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Abstract

This thesis presents an artificial neural network system for edge detection and

edge enhancement. The system can accomplish the following tasks: (a) obtain

edges; (b) enhance edges by recovering missing edges and eliminate false edges

caused by noise. Tile research is comprised of three stages. namely. adaptive

fuzzification which is employed to fuzzify the input patterns, edge detection by a

three-layer feedforward fuzzy neural network. and edge enhancement by a modi­

fied Hopfield neural network. The typical sample patterns are finit fuzzified. Then

they are used to train the proposed fuzzy neural network. After that, the trained

network is able to determine the edge elements with. eight orientations. Pixels hav­

ing high edge membership are traced for further processing. Based on constraint

satisfaction and the competitive mechanism. interconnections among neurons are

determined in the Hopfield neural network. .-\ criterion is provided to find the final

stable result which contains the enhanced edge measurement.

The proposed neural networks are simulated on a SlJN Sparc station. One

hundred and twenty-three training samples are well chosen to cover all the edge

and non-edge cases and the performance of the system will not be improved by

adding more training samples. Test images are degraded by random noise up to

30% of the original images. Compared with standard edge detection operators, the

proposed fuzzy neural network obtains very good results.
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Chapter 1

Introduction

In recent years. an increasing number of researchers ha\'(~ been involved in the

subject of fuzzy neural networks in hope of combining the strengths of fuzzy logic

and nellral networks and achieving a more powerful tool for fuzzy information

processing and for exploring the functioning of the human brain. A typical neural

netv."Ork has multiple inputs and outputs which are connected by many "eurons via

....-eighls to Conn a parallel structure for information prOCl'SSing. It processes data

without uncenainty. However. our universe is full of uncertainty. This uncertainty

can be described as the possibility by funy set theory. It is noted that fuzzy

logic. a superset of conventional logic, has been used to handle the concept of

partial truth - truth values between completely true and completely false. Fuzzy

set theory treats objects as members of fuzzy sets, and describes the uncertainty

of an object by its membership in fuzzy sets. It is interesting that fuzzy logic is



another powerful tool to model phenomena associated with human thinking and

perception(79. BO, 811. In fact, the neural network approach merges well with funy

logic and some research endeavors have given birth to the SCKailed -fuzz)' neural

networksn (FNN). Neuro-fuzzy methods have been recognized as state-of-the-art

techniques and are believed to ha\'e considerable potential in the areas of expert

system. medical diagnosis. control system. pattern recognition. computer vision.

image processing and system modeling.

Edges are the consequences of changes in some physical and surface properties.

such as illumination. geometry or reflectance. An edge image is an image in which

the gray level reflects how strongly each corresponding pixel meets the criteria of

an edge pixel. It conveys most of the important scene information as there are

direct correlations between the edges and the physical properties of a scene. Edge

detection is searching for edges between regions. It is an important problem in

image processing and an essential part of many computer vision systems. It is hard

not to over-emphasize the importance of edge detection in image understanding.

~Iost modules in a vision S)'Stem depend, somehow. on the performance of the

edge detector. Edge detection techniques have various applications such as pattern

recognition, rohot scene analysis, and image coding.

There are many methods regarding edge detection such as edge detection by us­

ing differential operators ( Robert, Sobel, Prewitt operators j, the template match­

ing edge operators, image filtering techniques or statistical techniques. HO\\"ever,



many edge operators rely totally on grey level differences for their approximation

of the image gradient function either directly or by representing tbese differences

in a more analytical form. The statistical or stochastic metbods for boundary

extraction, such as Markov random field and ~IAP estimation do not perform

very successfully since these methods have a limited structure knowledge. Other

approaches include attempts at identifying the type of edge as well as the edge

position to sub-pixel accuracy by analyzing the location and type of phase con­

gruence of Hilbert-Fourier representations using local energyl141. However. the

method h.as not been demonstrated to work in noisy images. Therefore. accurate

edge detection is a difficult task and there has been a substantial effort to develop

the ideal edge operators or detectors.

As a matter of fact, an edge can not be recognized with 100% confidence. Cn­

certainty arises because of ambiguity or lack of information or evidence. Current

techniques h.ave limited capability to perform good and accurate edge detection

for noise corrupted and degraded images. ~eural networks are considered a sort of

model·free signal processing device. They map data points in input data space to

points in output data space. The training data points should be properly distrib­

uted and dense enough. On the other hand, fuzzy neural networks try to cut down

th.e requirements on the training data sets by incorporating the expert knowledge

with the fuzzy concept. They perfonn set to set mapping. This is ach.ieved by

adding poinH"set (fuzzify) and set-t"point (defuzzify) conversion to the input



and output, respectively. In this thesis, a three-layer feedforward fuzzy neural net­

work is proposed for obtaining edge measurement. It classifies tne input pattern

in a noise corrupted image into non-edge or edge witb one of eight orientations.

Two non-edge credit maps and eight edge credit maps are generated. This is a

very important stage because its results somehow have an effect on the further

processing by a Hopfield network for edge enhancement. Based on the constraint

satisfaction, the competitive mechanism and energy function, the structure of the

Hopfield neural network is designed. It efficiently captures the topological and

structural properties of the edge data obtained from the first phase. Hence. the

updating in the neural computation leads towards the right solution by establishing

proper interconnections among neurons.

1.1 Overview of the System

figure 1.1 shows an overview of the proposed system in operation. The design of

the system aims to detect and enhance edges in noisy images. In the first stage.

before using the proposed fuzzy neural network for edge detection, an adaptive

fuzzification procedure is used to adaptively fuzzify input patterns. Three main

steps. input pattern generation, adaptive fuzzification and parameter estimation.

are included in. They have been considered as an important procedure in the

research. It eo.able the pixels to be measured by the degree of darkness based on

the local windows. Because many patterns can be viewed as the same after they
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Pre-processing

Figure 1.1: Ovecyiew of tbe proposed system

ace adaptively fuzzified. therefore, the sample number used to train the proposed

FNN is able to be cut down significantly after this pre-processing ia applied to

training patterns.

In the research, there are eight edge patterns considered as typical edge pat­

terns, the edge at the east. west, south, north. southeast, southwest. northeast

and northwest orientations. Based on the property of typical edge patterns: half

relative black and half relative bright, bright ( black) pact overlapped at certain



area (block )among patterns, a window division technique is also proposed in this

stage to apply on each input pattern. The purpose of this pre-processing is to

fully utilize the structure information for later classification by the fuzzy neural

network.

The fuzzy neural network system is designed for detecting edges in noisy images.

[t actually outputs the fuzzy measurement of the darkness of pixels in an image.

;\fter applying F:-.lN to a given image, eight edge maps corresponding to eight edge

orientations and two non-edge maps are obtained. The edge measurement is used

as the input of the Hopfield neural network.

The Hopfield network is for removing noise and enhancing the detected edges

in the previous edge maps. After applying the Hopfield neural network. eight

enhanced edge maps are obtained. They are then assembled into one picture to

form the final edge image with high resolution.

1.2 Organization of the Thesis

Chapter 2 surveys methods for edge detection. techniques for edge improvement,

the basic structures of neural networks, as well as the fuzzy neural integrated

system. Chapter 3 introduces the idea of why an adaptive fuzzification procedure

is needed and how it applies to each input pattern. Chapter 4 presents the window

division method which divides the inputs of a window into either four square blocks

or four triangular blocks, then uses them as the inputs of the fuzzy neural network.



Chapter 5 contains the structure of the proposed fuzzy neural network, the weight

updating rule, the training procedure, how the trained fuzzy neural network is

used to detect edges on an image, and what information it will provide to the next

Hopfield network. Chapter 6 describes the structure of the modified Hopfield neural

network and the software implementation ror solving the specific edge enhancement

problem. In chapter 7, the experimental results and the comparisons with other

methods are exhibited. As well, the main conclusions including the contributions

and directions for ruture research are discussed.



Chapter 2

Survey

2.1 Edge Detection & Enhancement Techniques

An edgfl is the boundary between two regions with relatively distinct grey level

properties[22J. Basically, the idea. underlying most edge detection techniques is the

computation of a local derivati\'e operator. There has been tremendous research

in tbe area of edge detection and edge f1ohanC(!ment. The typical techniques are

reviewed below.

2.1.1 Gradient operators

Most of tbe earlier edge detection techniques used first order derivative operators

such as the Roberts edge operator{59J, the Prewitt edge operator and the Sobel

edge operator[18j. If a pi.xl'l falls on the boundary of an object in an image. then



its neighborhood will be a zone of grey-level transition. In edge detection. an

important quantity is the magnitude (slope) and direction of the gradient vector.

The edge detection operators examine each pixel neighborhood. the slope as well

as the direction of the grey-level transition. Most of the methods are based on

convolution with a set of directional derivative masks as mentioned above, the

Roberts 2 x 2 pixel mask, the Prewitt 3 x 3 pixel mask and the Sobel 3 x 3

mask [5]. First order gradient operators are fast edge detection operators. They

respond better on sharp transitions in low-noise images and could sharpen the edge

contours. but also inadvertently enhance the noiS<'.

The Laplacian operator[22] is a second order derivative operator for functions

of two dimension operators and is used to detect edges at the locations of the zero

crossing. However, it will produce an abrupt zero-crossing at an edge and zero­

crossings do not always correspond to edges. If a noise-free image has sharp edges.

the Laplacian can find them. The binary image that results from thresholding a

Laplacian-filtered image at zero grey level will produce closed. connected contours

when interior points are eliminated. The smoothing operation with the Gaussian

mask tends to blur weak edges. and furthermore, the presence of impulse noise

in transmitted images can seriously degrade the performance of the smoothing

operator. Another gradient operator is the Canny operator[lO] which is used to

determine a class of optimal filters for different types of edges. e.g.. step edges or

ridge edges. A major point in Canny's work is that a trade-off between detection



and localization emerged; as the scale parameter increases the detection increases,

localization decreases. Canny proposed to select the smallest scale, provided that

a minimum value for the signal to noise ratio (SNR) is obtained. The selection

of the minimum SNR satisfying the detection limit comes from the maximization

of localization. In order to set the appropriate value for the scale parameter. it

is required to know the noise energy. However, it is not an easy task to locally

measure the noise energy because both noise and signal affect any local measure.

2.1.2 Template matching edge operators

ThE:' Kirsch masks[51, the Robinson masks[60l, the :'-levatia·Babu masks[52j. and the

Compass Gradient masks[55] are the popular edge template matching operators.

Each point in the image is convolved with eight masks corresponding to eight

orientations. Each mask responds ma:(imally to an edge oriented in a particular

general direction. The maximum value over all eight orientations is the output

value for the edge magnitude image. The index of the ma..'(imally responding mask

encodes the direction of the edge. Although the edge orientation and magnitude

can be rapidly estimated by determining the largest response for a set of masks,

template mask methods give rise to large angular errors and do not give correct

values for the gradient.

Another template matching technique based on the sum of absolute errors is

effective in detecting edges where the form of the edges is known in advance[68].

10



However, this technique requires smoothing to remove noise before it can detect

edges. It affects the detection of weak edges. If impulse noise is presented in the

image, the performance is ..:so affected. Besides, this method involves expensive

pixel-pixel comparison in the image and in the template.

2.1.3 Expansion matching

One of the optimal step edge detectors is derived from the newly developed Ex­

pansion Matching (EXM) [741, a technique for robust recognition of templates in

an image. The fundamental approach is to match a given template with a given

image by expanding the image signal in terms of nonorthogonal Basis runctions

(Srs) which are all translated versions of the template. The expansion coeffi­

cients obtained at a particular location signify the presence of a template-similar

signal (pattern) at that location. Since the shifted templates form a complete

nonorthogonal basis[i], this entails a nonorthogonal expansion which can be quite

complex if performed directly. However. since all the bases are shifted versions

of the same function, this task can be significantly simplified by using frequency

domain techniques[58].

2.1.4 Relaxation labeling

There has been an explosive growth in the study of rela.'Cation labeling techniques

for image processing, such as image restoration[18j, edge enhancement{64]' edge

11



dete<:tion[25], [26J, (27). {61], and image segmentation(28]. Relaxation labeling uses

contextual information to resolve object labeling ambiguities as locally as possi­

ble. The amount of contextual information employed is e..'(panded re<:ursh"ely until

a unique labeling results. The problem of relaxation labeling .....as first described

by Rosenfeld et 31.(61). Later. various approaches were developed that fall into

two categories: discrete relaxation labeling and probabilistic rela.ution labeling.

In discrete relaxation labeling, label assignments are eith.er possible or impossible.

However. in probabilistic labeling, label assignments are measured by probabilities.

Therefore, the construction of update functions over the probability \'ector space is

a critical issue. :-.son linear probabilistic update functions yielded the best results,

but their heuristic nonlinear update function induces the problem of bi8.'i. conver­

gence. and choice of supporting function, etc. Hummel and Zucker[34] addressed

some of these problems. They introduced a projected gradient update scheme and

deri\'ed tbe property of local convergence for their update function. However the

update function is not easy to implement efficiently.

The effectiveness of reluation labeling lies in its use of contextual information

to eliminate ambiguous labels. This is achieved by iterative label assignment up­

dates. ~Iarkov Random Field (MRF) theory provides a theoretical basis. Geman

and Geman [21] considered images as instances of MRFs. Energy functions were

defined for the MRFs such that the original image has minimal energy. A st"

chastic approach to minimize the energy utilized a simulated annealing te<:hnique

12



and resulted in a highly parallel relaxation algorithm that uses the posteriori dis­

tribution to yield a MAP estimate, restoring image from degraded observations.

However, their method has a low convergence rate. Due to the nature of simulated

annealing, hundreds of iterations are needed to obtain good restoration.

Pelkowitz(56] developed a probabilistic relaxation algorithm using ;\IRF theory

by applying the ~(a:<imumEntropy approach and deriving a multilinear rela.xation

update function. The function is data dependent and the final configuration is a

function of observations that locally optimize the posteriori probability.

Kittler and Hancock [37] de\'eloped an evidence combining formula in the frame­

work of probability theory. They derived a nonlinear update function that is sim­

ilar to Rosenfeld's. Because no heuristics were used. the problems that Rosenfeld

encountered were solved. However. one of the difficulties was its potential compu­

tational complexity. The number of possible label configurations is exponential in

the number of objects. In reali:y, the number of permissible configurations is rela­

tively small because labeling problems are highly structured, An exhaustive enu­

meration of permissible configurations is possible. This can significantly improve

the efficiency of relaxation labeling. In this way, Kittler and Hancock successfully

developed their algorithm. Their experimental results show better performance

than some well-known edge detection algorithm like Canny's and Spacek's[67].

Recently, a new probabilistic relaxation scheme for edge detection or enhance­

ment was proposed {19] which consists of an update function and a dictionary

13



construction method. The nonlinear update function is derived from MRF theory

and Bayes' formula. The method combines evidence from neighboring label assign.

ments and eliminates label ambiguity efficiently. However, if the initial assignment

contains too many labeling errors, label contextual information may not be enough

to correct all of them.

2.1.5 Fuzzy edge detection techniques

A fuzzy filter and edge detection technique was introduced by Tyan and \Yang [721.

The fuzzy rules are used for contrast enhancement. requiring arbitrary definitions

of dark and bright pixels. which the authors admit require adjustment by a numan

operator. Images are further enhanced by an interesting fuzzy low-pass filter. The

edge detection schema also relies on arbitrary dark and bright definitions ( again

requiring user adjustment), and operates on a 2 x 2 area. A fuzzy edge detection

tecnnique was also introduced by Tao and Thompson[70]. In this tecnnique. sixteen

possible edge structures in a 3 x 3 area are considered. and fuzzy edge membership

is determined by fuzzy if-then rules..-\fter redundant edge pixels are discarded.

the remaining edge pi.'Cels are thresholded based on a noise factor. Neither of the

techniques above acknowledge tne possibility of various edge shapes such as comers

and triple points. leaving grey·level differences among immediate neighbors as the

only determining factor in edge extraction. Furthennore, both techniques operate

on very small regions. ignoring the possibility of broader edges in the process.

14



Another edge detection technique has been proposed by Todd Law based on the

fuzzy reasoning approach. This technique acknowledges the existence of imperfect

edges and of ambiguous edges. and then elaborates a linguistic frame\lo'Ork for

characterizing these ambiguities and imperfections. These characteristics are then

approximated from local statistical parameters, and fuzzy rule based on heuristics

are introduced to evaluate thf!Se parameters. This algorithm has been tested. on a

variety of real images with positive results. As the current trends in image analysis

show a shift towards top-down image processing techniques, this algorithm still

deals with bottom-level detail.

2.1.6 Image filtering techniques

Some of the earliest filtering techniques are linear filtering teclmiques. which are

used for edge detection. These techniques utilized a stochastic model of edge struc­

ture and tbe edge detection problem was formulated as one of least mean-square

spatial filtering. Two-dimensional recursi\'e digital filtering was used to detect

edges in noisy images. Besides tbe noise immunity, the recursive nature of the

filtering operation leads to significant computational economies. However, linear

filtering techniques are generally very complex and have achieved only moderate

success. Nonlinear filters have proven to be exceptionally useful in many signal

and image restoration applications. In particular, rank-order-based filters are well

known for their ability to successfully treat heavy tailed noise and non-stationary

15



signals. The first and most well known of these rank-order-based filters is the me­

dian filter. Building on the success of tbe median filter. many more sophisticated

rank-order filters ha\"e been proposed, including multistage median filters[l, 2, 531,

center weighted median filters[29. 381, general weighted median and weighted order

statistic filters[36. 781. stack filters[16. 17. -16. 751. permutation filters (-II. and rank

conditioned rank selection filters[30J. These filters have primarily been utilized as

smoothing filters in restoration applications where a signal is corrupted by noise.

However. they do not perform edge enhancement well. The result being that in

an edge region. which is comprised of nondecrea:;ing and non-increasing samples.

the ranks of tne input samples remain the same for all observation window loca­

tions. Thus. they do not help to identify the "side" of an edge to yield gradient

enhancement(31J.

There ace some edge enhancement rank selection filters. such as the compari­

son and selection (CS) filler[.HI, the lo\\-er-upper-middle (LC~'I) filter{29J and the

weighted majority of samples with minimum range (W~I~'IR) filter{4ij. For CS

and LU:\OI filters. the observation sample mean is compared to a specified sample

within the observation window to determine which rank ordered sample to output.

This comparison helps to identify the ~side" of an edge on which the filter's win­

dow lies. Similarly, WMMR filters use rank ranges to delineate different regions of

an edge. Having partitioned the edge into different regions, an appropriate output

sample is chosen in each region so as to increase the edge gradient.

16



Another type of non-linear filter is the neural network filter {57}. The in­

put of the neural network is formed by the nine first differences calculated us­

ing adjacent pL'tels. This feed-forward multi-layer perceptrons were trained with

back-propagation, improved with the acceleration technique proposed by Silva and

Almeida[54], and it can provide good location and low distortion of edges and also

ll. good response to corners. But the performance of large input support neural

networks is less than expected due to the complexity of neural networks.

2.1.7 Edge linking

Edge detection algorithms typically are followed by edge linking which is designed

to assemble edge pixels into meaningful boundaries. If the edges are reliably strong,

and the noise level is low, one can threshold an edge image and thin the resulting

binary image down to single-pixel-wide closed, connected boundaries. However,

such an edge image will have gaps that must be filled under less than ideal con­

ditions. There are several techniques suitable for this purpose such as heuristic

seardl techniques, curve fitting techniques and Hough Transform techniques[14].

Heuristic search strategy using .-l.' algorithm was first used. for boundary detec­

tion in 1972[49]. Martelli showed. that the problem of boundary detection can be

brought back to the problem of finding the minimal cost path in a weighted and

directed graph, with positive costs. M. Salotti and M. Hatimi[62] bave proposed

a new heuristic search strategy and sbown tbat a cost function with Gaussian

17



curvature is more appropriate to develop only the best paths. The advantage of

h.euristic search strategies holds in the possibility of adding many contextual con­

straints to the detection, thus making the searcn adaptive to the application. The

major problem is to find a suitable cost function. Also heuristic search techniques

become computationally expensive if the edge quality function is complex and the

gaps to be evaluated are many and long.

2.2 Neural Networks

.-\rtificial neural networks (ANNs) are systems tnat are deliberately constructed to

make use of some organizational principles resembling those of the human brain.

They represent a promising new generation of information processing systems.

ANNs are good at tasks such as pattern matching and classification, function

approximation. optimization. vector quantization. and data clustering because of

their architecture. ANNs have a large number of highly interconnected processing

elements (nodes or units) that usually operate in parallel and are configured in

regular architectures. The interconnections lead to distributed knowledge repre­

sentation. The collective behavior of an ANN. like a numan brain. demonstrates

the ability to learn, recall. and generalize from training patterns or data.

ANNs have a great potential for parallelism since the computations of the com­

ponents are largely independent of each other. In addition to the high computation

rates provided by the massive parallelism, neural networks provide a greater de-
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gree of robustness than traditional sequential computers because there are many

processing nodes. Damage to a few nodes or links may not affect the overall per·

formance of the net significantly. ~eural network memory has the ability of gen­

eralization which is one of the most attractive features of neural networks. This

enables a model to function competently throughout the pattern space though it

has learned from observing only a limited body of examples.

2.2.1 Multi-layer feed-forward neural networks

Multi.layered neural networks are an efficient way to implement nonlinear classi­

fiers. \(ulti.layered neural networks usually consist of many neuron units. These

units are arranged into several layers. The input layer recei\'eS the signal and sends

its output to the hidden layers. There may be several hidden layers between the

input layer and the output layer. The output layer receh'es the signal from the

last hidden layer and produces the final output. The performance of feedforward

neural networks has been greatly enhanced because of those hidden layers. The

basic operation of each hidden node and output node is to map the weighted. sum

of output from the previous layer according to an activation function. The multi·

layer neural networks are non·linear as the activation function of nodes is a sigmoid

function (or Gaussian function). The activation function introduces non-linear into

the network, without which the network would not be more powerful than a plain

perceptron. The architecture (If this kind of neural network is especially useful for

19



static classification tasks.

The back-propagation (BP) learning algorithm is ooe of the most important

historical de\'elopments in neural networks (9. 15, 421. This learning algorithm is

applied to multilayer feedforward netv.-orks consisting of processing elements with

continuous differentiable activation functions. According to tbe BP algorithm. the

neural network is initialized with random weights. Then. all training data are

presented repeatedly to the network. Weights are adjusted after every trial in

order to minimize a function of the error bet.....een the actual output produced by

the network and the desired output.

There are several problems with multi-layered networks. Firstly, feed-forward

network learned by BP have slow convergence during training. When complex

decision regions are required. learning in multi-layered networks is slow. Secondly.

the number of input nodes must be large enough to form a decision region. How­

e\"er. it must not be so large that the weights can not be reliably estimated from

the available training data. Therefore. each net is only capable of performing a

specific task and any expansion of the original task requires an l!.'(tensi\'e modifi­

cation to the structure of the network. Besides. there is no a solid theory to guide

designers in determining the number of hidden layers and the number of nodes in

each b.idden layer for a certain application.
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2.2.2 Other feedforward neural networks

There are several different single.layer and multi~layer feedforward neural networks

that have also attracted much attention for various applications.

Functional-link networks{541 are single-layered neural networks that are able to

handle linearlv non·separable tasks using an appropriately enhanced input repre­

sentation. The key point of this method is to find a suitable enhanced representa­

tion of input data. Additional input data used in the scheme usually incorporate

high~order effects and thus artificially increase the dimensions of the input space.

The expanded input data are used for training. The additional higher-order input

terms are chosen such that they are linearly independent of the original pattern

components. In this way. the input representation is enhanced and linear sepa­

rability can be achieved in the extended space. Since the functional-link network

has only one layer. it can be trained using the simple delta learning rule. Hence.

the learning speed of it is much faster than that of BP networks.

The tree neural network (T>iN), like multilayer feedforward neural networks.

is a popular approach to the pattern recognition problem(23, 631. The basic idea

is to use a small multilayer network at each decision node to extract non·linear

features. TNNs exploit the power of tree classifiers to use appropriate local features

at different levels and nodes of the tree. The learning algorithm for constructing

a TNN consists of two phases. In the tree-growing pbase. a large tree is grown by

recursively finding splitting rules until all terminal nodes have pure or nearly pure
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class membership or cannot be split further. In the tree-pruning phase, a smaller

tree is selected from the pruned subtrees to avoid overfitting the data. When

solving difficult pattern recognition problems with complex-decision boundaries,

the TNN demonstrated significant decreases in error rate and tree size relative

to standard classification tree design methods. The TNN also yielded. comparable

error rates and shorter training time than a large BP network on the same problem.

2.2.3 Hopfield networks

The publication of Hopfield's seminal papers[32. 33\ started the modern era in

neural networks. His proposed networks. Hopfieltl networks, have been used in

many applications. especially in associative memory and optimization problems.

The typical Hopfield networks can be \'iewed as single-layer feedfonvard networks

or termed recurrent networks. [n this architecture, the nodes are organized as a

fully connected layer where every node receives stimulus from all others. There

is no self-feedback in a Hopfield network. The weight matrix is symmetric which

means that the weights on the connections between two nodes are equal in both

directions. The nodes also receive an external input. The values of nodes at any

given time define the state of the network. The updating from one state to the

other state can be in an asynchronous fashion or in a synchronous fashion. [n

an asynchronous fashion, only a single node is allowed to update its output for

a given time. The next update on a randomly chosen node in a series uses the
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already updated output. States change until the state is an equilibrium state of

the network. For the case of synchronous update. tbe update produces a cycle

of two states rather tban a single equilibrium state. States cbange until a stable

configuration is reached. It indicates that the synchronous update may cause the

networks to com.-erge to either fixed points or limit cycles.

The convergence of tbe neural state of Hopfield models to its stable state is

ba.sed on the existence of an energy function which directs the flow in state space.

The well-known Lyapunov stability theorem[6] is usually used to prove the sta­

bility of a dynamic system defined with arbitrarily many interlocked differential

equations. The energy function associated with a Hopfield model is a Lyapunov

function. Such a function depends on the current state as well as the weight rna·

trix. To guarantee convergence. the \\-eights must be designed sucb tbat any update

in the network's state will decrease the energy or keep it unchanged.. When the

net\\"Ork is supposed to act as a content-addressable memor)', the weight matrix is

calculated by taking the outer product of each vector to be stored in the network

with itself. Then all the resulting outer products are superimposed on top of each

otber.

The original Hopfield model is binary discrete Hopfield model. It can be gen­

eralized. to a continuous model in which time is assumed. to be a continuous vari­

able and the nodes have a continuous. graded output rather than a tw~state

binary output. Hence, the energy of the network decreases continuously in time.
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The continuous Hopfield networks show the same useful properties of a discrete

model. Moreover, there is an analogous electronic circuit that uses nonlinear am­

plifiers and resistors for realizing continuous Hopfield networks. The continuous

Hopfield model can be applied to combinatorial optimization problems such as

~P-complete[761 problem. tn this case. a suitable representation for the problem

which corresponds to a Hopfield network should be found. Then, the network's

energy function is designed in a way that reflects the constraints of the optimiza­

tion problem so that the network stabilizes on a class of good solutions depending

on its initial configuration.

In practice, the Hopfield network has several limitations. The major problem of

Hopfield networks appears to be the local minimum problem. That is. the solution

reached does not represent a global optimal solution to the energy function mini­

mization. This is often due to the highly complex shape of the multi-dimensional

energy function. However, the solutions achieved. although not optimal. are ac­

ceptable in a statistical sense. The Hopfield models give an e.'(cellent demonstration

of how practical problems that are tremendously difficult can be attacked by neural

networks.
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2.2.4 Competitive learning and self-organization neural net­

works

Competitive learning of neural networks has been explored in one form or another

over the years. Although the elementary competitive network and its principle is

simple. it indeed leads to self-organization behavior. The main JilTert'!lu.:e betwt:t;1I

reedforward networks and competith'e networks lies in the lateral interconnections

in competitive networks. These lateral interconnections provide a mechanism to

incorporate consistent or contradictory relationships which naturally exist among

objects, concepts, events, etc. ,-\t the computation level they are implemented

as cooperative and competitive processes in neural networks. Typical models

are :-'IcClelland and Rumelharfs competitive learning model[50l, Kohonen's self·

organization :-'IAP[39j, and Carpenter and Grossberg's ART[12. 231,

2.3 Fuzzy Neural Networks

Over the past decade, we have witnessed a very significant increase in the number

of research and applications of fuzzy neural networks to various commercial and

industrial products and systems. Neural networks are essentially low-level com·

putational structures and algorithms that offer good performance in dealing with

sensory data, while fuzzy logic techniques often deal with issues such as reasoning

Oil a higher level than neural networb. Howt:ver. since there are no capabilities of
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machine learning, memory, or pattern recognition in fuzzy systems, it is difficult

for a human operator to tune the fuzzy rules and membership functions from the

training data set. Also, because the internal layers of neural networks are always

opaque to the users, the mapping rules in tb.e networks are not visible and are

difficult to understand; furthermore. the convergence of learning is usually very

slow and oat guaranteed. Thus, a promising approach for reaping the benefits of

both fuzzy systems and neural networks (and solvinJl; their respective problems) is

to merge tb.em into an integrated system. Fuzzy neural networks retain the ba­

sic properties and functions of neural networks with some of their elements being

fuzzified. In this approach. a networks domain knowledge becomes formalized in

term of fuzzy sets. later being applied to enhance the learning of the network and

argumeot its interpretation capabilities.

2.3.1 Fuzzy logic controller (FLC)

Fuzzy logic control. initiated by the pioneering work of ~Iamdani and AssHian[-l8].

has emerged as one of the most active and fruitful areas for research in tb.e ap­

plication ranges from industrial process control to medical diagnosis and securi­

ties trading. Many industrial and consumer products using this technology have

been built. In contrast to conventional control techniques, FLC is best utilized in

complex ill-defined processes tbat can be controlled by a skilled human operator

without much knowledge of their underlying dynamics.
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The basic idea behind FLC is to incorporate the expert "e.werience" of a human

operator in the design of a controller for a process whose input-output relationship

is described by a collection of fuzzy control rules (e.g.. IF·THEN rules) in'.olving

linguistic variables rather than a complicated dynamic model. This utilization

of linguistic variables. funy control rules. and approximate reasoning pro·..ides a

means to incorporate human expert experience in designing the controller.

The typical architecture of an FtC is comprised of four principle components:

a fuzzifier. a fuzzy rule base. an inference engine. and a defuzzifier. The fuzzifier

performs the function of funification which is a subjective valuation to transform

measurement data into valuation of a subjective value. Hence. it can be defined

as a mapping from an observed input space to labels of fuzzy sets in a specified

input universe of discourse. That is. a funifier has the effect of transforming

crisp measured data into suitable linguistic values. The fuzzy rule base stores the

empirical knowledge of the operation of the process of the domain experts. Fuzzy

control rules are characterized by a collection of fuzzy IF·THEN rules in which the

preconditions and consequents involve linguistic variables. This collection of fuzzy

control rules (or fuzzy control statements) characterize the simple input-output

relation of the system. The inference engine is the kernel of an FLC. and it has

the capability of simulating human decision making by performing approximate

reasoning to achieve a desired control strategy. The generalized modus ponens

(forward data-driven inference) plays an especially important role in this context.



The defuzzification is a mapping from a space of fuzzy control actions defined over

an output universe of discourse into a space of non fuzzy (crisp) control actions. It is

utilized to yield a nonfuzzy decision or control action from an inferred fuzzy control

action by the inference engine. Unfortunately tuere is no systematic procedure for

choosing a defuzzification strategy. Two commonly used methods of defuzzification

are the center of area (COA) method and mean of maximum (Mm,,'l) method[8,

-13]. Another method. th.e basic defuzzification distribution (BADD). was proposed.

by Yager and Filev[20. 77\ wh.o provide an adaptive learning scheme to obtain the

optimal defuzzification parameters.

Although approximately 1.000 commercial and industrial fuzzy systems have

been successfully developed for th.e past few years and fuzzy set theory has grOWIl

to become a major scientific domain. fuzzy control systems have some problems

and limitations[51]. One of th.e most important issues for a fuzzy control system

is stability. Of the various existing metnodologies for stability analysis of fuzzy

systems. there is no theoretical guarantee that a general fuzzy system does not go

chaotic and stays stable. Another limitation is that fuzzy systems lack capabil­

ities of learning and have no memory. This is why h.ybrid systems, particularly

neuron-fuzzy systems, are becoming popular for certain applications. Besides, de­

termining or tuning good membership functions and fuzzy rules are not always

easy. Also, there is a general misconception of the term ~ fuzzy" as meaning impre­

cise or imperfect. Many professionals think that fuzzy logic represents some magic
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without firm mathematical foundation. Because of these problems and limitations,

researchers are motivated to establish various forms of hybrid systems by combin­

ing fuzzy logic and other areas such as neural networks and genetic algorithm to

achieve a better performance.

2.3.2 Fuzzy neural networks

F\l1'7_Y nf'lIral nf'f.wnrk~ ;Uf> in fwt fll1.7.ififfi nf>lIral nf'tworks ann t.hus arp inhpr_

endy neural net\\,urks. Each part of a neural network (such as the activation

function, aggregation functions, weights. input-output data. etc.), each neural net­

work model. and each neural learning algorithm can possibly be fuzzified. There

are three types of fuzzy neurons. The first kind of neuron has n nonfuzzy inputs

with a single output in the interval [0.1], which may be considered the "level of

confidence". The weights are fuzzy set, that is, the weighting operations arp mem­

bership functions. The aggregation operation may use any aggregation operator

such as min (minimum) or rna:" (ma.'timum), and any other t-norms or t-conorms,

The second type of fuzzy neuron is similar to the first type of fuzzy neuron except

that all the inputs and outputs are fuzzy sets rather than crisp values. Besides,

the weighting operation is a modifier to each fuzzy input instead of a membership

function. In the third type of neuron, the input-output relation of the fuzzy neuron

is represented by one fuzzy IF-THEN rule,

The typical fuzzy neural network model is a fuzzy multilayer feedforward net-
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\1.-ork with a back-propagation Ie:arning a1gorithrn{35J. The fuzzy neural network

with this structure maps a funy input vector ( with linguistic roue) to a fuzzy

output. It can handle fuzzy input vectors using the fuzzy activation functions

on fuzzy numbers to classify n-dimensional fuzzy vectors. The energy function is

defined by the fuzzy actual output and the corresponding nonfuzzy target output

that indicates the correct class of the fuzzy input vector. As the training procedure

is viewed as an extension of SP. it still has problems such as slow convergence and

relearning. Another multilayer feedforward FNN was proposed by [-tal as a con­

nectionist fuzzy classifier (eFe). ere has one more layer used for computing the

reference similarity from learned samples. Also. it groups the input nodes as a sub­

set of features wbich may together represent a subconcept in some cases. As ere

employs a hybrid supen·ised/unsupervised learning scheme to organize referen~

pattern vectors. it not onl)" overcomes the local minimum and long training time

problems, but also avoids the disadvantage of the huge storage space requirement

of the probabilistic neural network.

The setr-organizing multilayer fuzzy neural netlA-ork proposed by .-\shish (3\ for

object extraction uses a four· layer feedforward fuzzy neural network structure. But

the self-organizing learning algorithm is applied. Pattern clusters are implemented

as fuzzy sets using a membership function with a byperbox core that is constructed

from a min point and ma't point. The min-max points are determined using the

fuzzy min-max learning algorithm. The network stabilizes into pattern clusters in
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only a few passes through a data set. It can be reduced to hard cluster boundaries

that are easily examined without sacrificing the fuzzy boundaries and provides the

ability to incorporate new data and add new clusters without retraining.

The adaptive resonance theory (ART) is a very important theory which is

used in neural net",-orks for guiding unsupervised. learning. G.A.Carpenter and

S.Grossberg pioneered the introduction and the development of ART. The~' also

introduced fuzzy set theory into ARTI and developed the fuzzy ART system, called

CGR fuzzy .-\RTI131. There are two options for this fuzzy ART algorithm: the 1031­

commit-slow-record option and the input normalization option. for the first option,

fast learning enables a system to adapt quickly to inputs that may occur only rarely

and may require immediate accurate performance. The slow-record operation pre­

\'ents features that ha\'e already heen incorporated into a category's prototype from

being erroneously deleted in response to noise or panial inputs. for the second

option, a preprocessing step, called complement coding, uses on-cell and off-cell

responses to prevent category proliferation. The complement coding normalizes in­

put vectors while preserving tbe amplitudes of individual feature activations. The

intersection operator used in ARTl learning is replaced by the ~nN operator of

fuzzy set theory. Learning is stable because all adaptive weights can only decrease

in time. Howe\"('r, this fuzzy ART has some problems such as hyperbox cluster

overlap which results in pattern cluster ambiguity. There is anotner fuzzy neural

network, Fuzzy I\.-lin-Max Clustering Neural Networks(FMMCNN){66J, which also
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grew out of the fuzzification of the ARTl network. Compared with CGR fuzzy

ART, FMMCNN overcame the hyperbox duster overlap problem. :\.dditionalty,

the eGR fuzzy ART bounds the size of hyperboxes through the matching function.

The FMMCNN uses an explicit calculation of the size of the hyperbox to bound

the size.

To obtain precise training data is difficult or more expensive. so a reinforce·

ment learning was proposed[45]. The proposed reinforcement structure/parameter

learning algorithm basically utilizes the techniques of temporal difference. stochas­

tic exploration. and the on-line supervised structure/parameter learning algorithm.

It IISed two NN-based fuzzy logic control systems integrated together. One is for

the fuzzy l'ontroller (action network), and the other is for fuzzy prediction (eval­

uation network). Learning will be performed by both networks at the same time

and only conducted by a reinforcement signal reedback from the external environ·

ment. 'The reinrorcement training data is rough, it is just "evaluative". Besides.

reinrorcement learning can solve the long time delay problem.
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Chapter 3

Adaptive Fuzzification

A fuzzifcr used to fuzzify the input space is a basic component of a fuzzy system.

A natural and simple fuzzification approach is to convert a crisp \'alue into a

fuzzy singleton within the specified universe of discourse. In a more complex case

where observed data are disturbed by random noise. a fuzzifer should convert the

probabilistic data into fuzzy numbers. that is, fuzzy data. In large-scale systems.

some observations relating to the behavior of such systems are precise, others afC

measurable only in a statistical sense, and some, referred to as ·'hybrids". require

both probabilistic and possibilistic modes of characterization. In this chapter.

a method to adaptively fuzzify input patterns of an original image is presented

which includes three main steps: input pattern generation. adaptive fuzzification

and parameter estimation.
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figure 3.1: ~latri:x. representation of an image

3.1 Input Pattern Generation

The original input image is represented by an M x N matrix A. M and .V are the

row and column sizes of the given image respecti\-ely. Each element corresponds

to a pixel with its grey-value in 10. 2551. That is, A(p,q) with value 150 represents

the grey value of the pixel at position of the ~th row and q-tb column position of

the input image with gray value 150. ( Figure 3.1).

Window size 6 x 6 is chosen in the proposed system. If the window size is too

small, the information is not sufficient to make a good judgement for distinguishing

patterns. But if the window size is too larger. the window may contain more than

one edge. Hence, they can not be detected. Also, the neural networks need more

neurons to be constructed. To the system, the local edge pattern is input in an

6 x 6 window. A 2-D grid system is used in which an edge element is situated at
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Figure 3.2: Edge t!lement represented by 2-D grid system

the center of four adjacent image pixels shown in Figure 3.2.

If the window is too small, the length of the edge contour in the local edge

pattern will be too short to be of any significance. which makes the fuzzy neural

networks system less efficient. On the other hand, a large window allows better

interpolation of missing edge elements but results in more complicated local edge

patterns and a \"t!ry complex neural net design.

.\ neural net processes the infonnation from the input pattern in a vector form.

For the grid in consideration at position (p,q) of input image. the corresponding

window is represented as a vector. then the pattern is:

.{" = (.{(O. 0), .{(O, 1), ... A(5, 5)}

Here. .\(0, o) corresponds to A(p-3, q-3),

A{O, 1) corresponds to A(p-3, q-2),
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A(5, 5) corresponds to A(p+2, q+2).

3.2 Adaptive Fuzzification

Adaptive funification applied on patterns pla)"S a ..-ery important role in the pro-

posed system. When considering an edge in a window with northern orientation (

Figure 3.3 ), it can be represented by its grey value as follows:

I" ,f,>O

/(xl ~ (9, + g,)/2 ,f, = 0

91 If.r < 0

where 91 is a grey value which indicates the relative dark part, !h is a grey ..a.lue

which indicates relative bright part, .r as a position of pixels ( Figure 3...l(a)). and

the origin of the coordinate system is the center grid of the window ( Figure 3.3 ).

The edge image .....ith normal noise is modeled as figure 3...l(b).

For a window with an edge having a relatively bright component in the left

part and with a relatively dark component in the right part. the difference of the

grey values between two parts which can be distinguished by human eyes in the

noise case is more than 20(threshold). That is:

191 - !hI > thre.5hold ( 91.5/2 E {O,2551 )
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(a) Image without noise (b) Image with noise

Figure 3.4: Grey value representation of an image
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Figurf! 3.5: Grey value representation of two images in the same class

Hence, there are 1+2 +... +234 +235 possible combinations for a window. So.

the number of samples for one class is:

.v = n~"'l ., 235 = 27';30

Because there are ten classes to be classified. more than two hundred thou.sand

samples are needed to train neural networks to obtain a good result.

Howe\'er. it is noticm that the following two samples belong to the same case.

( Figure 3.5 )

For grey value 92. it represents relative dark in figure 3.5(01). but relativt' bright

in figure 3.5(b). So the "bright" or -dark" is a fuzzy concept depending on the

given patterns. FOf this reason, it is impossible for us to find a relationship be-

tween absolute grey value and degree of "bright/dark" and directly apply a global

membership function. Hence. an adapti....e fuzzification processing is proposed in

tbis research.

When there is an edge in a window, the histogram can be used to represent
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Figure 3.6: Histogram for the window

the relationship between the number of pixels in a window and their grey values.

t Figure 3.6{a) ) For the image with normal noise. the grey value of the relatively

bright part should be around 9t. and the grey value of the relatively dark part

should be around (/2. ( Figure 3.6(b) l

Based on the above analysis. the following fuzzy membership function is created

( Figure 3.7). Here.

I, if .4(p,q) < g,

Jo(,4(p, qJ) ~ (A(p, q) - g,)/(g, - g,) if g, < A(p, q) < g,

o if .-I.(p,q) >!h

By using the above membership function, each pi.xel in the input pattern is

fuzzified and represented by its fuzzy measurement. The value of the pi."::el closes

to 1 when it is relatively bright and closes to 0 when it is relatively dark. After
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Figure 3.i: Adaptive fuzzy membership function

the adaptive fuzzification. the sample with grey values 200 on the left part and

grey values 180 on the right part is the same as the sample with grey values 180

on the left part and grey values 160 on the right part. So the number of samples

for training is reduced significantly.

3.3 Parameter Estimation

The fuzzy membership function depends on each local pattern. For an edge in

ao image with normal noise (see Figure 3.6(b)). the histogram follows a normal

distribution (Figure 3.8).

The 9\ and !h can be determined by using estimation and learning methods.

such as the Parzen Window approach. However, it is too complicated and time-

consuming especially when such a technique is applied. on large images. Since

neural networks will be used to do the further processing, the estimation procedure

can be simplified and the values of 9\ and !h can be roughly set by using the
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Figure 3.9: Sorted pixels with less than 30% of noise

following approach.

Let the proposed system allow T/ % input noises. For a k x k window chosen.

the system allows k"l. • '1% noise pixels. .",-ssume that the half of the noise pixels'

values are either bigger than 91 or Ie$.." than 91. and the other half of the noise

pixels' values are between 91 and 92. Therefore. the number of pixels with grey

values Ip.ss than 91 or greater than 92 is ¥. The estimation procedure can be

done by first sorting the values of pixels of the input pattern in an ascending order.

then, setting 91 at the position of 1+¥ and 91 at the position of k"l. - ~ • k"l.. T/%

respectively. For example, if 30% of noise is allowed, the pi..'Ccls in a 6 x 6 window

sorted in an ascending order represented by P = PI,Pz, ... ,P36, 91 should take the

fourth element, and 92 should take th.e 33rd element of the sorted array ( Figure

3.9 ).
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3.4 Algorithm for Adaptive Fuzzification

Suppose the gray values of input pi."Cels in a k "k size window and the percentage

of noise be 'I. The algorithm to obtain 91 and!h described at 3.3.2 is:

Procedure A.daptiveFu.:zification

Create an array Temp[K " K] to store the elements in the window:

Sort the array Temp in an ascendant sequence:

{ Calculate the positions (m and n in the array) for 91 and 92 }

n = k2
- 3 " k' " tI/.I;

{ Set 91 and !h }

9\ =temp[m);

!h=temp{n);
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Chapter 4

Window Division

In general. ten patterns shown in figure -1,1 are considered as typical edge patterns

in this application. The common property of these edge patterns is that the half

part of pattern is relatively bright and the other half part is relatively dark. In

order to take advantage of the structure information, a window division technique

is introduced in this research. The input window is divided into eight groups

corresponding to blocks in the input pattern. ror tne purpose of detecting two

different kinds of edges. namely. edges in the horizontal and vertical orientation

or edges in the diagonal orientation, the pattern is divided into four rectangular

blocks and also into four triangular blocks. The detail discussion is given in the

fallowing two sections.
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CLASS 1 CLASS 2 CLASS 3 CLASS 4 CLASS 5

CLASS 6 CLASS 7 CLASS 8 CLASS 9 CLASS 10

Figure 4.1: Ten edge patterns ( eight edge patterns and two non-edge patterns)

Class I Class 2 Class 3 Class 4

Figure 4.2: ~Vindow divided into four square blocks

4.1 Window Divided into Four Square Blocks

Considering a vertical or horizontal edge pattern( class one to class four ), the

window is first divided into four square blocks ( Figure 4.2 ).

There are two blocks which are relatively dark in a window. For edge patterns

which belong to class one or class two, the two dark blocks are either on the top

half or bottom half part. For edge patterns which belong to class one or class three,
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tbough one dark block (block 1) and one bright block (block 4) are at the same

part of the window. the positionsof another dark part and bright part are different:

block 2 is dark and block 3 is bright for class one. and block 2 is bright and block

3 is dark for class three. The same analysis can be applied to the combinations

of any other two edge patterns .....hich belong to class one to class four. Besides

the dark edge pattern and the bright edge pattern. class five and class six can also

be analyzed in the above way. The four blocks in different patterns have totally

different darkness, and there are two blocks which have different darkness from

above four patterns which belong to class one to class four. Hence. this kind of

window division is suitable for patterns belonging to class one to class Sl.'C..
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Block I Block 2

3 10 II 12

6 13 I' IS

•~ 17

~I. 20 21 28 2. 30

" 23 24 31 32 33
central grid

1:;5 "i6T"2j" [34 3S 36

BlockJ Block 4

Figure -1..3: Reordered sequence of elements (square blocks)

.-\s tbe elements of each pattern will be the input of the neural network and

they have been grouped based. on the block. the sequence of elements in the input

\"eCtor has to be re-ordered. The actual input ".ector corresponding to the four

square blocks is represented abo,'c ( Figure ..1.3 ).

4.2 Window Divided into Four Triangle Blocks

.-\ window which is divided into fOUf square blocks is suitable for edge patterns with

\'trtical and horizontal orientations. However. it is not efficient to edge patterns

with. diagonal orientations (class seven to class ten). for example, class seven and

class eight have half relatively bright and half relatively dark in the block one and

block four respectively. It is not easy to know whether the top right half part or

bottom left half part is relatively bright in the block one. Hence, for these four
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Class 7 Class 8 Class 9 Class 10

Figure -tA: Window divided into four triangular blocks

kinds of edge patterns, the window should be divided into four triangular blocks

(Figure ~.-l).

But the elements on the two diagonal lines do not belong to any blocks. For

example. elements :\(0. 0), .-\(1. 1), and :\(2. 2) will be in neither block 5 nor block

6 ( Figure -t.5 l.

If we take the southeast edge pattern ( class 7 ) as an instance. putting the

above three elements into block 5 will not cause problems if these three elements

represent relatively black. But if these dark elements are put into block 6. the

noise will be increased abruptly in block 6 as it was supposed this part would be

relatively bright. Asimilar result can be induced when other patterns are analyzed.

Hence, only the elements inside each block are considered in this window division.

Therefore, the sequence of original elements are re-ordered shown in figure 4.6.

Based on th.e above two kinds of window division, there are si.xty input elements

which. are grouped into eight blocks. They will be used. as the input of proposed

fuzzy neural networks.
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Figure -1.5: Elements on the boundary of the blocks

Block 6

Block 5

43 44 4~46
47 48 4

8 41 53 5

~:i:::l
Block 8

Block 7

central grid
Figure 4.6: Reordered sequence of elements (triangle blocks)
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Chapter 5

Fuzzy Neural Network

[0 chapter three and chapter four. the pre-processing procedure was described.

the original inputs of a pattern have been fuzzilied and expanded. to sixty inputs

which are divided into eight blocks. In this chapter. the structure of a fuzzy neural

nC[\l,1)rk designed specially for edge detection is proposed. The network can classify

the input pattern in a noise corrupted image into Don.edge or edge with one of

eight orientations after the network is trained by typical edge or non-edge patterns.

5.1 The Overview of Fuzzy Neural Network

The structure of the proposed fuzzy neural network shown in figure 5.1 is a three­

layer feedforward network. It consists of two subnets. Subnet 1 is used to identify

class one to class six, and suhnet 2 is used to classify class seven to class ten. Based

on the window division, the inputs of subnet 1 have 36 elements which come £rom
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four square blocks, and the inputs of subnet 2 have 24 elements which come from

four triangular blocks. Therefore, there are sixty neurons at the first layer called

the input layer. The second layer is a hidden layer. Every two neurons as a group

connect to neurons, which accept inputs from the corresponding block. at layer one.

One neuron. marked A. is used to measure the darkness of the corresponding block.

and the other. marked B. is used to measure the brightness of the corresponding

block. Based on the discussion on the chapter four. there are eight edge patterns.

Therefore, the inputs are divided into eight groups. The number of neurons at the

hidden layer is set as sixteen.

Taking the neurons with inputs coming from block 1 at layer one and the

neurons of group Lat layer two as an e.xample, the links between these t.....o layers

are illustrated in figure 5.2(a). The neurons at layer 1 are fully connected to

neurons at layer two. The inputs to layer one represent the darkness of the pixels

in block I. The neuron A at layer tYoU provides the fuzzy measurement of how

dark the block 1 is. and the neuron B measures how bright the block 1 is.

lf all the values of nine inputs approach to I(relatively dark) . this block is

dark. So Lhe output of neuron A approaches to l. On the other hand. if input

values approach to 0, there is little possibility that tnis block is dark. So the output

of DeuroD A approaches to O. Therefore, the fuzzy membership function applied

on neuron A should have the shape of fa shown on figure 5.2(b). For the other

neuron, neuron B at layer two, a similar analysis can be used such that the neuron
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- - - - - f FNN for edge detectionFigure 5.1: The ::~ructure 0
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Figure 5.2: The connection between block 1 at layer 1 to layer 2
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B should use the funy membership function which has the shape of k

A similar concept is applied on the other seven blocks of layer one and the

seven corresponding groups of la~:er t"'"O. The fuuy measurement structure is used

to obtain the characteristic features for the different edge patterns. Hence, the

outputs represent the measu.rement of the certainty of the features for each block.

The third layer is used to model human decision making within the concep­

tual framework of fuzzy logic and approximate reasoning. Here. neurons perform

fuzzy intersection operations. The output of each neuron at layer 3 represents the

certainty that this pattern belongs to the corresponding class. For example. the

output value of the first node at layer 3 is 0.9 which means the certainty of the

input pattern belongs to class one is 0.9. E\'Cry neuron connects four neurons in

the la~'Cr t"'"O which come from four groups respectively. Which four neurons are

linked to the neuron at the layer three depends on which class the output of this

neuron represents.

The net input of the first node at la)'Cr three comes from four neuron outputs

at layer t"'"O which correspond to four square blocks respecti\'Cly(see Figure 5.3).

Two neurons are of type A, and the other two are of type B. If these four outputs

all approach to I, it means that block I and 2 are relatively dark. and block 3 and

.J. are relatively bright. Hence, the input pattern is definitely an edge pattern which

belongs to class 1. The outputs of tbis layer provide tbe final fuzzy measurements

of the classification.
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B
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81<X:k"~8

B

Figure 5.3: The connection between layer 2 and node 1 at layer 3

5.2 Models of Fuzzy Neurons

In fuzzy neural networks. the numerical control parameters in neurons and the

connection weights may be replaced by fuzzy parameters. Fuzzy neural networks

have greater representation power. higher training speed, and are morc robust

than conventional neural systems. In fact. fuzzified neural networks are inherently

neural networks. Each part of a neural network (such as the activation function.

aggregation function, weights, input-output data. etc.) can possibly be fuzzified.

In this section, two different models of fuzzy neurons from which the proposed

fuzzy neural network is built are discussed. One is the fuzzy neuron with fuzzy

signals ( fuzzy neuron - model I ), and the other is the fuzzy neuron described by

fuzzy logic equations ( fuzzy neuron· model II) (40,411.
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'"
W, X',

x, W, "'@-Lx, W; x, ~

x w. X'./
Figure 5.4: Fuzzy neuron - model I

5.2.1 Fuzzy neuron - model I

This type of fuzzy neuron. denoted by N (Figure 5.4), has n fuzzy inputs Ll, :r~, ... -Ln.

Each fuzzy input Ii undergoes a weignting operation which results in another fuzzy

set x: = W,. I, for some operator •. (W, is the weight. 1 ~ i ~ II). All the mod-

ifled inputs are aggregated together to produce a single output in the interval

[ O. l ] which may be considered the "level of confidence". The mathematical

representation of such a fuzzy neliTon N is written as:

i= 1,2.

where Y is the fuzzy set representing the output of the fuzzy neuron, Ii and x:
are the itb input before and after the weighting operation, respectively. Wi is the

weight on the ith synaptic connection. i;!j is the aggregation operator, and UN(.) is

the membership function of the neuron.
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Based on the structure analysis and the model of neuron discussed, the proposed

fuzzy neural network built from this type of neurons at layer two forms a fuzzy

rule base.

The net input of layer two can be obtained by using the normalized weighted

sum of the output from layer one. That is:

where ndJ is the net input of the j-th unit on layer two. WJi is the weight from

the j-th unit on layer two to the i·th unit on layer one. The output of node j at

the second layer is:

OpJ = f(net pj )

Here. the function f(.) is a membership function which will be discussed in 5.3.

5.2.2 Fuzzy neuron - model II

This type of fuzzy neuron with n fuzzy inputs and one fuzzy output is shown in

figure 5.5. The input-output retation of the fuzzy neuron is represented by one

fuzzy IF·THEN rule:

IF Xl AND X1. AND ... X"' THEN Y,

where Xl, X1., ..., Xn are the current inputs and Y is the current output.
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figure 5.5: fuzzy neuron - model II

The fuzzy neurons can be described by a fuzzy relation R.

R = !lX,.X" .... X•. }'),

where J(.) represents an implication function. A fuzzy neural network ron-

structed from these kinds of fuzzy neurons appears to be ideal for rule extraction .

.\ccording to the structure analysis. the proposed fuzzy neural network consists

of this type of neurons at layer three. Links between layer two and layer three

function as a connectionist inference engine. All the layer-2 nodes form a fuzzy

rule base. and layer-3 links de6ne the consequents of the rule nodes. As discussed

before. the neuron at layer three perfonns the fuzzy intersection operation which

is implemented by the t - norms ~ Algebraic Product" [-111. The inputs of node 1

at layer three come from the four nodes (node 1, node 3, node 6. and node 8) of

layer two(see Figure 5.3). Hent:e. the pattern belonging to class 1 is decided by

how dark the block 1 and block 2 are, and how bright the block 3 and block -I are.

It can also be interpreted as:

IF ( block I is dark) AND ( block 2 is dark)

57



AND ( block 3 is bright) AND ( block -I is bright)

THE~ ( class 1 ).

That is:

If 0~2) A~D 0~2) A;-.l"D 0~'11 AND 01'1) THEN net~3)

Here the supscripts denote the layer number of the output. For example, Oj2l

means the output of the first node at layer two, and netpl means the net input of

the first node at layer three.

The above IF-THEN rule can be implemented by an .• Algebraic product" as

follows:

5.3 Fuzzy Membership Function

A crisp set is a collection of distinct objects. It is defined in such a way as to

dichotomize the elements of a given universe of discourse into two groups: members

and nonmembers. Finally, a crisp set can be defined by the so-caUed n characteristic

function n
. Let U be a universe of discourse. The characteristic function u..I(x) of

a crisp set A. in U takes its value in { 0, 1 } and is defined such that u..l(x) = 1 if

x is a member of .-l and 0 otherwise. That is.
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{

l if and only if :c E .-I.
UA(X) =

o ifandonlyifxft.-l.

[t is noted that the boundary of set .4.. is ril1;id and sharp and performs a two-

class dichotomization (i.e., I E .-\ or I ¢ .-I.). Besides. the universe of U is a crisp

.-\ fuzzy set. on th.e other hand, introduces vagueness by eliminating the sharp

boundary that divides members from nonmembers in the group. Thus. the transi-

lion between full membership and nonmembership is gradual rather than abrupt.

Hence. fuzzy sets may be viewed as an extension and generalization of the basic

crisp sets.

A fuzzy set .~ in the universe of discourse CJ can be defined as a set of ordered

pairs.

." ~ (Ix. "A(x)) I x E U}.

when' !.I A(.) is called the "membership function" of .~ and 'u..i(x) is the degree

of membership of x in .-t, whicb indicates the degree that .t belongs to.4.. The

membership function uA(.) maps U to the membership space ,H, that is, u,i : U-t

Al. For fuzzy sets, the range of the membership function(Le.. 1"1) is a set on the

unit interval [0, IJ.
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At layer two of the proposed fuzzy neural network, the net input to each neuron

is 6rst obtained by using the normalized weighted sum of the output from layer one.

Then the activation function, which is the fuzzy membership function here. applies

to the net output of each neuron at layer two. Thus, the output of each neuron

at layer two represents the degree of darkness or brightness of the corresponding

block. :\s discussed before ( Figure 5.2 ), if the weighted sum of outputs from

layer one approaches to 1, which means the block one is relatively dark. and the

degree of darkness is high, but the degree of brightness is low for block one. On

the contrary, if the weighted sum of outputs from layer one approaches to O. the

block one is relatively bright, and the degree of darkness is low. then the degree

of brightness is high. Furthermore, from the analysis of the above relationship

between the input and output of nets at layer two, it is noted that the relationship

is non~linear. The neuron with different order. which reflects the position of the

corresponding pixel, has a different effect on the 6nal output. This is because the

boundary pixels near to the block 2 and block 3 have a higher effect on the result

than the pixels inside the block 1. The proposed fuzzy membership function is

shown in 6gure 5.6.

The mathematical representation is:

fd(net) =e-a .(nd-l)l

and,
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OUTPUT

fb(x)

INPUT

Figure 5.6: Fuzzy membership function

f~(nd) = e-,,·nd
l

The output of node j at the second layer is:

0'1 =!(net,,)

Here. the function f is either fJ or f. according to the pattern of the neuron

at layer two, the function f~ is used to measure the relative darkneiS. and the

function f. is used to measure the relati\"E' brightness. The value of parameter a is

chosen to be 16 based on experimental results.

The following equations correspond to block one:

apj =f<l(netpj)

0,) = f,{net pj )

for neuron.-\

far neuron B

A similar concept is applied to the other seven blocks.
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Figure 5.7: Three categories of learning

(a) Supervised learning. (b) Reinforcement learning. (e) Unsupervised learning.

5.4 Training Procedure with Learning Algorithm

A very important issue in specifying an artificial neural network(ANN) is the learn­

ing rules. In general, learning rules are classified into tnree categories: supervised.

learning, reinforcement learning, and unsupervised. learning (see Figure 5.i). In

this research, a supervised learning based on the BP (error back propagation) al­

gorithm is applied. on the training procedure of the proposed fuzzy neural network.

Additionally, the general delta rule is used for weight updating.
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5.4.1 Training data

In supervised learning mode (see 5.7(a)), the neural network is supplied with a

sequence of training samples, (xitd~), (x;,d~), ... , (It,d:), ... , of desired input-

output pairs. When each input Ii: is put into the network, the corresponding

desired output d: is also supplied to the network. The difference between actual

output Yt and the desired output d: is measured in the error signal generator which

produces error signals for the network to correct its weights. In such a way. the

actual output will move closer to the desired O\ltput. The input of the training

data of proposed network is a set of typical edge patterns. Each edge pattern

has 36 pixels represented by their grey values. Therefore. the input vector has 36

elements and is written as:

A, = {A(a.a)..4(0.1)..,. A(5. 5J}

Here A" corresponds to the input of p-th sample.

However, the input to the network has been changed after adaptive fuzzification

and window division (called. pre--processing) applied on it. Let I, = (lplo 1.1'2, ... , [pi)

( i = 1,2, ... ,60) represent the actual input of the network after pre-processing.

According to figure 4.3 and flgure 4.6, bere

f" ~ 1,(.4(0,0))

f" = f,., = 1,(.4(0,1))
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Figure 5.8: Eight principle orientations

I"., =I", =1,(.4(4.3))

j .. is the adaptive fuzzy membership function shown in figure 3.7.

The desired output consists of ten elements corresponding to ten classes. Con-

sider the center grid ( or edge element) in a window, its direction can be coded into

eight principle orientations ( see Figure 5.8 ) and two non..()rientations representing

the dark window and the bright window.

Each edge element can be represented by a set of values as follows:

where the superscripts denote the orientations. For example. "c"' denotes

.. east ~ ... oe" denotes .. nartheast n, .. d n denotes .. daTk ~ , and" b" denotes .. bright" .

Each element in tile set has a value in [0,11 which represents tbe fuzzy measure-.

ment oCthe classification. If the given sample (assuming pth sample) has an output

below, it means that the edge pattern with north orientation has 0.9 certainty, and
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the edge pattern with northeast orientation has 0.6 certainty, etc..

In addition to represeoting training data in desired input-output pairs. it is

required that training data be sufficient and proper. However. there is no procedure

or rule suitable for all cases in choosing training data. One rule of thumb is tbat

training data should cover the entire expected input space and then during the

training process select training-vector pairs randomly from the set. In this research.

forty typical edge patterns are first used as training samples. The recognition

ability of this trained network is very good to detect edge images with little noise.

Because only four samples are used for each class on a..·erage, these forty training

samples are not enough to cover the most cases of the input-output space. Hence.

thf' performance of the trained net....-ork is not satisfied when it is used to detect

edges in noisy images. especially when noise in images is more than 30 percent.

The input-output space is increased gradually by adding 10 training samples at a

time. After 120 typical edge patterns are used. it is found that the performance of

the trained network has no improvement.

5.4.2 Weight updating

One of the basic entities to specify for the chosen model of neural network is the

learning rules for updating the connecting weights. The weight updating in this
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research is based on the generalized delta rule formulated by Rumelhart. Hinton,

and Williams [871. In general, the actual outputs {Opk } will not be the same as

the desired value {tpd. For each pattern, the square of the error is:

The procedure for learning the correct set of weights is to vary the weights in

a manner calculated to reduce the error Ep as rapidly as possible. The weight

learning is carried out for the sequence of the patterns, one at a time. That is.

the weights are changed immediately after a training pattern is presented. The

convergence toward improved weights is achieved by taking incremental changes

6Wk} proportional to -8Ep/fJwkj , that is:

Here, 'I is the learning rate. The learning rate is an important factor that affects

the effectiveness and convergence of the BP learning algorithm. A large value of

'I could speed up the convergence but might result in overshooting, while a small

value of 'I has a complementary effect. The best value of the learning constant

at the beginning of tne training may not be good at tbe end of training. Usually.

values of rj from loJ to 10 have been used successfully for many computational BP

experiments.

Based on the structure analysis of the proposed fuzzy neural network, the
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weights between layer two and layer three are unity. So the weight updating rule

derived here is to update weights between layer one and layer two. Let £11) be tne

error of neurons at layer two ( the superscription represents the record layer ), and

the partial derivative be evaluated using the chain rule. That is:

(5.1)

As the netp1 is the input to the p-th neuron at the layer two. and it is the

normalized weighted sum of all the outputs from the layer one(see 5.2.1). that is:

(5.2)

(5.3)

.-\pplying chain rule again to the partial derivative 8E~1) /8net p1 yields:

(5.4)

Because the output Op; is the output of the neuron j after fuzzy membership

function f (Ill or h) is applied on the neuron input, therefore,

(5.5)
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where I(net) represents the membership function I", I,,(net) = e-··(nd-I)',

(see section 5.3)

That is:

For those neurons which measure the darkness of the corresponding blocks. the

(5.B)

(5.9)

When I(net) represents the membership function Ib, h,(net) = e-a.nej~. (see

section 5.3)
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That is:

(:l.ll)

Hence. the equation (1) can be written as:

For those neurons which measure the brightness of the corresponding blocks.

the f'(net pj ) uses J~(netpj)'

(5.14)

(5.15)

Therefore the rule for weight updating is:
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Uiji(t + 1) == Wji(t) + 6wj;(t) (5.16)

If neuron j measures the darkness, 6wj;(t) will be calculated using equation

5.13. If neuron j measures the brightness. 6wJ;(t) will be calculated using equation

5.15.

5.4.3 Training procedure

The designed training procedure is based on the Back-Propagation algorithm. For

a given input-output pair. the BP algorithm performs two phases of data flow.

First. the input pattern is propagated from the input layer to the output layer

and. as a result of this forward flow of data. it produces an actual output. Then

the error signals resulting from the difference between the desired output and

actual output are back-propagated from the output layer to the previous layers for

them to update their weights. The training of proposed fuzzy neural network can

be outlined in the following steps.

Input:

According to the discussion in 5.4.1. a set of training pairs are represented as

{(A"t,) Ip= 1,2 ..".n) .

.4, ~ {A(O,O) ..4(O, 1), ",AI5,5)) and

Here Ap corresponds to the input of the ~th pattern, and tp is the target output
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after classification.

Step 1: Initializt1lion

Choose a learning rate 1j > 0, a maximum acceptable system error. and an

individual acceptable error ofeach training vector. Initialize the weights to random

\<llues in (0,1) and set:l ma:cimum acrcptablc iteration value.

Step 2: Pre-proce3$ing

This procedure accomplishes the adaptive fuzzification and window division.

Based on the section 504.1. /, = (/,1.1,2 .... I",l ( i = 1. 2..... 60 ) fuzzy values are

obtained as the actual input of the network.

Step 3: Calculation from layer one Io layer two:

This is a feedforward calculation procedure. First. each weight is normalized.

then the Det input is computed as a weighted sum of outputs from the layer one.

That is:

WJ.= r.~::iWJ' and. net'J = ~ wJ,/,. (S.li)

The activation functions used here are the two different fuzzy membership

functions(f~ or fill depending on whether to measure darkness or brightness.

Hence, the output of node j at the second layer is:

(5.18)
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Step 4: Calculation /rom layer two to lay~ Ulru

This is a feedforward calculation procedure too. Based on the discussion at

section 5.2.2, the net input to a neuron at la}-er three is the product of the outputs

of neurons at Ia.yer two which nave connection with the neuron (reference to the

figure 5.1).

That is:

(5.19)

(5.20)

and.

The activation function for the neurons at layer 3 is:

(5.21)

(k ~ 1,2.... , 10) (5.22)

Step 5: Output error mea.sun:ment

In general, the outputs Opt. will not be the same as the target value tpk' For
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each pattern, the square of the error is:

and the average system error is:

E = ,fp L L(I,. - 0,,)'- , .

(5.23)

(5.24)

From the structure of the proposed network, it is noted that each unit at layer

3 connects with four neurons at layer 2. The error of each neuron at layer 3 comes

from these four neurons. Besides. each neuron at layer 2 only has one connection

with layer three. To simplify the error back-propagation from layer 3. the error of

each node at layer :2 is approximately set as:

(5.25)

Applying chain rule to the partial derivative 8E~2)/ao"J yields:

~ _ 1 8Ep __ 1 8Ep BOp/<
80pJ - 4" 80pJ -- 4" 80pk ao,,)

8Ep /aop/< can be written as:

(5.26)

~OE" = 8(1/2 [~;r-Opol,)"l) = t pk - Opk (5.27)
v pk pk
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The 8Op/<j80pj can be written as:

(5.28)

Here, C t is the product of the outputs of the corresponding three neurons

which arc a.long with the jth neuron at layer two to be eonncetccl to the kth

neuron at layer three, For example, when k = 1. for net~~l (see fomu[a 5,19).

Ct = O~;) * O~) *O~l.

Therefore. aE~1) jaOPJ can be finally written as:

(.5.29)

Step 6: Weight updating

This step is to propagate the errors backward to update the weights. Based on

the discussion at step 5 (see equation(5.29)), the 6wj.(t), which is used to update

weights between layer one and layer two, can be written as:

if neuron j measures the darkness.
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if neuron j measures the brightness.

Step 7: Training termination check

After the whole set of training data has been presented once. if the error Ep

is acceptable small for each of the training vector pair (input pattern - expected

result), or the average system error is ac<:eptably small, or the acceptable iteration

value is reached, the training will be terminated. Otherwise, initiate new training

by going to step 3.

5.5 Edge Detection by Trained FNN

After the FNN is trained. it can be used for edge detection through the following

steps.

Step 1: Input an image which is represented by an J.,J x N matrix.

04= (.«O,O), 04(0, 1), ... ,A(m - 1, n - I)}

.-\ size 6 x 6 window is then applied on the image as discussed in 5.1.1. therefore

the number of total patterns for an m x n image is 1= (m - 5) x (n - 5).

Step 2: ( Detection): Apply the adaptive fuzzification to the p-th pattern to
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obtain tbe net input I, = U,\> 1;2' "', 11'60)'

Step 3: Calculate the output of tbe p-th pattern at layer 2 ( the same

procedure as the step 3 in 5...1.3 ).

Step 4: Calculate the output of the p-tb pattern at layer 3 ( the same

procedure as the step 3 in 5AA ). Ten output values corresponding to ten classes

are obtained.

Step 5: Store the above ten output values to corresponding map files re-

spectively. For instance. output 0'1 will bE' stored to map file 1 which corresponds

to class 1.

Step 6. Check if the whole set of patterns has been processed. If p < I. then.

p = p+ 1and go to step 2. Otherwise. the detection is terminated and ten map files

corresponding to ten edge maps are obtained. Two maps contain the infonnation

for non-edge elements. Eight maps stored the edge credits for each orientation

used for edge enhancement.

For an n x n size image, when applying the pre-processing procedure. Adaptive

Fuzzification and Window Division, on the image to get the inputs for FNN, there

are (n - 5) x (n - 5) patterns generated. For each pattern, we need to re-order

the sequence of pixels. The computation comple:<ity is constant since the window

size is fixed. as 6 x 6. Therefore, the computational complexity to finish the pre-
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processing procedure is O(n'). When using a trained FNN to detect edges in an

n x n images, to obtain each pixel on one of the output maps, it takes constant

time to do the calculation. Hence, the computation complexity to generate ten

output maps is 0(11').
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Chapter 6

Edge Enhancement By Hopfield

Neural Network

Hapfield networks are widely employed in the area of solving optimization prob­

lems. The key problem is to formulate an optimization problem with a proper

energy function that can be used to construct a Hapfield network. After obtain­

ing edge maps by using the fuzzy neural network, there are some noise and edges

missed on the maps. In this chapter. a modified Hapfield neural network is con­

structed based on constraint satisfaction and competitive m~hanism. The purpose

is to enhance edges in edge maps, remove noise and recover missing edges. Several

factors should be considered. such as what kind of information contributes to input

edge maps, what type of edge structures are stable, and how to update the edge

measurement to approach the final result.

78



6.1 Generate Input Edge Maps

At the edge enhancement stage, first of all, for the whole edge map. there is no way

to design an energy function which rovers all directions in the map and can a.lso be

minimized. Hence, eight Hopfield networks are designed to enhance edges in the

Pight orif'nti\tions, ('ast. west. north. south. northeast. northwest. southeast and

southwest, respectively. After the first stage, edge detection. there are ten credit

maps obtained from the fuzzy neural network. Eight edge credit maps contain the

edge measurement corresponding to eight different orientations. and two credit

maps contain the non~edge measurement. Therefore. the first stage provides the

information which can be used to generate the input edge map to the Hopfield

neural network. Suppose a k )( k window is adopted to build the Hopfield network

(in tbis research, window size is 7 x 7. reason gh'en in 6.2), after considering edges

with aJi different orientations together. there are five possible stable structures of

a window:

1. an edge through the window.

2. a corner formed by two edge lines,

3. an intersection of edges.

-I. no edge in the window. and

5. a combination of the first three cases.

Because it is difficult or impossible to find a configuration of a Hopfield network
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Figure 6.1: ~latrix representation of input edge map

for minimizing an energy function to cover all the possible stable states if all

different orientations are considered. together, eight input edge maps need to be

constructed to correspond to the eigbt orientations. Let an input edge map (eg.

the nonh input edge map) represented by an .\l x .V matrix B (see Figure 6.1).

To generate tbe input edge map with one orientation. several credit maps ob-

tained from F:iN will be used. For example, to build the input edge map with

nonh orientation, not only the edge credit in north orientation needs to be consid·

ered, but also the edge credits of the adjacent orientations need to be considered.

(see the cases in Figure 6.2(c),(d)). Besides, if there is very small edge credits in

the above three orientations, the non-edge credits have to be considered because

there exists the case of no edges in some part of the input map. The edge pattern
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in a window can be stable as tbe figure 6.2 shows. Therefore, three maps wh.ich

correspond to north., north.east, and north.west orientations, and t....,o maps which

consist of non-edge credits are used to build the input edge map to the Hopfield

network in the north orientation.

III g~lll;'ral, tUI;' pruceuurl;' to gl;'llerate an iUlJut map fulluws:

Step 1. [f the largest value of output from the F~N is the node corresponding

to the orientation under consideration. tnen the edge credit value is taken into the

input edge map ( Fig. 6.2(a) ).

Step 2. If tne largest value of output from FNN is tne node corresponding

to the adjacent orientation under consideration and there are not more than two

elements adjacent to this node in the same orientation, then the edge credit value

is taken into the input edge map ( Fig. 6.2(c),(d) ).

Step 3. If the largest value neither comes from the orientation under con­

sideration, nor the adjacent orientations. but there is an edge credit value for the

orientation under consideration. then take it into the input edge map. Otherwise.

the largest value of output from non-edge maps is negated and taken into the map

(Fig.6.2(b)).
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••t,) (b'

••(c) (d)

Note: The QITOW poinu out the orientation of tdge element. the circle mearu the
credit of edge element come.! from non-edge output map".

Figure 6.2: Relative edge structures in north orientation
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6.2 Stable Structure of a Window

As the entire stable structure is not predictable, depending on the current image,

to design such a neural network \1..ith an energy function for a whole image is

impossible or impractical. However. it is noted that the influence is very small

between two distant elements. Hence. when a IX 7 window is applied on the image.

the elements under consideration are only those which are inside the window. The

correlation between the central element and the element outside the window can

be ignored without affecting the noal result because the distance between those

pixels is more than three pixels so that the influence between them is very little.

Analyzing the possible stable edge structure in the north orientation. the window

is stable if it is in one of the cases shown in figure 6.3.

A similar analysis can be used when the other orientations are considered.

Therefore. it can be concluded that the window is stable if it falls into one of the

following three cases.

1. an edge with the orientation under consideration through the window.

2. an edge with the orientation has an endpoint in the window. and

3. no edge in the window.
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••(,) (b)

••'oj (d)

Figure 6.3: Stable structures in north orientation



6.3 The Energy Function

Typically, when. using a Hopfield network to solve optimization problems, the en­

ergy function of the network is made equivalent to a certain cost function that

needs to be minimized. The search for a minimum energy performed by the Hop­

field network corresponds to the $Carch for a solution to the optimization problem.

The edge enhancement here is to obtain the complete boundary of objects in 2-D

image with noise removed and missing edge filled up. Hence, the key work pre­

sented in this section is to formulate a proper energy function that can be used

to construct a Hopfield network. The creation of the energy function is based

on a constraint-competitive mechanism. According to the stable structure of the

window discussed above, the energy function for the north orientation should be

constructed which favors states that:

1. have each row only one +1 and other all ~1, or, have all·1 in all rows:

and.

2. have all-lor +1 in a column:

Here. value "~l" is an edge credit for the element which is definitely non-edge,

and value "+1" is an edge credit for the element which is definitely an edge.

The energy function designed to satisfy the above states for the north orienta~

tion is:



E = .4E~, E:=, Ej"'I,J)t,{Vz ., + 1){\-~J + I)

+BE~:tlE::,(\.'u + 1) - 21 2 r:;=I(\-~J + I)

+Cr::=I(E~1"~,.\-~+I.. _6)2

+DE;=I(E~1 "~ .. \-~+2 .. - 5)2

+EE::l(E~1 \-'~.,\-~+1.l- -t)2 (6.\)

\-Vhere, V represents the output of the neural cell with values ranging from·1

to + I, and A. e, C, 0, E are parameters.

The first two items ( with the parameters A and B ) are designed to satisfy the

first state. When having all -1 in all rows, (Y~ .• + 1) and (Y~.J + I) are zero. So

the first t....,o items have values zero. When having each row only one + l and other

all-1. since i #- j, either (\-~.. + l) or (\~,J + 1) will be zero. which yields the first

item is zero. For the second item, as only one +Ioccurs at each row. E:=I(\~.,+ 1)

will be 2. which makes the first term lr:l:I("~" + 1)- 2]2 be zero. Therefore. the

first two items reach their minimum zero when the edge structure in a window

is stable at the state 1. The last three items are designed to satisfy the second

state. When having all ·1 or +1 in a column, E:=1 \t~.,Vz+l.' will be 6, and the

('[::1 \-~,i\-~+l,j - 6)2 will be zero, which makes the whole item with parameter

C as zero. The same result can be obtained for the last two items. The above

analysis shows that tbe proposed energy function is able to reach its minimum to

meet the requirement of the stable edge structures in a window as discussed above.

Actually, equation 6.1 bas defined tbe system evolution law. The final result of
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the edge enhancement is obtained when certain stable edge structures are reached

after a cenain number of iterations by neuron computation. The neural network

structure has to be constructed to perform the updating of edge measurement

to approach the final result. The following will show that evolution performs a

downhill movement along the surface of the energy function. and eventually reaches

a steady point. from the energy function. the time derivative of the central unit

in a window can be derived as:

~ = -~ - A r;"l,l;lO~("~., + 1) - 8[r:"'I("~.i + I) - 2]2

-28 r:=d\'~.• + l)("~..3 + "~,.5 + 2)(L~"'l(Y~'J + 1) - 2)

-2c(\i.~ + ~S.~n:~"'l(\·~.~\~+u - I)

-2D(~1.~ + \'.~)r~",d\~.4~~+2.4 - 1)

-2E(\/u+V7.~) r~.I(\~ ..I\~ ..].4-1) (6.2)

The terms with coefficient A and B are ror interactions between the central

unit and the other units on the row. Analyzing the terms with A and B. they

are never less than zero. If the parameters A and B are set with positi\'e values.

the whole part (including the sign before A and B) will never be positive. That

implies the other units at tbe central row send signals to suppress the central unit.

The last three terms determine the interactions between the central unit and the

other units on tbe column. It is known tbat no summation in these teons wili

be greater than O. The first part determines whether the interaction should be
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inhibited or excited since the summation part is always less than or equal to zero.

Also, it is observed that the closer the unit is to the central unit, the bigger the

effect it has on the central unit. Therefore, the parameters C, 0 and E should be

set so that the term with V:1A + V~A plays a more important role for the lateral

interaction than the terms with ~2.~ + V5.~ and t 'L.~ + \;7,~. Hence. C is greater

than D and D is greater than E. All parameters in the above equation are positive.

When the system does not reach a stable state, the first parts of the last three

terms determine whether to inhibit or excite the central unit. and how strong the

interaction is. When it is close to a stable state, the second parts approach to 0

so that the exciting or inhibiting is very small. Furthermore. it can be concluded

that the terms with coefficient A and B playa horizontal suppression role and the

terms with coefficient C. D, and E play either a vertical suppression or a vertical

reinforcement role to the edge element or central unit. If suppression is strong, it

is good for eliminating false edge elements caused by noise. On the other hand.

reinforcement contributes to edge element enhancement and missing edge element

recovery.

According to the energy function. the following stable edge structures corre­

spond to the minimum energy.
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-I -l -I -l -l -l -l -I -l -1 I -I -I -1

-I -1 -1 -I -I -I -I -1 -l -1 I -1 -1 -1

-1 -I -I -1 -1 -1 -1 -1 -1 -I 1 -I -1 -1

-I -1 -1 -1 -1 -l -1 -1 -1 -1 1 -l -1 -1

-1 -I -I -1 -1 -1 -1 -1 -I -I 1 -1 -1 -I

-1 -1 -1 -I -I -l -1 -1 -1 -1 1 -1 -I -I

-I -I -1 -1 -1 -1 -I -1 -I -1 I -1 -l -I

(I) (2)

The analysis for the south orientation is exactly the same as that to the north

orientation above. .-\ similar analysis can also be applied to the horizontal orien­

tation to derive energy function at the east or west orientation as:

£ = .-t E~=l [:=1 E)='JJI'.(t<;.., + l)(vj + 1)

+BL~=l{E;=l(v; ... + 1) - 2]2 E}=I(Vj + 1)

+CL;=l(E~=, v~.zVi"'+1 - 6)2

+DI:;=dE~:l VI,..YI..r+2 - 5)2

+EI:;=I(I:~=1 \1; .... \1;...-+3 - 4)2 (6.3)

And the differential equation. which yields the update rule at horizontal orien-

tation, is:
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Figure 6.-1: Structure of the Hopfield net.....ork

-2E(V4.I+t·4.7} L~=l (V4.J: ~4.J:"'3-1)

6.4 Structure of Modified Hopfield Network

(6A)

In general, a Hopfield network c:onsisting of N units is depicted in figure 6.-1. It is

a fuBy connected network. Each node receives input from all other units. There

is no distinction between input units, hidden units and output units. Also. there

is no self-feedback in a Hopfield net.....ork.

The figure shows that the Hopfield network is a single-layer recurrent network

which performs a sequential updating process. Each node has an external input
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Ii and a threshold 8
"

where j = 1,2, ...• n. An input pattern is first applied to

the network, and the network's output is initialized accordingly. Then, the initial

input pattern is removed and the output becomes the new, updated input through

the feedback connections. The first updated input forces the first updated output:

then in turn acts as the second updated input through the feedback links and

produces the second updated output. The transition process continues until no

new updated responses are produced and the net.....ork has reached its equilibrium.

Analyzing the energy function (equation 6.1) for the north orientation, the

following edge structures do not correspond to the minimum of the energy function.

1. end·point edge in the window: 2. non-vertical edge through the win­

dow:

-1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1

It is very difficult to find an energy function to co'-er these unstable states.

Moreover, the differential equation 6.2 has tenns containing tbe product of se"eral
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outputs from the neural units. It is also very difficult to generate such products

by neurons. Hence, the neural network structure in the thesis is designed based on

both the energy function and the competitive mechanism. Actually, the result is

based on local updates to approach the global minimization of the energy function.

To clearly represent the structure of the proposed network. there is an additional

layer (called the top layer) which is required to get input from the first layer

(called the bottom layer) and to give feedback to the first layer through the weights

which are derived from the equation 6.2. The modified Hopfield network for edge

enhancement at a north orientation is illustrated in Figure 6.5.

Only the interconnections to the central unit of a 7 x 7 window (~~.~) are

shown in figure 6.5. The excitatory or inhibitory signals are not directly rrom

the neighboring units. Instead. they are from the top layer where the structural

information is incorporated by the interconnections of the two layers. The weights

(coefficients A. B,C ... ) are selected such that the neural structure reaches stable

states ror case 1 (edge through window) and case 3 (no edge in the window).

make a little change or the credit values ror case 2 (end-point in the window).

6.5 Edge Enhancement Procedure

Based on the discussion in the above sections, a Hopfield neural network is built

to enhance edges in each or the eight orientations. Hence. the algorithm has the

advantage of being able to distinguish the different types of noise and therefore
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Top Layer

(a) The weight connections for neurons at the same column

~
Top Layer /

11\ 11\ il!1\ I \
/ VB nQmu1

6

(b) The weight connections for neurons at the same row

Figure 6.5: Modified Hopfield network for edge enhancement
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can eliminate them separately. Again, taking the north orientation as an example,

the edge enhancement procedure includes the following steps.

Step!. Generate input patterns

The input pattern generation is based on the input map in north orientation

created in section 6. L A 7x 7 window is applied to the input map to get a sequence

of input patterns with forty-nine elements each.

Step 2. Initialization

It is important to choose proper parameters A. B, C. D and E. [n this research.

these parameters are trade-off determined by the current input image map. The

general rules are: 1) C > D > E, 2) A and B are less than E. 3) all parameters

are positive and less than 1. Besides. the parameter 6t, T, as well as the gain

parameter of the sigmoidal function need to be set. Also the maximum acceptable

iteration value ( ~\Ji~~Glion ) and the maximum acceptable unstable element number

( M,.n~IGbl~ ) should be decided. The initial output of neural cell \/(i,j) is set to

its input value.

Step 3. Update the edge element in each window ( Enhancement Loop)

For each window, calculate tbe new output of its edge element (\!4.4) by using

the update rule represented in equation 6.2 for vertical orientation edge enhance-
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ment. For the homontal orientation edge enhancement, the update rule Follows

equation 6.4, Depending on the way that the window applied on input edge maps

on the diagonal orientations, the equation 6.2 is also used as the update rule for

the northwest and southeast orientations, and the equation 6.4 for the northeast

and southwest orientations. Again taking the north orientation as an example. the

update procedure is as Follows.

Let '/' be the output of edge element at time t, ,,'1+1 be the output of edge

element at time t + .6t, YM be the center element beFore updating (at time t). and

.6y~.~ be the change of center element from time t to time t +.6t. Then.

.6y~.~ = I-~ - A. r:"I .•~.(V.'.i + 1) - Blr:=I(Vl.• + 1) - 21'

-2Brl"l(v~I .• + I)(V~'.3 + V{~ + 2)(r;=I(V~'J + 1) - 2)

-2C(vi.• + V"~~)[~=dV:.4v;+t.~ -1)

-2D(V{~+ v~A) r:~I(V:.~"·:+'.~ - 1)

-2E(v'tl,~ + V;',~) E~dV:,~ v~+3.~ - 1)1.6t

Thus. the new output of the center element after updating is:

The sigmoidal function is used as the activation fUlll:tion f(.).

Step 4. Calculate the number of unstable windows
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After the edge element in each window is updated once, compare the values

of each edge element at time t and time t + b.t to obtain the number of elements

which have been changed «= threshold). In this way, the number of windows

which still do not reach stable status ( NunJtGbI~ ) win be obtained.

Step 5. Termination check

If Nun,taw. < llun,I4bl. (the maximum acceptable unstable element number),

or the acceptable iteration value is reached, the edge enhancement procedure will

be terminated and the final result is stored in a file called lV/apN corresponding to

north orientation. Otherwise, going to step 3.

It is easy to see that the computation complexity to build the input maps is

O(n'2). Step 2 only uses constant time to set up the initial parameters. Since the

window size ( i xi) is fixed, to calculate the time deri\'ation of the central unit in

a window by using equation 6.2 or 6.4 only costs constant time. Hence. the time

to compute all edge element in an n x n input map is O(n'2). Step 4 is a simple

comparison procedure, which only takes 0(n2
) time to do it. To sum up tne above

analysis, the computational complexity of the proposed Hopfield neural network

for edge enhancement is O(n2 ).

After applying the above procedure to edge enhancement at each orientation,

eight enhanced edge maps are obtained. let Z;j represent the element in the final
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assembled map, and 1If;, ~, ... , ytrWbe the elements corresponding to the eight

map outputs Map'v, l\-tar, ... , Map''Vw. Then,

The value of each element in the edge map is the edge credit in (1.-11. [t is

necessary to represent each element in edge map by its grey value ( Gi] ) so that

the edge map is able to be displayed through a computer. The transferring can be

done by the following rule:
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Chapter 7

Conclusions

7.1 Experiment & Result

In this thesis. a system for edge detection and edge enhancement has been pre­

sented. The input to the system is a digital image. In the pre-processing ph.sse.

the samples used to train the proposed fuzzy neural oet",,-ork are adaptively fuzzi­

fied first. Hence, the number of learning samples is reduced significantly. .\fter

carefully anal)'2ing the properties of the typical edge patterns, two different win­

dow division approaches wefe used corresponding to two types of edges, edges with

horizontal and vertical orientations, and edges with diagonal orientations. Taking

advantage of the window division, the structure information was taken into con­

sideration in the fuzzy neural network design so that the proposed fuzzy neural

network is powerful enough to accomplish the edge detection aher training.
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The proposed fuzzy neural net\\'Ork is a three layer feedforward network which

is capable of handling uncenainty or impreciseness in the input representation.

The inputs of the first layer represent the darkness or brightness of pixels of the

given pattern. The neuron output of the second layer measures how dark or bright

the corresponding block is..\nd, the neuron outputs of the third la~-er decide the

certainty that the pattern belongs to each class. The proposed learning algorithm

can be viewed as an extension of the BP algorithm in the case of inputs represented

by the gray values of input pixels and fuzzy target outputs.

The proposed Hopfield neural network is constructed based on constraint sat­

isfaction, which is represented by energy functions. and a competitive mei:hanism.

The eight orientations are considered separately. Each energy function is built

according to the stable structure of the window in the considered orientation. The

window reaching its stable structure yields the minimization of the energy function.

The system has been implemented using C language and simulated on a Sun

Sparc workstation under the Unix operating s)'Stem. The fuzzy neural net\\'Ork

has been trained by gradually adding typical edge samples until the performance

of the system had no funher improvement after 120 training samples were used.

Then tbe system is used to detect edges in images. The statistical results of tbe

system performance on a significant test data set is shown on Table 7.1. Three

criteria are taken into account:

1. Edge localization error: an edge pixel detected with a location error 0 :5
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e; :$ 2 pixels from the true position of the edge pixel in the ideal image is

considered being detected "normally" with the location error ei. The variance

of e; gives a measure of edge localization error.

2. False edge error: an edge pi.'Cel detected with e; > 2 is considered as a false

edge. The ratio of "number of false edg{' pixels/ total number of edge pixels"

measures a false edge error.

3. Missing edge error: an edge pixel which is not normally detected is considered

as a missing edge pixel. The ratio of "number of missing edge pi.'Cels/ total

number of edge pixels" measures missing edge error.

Number of Edge localization False edge yIissing edge
Training Samples error error(%) error (%)

6{) 0.0355 3.12 6.58
80 0.0128 1.47 4.61
100 0.0097 086 4.35
120 0.0094 0.84 4.31
140 0.0094 0.84 -1.31
200 0.0094 0.84 -1.30
500 0.0094 0.84 4.30

Table 7.1: Statistical result of the system performance on a test data set

The proposed. system was also tested. against a set of images witb additive ran-

dom noise and non·uniform illumination. It detected. the edge elements effectively

in the eight orientations. Compared with the other edge detection operators, such

as different masks, the proposed fuzzy neural network works better (see Figure
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7.1).

Based on the good results produced by fuzzy neural network, a set of efficient

edge maps WCfC obtained so that a better final measurement is able to be achieved

by using these maps to form the input of the Hopfield network. Compared with

other typical edge extraction methods. such as the optimal difference recursive

filter (DRF). the first derivative operator for symmetric exponential filter (GEF).

and the second derivative operator for symmetric exponential filter (SDEF), the

proposed system also exhibited a better performance (see Figure 7.2 and Figure

7.3). Some other demonstrations are attached in the appendix.
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(a) Original noisy image

(c) using xv package

•(e) using Prewitt mask

(b) using proposed FNN

•(d) using Rebert lIlask

(f) using Sobel mask

Figure 7.1: The demonstration of the test image(l)
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••(a) using DRF method (b) using GEF meth.od

••(c) using SDEF method (f) using proposed HNN

Figure 7.2: Comparison of the results of edge enhancement by using ANN and
other methods
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(a) The original image

(e) using SOEF method (r) using proposed s)'stem

Figure 7.3: The demonstration or the test image (2)
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7.2 Contributions and Remarks

1. Different pixels with the same grey value may represent relati\'ely dark in one

window, and relati..·ely bright in the other window. For those windows, baving the

same edge structure, but lh.e values of pixels inside each. window in different ranges,

adapth"e fuzzification makes the pixels measured br the degree of darkness based

on the local window. Thus, the patterns with the same edge structure. but with

different grey values, will look like the same pattern after adaptive fuzzification.

This cuts down the training samples significantly.

2. Knowledge of the structure of edge patterns is taken into account by using

window division techniques as discussed in chapter 4. The fuzzy neural network

design benefited by fully using the structure information after window dh·ision.

3. The artificial neural netv."Ork approach. ha\'ing adapth-e and learning abil·

ities and a bigh-speed parallel structure, combined with fuzzy logic t!leery and

having tbe ability to process uncertain or imprecise information, fonns a fuzzy

neural network which has achieved a more powerful tool for edge detection. The

experimental results and comparisons have shown the suc<:ess of these combina­

tions.

4. Many combinatorial optimization problems can be solved by Hopfield neural

networks. The solution lies on tbe exploration and representation of constraints.
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When the neural networks are properly constrained by tbe energy function. ac­

ceptable solutions can be found. The image edge enhancement in tbis researcb

supports this point.

5. The original gray-level tested images are degraded and corrupted by l5 %

to 35 % additive random noise and non·uniforrn illumination. At the first phase.

the fuzzy neural network detected edges in the given images. The classification

is \'ery good compared with other edge detection operators. Though noise can

be viewed.. it is comparatively small. At the second phase. the Hopfield neural

network enhanced edge image by filling up missing edges and removing false edges

caused by noise. From the experimental results shown. the proposed system is able

to handle noise properly at each stage.

7.3 Directions for Future Work

Although the proposed system for edge detection and edge enhancement "'"Orles \'ery'

~'ell. more research is needed to further imprO\"e the perfonnance of the system.

7.3.1 Thinning of edges

Post·processing could be applied on the final image. One possible method of

thinning can be achieved by using the morphological approach. One basic mor­

phological algorithm discussed in [22] is a "tbinning" algorithm. The proass is to
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thin A (an image) by one pass with a structure element B\ , then thin the result

with one pass of B2 , and so on, until .-t. is thinned with one pass of Bn • The entire

process is repeated until no further changes occur.

7.3.2 Recovering consecutive missing edge elements

Some missing edge elements arc not interpolated well, especially when they occur

in more than three consecutive spatial positions. When the neighboring pairs

were considered in chapter 6 to derive the updating rule. only those elements

wh.ich are one row or one column far from the center element were taken into

account. Therefore, a possible technique to overcome this is to extend the range

of neighboring elements of the center element.

7.3.3 Improving the fuzzy neural network on classifying

the intersection of edges

From the experiment result (see rigure 7.1), it is observed that sometimes the

intersection of two edges was classified as a dark pattern or bright pattern. The

reason is that when this happened, there are t.hree blocks which are relatively dark

( or relatively bright) and the oth.er one block is relatively bright ( or relatively

dark ), the fuzzy neural network will then output high credit to one of the non-edge

classes. One possible method to solve this problem is to add one new edge pattern

(class) corresponding to the intersection case. If the neural network is trained by
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using a set of edge intersection samples, then the neural network snould be able

to classify tbe intersection of edges.

7.3.4 Finding more effective energy function

The major problem with the Hopfield neural network appears to be the local min­

imum problem. That is, the solution reached does not represent a global optimal

solution to the problem of energy function minimization. In this research. the

energy function derived is based on the stable structures for a window. However.

it did not cover the cases when there is an end point inside the window. The ma.x­

imum number of unstable windows was considered in checking the termination

conditions for the updating. Therefore. the energy function should be improved to

better reflect the constraints of the stable states so that the network stabilized on

a. class of good solutions.
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Testing results
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