






Understanding the etiology of obesity: A
multi-faceted approach

by

A thesis submitted to the School of Graduate Studies

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Discipline of Genetics, Faculty of Medicine

Memorial University ofNewfoundland

May20ll



Abstract

Obesity, caused by an excessive accumulation of body fat due to achronicenergy

surplus, is a serious public health concern with numerous comorbidities. It is a complex

disease with many factors contributing to its manifestation; it is thought that obesity

results from the action of multiple genes in combination with lifestyle and environmental

factors. At the current time, only a fraction of the genes involved in obesity have been

identified. The aims of this thesis were first, to characterize the obesity phenotype in the

Newfoundland population and second, shed light on its genetic etiology. This goal was

achieved using data from two different studies-the large scale,population-based

CODING (Complex Diseases in the Newfoundland Population: Environment and

Genetics) Study and an intervention-based, 7-day overfeeding study.

We have shown that body mass index (BMI) misclassifies adiposity status in

nearly one-third of individuals compared to the more accuratereferencemethod,dual

energy X-ray absorptiometry (DXA). Furthermore, we found that approximately half of

obese subjects were metabolically healthy when using DXA criteria, which was

significantly higher than previous reports using BML Among BMI-defined normal

weight individuals, higher body fat percentage (%BF) determined using DXA was

associated with a 3-fold increased risk ofcardiometabolic disease. To further understand

the genetic etiology, a candidate gene, genetic association approach was utilized. We

identified two SNPs (rs10882280 and rs11187545) within RBP4, a newly discovered

adipokine, that were associated with increased serum HDI. cholesterol but no other



obesity-related parameter. No significant associations were observed between genetic

variation in another novel adipokine, NAMPT, and parameters of glucose and lipid

metabolism, obesity, or systemic inflammation. We also sought to explore the response

ofleanand obese subjects to a 7-day hypercaloric diet. We found that RBP4 was not

regulated by the overfeeding challenge but could serve as a predictor of insulinresistance

in lean subjects. In addition, 45 novel obesity candidate genes have been identified that

were regulated by the nutritional challenge; of these, six were differentially expressed

between lean and obese and as such, represent the most promising targets for downstream

work related to obesity.



Acknowledgements

I would like to thank, first and foremost, my supervisor, Dr. Guang Sun, for

giving me the opportunity to develop my research skills under his supervision and

helping me realize a deep-rooted passion for obesity research. I would also like to

recognize Drs. Ed Randell and Yagang Xie, members of my supervisory committee, for

their assistance and input into all parts of this project. I would like to extend my gratitude

to all members of our lab, both past and present, for their continued assistanceand

support as well as all volunteers who took part in each of the studiespresentedherein.

To Chris Butt and Lance Doucette - Thanks for always being there and sharing in

the laughter, frustration, complaints, triumphs and everything else that makes the grad

school experience so unique. And most importantly, thanks for all of the much needed

tea breaks. I'm not sure that I would have gotten through the last five and a half years

To Tara Thomas, my HLM. Thanks so much for all you've done for me during

the past couple of years. Your friendship has seen me through some dark times and I

definitely owe part of my achievements to you!

To Sara Sampson - my best friend/long lost sister/cousin, etc, etc. Thank you so

much for always being such a positive influence in my life and for listeningtomyrants

about grad school without the slightest hint of impatience, even if you didn'talways

understand what I was talking about. Thank you for caring so much and for always



encouraging me. Most importantly, thanks for being my self-reflective mirror. Ididitl

Vegas next I

To Stevie-thanks little brother for listening to all my craziness and never once

actually making me feel one bit crazy. Time to get cracking now on thatdocurnentary of

And finally, to my parents-your daugbter is finally finished post-secondary

education! Thank you so much for your continued support over the years. It means more

to me than either of you will ever know. I couldn't have done this without you. Next



Table of Contents

...... .ii

Acknowledgements.

List of Tables.

List of Figures.

List of Abbreviations.

Co-authorship Statement.

Chapter 2: Defining obesity: Use of dual energy x-ray absorptiometry
and markers ofcardiometabolicdysregulation.

2.1: Comparison of the classification of obesity by BMI versus
dual energy x-ray absorptiometry in the Newfoundland
population... . 29

2.2: The prevalence of metabolically healthy obese subjects defined by
BMI and dual energy x-ray absorptiometry 49

2.3: Body fat percentage is associated withcardiometabolic
dysregulation in BMI-defined normal weight subjects.



Chapter 3: Common genetic variants are associated with obesity-related
traits: A candidate gene approach.... .. ..

3.1: No association between visfatin (NAMPT) gene variants
and metabolic traits in the Newfoundland population. . 92

3.2: Association ofRBP4 gene variants and serum HDL
cholesterol levels in the Newfoundland population.

Chapter 4: Examining the genetic and endocrine detenninates of
obesity through an intervention approach: Response to a
positive energy balance...

4.1: Serum retinol-binding protein 4 concentrations in response
to short term overfeeding in normal weight, overweight and
obese men .

4.2: Changes in the transcriptome of abdominal subcutaneous
adipose tissue in response to short term overfeeding in lean
and obese men ..



List of Tables

Table 2.1 Percentage body fat (%BF) cut-off points for women and men.

Physical characteristicsoffemale and male subjects.

Percent discrepancies between BMI and DXA weight
classifications in women according to age .41

Methods used to define the metabolically healthy phenotype.

Physical and biochemical characteristics of subjects
according to adiposity (%BF) and metabolic status 57

Prevalence of metabolically healthy individuals among
different weight classifications using various criteria to
definethephenotype 63

Physical and biochemical characteristics of subjects according
to %BFtertiles 78

Partial correlations between waist circumference and%BF
with cardiometabolic abnorrnalities amongnorrnal weight
subjectscontrollingforageandgender 81

Table3.! Physical and biochemical characteristics of subjects.

Table 3.2 Summary of single nucleotide polymorphisms, allele
frequencies, and Hardy-Weinberg equilibrium. . 99

Measures of linkage disequilibrium (D' and~) among ten
SNPsinNAMPT 101

Genotype effect of ten SNPs within NAMPT on body
composition, markers of insulin resistance, serum lipids,
andsystemicinflarnmation .

Physical and biochemical characteristics of subjects.

Summary of single nucleotide polymorphisms, allele
frequencies,andHardy-Weinbergequilibrium.



Estimated pairwise linkage disequilibrium (right upper)
and sample size (left lower .

Table 3.8 Genotype effect of five SNPs withinRBP4 on markers
of insulin resistance and serum lipids 118

Serum HDL cholesterol levels according to RBP4 genotype.... . .... .119

Physical and biochemical characteristics of subjects at
baseline and in response to 7 days of overfeeding.

Partial correlations of baseline variables related to baseline
fasting serum RBP4 (I!glml), controlling for BM! and age.

Table 4.3 Partial correlations of changes in variables related to
baseline fasting serum RBP4 (I!glml), controlling for
BMI and age.... . .

Table 4.4 Partial correlations of changes in variables related to
changes in fasting serum RBP4 (I!glml), controlling for
BMIandage...

Physical and biochemical characteristics of subjects at
baselineandinresponset07daysofoverfeeding 155

Differentially expressed genes in subcutaneous adipose
tissue between lean and obese males at baseline.

Differentially expressed genes in subcutaneous adipose
tissue in lean (n= 8) and obese(n=8) subjects due to a
40% hypercaloric diet. ..

Effect of overfeeding on the expression of KEGG pathways.



Figurel.l

Figure 1.2

Figure 1.3

Figure2.!

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure3.!

Figure 4.1

List of Figures

Map of the prevalence of obesity in Canadian Adults
according to body mass index (BMI2: 30.0 kgm-2

) •••

Subtypes of obesity and their metabolic characteristics.

RBP4 modulates glucose metabolism in skeletal muscle
and liver through down-regulation of GLUT4 in adipose
tissue... . 19

Comparison ofBMI- and DXA-defmed weight
classifications in women according to body size.

Comparison ofBMI- and DXA-defined weight
classifications in men according to body size...

Percentage body fat (%BF) variations among women
andmenaccordingtoBMIciassification.

Prevalence of metabolically healthy phenotype within
each adiposity group determined by BMI and %BF criteria.

Prevalence of metabolically abnormal phenotype
phenotype among normal weight subjects.

Risk of metabolically abnormal phenotype according to
%BF tertiles (lowest tertiIe as reference) in subjects with
anormalBMI. ..

Power profiles as a function of varying coefficients of
determination for a range of heritability estimates 104

Mean fold change in a subset of genes selected for
validation of microarray results using real-time PCR 180



%BF
%TF
BrA
B2M
BMI
CODING Study

CTSC
Cy3
Cy5
DBP
DXA
FDR
FTO
GLUT4
GO
GWAS
HOMA~

HOMA-IR
hsCRP
IL-6
IRS2
KEGG
LD
MAF
MHO
MONW
NAD
NAMPT
NL
PDC
PDK4
RBP4
SBP
SCD
SNP
TID
TALDOI
TF
TG
WHO

List of Abbreviations

Body fat percentage
Trunk fat percentage
Bioelectric impedance analysis
Beta-2-microglobulin
Body mass index
Complex Diseases in the Newfoundland Population: Environment
and Genetics Study
CathepsinC
Cyanine3
Cyanine5
Diastolic blood pressure
Dual energy X-ray absorptiometry
False discovery rate
Fat mass and obesity gene
Glucose transporter 4
Gene Ontology
Genome wide association study
Homeostasis model assessment for beta-cell function
Homeostasis model assessment for insulin resistance
High-sensitivity C-reactive protein
Interluekin-6
Insulin receptor substrate 2
Kyoto Encyclopedia of Genes and Genomes
Linkage disequilibrium
Minor allele frequency
Metabolically healthy but obese
Metabolically obese but normal weight
Nicotinamide adenine dinucleotide
Nicotinamidephosphoribosyltransferase
Newfoundland
Pyruvate dehydrogenase complex
Pyruvate dehydrogenase kinase, isozyme 4
Retinol binding protein 4
Systolic blood pressure
Stearoyl-CoAdesaturase
Single nucleotide polymorphism
Type 2 diabetes
Transaldolasel
Transferrin
Triacylglycerol
World Health Organization



Co-Authorship Statement

Thisthesisconsistsofsevenpublishedarticles,sixofwhichlamflrstauthor. For

each manuscript where I am primary author, I participated in study design and data

collection. Specifically, I aided with recruitment of volunteers, performing DXA scans,

obtaining adipose tissue samples in collaboration with a surgeon, and delivering food to

volunteers in the overfeeding study. I had a lead role in all laboratory work including

plasma/serum isolation, DNAIRNA isolation of blood and adipose tissue, hsCRP

measurements, SNP genotyping, and microarray experiments. I performed the majority

of data analyses and wrote the initial draft of each manuscript. I am listed as second

author for Chapter 2. I ("Comparison of the classification of obesity by BMI versus dual

energy x-ray absorptiometry in the Newfoundland popuiation"). For this chapter, I aided

in data collection and analyses, as well as drafting the manuscript in collaborationwith

the primary author.



1

Introduction



1.1 Prevalence and consequences of obesity

Obesity,aconditionofexcessivebodyfat, is one of the most serious public health

problems facing the world today. Obesity rates amongst developed countries have

increased substantially in the past three decades and the disease is now affectingmillions

globally. Specifically, the World Health Organization (WHO) estimated that at least 400

rnillionadults are obese worldwide and projected this number to nearly doubIe by 2015

(I). In Canada, the growing trend towards increased body weight is especially

concerning as the number of overweight people increased from 27% to 34% between

1985 - 2003 while the prevalence of obesity nearly tripled during the same time period

(2). Currently, over 23% of Canadians are classified as obese according to body mass

index (EM!) criteria (~30.0 kg m·2; ref3). Of particular importance, obesity rates in the

province ofNewfoundland and Labrador (NL) are approximately 12% higher than the

national average indicating a significant disease burden in our province (Figure 1).

The consequences of excess body fat are numerous and include type 2 diabetes

(T2D; ref4),cardiovasculardisease(5),hypertension(6),stroke (7), dyslipidemia(8),

and certain types of cancer (9). Furthermore,obesityhasbeenfoundtodecreasequality

oflife (10) and overall life expectancy (II). As a result, this disease and its associated

comorbidities are placing a large burden on our already overwhelmed health care system

(12). Inparticular,arecentsystematicreviewoftheworldwidecostsassociatedwith

obesity estimated that between 0.7% and 2.8% of total healthcareexpendituresare

attributable to this disease (13). Moreover, obese individuals have significantlyhigher
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Figure 1.1 Map oftbe prevalence of obesity in Canadian Adults according 10 body

mass index (BMl ~ 30.0 kg m·2) (CCHS 2.2; ref 14)



(30%) medical costs compared to normal weight individuals (13). Taken together, these

data indicate that the growing obesity epidemic is an alarming trend that warrants further

study to understand the issue.

1.2 Defmingobesity

Obesity is defined as an excessive amount of body fat and is commonly assessed

usingBMI,calculated as a person's weight divided by their height squared. Accordingto

the WHO, BMI-defined adiposity status is classified as follows: underweight (>18.5 kg

m-\ normal weight (18.5 - 24.9 kg m-2
), overweight (25.0 - 29.9 kg m-2

) and obese

(>30.0 kg m-2
) (15). In addition, the obese category is further divided into class I (30.0­

34.9 kg m-2
), class II (35.0 - 39.9 kg m-\ and class III (>40.0 kg m-2

). However, it is the

amount of body fat and not necessarily the amount of excess body weight that determines

an individual's health risks and as such, BMI has come under criticism for its inability to

differentiate between lean tissue and fat. Furthermore, BMI does not measure fat

distribution and we now know that central adiposity plays a major role in the

development of obesity-related disease. Asaresult,recentworkhasfocusedon

identifying tools that are better able to predict disease risk. In terms of anthropometric

measurements, waist circumference is a valuable method that indirectly measures intra-

abdominal fat, a known contributor to cardiovascular and other obesity-related diseases.

A number of studies have demonstrated that waist circumference is a better predictor of

health risk and ultimately death compared to BMI (16-17). Presently, waist



circumference measurements ~ 102 em for men and ~ 88cm for women indicate higher

health risks according to clinical guidelines (18). Althoughanthropometric

classifications such as BM! and waist circumference have proven useful in large-scale

population studies, they are not without limitations. For instance, hoth lack sensitivity

and specificity when applied to individuals (19). Specifically,individualswiththesame

BM! can have vast differences in the amount of body fat and vice versa (20). Likewise,

large interindividual variation in visceral fat exists in individuals with the same waist

circumference (21). These data suggest that anthropometric measurements alone are

insufficient for making any conclusive statements regarding an individual's healthrisk.

As it is the amount of excess fat relative to lean tissue that conveys hea1thrisk,

obesity is more accurately defmed according to body fat percentage (%BF). For more

direct measurements of%BF other instruments are often employed, some more expensive

than others. Bioelectric impedance analysis (BlA) is a common method used to estimate

%BF owing to its low cost and portability. Numerous studies have investigated the

accuracy ofBMI as an index of obesity compared to %BF measurements determined

using BlA. Romero-Corral et aI demonstrated that BM! has limited ability to accurately

predict BlA-defined obesity,particularly for those in the overweight range, (25.0-29.9

kg mo2
) (20). Although BlA is considered a superior method compared to BM!, even

more accurate instruments exist for the measurementofhody fatness. Underwater

weighing has long been used as the traditional standard (22)howeverair-displacement

plethysmography and dual energy X-ray absorptiometry (DXA) have recently been

employed as two new reference methods (23-25). Although more precise in their



measurements, the use of these methods is limited due to their high cost and

inaccessibility. Nonetheless, confinnationofantbropometric indicators of obesity,

namely BM!, is required by a large population-based study using these more accurate

body composition measures.

Despite the fact that obesity is characterized by the presence of excess bodyfat,

this does not always irnply or reliably predict ill health. As such, current obesity

classification systems based solely on BM!, waist circumference, or %BF are not always

anaccuratereflectionofobesity-associateddiseaserisks,comorbidities,orqualityoflife.

In this regard, recent work has focused on classification of subgroups of obesity whose

definitionsnotonlyincludemeasurementsofbodycomposition,butalso a nurnber of

cardiometabolic abnormalities including hypertension, abnormal lipid profiles, insulin

resistance, and systemic inflarnmation. Specifically, it has now been recognized that not

all obese individuals display clustering of the aforementioned metabolicand

cardiovascular risk factors (metabolically healthy but obese {MHO}; ref26). Moreover,

not all lean individuals are void of these risk factors; in fact, a significantproportionof

normal weight subjects display a metabolic profile similar to what is associated with

being overweight or obese (metabolically obese but normal weight {MONW}; ref26).

This has led to the identification of different subtypes of obesity as outlined inFigurel.2.

Despite long-standing clinical awareness, characterization of both of these phenotypesis

still in its infancy. It is known that both of these subtypes of obesity are well represented;

MHO individuals account for approximately 30% of the obese population while MONW

individuals account for up to 25% of normal weight subjects (27-29). Presently,
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Metabolically Healthy Obese (MHO) Metabolically Abnormal Obese

Figure 1.2 Subtypes of obesity and their metabolic characteristics



these subtypes have been defined according to BMI criteria and as stated above, more

accurate methods for determining %BF exist. Assuch,confirmationoftheprevalenceof

these subtypes using DXA measurements as well as further characterization of their

association with body fat is necessary.

1.3 Etiology of obesity

Body weight regulation involves a complex set of factors, including

environmental,endocrine, and genetic influences that ultimately control the balance

between energy intake and expenditure. Obesity has been attributed to an energy

irnbalance in which energy intake exceeds energy expenditure resulting in increased fat

stores in the body. The complexity of body weight regulation irnparts a considerable

challenge to obesity researchers in understanding the etiology of this disease. However,

identiryingtheenvironmental,endocrine, genetic and/or combination of these factors that

contribute to the chronic state of energy irnbalance evident in westem society wiII

ultimately aid in developing effective prevention and treatrnent strategies.

1.3.1 Environmental factors contribute to the growing prevalence 0 fobesity

Although susceptibility towards obesity is in part determined by genetic factors,

an obesity-promoting or obesigenic environment is normally necessary for its phenotypic

expression (30). The rapid weight gain in the population over the last three decades is



largely due to the changing envirornnent (31). We currently live in a world that promotes

energy consumption and discourages energy expenditure. There are a number of factors

that play a role in the overconsumption of energy including the ease at which good-

tasting, inexpensive, energy-dense foods are available and the serving of these foodsin

large portions (31). Foodisalsoheavilyadvertised,andithasbecomeacceptabletoeat

food everywhere (32). Otherenvirornnental factors play a role in the reduction of

physical activity levels in recent years which has led to a decrease intotalenergy

expenditure. These include reductions in jobs requiring physical labor, reduction in

energy expenditures at school and in daily living, as well as an increase in time spent

engaging in sedentary activities such as watching television, playing videogarnesand

surfing the Web (31). As well, communities are built in such a way that promotes driving

and not walking (32). Takenasawhole,the20th centuryhasbeenatransitionperiod

characterized by irnportantenvirornnental changes that influence diet and activity habits

(33). Technological advancements have resulted in an easier way of life for most people

including pre-packaged and fast food, a reduction in daily physical labor,and increased

time for leisure activities. While some may perceive this changing envirornnent as

advantageous, it has ultimately contributed to the current obesity epidemic.

1.3.2 The genetic contribution to obesity

Although the growing trend towards increased caloric intake and decreased

physical activity plays a significant role in the obesity epidemic, it has become evident



that genetics contributes to a person's risk as well. It is well estabHshed that mutations in

genes that encode proteins involved in appetite regulation are responsibleformany

Mendelian disorders in which obesity is a major phenotype. Such monogenic forms of

obesity include Prader-Willi syndrome (which involves a mutation or deletionofthe

paternally contributed chromosome 15qll-q13) (34), and Bardet Biedl syndrome

(associated with mutations in at least twelve different loci) (35). Obesity can also result

from single gene mutations in genes involved in appetite regulation such as the leptin

gene (36), leptin receptor gene (37), and the melanocortin-4 receptor gene(MC4R;ref

38) as well as many others. Although there is ample information available on the

genetics of these mutations in the literature, suchsyndromic formsofobesity are quite

rare in the general population. According to the most recent version of the human obesity

genemap,only176humanobesitycasesduetosingle-genemutationsinlldifferent

genes have been reported in the literature (39).

Although great strides have been made in the identification of genes involved in

rare forms of obesity, this has not translated to an explanation of the underlying genetic

etiology of the common form of obesity. Common obesity is a complex multifactorial

disease meaning that inter-individual variation is thought to be a result of the actionof

multiple genes and the environment (40). In this model, many genes have a small

influence on the adiposity status ofa given individual. Although the overall genetic

contribution to BMI is quite high (ranging between 40-70%) (41),evaluatingthe

contribution of any single gene to human obesity is difficult, with the exception of

specific mutations with avery low frequency in the population, such as those mentioned



above. According to the latest installment of the Obesity Gene Map, more than 600

genes, markers, and chromosomal regions have been associated with obesity phenotypes

(39).

Initial studies regarding the genetics of common obesity were mostly family­

based genome-wide linkage scans. Although successful in identifying genetic variants

causing rare monogenic disease, linkage studies proved less successful whenappliedto

multifactorial diseases. Positional cloning based on linkage results has identified a small

number of possible candidates, including glutarnate decarboxylase 2 (GAD2; ref 42),

ectonucloetide pyrophosphatase/phosphodiesterase I (ENPPl; ref43), and solute carrier

family 6 (amino acid transporter), member 14 (SLC6A14; refs 44-45). A recent meta­

analysis of37 published linkage studies containing over 31,000 individuals did not detect

strong evidence for linkage for BMI at any locus (46). Recently, genome wide

association studies (GWAS) have identified a number of additional candidatesincluding

the fat mass and obesity (PTO) gene, the first common obesity gene (47-48). A common

variant in FTO was unequivocally associated with BMI and increased risk for obesity

simultaneously by two groups. Specifically, variation in FTO was estimated to account

for approximately 1% of the total heritability ofBMI. Although this is a relatively small

effect on total adiposity,countlessothergroupshaveconfirmedtheseinitial findings(49­

51). Additional candidates have since been identified through GWAS including variants

in or near MC4R, NCP I, MAF, PTER, KCTDI5, MTCH2, NEGRI, SH2BI, and TMEMI8

(52-55). At the current time, however, more work is required to elucidate further genes



andpathwaysinvolvedinthegeneticetiologyofobesityaswellasrevealtheirbiological

1.3.3 Gene-Environment interactions in tbeetiologyofobesity

The inability to provide simple genetic answers regarding the obesity phenotype

is not unusual arnongcommon, complex diseases. This is due to the fact that multiple

factorscaninfluencethepathogenesisofthediseaseincludinginteractionsarnongmany

genes, as well as interactions between the environment and genes. Considering gene-

environment interactions is thought to be important as it allows for full evaluationofthe

relationship between environmental and genetic componentsthatcontribute to obesity.

In simple terms, a gene-environment interaction effect can be described as the differential

response or adaptation to an environmental factor, such as a change in energybalance,

dependingonthegenotypeoftheindividual(56).Perhapsthemostwell-knownexarnple

of this is the substantial difference in obesity rates between different populations of Pima

Indians. Although they have a similar genetic make-up, those living in the restrictive

environment of the remote Mexican Sierra Madre Mountains have a much lower

prevalence of obesity and TID than those living in the obesigenic environment of

Arizona (57). Specifically, Mexican Pimas had an average BMI of24.9 kg m·2 while

Arizona Pima Indians had an average BMIof33.4 kgm·2• This study suggests that

despite similar genetic predisposition arnong both populations, a more traditionallifestyle

characterized by a healthier diet and greater energy expenditure may protect againstthe



development of obesity. Furthennore, it has also been documented that various nutrients

can modulate gene expression and thus influence the impact of these variantsonthe

development of complex diseases, such as obesity (58). In addition, overfeeding studies

in monozygotic twins have demonstrated significant gene-diet interactioneffects;the

within-pair response to a positive energy balance is much greater than the between-pair

response for a number of parameters including total body weight, %BF, and estimated

subcutaneous fat (59-60). This has also been established in negative energy intervention

twin studies (61-62).

Presently, only a small fraction of the genetic contribution to obesity has been

identified. This is in part due to the complex interplay between genetic and

environmental factors that likely masks the effect of specific genetic variants. As such,

gene-environmentinteractionswillbecomeincreasinglyimportanttoconsiderasthe

environment becomes more conducive to the development of obesity. Moving forward, it

will be important to use our current knowledge of obesity genetics to describe the inter-

individual variation in the response to various environmental factors, suchas

overfeeding, to provide additional infonnation regarding the pathogenesis of this disease.

The goal of this type work will be to develop more effective prevention and treatrnent

options based on one's personalized genetic background to ultimatelyimproveoverall

quality of life for these patients.



1.4 Adipose tissue plays an active role in the regulation of energy balance

Adipose tissue is a specialized connective tissue tbat acts as a major storagesite

for fat in tbe form oftriacylglycerol (TG). The amount ofTG stored within adipocytes is

an accurate reflection oftbe imbalance between energy intake and energy expenditure,

integrated over a long period of time. Uncontrolled expansion of adipose tissue as a

result ofa chronic positive energy balance leads to obesity and becauseoftbisithasbeen

extensively studied fortbe role it plays in tbephenotypic expression 0 ftbisdisease.

Moreover, adipose tissue is now recognized as an active endocrine organ tbat influences

body weight regulation through control ofbotbhungerand satiety signals. Specifically,

adipose tissue is botb tbe target organ for regulatory signals from otberparts 0 fthebody

while at the same time sending out signals to act on metabolism as well as other

physiological processes. As a result oftbis complex network, adipose tissue influences

metabolic activity at many other sites as well, including skeletal muscle, liver and the

Overtbepastl5years,significantadvancementshavebeenmadeinour

understanding oftbe adipocyte as a secretory cell. It is now known tbat a number of

hormones are released from adipose tissue in response to various physiological cues.

These hormones, collectively called adipokines, are involved in a number of metabolic

and inflarnmatoryprocesses and play an important role in maintaining energy

homeostasis. In addition, endocrine dysfunction attbe level oftbeadipocyte istboughtto

play a crucial role in tbe development of obesity. At tbe current time, more tbantwo



dozenadipokines have been identified as being expressed from various adiposetissue

depots including leptin,adiponectin, visfatin, and retinol binding protein 4 (RBP4) as

well as various inflammatory cytokines such as tumor necrosis factor <1, interleukin-6 (lL-

6), and monocyte chemoattractant protein-l among others. Recent work has addressed

the role that each of these plays in the development of obesity.

Leptin,the firstadipokine discovered in 1994(63),isaI6kDaanorexigenic

peptide that acts on the hypothalamus to regulate body weight by inhibiting food intake

and stimulating energy expenditure (64-65). Both nonsense and missense mutations in

the leptin and leptinreceptor genes induce hyperphagia and obesity in both animal

models (66) and humans (36,67) although the prevalence of these disorders is quite rare.

Circulating levels ofleptin increase with obesity due to resistance to the hormone (68);

furthermore,leptin levels increase in response to overfeeding and decreasewith

starvation (69). In addition, leptin is involved in the regulation of the reproductive

system and onset ofpuberty (70). Moreover, testicular steroids decrease leptin

concentrations (71) while ovarian steroids increase levels (72). OtherphysiologicaJroles

for leptin include modulating the T-cell immune response, stimulating the proliferation of

T-helpercells, and increasing production ofpro-inflammatorycytokines through

regulation of different immune cells (64,73).

Adiponectin is another well characterized 30 kDa adipokine that has been

implicated in the regulation of body weight and glucose metabolism. In animal models,

adiponectin null mice have reduced insulin sensitivity (74-75) whileadiponectin



overexpression in oblob mice confers remarkable metabolic improvements(76). In

humans, circulating levels of this hormone are decreased in obesity-induced insulin

resistance (77-78). In addition, a wide array of diseases, including stroke, coronaryheart

disease,steatohepatitis, nonalcoholic fatty liver disease, and a number of cancers,have

been associated with decreased adiponectin levels (79).

Although less known, visfatin and RBP4 are two newly discovered adipokines

that have garnered recent attention for their potential role inthedevelopmentofobesity

and related disorders. Of particular interest to our lab, these hormones both play

fundamental roles in modulating glucose homeostasis, albeit in opposite directions.

Visfatin, previously called pre-B colony enhancing factor, isexpressedinmanydifferent

cells and tissues, and was first identified as a protein involved in inflarnmatoryprocesses,

particularly, B-cell maturation (80). Morerecently,visfatinwas found to be

predominantly expressed in visceral adipose tissue, from which the name visfatin was

derived (81). Initial rodent studies suggested that visfatin had insulin-mimetic properties;

injection of visfatin in mice lowered blood glucose while mice with a mutation in the

visfatingenehad higher glucose levels (81). Althoughpromising,subsequentstudies

failed to confirm this initial finding and as a result, the paper was later retracted (82). In

2007,Revolloetal demonstrated thatvisfatin instead has nicotinamide adenine

dinucleotide (NAD) biosynthetic activity and is in fact a circulating form ofnicotinarnide

phosphoribosyltransferase (NAMPT), an essential enzyme in the NAD biosynthetic

pathway (83). In particular, haplodeflciency and chemical inhibition ofvisfatinINAMPT

in mice resulted in impaired glucose tolerance and caused defects in glucose-stimulated



insulin secretion in pancreatic islets in vivo and in vitro. Human studies have been more

conflicting. Although some have demonstrated associations between serum visfatin and

1'20 (84), insulin resistance (85) and obesity (86), others have not (87-88). Furthermore,

it has been shown that visfatin is not responsive to PPARr agonists (89). As a result, the

role that visfatin plays in maintaining glucose homeostasis in humans is not clear.

In2005,RBP4wasidentified as an adipose tissue-derived circulatingfactorthat

was highly expressed in adipose tissue-specific glucose transporter 4 (GLUT4) knockout

(adip-Glut4-1j mice (90). GLUT4 facilitates the transport of glucose across plasma

membranes into both skeletal muscle cells and adipocytes. Although skeletal muscle is

the major site of insulin-stimulated glucose uptake, studies have shownthatinsulin

resistant states such as obesity, metabolic syndrome, and 1'20 result in a down-regulation

of GLUT4 in adipose tissue but not in skeletal muscle as would be expected. This led to

the hypothesis that there must be a circulating factor secreted from adipose tissue in

response to the down-regulation ofGLUT4 that signals impaired glucose uptake in

skeletal muscle resulting in peripheral insulin resistance. Yangetal identified RBP4as

such a factor in six insulin resistant mouse models of insulin resistance (90). Moreover,

they found that transgenic miceoverexpressing Glut4had lower circulating RBP4 and

enhanced insulin sensitivity. In addition, Rbp~- mice also demonstrated elevated insulin

sensitivity. Conversely, transgenic mice expressing human RBP4 and wild-type mice

injected with recombinant human RBP4 had elevated insulin levels and insulin resistance.

When adip-Glut~· mice were injected with rosiglitazone, a commonly prescribed drug

for 1'20 that binds to peroxisome proliferator-activated receptor (pPAR) r thereby



increasinginsulinsensitivity,RBP4levelswerenorrnalized. Furthermore, the synthetic

retinoid fenretinide, which increases urinary excretion ofRBP4, resulted in lower RBP4

levels and ameliorated insulin resistance as well as glucose intolerance in diet-induced

obese mice. The authors tried 10 delineate a possible molecular mechanism and found

that RBP4 altered insulin sensitivity in part by affecting insulin signaling in muscle

through a reduction in both insulin-stimulaled phosphoinositide-3-kinaseactivityand

tyrosine phosphorylation of insulin receptor substrate-I. As well,the authors found that

RBP4indirecdyinducedexpressionofagluconeogenicenzyme,phosphoenolpyruvale

kinase, in the liver of mice injected with human RBP4. Moreover, RBP4 treatment

increased basal glucose production and reduced the effectiveness of insulin in

suppressing glucose production in rat hepatocytes. From these studies the authors

concluded that in addition to its other endocrine functions, adipose tissue alsoactsasa

glucose sensor. SpecificaIlY,impai.rmentofGLUT4 in adipose tissue, such as that seen

in adip-Glut4"l- mice, leads to secretion of RBP4 from adipocytes and a subsequent

decline in giucose uptake into skeletal muscle as well as stimulation ofgiucose

production by liver, uitimateiy increasing blood glucose leveisand triggering systemic

insulin resistance (Figure 1.3)

Followingthisinitialdiscovery,humanstudiesensued,however,thefindings

have been more ambiguous. Although some have shown that serum RBP4 is increased in

obesesubjects(90-91),patientswithT2D(91-92),andinleansubjectswithafarnily

historyofT2D (91), others have failed to corroborate this (93). One study found no

association between senun RBP4and insuiin sensitivity in older subjects but a weak
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Figure 1.3 RBP4 modulates glucose metabolism in skeletal muscle and liver tbrough

down-regulation of GLUT4 in adipose tissue (95)



association in younger subjects, suggesting age-related differencesintheregulationof

this adipokine (94). Althougb some have found a decrease in circulating RBP4 in

response to the hypoglycemic drugs, thiazolidinediones, in agreement with the initial

animal studies (96-97), others have failed to confirm these findings (98-99). Atthe

current time, more work is needed to discern a definitive role for RBP4 in modulating

glucose homeostasis in humans.

1.5 Approaches to understanding the etiology of obesity

1.5.1 Genetic studies: The role of association studies and gene expression

profiling in identifying novel obesity candidate genes

In choosing the most appropriate approach to take when trying to elucidatethe

genetic factors involved in the etiology of obesity, it is important to emphasize that one

technique alone cannot fulfill the task of identifying all disease-causing genes. Each

methodhasitsownuniqueadvantagesanditisthereforecriticalforresearchersto

combine a number of different techniques to fully exploit the data available intheir

respective labs. In this thesis, two common molecular methodologies were combined to

increase our chances of identifying novel obesity candidates. First, a candidategene

association approach was utilized to assess the involvement of two novel adipokinesin

the development of obesity-related traits. Second, global gene expression profiling of

subcutaneous adipose tissue using DNA microarray technology was utilized to identify

genes involved in the inter-individual response to an overfeeding challenge.



Genetic association studies are often employed to identify causative genesin

complex diseases, such as obesity. They assess correlations between genetic variants and

trait differences on a population scale (100) and have been successful in identifyingmany

genetic risk factors for common diseases. Specifically, the candidate-gene association

approach has been widely used for the study of obesity. This approach can be definedas

the study of genetic influences on a complex trait by identifying variants, such as single

nucleotide polymorphisms (SNPs), in or near a candidate gene that may have a role in the

etiology of the disease (101). Selection of obesity candidate genes is typically based on

prior knowledge of their known physiological role in pathways related to foodintake,

energy expenditure, as well as glucose and lipid metabolism. In addition, candidate

genes may also be chosen on the basis of previous evidence of association with obesity­

related traits in other populations. Candidate gene studies take advantage of both the

increased statistical efficiency of association analysis ofcomplexdiseasesandthe

biological understanding of the phenotype, tissues, genes, and proteins thatare likely to

be involved in the disease (101).

To date, candidate gene association studies have been successful inelucidatinga

numberofvariantsinknowngenesthatareassociatedwithobesity-relatedphenotypes.

For example, there is mounting evidence that missense mutations in genes involvedin

monogenic obesity are associated with the common form of obesity. Indeed, non-

synonymous variants in both LEP and LEPR have been associated with adult (102-104)

and childhood (105) obesity. Furthermore, the common SNP -1139IG>A, located in the

promoter region of the adiponectin gene (ADIPOQ), results in increased expression and



circulating levels of this protein and is associated with severe childhood and adult obesity

in French Caucasians (106). Moreover, this has been replicated in other studies of adult

obesity (107-108). Additional genes identified through this approach include CNRJ

(109), DRD2 (110-111), HTR2C (112-113), and MAOA (114). There are, however,

nurnerous exarnples of associations that cannot be replicated, which has led to skepticism

regarding the utility of this approach. Explanations for this include poor study design,

small sarnple size, poorly matched control group, incorrect assurnptions about the

underlying genetic architecture of the population and misinterpretation ofdata(IOO).In

addition, different environmental conditions between different studies represent a

problem for replication of initial fmdings. However, as long as care is taken in the choice

and analysis of candidate genes and SNPs, these problems can be overcome with a well

designed study.

A novel approach to identifying causative genes in complex diseases isgenome­

wide screening using microarray technology. There are different kinds of microarrays

including, but not limited to, DNA, protein and tissue arrays. DNA microarrays consist

ofa collection of cDNA or oligonucleotide probes, commonly representing single genes,

arrayed on a chip. DNA microarrays can be used for two main purposes: I. genome wide

association studies using SNP arrays, and 2. genome wide screening of gene expression

inspecifictissuesthoughttobeinvolvedindiseasepathogenesis.SNParraysare a recent

development and allow for whole-genome assessment of variants associated with

common diseases (115). Although GWAS using SNP array technology have been

successful in identifying and replicating a nurnber of variants associated with increases in



BMI (116), waist circumference (53), and total body weight (117), this technology is not

feasible in most labs as a result of the astronomical cost and resources requiredto

complete these studies. This is mostly due to the large number of subjects required to

provide sufficient statistical power and reach genome-wide significance. Expression

arrays provide simultaneous information on mRNA expression of the entire human

genome in just one experirnent. This allows for comparison of expression between

differentexperirnentalconditions(ie.leanvsobese)providingamorecomprehensive

understanding of gene function, regulation, as well as interactions between different

genes (I 18).

The first study employing DNA microarrays for the study of obesity was

publishedbySoukasetalin2000(119). In these experiments, expression of

approximately 6500 murine genes was compared between adipose tissue of ob/ob mice

and wild-type lean controls. Since that initial experirnent, global gene expression

profiling has been performed in numerous other studies, involving both animal models

and human tissues. These data have provided us with a wealth of information regarding

the differential gene expression profiles induced by obesity. Moreover,the application of

DNA microarray technology has led to the discovery of novel obesitycandidates

includingRBP4,asmentionedpreviously.Assuch,geneexpressionarraysrepresenta

fruitful means by which additional obesity candidate genes can be identified.



1.5.2 Overfeeding studies: The unique role ofa positive energy challengein

revealing the underlying molecular mechanisms of obesity

Maintenance of body weight and body composition results from efficient control

between substrate intake and utilization; an imbalance between these two results in either

weight loss or gain, depending on the direction. Disruption of this highly regulated

system through positive or negative energy balance interventions provides researchers

with the ability to investigate the means employed by humans under stressful nutritional

situations to counteract the energy imbalance (120). Overfeeding studies in particular

provide a means in which both genetic and biochemical changes thatwouJdbe evident

with extended overeating can be investigated. This is important as obesity is largely

caused by a chronic energy surplus. By rnimicking this in a laboratory setting,

overfeeding interventions allow for a better understanding of the differencesbetween

lean and obese individuals in response to a positive energy challenge, ultimately

revealing the underlying mechanisms involved in the predisposition towardsobesity. The

ingestion of excess energy can help delineate adaptive mechanisms ofa metabolic nature.

An overfeeding study might allow the unravelling of subtle metabolic mechanisms,

which are difficult to discover under maintenance conditions.

The concept of overfeeding studies dates back to the late sixties, atwhichtime

Sims and colleagues reported differences in weight gain among a group of lean

individuals undergoing prolonged overfeeding (12J). WhiJe some subjects gained a

significant amount of body fat, others were able to maintain their initial weight. This



initialstudywasfollowedupinthel980sbyaseriesofhighly-controlledoverfeeding

studiesinmonozygotictwins(59-60,122). The authors reported remarkable within pair

similarity in a number of biomarkers including body composition, energy expenditure,

and plasma lipids indicating that genetic background plays a large role in detennining the

response to nutritional interventions. Other more recent studies have also investigated

the nutritional regulation of various adipokines. Nonetheless, the number of overfeeding

studies that have beenperforrned is still limited. As a positive energy balance is the

fundamental causeoftherisingprevalenceofobesity,performingadditional well-

controlled overfeeding studies on human subjects is essential.

Giventhecomplexityandheterogeneityofobesity,thisthesissoughttofurther

understand the etiology of this disease from a number of different perspectives including

epidemiological, genetic and nutritional viewpoints. The main goals of the current work

First, we wanted to characterize our population and clarify differences between

previously reported definitions of obesity. Using a large number of subjects from the

CODING (Complex Diseases in the Newfoundland Population: Environment and

Genetics) Study, we first attempted to evaluate the accuracy ofBMI as an estimate of

body fat compared to a more accurate reference method, DXA. As the utility of BMI as a

marker of obesity has long come into question, we exarnined the discrepancy between



BMI-defined adiposity status compared to %BF-defined adiposity (Chapter 2.1) in the

NLpopulation. Building on this, we then expanded our definition of obesity to include

recently identified subtypes (MONW and MHO) based on markers of cardiometabolic

dysregulation and again, evaluated the discrepancy between BMI- and DXA-defmed

adiposity (Chapter 2.2). To further categorize MONW individuals in particular, we

investigated the association between DXA-defined %BF and cardiometabolic risk factors

among a large number ofBMI-defmed normal weight subjects (Chapter 2.3).

The second aim of this thesis was to utilize the candidate gene association

approach to assess the influence of common variants in two obesity-related genes,

NAMPT (Chapter 3.1) and RBP4 (Chapter 3.2), on adiposity-associated traits including

markers of insulin resistance, lipid metabolism, and systemic inflanunation. As

mentioned previously, both of these genes encode novel adipokines (visfatinandRBP4,

respectively) with possible involvement in obesity and bodyweightregulation.

Furthermore, recent association studies involving these genes have beencontroversial;

while some have demonstrated a relationship between genetic variation and the variables

mentioned above, others have not. In the majority of these reports, sample sizes were

either quite small, or statistical analyses questionable likelycontributing to the

controversy. Using our uniquely homogenous, large-scale cohort from the CODING

Study, we attempted to clarifY this issue.

The third and fmal goal of this thesis was to explore the nutritional regulation of

adipose tissue from both a genetic and endocrine point of view. To do this, subjects



underwent a 7-day overfeeding challenge consisting of50% carbohydrates, 35% fat, and

15% protein (± 5%) to mimic the daily diet in North America. As obesity is a chronic

state of energy surplus, mimicking this energy imbalance in a lab setting allowed us to

investigate the endocrine and genetic changes that would be evident with extended

overeating. Although this has been heavily studied in animals under conditions ofahigh

fat diet, these findings have not always translated well to human physiology. The

majority of studies exarnining energy homeostasis in humans have been negativeenergy

balance interventions, induced either through exercise or caloric restriction. Asapositive

energybalanceisthefundamentalcauseofobesity,itisimperativetoexploretheinter-

individual differences in weight gain induced through overfeeding to better understand

the underlying molecular mechanisms of this disease. Inthisregard,weinitially

examined the nutritional regulation ofRBP4 in response to a 70% hypercaloric diet

(Chapter 4.1). The objective of this study was to gain a greater understanding of the role

RBP4playsinthedevelopmentofinsulinresistanceduringoverfeeding. In the second

overfeedingstudy,wesoughttoexarninegeneexpressionprofilesofsubcutaneous

adipose tissue in lean and obese young men in response to a40%hypercaloricdietin

hopes of identifYing novel obesity candidate genes that would otherwise go undetected

(Chapter 4.2). By investigating the response of both a novel adipokine as well as gene

expression profiles of subcutaneous adipose tissue under conditions ofapositiveenergy

challenge, the ultimate goal of both these studies was to provide further insight into the

regulationofadiposetissuemetabolismtoprovidevaluablecandidatesfor future work

related to obesity.
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The incidence of obesity has increased substantially over the past three decades

and is now one of the most important public health concerns with worldwide incidence at

over 300 million people (123). Chronic health problems associated with obesity are

numerous and include TID, heart disease, hypertension, and certain types of cancer

(124). As the incidence of obesity increases, the need for accurate measurements of

adiposity is becoming increasingly important to allow for appropriate diagnosis and

treatment. BMI has been the dominant index used to measure obesity owing to its

simplicity and low cost however it has recently come under criticism as it fails to account

for a number of adiposity related-factors including age, gender, and ethnicity. Reference

methods such as DXA, air-displacement plethysmography, and underwater weighing

provide a more accurate indication of%BF (22-25), which is one of the fundamental

links between obesity and its associated disease risk.

The use of BMI for the classification of adiposity status and disease risk is based

on epidemiological associations ofBMI with morbidity and mortality (125-126). Despite

this, numerous studies have produced evidence that BMI has limited ability to accurately

predict body composition as evidenced by sizeable differences between BMIestimated

body fat and densitometrically determined body fat (127-130). Furthermore, the

relationship between BMI and %BF has been shown to vary with age, sex and ethnicity

(131-133). It is therefore essential to identify how well BMI criteria match more accurate

reference methods based on %BF and to what extent major factors such as age, gender



and adiposity distort the accuracy ofBMI. In the current study, we investigated

differences between BMI-determined adiposity status and DXA to evaluate the accuracy

ofBMI. At the present time, there is little systematic data available in Canada regarding

the accuracy ofBMI compared to a standard reference method such as DXA, at the

population level. The objectives of our study were as follows: I) Determine the accuracy

ofBMI classifications compared to %BF classifications measured by DXA; 2) Determine

if discrepancies between BMI and DXA are gender- and age-specific; 3) IdentifY whether

an individual's current adiposity status (i.e. overweight or obese) can affect the size of

Subjects

Subjects(n=1712)wererecruitedfromanongoinglargescalenutritional

genetics study of human complex diseases called the CODING Study (134-136). As

BMI and %BF criteria are specific to individuals 2: 20 years old, we excluded all

participants below this age limit (21 individuals) leaving us with a cohort of I691

subjects (1321 females, 370 males). All volunteers were from the Canadian province of

NL. Each individual completed a screening questionnaire that included information

regarding physical characteristics, dietary habits, and physical activity levels.Inclusion

crileriainthepresenlstudywereasfollows:l)betweentheagesof20and79years old;

2) at least third generation Newfoundlander; 3) healthy, without any serious metabolic,



cardiovascular, or endocrine disease. All subjects provided written and informed

consent, and tbe Human Investigation Committee oftbe Faculty of Medicine, Memorial

University ofNewfoundland approved tbe study.

All measurements were performed following a 12 hour fasting period. Subjects

were weighed to tbe nearest 0.1 kg in standardized light clotbes and witbout shoesona

plarform manual scale balance as previously described by us (Healtb a Meter Inc.,

Bridgeview, IL) (134-136). Height was measured using a fixed stadiometer to tbe nearest

0.1 cm. BMI was calculated as a person's weight in kilograms divided by their height in

meters squared. Waist and hip circumference were measured to the nearest 0.1 cm using

a flexible metric measuring tape while tbe participant was in a standing position. Waist

circurnference was measured as the horizontal distance around tbe abdomen attbe level

oftbe umbilicus and hip circurnference was measured as tbe largest circurnference

between tbe waist and thighs. Waist-to-hipratio was calculated as waist circurnference

divided by hip circurnference.

Whole body composition measurements including fat mass, lean body mass and

bone mineral densities were measured using DXA Lunar Prodigy (GE Medical Systems,

Madison, WI, USA). DXA is a relatively new reference method used to detennine body

composition tbat produces an accurate measurement of all adipose tissue within thebody

witb a low margin of error. For this reason DXA is considered to be one of the most



accurate measurements of adiposity and is commonly used as a standard compared to less

accurate field methods such as BM!. Measurements were performed on subjects

following the removal of all metal accessories, while lying in a supine positionas

previously described (134-136). %BF was determined as a ratio offat mass over total

body mass (including bone mineral densities) using the manufacturer's software(Version

4.0). Quality assurance was performed on our DXA scanner daily as recommended by

the manufacturer. Briefly, the procedure involves scanning a calibration block and

functional tests of diagnostic parameters. If any of these tests fail on two consecutive

occasions, the user is instructed to contact the manufacturer. The typical CV was 1.3%

during the study period.

Statistical Analysis

All data are reported as mean ± SO. Prior to performing any statistical analyses,

subjects were classified according to adiposity status using both BMI and %BF criteria.

Subjects were classified using BMI as underweight « 18.5 kgm-2
), normal weight (18.5 ­

24.9 kgm-2
), overweight (25.0 - 29.9 kg'm-2

), or obese (30.0 kg'm-2
) according to criteria

from the WHO. Subjects were grouped according to %BF based on criteria

recommended by Bray that is both age and gender specific (Table 2.1) (137). Differences

in physical characteristics between men and women were assessed using Student'st-test.

Differences in adiposity classification between BMI and DXA were analyzed on the

following three levels:



I. Discrepancy analyses between BMI and DXA within gender.

Men and women were separated into adiposity classifications according to BMI

and %BF criteria. The number of subjects grouped into each adiposity category

by both methods was calculated as a percentage of the total number of

participants. Differences in percentages between BMI- and %BF-defined

adiposity status were analyzed within gender using Chi-Square analyses.

2. Discrepancy analysis by age group.

BMI-defined adiposity classifications were compared to %BF criteria among

different age groups to investigate the effect of age onBMI accuracy. Women

were separated into four groups according to their age (20-29.9, 30-39.9,40­

49.9,50+) and analysis repeated as above. Due to the small number of men in

our cohort, similar analysis could not be performed as the number in each cell

(four age groups by four weight groups) was too small foreffectivecomparison.

3. Ranges of percent body fat based on BMI cutoffs.

In order to study the range of%BF found in each BMI category, subjects were

grouped by BMI into adiposity groups and then %BF averages for each BMI

group were calculated along with minimum and maximum values.

SPSSversionI6.0(SPSSInc.,Chicago,IL)wasusedforaIlanalyses. Statistical

analyses were two-sided and ap value <0.05 was considered to be statistically

significant.
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Physical characteristics of the subjects

Physical characteristics for female and male participants are shown in Table 2.2.

The subjects' ages ranged from 20-76.8 years old. Male subjects were 3.0 years younger

than women on average. Men were also 15.5 kg heavier and 13.3 cm taller compared to

women and had BM! measurements 1.2 units higher which reflect averages seen in

similar studies (138). Although BM! values were higher in men, women had greater

waist-to-hip ratios and increased %BF and trunk fat percentage (%TF).

General discrepancy analyses by gender

Significant discrepancies between BM! and %BF criteria were identified in both

women and men. Of the 1321 women included in our study, BM! classified 44.2% as

normal weight while DXA classified only 29.6% as normal weight (Figure 2.1). Among

obese women there was again a large discrepancy between the two methods. According

to BM! criteria, 20.3% of women in our cohort were obese however according to %BF

criteria 37.1% ofwomen were obese. As a result, BM! classified 14.6% more women as

normal weight and 16.8% less women as obese compared to %BF criteria determined by

DXA (p<0.001). Classification of underweight and overweight women was similar

between the two methods (underweight: BM! 1.2%, DXA 2.2%; overweight: BM!

34.2%, DXA 30.9%). A total discrepancy of34.7% was found between the two methods

in women.
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Of the 370 men included in this study, BMI and %BF classifications were similar

for normal weight individuals (BMI 28.9%, DXA 31.6%; Figure 2.2). Among

overweight and obese men, significant differences were evident in adiposity classification

among the two methods. BMI categorized 45.7% of men as overweight and 24.9% as

obese while DXA classified only 28.1 % of men as overweight and 38.4% as obese. BMI

classified 17.6% more men as overweight and 13.5% less men as obese compared to

%BF criteria based on DXA measurements (p<0.001). A total discrepancy of35.2% was

discovered between the two methods in men.

Discrepancy analyses by age group

After separation of the female cohort into groups based on age, similar

discrepancies were evident between BMI- and %BF-defmed adiposity status across all

four age groups (Table 2.3). There was a significant discrepancy between the two

methods for normal weight and obese women across all age groups (p < 0.00 I). The

discrepancy between BMI and DXA-determined %BF ranged from 11.5% to 18.9% for

normal weight women and 13.3% to 22.5% for obese women. Women in their 20s

demonstrated the largest discrepancy between BMI and %BF for the normal weight

group and women in their 30s had the largest discrepancy in the obese group. Women in

their 40s demonstrated the smallest discrepancy between the two methods among the four

age groups. The discrepancies found in the female cohort for underweight and

39





Table 2.3 Percent discrepancies between BMI and DXA weigbt classifications in women according to age (n = 1321)1.

IBMI and DXA values are raw numbers of women classified into each adiposity group.

2%D, Percent discrepancy between BMI- and DXA-defmed weight classification; calculated as:

Ipercentage of women grouped into BMI category - women grouped into DXA category I.

3Significant difference between BMI- and DXA-defined weight classification according to Chi Square analyses (p < 0.001).



overweight BMI classifications compared to %BF were not significant for all age

groupings.

Error range in classification byBMI

Figure 2.3 shows the variation in %BF according to BMI categories for men and

women. A large range of error indexed by %BF was found in each BMI category for

both genders. A total of251 obese women (determined by OXA) were misclassified as

either normal weight (n =42) or overweight (n = 209) by BMI criteria. There was a wide

range in %BF for BMI-defined normal weight and overweight women (4.6 - 51.1 % and

14.8 - 51.8%, respectively). Overweight women (OXA) were also misclassified as

underweight and normal weight according to BMI criteria. Normal weight and

underweight women (DXA) were misclassified as overweight and normal weight,

respectively. This suggeststhatBMI misclassifiesfemale subjects across all four

adiposity classifications. The data among men was similar. A total of73 obese men

(determined by OXA) were misclassified as normal weight (n =7) or overweight (n =66)

according to BMI criteria. The range in %BF for BMI-defined normal weight and

overweightmenwas5.6-31.2%and 10.8-41.3%,respectively. Althoughthe

misclassifications were bi-directional, BMI tended to under-classify the majority of

subjects.
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Our study, involving a large sample from the NL population, demonstrates the

limited ability ofBMI to accurately estimate adiposity. One of the major findings in the

present study is that there is a large discrepancy between BMI- and DXA-defined

adiposity status that is both gender and age specific. Over one third of women and men

were misclassified by BMI criteria compared to %BF criteria determined by DXA. A

significant proportion of obese individuals were misclassified as either normal weightor

overweight by BMI criteria. This poses serious health consequences on a population

level as the opportunity to intervene and reduce health risk in these individuals is lost.

Overall, BMI had the poorest ability to predict true adiposity in normal weight and obese

women, and in overweight and obese men. Furthermore, this misclassification was

influenced by age, with younger women (under 40 years old) demonstratingthelargest

discrepancy between the two methods. We also found significant inter-subject variability

in %BF for any given BMI value.

The ability of BMI to define adiposity status has been repeatedly questioned. It

has previously been shown that BMI is not accurate at predicting adiposity status in the

normal to mildly obese range (20, 139-140) as well as in severely obese individuals

(141). Inparticular,BMI was not accurate at predicting obesity in individuals with a

body mass less than 80 kg compared to %BF determined by DXA (140). Similarly, a

significant number ofpeople with a BMI below 30 kg m'2 were actually obese when

classified by %BF determined by Bioelectric Impedance Analysis (BlA) (139). A more

recent study, involving a large multiethnic sample from the US population found BMI to



have limited diagnostic performance, especially in those with a BMI < 30 kg m
o2

(20).

Despite BMI-defined obesity having good specificity when compared to BIA-defined

obesity, BMI had low sensitivity, missing nearly half of%BF-determined obese people

(20). These findings suggest that BMI may not be accurate at assessing adiposity status

in normal weight and overweight individuals. Our study included all ranges ofBMI and

%BF (16.0 - 54.3 kg.mo2 and 4.6 - 59.9 %, respectively) and revealed a higher

discrepancy for each of these adiposity categories.

We also observed gender differences in the discrepancy between the two methods.

Although there was good agreement between BMI and DXA for overweight women,

BMIhad limited ability to predict the correct adiposity classification for normal weight

and obese women. In men, however, the greatest discrepancy was evident in the

overweight and obese groups. BMI has a better correlation with lean mass compared to

%BF in men but not in women (20) which may explain why there was a greater

discrepancy between BMI and %BF-defined adiposity status in overweight men but not

in overweight women. Furthermore, males demonstrate a linear relationship between

BMI and %BF while females demonstrate a curvilinear relationship (141) which may

explain why we observed a high discrepancy between BMI- and DXA-defined normal

weight women but not men. Gender differences in body composition are a profound

physiological phenomenon however standard WHO BMI criteria do not acco=odate for

this. Our results suggest that this problem needs addressing. A re-adjustment 0 fobesity

criteria to include acco=odations for gender differences will increase the accuracy of

BMI to predict adiposity in both males and females.



We also analyzed our data after stratifying females according to age groups. The

largest discrepancy between BMI and DXA weight classifications was evident in women

under the age of 40 while there was moderate agreement between the two methods in

older women. These results are surprising as previous studies have found that the

diagnosticperformanceofBMIdiminishesasageincreases(20),likelydueto an increase

in the ratio of fat mass to fat free mass that is evident with age (142). Further studies are

warranted to address the potential mechanism surrounding this phenomenon. Obesity

criteria based on %BF are age specific however, BMI criteria are identical across all age

groups. From our results it is apparent that BMI cannot accurately reflect age-related

changes in adiposity.

Our analysis was originally performed using %BF criteria from earlier

publications by Dr. Bray. Bray's original obesity criteria (defined as BF > 25 % in men

and BF > 33% in women) lacked any adjustment for age or ethnicity (143). Using these

criteria, we found that approximately 72% of obese females and 54% of obese males

were rnisclassified as normal weight or overweight according to BMI criteria. Our

current results indicate that the new Bray body fat classifications (Table I) are a better fit

to BM! criteria, however a significant margin of error still remains between the two

methods. It is evident that age, gender and ethnicity-specific criteria are necessary for

more accurate BMI calculations that reflect %BF.

The findings from our study highlight the importance of exercising caution when

defining adiposity status using BMI criteria. Although previous studies have



demonstrated similar trends, most have small sample sizes (144-145) or have used less

accurate methods to estimate %BF such as BrA or skin fold thickness (20,139,146). To

the best of our knowledge, this is the first study of its kind to demonstrate a discrepancy

between BMl- and DXA- defined adiposity in a large cohort containing both men and

women of all different age groups. Nevertheless, our study is not without limitations.

Other methods to measure adiposity, such as BrA, are cheaper and easier to use compared

to DXA, despite its reported limitations. Although DXA is considered to be one of the

more accurate measurements for %BF, it is not without its own limitations. Lean tissue

determined by DXA contains water as its dominant component, therefore differences in

hydration may affect the calculation of body fat and hence, may have also contributed to

the discrepancy between BMl and DXA adiposity measurements. Past studies have

shown, however, that the effect of hydration on fat mass is not significant (1 47). All

subjects fasted (no food or water) for 12 hours prior to having a DXA scan performed to

control for differences in hydration therefore this should not have any significanteffect

on our results. Our study was also limited in the number of male participants and ethnic

groups. Future studies investigating the discrepancy between BM1- and DXA-defined

adiposity are warranted in a larger male cohort and in other populations.

In summary, we compared BMl adiposity classifications to DXA-determined

adiposity classifications based on %BF in 1691 adult Newfoundlanders. BMl

misclassified 34.7% of women and 35.2% of men into an incorrect adiposity category.

BMl misclassifications were also influenced by age, with the largest discrepancy

observed in women under 40 years old. Our findings support previous research and



demonstratethenecessitytorevisecurrentBMlcriteriatoincludesuchconfounding

factorsasage,genderandethnicity(I41,148-149).Furtherresearchisneededtohelp

alleviate these problems so thatBMI can continue to be used in everyday health

appraisals. Using the current BMI criteria can be dangerous as it may misdiagnose obese

individuals as normal weight and result in missed opportunities to intervene and reduce

disease risk. For these reasons, we recommend that caution should be taken when BMI is

used in scientific research as well as in clinical practice.
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Obesity, which is commonly measured using BMI, is closely associated with a

number of metabolic and cardiovascular risk factors including high fasting glucose (150),

hypertension (151), dyslipidemia (152) and high C-reactive protein levels (153).

Recently however, studies have indicated that the disease risks associatedwithexcess

adiposity may not be uniform. For example, a subset of normal weight individuals

display a metabolic profile similar to what is often associated with beingoverweightor

obese (27, 154). Conversely, a subset of obese individuals appears to be resistant to the

development of obesity-related metabolic complications (26-28, I 55). Interestingly, the

metabolicprofileofobeseindividualswhoaremetabolicallyhealthyissimilartothatof

young, lean individuals (156).

Although it has been reported that approximately one-third of obese adults are

metabolically healthy (26-27), the majority of these studies haveclassifiedobesityusing

BMI criteria. Recently, the utility ofBMI as an accurate measure of adiposity has come

under scrutiny compared to reference methods such as DXA (24, 140, 157). Specifically,

we have shown that BMI tends to misdiagnose approximately one-third of obese

individuals as normal weight or overweight (157). As BMI and DXA likely represent

different physiological entities, their relationship with obesity-related riskfactorsmay

differ. This point was acknowledged in a recent editor's correspondence regarding the

study performed by Wildman et al. (27), where it was stated that the use of BMI as an

index of obesity in the context of their study had serious limitations (158). Thus, there is



an immense need for data regarding this issue using more accurate measurements of body

In the current study, we were interested in investigating the prevalence of

cardiometabolic abnormalities in normal weigbt, overweigbt and obese individuals using

both BMI and %BF criteria (determined using DXA). Our goal was to determine if the

prevalence of these phenotypes is similar to what has been reported in the literaturewhen

using a more accurate index of adiposity. At the present time, little is known regarcting

the differences in the prevalence ofcardiometabolic risk factors among individuals

classified using BMI versus %BF adiposity classifications. The objectives of the study

were as follows: I. Compare the prevalence of cardiometabolic abnormalities in a large

cohort using BMI versus %BF criteria; and 2. Determine if the discrepancy in the

prevalence of these metabolic abnormalities is influenced by gender.

Subjects

Subjects(n=1981)wererecruitedfromanongoinglargescalenutrigenomics

study (CODING Study) ( 134-136, 157, 159). Participants ~ 19 years old were excluded

as BMI and %BF criteria are specific to those 20 years of age and older (n = 29). All

underweigbt individuals were excluded as well (n = 45) leaving a final sample size of

1907 (n = 1464 women, n = 443 men). All volunteers were from the Canadian province



ofNL. Inclusion criteria were as follows: I) between the ages of20 and 79 years 0 Id;2)

at least third generation Newfoundlander; 3) healthy, without any serious metabolic,

cardiovascular or endocrine diseases; and 4) not pregnant at the time of the study. The

Human Investigation Committee of the Faculty of Medicine, Memorial University of

Newfoundland approved the study and all subjects provided written and informed

All measurements were performed following a 12 hour fasting period. Subjects

were weighed to the nearest 0.1 kg in standardized light clothes and without shoesona

platform manual scale balance as previously described by us (Health 0 Meter Inc.,

Bridgeview, IL) (134-136,157). Height was measured using a fixed stadiometer to the

nearest 0.1 cm. BMI was calculated as a person's weight in kilograms divided by their

height in meters squared. Waist and hip circumference were measured to the nearest 0.1

cm using a flexible metric measuring tape while the participant was in a standing

position. Waist circumference was measured as the horizontal distance around the

abdomen at the level of the umbilicus and hip circumference was measured as the largest

circumference between the waist and thighs.

Whole body composition measurements including fat mass, lean body mass and

bone mineral densities were measured using dual-energy X-ray absorptiometry (DXA)

Lunar Prodigy (GE Medical Systems, Madison, WI, USA). Measurements were



performed on subjects following the removal of all metal accessories, while lying in a

supinepositionaspreviouslydescribed(134-136,157). Percent body fat (%BF) was

determined as a ratio offatmass over total body mass (including bone mineral densities)

using the manufacturer's software (Version 4.0). Subjects were classified as NW, OW or

OB according to %BF based on criteria recommended by Bray (Table 2.1) (137).

Blood samples were taken from all subjects in the morning, following a 12-hour

fasting period. Serum was stored at-80 °C for subsequent analyses. Serum

concentrations of glucose, TG, total cholesterol, and HDL cholesterol were performed on

an Lx20 analyzer (Beckman Coulter Inc., CA, USA) using Synchron reagents. LDL

cholesterol was calculated using the following formula: (total cholesterol) - (HDL

cholesterol)-(TG/2.2) which is reliable in the absence of severe hyperlipidemia. Serum

insulin levels were measured on an lmmulite immunoassay analyzer (OPC, CA, USA)

and the homeostasis model assessment was used to measure insulin resistance (HOMA-

IR) and p-cell function (HOMAP) (160). High-sensitivity C-reactive protein (hsCRP)

was measured by nephelometry according to the manufacturer's protocol (Beckman

Coulter Inc).



Definition of Metabolically Benign and Metabolically Unhealtby Pbenotypes

For the present study, sixcardiometabolic abnormalities were considered

(elevated TG and glucose levels, decreased HDL cholesterol levels, insulin resistance,

hypertension, and eievated hsCRP). Because there are no standard criteria to categorize

metabolically healthy and abnormal individuals, we performed our analyses using the

definition recommended by Wildman et al (ref27; Table 2.4). Subjects were classified as

metabolically abnormal if they had ~ 2 cardiometabolic abnormalities listed in Table 2.4

and metabolically healthy if they did not fulfill the above criteria (0 or 1 cardiometabolic

abnormality). Further analyses were performed using additional criteria for the

metabolically healthy phenotype based on the definition for the metabolic syndrome

(161), criteria recommended by Karelis etal. (l62), as well as an insulinresistancecut

point (metabolically healthy, lower quartile ofHOMA index; metabolically abnormal,

upper quartile ofHOMA index; ref 163).

Statistical Analyses

Data are presented as mean (SD). Prior to performing any statistical analyses,

subjects were grouped according to adiposity status using both BM! and %BF criteria.

Based on their BM!, subjects were classified as normal weight (18.5 - 24.9 kg m-2
),

overweight (25.0 - 29.9 kgm-2
) or obese (> 30 kgm-2

) according to criteria from the

WHO (Table 2.1; ref 143). Subjects were also grouped according to %BF based on

criteria recommended by Bray that are both age and gender specific (Table 1; ref 137).



Table 2.4 Methods used to define the metabolically healthy phenotype..

Wildmanetal(27) Less than two criteria:
Blood pressure 2: 130/85 rnrnHg
TG2:1.7rnrnollL
HDL-C: Men < 1.03 rnrnollL

Women<1.30rnrnollL
Glucose2:5.6rnrnollL

HOMA-IR> 4.27 (ie. 90th percentile)

hsCRP> 7.89 mg/L (ie. 90th percentile)

NCEP ATP III MetS (161) Two or less metabolic criteria:
Blood pressure 2: 130/85rnrnHg
TG2:1.7rnrnollL
HDL-C: Men < 1.03 rnrnollL

Women<1.30rnrnollL
Glucose2:5.6rnrnollL
Waist Circumference: Men < 102 cm

Women<88cm

Karelisetal(162) Meeting four out of five criteria:
HOMA-IR:02.7
TG:01.7rnrnollL
HDL-C2:1.3rnrnollL
LDL-C:02.6rnrnollL
hsCRP:03.0mg/L

HOMA Index (163) HOMA < 1.27 (lowest quartile ofHOMA index)

'Those not meeting the above criteria were classified as metabolically abnormal. TG,

triacylglycerol; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis

model for insulin resistance; LDL-C, low-density lipoprotein cholesterol; hsCRP, high

sensivity C-reactive protein; NCEP ATP III MetS, National Cholesterol Education

Program Adult Treatment Panel III definition for metabolic syndrome.



Subjects' physical characteristics and metabolic profiles were calculatedaccordingto

their adiposity status (based on %BF criteria) within each metabolic subgroup

(metabolically healthy or metabolically abnormal) as well as overall. Differences in

these characteristics among the three groups of subjects (normal weight, overweight, and

obese) were analyzed within each metabolic subgroup using one-way ANOVA. The

prevalence of the metabolically healthy and metabolically abnormal phenotypes are

presented as the mean percentage within each adiposity group. The level of agreement

between the prevalence of these phenotypes among normal weight, overweight, and

obese subjects using BM! versus %BF criteria was assessed using a Kappa test.

Differences within each adiposity group were assessed using Chi-Square analyses. This

analysis was also repeated after stratifying subjects according to gender. SPSSversion

16.0 (SPSS Inc., Chicago, IL) was used for all analyses. Statistical analyses were two­

sided and ap value < 0.05 was considered to be statistically significant.

Physical and Biochemical Parameters

Among the 1907 subjects in our study 40.4% were normal weight (n = 771),

37.6% were overweight (n = 716), and 22.0% were obese (n = 420) using BM! criteria.

According to %BF criteria, which gives a more accurate measurement of adiposity

compared to BM! (13), 31.5% were normal weight (n = 602), 30.8% were overweight (n



Table 2.5 Physical aod biochemical characteristics of subjects accordiog to adiposity (%BF) aod metabolic status.·

Metabolically Healthy Metabolically Aboormal

Normal Normal
Weight Overweight Obese Weight Overweight

(0=456) (0=367) (0=339) (0=146) (0=220) (0=379) (0=1907)

Age(y) 40.2(12.6) 43.3(11.6) 43.2(11.4) 47.1(13.5) 48.8(10.0) 46.0(11.6) 44.0(12.1)

Height (cm) 165.8(7.7) 164.1(7.8) 164.8(8.2) 167.8(9.6) 165.8(8.4) 164.9(8.6) 165.3(8.3)

Weight(k:g) 62.7(8.9) 68.6(10.3/ 79.8(13.3)2.3 69.0(13.1) 74.1(11.4)287.5(16.7)2.3 73.6(15.3)

BMI(k:g*m·2) 22.7(2.1) 25.4(2.7)2 29.3(4.2/.3 24.4(3.5) 26.8(3.2)2 32.2(5.3)2.3 26.9(5.0)

Body Fat (%) 27.3(6.3) 35.8(5.0)2 42.3(5.7/.3 26.4(7.0) 34.2(6.1)2 42.0(6.8/.3 35.2(8.7)

SBP(mmHg) 116.4(12.8) 118.2(12.5) 120.7(12.8)2.3 133.4(18.3) 136.0(17.7) 135.4(19.1) 124.9(17.4)

DBP(mmHg) 75.8(9.3) 76.7(8.2) 78.9(9.1)2.3 84.5(12.2) 87.3(12.4) 88.5(12.8/ 81.1(11.7)

TG(mmollL) 0.89(0.44) 1.01(0.57)2 1.10(0.60)2 1.42(0.88) 1.66(0.99) 1.71(0.94/ 1.24(0.79)

HDL-C (mmollL) 1.58(0.39) 1.51(0.36/ 1.39(0.36)2.3 1.52(0.40) 1.45(0.38) 1.39(0.35/ 1.48(0.38)

Glucose
(mmollL) 4.8(0.5) 4.9(0.4/ 5.0(0.4 2

,3 5.4(1.0) 5.5(1.3) 5.6(1.4) 5.1(0.9)

1.41(0.68) 1.72(0.75)2 2.13(0.92)2.3 2.51(2.38) 3.15(5.77) 4.12(4.26/.3 2.46(3.09)

hsCRP(mg/L) 1.46(2.39) 2.02(2.19) 3.10(2.73)2.3 2.89(3.82) 3.49(3.92) 6.25(6.60)2.3 3.15(4.24)



10ata are presented as mean (SO). BM!, body mass index; SBP, systolic blood pressure; OBP, diastolic blood pressure; TG,

triacylglycerol; HDL-C, HDL cholesterol; HOMA-IR, homeostasis model for insulin resistance; hsCRP, high-sensitivity C-

reactive protein.

2p < 0.05 versus normal weight within metabolic subgroup

3p < 0.05 versus overweight within metabolic subgroup



= 587), and 37.7% were obese (n = 718). Age and height were statistically similar among

the three adiposity groups (Table 2.5). Not surprisingly, weight, BMI, and %BF were all

higher in the overweight and obese groups compared to normal weight individuals within

each metabolic subgroup. Obese subjects had higher systolic and diastolic blood pressure

compared to normal weight individuals within the metabolically healthy subgroup but no

significantdifferenceswereobservedwiththemetabolicallyabnormalsubgroup. In

terms of serum lipids, TG and HDL cholesterol were elevated in overweight and obese

subjects in the metabolically healthy subgroup and in obese subjects in the metabolically

abnormal subgroup compared to normal weight subjects. Fasting glucose levels and

insulin resistance were higher in overweight and obese individuals compared to normal

weight in the metabolically healthy subgroup but not in the metabolically abnormal

subgroup. In terms of systemic inflammation, hsCRP was elevated in obese compared to

normal weight individuals in both metabolic subgroups.

Discrepancy Analyses in the Prevalence of Metabolically Healthy and

Metabolically Abnormal Phenotypes

In our cohort, a total ofl162 subjects were metabolically healthy and 745 were

metabolically abnormal. When subjects were classified using BMI criteria, 77.6% of

normal weight individuals, 58.8% of overweight individuals and 34.0% of obese

individuals were metabolically healthy (Figure 2.4A). When subjects were classified

using more accurate %BF criteria, 75.7% of normal weight individuals, 62.5% of
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Figure 2.4 Prevalence of metabolically healthy phenotype within eachadiposity

group determined by BMI and %BF criteria. A. Overall (n =1907); B. Women (n =

1464); C. Men (n = 443). NW, normal weight; OW, overweight; OB, obese; BMI,

body mass index; %BF, body fat percentage. *p < 0.05 between BMI and %BF
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overweight individuals, and only 47.7% of obese subjects were metabolicallyhealthy

(Figure 2.4A). We found low agreement in the prevalence of the metabolically healthy

(Kappa =0.373) and abnormal (Kappa =0.408) phenotypes between BM! and %BF

adiposity groupings (p < 0.001). Specifically, there was no statistical difference in the

discrepancy of these two phenotypes in normal weight (1.9%) and overweight (3.7%)

subjects using BM! compared to %BF criteria. There was, however, a significant

discrepancy (13.7%) among obese subjects classified using both methods (p < 0.05).

When subjects were classified as metabolically healthy using the additional

definitions outlined inTable2.4,comparableresultswereobserved forthediscrepancy

analyses (Table 2.6). We found low agreement in the prevalence of metabolically

healthy individuals across adiposity groups using BMI versus %BF classificationsforall

methods used to define the metabolically healthy phenotype. SpecificallY,therewasa

significant difference in the prevalence of metabolically healthy obese subjects but not

normal weight or overweight for all definitions considered. Results were similar when

subjects were stratified according to gender (data not shown).

The Influence of Gender on Discrepancy Analyses

We also sought to explore the influence of gender on the discrepancy between

BM! and %BF classifications. In our cohort, 65.4% of women (n = 958) and 46.0% of

men (n = 204) were metabolically healthy. For women, the prevalence of this phenotype

was similar among normal weight individuals classified using BM! and %BF criteria



Table 2.6 Prevalence of metabolically bealtby individuals among different weight classifications using various criteria

to define the phenotype. I

47.72 44.72 25.92 22.02

IData presented as percentage (%) of metabolically healthy individuals in each adiposity group. BMI, body mass index; NW,

normal weight; OW, overweight; OB, obese; NCEP ATP III MetS, National Cholesterol Education Program Adult Treatment

Panel III definition for metabolic syndrome.

2p < 0.05 between BMI and %BF classifications according to Chi-Square analyses.



(80.7% vs. 80.9%, respectively) as well as overweight subjects (64.7% vs. 68.0%; Figure

2.4B). This was also true for normal weight and overweight men (Figure 2.4C). There

was, however, a significant discrepancy in the prevalence of the metabolicallyhealthy

phenotype among obese women (Figure 2.4B). Although 35.0% of obese women

fulfilled the criteria when they were defined using BMI, 50.5% did when using %BF to

define obesity (p <0.05). A similar trend was evident in men although the difference did

not reach statistical significance (31.2% vs 36.5%).

As well, we chose to repeat the above analyses using waist circumference as a

criterion for obesity as itis more closely related to metabolic risk factors in addition to

being an appropriate method for field and clinical settings. Subjects were categorized

into tertiles based on waist circumference within gender (lowest third, normal weight;

middlethird,overweight;upperthird,obese). The discrepancy between the prevalence

of the metabolically healthy phenotype among obese subjects using waist circumference

compared to %BF was smaller than BMI in women but larger in men (data not shown).

Specifically, 45.4% of obese women and 30.7% of men were metabolically healthy

according to waist circumference measurements.

Recently, a unique subset of obese individuals has been described that appear t0

be protected from the cardiometabolic abnormalities often associated with excessbody

weight (27-28). Although there has been a surge in research investigating this unique



phenotype, the majority of studies have used BMl as an index of obesity. As the utility

ofBMl to accurately estimate true adiposity has come into question (24,140,157), we

sought to investigate the prevalence of this phenotype using more accurate %BFcriteria.

Among obese individuals, we found that nearly one-half were metabolically healthy

using %BF criteria, which is significantly greater than what has previously beenreported

usingBMI. This fmding was evident regardless of gender although the discrepancy

between the two indices of adiposity was smaller in men. Among normal weight and

overweight individuals, the discrepancy was not significant between BMl and %BF

classifications. We also applied additional definitions to characterize the metabolically

healthy phenotype and found similar trends which further supports our findings. To the

best of our knowledge, this is the first study of its kind to compare the prevalenceofthis

group of individuals between BMl and %BF adiposity groups.

We recently found that approximately one third of men and women were

misclassified into the incorrect adiposity group using BM! compared to %BF criteria

(157). The discrepancy was greatest for obese individuals; approximately one quarter of

our cohort was classified as obese according to BMl however 37-38% were in fact

considered obese using %BF criteria. Others have shown similar discrepancies between

BM! adiposity classifications and more accurate methods such as bioelectric impedance

analysis (139) and DXA (140). As BM! cannot distinguish between fat tissue and lean

tissue, its use as an index ofobesity,particuIarly as it relates to obesity-associated

disease, is questionable. Furthermore, BMl criteria are not gender or age specific and it

isweliknownthattherearegenderdifferencesinbodyfat(20,141)andthatbodyfat



increases with age, in spite of weight maintenance (sarcopenicobesity; ref 164). Ina

recent editor's correspondence, Lesser (158) pointed out these inherentflaws in the study

by Wildman et aI and stated that the serious limitations associated with BMI must be

addressed to improve interpretation of their results. Indeed, our data show a large

discrepancy between the prevalence ofcardiometabolic abnormalities among obese

individuals classified by BMI compared to %BF. Perhaps surprisingly, the prevalence of

the metabolically abnormal phenotype was larger among obese individuals classified

using BMI criteria. If%BF provides a more reliable measurement of true obesity, and

cardiometabolic abnormalities such as those measured in our study are associated with an

increase in adiposity, we would expect a higher prevalence of those abnormalities in

obese individuals classified using %BF. The reason for this is unclear and further studies

are required to understand this phenomenon. We also compared the prevalence of

cardiometabolic abnormalities between waist circumference measurements (divided into

thirds, according to gender) and %BF. Although the discrepancy between waist

circumference and %BF was smaller in women compared to BMI vs. %BF, it was larger

in men. This indicates that there are still important differences in the prevalence 0 f

cardiometabolic abnormalities when using more accurate reference methods to define

obesity compared to field methods.

In the current study, we were most interested in deterrnining iftheprevalenceof

metabolically benign obesity was similar using BMI and %BF criteria and how this

compared to what has previously been reported in the literature. When using BMI to

define obesity, we found that approximately one-third of obese individualsintheNL



population were metabolically healthy which is similar to what has been found in

previous studies. For example, among 5440 participants studied in the National Health

and Nutrition Examination Surveys 1999-2004 (a multi-ethnic sample that is

representative of the US population), 31.7% of obese individuals were metabolically

healthy which is comparable to the prevalence observed in our study (27). These

percentagesarealsoinlinewiththosefoundinearlierstudies.Stefanetalfoundthat

25% of their German sample were obese yet metabolically healthy (high insulin

sensitivity and low intima-media thickness of the common carotid artery) (28). Among a

white, Italian sample, 27.5% of obese subjects were metabolically healthy (normal lipid

profile, blood pressure, electrocardiograms as well as low white blood cell counts and

plasma fibrinogen levels) (29) while 20% of participants in the Bruneck Study were

obese yet metabolically healthy (absence of impaired glucose tolerance,dyslipidemia,

hyperuricemia and/or hypertension) (165). Interestingly, when we applied more accurate

%BF criteria to define obesity, we observed a much higher percentage (47.7%) of obese

individuals that were metabolically healthy. As %BF defined by DXA is considered a

superior method to estimate obesity (25, 127), our data demonstrate that an even greater

percentage of obese individuals may in fact have a normal metabolic profile compared to

what has been reported in the literature. Further studies are needed to validate our

findings.

Although the prevalence of body size phenotypes has been investigated in a

number of studies, there is no clear consensus regarding the correctdefmition to classify

an individual as metabolically healthy or abnormal. In the current study, we chose to use



the deflnition recommended by Wildman et al as we feel it gives the most comprehensive

picture of an individual's metabolic status. By using this deflnition, which includes

components of the metabolic syndrome, insulin resistance, as well as systemic

inflammation (measured using circulating hsCRP levels), we have obtained a more

thorough picture of metabolic health and broader, more completedeflnitionsofbodysize

phenotypes. Previous studies have relied solely on either insulinresistancecutpoints

(28,163, 166) or the metabolic syndrome deflnition(167). Interestingly, when we

applied these criteria to our data, as well as the deflnitionrecommended byKarelisetal

(162), similar results were obtained. It appears that there is a signiflcant discrepancy in

the proportion of metabolically healthy obese subjects between BMI and %BF

classiflcationsregardlessofthecriteriausedtodeflnethisphenotype.

Although we provide comprehensive data investigating the influence 0 ftheindex

of obesity used in determining the prevalence of metabolically healthy and abnormal

phenotypes, our study is not without its limitations. We recognize the fact that %BF

measurements determined using DXA are not usually feasible in the clinical setting due

to high cost and availability. Therefore, similar studies should be performed exploring

the difference in the prevalence of the metabolically healthy phenotype among obese

individuaisclassifledusingotherfieldmethods,suchasBIA. Furthermore,although

DXA is considered a more reliable measure of body fat compared to BMI, its use

involves certain assumptions including uniform hydration oflean tissue (147). To

account for this, all subjects fasted for 12 hours prior to having a DXA scan performed to

control for differences in hydration. Aswell,itshouldbenotedthatthe%BFcutpoints



used in this study were developed based on BMI cut points and nottbeirassociationwitb

disease biomarkers and risk of mortality (137). Thediscrepancyintbeprevalenceoftbe

studied phenotypes between BMI and DXA measures of obesity may be reduced ifDXA

cut points were established based on disease risk. Moreover, our study popuIation was

uniquely homogeneous and as such, limits generalization to otberpopuIations. Furtber

studies are tberefore required inotberetbnic groups. While not necessarily a limitation, it

is also important to note tbat we examined risk factors for disease intbe current studyand

not tbe outcomes caused bytbese risk factors (cardiovascuIardisease, T2D,etc). Future

studiesshouId investigate differences intbe prevalence oftbese diseases among obese

individuals classified using BMI versus DXA measurements.

In surnrnary, we compared tbe prevalence ofcardiometabolic abnormalities

(categorizedastwophenotypes:metabolicallyhealtbyandmetabolicallyabnormal)

among normal weight, overweight and obese Newfoundlanders classified using BMI

versus %BF criteria. The level of agreement was poor between tbe prevalence of

metabolically healtby obese subjects classified using BM! compared to %BF determined

usingDXA.Ourfindingsindicatetbatnearlyone-haIfofobesesubjectsare

metabolically healtby when classified using %BF measurements, which is significantly

higher tban what has previously been reported using BM!. This was evident regardless of

gender, altbough tbe discrepancy was smaller in men. There were no significant

differences in tbe prevalence ofcardiometabolic abnormalities among normal weight and

overweight individuals classified using BM! versus %BF. Furtber research is needed to

investigate differences in tbe prevalence of body size phenotypes amongobese



individualsusingotherindicesofobesitysuchasbioelectricimpedanceanalysis, air­

displacement plethysmography, and underwater weighing.
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The global prevalence of obesity has increased substantially in the past three

decades and is now estimated to affect over 400 million (I). Obesity is closely associated

with a number of comorbidities such as TID, hypertension, coronary artery disease, and

many types of cancer (124). Recently, recognition of different subtypes of obesity has

been reported in the literature including MHO (elevated body fat but normal metabolic

profiles) and MONW (26). Although lean, MONW individuals present with clustering of

metabolic and cardiovascular risk factors similar to what is often associatedwithbeing

overweight or obese including elevated fasting glucose, insulinresistance,increasedTG

and decreased HDL cholesterol levels, and systemic inflarnmation (27, 154,168). In

addition, MONW women demonstrate an increased risk for cardiovascular mortality

(169). The prevalence of this phenotype is substantial; it has been estimated that

approximately 25% of normal weight individuals have abnormal metabolic profiles and

are at increased risk of developing obesity-associated diseases (27, 168).

Although obesity is characterized by an excessive amount of body fat, it is

commonly measured using BMl which is unable to differentiate between elevated body

fat content and preserved or increased lean mass (20, 140, 157). This is especially true in

normal weight individuals (BMl :': 24.9 kg'm-2
) (139, 157). Specifically, we recently

demonstrated that a wide range in %BF measured using DXA exists for BMl-defined

normal weight men (5.6 - 31.2%) and women (4.6 - 51.1 %) (157). Similarly, a recent

study involving a large multiethnic sample from the US population found significant

inter-subject variability in %BF for individuals with a BMl of25.0 kgm-2 (20). Taken



together, these data suggest that some individuals with a normal BMI are in fact obese

and as such, may display the MONW phenotype. Indeed, it was recently demonstrated

that individuals with a normal BMI and high body fat content had a higher prevalence of

cardiometabolic dysregulation, metabolic syndrome, and cardiovasculardiseaserisk

factors (169-170). In these studies, however, body fat was estimated using BIA, a less

accurate method of estimating %BF. We have shown that BIA tends to overestimate

%BF in lean adults and underestimate %BF in obese adults compared to DXA, a more

accurate reference method (171). At the present time, there is no data available regarding

the prevalence of cardiometabolic disease in a large cohort of BMI-defined normal

weight individuals with high %BF determined using more reliable DXA measurements.

Therefore, the objectives of the current study were as follows: I) to determine if%BF

measured using DXA is associated with a number of cardiometabolic abnormalities in a

large NL cohort ofBMI-defined normal weight individuals; 2) to determine the

prevalence of MONW individuals (defmed using BMI) according to gender-specific

%BF tertiles; 3) to estimate the risk of cardiometabolic disease associated with higher

%BF if normal weight.

Study Population

A total of977 subjects (192 men, 785 women) from the Canadian province ofNL

were recruited from an ongoing large scale nutrigenomics study (CODING Study) to take

part in the current study (134-136, 157, 159, 168). Inclusion criteria were as follows: I)



subjects witb a normal BMI (18.5 - 24.9 kgm-2
); 2) between tbe ages of20 and 79 years

old; 3) at least third generation Newfoundlander; 4)healtby, witboutany serious

metabolic, cardiovascular or endocrine diseases; and 5) not pregnant at tbe time oftbe

study. The Human Investigation Committee oftbe Faculty of Medicine, Memorial

University ofNewfoundland approved tbe study and all subjects provided written and

informed consent.

Anthropometric and body composition measurements

Subjects were weighed to tbe nearest 0.1 kg in standardized lightclotbes ona

platform manual scale balance as previously described (Healtb 0 Meter Inc., Bridgeview,

IL, USA) (134-136,157,168). Specifically, subjects were instructed to remove all

clothing, including shoes and any jewelry, and change into a provided hospital gown.

Height was measured using a fixed stadiometer to tbe nearest 0.1 cm. BMI was

calculated as a person's weight in kilograms divided by tbeirheight in meterssquared.

Waist circurnference was measured astbe horizontal distance around tbe abdomen at tbe

level oftbe umbilicus while the participant was in a standing position to tbe nearest 0.1

cm using a flexible metric measuring tape. Whole body composition measurements

including fat mass and lean body mass were measured using DXA Lunar Prodigy (GE

Medical Systems, Madison, WI, USA). Measurements were performed on subjects while

lying in a supine position as previously described (134-136, 157,168). Percent body fat

(%BF) was determined usingtbe manufacturer's software (Version 4.0) as a ratio offat



mass over total body mass (including bone mineral densities). All measurements were

performed following a 12 hour fasting period.

Blood samples were collected in the moming following a l2-hour fasting period;

serum was isolated and stored at-80 °C for subsequent analyses. Serum concentrations

of glucose, TG, and HDL cholesterol were performed on an Lx20 analyzer (Beckman

Coulter Inc., CA, USA) using Synchron reagents. Serum insulin was measured on an

Immulite immunoassay analyzer (OPC, CA, USA) and the homeostasis model

assessment was used to measure insulin resistance (HOMA-IR; ref 160). hsCRP was

measured by nephelometry according to the manufacturer's protocol (Beckman Coulter

Inc). Blood pressure was measured using an automatic blood pressure monitor (Omron

Healthcare, Burlington, Ont, Canada). Up to two readings were taken while the subject

was in a seated position and averaged.

Normal weight obesity was defined as those subjects with a normal BMI (18.5 ­

24.9 kg m·2) and high %BF content (highest sex-specific tertile of%BF; ~ 20.8% for

men, ~35.0 % for women). In addition, six cardiometabolic abnormalities were

considered (elevated TG and glucose levels, decreased HDL cholesterol levels, insulin

resistance, hypertension, and elevated hsCRP). Because there are no standard criteria to

categorize metabolically abnormal individuals, we performed our analyses using the



definition recommended by Wildman et aI (ref27; Table 2.4) as it gives a more

comprehensive representation of an individual's metabolic health byincorporating

components of the metabolic syndrome, insulin resistance, as well as systemic

inflammation. Subjects were classified as metabolically abnormal if they fulfilled ~ 2

cardiometabolicabnormalities listed in Table 2.4 and metabolically healthy if they did

notfulfilltheabovecriteria(Oorlcardiometabolicabnormality).

Statistical Analyses

Anthropometric measurements and cardiometabolic variables are presented as

mean (SO). Normal weight subjects (BMI 18.5 - 24.9 kgm-2
) were divided into sex-

specific %BF tertiles as follows: low (~ 15.2% men, ~ 29.7% women), medium (15.3 -

20.7%% men, 29.8 - 34.9%% women) and high (~20.8% men, ~ 35.0% women) %BF

groups. Subjects' physical characteristics and metabolic profiles were calculated

according to the %BF tertiles. Differences in these characteristics among the three

groups of subjects (low, medium, and high %BF) were analyzed using ANCOVA

analyseswithageandgenderincludedasmodelcovariates. To investigate the

association between %BF as a continuous variable and cardiometabolicabnormalities

among normal weight subjects, Partial correlation analyses were performed, controlling

forage and gender. We also wanted to assess the effects of central adiposity on

cardiovascular disease risk factors, therefore Partial correlation analyses wererepeated

using waist circurnference, controlling again for age and gender. In addition, the

prevalence of the metabolically abnormal phenotype was calculated as the mean



percentage within each %BF tertile. As waist circumference is a more appropriate

method for field and clinical settings, we also sought to investigatetheprevalenceofthe

metabolically abnormal phenotype among normal weight subjects according to waist

circumference tertiles (Low:s 82.0 cm men, :s 76.5 cm women; Medium 82.1 - 88.0 cm

men, 76.6 - 83.2 cm women; High ~ 88.1 cm men, ~ 83.3 cm women). The Cochran-

Armitage test for trend was used to explore the overall association between %BF and

waist circumference with the prevalence of the metabolically abnormal phenotype. Chi-

square analyses were then performed to assess differences between specifictertiles(ie.

low vs medium, low vs high, medium vs high). The adjusted odds ratio of being

metabolically abnormal according to %BF tertiles was calculated using logistic

regression with age, gender and waist circumference included as model covariates(with

the lowesttertile as the reference) to assess the risk associated with higher%BFgivena

normal BMI. PASW Statistics version 18.0 (SPSS Inc., Chicago, IL) was used for all

analyses. Statisticalanalysesweretwo-sidedandapvalue<0.05wasconsideredtobe

statistically significant.

Physical characteristics and cardiometabolicbiomarkers in subjects

Physical and biochemical characteristics of all subjects according to gender-

specific %BF tertiles are shown in Table 2.7. As those in the low %BF group were



Table 2.7 Physical and biochemical characteristics of subjects according to %BF

tertiles(n=977).1

Medium High

(n=324) (n=324) (n=329)

Age(y) 34.5(13.1) 40.2 (13.W 44.2(13.6)"·3

Height (cm) 167.0(8.2) 165.3 (8.2i 165.0 (7.8i

Weight (kg) 60.0(7.7) 62.0(7.6i 64.1(7.2)2.3

BMI(kgm'2) 21.5(1.5) 22.6(1.4i 23.5 (1.2i·3

Waist circumference (cm) 77.0(6.3) 80.6 (6.8i 85.2(8.0)2.3

BodyFat(%) 22.8(6.8) 29.6 (6.li 35.8 (6.oi,3

SBP(mmHg) 116.7(13.7) 119.9(16.0) 121.5 (15.4i

DBP(mmHg) 75.5(10.3) 77.6(10.2) 79.3 (lo.li

Total cholesterol (mmollL) 4.61(0.97) 5.05 (0.90i 5.23 (l.12i

TG(mmollL) 0.85(0.40) 0.97 (0.55i 1.06(0.58)2,3

HDL-C (mmollL) 1.58(0.42) 1.64(0.50) 1.56(0.38)

LDL-C (mmollL) 2.67(0.82) 2.97(0.77)2 3.18 (0.95i,3

Glucose (mmollL) 4.7(0.5) 4.8(0.5) 5.0(0.6)2,3

Insulin (pmollL) 43.7(29.5) 45.0(22.1) 54.9 (35.5i,3

1.34(0.91) 1.41(0.73) 1.78(1.40)2,3

hsCRP(mg/L) 1.70(3.30) 2.14 (4.22i 2.42 (3.00i

lData are presented as mean (SD). Differences in variables (aside from age) among %BF

tertiles determined using ANCOVA analyses with age and gender included as model

covariates. Low:'O 15.2% for men, 99.7 for women; Medium 15.3 - 20.7% for men, 29.8

- 34.9 for women; High:::: 20.8% for men, ::::35.0 for women. SBP, systolic blood



pressure; DBP, diastolic blood pressure; TG, triacylglycerol; HDL-C, HDL cholesterol;

HOMA-IR, homeostasis model for insulin resistance; hsCRP, high-sensitivity C-reactive

protein.

2p <0.05versuslow

3p < 0.05 versus medium

79



significantly younger, analyses of all variables were adjusted for age as well as gender.

As expected, weight, waist circumference, BMI, and %BF were significantly higher in

the medium and high %BF groups compared to the low group. In terms of

cardiometabolic biomarkers, both medium and high %BF subjects had abnormal

metabolic profiles compared to low %BF subjects. Specifically, blood pressure (systolic

and diastolic) was elevated in the high %BF group compared to the low %BF group

although no significant differences were detected between medium and low %BF

subjects. Serum TG was higher in both the medium and high %BF groups, however no

significant differences in HDL cholesterol levels were evident among the three groups.

In addition, both fasting glucose and insulin resistance (HOMA-IR) were elevated in high

%BF subjects compared to both medium and low %BF subjects. In terms of systemic

inflammation, circulating hsCRP was significantly higher in medium %BF subjects as

well as high %BF subjects compared to the low group.

Associations between cardiometabolic abnormalities and %BF as a

We also sought to assess the association between %BF as a continuous variable

and markers ofcardiometabolic disease (Table 2.8). After controlling for gender and age,

%BF was positively correlated with both systolic and diastolic blood pressure, TG levels,

insulin resistance and circulating hsCRP. Moreover, %BF was negatively associated

with HDL cholesterol levels. Interestingly, %BF was not associated with fasting glucose

levels. To assess the role of central adiposity on cardiometabolic biomarkers in normal



Table 2.8 Partial correlations between waist circumference and%BF with

cardiometabolic abnormalities among normal weight subjects controUing for age

and gender (n =977)!

Waist Circumference %BF

pvalue pvalue

SBP(mmHg)

DBP(mmHg) 0.001

TO (mmollL)

HDL-C (mmollL)

Olucose(mmollL)

HOMA-IR 0.158 <0.001

hsCRP(mg/L) 0.098 0.005

ISBP, systolic blood pressure; DBP, diastolic blood pressure; TO, triacylglycerol; HDL-

C, HDL cholesterol; HOMA-IR, homeostasis model for insulin resistance; hsCRP, high-

sensitivity C-reactive protein.



weight subjects, we investigated associations between waist circwnference and the

variables measured. Similar to %BF, waist circwnference was positively associated with

TG, insulin resistance and hsCRP, and negatively correlated with HDL cholesterol. No

significant associations were evident with systolic or diastolic blood pressure as well as

glucose concentrations.

Prevalence of metabolically abnormal phenotype according to waist

circumferenceand%BFtertiles

Figure 2.5A demonstrates theprevalence(%) of the metabolically abnorrnal

phenotype according to gender-specific %BFtertiles. According to the Cochran-

Arrnitagetest, the prevalence ofcardiometabolic diseaseincreasedas%BF increased (p <

0.001). Specifically, the prevalence was lowest in the low %BF group at 7.4%. Both the

medium and high %BF groups had a significantly greater proportion of subjects

displayingthemetabolicailyabnorrnaiphenotype(12.0%andI9.5%respectively,p<

0.05). Again,we wanted to assess the influence of central adiposity on the prevalence 0 f

this phenotype therefore data were reanalyzed according to gender-specificwaist

circwnference tertiles (Figure 2.5A). Similar trends were evident using this index of

adiposity (Cochran-Arrntiage test,p <0.001). Although no significant difference was

found between the low and medium waist circwnference tertiles (8.2% versus 10.7%,

respectively), the high waistcircwnference group had a significantly greater proportion

of metabolically abnormal subjects compared to the low group (20.5%, p < 0.05). In

addition, we wanted to investigate the influence of gender on presentation of
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Figure 2.5. Prevalence of metabolically abnormal phenotype among normal weight

subjects (n =977) A. Prevalence according to waist circumference and %BF tertiles.

* p < 0.05 compared to low and medium waist circumference tertiles; ** p < 0.05

compared to low %BF tertile; ***p < 0.05 compared to low and medium %BF

tertiles. B. Prevalence according to gender (n =192 men, n =785 women). * p < 0.05

compared to low %BF tertile for men; ** p < 0.05 compared to low %BF tertile for
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cardiometabolic disease (Figure 2.5B). Although similar trends were seen when subjects

were dichotomized according to sex, significance was only reached in the high%BF

group compared to the low %BF group for both sexes. In men, the prevalence of being

metabolically abnormal was 6.2% among low %BF subjects compared to 26.6% in high

%BF subjects (p < 0.05). Among women, the prevalence in the low group was 7.7%

compared to 17.7% in the high %BF group (p > 0.05). There were no significant

differences in the prevalence of cardiometabolic abnormalities between men and women

foranyofthe%BFgroups.

Lastly, we explored the risk associated with being MONW compared to those

normal weight subjects with low %BF. Figure 2.6 shows the adjusted odds ratio

associated with the metabolically abnormal phenotype given medium or high %BF

compared to low %BF subjects. After adjusting for age and gender, %BF was

significantly associated with greater risk of having an abnormal metabolic profile. In

particular, the odds ratio for the medium %BF group was 1.61 (95% CI 0.94 - 2.77),

while the odds nearly tripled for high %BF subjects (OR 2.73,95% CI 1.63 - 4.86). To

assess whether the risk associated with high %BF was partly attributed to these subjects

having a higher waist circumference, we reanalyzed our data after further adjustment for

waist circumference. The odds ratio for the medium %BF group was 1.37 (95% CI 0.79

- 2.38), while the odds of being metabolically abnormal among high %BF subjects was

almost doubled compared to the low %BF group (OR 1.87, 95% CI 1.07 - 3.26).
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Figure 2.6 Risk of metabolically abnormal phenotype according to %BF tertiles

(lowest tertile as reference) in subjects with a normal BMI (n = 977). Adjusted odds

ratios (95% en were calculated using logistic regression with age, gender, and waist

86



Recent evidence suggests that some individuals cannot be classified as obese

based solely on their BM!. Indeed, a substantial proportion ofBMI-defmed normal

weight subjects display clustering of cardiometabolic abnormalities that puts them at an

increased risk for future development of cardiovascular and other obesity-related disease.

Although these people tend to have higher %BF, work to date has measured adiposity

using less accurate methods. In the present study, we investigated the prevalence of

MONW individuals according to mCA-defined %BF tertiles, a more accurate index of

obesity. In agreement with previous studies, we found that the prevalence of

cardiometabolic abnormalities was highest among high %BF individuals compared to

those with low %BF. This was also true when subjects were stratified according to waist

circumference tertiles and gender. Furthermore, the risk associated with the

metabolically abnormal phenotype was significantly higher among subjects with elevated

It has been well documented that an excessive amount of body fat is associated

with numerous comorbidities including hypertension, insulinresistance,dyslipidemiaand

systemic inflarnmation however this has typically been studied in individuals withaBM!

>25.0kgm·2 (l72-173). As we, and others, have demonstrated that a wide range in

%BF exists for BMI-defined normal weight individuals (139, 157), it is reasonable to

expect that these same associations seen in overweight and obese individuals are also true

in normal weight subjects with high %BF. Although this has been shown in other

Caucasian populations, these studies have subdivided subjectsaccordingto BM!



increments (174) or relied on less accurate measures of adiposity, namely BIA (169-170,

175). Furthermore, although De Lorenzo et al established similar relationships between

DXA-determined %BF in normal weight Italian women, their sample size was quite

small (160). To the best of our knowledge, we are the first to show that cardiovascular

risk factors including hypertension, serurn lipids, insulin resistance and bsCRP are

associated with %BF measured using DXA in a large population ofBMI-defined normal

weight individuals. Furthermore, individuals in the high %BF group had an almost 3­

fold increased risk of being metabolically abnormal. Consequentiy, our results indicate

that a normal BMI does not necessarily imply protection from cardiometabolic

dysregulation and obesity-associated disease. Wbenconsideredalongtheentirespectrurn

ofBMI and the already well-characterized concept of metabolically healthybutobese

subjects, our data provide furtberevidence of the need formorecomprehensive

awareness of obesity subtypes among clinicians to increasedetectionoftheseindividuals.

Tofurtberassesstheinfluenceofcentraladiposity,weanalyzedourdata

according to gender-specific waist circumference tertiles. Similar to our results using

%BF, the prevalence of the metabolically abnormal phenotype was higher among those

with an increased waist circumference compared to those in the lowest tertile. Thishas

significant implications as DXA measurements are not readily available in clinical

settings whereas waist circumference can be easily measured by physicians. Itis

important to note however, that unlike %BF,therewas no significant difference between

the medium and low waist circumference groups indicating that waist circumference

measurements are not as sensitive at predicting cardiometabolic dysregulation among



those in the lower ranges compared to more accurate reference methods such as DXA.

Moreover, the risk associated with elevated %BFremained significantafterfurther

adjustment for waist circumference suggesting that central adiposity does not fully

account for the increased riskofcardiometabolic disease. This is an important finding as

it demonstrates the need for development of more accurate algorithms based on %BF

measurements to screen for obesity subtypes infield settings and clinical practice.

As there are known differences in the prevalence ofcardiometabolic

abnormalities between men and women, we examined the influence of gender among our

cohort of normal weight subjects. Contrary to previous findings, we observed no

significant differences in the prevalence of the metabolically abnormal phenotype

between men and women. Earlier studies have demonstrated substantially lower

proportions of metabolic syndrome in men with high %BF compared to women (169,

174). The reason for the discrepancy between the current study and others is unclear

however it may be due to the fact that the previous studies both used data from the Third

National Health and Nutrition Examination Survery, which includes a number of

different ethnicities. Furthermore, each of these studies used NCEP ATP III criteria for

metabolic syndrome to characterize the metabolically abnormal phenotype. Our use of

the more comprehensive definition by Wildman et al (27) may also contribute to the

Our study is not without limitations. Although %BF measurements determined

using DXA are considered one of the more accurate methods to measure adiposity,

certain assumptions are made including uniform hydration oflean tissue (147). In an



attempt to limit the impact of this, all subjects fasted for 12 hours prior to DXA

measurements. Furthermore, we used arbitrary cut-off points based on %BF tertiles to

defme our low, medium and high %BF groups. At the current time, the WHO has not

defined a normal range for %BF therefore we believe our use oftertiles is the most valid

method. When subjects were divided into %BF groupings according to criteria

recommended by Bray (Table 2.1; ref 137) that is based on BMI cut points, similar trends

were found (data not shown). Other limitations include the low number of male

participants and our uniquely homogeneous study cohort. These two considerations limit

application to other populations and therefore further studies arenecessary.

Insurnmary,weexaminedtheassociationbetweenelevated%BFand

cardiometabolic abnormalities among 977 BMI-defmed normal weight subjects (192

men, 785 women) from the Canadian province ofNL. We found a greater prevalence of

cardiometabolic disease among individuals in the highest tertile of %BF compared to

those with low %BF, regardless of gender. Similar trends were evident when subjects

were classified according to waist circumferences tertiles. The odds of being

metabolically abnormal were nearly tripled for the high %BF group; this held true after

furtheradjustrnent for waist circumference. Screeningforcardiometabolicriskfactors

among normal weight individuals will become an important contribution to the

preventionofcardiovasculardiseaseandotherobesity-relateddisorders.

-
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Visfatinwas fJrstreported as a novel adipokinepredorninantly secreted from

visceral adipose tissue however evidence now supports a pro-inflammatory role.

SpecifJcally, visfatin is expressed by macrophages infJltrating adipose tissue and is

produced in response to inflammatory signals (176-177). Although it was initially

suggested that visfatin had insulin-mimetic properties that increased insu1insensitivity

(81),this study was later retracted (82) as a subsequent report could not confJrmthe

insulin-mimetic action of this adipocytokine (83). Despite this, it has been demonstrated

that circulating visfatin is positively correlated with TID (84) and 0 besity(86, 178).

Furthermore, we recently demonstrated that visfatin is positively associated with serum

TGs and down-regulated by a short-term positive energy balance (179).

Visfatin is a 473 amino acid protein with a molecular mass of 52kD that is

encoded by the gene NAMPT (Entrez ID: 10135), previously known as pre-B cell colony­

enhancing factor gene (80). NAMPT is mapped to 7q22.3 and includes II exons

encompassing 34.7 kb (180). This region of the genome has shown linkage to

phenotypes related to the metabolic syndrome including BMI, HDL cholesterol and TG

levels (181-183). In addition, recent studies have shown that SNPs within the promoter

region of the visfatin gene are associated with increased risk of TID (184) anditsrelated

parameters (185-186), total apolipoprotein B and the apolipoprotein B component of

LDL cholesterol (185), higher HOL cholesterol (187-188), total cholesterol (185),

systemic inflammation (184) and reduced risk of cardiovascular disease (189).

Moreover, a very rare, noncoding SNP has been associated with severe obesityinboth



adults and children (190). Contrary to these findings, others have found no association

between genetic variation in the visfatin gene and TID using case-control analyses(186,

188, 191),measuresofobesity(l84, 186-188, 192) or serum lipids (192). Sample sizes

were small in the majority of these studies and therefore, were likely underpowered to

detect a true association. Furthermore, the study by Korner et aI was not corrected for

multiple testing, and consequently their results should be interpreted with caution. As

such, the influence of genetic variation in NAMPTon the aforementioned variables

remains unclear. In the current study, we sought to clarify the influence of genetic

variationinthevisfatingeneonobesity,parametersofglucoseandlipidmetabolism,as

well as systemic inflammation. We assessed the effect of 10 SNPs in this gene on

measurements of body composition, insulin resistance, serum lipids, and hsCRP in a

large,healthyNLpopulation.

Research Design and Methods

Subjects

Subjects (n = 1838; 413 men, 1425 women) were recruited from an ongoing,

large-scalenutrigenomics study (CODING Study; refs 134, 157,159). All participants

were from the genetically homogenous population ofNL, Canada. Inclusion criteria

were as follows: I) at least third generation Newfoundlander; 2) healthy, without any

serious metabolic, cardiovascular or endocrine diseases; and 3) not pregnant at the tirne

of the study. The Human Investigation Committee of the Faculty of Medicine, Memorial



University ofNewfoundland approved the study and all subjects provided written and

informed consent.

Measurements of body composition

All measurements were performed following a 12 hour fasting period. Subjects

were weighed to the nearest D.l kg in standardized light clothes and without shoes ona

platform manual scale balance as previously described by us (Health 0 Meter Inc.,

Bridgeview, IL; refs 134, 157, 159). Height was measured using a fixed stadiometer to

the nearest D.l cm. BMI was calculated as a person's weight in kilograms divided by

their height in meters squared. Waist and hip circumference were measured while the

participant was in a standing position to the nearest D.I cm using aflexibIe metric

measuring tape. Waist circumference was measured as the horizontal distance around the

abdomen at the level of the umbilicus; hip circumference was measured as the largest

circumference between the waist and thighs and waist-to-hip ratio was calculated. In

addition to anthropometric measurements, whole body composition measurements

including %BF and percentage trunk fat (%TF) were measured using DXA Lunar

Prodigy (GE Medical Systems, Madison, WI, USA). Measurements were performed on

subjects following the removal of all metal accessories, while lying ina supineposition

as previously described (134, 157, 159).



Blood samples were taken from all subjects in the morning following a 12-hour

fasting period. Serum was isolated and stored at-80 °C for subsequent analyses. Insulin

levels were measured on an Immulite immunoassay analyzer (DPC, CA, USA). HOMA­

IR was used as a measure of insulin resistance (HOMA-IR = insulin (IlU/mI) x glucose

(mmol/L)/22.5» and ~-cell function (HOMA~ = 20 ~ insulin (IlU/mI) I (glucose-3.5»

(160). Serum concentrations of glucose, TG, total cholesterol, and HDL cholesterol were

measured using Synchron reagents and performed on an Lx20 analyzer (Beckman

Coulter Inc., CA, USA). LDL cholesterol was calculated using the following formula:

(Chol) - (HDL) - (TG/2.2) which is reliable in the absence of severe hyperlipidemia.

hsCRP was measured by nephelometry according to the manufacturer's protocol

(Beckman Coulter Inc).

Genomic DNA Isolation, Genotyping and Selection of SNPs

Genomic DNA was isolated from approximately 5m1 of whole blood using the

Wizard Genomic DNA Purification kit (promega, WI, USA) according to the

manufacturer'sprotocolaspreviouslydescribedbyus(134,159). To assess the

reproducibilityofgenotyping,5%ofsampleswererandomlyselectedandre-genotyped;

all genotypes matched their initial called genotype_ The ten SNPs investigated in the

visfatin gene were rs7789066 (A>G 5' flanking region), rs3801266 (A>G intron),

rs6963243 (G>C intron), rs2058539 (A>C intron), rs6947766 (C>T intron), rs4730153

(G>A intron), rsl0808l50 (G>A intron), rs2098291 (C>T intron), rsl0953502 (T>C



intron), and rsl095350l (A>G 3' UTR). Tagging SNPs were selected using a pairwise r2

approach with an? ~ 0.9 and minor allele frequency (MAP) ~ 0.05 (SNPbrowser

Version 3.5; based on HapMap data for CEU population). A total of seven tagging SNPs

weregenotyped(rs380l266,rs6963243,rs2058539,rs6947766,rslO808l50,rs2098291,

andrsl0953502)aswellastwoadditionalSNPstoincludetheflankingregions

(rs7789066andrsI0953501). Inaddition,rs4730l53 was chosen to confirm fmdings

from previous studies (186-187, 190).

Statistical Analyses

AllstatisticalanalyseswereperformedusingthestatisticalsoftwareRorSPSS

version 16.0 (SPSS Inc., Chicago, IL, USA). Hardy-Weinberg equilibrium was tested

usingJf analysis with one degree of freedom. Multiple regression analyses using an

additive model were used to assess the association between NAMPT variants and body

composition, markers of insulin resistance, serum lipids, and hsCRP with sex and age

included as covariates. Hypotheses regarding the effect of NAMPTvariants on

parameters measured were two-sided and a p-value of 0.05 was taken as the threshold of

statistical significance.

Physical and biochemical characteristics of all subjects are shown in Table 3.1. A

description of the ten SNPsgenotyped, including location, type of variant,andminor



Table 3.1. Physical and biochemical characteristics of subjectS.1

Age (yrs) 44.5± 11.0 43.7± 11.8

BMI(kg/m2
) 27.6±4.5 26.6±5.2

Waist Circumference (em) 90.9± 14.3 92.4±14.1

Waist-to-hipRatio 0.89 ± 0.07

Bodyfat(%) 37.8±7.4

Trunk fat (%) 39.0±8.7

Glucose (mmollL) 5.1 ±0.9

Insulin (pmollL) 68.4±67.8

HOMA~ 135.9±251.4

Cholesterol (mmollL)

HDL cholesterol (mmollL) 1.56±0.38 1.49±0.38

LDL cholesterol (mmollL) 3.12±0.88

Triacylglycerol(mmollL) 1.15±0.71

hsCRP(mg/L) 3.43±4.59

IValues are expressed as mean ± standard deviation. BMI, body mass index; HOMA-IR,

homeostasis model assessment for insulin resistance; HOMA~ homeostasis model

assessment for ~ cell function; HDL, high-density lipoprotein cholesterol; LDL, low-

densitylipoprotein;hsCRP,high-sensitivityC-reactiveprotein.



Table 3.2. Summary of single nucleotide polymorpbisms, aDele frequencies, and

Hardy-Weinberg equilibrium. I

RSNumber HWE(p-value)

AlG 5'flanking

+1079 rs38012662 AlG

rs69632432 0.890

rs20585392 AlC 0.798

rs69477662 crr

+21179 G/A Intron6 0.43 0.703

rsl0808l502 G/A

rs209829l 2 crr

+32898 rsl09535022 TIC IntronlO

I Hardy-Weinberg was estimated using X analysis with one degree of freedom. MAF,

minor allele frequency; HWE, Hardy-Weinberg equilibrium.

2Tagging SNPs (SNPbrowser Version 3.5, based on HapMap CEU population).



allele frequencies (MAF), is shown in Table 3.2. All SNPs were fairly common variants

(MAF 0.18 - 0.43) aside from rs7789066 (MAF 0.07) which is located in the promoter

region ofNAMPT and therefore is likely highly conserved. Genotype distributions were

in Hardy-Weinberg equilibrium at all 10 loci (Table 3.2). Furthermore, linkage

disequilibrium was estimated among the variants and is shown in Table 3.3.

Table 3.4 shows the genotype effect of the 10 SNPs investigated in this study on

measurements of body composition (BM!, waist circumference, waist-to-hip ratio, %BF,

and %TF), markers of insulin resistance (fasting glucose, insulin, HOMA-IR, and

HOMAP), serum lipids (total cholesterol, HDL cholesterol, LDL cholesterol, and TG), as

well as systemic inflammation (measured as circulating hsCRP). Multiple regression

analyses were performed to test for association between the 10 SNPs in NAMPT and the

above parameters with gender and age included as model covariates. Underanadditive

model, we did not find any significant associations between variation in NAMPT and any

variables investigated. As can be seen, thep values are from significant thresholds,

despite not correcting for multiple testing. This was also true when both dominant and

recessive models were applied (data not shown).

Power calculations were carried out fora quantitative trait genetic association

study. Figure 3.1 illustrates the power profiles as a function of varying coefficients of

deterrnination fora range of heritability estimates (h2 =0.05-0.15); type I error was

fixed to 10-6 for these calculations. As demonstrated by Figure 3.I,wehad sufficient

power(p~0.80)atIf>0.4todetectapositiveassociation,givenoursamplesize.
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Table 3.4 Genotype effect often SNPs witbin NAMPTon body composition, markers of insulin resistance, serum lipids,

and systemic innammation. l
,2

r.7789066 r.3801266 r.6963243 r.2058539 rs6947766 r.4730153

pvaluesJ

BMI(kg/m1
) 1.00 1.00 0.84 1.00 0.96 1.00 0.99 1.00 1.00

Waislcircumference(cm) 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00
Waisl-to-hipratio 1.00 1.00 0.99 1.00 1.00 0.95 1.00 1.00 1.00
Bodyfat(%) 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00
Trunk fal(%) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Glucose (mmoIlL) 1.00 0.97 0.95 0.99 1.00 1.00 1.00 1.00 1.00
Insulin (pmol/L) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

HOMA-IR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HOMA~ 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cboleslerol(mmol/L) 1.00 1.00 1.00 0.88 1.00 1.00 0.98 1.00 0.99
HDL-c (mmol/L) 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
LDL-c (mmollL) 1.00 0.98 1.00 0.63 1.00 0.71 0.77 1.00 0.81
Triacylglycerol(mmol/L) 0.95 0.99 1.00 1.00 0.95 1.00 1.00 1.00 0.99
hsCRP(mg/L) 0.81 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00

IBMI, body mass index; HOMA-IR, homeostasis model assessment for insulin resistance; HOMA~ homeostasis model

assessment for ~ cell function; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein; hsCRP, high-

sensitivity C-reactive protein.
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range of heritability estimates.



The physiological function of visfatin seems to be diverse. Initially, attention was

focused on its relationship with TID however recent studies have demonstrated that

visfatinmayalsobeinvolvedintheetiologyofobesity(86,186),dyslipidemia(193),

systemic inflammation (194) and increased cardiovascular disease risk (194) although

these associations remain controversial. Furthermore, a number of genetic association

studies have been performed investigating the effect of variants in NAMPT on these

parameters with contradictory results (184-188). The main fmdings from our work do

not support a significant role for genetic variation in the visfatin gene 0 ndifferencesin

body composition, markers of insulin resistance, serum lipids, and systemic inflammation

in the NL population.

The current status of genetic association studies regardingvisfatin isquestionable

at best. Although Zhang et aI report a significant association with NAMPT variants

between TID cases and healthy controls, after adjustment for the number of SNPs

investigated by permutation testing, the association no longer remainedsignificant(184).

A number of other studies have also found no significant differences inallele,genotype,

or haplotype frequencies between TID patients and healthy controls (186, 188, 191).

Interestingly, the study by Bottcher etal did observe a marginally significant association

between variation in NAMPT and fasting plasma insulin levels as well as 2-h plasma

glucose in 626 Caucasian subjects without TID in quantitative trait analyses (186). This

was in contrast to the study by Zhanget aI who did not fmd any association with fasting

glucose or insulin levels in 630 healthy individuals (184). In our much larger cohort, we



did not observe any significant associations with any variant in NAMPT and parameters

of glucose metabolism, including fasting glucose, insulin, HOMA-IR and HOMA~

supporting the notion that genetic variation in the visfatin gene has little, if any, affect on

modulating insulin sensitivity.

We also sought to investigate the influence of variants within NAMPTon

additional metabolic traits, namely obesity and serum lipids. A rare SNP (rsI047818;

MAF < 0.01) was recently identified that conferred a protective effect against obesity in

both children and adults (190). Interestingly, this SNP was not associated with BMI or

waist-to-hip ratio in 5212 healthy controls from this same study. In our cohort, we also

failed to identify any significant associations betweenBMI nor waist-to-hipratioand

variation in NAMPT. Furthermore, we also examined the influence ofNAMPTvariants

on more accurate markers of obesity, specifically %BF and %TF measured using DXA,

and failed to detect any significant associations. Inaddition,wedidnotfmdany

significant relationship with any parameter of lipid metabolism. Taken together, our

results suggest that genetic variation in the visfatin gene does notinfluencemetabolic

health intheNL population.

Recent studies have indicated that visfatin may also be involved in low grade

inflarnmation,asevidencedbyassociationswithcirculatingmarkersofinflarnmation,

inc1uding monocyte chemoattractantprotein I and interleukin-6 (194). Recently,Zhang

et al found that a SNP in the promoter region of the visfatin gene (-948G>T) was

significantly associated with higher plasma levels of fibrinogen and C-reactive protein in

a group of630 non-diabetic individuals (184). In addition, carriers of the minor allele of



-1535C>T had lower hsCRP and interleukin-6levels in a group of patients presenting

with either stable or unstable angina pectoris (195). Contrary to these findings, we found

no association between the 10 SNPs genotyped in our cohort and serum hsCRP levels.

Interestingly, Wangetal. found no association between-1535C>T and circulating levels

ofhsCRP, IL-6, and tumor necrosis factor a in patients with acute myocardial infarction

(195). At present, it appears that the role of genetic variation within the visfatin gene on

regulating circulating factors related to systernic inflarnmation is unclear. Further work is

required to address this issue.

In summary, no significant association was observed between 10 SNPs in NAMPT

and pararneters of body composition, markers of insulin resistance, serum Iipids,and

systernic inflarnmation, after accounting for gender and age. Consequently, the results of

this study do not support a significant role for genetic variations in the visfatin gene with

the above mentioned variables in the NL population.
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RBP4 is a novel adipokine that contributes to systemic insulin resistance in mice

(90). Specifically, serum RBP4 levels are elevated in adipocyte-specific glucose

transporter 4 knockout mice and are nonnalized by an insulin sensitizing drug (90). In

humans, the role ofRBP4 as a mediator of insulin resistance is less clear. Although

initial studies demonstrated strong associations between serum RBP4 and insulin resistant

states such as impaired glucose intolerance,T2D, and obesity(90-9l),othershave failed

to confinn these findings (93, 196-197).

RBP4 maps to chromosome IOq23-q24, a region that has been linked to elevated

fasting blood glucose in European Caucasians (198) as well as an increased risk ofT2D

in Mexican Americans (199). Recent studies have shown that noncoding SNPs in RBP4

may increase diabetes susceptibility in Caucasians (200-201),Mongolians(202), and

Chinese (203-204), however this finding could not be replicated in an African American

population (200). When insulin resistance has been analyzed as a quantitative trait in

healthy subjects, results have been more conflicting. Although significant associations

have been reported between variants in RBP4 and insulin levels (201) as well as insulin

sensitivity (200), others have found no association with insulin resistance (203). Sample

sizes were quite small in these studies and were therefore likelyunder-powered to detect

a true association. Additionally, Kovacs et al failed to correct for multiple testing,

therefore their results should be interpreted with caution (201). At the current time,



critical data is lacking regarding the influence of genetic variants inRBP4 on insulin

resistance in a large, healthy population.

Aside from its possible involvement in the development of insulin resistance,

growing evidence suggests that RBP4 may also playa role in lipid metabolism.

Significant associations have been reported between RBP4 and serum lipids including

TG levels, HDL cholesterol and LOL cholesterol (91,197,205). In a previous study in

our lab, serum RBP4 was positively correlated with LOL cholesterol levels in a group of

young men (196). Wuetal.recentlyreportedasignificantassociationbetweena

noncoding SNP in the 5' flanking region of RBP4 and lower risk ofhypertriglyceridemia

however, no significant association was evident with any other parameter of lipid

metabolism (206). In the current study, we sought to clarify the relationship between

genetic variation in RBP4 with insulin resistance and serum lipids. We assessed the

effect of five SNPs within the RBP4 gene on clinical parameters related to glucose and

lipid metabolism in theNL population.

Subjects

A total of 1836 subjects (414 men, 1422 women) were recruited from an ongoing

nutrigenomics study (COOING Study; 134, 157) to participate in the current study. All

subjects were from the genetically homogeneous population ofNL, Canada. Inclusion



criteria were as follows: 1. at least third generation Newfoundlander; 2. healthy, without

anyseriousmetabolic,cardiovascularorendocrinedisease;3.notpregnant at the time of

study. All subjects provided written and informed consent, and the Human Investigation

Committee of the Faculty of Medicine, Memorial University ofNewfoundland approved

the study.

Blood samples were taken from all subjects in the morning following a l2-hour

fasting period. Serum was isolated and stored at -80°C for subsequent analyses. Serum

concentrations of glucose, TG, total cholesterol, and HDL cholesterol were measured

using Synchron reagents and performed on an Lx20 analyzer (Beckman Coulter Inc., CA,

USA). LDL cholesterol was calculated using the following formula: (Chol) - (HDL) ­

(TG/2.2) which is reliable in the absence of severe hyperlipidemia. Insulin levels were

measured on an Immulite immunoassay analyzer (DPC, CA, USA). HOMA-IR was used

as a measure of insulin resistance (HOMA-IR=insulin (~U/ml) x glucose

(mmol/L)/22.5» and ~-cell function (HOMA~=20 ~ insulin (~U/ml) / (glucose-3.5»

(160).



Genomic DNA Isolation, Genotyping and Selection ofSNPs

Genomic DNA was isolated from approximately 5m1 of whole blood using the

Wizard Genomic DNA Purification kit (Promega, WI, USA) according to the

manufacturer's protocol. Genotyping was performed using Taqman validated or

functionally tested SNP Genotyping Assays (Applied Biosystems, CA, USA) according

to the manufacturer's protocol on an ABI Prism 7000 Sequence Detection System

(Applied Biosystems). To assess the reproducibility of genotyping, 5% of samples were

randomly selected and re-genotyped; all genotypes matched their initial called genotype.

The five SNPs investigated in RBP4 were rs3758539 (G/A: 5' flanking region),

rs6l461737 (AlG: intron), rsl0882280 (C/A: intron),rsII187545 (AIG:intron),and

rsl2265684 (C/G: intron). Tagging SNPs were selected using a pairwise r2 approach

with an?:::: 0.9 and MAF:::: 0.05 (SNPbrowser Version 3.5; based on HapMap data for

CEU population). This yielded three tagging SNPs that capture all common variants in

theRBP4 gene (rsl 1187545, rsl0882280, and rsI7484721). Of these three SNPs, one

SNP assay did not work (rsI7484721) therefore only two tagging SNPs were genotyped

in the entire cohort. An additional four SNPs (rs3758539, rs12265684, rs6l461737 and

+559 G>A) were genotyped based on recent publications and to increase coverage of the

gene. The MAF of +559 G>A (missense mutation) was too low to be informative

therefore this SNP was not included in further analyses.



Statistical Analyses

All statistical analyses were perfonned using the statistical software R or SPSS

version 16.0 (SPSS Inc., Chicago, IL, USA). Hardy-Weinberg equilibrium was tested

using.r analysis with one degree of freedom. Multiple regression analyses using an

alleledosageoradditivemodel(ie.havingtwocopiesoftheminoralleledoubles the

protective effect compared to having just one copy) were used to assesstheassociation

between RBP4 variants and markers of insulin resistance and serum lipids with sex and

age included as covariates. Priortoperforminganystatisticalanalysis,TG,insulin,

HOMA-IR and HOMA~ were log-transfonned to reach a nonnal distribution.

Hypotheses regarding the effect ofRBP4 variants on parameters measured were two-

sidedandsignificanceaftercorrectingformultipletestingwasassessedthroughIO,OOO

pennutations;acorrectedp-valueofO.05wastakenasthethresholdofstatistical

significance.

Physical and biochemical characteristics of all subjects are shown in Table 3.5. A

surnmary of the five SNPsgenotyped in the entire cohort, including allele frequencies,

can be found in Table 3.6. The five SNPs included in final analyses in this study cover

approximately 7.8 kb of the RBP4 gene and includes the 5' flanking region. The

observed MAF for all SNPs was::,: 0.05 (aside from +559 G>A which was excluded from

analysis) and all SNPs were in Hardy-Weinberg equilibrium (Table 3.6). Linkage



Table 3.5 Physical and biochemical characteristics of subjects· .

Overall

Age(yrs)

Height (em)

Weight (kg)

BM!(kg/m2
)

Waist Circumference (cm)

Bodyfat(%)

Glucose (mmol/L)

Insulin (pmol/L)

HOMA~

Cholesterol (mmol/L)

HDL cholesterol (mmol/L)

LDL cholesterol (mmol/L)

Triacylglycerol(mmol/L)

Choiestero1lHDL

3.12 ± 0.89

1.15±0.71

3.48±0.94

35.0±9.l

5.1 ±0.9

2.46±3.13

143.1 ± 183.9

1.49 ± 0.39

3.12±0.90

1.23±0.79

'Values are expressed as mean ± standard deviation. BM!, body mass index; HDL, high-

density lipoprotein cholesterol; LDL, low-density lipoprotein; HOMA-IR, homeostasis

model assessment for insulin resistance; HOMA~ homeostasis model assessment for ~

cell function.



Table 3.6 Summary of single nucleotide polymorphisms, allele frequencies, and

Hardy-Weinberg equilibrium I.

Frequency HWE(p-value)

5'Flanking 0.84/0.16

n/a2 TIC

rs108822803 TIG

+3681 TIC

rsl22656843 GIC 0.83/0.17

IHardy-Weingberg was estimated using using X analysis.

2n/a,notapplicable

3Tagging SNPs (SNPbrowser Version 3.5, based on HapMap CEU population)



LO was also estimated among the variants and is shown in Table 3.7.

The genotype effect of the five SNPs within RBP4 on markers of insulin

resistance and serum lipids are shown in Table 3.8. We tested for associations between

the five SNPs within RBP4 and parameters of glucose and lipid metabolism using

multiple regression analyses with gender and age as model covariates. The p values for

the studied SNPs for glucose, insulin, HOMA-IR, HOMAp, cholesterol, HDL

cholesterol, LOL cholesterol, TO, and risk factor, after adjusting for gender and age, are

presented in Table 3.8. We did not find any significant associations between variation in

RBP4 with markers of insulin resistance (fasting glucose, insulin, HOMA-IR or

HOMAP). Analyses were repeated after excluding volunteers with self-reported TIO or

fasting glucose::O: 7.0 mmol!L (n; 72) and again, no SNP was significantly associated

with any marker of insulin resistance (data not shown).

Two noncoding SNPs (rs I0882280 and rsll 187545) were significantly associated

with serum HDL choelsterol (p ; 0.043 and 0.042, respectively) in our cohort (Table

3.8). Carriers of the minor allele of rsl 0882280 and rsl 1187545 had significantly higher

fasting levels ofHDL cholesterol compared to homozygotes for the major allele (Table

3.9). Although serum HDL cholesterol was even greater in homozygotes for the minor

a1lele,thisdidnotreachstatisticalsignificance,likelyduetothesmallnumberofsubjects

with this genotype. A suggestive association was also detected between rs61461737 and



Table 3.7 Estimated pairwise linkage disequilibrium (rigbt upper) and sample size

Oeftlower).

rs3758539 0.819 0.846 0.693 0.930

0.954 0.778



Table 3.8 Genotype effect of five SNPs within RBP4 on markers of insulin resistance

and serum lipids.1,2

lHOMA-IR, homeostasis model assessment for insulin resistance; HOMA~ homeostasis

model assessment for ~ cell function; HDL, high-density lipoprotein cholesterol; LDL,

low-density lipoprotein cholesterol.

2Multiple regression using an allele dosage or additive model were used for quantitative

trait analyses to assesstbe association between RBP4 variants and markers of insulin

resistance and serum lipids. Sex and age were included as model covariates.

3p values based on 10,000 permutations.

4Using a dominant model, p values were 0.044 and 0.70 forrsl0882280 andrs11187545,

respectively.



Table 3.9 Serum HDL cholesterol levels according to RBP4 genotype.'

Genotype

CC

CA

303

HDL Cholesterol (mmoVL)

1.48 ± 0.37

1.55±0.392

1.55±0.47

1.48±0.37

1.54±0.392

1.60 ± 0.45

'Serum HDL cholesterol is presented as mean ± SO. Differences in serum HDL between

genotypes determined using ANOVA analyses, adjusted for age and gender.

2Significantlyhighercomparedtohomozygotesforthemajorallele(p<0.05).



serum TGs (p = 0.032; corrected p = 0.107) (Table 3.8). We did not observe any

significant associations with any otherpararneter related to lipidmetabolism.

As we found a significant association between variants within RBP4 and serum

HDL cholesterol, we sought to further explore this relationship using a case-controlstudy

design. Using a minimum-ehi-squared method to determine cut-off values for cases

(HDL < 1.23 mmol/L, n = 476) and controls (HDL > 1.56 mmol/L, n =671), we found a

significant difference in genotype frequencies between cases and controlsforrsl0882280

(p= 0.009) and rs11187545, (p= 0.014), as would be expected givenourprevious

fmdings. We also found a significant difference in genotype frequencies forrs6146 1737

(p=0.029).

Power calculations were carried out fora quantitative trait genetic association

study and are shown in Figure 3.1. The causal locus was reflected indirectly by

rsll187545 and type I error was fixed to 10-6 Figure 3.1 shows the power profiles as a

functionofvaryingcoefficientsofdeterrninationforarangeofheritabilityestirnates(h2

= 0.05 - 0.15). As demonstrated by this figure, we had sufficient power (~ ::': 0.80) at R2

> 0.4, given our sarnple size, to detect a positive association.

RBP4 has come under scrutiny for its possible involvement in insulin resistance

and more recently, lipid metabolism. Previously known solely as a transporter of retinol



(vitamin A), RBP4 was identified as a marker of insulin resistance in both mice and

humans (90-91). Further studies have suggested that RBP4 may playa more important

role in lipid metabolism, as evidenced by numerous associations between RBP4 levels

and serum lipids(l97,205). In the present study, we investigated the relationship

between variation in the RBP4 gene with parameters of glucose and lipid metabolism in a

large NL population. We found a significant association between two noncoding SNPs

(rs10882280 and rsl I 187545) and serum HDL cholesterol however no association was

evident with any other parameter of lipid metabolism. Similarly, we did not observe any

significant associations between any variant sites and markers of insulin resistance.

The current status of genetic association studies on RBP4 has indicated that ­

803G/A(rs3758539) influences transcription efficiency in a hepatocarcinoma cell line as

well as binding efficiency of hepatocyte nuclear factor I alpha to its motif (202). TheA­

allele of this SNP has also been associated with an increased risk ofT2D in Mongolians

(202) as well as Caucasians (207). We failed to confmn an association between this

variant, or any other variant, and insulin resistance in the present study. Although the

reason for this discrepancy is unclear, it may be due to smaller sample sizes in previous

studies resulting in spurious associations. Differences in effect size of the risk allele

and/or exposure to environmental factors may also play a role. Our results are consistent

with two recent studies in Caucasians where no significant association was evident

between-803G/Aanddiabetesrisk(200-201). Although both of these studies

demonstrated an association between a haplotype containing this SNP and increased

diabetes risk, both risk haplotypes containedthe-803 G allele, not the A allele as would



be expected if this allele does confer diabetes risk. Interestingly, SNPs within RBP4 are

in a tight LD block that continues until the 3' end of the downstream gene, GPRJ20

(202),areceptorforunsaturatedlong-chainfattyacidsandanothercandidategene for

TID. It is possible that the risk haplotypes identified in previous studies are a resultofa

signal from this gene.

Aside from investigating the effect of genetic variants in RBP4 on insulin

resistance, we were also interested in examining their effect on parameters oflipid

metabolism. Perhaps, the most interesting finding in our study was that noncoding SNPs

within RBP4 may offer a protective effect against low serum levels of HDL cholesterol.

To the best of our knowledge, this is the first study to demonstrate that genetic variation

in RBP4 is associated with serum HDL cholesterol. Specifically, we found that

individuals carrying the minor allele ofrsl0882280 or rsl I 187545 had higher levels of

serum HDL cholesterol in quantitative trait analyses. This was also true when a case­

control design was used. For these SNPs, it appears that harboring one or two copies of

the minor allele offers a protective effect against low levels ofHDL cholesterol. It

should be noted that mean HDL cholesterol levels in homozygotes for the minor allele

were not significantly different from levels in heterozygotes for both polymorphisms,

likely due to the small number of homozygotes for the minor allele. Our findings,

therefore, should be replicated in another population with a greater sample size to

confirm the results. Interestingly, recent evidence has suggested that RBP4 is a marker of

metabolic abnormalities, as serum levels of this adipokine correlate with a number of

components of the metabolic syndrome (205, 208), including HDL cholesterol (91). Our



findings support a role for RBP4 in the differences in serum HDL cholesterol, however,

the exact mechanism through which these variants result in higher serum HDL

Recently, a SNP in the promoter region of RBP4 (rs3758538, C allele) was

significantly associated with both reduced hypertriglyceridemia risk and 10werTG levels

in Chinese Hans (206). Although we did not type this variant in our cohort, we did

observe an association between the minor allele ofrs64161737 and 10werTG Ievels.

After accounting for the number of tests performed, however, the association no longer

remained significant. Although this appears contradictory to recent reports indicating

significant correlations between serum RBP4 and TG levels (205, 209-210), our findings

are in agreement with previous studies that found no associationbetween variants in

RBP4 and serum TG (202-203; 207). Further studies are required to clarify the role of

variants within RBP4 and lipid metabolism.

In summary, we have identified two noncoding SNPs (rsl0882280 and

rs11187545) that are significantly associated with higher levels of serum HDL

cholesterol in theNLpopulation after controlling forage and gender. We did not find

any significant associations between genetic variation in RBP4 and markers of insulin

resistance. Due to high LD between the variants typed in this study, we believe we have

likely captured the majority of genetic variation in and around this gene. Consequently,

the results of our study support a role for genetic variations in RBP4 with differencesin

serum HDL cholesterol, but not with insulin resistance, in the NL population.
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It has been well documented that an increase in adipose tissue is linked to both

insulin resistance and TID (211). One of the major causes of these two conditions is

impaired insulin action in adipose tissue, skeletal muscle and liver. In fact,adiposetissue

secretes many adipokines that influence insulin action in other tissues includingleptin,

adiponectin and tumor necrosis factor a (212-214). It has recently been discovered that

RBP4, previously known solely as a transporter of retinol (vitamin A), is also secreted

from adipose tissue where it induces insulin resistance in the liver and skeletalmuscleof

mice (90). Following this finding, a small number of studies have demonstrated a

correlation between RBP4 and insulin resistant states in humans (90-92, 215-216).

However, the role that adiposity status plays in this is controversial. Althoughsome

studies have observed higherconcentrationsofRBP4 in obese subjects (90-92) others

have found no association between RBP4 and adiposity status (93). Yetothershave

found significant correlations between elevated RBP4 and specific fatdepots,including

liver fat (215) and trunk fat percentage (216).

With limited data available regarding this adipokine, the mechanism through

which RBP4 acts in the development of insulin resistance and TID in humans is still

unclear. There is also no inforrnation available regarding the nutritional regulation 0 f

RBP4. Studies from our lab and others have shown that changes in nutritional status

such as overfeeding can have major impacts on adipose tissue metabolism(217)aswell

as influence circulating concentrations ofadipokines (179) and consequentlY,may



influenceRBP4. The subsequent responses to changes in nutritional status can provide

insight regarding the role ofRBP4 in the development of insulin resistance and TID.

Furthermore, past studies have shown that the response of leptin to a high fat meal differs

between lean and obese men (218) and it is therefore possible that the responseofRBP4

to short term overfeeding may also be dependent on adiposity status. The objectives of

this study were to further understand the role RBP4 plays in the development of insulin

resistance by investigating 1. the correlations ofRBP4 with phenotypes of insulin

resistance,glucoseandlipidmetabolismandotheradipokines(interleukin-6and

visfatin); 2. the response ofRBP4 to short-term overfeeding in young men without

diabetes;and3.theroleofadipositystatusontheeffectsofRBP4.

Subjects

Subjects were recruited from an ongoing overfeeding study investigatingthe

effects ofapositive energy balance on endocrine factors as well as glucose and lipid

metabolism (179). A total of sixty-five young males were recruited from the city ofSt.

John's and surrounding area in the Canadian province ofNL to participate in this study.

Younger males are often targeted in overfeeding studies because they tend to tolerate

overfeedingbetterthanoldersubjects.lnclusioncriteriawere:l.male;2.l9-29yearsof

age; 3. at least third generation Newfoundlander; 4. healthy, without any serious

metabolic, cardiovascular, or endocrine disease; 5. not on medication for lipid



metabolism; 6. reported having a stable weight (± 2.5 kg) in the previous six months.

This study was approved by the Ethical Committee of the Faculty of Medicine, Memorial

University,St.John's,NLandallsubjectsprovidedwrittenconsent.

Serum Measurements

Blood samples were taken from all subjects before and after completion of the

overfeedingstudy,followingaI2-hourfastingperiod. Serum was stored at-80°C for

subsequentanalyses.SerumRBP4concentrationsweremeasuredinduplicateby

radioimmunoassay kits purchased from Phoenix Pharmaceuticals, Inc. (Belmont, CA,

USA). Serum insulin levels were measured on an Immulite immunoassay analyzer

(DPC, CA, USA). The homeostasis model assessment (HOMA) was used as a measure

of insulin resistance (HOMA-IR=insulin (flU/ml) x glucose (mmol/L)/22.5» and p-cell

function (HOMAp=20*insulin (flU/ml) / (glucose-3.5» (160). Serum concentrations of

glucose, TG, total cholesterol, and HDL cholesterol were measured using Synchron

reagents and performed on an Lx20 analyzer (Beckman Coulter Inc., CA, USA). LDL

cholesterol (LDL-c) was calculated using the following formula: (Cholesterol) - (HDL

cholesterol) - (TG/2.2) which is reliable in the absence of severe hyperlipidemia. Serum

interleukin-6levels (IL-6) were measured in duplicate using the Access® IL-6 kits

(Beckman Coulter Inc., CA, USA) performed on a Unicel DxI 800 Access Immunoassay

system (Beckman Coulter Inc., CA, USA). Serum visfatin concentrations were measured

in duplicate with a human visfatin (COOH-terminal) enzyme immunometric assay



(phoenix Phannaceuticals, Belmont, CA) performed on an Alisei Quality System (SEAC

Radim Group, Pomezia, Italy).

Measurement of body composition

%BF was determined using DXA Lunar Prodigy (GE Medical Systems, Madison,

WI, USA). Measurements were performed on subjects following the removal of all metal

accessories, while lying in a supine position as previously described (136). Software

version 4.0 was used for analysis. All measurements were completed prior to and one

day following overfeeding.

Overfeeding protocol

Although both short and long term overfeeding strategies have been used to

investigate biochemical and metabolic responses to ahypercaloric diet(60, 219-220), the

majority of studies have been short term, ranging from 12 hours to 22 days. A7day

overfeeding protocol was chosen for this study to ensure that the interventionwould

induce metabolic changes. Subjects consumed 70% more calories than their normal

energy requirements and this consisted of 15% protein, 35% fat, and 50%carbohydrates

to mimic the common daily diet in North America.

Full details of the overfeeding protocol have been previously described by us

(179). Briefly, subjects consumed 70% more calories than their normal energy

requirementsandthisconsistedof15%protein,35% fat, and 50%carbohydratesto



mimic the common daily diet in North America. Baseline energy intake assessments

were completed for each subject prior to commencing the overfeeding protocol. Baseline

energy requirements were estimated for each subject using three 24-h food recalls and

completion ofa 30-d dietary inventory. Subjectswerethenstartedona40%hypercaloric

diet for 7 days. Subjects were offered three meals per day and energy values and

macronutrient content of the food was measured using the Food Processor SQL, version

9.5.0.0 (ESHA Research, Salem, Oregon). Subjects were asked to maintain their usual

pallemofphysicalactivity. Total energy expenditure was estimated by an Actical

physical activity level monitor (Mini Miller Co, Inc, Bend, OR) for 7 days prior to

starting the study and during the overfeeding period. Any differences in physical activity

levels between baseline and the overfeeding period were controlled below 15%. The

average baseline calorie intake and calorie intake during overfeeding was 2969 kcaland

547Ikcal,respectively. On average, subjects gained 2.2±0.18 kg body weight of which

28% (0.6l5kg±O.l31) was body fat.

Statistical Analysis

Dataarepresentedasmean±SD. Prior to perforrning any statistical analyses,

subjects were grouped according to adiposity status. Subjects were classified using BMI

as normal weight (<24.9 kg'm02
) or overweight/obese (>25.0 kg'm02

) (143). Overweight

and obese subjects were grouped together due to the small number of subjects in each

group. Statistical analyses were also performed according to %BF according to criteria

recommended by Bray (137). Differences in RBP4 levels between the two groups as



well as changes inRBP4 in response to overfeeding were analyzed using two-factor

ANOVA with interaction analysis using SAS PROC OLM. Pearson correlation analyses

were performed to screen for potential factors related to fasting RBP4 levels followed by

partial correlation analyses controlling forage and BMI. Pararneters of the metabolic

syndrome, including HDL cholesterol, fasting TO and glucose, decline with age (221)

and we therefore controlled forage within each group. Bonferroni testing was applied to

correct for multiple comparisons. The correlation analyses were performed at the

following three levels:

2. RBP4 at baseline vs. changes in all variables in response to overfeeding to

investigate whether baseline RBP4 could predict the changes in relatedmarkers

3. Change inRBP4 vs. changes in all variables in response to overfeeding.

SPSSversionI4.0(SPSSlnc.,Chicago,IL)wasusedforailanalysesuniessotherwise

stated. Statistical analyses were two-sided and ap value <0.05 was considered to be

statistically significant.



Comparison of characteristics at baseline and in response to shortterm

overfeeding

Physical and biochemical characteristics of subjects at baseline are shown in

Table 4.1. There were no significant differences in age and height between the two

groups, however the differences in BMI, body weight and %BF were significant. There

was no significant difference in fasting glucose between both groups. Overweight/obese

subjects had higher fasting serum insulin levels as well as increased HOMA-IR and

elevated HOMA~ compared to normal weight subjects. Although all lipid profile

markers (cholesterol, LDL cholesterol, and TO) were higher in overweight/obese subjects

compared to lean subjects, this did not reach statistical significance. HDLcholesterol

was significantly lower in overweight/obese individuals compared to lean. There were

no significant differences in fasting IL-6 orvisfatin concentrations betweengroups. The

average fasting serum RBP4 concentrations at baseline were 29.53±6.02 and 29.14±5.30

llg/ml for the normal weight and overweight/obese subjects respectively, with no

significant differences between the groups. RBP4 concentrations were also analyzed

according to %BF criteria, and again, no significant differences were found (data not

shown). As well, subjects were divided into three groups according to HOMA-IR,

controlling for BMI. There were also no significant differences in fasting serum RBP4

among the low, medium or high HOMA-IR groups (data not shown).



Changes in body composition as well as phenotypes of glucose metabolism and

lipids in response to the 7-day overfeeding period are described inTable 4.1. Briefly,

there was a significant increase in body weight in both groups following overfeeding. A

significant increase in %BF was evident in both the normal weight and overweight/obese

groups as well. Total cholesterol, HDL-c and TG were significantly increased in both

normal weight and overweight/obese subjects. Insulin levels and HOMA~ were also

significantly increased. There were no significant differences in fasting serum RBP4 in

response to overfeeding within each group.

Correlations of RBP4 with phenotypes of glucose and lipid metabolism

Pearson correlation analysis was used as an initial screening tool between RBP4

and phenotypes of glucose and lipid metabolism followed by partial correlationanalyses,

controlling for BMI and age. At baseline, RBP4 was positively correlated with baseline

LDL cholesterol in normal weight subjects and with baseline HOMA~ in

overweight/obese subjects. When all subjects were combined, only the positive

correlation with LDL cholesterol was evident. However, after multiple comparison

testing was applied, no significant results remained (Table 4.2). Correlations between

baseline RBP4 and the changes in parameters were also assessed. Significant negative

correlations were evident between baseline RBP4 and changes in both insulin and

HOMA-IR in normal weight subjects (Table 4.3). The significant correlation between

RBP4 and the change in HOMA-IR remained significant even after Bonferroni



Table 4.1 Pbysicaland biocbemicalcbaracteristics of subjects at baseline and in response to 7 days of overfeedingI

Overweight/Obese

(n=37-40) (n=24-28) repeatedmeasurernents3

Age (yrs)

Height (cm)

Weight (kg)2.4

Body fat (%)2.4

BMI(kg·m·2)4

Glucose (mmollL)

Insulin (pmollL)2

Cholesterol (mmollL)

Triacylglycerol(mmollL)

HDL-c (mmollL)2

LDL-c (mmollL)

Pre- Post-
overfeeding overfeeding

Post- Change from Group
overfeeding baseline comparison

(pvalue) (pvalue)



(n=37-40)

Overweight/Obese

(n=24-28) repeatedmeasurements3

HOMA-IR"

HOMA~2

IL-6(pg/ml)

Visfatin(ng/ml)4

RBP4(!!g/ml)

Pre- Post-
overfeeding overfeeding

l.76±1.71

97.86±55.39 I42.52±90.07

1.32±1.24

Post- Change from Group
overfeeding baseline comparison

(pvalue) (pvalue)

0.02

0.03

0.83

1 All values are mean ± SO. RBP4, retinol-binding protein 4; IL-6, interleukin 6; HOMA-IR, homeostasis model assessment

for insulin resistance; HOMA~, homeostasis model assessment for ~ cell function; n/a, not available.

2Significant differences between lean and overweight/obese subjects at baseline were analyzed using Student's t test. Weight,

%BF, BMI, HDL-c, insulin, HOMA-IR, and HOMA-~ were significantly different between groups (p < 0.05).

3 Adiposity status and responses to overfeeding were analyzed using two-factor ANOVA with interaction analysis using SAS

4 Significant between-subject interactions (p <0.05).



Table 4.2 Partial correlations of baseline variables related to baselinefastingserum

RBP4 (ltg/ml), controlling for BMI and age.)

Variables Normal weight Overweight/Obese All Subjects

(n=37-40) (n=24-28) (n=65)

Glucose (mmollL)

Insulin (pmollL) -0.139 ns

Cholesterol (mmollL)

Triacylglycerol(mmollL)

HDL-c (mmollL)

LDL-c (mmollL) 0.0422 0.0352

HOMAp 0.0492

IL-6(pg/ml)

Visfatin(ng/ml)

JRBP4, retinol-binding protein 4; IL-6, interleukin 6; HOMA-IR, homeostasis model

assessment for insulin resistance; HOMAp, homeostasis model assessment for p cell

function. Partial correlation analysis controlling for BMI and age was used to screen for

potential factors related to fastingRBP4.

2Not significant after Bonferroni correction.



Table4.3Partialcorrelationsofcbangesinvariablesrelatedtobaselinefasting

serum RBP4 ijlg/ml), controlling for BMI and age. I

Variables Nonnalweigbt Overweigbt/Obese All subjects

(n=37-40) (n=24-28) (n = 65)

Glucose (mmoIIL) -0.368 ns

Insulin (pmoIIL) 0.0142

Cbolesterol(mmoIIL) -0.D38 ns

Triacylglycerol(mmoIIL) 0.130 ns

HDL-c (mmoIIL) 0.059 ns

LDL-c (mmoIIL) -0.056 ns -0.081 ns

HOMA-IR -0.614 O.OOe

HOMA~ 0.050

IL-6(pg/ml) -0.076 ns

Visfatin(ng/ml)

lRBP4, retinol-binding protein 4; IL-6, interleukin 6; HOMA-IR, bomeostasis model

assessment for insulin resistance; HOMA~, homeostasis model assessment for ~ cell

function. Partial correlation analysis controlling forBMI and age was used to screen for

potential factors related to fastingRBP4.

2Not significant after Bonferroni correction.

3p =0.0IafterBonferronicorrection.



correction. Lastly, we investigated correlations between tbe changes in RBP4 andtbe

changes in parameters measured. Altbough a number of significant correlations were

detected between tbe change in RBP4 and tbe changes in insulin and HOMA-IR in botb

normal weight and overweight/obese subjects none oftbese survived Bonferroni

correction in any oftbe groups or in tbe entire study cohort (Table 4.4).

TID is one oftbe fastest growing diseases in North America as well as some

developing countries and is closely associated witbbotbinsulinresistance and obesity.

Altboughtbediscoveryofvarious adipokineshas shed light on tbe etiologyofthis

disease, tbe molecular link between obesity, insulin resistance, and TID in humans is still

largely unknown. ItappearstbatRBP4 is a factor tbat acts to induce insulin resistance in

tbe liver and skeletal muscle of rodents (90) however tbe mechanism through which this

adipokine acts and tbe role tbatadiposity status plays in humans is still unciear.

AitboughRBP4is secretedprimarilybytbeliver(221),studiesin rats have

showntbat adipose tissue has tbe second highest expression level (222) where it is

expressed almost exclusively by adipocytes (223). Jankeetal.wereabletodemonstrate

tbat RBP4 is also highly expressed in mature human adipocytes and is secreted by

differentiating human adipocytes (93). If adipose tissue is an important site contributing

to circulating RBP4, it is reasonable to expect significant differences in serum RBP4

between normal weight and obese humans due to variations in tbe amount of adipose



Table 4.4 Partial correlations of changes in variables related tochanges in fasting

serum RBP4 ijiglml), controlling for 8MI and age.·

Variables Normal weight Overweight/Obese All subjects

(n = 37-40) (n=24-28) (n = 65)

IRBP4, retinol-binding protein 4; IL-6, interleukin 6; HOMA-IR, homeostasis model

assessment for insulin resistance; HOMA~, homeostasis model assessment for ~ cell

function. Partial correlation analysis controlling forBMI and age was used to screen for

potential factors related to fastingRBP4.

2Not significant after Bonferroni correction.



tissue. Graham et al. demonstrated an increase in serum RBP4 in both obese humans and

obese humans with T2D compared to lean controls (91). Cho et al. found a significant

difference in plasma RBP4 levels between subjects with normal glucose tolerance and

those with T2D (92). Conversely, Janke et al. found no significant difference in

circulating levels ofRBP4 amongst normal weight, overweight, and obese women (93).

Stefanetal. found a positive correlation between circulating RBP4 and Iiverfat but not

with total body, visceral or subcutaneous fat (215). In the current study we found no

significant difference in fasting serum RBP4 levels between normal weight and

overweight/obese men. This was also true when subjects were classified according to

%BF. Our data does not support the hypothesis that total body fat, indexed by BMI or

%BF, determines circulating RBP41eveis in young, healthy men without diabetes.

We also sought to understand the nutritional regulation ofRBP4. To the best of

our knowledge, this is the first study of its kind to explore the response ofRBP4toa

short-term positive energy challenge. Overfeeding studies provide a means in which the

biochemical changes that would be evident with extended overeating in bothadipokines

and hormones can be investigated. A positive energy balance is one of the major causes

of obesity (224) and triggers many hormonal responses including both an increaseand/or

decrease in the secretion of various adipokines (225-226). In the present study there were

no significant differences inRBP4 concentrations before and afteroverfeeding

suggesting that RBP4 is not significantly regulated by a short-term positive energy

challenge at physiological conditions in healthy, young men. Interestingly,Jankeetal

found no significant change in circuiatingRBP4 in women following a five percent



weight loss (93) indicating that a change in overall energy balance, whether positive or

negative, appears to have no significant effect on circulating RBP4 concentrations.

Recent studies have suggested that RBP4 is a key player in the etiologyofinsulin

resistance in both healthy subjects (215-216) and subjects with T2D (90-92). Inthe

current study, however, we did not fmd any significant associations between RBP4 and

phenotypes of insulin resistance at baseline without overfeeding. However,wefound

that in nonnal weight men, changes in HOMA-IR were inversely correlated with baseline

serum RBP4 suggesting that RBP4 may serve as a predictor of insulin resistance when

exposed to a positive energy challenge such as in the development 0 fobesity. Tofurther

understand the relationship betweenRBP4and insulin resistance, we classified subjects

according to HOMA-IR status as either low, medium or high to detennine if subjects

with a greater degree of insulin resistance had elevated levels ofcirculatingRBP4. We

found no significant differences in serum RBP4 between these three groups suggesting

that at physiological conditions in healthy, youngmen,RBP4 isnotasignificant factor in

detennining the difference in insulin resistance between nonnal weight and obese

subjects. However, it can't exclude the possibility that such a relationship mightbe

detected if a more sensitive method to measure insulin resistance was used such as

euglycemic clamp test as well as a larger sample size.

We also investigated correlations betweenRBP4 and phenotypes of lipid

metabolism. It has been suggested that RBP4 may be linked to the metabolic syndrome.

Specifically, elevated serum RBP4 was associated with higher concentrations of serum



TGs and decreased HDL cholesterol (91) as well as waist circumference (92). Although

we found a weak positive correlation between baseline RBP4 and LDL cholesterol, it did

not survive bonferroni correction. Further studies are warranted to investigate

associations between RBP4 and lipid metabolism.

It has been suggested thatadipokines may interact with one another in the

regulation of energy balance. Forexample,ithasbeenhypothesizedthatthestimulatory

effects ofghrelin and inhibitory effects ofleptinassimilate in the regulation of energy

intake and expenditure (227). Previous studies have investigated the reiationship

betweenRBP4andbothleptinandadiponectin(92,213)howevernosignificant

correlations were detected in either study. In the present study we investigated the

relationship between RBP4 and bothIL-6 and visfatin. We did not find any association

betweenRBP4 and these two adipokines.

One limitation of our study is the homogeneous study group. By targeting males

19-29 years of age, weare limiting the population to which these findings can beapplied.

Further studies are warranted investigating these issues in other age groups as well as in

females. Another potential limitation is the short overfeeding period. Although this is

the first study of its kind to explore the nutritional regulation ofRBP4, future studies

examining the effects of prolonged overeating are necessary.

In summary, we measured serum RBP4 in 65 men before and after a 7-day

overfeeding protocol. Circulating RBP4 was similar amongst normal weight and

overweightlobese young men. Likewise, the changes inRBP4 in response to overfeeding



were not significant within the two adiposity groups. RBP4 was not associated with

phenotypes of insulin resistance or lipid metabolism in either normal weight or

overweight/obese subjects at baseline. RBP4 was inversely associated with the change in

insulin resistance in normal weight men suggesting that it may be a predictor of the

changes in insulin resistance in response to a short term positive energy challenge.
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Obesity can be defined as the excessive accumulation of adipose tissue caused by

a chronic energy imbalance between energy intake and energy expenditure (228).

Obesity rates amongst developed countries have increased substantially in the past three

decades and are now affecting billions globally. The consequences of excess body

weight are numerous and inciude type II diabetes, hypertension, coronary artery disease,

and many types of cancer (124). Increases in caloric intake combined with decreased

physical activity levels and an underlying genetic predisposition, all contribute to the

obesity epidemic. Current research indicates that there are many genes that play a role in

the development of obesity. As of October 2005, more than 600 genes, markers, and

chromosomal regions have been associated with obesity phenotypes (39). Estimatesof

theheritabilityofBMI,amarkerofobesity,arebetween30-70%(35,229-230).

However, the underlying molecular and genetic basis surrounding this phenomenonis

still unclear.

Aside from its role in storage, adipose tissue actively communicates with cells,

tissues, and the central nervous system through a network of endocrine, paracrineand

autocrine signals. The discovery of numerous adipocyte-derived hormones has

demonstrated an active role of this tissue in the development of obesity andrelated

metabolic disorders (90, 231-232). With the recent advent of microarrays, researchers

have been able to examine the global gene expressionprofilesofadiposetissueto

investigate its role in obesity. Microarrayprofiling of adipose tissue innumerous



populations has led to the discovery of anumber of processes that are nowthought to be

involved in the pathogenesis of this disease including lipolysis (233),

inflarnmation/immuneresponse(234-235),apoptosis(236-237),adipogenesis(238),as

well as extracellular matrix constituents (239). Moreover, the use of microarray

technology has led to the discoveryofadipokines that have been implicated in the

pathogenesis of obesity (90, 240). However, the majority of these studies have been

cross-sectional in nature with analysis performed onleanvs. obese individuals or

subcutaneousvs. visceral adipose tissue.

Energy homeostasis is a key factor in the regulation of body weight and

subsequently obesity, and because of this, studying the effects of changesinenergy

balance may provide further insight into the underlying genetic and molecular

mechanisms responsible for obesity. A number of studies have identified genes

modulated by a negative energy balance, induced by exercise (241-243) or caloric

restriction (244-245). Surprisingly, critical data are lacking regarding changes in gene

expression under conditions ofapositive energy balance, which is thefundamentalcause

of the rising prevalence ofhuman obesity. In the current study, we investigated changes

in global gene expression profiles in abdominal subcutaneous adipose tissue inresponse

to a positive energy balance induced by overfeeding. Overfeeding studies provide a

means to investigate genetic and biochemical changes as well as individualdifferences

that would be evident with extended overeating. Previous studies have shown that

changes in nutritional status such as overfeeding can have major impacts 0 nadipose

tissue metabolism (217), gene expression (246), andadipocytokine regulation (179). The



objectives of the current study were as follows: I) Defme the mRNA expression profiles

of abdominal subcutaneous adipose tissue in lean and obese males at baseline and

identify any differences between the two; 2) Identify genes that are induced and/or

suppressed in response to a positive energy challenge to provide novel obesitycandidate

genes for the study ofhuman obesity.

Subjects

Subjects were recruited from an ongoing overfeeding study investigatingthe

effects ofapositive energy balance on endocrine factors as well asglucoseandlipid

metabolism (I79, 196). Atotalof65 subjects participated in the previous study. A

subset of these subjects agreed to receive an adipose tissue biopsy for the current

microarraystudy. Twenty-six subjects participated in the baseline study (I3 lean and 13

obese) and of these, 16 (eight lean and eight obese) agreed to take part in the overfeeding

intervention. All subjects were from the city ofSt. John's and surrounding area in the

Canadian province ofNL. Inclusion criteria were as follows: I) male; 2) 19-29 years of

age; 3) at least third generation Newfoundlander; 4) healthy, without any serious

metabolic, cardiovascular, or endocrine disease; 5) not on medication for Iipid

metabolism; 6) reported having a stable weight (± 2.5 kg) in the previous six months. All

subjects provided written and informed consent, and the Research Ethics Board of the

Faculty of Medicine, Memorial University ofNewfoundland approved the study.



Study Design

This study employed a longitudinal design. All measurements, blood samplings,

and adipose tissue samplings were performed twice: prior to co=encing the one week

overfeeding protocol and the day following the week of overfeeding (Sth day).

Overfeeding protocol

Full details of the overfeeding protocol have previously been described by us

(179,196). BrieflY,individualenergyrequirementswereestimatedforeachsubjectprior

to commencing a40% hypercaloric diet for seven days. Subjects were offered three

meals per day and energy values and macronutrient content of the food weremeasured

using the Food Processor SQL, version 9.5.0.0 (ESHA Research, Salem, Oregon).

Measurement of body composition

%BF and %TF were measured using DXA Lunar Prodigy (GE Medical Systems,

Madison, WI, USA). Measurements were performed on subjects following the removal

of all metal accessories, while lying in a supine position as previously described(l36).

Software version 4.0 was used for analysis. All measurements were completed prior to

and one day following the overfeeding protocol.



Blood samples were taken from all subjects before and aftercompletionofthe

overfeedingperiod,following12hoursoffasting. Serum was storedat-80 °Cfor

subsequent analyses. SeruminsulinlevelsweremeasuredonanImmuliteirnrnunoassay

analyzer (OPC, CA, USA). HOMA-IR was used as a measure of insulin resistance

(HOMA-IR=insulin (!!U/rnl) x glucose (rnrnollL)/22.5» and ~-cell function

(HOMA~=20·insulin (!!Ulrnl) / (glucose-3.5» (160). Serum concentrations of glucose,

total cholesterol, HDL cholesterol, and TG were measured using Synchron reagents and

performed on an Lx20 analyzer (Beckman Coulter Inc., CA, USA). LDL cholesterol was

calculated using the following formula: (total cholesterol) - (HDL cholesterol) - (TG/2.2)

which is reliable in the absence of severe hyperlipidemia. Detailed description of all

serum measurements can be found in our previous papers (135-136, 179, 196).

Adipose tissue biopsy and RNA isolation

Subcutaneous adipose tissue samples were obtained following a 12 hour fast,

before and one day following overfeeding. Adipose tissue was removed from the sub­

wnbilicalregionwithuseofalocalanestheticcomposedoflOccoflidocaineindilute

bupivacaine (40cc of 0.25% bupivacaine in 250 ccofnormal saline). Approximately 1-2

gofsubcutaneous adipose tissue was removed and irnrnediatelyflash frozen in Iiquid

nitrogen,andsubsequentlystoredinliquidnitrogenuntilfurtberanalysis. TotalRNA

was isolated from approximately 500 mg of adipose tissue using RNeasy lipid tissue midi



kit (Qiagen, CA., U.S.A). RNA concentration and purity were determined

spectrophotometrically (Eppendorf, Hamburg Germany), and integrity was assessed on a

2100 bioanalyzerby electrophoresis on an agarose gel (Agilent Technologies,CA.,

USA). All samples showed an approximate 2:1 ratio of28S to 18S RNA.

Microarrays

Total RNA from the adipose tissue samples was amplified using a low input

linear amplification kit (Agilent Technologies), based on the T7 linear amplification

system, which has been validated for use in microarray experiments (247). In separate

parallel reactions, each amplified sample was labeled with either cyanine 3 (Cy3) or

cyanine 5 (Cy5) (perkin Elmer, MA, U.S.A). Co-currently, amplified reference RNA

(Stratagene, CA., U.S.A) was also labeled with Cy3 or Cy5. Samples were then purified

using RNeasy mini elute kit (Qiagen). Hybridization of amplified, labeled RNA samples

was accomplished by use of Agilent's in situ hybridization kit. EachCy30rCy5labeled

sample was competitively hybridized with a Cy5 or Cy3 labeled universal human

reference RNA, to Agilent's 44K whole human genome chip. Reverse hybridization (dye

swap) was performed to account for differences in signal strength between Cy3 and Cy5.

Arrays were hybridized at 60°C for 17.5 hours. All arrays were scanned with the

ScanArray Express (perkin Elmer, MA., U.S.A) and then quantified using lmagene

software, version 5.6 (Biodiscovery Inc., CA., U.S.A.).



RT-PCR Validation

We chose to validate expression of six genes from our rnicroarray data (transferrin

(TF), stearoyl-CoA desaturase (SCD), transaldolase I (TALDOl), cathepsin C (CTSC),

insulin receptor substrate 2 (IRS2), and pyruvate dehydrogenase kinase, isozyme 4

(PDK4»). These genes were identified as being significantly differentially expressed

between lean and obese subjects in response to the overfeeding intervention. Total RNA

was extracted from adipose tissue samples as described above. Reverse transcription was

performed with 300 ng of total RNA from each sample and 100ng of eDNA was used as

a template for RT-PCR as recommended by the manufacturer (AppHed Biosystems,

Foster City, CA, USA). Beta-2-microglobulin (B2M) was used as an endogenous control

to normalize gene expression (Applied Biosystems). PCR was performed on an ABI

PRISM 7000 Sequence Detection System (Applied Biosystems) using TaqMan Universal

PCR Master Mix and TaqMan Gene Expression Assays (Applied Biosystems) which

contain a mixture of forward and reverse primers as well as a specific TaqMan probe.

Each probe was labeled at the 5' end with the reporter dye, FAM, and at the 3' end with

the quencher, 6-minor groove binder. Each reaction contained 100 ng eDNA, PCR

Master Mix, 900 DIDol L-1 of each primer and 250 DIDol L- 1 ofTaqMan probe in a final

volume of20 Ill. Thermal cycling conditions were as follows: 50°C for 2 minutes, 95°C

for 10 minutes, followed by 40 cyclesof95 °c for 15 seconds and 60°C forl minute.

All samples were measured in triplicate and a negative control was included. The

Comparative CT method was used for calculation of mean fold change. The comparative



CT method is similar to the standard curve method except it uses the fonnula 2-MCt to

achieve the same result for relative quantification. The CT method also eliminates the

need for a standard curve, thereby giving higher throughput and also reducing the adverse

effect of any dilution errors made when creating the standard curve. Inorderforthe

comparative CT method to be valid, there must be no major difference in amplification

efficiencies of the target and endogenous control. We tested the amplification efficiency

for each of the probes and endogenous control and found them to beapproximatelyequal.

Data Analysis

Physical characteristics of subjects are presented as mean± SE. Priorto

perforrningstatistical analyses, subjects were grouped according to adipositystatus.

Subjects were classified using %BF criteria as lean (<20%) or obese (>26%) according to

criteria recommended by Bray (137). Differences in physical and biochemical parameters

between the two groups at baseline (prior to overfeeding) and in response to overfeeding

were assessed using GLM for Repeated Measures. SPSS version 15.0 (SPSS Inc.,

Chicago, IL) was used for all analyses. Statistical analyses were two-sided and a p value

<0.05 was considered to be statistically significant.

The raw microarray data obtained was analyzed using GeneSifter

(http://www.genesifter.net/web/). which has been used in the analyses of microarray data

(248-250). Analysis was perfonned on two levels:



I. Identification of genes that were significantlyup-ordown-regulated between lean

and obese subjects at baseline (prior to the overfeeding intervention) was

performed using Student's t-test (n= 26).

2. Identification of genes that were significantly differentially expressed due to the

overfeeding intervention, adiposity status (leanvs obese) or genes that were

significant due to an interaction effect between the two was done using two-factor

ANOVA analyses (n = 16).

GeneSifter establishes biological significance based on both Gene Ontology (GO)

Consortium and Kyoto Encyclopedia of Genes and Genomes (KEGG) public pathway. A

z-score report was used to analyze the biological process ontologies and KEGG pathway

terms associated with the differentially expressed genes. The z-score was derived by

dividing the difference between the observed number of genes meeting a specific GO

termandtheexpectednumberofgenes,basedonthetotalnumberofgenesinthearray.

A positive z-score indicates that more genes than expected fulfilled the criteria in a

certain group or pathway, therefore that group or pathway is likely to beaffected by the

treatment. The parameters used in the analyses were: threshold = 1.5 and log

transformation. A threshold set at 1.5 indicates the minimum fold change required to be

deemed significantly differentially expressed (in comparison to theselectedcontrol

sample, in our case, lean, pre-overfeeding). Although the chosen threshold has no

statistical significance, it was chosen with the assumption that a larger fold change

increasesthelikelihoodofthatgenehavingasignificantbiologicaleffect. Datawere

transformed to a logarithmic scale to ensure a normal distribution of data on all arrays.



Benjamini and Hochberg false discovery rate (FDR) method was used for the correction

of multiple testing (251-252). This method controls the expected proportion of falsely

rejected hypotheses and is the recommended FDRprocedureformicroarray data.

Analyses of physical and biochemical parameters at baseline and in response

to a 7-day overfeeding protocol

Physical and biochemical characteristics of subjects at baseline are shownin

Table 4.5. There were no significant differences in age and height between the two

groups however, weight, BM!, %BF, and %TF were all significantly higher in obese

subjects. Total body fat (kg) and total trunk fat (kg) was also significantly higher in

obese subjects. Obese subjects had higher fasting serurn insulin concentrations as well as

higher insulin resistance and 13-cell function. Changes in physical and biochemical

characteristics in response to overfeeding are also shown in Table 4.5. Followingthe

overfeeding intervention weight, BM!, and total body fat (kg) were significantly higher in

subjects. TG were also significantly increased in subjects in response to the hypercaloric

diet. There were no significant between-subject interactions.



Table 4.5 Physical and biochemical characteristics of subjects at baseline and in response to 7 days of overfeeding.'

Lean (n=8) Obese (n=8) GLM Repeated Measures">

Pre- Post- Pre- Post- Change from Group
overfeeding overfeeding overfeeding overfeeding baseline comparison

(pvalue) (pvalue)

Age (yrs)

Height (cm)

Weight (kg)

BMI(kg-m-2
)

Body fat (%)

Trunk fat (%)

Total Body Fat (kg)

Total Trunk Fat (kg)

Cholesterol (mmol/L)

LDL-c (mmol/L)

HDL-c (mmol/L)

Triacylglycerol(mmol/L)

Glucose (mmol/L)



Lean (n=8) Obese (n=8) GLM Repeated Measures',J

Pre- Post- Pre- Post- Change from Group
overfeeding overfeeding overfeeding overfeeding baseline comparison

(pvalue) (pvalue)

HOMA~

JAll values are mean ± SO. HOMA-lR, homeostasis model assessment for insulin resistance; HOMA~, homeostasis model

assessmentfor~cellfunction;n/a,notavailable;ns,notsignificant.

2Adiposity status and responses to overfeeding were analyzed using the GLM Repeated Measures procedure.

3There were no significant between-subject interactions(p> 0.05)



Identification of differentially expressed genes between lean and obese

subjects at baseline (n =26)

UsingStudent'st-testwithathresholdofl.5,logtransformationandp<0.05

(corrected by Benjamini and Hochberg method), 385 genes were found to be

differentially expressed in adipose tissue of lean and obese individuals (Table4.6). Of

these, 158 were up-regulated and 227 were down-regulated in adipose tissue of obese

subjects compared to lean.

Identification of differentially expressed genes due to overfeeding (n=16)

Using a threshold of 1.5 and a two-way ANOVA where p < 0.05 (corrected by

Benjamini and Hochbergmethod),atotal of45 genes were significantly differentially

expressed due to the overfeeding intervention (Table 4.7) while 398 were significant due

to adiposity status. Numerous studies have investigated differences in global gene

expressionbetweenleanandobeseindividuals,thereforewedecidedtofocus on the 45

genes significantly affected by the overfeeding intervention. The majority of genes

affected by the dietary intervention were up-regulated in response to overfeeding in both

lean and obese subjects, however seven genes were down-regulated inresponsetothe

hypercaloric diet. These genes were zinc fmger, HIT type 3 (ZNHrr3), CD44 molecule

(Indian blood group) (CD44), met proto-oncogene (hepatocyte growth factorreceptor)

(MET), cyelin-dependent kinase inhibitor IC (CDKNIC), solute carrier family 19



Table 4.6 Differentially expressed genes in subcutaneous adiposetissue between lean and obese males atbaseline.1

Gene Symbol Gene Name GO Biolo~icalProcess p value

Up-regulated

NM 000582 SPPI Secreted phosphoprotein I Ossification <0.001
NM)04181 UCHLI Ubiquitincarboxyl-terminalesteraseLl Ubiquitin-dependentproteincatabolic <0.001

NM 000211 ITGB2
process

<0.001Integrin,beta2 Apoptosis
NM-005807 PRG4 Proteoglycan4 Cell proliferation 0.017
NM-001611 ACP5 Acid phosphatase 5 Acid phosphatase activity 0.002
NM=024021 MS4A4A Membrane-spanning4-domains,subfarnily Signal transduction <0.001

A, member 4
NM 015507 EGFL6 EGF-like-domain,multiple6 Cell cycle 0.010
NM=004355 CD74 CD74 molecule, major histocompatibility Prostaglandin biosynthetic process 0.003

complex, class II invariant chain
NM 002872 RAC2 Ras-relatedC3botulinumtoxinsubstrate2 Chemotaxis 0.010
NM-004994 MMP9 Matrix metallopeptidase 9 Peptidoglycan metabolic process 0.001
NM-002298 LCPI Lymphocyte cytosolic protein I Actin filament bundle formation <0.001
NM-024563 C5orf23 Chromosome 5 open reading frame 23 Protein complex 0.004
NM-001803 CD52 CD52 molecule GPlanchorbinding 0.001
NM-015147 CEP68 Centrosomal protein 68kDa n1a 0.022
NM-016206 VGLL3 Vestigial like 3 (Drosophila) Regulation of transcription 0.009
NM-020792 AADACLI Arylacetamidedeacetylase-likel Metabolic process 0.010
NM-144569 SPOCDl SPOCdomaincontainingl Transcription 0.004
NM-144966 FREMI FRASI related extracellular matrix I Cell adhesion 0.011
NM-032828 ZNF587 Zinc finger protein 587 Transcription 0.044
NM-014224 PGA5 Pepsinogen 5, group I (pepsinogen A) Proteolysis 0.001
AK130614 IGHGI Immunoglobulinheavyconstantgarnma I Immune response 0.017
BCOl2027 CYP2UI CytochromeP450, family 2, subfamilyU, Electron transport 0.017



polypeptide I
NM 006332 IFI30 Interferon, gamma-inducible protein 30 Immune response 0.002
NM-02235I EFCBPI EF-hand calcium binding protein I Antibioticbiosyntheticprocess 0.037
NM-000397 CYBB Cytochromeb-245,betapolypeptide Electron transport 0.003
NM-004694 SLCI6A6 Solute carrier family 16, member 6 Transport 0.023
NM=01493 I SAPS I SAPS domain family, member I Regulation ofphosphoprotein 0.047

phosphatase activity
NM_007350 PHLDAI Pleckstrin homology-like domain, family A, Apoptosis 0.044

member I
THC2339142 THC2339142 n/a 0.045
NM 138715 MSRI Macrophage scavenger receptor I Phosphate transport 0.034
NM-003579 RAD54L RAD54-like(S.cerevisiae) DNA repair 0.033
NM-001465 FYB FYNbindingprotein Protein amino acid phosphorylation 0.017
NM-004847 Allograft inflammatory factor I Response to stress <0.001
NM=000399 EGR2 Early growth response 2 Regulation of transcription, DNA- 0.046

dependent
THC2400010 THC2400010 n/a 0.025
NM 000480 AMPD3 Adenosine monophosphate deaminase AMP catabolic process 0.005
NM-00685I GLIPRI GLIpathogenesis-relatedl Extracellular region 0.036
NM=001010919 FAM26F Family with sequence similarity 26, Membrane 0.044

memberF
NM 001295 CCRI Chemokine (C-C motif) receptor I Chemotaxis 0.047
NM-00I014436 DBNL Drebrin-like Endocytosis 0.047
AK024680 CDNA: FLJ21027 fis, clone CAE0711 0 n/a 0.046
NM 013345 GPR132 Gprotein-coupledreceptorl32 Gl/S transition of mitotic cell cycle 0.003
BC032910 CDNA clone IMAGE:5264904 n/a 0.045
NM 207511 C90rfl39 Chromosome 9 open reading frame 139 n/a 0.041
NM-000730 CCKAR Cholecystokinin A receptor Neuron migration 0.014
NM=002838 PTPRC Protein tyrosine phosphatase, receptor Negative regulation ofT cell mediated 0.045

type,C cytotoxicity
THC2437474 n/a



NM 006700 TRAFDl TRAF-type zinc finger domain containing I Zinc ion binding 0.049
NM-000887 ITGAX Integrin,alphaX Cell adhesion 0.028
X91103 Hr44antigen Biological process 0.006

NM_148897 SDR-O Orphan short-chain dehydrogenase I Metabolic process
reductase

NM_006573 TNFSF13B Tumor necrosis factor (ligand) superfamily,
member13b

ENSTOOOO0357132 nla 0.036
NM 001017402 LAMB3 Laminin,beta3 Cell adhesion <0.001
NM-004693 KRT5 Keratin 5 Epiderrnisdevelopment 0.034
NM=001677 ATPIBI ATPase, Na+lK+transporting, beta I Ion transport 0.039

polypeptide
AK022893 Homo sapiens, clone IMAGE:4214313 nla 0.037
NM_006399 BATF Basic leucine zipper transcription factor, Transcription 0.031

ATF-like
NM 000146 FTL Ferritin, light polypeptide Iron ion transport <0.001
NM-002155 HSPA6 Heat shock 70kDaprotein 6 Response to unfolded protein 0.038
NM=012284 KCNH3 Potassium voltage-gated channel, subfamily Two-component signal transduction 0.020

H, member 3 system (phosphorelay)
NM 020919 ALS2 Amyotrophic lateral sclerosis 2 Behavioral fear response 0.046
NM=0024 I8 MLN Motilin G-proteincoupledreceptorprotein 0.025

signaling pathway
Protein tyrosine phosphatase, receptor Vasculogenesis 0.024
type,]

NM 002133 HMOXI Heme oxygenase I Heme oxidation <0.001
NM=198594 CIQTNFI Clq and tumor necrosis factor related Phosphate transport 0.042

protein I
NM 021149 COTLI Coactosin-likel Biologicalyrocess <0.001
NM-177478 FTMT Ferritin mitochondrial Iron ion transport 0.042
NM=016212 TP53TG3 TP53TG3protein nla 0.046



BQ028381 Transcribed locus n/a 0.046
NM 001336 CTSZ CathepsinZ Proteolysis 0.013
NM-005060 RORC RAR-relatedorphanreceptorC Transcription 0.048
NM=00376I VAMP8 Vesicle-associated membrane protein 8 Protein complex assembly <0.001

ENSTOOOO0313481 n/a <0.001
NM 024012 HTR5A 5-hydroxytryptamine receptor 5A Signal transduction 0.020
NM-003290 TPM4 Tropomyosin 4 Cell motility 0.022
NM-000063 C2 Complement component 2 Proteolysis O.oJ7
NM-021226 ARHGAP22 Rho GTPase activating protein 22 Angiogenesis 0.032
ALI33090 MRNA; cDNA DKFZp434E0528 n/a 0.038

(from clone DKFZp434E0528)
NM_00I014999 SULTIA3 SuifotransferasefamiIY,cytosolic, lA, Catecholamine metabolic process

phenol-preferring,member3
NM_024556 FAMI18B Family with sequence similarity 118,

memberB
NM 147780 CTSB CathepsinB Proteolysis <0.001
NM=138612 HAS3 Hyaluronansynthase3 Carbohydrate metabolic process 0.047

ENSTOOOO0282163 n/a 0.046
UDP-N-acetyl-alpha-D- PolypeptideN- 0.024

gaiactosamine:polypeptideN- acetylgalactosaminyltransferase
acetylgaiactosarninyltransferaselO activity

NM 006498 LGALS2 Lectin, galactoside-binding, soluble, 2 Sugar binding 0.047
NM-006123 IDS Iduronate2-sulfatase Metabolic process 0.047
U14391 MYOIE Myosin IE Actin filament-based movement 0.039
NM 000903 NQOI NAD(p)H dehydrogenase, quinone I Electron transport 0.037
NM-005103 FEZI Fasciculation and elongation protein zeta I Cell adhesion 0.006
NM-001901 CTGF Connective tissue growth factor Cartilage condensation 0.045
BC021189 CDNA clone IMAGE:4829245 n/a 0.032
NM 000259 MY05A Myosin VA Transport 0.022
NM-017549 EPDRI Ependymin related protein I (zebrafish) Cell-matrix adhesion 0.031
NM=021102 SPINT2 Serine peptidase inhibitor, Kunitztype, 2 Cell motility 0.024



NM_001644 APOBECI Apolipoprotein B rnRNA editing enzyme, rnRNA processing
catalytic polypeptide I

NM 002341 LTB Lymphotoxinbeta Immune response 0.033
NM-024770 METTL8 Methyltransferaselike8 nJa 0.016
NM-002317 LOX Lysyloxidase Blood vessel development 0.036
AF218008 C190rf28 Chromosome 19 open reading frame 28 Transport 0.002
AB050854 Clorf38 Chromosome 1 open reading frame 38 Cell adhesion 0.012

A 24 P281683 nJa <0.001
NM 052871 MGC4677 Hypothetical protein MGC4677 nJa 0.001
NM-00296I SI00A4 SI00calciumbindingproteinA4 Epithelial to mesenchymal transition 0.004
NM=001005339 RGSIO RegulatorofG-proteinsignallinglO Negative regulation of signal O.oI8

transduction
NM 022044 SDF2Ll Stromal cell-derived factor2-1ikeI Hydrolase activity 0.008
NM-006597 HSPA8 Heat shock 70kDaprotein 8 Protein folding <0.001
NM=006810 PD1A5 Protein disulfide isomerase family A, Electron transport 0.043

member 5
ENST00000343 149 nJa <0.001

NM 006303 JTVI JTVIgene Translation 0.034
NM=005720 ARPCIB Actin related protein 2/3 complex, Cell motility 0.023

subunitlB
NM_I77528 SULTlA2 Sulfotransferasefamily,cytosolic,IA, Catecholamine metabolic process

phenol-preferring, member 2
T68867 RPS26 RibosomalproteinS26 Translation 0.025
NM_014624 SI00A6 SIOO calcium binding protein A6 Regulation ofprogression through cell 0.008

cycle
NM 006597 HSPA8 Heat shock 70kDaprotein 8 Protein folding <0.001
NM=016113 TRPV2 Transient receptor potential cation channel, Ion transport <0.001

subfamily V, member 2
NM 001311 CRIPI Cysteine-rich protein I (intestinal) Cell proliferation 0.022
NM-00I002033 HNI Hematological and neurological expressed I nJa 0.011
NM=002032 FTHI Ferritin, heavy polypeptide I Iron ion transport 0.001



NM 000636 som Superoxidedismutase2,mitochondrial Responsetosuperoxide <0.001
NM-006748 SLA Src-like-adaptor Intracellular signaling cascade 0.039
NM-080386 TUBA3D Tubulin,a1pha3d n/a 0.023
NM-003897 IER3 Immediate early response 3 Apoptosis 0.040
THC2266610 THC2266610 n/a 0.003
NM 000404 GLBI Galactosidase, beta I Carbohydrate metabolic process 0.003
NM-152692 CIGALTICI CIGALTI-specificchaperonel Protein folding 0.011
NM=004636 SEMA3B Serna domain, immunoglobulin domain, Cell-cell signaling 0.017

shortbasicdomain,secreted,3B
NM_004838 HOMER3 Homer homolog 3 (Drosophila) Protein targeting 0.011

A 24 P349756 n/a 0.030
NM 182924 MICALL2 MICAL-like2 Endocytosis 0.027
NM-001069 TUBB2A Tubulin,beta2A Microtubule-based movement 0.014
NM-199484 Chromosome 20 open reading frarne 24 Biological-.process <0.001
NM=002807 PSMDI Proteasome (prosome, macropain)26S Regulation ofprogression through cell 0.001

subunit, non-ATPase, I cycle
NM 003329 TXN Thioredoxin Electron transport 0.001
U60266 MAN2BI Mannosidase, alpha, class 2B, member I Carbohydrate metabolic process 0.001
XM 374010 LOC389033 Hypothetical LOC389033 n/a 0.039
NM-000447 PSEN2 Presenilin2(A1zheimerdisease4) Cell fate specification 0.047
NM-003329 TXN Thioredoxin Electron transport 0.001
NM-001628 AKRIBI A1do-ketoreductasefamilyl,memberBI Carbohydrate metabolic process 0.050
NM=021103 TMSBIO Thymosin, beta 10 Cytoskeleton organization and 0.005

biogenesis
NM 003746 DYNLLI Dynein,lightchain,LC8-typel Microtubule-based process 0.040
NM-017725 G patch domain containing 4 Nucleic acid binding 0.009
NM=002119 HLA-DOA Major histocompatibility complex, class II, Antigen processing and presentation of 0.025

DO alpha peptide or polysaccharide antigen via
MHCclassII

NM 001124 ADM Adrenomedullin cAMP biosynthetic process 0.013
NM=001666 ARHGAP4 Rho GTPase activating protein 4 Cytoskeleton organization and 0.038



biogenesis
L48692 PNOI PartnerofNOBlhomolog(S.cerevisiae) RNA binding 0.037
NM 006082 TUBAIB Tubulin,alphalb Microtubule-based movement 0.004
NM-080738 EDARADD EDAR-associated death domain Signal transduction 0.049
NM=031894 FTHLl7 Ferritin, heavy polypeptide-like 17 Iron ion transport 0.022

Major facilitator superfamily domain Transport 0.025
NM 022736 MFSDI containing I
NM-0057 I7 ARPC5 Actin related protein 2/3 complex, subunit 5 Cellmotility 0.005
NM-005347 HSPA5 Heat shock 70kDaprotein 5 Nucleotide binding 0.019
NM-006058 TNIPI TNFAIP3 interacting protein I Translation 0.032
NM-024101 MLPH Melanophilin Protein targeting 0.032
NM=005335 HCLSI Hematopoietic cell-specific Lyn substrate I Regulation of transcription, DNA- 0.026

dependent
NM 015476 CI8orflO Chromosome 18 open reading frame 10 Cytoplasm 0.042
NM)01540 HSPBI Heat shock 27kDaprotein I Regulation of translational initiation 0.002

Down-regulated

NM_005181 CA3 Carbonic anhydrase III, muscle specific One-carbon compound metabolic

AL713792 LOC13 1873
process

0.001Hypothetical protein LOCI31873 Phosphate transport
NM_025135 FHOD3 Formin homology 2 domain containing 3 Cellular component organization and <0.001

biogenesis
NM 032717 MAGI Lung cancer metastasis-associated protein Metabolic process 0.001
XM-930891 XM 930891 n/a 0.025
BC041636 LOC401320 Hypothetical LOC401320 n/a 0.019
NM_020207 C9orfl02 Chromosome 9 open reading frame 102 n/a 0.040

A 32 P51313 n/a 0.004
AK023047 ZNF702 Zhicflngerprotein702 Transcription 0.032
NM_001185 AZGPI Alpha-2-glycoproteinl,zinc-binding Irnmuneresponse <0.001



NM 145244 DDlT4L DNA-damage-inducible transcript 4-like n/a 0.032
NM=003273 TM7SF2 Transmembrane 7 superfamily member 2 Cholesterolbiosyntheticprocess 0.006

A 32 P331700 n/a 0.010
ENSTOOOO0256969 n/a 0.047

NM 015678 NBEA Neurobeachin Cytoplasm 0.042
NM=014959 CARD8 Caspase recruitment domain family, Regulationofapoptosis 0.028

member 8
NM_002065 GLUL Glutamate-ammonia ligase (glutamine Regulation of neurotransmitter levels

synthetase)
THC2404058 THC2404058 n/a 0.022
NM_003471 KCNABI Potassiumvoltage-gatedchannel,shaker- Ion transport 0.009

related subfamily, beta member I
NM 018530 GSDML Gasdermin-like n/a <0.001
NM-182568 FLJ36492 HypotheticaiproteinFLJ36492 n/a 0.027
AK125162 CDNA FLJ43 172 tis, clone FCBBF3007242 n/a 0.049
NM 000165 GJAI Gapjunctionprotein,aiphal,43kDa Transport 0.012
AK023572 CDNA FLJl3510 tis, clone PLACEI005 146 n/a 0.045
NM 019849 SLC7AlO Solutecarrierfamily7,memberlO Transport 0.042
NM-002126 HLF Hepatic leukemia factor Transcription <0.001
NM-020682 AS3MT Arsenicmethyltransferase Metabolic process 0.046
NM=022746 MOSCI MOCO suJphurase C-terminai domain Oxidoreductase activity 0.023

containing I
NM_130436 DYRKIA Duai-speciticitytyrosine-(Y)- Nervous system development

phosphorylationregulatedkinaselA
NM_015423 AASDHPPT Aminoadipate-semiaidehyde Macromolecule biosynthetic process

dehydrogenase-phosphopantetheinyl
transferase

NM 016542 RP6-213HI9.1 Serine/threonine protein kinase MST4 Protein amino acid phosphorylation 0.005
NM=024867 FLJ23577 KPL2protein Protein dimerization activity 0.047

A 24 PI6361 n/a 0.042
Methyi-CpG binding domain protein 5 DNA binding 0.049



BX640978 PCNXL3 Pecanex-like3(Drosophila) Integral to membrane 0.028
BC025324 Homo sapiens, clone IMAGE:3344449 n/a 0.039
CR749800 IKZF5 lKAROS family zinc finger 5 (pegasus) Nucleic acid binding 0.034
THC23 14599 THC23 14599 n/a 0.045
NM 001902 CTH Cystathionase Amino acid biosynthetic process 0.005
NM-015323 KlAA0776 KlAA0776 Protein binding 0.042
R60067 RTN4RLI Reticulon 4 receptor-like I Axon regeneration 0.004
NM 001551 IGBPI Immunoglobulin (CD79A) binding protein I Response to biotic stimulus 0.009
NM-00l039361 PRAMEFIO PRAME family member 10 n/a 0.039
NM-003970 MYOM2 Myomesin2 Striated muscle contraction 0.009
NM=006996 SLCI9A2 Solute carrier family 19 (thiamine Transport <0.001

transporter),member2
AK025816 RGNEF Rho-guanine nucleotide exchange factor Intracellular signaling cascade 0.001
NM 018374 TMEMI06B Transmembraneproteinl06B Membrane 0.026
NM=001004356 FGFRLI Fibroblast growth factor receptor-like 1 Regulation of cell growth 0.043

A 24 P212997 n/a 0.025
NM 178549 ZNF678 Zj;;cfingerprotein678 Transcription 0.001
NM=004071 CLKI CDC-like kinase I Regulation of progression through cell O.oJ8

cycle
NM_022058 SLC4AIO Solutecarrierfamily4,sodiumbicarbonate Sodium ion transport

transporter-like, member 10
A 24 P167059 n/a 0.046

NM 024581 C60rf60 Chro;;:;osome 6 open reading frame 60 n/a 0.042
NM=152686 DNAJCI8 DnaJ (Hsp40) homolog, subfamily C, Protein folding 0.043

member 18
A 24 P298143 n/a 0.049

NM 001012651 Natural killer-tumor recognition sequence Protein folding 0.045
BX647070 RORB RAR-related orphan receptorB Transcription 0.008
NM 002591 PCKI Phosphoenolpyruvatecarboxykinasel Gluconeogenesis 0.038
NM-018974 UNC93A Unc-93homologA(C.elegans) Biological...process 0.047
AF333762 AF333762 n/a 0.046



Transcribed locus, strongly similar to
XP_001096828.1 similar to RP42 homolog

AW994037 CDNA clone lMAGE:6025865 nJa O.oJ8
CR749233 ZNF626 Zinc finger protein 626 Transcription 0.002
THC2373083 THC2373083 nJa 0.040
NM 001063 TF Transferrin Ion transport 0.049
BX64883I LOC132430 Similartopoly(A) binding protein, nJa 0.046

cytoplasmic 4 (inducible form)
NM 032523 OSBPL6 Oxysterolbindingprotein-like6 Lipid transport 0.026
NM)12076 Crurnbshomologl(Drosophila) Establishrnentandlormaintenanceof 0.042

cell polarity
NM_001025366 VEGFA Vascular endothelial growth factor A Regulation of progression through cell

cycle 0.017
NM 002612 PDK4 Pyruvate dehydrogenase kinase, isozyme 4 Carbohydrate metabolic process 0.036
NM-006007 ZFAND5 Zinc finger, ANI-type domain 5 Biological"'process 0.006
NM)02736 PRKAR2B Protein kinase, cAMP-dependent, Protein arnino acid phosphorylation 0.045

regulatory, type II, beta
NM 033410 ZNF764 Zinc finger protein 764 Transcription 0.024
NM-02247I Germ cell-less homolog I (Drosophila)-like Multicellular organismal development 0.012
NM-024786 ZDHHCII Zinc fmger, DHHC-type containing II Zinc ion binding 0.043
NM-016027 LACTB2 Lactamase,beta2 Hydrolase activity 0.032
NM=022910 NORG4 NORG family member 4 Response to stress 0.018

A 24 P75888 nJa 0.022
NM 032947 MSTl50 MSTPI50 Membrane 0.027
NM-014326 DAPK2 Death-associated protein kinase 2 Proteinarninoacidphosphorylation 0.045
NM-00583I CALCOC02 Calcium binding and coiled-coil domain 2 Viral reproduction 0.046
NM=024336 IRX3 Iroquois homeobox protein 3 Regulation of transcription, DNA- 0.037

dependent
NM 001919 DCI Dodecenoyl-Coenzyme A delta isomerase Lipid metabolic process 0.042
NM-138732 NRXN2 Neurexin2 Cell adhesion 0.048
NM=152271 LONRFI LON peptidase N-terminal domain and ring ATP-dependent proteolysis 0.006



finger I
NM002611 PDK2 Pyruvate dehydrogenase kinase, isozyme 2 Carbohydrate metabolic process 0.004
NM=001896 CSNK2A2 Caseinkinase2,alphaprimepolypeptide Protein amino acid phosphorylation 0.027

A 23 PI13453 nJa 0.043
A-24-P938006 nJa 0.039

NM_001698 AUH AU RNA binding protein/enoyl-Coenzyme mRNA catabolic process 0.019
A hydratase

NM_000016 ACADM Acyl-Coenzyme A dehydrogenase, C-4 to Electron transport
C-12straightchain

THC2404169 THC2404169 nJa 0.047
NM 148170 CTSC CathepsinC Proteolysis 0.001
NM)0297I SATBI SATBhomeoboxl Establishment andformaintenance of 0.02

chromatin architecture
NM 032901 CI20rf62 Chromosome 12 open reading frame 62 Membrane 0.001
NM-138779 C130rt27 Chromosome 13 open reading frame 27 nJa 0.025
THC2437430 THC2437430 nJa 0.047
NM 001185 AZGPI Alpha-2-glycoproteinl,zinc-binding Immune response 0.011
NM-032329 ING5 lnhibitorofgrowthfamily,member5 Protein amino acid acetylation 0.027
NM=018424 EPB41L4B Erythrocyte membrane protein band 4.1 Structural constituent of cytoskeleton 0.042

like4B
NM_003798 CTNNALI Catenin,alpha-likel Apoptosis 0.024

ENSTOOOO0355095 nJa 0.031
NM 005839 SRRMI Serine/arginine repetitive matrix I mRNAprocessing 0.049
NM=024790 CSPPI Centrosome and spindle pole associated Microtubule 0.015

protein I
NM 018196 TMLHE Trimethyllysinehydroxylase, epsilon Electron transport 0.017
NM-024685 BBSIO Bardet-BiedlsyndromelO Protein folding 0.025
NM)04726 REPS2 RALBPI associated Eps domain Protein complex assembly 0.047

containing 2
NM_015570 AUTS2 Autism susceptibility candidate 2 Biological-process 0.008

ENST0000024422I nJa 0.042



NM 006271 SIOOAI SIOO calcium binding protein Al Intracellular signaling cascade 0.042
NM)06348 COGS Componentofoligomericgolgi complex 5 Intra-Goigi vesicle-mediated transport 0.036

Peroxisome organization and
NM 000466 PEXI Peroxisome biogenesis factor I biogenesis 0.Dl8
NM-024051 C7orf24 Chromosome 7 open reading frame 24 n/a 0.014
NM-001417 Eukaryotic translation initiation factor4B Translation 0.010
NM-145345 UBXD5 UBX domain containing 5 Cytoplasm 0.047
NM=015595 SGEF Src homology 3 domain-containing guanine Regulation of Rho protein signal 0.042

nucleotide exchange factor transduction
NM_O I6272 TOB2 Transducer ofERBB2, 2 Regulation of progression through cell

cycle
NM 175910 ZNF493 Zinc finger protein 493 Transcription 0.036
NM=001206 KLF9 Kruppel-like factor 9 Regulation of transcription from RNA 0.007

polymerase II promoter
NM_032902 PPPIRI6A Protein phosphatase I, regulatory Protein binding

subunitl6A
AKI2873I ATF2 Activating transcription factor 2 Transcription 0.046
NM_000474 TWIST! Twist homolog I (Drosophila) Negative regulation of transcription 0.027

from RNA polymerase II promoter
NM 005327 HADH Hydroxyacyl-Coenzyme A dehydrogenase Lipid metabolic process <0.001
NM-138333 FAMI22A Farnilywithsequencesimiiarityl22A n/a 0.030
NM-0325 I5 BOK BCL2-relatedovariankiller Inductionofapoptosis 0.040
NM-006859 LIAS Lipoic acid synthetase Metabolic process 0.043
NM-178335 CCDC50 Coiled-coil domain containing 50 n/a <0.001
NM=021818 SAVI Salvador homolog I (Drosophila) Signal transduction 0.040

ENSTOOOO0296015 n/a 0.047
NM 018660 ZNF395 Zincfmgerprotein395 Transcription 0.032
AK126842 FLJ44894 Similar to zinc finger protein 91 n/a 0.026
NM 004428 EFNAI Ephrin-AI Cell-cell signaling 0.020
NM-033107 GTPBPIO GTP-bindingproteinlO GTPbinding 0.030
NM=006586 TNRC5 Trinucleotide repeat containing 5 n/a 0.047



NM_003273 TM7SF2 Transmembrane 7 superfamily member 2 Cholesterolbiosyntheticprocess 0.001
A 23 P96017 n/a 0.033
ENSTOOOO0308603 n/a 0.032

NM 133443 GPTI Glutamic pyruvate transaminase 2 Biosyntheticprocess 0.005
NM)33474 ABCAII ATP-bindingcassette,sub-familyA, n/a 0.039

memberll(pseudogene)
NM 033017 TRIM4 Tripartite motif-containing 4 Protein binding 0.011
NM-001257 COHl3 CadherinI3,H-cadherin(heart) Cell adhesion 0.022
AK098569 OKFZp667G2110 Hypothetical protein OKFZp667G211O n/a 0.014
NM_006243 PPP2R5A Proteinphosphatase2,regulatorysubunitB, Signal transduction 0.032

alphaisoform
NM 001006641 SLC25A25 Solute carrier family 25 Transport 0.045
NM=015141 GPOlL Glycerol-3-phosphatedehydrogenasel-like Carbohydrate metabolic process 0.008

A 24 P897062 n/a 0.040
NM 021643 TRIB2 Trlbbleshomolog2(Drosophila) Protein arnino acid phosphorylation 0.010
NM=018357 LARP6 La ribonucleoprotein domain family, RNA processing 0.025

member 6
NM 002676 PMMI Phosphomannomutasel Metabolic process 0.007
NM=145753 PHLOB2 Pleckstrin homology-like domain, family B, Cytoplasm 0.026

member 2
NM 006007 ZFAND5 Zinc finger, ANI-type domain 5 Biological-.process 0.009
NM-012241 SIRT5 Sirtuin5(S.cerevisiae) Chromatin silencing 0.038
NM=014802 KlAA0528 KlAA0528 Transport 0.040

A 24 P928489 n/a 0.032
NM 058183 SON DNA binding protein Anti-apoptosis 0.049
NM- 005760 CEBPZ CCAAT/enhancer binding protein zeta Transcription 0.027
NM=001011724 RPll-78J21.1 Heterogeneous nuclear ribonucleoprotein Nucleotide binding 0.041

AI-like
NM_016205 POGFC PlateletderivedgrowthfactorC Regulation of progression through cell

cycle
NM_006667 PGRMCI Progesterone receptor membrane Receptor activity



component I
NM 003932 ST13 Suppression of tumorigenicity 13 Protein folding 0.021
NM)03576 STK24 Serine/threonine kinase 24 (STE20 Protein amino acid phosphorylation 0.001

homolog,yeast)
NM_0069 I8 SC5DL Sterol-C5-desaturase(ERG3delta-5- Lipid metabolic process

desaturasehomolog,S.cerevisiae)-like
ENSTOOOO0316369 n/a 0.022

NM_138330 ZNF675 Zinc finger protein 675 Regulation of transcription, DNA- 0.003
dependent

NM 016824 ADD3 Adducin3(gamma) Structural constituent of cytoskeleton 0.037
NM-005836 HRSPI2 Heat-responsive protein 12 Regulation of translational termination 0.031
NM-00I025356 TMEMI6F Transmembraneproteinl6F Membrane 0.010
NM-00229I LAMB I Laminin, beta I Cell adhesion 0.041
NM-021922 FANCE Fanconianemia,complementationgroupE DNA repair 0.012
NM-012081 ELL2 Elongation factor, RNA polymerase II, 2 Transcription 0.039
NM-001823 CKB Creatine kinase, brain Nucleotide binding 0.036
NM=017572 MKNK2 MAP kinase interacting serine/threonine Regulation of translation <0.001

kinase 2
NM 005611 RBL2 Retinoblastoma-like 2 (P130) Transcription 0.042
NM-181708 BCDIN3D BCDIN3 domain containing n/a 0.032
NM-0024 I3 MGST2 Microsomal glutathione S-transferase2 Signal transduction 0.028
NM)52350 CI7orf45 Chromosome 17 open reading frame 45 Mitochondrion 0.022

A 24 PI18391 n/a 0.047
NM_003605 O=iinked N-acetylglucosamine (GlcNAc) Protein amino acid O-linked <0.001

transferase glycosylation
NM 152783 D2HGDH D-2-hydroxyglutaratedehydrogenase Electron transport 0.040
NM=080632 UPF3B UPF3reguiatorofnonsensetranscripts mRNA catabolic process, nonsense- 0.049

homologB(yeast) mediated decay
NM_004453 ETFDH Electron-transferring-flavoprotein Electron transport

dehydrogenase
A_24]814872



NM_005433 YES I V-yes-I Yamaguchi sarcoma viral oncogene Protein modification process
homolog I

NM 033535 FBXL5 F-box and leucine-rich repeat protein 5 Proteinubiquitination 0.036
NM=017801 CMTM6 CKLF-like MARVEL transmembrane Chemotaxis 0.020

domain containing 6
NM_004096 EIF4EBP2 Eukaryotic translation initiation factor4E Insulin receptor signaling pathway

binding protein 2
THC2280003 THC2280003 n/a 0.044
NM_001967 EIF4A2 Eukaryotictranslationinitiationfactor4A, Translation 0.032

isoforrn2
NM 003430 ZNF91 Zincfmgerprotein91 Transcription 0.028
NM-000245 MET Met proto-oncogene Activation ofMAPK activity 0.012
NM=203282 ZNF254 Zinc finger protein 254 Negative regulation of transcription 0.001

from RNA polymerase II promoter
NM_014452 TNFRSF21 Tumor necrosis factor receptor superfamily, Apoptosis

member 21
NM 001277 CHKA Choline kinase alpha Lipid metabolic process 0.005
NM=000189 HK2 Hexokinase 2 Regulation of progression through cell 0.025

cycle
NM_003576 STK24 Serine/threonine kinase 24 (STE20 Protein arnino acid phosphorylation

homolog, yeast)
NM_003489 NRIPI Nuclear receptor interacting protein I Negative regulation of transcription

from RNA polymerase II promoter
NM 152858 WTAP Wilms tumor I associated protein Nucleus 0.043
NM-019058 DDIT4 DNA-damage-inducible transcript 4 n/a 0.007
NM-012215 MGEA5 Meningioma expressed antigen 5 Glycoprotein catabolic process 0.006
NM=00433I BNIP3L BCL2/adenovirus EIB 19kDa interacting Apoptosis 0.020

protein3-like
NM_006806 BTG3 BTG family, member 3 Regulation of progression through cell

cycle
NM_000076 CDKNIC Cyclin-dependentkinaseinhibitorlC Regulation ofcyclin-dependent protein



kinase activity
NM 002129 HMGB2 High-mobility group box 2 DNA replication 0.047
NM-03328I MRPS36 Mitochondrial ribosomal protein S36 Translation 0.032
THC2436072 THC2436072 n/a 0.049
NM 024573 C6orf211 Chromosome 6 open reading frame 211 Protein binding 0.032
NM=001568 EIF3S6 Eukaryotictranslation initiation factor 3, Translation 0.042

subunit 6
NM 007236 CHP Calcium binding protein P22 Potassium ion transport 0.013
NM-022 I 57 RRAGC Ras-relatedGTPbindingC Transcription 0.021
NM-003429 ZNF85 Zinc fmgerprotein 85 Transcription 0.049
NM=007080 LSM6 LSM6 homolog, U6 small nuclear RNA mRNAprocessing 0.003

associated(S.cerevisiae)
NM_001967 EIF4A2 Eukaryotic translation initiation factor4A,

isoform2
NM 016304 CI5orfI5 Chromosome 15 open reading frame 15 Translation 0.025
NM-006265 RAD21 RAD21 homolog (S. pombe) Double-strand break repair 0.008
NM-032303 HSDL2 Hydroxysteroiddehydrogenaselike2 Metabolic process 0.041
NM-019095 CRLSI Cardiolipin synthase I Phospholipidbiosyntheticprocess 0.015
NM=000255 MUT Methylmalonyl Coenzyme A mutase Metabolic process 0.047

ENSTOOOO0361227 n/a 0.037
NM_138286 ZNF68 I Zinc fmgerprotein 681 Nucleic acid binding 0.022

ENST0000033 1425 n/a 0.019
NM 173531 ZNFIOO Zinc finger protein 100 Transcription 0.003
NM)05871 SMNDCI Survival motor neuron domain containing I Spliceosomeassembly 0.043

ENSTOOOO0361789 n/a 0.001
ENST0000036I845 n/a 0.017

NM_031372 HNRPDL Heterogeneous nuclear ribonucleoprotein Transcription 0.025
D-like

NM 178558 ZNF680 Zinc finger protein 680 Transcription 0.017
NM=022818 MAPILC3B Microtubule-associated protein I light chain Ubiquitincycle 0.040

3 beta





Table 4.7 Differentially expressed genes in subcutaneous adipose tissue in lean (n=8) and obese (n=8) subjects due to

a40%hypercaloricdiet.'

Fold
Gene Symbol Gene Title GO Biolo2ical Process Chan2e2 p value

Up-regulated

NM_080744 SRCRB4D Scavenger receptor cysteine rich Receptor activity
domain containing, groupB (4 domains)

A_24]2123 14 A_24]2123 14 n/a 1.65 <0.001
NM_00J037984 MGCI5523 HypotheticalproteinMGCI5523 n/a 1.82 0.001
NM_004265 FADS2 Fatty acid desaturase 2 Lipid metabolic process 2.06 <0.001
NM_032525 TUBB6 Tubulin,beta6 Microtubule-based movement 1.55 <0.001
NM 003681 PDXK Pyridoxal (pyridoxine, vitamin B6) kinase Pyridoxinebiosyntheticprocess 1.88 <0.001
NM=001017389 SULTlA4 Sulfotransferasefamily,cytosolic,IA, Synaptic transmission 1.37 0.008

phenol-preferring, member 4
NM_006088 TUBB2C Tubulin,beta2C Cell motility 1.42 <0.001
NM_006755 TALDOI Transaldolasel Carbohydrate metabolic process 1.48 <0.001
NM 014172 PHPTl Phosphohistidinephosphatasel Dephosphorylation 1.42 <0.001
NM=004343 CALR Calreticulin Regulation of transcription, 1.23 0.001

DNA-dependent
Mitochondrial electron

NM_004146 NDUFB7 NADH dehydrogenase (ubiquinone) I beta transport,
subcomplex, 7, 18kDa NADH to ubiquinone

NM_005063 SCD Stearoyl-CoAdesaturase(delta-9-desaturase) Lipid metabolic process 3.56 <0.001
AF132203 PROl933 n/a 2.23 <0.001



NM_013402 FADS I Fatty acid desaruraseI Lipid metabolic process 2.21 <0.001
NM 153837 GPRI14 Gprotein-coupledreceptorl14 Signal transduction 2.07 <0.001
NM)18479 ECHDCI Enoyl Coenzyme A hydratase domain Metabolic process 1.95 <0.001

containing I
NM_015415 BRP44 Brain protein 44 Mitochondrion 1.73 <0.001
NM_00I063 TF Transferrin Ion transport 2.06 <0.001
NM_004823 KCNK6 Potassiurnchannel,subfamilyK,member6 Ion transport 1.75 <0.001

Tricarboxylic acid cycle 1.52
NM_002300 LDHB LactatedehydrogenaseB intermediate metabolic

process
1.73NM_005729 PPIF PeptidylprolylisomeraseF(cyclophilinF) Protein folding <0.001

A_24]600622 A 24 P600622 n/a 1.62 <0.001
ATP ;ynthase, H+ transporting, 1.34

NM_001686 ATP5B mitochondrial Generation of precursor
Flcomplex,betapolypeptide metabolites and energy

NM_031280 MRPSI5 Mitochondrial ribosomal protein SIS Translation 1.45
ATP synthase, H+ transporting, 1.45
mitochondrial

NM_00I001937 ATP5AI Flcomplex,alphasubunitl,cardiac Ion transport
muscle

NM 007361 NID2 Nidogen2(osteonidogen) Cell adhesion 1.47 <0.001
NM=024090 ELOVL6 ELOVL family member 6, elongation of Fatty acid elongation 3.29 0.004

long chain fatty acids
NM 000284 PDHAI Pyruvate dehydrogenase (lipoamide) alpha I Acetyl-CoA metabolic process 1.38 O.oJI
NM=004092 ECHSI Enoyl Coenzyme A hydratase, short chain, I, Generation of precursor 1.64 <0.001

Mitochondrial metabolites and energy
DihydrolipoamideS-acetyltransferase(E2 Acetyl-CoAbiosynthetic

NM_00193 I DLAT component of pyruvate dehydrogenase process
complex)



A_24]213 175 A_24]213175 nJa lAO 0.009

NM_198402 PTPLB Protein tyrosine phosphatase-like, memberb Protein binding 1.53 0.D15

NM_145693 LPINI Lipinl Lipid metabolic process 1.56 <0.001

NM_001262 CDKN2C Cyclin-dependentkinaseinhibitor Cell cycle lAO 0.010

NM_007236 CHP Calcium binding protein P22 Potassium ion transport 1.25 0.D11

NM_00229I LAMB I Laminin,betal Cell adhesion 1.23 0.049

Down-regulated

NM_004773 ZNHIT3 Zinc fmger, HIT type 3 Regulation of transcription,
DNA-dependent

NM_000610 CD44 CD44 molecule (Indian blood group) Cell adhesion -1.41 0.029

NM 000245 MET Met proto-oncogene Activation ofMAPK activity -1.66 0.001
NM=000076 CDKNIC Cyclin-dependentkinaseinhibitorlC Regulationofcyclin-dependent -1.63 <0.001

protein kinase activity

NM_006996 SLCI9A2 Solute carrier family 19, member 2 Transport -1.55 0.011

NM_148170 CTSC CathepsinC Proteolysis -1.70 0.001

NM 002612 PDK4 Pyruvate dehydrogenase kinase, isozyme 4 Carbohydrate metabolic process -1.73 0.002

'Significant differentially expressed genes due to overfeeding were identified by two-way ANOVA analyses using

GeneSifter@.

nJa-notapplicable (no assigned GO Biological Process)

2Fold change was calculated relative to pre-overfeeding values.



(thiamine transporter), member 2 (SLCJ9A2), cathepsin C (CTSC), and pyruvate

dehydrogenase kinase, isozyme 4 (PDK4).

The unique design of our study allowed us to investigate possible genes thatwere

differentially regulated between lean and obese subjects in response to overfeeding(an

interaction effect). Six genes demonstrated a significant adiposity status byoverfeeding

interaction (Table 4.8). These were transferrin (TF), stearoyl-CoA desaturase (SCD),

transaldolase I (TALDOl), cathepsin C (CTSC), insulin receptor substrate 2 (IRS2), and

pyruvate dehydrogenase kinase, isozyme 4 (PDK4). Expression of these six genes was

verified using RT PCR and demonstrated similar expression trends compared to the

microarraydata. Expression of TF was significantly increased in lean subjects following

overfeeding, however no significant change in expression levels was evident in obese

subjects (Figure 4.1). SCDwas significantly increased in both lean and obese subjects,

however the increase in expression level was much more pronounced in lean subjects.

TALDOJ was significantly increased in lean subjects in response to the overfeeding

intervention while expression was slightly decreased in obese subjects. Expressionof

CTSC was decreased in lean subjects after overfeeding, while no change was evident in

obese subjects. IRS2 and PDK4 were significantly decreased in both lean and obese

individuals following overfeeding however the change was more substantial in lean



Table 4.8 Genes displaying a significant adiposity status by overfeedinginteractioneffect.'

Gene Symbol GO Biological Process pvalue

Carbohydrate metabolic process

Stearoyl-CoAdesaturase(delta-9-desaturase) Lipid metabolic process

Ion transport

NM_006755 TALDOI

NM_005063 SCD

NM_001063 TF

NM_148l70 CTSC

NM_002612 PDK4

NM_003749 IRS2

CathepsinC

Pyruvate dehydrogenase kinase, isozyme 4

Insulin receptor substrate 2

Proteolysis

Carbohydrate metabolic process

Glucose metabolic process

I Significant differentially expressed genes were identified by two-way ANaVA analyses using GeneSifter@





Figure 4.1 Mean fold change in a subset of genes selected forvalidation of

microarray results using real-time peR (n =16; 8 lean, 8 obese). Data (mean ± SE)

are expressed as mean fold change compared to lean, pre-overfeeding values. A. TF,

SCD, and TALDOI were increased in lean subjects in response to the overfeeding

intervention while no significant change was evident in obese subjects. B. CTSC,

IRS2, and PDK4 were decreased in lean subjects in response to the overfeeding

intervention while no significant change was evident in obese subjects.
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Significance of biological pathways represented in genes differentially

regnlated by overfeeding

Table 4.9 represents KEGG pathways significantly affected by the overfeeding

intervention. A z-score report was generated displaying only those terms with a z-score

greater than 2.0. Genes involved in both carbohydrate and lipid metabolism were

significantly affected by the overfeeding intervention. Specifical1y,pyruvatemelabolism,

glycolysis/gluconeogenesis, propanoate metabolism, and the pentosephosphatepathway

all had a significantover-representalionof genes following the overfeeding protocol. In

terms of lipid metabolism, fatty acid elongation in the mitochondria and Iinoleicacid

metabolism both had a z-score greater than 2.0. Interestingly, oxidative phosphorylation

and sulfur metabolism, two pathways involved in energy metabolism, also had significant

z-scores. A number of other pathways involved in cell communication (gap junction),

cell signaling (ECM-receplor interaction), the endocrine system (pPAR signaling

pathway, and metabolism of cofactors and vitamins {vitamin 86 metabolism, thiamine

metabolism, and riboflavin metabolism}) were all significantly affected by the

hypercaloricdiet.

Numerous studies have been conducted in recent years that have examined

differences in gene expression profiles of adipose tissue between lean and 0 bese

individuals. Others have performed site comparisons (subcutaneousvs. visceral adipose

tissue), and few have investigaled changes in gene expression inresponse to a negative
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Table 4.9 Effect of overfeeding on the expression of KEGG pathways.·

KEGG Pathway Lisf Array3

VitaminB6metabolism 5 5.67
Pyruvate metabolism 42 5.58
Thiamine metabolism 7 4.74
Glycolysis/Gluconeogenesis 63 4.36
Alanine and aspartate metabolism 32 4.2
Propanoatemetabolism 32 4.2
Linoleic acid metabolism 35 3.98
Fatty acid elongation in mitochondria 10 3.89
Priondisease 12 3.51
Valine, leucine and isoleucine biosynthesis 12 3.51
Butanoatemetabolism 44 3.45
Pathogenic Escherichia coli infection - EHEC 49 3.21
Sulfur metabolism 14 3.21
Caprolactamdegradation 15 3.08
Cysteine metabolism 16 2.96
Riboflavin metabolism 16 2.96
Oxidative phosphorylation 114 2.89
PPAR signaling pathway 66 2.61
beta-Alanine metabolism 24 2.29
Pentosephosphatepathway 24 2.29
Benzoate degradation via CoA ligation 25 2.23
Limonene and pinene degradation 26 2.18
ECM-receptorinteraction 84 2.17
Aminosugars metabolism 28 2.07

i:aih:c~~yses and z-score report were generated ~Sing G~~eSifterlki.~; z-score was

derivedbydividingthedifferencebetweentheobservednurnberofgenesmeetinga

specific GO term and the expected nurnber of genes, based on the total nurnber 0 fthe

genes in the array.

2"List" refers to the nurnberofgenes belonging to that pathway that weresignificantly

differentially expressed due to the overfeeding intervention.

3"Array" refers to the total nurnberofgenes belonging to that pathway thatare

represented on the array.



energy balance, created through an increase in energy expenditure (241-243) or through

calorie restriction (244-245). However, the major factor leading to obesity is an energy

surplus, and there is currently no data available regarding changes in the transcriptomeof

adipose tissue during a positive energy balance in humans. We have performed, for the

first time, a study to comprehensively investigatetheexpressionprof1lesofabdominal

subcutaneous adipose tissue in response to an energy surplus induced through a short­

term positive energy challenge using whole human genome microarray technology.

Physical and biochemical parameters were compared between the current study

and our previous overfeeding studies (179, 196). The lean subgroup of8 subjects from

the current study was statistically similar to leansubjects(n= 37) from our previous

study for all parameters measured. In terms of the obese subgroup, these subjects had a

significantly higher BMI, weight, and %TF compared to overweight/obese subjects from

the previous study (data not shown). In addition, glucose was elevated in obese subjects

as well as insulin and insulin resistance. In the present study, we were interested in

investigating differences in gene expression between two extremesoftheweight

spectrum (leanvs obese) whereas the total overfeeding cohort contains subjectsspanning

the entire weight spectrum (lean, normal weight, overweight and obese) andtherefore

these results are not unexpected.

A major fmding in our study was the identification of 45 genes that were

differentially expressed in response to overfeeding. These genes are involved in a wide

variety of biological processes known to be implicated inthedevelopmentofobesity



including the immune response, lipid metabolism, and energy production. A number of

genes regulated by the overfeeding intervention have been identified in previous studies

as being differentially expressed in adipose tissue of lean and obese individuals(235),in

obese individuals following weight loss (239) and in diet-induced obese rats (253).

These include genes involved in lipid metabolism (SCD, FADSl), glucose metabolism

(IRS2, PDK4), cell adhesion processes (NlD2, CD44, LAMBl), immune response

(CTSC), and energy pathway/electron transport (ECHSl, NDUFB7). We have also

identified novel genes not previously examined in the context ofobesitythatare

regulated by a positive energy challenge. Their role in the development of human obesity

and in individual differences in the predisposition to weight gain is a valuable issue to

investigate.

It is known that there is agenetic basis for the predisposition to weight gainwhen

exposed to a positive energy balance, such as the current situation in Western societies.

However, as to how adiposity status may influence the genetic response to an energy

surplus in human adipose tissue has not been studied. This is very important because the

information obtained will provide insight into the genetic targets responsiblefortheinter­

individual differences in weight gain. An important finding in our study was the

discovery of six genes whose expression levels were significantly affected by adiposity

status during a positive energy challenge. These genes may represent the most promising

targets for future obesity research.



Of the six genes that displayed a significant adiposity status by treatment

interaction effect, three were up-regulated in lean subjects while no significant change

was evident in obese subjects includingSCD, TALDOJ, and TF. SCD is an iron-

containing enzyme involved in lipid metabolism, where it catalyzes a rate-limiting step in

the synthesis of unsaturated fatty acids (254). TALDOI is involved in both energy and

lipid metabolism where it acts as a key enzyme in the nonoxidative pentose phosphate

pathway. TF is involved in iron transport into cells by receptor-mediated endocytosis

(255) and is also routinely used as a nutritional marker in clinical settings. Atpresent,it

is difficult to speculate the role that each of these may play inthedevelopmentofobesity

without further study. TheproductsofSCD are the most abundant fatty acids in

triacylglycerols, cholesterol esters, and phospholipids. Aside from being components of

lipids, unsaturated fatty acids also serve as mediators of signal transduction, cellular

differentiation and apoptosis (256-258) and therefore changes in SCDactivitywouldbe

expected to have an effect on a variety of metabolic pathways including those involved in

obesity (259). Indeed,evidence indicates that high SCD activity favors fat storage and

obesity. In a recent study, diet-induced obese rats had an approximate 2-fold increase in

SCD expression compared to lean animals (253). Similarly, TF has also been identified

as a robust marker of weight status. SpecificallY,irondeficiencyisacommon

characteristic of morbidly obese patients as a result oflowtransferrin saturation (low

serum iron in the presence of high transferrin; 260). Up-regulation of these genes in lean

subjects in response to overfeeding seerns counter-intuitive given their function. As long

term expression may be detrimental to maintaining a normal body weight, it is plausible



that obese individuals have adapted to suppress expression as they were under conditions

ofa chronic energy surplus prior to taking part in this study. Conversely, it is also

reasonabletospeculatethatup-regulationofthesegenescouldbeaself-protective

mechanism in lean subjects. Further studies are certainly warranted to address the

biological significance of each of these genes before making any concrete statements

regarding their involvement in obesity.

The three additional genes displaying a significant interaction effect were CTSC,

IRS2, and PDK4. Expression of these was downregulated in lean subjects while no

significant change was evident in obese subjects. CTSC is involved in the immune

response, where it appears to be a central coordinator for activation of many serine

proteinases in immune/inflammatory cells (261). Although little is known regarding the

role CTSC plays in the development of obesity, it is widely acceptedthatobesity

represents an inflammatory state resulting from chronic activation of the innate immune

system. Interestingly, a protein with similar function, cathepsin S (CTSS) has recently

been identified as a novel marker of adiposity, specifically as a link betweenobesityand

atherosclerosis (240). It is possible that CTSC acts in a similar manner. The differential

expression of this gene requires further investigation to fully comprehend its role in the

pathogenesis of obesity.

IRS2 encodes a cytoplasmic signaling molecule that mediates the effects of

insulin and other cytokines (262). Numerous studies have shown a direct correlation

between common variants in this gene and severe obesity (263) and TID (264). In our



study, expressionofIRS2 was decreased in lean subjects following the hyperca10ricdiet

which may have contributed to the increase in insulin resistance evident inthese

individuals. No change was apparent inIRS2 expression in obese subjects following

overfeeding and similarly, no change in insulin resistance. Themechanismtbrough

which IRS2 acts in adipose tissue of lean subjects to in response to ahypercaloricdiet,

however, is still unclear.

PDK4 is a member of the pyruvate dehydrogenase kinase family, a group of

enzymes that inhibit the pyruvate dehydrogenase complex (PDC) by phospohorylating

one of its subunits (265). ActivationofPDK4resultsinmetabolicswitchingofoxidative

fuel use from glucose to fatty acids and occurs during times of starvation (266). Dietary

intake of carbohydrate results in an increase in activity of the PDC in white and brown

adipose tissues and liver of rats, likelytbrough inhibitionofPDK4activity(267). Inthis

manner, a decrease in PDK4 expression in lean subjects following overfeeding may

facilitate glucose clearance, tbrough activation of the PDC, to combat the excess energy

intake. This hypothesis is furtbersupported by the fact that increases in expression of

two key enzymes comprising the PDC (dihydrolipoamide S-acetyltransferase and

pyruvate dehydrogenase alpha 1) were evident in lean subjects inresponsetooverfeeding

but not in obese subjects. This protective molecular mechanism appears to be blunted in

obese subjects and necessitates furtberstudies to understand the role ofPDK4in the

genetic predisposition to weight gain.



The fmdings from our study highlight the importance of gene expression profiles

obtained from speeifietissues or organs essential for the development ofobesity. Future

studies are warranted to investigate expression profiles of other adipose tissuedepotsas

well as skeletal muscle and liverunderoverfeedingeonditions. Our study also refleets

the necessity of investigating ehanges in the transeriptome undereonditions similar to

obesity, sueh as a positive energy balanee.

In summary, we have examined the transeriptome of abdominal subcutaneous

adipose tissue undereonditions ofa positive energy balanee in human subjeets. Atotal

of45 genes were identified as being signifieantiy differentially expressed in response to

overfeeding. We were also able to identify six genes that displayed a differential

responsetotheoverfeedinginterventionbetweenleanandobesesubjects. Differential

expression of these genes may represent a defense meehanism at the moleeular level to

proteet the body against an energy surplus. Therefore, these genes are important targets

to further investigate for the role they play in the genetie predisposition towardsobesity.
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5

Conclusions, Limitations, and Future

Directions



5.1 Concluding remarks

Obesity is one of the leading causes of preventable death worldwide, with

increasing prevalence in both adults and children in recent years. It has beencalledone

of the most serious public health problems of the 21" century and becauseofthis, a surge

of research has been initiated to delineate the underlying causes of this in an attempt to

further our understanding of the mechanism of action of this disease. This thesis has

added to the growing body ofliterature concerning this by characterizing the obesity

phenotype in the NL population, investigating the role genetic variation plays in obesity-

related traits, and evaluating the genomic and endocrine response to apositiveenergy

challenge. By using a multi-tiered approach, we provide a more comprehensive overview

of the etiology of obesity.

First, we evaluated the precision ofBMI compared to a more accurate reference

method, DXA, in determining adiposity status. We found a significant discrepancy

between these two indices of obesity which has important clinical relevance as BMIisthe

most widespread method used to estimate obesity and its associated health risks. Adding

to these findings, we were then able to show that the discrepancy between BMI and DXA

affects the reported prevalence of a common obesity subtype, MHO. Specifically, we

found that approximately 50% of obese individuals are in fact, metabolically healthy,

which is significantly higher than previous reports of approximately 30%. Moreover,the

inconsistencies between BMI and DXA also had serious implications for another subtype

of obesity, MONW. Given the large range in %BF evident in BMI-defined normal
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weight individuals, we explored the risk associated with having high %BF in these

subjects. Perhaps not surprisingly, we found that those in the highesttertile for%BF had

an alrnost 3-fold increased risk of being metabolically unhealthy. Takentogether,these

three studies demonstrate the need for development of additional obesitymeasurement

tools in field settings, as well as increased clinical awareness of both MHO and MONW

Aside from characterizing the obesity phenotype, efforts were also made to

understand the genetic etiology of this disease. Usingacandidategeneapproach,genetic

association studies were performed on NAMPT and RBP4, encoding two novel

adipokines,visfatinandRBP4,respectively. We tested the association between variants

within and/or near these genes and obesity-related traits including serurn lipids,markers

of glucose metabolism, and systemic inflarnmation. Although we did notfmd any

significant association between genetic variation in NAMPT and these traits, we did

observe an association between two SNPs in RBP4 and HDL cholesterol levels. In

particular, carriers of the minor allele had significantlyhigherserurnHDLcholesterol

suggesting that these variants may offer a protective effect against the developmentof

dyslipidemia.

Lastly, we moved from our large-scale population-based studies to a smaller scale

overfeeding intervention. Perhaps the most novel of all findings in this thesis, we

generated 45 obesity candidate genes from global gene expression profiling of

subcutaneous adipose tissue of men undergoing the overfeeding challenge. Of these 45,



six are extremely promising targets as they demonstrated a differential responsebetween

lean and obese individuals to overfeeding and likely contribute to the inter-individual

variation inweigbt gain. It is difficult to speculate the exact mechanism of action for

each of these genes regarding the development of obesity with the givendala,however,

future studies involving murine models are planned to discem an exact role for each of

these candidates. Furthermore, we also found that RBP4 was not regulated by a positive

energy balance in young men however it may potentially serve as a predictor of the

response of insulin resistance to the intervention. The findings from our nutritional

intervention are very valuable as few overfeeding studies have currently been completed.

By attempting to mimic the chronic energy surplus evident in the Western world today,

we have likely identified novel mechanisms of action for obesity thatwould otherwise go

In conclusion, this thesis has provided insigbt into the prevalence ofobesityand

its subtypes in theNL population as well as the underlying genetic and endocrine

mechanisms involved in the development of this disease. The major strength of the

current work lies in the fact that we have accomplished this goal using a number of

different techniques allowing for full exploitation of the dataavailable. UltimatelY,the

objectiveofallobesityresearchistoenhancecurrentpreventionandtreatmentstrategies,

resulting in increased quality of life for these patients. It is our hope that the findings

presented here will contribute to this goal.



5.2 Limitations of the present work

Although we provide very sound and conclusive results in each of the studies

presented in this thesis, the work is not without its weaknesses. Aside from the

limitations discussed in each individual paper, there are a small numberofadditional

concems that warrant mention. First, different criteria were used for classifying adiposity

status between different studies. Initially, we categorized subjects as normal weight,

overweight, or obese based on BM! criteria (Chapter 4.1). As the utility of BM! came

into question, we then chose to follow criteria recommended by Bray based on %BF that

isgender-, age-, andethnicity-specific (Chapters 2,3,and4.2). Thisclassification

system was first proposed in 2003 and is based on BMI cut points. Although more

reliablethanBMI,thesecriteriahave also been questioned as they are not based on

association with metabolic risk factors and increased risk of mortality. To circumvent

this issue, we then chose to use gender-specific %BF tertiles to define adiposity in the

most recent paper presented in this thesis (Chapter 2.3). While it is well accepted that

DXA-defmed %BF measurements are more accurate than BMI, the best cut points used

to define each %BF group are still unknown. At the current time, the WHO has not

defined a normal range for %BF therefore we believe our use oftertiles is the most valid

method. It will be important to define obesity using%BF cut points based on disease

biomarkers and increased health risk. Owing to the high cost ofDXA measurements,

there is limited data available exploring this in a large cohort however, moving forward,

this will become an important question to answer.



Another limitation that deserves mention is the difference in the percentage

overfed between nutritional intervention studies (Chapters 4.1 and 4.2). In the first

overfeeding study exploring the nutritional responseofRBP4, subjects were overfed by

70% more than baseline energy requirements compared to 40% in the global gene

expression study. The reason for this discrepancy is a result of the increased invasiveness

experienced by subjects in the latter study due to the additional requirement of two

adipose tissue biopsies. Due to ethical considerations, we felt it best to minimize the

burden experienced by these subjects and therefore reduced their caloric 10ad. Previous

positive energy challenge studies have shown that being overfed by as littleas 30% above

normal energy requirements can induce changes in gene expression (268), therefore we

are confident that our intervention was sufficient to induce measurable changesinthe

transcriptome.

The findings from this thesis open up a number of avenues for which future work

could continue. As mentioned above, there is a critical need for large scale studies

evaluating the appropriate %BF cut points for classifying individuals as obese based on

associations with morbidity and mortality. We plan to explore this in the near future

using information from the CODING Study, which to date has coUected data on over

2500 subjects. Further characterization of obesity subtypes using other biomarkers,

including additional adipokines, gut hormones, and markers ofinflarnmation, is also



underway. Moreover, we plan to investigate the genetic background of both MHO and

MONW individuals using a candidate gene association approach with the aim of

identifying genetic predictors of these two conditions and eventually allow forpopulation

level screening.

In terms of the work done on RBP4, plans are ongoing to measure serum levels in

the entire CODING Study cohort. Using the genotype data presented in this thesis, we

can then determine if common genetic variants in RBP4 are associated with serum levels

of the protein. Furthermore, given the association we found with HDL cholesterol, we

can also determine if this is mediated through differences in serum RBP4.

Lastly, my lab is intending to perform additional functional studies on a number

of the novel obesity candidate genes identified from the microarray experimentsto

further clarify their potential role in the development of obesity. Specifically,asmall

number of genes have been chosen that are most promising based on either some

knowledge of their function or having the most significant difference in expression level

between lean and obese subjects. This will be done initially using knock-out mouse

models for each chosen gene. Knockout(ifviable),heterozygous, and wild-type mice

will be fed a high fat diet and normal chow and differences in obesity-related phenotypes

compared,includingstudiesofthe skeletal muscle and liver that would bedifficultto

perform on human subjects. These studies will provide further understanding of gene

function as it relates to obesity. Based on these results, further studies can be performed



using data from the CODING study, including candidate gene association analyses,

serum measurements, etc.
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