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Abstract

expcricncesandarebccomingmorepopular.l-lowevcr,lheaccuracyofthe motion sensor

limits Iheir usages in precision critical games. Inslcadofthcmotion based approach,

image proccssingtcchniques could be used 10 provide higher accuracy dueto thcir high

The goal of this thesis is therefore 10 propose a highly accurale conIroller that utilizes

visual inputs. Users can comrol cursor in 20 screen by waving the controllcrtowardany

place which has Icxtures, The thesis first proposes an imageregistration algorilhm that

runs in real-time on graphics hardware, lhen U5CS il 10 build a highlyaccuratevisual

bascdconlrollcrlhroughcamerafocaltracking,andfinallyfurther improves the

Rcal-timeimagcrcgislrationisachicvcdbyimplcmcnlingthclnvcrseCornpositional

Algorithm in parallel using Compute Unified Device Architccture (CUDA).Anumberof

CUDA optimization tcchniques have becn applied and evaluated. Thc final optimized

implcmcntationachievesl50timesspeedupovcrthcsequentialimplementation,more

thansufficienlforrcal-timeapplicalion.Toimprovelhcrobuslnessorimageregistralion,

thecoarse-Io-fineprocessingschemeisalsoappliedandtwomulti-resolulionvariantsor



ExpcrimcntsconduCleddemonstratethal,usingthcproposcdreal-1imc image registration

algorithm, the visual bascd conlrollerachieves much highcrconlroI accuracy than the

improvcd through using the input rromthe motion scnsor as a priori knowledge 10 assist
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Chapter] Introduction

owadays,the input methods for game console controllcrsare nOIIi mitoologamepads

wilh push bUllons. cwtypesofgamecontrollersarccomingtoenhanceusers'gaming

experience. intendointroduces Wii remotecontroller(orWiimotc) for its video game

console· Wii. WiimOlehasintegratedacceleromctersandanachedgyroscopes 10 track

the prevalence of mOl ion controlled videos games. However, the aceelerationand

gyroscopc based approach lacksaccuf8cy. In Ihis Ihesis, we explorean integrated system

of visual based approach and motion based approach tOlrack user input.lmage

rcgislrationis uscdtotrnckthe view direction of the camera (the cenlerofthecaptured

image). Users hold a wand containing a combination of video

Sinccthcinvenlionsofgamcpadsandanalogslicksasthecontrollers forlhc first

generation consoles, inputdeviccs for video game consoles neverstopcvolving. More

and morc Icchniqucs arc bcingintroduced tocnrich gaming control e,xperiences.ln2003,

Sonyrclcascd the Eye Toy-a digital camera device for the PlayStation 2. For the first

timc. computer vision techniques, such as gesture recognition were used in consoles

Unfonunately, limited by the performanceofthc camera and theprocessing capability of



Three years later, intendoshowedagainhcrtalcntinereatingbrand-newgaming

expcrience. As the main controller of her new console Wii, Wii rcmolccontroller(or

Wiimotc)wasthemoslversalileinput device in console hislory.Inlegraled with motion

and infrarcdraysensors, Wiimoteisnotonlyaconventional game pad butalsoamotion

tracker and alight-gun. It broughl out the prevalence of motion controiling games

evertheless, Wiimote is not perfect. While providing novelty experience for casual

garners, enthusiasts and professionals complain about the control accuracy.Untilnow,

convenlional gamepads are slill the bcst choice for high compelilive console video games

The compctitors of Nintendo are creating new lools to improve the accuracy. For more

powcrful consoles, new hybrid gamingconlrol systems, Kinect forX-Box 360 and PS

Move forPIayst3tion 3 arc on the way. Both introduce muhiple inputtechniques, such as

motion sensor and voice recognition. Though the hardware specificationsofthetwo

relative old consoles limit their performances, I-ID video games (abbreviate for I-ligh

Definition video games, an unofficial term for video games with resolution larger than

1280x720) finally have the chance to get rid oftheoldconvcntiona1 game pads and

Both of the new products can take vantages of image processing teehniques.Avideo

camera is native inlegraled to Kinect for X-Box 360,whercas PS3 has an accessory

camera device, called PS Eye, which can be added 10 PS Move system. Compared 10

motionsensorsolution,imageprocessinghashigheraccuracyuplo pixel level. However,

on both Kinecland PS Move systems, Ihe vidco cameras are fixednearte levisionsand





Thc rcmainingofthis thesis is organized asthc following: The nexl chapter discusses

previollsworkrclatedtothisthesis.Thisinciudesimagcrcgistration approaches, motion

Chaptcr3 covers the image registration algorithms. First, we introducethelnverse

Compositional Algorithm (ICA). It is an cfficiellt intensity-based imageregislration

atgorithm. whose parallel implementation is used as the building block of the proposed

registration system. We then propose our techniques to enhance ICAusingcoarse-to-line

processing strategy. We also propose the Multi-Resolution Image Registration with



Chaptcr 3 discusses Ihc dClailed implcmentalion and IhcoptimizationoftheparallellCA

on CUDA. The organization of the wholc system is first presented and the optimization

techniques are then discussed. The techniques include balancing seq uentialandparallcl

workload, parallel reduction,sequential·lhen·parallel processing, and memory access

pancmsoplimizedforCUOAdevices.Moreimportant,wemodifythebonlencckofthe

ICAandusevariousbufTeringmethodstoreducehigh·latencymemoryaccess. Tests

showlhatthehard-codingenforcedregisterbufTeringapproachyicldsthe best result

Several experiments results are shown at the end of this chapler to demonstrate the

InChaplerS,wecomparethreetypesofcontrollerslhalusedifferentinformationfor

poinlinglask.Usingavideocameraonly,wecanbuildahighaccuracyvisualbased

poinlingcontrol!er.lfweonlyhaveamotionsensor,ancfficientmolion based air-mouse

can be builL By analyzing the pre-knowledge provided by motion sensors, the motion-

visual.hybridconlrollerworkswellevenduringhighspcedmovemenl

The proposed real·time image registration system not only has IIpplication in building

controllers. il can also be applied 10 olher real-vision applications.lnChapter6,wewill

discuss how to use it to correct light-gun and generate real-time image mosaic. At last,



Chapter2 Related Works

Image registration is Ihe process that transformsdifTcrent sets ofimagesinloone

coordinalcsystcm, It is widely used in computer vision, medical imaging,andsoon

DifTcrcnt imageregiSlr31ion algorithms can be classified into two categories-thcfeature-

based approach and the intcnsity-based approach

The fealure-based approaches evalu31c thc Iransfonnalion bclween the two images based

distincl,stable and easily detectable in both images. VariousfcalUre detection techniques

are proposed 10 extract features, from the previous Moravec's corner detcclor [2] 10 the

then used to be matched betwcen images to cSlimate the transformat ion model. To make

thcrcgislnltionrcsultrobustagainstoutliers,FischlcrandBollcs'RandomSample

ThceXlraClcdfcaturesnolonlycanbeusedlorcgistcrimagcs,but also to estimate

camera locations. Davison proposed thcreal·timc single-camera·based localization

Ihrollghfcalured.basedmapping[S1,Davisondiscussedmutualinformationforlhcactive

scarch to extract useful features [6]. In high framc·rateapplication, the active scarchis

cxpected to bc more accurate becauseoflhe relative small search region . h also requires



The feature·based approaches do nOI compare intensity values and work well when

illumination changes or images are sensed by the diITercnl devices.Onlheotherhand,

theycannolhandlescenesthathavelimitednumberofdistinclfealurcs

The intensity·based approaches do nol detect features but compare the intensity

diITerenccofthe whole images or part of the images via ccrtain correIation criterion. The

cxamplesarethe ormalizedCrossCorreialion(NCC)(7]andSequentiaISimilarily

Detcction Algorithm (SSDA) (8] that sequentially search theoptimumloestimate

translalion between images. Moreversalileand 10wcomputalional cost algorithms are

alsoproposcd,such as the Lucas·Kanadealgorilhm {91,whichcan eSlimategencral

projectivelransformation.Theinlensily-bascdapproachesdonot require salient

strucluresinimages.However,bccauseofthcpixcl-by-pixelcalculalion,lheyhavehigh

computalionalcomplexilies;and,becauscoflheinlcnsitycomparisonthcyarealso

Intcnsity-bascdapproachgcncrallyworkswcllforregistcring imagcscaplurcd by a single

camera due 10 Ihe following two reasons: Firsl,irnagessenscdbyone camera arc

consistcnlincolor.SccondIY,adjacentfrarncscapturcdbyacamcraalfullframcrate

oficn share adequalc overlapped regions. Althoughlhe imagctravcrsing isa high cost

opcration, thc uniform calculalions for each pixel provide large amount of parallelism

whichcouldbespceded up by the widely used Single Instruction Multi pic Dala(SIMD)







remplatematchingsearchesasub.imagefromanothertemplaleimage.ltcanbe

obviously used to handle translating regislration byextracl the templste from the image

to be transformed. The template matching algorithm usually !ocates the template position

by finding the minimum distortion, or maximum correlation, between the template and

the all possible sub-images of the referenecd image. Examples forthe measuring equation

are easy to implement. For better robuslness, Normalized Cross-Correlalionisoftenused

lmagcregistration using Icmplate malchingcan be implemented efficientlybul itean

only handle translation. In contrast, we perform InverseCompositionalalgorithm,which

Wii remote controller, or Wiimote, is the first wide-used motion controller for

mainstreom gaming consoles. With integrated accelerometers, it can measure

accelerations ranged from-3gto+ 3g along three perpendiculardi rections

BeC311seitiscasilyprogrammable.itspotcntialusagesarebcing investigated by many

researehcrs.WongetaI.I17]useiltobuildaninleraclivemusicperformaneesystemby

analyzing acceleration patterns. Schlomer et al. (18) employ it to perform gesture

recognition. Cheong 119] uses it to build a interactive teaching and learning platform



mcasurcsangular velocities with built·ingyroscopcs. Althoughcurrcnlly there are very

already bcen researchcd for motion tracking, such as orientation est imationdiscussedby

Luingc {20] and mOlion capture discussed by Sakaguchi [211

As Ihe advancing of streaming processors, the graphics processing unit (GPU) is being

widely uscd to implcmcnl general·purpose parallel applications. Asmcntioncd by Harris

1221.GPUsprovidemuchmoreandfastergrowingcomput:ltionalpowerthanCPU's

ExistingGPUapplicalionsinvolvingimageproccssingI23-25],vidcodecoding[26,27],

physicssirnulalionI28,29J,scarching[30jandsorling[31)showhugeaccclerations

Prc\liousGPUsarcnolspecificatlydcsigncdforgcncral.purposecomputations

Programmers ha\lc to usc a graphics programming modcl,such as shad inglanguages,

which is designed for graphics rcndering. This programming model is nOl optimized for

other usages and lacks efficient local communication mechanisms,whichisacommon

ow. more and more general-purpose products arc released 10 makcGPU codingmore

enjoyable. Thc)' provide convenient high level programming languagesloimplement



parallcl applications. On-chip storagc devices are used loaccelerate local communication

Onthosedcviccs,implemenlalionsaremoreintuiliveandcfficienI. The examplesoflhe

GPU programming modcls are Ihe Compule Unified Device Archileclurc(shortfor

CUDA) designed forlhe GPUs manufactured by the inlegrated circuitsupplier-nVidia

and thecross-GPU OpenCL. DirectCompute. which is the graphics API Ihal the latest

graphic card will support in hardware, would become Ihe slandard for PC gaming

industry. It will be integrated with Microsoft DirectX 11. It is also highly possible 10

becomclheSlandardprogrammingmodel forthcnexlconsoleofMicrosoft.ltisvery

likclythal olher console providers would relcasc similar productstolakeadvantagethe

CUDA isselccled in this thesis for implemcnlinglhe imagc rcgisl rationalgorilhmin

parallcI.ThcC·1ike programming inlerface is inluitive forprogrammcrsto design parallel

applicalions. CUDA complier and linker can gencralc C++ objccts or libraries Ihal can be

easily linked to the standard C++ programs. This fcaturc makes integrslingGPU

acccicraling programs veryconvenienl. CUDA also provides fcul urcsto cnable runtime

debuggingwhichgrcatlyeasesthecodedebuggingandmaintenance

2.4 Optimization of CUDA programming

hardwarecangrcallyaffeclstheperformanceofthcalgorithm.Sevcralpapershave

discussed how to optimize CUDA code. In [321, I-Iarrisdiscuss step by SICP about how 10

oplimizelheparallclreductionbybothalgorilhmicoplimizationsandcodeoplimizations

The final result is as 30.04 times fasl as the original straightfoT\vardversion.Wemodify



Harris' work to perform the inter-thread summalion in our CUDA kernels. Harris,

Sengupta and Owens discuss how to optimize parallel prelix sums in [33). Theiron-chip

memory accessing pattern to resolveaccessingconnict provides the inspiration to design

theoptimizedatomicadditionproposedinAppcndixA.landparallelreductionforvector

proposcdinAppendixA.4.Formorespecilicapplicationinsteadofgeneralalgorithms,

in [25),Yuand Chen propose the techniques to optimize their stereo visionsystem

Especially. they discuss how to tune the workload distribution 10 acquire high occupancy

of the stream processors which leads to high inslruction throughput . In our experiments,

we lind Ihalhigh occupancy docs not always means high perfonnance,espe<:iallyforthe

memoryband-widlhlimitedapplicationswhichbenelitsmorcbytradingoccupancyfor

Based on our parallel implementation of the ICAalgorilhm.weexpcrimentedwith

various optimization techniques and evalualed Iheireffectiveness.lntheend,wenotonly

have an optimized implementation that accelcratcs the process ing speed by up 10 six

limes, but also obtained valuable insights on how to optirnizeother image-related CUDA



Chapter 3 Image Registration using Inverse
Compositional Algorithm and Its Parallel
Implementations

The Inverse Compositional Algorithm (ICA) isan imagcregistration 1001 to estimate the

homographiclransfonnationbelweent\\oimages. The algorithm runs too slow on

current PCsforreal-timeapplications, it also has huge parallelism which could be

In lhischaplcr, we discuss a GPU-based image rcgiSIr31ion algorithm designed based on

leA. Moreover, we discuss how 10 improve the registration robustness using multi-

rcsolulionproccssingandloincreasctheversatililyusingseleclcd region regislralion

Compared to the sequcntial lCA implemcnlation, the proposed GPU-based image

rcgistralion(IR)algorilhmachievesaspcedupofuptoI50times. After integrating thc IR

algorithm with coarse-Io-linc processing scheme, the resulting multi·resolutionimage

rcgistration(MRIR)algorithmiscapablcofrcgistcringirnageswithsmalleroverlapping

regions and thus it improves robustness. To further improvcthe processingspeedand

odaptability,weuseselcctedregionsduringthemuhi-resolution regiSifalion process

That is, after input images are registered at low resolution, we extractappropriatesub-

images from the input images and perfoml local registrationonlyonthesub-images.The

corresponding algorithm is referred as multi·resolution image reg iSlrationwithselected

regions (MRIR·SR). which uses smaller regions in fine level registration and therefore

can achieve higher processing speed,especially when the imageresolution is large. In



addition, although the underlining ICA algorilhmcan handle homographiclransformalion

only. MRIR-SRcan be used to align planar regions in arbilrary scene, makingilmore

ThcproposedGPU-basedimplcmentationisbasedonthelCAalgorithm.ltestimateslhe

transfonnation malrix between two input images by iteratively mini mizingtheintensity

Any IWO imagesofa planarsurfaceorlwo images of arbitrary scene lakenatthesame

viewpoinl arc linked by homographiclransfonnalion. Givcn two imagestobcregistered,

wereferoncofthcimagesaslhctcmplatelmagc(T),andlhcsecondimageastheinpul

image(l),lhecoordinate from the template image can bcwarpedtothecoordinate

systcmofthc input image by a matrix, i.e ..

whcrci = [i,j,l]T is the homogeneous coordinates of the pixel inTandx=[x,y,l]Tis

thcholllogcncouscoordinalcsofthccorrespondingpixclinl.Wisa3x3malrixwith8

unknownparamcterswhich beuscdformodclingallin-planeprojectivc

The rcsultofmuhiplyingW· i must benormalizcd in order 10 obtain theCartesian, i.e.,



x = (1 :~O~ ;;~; pz and y = P3
i
;)~:;/~: Ps

P=(PO,PI.PZ.PJ,P4.PS.P6.P1)' Lei W(i;p) dcnolc the warp with Ihe parameters in

veClor p. The ICA algorithm estimates the vector p through iterativeIyperfonning

~p =n- '~ [VTI~ r [/(W(/;p)) - T(I)]

whereliWis3x3matrix. It is built by replacing all IhePninEquation3.2wilhliPn

calculatcdinEquation3.4.ThealgorithmconvergeswhcnallciemenIS in tlpn are equal

to zero or almost zero in a practical implemenlation.TheHabove is called Hessian

H=~[VTI~r[VTI~J

VTI~iscalledthesteepestdescentimage(SDl)anditisevaluatedWhere all the

parameters for the warp are equal to zero. According to Equalion 3.3,



IfwerefcrthegradientofthetcmplateimageasVTj=[VTi

aw
VT,i!P

3.2 Sequential Inverse Compositional Algorithm



Preprocessing

1 for each pixel i(i,j) in the template image T (

3 calculateVT,i;

4 H+=(VT,~rVT,~}

6 diff=/(W(i;p))-T(i)

7 6p +=di{{XVTI~ }

Warp updating

B 6W= ParamelersToWarpMarrix(H- 16p)

lOlfCheckConvergeAndStopCondition()=={alsegotosetpS

Algorithm 3-1 Pseudo-codeorthe ICA algorithm

This step (line I lo4)traverseslhewholctcmplmeimagctopre-calculatclheimagc

gradicntVT,cightSDls,undtheHessiunmalrix.Foragivenregistrationlusk,thisstep

Using the currcm warp matrix., this step (line 5 to line 7) computes Ihcinlensity

dirrerence between the template image and the warped input image. The difference,



scalcd by Ihe SOl. is then used to compute the update vectortJ.ps of the local warp

Inthisstep(line8toIO),weupdatethecurrentwarpmatrixusingtheupdatevectortJ.ps

We then chcck whether the stopping condition is met. Ifitis,thecurrent warp matrix sent

to output and the process terminates. Otherwise the process goes back to the local

3.3lmplemenlinglCAforGPUProcessing

GPU programming uses stream processing modcl,wherc all thecompulation arc put into

Figure 3*1 illustralesthc wholeprocedureoflhe proposed system





To simplify code maintcnanceand maximizecodc reusabilily,wearrangelhekemelsinto

The inpul image handler needs to perform IWO basic lasks. The firsloneis

lransferring images from system memory 10 graphics memory,whereas the second

lask is converting Ihe transferred images to Ihe layouloptimizcd rorGPUaddressing

Thcconvcrtingtask is paralleled by the conversion kernel which runs the same

numberorthreadsaslheimagesizewilheachlhreadconvcrtingonepixcl

handlcrisinchargeorthepreprocessingdescribedinlineslto4,Algorilhm3-1

The preprocessing is parallel bybolhtheSDlcalculalion kerncl,whichcomputcsSDI

roreachpixel,andlhcHessianaccumulationkernel.whichcomputesthe Hessian



~ !3



Intuitivcly.thclCAalgorithmworksbycomparingthcintcnsitydirrerence bctween the

warpcd input image and the templatc image and updating thc warp parametcrsto

minimize thc total intensitydifTerence. The parametcrupdatc isguided by image gradient,

whichprovidesinrormationaboulhoweachparameterafTectsintensitydifference

through the eight SDls. When the two images contain detailed texturesandareinitially

poorlyaligncd.lhelCAalgorithmmayrailtoregisterthetwoimagestogether since the

image gradient may guide the parameters toward local minimums

To overcome this problem and improve the robustnessorthe registrat ion, we here apply

lhe coarsc·to·fine processing scheme. As illustrated by Figure 3·3,we fi rst build the

Gaussian pyramid by iteratively blurring and down·sampling the high resolution input

images to low resolution images. Then the image registration is pcrformedfromthe

loweSI resolution]evel to the highest resolution level. The estimated warp malrix or each

levelistransrormedtothecoordinatcsystemorhigherresolution image SCi and is used as

the initial solution. For example, assuming the warping matrix between the two images

round at a coarse level isWn,theinitialsolutionWn_1'atthefinerlcvcliscalculatcd

whcrek is the down·sampling ration bctwcenthe fincr level and the coarselevcl



The down-sampled process removes the detail and the noise which canpolentially

mislead Ihcrcgistration process. The lowest resolution images conIainoniytheiargest-

scaled featurcs that allow robust regislralion even when the two imagesarcpoorly

aligned. Using Ihe warping matrix calculalcd at lo\\'erresolulion Ioscltheinilialwarping

paramcicrs.thchighcrrcsolutionregisiralionsonlyneedtotuncihe warping parameters

Figure 3-4 showslhe resuhs using registering the samc lwo imagesusingstandardlR

andMRIR.Whilethestandardapproachfails,theMRIRapproachslillyields good result

"-igurcJ.4ComparisonbetweenstandardIRandMRIRusingthesamcimages



3.5 Multi·resolution Image Regislration wilh Select Regions (MRIR-SR)



Assumctwoimagesarealreadyregisteredatacoarserlevel,whereimage resolution is

nxn.Beforeweperformregistrationatthcfinerlevel,wewanttoselecta region of size

n/kxn/k,which corresponds to annXnareaat the finer level. The twoeritcriafor

• Thcrcgion needs to contain sufficient detail tofacilitatc registration. That is,the

gradient magnitude should be high within thc rcgion

• The existing registration for the region should bc successful. That is, the registration

To find the best region bascd on thcabove two criteria, we firstcalculate the gradient·to-

R,= '+I/!~;g;~T(I)1

where IIVTIl is the gradient magnitude of the coarse tcmplatc imagc,Wisthcwarp

cstimatcdbythccoarseimagcs,J(W(i))indicatesthcinlcnsityvalueinthccoordinale

system of image / with coordinate W(i), and J(W(i))-T(t) is Ihe different image

bctwcen the coarse inpul image transformed byWandthecoarsc lemplatcimage.£isa

Ancrthepcrpixelgradient-to-errorratioiscalculated,weaggregate the values within

local"/kxn/kwindowsusingaboxfilter.Thatis



I3ccause every element in aggregated ratioAreprescntsthesummationofan/kxn/k

sub·region in R, we can simply find the ma~imum clement in A to locate the region that

gives the highest overall gradient-to-errorratio. Forexamplc,thetop-Iefl:(p,q)ofthe

desired region in the fine template image is calculated using

(p,q) = k xarg~.~~IA(x,Y)1

The region selection process describe above is conducted in the imagespaceofthe

tcmplatc image. To find the corresponding region in the input image,wecansimply

previously calculated using the coarse level. Assuming the originsofthe coordinate system of the

images arc the top-left comer and we keep this convention for the rest of the thcsis, W'canbe



{

p'=ka- i
q'=kb-i



again ror registration at finer level. Theoutpul warp matrix nt fine rlevelistransformed

back 10 the coordinate system of the original image as the final result



Figure3-SlmplementalionofMRIR-SR



FigureJ-6 illustrates the results using different imagercgistration approaches to register

two same images which have relatively small overlapped area. \Vhilebol h the standard

FigureJ-6Comparison between different image registration approaches

In this Chapter, we discussed a parallel image registration approach and two ofilS

variants.ThcstraightforwardlRapproachimplementsthclCAalgorithm in parallel using

_ ------.J



strcam proccssingmodcl. This allows us to lake advanlagcofthe processing power of

modcmprogrammableGPUs,whicharemuchfaSlcrlhanlhcCPUs

To improve the regislration performance, we proposctwo multi·resolution variants. The

MRIRapproachhelpsloimprovetherobuslnessofthesyslemthroughincorporalingthe

coarsc·lo·finescheme. but at the expense ofaddilional compulational COSt. The MRIR·

SR approach uses selectcd region for fine level registralion,and hencedramatically

reduces the compulation cost whcn the input imageresolulion is high

The lwo approaches have lheirown advantages underdifferenlscenarios. When the

whole scene can be registered using homographic lransformation andtheprocessing

power is sufficient, we recommend using the MRIR approach,which canaligntheinput

imagesaccuratcly using the warping matrixoblaincd. In contrast,thcMRIR·SRapproach

cV:llumcsthefinalwarpingmatrixusingtocalrcgiononty,whichcould lead 10

misatignmenl alonglhe boundary that is far from thescleclcd reg ion. Howcver,MRIR-

SRhastheadvanlagcofhigherproccssingspeedandbcingmorerobusl to less

inforrnmiveregions, Lc.,regionscannolbercgistcrcdbyhomographiclransformation



Chapter 4 Optimization of the Image Registration
Module on CUDA

ThcprevioU5chaplcrdiscussedtheparallelimpicment3tionofimageregislralion and its

10 efficiently optimize the image registration module on CUDA. This includes, for

example, the bcncfil of implemenling sequential tasksonthcGPU in a way 10 avoid high

latency 110 transportation, applying parallel reduction to accelerate inteHhrcad

summ:Hion,usingthcsequenlial-lhen-parallelprocessinglofulIyutilizelhestream

proccssingunils,etc.WealsodiscusstheoplimizcdmcmoryacccssingpanemforCUDA

ThcCUDAprogrammingmodelisbascdonthchardwarcfcaturcsoftheCUDA







Figure 4-2 Structure of the image registration module



When handling a single thread, the performance of the CPU is much higherthan that of

anindividualGPUprocessor.histhereforebcneficialtodislributesequentiallaskstothe

CPU and parallel tasks to GPU for maximum inslructionlhroughput. I-Iowever, if a

sequentialtaskappearsinthcmiddleofGPUexecutions,intennediateresults will need to

bclransfcrredbctween CPU and GPU through graphics 1/0 bus. Those II0

transportations have high latency and dramatically reduce the perfonnance of the pipeline

In Ihiscase, we should measure whelherthe single thread spcedadvantageofCPU

outweighsthehighl/Oscost.lfthesequentialtasksarenotcomplicated,wemayrun

For example. the tasks of the warp updater module are sequential-friendly. They are

either serial executions or small matrix operations which have lin Ie parallelism. The CPU

implementation tends to yield better performance. I-Iowever, the GPUversionistwiceas

fast as the CPU version, since it removes the needs of frequently transporting the local

parameters from GPU to CPU and the resulted updated warp matrix backtoGPU

The ICAalgorithm requires inter-thread summations (line 4 and line7,Algorithm3-I,

Section3.3).MostcurrentGPUssupportatomicfunctionforthiskindoftasks.l-lowever,

itisnotthemostefficientapproachforlargesummation.Currently,thespcedofatomic

instruction throughput when massive used in parallel. Moreovcr,onl ycurrentadvanced



graphic cards provide atomic operation writing to on-chip storage to cache the

intcrmediateresult. If atomic operation is not supported, thc resultshave to be writtcnto

off-chip graphics memory which hashundrcdsoftimes longer latency. Therefore,we

The parallel reduction (32) is an efficient choicc for inter-thread summation.husesthe

fastest coalesced numeric operations. After loading inputs from graphies memory, it

performs using the !ow latencyon-chipstoragc. Thus, it provides highinstructionand

memory throughput. Moreover, parallel reduction only uses the standard features

supported by almost all CUDA-compatible graphics cards. There is !esscompatibility

To make full Useoflhe parallel reduction. we should allocatca maximumnumberof

threads per block based on the available resources (the on-chip memory to cache the

intermediateresults),sothatasmanyelementsaspossiblccanbcreduced in a single

block as possible. Appendix A.3 illustrates a parallel reductionbuildingblockll1odil1ed

buscdonlhefullyoptirnizedversionpresentedin[32lltiscapnble of reducing 512

hardware compute capability I.X. Ifthenumberofelementsneedtobereducedismore

than the resource available, we can assign multiplc blocks intoatwo level hierarchy

iIIustratcd by Figur-c 4-3. To implement the hierarchy. one kcmel uses multiplc blocks to

perform the I1rst level reduction and output the intermediate result to the graphic memory



Our ICSI shows that the discusscd parallel reduction is gencrally 40% faslerthanthe

Figure 4·3 Parallelreduclion hierarchy built bythc buildingblockwhichiscapableof
reducing512elemenls

A cornrnon strategy to parallel execution is allocutingas many th reads as necessary

according to the input data and letting GPUs toautomalically schedulinglheirexecutions

than availabte processing units. Otherwise, GPU will schedule a longcxecutionqucue,

causingcxlraoverhcadforthecomplexcontextswitching.lnaddition,lhis slralcgy is not

a good choice rorlhc programs which need 10 aggregate thc outpuisor difTercntthreads

Bc<:ausclhelhrcadsarenolactiveduringthewholeexc<:ution.thcactive threads cannot

cache intcnnediale results in in·thread mcmoryforthcqueuinglhrcads.Theyhavetobe



writlcn 10 Ihc graphics memory. Thus, Ihe pcrformanceofthose programs is highly

dcpended on the graphics memory bandwidth which will limil the inslruction throughput

Figurc4.4Aulomaticallyscheduledstrategyforaggregatingkemels

Figurc4.4illustratcstheautomaticallyqucuingcase.lfaGPUis capable of running four

parallel Ihrcadsand the program requires 16 threads, 12 of them will be queued. The

it outputs intermediate resuh 16 times. Those outputs are graph ics memory writings

whose latcncy is depended on the bandwidth of the graphics mcmory,whichisusually

We \\ould like to apply another strategy to avoid Ihrcad scheduling andtoenabJein-

threadcachingtomakethekemellessdependedonthcgraphicmemory bandwidth. The



solution is herercrerred assequential-then-parallel proccssing. To apply the sequential-

then-parallel processing, the program runslhc maximum number or act ive threads and

each lhread sequenlially handlcs muhiple tasks by looping. Thai is,rorthesamcscenario

in Figure 4-4. lhc program runs rourthrcads and each thread loopsrOurlimcs 10 process

program needsaggregatingresult,intennediatercsuhcould be cachedin-threadusing

registcrorshared-memory.lnall,itonlyperronnsrourgraphicsmemorywritingsafter

Inpraclice.sllchasprocessinglargeimages,applicationsusualIyrcquiremassivethrcads

The hybrid processing strategy wi1ldramatically reduce lhecomplexilyorlhread

scheduling and makes aggregating kemcls lcssdepend on graphic memorybandwidth



4.3.3.ITuning Dislribution ofBJocksofSequential·Then·ParaJlel Kernel

Tuning the sequential·then·parallel processing introduces two sleps.Thc first step is to



Thesecondslepislofullyoccupyeachmultiprocessorwiththeblocksin the number of

MAB. Assuming there are totalM muhiprocessors in lhecurrenl device, we can simply

assign MxMAB blocks because CUDA evenly distributes the blocks to each

The experiment shows Ihe peak ofperrormance appcars under the discussed workload

distribution sctting.Comparcd 10 Iess-occupiedandovcr.occupicd case, il is generally 10%

romaximizc Ihc memory Ihroughput of the CUDA devicc,wcoplimizethedala

structure and memory accessing pattern forlhe imagcs,SDI,and I-Icssianmatrix

Bccausethe 32-bit memory layout iSlhc rastest data Slrucwrc forCUDAtoperform

Thcdala includes input image,tcmplmc image and SDI. Each pixel or e1emcntorlhose

dala isrcpresenlcd by a single 32-bit Ooat variable and all thepixc Isarestoredinpilchcd

row major order. i.e., rows are stored one aner the other in Ihe linear space. The reason



why we usc the redundant 32·bit variable is that it is the native Icngth of the Arithmetic

Logic Units and Float Poim Units of CUDA devices, which yieldsthefastestarithmetic

compositional algorithm. It accesses the image with warped coordinates.Bccausethe

warp matrix is updated iteratively, it is impossible to organize the template image layout

toacoalesced\\ay.Therefore,weusethetexturememorytocacheimage accessing. The

spccd up is highly depcnds on the practical condition. In general,ity ieldsupto5%better

The constant memory is ideal for broadcasting global constant for every thread because

proposcdsystcmwcusetheconstanlmcmoryforbroadcastingthcwarp matrix to cvery

thrcadto perform thcimagctransforll1ation.It is 10.5% fastcrcomparcd with passing

lfwe monitor the execution of the parallel ICA implcmcntation,Kernel5takcsmorethan



_shared_floats_dp[8];//ouptputbuffer

~~~~~~~u~a~i;~ ~o~pH; HC){

f~~(int 5 = 0; s < 8; HS){

:~~:~ ~~m==d~::U~:5~2~S~5~m~i::);SOl(i, j, s);

if(threadldx.x ==9)s_dp[s]+:5um;

Figure 4-6 Local arraybufTered parallel rcductionapproach

ThecomplclC implcmentationofKemel 5 is illustrated inCUDA-likcdpseudo-codein

AppendixA.5.Hcreweextracltheinstructionsdircctlyrclatcdtothe optimization and

illustratctheminFigure4-6.Noticethcboldlincsofthcalgorithm. Thcnumberof

parallclrcduclionsneededis8xM.lfwecanaccumulatethclocalwarp parameter (dp,

labcled in red in the pseudo-codc) in a bufTerand reducctheaccumulatedresultoutside

theaCCllntulating loop, then we only need call the parallel rcducti on 8 timcs. This will

save a signilicant amount of instruction cycles, Hence, the keytooptimizeKernel5isto

From the programming perspcctivc, the most slraightforward approachtobufTerdpisby



for(ints-S;s<8;++s)
{

floatdp;diff;;e?e
dpBuff[s]+;dp;

}//endof the accumulating loop
//reduce the buffered result
for(inti .. e;i<8;++i){

float dp" dpBuff[i];
floatsum;reduce512(s_sum,dp);
if(threadldx.x;"S)s_dp[i]"5um;



memorybutlhereisalimilation.lnmostcurrentCUDAdevices(CI.xdcvices),lhe

availablesharedmemorycannotholdthedpforalllhreads.Forablock ofSIZ threads

(Ihcmaximumlhreadsperblocktofullymakeuseoflheparatlelreduclion) and each

usagc per block is512x8x4=16384bytes. It is the maximum availableshared

memory per block. Because some shared memory is pre-occupied forparameterpassing.

Ihepractical usage is slighlly smaller than 16KB and thus nOI enoughforlhecompletc

_5hared_floats_dp[8}j //ouptputbuffer
_5hared_floats_sum[8][256]j I/partialreductionbuffer
_5hared_floats_psum[256]; Ilreductinbuffer

Ilaccumulatingloop
for(intc-Sjc<Mj++C){



To address Ihe problem, we reduce all thcdp rrom 512 clements 10 256 clemenlsto

decrease Ihe shared memory usage. This approach is illuSIr8lcd by Figure 4-8. Theone

stcprcduclionshowninboldisrefcrredaspartialrcduClion.ltrcducesthc512elcmenls

_5hared_float5_dp[8]; Iiouptputbuffer

fi~:~r~~--:0~1~~t,,~~m~~1:]~,/~;e~u~:i~4b~f:~r55.0, 56:: 0, 57:: a;

/Iunroii'theaccumulatingloop

#defin~(~~i~A:;:(~~~f :~ ~.0f ? a.0f :

Figure 4-9 Unrolled regislcrcachedapproach

Another possiblccaching method is using rcgislcrs which providcsihe faslest local



Tocnforce bufTcring variables residing in regislcrs, we unroll theaccumulatingloopwith

Variables sO to s7 are used forbufTeringlhe local paramclcrs. Macro DELTA_P(sdi,s)

unrollslhc!oop.TheCUDAcompilerwillusclhercgistertorcsidethevariablcsforthe

unrolled hard-coding. MacroREDUCE_TO(sdi,ij is used forsimplifyi ng the coding for

Compared wilh the partial rcduclionapproach,lhc unrolled regisler bufTeredapproach

requires no shared memory usage and removes Ihe8xM partial reductions. More

important. accessing the rcgisler bufTer should be faslerlhan accessingthesharcd

mcmorybufTcr.Thisversionisprovedlobclhemostcmcicnlapproachbyexperiment

There arc two sets of images to be evaluated-one wilh 256 x 256 resolutionandthe

olhcr with 512x512. They simulate the low workload and the high workload

lhe avcrage execution time to compare the pcrformance difTcrcnce,wherelheexecution

limeismcasuredusinglhenumbcrofframescanbcprocessedinonesccond(FPS)



Thcalgorithmindependentoptimizationlcchniquesincludingsimulatingsequential

execulion in GPU. parallel reduction and hybrid processing are eva lualedin thisSCClion

Figure 4-10 illuslrates the performance ofthcdifTerent versions ofthe proposed

I GEFORECE GTX 480, xeonE54402.53GHZCPu.4GBMcmor I

4: ParallclICAusing parallel reduction and GPUwarpmalrixupdater

5:ParallcllCAusingparallelreductionwithhybridproccssingstratcgyandGPU

warpmatrixupdalcr
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Figure 4-10 Evalualionoflhegeneraloptimizaliontcchniqucs

Version I is the scquenlial ICA. Both the high workload and Ihc lowworkloadresultsare



From the comparison bctween Version 2 and version 3. we can clearly scc that the GPU

warpupdaterismuchfasterlhanthesequentialone,cventhoughlhiswarpupdater

updatingwarpmatrix,thellOcostfortransportingintcnnediatesbetwecnCPUandGPU

The comparison bctwecn version 3 and version 4 shows the power of parallel reduction

Whiletheilsadvantageisnotevidentunderlowworkloadtesting bccausc it requires

fewer instruction throughputs, the parallel reduction yield 40%(8 FPS}speedupforhigh

The pcrformance is furtherspceded up after applying hybrid processingstrategyto

improve Version 4 10 Version 5. The low workload testing gains 43% (27.8IFPS) speed

Thcevalualionoflheoplimizationapproachcsforbonlenccksturtsat the previous

introduced hybrid processing version as the original approach. Because the memory

morepowerfuIC2.0dcvice. oticethatthcdcvicememoryacccssingiscachcdinC2.0
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Moreover, under C2.0 setting we found that the compiling result 0 flhe unrolled register

bufTered approach yields a higher MAB which could provide more parnlIelism. We list

The occupancy (occupancy is defined as the ratio of the numbcrofresident warps to the

ma.... imum numbcrofresident warps[34Jofthe stream processor) and perfonnanceresullS

by Figure 4-11. For all the approaches, the perfonnance increases first from the under-

saturaled blocks per multiprocessors lothc maximum valucsandthen decreases. The

maximum vlllucs appear under the MAB numberscning. This proves seninglhe block

conligunllion for the local accumulalion kernels underMAB isthe oplimizcdsolution
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Figure 4-12 Performance comparison between the boltlcncck optirn iZ3tion
approaches

Compared 10 Iheoriginal approach,all except Ihc local array bufrcred approach gain

faSlcrspccd. This approach frequentlyaccesscslhc local array and thcreforedccreases

the entire performance. Even running on Ihe C2.0 device which dcvice memory accessing

iscachcd.thcrcisstillaperfonnancedrop.hsuggcslsthatavoidingdevicemcmory

access is still an importanl consideration even under this latcsl platform



The unrolled registcrcached approach yields the best result under any condilions (up to

80% incrcasecompared to the origin). Although the occupancy of the unrolled register

cached approach is lower Ihan other approaches underCI.x device5 (Occupancies, Table

the drop of instruction throughput and therefore leads to the improvementofthe

performance.Thc result suggests that for memory bandwidlh·bound applications,we

prefer increasing memory throughput to instruction throughput

!)articularly,comparcdloC1.xcompilingversion,lheC2.0compilingversiondoesn't

significantly improvc the specd although thccompiler reports higheroccupancyunder

this setting. It is possible because the C2.0 device could optimizetheCI.xcompiled

ThischllplcrdiscussedlhclechniqueslhatoplimizctheparallclimplcmenlalionoflCA

onCUDA.Thcyarecapableofacceleratingtheparallclsystcmform10.63FPSlo61.62

Those optimization techniques arc also applicable to othcr app lications on CUDA. The

low workload sequcnlial execution is highly recommended bcings imulatedinGPUwith

single thrcad or several threads 10 avoid the 1/0 communication. The I/O cost incurs a

largc pcnalty that will dramatically reduce the utilization ofGPU

then-parallel processing is preferred because of its high cmciencyand compalibility.lf



rccommcnd usingthc modified local runclion proposcd in Appcndix A.I

Forin-thrcadcaching.lhcregislcristhefirstchoiccrorpcrrormancc.lrthccachingtask

rcquircs a small array, thc array should bcreplaccd by scvcral hard-cod ingvariablcsto

cnsurcthcclcmcnlsareresided in registcrinstcadorthcdcvice mcmory. Evcn if mass

usagcorrcgislcrcouldpotentiallyreducctheoccupancyorlhcGPUresources, it is still a

good tradc-ofTrorreducingdevice memory accessing



ChapterS Motion and Visual Controller

Nowadays, conlrollcrs olhcr than thctradilional gamepadsarealreadywide·usedin

gaming consoles. They provide brand newexpcricnces for users. In this chapter, we will

proposc a scries orholding-and-pointingcontrollcrs. To control the cursor, the visual

based controller uses the real·lime image rcgislration (JR) module presented in Chapter 3 ,

will proposc how 10 build a more accurate hybrid controller by utilizingbothvisualand

dimensional space using imagescaplurcd bya video camera. The key 10 the controller is

10 use image registration algorithm to track the focal movement 0fthevidcocamera.F'or

any given Iwosucccssivecaptured frames of the video camera, ifthcycanbcregislered

logclhcr.thcn we can usc the registration result to updatethcpositionofthcfocus

Figure 5-1 shows how wc use Ihe rcgislralion result loeslimatc thcfocalmovemenl.Thc

red rcctanglc indicates lhc image capturcd in lasl framc while Ihe blue rectangle indicates

thcfigurc,wccanciearlyidenlifyhowthefocusmovcs.Aficrupdalingthe new focal

position.thccurrcnl frame is used as Ihc previous frame forthcnexI regislfalion. By



rcpcatingthis step, we can track the focal movcmcnt and usc it to controllhecursorin

Figure 5·1 Tracking focal movement by the registmtion result

ThcmoslimportllntbuildingblockfortheproposcddcviccisthclRmodulc.ltilerativcly

fctchcsthcimagcfromthevideocamcra,performslhcimageregistrationand control the

cursor position using the mouse API with the registration result

Videocamcmsusuallycaplurethe image stream in a constant frequency.lfimage

registration and image capturing are run undcrthc samcthread,thc finalprocessingspeed

will bc slowed down. For example, iflhe sampling frcqucncyoflhe vidcocamerais

30Hz and the IR module is capable ofpcrforming 60 rcgislralions per second. Ignoring



To address thc problems. wc introducc a multithread source retchingapproach.Video

streamcapturingisconductedbyanindcpendentthread.Thisthread keeps updating

imagetosystemmemoryatthcrrequcncyorthcvideocamera.lrthcsourcc is updated, it

labclsan updming nagwith'·truc" indicating the image is renewed. Inanothcrthrcad.IR

modulequericswhcthcrtheimageisupdatcd.lryes.itwillrctchtheimagcandthensct

the updating nag"ralsc"and conduct registralion. Otherwise, this thread will slecp itselr

Resource locking is used rorunintendcd image updating. Whcnthel R module is retching

image. it will lock the imagc to disable updating rrom the input hand Ii ngthread.After

Figure 5·2 illustrates the multi-threading approach

I~r-~~ Ivldeooame"I./vo ._~ "... ~ 'Rmod,'e J::::l
flOCk&,pd"eD-lO'k&f"'" 1:::::::J

F1g"a S.2ImPlaman~,~~onoftha "",1 basad controllar

Inthisway,multithreadingallowslRmodulerunsrasterthonimagecapturing.Moreover,

it parallcls the image capturing and the image registr3tion process, allowing the CPU to



After every registration, the result warp matrix is used to control the cursor of the mouse

where (fx.{y) is the coordinate of the focus ofthc captured image. Usually, it is the

There arc two ways to control the cursor. Thc first ispassingsxandsyasthe

displaccmenl of cursor to the mouse API. This lllcthod is simple to im plementationand

allows thc proposcd device coopcrating wilh other devices to controlthcsamecursor

1"hcsccondisinlcgratingsxandsytolraccthcabsolutcposilionofthc focus and set it

lossesofmouscconlrolmcssages.Choosingwhichwaytocolltrolthc cursor could be



In lhissection we will present an efficient wireless air-mouse us ing accelerometers and

gyroscopes. When using the controller, the user simply rotates it horizontallytocontrol

The device to provide accelerometers and gyroscopes is the Wii remote controller

(Wiimorc). A built-in ADXL330 accelerometer measures accelerations along three

perpcndicularaxes.Theaccelerationsrangcfrom-3glo+3ggravitational force. If

anachcdbyanadd-ondevicecalled WiiMotionPlus(short for MotionPlus),Wiimolccan

sense angular velocities along 3 directions-yaw, pitch and row with the MotionPlus

incorporated two-axis tuning fork gyroscope. Figul'"c 5~3 illustrates the two sets of the



ThcWiimotealsoprovidesthenecessarybuttonsandthceonnectiontoPc.lteanbe

paircdwithBluctoothrceeivcrandprogrammedbydrivcrAPlstorctrieve thc motion

whcnwavingthcWiimote, If we define the hand vasthe magnitudes of Ihecurrent

horizontal and venical angular velocities, then Ihedisplacement of the cursors(sx.sy)



...-------------------- I

DcnolC the current readings of yaw and pitch asy and p. IfthcrOl3t ionanglealongtheY-

a,,,,isofthcWiimote(angleofroll}is6(FigurcS-4),thenwecancalculatehandvby,

h=ycosO+psin8
v=-ysin6+pcos8

Thconlyunknowninequation5.3islhcangleofroIlO.ltcanbcmeasuredbylhe

holdingslill,this veClor is actually the gravilational vector. The values of the clements

arc the projcclions of gravity on the three perpendicular axes and the Iength of the vector

is equal 10 I. When the Wiimote is parallel to ground surface, the va lucoflhevectoris(O,

I!-lBt=r -~ ---I
F;gU"5-5BIOCkdiagr';;;;;";,f~OlionbaSCdcontroll"



Figure 5-5 shows thc implementalionoflhc motion basedconlrol ler.lneachilcrationof

Ihc mouscconlrolling, Ihe first step is to update Ihe angle of roll according 10 Equation

performed forcach iteralion (35]. Thc systcm will lrack thc length of the acceleration

veclortoensureil is almost equal toone for a small pcriod (e.g., 5Cveral iterations). Ifso,

rcpresenls Ihe gravitational vector. AI Ihistime, the angleofrollisupdaled

The second step is to estimate the motion by simply following Equation5.3tocompule

To provide slab Ie feedbacks for mouse API,we need to filtcroul unSIable values. Shake

of hands and device reading errors result in noises. If we lei noises passlhrough,

conlrollingcursorwill be hard. Here, we add alhrcshold 10 filter 0ul the noise and

Atlhe last SICp, wc output the motion parameters tuned by Equation 5.2 to mouse API 10

The visuat based controller provides high accuracy for slow or Small range motion, but

thcaccurncy dcgeneratcs under fast motion due tOlhe lowsamplingfrcqucncyofthe

smalloverlappcd rcgion. which may cau5C the imageregislralionprocessrail.Thusthe



controller provides reasonable real·timemotion feedbacks, even for the fast movement,

but it has a rclativcly low accuracy bccause of the erroraccumulationofthcmotion

measuremenlsand theestimalion of the angle of roll. If weeombinethe merits of the IwO

In Ihisseetion, we propose the hybrid controller. It uses the motion based estimation to

provide pre-knowlcdge 10 the visual based image registralion and th us yields a high

To improve the robuslncssoflhe visual based conI roller under fast motion, we necd to

provideimageswilhlargcroverlappedregiontolhclRmodulc.lfwe extend the field of

corresponding to Ihccurrenl focal movingdireclion which is cst imatcdbythcmotion

bllscdapproach,lhe region should have a larger overlapped region wilhthencxtframe



Figure 5-6 illustratcsthiscase,wherethcrcdreclangle indicntcsthe eXlracted arca in the

cxtcndcdcapturedimagcwhoscpositioniscorrespondinglolhccurrenl focal moving

direction. Thc black rcclanglc indicatcs the region to be registercd in thc nexi rrame

which ShOllld bc Ihc same as the un-cxtcndcd image. Compared tothetwoframcsuscdin

visual bascd approach llnderthesamccondition (Icll in Figurc5-6),thcy havc larger

Here we usctcrm "Ooating window"10 refer the approach for extractingtheinformalivc

arcausingthemolionbascdpre-knowledgc.ltuscsalixed-sizcwindowOoalinginlhc

cxlcndcd region to decide which arca to bc extracted aSlhe inpul imageforlhenext

rcgistralion. Thc position of the window (represcnlcd by the coordinale(x,y)ofthetop-



Iefi comer) is decided by the current focal velocityeslimoted by the motionbased

reduccthcrangeoflhehandv.Ashouldbcsctoccordingtothescreenresolutionofthe

When holdingstill,h and v are equal toO,the floating window islocatcdinthecenterof

floating window will move to the coordinate proportion to the estimatcdfocolvelocities,

h and v (Figure 5~7, b), but it cannot exceed the border of thc extended region (Figure



Figure 5-8 shows the now chart oflhe hybrid controller. Theproccdurcofeachiteralion

follows the arrow labeled from I to6 in thc figure. Thc ilerationbegins when lhe video

camera finishes updating lhecurrent frame. Next, the cenlerarca of the newly captured

imagcis llsed as lhc lemplate image and lhe region cxtracted from lhcprcviousframeis

used as input imagc. Both are senl to the IR rnodulclopcrformlhercgistration. Weuse

lhercgistration rcsuhtocontrol the cursor in lhc samc way as the visualbascdapproach

At last, we usc the current focal angular velocities to locatcthe noalwindowtobeused



Figure 5-8 Implement8tionofthe hybrid controller

The evaluation is to test Ihe accuracy of the visual based controller, the motion based

controller and thc hybrid-controller. Duringthetcst, the tester holds theeontrollcr in an

initial state, Then, we lei thetcstertodoa gesture and then goback to the initial Slate

The cursor will move corresponding to the controller motion. Underidcal situation, the

drift in practiceduc to either the erroraccumu]ation ofthecont roller or thc tcster failed

returning thc controllcr back to thc initial position, To reduce error caused by the second

camera under the initial position so that the testcr can usc itto guidc the controller back

tothc inilial stalcafter the gesture. The user is asked to perform multiple gestures using

the samc staning point and we record multiple ending posilions after all the gestures and

usc the distribution oflhe drifts of the ending positions to measure Iheaccuracyofthe



Thc proccdure is illustrated by Figure 5·9. The teslcr aims the controller with the image

caplUred video. At first, we lei the tcsler aim al Ihc image cenlcr indicatedbyadot.Then

gesturc. thc lester should poinls the conlroller back again at thc center dot. Then, we

record lhc cnding posilionofthe cursor. This procedure is repealed multi pie limes to

The firsttesl usesgcsluresofsmall molion. Thc lcstcr waves the Wiimote towards a



Figure 5-10 shows a sel of the testing result in which 25 gestures were performed for

and farawa)' from the starting position while the distributions of the other two controllers

approach provides rnuch higheraccurac)' than the rnotion basedapproach

In thislcst, we can hardl)' tell thediffercnce between thc visual based controller and the

h)'brid controller. The variances of the distribution rna)' be both duetolheoperationerror
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Figure 5·11 Tesling result of the complex motions

clearly identify the improvement of the hybrid controller over the visual based controller

of the registration failures, outliers appear in the ViSUlil bascd Cllse but there is none in the

We show in thischaptcr how 10 build a controller using the rcal-limclRmodulc.The

evaluation showsthal.cvcn using visual informalion only, the visualbascdcontrollercan

providcmoreaccuratepointingcontrolovcrlhcwidcly-uscdmotionbasedcounterpan

Throughcombiningbolhvisualbasedandmolionbascdinformalion.the hybrid



conlroller further improves lhe robustness of system under fast motion.Comparedwith

docsnol rcstrici users 10 poinlingtoward the sensor bar. Thc holding andpointing

conlrollingmclhod provides users vivid gaming expcrience, which could make it a more

preferred approach over the lradilional gamepad or the mouse



Chapter 6 Other Applications and Conclusions

The proposed image registration syslcmcan not only be used 10 build Iheproposed

hybrid game controllers, but also be applied toolhcrrcal·limc vision applications

Thc Iighl gun has been a popular pointing device forshoolinggamcs.Thctr8ditionallight

guns only work with CRT monitor since they uses cathode ray timing infonnation.To

cstimalClhcpoinlingposilionon LCDmonilors, Wiimotc uses an addilional inferred

lighl cminingdevice, called sensor bar, which is placed ncarthescreen.Nevertheless,

this approach requires an additional calibrnlion process and lacks precision.Uscrsmay

have had experience in shooting games bccause, in order to shoot an 0 bject on screen,

they may have to aim to a difTerent location. Moreover, lhercsolul ionsorthosedcvices

Toimprovethepointingprecision,theproposcdimageregistration syslcm can be used

Basically. once we register the image caplured by Ihc handheld carnerawithimage

displayed on the screen, we will know where the cenlcr or the camera points to. To

rcdllcclhecompulationalcostandimprovclhercgistrationrobusIncss,wc can also

pcrrormlheregistrationusingarcgionexlraClcdaroundlhcpoinling position provided by



With the high registering speed,the proposed image registration system could be used 10

generale image mosaic from real-lime video inpul. That is, we can use the

To \\arpthe images in real lime, we use DirectX 3D (D3D) 10 accclerale Ihe processing

spced. The quadrangle frames are reprcscntcdbyoflhe D3Dgcometries. During



rcgislration, the verticcs ofthc geometry are warpcd by lhc warp malrix andlhen pixels

To remove lhe high cost of 110 trnnsportation belween deviccand host, we design an

inlcrfacctoaccessimageingraphicmemorydircclly.CurTently.itiscapablcofreading

imagcsfromDircclX3DlexluresorOpenGLbuffers.Thccaplurcdimagesarc scnt to

D3D first and lhen lhe image regislration syslcm fetchesthc image fromtheinlerface

Figure 6-1 shows such a real-limc image stilchingresult. Our currenlimplemenlalionis

capable of handling more lhan 30 imagcs per second ina PCwilhamid-range graphic

ThethesisproposeslOUscbothvisualandmolioninformotionfordcsigning hybrid

controllers rornext-generation gameconsolcs. To achieve thi sgoal,weimplementthe

key building bJock, Ihe image regislralion module, in parallel for real-timc processing

Besides implementing the imagcregistration algorithm on GPUs,wealsoimplementtwo

is suitable for high accuracy homographic image registration. MRIR-SR has lower

computational cost and can be used to register the imagesthathavesmalloverlapped

Comparedrotraditional motion bascdcontrollersuch as Wiimolc,thc proposcd motion-

visual-hybrid coni roller uses imageregislralion result 10 provide high accuracy ego-



mOlioninformation,asweliasusinginpulofaccelerometcrtoprovide pre-knowledge of

Ihcmovcmenl.Expcrimentalresultsshowlhallhehybridconlrollcrperforms much beUer

InsummarY,thefollowingtcchniqucsialgorilhmsarediscusscdinlhi5 thesis

Thc proposed image registration module can rcgislcrS12xS12imagcs at60FPS

with high accuracy. II can be inlegratedtoothcrapplication requiringrcal·timcimage

This technique dramatically reduces Ihc computalional cost ofmuIti-resolutionimage

registration. Morcover, it increases the adaplability ofthc homographicimagc

We prescnl 3 scriesofoptimization lechniqucslo irnprove thc performance of the

imagcregislrationmodule.Thosetcchniqucsarcnolonlyapplicablcloimagc

rcgistralion,butalsousefulforoptimizingothcrCUDAapplicat ions. We also discuss

howtodcsignoptimizeddatastructurcforacccssingCUDAmcmorY

Wcproposcamelhodthalunrollssmallioopsandhardcodesthesmallvcctorwith

scparalc variables loenforcc using registers 10 bufTcr intcrmediatcresults(Section



4.3.3). By comparing with the array or shared memory buffering approach,wefind

We propose how to design a poinlingdcvice using Wiimolc based on onIythcmotion

feedbacks. Compared to thc lraditional infrared ray solution which ncedspointing

Wiimotc towards a sensor bar, this approach requires no additional dcvicc.ltalsohas

vcry 10\\1 computational cost but lacks of pointing accuracy

We proposc how to intcgralethe focallrackingbasedon imageregislralion with

motion information to build ahigh accuracy hybrid pointingdcvice.ltprovidespixcl-

levcl rcsolutionthal may extend usagcofthe motion controllerto the high
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Appendix A

Duc 10 the hardware design, simultaneously accessing the sharcd memoryofCUDA

devices from multiple processing units may causc bank conOicls. The on-chip shared

memory is divided into several banks (16 banks forCI.x devices and 32 banks forC2.0

devices). 32-bit words will bedistribuled inlO Ihosc banks in repcatingsequenlialorder

The following ligureshowshowtheelementsofan inlcgcr arrny are distributed to the



The following discussion is based on lhe Cl.x devices. If the memory accessinawarp

accesses fall intothesamebank,lheywill bcscrialized. which causeslatency.lftwo

warpisseparatedinlolwohalf,sothefirstl6threadsinthewarpwillnevcrconflictwilh

pattcrntopcrformatomicinstruction.Anintegerarrayofl6elementsisallocatedin

shared memory to store the intermediate results. Thcsum of all thc elemcnlsiscalculsted

by adding togcthcrall the intcrmediate results. The code below sho\Vsanexampleof

lf~~~~::~~;i:h~:m::l:;;= B;
_syncthreads();
atomicAdd(s_buff+(threadIdx.x%16).elem[threadIdx.x])i
_syncthreads();
&d_rst-Reduce(s_buff);



-I

A.30plimizcd Parallel Reduction on CUDA Device

_dev1ce_floatreduceS12(volatilefloat·s_sum. floatelelJl)
{

S_5ulII[threadldx.x] =clemj _syncthreads();
if(threadldx.x < 256){s_sum[threadIdx.x] "elem=elem+

s_sum[threadldx.x+2S6]; }_syncthreads();
if(threadldx.x<128){s_sum[threadldx.x)-elem .. elem+

s_sulI[threadldx.x+128];}_syncthreadsO;
if(threadldx.x<64){s_sula[threadldx.x]-elem:elem+

s_sum(threadldx.x + 64]; }_syncthreads();
r<threadldX.x < 32)

}
returnelem;

elem_vector[threadldx.x);_syncthreads();
floatsum-reduceS12(s_sum J clem)j

lheopllmizedparaiidreducilonprcsentedbythcabovcfigurcisthemodlfiedverslon

based on I-Iarris' work [32j. It inlroducessequenlial addressing IoavoidbankconOicls

and fully unrolls codes 10 reduce the complcxily of now conlrol. Thevaluableelemis



uscdforensuringregistcrisusedforstoringinlermedialcresultthat reduce shared

memory accessing. The numberofaddingopcrations for each thread is 9. The shared

The basic idea of parallel rcduction forveclors is to use Ihe id1ethreads to reduce

multiplc dimensions at one time. If we considcr Ihe thread usage of theoplimizedparallel

form global memory. we nced 512 Ihreads.Thc firstslcpofrcduclion needs 256 threads,

thcn256Ihrcadsidle.Thesccondslepnceds128thrcads,then384threads idle, and soon

The parallel reduction for vCCIOrs needs a special storage pattem to conduct sequenlia1

memory accesscs so that there are no bank conflicts. Vectors should bestored

sequenliallyinlincarspace.Thefollowingfigureilluslralcslhispatlcm,

as the optimized parallel reduction to sum the vectors but slopthe rcduction earlier. For

cxamptc.thefollowingdcviccfunctioncanbcusedforadding648-dimcntionalveclors



_device_void reduce64for8(volatilefloat· s_sum, floatelem.

~loat':;;~;~;:~~:~I~X/l5;){~:~~.[t~~:~~~~:~~;(:;elem • elem +

s_sum(~~~:~~~~~i~/x2;6h8~{;~~:~~~~~:~~~~;.X] • elem ~ elem +
s_sum[threadldx.x + 128];}_syncthreads();

if(threadldx.x<64){s_sum(threadldx.x]=elem-elem+
s_sum(threadldx.x + 64]; }_syncthreads();

~ f( threadldx. x < 32)

}
if(threadldx.x<8)

sJst[threadldx.x] =elem;
_syncthreads();

The nurnbcr or addition operation is 6. Compared to4S operalions,itisasignilicant

improvcmcnl.lrmorcthan64vectorsorSclementsarctobcaddcd,sequcntial·then



A.S Locnl Array Cached Parallel Reduction Approach

pdrdllelreductionbuffer

_Sh~~~~bU:~~~t s_sum[512];

_shared_floats_dp[8]j
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