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Abstract

Today, plants in chemical and process indusiry are becoming larger and more complex.
Corallary of this trend implies that cach hour of down time is more expensive. As
industrial systems enlarge, the toal amount of energy and material being handied
increases, making fault diagnosis and safety management considerably important both
from the viewpoint of process safety as well as cconomic loss. Thercfore, secking an
effective approach to perform fault diagnosis and implement safety management is
important and imperative. An innovative methodology of risk-based SPC fault diagnosis
and s integration with Safety Insirumented System (SIS)
assure the process safey.

proposed in this thesis to

Unlike any existing foult diagnosis and safety management approaches, the proposed
methodology pioncers a brand new pathway for the faull diagnosis and safety
managemen in process industry, This proposed methodology neither depends on any
process model as model-based methods, nor depends on large amount of historical
process data as conventional process history based method. Control chart technique is

used (0 distinguish abnormal situation from normal operation based o threc-sigma rule

‘and linear trend forecast e
real time monitoring and noise fitering in fault diagnosis process. Furthermore, risk
indicators are wsed o idenify and determine potential faul(s) o minimize the number of

false alarms,

The proposed methodology of risk-based SPC fault diagnosis and its integration with
safety instrumented systems is implemented using G2 development environment. To test
and verify this methodology, a tank filling system and a sicam power plant system with
SIS15 and S152s are developed in G2 environment. A techaique breakthrough, from
univariate monitoring to muldvariate monitoring for SPC fault diagnosis has been made

in the verification in the steam power plant system.
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Chapter 1 Introduction

In 1987, Robert M. Solow, an economist at the Massachusetts Institute of Technology,
received the Nobel Prize in economics for his work in determining the sources of

cconomic growth. the bulk
result of technological advances (Crowl and Louvar, 2002). It i reasonable 10 conclude
that the growth of an indusiry is also dependent on technological advances. This is
especially true in the chemical industy, which is enierng an era of more complex
processes: higher pressure, More complex
processes require more complex safty technology. Many industralst even believe that

the development and application of safety technology s actually @ consiaint on the
‘growth of the chemical industry.

As chemical process technology becomes more comples, chemical engineers will need
more detailed and fundamental understanding of safety. Howard H. Faweett said, *To
Know i o survive and to ignore fundamentals is to court disaster.” (Faweett and Wood,
1982). Flixborough disaster, which happened in England in 1974, was the wake-up call
for the UK. The incident resulted in 28 deaths, over 100 injuries and the complete
destruction of the plant. The death toll rom the Bhopal accident, which happened in India
in 1984, was over 2,000 at the time of the accident. Some recent repors place the
estimates as high as 10,000 with over 200,000 injuries. Chemobyl accident, which
happened in 198,

ime. Pasadena explosion, which happened in Texas in 1989, was the wake-up call o the
US with 23 fatalites and 130 injuris. Another accident in nearby Chanelview killed 17
and injured over 100 less than one year later. These two accidents resulted in the
Occupational Safety and Health Adminisuation (OSHA) PSM  (Process Safety
Management) legislation (Gruh, P, 1999).

As process safety incidents are still happening today and as such incidents sometimes



lead to serious consequences for people, the environment and property, it is concluded
that the process industry has a responsibility to further reduce occurrence of these
incidents.
a changing kind of incident scenarios and causes, a need exists for a changing kind of
‘control over process safety (Knegtering and Pasman, 2009).

In an increasingly multidisciplinary engineering environment, and in the face of ever
increasing system complexity, ther is a growing demand for engincers and technicians
involved in process engineering 10 be aware of the implications of designing and
operating safety-reated systems. Safety Insirumented Sysiems play a vital role in
providing the protective layer functionality in many industrial process and automation
systems.

1.1 Safety Instrumented System

‘The Intemational Electro-technical Commission (IEC) 61508 (2000) standard defines
Safety Instrumented System (SIS) as “a system composed of sensors, logic solvers and
final-control elements for the purpose of taking the process to a safe state, when
predetermined conditions are violated”. SISs are aso called emergency shutdown (ESD)
systems,safety

Safety instrumented systems (SIS) are used in th oil and gas industry to detect the onset
of| mitigate thir humans, material ssets, and
the environment (Lundicigen and Rausand, 2007). A SIS generally consits of one or
more input clements (c.g, sensors, transmitirs), one or more logic solvers (¢
programmable logic controllers (PLC], relay logic systems), and one or more final
elements (c.2.,safety valves, crcuit breakers), as shown n Fig. 1.
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1.1.1 Process Control System and SIS

As ilustrated in Fig. 2, it is gencrally preferable that any protection system (inclading a
S1S) be kept functionally separate from the Basic Process Control System (BPCS) in
terms of its abilty 1o operate independent of the state of the BPCS. The operating
it is also Koown s the Equipment Under Control (EUC). In essence, protection
systems should be capable of fnctioniag 0 protect the FLIC when the proces control
system is in fauk. Where scparation s ot possible because the safety functions are
intcgral with the process control system, al part of the system that have safcty.related

i 3 Separation of BPCS sad Praection Sysiem




Fig. layout ofa typ w valve as

the final control clemen).

N

Basle SIS Layout

Fig. 3 Base SIS Layout

“The basic SIS layout comprises:

Sensor(s) for signal input and power

Input signal interfacing and processing

« Logic solver with associated communications and power

Output signal processing, interfacing and power

Actuators and valve(s) or switching devices (o provide the final control element

function.

The scope of a SIS encompasses al instrumentation and controls that are responsible for

" i



1.1.2 Risk and Risk Reduction Methods

Safety can be defined as “freedom from unacceptable rsk”. This defniton is important,
because it highlights the fact that al industrial processes involve risk. Absolute safety,
where isk is completly climinated, can never be achieved; risk can only be reduced o
an acceptable level. Therefore all risks should be dealt with on the ALARP basis, i.c. the
target s o ensure that risk i reduced fo As Low As Reasonably Practicable. The ALARP
principl sis, e

Process risk is defined by the frequency of the occurrence and the potential consequence.
severity of the process hazard (Summers, 2007). The formla forrisk is:

Risk = Hazard Frequency * Hazard Consequence

o define the frequency, the initiating events are identified for each process hazard, and
their frequency of occurrence is estimated. The consequence severity is the logi

conclusion (0 the propagation of the process hazard if no. protetion layers are
implemented as baries (0 the event.

Safety o protect against or 0 personnel, plant
and the environment, and reduce risk include:

« Changing the process or engincering design
« Increasing mechanical intgrity of the system

« Improving the BPCS

+ Developing detailed training and operational procedures

 UsingaSIS




» insaling migaing cqupment

Fig 4 llarates the sboe measarcs = terms of cmploying prosecive layers 1o redce
isk 10 an acceptable level The amount of risk rdaction for each layer s dependent 00

 the s o the sppiscablc laver
cmployed. Protective layers can be furser classified as cither Prevetion or Mitigaion
layers. The former are put in place o siop hazardous eccurrences and the later are
designod 1o reduce the consequences aficr hazardous events have occarred. In the case

Vi, 4 Safty Protective Layers

1.1.3 Safety Function (SF)

T proces industy, & saety fanction i defined as: A st of specifc acions o be taken
nder spific ccumstances, which will move the chemacal process rom 3 poscsally



unsafe state 10 a safe stae (Marszal etc., 2003). A safety function works s a protection
against a specific and identified hazardous event. It is a method 1 define the functional
i

can be regarded as final control elements and safety fnction can be regarded as  logic
solver

SF s able o assist SIS to reduce th risks. The amount ofrsk reduction can be measured
based on the calculated Probability of Failures on Demand (PFD), which is the
probabilty that SF fals to maintain saf state when predetermincd safcty conditions are
violated. Safety function only reduces risk and will never completely eliminate the risk.
However, v,




1.2 Safety Analysis

1.2.1 Risk Classification

Unlike the convenient units like volt or Kilogram, there is no universal unit for risk.
Scales for one indusiry may not suit those in another. Fortunately, the method of
calculation is gencrally consisent and it is possible to arive at a reasonable scale of
values for a given industry. As a result, IEC have suggested using a system of risk
clasification that i adaptable for most safety stuations. Refrring to Annex B of IEC

61508 part 5, the risk classification table is provided as shown in Table |

‘Table 1: Risk Classification of Accidents: Table BI of IEC 61508-5

Frequency ‘ Consequences. ]
[ Cosioptic | Crveal | Mgl | Neglighic
Frequent T T T
Probablc T T T it
ecasoml T 0 it it
Remote 0 i T v
Tmprobable i W v v
Treredble v v v v

“The risk classification mentioned in Table 1 is a generalized version that works like
following:

« Determinc the frequency element of the EUC risk without the addition of any
protective features (Fop):

* Determine whether for frequency Fip and consequence C, a tolerable isk level is



achieved.

If, through using Table 1, Class 1, then
Risk class IV or 11l would be tolerable risks. Risk class I would require further
investigation.

I practic, this Table 1 i  generi table for adapation by difere industry sctor. It is
intended that any given industry secto should insert appropriate numbers into the fields
of the able and hence cstablish acceptable norms. For exampie, in Table 2, some trial
Values have been inserted.

‘Table 2: Risk Classification of Accidents: Trial Values

Frequency Catastrophic | Critical | Marginal | Negligible

>Tdeah | 1death or | Minorimjury | Prodloss
injurics

Tperyear T T T 0

Tper S years T i i m

Tper S0 years T i i m

T per S00 years i i m v

T per 5000 years m i v ™

T per 50000 years v ™ v W

1.2.2 Risk Reduction Terms and Equations

The terms and equations that can be used (o define the risk reduction are as follows
(MacDonald, 2004):

Ft = Tolerable Risk Frequency



Fap = Unprotected Risk Frequency
Fp - Protected Risk Frequency

RRF - Risk Reduction Factor

PFDavg. = Probabilit of Failurc on Demand

RRF=Fop/FC  (1-1)
PFDavg. = 1 /RRF=Ft/Fop  (12)

12.3 Safety Integrity Level (SIL)

SIL represents the amount of isk reduction that i required from a safety funtion. IEC
61508 defines SIL as “a discrete level (one of four) for specifying the safety integrity
roquirements of safety function.” (2000). Safety integrity level 4 (SIL4) s the highest
el and safety itegriy level 1 (SILI) i te lowest one.

SIL has become incresingly pat of the design and operation of safety insirumented
system (Kinkwood and Tibbs, 2005). Companies are now specifying SIL based on the
amount of risk reduction tht i required t0 achieve a tolerabl risk level. The SIS is
designed to meet or exceed this levelof performance,

How do we decide when o use a safety instrumented system and how good must it be?

“The answer is: it depends on the amount of risk reduction required afte the other devices

have been taken into account. The measure of the amount ofrisk reduction provided by a
ind ig. § from IEC.
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Fig. § Mk Redaction

imtcgrity as spplicable When it
s applied o the safcry instramented sysiem, however, it becomes 3 measure of the
‘system's performance.

In order o scale the performance, safey integrity levels or SILs are used. The SiLs are
derived from earlier concepts of grading or clasifieation of safety systems. The principle
i ilustraed in Fig. 6 where the layer of protection provided by an SIS is quantificd as a
risk reduction factor (RRF), which can be converted into a PFDavg and refercnced to an
SIL able.



EUCRisk

RRF for SIS

SILTable
Fig. 6 Determination ofSIL

Essentially the SIL table provides a class of safety integrity to meet & range of PFDavg

values. Hence, the performance level of safety instrumentation needed to meet the SIL is

divided into s small number of categories or grades.

“The IEC standard provides the following table for SILs

‘Table 3 Definitions of SILs for demand mode of operation from IEC 61511-1

SIL Range of Averaged PFD. Range of RRF
3 PD<10" 100,000 > RRF > 10,000
3 PFD<10” 10,000~ RRF > 1000
2 PD<10° 1000~ RRF > 100

T <10 T005= RRF> 10

An'SIL 1 system is not as reliable in providing risk reduction as SIL 2; an SIL 3 is even
‘more reliable. Once we have the SIL, we will know what quality, complexity and cost are
going to consider.



1.2.4 Event Tree Analysis (ETA)

An event treeis a graphical logic model tha identifies and quantifis possible outcomes
following an intiating cvent (Ghodrat etc., 2007). Event trees begin with an initiating
event and work toward a final result. This approach is inductive. The method provides
information on how 3 failure can occur and the probability of occurrence. When an
accident oceurs in a plant, various safety systcms come into play to prevent the accident
from propagating, These safety systems cither fail or succeed. The event tree approach

“The typical steps in an event tree analysis are

1. 1denify an initatng cvent ofinerest,
2. Hdeniy 3
3. Construt the event tre, and

4. Describe the resuling accident event sequences.

1 appropriate data are available, the procedure is used 10 assign numerical values 1o the
various events. This is used effectively to determine the probability of a cerain sequence:
of events and to decide what improvements are required. An example of event tree

analysis is shown in Fig. 7.
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filurehazard. In the above exampl, the inititing event is “Explosion”, and the
frequency of this incident is 10 per year The safety functioos are actions or barrers that

above cxample.

‘slarm. The cutcomes in the sbove cxample are “Uscontrolled fir with

20 slarm” with

frequcncy £0°10°, “Uscoatolied fise with aluem™ with requescy 80°10°, “Controlied

with frequency 79°10°,
79%10°, snd “No fire™ with freguency 2010

et fregqacacy




1.3 Statistical Process Control

131 Introduction

dysis
explanation, and prescutation of data (Moscs ctc., 1986). Sstistial Process Control is
defined as a system that uss statstcs 0 identify specal causes of variaion i 3 process
(Leonard, 1996). Suaisica Process Conirol (SPC) was pionccred by Walter A. Shewhart
in the carly 19205, W. Edwards Deming lacr sppled SPC methods in the Unitd Sustes
during World War 11, therchy successflly improving quality in the manufacture of
‘munitons and other srategically important products. Deming was also insirumental in
introducing SPC methods to Japancse industry afler the war had ended. In 1989, the
Software Engincering Insttute inroduced the notion that SPC can be usefully applied 1o

non-manufacturing processes, such as software engincering procsses. Through surveys
and resarches, 1 deeply blieve that SPC method can be applicd i the process industy,
that s, © be utlized in my development for the fault diagnosis and eal time monitoring
of the process system

Staisical Process Control (SPC) i an effective method of monitoring a process through
the use of control charts, Conirol charts enable the use of objective criteria for
distinguishing background variation from cvents of significance bascd on statistical
techniques. Much of its power lis in the abilty to monitor both process center and its
variation or deviation about that cenier. By collecting data over time at various ponts
within the process, variations or eviations i the process can be detected and clearly
displayed. Ifthe deviation exceeds thresholds predefined, then a fault probably occurs. In
this rescarch, SPC will be used as  faut diagnosis method o perform fault diagnasis
fnction o the process systems.

:



1.32 Control Chart

A control chart is a satistical tool used to distinguish between varition in a process
resulting from common causes and variation resulting from special causes. It presents a
‘graphic display of process stbility o instability over time.

Every process has variation. Some variation may be the result of causes which are not

‘normally present in the process. This could be special cause variation. Some varia
simply the result of numerous, cver-prescat differcnces in the process. This is common
cause variation. Control Charts differentiate between these two types of variation.

I general, contrl chart contains a center lne that represents the mean value for the
in-contol process. Two other horizontal lins, caled the upper control limit (UCL) and
the lower control limit (LCL),ar also shown in Fig. . These controllimits are chosen so
that almost al of the data points will ll within thse limits as long as the process

remains in-control. I a single quality characteristic has been measured or computed from

asample, quality
number o versus ime,

1m0
777777777777 et = 10,860

Center ine = 10,056

Quaitycharacteristc

50




The purpose in adding warning limits or subdividing the control chart ino zones is 10
provide early noification if something is amiss. Instead of immediately launching &
process improvement effort to determine whether special causes are present, the quality
engincer may temporarily increase the rate at which sampls are tsken from the process
output unil

clear tht the process i truly in control

One goal of using a Control Chart is to achieve and mainain process stabilty. Process
stbility is defined as a state in which a process has displayed a certain degree of
in the future.

i characterized by a siream of data falling within control limils based on plus or minus 3
hambers, 1992).

1.3.3 Time Series

Tn sutistcs,signal processing and financial mathematics, @ time serics is a sequence of
data points, measured typically at successive times spaced at uniform time inervals.
Examples of time series are the daily closing value of the Dow Jones index or the annual
flow volume of the Nile River at Aswan. Time scrics analysis comprises methods for

analyzing time series data in order to extract meaningful statstics and other

‘characterisics of the data, Time series forecasting is the use of a model to forceast future
‘events based on known past events: to predict data points before they are measured. An
‘example of time series forccasting in cconometrics is predicting the opening price of
stock based on s past performance.

An example of time scrics for random data plus trend, with best-it line and different
smoothing is shown in Fig. 9.



Time. ly
from other common data analysis problems, in which there is no natural ordering of the.

observations. Time series saalysis is als> distinct from patial data smalysis where the
obscrvations typicaly reate o geographicallocations. A time serics model will gencrally
reflct the fact that cbservations close topether i ime will be more closely elaied than
obscrvations further apart. In addition, Sme serics models will ofien make wse of the
natural ane-way ondering of time so thatvalues for & given period will be cxpressed as
derving i some way from past values.

134 Moving Average Techniques

Moving average technique will be utilized in my development. In statisics, & moving
average, also called rolling average, rolling mcan or running average, s a type of finite

of different subscts of the full data set. A moving average is commonly used with time
series data o smooth out shortterm fnctustions and highlight longer-term trends or
cycles. The threshold between shortterm and long:term depends on the application, and



the parameters of the moving average will be set accordingly. For cxample, it s ofien
wsod in techaical analyss of financial data, like stock price, returms or trading volumes.
Tt s also ased m cvomomucs to examn: grows domestic produxct, cmployment or other
macrocconomic time series. Mathematically, 3 moving sverage is also simlar o the
o s filer wned i signal processing.

e i eSroaCraticom
T L 578 Lot 2400 Vo 5 1 g 55 -

=

200-day SMA -

Followings are vanous types of Moving Average techmiques:

1. Simplc Moving Average (SMA)

A simple the s
For cxample, 3
10 days’ closing prices. I those prices are P, . ., P, then the formula is




a3

dnpe.

s, =shu_ - Pee

Intchaical analysis, thre are various popular vaes for s, ke 10 days, 40 days, or 200
o such
asshor, nrmodise, o long term

2. Cumulative Moving Average (CMA)

In some data acquisiton systems, the data arrives in an ordered data stream and the
statistician would fike to get the average of all of the data up until the current data point
price of all of the stock transactions for
particular stock up unil the curret time. As each new transacton occurs, the average
prie at the time of the transacion can be calculated for sl of the ransactions up o that
point This =

For example, an investor may wan the aver

sum and divide by the sumber of data points every time 3 pew data point armived
However, it is possible to simply update cumalative average 2s 3 new vaue x.., becomes




available, using the formas:

o, =2 [

‘where CAs can b taken to be equal 10 0.
‘The derivation of the cumalative averag formala is

an

Thas the current cumulative average for 3 new data point is equal 10 the previous

cumulative average plus the differcnce between the latest data point and the previous

(1= N), the cumulative average wil equal the final average.

3. Weighted Moving Average (WMA)

A weighted average is any average that has multiplying factors to give different weights
the data

point with in technical analysi, 3
(WMA) bas the specific meaning of weights tha decrease arthmcticaly. In an n-day
WMA the latest day has weight n, the second latest n ~ 1, ctc, down 1 zero.

Byt Dt st P
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When calculating the WMA across suceessive values, if we denote the sum

Pu+ e+ Pt by Total,then

Total, = Totaly + Py =P (1-9)
Numerator,,,, = Nuneratory +np,. ~Total,  (1-10)
Whthy, = Nimeratory. iy

nrn—De 2

Fig. 11 shows how the weights decrease, from highest weight for the most recent data

points, down (0 zero.

Fig. 11 WA Welghts (a-15)



4. Exponential Moving Average (EMA or EWMA)

E Jso called weighted

moving average (EWMA), applics weighting factors which decrease exponentially. The
weighting for cach older data point decreases exponentially, giving much more

importance to recent observations while still not discarding older observations entirely

Fig. 12 shows an example of ¢

“I uulluu......

Fig. 17 EMA Weigh

e weight decrease.

“The degree of weighing decrease is expressed a5 a constant smoo

ing factor o, 3 number
between 0 and 1. The formula for calculating the EMA is:

EMA,,

EMA,...., +ax(price.s,

EMA) (1)




‘Expanding out EMA cucsey €ach time results in the following power seris, showing how.

EMt=ax(p +(0-a)p, +0-a) p, +(A-aVp,+.)  (H13)
“This i aninfinite sum with decreasing tems.
SMA technique is intitive and simple. CMA technique is not a intuitve and simple as

SMA, but it is more efficieat in detecting small shifts. EWMA techaique is used for
like 050 1020




1.4 Objectives of this Research

As process industrial systems become larger and morc complex, the total amount of
energy and material being handied increases, making fault diagnosis and. safety
‘management considerably important both from the viewpoint of process safey as wel as
cconomic loss. There exist various kinds of methods o do the fault diagnosis and safety
management 10 the industial processes. However, due 10 the limiations in various
methods,the effccts for fault diagnosi and safety management are not that deirable. For

this reason,

overcome the limitations of individual solution strategics.

Morivated by the desie of secking an effecive approach to perform fault diagnosis and
for solving
this problem in academia, an innovative methodology of risk-based SPC fault diagnosis
and its integration with Safety Insirumented System s proposed in this thesis. To verify
his methodology, G2 development software from Gensym Corporation s wilized in this

research,

“The overall objectives for this rescarch are s follows:

@ To propose an innovative methodology of risk-based SPC faut diagnosis and its

tegration with SIS to solve the fault diagnosis and safety management problem
in process cnginccring.
@ Using G2 development environment, to implement and verify the proposed

logy

@ Raalizing a technique breakihrough, from univariate control o multivariate
control for SPC fault diagnosis, in process fault diagnosis ficld

@ Simulating a real process system, the steam power plant system, in G2




1.5 Organization of this Thesis

Six chapters are included in this thesis. In Chapter 1, the knowledge of SIS, safety.

analysis and statistical 1 are introduced. The obj Fihi h
also presented in this chapter. In Chapter 2, the existing fault diagnosis methods are first
reviewed. Then, an sy of fault diagnosis for

process system is proposed and verified theorctically. At last, the G2 development
environment i introduced. In Chapter 3, the proposed methodology is implemented and
verified in the G2 development cnvironment through developing a tnk filing system.
Meanwile th proposed methodology is tetifid that it neither depends on any model,
nor depends on large historical data. To demonstrate the advaniages of the proposed
methodology, & comparison between the tark filng system developed with th proposcd
methodology and a traditonal design for the same system s held. In Chapier 4, the
proposcd methodology i further implemented and verified in the G2 development
environment through developing another process system, the steam power plant system,
In the meantime, a technique breakthrough is made in this chapter. At the end of this
chapter, & comparison between the stcam power plant system developed with the
proposed methodology and the traditonal expert systems method fo the same system is
held. In Chapter S, the ten characteristcs of the proposed methodology are lised. Tn
Chapter 6, conclusion fo tis proposcd methodolog is made, and the fuure works for

this research are presented.




Chapter 2 Methodology of Risk-based SPC Fault Diagnosis
and Safety Management for Process System

2.1 Review of Existing Fault Diagnosis Methods

I the arca of process fault diagnosis, the term fault is generally defined as a departure
from an acceptable range of an observed variable or  calculated parameter associaied
with a process (Himmelblau, 1978). This defines a fault as a process abnormality or
sympiom, such as high temperature in a reactor or low product quality and 50 on. The
underling cause(s) of this aboormality, such as a
(are) calld the basic even(s) or the root cause(s). The basic event i also refered 10 as &

led coolant pump or  controlle, is

malfunction or a failure. Early detection and diagnosis of process faults while the plant is
still operating i a controllable region can help avoid abnormal event progression and
reduce productivity loss.

From a modeling perspective, there are methods that require accurate process models,

form of model P We
broadly classify fault diagnosis methods into three general categories. They are
quantitative model-based methods, qualitative model-based methods, and process history
bascd methods (Venkatasubramanian ct al., 2003). The classification of fault diagnosis
methods are shown in Fig. 13
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“There are abundant lteratures on process fault diagnosis approaches which range from
analytical redundancy to knowledge-based systems and neural networks. Ghetie et al.
(1998) propose a fault diagnosis approach using balance equations methods and the

algorithmic redundancy. Tn this approach, they illusrate the algorithmic redundancy
concept using two representative fault detection and isolation methods based on balance
equations. An approach of model-based fault diagnosis using knowledge base and fuzzy
logic technique is presented by Mohamed et al. (2002). The inputoutput measurements
are used to generate analytic symptoms. Heuristic symptoms observed by the operator or
based on the process history are another source for fault diagnosis. Lo et al. (2006)
develop an intelligent supervisory coordinator (ISC) for process supervision and fault
diagnosis in dynamic physical systems. A qualitative bond graph modeling scheme,
integrating artificial-itelligence techniques with control cngineering, i sed to construct
the knowledge base of the ISC. The model type which the analytical approaches can
handle is limited to linear, and in some cases, to very specific nonlincar models. For a
‘general nonlincar model, lincar approximations can prove to be poor and hence the
effectiveness of these methods might be greatly reduced. Model-based fault diagnosis
requires accurate process models, while the computational complexity in real-time fault
diagnostic systems and the difficulty in developing accurate process models make this
approach impractical in real industral processes. Albazzaz and Wang (2004) propose a
‘monitoring and fault diagnosis method for process by deriving SPC charts based on ICA
(Independent Component. Analysis). He et al. (2006) present a novel process fault
detection and diagnosis technique based on principal component analysis (PCA). The
proposed method reduces the dimensionality of the original data set by the projection of
the data principal comp PCA. A
major limitation of PCA-based monitoring is that the PCA model s time invariant, while
most of the real processes are time-varying. Hence the PCA model should also be
recursively updated. Simani and Fantuzzi (2000) propose a FDI (Fault Diagnosis and
Identification) methodology. This FDI methodology consists of two stages. In the first

stage, the fault is detected on the basis of residuals generated from a bank of Kalman

filters; in the second stage, fault identification is oblained from patter recognition



techniques implemented by Neural Networks. To enhance fault diagnosis reliabiliy,

Zhang (2006) proposes a technique where multiple neural networks are developed and
their diagnoss results are combined to giv the overall diagnosis result. Ma et a. (2009)
propose a new fault diagnosis approach with fault gradation using BP (back-propagation)
neural network group consistng of 3 sub BP neural networks. According to the hazard
extents and the occurence frequencies of different faults, the faulis are divided into
diffrent grades. Neural network based fault diagnosis systems are easy (0 develop and

can cope with nonlinearities. However, a single neural network can lack robustness,

et

Most of the quantitative model based approaches e based on general input-output and
state-space models. One of the major advantages of the quantitative model-based faul
diagnosis approach is that we can control the behavior of the residuals. However, due 1o
system complexity, high dimensionality and process nonlincarty, it is impractical to
develop an accurate mathematical model for the process system. This has limited the
application of this approach in real industrial processes. Qualtative: model based
approaches are usually developed based on some fundamental undersianding of the
physics and chemistry of the process. An important feature of this approach is that
qualitative models do not require detailed process information, and the qualitative

behavior can be derived even if the aceura

mathematical model cannot be developed.
‘The main disadvantage is qualitative model based method generates spurious solutions
when reasoning with qualtaive models. From industrial application viewpoini, the
‘maximum number of fuult diagnostic spplications in process industries are based on
) atistical

been well sudicd and 1.,2003),

Unlike model-based approaches, process history based methods do not require a priori

quantitative or qual

tive knowledge about the process. However, the conventional
process history based methods need  large amount of historical process data. For these

above reasons, Venkatasubramanian et al. even propose 1o develop hybrid systems 1o

overcome the limitations of individual approach. As they said, “One realizes that no



nis

diagnostic systems. Integrating these complementary features is one way 1o develop

In this situation for fault diagnosis in process engineering and the aforementioned (in
Chapter 1) safety incidents happened in process industries that lead to the serious

people, it rant snd imperativ f
our rescarchers to find an effective method 1 perform the fault diagnosis and safety
These innovative

‘methodology of isk-based SPC fault diagnosis and its intcgration with SIS for process

systems in this rescarch.




2.2 Proposed Methodology

Since there are various bewildering fault diagnosis approaches in process enginering,
and for the existing methods, quantitative model-based methods, qualitative model-based
‘methods and process history based methods, each of them has ts limitations, it s not an

ideal solution for us o follow one branch in the classification of diagnostic algorithms

shown in Fig. 13, nor the hybrid b

! h s casy 1o build and it well on fast detection of

‘abnormal stuations, and it has been successfully implemented in industrial applications,

but it belongs to the conventional process history based method, that means it needs a
data. I d

large mount of historical process data which are required by the conventional process

Fig 13, method,

i, PCAVPLS or Sutistical Classifirs, then this brand new approach is desired o be an
ideal solution fo this process faultdiagnosis problem, because it will neither depend on
large amount of historcal process data, nor have the limitations from PCAPLS or
Statistical Classifiers methods. Based on these thoughts, an innovative methodology,
risk-based Staisical Process Control (SPC) fault diagnosis and its integration with SIS
for process system, has been proposed. The pathway of the proposed approach for fault

inFig. 14.



:



for peocess syscms is shown in Fig. 15




2.3 Verification of Proposed Fault Diagnosis Methodology

In order to theoretically proposed risk-based SPC fault diagn
historical data from Thermodynamics and Fluids Lab in Faculty of &ummn; and
Applied Science at Memorial University of Newfoundland will be used in this analysis.
These historical data are the sieam pressures of the sicam power plant in the
Thermodynamics and Fluids Lab. Historical data obtained during 1249 p.m. through
12:58 pm. on July 13, 2006 are taken to do the verification. The stcam pressure data in
‘normal operation arc shown in Table 4 (normal situation). A fault event is simulated in

‘Table 4: Steam Pressure Data for the Steam Power Plant (Normal Situation)

Tine

Tine

In this risk-based SPC fault diagnosis methodology, moving average technique will be
wilized. To increase the sensitiviy of the risk-based SPC fault diagnosis method to the
fault event,the number of data points, 3, is chosen to do the moving average calculaion.
‘The steam pressure data obiained for normal situation and abrormal situaton are shown
in Table 6 and Table 7.







23.1 Fault Diagnosis Principle
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Fig. 16 Staadard Deviation Dingram

In statisics, for 3 normal distribution, searly all (99.7%) of the valucs fic within 3
standund devistions of the mesn (or butween the mesn micws 3 Smes the standard
devistion and the memn phus 3 times the stundund deviation). Stasstcians we the
foliomng motston o reprecst S 4 < S0

For the sicam power plant sysicm. the ssrmal icam prcsaars s 640 kPa. Thes valae will
B the mean, . i e lter ok iagnonis anafyvi. The masuimmam stcam pressare s 690
KPa. This value will be the mean plas 3 imes the stndard devision, i< 3 + 3o, the
upper coutrol it (UCL) in the contr: chart. Then the valoe of 3o is 50, and we can
bcan the mean mimas 3 times the sandad devision, ¢ - 30, 8¢ lower contol limit
(LCL) in the control chart. This LCL valae is 590 kPa. According fo the three-sigma rule,
in normal situston, the data of the moring averages of the sicam pressares should all
o the [LCL, UCL), Le., [$90KPa, 6908Pa]. 1 thee is 3 data which flls outside of this
range, then & faul could occur. In this sysicm, when the data excoods the upper control
it 690 kPa, i could be » fault




2.3.2 SPC Fault Diagnosis
1. Normality Test o the Moving Average Steam Pressure Data
In order to test if the moving average sicam pressure data are normally distributed, the

normality ests in Minitab 15 are conducted. The results are shown i Fig. 17 and Fig.
18

‘ [P —
o

@ w0 CEEC)

&
Steanpreter

Fig. 17 Normalit Test for Steam Pressure Data

Fig. 17 is the normaliy test for the moving average stcam pressure data in the Sicam
Power Plant System in nomal operation. From Fig. 17, we can see that: The P-Value
>0.100 (that i, P-Value>0.05); RI-0.990,is very close o 1. S0 the moving average sicam
pressure data are normally distrbuted.
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Fig. 18 Normalit Test for Steam Pressure Data in Abnormal Stuation

Fig. 18 is the normality test for the moving average sicam pressurc data in the Stcam
Power Plant System in abrormal siuation. From Fig. 18, we can sec that: The P-Value >
0.100> 0.05; RI0.981, is very close to 1. So the moving average steam pressure data are:

still normaly distributed.

2. SPC Fault Diagnosis Results

If the process is in normal operation, according 1o the three-sigma rul, the moving
average steam pressure data points should fall o the [LCL, UCL), ic., (S90KPa,
690kPal; otherwise, there could be a fault cvent. Plotting the moving average steam
pressure data in Excel 2003, the following results are obiained, as shown n Fig. 19 and
Fig 20,



Xowr

intothe [590, 690), s the process s n nermal situstion.




2.3.3 Risk-based SPC Fault Diagnosis.

To minimize the number of fals alarms, risk orrisk indicator conceptis ntroduced into
the proposed fault diagnosis methodology 1o identify and determine potential faul(s).
Risk is cstimated for cach deviation in the predicied valucs of control variables, using
probability of the deviation and its associated severity. The probability of the faut is
assessed using thee-sigma rule, whercas the severity is asscssed using the deviation from
the predefined threshold value(s).

1. Risk Calculation Analysis

According to the definition t the process risk, the calculation of the isk of  fault i this
rescarch i as follows,

RI=Risk=P(F)*S (1)

Where,
R indicates Risk Indicator
P (F)isthe probability of fault.  P(F) = q%"l}

Sisthe severity of fault. $=100""7  22)




1 e

Where,

W =ptdc
From cquation 2-3, we can sec: in order 0 obiain P (F), we need to do the above integral
However, in G2 development cavironmen, the Integrator block passes on the Euler
integral o the block’s istory of values.

“The two types of Euler integrals in mathematics are

(1), the Beta function

Tro)

24
Tlx+y) @)

B =i a-n e
(). the Gamma functon
r@=[rled @5
Obsiously, this is mot suitable for the risk calcultion in this rescarch. To be abe 10
develop thi isk-bscd faultdiagnosis method in G2 environment,th autho saled this
problemthrough using mathematca rarsformation s ollows,
From cquation 23, as can be see, the Cumulative Disribuion Funtion (CDF) s ot a
sandard form; therefore,an eror funtion, er (), s inroduced to sandardiz the P (F)
function

2. Ermor Function:

In mathematics, the error function (als called the Gauss error function) is a special



function (non-elementary) of sigmoid shape which occurs in probabilty, statstcs,

materials science, and parial differential cquations. It s defined as (en.wikipedia.org):

2
A@=pfe’d @0

Fig. 21 Ervor Function

‘The integrand f = exp (~2") and f = erf (2) are shown in the complex z-plane in Fig. 22
and Fig. 23,




Fig. 23 erl ()

“The crror function is an entire function; i has no singularties (except that at infinity) and
its Taylor expansion always converges The defining integral cannot be evaluated in
closed form in terms of clementary furctions, but by expanding the integrand into its

Taylor series and integrating term by term, we can obain the error function's Taylor series



el TN
Fama wT 0 E

‘which halds for every complex number 2. The denominator tems are sequence AOOT6S0.
inthe OEIS.

In order to apply this error function in G2 development environment, we use the
approximation with clementary functions o erfor function

)o1-expx’ [e)
Where,
)
-4
‘ 28, )
When x 20,
f ()= —:xp(fx’%) @9
@10)

3. Risk Caleulation




Firt, we perform the standandizancn to e sbone P (F)

1 :
AR=a)=eefcp) @

From equation 2.9, equation 2-10 and equation 2-11, we can obtsin the valuc of P (F),

cormespondingly,the sk value

R = Risk=PF)*S=PFII007  @12)

there is
 risk cxtreme limit. Besides, we can also define other risk limits o ranges for different
systems 10 take some specific actions, like popping up waming messages, raising an

In the safety management strategy 10 e rocos sywiems, two protection layers, i,

oy
are proposcd 1o be implemented into the processes. When any disturbance causcs the
. " sist will

detect this deviation,
the safery of the process system. In SISI, the deviation of the controlled varisble must
have Bappened in the procemes. To exsare the safity of the process sysicm, SIS2 s
sis2, SIS2 can




detectthis devition in advance, and cvaluate its risk, then take corresponding action(s)
prompy. Afler implementing the proposed strategy of SISI and SIS2, the Safety.
Integrity Level (SIL) of the safety system has upgraded from SIL1 to SIL3



2.4 G2 Development Environment

For complex: industrial processes, such 1 chermical, oil, and gas processes, consistently
achucviag quality and safety targets 1+ & mayor challemge for process cagimcers. The heart

5 10 measare coerl

ad safery munagement decisions in el tme. G2 software from Gensym Corporation

Fig. 24 G2 Pitform frem Gemsysem Corparation

2 s 3 complete development covivement for creating and dcploying imsclipent
reak-tme applications. With the flexibiiay of G2 soffware, & can be wmed m e followmg
compic semnons




 Monitoring, diagnosis, and alarm handling.
« Supervisory and advanced control.
« Process design,simulation, and re-cngincering.
« Intelligent network management
« Decision support fo enterprise-wide operaions.

G2 development cavironment is a graphical cnvironment. Almost cverything in G2 has a
graphical representation. The system-defined display items in G2 can show the state of
the application as it changes over time, and the system-defined buttons can be used to
send commands 1o G2 or the outside world. Besides, G2 uses a structured natural
language in programming statements. The G2 language is similar to ordinary human
language,

G2 offers Gateway Standard Interface (GSI) network and interfacing capabilty. The G2
Gateway Stndard Interface (GSI) is a network-oriented toolkit used for developing
software interfaces, or bridges, between G2 and other, extemal systems. G2 Gateway
I bet

GDA, the G2 Diagnostic Assistan, i a layered product buil on t0p of G2. GDA is a
visual programming environment for developing intellgent applications that monitor and

 Acquire data from real-time processcs.
* Make inferences based on the data.

‘Take actions bascd on the infercnce values, such as risin
10 operators, or concluding new setpoints.

larms, scoding messages.

“The principal component of the GDA s a graphical language that ets you express
complex diagnostic procedures as a diagram of blocks, also called an Information Flow
Diagram (IFD). These blocks are connected by paths that show how data flows through




the diagram.

GUIDE, the G2 Graphical User Interface Development Environment, s a development
ool that enables users to create graphical user interfaces (GUP's) for G2 applications. A
G2 GUIDE user interface can be consincied by using the graphical components called
UIL (User Interface Libra Is. GUIDEUIL provid

interface (API) to procedures that control dialogs and other clements of a graphical user
interface. GUIDE.

+ Some classes of UIL controls, such as edit boxes, buttons, and scroll areas, cnable
users to view and cdit the data stored in object attributes. The different classes are
suitable for viewing and editing different types of data.

. UIL controls

a user interface visually.

In this rescarch, integrated G2 development cnvironment, i.c., the integration of G2&
GDA & GUIDE, is used to develop application systems including the Tank Filling
System and the Steam Power Plant System, and is also used 1o verify the proposed
methodology of risk-based SPC foult diagnosis and safety management for process
system. Recently, most fault diagnosis using G2 software employ the expert sysiem
‘approach. To demonstrate the advantages of the proposed methodology over expert
st Chapter 4.




Chapter 3 Implementation and Verification of the Proposed
inG2 -

“Tank Filling System

risk-based SPC fault di d

management for process system, from this chapter 10 next chapter, two process systems.
;: The first  filling system,

a tank level monitor,in process industy, as wil be described and studicd in this chaptr.
‘The second process system is a stcam power plant system locaied in Thermodynamics
and Flids Lab in Faculty of Engineering and Applied Science building at Memorial
University of Newfoundland, as wil be described and studied in Chapter 4.

In this chapter, the proposed methodology is implemented and verified in the G2
development environment through developing a tank flling system. Meanwhile, the
proposed methodology s testified that it neither depends on any model, nor depends on
large historical data. At the end of this chapter, to demonstrate the advantages of the
‘proposed methodology, a comparison between the tank filling system developed with the

3.1 Requirements to the Tank Filling System

In this chapte, a tank iling system, .., a tank level monitor, is to be developed in G2
development cavironment. In this system, tank is filled with inflow liquid through
manual valve.
variabl, the tank level, at some desird valuc, i, the set point. If some disturbance
causes the tank level deviate away from its set point, some protection layers,i.c, saety

o system safety. The tank




 Raising alarm when tank level exceeds upper control limit;
i

. e
 Raising alarm and shut down the system immediately when there is an excessive

deviation in inflow.

According 1o the requirements 1o the tank filling system 1o be developed, three
development stages will be conducted and studied in thrce subscquent sections. These
suage

In deterministic sage, the console for the tank filling sysiem containing basic process
control system BPCS, protection layer SIS and protection layer SIS2 is built in G2

In SPC stage, statistcal technique of moving average s used to filler out the noisc
disturbances. Statisical technigue of control chart is used to monitor the tank level in the
ol the tank filling system, Besides, is a fault, the fault s

defined tank level pper limit 6 m. In
risk-based SPC stage, risk indicator is introduced into the methodology 1o reduce the
‘number of false alarms, real time monitoring 10 the procss is performed, and forccast
function t the fault eventis conducted.



32 Deterministic Development Stage
1. The Comsole Constraction of the Filling Sywtem.

st I itk

g, 25 Comsole of the Task Level Mositor with BPCS.

InFig 25,
measured by 2 flow sensor FS-1. The BRCS is composed of 3 level scmsor LS-1, 3
eoponionsl consolicr LC-1 and 2 costol valve CV-1. The purposc: of BPCS is 1o
maintain the tank level 2 5 sct point S .




If any disturbance causes the tank level deviates from its set point. it is dangerous some.
time in process enginecring, some prowction layer must be added into this system 10
P

safety instrumented system SIS1.

Fig. 26 Console ofthe Task Level Monitor with BPCS & SIS1

In'SIS! in Fig. 26, the SIS1 is composed of  level semsor LS-2,  controller SC-1 and the:
‘manual valve MV-1. If any disturbance causes the tank level deviates away from ts set
point 5 m, the SISI will perform its sakty finction and take some actions to bring the
system o a safe state. I this development for SISI, the sensor LS-2 detecs the current
tank level, if the tank level exceods set point .., 4 fault event happens, & warming
message will pop up 1o wam the operaior I the tank level exceeds the upper extreme
timit 6 m, an alarm will be raised to alert operator 1 shut down the system, and if the
‘operator fils to shut down the system in specified time period, the manual valve MV-1
‘will b shut down automatically by the contolle SC-1.




Ia SISI, the effects of a disturbance must propagate through the process before some

10 take action(s) before  fauk happens. That i the reason for adding protection layer
SIS2 in this flling system as shown in Fg. 27.

In Fig 27, SIS2 is added into the fillng system to ensure the system safety. SIS2 is

‘composed of a level scnsor LS-3, a cortroller SC-2, 3 flow rate sensor and the manual

valve MV-1. In SIS, bl is e

the inflow rate, and what is concemed more herein is the inflow volume in one unit of
sample time. If coming tank level exceeds. imit 6 m through
. then

happens, i
upper limit 6 m. Thercfore, by using SIS2 in the development system, the fault vent can




2 S Evaluation

SIL is defined 35 3 relstive level of risk-rodction provided by 3 sty famcrion.
Acconding 1o the IECSIS11, the SIL of #ic developed tamk filling sysem is cvalusted |
Tabic 8. In Tablc 8, SILs can be cvaluutod by using event tre smalysis.

FiDavy SiC
BCS 07010710100 | SiLT
BCSSIST 1071010 | 100101000 | SIL
10710 10° | 10001 10,000 | SILS

From Table 8, we can sec: Aflr appiving two protection layers, SIS and SIS, the

‘system safety integrity leved has upgraded from SIL o SIL3

3. The Functions Realized in Deterministc Stage:

© Raising alarm when tank level exceeds upper limit 6 m:
© Raising alarm when tank level is out of control and then shut down the system ia

specifid time period (in SIS1).

mmediately




3.3 SPC Development Stage

there are not noise filering technique applied 1o the flling system to filter out noisc
could lead to false alarms, fault diagnosis function
cannot perform real w© process. In addition,

of the fault s that one data point of tank level exceeds the upper limit 6 m, then the
actions like raising alarm and shuting down the system wil be taken, which will increase
the probabiliy of flse alarms. Thercfore, SPC fault diagnosis and safety management
(SIS1 & S152) meihod is introduced to overcome the aforementioned disadvantages in
deterministc development stag.

InSPC outthe
noise disturbances. Statstcal technique of control chart is used o monitor the tank level

in the whole process of the tank filling system. Besides, using control chart and
three-sigma rule, if three successive data points of tank level exceed the upper limit 6 m,
then thisis defined as a fault cvent.

1. The Developed Control Chart

the tank hown in Fig. 25.




Fig 28 Contrl vt o the Task Fillng Sy

2. The Functions Realized in SPC Stage

. 1 when tnk

 Raising alarm with severity 2 when three successive data poinis of tnk level exceed
upper limit 6 m;

« Raising alarm with severity 3 when tank level is in range [6.1, 621 then shut down
the system in specifedtime period (i SIS1);




3.4 Risk-based SPC Development Stage

Although in SPC development stage, the developed fault diagnosis and safety

‘management system over existing in there is

o forecast capability in the SPC fault diagnosis and safety management stage. Forecast
capabilty is a very important characterstic for a fault diagnosis and safety management
system. Using forecast capabiliy, potental risks of the industrial processes can be
identified and corected, thus it can reduce the hazards o people, property and
environment. Another drawback in SPC stage i the number of the alarms s sill high.

Besides,in SPC stage, eal time monitoring function has not been implemented.

In order to , perform real 1o the processes
and conduct forecast function 1o the fault event, the methodology of risk-based SPC fault

diagnosis and its integration with safety instrumented system SIS1 & SIS2 is introduced

in this sage. for the tank filling system is shown in Fg. 29, Since
his risk-based SPC fault diagnosis and is integration with safety insirumented system
SIS1 & SIS2 i the finalized proposed methodology, it will be described in detal as
below.



When 1 <0,




R =Rk = PF)*S=PFYI00™  (34)

Note:

1. Risk calculation for the task Filing eysiem is shown in the Table 11 in APPENDIX |
2 56 and Fig.
7 in APPENDIX L

To realize the calculation of the risk fo the forccasted data poiots, relsicd parameters,
rules and functions are defined in the Provedure Definition workspace, Rule workspace
and Function workspace in G2 development envirooment. separately, and realized
comesponding risk calculation through programming. Considering the  (ransplant
capabliry zed. A
e defmuton added in the Rule workspece s shown i Fig. 30




‘whenever stand-mov-ave receives a value
and when stand-mov-ave > 0.0 then
conclude that err-func = error-
function(0.7071 * stand-mov-ave)

2. The Development of Forecast Function

“To perform the best linear trend forccast, the previous three data points are used to do the
best fit for a line, so we can obiain the best fit value for the third point and the rate of
change, i.c.,the slope, of the best it line. With this best fit line, we can predict the value
of next (fourth) data point. The data points of tank level moving average and their
forecasted data points are shown in Fig. 31. Since what we concem in tis filling system
is whether the tank level excceds the upper limit, only the upper control limitis drawn in

the figure,



i 31 Data Pos i Time Order

s chae, X i s time, a0 ¥

The black e
tank level moving average vabue curve. The grocs line with data posses = the prodcied
ank level moving sverage valoe carve.

3. Fault Definition i Risk-based SPC Developmens Stage:

i
of controlled variable. For SISI, when two successive real data points of the moving
‘average of controlled vanable cxceed the upper control limit, and the third succewsive
prodicicd data pins cxceeds e upper conol i, comeaponding 10 e umscccpusble
ek B, ForSIS2, .«

of controlled vanable arc sbove the mean valuc. and the third predacied data posnt




this event

s defined 23 a it For cxample, i SIS1 of the tank filing system, whes two successive
I and e
thind successive predicied data point cxceods the upper control limit 6m, this event i
definod 25 2 fault, 2s shown in Fig. 32.

Fig. 32 Risk-based Tank Level Conirol Chart

In the charts in Fig. 31 and Fig. 32, the data points are i time order, but the time is not
real time. i wrend

andSIS2

1. Fault Diagnosis for SIS




these tank
linear trend forecast with sample size 3 and time borizon § seconds, the prodicted tank
level valucs can be obtained from these real data of tank level moving average. Later,

ik indicator, and then take comesponding actions ke raising alarm or shutting dows
sysem acoonding 1o the sk values.

2 The Resuis of the Faskt Diagaosis for SIS1

BamdFig 34

cane.
the upper coomol it hat 5, Two suscewive real data points of task level moving




the third data
timit, it S, the

system will be shut down.

g, 34 Predicied Risk Chart - SIS1
In Fig. 34, X axis is the real time, and Y axis is the risk value. The black curve is the
predicted risk curve for the predicted task level. From this chart, we can sec: when there
s 0l there will e a very sharp top n the curve.

3. The Realized Functions in SIS1

The realized functions in SIS1 are as ollows:




 Raising alarm with severity 4 when a fault happens, shutting down the system and
highiighting the valve MV-1 in green.

3.4.3 The Development of SIS2
1. Fault Diagnosis for SIS2
In SIS2, to detect fault and take corresponding actions, the inflow rate is measured by

FS-1. After fillered out noise by using moving average technique with sample size 3,
The

these inflow

linear trend forccast with sample size 3 and time horizon  seconds, the predicicd tank

level values can be obtaincd from these rea data of tank level moving average. Using the

predicted tank level, evel, biain the

P Later, tank level data,
icator, and then

alarm o shutting down system according to the risk values.

2. The Resulis of the Fault Dingnosis for SIS2

“The resuls of fault diagnosis in SIS2 are shown in Fig. 35 and Fig. 36.



Fig. 35 Riskcbased Tank Level Trend Chart - SIS2

InFig.35,X ime, and Y
Tevel curve, and the green curve is the predicted tank level curve (Note: The predicted
tank level point is aligned with real tank level point by time, i, a the same time, the
black point is the current level, and the green point is the predicted level). From this
figure, we can i

5 N

i




s the

In Fig 36, X and Y axi is the sk valoe.

s fault,there will be vy sharp top i the curve.

3. The Realized Functions in SIS2

‘The realized functions in SIS2 are 2 follsws:

down the sysicm and highlighting the valve MV-1 in red

3.4.4 Discussion




-

when the previous two successive real tank level points are sbove mean valuc § and
ot 6,

it & el
data poiot will occur, this real point value has the possbiity of excocding the Wpper
control limit 6 m, ax shown in Fig. 37. However, the likclibood of this sinuation is very
low and the rsk for thes stuston s acceptable.

i 37 Rk Tomk Leved Tremd Char - SIS

345 Comparison with Cen Nan's Work

To demonstrate the advantages of the proposcd methodology of risk-based SPC fault

held as follows.



In this design shown in Fig. 38, there is onc BRCS and one SIS. The BRCS is composed
of a level semsor LS-1, a proportional catroller LC-1 and a control valve CV-1, and it
sct point S . The level scmsor LS-2,

comroller SC-1
value 6 m, operator

im some period, the SIS will close the SV-1 sutomatically. The fauit diagnosis functions
developed by Cen Nan are when tank level exceeds upper cxtreme valos 6 m. an alam
with severity | will be raised. When tnk level is out of control, an alarm with severity §
il be rased and system will be st don.

In the tank
ayer SIS, and the SIL for the developed system is SIL2. While in author’s work for
SIST and SIS2 The SIL

ofthe syssom developed by the author has reached SIL3.



Real forecast

systems. In these two developed systems, both have real time monitoring function
However, there is not any chartin Cen Nan's system for visual display, and there s not
forecast function in Cen Nan's system cither. While in the author’s system, we can
perform the best linear trend forccast fo the controled variable, the tank level, and trend
b

‘The fault diagnosisin Cen Nan's system i in deterministc mode, and there are not SPC
fault dingnosis development and risk-bascd SPC development, 5o the number of false
alarms is very high. In author’ssystem, SPC control char technique is used to distinguish
abnorma situation from normal situation, and risk indicator is introduced into the fault

diagnosis to minimize the number of flse alarms.

“The comparison between author’s work for the tank flling system and Cen Nan's work is

shown in Teble 9.

‘Tabl 9: Comparison to Cen Nan's Work for the Tank Filling System

Characteriiies | Con Nan's Sysiem | Foizhf Bao's System
BPCS Vor Yo
E5) Var W&
S5 No T
Real T 0 Ver Vo
“Trend Chart N Ve
N Ve
Ve 3
SPC Development o o
Tk based Development o o
o Fiteng Ve Ve
Yo N
Noise Fitring.
T 5




Chapter 4 Implementation and Verification of the Proposed
inG2
— Steam Power Plant System

‘The conventional SPC control chart method, which belongs o process history based
‘method because a large amount of historical data are nceded, was introduced into the
» 1931 hart, and

as the cumulative sums chart in 1954. As the demand for product quality and process
reiability is growing, the conventional SPC charts have been cxtensively used in

p SPC it has vital
limitation that the conventional SPC chart is a univariste control chart, and it can not
nd led variables, thus MSPC

techniques are extensively studied and used in industrial processes. Another vial
limitation for the conventional SPC method is i the data acquisition technology. These
two reasons are why the SPC method is not writen into any branch in Fig. 13,

I this chapte, the proposed innovative methodology of risk-based SPC fault diagnosis
and ts integration with SIS is furher implemented and verified in the G2 development
environment through developing another process sysiem, the sicam power plant sysiem.
I the meantime, a technique breakihrough, from univariae monitoring to multivariatc

monitoring for SPC fault diagnosis, is made in this chapter. To demonsirate the

chapter, a comparison between the stcam power plant system developed with the
proposed methodology and the traditional expert systems method for the same sysiem is
held



4.1 Requirements to the Steam Power Plant System

The stcam power plant is located in Thermodynamics and Fluds Lab in Faculty of
Engincenng and Applsed Scicnce burkding t Memonal Universty of Newfoundiand. 20
shown in Fig. 9.

Fig. 9 Stcam Power Plan I Thermodyamics sad Flids Lab

The schematic diagram of this sicam pover plant is shown in Fig. 40. This stcam power
plant is composed of a borler, two superbeaters, a turbine, a condenser, 3 condensate tank.,
a pump and other components like prevure sensors, lemperature sensors et Sicam is
generated in the boiler, after flowing through two superbeaters, it reaches and drives the
turbine 1o produce electricity. This electicity will power ten clectric bulbs. Flowing out
rurbune. the stcam 1 condemed imto watst by condenser, and then flows smto condensate
ok




« power plast

Modcling and simulating the cmtisc process for the seam power plamt = G2
cmvrcament.

Designing BICS, SISI and SIS2 t» the controlled varisbles. In this development
system, the controlled varisbles arc hree parameters of the boler, that is, the sicam
flow rate, the sicam pressure and sicam temperatur.

Realizing 3 techmique breakthvough, from unvanste control to mulivarate control
for SPC fault diagnosis,in process faah diagnosis fiekd

Applying the proposcd methodology of risk-based SPC fault isgnosis and its




“The set points and maximums of the thrce parameters of the boile are as follows:the set
point and the maximum of the steam flow rate are 160 Kg/H and 16 Kg/H separatly.
For the steam pressur, they are 640 kPa and 690 kPa scparately. For the steam
temperature, they are 219 °C and 239 °C separately. When a ault vent happens in any
individual controlled variable, safety system SIS should pop up  warning message.
‘When any risk of the thee controlled variable is greater than 20, the SIS1 should aise an
alarm of shuttng down the system with severity 4. When the overall risk fo the three

), safety syst When
the overall risk is in range 10-20, the SIS2 should pop up a severe waming message.
" than 20, alarm of shutting down

the system with scverity 4.



4.2 Console Construction in G2 Environment

According to the description to the steam power plant system, the developed console for
this system is shown in Fig. 41 on next page.

In this console, there arc mainly seven subworkspaces. They are Procedure, Function,
Rale, Diagnosis, Charts, Assumption and GDA Interface subworkspaces. The Procedure
Workspace contains al the procedure, method and parameter definitions used in this
development. Allthe i are defined i the

and all the rules are defined in the Rule workspace. The functions of fault diagnosis and
safety management SISI & SIS2 are implemenied in the Diagnosis workspace. The
Chans workspace provides the real time wrend charts and risk charts for the three
controled variables of the boiler in the sicam power plant system. In the Assumption
Workspace, some assumptions about this system are listed, and in the GDA Interface
Workspace, some source signals are provided. In the steam power plant system, the three

controled variables are the stcam flow rat, te stcam pressure and stear temperature of
the boiler, The BPCS for the sicam flow rate consists of a flow sensor SG-FS-1, a
conteoller SG-PC-1 and a control valve SG-CV-1, The BPCS for the stcam pressure
consiss of a pressure sensor SG-PS-1, a controller SG-PC-2 and a control valve SG-CV-2.
The BPCS for the stcam temperature consists of a lemperature sensor SG-TS-1, @
controler SG-PC-3 and a control valve SG-CV-3.
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43 System Modeling

During the development of the sicam power plant sysicem, muny historical dats reconds
e coleciot from e nd Pl Lab i buikding
Memorial Usiversity of Newfoudiand, and from the previos developer, Cen Nam, for
s sy

pessure in the stcam powes plant systcr, a8 shows in Fig 42

n “
T
Fig. 42 Hintorical Data Chart fo the Boller Stcam Pressare

As we can sec in Fig. 42, from 200 kP, the boiler stcam pressure starss 10 rise and
reaches the sicady st (oscilstion stakc) at shout 700 kPa. Comparing this procedure

o



/m:x—n-u/'-
Where,

nder damped narural fregqocncy
damped natural frequcncy
&= damping coelicient

Through analyzing the historical stcam flow ratc data, steam temperature data, sicam
pressure data and Control & Flectrical data, and togcther with analyzing the physical

‘with the respomse of the first-oeder systcm, that i

SO=KG-€"")  Where, 7= tme comumt




4.4 The Implementation of the Proposed Methodology

propos gy of isk-based SPC fault di sis
is implemented in G2 development cnvironment in two stages, that s, SPC stage and
risk-based SPC stage. These two development stages will be conducicd and studied in
two subsequent sections. In SPC development stage, control chart is used to distinguish

abnormal situation of be nle
and lincar trend forecast. To minimize the number of false alarms, in risk-based SPC
K indi faulis).

In the steam power plant system shown i Fig. 41, the controlled variables are three
parameters of the boiler that is, the steam flow rate, the steam pressure and steam
temperature. BRC: controlled

ariable at tsset point. When there is a faut o the isk value exceeds some limits, safety
instrumented systems should provide waming messages or raisc alarms of shutting down
the system.

4.4.1 SPC Development Stage

In is developed.

To illustrate this development stage, one of the controlled variables, the boiler steam
pressure, s chosen to conduct the procedure. In this stage, all the functions that Cen
Nan's syst this SPC fault

diagnosis system, an experiment s held in this stage.
1. Fault Diagnosis in SPC Stage.

Inthe odul

for the process variables. Control chart s used to distinguish abnormal situation from

normal variation of controlled variable based on three-sigma rule.



2. The Development of Control Chart

system i shown n Fig. 44

Fig.
imit 590 kPa for the sicam pressure wsing two red lines. In normal situation, real time:
data of the steam pressure moving sverage should fll nto the [590 kP, 690 kPa], the
range between two red lincs 25 shown ia Fig. 45, Ifthere s a real time data which falls
outside of this range ax shown in Fig. 45, then a fault could occur. In this systcm, when




To casure the forementioned event is a fauk, the mumber of successive valocs that

‘exceed the upper control limit s st 10 3. That means an alarm will be raised if there are

more. than 3 times (inchusive) that the successive monitored value xcocds the upper

‘control Himit. Besides, 10 deect and prodict the falt e, anosber condition fo rasing
set.  there e more than 3

mossored vakue cxceds the upper cootel st an b




3 An Expermen: for Effectiveness Demomntration

To demonstrae the cffectivencss of the developed SPC fault diagnosis sysem with
raditional fault diagnosss sysicms. the Jeveloped SPC fault diagrosis module was put
im0 the same sicam power plant systers developed by Cen Nan whose fault diagnosis
mcthod s knowledge-based reah-time appeoach, which belongs 10 the Expet Sysicms
beanch i Fig. 13 and is abbreviated 1o KBKT approach in later description, 25 shown in
Fig. 4.

Theough the assamprions made i Asaptons workspace @ Cen Nan's sysicem (Same
s devclopement). Fig 45, the SPC




Fig, 48 Asumptioms in Cen Nan's Stcam Fower Flant Sysem

fauh diagnosis modulc detected the following problems that cxist in Cen Nan's system
with KBRT fault diagnosis modle:

e




Fig. 49 Falue Alarmin Cen Nan's Stcam Power Plast Sstem

From 310 kPa for the steam pressure when in heating period, the sysiem kecps raising
alarms with the Alarm Message Steam Pressure in boiler has reached to an unsafe
point, Pis be careful

(2). Raising false alarms when the steam pressure is stll in safe range, ic. [590 kPa, 690
KPa).

AU 645 kPa and 669 kPa, the system raised alarms with the Alarm Message Sieam
Pl be report t i

From the point of the kb file capacity, the kb file developed by Cen Nan using KBRT
fault diagnosis approach i 957 KB, while the kb file using SPC fault diagnosis approach
is 431KB.




From this cxperiment, we can sce the SPC fault diagnosis is more effective and accurate
in faul diagnosis in process system. Using control char, the controlled variable is
monitored and displayed clearly. This festure makes the SPC fuult diagnosis approach
more intitive. In additon, the SPC fault diagnosis approach s more compact than the
traditional knowledge-based real time (KBRT) approach, i.c,, the tradi
stems approach.

nal expert

4.4.2 Risk-based SPC Development Stage

In SPC development stage, there is not forecast capabiliy in the steam power plant

sysiem,
ot been implemented. In orde 10 minimize the number of alams, perform ral time
monitoring to.the processes and conduet forecast function o the fault event, the
methodology of risk-based SPC fault diagnosis and its iiegraton with safety
trumented system SIS1 & SIS2 s introduced in thi stage. A technique breakihrough,
I g for SPC fault diagnoss,is made in

this stage, and so is the correlation problem among muldple variables. The developed

‘console for the steam power plant system is shown in Fig 38, Since this risk-based SPC

and its inegration with safety instrumented system SIS1 & SIS2 is the
twil el

fault diagnosi

4.42.1 Characteristic Functions and Fault Definition

[ Risk C: Development «

According to the risk calculation analysis in Chapter 2 for risk-based SPC fault diagnosis,
the equations are obtained as follows:

When x 20,




)= |—aﬂ»r:“'4 @n
When ¥ <0,

erf(x)w-f-oxpx” TEIE @

Where,
M-
x4

1 x
PF)= ) =10+ 43
F=)=30eef Gl 4D

R =Risk = P(F)*S=P(F)*100™" (84

Note:

1. Risk caleulaton for the steam power plant system s shown in the Table 12 in
APPENDIX IL

2. The graphs ofrisk values with base 100 and with base ¢ are shown in Fig. 58 and Fig
59 in APPENDIX I

To realize the calculation of the risk for the forecasted data poiats, related parameters,
rules and functons are defined in the Procedure Defimtion workspace, Rule workspace
and Function workspace in G2 development cnvironment scparately, and realized
comesponding risk calculstion through programming. Considering the transplant

A

capabuy
rule definition added in the Rule workspace is shown i Fig. 50



whenever stand-pred-vakf receives a value
and when stand-pred-vak{ > 0.0 then
conclude that pred-em-func- = error-
function-f(0.7071 * stand-pred-vah-f)

2. The Development of Forecast Function

P forecast,
best it for a line, so we can obiain the best fit value for the third point and the rate of
change, .., the slope, of the best fitline. With this best fit ine, we can predict the value
ofnext (fourth) data point.

3. Fault Definiion in Risk-based SPC Development Stage

Faultis defined as three successive data points exceed some limil(s). In these three data
poins, the real values of controlled

variable, and the third successive data point is the predicted value of the moving average
of controlled variable. In SIS, when two successive real data points of the moving
ird successive

average of controlled variable exceed the upper control limit, and the
predicted data point exceeds the upper control limit, corresponding 1o the unacceptable
risk limit 5, this event is defined as a fault.

InSPC To perform real
time monitoring to the processes, trend chart is introduced into the development 1o the
stcam power plant system to display the results for SIS and SIS2.



4.4.22 The Development of SIS1 & SIS2

1. Fault Diagnosis for SIS1 & SIS2

It »  they are
the steam flow rat, the steam pressure and stcam temperature of the boiler. The fault
diagnosis procedure for every controlled variabl is same with the description for the
controlled variable of ank level in SIS! of the risk-based SPC stage in the tank filling
system. When two successive real data points of the moving average of controlled
variable exceed the upper control limit, and the third successive predicted data point

pper timit, naccep Tt S, this event
i defined as a fault. When a fault happens in any individual controlled variabl, safety

system SIS1 pops up
greater than 20, the SISI raises an alarm of shutting down the system with severity 4.
When the overall risk for the three controlled variables is in range 5-10, safety system
S1S2 pops up a warning message; when the overall risk is in range 10-20, the SIS2 pops
up a severe warning message; when the overallrisk i greater than 20, the SIS2 raises an
alarm of shutting down the system with severity 4. In this process, as can be seer, the
corelations among the three controlled variables are the summation of risks of three
controled variablesis in range 5-10, 10-20 o greater than 20.

2. The Results of the Fault Diagnosis.

The results of ¢
temperature ofthe boiler are shown in the Fig. 51.

In Fig. 51, we can see that the three controlled variabes, ic., the steam flow rate, the
temperature of the boiler, are bei

simultancously, o this process s a multivariate monitoring.






2, Fig 53 md Fig 54

tustion = defined a3 fasit




i, S3 Steam Presvurs Trend Chart and Rik Chart




Steam temparaturs upper Imit fs 239K.

Uppr risk it s 5. Unaccaptable ris s 20,

Fig. 54 Steam Temperature Trend Chart and Risk Chart
3. The Realized Functions in SIS1 & SIS2
The realized functions in SIS1 are as follows:

 When there is a fault in any individual variable, the system pops up & warning



» When any of the risk (rsk of steam pressure, risk of steam flow rat, or risk of stcam
temperature) is greater than 20, the system raiscs the alamm of shulting down the
system with severity of 4.

The realized functions in SIS2 are as follows:

« When the overallrisk (risk of steam pressure + risk of steam flow rate + risk of steam

e 5-10,
. 10-20,
« When the overal sk is greater than 20, the system raises the alarm of shutting down

the system with severity of 4.

In order to indicate the values of individual variable and its predicted value when they
reach the extreme value, th following alarms are added:

* When the predicted value for any variable reaches the cxtreme valuc, the system
raises an alarm with severity of 2.
* When the real valuc for any variable reaches the extreme value, the sysiem raises an

alarm with severity of 3.

4.4.2.3 Comparison with Traditional Approach

To demonstrate the advaniages of the proposed methodology over other traditional fault
diagnosis and safety management approaches, 3 comparison between the proposed
risk-based SPC method and the knowledge-based real time (KBRT) approach developed
by Cen Nan for the same steam power plant system s held as follows

Inthe KBRT system,
50 it is univariate control. While i the risk-based SPC system, there are three controlled



variables, ie., the sieam flow rate, the seam pressure and the sicam temperature of the
boer. 50 it is multivaiate control.

n the KBRT system, 10 produce fult s the steam pressare of the boiler, Unsafc Bosker
specially set

a5 shown in Fig. 5. Using the Unsafe Bodler Prowsure button, the obtained sieam
pressures are around 300 kPa. This indicates that the KBRT faulk diagnosis sysiem i b0t
sensitive 10 faul event, and ooly with high valucs that the KBRT system can identfy the
foult and then take actionds). On the other hand, the maximum pressure for the boiler is
690 kPa, 50 these high values would destroy the boiler andor other components in the
steam power plant sysiem. Whereas, the risk-based SPC fault diagnosis sysiem s an
accurate appeosch. It can capture any

fault definition. Furthermore, the risk-bescd SPC fault diagosis system can forccast the
Soult and ke action(s) in advance.

a==] BB B BB
Bt




In the KBRT system, the outputs of FDD and SDD depend on the most recent five

discrete input data, s the g
“This primitive identification approach creats an instantancous recognition and the result
cannot be changed later. Besides, in order to obiain accurate and reasonable result, the
membership functions used in the analysis to the system output have to be adjusted for
iffrent fault events every time. Inrisk-based SPC system, th original real time data are
dircctly used as the input fo the fault diagnosis system, and the output of the fault
diagnosis system are the exact data. In this way, we can avoid input dependency, and
assure the accuracy in system output. Besides,since both input and output are exact data,

jon. There is no

In the KBRT system, noisc is a major problem in primitive identif
this primitive identificat h

data need to be flered before performing any analysis. While in risk-based SPC system,

In the KBRT system, due o the uncertain characterstic of primitive idenification and the

similar shape between some primit
50 Cen Nan introduced S to decide the degree of approximation (o do the rend analysis.
While in risk-based SPC system, al the input, output and risk assessment are exact data

es,it is impossible 10 perform an exact comparison,

orresults,

In the KBRT sysicm, o quanify the emporal patter of sensor dat, Cen Nan inroduced
another variable ROC o act as an input o the fault diagnosis system. Besides, in G2
y theref

if more ules are used, ke in the KBRT fault diagnosis system, repeaid or redundant
componens are used. I risk-based SPC system, redundancy avoiding design makes the
system more compact.




In the KBRT system, the developed spplication can only be effective to the studied
system (Cen etc, 2008). This means the methodology developed by Cen Nan is not good
in extensibility. While the risk-based SPC system has excellent extensibility, not ooly it

the tank

Furthermore,

it can be extended 1o be applied in the real time monitoring and prediction to natural

astrophes,

ribquake, et

The comparison between the KBRT approach and the risk-based SPC approach for the
steam power plant system is shown in Table 10,

Characteristies | KBRT approach | Risk-based SPC approach
Controlled Varisble Univariate Mulivariste
BRCS Yes Yes
SiST No Yes
ES) No Ves
Real Time Monitoring. Ves Yes
Forccast Capability No Yes
Risk-bascd Development No Yes
Noise Fillering Ves Ve
‘Additional Hardware for Vs No
Noise Filiering.

ST 7 3
Tndependency No Vs
Redundancy Yeu No
‘Adapisbility ot Good Excellent
Seasiivity to Fault. Not Good Excellent
Extensibiliy Not Good Excellent




Chapter 5 Cl of the Proposed

From the verifcations and descriptions of the tank filling system in Chapter 3 and the
steam power plant system in Chapier 4, we can sce tha the proposed methodology of
siskcbased SPC fault diagnosis and is ntegration with safety nstrumented systems has
the ollowing characterstcs:

1. Adap

ity

I the falt disgnosis and safety management to process systems, data ansysis (0 the
industria processs da i indispensabl. Saistics is  mathematcal scence peraining
10 the colletion, anslysis,iterpretation or cxplanatio, and presentation of dsta (Moses

etc, 1986). we can see th
In the proposed methodology, statstcal techniques like control chart, moving averages
and time. the real time: data Since

Statistics is applicable 1o a wide variety of acadenic disciplines, including natural and

sacial sciences, goverment, and business, the proposed methodology will have excellent
adaptabiity to all kinds of industral processes, and also 1o other various scientific

technology fields.
Real-time Monitoring Capability

In the developed systems using the proposed methodology, real ime monitoring to the
controled variable() s conducted, and both the inputs to the system and the outputs of
the system are exact real time data. Using control chart and trend chart techniques, the
outcome can be visually observed and monitored in real ime, any fault or abnormal

situation can not escape to be captured promply.



3. Forccast Capability

w0a Ducto
the use of time seres and b

excellent fault forccast capabilty o the real time data, and it can perform the best lincar
trend forecast o the process controlled variables with G2 software. This i very helpful
for s to take corresponding actions in advance.

4. Effectiveness and Strong Safety Management Capability

“The risk-based fault diagnosis and safety management system is effective both in frult
diagnosis and in safety management to the process system. It can capture any fault event
according 1o the fault defniton. Furthermore, the risk-bascd SPC fault diagnosis and
safety management system can forccast the fault and take action(s) in advance. This

apa
faults have happened. Afer implementing SIS1 and SIS2 to the developed systems, the
SIL of the developed systems has upgraded from SIL2 to SIL3.

5. Independency

Unlike in the KBRT system, the outputs of FDD and SDD depend on the most recent five
discrete input data, and in order to obtain reasonable resuls, the membership functions

Inisk-based SPC system, the original real time data are directly used as the input o the
and the output of the fault di the exact data. In

this way,

6. Robust Capability

Moving average technique is commonly used with time series data to smooth out



shortterm

is also similar

7. Transplantable Capability

Considering the transplantable capability for the developed system, standardization and
modularization designs are used in the development. Thercby, program can be
transplanted from onc system to another casily. This increased the flexibility of system
development.

8. Reasonability in System Design

Considering the possible future application in practice, some functions are implemenicd
in the software, .., in the programs. This capabiliy decreased the number of hardware
components in system, and corespondingly reduced the size of system and the cost for
development and implementation in practice.

9. Extensibility

‘The risk-based SPC system has excellent extensibiliy, not only it can be applicd in the

studied systems, the tank filling system and the steam power system, but also it can be

‘Popularized 1o other industrial processes. Furthermore, after modification, it can be

‘extended to be applicd in the real time monitoring and prediction (0 natural catastrophes,
rtbquake, etc.

10. Multiple Fault Identifiable Capability

The abilty o identify multiple fauls is an imporant but @ diffcult requirement



(Venkatasubramanian et al 2003). In the risked-based SPC fault diagnosis and safety
management sysiem, multiple fauls identification has been completed suceessfully. The
breakthrough from univariate monitoring t© multivariate monitoring for SPC fault
diagnosis has been made in this research, and also the corelation problem among the
‘multple controled variables has been solved.

™



Chapter 6 Conclusion and Future Work
6.1 Conclusion

There are abundant lieratures on process fault diagnosis approaches which range from
analytical redundancy to knowledge-based systems and neural networks. Broadly, the
existing process
They are quantiative model-based methods, qualitative model-based methods, and
process history based methods. Quantitative model-based method is impractial 1o be
wilized in real industral processes because of sysiem complexity, high dimensionality
and process nonlinearity. Qualitaive model-based method will generate spurious
solutions when reasoning with qualitaive models. While the conventional process
history-based method nceds large amount of historical process data. For these above
reasons, Venkatasubramanian ct al. (2003) even propose to develop hybrid systems (o

overcome the limitations of individual approach. In this situation for fault diagnosis in
process engincering and the safety incidents that lead to the serious consequences for
peaple,the environment and property, an innovasive methodology of isk-based SPC fault
dingnosis and its integration with Safety Insirumened Sysiem (SIS) for process sysiems
i proposed in thisrescarch.

“The proposed methodology of risk-based SPC fault diagnosis and safety management
ncither depends on the process models as model-based methods, nor depends on large
‘amount of historical process data as conventional process history based method. Earlier

based on three-sigma rule and lincar trend forecast. To minimize the umber of false
" * identify (s).

In order to tesify the proposed methodology, two process systems are built in G2




development environment. The first process system is a tank filling system in process
industry, and the sccond process system is 2 steam power plant system located in

ind Fluids Lab in Faculty of
at Memorial University of Newfoundiand.

Through the verifcation of the proposed methodology in the tank fillng system in
Chapter 3, the 1

& od 50 model flt d safety
‘management process. Therefore, the fac thatthe proposed methodology neither depends
on any modl, nor depends on large historical data has been verifid. Further, through the
comparison between the tank filling sysicm developed with the proposed methodology
and a traditional design for the same system from the previous developer Cen Nan, we
can conclude the advantages of the former system over the later system as shown in
Table .

Through the verification of the proposed risk-based SPC fault diagnosis and safety

‘management methodology in the steam power plant system in Chapter 4, we can sec that

the proposed methodology neither depends on any model, nor depends on large historical

daa, because in P L we operation
"

Values and the extreme limits are just ke the nominal values and specificaion limits for
a component, such as  capacito or a breaker in  crcuit, Above all in this verifi
breakdhrough has been made, that i, the breakihrough from univariate monitoring 1o
multivariate monitoring for SPC fault diagnosis, nd alo the comelation problem among
the. multiple controlled variables has becn solved. Further, through the comparison
between

raditional expert systems method for the same system, we can conclude the advantages
of the former system over the later system as shown in Table 10.

From the verifications and descriptions of the tank filing system in Chapter 3 and the



stcam power plant sysiem in Chapter 4, it can be concloded that the proposcd
methodology of risk-bascd SPC fault diagnosis and its imicgration with safety
instrumented sysiems has 10 oustanding characterisis, such as Accuracy, Reabtime
Monitoring Capability, Forccast Capubiy,cic. s deseribed in Chapter 5. Withthese 10
the ideal solution

. hased SPC
SIS for process systems has been proposed.

» The proposed methodology has be verified through fwo process systems that it
‘ncither depends. on any model as model-bascd approaches, nor depends on large

‘SPC fault diagnosis, has boen achicved in this rescarch.
© The advantages of the proposed metiodology over Cen Nan's work for Tank Filling
‘Sysicm are summarized in Table 9.

Power Plant Sysicm arc summarized in Table 10.




6.2 Future Work

Introduced o the process fault diagnosis in 1931 as the Shewhart control chart, the
o P However, the

conventional SPC fault diagnosis method is not writien into any branch in Fig. 13,
‘because there are two vital limitations for the conventional SPC fault diagnosis method.
One is thatthe conventional SPC chart is a univariate control chart, and it can not handle
multivariate processes and the correlation among controlled varisbles. The other vital
limitation for

In this rescarch, the first limitation has been solved, that is, the breakthrough from
i for SPC. de,

So, the future works for this rescarch are as follows:

1. Further develop the multivariate monitoring for the proposed methodology of
risk-based SPC fault diagnosis and its integration with safety instrumented system
(819),

“Try to realize another breakthrough for the other limitation of the SPC fault diagnosis
in the data acquisiton technology.

Apply the proposed methodology which has broken through the two limitations into

real process systems.
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