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Abstract

Position information is an important aspect of a mobile device's context. While GPS

is widely used to provide location information, it does not work well indoors. Wi-Fi

network infrastructure is found in many public facilities and can be used for indoor

positioning. Inaddition,theubiquityofWi-Fi-capabledevicesmakesthisapproach

especially cost-effective

In recent years, "folksonomy"-like systems such as Wikipediaor Delicious Social

Bookmarking have achieved huge successes. User collaboration is the defining char-

acteristic of such systems. For indoor positioning mechanisms, it is also possible

to incorporate collaboration in order to improve system performance, especially for

fingerprinting-based approaches

In this thesis, a robust and efficient model is devised for integratinghuman-centric

collaborativefeedbackwithinabaselineWi-Fifingerprinting-basedindoorposition­

ing system. Experiments show that the baseline system performance (i.e., positioning

accuracy and precision) is improved by collecting both positive and negative feedback

from users. Moreover, the feedback model is robust with respect to malicious feed-

back,quicklyself-correctingbasedonsubsequenthelpfulfeedbackfromusers
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Chapter 1

Introduction

Mobile devices have a unique attribution when compared to other fixed computing

devices, which is their mobility. Thus, the position information can be a very im­

portant aspect of a mobile device's context. Based on this extra attribute, we are

able to provide mobile device users with a special type of intelligent services, called

Traditionally, location-aware services have been confined to outdoor environments.

Relatively less research has explored the potential applicability of similar services for

indoor settings. However, the indoor location-aware services could also have a very

promising application prospect. In this chapter, we will introduce the motivation for

conducting research on improving indoor positioning

1.1 Pervasive and Mobile Computing

A mobile device is typically a pocket-sized yet powerful computing platform. While

there are a number of different aspects between using a mobile device and using



a desktop/laptop computer, mobility is the most essential characteristic of mobile

devices. With such a unique feature, mobile device users have the opportunity to

access intelligent services (e.g., the Internet or cellular networks) ubiquitously. This

has been a goal of the industry and academia and also a desire of the users for many

In order to offer flexible and adaptive services and improve the quality of lives,

researchers have recently tarted to focus on location-aware intelligent services, which

provides personalized services based on users' current or past locations. After over a

decade of research and development, location-aware services (e.g., navigation, location-

basedweatherreporting,andadvertisements)havegraduallypenetrated into real life.

Now, the location-aware services are expected to be one of the most promising tech-

nologies in the next few years because it assists human activities in a wide range

of applications, from productivity and goal fulfillment to social networking and en-

tertainment. It is also predicted that the location-aware service user base will grow

globally from 96 million in 2009 to more than 526 million in 2012 137].

Traditionally, location-aware applications have been confined to outdoor environ-

ments, mostly using the Global Positioning System (GPS). Relatively Ie research

has explored the potential applicability of similar services for indoor settings. How-

ever, in large indoor environments such as airports, libraries, or shopping centres,

location-awareness can improve the user experiences with these facilities

For example, suppose some tourists wish to visit a large museum, they can prepare

their visitation plan by first sclecting the most interestingexhibits. Such a visitation

plan can be manipulated in their mobile devices. When in the mu eum, the device

can be connected to an indoor location system. Thanks to its location-awarenes,



the devices can provide them with personalized guided tours. Thus, the navigation

through the museum will bean enhanced experience since the multimediadescription

and comments can be delivered to them automatically based on their positions and

personal preferences. If one tourist stays in frontofapainting, the intelligent guide

can provide additional information about this piece such as the artist's biography,

style, cultural context, etc. Furthermore, by monitoring visitors' navigation patterns

and by instantly becoming aware of congestion spots within the museum, the museum

administrators arc ablc to organizc exhibits more effectively or cven direct other

visitors to areas of low congestion [13)

1.2 Mobile Device Indoor Positioning

Indoor location-aware services can be very promising and have been researched for

aroundtwodecades[16].]-]owever,westillhavenotseenanyproductused nearly

as widely as GPS-based positioning devices. The lack of development on the indoor

aspect of this problem is a result of two technical challenges. First, GPS can not

be deployed for indoor use because GPS signals can not reach indoor receivers. Sec-

ondand more importantly, due to complicated indoor environmentssuch as building

geometry, the movement of people, and the random effects of signal propagation,

triangulation-based approaches (i.e., those used for GPS) are much less effective [24).

In addition, interference and noise from other devices can also degrade the accuracy

of po itioning. On the other hand, such challenges provide reearchers with great

opportunities for innovative indoor positioning techniques

An early approach for indoor positioning used infrared sensors I421. In this type of



positioning system, multiple infrared receivers are deployed in abuilding, and amo-

bical walls, which may reduce the system performance Other systems [lave exploiiced

(RFID), magnetic technology, etc, Some of trlem h.ave a.chieved fairly good ELCCUrllCY

and precision in ficld tests [16, 14] Howc:vcr,t;hccclmmo,ndisadvalltagc"oftllcSCElp-

1.3 Wi-Fi-Based Mobile Device Indoor

ing

positioning even though Wi-Fi was not specifically designed for this purpose.

the solutions mentioned above, this approach has a, unique aclvantl~ge oif reqlliring

only a few Wi-Fi routers (access points (APs)), and utilizing the e"isting wil'eless

networking infrastructure ofa building. Thisfeatureis'veryimpoltantforp()pulariz-

anintegratedWi-Fichip

by Wi-Fi APs [21. fypic:allY,such an a.ppro,ach c:onsists of a trl~inin!, phEiSe alld a



po itioningphase. In the training phase, each survey position (with known physical

coordinates) is characterized by location-related Wi-Fi RSS properties called Wi-

Fi RSS fingerprints [201. During the positioning phase, the positioning likelihood

is calculated based on the current Wi-Fi RSS measurement. That is, the system

estimates the position by comparing the current RSS measurement to the fingerprints

in the system to generate the best match. Compared to distance estimation based

on signal propagation models, such an approach is more robust and accurate in real

indoor environments. However, fine-grained system training is normally require<!

to achieve high accuracy and resolution. Also, the maintenance cost can be very

high in order to continuously adapt to environment changes and Wi-Fiinfrastructure

alteration. A great deal of effort has been made by researchers to reduce such costs.

An efficient way is to let users provide feedback to facilitate the construction and

maintenance of the RSS fingerprints database. If the whole positioning process can

be conducted in a collaborative manner, an user can taketheadvantageofposition

information shared by other users.

1.4 Research Question

In recent years, "folksonomy"-like systems (e.g., Wikipedia, You'Il.lbe, Flickr, and

Delicious Social Bookmarking) have achieved huge successes. Such a kind of user-

generated online content has gradually became anew way of generatingandmaintain­

inginformation. User collaboration is their defining characteristic. Nov [30] believes

that the motivation of contributors in such systems isessentialsince the content is

contributed by volunteers who offer their time, knowledge, and talent in return for



no material reward. Thus, it is important to first understand and identify those vol-

unteers' potential motivations. Several typical motivations revealed in [30] are listed

• Volunteering is itU effective way for people to express humanity and selfsatis-

faction. Participants show their concerns to others by sharing knowledge.

• Volunteering may provide people more opportunities to be engaged invaluable

social activities and obtain pleasure via the interaction with others

• Through volunteering, people may have more chances to practice their knowl-

edge, skills, and abilities. They will obtain the feeling of fulfillment when their

work receives positive feedback

• Volunteering is also beneficial for participants' careers. Such user collaborative

systems can be considered as an effective medium via which contributors are

able to demonstrate their skills and abilities to future employers.

Following the same rationale, we expect that users are also willing to provide

feedbacktoapositioningsysteminmostcases.lntermsofindoorpositioning,system

may occasionally deliver inaccurate and unreliable results. In these circumstances,

adding a compensation mechanism to modify the results can improve the robustness

Since the purpose for an indoor positioning system is to provide users with fast and

accurate position estimation and location-aware services, soliciting assistance from

end users could also be a good aspect for improvement [27]. The system performance

could be improved if users are involved as a part of the system and conduct positioning

tasks in a collaborative manner. This leads to the fundamental research question in



What is the benefit of adding human-centric feedback to an in-

door positioning system?

Modern mobile devices have well-designed user interfaces to facili tate interaction

with users. Similar to range finders used in the localization of autonomous 1'0botics,

humans are also able to "detect" the surrounding indoor environment using their

senses and feed this information to devices. They are able to estimate their positions

based on their perception. In order to utilize such estimations from end users, we need

to define an elfective user feedback model which is able to incorporate user feedback

within a Wi-Fi RSS fingerprinting system

Our user feedback model is derived from an existing relevance feedback mechanism

from the domain of information retrieval, popularized by Salton's SMART system

[351. The basic idea of relevance feedback is to do an initial query, then obtain

feedback from the user as to what documents are relevant or non-relevant, and then

use the contents of these known relevant documents to generate subsequent queries.

Similarly, we can consider a positioning system as an information retrieval system.

Users initially query the positioning system and then provide feedback based on the

returned estimates. The system incorporates the user feedback and modifies the

search process to re-weightsearch results based on users' collaborative feedback

1.5 Organization of Thesis

The reminder of this thesis is organized as follows. We discuss related work in Chapter

2. In Chapter 3, we describe a baseline Wi-Fi fingerprinting framework. ext, the



detailed user feedback model is explained and interpreted in Chapter4. We have built

a prototype to evaluate the baseline system and the proposed user feedback model

The system design of this prototype is documented in Chapter 5. The user feedback

model is tested and evaluated in comparison to the baseline method as reported in

Chapter 6. This thesis is concluded in Chapter 7 with discussion and an overview of



Chapter 2

Related Work

Different positioning systems have been built to provide different types of position

information,whichcanbeeitherabsolutecoordinatesorlogicallocation information

(e.g., room No.). The enabling positioning technologies have their characteristicsin

architecture, performance, workingficld,andeost. Thus, in order to satisfy different

types of user requirements, it is important to analyze the evaluationmetricsandtax-

onomies of positioning technologies. In terms of indoor positioning, simply extending

the outdoor positioning technologies to indoor environments is not feasible due to

the complexity of indoor environments. In this chapter, we will introduce the work

archived by other researchers to overcome the challenges in indoor positioning

2.1 An Overview of Indoor Positioning

Indoor positioning and navigation have been an activeareaofresearch for the past

two decades, with early research focusing on robot localization and navigation [39)

and more recently pervasive and mobile computing [16]. Compared to outdoor posi-



tioningsystems(e.g., GPS), the work area of an indoorpositioningsysterns focus on

indoor environments such as inside airports or shopping centres. Typically, indoor

positioning systems can provide three different kinds of location information (i.e., ab-

solute, relative, and proximity location information [14]) for location-aware services

required by different usages. Absolute location information in the form of coord i-

nates is normally required by indoor tracking systems or indoor navigation systems

because real-time tracking and navigation services need precisephysicalcoordinates

of the targets. The relative location information measures the motion of different

parts of the tracking target, e.g., detecting whether or not two mobile devices are in

the same room. The proximity or logical location information is also an important

type of information, which is usually in the form of logical labelsortags(e.g.,offiee

number.). Avery interesting application oflogicalloeation information is location-

aware advertising. For example, suppose aeustomer is nearby a shop. Anelectronie

advertisement can be sent out for new produetsordiseountinformation at that shop

2.1.1 Indoor Positioning Technologies

Triangulation is the most used positioning teehnology for both indoor and outdoor

environments. Time of Arrival (TOA), Time Diffe"ence of A'7'ival (TDOA), or Angle

of Arrive (AOA) [40) are broadly used for outdoor positioning (e.g., GPS [31]) and

are able to obtain good system performaneein freespaee. The fundamental idea of

triangulation is depicted in Figure 2.1.

Suppose the physieal eoordinates of three anchor points are known. Thedistanee

between an anchor point and the tracking target ean beealculated viathetimedif-



Figure 2.1: Basic idea of triangulation

ference between a transmitter and a receiver or using signal path-loss propagation

models. Once the relative distances d"d" and d3 are calculated, the position of the

tracking target can be estimated using either the intersection area of the circles or

the directions of the formed triangle [17]. However, due to complexity of indoor envi-

ronments,thesetypicaloutdoortriangulationapproachesmight not be conveniently

adapted to indoor environments, which makes the research ofindoorpositioningchal-

lenging

After nearly two decades of research and development, numerous indoor posi-

tioning systems have been proposed by different companies, research centres, and

universities [141. Some researchers employ existing triangulation-based approaches

via densely deploying infrared or ultrasonic sensors in a building. As such, the tri-

angulation process can be conducted only in a small area (e.g., in a single office)



to reduce the negative effect of complex indoor environments [16). As a result, the

system performance and robustness can be improved, but at an increased cost of

installation and maintenance. Besides these modifications to classic techniques, re-

searchers have also devised novel approaches such as location-fingerprinting [2] and

vision analysis [17],whicharerelativelycost.effectiveandmorerobust.

Other technologies such as RF1D, Wi-Fi, Bluetooth, sensor networks, ultra-wideband

(UWB),andmagneticsignals[14]havebeendevelopedtoprovideindoorlocationin-

formation. Each system takes advantageofa particular positioning technology or

combining some of these. Usually, there is a trade-off between the price and the per-

formance. A system with higher performance could have high complexity and cost.

The designers should always strike the balance between the overall performance and

the complexity.

2.1.2 Criteria of Evaluating Indoor Positioning Systems

Different indoor positioning technologies have their advantages and disadvantages in

certain aspects. lnordertosatisfyavarietyofuserrequirements,weshouldchoose

the indoor positioning system with the most suitable capabilities. Thus, it is very

important tocomprchcllsivclycvaluatean indoor posit.ioniugsystem from diffcrcnt.

aspects. AccordingtoGuetal. [14), indoor positioning systems can be evaluated via

the following important system performance and deploymentcriteria

• Performance: The accuracy and precision are two main performance parame-

ters. The accuracy means the average error distance over all test points, and

the precision is defined as the success probabilityofpositionestimations with



respect to a predefined accuracy (e.g., 80th percentile positioning error within

2m). In fact, different location-aware services have different accuracyandpreci­

sion requirements. For example, a 5m accuracy (room level) will suffice most of

indoor location-aware services but the location-based guide in a museum might

need at least 90th percentile error within 1m to locate an exhibit. The time

consumed in the positioning process is another very important parameter to

evaluate an indoor positioning system, especially for tracking and navigation

services. A long positioning delay will degrade the user experience and lheper-

ceivedservicequality. Thus near-instanlaneous responses to users' positioning

queries is normally desired

• Cost: The cost of an indoor positioning includes two aspects: the cost of the

infrastructureinstallationandfuturemaintenance,andthecostofpositioning

terminals (devices). In fact, high indoor positioning accuracy can always be

obtained if a masive number of sen ors or anchor poinls are deployed, but

oflen we can nol afford such a high deployment and mainlenancecost. For the

device or terminal used in positioning, it could be very inconvenient for users

to carry a specialized device for their indoor positioning activities. Thus, an

ideal solution to indoor positioning is to utilize the existing infrastructureand

mobile devices at hand without any extra hardware costs

• Robustness and Jault tolerance: Indoor positioning systems are relatively less

reliable due to large interference in their working areas. Also the alteration of

positioning infrastructure could cause large positioning errors. The positioning

system should be robust with respect to complex environments.



• Security and privacy: End users normally want their privacy to be protected

when using computer systems. For positioning system users, they do not want

to be tracked or have their history of past locations accessible by other users to

whom they have not given prior permission. Security and privacy should be con-

sidered both during system architecture design and implementation. For stand-

alone indoor positioning systems, the position calculation processisconducted

locally, which ensures that no one can access the information. In contrast,

client-server architectures may have more channels to expose userinformation

Thus, some security mechanisms such as secure data transfer, authorization,

and access control are required to offer a high degree of security and privacy

protection for users.

2.1.3 Taxonomies of Indoor Positioning System

Wecategorizeindoorpositioningsystemsmainlyaccordingtowhether they are based

on an existing infrastructure or specialized indoor positioning infrastructure. Also,

autonomous robotics indoor positioning has a unique research problemdomain, which

should also be considered as a separate category.

Robotics Foran autonomous robot to navigate through indoor environments,

it must have the ability to detect the current environment (using 0 utersensors, e.g.,

ultrasonic, camera, or laser) and calculate its movement trajectory(usinginnermove-

ment sensors, e.g., wheel sensors) [391. Initial approaches provisioned a robot with

a pre-built map of the indoor environment, allowing it to determine its location by

comparing its observed environment to the landmarks on the map and generate a



belief distribution. Based on the movement trajectory calculated by inner sensors,

tionsareeliminated,therobotcanbelocalizedatlocationswithhigh belief. Another

significant step in the area of robotics was Simultaneous Localization and ~[apping

(SLAM) 139), which allows a robot to build a map of the indoor environment (in

terms of the features of the environments) while simultaneously determining its loca-

tion with respect to the map constructed in real-time.

The robot indoor localization is the core part of autonomous robotics. Hisableto

archive centimetre-level accuracy and high precision level. However, this technology

is complex and expensive both in computation and theimplementationofpositioning

Extra infrastructure-based Early ideas for indoor mobileentilies position-

ing relied on deploying specialized infrastructure, mostly using infrared or ultrasonic

signals. In such systems, infrared or ultrasonic sensors are installed on walis or ceil-

ings in a build. Users typically wear tags in order to interact with these sensors

Once at least three sensors are in sight, triangulation approaches can be applied to

estimate user's positioning.

Active Badge 1421 and Cricket 132) are tIVO representative indoor positioningsys-

terns using infrared and ultrasonic infrastructure, respectively. In Active Badge, one

or more sensors are deployed in each located place such as a room, which is used

to detect the infrared signal from an active badge carried by users. The position of

thcartivcbarlgcranbcrlctcrtcrlbythesrfixcdscnsorsrcrcivingthcinfrarcrlsignal

Then, the data collected by sensors will be forwarded to central servers to generate

the proximity information (e.g., room number) However, in order to cover a large

_!



indoor area, the infrared receivers need to be densely installed and connectedtoeach

Cricket [32) utilizes ultrasonic emitters as infrastructure. These emitters are de-

ployed on walls or ceilings with known positions. They emit ultrasonic and also radio

frequency messages with proximity location information (incase there are not enough

ultrasonic emitters in sight). Compared to Active Badge, the tag carried by user is

not an emitter but a receiver, once at least three mounted emittersareinsight,the

location of the user's tag can be estimated via triangulation with avery high accu-

racy. More importantly, the triangulation is conducted on each tag locally,whichcan

protect user privacy.

Although the dedicated positioning infrastructure can obtain a high positioning

accuracy, the expensive system hardware requirements raise the system cost. Also,

users normally need to wear specialized badges in order to be tracked by the sensors

Existinginfrastructure-based-Foryears,thegoalofindoorpositioninghas

been to improve tbe system performance and to reduce the cost at the same time.

The existing infrastructure-based indoor positioning is a promisingresearchdirection

Wi-Fiand Bluetooth technologies are widely used and integrated in variouselec-

tronic devices. Thus, the Wi-Fi or Bluetooth based positioning systems can also reuse

these mobile devices as tracking targets to locate users, which is a less intrusive way

to provide location-aware services to users.

In Bluetooth-basedpositioningsystems,the position ofaBluetoothmobiledevice

can be located via the signal strength transmitted by other mobile terminals in the



same piconet (a master device and associated slave devices). However, a connection

before it can obtain the signal strength, which will significantly increase the position-

ing delay. Compared to Bluetooth, the Wi-Fi infrastructure is more common and has

been deployed in many public areas such as hospitals, airports, universities,etc. Fur-

thermore, Wi-Fi mobile devices only need to receive beacon frames from APs without

AP association (i.e., connecting to a Wi-Fi router). Such a Ii tener-based mechanism

makesWi-Fi based po itioning more convenient and secure.

In thcrcscarrh arca of Wi-Fi-hascrl inrloorpositioning, two fundamcntallydiffcrcnt

approaches have been proposed: Wi-Fitriangulation-based and RSSfingerprinting-

based. Wi-Fi triangulation is based on distance estimation. If we use the same

time-of-f1ight method (e.g., TOA in ultrasonic sensors) to measure short distance on

wireless waves, time measurements must be very accurate in order to avoid large

uncertainties. However, it is difficult to measure the time-of-f1ight of Wi-Fi signal

propogation in indoor environments becau e the signal traveldistanceissmall. An

alterative is to measure the distance based on a signal propagation model. The energy

of the radio signal, viewed as an electromagnetic wave, attenuates as it propagates

in space. The distance can be calculated via various signal propagation model.

However, as mentioned before, the complex indoor environment introduces random

fadingcffccts. Although suchcfrccts can bcrcduccd to adcgl'ccifanchors or sensors

are densely deployed (e.g., multiple sensors in a room), it is not feasible for existing

Instead,theWi-Fifingerprintingdoesnotneedtoknowthespecificsignal prop-

agation model or AP information. which makes it more robust to the adverse effects



of indoor environments. Typically,theaveragesystemperformanceoffingerprinting-

based systems (within 2m if well trained) can satisfy most of indoor location-aware

services. However, the main challenge of Wi-Fi RSS fingerprinting is the very time-

consuming system training and frequent database updates that arerequiredtodeal

with changing conditions within the positioning environment. Despite such disad-

vantages, theWi-Fi-based positioning technology has a very promising application

prospect mainly because of the ubiquitous and inexpensive nature of Wi-Fiinfrastruc-

ture.lnthenextsection,thesetwomainWi-Fibasedindoorpositioningapproaches

2.2 Indoor Positioning Using Wi-Fi Infrastructure

2.2.1 Propagation Models

Infreespace,theRSSi inversely proportional to the square of the distance between

transmitter and receiver. Such a relationship can be captured by theoretic or empirical

signal propagation models. The log-normal shadowing model is one of the commonly

used theoretic models in link budget analysis [33]. The basic idea of this model to Wi-

Fi-based indoor positioning can be revealed in Figure 2.2. Suppose {Pl,P2,P3, ... ,Pn}

is a time series of received power measurements collected by a mobile device about

an AP, and Pr is the average of these values, which is assumed to be the outcome of

a random variable modelled as normal distribution with mean valuep' and variance
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Figure 2.2: Distance between an AP and a mobile device can be estimated using RSS

The distance from an AP with transmitter power P, (measured at reference distance

do) can be estimated via the equation'

(2.1)

wherenpisthepathlossexponent. The standard deviation CJP. defines the variability

measured between pairs of nodes with the same separation distance, but placed at

different locations and at different times. Based on the above signal propagation

model, the distance between a transmitter and a receiver can be estimated. With

at least three transmitters within range, the position ofa receivercan be calculated

using triangulation as discussed in Section 2.2.1 shown in Figure 2.1.

However, in real indoor environments, it is very difficult to determine proper pa-

rameters (e.g., np and P,) for propagation models due to the diffraction, scattering,

shading, and multipath phenomena [33]. lnorder to overcome these obstacles and

make the Wi-Fi RSS triangulation methods applicable to indoor environments, re-

searcherscommonlychoosetotreatthespecificsignalpropagationmodelasablack

box [9, 431. Therefore, a large number of RSS measurements need to be collected

in real indoor environments in order to train a propagation model and identifythe



parameters by optimally solving the simultaneous equations system witb respect to

Equation 2.1. Specifically, the goal is to find a solution that minimizes the least mean

absolute error [9)

J = *i~ Ipm, - Pi + IOnp,log ~I, (2.2)

where Pm; is the actual RSS measurement for the i-th AP, i E {1,2, ., N}. However,

J is a non-linear objective function for which it could be very computational costly if

the number of APsand mobile users are large (generate large number of non-linear

equations). An alternative approach is polynomial regression, the ideal nth-degree

polynomial regression can be given as [9,43):

(2.3)

where eJ , (j E {O,I,2, ... ,n}) are the coefficients of the polynomial. Pi is the re-

ceived signal strength and D, is the estimated distance from the mobile device to

thei-th AP. The coefficient ej can be easily solved by least squares approximation

Evaluation results in [43) and [41) show that the regression-based method has bet-

ter performance than the log-normal shadowing model approach. However, these

model-based approaches still require substantial training effort in terms of placing

infrastructure such as Wi-Fi sniffers, obtaining information on theftoor plans, and

acquiring knowledge of the 10cationsofAP and theirtransmission power characteris-

tics. In addition, the system accuracy of model-based approaches is lowercompared

totheRSS fingerprinting method with less system training efforts [2,44, 9)



2.2.2 Wi-Fi RSS Fingerprinting

In comparison to the propagation-model based techniques, Wi-Fi RES fingerprinting

is more robust and accurate, and thus has emerged as avery promising solution. It

typically contains two phases: 1) training phase and 2) positioning phase. During

the training phasc, afingcrprint datahasc is constructed to rcsolvc fu turcpositioning

queries. In the positioning phase, the position likelihood iscalculated based on the

current Wi-Fi RSS measurement. The general idea of the fingerprint-based approach

is given as follows

Suppose at a survey position p., a mobile device can receive beacon frames from

thei-th AP, i E {1,2,3, . .. ,N}. The beacon frame is one type of management frame.

The802.11 standard defines various frame types that stations useforcommunications,

Figure 2.3: RSS readings from an APat various survey points [51



as well as managing and controlling the wireless link [11]. The beacon franlescon­

tain all the information about the network. They are transmitted periodically to

announce the presence of a wireless network. The MAC address M i , timestamp t,

can be extracted from each beacon frame as features. Also, the RSS Pi, which can be

estimated by the receiver by analyzing the beacon frame. An AP can be characterized

by these features. One interesting aspect about the characteristics of Wi-Fi RSScan

bc cxcmplificd in Figure 2.3, where the RSS from an AP collected at various survey

points are discriminated due to the signal attenuation

However, such attenuation can notbeeffieiently modcled for indoor environments

as mentioned before. Furthermore, if multiple APs are visible at the same location,

the combination of such RSS features of these APs can "fingerprint" this location

The collection of beacons in a single scan by the device form a Wi-Fi RSS vector

R". It isa3-tuple vector, where each element contains the description of an AP, i.e.,

MAC address, RSS, and timestamp (Figure 2.4). If the location of the mobile device

is shifted (e.g., to Pb), we can obtain another Wi-Fi RSS vector Rb. In fact, R" and

Rb can be distinct if P" and Pb are far apart enough. Thus, the Wi-Fi RSS vector

can be used as the location "fingerprint"

However, the Wi-Fi RSS vector only reflects the instantaneous features of the

Wi-Fi environment. The Wi-Fi RSS in fact can fluctuate drastically in real indoor

environments. For example, Figure 2.5 shows the RSS of an AP at the arne location

but at different times (i.e., crowded lunch time (12:00) and at night (22:00) with

few people) at the University Centre of l\ilemorial University. The RSS fluctuation is

small during night, but it is large during lunch time because many peoplearearound.

Thus, due to the variability of Wi-Fi RSS, multiple scans are needed to constitute



Figure 2.4: Wi-FiRSSvector

a fingerprint which contains the summarized features of the scans (e.g., Wi-Fi RSS

mean and variance) at a given survey position. The data structure of Wi-Fi RSS

fingerprints is detailed in Chapter 3.

As such, a fingerprint database is created by associating each survey position

with a Wi-Fi RSS fingerprint. Such a database will be used for future queries in

the positioning phase. The positioning system then compares this live RSS measure-

ment to all the fingerprints stored in the database, and returns best matching RSS

fingerprints

AlthoughthebasirirleaofWi-Fifingerprintingisstmightforward,manyrhallenges

prevent this technology from broad adoption for position estimation beyond academia.



Figure 2.5: Wi-Fi RSS fluctuation over time



I<ushkietal.[23]providefourprimarysuchchallengesforWi-Fifingerprinting-based

approaches'

• ]lrcproccssingfillgcrprilltsloincrcascaccuracyandtoavoidcollccting data from

an excessively large number of positions,

• APselection,

• quantization of distance between theWi-Fi RSS vectors in the signalspace(i.e.,

locationlikelihoodcalculation),and

• building analytical models to evaluate system performance.

In order to obtain high system accuracy, the training process can be very time-

consuming and laborious, especially for future updates and maintenance. Thus,

streamlining such a training phase is very important for its commercialization. Chai

and Yang [7) and Lemelson et al. [261 argue that users will stand somewhere in be-

twcmscvcralsurvcypositionsinmostcascs. Thcreforc,thcfingcrprintsofadjaccnt

positions around the users will also yield suitable matches to the Wi-Fi RSS mea-

surement. These similar fingerprints can be generated via a single seed fingerprint

by assigning different weights. As a result, uch pre-processing fingerprints can ig-

nificantlyreducethesystem training costs. In the extreme case of reducing system

trainingefforts,"zero-configuration"canbeachievedbyonlyinvoIving user updates

without system training [4].

Commercial Wi-Fi infrastructure is usually deployed with a large number of rel-

atively dense APs. It may seem that a higher positioning accuracy can always be

achieved if more access points are utilized. However, this is not the case as indicated



by Kaemarungsi and Krishnamurthy[19). Instead, a subset of access points can be

used for the same level of system performance with a much reduced overhead. A

straightforward AP selection approach would be to select the subset of APs with the

highest observed RSS. More intelligently, Chen et al. [8) provide a novel selection

strategy based on the discriminant power of each AP using an information gain cri-

terion. As a result, theAPs that best differentiate the survey positions are selected

for positioning services

srrvation anel fingerprintsstorcd in theelatabase, whieh is the essenee of fingerprint-

based techniques. Euclidean distance is asimple but effeetive way to represent such a

difference [2, 20]. The position estimation is either the survey point whose fingerpr int

has the smallest distance to the observation (nearest neighbor (=''IN) classification) or

the averageofk closest survey points (k-nearest neighbor (KNN) [2) classification)

l<aemarungsi and Krishnamurthy [20) indicatethatfingerprintsean be grouped to-

getheras a set of clusters. More than one cluster may represent one location because

of the multimodal distribution of the RSS.ln such a case, using Euclidean distance

to determine the location may classify some patterns to a wrong location

AnothergroupofWi-Fipositioningmethodsrelyonprobabilistictechniquessuch

as Bayesian Networks or Gaussian kernel to handle uncertainty in BSS measurements

[15,34,22,44). Positions are estimated using likelihood or posterior density func­

tions. Kushki et al. [23] propose a comprehensive Kernel-based system framework

anel integrated elements sueh as spatial filtering, selection ofAPs,andspatial feature

selection to improve the system performance. In addition to stationary estimate po-

sitions, Leeetai. [25) aim to track moving entities. In an indoor setting, the user'



mobility is restricted by the environment; the users in fact move along a limited set of

typical trajectories. The current setofRSS values for reachable nodes and a number

ofpastsamplesareusedtogeneratetrajectoriesinthesignalspace. Such trajectories

can be matched to positions on a map

While extensive research has been performed in absolute position information,

there have been fewer attempts in recognizing logical position information, such as

room numbers or signboards [6,4]. However, Wi-Fi RSS fingerprinting-based logical

positioning usually lacks the accuracy to discriminate adjacent contexts like neigh­

boring rooms. Martinetal. [29] argue that numerous local attributes already exist

in the environment, which may be sensed using cameras, microphones, or accelerom-

eters. By incorporating all these unique environment attributes within the Wi-Fi

infrastructure, the system obtains the capability to identify specific logical position

Analytical models for analyzing fingerprint based positioningsystems have been

discussed in the literature [19,38]. Kaemarungsi and Krishnamurthy [19] analyze the

impact of important system parameters and radio propagation characteristicsonthe

system performance, such as the number of APs, the grid spacing (the number of

reference locations), path loss exponent, and standard deviation ofRSS



2.3 Integrating Human-Centric Collaborative Feed-

back into Indoor Positioning Systems

The accuracy ofWi-Fi fingerprinting thus designed is highly dependentonthenum-

berofsurvey positions employed during the training phase. This implies not only

a high system overhead and training cost but also vulnerability to environmental

changes. Indeed, maintaining such a system would require re-training the system

almost from scratch on a frequent basis. On the other hand, if the system can be

augmented with learning or compensation capabilities, it will be able to update its

own knowledge. Since these systems may provide services to many mobile users, such

a learning capability can be obtained via user feedback for freeduri ng the positioning

phase.

Active Campus [3] is an early system integrating user feedback. It allows users to

update the training data incrementally for future use. When the system location is

incorrect, users can click on the correct location and suggest new position . Thesys-

tern then takes the corrected location and MAC addresses and RSS of the currently

visible APs to construct a virtual anchor point (VAP). Future location computa­

tions can then take advantage of these user-created VAP. Similarly, Redpin [4] uses

a "folksonomy"-like approach, where many users train the system while using it.

Gallagher at el. 110] focus on the adaptation ofWi-Fi infrastructure alteration

They investigate a new method to utilize user feedback as a way of monitoring changes

in the wireless environment. In real indoor environments, some APs may be added to

or removed from the infrastructure. Also, due to large-scale signal fading, a mobile

device may not hear certain APs in some scans. In order to solve thi problem, they



assign each AP with certain number of "credits points". Users are prompted to send

their RSS measurement to a remote positioning server. The server then looks into the

fingerprints available at this location, and compares the APs already present to the

ones present in users RSS observation. !fan AP is already present in the database

but not in the incoming user measurement, its number of points is decremented in

the fingerprint recorded at this location. When the number of "credit points" of this

particular AP is reduced toO, it is removed from the fingerprints in thedatabasc

Similarly, when anAP is present in the incoming scan result but notin the database,

it is added into the database. When several users start to report this new AP, its

number of points will increase each time it is reported

Park et al. [121 propose a user promotion mechanism. In fact, there is always a

trade-off between providing imprecise estimates due to the lack of fingerprint coverage.

and asking users for too many suggestions, especially when the fingerprint database

is only partially trained. They argue that in a human-centric positioning system,

it is useful to only prompt users for their location when the system error is large.

They propose a mechanism to convey the system's spatial confidencein its prediction

based on a Voronoi Diagram, and the system only prompts users whenever system

confidence falls below a threshold. The Voronoi Diagram denoted as V shown in

Figure 2.6 can be described as

o It is a set ofn anchor points in the plane

o It is the subdivision of the plane into n cells, one cell for each anchorpoint

o !fa point q lies in the cell corresponding to a site Vi E V, then

D(q,Vi) <D(q,vj),



Figure 2.6: User's true position is represented by the anchor point of his/her current

for each v, E V,j # i, where D represents Euclidean distance.

The underlying intuition is that a user's current position will be represented by the

anchor point of his/her current cell because they have the smallest Euc1ideandistance

among all anchor points. Therefore, thesizeoftheVoronoi cell naturally represents

the spatial uncertainty associated with prediction of the bound spaceo Once the izeof

thecurrentVoronoicellisbeyondathreshold,thesystemwillpromptusers to provide

fpP<lback. Ifa new survey point is associated with a RES fingerprint generated by

users, it becomes an anchor point and adds nearby spaces to the newly-formedcell.

Then, the Voronoi Diagram will be updated

The above approaches refine the existing Wi-Fi RSS fingerprints basedpositioning



system with the integration of human-centric feedback. However, a potential pitfall is

that the model constructed during the training phase could also be negatively affected

by unreliable or misleading user feedback. Thus, it is crucial that the feedback from

users should be given proper weights or credibility, rather than blind acceptance or

rejection. The "credits point" assigned to each AP in [10] is a simple but good

attempt of such a credibility assessment mechanism for user feedback

Hossain et al. [18] propose a simple credibility rating. Thati , when the user does

not believe in the position returned by the system, an alternative position can be

suggested. In their system, positive user feedback isgivenahighercredibilityweight

if the uggested position has a small discrepancy with the system. For example,

suppose the precision of a system is 95% within 5m, which means the positioning error

is within 5m in most cases. Thus, if the user's estimate position is within the range

of 5m of system result, it will be assigned a very high weight. However, according

to the observation of our preliminary experiments, the system results are mostly

close to user's true position, i.e., within 5m. However, they are occasionally very far

away from the true position due to insufficient Wi-Fi RSS data or large variance. In

that case, if user's feedback follows the system's estimation and is assigned a high

weight, it in fact become an outlier feedback and could bring large interference to

future positioning queries. Such negative effects from outlier user feedback should be

elirninated. A straightforwardsolutioll is usillgclusterillgalgorithms tofil teroutliers

[12]

Later in this thesis work, we will devise a more general framework using a wider

variety of user feedback. Such a framework is endowed with a high degree of system

robustness when a large number of users provide correct feedback.



correct feedback is provided, the system is able to quickly recover by incorporating

subsequent corrective feedback



Chapter 3

Position Estimation Baseline

WestartbyintroducingourbaselineWi-Fifingerprint-basedapproach. The general

idea of the baseline approach is similar in many respects to the systems reviewed in

Chapter 2. However, we also refine existing fingerprinting based approaches to make

them more robust and suitable for integrating and processing userfeedback

3.1 Training Phase

In the training phase, a set of grid points in the study area are selectedassurvey

positions with known physical coordinates. The system training is conducted for

each survey point in a two-step process. The first step is to collect. multiple Wi-

Fi RSS vectors in order to stabilize the averageofRSS readings and calculate t.he

variances. The variance is used to det.ect. t.heenvironment interference level, where

a large variance tends to cause unreliable positioning results. The following step is

utilizing these RSS vectors to generate an RSS fingerprint. for each survey position

Bycombiningthepositioninginformat.ion andRSS fingerprint, anchor points are set
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Figure 3.1: Grid space

as reference points for the positioning of mobile devices

3.1.1 Collect Raw Wi-Fi Measurement Data

At the first stage of system training, every survey position is pre-placed on a map

with known physical coordinate (x, y). The grid space between two survey po itions

determines the resolution or granularity of the positioningsystem (Figure 3.1)

A smaller grid spacing may increase the granularity or accuracy, but not the

precision or the probability of correctly matching the survey position because the

WioFi RSS fingerprint of two survey positions may be very similar. Also, smaller

grid spacing causes laborious system training and maintenance. In fact, there is no

general guideline to choose theoptimaJ grid space. In the implementation of our

baseline system, the grid space is 3m (i.e., the distance between two grid cells), which

is a reasonable choice considering both the size of our study area andtheaccuracy

and performance for regular indoor positioning service.

At each survey position, system administrators use a mobile device to can for
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Figure 3.2: A beacon frame is captured and analyzed by Wireshark. RSS is generated

the beacon frames transmitted by nearby Wi-Fi APs. The beacon frame provides the

"heartbeat" of an AP,enablingcommunications to be conducted in an orderly fashion

captured beacon frame in hexadecimal notation

the MAC address isOO:22:SS:EO:29:DS)



MAC RSSMean RSSVariance Timeslamp Count

MAC RSSMean RSSVariance Timestamp Count
MAC RSSMean RSSVariance Timestam Count

I MAC I RSSMeanIRs~·~ariance ITimestamp ICount I

Figure 3.3: Data format of a Wi-Fi RSS fingerprint.

to a list of 3-tuples (i.e., an RSS vector, as shown in Figure 2.4), where a 3-tuple

element contains the MAC address of an AP, the RSS in dBm and timestamp. ote

that a single scan may not be able to capture beacon frames from all nearby APs

due to the different beacon frame broadcasting periods or severe signalfading. Also,

as mentioned in Chapter 2, the collected RSS values have a natural variation when

indoors, which is unavoidable. To compensate the RSS fluctuation and obtain com-

plete AP information, a sufficiently large number of scans is needed to create an RSS

fingerprint. As a result, in a given period of sampling, the device logs a time seriesof

RSS vectors. Such vectors will then be used to construct the Wi-Fi RSS fingerprints

for each measured location in the training grid

3.1.2 Generate Wi-Fi RSS Fingerprint

The statistics are extracted from the raw Wi-Fi measurement data to generate an

RSS fingerprint for each survey position. A Wi-Fi RSS fingerprint is defined as a

vector of 5-tuples (i.e., MAC, Timestamp, RSS Mean, Count, and RSS Variance),

describing a set of APs, as shown in Figure 3.3. The definitions and explanations for

each field are given as follows.

Given thei-th AP in aWi-Fi RSS fingerprint:



• MAC: The MAC field contains its MAC address, denoted as Mi. H is a unique

identifier for each wireless network interface card. We use that to distinguish

amongthedifferentWi-Fi APsthatarewithin range.

• Timestamp: The time of creating the fingerprint is stored in the Timestamp

field, denoted as t. In indoor environments, time-dependant human activities

could affect positioning activities because human bodies can absorb Wi-Fi sig­

nals. The timestamp of fingerprint could be utilized to provide time-aware

positioning

• RSS Mean: The RSS Mean Pi is an average of the Wi-Fi RSS over the sampling

period. During the sampling period, several Wi-Fi RSS vector will be generated

Each Wi-Fi RSS vectors contains the instantaneous RSS values. Since the RSS

values arc normally fluctuating, it is beneficial to smooth thcm. At this point,

we choose to average the RSS readings.

• Count: The value of Count is the number of occurrences of the AP during

the sampling period, denoted C" which is avery important indicator for the

reliability of this AP. For a fixed number of Wi-Fi scans, a large Count value

means that the AP can be heard for most of the time, indicating that the AP

• RSS Variance: RSS Variance contains the variance of the measured RSS from

the AP, denoted a,. The fluctuation level of the current Wi-Fi environment

at a certain survey position can be estimated by analyzing the Wi-Fi RSS

fingerprint. Typically, the RSS fingerprint contains multiple APs. Each AP has



its own mean and variance, which can not provide a global description about

the current Wi-Fi environment. In order to estimate the fluctuation level of the

entire environment, we use the weighted average of RSS Variance for each AP.

The occurrence or the value in the Count field for each AP is utilized as the

weight. The collective RSS variance for this fingerprint is defined as

whereFs is its RSS fingerprint.

At the end of the training phase, each survey position is associated with an RSS

fingerprint containing APs that describe the specific location. For each survey position

Ps in the system, we define a system anchor As as

The system anchors are reference points to determine the positions of mobile devices.

3.2 Positioning Phase

In the positioning phase, liveWi-Fi measurements will be collected and used to query

the fingerprint database. Using only afewWi-F'i scans during positioning phase may

generate a large error due to the lack of informative RSS data. For experimental

purposes, the prototype implementation allows for a variable number of Wi-Fi scans

to evaluate system performance.

Suppose the total Wi-Fi scan number is S and each scan will generate an RSS

vector R.;, i E {1,2,3, ,S}. Given N system anchors, when the first RSS vector is



Multiple Wi-Fi scans in positioning phase

Figure 3.4: Flowchart of positioning phase.



formed, we use it to calculate the likelihood Lj,jE {I,2,3, ... ,N} , of it matching the

fingerprint for each system anchor. Each subsequent scan should lead to a cumulative

estimation result with a decreasing error. As such, the estimated result will become

more and more reliable as more RSS vectors are used

The likelihood is calculated via a Gaussian kernel, which is commonly used to

estimate the likelihood between two RSS vectors 1231. Then the top-k anchors with

highest likelihood are selected as candidates of a system return. A representative of

them will be selected as returned result using a solution to vertex-p centre problem.

The Aowchart of the entire positioning process is shown in Figure 3.4, and each step

will be explained in the following subsections

3.2.1 Calculate Likelihood

BesidesthelargeRSSvariability,anotherchallengeinrealindoor environments is the

variability of RSS vector dimensions. In an RSS vector R.;, the MAC address of an

AP defines a dimension in the vector. Thus, the number of dimensions of R.; can be

given as

dn. =n;,

where 11.; is the number of received APs in Wi-Fi scan i. Due to the different beacon

franle broadcasting periods, modifications of the Wi-Fi infrastructure (e.g., APs are

turned off or new APs are added), or large fading effects, the number of dimensions

of RSS vector R.; and Rj , i f j generated at the same location l could be different

dn. fdR" i,jE {I,2,3,. ,S}



As a result, a dimension mismatch between RSS fingerprints and RSS vectors in live

measurement could happen during the positioning phase. It also indicates that system

estimate results could be very unreliable if the numberofWi-Fi scansissmall.

If we use simple likelihood calculation mechanisms (e.g., Euclidean distance or

cosine similarity), such dimension mismatching could lead tolargepositioningerrors.

However, if the influence of each dimension can be normalized, the small scale of

dimension mismatching will not dominate the entire likelihood calculation. In terms

of our baseline system, we use sparse vectors and a Gaussian kernel to calculate the

likclihoorl for each system anrhor, which is vrrycffiricntarrorrling to our preliminary

experiments. Specifically, an RSS fingerprint is first transformed into a sparse vector

which contains all nAPs. At this point, we do not consider the AP selection problem;

instead, all nearby APs in the infrastructure are utilized in order to obtain satisfac-

tory system performance. As such, the dimensions of all RSS vectors are unified,

a dimension without valid AP information (i.e., can not receive beacon frame from

certain AP) will be assigned impossible values (e.g., -100 dBm for RSS). Then, we

apply Gaussian kernel to calculate likelihood between two sparse vectors.

Gaussian kernel method was originally used in support vector machine (SVM)

to classify data [36], and it has also been found to be very efficient for RSS vectors

likelihood calculation [23,41,40,19,151. In the Gaussian kernel method, aproba-

bilitymassisassigncdtoa "kernel" around the RSS mcan of each AP in fingerprint

generated in the training phase. Given an RSS live measurement (observation) vector

generated at location P as Rop" the resulting likelihood estimate between Rop, and



fingerprint F, in system anchor A , is the sum of n equally weighted density functions

where PM, is the RSS of k-th AP in the live measurement vector Rp • and PF, is the

RSS Mean of k-th AP with the same lAC address in fingerprint F;. Note that when

PM, or PF, is an impossible value (e.g., -100 dBm), we just ignore this dimension. KG

denotes the Gaussian kernel or radial basis function (Gaussian RBF), whose value

depends on the distance from the centre. It is given as

where 6 is an adjustable parameter that determines the width of the Gaussian Kernel

and the centre is PF,. Figure 3.5 provides four Gaussian RBF curves (with the same

centre (-40 dBm) but different 6) to illustrate the characteristics of Gaussian RBF

From these curves, we can observe that the Gaussian RBF has two main features.

The first one is the discrimination ability for RSS values on the same dimension

Any RSS close to the centre has a large Gaussian RBF value, as we can s e in Fig-

ure 3.5. Thus, in terms of a RSS vector with n dimensions, the sum of Gaussian

RBF over all n dimensions determines their likelihood. The second characteristic is

that its width is determined by parameter 6. As we can see in Figure 3.5, Gaussian

RBF is smooth when the 6 is large. In terms of Wi-Fi RSS, whose value domain is

[-90dBm, -30dBm], 6 less than 0.05 or larger than 0.5 lead to corresponding curves

too sharp or flat, which could cause weak discrimination ability of Gaussian RBF

However, to find the optimal 6 value for a particular dataset is difficult, especially

for Wi-Fi RSS data with large variability in indoor environments [23]. In the partic-



Figure 3.5: Examples of Gaussian kernel.

ularenvironment, we have to tune the 0 value in order to archive adequate system

performance.

After the likelihood calculation, each system anchor has a likelihood for being

the true position of the device. Instead of just returning a single estimation, the

system selects the top-ksystem anchors as candidates in order toprovideredundant

true position information. The main reason is that the true position may not always

be in the system anchor with the highest likelihood. The next step is to choose a

representative from these top-k candidates as the system return.

3.2.2 Present Position

A na'ive approach would be to u e the weighted mean of the top-k anchors as the

estimation for the position Usually, these k survey points are close to each other
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Figure 3.6: A drawback of weighted mean representation

in the physical space, and they can be considered as a cluster. Thus, their weighted

mean position is a reasonable representative. One example is shown in Case 1 of

Figure 3.6; four system anchor points (k =4 here) are close to each other and can be

considered in the same cluster. Thus, their weighted mean position can be used asa

applicable representative. However, if one or more outliers exist, the weighted mean

position could be pulled faraway from the cluster formed by other system anchors.

Also,thismeanpositioncan be a meaningless point in the physical space. Case 2 in

Figure 3.6 provides such an example. Anchor point As, is far away from the other

system anchor points, which could pull the weighted mean position away fromlhe

cluster formed by As,. As" and A ,. If these four system anchor points are very close

in likelihood, the centre of As" As" and As, should be a more representative than

the weighted mean position.

Instead,wecanuseanapproachtothevertexp-centresproblem[21] to determine



Figure 3.7: Example of fire station placement problem

the representative of the top-k anchors. The vertexp-center problem (also known as

the minimax problem) is to Jocatep facilities (vertexs) and assign clients to them so

as to minimize the maximum distance between a client and the facility to which it is

assigned. It is a computationally expensive problem for generalp. However, in our

case, we only consider thecaseofp= 1, i.e., the 1-centreprobJem. Since the value

ofkcouldbeverysmall(lessthanfive),wedonotanalyzethealgorithmcompJexity

at this point.

The I-centre problem is similar to the site selection problem depicted in Figure

3.7. Given four towns with different populations, we need to place a fire station in

one of these towns to cover the entire area. The large town should be given more



weight because the possibility ofa fire is proportionally higher than the mallertown

Also, if a town is very closer to other towns, firemen can reach the accident scene

quickly. Thus, the town with large population and small distance to other towns

should be chosen as the location for fire station. Inparticular,the vertex I-centre

for our positioning system is the system anchor point that minimizes the maximum

distances from itself to the other top-(k -1) anchor points. These distance are

weighted with the likelihood estimated as above. For two indices i,j = 1,2, .. , k, we

minimize the following over all values fori

where D(i,j) is the Euclidean distance between anchor As, and As, and L; is the

likelihood of As,· The resulting anchor point becomes the estimation for the location

3.2.3 The Algorithm of Baseline System

In this subsection, we summarize the baseline system with two algorithms given as

follows (next page). Given N survey positions with known physical coordinates,

our goal in the training phase is to associate each of them with an RSS fingerprint

F"i E {1,2,3, ... ,N}. A RSS fingerprint is generated by calculating the mean RSS

from S Wi-Fi scans. As such, N system anchors are created as reference points for

future positioning



3.2.3.1 'frainingPhase

Algorithm:

Input: Given a temporary vector V = {VI,V2, ,Vn}, V; is the sum of RSS

collected on dimension i (initialed toO) of all Tscans. nisthenumberofall

nearby APs;

while (i:<=;N)joreachsurveypositiondo

while (j :<=; T)joreach scan do

{Pj"Pj"Pj" ... ,Pj.},Pjk is the RSS vectorRj inscanj;

while (k:<=;n) do

if beaconjmmejromk-th APisreceived then

I

Addpjk tovk;

APcountck+l;

pjk =~;

Setpik totheRSSofk-thdimensioninF;;

else
I set-lOOdBmtoPik;

A,; = (P",F,.l ;

Output: A, (All system anchors);



3.2.3.2 Positioning Phase

Algorithm:

Input: Also given a temporary vector V = {v" 112, . ,vn} (generated when

users want to find their positions), Vi is the sum ofRSS collected on dimension

i (initialed to 0) of all T' scans. n is the number of all nearby APs;

while(i~T')foreachscaninpositioningphasedo

ifbeaconframefromk thAPisreceivedthen

I

AP count ck+1 ;

Vik=~;

else
I set-lOOdBmtopj,;

while (j~N)foreachsystemanchordo

I Calculate likelihood Lj between Vi and Fj using Gaussian Kernel;

Selecttop-ksystemanchorsfromL;

Select returned position by olvingl-centreproblem;

Output: Estimation position in the I-centre system anchor point.

In the positioning phase, likelihood is calculated for each system anchor when

receiving an RSSvector. Thetop-ksystem anchors are selected as candidates for the



position estimation. We select the representative of these candidates via solving the

I-centre problem. The whole process repeats S' times, which means S' RSS vectors

are used for positioning in total. Each sub equent RSS vector is integrated with

previous vectors to produce cumulative estimation result with a decreasing error.

This baseline Wi-Fi fingerprinting approach is similar in many aspects to systems

discu sed in Chapter 2 and the system performance is very promising if well trained.

However, in order to improve system performance, we use the sparse vector and

a Gaussian kernel to calculate likelihood for each anchor point. In addition, an

approach to the I-centre problem is employed to select the representative from the

top-kanchors, which improves the system robustness to outlier anchor points. The

evaluation of this baseline approach will be detailed in Chapter 6

At this point, although the computational complexity is O(n2
), it can be eas-

ilyoptimized by using pre-fingerprint clustering and tree-based search methods [8]

However, the refinement of algorithm is not our research focus. In fact, since the

metre-level accuracy can be obtained via extensively system training[44J,webelieve

that the most challenging issues are system robustness and costs. As mentioned

above, although a fingerprinting-based approach is relatively more robust and ac-

curate than a triangulation-based approach, its system performance is still highly

dependent on the large amount of training data and theRSSvariability (the inter-

ferencein the physical environments). Thus, the goal of this research is to give the

positioning system a self-learning ability to adapt toenvironmentchangesandreduce

re-trainingormaintenancecosts. We argue that such ability could come from end

users if the system is enhanced with an user feedback model toefficientlyreceiveand

process human-centric collaborative feedback. In the next chapter, we will discuss



the proposed user feedback model

_I



Chapter 4

User Feedback Model

RSS vectors in live measurement may occasionally match the system anchor points

far from the true position due to large RSS variance, insufficient sampling lime,

or other factors. However, if this system is enhanced with a self-learning ability

adapting it to the environmental changes, such inaccurate positioning outcomes can

be compensated. This learning ability may include two components, absorbing new

knowledge and abandoning outdated or incorrect knowledge. It could receive inputs

from other channels (e.g., motion or vi ion information) to adjust the likelihood of

anchor points, filter outliers, or even create new anchor points that best describing

thecurrentWi-Fiindoorenvironments. Assuch,thelikelihooddistributioncouldbe

adjusted by reducing the likelihood of some invalid anchor points or increasingthe

likelihood of certain efficient anchor points (Figure 4.1).

For mobile devices carried by people, such self-learning ability and positioning

compensation could come from end users for free. Users can provide feedback to the

positioning service based on their knowledge of the surroundings. They may choose



Figure 4.1: General idea of positioning compensation, green arrows mean the like­

lihood of anchor points at those positions are raised while the red arrows indicates

that they are reduced

to accept, reject, or modify system results after being given the estimatedposition

In order to utilize user feedback, we need an efficient user feedback model and to

study such a model to determine if it is able to improve system performance.

Before discussing the user feedback model in detail, it is useful to begin by identify-

ingthreetypesofuser input that can be collected withinahuman-centriccollaborative

feedback system

• Positive feedback is generated when users reject the estimated position and

suggest a location based on their knowledge. In such a case, the system can

accept the updated information from the users. The result is that the system

may create new anchors from the users' suggestions, called user anchors.

• Negative feedback indicates that the users do not believe theestimated position,



Figure 4.2: Flowchart of user feedback model

and are unable to make any suggestion as to their current location. In this case,

the system should reduce the positioning likelihood of the returnedlocationin

• Null feedback occurs when users choose not to provide any feedback. The as-

sumption here is that the estimated position is accurate, and that there is no

need to make any modification to the positioning model.

Next, we will present the general idea of our positioning model integrating user

feedback. The flowchart of this model is provided in Figure 4.2. Assume that the

modelhasn (system and user) anchors, ancl thelikelihoodofthei-th(i=I,2, ... ,n)

anchor is denoted asLi . Before ranking these anchors based on the likelihood vector

L,our user feedback model compensates each Li with two factors, Q, andfJ,as

{

fJ,Li I.·f Ai I.·sasystemanchor,and
L'=

Q,fJ,Li If Ai IS a user anchor.

Due to the temporal or permanent random interfering factors of complex indoor

environments, the reliability of system anchors will be reducing. In order to solve

this problem, we design thef3 factor to gradually reduce the likelihood of system



anchors as negative feedback is received. A mentioned before, the system estimation

is provided by the vertex-l centre of top-k anchors. However, if this estimation

receives negative user feedback, this means that the user believes that they are not

near this location which is an indication that the data stored for these top-k anchors

may not be accurate. As a result, the model reduces their likelihood by updating the

/3 factors for these top-k anchors. If more and more users provide negative feedback

on a system anchor, it may never be selected as one of the top-k anchors. ThefJ

factor thus gives the system an ability to forget outdated or unreliable knowledge.

On the other side, new knowledge (user anchors) will be added into the database

via positive user feedback. However. when a user anchor is firstly created, its likeli-

hood is reduced by the discounting effect of the small initial a value. The rationale

is that the system can not assess the reliability or credibility ofa newly created user

anchor (which may be from a malicious user). However, as more and more similar

user anchors are generated to confirm it, its a factor 'I' iII be increased. Once some

user anchors become sufficient reliable, they may appear to be within the top-k an-

chors to affect the system estimation. Also, the/3 factor could affect user anchors

once they receive negative feedback. The user anchor and a factor enable the system

to absorb new knowledge about the Wi-Fi environment.

As such, future users can take advantage of the knowledge shared by previous

uscrs. Also, thcy arc cncouragcd to providc fccdback to bcnefit subscqucnt users

As a result, the positioning model can be consistently updated via the user feedback

model thus designed. Later in this section, we will explain how to calculate the a

and/3 factors in detail



4.1 Positive User Feedback

The general idea of processing positive user feedback can beexplainedviatheexanlple

in Figure 4.3. Suppose likelihood calculation is finished, and each system anchor
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Figure 4.3: Positive feedback

A.,,(i E {l. .N}) has a likelihood value Li • The returned system anchor (green

star) is the vertex I-centre of the top-k anchors. However, it is far away from the

lIser'strueposition(bluetriangle).Forpositiveuserfeedbaek,users try to tell the

system their estimations by providingsllggestion positions. SlIchestimatepositions



are shown in Figure 4.3 as red circles. Note that they could be close to the true

position (accurate feedback) or still faraway from it (inaccurate feedback).

Whenever the system receives a user-suggested location associated with its current

RSS measurement, denoted as user fingerprint, the system creates a temporary user

anchor (Au). If this anchor is sufficiently similar to an existing user anchor in the

model, it is merged with it, and the 0< factor is updated. Otherwi e, it becomes a

new user anchor, with the associated 0< factor set to a very small initial value. It

indicates that the newly create user anchor is not as reliable assystem anchors at the

beginning

4.1.1 Temporary User Anchor

Since a user's suggested position could be arbitrary, savingthesesuggestionssepa-

rately would bloat the model significantly. Therefore, we use discrete locations by

dividing the study area into an mxngrid. Note that the resolution of this grid could

be different from the resolution as used in the training phase. We can set smaller grid

space because the system training from users is cost-effective. This helps to efficiently

reduce the grid space between system anchors. Thus,theresolutionofentiresystem

Withineachgridcell,itsgeometriccentreisusedtorepresentthepositions of all

temporary user anrhor points falling into it, as in Figure 4.4. We thusrlefine the Ilser

anchor Au as:

wherePu is the grid cell centre that contains the user suggested position and Fu is
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Figure 4.4: The geometric centre of grid cell (i,j) represents all user estimatepositions

falling into it,

the user fingerprint summftrizerl from the current Wi-Fi RSS measurement,

4.1.2 Anchor Merge

A newly generated positive feedback could be either converted to anew user anchor

point or merged with an existing user anchor point based on their similarity, As

mentioned before, we believe that positive feedback represented by a user anchor

point should gradually become reliable if more and more similar user anchorpoints

are generated to confirm it. Before we discuss how to update the reliability of user

anchors, we define the similarity between two user anchor points.

Given user anchor points Au, and Au, i i' j, their similarity is determined by two

aspects'



• Wi-Fi RSS fingerprint similarity: At this point, we do not measure the precise

similarity. Instead,weonlyneed a mechanism to reflect the positive coefficient.

A natural measurement mechanism is the cosine similarity in the range of [0,

1], which is convenient to compare their fingerprint similarity. Thus, the Wi-Fi

RSS fingerprint similarity Fu is given as

SF. = (1 ifco (Fu, , Fu,) >a

o otherwIse,

where Fu, and Fu, are Wi-Fi RSS fingerprints of user anchor points Au. and Au,

respectively. They are all sparse vectors with n dimension ; a is the threshold

forWi-Fi RSS fingerprint similarity

• Physical position similarity: If two user anchor points share the same geometric

centre of a grid as their position. They are considered as similar in position

As a result, we claim that two user anchor points are similar if they satisfy both of the

above two similarity conditions. Moreover, the timestamp should also be an important

aspect. Different times (morning, noon, and night) or dates (weekdays, weekends, and

holidays) could produce different RSS patterns. For example, in a university cafeteria,

duetotheinterferencefromhumanbodiesandelectronicdevices,theuser fingerprints

generated during dinner time could be very different from midnight. As such, user

feedback should have a tim!'-bound, wherein it is only able to affectother users within

similar time period (e.g., in the same time sliding window). At this point, however,

we do not consider this time factor. In Chapter 7, we will discuss this issue as one

aspect of our future work in detail.

A temporary user anchor Au. is thus merged with the existing user anchor Au, in I

_I



the same cell if their fingerprints are sufficiently similar. If multiple ancbors already

exist in the same cell as Au" we only consider the most similar one, denoted Au,. If

the similarity between Au, and Au, is greater than a threshold, the temporary user

anchor is regarded as the same as the existing one, and therefore is merged with it.

4.1.3 The a Factor

Whenever a temporary user anchor is merged with an existing user anchor in the

system, the associated a factor is updated. For user anchor Au" we define a, as

ai = a +l
e
_., with x ::': 0 and 0 < a .,; 1,

where the variable x has a cumulative effect and ais a parameter controlling the initial

and maximum values of ai. When an user anchor Au. is firstly created, its original

likelihood will be reduced by the small ai. As more positive feedback is provided in

support of it, itsa factor gradually increases until it reaches an upper limit.

Thus, the magnification capability of the a factor is ~. The increment of x is

C>x = f +b
e

-
aF

with b> 0

The pace of the increaseofx is controlled bya few aspects:

• An independent parameterb, which compensates the increasing velocity ofx

When there are many users (e.g., in a large shopping centre), we may not

want to trust their individual estimation much. Instead, we can reply on the

convergence effects of large amount of users to evolve the mode. However, when

there are only a few users (e.g., in a depot), we assign each individual feedback

much higher weight.



• The variance of the current RSS fingerprint, aF. The user feedback generated

in the environment with small RSS variance will have larger influence on the

evolution speed of the model

• If Tis the numberofWi-Fi scans used in the positioning query and T, is the

numberofWi-Fiscans used duringsystell1training, their ratio f,aIso reflects

the credibility of this positive feedback.

'o:~

Figure 4.5: Thea factor increases fastest at the beginning and becomes table once

a sufficient number of feedback events are received with an upper limit.

As a result, the a factor increases fastest with the first few instances of the user

anchor,becoll1ingstableonceasufficientnull1beroffeedbackeventsarereceived,as

we can see in Figure 4.5 (a= 1). The rationale for this design is to allow the system

to quickly adapt to new information provided by the users, but without this feedback

overpowering the system



4.2 Negative User Feedback

Suppose the system delivers a position from top-k anchorsaccordingtotheirlikelihood

ranking, but the user believes this location to be incorrect and cannot provide any

further information regarding the actual location. The negative user reed back on this

estimated position can also provide valuable information to the system. Typically,

when a user rejects the position estimated by the system, the reason could be that

the user is nowhere near any of the anchors known by the system. In this case, none

of the top-k anchors would truly represent a good estimate. Therefore, we should try

to decrease their likelihoods simultaneously.

Given an anchor Ai, we use a negative user feedback factor {3, to reduce its like-

lihood according to the accumulation of negative feedback received. Similar to the

positive feedback model, the negative factor model also has fast adaptability. Ac-

cordingly,wedefine{3i as

When an anchor is given a negative feedback, we give x in aboveformula the same

increment6xused in the positive user feedback. The valueof{3 is inversely related

to x, such that{3will decrease from the initial value 1 to its limit zero as x increase

from zero to infinity. The curve of {3 factor is shown in Figure 4.6. As a result, if

more and more users reject the same set or anchors, they will neverbechosen as the

top-k due to the small value or the {3 ractor



Figure 4.6: Similartoofactor, the{3 factor also has fast adaptability at thebeginning

and will decrease from the initial value 1 to its limit zero

4.3 Null User Feedback

The null user feedback is generated if users choose to accept the Iocationestimationor

do not want to provide any feedback. In such a case, the model will not be updated

4.4 Summary of User Feedback Model

In this chapter, the proposed user feedback model is explained in detail. It processes

three type of user inputs (i.e., positive, negative, and null user feedback). Positive

feedback generates anew type of anchor point called user anchor. The user anchor

will be merged with an existing user anchor resulting in its reweighting, or created

as a new anchor which is assigned a small initial weight. Negative feedback reduces

the reliability or credibility of anchor points (both system anchoI's and user anchors)



Reliable user feedback will have more impact on system results. The influence of

user feedback depends on three factors: I) the convergence effect of other similar

user feedback 2) the interference level of current environment, and 3) the number of

Wi-Fi scans (the effort for conducting a positioning activity). As such, we believe

such model should be robust to malicious feedback which normally exists as outliers

Atthispoint,wchavccxplaincdthcbaselincWi-Fifingerprinting-bascdappl'Oach

in Chapter 3 and the proposed user feedback model in this chapter. These two

chapters form the theoretical part of the thesis. In order to validate and evaluate

the model in real indoor environments, we have built a prototype on the Apple iOS

(which runs on both iPhones and iPod Touch devices) In the next Chapter, the

features of this prototype will be introduced



Chapter 5

System Design

In this chapter, the general design of the system will be presented. We mainly in-

troduce our system architecture and user interface (UI). A detailed ciassdiagram is

provided in Appendix A.3

5.1 Design Goals

There are three main techniques for system performance evaluation 1) analytical mod-

eling, 2) simulation, and 3) measuring a prototype system. Analytical modeling and

simulation provide easy ways to predict the performance or compare severalalterna-

tives, especially if the prototype is not available or in thedesignstage. However, they

are unable to identify potential flaw in the model which could only appear in real

observations. Also,forWi-Fi based indoor positioning techniques, it is difficult to

predict the system performance merely via simulation or analytical modelling. Thus,

in order to conduct comprehensive and valuable evaluation, wehave built a prototype

toenablepositioningactivitiesanduerfeedbackinputinrealindoorenvironments.



Based on this prototype, we can design field trails to evaluate the performanceofthe

proposedmodeI. Specific prototype design goals are listed as follows:

• Facilitate system training. Since the system training can be very time-consuming

and tedious, the prototype should be able to help the administrators to train

the system effectively and accurately

• Reasonable UI design. The UI design i essential for human-centric computing

We thus need a well-designed UI to present the position estimates in term

ofamap, along with a method for obtaining both positive and negative user

• System status monitoring and log file. System analysts should be able to mon-

itor the system and record its running status

• Statistical experimental results. The system should store all raw run-time data,

and it should pre-process these and present the statistics resuIt for analysis

• Fast system responsiveness. The UI responding delay is a very importantsys-

tern performance metric. The prototype should provide near-instantaneous UI

5.2 Architecture

5.2.1 Platform

The operating system of our prototype is Apple iOS 3.1.2, which is an advanced

mobile platform. It is streamlined to be compact and efficient, and taking maximum



advantage of the iPad, iPhoneand iPod Touch hardware. Technologies in iOSsuch

as the as x kernel, sockets, and OpenGL ES provide comprehensive application

programming interface (API) and high compatibility. The iOS SDK combined with

Xcode developer tools make it very convenient to debug the code, design the I,

manage the data, and analyze the application run-time performance.

nfortunately, the Wi-Fi API is not publicly available even for the latest iOS

SDK. Instead, we indirectly use iOS system calls via a private Wi-Fi framework

called WiFiManager to scan nearby APs.

5.2.2 System Architecture

We will introduce the logical model of our prototype in this section. At this point, we

focus on the system architecture, the relationship and interaction between modules.

The detailed class information is provided in AppendixA.3

In terms of system architecture, if we adopted a client/server architecture, the

positioning process could be conducted using a positioning serverinacentralized

manner. F\trthermore, a large amount of map data, fingerprint data and user data

could be stored in the database at the server side. Therefore,theclientrunningona

mobile device would only need to download the map and send a positioning request

to the server and wait for the result. By doing so, the resource consumption on the

mobile device could also be reduced. However, the system response time will depend

on the communication quality between the client and the positioning server. If the

network is congested or the RSS from associated AP is at a extremely low level, users

will have to spend a long time waiting for the system results. Also, if users can not



access the network for some reason, such a positioning service will be unavailable.

Furthermore, in order to protect users' private information (e.g., the history of 10-

cationqueries),theserverneedstointegrateadditionalsecurity mechanisms such as

data encryption, secure data transmission, oraccesscontrol,whichincreasethecost

and complexity. By taking consideration of these aspects, we have implemented the

positioning process locally (i.e., a lightweight stand-alone version). In such anoffiine

operating mode, the position calculation process will be conducted on the mobile

device to protect privacy and reduce the dependence on networks at the same time.

Also, if users want to take advantage of collaborative feedback from other users, they

can synchronize their local user feed model with a server at a differenttime. As such,

their feedback can be uploaded to the server and benefit other users.

The architecture of our prototype is based on a variety of layers, from Ul on the

application level to Wi-Fi and System Foundation at the iOS kernel level. Figure

5.1 shows a high-level overview of these layers. Next, we will explain the general

functionality of each layer and how they communicate with eachother

The System Foundation layer is designed to provide a fundamental framework for

the entire prototype. It contains basic functionalities such as keyobjectinitialization,

views navigation, data management, console, system configuration, and experiment

management. In view navigation, users can switch to different views (e.g., training

view, positioning view, console view, system configuration view) via touch activities

The system administrator can check system run-time status in the console view. We

can set system preferences in the system configuration module (e.g., we can choose

toenable/disabletheuer feedback model or store all raw experimental data). An-

other very important module in this layer is the experiment management. Since we



System Foundation

Figure5.1: System architecture



will conduct experiment with different settings and parameters, it is beneficial to

maintain each experiment individually. We implement a file bundle which contains

all relevant information for each experiment. As such, we can conveniently switch

among experiments or initiate a new experiment without losing data from previous

experiments

The RSS vector is formed in the Wi-Fi layer. It is converted to an RSS fingerprint

in the System Foundation. The RSS fingerprints arc assembled into systcm anchors

and user anchors in the System mining and User Feedback Model respectively. The

Wi-Fi layer directly communicates with iOS kernels via a private framework called

WiFiManager, which provides a high-level wrapper for the Wi-Fi related system calls

(Apple80211). The Apple80211 is a set of system calls which are related to Wi­

Fi functionalities. Some important Apple 02.11 system calls are Apple802110pen,

Apple80211Clase,Apple80211Assaciate,andApple80211Scan. Inaurcase,the

Apple80211Scan is mostly used to scan nearby Wi-Fi APs. It will generate an array,

where each element is a dictionary structure that contains information about an AP

(e.g., MAC, ssm, RSS, Channel, etc.). The detailed data structure is provided in

the IIFNetwark class in AppendixA.3

The System Training layer implements most of functions required far system train-

ing. At each survey point, it periodically calls the Wi-Fi scan function intheWi-Fi

layer to generate RSS vectors and sends them to the System Foundation toassem­

ble the RSS fingcrprint. Then, the RSS fingerprints and thc physical coordinates of

the survey point are combined to form system anchors. We u e a mutable list data

structure to maintain the system anchors. The administrators can add, remove, or

modify RSS fingerprints of system anchors. The trained survey points are marked



on a map as reminders, aJlowing the system administrators to keep track of which

survey points are trained and which are not.

The Position Estimation layer estimates a user's position and the degree of cer-

taintyin this location estimation. For experimental purposes, the prototype imple-

mentation allows a variable numberofWi-Fi scans. After a scan, it calculates the

likelihood for each anchor using the generated RSSvector. Then the likelihood vec-

tor is compensated by thea factors of corresponding user anchors and fJ factors of

selected top-k anchors maintained by the User Feedback Model. Then, the Position

Estimation layer selects a representative (vertex I-centre) from these top-k anchors

and delivers it to the UI layer. Besides the estimated position shown in the UI layer,

the region of uncertainty will also be presented to users for providingadditionalpo­

sitioninformation. The uncertain area is a circle enclosing all top-kanchorsbecause

they all have a large possibility of being the true position. From a usability perspec-

tive,itismoreinformativetopresentthesehighpossibilityanchors in a manner that

allows them to understand the range of possible locations, butalsoinamannerthat

willnotconfusethemastowherethesystemhasestimatedtheirposition

The User Feedback Model layer receives and processes user feedback from the

system UI. Ifa user provides a positive feedback, it generates atemporaryuseranchor

by combining the user-suggested position from the UI layer and the RSS fingerprint

from the Position Estimation layer. Such a temporary user anchor will be either

merged with an existing user anchor or considered as a new user anchor based on

the similarity calculation. In either case, thea vector will be updated. If the User

Feedback ~,Iodellayer receives negative feedback, it will update {3 vector by reducing

thecorresponding{3valueofthetop-kanchors



The VI layer contains different views which are controlled by the lower layers to

enable user interaction and present system results. It visualizes training and po ition-

ing results to end users, receives user feedback and delivers them to the serFeedback

Model layer. In order to provide a better understanding about our prototype, we will

explain these views in the subsequence section.

5.3 User Interface

Since our prototype is built on iOS, the touch-based userinteraction enables a superior

user experience on the mobile devices. The goal of our touch-based UI design is to

make the human-centered positioning activities as simple and efficient as possible

Next, we will introduce the UI of our prototype in detail

5.3.1 The Main Panel

The basic functionality of main panel is view navigation Users are able to switch

among views and modules in the main panel by touchingcorrespondingicons(Figure

5.2).

5.3.2 The trainingView

The main component of the trainingView is a scrollable map view which enables

a trainer to zoom injoutand locate survey positions. When system administrators

touch the map, the trainingView will record the current touch position. Then, a

mutable table of survey positions will be loaded forthetrainertomanipulatesystem

anchors. In addition, the survey positions will be marked with tags on the map in



Figure 5.2: Main panel

order to remind the trainer whether they are associated with any RSS fingerprint

(trained), as we can see in Figure 5.3

System administrators maintain system anchors using the surveyPositionsView

presenting mutable table (Figure 5.4). At each survey point, system administrators

can en-ate, delete' or reof'W their associated RSS fingerprints. Tlw r[f'ate or n'I1eW

action is triggered by touching one of the table cells to start anew sequence of Wi-Fi

Whenatablecellistouched,thesurveyPositionsViewwillloadthelIiFiScanView

to start a new Wi-Fi sampling process at that survey position. The main component

of the lIiFiScanView is a table which contains all AP information in one scan, as

shown in Figure 5.5. ~lultiple Wi-Fi scans will be conducted to collect as much in-



trainingView (view #1)

trainingScrollMapView
(view #1.1)

confirmatfonalert(ifyes,1oad
surveyPositionsView(view#1.2))

Marker(trainedpositons
are marked on the map)

Figure 5.3: The trainingView provides an interface to system administrator .

physical coordinates of touched points on the map will be recorded andusedtocreate

system anchor



surveyPositionsView (view #1.2)

Add a new survey position
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Figure 5.4: System anchors are maintained in surveyPositionsView

formation as possible. System trainers can also stop/resume Wi-Fi scanning. When

itis finished, this survey point is associated with an RSS fingerprint.

5.3.3 The positioningView

The positioningViewshown in Figure 5.6 is areot navigation view for u ers' po-

sitioning activities. It contains ascrollable map which presents system result and

receives user's suggestion position. The "finder" icon can be touched to load the

positioningStartforvariableWi-Fiscannumberselection. Whenthesystemre-

turns a position estimate, the positioningView will ask users to provide feedback

via loading theuserFeedbackView. Otherwise, users can touch the "notebook" icon

to load the userFeedbackView and previdefeedback.
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Figure 5.5: When entering the theWiFiScanView via selecting a survey point, system

will start the Wi-Fi scan and generate Wi-Fi RSS vectors.

positioningView (view #2)

Figure 5.6: ThepositioningView.



positioningStartView(view#2.1)

..selectScanTime
(view #2.1.1)

Figure 5.7: The pickerinpositioningStart is used toselecL a Wi-Fi scan number.

The purpose of positioningStart is to allow a variable number of Wi-Fiscans

in positioning. We can select a Wi-Fi scan number from a picker as shown in Figure

During the position calculation, the system will generate massive intermediate

results (e.g., intermediate uncertain area and estimated position). For example, if

the Wi-Fi scan number is four, the system will generate four uncertain areas and

estimate positions for each cumulative scan before the positioning is finished. Each

scan may lead to a cumulative estimation result with a decreasing error because more

AP information is collected. The positioningAnimationView presents animations

showing a gradually decreasing uncertain area (the area of circle). At the same time,

userswillbeexperiencingamoreaccuratepositionestimation(thepinisapproaching



10adpositioningAnimationView
(view #2.1.2)

Figure 5.8: The positioningAnimationView provides intermediate system results to



to user's true position), as we can see in Figure 5.8

5.3.4 The userFeedbackView

userFeedbackView(view#2.2)

Figure 5.9: The userFeedbackView enables users to provide three kindsoffeedback

When the positioning process is complete, the system will ask users whether or

not they want to provide feedback. If yes, it loads theuserFeedbackView as shown

in Figure 5.9. Users can provide three kinds of feedback (i.e., positive, negative, and



null user feedback) by touching a corresponding tag

positiveUserFeedbackView
(view #2.2.2)

Figure 5.10: ThepositiveFeedbackViellenables users to explore grid cells for pos-

itive feedback,confirming this choice with a double tap.

lfuserschoosetoprovidepositivefeedback,theyneedtotouchthemaptosuggest

a new position. However, users may need to explore the map to make a satisfactory

estimation. Also, the size of the finger touching on screen may generate errors. In

ordertosolvethisproblem,usersareabletoexploresurroundinggrid cells and double

tap to confirm their estimation in our implementation 5.1O

Ifuserscboose to provide negative feedback, thenegativeFeedbackwill place a



negativeUserFeedbackView(view#2.2.3)

Figure 5.11: A red cross placed on system estimate position means a rejection

red crosson the system estimated position to indicate a rejection, as shown in Figure

5.11. Husers trust the system's estimation, they can just choose the null feedback

with a simple close

5.3.5 The experimentManagementView

In experimentManagementView (Figure 5.12), we use a picker toselectabuild-in

experimental environment, which includes the vectors containing Ci and f3 of the

model, created user anchors, and historical results of a experiment. Otherwise, we

can start an new experiment by touching the "add" icon



experimentManageView (view #3)

~~~ganexperimental

Figure 5.12: The experimentManagementView allows us to select rliffcrcnt built-in

experimental environments or create a new one.



5.3.6 The systemSettingView

systemSeltingView(view#4)

Figure 5.13: The systemSettingView enftbles system configurfttion ftnd preferences

setting

ThesystemSettingView provides an interface for system preferencessetting(Fig­

ure5.13). The proposed user feedback model can be turned on/off in order to com­

pare the system performance with/without user feedback. The fast positioning mode

means the system will only use the first Wi-Fi scan to estimate user's true position. It

is fast but may have large positioning errors. When conducting experiment ,wecan

also choose to to save all raw experimental data or not in thesystemSettingView.



consoleView (view #5)

Figul'e5.14: TheconsoleView

5.3.7 The consoleView

The consoleView displays detailed system information (e.g.,likelihood for each an­

chor, the index of returned anchors, etc) for system analysis

Since the prototype is available, we can conduct experiments to evaluate it and

the proposed human-centric collaborative user feedback model. In the next chapter,

we will evaluate the baseline Wi-Fifingcrpl'inting-bascdsystcrnaIldoul'uscrf~'Cdback



Chapter 6

Evaluation

We will explain and interpret experiment methodology, settings, scenarios, and results

in this chapter. Om main experimental goal is to rneasme the benefit of auuing

human-centric feedback to a baseline indoor positioning system

6.1 Methodology

The system evaluation contains two phases. The first phase is to analyze the perfor-

manccofthcbaselincsystcmwithoutuserfccdbackinficldtests. The accuracy and

precision of the baseline system will be calculated. By analyzing these two perfor-

mancemetrics,wecandeterminewhetherornotourbaselinesystemis suitable when

compared to experimental results of other similar Wi-Fi fingerprinting based indoor

positioning systems. Furthermore, the time consumed in positioning is an important

aspect of service quality and user experience. Typically, long Wi-Fi scan durations

tend to bring more reliable results. However, the users might not be willing to spend

too much time waiting for the results. Thus, experiments will also be designed to



investigate the relationship between the time consumed in positioning process and

sy tern performance. For our baseline positioning system, the number of Wi-Fi scans

dominates the positioning duration. Experiments will be conducted to compare the

average positioning error and precision in terms of the number ofWi-Fiscans.

Next, we will explore how the proposed user feedback model improves the system

performance. We will measure the benefit of integrating the proposed human-centric

collaborativeuserfccdbackintoaWi-Fifingcrprintiug-bascdindoorpositioningsys-

tern from the following three aspects·

Hypothesis 1: The system tmining and maintenance cost can be reduced. The

training effort is reduced if system administrators only train themajorpartof

the objective positioning area or train the system at a coarse granularity (i.e.,

large grid space). However, in doing so, the positioning accuracy and precision

will be reduced. More importantly, if the indoor environment changes (e.g.,

Wi-Fi infrastructure or environment layout alteration), the RSS fingerprints

database has to be updated frequently or even re-generated from scratch in

order to adapt to such changes. At this point, we argue that such system

training and maintenance cost can be reduced by taking advantage of human-

• System performance

Hypothesis 2: The system performance can be improved, as measured in accu-

mcyandprecision. The newly created user anchors in fact include the "fresh"

Wi-Fi RSS data, which can best characterize the current Wi-Fi environment.



If we can keep integrating such data into our fingerprint database, future po-

sitioning queries can take advantages of the timely knowledge shared by other

users, resulting in an improvement in system performance. Furthermore, the

resolution of the positioning system should be gradually increased because user

anchors are generated between system anchors. As such, the grid space is re-

ducedand the positioning resolution is refined

Hypothesis 3: The system is robust with respect to malicious user feedback.

One potential risk of opening a user channel to the positioning database is that

malicious user feedback will disturb the functionality of system anchoI's. Thus,

the proposed user feedback model should have considerable robustness to the

interference or even intended attacks from malicious user feedback. Jntheworst

case, the system is continuously interfered with by malicious user feedback,

which could lead a very large average positioning error. However, after the

attack stops, the system should be able to recover from thelowaccuracystate

by integrating benign and knowledgeable feedback

We will discuss the experiments designed to validate these hypotheses in subsequent

6.2 Experimental settings

Experiments and evaluations with this feedback model were conducted in an indoor

office environment, which is the part of the 2nd floor of the Engineering Building at



Figure 6.1: The experimental field includes both the training cells (green triangles)

as well as measurements taken outside of the training area (red discs).

Memorial University. The space was divided into a grid usinga3x3m cell size. 33

positions were selected within the hallways for training the baselinesystem(denoted

the training area),andanadditional20positionswereselected as untrained positions

for testing purposes (denoted the non-training area). A diagram of the setting is

provided in Figure 6.1. System anchors were created in the training area only. The

non-training area lacks valid system or user anchors. It can be treated as the result

of environment alteration, new Wi-Fi coverage area, or a neglected region

As mentioned earlier in Chapter 4, the parameters in the feedback model are used

to adjust the rate of change of the a and fJ factors (i.e., the sensitivity of our user

feedback model). In production environments, the sensitivity of the user feedback

model will depend on the number of users and the degree of trust in thoseusers. For

the purpose of evaluation, we increase the sensitivity of the user feedback model in

order to speed up the the rate at which the system is able to learn from the user



feedback. Based on these principles and our experimental settings, we set the value

of parameter a to be 1, which means that the magnification factor of parameter a

is2. The value of parameter b is set to be 0.6. As such, according to the design of

ouruserfeedback,theseparametersettingwillweightthefirstfour users much larger

than subsequent users

6.3 Baseline System Evaluation

Since the time that a user is willing to spend waiting forapositioningrcsultinfluences

theservicequality,wehaveconductedanexperimenttoinvestigate the relationship

between time (i.e., the number of Wi-Fi scans) and system performance. We use the

baseline system to determine the smallest number of Wi-Fi scans (measured at one

scan per second) needed for the system to produce a reasonably accuratere ult. At

thesametime,theperformanceofourbaselinesystemcanbeevaluated with respect

to other similar systems described in the literature. In the training area, for each

survey point, we have collected 20 scans of the Wi-Fi RSS, using these incrementally

to query the positioning system. The average positioning error after each scan is

plotted as the bottom curve in Figure 6.2. We can observe that for a small number

of scans, the system has an error between 2 and 4m. As more scanned RSS data are

used (i.e., greater than four),theaccuracystabilizesataround2m.

The system precision, as another very important metric for system performance,

is plotted in Figure 6.3. It specifies how often we could attain an accuracy. For

example, if a positioning system can determine positions within 3m for about 90 %of

the measurements, that particular sy tern qualifies to be 90 % precise in providing 3m
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Figure 6.2: Using the baseline system, the positioning error becomes relativeiystable

using just four Wi-Fi scans. Note that the system is significantly more accurate within

the training area.

accuracy. We selected the positioning precision for 9 out of the 2oscans, illustrating

three phases ofWi-Fi sampling. The early phase consists scans 1, 2, and 3 (red

curves). In this phase, due to the insuflicient Wi-Fi RSSdata, the precision is low

The second phase includes scans 5, 10, and 15 (green curves), it is in the middle of the

Wi-Fi sampling and has more Wi-Fi RSS data than the first phase. The last phase is

at the end of Wi-Fi sampling (scans 18, 19, and 20), which includes all RSS vectors

(blue curves). From Figure 6.3, we can see that , the green and blue curves are very

close to each other, which means that scan number larger than four will not generate

significant precision improvement. However, if the Wi-Fi scan number is small (i.e.,

less than four), the probability of generating outliers isconsiderablyhigh

Similarly, in the non-training area, we also collected 20 scans foreachpoition. We
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Figure 6.3: The precision of first three scans (red curve) is much lowerthanlaterscans

(green curves for scan 5,10, and 15 and blue curves for 18, 19, and 20). However, the

blue and green curves are very close to each other, indicating theprecisionafterfour

scans is not improved significantly
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Figure 6.4: Similar precision trend can be found in non-training area, blue curvesand

green curves are similar but both apart from red curves.

plotted the positioning accuracy for the number of scans as the top curve in Figure

6.2 and positioning precision in Figure 6.4. In this case, the system performance

is significantly lower than in the training area due to the lack of system anchors

I-Iowever, in both training area and non-training area, fourscansp rovide a reasonable

trade-off among performance and positioning time. Therefore, we use thi as the

number of scans in the rest ofollr experiments

According to the analysis of our baseline system, the average positioningerroris

between 2m and 4m, respectively, depending on the Wi-Fi sampling time. It is in

fact only marginally worse than theO.7m t04m average positioning error yielded by

the best-performing but intensively trained Horus system (using 100 Wi-Fi scans and

much smaller grid space (1.52 m and 2.13 m)) [441. Thus, we believe this baseline

systemisqllalifiedtoevaluatethevalueofaddingtheuserfeedbackmodel



6.4 User Feedback Model Evaluation

6.4.1 Knowledgable and Helpful Feedback

Next, we investigate how the user feedback model improves the system performance.

In this scenario, whenever the system returns a position that does not match the

true position of the user, feedback was provided. We modelled the user as being

knowledgable and helpful; whenever the position was inaccurate, the user suggested

positive feedback 80% of the time, and negative feedback 20% of the time. We believe

it i a reasonable choice for situations where users are highly motivated to provide

accurate and positive feedback. In fact, there may be many other users who are

providing null feedback (i.e., using the system and trusting the results). However,

since such types of users do not affect the evolution of the model, they are not

discussed at this point.

Within the training area, we define a mund as a traversal of all grid celis. Ina

round, the user stops at each survey position to scan the RSS for nearby APs (using

four scans). If the result is correct, the user moves to the next position. Otherwise,

the user provideds feedback before moving on. The average positioning accuracy

after nine such rounds of visiting and testing each position is plotted in Figure 6.5

lnthecourseofprovidingthisuserfeedback,thepositioningerror within the training

area improved from approximately 2.5m to 1.5m after just four rounds. From there,

little change was observed. Note that the baseline system accuracy is from 4m to 2m

without feedback. At this point, with the integration of human-centric collaborative

feedback, the system performance is furthermore improved even in the well trained
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Figure 6.5: The system accuracy is significantly improved when integrating knowl-

edgeableandhelpfuluserfeedback

The precision is also improved after four rounds of user-involved positioning within

the training area, as we can see in the green and blue curves which are closer to the

y axis than red curves shown in Figure 6.6. Furthermore, green and blue curves are

close to each other, which indicates that the model reaches its optimal performance

after approximately four rounds of knowledgeable and helpful feedback

Within the non-training area, the experiment followed the same procedureasin

the training area, producing the data plotted in Figure 6.5. Becau e there was no

training data in these regions, the initial positioningerrorwasratherlarge. However,

after 13 rounds of collecting user feedback, the error decreased from 9mt02m. The

precision isalsosignifirantly inrreased as plotted in Figure 6.7. As a result, the system

performance in an area that had not been previously trained hecamecomparableto

the training area.
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Figure 6.6: In training area, the precision is improved via integrating knowledgeable

user feedback. The green curves and blue curves are close, which indicates that the

model is optimally trained after four rounds

Figure 6.7: In non-training area, thesytem precision is significantly increased as

more and more knowledgeable user feedback is integrated



At the beginning of the testing within the non-training area, the model contained

onlysystemanchors,andthereforecouldonlyreturnthepositionofasystemanchor

(i.e., within the training area) to the user. These positions were often far from the

true position of the user. As a result of the positive feedback, user anchor were added

and the relative weight of these anchors were enhanced by the a factor. Similarly,

with the negative feedback, the weight of the system anchors were reduced bythe{3

factor. As a result, the positioning accuracy increased as more user anchors become

valid candidate positions.

Whatthismeansforindoorpositioningsystemsisthatthesystem training and

maintenancecostscanbereducedsignificantlybyrelyingonknowledgableandhelpful

end users working on a partially trained system, eventually achieving the same level

of accuracy as a fully trained system. Also, the resolution of the positioning system

is improved because many reliable user anchors fill the gap between sy tern anchors,

thus reducing the grid space or increasing the grid resolution

At this point, the optimal combination of different types of user feedback is not

considered. Toconductexperimentstestingeachpossiblecombinationisimpractical

within a limited time period. In fact, this problem can be explored if we could use

a simulation testbed. We can collect a large amount of real Wi-Fi RSS data to

simulatetheWi-Fiscan When the simulated positioning process is finished, virtual

user positive or negative feedback can be generated to the evolve the model. As

such, the system performance with an arbitrary combination ofpositiveandnegative



6.4.2 Mixed Feedback

In areal environment, user feedback can be either helpful or malicious. In this experi-

ment, we test the model to determine its ability to recover from incorrect feedback. In

particular, we model the user feedback as completely malicious at the beginning and

as completely informative thereafter. Such a behaviour is not typical but it provides

a "worst case scenario" study of the system, followed by its ability to recover from

incorrect or malicious feedback

Our focus here is on the training area only. As seen in the previous experiment ,

the non-training area can become nearly as good as the training area with sufficient

user feedback. As such, we expect similar results within the non-training area as the

training area with respect to mixed feedback

During the initial phase of this experiment, whenever the system returnsacorrect

Figure 6.8: Providing malicious userfeedback,followed by knowledgeable and helpful

user feedback illustrates the ability of the model to self-recover



Figure 6.9: Providing malicious user feedback also reduces the system precisionsig-

nificantly.

position estimation, the malicious user hasa50%chanceofeither providingnegative

feedback of suggesting a random false position. When the system is incorrect, the

malicious user provides null feedback. Following a similar methodology as the previous

experiments, such malicious feedback was provided for four rounds. Another eight

rounds of feedback from a knowledgeable and helpful user was then coliected

The position errors for this experiment are plotted in Figure 6.8. We observe that

thesystemerrorstartsoutwitharound4mandquicklyincreasesto14masaresult

of the malicious feedback. At the same time, the system precision is also reduced

to an unacceptable level, shown as the red curves in Figure 6.9. With an error of

14m and extremely low precision, the system isconsideredtobefairlydisturbedby

the malicious users. At thi point, we tum the user into knowledgable and helpful

to provide positive feedback whenever the system is incorrect. The user behaviour
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Figure 6.10: Providing malicious user feedback, followed by knowledgeable and helpful

user feedback also recovers the system precision to a normal leveI.

in this case is the same as in the previous subsection. The helpful feedback quickly

correctsthesignificantpositioningerrors,recoveringtothestartingaccuracyafter

five rounds of feedback, and below 3m after eight rounds. At the same time, the

system precision is stabilized as indicating by the blue curves in Figure6.IO

As a result, our system has recovered from the low accurate state by integrating

helpful and knowledgeable feedback

To conclude this chapter, we will review the entire evaluation process and whether

thehypothesesproposedinSection6.larevalidated.Wehavedesignedthreedifferent

experimental scenarios and divided the study area into two areas, i.e., training area

and non-training area. Po itioning in the non-training area only relies on the anchor

points in the training area, which could cause large errors.

In Scenario I, the impact of Wi-Fi scan number on system performance has been

_I



studied. Within both the training area and non-training area, we found that four

scans are able to obtain fairly good system performance without adding too much

system overhead

In Scenario 2, knowledgeable and helpful user feedback has been integrated into

the model. This scenario is designed to present the maximum improvement of the

baseline system.

The "worst case scenario" study has been conducted in Scenario 3. That is, the

model has been designed to endure continuous malicious feedback (attack). As such,

the positioning error has gradually increased. When the system has eventually became

unreliable, knowledgeable and helpful user feedback used in the second scenario is fed

into the model in order to measure its self-recovering ability

Next, we will validate the hypotheses via experimental results from above scenar-

• Hypothesis 1: The system tmining and maintenance cost can be reduced. As

mentionedabove,non-trainingareaexistsinrealindoorenvironments, i.e., the

area without anchor points and the neglected or modified regions within the

training area. In both cases, s)'stem administrators need to frequently update

the fingerprint database in order to ensure the system reliability. With the

integration of knowledgeable and helpful user feedback,such a maintenance cost

is reduced as illustrated by the experimental results from Scenario 2. During

the initial rounds, the positioning error is about 9m. With more and more user

feedbackprovided,thepositioningerrorisreducedt02m. The system precision

is also considerably improved as we can see from the blue curves in Figure 6.7



Such performance can be considered as the same level as the performance in

training area, however, without any extra training or maintenance cost. Thus,

the Hypothesis 1 is validated

• Hypothesis 2: The system performance can be improved, as measured in ac­

curacy and precision. The reliable user feedback contains information (user

fingerprint) that best characterizes the current Wi-Fi RSSfeatures. Such help-

ful information can help the system to improve the performance as illustrated

by the experimental results of the training-area in Scenario 2. The system po-

sitioningerroris reduced from around 2.5mtoaround 1.5m after four rounds

and becomes stabilized. Figure 6.6 indicates that the forgotten area in the

training area is gradually eliminated since the blue curves are more vertical

than red curves. This indicates that the system performance can be improved

with the integration of helpful and knowledgeable user feedback , which validates

Hypothesis 2

In addition, when more and more user anchors become valid, the system res-

olution is refined because they reduce the grid spacebetwccn system anchors.

This indicates that system administrators can use coarse granulari tyduringthe

training-phase, and prompt the user to provide feedback in order to refine the

system resolution. Thus, the training cost is reduced, which validates Hypoth-

esisl from another aspect.

• Hypothesis 3: The system is robust with respect to malicious user feedback.

In real life, helpful and malicious feedback are often mixed togethertofeedthe

model. As such, the phenomena described in Scenario 3 might be rarely ob-



served. However, Scenario 3 in fact provides the "worst-case". If the model can

eliminate the negative effect introduced by continuous malicious or unreliable

userfeedback,then it is reasonable to deduce that it is robust tomalicioususer

feedback in more moderate or general cases. According to the experimental

results in Scenario 3, the model is shown to be robust with respect to ma-

licious feedback, quickly recovering to normal performance level with helpful

user feedback. As a result, the last hypothesis is validated



Chapter 7

Conclusion and Future Work

7.1 Primary Contributions

Wi-Fi RSS fingerprinting is relatively robust, accurate, and cost-effective in real in-

door environments because it does not depend on specific signal propagationmodels

or extra positioning infrastructure. However, its system performance is highlydepen-

dantujJon the claboratc training process and future maintenance drorts. Also, in the

positioningphesc, ranoom propagation cffectsofsignal propogation introduccd by

complex indoor environments may rcsult in large R.SS ftuctuationsor AP loss (i.e.,

APs which cannot be heard), which could cause anchor points created during the

training phase to be ineffective for the task of positioning. Inordertoensure that the

system remains effective, it may be necessary to re-train the system on a somewhat

frequent basis

These shortcomings not only imply a high system overhead and training cost,

butalsovulnerabilitytoenvironmentalalteration We believe that addressing the



problems of reducing the training and maintaining cost and increasing the system

robustness are very promising research directions. Assuch,wesetourmainresearch

goal to enhance such a system with a self-learning or self-updating ability. The

information necessary for this process can be derived directly fromendusers,whereby

they can provide their feedback after they have been presented withthepositioning

results. We thus open a channel for end users to access and modify the system in-

built dataset, which enables them to participate in positioning activities via a we11-

designed VI. We believe that this human-centric collaborative positioning mechanism

couldcffcctivclyfacilitatcthcsystem learningproccss.

In this thesis work, the primary contribution is the presentation and evaluation

ofauser feedback model which receives and processes human-centric collaborative

feedback. The proposed user feedback model adjusts systems result via placing a

compensation mask over the likelihood vector (distribution) generated in theposi-

tioningphase. The history of both positive feedback and negative feedback will affect

the compensation ability of such a mask. In general, positive feedback generates

user anchors and enhance their reliability. On theotherhand,negativefeedbackre-

duces the reliability. All user feedback will be assigned low compensation power when

first created and be enhanced with similar feedback events. We employ exponential

functions to model such an evolution process; the influence of user feedback will in-

crcascfastcst with thc first fcw instanccs, bccolllingstablc oncc a sufficientnulllbCl

of feedback events are received. This design allows the system to quickly learn new

information provided by the users, but without this feedbackoverpowering the model

As such, this user feedback model should be able to gradually update the systems

knowledge and guide the system to learn the changes ofWi-Fi indoor environments.



Based on these principles, we have built a prototype and conducted experiments

to evaluate it. Experimental result show the ability of the model to improve upon

the positioning accuracy and precision in both regions that have been trained, as well

as in nearby regions that do not include efficient anchors. The model is also shown

to be robust with respect to malicious feedback, quickly recovering based on helpful

7.2 Discussions and Future Work

We also believe that such a feedback model can be further refined and enhanced in

a number of interesting ways. The first is the temporal aspect of user feedback since

different time (morning, noon, and night) ofaday or date (weekdays, weekends, and

holidays) could generate different R.SS data patterns. For example, in auniversit,y

cafeteria, due to the interferences from human bodies and electronicdevices, the RSS

measurement generated during dinner time could be very different from that in the

morning. As such, the user feedback generated during dinner time may mislead the

po itioningactivitiesduring the morning. In order to solve this problem, the model

should take advantage of the timestamp within the RSS fingerprint, limiting the

candidate anchors to those that were created at approximately the same time of the

day. This could increase the accuracy of the system in environments with time-related

changes in human activities. Also, we can introduce a forgetting mechanism which

where malicious feedback has been received but subsequent helpful feedback is not



The second is the way to prompt of user feedback. The sy tern eems to be helpful

ifu ersare frequently asked for feedback. On the other hand, the system will not

evolve ifno user feedback is received. It is beneficial for the system to know when and

where to ask for feedback from users. Thus, we need a user prompting mechanism

We want to convey the system status (e.g., positioning uncertaintyto users) so that

the users only provide feedback when the system is unreliable.

The third aspect is cross platform validation. In real indoor environments, users

could carry different types of mobile devices. Due to the diversity of manufacture

technologies in wireless network interfaceeards, the RSSgeneratcd by different Wi-

Fi chips could also be different. However, our entire implementation and experiments

areconductedonAppleiPhoneandiPodTouch,whichindicatesitslimitation in field

validation. At this point, we argue that the system performance could be improved if

the diversity of Wi-Fi chips in different mobile devices is considered. The most simple

butefficientisapproachtocreateindividualfingerprintsdatabaseforeachtypeof

mobile device. It might improve system performance with high system overhead

More intelligently, a RSS compensation mechanism can be integrated to automatically

adjust RSS patterns among different mobile devices

As defined in previous chapters, our system includes many dependent and inde-

pendent parameters. A long-duration study of user involved positioning should be

helpful in order to investigate the effect of different parameters on system perfor-

mance, We could operate the system for a long time (e.g., a year) with a great deal

of users working on a variety of devices. As such, the experimental results ofthi

long-time evaluation will provide further, real-world validation of our user feedback



In our implementation of user feedback model, the parameters are adjusted dy-

namicallyviaapre-specifiedformula. With the statistical results, we could have the

ability to find a morc efficient algorithm to adjust these parametersbasedonreal-time

system performance

Also, in our previous experiments, we merely consider the worst-case scenario

However, if we can take the advantage of long-time evaluation, we can study the

phenomenon of mixed user feedback (malicious and knowledgeable user feedback)

ancl try to find morc effective ways todctcct malicious fccdback

However, if such resources are not available, an alternative is to simulate such

feedback. We can in fact build an add-on experimental positioning engine to simulate

RSS observations and send them to the positioning system. When the positioning is

finished,such an engine can also generate virtual user feedback accordingtospecifical

experimental requirements. As such, the different combinations of parameters in

the model can be conveniently tested without the actual time-consuming system

A an expectation, we believe that some organizations or companies will devise

specifications for indoor positioning system in the short future. It may start with

developing indoor location-aware services for public indoor environments, such as

airport, subway systems, museum, campus, shopping centres, etc. Travelers may

want to find the nearest cofree shops or ATM machine in a large airport. Customers

arecnalJlcdtomanipulatetheirlocation-awareshoppinglist. We can also easily find

their friends or families if they have wandered away from each other in a very crowed

shopping centre. Besidethese,manymoreotherpotentialserviceseancometruewith

the development of indoor positioning systems. Such large scale of indoor services



might be provided and end users can conveniently access them viatheirmobiledevices

at hand. ]fsuccessescan be made in such public areas, other private enterprisers

may be inspired to customize their own indoor location-awareservices. By following

existing specifications, high scalability and compatibility canbeguaranteed

Withthepotentialrapidgrowthofindoorpositioningsystems,thesystemmain­

tenancecould become an issue. At that time, the human-centric indoor positioning

systems will have a very promising foreground in reducing the cost and improving the

service quality. We also believe that more and more researchers will be attracted by

the potential advantages of integrating human-centric collaborativefeedbackwithin

thepositioningproce
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Appendix A

Appendix

A.I Index



Index

Absolute location information, 10

Accuracy, 12

Analytical modeling, 64

Angle of Arrive, 10

APselection,25

Apple 802.11 system calls, 69

Count, 36

Grid space, 34

iOS,65

Log-normal shadowing model, 18

Logical location information, 10

~IAC address, 36

Measuring, 64

egativefeedback,52

ull feedback, 53

Polynomial regression, 20

Positioning phase, 21

Positive feedback, 52

Precision, 12

Received signal strength, 4

Relative location information, 10

Round, 92

RSS fluctuation, 22

RSS mean, 36

RSS variance, 36

RSS vector dimensions, 40

Simulation, 64

System anchor, 38

Time Difference of Arrival, 10

Time of Arrival, 10

timestamp, 36

Training phase, 21

User anchor, 52

User feedback model, 52

User fingerprint, 56



Weighted mean position, 44

Wi-FiRSSfingerprinting,21

Wi-FiRSSvector,22

WiFiManager,66



A.2 List of Notation

Symbol I Meaning

P, Random variable, represents the average of

reeeivedpower

P; MeanofP,

Varianeeof P,

Pm. Thei-th received power in measurement

Thei-th reeeivedsignal strength in dBm

Pi Meanofp,indBm

Varianeeofp,

Timestamp

Coefficient of i-th degree in polynomial 1'0-

M i MACaddressofi-thaeeesspoint

dR DimensionofRSS vector

2-D Physiealeoordinates

VoronoiDiagram

C, Numberofoeeurreneesofaeeesspointi

RSSvarianeeofaeeesspointi

Wi-FiRSSfingerprint



VarianceoftheWi-Fi RSS fingerprint

A,

P,

F, Wi-Fi RSS fingerprint of system anchor

D(i,j)

T,



Parameter adjusting the increasing velocity

Negative user feedback compensating factor,

L: Compensated Iikelihoodofanchori

A.3 System Class Diagrams



FigureA.l: Class diagram SI ystemFoundation



FigureA.2: Class diagram, Training



FigureA.3: Class diagram, Wi-Fi



Figure AA Class diagram, the Positioning Estimation and User Feedback
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