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Abstract

In some real life time series, especially in financial time series, the variance of the re-

sponsesover time appear to be non-stationary. The changes in thevarianc sofsuch

data are usually modeled through adynamic relationship among thesevariances, and

subsequently the responses are modeled in terms of the non-stationaryvariances. This

type of time series model is referred to as the stochastic volatility model. However,ob-

taining the consistent and efficient estimators for the parametersofsuchamodelhas

been proven to be difficult. Among the existing estimation approaches, the so-called

generalized method of moments (GMM) and the quasi-maximum likelihood (QML)

estimation techniques are widely used. In this thesis, we introduce a simpler method

of moments (8MM), which, unlike the existing GMM approach, does not require an

arbitrarily large number of unbiased moment functions to construct moment estimat-

ingequations for the parameters involved. We also demonstrate numerically that

the proposed 8MI\I' approach is asymptotically more efficient than the existing Q~lL

approach We also provide another simpler 'working' generalized quasi likelihood



(WGQL) approach which is similar but different than the SM 1 approach. Further-

more, the small and large sample behavior of the SM~,I and WGQL approaches are

examined through a simulation study. The effect of the SMI\I estimation approach is

also examined for kurtosis estimation.

In volatility models mentioned above, the responses are assumed to be uncorre-

lated. However, in some situations, it may happen that the responses become influ-

enced by certain time dependent covariates, and as opposed tothestandardstochastic

volatility models, the responses become correlated. In the later part of thesis, we in-

troduce an observation-driven dynamic (ODD) regression model with non-stationary

error variances, these variances being modeled as in the standard stochasticvolatil-

ity models. We refer to such a model as the observation driven dynamic-dynamic

(dynamic2) (0000) volatility model. The parameters of this wider model are es

timated by using a hybrid estimation technique by combining the GQL and Sl\IM

approaches.
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Chapter 1

Introduction

The analysis of Gaussian time series data with non-stationary means and a suitable

correlation structure has a long history both in statistics and econometrics litera-

ture. See for example, Box-Jenkins (1994) and Harvey (1989). In a financial time

series analysis, it was, however, observed by (Black and Scholes (1972, pAl6)) that

the variances in stock returns and/or exchange rate data may changeover various

time intervals. Intheirconcludingremarks,theseauthors,therefore,emphasizeclon

research in this direction. Note that the modelling of this typeofnon-stationaryvari-

ancesbasecltimeseriesdataisdoneeitherbyusingasuitabledynamicrelationship

for the variance at a given interval with the variances from the past time intervals;

or by using a suitable dynamic relationship for the variance at a given time inter-

val with the past squared observations. The former model is generally referred to



as the stochastic volatility (SV) and the later model is known as the autoregressive

conditional heteroscedastic (ARCH) model. When the variance at a given time point

satisfies a relationship with past variances as well as past squared observations, the

model is referred to as the GARCH (Generalized ARCH) model. Since the pioneering

work of the nobel laureate Engle (1982) [see also Engle and Kraft (1983), Engle et.al

(1985), Engle and Bollerslev (1986), Bollerslev et.al (1992), Engle and Kroner (1995),

Engle (2004)], the aforementioned models have been widely applied in the economet

ric literature. For example, we refer to Taylor (1982), Anderson and Sorensen (1996),

Harvey et.al (1994), Ruiz (1994), Taylor (1994), Durbin and Koopman (2000), Broto

and Ruiz (2004) Bollerslev (1986), Engle and Gonzalez-Rivera (1991) for the appli

cation of SV, ARCH and GARCH models

As far as inferences in the SV, ARCH and GARCH models are concerned, the

aforementioned papers including the papers by Bodurthaand Mark (1991), Simon

(1989) use the so-called generalized method of moments (GMM) and/or quasi- max-

imumlikelihood (QML) approaches. These approaches are however numerically cum

bersomeand also they may not be efficient as compared to certain simplerapproaches

In Chapter 2, we provide some simpler and efficient approaches for the estimation of

the parameters of the SV model. However, before developing the new approaches, we,

for convenience, explain the existing inferences such as GMM and QML techniques in

Section 1.2.1 and 1.2.2 respectively. In Section 1.1, we present the existing SV model



along with its basic properties. The ARCH model is also discussed in brief in the

1.1 Existing Volatility Models

1.1.1 Stochastic Volatility (SV) Model

Lety,betheresponseattimet(t=1,... ,T).Supposethatu;denotes a random and

unobservedvarianceofy,.lfu;were,however,known,theniti referred to as the

conditional variance ofy" i.e, Var(Yilu,) = u;. Note that the conditional Gaussian

time series data {y,} with mean zero and variance {un may be modelled as

y, = U,f, t= 1, ,T, (11)

[Taylor (1982),forexample] where error variablesf,'s are independentlyandidenti

cally (iid) normally distributed with mean zero and variance 1,thatis,f,'.!:JN(O,1).

Also,f, and u,areassumed to be independent. Sinceu; is unknown and it is reason-

able to assume that the correlations between u;'s may decay as time lag increases,

Taylor (1982), Anderson and Sorensen (1996) among others, have u ed Gaussian

AR(1) type process to model the variances. That is,

In(u;) = h, = -Yo + -y\ h'_l + '7,; t = 2, .. ,T, (1.2)

where-yo is the intercept parameter, -y\ is the volatility persistence parameter and

'7, ~ N(O,u~) with u~ as the measure of uncertainty about future volatility. Note



that if hI! < I, then h,'s follow a stationary AR(I) process. In (1.2), similar to Lee

and Koopman (2004,eqn (l.1c)) it is reasonable to assume that

Without any loss of generality we will use this stationarity assumptionsallthrough

1.1.1.1 Basic Properties of Stochastic Volatility Model:

(a) Asymptotic Mean, Variance and Covariance in {Yi}

Since h, follows the AR(I) process (1.2), it may be shown that the unconditional

meanofYt is zero by (1.1). That is,

E[Yi] = Eu,ElYila,] = Ela, Elf,]] = 0, (1.4)

as a; and f,areindependent. Next, theunconditionalvarianceofy" Le., Var(Yi),we

Var(Yi) = Eu:!Var(Yila;)] + Varu1IE (Yila;)]

= Eu:!a;Var(f,)] = Ela;]. (1.5)

Since h, has the AR(I) relationship as in (1.2), it is clear that for hI! < I, h, = loga;

has the asymptotic mean and variance given by

lim Varlh.l= .,----"--o=a:. (1.6)



respectively [see also Harvey, 1994, p.249, Jacquier, 1994, p.3 6 and Anderson and

Sorenson, 1996, p.331j. ow, as a; = exp(h,), where h, follows the normal distribu-

tion by (1.2), by using the moment generating function ofh"weobtaintheasymptotic

varianceofy,as

".!.~Var(Y,) = ,l.!.m E[a;l = exp(/Lh + ~) = a2
(say) (1.7)

[see also Tsay, 2005, p.134, Mills, 1999, p.127, Jacquier, 1994, p.386, and Anderson

and Sorenson, 1996, p.331]. Next, by using the definition of the covariance, th lagk

(k=1,... , t-1) unconditional covariance between Y,_kand Y, may be computed as

COV(Y,-k, Y,) = E[(Y,-k - E[Y,-k])(Y, - E[Y,J)] = E[Y,-kY,] - E[Y,-k]E[l'i1

asE[Y,j=0;a,and€,areindependent;andalso€,'.!!!N(0,1)

(b) Asymptotic Mean, Variance and Covariance in {y,2}.

otethat the mean, variance and covariance of {y,} are given by (1.4), (1.5) and

(1. ), respectively. However, as one is interested to fit theSV model (1.1) - (1.2) to

the data, it is important to estimate the parameters O,/'I and a; involved in (1.2).

Consequently, it is natural that these parameters be estimated byu ing{Y,2} rather

than {Y,}. The unconditional meanofy,2 is



which is given by (1.7). Next, because E[Etl = 3, in the fashion similar to that of

(1.7), we compute the limiting variance ofr,? by using

,1~n~ Var[}~2] = ,1~~ [E[Y.']- (E[y'2]f] = ,1~~ Ea;E[<TtEtl<Tt]- ,,' = 3 tl!.~ E[<Tt]- ,,'

= 3exp [2/l h +2<T~] -,,'

(1.10)

[see also Tsay,2005, p.134, Mills, 1999, p.128, Jacquier, 1994, p.386 and Anderson and

Sorenson, 1996,p.331]. Next, by definition, the limiting lag k (k=I,. ,t-l)covariance

between the squared responses Y.=-k and y'2 is given by

Next, by using the dynamic relationship (1.2) and the moment generating function,

we obtain,

(112)

[see also Mills,1999, p.128, Anderson and Sorenson 1996, p.331 and Jacquireet.al,

1994, p. 387]. It then follows from (1.11) and (1.12) that



see also Mills, 1999, p.128, Anderson and Sorenson 1996, p.331 and Jacquireet.al,

1994,p. 387. Consequently, by applying (1.10) and (1.13),oneobtainstheasymptotic

lagk (k = 1,... ,t-l) correlation between the squared responsesY,:k and 1';' as

t~~ Corr[l';:k' I';'J = ,'~~ [JV~~~~~)~~~~)']
eXP(21-'h+(7~)(exP['Yk~] -1) (exP['Yf(7~] -1)

exp[2 I-'h + (7~][3 exp(7~) - 1) [3exp(7~) - I] .

(1.14)

Note that, the numerator in (1.14) lies between 0 to 00 and the denominator lies

between 2 to DO. Hence, the asymptotic lag k correlation between I';:k and Yt' is

bounded between zero to 1. That is,

o< tl~ Corr[l';:k' Y,') < 1.

Asymptotic Kurtosis:

ote that it is standard to use the kurtosis to explain the volatility in the data. By

definition, the limiting (t-too) kurtosis under theSV model has the formula given

by

t~~ K(Y,) = ,'~n (~~q)2 = t~~ (~llf1, = 3 exp(7~) > 3, (1.15)

[see also Harvey 1994, p.249, ~,lills, 1999, p.128]. Hence, the volatility model (1.2)

produces larger kurtosis when compared to the Gaussian kurtosis, Also, the peak



appears to depend on the volatility parameter values 1'1 anda~ (see also 1.15). Thus,

it is essential to estimate the model (1.2) parameters. namely 1'1 and a~ consistently

and efficiently.

1.1.2 ARCH/GARCH Models

Asopposedtotheabovemodel,in1982,Englesuggestedanobservationdrivenmodel,

that is, ARCH model, to study the time varying observed variances. In the ARCH

model, the conditional variance of the time series {y,} is a deterministic function of

lagged values of the squared observations [Engle, 1982]. That is,

az = C>o + C>tYZ_l + ... +C>pYZ_ p t = 1,2 ... ,T.

(1.16)

Further, Bollerslev (1986) generalized the ARCH model, by expressing the conditional

variance as a function of lagged squared observations and lagged variances. That is,

t= 1,2 ... ,T,

(1.17)

which is referred to as the generalized ARCH (GARCH) model.

However, in the thesis, we concentrate only on the SV model (1.1) - (1.2) and a

generalization to be discussed in Chapter 4. Thus. there will be no further discussion

of the ARCH/GARCH models.



"Ve now turn back to the SV model and briefly discuss two widely used techniques

for the estimation of the parameters Crl and (1~) of this SV model

1.2 Two Existing Estimation Methods for SV Model

There exist many approaches for the estimation of the volatility parameters namely,

/'O,/'I and (1~, involved in the SV model (1.2). For example, we refer to the (1)

generalized method of moments (GMM) [Melino and Turnbull, 1990, Anderson and

Sorenson 1996], (2) Quasi maximum likelihood (QML) [Harvey et.aI1994, Ruiz, 1994],

(3) simulation-based maximum likelihood (SML)[Danielsson 1994 and Danielsson and

Richard 1993], and (4) Bayesian Markov chain Monte Carlo (MCMC) analysis ap

proach [Jacquier et.al 1994)]. Since the GMM and QML approaches are compu-

tationally less cumbersome as compared to the SML and MCMC approaches, they

have been widely used over the last three decades, especially inalargetimeseries et

up. For recent discussion on these two methods, we for example, refer to Anderson

and Sorenson (1997) and Ruiz (1997). For convenience, these two approaches are

presented in brief in the following two ections.

1.2.1 Generalized Method of Moments (GMM) approach

The GMM approach (Hansen (1982)) utilizes a large number of unbiased moment

functions of the absolute and/or squared responses. More specifically, Anderson and



Sorensen (1996, p. 350-351) have used 34 unbiased moment functions (see also An-

derson and Sorensen (1997)) to construct the GMM estimating equations mainly for

"II and lT~ parameters. These 34 moment functions are given as

g'4 = Y: - Ely:], g',4+1 = !Y,Y,-t1- EIY,Y,-t1, g',I4+1 = YZYZ-I - EIyZYZ_,],

g',24+1= ly,IYZ-l-Elly,IYZ-I] 1= 1, ,10. (1.18)

and they are used to construct the GMM estimating equation for a' = hO,"I1,lT~)'

as given by

(1.19)

g(a') = ~ ~g,(a') with g,(a') = Ig,,(a'), ... ,g,,34(a')]', (1.20)

with /\ = Cov(g(a')) as an optimal choice. Later on, Anderson and Sorensen (1997,

section 3, p.399-400) have used 24 unbiased moment functions out of 34 functions

shown in (1.18). Their 24 functions are:

g" = lytI- EIY,I, g'2 = YZ - EIYz], g'3 = lytl3
- EIY,1 3, g'4 = Y: - Ely:]

g',4+1 = ly,Yt-t1-EIY,Yt-t1, gt.l4+t = YZYZ-l-EIYZYZ-I]' 1= 1, .,10

(1.21)



It should be clear from (1.1 ) and (1.21) that there is no guidelines available how

the moment functions such as 34 functions in (1.1) and 24 functions in (1.21) were

chosen, when in fact. one can think of infinite number of such functions(Melinoand

Thrnbull (1990, p. 250)). This raises a concern about such an estimation procedure

where an arbitrary large number of functions are needed to estimate a small number

of parameters.

Furthermore, since the construction of the moment functionsgt, (j=1, ... ,24or34)

requires the computation of expectation of different functions which may not be easy

to simplify, and because the computation of the weight matrix /\ can be compli-

cated, the GMM approach on the whole becomes very cumbersome. We, therefore,

do not include this approach for the comparison with our proposed approaches that

we discuss in Chapter 2.

1.2.2 Existing Quasi Maximum Likelihood (QML) approach

As an alternative to the GM~1 approach, there also exist a QML (Quasi maximum

likelihood) approach for the estimation of the parameters of the SV model (1.1)-

(1.2). For example, we refer to [Nelson(198 ), Ruiz (1994), Harvey et.al (1994), and

~lills (1999, p.130-131)]. This Q 1L method is developed first by formulating a quasi

(pseudo) likelihood (QL) based on normal approximation to the log chi-square dis-

tribution of tit = logf~ - E[IOgf~), where ft ~ N(O, 1), and then ma;"imizing this



quasi-likelihood with respect to the desired parameters. Note that this QL abbrevia-

tion may confuse the QL used in the generalized linear model (GLM) set up, where

QL is constructed by using the first two moments of the data. Due to this approxi-

mation the QML approach is supposed to lose efficiency [Broto and Ruiz (2004)1 in

estimating the parameters. This approach is, however, not so cumbersome as com-

pared to the G~[~[ approach

We now present the Q~lL approach in brief. For this purpose, we re- express the

model (l.l) as

z, = logy~ = 10gO"~ + logf~

= E[log f~1 + log O"~ + u,

'" 1<1 +logO"~+u, t= 1, ... ,T, (1.22)

where f, ~ N(O, 1) and 1<1 = -1.27. Further, u, follows the log chi-square distribution

with mean zero and variance 1<2 = 1f2/2 [Abramovitz and Stegun (1970, p. 943)1. It

then follows that the exact likelihood function for 1'1 and O"~ is given by

L(')'I,0"~lzI,Z2, ,zr) = 11,ADg(Z,-I<I-lnO"n

f(O";)gf(O"~IO"~_I)dO"; .. dO"} (1.23)

whereg(u,) represents the logX2(0,1<2) distribution

It is, however, clear from (1.23) that the integration over the random variances

O"f, ... ,O"} is complex mainly because they follow the dynamic reJaitonship (1.2).



Some authors have used an alternative 'working' ML approach, namely, a quasi-

maximum likelihood (QML) approach. See. for example, elson(1988), Harvey et.al

(1994), Ruiz(1994), J{oopmanetal (1995, chapter 7.5) and Mills (1999, p 130-131)

Specially, to approximate the exact likelihood function in (1.23), Ruiz (1994) and

Harvey et.al (1994), for example, have approximated the distribution by pretending

that z = (ZI,Z2, ,ZT)' follow a quasi-multivariate normal distribution. This

leads to a quasi-likelihood, which is maximized to obtain the QML estimates for 1'1

and <T~. This approach is computationally feasible for the estimation of the required

parameters, specially as compared to the GMM approach. For this reason, we will

include theQML approach for asymptotic variance comparison with our proposed

estimates. This comparison will be done in Chapter 3

1.3 Objective of The Thesis

Even though the volatility models are very important to study thedynamicchange

in variances in a time series, and also these models are widely ued, there is no

user friendly (simple) estimation techniques available for the inferences in stochastic

volatility model. This is because, as explained in Sections 1.2.1 and 1.2.2, the exist-

ing GMM approach is arbitrary and cumbersome, whereas the QML approach may

not be efficient (as compared to other simpler approaches) even ifit is known to be



feasible computationally.

One of the main objectives of the thesis is to develop a simpler and efficientesti-

mation approach, specially as compared to the Q!\lL approach, given that the GMr-l

approach is very cumber ome and hence it is not practical. Furthermore, there are

many situations where it may be appropriate to consider correiated observations con-

ditional on the variances whereas in theSV model (1.1)-(1.2), the responses {y,} are

uncorrelated conditional on {a,}. Innon-volatilitysetup,thistypeofcorrelation

models for observations (dynamic model) has been discussed by some authors. For

example, we refer to Bun and Carree (2005), and Rao, Sutradhar and Pandit (2010)

in the longitudinal set up. [n the thesis, we consider this type of dynamic model for

timeseriesobservations,asopposedtothelongitudinalobservations,conditionalon

the heteroscedastic errors of the series

In Chapter 2, we propose two new simpler estimation approaches as compared

to the existing approaches. These new approaches are developed by using only few

appropriately selected unbiased moment functions. and they will be referred to as the

simple method of moments (S~lr-I) and 'working' generalized quasi likelihood (WGQL)

approaches. It is argued that as opposed to the existing GMM approach usingar-

bitrarilyselected 24 or 34 unbiased moment functions, for example, it is enough to

consider only 2 or 3 unbiased moments to construct the proposed SMM and WGQL



estimating equations. However, the important task is to find the best way to solve the

estimating equations to be constructed by using these few moment functions. The

constructionoftheS1V':VI approach both for finite and asymptotic cases is discussed

in details. However,fortheWGQLapproach, we provide the construction in details

for the finite case only. The construction for the asymptotic case can be done eas-

ily. umerical algorithms are also provided to make these approaches user friendly.

To examine the asymptotic behavior of the proposed SMM and WGQL approaches,

in this chapter, we provide an asymptotic efficiency comparison between these two

approaches. Furthermore, since the existing QML approaches is computationally

manageable, we have inc!uded this approach in our asymptotic efficiencycomparison.

Based on the numerical algorithm developed in Chapter 2, in Chapter 3, we con-

duct a simulation study, first to examine the finite sample performances of the pro-

posed SMM and WGQL approaches. ext, we continue the simulation study to ex-

amine their large sample performances. For this purpose, we provide both imulated

mean and standard errors of the propo ed estimators. Note that these large sample

basedsimulatedstandarderrorsarecomparablewiththestandardcrrorsreportedin

Chapter 2. In same chapter, the effects of estimation of the volatility parameterson

the kurtosis are examined for small as well as moderately large timeseries

In Chapter 4, we extend the SV model in (1.1)-(1.2) to an observation driven



dynamic model set up. This extended model, unlike the SV model, can accommo-

date correlated responses conditional on the non-stationary variancesoftheseries

For simplicity, we will however, consider the lag 1 conditional dependenceamongthe

observations conditional on the variances. This generalized model will be referred

to as the observation-driven dynamic dynamic (0000) volatility model. The pro

posed SMM approach will be used to estimate the parameters of this 0000 volatility

model, whereas the regression effects and dynamic dependence paramcter will bees-

timated through a generalized quasi-likelihood (GQL) approach

The thesis is concluded in Chapter 5, with some remarks on possible future works



Chapter 2

Proposed Estimation Technique in

Stochastic Volatility Models

Note that because of the importance of volatility model (1.1)-(1.2), there has been

an enormous effort, in the past to obtain consistent and efficient estimates of the

parameters of this model. As mentioned in the last chapter, we refer to the GMM,

QML, SML and MCMC methods for the estimation of the parameters involved in

the SV model. Note however that among all these approaches, the G~I 1 and QML

approaches are still widely followed in practice even though these approaches are ei-

ther complex and arbitrary. Also, there is no guarantee that one method will be more

efficient than the other (see for example, Anderson and Sorensen (1997, Sections 4-5),

Ruiz (1997)). The relative performance of the GM~1 and Q~L approaches is given



mainly because of the fact that other appraaches are either computationally more

involved or less efficient than these approaches

Since the GMM and QML approaches are still considered to be complicated, in

this chapter we investigate for any possible impler estimation approaches. I'dore

specifically, in Section 2.1 we develop a moment technique which, unlike the GMIVI

approach, uses only two unbiased moment functions to construct theestimatingequa-

tion for two important volatility parameters of the SV model. A mentioned earlier,

we refer to this method as the SMM (Simple Method of Moments) approach. In Sec-

tion2.2, we provide a similar but different approach, namely, a 'working' generalized

quasilikelihood (WGQL) approach. In Section 2.4, we compute the asymptotic vari-

ances of these SMM and WGQL estimators, which are, subsequently, used in Section

2.5 for a numerical comparison. Also the variances of the estimators are compared

with the modified QML approach. ote that the Gl\IM approach will not be consid-

ered for comparison, as it was indicated in (1.18)-(1.19) that it uses arbitrarily large

number of moment functions, which is not user friendly

2.1 A Simple Method of Moments (SMM)

For simplicity, similar to Ruiz (1994), Anderson and Sorenson (1997) and Brato and

Ruiz (2004), we choose 'Yo = 0 under the volatility model (1.2). Similarly, even

though In a; under the SV model, (1.2) is upposed to be a random N (0, I ~~'Y; )



variable, for convenience, one may choo e a small value for a~ such that lna~ --+ O.

Now, for the construction of the moment estimating equations for the main parame-

ters, namely 1', and a~, we choose only two unbiased moment functions as shown in

Section 2.1.1. A justification for selecting two such moment functions isalsooutlined.

2.1.1 Unbiased Moment Estimating Equations for "11 and O"~

in Finite Time Series

2.1.1.1 Selection of Moment Function for Estimating a~

Note that it follows from the model (1.1) - (1.2) that if h, = loga~ were following a

white noise series with mean 0 and variance a~, that is E[all = Var(Y,) = h'(a~), a

suitable constant function of a~, then one would have estimated h'(a~) consistently

1 T
by u ing S, = T ~[y, - E(Y,)f . This is because

1 T

E[SII = T~ Var(Y,) = h'(a~) (2.1)

1 T

ote that as E[Y,) = 0 [see also 1.4], S, has the simple form as S, = T ~y~. However,

under the present model, ats are unobservable and their log values atisfy a non

stationary Gaussian AR(1) type relationship given by (1.2). with errors '1, ~ N(O. a~).

This leads to the expectation of S, as a function of both 1'1 and a~, instead of h·(a~).



Suppose that

(2.2)

forasuitableknownfunction'g,'. Weevaluatethisg,(.) function in Theorem2.1.l

Note that between 1, and a~ involved in g,(.), 1, is known to be a bounded

parameter. That is, bd < 1. This assumption makes the AR(l) process for lnaf = h,

to be stationary. But, unlike 11, a~ > 0 can take any value in the real line [0,001·

However, since E[Sd = h'(a~) in the white noise case, we suggest to exploit S,

for the construction of the estimating equation for a~, even if the series is not white

noise. This is because, the desired estimating equation should also be valid for the

white noise case. Thus S,-g,(.) would be considered as the best possible unbiased

moment function for the estimation of a~ That is, we solve the SMM estimating

equation

for a~, by using a suitable value for 11 such that bll < 1 We now return to the

derivationofg,(.) as in the following theorem, before we provide theselection for the

unbiased moment function for the other parameter 1,

Theorem 2.1.1. TheunconditionalexpectationJorS, is given by



1 T
Proof. Since 51 = T f;YZ, we write its unconditional expectation as

E[5,j = E01nE[~~Y,2IUZ] = ~Eo1nE[YI2+ ~Y,2IUZ]

= ~ [Eo1n E[yj
2Iu;] + Eo1n E[~ Y,2IuZ]]

= ~ [Eo1nE[f;U;lu;] +~ Eo1nE[fZUZluz]]

= ~[EM[U;] + ~ENduZ]]' (2.5)

with U[T) = (u;, ,u}), where EM denotes the model based expectation, where the

assumed model for u; is given by (1.2). Now for a known value of u~ = u~o such that

lnu~ ----; 0, we rewrite the expectation in (2.5) as

(2.6)

We now derive E,.dun for (2.6). First by using the recurrence relation hip from the

equation (1.2), we write the general form foru; as

uZ = exp ( 1':-llnu;o + 1':-27/2 + 1':-3'13 + 1':-47)4 + . + 1'17)<-1 + 7)1)

= eXP(I':-llnu;o+~l'r1J(t-r)) t=2, .,r (2.7)

ext, since 7), ~ N(O,u~), by using normal moment generating function E(e"') =



exp(a~/2), it follows from (2.7) that EAdaZl is given by

EAda~1 = exp( 'Y:-11na;o + ~ a~ ~ 1';')

= exp( 'Y:-1lna;o + ~ {\-_'Y~~I}) t = 2, ... ,T. (2. )

Now by using EM[a~1 from (2.8) in (2.5), we obtain E[Sd = 91(.) as in the theorem.

Note that even if 1'1 is known, the solution of (2.3) requires a good initial value for

a~, which we suggest to obtain by solving an asymptotic unbiased estimating equation

whereas the estimating equation in (2.3) is valid for any t ~ 2. Note that fort-t ,

I'YII,-I -to as l'Yd < 1. It then follows that

.'~~ E[y,2] = ,l~~ EM[a~]

= exp[~C~'Yf)]'
(2.9)

We now want to construct an unbiased moment function as a reflection of the limiting

property shown in (2.9). Forthis,onecanfindaTosuchthatforanyt>To,'Y:-1-t0

for l'Yd < 1 and write a basic statistic as

(2.10)



I T

)~!1Jo E[5101 = T _ To ,=E, ,l!.~ ElY?]

= exp[~C~'Y[)] =91Ot'Y,,<7;') (2.11)

Thi asymptoticexpectationisquitesimpleforthederivationofaninitialvaluefor

<7;', for an initial valueof'Yl ='Y,(O). For'Y' ='Y,(O), let <7?,(O) be the solution of

(2.12)

(2.13)

2.1.1.2 Selection of Moment Function for Estimating 'Y,

Next, to construct an unbiased estimating equation for'Yl, we first ob erve that 'Y\

is the lag 1 dependence parameter in the Gaussian AR(I) model (1.2). We therefore,

I T
choose a lag I based function given by 5, = T-=-!~ YZ-,YZ to construct the moment

equation for'Y\. Suppose that the expectation of 5, as a function of both 'YI and<7?,

is denoted by 9,('YI, <7;', <7[0)· One may then solve the SMM estimating equation for

'Ylgivenby

(2.14)

for known value of <7;' = <7;'(0). We now derive the formula for 9,t'Y" <7;', <7[0) which is

given in Theorem 2.1.2 below.



Theorem 2.1.2. TheunconditionalexpectedvalueojS2 is

g2h",U~,ui) = T~lHo eXP(-Yllnuio+~)

+~ exp(-y:-' In uio + "1:-2In uio + ~{(1 + "II f ~ "Iii + I})].

(2.15)

= T ~ 1 [EalT)E[fif~uiu~luiu~) +~ EalnE[f;_tf;u;_,u;lu;_,u;l]

= T~ 1 [E[uiu~) + ~E[u;_,u;l] = T~ 1 HoEM[u~l + ~EM[u;_,U;l],

= T~lHo [exP("Illnuio+~)]

+~exp(-y:-llnuio+"I:-2Inuio+~{(1+ .)2 ~ ;1+ 1})]

= T~lHo [exP("Illnuio+~)]+gP("(I'u~)] (say), (2.16)

withu[T) = (u;, ... ,u})

Note that the derivation for EM[uF-IU;J, the expectation of the pairwise products of



ai-I and al is lengthy but straightforward. For convenience, we provide the deriva-

tion for EA/[ai-Iall in Appendix A. For convenience, we, re-write the formula for

EA/[al_lalJ from the appendix. The formula is:

(2.17)

Note that, in the above discussion, we have given a justification for the selection

of two unbiased moment functions in (2.3) and (2.14) for the estimation of a~ and

'YI respectively. We have also indicated that a good initial value of a~ = a~(O) can

be computed from the asymptotic moment equation for a~ given in (2.13). To make

this estimation approach user friendly, we now give a numerical algorithm for solving

(2.3) and (2.14) for a~ and 'YI respectively, by using the initial value of a~(O) obtained

from (2.13)

Algorithm

Step 1: For a small initial value 'YI = -/1(0) and af = afo we choose a~(O), an initial

value of a~ by (2.13)

Step 2: Once the initial values are choosen/computed as in Step I, we solve 52 -

g2(-y"a~,afo) = 0 by (2.14) iteratively to obtain an improved value for 'YI. The



iterative equation has the form

where -il(r) is a value of 1'1 at r'h iteration, and [.I-;,(r) is the value of the expres-

sion in the squared bracket evaluated at 1'1 = 7,(r). By following the formula for

g2(I'"a~,aro) from (2.15), the derivative of ag2(')'~~~,aro) in (2.18) has the formula

given by

a{g2(')'~~~,aro)} = T ~ 1 [aro exp (1' I lna;o +~) 1'1

+(~exP(l'f-llna;o+l'f-2Ina;o+ ~{(1 +1'1)2 ~I';l + l})
((t -lhf-2Ina;o+ (t - 2hf-3 In a;o

+~{2(l+1',) ~1';1+(l+1',)2 ~(2Ihf21-I)))] (2.19)

Step 3: The estimate of 1'1 obtained from Step 2 is then used to solve SI-g'(1'I,a~,aro) =

oin (2.3) iteratively to obtain an improvement over a~(O) The iterative equation

where ;~(r) is the value of a~ at r1h iteration, and [.I.;(r) is the value of the expres-

sion in the square bracket evaluated at a~ = a~(r). By following the formula for

gl(l'l,a~,aro) from (2.4), the derivative of agl(')'~~~,aro) in (2.20) has the formula



given by

This 3 steps cycle of iteration continues until convergence. Let the final estimates

obtained from (2.18 ) and (2.20) be denoted by 'iI,SMM and ';~,SMM respectively.

2.1.2 Moment Estimation in Large Time Series

In this case we provide the estimating formulas for "I and a;' by using {yd for

t > To, where To is sufficiently large and II'd < 1 leading ,,:-1 --t O. For this purpose,

a;' = a;,(O) is still evaluated from (2.13) by solving 5 10 - 910(.) = 0 (2.12) where

510 = T~To,=t+lYi
By the same token, we now consider 520 = T _ ~o _ 1 t=t+2 yi-Iyi and solve the

estimating equation

(2.22)

for "I, where

920(')'1, a;') = )~oo E[5201 = T _ ~o _ 1 t=t2t~~ E[Y;:I Y,2)

= T - ~o - 1 ,=t+)2Jn EM[ai_Iail

= exP[1:;'"J (2.23)

where the formula of EA/[a;_la?lisgiven in (2.17)



Algorithm for T ~ 00

As far as the algorithm for this large To case is concerned, we summarize it as follows.

Step 1: For a small initial value ')') = ')',(0) and a; = a;o we choose a~(O), as an

initial value of a~ by (2.13).

Step 2: Once the initial values arc chooscnjcomputed as in Step 1, we solve (2.22)

for')') iteratively to obtain an improved value for')'). The iterative equation has the

i',(r+1) = i')(r)+[~r[S20-920]

= i')(r)+[expC~~')'J((l~~))2)r[S20-920]['1 (2.24)

where-iJ(r) is a value of')') at rth iteration, and [.]-;,(,) is the value of the expression

in the square bracket evaluated at ')') =i',(r)

Step 3: We use improved ')') from (2.24) in Step 2 and solve (2.13) to obtain an

improvedasymptoticestimatefora~.

This cycles of iteration continues until convergence.



2.2 A Generalized Quasi Likelihood (GQL) Method

in Finite Time Series

In Section 2.1, we proposed a user friendly simple method of moment (SMM) approach

to estimate the volatility parameters for both finite and large time series case. How-

ever, there exists a relatively new, namely, the generalized quasilikelihood (GQL)

approach [Sutradhar (2004), Mallick and Sutradhar (200 )]thatyieldsefficientesti-

mates. [n Section 2.2.1 and 2.2.2 we show how to construct this GQL approach for

(T~ and 1'1 respectively. Note that even though we provide the theoretical formulas

for the covariance matrix involved in the GQL estimating equations, it can however

be very time consuming to compute the inverse of such covariance matrices,needed

for solving the GQL estimating equations. To avoid this numerical complexity, we

provide some approximations to the construction of covariance matricesinvolved in

the equations. This will naturally yield approximate GQL estimates for the parame-

ters. For convenience we refer to this approximate GQL approach as a 'working' GQL

(WGQL) approach, and provide the estimating equations for (T~ and 1'1 in Section

2.3.1andinSection2.3.2,respectively.



2.2.1 GQL Estimating Equation for a~

Note that in Section 2.1, 'L;=,Yl was equated to its expectation to construct an un-

biased moment estimating equation in the S~[M approach. In the CQL approach,

the same squared responses are used but in a different way. To be specific, in this

approach, a quadratic form in the distances of the squared responses and their ex-

pectation, is minimized with respect to the desired parameters. Let

u = [y~, ,yl, ... ,y}j'

with its unconditional expectation as

A=E[U]=[A". ,At, ... ,ATj'.

(2.25)

(2.26)

Further, let E be the covariance matrix ofu. In this CQL approach, the quadratic

distance function, namely

(2.27)

is minimized with respect to a~, to obtain the estimating equation for this parameter.

To be specific, the CQL estimating equation for a~ is given by

(2.28)

[Slitradhar(2004),MalliCkandSutradhar(2008)]Where~isthederivativeofA

with respect to (w.r.t) a~

For (2.28), we now provide the formulas for Aand E as in the following two theorems



Theorem 2.2.1. For known o} = aro, the elements of the unconditional expectation

,X are given by

fort=l
(2.29)

fort=2, . ,r.

Proof. Note that

(2.30)

by assumption that ar is known.

Now, for t=2, ... ,T, we write

Sincea;andf;areindependentandf,~N(O,l),oneobtains

(231)

The formula for EM[a;1 for t=2, ... , T is given by (2.8). Hence the theorem

Theorem 2.2.2. Let the diagonal elements of 1; be alL = Var(Y?) and the lag k off

diagonal elements be a'_k,' = Cov(Y,:k' y,2). The formulas for the variances are given

by



and for k =1, .. .,t-1 and t=2, ., T, the lag k covariances have the formulas as

fort-k= 1,

eXP['Y:-llnaro+'Y:-k-llnaro

+~ ((1 + 'Y~)2 '~2 'Yrl + ~'Y~')] - A'_kA,

fort=2, ... ,T

(2.33)

where A, is given by (2.29)

Proof. Toobtainatt, we write

= 3 EAlla:] - A; for t = 1, ... ,T (2.34)

This is because Elfil = 3. Note that for t=l, all = VarIY,2] = 3ato - A~

t=2,.. ,T, recall from (2.7), that

By some algebra, we can write

with ar = aro Next, since 71t '.!!1 N(O, a~), by using normal moment generating

function E(e"') = exp(a~/2), it follows from (2.35) that EAllat] is given by

EAllat] = eXP(2'Y:-llna~o+2a~ ~ 'Yr') t=2, ... ,T (2.36)



Now by using EM[a}] from (2.36) in (2.34), we obtain the Var(Y?) = at< as in theo-

Next, the derive the lag k =1,. ,t-1 and t=2, ... ,T, unconditional covariance be-

tween Yt~k and yt We write

(2.37)

with E, ~ N(O,l) and Ei and af are independent. Note that the derivation for

E[aLkai) is lengthy, which is given in appendix A. For convenience, here we re-write

the formula for EA/[af_kail from the appendix. The formula is'

EM[a?_kan = exp ( 'Y~t-k)-Ilna;o + 'Y:-Ilna;o

+~ [(1 + 'Y~f t~2 "1;1 +~ "Ii'] ), (2.3 )

with E[a;a~l = a;oA2, where A2 is computed from (2.29). Now by using this formula

from (2.38) into (2.37), we obtain the lag k covariances between Y,~k and y,2 as in

Computational Formula for (1~ Estimate:

Note that A and E in (2.28), are functions of "II and a~. ow, it follows from



(2.28) that for known "II, the iterative equation for O'~ may be expressed as

when~ i:2: is tfle del'ivati've of A w.r.t O'~. By ((2.29)' the derivative has the formula

~ = ex+:-tlnO'~o+~~'Y~rm ~'Y~r], (2.40)

for t = 2, .. , T. For t=1 case, ~ =0. In (2.39) O'~(r) is the value of O'~ at rth

iteration, and [.j';;(r) isthevallleoftheexpressioninthesquare bracket evaluated at

0';' = i7;'(r). Let the final estimate from (2.39) is denoted byi7;',CQD

2.2.2 GQL estimating equation for /'1

otethat in Section 2.2, "L.;=2yZ-tYZ was equated toitsexpectationtoconstruct

an unbiased moment estimating equation for "II' In the CQL approach, we use the

same lag 1 pairwise squared responses but in a different way. To be specific, in this

approach, a quadratic form in the distances of the lag 1 pairwise squared responses

and their expectation, is minimized with respect to the "It. Let

(2.41)

and its lInconditional expectation is given by

1/I=E[V] = [1/I12, ... ,1/It-l.t, ,1/IT-t,Tj', (2.42)



where t/J'-I" = E[yLty~]. Further, let r1 be the covariance matrix of v. In the GQL

approach,thequadraticdistancefunction, namely

Q" = (v-t/J)'o-'(v-t/J) (2.43)

is minimized with respect to "fl' to obtain the GQL estimating equation for this

parameter. To be specific, the GQL estimating equation for "fl has the form

(2.44)

at/J'
[Sutradhar (2004), Mallick and Sutradhar (2008)] where a::;; is the derivative w.r.t

We now provide the formulas for t/J and r1 in (2.44) in the following theorems.

Theorem 2,2,3. For known a; = a;o, the elements of the unconditional expectation

are given by

Proof. otethat

(2.46)



whereas fort=3, ,T, the expectations of the products of lag 1 squarecl observations

are given by

asEt ~ N(O,l) and E1 and a; are independent. Further note that the formula for

EM[az-1,a;J was already given in (2.17)

This completes the proof of the Theorem 2.2.3

Theorem 2.2.4. Let the diagonal elements ofo. bew" = Var(Y;~1y,2) and the lag lojf

diagonal elements be W'-l,t = COV(Y;~1Y;2, Y;2Y,~1)' The formulas for the variances

are given by

1
9atoexP[2"lna;o+2a~] -1/!;2

WIt = Var[Y,~1y;2J = 9 eXP[2(,:-2lna;o +,:-llna;o)

+2a~((1+'1)2 L:~;;g,;I+l)] -1/!Z-I"

and for t=2, ... ,T and lag 1 covariances have the formula as

fort=2

fort=3,

W'_l,' = COV(Y,:'1y,2, y;2Y;~1) = 3exp([,r-2+ 2,:-1 + ,:] Ina;o

+[~((1 +'1)4~,;i+ (2+'1)2 + 1)]) -1/!t-1,,1/!t,'+1

Proof. First derive the formula for variances,



t=2•.... T. (2.50)

Sincef, ~ N(O.l) andf; and 0; are independent. For convenience, we include the

derivation of EAllot_lotl in Appendix A. The expression is

EM lot_lotI = exp [2(-yl-2 1no;0+,l-llno;0)

+20:'((1 +,d2 ~,;l + 1)] (2.51)

with EM[oto~1 = otoEMlo~]' where EAllo~1 is computed from (2.36). Now by using

this expression from (A.2) into (2.50).

= 9 exp[2(,:-21no;0 +,:-' In 0;0)

+20:'((1+'1)2 ~,;I+l)] -,pi-I" /ort=3. .T,

(2.52)

whereas fort=2,

= 90toE[0~1-,p;,2'

and theformulafor,p'_l"isgiven in (2.45)

Next, thecovariances. for t=2, ...•T.

(2.53)



asft~N(O,l).Forconvenience,thelengthyderivationofEAf[a?_ ,ata?+,] is given in

appendix A. The formula of E.r1aL,ata?+d is given below from the appendix. The

EM [az_,ataz+,l = eXP(['Y:-2+ 2"1:- 1 + "I:] loga;o

+[~((1+'YI)4~'Y;i+(2+"11)2+ 1)]) (2.55)

Hence the proof

Computational Formula for 11 Estimate:

The GQL estimating equation (2.44) can be solve iteratively to obtain an estimate

for "I, The iterative equation has the form

'YI(r+1) = 'YI(r) + [(~f!-'~r'(~n-'(V-1/J))][rl (256)

where ~ is the derivative of 1/J w.r.t "II. By (2.47) the derivative has the formula

fort= 3, ... ,T,

8~~,',t = eXP['Y:-210ga;o+'Y:-Ilna;o+ ~ ((1 +'Y,f ~'Y;l + 1)]

[(t - 2h:-3Ina;o + (t - 1h:-2Ina;o

+~ (2(1+'YIl ~'Y;I + (1+'YIl2 ~(2Ihl21-1))]. (2.57)



and t=2 8~;2 = a;o eXP[1' l lna;o +~] loga;o' In (2.56) il(r) is the value of 1'1 at

r'h iteration, and I}"l,j is the value of the expression in thesquarebracketevaluated

at1'! =1,(r). Let the final estimate of (2.56) is denoted bY11,GQL.

2.3 A Working Generalized Quasi Likelihood (WGQL)

Method in Finite Time Series

Note that, the derivation for the formulas of the covariance matrices ~ (2.28) and

rl (2.44) is not complex but the computation for the inverse of these full covariance

matrices is time consuming. To avoid such complexity, we will use a suitable sim-

pier form for these matrices and construct the 'Working' GQL (WGQL) estimating

equations for a~ in Sections 2.3.1 and for 1'1 in Section 2.3.2

2,3.1 WCQL Estimating Equation for (7~

To avoid the difficulty of obtaining ~-I for the GQL estimation of a~, we pretend

that Y; and Y? areuncorrelated, even though in reality they are correlated. Thus,

~d=diag[all,... ,atl, ... ,aTTI (2.58)



to replace the L: matrix in (2.2 ). It then follows that the L:d matrix based WGQL

estimating equation is given

8),,'
~L:dl{U-)..) = 0 (2.59)

Similar to the equation (2.2 ) can be solve iteratively to obtain an estimate for O'~

Let this final estimate of (2.59) is denoted by a~.WGQL

2.3.2 WGQL Estimating Equation for 11

Similar to the construction of the WGQL estimating equation for O'~, we construct

the WGQL estimating equation for "II by ignoring the covariances between Y~_IY~

andYZ_IYZ, Thus we replace 11 in (2.44) with

The formulas for the unconditional variances of (Y.:1y'2) for t =2, .. ,Taregiven

in{2.4).

We now write the WGQL estimating equation for "II as

~l1dl{V-V) = O. (2.61)

which can be solved iteratively, that is, by solving (2.44) with 11 = I1d . Let the final

estimate of "II denotedbY'YJ,wGQL.



We remark that the WGQL estimating equations for (7~ (2.59) for ')'1 (2.61) are

similar to the well known weighted least square (WLS) equations for the correspond-

ing parameters. These estimates will be consistent as the WGQL estimating equations

are unbiased. However, the estimates may not be highly efficient, as for theconstruc-

tion of the WGQL estimating equations, we have replaced the true covariances Land

n with their counter parts Ldand nd, respectively

2.4 Asymptotic Variances Comparison of the Es-

timators

2.4.1 Asymptotic Variances of the SMM Estimators

We provide the asymptotic variances of "r"SMM obtained from (2.24) as in the follow-

inglemma

Lemma 2.4.1. For $20 = 'L.;=To+2yLlyl!T - To - 1, the asymptotic variance of

')'I,SMM is given by



Proof. The expression in (2.62) for the asymptotic variance o[ ''!ISMM follows from

(2.24). Note that the formula for the derivative is also available in (2.24). For

convenience, we have re-expressed this derivation as in (2.63), where g20(-Yl,(1~) is

given in (2.23). Now it remains to show that, ),~~Var(S20) has the formula as in

(2.64). For this purpose, we write

)~!1Jo Var(S20) = )~!1Jo [(T -;0 - 1}2 Ct+2 Var(Y,:"1y,2)

+2,%,COV(Y,:"1Y,2,Y,2Y,~1))] (2.65)

Note that [or a given t, the formula [or Var(Y,:'l y,2) is given in (2.48). When T -+ 00,

we compute all necessary formulas [or t -+ 00 case with bd < 1. Thus, we obtain

i~~ Var(Y,:"1y,2) = gexpC~~J - [expC~~,.Jr

60 = 9iO(-yl,(1~)[99io(-Y1,(1~) -1] (2.66)

Similarly, [or a given t, the formula for the COV(Y,:'1Y,2,Y,2Y,~1) is given in (2.49).



Once again, for T --t 00, i.e for t --t 00, with 1'1,1 < 1 we write

t~~Cov(Y,: ,Y,2, y,2y,~,) = 3e:r;p[~C~~~r + (2+'Yd
2

+ 1)] - [expC :~'YJr

~20 = 3exp[q~G~~:)] -gio(-y"q~) (2.67)

Next, we provide the asymptotic variance of ~2",SMM obtained from (2.13) in the

following lemma.

Lemma 2.4.2. By using (2.13), one may compute the asymptotic variance oj the

SJv[M estimator oj ~2",SMM

8~~~O)lslO=glO = 2(1 - 'YnS,o'lslO=glo = 2(1- 'Yng,o'('Y"q~), (2.69)



Proof. The formula for Var(;;SMM) follows from (2.13) along with derivatives in

(2.69). Next, for the formula for Var(SIO), we write

(2.71)

otethatforagiven t, the expression forVar(Y,2) is given in (2.34 ). WhenTo -1oo,

all neces ary formulas are computed for t -1 cases with l'Yd < 1. Thus, we obtain

,l~~ Var(Y,') = 3expC2:~r) - [exp(~L ~'Yr})r

~IO = 9;kll,a~)(39;obl,a~) -1)

To compute the limiting value for the second part in (2.71), we recall the formula for

COV(Y,:k' y,2) from (2.33). Now, for To -1 00, i.e for t -1 00 with I'Yd < 1, by (2.33),

for t - k < t, and k=l, ... ,t-1, we write

t~~COV(Yt:k,Y,2) = expH[g~~~m - [exP(2(1~'Yf))r

~;o(t-k,t) = expH[g~~~m -g;ob"a~) (2.72)

This completes the proof of the lemma.

2.4.2 Asymptotic variances of the WGQL Estimators

In order to obtain the asymptotic variances of the WGQL estimators of 'YI and a~,

we first provide their exact variances expressions in the following lemma.



Lemma 2.4.3. The WGQL estimators for 1', and a~ obtained by solving (2.61) and

(2.59),havetheexactvariancesgivenby

respectively

Proof. The lemma is obvious from the estimating equation (2.61) and (2.59). This

is because, under the true model, E[(u - "\)(u - ,.\)'J = L: and E[(v -,p)(v -,p)'1 =

Lemma 2.4.4. {Asymptotic Variances} For lim To --1 00, the asymptotic vari-

ancesofilWGQL and;2"lvGQL are given by

(2.75)



(2.77)

andE are as in ihe Lemma 2.4.3

Proof. To compute the limiting variances from the exact variances in Lemma 2.4.3,

we simply compute the limiting vectors and matrices componentwi e. The formulas

for the components ofV = [tPI2""'¢'-I,t, ... ,tPr-l,r)' and A = [Al, ... ,At, ... ,Ar)'

are given in (2.42) and (2.31) respectively. We use these formulas and we obtain the

t~~~ = CO ~ID) glO(-yl,a~) =010 (say) (2.79)

Recall from (2.58) that

Ed = diag[Var(yn, , Var(l'?), ... , Var(Y.f)1

and from (2.60) that

We obtains EdO and I!dO by computing the limiting values of the components of Ed

and I!d. These limiting values are

(2.80)



where{20 and 60 are given by is in (2.65) and (2.71) respectively

Further note that, theformulasforthediagonalandoffdiagonalelementsofL:o

are given in (2.80) and (2.72)respectively. Also the diagonal and off diagonal elements

ofl! are available in (2.80) and (2.67).

otethat, we have introduced a simpler '11 (S:\IM) approach in Section 2.1 for

the estimation of the volatility parameters 1'1 and a~. The asymptotic variances of

these SMM estimators are given in Section 2.4.1. Also we have discussed the WGQL

estimation approach in Section 2.2 and the asymptotic variances of the WGQL esti-

matorsaregiveninSection2.4.2. In Section 2.5, we will conduct an empirical study to

examine the asymptotic performances of the proposed SMM and WGQL estimators.

In the empirical study, we will also include the QML approach for the asymptotic

variance comparison. The reason for this inclusion is that the Q~IL approximation is

computationally manageable, whereas the G:\l:\l approach is extremely cumbersome

as it is developed based on large number of unbiased moment functions. For the

purpose, in Section 2.4.3.1 we provide brief discussion on the QML approach and

in Section 2.4.3.2 we given the formulas for the asymptotic covariance matrix of the

QMLestimators



2.4.3 QML Estimators and Their Asymptotic variances

2.4.3.1 QML Estimation

Recall from (1.22) that

== "I +In(]~ +Vt t=I, ... ,T, (2.81)

whereft ~ N(O,l) and "I = -1.27. In (2.81), v, follows the log chi-square distri-

bution with mean zero and variance "2 = 7[2/2 [Abramovitz and Stegun (1970,

p. 943)1. As we discussed in Section 1.2.2 that the multi-dimensional integration

in (1.23) is extremely difficult, many authorss\lch as Ruiz (1994) and Harvey et.al

(1994), have approximated the distribution by pretending that Z = (Z" Z2, , ZT)'

follows a MVN (multivariate normal) distribution with true mean vector and true co-

variance matrix under the model (2.81). Let m = (m" ... ,m" ... ,mT)' = E[ZJ and

v = Cov(Z) = (v"t) be the true mean and the covariance matrix of the response

Lemma 2.4.5. Under the model (2.81),the expectation of z, is given by

mt=1-1.27+ln(]~o Jort=l

-1.27+1':-lln(]~o for t=2.. ,T

Proof. We can write Z, by using the recurrence and (1.2)relationshipas



= 1<\ +1:- 1 Inu~o + 1:-2
1)2 +1:-37]3 + + 1\7],-\ + 7], + u,

= 1<1 +1:-1 In u~o +~ 1:-'7], + u" (2.82)

fort=2,. ,T

Since E[u') = 0 and E[7]') = 0, for u~ = u~o, it now follows that

E[Z'] = 1<1 + Inu~o,

E(Z,) = 1<1 +1:-1 Inu~o = m,

where 1<1 = -1.27. Hence the lemma.

(2.3)

fort =2, ... ,T, (2.84)

Lemma 2.4.6. The elements of the covariance matrix of Z = (ZI, Z2, ,Zr)'

have the formulas

for t-k=1, t=2, . ,T

u~ I:~=21~(H) + 1<2 for k=O, t=2, ,T

u~ I:~;;h~('-')-k for k =1, .. .t-2 and t=3, ... ,T

andVtu =Vut·

Proof. The computation of Var(Z,) is straightforward from (2. 2). i.e.

Var(Z,) = E1~('-i) Var(7].) + Var(u,)

(2.85)

t=2, .... T,



with Var(Zd = K2 = 7f2/2.

We now derive the formula for the covariance between Z, and Z,. Recall that

t=2, ... ,T.

For calculation forthecovariances, we simply write

Cov(Z\, Z,) = E[(Z\ - E[ZJ1)(Z, - E[ZtI)] (2.86)

By using E[ZJ1 and E[ZtI from (2.83) and (2.84) in (2.86), after a simple algebra, we

Cov(Z"Z,) = E[UI(~'Yl'-i)'7i +u,)]

= E[UJ1E[~'Yl'-i)'7i] +E[u,u,]

(2.87)

Thisisbecauseu,~logX2(O.K2)underthemodel(2.81)

Next, for lag k (=1,... ,t-2) and t= 3, ... ,T, we write



It is clear from (2.88) and (2.89), we write the may write the formula for the auto-

covariance between Yi-k and Yt as

COV(Zt_k, Z.) = E[(Z'_k - E[Zt])(Zt - E[Zt])1

= a~ = Vt-k.t k = I, .. ,t - 2 and t = 3 , ,T

(2.90)

Next, by using the true mean and the true covariance matrix, and by pretending

that Z follows a multivariate normal distribution, we may write an approximate log

likelihood function given by

log LO = Co - ~ log IVI - ~[(Z - m)' V-I (Z - m)l, (2.91)

[Shephard,(1996eqn:1.l7)]. This approximate likelihood LQin (2.91) is referred to as

the quasi likelihood (QL). It then follows that the quasi maximum likelihood (QML)

estimates for "II and a~ can be obtained by solving

{)1~lLQ = _~ {)1~~~VI _ ()(z{)~lm)' V-I(Z _ m) _ ~ (Z - m)' {)~~I (Z - m)

= _~ trace[V- 1 ~l + d V-I (Z - m) + ~ (Z - m)'V- 1~ V-I (Z - m)

(2.92)

.M'Ytl t=2, . ,T,



81;:;LQ
= -~ 81~:rl _ ~ (Z _ m)' 8;~' (Z _ m)

= -~ trace[V- 1 ~l + ~ (Z - m)' V-I ~ V-I (Z - m)

(2.93)

respectively. Thedetailderivativesof~and~aregiVeninAPpendixB.Let

the final QML estimates from (2.92) and (2.93) be denoted by 71,QML and ;~,QML'

respectively

Note that, the true distribution ofu" namely (10gX2 distribution) is extremely

left skewed. This implies that conditional on Ina?, z, follows the logX2 distribution

Con equently, the aforementioned normality based QML approximation can be inef-

ficient. We will examine this efficiency issue empirically in Section 2.5 by usingthe

asymptotic variance formulas for the Q!l-IL estimators given in Section 2.4.3.2.

2.4.3,2 Asymptotic variances of the QML Estimators

For Q = b"a;)', for any T, small or large it follows from (2.92) and (2.93) that

the asymptotic covariance matrix of the QML estimator of Q is giv n by the Fisher

(2.94)



E [f)2~~tQ] = _~ f)[trace~~-I~)) -a y-1d- ~trace [f)~~i'Y]

[
f)2!OgU] = _~ f)[trace(y-I ~)) _ ~trace [f)[~ly]

E f)"I1 f)af 2 f)a~ 2 f)a~

E [f)2f)I(Oa~)~Q] = _~ f)[trace(Y-I~)l_ ~trace [f)(~)y] (2.95)
., 2 f)a~ 2 f)a~

with Y = Cov(Z), where Z = (ZI, ... ,Z" ... ,Zr)' with Z, = logy;' F\lrther, the

derivatives for (2.95) have the formulas as shown in the Appendix B.

Note that for the empirical study in the following section, we will compute the

variances and covariances in (2.94) for the case when t-+oo. These variances and

covariances, for convenience, we referred to as the asymptotic variances and covari-

2.5 Asymptotic Variance Comparison: An Em-

pirical Study

Recall that many authors such as Ruiz (1994) and Anderson and Sorenson (1997) have

compared the asymptotic variances of the G~IM estimators with that of the Q~IL

estimators for the estimation of the standard volatility parameters "II and a~. But as

it was argued in Section 1.2.1 that finding the GMM estimates by solving (1.19) is

quite cumbersome, because of the fact that it requires an arbitrary large number of



unbiased moment functions (Anderson and Sorenson (1996)). Consequently, we have

avoided the formulation for GMM estimation approach but concentrated on SMM,

WGQL estimation in Section 2.1 and 2.2. In the last section, we have shown how to

compute the variances of the QML estimates. We now examine the relative efficiency

performances of the proposed S~IM and WGQL estimators with the corresponding

QMLestimators.

For convenience, similar to the existing studies [Ruiz (1994) and Anderson and

Sorenson (1997), Brotoand Ruiz (2004)) we consider the case/,o = oand select the

values for the parameters of interest as follows;

"11 = 0.25, and

a~ = 0.25, 0.5 and 1.0

For the computation of the asymptotic variances, we have chosen the time series with

length T = 1000, 2000 and 3000. The asymptotic variances of the proposed S 1M,

WGQL and the QML estimators for "11 are computed by (2.62), (2.75) and (2.94)

respectively. Similarly, the asymptotic variances of the proposed SMM, WGQL and

the QML estimators for a~ are computed by (2.68), (2.76) and (2.94) respectively

These variances for various selected values of the parameters are shown in Table 2.1



QMLestimators

Time Series Length (T)
a2

1'1 Method 1000 2000 3000
025 SMM 1'1 0.1198 0.0598 0.0399

a~ 0.0109 0.0054 0.0036
WGQL 1'1 0.0835 0.0418 0.0279

a~ 0.0103 0.0051 0.0034
QML 1'1 0.4163 0.4143 0.4132

a; 0.1350 0.1328 0.1322

1'1 0.0342 0.0171 0.0114

a~ 00088 0.0044 0.0029
WGQL 1'1 0.0236 00118 0.0078

a~ 0.0072 0.0036 0.0024
QML 1'1 0.2649 0.2662 0.2660

a~ 01480 0.1471 0.1467

1'1 0.0569 0.0285 0.0190

a~ 0.0158 0.0079 0.0053
WGQL 1'1 0.0421 0.0210 0.0140

a~ 0.0145 0.0072 0.0048
QML 1'1 0.3889 0.3882 0.3865

a~ 0.5254 0.5210 0.5180



(Table 2.1 Contd .... )

Time Series Length (T)
a2 1'1 Method 1000 2000 3000
0.5 0.5 SMM 1'1 00226 0.0113 0.0075

a~ 0.0143 0.0071 0.0048
WGQL 1'1 0.0165 0.0082 0.0055

a~ 0.0109 0.0055 0.0036
QML 1'1 0.2252 0.2252 0.2265

a~ 0.5528 0.5508 0.5500

1'1 0.0501 0.0251 0.0167

<10 0.0299 0.0150 0.0100
WGQL 1'1 0.0408 0.0204 0.0136

a~ 0.0272 0.0136 0.0091
QML 1'1 03477 0.3463 0.3448

a~ 2.0489 2.0336 2.0447

1'1 0.0381 0.0190 0.0127

a~ 0.0310 0.0155 0.0103
WGQL 1'1 0.0618 0.0154 0.0102

a~ 0.0234 0.0117 0.0078
QML 1'1 0.1775 0.1768 0.1785

a~ 2.0621 2.0611 2.0642



It is clear from the results in Table 2.1 that SMM and WCQL approaches appear

to produce estimates for 1'1 and O'~ with smaller variances as compared to the QML

approach in all cases. For example, when T = 2000, 0'~=0.5 and 1'1=0.5, the SMM

approach is

Eff(id = Var(?I.QML) = 0.2252 = 19.93
Var(1'I,SMM) 0.0113

times more efficient than the QML in estimate of 1'1' Similarly the WCQL approach

is 100.15 times more efficient in estimating O'~ as compared to QML approach

Note that as it was argued earlier that the so-called CMM (1.19) is cumbersome

(which makes it impractical ), we did not include such a complex arbitrary technique

in our comparison [see also Anderson et.al, 1999, section 1, p. 63-64). Nevertheless,

by comparing the existing asymptotic variances for the C1vI~1 and Q~IL estimates

from Anderson and Sorenson 1997, Table 1, (p. 401) with those of the proposed

SMM estimates, for example, one may understand the relative performances of the

proposed simpler MM (SMM) approach to the CMM and QML approaches. To be

specific, consider the estimation for 1'1 = 0.7 and O'~ = 1.0. For these parameter

values, the results from Table 1 in Anderson and Soreson (1997) show that for the

case with T = 75,000, the CM",1 is 2.31 2/2.032 = 1.30 and 10.742 /6.442 = 2.78

times more efficient that the Q 1L in estimating 1'1 and O'~, respectively. For the

same parameter combination, we, however, find that the proposed SMM approach

produces 0.0010 and zero asymptotic variances for I and O'~ estimates respectively



Thus, the proposed SM1v] approach is 2.032 /0.0010 = 4120.9 time more efficient than

the GMM approach in estimating 1'1 and it is much more efficient than the GMM

approach in estimating a~

For certain combination of parameter values such as 1'1 = 0.97 and a~ = 0.04,

the results from Table 1 in Anderson and Sorenson (1997) show the QML is more

efficient than the G~[M approach. Now, for the same parameter values, our S~I:I[

approach gives zero asymptotic variances for both parameters. Thus, the proposed

SMM approach is highly efficient than the Q 4L approach. These comparative results,

therefore, show that the proposed SMM is better than the existing QML and/or GMM

approaches. Note that, the proposed SMM is much more simpler than the existing

QML and GMM approaches

"\Then WGQL is compared to the S\I~I approach, they are found to be performing

almost the same, the WGQL being slightly better. For example, when T=1000, a;
= 1.0 and 1'1 = 0.25, the WGQL approach is

EffC'h) = Var(!I,,,IA,) = 0.0501 = 1.23
Var(')",WCQL) 0.0408

times more efficient than the SMM in estimate of 1'1' Similarly the WGQL approach is

1.10 times more efficient in estimating a~ as compared to SMM approach. Note that a

complete GQL approach, as opposed to the WGQL approach, could be highly efficient

than the S1\11\1 approach. But for computational simplicity we have considered the

WGQL approach which, as expected produced lightly improved estimates over the



"
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Chapter 3

Small and Large Sample

Estimation Performance of the

Proposed SMM and WGQL

Approaches: A Simulation Study

In Section 2.5, it was demonstrated through Table 2.1 that the proposed S:-'l ,I and

WCQL approaches are asymptotically more efficient than the existing Q~IL approach

Also it was argued that the existing CM~I approach is cumbersome and can be less

efficient as compared to the proposed SMM approach. Note that the proposed ap

proaches, the SMM approach in particular, are much simpler than the QML and



GMM approaches. In this chapter, we examine both small and large sample estima-

tion performances of the proposed SMM and WGQL approaches through a simulation

study. For the purpose, we choose small as well as large values for T. We consider

small time series with length (T) up to 500. Any series with length more than 500 is

consider to be a large series, and wechoosethevaluesofTaslargeasT= 10,000

Note that these values of T are chosen to indicate that unlike the existing GMM ap-

proach (where length of time series requires to be infinitely large such asT=lO,OOO

orI5,000, ... ,andsoon)theproposedapproachesproducesgoodestimates based on

a practically reasonable length of the time series

3.1 Small Sample Case

In the small sample case the initial variance a; will have an effect on the estimation

of the main volatility parameters, as expected. Since log a; is assumed to have the

normal distribution with mean 10/(1 -,1) as shown in (1.3), one may choose a

value fora; such that loga; isclosetoitsmeanvalueO. In the present simulation

study, we have used, for example, a; = a;o = 1.25 for the SMM and the WGQL

approaches. Now, to examine the small sample estimation performance for 11 and

a~ by the SMM approach, we solve the SMM estimating equation (2.14) for 11, and

(2.3) for a~, iteratively. The simulated mean (SM) along with simulated standard

errors (SSE) (also simulated mean square error (SMSE)) for the SMM estimates



based on 1000 simulations are reported in Table 3.1 for various small time series with

length up to 500. For the estimation of '1', and a~ by the WGQL approach, we solve

the WGQL estimating equations (2.44) for '1'" and (2.59) for a~, iteratively. The

simulated estimates and their standard errors for the WGQL estimates are given in



Table 3.1: Simulated mean (SM), simulated standard error (SSE) and simulated mean
square error (SMSE) of the SMM estimates based on small time series with T = 100,
200, 300 & 500 for selected parameters values by using 1000simulations.

Time Series Length (T)
q2 II Quantity 100 200 300 500
0.25 0.25 SM 0.2818 0.2517 0.2804 0.2421

SSE 0.5149 0.4964 0.4700 0.4222
MSE 0.2661 0.2464 0.221 0.1783

q?, SM 0.2276 0.2162 0.214 0.2195
SSE 0.2543 0.2021 0.180 0.1547
MSE 0.0652 0.0420 0.0366 0.0249
SM 0.3178 0.3310 0.3992 0.3852
SSE 0.5026 0.4663 0.4301 0.3643
MSE 0.2858 0.2460 0.1952 0.1459

q?, SM 0.2710 0.2605 0.2501 0.2559
SSE 0.2971 0.2329 0.2174 0.1760
MSE 0.0887 0.0543 0.0472 0.0310
SM 0.2345 0.2102 0.2325 0.2406
SSE 0.4759 0.4242 0.3737 0.3179
IvISE 0.2267 0.1816 0.1400 0.1035

q?, SM 0.4120 0.4300 0.4376 0.4565
SSE 0.3692 0.2927 0.2637 0.2066
MSE 0.1440 0.0906 0.0734 0.0446



(Table 3.1 Contd )

Quantity
SM
SSE
MSE
SM
SE

MSE
SM
SSE
!VISE
SM
SSE
MSE
SM
SSE
MSE
SM
SSE
MSE

Time Series Length (T)
100 200 300 500

0.33510.32800.38150.3910
0.43050.39090.3417 0.2779
0.21250.18240.13080.0891
0.48920.50990.49890.5128
0.43700.3473 0.3151 0.2533
0.1911 0.12070.09930.0643
0.16850.1610 0.1822 0.164
0.40970.33610.29290.2467
0.17450.12090.09040.0649
0.82390.89250.91850.9460
0.55650.4310 0.3800 0.2997
0.34070.1973 0.1510 0.0927
0.29120.30820.36560.3837
0.38190.32520.29580.2572
0.18940.14260.10560.0797
0.98501.02681.009 1.0240
0.68970.54410.51060.42
0.47590.29680.26080.1844



Table 3.2: Simulated mean (SM), simulated standard error (SSE) and simulated mean
square error (SMSE) of the WGQL estimates based on small time series with T =
100, 200, 300& 500 for selected parameters values by using 1000simulations.

17
2

1'1 Quantity
SM
SSE

SMSE
SM
SSE

SMSE
SM
SSE

SMSE
S~l

SSE
SMSE

SlVl
SSE

SMSE
SM
SSE

SMSE

Time Series Length (T)

0.35360.34360.36280.2894
0.45690.44780.42860.4048
0.2195020930.19640.1654
0.22510.22230.20910.2178
0.47390.36210.19960.1748
0.22520.13190.04150.0316
0.36850.38850.43780.4129
0.44150.43240.39810.3444
0.21220.19940.16230.1262
0.24010.26860.2472 0.2533
0.44960.39280.26200.2204
0.20230.15460.06870.046
0.31050.26830.26190.2336
0.43880.40780.36290.3226
0.19620.16670.13180.1043
0.45050.48150.46960.4746
0.61810.56320.46790.3792
0.38450.31750.21990.1444

I

J



(Table 3.2 Contd )

a?, "Yl Quantity
0.5 0.5 SM

SSE
SMSE

a~ SM
SSE

SMSE
SM
SSE

SMSE
a~ S~l

SSE
SMSE

SM
SSE

SMSE
a~ SM

SSE
SMSE



3.2 Large Sample Case

In the large sample case, theSMr,I does not depend on the initial variancear How-

ever, the WGQL approach still depends on ar We use the same value a; = a;0=1.25

as in the small sample case.

For the SMM estimation of 1'1 and a~, we solve the asymptotic estimating equa-

tions (2.22) and (2.13) for 1'1 and a~, respectively. As far as the large sample esti

mation by the WGQL approach is concerned, it is clear that the WGQL estimating

equations (2.44) for 1'1, and (2.59) fora~, used in the small sample case, is still valid

for the large sample. The large sample based performances of the SMM and WGQL

approaches are reported in Table 3.3 and 3.4, respectively.



Time Series Length (T)
Parameters Quantity 1000 2000 3000 6000 10,000

71 =0.25 SM 0.2476 0.2385 0.2435 0.2302 0.2442
SSE 0.3319 0.2473 0.2018 0.1428 0.1174

SMSE 0.1102 0.0613 0.0408 0.0208 0.0138
C7~ =0.25 SM 0.2265 0.2396 0.2396 0.2476 0.2471

SSE 0.1203 0.0874 0.0723 0.0486 0.0402
SMSE 0.0150 0.007 0.0053 0.0024 0.0016

71 -0.5 SM 0.4213 0.4462 0.4537 0.4475 0.4615
SSE 0.2832 0.1969 0.1628 0.1171 0.0965

S 1SE 0.0864 0.0417 0.0286 0.0165 0.010
C7~=0.25 SM 0.2540 0.2596 0.2572 0.2635 0.2600

SSE 0.1381 0.1021 0.0856 0.0595 0.0498
SMSE 0.0191 0.0105 0.0074 0.0037 0.0026

71-0.25 SM 02067 0.2283 0.2386 0.2323 0.2451
SSE 0.2309 0.1690 0.1402 0.0999 0.0836

SMSE 0.0552 0.0290 0.0198 0.0103 0.0070
C7~ =0.5 SM 0.4768 0.4913 0.4885 0.4989 0.4966

SSE 0.1505 0.1071 0.0877 0.0593 0.0489
SMSE 0.0232 0.0115 0.0078 0.0035 0.0024



(Table3.3Contd .... )

Time Series Length (T)
Parameters Quantity 1000 2000 3000 6000 10,000

1'1 =0.5 SM 0.4205 0.4441 0.4537 0.4482 0.4623
SSE 0.2191 0.1659 0.1390 0.0964 0.011

SMSE 00543 0.0307 0.0215 0.0120 0.0080

a;,=05 SM 0.5132 0.5181 0.5136 0.5264 0.5192
SSE 0.2024 0.1541 0.1283 0.0854 0.0723

SMSE 0.0412 0.0241 00167 00080 0.0056

1'1-0.25 SM 0.1948 0.2199 0.2334 0.2308 0.2442
SSE 01960 0.1508 0.1305 0.0950 0.0798

SMSE 0.0415 0.0236 0.Ql73 0.0094 0.0064

a;' =1.0 SM 0.9730 0.9905 0.9815 0.9979 0.9933
SSE 0.2257 0.1625 0.1361 0.0941 0.0760

SMSE 0.0517 0.0265 0.0189 0.0089 0.005

/'1=0.5 SM 0.4109 0.4433 0.4577 0.4541 0.4738
SSE 0.2135 0.1909 0.1738 0.1374 0.1320

SMSE 0.0535 0.0397 0.0320 0.0210 0.0181
a;'=1.0 SlVI 1.0328 1.0161 1.0021 1.0292 1.0069

SSE 0.3636 0.3220 0.2923 0.2305 0.2261
SMSE 0.1333 0.1039 0.0854 0.0540 0.0512



Time Series Length (T)
Parameters Quantity 1000 2000 3000

1'1 =0.25 SM 0.2574 0.2413 0.2422
SSE 0.3282 0.2502 0.2038

SMSE 0.1078 0.0627 0.0416

a~=025 SM 0.2284 0.2400 0.2402
SSE 0.1308 0.0882 0.0722

SMSE 0.0176 0.0079 0.0053

1'1 =0.5 SM 0.4280 0.4467 0.4564
SSE 0.2873 0.2077 0.1698

SMSE 0.0877 0.0460 0.0372

a~=0.25 SM 0.2567 0.2607 0.2570
SSE 0.1557 0.1053 0.0887

SMSE 0.0243 0.0112 0.0079

1'1 -0.25 SM 0.2111 0.2293 0.2384
SSE 0.2325 0.1720 0.1408

SMSE 0.0556 00300 0.0199

a~ =0.5 SM 0.4804 0.4914 0.4894
SSE 0.1606 0.1092 00870

SMSE 0.0262 0.0120 0.0076



(Table 3.4 Contd.... )

'Yl =0.5

a~=0.5

'Yl =0.25

a~ =1.0

'Yl =0.5

a~ =1.0

Quantity
SM
SSE

SMSE
SM
SSE

SMSE
SM
SSE

SMSE
SM
SSE

SMSE
SM
SSE
SM
SSE

SMSE

Time Series Length (T)
1000 2000 3000

0.42510.44740.4549
0.22560.17390.1431
0.05650.03300.0251
0.52890.52620.5160
0.29310.22190.1377
0.02870.04990.0192
0.19620.2211 0.2347
0.19750.15630.1365
0.04190.02530.0189
0.97881.00270.9883
0.22780.28320.2390
0.05240.08020.0573
0.43260.45870.4775
0.24910.21880.2056
1.07531.07971.0484
0.63510.59720.5676
0.40900.36300.3249



3.3 Interpretation of the Small and Large Sample

Simulation Results

As far as the small sample performance is concerned, both SMM and WGQL ap-

proaches provides some what reasonable, but not so satisfactory estimates. For ex-

ample, when T = 500, the S~l~l approach provides estimates for 1'1 = 0.5 and a~ =

0.5 as il,SMM = 0.40 and a~,;MM = 0.51, respectively, with corresponding simulated

standard error 0.28 and 0.25. For the same parameter values, the WGQL provides

il,WGQL = 0.41 with its simulated standard error 0.29 and ;2q,WGQL = 0.52 with its

estimatesofa~ appears to be close to the true values whereas theestimatesofl't are

not so satisfactory. But, the estimates of 1'1 get closer to the true values when the

length of the series is increased

The Table 3.3 show that for a reasonably large time series with length between

T= 1000 and 10,000, the proposed SMM approach performs very well in estimating

both 1'1 and a~ parameters. This is a big improvement over the existing GMM and

QML approaches mainly because of the fact that proposed SMM approach is sim-

pier and computationally quite efficient. Also, unlike the existing GMM and QML

approaches, the SM~1 approach does not encounter any convergence problems. To

be speCific, when T = 3000, for example, the S~IM approach provides estimates for



1'1 = 0.5 and a~ = 1.0 as 1'1,AlM = 0.46 with its simulated standard error 0.17 and

d2",AlAI = 1.00 with its standard error 0.29. For the same parameter values, when T

= 10,000, the Si\n'I approach produces 1'1,SMAI = 0.47 with its simulated standard

errorO.13andd2",sAIM = 1.00 with its standard error 0.23. Thus, it is clear that the

SMi\1 approach works very well even if the length of the series is small as T = 3000

However, as expected, the standard errors or mean squared errors of the estimates

improves substantially when T increased from 3000 to 10,000

The results in Table 3.4 show that the proposed WGQL approach performs sim-

ilarly to the SMM approach. Note however, that to save time and space we have

considered T = 1000, 2000 and 3000, in this case. As the length of the series in-

creases, both SMM and WGQL approach appears to perform better as expected. As

mentioned earlier, the WGQL approach behaves similarly to the SMM approach. For

example, for the same parameter values, when T = 3000 the WGQL estimates for

1'1,WGQL = 0.48 with its simulated standard error 0.21 and d2",IVGQL= 1.05 with its

simulated standard error 0.57. Thus WGQL approach appears to produce same or

better estimates for 1'1 and a~, but with relatively larger standard errors. For this and

similar other reasons, between the proposed SMi\1 and WGQL approach, we prefer

the SMM approach over the WGQL approach.

Note that the asymptotic variances for the estimators of 1'1 and a~ reported in

Table 2.1 in Chapter 2 are in agreement with the corresponding simulated variances



reported in Table 3.3 and 3.4 for the SM 1 and WCQL approaches. Thu , when it is

required, one may estimate the standard errors of the estimates by using the formulas

for the asymptotic standard deviations

3.4 True Versus Estimated Kurtosis under the SV

Model

To understand the volatility, that is, to realize the changes in variance pattern in the

time series, it is recommended to examine the kurtosis of the data over time. See, for

example, Jacquieret.al (1994, p.387) Shepharcl (1996,p.23),Mills(1999,p.129),Ruiz

(2004, p.615) and Tsay (2005, p.134)). For the purpose, in Lemma (3.4.1) below, we

provide a general formula for the kurtosis under the volatility model(1.l)-(1.2)

Lemma 3.4.1. Kurtosis for {y,} under the volatility model {1.1)-(1.2) is given by

fort =1

(3.1)
fort=2, .. ,T,

To prove the lemma. we first compute ElY,'] by (2.32) and E[Y,2j by (2.29).

The results in the lemma are immediate from the formula for the kurtosis given by

K,(-yl,a~) = [~~~;12



Note that, in the limiting case, i.e, when t-+oo, the kurtosis in (3.1) reduces to

(3.2)

which agrees with the formula for kurtosis studied by Harvey et.a! (1994, p.249),

Mills (1999, p.249) and Brotoand Ruiz (2004, p.615), among others. Further note

that, the formula for the kurtosis given in (3.2) is independent of time and it isa

function of the volatility parameters/'I anda~, whereas kurtosis at a finite time point

given by (3.1) is dependent on first few times and it is a function of /,,, a~ and ar
Now to understand the effects of the parameters /'1, a~ and a; on the kurtosis, we,

for example, display the true kurtosis computed by (3.1) in Figures 3.1 and 3.2 for

selected values of the parameters. rn the same figures we also display the estimated

kurtosis computed by using :h.SAlM and ;2.,SAlM for /'1 and a~ respectively. As far

as the initial variance a; is concerned, we have chosen a; = 1.25
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Figure 3.1: True and estimated kurtosis with volatility parameters 'Y1 = 0.5, a~ =
0.5



Figure 3.2: True and estimated kurtosis with volatility parameters 'Yl = 0.5, a~ =

1.0



It is clear from Figures 3.1 and 3.2 that the kurtosis under the present volatility

model (1.1)-(1.2) is much larger than the Gaussian based kurtosis (=3). These figures

also exhibit that the kurtosis gets stabilized quickly after an initial short period. To

be specific, Figure 3.1 shows that when 1', = 0.5 and a~ =0.5, the kurtosis gets

stabilized at Kt = 5.8432 for any t > 4. Similarly, Figure 3.2 shows that when '1', =

0.5 and a~ = 1.0, the kurtosis gets stabilized at Kt = 11.310 for any t > 4

otethat, since in practice, true kurtosis is unknown, as mentioned above,wehave

alsoestimatedthekurtosi by using the estimates of the parameters in the formula

for kurtosis given in (3.1),and the estimated kurtosisaredisplayed in Figures 3.1 and

3.2. The estimated kurtosis appears to be very close to the the corresponding true

of the kurtosis, indicating that the proposed SMM technique performs very well in

estimating the parameters of the volatility model.

I

_I



Chapter 4

Extended Stochastic Volatility

Models

4.1 Model and the Properties

In Chapters from 1 to 3, we have discussed the inferences in the stochastic volatility

(SY) model. Recall that under the SY model (1.1)-(1.2), the responses {V,} are

uncorrelated. That is, foru<t

E[YuYi) = Ea" ,a, E[aua,fuftlat , .,a,j

= Ea " ,a, [aua,E[fuf,la), .,a,jl

= E.. , ,a, [auatE[fuf,j1

= 0, (4,1)



asftandatareindependentforalltandalsoft~N(O,l).Consequently,

Cov(Yu,Yi) = EIYuYi]- EIYu)E[Yi) = O. (4.2)

But in practice, it may happen that, conditional on the variances, the time series

observations may be correlated. This type of data can be modeled by using the

relationship

t=2, ,T, (4.3)

with YI = X'I {3 + al f1, where x, = (x",. , x'v)' is a p-dimensional (say) vector of

time dependent covariates and {3 is the corresponding regression effect. In (4.3),Ois

a scalar dynamic dependence parameter. Also under in (4.3), a? follows the original

volatility model as in (1.2), i.e.,

In(a?) = h, = 'Yo + 'Y1 ht - I + 'It; t = 2, (4.4)

Thus, the model (4.3) accommodates the dynamic relationship of the responses. Fur-

thermore, this model are modeled through another dynamic relationship as given in

(4.4) (see also (1.2)). Consequently, we refer to the complete model (4.3)-(4.4) as an

observation driven dynamic - dynamic (0000) stochastic volatility model.

The new 0000 model (4.3) - (4.4), conditional on the variances yields the condi-

tional mean, variance and pairwise covariances as in the following lemma. As before

we consider 'Yo =0 for simplicity.



Lemma 4.1.1. When {y"t = 1, ,T} follows the model (4-9), one obtains the

expectationandvarianceofy,conditionalona".

Var(Y,la". ,a,) = [;02(,-j)a;' (4.6)

respectively. Furthermore, for u < t the conditional covariance between Yu and y, is

given by

(47)

Proof. The proof is simple. Nevertheless, it is shown in Appendix C.

Note that when 0=0, the conditional variance (4.6) ofy, reduces to

Var(Y,la,) = a~,

and the conditional covariance between Yu andy, (4.7) becomes zero. That is,

Cov(Yu.Y,la". ,a,) = O.

(4.8)

(4.9)

As expected, these conditional variance and covariance also follow directly from the

SV model (1.1)-(1.2). In all other cases i.e. when 0 -; 0, it is clear that unlike the

SVmodel,theobservationsarecorrelatedbothconditionallyandunconditionallythe

conditionalcovariancesbeinggiven by (4.7). The unconditional covariances are given

in Lemma 4.1.2 along with unconditional means and variances



Lemma 4.1.2. For all t = 1, ,T, the response y, has the unconditional mean

and variance given by

E(Y,) = x;/3=/lt (say),

Var[Y,] = ~£/2('-j)EM[O}J,

= <p" (say).

Foru< t, the unconditional covariance betweenyu andy, is given by

Cov[Y,,,Y,] =

(say),

(4.10)

(4.11)

(4.12)

where EM[a;] for a given time j is already given in (2.8) following the dynamic rela-

tionship (1.2) [see also (4.4)J. That is,

t=2, ... ,T

(4.13)

Proof. The unconditional expectation in (4.10) follows from the fact that, the condi-

tional mean in (4.5) is free from a~, ... ,a~, ... ,af·

The unconditional covariance is obtained by using the formula

+Cov., ...u,[E(Yulal, ,a,),E(Y,la" ,a,)]. (4.14)



Since the conditional expectations hown in (4.5) are free from a, (t = 1, ,T),

the second term in (4.14) is zero. Furthermore, using the formula for the conditional

covariance from (4.7), the first term in (4.14) may be evaluated by computing E(aJJ

for j= 2, .. , u. Thus, we write the unconditional covariance between Yu and Y, as

yielding the variance for u = tas

Var(Y,) =

where EA.da]] is as in (4.13)

4.2 A Remarks on Stationarity

(4.16)

Note that, when 101 < 1 and l-rtl < 1 in the model (4.3)-(4.4), limiting variances as

t-tooreducestoafiniteconstant. This is because,

.'.!!~ Var(Y,) = ,'!.~:;, 02
('-;) EM!a]1

= ,'!.m EM[a~1 ,'!.~:;'02(t-j), (4.17)

Since .'.!.~E!a~] = exp[~C ~ -r?)]' by (2.9) we obtain

lim Var(Y,) = exp[~ (~)] [lim {02('-1) + 02('-2) + 02('-3) +. + 06+ 04+ 02+ 1}]

,~OO = eXP[~(:~::)][:~~{1+02+04+06+ +02('-Q}]

= exp[~C~-r?)][1~02] (4.18)



ote that this limiting variances may be useful in developing asymptotic esti-

mation. Furthermore, when 8 = 0, the limiting variance in (4.1 ) reduces to the

stationary variances under theSV model.

4.3 Estimation of the Parameters in ODDD Model

4.3.1 CQL approach

The model (4.3)- (4.4) involves (i) {3, thep-dimentional vector of regression param-

eters(ii) 8, the dynamic dependence parameter (iii) 1'1, dynamicvolatilityparametel

and (iv) a~ volatility variance parameter. In Chapter 2, we have estimated 1'1 and

a~ under the SV model. In the present model {3 and 8 are additional and important

parameters. More specifically, {3 is invo!ved in the means of the responses, and 8,1'1

and a~ are involved in the variances and covariances of the responses

ote that, {3 is clearly a vector of regression parameters. As far as 8 is concerned,

conditional on the past responses, it may also be treated as a regression parameter.

For this reason, we estimate both {3 and 8 by using aGQL (Sutradhar (2004)) ap-

proach originally deve!oped for the estimation of the parameters in mixed model set

up. The other paramters namely, 1', and a~ will be estimated by using the SMM

approach that we exploited for the inferences in theSV model



4.3.2 GQL estimating equation for (3

Note that the unconditional mean J.Lt for Y, in (4.10) is a function of f3, whereas

for u ~ t, the unconditional second order moments, namely Cov(Yu , Y,) in (4.12)

are the functions of the other parameters 0,')'1, and a~. Thus, we construct a ba-

sic statistic using Y = (Yl> Y2,

in J.L = ElY] = (J.Ll, J.L2,

,Yr)' to estimate f3 involved

J.Lr)', where by (4.1)-(4.2) J.L' = x;f3,

with x, = (xt!, ... ,X'j, ... ,x,p)'. Let L: = ('Pu') be the covariance matrix of Y with

'Pu' = Cov(Yu,Y,) as in (4.12). Now, for given ~ = (0,0")' = (O'')'I,a~)', i.e. for given

L:, by following Sutradhar (2004), one may easily obtain a GQL estimate of f3 by

solving the estimating equation

(4.19)

Let~GQL be the solution of (4.19), and the iterative equation for ~GQL is given by

wheretocomputethefirstorderderivative; in (4.20) itissufficienttocompute

thederivativevector~forallt=1....• T.Thisderivativevectorhas the expression

~ = x" and ~GQdr) denotes the GQL estimate of f3 as a solution of (4.20) at

the roth iteration, and [.IPcQdr) is the value of the expression in the square bracket

evaluatedatf3=~GQL(r).



4.3.3 CQL estimating equation for ()

Sincee may be treated as a regression parameter conditional on the past lagl re-

sponses, we construct the basic statistic using a vector of lag 1 based corrected pair-

wise products of the responses. Let

and A2 = E[S2] and t:, = COV(S2)' For given e, 1'1 and a~, we first estimate {3 parameter

by using (4.19) - (4.20). Once we get the estimate of {3, we estimate e, by solving the

GQL estimating equation

A far as the formulas forA2 is concerned, we write

A2 = [E[(YI - I'd (Y2 - 1'2)],' .. ,E[(Yt-I - 1'1-1) (Yl - 1'')1,

E[(YT_I - I'T-d (YT - !'T)]j'

(4.22)

= ['1'\2, '1'23,

with 'l't-I,t as in (4.12)

",'I'T-I,T]',

The derivation of the formulas for the elements of 6. is complicated. Nevertheless,



we provide the formulas for the diagonal elements of 6> as follows. Also an outline i

given for the computation of the off diagonal elements.

Computation of the diagonal elements of 6>.

otethatconditionalona~. .a}. it is clear from (4.3) that the responses follows

T-dimensionalnormaldistribution. Thus, conditional on variances one obtains

E[(Y; - /L')(Y; - /Lj)(Yk -1'k)(Y; - /Ltlla~, ... ,a;, ... ,a}] = 'P:,'Pkl +'P:k'Pjl

+'P:I'P;k' (4.23)

where 'P~t = Ej=1 O,+u-2ja;' For the computation of the diagonal elements of 6> we

-(E[(Y'_I - /Lt-Il(Y; - /L,)])2

= E.l .....1['P;-u'P;-I.t+'P;-I.t-I'P;.t+'P;-,.t'P;.t-l]

(4.24)

where E'I. .•1['P;-I,t'P;-I.t + 'P;-I.,-I'P;.t + 'P;-I,,'P;.t-l] given in Appendix C.

An outline for off diagonal elements of 6>

For u < t, the off diagonal elements of 6> has the formula as



-E[(Yu- 1 -Ilu-.)(Yu -llu)]£[P'i-1 -Ilt-.)(Yi -Il')]

= Eol, ,0; ['P:-l'U'P;-I,t + 'P:-l,t-l'P:,t + 'P:'-I,t'P:,t-l] - 'Pu-l,,,'Pt-I,t> (4,25)

where £01....,0; ['P~-l,U'P;-l,t + 'P:-I,'-I'P~,t + 'P~-I,t'P~,'-I] given in Appendix C.

Further note that the construction of the GQL estimating equation (4,22) also

reqllires the formlliafor the derivative of),i with respect to the elementsoflJ,thati,

Let BCQL be the GQL estimator of IJ obtained from (4.22), Similar to (4.20), BCQL

is obtained by lIsing the iterative eqllation

BcQdr + 1) = BcQdr ) + [(~t.-l~rl(~t.-l(S2-),i))LcQdr)'
(4.27)

where BCQL(r) denotes the GQL estimate oflJ as a solution of (4.27) at the roth

iteration, and [.]ticQdr) is the vallie of the expression in thesqllare bracketevalllated

4.3.4 SMM estimating equation for a = hI, (J~)'

(a) Unbiased Estimating Equation for 1'1

Here, the estimation of{3,lJand a will be done in cycles of iterations. ForgivenlJand

a, we first estimate{3 by lIsing (4.19)-(4.20), Once we get this estimate, we lise the



GQL iterative estimating equation (4.27) for IJ. For moment estimation of 1'1, similar

to 52 in Section 2.1.1.2, under the SV model. we consider a moment function

for given (3, IJ and a~.

X;(3)2]. The formula for 'Pt-l,1 given in Appendix C.

By using Taylor's series expansion, it follows from (4.29) that the I't parameter

may be estimated by using the iterative equation

where 1't,MM(r) denotes the moment estimate of I't as a solution of (4.30) at the r-th

iteration,and[']'h."M(r)isthevalueoftheexpressioninthesquare bracket evaluated

atl't = 'Mr). ote that the equation (4.30) requires the expression of E[53) and

computation of the derivative 8~;~3) , which are given in Appendix C.

(b) Unbiased Estimating Equation for a~

For the moment estimation of a~ under the 0000 volatility model, we consider the

(431)



which is similar to SI in Section 2.1.1.1, under the SV model. Now, we use the

improved estimates of [3, () and 'YI and we solve the moment estimating equation

S, - E[S,] = 0 (4.32)

for a~, where E[(y, -x;(3)2J has the expression (L:;~I ()2('-j) EArra;]) [see al 0 (4.16)]

The estimating equation (4.32) may be solved iteratively by using

where ';~l,MM(r) denotes the moment estimate of a~ as a solution of (4.33) at the r-th

iteration, and [.J';~l.MM(r) is the value of the expression in the square bracket evaluated

at a~ = ';~(r). Note that the equation (4.33) requires the computation of derivative

8~~~,1 , which has the formula given by

8~~~'] = [~()2(l-]) EM[a;lg ~ 'Y~r)}]

We now summarize the aforementioned estimation steps for all parameters and give

the following algorithm.

Algorithm for ODDD Volatility Model:

Step 1: Forinitialvaluesof().'Yl,a~,and[3firstestimateof[3isobtained from (4.20)

Step 2: The improved estimate of [3 obtained from step 1 is used in (4.27) along with



initial values of II and a~ to obtain an improved estimateofO.

Step 3: The improved estimate of fJ and 0 obtained from steps 1 and 2 along with

a~ is used to estimate 11 by using (4.30)

Step 4: The improved estimate of fJ, 0 and II is used to get the improved estimate

of a~ by (4.33).

These cycles of iteration continues until convergence.



Chapter 5

Concluding Remarks

Using Stochastic Volatility models to analyze time series data with non-stationary

variances has been popular over the last two decades. The inferences in such models

have, however. proven to be difficult. The existing GMlvl and QML approaches are

either cumbersome or inefficient. In the thesis, we have provided a simpler MM, as

wellasa'working'GQLapproach,todealwiththischallenginginferenceproblem. It

is demonstrated through asymptotic and simulation studies that theproposedestima

tion approaches are simple and efficient than the existing approaches. An algorithm

is given to make these approaches user friendly.

We have further proposed a new volatility model that unlike the existingstochastic

volatility models, accommodates certain dynamic relationship among the response

given that the variances of the responses are also dynamically related.



referred to this new model as the 0000 (observation-driven dynamic dynamic)

volatility model. The regression and dynamic dependence parameters have been ef-

fici ntly estimated by the CQL approach, and the SMM approach has been used to

estimate the volatility parameters of the dynamic model in variances. Thus, the SMM

approach, which was proposed for the inferences in the standard stochastic volatility

models, is demonstrated to be useful for the wider OODO volatility models as well.

The inferences proposed for the original as well as new (0000) volatility mod-

els should be useful to researchers working with economic and environmental time

series data, among others. The proposed estimation methodologies are extendable

to the CARCH (generalized autoregressive conditional heteroscedastic) type models

considered in the literature. They will also be useful to analyze volatility models with



Appendix A

DerivationofE[aLali [for (2.37)1:

By using the recurrence relationship of Ina; from (1.2), we wrote the general form

for a~ as in (2.7). That is,

a; = eXP(1'f-llna;o+~1'r'7(,-r»). (A.I)

It then follows that the product of a; and a~_k for lag k = (I, ,T-2) and t=(3, ... ,T)

can be expressed as

a;_ka~ = exp( 1'~'-k)-lln a;o + (t~-2 1'; 17t - k-,) exp(1'r-' In a;o +~ 1'1 '7t-])

= exp( 1'~'-k)-' In a;o + 1'r-' In a;o) exp( ('~-2 1': '7'-k-i +~ 1'1 '7'-]).

Since 1'1 and a; are constant, theexpectationofaZ-ka; can be computed as

E[a~_ka~1 = exp( 1'~'-k)-lln a;o + 1':-llna;o)

E[exp(~-21'; 17t-k-i +~ 1'117t-])], (A.2)



where "It is random variable follows normal with mean zero and variance a~. Since

('-k)-2
~ 'Y; "It-k-. = 'Y~t-k)-2T/2 + 'Y~t-k)-3"13 + 'Y~t-k)-4"14 +

+'YI"I(,-k)-I +"I(t-k)

(t%;,-2
= [(1 + 'Y~hft-k)-2"12 + + (1 + 'Y~h"l'-k-l

+(1 + 'Yn"l'-k] + ['Y~-l"l'_k+l + + 'Yl"l'-l + "I']

[(1+'Y~) t~\:"It_k_l] + [~'Y~"I,-r],

('-k)-2
exp{~ = exp([(1 +'Yn '~\:"I'-k-I] + [~'Y~"I,-r]).

(A.3)

Now, by using the assumption that "I, ~ N(O,a~), and by using normal moment gen-

erating function E(e"') = exp(a~/2). we can compute the expectation in the second

part in (A.2). as

E[exP<"%;,-2 'Yr"lt-k-V+~'Yi"l'-j}] = exp[~((1+'Yn2 t~2'Y~I+~'Y~')]

(A A)

I
___ J



Now by using this expression from (A.4) into (A.2), we obtain

E"[C7?_k C7?J = expHt-k)-llnC7~o+'Y:-llnC7~o+ ~ ((1 +'Y~)2 t~2 'Y~' + ~'Y~')].

(A.5)

When k = 1 and t=3, ... , T, the formula in (A.5) reduces to

EM[C7?_IC7?] = eXP['Y:-2InC7~0+'Y:-llnC7~0+~((l+'Y1)2 ~'Y;I+l)].

(A.G)

Derivation of EM[uLutJ [for (2.50)]:

Note that the expression forC7t is given in (2.35). By using this formula from (2.35),

after some algebra, we obtain

EM [C7t_kC7tJ = eXP[2('Y~t-k)-llnC7;o + 'Y:-1lnC7;0)]

E[exP(2(~-2 'Yf'7t-k-u + ~ -rl'7t-J })], (A.7)

where the second part in (A.7) is given by (A.4). After further algebra, we write

E[C7t_k C7tJ = exp [2({'Y[t-kl-1 +'Y:- 1}lnC7;0) +2C7~ ((1 +'Yn
2 t~2 "I;' + ~'Y~')].

(A.8)

For lag k=l, and t=2, ... ,T, theexpectationofC7t_ 1C7t has the expression given by

E[C7t_lC7tl = eXP[2({'Y:-2+'Y:-l}lnC7;0)+2C7~((l+'Ytl2 ~'Y;'+l)]

(A.9)



By using the expression for 17; from (A, 1), for lag k (=1, ,t-l) and t=(3, ,T), we

may write

E[I7;_k17:17;Hl = exp[({1':-k-1 +21';-1 +1':+H} In l7io)]

E[exp(~2 1'~'7('-k-r)+2~ 1'~'7{t-r)+ '~2 1'~'7('H-r»)]

(A,lO)

After some algebra, and by using the assumption that '7, ~ N(O, 17~), we write

E(exp['};2 1'~ '7{t-k-r) +2~ 1'~ '7('-r) +'~2 1'~ '7{tH-r)])

= E[exp({(I + 1'~)2 '~21';'7'_k_'} + {(2 +1'n~ 1'i'7,-j} + {~1':'7'H-I})]

= eXP[~((1+1'n"~21'ii+(2+1'n2~1'ij+~1'il)], (A.U)

By using this formula from (A.U) into (A.lO), we obtain

E[I7;_k17:17;+k] = eXP[(1':-k-1 +21':-1 +1':H-I) Inl7io

+(~{ (1 +,n' '~2,i' + (2 + ,~)2 ~ 1'i' +~ ,il})].

(A.12)

When lag k=1 and t=3, ... , T, the formula in (A.12) reduces to

E[I7;_II7:17;+11 = eXP[(1':-2+21':-1 +1':)lnl7io

+(~{(1 +1'tl'~1'i·+(2+1'lf+l})]. (A 13)



Appendix B

First Order Derivatives of the Covariance Matrix V w.r.t 1'1 and a?, [for

(2.95)):

For V = (Vt-k.,) given in (2.85), the derivatives of the elements of this V matrix \V.r,t

'YI can be computed by

fort-k=l, t=2, . ,T

a;' L::=2 2(t - ih;(Hl-I for k=O, t=2, ,T

a;' L:::~(2(t-i) _kh;(t-,l-k-l

(B.I)

fork =1" t-2and t=3, . ,T.

Similarly, the derivatives of the elements ofthew,r.t a;' have the formu]as



for t-k=l, t=2, ,T
(B.2)

fork=O, t=2, .,T

L~;;;~ "I~('-i)-k for k =1,... t-2 and t=3 , ,T.

Second Order Derivatives of the Covariance Matrix V w.r.t "11 and a~ [for

(2.95)1:

For V = (V'_k,,) given in (2. 5), the derivatives of the elements of this V matrix \V,r.t

"It can be computed by

fort-k=1, t=2, .. "T

a~ L:=2 2(t - i)(2(t - i) - 1h~(t-i)-2

fork=O, t=2, ,T

a~ L:;;;~(2(t - i) - k)(2(t - i) - k - 1h~('-·)-k-2

fork =1 •... t-2and t=3, ,T

Similarly, the derivatives of the elements of the \V.r.t a~ have the formulas

(B.3)

~(~~i;t = ° k= 1" .. ,t-1, t=l, ... ,T (BA)



Second order derivatives of the quasi likelihood (QL) [for (2.94)]

and their Expectation:

The computation for the second order derivatives of the QL is straightforward but

lengthy. We present these derivatives below in brief.

Derivatives with respectto'Yl and their expectation

The first order derivative oflogLQW.r.t'Yl is given in (2.92). Now, the second order

derivativeof(2.92)w.r.t'Ylhastheexpressiongivenby

iJ2~~tQ = _r[trace~~-I*,*)]+~V-l(Z_m)

+d,iJ~~1 (Z _ m) - d' V-1d

1,iJV-1 1 ,iJV-1
+2d e:y;-(Z - m) + 2(Z - m) e:y;- d-

1 ,iJ2V-1
2(Z - m) a:yr-(Z - m). (B.5)

ext, by taking expectation over (B.5), we obtain

iJ[trace~~-I*,*)) = trace[iJ~~' ~ + V-I ;1



8~~;1 = _ 8~~1 ~ V-I _ V-I ~V-I _ V-I ~ 8~~1,

\Viththeformulasforthederivativesof~.asgivenin(B.l)

Derivatives with respect to (T~ and their expectation

Similarly, the first order derivative of logLQ \V.r.t (T~ is given in (2.93) Next, the

second order derivative of (2.93) \V.Lt (T~ has the expression given by

8;(~;)~ = _~ 8[trace~~-'~)1 _ ~ (Z _ m)' 8(:f!t) (Z - m)

(B.6)

ow, by taking expectation over (B.6), we obtain

(B.7)

8[trace(V-I~)1 8V- 1 8V _I 82V
--8(T-~- = trace 8(T~ .~ + traceV 8(T~ 8(Tr

8~:t = 8(- V-~(Tr V-I)

= - [8~~' ~ V-I + V-I 8f;~2 V-I + V-I ~ 8~~l



and ~ = - V-I ~ V-I, with the formulas for the derivatives of ~ given in

(B.2).

Derivatives with respect to 1'1 & O'~ and their expectation

The first order derivativeofQL w.r.t 1'1 is given in (2.92). Now taking the derivative

over (2.92) W.r.t O'~ has the expression given by

~~:o~O'~ = _~ 8[trac:~~-1 ~l + J 8~;1 (Z _ m) _

~(Z - m),8[;:f1 (Z - m) (B.8)

Now, the expectation over (B.8), yields

[
82 1 L] = _~ 8[traceV-

I
~l _ ~trace [8[~1 V]

E 81'1 o~O'~ 2 80'~ 2 80'~

8V-
I

= _ V-I~ V-I
80'~ 80'~

8[;:f] = 8[- V~O'r V-I]

= _ [8~;1 ~ V-I + V-I 8:;~1'1 V-I + V-I~ 8~;'].

(B.9)

(B.IO)



Appendix C

Proof of Lemma 4.1.1

Since EIE,l = 0 for t = 1,. ., T, one obtains E(YtlO"d = x'd3, and E(Y,IO",,· ,0",) =

x;{J, for t = 2, , T, by using the dynamic model (4.3).Thus,

E(Y,IO"I, . ,0",) = x; (J, for all t = 1, ... ,T. (C.l)

To compute the conditional covariance, we follow the 0000 volatility model

(4.3)-(4.4). first expressy,-x;{J as

= 8[8(y'-2-X;_2{J) +0"'_1 E'_I] +O",E,

= 82[(y'_2-X;_2{J)+80",_1 E'_I] +O",E,

= 82[8(y'-3 - X;_3{J) + 0"'-2 E'-2] +80",_1 E'_I +0", E,

= 83(Y'_3 - X;_3{J) + 820"'-2 E'-2 + 80",_1 "_I + 0", E,



Next by using the distributional assumption for {E,;j= 1, .. ,t}, that is, by using

E(E~) = 1 for j = 1, ,t, and COV(Ej, Ek) = 0 for j '" k = 1, ... ,t, we obtain the

conditional covariance for u < t, u = 1, ... , T,

Cov[Yu , Yi la, , .. ad = E[(Y;, - x: ,8)(Yi - X;,8) la, , ad

= E[~oU-jajEj{~o'-jajEj

+kf,o'-kakEk}lal, .. ,a,]

as in (4.7).

= to'+U-2jaj,
J=I

(C.3)

Note that the conditional variance Var(Ytla" ,a,) follows, from (C.3) for u = t.

By using the expression given in (C.2), write for t=2 ... , T

5; = (Yi-l -1',_Il2(y, _1',)2 = q;O'-I-i a•E.)2 q;O'-'a,E,)2

= (f;0'-l-. a; Ei)2 (?;O'-I-'a;E,+a,E,)'



= (~l1t-Ha,<,)2[(~l1t-I-'a,<)2

+2(~l1t-l-'a,<,)at<t+a?<?]
t-l t-I

= (~l1t-l-iai<i)4+(~l1t-l-'a,<.)2a?<?

+2(~l1t-I-'ai<i)2(~I1'-I-'a,<,)

(CA)

'Pt-l" = EE[S2Ia? .a~l

= EE[S21Ia? . .• a~l + EEIS22Ia? .ail EIs231 = 0 because EI<;) = 0

(C.5)

Next consider.

EE[S21Ia? .,a~l = EE[(~l1t-'-iai<i)4Ia?, .... a~]

= EE[~114(t-I-')a~<: +4 ~~11(4t-4-3'-')a~a,<~ <,

+3 f;~e(4t-4-2i-2j)a?a:E~E;

6~~~11(4t-4-2,-j-k)a?ajak<;<'<k

+~~?1.11(4t-4-i-j-k-l)aiajakal<;<'<k<da}, ,ail
= E[3 ~114{t-I-i)at+ ~~11(4t-4-2i-2')a?a;]



t-I t-It-I

= 3 ~ 04(t-l-i) Elatl + 3 ~~ 0(4t-4-2Hj) Ela; a;l,

where Elat] is given in (2.36) and Ela; an is in (A.5). Similarly,

EE[S22Ia;, ,ail = EE[(~ot-'-;a;f;ra;f;,a;, ... ,a;]

= EE[(~02(1-I-i)a;f;

+2~iEIO(2t-2-i-j)aiajfif))a;f;la;, .. ,a;]

= EE[(~02(t-l-i)a;f;a;f;

+2~iEIO(2t-2-i-j)a;ajfifja;f;)a;f;la;, ,a;]

[~02(t-l-')ElaiJ]Ela;l+o

= [~02(1-I-i) Ela;I]Ela;l, (C.6)

with Ela?] fort=2, .. ,Tgiven in (2.8).

Computation of E<7f .... ,o1[cp:-l,Ucp;-I,t + cp~-l,t-lcp:,t + cP;,-UCP:,t-l]

In the same manner as above one can compute this expectation
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