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Abstract

Position information is an important aspect of a mobile device’s context. While GPS
is widely used to provide location information, it does not work well indoors. Wi-Fi

network infrastructure is found in many public facilities and can be used for indoor

positioning. In addition, the ubiquity of Wi-Fi-capable devices makes this approach
especially cost-effective.
In recent years, “folksonomy”like systems such as Wikipedia or Delicious Social

Bookmarking have achieved huge successes. User collaboration is the defining char-

acteristic of such systems. For indoor positioning mechanisms, it is also possible

to incorporate collaboration in order to improve system performance, especially for
fingerprinting-based approaches.
In this thesis, a robust and efficient model is devised for integrating human-centric

collaborative feedback within a baseline Wi-Fi fingerprinting-based indoor position-

ing system. Experiments show that the baseline system performance (ic., positioning
accuracy and precision) is improved by collecting both positive and negative feedback
from users, Moreover, the feedback model is robust with respect to malicious feed-

back, quickly self-correcting based on subsequent helpful feedback from user
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Chapter 1

Introduction

Mobile devices have a unique attribution when compared to other fixed computing
devices, which is their mobility. Thus, the position information can be a very im-

portant aspect of a mobile device's context. Based on this extra attribute, we are

able to provide mobile device users with a special type of intelligent services, called
location-aware services.
‘Traditionally, location-aware services have been confined to outdoor environments.

Relatively less rescarch has explored the potential applicability of similar services for

indoor settings. However, the indoor location-aware services could also have a very

promising application prospect. In this chapter, we will introduce the motivation for

conducting research on improving indoor positioning.

1.1 Pervasive and Mobile Computing

A mobile device is typically a pocket-sized yet powerful computing platform. While

there are a number of different aspects between using a mobile device and using
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a desktop/laptop computer, mobility s the most essential characteristic of mobile
devices. With such a unique feature, mobile device users have the opportunity to
access intelligent services (e.g., the Internet or cellular networks) ubiquitously. This
has been a goal of the industry and academia and also a desire of the users for many
years.

In order to offer flexible and adaptive services and improve the quality of lives,
researchers have recently started to focus on location-aware intelligent services, which

provides personalized services based on users' current or past locations. After over a

decade of hand locati ices (.., navigation, location-
based weather reporting, and advertisements) have gradually penetrated into real life

Now, the location-aware services are expected to be one of the most promising tech-
nologies in the next few years because it assists human activities in a wide range

of applications, from productivity and goal fulfillment to social networking and en-

tertainment. It is also predicted that the location-aware service user base will grow
globally from 96 million in 2009 to more than 526 million in 2012 [37].

Traditionally, location-aware applications have been confined to outdoor environ-
‘ments, mostly using the Global Positioning System (GPS). Relatively less research
has explored the potential applicability of similar services for indoor settings. How-
ever, in large indoor environments such as airports, libraries, or shopping centres,
location-awareness can improve the user experiences with these facilities.

For example, suppose some tourists wish to visit a large museu, they can prepare

their visitation plan by first selecting the most interesting exhibits. Such a visitation
plan can be manipulated in their mobile devices. When in the museum, the device
can be connected to an indoor location system. Thanks to its location-awareness,
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the devices can provide them with personalized guided tours. Thus, the navigation
through the museum will be an enhanced experience since the multimedia description
and comments can be delivered to them automatically based on their positions and
personal preferences. If one tourist stays in front of a painting, the intelligent guide
can provide additional information about this piece such as the artist’s biography,
style, cultural context, ete. Furthermore, by monitoring visitors’ navigation patterns

and by instantly becoming aware of congestion spots within the museum, the museum

administrators are able to organize exhibits more effectively or even direct other

visitors to areas of low congestion [13]

1.2 Mobile Device Indoor Positioning

Indoor location-aware services can be very promising and have been researched for
around two decades (16]. However, we still have not seen any product used nearly
as widely as GPS-based positioning devices. The lack of development on the indoor
aspect of this problem is a result of two technical challenges. First, GPS can not
be deployed for indoor use because GPS signals can not reach indoor receivers. Sec-

ond and more i due to i indoor envi such as building

geometry, the movement of people, and the random effects of signal propagation,
triangulation-based approaches (.e., those used for GPS) are much less effective [24]
In addition, interference and noise from other devices can also degrade the accuracy
of positioning. On the other hand, such challenges provide researchers with great
opportunities for innovative indoor positioning techniques

An early approach for indoor positioning used infrared sensors [42]. In this type of



positioning system, multiple infrared receivers are deployed in a building, and a mo-
bile device with an infrared emitter transmits signals to determine its current position.
However, infrared signals can be easily blocked by obstacles like furnishings and cu-
bical walls, which may reduce the system performance. Other systems have exploited
techniques such as short-range radios, ultrasonic waves, radio-frequency identification
(RFID), magnetic technology, etc. Some of them have achieved fairly good accuracy
and precision in field tests 16, 14]. However, the common disadvantages of these ap-
proaches are the size, complexity, and cost, which render them infeasible for mobile

devices.

1.3 Wi-Fi-Based Mobile Device Indoor Position-
ing

A number of researchers have been working on using Wi-Fi infrastructure for indoor
positioning even though Wi-Fi was not specifically designed for this purpose. Unlike
the solutions mentioned above, this approach has a unique advantage of requiring
only a few Wi-Fi routers (access points (APs)), and utilizing the existing wireless
networking infrastructure of a building. This feature is very important for populariz-
ing a ubiquitous indoor localization system since most current mobile devices include
an integrated Wi-Fi chip.

Due to the infeasibility of indoor triangulation, most indoor positioning systems
use a fingerprinting approach bascd on the received signal strength (RSS) transmitted

by Wi-Fi APs [2]. Typically, such an approach consists of a training phase and a




positioning phase. In the training phase, each survey position (with known physical

is by location-related Wi-Fi RSS properties called Wi-

Fi RSS fingerprints [20]. During the positioning phase, the positioning likelihood
is caleulated based on the current Wi-Fi RSS measurement. That is, the system
estimates the position by comparing the current RSS measurement to the fingerprints
in the system to generate the best match. Compared to distance estimation based
on signal propagation models, such an approach is more robust and accurate in real
indoor environments. However, finc-grained system training is normally required
to achieve high accuracy and resolution. Also, the maintenance cost can be very

i infrastructure

high in order to continuously adapt to environment changes and Wi-
alteration. A great deal of effort has been made by researchers to reduce such costs.
An efficient way is to let users provide feedback to facilitate the construction and
‘maintenance of the RSS fingerprints database. If the whole positioning process can
be conducted in a collaborative manner, an user can take the advantage of position

information shared by other users.

1.4 Research Question

In recent years, “folksonomy”-like systems (e.g., Wikipedia, YouTube, Flickr, and
Delicious Social Bookmarking) have achieved huge successes. Such a kind of user-
generated online content has gradually became a new way of generating and maintain-
ing information. User collaboration is their defining characteristic. Nov [30] believes

since the content is

that the motivation of contributors in such systems is esse

contributed by volunteers who offer their time, knowledge, and talent in return for



no material reward. Thus, it is important to first understand and identify those vol-
unteers’ potential motivations. Several typical motivations revealed in [30] are listed

as follows:

 Volunteering is an effective way for people to express humanity and self satis

faction. Participants show their concerns to others by sharing knowledge.

* Volunteering may provide people more opportunities to be engaged in valuable

social activities and obtain pleasure via the interaction with others

 Through volunteering, people may have more chances to practice their knowl-
edge, skills, and abilities. They will obtain the feeling of fulfillment when their

work receives positive feedback

« Volunteering is also beneficial for participants’ careers. Such user collaborative
systems can be considered as an effective medium via which contributors are

able to demonstrate their skills and abilities to future employers.

Following the same rationale, we expect that users are also willing to provide
feedback to a positioning system in most cases. In terms of indoor positioning, systems
may occasionally deliver inaccurate and unreliable results. In these circumstances,
adding a compensation mechanism to modify the results can improve the robustness.
Since the purpose for an indoor positioning system is to provide users with fast and
accurate position estimation and location-aware services, soliciting assistance from
end users could also be a good aspect for improvement [27]. The system performance
could be improved if users are involved as a part of the system and conduct positioning

tasks in a collaborative manner. This leads to the fundamental research question in




this thesis:

What is the benefit of adding human-centric feedback to an in-
door positioning system?
Modern mobile devices have well-designed user interfaces to facilitate interaction
with users. Similar to range finders used in the localization of autonomous robotics,
humans are also able to “detect” the surrounding indoor environment using their

senses and feed this information to devices. They are able to estimate their positions

based on their perception. In order to utilize such estimations from end users, we need

to define an effective user feedback model which is able to incorporate user feedback

n a WiFi RSS fingerprinting system.
Our user feedback model is derived from an existing relevance feedback mechanism
from the domain of information retrieval, popularized by Salton’s SMART system
[35). The basic idea of relevance feedback is to do an initial query, then obtain
feedback from the user as to what documents are relevant or non-relevant, and then
use the contents of these known relevant documents to generate subsequent queries.
Similarly, we can consider a positioning system as an information retrieval system
Users initially query the positioning system and then provide feedback based on the
returned estimates. The system incorporates the user feedback and modifies the

search process to re-weight search results based on users’ collaborative feedback.

1.5 Organization of Thesis

‘The reminder of this thesis s organized as follows. We discuss related work in Chapter

2. In Chapter 3, we describe a baseline Wi-Fi fingerprinting framework. Next, the




detailed user feedback model s explained and interpreted in Chapter 4. We have built
a prototype to evaluate the bascline system and the proposed user feedback model
The system design of this prototype is documented in Chapter 5. The user feedback
model is tested and evaluated in comparison to the baseline method as reported in
Chapter 6. This thesis is concluded in Chapter 7 with discussion and an overview of

future work.



Chapter 2

Related Work

Different positioning systems have been built to provide different types of position
information, which can be either absolute coordinates or logical location information
(.., oom No.). The enabling positioning technologies have their characteristics in
architecture, performance, working field, and cost. Thus, in order to satisfy different
types of user requirements, it is important to analyze the evaluation metrics and tax-
onomies of positioning technologies. In terms of indoor positioning, simply extending
the outdoor positioning technologies to indoor environments is not feasible due to
the complexity of indoor environments. In this chapter, we will introduce the work

archived by other researchers to overcome the challenges in indoor positioning.

2.1 An Overview of Indoor Positioning

Indoor positioning and navigation have been an active area of research for the past
two decades, with early research focusing on robot localization and navigation [39]

and more recently pervasive and mobile computing (16]. Compared to outdoor posi-
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tioning systems (e.g., GPS), the work area of an indoor positioning systems focus on
indoor environments such as inside airports or shopping centres. Typically, indoor
positioning systems can provide three different kinds of location information (i.c., ab-
solute, relative, and proximity location information (14]) for location-aware services
required by different usages. Absolute location information in the form of coordi-
nates is normally required by indoor tracking systems or indoor navigation systems
because real-time tracking and navigation services need precise physical coordinates
of the targets. The relative location information measures the motion of different
parts of the tracking target, e.g., detecting whether or not two mobile devices are in

the same room. The proximity or logical location information is also an important

type of information, which s usually in the form of logical labels or tags (e.g., office
number.). A very interesting application of logical location information is location-

aware advertising. For example, suppose a customer is nearby a shop. An electronic

advertisement can be sent out for new products o discount information at that shop.

2.1.1 Indoor Positioning Technologies

Triangulation is the most used positioning technology for both indoor and outdoor
environments. Time of Arrival (TOA), Time Difference of Arrival (TDOA), or Angle
of Arrive (AOA) [40] are broadly used for outdoor positioning (e.g., GPS [31]) and
are able to obtain good system performance in free space. The fundamental idea of
triangulation s depicted in Figure 2.1.

Suppose the physical coordinates of three anchor points are known. The distance

between an anchor point and the tracking target can be calculated via the time dif-



[
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Figure 2.1: Basic idea of triangulation

ference hetween a transmitter and a receiver or using signal path-loss propagation
models. Once the relative distances dy, dy, and ds are calculated, the position of the
tracking target can be estimated using cither the intersection area of the circles or

the directions of the formed triangle [17]. However, due to complexity of indoor envi-

ronments, these typical outdoor triangulation approaches might not be conveniently

adapted to indoor environments, which makes the research of indoor positioning chal-

lenging !

After nearly two decades of research and development, numerous indoor posi-

tioning systems have been proposed by different companies, research centres, and

universities [14]. Some rescarchers employ existing triangulation-based approaches

via densely deploying infrared or ultrasonic sensors in a building. As such, the tri

angulation process can be conducted only in a small area (e.g., in a single office)
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to reduce the negative effect of complex indoor environments [16]. As a result, the
system performance and robustness can be improved, but at an increased cost of
installation and maintenance. Besides these modifications to classic techniques, re-
searchers have also devised novel approaches such as location-fingerprinting (2] and
vision analysis [17], which are relatively cost-effective and more robust.

Other technologies such as RFID, Wi-Fi, Bluetooth, sensor networks, ultra-wideband

ion in-

(UWB), and magnetic signals [14] have been developed to provide indoor loc
formation. Each system takes advantage of a particular positioning technology or
combining some of these. Usually, there is a trade-off between the price and the per-
formance. A system with higher performance could have high complexity and cost.
The designers should always strike the balance between the overall performance and

the complexity.

2.1.2  Criteria of Evaluating Indoor Positioning Systems

Different indoor positioning technologies have their advantages and disadvantages in
certain aspects. In order to satisfy a variety of user requirements, we should choose
the indoor positioning system with the most suitable capabilities. Thus, it is very
important to comprehensively evaluate an indoor positioning system from different

ioning systems can be evaluated via

aspects. According to Gu et al. [14], indoor py

the following important system performance and deployment criteria

o Performance: The accuracy and precision are two main performance parame-
ters. The accuracy means the average error distance over all test points, and

the precision is defined as the success probability of position estimations with

12



respect to a predefined accuracy (e.g., 80th percentile positioning error within
2m). In fact, different location-aware services have different accuracy and preci-
sion requirements. For example, a 5m accuracy (room level) will suffice most of

indoor location-aware services but the location-based guide in a museum might

need at least 90th percentile error within Im to locate an exhibit. The time

consumed in the positioning process is another very important parameter to
evaluate an indoor positioning system, especially for tracking and navigation
services. A long positioning delay will degrade the user experience and the per-
ceived service quality. Thus near-instantaneous responses to users’ positioning

queries is normally desired.

Cost: The cost of an indoor positioning includes two aspects: the cost of the

infrastructure installation and future maintenance, and the cost of positioning
terminals (devices). In fact, high indoor positioning accuracy can always be
obtained if a massive number of sensors or anchor points are deployed, but
often we can not afford such a high deployment and maintenance cost. For the
device or terminal used in positioning, it could be very inconvenient for users
to carry a specialized device for their indoor positioning activities. Thus, an
ideal solution to indoor positioning s to utilize the existing infrastructure and
mobile devices at hand without any extra hardware costs.

Robustness and fault tolerance: Indoor positioning systems are relatively less
reliable due to large interference in their working areas. Also the alteration of
positioning infrastructure could cause large positioning errors. The positioning

system should be robust with respect to complex environments.
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o Security and privacy: End users normally want their privacy to be protected
when using computer systems. For positioning system users, they do not want
10 be tracked or have their history of past locations accessible by other users to
whom they have not given prior permission. Security and privacy should be con-

sidered both during system architecture design and implementation. For stand-

alone indoor positioning systems, the position calculation process is conducted
locally, which ensures that no one can access the information. In contrast,
client-server architectures may have more channels to expose user information.
Thus, some security mechanisms such as secure data transfer, authorization,
and access control are required to offer a high degree of security and privacy

protection for users.

2.1.3  Taxonomies of Indoor Positioning System

We categorize indoor positioning systems mainly according to whether they are based
on an existing infrastructure or specialized indoor positioning infrastructure. Also,
autonomous robotics indoor positioning has a unique research problem domain, which

should also be considered as a separate category.

Robotics  For an autonomous robot to navigate through indoor environments,

it must have the ability to detect the current environment (using outer sensors, e.g.,
ultrasonic, camera, or laser) and caleulate its movement trajectory (using inner move-
ment sensors, e.g., wheel sensors) [39). nitial approaches provisioned a robot with
a pre-built map of the indoor environment, allowing it to determine its location by

comparing its observed environment to the landmarks on the map and generate a



belief distribution. Based on the movement trajectory calculated by inner sensors,
the robot can filter out locations with low belief. As more and more low belief loca-
tions are eliminated, the robot can be localized at locations with high belief. Another
significant step in the area of robotics was Simultaneous Localization and Mapping
(SLAM) [39], which allows a robot to build a map of the indoor environment (in

terms of the features of the envi while si ing its loca-

tion with respect to the map constructed in real-time.

The robot indoor localization is the core part of autonomous robotics. 1t is able to
archive centimetre-level accuracy and high precision level. However, this technology
is complex and expensive both in computation and the implementation of positioning
module.

Extra infrastructure-based - Early ideas for indoor mobile entities position-
ing relied on deploying specialized infrastructure, mostly using infrared or ultrasonic
signals. In such systems, infrared or ultrasonic sensors are installed on walls or ceil-

ings in a build. Users typically wear tags in order to interact with these sensors

Once at least three sensors are in sight, triangulation approaches can be applied to
estimate user’s positioning.

Active Badge [42) and Cricket [32) are two representative indoor positioning sys-
tems using infrared and ultrasonic infrastructure, respectively. In Active Badge, one
or more sensors are deployed in each located place such as a room, which is used
to detect the infrared signal from an active badge carried by users. The position of
the active badge can be detected by these fixed sensors receiving the infrared signal.
Then, the data collected by sensors will be forwarded to central servers to generate

the proximity information (e.g., room number). However, in order to cover a large
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indoor area, the infrared receivers need to be densely installed and connected to each
other with wired or wireless networks.

Cricket [32] utilizes ultrasonic emitters as infrastructure. These emitters are de-
ployed on walls or ceilings with known positions. They emit ultrasonic and also radio
frequency messages with proximity location information (in case there are not enough
ultrasonic emitters in sight). Compared to Active Badge, the tag carried by user is
not an emitter but a receiver, once at least three mounted emitters are in sight, the

location of the user’s tag can be estimated via triangulation with a very high accu-

racy. More importantly, the triangulation s conducted on each tag locally, wl
protect user privacy.

Although the dedicated positioning infrastructure can obtain a high positioning
accuracy, the expensive system hardware requirements raise the system cost. Also,
users normally need to wear specialized badges in order to be tracked by the sensors
in the infrastructure.

Existing infrastructure-based — For years, the goal of indoor positioning has
been to improve the system performance and to reduce the cost at the same time.
‘The existing infrastructure-based indoor positioning is a promising research direction
for cost reduction.

Wi-Fi and Bluetooth technologies are widely used and integrated in various elec-
tronic devices. Thus, the Wi-Fi or Bluctooth based positioning systems can also reuse
these mobile devices as tracking targets to locate users, which is a less intrusive way
to provide location-aware services to users.

In Bluetooth-based positioning systems, the position of a Bluetooth mobile device

can be located via the signal strength transmitted by other mobile terminals in the
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same piconet, (a master device and associated slave devices). However, a connection
between the master mobile terminal and slave mobile terminals need to be created
before it can obtain the signal strength, which will significantly increase the position-
ing delay. Compared to Bluetooth, the Wi-Fi infrastructure is more common and has
been deployed in many public areas such as hospitals, airports, universities, etc. Fur-
thermore, Wi-Fi mobile devices only need to receive beacon frames from APs without
AP association (i.e., connecting to a Wi-Fi router). Such a listener-based mechanism

makes Wi-Fi based positioning more convenient and secure.

In the research arca of W

i-based indoor positioning, two fundamentally different
approaches have been proposed: Wi-Fi triangulation-based and RSS fingerprinting-
based. Wi-Fi triangulation is based on distance estimation. 1 we use the same
time-of-flight method (e, TOA in ultrasonic sensors) to measure short distance on
wireless waves, time measurements must be very accurate in order to avoid large

al

uncertainties. However, it is difficult to measure the time-of-flight of Wi
propogation in indoor cnvironments because the signal travel distance is small. An
alterative is to measure the distance based on a signal propagation model. The energy
of the radio signal, viewed as an electromagnetic wave, attenuates as it propagates
in space. The distance can be calculated via various signal propagation models.
However, as mentioned before, the complex indoor environment introduces random
fading effects. Although such cffects can be reduced to a degree if anchors or sensors
are densely deployed (e.g., multiple sensors in a room), it is not feasible for existing
WicFi infrastructure.

Instead, the Wi-Fi fingerprinting does not need to know the specific signal prop-

agation model or AP information, which makes it more robust to the adverse effects
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of indoor environments. Typically, the average system performance of fingerprinting-
based systems (within 2m if well trained) can satisfy most of indoor location-aware
services. However, the main challenge of Wi-Fi RSS fingerprinting is the very time-
consuming system training and frequent database updates that are required to deal

with changing conditions within the positioning environment. Despite such disad-

vantages, the Wi-Fi-based positioning technology has a very promising applica

ion

Fi infrastruc-

prospect mainly because of the ubiquitous and inexpensive nature of Wi
ture. In the next section, these two main Wi-Fi based indoor positioning approaches

will be detailed.

2.2 Indoor Positioning Using Wi-Fi Infrastructure

2.2.1 Propagation Models

In free space, the RSS is inversely proportional o the square of the distance between

receiver. Such a relationship can be captured by theoretic or empirical
signal propagation models. The log-normal shadowing model is one of the commonly

used theoretic models in link budget analysis [33]. The basic idea of this model to Wi-

Fi-based indoor positioning can be revealed in Figure 2.2. Suppose {p1, p2, s,
is a time series of received power measurements collected by a mobile device about
an AP, and P, is the average of these values, which is assumed to be the outcome of
a random variable modelled as normal distribution with mean value P; and variance
o

B~ N(F,0r)



K d=?
L= LS Mobi Device

Figure 2.2: Distance between an AP and a mobile device can be estimated using RSS

‘The distance from an AP with transmitter power P, (measured at reference distance

dg) can be estimated via the equation:
Pr = P~ 10m, logo(d/do), (2.1)

where n, is the path loss exponent. The standard deviation o, defines the variability
measured betsveen pairs of nodes with the same separation distance, but placed at
different locations and at different times. Based on the above signal propagation
model, the distance between a transmitter and a receiver can be estimated. With
at least three transmitters within range, the position of a receiver can be calculated
using triangulation as discussed in Section 2.2.1 shown in Figure 2.1.

However, in real indoor environments, it is very difficult to determine proper pa-
rameters (e.8., n, and P,) for propagation models due to the diffraction, scattering,

shading, and multipath phenomena [33). In order to overcome these obstacles and

make the Wi-Fi RSS triangulation methods applicable to indoor environments, re-
searchers commonly choose to treat the specific signal propagation model as a black
box [9, 43]. Therefore, a large number of RSS measurements need to be collected

in real indoor environments in order to train a propagation model and identify the
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parameters by optimally solving the simultaneous equations system with respect to
Equation 2.1. Specifically, the goal is to find a solution that minimizes the least mean
absolute error [9]:

£/

1 &
N 2 [P = Pt 10m, log =, (22
vZ s
where P, is the actual RSS measurement for the i-th AP, i € {1,2,...., N}. However,
Jis a non-linear objective function for which it could be very computational costly if
the number of APs and mobile users are large (generate large number of non-linear

cquations). An alternative approach is polynomial regression, the ideal nth-degree

polynomial regression can be given as [9, 43):

o+ ewp} +eapl ++ e, (23)

where ¢;, (j € {0.1,2,...,n}) are the coefficients of the polynomial, p; is the re-
ceived signal strength and D) is the estimated distance from the mobile device to
the i-th AP. The cocfficient ¢; can be easily solved by least squares approximation.
Evaluation results in [43) and [41] show that the regression-based method has bet-
ter performance than the log-normal shadowing model approach. However, these

model-based approaches still require substantial training effort in terms of placing

infrastructure such as Wi-Fi sniffers, obtaining information on the floor plans, and
acquiring knowledge of the locations of AP and their transmission power characteris-
tics. In addition, the system accuracy of model-based approaches s lower compared

to the RSS fingerprinting method with less system training efforts [2, 44, 9].



2.22 Wi-Fi RSS Fingerprinting

In comparison to the propagation-model based techniques, Wi-Fi RSS fingerprinting
is more robust and accurate, and thus has emerged as a very promising solution. It
typically contains two phases: 1) training phase and 2) positioning phase. During
the training phase, a fingerprint database is constructed to resolve future positioning
querics. In the positioning phase, the position likelihood is calculated based on the
current Wi-Fi RSS measurement. The general idea of the fingerprint-based approach
is given as follows

Suppose at a survey position Py, a mobile device can receive beacon frames from
the i-th AP, i € {1,2,3,...., N'}. The beacon frame is one type of management frame.

‘The 802,11 standard defines various frame types that stations use for communications,
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Figure 2.3: RSS readings from an AP at various survey points [5].
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as well as managing and controlling the wireless link [11]. The beacon frames con-
tain all the information about the network. They are transmitted periodically to
announce the presence of a wireless network. The MAC address M,, timestamp t;
can be extracted from each beacon frame as features. Also, the RSS p;, which can be

estimated by the receiver by analyzing the beacon frame. An AP can be characterized

by these features. One interesting aspect about the characteristics of Wi-Fi RSS can
be exemplified in Figure 2.3, where the RSS from an AP collected at various survey
points are discriminated due to the signal attenuation.

However, such attenuation can not be efficiently modeled for indoor cnvironments
as mentioned before. Furthermore, if multiple APs are visible at the same location,
the combination of such RSS features of these APs can “fingerprint” this location.
The collection of beacons in a single scan by the device form a Wi-Fi RSS vector
Ra. 1t is a 3-tuple vector, where each clement contains the description of an AP, i.e.,
MAC address, RSS, and timestamp (Figure 2.4). If the location of the mobile device

is shifted (e.g., to P;), we can obtain another Wi-Fi RSS vector Ry. In fact, R, and

Ry can be distinet if P, and P, are far apart enough. Thus, the Wi-Fi RSS vector
can be used as the location “fingerprint”

However, the Wi-Fi RSS vector only reflects the instantaneous features of the

Wi-Fi environment. The Wi-Fi RSS in fact can fluctuate drastically in real indoor
environments. For example, Figure 2.5 shows the RSS of an AP at the same location
but at different times (i.c., erowded lunch time (12:00) and at night (22:00) with
few people) at the University Centre of Memorial University. The RSS fluctuation is
small during night, but it is large during lunch time because many people are around.

Thus, due to the variability of Wi-Fi RSS, multiple scans are needed to constitute
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Figure 2.4: Wi-Fi RSS vector

a fingerprint which contains the summarized features of the scans (e.g., Wi-Fi RSS
mean and variance) at a given survey position. The data structure of Wi-Fi RSS

fingerprints is detailed in Chapter 3

As such, a fingerprint database is created by associating each survey position
with a Wi-Fi RSS fingerprint. Such a database will be used for future queries in
the positioning phase. The positioning system then compares this live RSS measure-
ment to all the fingerprints stored in the database, and returns best matching RSS
fingerprints

Although the basic idea of Wi-)

fingerprinting is straightforward, many challenges

prevent this technology from broad adoption for position estimation beyond academia.
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Figure 2.5: Wi-Fi RSS fluctuation over time



Kushki et al. [23] provide four primary such challenges for Wi-Fi fingerprinting-based

approaches:

o preprocessing fingerprints to increase accuracy and to avoid collecting data from

an excessively large number of positions,
o AP selection,

« quantization of distance between the Wi-Fi RSS vectors in the signal space (i.c.,

location likelihood caleulation), and
o building analytical models to evaluate system performance.

In order to obtain high system accuracy, the training process can be very time-
consuming and laborious, especially for future updates and maintenance. Thus,
streamlining such a training phase is very important for its commercialization. Chai
and Yang [7] and Lemelson et al. [26] argue that users will stand somewhere in be-
taween several survey positions in most cases. Therefore, the fingerprints of adjacent
positions around the users will also yield suitable matches to the Wi-Fi RSS mea-

surement. These similar fingerprints can be generated via a single seed fingerprint

by assigning different weights. As a result, such pre-processing fingerprints can sig-
nificantly reduce the system training costs. In the extreme case of reducing system
training efforts, “zero-configuration” can be achieved by only involving user updates

without system training 4]

Commercial Wi-Fi infrastructure is usually deployed with a large number of rel-
atively dense APs. It may seem that a higher positioning accuracy can always be

achieved if more access points are utilized. However, this is not the case as indicated
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by Kaemarungsi and Krishnamurthy [19]. Instead, a subset of access points can be
used for the same level of system performance with a much reduced overhead. A
straightforward AP selection approach would be to select the subset of APs with the
highest observed RSS. More intelligently, Chen et al. [8] provide a novel selection
strategy based on the discriminant power of each AP using an information gain cri-
terion. As a result, the APs that best differentiate the survey positions are selected
for positioning services.

Much rescarch has focused on the calculation of the difference hetween RSS ob-
servation and fingerprints stored in the database, which is the essence of fingerprint-
based techniques. Euclidean distance is a simple but effective way to represent such a
difference (2, 20]. The position estimation is cither the survey point whose fingerprint
has the smallest distance to the observation (nearest neighbor (NN) classification) or
the average of k closest survey points (k-nearest neighbor (KNN) [2) classification)
Kaemarungsi and Krishnamurthy [20] indicate that fingerprints can be grouped to-

gether as a set of clusters. More than one cluster may represent one location because

of the multimodal distribution of the RSS. In such a case, using Euclidean distance
to determine the location may classify some patterns to a wrong location.
Another group of Wi-Fi positioning methods rely on probabilistic techniques such

as Bayesian Networks or Gaussian kernel to handle uncertainty in RSS measurements

y func-

15, 34, 22, 44]. Positions are estimated using likelihood or posterior den
tions. Kushki et al. [23] propose a comprehensive Kernel-based system framework
and integrated clements such as spatial filtering, selection of APs, and spatial feature
selection to improve the system performance. In addition to stationary estimate po-

sitions, Lee et al. [25] aim to track moving entities. In an indoor setting, the user's
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‘mobility is restricted by the environment; the users in fact move along a limited set of

typical trajectories. The current set of RSS values for reachable nodes and a number
of past samples are used to generate trajectories in the signal space. Such trajectories
can be matched to positions on a map.

While extensive research has been performed in absolute position information,
there have been fewer attempts in recognizing logical position information, such as
room numbers or signboards [6, 4]. However, Wi-Fi RSS fingerprinting-based logical
positioning usually lacks the accuracy to discriminate adjacent contexts like neigh-
boring rooms. Martin et al. [20] argue that numerous local attributes already exist
in the environment, which may be sensed using cameras, microphones, or accelerom-
eters. By incorporating all these unique environment attributes within the Wi-Fi
infrastructure, the system obtains the capability to identify specific logical position
information.

Analytical models for analyzing fingerprint based positioning systems have been
discussed in the literature 19, 38]. Kaemarungsi and Krishnamurthy 19] analyze the
impact of important system parameters and radio propagation characteristics on the
system performance, such as the number of APs, the grid spacing (the number of

reference locations), path loss exponent, and standard deviation of RSS.



2.3 Integrating Human-Centric Collaborative Feed-
back into Indoor Positioning Systems

The accuracy of Wi-Fi fingerprinting thus designed is highly dependent on the num-
ber of survey positions employed during the training phase. This implies not only
a high system overhead and training cost but also vulnerability to environmental
changes.  Indeed, maintaining such a system would require re-training the system

almost from scratch on a frequent basis. On the other hand, if the system can be

augmented with learning or compensation capabilities, it will be able to update its
own knowledge. Since these systems may provide services to many mobile users, such
a learning capability can be obtained via user feedback for free during the positioning
phase.

Active Campus [3] is an carly system integrating user feedback. It allows users to

update the training data incrementally for future use. When the system location is
incorrect, users can click on the correct location and suggest new positions. The sys-
tem then takes the corrected location and MAC addresses and RSS of the currently
visible APs to construct a virtual anchor point (VAP). Future location computa-

tions can then take advantage of these user-created VAP. Similarly, Redpin [4] uses

a “folksonomy”-like approach, where many users train the system while using it.
Gallagher at el. [10] focus on the adaptation of Wi-Fi infrastructure alteration.

They investigate a new method to utilize user feedback as a way of monitoring changes

in the wireless environment. In real indoor environments, some APs may be added to
or removed from the infrastructure. Also, due to large-scale signal fading, a mobile

device may not hear certain APs in some scans. In order o solve this problem, they
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assign each AP with certain mumber of “credits points”. Users are prompted to send
their RSS measurement to a remote positioning server. The server then looks into the
fingerprints available at this location, and compares the APs already present to the
ones present in users RSS observation. If an AP is already present in the database
but not in the incoming user measurement, its number of points is decremented in
the fingerprint recorded at this location. When the number of “credit points” of this
paticular AP is reduced to 0, it is removed from the fingerprints in the database.
Similarly, when an AP s present in the incoming scan result but not in the database,
it is added into the database. When several users start to report this new AP, its
number of points will increase each time it is reported.

Park et al. [12) propose a user promotion mechanism. In fact, there is always a

trade-off between providing imprecis due to the lack of cover

and asking users for too many suggestions, especially when the fingerprint database

tem,

is only partially trained. They argue that in a human-centric positioning sy
it s useful to only prompt users for their location when the system error is large
They propose a mechanism to convey the system’s spatial confidence in its prediction
based on a Voronoi Diagram, and the system only prompts users whenever system
confidence falls below a threshold. The Voronoi Diagram denoted as V shown in
Figure 2.6 can be described as

It is a set of n anchor points in the plane.

o It is the subdivision of the plane into n cells, one cell for each anchor poin.

« If a point ¢ lies in the cell corresponding to a site v; € V/, then

D(g,v:) < D(g,vy),
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Figure 2.6: User’s true position s represented by the anchor point of his/her current

Voronoi cell.

for each v, € V. j # i, where D represents Euclidean distance.

The underlying intuition is that a user’s current position will be represented by the

anchor point of his/her current cell because they have the smallest Euclidean distance
among all anchor points. Therefore, the size of the Voronoi cell naturally represents
the spatial uncertainty associated with prediction of the bound space. Once the size of
the current Vorono cell is beyond a threshold, the system will prompt users to provide
feedback. If a new survey point is associated with a RSS fingerprint generated by
users, it becomes an anchor point and adds nearby spaces to the newly-formed cell.
Then, the Voronoi Diagram will be updated.

The above approaches refine the existing Wi-Fi RS fingerprints based positioning
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system with the integration of human-centric feedback. However, a potential pitfall is
that the model constructed during the training phase could also be negatively affected
by unreliable or misleading user feedback. Thus, it is crucial that the feedback from
users should be given proper weights or credibility, rather than blind acceptance or
rejection. The “credits point” assigned to cach AP in [10] is a simple but good
attempt of such a credibility assessment mechanism for user feedback

Hossain et al. [18] propose a simple credibility rating. That is, when the user does
not believe in the position returned by the system, an alternative position can be
suggested. In their system, positive user feedback is given a higher credibility weight
if the suggested position has a small discrepancy with the system. For example,
suppose the precision of a system is 95% within 5m, which means the positioning error
is within 5m in most cases. Thus, if the user’s estimate position is within the range
of 5m of system result, it will be assigned a very high weight. However, according
to the observation of our preliminary experiments, the system results are mostly
close to user’s true position, ie., within 5m. However, they are occasionally very far
away from the true position due to insufficient Wi-Fi RSS data or large variance. In
that case, if user’s feedback follows the system’s estimation and is assigned a high
weight, it in fact becomes an outlier feedback and could bring large interference to

future positioning queries. Such negative effects from outlier user feedback should be

climinated. A straightforward solution is using clustering algorithms to filter outliers

(2.
Later in this thesis work, we will devise a more general framework using a wider
variety of user feedback. Such a framework is endowed with a high degree of system

robustness when a large number of users provide correct feedback. Even when in-
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correct feedback is provided, the system is able to quickly recover by incorporating

subsequent corrective feedback.



Chapter 3

Position Estimation Baseline

We start by introducing our baseline Wi-Fi fingerprint-based approach. The general
idea of the baseline approach is similar in many respects to the systems reviewed in
Chapter 2. However, we also refine existing fingerprinting based approaches to make

and suitable for integrating and processing user feedback

them more robus

3.1 Training Phase

In the training phase,  set of grid points in the study area are selected as survi
positions with known physical coordinates. The system training is conducted for
cach survey point in a two-step process. The first step is to collect multiple Wi-

Fi RSS vectors in order to stabilize the average of RSS readings and calculate the

variances. The variance is used to detect the environment interference level, where

a large variance tends to cause unreliable positioning results. The following step is
utilizing these RSS vectors to generate an RSS fingerprint for each survey position

By combining the positioning information and RSS fingerprint, anchor points are set

33



] L]
(%Ye1) (Xen, Y1)

Figure 3.1: Grid space

as reference points for the positioning of mobile devices.

3.1.1 Collect Raw Wi-Fi Measurement Data

At the first stage of system training, every survey position is pre-placed on a map
with known physical coordinate (z,). The grid space between two survey positions

determines the resolution or granularity of the positioning system (Figure 3.1).

A smaller grid spacing may increase the granularity or accuracy, but not the
precision or the probability of correctly matching the survey position because the
Wi-Fi RSS fingerprint of two survey positions may be very similar. Also, smaller
grid spacing causes laborious system training and maintenance. In fact, there is no
general guideline to choose the optimal grid space. In the implementation of our
baseline system, the grid space is 3m (i.c., the distance between two grid cells), which

is & reasonable choice considering both the size of our study area and the accuracy

and performance for regular indoor positioning service.

At each survey position, system administrators use a mobile device to scan for
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Figure 3.2: A beacon frame is captured and analy:

ed by Wireshark. RSS is generated

based on the received beacon frame.

the beacon frames transmitted by nearby Wi-Fi APs. The beacon frame provides the
“heartbeat” of an AP, enabling communications to be conducted in an orderly fashion.

The destination MAC address of a beacon frame is always set to FF:FF:FF:FF:FF:FF,
which forces all others on the same channel to receive and process beacon frames [11]

When a beacon is processed, the radio network interface card (NIC) learns a great deal
of information about that particular AP (e.g., Wi-Fi RSS and MAC of an AP). Figure
3.2 shows a screenshot from a network analyzer called Wireshark [1]. It displays a
captured beacon frame in hexadecimal notation. ( RSS is -34 dBm in decimal and
the MAC address is 00:22:55:E0:29:D5 ).

In each Wi-Fi scan, beacon frames from different APs are received and converted
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Figure 3.3: Data format of a Wi-Fi RSS fingerprint.

10 a list of 3-tuples (i., an RSS vector, as shown in Figure 2.4), where a 3-tuple
element contains the MAC address of an AP, the RSS in dBm and timestamp. Note
that a single scan may not be able to capture beacon frames from all nearby APs
due to the different beacon frame broadcasting periods or severe signal fading. Also,
as mentioned in Chapter 2, the collected RSS values have a natural variation when
indoors, which is unavoidable. To compensate the RSS fluctuation and obtain com-
plete AP information, a suficiently large number of scans is needed to create an RSS
fingerprint. As a result, in a given period of sampling, the device logs a time series of
RSS vectors. Such vectors will then be used to construct the Wi-Fi RSS fingerprints

for each measured location in the training grid.

3.1.2 Generate Wi-Fi RSS Fingerprint

The statistics are extracted from the raw Wi-Fi measurement data to generate an
RSS fingerprint for each survey position. A Wi-Fi RSS fingerprint is defined as a
vector of 5-tuples (ie., MAC, Timestamp, RSS Mean, Count, and RSS Variance),
describing a set of APs, as shown in Figure 3.3. The definitions and explanations for
each field are given as follows.

Given the i-th AP in a Wi-Fi RSS fingerprint:




© MAC: The MAC field contains its MAC address, denoted as M,. It is a unique
identifier for each wireless network interface card. We use that to distinguish
among the different Wi-Fi APs that are within range.

o Timestamp: The time of creating the fingerprint is stored in the Timestamp

field, denoted as t. In indoor environments, time-dependant human activities

could affect positioning activities because human bodies can absorb Wi-Fi sig-

nals. The timestamp of fingerprint could be utilized to provide time-aware

positioning.
 RSS Mean: The RSS Mean , is an average of the Wi-Fi RSS over the sampling
period. During the sampling period, several Wi-Fi RSS vector will be generated.
Each Wi-Fi RSS vectors contains the instantancous RSS values. Since the RSS
values are normally fluctuating, it is beneficial to smooth them. At this point,

we choose to average the RSS readings.

 Count: The value of Count is the number of occurrences of the AP during

the sampling period, denoted C;, which is a very important indicator for the
reliability of this AP. For a fixed number of Wi-Fi scans, a large Count value

means that the AP can be heard for most of the time, indicating that the AP

will have a more reliable estimation of its RSS value.

© RSS Variance: RSS Variance contains the variance of the measured RSS from
the AP, denoted o;. The fluctuation level of the current Wi-Fi environment
at a certain survey position can be estimated by analyzing the Wi-Fi RSS

fingerprint. Typically, the RSS fingerprint contains multiple APs. Each AP has
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its own mean and variance, which can not provide a global description about

the current Wi-Fi environment. In order to estimate the fluctuation level of the
entire environment, we use the weighted average of RSS Variance for each AP.
The occurrence or the value in the Count field for each AP is utilized as the
weight. The collective RSS variance for this fingerprint is defined as

Zier oG
Lier, Ci

or,
where F, is its RSS fingerprint.

At the end of the training phase, each survey position is associated with an RSS
fingerprint containing APs that describe the specific location. For each survey position

P, in the system, we define a system anchor A, as
Py, F),

The system anchors are reference points to determine the positions of mobile devices

3.2 Positioning Phase

In the positioning phase, live Wi-Fi measurements will be collected and used to query

the fingerprint database. Using only a few Wi-Fi scans during positioning phase may

generate a large error due to the lack of informative RSS data. For experimental

purposes, the prototype implementation allows for a variable number of W
to evaluate system performance.

Suppose the total Wi-Fi scan number is S and each scan will generate an RSS

vector Ry, i € {1,2,3,...,S}. Given N system anchors, when the first RSS vector is
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Figure 3.4: Flowchart of positioning phase.



formed, we use it to calculate the likelihood Lj, j € {1,2,3, .., N}, of it matching the
fingerprint for each system anchor. Each subsequent scan should lead to a cumulative
estimation result with a decreasing error. As such, the estimated result will become
‘more and more reliable as more RSS vectors are used.

The likelihood is calculated via a Gaussian kernel, which is commonly used to
estimate the likelihood between two RSS vectors [23]. Then the top-k anchors with
highest likelihood are selected as candidates of a system return. A representative of

them will be selected as returned result using a solution to vertex-p centre problem.

The flowchart of the entire positioning process is shown in Figure 3.4, and cach step

will be explained in the following subsections.

3.2.1 Calculate Likelihood

Besides the large RSS variability, another challenge in real indoor environments is the
variability of RSS vector dimensions. In an RSS vector R;, the MAC address of an
AP defines a dimension in the vector. Thus, the number of dimensions of R; can be
given as

i,

where n, is the number of received APs in Wi-Fi scan i. Due to the different beacon

frame ing periods, jons of the Wi-Fi (e, APs are

turned off or new APs are added), or large fading effects, the number of dimensions

of RSS vector R, and Ry, i # j generated at the same location [ could be different

dp, #dr,, 0,3 €{1,2,3,...,5).
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As a result, a dimension mismatch between RSS fingerprints and RSS vectors in live

‘measurement could happen during the positioning phase. It also indicates that system
estimate results could be very unreliable if the number of Wi-Fi scans s small.

1f we use simple likelihood calculation mechanisms (e.g., Euclidean distance or
cosine similarity), such dimension mismatching could lead to large positioning errors
However, if the influence of each dimension can be normalized, the small scale of
dimension mismatching will not dominate the entire likelihood calculation. In terms
of our baseline system, we use sparse vectors and a Gaussian kernel to calculate the

likelihood for cach system anchor, which is very efficient according to our preliminary

experiments. Specifically, an RSS fingerprint is first transformed into a sparse vector

which contains all n APs. At this point, we do not consider the AP selection problem;

instead, all nearby APs in the infrastructure are utilized in order to obtain satisfac-
tory system performance. As such, the dimensions of all RSS vectors are unified,
a dimension without valid AP information (i.e., can not receive beacon frame from
certain AP) will be assigned impossible values (e.g., 100 dBm for RSS). Then, we
apply Gaussian kernel to caleulate likelihood between two sparse vectors

Gaussian kernel method was originally used in support vector machine (SVM)
to classify data [36], and it has also been found to be very efficient for RSS vectors
likelihood calculation [23, 41, 40, 19, 15]. In the Gaussian kernel method, a proba-
bility mass is assigned to a “kernel” around the RSS mean of each AP in fingerprint
generated in the training phase. Given an RSS live measurement (observation) vector

generated at location P as Rp,, the resulting likelihood estimate between Rp, and



fingerprint F; in system anchor A,, is the sum of n equally weighted density functions
L(Rp,,F) = Y Ka(pwipr),
=1

where pyy, is the RSS of k-th AP in the live measurement vector Ry, and pr, is the

RSS Mean of k-th AP with the same MAC addr

n fingerprint ;. Note that when
Par, OF P, is an impossible value (e.g., -100 dBm), we just ignore this dimension. K¢
denotes the Gaussian kernel or radial basis function (Gaussian RBF), whose value

depends on the distance from the centre. It is given as

Kalpaipn) = ﬁvw (_%4) ,
where § is an adjustable parameter that determines the width of the Gaussian Kernel
and the centre is pr,.. Figure 3.5 provides four Gaussian RBF curves (with the same
centre (-40 dBm) but different 6) to illustrate the characteristics of Gaussian RBF.
From these curves, we can observe that the Gaussian RBF has two main features.
The first onc is the discrimination ability for RSS values on the same dimension.
Any RSS close to the centre has a large Gaussian RBF value, as we can sec in Fig-
ure 3.5. Thus, in terms of a RSS vector with n dimensions, the sum of Gaussian

RBF over all n dimensions determines their likelihood. The second characteristic is

that its width is determined by parameter 6. As we can see in Figure 3.5, Gaussian
RBF is smooth when the 4 is large. In terms of Wi-Fi RSS, whose value domain is
[~90dBm, ~30dBrm), § less than 0.05 or larger than 0.5 lead to corresponding curves
too sharp or flat, which could cause weak discrimination ability of Gaussian RBF.

However, to find the optimal § value for a particular dataset is difficult, especially

for Wi-Fi RSS data with large variability in indoor environments [23]. In the partic-
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Figure 3.5: Examples of Gaussian kernel.

ular environment, we have to tune the 6 value in order to archive adequate system
performance.

After the likelihood calculation, each system anchor has a likelihood for being
the true position of the device. Instead of just returning a single estimation, the

tem selects the top-k system anchors as candidates in order to provide redundant

true position information. The main reason is that the true position may not always
be in the system anchor with the highest likelihood. The next step is to choose a

representative from these top-k candidates as the system return.

3.2.2 Present Position

A naive approach would be to use the weighted mean of the top-k anchors as the

estimation for the position. Usually, these k survey points are close to each other
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Figure 3.6: A drawback of weighted mean representation.

d

in the physical space, and they can be considered as a cluster. Thus, their weight
mean position is a reasonable representative. One example is shown in Case 1 of
Figure 3.6; four system anchor points (k = 4 here) are close to each other and can be
considered in the same cluster. Thus, their weighted mean position can be used as a
applicable representative. However, if one or more outliers exist, the weighted mean
position could be pulled far away from the cluster formed by other system anchors
Also, this mean position can be a meaningless point in the physical space. Case 2 in
Figure 3.6 provides such an example. Anchor point A, is far away from the other

system anchor points, which could pull the weighted mean position away from the

I these four system anchor points are very close

cluster formed by As,, s, and As,
in likelihood, the centre of As,, As,, and As, should be a more representative than
the weighted mean position.

Instead, we can use an approach to the vertex p-centres problem [21] to determine
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Figure 3.7: Example of fire station placement problem

the representative of the top-k anchors. The vertex p-center problem (also known as
the minimax problem) is to locate p facilties (vertexs) and assign clients 0 them so
as to minimize the maximum distance between a client and the facility to which it is

assigned. It is a computationally expensive problem for general p. However, in our

case, we only consider the case of p = 1, i.e., the 1-centre problem. Since the value
of k could be very small (less than five), we do not analyze the algorithm complexity
at this point.

‘The 1-centre problem is similar to the site selection problem depicted in Figure
3.7. Given four towns with different populations, we need to place a fire station in

one of these towns to cover the entire area. The large town should be given more
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weight because the possibility of a fire is proportionally higher than the smaller towns.
Also, if a town is very closer to other towns, firemen can reach the accident scene
quickly. Thus, the town with large population and small distance to other towns
should be chosen as the location for fire station. In particular, the vertex l-centre
for our positioning system is the system anchor point that minimizes the maximum

distances from itself to the other top-(k — 1) anchor points. These distances are

weighted with the likelihood estimated as above. For two indices i, j = 1,2,

minimize the following over all values for i

where D(i, ) is the Euclidean distance between anchor Ag, and As, and L; is the

likelihood of As,. The resulting anchor point becomes the estimation for the location

3.2.3 The Algorithm of Baseline System

In this subsection, we summarize the baseline system with two algorithms given as
follows (next page). Given N survey positions with known physical coordinates,
our goal in the training phase is to associate each of them with an RSS fingerprint

Foi€{1,2,3,...,N}. A RSS fingerprint is generated by calculating the mean RSS

from S W

i scans. As such, N system anchors are created as reference points for

future positioning.



3.2.3.1 Training Phase

Algorithm:
Input: Given a temporary vector V = {uv1,va, ..., t}, vi s the sum of RSS
collected on dimension i (initialed to 0) of all 7" scans. n is the number of all
nearby APs;

while (i < N) for cach survey position do

while (j < T) for each scan do
{PisPiasPiss - -+ Pin}s Py, 18 the RSS vector R; in scan j;

while (k < n) do

if beacon frame from k-th AP is received then
Add p, to v 5

AP count ¢+ 1;
=
Set 7, to the RSS of k-th dimension in F, ;
end

else
| set -100 dBum to p,;

end

end

Output: A, (All system anchors);



3.2.3.2 Positioning Phase

Algorithm:
Input: Also given a temporary vector V = {v1,va, .., vz} (generated when
users want to find their positions), v; is the sum of RSS collected on dimension
i (initialed to 0) of all T" scans. n is the number of all nearby APs;

while (i < T") for each scan in positioning phase do

while (k < n) for each dimension do
Pi is the RSS in RSS veetor R, scan i ;

if beacon frame from k th AP is received then
AP count ¢ +1;

else
| set -100 dBm to py,;

end
end

while (j < N) for cach system anchor do
| Calculate likelihood L, between V; and F; using Gaussian Kernel;

end

Select top-k system anchors from L ;

Select returned position by solving 1-centre problem;
end

Output: Estimation position in the 1-centre system anchor point

In the positioning phase, likelihood is calculated for each system anchor when

receiving an RSS vector. The top-k system anchors are selected as candidates for the
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position estimation. We select the representative of these candidates via solving the
L-centre problem. The whole process repeats S' times, which means S' RSS vectors
are used for positioning in total. Each subsequent RSS vector is integrated with
previous vectors to produce cumulative estimation result with a decreasing error.

‘This baseline Wi-Fi fingerprinting approach is similar in many aspects to systems
discussed in Chapter 2 and the system performance is very promising if well trained
However, in order to improve system performance, we use the sparse vector and
a Gaussian kernel o caleulate likelihood for each anchor point. In addition, an
approach to the 1-centre problem is employed to select the representative from the
top-k anchors, which improves the system robustness to outlier anchor points. The
evaluation of this baseline approach will be detailed in Chapter 6.

At this point, although the computational complexity is O(n?), it can be eas-
ily optimized by using pre-fingerprint clustering and tree-based search methods [§]
However, the refinement of algorithm is not our research focus. In fact, since the
metre-level accuracy can be obtained via extensively system training [44], we believe
that the most challenging issues are system robustness and costs. As mentioned
above, although a fingerprinting-based approach is relatively more robust and ac-
curate than a triangulation-based approach, its system performance is still highly
dependent on the large amount of training data and the RSS variability (the inter-
ference in the physical environments). Thus, the goal of this research is to give the
positioning system a self-learning ability to adapt to environment changes and reduce
re-training or maintenance costs. We argue that such ability could come from end

users if the system is enhanced with an user feedback model to efficiently receive and

process human-centric collaborative feedback. In the next chapter, we will discuss
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the proposed user feedback model
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Chapter 4

User Feedback Model

RSS vectors in live measurement may occasionally match the system anchor points

far from the true position due to large RSS variance, insufficient sampling t

e,
o other factors. However, if this system is enhanced with a self-learning ability
adapting it to the environmental changes, such inaccurate positioning outcomes can
be compensated. This learning ability may include two components, absorbing new
knowledge and abandoning outdated or incorrect knowledge. 1t could receive inputs
from other channels (e.g., motion or vision information) to adjust the likelihood of
anchor points, filter outliers, or even create new anchor points that best describing

the current Wi-Fi indoor environments. As such, the likelihood distribution could be

adjusted by reducing the likelihood of some invalid anchor points or increasing the
likelihood of certain efficient anchor points (Figure 4.1).

For mobile devices carried by people, such self-learning ability and positioning
compensation could come from end users for free. Users can provide feedback to the

positioning service based on their knowledge of the surroundings. They may choose



osusassa

Figure 4.1: General idea of positioning compensation, green arrows mean the like-
lihood of anchor points at those positions are raised while the red arrows indicate

that they are reduced

to accept, reject, or modify system results after being given the estimated position
In order to utilize user feedback, we need an efficient user feedback model and to
study such a model to determine if it is able to improve system performance

Before discussing the user feedback model in detail, it is useful to begin by identify-
ing three types of user input that can be collected within a human-centric collaborative

feedback system:

ion and

o Positive feedback is generated when users reject the estimated pos
suggest a location based on their knowledge. In such a case, the system can

accept the updated information from the users. The result is that the system

may create new anchors from the users’ suggestions, called user anchors.
 Negative feedback indicates that the users do not believe the estimated position,
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Figure 4.2: Flowchart of user feedback model

and are unable to make any suggestion as to their current location. In this case,
the system should reduce the positioning likelihood of the returned location in

the future.

o Null feedback occurs when users choose not to provide any feedback. The as-
sumption here is that the estimated position is accurate, and that there is no

need to make any modification to the positioning model.

Next, we will present the general idea of our positioning model integrating user
feedback. The flowchart of this model is provided in Figure 4.2. Assume that the
model has n (system and user) anchors, and the likelihood of the i-th (i = 1,2,....,n)
anchor is denoted as L. Before ranking these anchors based on the likelihood vector

L, our user feedback model compensates each L; with two factors, a; and f; as

PR if A, is a system anchor, and
aBiL; if A; is a user anchor.
Due to the temporal or permanent random interfering factors of complex indoor
environments, the reliability of system anchors will be reducing. In order to solve

this problem, we design the 4 factor to gradually reduce the likelihood of system
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anchors as negative feedback is received. As mentioned before, the system estimation

stimation

is provided by the vertex-1 centre of top-k anchors. However, if this
receives negative user feedback, this means that the user believes that they are not
near this location which s an indication that the data stored for these top-k anchors
may not be accurate. As a result, the model reduces their likelihood by updating the
5 factors for these top-k anchors. If more and more users provide negative feedback
on a system anchor, it may never be selected as one of the top-k anchors. The
factor thus gives the system an ability to forget outdated or unreliable knowledge.
On the other side, new knowledge (user anchors) will be added into the database
via positive user feedback. However, when a user anchor is firstly created, its likeli-
hood is reduced by the discounting effect of the small initial  value. The rationale
is that the system can not assess the reliability or credibility of a newly created user
anchor (which may be from a malicious user). However, as more and more similar
user anchors are generated to confirm it, its a factor will be increased. Once some
user anchors become sufficient reliable, they may appear to be within the top-k an-
chors to affect the system estimation. Also, the 4 factor could affect user anchors

once they receive negative feedback. The user anchor and a factor enable the system

to absorb new knowledge about the Wi-Fi environment.

As such, future users can take advantage of the knowledge shared by previous
users. Also, they are encouraged to provide feedback to benefit subscquent users.
As a result, the positioning model can be consistently updated via the user feedback

model thus designed. Later in this section, we will explain how to calculate the o

and /8 factors in detail.




4.1 Positive User Feedback

The general idea of processing positive user feedback can be explained via the example

in Figure 4.3. Suppose likelihood calculation is finished, and each system anchor
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Figure 4.3: Positive feedback

Ay, (i € {1...N}) has a likelihood value L;. The returned system anchor (green

star) is the vertex 1-centre of the top-k anchors. However, it is far away from the
user’s true position (blue triangle). For positive user feedback, users try to tell the

system their estimations by providing suggestion positions. Such estimate positions
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are shown in Figure 4.3 as red circles. Note that they could be close to the true

position (accurate feedback) or still far away from it (inaccurate feedback)
‘Whenever the system receives a user-suggested location associated with its current
RSS measurement, denoted as user fingerprint, the system creates a temporary user
anchor (A,). If this anchor is sufficently similar to an existing user anchor in the
model, it is merged with it, and the a factor is updated. Otherwise, it becomes
new user anchor, with the associated a factor set to a very small initial value. It
indicates that the newly create user anchor is not as reliable as system anchors at the

beginning

4.1.1 Temporary User Anchor

Since a user's suggested position could be arbitrary, saving these suggestions sepa-
rately would bloat the model significantly. Therefore, we use discrete locations by
dividing the study area into an m x n grid. Note that the resolution of this grid could
be different from the resolution as used in the training phase. We can set smaller grid
space because the system training from users is cost-effective. This helps to efficiently
reduce the grid space between system anchors. Thus, the resolution of entire system
could be refined.

Within each grid cell, its geometric centre is used to represent the positions of all
temporary user anchor points falling into it, as in Figure 4.4, We thus define the user
anchor A, as:

A= (P, F),

where P, is the grid cell centre that contains the user suggested position and F, is
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Figure 4.4: T) i f grid cell (i, j) user estimate positions

falling into it.

the user fingerprint summarized from the current Wi-Fi RSS measurement.

4.1.2  Anchor Merge

A newly generated positive feedback could be either converted o a new user anchor
point or merged with an existing user anchor point based on their similarity. As
mentioned before, we believe that positive feedback represented by a user anchor
point should gradually become reliable if more and more similar user anchor points
are generated to confirm it. Before we discuss how to update the reliability of user
anchors, we define the similarity between two user anchor points.

Given user anchor points A,, and A,, i # j, their similarity is determined by two

aspects:



o Wi-Fi RSS fingerprint similarity: At this point, we do not measure the precise
similarity. Instead, we only need a mechanism to reflect the positive coeffcient
A natural measurement mechanism is the cosine similarity in the range of [0,

1], which is convenient to compare their fingerprint similarity. Thus, the Wi-Fi

RSS fingerprint similarity F,

1 ifcos(F,F) >a

0 otherwise,
where F,, and F,, are Wi-Fi RSS fingerprints of user anchor points A, and A,,

respectively. They are all sparse vectors with n dimensions; a is the threshold

for WicFi RSS fingerprint similarity.

« Physical position similarity: 1f two user anchor points share the same geometric

centre of a grid as their position. They are considered as similar in position.

As a result, we claim that two user anchor points are similar if they satisfy both of the

above Moreover, th hould also be an important
aspect. Different times (morning, noon, and night) or dates (weekdays, weekends, and
holidays) could produce different RSS patterns. For example, in a university cafeteria,
due to the interference from human bodies and electronic devices, the user fingerprints

generated during dinner time could be very different from midnight. As such, user

feedback should have a time-bound, wherein it is only able to affect other users
similar time period (e.g., in the same time sliding window). At this point, however,
we do not consider this time factor. In Chapter 7, we will discuss this issue as one
aspect of our future work in detail

A temporary user anchor A,, is thus merged with the existing user anchor A, in
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the same cell if their fingerprints are sufficiently similar. If multiple anchors already

exist in the same cell as A,,, we only consider the most similar one, denoted A,. If
the similarity between A,, and A,, is greater than a threshold, the temporary user

anchor is regarded as the same as the existing one, and therefore is merged with it.

4.1.3 The a Factor

Whenever a temporary user anchor is merged with an existing user anchor in the

system, the associated a factor is updated. For user anchor A,,, we define a; as

o= o with e 2 0and 0 <a <1,

Tat
where the variable  has a cumulative effect and a is a parameter controlling the initial
and maximum values of a;. When an user anchor A, is firstly created, its original
likelihood will be reduced by the small a;. As more positive feedback is provided in
support of it its a factor gradually increases until it reaches an upper limit.

Thus, the magnification capability of the o factor is 21, The increment of z is

defined as

Iyeor
Az=B— witht>0,

The pace of the increase of z is controlled by a few aspects:

« An independent parameter b, which compensates the increasing velocity of x.
When there are many users (e.g. in a large shopping centre), we may not
want to trust their individual estimation much. Instead, we can reply on the
convergence effects of large amount of users to evolve the mode. However, when
there are only a few users (e.g., in a depot), we assign each individual feedback
much higher weight
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o The variance of the current RSS fingerprint, 0. The user feedback generated
in the environment with small RSS variance will have larger influence on the

evolution speed of the model.

« I T is the number of Wi-Fi scans used in the positioning query and 7, is the
number of Wi-Fi scans used during system training, their ratio - also reflects

the credibility of this positive feedback.

hicaen

=
Figure 4.5: The a factor increases fastest at the beginning and becomes stable once

a sufficient number of feedback events are received with an upper limit.

As a result, the a factor increases fastest with the first few instances of the user

anchor, becoming stable once a sufficient number of feedback events are received, as

we can see in Figure 4.5 (a = 1). The rationale for this design is to allow the system
’ to quickly adapt to new information provided by the users, but without this feedback

overpowering the system.
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4.2 Negative User Feedback

Suppose the system delivers a position from top-k anchors according to their likelihood
ranking, but the user believes this location to be incorrect and cannot, provide any
further information regarding the actual location. The negative user feedback on this
estimated position can also provide valuable information to the system. Typically,
when a user rejects the position estimated by the system, the reason could be that
the user is nowhere near any of the anchors known by the system. In this case, none
of the top-k anchors would truly represent a good estimate. Therefore, we should try
to decrease their likelihoods simultaneously.

Given an anchor A;, we use a negative user feedback factor 8, to reduce its like-

lihood according to the accumulation of negative feedback received. Similar to the
positive feedback model, the negative factor model also has fast adaptability. Ac-
cordingly, we define f, as

Bi

When an anchor is given a negative feedback, we give z in above formula the same
increment Az used in the positive user feedback. The value of 4 is inversely related
10z, such that § will decrease from the initial value 1 to its limit zero as z increase
from zero to infinity. The curve of 4 factor is shown in Figure 46. As a result, if
more and more users reject the same set of anchors, they will never be chosen as the

top-k due to the small value of the § factor.
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Figure 4.6: Similar to a factor, the 4 factor also has fast adaptability at the beginning

will decrease from the initial value 1 to its limit zero.

4.3 Null User Feedback

The null user feedback is generated if users choose to accept the location estimation or

do not want to provide any feedback. In such a case, the model will not be updated

4.4 Summary of User Feedback Model

In this chapter, the proposed user feedback model is explained in detail. It processes

three type of user inputs (i.c., positive, negative, and null user feedback). Positive

feedback generates a new type of anchor point called user anchor. The user anchor
will be merged with an existing user anchor resulting in its reweighting, or created
as a new anchor which is assigned  small initial weight. Negative feedback reduces

the reliability or credibility of anchor points (both system anchors and user anchors).




Reliable user feedback will have more impact on system results. The influence of
user feedback depends on three factors: 1) the convergence effect of other similar
user feedback 2) the interference level of current environment, and 3) the number of
Wi-Fi scans (the effort for conducting a positioning activity). As such, we believe
such model should be robust to malicious feedback which normally exists as outliers
in real life.

\ At this point, we have explained the baseline Wi-Fi fingerprinting-based approach
in Chapter 3 and the proposed user feedback model in this chapter. These two
chapters form the theoretical part of the thesis. In order to validate and evaluate
the model in real indoor environments, we have built a prototype on the Apple i0S
(which runs on both iPhones and iPod Touch devices). In the next Chapter, the

features of this prototype will be introduced.
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Chapter 5

System Design

In this chapter, the general design of the system will be presented. We mainly in-

troduce our system architecture and user interface (UI). A detailed class diagram is
provided in Appendix A.3.

5.1 Design Goals

There are three main techniques for system performance evaluation 1) analytical mod-

cling, 2) simulation, and 3) measuring a prototype system. Analytical modeling and
simulation provide easy ways to predict the performance or compare several alterna-
tives, especially if the prototype is not available or in the design stage. However, they
are unable to identify potential flaws in the model which could only appear in real
observations. Also, for Wi-Fi based indoor positioning techniques, it is difficult to

predict the system performance merely via simulation or analytical modelling. Thus,

in order to conduct comprehensive and valuable evaluation, we have built a prototype

to enable positioning activities and user feedback input in real indoor environments
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Based on this prototype, we can design field trails to evaluate the performance of the

proposed model. Specific prototype design goals are listed as follows:

5.2

Facilitate system training, Since the system training can be very time-consuming
and tedious, the prototype should be able to help the administrators to train

the system effectively and accurately.

Reasonable UI design. The UI design is essential for human-centric computing.
We thus need a well-designed UI to present the position estimates in terms
of a map, along with a method for obtaining both positive and negative user

feedback

System status monitoring and log file. System analysts should be able to mon-
itor the system and record its running status.
Statistical experimental results. The system should store all raw run-time data,

and it should pre-process these and present the statistics result for analysis.

Fast system responsiveness. The UI responding delay is a very important sys-
tem performance metric. The prototype should provide near-instantancous Ul

response.

Architecture

5.2.1 Platform

The operating system of our prototype is Apple iOS 3.1.2, which is an advanced

‘mobile platform. It is streamlined to be compact and efficient, and taking maximum
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advantage of the iPad, iPhone and iPod Touch hardware. Technologies in iOS such
as the OS X kernel, sockets, and OpenGL ES provide comprehensive application
programming interface (API) and high compatibility. The iOS SDK combined with
Xcode developer tools make it very convenient to debug the code, design the Ul,

‘manage the data, and analyze the application run-time performance.

Unfortunately, the Wi-Fi API is not publicly available even for the latest iOS
SDK. Instead, we indirectly use iOS system calls via a private Wi-Fi framework

called WiFiManager to scan nearby APs.

5.2.2 System Architecture
‘We will introduce the logical model of our prototype in this section. At this point, we
focus on the system architecture, the relationship and interaction between modules.

The detailed class information is provided in Appendix A.3

In terms of system architecture, if we adopted a client/server architecture, the
positioning process could be conducted using a positioning server in a centralized
manner. Furthermore, a large amount of map data, fingerprint data and user data
could be stored in the database at the server side. Therefore, the client running on a
mobile device would only need to download the map and send a positioning request
to the server and wait for the result. By doing so, the resource consumption on the
‘mobile device could also be reduced. However, the system response time will depend
on the communication quality between the client and the positioning server. If the
network is congested or the RSS from associated AP is at a extremely low level, users

will have to spend a long time waiting for the system results. Also, if users can not




access the network for some reason, such a positioning service will be unavailable.
Furthermore, in order to protect users’ private information (e.g., the history of lo-
cation queries), the server needs to integrate additional security mechanisms such as

data encryption, secure data transmission, or access control, which inerease the cost

and complexity. By taking consideration of these aspects, we have implemented the
positioning process locally (i.c., a lightweight stand-alone version). In such an offline
operating mode, the position calculation process will be conducted on the mobile
device to protect privacy and reduce the dependence on networks at the same time.
Also, if users want to take advantage of collaborative feedback from other users, they
can synchronize their local user feed model with a server at a different time. As such,

their feedback can be uploaded to the server and benefit other users

The architecture of our prototype is based on a variety of laers, from U on the

application level to Wi-Fi and System Foundation at the i0S kernel level. Figure
5.1 shows a high-level overview of these layers. Next, we will explain the general
functionality of each layer and how they communicate with each other.

The System Foundation layer is designed to provide a fundamental framework for
the entire prototype. It contains basic functionalities such as key object initialization,

views navigation, data management, console, system configuration, and experiment

‘management. In view navigation, users can switch to different views (e.g., training

view, positioning view, console view, system configuration view) via touch activities
‘The system administrator can check system run-time status in the console view. We
can st system preferences in the system configuration module (e.g., we can choose

to enable/disable the user feedback model or store all raw experimental data). An-

other very important module in this laer is the experiment management. Since we
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will conduct experiments with different settings and parameters, it is beneficial to
‘maintain each experiment individually. We implement a file bundle which contains
all relevant information for each experiment. As such, we can conveniently switch
among experiments or initiate a new experiment without losing data from previous
experiments

The RSS vector is formed in the Wi-Fi layer. It is converted to an RSS fingerprint
in the System Foundation. The RSS fingerprints arc assembled into system anchors
and user anchors in the System Training and User Feedback Model respectively. The
Wi-Fi layer directly communicates with iOS kernels via a private framework called
WiFiManager, which provides a high-level wrapper for the Wi-Fi related system calls
(AppleS0211). The AppleS0211 is a set of system calls which are related to Wi-
Fi functionalities. Some important Apple 802.11 system calls are App1e802110pen,
AppleB0211Close, Apple80211Associate, and Apple80211Scan. In our case, the
App1eB0211Scan is mostly used to scan nearby Wi-Fi APs. It will generate an array,
where cach element is a dictionary structure that contains information about an AP
(e:8, MAC, SSID, RSS, Channel, etc.). The detailed data structure is provided in
the WFNetwork class in Appendix A.3.

The System Training layer implements most of functions required for system train-

ing. At each survey point, it periodically calls the Wi-Fi scan function in the Wi-

layer to generate RSS vectors and sends them to the System Foundation to assem-

ble the RSS fingerprint. Then, the RSS fingerprints and the physical coordinates of

the survey point are combined {0 form system anchors. We use a mutable list data
structure to maintain the system anchors. The administrators can add, remove, or

modify RSS fingerprints of system anchors. The trained survey points are marked
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on a map as reminders, allowing the system administrators to keep track of which
survey points are trained and which are not.

The Position Estimation layer estimates a user’s position and the degree of cer-
tainty in this location estimation. For experimental purposes, the prototype imple-
mentation allows a variable number of Wi-Fi scans. After a scan, it caleulates the
likelihood for each anchor using the generated RSS vector. Then the likelihood vec-
tor is compensated by the o factors of corresponding user anchors and 4 factors of
selected top-k anchors maintained by the User Feedback Model. Then, the Position
Estimation laer selects a representative (vertex 1-centre) from these top-k anchors
and delivers it to the UI layer. Besides the estimated position shown in the Ul layer,

the region of uncertainty will also be presented to users for providing additional po-

sition information. The uncertain area is a circle enclosing all top-k anchors because
they all have a large possibility of being the true position. From a usability perspec-
tive, it is more informative to present these high possibility anchors in a manner that
allows them to understand the range of possible locations, but also in a manner that

will not confuse them as to where the

tem has estimated their position.

The User Feedback Model layer receives and processes user feedback from the
system UL If a user provides a positive feedback, it gencrates a temporary user anchor
by combining the user-suggested position from the U layer and the RSS fingerprint
from the Position Estimation layer. Such a temporary user anchor will be either
merged with an existing user anchor o considered as a new user anchor based on
the similarity caleulation. In cither case, the a vector will be updated. If the User
Feedback Model layer receives negative feedback, it will update 4 vector by reducing

the corresponding 4 value of the top-k anchors.
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The Ul layer contains different views which are controlled by the lower layers to
enable user interaction and present system results. It visualizes training and position-
ing results to end users, receives user feedback and delivers them to the User Feedback
Model layer. In order to provide a better understanding about our prototype, we will

explain these views in the subsequence section.

5.3 User Interface

Since our prototype s built on i0S, the touch-based user interaction enables a superior

user experience on the mobile devices. The goal of our touch-based UI design is to
make the human-centered positioning activities as simple and efficient as possible.

Next, we will introduce the UI of our prototype in detail.

5.3.1 The Main Panel

The basic functionality of main panel is view navigation. Users are able to switch
among views and modules in the main panel by touching corresponding icons (Figure

5.2).

5.3.2 The trainingView

The main component of the trainingView is a scrollable map view which enables
a trainer to zoom in/out and locate survey positions. When system administrators
touch the map, the trainingView will record the current touch position. Then, a
mutable table of survey positions will be loaded for the trainer to manipulate system
anchors. Tn addition, the survey positions will be marked with tags on the map in
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order to remind the trainer whether they are associated with any RSS fingerprint
(trained), as we can see in Figure 5.3,

System administrators maintain sys

em anchors using the surveyPositionsView

presenting mutable table (Figure 5.4). At each survey point, system administrators

can create, delete or renew their associated RSS fingerprints. The create or

enew

action is triggered by touching one of the table cells to start a new sequence of Wi-Fi

scans.

When a table cell

touched, will load the Wil
tostart a new Wi-Fi sampling process at that survey position. The main component

of the WiFiScanView is a table which contains all AP information in one scan, as

shown in Figure 5.5. Multiple Wi-Fi scans will be conducted to collect as much
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5.3: The trainingView provides an interface to system administrators. The

physical coordinates of touched points on the map will be recorded and used to create

system anchor.
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Figure 5.4: System anchors are maintained in surveyPositionsView.

When

formation as possible. System trainers can also stop/resume Wi-Fi scanni

it is finished, this survey point is associated with an RSS fingerprint

5.3.3 The positioningView

The positioningView shown in Figure 5.6 is a root navigation view for users’ po-

sitioning activities. It contains a scrollable map which presents system result and

receives user's suggestion position. The “finder” icon can be touched to load the
positioningStart for variable Wi-Fi scan number selection. When the system re-
turns a position estimate, the positioningView will ask users to provide feedback

via loading the userFeedbackView. Otherwise, users can touch the “notebook” icon

to load the userFeedbackView and provide feedback.
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Figure 5.7: The picker in positioningStart is used to select a Wi-Fi scan number.

The purpose of positioningStart is to allow a variable number of Wi-Fi scans
in positioning. We can select a Wi-Fi scan number from a picker s shown in Figure
57,

During the position calculation, the system will generate massive intermediate
results (e.g., intermediate uncertain area and estimated position). For example, if
the Wi-Fi scan number is four, the system will generate four uncertain areas and
estimate positions for each cumulative scan before the positioning is finished. Each
scan may lead to a cumulative estimation result with a decreasing error because more
AP information is collected. The positioningAnimationView presents animations
showing a gradually decreasing uncertain area (the area of circle). At the same time,

users will be experiencing a more accurate position estimation (the pin is approaching
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to user’s true position), as we c

1 see in Figure 5.8,

5.3.4 The userFeedbackView

userFeedbackView (view #2.2)

u
l
nfl

h

Provide user foedback lert Losd
(view #22.1) positveUserF oedbackView
(view #2.2.
Lood
negativeUserF eedbackView
(view #2.23)

9: The userFeedbackView enables users to provide three kinds of feedback

When the positioning process is complete, the system will ask v

ers whether or
not they want to provide feedback. If yes, it loads the userFeedbackView as shown

in Figure 5.9. Users can provide three kinds of feedback (i.c., positive, negative, and
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null user feedback) by touching a corresponding tag.

positiveUserF eedbackView
(view #222)

Systom estimate posion
A user expores nearby grid Doute tapto confim he positon
o chaose a proper one

Figure 5.10: The positiveFeedbackView enables users to explore grid cells for pos-

itive feedback, confirming this choice with a double tap.

I users choose to provide positive feedback, they need to touch the map to suggest
a new position. However, users may need to explore the map to make a satisfactory

e errors. 1

estimation. Also, the size of the finger touching on scr ay gen
order to solve this problem, users are able to explore surrounding grid cells and double

tap to confirm their estimation in our implementation 5.10.

If users choose to provide negative feedback, the negativeFeedback will place a



negativeUserFeedbackView (view #22.3)

negativeUserFeedbackView (view #2.2.3)

Figure 5.11: A red cross placed on system estimate position means a rej

red cross on the system estimated position to indicate a rejection, as shown in Figure

5.11. If users trust the system’s estimation, they can just choose the null feedback

with a simple close

5.3.5 The experimentManagementView
In experimentManagementView (Figure 5.12), we use a picker (o select a build-in
experimental environment, which includes the vectors containing a and § of the

ated user anchors, and historical results of a experiment. Otherwise, we

model, e

can start an new experiment by touching the “add” icon.
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Figure 5.12: The experinentManagementView allows us to select different built-in

experimental environments or create a new one.



5.3.6 The systemSettingView

systemSettingView (view #4)

Retumto map

Enable/disable
foedback
ocel
Enable/dsabie fast
postonng

Enable/disable

Store Measurement Data: bty

b0 O

Figure 5.13: The systenSettingView enables system configuration and preferences

settin

The systen

SettingView provides an interface for system preferences setting (Fig

ure 5.13). The proposed user feedback model can be turned on/off in order to com-
pare the system performance with/without user feedback. The fast positioning mode
means the system will only use the first Wi-Fi scan to estimate user's true position. It
is fast but may have large positioning errors. When conducting experiments, we can

also choose to to save all raw experimental data or not in the systemSettingView.
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Figure 5.14: The consoleView

The consoleView

The consoleView displays detailed system information (e.g., likelihood for each an

chor, the index of returned anchors, etc) for system analysis.

Since the prototype is available, we can conduct experiments to evaluate it and

the proposed human-centric collaborative user feedback model. In the next chapter

we will evaluate the baseline Wi-Fi fingerprinting

model.

hased system and our user feedback




Chapter 6

Evaluation

We will explain and interpret experiment methodology, settings, scenarios, and results
in this chapter. Our main experimental goal is to measure the benefit of adding

human-centric feedback to a baseline indoor positioning system.

6.1 Methodology

The system evaluation contains two phases. The first phase is to analyze the perfor-

mance of the bascline system without user feedback in field tests. The accuracy and

precision of the baseline system will be calculated. By analyzing these two perfor-

s, we can determine whether or not our baseline system is suitable when

‘mance metri

compared to experimental results of other similar Wi-Fi fingerprinting based indoor
positioning systems. Furthermore, the time consumed in positioning is an important

aspect of service quality and user experience. Typically, long Wi-Fi scan durations

tend to bring more reliable results. However, the users might not be willing to spend

100 much time waiting for the results. Thus, experiments will also be designed to
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investigate the relationship between the time consumed in positioning process and
system performance. For our baseline positioning system, the number of Wi-Fi scans
dominates the positioning duration. Experiments will be conducted to compare the
average positioning error and precision in terms of the number of Wi-Fi scans.
Next, we will explore how the proposed user feedback model improves the system
performance. We will measure the benefit of integrating the proposed human-centric
collaborative user fecdback into a Wi-Fi fingerprinting-based indoor positioning sys-

tem from the following three aspects

o Cost
Hypothesis 1: The system training and maintenance cost can be reduced. The

training effort is reduced if system administrators only train the major part of

the objective positioning area or train the system at a coarse granularity
large grid space). However, in doing so, the positioning accuracy and precision
will be reduced. More importantly, if the indoor environment changes (..,
Wi-Fi infrastructure or environment layout alteration), the RSS fingerprints
database has to be updated frequently or even re-generated from scratch in
order to adapt to such changes. At this point, we argue that such system
training and maintenance cost can be reduced by taking advantage of human-
centric collaborative feedback.
o System performance

Hypothesis 2: The system performance can be improved, as measured in accu-
racy and precision. The newly created user anchors in fact include the “fresh”
Wi-Fi RS data, which can best characterize the current Wi-Fi environment
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If we can keep integrating such data into our fingerprint database, future po-

sitioning queries can take advantages of the timely knowledge shared by other

users, resulting in an in system . the
resolution of the positioning system should be gradually increased because user
anchors are generated between system anchors. As such, the grid space is re-

duced and the positioning resolution is refined

Robustness
Hypothesis 3: The system is robust with respect to malicious user feedback
One potential risk of opening a user channel o the positioning database is that
malicious user feedback will disturb the functionality of system anchors. Thus,
the proposed user feedback model should have considerable robustness to the
interference or even intended attacks from malicious user feedback. In the worst

case, the system is continuously interfered with by malicious user feedback,

which could lead a very large average positioning error. However, after the
attack stops, the system should be able to recover from the low accuracy state

by integrating benign and knowledgeable feedback.

We will discuss the experiments designed to validate these hypotheses in subsequent

sections.

6.2 Experimental settings

Experiments and evaluations with this feedback model were conducted in an indoor

office environment, which is the part of the 2nd floor of the Engineering Building at
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Figure 6.1: The experimental field includes both the training cells (green triangles)

as well as measurements taken outside of the training area (red discs)

Memorial University. The space was divided into a grid using a 3x3m cell size. 33

positions were selected within the hallways for training the baseline system (denoted
the training area), and an additional 20 positions were selected as untrained positions
for testing purposes (denoted the non-training area). A diagram of the setting is
provided in Figure 6.1. System anchors were created in the training area only. The

non-training area lacks valid system or user anchors. It can be treated as the result

of environment alteration, new Wi-Fi coverage area, or a neglected region.
As mentioned earlier in Chapter 4, the parameters in the feedback model are used

to adjust the rate of change of the a and £ factors (i

. the sensitivity of our user
feedback model). In production environments, the sensitivity of the user feedback
model will depend on the number of users and the degree of trust in those users. For

the purpose of evaluation, we increase the sensitivity of the user feedback model

order 1o speed up the the rate at which the system is able to learn from the user
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feedback. Based on these principles and our experimental s , we set the value

ttings

of parameter a to be 1, which means that the magnification factor of parameter
is 2. The value of parameter b is set to be 0.6. As such, according to the design of
our user feedback, these parameter setting will weight the first four users much larger

than subsequent users.

6.3 Baseline System Evaluation

Since the time that a user s willing to spend waiting for a positioning result influences
the service quality, we have conducted an experiment to investigate the relationship
between time (ic., the number of Wi-Fi scans) and system performance. We use the
baseline system to determine the smallest number of Wi-Fi scans (measured at one

scan per second) needed for the system to produce a reasonably accurate result. At

the same time, the performance of our baseline system can be evaluated with respect
10 other similar systems described in the literature. In the training area, for cach
survey point, we have collected 20 scans of the Wi-Fi RSS, using these incrementally
to query the positioning system. The average positioning error after cach scan is
plotted as the bottom curve in Figure 6.2. We can observe that for a small number
of scans, the system has an error between 2 and 4m. As more scanned RSS data are
used (ic., greater than four), the accuracy stabilizes at around 2m.

The system precision, as another very important metric for system performance,

is plotted in Figure 63, It specifies how often we could attain an accuracy. For
example, if a positioning system can determine positions within 3m for about 90 % of

the measurements, that particular system qualifies to be 90 % precise in providing 3m
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Figure 6.2: Using the baseline system, the positioning error becomes relatively stable
using just four Wi-Fi scans. Note that the system is significantly more accurate within

the training area

accuracy. We selected the positioning precision for 9 out of the 20 scans, illustrating
three phases of Wi-Fi sampling. The early phase consists scans 1, 2, and 3 (red
curves). In this phase, due to the insufficient Wi-Fi RSS data, the precision is low.

in the middle of the

The second phase includes scans 5, 10, and 15 (green curves

Wi-Fi sampling and has more Wi-Fi RSS data than the first phase. The last phase is
at the end of Wi-Fi sampling (scans 18, 19, and 20), which includes all RS vectors
(blue curves). From Figure 6.3, we can see that , the green and blue curves are very

close to each other, which means that scan number larger than four will not generate

significant precision improvement. However, if the Wi-Fi scan number is small

less than four), the probability of generating outliers is considerably high

Similarly, in the non-training area, we also collected 20 scans for each position. We
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(reen curves for scan 5,10, and 15 and blue curves for 18, 19, and 20). However, the

Figure 6.3: The precision of first three scans (red curve) is much lower than later scans ‘
blue and green curves are very close to each other, indicating the precision after four ‘

scans is not improved significantly.



Figure 6.4: Similar precision trend can be found in non-training area, blue curves and

green curves are similar but both apart from red curves,

plotted the positioning accuracy for the number of scans as the top curve in Figure
6.2 and positioning precision in Figure 6.4. In this case, the system performance

is significantly lower than in the training area due to the lack of system anchors.

However, in both training area and non-training area, four scans provide a reasonable
trade-off among performance and positioning time. Therefore, we use this as the
‘number of scans in the rest of our experiments.

According to the analysis of our baseline system, the average positioning error is
between 2m and 4m, respectively, depending on the Wi-Fi sampling time. It is in
fact only marginally worse than the 0.7m to 4m average positioning error yielded by
the best-performing but intensively trained Horus system (using 100 Wi-Fi scans and
much smaller grid space (152 m and 2.13 m)) [44]. Thus, we believe this bascline

system is qualified to evaluate the value of adding the user feedback model
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6.4 User Feedback Model Evaluation

6.4.1 Ki gable and Helpful

Next, we investigate how the user feedback model improves the system performance.
In this scenario, whenever the system returns a position that does not match the
true position of the user, feedback was provided. We modelled the user as being
knowledgable and helpful; whenever the position was inaccurate, the user suggested
positive feedback 80% of the time, and negative feedback 20% of the time. We believe
it is a reasonable choice for situations where users are highly motivated to provide
accurate and positive feedback. In fact, there may be many other users who are
providing null feedback (i, using the system and trusting the results). However,
since such types of users do not affect the evolution of the model, they are not
discussed at this point.

Within the training area, we define a round as a traversal of all grid cells. In a
round, the user stops at each survey position to scan the RSS for nearby APs (using
four scans). If the result is correct, the user moves to the next position. Otherwise,
the user provideds feedback before moving on. The average positioning accuracy
after nine such rounds of visiting and testing each position is plotted in Figure 6.5
In the course of providing this user feedback, the positioning error within the training
area improved from approximately 2.5m to 1.5m after just four rounds. From there,
little change was observed. Note that the baseline system accuracy is from 4m to 2m
without feedback. At this point, with the integration of human-centric collaborative
feedback, the system performance is furthermore improved even in the well trained

area.
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Figure 6.5: The system accuracy is significantly improved when integrating knowl-

edgeable and helpful user feedback.

The precision is also improved after four rounds of user-involved positioning within
the training area, as we can see in the green and blue curves which are closer to the
y axis than red curves shown in Figure 6.6. Furthermore, green and blue curves are
close t0 each other, which indicates that the model reaches its optimal performance
after approximately four rounds of knowledgeable and helpful feedback.

w

in the non-training area, the experiment followed the same procedure as in

the training area, producing the data plotted in Figure 6.5. Because there was no

training data in these regions, the initial positioning error was rather large. However,

after 13 rounds of collecting user feedback, the error decreased from 9m to 2m. The

precision is also significantly increased as plotted in Figure 6.7. As a result, the system
performance in an area that had not been previously trained became comparable to

the training arca.




Figure 6.6: In training area, the precision is improved via integrating knowledgeable
user feedback. The green curves and blue curves are close, which indicates that the

model is optimally trained after four rounds.

i af
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Figure 6.7: In non-training area, the system precision is significantly increased as
more and more knowledgeable user fecdback is integrated
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At the beginning of the testing within the non-training area, the model contained
only system anchors, and therefore could only return the position of a system anchor
(i., within the training area) o the user. These positions were often far from the
true position of the user. As a result of the positive feedback, user anchors were added
and the relative weight of these anchors were enhanced by the a factor. Similarly,
with the negative feedback, the weight of the system anchors were reduced by the
factor. As a result, the positioning accuracy increased as more user anchors become
valid candidate positions.

What this means for indoor positioning systems is that the system training and

be reduced signi by relying on and helpful

end users working on a partially trained system, eventually achieving the same level
of accuracy as a fully trained system. Also, the resolution of the positioning system
is improved because many reliable user anchors fill the gap between system anchors,
thus reducing the grid space or increasing the grid resolution.

At this point, the optimal combination of different types of user feedback is not
considered. To conduct experiments testing each possible combination is impractical
within a limited time period. In fact, this problem can be explored if we could use

a simulation testbed. We can collect a large amount of real Wi-Fi RSS data to

simulate the Wi-Fi scans. When the simulated positioning process is finished, virtual
user positive or negative feedback can be generated to the evolve the model. As
such, the system performance with an arbitrary combination of positive and negative

feedback could be estimated




6.4.2 Mixed Feedback

In a real environment, user feedback can be cither helpful or malicious. In this experi-
‘ment, we test the model to determine its ability to recover from incorrect feedback. In
particular, we model the user feedback as completely malicious at the beginning and
as completely informative thereafter. Such a behaviour is not typical but it provides

a “worst case scenario” study of the system, followed by its ability to recover from
incorrect or malicious feedback
Our focus here is on the training area only. As seen in the previous experiments,

the non-training area can become nearly as good as the training area with sufficient

user feedback. As such, we expect similar results within the non-training area as the

ing area with respect to mixed feedback.

During the initial phase of this experiment, whenever the system returns a correct

JSrS——

Figure 6.8: Providing malicious user feedback, followed by knowledgeable and helpful

user feedback illustrates the ability of the model to self-recover.
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Figure 6.9: Providing malicious user feedback also reduces the system precision sig-

nificantly.

position estimation, the malicious user has a 50% chance of cither providing negative

feedback of suggesting a random false position. When the system is incorrect, the
‘malicious user provides null feedback. Following a similar methodology as the previous
experiments, such malicious feedback was provided for four rounds. Another eight
rounds of feedback from a knowledgeable and helpful user was then collected

The position errors for this experiment are plotted in Figure 6.8. We observe that
the system error starts out with around 4m and quickly increases to 14m as a result
of the malicious feedback. At the same time, the system precision is also reduced
to an unacceptable level, shown as the red curves in Figure 6.9. With an error of
14m and extremely low precision, the system is considered to be fairly disturbed by
the malicious users. At this point, we turn the user into knowledgable and helpful

to provide positive feedback whenever the system is incorrect. The user behaviour




Figure 6.10: Providing malicious user feedback, followed by knowledgeable and helpful

user feedback also recovers the system precision to a normal level.

i this case is the same as in the previous subscction. The helpful feedback quickly
corrects the significant positioning errors, recovering to the starting accuracy after
five rounds of feedback, and below 3m after eight rounds. At the same time, the
system precision is stabilized as indicating by the blue curves in Figure 6.10.

As a result, our system has recovered from the low accurate state by integrating
helpful and knowledgeable feedback.

To conclude this chapter, we will review the entire evaluation process and whether
the hypotheses proposed in Section 6.1 are validated. We have designed three different
experimental scenarios and divided the study area into two areas, i.c., training area
and non-training area. Positioning in the non-training area only relies on the anchor
points in the training area, which could cause large errors.

In Scenario 1, the impact of Wi-Fi scan number on system performance has been

98



studied. Within both the training area and non-training area, we found that four
scans are able to obtain fairly good system performance without adding too much
system overhead.

In Scenario 2, knowledgeable and helpful user feedback has been integrated into
the model. This scenario is designed to present the maximum improvement of the
baseline system.

The “worst case scenario” study has been conducted in Scenario 3. That is, the
model has been designed to endure continuous malicious feedback (attack). As such,
the positioning error has gradually increased. When the system has eventually became
unreliable, knowledgeable and helpful user feedback used in the second scenario is fed
into the model in order to measure its self-recovering ability.

Next, we will validate the hypotheses via experimental results from above scenar-

o Hypothesis 1: The system training and maintenance cost can be reduced. As
mentioned above, non-training area exists in real indoor environments, i.e., the
area without anchor points and the neglected or modified regions within the
training area. In both cases, system administrators need to frequently update

ystem reliability. With the

the fingerprint database in order to ensure the
integration of knowledgeable and helpful user feedback, such a maintenance cost
is reduced as illustrated by the experimental results from Scenario 2. During
the initial rounds, the positioning error is about 9m. With more and more user
feedback provided, the positioning error is reduced to 2m. The system precision

is also considerably improved as we can see from the blue curves in Figure 6.7,




Such performance can be considered as the same level as the performance in
training area, however, without any extra training or maintenance cost. Thus,

the Hypothesis 1 is validated.

Hypothesis 2: The system performance can be improved, as measured in ac-
curacy and precision. The reliable user feedback contains information (user
fingerprint) that best characterizes the current Wi-Fi RSS features. Such help-

ful information can help the system to improve the performance as illustrated

by the experimental results of the training-area in Scenario 2. The system po-

sitioning error is reduced from around 2.5m to around 1.5m after four rounds

and becomes stabilized. Figure 6.6 indicates that the forgotten area in the
training area is gradually climinated since the blue curves are more vertical
than red curves. This indicates that the system performance can be improved
with the integration of helpful and knowledgeable user feedback, which validates
Hypothesis 2.

In addition, when more and more user anchors become valid, the system res-
olution is refined because they reduce the grid space between system anchors.
‘This indicates that system administrators can use coarse granularity during the
training-phase, and prompt the user to provide feedback in order to refine the
system resolution. Thus, the training cost is reduced, which validates Hypoth-

esis 1 from another aspect.

Hypothesis 3: The system is robust with respect to malicious user feedback
In real life, helpful and malicious feedback are often mixed together to feed the

model. As such, the phenomena described in Scenario 3 might be rarely ob-
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served. However, Scenario 3 in fact provides the “worst-case”. If the model can
eliminate the negative effect introduced by continuous malicious or unreliable
user feedback, then it is reasonable to deduce that it is robust to malicious user
feedback in more moderate or general cases. According to the experimental

results in Scenario 3, the model is shown to be robust with respect to ma-

licious feedback, quickly recovering to normal performance level with helpful

user feedback. As a result, the last hypothesis is validated.
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Chapter 7

Conclusion and Future Work

7.1 Primary Contributions

Wi-Fi RSS fingerprinting is relatively robust, accurate, and cost-effective in real in-

door environments because it does not depend on specific signal propagation models

or extra positioning infrastructure. However, its system performance s highly depen-
dant upon the claborate training process and future maintenance efforts. Also, in the
positioning phase, random propagation effects of signal propogation introduced by
complex indoor environments may result in large RSS fluctuations or AP loss (ic.
APs which cannot be heard), which could cause anchor points created during the

training phase to be ineffective for the task of positioning. In order to ensure that the

system remains effective, it may be necessary to re-train the system on a somewhat
frequent basis.
These shortcomings not only imply a high system overhead and training cost,

but also vulnerability to environmental alteration. We believe that addressing the
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problems of reducing the training and maintaining cost and increasing the system
robustness are very promising research directions. As such, we set our main research
goal to enhance such a system with a self-learning or self-updating ability. The
information necessary for this process can be derived directly from end users, whereby
they can provide their feedback after they have been presented with the positioning
results. We thus open a channel for end users to access and modify the system in-
built dataset, which enables them to participate in positioning activities via a well-

designed UL We believe that this human-centric collaborative p

itioning mechanism
could effectively facilitate the system learning process.

In this thesis work, the primary contribution s the presentation and evaluation
of a user feedback model which reccives and processes human-centric collaborative
feedback. The proposed user feedback model adjusts systems result via placing a
compensation mask over the likelihood vector (distribution) generated in the posi-
tioning phase. The history of both positive fecdback and negative feedback will affect
the compensation ability of such a mask. In general, positive feedback generates
user anchors and enhance their reliability. On the other hand, negative feedback re-
duces the reliability. All user feedback will be assigned low compensation power when
first created and be enhanced with similar feedback events. We employ exponential

functions to model such an evolution process; the influence of user feedback will in-

crease fastest with the first fow instances, becoming stable once a sufficient number
of feedback events are received. This design allows the system to quickly learn new
information provided by the users, but without this feedback overpowering the model

As such, this user feedback model should be able to gradually update the systems

knowledge and guide the system to learn the changes of Wi-Fi indoor environments.
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Based on these principles, we have built a prototype and conducted experiments
to evaluate it. Experimental results show the ability of the model to improve upon
the positioning accuracy and precision in both regions that have been trained, as well
as in nearby regions that do not include efficient anchors. The model is also shown
to be robust with respect to malicious feedback, quickly recovering based on helpful

user feedback.

7.2 Discussions and Future Work

We also believe that such a feedback model can be further refined and enhanced in
& number of interesting ways. The first is the temporal aspect of user feedback since
different time (morning, noon, and night) of a day or date (weekdays, weekends, and
holidays) could generate different RSS data patterns. For example, in a university
cafeteria, due to the interferences from human bodies and electronic devices, the RSS
measurement generated during dinner time could be very different from that in the
morning. As such, the user feedback generated during dinner time may mislead the

positioning activities during the morning. In order to solve this problem, the model

should take advantage of the timestamp within the RSS fingerprint, limiting the

candidate anchors to those that were created at approximately the same time of the

day. This could increase the accuracy of the system in environments with time-related
changes in human activities. Also, we can introduce a forgetting mechanism which
could remove user feedback from the database. It could be used to address situations
where malicious feedback has been received but subsequent helpful feedback is not

available.
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The second is the way to prompt of user feedback. The system seems to be helpful
if users are frequently asked for feedback. On the other hand, the system will not
evolve if no user feedback is received. It is beneficial for the system to know when and
where to ask for feedback from users. Thus, we need a user prompting mechanism
We want to convey the system status (e.g., positioning uncertainty to users) so that
the users only provide feedback when the system is unreliable.

The third aspect is cross platform validation. In real indoor environments, users

could carry different types of mobile devices. Due to the diversity of manufacture

technologies in wireless network interface cards, the RSS generated by different Wi-
Fi chips could also be different. However, our entire implementation and experiments
are conducted on Apple iPhone and iPod Touch, which indicates its limitation in field
validation. At this point, we argue that the system performance could be improved if
the diversity of Wi-Fi chips in different mobile devices is considered. The most simple
but efficient is approach to create individual fingerprints database for each type of
mobile device. It might improve system performance with high system overhead.
More intelligently, a RSS compensation mechanism can be integrated to automatically
adjust RSS patterns among different mobile devices.

As defined in previous chapters, our system includes many dependent and inde-
pendent parameters. A long-duration study of user involved positioning should be
helpful in order to investigate the effect of different parameters on system perfor-
mance, We could operate the system for a long time (e.g., a year) with a great deal
of users working on a variety of devices. As such, the experimental results of this
long-time evaluation will provide further, real-world validation of our user feedback

model.
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In our implementation of user feedback model, the parameters are adjusted dy-
namically via a pre-specified formula. With the statistical results, we could have the
ability to find a more efficient algorithm to adjust these parameters based on real-time
system performance.

Also, in our previous experiments, we merely consider the worst-case scenario.
However, if we can take the advantage of long-time evaluation, we can study the
phenomenon of mixed user feedback (malicious and knowledgeable user feedback)
and try to find more effective ways to detect malicious feedback

However, if such resources are not available, an alternative is to simulate such

feedback. We can in fact build an add-on experimental positioning engine to simulate

RSS observations and send them to the positioning system. When the positioning s

finished, such an engine can also generate virtual user feedback according to specifical

experimental requirements. As such, the different combinations of parameters in

the model can be conveniently tested without the actual time-consumi

g system
evolution.

As an expectation, we believe that some organizations or companies will devise
specifications for indoor positioning system in the short future. It may start with
developing indoor location-aware services for public indoor environments, such as
airport, subway systems, museum, campus, shopping centres, etc. Travelers may

want to find the nearest coffee shops or ATM machine in a large airport. Customers

arc enabled to manipulate their location-aware shopping list. We can also casily find
their friends or families if they have wandered away from each other in a very crowed
shopping centre. Beside these, many more other potential services can come true with

the development of indoor positioning systems. Such large scale of indoor services
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‘might be provided and end users can conveniently access them via their mobile devices
at hand. If successes can be made in such public areas, other private enterprisers
may be inspired to customize their own indoor location-aware services. By following

existing specifications, high scalability and y can be guaranteed.

With the potential rapid growth of indoor positioning systems, the system main-
tenance could become an issue. At that time, the human-centric indoor positioning
systems will have a very promising foreground in reducing the cost and improving the
service quality. We also believe that more and more researchers will be attracted by
the potential advantages of integrating human-centric collaborative feedback within

the positioning process.
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Appendix A

Appendix

A.1 Index




Index

Absolute location information, 10
Accuracy, 12

Analytical modeling, 64

Angle of Arrive, 10

AP selection, 25

Apple 80211 system calls, 69

Count, 36

Grid space, 34

i08, 65

Log-normal shadowing model, 18
Logical location information, 10
MAC address, 36

Measuring, 64

Negative feedback, 52

Null feedback, 53

Polynomial regression, 20

Positioning phase, 21

Positive feedback, 52

Precision, 12

Received signal strength, 4
Relative location information, 10
Round, 92

RSS fluctuation, 22

RSS mean, 36

RSS variance, 36

RSS vector dimensions, 40

Simulation, 64

System anchor, 38

Time Difference of Arrival, 10

Time of Arrival, 10
timestamp, 36

Training phase, 21

User anchor, 52

User feedback model, 52

User fingerprint, 56
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Weighted mean position, 44
Wi-Fi RSS fingerprinting, 21

Wi

vector, 22

WiFiM: 1 66




A.2 List of Notation

Symbol

Meaning,

P

Random variable, represents the average of
received power

Mean of P,

Variance of P,

The i-th received power in measurement
Least mean absolute error

The i-th received signal strength in dBm
Mean of p, in dBm

Variance of p;

Timestamp

Coefficicnt of i-th degree in polynomial re-
gression

MAC address of i-th access point

Wi-Fi RSS vector

Dimension of RSS vector

2.D Physical coordinates

Voronoi Diagram

Voronoi site

Number of occurrences of access point i
RSS variance of access point i

Wi-Fi RSS fingerprint

18



Variance of the Wi-Fi RSS fingerprint

Similarity of two Wi-Fi RSS fingerprints
System anchor

‘The physical coordinates of system anchor
Wi-Fi RSS fingerprint of system anchor
Eulidean distance from anchor point i to j
Likelihood of anchor i

Likelihood vector

User anchor

Physical coordinates of user anchor

Wi-Fi RSS fingerprint of user anchor
Positive user feedback compensating factor,
o=

Independent variable accumulating via simi-
lar user feedback

Current Wi-Fi scan times

Wi-Fi scan times used in system training

phase
Increment derives from o similar user foed-
back

Parameter adjusting the initial and maxi-

mum value of a
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b Parameter adjusting the increasing velocity

of z

8 Negative user feedback compensating factor,
B=e"

I Compensated likelihood of anchor i

A.3 System Class Diagrams
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Figure A.1: Class diagram, Systen Foundation
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Figure A.2: Class diagram, Training
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Figure A 3: Class diagram, Wi-Fi
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Figure Ad: Class diagram, the Positioning Estimation and User Feedback
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