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ABSTRACT

Pyrrolizidine alkaloids (PAs) are naturally occurring chemical compounds which are found in

various plant species worldwide. Although not all PAs are toxic, retrorsine is another representative

retrorncine-type PAs consider as one of the most toxic member of the PAs family which has historically

received most of the attention to have a genotoxic, hepatotoxic effects on animals and a serious health

problem to human as a veno occlusive disease and liver cancer. The mechanism of hepatotoxicity

induced by PAs in which PAs convert to the toxic form in the liver has been extensively studied. It has

been shown that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine through the

formation of the DHP-derivaed DNA adducts. Cytochrome P450 is playing an essential key role in

mechanism of liver genotoxicity. The genotoxicity activity of PAs has made them targets for studies

designed to determine genes involved in the metabolic actiavation of retrorsine. Microarray studies are

now playing a powerful approach in gene expression and discovery. Hence, to better understanding the

mechanism of genotoxic effects of retrorsine treated rats, this microarray analysis together with the real

time PCR provide qualification and quantification information of the liver metabolizing enzymes

activities, including those of the cytochrome P450 enzymes, and identification of genes involved in

liver cancer induced by retrorsine treatment. The present study represents the first in vivo examination

of chronic transcriptional response of the liver to retrorsine exposure. The available evidence on the

metabolism and target-tissue specificity for retrorsine's tumorigenesis suggests that active metab~lites

of retrorsine interact with endothelial cells in the liver which cause cell toxicity, followed by

compensatory proliferation of DNA-damaged endothelial cells causing mutations in these cells. We

have identified 53 genes in the liver of retrorsine-treated rats that were differentially expressed. Our

findings suggest that these genes may play an important role in the metabolism of retrorsine. The genes

identified in this study are involved in many diverse processes, including apoptosis, angiogenesis, cell

growth, cell death, adhesion, and cell movement of endothelial cells, oxidative stress, liver

development, catalytic activity, and signal transducer activity. P450 2E I enzyme is the major

metabolizing enzymes responsible for metabolism ofretrorsine which was confirmed to be increased in

gene expression by Real-Time PCR, these findings suggest that pyrrolizidine alkaloids retrorsine is

metabolically activated by P450 2El to form chemically reactive dehydrogenated intermediates.
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CHAPTER I
1. Introduction

1.1 Pyrrolizidine alkaloids

Pyrrolizidine alkaloids (PAs) are regarded as naturally occurring chemical compounds which

are found in various plant species of Senecio, Crotalaria, Erechlifes and other related genera worldwide

(ANZFA, 2001; Joseilson, el aI., 2004; Kaleab, et aI., 2004; Smith and Culvenor, 1981). It is well

documented that the various PAs are hepatoxic through the function of 6,7-dihydro-7-hydroxy-l­

hydroxymethyl-5H-pyrrolizine (DHP) -derived DNA adduct formation (Jeffrey, el aI., 1991; Peter, el

al., 2002; Peter, el al., 2004; Yu-Ping, el al., 2005). Although not all PAs are toxic, retrorsine is a

representative of retroencine-type PAs, considered to be one of the most toxic member of the PAs

family. It has historically received much attention and is thought to have a genotoxic, hepatotoxic effect

on animals, and to present a serious health problem to humans by causing veno occlusive disease

(VOD) and liver cancer (Chen and Huo, 2010; Rasenack, el al., 2003; Zhe and Ji-Rong, 2010).

Retrorsine toxicity has historically been a significant problem worldwide. Thus, recent studies have

been established to study the tumorigenicity and hepatotoxicity of PAs including Retrorsine (RTS) in

vivo and in vitro.

The mechanism of hepatotoxicity induced by PAs in which PAs convert to the toxic form in the

liver has been extensively studied (Yu-Ping, el al., 2005; Mattocks and Butler, 1973). It has been shown

that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine through the formation of

6,7-dihydro-7-hydroxy-l-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts (Yan, et al.,

2008). Also, it has been reported that riddelline and retrorsine share the same metabolic activation in

rats which can serve as biomarkers for the tumorigenicity (Yu-Ping, el al., 2005). Cytochrome P450

plays an essential key role in the mechanism of liver genotoxicity. The genotoxicity activity of PAs has



made them targets for studies designed to determine genes involved in metabolic activation of

retrorsine.

Alkaloids are naturally occurring chemical compounds containing basic nitrogen atoms that

have a pharmacological effect on humans and other animals. Humans have been using alkaloids in the

form of plant extracts for poisons, narcotics, stimulants and medicines for at least the last several

thousand years. More than 10,000 alkaloids of different structures are now known to have been used as

drugs worldwide (Schardt, et a/., 2007; Toni, 1995). Currently 25% of materia medica have

traditionally been of interest and are known to have been used as drugs, either as pure compounds (such

as the narcotic analgesic morphine, the analgesic and antitussive codeine, and the chemotherapeutic

agents vincristine and vinblastine) oras teas and extracts. Plant constituents have also served as models

for modern synthetic drugs and continue to result in new drug discoveries. Nevertheless, certain plant

drugs are still extremely important, such as atropine for tropicamide, quinine for chloroquine, and

cocaine for procaine and tetracaine. Alkaloids are basic in character and are sometimes toxic to animals

when eaten, resulting in significant financial and production losses each year (Holstege, et a/., 1995).

The biological role of alkaloids in plants is still a matter of speculation, but they are thought to have

evolved as a defensive mechanisim against predators (Ober and Hartmann, 1999).

Pyrrolizidine alkaloids are hepatotoxins found in many species of plants throughout the world

and are produced by a large variety of organisms, including bacteria, fungi, and animals and are part of

the group of natural products (also called secondary metabolites). More than 350 PAs have been

identified in over 6,000 plants in the Broaginaceae (many genera), Asteraceae (tribes Senecioneae. and

Eupatorieae), Orchidaceae (nine genera) and Fabaceae (mainly the genus erota/aria) (Dharrnananda,

2002). More than 95% of the PA containing plants investigated thus far belonged to these four families

(Ober and Hartmann, 1999; Stegelmeier, 1999).

Each year alkaloids cause considerable economic loss to the livestock industry and possible



adverse effects to human health though exposure to these compounds as contaminants of grain, milk,

herbal teas, honey, and herbal medicines (Dale, 2006; John, e/ al., 2002; Prakash, e/ al., 1999;

Stegelmeier, 1999). While all livestock are susceptible to PA toxicity, goats and sheep are less

susceptible, while the most frequently and greater risk of severe infection is for horses and cattle.

Particularly those parts of the world with arid climates and poor rainfall are susceptible to grain

contamination and promotion of PA containing plant growth as weeds among cultivated crops. The

first recorded instance of PA poisoning was in 1920 when many people in the Western Cape province of

South Africa suffered from liver cirrhosis after eating bread made with wheat probably contaminated

with Senecio burchellii. (Willmot and Robertson, 1920). In 1974 it was reported that the largest

outbreak of human intoxication by PAs was in Afghanistan when an estimated 35000 people were

affected after grain was contaminated with Heliotropium plant material. Among 7200 cases examined,

1600 were affected and many died three to nine months after the onset of clinical signs (Mohabbat, e/

al., 1976). A variety of animal products can be contaminated by pyrrolizidine alkaloid and also enter

the human food chain, leading to possible long- term toxic effects on humans.

Milk residue is one of the most frequently encountered products of animals that have ingested

PA-containing plants (Dickinson, e/ al., 1976). another source is eggs which can be contaminated with

PAs from chickens eating contaminated grain and honey which has been found to contain high PA

levels, causing a risk to those who consume large amounts of honey (Deinzer, e/ al., 1977; Mattocks, et

al., 197 I). PA toxicity has historically been a significant problem, but with modern herbicides and

better grazing management practices this problem has been minimized in some areas.



1.2 Structure of pyrrolizidine alkaloids

The name ofpyrrolizidine alkaloids came from their inclusion ofa pyrrolizidine nucleus (a pair

of linked pyrrole rings) as their back bone. Each pyrrole consists of a five-sided structure with four

carbons and one nitrogen forming the ring. Generally, PAs are esters of hydroxylated methyl

pyrrolizidines, consisting of a necine base and a necic acid moiety. The necine base can either be 1,2-

unsaturated or saturated. The unsaturated necine bases are further classified as two types; retronecine-

type (or heliotridinetype, a 7(S)-isomer of 7(R)-retroneeine) and otonecine-type alkaloids (Mattocks,

1986). Pyrrolizidine alkaloid bases can also exist as N-oxides, which are often found together with the

basic alkaloids in plants. The structures of retrorsine and retrorsine N-oxide are shown in Figure I-I.

N

~
o

Figure J-l: Structures ofretrorsine(left) 3nd retrorsincN-oxide (right)

Necic acids are branched-chained mono- or di-carboxylic acids containing four to six carbon

atoms and are typically unsaturated, hydroxylated, or epoxidized. The four most common types of

necine bases found in PAs are platynecine, retronecine, heliotridine, and otonecine. Retronecine and

heliotrine are enantiomers and have been studied the most because of their abundance and toxicity (

Fu, etal., 2004).



Retrorsine consists of two fused five member rings with a nitrogen atom at the bridgehead

position and aI, 2 double bond. This pyrrolizidine ring system has a hydroxymethyl group at the 1­

position and a hydroxyl group at the 7-position, through which the esterifying acid is attached.

1.3 Toxicity of pyrrolizidine alkaloids

Structures of naturally toxic PAs have been proposed for more than 350 individual compounds.

Determining the potency of these PAs is strongly dependent on knowing their molecular structures

features. These toxic PA products share a basic structure derived from esters of four necine bases:

platynecine, retronecine, heliotridine and otonecine. The acid moieties of the esters are termed necic

acids. The toxicity of the metabolite, once formed is determined by the metabolic route of PAs. The

major metabolic routes of unsaturated PAs are catalysed by cytochrome CYP P450 enzymes in the

liver. Toxicity also depends on the particular alkaloid and the nature of exposure (Peterson, and Jago,

1984). PAs are fairly stable chemically and require metabolic activation to exert toxicity (WHO,

1988). PAs associated with adverse effects also have a pronounced effect upon activity. Cyclic diesters

are the most toxic with non-cyclic diesters being of intermediate toxicity and the monoesters the least

toxic. The amino alcohols are not toxic.

There are different factors preventing pyrrolizidine alkaloid hydrolysis which influence toxicity

including the presence of carbonyl groups with branching and the rigidity of the acid chain due to

cyclic diester rings or unsaturation. Beside the physical and chemical properties of PAs that prevent

pyrrolizidine alkaloid hydrolysis, hepatic microsomal enzymes such as cytochrome P450 oxidases play

a major role in conversion of these hydrophilic PAs to pyrroles and N-oxides. The enzyme activity of

the animal and the type of ester may be one of the important factors influencing the ratio ofN-oxide to

pyrrole (Wang, el aI., 2005). There is evidence that acute hepatotoxicity of some PAs can be

contributed to by other metabolites, such as 4-hydroxy-2, 3-unsaturated aldehydes (Segall, el al., 1985).



However, this has still to be confirmed.

PAs need to have certain essential features in addition to the animal enzyme activation before

they can be converted to toxic metabolites (Fu, et al., 2004; Guengerich, 1977; Jieyu, et al., 2010; Yu-

Ping, et al., 2005).

Structural features of PAs associated with hepatotoxicity in rats (Prakash, et al., 1999) are shown in

figure 1-2 and include:

I. An unsaturated 3-pyrrole ring. The other ring is not essential for toxicity and can even be

absent.

2. One or two hydroxyl groups or substituted hydroxyl groups attached to the pyrrole ring via one

carbon atom.

3. The hydroxyls must be esterified and diesters.

4. A branched chain of the acid moiety must exist.

Figure 1-2:.Essentialstructuresforhepatotoxicity



1.4 Metabolic activation of pyrrolizidine alkaloids

Activation of cytochrome P450 enzymes and detoxification pathways are considered as the

most important factors that determine the amount of didehydropyrrolizidine formation in the target

tissues. Other factors affecting the chronic hepatotoxicity of pyrrolizidine alkaloids have been

identified (Jago, 1971).

Apart from these factors, structural activity of PAs is required for hepatotoxicity and toxic

metabolites (Culvenor, el at., 1976). Numerous reports have identified the formation of 6,7-dihydro-7­

hydroxy-l-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adduct in the liver ofrats treated with

different pyrrolizidine alkaloids (Ming, el at., 2003; Yu-Ping, el at., 2005). Dehydropyrrolizidine

alkaloids are less stable metabolites that can react with nucleophilic cellular macromolecules in the

liver, such as hydroxy-, mercapto- or amino groups of enzymes, globulins, or haemoglobin and purine­

or pyrimidine bases of DNA and RNA (Fu, el at., 2002a). This may cause cross-linkages in DNA and

RNA, leading to hepatotoxicity or further biotransformations and modifications of the genetic material

to generate less toxic or nontoxic metabolites (Thomas, el at., 1998). More stable metabolites can

disperse more before exerting an effect. Thus, monocrotaline frequently damages lung tissue, whereas

retrorsine, which yields more reactive pyrrolic metabolites, causes only liver damage (Mattocks, 1992).

Detoxification of the pyrrolic metabolites is possible via different mechanisms which can be

summarized as follows (Fu, el at.. 2002a):

• Alkylation of PA metabolites with constituents such as glutathione which renders more

polar products that are easily excreted in urine (Figure I-3d) page 14.

• Polymerization- it has been shown that metabolites that polymerize easily are also less toxic.

• Hydrolysis- pyrrolic alcohols, rather than DHP, are formed in an aqueous environment.



1.5 Comparative responses

Animal species have different susceptibilities to the toxic effects of PAs (McKnight el ai, 1991).

1.5.1 The same species responds differently to different PAs

Susceptibility to different plant containing PAs varies across animal species and may not be

predictable. However, some plants containing extreme amounts of PAs are very palatable to livestock.

Thus, all animals are susceptible. It was found that Guinea pigs are resistant to monocrotoline and

susceptible to Senecio PAs. Rabbits, pigs, chickens, and other domestic animals however are also

resistant to comfrey PA toxicity, while rats appear to be more susceptible (Cheeke, 1979; Grobner, el

al., 1985; Yeong, el al., 1993). Additionally, orally administered PAs tend to lead to toxicity, but have

less effectiveness compared to the injected PAs. This could be due to overwhelming detoxification

pathways when the PAs are delivered to the liver in a bolus. A study showed that rabbits succumb to a

single injection of purified Senecio alkaloids while they are relatively resistant to chronic feeding of the

plant (Schoental and Kelly, 1959).

1.5.2 Species differ in response to the same PAs

Several species feed on PA-containing plants. It has been shown, however, that pigs and

chickens are the most susceptible to PA poisoning followed by other poultry, cattle, horses, and goats

(Johnson, 1979; King, el al., 1979; Mattocks, 1981), whereas mice and sheep are resistant which could

be due the presence of specialized rumen bacteria that can detoxify the alkaloids before they are

absorbed. This variation is possibly due to the differences in age and gender which can also influence

the susceptibility of animals to the toxic effects of PAs. PA toxicity, however, appears to act differently

in different species including humans (Mei and Heflich, 2004); suggesting that the toxin may be a liver

metabolite unique for each different species.



1.6 Clinical effects of pyrrolizidine alkaloid toxicity in human

In humans, both acute and chronic toxicity has occurred from ingesting foods contaminated

with PAs, particularly herbal products and grains and flours (Bras, et 01., 1954; Conradie, el 01., 2005;

Culvenor, 1983; Huxtable, 1989; Mayer, and Luthy, 1993; Steenkamp, et 01., 2000; Tandon, et 01.,

1978). The liver is the primary target organ in humans, experimental animals, and livestock. Veno­

occlusive disease is a characteristic lesion in humans poisoned by PAs (Rollins, 1986; Stewart and

Steenkamp, 200 I). Other common effects in humans include ascites, splenomegaly, hepatomegaly,

centrilobular hepatic necrosis, and cirrhosis. The lungs are the second most common site of PA toxicity,

but not all PAs affect the lungs. The primary site of damage is the pulmonary vasculature.

Monocrotaline is particularly active in the lung but only at doses that were equal to or greater than

doses causing liver toxicity (Ono and Voelkel, 1991).

Pyrrolizidine alkaloid poisoning was discovered in 1954. There are many possible symptoms of

PA poisoning and it can take from 2-13 weeks for onset of symptoms after ingestion (Fox, et 01., 1978).

The severity of symptoms varies depending on the amount of plant consumed and the body size of the

person. Children tend to suffer more severe symptoms due to their smaller body size. For most people

it is usually severe and even deadly. Many cases of plant poisoning involve plants that are used in

medicine (Datta, et 01., 1978): traditional Chinese medicine (Kumana, el 01., (985); traditional African

medicine (Schoental, 1972); and the folk medicines of Jamaica and Mexico (Fox, et 01., 1978; Stillman,

etal., 1977).

Veno-occlusive disease was first described in the 1950s in Jamaican children with centrilobular

cirrhosis (Rollins, 1986; Stewart and Steenkamp, 2001). Clinically, many patients

initially experience the sudden onset of right upper quadrant pain, liver enlargement, and ascites.

Further investigation revealed that these patients had a history of ingesting a tea known as bush tea



made from local plants. The bush teas were made from leaves of erotalaria or Senecio and contained

PAs (Mayer and Luthy, 1993). Other symptoms of PA poisoning may include weakness, abdominal

pain and swelling, diarrhea, vomiting, hepatomegaly, and ascites (Ridker, et al., 1985). Veno-occlusive

disease has also consistently been associated with ingestion of comfrey teas (Bach, et aI., 1989; Selzer

and Parker, 1951). 20 cases of veno-occlusive disease in South African children are thought to be

caused by exposure to traditional remedies. Hepatic vein occlusion disease has also been found to

affect Egyptian children (Panter, et al., 1990) and the presence of PAs was confirmed in the urine of4

children for whom an on-admission urine specimen was available. Also in South Africa, retrorsine was

determined to be present in the traditional herbal remedies administered to two sets of twin infants (a

boy and a girl in each set) with veno-occlusive liver disease (Bras, et aI., 1954).

The clinical picture ofveno-occlusive disease is varied; acute hepatocellular disease have been

related to the occurrence of liver disease caused by PAs, but clinical diagnosis at this stage can only be

confirmed with biopsy which cannot be easily obtained in this setting. One author hypothesizes that the

high incidence of atypical malnutrition cases in Africa (20% of cases) in children could be due to

pyrrolizidine alkaloid poisoning (Schoental, 1972).

Veno-occlusive disease was also reported in two infants (2 month old boy and 6 month old girl)

in the United States who had consumed herbal tea prepared from S. longilobus, a plant known to

contain riddelline. The 2-month-old boy developed ascites, splenomegaly, hepatomegaly, and

centrilobular hepatic necrosis and died after 6 days in the hospital. The 6-month-old girl initially

showed signs of recovery but developed extensive liver fibrosis after 2 months and cirrhosis after 8

months.

At least one case of human embryotoxicity has been reported (Weston, et al., 1987). The mother

drank one cup of herbal tea daily throughout her pregnancy. The tea contained 0.6 mg senecionine per

kg dry weight and no signs of toxicity were observed; however, the infant was born with fatal veno-
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occlusive disease. Toxicity is exacerbated by chronic, small doses, and infants are particularly

susceptible. The majority of patients have mild symptoms that resolve without long-term sequelae;

however, in severe cases, liver failure from cirrhosis and veno-occlusive disease commonly occurs

months to years after exposure (Huxtable 1989); it is estimated that a daily dose of> I mg/day for 2

weeks, or> 0.1 mg/day for longer periods could cause liver disease in humans.

1.7 Determination and quantification of toxic pyrrolizidine

Determination ofpyrrolizidine alkaloid (PAs) toxicology, tumorigenicity, and hepatotoxicity has

attracted the interest of scientists worldwide (Colin, et al., 20 I0; lohan, et al., 2005) with emphasis on

the important aspects of human health. Although the effects of PA toxicity variy considerably between

species, pyrrolizidines are seldom suspected at an early stage after poisoning which makes it difficult to

identify the suspected toxic plants. Likewise, there have been few attempts to analyse the metabolites

of PAs in humans due the lack of toxicity data. Retrorsine, monocrotaline, and senecioic acid are the

only readily available commercial products.

Mass spectrometry has been used since early in the 1900s to study the chemical makeup of PAs

and their metabolites, the highly toxic nature of many of these PAs has been identified in many

different species (Betz, et al., 1994; Colin, et al., 1997; Rashkes, et al., 1978; Winter, et al., 1988;

Zuckerman, eta!., 2002).

1.8 Biological properties of pyrrolizidine alkaloids

The biosynthetic precursors of most alkaloids are amino acids. [n particular, most alkaloids are

derived from four different amino acids; lysine, phenylalanine, tyrosine, and tryptophan. (peter, 2001).

Pyrrolizidine alkaloids are synthesized in plants during amino acid metabolism as N-oxides in

the roots of most of the PA producing plants and are translocated to the aerial parts where they are

converted into the species-specific alkaloids (Oberand Hartmann,1999).
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1.9 Absorption and metabolic routs of retrorsine activation

1.9.1 Absorption

In plants, pyrrolizidine alkaloids are mostly stored in their non-toxic form. For example,

retrorsine is stored mostly in the form of its N-oxide (Mattocks and White, 1971), N-oxides are water

soluble and do not dissolve well in the intestine wall, because the inner surface of intestines containsa

relatively high concentration of fat. However, PAs do not usually stay in their N-oxide form in the

intestines - they are reduced, which means that the oxygen molecule splits off from the nitrogen. The

resulting molecule can be absorbed through the intestine wall and will end up in the bloodstream,

which passes through the liver where they are metabolized.

1.9.2 Metabolic routes of retrorsine activation

Studies showed that the highest concentrations of pyrrolizidine alkaloids were found in the

liver, lungs, kidneys and spleen. In the liver, three major metabolic routes can affect a pyrrolizidine

alkaloid molecule as shown in Figure 1-3; each requires some sort of activation, depending on the

structure of the acid moiety. Many of these activation reactions consist of biochemical oxidation or

hydroxylation. Retrorsine is metabolized to toxic pyrrolic metabolites through the action of the P450

enzymes (Lin, et 01., 1998). The principal metabolic pathways involve (i) hydrolysis of the ester

functional groups to form the corresponding necine bases and acidic metabolites, which will result in a

molecule that is not toxic; (ii) N-oxidation of the necine bases to the corresponding N-oxides, and (iii)

formation of the corresponding dehydropyrrolizidine (pyrrolic) derivatives through hydroxylation at the

C-3 or C-8 position of the necine base to form 3- or 8-hydroxynecine derivatives followed by

dehydration.

12



1.9.2.1 Hydrolysis

Metabolic reactions occur in the liver. A study showed that esterase hydrolysis (Figure 1­

3a) plays a minor role in the formation ofNecine base and that a common metabolic pathway may exist

between pyrrolic metabolite and INA formation (Pak-Sin, el at., 1993).

The acid moiety structure of PA molecule, with a short and unbraced acid chain esters are more

easily hydrolyzed than those where hydrolysis is hindered (Mattocks, 1992).

1.9.2.2 N-Oxidation

N-Oxidation is another metabolic pathway ofretronecine-type PAs. The retronecine-type can be

catalysed by cytochrome P-450 (CYP) monooxygenases; CYP2EI is the major subfamily mediating

both C- and N-oxidation and oxidative N-demethylation of retronecine-type PAs, and CYP3A of all

other three types of PAs (Fu, el at., 2004). N-Oxidation of the necine bases ofretronecine-type PAs is

also formed metabolically from the alkaloids by oxidation of the nitrogen atom of the molecule (Figure

1-3b), this means that an oxygen atom will bind with the nitrogen generating the corresponding PA ­

oxides (Fu, el at., 2002); which are water soluble and will be excreted by the body. It has been shown

that the ratio of N-oxide to pyrrolic metabolites varies, depending on the type of ester (Mattocks and

Bird, 1983). N-oxides molecules can be metabolically reduced back to the parent PAs in the body and

then undergo the aforementioned metabolic activation to form pyrrolic esters, leading to hepatotoxicity

and tumorigenicity (Lin, el at., 2000; Xia, el at., 2006).
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Figure 1-3: Metabolic pathway of 1,2-unsaturated PAs to toxic and non-toxic bases (adapted from Fu, et ai, 2002a).
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1.9.2.3 Dehydrogenation

As illustrated in Figure 1-3 dehydrogenation starts by converting the retrorsine-heliotridine-type

PA by the action of cytochrome P450 enzymes leading to the formation of didehydropyrrolizidine. This

metabolite (didehydropyrrolizidine) can further react with glutathione to form four glutathione

conjugates and this biotransformation is considered as a detoxification process (Robert, et aI., 1975).

The intermediate molecules that are formed during the dehydrogenization process are very toxic,

because they can damage different kinds of tissue. Because these intermediate molecules are quickly

transferred into other molecules, they cannot be found in samples taken from an animal. Only the

presence of dehydro-PAs can be shown.

1.9.2.4 Conjugation

Although these dehydro-PAs are more stable than the molecules that are formed in the process

in which N-oxides are converted into dehydro-PAs, they can also react with a lot of other molecules

such as glutathione (GSH), with which they form DHP-GSH conjugates which are more water-soluble

and can be ultimately transfer into urine (Sheweita and Tilmisany, 2003). This is because DHP-GSH

contains a double bond, which makes it easier for this molecule to bind and oxidize other molecules,

damaging them. Once formed, the pyrrolic ester metabolites can rapidly bind with DNA, leading to

DNA cross-linking, DNA-protein cross-linking, and DNA adduct formation (White and Mattocks,

1972; Yang, 2001). The dehydroretronecine (DHR)-derived DNA adducts formed from metabolism of

riddelliine, retrorsine, monocrotaline, riddelleiine N-oxide, and retrorsine N-oxide were measured in

parallel; the levels of DHP-derived DNA adduct formation were in the order riddelliine>

retrorsine>monocrotaline>retrorsine N-oxide or riddelliine N-oxide heliotrine. DHP-derived DNA

adducts formation are considered as a potential common biomarkers of pyrrolizidine alkaloid exposure

and tumorigenicity (Fu, et ai., 2008).
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1.9.2.5 N-Demethylation

Some of the pyrrolizidine alkaloids, the octonecine-type PAs, undergo N-demethylation with the

eventual formation of a dehydropyrrolizidine alkaloid (Figure 1-3e). It has been found that toxicity

decreases when octonecine-type PAs are conjugated with GSH, as they must first be N-demethylated

(Lin,etal.,1998).

1.10 Mechanisms of genotoxicity and tumorigenicity

The mutagenicity of PAs has been extensively studied. Although the mechanisms of actions

have not been fully identified, DNA adduct formation plays an effective role by which pyrrolizidine

alkaloids exert genotoxicity and tumorigenicity consistent with metabolic activation (Fu, et al., 2002;

Ming, et aI., 2003; Yu-Ping, et al., 2005).

Metabolites and analogues of PAs have been shown to induce tumors in experimental animals

in addition to having carcinogenic and genotoxic properties (Fu, et ai, 2002; Fu, et aI., 2007). Several

PAs have been shown to share common metabolic activation pathways. Further evidence in support of

the genotoxicity and carcinogenic effects are similar to those observed with riddelliine.

1.11 Genetic damage and related effects

DNA adduct formation may plays a role in the genotoxicity of retrorsine and many other PAs.

PAs have been tested for genotoxicity in a number of in vitro and in vivo test systems including

prokaryotic and several mammalian systems, where the genetic and related effects of PAs have been

reviewed. PAs were found to induce a higher frequency of mutations in endothelial cells than in

parenchymal cells in transgenic Big Blue rats (Nan and Tao, 2007). The predominant mutations in the

liver cll gene were G·C T·A transversions, which is consistent with PA-induced formation of DNA

adducts involving G·C base pairs (Mei and Heflich, 2004).

In rats given PA-N-oxide, the levels of DNA adducts were lower by a factor of 2.6 than in rats

16



given the same dose of PA. These results indicate that PA-N-oxide, through its conversion to PA, is a

potential genotoxic carcinogen. Reference DHR also was reported to be mutagenic in S. typhimurium,

to induce sister chromatid exchange in human lymphocytes without exogenous metabolic activation,

and to induce DNA-DNA and DNA-protein crosslinks (Cheeke, 1976).

1.12 Risk of pyrrolizidines

The risk of chemical contaminants in food should reflect the toxicity of the chemical compound

as well as the potential daily intake in a normal diet. Comfrey has been involved in a number of

poisonings in people and is considered as the most serious risk of pyrrolizidine alkaloid poisoning in

the United States. Cases of human poisoning by comfrey have now been published widely (Dennis, et

01., 1993). With all of the concerns about comfrey toxicity, some recommended precautions should be

taken in order to benefit from comfrey and it's healing properties without any risk of toxicity. For

example, the mature leaves or herb of common comfrey is preferable to be used than any other parts;

also, it should be used in combination with other herbs. Furthermore, pregnant or nursing women, or

infants under the age of one year, or anyone with a serious liver condition should never consume

comfrey or any other related PAs source. This is because the safe level of PA consumption during

pregnancy has not been determined and the lack of public health information regarding consumption

for small children is cause for concern. Furthermore, the balance between the metabolic activation

and detoxification pathways of PA producing non-toxic N-oxides might playa role key in resistance

(St-Pierre and De Luca, 1995).

To keep things in perspective, a public Report on Health and Safety was issued in 1978 by the

Henry Doubleday Research Association (growers and marketers of comfrey in the United Kingdom)

which concluded that until further research clarifies the long-term health hazard from comfrey

ingestion, "No human being or animal should eat, drink, or take comfrey in any form" (Henry, 1979).
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The death of the great philosopher Socrates which was considered as a major event in Greek

history involved alkaloids. After being sentenced to death by poison for corrupting the minds of

Athenian youth, Socrates drank a cup of hemlock extract poison containing the potent alkaloid

neurotoxin coniine in front of friends (Boer, 1950; Ober, 1977).

1.13 Treatment

Definitive diagnosis requires the histological examination of liver biopsy samples. However,

some of the histological changes are characteristic and can be detected. For instance, changes in liver

structure produced by the PAs can be used to describe the liver cancer. There are no currently accepted

specific medical antidotes, thus the treatment is mainly supportive. Prevention is the best "cure" for PA

intoxication. However, one should be clearly aware that diagnosis for cases involving PA poisoning in

time in order to prevent lead exposure and poisoning of different PAs and feeding of PAs is

discontinued (Stewart and Steenkamp, 200).

A study of rats given monocrotaline has shown success using picroliv, a glycoside from the

plant Picorrhiza kurora, as a treatment to protect the liver from monocrotaline poisoning (Dwivedi, el

al., 1991), however, the treatment was required to be concurrent with the toxin. Currently, Hostege

method is being used (Hostege, et al., 1995) to confirm the presence of pyrrolizidines in unknown

herbal remedies.

1.14 Retrorsine and human exposure

Retrorsine is a PA that occurs in many medicinal plants (primarily of the genus Senecio) that are

found in most areas of the western United States and other parts of the world. The available

information on human exposure to retrorsine and other PAs is based primarily on case reports or"liver

toxicity associated with ingestion of herbal products and contaminated grains and flours. The diagnosis

of PA toxicity is difficult to establish, and additional cases of poisoning by PAs have probably occurred
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(Fu, el 01., 2002). Symphytum officinale, Tussilago farfara, Adenosltyles alliariae, Senecio burchelli,

Senecio ilicifolius, Heliotropium lasiocarpum, Heliotropium eichwaldi, Crolalaria Fulva, Crolalaria

relusa, Crolalaria nona, and Crotalariajuncea are plants that have been recorded as causing toxicity in

humans (Bach, et 01., 1989; Datta, et 01., 1978; Ridker, 1989; Stuart and Bras, 1956; Tandon, el 01.,

1978).

Retrorsine N-oxide also is discussed in this section and throughout the document because it can

be converted back to retrorsine after ingestion. The quantities of PA N-oxides present in plants are

highly variable (Fu, el 01., 2002) but often can be nearly equal to or even greatly exceed the quantities

of parent PAs; in some cases, plants may contain only the N-oxide form. Of particular concern is that

PAN-oxides are much more water soluble than the corresponding PAs (Culvenor, el 01.,1981). When

plants containing PAs and PA N-oxides are used as herbal tea or herbal medicine (e.g., in Chinese

herbal medicine), much more PA N-oxide than PA will be extracted and ingested. Consequently, it is

important to assess the risk to humans posed by drinking herbal teas (including bush teas, comfrey teas,

or herb-derived decoctions) that contain PAs and PA N-oxides.

1.15 Retrorsine

Retrorsine and retrorsine N-oxide have no known commercial uses and are not available from

vendors. However, retrorsine-containing plants have occurred in folk medicines and herbal teas in the

United States and other parts of the world. The retrorsine-containing plant Senecio longilobus has been

used in medicinal herbal preparations in the United States (Roger and Coulombe, 2003). Retrorsine has

been found to be used in medicinal preparations in other parts of the world especially modern Western

and Eastern countries which base medicine on many pharmaceutical preparations and processing

Chinese herbs for medicinal preparations. Although retrorsine-containing plants are not used for food in

the United States, it has been reported that two plants of the Senecio genus (s. burchellii and S.
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inaequidens) have been used as spinach in South Africa (Zuckerman, 2002) and introduced into other

parts of the world including Western Europe, Australia, and New Zealand (Bryan, el aI., 1999).

Accidental exposure has been reported to be caused by ingestion of contaminated flour (Tandon, et al.,

1978; Willmot, and Robertson, 1920), milk (Dickinson, et al., 1979) from animals such as goats, which

are resistant to the toxin, and honey produced by bees that have fed on pyrrolizidine-containing weeds

(Deinzer, et al., 1977; and Ridker, et al., 1989). Russian comfrey, Symphytum x uplanidum, have also

been found to be used in salads (Yeong, et aI., 1993) and herbal teas containing comfrey (McDermott

and Ridker, 1990) and the Crotalaria spp., C. retusaand C. fulva (bush teas). The amount of alkaloid in

the leaves and roots ofpyrrolizidine-containing plants varies with season, soil type, and climate.

A number of PA-contaning plants are currently used in traditional medicine for the treatment of

a wide range of diseases and conditions. Leaves are applied to swellings, cuts, burns, sores, and

diseases of the eyes. Infusions (teas) are taken for skin eruptions, chest pains, colic remedy, "madness",

nausea, palpitations, to speed childbirth, induce abortion, or for the treatment of constipation and

worms. Heliotropium spp are used in Indian medicine for intractable fevers, wounds, inflammation,

edema, or urticaria. A World Health Organization report on self-medication is available (Estep, el aI.,

1990).

1.16 Objectives of this study

The first part of the investigation involved the study of the gene expression in rats after

exposure to retrorsine; including genes putatively involved in liver abnormalities and carcinogenesis,

and genes involved in metabolic activities after retrorsine treatment (through the action of the P450

enzymes), including cytochrome P450 enzymes, using the GeneChip Rat Genome 230 2.0 Array which

is a powerful tool for toxicology applications using rat as a model organism.

To gain further insights into the altered regulation of genes the gene expression of the drug

20



metabolizing genes (ABCBIB, Cyclin GI, CYP2El, and NQOl) were confirmed using quantitative

real-time PCR in the second part of this study. To better understand the biological impact and drug

metabolizing enzyme function and expression of retrorsine exposure, genes were associated by

Ingenuity Pathway Analysis in which functional annotations of the transcriptional responses were

analyzed.
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CHAPTER II

2. Materials and Methods

2.1 Samples

A total of six RNA samples, extracted from Male Fischer 344 rat livers were included in this

study. Three rats received no treatment (Controls; Control-I, Control-2, Control-3), and three rats were

treated with retrorsine (Retrorsine-treated Rats; RTS-l, RTS-2, RTS-3), according to a standard RTS­

based protocol for liver repopulation (Laconi elat., 1999).

2.2 Treatment procedure

The retrorsine treatment schedule was based on a standard RTS-based protocol utilized by

Laconi el at. (1998) at University of Cagliari, Italy. Six-week-old male Fischer 344 rats (approximately

100 g body weight) were randomized into retrorsine treatment (n= 3) and control (n= 3) groups at the

outset of the experiment. The treatment schedule for RTS was 2 doses; 30 mg/kg each, 2 weeks apart;

Control rats received no RTS treatment. Rats were killed 2 weeks after the second dose. This is the

classical treatment for liver repopulation (Laconi,elal., 1999).

2.3 Methods

2.3.1 Isolation of RNA from liver tissues

Total RNA was extracted from retrorsine-exposed and control liver tissues using QIAGEN's

RNeasy Total RNA Isolation kit (QIAGEN, Inc., Canada). Purified RNA was stored at -80°C. Quantity

and quality of the RNA extracted is discussed below.

2.3.2 Quantification and determination of quality of total RNA

After isolation of RNA, quantification and analysis of quality are necessary to ascertain the

approximate quantity of RNA obtained and the suitability of RNA sample for further analysis. This is
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important for many applications including RT-PCR and microarray experimentation. The most

commonly used methodologies for quantifying the amount of nucleic acid in a preparation are: (i) gel

electrophoresis; (ii) spectrophotometric analysis; and (iii) BioAnalyzeranalysis.

2.3.2.1 Quantification of RNA

Obtaining high quality, intact RNA is the first and often the most critical step in performing

experiments, including RT-PCR and microarray analysis. RNA yield was quantified by

spectrophotometric assays (Nanodrop ND-1000; Thermo-Scientific Inc., USA). The absorbance was

checked at 260 and 280 nm for determination of sample concentration and purity. The 260/280 ratio

was taken for each sample as seen in Table 2-1. Purity was considered good when the ratio was greater

than 1.8. This is because nucleic acid is detected at 260 nm,whereas proteins are detected at 230 and

280 nm. A 260/280 ratio of> 1.8 therefore indicates that our extracted is RNA devoid of any of these

contaminants.

Table 2-1 summarizes the Quantification of RNA samples. All RNA samples met the assay

quality standards to ensure the highest quality RNA is hybridized to the gene expression arrays.

Table 2-1: Purity and Integrity of RNA Isolated from RNA samples.

SampleID yglyJ 260/280

Control-I 4.06050 1.81

Control-2 4.14525 1.82

Control-3 2.89040 1.91

~treated-I 2.26288 1.94

&tr...~treated-2 3.87838 1.80

~treated-3 4.12576 1.81
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2.3.2.2 Visualization of RNA preparations on 1.5% agarose gels

Agarose gel electrophoresis is a convenient method for visualizing the molecular mass of the

extracted RNA. Two ~I of each RNA sample was loaded into wells of a 1.5% agarose gel, after mixing

with 2 ~I of 5X loading dye (promega, USA), which helps keep samples to the bottom of the wells and

enables us to follow the progress of electrophoresis run. Also, 2 ~I of 100 bp ladders (Qiagen, NEB

Inc., Canada) was loaded into gel. 1X Tris borate EDTA (TBE) running buffer was used to

electrophorese the gel under a constant voltage (80 V) for I hour. 5 ~I ethidium bromide (Biorad, NEB

Inc., Canada), an intercalating agent was added to the buffer to stain RNA, and the gel was visualized

on the UV transluminator provided with the gel documentation system (Biorad, USA).

2.3.3.3 BioAnalyzer

RNA quality was determined using a BioAnalyzer 2100, which was supported by The Centre

for Applied Genomics, The Hospital for Sick Children, Toronto, Canada (TCAG).

2.4 Microarrayexperiment

Six GeneChip Rat Genome 230 Arrays for rat expression analysis were used in this study.

GeneChip Rat Genome 230 2.0 Arrays in cartridge format have been used extensively for a wide

variety of applications including the discovery of new target genes involved in cardiac ischemia, global

analysis of gene expression in skeletal muscular activity, transcriptional profiling of liver disease and

analysis of signaling pathways related metabolism and development.

Microarray experiments using the Affymetrics protocol consist of three basic steps which were

supported by The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada:

sample preparation and labeling, sample hybridization and washing, and microarray image scanning

and processing.
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2.4.1 Sample preparation and labeling

Sample preparation involves extracting and purifying the mRNAs from rats liver tissues. Due to

a number of challenges, this procedure can be quite variable (Amaratunga and Cabrera, 2003); Stekel,

2003). mRNA degrades very quickly. To address this rapid degradation, the mRNA is usually reverse­

transcribed into more stable cDNA (for cDNA microarrays) immediately after extraction (Amaratunga

and Cabrera, 2003). To allow detection of which cDNAs are bound to the microarray, the sample

undergoes a platform-dependent labeling process. For the Affymetrix platform, a biotin-labeled

complementary RNA is constructed for hybridizing to the GeneChip. The protocols are very carefully

defined by Affymetrix to ensure that every Affymetrix laboratory follows identical steps. Experimental

results obtained in different Atfymetrix laboratories should therefore be reliably comparable (Stekel,

2003).

2.4.2 cRNA synthesis

All RNA samples were labeled using the Eukaryotic Poly-A RNA Control Kit (Atfymetrix)

which is designed specifically to provide exogenous positive controls to monitor the entire eukaryotic

target labelling process; a set of poly-A RNA controls was supplied in the Kit. Each sample was reverse

transcribed, using a T7-0ligo (dT) primer, and double-stranded cDNA was synthesized. The double­

stranded cDNA, with the incorporated T7 promoter, was then used as a template in the subsequent in

vitro transcription reaction. The protocol was supported by The Centre for Applied Genomics, The

Hospital for Sick Children, Toronto, Canada.

2.4.3 Hybridization and washing

Hybridization is the step in which the RNA probes on the microarrays and the labeled RNA

targets form heteroduplexes according to the Watson-Crick base-pairing rule (Stekel, 2003). The

essential principle here is that a single-stranded RNA molecule will bind to another single-strinded
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RNA molecule with a precisely matching sequence with much higher affinity than that to an

imperfectly matching sequence (Amaratunga and Cabrera, 2003). However, hybridization is a complex

process and a RNA segment may bind well to a sequence similar but not identical to its complementary

target, a phenomenon called cross-hybridization. This is influenced by many conditions, including

temperature, humidity, salt concentration, formamide concentration, target solution volume, and

hybridization operator (Stekel, 2003). Hybridization may be performed either manually or by a robot.

Robotic hybridization provides much better control over the temperatures of the target and slide. The

consistent use of a single hybridization station also reduces the variability which arises from multiple

hybridizations and various operators (Stekel, 2003). After hybridization, the microarray is removed

from the chamber or station and is then washed to eliminate any excess labelled sample so that only the

RNA complementary to the probes remains bound on the array. Finally, the microarray is dried using a

centrifuge or by blowing clean compressed air (Amaratunga and Cabrera, 2003).

2.4.4 Microarray image scanning

After the completion of hybridization, the surface of the hybrid izedarray is scanned to produce

a microarray image. As previously mentioned, samples are labeled with biotin or fluorescent dyes that

emit detectable light when stimulated by a laser. The emitted light is captured by the photo-multiplier

tube (PMT) in a scanner, and the intensity is recorded. Most scanners contain one or more lasers that

are focused onto the array (for two-channel microarrays, the scanner uses two lasers) (Stekel, 2003).

Although the scanner is only intended to detect light emitted by the target RNA strands which

are bound to their complementary probes, it will capture incidental light from various other sources.

These other sources may include labeled RNA sample which has hybridized non-specifically to the

glass slide, residual (unwashed) labeled sample which has adhered to the slide, various chemicals used

in processing the slide, and even the slide itself. This incidentally-captured light is called background
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(Stekel, 2003). The scanned output of an Affymetrix chip is usually a monochrome image. With two­

channel microarrays, the output is a pair of monochrome images. Each image is from one of the lasers

in the scanner. The two monochrome images are combined to create the false color images of

microarrays Both monochrome and two-color images are usually stored in the tagged image file format

(TIFF).

2.4.5 Analysis of microarray data

Microarray analysis was performed on gene expression changes in liver samples (control n=3,

and retrorsine-treated n=3). Gene expression alterations caused by exposure to retrorsine were

compared to controls using GeneSpring GX.II Software (Agilent Technologies, Inc., Canada).

2.4.5.1 Normalization of microarray data

Normalization is usually the first step required in microarray data analysis and it attempts to

reduce the experimental variability across different array spots while maintaining biological variability

(Hegde, el al., 2000). Figure 2-1 shows the distribution of normalized values of the probe sets within

each sample which is displayed in the box-Whisker Plot using the RMA algorithm, with the six

samples on the X-axis and the Log Normalized Expression values on the Y axis. Entities with intensity

values beyond 1.5 times the inter-quartile range are shown in red.

Figure 2-2 shows the log2 raw intensity data of the six samples (3 controls and 3 retrorsine­

treated samples). The results of the scatter plotting of the overall gene expression profiles demonstrated

the high quality and reproducibility of microarray data obtained.

The diagonal elements of the correlation matrix will be I since they are the correlation of a

column with itself. The correlation matrix is symmetric since the correlation of each column on the x­

axis of the six samples with the column of each sample on the y-axis is the same as the correlation of

each column on the y-axis with each column on the x-axis.
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Control-1 Control-2 Control-3 RTS-1 RTS-2 RTS·3

All Samples

Figure 2-1: Box-Whisker plot, with the samples on the X-axis and the log normalized expression values in the V-axis.
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Figure 2-2: The log, raw intensity data of the six samples (Control 1,2,3, and RST 4,5,6) were plotted against each
other.

2.5 Quantitative Real-Time PCR analysis (qPCR)

2.5.1 Preparing eDNA

2.5.1.1 First strand eDNA synthesis from total RNA

Complementary DNA (eDNA) was synthesized from 1-2 J..l1 of total RNA. Each sample was

reverse transcribed, using the High Capacity_RNA-to-cDNA_Kit (Applied Biosystems, Canada). For

each sample, 10 J..l1 2X RT Buffer was mixed with I J..lL 20X Enzyme Mix, and 7-8 J..l1 nuclease-free

water was added to the mix, for a final reaction volume of 20 J..ll.
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2.5.1.2 Thermocycler settings

Reverse transcription was performed using the thermal cycler under the conditions shown in

Table 2-2; these conditions are optimized for use with the High Capacity RNA-to-cONA Kit. Prepared

cONA RT tubes were placed at -15 to- 25°C for long-term storage after amplification.

2.5.1.3 cDNA quantification

cONA concentration and quality were determined using a NanoOrop NO-1000

spectrophotometer (NanoDrop NO-1000, ThermoScientific etc). Table 2-3 shows the good quality of

the cONA from each sample in which 260/280 ratio are 1.8 or greater and 260/230 are 2.0 or greater.

Table 2-3: Purity and Integrity of cDNA yields from reverse transcription.

SampleID J!g1yJ 260/280 260/230

Control-1 1.75223 1.85 2.26

Control-2 1.60802 1.86 2.26

Control-3 1.51396 1.86 2.26

~treated-1 1.55707 1.85 2.28

~treated-2 1.56447 1.85 2.23

.&.tr!lli~treated-3 1.62617 1.85 2.25
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2.5.2 Gene expression analysis using TaqMan® Assays

Gene expression is the process by which information from a gene is used in the synthesis of a

functional gene product. These products are often proteins, but in nonprotein coding genes such as

rRNA genes or tRNA genes, the product is a structural or housekeeping RNA. In addition, small non­

coding RNAs (miRNAs, piRNA) and various classes of long non-coding RNAs are involved in a

variety of regulatory functions. Real-time polymerase chain reaction (RT-PCR) is used to confirm the

changes of gene expression - increases or decreases - of the genes investigated with microarrays by

measuring the abundance of the gene-specific transcript. The investigation monitors the response of a

genetotreatmentwitharetrorsine.

2.5.2.1 TaqMan® Gene Expression Assay chemistry

Real-time PCR reactions were performed using TaqMan® Gene Expression Assays (Applied

Biosystems AB) and TaqMan® Gene Expression Assays protocol (Applied Biosystems, USA).

TaqMan® Gene Expression Assays have been pre-designed by the Applied Biosystems (Applied

Biosystems, USA) with optimized parameters such as %GC content, melting temperature, and

amplicon length to ensure that all of the TaqMan® assays have high amplification efficiency. The

TaqMan® chemistry uses a fluorogenic probe to enable the detection of a specific PCR product as it

accumulates during PCR cycles. Expression Assays are based on 5' nuclease chemistry and consist of a

FAMTM dye-labeled TaqMan® MGB probe (250 nM, final concentration), and two unlabeled PCR

primers (900 nM each, final concentration). All probes contain a FAM reporter dye at the 5' end of the

MGB probe and a non-fluorescent quencher at the 3' end. The TaqMan® MGB probes and primers

were premixed to concentrations of 18 ~lM for each primer and 5 ~M for the probe. Amplifications

were carried out in a final reaction volume of 20 ~1. IDs for gene assays and gene symbols are

explained in Appendix B. All components were quality-control (QC) tested and formulated into a single
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20X mix, and designed to run under universal conditions for two-step RT-PCR by the company.

Detection of real-time PCR product using TaqMan® Assays is based on binding of the

TaqMan® probe to a complementary target sequence and release of the fluorescent reporter dye from

FRET by DNA polymerase. In addition, no fluorescence signal is produced unless the TaqMan® probe

is cleaved by the DNA polymerase as it extends the PCR primer.

2.5.2.2 Performing peR amplification

2.5.2.2.1 Assay optimization

To ensure efficient and accurate quantification of the target template, RT-PCR assays was

optimized and validated. cDNA from control samples (Control-I, Control-2, Control-3) were used as a

template for optimization reactions. The cDNA was diluted in a 5-fold dilution range to obtain a

dilution series with known amounts of cDNA. Table 2-4 shows the volumes of each PCR reaction mix

components that were used to prepare four replicates of each 20-flL PCR reaction mix of each dilution

for each assay.

Table 2-4: peR reaction mix components for Q-RT-PCR with TaqMan Gene Expression Assay.

peR reaction mix component

20X TaqManill> Gene Expression Assay

cDNA template§ + RNase-free water

2X TaqManill> Gene Expression Master Mix#

Total Volume

2.5.2.2.2 Thermal cycling conditions

Volume per 20-I.IL reaction (I.IL)

Single reaction IThl'ee replicates*

1.0 I 4.0

9.0 I 36.0

10.0 I 40.0

20.0 I 80.0

PCR amplification was performed using the StepOne™ Real-Time thermal cycler under the

following conditions shown in (Table 2-5); these conditions are optimized for use with Applied

Biosystems StepOne™ Real-Time.
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Table 2-5: StepOneT"system thermal cycling conditions.

Run type Reaction plate

96-wellstandard

Stage Temp (OC) Time

Cycle 95
(40 cycles) f-----60-----+----

:j: Required for optimal AmpErase~UNG activity; not needed when UNG is not in the reaction.

2.5.2.2.3 qPCR analysis methods

The software for the StepOne™ Systems supports a variety of analysis methods, including:

Absolute Quantitation (Standard curve), and Relative Quantitation (Comparative CT). The absolute

quantitation assay is used to quantitate unknown samples by interpolating their quantity from a

standard curve to know the exact copy number of the target RNA in the sample in order to monitor the

progress ofretrorsine treatment.

2.5.2.2.3.1 PCR reaction efficiency

The amplification efficiency of the PCR reaction is one of the major concerns regarding any

real-time PCR-based assay (including TaqMan® probe and primers). The slope of the standard curve is

used to determine reaction efficiency. Since the PCR reaction is based on exponential amplification, if

the efficiency ofPCR amplification is 100% the amount of template will double with each cycle, and

the standard curve plot of the log of starting template vs. PCR cycles which generate a linear fit with a

slope between approximately -3.1 and -3.6 are typically acceptable for most applications requiring

accurate quantification (9D-I 10% reaction efficiency).

To address this concern, efficiency values were measured using the CT slope method. This

method involves generating a dilution series of the target template (cDNA) and determining the CT

value for each dilution. A plot of CT versus log cDNA concentration is constructed. With this method,
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the expected slope for a 1O-fold dilution series of cDNA is -3.32, when PCR amplification efficiency =

1.0. The StepOne software calculated the slope, amplification efficiency, R 2 value (correlation

coefficient), and CT values for all samples of each assay.

Figure 2-3 illustrates a five-fold dilution series standard curve over the five assays; Endogenous

Control (ACTB), ABCBIB, Cyclin GI, CYP2EI, and NQOI obtained by real-time PCR with a slope

range between -3.19 to -3.474 which is well within the acceptable range of -3.1 to -3.6 and an

amplification efficiency values (R2
) of 94.023%, 105.793%, 100.754%, 98.028%, and 101.085%

respectively, again, within the acceptable parameters >0.985. Amplification efficiency was calculated

from the slope of this graph using the equation: Ex = 10(-l/slope) - I.

Standard Curve

:::1

-3.3(}4

-3.19

Quanbty

10/00-1 .CO:G-l .ABCBIB En:! COMlol CYP~El

Figure 2-3: Standard curves with five points of each Gene Expression Assay (NQ0-t, CCNG-I, ABCBlB,
Endogenous Control, and CYP2EI) obtained by real-time PCR (RT-PCR).
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A serial dilution of Endogenous Control (ACTB), ABCB IB, Cyclin G I, CYP2E I, and NQO I

cDNA ranging from I :5, I :25, I: 125, I :625, and 1:3125 was analyzed by StepOne Q-RT-PCR. The

assays had amplification efficiency values (R2) of 0.997, 0.999, 0.995, 0.997, and I respectively; the R2

value is a measure of the closeness of fit between the regression line and the individual CT data points

of the standard reactions. A value of I indicates a perfect fit between the regression line and the data

points. An R2 value >0.99 is desirable. For the precision analysis, the dilutions were chosen according

to the ranges of CT values (19, 22, 27, 22, and 28; respectively), that were characteristic for the

expression levels of the particular reference genes (Endogenous Control (ACTB), ABCB I B, Cyclin

G I, CYP2E I, and NQO I) in the samples. The dilution series for untreated samples were done in

triplicate to PCR amplify the target sequence (ABCBIB, Cyclin GI, CVP2EI, and NQOl), and

Endogenous Control. The CT value was indicated on the Y axis and the amount of cDNA on the X axis

as seen in (Figure 2-3). A CT value >8 and <35 is desirable. A CT value <8 indicates that there is too

much template in the reaction. A CT value >35 indicates a low amount of target in the reaction; the

results here showed that all CT values were between 24 and 26.

The threshold cycle (CT) is the PCR cycle number at which the fluorescence level meets the

threshold as seen in Figure 2-4. The threshold of each assay was automatically set by the StepOne

software to be in the region where the plots are all linear and where they are all as close as possibleto

being parallel to one another and not too high that it crosses any of the plots where they are starting to

plateau and no longer linear.
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Figure 2-4: Amplification plots viewed with the Y Axis set to a log scale of five-fold dilution series of each assays
(Endogenous Control, ABCBIB, Cyelin Gl, CVP2El, NQOt). The optimal setting for the threshold is the point
where all the log plots are linear and parallel, as shown in where the threshold is set here for each assay.
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2.5.2.2.3.2 Comparative quantification

Another quantification approach is termed the comparative CTmethod. This involves comparing

the CTvalues of the retrorsine treated samples (RST-I, RST-2, RST-3) with the non-treated samples

(Control-I, Control-2, Control-3). The CTvalues of both the calibrators and the samples of interest are

normalized appropriate endogenous housekeeping gene (ACTB).

The comparative CTmethod is also known as the 2-[delta] [delta]CT method, where

[delta][delta]CT = [delta]CT.sampl. - [delta]CT....f....n••• Here, [delta]CT.sampl. is the CTvalue for any sample

normalized to the endogenous housekeeping gene and [delta]CT,.f=n•• is the CTvalue for the calibrator

also normalized to the endogenous housekeeping gene.

Relative quantification was used to determine the changes in eDNA levels of the ABCB IB,

Cyclin G I, CYP2E I, NQO I genes across retrorsine treated/untreated samples and expresses it relative

to the levels of Endogenous Control. Calculations were based on the comparison of the distinct cycle

determined by cycle threshold values (CT) at a constant level of fluorescence to determine CT the

expression of a target genes in relation to a specific housekeeping gene (ACTB) actingas an

endogenous control. Figure 2-5 shows a typical reading from the StepOne qPCR thermal cycler of

differences of ABCBlB, Cyclin GI, CYP2EI, and NQOl gene expression and Endogenous Control

(ACTB) gene expression in liver tissues as a CTvalues. The lower a CTvalue, the more copies are

present in the specific sample.

For each gene (ABCB I B, Cyclin G I, CYP2E I, NQO I and Endogenous Control), samples of

three non-treated (control-I, control-2, control-3) and three retrorsine-treated (retrorsine-treated-l,

retrorsine-treated-2, retrorsine-treated-3) were run in quadruplicates. A no-template control (NTCs) was

performed which showed no contamination (Figure 3-5). A positive control using a housekeeping gene

(ACTB) that is relatively abundant in all samples was also performed to allow for comparisons
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between samples. The quantification arises by measuring the amount of amplified product at each stage

during the PCR cycle. cDNA from genes with higher copy numbers will appear after fewer PCR cycles

as seen in Figure 2-5.

Target mRNAs from retrorsine-treated (n=3) and control (n=3) samples are assayed

simultaneously for all genes ABCBIB, Cyclin GI, CYP2EI, NQOI and Endogenous Control, each

serving as a competitor for the other, making it possible to compare the relative abundance of target

between samples. From Figure 2-5 all ABCB IB, Cyclin G I, CYP2E I, NQO I genes for all retrorsine­

treated samples showed a higher copy number and a lower CT values compared with the non-treated

samples.

2.5.2.2.3.3 Statistical analysis

Data handling was simplified by automating all calculations in an Excel® worksheet, which

enabled the rapid calculation of P values for each gene using GraphPad Prism software (GraphPad

Prism).

All data are expressed as mean standard error of measurement (SEM). Unpaired t-tests were

used and differences were considered significant for values of P< 0.00 I. Mean fold changes between

the two groups (retrorsine-treated and untreated) were calculated by averaging the quadruplicate

measurements for each gene. The relative fold difference calculation used the 2-11. CT method (Livak,

2001).
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Figure 2-5: Effect of retrorsine treatment on ABCBIB, Cyclin GI, CYP2EI, and NQOI gene expression and on
Endogenous Control (ACTB) gene expression in liver tissues. Expression differences are shown by ~CT values.
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CHAPTER III

3. Results

3.1 RNA quality

RNA was successfully isolated from the six rat tissue samples. Figure 3-1 shows two distinct

ribosomal bands corresponding to 18S and 28S for rats rRNA visible half way down the gel. Non­

distinct RNA bands were not seen as a lower molecular weight smear, as a result rRNA degradation

was not found. Gel electrophoresis thus provides an indication of the quality of the RNA preparation.

The BioAnalyzer electropherograms showed a high-quality total RNA sample from both

controls and retrorsine-treated rats as seen in Figures 3-2 and 3-3; two well-defined peaks with ratios

approaching 2: I corresponding to the 18S and 28S ribosomal RNAs were observed, similar to the

denaturing agarose gel as seen in Figure 3-1. The baseline between the internal marker and the 18S

rRNA peak is relatively flat and free of small rounded peaks corresponding to smaller RNA molecules

that could be degradation products of the rRNA transcripts. The electropherograms were checked for

the absence of high-molecular nucleic acids that indicate contamination with DNA. The integrity of

total RNA can be easily assessed by evaluation of the 18S and 28S units of ribosomal RNA.
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Figure 3-1: Quality of RNA Isolated from Rats liver Tissue. 1.5% Agarose gel of total RNA extracted /Tom rats liver
tissue using RNeasy kits. 1.5 ~g RNA was loaded per lane, (Lane 1-3) RNA extracted /Tom Controls rats liver tissue, (Lane
4-6) RNA extracted from Retrorsine treated rats liver tissue, M; IOObp marker, -ve; negative control. Bands for (upper
arrow) 28S rRNA and (lower arrow) 18S rRNA are shown
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Figure 3-2: Electropberogram (from the Agilent 2100 Bioanalyzer) for Rats Control Total RNA. A high-quality total
RNA sample, two well-defined peaks corresponding to the 18S and 28S ribosomal RNAs were observed, similar to a
denaturingagarosegel,withratiosapproaching2:1 for the 28Sto 18Sbands.
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Figure 3-3: Eleclropherogram (from the Agilenl2100 Bioanalyzer) for Relrorsine -treated Rats Total RNA. A high­
quality total RNA sample, two well-defined peaks corresponding to the 18S and 28S ribosomal RNAs were observed,
similarloadenaluringagarosegel,withratiosapproaching2:1 forthe28Stol8Sbands.
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3.2 Microarray analysis

3.2.1 Principal Component Analysis (PCA)

After data normalization by Quantile normalization which is recommended by the

manufacturer, the intensities of the whole rat gene data were analyzed' by Principal Component

Analysis (PCA). PCA is a way of identifying the data patterns and highlighting the data's similarity and

differences. The main use of PCA is to reduce the dimensionality of a data set while retaining as much

information as possible with which it calculates the PCA scores and visually represents them in a 3D

scatter plot as seen in Figure 3-4. The scores were used to check data quality. A separation between

control and retrorsine-treated groups was observed. Ideally, replicates within Control (untreated) group

clustered together (Red) and separately from arrays in RTS-treated groups (Blue), indicating that there

was a retrorsine-treatment effect on liver gene expression.

Figure 3-4: Principal Component Analysis (PCA) of gene expression profile for Control and RTS-Treated groups.

The intensity of the entire gene set was used; no specific cut was applied for the analysis. The red and blue dots indicate

control and treatment, respectively.
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3.2.2 Significance analysis

3.2.2.1 t-test and P values

Unpaired t-tests were chosen as a test of gene expression in RTS-treated versus Control groups.

Differentially expressed genes were identified based on the criteria ofP< 0.05. A total of206 genes out

of21.532 satisfied the requirement as seen in Table 3-1 and Figure 3-5 (the red and green spots), of

which (146) were up-regulated and (60) were down-regulated in response to retrorsine treatment.

Table 3-1: Differential expression analysis report mentioning the test description and Fold Change test (FC).Test has
been used for computing P values, type of correction used and P value computation type (Asymptotic or Permutative).

Pall P<0.05 I P<0.02 P<O.OI P<0.OO50 P<0.OOI0

E;aU 21532 206 21
F >1.1 9916 203 21
E;>1.5 1073 105 15
F >2.0 275 53 10

E;>3.0 84 32 9

3.2.2.2 Volcano plot with a fold change

Probe sets that satisfy a fold change cut-off of 2.0 in at least one condition pair are displayed in

Table 3-1 and Figure 3-5. Regulation is labeled with respect to expression of controls. As seen in Table

3-1,53 out of206 entities with P < 0.05 and fold change cut-offof>= 2.0 with [Control] as the control

condition were displayed, among of them 47 probes were up regulated after retrorsine treatment, and 6

probes were down regulated after retrorsine treatment.

The Volcano Plot shows the - log I0 of P value vs. -log 2 of fold change. 53 of the entities that

satisfy the default P value cut off of 0.05 which is equivalent to 1.30 lOon the -log lO P value scale and

a fold change value of2.0 are shown in green color, and the rest appear in gray color.
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Figure 3-5: Volcano Plot (-logIO P value vs. -log2 fold change). Genes were identified as significantly changed of fold
changegreaterthan2(upordown)andPvaluelessthanO.05incomparison to the control group.

3.3 Genes associated with drug metabolism

Since metabolic activation of retrorsine is required to exert its biological effects, r first carried

out a detailed analysis of those metabolizing genes that showed expression changes after retrorsine

treatment. Table 3-2 shows phase I, II, III drug metabolizing genes whose expression was significantly

changed by retrorsine treatment. Up and down-regulation of several cytochrome p540 genes, Ces I,
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Table 3-2: The significant changes in gene expression related to phase I, II, ill drug metabolizing genes.

GeneS)'nlbol Genedescriplion Locus ill Fold Change P-value

Pha,pl:\lptaboli,m
C ~ carboxylesterase2 171118 4Xt 0.027
C}'JLel cytochrome P450. family 2. subfamilye 25086 1.23t 0.044
Cyp2f4 cytochrome P450. family 2, subfamily f 54246 1.44. 0.048
ALDHIAI aldeh 'de dehydrogenase I family. member Al _16 11.3 t 0.045
ALDHILl aldehyde dehydrogenase 1family. member Ll 10840 1.57 0.034

Pba,pII mftabolism

'qol NAD(p)H dehydrogenase. quinone I 24314 2.48 0.041
Sult2all sulfolransferasefamily_A ~4902 3.28. 0.029
Sulf2 .ulfatase2 311642 2.19t 0.031

PhaspIII mptabolism

Abcbla ATP-binding cassene. sub-family B 170913 11.91t 0.019
(MDRJTAP), member IA

Abcblb ATP-bindingcassene, sub-familyB 18669 30.39t 0.025
!DR AP), llletllber IB

Abcd3 ATP-bindingcassene. 5825 1.35t 0.040
sub-family D(ALD)Jllember 3

Abcgl ATP-bindingc~ssette, 9619 1.39t 0.046
sub-family G(WHITE). llletllber 1

Atp6vld ATPase.H transporting,lysos0lll31 51382 4.00t 0.001
34kDa. VlsubunitD

Slc25a36 solutecarrierfamily25.menlber 55186 1.39t 0.047
Slc37a-l solute carrier family 37 (glucose-6- 29573 1.72. 0.027

phosphaterransporter).member4
Slc6al7 solutecarrierfami1y6 neurotransmitter 613226 L5. 0.041

-transporter). member 17
SlcSa6 solute carrier family 5(SodiUlll-dependent 8884 l.2st 0.020

vitamin transporter . member 6

*Front color (yellow) indicates common genes between riddiilline and retrorsine treatments. Reference
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ATP-binding cassette transporters, and other metabolism-associated genes including NAD(P)H

oxidoreductase (Nqo 1) and aldehyde dehydrogenes (Aldh Ia I) were observed.

3.4 Genes involved in liver abnormalities

To better understand the biological impact and drug metabolizing enzyme function and

expression of retrorsine exposure, the genes listed in Table 3-3 were associated by Ingenuity Pathway

Analysis in which functional annotation of the transcriptional responses were revealed to be associated

with the apoptosis, angiogenesis, cell growth, cell death, adhesion, and cell movement of endothelial

cells. Considerable attention was paid to the genes with the highest fold changes after retrorsine
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Table 3-3: Genes involved in carcinogenesis altered byretrorsinetreatmentinliver.

Gene symbol

CelI death and apoDtosis

Fold Change

Fas

Phlda3

Cdh13

Ccngl

T:'IT' receptor superfullily. member 6

Pleckstrin Ilomo ogy- ike donHltn, family A, member

Adherin 13. H-cadherin (heart)

Cyclin-Gl

3.23t

5.00t

435t

5.00t

anatomical SOllClUre momboaenesis

Car2

Dad2

Carbonic anhydrase II

Dopamine receptor D2

1O.00t

:loot

CelI monmen! of endothelial cens and celI adhesion

LamaS I...1ll1inin.. alpha 5 4.50t

Cdh13 Adherin 13. H-cadherin(hean) 435t

Lgals3bp lectin. galactoside-binding. soluble. 3 binding protein 4.30 t
AdamS Metallopeptidasedornain8 83.7t

lin!' denlopml'nt

Aldhlal

Ccndl

Igfbp3

~qol

Aldehyde dehydrogenase I f.·milly. member Al

CyclinDl

Insulin-like growth factor binding prorein 3

NAD(p)H dehydrogenase. quinone 1
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3.5 Validation of differential gene expression by quantitative reverse transcription

polymerase chain reaction (Q-RT-PCR).

Four differentially expressed genes (ABCB IB, Cyclin 0 I, CYP2EI, and NQO I) from the final

list of 53 genes as seen in Table 3-1 were validated using StepOne Q-RT-PCR. 1 selected three

differently expressed genes ( ABCBIB, CYP2El, and NQOl) related to phase I, Il, III drug

metabolism genes and Cyclin 01 gene involved in carcinogenesis altered by retrorsine treatment in

liver as detected by microarray for verification by Q-RT-PCR.

500

400

300

200

100

• Retrorsine-treated

[J Untreated

CyclinGl CYP2El NQOl

Figure 3-6: Expression of genes related to phase II, III drug metabolizing ( CYP2E I, NQOI) and Cyclin G 1 gene.
Results are expressed as percentage of Retrorsine-treated and untreated rats. Data exprssed as Mean ± SEM with n ; 3 per

group. P<O.OI34, P<O.OOOI,P<O.0004respectively.
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Figure 3-7: Expression of genes related to phase I drug metabolizing (ABCBIB) gene. Results are expressed as
percentage of Retrorsine-treated and untreated rats. Data expressed as Mean ± SEM with n = 3 per group. P< 0.0016.

The Q-RT-PCR results were consistent with the microarray data for all the genes verified. There

were significant differences in genes expression between retrorsine-treated and untreated rats in all

genes (ABCBIB, Cyclin 01, CYP2EI, and NQOl). For example, ABCBIB, CYP2EI, and

NQO I were upregulated in by 30 fold, 4.25 fold, and 2.48 fold by microarray and 30 fold, 4 fold, and 2

fold by Q-RT-PCR. Also, Cyclin 0 I was upregulated by 5 fold by microarray and 5 fold by Q-RT-

PCR as seen in (Figure 3-6, and Figure 3-7). The expression of ABCBIB, Cyclin 01, CYP2EI, and

NQO I genes were significantly increased in the retrorsine-treated rats (n=3) compared with the
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untreated rats (n=3), P value was calculated (P< 0.0016, P< 0.0004, P<0.0134, and P<O.OOOI

respectively.
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CHAPTER IV
4. Discussion

Microarray analysis was performed using the Affymetrix GeneChip system to examine gene

expression in livers of rats treated with retrorsine, with the goal of identifying genes involved in drug

metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and

cancer development altered by retrorsine treatment in liver.

Rat RAE 230 2.0 Microarrays were used for six samples, and a total of31,099 probes covering

26,30 probes verified rat genes were analyzed. The differentially expressed genes between the

retrorsine-treated and untreated groups were generated by a two-fold change ranking with a P value

cutoff less than 0.05 as the criterion for identifying genes. A total of 53 genes were found to satisfy the

requirements; differentially expressed genes in rats exposed to retrorsine included 6 down-regulated

genes and 47 up-regulated genes. Among these genes, there were 16 drug metabolizing enzyme

associated genes, with 5 Phase I, 3 Phase II, and 8 Phase Ill. Table 3-5 shows Phase I, Phase II, and

Phase III drug metabolism genes whose expression was significantly changed by retrorsine treatment.

My findings suggest that these genes may play an important role in the metabolism ofretrorsine.

Oxidation of PAs in Phase I appears to occur via cytochrome P450 (CYPs), as my findings

show that two out of the five expressed Phase I metabolism associated genes were affected CYPs,

genes belonging to the CYP2 superfamily (CYP2El, and 2F4) were up and down-regulated

respectively, two other genes belonging to the Aldhl superfamily (Aldhlal, and Ill) were up­

regulated, and one gene belonging to the carboxylesterase superfamily (CES2) was up-regulated.

It is well established that the CYP2 play an important role in catalytic activity, metabolism of

xenobiotics, and activation of many toxicological substrates (Irina, and Arthur, 2003). In my results the

over-expression of CYP2E I may explain the promotion of liver cell injury after retrorsine treatment in

rats by formation of dehydropyrrolizidines, which are the primary toxic metabolites which may directly
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attack DNA and cause DNA damage (Castagnoli, et at., 1997). CYP2EI was confirmed to be up­

regulated with 2 fold change, and (P = 0.0134) by Q-RT-PCR analysis. My finding of increased

expression of CYP2El is consistent with data from Gordon et at. (2000), who showed with RT-PCR

that retrorsine caused increased expression of hepatic CYP2EI in rats. The expression of CYP3A9,

CYP3AI, CYPIA2, CYP2BI, CYP4A3, and other CYPs which is believed to be involved in the

metabolism of other PAs were unchanged after retrorsine exposure. However, CYP2E 1 gene expression

is also shown to be increased after riddelliine (another type of PA) treatment (Nan and Tao, 2007). The

decrease of CYP2F4 expression after retrorsine exposure suggests that the involvement of these

isomers in the bioactivationofretrorsine is possible.

Besides CYP, the CES2 is another major group of Phase I drug-metabolizing enzymes which

playa major role in hydrolysis of ester- and amide-bond-containing drugs. This gene was induced

about 4-fold after retrorsine treatment which could explain the involvements of the CES2 gene in the

detoxification pathway in phase I. CES2 isoenzymes shown to be major intestinal esterases in first pass

hydrolysis of ester containing drugs (Masaki, el at., 2007).

I observed a very high fold change in gene expression (both with up-regulated) of aldehyde

after retrorsine treatment about 12, and 2-fold for (ALDHIAI, and ALDHAILI) respectively. These

two enzymes are the most important enzymes for aldehyde oxidation in the detoxification pathway in

phase I, which could suggest that ALDHlAI is the major rat liver enzyme involved in retrorsine's

phase I metabolic activation. These enzymes are found in many tissues of the body, but are at the

highest concentration in the liver.

Among Phase II drug metabolizing genes which are involved in conjugation of the polar

functional groups of phase I metabolites, NQOI, and SILF2 were increased 2-fold. [n contrast,

SULTIALI was reduced 3-fold after retrorsine-treatment. Nqol was also shown to be increased after

reddelline treatment and other PA containing products such as comfrey (Radjendirane, and Joseph,
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1998) which might explain that retrorsine can be conjugated by NQO 1, and SULF2 enzymes. NQO 1 is

associated with the mechanisms by which toxicity and carcinogenicity are produced during phase II of

major PA products. Altered expression of NQO I protein has been consistently associated with many

tumors and is also associated with Alzheimer disease (AD) (Honda, el al., 2004; Raina, el ai., 1999).

These results imply that these particular types of NQO I and SULF2 may therefore be involved in the

conjugative detoxification ofretrorsine electrophiles and play an essential role in the cellular oxidative

defense mechanisms.

In addition, there were four ATP-binding cassette (ABC) transporter genes (ABCBIA,

ABCB IB, ABCD3, and ABCG I) that were up-regulated, and four other solute carrier transporter

genes, (SLC25A36, SLC5A6) that were up- or down-regulated. These phase III ATP-binding cassette

transporters, together with the hepatic microsomal cytochrome P450, as xenobiotic-transporting

ATPase activity playa major part in detoxification and a key physiological role in xenobiotic drug

metabolism and toxicity, resulting in protection of cells and tissues against xenobiotics. Several studies

have demonstrated that ABC transporters directly use the energy of Mg2+/ATP hydrolysis to pump their

substrates into the vacuolar lumen (Gang, el al., 2005). My results show ABCBIA, and ABCBlBI

were the major enzymes which ultimately enhance the elimination and clearance of these xenobiotics,

suggesting that the overexpression of these genes could be due the DNA-adduct formation. No

publications have been found about the relationship between PA treatment and induction of the ATP­

binding cassette. To extend these observations, conventional RT-PCR was performed to confirm the

expression of ABCB IB gene expression; the up-regulation of gene expression of this gene was

confirmed with 6O-fold change of and P < 0.0016. Future research is encouraged for the role of ATP­

binding cassette in PA metabolism and carcinogenesis.

Also, in the present study, gene expression alterations caused by retrorsine exposure were

compared with those caused by riddelliine exposure from another study (Nan and Tao, 2007; Guo, el
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01., 2007). Not surprisingly, there were a strong correlations between the two treatments; in particular,

drug metabolizing genes and cancer-related genes in which five common drug metabolizing enzyme

associated genes (CYP2El, ABCBlA, ABCBlB, NQOl,CES2) belonging to Phase I, Phase II, and

Phase Ill, were altered by both retrorsine and riddelliine treatment which suggest that these common

genes may share common mechanisms of PA toxicity through the formation of DHP-derived DNA

adducts which is reported by Yu-Ping Wang to be responsible for retrorsine-induced liver

tumorigenicity as well as the other genotoxicities (Yu-Ping, el 01., 2005).

Considerable attention was paid to the high folded genes after retrorsine treatment, which

suggest that up- and down-regulated expression of these genes and fold change potentially

induce/inhibit metabolism of retrorsine resulting in DNA adduct formation, thus enhancing the toxicity

induced by their metabolites. Significantly changed genes were divided into subsets based on

functionality, and categories included cell death and apoptosis (FAS and PHLDA3), angiogenesis

(CDHI3), cellular growth (CCNGl), anatomical structure morphogenesis (LAMAS, CDHI3,

ALDHIAI, CAR2, CCNDl, DAD2), cell movement of endothelial cells (CDHI3), cell adhesion

(LAMAS, CDHI3, LGALS3BP, ADAM8), liver development (ALDHIAI, CCNDl, IGFBP3), cell

cycle process ( CCNGI(M phase), CCNDI, PHLDA3), and oxidative stress (NQOI). The over­

expression of these genes indicated that these genes were responsible for cell death, whereas the

decreased expression indicated that hepatic system development and function were harmed by

retrorsine exposure.

Apoptosis, programmed cell death, is known to participate in various biological processes such

as development, maintenance of tissue homeostasis and elimination of cancer cells. Reportedly,

apoptosis is caused by various inducers such as chemical compounds or proteins. The biochemical

pathways of apoptosis are complex and depend on both the cells and the inducers. FAS and PHLDA3

genes playa key role in multiple cellular processes such as cell proliferation, apoptosis, and
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transcription. PHLDA3 is putatively involved in apoptosis and FAS expression. Fas is a gene which is

now officially known as APTII TNFRSF61 APO-I and is responsible for activation of pro-apopototic

gene products. Also PHLDA3 is required for TP53-dependent apoptosis and AKT repression. The over­

expression of PHLDA3 and FAS genes could explain the DNA damage response mediated by P53 gene

resultingininductionofapoptosis.

Retrorsine treatment also resulted in 2-fold up-regulation ofNQO I suggesting the induction of

oxidative stress. NAD(P)H:quinone oxidoreductase I (NQOI) is a tlavoenzyme that catalyzes two­

electron reductive metabolism and detoxification of quinones and their derivatives leading to protection

of cells against oxidative stress. NQO I has been proposed to stabilize the tumor suppressor gene p53

and has been shown to interact with p53 in a protein-protein interaction (Radjendirane and Joseph,

1998). Thus, the overexpression of NQO 1 could explain the role of this enzyme in sensitivity to

toxicity and carcinogenesis. NQO 1 gene expression is co-ordinately induced with other detoxifying

enzyme genes in response to xenobiotions (Jaiswal, 2002).

PA-induced DNA damage prior to DNA synthesis in the liver (endothelial cells and

hepatocytes) might produce replication error and mutation which eventually could result in the

development of neoplasms in the treated animals. In mammals, the necleotide excision repair process is

the most important pathway for elimination of DNA damage caused by exogenous agents, including

DNA reactive carcinognous and some endogenously generated oxidative lesions (pham, 20 I0).

Increased levels of [GF-II were significantly associated with decreased risk of cancer mortality (Pham,

2010; Renehan, 2004) that could explain the increase of the risk in liver cancer with the decrease of the

IGF expression level about 2A-fold change after retrorsine exposure. The eukaryotic cell cycle is

governed by cyclin-dependent protein kinases (CDKs) whose activities are regulated by cyclins and

CDK inhibitors. CCNGI has been shown to interact with P16, MDM2, P53 (Zhao et aI., 2003) and

PPP2R4 (Okamoto et al., 1996) and is induced by DNA damage in a p53 dependent manner (Kimura,
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and Nojima, 2002; Chen, 2002; and Sherr, and Weber, 2002), which might explain the overexpression

of this protein about 5-fold change in response to DNA damage after the formation of DNA adduct.

This suggests that the main role ofcyclin G1 is to mediate or regulate the function ofp53. In addition,

many of the genes exhibited regionalized expression, including those enriched in more distal

epididymal regions. In particular, the ADAM family of transmembrane-bound metalloprotease and

disintegrin domain-containing proteins were identified, including ADAM8, and ADAM5. Other

proteases expressed in the epididymis include the apoptotic FAS, and PHLDA3 were also detected.

Thus, the over-expression of these genes supports a critical role for them in the toxicity of

retrorsine.
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CHAPTER V
5. CONCLUSIONS

The present study represents the first in vivo examination of chronic transcriptional response of

the liver to retrorsine exposure. The available evidence on the metabolism and target-tissue specificity

for retrorsine's tumorigenesis suggests that active metabolites of retrorsine interact with cells in the

liver which cause cell toxicity, followed by compensatory proliferation of DNA-damaged cells causing

mutations. I have identified 53 genes in the liver ofretrorsine-treated rats that were differentially

expressed. My findings suggest that these genes may play an important role in the metabolism of

retrorsine. The genes identified in this study are involved in many diverse processes, including

apoptosis, angiogenesis, cell growth, cell death, adhesion, and cell movement of endothelial cells,

oxidative stress, liver development, catalytic activity, and signal transducer activity. P450 2EI enzyme

is the major metabolizing enzymes responsible for metabolism ofretrorsine which was confirmed to be

increased in gene expression by Real-Time peR, these findings suggest that pyrrolizidine alkaloids

retrorsine is metabolically activated by P450 2El to form chemically reactive dehydrogenated

intermediates.
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Appendix A

Appendix A: Rat liver samples and their amount used for eDNA in Mieroarray Experiment

RNA Name Used (ng)

500(4hrs)

500(4hrs)

500(4hrs)

Retrorsinetreated- 500(4hrs)
I

Retrorsinetreated- 500(4hrs)
2

Retrorsinetreated- 500(4hrs)
3

Sample ID eRNA Chip Lot#
used (ug)

74

Experiment FileName

RAE2302_071410KJBI_Control-1

RAE2302_07 141 OK_JB2_Control-2

RAE2302_0714 IOK_JB3_Control-3

RAE2302 071410K JB4 Retrorsine
- treated-=I -

RAE2302 071410K JB5 Retrorsine
- treated-=2 -

RAE2302 071410K JB6 Retrorsine
- treated-=3 -



Appendix B

Appendix B: qPCR genes and gene symbols

Gene Name Gene Symbol .Al\:J.1!lli;w Size Assay ID

ATP-binding cassette,
sub-family B (MDR/TAP), member IB

cytochromeP450,
family 2,subfamilye,polypeptide1

NAD(p)H~,~1

~Gl

ABCBIB

CYF2El

NQOl

~Gl

94

126

109

99

Rn01432448-S1

Rat ACTB~, beta) Endogenous Control ACTB
(FAMTM Dye / MGB Probe, Non-Primer Limited)
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