

A CORE GENERIC META-MODEL FOR ASPECT-ORIENTED

PROGRAMMING LANGUAGES

by

© Farhana Eva Alam

in partial fulfillment of the

requirements for the degree of

Department of Computer Science

Memorial University of Newfoundland

September 2010

St.John's,Newfoundland,Canada

Abstract

Aspect Oriented Software Development (AOSD) has its roots in the need to deal with

requirements that cut across the primary modularization of a software system. On the

programming level, mature, industrial-strength tools like the de-facto standard

Aspecll exist. However, on the modeling level, there is as yet little support for AOSD.

Previous work, which was platform specific, has provided support for only AspectJ.

However, as Aspecll does not support dynamic aspect-orientation, the developed

model only provides support for static AOSD. Building on previous work, using

standard UML extension mechanisms, this research develops UML modeling support

for both static and dynamic AOSD. Comparing language and aspect-oriented features

ofAspectJ,AspectS and AspectML, asa frrst step to our generic profile,wepresenta

profile which supports only static part of Aspecll and AspectS. This helps us to figure

out the modeling elements that are required for dynamic profile but missing in the

current profile. As the second step, a generic but only dynamic profile (does not

provide support for static AOSD) is presented. These two profiles clearly show the

difference between static and dynamic AOP in modeling level. We use the above steps

and develop the final generic profile that allows existing UML tools to express AOSD

models. The developed model ensures modeling support for both static and dynamic

AOSD from the same profile. To verify the necessity and correctness of the profiles

used as working steps, we apply each of those to several examples. Furthermore,the

generic profile is applied to examples from AspectJ and AspectS to make sure that it

can express both static and dynamic AOSD. Code generation is done by working from

the UML XMI (XML Model [nterchange) format, the standard UML serialization.

This is one of the standardized mechanisms and is therefore compatible with existing

modeling tools. Existing work has demonstrated the use of XSLT (XML Stylesheet

Language Transforms) for generating XMI to AspectJ code. We leverage that

mechanism. As a proof-of concept, we implement XSLTs that generates valid code for

ourtargetlanguages(AspectJ,AspectS).

Acknowledgments

[would like to express my deepest gratitude to my supervisors, Dr. JoergEvermann

and Dr. Adrian Fiech. It has been my good fortune to have the opportunityofworking

with them. [would like to thank them their remarkable help, encouragement and

support to carryon my research work.

I am also deeply grateful for the financial support of the School of Graduate Studies,

Memorial University. Further, a special thanks to the Department of Computer

Science, without its resources and administrative help it would not be possible to

pursue my Master's degree at Memorial University. In addition, I am also grateful to

the writing center of Memorial University for checking the entire thesis.

I want to express my endless gratitude towards my parents, sister, in-law family

members and relatives for inspiring me with their unbound love, faith,and support to

continue my graduate school career. My sincere appreciation to my husband Refaul

Ferdous who gave me all kinds of support and taken extra care of me and our five

months old baby girl Waniya who was born at the middle of my thesis writing.

And finally, looking back over my study period at Memorial University, this thesis

would not be possible without the support of few peoples. Specially, I would like to

thank Morsheda Mamataz, Kamrunnahar Eamy, Nigar Sultana, Madhabi Roy, Wendy

Khandakar, Naushaba Sheikh, Asma Dewan, Negar Noor, Shazli Khan, Kazi Tayubul

Haq, Reedwanul Islam, Wasirnul Bari, Shakil Ahmed, Shibly Rahaman, Matthias

Tilsner, and Riobard Zhan for their moral support and help. They also have made my

life here more joyful and happy.

Table of Contents

Acknowledgments iv

List of Figures ...

Chapter1 1

INTRODUCTION 1

1.1 Separation ofCross-cutting Concerns

1.2 ModularizationofCross-cuttingConcerns 2

1.3 Aspect-orientedPrograrnming .

1.4

1.5

1.6

Chapter2 13

AN OVERVIEW OF AOP LANGUAGES 13

2.1 Running Exarnple.....

2.3.1 An Overview ofAspectS 27

AOP Approaches: Static and Dynamic 62

3.2 Dynamic AOP... .. 65

Chapter4 71

AOP LANGUAGE FEATURE COMPARISION 71

4.1 AspectJ,AspectSandAspectML. .

ChapterS 105

ASPECT-ORIENTED MODELING IN UML 105

5.1 Related Works ..

5.2 Our Approach ..

5.3 ModelingElements

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

5.5 Profile for Dynamic AOP ..

5.6

Comparison with AspectJprofile

. 128

.................... 135

Chapter6 151

APPLICATION EXAMPLE 151

6.1 Example-l : Modeling SenderClassSpecificJoinPoint.. ..

CODE GENERATION 176

7.1 ApplicationoftheXSLTforAspectJ

Discussion 199

Chapter9 207

CONCLUSION 207

REFERENCES 211

.. .. 148

.. 150

. 202

List of Tables

Table2.I:Mappingofexposedjoinpointstopointcutdesignators ..

Table 2.2: Access Specification.... .. 27

Table4.I:Pointcutoperators in AspecU and AspectS.... .. 95

Table 4.2: Exposed join point categories of AspecU, AspectS and AspectML. 100

Table 4.3: Pointcuts those are not available in AspectS and AspectML. 101

Table 4.4: AspectS Pointcuts that can or cannot be emulated using AspecU 102

Table 4.5: Imitating the AspectS join point selection using AspecU 102

Table 5.1: Pointcuts that can be modeled using the meta-class CFlowJoinpoint..

Table 5.2: Reusing elements from AspectJ Profile without modification ..

Table 5.3: Reusing elements from AspectJ Profile with modification

Table 5.4: Elements omitted from AspectJ Profile

Table 5.5: New elements in the Generic profile ..

Table 8.1: AspecU Profile VS Generic Profile .

List of Figures

Figure 1.1: Additional codes in each method of Inventory class

Figure 1.2: lmplementation ofabanking system (Redrawn after [1])... .. 5

Figure 2.1: Output of the shopping-cart program with "logging" 17

Figure 2.2: An AspectJ file named HelloWorld.... . 19

Figure 2.3: A class named Test inJava........ . 20

Figure 2.4: An example ofa named pointcut (adapted from [I] 22

Figure 2.5: Output of the ShoppingCartexample in AspectJ.... .. 26

Figure 2.6: Opening system browser in Squeak..... .. 28

Figure 2.7: Workspace and transcript window in Squeak.... . . 29

Figure2.8:DynamicweavinginAspectS... .. 31

Figure 2.9: Testing a method introduction using AslntroductionAdvice 35

Figure 2.10: Weaving of AfterHelloWorld Aspect.... .. 37

Figure 2.11: Weaving of AfterHelloWorldRlS Aspect.... .. 38

Figure 2.12: Weaving of AfterHelloWoridSCS Aspect... . 39

Figure 2.13: Weaving ofAfterHelloWorldSIS Aspect.... .. 40

Figure 2.14: Workspace code and output of the factorial example..43

Figure2.15: Transcript for Class First Attribute Example.... .. 43

Figure 2.16: Transcript for Class All But First Attribute Example .44

Figure 2.17: Transcript for Instance First AltributeExample

Figure 2.18: Transcript for Instance First Altribute Example.... .. 46

Figure2.19: Workspace and Transcript for Super First Attribute Example .48

Figure 2.20: Transcript for Super All But First Attribute Example

Figure 2.21: Workspace codes for ShoppingCartexample in AspectS 52

Figure 2.22: Output for ShoppingCart example in AspectS..... . 53

Figure 2.23: The advices of Listing 2.34 were triggered wheneverthefunctions

mentioned in thejoin points were called from Listing2.35 ...

Figure 3.1: User interface for modified ShoppingCartprogram ..

Figure 3.2: User interface for Dynamic SboppingCart Program ..

..61

.......... 63

. 66

Figure3.3:0utputofdynamicShoppingCartprograrn.... . 67

Figure4.1: Output of the above example.... . 74

Figure 4.2: Workspace and output for exception handling example in SmaliTalk 78

Figure 4.3: Workspace and output for exception handling example in AspectS 79

Figure 4.4: Aspect instantiation.... . 82

Figure 4.5 Output of aspect precedence example in AspectJ ...

Figure 4.6: Workspace and output for aspect precedence example in AspectS 84

Figure 4.7: Printing arguments in AspectS.... . 92

Figure 4.8: [nstalling and uninstalling BeforeHelloWorld Aspect....... . 97

Figure 4.9: Result of installing and uninstalling AjterHelloWorld aspect 97

Figure 5.1: AspectJProfile..... . 108

Figure 5.2: Our AOP Approach in Context (adapted from [12]) .

Figure 5.3: Cross cutting concern as package extension (adapted from [I 2])

Figure 5.4: Aspect as a class extension in new profile .

Figure 5.5: Advice as a class extension in new profile .

Figure5.6:Joinpointasaclassextensioninnewprofile.... . 115

Figure 5.7: Joinpoint compositions in the profile.... . 117

Figure 5.8: ExecutionJoinpointin new profile.... . 119

Figure 5.9: ExceptionJoinpointas a class extension... . 120

Figure 5.10: PropertyJoinpointas a class extension.... . 121

Figure5.II:CFlowJoinpointasaclassextension... . 122

Figure 5.12: lntroductionasa class extension

Figure 5.13: Profile for Static AOP

Figure 5.14: Pointcut as a structural feature extension ...

Figure5.15:JPColiectionasastructuralfeatureextension 131

Figure 5.16: AdviceColiection as a structural feature extension... . . 132

Figure 5.17: install and uninstallas behavioral featureextension 134

Figure 5.18: Profile for Dynamic AOP.... . 135

Figure 5.19: Associations with the meta-classes for join point cornposition 138

Figure 5.20: Core generic meta-model forAOP languages.... . 139

Figure 5.21: Aspect as a class extension in AspectJ profile[12] 141

Figure 6.1: Base model of the example with call join point

Figure 6.2; Static model of senderClassSpecific join point exampIe 154

Figure 6.3; Dynamic model of senderClassSpecific join point example 156

Figure6.4;BasemodelofCFlowJoinPointExample 157

Figure 6.5; Static cross-cutting concern ofcflowjoin point example 158

Figure 6.6; Dynamic cross-cutting concern of cflow join point example 160

Figure 6.7; Base model of exception join point example

Figure 6.8; Static cross-cutting concern ofcflowjoin point example 162

Figure 6.9; Dynamic cross-cutting concern of exception join point exampIe 163

Figure 6.10; Base model of property join point example....... . 164

Figure 6.1 I; Static cross-cutting concern of property join pointexampIe 166

Figure 6.12; Dynamic cross-cutting concern of property join point exampie 168

Figure 6.13; Base model of shopping-cart example

Figure 6.14; Static cross-cutting concern of the shopping-cart exampie

Figure 6.15; Dynamic cross-cutting concern of the shopping-cart example

Figure 7.1; Main templates in the XSLT for AspectJ....

Figure 7.2; Main templates in the XSLT for AspectS.... . . 178

Figure7.3;AnapplicationofthegenericprofiledevelopedinSection6.1.2.1 180

Figure 7.4; An application of the generic profile developed in Section 6.5.2.1 182

Figure7.5;AnapplicationofthegenericprofiledevelopedinSection6.2.2.1 183

Figure 7.6; An application of the generic profile developed inSection 6.3.2.1 185

Figure7.7;AnapplicationofthegenericprofiledevelopedinSection6.4.2.1 186

Figure7.8;AnapplicationofthegenericprofiledevelopedinSection6.3.2.2 188

Figure 7.9; An application of the generic profile developed in Section6.5.2.2 190

Figure 7.10; An application of the generic profile developed in Section 6.2.2.2 193

Figure 7.1 1; An application of the generic profile developed inSection6.3.2.2 195

Figure7.12;AnapplicationofthegenericprofiledevelopedinSection 6.4.2.2

. 25

. 28

. 28

. 30

. 31

List of Listings

Listing2.lltemciass.... . 14

Listing 2.2 Inventoryclass.... . 14

Listing2.3ShoppingCortclass ...

Listing 2.4 ShoppingCartOperator ciass.... . 16

Listing 2.5 Testciass.... . 16

Listing 2.6 Testclass(modiliedversion-2) .

Listing 2.7 TraceAspectAspectinAspectJ .

Listing 2.8 Testciass in Squeak

Listing2.9delivermethodofTestciassinSqueak .

Listing 2.10 BeforeHelloWorld Aspect in AspectS .

Listing 2.1 I AsJoinPointDescriptorClassinAspectS .

Listing 2.12 Pointcut mAS~)eCI" ,L.
Listing 2.13 adviceBefore method ofBeforeHelloWorld Aspect..... . 33

Listing 2.14 adviceAfler method of AflerHelloWorld Aspecl. 33

Listing 2.15 adviceArolind method ofArolmdHello World Aspect 34

Listing2.16advicelntromethodof/ntroHelloWorldAspect....... . 34

Listing 2.17 adviceException method ofAspectHandler Aspect.... . 36

Listing2.18adviceAflermethodofAflerHelloWorldRiSAspect. 38

Listing 2.19 newMethod method of NewTest Class 39

Listing 2.20 AsFactoriaIMClass....

Listing 2.21 initializemethodofAsFactoriaIMClass... . .41

Listing 2.22 other method ofAsFactoria1MClass.... . .41

Listing 2.23 factorial method of AsFactoriaIMClass .41

Listing 2.24 adviceTrace method of Trace Aspect...... . .42

Listing 2.25 factorialM method of FactorialMClass47

Listing 2.26 SubFactorialM Class....47

Listing2.27factorialMmethodofSubFactorialMClass.... . .47

Listing 2.28 adviceTrace method ofAspectSliperFirstMAspect .48

Lisling2.29adviceTracemethodofAspectSuperFirstMAspeCI

Listing 2.30 Creating ilems in AspectML..... .. 57

Listing 2.31 Functions related 10 Invenlory.... .. 58

Listing 2.32 Functions related 10 Shopping Cart 59

Listing 2.33 A FunclionofShoppingCartOperalor.... . 60

Lisling2.34advices in AspectML for ShoppingCart example.... . 60

Listing 2.35 Codes 10 test the program.... . 61

Listing 3.1 Aspect Enabling/Disabling at Runtime.... .. 64

Listing3.2CodeforStartbutton.... . .. 67

Listing 3.3 Code for Stop button.... . 68

Lisling 3.4 Code for Start Log button... .. 68

Lisling3.5CodeforStopLogbutton....

Lisling3.6Passingpointcutasargumenl ...

Listing 3.7 Class Definition of AspectLogger

Listing3.8Classmethod .

Listing 3.9 Instance method ..

Listing3.IOThemethodadviceLogging

. 69

.. 69

. 69

Listing4.ITestclass..... .. 73

Listing 4.2 TestAspectaspect 73

Listing 4.3 Conslructor in Item class.... . 74

Listing 4.4 A settermelhod in AspectS.... .. 76

Lisling4.5Advisinglhesettermelhodw... .. 76

Listing 4.6 Exception handler execution join point.... .. 76

Lisling4.7 AspectHandler aspect in AspeclJ.... . 77

Listing 4.8 Signaling exception in SmaIlTalk.... . 78

Listing 4.9 Advising an exceplion handler join poinl in AspeclS .. 79

Listing 4.10 Class initialization in AspectS...... .. 80

Listing4.11 AnaspectinAspeclS...... .. 82

Listing4.12AbstractmelhodofAsAbstractAspectaspect.... . . 85

Listing 4. 13 InberitinganabslractaspectinAspeclS... . 86

Listing4.14MelhodofSubAbstractAspectaspecl...... . 86

Lisling4.15senderClassSpecificpoinlcutinAspectS.... .. 87

. 155

. 155

Lisling4.16RepresenlalionofsenderClassSpecificpoinlculinAspeCI!

Lisling4.17ctFirsIClasspoinlculinAspecIS 88

Lisling4.18RepresenlalionofclFirslClasspoinlculinAspectJ 88

Listing 4. 19 cfAllButFirslClass poinlcul in AspecIS.... . 89

Listing 4.20 RepresenlalionofcfAlIButFirslClasspoinlculinAspectJ 89

Lisling4.21 UsingcflowpoinlculofAspectJ.... . 89

Lisling4.22 clFirslSuperpoinlcul in AspecIS.... . 89

Listing 4.23 RepresenlalionofclFirslSuperpoinlculin AspectJ 90

Lisling4.24cfAIIButFirsISuperpoinlculinAspecIS.... . 90

Listing 4.25 Represenlalion ofcfAIIButFirslSuperpoinlcul in AspectJ 90

Listing 4.26 Prinlingargumenl in AspecIS.... . 92

Lisling4.27PrinlingargumenlinAspectJ... . 92

Lisling4.28PoinlculobjeclsinAspecIS.... . 94

Listing 4.29 EmulalingLisling4.28 in AspectJ.... . 94

Lisling4.30lnslallingand uninslallingolheraspecl as parlofan advice block 96

Lisling5.IFieldaccesspoinlculsofAspectJ 122

Listing5.2lnlroducingafieldandamelhodusingAspectJ.... . 125

Lisling 5.3 Pseudocode for Dynamic AOP

Lisling6.IAnexampleofacallpoinlculinAspectJ....

Lisling6.2 AfterHelloWorldaspecl in AspecIS

Lisling6.3 advice ofAfterHelloWorldaspecl....

Lisling6.4DynamicweavinginAspecIS .

Lisling6.5 An example offield accesspoinlCUIS in AspectJ..... . 165

Lisling6.6 EmulaledAspectJ's field access poinlculS in AspecIS.. .. . 167

Lisling6.7PseudocodelhaluseslheelemenlspresenledinFigure6.12 168

Listing6.8Theshopping-cartexampleinAspectJ...... . 171

Lisling6.9Pseudocodelhaluseslheelemenlspresenled in Figure 6.15 175

Lisling7.ICodegeneralionforlhemodelshowninFigure7.3... ... 181

Lisling7.2 Code generalion forlhe model shown in Figure 7.4 182

Listing 7.3 Codegeneralion for a model shown in Figure 7.5.... . 184

Lisling 7.4 Code generalion forlhe model shown in Figure 7.6.... . 185

Lisling7.5 Code generalion forlhe model shown in Figure 7.7 186

Listing 7.6 Code generation for the model shown in Figure 7.8

Listing 7.7 Code generation for the model shown in Figure 7.9 191

Listing 7.8 Code generation for the model shown in Figure 7.10 193

Listing 7.9 Code generation for the model shown in Figure 7.1 I 195

Listing7.10CodegenerationforthemodelshowninFigure7.12 197

Olaprerl:Introduction

Chapter!

INTRODUCTION

1.1 Separation of Cross-cutting Concerns

Separation of concerns (SoC) isa fundamental principle insoftwareengineering.lt

entails breaking down a program into distinct parts called concerns. Concerns are

some specific requirements that must be addressed to satisfy the 0 verallsystemgoal

while designing a system. A set of concerns that compose the entire software system

can be classified into two categories: core concerns and cross-cutting concerns [I).

Core concerns capture the basic functionalityofasystem, whereas the cross-cutting

concerns capture the features shared by many of the core concerns. All prograrnming

paradigms support some level of grouping and encapsulation of concerns into

separate, independent entities by providing procedures, modules, objects, classes or

methods. For example, languages like C++, Java and C#, which belong to the family

of object-oriented programming (OOP) languages, support modularizing of core

concerns. These languages can separate the concerns by encapsulating them into

objects. However, features like logging, persistence, and security disobey this form of

encapsulation as they are shared arnong many of the core concerns and cannoteasily

be fitted into the OOP approach [1,2,3). Furthermore, the OOP paradigm often forces

the designer to create a coupling among the core concerns and the cross-cutting

concerns in the software system. A program implemented in Java for a Shopping

Center which includes items, inventory, and carts can be a sirnple exarnplethatclearly

shows how the crosscutting concerns like logging are not modularized in OOP

OJapterl:IntrodLJCtiOl1

implementations. We assume that the program consists of several classes like Item,

Inventory, and ShoppingCart, each of which contains multiple melhods. To see which

methods are being executed during runtime, a programmer needs to implement some

logging feature such as print statement within each method in this program as shown

in Figure 1.1.

Figure 1.1: Additional codes in each method oflnventoryclass

The same printing statement, which can be considered as cross-cutting concern, is

added to all the methods. Theseprintingstatementscannoteasilybemodularizedasa

separate entity and does not remain in the form of encapsulation. Section 1.2

illustrates the consequences of non-modularized cross-cutting concerns in software

design and implementation.

1.2 ModularizationofCross-cuttingConcerns

Cross-cutting concerns that are non-modularized often lead to code tangling or code

scattering. Code tangling is caused when multiple concerns are considered several

times while implementing a module. On the other hand, code scattering occurs while

O1apter 1: Introduction

implementing a single concern in several modules. The example of the shopping-cart

program (Section 1.1) shows code scattering, since the same printing statement

logging feature is implemented in several classes. However, implementing features

like security and persistence in each class of the same example will introduce code

tangling in the same system.

A program containing either code scattering or code tangling is always difficulttobe

traced or evaluated, since adding some new code or doing some minor modifications

may require the programmer to edit the entire program. It also reduces the chances of

code reuse. Furthermore,developingasystemwiththesenon-modularizedconcernsis

always time consuming and may contribute to low productivity in software

development [I]. For example, if someone wants to change the logging messages in

the shopping-cart example lhenhe needs to modify all the existing print statements.

Thus code tangling and code scattering cause undesirable system complexity and

1.3 Aspect-oriented Programming

There are many programming problems involving important concerns like

transactions,security,distribution, or logging where OOP techniquesarenotsufficient

to clearly capture all of the important design decisions the program must implement

[2, I]. Tbe need for modularizingand encapsulating those concerns gives rise to the

concept of aspect-oriented programming (AOP). AOP provides a new programming

technique that clearly expresses programs involvingcross-cuttingconcerns,including

appropriate isolation, composition and reuse of the code [2].

O1apter 1: Introduction

1.3.1 AOPMethodology

The methodology for developing a system in AOP is similar to other methodologies.

A system developed with AOP requires the following steps [I]:

a) Identifying the concerns:

In this step, the requirements are decomposed to identify core concerns and cross-

cutting concerns of the system. Forexarnple, the core concerns of the shopping-cart

example are the concerns related to item, shopping cart, inventory and shopping cart

operator. The crosscutting concern for this example is the loggingfunctionalitythatis

scattered and repeated in the core modules.

b) Implementing the conccrns:

In this step, each concern identified in the previous step will be implemented

separately. Forthecoreconcems,thebaselanguageofthatparticularAOP language

is chosen for implementation. On the other hand, cross-cutting concerns are

implemented separately in stand-alone units called aspects (see Section 1.3.2). For

example, if Java is chosen as the base methodology for the shopping-cart problem

thenthecoreconcernsareimplementedasclassesexcludingtheloggingfunctionality

However, being a cross-cutting concern, logging functionality will beimplementedas

a separate unit, known as an aspect.

c) Forming the final system:

In this step, the final system is formed according to some rules known as "weaving

rules" specified within the aspect. An aspect lVeaver, which isacompiler-likeentity,

O1apterl:IntroductiOll

composes the final system by combining the core and crosscutting modules througha

process called weaving.

Figure 1.2, taken from [I), shows the difference between two different

implementations of a banking system with logging functionality. In both

implementations,thesystem includes several client modules such as the accounting

module, the ATM module and the database module. The first implementation is done

using OOP methodology, where the code tangling occurs between all the modules

needing the logging module [I).

~ 1'"- -::::::..,--- D~ B Er/EFE
~ -- D

Figure 1.2: Implementationofa banking system (Redrawnafler [I))

AOP implementation for the same banking system (right part ofFigure 1.2) shows the

modularizationoflogging functionality where none of the clients contain code for

logging. Furthermore, logging becomes modularized as the crosscutting logging

requirements are now mapped directly only to the logging aspect. With such

modularization, any changes to requirements affect only the loggingaspectbutnotthe

clients. Using AOP methodology, client code remains completely isolated and

unchanged. Thus, AOP facilitates programs with improved traceability, higher

modularization, easier system evolution and more code reuse.

(1Japterl:Introduetion

1.3.2 AOP Language Implementation

As the AOP paradigm is gaining much industry support, we have several AOP

implementations for existing programming languages. For example, AspecU [3] for

Java, AspectC++ for C++ [4], Aspect# for C# [5], AspectS [6] for SmallTalk/Squeak

[7] and AspectML [8] for ML are some of the popular AOP language

implementations.

1.3.2.1 Basic Terminology:

The followings are some standard terms used in Aspect-oriented programming·

a) Join point:

A join point is a point in the dynamic control flowofanapplication. Thus a join point

can for instance represent a call to a method, execution ofa method, the event of

setting a field or the event of handling an exception. For example, AspectJexposes

severalcategoriesofjoinpointssuchas:methodjoinpoints,constructorjoinpoints,

field access join points and class initialization join points [I]. On the other hand, it

does not expose join points for loops, super calls, throws clauses, multiplestatements

b)Pointcut:

Apointcut is a means to specify the weaving rules. It selects join points that satisfy

those rules and collects program execution context at those points. Some AOP

language implementations such as AspectJ [3] have a special language construct for

pointcuts, whereas some other languages like AspectS [9] do not have any dedicated

pointcutlanguage.

O1apterl:Introduction

c) Advice:

Advice isa means of specifying code to run at a join point that has been selectedbya

pointcul.

d) Aspect:

The combination of one or more point·cuts and advices is termed anaspecl.

e) Static crosscutting:

lnAOp,weoftenfindthatinadditiontoaffectingdynamicbehaviorusingadvice,itis

necessary for aspects to affect the static structure in a crosscutting manner. While

dynamic crosscutting modifies the execution behavior of the program, static

crosscutting modifies the static structure of the types-the classes,interfaces,and

otheraspects--andtheircompile·timebehavior.

1.3.2.2 Join Point Model

Each AOP implementation has its own Join Point Model (JPM) which defines three

things:

(i) When tbe advice can run,

(ii) A way to specify pointcuts and

(iii) A means of specifying code to run at ajoinpoinl.

JPMs of different AOP implementations can be compared based on the following

• Thejoinpnintsexposed,

• How pnintcuts are specified,

C11apterl:lntroduction

• The operations pennitted at the join points, and

• Thestructuralenhancementsthatcanbeexpressedsuchasstaticcrosscutting.

The AOP implementations of some of the languages are described in detail in the next

chapter.

1.4 Aspect-oriented Modeling

Aspect-oriented modeling (AOM) supports modularization of cross-cutting concerns

at the software design level. Most AOM techniques focus on providing modeling

capabilities for the core AOSD concepts, usually as extensions to the Unified

Modeling Language (UML).

UML [10] is a standardized general-purpose modeling language in the fields of

software engineering. UML is managed, and was created by the Object Management

Group (OMG). To date UML is not only used to model application structure,

behavior, and architecture, but also business process anddatastructureo

UML, along with the Meta Object Facility (MOF)\, provides a key foundation for

OMG's Model-Driven Architecture, which unifies every step of development and

integration from business modeling, through architectural and application modeling,

to development, deployment, maintenance, and evolution [10].

A model can be either platfonn-independent or platfonn-specific. A platfonn

independent model (PIM) is a model of a software system or business system that is

independent of the specific technologicalplatfonn used to implementit. Aplatfonn-

O1apterl:Introduction

specific model (PSM) is a model ofa software or business system that islinkedtoa

specific technological platform (e.g. a specific programming language, operating

system or database).

UML allows both PIM and PSM. Besides this, it provides a mechanism known as

profile. Profiles are the standard mechanism to extend UML. The profile mechanism

exists within UML so models applying a profile are fully UML compatible. A UML

model applying a profile is UML, and any UML tool can process it [II].

While there has been prior work on extending UML to AOM, most of the extensions

expand UML either by introducing new meta-model classes or new notation elements

without providing meta-level support. Furthermore, many of the existing AOM

approaches are programming language specific and allow modelingontheplatform

specific model (PSM) level. While AOP language implementations are rapidly

maturing, a platform independent model is necessary to increase the reusability of

system. [t will also ease the communication between developers from different

backgrounds. Building on previous work [12], this research presents a core generic

meta-model, which is a profile based on the core features of some AOP languages.

Core features are selected by comparing some of the AOP language extensions.

As AOP paradigm is rapidly maturing we have AOP language extensions for many of

the existing programming languages such as Java, C, C++, SmallTalk, Haskell, ML,

PHP and XML. However, in this research we only study the features of AspectJ,

AspectS and AspectML. AspectJ is chosen because it is considered as the flTst

complete and powerful language extension for AOP. It possesses a wide variety of

AOP language features. Features of other AOP language extensions (e.g. AspectC,

(hapter 1: Introduction

AspectC++) for existing languages that follow OOP approach (E.g. C, C++) can be

consideredassubsetsofthefeaturesofAspect!.

Like Aspect!, AspectS follows OOP approach. However, because AspectS supports

dynamic AOP (will he discussed in Chapter}), it is also considered for this study.

Thisisa fact that the use of several languages provides some generality. As a result,

we wanted to keep aAOP language extension of an existing language(e.g. Haskell,

ML, etc) that belongs to the family of functional language. Since AspectML is well

developed and widely used among these languages, it is also includedinourstudy.

1.5 Objectives

The objectives of this research are:

• TostudyAOP languages in order to identify their sirnilarities and differences.

• To develop a platform independent UML-based model (PIM), which will be a

UML profile for the AOP paradigm. The model will allow aspect modeling to be

used within existing, mature software tools.

• To develop an example of atransformation fromaPIM to platform-specificcode.

• To find a way to handle the features unique to theAOP languages that we are

studying.

1.6 Thesis Structure

Chapter I introduces AOP paradigm. It sbows the necessity of the paradigm. It also

introduces both aspect-oriented programming and aspect-oriented modeling along

with the basic terminology used for these two.

OJapterl:Introduction

Chapter 2 provides a broad overview of AOP languages that we study. This helps the

reader who is not very familiar with AOP to develop some idea of AOP languages. A

running example and its implementation in three different languagesallow us to have

a comparative picture of the languages that we study.

Chapter 3 focuses on two different AOP approaches: static and dynamic. Since the

languages that we study do not follow a single approach from these two,this chapter

providesadetailedoverviewoftheseapproaches.ltalsodoesexplain the difference

betweendynarnic and static AOP.

Chapter 4 compares the three languages that we study. This chapter provides a

detailed overview of different features ofeach language. The runningexample is used

to demonstrate how the different languages can be used to implement a solution to the

same problem. Thus it helps to select the core featuresofAOP languages.

Chapter 5 elaborates the discussion on AOM. It includes some of the prior works

relatedtoourresearch.italsoaimstodevelopagenericUML"profile"thatcanbe

used to model aspect-oriented system.

Chapter 6 demonstrates the application of the developed profile. it illustrates base

model for fiveexarnples. The developed profile is applied to both static and dynarnic

model for each exarnple.

Chapter 7 presents code generation for each application shown in Chapter 6. it

presents XSLTs to generate Aspectl and AspectS code from the model to which the

generic profile is applied.

ChapterS focuses on overall discussion on this research. it includes the importance

and limitations of the developed profile.

O1apter 1: introduction

Chapter 9 presents the summary and conclusion of this research work. It also

highlights some possible future works that can be done byextendingthis research.

C1Japter2: M OverviewofAOP Languages

Chapter 2

AN OVERVIEW OF AOP LANGUAGES

2.1 Running Example

The Shopping-Cart problem given in [I] is an example that clearly shows how code

scattering occurs in a conventional implementation when some features such as

logging are added to it. It also reveals the necessity of modularizing cross-cutting

concerns. The basic functionalities of Shopping-Cart without logging are implemented

using the following classes: Item class, Inventory class, ShoppingCart class,

ShoppingCartOperator class and a Test class.

Listing 2.1 represents the Item Class. This class models the items which can be

purchased. This class has a constructor and three public methods: getIdO,getPriceO

andtoStringO. ThegetIdO and thegetPriceO methods provide the identifier and price

of the item respectively. ThetoStringO method simply sets the formatofanitemtoa

string.

Chapter 2: Atl OverviewofAOP Languages

Listing2.1Ilemclass
public class Item {

privateStrinq_id;
float""'price;

Item(Strinqid,floatprice)

}....price=price;

publicStringgetID(){

return id;

}

publicfloatgetPrice(){

}returnyrice;

publicStringtoStrinq(){

return"Item:"+ id;

The Inventory class, shown in Listing 2.2, represents the list of items available for

purchasing. This class has two public methods: addItemO and removeItemO. Both of

tbese methods take an item as argument which can be added to nr removed from the

existing item inventory using these two methods.

Llsdn2.2Invenloryclass
importjava..util.*;
public class Inventory {
privateList_items=newVector();
public vcid addltem(Item item) {

items.add(item);
)

public void removeltem(Item item) {
_items.remove(item);

TheShoppingCartclass shown in Listing 2.3 represents the listofitemsinashopping

cart of a customer. The two public methods addltemO and removeltemO are

respectively used to add and delete specific items fromtheshoppingcart's item list.

(1Japter2:MOverviewofAOPLanguages

Listing2.3ShoppingCartclass
importjava.uti.l.*;
publicclassShoppingCart{

::~~::eV~~:tad~:::(;t:wi::~07();
}_items.add(item);

public void removeltem(Item item) {
items.remove(item);

I
I

The ShoppingCartOperator class is used to model the operations related to a

purchase. This class has two static public methods: addShoppingCartitemO and

removeShoppingCartitemO. The purpose of these two methods is to update both lists:

inventory and shopping cart. The method addShoppingCartitemO is used to model a

"purchase of an item" by adding an item to the shopping cart and deletingthesame

item from the inventory. On the other hand removeShoppingCartItemO is used to

model a "return of an item" by removing an item from the shopping cart and adding it

back to the inventory. The entire ShoppingCartOperator class with all the above

mentioned methods is shown below in Listing 2.4

OIapter2:AA OverviewofAOP Languages

Listing2.4ShoppingCartOperatorclass
publicclassShoppinqCartOperator{

public static voidaddShoppinqCartltem(ShoppingCart SC,

Inventory inventory, Item item) {
inventory.removeltem(i.tem);

sc.addltem{item):

I
public static void removeShoppinqCartltem(ShoppingCart sc,

Inventory inventory, Item item) {

sc.removeltem(item);

}inventory.addltem(item);

I

Listing 2.5 shows the Test class that tests the functionality of the classes discussed

above. This class does not print any text message as output. However,within the class,

at first, three items are added to the inventory list. Then, using the method

addShoppingCartltem of ShoppingCartOperator class, two of the previously added

item are added to the list of shopping cart, and are deleted from the Iistofinventory.

Li,ling2.5Testcl...
public class Test {
publicstaticvoidmain(Strinq[]arqs){

Inventory inventory = new Inventory():
ltemiteml = new Item("l", 30);
ltemitem2=newltem("2",31);
ltemitem3 = new Item("3", 32);
i.nventory.addltem(item1);
inventory.addltem(item2);
inventory.addltem(item3);
ShoppingCartsc=newShoppingCart();
ShoppingCartOperator.addShoppi.ngCartltem(sc, inventory, i.teml);
ShoppingCartOperator.addShoppingCartltem(sc, inventory, item2);

I

done in a similar fashion as in [I] by using the library class provided in lava for

(1Japter2:MOverviewofAOPLanguages

logging. Listing 2.6 shows the modified version of Test class with logging

functionality.

Listing 2.6 Testclass(modifiedversion-2)
java.uti1.Date;
class Test {

staticvoidmain(Strinq[]arqs){
Datedate=newDate();

System.out.println(date+"Testmain"+"\nINFO:
Entering");

//restof the method's body should be same

Instead of using the Java library class Logger, for simplicity, belterperformance, and

code reuse (in laterSections),weuse some conventional print statementsintheabove

example. In order to see the execution information as shown in Figure 2.1, it is

required to write the same type of logging code inside each related class and its

Figure 2.1: Output of the shopping-cartprograrn with "logging"

(1Japter2:M OverviewofAOP Languages

The repetition of this same logging code in several classes of this system is

introducingcodescanering.Furthermodificationtothissystemcanalsolead to more

formsofcodescaneringand code tangling. AOP language implementations provide

the techniques to solve the code tangling and code scanering problems. Brief

overviews of some of the AOP language implementations are given in the following

sections along with some examples. Our running example shopping-cart is also

implemented in each of the discussed AOP languages.

2.2 AspectJ

2.2.1 An Overview of AspectJ

AspectJ[3] is a widelyused,general purpose, aspect-oriented language extension to

the Java prograrnming language. BeinganextensiontoJava,everyvalidJavaprogram

canbeexecutedasa valid AspectJ program. AspectJ adds to Java new constructs to

specify the weaving rules programmatically: aspect, join point, pain/cut, advice,

introduction and compile-time declaration. The class files produced by an AspectJ

compiler conform to the Java byte-code specification. As a result,theseclassfilescan

be executed by any compliant Java virtual machine (YM). Since it uses Java as the

base language and retains all the benefits of Java, it is easy for programmersfroma

JavabackgroundtounderstandtheAspectJlanguage.AnAspectJfileshouldbesaved

with.ajextensionand can include constructs from Java and AspectJ inil.

2.2.1.1 Aspect

InAspectJ,anaspect is like a class in Java. It can include data members andmethods

and can have access specifications, but it cannot be instantiated directly. An aspect

(1Japter2: An OverviewofAOP Languages

can have an access specifier (visibility) of "privileged" in order to read and write the

private members of the classes it is crosscutting [I]. It can extend classes and abstract

aspects, as well as implement interfaces. However, to reduce complexity, aspect

inheritance is limited to only inheriting from abstract aspects but not from concrete

aspects [3]. Moreover, an aspect can be embedded inside classes and interfacesasa

nested aspect. Figure 2.2 shows an AspectJ file where aspect HelloWorld is declared

as a public aspect. !tcontains a pointcut and an advice in its body. However it is

possible to modify the aspect by including some regular variables and methods in it.

pointcut d~11v~rMl!~~agl!()

: call (It Test.. deliver (
bet'ore():delivt!!rMessaqe(){

Syst.em.out..prlnt("HelloWorlci!");

I

Figure 2.2: An AspectJ file named HelloWorld

2.2.1.2 JoinPoint

AspectJ allows adding new behavior in some special parts or areas known as join

pointsofaprogram. In AspectJ, the join points are mainly exposed as: method join

points, constructor join points, field access join points, exception handlerexecution

joinpoints,classinitializationjoinpoints,objectinitializationjoin points, object pre-

initialization join points and advice execution join points. On the other hand, loops,

super calls, throws clauses, or multiple statements are not exposed as join points in

AspectJ. Each of the above mentioned categories of exposed join points can include

one or more types ofjoin points. For example, the methodjoinpointcategoryexposes

O1apterl:IVlOverviewofAOPLanguages

both method calls and executions. Figure 2.3 sbows a Java class named Test in which

both the method call and method execution join points are exposed when an AspectJ

file is used in parallel to select those as pointcuts.

Figure 2.3: A class named Test in Java

InAspectJ,apointcutcan both specify a single join point ina system and match a set

of join points. It can be either anonymous or named. A named pointcut is defined

using tbe keyword paintcut and can have access specifiers. On the other hand, an

anonymous pointcut can be specified as part ofan advice [I].

Join points in AspectJ are specified using pointcut designators. The pointcut

designators match join points in AspectJ eitberby capturing join points based on the

category to which they belong or by capturing join points based on matching the

execution circumstances under which they occur. AspectJ allows the following types

of pointcuts:

C1>apter2:Aro OverviewofAOP Languages

a) Kindedpointcuts:

Each exposed join point mentioned earlier has a specific pointeutdesignator, which is

used to capture a join point from the program flow. However, all of these pointeut

designators follow a particular format of syntax. Asaresult, they fall into the category

ofkinded pointeu!. Table 2.1, taken from [I] shows the mapping between each

exposed join point and its corresponding pointeut designator.

Table 2.1: Mapping of exposed join points to pointeutdesignators

The signature to be used in each pointeut designator is clearly described in both [I]

and [13] along with examples. However, the following (Figure 2.4) is a simple

example ofa named pointeut where the name of the pointeut is deliverMessage.

As the signature part contains a method signature,looking at the above table it is

c1early visible that this pointeut selects a method call join point, i.e. the call to the

deliver method of TeSI c1ass showed in Figure 2.3.

O1apter2:Pl10verviewofAOPLanguages

Figure 2.4: An exampleofa named pointcut (adapted from [I]

b) Controi-flowbasedpointcuts

These pointcutscapturejoin points based on the control flow of join points captured

by another pointcut [I]. InAspectJ,control-flowbasedpointcutscan be categorized as

i. cflowO

ThecjlowO pointcuttakes a pointcut as argument and captures all the join points in

the control flow of the specified pointcut, including the join points matching the

pointcutitself.

ii. cFlowBelowO:

The cFlowBelowO pointcut takes a pointcut as argument and captures all the join

points in the control flow of the specifiedpointcut, excluding the join points matching

thepointcutitself.

c) Lexicai-structurebased pointcut

Lexical-structure based pointcuts capture join points occurring inside a segment of

source code of specified classes, aspects and methods [I]. There are two pointcuts in

this category:

Chapter 2: An OverviewofAOP Languages

i. witilinO

The witilinOpointcut is used to capture all the join point specified withinthebodyof

thespecifiedclassesoraspects,includingthenestedclasses[l].

ii. witilincodeO

The witilincodeO pointcuts can have the fonns like withincode(MethodSignature) or

withincode(ConstructorSignature). They are used to capture all the join points inside a

lexical structureofa method or a constructor, as well as any local classes in them [I]

d) Executionobjectpointcuts

These pointcuts match the join points based on the typesoftheobjectsatexecution

time. They are also used to expose the context of the specified join point. This

category consists of the followingpointcuts:

i.tilisO

til is refers to the current object. Therefore,thetilisO pointcutselects all the join points

associated with the current object.

ii. targetO

target refers to the object on which the method is called. The targetO pointcut is

usually used with method call join point. It is used to select thejoinpointsassociated

with the object on which the method is invoked.

O1apter2:Pl10verviewofAOPLanguages

e) Argumenlpoinlculs(argsQ)

The argsO pointcut can expose the context at the matched join point. The empty

bracket after the name ofthepointcut indicates that it does not expose the context of

thejoinpoint.

f) Conditional check pointcuts(if0)

Conditional checkpointcut captures join points on the basis of some conditional check

at the join point [I]

Advices of AspectJ are similar to methods of Java. But they have some differences as

• Cannot be called directly (it is the system'sjob to execute it)

• Does not have an access specifier

AspectJ allows different types of advices as a means to specify code to run at a join

point.

Advice is invoked automatically by the AOP runtime when the pointcut matches the

join point. AspectJsupports following three types of advices:

a) Before advice:

Before advice allows adding new behavior before the specified join point.

Chapter 2: M OverviewofAOP Languages

b) After advice:

After advice allows adding new behavior after the specified join point

c) Around advice:

Around advice has the ability to bypass the join point, allow ittoexecute as it is, or

execute it with changed context.

2.2.1.5 Static Crosscutting

AspeetJ allows static crosscutting (also known as introduction)./ntroductionaffeets

the static structure of programs through crosscutting. Using introdlIction it is possible

to introduce changes to the classes, interfaces, and aspects of the system [1].

2.2.2 Running Example in AspectJ

When implementing the running example ShoppingCart in AspeetJ, the base model is

kept without any logging code. As shown in Listing2.7,theerosseuttingeoneernsare

modularized in an aspect named TraceAspect. The pointeut named traeeMethodsO

selects all the method execution join points specified bythewildeardsintheprogram

flow, except those within the lexical scope of the TraceAspectaspeet.

Listing 2.7 TraceAspectAspect in AspectJ

importjava.util.Date;
importorg.aspectj.lanq.*;
public aspect TraceAspect{
poi.ntcuttraceMethodsO
:executi.on(*·,*(.. »'&!within(TraceAspect);

before() :traceMethods(){

Datedate=newDate();

Siqnaturesig=thisJoinPointStaticPart.getSignature();
System.out.println(clate+""

+siq.qetDeclaringType().getName()+" "+sig.getName()+"\n

OJapter2:MOverviewofAOPLanguages

INFO: Entering");

}

ThepointcuttraceMethodsO is then advised by the before advice, which places the

logging code before each of the method execution specified by the pointcut itself.

Figure 2.5 shows the output of the ShoppingCart example implemented in Aspect!.

Although this implementation produces the same output as the one (Figure 2.4)

produced by the example implemented without aspects, the difference here is that a

programmer does not need to write logging code in each method of each class. As a

result, in the current implementation the crosscutting concerns are modularized.

Therefore, the logging feature does not create codetanglingorscatteringinthis

example.

Wed Jun 03 00:53:23 NDT 2Q09 Testmaln
INFO:E:nterlng

WedJun03 OO:S3:21NDT2009 Invencoryaddltem
INFO: Enterlng

WedJun 03 00:53:24 NOT 2009 Invencoryaddltem

INFO: Eneerlno
Wed Jun 03 00:53:21 NDT2009 Inventoryaddltem

INFO: Entering
Wed Jun03 00:53:2'9: NDT2009 ShoppinqCartOperatoraddShopplngCareItem

INFO: Encering
WedJun0300:53:2'!NDT2009Inventoryremoveleem

INFO:E:nter1nq
Wed Jun 03 00:53:24 NDT 2009 ShopplnqCart addlt:em

INFO: Eneerinq
Wed Jun 03 OO:53:24NDT2009 ShoppinqCartOperatoraddShoppinlJCareItern

INFO: Enter1nq
WedJun0300:53:24NDT2009Inventoryremovelt~

INFO: En1:erlng
Wed Jun 03 00:53:24 NOT 2009 Shoppi.nqCart addI~em

INFO: Ente:rinq

Figure 2.5: Output of the ShoppingCart example in Aspect!

Chapter2:IVlOverviewofAOPLanguages

2.3 AspectS

2.3.1 An Overview of AspectS

AspectS [6] is an AOP implementation for the Smalltalk or Squeak' environment. It

mainly draws on the results of two projects: AspecU[3], and John Brant's

MethodWrappers'[14j.lnitscurrentimplementation,AspectSisrealizedusingplain

Smalltalk only, changing neither Smalltalk's syntax nor its virtual machine. As a

result, AspectS also complies with following language properties of SmallTalk:

• Everything(e.g.c1ass,instancesofclass,etc)isanobject.

• All communications are done using method passing between objects.

• Classes inherit via single inheritance.

• Thedefauitaccessspecificationisasfollows:

Table 2.2: Access Specification

AspectS

All the examples related to AspectS are written in this text usingSqueakversion3.8

and AspectS version 0.6.6. AspectS version 0.6.6 is available in [9]

2 Squeak isanopen, highly portable Smalltalk·gO implementation. Itsvirtualmachineiswrittenentircly

in Smalltalk.The terms Squeak and Smalltalkareused intcrchangeablyin this text.

J MethodWrnppers is a powerful mechanism to add behavior to a compiled Small talk method

Chapter 2: k1 OverviewofAOP Languages

Thepackages,classesandmethodsinSqueakcanbefoundinSqueaksystembrowser

shown in Figure 2.6.

Figure 2.6: Opening system browser in Squeak

We create a new category named Hello World. Then we create a class named Test

inside the category HelloWorld as shown in Listing 2.8.

Lisling2.8 Test class in Squeak
Objectsubc1ass:#Test

instanceVariableNames: "

A method named deliver is created as shown in Listing 2.9.

Listing 2.9 deliver method of Test class in Squeak

Chapter2:Pl10verviewofAOPLanguages

The code shown in the workspace4 (Figure 2.7 a)ifexecuted,producesoutputinthe

transcript'window (Figure 2.7 b)

orkspace Transcript

b. Out put of thy Hello World

I:
Figure 2.7: Workspace and transcript window in Squeak

The above example was implemented using the object-oriented programming

techniques available in SmallTalk. To implement the example using AOP technique

one must make sure that the AspectS plug-in is installed. The installation link is

available at [9].

2.3.1.1 Aspects

In AspectS, aspects are units of modularity that represent implementations of

crosscutting concerns. They are identical to regular classes of SmallTalk. For

example, an aspect BejoreHelloWorldcan be created in the same category of Tesl

class discussed in the previous section. The only difference is that they are defined as

a subclass of the class AsAspecl as shown in Listing 2.10.

4 Workspaces arc useful for typing snippets ofSmalltalk code to experimentwith.Itcanbealsouscd

for typing arbitmrily text to remember, such as to~o lists or instructions for anyone who will use the

::s:::~~SCript is an object that is often used for logging system messages. It is a kind of"system

Chapter 2: M OverviewofAOP Languages

Listing 2.10 BejoreHe//oWorid Aspeet In As eelS
AsAspectsubclass:#BeforeHelloWorld

instanceVariableNames: "

classVariableNames:'
poolDictionaries: '
category: 'HelloWorld'

Since AspectS is implemented without changing the SmallTalk syntax and virtual

machine, the language features are the same for both AspectS and SmallTalk. For

example:

• Aspects can extend classes and aspects.

• As Smalltalkdoes not support interface, aspects cannot implement interface.

• Aspects cannot be embedded inside classes as nested aspects

• In AspectS, an aspect is installed by sending an install message to theinstanceof

the aspect. An installed advice can be deactivated by sending the uninstall

message to the same aspect instance.

• Aspects can be directly instantiated.

The weaving process in AspectS happens by sending an install message to the aspect

instance (Figure 2.8). For unweaving or reversing the effectofaspect installation, the

uninstallmessageistobesentthesameaspectinstance. Weaving and unweaving in

AspeclScanbecharacterizedascompletelydynamicsinceithappens at runtime.

Chapler2:AnOverviewofAOPLanguages

Figure 2.8: Dynamic weaving in AspectS

Method execution is the only join point supported by AspectS. Itcanbedefinedasan

object ofAsJoinPointDescriptor class (shown in Listing 2.1 1) or a subclass of it. The

class AsJoinPointDescriptor contains astatic melhod targetClass:targetSelector:that

specifiesthemethodtobeselectedasjoinpoint.

Listing 2.11 AsJoinPointDescriptorClassinAspectS
Objectsubclass:#AsJoinPointDescriptor

instanceVariableNames:'targetClasstargetSelector'
classVariableNames: ,t

poolDictionaries: '
category· 'AspectS-Aspects'

2.3.1.3

ApointcutinAspectS is a set ofjoin points. It can be assigned to a variable which can

then be passed as a method parameter. For example in Listing 2.12,jpsetJ is a

pointcutthatselectsthedelivermethodofTestclassasjoinpoint.

(1Japter2: Pl1 OverviewofAOP Languages

Listing2.12Pointcul inAspectS

I jpsetl I
jpsetl:=[{AsJoinPointDescriptor targetClass:Test

tarqetSelector:'deliver)].

An advice in AspectS is an object of the AsAdviceclass. This advice object can be

defined in the Squeak workspace and passed as a method parameter. Despite this,the

most common way to defme an advice object is 10 define it within a special method.

The method is special because the name of the method starts with the prefix"advice"

and the method returns an advice object (object of any of the subclasses of AsAdvice).

The subclasses of AsAdvice are: AsBeforeAfterAdvice, AsAroundAdvice,

AsHandlerAdvice and AslntroductionAdvice. AspectS allows defining five different

types of advices using these subclasses of AsAdvice. Usually each advice object is

composed of the following components:

• Advice qualifier: an object of type AsAdviceQualifier which allows the

descriptionofdynarnic attributes ofa pointcut related to an advice. Section 2.3.1.5

provides a briefdiscussion on different advice qualifier attributes.

• Pointcut:asetofjoinpointsorapointcutobject.

• Block context: a code block which contains the crosscuttingbehavioralongwith

the context information from join points.

a) AsBeforeAfterAdvice

An object of AsBejoreAjierAdvice allows adding behavior before thejoinpoint,after

thejoinpoint, or both before and after the join point.

O1apter2: fJll OverviewofAOP Languages

Listing 2.13 adviceBefore method of BeforeHelloWorld Aspect

adviceBefore
A AsBeforeA£terAdvice

qualifier: (AsAdviceQualifier
attributes: (#receiverClassSpecific})

pointcut: [{AsJoinPointDescriptor
targetClass:TesttargetSelector:'deliver}]

s:::~r~Bl~;:~l~:::~;~ver,~~rqument8 :aspect :client I Transcript

The method adviceBejore. as shown in Listing 2.13, returns an object of

AsBejoreAjterAdvice.lntheadviceobjectthepresenceofabefore block indicates that

thisadvicewillplacethemessage"HelloWorld"beforetheexecution deliver method.

The same type of object can also be used to add behavior after a certainjoin point by

replacing the bejoreBlockwith anajterBlock. The method adviceAjter in Listing 2.14

returns the object of type AsBejoreAjterAdvice which has an ajterBlockin it. Asa

result,thisadviceaddsthe message "Goodbye World" after the execution of deliver

Listing 2.14 adviceAjler method of AjterHelloWorld Aspect

"AsBeforeAfterAdvice

qualifier: (AsAdviceQualifierattributes:
('receiverClassSpecific})

pointcut:({AsJoinPointDescriptor
targetClass: TeattargetSelector: #deliver)]

afterB!ock: [:receiver:arquments:aspect:client:returnl
Transcript show: • Goodbye World. '.]!!

However,toaddsomebehaviorbothbeforeandafterthejoinpointboth bejoreBlock

and ajterBlock should be used within the same advice object of AsBejoreAjterAdvice

C1lapter2:Ar10verviewofAOPLanguages

b) AsAroundAdvice

The object of type AsArolindAdvice is used to modify behavior around a method

execution. The arolindBlockwithinthe object holds the informationofbehaviortobe

placed around the join point. The method adviceArolind in Listing 2.15 returns the

object of type AsArolindAdvice. This advice replaces the existing behaviorofdeliver

method with the message "Welcome to AspectS".

Listing 2.15 adviceAround method of AroundHelloWorld Aspect

"AsAroundAdvice

qual.ifier: (AsAdlvicel;luali.fierattribut".,
pointcut: [(AsJ'oinP"intDescrilptor

c) AslntroductionAdvice

The objectofAsintrodlictionAdvice is used to introduce new behaviorintheprogram.

For example, let us assume that we have an aspect named IntroHello World under the

category HelloWorld. The method advice1ntro of IntroHelloWorld as shown in Listing

2.16 returns an object of AslntroductionAdvice to introduce a new method named

deliver2toaclassnamedTest.Themethods'bodyisdefinedinsidetheintroBlock.

Listing 2.16 advice1ntro method oflntroHelloWorld Aspect

A AslntroductionAdvice
qualifier: (AsAdviceQualifierattributes:{#receiverClassSpecific})
pointcut: [{AsJoinPointDescriptor

tarqetClass:TesttarqetSelector:#deliver2}]

[:receiver:arquments:aspect:clientl
Transcript show; 'Hello Intro'.]

Chapter 2: N1 OverviewofAOP Languages

Figure 2.9 shows that if we enable the IntroHelloWorld aspect, the method deliver2 is

created as it is introduced by the AslntrodlictionAdvice. Asaproo f,ifwecalldeliver2,

the execution of this method produces the output "Hello Intro" in the transcript.

However, if we disable the aspect the AslntrodlictionAdvice is no more in effect. As a

result, the call to the method deliver2 ends up producing an error.

Figure 2.9: Testing a method introduction using AslntroductionAdvice

Like the above example, within a same AslntrodlictionAdvice objectmultiplemethods

to same or different class can be introduced. However, because each

AslntroductionAdviceobjectconsistsofa single introBlockthat defines the body of

themethodormethodstobeintroduced;ifmultiplemethodsareintroducedusingthe

same AslntrodlictionAdviceobject, all methods will have the same body.

d) AsHandlerAdvice

An object of AsHandlerAdvice allows placing an exception handler around the

sending ofa message. Besides having the components similar to the previousadvices,

it includes an additional component to specify an exception class. An exception

handler block is executed only when the sending of the message resultsinsignaling

Chapter2:AA OverviewofAOP Languages

such an exception [6]. For example, assume that AspectHandleraspect is having a

method named adviceException as shown in Listing 2.17. The AsHandlerAdvice

object includes Error class as an exception. Whenever an error of type Error is

signaled,anexception is raised and handled by the handler block.

Listing 2.17 adviceException method ofAspectHandler Aspect

adviceException
"AsHandlerAdvice
qualifier: (AsAdviceQualifierattributes:{#receiverClassSpecific})
pointcut: [{AsJoinPointDescriptor

targetClass:TestHandlertargetSelector:#deliver}]
exception: Error
handlerBlock: [:recei.ver:arquments:aspect:client:exlexsiqnal.

Transcript show: 'Exception HancUed'.].

2.3.1.5 AdviceQualifier

AsAdviceQualifierhas a class method named attributes which takes a set of advice

qualifier attributes. Advice qualifier attributes are grouped roughly into the following

two categories: Senderl receiver aware activation and Cflowactivation[6].

Sender/receiveraware activation can be further classified as receiver-class-specific,

receiver-instance-specific, sender-class-specific, and sender-instance-specific. On the

otherhand,cflowactivationcanbe furtherclassifiedasclass-frrst,class-all-but-frrst,

instance-frrst,instance-all-but-frrst,super-first,andsuper-all-but-frrst.

In an advice, these attributes should be specified with certain constraints. First,

attributesmustbevalid.Second,asetofattributescannotbeempty. Finally, at most

one sender/receiver attribute must be present in each attribute set.

(1Japter2:/VlOverviewofAOPlanguages

a) Sender/receiverawareactivation

i. ReceiverClassSpecijic:

A receiver-class-specific advice affects all receivers of the message that are an

instance ofa certain class [6]. For example, in Listing 2.14, Test class was the

receiver. As shown in Figure 2.10, both the instances lesl and lest1 of Test class

receive the message deliver. Since deliver was the target selectorofthereceiverclass

specific advice shown in Listing 2.14, both of these instances are affected by this

Figure 2. I0: Weaving of AfterHelloWorld Aspect

ii. ReceiverlnstanceSpecijic:

A receiver-instance-specific advice affects certain receivers 0 fthe message that are an

instanceofa certain class. Moreover, instances of prospective receivers should be

added to or removed from the advice's aspect [6]. For example the advice in Listing

2.18, is a receiver-instance-specific advice. Although here the target class and targel

selectoraresimilartothepreviousexample,thistimeonlyspecificinstances that are

added as the receiver of the advice's aspect are affected bytheadvice.

OIapter2:Pl10verviewofAOPLanguages

Listing 2.18 adviceAfter method of AfterHel/oWorldRIS Aspect

"'AsBeforeAfterAdvice
qualifier: (AsAdviceQualifierattributes:

{'receiverlnstanceSpecific})

pointcut: [{AsJoinPointoescriptortargetClass:TesttargetSelector:
'deliver}]

afterBloclc: [:receiver:arquments:aspect:client:returnl

Receiver Instance Specific
e!terRlS:-ArterHelloVorldRISnev.

afterRISaOdR~eiver:te$t

arterRISremoveReeeiver:test.

Figure2.11:WeavingofAfterHelloWorldRlSAspect

As shown in Figure 2.11, both the instances lesland lestJ of Test class receive the

message deliver. However, the receiver instance specific advice affectsonly test, since

it is added as the receiverofAjterHel/oWorldRISaspect.

iii. SenderClassSpecijic:

A sender-class-specific advice qualifier attribute can be specified with the code shown

If the qualifier in Listing 2.19 is replaced with this code, tbetargetclassTestwillbe

affected only if the sender isofa certain class or its subclasses. Moreover, sender

classes should be added to or removed from the advice's aspect [6].

Chapter2:AAOverviewofAOPLanguages

For example, as shown in Listing2.19,testl of Test class iscreatedwithinthebodyof

method newMethod of NewTest class and then the message deliver is sent to testl. As

a result,NewTest can be considered as a sender class.

Listing 2.19 newMethod method of NewTest Class

Itestll
testl:=Testnew
testldeliver.

Figure 2.12: Weaving of AfterHelloWorldSCS Aspect

Now, as shown in Figure 2.12, the execution of deliver method is advised only when

NewTest is added as a sender class and an instance of NewTest receives the message

newMethod. Eventhoughtest2an instance of Test class receives the same message

deliver, it is not affected with the advice since this time NewTest class is not the

iv. SenderlnstanceSpecijic

A sender-instance---specificadvice affects the receivers ofmessagesthatareinstances

ofacertain class if senders are some specific instances ofa certain sender class.

Moreover, prospective senders are to be added to or removed from the advice's aspect

[6]

Chapter 2: AA OverviewofAOP Languages

For example, if the qualifier in Listing 2.19 is replaced with the above mentioned

code, it will work as a sender-instance-specific advice. As fest, a particular instance of

NewTest Class (shown in Figure 2.13) is added as a sender of AjterHelloWorldSIS

aspect,theadviceaffectsthereceiversonlywhenthesenderisfeSf, but not the other

Figure 2.13: Weaving of AfterHelloWorldSIS Aspect

b) CFlowactivation

In AspectS, with a ctlow advice, the activation test examines the basecontextchain

(Smalltalk'sstack) for one of the following conditions dependingon the type ofctlow

attribute specified in the advice qualifier attribute set [6]:

• one or more appearances of the receiver instance in it

• a send of the current message to super

The following is an implementationofa factorial example with object recursions to

examine and understand different types ofctlow advices:

Chapter2:f>J1 OverviewofAOP Languages

The base class AsFactoria/M for this factorial example is shown in Listing 2.20. It

Listing 2.20 AsFactorialMClass

Objectsubclass:#AsFactorialM
instanceVariableNames: 'other'

classVariableNames: '
poolDictionaries: '
category: 'ModifiedFactorial'

The method initialize: shown in Listing 2.21, receives an object or instance of

AsFactoria/Mclassand sets the value of instance variable other with the object.

Listing 2.21 initialize method of AsFactorialM Class

The method other: shown in Listing 2.22, whenever called, works like the previous

Listing 2.22 other method of AsFactorialM Class

Themethodfactoria/: shown in Listing 2.23 recursively calls itselfandfinallyretums

an integerifand only if the argument passed to it is nota negative number.

Listing 2.23 factorial method of AsFactorialM Class

Chapter2:AAOverviewofAOPLanguages

To trace the above program, we create an aspect named Trace containing a method

adviceTrace (as shown in Listing 2.24). Method adviceTrace returns a receiver-c1ass-

specific advice which is activated with the execution of factorial: method of

AsFactorialMclass.Thisadvicedoesnotcontainanyoftheadvicequalifier attributes

ofcflow type but helps to trace the method execution each time with itsparameterand

Usting 2.24 adviceTrace method of Trace Aspcct

arqun,ents;PrinltStri,ng:::~~~nt :return I

The codes shown on the left part of Figure 2.14 are the codes to be written in the

workspace. We create two instancesfactl andfact2 of AsFactorialM class. Using the

method initialize: and other: we switch over between these two instances while calling

the factorial: method recursively. The reason behind using the two instances is to

examine the differences between cflow attributes in later sections. The right part of

Figure 2.14 shows the output produced in transcript after executing the code in the

workspace.

Chapter 2: M OverviewofAOP Languages

Figure 2.14: Workspace code and output of the factorial example

A c1ass-flfst advice is activated onanobject-recursion's flfstmethodinvocation[6].lf

the advice qualifier attribute set of Listing 2.24 is replaced with the foJlowingcode,

the advice wiJl be workingasa class-flfstadvice

qualifier: (AsAdviceQualifier
attributes: {#receiverClassSpecific.#cfFirstClass.})

Thisclass-flfst advice wiJl be triggered onJywhen the methodjacroria/:isinvokedfor

theflfsttimebytheinstanceofAsFacroria/Mclass.ltistobenotedthat this method

invocation is class dependent. As a result, no matter how many instances are used to

invoke the method, as shown in Figure 2.15, only the flfst invocationwiJl be advised.

Figure 2.15: Transcript for Class First Attribute Example

Chapter2:AAOverviewofAOPLanguages

A c1ass-all-but-first advice will trigger activation on object-recursions other than the

first method invocation [6]. If the advice qualifier attributes set of Listing 2.24 is

replaced with the following code, the advice will be workingasa c1ass-all-but-flfst

qualifier: (AsAdviceQualifier
attributes: {#receiverClassSpecific.#cfAllButFirstClass. })

Class-all-but-flfstadvice will be triggered every time except for the first time when

the method factorial: is invoked by the instance of AsFactorialM class. As this

method invocation is class dependent, no matter how many instances are used to

invoke the method, as shown in Figure 2.16, all the invocations except the first one

will be advised by this advice.

Figure 2.16: Transcript for Class All But First Attribute Example

An instance-flfstadvice will trigger activation on a method-recursion's flfstmethod

invocation [6]. If the advice qualifier attributes set of Listing 2.24 is replaced with the

followingcode,theadvicewillbeworkingasaninstance-flfstadvice.

C1Iapter2:AAOverviewofAOPLanguages

qualifier: (AsAdviceQualifier
attributes: {#receiverClassSpecific.#cfFirstlnstance.})

For the factorial example, an instance-first advice will be triggered only when the

methodfactoria/: is invoked for the first time by the instances of AsFactoria/Meiass.

Since this method invocation is instance dependent, each instanee will be considered

separately. Moreover, in this example, as we switch between instances of

AsFactoria/M class, the first invocation by facti with the argument 5 and the first

invocationbyfact2 with the argument 4 will be advised by this instance-firstadvice.

Figure 2.17, shows the output produced in the transcripts after installing an aspect

l5JOer Transcript
Execution vith: -(~)

Executionvith:'('1)

Figure 2.17: Transcript for Instance First Attribute Example

An instance-all-but-first advice will trigger activation on a method-recursion other

than the first method invocation [6]. If the advice qualifier attributes set of Listing

2.24, is replaced with the following code, the advice will be workingas an instance-

O1apter2:AAOverviewofAOPLanguages

qualifier: (AsAdviceQualifier
attributes:{#receiverClassSpecific.#cfA1.1ButFirstlnstance.))

For the factorial example, an instance-all-but-first advice will be triggered every time

except when the method factorial: is invoked for the first time for each instance of

AsFactorialMclass. Since this method invocation is also instance dependent, each

instance here will be also considered separately. As a result, except for the first

invocation by facti with the argument 5 and the fust invocation by fact2 with the

argument4,theotherinvocationswillbeadvisedbythisinstance-all-but-fustadvice.

Figure 2.18 shows the output produced in the transcripts after instalIing an aspect with

Figure 2.18: Transcript for Instance First Attribute Example

v. SuperF/rst

To activate the super-fustcflowadvice,theSmalitalkstack isexamined for a send of

a current message to the super class. The advice is activated ifthere is no such send

[6]. For example we create a new class FactorialM with a method factorialU' as

shown in Listing 2.25. Also, we create a subclass SubFactorialM of Factor/aiM

(shown in Listing 2.26).

Chapter2:AA OverviewofAOP Languages

Listing 2.25 factorialM method of FactorialM Class

Transcript show: 'factorialMmethodofFactorialMclass';cr.
anlnteger<=lifTrue: {"l.]

a:~~::;:;r_ [..... anlnteger * (self factorialM:

selfarror: for negative integers.'.

Listing 2.26 SubFactorialM Class

in3tanceVal-iableNam~s

classVariableNames: I

poolDi.ctionaries: '

'HodifiedFactoric\l'

The class SlIbFaclorialM also possesses a method named faclorialM' (Listing 2.27)

from where the methodfaclorialM: of super class (FaclorialM) is called.

Listing 2.27 factorialM method of SubFactorialM Class

factorialM:anlnteger

Transcript show: 'factorialMmethod of SubFactorialMclass';cr

anlnteger<=lifTrue: [1.].
anlnteger> 1 i.fTrue: [anlnteger * (superfactorialM:anlnteger

-1).J.
selfarrer: 'Not valid for negative integers.'.

Listing 2.28 shows an advice method of AspeclSliperFirslM Aspect which returns a

super-ftrst cflow advice. Moreover, the method faclorialM' of super class i.e.

FaclorialMisspeciftedasthejoinpointinthisadvice.

Chapter2:M OverviewofAOP languages

Listing 2.28 adviceTrace method of AspectSuperFirstM Aspect

::~O~~:::;i~;';C:::'::se'lect"r:#factorialM:. I]
:aspect:clientl

argumlents;prin',Stri,og:cr.]
'client:returnl

To test the above advice, we execute the following code as shown in the left side of

Figure 2.19. Since the Smalltalk stack is examined for the sending ofa current

messagefactorialM: to the super (FactorialMj and suchsendingisfound,super-first

cflow advice remains inactive. As a result we can only see some test messages from

the methods generated in the Transcript (right side of Figure 2. 19).

Figure 2.19: Workspace and Transcript for Super First Attribute Example

vi. SlIperAII-Bllt-First

To activate the super-all-but-firstcflow advice, the Smalltalk stack is examined for

sending ofa current message to the super. The advice is activated ifsuch a message is

found [6]. For example, if the qualifier in advice method shown in Listing 2.28, is

modified with the following codes, the advice will work as a super-all-but-flfst cflow

Chapter 2: An OverviewofAOP Languages

qualifier: (AsAdviceQualifier

attributes: {#receiverClassSpecific.#cfAllButFirstSuper))

Now, the same code that was shown in the workspace for the previous example, if

executed,wheneverthe factorialM: of FactorialM class is called, super-all-but-first

cflowadvicewillbeactivatedasshowninFigure2.20.

Transcript

Figure 2.20: Transcript for Super All But First Attribute Example

The next section implements our ShoppingCart running example in AspectS.

2.3.2 RunningExampleinAspectS

While implementing the Shopping-Cart running example in AspectS, the base model

is kept without any logging code. The base model consists of four classes: Asltem,

Aslnventory, AsShoppingCort and AsShoppingCortOperator.

The Asltem class models the items that can be purchased. Thisclass has a constructor

methodinitialize:withprice:andthreepublicmethods:getld:,getPrice:andtoString:.

Thegetld: and thegetPrice: methods provide the identifier and price of the item

respectively.ThetoString:methodsimplysetstheformatofanitemtoastring.ldand

price of items are initialized and stored respectively in the instance variables idand

price.

(1Japrer2: M OverviewofAOP Languages

The Aslnventory class represents the list of items available for purchasing. This class

has two public methods: add/tern: and removeltem:. Both of these methods take an

item as argument which can be added to or removed from the existing item inventory

using these two methods. The list of items in the inventory is represented using the

The AsShoppingCarl class represents the list of items in a shopping cartofacustomer.

The two public methodsaddllemO and removeltemO are respectiveIyusedtoaddand

delete specific items from the shopping cart's item list maintained by the instance

The AsShoppingCartOperalor class is used to model the operations related to a

purchase. In the original example [I] this class has two static public methods to update

both the item lists of inventory and shopping cart. Since in AspectS static or class

level methods cannot be advised, we implement these two methods as regular or

instance level methods. The method shoppingCarl:invenlory:additem: takes an

instance of AsShoppingCart, an instance of Aslnventory, and the item to be added to

theShoppingCartlisl. The purpose of this method is to model a purchase of an item

by adding an item to the shopping cart and deleting the same item fromtheinventory.

On the other hand shoppingCart:inventory:removeitem: takes an instance of

AsShoppingCart, an instance of Aslnventory and the item to be removed from the

ShoppingCart list. This method is used to model a return of an item by removing an

item from the shopping cart and adding it back to the inventory.

OJapter2:AAOverviewofAOPLanguages

Listing 2.29 adviceTrace metbod of AspectSuperFirstM Aspect

"AsBeforeAfterAdvice
qualifier: (AsAdviceQualifierattributes:

('receiverClassSpecific})
pointcut: [{AsJoinPointDescriptor

targetClass:AslnventorytargetSelector:'addltem:.
AsJoinPointDescriptor

targetClass:AslnventorytargetSelector:#removeltem:.
AsJoinPointDescriptor

targetClass:AsShoppingCarttargetSelector:ftaddltem:.

AsJoinPointDescriptor
targetClass:AsShoppingCarttargetSelector:ftremoveltem:.

AsJoinPointDescriptor
targetClass:AsShoppinqCartOperatortargetSelector

ftshoppingCart:inventory:a.ddItem:.
AsJoinPointDescriptor

targetClass:AsShoppinqCartOpera.tortargetSelector:
#shoppingCart:inventory:removeltem:.}}

beforeBlock: [:receiver:arguments:aspect:clientl
Transcript show: (Datetoday)printStrinq,

(receiverclass)printStrinq;cr.
Transcript show: 'INFO:Enterinq ';cr.]

Tbe crosscutting-concerns for tbis example are implemented using an aspect Darned

Asper:tTrace. Tbe advice metbod named adviceLagging, sbown in Listing 2.29,

returns a receiver-class-specific advice tbat places some additional behaviors or

logging codes before and aftereacbjoin point

To test tbe entire example in workspace (Figure 2.21), we create demaAspect, an

instance of AspectTrace, and tben sendtbe install message to it. Next, an instance of

As[nventoryclassiscreated. Tbis instance is used to addtbreeitems intbe inventory

list. Subsequently,tbe instances of AsShoppingCart and AsShoppingCartOpemtorare

created. Aftertbat,tbe instances of Aslnventory and AsShoppingCart along witb tbe

OJaprerZ:An OverviewofAOP languages

items to be added to the ShoppingCart are passed to the methods of

AsShoppingCartOperatorclass.Lastly,theaspectisuninstalied

invaddItem: item!.
invaddltem:item.2.
invaddItem: itemJ.

Figure2.21: Workspace codes forShoppingCartexarnple in AspeclS

The execution of the above code in the workspace places the logging codes before and

after each join point mentioned in the advice of AspectTrace. The output in the

transcript is shown in Figure 2.22.

Chapter2:AAOverviewofAOPLanguages

Figure 2.22: Output for ShoppingCart example in AspectS

2.4 AspectML

2.4.1 An Overview of AspectML

AspectML is a typed, functional, aspect-oriented programming language based on ML

[8]. Besides providing aspect-oriented programming language features, AspectML

provides run-time type analysis and seamless integration of polymorphism. The

syntax of AspectML is an extension of the syntax of idealized AspectML [8] with

many common constructs following Standard ML. Anyone who is familiar with the

language ML and has some experience with at leastoneaspect-orientedprograrnming

language can easily work with AspectML. Since there are syntactical differences

between ML and AspectML, it is worth starting with some AspectML examples to get

familiar with the language.

O1apter2:AAOverviewofAOPLanguages

Example 1: Creating an empty list

In ML we can create an empty list as follows:

MLrespondswith:

But due to syntactical issue, in AspectML the same code ends up with an uncaught

exceptionerror.Onesolutiontothatproblemcouldbedefiningafunction which takes

anemptylistandcreateanemptylistandthenkeeptheresultofthefunction call ina

UunemptyList([])=[];

valc=emptyList([]);

In the above code, a function emptyLis(takes an empty list and producesanemptylist

as well. The result of the function call is an empty list which is kept in the variable

Example 2: Creating tuples

In ML creating a new type is very simple. We can create a type "Item" which is a

tuple of string and integer as follows inML:

The above type Item then can be used to crate items as shown below. In the following

code, iteml, item2, and item3 are three different items of type Item. Each of these

items is a tuple containing a string and an integer.

OJapter2:P<10verviewofAOPLanguages

-valitem1:Item=("1",30);

-valitem2:Item=("2",31);

-valitem3:Item=("3",32);

Unlike ML, we can't create a type in AspectML. However, tuples can be created by

using functions likecreateJtem, which takes a string and an integer as argument and

produces a tuple. The following code presents the function and its uses to create items

using AspectML constructs:

%funcreateltem.(id:Strinq,price:lnt)=(id,price);

%valitem1=createltem.("1",30);

Example 3: Creating a list of tuples

In AspectML a list of tuples can be created as follows:

The following output indicates that a list of tuple "a" has been created. It provides

detail information of the tvne of tuples along with its elements.

vala<=::[(Tuple(TConsStrinq) (TConslnt)TNil»)]("1",30)::

~~~;eS~~~:; ~~~~~~)I~~~o:ii~t~ ~~:~.. ~ 3~l ~;2'; (~~~~ ~~~~;e
String) (TConslnt)TNil»»)

Example 4: Adding a new element to the existing list

In AspectMLa new element can be added to an existing list. For exarnple we can add

an element that is a tupleofa string and an integer to the list created in previous

example as follows:



OIapter2:MOverviewofAOPLanguages

valb<=::[(Tuple(TConsString) (TConslnt)TNil})
)J("4",33)::[(Tuple(TConsString) (TConslnt)TNil)))]("1",30)::
[(Tuple (TConsString) (TConslnt)TNil»)]("2",3l):: [(Tuple
(TConsString) (TConslnt)TNil»))]("3",32)[] [(Tuple (TCons
String) (TConslnt)TNil»)]

In the above code, "b" is a new list containing the element ("4",33). The other

elements from previous list "a" are a!so present in "b".

AspectML does not have a concept known as Aspect. Besides having some syntactical

differencestoML,AspectMLhasspeciallanguageconstructsforadvices consisting

of the body and thepointcut designators

In AspectML,the function call is the only exposed join point.

In AspectML a pointCllt designator has two parts: a trigger time, which may either be

before, after, or arollndand apointclit proper, which is a set of function names.

Pointcuts identify join points in the program flow. However, unlike AspecU, not the

pointcut but the advices can expose the context at the matched join point. In

AspectML,pointcutsdo not have names. The join points areeitherdescribedbya set

of function names or by using the keyword any. The point cut designator before

(l#f#l)representsthepointintimeimmediatelybeforeexecutingcallto the functionf.

Likewise, the point cut designator after (l#f#1) represents the point in time

immediatelyafterexecutionofthefunctionf. The pointcutdesignator around (l#f#l)

wrapsaroundtheexecutionofacalltothefunctionf[8].



O1apter2:An Overviewof'AOP Languages

2.4.1.3 Advice

Advice in AspectML includes two parts, the body, which specifies whattodo, and the

pointcut designator, which specifies when to do it [8]. An advice does not have a

name and cannot be called directly (it is the system's job to execute it). It does not

have an access specifier. An advice can capture the method's context, such as the

method's arguments. AspectML allows defining type-safe polymorphic advice using

pointcutsconstructedfromacollectionofpolymorphicjoinpoints[8]. The application

of advice in AspectML usually varies with the trigger time (beforeafter,oraround)of

pointcutdesignators.

2.4.2 Running Example in AspectML

Since AspectML is a functional language. there is no concept ofelasses in it.

However, it is possible to implement the methods of ShoppingCart example as

functions of AspectML. InSection2.4.I,wehaveseenthathowlistoftuplescanbe

created using AspectML constructs. Here also, in Listing 2.30. we create a function

named createJtem that takes id and price and produces a tuple of id and price.

According to the function definition, the datatypes ofid and prices should be String

and Int, respectively. Furthermore, each tuple produced using the functioncrealeJlem

will be considered as an item for this example.

Listing 2.30 Creating items in AspectML
funcreateltem(id:String,price:lnt)=(id,
price);
valiteml=createltem("1",30);
valitem2=createltemC"2",31);
valitem3=createltemC"3",32);



OIapter2:An OverviewofAOP Languages

Listing 2.31 shows two function invAdd/tem and invRemoveltem related to the

Inventory of ShoppingCart example. invAdd/tem takes a list and an item, and produces

a new list by adding the item in it. On the other hand, the purpose of invRemove/tem is

toremoveanitemfromthelnventory.lttakestheexistinginventorylistandanitem,

and produces anew list without that item.

Listing 2.31 Functions related to Inventory

funinvAddltem{invList,item)=(item::invList);
funinvRemoveltem(invList,item)=

case (i.nvList)

I ([])=>([J)

I (hdinvList::tlinvList)=>
if (hdinvList==item) then (tlinvLi.st)

val (invlistNew)=(invRemoveltem(tlinvList, item»

(hdinvList::invlistNew)
end;

In the above listing,invList is an existing List. An item can be added to invListas

shown in the code. However, while removing an item from the existing list, we have

to check several cases. That is why, within the function invRemoveJtem, we added

case expression and conditional statements. At first,wehadtocheck whether the list

is empty or not. If the list is empty, there is nothing to be removed from it. Other wise

the list, it is removed from the list.

Listing 2.32 shows two functions cartAdd/tem and cartRemoveltem related to the

ShoppingCartofourrunningexample. The purpose of these two functions is similar



Chapter 2: An OverviewofAOP Languages

to that of the functions related to inventory. However,the list to be used in these two

functions is the item list of ShoppingCart, not the Inventory. The function

cartAdd/temtakesalistandanitem,andproducesanewlistbyaddingthe item in it.

cartRemove/tem takes the existing cart item list and an item, and produces a new list

without that item. Similar to Listing 2.31, in Listing 2.32 we have used case

Listing 2.32 Functions related to Shopping Cart

fun cartRemoveltem(cartList,item) =
case (cartList)

I ([])=>([]l

I (hdcartList::tlcartList)=>
if (hdcartList==item) then (tlcartList)

val (cartlistNew) =
(cartRemoveltem(tlcartList,item»

(hdcartList::cartlistNew)
end;

Listing 2.33 shows one of the functions related to the Shopping Cart 0 peratorofour

running example. This function takes an inventory list, a cart list and an item as

arguments. l.n order to create anew inventory list and a cart list, this function uses

invRemoveltem to remove the item from the existing inventory list and cartAdd/tem to

add the item to the existing cart list. Since we will be using only this function of

Shopping Cart Operator, the other function, cartOperatorRemove!tem, is not shown



Chapter2:AA OverviewofAOP Languages

Listing 2.33 A Function of ShoppingCartOperator

funcartOperatorAddltem(invList, cartList, item) =

val (invlistNew) =invRemoveltem(invList, item)

val (cartlistNew) =cartAddltem(cartList, item)

(invlistNew,cartlistNew)

end;

The previous four Listings (from Listing 2.30 to Listing 2.33) present the base model

for the ShoppingCartexample in AspectML.

Listing 2.34 shows the advices in AspectML for the ShoppingCart example. Since

AspectML does not allow using the same advice for functions with different data

types, we use two beforeadvices for two different categories of functions.lnthefirst

advice, the functions invAddltem, invRemoveltem, and cortAddltem are mentioned as

the join points. [nthe second advice, the function cartOperatorAddltem ismentioned

as the join point

Listing 2.34 advice. in AspectML for ShoppingCart example

advice before (I #invAddltem,invRemoveltem,cartAddltem# I) (arg,s,
info) = (println" ":print"INFO:Entering";print(" .......
(getFunNameinfo»;arq)

advicebefore(l#cartOperatorAddltemltl) (arq, s, info) =
(println" ":print"INFO:Entering";print(" ,," (getFunName
info»;arg)

Listing 2.35 shows the code to test the functionality of the aboveadvices alongwith

the codes of base model. First, three items, one at a time, are added to the inventory

list. Then the function cartOperatorAddltem is caIled to remove the item2 from the

existing inventory list and to add to the cart list



OIapter2: An OverviewofAOP Languages

Lisling2.35 Codes 10 tesl the program

val (newInvList)=invAddltem([],iteml)
val (newInvListl)=invAddltem(newInvList,item2)

val (newlnvList2)=invAddltem(newInvListl,item3)

{] ~a~t:~~InVList3 ,newCartListl) =cartOperatorAddltem (newlnvList2,

cartOperatorAddltem(newlnvList3,newCartListl,item2)
end;

Figure 2.23 shows lhe outpul produced after compiling the above codesinAspectML

compiler

Figure2.23:TheadvicesofLisling2.34werelriggeredwheneverlhefunctions

mentioned in the join points were called from Listing 2.35



Chapter3:AOPApproaches:StaticandOynamic

Chapter 3

AOP Approaches: Static and Dynamic

3.1 StaticAOP

Static AOP, as implemented in Aspecll [3], requires the developer to specify all

pointcuts, advice and aspects at compile time. Usually a weaving compiler is used to

add advice code to join points. When several aspects match the same join point [15,

16],the aspects are woven in a statically-defined order. As a result, aspects cannot be

added, removed, or modified at runtime [16]. To change aspects, the system must be

recompiled [17].

The ShoppingCart example implemented with Aspecll in Section 2.2.2 complies with

the static AOP approach. as the example does not allow us to start, stop, or modify the

aspect configuration during runtime. However, a static language can approximate

dynamic adaptation through run-time checks. Figure 3.1 follows the adaptation of the

AspectJ example given in Section 2.2.2. Here, we have a user interface which comes

with switches to tum the logging on and off. Using this interface one can press the

"Start" button and see the program running without logging code. However, the

logging feature will be enabled whenever "Start Logging" button is pressed. The

logging feature can be disabled anytime while the program continues to run.



O1aprer3: AOP Approaches: Static and Dynamic

INFO:E_
l].()d.20099:51:3CPItIs~lemtos.tng

INFO"EnWnng
l3-Od-2D09I1S:35P11ihoppng.llmtoSmg
INFO:EnWIng
l3-Od-2'OOi1lsr-35PMStlopp,ngStlOJlt)lnOCanlddltm

lJ.Od.2OO5I1l57:35PUanopplnllSFloppingCartaddbm
INfQ:EnWIng
13-Od-20099:5135P11lshOJllllfllllemloSa1ng
INFOEnttmg
lJ.Oct.20099.57:35P11arto,plnll.llemIoShlg

13-0ct-2008957:35P11shoppmgllemrosamg
13-Od-20099:51'35PUshoppno.hmtoSlring

l3-Od-20D99·57:JSPIIshGP9l00llemtostl1ng
INF<tEntemg
lJ..Od..20099:57:3SPIIshopclino.lemtoS1r1ng
INfO:Entenng
INfO'EnItflng
13-0d-2009S"57:3SPIIshopPlnollemtosanng
INFO" Enterlng
13-Od-20011 9.57:35 PM shopplngJI.mtoSZring
INFCtEn1tl1ng
1).Oct-2009957.35PMsflopplngltllmloSlring

~~--2LJ~

~cartallfaddklgltem3

tm: e, Item. 10, 118m. 8. 1Iem:2, Item. 3J

i;;~-

Sh~ge.talteradctnoltem.4

em.6.ltem.10,nem:8.ltem2,ltem.3,n.m4j

ii;;;;:---'

";;:3
1------

~=:'::7=~._..

Figure3.1: UserinterfaceformodifiedShoppingCartprogram

Since printing of the logging messages are related to theactivation and deactivation of

aspects, it seems that the modified ShoppingCart example allows enabling and

disabling the aspects during runtime. However, this is not a truly dynamic AOP

system. This dynamic adaptation is accomplished through run-timechecks.

The control methods (se/Enabled in Listing 3.1) must be called from the base system,

which requires the base system to be aware of the aspects. This causes an (however

minimal) overhead of checking the configuration conditions. Furthermore, for more

complex control and configuration requirements, the complexity of conditional

expressions increases rapidly.



Chapter3:AOPApproaches:StaticandOynamic

ListingJ.IAspectEnabling!DisablingatRuntime
public aspect TraceAspect{
private static boolean logAspect= false;

public staticvoidsetEnabled(boolean flag) (
TraceAspect.logAspect=flag;

pointcutisEnabled() :if(logAspect);
pointcuttraceMethods():execution(**.*( .. »

&&!within(TraceAspect)
"!within(Userlnterface)
&&!within(PrintThread);

StaticAOPissuitable for systems that can be reconfigured and updated by stopping

and restarting. However, static AOP shows pitfalls for long running systems, where

this is not an option [17].

Using the example ofacoffee ordering system illustrated in [18] and a client server

application presented in[19],[16] shows how static AOP approach is not suitable for

the applications while dynamically adding and removingresponsibilit iestoanobject.

[20] describes a scenario taken from telecommunications, where corrective actions

need to be perforrned ina flexible manner on the integrated system ifthe system was

not initially deployed correctly.

[21],[22] and [23] were motivated by the need fordynamicadaptationofdistributed

systems at runtime where the systems need to be updated with the changing

environment. Since all applications are required to be stopped during the stop and



Chapter 3: AOP Approaches: Static and Dynamic

restart of system software with static adaptation, static adaptation techniques arenot

always suitable [21]. Moreover, dynamic or fast reconfiguration of distributed

applications is needed to handle several concerns such as fault-tolerance, data

consistency,remoteversionupdating,run-timemaintenance,dynamicserverlookup,

or scalability [23]. To adapt with the changed environment, there should be some

option to add or remove concems on existing applications during runtime.

3.2 Dynamic AOP

Dynamic AOP provides support for controlling aspects at runtime. As implemented in

AspectS and AspectML, dynamic AOP allows changes to aspects without restarting

the program [16]. A run-time weaver is used to add advice code to the selected join

points. However, dynamic AOP is different from dynamic weaving, which allows

installing and uninstallingaspect. As AspectJdoes not support instantiationofaspect,

neither dynamic AOP nor dynamic weaving is allowed in it.

80th dynamic AOP and dynamic weaving have some advantages'

• It removesAOP overhead when aspects are notrequired,e.g. profiling or tracing

aspects on a production system.

• It allows dynamic configuration of aspect behavior, e.g. switching from tracing to

profiling, without resetting the state of the base systems.

• It allows aspect re-configuration depending on the state of the base system

• It allows extensible and reusable aspect libraries.

The latter is a consequence of the typical implementation of dynamic AOP in which

the core AOSD concepts are provided using the primary modularization concepts. The



Chapter 3: AOPApproaches: Static and Dynamic

AspectS example above shows how advice and join point descriptors are implemented

as objects. Hence, they can be used to build generic class or object libraries. While

many dynamic AOP approaches are implemented th.is way, the choice of dynamic or

static AOP and providing AOP with or without language extensions, are independent.

Dynamic AOP is easier to implement in interpreted languages such as Smalltalk or

ML, although dynamic AOP versions ofAspectJ exists [16]. Figure 3.2 presents a user

interface in AspectS environment. Although this user interface is similar to the one

showninSection3.I,italiowsdynamiccontrolofaspectbehavior.

Figure 3.2: User interface for Dynamic ShoppingCart Program

The start button,ifpressed,will run the base system without the loggingfunctionality.

However, the aspect is enabled and prints the logging information once the "Start

Log" button is pressed. lnFigure3.3,wecannot see any logging messages fo rltelll4

since logging was inactive while adding the item to the cart. However, logging was

activated when IIem9 was in process. As a result, we can see the logging messages for

the c1asseslnvenloryD andShoppingCarlD.



O1apter3: ADP Approac!les: Static and Dynamic

Figure 3.3: Output ofdynamic ShoppingCart program

Although the static AspectJ implementation shown in Section 3.1 behaves exactly like

the above program, the difference herc is that the base system and aspectextensions

can be enabled and disabled separately, e.g. from a separate control thread,as shown

in the following four Listings (from Listing 3.2 to Listing 3.5). This also allows the

reconfiguration of the aspeclto adapt or configure the advice to change requirements

without losing state of the base system.

Listing 3.2 Code for Start button

Itestll
processl:=[testl:=AaUserlnterfaceDnew.
testlrun.]ne"Process.
selfaddl: 'Cart is Activated'.
processlresume



(JIapter3: AOP Approaches: Static and Dynamic

Listing 3.3 Code for Stop butlon
stop

aelta.ddl: 'Ca..rtD_':>3.bled'.
processlterminate

Listing 3.4 Code for Start Logbutlon
startLog

self Cldd2: 'Logg ... flgEnab ...ed'.

demoAspectinstall.

Listing 3.5 Code for Stop Log butlon
stopLog

selfadd2:'LoggingDisal... ted'.
demoAspectuninstall.

Dynamic AOP frequently, but not necessarily, treats AOSD concepts as instances of

the primary modularization concepts. Forexarnple, advice and pointeutsare objects in

AspectS, and pointcuts are functions in AspectML. An AspectML example taken from

[8) is shown in Listing 3.6. In this exarnple, toLog oftypepc«a b>a->b) isa

pointcut, which is passed as an argument to the functionstartLagger.

Listing 3.6 Passing pointcutas argument
£unstartLogger(toLog:pc«ab>a->b»=

advice (::~:: ~,I,~:~:~~): (:~~~et~:;:~ ;n£o) A

advice after (I tOL~a~)t~;::~i:~:::~;"~nlt»; arq)

«printC"after""" (g.tFunNameinfo)A": .....

(val_to_strinq res) ,. "\n"»;res)



Chapter 3: AOP Approaches: SIalic and Dynamic

Dynamic AOP allows us to build generic logging aspects that can be configured at

runtime with the set of join points to be logged. For example, in the following

codeListing3.IO),AspectLogger(Listing3.7) is a generic loggingsubclassof

AsAspect.lt has a constructor method newJP (Listing 3.8) that allows initialization

with a set of AsJoinpointDescriptor objects. These are stored by the aspect (Listing

3.9) and passed to theadviceLogging function (Listing 3.10), which is called by the

run-time weaver when installing the aspec!.

Lisling 3.9 Instance melhod
jpset:aJPDescriptor
jpset aJPDescriptor.



O1apter3:AOPApproaches:StaticandDynamic

AspectJ does not provide instantiable' and configurable aspect, advice, or pointcut

classes. It is instead based on language extensions handled bya weaving compiler.

Hence, the above examples of generic and configurableaspects and advice cannot be

implemented in AspectJ.

Recent work on dynamic AOP has focused on solving a number of issues and

problems that are not well suited for static AOP implementations. Handi-Wrap is a

dynamic AOP extension for Java which allows advice to be defined compositionally

and supports run-time weaving [24]. PROSE (PROgrammable extensionSions of

sErvices) is a dynamic AOP approach based on Java that allows aspects to be woven,

unwoven, or replaced at run-time. PROSE supports rapid AOP prototyping and

debugging and helps developers to understand the behavior of aspeets in changed

environment [25]. To address the recent demand for dynamic AOP, a new dynamic

aspect weaver called Wool is presented in [26], which makes it possible to implement

efficient dynamic AOP systems. Wool addresses the solution to the performance

penalties caused in some prior implementations. An approach for language and

platform independent dynamic AOP based upon reflection is presented in [22]. It

focuses on dynamic adaptation of distributed systems at run-time. Dynamic AspectJ

[16] considers the difficulties arising from the static scheduling strategy of AspectJ

and shows how turning to a more dynamic strategy makes it possible to order, cancel,

and deploy aspects at runtime.



Chapter4:AOPLanguageFeatureCDmparison

Chapter 4

AOP LANGUAGE FEATURE COMPARISION

As discussed in Section 1.3.2.2 , Join Point Models (JPMs) of different AOP

implementations can be compared based on the following criteria

• Which join points are exposed,

• How pointcutsare specified,

• The operations permitted at the join points, and

• The structural enhancements that can be expressed.

Core JPM features e.g. method execution, exception raising or throwing are common

across most AOP implementations. However, different languages provide concepts

beyond these core features, such as the struclural enhancements of AspectJ and

AspectS. To cover a wide variety of JPM features, we examine:

• AspectJ-astaticAOPapproach,

• AspectS-adynamic,object-orientedapproach,and

• AspectML-adynamic,functionalapproachtoAOP

AspectJ allows wide varieties of join point selections. Based on the JPM features of

AspectJ, the following sections present a comparative picture ofAspectJ, AspectS and

AspectML.



4.1 AspectJ, AspectS and AspectML

4.1.1 Exposed Join Point Categories

Being a member of the functional language family, AspectML only exposes function

calls as join points. However, the exposed join point categories for AspectJ and

AspectS are not that simple. AspectJexposeseightcategoriesofjoinpoints,someof

which can be found in AspectS too. To understand the differencebetween the exposed

join point categories of AspectJ and AspectS, a detailed comparison isprovidedinthe

following sections.

aj Methodjoinpoints

AspectJ exposes both method call and method execution as join points. The following

code snippet shows a pointcut that selects execution of the deliver method of Test

class in AspectJ.

pointcutdeliverMess&qe()
: execution (*Test.deliver(

Using AspectS, as shown below, the ahove example can be imitated by a

receiverClassSpecific advice, which selects Test as the targetClass andmetboddeliver

asthetargetSelector:

qualifier: (AsAdviceQualifier
attributes: (lreceiverClassSpecific})

pointcut:[{AaJoinPointDe8criptor
targetClass:TesttarqetSelector:#deliver}]



Chapter 4: AOP Language Feature Comparison

InAspectJ,acalipointcutisspecifictoatypesignature. Thus, a call ofa method will

be selected as a join point ifand only if the type of caller is matched with the type

signature mentioned in thepointcut. For example, as shown in Listing4.I,themethod

deliver is called by the instance of the Test class. The method deliver is called for the

second time byan instanceoflnterJacel. Accordingly, the method deliverisexecuted

}

pUblicstaticvoldmain(String{]args){

Test test = new Test();
test.deliver{);

Interfacelinterfacel=test;
interfacel.deliver();

As shown in Listing 4.2, if the execution of the method deliver is selected by a

pointcutas a join point and advised,theadvicewillbeactivated twice.

Listing 4.2 TeslAspeelaspect
public aspect TestAspect{

before() : execution (void Test.deliver(»{
System. out.println ("Advising execution of Test.deliver()") ;

beforeO : call (void Test.deliver(»{
System. out.println ("Advising call of Test.deliver()");



Chapter4:AOP Language Feature Comparison

Althoug)J there were two calls to thedelivermethod,since the call pointcutspecifies

thetypeofacallingobject,onlythecallfromtheinstanceofclassTestis advised.

Figure 4.1 shows the output of the above example.

~
~con501'~l:l
<t~minllt~> Test (4) (AspectJOl!lVilI Application} C:\Progrllm Files
Advi~i.nq call of' Te:~t;.dellver()

Advi..sinoexecutlonofTe.sc.deliver()
In Test.del1.ver()
Advi..singexeeucionof Test:.deliver()

In Te.st.dellver()

Figure4.I:Outputoftheaboveexample

AspectS does not provide any construct to select method call as join point. Hence,

method execution is the only method join point in AspectS.

b) Constructorjoinpoints

Like Java/C++, object creation in AspectJ involves constructors. In AspectJ

constructors are used to create and initialize new instances. AspecU providespointcllt

constructs to select both constructor call and constructorexecution as join points. The

execution of constructor is the constructor itself, e.g. the constructor of Item class

shown in Listing 4.3.

Listing 4.3 Constructor in Ttemclass

public class Item {
public Item(String id, float price) {

id;



Chapter4:AOPlanguageFeatureComparison

The call of constructor is the location of invocation oftheconstructor. For example,

the following will be selected as a constructor call in AspectJ.

SinceSmalltalk/AspectS does not have any special syntaxorsemanticsforconstructor

[27],AspectS does not allow selecting the constructor call orexecution as ajoinpoint.

The functionality of the above code, written in Java, can be achieved by the following

code snippet of SmallTalk.

iteml:=Asltemnew.
itemlinitialize: '1'withpri.ce:30.

Here itemI, an instance of Item class is created by using a class method new. Also,

assigning the values of the fields' item and price does not need the involvement of

constructor, since the values are assigned bya regular method of SmallTalk named

initialize:withprice:.

c) Field access join points

Thefieldaccessjoinpointscapturethereadandwriteaccesstoaninstanceor e1ass

memberofaclass [I]. AspectS does not provide any pointcut constructs to select an

instanceorclassmemberofaclassdirectly. However, if the fields are accessed using

regular methods of SmallTalk, then field access can be advised by selecting the

execution of those methods as join points. For example, in Listing 4.4,themethodn-



Chapter4:AOP Language Feature Comparison

Lisling4.4 A seller method in AspectS
n:anlnteqer

n:=anlnteger.

Lisling4.S Advising the seller melhodn:
adviceSetField

"'AsBeforeAfterAdvice
qualifier: {AsAdviceQualifier

attributes: (ltreceiverClassSpecific})
pointcut: [{AsJoinPointDescriptor

targetClas.s:AsCounterModifiedltargetSelector:
#n:))

beforeBlock: [:receiver:arguments:aspect:clientl
Transcript show: ' "Set Field" '.J

InAspectS,writeaccesstothefieldncanbeadvisedindirectlybycapturing the setter

methodn:asjoinpoint(Listing4.5).

d) Exception handlerexeculionjoin points

Both AspectJ and AspectS supports selection of the exception handlerexecutionjoin

points. In AspectJ, an exception handler execution join point encompasses the catch

block [I].

Listing 4.6 Exception handler execution join point
package exception;
public class TestHandler{

publicvoiddeliver(){

trY:rrorerror=neWErrOr("ErrOrocCUred");

throw error;

}

catch (Errore) {
System,ouLprintln("InsideCatchblock");



Chapter4:AOP Language Feature Companson

Listing 4.6 contains a handler block, which can be captured in AspectJbythepointcut

shown in Listing 4.7.

Listing 4.7 AspectHandlerasped in AspectJ

As discussed in Section 2.3.1.4 , in AspectS, an exception handler block of

AsHandlerAdvice is executed only when the sending of the message results in

signaling an exception specified in the advice itself. Since SmaliTalkdoes not have

any special constructs for exception handling such as try or catch block of Java, a

handler block of AsHandlerAdvice encompasses the existing block of code that

handles the exception in the program. For example, as shown in Listing 4.8, if the

valueofa fieldn is not equal to zero, the method dec is used todecrementthevalueof

n. However, method dec signals an exception and handles it whenever the valueofn

is zero. We assume that this program includes some other methods such as inc for

incrementing the value ofn as well.



Chapter4:AOPlanguageFeatureComparison

Lisling 4.8 Signaling exception in SmallTalk

dec

I exception I
(self n ""0) [ex ..:~pt:.i0n::Error new.

exception s.l.gn..':l : 'V~hl~ 0"' n cannlJt bE less than 0'.

'~l;:pt j on handled'; cr .
show: 'VdllE:ofni5stto'.

$l1c/w:selfn;cr.

].

Transcript ~hC'w: self n;cc.

Figure 4.2 shows the workspace code and transcript fortheaboveexample, in which

the raised exception in handled by the dec method itself.

(.?9:...1B) Transcript

)

)

2

~:~:tj~~ :~~~~~to 10
9

Figure 4.2: Workspace and output for exception handling example in SmallTalk

The above exception handling execution can be captured as ajoin point in AspectS.

We assume that the AspeclHandler aspect has a method named adviceExceplion as

shown in Listing 4.9. The AsHandlerAdvice object includes Error class as an

exception. Whenever an error of type Error is signaled from the dec method, the

exception is handled by the handler block.



Chaprer4:AOP Language Feature Comparison

Listing 4.9 Advising an exception handler join point in AspectS

adviceException

Figure 4.3 shows the workspace code and transcript for the exception handling

example with an AsHandlerAdvice associated with it. As we can see, the advice is

triggered when an exception is raised within the dec method. Moreover, the handler

block of the advice object replaces the existing handling block of dec method and

handles the exception.

Transcript

Figure 4.3: Workspace and output for exception handling example inAspectS

e) Classinitializationjoinpoints

In AspecU,aclass initialization join point represents the loadingofaclass,including

the initialization of the static part, e.g. class variables [1].



OJapter4:AOPLlnguageFealureComparison

Listing 4.10 Classinilialization in AspectS

Objectsubclass:'Asltem
instanceVariableNames: 'idprice'
classVariableNames: '
poolDictionaries: II

category: 'AspectS-ShoppingCart'

In Smalltalkaclass initialization is done bypassing arguments to the static method

subcloss:inslonceVoriobleNol1les:clossVoiobleNol1les:poolDiclionories:colegory: of

class Objecl or its subclasses as shown in Listing 4. 10

Since SmallTalkdoes not have any special syntax for class initialization and static

methods cannot be advised inAspectS,c1assinitializationjoinpointseleclioncannot

be implemented in AspectS.

f) Objectinitializationjoinpoints

InJavaorC++,object initialization occurs when an object is created. AspectJ allows

selecting the object initialization join point to perform certain additionalobject

initialization [1]. However, in SmallTalkorAspectS, the object initialization is done

by sending the message new to a class as shown below.

Since new is a static method and cannot be selected as join point is AspectS,selection

ofobject initialization join points is nOlpermitted in AspectS



Chapler4:AOPlanguageFeatureComparison

g) Object pre-initialization join points

The object pre-initialization join point includes the passage from the constructor that

was called first to the beginning of its parent constructor [I]. SinceSmaliTalkdoes

not have any constructors, object pre-initialization join pointscannot be selected in

AspectS.

h) Adviceexecutionjoinpoints

InAspectJ,theadviceexecutionjoinpoint includes the execution of every advice in

the system [1]. VsingAspectS, execution of advice methods can be selected as join

points. However, advices are objects and can be passed as method parameters in

AspectS. Since AspectS does not provide anypointcut construct to select an object as

join point, selecting the advice method execution as ajoinpoint will not imitate the

advice execution join point of AspectJ

4.1.2 Cross-cutting Concerns

Since the primary goal of introducing aspect-orientation was to modularize cross-

cutting concern of a system or program into separate entity, each AOP language has

the concept of cross-cutting concern. Hence, this feature is common for all AOP

languages. For example, both in AspectJ and AspectS across-cuttingconcemcontains

aspects in the same way as packages (for AspectJ) or categories (for AspectS) contain



Chapter4:AOP Language Feature Comparison

4.1.3 Aspects

Since AspectML does not have any identical concept known as aspect, the aspect

related features of AspectML are incomparable with the aspect related features of

other two languages. Hence, we compare the aspects of AspectJ and that of AspectS in

the following paragraphs.

a) Instantiation

As discussed in Section2.3.1.1, in AspectS, instances of the aspects are created by

the user. Weaving occurs by sending an install message to an instance of the aspect

For example, using AspectS, an aspect AsAbslraclAspecl (Listing 4.9) can be

instantiated like a regular class of SmallTalk as shown in Figure 4.4. If we create two

instances of the same aspect and install those, the advice will be activatedforeachof

Listing 4.11 An asped in AspeetS
AsAspectsubclass:#AsAbstractAspect

instanceVariableNames:"
classVariableNames: '
poolDictionaries: '
category: 'HalloWarld'

Figure 4.4: Aspect instantiation



O1apter4:AOP Language Feature Comparison

On the other hand, in AspectJ by default, each aspect isa singleton, so one aspect

instance is created automatically. Hence, unJike the aspects of AspectS, in AspectJ,

the aspects cannot be directly instantiated [I]

b) Accessspecification

InAspectJ,liketheclassesorinterfacesofJava, the visibility of the aspects can be

specified by the access specifiers. Moreover, an aspect can have an access specifier of

"privileged" in order to read and write the private members of the classes it is

crosscutting [I]. Since SmaliTalkdoes not allow access specification or visibilityfor

the regular classes, the visibility cannot be specified for the aspects of AspectS too.

This is not an issue in AspectS, since SmaliTalkdoes not allow access specifiers.

c) Aspectprecedence

Aspectprecedencespecifiestheorderingofaspectsandadvices.Ordering of advices

is importantwhenadvicesofdifferentaspectsareapplicabletothesamejoinpointin

the system. [I] presents an example of aspect precedence, in which both the method

enter and exit of Home class match the pointcuts of HomeSeclirityAspect and

SaveEnergyAspect.lnordertoseetheadviceexecutioninadesired order (as shown in

Figure4.5),it is necessary to set the precedence of aspects.

I'~~'~ I,""~,.""",,
Ex~tinq

Entering
Switchi.nqon 1i.qht:!J

Di.~enO'aO'inq

Figure 4.5 Output of aspect precedence example in AspectJ



Chapter4:AOPLanguageFeatureComparison

In AspectJ,orders of advices are specified by declaring the precedence of aspects as

shown below. In this example, HomeSeclIrityAspecl will receive priority over

SaveEnergyAspecl.

declareprecedence:HomeSecurityAspect,SaveEnerqyAspect;

AspectS does not have any special construct to declare the precedence of the aspects

However, precedence to an aspect can be given by sending an install message to its

instance prior to sending the install message to instances ofother aspects. Since, in the

workspace Figure 4.6, HomeSeclIrityAspecl is installed prior to the installation of

SaveEnergyAspecl, it will get precedence over the second. Hence, we get the desired

advice ordering as shown in Figure 4.5.

As~Precedence

aspectl:·HomeSecurityAspectnev,
aspecttinstall.

aspect2:"SaveEnergyAspect new.
aspect2instal1.

aspect2uninstall.
aspectiuninstall.

Transcript

Figure 4.6: Workspace and output for aspect precedence example inAspectS

d) NestedAspect

InAspectJ,anaspectmaybedefinedeitheratthepackage level, orasastaticmember

ofaclass, interface, or aspect. However, in AspectS, an aspect cannotbedefmedasa

member of other classes or aspects; they can be only defined at the packagelevel.For



Chapter4:AOP Language Feature Comparison

this reasonunlikeAspectl,theaspeclsofAspectScannotbe embeddOOinsideclasses

as nested aspects.

e) Implementing interfaces

In Aspectl, the aspects can implement interfaces. SinceSmallTalkdoes not support

interface, the aspects of AspectS cannot implement interfaces.

f) AbstractAspects

Both in AspectJ and in AspectS, aspects can be abstract. An aspect containing an

abstract method is an abstract aspect in AspeclS. SincemethodAbstract (Listing 4.12)

belongs to the aspect AsAbstractAspect (Listing 4.1 1),AsAbstractAspect is an abstract

aspect in AspectS.

Listin 4.12 Abstract method of AsAbstractAs eelas eel

g) EXlendingclasses and aspecls:

In AspectJ, the aspects can extend classes and abstract aspects, but not concrete

aspects[I,16].

In AspectS, the aspects can inherit from both concrete and abstract aspects. For

example, all the subclasses ofAsAspect inherit AsAspect, which isa concrete aspect in

AspectS.



Chapter4:AOP Language Feature Comparison

Listing 4.13 Inheriting an abstract aspect in AspectS
AsAbstractAspect

instanceVariablgNarnes: ,t

Moreover, SubAbslraclAspect (Listing 4.13) inherits an abstract aspect

AsAbstraclAspect. SubAbslractAspecl, which is a subclass of the abstract aspect

AsAbslractAspecl, implements the abstract method methodAbslract (Listing 4.12) in

Listing 4.14.

Listing 4.14 Method of SubAbstractAspect aspect
methodAbstract

Transcript

a) Namingpointcut

In AspectMLa pointcut is a set of functions and does not have a name [8] . However,

both in AspectJand AspectS, the pointcuts can be either anonymous or named. Since,

in AspectS, pointcuts are objects too, they can be named by assigning them to

variables. These named pointcutscan then be used later on in advicesofaspects.

b) Typesofpointcut

AspectJallowsawidevarietyofpointcuts,whichinciudes:kindedpointcuts,control-

now based pointcuts, lexical-structure based pointcU!S, execution object pointcU!S,



Chapter4:AOP Language Feature Comparison

argument pointcuts and conditional check pointcuts. Section 2.2.1.3 presented a

general idea of the functions of each of those pointcut types.

i.Kindedpointcuts

Kinded pointcuts have similar syntax to capture each kind of exposedjoin point such

as in AspectJ. Section 4.1.1 provided a detailed overview of the exposed join point

categories of AspectJ. In that section, we have already seen that some of those join

points, such as: method execution join point, field access join point, and exception

handler execution join point can be captured in AspectS too. We have also seen that,

the join point selected by pointcuts along with the receiverClassSpecific advice

qualifier attribute of AspectS is similar to the method executionjoinpointofAspectJ.

Although AspectS does not have any construct to select the method cails asjoin point,

the join point selection by the senderClassSpecific advice qualifier attribute (Listing

4.15) of AspectS (ifNewTestis added as a sender class to the aspect)canbeemulated

bycombiningthecallO and thisO pointcutofAspectJ as shown in Listing4.16.

Listing 4.15 senderClassSpecific pointcut in AspectS
qualifier: (AsAdviceQualifier

attl'ibutes: t#senderClassSpecific})
[{AsJoinPointDescriptor

targetClass:TesttargetSelector:#deliverJ]

Listing 4.16 Representation ofsenderClassSpecific pointcut in AspectJ
call (* Test.deliver( .. »&& this(NewTest);

However, AspectJ does not have pointcut designators that can select specific

instances. As a result, instance specific join point selection by the advice qualifier



Chapter4:AOP Language Feature Comparison

attributes receiverlnstanceSpecific and senderIns/anceSpecific of AspectS goes

beyond the features available in JPM of AspectJ. Thus, these join point selection

cannot be emulated using AspectJ

ii. Con/rol-jlowbasedpoin/cll/s

As discussed in the subsection b of Section 2.2.1.3 , in AspectJ, control-tlow based

pointcuts such as: ctlowO and cFlowBelowO take another pointcut as argument. The

advice qualifier attributes c]Firs/Class, cfAllEu/Firs/Class, c]Firs/Ins/ance,

cfAllEu/Firs/lns/ance, c]Firs/Super and cfAllEu/Firs/Super are used to specify the

control-tlow based pointcut in AspectS. Some of these pointcutsofAspectS can be

emulated by combining the control-flow based pointcu! of AspectJ along with some

other simple pointcuts. For example, the join point selected by the pointcut and

qualifier attribute c]Firs/Class of AspectS in Listing 4.17 can be imitated by the

combination of AspectJ pointcuts shown in Listing 4. 18.

Listing 4.18 Representation ofcfFirstClass pointcut in AspectJ
!cflowbelow(execution(*AsFactorialM.factorial( .. ))

&& execution(* AsFactorialM.factorial( .. »)



Chapter4:AOP Language Feature Comparison

Similarly, the join point selected by the pointcut and qualifier attribute

cfAIIButFirstClass of AspectS in Listing 4.19 can be imitated by the combination of

AspectJ pointcutsshown in Listing 4.20.

Listing 4.20 Representation ofcfAlIButFirstClass pointcutin AspectJ

cflowbelow(execution(*AsractorialM.factorial( .. ))
&& execution(* AsFactorialM.factorial( .. »)

However, no cOow related advice qualifier attribute is used in either Listing 4.17 or

Listing 4.19, the join points that are captured by the AspectS constructs can be

emulated by the AspectJ pointcut shown in Listing4.21

Listing 4.21 UsingcnowpointcutofAspectJ
cflow(execution(*AsFactorialM.factorial(
execution(*AsFactorialM.factorial( .. »

The join point selected by the pointcut and qualifier attribute cjFirstSuperofAspectS

in Listing 4.22 can be imitated by the combination of AspectJ pointcuts shown in

Listing 4.23.

Listing 4.22 ctFirstSuper pointcut in AspectS
qualifi.?r: (ASAdviceQualifier

attributes: {#receiverClassSpecific.#cfFirstSuperJl
pointcur_: [{AsJoinPointDescriptor

tdrg~tClass: FactorialM targetSelector: #factorialM:.



Chapter4:AOPLanguageFeatureComparison

Listing 4.23 Representation ofefFirstSuper pointeut in AspeetJ

!cflowbelow(execution(*FactorialM.factorial(.))
&&execution(*FactorialM.factorial( .. ))
&&!within(SubFactorialMI

Likewise, the join point selected by the pointeut and qualifier attribute

cfAIIBlIlFirslSlIper of AspectS in Listing 4.24 can be imitated by the combination of

AspectJpointcutsshown in Listing 4.25.

Listing 4.24 cfAllButFirstSuper pointeut in AspectS

Listing 4.25 Representation of cfAIIButFirstSuper pointcut in AspectJ
cflowbelow(execution(*FactorialM.factorial( .. »)

&&execution(*FactorialM.factorial( .. »

&&!within(SubFactorialM)

However, as Aspectl does allow selecting specific instances, control-flow based

instance specific pointcutsofAspectS such as inslanceFirslandinslanceAIIBlIlFirsl

cannot be emulated using Aspectl.

iji.Lexical-structurebasedpointcuts

Lexical-structure based pointcuts, such as wilhinO and wilhincodeO of AspecU,

capture join points occurring inside a segment of source code of specified classes,

aspects and methods. AspectS does not allow such selection. However, as shown

earlier in this section, to imitate some of the cflow-based pointcuts such as



Chapter4:AOP Language Feature Comparison

cjFirstSuper and cjAIIButFirstSuper of AspectS, combining withinO with control-flow

based pointcutsofAspectJ is often necessary.

iv. Executionobjectpointcuts

In AspectJ,execution object pointcuts such as thisO and targetO pointcuts match the

join points based on the types of the objects at execution time. Theth isOpointcut

selects all the join points associated with the current object, whereas the targetO

pointcut is used to select the join points associated with the object on which the

method is invoked. AspectS has the limitation to select join points based on the types

ofobjects at execution time. However, whenusingAspectJ,to imitate some join point

selection of AspectS, we might need tocombineathisOoratargetOpointcutalong

with some other pointcuts. For example, in Listing 4.16 we have seen how a join point

selection bya senderClassSpecific advice qualifier attribute of AspectS is emulated

bycombiningacallOandthisOpointcutofAspectJ.

v. Argumenfpoinfcufs

The argsO pointcuts can expose the context at the matched join point in AspectJ.

AspectS passes execution context automatically as arguments into the advice. For

example, in AspectS, in order to see the arguments passed in each method execution

ofa program related to control-flow based pointcut, we can simply use a regular

before advice as shown in Listing 4.26.



Chapter4:AOPLanguageFeatureComparison

Figure 4.7: Printing arguments in AspectS

Listing 4.26 Printing argument in AspectS

adviceClassAllButFirst
"AsBeforeAfterAdvice

However, to see the same output in AspectJ, we need to add an additional GlgsO

pointcut (Listing 4.27) along with the existing pointcut combination.

vi. COllditionalclleckpointcuts

[n AspectJ, the conditional check pointcut captures join points based on some

conditions. Tbe conditions are to be checked at the join point. AspectS and AspectM L



Chapter4:AOPlilnguageFeatureComparison

do not allow a join point to be selected based on such checking. Thus, conditional

checkpointcuts cannot be imitated in AspectS and AspectML.

c)Pointcutoperators

AspectJprovidesaunarynegationoperator(!)andtwobinaryoperators (II and &&) to

form more complex matching rules [1]. Where the negation (!) allows the matching of

alljoinpointexceptthosespecifiedbythepointcut,thebinaryoperators (II and &&)

are used to combine pointcuts. Combining two pointcuts with the II operator causes the

selection of join points that match either of the pointcuts, whereas combining them

with the && operator causes the selection of join points matchingboththepointcuts.

In AspectS, the method difference: that takes an AsJoinPointDescriptor object as

argument can be used to emulate AspectJ's negation (!) operator. However, the

negation operator of AspectS can be used with a single pointcut, whereas method

difference: needs at least two join point objects as shown in Table 4.1 (Third row).

AspectS also allows combining pointcuts by using the methods related to set

operations such as: union: and intersection:. Combining two pointcuts with the

method union: causes the selection of join points that matcheither of the pointcuts,

whereas combining them with the method intersection: causes the selection of join

points matching both the pointcuts. Listing 4.28 represents two pointcutobjectsjpsetl

andjpset2.jpsetJ isasetoftwojoinpoints: the ftrst selects execution of the method

addltem: of Aslnventory class and the second selects execution of the method

removeltem: of the same class. Similarly,jpset2 is also a set of two join points: the

·1



Chapler4:AOPLanguageFeatureComparison

fIrst selects execution of the method addltem: of AsIn ventory class and the second

selectsexecutionofthemethodaddltem:ofAsShoppingCartclass.

Listing 4.28 Pointcut objects in AspectS

Each of the above pointcut objects can be represented using the pointcutdesignators

of AspecU (Listing 4.29). A sct of two AsJoinPointDescriptor objects of AspectS is

similar to an AspectJ pointcutthat combines two join point with an II operator.

Based on the above sets of join points of AspectS (Listing 4.28) and pointcuts of

AspectJ(Listing4.29),the following table (Table 4.1) showshowjoinpoints,those

are selected using the methods related to set operations of AspectS,can be emulated

using the pointcut operators of AspectJ:



(1Japter4:AOP Language Feature Companson

Table4.I:PointcutoperatorsinAspectJandAspectS

AspectML does not have any pointcut designator to combine join points as shown

d) First class pointcut

A flIstclass pointcut isa pointcut that can be passed asa method parameteror can be

assigned to a variable, i.e. isan instance of the primarymodularizationmechanism,in

this case an object, instance ofa class. AspectML allows passingpointcuts as method

parameters. Listing 3.6 of Chapter 3 shows how in AspetML a pointcut can be passed

as a method argument.

In AspectS, since pointcuts are objects, besides passing them as method parameters, it

is also possible to assign the pointcut objects to the variables. Thepointcutobjects

jpsetlandjpset2,createdinListing4.28,areflIst-classpointcuts. As we have seen in

the previous section, these pointcuts were passed as a method parameter to the

methods union:, intersection: and difference: of AspectS.

AspectJ does not have the construct for flIst class pointcut. As a result, pointcuts

cannot be passed as arguments in AspectJ



Chapter4:AOPLanguageFeatureComparison

Advices of Aspecll can be considered as the methods of Java. However, they have

some differences with the regular methods such as:

• they do not have a name,

• they cannot be called directly (it is the system's job to execute them),

• they do not have access specifiers.

In AspectS, the advices are objects of the class AsAdvice. Ifassigned to a variable, the

advice objects in AspectS can have names. However, they do not have an access

specifier. Advices in AspectS are enabled or disabled by sending an install or uninstall

messagetotheciassAsAspectortotheinstanceofitssubclass.Furthermore,anaspect

cannot de-activate itself as part of an advice block. However, as shown in Listing

4.30, an aspect can install and uninstall other aspects as part of its advice block.

Listing 4.30 InstaUingand uninstalling other aspect as partofan advice block

lafterl
"AsBeforeAfterAdvice
ql1alifiel': (AsAdviceQualifier

attributes: {#receiverClassSpecificll

#deliver}]

'clientl



Chapter4:AOP Language Feature Comparisoo

The above advice belongs to the BeforeHelloWorid Aspect. It selects the execution of

deliver method, that prints the message "Wanna learn AspectS?". We only install and

uninstall BeforeHelloWorldin the workspace (Figure 4.8).

Figure 4.8: InstallinganduninstallingBeforeHelloWoridAspect

However,aspartofitsadviceblockitinstallsanduninstallsAjierHelloWorldAspect,

which contains an advice that prints the message "Goodbye World" (Figure 4.9) after

Figure 4.9: Result of installing and uninstallingAjierHelloWorldaspect

An Advice in AspectML is composed of two parts, the body and the pointcut

designator. Like the advicesofAspecU, in AspectML an advice possess following

• It does not have aname,

• It cannot be called directly (it is the system's job to execute it) ,

• It does not have access specifiers.



Chapler4:AOP Language Feature Comparison

AspectJ supports three types of advices before advice, after advice and around advice.

A before advice allows adding some new behavior before any particular join point.

This aCIS similar to the AsBeforeAfterAdvice with a before block in AspectS. The after

advice of AspectJ, which allows placing some additional behavior after a join point,

can be imitated in AspectS by an AsBeforeAfterAdvice with an after block in it. In

AspecIJ when both before advice and after advice is used in the same aspect, advice

AspectS. An around advice of AspectJ, that adds new behavior or modifies some

existing behavior of the program around ajoin point, is similar to the AsAroundAdvice

of AspectS.

AspectS supports two other types of advices based on the classes:

introduce new behavior that is needed in the aspecl's context. The operation of

AslntroductionAdvice can be emulated by the staticcrosscuning feature Introduction

of AspectJ. An AsHandlerAdvice that selects an exception handler execution join

point in AspectS can be emulated by the exceptionpointcut ofAspectJ.

AspectMLdoesnotprovideanyspecialkeywordtodistinguishbelweenitsadvices.

As a result all the advices in AspecIML look similar. However, application of advices

varies with the trigger time (before, after, or around) of pointcut designators[8].

4.1.6 Static Crosscutting

Static crosscutting features such as the Introduction of AspectJ alIowsforintroducing

new behavior, which is needed in aspect's context. Although AslntroductionAdviceis



Chapter4:AOP Language Feature Comparison

placed under the category of advices in AspectS, this advice acts similarly to the

Introduction of AspectJ. The followingbulleted lists present a detailed overview of

the functions allowed to be performed using the static crosscutting feature of each of

our three experimental languages'

AspectJ:

• The introdllction isa static crosscutting instruction that introduce5 changes to the

classes, interfaces, and aspects of the system. For example, introductions can add a

• Type-hierarchy modification is a static crosscutting instruction that allows

modifying the inheritance hierarchy of existing classes todeclareasuperclassand

interfaces of an existing class without breaking the rules of Java language[!].

• The compile-time declaration is a static crosscutting instruction that allows the

adding ofcompile-time warnings and errors upon detecting certain usagepattems.

AspectS:

• With an introduction advice (Aslntrodllction) one can introduce new behavior that

is needed in the aspect's context. The added behavior maybe invoked by the

aspect,andmayactivelyinvoketheaspect'sorclient'sbehavioritself

• Introductionsintomethodwrappersisnotallowed[6].

• A method that is understood but not implemented bya class can be introduced[6].

• Type-hierarchy modification is not possible in AspectS.

• In AspectS weaving happens during runtime. Thus, adding compile-time warnings

and errors upon detecting certain usage patterns is not possible in AspectS.



Chapter4:AOPLanguageFeatureComparison

AspectML:

AspectML does not support static crosscutting features such as introduction, type-

hierarchy modification or compile-time declaration.

AspectJ exposes several categories of join point. The exposed join point categories of

AspectS and AspectML are still very limited compared to that of AspectJ. The

following table (Table 4.2) provides the summarized version of our discussion on

exposed join point of three languages (Section 4.1.1).

Table 4.2: ExposedjoinpointcategoriesofAspectJ,AspectS and AspectML

AspectJ AspectS AspectML

Exception handler
execution

Object initialization

AlthoughAspectSdoesnothaveanypointcutconstructtoselectthejoinpointrelated

to field accessor exception handler execution, those join points can be emulated



Chapter4:AOPLanguageFeatureComparisoo

indirectly using some other features available in AspectS. Forexample,inAspectS,an

advice (AsHandlerAdvice) is used to advice the exception handler execution join

point. The function of an exception handler execution pointcut of AspectJ can be

emulated using this advice of AspectS.

AspectJ provides pointcut designators to select a numberofdifferentjoinpoints. On

the other hand, not having very rich pointcut constructs like AspectJ, AspectS and

AspectML do not allow selecting join point based on the following pointcuts shown in

Table 4.3: Pointcuts those are not available in AspectS and AspectML

SomepointcutsofAspectJ

initializationO I

preinitializationO I

StaticinitializationQ I

withinO

withincodeO

if()

AspectS allows combining join points using the methods related to set operations.

ThisirnitatesthefunctionalityofpointcutoperatorsofAspectJ.

Except for the instance specific attributes, AspectJ allows emulating the point cuts

specified by the other advice qualifier attributes of AspectS asshowninTable4.4.



Chapter 4: AOP language Feature Comparison

Table 4.4: AspectS Pointcuts that can or cannot be emulated using AspectJ

AdviceQualifierAnributesin
AspectS

Receiver or sender cflow
aware activation activation

receiverClassSpecific

senderClassSpecific

receiverlnstanceSpecific

senderlnstanceSpecific

receiverClassSpecific

receiverClassSpecific

receiverClassSpecific

receiverClassSpecific

Can or
cannot be

emulated in
As ecU

receiverClassSpecific Super First ..J

receiverClassSpecific
Super AII-

Based on the previous table, Table 4.5 presents a mapping between the pointcutsof

AspectS and AspectJ.

Table4.5:lmitatingtheAspectSjoinpointselectionusingAspectJ

AspectJ



Chapter4:AOPLanguageFeatureComparison

All three of our experimental languages haveconslrucls 10 advice before, after and

aroundanyjoinpoinlS.



Chapter4:AOP liInguage Feature Comparison

The functions of AslntrodllctionAdvice and AsHandlerAdvice of AspectS can be

imitated by the static crosscutting featurelntrodllction and byadvising an exceplion

handlerexecutionjoinpointrespeclively.

The join point model of AspecU is much richer than that of either AspectS or

AspectML. However, the latter two languages provide dynamic AOP capabilities,

which is not available in AspecU.



ChapterS

ASPECT-ORIENTED MODELING IN UML

While aspect-oriented programming (AOP) is rapidly maturing, there is still not

enough support from the commercial modeling tools for aspect-orientation at software

modeling level. Although many modeling tools are based on UML [28], it lacks

specific constructs for aspects and their associated concepts [12]. However, the

standardized extension mechanisms offered byUMLcanbeusedtoprovideaspect-

oriented modeling facilities. This extension mechanism of UML is known as profile.

Profiles allow adding user-defined categories of UML model elements by referring to

a base class, which is a class in the UML meta-model such as Class and Association

Profiles are defined using stereotypes, tag definitions, and constraints. A stereotype

defines how an existing metaclass (or other stereotype) maybe extended. Certain

stereotypes are predefined in the UML; others are usually defined by users.

Stereotypes are also used to specify additional constraints and tag definitions. Tagged

definitions allow specifying user-defined meta-attributes for a model element.

Constraints allow specifying semantics or usage for a model element. Both tag

definitions and constraints should be defined in conjunction withastereotype.

An overview of some of the prior works for modeling aspects in UML is presented in

[29]. The early work is based on the extension mechanisms in UML I.x versions.

Since these mechanisms are not fully integrated with the meta-model, the specification



ofadvicesandpointcutsoftenremainsintextualform[30,31,32]andrequiresspecial

model parsers for code generation.

[33], which is a later extension to [32], presented aspects as stereotyped classes.

However, it was not a meta-model based profile. Rather than providing an aspect

extension, the connection between aspects and base-model is made as part of the

Initial work presented in [34] proposed the specification of aspectsasstereotypeson

classes and was later extended to include advice and pointcut specification [35]. It

models cross-cutting associations to show which aspect features relate to which base

model elements. Thus, it gives a clear separation of aspects and base system, which is

the primary objective ofAOSD.

[36] proposes a profile for AspectJ. This profile represents messages incollaborations

asjoinpoints,advicesandpointcutsasstereotypedoperations,andintroductionof

fields or methods astemplated collaborations. Also, in this profile,theconnectionto

the base features is made via dependencies in the model [12]

An earlier proposal for aspect modeling using UML 2.0 was presented in [37],

however without fully defining an extension profile.

Other existing works are based on defining new UML meta-classes instead ofdefining

stereotypes for existing meta-classes. This approach requires specialized tools to

support the introduced meta-classes [38,39]



One of the prior works on aspect modeling in UML proposes join point annotations

for UML [40]. [41] describes a translation of aspect UML to object-oriented Petri-

nets. However, this translation is limited topointcutsaround methodcaUs.

Using the standard UML extension mechanisms, [42] provides

representations for aU components ofan aspect (such as join points,pointcuts,pieces

of advice, and introductions) asweU as for the aspect, itself. The representations are

supplied with supplementary meta-attributes to hold the weaving instructions

Furthermore, the approach implements AspectJ's weaving mechanism in the UML and

specifies a new relationship signifying the crosscutting effects of aspects on their base

classes. However, as [42] is not based on UML profile, it requires specialtoolsupport.

Using the extension mechanisms in UML 2.0, [12] presents a meta-model, which is a

UMLprofiJe for AspectJ language (Figure 5.1). It also offers a translation to code.

The approach foUowed in it offers the foUowingadvantages over previousproposals:

• The extension requires no special software support and aUows aspectmodelingto

be used within existing, mature software tools. This contrasts with earlier

proposals [38, 39], which cannot be used with available modeling tools and

require specific tool support.

• The proposed technique is supported by UML XMl model interchange facilities.

The model extension, as weU as any models it is applied to, can be exchanged

between different MOF (Meta-abject-Facility) compliant UML modeling tools.



Figure 5.1: AspectJProfile



• It allows all aspect-related concepts to be specified in meta-model terms. The

models can be easily manipulated or verified without requiring the parsing of

keywords or other textual specifications by special tools

• It maintains strict separation of base-model and cross-cutting concems.

However, this profile is nota generic aspect-oriented modelingextensionandcannot

be used for specification ofa platform independent model (PIM). Moreover, the

profile allows the specification ofa platform-specific model (PSM), namelyonethat

is specific to the Java and AspectJ platform. Since AspectJ follows static AOP

approach,theextensiondoesnotsupportdynamicAOSD.

[43] presents a UML 2 profile for platform-independent modeling (PIM) with

advanced pointcut expressions and a corresponding model weaving mechanism for

behavior models using UML 2 Actions.

Recent work on Aspect-Oriented Frameworks (AOF)-based development is presented

in [44]. It proposes UML-AOF, an UML profile for modeling a kind of AOF (termed

asCF in the proposal) which encapsulates just one crosscutting coneern. The proposed

profile uses the Evermann'sprofile [12] as base AOP. However, like [12], presented

profiledoesnotsupportthespecificationofplatform-independentmodel

In summary, much of the existing work on AOM profiles for UML is either based on

older UML versions, not well integrated on the meta-model level. However, based on

AspectJ, [12] presents a complete UML profile, which is well integrated on the meta

model level. It also does not require any specific tool support. Inspired by this work,

in this research we propose to extend this profile for other AOP languages. The



proposed profile will allow the specification of platform-independent model by

providing the modeling facility for both static and dynamic AOSD.

5.2 Our Approach

AOM approaches can be distinguished along two orthogonal dimensions: the level of

weaving and the synunetry of the approach. Our work is positioned at the asymmetric

code-weaving level. The aspect-oriented model is converted to aspect-oriented code,

which can be woven by an aspect-oriented compiler. We also make a clear distinction

between the base-system and the cross-cutting concerns (Figure 5.2).

Figure 5.2: Our AOP Approach in Context (adapted from [12])

We present our UML meta-model for a selection of core aspect-oriented constructs.

Rather than specializing UML meta-classes, we extend them using UML stereotypes.



As a result, the developed model becomes a meta-model, which is a profile and can be

applied to other UML models.

The previously developed UMLextension forstaticAOPtreatsaspectsasextensions

of the Class meta-class, Le. a stereotyped class. Within that framework, pointcutsare

stereotyped structural features and advices are stereotypedbehavioralfeatures,

typically operations.

However, this approach is not feasible for dynamic AOM, because dynamic

approaches represent AOSD concepts as first-class modules. For example, join point

descriptors(pointcuts),adviceandaspectsarealiobjectsinAspectS,whilepointcuts

are functions in AspectML. Thus, our approach will differ from the existing work in

[12] by providing appropriate extensions.

5.3 Modeling Elements

This section presents modeling elements for core generic meta-model of the AOP

languages. The elements to be modeled are selected based on the coregenericfeatures

ofAOPlanguages

5.3.1 CrossCnttingConcern

Both AspectJ and AspectS have the concept ofcross-cuttingconcernthat acts like a

package and contains aspects of the language. Thus, a modeling element

CrossCuttingConcern (Figure 5.3) is introduced as a way of grouping related

aspects of AOP languages in the modeling level. We define a stereotype

CrossCuttingConcern that extends UML meta-class Package. In any UML model,

a package stereotyped as «CrossCuttingConcern» will represent a crosscutting



concern for that model. Since the UML meta-model already specifies that packages

own classes, the CrossCutlingConcern meta-class does not need to be associated

with the Aspect meta-class

Figure 5.3: Crosscutting concern as package extension (adapted fro m[12))

5.3.2 Aspect

Recall Section 4.1.3, where we compared the aspect of AspectJ and AspectS. In both

languages, aspects can have instance variables, class variables,instancemethods,and

class methods. The behavior ofan aspect is similar to that ofa class. Thus, an Aspect

(Figure 5.4) can be modelled asa stereotype that extends the existing UML meta-class

Class. In a model, within a package stereotyped as «CrossCutlingConcern", any

class stereotyped as ,<Aspee!>, will represent the aspect for the model.

Since this proposal is positioned in asymrnetric AOM (Figure 5.2), elementsofthe

cross-cutting concern model or models must remain separated from base-model

elements. The following constraint ensures this by requiring that classes that are

stereotyped as «Aspect» are only packaged in packages that are stereotyped as

«CrossCutlingConcern».



contextAspectinv:

package.ocllsKindOl(CrossCutlingConcern)

Figure 5.4: Aspect as a class extension in new profile

In this profile Aspect precedence is modelled as a recursive relationship between

aspects. Each aspect has at most one directly preceding and follow ingaspecl.

The AspectJ and AspectS specification state that aspects mayextend classes or other

aspecls but that classes may not extend aspects. Consequently, we add the following

constraint that ensures for all generalizations that the specific cIassofa general class

that is an aspect is also an aspect:

general.ocllsKindOl(Aspect)impliesspecific.ocllsKindOl(Aspect)

In AspectJ, an advice is similar to a regular method. An advice of AspectJ can be

modeled as Behavioral Fealure. However, in AspectS advices are objects, which

cannot be modeled by extending the meta-class BehavioralFeature. AIso,ifadvices



are modeled extending the meta-class BehavioralFealure, advices could not be

passed as method arguments or be assigned to variables. To facilitate dynamic

modeling an advice should be modeled as object. In the profile we model an advice

using the meta-class Advice (Figure 5.5), which extends the UML meta-class Class

Since advices are used by aspects, lhemeta-ciassAdvice is associatedwiththemeta-

class Aspecl

Figure 5.5: Advice as a class extension in new profile

Both in AspecU and AspectS, advice code can be executed before,after,orarounda

pointcut. We model adviceExeculion as an attribute of the Advice meta-class. The

values are provided by the enumeration AdviceExeculionType. The meta-class

Advice with its attribute adviceExecution will allow modeling before, after, and

around advices of both AspectJ and AspectS.

5.3.4 Joinpoint

In AspectJ, apointcut is used to select ajoin point. A pointcut can select either a

single join pointora combination of one or more join points. On the other hand, in

AspectS,apointcutisasetofjoinpoints(Section2.3.1.3),whereeachjoinpointis



described byan object of AsJoinPoinIDescriptor class. We consider that each advice

is associated with apointcut that is a set ofjoin points.

In the profile, ajoin point is modeled using the meta-class Joinpoint (Figure 5.6) and

considered asa set (pointcut) consistsofa single join point. Since indynamicAOP

join points are objects, in the new profile the meta-class Joinpoi ntextendstheUML

Joinpoint is an abstract meta-class. Rather than specifying the type and textual

declarationofjoinpointsasattributesonJoinpoinl,wesubclassthe Joinpoint meta-

class to allow differentatlributes to be modelled for different join points.

Figure 5.6: Joinpoint as a class extension in new profile

Becausepointcutsareusedbyadvices,themeta-classJoinpointisassociatedwiththe

5.3.5 JoinPointComposition

Earlier in Section 4.1.4c) and Table 4.1, we showed how pointeut



meta-classes to model join point composition (Figure 5.7): JoinpoinlConjunclion,

JoinpointDisjunclion, JoinpoinlNegalion.

JoinpoinlConjunclion will allow to model the composition of at least two join points

that are composed with an && operator of AspectJ. It will also allow modeling Ihe

composition of at least two AsJoinPointDescriptor objects that are composed using the

method intersection: of AspectS. Similarly,lhestereotypeJoinpoinlDisjunctionwill

allow modeling the composition of at least two join points lhat are composed with a II

operator of AspectJ. It will allow modeling the composition of at least two

AsJoinPointDescriptor objects that are composed using Ihe method un;ol1: ofAspectS.

A modeler must make sure thaI the number and type of arguments are consistent for

allthejoinpointsthatarepartofajoinpointdisjunctionorjoinpointconjunction.We

add the following constraints:

context JoinpointConjunction inv'

self.hasParts-->forAII(PI.P2:ExecutionJoinpoinllocIiTypeOf(PI.operalion.owncdpara

meler)=ocUTypeOf(P2.operation.ownedparameler»

context JoinpointDisjunction inv:

self.hasParts-->forAII(PI.P2:ExeculionJoinpointlociITypeOf(PI.operalion.ownedpara

meter)=ocUTypeOf(P2.operation.ownedparameter»

Since the negation operation accepts only a single operand, whileconjunctionand

disjunctioorequire at least two, we model these join poinl compositionsasseparate

sub-classes. Ordering of the operands for conjunction ordisjunclion is not necessary,

since the operations are associative and commutative.

~J



Figure 5.7: Joinpoint compositions in the profile

ExecutionJoinpoint

In Section 4. 1.1 a) ,we showed how receiverClassSpecific advice qualifier attribute

can be used to emulate the funclion of an execution pointcutofAspectJ. As a result,

we can consider that both AspectJ and AspectS have pointcut designator to select

method execution join point. On the other hand, as AspectS does not provide any

construct to select call join point, acallpointcut is not common to the two languages.

In our profile, we model the selection of execution join point using the meta-class

ExecutionJoinpoint The single valued attribute operation allows selecting the

method whose execution will be selected as join point. This will allow modeling the

following code snippets from AspectJ and AspectS respectively:

pointcutdeliverMessageO
: execution (*Test.deliver( .. »;

qualifier: (AsAdviceQualifier
attributes: ('receiverClassSpecific»

pointcut: [(AsJoinPointDescriptor
targetClass:Teattargetselector:ideliver)]



However, AspectS does not allow advising the execution of a static method as a join

point. We add the constraint that only non-static methods can be selected as the values

of the tag operation of classes stereotyped as «ExeculionJoinpoi nl»'

context ExecutionJoinpoint inv

selfoperation.isStatic=False

Although there is no call join point inAspectS,weeanemulateonebyspeeifyingthe

senderClassofasenderclassSpeeificjoinpoint.lfthesenderclassis known, we can

find the source for this method execution, which is actually the caII to that method. On

theotherhand,thecallOand thisO pointeuts(Listing4.16) in AspectJ can be used to

emulate a senderClassSpeeificjoinpoint in AspectS.

A call join point can be modeled using a separate meta-class such as CaliJoinpoint.

Since not all AOP languageshavethecallpointcut,there is no meta-class for this in

the profile. Moreover, 3S we can translate an execution to acall,itis unnecessaryto

model a separate call join point. For this reason, as shown in

FigureS.8, rather than keeping a separate meta-class CaliJoinpoinl, a single valued

altributesenderClassofExeculionJoinpoinlmeta-elassisincluded to specify at most



Figure 5.8: ExecutionJoinpoint in new profile

The data type of senderClass could be Classifier, since AspectJ allows method call

from an object ofaclass that realizes an interface. However, AspectS does not have

the concept of interface. Asaresult,torestrictmodelingthemethod calls that are only

from classes, the data type of senderClass is set to Class.

The ExecutionJoinpoint meta-class will allow modeling the code snippets shown in

Listing 4. 15 (AspectS code) and Lisling4.16(AspectJcode)

5.3.7 ExceptionJoinpoint

In AspectS, an AsHandlerAdvice is used to advise an exception handlerexecutionjoin

point. For this reason, an AsHandlerAdvice could be modeled as one of the values of

the enumeration AdviceExecutionType shown in Figure 5.5. However, as shown in

chapter 4 (Section 4.1.1 d) ) the operation of AsHandlerAdvice of AspectS is similar to

the exception pointcut of AspectJ. Instead of modeling the handler advice kind of

AspectS, we model selection of exception join points using the meta-class

ExceptionJoinpoint(Figure 5.9). The attribute exceptionClass of type Class is used

to specify an exception class for the join point.



Figure 5.9: ExceptionJoinpoint asa class extension

The meta-class ExceptionJoinpoint will allow modeling the exception join point

specified by the following code snippets of AspectS.

If the above code of AspectS is modeled using the profile, this will bean equivalent

model for an AspecUjoin point as shown below.

However, due to compiler limitations only before advice is supported by AspectJto

advise a handler join point. As a result,we add the constraint that an exceptionjoin

point can only be advised bya before advice:

context ExceptionJoinpointinv:

selfofl>ointcut.ofAdvicc--+forAII(a:Advicela.adviceExecution=BeforcAdvice)



5.3.8 PropertyJoinpoint

AspectS does not haveanypointcut constructs to select the read 0 rwrite access to the

fields as join points. However, in chapter 4 (Section4.1.1c», we haveaireadyseen

how the field read or write access join points of AspectJ can be emulated using

AspectS. Therefore, we include these join points in the profile.

Figure 5.10: PropertyJoinpointas a class extension

PropertyJoinpoint(Figure 5.10) is a superclassofthose types ofjoinpoints that arc

associated withreadingandwritingfields.ltpossessesamulti-valuedattribute field

with data type Property. This will allow modeler to select a field (from the base

model), whose access will be selected as a join point. From example, if a modeler

wants to model thegelO pointcut shown in Listing 5.1, he needs to create a class, say

getN, and apply Stereotype GetJoinpoint to it; the class getN will be stereotyped

as «GetJoinpoinb>. As a result, it will haveatagdefinitionjield. Thefieldnofthe

class AsCounlerModijiedl should be selected form the base model as the value of the

tag field. Similarly, theselO pointcut from the same listing can be modeled using the

modelingelementSetJoinpointoftheprofile.



ListingS.lFieldaccesspointcutsofAspectJ

pointcutgetN():qet(privateintAsCounterModifiedl.n);

pointcutsetN():set(privateintAsCounterModifiedl.n);

5.3.9 CFlowJoinpoint

In Table 4.4, we showed some of the cflow related pointcuts of AspectS that can or

can not be emulated using AspectJ constructs. Table 4.5 indicated that the join point

selections by the cflow related advice qualifier attributes such as clFirstClass,

cfAIiButFirstClass,clFirstSuper,andcfAllButFirstSuperhaveequivalentpointcutsin

AspectJ. The advice qualifier attributes related to cflow in AspectS can be emulated

by using the combination of cflowbelow pointcut, execution pointcut and args

pointcutofAspectJ(from Listing 4.17 to Lisling4.20andfrom Listing4.22 to Listing

4.25). On the other hand, using the combination ofcflow pointcut, execution pointcut

andargspointcutofAspectJitispossibletoemulatethosepointcuts in AspectS which

select the execution ofa recursive method without using any qualifier attributes

related to cflow(Listing4.21). Based on the above emulation, we decide to introduce

a modeling element CFlowJoinpoinl (Figure 5.11) that will allow modeling the cflow

based pointcuts that can be translated back and forth between AspectJ andAspeclS.

Figure5.II:CFlowJoinpointasaclassextension



Chaprer5:Aspect..QrientedModelinginUML

The join points selected by the ClassFirsl, ClassAlIButFirst, SuperFirst and

SuperAIIButFirst advice qualifier attributes of AspectS can be selected using the

pointcut constructs of AspectJ. For this reason we consider those join points as

common between these languages. We model clPointcut as an attribute of the

CFlowJoinpoinl meta-class. The values are provided by the enumeration

CFlowJoinpoinlType. When the profile is applied to a model, clPointcut becomes a

tag of stereotyped «AdviceColieclion». Its values ClassFirst, ClassAlIButFirst,

SuperFirst,andSuperAIiButFirstrespectivelyrepresenttheadvice qualifier attributes:

cfFirstClass,cfAllButFirstClass,cfFirstSuper,andcfAlIButFirstSuperofAspectS.

Using the meta-class CFlowJoinpoinl, pointcuts shown in Table 5.1 can be modeled

using the profile.

Table5.I:Pointcutsthatcanbemodeledusingthemeta-classCFIowJoinpoinl



I'U"."'" I""""."."u."",.,,, I{#receiverClassSpecific.#cfAllButFirst &&execution(*
Super}) FactorialM.factorial( .. ))
pointcut, [{AsJoinPointDescriptor&&!withinISubFactorialMI
targetClass:FactorialM
ti:tuJetSelector: #factorialM:.}]

The meta-class Joinpoint is associated with the meta-class CFlowJoinpoint, since

pointcuts are used by cflow pointcuts. This association will allow modeling a cflow

based pointcutthat takes another pointcutas an argument.

The operation of AslntroductionAdvice of AspectS can be emulated by the static

crosscutting feature, which is the introduction of AspectJ. Since introduction is an

objectinAspectS,likeanadvice,wedecidetomodeltheintroductionasobjecttoo.ln

the profile, an introduction (static crosscutting) is modeled using the meta-class

Introduction (Figure 5.12), which extends UML meta-class Class. Since static

crosscutting features are used by aspects, the meta-class Introduction is associated

with the meta-class Aspect.

Figure 5.12: lntroduction as a class extension



In order to specify which cross-cutting feature is to be introduced, the Introduction

meta-class possesses a multi-valued attribute feature, whose data type is the UML

meta-class Feature. onType is another multi-valued attribute of meta-class

Intraduction. It is introduced to specify the type on which the cross-cutting feature

will be introduced. Since the same method can be introduced on multiple types, the

attributeonType can have multiple values. As discussed earlier in Section2.3.IAc),

in AspectS, each AslntroductionAdvice object consists ofa single introB/ock that

defines the bodyofa method to be introduced. Asa result, if multiple methods on

same or different datatypes (usually class in AspectS) are introducedusingthesame

As/ntroductionAdvice object, all the methods will have the same body. In Aspectl,

features can be introduced on both classes and interfaces. However, as AspectS does

not have interfaces, we choose the UML meta-class Class as the data type of the

attributeonType.

In Listing 5.2, an aspect A introduces a field name and a method getNameO in

AspectJ. The field name and the method getNameO should be modeled respectively as

anattributeandanoperationoftheassociatedaspect.Whentheprofileis applied, the

multi-valued attribute feature will be a tag definition of that aspect.Forthisexample

bothnameandgetNameO will be selected as the values of the tag feature.Sinceboth

of these features are to be introduced on a class named Point, theciassPoint should be

selectedasthevalueoftagonTypefromthebasemadel

Listing 5.2 Inlroducingafieldanda melhodusingAspeclJ

aspect A I
publicStringPoint.name;
public StringPoint.getNameO {returnname;}



5.4 Profile for Static AOP

By combining the modeling elements described in previous section,we get the profile

shown in Figure 5.13. This profile can be applied to the static AOP only. As in this

profile, Joinpoint, JPDisjunction, Advice and Aspect are modeled as stereotype

class; it will allow modeling the join points (Line# 2 and 3), composed join point

(Line# 6), advice (Line# 13 and 14) and aspect (Line# 21) from the pseudocode

shown in Listing 5.3. The listing shows the dynamic creation ofjoinpoint objects and

addingthesejoinpointobjectstoadynamicallycreatedadvice.Similarly, the advice

object is added to the set of advices for an aspect object. It also showstheinstantiation

ofAspect along with their dynarnic weaving.

Listing 5.3 Pseudocode for D namic AOP
l/creatingobjectsofJoinPoint.
x: 3 newjpl.

3 y:=newjp2.

//creatingobject of JPDlsjunction
6 jpd:=JPDisjunctionnew.

8 objects totheactributes of JPDisjuction.

16 //adding the JPDisjunccionobject to the attributes of Advice.
17 adl.pointcut.add(jpd).
18 ad2.pointcut.add(jpdl.

20 Ilcreatingobject ofAs~ctLogger

21 aspect:=AspectLoggernew.

23 / /ad,jinathe ,~dvic'e ob';ects to the attributes of AspectLogger.

25 aspe"t.advices,.add(ad2).



28 aspect.install().
29

...... do something here ..
31
32//Aspectuninstallation
33 aspect.uninstall().

However, there maybe more than one instance of a joinpoint or advicespecification,

and that these instances are modifiable, assignable to variables andusableformethod

parameters. The profile does not support modeling join point objects 0 radviceobjects

that can be assigned to variables (Line#9, 10,17,18,24 and 25). Also, the above

profile does not allow installing or uninstallingaspects (Line# 28 and 33). Hence,this

profile does not support modeling dynamic weaving and dynamic AOP.



Figure 5.13: Profile for Static AOP

5.5 Profile for Dynamic AOP

We consider the profile shown in Figure 5.13 asa step towards the generic profile and

modify it in this section to enable dynamic AOM. The following modeling elements

are introduced to the profile for Static AOP:



a)Pointcut

Joinpoint, the meta-class Pointcutthat extends UML meta-class StructuralFeature

is introduced to the previous profile (Figure 5.13).

We add the constraint that the «Pointcub> stereotype can only be applied to features

of classes that are stereotyped «Advice». In other words, for all instances ofa

pointcut, the classifier of the pointcut feature must be an advice:

alllnstancesO->featuringClassifieLexists(qC.ocUsKindOf(Advicc»

We modify the association between Advice and Joinpoint meta-class shown in Figure

5.13.Anadviceobjectisassociatedwithapointcut;Pointcutmeta-class (Figure 5.14)

is associated with the Advice meta-class. Since each pointcut usesajoinpointoraset

of join points that are composed with the meta-classes for join point composition,

Joinpointmeta-class is associated with the Pointcutmeta-c1ass.

Figure 5.14: Pointcutas a structural featureextens;on



The above modification will allow modeling multiple instances of a joinpoint

specification which are modifiable, assignable to variables and usable for method

parameters. However this modification does not allow modeling a composed join

point (Line# 17 and 18 of pseudocode shown in Listing 5.3).

b) JPCoUection

With the meta-class Pointeut introduced in the previous Section, it is possible to

modelthepassingofasinglejoinpointobject,e.g.anexecutionjoinpoint(modeled

using meta-class ExeeutionJoinpoint) or an exception join point(modeled using the

meta-class ExeeptionJoinpoint) or a composed join point (modeled using the meta-

class JoinpointDisjunetion or the meta-class JoinpointConjunetion). However,

instances ofa composedjoinpoint specification that are modifiable, assignable to

variables and usable for method parameters can not be modeled with the current

profile. In order to model those there should be a connection between the meta-class

Joinpoint with the meta-class JoinpointConjunetion and JoinpointDisjunetion.

Hence, we cannot model Line# 9 and 10 of pseudocode shown in Listing5.3.

We introduce anew meta-class JPColleetion (Figure 5.15)to the profile. Since join

point collection usesjoinpoint objects composed with the meta-classesforjoinpoint

composition, JPColleetion is associated with both JoinpointConjuetion and

JoinpointDisjunetion.



Chapter5:Aspect-OrienlcdModelinginUML

Figure 5.15: JPCollection as a structural feature extension

We add the constraints that the «JPCollection»stereotype can only be applied to

features of classes that are either stereotyped «JoinpointConjunction» or

«JoinpointDisjunction>>:

alllnstancesO-->featliringClassificr.cxisls(C1C.ocllsKindOf(JoinpointCojllnclion))

alllnstancesO->featuringClassificr.cxisls(C1C.ocllsKindOf(JoinpointDisjullction))

Since JoinpointConjunction and JoinpointDisjunction are associated with

JPCollection meta-class, multiple instances of a composed join point can be

modeled. JoinpointConjuction and JoinpointDisjunction do not need to be

associated with Joinpoint meta-class (shown in Figure 5.(3) anymore. We remove



The above modifications allow modeling a join point, which is composed of several

join point objects (Line#9 and 10 of pseudocode shown in Listing5.3).

c) AdviceCollection

Same as join point specification, an advice specification can have multipleinstances

that are modifiable, assignable to variables, and usable formethodpararneters. A new

meta-class AdviceColiection (Figure 5.16) that extends the UML meta-class

StructuralFeature is introduced to the previous profile to model thoseinstances.We

modify the association between Aspect and Advice meta-class shown in Figure 5.13 .

.precededBy [Class] «stereotype»

0' : -ofAdviceCoiledIon AdvieeColleetion
1 [structlXsJFeature)

CI... ~advice 1,,'

«stereotype»

Advice «metaclass»

+adViceExecutlonIC::::ceExecutionType SU.ct.r.IN.'"r.

Figure 5.16: AdviceCollectionas a structural feature extension

An aspect is associated with at most one advice collection; AdviceColiection meta-

class is associated with the Aspect meta-class. Since each advice collection can

consists of one or more advice objects, Advice meta-class should be associated with

stereotype can only be applied to features ofclasses that are stereotyped,<Aspec!».ln

other words, for all instances of an advice collection, the classifier of the advice

collection feature must be an aspect:



alllnstancesO---+featuringClassifier.e,ists(qC.ocllsKindOf(Aspect))

The above modification will allow modeling an advice specification with multiple

instances (Line#24 and 25 of pseudocode shown in Listing 5.3 ) that are modifiable,

assignabletovariables,andusableformethodpararneters.

d) Install and Uninstall

In order to model the installation of an aspect, we introduce a mela-c1ass install

(Figure 5.17). The meta-class uninstall, as shown in Figure 5.17, is introduced to

model the uninstallationofanaspect. Since installing and uninstalIingthe aspeclare

dynamic features that modify the behavior, we model the above meta-classes as

stereotyped BehavioralFeature.

We add the constraint that the «install»stereotype can only be appl iedtooperations

of classes that are stereotyped <<Aspecb>:

alllnstances()---+featuringClassifier.e,ists(qC.ocllsKindOf(Aspecl))

Similarly, we add the constraint that the «uninstall»stereotype canonIybe applied to

operations of classes that are stereotyped <<Aspecb>:

alllnstances()---+featuringClassifier.e,iststqC.ocllsKindOttAspect»)



Figure 5.17: install and uninstallas behavioral feature extension

Theabovemodificationswillallowinstallinganduninstallingaspects (Line# 28 and

33 of pseudocode shown in Listing 5.3)

By modifying the profile for static AOP as mentioned in the above sections, we get

the profile shown in Figure 5.18. However, as this dynamic profile excludes some of

the relationships between elements of static profile, it can beapplied to dynamic AOP

only



Figure 5.18: Profile for DynamicAOP

5.6 GenericProme

Theprofiledevelopedintheprevioussectionallowsinstallinganduninstallingaspect.

It also supports modeling multiple instances ofjoin point and advice specificationthat



these instances are modifiable, assignable to variables and usable for method

parameters. However, it is only applicable to dynamic models. We consider this

profile as another step towards the generic profile.

Recall that static AOP requires the developer to specify all pointcuts, advice and

aspects at compile time. Usually a weaving compiler is used to addadvice code to join

points. As a result, aspects cannot be added, removed, or modified at runtime [16). To

change aspects, the system must be recompiled [17). On the other hand, Dynamic

AOP provides support for controlling aspects at runtime. It allows changes to aspects

without restarting the program [16]. A run-time weaver is used to add advice code to

the selected join points

The approach (static or dynamic) that is followed byan AOP language extension can

be understood by looking at the aspect weaving of that language. A language that uses

a weaving compiler for aspect weaving follows the static AOP approach. On the other

hand, runtime weaving of a language indicates that it follows the dynamic AOP

approach. All the AOP extensions either follow static approach or dynamic approach

but not at the same time. That is why, while modeling a system we should follow

either of those approaches too. Asaresult,evenifwecomeupwithasingleprofile,

the static and dynamicAOM should not be done at the same time.

Theprevioustwoprofiles(staticanddynamic)areindividuallyappropriateforstatic

AOM and dynamic AOM respectively. The generic prome includes all the modeling

elements such as: Aspect, Advice, Joinpoint and lntroductionthatwereintheprofile

for static AOP. As a result, it allows modeling the join points (Line# 2 and 3),

composed join point (Line# 6), advice (Line# 13) and aspect (Line#19) from the



pseudocode shown in Listing 5.3. The profile for static AOP was not havingelements

such as: AdviceCollection and Pointcut, which were introduced in the profile for

dynamic AOP. These elements are included in the generic profile since they are

necessary for dynamic AOP and also using those we still can model static AOP. On

the other hand,the elements such as: JPCollection, install and uninstall should not

be used for static AOM, since those are only used to model some specifications that

represent dynamic AOP. As these elements are necessary for dynamic AOM, we keep

these in the generic profile. Asa result, it enables modeling multiple instancesofa

joinpoint and advice specification that are modifiable, assignable to variables and

usable for method parameters

Recall that, in the profile for dynamic AOP, the meta-class JPColleclion was

introduced to model a join point collection that possesses instances of multiple join

points. Since join point collection usesjoinpoint objects composed with the meta-

classes for join point composition, JPCollection was associated with both

JoinpoinlConjuction and JoinpoinlDisjunclion. It allowed the modeling of multiple

instances ofa composed join point. As the associations of Joinpoinlmeta-classwilh

JoinpoinlConjuclion and JoinpoinlDisjunction became unnecessary, we removed

these associations in the profile for dynamic AOP(Section5.5 b». However,inthe

generic profile, the meta-class JPColleclion and its associations with

JoinpointConjuclion and JoinpoinlDisjunclion are not used while modeling static

AOP. As a result, the associations of Joinpoint meta-class with JoinpoinlConjuction

and JoinpoinlDisjunction become vital. In the generic profile we restore these

relationships (Figure 5.19).



Chapter5:Aspect..()rientedModclinginUML

Figure 5.19: Associalionswilh the mela-classes for join point composilion

Figure 5.20 presenls Ihe final profile which is core generic mela-model for AOP

languages. The generic profile is developed by combining modeling elemenls and

Iheir relalionships from the previous Iwoprofiles (slatic and dynamic) in such a way

Ihallheroleoflheelementsandtheirrelalionshipspresenl inlhegenericprofileare

significanl 10 specify eilher sIalic or dynamic AOP. Asa result,lhe generic profile

allows modeler to model sIalic or dynamic AOP. The generic profile does not restrict

a modeler 10 choose inappropriale elements, e.g. using JPColiection in Ihe sIalic

model. However, Ihe model will neither represenl sIalic AOP or dynamic AOP. [n

such case, iflhis model is further used for code generation, it will produce some

incorrecland strange looking code. For this reason, ilislhemodeler'sdutylomake

sure thaI static aod dynamic AOM are not included within the same model.

SomeoftheappJicationsofthisprofilearepresenledinnexlchapter.



Figure 5.20: Core generic meta-model for AOP languages



5.7 Comparison with AspectJ profile

This section presents a comparative picture of our generic profile with the existing

AspectJ profile [12]. Comparisons are done based on the modeling elements presented

in AspectJ profile.

5.7.1 CrossCuttingConcern

In AspectJ, a cross-cutting concern contains aspects in the same way as packages

contain classes. In the AspectJ profile [12], Evermann introduced the meta-class

CrossCuttingConcern which extends the UML meta-class Package as a way of

grouping related aspects. In the generic profile, we also use the meta-class

CrossCuttingConcern to group related aspects of AOP languages.

5.7.2 Aspect

In the AspectJ profile, an aspecl is modeled using the meta-class Class. In lhe generic

profile, we also model aspect as class. However, some attributes of Aspecl are

omitted in the new profile. A Boolean attribute is Privileged was introduced to

indicate whether the aspect is privileged (discussed in Access Specification of Section

4.1.2). Since AspectS does not support access specification, we consider access

specification as a feature specific to AspectJ. Hence, the Boolean attribute

is Privileged of AspectJ profile is absent in the generic profile. SimilarlY,theattribute

declaredlmplemenls that allows the declaration of interface realizationsisomitted.

In AspectJ, aspects may be instantiated per pointcut. As shown in Figure 5.21, the

attributes perTypeand perPoinlCul that specify the type of aspect instantiation and

associated pointcut per pointcut were introduced in the AspectJ profile. These



attributes are also omitted because the related features are AspectJ specific. Since

perType is not kept in generic profile, the values provided to it by the enumeration

AspectinstanceType cannot be kept in the new profile as well.

Figure5.2l: Aspect as a class extension in AspectJprofile[12]

However, the new profile includes Aspect precedence from AspectJ profile without

any change.

5.7.3 Advice

In the AspectJ profile, with Aspect being a meta-class that extends Class, the dynamic

features of aspects, i.e. advices, play the role of class behavior. That is why the meta-

order to allow modeling advice objects that can be passed asmethodparameter, in the



generic profile, we model the meta-class Advice as an extension of the meta-class

The attribute advice Execution of Advice meta-class is reused in the generic profile

without any modification. Similar to the Aspecll profile, in the generic profile, the

types of an advice are also modeled using the meta-class AdviceExecutionTypethat

extends the UML meta-class Enumeration

In Aspecll profile, a pointcut is modeled using meta-class StructuralFeature. In

AspectS, pointcut is a collection of join points. Since join points are objects in

AspectS, they should be modeled as objects. PointCut meta-class (from AspectJ

profile) is renamed as Joinpoint that extends the UML meta-class Class in generic

profile.

5.7.5 OperationPointCut

It is a superclassto describepointcutsthat select operationrelatedjoinpoints.Lnlhe

newprofile,executionpointcut(Seetion5.3.6)istheonlyoperation related join point.

In the Aspecll profile, a pointcut that selects method execution join point was

modeled using meta-class StructuralFeature. Werenarne it as ExecutionJoinpoint.

AsdiscussedearJierinthischapter(Section5.3.6),inthenewprofile, the meta-class

ExecutionJoinpoint extends UML meta-class Class.



fntheAspectJprofile,PrelnilializalionPoinlCuland InilializalionPoinlCul were

chapter 4 (Section 4. 1.I e) ,Section4.1.If) and Section4.l.lg», these elements are

based on the features specific to AspectJ. Asaresult,wedo not keep those in the new

profile.

CallPointcut

In AspectJ profile, a pointcut that selects method call join point was modeled using

meta-classSlrucluraIFealure.AsdiscussedinSection5.3.6,CallPoinlcul is not kept

in the new profile.

The meta-class WilhinCodePoinlCul of AspectJ profile is not kept in new profile

since AspectS does not allow such join point selection (Page 90).

In the AspectJ profile, the meta-class PoinlCulPoinlCul is a superclass for the meta-

pointcutsofAspectJrespectively.lnordertounifycontrol flow related pointcutsof

AspectJ and AspectS, we introduce the meta-class CFlowJoinpoinl that extends UML

meta-class Class. The attributecfPointcut specifies different types of control flow

related pointcuts from both the languages. Since we only use a single meta-class

CFlowJoinpoinl to model the control-flow based join point, we remove the super-

c1assPoinICuIPoinICutfromthenewprofile.



Chapter5:Aspect-GrientedModelinginUML

5.7.7 AdviceExecutionPointCut

In the AspectJ profile, a pointcutthat selects advice execution as join point was

modeled using meta-class AdviceExecutionPointCut, which extends UML meta-

class StructuralFeature. Since this is specific to AspectJ (Section 4.1.1h)), this

element is not included in the new profile.

5.7.8 PropertyPointCut

The meta-class PropertyPointCut that extends UML meta-class StructuralFeature

is an abstract meta-class. In the generic profile, this element renamed as

PropertyJoinpoint with a modified extension; it extends UML meta-class Class

In AspectJ profile the subclasses of PropertyPointCut such as GetPoi ntCut,and

SetPointCut that were modeled extending the UML meta-class Structural Feature,

are reused with modifications. These are renamed as GetJoinpoint and SetJoinpoinl

respectively(Section4.1.lc)).Bothofthesemeta-classesextendtheUMLmeta-class

ContextExposingPointCut

The meta-class ContextExposingPointCut extends the UML meta-class

StrucluralFeature.ltisanabstractsuperclassofthosepointcuts that expose context

inadvices[12].ExposingcontextinanadviceisimplicittoAspectS (page 91). Also,

for AspectJ, it can be handled during code generation. Hence, we do notincludeitasa

modeling element in the new profile.



5.7.10 TypePointCut

In the AspecU profile, the meta-class TypePoinlCul extends the UML meta-class

SlrucluralFealure.ltisasuperclasstomodelpointcutsthatselecttype-relatedjoin

points [12]. The subclasses of the meta-class TypePoinlCul: ThisPoinlCul,

ArgsPoinlCul, TargelPoinlCul, WilhinPoinlCul, and SlaliclnilializalionPoinlCul

were modeled based on the features specific to AspecU. Thus, these meta-classes are

ignored in the generic profile. However, join point arguments are automatically

exposedtoadvicesinAspectS.Asaresult,foreachexecutionjoinpomtselection,an

argspointcutiscreatedduringcodegeneration.

In the AspecU profile, the meta-class ExceplionPoinlcul extends the UML meta-

class SlrucluralFealure. We model exception join point using the meta-class

ExceplionJoinpoinl that extends the UML meta-class Class.

5.7.11 Pointcutcomposition

PoinlCulConjunclion,PoinlCulDisjunclion, and PoinlCulNegalion

introduced in AspectJ profile to model the composition of pointcuts. The sarne idea is

followed in the generic profile to model the composition of join points. Since

Joinpoinl is stereotyped classes, the meta-classes for join point compositionsarealso

modeled as stereotyped Class, where as those were modeled as stereotyped

SlrucluralFealureinAspectJprofile.

5.7.12 StaticCrossCuttingFeature

In the AspectJ profile, the static crosscutting feature was modeled using the meta-class

SlalicCrossCullingFealure that extends UML meta-class Fealure. We model the



staticcrosscuttingfeaturewiththemeta-classlnlroduclion.lnthegenericprofile,the

5.8 Summary

Similar to the AspectJ profile developed in [12], the present work allows the

integration ofaspect features with base-model features on the meta-modellevel,rather

than as part of the model. We define all the elements as UML stereotypes, tags on

those stereotypes or as the values of tags. A UML stereotype is a meta-class which

enters into extends relationships with existing meta-classes [28]. Visually, this is

shown with the extended class in square brackets. Attributes that are modeled on

stereotype meta-classes will translate to tags when the profile is applied [28]

Similarly,valuesofstereotypeattributeswillbecomevaluesoftags when the profile

is applied [28]. This extension mechanism in UML2.0 is therefore a powerful way in

which any meta-level model immediately becomes usable as a profile.

We develop the profiles for static and dynamic AOP separately as steps towards the

generic profile. The profile for Static AOP allows modeling aspects, advices and join

points as stereotyped Classes. However, it can be applied to the static models only

Some modifications to this profile such as: including modeling elementsforenabling

and disabling aspects, and introducing meta-classes such as: AdviceColieclion,

Poinlculand JPColieclion as Structural feature, gives us the Profile for Dynamic

Profile for Dynamic AOP allows modeling the join point and advice objects that can

be passed as methods arguments. Since this modified profile excludes some



relationships from the profile for Static AOP, we consider this profile for dynamic

AOMonly.

We combine the modeling elements from both profiles (static and dynamic). It gives

us the generic profile, which allows modeler to model both static and dynamic AOP

with the constraint that modeler is modeling either static or dynamic AOP but not both

Since this generic profile isanextensionof[12],some modelingelements, as shown

in Table 5.2,are reused from the AspectJ profile without modification.

Table 5.2: Reusing elements from AspectJ Profile without modification

However, to allow dynamic AOP modeling, as shown in Table 5.3, most of the

existingelementsof[12] were modeled by providing appropriate extensions.

Table 5.3: Reusing elements from AspectJ Profile with modification

AspectJProfile

Aspect

PointCutConjunction

Aspect

Joinpoint

JoinpointConjunction



AspectJProfile

PointCutDisjunction

PointCutNegation

PropertyPointCut

ExceptionPointcut

StaticCrossCuttingFeature

JoinpointDisjunction

JoinpointNegation

ExecutionJoinpoint

PropertyJoinpoint

GetJoinpoint

SetJoinpoint

ExceptionJoinpoint

CFlowJoinpoint

We know that AspectJ is very rich for its pointcut constructs that allows wide varieties

of join point selections. The AspectJ profile takes account of those pointcuts and

provides full facility for modeling them. Our profile is based on the core generic

features of different AOP languages. Since the languages other than AspectJ has

limited pointcut constructs comparing to that of AspectJ, several pointcuts from the

AspectJ proftle, as shown in Table 5.4,areomitted in the generic proftle.

Table 5.4: Elements omitted from AspectJ Profile

Reason for excluding

f--c--,--~-----.,-----=--c_---+-=-_--c-=-_---jSpecifictoAspectJ



AspectJProfile

OperationPointCut

Reason for excluding

!l isa superclass to describe pointcuts

that select operation related join points.

ill the new profile, execution pointcut

(Section 5.3.6) is the only operation

related join point. Hence,

OperationPointCutisignored.

I-:--:-:-..."...---,----:::-:-~-___t_;;,_____,_____~_tSpecific to AspectJ

ContextExposingPointCut

TypePointCut

TargetPointCut

Implicit in AspectS. !lcan be handled

during code generation for both

AspectS and AspectJ

AspectS is untyped. TypePointCut is

specific to AspectJ.

Specific to AspectJ
I-::=-:-::-:-~--+O-____,_____~---l

ArgsPointCut

PointCutPointCutisasuperclassforthe

control-flow based pointcuts of

AspectJ. We use a single meta-class

CFlowJoinpointto model the control

flow based join point. Hence,

PointCutPointCut is omitted in the

generic profile.



In order to allow dynamic AOM, following modeling elements are introduced in the

generic profile (Table 5.5).

ew elements in the Generic profile

CFlowJoinpointType



Chapter 6: Application Example

Chapter 6

APPLICATION EXAMPLE

As discussed earlier, the proposed profile can be applied to both static and dynamic

AOPatdifferenttimes. In this chapter, we show applications of the proposed profile

as proof of concepts. Rather than using complex case studies, we illustrate some

simple examples that are already discussed in previous chapters. Using those

examples, we demonstrate the use of the profile during modeling and show the visual

appearance of the model. As the profile does not allow modeling of static and

dynamic AOP at the same time, modeling crosscutting concerns for static and

dynamic AOP implementations will be different for all examples. In Chapter 3, we

discussed the difference between static and dynamic AOP. We have seen that AspectJ

and AspectS follow static and dynamic AOP approaches, respectively. In the next few

sections, for each modeling example, we will consider AspectJ code to develop the

static model. On the other hand, while modeling the dynamic aspects, AspectS code

6.1 Example-I: Modeling SenderClassSpecific Join Point

Recall Section 5.3.6, where we introduced the element ExecutionJoinpoint to model

both execution and call join points. Modeling an executionjoinpoint is trivial. The

following paragraphs present an example ofsenderClassSpecific pointcutinAspectJ.



The base model is same for both sialic and dynamic AOP implementations. Seclion

6.1.2.1 andSeetion6.1.2.2 respectively present stalic and dynamic models of cross-

cutting concerns for this example.

This seclion presenls the base model of the example. The core concerns involve two

classes Test and NelVTest. The classes and their relationships are shown using the

UML class diagram shown in Figure 6.13. We wish to advise the call of the deliver

method by objects of class NelVTest.

I T•• I~'de"Ver(m.$.oge:String):VOId~

Figure 6.1: 8ase model of the example with call join point

Crosscutting-cutting Concern

Section 6.1.2.1 and Seclion 6.1.2.2 present the cross-cutting concern of this

senderClassSpecificjoin point example in terms ofstatic and dynamic models.

6.1.2.1 ModelingStaticAOP

In Listing 6.1, the aspect AfterHelloWorid is defined within the package

CrossCuttingConcern.TheaspeclAfterHel/oWoridconsistsofapointcut and an after

advice that advises the pointcut deliverMessage. The pointcut deliverMessageselects



classes Test and NewTest, along with their methods, are shown in the base model

(Figure 6.1)

Listing 6.1 An exampleofa call pointcutin AspectJ

Recall that in UML, meta-classes that extend existing meta-classes become

stereotypes, and attributes of extending meta-classes become tags. Crosscutting

concerns become packages that are stereotyped «CrossCullingConcerm> and the

aspects of this cross-cutting concern are classes that are stereotyped «Aspect»,

contained in the package.

In the above example, thepointcut signature of deliverMessage indicates that a

method call from a specific class is selected. As a result, the pointcut should be

modeled as an «ExecutionJoinpoinb>. Moreover, as the call is from the class

NewTeSI, using the attribute senderClass, the class NewTesl should be specified as

the sender class. We will not model the argsO pointcut as that only exposes the

context and can be automatically generated for each execution pointcutduringcode

The advice should be modeled as an «Advice». Since this is an after advice,thevalue

of the tagadviceExeculion should be selected as AfterAdvice. Figure6.2represents

the static model of the senderClassSpecificjoinpoint example.



Chapter 6: Application Example

I o.=..~m I
{ofAdvicIColllctlon-"dvicu)

~
~-~»I ._. IdeherMe•••ge IIdvice1

{.,m"," = d.,;.. ,. {.dv;"Exoo,ti'"-Aft"AdV;".
nndl,Clu5-Nl!wTest} pcintcut-myPointcut}

«Pointcut»-myPolntcut{ofJoinpoint .. dellverMessege}

Figure 6.2: Static model of senderClassSpecific join point example

6.1.2.2 Modeling Dynamic AOP

In this section we will model the dynamic implementation (in AspectS) of the

senderClassSpecific join point example. Listing 6.2 presents the aspect

AfterHelloWorld in AspectS. The category in the class description shows that this

aspect belongs to the category CrossClittingConcern, which should be modeled as a

package.

Listing 6.2 AfterHel/oWorldaspect in AspectS

poolDictional-ies: '
category: 'CrossCuttingConcE:rn'

Listing 6.3 shows a method returning an advice of the AfterHelloWorld aspect. The

afterBlockofthe advice indicates that the kind of this advice isAfterAdvice.



Chapter 6: Application Example

Listing 6.3 advice ofAflerHel/oWorld aspect

#deliver}]

:aspect:client:returnl

GoodbyeWolld. '.1

The advice qualifier attribute in this listing provides us the informationaboutthetype

of join point to be modeled. With the attributesenderClassSpecijic, it indicates that

the join point is an execution join point that contains sender class information. From

the description of the pointcut we get the informationoflhe operation to be selected as

ajoinpoint. Listing 6.4 indicates how the definitions in Listing 6.3 can be used. The

class NewTest is added asa sender class to the aspect (Line#2).

Listing 6.4 Dynamic weaving in AspectS

aspect:=AfterHelloWorldnew.
testl:=NewTestnew.

aspectaddSenderClass:NewTest.

aspect install.

aspect
aspect

As the elements aspect, advice collection, advice, pointcut, and join point of this

dynamic implementation are similar to that of static implementation (Listing 6.1),

these clements can be modeled exactly as shown in Figure 6.2.

However, dynamic aspect weaving is not supported by the languages that follow static

adaptation. As a result, the static model shown in the previous sectiondoes not include

any element related to dynamic aspect weaving. Line#4and Line#7 of Listing 6.4



OJapter 6: Application Example

p,esentsdynamic weaving that controls aspect installation during runtime. [nstallation

of aspects is related to behavior. Asaresult, it should be modeled as operalion. To

model enabling and disabling of aspect, as shown in Figure 6.3, we create two

operations instal/Me and uninstal/Me for AfterHel/oWorld. When the profile is

applied,theseope,ationsbecomestereotyped ,dnslall» and "uninslall» respectively.

We select instal/Me and uninstal/Me as values of the inslaliMelhod and

uninslaliMelhodtagsofAfterHelioWorld.

«CrosI'Cliti'lgConcern»

C,••CunlngC.ncem

~
<A'Poct»

{lnJtIIlMethod - Inst~IIMI

unlnJtIIl~.hthod- unlnlt.1I1IMe}

«AdvlcecOllectk>n••••dvlce.lodvice.OdvIce1·, '

«instaU»+inslaUMeO
«unlnstall»+uninstallMeO

~~-»I - IdeliwerMe•••ge lId'Iice1

(.p"'"".,.,;.... (....."Eu"ti"·Aft.<A'v,..,
IInderClus-NewTnt) polntout-myPaintcut)

ccPoi1.ct.i».myPoricli{ofJoinpoinl:-deiverMel'sage}

Figu,e6.3:DynamicmodelofsenderClassSpecificjoinpointexample

6.2 Example-2 : Modeling Cflow Join Point

[n Chapter 4 (Section4.1.4b) ii), we showed examples based on the control now

based join points. In this section, we use one of those examples to show the

application of the element CFlowJoinpoint of the generic profile.



O1apter6:ApplicationExample

6.2.1 Base Model

This section presents the base model (Figure 6.4) of the example with cflow join

point. The core concerns involve a single class AsFactorialMas shown in the

following UML class diagram.

«constructor»+AsFactorialM(other:AsFactoriaIM)
+faclorial(n:inl):long

Figure 6.4: Base model ofCFlow Join Point Example

Cross-cutting Concern

Assumethatwewanttoadviseallrecursivecallstofactorial()exceptthetopone.ln

this example, the advice is triggered every time except for the [rrsttime when the

method/actorial is invoked by the instance of AsFactorialMclass. Let us assume that

the aspect AspectClassAIlBlItFirst is defined within the package

CrossClIttingConcern. The aspect AspectClassAIlBlItFirst is associated with the

advice collectionadvices, whichisa collection ofa single after advice Advice1. The

advice Advice1 advises thepointcut myPointcut1, which is a collection of the join

point Pointcut2. The join point Pointcut2 is the control flow based pointcut. Asa

result, it takes the join point Pointcut1, which is an execution join point as an

argument.Seclion6.2.2.1 and Section 6.2.2.2 respectively present the static and the

dynamicmodelsofthiscflowjoinpointexample.



OJapter 6: Application Example

6.2.2.1 ModelingStaticAOP

Modeling the elements package, aspect, advice collection, advice, and pointcut is

similar to the previous example. However, as the join point to be advisedrestrictsthe

set of execution pointcuts to all but the first one, it should be modeledusingthemeta-

class «CFlowJoinpoinl». Also, ClassAIiButFirst should be selected as the value of

the tagcfPointcut of «CFlowJoinpoinb). Sincecflowrelatedpointcutsrestrictaset

of join points, they take another pointcut as argument. In this case, the control flow

pointcutis intended to restrict the set of execution pointcuts to all but the first one.

Therefore, cflow pointcuts must refer to the set of pointcuts that they restrict. Ajoin

point related to the latter should be modeled extending the meta-class

«ExecutionJoinpoinl».This«ExecutionJoinpoint»shouldbeselected as the value

of the selectedPointcut tag of «CFlowJoinpoinl». The following paragraph

provides a detailed description of modeling these two join points.

<<CrossCuttJngConcern»

CrolllCuttingConcern

Figure 6.5: Static cross-cutting concem ofcflowjoin point exarnpIe



O1apter 6: Application Example

As shown in Figure 6.5, we create two classes Pointcutl and Pointcutl for the two

join points mentioned above. We apply the stereotype «ExeculionJoinpoinl» on

Pointattl. The attribute operation of «ExeculionJoinpoinl» becomes a tag that

provides a list ofoperations whose execution can be selected asjo in points. We select

the method factorial of AsFactorialM class from the base model (Figure 6.4) as the

valueoftheoperaliontagofPoinlcul1.Poinlcul1representsthesetofexecution

join points to be selected and advised,but this set is further qualified whenPoinlcul1

islinkedtothecontrolflowpointcut,Poinlcu12.

The stereotype «CFlowJoinpoinb, is then applied to the class Pointcutl.ltsattributes

cfPoinlculandselecledPoinlculbecometags. The tag cfPoinlcul specifies the type

of the control flow based join point to be modeled. The tag selecledPoinlcul allows

connecting Poinlcul2 with another pointcul. We select ClassAIiBulFirsl and

Poinlcul1asthevaluesofcfPoinlculandselecledPoinlculrespectively.

6.2.2.2 Modeling Dynamic AOP

While modeling the dynamic cross-cutting concerns of the cflow join point, besides

modeling all the elements modeled in the static model, we need to model the dynamic

weaving of aspeel.

As shown in Figure 6.6, at first we model all the elements such as aspect, advice

collection, advice, pointcut, and join points by following the procedurediscussedfor

the static model in Section 6.2.2.1 . Then, to model enabling and disabling of aspect,

we create two operations ins/aI/Me and uninstal/Me for AspeclClassAIiBulFirsl.

When the profile is applied, like in the dynamic model of the previous example

(Section 6.1.2.2), these operations become stereotyped <<install» and «uninslall»



OJapter 6: ApplicatiOl1 Example

respectively, which are then selected as values of instaliMethod and

uninslaliMelhodofAspeclClassAIiBulFirsl.

<<CroasCLAtilgC >

Cro.CuttlngConcern

Figure 6.6: Dynamic cross-culling concern ofcflowjoin point example

6.3 Example-3 : Modeling an Exception Join Point

Recall Chapter 4 (Section4.I.ld», where we showed an example of the exception

handler execution join point. In this section, we use that example to show the

application of the element ExceptionJoinpoint of the generic profile.

This section presents the base model (Figure 6.7) of the example with an exception

join point. Tbe core concems involve two classes TestHandlerandError as shown the

following UML class diagram. Assume that we wish to advise the execution of the

handlers that handle exceptions of class Error that are raised by the methoddeliverO.



OJapter 6: Applicatioo Example

~~
~c=J

Figure 6.7: Base model ofexceplionjoin poinl example

6.3.2 Crosscutting-cutting Concern

In Ihis example, wilhin a CrossCuttingConcem Ihe aspect AspectHandler consisls of

a poinlcUI deliverMessage and a before advice. An exception of type Errorlhal is

raisedbylhedelivermethodoflhe TesrHond/erclass is selected as ajoinpointbythe

pointcutdeliverMessage, which is advised by Ihe before advice Advice1. Section

6.3.2.1 andSeclion6.3.2.2 respectively presenllhe slatic and Ihedynamic models of

this exception join poinl example.

6.3.2.1 ModelingStaticAOP

Modeling Ihe elemenls package, aspecl, and advice is similar 10 the flfSt example

(Section 6.1.2.1 ). However, as the join poinl 10 be advised involves Ihe occurrence of

an exception wilhin a method, il should be modeled using Ihe mela-c1ass

«ExceplionJoinpoinb>.

Since Ihe meta-class ExceplionJoinpoinl isa subclass oflhe Joinpoinlmela-c1ass,as

shown in Figure 6.8, the class deliverMessage becomes slereotyped

«ExceplionJoinpoinb>. Its attribule opera/ion becomes a tag that specifies an

operation in which Ihe exception will beoccurrtxl. We select the melhod deliver of

Tes/Hand/erclass from the base model (Figure 6.7) as Ihe value of operalion of

deliverMessage, indicaling Ihat we wish 10 select exceptions raised by Ihis



operation. Its other attribute exceptionClass also becomes a tag that specifies the

type of the exception whose handling we wish to advise. The class Error from the

base model is selected as the value ofexceptionClass.

<<CroasCLttilgConc:em»

CrossCuttingConcern

I -- I
AJtpedH_ndlCf"

{.fAd.."C.""... • .......~
<<AdvX:eC . >-advicea{advice-AdYW:e1}

Figure 6.8: Static cross-cutting concern ofctlowjoin point example

6.3.2.2 Modeling Dynamic AOP

While modeling the dynamic cross-cutting concerns of the exceptionjoinpoint,unlike

the previous examples, we follow a different way that clearly shows the modeling of

the join point objects that can be instantiated and assigned to variables. However,

these two approaches are equivalent in terms of the code being generated.

In this approach, we introduce a class Col/eclionType, e.g. a Java collectiontypethat

will collect the advice instances or objects of an aspect. This class is associated with

the aspect and the advice.

As shown in Figure 6.9, we model all the elements such as aspect, join points, and

advice as descrihed in previous section. Since Advice1 is associated with the class



O1apter6:ApplicatiooExample

Collection Type (objeets in the collection are of instances of Advice1), the attribute

myPointcut of Advice1 beeomes the stereotyped «Pointcub>. The value of

ofJoinpoint of myPointcut is set to deliverMessage, indicating that we wish to

colleetadviceto exception handlers for exceptions raised bythedeliverOoperation.

Also the valueofpoinlcutofAdvice1 is set to myPoinlcutso that advice objeets

"lmow" about the colleetion they are collected in.

Figure 6.9: Dynamic cross-cutting concern of exception join point exampie

AspeclHandler is associated with the class CollectionType by its attribute odvices

which is stereotyped «AdviceColiection» to indicate that this field will contain a

colleetionofadvices.Themeta-attributeodvicebeeomesalag.Advice1 is seleeled as

lhe value oflhe lag because lheseare the lypes of advices we wish 10 colieelinlhe



Like the previous dynamic models, we create two operations install anduninstallfor

AspectHandler. When the profile is applied,theseoperations respectively become

stereotyped <<install» and «un install», which are then selected as values of

instaliMethodanduninstaliMelhodofAspectHandler.

6.4 Example-4: Modeling a Property Join Point

Recall Chapter 4 (4.1.1c»,where we showed an exarnple offield accessjoinpoint.ln

this section, we use that example to show the application of the element

PropertyJoinpointofthegenericprofile.

This section presents the base model (Figure 6.10) of the exarnple with the property

join point. The core concems involve a single class AsColinterModijied/asshownin

the following UML class diagram.

Figure 6.10: 8ase model of property join poinl example

Crosscutting-cutting Concern

Section 6.4.2.1 and Section 6.4.2.2 respectively present the static and thedynarnic

modelsofthisexceptionjoinpointexarnple.



6.4.2.1 ModelingStaticAOP

In this section, we will model the pointcuts that select read and write access offield as

join points. In Listing 6.5, the aspect AspeclLogger is defined within the package

CrossCuttingConcern. It consists of two pointcuts and two before advices. The

pointcutgetN selects the read access of the field noftheAsCounterModifiedl class

andadvisedbythefrrstadvice.SimilarIY,thepointcutsetNselectsthe write access to

the field n of and advised by the second advice

Listing 6.5 An example offield access pointcuts in AspectJ

intAsCounterModifiedl.n);
intAsCounterModifiedl.n);

As shown inFigure6.11,modelingthe elements package and aspect is similar to the

first example (Section 6.1.2.1 ). However, the pointcuts to be advised are field access

pointcuts, which should be modeled using the subclasses of the meta-class

«PropertyJoinpoinl»

We model two classes gelN and selN. When the profile is applied, gelN and selN

become stereotyped «GetJoinpoinl» and «SetJoinpoinl» respectively. Their

inherited attribute field becomes a tag that specifies the field whose access will be

selected as join point. We select the field n of the AsCounlerModifiedl class from the

basemodel(Figure6.10)asthevaluesoffieldofgetNandsetN,indicatingthatwe



C1Japter6:ApplicationExample

Figure 6.1 I: Static cross-cutting concern of property join pointexampIe

The classes beforeGetN and beforeSetN become stereotyped «Advice». The values of

valueofpointcutofbeforeGetN is set to myPointcut1 so that the advice "knows"

about the collection of join points to be advised. Similarly, the value of pointcut of

beforeSetN is set to myPointcut2. The values of ofJoin point ofmyPointcut1 and

myPointcut2 are set to getN and setN respectively indicating the members of join

point collection to be advised.

The meta-attribute advices of AspectTest becomes stereotyped

6.4.2.2 Modeling Dynamic AOP

While modeling the dynamic cross-cutting concerns we consider the emulated field

access pointcut (Listing 6.6) of AspectJ in AspecS. We follow the approachpresented



(1Japter6:ApplicationExampie

in the previous example. As before, we introduce a class ColleclionType, which is

associated with the aspect and the advice.

LiSling6.6 Emulaled AspeclJ's Iield access poinlculs in AspeclS
AsAspectsubclass:'AspectTest

nstanc~Vari3bl~N-3Jl,~s: "

C.l.assVarlab ...eN:ut'~.3: '

poulDictionaries:"
catE":g'J"':y: 'Crvssr:u~tingConc-:ou)'!

qualifier: (AsAdviceQualifier
attributes: {'receiverClassSpecificIJ

[(AsJoinPointDescriptor
AsCounterModifiedltargt::tSel>?ctor'#:nil

[:receiver:arguments:aspect:clientll!!



O1apter 6: ApplicatiOl1 Example

Figure 6.12: Dynamic cross-cutting concern of property join pointexample

As shown in Figure 6.12, we model all the elements such as package, aspect, and join

points similar to the static model (Figure 6.11). The other elements that are related to

advice collection, pointcuts, and dynamic weaving are modeled as described in the

dynamicmodeiofthepreviousexample(Section6.3.2.2).

The elements presented in the above model can be used as shown inthe pseudo code

in Listing 6.7.

Listing 6.7 Pseudo code that uses the elements presented in Figure6.12
I/creatingobjects of JoinPoint.
x:=newgetN.

y:::: new setN.

l/creatingobjectsofAdvice
adl:= beforeGetN new.

ad2:= beforeSetN new.



Chapter 6: Application Example

//creatingobjectofAspectTest.
aspect:::AspectTestnew.

/IAspectinstallation
aspect.install().

//Aspectuninstallation
aspect.uninstall().

6.5 Example-S : Modeling the Shopping-Cart Example

Recall Chapter 2 (Section 2.2.2 and Section 2.3.2), where we showed the

implementation of the shopping-cart example as running examples in AspectJ and

AspectS respectively. In this section, we use the shopping-cart example to show the

application of the composed join points of the generic profile.

This section presents the base model (Figure 6.13) of the shopping-cart example. The

main classes (core concerns) and their relationships are shown using UML class

diagram.



Chapter 6: Application Example

I ShopplngCortOpernor I
:~:~~~~~~~:~~~~:~~:~{.s~hO~::~~~c~~,~~vo;~~~~~~~v";~'o~~~~e~mtt~~V~idvOi~

Figure 6. 13. Base model of shopping-cart example

Crosscutting-cutting Concern

Section6.5.2.! and Section 6.5.2.2 respectively present the static and the dynamic

models of this shopping-cart example.

6.5.2.1 ModelingStaticAOP

In this section, we will model composed pointcuts of AspectJ. In Listing 6.8, the

aspect TraceAspect is defined within the package CrossCuttingConcern. The aspect

TraceAspect consists of two composed pointcuts JPDisjunction1 and

JPDisjunction2. The pointcut JPDisjunction1 is composed of execution pointcuts

jp1,jp2,jp3,andjp4.0ntheotherhand,JPDisjunction2iscomposedofexecution

pointcutsjp5andjp6.PointcutsJPDisjunction1 and JPDisjunction2 are advised by



Chapter 6: Appli<:ation Example

While modeling this example, each of the execution join points should be modeled as

stereotyped «ExecutionJoinpoinl». We will again ignore modeling the args

pointcuts, since those merely expose context and areautomatically generated during

code generation. Two composed join points should be modeled as stereotyped

«JoinpointDisjunctiom>.Modelingtheotherelementssuchaspackage,aspect,advice

collection, advice, and pointcut is same as the previous static modeIs. The following

paragraph presents a detailed description of modeling the above mentioned join

points.

Lisling6.8 The shopping-carl example in AspeclJ

pointcutjpl(Itemitem):

execution(*Inventory.addltem(

pointcutjp2(Itemitem):
execution(*Inventory.removeltem(

pointcut jp3(Item item):

execution(*ShoppingCart.addltem(

pointcut jp4(Item item):
execution(*ShoppingCart.removeltem(

pointcutJPDisjunctionl(Itemitem)
: jpl(item) I Ijp2(item) I Ijp3(item) I Ijp4(item);

pointcutJPDisjunction2(ShoppingCartsc,Inventoryinventory,
Item item)

: jp5(sc,inventory,item)I Ijp6(sc,inventory,item):



OJapter6:ApplicationExample

As before, join points are defined as meta-class extensions of the Class meta-class.

Since ExecutionJoinpoint is a subclass of the Joinpoint meta-ciasS,thejpl,jp2,jp3,

jp4,jp5, andjp6c1asses become stereotyped «ExecutionJoinpoinl». The attribute

operation becomes a tag that provides a list of operations whose execution can be

selectedasjoinpoints.

We select the method addltem of the Inventory class from the base model as the value

of operation ofjp1 indicating that the execution of the method additem will be

selected as ajoin point. Similarly, the method removeitem of the class Inventory, the

method addltem of the class ShoppingCart, the method removeltem of the class

ShoppingCart, the method addShoppingCartltem of the class ShoppingCartOperator,

and the method removeShoppingCartltem of the class ShoppingCartOperator are

selectedasthevaluesofoperationofjp2,jp3,jp4,jp5andjp6respectively.

Since JoinpointDisjunction is a subclass of the Joinpoint meta-class, the classes

JPDisjunctionl and JPDisjunction2 are also stereotyped as «JoinpointDisjunctiom>.

The attribute hasParts of stereotyped «JoinpointDisjunctiom> specifies join points

that are parts of composition. A modeler must make sure that the number and type of

arguments are consistent for all the join points that arepartofajoin point disjunction

or join point conjunction. For example, jp1 and jp2 can be parts of the same

composed join point since their argument number (a single argument item) and type (



Chapter 6: Applicalion Example

the type of item is Item) are the same. However,jp1 andjp5 cannot be parts ofa same

composed join point since their argument number and type are differenl.

We choose thejoinpointsjp1,jp2,jp3, andjp4 as the values of hasPa r1sof

JPDisjunclion1 so that their composilion can be selected as a join poinl. Similarly,

jp5 andjp6 are chosen as the valuesofhasPar1s ofJPDisjunclion2.

<<Cros~>

Cro.CuttlngConcern

Figure 6.14: Static cross-cuttingconcem of the shopping-cart example

6.5.2.2 Modeling Dynamic AOP

While modeling the dynamic cross-cutting concerns we consider the emulated

composed pointcut of AspecU in AspectS. We follow the approach presented in the

previous two examples.



OIapter6:ApplicationExample

Figure 6.15: Dynamic cross-culling concern of the shopping-cart example

As shown in Figure 6.15, we model all the elements such as package, aspect, and join

points similar to the static model (Figure 6.14). The other elements that are related to

advice collection, pointcuts, and dynamic weaving are modeled as described in the

dynamicmodelpresentedinSection6.3.2.2.

The elements presented in the above model can be used as show in the pseudo code in

Listing 6.9.



Chapter 6: Application Example

Listing 6.9 Pseudo code that uses the elements presented in Figure6.15

jpd2.jpset2.addljp5).

jpd2.jpset2.addljp6).

/lcreatingobjectofAspectLogger
aspect::TraceAspectnew.

I/Aspectinstallation
aspect.installMe().



O1aprer7: Code Generation

Chapter 7

CODE GENERATION

XSLT is a declarative, XML-based language used for tbe transfonnation of XML'

documents into other documents, such as XML documents, HTML documents, or

plain text documents. The original document is not changed; rather, a new document

is created based on the content of an existing one. The XSLT processor lakes two

input documents - an XML source document, and an XSLT stylesheet-and produces

an output document. The XSLT stylesheet contains a collection of template rules:

instructions and other directives that guide the processor in the productionofthe

output document. Usually, the query language XPalh (The XML Path Language) is

used in the XSLT slylesheet for selecting XML document nodes and computing

values (e.g., strings, numbers, or Boolean values) from an XML document.

Existing work [12] has demonstrated the use of XSLT (Extensible Stylesheet

Language Transfonnations) for generating XMl' to AspectJ code. Because the generic

model is compliant with standard UML XMI fonnat and is fully specified in tenns of

the meta-model, the model to which the profile is applied also becomes compliant

with standard UML XMI fonnat. As a result, code can easily be generated. As a



O1apter7: Code Generation

proof-of-concept, we implement two XSLTs which generate valid AspectJ and

AspectS code.

Figure7.1: Main templates in theXSLT for AspectJ

Code generation for AspectJ is implemented in approximately 1100 lines of XSLT

code and consists of26 templates. On the other hand, codegeneration for AspectS is

implemented in approximately 1250 lines of XSLT code and consists of 31 templates.

Some of the templates used in these XSLTs recursively call themselves and thus

reduce the lines of code. However, it is possible to make use of more templates and

lessen lines of code. The main templates in the AspectJ and AspectS XSLTs are

shown in Figure7.l and Figure 7.2 respectively. In these diagrarns, the arrow sign

indicates the call from a template to the other templates. However, some templates



Olapter7: Code Generation

recursively call them. These recursive calls to self template are not shown in

diagrams.

Figure 7.2: MaintemplatesintheXSLT for AspectS

Most of the complexity in the transformation stems from ensuring robustness. The

XSLT for AspectJ generates code for packages, aspects, advices and pointcuts. The

order ofaspects is also followed in the code generation based on the precedencegiven

in a model. Since an args pointcut is generated with each execution pointcut, the

modellermustensurethatcontextexposedfromeachindividualpointcutinapointcut

composition is consistent.

Since the XSLTs are developed as proof of concepts, they are applied to anumber of

models to show that they produce valid code for those models.



For the AspecU XSLT, generating code for a composed pointcut at the same time

handling the individual pointcuts was the most difficult part. On the other hand, for

the XSLT for AspectS, since each advice is related to an advice qualifier attribute that

qualifies a pointcuttobeadvised,thedifficult task was tracking and generating code

for advices, advice qualifiers and pointcuts that are related. The XSLTs for AspectJ

and AspectS are available in the electronic appendices attached to this thesis.

7.1 Application of the XSLT for Aspect!

Existing CASE tools already support code generation for the non-aspect-orientedparts

of the model, so that the XSLT only generates code for classes stereotyped as

«AspeCl» within packages that are stereotyped as <<CrossCuttingConcerro> [12]. The

stereotyped «CrossCullingConcerro> is translated to a package and the stereotyped

«Aspec!»is translated to an aspect within that package.

For each class stereotyped as «Aspec!», using the attribute stereotyped as

«AdviceColiectioro> as reference, the XSLT will generate method stubs for the classes

that are stereotyped as <<Advice».

A class modeled as a subclass of stereotyped <<./oinpoinb> is translated to a pointcul.

The XSLT also generates method signatures for all the subclasses of stereotyped

<uoinpoinl». Since AspecU itself supports only static AOP, using the AspecU XSLT,

the following sections present translation ofsome static models that were developed in

the previous chapter.

7.1.1 ExecutionJoinpoint



O1apter7: Code Generation

In the generic profile (Figure 5.20), we introduced the modeling element

ExecutionJoinpoint (Section 5.3.6) to model both call and execution join point

selections. A stereotyped <<ExecutionJoinpoinl» with no senderClass information is

translated to an executionpointcut. However, as discussed earlier in (Seclion4.1.4.b)

i), a stereotyped <<ExecutionJoinpoinl» with a senderClass information will be

translated to a callO and this() pointcut according to Listing 4.16 and Table 4.5

(second row). Since the args pointcut is implicit in AspectS (Section4.1.4b) v), for

each class stereotyped as «ExecutionJoinpoinl», an args pointcut is automatically

generated for AspecU (Section 5.7.10).

«AdviceCohection»·ldvlce.{advlce-odvice1}

~'-~"I - IdeliverMe•••ge .dvice1
{.....ti ••• d.,;.... {.dvl..Eu"ti"'Aft"Adv;...
stnderCI,lIJs-Nn'fTut} pointcut-myPDintcut}

c4loinl:C\b>-myPoncut{ofJoinpoiri-deiverMessage}

Figure 7.3: An application of the generic profile developed in Section 6.1.2.1

As a proof of concept, the XSLT for AspecU is used to translate the model related to

the senderClassSpecificjoinpoint (developed in Seclion 6.1.2.1 ) shown in Figure 7.3.

Listing 7.1 shows the output of code generation.



C1Iapter7:CodeGeneration

Lisling7.ICodegeneralionforlhemodelshowninFigure7.3

7.1.2 JoinpointDisjunctionandJoinpointConjunction

lfaclass is either stereotyped as «JoinpointDisjunctiom> or <doinPointConjuctiom> the

XSLT generates a pointcut that is a composition of multiple pointcuts. TheXSLT also

generates code for pointcut operators depending on the type of composition. For

example, in the shopping-cart example modeled in Section 6.5.2.1, the classes

JPDisjunction1 and JPDisjunction2 were stereotyped as <doinpointDisjunctiorn>.

These two composed join points should be translated into two pointcuts that are a

composition of multiple pointcuts joined with pointcut operators. The XSLT for

AspectJ is used to translate the model shown in Figure 7.4. Listing 7.2 shows the

generated code.



C11apter7: Code Generation

Figure 7.4: An application of the generic profile developed inSection 6.5.2.1

Lisling7.2 Code generation for the model shown in Figure 7.4

pointcutJPDisjunction2(
ShoppingCartsc,Inventoryinventory,Itemitem):
(jp5(sc,inventory,item)



ShoppingCartOperator.addShoppingCartltem( .. ))
inventory, item);

ShoppingCartOperator.removeShoppingCartltem( .. ))

args(sc, inventory, item);

before(ShoppingCartsc,Inventoryinventory,Itemitem):
JPDisjunction2(sc,inventory,item)(}

CFlowJoinpoint

In the generic profile (Figure 5.20), we introduced the modeling element

CFlowJoinpoint(Section 5.3.6) to model control flow based join point selections that

are common for both AspecU and AspectS.

«CrossCutlilgConcern»
Cro.CuttingConcern

Figure 7.5: An application of the generic profile developed in Section 6.2.2.1



Chapter 7: Code Generation

For all the classes stereotyped as «CFlowJoinpoinb>, the XSLT for AspectJ should

generatecodebasedonourdiscussioninSection4.1.4.b) .ii and Table 4.5.

An application of the generic profile on a model related to the cflow join point

(developed in Section 6.2.2.1 ) is shown in Figure 7.5. Following is the translation of

that model using the AspectJ XSLT.

Listing 7.3 Code generation fora model shown in Figure 7.5

packageCrossCuttingConcern;
aspect AspectClassAllButFirst{

As shown in Listing 7.3, for a stereotyped «CFlowJoinpoinb> of type

ClassAllButFirst, the XSLT generates a composition of cflowbelow and execution

pointcut, which is sirnilarto the emulation shown in Section 4.1.4 .b) .ii. For other

types ofcflowjoin points, code generation using the XSLT also complies as discussed

7.1.4 ExceptionJoinpoint

Inthegenericprofile(Figure5.20),themodelingelementExceptionJoinpoint(Section

5.3.7) is introduced to model exception join point selection forAOP languages. For

each class stereotyped as <<ExceptionJoinpoinb>, the AspectJ XSLTshould generate a

pointcutthat is composed with an exception handler execution pointeut specifying an



Exception class, an args pointcut, and a cflowbelow pointcut that takes the

corresponding execution pointcut as argument.

<<CrossClitilgConcern»

CrossCuttingConcern

I - I
AepectH.ndler

1.....~..C.""."" .......'!
«AdviceCoiection»-acMces{advice-AcMce1}

Figure 7.6: An application of the generic profile developed in Section6.3.2.1

An application of the generic profileona model related to an exccptionjoin point

(developed in 6.3.2.1 ) is shown in Figure 7.6. Forthatmodel,codegeneration, which

certainly complies with our above discussion, is shown in Listing 7.4.

Listing 7.4 Code generation for the model shown in Figure 7.6

packageCrossCuttingConcern;
aspect AspectHandler{
pointcutdeliverMessage(Errore):handler(Error)

"args(e)
"cflow(execution(
public vaid TestHandler.deliver(

beiereO :deliverMessage(){}
}

PropertyJoinpoint

In the generic profile (Figure 5.20), we introduced the modeling element

PropertyJoinpoint (Section 5.3.8) to model both get and set join point selections.Asa



O1apter7: Code Generation

proof of concept, an application of the generic profile on a model related to field

access join points is shown in Section 6.4. Each class stereotyped as «GetJoinpoint»

should be translated to a get pointcut using the AspectJ XSLT. Similarly, the XSLT

should generate a set pointcut for each stereotyped «SetJoinpoinl».

IC<A<McOCoIed..,..........I.........'oreGelN, ..'or.5elN1 ·1

~~

I

:..-"'~~ II.....----------:..-o<·~...;.I«P....~:::~;::=.:;;::::·.::I«Pon.~:::;;=:;;::::::::1

Figure 7.7: An application of the generic profile developed in Section 6.4.2.1

Listing 7.5 presents code generation for the model presented in Figure 7.7. Besides

generatingthepointcuts,theXSLTalsogeneratesappropriatefield signatures for both

Listing 7.5 Code generation for the model shown in Figure 7.7

get(publicintAsCounterModifiedl.n);
set(publicintAsCounterModifiedl.n);

beforeO :getNO()
beforeO :setNO()



7.2 Application of the XSLT for AspectS

Like the XSLT for AspectJ, the XSLT for AspectS only generates code for classes

stereotyped as ,<Aspec!» within packages that are stereotyped as

«CrossCuttingConcem» [12]. The stereotyped «CrossCuttingConcem» is translated to

a category and the stereotyped «Aspec!»is translated to an aspect within that category.

Code for aspect installation and uninstallation will be generated from the information

given in the model for both the operations that are stereotyped as ,(install» and

«uninstalb, of stereotyped ,<Aspec!>,. The attribute that is stereotyped as

«AdviceColiectiom>. of a stereotyped (<Aspec!>, will be translated to an instance

variableofthataspec!.TheXSLT,foreachadvice,wiligenerateamethod that returns

an object of type stereotyped ,<Advice».

A e1ass modeled as a subelassofstereotyped 'Joinpoint» is translated to a pointcut

that is a set of AsJoinPointDescriptor objects. The XSLT also generates code for

advice qualifier attributes for all the subelasses of stereotyped ,Jo inpoin!».Since

AspectS supports dynamic AOP using the AspectS XSLT, the following sections

present translation of some dynamic models that were developed in the previous

chapter.

7.2.1 ExecutionJoinpoint

A stereotyped (<ExecutionJoinpoin!»with no senderClass information is translatedtoa

receiverClassSpecific pointcu!. From the attributeoperation,XSLT gets information

about the e1ass and the method whose execution is selected asjoinpoin!. Based on

that information, the XSLT generates code for targetClass and targetSelector.



OJapter7:CodeGeneration

However, a stereotyped «ExecutionJoinpoinl» with a senderClass information will be

translated asenderClassSpecific pointcutofAspectS

«CrossCutttngConcern»

CrossCuttingConcern

I -- I

uninst~i1IM.thod .. unlnst.ltlule}-'--"-'«instal»+insteIlMe()
«unlnstell»+uninstallMe{)

~-~~'I ._. I
deliverMe•••ge Idviee1

{.pm,;"".I1.... (.dv;"Exoo";"'Aft"Adv'".
nndlrClus=NltwTul:) pointcul:lI:myPoinl:cul:}

«PointcLJt».myPoinlcLJt(ofJoinpoint-deliverMessage}

Figure7.8;AnapplicationofthegenericprofiledevelopedinSection 6.3.2.2

As the context exposing pointcut (similar to argsO in AspectJ) is implicit in AspectS,

unlike the AspectJ XSLT, the AspectS XSLT does not generate code for the args

pointcutwitheachreceiverClassSpecificorsenderClassSpecificpointcu!.

As a proof of concept, the XSLT for AspectS is used to translate the model related to

the senderClassSpecificjoin point (developed inSection6.1.2.2) showninFigure7.8.

Listing 7.6 shows the output of code generation.

Listing 7.6 Code generation for the model shown in Figure 7.8

AsAspect

instanc8VariabletJames·

poolDicti.)na r i0~'i: '

category: 'Ct'ossCuttinqConcern'!

!AfterHelloWorldmethodsE'or: 'asyetunclassified'stamp:' '!



pointcut:
aftf~rBl~)(:k: [ : recei ver :argumen ts : aspect : client : return I l! !

Objectsubclass:#Main
ir)3tanceVariableNam~s: '
classVilri;;lbleNames: "
poolDictionaries: '
c:at8g0ty: 'CrossCuttingConcern"

Idemo;~fter.Helloworld: ~AfterHelloworld new

demoAfterHelloWorlduninstall.

7.2.2 JoinpointDisjunctionandJoinpointConjunction

The earlier Section 4.1.4c) presented how join point selections that are composed

with pointcut operators of AspectJ can be emulated using set operations in AspectS.

The dynamic shopping-cart example. which consists of composed join points, was

modelled in Section 6.5.2.2. Using that model and the AspectS XSLT. Listing 7.7

presents code generation for AspectS.



O1apter7:CodeGeneration

Figure 7.9: An application of the generic profile developed inSection 6.5.2.2

lfaclass is either stereotyped as «joinpointDisjuncliom> or «joinPoinIConjucliom>,

theXSLTshouldgeneratecodeasdiscussedinSection4.1.4c). Forexample,inthe

dynamic shopping-cart example modeled in Section 6.5.2.2 the classes JPDisjunctionl

and JPDisjunction2 were stereotyped as «joinpointDisjunclion». These two

composed join points should be translated to two pointcutsthat are compositions of

multiplepointcutsjoined using the function union of set operation. The classes jp1,

jp2,jp3,jp4,jp5,andjp6thatarestereotypedas<<ExecutionJoinpoinb>,shouldbe

translated as a set of AsJoinpointDescriptor objects. Since the value of

adviceExecution is BeforeAdvice for both beforeAdvicel and beforeAdvice2, they



OJapter7: Code Generation

should be translated to two advice objects that consist before blocks. Listing 7.7

shows the translation of the model shown in Figure 7.9 (developed inSection6.5.2.2

Listing 7.7 Code generation for the model shown in Figure 7.9

slt.bclds:::::#TraceAspect

l.nst3cnc"V',n"b.ldl"mes, 'myAl..iv

p001Dictionar~l?s: "
C.3tegury: 'Crf)::;sCu.tl~ngCc;neprn '!

!TraceAspect m~:.>tr ·)ds I'C'l-: • dE' yet lJne lass i fled' s t 'imp:' '!
adviceBeforeAdvicel

A AsBeforeAfterAdvice

qualifier:: (AsAdviceQualifier

a.ttribut~s: l'receiverClassSpecific.l}
poJintcut:JPDisjunctionl
beforeBlock:{:receiver:arguments:aspect:clientl

!TraceAspectmethodsFor: y.:-tunclassJ.fit:;!d'stc..mp:' '!
adviceBeforeAdvice2

JPDisjunction2:-ejp5union:jp6)
jp5:=AsJoinPointDescriptor

targ~tClass: ShoppingCartOperator
tdrgetSe:lector:'addShoppingCartltem.

jp6::AsJoinPointDescriptor
targetClass:ShoppingcartOperator
carq~tSelector: ItremoveShoppinqCartltem.



(1Japter7: Code Generatioo

"AsBeforeAfterAdvice
quallfier:(AsAdviceQualifier

i1ttributes: 'receiverClassSpecific.lt
pointcu'-:JPDisjunction2

be ~oreBlock: {; reee i ve r : argument s :aspect :elient I

poolDictionari-o>s: "
categ':1ry: 'CrossCut ting',~,,:>nc·;>rn '!

!Mainmethod3For: '35 unclaS3ified'stamp:' '!

I
:-TraceAspectnew.

demoTraceAspectinstall.
demoTraceAspectuninstall

7.2.3 CFlowJoinpoint

In Section 4.1.4 .b) .ii, we described how some of the control flow based poinlcut

selections of AspectS can be emulated using the AspectJ constructs. Anapplicationof

the generic profile on a dynamic model related to cflow join point (classAllButFirst) is

shown in Section 6.2.2.2 . According to our design decision a stereotyped

«CFlowJoinpoint» that possesses classAllButFirst as the value ofils tag cfPointcut

will be translated as a ClassAllButFirst poinlcut of AspectS. If the model shown in

Figure 6.6 is translated using the AspectS XSLT,the value ofadvice qualifierattribute

should be generated as set of two symbols: receiverClassSpecific and

classAllButFirst. The aspect, advice and pointcutsshould be translated as discussed in

previous sections.



Chapter 7: Code Generatioo

<<CrossCuttingConcern»

Cro.CuttlngConcern

I .- I

.upedCI..aAIIButflrtlt
{in~.. t1Mlthod.lnst..IIM"

unlnst.. llIV1ethod=uninst.lIIMI}-,~.._,._._,., .
«install:o)o+instoIIMe()
«uninstall»+unInslsIlMeO

~~
I ,····_·_.. ·"..~.. Ipointcut"'myPolntcut1}

«Pointcul»·myPoinlcul1{ofJoinpont.Pontcul2}

Figure 7.10: An application of the generic profile developed in Section 6.2.2.2

As shown in Listing 7.3, the XSLT generates code for the model shown in Figure 7.10

(developed in Section 6.2.2.2). Similarly, for other types ofctlowjoin points, the

AspectS XSLT will be able to generate code.

Listing 7.8 Code generation forlhe model shown in Figure 7.10

sUbclass:#AspectClassA11ButFirst

poolDictionaries: "
category: 'CrossCuttingC»ncern'!

Pointcut~ :::AsJoinPointDescriptor
tar~JetClass: AsFactorialM targetSe lect:or



"AsBeforeAfterAdvice

qualifier:lAsAdviceQualifier
attributes: {'receiverClassSpecific.'cfAllButFirstClass.) I

pointcut:Pointcut2
beforeBlock: {:receiver:arguments:aspect:clientl

7.2.4 ExceptionJoinpoint

In this section, we use the application example related to the ExceptionJoinpointfrom

Figure 6.9. In the generic profile we introduced the modeling element

ExceptionJoinpoint to model the AsHandlerAdvice of AspectS. The class deliver

message, which is stereotyped as «ExceptionJoinpoinl», should be translated to an

AsHandlerAdvice object. Instead of generating a before or after block, the XSLT

should generate a handler block. Listing 7.9 shown code generation for the model

(developed in Section 6.3.2.2) shown in Figure 7.1 I.



O1apter7: Code Generation

Figure 7.1 I: An application of the generic profile developed inSection 6.3.2.2

Listing 7.9 Code generation for the model shown in Figure 7.11

AsAspectsubclass:#AspectHandler
instanceVilriableNQmes: 'advict?s'
classVariableNames: "
poolDictionari"'.>s: '
category: 'CrossCuttingConcern'!

Objectsub..:la3s:'Main
instanceVariableNames:"



IdemoAspectHandler
demoAspectHandler
demoAspectHandler
demoAspectHandler

7.2.5 PropertyJoinpoint

In Section 4.1.1 .c), we described the emulation of AspecU's field access join point

selection using AspectS constructs. In the generic profile (Figure 5.20), we introduced

the modeling element PropertyJoinpoint(Section 5.3.8) to model bothgetandsetjoin

point selections. As a proof of concept, an application of the generic profile on a

dynamic model related to field access join points is shown in6.4.2.2. Since AspectS

does not have any pointcut constructs to select field access directIy,weemulatedfield

access join points of AspectJ by generating and selecting methods that are accessing

field as join points in AspectS.

<<ClossCUmgConcem>l>

Cr~CuttlngConcern

1.-------:-::=---.

Figure 7.12: An application of the generic profile developed in Section 6.4.2.2



07apter7: Code Generation

During code translation, each class stereotyped as «GetJoinpoinb)shouldbetranslated

to an AsJoinpointDescriptorObject that specifies the getter method astargetSelector.

If a class is stereotyped as «SetJoinpoinb), it should be translated to an

AsJoinpointDescriptorObject that specifies the setter method as targetSelector. For

both cases, the AspectS XSLTshouid generate code for the related method (getter or

setter). Listing 7.10 presents code generation for the model presented in Figure 7.12

(developed in Section 6.4.2.2).

Listing 7.10 Code generation for the model shown in Figure 7.12

!AspectTestmethodsFol: yntuncl.,,\ssiiied'stalllp:"!

pointcut:setN

be-foreBlock: [:receiver:arguments:aspect:clientl

!AsCounterModifiedlmethodsFor: 'asyo?tunclassifi"::!d'5t,;"mp:' '!

!AspectTestmethodsF':>r: 'asyetun.:lassified'stamp:"!

IgetNI

gt.-tN:::[{AsJoinPointDescriptor

tarqetClass:AsCounterModifiedltargo?tSele.:tor:"n.ll



(JIapter7: Code Generation

A AsBeforeAfterAdvice

qualifier: (AsAdviceQualifier

attributes: (ftreceiverClassSpecific.);

pointcut:getN

beforeBlock: [:receiver:arguments:aspect:clientl

poolDictionaries: "

catE:~ory: ·CrossCutt~ngc.)ncern '!



O1apter8:Discussion

ChapterS

Discussion

Aspect Oriented Software Development (AOSD) is rooted in the need to deal with

requirements that cut across the primarymodularizationofasoftwaresystem.Onthe

programming level, we have several AOP implementations for existing programming

languages. For example, AspectJ (for Java), AspectC++ (for C++), Aspect# (for C#),

AspectS (for SmallTalk or Squeak) and AspectML (for ML) are some of the popular

AOP language implementations. However, on the modeling level, there is as yet little

support for AOSD. While there has been prior work on extending UML to AOM,

most of the extensions expand UML either by introducing new meta-model classes or

new notation elements without providing meta-level support. Furthermore, many of

the existing AOM approaches are programming language specific and allow modeling

on the platform specific model (PSM) level

Using the extension mechanisms in UML 2.0, [12] presents a meta-model, which is a

VML profile for the AspectJ language (Figure 5.1). The profile for AspectJ allows the

specification ofa platform-specific model (PSM). Since AspectJ follows the static

AOP approach, the extension also does not support dynamic AOSD. While AOP

language implementations are rapidly maturing, a platform independent model is

necessary to increase the reusability of system.



Building on previous work (12], this research presents a core generic meta-model,

which isa profile based on the core features of some AOP languages. In order to

cover a wide variety of AOP features, we examined AspectJ, AspectS and AspectML.

A reader who is not very familiar with AOP may ask the reason to choose the Ihree

AOPlanguages. This isa relevant issue because the choice of languages affects what

ultimately ends up in the "core". Adding another language could further restrict the

core, while removing one could expand it. Among the languages we studied, AspectJ

and AspectS follow the object oriented approach, whereas AspectML follows a

functional approach. On the olher hand, AspectJ supports static AOP, whereas both

AspectS and AspectML support dynamic AOP. By comparing these three languages,

we have chosen features that are common among them.

Based on the selected features, we chose the elements to be modeled in lhe new

profile. The previously developed UMLextension [12] for static AOPtreats aspects

as extensions of the Class meta-class, i.e. a stereotyped class. Within thaI framework,

pointcutsare stereotyped structural featuresandadvicesare stereotyped behavioral

features, typically operations. However, dynamic approaches represent AOSD

concepts as frrst-c1ass modules. For example, join point descriptors (pointcuts),

advice, and aspects are all objects in AspectS. Since this approach is not feasible for

dynamic AOM our approach differed from the existing work in (12] by providing

appropriate extensions

Asa frrst step to our generic profile, we present a profile which supports only the

static part of AspectJ and AspectS. This helps us to discover the modeling elements

that are required for the dynamic profile but missing in the current profile. As the



(1Japter8:Discussion

second step, a generic but only dynamic profile (does not provide supportforstatic

AOSD) is presented. These two profiles clearly show the difference between static

and dynamic AOP in the modeling level. We use the above steps and develop the final

generic profile that allows existing UML tools to express AOSD models

The generic profile is based on the core generic featuresofdifferentAOP languages.

Siocethe languages other than AspectJ have limited pointcutconstructscomparedto

that of AspectJ, several modeling elements from the AspectJ profile were omitted in

the generic profile. Moreover, to allow dynamic AOM, some elements were

introduced in this profile. Also, for some cases, like modeling a senderClassSpecific

pointcut or a control lIow based pointcut of AspectS, the profile providesmodeling

elements that can be directly translated to the corresponding pointcut of AspectS,

whereas for Aspect!, code generation follows an emulation scheme. That is why the

profile may seem more like an AspectS profile. However, we consider the AOP

features of AspectS as a subset of the AOP features of AspectJ. As a result, except for

aspect instantiation or dynamic aspect weaving, whatever we can do in AspectS can

also be done in AspectJ. Hence, the profile supports modeling of the features from

both AspectJ and AspectS.

The developed model ensures modeling support for static or dynamic AOSD from the

same profile. One may argue that, the distinction between static and dynamic AOP is

really a low-level programming issue, and not one from a modeling perspective.

Someone may also think that that it might have been better to focus specifically on

static AOP, and compare several static AOP languages, rather than complicate the

picture by including dynamic AOP. One of the things that a dynamic AOP



O1apter8:Discuss:..::....ion_

implementation offers is the ability to create instances of AOP elements. This is in

contrast to the static approach. For example inChapter6,we have seen applications of

the generic profile on the static (Figure 6.14) and dynamic (Figure 6.1 5) models of the

shopping-cart example. When the profile is applied to both models, they do not differ

while modeling the elements such as package, aspect, and join points. However, the

differences can be pointed out while modeling instances of aspects, instances of

advice collections, instancesofjoinpointcollectionsandaspectweaving.lncontrast

tothestaticapproach,instancecreationandaspectweavingarethe ability of dynamic

AOP implementation. The pseudo code presented in Listing 6.9 represents instances

ofdifferent objects and aspect weaving of the dynamic model.

Table 8.1 presents a comparison between the AspectJ profile and the generic profile.

Table 8.1; AspectJ ProfileVS Generic Profile

AspectJProfile I

Requires no special software support

Supported by UML XMl model interchange facilities

Allows all aspect-related concepts to be specified in meta-model terms

Maintains strict separation of base-model and cross-cuttingconcerns

Platform specific Platform independent

Static or Dynamic

Since the generic profile enables the support for modeling of static or dynamic AOP,

theprofilelooksabitcomplicated.However,thecomplexityofthecurrent profile can

be minimized by using different profiles for static and dynamic AOP. Another way to

make the profile simpler can be to exclude dynamic AOP from the modeling level. In



this case, the modeler does not need to care about modeling the dynamic features.

Creation ofaspecl instance and installing or uninstallingthe aspect will be handled

automatically during code generation. However, that will ignore the capabilities to

model an instance ofajoin point or an instance of an advice that is assigned to a

variable. Also, since there will not be any distinction between the static and dynamic

AOP in model level, XSLT will generate code for creating aspect instance along with

their installation and uninstallation, no matter whether the model is static or dynamic.

Thatiswhy,althoughtheprofilelookscomplex,wedecidetoincludethe elements for

modeling of static AOP, besides making the profile fully compatible with dynamic

To verify the necessity and correctness of the profile, the generic pro file is applied to

several examples to make sure that it can express both static and dynamic AOSD.

However, applying the profile to models can be tedious since it needsaspect-oriented

features to be specified for the modeling elements and theirrelationshipsexplicitly.

As a result, the modeller must be aware of the complete base-system model. This can

be solved byusingpatternbased,textualspecification. However, the power of pattern

specifications is not available in UML. Also, this type of pattern-based specification,

while convenient, also opens the door to inadvertent selection of unintended join

points. This problem is known as the fragile pointcut problem [45, 46] and is

especially problematic when refactoring [47] the base system code, since pattern-

based pointcut specifications depend strongly on the specific design of the base

system [12]. l.nthis respect, the explicit specification required bythe generic profile is

safer. Also, the meta-model integration allows easier model checking and verification.

Moreover, if patterns were to be specified using textual attributes in the UML model,



OIapter8:Discussion

special tools would be required to resolve such specifications on themodellevel,e.g.

as part ofmodel-level weaving.

One may argue that explicit specification of all aspect-oriented features makes

applications almost as complex as if the cross-cutting functionality had been included

using non-aspect methods. The use of the generic profile preserves the modularization

and encapsulation of cross-cutting coneems; the main advantage of aspect-oriented

modeling.

From the model, code generation is accomplished by working from the UML XMI

(XML Model Interchange) format, the standard UML serialization. This is one of the

standardized mechanisms and is therefore compatible with existing modeling tools.

Existing work has demonstrated the use of XSLT (XML Stylesheet Language

Transfonns) for generating XMI to Aspectl code. Here we leverage that mechanism.

As a proof-of concept, we implement two XSLTs that generate valid code for AspectJ

and AspectS. Although code translation can also be achieved using some other

method; e.g. for lava based UML tools, as [I2] has already shown and we also have

translated the entire profile using XSLT, we think this is the best way for model

However, the code generation currently relies on the modeler to verify the model.

Although we present a number of OCL constraints as part of the model, others must

be developed to support validation.

This proposal has some limitations. Each AOP language may have some features lhat

are unique for that language. Since the unique features go beyond the scopeoflhis

proposal, a platfonn specific model cannot be fully accomplished usingthis profile.



(1Japter8:Discussion

Also, a modeler from a specific AOP language background may find it difficult in

modeling some features for which there is no modeling element available within this

profile. Moreover, the XSLTs are not tested for complex pointcut composition, which

is supported by AspectJ. As a result, for complex pointcut compositions, XSLT may

notcomeupwithacorrectlranslation.

The generic profile as well as the models to which the profile is applied look quite

complex. As discussed earlier in this chapter, the complexity of the current profile can

be minimized either by using different profiles for static and dynamic AOP or by

excluding dynamic AOP from the modeling level. When dynamic AOP is ignored in

the model level, a modeler does not need to consider the dynamic features while

modeling a system. An instance for each aspect will be created automatically during

code generation. Similarly, installation and uninstallation of aspect instances will be

handledinthecourseofcodegeneration.Nevertheless,incontrasttocurrentprofile,

that will ignore the capabilities to model an instanceofajoinpointoraninstanceof

an advice that is assigned to a variable. Also, ignoring dynamic AOP will eliminate

distinction between the static and dynamic AOP in model level. As a result, during

code generation instance of an aspect will be created and their installation and

uninstallation will be done automatically no matter whether the model is static or

dynamic. That is why we keep distinction between static AOP and dynamic AOP in

model level. However, the complexity of models may reduce usability of the generic

profile.

Furthermore, while this profile includes oeL constraints, most current commercial

UML modelling tools lack the ability to enforce them. A modeler should follow the



given constraints. Suchconstraints,ifenforced,cansignificantlyreducethe

complexity of the code generation.



Glapter9:Conciusioo

Chapter 9

CONCLUSION

In this research, we developed a platform independent UML based model (PIM),

which is a UML profile for the core generic AOP paradigm. We applied this profile to

several models to make sure that the profile supports modeling of staticordynamic

ADSD. As a proof-of concept, we implemented XSLTs that generate valid code for

our target languages (AspectJ,AspectS).

Fromatheoreticalperspective,thestrengthofthisproposalisacomplete specification

of core ADP features in UML. It is a generic aspect-oriented modeling extension that

capturescoreADP features ina single meta-model. The core features are chosen by

comparing different ADP implementations that vary from each other in their

approaches(staticordynamic)andinthediversityoftheirfeatures. We considered

AspectJ as one of the examined languages, because of the maturity of its development

and its wide-spread industrial use [I].

Theproposalallowsallaspect-relatedconceptstobespecifiedinmeta-model terms.

Hence, no textual specifications of special keywords are necessary. This means the

models can be easily manipulated or verified, without requiring the parsing of

keywords or other textual specifications by special tools.

In contrast to the previous works, the proposed profile supports modeling static or

dynamic ADP. The previously developed UML extension [12] for static ADP treats



Chapter 9: Conclusion

aspects as extensions of the Class meta-class, i.e. a stereotyped class. Since this

approach is not feasible for dynamic AOM, our approach differs from the existing

work in [12] by providing appropriate extensions. To our knowledge, this is the first

completePIMforgenericAOP

From a practitioner's perspective, using the lightweight, meta-model based extension

mechanisms of UML 2.0 makes the theoretically important core AOSD meta-model

practically useful as a profile. The profile is supported by UML 2.0 compliant

modelling tools. The extension requires no special software support and allows aspect

modelling to be used within existing, mature software tools. For example, the work

described in this paper was developed using the commercially available tool

MagicDraw, version 16.0. It contrasts with earlier proposals, which are not all based

on profiles and extend UML either by introducing new meta-model classes, or new

notation elements, or both [38, 39]. Those proposals cannot be used with available

modelling tools and require specific tool support. Although prior work [12] is also

defined in terms of meta-model and does not need any special tool 5upport,itprovides

the specification ofa platform-specific model (PSM) and thus differ5 from our work.

The proposed technique is supported by UML XMI model interchange facilities, the

model extension, as well as any models it is applied to, can be exchanged between

different MOF (Meta-Object-Facility) compliant UML modeling tools.

Theproposedproflleoffersadvantagesasitincreasesthere-usabilityofthemodels,

cooperation of developers with different language backgrounds, and future-proofing

of the software design.



Chapter 9: Conclusioo

The present work can be extended in multiple directions in future work. First, the

generic profile canbe extended to include the AOP language features that are unique

for different languages, e.g. including the instance specific pointcutsofAspectS. This

will expand the modeling capacity of the current profile by covering more AOP

features. However, this may confuse some modeler since features specific to a

particular language will not be known to a modeler from different background. Also,

this will minimize the re-usability of the models and cooperation of developers with

different language.

Second, transformations can be developed to transform the platform-independent

models ("PlMs") into platform specific models ("PSMs"). ForexampIe, in the field of

Model-Driven Engineering (MDE), ATe (ATL Transformation Language) provides

ways to produce a set of target models from a set of source models. Hence,

transformation from PIM to PSM can be done using ATL. This will allow the

definition and implementation of the operations on models, and also provide a chain

that enables the automated development of a system from its corresponding models.

However, having specific languages to represent model transformations requires

understanding their foundations, e.g. the semantics, and the structuringmechanisms.

Inaddition,modeltransformationsarerequiredtobestoredinrepositories so that they

can be managed,discovered and reused.

Third, present work can be developed as a plug-in for Eclipse- a multi-language

software development environment. But Eclipse is built on the EMF, not the MOF

9 ATL(ATL Transformation Language) is a model transformation language and toolkit



Chapter 9: Condusion

Fourth,while someOCL constraints are presented,others can be developed to further

ensure the validity of the models. Forexarnple, the XSLTshould generate after ...

returning when a retumparameter is included in the advice signature, and should

generate after ... tbrowing when a raised exception is modeled forthe advice.

Finally, usability studies, forexarnple, exploring the impactofvariousdesign

decisions for this profile, e.g. textual specification of join points versus the present

meta-model based specification, need to be conducted. This will allow analyzing the

efficiencyandperformanceofthegenericprofile.Also,conductingtheusabilitystudy

may open the door to choose a better design decision and modify the profile

accordingly.



[I] R. Laddad, Aspect.! in Action Practical Aspect-Oriented Programming.

Manning Publications, July 2003.

[2] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. M. Loingtier,

and J. Irwin, "Aspect-oriented Programming," in Proceedings European

Con/erence on Object-Oriented Programming, M. Aksit and S. Matsuoka, Eds.

Berlin, Heidelberg, and New York: Springer-Verlag, 1997, vol. 1241, pp. 220--

[3] G. Kiczales, E. Hilsdale, 1. Hugunin, M. Kersten, J. Palm, and W. G. Griswold,

"An Overview of AspectJ," in Proceedings of ECOOP 2001 - Object-Oriented

Programming: 15th European Conference, Budapest, Hungary, June 18-22,

200J.Heidelberg:SpringerVerlag,June2001,pp.327-354.

[4] O. Spinczyk, A. Gal, and W. Schriider-Preikschat, "AspectC++ : An Aspect-

Oriented Extension to the C++ Programming Language," in CRPIT '02·

Proceedings of the Fortieth International Conference on Tools Pacific.

Darlingburst, Australia, Australia: Australian Computer Society, lnc., 2002, pp.

[5] M. D. Prasad and B. Chaudhary, "AOP Support for C#," in AOSD Workshop on

Aspects, Components and Patternsfor In/rostn/cture Software, 2003, pp. 49-53.

[6] R. Hirschfeld, "AspectS - Aspect-Oriented Programming with Squeak," in

NODe '02: Revised Papers from the International Conference NetObjectDays



on Objects, Components, Architectures, Services, and Applications for a

Networked World. London, UK: Springer-Verlag, 2003,pp. 216-232.

[7) "The squeakhomepage," http://www.squeak.orgl.

[8) D. S. Dantas, D. Walker, G. Washburn, and S. Weirich, "Aspectml: A

Polymorphic Aspect-Oriented Functional Progranuning Language," ACM Trans.

Program. Lang. Syst.,vol. 30, no. 3,pp. I-QO, May 2008.

[9) R. Hirschfeld, "AspectS home page," http://map.squeak.orglpackage/e640e9db

2f5f-4890-aI42-effebda68748.

[10] O. M. Group, "Unified modeling language," /urlhttp://www.uml.orgl.

[II) D. Pilone and N. Pitman, UML 2.0 in a Nutshell (In a Nutshell (O'Reilly))

O'Reilly Media, Inc., 2005.

[12) 1. Evermann, "A Meta-Level Specification and Profile for AspectJ in UML," in

AOM '07: Proceedings of the 10th international workshop on Aspect-oriented

modeling. New York, NY, USA: ACM Press, 2007, pp. 21-27.

[13) R. Miles, AspectJ Cookbook. O'Reilly Media, [nc., 2004.

[14) 1. Brant, B.Foote, R. E.lohnson, and D. Roberts, "Wrappers to the Rescue,"in

In Proceedings ECOOP '98, volume /445 ofLNCS. Springer-Verlag, 1998, pp.

[15) E. Hilsdale and 1. Hugunin, "Advice Weaving in AspectJ," in AOSD '04:

Proceedings of the 3rd international conference on Aspect-oriented software

development. New York, NY, USA: ACM Press, 2004, pp. 26-35.



[16] A. Assaf and J. Noy,;, "Dynamic AspectJ," in DLS '08: Proceedings ofthe 2008

symposium on Dynamic languages. New York, NY, USA: ACM, 2008, pp. 1-

[17] W. Gilani, F. Scheler, D. Lohmann, O. Spinczyk, and W. SchrOder-Preikschat,

"Unification of Static and Dynamic AOP for Evolution in Embedded Software

Systems," in Proceedings of the Sixth International Symposium on Software

Composition, M. Lumpe and W. Vanderperren, Eds., vol. 4829. Braga, Portugal:

Lecture Notes in Computer Science, 2007,pp. 216-234.

[18] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First Design Patterns.

O'Reilly,October2004.

[19] A. Marot and R. Wuyts, "Composability of Aspects," in SPLAT '08

Proceedings of the 2008 AOSD workshop on Software engineering properties of

languages and aspect technologies. New York, NY, USA: ACM, 2008, pp. 1-6.

[20] C. Hofmann, R. Hirschfeld, and J. Eastman, "Flexible Call-by-call Settlement -

An Opportunity for Dynamic AOP," in Proceedings of the Second Dynamic

Aspects Workshop (DAW05), R. E. Filman, M. Haupt, and R. Hirschfeld, Eds.,

2005,pp.19-26

[21] W. Schroder-Preikschat, D. Lohmann, F. Scheler, W. Gilani, and O. Spinczyk,

"Static and Dynamic Weaving in System Software with AspectC++," in HICSS

'06: Proceedings ofthe 39th Annual Hawaii International Conference on System

Sciences. Washington, DC, USA: IEEE Computer Society, 2006, p. 214.1.

[22] N. Bencomo, G. Blair, G. Coulson, P. Grace, and A. Rashid, "Reflection and

Aspects meet again: Runtime Reflective Mechanisms for Dynamic Aspects," in



AOMD '05: Proceedings of the 1st workshop on Aspect oriented middleware

development. New York, NY, USA: ACM, 2005.

[23] R. Pawlak, L.Seinturier, L. Duchien, G. Florin, F.Legond-Aubry, and

L. Martelli, "Jac: An Aspect-based Distributed Dynamic Framework," Softw.

Pract. Exper., voI.34,no. l2,pp. 1119-1148,2004.

[24] J. Baker and W. Hsieh, "Runtime Aspect Weaving Through Metaprogramming,"

in AOSD '02: Proceedings of the 1st international conference on Aspect-

oriented software development. New York, NY, USA: ACM Press, 2002, pp.

[25] A. Popovici, T. Gross, and G. Alonso, "Dynamic Weaving for Aspect-Oriented

Programming," in AOSD '02: Proceedings ofthe 1st international conference on

Aspect-oriented software development. New York, NY, USA: ACM, 2002, pp.

[26] Y. Sato, S. Chiba, and M. Tatsubori, "A Selective, Just-tn-Time Aspect

Weaver," in GPCE '03: Proceedings of the 2nd international conference on

Generative programming and component engineering. New York, NY, USA:

Springer-VerlagNewYork,lnc.,2003,pp.189-208.

[27] H. H. P. m, "Smalltalk: A White Paper Overview," www.cs.pdx.edul-harry/-

musingsiSmalltalkOverview.html, March 2004.

[28] O. M. Group, "Unified modeling language: Superstructure," August 2005,

[29] R. A., T. J., and T. M., "Towards Developing Generic Solutions with Aspects,"

in Proceedings ofthe AOM workshop at AOSD, 2004, 2004.



[30] R.Pawlak, L.Duchien, G.Florin, F.Legond-aubry, L.Seinturier, and

L. Martelli, "A UML Notation for Aspect-Oriented Software Design," in in

Workshop on Aspect-Oriented Modeling with UML (AOSD-2002), 2002.

[31] M. M. Kande, J. Kienzle, and A. Strohmeier, "From AOP to UML- A Botlom

Up Approach."

[32] M. Basch and A. Sanchez, "Incorporating Aspects into the UML," 2003.

[33] L. Fuentes and P. Sanchez, "Elaborating UML 2.0 Profiles for AO Design," in

Proceedings ofthe AOM workshop at AOSD, 2006, 2006

[34] O. Aldawud, T. Elrad, and A. Bader, "A UML Profile for Aspect Oriented

Modeling," in Proceedings ofOOPSLA 2001,2001.

[35] -, "UML Profile for Aspect-Oriented Software Development," in The Third

IntemationaIWorkshoponAspectOrientedModeling,2003.

[36] D. Stein, S. Hanenberg, and R. Unland, "Designing Aspect-Oriented

Crosscutting in UML," in In AOSD-UML Workshop at AOSD '02, 2002.

[37] E. Barra, G. Genova, and J. Llorens, "An Approach to Aspect Modelling with

UML 2.0," in Proceedings ofthe AOMworkshop at AOSD, 2004, 2004.

[38] J. Grundy and R. Patel, "Developing Software Components with the UML,

Enterprise Java Beans and Aspects," in ASWEC '01: Proceedings of the 13th

Austrolion Conference on Software Engineering. Washington, DC, USA: IEEE

ComputerSociety,2001,p.127.

[39] Y. Han, G. Kniesel, and A. B. Cremers, "A Meta Model and Modeling Notation

for Aspectj," in Proceedings ofthe AOMworkshop at AOSD, 2004,2004.



[40] W. Harrison, P. Tarr, and H. Ossher, "A Position on Considerations in UML

Design of Aspects," in Proceedings of the AOM wilh UML workshop ot AOSD,

2002,2002.

[41] F. Mostefaoui and J. Vachon, "Formalization of An Aspect-Oriented Modeling

Approach," in Proceedings ofFormal Methods 2006, Hamilton, a ,2006.

[42] D. Stein, S. Hanenberg, and R. Unland, "An UML-based Aspect-Oriented

Design Notation for AspectJ," in AOSD '02: Proceedings of the lsI

international conference on Aspect-oriented software development. New York,

NY, USA: ACM, 2002, pp. 106-112.

[43] M. Mosconi, A. Charfi, J. Svacina, and J. Wloka, "Applying and Evaluating

AOM for Platform Independent Behavioral UML Models," in AOM '08

Proceedings of the 2008 AOSD workshop on Aspect-oriented modeling. New

York, NY, USA: ACM, 2008, pp. 19-24.

[44] J. U. Junior, V. V. Camargo, and C. V. F. Chavez, "UML-AOF: A Profile for

Modeling Aspect-Oriented Frameworks," in AOM '09: Proceedings of the 13th

workshop on Aspect-oriented modeling. New York, NY, USA: ACM, 2009, pp.

[45] K.Gybels and J.Brichau, "Arranging Language Features for More Robust

Pattern-based Crosscuts," in AOSD '03: Proceedings of the 2nd international

conference on Aspect-oriented software development. New York, NY, USA:

ACM,2003,pp.6~9.

[46] A. Kellens, K. Mens, J. Brichau, and K. Gybels, "Managing the evolution of

aspect-oriented software with model-based pointcuts," in In Proceedings of the



European Conference on Object-Oriented Programming (ECOOP. Spring-

Verlag,2006,pp.501-525.

[47] T. Mens and T. Tourwe, "A Survey of Software Refactoring," IEEE Trans

Sojlw. Eng., vol. 30, no. 2,pp. 126--139,2004

[48] D. Hunter, A. Watt, J. Rafter, J. Duckett, D. Ayers, N. Chase, J. Fawcett,

T. Gaven, and B. Pallerson, Beginning XML, 3rd Edition, Ed. Wiley Publishing,

Inc., January 2005.

[49] w3schools.com, "Introduction to XML," hllp://www.w3schools.com/xmV-

xml_whatis.asp.










	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Blank page
	0005_Title Page
	0006_Abstract
	0007_Page iii
	0008_Acknowledgments
	0009_Table of Contents
	0010_Page vi
	0011_Page vii
	0012_Page viii
	0013_List of Tables
	0014_List of Figures
	0015_Page xi
	0016_Page xii
	0017_List of Listings
	0018_Page xiv
	0019_Page xv
	0020_Page xvi
	0021_Introduction
	0022_Page 2
	0023_Page 3
	0024_Page 4
	0025_Page 5
	0026_Page 6
	0027_Page 7
	0028_Page 8
	0029_Page 9
	0030_Page 10
	0031_Page 11
	0032_Page 12
	0033_Page 13
	0034_Page 14
	0035_Page 15
	0036_Page 16
	0037_Page 17
	0038_Page 18
	0039_Page 19
	0040_Page 20
	0041_Page 21
	0042_Page 22
	0043_Page 23
	0044_Page 24
	0045_Page 25
	0046_Page 26
	0047_Page 27
	0048_Page 28
	0049_Page 29
	0050_Page 30
	0051_Page 31
	0052_Page 32
	0053_Page 33
	0054_Page 34
	0055_Page 35
	0056_Page 36
	0057_Page 37
	0058_Page 38
	0059_Page 39
	0060_Page 40
	0061_Page 41
	0062_Page 42
	0063_Page 43
	0064_Page 44
	0065_Page 45
	0066_Page 46
	0067_Page 47
	0068_Page 48
	0069_Page 49
	0070_Page 50
	0071_Page 51
	0072_Page 52
	0073_Page 53
	0074_Page 54
	0075_Page 55
	0076_Page 56
	0077_Page 57
	0078_Page 58
	0079_Page 59
	0080_Page 60
	0081_Page 61
	0082_Page 62
	0083_Page 63
	0084_Page 64
	0085_Page 65
	0086_Page 66
	0087_Page 67
	0088_Page 68
	0089_Page 69
	0090_Page 70
	0091_Page 71
	0092_Page 72
	0093_Page 73
	0094_Page 74
	0095_Page 75
	0096_Page 76
	0097_Page 77
	0098_Page 78
	0099_Page 79
	0100_Page 80
	0101_Page 81
	0102_Page 82
	0103_Page 83
	0104_Page 84
	0105_Page 85
	0106_Page 86
	0107_Page 87
	0108_Page 88
	0109_Page 89
	0110_Page 90
	0111_Page 91
	0112_Page 92
	0113_Page 93
	0114_Page 94
	0115_Page 95
	0116_Page 96
	0117_Page 97
	0118_Page 98
	0119_Page 99
	0120_Page 100
	0121_Page 101
	0122_Page 102
	0123_Page 103
	0124_Page 104
	0125_Page 105
	0126_Page 106
	0127_Page 107
	0128_Page 108
	0129_Page 109
	0130_Page 110
	0131_Page 111
	0132_Page 112
	0133_Page 113
	0134_Page 114
	0135_Page 115
	0136_Page 116
	0137_Page 117
	0138_Page 118
	0139_Page 119
	0140_Page 120
	0141_Page 121
	0142_Page 122
	0143_Page 123
	0144_Page 124
	0145_Page 125
	0146_Page 126
	0147_Page 127
	0148_Page 128
	0149_Page 129
	0150_Page 130
	0151_Page 131
	0152_Page 132
	0153_Page 133
	0154_Page 134
	0155_Page 135
	0156_Page 136
	0157_Page 137
	0158_Page 138
	0159_Page 139
	0160_Page 140
	0161_Page 141
	0162_Page 142
	0163_Page 143
	0164_Page 144
	0165_Page 145
	0166_Page 146
	0167_Page 147
	0168_Page 148
	0169_Page 149
	0170_Page 150
	0171_Page 151
	0172_Page 152
	0173_Page 153
	0174_Page 154
	0175_Page 155
	0176_Page 156
	0177_Page 157
	0178_Page 158
	0179_Page 159
	0180_Page 160
	0181_Page 161
	0182_Page 162
	0183_Page 163
	0184_Page 164
	0185_Page 165
	0186_Page 166
	0187_Page 167
	0188_Page 168
	0189_Page 169
	0190_Page 170
	0191_Page 171
	0192_Page 172
	0193_Page 173
	0194_Page 174
	0195_Page 175
	0196_Page 176
	0197_Page 177
	0198_Page 178
	0199_Page 179
	0200_Page 180
	0201_Page 181
	0202_Page 182
	0203_Page 183
	0204_Page 184
	0205_Page 185
	0206_Page 186
	0207_Page 187
	0208_Page 188
	0209_Page 189
	0210_Page 190
	0211_Page 191
	0212_Page 192
	0213_Page 193
	0214_Page 194
	0215_Page 195
	0216_Page 196
	0217_Page 197
	0218_Page 198
	0219_Page 199
	0220_Page 200
	0221_Page 201
	0222_Page 202
	0223_Page 203
	0224_Page 204
	0225_Page 205
	0226_Page 206
	0227_Page 207
	0228_Page 208
	0229_Page 209
	0230_Page 210
	0231_Page 211
	0232_Page 212
	0233_Page 213
	0234_Page 214
	0235_Page 215
	0236_Page 216
	0237_Page 217
	0238_Blank page
	0239_Blank page
	0240_Inside Back Cover
	0241_Back Cover

