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Abstract

In some real life time series, especially in financial time series, the variance of the re-

sponses over time appear to be non-stationary. The changes in the variances of such

data are usually modeled through a dynamic relationship among these variances, and

subsequently the responses are modeled in terms of the non-stationary variances. This

type of time series model s referred to as the stochastic volatility model. However, ob-

taining the consistent and efficient estimators for the parameters of such a model has
been proven to be difficult. Among the existing estimation approaches, the so-called
generalized method of moments (GMM) and the quasi-maximum likelihood (QML)

estimation techniques are widely used. In this thesis, we introduce a simpler method

of moments (SMM), which, unlike the existing GMM approach, does not require an
arbitrarily large number of unbiased moment functions to construct moment estimat-
ing equations for the parameters involved. We also demonstrate numerically that

the proposed SMM approach is asymptotically more efficient than the existing QML

elihood

approach. We also provide another simpler ‘working' generalized quasi




(WGQL) approach which is similar but different than the SMM approach. Further-

more, the small and large sample behavior of the SMM and WGQL approaches are
examined through a simulation study. The effect of the SMM estimation approach is
also examined for kurtosis estimation.

In volatility models mentioned above, the responses are assumed to be uncorre-

lated. However, in some situations, it may happen that the responses become influ-

enced by certain time depend ates, and as opposed to tochasti
volatility models, the responses become correlated. In the later part of thesis, we in-
troduce an observation-driven dynamic (ODD) regression model with non-stationary
error variances, these variances being modeled as in the standard stochastic volatil-
ity models. We refer to such a model as the observation driven dynamic-dynamic
(dynamic?) (ODDD) volatility model. The parameters of this wider model are es-
timated by using a hybrid estimation technique by combining the GQL and SMM

approaches.
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Chapter 1

Introduction

The analysis of Gaussian time series data with non-stationary means and a suitable
correlation structure has a long history both in statistics and econometrics litera-
ture. See for example, Box-Jenkins (1994) and Harvey (1989). In a financial time
series analysis, it was, however, observed by (Black and Scholes (1972, p.416)) that

the variances in stock returns and/or exchange rate data may change over various

time intervals. In their concluding remarks, these authors, therefore, emphasized on

research in this direction. Note that the modelling of this type of non-stationary vari-

ances based time series data is done cither by using a suitable dynamic relationship

for the variance at a given interval with the va e intervals;

nces from the past ti

or by using a suitable dynamic relationship for the variance at a given time inter-

val with the past squared observations. The former model is generally referred to




as the stochastic volatility (SV) and the later model is known as the autoregressive

conditional heteroscedastic (ARCH) model. When the variance at a given time point
satisfies a relationship with past variances as well as past squared observations, the
model is referred to as the GARCH (Generalized ARCH) model. Since the pioncering
work of the nobel laureate Engle (1982) [see also Engle and Kraft (1983), Engle et.al
(1985), Engle and Bollerslev (1986), Bollerslev et.al (1992), Engle and Kroner (1995),
Engle (2004)], the aforementioned models have been widely applied in the economet-
ric literature, For example, we refer to Taylor (1982), Anderson and Sorensen (1996),
Harvey ct.al (1994), Ruiz (1994), Taylor (1994), Durbin and Koopman (2000), Broto
and Ruiz (2004) Bollerslev (1986), Engle and Gonzalez-Rivera (1991) for the appli-
cation of SV, ARCH and GARCH models.

As far as inferences in the SV, ARCH and GARCH models are concerned, the
aforementioned papers including the papers by Bodurtha and Mark (1991), Simon
(1989) use the so-called generalized method of moments (GMM) and/or quasi- max-
imumlikelibood (QML) approaches. These approaches are however numerically cum-
bersome and also they may not be efficient as compared to certain simpler approaches.
In Chapter 2, we provide some simpler and efficient approaches for the estimation of
the parameters of the SV model. However, before developing the new approaches, we,
for convenience, explain the existing inferences such as GMM and QML techniques in

Section 1.2.1 and 1.2.2 respectively. In Section 1.1, we present the existing SV model




along with its basic properties. The ARCH model is also discussed in brief in the

same section.

1.1 Existing Volatility Models

111 Stochastic Volatility (SV) Model

Let g, be the response at time t (t

...T). Suppose that o? denotes a random and
unobserved variance of y.. If o? were, however, known, then it is referred to as the

conditional variance of y, i.e, Var(¥;|o¢) = of. Note that the conditional Gaussian

time series data {y;} with mean zero and variance {o?} may be modelled as

wo=oea t=1.. (1.1)
[Taylor (1982), for example] where error variables ¢ are independently and identi-
cally (iid) normally distributed with mean zero and variance 1, that is, ¢ % N(0,1).
Also, ¢ and o are assumed to be independent. Since o7 is unknown and it is reason-
able to assume that the correlations between o7's may decay as time lag increases,
Taylor (1982), Anderson and Sorensen (1996) among others, have used Gaussian

AR(1) type process to model the variances. That is,

In(o?) = he =0 +M heey + 15 t (12)
where 7 is the intercept parameter, 7 is the volatility persistence parameter and

n " N(0,02) with o7 as the measure of uncertainty about future volatility. Note




that if [1] < L, then A's follow a stationary AR(1) process. In (1.2), similar to Lee

and Koopman (2004, eqn (1.1¢)) it is reasonable to assume that

2
n(e?) = by N (o f"m)) 3)

Without any loss of generality we will use this stationarity assumptions all through

out in the thesis,

1.1.1.1 Basic Properties of Stochastic Volatility Model:
(a) Asymptotic Mean, Variance and Covariance in {Y}
Since h; follows the AR(1) process (1.2), it may be shown that the unconditional

mean of g is zero by (L.1). That is,

E[Y)] = E,E[Yi|o]=EloEle]] = (1.4)

as o7 and ¢, are independent. Next, the unconditional variance of y;, i.e., Var(Y;), we
write
Var(Y) = Eg[Var(¥i|o)] + Varg [E(Yio?)]
= Eylo} Var(e)] = Elof). (15)
Since hy has the AR(1) relationship as in (1.2), it is clear that for [1| < 1, b = logo?

has the asymptotic mean and variance given by

lim E[h] and Jlim Var[h] =




respectively [see also Harvey, 1994, p.249, Jacquier, 1994, p.386 and Anderson and
Sorenson, 1996, p.331]. Now, as o7 = exp(hy), where h follows the normal distribu-
tion by (1.2), by using the moment generating function of hy, we obtain the asymptotic

variance of y; as
Jim Var(¥;) = Jim Elo?] = exp(un+ 4) = *(say). (17

[see also Tsay, 2005, p.134, Mills, 1999, p.127, Jacquier, 1994, p.386, and Anderson
and Sorenson, 1996, p.331]. Next, by using the definition of the covariance, the lag k

(k=1,...., t-1) unconditional covariance between ¥, and ¥, may be computed as

Cov(Yin i) = E[(Yiek = EMi-)(Ye = E[Yi])] = E[YerYi] = EYies] BV

0,

(1.8)

= Eloi-soie-rel] = Blow-soi Eler-se]

id

as E[Y;] = 0; 0, and ¢ are independent; and also ¢ % N(0,1).

(b) Asymptotic Mean, Variance and Covariance in {V?}.

Note that the mean, variance and covariance of {y} are given by (1.4), (L.5) and
(18), respectively. However, as one is interested to fit the SV model (L1) - (1.2) to
the data, it is important to estimate the parameters 70,7 and of involved in (1.2).
Consequently, it is natural that these parameters be estimated by using {¥?} rather

than {¥;}. The unconditional mean of Y7 is

Jim B = Jim Var{yi] = exp(u + 2



which is given by (1.7). Next, because E[e}] = 3, in the fashion simi

(1.7), we compute the limiting variance of ¥;? by using
(4 g

Ji Varly?] = [BIV) = (B0 = Jim B Elotlio]

= 3exp [z,x,. +207]
= exp 2w+ o] [Z(L'xp () - 1], (1.10)

[see also Tsay,2005, p.134, Mills, 1999, p.128, Jacquier, 1994, p.386 and Anderson and

iting lag k (k=1,...,t-1) covariance

Sorenson, 1996, p.331]. Next, by definition, the

between the squared responses Y2, and Y is given by
P e and Y is g

i Cov(V24, YD) = fm [EIOVZ4 = EIVZADO? - VD] = Jim EIY2,02)

= Jim Elo} yotelyef) = 6* = lim Elof_of] - &* (1.11)

Next, by using the dynamic relationship (1.2) and the moment generating function,
we obtain,

)
Jim Blo? o] = exp[ il +‘vf))] = oxp[?m a1+
7

(1.12)

etal,

[see also Mills, 1999, p.128, Anderson and Sorenson 1996, p.331 and Jacqui

1994, p. 387]. It then follows from (1.11) and (1.12) that

(1.13)

i CovV2,¥) = expamn + o [czn o) -



see also Mills, 1999, p.128, Anderson and Sorenson 1996, p.331 and Jacquire et.al,
1994, p. 387. Consequently, by applying (1.10) and (1.13), one obtains the asymptotic

lag k (k t-1) correlation between the squared responses Y2, and ¥7 as

. ) Cov[V2,. Y2
I con2 7] = i [ R
cxp(apn + o) (cap oted] =1)  (exn [shet] -1)

eap[2 un+of] Beap(od) — 1]~ Beaplod) —1]
(1.14)

Note that, the numerator in (1.14) lies between 0 to oo and the denominator lies
between 2 to co. Hence, the asymptotic lag k correlation between ¥;2; and ¥;? is

bounded between zero to 1. That is,

0< lim Corr[Y2,, Y] < 1

Asymptotic Kurtosis:

Note that it is standard to use the kurtosis to explain the volatility in the data. By
definition, the limiting (¢ — o0) kurtosis under the SV model has the formula given
by

‘ E[Y,!
Jim w(Y) = Jim (E[[Yf])2

.
- ,'L“;ﬁ —3explod) >3,  (L15)

[see also Harvey 1994, p.249, Mills, 1999, p.128]. Hence, the volatility model (1.2)

produces larger kurtosis when compared to the Gaussian kurtosis. Also, the peak



appears to depend on the volatility parameter values 3; and o2 (see also 1.15). Thus,

it is essential to estimate the model (1.2) parameters, namely v, and o consistently

and efficiently.

1.1.2 ARCH/GARCH Models

As opposed to the above model, in 1982, Engle suggested an observation driven model,
that is, ARCH model, to study the time varying observed variances. In the ARCH
‘model, the conditional variance of the time series {y,} is a deterministic function of

lagged values of the squared observations [Engle, 1982]. That is,

af =ao+ iyl +oo oy,

(116)

Further, Bollerslev (1986) generalized the ARCH model, by expressing the conditional
variance as a function of lagged squared observations and lagged variances. That is,

0 = gtk F.. i, RO+ Bl W

which is referred to as the generalized ARCH (GARCH) model.
However, in the thesis, we concentrate only on the SV model (L.1) - (1.2) and a
generalization to be discussed in Chapter 4. Thus, there will be no further discussion

of the ARCH/GARCH models.



We now turn back to the SV model and briefly discuss two widely used techniques

for the estimation of the parameters (3 and o2) of this SV model

1.2 Two Existing Estimation Methods for SV Model

There exist many approaches for the estimation of the volatility parameters namely,
0.7 and o2, involved in the SV model (1.2). For example, we refer to the (1)
generalized method of moments (GMM) [Melino and Turnbull, 1990, Anderson and
Sorenson 1996], (2) Quasi maximum likelihood (QML) [Harvey et.al 1994, Ruiz, 1994],
(3) simulation-based maximum likelihood (SML)[Danielsson 1994 and Danielsson and

Richard 1993], and (4) Bayesian Markov chain Monte Carlo (MCMC) analysis ap-

proach [Jacquier et.al 1994)]. Since the GMM and QML approaches are compu-
tationally less cumbersome as compared to the SML and MCMC approaches, they
have been widely used over the last three decades, especially in a large time series set
up. For recent discussion on these two methods, we for example, refer to Anderson
and Sorenson (1997) and Ruiz (1997). For convenience, these two approaches are

presented in brief in the following two sections.

121 G lized Method of (GMM)

The GMM approach (Hansen (1982)) utilizes a large number of unbiased moment

functions of the absolute and/or squared responses. More specifically, Anderson and



Sorensen (1996, p. 350-351) have used 34 unbiased moment functions (see also An-
derson and Sorensen (1997)) to construct the GMM estimating equations mainly for
1 and o2 parameters. These 34 moment functions are given as

9= lul = Elul, 92 =9} = Elyi), 9 = Iwf* = Eluel*,

gu=bt =Bl guan = et = Byt g = i — Blufviol,

geavrt = vt = Ellulyi-d +10 (1.18)

and they are used to construct the GMM estimating equation for a* = (70, %,0%)"

as given by

=0 (119)
where
1.Z "
gla®) = fzgl(a') with  gi(a*) = [ga(a”),... gas(a’)],  (1.20)
and aga:f ) i the 3 x 34 first derivative matrix, and A s the 34 x 34 weight matrix

with A = Cou(g(a*)) as an optimal choice. Later on, Anderson and Sorensen (1997,
section 3, p.399-400) have used 24 unbiased moment functions out of 34 functions

shown in (1.18). Their 24 functions are:

go=lul-Elul,  ga=v-EWl  90=ul - Elwl’  gu=ul-El]

i = Bl U=100

vt = yeei| = Blyye-tl, G =



It should be clear from (1.18) and (1.21) that there is no guidelines available how
the moment functions such as 34 functions in (1.18) and 24 functions in (1.21) were
chosen, when in fact, one can think of infinite number of such functions (Melino and
Turnbull (1990, p. 250)). This raises a concern about such an estimation procedure

where an arbitrary large number of functions are needed to estimate a small number

of parameters.

. since ion of the moment functions gy (j \240r34)
requires the computation of expectation of different functions which may not be easy
to simplify, and because the computation of the weight matrix A can be compli-
cated, the GMM approach on the whole becomes very cumbersome. We, therefore,

do not include this approach for the comparison with our proposed approaches that

we discuss in Chapter 2.

1.2.2  Existing Quasi Maximum Likelihood (QML)

As an alternative to the GMM approach, there also exist a QML (Quasi maximum
likelihood) approach for the estimation of the parameters of the SV model (1.1) -
(1.2). For example, we refer to [Nelson(1988), Ruiz (1994), Harvey et.al (1994), and
Mills (1999, p.130-131)]. This QML method is developed first by formulating a quasi
(pseudo) likelihood (QL) based on normal approximation to the log chi-square dis-
d

tribution of u, = loge? — Efloge?], where ¢ “ N(0,1), and then maximizing this



quasi-likelihood with respect to the desired parameters. Note that this QL abbrevia-
tion may confuse the QL used in the generalized linear model (GLM) set up, where
QL is constructed by using the first two moments of the data. Due to this approxi-
mation the QML approach is supposed to lose efficiency [Broto and Ruiz (2004)] in
estimating the parameters. This approach is, however, not so cumbersome as com-
pared to the GMM approach.

We now present the QML approach in brief. For this purpose, we re- express the
model (1.1) as

z=logy? = loga? +logel
= Ellogel] +loga? +u,

= K +logo? +u t=1,..,T, (1.22)

where ¢ N(0,1) and s, = ~1.27. Further, u; follows the log chi-square distribution
with mean zero and variance &, = 72/2 | Abramovitz and Stegun (1970, p. 943)). It

then follows that the exact likelihood function for 7, and o2 is given by
r
96z - s = Ino?)

o tal

Lim,oala, 2, - oy2r) = L
T
S [1 f(oflotr) do} ..ot (1.23)
=
where g(u;) represents the log x2(0, k) distribution.

It is, however, clear from (1.23) that the integration over the random variances

o%.....0% is complex mainly because they follow the dynamic relaitonship (1.2).




Some authors have used an alternative ‘working' ML approach, namely, a quasi-

‘maximum likelihood (QML) approach. See, for example, Nelson(1988), Harvey et.al
(1994), Ruiz (1994), Koopman et al (1995, chapter 7.5) and Mills (1999, p 130-131)
Specially, to approximate the exact likelihood function in (1.23), Ruiz (1994) and
Harvey ct.al (1994), for example, have approximated the distribution by pretending
that z = (21,2, - - . +27)' follows a quasi-multivariate normal distribution. This
leads to a quasi-likelihood, which is maximized to obtain the QML estimates for 1
and o2, This approach is computationally feasible for the estimation of the required
parameters, specially as compared to the GMM approach. For this reason, we will
include the QML approach for asymptotic variance comparison with our proposed

estimates. This comparison will be done in Chapter 3.

1.3 Objective of The Thesis

Even though the volatility models are very important to study the dynamic changes
in variances in a time series, and also these models are widely used, there is no
user friendly (simple) estimation techniques available for the inferences in stochastic

volatility model. This is because, as explained in Sections 1.2.1 and 1.2.2, the exist-

ing GMM approach is arbitrary and cumbersome, whereas the QML approach may

not be efficient (as compared to other simpler approaches) even if it is known to be



feasible computationally.

One of the main objectives of the thesis is to develop a simpler and efficient esti-
mation approach, specially as compared to the QML approach, given that the GMM
approach is very cumbersome and hence it is not practical. Furthermore, there are
many situations where it may be appropriate to consider correlated observations con-
ditional on the variances whereas in the SV model (1.1)-(1.2), the responses {y} are
uncorrelated conditional on {o}. In non-volatility set up, this type of correlation
models for observations (dynamic model) has been discussed by some authors. For
example, we refer to Bun and Carree (2005), and Rao, Sutradhar and Pandit (2010)
in the longitudinal set up. In the thesis, we consider this type of dynamic model for
time series observations, as apposed to the longitudinal observations, conditional on

the heteroscedastic errors of the series

In Chapter 2, we propose two new simpler estimation approaches as compared
to the existing approaches. These new approaches are developed by using only few
appropriately selected unbiased moment functions, and they will be referred to as the
simple method of moments (SMM) and ‘working’ generalized quasilikelihood (WGQL)
approaches. It is argued that as opposed to the existing GMM approach using ar-
bitrarily selected 24 or 34 unbiased moment functions, for example, it is enough to

consider only 2 or 3 unbiased moments to construct the proposed SMM and WGQL




estimating equations. However, the important task is to find the best way to solve the

estimating equations to be constructed by using these few moment functions. The
construction of the SMM approach both for finite and asymptotic cases is discussed
in details. However, for the WGQL approach, we provide the construction in details
for the finite case only. The construction for the asymptotic case can be done cas-
ily. Numerical algorithms are also provided to make these approaches user friendly.
To examine the asymptotic behavior of the proposed SMM and WGQL approaches,
in this chapter, we provide an asymptotic efficiency comparison between these two
approaches. Furthermore, since the existing QML approaches is computationally
‘manageable, we have included this approach in our asymptotic efficiency comparison.

Based on the numerical algorithm developed in Chapter 2, in Chapter 3, we con-
duct a simulation study, first to examine the finite sample performances of the pro-
posed SMM and WGQL approaches. Next, we continue the simulation study to ex-
amine their large sample performances. For this purpose, we provide both simulated
‘mean and standard errors of the proposed estimators. Note that these large sample
based simulated standard errors are comparable with the standard errors reported in
Chapter 2. In same chapter, the effects of estimation of the volatility parameters on
the kurtosis are examined for small as well as moderately large time series.

In Chapter 4, we extend the SV model in (1.1)-(1.2) to an observation driven



dynamic model set up. This extended model, unlike the SV model, can accommo-

date correlated responses conditional on the non-stationary variances of the series.

For simplicity, we will however, consider the lag 1 conditional dependence among the
observations conditional on the variances. This generalized model will be referred
to as the observation-driven dynamic dynamic (ODDD) volatility model. The pro-
posed SMM approach will be used to estimate the parameters of this ODDD volatility
model, whereas the regression effects and dynamic dependence parameter will be es-

timated through a generalized quasi-likelihood (GQL) approach.

The thesis is concluded in Chapter 5, with some remarks on possible future works

in related areas.



Chapter 2

Proposed Estimation Technique in

Stochastic Volatility Models

Note that because of the importance of volatility model (1.1)-(1.2), there has been
an enormous effort, in the past to obtain consistent and efficient estimates of the
parameters of this model. As mentioned in the last chapter, we refer to the GMM.

QML, SML and MCMC methods for the estimation of the parameters involved in
the SV model. Note however that among all these approaches, the GMM and QML
approaches are still widely followed in practice even though these approaches are ei-
ther complex and arbitrary. Also, there is no guarantee that one method will be more
efficient than the other (sce for example, Anderson and Sorensen (1997, Sections 4-5).

Ruiz (1997)). The relative performance of the GMM and QML approaches is given



mainly because of the fact that other approaches are either computationally more
involved or less efficient than these approaches,

Since the GMM and QML approaches are still considered to be complicated, in
this chapter we investigate for any possible simpler estimation approaches. More
specifically, in Section 2.1 we develop a moment technique which, unlike the GMM
approach, uses only two unbiased moment functions to construct the estimating equa-
tions for two important volatility parameters of the SV model. As mentioned earlier,
we refer to this method as the SMM (Simple Method of Moments) approach. In Sec-
tion 2.2, we provide a similar but different approach, namely, a ‘working’ generalized
quasilikelihood (WGQL) approach. In Section 2.4, we compute the asymptotic vari-
ances of these SMM and WGQL estimators, which are, subsequently, used in Section
25 for a numerical comparison. Also the variances of the estimators are compared
with the modified QML approach. Note that the GMM approach will not be consid-
ered for comparison, as it was indicated in (1.18)-(1.19) that it uses arbitrarily large

number of moment functions, which is not user friendly.

2.1 A Simple Method of Moments (SMM)

For simplicity, similar to Ruiz (1994), Anderson and Sorenson (1997) and Broto and

Ruiz (2004), we choose 7 = 0 under the volatility model (1.2). Similarly, even

2
though Ino? under the SV model, (1.2) s supposed to be a random N(ﬂ, 1—"‘3)
-



variable, for convenience, one may choose a small value for oF such that Inof — 0.
Now, for the construction of the moment estimating equations for the main parame-
ters, namely 7 and o2, we choose only two unbiased moment functions as shown in

Section 2.1.1. A justification for selecting two such moment functions is also outlined.

2.1.1 Unbiased Moment Estimating Equations for 7, and o?
in Finite Time Series

2.1.1.1 Selection of Moment Function for Estimating d:

Note that it follows from the model (1.1) - (1.2) that if he = loga? were following a

white noise series with mean 0 and variance o2, that is E[o?] = Var(¥;) = h*(a}), a

suitable constant function of o2, then one would have estimated h*(c}) consistently

T
by using S; = %Z[m — E(Y,)]* . This is because

T
E[S)] = %Zw:(m:n-(,g) (2.1)
=

1z

Note that as E[Y] = 0 [see also 1.4], S, has the simple form as S, = 7 "4} However,
=

under the present model, o¥'s are unobservable and their log values satisfy a non

i

stationary Gaussian AR(1) type relationship given by (1.2), with errors 7 * N (0.03)

This leads to the expectation of S, as a function of both 11 and o2, instead of h*(a3).



Suppose that
E[S)] = ailn,0}0}), (2.2)

for a suitable known function'g,’. We evaluate this gy(.) function in Theorem 2.1.1
below.

Note that between y; and o2 involved in gi(.), 7 is known to be a bounded
parameter. That is, 7| < 1. This assumption makes the AR(1) process for In? = hy
to be stationary. But, unlike 71, 02 > 0 can take any value in the real line [0,00].

However, since E[S)] = h*(0?) in the white noise case, we suggest to exploit Sy

2

for the construction of the estimating equation for 2, even if the series is not white

noise. This is because, the desired es

mating equation should also be valid for the
white noise case. Thus S; — g1(.) would be considered as the best possible unbiased
moment function for the estimation of o2 That is, we solve the SMM estimating
equation

Si—gin,0d0l) = 0, (23)
for 02, by using a suitable value for 3 such that |y < 1. We now return to the
derivation of gy(.) as in the following theorem, before we provide the selection for the
unbiased moment function for the other parameter 7;.

Theorem 2.1.1. The unconditional expectation for S is given by

2 CARE G AN



aln,0,03)

. g
[a3+2czp(wf"lnuf+7"2‘vf')] (@4)
£

Proof. Since S; =

7
3" 2. we write its unconditional expectation as
=

BiS] = Eg, Bl Z Yelof] = B EVE + Zv% |

Eotry

[E, EIYflo) + B, E[ZY“\a ]

- e E[s,a,\afh—z By Bl

- [Eq[af] + l)::] Bulot]). (25)

with 0%y = (0%,....,3). where Ey denotes the model based expectation, where the
assumed model for o? is given by (1.2). Now for a known value of o7 = o such that
Ing? — 0, we rewrite the expectation in (2.5) as
B = Geu LS B 20
T T
We now derive Ey[o?] for (26). First by using the recurrence relationship from the
equation (1.2), we write the general form for o? as
o = e.’rp(« Unady+ 27+ 2 m o e +m)
- azp(ﬁf-‘lnafﬂ+£ ﬂmwy) t=2,...,T. @7
=

id

Next, since 1 % N(0,02), by using normal moment generating function E(e™) =



exp(0?/2), it follows from (2.7) that Eylo?]

s given by

= 1, r
o] = en(i oty 3 b 5 o)

o)

Now by using Ey[0?] from (2.8) in (2.5), we obtain E[S)] = g1(.) as in the theorem.

)
= ep(of o+ F { T @8

o

value for

Note that even if 7, is known, the solution of (2.3) requires a good ini
2, which we suggest to obtain by solving an asymptotic unbiased estimating equation
whereas the estimating equation in (2:3) is valid for any t > 2. Note that for ¢ = 00,

Im[*™" = 0 as | < 1. It then follows that
Jlim EY?) = Jim Ex(of]
a1
- 3 (7))
= gioln ) (2.9)

We now want to construct an unbiased moment function as a reflection of the limiting
property shown in (2.9). For this, one can find a Ty such that for any t > T, 7{™" = 0

for || < 1 and write a basic statistic as

S0 = L 3 g2 (2.10)
R A )

n the theorem.

1
a5 a modification to the formula for §, = 7 3~ i used
=



It then follows that

To%0 =%

P
lim E[Sy) = T%Tu Y lim B2
=

= Plﬂ[%ﬁ(ﬁ)] = gu(n,3). (211)

‘This asymptotic expectation is quite simple for the derivation of an initial value for
2, for an initial value of 7; = ,(0). For 71 =7(0), let 62(0) be the solution of
Si0 = guo(n.07) = 0. (2.12)
That is
3(0) = 2InSi(1 - 1}(0)) (213)
2.1.1.2 Selection of Moment Function for Estimating
Next, to construct an unbiased estimating equation for 4, we first observe that
is the lag 1 dependence parameter in the Gaussian AR(1) model (1.2). We therefore,
s
choose a lag 1 based function given by Sy = 7— " 42157 to construct the moment
-1
equation for 7. Suppose that the expectation of S, as a function of both 7, and o2
is denoted by ga(71.02,0%). One may then solve the SMM estimating equation for
1 given by
S - ga(n,0m0%) = 0, (2.14)

for known value of a2 = 0(0). We now derive the formula for ga(, 02, %) which is

given in Theorem 2.1.2 below.




Theorem 2.1.2. The unconditional expected value of Sy is
E[S)] = ga(n0p,0%)

where

1 o2
.ol = T_![n;‘, m(m nd, +2)
I. o =
+ S emp(st Inoly +2f 7oy + 247 T+ 1))]
e =0

(2.15)

T
"y wf, we write its unconditional expectation as
=1

|z :
e St ot o] = g, B[ + Xl aof]

Ezt, Elvivdlolod] + Eny E[Zm 1ilot0f l]

ot tr

77 | Bty Eleleiotodiot ]+2 ,W,E[f?,,r,’ﬂ?,m\ﬂ. m]]

fl[sla o+ 3 Blrtael] = g [roBud)+ 5 Eulo ]

ot [crp(*u Inoh+ ?")]

T ” =

+ 3 erp(of oty + ot oy + 2+ Tt 1))]-
&

o2, [up('v, |uufn+?2§)] -vg,,(‘n.a:)l (say). (2.16)

with o?, = (03,...,03).

Note that the derivation for Ey[o?,07], the expectation of the pairwise products of




o2, and o7 is lengthy but straightforward. For convenience, we provide the deriva-
tion for Eyo?_,0?] in Appendix A. For convenience, we, re-write the formula for

Eyo?.,0?) from the appendix. The formula is:

Eulotiof) = em(2i ok +i nody + 24+ ) T2 +1})
(217)
o
Note that, in the above discussion, we have given a justification for the selection

of two unbiased moment functions in (2.3) and (214) for the estimation of o3 and

1 respectively. We have also indicated that a good initial value of o2 = 0(0) can
be computed from the asymptotic moment equation for o2 given in (2.13). To make
this estimation approach user friendly, we now give a numerical algorithm for solving

(2.3) and (2.14) for 62 and 3, respectively, by using the initial value of o3(0) obtained

from (213).

Algorithm

Step 1: For a small initial value 7, = 7(0) and a? = o%, we choose 52(0), an initial

value of o2 by (2.13).
Step 2: Once the initial values are choosen/computed as in Step 1, we solve Sy —

ga(m.02,0%) = 0 by (2.14) iteratively to obtain an improved value for 1. The




iterative equation has the form

aean) = a0+ (RN 5 pinaiety)] @19

where 7,(r) is a value of 7 at r** iteration, and [Js,(, is the value of the expres-

sion in the squared bracket evaluated at % = 4y(r). By following the formula for

Boalm. o o2
92, 02,0%) from (2.15), the derivative of 092(1,9,9%0) ;. (5 18) has the formula

given by
oo, 03, 0%} 1 9
e = Til[ﬂ?nerﬂ ol +5) n

T 2 =
+(Lean (7#"1M§n+7§”lnﬂx’n+ PP T+ 1))
= =1
(=t + (=22 noy
% SX 2§20 @1

+5{20+m) YA+ +m)? ) ))] (2.19)

=1 =
Step 3: The estimate of 7, obtained from Step 2 s then used to solve 5, ~g, (11,02, 0%) =

0in (2.3) iteratively to obtain an improvement over 02(0) . The iterative equation

has the form

Br+1) = ﬁ:lr)+[(a i )“‘(s,—g.(w..a?,.afﬁ))]m (2.20)

where o3(r) is the value of o2 at r** iteration, and []s3(,) is the value of the expres-
sion in the square bracket evaluated at o = 62(r). By following the formula for

00,02, 7%)
91(11.02,0%) from (2.4), the derivative orm in (2:20) has the formula




given by

f[Zerpw 'lnvm+4):v") )] e

This 3 steps cycle of iteration continues until convergence. Let the final estimates

obtained from (2.18 ) and (2.20) be denoted by 41.s; and 63 g, respectively.

2.1.2 Moment Estimation in Large Time Series

In this case we provide the estimating formulas for 7, and 2 by using {y} for
t > Ty, where Ty is sufficiently large and || < 1 leading 74~ 0. For this purpose,

02 = 6(0) is still evaluated from (2.13) by solving Su = gio(-) = 0 (2.12) where

1 Z
Su=g=7; l:)T;“m
By the same token, we now consider Sy = m‘ ; ,y, 1v# and solve the
estimating equation
S0 = g(m.03) = 0. (2.22)

for y1, where

1

gn(n,0;) = Jim ElSu] = TrTnfl,_,t fi B YY)
. )f Jim Ewlo?.10f)
T-To- 1.5t~

where the formula of Ey[o?.,0?]is given in (2.17).




Algorithm for T — 0

As far as the algorithm for this large T case is concerned, we summarize it as follows.

Step 1: For a small initial value 71 = 7(0) and o = o}, we choose 7}(0), as an
o (d

ial value of o2 by (2.13)
Step 2: Once the initial values are choosen/computed as in Step 1, we solve (2.22)
for 4 iteratively to obtain an improved value for 5. The iterative equation has the

form
(r+1) = -‘v,(rb*[m—’—‘“]-’[szrm]
= 30+ e Pm)(ﬁ%)]"[sm—m]m (20

where 4,(r) is a value of 7, at ™" iteration, and [J5,(r) is the value of the expression

in the square bracket evaluated at 3 = 4)(r)
Step 3: We use improved 7, from (2.24) in Step 2 and solve (2.13) to obtain an
improved asymptotic estimate for o3.

This cycles of iteration continues until convergence.




2.2 A Generalized Quasi Likelihood (GQL) Method
in Finite Time Series

In Section 2.1, we proposed a user friendly simple method of moment (SMM) approach
1o estimate the volatility parameters for both finite and large time series cases. How-
ever, there exists a relatively new, namely, the generalized quasilikelihood (GQL)
approach [Sutradhar (2004), Mallick and Sutradhar (2008)] that yields efficient esti-
mates. In Section 2.2.1 and 2.2.2 we show how to construct this GQL approach for
2 and ~ respectively. Note that even though we provide the theoretical formulas
for the covariance matrix involved in the GQL estimating equations, it can however
be very time consuming to compute the inverse of such covariance matrices, needed
for solving the GQL estimating equations. To avoid this numerical complexity, we
provide some approximations to the construction of covariance matrices involved in
the equations. This will naturally yield approximate GQL estimates for the parame-
ters. For convenience we refer to this approximate GQL approach as a ‘working’ GQL
(WGQL) approach, and provide the estimating equations for o2 and ~ in Section

23.1 and in Section 2.3.2, respectively.



2.2.1 GQL Estimating Equation for o7

Note that in Section 2.1, 7, y? was equated to its expectation to construct an un-
biased moment estimating equation in the SMM approach. In the GQL approach,
the same squared responses are used but in a different way. To be specific, in this
approach, a quadratic form in the distances of the squared responses and their ex-

pectation, is minimized with respect to the desired parameters. Let

w= (vl (2.25)

with its unconditional expectation as
A=E[U] =My dn Al (2.26)
Further, let & be the covariance matrix of u. In this GQL approach, the quadratic
distance function, namely
Q = (u-NT'(u-1) (2.27)
is minimized with respect to 02, to obtain the estimating equation for this parameter.
To be specific, the GQL estimating equation for o2 is given by
N
-, - = 28)
- = 0 (228)
[Sutradhar (2004), Mallick and Sutradhar (2008)) where 07 is the derivative of A
with respect to (w.r.t) o3,

For (2.28), we now provide the formulas for A and ¥ as in the following two theorems.




Theorem 2.2.1. For knoun o? = 0%, the elements of the unconditional expectation

X are given by

oty fort=1
M=EY)] =

Proof. Note that

M = EY{) = Enloi] = oo,

by assumption that of is known.

Now, for t=2,....T, we write
M=ElY] = Eloie].
Since o? and € are independent and ¢, * N(0,1), one obtains

M= ElofEld] = Ewlof].

The formula for Ey[o7] for t=2,

22
exp|i- no, + "—;):wf'] fort=2,...,T.
=

.., T is given by (2.8). Hence the theorem.

(2.29)

(2:30)

(231)

Theorem 2.2.2. Let the diagonal elements of ¥ be oy, = Var(Y?) and the lag k off

diagonal elements be 0,k = Cov(V2y, Y2). The formulas for the variances are given

30— N Jort =1

[2-,:" Inody + 20243 -vm] - fort=2,.




-1 and t=2,..., T, the lag k covariances have the formulas as
Tode =Mk fort—k=1,
pr[w.’" Inody + 21 Inody

ok = CorlV 2 ) =
e )] - deah

o .
+2(a+aty >

fort=2,....T.
(2.33)
where X, is given by (2.29)
Proof. To obtain oy, we write
2
ou=VayZ) = B - (BD) = Eidol) -
= 3Eumlof]-N fort=1,...T. (2.34)
This is because E[ef] Note that for t=1, oy, = Var[Y] = 30, - . For
| t=2,...,T, recall from (2.7), that
-2
ot = exp(of oty + 3 2 men)
=
By some algebra, we can write
2
o = up(?ﬂ"lxmﬁ,+? L% «;m,,,,). (2.35)

with 02 = 0%. Next, since 7 “¢ N(0,02), by using normal moment generating
i =oh s by

function E(e™) = ezp(02/2), it follows from (2:35) that Ey|o

is given by

Eulot] = exp(20f oy +203 3 o7 T (236)



Now by using Ex[o{] from (2.36) in (2:34), we obtain the Var(¥2) = oy as in theo-
rem,

Next, the derive the lag k =1,...,t-1 and t=2,...,T, unconditional covariance be-

tween Y2, and Y2, We write

Cov(Y2,,¥2) = E[Y2,Y7 - E[Y2JEY?]
= Elolofelel s = Mihe

= Euloi_ ol Elei_iel] = M-khe

= Emlo}407] - Mre (2.37)

with & ¢ N(0,1) and € and o? are independent. Note that the derivation for
Elo? 0] is lengthy, which is given in appendix A. For convenience, here we re-write

the formula for Ey[o?407) from the appendix. The formula is

Eulotiof] = ap(,{‘fﬂr' Inad +{ o,
o e
[Hw. > o +)ZW.']) 239)

with E[o}03] = o}y Ao, where Ay is computed from (2.29). Now by using this formula.
from (2.38) into (2.37), we obtain the lag k covariances between Y;2, and Y as in

theorem. o

[¢ ional Formula for o

Note that A and ¥ in (2.28), are functions of 4, and 2. Now, it follows from




(2.28) that for known 7, the iterative equation for o2 may be expressed as

Br+1) = 65("'[(0‘% ja},) (gjzz = ))]w' (2.39)

2y
where == is the derivative of A w.r.t o2. By ((2:29), the derivative has the formula

3
03

"
o _ e*;rp[)("ll\ufn+7”z ][ ] (240)

o}

, T. For t=1 case, 8—*1 =0. In (2.39) o%(r) is the value of o at r*

iteration, and []s3,) is the value of the expression in the square bracket evaluated at

for t

2(r). Let the final estimate from (2.39) is denoted by 62 o,

2.2.2  GQL estimating equation for 7,

Note that in Section 2.2, ¥, 7 ,y? was equated to its expectation to construct
an unbiased moment estimating equation for ;. In the GQL approach, we use the
same lag 1 pairwise squared responses but in a different way. To be specific, in this
approach, a quadratic form in the distances of the lag 1 pairwise squared responses

and their expectation, is minimized with respect to the 7. Let

Gl Vvl (2.41)

22
v =[viv
and its unconditional expectation is given by

=EV] = [ Yeorsy s braaals (242)




where Y1, = E[y?_,7]. Further, let Q be the covariance matrix of v. In the GQL

approach, the quadratic distance function, namely

Q@ = (v-¥)'(v-¥) (243)
is minimized with respect to 7, to obtain the GQL estimating equation for this
parameter. To be specific, the GQL estimating equation for 7 has the form

W ov-y) =
-0 =0 (244)

[Sutradhar (2004), Mallick and Sutradhar (2008)] where %
"

is the derivative w.r.t
n

We now provide the formulas for ¢ and € in (2.44) in the following theorems.

Theorem 2.2.3. For knoun o? = o, the clements of the unconditional expectation

are given by

o fort=2
Yiera = EIY2, YD) = r.{p[\:" Inody +4~ Inody
: -3
+‘12'l ((1+~.;' Zﬂ’+l)] fort=3,...,T.
=

(2.45)
Proof. Note that

Y = YY) = Elo}o}] = ofo A, (2.46)



whereas for t=3,...,T, the expectations of the products of lag 1 squared observations

are given by
Ve = B2 = Elofoicid]

= Elof o}l ] = Eulofy0fl,  (247)

as ¢ " N(0,1) and ¢ and o2 are independent. Further note that the formula for
Eplo}_,.0%) was already given in (2.17).

This completes the proof of the Theorem 22.3 o
Theorem 2.2.4. Let the diagonal clements of @ be wy = Var(Y2,Y2) and the lag 1off
diagonal elements be w1, = Cov(Y2,Y?,Y2Y2,). The formulas for the variances

are given by

gn:nup[z»,, Inafn+20,7’:|f i fort=2
= VarlyZ¥2) = geap[2(f 2ot +91 Incly)
+z‘73,((1 ) for

and for t=2,...,T and lag 1 covariances have the formula as
winne = Coul YY) = deap( [+ i+l oy

+[";' (a+ m‘i:iwf‘ F@rnf+1)]) =~ venvin 249)

Proof. First derive the formula for variances,

VarlY2, Y7 = EVLY] - B YY




= Elolioleliel] - i

= Eulolo{]Blerel) = ¥ t=2....T. (250)

Since ¢ N(0,1) and €? and o7 are independent. For convenience, we include the

derivation of Eyo},0!] in Appendix A. The expression is

Eulofof] = up[T(ﬂ"‘lnﬂ'.‘nM 'lnofu)
-
+2ﬂ§((l+~,)’ wa’u)] (251)
=4

with Ey[ofod] = olyEx[of]. where Ey[o3] is computed from (2.36). Now by using

this expression from (A.2) into (2.50),

VaV2, V2] = 9 Enlobiol] -

9 u,z[z(»,g-’ln o+ 1m7f,,)

+23((1+)? gn" + 1)] -9

fort=3,....T,

(252)

whereas for t=2,

Var[Y2Y?) =

Elojo}|Elele}] - vi, = 9 Elo}]Elof] - via

= 90k Blof] - via (253)
and the formula for -, is given in (2.45).

Next, the covariances, for t=2,

Cov(Y2 Y2 YPYR)) = EIVAYIYVE] - EIVE,

YAENYE




= Eloto{otaeaeleda] = Yeretien

= BEulototolnElelreein] = brebun
= 3Eulol 0t0in] = Yerebun (2:54)
as € % N(0,1). For convenience, the lengthy derivation of Ey/[o?.,0{0?,,] is given in

below from the appendix. The

appendix A. The formula of Ex[o?.,0}0%,,] is giv

formula is:

logofy

Eulotiotola] = e [w:* +nief
+[2 ((1”,) Z» 2+~n)’+|)]) (255)
Hence the proof. o

Computational Formula for 7, Estimate:
The GQL estimating equation (2.44) can be solve iteratively to obtain an estimate

for 71 . The iterative equation has the form

S(re1) = s,(rp[(;mn 'i’;fh)"(%n"(v-u)]‘r] (236)

where % is the derivative of ¥ w.r.t 7. By (247) the derivative has the formula
1

for t=3,...,T,

o -3
= eap|rilogoly+ 2 Inofy+ 3 ((1+m)* Lol 41
2 1=0

[=2ni e+ ¢ ity

o s =
+—"(2(1A71)Z’v?’*(l+‘h)‘22’hm ")] (257)
2 1=0 1=0
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2
and t=2 '36—_7" o e:l:p[’n Ino? + %"] loga%,. In (2:56) 1(r) is the value of 7 at
.

1 iteration, and [Js,(, is the value of the expression in the square bracket evaluated

at 7 = %(r). Let the final estimate of (2.56) is denoted by %16oL.

2.3 A Working Generalized Quasi Likelihood (WGQL)

Method in Finite Time Series

Note that, the derivation for the formulas of the covariance matrices ¥ (2.28) and
0 (2.44) is not complex but the computation for the inverse of these full covariance
‘matrices is time consuming. To avoid such complexity, we will use a suitable sim-
pler form for these matrices and construct the ‘Working’ GQL (WGQL) estimating

equations for o7 in Sections 2.3.1 and for 7 in Section 2.3.2

2.3.1 WGQL Estimating Equation for o2

To avoid the difficulty of obtaining £~ for the GQL estimation of o3, we pretend
that ¥2 and Y;? are uncorrelated, even though in reality they are correlated. Thus,

we use

4= diaglon,... .-, 077] (2:58)



to replace the £ matrix in (228). It then follows that the ¥, matrix based WGQL
estimating equation is given

L d'u=2) = 0. (2.59)

Similar to the equation (2.28) can be solve iteratively to obtain an estimate for o2 .

Let this final estimate of (2.59) is denoted by 2 yaqL-

2.3.2 WGQL Estimating Equation for 7,
Similar to the construction of the WGQL estimating equation for a2, we construct
the WGQL estimating equation for 4; by ignoring the covariances between y3_,y?

and g2,y Thus we replace € in (2.44) with

Q = diag[Var(YY),..., Var(Y2,Y2)..... Var(Y}_ Y1)l (2.60)
The formulas for the unconditional variances of (Y2,Y?) for t = 2,...,T are given
in (2.48)
We now write the WGQL estimating equation for 7, as
W o
Lk —¥) =0, 261
v -9 =0 (261)

which can be solved iteratively, that is, by solving (2.44) with © = Q. Let the final

estimate of 7 denoted by % waau-




We remark that the WGQL estimating equations for o2 (2.59) for 7 (2.61) are
similar to the well known weighted least square (WLS) equations for the correspond-
ing parameters. These estimates will be consistent as the WGQL estimating equations
are unbiased. However, the estimates may not be highly efficient, as for the construc-
tion of the WGQL estimating equations, we have replaced the true covariances ¥ and

 with their counter parts X4 and Q, respectively.

2.4 Asymptotic Variances Comparison of the Es-
timators

2.4.1 Asymptotic Variances of the SMM Estimators

We provide the asymptotic variances of 41,y obtained from (2.24) as in the follow-

ing lemma.

Lemma 2.4.1. For Sn = Ylp /T~ To

the asymptotic variance of

MN.smu is given by

g 2)\ -2
Jim Vactiigu) = (2200 i Vs, @01

where

»
(ag’“V"" = bx, (263)

2




and
1
Jim Var(S) = g [(T = To = Do+ 207~ To= 2, 260
with
& = dna)[ddind e =seaplpd(F2)] - sl

Proof. The expression in (2.62) for the asymptotic variance of S1say follows from
(2.24). Note that the formula for the derivative is also available in (2.24). For
convenience, we have re-expressed this derivation as in (2.63), where gu(y,0?) is
given in (2.23). Now it remains to show that, l&xix;\/m'(sm) has the formula as in
(2.64). For this purpose, we write

s = g s ot
+2 rzjc‘av(y,’,.\q’,x‘x‘,.))] (2.65)

Note that for a given t, the formula for Var(Y2,Y?) is given in (2.48). When T = oo,

we compute all necessary formulas for ¢ — oo case with 71| < 1. Thus, we obtain

o) = (L))
& = y?:.(w,,n;)[wm(m,o,,)—1] (2.66)

Similarly, for a given t, the formula for the Cov(Y2, Y2, Y2Y2,) is given in (2.49).



Once again, for T — 00, i.e for t = oo, with [ < 1 we write

i OO 201 = denp| F(GERE + 1)) - [ (7))
& = senfrd(F2)] - dhionod 200
o

Hence the lemma.
Next, we provide the asymptotic variance of 0, sy obtained from (2.13) in the

following lemma.

Lemma 2.4.2. By using (2.13), one may compute the asymptotic variance of the

SMM estimator of 0% sy

. )
Jim Var( (e ) i s (269
where
af(Sy P
O e = 21 =05 = 20 =) G0, (209)
and
:
Jim Var(Swo) = (T = To)§wo + Y &olt—kit)| (270)
with
0= gbn. o007 1)
and

= k) = ean([ 5 ’::]’]) — om0




“

Proof. The formula for Var(a?,

2 euay) follows from (2.13) along with derivatives in

(2.69). Next, for the formula for Var(Syo), we write

" . 1 I Z
Jim Var(Si0) = gg&[m(L:%.lV.-x(}’,a)J, > conrz)],
(21)

Note that for a given t, the expression for Var(¥?) is given in (2.34). When Ty — oo,

all necessary formulas are computed for ¢ — oo cases with [11| < 1. Thus, we obtain

w3l ) len )

)

To compute the limiting value for the second part in (2.71), we recall the formula for

G0 = ahin, ”:)(ngu('h \07) =

Cov(¥2,,¥?) from (2.33). Now, for Ty = oo, i.e for t — oo with || < 1, by (2.33),

fort —k < t, and k:

-1, we write

Jim Cov(¥2,,¥?) = ﬂv('ﬁ[“M” )’["”(Fzm)r

(=)
. (141
Gult—kt) = rrp(a:[“ ﬂ1,)]) ~ ghalm.02). (272)
This completes the proof of the lemma. o

2.4.2  Asymptotic variances of the WGQL Estimators

In order to obtain the asymptotic variances of the WGQL estimators of v and o2,

we first provide their exact variances expressions in the following lemma.




Lemma 2.4.3. The WGQL estimators for v and o? obtained by solving (2.61) and

(2.59), have the ezact variances given by

PP, ,du]"[ ap
Var(fiweor) Q, ol lom (2.73)
and
an oot OAT[OX (DA77
Var(0yaq0) [375 7'3] W):,, =53 g [m):,, o (274)
respectively.

Proof. The lemma is obvious from the estimating equation (2.61) and (2.59). This

| = £ and E[(v - ¥

is because, under the true model, E{(u — A)(u - A)

Q o

Lemma 2.4.4. [Asymptotic Variances] For limT, - oo, the asymptotic vari-

ances of Swaqu and 0%waqu are given by

]4 [ELQ"" 03l om ] [am

. Wi
Jim Var(fiweer) = [T,hnzu n

and

]

W] [‘”"): 15,5 "”"] [a—x“): 3 (2.76)

Jim Var(@3,0,)

%2 302 o2

where
Wy | 2 % 0
- oy a0t = A 50




fo = jnfe  Be=jni.  Be=jni fejnt
2.77)
0 223 -
where =— and ¥ are as in the Lemma 2.4.3.
a3

m

Proof. To compute the limiting variances from the exact variances in Lemma 2.4.3,
we simply compute the limiting vectors and matrices componentwise. The formulas

for the components of ¥ = [Y1z, -, Ye-1r- -+ ¥r-pz] and A= [Ai,.o0 Aoy Ar)

are given in (2.42) and (2.31) respectively. We use these formulas and we obtain the

derivatives
. - % Yoo, =1 (2.78)
ooy T/ PR ) = 0 !
and
N 1 2
}ﬂaﬁ'g m) gu(n. 03 (say). (2.79)

Recall from (2.58) that
£4 = ding[Var(¥?), .., Var(Y2), ..., Var(V2)]
and from (2.60) that
Qg = diag[Var(Y2Y2), ..., Var(Y2,Y2), ..., Var(Y2_, Y2)]
We obtains S and Qu by computing the limiting values of the components of
and . These limiting values are

Jim Var(V2,Y7?) = € and Jim Var(¥Y?) = 610, (2:80)




where & and £y are given by is in (2.65) and (2.71) respectively.
Further note that, the formulas for the diagonal and off diagonal clements of Eo
are given in (2.80) and (2.72)respectively. Also the diagonal and off diagonal clements

of 2 are available in (2.80) and (2.67) o

Note that, we have introduced a simpler MM (SMM) approach in Section 2.1 for
the estimation of the volatility parameters 7, and o2, The asymptotic variances of
these SMM estimators are given in Section 2.4.1. Also we have discussed the WGQL
estimation approach in Section 2.2 and the asymptotic variances of the WGQL esti-

mators are given in Section 2.4.2. In Section 2.5, we will conduct an empirical study to

examine the asymptotic performances of the proposed SMM and WGQL estimators

In the empirical study, we will also include the QML approach for the asymptotic

variance comparison. The reason for this inclusion is that the QML approximation is
computationally manageable, whereas the GMM approach is extremely cumbersome
as it s developed based on large number of unbiased moment functions. For the
purpose, in Section 2.4.3.1 we provide brief discussion on the QML approach and
in Section 2.4.3.2 we given the formulas for the asymptotic covariance matrix of the

QML estimators.




2.4.3 QML Estimators and Their Asymptotic variances
2.4.3.1 QML Estimation
Recall from (1.22) that

Z,=logy? = Ellné]+Inof+u

= m+nof +u : TIE. ] (2.81)

where ¢ % N(0,1) and x; = ~1.27. In (281), u, follows the log chi-square distri-

bution with mean zero and variance & = 7%/2 [ Abramovitz and Stegun (1970,

p. 943)]. As we discussed in Section 1.2.2 that the multi-dimensional integration

in (1.23) is extremely difficult, many authors such as Ruiz (1994) and Harvey et.al
(1994), have approximated the distribution by pretending that Z = (24, Za, ... Zr)'

follows a MVN (multivariate normal) distribution with true mean vector and true co-

variance matrix under the model (2.81). Let m = (my, .., my, .., my) = E[Z) and
V = Cov(Z) = (vu) be the true mean and the covariance matrix of the response

vector Z.
Lemma 2.4.5. Under the model (2.81),the expectation of % is given by
—-1.27+Ino, Jort=1
me=
127+ Inady for t=2,...,T

7, by using the recurrence and (1.2)relationship as

Z = mt b tmctu



= m+af™ Inaly+alTm 42l m +

‘
= i+ Inod+ oo e,
=1

Since E[u] = 0 and E[n] = 0, for o} = %, it now follows that

and

E(Z) =

where K

Lemma 2.4.6. The elements of the covariance matriz of Z = (21, Za,

have the formulas:

E(Z)] = & +Inok,

m+a! Inody = my

1.27. Hence the lemma.

Ky for k=0 t=1

0 for t— k=1, t=2, ..., T
Ve =

02 Sianf ™ 4wy for k T

o2 Tkt for k -2 and t=3, .

and v,

Proof. The computation of Var(Z) is straightforward from (2.82). i.e.

Var(Z)

.
= Y4 Var(m) + Var(u)
=1
.
= A YA +n 2=
=]

e+ T U

%y

(282)

(2.83)

(2:84)

VZr)

(285)



with Var(Z,) = k2 = 72/2.

We now derive the formula for the covariance between Z; and Z;. Recall that

n = mothitu

z = Ko+ Inody *{%‘—”‘ T+ U
For calculation for the covariances, we simply write
Cov(21,Z) = El(Z - E\Z)(Z - E|2])] (286)
By using E[Z,] and E[Z] from (2.83) and (2:84) in (2.86), after a simple algebra, we
gt
Cov(Z1,2) = E[u,()i:ﬂ“”ﬂ- + m)]

= E[u.]s[;~§"‘1 ]+Eum]

=0 (2.87)

i

This is because u; % log x*(0, 52) under the model (2.81).

Next, for lag k (=1,....t-2) and t=3,....T, we write

i~
Zix = mo+ ™ ok + T mbuk (288)
=

ok .
2 = m+ hm?ﬁ[):wt"" w+ Y AW n,]+u, (2.89)
= =



It is clear from (2.88) and (2.89), we write the may write the formula for the auto-
covariance between ;. and ; as
Cov(Zi1,2) = El(Zi-r — ElZ]))(Z - E|Z))]
P

ATy, b
-1

(-2 and t=

Next, by using the true mean and the true covariance matrix, and by pretending

that Z follows a multivariate normal distribution, we may write an log

likelihood function given by

logly = @ —3loglV| - 5((Z—m) V7' (Z-m)], (291)

(Shephard, (1996 eqn:1.17)]. This approximate likelihood L in (291) is referred to as
the quasilikelibood (QL). It then follows that the quasi maximum likelihood (QML)

estimates for 9 and o2 can be obtained by solving

dlogLy _ 10log|V| d(Z-m) | 1,0 w8Vo
ol = e gy V@ m) -5 (- m) @ —m)
=L - OV, - z-m+ i @-myvr vz
2"‘”‘[" x'h.)“{V (2 m)+7(Z m)'V o V' (Z-m)
=0 (2.92)
om, P
where  d = [0, Gln). Jar(m)l, with 225 = (¢ = 1) o ? Inojy =

alm) T



and
10log|V| 1 L gV
T8 - -5 —5(Z-m) -
Jo? 3 o0 "2@T™ Gr@-m

= _%mm[v“w]+ (2= m)v’—v’(z m)

=0 (2.93)
respectively. The detail derivatives of LA A F are given in Appendix B. Let

m

the final QML estimates from (2.92) and (2.93) be denoted by 4y quz and o2 oy,
respectively.

Note that, the true distribution of u, namely (log x? distribution) s extremely
Teft skewed. This implies that conditional on In?, z follows the log x* distribution.
Consequently, the aforementioned normality based QML approximation can be inef-
ficient. We will examine this efficiency issue empirically in Section 2.5 by using the

asymptotic variance formulas for the QML estimators given in Section 2.4.3.2.

2.4.3.2 Asymptotic variances of the QML Estimators

For a = (11,02, for any T, small or large it follows from (2.92) and (2.93) that
the asymptotic covariance matrix of the QML estimator of a is given by the Fisher

information matrix defined as

log L o’ log Lq
ot

Cov(dgus) = = (294)




PlogLy 1 ltrace(V-' )] i, L
ET“, = “ET"’V d - strace
E PlogLy] Ja[tmw(v" £ o

o] T2 002 g

PlogLp] _ _10ltrace(VIZHL .

e | T 2T oq ae

with V = Cov(2) , where Z = (Z1...., Z,..., Zr)’ with Z, = logy?. Further, the

derivatives for (2.95) have the formulas as shown in the Appendix B,

Note that for the empirical study in the following section, we will compute the
variances and covariances in (2.94) for the case when ¢ = oo, These variances and
covariances, for convenience, we referred to as the asymptotic variances and covari-

ances

2.5 Asymptotic Variance Comparison: An Em-
pirical Study

Recall that many authors such as Ruiz (1994) and Anderson and Sorenson (1997) have
compared the asymptotic variances of the GMM estimators with that of the QML
estimators for the estimation of the standard volatility parameters 7 and o?. But as
it was argued in Section 1.2.1 that finding the GMM estimates by solving (1.19) is

quite cumbersome, because of the fact that it requires an arbitrary large number of



unbiased moment functions (Anderson and Sorenson (1996)). Consequently, we have
avoided the formulation for GMM estimation approach but concentrated on SMM,
WGQL estimation in Section 2.1 and 2.2, In the last scction, we have shown how to
compute the variances of the QML estimates. We now examine the relative efficiency
performances of the proposed SMM and WGQL estimators with the corresponding
QML estimators.

For convenience, similar to the existing studies [Ruiz (1994) and Anderson and
Sorenson (1997), Broto and Ruiz (2004)] we consider the case 79 = 0 and select the

values for the parameters of interest as follows;

7= 025 and 05

o7 = 025, 0.5 and 10,

For the computation of the asymptotic variances, we have chosen the time series with
length T = 1000, 2000 and 3000. The asymptotic variances of the proposed SMM,
WGQL and the QML estimators for 7, are computed by (2.62), (2.75) and (2.94)
respectively. Similarly, the asymptotic variances of the proposed SMM, WGQL and

the QML estimators for o7 are computed by (2.68), (2.76) and (2.94) respectively.

These variances for various selected values of the parameters are shown in Table 2.1




Table 2.1: Asymptotic variance comparison of SMM, WGQL and QML estimators
with selected parameter values

Time Serics Length (1)

0% 7 Method Parameters 1000 2000 3000
0.5 025 SMM 01198 0.0508 0.0399
gi 00109 00054 0.0036

WGQL m 0.0835 0.0418 00279

o3 00103 00051 0.0034

QML n 04163 04143 0.4132

ol 01330 01328 0.1322

025 05 SMM B 00342 00171 0.0114
g2 00088 00044 0.0029

WGQL " 00236 0.0118 0.0078

o 0.00720.0036 00024

QML " 0.2649 0.2662 02660

o2 01480 01471 0.1467

05 025 SMM A 0.0569 0.0285 00190
o2 00138 00079 0.0053

‘ WGQL n 00421 00210 0.0140
o 00145 00072 0.0048

QML mn 0.3889 03882 0.3865

o 0525405210 0.5180




(Table 2.1 Contd....)

Time Serics Length (1)

o 4 Method Parameters 1000 2000 3000
05 05  SMM m 00226 00113 00075
ol 00143 00071 0.0048
WGQL n 0.0165 0.0082 00035
o2 00109 00055 0.0036
QML 7 02252 02252 0.2265
o 05528
" 00501
ol 00299 00150 0.0100
WGQL n 0.0408 0.0204 0.0136
ol 00272 00136 0.0091
QML n 03477 0.3463 0.3448
ol 2048 20336 2047
T0 05 SMM S 00381 00190 00127
ol 00310 00155 0.0103
WGQL W 00618 00154 00102
ol 00234 00117 00078
QML n 0.1775 01768 0.1785
ol 200621 20611 20642




It is clear from the results in Table 2.1 that SMM and WGQL approaches appear
to produce estimates for 3, and o with smaller variances as compared to the QML
approach in all cases. For example, when T = 2000, 03=0.5 and ,=0.5, the SMM

approach is

oy Ve g
EITO0) = Yot one) ~ 00113 —

times more efficient than the QML in estimate of 7. Similarly the WGQL approach
is 100.15 times more efficient in estimating o? as compared to QML approach.

Note that as it was argued earlier that the so-called GMM (1.19) is cumbersome
(which makes it impractical ), we did not include such a complex arbitrary technique
in our comparison [ see also Anderson et.al, 1999, section 1, p. 63-64]. Nevertheless,
by comparing the existing asymptotic variances for the GMM and QML estimates
from Anderson and Sorenson 1997, Table 1, (p. 401) with those of the proposed
SMM estimates, for example, one may understand the relative performances of the
proposed simpler MM (SMM) approach to the GMM and QML approaches. To be
specific, consider the estimation for 5 = 0.7 and 62 = 10. For these parameter
values, the results from Table 1 in Anderson and Soreson (1997) show that for the
case with T = 75,000, the GMM is 2.317/2.03? = 130 and 10.747/6.44 = 2.78
times more efficient that the QML in estimating 7, and o2, respectively. For the
same parameter combination, we, however, find that the proposed SMM approach

produces 0.0010 and zero asymptotic variances for 7, and o2 estimates respectively.




Thus, the proposed SMM approach is 2.037/0.0010 = 4120.9 times more efficient than
the GMM approach in estimating ; and it is much more efficient than the GMM
approach in estimating o?.

For certain combination of parameter valucs such as 7 = 0.97 and o2 = 0.04,
the results from Table 1 in Anderson and Sorenson (1997) show the QML is more
efficient than the GMM approach. Now, for the same parameter values, our SMM
approach gives zero asymptotic variances for both parameters. Thus, the proposed
SMM approach is highly efficient than the QML approach. These comparative results,
therefore, show that the proposed SMM is better than the existing QML and/or GMM
approaches. Note that, the proposed SMM is much more simpler than the existing
QML and GMM approaches.

When WGQL is compared to the SMM approach, they are found to be performing,
almost the same, the WGQL being slightly better. For example, when T=1000, o2
= 1.0 and 5 = 0.25, the WGQL approach is

Var(

Eff(n) = g

times more efficient than the SMM in estimate of ~. Similarly the WGQL approach is
1.10 times more efficient in estimating o2 as compared to SMM approach. Note that a
complete GQL approach, as opposed to the WGQL approach, could be highly efficient
than the SMM approach. But for computational simplicity we have considered the

WGQL approach which, as expected produced slightly improved estimates over the



SMM approach.



Chapter 3

Small and Large Sample
Estimation Performance of the
Proposed SMM and WGQL

Approaches: A Simulation Study

In Section 2.5, it was demonstrated through Table 2.1 that the proposed SMM and
WGQL approaches are asymptotically more efficient than the existing QML approach.
Also it was argued that the existing GMM approach is cumbersome and can be less
efficient as compared to the proposed SMM approach. Note that the proposed ap-

proaches, the SMM approach in particular, are much simpler than the QML and
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GMM approaches. In this chapter, we examine both small and large sample estima-
tion performances of the proposed SMM and WGQL approaches through a simulation
study. For the purpose, we choose small as well as large values for T. We consider

small time series with length (T) up to 500. Any series with length more than 500 is

consider to be a large series, and we choose the values of T as large as T = 10,000.
Note that these values of T are chosen to indicate that unlike the existing GMM ap-
proach (where length of time serics requires to be infinitely large such as T =10,000

o1 15,000, ..., and so on) the proposed approaches produces good estimates based on

a practically reasonable length of the time series.

3.1 Small Sample Case

In the small sample case the initial variance of will have an effect on the estimation
of the main volatility parameters, as expected. Since logo? is assumed to have the
normal distribution with mean 7o/(1 = %) as shown in (1.3), one may choose a

value for o7 such that log o is close to its mean value 0. In the present simulation

study, we have used, for example, of = ¢} = 1.25 for the SMM and the WGQL
approaches. Now, to examine the small sample estimation performance for 7 and

42 by the SMM approach, we solve the SMIM estimating equation (2.14) for 71, and

(2.3) for o2, iteratively. The simulated mean (SM) along with simulated standard

errors (SSE) (also simulated mean square error (SMSE)) for the SMM estimates



based on 1000 simulations are reported in Table 3.1 for various small time series with

length up to 500. For the estimation of  and o2 by the WGQL approach, we solve
the WGQL estimating equations (2.44) for 7, and (2.59) for o2, iteratively. The
simulated estimates and their standard errors for the WGQL estimates are given in

Table 3.2



‘Table 3.1: Simulated mean (SM), simulated standard error (SSE) and simulated mean
square error (SMSE) of the SMM estimates based on small time series with T = 100,
200, 300 & 500 for selected parameters values by using 1000 simulations.

Time Series Length (1)
02 3 Parametes Quantity 100 200 _ 300 500
0.5 025 B SM 02818 02517 02804 02421
SSE 05149 04964 04700 0.4222
MSE 02661 02464 02218 0.1783
a2 SM 02276 02162 02148 0.2195
SSE 02543 02021 0.1880 01547
MSE__ 0.0652 0.0420 00366 0.0249
025 05 mn SM 03178
SSE  0.5026
MSE  0.2858
L] SM 02710
SSE 02971
MSE _ 0.0887
05 025 N SM 02385
SSE 04759
MSE 02267
a? SM 04120
SSE  0.3692
MSE__ 0.1440




(Table 3.1 Contd.

)

Time Series Length (T)

0} 5 Parameters Quantity 100 500
05 05 SM 0331 03280 03815 03910
SSE 04305 03009 03417 02779

MSE 02125 0.1824 01308 0.0891

a? SM 04892 05099 04989 05128

SSE 04370 03473 03151 0.2533

MSE_ 01911 0.1207 00993 0.0643

10 0% ™ SM 01685 01610 0.1822 01864
SSE 04007 03361 02929 0.2467

MSE 01745 01209 0.0904 0.0649

a2 SM 0.8239 08925 0.9185 09460

SSE 05565 04310 03800 0.2997

MSE__ 0.3407 0.1973 01510 0.0927

0 05 ™ SM 02912 03082 0.3636 03837
SSE 03819 03252 02938 02572

MSE 01894 01426 0.1056 00797

o SM 09850 10268 10098 10240

SSE 0.6807 0.5441 0.5106 0.4288

MSE 04759 02968 0.2608 0.1844




Table 3.2: Simulated mean (SM), simulated standard error (SSE) and simulated mean
square error (SMSE) of the WGQL estimates based on small time series with T =
100, 200, 300 & 500 for selected parameters values by using 1000 simulations.

“Time Series Length (T)

0! v Parameters Quantity 100 300 500
035 025 ™ SM 03530 03436 03628 02804
SSE 04569 04478 04286 04048

SMSE 02195 02093 0.1964 0.1634

o2 SM 02251 02223 02091 02178

SSE 04739 03621 01996 0.1748

SMSE 02252 0.1319 0.0415 00316

0% 05 mn SM 0.3685 03885 0.4378 04129
SSE 04415 04324 03981 0.3444

SMSE 02122 01994 0.1623 01262

a2 SM 02401 02686 02472 0.2533

SSE 04496 03928 02620 0.2204

SMSE  0.2023 01546 0.0687 0.0436

05 035 " SM 03105 0.2683 0.2619 02336
SSE 04388 04078 0.3629 03226

SMSE 01962 01667 0.1318 0.1043

a2 SM 04505 04815 0.4696 0.4746

SSE 0.6181 05632 04679 0.3792

SMSE_ 03845 03175 0.2199 0.1444




(Table 3.2 Contd...

)

Time Series Length (T)
200 300 500

03 m Parameters Quantity ~ 100
05 05 n 03568 03657 0.4101 04064
SSE 04139 03801 03341 0.2916
SMSE  0.1918 01625 0.1197 0.0938
o SM 04878 0.5408 0.5164 0.5230
SSE 05487 05329 04066 0.3295
SMSE__ 03013 02857 0.1656_0.1091
10 035 ) SM 02274 01855 01996 01945
SSE 04047 03439 03051 0.2588
SMSE 01643 01224 0.0956 0.0701
a2 SM 09216 09528 0.9352 0.9705
SSE 08317 0.6446 04838 04186
SMSE__ 06979 04177 0.2382 0.1761
10 05 n SM 03352 03315 03874 0.4001
SSE  0.3808 03401 03152 02776
SMSE 01722 0.1441 0.1120 00870
a2 SM 10169 10630 10504 1.0451
SSE  0.8261 0.6980 06321 05239
SMSE _ 0.6832 04912 04021 0.2765
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3.2 Large Sample Case

In the large sample case, the SMM does not depend on the initial variance 7. How-
ever, the WGQL approach still depends on 7. We use the same value o} = o}y=1.25
as in the small sample case.

For the SMM estimation of 71 and o2, we solve the asymptotic estimating equa-
tions (2.22) and (2.13) for 7 and o2, respectively. As far as the large sample esti-
mation by the WGQL approach is concerned, it is clear that the WGQL estimating
equations (2.44) for 7, and (2.59) for o2, used in the small sample case, is still valid
for the large sample. The large sample based performances of the SMM and WGQL

approaches are reported in Table 3.3 and 3.4, respectively.
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Table 3.3: Simulated mean (SM), simulated standard error (SSE) and simulated mean
square error (SMSE) of the SMM estimates based on large time series for selected
parameters values by using 1000 simulations

“Time Series Length (T)

Parameters Quantity ~ 1000 2000 3000 6000 10,000
25 SM 0.2476  0.2385 0.2435 0.2302 0.2442
SSE 0.3319 0.2473 0.2018 0.1428 0.1174

SMSE  0.1102 0.0613 0.0408 0.0208 0.0138

a: =0.25 SM 0.2265 0.2396 0.2396 02476 0.2471
SSE 0.1203 0.0874 0.0723 0.0486 0.0402
SMSE__ 0.0150 0.0078 0.0053 0.0024 0.0016
SM 04213 0.4462 04537 04475 04615
SSE 0.2832 0.1969 0.1628 0.1171 0.0965
SMSE  0.0864 0.0417 0.0286 0.0165 0.0108
03=0.25 SM 02540 0.2596 0.2572 0.2635 0.2600
SSE 0.1381 0.1021 0.0856 0.0595 0.0498
SMSE 00191 0.0105 0.0074 0.0037 _0.0026
SM 02067 02283 02386 02323 0.245
SSE 0.2309 0.1690 0.1402 0.0999 0.0836
SMSE  0.0552 0.0290 0.0198 0.0103 0.0070
ﬂ,’, =05 SM 04768 0.4913 0.4885 0.4989 0.4966
SSE 0.1505 0.1071 0.0877 0.0593 0.0489

SMSE _ 0.0232_0.0115 0.0078 0.0035 0.0024




(Table 3.3 Contd....)

“Time Series Length (T)

Parameters _Quantity — 1000 2000 3000 6000 10,000
SM 04205 04441 04537 04482 04623
SSE 02191 0.1659 0.1390 0.0964 0.0811
SMSE  0.0543 00307 00215 00120 0.0080
SM 05132 05181 05136 05264 05192
SSE 02024 0.1541 0.1283 0.0854 0.0723
SMSE 00412 00241 0.0167 0.0080 0.0056
71=025 SM 0.1948 02199 02331 02308 02442
SSE  0.1960 0.1508 0.1305 0.0950 0.0798
SMSE 00415 0.0236 00173 0.0094 0.0064
a2 =10 SM 09730 09905 09815 09979 09933
SSE  0.2257 0.1625 0.1361 0.0941 0.0760
SMSE__ 0.0517_0.0265_0.0189 0.0089 0.0058
71=035 SM 04109 04433 04577 04541 04738
SSE 02135 0.1909 0.1738 0.1374 0.1320
SMSE 00535 00397 00320 00210 0.0181
02=10 SM 10328 10161 10021 10292 1.0069
SSE  0.3636 0.3220 0.2923 02305 0.2261
SMSE 01333 01039 00854 0.0540 0.0512
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Table 3.4: Simulated mean (SM), simulated standard error (SSE) and simulated
mean square error (SMSE) of WGQL estimates based on large time series for selected

parameters values by using 1000 simulations.

Parameters

Quantity

1000

2000

Time Series Length (T)

3000

7 =025

02=025

SSE
SMSE

02571
0.3282
0.1078
0.2284
0.1308
0.0176

02413
0.2502
0.0627
0.2400
0.0882
0.0079

02422
0.2038
0.0416
0.2402
00722
0.0053

M =0.5
02025

1 =025

0.4280
0.2873
0.0877
0.2567
0.1557
0.0243
02111
0.2325
0.0556
0.4804
0.1606
00262

0.4467
0.2077
0.0460
0.2607
0.1053
0.0112
0.2203
01720
0.0300
0.4914
0.1092
00120

0.4564
0.1698
0.0372
0.2570
0.0887
0.0079
0.2381
0.1408
00199
0.4894
0.0870
0.0076




(Table 3.4 Contd....)

7

Parameters

Quantity

Time Series Length (1)

1000 2000 3000

7 =05

2=0.5

04251 04474
02256 01739
0.0565 00330
05289 05262
02031 02219
0.0287 00499

7 =025

7 =05

02 =10

01962 02211
01975 0.1563
0.0419 0.0253
09788 1.0027
02278 0.2832
0.05240.0802
04326 0.4587
02491 02188
10753 1.0797
06351 05972 0.5676
04090 0.3630 0.3249




3.3 Interpretation of the Small and Large Sample
Simulation Results

As far as the small sample performance is concerned, both SMM and WGQL ap-
proaches provides some what reasonable, but not so satisfactory estimates. For ex-
ample, when T = 500, the SMM approach provides estimates for v, = 0.5 and a;‘, =

0.5 85 31,533 = 0.40 and 02 gy, = 0.51, respectively, with corresponding simulated

standard error 0.28 and 0.25. For the same parameter values, the WGQL provides
S1waqr = 041 with its simulated standard error 0.29 and 0%, waqr = 0.52 with its
standard error 0.33 . These and other results in Tables 3.1 and 3.2 indicate that the
estimates of o2 appears to be close to the true values whereas the estimates of , are
not so satisfactory. But, the estimates of v get closer to the true values when the
length of the series is increased.

The Table 3.3 show that for a reasonably large time series with length between
‘T= 1000 and 10,000, the proposed SMM approach performs very well in estimating
both 7, and o? parameters. This is a big improvement over the existing GMM and
QML approaches mainly because of the fact that proposed SMM approach is sim-
pler and computationally quite efficient. Also, unlike the existing GMM and QML
approaches, the SMM approach does not encounter any convergence problems. To

be specific, when T = 3000, for example, the SMM approach provides estimates for



7 = 0.5 and 02 = 1.0 as 41,ma = 046 with its simulated standard error 0.17 and

T

1.00 with its standard error 0.29. For the same parameter values, when T
= 10,000, the SMM approach produces 41 sy = 0.47 with its simulated standard
error 0.13 and 0%, saa = 1.00 with its standard error 0.23. Thus, it is clear that the
SMM approach works very well even if the length of the series is small as T = 3000.
However, as expected, the standard errors or mean squared errors of the estimates
improves substantially when T increased from 3000 to 10,000.

‘The results in Table 3.4 show that the proposed WGQL approach performs sim-
ilarly to the SMM approach. Note however, that to save time and space we have
considered T = 1000, 2000 and 3000, in this case. As the length of the series in-
creases, both SMM and WGQL approach appears to perform better as expected. As
mentioned earlier, the WGQL approach behaves similarly to the SMM approach. For
example, for the same parameter values, when T = 3000 the WGQL estimates for
1waqu = 048 with its simulated standard error 0.21 and 6%, waqu= 1.05 with its
simulated standard error 0.57. Thus WGQL approach appears to produce same or
better estimates for y, and 2, but with relatively larger standard errors. For this and
similar other reasons, between the proposed SMM and WGQL approach, we prefer
the SMM approach over the WGQL approach.

Note that the asymptotic variances for the estimators of 3, and o2 reported in

Table 2.1 in Chapter 2 are in agreement with the corresponding simulated variances




reported in Table 3.3 and 3.4 for the SMM and WGQL approaches. Thus, when it is

required, one may estimate the standard errors of the estimates by using the formulas

for the asymptotic standard deviations.

3.4 True Versus Estimated Kurtosis under the SV

Model

To understand the volatility, that is, to realize the changes in variance pattern in the
time series, it is recommended to examine the kurtosis of the data over time. See, for
example, Jacquier et.al (1994, p.387) Shephard (1996, p.23), Mills (1999, p.120), Ruiz
(2004, p.615) and Tsay (2005, p.134)). For the purpose, in Lemma (3.4.1) below, we

provide a general formula for the kurtosis under the volatility model (1.1)-(1.2).

Lemma 3.4.1. Kurtosis for {y;} under the volatility model (1.1)-(1.2) is given by

Jort =1

3
Knod) = 3[szp(27;"logof+iu:):"7

P
[ean(sitogat + 2 37|

To prove the lemma, we first compute E[Y;] by (2:32) and E[Y?] by (2.29).

The results in the lemma are immediate from the formula for the kurtosis given by
SEIY]
[ECP)P?

w2




Note that, in the limiting case, i.e, when ¢ — 0o, the kurtosis in (3.1) reduces to

2
Jm w0l = 3 m{r"g—,} . (32)
-~ -

which agrees with the formula for kurtosis studied by Harvey et.al (1994, p.249),
Mills (1999, p.249) and Broto and Ruiz (2004, p.615), among others. Further note
that, the formula for the kurtosis given in (3.2) is independent of time and it is a
function of the volatility parameters 7, and o2, whereas kurtosis at a finite time point
given by (3.1) is dependent on first few times and it is a function of y,, o3 and of.
Now to understand the effects of the parameters 7;, o2 and o on the kurtosis, we,
for example, display the true kurtosis computed by (3.1) in Figures 3.1 and 3.2 for
selected values of the parameters. In the same figures we also display the estimated

v. As far

kurtosis computed by using 41.sxar and 0% saar for 71 and o} respectiv

as the initial variance of is concerned, we have chosen of = 1.25
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Figure 3.1: True and estimated kurtosis with volatility parameters 7
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Figure 3.2: True and estimated kurtosis with volatility parameters 71
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1t is clear from Figures 3.1 and 3.2 that the kurtosis under the present volatility

model (1.1)-(1.2) is much larger than the Gaussian based kurtosis (=3). These figures

also exhibit that the kurtosis gets stabilized quickly after an initial short period. To

be specific, Figure 3.1 shows that when v = 0.5 and 02 =0.5, the kurtosis gets
stabilized at , = 5.8432 for any t > 4. Similarly, Figure 3.2 shows that when 7 =
0.5 and o2 = 1.0, the kurtosis gets stabilized at x, = 11.3810 for any t > 4.

Note that, since in practice, true kurtosis is unknown, as mentioned above, we have
also estimated the kurtosis by using the estimates of the parameters in the formula
for kurtosis given in (3.1), and the estimated kurtosis are displayed in Figures 3.1 and
3.2 The estimated kurtosis appears to be very close to the the corresponding true

of the kurtosis, indicating that the proposed SMM technique performs very wel

estimating the parameters of the volatility model.




Chapter 4

Extended Stochastic Volatility

Models

4.1 Model and the Properties

In Chapters from 1 to 3, we have discussed the inferences in the stochastic volatility
(SV) model. Recall that under the SV model (1.1)-(1.2), the responses {y} are

uncorrelated. That is, for u < t

E[Y.Y) = Eo,.oEloweelo,. ..ol
Eq...ol0u0iEleuedon, ..., 0]
Eo,...a\[0u0Eleued]]

= 0, (41)
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as ¢ and o are independent for all t and also ¢ * N(0,1). Consequently,
ly

Cov(Y.,Y) = E[Y.Yi]- E[YJEY]=0. (42)

But in practice, it may happen that, conditional on the variances, the time series
observations may be correlated. This type of data can be modeled by using the

relationship
W o= TB+0o — 7 8) + o $=2 iy (“3)

with yy = 2} 8 + 01 €1, where 7 = (zu, ..., 2y) is a p-dimensional (say) vector of
time dependent covariates and 3 is the corresponding regression effect. In (4.3), 6 is
a scalar dynamic dependence parameter. Also under in (4.3), o7 follows the original

volatility model as in (1.2), i.e.,

(44)

In(o?) = he="0+nher +15 ¢

Thus, the model (4.3) accommodates the dynamic relationship of the responses. Fur-
thermore, this model are modeled through another dynamic relationship as given in
(4.4) (see also (1.2)). Consequently, we refer to the complete model (4.3)-(4.4) as an
observation driven dynamic - dynamic (ODDD) stochastic volatility model.

The new ODDD model (4.3) - (4.4), conditional on the variances yields the condi-
tional mean, variance and pairwise covariances as in the following lemma. As before

we consider 70 = 0 for simplicity.



Lemma 4.1.1. When {ye,t = 1, ... T} Jollous the model (4.3), one obtains the

ezpectation and variance of y, conditional on oy, . .. ,0¢ as
E(Yoy, - ..,00) z,8, (4.5)
and
Var(Yilo, ... ,00) z’jy""” a3, (4.6)

respectively. Furthermore, for u < t the conditional covariance between y, and y, is
given by
CovlY Yilor, o) = D00 @n
Proof. The proof is simple. Nevertheless, it is shown in Appendix C. a
Note that when 6=0, the conditional variance (4.6) of y, reduces to
Var(Yilo) = of, (48)

and the conditional covariance between y, and y; (4.7) becomes zero. That is,

Cov(Ya,Yiloy, ... 00) = 0. (49)

As expected, these conditional variance and covariance also follow directly from the
SV model (1.1)-(1.2). In all other cases i.e. when 8 # 0, it is clear that unlike the

SV model, the observations are correlated both conditionally and unconditionally the

conditional covariances being given by (4.7). The unconditional covariances are given

in Lemma 4.1.2 along with unconditional means and variances.
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Lemma 4.1.2. Forall t = 1, ... T, the response y, has the unconditional mean
and variance given by
E(Y) B =pm (say). (4.10)
Varl¥) = Y64 Eylo].
i
= pu (say). (4.11)
For u < t, the unconditional covariance between y, and y is given by
CovlY, Y] = Y 0*¥Ey|
i=
= pu (say), (4.12)

where Eylo?] for a given time j is already given in (2.8) following the dynamic rela-

tionship (1.2) [see also (4.4)]. That is,

y 1,2
Bu(o) = emp(d ol + 53 'v?')
=

(4.13)
Proof. The unconditional expectation in (4.10) follows from the fact that, the condi-
tional mean in (4.5) is free from of,...,0%,....0%.

The unconditional covariance s obtained by using the formula.

Cov[Yu, Y] = Eop. o [Cov(YuY)lor, ....a]

+Covay,... a[E(Yalo, . . . ,00), E(Yilon o)) (4.14)



Since the conditional expectations shown in (4.5) are free from oy (t = 1, . ...T),
the second term in (4.14) is zero. Furthermore, using the formula for the conditional

covariance from (4.7), the first term in (4.14) may be evaluated by computing E(0?)

for j=2, .. .,u. Thus, we write the unconditional covariance between ¥, and ¥; as
Cov[Y,,Y)] = Ze""-bs.., (4.15)
vielding the variance for u = t as
Var(Y)) = ia’"*ﬂ Eylo?). (4.16)
i
where Exy[o?] is as in (4.13). o

4.2 A Remarks on Stationarity

Note that, when [9] < 1 and [y| < 1 in the model (4.3)-(4.4), limiting variances as
¢ = 0o reduces to a finite constant. This is because,
Jim Var(Y,) = Jim 320 Ey| 3]
3 5%

= Jim Exlof] hng?u -5, (4.17)

Since Jim Elof] czp[ )] by (2.9) we obtain

1—«

Jim Vax(¥) = exp[ ==

)
7>
)

-

eap|%

N\ﬁa w\u

][Im\ A ”}]
= emp |

[1—9*]

][ ey s e s s stiter ]

(4.18)



Note that this limiting variances may be useful in developing asymptotic esti-

mation. Furthermore, when 6 = 0, the limiting variance in (4.18) reduces to the

stationary variances under the SV model.

4.3 Estimation of the Parameters in ODDD Model

4.3.1 GQL approach

The model (4.3)- (4.4) involves (i) 4, the p - dimentional vector of regression param-

eters (ii) 6, the dynamic dependence parameter (iii) v, dynamic volatility parameter

and (iv) 2 volatility variance parameter. In Chapter 2, we have estimated 5 and

2 under the SV model. In the present model 3 and ¢ are additional and important
parameters. More specifically, 4 is involved in the means of the responses, and 6,7

and o2 are involved in the variances and covariances of the responses.

Note that, 4 is clearly a vector of regression parameters. As far as @ is concerned,
conditional on the past responses, it may also be treated as a regression parameter.
For this reason, we estimate both § and 6 by using a GQL (Sutradhar (2004)) ap-
proach originally developed for the estimation of the parameters in mixed model set
up. The other paramters namely, 7 and o2 will be estimated by using the SMM

approach that we exploited for the inferences in the SV model



432  GQL estimating equation for 5

Note that the unconditional mean s for ¥; in (4.10) is a function of 3, whereas
for u < t, the unconditional second order moments, namely Cou(Y,.,¥;) in (4.12)
are the functions of the other parameters 6,7, and o2 Thus, we construct a ba-
sic statistic using y = (v, ¥ - - - W o ,yr) to estimate 3 involved
inp=EY] = (n g2 - oo .. pr), where by (4.1)-(4.2) p = 7,8,
wWith 2 = (€123, - 215) - Let £ = () be the covariance matrix of y with
e = Cou(Ya, Y) as in (4.12). Now, for given § = (6,a") = (6,%,02), i.e. for given
¥, by following Sutradhar (2004), one may easily obtain a GQL estimate of 5 by

solving the estimating equation
'
W 1ty —py=o0. 4.19
B W (4.19)
Let Baqr. be the solution of (4.19), and the iterative equation for Jgqy is given by

e
where to compute the first order derivative % 1 (4.20) it is sufficient to compute

Boau(r+1) = Aoautr) + [(2

the derivative vector % for all t=1.... T This derivative vector has the expression
% — =,, and fgqu(r) denotes the GQL estimate of 3 as a solution of (420) at

the r-th iteration, and []3,, ) i the value of the expression in the square bracket

evaluated at 8 = foqr(r)



4.3.3 GQL estimating equation for 6
Since 6 may be treated as a regression parameter conditional on the past lagl re-
sponses, we construct the basic statistic using a vector of lag 1 based corrected pair-

wise products of the responses. Let
5= (=) @ = pa)s (e = ) (e = )
(yr1 = pr-a) (yr = )]s (1.21)
and A; = E[sy] and A = Cov(sy). For given 6,7 and o3, we first estimate § parameter

by using (4.19) - (4.20). Once we get the estimate of §, we estimate 6, by solving the

GQL estimating equation

(1.22)

As far as the formulas for A; is concerned, we write

]

[l = ) = e s = ) =
P —)
aal,s

= lp om (2=

with g1, as in (4.12)

The derivation of the formulas for the elements of A is complicated. Nevertheless,



we provide the formulas for the diagonal elements of A as follows. Also an outline is
given for the computation of the off diagonal elements.
Computation of the diagonal elements of A.

Note that conditional on 07, 0%, it is clear from (4.3) that the responses follows

T- dimensional normal distribution. Thus, conditional on variances one obtains

E|(Y; = w)(Y; = 13)(Ye — ) (Yi — ), cOF| = it eien

el (4.23)
where 5, = X%, 8402, For the computation of the diagonal elements of A we
write

Varl(Yies = ) (Vi = )] = B[(Yeer = ) (Y = )]

—(E[(Yir = ) (Ve = p)?

i1 PPl PP

¢ (4.249)

where Exg g [fi1s6ias + Firani#la + #ionafian] given in Appendi .

An outline for off diagonal elements of A

For u < t, the off diagonal elements of A has the formula as

Con[(Fars = ) ¥ = . (Vi = ) = ]

= B[t = )Y = ) Vit = )i = )




B[Vt = i)V = )] B[ Vit = )%= )]

Pt Pherem1Piue + Plinn nv,'.‘,,\] = Pu-tapiore (425)

\aPions + Fiia$ha + Pl given in Appendix C.
Further note that the construction of the GQL estimating equation (4.22) also
requires the formula for the derivative of A; with respect to the elements of #, that is,
W _ S+ u—2)) 4B By o] (4.26)
% = X i wlo?
p=
Let fggr, be the GQL estimator of 6 obtained from (4.22). Similar to (4.20), faqr

is obtained by using the iterative equation

boqulr +1) = foqu(r) + [(mg‘

%) Giae-n),,,,

(4271)

where fqu(r) denotes the GQL estimate of 6 as a solution of (4.27) at the r-th
iteration, and [Jj,q, , is the value of the expression in the square bracket evaluated

at 0= faqu(r).

4.3.4  SMM estimating equation for a = (v, 02)’

(a) Unbiased Estimating Equation for 7,

Here, the estimation of 4,6 and a will be done in cycles of iterations. For given 6 and

@, we first estimate § by using (4.19) - (4.20). Once we get this estimate, we use the




GQL iterative estimating equation (4.27) for 6. For moment estimation of 7, similar
to S, in Section 2.1.1.2, under the SV model, we consider a moment function
i L . .
So = 75 201 — 18w - wB) (4.28)
T-15&
and solve
S-ElS)) = 0, (4.29)

oo with @ = Bl(ye1=2,18) (0=

I
for given 8,0 and o2. Here E[Sq] = % 3]

28)%]. The formula for -1 given in Appendix C.

By using Taylor's series expansion, it follows from (4.29) that the 7, parameter
may be estimated by using the iterative equation
5 X DE[Sy]\ !
e+ = o)+ (22 (s mis)], )
m ot
where 4y, aar(r) denotes the moment estimate of 7, as a solution of (4.30) at the r-th

iteration, and [Js, ) is the value of the expression in the square bracket evaluated

at m = 1(r). Note that the equation (4.30) requires the expression of E[S;] and
computation of the derivative ais“], which are given in Appendix C.
"

(b) Unbiased Estimating Equation for o7

For the moment estimation of 52 under the ODDD volatility model, we consider the

moment function

i =n
5= F u-wsR (@3
=




which is similar to Sy in Section 2.1.1.1, under the SV model. Now, we use the

improved estimates of 5,6 and 3 and we solve the moment estimating equation
~ElS] =0 (4.32)

for a2, where E{(y ;3" has the expression ( 546209 Eul]) fee also (4.16)]

with

Eulo}] = eap(t" logo? e 39 z )
The estimating equation (4.32) may be solved iteratively by using

=2+ [(%ﬁf"])' (s~ isi)), (1.33)

)’

where 02, .. (r) denotes the moment estimate of o7 as a solution of (4.33) at the r-th

iteration, and (], s the value of the expression in the square bracket evaluated

(")

2

at 02 = g2(r). Note that the equation (4.33) requires the computation of derivative

. which has the formula given by

3
907

6515,

- (S ey L)l

We now summarize the aforementioned estimation steps for all parameters and give
the following algorithm.

Algorithm for ODDD Volatility Model:

Step 1: For initial values of 6,7, o2,and 3 first estimate of 3 is obtained from (4.20)

Step 2: The improved estimate of 4 obtained from step 1 s used in (4.27) along with




initial values of 7, and o2 to obtain an improved estimate of 6.
Step 3: The improved estimate of § and 6 obtained from steps 1 and 2 along with
2 is used to estimate v, by using (4.30).

Step 4: The improved estimate of 5,0 and 7, is used to get the improved estimate
of o by (4.33).

These cycles of iteration continues until convergence.



Chapter 5

Concluding Remarks

sing Stochastic Volatility models to analyze time series data with non-stationary

variances has been popular over the last two decades. The inferences in such models

have, however, proven to be difficult. The

isting GMM and QML approaches are

cither cumbersome or inefficient. In the thes

., we have provided a simpler MM, as

well as a ‘working’ GQL approach, to deal with this challenging inference problem. It

is demonstrated through asymptotic and simulation studies that the proposed estima-

tion approach

s are simple and efficient than the existing approaches. An algorithm
is given to make these approaches user friendly.

We have further proposed a new volatility model that unlike the existing stochastic

volatility models, accommodates certain dynamic relationship among the

spol

given that the variances of the responses are also dynamically related. We have
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9

referred to this new model as the ODDD (observation-driven dynamic dynamic )
volatility model. The regression and dynamic dependence parameters have been ef-
ficiently estimated by the GQL approach, and the SMM approach has been used to
estimate the volatility parameters of the dynamic model in variances. Thus, the SMM
approach, which was proposed for the inferences in the standard stochastic volatility
models, is demonstrated to be useful for the wider ODDD volatility models as well.

‘The inferences proposed for the original as well as new (ODDD) volatility mod-
els should be useful to researchers working with economic and environmental time

series data, among others. The proposed estimation methodologies are extendable

to the GARCH lized conditional ) type models
considered in the literature. They will also be useful to analyze volatility models with

certain continuous non-normal errors.



Appendix A

Derivation of E[s?,0?) [for (2.37)]:
By using the recurrence relationship of Ino? from (1.2), we wrote the general form
for o7 as in (2.7). That is,
e
o = eap(af ok + 3 2fnen) (A1)
S

It then follows that the product of o7 and o7, for lag k = (1,....,T-2) and

can be expressed as
dct = em(of e+ 3 atneas) eap(af ol + S vl
b

odo) ean( X hmn-it ot es)-

- ey o

Since 7, and o7 are constant, the expectation of o2 a7 can be computed as
Eloual] = eap(s{™ naly + 1 inody)
(b2 1
Elern( % almoaci+ T otnes)]. (A2)
& =

9%




where 7, is random variable follows normal with mean zero and variance 0. Since

AP
B s T
N e-k)-1 + Me-k)

and

2
Ay = Wimme et

=

A ket ek A ek e T

we obtain:

(e
3 e +ZM, S (R R (PR

+(1+) vH] + [v*”v._m oMl m]

k2

= [a+ab b w.m.] [tén'ub].

and hence

ﬂlp(“:é:) N ke +:X:§ Am-} = rfp([ (1+9%) L,kznz'v.m ke 1] [gﬁmﬂ])
(A3)

id

Now, by using the assumption that 7 % N(0,02), and by using normal moment gen-

exp(0?/2), we can compute the expectation in the second

erating function E(e”)
part in (A.2), as
(b2 -
Elezp{ 3. Wmav+ X w’ny,A,)] = czp[ "((|+~.;’ ): 4 +Z~ )]
= =
(A4



Now by using this expression from (A.4) into (A.2), we obtain

Bt = el ol ot et + 5 (040 B o Bt

(A5)
When k = 1 and t=3,..., T, the formula in (A.5) reduces to

Ewlolof] = exp

2 s
i nady + i Inody + 7 (11 +m)? X'+ l) ]
=

(A6)
Derivation of Eylo}_0{] [for (2.50)]:
Note that the expression for o is given in (2:35). By using this formula from (2.35),
after some algebra, we obtain

Enlolsaf] = UP[ ( AW oy 441 1“'71'n)]

:r(i{ “7)‘::1 N vru.n’)f;% m—,})]» (A7)
= =

where the second part in (A.7) is given by (A4). After further algebra, we write

Bitaat] = ({0 et +202 (@4 B D)
(A8)
T, the expectation of o} ,0} has the expression given by
9 - -
2({at2 421} nok) + 203 ((1 ) Lo+ 1)]

(A9)

For lag k=1, and t=2,..

Eloiol] = en




Derivation of E[o? ,o/a?,;] [for (2.54)):

~.t-1) and t=

By using the expression for o7 from (A.1), for lag k (
nay welte
Biotsototal = em[({*+ 0t 4ot )]
a

=k = e
E[vw( Vi e-k-r) +23 W Men + D "';thu—r»)J
= = =4

(A.10)
After some algebra, and by using the assumption that 7 % N(0,02), we write

- w2 ko
E(crp[ Y W ekn +28 We-n + 3 h”mu—vw])
= = =

1

= fen({ur oS e+ {osad otus) +{F ina})]

e
+ @ Eap+ o) (A1)
= s

L T

By using this formula from (A.11) into (A.10), we obtain
Elofotolul = emp|(4 + 0 42 inoy
o a2 e
H(Flarh s e @etr ot + 24|
(A.12)
When lag k=1 and t=3,..., T, the formula in (A.12) reduces to
Elo?otota] = llp[(ﬂ”-‘-?ﬂ" +9%) oty

+(‘§{(1+~.)‘};:v?'+<z+w.)’+1})] (A13)



Appendix B

First Order Derivatives of the Covariance Matrix V w.r.t 5, and o7 [for
(2.95)]:
For V = (t1-4.) given in (2.85), the derivatives of the elements of this V matrix w.x.t

1 can be computed by

o for k=0 t=1
0 for t —k=1,t=2, ..., T
Lo "
il 2t - )71 for k=0, T (B.1)

2t = i) — k)y2e-0+t

for k =1,...t-2 and

Similarly, the derivatives of the elements of the w.r.t o2 have the formulas




0 for k=0 t=1
Oiors 0 for t — k=1, t=2, .
o - ®2)
il Tt for k=0, t=2, ..., T
TEA RN fork =1,...t-2and t=3, ...,T.

Second Order Derivatives of the Covariance Matrix V w.r.t 7, and o? [for
(2.95)):
For V = (ve-k¢) given in (2.85), the derivatives of the elements of this V matrix w.r.t

1 can be computed by

0 for k=0 t=1
0 for t—k=1,t=2, ..., T
02 T, 2(t - i)(2(t —i) - 12
e ! (B3)
for k=0, t=2, ..., T
o2 ikt — i) - k)(2(t - i) — k= 1)9{¢ I
fork =1,...t-2and t=3, ..., T.
Similarly, the derivatives of the elements of the w.r.t o2 have the formulas
>
Foe _ T (B.4)

ey




Second order derivatives of the quasi likelihood (QL) [for (2.94)]

and their Expectation:
The computation for the second order derivatives of the QL is straightforward but
lengthy. We present these derivatives below in brief.

Derivatives with respect to 7, and their expectation

The first order derivative of log Lg w.r.t 7 is given in (2.92). Now, the second order

derivative of (2.92) w.r.t  has the expression given by

Slogly _ 1 dltrace(v! L)) ad
T2 om
+r{%:‘(z —m)-d V'd
e e ) ®5)

Next, by taking expectation over (B.5), we obtain

@ log Ly 1 dtrace(V'5%: 3, 1L
THY| = a0 _J V-l h
E[ = 3 o d V7ld = gtrace
where
dJtrace(V-'2%)) v-tav PV
L = treeel StV 5l




Mm
and

v ov-!
v
o

with the formulas for the derivatives of 2. as given in (B.1)
Derivatives with respect to o7 and their expectation
Similarly, the first order derivative of log Ly w.r.t o2 is given in (2.93). Next, the

second order derivative of (2.93) w.r.t o2 has the expression given by

GlogL _ 1 Oltrace(V' )] 12 6(%;1—)
ar T T2 o7 @-m) ZEm)
(B6)
Now, by taking expectation over (B.6), we obtain
logL 1 Oltrace(V'25)] 1 %)
= 2 B Cirace |V
o2 2 007 ot
(B.7)
where
Atrace(V'25)] vl oV .
—r - - a3+ ooV~ g
a(%’,} -
a7

v v v
. 1 gt
aer VY o0 oot
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and 8¢ = — V=1 f V=", with the formulas for the derivatives of 7 given in
(B2).

Derivatives with respect to 3, & o7 and their expectation

‘The first order derivative of QL w.r.t 5 is given in (2.92). Now taking the derivative

over (2.92) w.r.t o2 has the expression given by

FlogL _
el
(BS)
Now, the expectation over (B.8), yields
PlogL
B [avx 03
with
v OV
o -V o7 v (B.9)
and

(B.10)




Appendix C

Proof of Lemma 4.1.1

Since E[e) =0fort =1, ..., T, oneobtains E(Yi|o\) = 8, and E(Y|o, ... 00) =

i for t=2, ...,T, by using the dynamic model (4.3). Thus,
E(Yioy, ...,00) = z,8, forallt=1,...,T. [(¢3)]

To compute the conditional covariance, we follow the ODDD volatility model

(4.3)-(4.4), first express y, — z, 3 as

e=ai8) = Oy =3y B) +ore

”[f/(m 2= 5B) + 0 e x]+ﬂm

ﬂY[[ll!-} —ajaB)+ 00 ly—y] e

= P[oes-aisB) + o] 00 ar+ o

Plyes = 1,38) + 02 012 €12 + 0 00y €y +0e e
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= aeg+0o a1 +600a6

oo +0 036+ 0 P+ 0 01 g
.

= Yo (€2
~

Next by using the distributional assumption for {e;;j

.t} . that is, by using

E(@)=1forj=1, ...t and Covles,c) = 0 for j # k=1, ..., we obtain the
conditional covariance for u < t, u = 1,..., T,
CovlYuYilor, ...a1) = ElYa=X,B)(Yi = X;B)lor, ...a1]
= B[y Seag
o =
+ ¥ 0 *aalio .. ,0(]
oh
s, ©3)
=
as in (47).
Note that the conditional variance Var(¥iloy, .. . ,az) follows, from (C.3) for u

Compute the expectation of @1, = El(vi-1 —

By using the expression given in (C.2), write for t=2..., T

18w —.8))

.- .
S = (Yimr =2 (Y- ) = (Z’e”"' aia)? (307 0p€)?

iy P
= (L0 o) (L0 e o)’
= =




1 1
(S0 00 [(25»717-0’(.)2
= =

oo+ ol

1
aie) + (0 o) ot

= S} +55+Sk (C4)
The expectation of 83, i.e @1, = El(y-1 — 2,.18)(u = ,9)"
G1e = EEISjlod,...,00
= EE|S}|0},...,08] + EE[Splof,..., 0] E[Sy) =0 because Ele] =0
(©5)

Next consider,

EE[S}lob....,0% = Es[f)fa""'am)‘la?. . ,af]
=

o i
EE[S 0100l +4 £S04 ata, d g
& =t
et
+3 TS g 202 2 @
15
et ie
6 555 gt 200 2
i
py

-1t
+Y ): Z G-k g, 00401 € €jeneil ot .nf]

o oot S sz

=t



1 i
= 330 Eol +3 3 Y 04432 Elg? 3],
= =t
where E[o] is given in (2.36) and E[o?0?] is in (A.5). Similarly,

| af]

EESlo?,..

- [zs‘“ ' "s[u']]mn{]m

N [gﬁm - ,AE[,;]]

(€6)
with E[o?) for t=2,...T given in (2.8)

Computation of Eyp._[¢io1Pi1s + Phte 19 + Fio1uPus-

In the same manner as above one can compute this expectation.
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