4.22 can be imitated by the combination of Aspect) pointcuts shown in

Listing 4.23.

Listing 4.22 cfFirstSuper pointcut in AspectS
Lifier
| #receiverClassspecitic. fotFirstsuper))
pathéue) i Madoiaoiatbasceiptor
targatClass: FactorialM targotSeloctor: WfactorialM:. |

Chapter 4: AOP Language Feature Comparison

Listing 4.23 Representation of cfFirstSuper pointcut in AspectJ
Lcflowbelow (execution (* FactorialMl. factorial(..))

& execution(* Factoriall.factorial(..))

& ! within(SubFactorialt)

Likewise, the join point selected by the pointcut and qualifier attribute
cfAllButFirstSuper of AspectS in Listing 4.24 can be imitated by the combination of

Aspect] pointeuts shown in Listing 4.25.

Listing 4.24 cfAIButFirstSuper pointcut in AspectS
jualifior: (AshdviceQualifi
= | #receiverClassSpecific. fofALIBuLFirstsuper))
pointay AsJoinPointDescriptor
2 Factoriald tor: Wfactoriald:

Listing 4.25 Representation of cfAIButFirstSuper pointeut in Aspect)
floubelow (execut ion (+ Factoriali. factorial (..)))

4 oxecution(* FactorialM. factoriall(..))

& lwithin (SubFactoriali)

However, as Aspect) does allow selecting specific instances, control-flow based
instance specific pointcuts of AspectS such as instanceFirst and instanceAllButFirst

cannot be emulated using Aspect).

i, Lexical-structure based pointcuts

Leical-structure based pointeuts, such as within() and withincode() of Aspectl,

capture join points occurring inside a segment of source code of specified classes,
aspects and methods. AspectS does not allow such selection. However, as shown

carlier in this section, to imitate some of the cflow-based pointcuts such as

Chapter 4: AOP Language Feature Comparison

P s of AspectS, combining within() with control-fl

based pointeuts of Aspect is often necessary.
iv. Execution object pointcuts

In Aspect], execution object pointcuts such as rhis() and targer() pointeuts match the
join points based on the types of the objects at execution time. The rhis() pointeut
selects all the join points associated with the current object, whereas the farger()
pointcut is used to select the join points associated with the object on which the 1

method is invoked. AspectS has the li

itation to select join points based on the types

selection of AspectS, we might need to combine a this() or a target() pointeut along
with some other pointcuts. For example, in Listing 4.16 we have seen how a join point
selection by a senderClassSpecific advice qualifier attribute of Aspects is emulated

by combining a call() and this() pointcut of Aspect).

V. Argument pointeuts

‘The args() pointeuts can expose the context at the matched joi

point in Aspect).
AspectS passes execution context automatically as arguments into the advice. For

example, in AspeetS, in order to see the arguments passed in each method execution

of a program related to control-flow based pointcut, we can simply use a regular
before advice as shown in Listing 4.26.
9

of objects at execution time. However, when using Aspect, to imitate some join point

Chapter 4: AOP Language Feature Comparison

Erecuion vi -

Figure 4.7: Printing arguments in AspectS

Listing 4.26 Printing argument in AspectS
adviceClassAllButFirst
* AsBeforeAtterndvice
100 pshaviceguaiitior
fauts [{ Mstatolathascatztor

t AsFactorialM targetSelector: #factoriali. ||
ve sk: [ireceiver :arguments :aspect :client |
Transcript show: ation

Tetnkcetpr et ASqMARAEEISESSSGY .1

However, (o see the same output in Aspectl, we need to add an additional args()

pointeut (Listing 4.27) along with the existing pointeut combination.

Lstng 427 Printog st n Aspect)

spect AspectClassAllButFirst {

Pitoawtise abs
&& execution(* AsFactoriall. factorial(..))
&6 args(arg) (

System.out.println("Execution with: "+arg);
)

vi. Conditional check pointcuts

In Aspect), the conditional check pointcut captures join points based on some

conditions. The conditions are to be checked at the join point. AspectS and AspectML

Chapter 4: AOP Language Feature Comparison

o not allow a join point to be selected based on such checking. Thus, conditional

check pointeuts cannot be imitated in AspectS and AspectML,

©) Pointcut operators

Aspects provides a unary negation operator (1) and two binary operators (] and &&) to
form more complex matching rules [1]. Where the negation (1) allows the matching of
all join point except those specified by the pointcut, the binary operators (| and &&)
are used to combine pointcuts. Combining two pointeuts with the || operator causes the
selection of join points that match either of the pointcuts, whereas combining them
with the && operator causes the selection of join points matching both the pointcuts,

In AspectS, the method difference: that takes an AsJoinPointDescriptor object as

argument can be used (o emulate Aspeet)’s negation

operator. However, the
negation operator of AspectS can be used with a single poinicut, whereas method
difference: needs at least two join point objects as shown in Table 4.1 (Third row).
AspectS also allows combining pointeuts by using the methods related (o set
operations such as: union: and_ intersection:. Combining two pointeuts with. the
‘method union: causes the selection of join points that mateh either of the pointeuts,
whereas combining them with the method intersection: causes the selection of join
points matching both the pointcuts. Listing 4.28 represents two pointcut objects jpser/
and jpser2. jpset] s a set of two join points : the first selects execution of the method
addltem: of Aslventory class and the second selects execution of the method

removeltem: of the same class. Similarly, jpser2 is also a set of two join points: the

Chapter 4: AOP Language Feature Comparison

first selects execution of the method addltem: of Aslnventory class and the second

selects execution of the method adltem: of AsShoppingCart class.

Listing 4.28 Pointcut objects in AspectS

AsJoinPointDescriptor
AsInventory
asgoinPointoescriptor
vty
2:={rsdoinointDescripto
targe sinventory
AsJoinPointDescriptor

RAsShoppingCart tar

#addrten:

#removelten.

argetselestor: faddItem

#adarten: |

Each of the above pointeut objects can be represented using the poincut designators

of Aspect! (Listing 4.29). A set of two AsJoinPointDescriptor objects of Aspects is

ilar o an Aspect] pointeut that combines two join point with an | operator.

Listing 4.29 Emulating Listing 4.28 in Aspect]

pointcut jpsetl() : executi
AsInventory.addItem(..))

AsInventory. removeItem(..));
iaiten(..))
AsShoppingCart . removelten(.

on (+
|1 execution (*

) : execution (*
|1 execution (*

N

Based on the above sets of join points of AspectS (Listing 4.28) and pointeuts of

Aspect) (Listing 4.29), the following table (Table 4.1) shows how join points, those

are selected using the methods related to set operations of AspectS, can be emulated

using the pointeut operators of Aspect):

Chapter 4: AOP Language Feature Comparison

Table 4.1: Pointcut operators in Aspect) and AspectS.

Aspects Aspeetd
T —— pointcut 3pset3 ()
jpset2. ijpsetl() |1 jpset2():
Trr e Fointcat jpsetd)
Jpset2 tipseti() ss jpsetz();
jpset5:=jpsetl differ pointcut jpset5()
Jpsetd :ipsetl() &&!jpsetd () ;

AspectML does not have any pointcut designator to combine join points as shown

above.

d) First class pointeut

A first class pointcut i a pointcut that can be passed as a method parameter or can be
assigned to a variable, i.. is an instance of the primary modularization mechanism, in
this case an object, instance of a class. AspectML allows passing pointcuts as method
‘parameters. Listing 3.6 of Chapter 3 shows how in AspetML a pointcut can be passed

as a method argument.

In Aspects, since pointcuts are objects, besides passing them as method parameters, it
is also possible to assign the pointcut objects to the variables. The pointcut objects
Jpsetl and jpse2, created in Listing 4.28, are first-class pointcuts. As we have seen in
the previous section, these pointcuts were passed as a method parameter to the

‘methods union:,intersection: and difference: of AspetS.

Aspect] does ot have the construct for first class pointeut. As a result, pointcuts

cannot be passed as arguments in Aspectl.

Chapter 4: AOP Language Feature Comparison

4.1.5 Advice
Advices of Aspect] can be considered as the methods of Java. However, they have

some differences with the regular methods such as:

« they do not have a name,
o they cannot be called directly (it is the system’s job to excaute them) ,

o they do not have access specifiers

In AspectS, the advices are objects of the class AsAdvice. If assigned to a variable, the
advice objects in AspectS can have names. However, they do not have an access
specifier. Advices in AspectS are enabled or disabled by sending an install or uninstall
‘message 1o the class Asdspect or 1o the instance of s subelass. Furthermore, an aspect
cannot de-activate itself as part of an advice block. However, as shown in Listing

4.30, an aspect can install and uninstall other aspects as part of its advice block.

Listing 430

adviceBefore
latter|
* AsBeforeAfteradvice

Alifier: (AshdviceQualifier
stteibutos: |freceiverClassSpecitic))
potntout: (iAsdoinPointbescriptor
jotClass: Test targetSelector: Wdeliver]]
betorailock: [:receiver :arguments :aspect :client |
Transcript show: ' “Hell an

after :-AfterfiolloWorld new.
after install.
atter uninstall.|

Chapter 4: AOP Language Feature Comparison

The above advice belongs to the BeforeHHelloWorld Aspect. It selects the execution of
deliver method, that prints the message “Wanna leam AspectS?”. We only install and

uninstall BeforeHelloWorld in the workspace (Figure 4.8).

before -BeforeHelloVorld nev.
re dnstell.

Figure 4.8: Installing and uninstalling BeforeHelloWorld Aspect

However, as part of its advice block it installs and ninstalls AfierHelloWorld Aspect,
which contains an advice that prints the message “Goodbye World” (Figure 4.9) after

execution of the method deliver.

Figure 4.9: Result of installing and uninstalling AfiertHello World aspect

An Advice in AspectML is composed of two parts, the body and the pointcut
designator. Like the advices of Aspectl, in AspectML an advice possess following

characteristics:

« It does not have a name ,
It cannot be called directly (it is the system’s job to execute it) ,

o Itdoes not have aceess specifiers.

Chapter 4: AOP Language Feature Comparison

Aspect] supports three types of advices before advice, after advice and around advice.
A before advice allows adding some new behavior before any particular join point.
‘This acts similar to the AsBeforeAfierAdvice with a before block in AspectS. The after
advice of Aspect), which allows placing some additional behavior after a join point,
can be imitated in AspectS by an AsBeforedfierAdvice with an afier block in it. In
Aspect] when both before advice and after advice is used in the same aspect, advice
acts similar to the AsBeforeAflerAdvice with both the before and after code block of
AspectS. An around advice of Aspect], that adds new behavior or modifies some
existing behavior of the program around a join point, s similar to the AsroundAdvice

of AspectS.

AspectS supports two other types of advices based on the classes:

and ice. With one can

introduce new behavior that is needed in the aspect’s context. The operation of
AsintroductionAdvice can be emulated by the static crosscutting feature Introduction
of Aspect). An AsHandlerAdvice that selects an exception handler execution join

point in AspectS can be emulated by the exception pointeut of Aspect].
AspectML does not provide any special keyword to distinguish between its advices.

As a result all the advices in AspectML look similar. However, application of advices

varies with the trigger time (before, after, or around) of pointcut designators [8].

4.1.6 Static Crosscutting
Static crosscutting features such as the Introduction of Aspect) allows for introducing

new behavior, which is needed in aspect’s context. Although AsintroductionAdvice is

Chapter 4: AOP Language Feature Comparison

placed under the category of advices in Aspects, this advice acts similarly to the
Introduction of Aspect. The following bulleted lists present a detailed overview of
the functions allowed to be performed using the static crosscutting feature of each of

our three experimental languages:

Aspect):

« The introduction is a static crosscutting instruction that introduces changes o the
classes, interfaces, and aspects of the system. For example, introductions can add a
method or field to a class.

 Type-hierarchy modification is a static crosscutting instruction that allows
modifying the inheritance hierarchy of existing classes to declare a superclass and
interfaces of an existing class without breaking the rules of Java language [1],

o The compile-time declaration is a static crosscutting instruction that allows the

‘adding of compil-time warnings and errors upon detecting certain usage pattens.

Aspects
« With an introduction advice (As/ntroduction) one can introduce new behavior that
is necded in the aspect’s context. The added behavior may be invoked by the

ient's behavior itself

aspect, and may actively invoke the aspect’s or
« Introductions into method wrappers s not allowed [6].

« A method that is understood but not implemented by a class can be introduced (6],
« Type-hicrarchy modification is not possible in AspeetS.

« In AspectS weaving happens during runtime. Thus, adding compile-time warnings

and errors upon detecting certain usage patterns is not possible in Aspects.

Chapter 4: AOP Language Feature Comparison

AspectML:
AspectML does not support static crosscutting features such as introduction, type-

hierarchy modification or compile-time declaration.

4.2 Discussion

Aspect] exposes several categories of join point. The exposed join point categories of
Aspects and AspectML are still very limited compared to that of Aspectl. The
following table (Table 4.2) provides the summarized version of our discussion on

exposed join point of three languages (Section 4.1.1).

Table 4.2: Exposed join point categories of Aspect), AspectS and AspectML

Aspectd | AspectS | AspectML

Method Execution v v s
Method Call N x v
Constructor Execution v x x
Constructor Call v x x
Field Read Access v x x
Field Write Access N x x
Exception handler 7] N x
execution

Class initialization v x x
Object initialization v x x
finisplots A\ x E:
initialization

Advice execution v B x

Although AspectS does not have any pointcut construct to select the join point related

o field access or exception handler exceution, those join points can be emulated

Chapter 4: AOP Language Feature Comparison

indirectly using some other features available in AspectS. For example, in AspectS, an
advice (AsHandlerAdvice) is used 1o advice the exception handler execution join
point. The function of an exception handler execution pointcut of Aspect) can be

emulated using this advice of Aspects.

Aspect provides pointcut designators (o select a number of different join points. On
the other hand, not having very rich pointeut construets like Aspectl, AspectS and
AspectML do not allow selecting join point based on the following pointcuts shown in

Table 4.3

Table 4.3: Pointcuts those are not available in AspectS and AspectML

Some pointcuts of Aspect)
initialization() within()
preinitialization() withincode()
Staticinitialization() i) J

AspeetS allows combining join points using the methods related to st operations.

“This imitates the functionality of pointcut operators of Aspectl

Except for the instance specific attributes, Aspect) allows emulating the point cuts

specified by the other advice qualifier attributes of AspectS as shown in Table 4.4,

Chapter 4: AOP Language Feature Comparison

Table 4.4: AspectS Pointeuts that can or cannot be emulated using Aspect]

AdviceQualifier Attributes in Canor
cannot be
Receiver or sender cflow | emulated in
ivati activation | Aspectd.
receiverClassSpecific - v
SenderClassSpecific - v
receiverlnstanceSpecific = x
senderlnstanceSpecific = x
receiverClassSpecific | Class First v
Class All-
receiverClassSpecific) L
But-First
Tnstance
receiverClassSpecific N x
First
Tnstance
receiverClassSpecific | All-But- x
First
receiverClassSpecific | Super First v
Super All-
receiverClassSpecific v
But-First

Based on the previous table, Table 4.5 presents a mapping between the pointcuts of

Aspects and Aspect].

Table 4.5: Imitating the AspectS join point selection using Aspect)

AspectS b

 Aspectd

(AsAdviceQualifier

(#receivercl.

sspecific))
[(AsdoinpointDescriptor
e Lactors

execution (* Test.deliver(..));

Chapter 4: AOP Language Feature Comparison

Gualifier: (AsAdviceQuallfier Call (v Test.deliver(..))&e
sttributes: (#senderClassSpecific)) | this(NewTest)
sintcut: [(AsdoinPointbescriptor

ualicl T T

attributes:) factorial(..)))
poin [{AsJoinPointDescriptor & execution(*

targetClass: AsFactorialM AsFactorialll. factorial(..))
tar factorial:

qualifier: B Tot

atrributes AsFactoriall. factorial(..)))
(#receiverClassspecific. dcfFirstClass. | &6 execution(*
b AsFactorialM. factorial (.

pointeut: [(AsdoinPointbescriptor

Ton(+
AsFactorialM. factorial(..))

HeeALIButELEst | 56
Class. |) AsFactorialM. factorial(..))
pointout: [(AsdoinPointDescriptor

targetClass: AsFactorialM

targotselector: Bfactorial:.})

Tot! -
FactorialM. factorial(..)))

t
:: FactoriallM

« s
) FactorialM. factorial(..))

B

T
FactorialM. factorial (..)))
HeALIButFirst

s
FactorialM. factorial(..))
s

FactorialM

All three of our experimental languages have constructs to advice before, after and

103

around any join points.

Chapter 4: AOP Language Feature Comparison

The functions of AslntroductionAdvice and AsHandlerAdvice of AspectS can be
imitated by the static crosscutting feature Iniroduction and by advising an exception

handler execution join point respectively.

The join point model of Aspect) is much richer than that of either AspectS or

AspectML. However, the latter two languages provide dynamic AOP capabilities,

is not available in Aspect).

Chapter 5: Aspect-Oriented Modeling in UML

Chapter 5

ASPECT-ORIENTED MODELING IN UML

5.1 Related Works

While aspect-oriented programming (AOP) is rapidly maturing, there is still not

enough support from the commercial modeling tools for aspect-orientation at software
modeling level. Although many modeling tools are based on UML [28], it lacks
specific constructs for aspects and their associated concepts [12]. However, the
standardized extension mechanisms offered by UML can be used to provide aspect-
oriented modeling facilities. This extension mechanism of UML is known as profile.
Profiles allow adding user-defined categories of UML model elements by referring to
a base class, which is a class in the UML meta-model such as Class and Association.
Profiles are defined using stercotypes, tag definitions, and constraints. A stercotype
defines how an existing metaclass (or other stercotype) may be extended. Certain
stereotypes are predefined in the UML; others are usually defined by users.

Stereotypes are also used 1o specify additional constraints and tag definitions. Tagged

definitions allow specifying user-defined meta-atiributes for a model clement.
Constraints allow specifying semantics or usage for a model element, Both tag

def

tions and constraints should be defined in conjunction with a stereotype.

Anoverview of some of the prior works for modeling aspects in UML s presented in

[29]. The carly work is based on the extension mechanisms in UML 1.x versions.

Since these mechanisms are not fully integrated with the meta-model, the specification

Chapter 5: Aspect-Oriented Modeling in UML

of advices and pointcuts often remains in textual form [30, 31, 32] and requires special

model parsers for code generation.

3], which is a later extension to [32], presented aspects as stercotyped classes.
However, it was not a meta-model based profile. Rather than providing an aspect
extension, the connection between aspects and base-model is made as part of the

model.

Initial work presented in [34] proposed the specification of aspects as stereotypes on
classes and was later extended to include advice and pointeut specification [35). It
models cross-cutting associations to show which aspect features relate to which base
model elements. Thus, it gives a clear separation of aspects and base system, which is

the primary objective of AOSD.

[36] proposes a profile for Aspect). This profile represents messages in collaborations

as join points, advices and pointcuts as stercotyped operations, and introduction of

fields or methods as templated collaborations. Also, in this profile, the connection to

the base features is made via dependencies in the model [12].

An earlier proposal for aspect modeling using UML 2.0 was presented in [37],

however without fully defining an extension profile.

Other existing works are based on defining new UML meta-classes instead of defining

stercotypes for exis

g meta-classes. This approach requires specialized tools to

support the introduced meta-classes [38, 39

Chapter 5: Aspect-Oriented Modeling in UML

One of the prior works on aspect modeling in UML proposes join point annotations
for UML [40]. [41] deseribes a translation of aspect UML to object-oriented Petri-

nets. However, this translation is limited to pointcuts around method calls.

Using the standard UML extension mechanisms, [42] provides suitable
representations for all components of an aspect (such as join points, pointcuts, pieces
of advice, and introductions) as well as for the aspect, itself. The representations are
supplied with supplementary meta-attributes to hold the weaving instructions.
Furthermore, the approach implements Aspect)’s weaving mechanism in the UML and

specifies a new relationship signifying the crosscutting effects of aspects on their base

equires special ool support.

classes. However, as [42] is not based on UML profile,

Using the extension mechanisms in UML 2.0, [12] presents a meta-model, which is a
UML profile for Aspect language (Figure 5.1). It also offers a translation to code.

‘The approach followed in it offers the following advantages over previous proposals:

* The extension requires no special software support and allows aspect modeling to

be used within existing, mature software tools. This contrasts with earlier
proposals [38, 39], which cannot be used with available modeling tools and

require specific tool support,

“The proposed technique is supported by UML XMI model interchange facilities.

“The model extension, as well as any models it is applied to, can be exchanged

between different MOF (Meta-Object-Facility) compliant UML modeling tools.

107

Chapter 5: Aspect-Oriented Modeling in UML

1t allows all aspect-related concepts to be specified in meta-model terms. The
models can be casily manipulated o verified without requiring the parsing of

keywords or other textual specifications by special ools.

It maintains strict separation of base-model and cross-cutting concerns.

However, this profie is not a generic aspect-oriented modeling extension and cannot
be used for specification of a platform independent model (PIM). Morcover, the

profile allows the specification of a platform-specific model (PSM), namely one that

is specific 1o the Java and Aspect) platform. Since Aspect) follows static AOP

approach, the extension does not support dynamic AOSD.

[43] presents a UML 2 profile for platform-independent modeling (PIM) with
advanced pointeut expressions and a corresponding model weaving mechanism for

behavior models using UML 2 Actions,

Recent work on Aspect-Oriented Frameworks (AOF)-based development is presented
in [44]. It proposes UML-AOF, an UML profile for modeling a kind of AOF (termed
as CF in the proposal) which encapsulates just one crosscutting concern. The proposed

profile uses the Evermann's profile [12] as base AOP. However, like [12], presented

profile does not support the specification of platform-independent model,

In summary, much of the existing work on AOM profiles for UML is either based on
older UML versions, not well integrated on the meta-model level. However, based on

Aspect], [12] presents

-omplete UML profile, which is well integrated on the meta-
model level. It also does not require any specific tool support. Inspired by this work,

in this research we propose to extend this profle for other AOP languages. The

Chapter 5

proposed profile will allow the specification of platform-independent model by

providing the modeling facility for both static and dynamic AOSD.

5.2 Our Approach

AOM approaches can be distinguished along two orthogonal dimensions: the level of
‘weaving and the symmetry of the approach. Our work s positioned at the asymmetric
code-weaving level. The aspect-oriented model is converted to aspect-oriented code,
which can be woven by an aspect-oriented compiler. We also make a clear distinction

between the base-system and the cross-cutting concerns (Figure 5.2)

Figure 5.2: Our AOP Approach in Context (adapted from [12])

We present our UML meta-model for a selection of core aspect-oriented constructs.

Rather than specializing UML meta-classes, we extend them using UML stereotypes.

110

Chapter 5: Aspect-Oriented Modeling in UML

Asa result, the developed model becomes a meta-model, which is a profile and can be

applied to other UML models.

The previously developed UML extension for static AOP treats aspects as extensions
of the Class meta-class, i.e. a stereotyped class. Within that framework, pointcuts are
stereotyped structural features and advices are stereotyped behavioral features,

typically operations.

However, this approach is not feasible for dynamic AOM, because dynamic
approaches represent AOSD concepts as first-class modules. For example, join point
descriptors (pointeuts), advice and aspects are all objects in Aspects, while pointcuts
are functions in AspectML. Thus, our approach will differ from the existing work in

[12] by providing appropriate extensions.

5.3 Mod

g Elements
This section presents modeling elements for core generic meta-model of the AOP
languages. The elements to be modeled are selected based on the core generic features

of AOP languages

53.1 CrossCuttingConcern

Both Aspect] and AspectS have the concept of cross-cutting concern that acts like a
package and contains aspects of the language. Thus, a modeling clement
CrossCuttingConcern (Figure 5.3) is introduced as a way of grouping related
aspects of AOP languages in the modeling level. We define a stereotype
CrossCuttingConcern that extends UML meta-class Package. In any UML model,

a package stercotyped as «CrossCuttingConcern» wil represent a crosscutting

Chaper 5: Aspect-Oriented Modeling in UML

concern for that model. Since the UML meta-model already specifies that packages

own classes, the CrossCuttingConcern meta-class does not need o be associated

with the Aspect mefa-class.

[<<metaciass>>
Package

Figure 5.3: Cross cutting concern as package extension (adapted from [12])

532 Aspect

Recall Section 4.1.3, where we compared the aspect of Aspect) and AspectS. In both
languages, aspects can have instance variables, class variables, instance methods, and
class methods. The behavior of an aspect i similar to that of a class. Thus, an Aspect
(Figure 5.4) can be modelled as a stercotype that extends the existing UML meta-class
Class. In a model, within a package stercotyped as «CrossCuttingConcerns, any

class stercotyped as «Aspect will represent the aspect for the model.

Since this proposal is positioned in asymmetric AOM (Figure 5.2), elements of the
cross-cutting concern model or models must remain separated from base-model
elements. The following constraint ensures this by requiring that classes that are
stereotyped as «Aspect» are only packaged in packages that are stereotyped as

«CrossCuttingConcern».

Chapter 5: Aspect-Oriented Modeling in UML

context Aspect inv:

package.ocllsKindOf{CrossCuttingConcern)

precedes <cstmectypers
) Aspect
Class]
precedecy
o

Figure 5.4: Aspect as a class extension in new profile

In this profile Aspect precedence is modelled as a recursive relationship between

aspets. Each aspect has at most one directly preceding and following aspect.

The Aspect] and AspectS specification state that aspects may extend classes or other
aspects but that classes may not extend aspects. Consequently, we add the following
constraint that ensures for all generalizations that the specific class of a general class

that is an aspeet is also an aspect:

context Generalization inv;

general.oclIsK implies specific.ocllsK

533 Advice
In Aspect, an advice is similar 10 a regular method. An advice of Aspect) can be
modeled as Behavioral Feature. However, in AspectS advices are objects, which

‘cannot be modeled by extending the meta-class BehavioralFeature. Also, if advices

3

Chaper 5: Aspect-Oriented Modeling in UML

are modeled extending the meta-class BehavioralFeature, advices could not be
passed as method arguments or be assigned to variables. To facilitate dynamic
‘modeling an advice should be modeled as object. In the profile we model an advice

using the meta-class Advice (Figure 5.5), which extends the UML meta-class Class.

Since ads

s are used by aspects, the meta-class Advice is associated with the meta-

class Aspect.

Figure 5.5: Advice as a class extension in new profile

Both in Aspect] and AspectS, advice code can be executed before, after, or around a
pointcut. We model adviceExecution as an attribute of the Advice meta-class. The
values are provided by the enumeration AdviceExecutionType. The meta-class
Advice with its attribute adviceExecution will allow modeling before, after, and

around advices of both Aspect and AspectS.

53.4 Joinpoint

In Aspect), a pointeut is used to select a join p

. A pointcut can select either a
single join point or a combination of one or more join points. On the other hand, in

AspectS, a pointcut is a set of join points (Section 2.3.1.3), where each join point is

114

Chapter 5: Aspect-Oriented Modeling in UML

described by an object of AsJoinPointDescriptor class. We consider that each advice

is associated with a pointcut that s a set of join points.

In the profile, a join point is modeled using the meta-class Joinpoint (Figure 5.6) and
considered as a set (pointeut) consists of a single join point. Since in dynamic AOP
join points are objects, in the new profile the meta-class Joinpoint extends the UML

meta-class Class.

Joinpoint is an abstract meta-class. Rather than specifying the type and textual
declaration of join points as attributes on Joinpoint, we subelass the Joinpoint meta-

class o allow different attributes to be modelled for different join points.

<enetaciass>>

Figure 5.6: Joinp

as a class extension in new profile

Because pointeuts are used by advices, the meta-class Joinpoint is associated with the

meta-class Advice.

5.3.5 Join Point Composition
Earlier in Section 4.14¢) and Table 4.1, we showed how pointcut operators of
Aspeet] can be emulated using methods related to set operations of AspectS. Since the

composed join point is common between these two languages, we introduce three

1s

Chapter 5: Aspect-Oriented Modeling in UML

meta-classes to model join point composition (Figure 5.7): JoinpointConjunction,
JoinpointDisjunction, and JoinpointNegation. The stercotype
JoinpointConjunction will allow to model the composition of at least two join points

that are composed with an && operator of Aspect). It will also allow modeling the

fat least two AsJoinPoi objects using the
‘method intersection: of AspectS. Similarly, the stereotype JoinpointDisjunction will
allow modeling the composition of at least two join points that are composed with a |
operator of Aspect). It will allow modeling the composition of at least two

AsJoinPointDescriptor objects that are composed using the method union: of Aspects.

A modeler must make sure that the number and type of arguments are consistent for
allthe join points that are part of a join point disjunction or join point conjunction. We

add the following constraints:

context JoinpointConjunction inv:

selfhasParts—forAll(P1.P: YeORPL

meter)= oclITypeORP2.operation ownedparameter))

context JoinpointDisjunction inv:

self hasParts—forAlP1J YPeORP1

meter

oclITypeOf(P2.operation.ownedparameter))

Since the negation operation accepts only a single operand, while conjunction and
disjunction require at least two, we model these join point compositions as separate
sub-classes. Ordering of the operands for conjunction or disjunction s not necessary,

since the operations are associative and commutative.

Chapter 5: Aspect-Oriented Modeling in UML

smeares | =]
Joinpointispuncion esarts
Cuss] 3 5 =

Figure 5.7 Joinpoint compositions in the profile

53.6 ExccutionJoinpoint

In Section 4.1.1a) , we showed how receiverClassSpecific advice qualifier attribute
can be used to emulate the function of an execution pointcut of Aspect). As a result,
we can consider that both Aspect] and AspectS have pointcut designator to select
method execution join point. On the other hand, as AspectS does not provide any

construct o select call join point, acall pointeut is not common o the two languages.

In our profile, we model the selection of exccution join point using the meta-class
Executionoinpoint. The single valued attribute operation allows selecting the

method whose execution will be selected as join point. This will allow modeling the

" ippets from Aspect] and A e

pointcut deliverMessage ()
execution (* Test.deliver(..));

quiitier: Aavicsgulitier
attributes: (WreceiverCla;
pointeut: un.m..mum..mp
targetClass: Test targetSelector: fdeliver)]

Specitic))

1n

Chapter 5: Aspect-Oriented Modeling in UML

However, AspectS does not allow advising the execution of a static method as a join
point. We add the constraint that only non-static methods can be selected as the values

of the tag operation of classes stereotyped as «ExecutionJoinpointy:

context Execution)

npoint i

self.operation.isStatic=False

Although there is no call join point in AspectS, we can emulate one by specifying the
senderClass of a senderclassSpecific join point. If the sender class is known, we can
find the source for this method excecution, which is actually the call to that method. On

the other hand, the call() and this() pointuts

1£4.16) in Aspect] can be used to

emulate a senderClassSpecific join point in AspectS.

A call join point can be modeled using a separate meta-class such as CallJoinpoint.
Since not all AOP languages have the call pointeut, there is no meta-class for this in
the profile. Moreover, as we can translate an execution 1o a call, it is unnecessary to

model a separate call join point, For this reason, as shown in

Figure 5.8, rather than keeping a separate meta-class CallJoinpoint, a single valued
attribute senderClass of ExecutionJoinpoint meta-class is included to specify at most

one class as sender.

118

Chapter 5: Aspect-Oriented Modeling in UML.

Figure 5.8: ExecutionJoinpoint in new profile

The data type of senderClass could be Classifier, since Aspect allows method call
from an object of a class that realizes an interface. However, AspectS does not have
the concept of interface. As a result, o restrict modeling the method calls that are only

from classes, the data type of senderClass is set to Class.

‘The ExecutionJoinpoint meta-class will allow modeling the code snippets shown in

Listing 4.15 (AspectS code) and Listing 4.16 (Aspect) code).

5.3.7 ExceptionJoinpoint

In AspectS, an AsHandlerAdvice is used to advise an exception handler execution join
point. For this reason, an AsHandlerAdvice could be modeled as one of the values of
the enumeration AdviceExecutionType shown in Figure 5.5. However, as shown in
chapter 4 (Section 4.1.1d)) the operation of AsHandlerAdvice of AspectS is similar to
the exception pointcut of Aspect. Instead of modeling the handler advice kind of
AspectS, we model selection of exception join points using the meta-class
ExceptionJoinpoint (Figure 5.9). The attribute exceptionClass of type Class is used

10 specify an exception class for the join point.

Chapter 5: Aspect-Oriented Modeling in UML

Figure 5.9: ExceptionJoinpoint as a class extension

The meta-class ExceptionJoinpoint will allow modeling the exception join point

specified by the following code snippets of AspecS.

£ (AshdviceQualifier
aterib #receiverClassspecific))
[{AsJoinointDescriptor
targetClass: TestHandler targeiSelector: #deliver)
exception: Brror
handlerBlock: [ireceiver :arguments :aspect :client :ex |

ex signal.].

If the above code of Aspects is modeled using the profle, this will be an equivalent
model for an Aspect! join point as shown below.
pointcut deliverMessage (Error error): handler (Error)
)

s (error]
&6 cflow(execution(* TestHandler.deliver(..)));

However, due to compiler limitations only before advice is supported by Aspect] to
advise a handler join point. As a result, we add the constraint that an exception join

point can only be advised by a before advice:

context ExceptionJoinpoint inv:

It

120

53.8 PropertyJoinpoint

AspetS does not have any pointeut constructs (o select the read or write access to the
fields as join points. However, in chapter 4 (Section 4.1.1c)), we have already seen
how the field read or write access join points of Aspect] can be emulated using

AspectS. Therefore, we include these join points in the profile.

<<storeotype>> <cstereatype>>
Setdoinpoint | | GotJoinpoint
(Closs] (Closs]

Figure 5.10: PropertyJoinpoint as a class extension
PropertyJoinpoint (Figure 5.10) is a superclass of those types of join points that are
associated with reading and writing fields. It possesses a multi-valued attribute field
with data type Property. This will allow modeler to select a field (from the base
model), whose access will be selected as a join point. From example, if a modeler
wants to model the ger() pointcut shown in Listing 5.1, he needs to create a class, say
getN, and apply Stereotype GetJoinpoint to it; the class getN will be stereotyped
as «GetJoinpoint». As a result, it will have a tag definition field. The field n of the
class AsCounterModified! should be selected form the base model as the value of the
tag field. Similarly, the ser() pointcut from the same listing can be modeled using the

‘modeling element SetJoinpoint of the profile.

121

Chapter 5: Aspect-Oriented Modeling in UML

Listing 5.1 Field access pointcuts of Aspect)

pointcut geth (
pointcut setn():

get (private int AsCounterModifiedl.n
t(private int AsCounterModifiedl.n);

53.9 CFlowJoinpoint
In Table 44, we showed some of the cflow related pointeuts of AspectS that can or
can ot be emulated using Aspect] constructs. Table 4.5 indicated that the join point

selections by the cflow related advice qualifier attributes such as cfFirsiClass,

lass, cfFirstSuper, and irstSuper have equivalent pointcuts in
Aspect). The advice qualifier attributes related to cflow in AspectS can be emulated
by using the combination of cflowbelow pointcut, execution pointcut and args

pointcut of Aspect] (from Listing 4.17 to Listing 4.20 and from

ing 4.22 to Listing
4.25). On the other hand, using the combination of cflow pointeut, execution pointeut
and args pointcut of Aspect] it is possible to emulate those pointcuts in AspectS which
select the execution of a recursive method without using any qualifier attributes
related to cflow (Listing 4.21). Based on the above emulation, we decide to introduce

a modeling element Cf inpoi 5.11) that will

based pointcuts that can be translated back and forth between Aspect) and Aspects.

Figure 5.11: CFlowJoinpoint as a class extension

12

Chapter 5: ML

The join points selected by the ClassFirst, ClassAllButFirst, SuperFirst and
SuperAllButFirst advice qualifier attributes of AspectS can be selected using the
pointcut constructs of Aspect]. For this reason we consider those join points as
common between these languages. We model cfPointcut as an attribute of the
CFlowJoinpoint meta-class. The values are provided by the enumeration
CFlowJoinpointType. When the profile is applied to a model, cfPointcut becomes a

tag of stereotyped «AdviceCollection». Its values ClassFirst, ClassAllButFirst,

SuperFirst, and SuperAllButFirst respectively represent the advice quaifier attributes

cfFirstClass, lass, cfFirstSuper, and irstSuper of AspectS.

Using the meta-class CFlowJoinpoint, pointcuts shown in Table 5.1 can be modeled

using the profile.

Table 5.1: Pointcuts that can be modeled using the meta-class CFlowdJoinpoint

_ AspectS _ Aspectd

m
AsFactoriali. factorial (..)))

" AsFactorialM. factorial (..))
potnteut: ((AsdoinPointbescriptor

attziby AsFactorialM. factorial (..)))
HefALIBuLFirst

s
AsFactorialM. factorial (..))

[{AsJoinPointDescriptor

AsFactoriald
or: #factorial:.|)
FactorialM. factorial(..)))
I
) FactorialM. factorial(..))
pointeut: [!
targetClass: FactorialM

Chapter 5: Aspect-Oriented Modeling in UML

: FactorialM. factorial(..)))

s
Super)) FactorialM. factorial(..))

(
erClass: Factorialw
ector n

The meta-class Joinpoint is associated with the meta-class CFlowJoinpoint, since
pointeuts are used by cflow pointcuts. This association will allow modeling a cflow

based pointeut that takes another pointcut as an argument.

5.3.10 Introduction

“The operation of AslntroductionAdvice of AspectS can be emulated by the st

crosscutting feature, which is the introduction of Aspect), Since introduction s an
object in Aspects, like an advice, we decide to model the introduction as object 100, In

the profile, an introduction (static crosscutting) is modeled using the meta-class

Introduction (Figure 5.12), which extends UML meta-class Class. Since st
crosseutting features are used by aspects, the meta-class Introduction is associated

with the meta-class Aspect.

Figure 5.12: Introduction as a class extension

Chapter 5 uML

I order to specify which cross-cutting feature is to be introduced, the Introduction

meta-class possesses a multi-valued attribute feature, whose data type is the UML
meta-class Feature. onType is another multi-valued atiribute of meta-class
Introduction. It is introduced to specify the type on which the cross-cutting feature
will be introduced. Since the same method can be introduced on multiple types, the
attribute onType can have multiple values. As discussed earler in Section 2.3.1.4.¢) ,
in AspectS, each Ashntroductionddvice object consists of a single introBlock that
defines the body of a method to be introduced. As a result, if multiple methods on
same or different datatypes (usually class in AspectS) are introduced using the same
AshntroductionAdvice object, all the methods will have the same body. In Aspect],
features can be introduced on both classes and interfaces. However, as AspectS does
not have interfices, we choose the UML meta-class Class as the data type of the

attribute onType.

In Listing 5.2, an aspect A introduces a field name and a method getName() in
Aspect]. The field name and the method getName() should be modeled respectively as
an attribute and an operation of the associated aspect. When the profile is applied, the
‘multi-valued attribute feature will be a tag definition of that aspect. For this example
both name and getName() will be selected as the values of the tag feature. Since both
of these features are to be introduced on a class named Point, the class Point should be

selected as the value of tag onType from the base model.

Listing 5.2 Introducing a field and a method using Aspectd
aspact: & (

public String Foint.

Pite pucing velss quaner; | setuen mame) |

125

5.4 Profile for Static AOP

ing i described i ion, we get the profile
shown in Figure 5.13. This profile can be applied to the static AOP only. As in this
profile, Joinpoint, JPDisjunction, Advice and Aspect are modeled as stercotype
class; it will allow modeling the join points (Line# 2 and 3), composed join point
(Line# 6), advice (Linc# 13 and 14) and aspect (Line# 21) from the pseudocode
shown in Listing 5.3. The listing shows the dynamic creation of joinpoint objects and
adding these joinpoint objects to a dynamically created advice. Similarly, the advice
object is added to the set of advices for an aspect object. It also shows the instantiation

of Aspect along with their dynamic weaving.

cts of Joinboint

//creating object of JeDisjunction
PDisjunction new.

//adding the joinpoint cbjects to the attributes of JPDisjuction
3pd.Joinpoints. add(3pl) .
0 jpd.joinpoints.add(ip2) .

12 //creating ob3:

s of Advice

13 adii- Advice new.
13 ad2:= Advice new.
15

16 //adding the JeDisjunction object to the attributes of Advice.
17 adl.pointcut.add(jpd) .
18 ad2.pointcut.add(3pd) .

20 //creating object of Aspectlogger
21 aspect:-Aspectlogger new.
23 //adding the Advice objects to the attributes of Aspectlogger.
24 aspect.advices.add(adl) .
25 aspect.advices.add(ad2) .

21_//hspect instaly

126

Chapter 5: Aspect-Oriented Modeling in UML

However, there may be more than one instance of a joinpoint or advice specification,

and that these

ances are modifiable, assignable to variables and usable for method

arameters. The profile does not support modeling join point objects or advice objects
that can be assigned to variables (Line#9, 10, 17, 18, 24 and 25). Also, the above

profile does not allow installing or uninstalling aspects (Line# 28 and 33). Hence, this

profile does not support modeling dynamic weaving and dynamic AOP.

127

= 2 2
£ E & = g

Chapter 5: Aspect-Oriented Modeling in UML

a) Pointeut
In order to create an instance level connection between the meta-classes Advice and
Joinpoint, the meta-class Pointcut that extends UML meta-class StructuralFeature

i introduced to the previous profile (Figure 5.13)

We add the constraint that the «Pointcut» stereotype can only be applied to features
of classes that are stereotyped «Advice». In other words, for all instances of a

pointcut, the classifier of the pointcut feature must be an advice:

context Pointeut inv:
allinstances()—featuringClassifier.exists(C|C. oclIsKindOf{ Advice))

We modify the association between Advice and Joinpoint meta-class shown in Figure

5.13. An advice object is associated with a pointcut; Pointcut lass (Figure 5.14)

is associated with the Advice meta-class. Since each pointeut uses a join point or a set
of join points that are composed with the meta-classes for join point composition,

Joinpoint meta-class is associated with the Pointcut meta-class.

Figure 5.14: Pointcut as a structural feature extension

129

Chapter 5: Aspect-Oriented Modeling in UML

The above modification will allow modeling multiple instances of a joinpoint
specification which are modifiable, assignable to variables and usable for method
parameters. However this modification does not allow modeling a composed join

point (Line# 17 and 18 of pseudocode shown in Listing 5.3).

b) JPCollection

With the meta-class Pointcut introduced in the previous Section, it is possible to
model the passing of a single join point object, ¢.g. an execution join point(modeled
using meta-class ExecutionJoinpoint) or an exception join point(modeled using the
meta-class ExceptionJoinpoint) or a composed join point (modeled using the meta-

class intDisjunction or the meta-class Joinpois However,

instances of a composed joinpoint specification that are modifiable, assignable to
variables and usable for method parameters can not be modeled with the current
profile. In order to model those there should be a connection between the meta-class
Joinpoint with the meta-class JoinpointConjunction and JoinpointDisjunction.

Hence, we cannot model Line# 9 and 10 of pseudocode shown in Listing 5.3

We introduce a new meta-class JPCollection (Figure 5.15) to the profile. Since join
point collection uses joinpoint objects composed with the meta-classes for join point
composition, JPCollection is associated with both JoinpointConjuction and

JoinpointDisjunction.

130

Chapter 5: Aspect-Oriented Modeling in UML

Figure 5.15: JPCollection as a structural feature extension

We add the constraints that the «JPCollection» stereotype can only be applied to
features of classes that are cither stercotyped ~«JoinpointConjunction» or

«JoinpointDisjunction»:

context JPCollection iny:

allInstances()—featuringClassifier.exists(C} indOfJoinpointCojunction))

context JPCollection inv:

clIsKindOf

alllnstances()—featuringC

Since JoinpointConjunction ~ and intDisjunction are ~associated ~ with

JPCollection meta-class, multiple instances of a composed join point can be
modeled. JoinpointConjuction and JoinpointDisjunction do not need to be
associated with Joinpoint meta-class (shown in Figure 5.13) anymore. We remove

these associations.

Chaper 5: Aspect-Oriented Modeling in UML

The above modifications allow modeling a join point, which is composed of several

join point objects (Line# 9 and 10 of pseudocode shown in Listing 5.3).

©) AdviceCollection

Same as join point specification, an advice specification can have multple instances
that are modifiable, assignable to variables, and usable for method parameters. A new
meta-class AdviceCollection (Figure 5.16) that extends the UML meta-class

StructuralFeature is introduced to the previous profile to model those instances. We

‘modify the association between Aspect and Advice meta-class shown in Figure 5.13.
proceces otpspect
o s o1
oo <cserectypens
s tAdvieCotecton | AdviceC
T | (Srchraresuel |
e
ey
Figure 5.16: AdviceCollecti structural

An aspect is associated with at most one advice collection; AdviceCollection meta-
class is associated with the Aspect meta-class. Since each advice collection can
consists of one or more advice objects, Advice meta-class should be associated with
the AdviceCollection meta-class. We add the constraint that the «AdviceCollection»
stereotype can only be applied to features of classes that are stereotyped «Aspect». In
other words, for all instances of an advice collection, the classifier of the advice

collection feature must be an aspect:

132

Chapter 5: Aspect-Oriented Modeling in UML

context AdviceCollection inv
alllnstances()—featuringClassifier.exists(C|C.ocllsKindOf{ Aspect))
‘The above modification will allow modeling an advice specification with multiple

instances (Line#24 and 25 of pseudocode shown in Listing 5.3) that are modifiable,

assignable to variables, and usable for method parameters.

d) Install and Uninstall

In order to model the installation of an aspect, we introduce a meta-class install
(Figure 5.17). The meta-class uninstall, as shown in Figure 5.17, is introduced to
model the uninstallation of an aspect. Since installing and uninstalling the aspect are
dynamic features that modify the behavior, we model the above meta-classes as

stereotyped BehavioralFeature.

We add the constraint that the «install stereotype can only be applied to operations

of classes that are stereotyped «Aspecty:

context install iny:

alllnstances()—featuringClassifier.exists(CIC.oellsKindOR Aspect))

Similarly, we add the constraint that the «uninstalb» stercotype can only be applied to

operations of classes that are stercotyped Aspech:

context uninstall iny

133

Chapter 5. i uML

stalieod | <<slerectypes>

Figure 5.17: install and uninstall as behavioral feature extension

“The above modifications will allow installing and uninstalling aspects (Line# 28 and

33 of pseudocode shown in Listing 5.3).

By modifying the profile for static AOP as mentioned in the above sections, e get

the profile shown in Figure 5.18. However, as this dynamic profile excludes some of
the relationships between elements of static profile, it can be applied to dynamic AOP

only.

134

Chapter 5: Aspect-Oriented Modeling in UML

these instances are modifisble, assignable to variables and usable for method
parameters. However, it is only applicsble to dynamic models. We consider this

profile as another step towards the generic profile.

Recall that static AOP requires the developer to specify all pointcuts, advice and

aspects at compile time. Usually a weaving compiler is used to add advice code to join

points. As a result, aspects cannot be added, removed, or modified at runtime [16]. To

change aspects, the system must be recompiled [17). On the other hand, Dynamic

AOP provides support for controlling aspects at runtime. It allows changes to aspects

without restarting the program [16). A run-time weaver is used to add advice code to

the selected join poins.

The approach (static or dynamic) that is followed by an AOP language extension can
be understood by looking at the aspect weaving of that language. A language that uses
a weaving compiler for aspect weaving follows the static AOP approach. On the other
hand, runtime weaving of a language indicates that it follows the dynamic AOP
approach. All the AOP extensions either follow static approach or dynamic approach
but not at the same time. That is why, while modeling a system we should follow
cither of those approaches too. As a result, even if we come up with a single profile,

the static and dynamic AOM should not be done at the same time.

‘The previous two profiles (static and dynamic) are individually appropriate for static
AOM and dynamic AOM respectively. The generic profile includes all the modeling
elements such as: Aspect, Advice, Joinpoint and Introduction that were in the profile
for static AOP. As a result, it allows modeling the join points (Line# 2 and 3),

composed join point (Line# 6), advice (Line# 13) and aspect (Line#19) from the

136

Chapter 5: Aspect-Oriented Modeli

pseudocode shown in Listing 5.3. The profile for static AOP was not having elements
such as: AdviceCollection and Pointcut, which were introduced in the profile for
dynamic AOP. These clements are included in the generic profile since they are
necessary for dynamic AOP and also using those we still can model static AOP. On
the other hand, the elements such as: JPCollection, install and uninstall should not
be used for static AOM, since those are only used to model some specifications that

represent dynamic AOP. As these elements are necessary for dynamic AOM, we keep

these in the generic profile. As a result, it enables modeling multiple instances of a
joinpoint and advice specification that are modifiable, assignable to variables and

usable for method parameters.

Recall that, in the profile for dynamic AOP, the meta-class JPCollection was
introduced to model a join point collection that possesses instances of multiple join
points. Since join point collection uses joinpoint objects composed with the meta-
classes for join point composition, JPCollection was associated with both

JoinpointConjuction and JoinpointDisjunction. It allowed the modeling of multiple

i class with

inces of a composed join point. As the associations of Joinpoint meta
JoinpointConjuction and JoinpointDisjunction became unnecessary, we removed
these associations in the profile for dynamic AOP (Section 5.5 b)). However, in the

JPCollection and its ~associations with

generic profile, ~ the
JoinpointConjuction and JoinpointDisjunction are not used while modeling static
AOP. As a result, the associations of Joinpoint meta-class with JoinpointConjuction
and JoinpointDisjunction become vital. In the generic profile we restore these

relationships (Figure 5.19)

Chapter 5: Aspect-Oriented Modeling in UML

starectypers
IPCotloction

[SinctraFeairs]

Figure 5.19: Associations with the meta-classes for join point composition
Figure 5.20 presents the final profile which is core generic meta-model for AOP
languages, The generic profile is developed by combining modeling elements and

their relationships from the previous two profiles (static and dynamic) in such a way

that the role of the clements and their relationships present in the generic profile are

ificant to specify cither static or dynamic AOP. As a result, the generic profile

allows modeler to model static or dynamic AOP. The generic profile does not restrict
a modeler to choose inappropriate elements, ¢.g. using JPCollection in the static
‘model. However, the model will neither represent static AOP or dynamic AOP. In
such case, if this model is further used for code generation, it will produce some
incorrect and strange looking code. For this reason, it s the modeler’s duty to make

sure that static and dynamic AOM are not included within the same model

‘Some of the applications of this profile are presented in next chapter.

i
_,‘,i
il

ﬂ

Chapter 5: Aspect-Orinted Modeling in UML

5.7 Comparison with Aspect profile
“This section presents a comparative picture of our generic profile with the existing

Aspeet) profile [12]. C: on the modeling elements ted

in Aspect] profile.

5.7.1 CrossCuttingConcern
In Aspect) a cross-cutting concern contains aspects in the same way as packages
contain classes. In the Aspect] profile [12), Evermann introduced the meta-class

CrossCuttingConcemn wi

extends the UML meta-class Package as a way of
grouping related aspects. In the generic profile, we also use the meta-class

CrossCuttingConcern to group related aspects of AOP languages.

572 Aspect

In the Aspect] profile, an aspect is modeled using the meta-class Class. In the generic
profile, we also model aspect as class. However, some attributes of Aspect are
omitted in the new profile. A Boolean attribute isPrivileged was introduced to
indicate whether the aspect is privileged (discussed in Access Specification of Section
4.12). Since AspectS does not support access specification, we consider access
specification as a feature specific (o Aspect. Hence, the Boolean attribute
isPrivileged of Aspect) profile is absent in the generic profile. Similarly, the attribute

that allows the decl Finterface tted.

In Aspect, aspects may be instantiated per pointcut. As shown in Figure 521, the
attributes perType and perPointCut that specify the type of aspect instantiation and

associated pointcut per pointcut were introduced in the Aspect] profile. These

140

Chapter 5: Aspect-Oriented Modeling in UML

attributes are also omitted because the related features are Aspect) specific. Since
perType is not kept in generic profile, the values provided 1o it by the enumeration

AspectinstanceType cannot be kept in the new profile as well.

<<stereotype>

o

<SStereonpes> ~precedes 0.1

l

|
\ (Clss)
\

Type AspectinstantiatonType (0.1) | -Precededty 0.1

~dectaredimplements

<o

I
i
§

Figure 5.21: Aspect as a class extension in Aspect) profile(12]

However, the new profile includes Aspect precedence from Aspect) profile

any change.

5.7.3 Advice

In the Aspect] profile, with Aspect being a meta-class that extends Class, the dynamic

features of aspects, . advices, play the role of class behavior, That s why the meta-
class Advice was modeled as an extension of the meta-class BehavioralFeature. In

order to allow modeling advice objects that can be passed as method parameter, in the

141

Chapter : Aspect-Oriented Modeling in UML

generic profile, we model the meta-class Advice as an extension of the meta-class

Class.

The attribute adviceExecution of Advice meta-class is reused in the generic profile
without any modification. Similar to the Aspect! profile, in the generic profile, the
types of an advice are also modeled using the meta-class AdviceExecutionType that

extends the UML meta-class Enumeration.

574 PointCut

In Aspect) profile, a pointcut is modeled using meta-class StructuralFeature. In
Aspects, pointcut is a collection of join points. Since join points are objects in
Aspects, they should be modeled as objects. PointCut meta-class (from Aspect)
profile) is renamed as Joinpoint that extends the UML meta-class Class in generic

profile.

5.7.5 OperationPointCut
It is a superclass to describe pointcuts that select operation related join points. In the

new profile, execution pointeut (Section 5.3.6) is the only operation related join point.

5.7.5.1 ExecutionPointCut

In the Aspects profile, a pointcut that selects method exccution join point was
modeled using meta-class StructuralFeature. We rename it as ExecutionJoinpoint
As discussed earlier in this chapter (Section 5.3.6), in the new profile, the meta-class

ExecutionJoinpoint extends UML meta-class Class.

142

Chapter 5: Aspect-Oriented Modeling in UML

In the Aspect) profile, PrelnitializationPointCut and InitializationPointCut ~ were
modeled as subelasses of ExecutionPointCut meta-class. As discussed earlier in
chapter 4 (Section 4.1.1¢) , Section 4.1.11) and Section 4.1.1g)), these elements are
based on the features specific to Aspectl. As a result, we do not keep those in the new

profile.

5.7.52 CallPointcut
In Aspect) profile, a pointeut that selects method call join point was modeled using
meta-class StructuralFeature. As discussed in Section 5.3.6, CallPointcut is not kept

in the new profie.

5.7.53 WithinCodePointCut
‘The meta-class WithinCodePointCut of Aspect) profile is not kept in new profile

since AspectS does not allow such join point selection (Page 90).

5.7.6 PointCutPointCut

In the Aspect] profile, the meta-class PointCutPointCut is a superclass for the meta-
classes CFlowPoint and CFlowBelowPoint that models CFlow and CFlowBelow
pointeuts of Aspect] respectively. In order to unify control flow related pointcuts of
Aspects and AspectS, we introduce the meta-class CFlowJoinpoint that extends UML
meta-class Class. The attribute cfPointcut specifies different types of control flow
related pointcuts from both the languages. Since we only use a single meta-class
CFlowJoinpoint to model the control-flow based join point, we remove the super-

class PointCutPointCut from the new profile.

143

Chapter 5: Aspect-Oriented Modeling in UML

5.7.7 Ad

eExecutionPointCut

In the Aspect) profile, a pointeut that selects advice execution as join point was
modeled using meta-class AdviceExecutionPointCut, which extends UML meta-
class StructuralFeature. Since this is specific to Aspect! (Section 4.1.1h)), this

element is not included in the new profile.

578 PropertyPointCut

The meta-class PropertyPointCut that extends UML meta-class StructuralFeature
is an abstract meta-class. In the generic profile, this clement renamed as
PropertyJoinpoint with a modified extension; it extends UML meta-class Class.

In Aspect] profile the subclasses of PropertyPointCut such as GetPointCut, and

SetPointCut - that were modeled extending the UML meta-class Structural Feature,

are reused with These are renamed as GetJoinpoint and

respectively (Section 4.1.1¢)). Both of these meta-classes extend the UML meta-class

Class.

5.7.9 ContextExposingPointCut

The meta-class ContextExposingPointCut extends the UML meta-class
StructuralFeature. It is an abstract superclass of those pointcuts that expose context
in advices [12]. Exposing context in an advice is implicit to AspectS (Page 91). Also,
for Aspectl, it can be handled during code generation. Hence, we do not include it as a

modeling element in the new profile.

Chapter 5: Aspect-Oriented Modeling in UML

5.7.10 TypePointCut
In the Aspect] profile, the meta-class TypePointCut extends the UML meta-class

StructuralFeature. I is a superclass to model pointeuts that select type-related join

points [12). The subclasses of the meta-class TypePointCut: ThisPointCut,
ArgsPointCut, TargetPointCut, WithinPointCut, and StaticlnitializationPointCut

were modeled based on the features specific to Aspect). Thus, these meta-classes are
ignored in the generic profile. However, join point arguments are automatically
exposed to advices in AspectS. As a result, for each execution join point selection, an

args pointcut i ereated during code generation.

In the Aspect] profile, the meta-class ExceptionPointcut extends the UML meta-
class StructuralFeature. We model exception join point using the meta-class

ExceptionJoinpoint that extends the UML meta-class Class.

57.11 Pointeut composition

PointCutConjunction, PointCutDisjunction, and PointCutNegation were
introduced in Aspect] profile to model the composition of pointcuts. The same idea is
followed in the generic profile to model the composition of join points. Since
Joinpoint is stereotyped classes, the meta-classes for join point compositions are also
modeled as stereotyped Class, where as those were modeled as stereotyped

StructuralFeature in Aspect] profile.

5.7.12 StaticCrossCuttingFeature
In the Aspeet) profil, the static crosscuting feature was modeled using the meta-class

StaticCrossCuttingFeature that extends UML meta-class Feature. We model the

145

Chapter 5: Aspect-Oriented Modeling in UML

statc erosscutting feature with the meta-class Introduction. In the generic profile, the

meta-class Introduction extends UML meta-class Class.

5.8 Summary

Similar 10 the Aspect) profile developed in (12, the present work allows the
integration of aspect features with base-model features on the meta-model level, rather
than as part of the model. We define all the elements as UML stereotypes, tags on
those stereotypes or as the values of tags. A UML stercotype is a meta-class which

enters into extends relationships with existing meta-classes [28]. Visually, this is

shown with the extended class in square brackets. Attributes that are modeled on
stereotype meta-classes will translate to tags when the profile is applied [28]
Similarly, values of stereotype attributes will become values of tags when the profile

is applied [28]. This extension mechanism in UML2.0 is therefore a powerful way in

which any meta-level model immediately becomes usable as a profile.

We develop the profiles for static and dynamic AOP separately as steps towards the
generic profile. The profile for Static AOP allows modeling aspects, advices and join
points as stereotyped Classes. However, it can be applied to the static models only.
Some modifications to this profile such as: including modeling elements for enabling
and disabling aspects, and introducing meta-classes such as: AdviceCollection,
Pointcut and JPCollection as Structural feature, gives us the Profile for Dynamic

AOP.

Profile for Dynamic AOP allows modeling the join point and advice objects that can

be passed as methods arguments. Since this modified profile excludes some

146

Chaper 5: Aspect-Oriented Modeling in UML

relationships from the profile for Static AOP,

AOM only.

we consider this profile for dynamic

We combine the modeling elements from both profiles (static and dynamic). It gives

us the generic profile, which allows modeler to model both static and dynamic AOP

with the constraint that modeler is modeling either static or dynamic AOP but not both

at the same time,

Since this generic profile is an extension of [1

in Table 5.2, are reused from the Aspect! profil

2], some modeling elements, as shown

le without modification.

‘Table 5.2: Reusing elements from Aspect] Profile without modification

Elements

Modeled As

Crosscutting Concern | Package

AdviceExecutionType | Enumeration

However, to allow dynamic AOP modeling,

as shown in Table 5.3, most of the

existing elements of [12] were modeled by providing appropriate extensions.

Table 5.3: Reusing elements from Aspect) Profile with modification

Aspecty Profile Generic Profile

Elements. ‘ Modeled As Elements Modeled As
Aspect | Class Aspect Class
PointCut | Structural Feature Joinpoint Class
Advice i Behavioral Feature Advice Class
PointCutConjunction Structural Feature | JoinpointConjunction Class

147

Chapter 5: Aspect-Oriented Modeling in UML

‘Aspectd Profile Generic Profile ‘
Elements Modeled As Elements ‘ Modeled As
PonCutDisjunction | Structural Feature_| JompointDisjunction Class
PointCutNegation Structural Feature | JoinpoiniNegation | Class
ExccutionPoiniCut Structural Feature | Executionloinpoint Class
PropertyPoiniCut Structural Feature | Propertyloinpoint
GetPointCut Structural Feature Getloinpoint Class
SetPointCut Structural Feature Setloinpoint
" ExceptionPointcut | Structural Feature | ExceptionJoinpoint Class
CFlowPointCut Structural Feature
| CFlowloinpoint Class
CFlowBelowPointCut | Structural Feature ‘
StaticCrossCuttingFeature Feature Introduction Class 1

‘We know that Aspect is very rich for its pointcut constructs that allows wide varieties ‘
of join point selections. The Aspect] profile takes account of those pointcuts and
provides full facility for modeling them. Our profile is based on the core generic
features of different AOP languages. Since the languages other than Aspect] has
limited pointcut constructs comparing to that of Aspect), several pointcuts from the

Aspect] profile, as shown in Table 5.4, are omitted in the generic profile.

Table 5.4: Elements omitted from Aspect) Profile

Aspectd Profile

Reason for excluding
Elements Modeled As

“AspectinstantiationType | Enumeration
Specific to Aspect)

AdviceExecution Pointeut | Structural Feature

Chapter 5: Aspect-Oriented Modeling in UML

Aspectd Profile
Elements Modeled As

Reason for excluding

Ttis a superclass to describe pointcuts
that select operation related join points.

In the new profile, execution pointcut

OperationPointCut Structural Feature | (Section 5.3.6) is the only operation

related join point. Hence,
OperationPointCut is ignored.

CallPointCut Structural Feature:

PrelnitializationPointCut | Structural Feature
Specific to Aspect)

InitializationPointCut Structural Feature

WithinCodePointCut [Structural Feature

ContextExposingPointCut | Structural Feature | Implicit in AspectS. It can be handled
during code generation for both
Aspects and Aspect]

AspectS is untyped. TypePointCut is
TypePointCut Structural Feature i
specific to Aspect.

“ThisPointCut Structural Feature

TargetPointCut Structural Feature

StaticlnitializationPointCut | Structural Feature | Specific to Aspect)

WithinPointCut

ArgsPointCut

“PointCutPointCut Structural Feature | PointCutPointCut is a superclass for the
control-flow based pointcuts of
Aspectl. We use a single meta-class
CFlowdoinpoint to model the control-
flow based join point. Hence,
PointCutPointCut is omitted in the
‘generic profile.

149

Chapter 5: Aspect-Oriented Modeli

In order to allow dynamic AOM, following modeling elements are introduced in the

generic profile (Table 5.5).

Table 5.5: New clements in the Generic profile

Elements. Modeled As

install Behavioral Feature.

uninstall Behavioral Feature
[AdviceCollection Structural Feature

Pointeut Structural Feature

JPCollection Structural Feature

CFlowloinpointType | Enumeration

Chapter 6: Application Example

Chapter 6

APPLICATION EXAMPLE

As discussed earlir, the proposed profile can be applied to both static and dynamic
AOP at different times. In this chapter, we show applications of the proposed profile

as proof of concepts. Rather than using complex case studies, we illustrate some

simple examples that are already discussed in previous chapters. Using those
examples, we demonstrate the use of the profile during modeling and show the visual
appearance of the model. As the profile does not allow modeling of static and
dynamic AOP at the same time, modeling crosscutting concerns for static and
dynamic AOP implementations will be different for all examples. In Chapter 3, we
discussed the difference between static and dynamic AOP. We have seen that Aspect]
and AspectS follow static and dynamic AOP approaches, respectively. In the next few
sections, for each modeling example, we will consider Aspect] code to develop the
static model. On the other hand, while modeling the dynamic aspects, AspectS code

will be taken into account.

6.1 Example-1 : Modeling SenderClassSpecific Join Point

Recall Section 5.3.6, where we introduced the element ExecutionJoinpoint to model

both exccution and call join points. Modeling an execution joinpoint is trivial. The

following paragraphs present an example of senderClassSpecific pointcut in Aspect)

151

Chapter 6: Application Example.

‘The base model is same for both static and dynamic AOP implementations. Section
6.1.2.1 and Section 6.1.2.2 respectively present static and dynamic models of cross-

cutting concerns for this example.

6.1.1 Base Model
This section presents the base model of the example. The core concerns involve two
classes Test and NewTest. The classes and their relationships are shown using the

UML class diagram shown in Figure 6.13. We wish to advise the call of the deliver

[t

Figure 6.1: Base model of the example with call join point

‘method by objects of class NewTest.

6.1.2 Crosscutting-cutting Concern

Section 6.1.2.1 and Section 6.1.2.2 present the cross-cutting concern of this

senderClassSpecific join point example in terms of static and dynamic models.

6.1.2.1 Modeling Static AOP

In Listing 6.1, the aspect AfierHelloWorld is defined within the package
CrossCuttingConcern. The aspect AfterHelloWorld consists of a pointcut and an after
advice that advises the pointcut deliverMessage. The pointcut deliverMessage sclects

the call to the deliver method of the Test class from the caller NewTest class. Both the

152

Chapter 6: Application Example

classes Test and NewTest, along with their methods, are shown in the base model

(Figure 6.1)

Listing 6.1 An example of a call pointcut in Aspect)
ingConcern;
oworld (
age (stxing message) : call (*
& this (ew

package ¢
public aspect Aft
pointcut delivere:

st.deliver(..))
est) 55 args (nessage) ;

s message) :

system.out.println();

Recall that in UML, meta-classes that extend existing meta-classes become
Stereotypes, and attributes of extending meta-classes become tags. Crosscutting
concerns become packages that are stereotyped «CrossCuttingConcern» and the
aspects of this cross-cutting concem are classes that are stereotyped «Aspect»,

contained in the package.

In the above example, the pointcut signature of deliverMessage indicates that a

method call from a specific class is selected. As a result, the pointeut should be

modeled as an «ExecutionJoinpoint». Moreover, as the call is from the class

NewTest, using the attribute senderClass, the class NewTest should be specified as
the sender class. We will not model the args() pointcut as that only exposes the
context and can be automatically generated for each execution pointcut during code

generation.

The advice should be modeled as an «Advice». Since this is an afler advice, the value

of the tag adviceExecution should be selected as AfterAdvice. Figure 6.2 represents

the static model of the senderClassSpecific join point example.

Chapter 6: Application Example

<<CrossCutingConcers>
CrossCuttingConcem

Figure 6.2: Static model of senderClassSpecific join point example

6.1.2.2 Modeling Dynamic AOP
In this section we will model the dynamic implementation (in AspectS) of the
senderClassSpecific join point example. Listing 6.2 presents the aspect
AftertielloWorld in AspectS. The category in the class description shows that this
aspect belongs to the category CrossCuttingConcern, which should be modeled as a
package.

Listing 6.2 AfterHelloWorld aspect in AspectS

AsAspect subclass: #AfterHelloWorld

Listing 63 shows a method retuming an advice of the AfterHelloWorld aspect. The

afierBlock of the advice indicates that the kind of this advice is AfterAdvice.

154

Chapter 6: Application Example

Listing 63 advice of AfterHelloWorld aspect
advicel
* AsBeforeAfterhdvice
Ashdvicequalifier
FsenderClassspecific))
[{AsJoinPointbescriptor
fdeliver]
receiver :arguments :aspect :client :return|
Transript . ve .

The advice qualifier attribute in this lsting provides us the information about the type
of join point to be modeled. With the attribute senderClassSpecific, it indicates that
the join point is an execution join point that contains sender class information. From

the des

ption of the pointcut we get the information of the operation to be selected as
a join point, Listing 6.4 indicates how the definitions in Listing 6.3 can be used. The

class NewTest is added as a sender class to the aspect (Line#2)

Listing 6.4 Dynamic weaving in AspectS

aspe AfterHielloKorld new
testl i~ NewTest new

aspe i NewTest
spect install

testl newdethod

aspe NewTest

aspect uninstall

As the clements aspect, advice collection, advi

. pointeut, and join point of this

dynamic implementation are similar to that of static implementation (Listing 6.1),

these elements can be modeled exactly as shown in Figure 6.2

However, dynamic aspect weaving is not supported by the languages that follow static
adaptation. As a result, the static model shown in the previous section does not include

any clement related to dynamic aspect weaving, Line# 4 and Line#7 of Listing 6.4

155

Chapter 6: Application Example

presents dynamic weaving that controls aspect installation during runtime. Installation
of aspects is related to behavior. As a result, it should be modeled as operation. To
model enabling and disabling of aspect, as shown in Figure 63, we create two
operations installMe and uninstallMe for AfierHelloWorld. When the profile is
applied, these operations become stereotyped «install» and «uninstall» respectively.
We select installMe and uninstallMe as values of the installMethod and

uninstallMethod tags of AfterHelloWorid.

T
<<GrossCutingConcar>>
CrossCuttingConcern
<cAwpoci>>

Anerhelloworid
st iethag =

et wintae)
aovcen(saco - aveet)

Figure 6.3: Dynamic model of senderClassSpecific join point example

6.2 Example-2 : Modeling Cflow Join Point
In Chapter 4 (Section 4.1.4b) i), we showed examples based on the control flow
based join points. In this section, we use one of those examples o show the

application of the element CFlowJoinpoint of the generic profile.

156

Chapter 6: Application Example

6.2.1 Base Model
This section presents the base model (Figure 6.4) of the example with cflow join
point. The core concerns involve a single class AsFactorialM as shown in the

following UML class diagram.

‘AsFactorialM

esu long.
|<<consiructors»+AsFactoria(other - AsFactoriald)
‘+factorial(n: int) long.

“ather

Figure 6.4: Base model of CFlow Join Point Example

622 Cross-cutting Concern
Assume that we want to advise all recursive calls to factorial() except the top one. In
this example, the advice is triggered every time except for the first time when the
‘method factorial i invoked by the instance of AsFactorialM class. Let us assume that

the aspect AspectClassAllButFirst is defined within the package

CrossCuttingC The aspect Aspect is associated with the
advice collection advices, which is a collection of a single after advice Advice. The
advice Advice1 advises the pointcut myPointcutt, which is a collection of the join
point Pointcut2. The join point Pointout2 is the control flow based pointeut. As a
resul, it takes the join point Pointcut1, which is an execution join point as an
argument, Section 6.2.2.1 and Section 6222 respectively present the static and the

dynamic models of this cflow join point example.

157

Chispter 6: Applicatioh Exanple

62.2.1 Modeling Static AOP

Modeling the elements package, aspect, advice collection, advice, and pointeut is
similar 10 the previous example. However, as the join point to be advised restricts the
set of execution pointcuts to all but the first one, it should be modeled using the meta-
class «CFlowJoinpointy. Also, ClassAllButFirst should be selected as the value of
the tag cfPointout of «CFlowJoinpoints. Since cflow related pointeuts restrict a set
of join points, they take another pointcut as argument. In this case, the control flow
pointcut is intended to restrict the set of execution pointcuts to all but the first one.
Therefore, cflow pointcuts must refer to the set of pointcuts that they restrict. A join

point related to the latter should be modeled extending the meta-cl

ss

«ExecutionJoinpoint». This «ExecutionJoinpoint» should be selected as the value

of the selectedPointcut tag of «CFlowJoinpointy. The following paragraph

provides a detailed description of modeling these two join points.

CrosscuingConea

CrossCutiingConcern

euton= BeorAti,
myPaimeut)

Figure 6.5: Static cross-cutting concern of cflow join point example

158

Chapter 6: Application Example.

As shown in Figure 6.5, we create two classes Pointcut! and Pointcut? for the two
join points mentioned above. We apply the stereotype «ExecutionJoinpoint» on
Pointeutl. The attribute operation of «ExecutionJoinpoint» becomes a tag that
provides a lst of operations whose execution can be selected as join points. We select
the method factorial of AsFactorialM class from the base model (Figure 6.4) as the
value of the operation tag of Pointcut1. Pointcut! represents the set of execution
join points to be selected and advised, but this set is further qualified when Pointcutt

is linked to the control flow pointeut, Pointcut2.

The stereotype «CFlowdoinpointy is then applied to the class Pointcut?. Its atributes
cfPointcut and selectedPointcut become tags. The tag cfPointcut specifies the type
of the control flow based join point to be modeled. The tag selectedPointout allows
connecting Pointcut2 with another pointcut. We select ClassAlIButFirst and

Pointcut! as the values of cfPointout and selectedPointcut respectively.

6.2.2.2 Modeling Dynamic AOP
‘While modeling the dynamic cross-cutting concerns of the cflow join point, besides
‘modeling all the elements modeled in the static model, we need to model the dynamic

weaving of aspect

As shown in Figure 6.6, at first we model all the elements such as aspect, advice
collection, advice, pointcut, and join points by following the procedure discussed for

the static model in Section 6.2.2.1 . Then, to model enabling and disabling of aspect,

we create two operations installMe and uninstallMe for AspectClassAlIBUtFirst.
When the profile is applied, like in the dynamic model of the previous example

(Section 6.12.2), these operations become stereotyped «install» and «uninstall»

159

Chapter 6: Application Example.

respectively, which are then selected as values of installMethod and

uninstallMethod of AspectClassAllButFirst

[1

<<CrossCuingConcero>
CrossCutingConcern

nstaiietnog = ot [<Erecutoniorpart>

e - Pointcutt
nintaiidathed = urinstaide) | | opevation = fatara)
<enstats» sostaier, 3
<t unnstabiel)
“<Chowlanport>>
| Pointcutz

intut= Poiteutt)

Figure 6.6: Dynamic cross-cutting concern of cflow join point example

63 Example-3 : Modeling an Exception Join Point
Recall Chapter 4 (Section 4.1.1d)), where we showed an example of the exception
handler execution join point. In this section, we use that example to show the

application of the element ExceptionJoinpoint of the generic profil.

6.3.1 Base Model

This section presents the base model (Figure 6.7) of the example with an exception

join point. involve two classes Error as shown the
following UML class diagram. Assume that we wish to advise the execution of the

handlers that handle exceptions of class Error that are raised by the method deliver()

Chapter 6: Application Example.

= =

Figure 6.7: Base model of exception join point example

6.3.2 Crosscutting-cutting Concern

In this example, within a CrossCuttingConcern the aspect AspectHandler consists of
a pointcut deliverMessage and a before advice. An exception of type Error that is
raised by the deliver method of the TestHandler class is selected as a join point by the
pointcut deliverMessage, which is advised by the before advice Advice1. Section
63.2.1 and Section 6.3.2.2 respectively present the static and the dynamic models of

this exception join point example.

6.3.2.1 Modeling Static AOP

Modeling the elements package, aspect, and advice is similar to the first example
(Section 6.1.2.1). However, as the join point to be advised involves the occurrence of
an exception within a method, it should be modeled using the meta-class

«ExceptionJoinpoint.

Since the meta-class ExceptionJoinpoint s a sublass of the Joinpoint meta-class, as
shown in Figure 68, the class deliverMessage becomes stereotyped
«ExceptionJoinpointy. Its attribute operation becomes a tag that specifies an
operation in which the exception will be occurred. We select the method deliver of
TestHandler class from the base model (Figure 6.7) as the value of operation of

deliverMessage, indicating that we wish to select exceptions raised by this

161

Chapter 6: Application Example.

operation. Its other attribute exceptionClass also becomes a tag that specifies the
type of the exception whose handling we wish to advise. The class Error from the

base model is selected as the value of exceptionClass.

7
<<CrossCutingConcer>
CrossCuttingConcern

l
== e
‘
.

tatic cross-cutting concern of cflow join point example

Figure 6.8:

63.22 Modeling Dynamic AOP

ross-cutting concerns of the exception join point, unlike

While modeling the dynam

the previous examples, we follow a different way that clearly shows the modeling of

les. Hower

the join point objects that can be instantiated and assigned to var

these two approaches are equivalent in terms of the code being generated.
In this approach, we introduce a class CollectionType, e.g. a Java collection type that
will collect the advice instances or objects of an aspect. This class is associated with
the aspect and the advice.

As shown in Figure 6.9, we model all the clements such as aspect, join points, and

advice as described in previous section. Since Advice1 is associated with the class

Chapter 6: Application Example.

CollectionType (objects in the collection are of instances of Advice1), the attribute
myPointcut of Advicel becomes the stercotyped «Pointcuty. The value of
ofJoinpoint of myPointcut is set to deliverMessage, indicating that we wish to

collect advice to exception handlers for exceptions raised by the deliver() operation.

Also the value of pointcut of Advice? is set to myPointcut so that advice objects

“know” about the collection they are collected in.

B)

<CrosaCaingConcarms>
CrossCutiingConcern

[
et = myPanteu)

Figure 6.9: Dynamic cross-cutting concern of exception join point example

AspectHandler is associated with the !

s CollectionType by its attribute advices
which s stereotyped «AdviceCollection» to indicate that this field will contain a
collection of advices. The meta-atribute adbice becomes a tag. Advice1 is selected as

the value of the tag because these are the types of advices we wish o collect in the

advice collection.

Chapter 6 Application Example

Like the previous dynamic models, we create two operations install and uninstall for
AspectHandler. When the profile is applied, these operations respectively become

stercotyped «install» and «uninstall», which are then selected as values of

and e

6.4 Example-4 : Modeling a Property Join Point
Recall Chapter 4 (4.1.1¢)), where we showed an example of field access join point. In
this section, we use that example to show the application of the element

Propertyloinpoint of the generic profil.

64.1 Base Model
This section presents the base model (Figure 6.10) of the example with the property
join point. The core concerms involve a single class AsCounterModified] as shown in

the following UML class diagram.

Figure 6.10: Base model of property join point example

642 Crosscutting-cutting Concern

Section 6.4.2.1 and S¢

ction 6.4.22 respectively present the static and the dynamic

models of this exception join point example.

Chapter 6: Application Example.

64.2.1 Modeling Static AOP
In this section, we will model the pointcuts that select read and write access of field as
join points. In Listing 6.5, the aspect AspectLogger is defined within the package

CrossCuttingConcern. 1t consists of two pointcuts and two before advices. The

pointcut getN selects the read access of the field 1 of the AsCounterModified] class

tadvice.

and advised by the f imilarly, the pointcut setN selects the write access to

the field n of and advised by the second advice

Listing 6.5 An example of feld access pointcuts in Aspect
package CrossCuttingConcern;
public aspect Aspectiogger (

Ppointcut geth(): get(public int AsCountertodified!.n);
pointcut sech(): set(public int AsCountertodifiedl.n);
before() : getN() (1
before() : seth() ()

As shown in Figure 6.1, modeling the elements package and aspeet is similar to the
first example (Section 6.1.2.1). However, the pointcuts to be advised are field access

pointcuts, which should be modeled using the subclasses of the meta-class

«PropertyJoinpoint».

We model two classes gerV' and setN. When the profile is applied, gerN and setN'

become. stereotyped «GetJoinpoints and «SetJoinpoints respectively. Their

the

inherited attribute field becomes a tag that spe field whose access will be

selected as join point. We select the field n of the AsCounterModifiedl class from the
base model (Figure 6.10) as the values of field of getN and setN, indicating that we

wish 10 select the read and writ s of the field n.

Chapter 6: Application Example

1
“Crosaty

ingloncers>

CrossCuttingConcern
<cRspecs e
AspectTest

{othavicaCattectian = avices)
|<AaveCotectons>-aavicesadve - efareGeth eforeSetn

<chdve> <cAdvcor
beforeGemn beforeset

Figure 6.11: Static cross-cutting concer of property join point example

The classes beforeGetN and beforeSeiN become stereotyped «Advicen. The values of
adviceExecution of beforeGetN and beforeSetN are set to BeforeAdvice. The
value of pointcut of beforeGetN is set to myPointout! so that the advice “knows™
about the collection of join points to be advised. Similarly, the value of pointcut of
beforeSetN is set to myPointcut2. The values of ofJoinpoint of myPointcut1 and
myPointcut2 are set to getN and setN respectively indicating the members of join

point collection to be advised.
The metaatiribute advices of AspectTest becomes stercotyped

«AdviceCollection». Both beforeGetN and beforeSetN are selected as the values

of advices to indicate that this field will contain a collection of advices.

6.4.22 Modeling Dynamic AOP
While modeling the dynamie cross-cutting concerns we consider the emulated field

access pointeut (Listing 6.6) of Aspect] in AspecS. We follow the approach presented

Chapter 6: Application Example

in the previous example. As before, we introduce a class CollectionType, which is

associated with the aspect and the advice.

Listing 6.6 Emulated AspectJ's field access pointcuts in AspectS

Ashsp PAspectTest

AshdviceQualif

WreceiverClassSpecific
AsJoinpointDescriptor

AsCounterModif iedl n

167

Chapter 6: Application Example.

“<<CrossCuingConcerm
CrossCuttingConcern

Lyporteutt

ot

et bforecat]

(eteopiat= g

{otsinpoint= sem)

e
polneut= myPoinoutt)

<cAdvcens
befor

{sevisEsacuton=

Figure 6.12: T

property join I

As shown in Figure 6.12, we model all the elements such as package, aspect, and join

points similar o the static model (Figure 6.11). The other elements that are related to

advice collection, pointcuts, and dynamic weaving are modeled as described in the

dynamic mode of the previous example (Section 6.3.2.2).

‘The elements presented in the above model can be used as shown in the pseudo code

in Listing 6.7,

Listing 6.7 Pseudo code that uses the elements presented in Figure 6.12

ting objects of Advic
= beforeGetN new.

= beforeSetN new.

168

Chapter 6: Application Example

aspect.uninstall ()

6.5 Example-5 : Modeling the Shopping-Cart Example

n 222 and Section 232), where we showed the

Recall Chapter 2 (
implementation of the shopping-cart example as running examples in Aspect! and
AspectS respectively. In this section, we use the shopping-cart example to show the

application of the composed join points of the generic profile.

6.5.1 Base Model

This section presents the base model (Figure 6.13) of the shopping-cart cxample. The
main classes (core concerns) and their relationships are shown using UML class

diagram.

169

Chapter : Appliation Example

e | B |
1 | +addtem(tem : fem) : void H ‘wmhr(l-m em) void
| [e
| et el
e

(<<consiruciors>sten i S, pice . float)
(<<getter>>+getD)) : Sng
|<<gelter»>+getPrice(): foat

[MoString(): String

| E
[ddShoppngCartten s SroppingCar, nvertory nvertary,fem fem) vod
romoveShoppinaCarttem sc. ShoppnaCar mvertry. mveriory, fem Tom) void

Figure 6.13: Base model of shoppi

art example

652 Crosscutting-cutting Concern
Section 6.5.2.1 and Section 6.5.2.2 respectively present the static and the dynamic

models of this shopping-cart example.

65.2.1 Modeling Static AOP

In this section, we will model composed pointcuts of Aspectl. In Listing 6.8, the
aspect Tracedspect is defined within the package CrossCuttingConcern. The aspect
Tracedspect consists of two composed pointcuts JPDisjunctiont and

JPDisjunction2. The pointcut JPDisjunction? is composed of execution pointcuts

Jp1, ip2, Jp3, and jp4. On the other hand, JPDisjunction2 is composed of exccution
pointcuts jpS and jp6. Pointcuts JPDisjunction1 and JPDisjunction2 are advised by

two before advi

170

Chapter 6: Application Example

While modeling this example, each of the execution join points should be modeled as
stereotyped «ExecutionJoinpoint». We will again ignore modeling the args
pointcuts, since those merely expose context and are automatically generated during
code generation. Two composed join points should be modeled as stercotyped
«JoinpointDisjunction». Modeling the other elements such as package, aspect, advice
collection, advice, and pointcut is same as the previous static models. The following
paragraph presents a detailed description of modeling the above mentioned join
points,

Listing 6.8 The shopping-cart example in Aspect]
package ¢ gConcern;

ossCut

public aspect Tracerspect (

pointeut jpl (Item item) :
exacution (* Inventory.addlten(..))&s args (item ;

pointeut jp2 (Item item) :
execution (* Inventory.removelten(..))&s args (item);

pointcut jp3 (Item item) :
execution (* ShoppingCart.addIten(..))&s args(item);

pointcut jpd (Iten item :

cution (* ShoppingCart. removelten!(..))&s args (item) ;

tIten(..))

Ppointeut 3pS (ShoppingCart sc, Inventory inventory, Item item)

&& args (sc, inventory, item) ;

rt sc, Inventory inventory, Item item):

pointcut jpé (Shoppin
tem(..))

44 args (sc, inventory, i
pointcut JpDisjunctionl (Iten item)

+ 3Pl (item) ||3p2 (item) | 13p3 (stem) | |3pd (item) ;

Inventory inventory,

pointcut JPDisjunction? (ShoppingCart sc,
Ttem item)

tory, item) |1p6 (sc, inventory, item) ;

1

Chapter 6: Application Example.

before (Item item) : JEDI.

nction (item) ()
befora(shoppingCart sc, Inventory inventory, Item item) :
JPDisjunction? (sc, inventory, item) (}

As before, join points are defined as meta-class extensions of the Class meta-class.
Since ExecutionJoinpoint is a subelass of the Joinpoint meta-class, the jp!. jp2 jp3,
Jp4, ipS, and jp6 classes become stereotyped «ExecutionJoinpoints. The attribute
operation becomes a tag that provides a list of operations whose execution can be

selected as join points.

We select the method adltem of the Inventory class from the base model as the value

of operation of jp1 indicating that the execution of the method additem will be
selected as a join point. Similarly, the method removeltem of the class Inventory, the
method additem of the class ShoppingCart, the method removeltem of the class
ShoppingCart, the method addShopping Cartltem of the class ShoppingCartOperator,
and the method removeShoppingCartltem of the class ShoppingCartOperator are

selected as the values of operation of jp2, jp3, jo4, oS and jp6 respectively.

Since JoinpointDisjunction is a subclass of the Joinpoint meta-class, the classes
JPDisjunction] and JPDisjunction? are also stereotyped as «JoinpointDisjunction.
The attribute hasParts of stereotyped «JoinpointDisjunction» specifies join points
that are parts of composition. A modeler must make sure that the number and type of
arguments are consistent for all the join points that are part of a join point disjunction
or join point conjunction. For example, jp1 and jp2 can be parts of the same

‘composed join point since their argument number (a single argument item) and type (

172

Chapter 6:

the type of item is Item) are the same. However, jp1 and jp5 cannot be parts of a same

composed join point since their argument number and type are different.

We choose the join points jp1, jp2, p3, and jp4 as the values of hasParts of
JPDisjunctiont so that their composition can be selected as a join point. Similarly,

jP5 and jp are chosen as the values of hasParts of JPDisjunction2.

ot
foseon=

== =

EE—

|

Figure 6.14: Static cross-cutting concern of the shopping-cart example.

6522 Modeling Dynamic AOP
While modeling the dynamic cross-cutting concerns we consider the emulated
composed pointcut of Aspect) in AspectS. We follow the approach presented in the

previous two examples.

Chapter 6: Application Example

“cCromsCutraCorcas
CrosCuttingConcern

Figure 6.15: Dynamic cross-cutting concern of the shopping-cart example

As shown in Figure 6.15, we model all the elements such as package, aspect, and join
points similar to the static model (Figure 6.14). The other elements that are related to
advice collection, pointeuts, and dynamic weaving are modeled as described in the

dynamic model presented in Section 6.3.2.2 .

‘The elements presented in the above model can be used as show in the pseudo code in

Listing 6.9.

Chapter 6: Application Example

Listing 6.9 Pseudo eode that

aep! new.
JDisjunction? new

jpd1. pset1.add (3p1)
pdl. Jpsetl.add (1p2)
pdL. Jpsetl.add (3p3)
pdL. Jpsetl.add (1p!

pd2. Jpset2.add (3p5)
pd2. Jpset2.add (3p6)
adl:= beforeadvicel new

ad2i= beforeadvice2 new

ad1 . myPoin add (3pd1)

22 myPosntcut? .add (3pd2)

aspect .myAdvices. add (adl)
aspect .nyAdvices. add (ad2)

istalltie() .

uses the elements presented in Figure 6.15

Chapter 7: Code Generation

Chapter 7

CODE GENERATION

XSLT is a declarative, XML-based language used for the transformation of XML
documents into other documents, such as XML documents, HTML documents, or
plain text documents. The original document is not changed; rather, a new document
is created based on the content of an existing one. The XSLT processor takes two
input documents - an XML source document, and an XSLT stylesheet—and produces
an output document. The XSLT stylesheet contains a collection of template rules:
instructions and other directives that guide the processor in the production of the
output document. Usually, the query language XPath (The XML Path Language) is
used in the XSLT stylesheet for selecting XML document nodes and computing

values (e.g., strings, numbers, or Boolean values) from an XML document.

Existing work [12] has demonstrated the use of XSLT (Extensible Stylesheet
Language Transformations) for generating XMI® to Aspect] code. Because the generic
model is compliant with standard UML XMI format and is fully specified in terms of
the meta-model, the model to which the profile is applied also becomes compliant

with standard UML XMI format. As a result, code can easily be generated. As a

XML (38, ML

i
i p

(The XML Metadata Interchs

176

Chapter 7: Code Generation

proof-of-concept, we implement two XSLTs which generate valid Aspect] and

AspectS code.
| wnteOparation H ProcessAdvice ‘ CheckFeature | ‘ ‘ProcessPoinkutl J

[Gomcumgamtne | [CrosCummopemton | Wi |

i + P}
[pe— ”—{M | [ereme | wiepemc |

Figure 7.1: Main templates in the XSLT for Aspect)

Code generation for Aspect is implemented in approximately 1100 lines of XSLT

code and cons

s 0f 26 templates. On the other hand, code generation for AspectS is
implemented in approximately 1250 lines of XSLT code and consists of 31 templates.
Some of the templates used in these XSLTs recursively call themselves and thus
reduce the lines of code. However, it is possible to make use of more templates and
lessen lines of code. The main templates in the Aspects and AspectS XSLTs are
shown in Figure 7.1 and Figure 7.2 respectively. In these diagrams, the arrow sign

indicates the call from a template (o the other templates. However, some templates

177

Chapter 7: Code Generation

recursively call them. These recursive calls to self template are not shown in

diagrams.

Figure 7.2: Main templates in the XSLT for AspectS.

Most of the complexity in the transformation stems from ensuring robustness. The
XSLT for Aspect) generates code for packages, aspects, advices and pointcuts. The
order of aspects is also followed in the code generation based on the precedence given

in a model. Since an args pointcut is generated

each execution pointeut, the

modeller must ensure that context exposed from each i

ividual pointcut in a pointcut

‘composition is consistent.

Since the XSLTs are developed as proof of concepts, they are applied to a number of
‘models to show that they produce valid code for those models.

Chapter 7: Code Generation

For the Aspect) XSLT, generating code for a composed poinicut at the same fime
handling the individual pointeuts was the most difficult part. On the other hand, for
the XSLT for Aspects, since each advice is related to an advice qualifier atribute that
qualifies a pointcut to be advised, the difficult task was tracking and generating code
for advices, advice qualifiers and pointcuts that are related. The XSLTs for Aspect)

‘and Aspects are available in the electronic appendices attached to this thesis.

7.1 Application of the XSLT for Aspect)

Existing CASE tools already support code generation for the non-aspect-oriented parts
of the model, so that the XSLT only generates code for classes stereotyped as
«Aspect» within packages that are stercotyped as «CrossCuttingConcern» [12]. The
stereotyped «CrossCuttingConcern» is translated to a package and the stercotyped

«Aspect» s translated to an aspect within that package.

For each class stercotyped as «Aspecty, using the attribute stercotyped as
«AdviceCollection as reference, the XSLT will generate method stubs for the classes

that are stereotyped as «Advice.

A class modeled as a subclass of stereotyped «Joinpointy s translated to a pointeut
The XSLT also generates method signatures for all the subelasses of stereotyped

«oinpoint». Since Aspect] itself supports only static AOP, using the Aspect) XSLT,

the i ? in

the previous chapter.

7.1.1 ExecutionJoinpoint

179

Chapter 7: Code Generation

In the generic profile (Figure 520), we introduced the modeling element
ExecutionJoinpoint (Section 5.3.6) to model both call and execution join point
selections. A stereotyped «ExecutionJoinpoint» with no senderClass information is |
translated to an execution pointcut. However, as discussed earlier in (Section 4.1.4.b)
i). a stereotyped «ExecutionJoinpointy with a senderClass information will be
translated to a call() and this() pointcut according to Listing 4.16 and Table 4.5
(second row). Since the args pointcut is implicit in AspectS (Section 4.1.4b)), for

each class stereotyped as ionJoinpointy, an args pointeut is

generated for Aspect] (Section 5.7.10).

;
‘ CrossCuttingConcern

,

Artenovoria
; = saviet) 1
| 1
<eaavces
savicet
i (snaEaanuion = Auikbviss.

Figure 7.3: An application of the generic profile developed in Section 6.1.2.1

As a proof of concept, the XSLT for Aspect] is used to translate the model related to
the senderClassSpecific join point (developed in Section 6.1.2.1) shown in Figure 7.3.

Listing 7.1 shows the output of code generation.

180

Chapter 7: Code Generation

Listing 7.1 Code generation for the model shown in Figure 7.3

package CrossCuttingConcern;
aspect AftertielloWorld {
pointeut dellvertessage (tring messa
Lipublic void Test. Sebiver (1)) 66 this (revtesc)
& args (nessage) ;
after(String message) : deliverdessage (message) (}
)

7.2 JoinpointDisjunction and JoinpointConjunction

Ifa class s ci ¥ intDisj JoinPointConjuction the

XSLT generates a pointcut that s a composition of multiple pointcuts. The XSLT also
generates code for pointeut operators depending on the type of composition. For
example, in the shopping-cart example modeled in Section 6.5.2.1 , the classes
JPDisjunctiont and JPDisjunction2 were stereotyped as «oinpointDisjunction.
These two composed join points should be translated into two pointeuts that are a
composition of multiple pointcuts joined with pointcut operators. The XSLT for
Aspect is used to translate the model shown in Figure 7.4. Listing 7.2 shows the

generated code

Chapter 7: Code Generation

wPortottiorpot

Figure 7.4 An application of the generic profile developed in Section 6.5.2.1

in Figure 74

ting
package CrossCuttingConcern;

(]Pl(uem)IIJPZ(x[em)\Iinhlem)Hipﬂ(Atem)):
pointeut jpl(Item item):

execution(public void Inventory.addIten(..))

& args (iten)

pointeut jp2(Item item):

execution(public void Inventory.removeIten(..))

pointcut 3p3 (Item item
xecution (public void ShoppingCart.addIten(..))

execution(public void ShoppingCart.removelten(..))
&6 args(item) ;

pointeut JeDisjunction?(
ShoppingCart sc, Inventory inventory, Item item):
(3pS(se, inventory, item)

Chapter 7: Code Generation

113p6(se, inventory, item)):

pointeut 3ps(
ShoppingCart sc, Inventory inventory, Item item):
execution(

public void ShoppingCartOperator.addshoppingCartiten..))
&& args(sc, inventory, item);
pointeut 3p6(
ShoppingCart s, Inventory inventory, Item item):
execution(
1 ia Tten(..))

public
&& args(sc, inventory, item);
before(Iten item): JPDisjunctionl(item) ()

before (shoppingCart sc, Inventory inventory, Item item):
JeDisjunction? (s, inventory, item) {}

7.1.3 CFlowJoinpoint

In the generic profile (Figure 5.20), we introduced the modeling element
CFlowJoinpoint (Section 5.3.6) to model control flow based join point selections that

are common for both Aspect) and AspectS.

T

CrossCuttingConcern

e taeAdis,
poineut= myPaieut)

Figure 7.5: An application of the generic profile developed in Section 6.2.2.1

183

Chapter 7: Code Generation

For all the classes stereotyped as «CFlowJoinpointy, the XSLT for Aspect) should

generate code based on our discussion in Section 4.1.4 b) _ii and Table 4.5.

An application of the generic profile on a model related to the cflow join point
(developed in Section 622.1) is shown in Figure 7.5. Following is the translation of

that model using the Aspect) XSLT.

Listing Figure 7.5
package CrossCuttingConcern;
aspect AspectClassAllButFirst {

pointeut Pointcut2(): cflowbelow(execution(

public long AsFactoriald. factorial(..))
&6 execution(public long AsFactorialM.factorial(..));
before() : Pointcut2() {)

As shown in Listing 73, for a stereotyped «CFlowloinpoint» of type
ClassAllButFirst, the XSLT generates a composition of cflowbelow and execution
pointeut, which is similar 1o the emulation shown in Section 4.1.4 b) _ii. For other
types of cflow join points, code generation using the XSLT also complies as discussed

in the same section.

7.1.4 ExceptionJoinpoint

In the generic profile (Figure 5.20), the modeling el (Section

5.3.7) is introduced to model exception join point selection for AOP languages. For
each class stereotyped as «ExceptionJoinpointy, the Aspects XSLT should generate a

pointcut that is composed with an exception handler execution pointeut specifying an

Chapter 7: Code Generation

Exception class, an args pointcut, and a cflowbelow pointcut that takes the

comresponding execution pointcut as argument.

Figure 7.6: An application of the generi profile developed in Section 6.3.2.1

An application of the generic profile on a model related to an exception join point
(developed in 6.3.2.1) is shown in Figure 7.6. For that model, code generation, which

certainly complies with our above discussion, is shown in Listing 7.4,

Listing Figure 7.6
package CrossCuttingConcern;

aspect Aspecthandler (

Pointeut deliverMessage (Error e): handler (Brror)

&6 ctlow(execution(

ublic void TestHandler.deliver(..))):
before() : deliverMessage() ()
)

7.5 PropertyJoinpoint

In the generic profile (Figure 520), we introduced the modeling clement

PropertyJoinpoint (Section 5.3.8) to model both get and set join point selections. As a

185

Chapter 7: Code Generation

proof of concept, an application of the generic profile on a model related to field

access join point

shown in Section 6.4 . Each class stereotyped as «GetJoinpoi

should be translated to a get pointcut using the Aspect) XSLT. Similarly, the XSLT

should generate a set pointeut for each stereotyped «Setloinpointy.

CrossCuttingConcer

Figure 7.7: An application of the generic profile developed in Section 6.4.2.1

Listing 7.5 presents code generation for the model presented in Figure 7.7. Besides

pointcuts, the XSLT

field signatures for both

package CrossCuttingConcern;

: get(public int AsCounterModifiedl.n)
pointcut setN(): set (public

AsCounterModified].n]

before() : getNQ) ()
before() : setNQ) (}

7.2 Application of the XSLT for AspectS

Like the XSLT for Aspectl, the XSLT for AspectS only generates code for classes
stereotyped as «Aspectr within packages that are stercotyped as
«CrossCuttingConcern» [12]. The stercotyped «CrossCuttingConcern» is translated o

a category and the stercotyped «Aspect i translated to an aspet within that category.

Code for aspect installation and uninstallation will be generated from the information
given in the model for both the operations that are stereotyped as cinstalb> and
«aninstally of stereotyped «Aspect. The attribute that is stercotyped as
«AdviceCollection», of a stereotyped «Aspecty will be translated to an instance

variable of that aspect. The XSLT, for each advice, will generate a method that returns

an object of type stereotyped «Advi

A class modeled as a subelass of stereotyped Joinp

translated 10 a pointcut
that is a set of AsloinPointDescriptor objects. The XSLT also generates code for
advice qualifier atributes for all the subelasses of stereotyped «oinpoint. Since
AspectS supports dynamic AOP using the AspectS XSLT, the following sections
present translation of some dynamic models that were developed in the previous

chapter.

721 ExecutionJoinpoint

A stereotyped «ExecutionJoinpoint» with no senderClass information is translated to a
receiverClassSpecific pointcut. From the attribute operation, XSLT gets information
about the class and the method whose exceution is selected as join point. Based on

that information, the XSLT generates code for targetClass and targetSelector.

187

Chapter 7: Code Generation

However, a stereotyped «ExecutionJoinpointy with a senderClass information will be

translated a senderClassSpecific pointeut of AspectS.

advicet
(aavioeExection = AeAdvse.

Figure 7.8: An application of the generic profile developed in Section 6.3.2.2

As the context exposing pointeut (similar to args() in Aspect) is impli

in Aspects,
unlike the Aspect] XSLT, the AspectS XSLT does not generate code for the args

pointeut with each receiverClassSpecific or senderClassSpecific pointeut.

As a proof of concept, the XSLT for Aspects is used to translate the model related to
the senderClassSpecific join point (developed in Section 6.1.2.2) shown in Figure 7.8,

Listing 7.6 shows the output of code generation.

Listing Figure 7.8

Asspect subclacs

IAfterfelloWorld methodsror: ‘as yet unclassifi

188

Chapter 7: Code Generation

advicendvicel
|delivertessage

sJoinpointDescriptor
1551 Test targetSelector: fdeliver

* AsBeforeafteradvice
ualificr: (AsAdviceQualifier

s: (#senderClassspecific.)
e ut: deliverMessage
afterBlock: [:receiver :arguments :aspect :client :retur| 1! !

Object subclass: fMain

! Main od tas v as
|demoAtterHelloWorld |
demoAfterHelloWorld :-Afteriiellodorld new.
demoAfterHelloWorld install
demoAfterHelloWorld uninstall.

7.2.2 JoinpointDisjunction and JoinpointConjunction

The earlier Section 4.1.4c) presented how join point selections that are composed
with pointeut operators of Aspect) can be emulated using set operations in AspectS,
The dynamic shopping-cart example, which consists of composed join points, was.
‘modelled in Section 6.5.22 . Using that model and the AspectS XSLT, Listing 7.7

presents code generation for AspectS.

189

Chapter 7: Code Generation

CrossCutingConcer

E : . = {

i b, e
s s
Fnaescanassan < Ao
v o
)
(1bissErcuton=orersics,

s

“porteu
o= Fomnesen

Figure 7.9: An application of the generic profile developed in Section 6.5.2.2

Ifa class s cither stercotyped as junction: or «JoinPointConjucti

the XSLT should generate code as discussed in Section 4.1.4c) . For example, in the
dynamic shopping-cart example modeled in Section 6.5.2.2 the classes JPDisjunctionl

and JPDisjunction2 were stercotyped as «JoinpointDisjunction». These two

‘composed join points should be translated to two pointcuts that are compositions of
multiple pointcuts joined using the function union of set operation. The classes jp1,
12, 1p3, jp4, PS5, and jp6 that are stercotyped as «ExecutionJoinpointy, should be
translated as a set of AsloinpointDescriptor objects. Since the value of

is ice for both and ice2, they

Chapter 7: Code Generation

should be translated to two advice objects that consist before blocks. Listing 7.7

shows the translation of the model shown in Figure 7.9 (developed in Section 6.5.2.2

ames: *myAd
ClassVariableNames: '*

olDictionaries: *

category: *Cro:

tingConcern 1
ITraceAspect methodsfor: ‘as yet unclassifie
adviceBeforeAdvicel

13eDisjunctionl 3p1 3p2 3p3 pd|

sjunctionli=(jpl union: (§p2 union: (ip3 union:ipd)))

i=AsJoinPointDescriptor
Inventory tar

~AssoinzointDescriptor

stselector: faddItem.

Tnventory targetselace,
fpdsonsdolimolatbenceipto
target ShoppingCart targatselsctor: #addTtem.

satutsfintDesasigtor
targetClass: ShoppingCart targetSelector: #removeItem.

* AsBeforeAfteradvice
attributes: (#receiverClassspecific.)}

P t: JPDisjunctionl
beforeBlock: [:receiver

rquments :aspect :client |

ITraceAspect methodsFor: 'as yet unclass
adviceBeforeadvice2

at stamp: '

198D sjunct ion2 3pS 3p61

IPDisjunction2:=(3p5 union:ip6)
FSEASTa e feteripus
fasastcianns MaopplagcacEipecatos

targetsel iy
4p6:=AsJoinPointDescriptor
targecclass: ShoppingCartOperator

191

Chapter 7: Code Generation

* AsBeforeAfteradvice

qualifior: (AsAdviceQualifier
sttributes: (#receiverClassSpecific.)
teut: JPDisjunction2
ck: [ireceiver :arguments :aspect :client | te
Object subclass: Main
! Main meth . ¢ 5l
|demoTraceAspect |

demoTraceAspect :~TraceAspect new
demoTraceAspect install
demoTraceAspect uninstall

7.2.3 CFlowJoinpoint
In Section 4.1.4 .b) _ii, we described how some of the control flow based pointcut

selections of AspectS can be emulated using the Aspect] constructs. An application of

the generic profile 10 cflow join point irst) is
shown in Section 6222 . According to our design decision a stercotyped
«CFlowJoinpoint» that possesses classAllButFirst as the value of its tag cfPointcut
will be translated as a ClassAlIButFirst pointcut of Aspects. If the model shown in

igure 6.6 is translated using the AspectS XSLT, the value of advice qualifier attribute

should be generated as set of two symbols: receiverClassSpecific and
classAllButFirst. The aspect, advice and pointcuts should be translated as discussed in

previous sections.

EEaE
<<CrossCutingConcern>
CrossCuttingConcern

Figure 7.10: An application of the generic profile developed in Section 6.2.2.2

As shown in Listing 7.3, the XSLT generates code for the model shown in Figure 7.10
(developed in Section 6.22.2). Similarly, for other types of eflow join points, the

AspectS XSLT will be able to generate code.

Listing 7.8 Code generation for the model shown in Figure 7.10

Ashspect subcluss: #AspectClasskliButrizat
b

IAspectClassAllButFirat mothoderor: |
advicendvicel

IPotnteut2|

e o
221 AsFactorialM targetSelector: Wfactorial

193

Chapter 7: Code Generation |

* AsBeforeAfteradvice
qualifier: (RshdviceQualifier
rib feea)

cut: Pointout2
eforeBlock: [:receiver :arquments :aspect :client | t

! Main meth tas y a stan '

|demoAspectClassAllButFirst |
1ButFirst new

demoAspectClassAl1ButFirst install
demoAspectClassAllButFirst uninstall

724 ExceptionJoinpoint

In this section, we use the appli i to the from

Figure 69. In the generic profile we introduced the modeling clement

to model the ice of AspectS. The class deliver ‘
message, which is stereotyped as «ExceptionJoinpoint», should be translated to an
AsHandlerAdvice object. Instead of generating a before or after block, the XSLT
should generate a handler block. Listing 7.9 shown code generation for the model

(developed in Section 6.3.2.2) shown in Figure 7.11.

Figure 7.11: An application of the generic profile developed in Section 6.3.2.2

‘ e

AsAspect cubclass: §AspectHandler

classVariablatane:

poolbictionaries:

ategor

tRspectHandler methodsFor: 'as yat ur

adviceadvicel
Idelivertessage |

o s3age: =AsJoinPointbescriptor

targetClass: TestHandler targ: : fdeliver

~ AshiandlerAdvice

qualifior: (AsAdviceQualifier
sttributes: (#receiverClassSpecific.))
delivertessage
: Error
handlerBlock.

[:receiver :arguments :aspect :client :clientMethod |]! !

Object subclass: #Main
fetancevar iableNane

195

.

ot unclassified

! Main methods;

|demohspectandler |
demoAspectHandler :-AspectHandler new
demoAspectHandler install
demoAspectHandler uninstall.

7.5 PropertyJoinpoint

In Section 4.1.1 .¢) , we described the emulation of Aspect)’s field access join point
selection using AspectS constructs. In the generic profile (Figure 5.20), we introduced
the modeling element Propertyloinpoint (Section 5.3.8) to model both get and set join
point selections. As a proof of concept, an application of the generic profile on a
‘dynamic model related to field access join points is shown in 6.4.2.2 . Since AspectS
does not have any pointcut constructs to select field access directly, we emulated field
access join points of Aspect) by generating and selecting methods that are accessing

field as join points in AspectS.

Figure 7.12: An application of the generic profile developed in Section 6.4.2.2

Chapter 7: Code Generation

During code translation, each class stereotyped as «GetJoinpoint» should be translated
10 an AsJoinpointDescriptor Object that specifies the getter method as targetSelector.
If a class is stercotyped as «Setloinpoint, it should be transiated to an
AsloinpointDescriptor Object that specifies the setter method as targetSelector. For
both cases, the AspectS XSLT should generate code for the related method (getter or

setter). Listing 7.10 presents code generation for the model presented in Figure 7.12

(developed in Section 6.4.2.2).

Figure 7.12

#AspectTest

tAsCountertiodifiedl metk
1 flel,

yet unclassified' stamp:' '

field. ! !

tAspectTest methodsror: '
adviceBeforeSety

Iset |

eti:=1 (AsJoinPointDescriptor

AsCounterModified] ta

atselector: #n
* AsBeforeAtteradvice
1walifier: (AshdviceQualifier
triby #receiverClassspecific.)
setn
sck: [ireceiver :arguments :aspect iclient |]! !
tAsCounterModi fied] methodsFor: 'as yet unclassified’ stamp:' 'f
tAspectTest metl *as yer unclassified’ stamp:' '
adviceBeforeGetN
Igetn |
£N:=((AsJoinPointDescriptor
rgetClase targetselector: #n.)

197

Chapter 7: Code Generation

* AsBeforeAfteradvice
qualifior: (AsAdviceQualifier

butes: (#receiverClassSpecific.) |

N
[:receiver :arguments :aspect :client |

Object subclass: fMain

tancevariableName

! Main methodsFor: ¥

|demoAspectTest. |
demohspectTest :-AspectTest new.
demoAspectTest instal
demoAspectTest uninstall

198

Chapter 8: Discussion

Chapter 8

Discussion

Aspect Oriented Software Development (AOSD) is rooted in the need to deal with
requirements that cut across the primary modularization of a software system. On the

programming level, we have several AOP implementations for exisi

programming
languages. For example, Aspect) (for Java), AspectC++ (for C++), Aspectf (for C#),
AspectS (for SmallTalk or Squeak) and AspectML (for ML) are some of the popular
AOP language implementations. However, on the modeling level, there is as yet litle
support for AOSD. While there has been prior work on extending UML to AOM,
most of the extensions expand UML either by introducing new meta-model classes o
new notation elements without providing meta-level support, Furthermore, many of
the existing AOM approaches are programming language specific and allow modeling

on the platform specific model (PSM) level

Using the extension mechanisms in UML 2.0, [12] presents a meta-model, which is a
UML profile for the Aspect) language (Figure 5.1). The profile for Aspect) allows the
specification of a platform-specific model (PSM). Since Aspect) follows the static
AOP approach, the extension also does not support dynamic AOSD. While AOP
language implementations are rapidly maturing, a platform independent model is

necessary (o increase the reusabiliy of system.

199

Chapter 8: Discussion

Building on previous work [12], this research presents a core generic meta-model,
which is a profile based on the core features of some AOP languages. In order to
cover a wide variety of AOP features, we examined Aspect], AspectS and AspectML.
A reader who is not very familiar with AOP may ask the reason to choose the three
AOP languages. This is a relevant issue because the choice of languages affects what
ultimately ends up in the "core”. Adding another language could further restrict the
core, while removing one could expand it. Among the languages we studied, Aspect)
and AspectS follow the object oriented approach, whereas AspectML follows a

fun

nal approach. On the other hand, Aspect] supports static AOP, whereas both
AspectS and AspectML support dynamic AOP. By comparing these three languages,

we have chosen features that are common among them.

Based on the selected features, we chose the elements to be modeled in the new
profile. The previously developed UML extension [12] for static AOP treats aspects
as extensions of the Class meta-class, i.e. a stereotyped class. Within that framework,
pointcuts are stereotyped structural features and advices are stercotyped behavioral
features, typically operations. However, dynamic approaches represent AOSD
concepts as first-class modules. For example, join point descriptors (pointcuts),
advice, and aspects are all objects in AspectS. Since this approach is not feasible for
dynamic AOM our approach differed from the existing work in [12] by providing

‘appropriate extensions.

As a first step to our generic profile, we present a profile which supports only the
static part of Aspect! and AspectS. This helps us to discover the modeling elements

that are required for the dynamic profile but missing in the current profile. As the

hapter 8: Discussion

second step, a generic but only dynamic profile (does not provide support for static
AOSD) is presented. These two profiles clearly show the difference between static
and dynamic AOP in the modeling level. We use the above steps and develop the final

‘generi profile that allows existing UML tools to express AOSD models.

‘The generic profile is based on the core generic features of different AOP languages.
Since the languages other than Aspect] have limited pointcut constructs compared to
that of Aspect), several modeling elements from the Aspect) profile were omitted in
the generic profile. Moreover, to allow dynamic AOM, some elements were
introduced in this profile. Also, for some cases, like modeling a senderClassSpecific
pointcut or a control flow based pointcut of Aspects, the profile provides modeling
clements that can be directly translated to the corresponding pointcut of Aspects,

whereas for Aspect], code generation follows an emul

n scheme. That is why the
profile may seem more like an AspectS profile. However, we consider the AOP
features of AspectS as a subset of the AP features of Aspect). As a result, except for
aspect instantiation or dynamic aspect weaving, whatever we can do in AspectS can
also be done in Aspectl. Hence, the profile supports modeling of the features from

both Aspect] and AspectS.

The developed model ensures modeling support for static or dynamic AOSD from the
same profile. One may argue that, the distinction between static and dynamic AOP is
really a low-level programming issue, and not one from a modeling perspective.
Someone may also think that that it might have been better to focus specifically on
static AOP, and compare several static AOP languages, rather than complicate the

picture by including dynamic AOP. One of the things that a dynamic AOP

Chapter 8: Discussion

implementation offers is the ability to create instances of AOP elements. This is in
contrast to the static approach. For example in Chapter 6, we have seen applications of
the generic profile on the static (Figure 6.14) and dynamic (Figure 6.15) models of the
shopping-cart example. When the profile is applied to both models, they do not differ
while modeling the elements such as package, aspect, and join points. However, the
differences can be pointed out while modeling instances of aspects, instances of
advice collections, instances of join point collections and aspect weaving. In contrast
0 the static approach, instance creation and aspect weaving are the ability of dynamic
AOP implementation. The pseudo code presented in Listing 6.9 represents instances

of different objects and aspect weaving of the dynamic model.

Table 8.1 presents a comparison between the Aspect) profile and the generic profile.

Table 8.1: Aspect) Prof

VS Generic Profile

Aspect] Profile [Generic Profile
Commonalities

Requires no special software support

Supported by UML XMI model interchange facilities

‘Allows all aspect-related concepts to be specified in meta-model terms

Maintains strict separation of base-model and cross-cutting concerns

Distinction

Platform specific Platform independent
Sttic Static or Dynamic

Since the generic profle enables the support for modeling of static or dynamic AP,
the profie looks a bit complicated. However, the complexity of the current profile can
be minimized by using different profiles for static and dynamic AOP. Another way to

make the profile simpler can be to exclude dynamic AOP from the modeling level. In

202

Chapter 8: Discussion

this case, the modeler does not need to care about modeling the dynamic features.
Creation of aspect instance and installing or uninstalling the aspect will be handled
automatically during code generation. However, that will ignore the capabilities to
model an instance of a join point or an instance of an advice that is assigned to a
variable. Also, since there will not be any distinction between the static and dynamic
AOP in model level, XSLT will generate code for creating aspect instance along with
their installation and uninstallation, no matter whether the model is static or dynamic.
‘That is why, although the profile looks complex, we decide to include the elements for
modeling of static AOP, besides making the profile fully compatible with dynamic

AOM.

To verify the necessity and correctness of the profile, the generic profile is applied to
several examples to make sure that it can express both static and dynamic AOSD.
However, applying the profile to models can be tedious since it needs aspect-oriented
features to be specified for the modeling elements and their relationships explicitly.
As a resul, the modeller must be aware of the complete base-system model. This can

be solved by using patter based, textual specific

n. However, the power of pattern

specifications is not available in UML. Also, this type of pattern-based specification,
while convenient, also opens the door 1o inadvertent selection of nintended join
points. This problem is known as the fragile pointeut problem [45, 46] and is

especially problematic when refactoring [47] the base system code, since pattern-

based pointcut specifications depend strongly on the specific design of the base

system [12]. In this respect, the explicit specification required by the generic profile is
safer. Also, the meta-model integration allows easier model checking and verification.

Moreover, if patterns were to be specified using textual attributes in the UML model,

203

hapter 8: Discussion

special tools would be required to resolve such specifications on the model level, ..

as part of model-level weaving.

One may argue that explicit specification of all aspect-oriented features makes
applications almost as complex s if the cross-cutting functionality had been included
using norr-aspect methods. The use of the generic profile preserves the modularization
and encapsulation of cross-cutting concerns; the main advantage of aspect-oriented

modeling.

From the model, code generation is accomplished by working from the UML XMI
(XML Model Interchange) format, the standard UML serialization. This is one of the
standardized mechanisms and is therefore compatible with existing modeling tools.
Existing work has demonstrated the use of XSLT (XML Stylesheet Language
Transforms) for generating XMI to Aspect] code. Here we leverage that mechanism.
As a proof-of concept, we implement two XSLTs that generate valid code for Aspect]
and AspectS. Although code translation can also be achieved using some other
method; c.g. for Java based UML tools, as [12] has already shown and we also have
translated the entire profile using XSLT, we think this is the best way for model

transformation into code.

However, the code generation currently relies on the modeler to verify the model.
Although we present a number of OCL constraints as part of the model, others must

be developed to support validation.

“This proposal has some limitations. Each AOP language may have some features that
are unique for that language. Since the unique features go beyond the scope of this

proposal, a platform specific model cannot be fully accomplished using this profile.

Chapter 8: Discussion

Also, a modeler from a specific AOP language background may find it difficult i
modeling some features for which there is no modeling element available within this
profile. Moreover, the XSLTs are not tested for complex pointcut composition, which
is supported by Aspect]. As a result, for complex pointcut compositions, XSLT may

not come up with a correct translation.

The generic profile as well as the models to which the profile is applied look quite
complex. As discussed earlier in this chapter, the complexity of the current profile can
be minimized either by using different profiles for static and dynamic AOP or by
excluding dynamic AOP from the modeling level. When dynamic AOP is ignored in
the model level, a modeler does not need to consider the dynamic features while
‘modeling a system. An instance for each aspect will be created automatically during
code generation. Similarly, installation and uninstallation of aspect instances will be
handled in the course of code generation. Nevertheless, in contrast to current profile,
that will ignore the capabilities to model an instance of a join point or an instance of
an advice that is assigned to a variable. Also, ignoring dynamic AOP will eliminate
distinetion between the static and dynamic AOP in model level. As a result, during
code generation instance of an aspect will be created and their installation and

uninstallation will be done automatically no matter whether the model is static or

dynamic. That is why we keep distinction between static AOP and dynamic AOP in

model level. However, the complexity of models may reduce usability of the generic

profile.

Furthermore, while this profile includes OCL constraints, most current commercial

UML modelling tools lack the ability to enforce them. A modeler should follow the

205

Chapter 8: Discussion

given constraints. Such constraints, if enforced, can significantly reduce the

complexity of the code generation.

Chapter 9

CONCLUSION

In this rescarch, we developed a platform independent UML based model (PIM),
which is a UML profile for the core generic AOP paradigm. We applied this profile to
several models to make sure that the profile supports modeling of static or dynamic
AOSD. As a proof-of concept, we implemented XSLTs that generate valid code for

our target languages (Aspect, AspectS).

From a theoretical perspective, the strength of this proposal is a complete specification
of core AOP features in UML. It is a generic aspect-oriented modeling extension that
captures core AOP features in a single meta-model. The core features are chosen by
comparing different AOP implementations that vary from cach other in their
approaches (static or dynamic) and in the diversity of their features. We considered

Aspect] as one of the examined languages, because of the maturity of ts development

and its wide-spread industs

Luse (1]

‘The proposal allows all aspect-related concepts o be specified in meta-model terms.
Hence, no textual specifications of special keywords are necessary. This means the
models can be easily manipulated or verified, without requiring the parsing of

keywords or other textual specifications by special tools.

In contrast to the previous works, the proposed profile supports modeling static or

dynamic AOP. The previously developed UML extension [12] for static AOP treats

207

Chapter 9: Conclusion

aspects as extensions of the Class meta-class, ie. a stereotyped class. Since this
approach is not feasible for dynamic AOM, our approach differs from the existing
work in [12] by providing appropriate extensions. To our knowledge, this is the first

complete PIM for generic AOP.

From a practitioner's perspective, using the lightweight, meta-model based extension
mechanisms of UML 2.0 makes the theoretically important core AOSD meta-model
practically useful as a profile. The profile is supported by UML 2.0 compliant
‘modelling tools. The extension requires no special software support and allows aspect
‘modelling to be used within existing, mature software tools. For example, the work
described in this paper was developed using the commercially available tool
MagicDraw, version 16.0. It contrasts with earlier proposals, which are not all based
on profiles and extend UML either by introducing new meta-model classes, or new
notation elements, or both [38, 39]. Those proposals cannot be used with available
‘modelling tools and require specific tool support. Although prior work [12] is also

defined in terms of meta-model and does not need any special tool support, it provides

the specification of a platform-specific model (PSM) and thus differs from our work.

“The proposed technique is supported by UML XMI model interchange facilities, the
model extension, as well as any models it is applied to, can be exchanged between

different MOF (Meta-Object-Facilty) compliant UML modeling tools.

“The proposed profile offers advantages as it increases the re-usability of the models,
cooperation of developers with different language backgrounds, and future-proofing

of the software design.

Chapter 9: Conclusion

The present work can be extended in multiple directions in future work. First, the
generic profile can be extended o include the AOP language features that are unique

for different languages, e.g. including the instance specific pointeuts of AspectS. This

will expand the modeling capacity of the current profile by covering more AOP
features. However, this may confuse some modeler since features specific to a
particular language will not be known to a modeler from different background. Also,
this will minimize the re-usability of the models and cooperation of developers with

different language.

Second, transformations can be developed to transform the platform-independent
models (“PIMs") into platform specific models (“PSMs”). For example, in the field of
Model-Driven Engineering (MDE), ATL’ (ATL Transformation Language) provides
ways 1o produce a set of target models from a set of source models. Hence,
transformation from PIM to PSM can be done using ATL. This will allow. the
definition and implementation of the operations on models, and also provide a chain
that enables the automated development of a system from ts corresponding models.
However, having specific languages 1o represent model transformations requires
understanding their foundations, e.g. the semantics, and the structuring mechanisms.
In addition, model transformations are required to be stored in repositories so that they

can be managed, discovered and reused.

Third, present work can be developed as a plugein for Eclipse- a multi-language
software development environment. But Eclipse is built on the EMF, not the MOF

that underlies UML.

* ATL(ATL Transformation Language)is a model ransformation language and toolkit

209

Chapter 9: Condlusion

Fourth, while some OCL constraints are presented, others can be developed to further
ensure the validity of the models. For example, the XSLT should generate after ...
returning when a retun parameter is included in the advice signature, and should

generate after ... throwing when a raised exception is modeled for the advice.

Finally, usability studies, for example, exploring the impact of various design
decisions for this profile, e.g. textual specification of join points versus the present
meta-model based specification, need to be conducted. This will allow analyzing the
efficiency and performance of the generic profile. Also, conducting the usability study
may open the door to choose a better design decision and modify the profile

accordingly.

210

REFERENCES

(1] R.Laddad, Aspect/ in Action: Practical Aspect-Oriented Programming.

Manning Publications, July 2003

[2] G Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. M. Loingtier,
and . Irwin, “Aspect-oriented Programming” in Proceedings European
Conference on Object-Oriented Programming, M. Aksit and S. Matsuoka, Eds.
Berlin, Heidelberg, and New York: Springer-Verlag, 1997, vol. 1241, pp. 220~
242,

3] G.Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold,
“An Overview of Aspect),” in Proceedings of ECOOP 2001 - Object-Oriented
Programming: 15th European Conference, Budapest, Hungary, June 18-22,
2001. Heidelberg: Springer Verlag, June 2001, pp. 327-354.

[4] . Spinczyk, A. Gal, and W. Schroder-Preikschat, “AspeetC++ : An Aspect-
Oriented Extension o the C++ Programming Language,” in CRPIT '02:
Proceedings of the Fortieth International Conference on Tools Pacific.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2002, pp.
53-60.

(5] M.D. Prasad and B. Chaudhary, “AOP Support for C#.” in AOSD Workshop on
Aspects, Components and Patterns for Infrastructure Software, 2003, pp. 4953

[6] R Hirschfeld, “AspectS - Aspect-Oriented Programming with Squeak” in

NODe "02: Revised Papers from the International Conference NetObjectDays

211

on Objects, Components, Architectures, Services, and Applications for a

Networked World. London, UK: Springer-Verlag, 2003, pp. 216-232.

[7) “The squeak homepage,” http://www.squeak.org/.

[8] D.S. Dantas, D.Walker, G.Washbum, and S.Weirich, “Aspectml: A
Polymorphic Aspect-Oriented Functional Programming Language,” ACM Trans.
Program. Lang. Syst., vol. 30, no. 3, pp. 1-60, May 2008,

(9] R. Hirschfeld, “AspectS home page,” http:/map.squeak.org/package/e640e9db-
2f5£-4890-a142-¢flebda68748.

[10] O. M. Group, “Unified modeling language,” /urlhttp://www.umLorg/

[11] D. Pilone and N. Pitman, UML 2.0 in a Nutshell (In a Nutshell (O"Reilly)).
O'Reilly Media, Inc., 2005.

(12] J. Evermann, “A Meta-Level Specification and Profile for Aspect] in UML,” in
AOM 07 Proceedings of the 10th international workshop on Aspect-oriented
modeling. New York, NY, USA: ACM Press, 2007, pp. 21-27.

[13] R. Miles, AspectJ Cookbook. O'Reilly Media, Inc., 2004,

[14] J. Brant, B. Foote, R. E. Johnson, and D. Roberts, “Wrappers to the Rescue,” in
In Proceedings ECOOP '95, volume 1445 of LNCS. Springer-Verlag, 1998, pp.
396-417.

[15) E. Hilsdale and J. Hugunin, “Advice Weaving in Aspectl,” in AOSD 04:
Proceedings of the 3rd international conference on Aspect-oriented software

development. New York, NY, USA: ACM Press, 2004, pp. 26-35.

212

[16] A. Assaf and J. Noyé, “Dynamic Aspect],” in DLS '08: Proceedings of the 2008

Ssymposium on Dynamic languages. New York, NY, USA: ACM, 2008, pp. 1~
12

[17) W. Gilani, F. Scheler, D. Lohmann, O. Spinczyk, and W. Schroder-Preikschat,
“Unification of Static and Dynamic AOP for Evolution in Embedded Software
Systems,” in Proceedings of the Sixth International Symposium on Software
Composition, M. Lumpe and W. Vanderperren, Eds., vol. 4829. Braga, Portugal

Lecture Notes in Computer Science, 2007, pp. 216-234.

[18] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First Design Patterns.

O'Reilly, October 2004.

(199 A.Marot and R.Wuyts, “Composability of Aspects” in SPLAT
Proceedings of the 2008 AOSD workshop on Software engincering properties of
languages and aspect technologies. New York, NY, USA: ACM, 2008, pp. 1-6,

[20] C. Hofmann, R. Hirschfeld, and J. Eastman, “Flexible Call-by-call Settlement -
An Opportunity for Dynamic AOP,” in Proceedings of the Second Dynamic
Aspects Workshop (DAWDS), R. E. Filman, M. Haupt, and R. Hirschfeld, Eds.,
2005, pp. 19-26,

[21] W. Schroder-Preikschat, D. Lohmann, F. Scheler, W. Gilani, and O. Spinczyk,
“Static and Dynamic Weaving in System Software with AspectC++,” in HICSS
06: Proceedings of the 39th Annual Hawaii International Conference on System

Sciences. Washington, DC, USA: IEEE Computer Society, 2006, p. 214.1

[22] N. Bencomo, G. Blair, G. Coulson, P. Grace, and A. Rashid, “Reflection and

Aspects meet again: Runtime Reflective Mechanisms for Dynamic Aspects,

213

AOMD 05: Proceedings of the st workshop on Aspect oriented middleware

development. New York, NY, USA: ACM, 2005.

[23] R.Pawlak, L. Seinturier, L.Duchien, G.Florin, F.Legond-Aubry, and
L. Martelli, “Jac: An Aspect-based Distributed Dynamic Framework,” Soffw:
Pract. Exper., vol. 34, no. 12, pp. 1119-1148, 2004.

[24] J. Baker and W. Hsieh, “Runtime Aspect Weaving Through Metaprogramming,”
in AOSD 02 Proceedings of the Ist international conference on Aspect-
oriented software development. New York, NY, USA: ACM Press, 2002, pp.

86-95.

251 A. Popovici, T. Gross, and G. Alonso, “Dynamic Weaving for Aspect-Oriented
Programming,” in AOSD ‘02: Proceedings of the Ist international conference on
Aspect-oriented software development. New York, NY, USA: ACM, 2002, pp.
141-147.

[26] Y. Sato, S.Chiba, and M. Tatsubori, “A Selective, Just-In-Time Aspect
Weaver,” in GPCE "03: Proceedings of the 2nd international conference on
Generative programming and component engineering. New York, NY, USA:
Springer-Verlag New York, Inc., 2003, pp. 189-208.

[27] H.H.P. I, “Smalltalk: A White Paper Overview,” wwiw.cs.pdx.edu/~harry/-
musings/SmalltalkOverview.html, March 2004.

(28] O.M. Group, “Unified modeling language: Superstructure,” August 2005,
document formal/05-07-04.

[29] R A, T.J., and T. M., “Towards Developing Generic Solutions with Aspects,”

in Proceedings of the AOM workshop at AOSD, 2004, 2004.

214

[30] R.Pawlak, L.Duchicn, G.Florin, F.Legond-aubry, L. Seinturier, and

L. Martelli, “A UML Notation for Aspect-Oriented Software Design,” in in
Workshop on Aspect-Oriented Modeling with UML (AOSD-2002), 2002,

[31] M. M. Kande, J. Kienzle, and A. Strohmeier, “From AOP to UML- A Bottom-
Up Approach.”

[32] M. Baschand A. Sanchez, “Incorporating Aspects into the UML,” 2003

[33] L. Fuentes and P. Sanch

“Elaborating UML 2.0 Profiles for AO Design,” in

Proceedings of the AOM workshop at AOSD, 2006, 2006.

[34] O. Aldawud, T.Elrad, and A.Bader, “A UML Profile for Aspect

Modeling,” in Proceedings of OOPSLA 2001, 2001

[35] ——, “UML Profile for Aspect-Oriented Software Development,” in The Third

Interational Workshop on Aspect Oriented Modeling, 2003,

[36] D.Stein, S. Hanenberg, and R. Unland, “Designing Aspect-Oriented
Crosscutting in UML,” in In AOSD-UML Workshop at AOSD '02, 2002

[37] E. Barra, G. Genova, and J. Llorens, “An Approach to Aspect Modelling with
UML 2.0,” in Proceedings of the AOM workshop at AOSD, 2004, 2004,

[38] J. Grundy and R. Patel, “Developing Software Components with the UML,
Enterprise Java Beans and Aspects,” in ASWEC '01: Proceedings of the 13th
Australian Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2001, p. 127.

[39] Y. Han, G. Kniesel, and A. B. Cremers, “A Meta Model and Modeling Notation

for Aspect],” in Proceedings of the AOM workshop at AOSD, 2004, 2004.

215

[40] W. Harrison, P. Tarr, and H. Ossher, “A Position on Considerations in UML

Design of Aspects,” in Proceedings of the AOM with UML workshop at AOSD,
2002, 2002.

[41] F. Mostefaoui and J. Vachon, “Formalization of An Aspect-Oriented Modeling
Approach,” in Proceedings of Formal Methods 2006, Hamilton, ON, 2006.

[42] D. Stein, S. Hanenberg, and R. Unland, “An UML-based Aspect-Oriented
Design Notation for Aspectl,” in AOSD 02: Proceedings of the Ist
international conference on Aspect-oriented software development. New York,
NY, USA: ACM, 2002, pp. 106-112.

[43] M. Mosconi, A. Charfi, J. Svacina, and J. Wioka, “Applying and Evaluating
AOM for Platform Independent Behavioral UML Models,” in AOM '08:
Proceedings of the 2008 AOSD workshop on Aspect-oriented modeling. New
York, NY, USA: ACM, 2008, pp. 19-24.

[44) .U, Janior, V. V. Camargo, and C. V. F. Chavez, “UML-AOF: A Profile for
Modeling Aspect-Oriented Frameworks,” in AOM "09: Proceedings of the 13th
workshop on Aspect-oriented modeling. New York, NY, USA: ACM, 2009, pp.
1-6.

[45] K. Gybels and J. Brichau, “Aranging Language Features for More Robust
Pattern-based Crosscuts,” in AOSD "03: Proceedings of the 2nd international
conference on Aspect-oriented software development. New York, NY, USA:
ACM, 2003, pp. 60-69.

[46] A. Kellens, K. Mens, J. Brichau, and K. Gybels, “Managing the evolution of

aspect-oriented software with model-based pointcuts,” in In Proceedings of the

216

European: Conference on_ Object-Oriented Programming (ECOOP. Spring-

Verlag, 2006, pp. 501-525

[47) T.Mens and T. Tourwé, “A Survey of Software Refactoring,” /EEE Trans.
Softw. Eng., vol. 30, no. 2, pp. 126-139, 2004,

[48] D. Hunter, A.Watt, J.Rafler, J.Duckett, D.Ayers, N.Chase, J. Fawcett,
T. Gaven, and B. Patterson, Beginning XML, 3rd Edition, Ed. Wiley Publishing,
Inc., January 2005.

[49] w3schools.com, “Introduction to XML, hitp//www.w3schools.com/xml-

xml_whatis.asp.

	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Blank page
	0005_Title Page
	0006_Abstract
	0007_Page iii
	0008_Acknowledgments
	0009_Table of Contents
	0010_Page vi
	0011_Page vii
	0012_Page viii
	0013_List of Tables
	0014_List of Figures
	0015_Page xi
	0016_Page xii
	0017_List of Listings
	0018_Page xiv
	0019_Page xv
	0020_Page xvi
	0021_Introduction
	0022_Page 2
	0023_Page 3
	0024_Page 4
	0025_Page 5
	0026_Page 6
	0027_Page 7
	0028_Page 8
	0029_Page 9
	0030_Page 10
	0031_Page 11
	0032_Page 12
	0033_Page 13
	0034_Page 14
	0035_Page 15
	0036_Page 16
	0037_Page 17
	0038_Page 18
	0039_Page 19
	0040_Page 20
	0041_Page 21
	0042_Page 22
	0043_Page 23
	0044_Page 24
	0045_Page 25
	0046_Page 26
	0047_Page 27
	0048_Page 28
	0049_Page 29
	0050_Page 30
	0051_Page 31
	0052_Page 32
	0053_Page 33
	0054_Page 34
	0055_Page 35
	0056_Page 36
	0057_Page 37
	0058_Page 38
	0059_Page 39
	0060_Page 40
	0061_Page 41
	0062_Page 42
	0063_Page 43
	0064_Page 44
	0065_Page 45
	0066_Page 46
	0067_Page 47
	0068_Page 48
	0069_Page 49
	0070_Page 50
	0071_Page 51
	0072_Page 52
	0073_Page 53
	0074_Page 54
	0075_Page 55
	0076_Page 56
	0077_Page 57
	0078_Page 58
	0079_Page 59
	0080_Page 60
	0081_Page 61
	0082_Page 62
	0083_Page 63
	0084_Page 64
	0085_Page 65
	0086_Page 66
	0087_Page 67
	0088_Page 68
	0089_Page 69
	0090_Page 70
	0091_Page 71
	0092_Page 72
	0093_Page 73
	0094_Page 74
	0095_Page 75
	0096_Page 76
	0097_Page 77
	0098_Page 78
	0099_Page 79
	0100_Page 80
	0101_Page 81
	0102_Page 82
	0103_Page 83
	0104_Page 84
	0105_Page 85
	0106_Page 86
	0107_Page 87
	0108_Page 88
	0109_Page 89
	0110_Page 90
	0111_Page 91
	0112_Page 92
	0113_Page 93
	0114_Page 94
	0115_Page 95
	0116_Page 96
	0117_Page 97
	0118_Page 98
	0119_Page 99
	0120_Page 100
	0121_Page 101
	0122_Page 102
	0123_Page 103
	0124_Page 104
	0125_Page 105
	0126_Page 106
	0127_Page 107
	0128_Page 108
	0129_Page 109
	0130_Page 110
	0131_Page 111
	0132_Page 112
	0133_Page 113
	0134_Page 114
	0135_Page 115
	0136_Page 116
	0137_Page 117
	0138_Page 118
	0139_Page 119
	0140_Page 120
	0141_Page 121
	0142_Page 122
	0143_Page 123
	0144_Page 124
	0145_Page 125
	0146_Page 126
	0147_Page 127
	0148_Page 128
	0149_Page 129
	0150_Page 130
	0151_Page 131
	0152_Page 132
	0153_Page 133
	0154_Page 134
	0155_Page 135
	0156_Page 136
	0157_Page 137
	0158_Page 138
	0159_Page 139
	0160_Page 140
	0161_Page 141
	0162_Page 142
	0163_Page 143
	0164_Page 144
	0165_Page 145
	0166_Page 146
	0167_Page 147
	0168_Page 148
	0169_Page 149
	0170_Page 150
	0171_Page 151
	0172_Page 152
	0173_Page 153
	0174_Page 154
	0175_Page 155
	0176_Page 156
	0177_Page 157
	0178_Page 158
	0179_Page 159
	0180_Page 160
	0181_Page 161
	0182_Page 162
	0183_Page 163
	0184_Page 164
	0185_Page 165
	0186_Page 166
	0187_Page 167
	0188_Page 168
	0189_Page 169
	0190_Page 170
	0191_Page 171
	0192_Page 172
	0193_Page 173
	0194_Page 174
	0195_Page 175
	0196_Page 176
	0197_Page 177
	0198_Page 178
	0199_Page 179
	0200_Page 180
	0201_Page 181
	0202_Page 182
	0203_Page 183
	0204_Page 184
	0205_Page 185
	0206_Page 186
	0207_Page 187
	0208_Page 188
	0209_Page 189
	0210_Page 190
	0211_Page 191
	0212_Page 192
	0213_Page 193
	0214_Page 194
	0215_Page 195
	0216_Page 196
	0217_Page 197
	0218_Page 198
	0219_Page 199
	0220_Page 200
	0221_Page 201
	0222_Page 202
	0223_Page 203
	0224_Page 204
	0225_Page 205
	0226_Page 206
	0227_Page 207
	0228_Page 208
	0229_Page 209
	0230_Page 210
	0231_Page 211
	0232_Page 212
	0233_Page 213
	0234_Page 214
	0235_Page 215
	0236_Page 216
	0237_Page 217
	0238_Blank page
	0239_Blank page
	0240_Inside Back Cover
	0241_Back Cover

