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Abstract

such s the Wii R user gaming.

experiences and are becoming more popular, However, the accuracy of the mation sensor

limits ther usages in precision criical games. Instead of the motion based approsch,

e p be used 10 provide high 1o ther high
pinel resolution.

“The goal of this thesis is therefore 10 propose a highly accurate controller tht uilizes

visualinputs., Users can control cursor in 2D sercen by waving the contrller toward any

place which has texture. The thess first proposes an image registrtion algorithm that
funs in resl-time on graphics hardware, then uses it 10 build a highly accurate visual
based contoller through camera focal tracking, and finaly further improves the
robustness of the controler under fast motion by udlzing both motion and visual
information,

Reakime image registration is achieved by implementing the Inverse Compositional

(CUDA). A mumber of

CUDA optimization techniques have been applied and evaluated. The fnal optimized

implementation achieves 150 times speed up over the sequential implementation, more

than suffcient for "
the coarse-o-fin processing scheme is lso applied and two multi-resolution vriants of

the image regisraton algorithm are discussed.



that, using e e

al

thm, the visual based contrlle achieves much higher control aceuracy than the

censor based approach. The performance under fast motion can be further
improved through using theinput from the mtion sensor s a priori knowledge 1 assist

the image regisraton process.
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Chapter 1 Introduction

Nowadays, the input methods for game console controlers are ot limited to game pads
with push buttons. New types of game controlers are coming 10 enhance users” gaming
experience. Nintenda introduces Wii remte controler (or Wiimote) for its video game

console - Wii. Wiimote has itegrated accelerometers and attached gyroscopes 10 track

motion. play video games

the prevalence of motion controlled videos games. However, the acceleration and

In this thesis, e exp

of visua based approach and mation bascd approach 10 rack user inpu. Image
egistation i used 0 track the vew direction ofthe camers (e cnter of the captured
imgo. Users hold & wand conaining 8 combinaion of video
camerslacelerometerigyroscope. Waving the wand toward any place with textres

provides users with accurate conrol of cursor on a 2D sereen.

1.1 The Exolution of Game Controller

ince the inventions of game pads and analog sticks as the controlers for the first

gencration consoles, input devices for video game consoles never stop cvolving. More

introduced to nrich 1n 2003,
Sony released the Eye Toy - a digitl camera device for the PlayStation 2. For the first
time, computer vision techniques, such as gesture recogrition were used in consoles.

Unforunately, limited of

PS2, only several games used the camera




Three years later, Nintendo showed again her talent in creating brand-new gaming
experience. As the main controller of her new console Wii, Wil remote controller (or
Wiimote) was the most versaile input device in console history. Inegrated with motion

and Wil

gun. It brought out the prevalence of motion controlling games
Neverthless, Wiimot is not perfect, Whike providing novelty experience for casual

gamers, enthusiasts and professionals complain about the control accuracy. Until now,

“The compeitos of Nintendo are creating nevw tools (0 improve the accuracy. For more

powerful consoles, new hybrid gaming control systems, Kincct for X-Box 360 and PS

3 e on the way. Both i h

mation sensor and voice recognti atons of the two

Though the hardware speif
relative old consoles Timit thei performances, HD video games (abbreviate for High

Definition video games,

i unoffcial term for video games with resoluion large than
1280 x 720) finally have the chance 10 get id of the old conventional game pads and
bring gamers o the motion controllng world.

Both of the new products can take vantages of image processing techniques. A video
camera is native integrated 1o Kinet for X-Box 360, whercas PS3 has an accessory

camera device, called PS Eye, which can be added 10 PS Move system. Compared to

How

on both Kincct and PS Move systems, the video cameras are fixed near televisions and



facing users. They track user gestures or the signals from the special devices, but won't
e able to make use of the avilable motion information

1.2 Motivation

“This thesis sudies how 1o integrate video cameras with motion contollrs sa that both

L and N Weare

e facts: motion

noisy, which makes it fon due 10 the low

Vet it provides robustinformation under fast motion. Visual feedback from cameras, on
the other hand, s @ useful resource for estimating the ego-motion through registering
images captured n adjacent frames. Nevertheless, adjacent frames may differ a lot under

ies. Visual

fast motion, causing image registration 10 fail due 1o matching ambigy

feedback

Combining visual input with moton input, tereor, scems t0 be-a loica choic for
providing robust and highly acurae mtion informaton. o achieve this gos, we buikd
a prowoype convoler using exising hardwaret a Wi motion controller, 8 high
performance video camera, and a PC wilh programmable raphics card. We also
implement image regisiation algoithm on graphics hardware 1o achieve reshime

processing speed. The prototype i llustrated by Figure 11,



Figure 1-1 Prototype of the hybrid controller

1.3 Organization of the Thesis
“The remaining of this thesis is organized as the folowing: The next chapter discusscs

previous work related o this thesis. This includes image registration approaches, motion

Chapter 3 covers the image registration algorthms. First, we introduce the Inverse
Compositional Algorithm (ICA). It is an ffiient intensity-based image registration

algorithm, whose parallel implementation is used as the building block of the proposed

registration system. A
processing straegy. We also propose the Mult-Resolution Image Regisration with

Select Regions o increase the registering speed and versatly




Chapier 3 discusssthe deiled implmentation and the opimizaion of th parallel ICA
on CUDA. The organizaton ofthe whol sysem is frst prsentd and the optimizaton
{echniques ar then discussod. The techniques include balancing sequenial and parallel
workiod, parallel educton, sequentia-then-paralll procesin, and memary aceess
ptterns optimized for CUDA devies. More important, we modifyth botdeneck of the
1CA and use varous buffring methods to educe high-atency memory aceess. Tess
Show that the hard-coding enforced regiser bufTering approach yiclds the best reslt.
Several experiments resuls ae shown a the end of this chapcr o demonsirte the

effcincies of the proposed optimizat

approsches
I Chaptr §, we compre three types of controlers that use difernt information for
pining task. Using a video camera ony, we can buikd a high accuracy visul based
poining conrllr, I we only have & motion sensor,a efcent masio based i mouse

can be built, By analyzing the pre-Knowledge provided by mtion sensors,the me

The proposed real-time image regisration system ot only has application in building
controllers, it can also b applied 1o othe real-vision applications. In Chapter 6, we wil
discuss how 10 use it o correet light-gun and generate real-time image mosaic. At last,

the thesis is coneluded.



Chapter 2 Related Works

2.1 Image Registration
Image registration s the process that transforms diffrent sets of images o one

coordinate system. It is widely used in computer vision, medical imaging, and 5o on.

feaure-
based approach and th intensity-based approsch.

211 FeatureBased Approaches

The images based
o the xtaction of saient structures or featues in images [1]. The features should be

disinet, in both images.

are proposed to extract features, from the previous Moravee’s comer detector [2] 0 the
recent Lowe’s Scale-Invariant Feature Transform (SIFT)3]. The detected features are

then used to be matched between images (0 estimate the ransformation model. To make.

the registation result robust against outlies, Fischler and Bolles' Random Sample

Consensus (RANSAC) [4] echnique

fen used.
The extracted features not only can be used to register images, but also o estimate
camera_locations. Davison proposed. the real-time. single-camera-based localization

through for the active

search to extract useful features 6] I high frame-rate application, the active search is
expected to be more accurate because of the reltive smal search region. I also requires

less processing ime.



The feature-based approaches do not compare intensity values and work well when
illumination changes o images are sensed by the diffeent devices. O the other hand,

feat

212 Intensity-based Approaches

The inensity-based approaches do not detect feaures but compare the  intensity

po image ion. The
examples are the Normalized Cross Correlation (NCC) [7) and Sequential Similaity
Detection Algorithm (SSDA) [8] that sequentially search the optimum o esimate
ranslation between images. More versatile and low computational cost algorithms are
also proposed, such as the Lucas-Kanade algorithm [9], which can estimate general
projective. transformation. The  intensity-based approaches do not require salient
Sructures in images. However, because of th pixel-by-pixel calculation, they have high
computational complexites; and, because of the intensity comparison they arc also

sensitive to illamination change.

n for regiser

camera duc 10 the following two ressons: Firs, images sensed by one camera are
consisent in color, Secondly, adscent frames captred by & camera at ul rame rate
e share adequse overapped regions. ARhough he image raversing is & high cost
operation, the uniform calculatons for cach pixe provide large amount of paraleism

which could be speeded up by the widely used Single Instruction Multple Data (SIMD)

based computing devices,such as graphics cards.




Conventionally, intensity-based  approaches work on image paiches 10 reduce

computational cost. However,the proposed GPU accelerated intensity based approaches

are very efficient, even for large images. Therefore, we use the e

e images to perform
esistration rathr than using image paches.

213 The Inverse Compositionsl Algorithm

For the proposed poining system, we need an image registation algorthm that can

estimate a 2D projective transformation. The Lucas-Kanade algorithm is a potental

choice. This algorithm updates the warp parameters by teratively. minimizing the
intensiy difference between one image and another warped image. In each loop, the

algorithm nceds 10 re-evaluate & Steepest Descent Image (SDI) to direct the local

pa These two

steps have high computationa cost. Especialy calculating Hessian matrx is not suited

fora

3PU applicaion due tothe non-parallel nature.
o addres this problem, Baker and Matthews [10] proposes the Inverse Compositional
Algorithm (ICA). They refe the Lucas-Kanade algorithm as the forward compositonal

algorithm since the arget image is warped. By contrast, ICA warps the orginal image

al warp parameters ar cqual to 7ero and reused doring the icration, rather than re-
evaluated a cach ieration. Experiment shows that pre-calulating SDI and Hessian
mar akes sbout 7% exceution ime when thealgoithm firates 100 times. I we chose:
Lucas-Kanade algorthm which performs the re-evaluaing in cach ieration, there would

be ahuge slow down.




Both the Lucas-Kanade algorithm and the ICA. require images 1o have adequate

overlapping arcas for a successful registration. For adjacent frames captured at a full

However, when

he speed of movement i o fst, b algorithms may il
I thisthesis, e choose ICA because i can b ity implmented wing raphics
ardware. We also propose techniques fo enhancing the robusiess of the regisrtion
under fst camera movement

214 Muli-Resolution Image Registration

A maltrsolton anlyss strtcey, which s discused by Burt {1, s oftn used o
enhance the intensiy-bsed image regisation. This corse-o-ine siiegy maiches
images on  coarse el and then tunes the esulton fin lvels. Wong and Hall(12]
apply this srtegy 1o SSDA method to speed up regsrtion speed. Gausian and

Laplacian pyramids are used in Kumar et al’s[13] works 1o regiser aeral video

scquences. Bakerand Matthews [10] pint out tht st convergence of ICA ca be
abtind by procssing hierarhically n  Gussan pyrami,

esides the adantage of reducing compuational e, the. pyramid can potentilly
inceae he robusings. The coase images contin lrgescle features ot end 0 yild
ot comvrgence and they also remove the dealed texturs that may lead he algoritm
1o loca minimums. In tis thess, we il combine the regsration sysiem with the

pyramid 1o increase s robusiness. Because of the high efficiency of the GPU

acceleration, we perform the pyramid on the whoe images instcad of image patches.



215 Template Matching

Template matching scarches a sub-image from another template image. It can be

obviously used to handle translating registration by extrat the template from the image.

by finding the minimurn distotion, or maximum corrlaion, between the templatc and

v

arethe Sum of Sum of Squared both
are casy to implement, For beter robustness, Normalized Cross-Carelation is often used
[14-16]

Image registration sing template matching can be implemented efficenty but it can
only handle ranslation. In contras,we perform Inverse Compositional algoithm, which

can handle all kinds of projections.

22 M

n Controllers and Motion Sensing

Wil remote controler, or Wiimate, s the first wide-used motion contoller for

mainstreamgaming consoles.  Wilh integrated  accelerometers, it can  measure

from -3gt0 + 3¢ P

Because it is casily programmable, is potential usages are being investigated by many

rescarchers, Wong et al. [17] se it o build an interactive music performance system by

analyzing acceleration paterns. Schlomer et al. [18] employ it 1o perform gesture

recogrition.Ct



In 2009, Nintendo reeases an addon to Wiimore, called a5 MotonPlus, which can
measares sngulr seloiis it bilin gyroscopes. Athough curently there are very
e documents sbout MotonPlus,th gyroscopes combined with aceeerometers have
ircady been rescarched for motion racking,such s rienation esimation discussed by

Luinge [20] and motion capture discussed by Sakaguchi [21].

motion bascd feedbacks from the Wiimote with the visul based feedback from a video
camera.

23 GPGPU Programming

As the advancing of streaming processors, the grapics processing unit (GPU) is being
widey used o implement gencral-purpose parale aplictions. As mentoned by Harris
{22}, GPUs provide much more and faster growing computational power than CPU's.

Existing GPU applications involving image processing [23-25], video decoding [26, 27],

9]

Previous GPUS are ot spciicaly designed for_ genealpurpose computtons.
Programmers have t0 use o graphics programming model, such as shading languages,
hich s designed for graphics rendering. This programming model i no optimized for
other sages nd lcks effiient local commaricaton mechaniss, whichis 3 common
e in generalpurpose exeutons

Now, more and more general-purpose products ar eleased 1o make GPU coding more

enjoyable. They provide convenient high level programming languages o implement



 eff

GPU programming models are the Compute Unified Device Architecture (short for
CUDA) designed for the GPUs manufactured by the integrated circuit supplier — nVidia
and the cross-GPU OpenCL. DirectCompute, which is the graphics API that the latest
sraphi

industey. It will be integrated with Microsoft DirectX 11. I s also highly possible to

card will support in hardware, would become the standard for PC gaming

become the standard programming model for the next console of Microsoft. 1t is very
likely that other console providers would release simila products 10 take advantage the
horsepower of GPU computing

CUDA s selected in this thesis for implementing the image regisration algorithm in

parallel. The C-1

applications. CUDA generste C++ obi i be
casily linked 10 the standard C++ programs, This feature makes. inegrating GPU

ing programs very convenient. CUDA also provides festures o enable runtime.

2.4 Optimization of CUDA programming

Previous research has shown that how wellthe implementation s optimized for graphics

hardware can greatly affects the performance of the algorithm. Several papers have

discussed how o optimize CUDA code. I [32], Harris discuss sep by step about how t0

“The final result s as 30,04 times fst a the original stsightforward version. We modify




Harrs® work o perform the inter-thread summation in our CUDA. kernels. Haris,
Sengupta and Owens discuss how to optimize parallel prefix sums in [33]. Thir on-<hip

inspiraion to design

ndix A1
proposed in Appendix A.4 . For more specific application instead of general algoriths,

in (25}, Yu and Chen propose the techniques to optimize thei stereo vision system.

Especially,
of the stream processors which leads to high instructon throughput. In our experiments,

we find that igh occupancy does not always means high performance, especially for the

memory band-widih limited applicaions which benefits more by trading occupancy for

troughput
Based on our paralel implementaion of the ICA algorithm, we experimented with
various optimization techniques and evalusted theireffetivencss.In the end, we not only
have an optimized implemeniation that sccelerates the processing specd by up (o six
times, bt also obiained valuable insights on how 10 optimize other image-relaied CUDA

applications.



Chapter 3 Image Registration using Inverse
Compositional Algorithm and Its Parallel
Implementations

“The Inverse C 1 Algorithm (ICA) is an

homographic transformation between two images. The algorthm runs 100 slow on
current PCs for real-time applications, it also has huge paralelism which could be
accelerated by a GPU.

I this chapter, we discuss a GPU-based image registration algorithm designed based on

ICA. Morcover, we discuss how 1o improve the regisratin robusiness using mult

Compared 10 the scquential ICA. implementation, the proposed. GPU-based image

150 imes. After ®

algorithm with coarse-to-fine processing scheme, the resuling mult-resolution image
registration (MRIR) algorithm is capable of registring images with smaller ovrlapping

egions and thus it improves robustness. To further improve the processing speed and

adapiability, we use selected regions during the multi-resolution registration process.

That s,

i input images are regserd at low resoluton, We extract approprse sub-
images from the input images and perform local regisration nly onthe sub-images. The
comesponding algorith i refered a5 mli-resolution image registration with seecied
regions (MRIR-SR), which uses smaller regions in fne level registation and therefore

can achieve higher processing specd, especially when the image resolution is arge. In




"
only, MRIR-SR can be used to align planar regions in arbitrary scene, making it more
versaile for motion estimation applications.

3.1 The Inverse Compositional Algorithm
e ICA algorithm. It estimates the

ransformation matix between two input images by ieratively mi

jing the intensity
difference betwen then.

Any two images of  planar surface or two images of arbitrary scene taken ai the same

view point are
Wwe reer ane of the images a the emplate Image (7), and the sccond image as the input
image (1), the coordinate from the template image can be warped 10 the coordinate

system ofthe input image by  mat

WO =Wt i

oyl

1,11 i the homogencous coordinates of the pixel in T and
the homagencous coordinates of the corresponding pixelin 1. W isa 3 x 3 mattix with §
unknown parameters which can be used for modeling all inplane projective

62
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pitmi e ORI 4R
et T i e o3

Here, we uwse a veclor fo refer the eight unknown parametcrs,

= (2o D1. Do PucP. P r). Let W(E:p) denote the warp with the parameters in

etorp. The C
. aw |
o= le‘ﬁ I W GEp) - T o
o,
W aww o

where AW is 3 3 matri. It is built by replacing all the py in Equation 3.2 with 8p,
calculated in Equation 3.4. The algorithm converges when all lements in 4p, arc cqual

10 2ero or almost zero in a practcal implementation. The H above is called Hessian

mtin, which s an 6 8 matixclelted by.
aw | aw
":Z[‘”‘ﬁ] T 1 06

s called the steepest descent image (SDI) and it is evaluated where all the

3




on

1w refe the gradient of the template image as VT, = (7T, YT} then,

w
L

o8
=[VNi VT VL Vi VT VG (VT -VIY) (VT - VT
Since the Hessian matx and SDI are independent on the warp parametes p, they are
constant arossierations. We can pre-evalute them and reuse them durin the itertive
process
Notce that, diffrent from the convntional image regisrtion sccnario which warps
nput imsge o template image, the ICA cstimates the warp matrix that wars template
imag 10 input image 1o avoid e-evaluating th Hessian. In the remainder of this thess,
we Keep his conventon that alth llstratons s basd on warping template mage 0

input.
3.2 Sequential Inverse Compositional Algorithm

“The sequential implementation of ICA.is by simply following Algorithm 3-1. We

arrange the procedure of the algorithm into 3 steps.




reprocessing
1 for each piel () inthe template mage T (
2 clerr,

3 clerr 2

Local parameters accumulation
'S for each pixel i(i. /)

6 diff =1(W(i:p) - T(O

7 ap a=difxvTIE )

Warp updating
8 AW = ParametersToWarpMatrix(H™'0p)

ow=aww

1018 CheckConvergeAndStopCondition( ) == false gotosetp's

Algorithm 3-1 Pseudo-code of the ICA algorithm,

« Preprocessing

“This sep (line 1 10 4) raverses the whole template image o pre-calculte the image

only needs to be performed once.

« Local parameters accumula

aradient VT, cight SDIs, and the Hessian mar. For a given regisation task,tissep ‘

Using the current warp. matr, this step (line S 1o line 7) computes the intensity

difference betwween the template image and the warped inpu. image. The difference,



scaled by the SDI, is then used to compute the update vector Ap, of the local warp

parameters

« Warp updating

10), g the upds 2

We then check whether the stopping condition is met. IFt s, the current warp matrx sent

1o output and the process terminates. Otherwise the process gocs back 10 the local

parameter accumulation step.

3.3 Implementing ICA for GPU Processing
G model, into

Kemel functions, which are appled to the dta strcam.

Figure 3-1 illustates the whole procedure of the proposed sysien.




% © AR Y.

Figure 3.1 GPU-based implementation of ICA algorithm

2



Figure 3:2 Modules of the GPU-based ICA algorithm

Input image handler
The input image handier needs 1o perform two. basic tasks. The first one is
ransfering images from system memory (o graphics memory, whercas the second

sk addressing.

The converting task is paralleled by the conversion kemel which runs the same

Templae image handler
Besidesthe two basic tasks the same as the input image handler, the mplate image

handler is in charge of the preprocessing described in lines 110 4, Algorithm 3-1.

by bolh the SDI
for cach pixcl, and the Hessian accumulation kernel, which computes the Hessian

matri form the SDL

Local parameters aceumulator




« This module conducts the local parameter accumulation. The local parameter
accumulating kemel is inroduced 1o caleulate the warped image diference and
further accumulte the loca parameters of the warp matrx. Warp matrix updater
This single kemel module updates the warp marix with local parameters. If the
algorithm converges, it output the updated warp marix as the final resul, Otherwise,
the updated one is pussed back 1o local parameters accumulator to continue the




Intitvely,the ICA slgorithm works by comparing the intensty diffrence between the

warped input image and the template image and updating the warp. parameters 10

par image gradient,
which provides information sbout how cach parameter affcts itensity difference

through the cight SDIs. When the two images contain detaled textures and are intally

poorly aligned, the ICA algorithm may il t register the two images together since the

To overcome ths problem and improve the robustness of the registration, we here apply

the coarseto-fne processing scheme. As llusiraed by Figure 33, we first buill the

aussian pyramid by iteratively blurring and down-sampling the high resoluion input
images 1o low resolution images. Then the image registration is performed from the

P Jution level. The estimated

the initial soluion. For example, assuming the warping mateix between the two images

Tound at a coarse level is Wy, the

al Solution Wiyt the finer level is calculated

where k




The down-sampled process femoves the detail and the noise which can potentally
misiead the registration process. The lowest resolution images contain anly the lrgest-
scaled features that allow robust registration even when the two images are poorly

aligned. Using the warping matrx calculatd at ower esolution o st the nitial warping

parameters, the higher rsolution registrations only need o tune the warping parameters

based on the detai nformation available

Figure 3-4 shows the resuls using registerng the same two images using standard IR

‘and MRIR. While th standard approach fils,the MRIR approach sily

elds good result

Figure 3-4 Comparison between standard IR and MRIR using the same images




it also itroduces additfonal computaion since th registration needs (0 be performed at
muliple resoluion levels. To achieve faste processing speed, here we proposed 1o use
sected regions, instad of the whole image, to perform regisraton at fne levels. For
example, afer registering the two images at the coasest level, where the resolution is
. we need to mave 10 the finer level with resolution of kn x kn, where k i the

down-sampling ratio between levels. Insead of using all kn X kn pixcls, we chose a

region 1 x i n

registration
be saved dramatcall ot the fner levels,

Another benefit of using selected regions forregistration s the increase of robusiness for

outlers. In many real-world sitaiions, only part of the scene can be registered by

Homographic transfomation. Fo example, a scene may contan both plnar and non-
planar objecs, where only the planar object porion an be egistred accurely. Or, a
cene contains both i way background and nearby foreground, where th foeground
poion s afected by camera movement and hence camno be regisiered. Under these
cases,slecting the proper egions a finer el regisiration can successully regiser the
images,

1 the restof this secion we will xplin hov o selctthe propr egion fo egitrtion
and how 1o adjst th transformation matix when moving from one evel to the next




351 Region Selection

Assume two images are already registered ot a coarser level, where image resoluton is

nxn finer level,

7 Xy whic corrsponds 1o an 1 n area t the fne lvel. The two crieri for

‘electing he region are:

« The region needs to contain suffiien deal o fcilft registation. That s, the
sradicnt magntude should be high within e region

« The exsingregsrtion fr th regon should be sucessfl. That s the regsration

ertor within the region should be low.

To find the best region based o the above two criteria, we first caleulate the gradient-to-
error atio for cach pixel sing the following cquation

___sm@n
e+ [iw@) - T@] 69

n
where |V is the gradient magnitde of the caarse templae image, W is the warp
estimated by the coarse images, 1(W () indicaes the intensity value in the coordinate
system of image 1 with coorinate (i, and I(W(D) = T(0) is the diffrent image
Between the coarse input image transformed by W and the coare templte image. € is
small number to avoid dividin by zero.

Aferthe per pixel gradientto-eror raio s calulated, we agaregat the values within

Tocal 7/, x 1/, windows using  box fiter. Thatis:



it
U Ry xand areneger mambersform 1 0N o

Ay

Because every element in agaregated ratio A epresents the summation of a "V X "

sub-region in R, we can simply find the maximum element

A0 locate the region that
gives the highest overall gradient-t-crror atio. For example, the top-left (p,) of the

desired region inthe fine template image is calculaed using:

@)

xaramayi )l _—
The cocflcent is used o convrt the coordinte o he fine evel.

352 Locating th Corresponding Region i the Input Image

e region seecion process dscribe above s conductd in the image spce of he

template image. To find the corresponding region in the inpu i

age, we can simply

ransform the coordinat (a, ) o the input image using the warping matix obtain at the
corse evel, That s

(@b

Wab) o

The two sets of coordin

s (@', b') and (@,b) ar then used 10 extrct two regions for
registration at the next level rom the input image and the templte image, respectively. The

intal warp matrx W between the extracted egions is computed by the waping mats W

the

calulated by,



Y T
‘where (p',q’) is the position of the top-left comer of the extracted input image in the fine input
image. To calculate (p',q'), we first locate the center of the sclected input region in the coarse:
0+ /]
Weliq+ P G4y
,

then. we compute (9, ¢) i the fine input image by,

619

353 Implementation
The implementation of the MRIR-SR is illusirated by Figure 3.5, Besides the image
registration components explained in Section 3.3 , the system also consists of other four

Kemels.

sampler. Then, a region selection kernel calcultes the difference image with the warp.
matris, the gradient magnitude of the down-sampled template image and further the
the accumulating kemel agare

eradient-o-errorratio. Afer th tes the ratiosin parallel

resull. After mapping the located point (0 the orginal image, two regions are extracted

from the input and template images, which are send 10 the image regisiation module



again for registration at finer level. The output warp marix a finer level i transformed

z






Figure 3.6 llstrates the results using different ima

e registration approaches 1o regisir
o same images which have elatively small overlapped area. While both the sandard

IR and the MRIR fail the MRIR-SR approach still outputs a good result

r

e 3-6 Comparison between different image registraion approsches

36 Discussion

‘ I this Chaper, we discussed a parale] image registration approsch and two of its

varints. The straightforward IR spproach implements the ICA algorithm in parallel using



stream processing model. This allows us t0 take advantage of the processing power of
modem programmable GPUs, which are much faste than the CPUS.
“To improve the regisration performance, we propose two multi-resolution vaiants. The

MRIR approach helps to improve the robustness of the system through incorporatng the

coarse-to-ine scheme, but at the expense of additional computationa cost. The MRIR-
SR approach uses sclected region for fine level regisiation, and hence dramatically
reduces the computation cost when the inpot image esolution is high.

“The two approaches have their own advantages under different scenarios. When the

whole scene can be registered using homographic ransformation and the processing

power s sufcen, we recommend wsing the MRIR approsch, whih can i the inpt
images accurtely uin the warping matixobained. I coniast, the MRIR-SR spprosch
cvlustes the sl warping maix using local egion only, which could lead 10
misalignment along the boundary tha s fr from te selcted rgion, However, MRIR-
SR has the advanage of higher prosesing spesd and being more robust 1 less




Chapter 4 Optimization of the Image Registration
Module on CUDA

The previous chapter discussed the paralel implementation of image regisiration and ts
two mult-resolution variants. Besause the frst one is the building-block for the two.

variants, we would ike to optimize s performance. I this chapter, we will discuss how

1o ciciently optimize the image regisration module on CUDA. This includes, for

e, the benefi of avoid high

latency 1O transportation, applying paralll reduction 10 aceelerate  iner-hread

summation, using the sequental-then-paralll processing 10 fully wilize the siream

processing units, e

devices and how 1o use various buffring approaches 10 increase memory throughput,

41 Introduction of CUDA
The CUDA programming model is based on the hardware feaures of the CUDA
archiccture, CUDA devices can run thousands of threads in paralll and the threads arc

organized in hierarchy, illstated by Figure 4-1,
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Figure 41 Hicrarchy of CUDA theads

Threads are first grouped into blocks and blocks are further grouped into a grid. A
paralel function,or  kernelin term of GPU programming, has only one grid. The blocks

of the grid the cluster of the pr

run time. The multiprocessors schedules and exceutes th allocated blocks. The threads in
a block can use the fast onchip shared memory (o sccelerate inter-hreads
communications.

Besides the shared memory, CUDA devices also provide other storage devices (0 speed
up memory access or ease programming, such as texture memory for caching special
random accessing, constant memory for accelerating global variable fetching, and local
memory for holding temporary in-thread data.

The proposed optimization techniques are tuned for two series of CUDA devices. One

(including G0 and G90)is the wide-used devices with Compute Capability 1.x (CLx)



architecture. Another (G100) s the new released devices bascd on Compute Capabilty

20 (C20) arhitectue. The C2.0 devices are designed more sophisticated for general-

“They provide lag memory accessing

also accelrated by L1 and L2 caches which are not provided in C1Lx devices

42 Implementation
To make full use of CUDA devices and reduce unnecessary high-ltency CPU-GPU

6 kemels labeled by Kernel 110 Kemel 6. The rest sequential tasks re encapsulated by

the CPU functions.

shown by Figure 4-2






43 Optimization Techniques

43.1 Balancing Workload Distribution
When handiing  single thread, th performance of the CPU is much higher than that of

an individual GPU processor It s therefore beneficalto distribute sequential tasks 10 the

CPU and parllel tasks 10 GPU for maximum insiruction throughput. However, if a

be transferred between CPU and GPU through graphics 1O bus. Those 10

the pipeline
In this case, we should measure whether the single thread specd advantage of CPU
outweighs the high 105 cost. If the sequential tasks are not complicated, we may run
them with severalthreads in GPU t0 avoid 10 communications.

For example, the tasks of the warp updater module are sequential-frendly. They are

The CPU

implementaion tends 10 yield beter performance. However,the GPU version is twice as
fust as the CPU version, since it emoves the needs of frequently transparting the local

i back 0 GPU.

432 Parallel Reduction
“The ICA algorithm requires inter-thread summations (linc 4 and line 7, Algorithm 3-1,

Section 33). unction for this kind of tasks.

it i ot the most effcient spproach for arge summation. Currely,the speed of aor

function I

instruction throughput when massive used in parallel Morcover, only current advanced



graphic cards provide stomic operation witing to_on-chip storage 1o cache the
inermediae resul. I tomic operation is not supported. the resuls have 10 be writen to

offchip grophics memory which has hundreds of times longer latency. Therefore, we

‘would ke o find anoher method t0specd up he summation.
“The parallel reduction [32] i an eficien chaice for iter-thread summaion. It uses the
fistest coslesced numeric operations. After loding inputs rom graphics memory. it
pesforms using the low laency on-chip storage. Thus, it provides high insuruction and
memory troughput. Moreover, parallel reduction only uses the sandard.features
Supportcd by almos all CUDAcompaible graphics cards Ther i lss compatibilty
To make full use of the parallel reduction, we shouk allocte & maximum number of
hreads per block based on he avalabe rsources (th on-<hip memary 1o cache the
intmediate esul), o that as many clement as possbl can be reducd in a single
block as possible. Appendin A.3 llsttes a paralel reducton bilding block modified
bascd on the fully optimised version presented in [32] 0 i capabl of reducing 512
lements which i the maximum number of theads pe block for NVIDIA GPUs with
ardarecompatecapaily 1.X, 1 the rumber of clements necd o b redueed s more
han the resource availsble, we can assign muliple blocks into 8 two level ierarchy

illustrated by Figure 4-3. To implement the hierarchy, one kemnel uses multple blocks to

perform the first erap




Our test shows that the discussed parale] reduction is generally 40% fster than the
atomic functon. Even the atomic function used s the optimized version presented in |

Appendix A2

reducing 512 clements

433 Sequential-Th
A common strategy to parallel execution is allocating as many hreads as necessary

-Parallel Processing

This is an eficent solution when the number of theads needed is not 00 much larger
than avilable processing units. Otherwise, GPU wil schedule  long exceution queue,

00d programs which need
Because the threads are not ctive during the whole exceution, the active theads cannot

cache inthread memry for i They have 1o be




written 10 the graphics memory. Thas, the performance of those programs is highly

parale trcads and the program requies 16 threads, 12 of them will be queued. The
(GPU has 0 o the contexts o th cusers of our threads t fas our imes. Morcover,
it owputs inermediate rsult 16 times. Those outputs are graphics memry wrtings
Whose laency i depended on the bandwidth of the graphies memory, wich i usally
undreds f times sower than regisers o shared memory

We would like 10 apply another strategy 10 avoid thread scheduling and 1o enable in-

make the kemel eraphi The




Solution is here eferred as sequenial-then-paralll processing. To apply the sequential-

then-paralel processing, the program runs the maimum number of actve threads and

ooping, That s,

in Figure 44 imes to process
he whole data. This, the GPU ony needs to load the contex of thrads once. I the
program necds aggregatng rsu, mermediote resultcould be cached n-head using
egiste orshared-memry. n al, it only performs four graphics memery wrtings afer

looping.

Figure 45 Sequential-then-parallel processing

The hybr

processing sistegy will dramatically reduce the complexity of thread




We apply the hybrid processing (0 two tasks — the Hessian calculation (Kemel 3 and
Kemel 4) and the local porameter accumulator (Kernel S and Kemel 6). Kemnel 3 snd

Kemel 5 are in charge of reducing intermediae results. Kemel 4 and Kernel 6 then

agaregate the Although
for kemel 3 and kemel $ are reltive small (usually ess than 64) in current CUDA

devices because of . the chunk of

large because their clements are maices and vectors. We would like to paralllize the
operation ofthe summation of the elements.

Kemel 3, . we use 64 threads in

Kemel 4. Each thread is in charge of sequentially summing together the intermediatc
esult for ne element of the matri.
For kernel 5, whose autput is a chunk of vectors with § elements, we choose a more

ophisticated parallel reduction method. It uses idle threads of the standard paralel

looping standard parlel reduction for cach clement, it requires much less adding
operations. Appendis A4 shows ts CUDA implementtions

The test shows that there s up to 43% performance gain aflr aplyng the hybrid
procssing.

433,

Tuning the sequential-then-parallel processing introduces two sieps. The first sep is to

decide the maximum active blocks per muliprocessor (MAB). Because we use the



maximum threads per block for reduction, the MAB is only decided by the shared
memory and register usage. These two factors can be monitored by the compile output.
With the maximum thread per block, shared memory and register usage, we could use

caton of

CUDA profiler, s tool shipped with CUDA SDK, or reference (o the s

CUDA hardware o calculte the MAB.

fully occupy i in the number of
MAB. Assuming there are total M multiprocessors in the current device, we can simply
assign MxMAB blocks because CUDA evenly. distrbutes the blocks 10 each
muliiprocessor
“The experiment shows the peak of performance appears under the discusscd workload

c . it s generally 10%

faster.

43.4 Memory Access Pattern

To maximize the memory throughput of the CUDA device, we optimize the data

for the images, SDI,

4341 Conlesced Memory Layout
Because the 32-bit memory layout is the fasest data struture for CUDA 10 perform

coalesced access, we organize the 2D datainthis way.

The dat includes inpot image, templte image and SDI. Each pixel or element of those

daa y 2

floatvariable p in pitched

row major order, e, rows are stored one aftr the othe in the lincar space. The reason



hy e use the reundant 32:bit varible s tht it i the atve engthof the Arthmetic
Logic Units and Float Point Units of CUDA devices, which yields he et arthmetic
opertion specd.

4342 Testure Memory Caching

There could b @ massive un-coslesced accessing scenario in the paralel inverse

compositional algorithm. It accesses the image with warped coordinats. Because the

warp mari s updted icratively, t i impossible o organize the template image layout

Therefore, he

el
43,43 Constant Memory Broadeasting

“The constant memory i ideal for broadeasting global constant for every thread because
is content s cached and thereore faster than the un-cached deice memry. In the
proposed system we usethe constant mermory for broadcasting the warp matix 10 every
hnead o prform the image transfomaton. I is 10.8% fster compared with passng

warp matrx by device memory.

44 Bottleneck Optimization




Shared_ float s_dp[81;//ouptput buffer

J/accumlating 1
Cint <= 05 ¢ < s90)(

Fortint 5 = 05 5 < 8 +4)(
float 4o - mr o1 dift I, 5, 93
es12(s._s

Fetnesitan s e o5 dpls] oo bum

)

end of the accumulating Loop

Figure 4-6 Local array buflered parale reduction approach

The complete implementation of Kerel § s lsirtedin CUDA-iked pscudocode in
Appendix A . Here we extrsc the instrctions direty elted 1 the optimization and
st them n Figure 4-6. Noie th bold fincs of the algorithm. The number of
porlil reducions neded i 8 M. I we can accumalae th lcal warp parameer (.
ol i rd i thepscudo-cade) in bl and reduce he accumuled sl outside

the accumulating loop, then we only need call the paralll reduction 8 times. This will

saven Hence, sisto

find a way o buffer dp.

441 Local Array Buffered Approach
¥ A dpisby

ocal aray. It llustrated by Figure 4-7.



shared_ float s_dp[8];//ouptput buffer

//accumlating loop
For(int ¢ = 0; ¢ < #; +4)(

For(int s = 0; s < 8 +4s)

float g« 166 120 1 0 a16s © SuCt, 9, 515
appute(s) +=

o of the accumiating loop
"

apBurli];
Float sum = reducs sﬂ(s sun, dp);
if(threadlox. x (1] = sum;

Figure 47 Local rray buffered approach

o3t dpBUFF(8] = (8);//1ocal array for buffering dp accusulation

I this h,every thread adds and add together every

clements ofthe array aftr the accumulating loop.

442 Partial Reduction Approach

Using local array to buffer dp is not eliient. Stated n Secton 5.32.2, [34], “the local

memary space resides in deviee memory, 5o local memory accesses have same high

latency and low bandwidth as global memory". For each thread, thre will be 8% M.

El y Toop and §

bulffered resul. The cost of those global memory access may exceeds the saving of

reduction nstructions and results in performance drop. Actally, there is up to 10%

performance drop after using this approach.



We would like t0 find One possib

memory but there

 limiaion. In most cument CUDA devices (€1 x devies), the
avilbl sharsd memory cannot hold the dy for sl threads. For  lockof 312 treads
(ihe maximum threads pe block to full make use of the parall reduction) and cach
{hread nesd 8 Mot variabes for the local prameers vector, the toal shared memory

usage per block is $12X8 x4

6384 bytes. It is the maximum available shared
memry per block. Because some shared memary is pre-occupied for parsmeter passing.

the practcal usage is slightly smallr than 16KB and thus not enough for the complete

bulering.

shared_ float s_ap[8]; //ouptput burte

itared float s-oIBST, J/partial reduction buffer
Tshared _ float s_psum(256]; //reductin bu

Jiaccumiatine 1o
Forcint ¢ = 0 ¢ < 15 +0)

0 : diff * SOI(L, 3, )i
//partial reduce one step to decrease the shared nemory usage
 pounlthreadion.x) = dp; _syncthresds()

m[wmm x]
avestton s s 25615
_syncthreass 53
/end oF the accumulating loop

//reduce the bufered result
18 e

Float sun = reducezss(s_suml1]);
$F(threadlax.x == 0)s_dpl1] = sum;)

Figure 4-8 Partalreduction approach




To address the problem, we reduce al the dp from S12 clements 1o 256 elemens 1o
decreasethe sharcd memory usage. This approach i llustraed by Figure 48, The one

Step reduction shown in bold i refered as part

reduction. It reduces the 512 clements
10,256 clements. The total buffer size is decreased 0 256 X 8 % 4 = 4KB which is much

Tess than the available shared memory

443 Unrolled Register Buffered Approach

shared_ float s_dp[8]; //ouptput buffer
shares reductin bof
Float 50 $340,5820,55-0,56:0,57

m}u..z €m0 c oM

e ccumtating 1o
adatine i mu \PCsd
oty ettt 2 ot 2 .0+ aiere sorct, 3, 9

DELTAP(0, 0)00LTA P(sL, 13- IOELTAX(T, )3

+ine butteed renlc
mm. mu:z mm.
dldx.x] Ssarn
e
Tab) - mmm(m, oy
aid. 0]

i(threa

(s01)3)_syncthreads ()3}

REDUCE_TO(50, ©); REDICE_TO(s1, 1);. . ;AEDUCE_TO(S7, 7

Figure 4-9 Unrolled regiser cached approsch

Another possible caching method i using registers which provides the fastst local

accessing speed.



in registers, we unroll loop with
hard coding. Figare 4.9 ilustraes his approsch.

Variables 0 10 57 are used for buffering the local parameters. Macro DELTA_P(sd 5

unrolls th foop. The CUDA compile wiluse the regisir 1o fside the variables for the
unroled hard-coding. Macto REDUCE.TO(sdi ) is used for simplifying the coding for
educing the buffred result.

Compared with the partial rduction spprosch,th uolled egiste buffred approach
tequires o shared memory usage and removes the 8 M parial reductions. More
important, accssing the egiste buffer shoukd be fiser than accesing the shared

memory buller. This version is proved 10 be the most eff

at approach by experiment
‘which can acelerate th sysem up 0 80%

45 Evaluation

The calusion i to testout the eftiveness of the discussd opinization technigues.
There are two sets of images 1o b cvaluated - one with 256 x 256 rsoltion and the
ather with 512X 512. They simulat the low workload and the high work load
conditons separately

Because the exccution durstion of the same keenel diffes from imes 10 times, we count

time to compare the . where the exceution




45,1 Evalustion of the General Optimization Techniques

“The algorithm independent optimization technigues including simulating scquential

in this secton.

Figure 4-10 illostrates the performance of the different versions of the proposed

implemenation

256256
st
T Sequential ICA

2: Parallel ICA using tomic functions and CPU warp marix updater
3: Parallel ICA using aomic functions and GPU warp matrx updater
4 Parallel ICA using parale! reduction and GPU warp matex updater

5: Paralel IC/ el
warp matr updater

igure 4-10 Evaluation of the general optimization techniques

Version 1 i thesequential ICA. Both the high workload and the ow workioad results arc

Jess than 1 FPS and hence cannot meet th real-time requiremen.



From the comparison between Version 2 and version 3, we can clealy sce that the GPU.

warp updater is mach fastr tha the sequenial one, even though this warp updater

module tslf uns faser on CPU. Thi

s because the updater s called repetitvely when

. the V0 cost between CPU and GPU

overweighs the acceleration of CPUL

The comparison between version 3 and version 4 shows the power of paralll reduction.

While the its advantage is not evident under low workload testing because it requires

the parallel peet High

workload testing.

The performance s further specded up ater applying hybrid processing strlegy o

improve Version 4 o Version 5. The low workload testing gains 43% (27 81FPS) speed
up while 14% (4 3FPS) for the high workload test.

4528 imis Bottle

The evalution of the optmizaton sppraches for botdkneck st ai the preious
intoduced hybrid processing version a the orginal approsch. Because the memry
access methods are differnt in diferent CUDA deviee, we select two graphic cards as
the reerences. The G90-based Quadra FXI800 represents the curently common used

o GEFORCE

more powerful €20 device. Notice tha the device memory accessing is cached in C2.0




Approaches
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Moreover, under C2.0 seting we found thi

the compiling result ofthe unroledregister
buffred approach yields  higher MAB which could provide mare parleism. We st
he resul under this seting in 3 separate entry 1 test whether it helps 1 improve
performance

The occupancy (occupancy is defned as the ratio of the number of resident warps 1o the

of each approach are shown by Table 4-1.

452.1 Workload Distribution of Blocks
Totest per per e record

the resuls under diffrent number sttings. The resuls show the same patien,ilusrated

by Figure 4-11. For allthe approaches,the performance increases irt from the under-
saturated blocks per multiprocessors 10 the maximum values and then decreases, The
maximum values appear under the MAB number seting. This proves seting the block

configuration fo th localaccumulation kernels under MAB is the optimized solution.



Figure 4-11 Performance o the bottlencck optimization approaches under diffrent
blocks per multiprocessor set




4522Performance Comparison

Qudorasn
. s e B

approsch (complied under C2.0).

spprouches

Compared 10 the original approach, all except the local array bulered approach gain

faste spead. This approach frequently accesses the local aray and thercfore decreases

is cached. there s sl a performance drop. It suggests that avoiding device memory




The unrolld regiser cached approach yields the best result under any conditions (up 10

0% increase compared to the origi). Although the occupancy of the unrolled reister

) Table
1) becase of the heavy usage o registr,te gain of memory throughput supasses
e drop of insiuction throughput and threfoe leads 1o the improvement of the
performance, The result suggests that for memory bandwidd-bound appliations, we
prefc inressing memory throughput o nsructon throughput

Partcularly, compared to C1.x compiling version, the C2.0 compiling version doesn't

significanty improve the specd although the compiler reports higher occupancy under
this seting. It is posible because the C2.0 device could optimize the C1.x compiled
Kemel in run-time.

46 Discussion
This chapter discussed the techniques that optimize the parallcl implementaion of ICA

on CUDA. They are capable of accelerating the paralel system form 10.63 FPS t0 61,62
FPS, which accounts for 600% speed up.

Those optimization techniques are also applicable (o other applications on CUDA. The

exceution is high
single thread or several thrcads 10 avoid the /O communication. The 10 cost incurs a
Targe penalty that will dramaticlly reduce the wilzation of GPU.

For massive int

thread summation, the paralel reduction combined with sequential-

then-parallel processing is preferred because of ts high effciency and compatibiliy. I



atomic functions must be uscd because of lack of shared memory or other reasons, we

For inthread caching. the register is the first choice for performance. I the caching task

requites a small aray, the aray should be replaced by several hard-coding varisbles to

ensure the clements are resided in egistr insiead of the deviee memory. Even if mass

e of regi the GPU i

‘good trade-off for reducing device memory accessing.



Chapter 5 Motion and Visual Controller

Nowadays, controlers other than the traditonal gamepads are already wide-used in
gaming consoles. They provide brand new experiences for users. I this chapter, we will

propose a series of hokling-and-pointing controlers. To control the cursor, the visual

based e e hapte 3.
whereas the motion base conrolle uses accelerometers and gyroscopes. Moreover, we
will propose how 1o buikd a more accurse hybrid conrllr by uiizing both visual and
motion informaion.

5.1 Visual Based Contraller

T visul based conrllr i the device that conirols the cursor movement in

dimensional space using images captured by  video camera. The key 10 the contrlle is

» For
any given two successive captured frames of the video camers, if they can be registered

ogether, then we can use the registration esult 1 update the position of the focus

re -1 shows o The

the current frame. The colored dots ae the center of the two images respectively. From
the fgure, we can clearly idenify how the focus moves. Afler updting the new focal

positon, the current frame is used s the previous frame for the next regisration. By



repeating his scp. we can track the focal movement and use it to control the cursor in

| Figure 1 Tcking ol movement by te st sl

’ S.1.1 Threading image capturing and image registration

The most important building block fo the proposed devie is the IR module. It tratvely

fetches the imag d control the
‘ cursor position usin the mouse AP with the registation esul

Video cameras usually capture the image siream in o constant frequency. If image

registration and the
Wil b slowed down. For example, if the sampling frequency of the video camera is

300z and the IR module i capable of performing 60 registations per second. Ignoring



the costof other exceutions, the total exccution time is 1000ms30-+ 1000ms/60 = Soms,
i., 20 egistrations per second.
To address the problems, we introduce a multithread source fetching approach. Video

Steam capturing is conducted by an independent thread. This thread keeps updating

flag with “truc” In another thread, IR
‘module queries whether the image is updated. Ifyes, it willfetch the image and then set
the updting flag “false™ and conduct registration. Otherwise, this thread wil sleep tself

fora while and then do another query.

Resource locking i us i When the IR 3
image, it willlock the image to dissble updating from the input handling thread. After
fetching, it will unlock the image to enable updating.

Figure 5:2 llustrates the mult-threading approach

‘ v e gt
P N

ook oo o/ T Ao e

Figure 5.2 implementation of the vsual based controller

i way. multthreading alows TR module ans faster han image capturing. Moreover,
it prallls the image capturing and the image registration process, allowing the CPU 1o

handle image capturing while the GPU performs regisration.



5.1.2 Mouse control

After every registation, the resul warp matri is sed to contrl the cursor of the mouse.

1 warp matix s,

then, th displacement s of the focal movement s

ATV
Phitph 1
YTV AT 6n
whAnh 1 Y

itis the

Where (fu ) s the coordinate of the focus of the captured image. Usually
center ofthe image.

There are two ways o control the cursor, The first s passing s, and s, as the
displacement o cursor 0 the mouse APL This method i simple o implementaton and
allows the proposed device cooperating with other devices to conrol the same cursor.
The scondis inegrating s, and s, o rac the sbsolue position of the focus and set i
a5 the sbsolte coondinate of the cursor. The avantage is that thee is o rror
accumulation due 1o the conversion of float coordinates (o integer coordinaes or the
losss of mouse contrl messages. Choosing which way to conrol the cursor could be

depended on the requirementsof the application




5.1 Motion Based Controller

I this section we wil present an cflicient wireles air-mouse using accelerometers and
yroscopes. When using the controlle,the user simply rotate it horizontal t0 control
the cursor movement in horizonial direction and vertically 1o control the cursor

movement in verticaldiection

S.11 Introduction of Wi
The device 1o provide accelerometers and gyroscopes is the Wil remote contrlier

(Wiimote). A buil

in ADXL330 accelerometer measures accelerations along three
perpendicular axes. The accelerations range from -3g o +3g graviational force. If
atached by an add-on device called Wil MotionPlus (short for MotionPlus), Wiimote can

sense angular velocites along 3 dircctons — yaw, pitch and row with the MotionPlus

incorporated two-axs tuning fork gyroscope. Figure S-3 illusrates the two sets of the

motion data

Figure S-3 Wimote motion sensing.




“The Wiimote also provides the necessary buttons and the connection 10 PC. It can be
paired with Bluctooth receiver and programmed by driver APls (0 rtrieve the motion

readings.

5.1.2 Motion Estimation

when waving the Wiimote. If we define the s and v as the magritudes of the current
horizontal and ertical angular velocties, then the displacement of the cursor S(5.5,)

canbe caleulaied by

62

= Horizontal

Figure 54 Motion estimation




axisofthe

h = ycosd + psind

©=—ysing + peosd 3)

5.1.3 Estimating Angle of Roll
“The only unknown i equation 5.3 is the angle of roll 8. It can be measured by the

accelerometers.If we armange the readings of accelerometers (0 a vector (x, y, 2), when
olding still,this vector s actualy the gravitational vector. The valucs of the clements

length of the vector

s cqual o 1. When the Wimote s parallel o ground surfce, the value ofthe vector is 0,

0, 1), 1we est the Wiimote on a slanied surface, the ngle of rollis equal to

retan’ o

S.1.4 Implementation

AP -

igure 5-5 Block diagram of the motion based controller




the motion based contrlle. In each eation of

the mouse contollng, the first sep is o update the ange of rol according to Equation
54, Notice that for  accurate estimation of the angle of roll, the updating is not
performed for each iteration [35]. The system will track the length of the acceleration

Vector to ensure it s lmost equal o one for  small perod (e, several trations). Ifs0,

the
represents the gravitational ector. At this time, the angle ofroll i updated.

“The second step is to cstimate the motion by simply following Equation 5.3 o compute
the horizontal and vertical angular vlociies.

To provide stable feedbacks for mouse API, we need t0 fiterout unstabl vlues. Shake
of hands and device reading errors result in noises. If we let naises pass through,
controllng cursor will be hard. Here, we add a threshold 1o filtr out the noise and
amplify the signal-to-noised rato

Atthe last sep, we output the motion parameters tuned by Equation 5.2 to mouse AP1 to
move the cursor,

5.2 Hybrid Controller

The visual based controller provides high accuracy for slow or small range motion, but
the accuracy degenerates under fast mation due to the low sampling frequeney of the

Video camera. Captured at 30 FPS under fast mation, two adjacent frames may have very

small overlapped region. which may cause the image registration process fail. Thus the.

toleranc of focal moving speed s limited to  relative small range. The motion based



contoller provides resonsble real-time mation feedbacks, even fo the fast movement,

but it has a reatively low accuracy because of the error accumulation of the motion

the ange of ol
devices, we could build a mre effcient controler

I this section, we propose the hybrid contrlle. It uses the motion based estims

fon and thus yields a high

provide pre-knowldg to the visual basd image regist
accuracy even under fst moton

S21 Motion Based Pre-Knowledge

To improve the robustnes of the visual based controlle under fast motion, we need 10
provide images with larger ovclappd regon o the IR module, 1 we xtend the e of
View of the video camera and extract an area a5 the curren image o be registered
coresponding o the curret focal moving diection which s cstimated by the motion

based approach, frame.




o

Figure 5.6 Mation based pre-knowledge

Figare where the red rectang) cainthe

extended coptured image whose positon is comesponding o the current focal moving

direction.  The black rectangle indiates the region 1o be registered in the next frame

ch should Compared
Visal based approsch under the same condition (il in Figare 6), they have lrger
overlappd region

522 Floating Window

Here we use term “floating window” o reer the approach for extracting the informatve
ara usin the motion based pre-knowledge. It uses  fxedsze window floating i the
evtnded region o decide which arca 10 be exwacted as the nput image for the next

egistration. The position of the window (represented by the coordinate (x, ) of the top-



et comen) is decided by the current focal velocity estimated by the motion based
approsch.

1 e s o thecames s xinded by 2 il bt i i snd g, e
S R ———
ST
heof<n

e hsofzm
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where  and v i the hrizonatand verticalfocl elocitesand A i positiv integer 10
et the range ofthe  nd . A shouldbe et acconding o the seeen resoltion ofthe
et splication.

When hoding sil, A nd »ar gual 100, the flowting window s located i the cenerof
he image with (%) I squal o (m,m) (Fgare £, ), I the focus is moving, the
osing window will move 0 the coardinateproportion 0 the stmte foal veociies,

and v (Figure 5.7, b), but it cannot exceed the border of the extended region (Figure
81,0,



Figure 7 Floating window

52.3 Implementation

igure 58 shows the flow chartof the hybrid controller The procedur of each ieration

Tollows the arrow labeled from 1 10 6 i the figure. The iteration begins when the video

mera finshes updating the current frame. Next,the center area of the nwly captured

mage is used as the template image and the region extracted from the previous frame is

used s input image. Both are sen t the 1R module to perform the regisration. We use

the regisration resul 0 control the cursor i the same way as the visual based approach.

Atlas, we wse the current focal angular velocties o locate the floa window to be used

forextracting the input image for the next registration.



/= vy P p—ey

e S-8 Implementation of the hybrid contoller

53 Accuracy Evaluation
The calusion i 10 et the ccurscy ofthe visual based controllr the moton based
contoller and the hybrid-controler. During the es, he tester holds the controle in an
intial stte, Then, we let he tet 0 do  gesure and thn go back 1 the il state
The cursor will move corespandin to the controllr motin. Under dea station the
cursor shouldat the same locaton before and afe the gestre, However, thre wil be a
i in practie du to iter the rror sccumulation ofthe controlle o th tester filed
retumin th contole bk o the il position. To reduce erorcausd by the scond
tesson and measure the cro accumulaton only, we save the image captured by the
camers under th il position s that the este ca use i 10 uide the controllerback

1o the iniia state afir the gesture. The use i asked to perform muliple gestures using

point all the gestures and
use the disribution of the drfts of the ending positons to measure the accuracy of the

tested controlle.



The procedure s illustrated by Figure 59, The tester aims the controller with the image.

captured video. At frst, we let the ester aim at the image center indicated by a dot. Then

Wwe reset the cursor o the starting position and let th tester do the gesure. Afer the
gesture, the tester should poinis the controler back again t the center dot. Then, we.
ecord the ending positon of the cursor. This procedure s repeated multipe times to

draw the distribution of the drifs.

At h contor et
‘e

Stnngpoten
5

Endo poston
At contor ot
Dwwadn i man sgen

Figure §:9 Procedure of the aceuracy test

The fist test uses gestures of small motion. The testr waves the Wiimote towards a

random dirction and waves back.




N
r

Hybrd conroller

Figure 8-10 Testng resul of the smal motions

Figure $-10 shows  set of the tesing resull in which 25 gestures were performed for
cach controlle. The distibution of drifs f the motion based controlle is much sparser

and 2 contollers

are both located near the saring posiion. This shows that the image registration

Inthis test, we can hardly tell the difference between the visual based controllr and the

of the testers. We would like to inroduce more complex motions (o tes the diffrence. In

the sccond test, the testr shakes the Wiimote very fist for about two seconds before

oing back o initial state, The esting resul i shown n Figure §



- Hyord
Motion based contoler )

Figure S-11 Testng resul of the complex motions.

In this test the disrbution of the mation based controller is even worse and we can

clearly
The disribution is more dense and closer 10 the expected destination. Morcover, because

of the

hybrid case

5.4 Discussion
We show in this chapter how 1o build & controllr using the real-time IR module. The

provide more accurate pointing control over the widely-used motion based counterpart.

Through combining both visual based and motion based information, the hybrid

”




controller further improves the robustness of system under fast mation. Compared with

docs ot resrict users to_pointing toward the sensor bar. The holding and pointing
contollng method provides users vivid gaming experience, which could make it a more

prefered approach over the raditional gamepad or the mouse.



Chapter 6 Other Applications and Conclusions

The proposed image regisiraton system can not only be used 10 build the proposed

el

6.1 Light-Gun for LCD.

games. The adiionl light
uns ony work with CRT monitor since they uses cathode ray iming information. To
estimate the pointing posiion on LCD) mniors, Wimote uses an addiiona infered
Hight cmiting device, called sensor bar, whih is laced near the seeen. Nevertheless,
his spproach requies an addiional caliraton process and lacks precison. Users may
have bad expeience in shooting games because, in oder 0 shoot an obect on sreen,
ey may have 10 aim o a diffrent locaton. Morcover, the esolutions of hose deviees
e much les than the mouse, which makes them ot applicabe o high competitve
wames

To mprove the poining precision, the proposed image regsration sysem can b used
Basically, once we regser the image captured by the handheld camera with image
displayed on the sereen, we will know where the centr of the camera pints 10 To

reduce the computationsl cost and improve the registration robustness, we can also

per the poin on provided by

the traditonal iming device, nstead of the whole image.



62 Real-Time Image Mosaic

J\l )

Figure

Real time image mosaic

With the high registering speed, the proposed image registration system could be used to

generste an image mossic from realtime video input. That s, we can use the
ransformation matrx calculted 10 warp the current frame and sttch it with previous
frames.

To warp the images in ral time, we use DireetX 3 (D3D) to aceelerat the processing

speed. The quadrangle frames are represented by of the D3D geometris. During



registration,the vertices of the geometry are warped by the warp m

ix and then pincls
are flled i through hardware texturing.
To remove the high cost of 1O transportation between device and host, we design an

interfce to access image in graphic memory diretly. Currenly, it is capable of reading

images from DircctX 3D textures or OpenGL buffers. The captured images are sent 10
D3 first and then the image registation system fetches the image from the nterface.
Afer registering, the images are agan usd for real-time warping.

Figure 61 shows such a real-time image sttching resut, Our current implementation is

capable of handling more than 30 images per second in a PC with a mid-range gro
cand

6.3 Conclusions.

The thesis proposes 1o use both visual and motion information for desigring hybrid

contollers for next-generation game consols. To achieve this goal, we implement the

parallel for

Besides implementing the image rgistation lgorithm on GPUs, we also implement two

muli-rsolution variants, each has

o advantages under difference situtions. MRIR
is suble for high sccuracy homographic image regisiration. MRIR-SR has lower
computational cost and can be used to registr the images that have small ovelapped
region.

Comparsd o tadiional motion based comrollersuch as Wiimre, the propased motion-

visusl-hybrid contrller uses image regisration result 1o provide high accuracy ego-



the movement

Realtime image regisration modulke

The proposed image regisiration module can register S12 X 512 images at 60 FPS

Multi-Resoluton Image Registration with Selected Regions

registration. Morcover, it increases the adapability of the homographic. image

registration o inhomogencous images.

Discussed CUDA optimization techniques

We present a sries of optimization techniques o improve the performance of the

image registration. module. Those technigues are not only applicable 0 image.
registration, but also useful for optimizing other CUDA applications. We also discuss

how o design optimized data siructur for accessing CUDA memry.

CUDA incthread buflering
We propose  method that unvolls small oops and hard codes the small vector with

separate variables 10 enforce using registers 10 buffer intermediate resuls (Section



43.3). By comparing with the array or shared memory buffering approach, we find

that this method Therefore,

10 buffer small vectoror array for ther applications.

Motion based pointing deviee

propos i the motion
feadbacks. Compared to the traditiona infrared ray solution which needs poiniing

ealso has

very low computational costbut lacks of pointing accuracy.
Hybrid pointing device

We propose how 1o inegrate the focal tracking based on image registation with

I provides pixel-

level resolution that may extend usage of the motion convroler 1o the high
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Appendix A

A Bank conflict

Due 10 the hardware design, simulizncously accessing the shared memory of CUDA

devices from muliple processing units may cause bank conflicts. The on-chip shared

ided ito several banks (16 banks for C1.x devices and 32 banks for C20

words will be distributed into those banks in repeating sequeniial order.
The following figure shows ho the clements of an integer aray are distributed t0 the

shared memory.




he fllowing discusion s based on the C1Lx dvice. I the memory acces in & warp
s nto distinc banks, they can be done simaltancously. However, when two o more
accesses Ml o the same bank,thy wil be serilized, which causes aency. If two
accesses fll nto the same bank, the bank confict s refrrd as  2-vay bank conflc.

Likewise, if the number of accesses is n, it is referred as an n-way bank conflicts.

warp, accessina

warp s separated into two hal, 5o the first 16 threads

the warp will never conflet with
the remaincd 16 threads in the second half. Thus, the worst case scenario is a 16-way
bank conflict where allthe thrcads i a half warp fall i the same bank. The latency is as

16 times as the no confl

A2 Atomic Reduction Without Bank Conflits on CUDA Device
To avoid bank conflict (Appendix A.1 ), we introduce a buffered shared memory access

pattern to perform atomic instructon. An integer aray of 16 elements is allocated in

The sum of all
by adding together all the intermediate results. The code below shows an example of

bullered shared memory access.

_shared_ int s burf[16];
TH(threadldx x < 16)
5 buff[threadTox.x] = o

_syncthreads();

StomicAdd(s_buff + (thresdldx.x % 16), elen[threadIdx.x]);
T yncthreads();

8._rst = Reduce(s_buff);




A3 Optimized Parallel Redu

_device_ float reduces1z(volatile float® s_sum, float elem)

5_sualthreadIdx. _syncthreads();

et < Ss6) (5. sTEnresdla x] 2 clen = elen +
un{ threaddx. x + 256].

mwmm X<

128) s clen +
s_sun{ threadldx.x + 128];) ;ymmmn,
Afteeadtanx < )G " s thresdTin ] = clem » elem +
ssmlthesctann + 64l )_tyethresds(;

¥(threasionx <
€

s_sun[threadIde.x] = clem = elem + 5_sun[threadldx.x

2);

s_sun{threaddx.x] = elen = elem + s_sum[threadldx.x +
1603

s_sun{threaddx.x] = elen = elem + s_sum[threadidx.x +
1

5_sun{threadZax.x] = elen = elem + s_sum[threadldx.x +
a6

5_sun{threadIdx.x] = clen = clem + s_sun[threadldx.x +
20

elem 4= s_sun[threadlx.x + 1];

)
Peturn elen;

~_shared_ float s_sua(512];
Float elem = 0;

elen  vector[threadLdx.x]; __syncthreads ();
Float sum = reduces12(s.s0e, eLem);

The opiimized paralll reduction presenied by the above figare s the mod
based on Harris® work [32]. It introduces sequential addressing o avoid bank conflicts

and fully unrolls codes to reduce the complexity of flow contol. The valusble elem is



used for ensuring regiser is used for storing intermediate resul that reduce shared

memory accessing. The number of adding operations for each thread is 9. The shared

memory usage is 512 x 4 = 2KB.

A4 Parallel Reduction for Vectors on CUDA Device
“The basic idea of paralel reduction for vectors s 1o use the ide threads 10 reduce

Ifwe

reduction, we will find a lot of threads idl during the procedure. To load 512 element
form global memry, we need 512 treads. The first sep of reduction needs 256 threads,
then 256 threads ide. The second step needs 128 threads, then 384 threads ide, and so on.
The parallel reduction for vectors needs  special storage patte to conduct sequential

memory accesses so that there are no bank conflcs. Vectors should be siored

4 space. The "

this patiern,

s the optimized paralll reducton 10 sum the vectors but stop the reduction earlie. For

example for



device_ vold reducessfors(volatile floate s_sum, float elem,
Float s_rst)

s_sunfthreadldx.x] = elem; _syncthreads();
threadldx.x ¢ 256)(s_sunl threadIdx.x] = elem = elen +

eadidx.x < 128)(s_sum threadldx.x] = elem = elem +
) _syncthreads ()
) (5. sum| threadTax.x] = elen +

415 )_syncthreads();

Lecineeadtonen <

S_sun(threadIdx.x] = elen = elem + 5_sum[threadldx.x +

325

s_sun[threadIdx.x] = elem = elem + s_sum[threadlde.x +
160

elen = clen + 5_sun[threadldx.x + 8];

ircenaocs <)
rst{threadldx.x) = elem;
syncthreads(o;

)

__shared_ float s_sua(512];
Tahared _ float s_rst(8];
Float 9

elen = vector(threadldx.x]; _syncthreads();

reducessfors(s_sum, elen, 5_rst);

The number of addition operation is 6. Compared o 48 operations, it is a significant
improvement. 1f more than 64 vectors of § clement are 1o be added, sequentiabthen

parale] processing can be introduced.



allel Reduction Approach

A5 Local Array Cached

ooty ne i processing stratery, the shole inn
,mmm into the segae B hobtsonpelly seiocen pixls in
nador. Each blocks sequentially accumslating M segents.

1 on b
_shared_ ﬂn( Sswsial;
73")7‘&67 Flot 5 apls];

nt't1a - bmuax x + blocioim.x + hreadldn. g

m X image unm« ine 1 . m 7 image. .....m,

int 1=

for(int ¢
«

LF(1dx >= inage._pixel_size)break;
float x, v,

(123) to (x.y) by the current
muu &, 05

tucen template inage,

x
8 x> 088y > 0)
TG,

s of the warp matrix

0o uire i, 9

float dp - aite

paraliel
Float sun = reduceslz(s s )3
J/accumlate to output buffer

rCShrasttine o 8ys_ap[s]

ridoin.x + blockoim.x;
) Synuhrtads(

presdits < 8 Jocal_parsmeter(slockIdx.x * 8 + threadldx.x]
5_dplthreadlox.x];
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