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ABSTRACT 

To soh'e problems such as trame OOIlges!ion, air pollution, overreliance on the 

automobile, limiled access to lransit and reduced social interaction which al\: often 

associated with post-war suburban neighbouThood design, sc~eral new neighbourhood 

designs have been proposed, including the neo_traditional (New Urbanism) and the fused 

griddcsigns, This stooy cxamincs the influence ofdiffcreot neighbourhood designs on 

daily trip pancms in urban neighbourhoods using agem-based wmpUler simulalion. An 

ag(:nt based neighbourhood level trdffic simulation model. together with the associated 

software is developed, and the model is calibrated based on maps and dala from Ottawa, 

Ontario, With cOn!idcr~tiun of ]X:rsonal characteristics, preferences and feedbach 

betw",,:n ".,dcstrian and aUlornobilc trallic, the model combines the advantages of utility-

based.aetivity-bascd and constraint-based approaches. and pro\'esable togcn craIe 

realistic trippattcms. upi.";ments are carried out usingthecalibralcd modcltoexplol\: 

Ihe influence ofdiffcren! types of neighbourhood design as well as the influence of 

dctaileddcsign features such "s,hca,'aiIJbilityof]X:dcslfian-onlyroutcs and the location 

of facilities. Results from the experiments show that the noo-traditional and fused grid 

designs arc generally pcdeSlrian friendly, with fewer crossings, Icss walking diSlancc 10 

facilities.lcss trallic and cxposurc 10 pollution and morcsocial interaction opponunities 

forpcdcstrians: bol some of thcsc advantages also dcpcnd on the spccifie impleme ntation 

The study shows the promise of a meso-Ie"el approach to urban and transportation 
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CHAPTER 1: INTRODUCTION 

With a majority of the population li" ing in urban areas in North America and 

Europe. and fast growing uroan populations in other parts of the world. urbanprobk'TTls 

have bt.'(;ome one of the most important phellOmena directly related to our daily lives 

ProblcmssuehastrafliceongC'Stion.parkingavailability.airpollution and grccnhouscgas 

emissions. access to publie lransit and othereommunity facilities. ando"crrc1ianec on 

automobiles dircctly inOucncc our life patterns and quality of life. These seemingly local 

phenomena arc also directly related to global issues such as climate change and 

sustainable development. Various eIToru have bt.'Ctl made to improve thc situation. with 

meaSUreS such as increasing the ""ailability of public transit and community facilities, 

diseouragingpri"ateearusethroughdiffcrcntfoTlllsoffccsor~es,andmakingmore 

energy efficient and environmentally friendly cars. Still, uman and lran~ponalion 

planning is by far the most direct and influential approach. It is broadly rcrognilCd that 

land use and transportation inter""t with each other, and thaI land lISC, transportation 

facilities and city rcsidents fonn a complcx syslem. An integrated planning approach is 

needed for such a systcm. Intcgrated land usc and lransportalioo planning h .. bttn in 

cfTe<:tinvariousarcas,alongwithintcnsiverescarehinlhisficld(Timmcnnans,2003) 

Uroan neighbourhoods ",e the basic unitsofcilics. Aseily rcsidcnts spcnd most of 

Iheirpcrsonal life inside rcsidential neighbourhoods, neighbourhood desig n. arc also 

diroctly related to daily life patterns and quality of life. The design of an urban 

ncighbourhooddircct lydetcnnincs ils local road nc\works and facilily locations,diroctly 



influrnccs ruutcchoiccs and facility attessibility for local residents a ndindiroctly 

inflk>CDCeschoiccsoftransponmode, Local stn.'Ctsplayan important part in daily li,'es 

They ar<: not only roads fordri,·ing.walkingandc~cr<:ising. bUlalso imponant places for 

'KlCial inlcractionbetwccnlocalresidcnlS. TI1us. ncighbour~ooddcsi8llisancssemi al part 

of integrated land usc and transportation planning 

Neighbourhood design has been evolving to ,uit the needs of the limes. Before the 

aprcaranccofrcrsonal automobilcs. the grid layout was thc most pr<:va!cnt ci tyandstrect 

layout plan. Such a layout is simple 10 design. y .. 1 p,o.'idcs Kood accessibility for 

pedestria", to access facilities and (later) strcc1 cars. Since the beginning of lhe 20" 

century. with rcrsonal automobiles more widely used, layouts that suit the n .. 'Cd, of 

automobile owners began to be implemented in newly developed suburnan areas, These 

layoutsoftcn feature large blocks. low dcnsitics. scparation ofresidcnlial and O1her land 

uses. and cxtcn.i,·e uSC of cul-de-sacs and hierarchical .treet systrnts , Sincc thc 19805. 

with more focu~ on and better understanding of existing urban problems, many neW 

desi8lls and theories have been proposed, The compact city theory. neo-traditional 

neighbourhoodde>'ciopments. and the n...:entlyproposcd fused griddesig.n. all claim to be 

able to soh'cccrtain urban problcmsassociated with the automobilc-oricnted dcs igns 

Evaluation .nd modell ing of urban plans and neighbourhood desig", havebt...,n 

im",,".nt research fields in urban studies. with the latest attempts being modelling 

sustainability in Canlldian cities using integrat .. ..! urban models (Hatzopoulou and Miller. 

2006; Maoh and Kanaroglou. 2006; Behan 1'1 ai, 200M). While different planning 

approadcs have been c.plored along with related projttts and simulation models. the 



maj<.>rity of these modcl~ focus on the regional or metropolitan scale, with little or no 

consideration of individuals and local procC'Sses_Comparisonsofneighbou rhooddC'Signs 

and theirinnucnce have also bccn carried wt for various placC'S. But most of the existing 

li leMurc in Ihis field relics on aggregale or macro-scale simolation, simulation Ihat 

ignon.", person.1 preference and choice, deseriplion Or ,tatiSlical analy.is (Boamci and 

Crane,200la,2001b). 

Like cilies, neighbourhoods are also complex syslems. wilh local residenls acting 

on their "wn intentions and de<;isions, and interacting wilh each other in the transportation 

systems. While traditi"nal research methoos like aggregate statiSlical analysis and 

equation-based mclhooscan be used to analyze certain aspccts ofsoeh a eom p1cxsystem, 

Ihcy often fail 10 explain many essenlial asp<.'Cls such as local interacti"ns, feedback 

proccsscs,andemcrgcnceandbifurcationbeha"iour_FMabetlerunderslandingof,uch 

an individc.al-based system, an individual·based research appr<.>ach which focu",,", on 

bou"m·op processes and local dynami c~ sh"uld be taken_ The aggregate and macro-scalc 

approlldC'Slhatareuscdinm<.>Stcxistingstlidicsnol"nlylimitlheundcrstanding of local 

dynamics inside Ihe neighbourhood, but also make it impossible 10 evaluale newly 

proposcdthe<.>riesl ikc the fused grid design, for which n<l real-w"rldaggrcg.lcdalanre 

A suilable individual-based resean:h approach is agent·based modell ing (ARM) 

In an agcnt·bascd modc1,agents, through Ihcir own characteristics and inl entions, and by 

gdling informatioo from the environment, ma~e their own decisions_ The rolle<;1ive 

outcome of these decisions fnons Ihc d)"t1amics of the whole system. Agent.based models 



have been widely used in urban and t",n,(>Onation simulations, but most models focus on 

either automobiles on the highway system, or pedestrians in an enclosed environment (for 

cxample,.tn,cts. parls. rooms, building', and underground passages) 

In this study, an agent.bascdmodd is proposcd to.imulatc both automobile and 

pedestrian movemems in urhan neighbourhoods, with emphasis on pedestrian mo,'cmcnt~ 

and the associated benefits or risks. The model is designed to discover how 

neighbourhood desi!:"s in(luenee route and mode choil": of local residents, how the 

wilccti"e outcome of individual choices in(luenccs trip and t",flie pattems, and ho" 

thcscpallcrnsinlum influencceCTtain aspc<:tsofrcsidents' daily lives such a, h calthand 

socialop(>Ortunilies, 

The thesis is organized into the following chapter.; ; Chapter 2 provides an 

introduction and a litcralUre review of the evolution of neighbourhood dcsi!:"s, the 

cx istingre>CdTchon how neightJourhooJ dc,igns in(lClC'\cc different a<pectso fu,b"nlife. 

and Ihe existing .pproaches of modelling cities and trans(>OrtationssySlcrns. Chapter 3 

explains the underlying methodologies oflhis study, Chapter 4 dcscribes the process of 

building a softwarc platform that is ablc to carry out neighbourhood levd transportalion 

simu lation using trip survey data and GIS map' , In Chapter.; 5 and 6. a model based on 

thesoftwarcplalformas"'ellas dataandmapsfromlhecityofOttawai,pr~edand 

ca libratc<;i. The model is then used in Chapler 7 to compare four types of neighbourhood 

designs including traditional grid, posHvBrsuburban, nco-I",ditionai dc,'clopmcnt and 

fused grid. Conelusionsand fUT\herrcscan:hdircctio",arc discussed in Chal' terS, 



CHAPTER 2: LITERATURE REVIEW 

2.1 EVOLUTION OF NEIGHBOURHOOO FORMS 

A cit{s fonn and structure change with its devciopment, growth and expansion. 

The fonn and structure ofils residential neighbourhoods also change OVC'f lime. Cities in 

North America share a more or less similar pattern of cbangc. The traditional grid design 

(Figure 21) titS the age of streetcars. when cities expanded along the routes of the 

streetcar systcms. Whilc it is suggcsted that the grid design waS applicd pri marilybccausc 

the grid design made it easier to survcyand reeord d .. ..,dsand cnablcd the land o",n .... to 

divide an arCa into as many lo\s as possible (Ryan and McNally. I ')95). the design 

practically met the ncedsofpcde.trians for bcttcr acce .. to transit sto[lS 

• 
Fisure2.t : E""ntplcofatraditional gridneighbourhood 



The risc of aUlomobilc use led to the design of automobilc-Qricnted 

neighbourhoods (Figure 2.2). A famous example is the first American Garden City. the 

tOwn of Radburn, New Jersey, ". town for thc mmor age" (The Town of Radburn 

website) . The large size of the block, the usc of cul -dc-sacs and a hierarchical street 

system. and the scl"'ration of residential land usc fromcomrnercial. industrial and other 

land UM'S all discourage pedestrian movement and favour automobile use. The original 

Radburn plan did include a pcdcstrian path and I"',klands system accessiblc frome\'''')' 

home. which enables the separation of trame by mode and promotes safety. but bc<.:ausc 

of the meet design standards adoptl'<l by the U.S. Federal Housing Administration (FilA) 

(Zhngand Yi.200ti).andbecau.eofde\'clopcrs·considorationforlanduscemciencics 

and economic benefits (Canada 1I0using and Mongage Corporation (CMIICj, 2002; 

Zhang and Vi. 2006). most of the lalcr implementations of the plan in other areas 

climinall'<lthcpl'<lcstrianandl"'rklandssYSICm 

The posl· ... 'ar development of cities. especially in the USA. WI" chamctorized by 

massi,'c urban spr-dwl which waS l'1\abled by funded federal projCCts including highway 

conslruction and home mongagc insurance (Ryan and McNally. 1995: Stanilo,·. 2002) 

With the kcy eonsiderations of post_war planning beingdcnsity,efTtcicnt layout and cost 

(Evans and Larkham. 20(4). cui_de_sacs were favoured m'l7 grids I"."causc research 

showed that the former has belleremciency in landusc, ... ·ith 161025pereentlcss land 

required. mainly due to a much lower percentage of land Dc()(k'<l for roads aTld streels 

(C~HlC,2oo2) 



Pmblems such as traffic congestion, access to parking outside urban 

neighbourhoods, and the lack of acc~'Ss to facilities and public transit inside urban 

neighbourhoods, k'll to criticism of automobi le-oriCl1ted planning. l3cginning in thc 

1960s, plann<.'ll unit development (I'UD) and dusler devclopmCl1t became predominant. 

In a I'UD, an inlegnlCd communilY, inslead of an individual lot, became the unit for 

planning. Nonnally two or more t)'pc~ of land uses such as housing. rt.'Crcalion, 

commercial and industrial land uses exist in " PUD, wilh residenlial land uSC cluslered 

around publ ic and comtnl)nopc11 spacc_ The hi"",,,,hical streel syslem is often used in 

PUD,with local streets scrvingonly local residents and colleclor Strt.'CtS connect inglocal 

streets to anerials_ Sidewalks are provided OIl al leasl one side of cn'T)' Sireet, and 

together with jlCdcstrian ways, link resi<lcntial area, open space and <>Iher land uscs 



Curvilinear streets (which provide variety and changing streel visla) and cui-de-sacs 

(which discourage speeding and promote quiet and safety) arc also used in many PUD 

neighoourhoods (Rohe_ 20(9), Cluster de,'clopmcnt has most of the features of rUb. but 

focusesmmconlhccllicicntuscofspaCCloreduce landeonsumptionandco.t (Ryan and 

McNally. 1995). While oolh PUb and cluste. dc--dopment fealure development of 

integrated oommunities with amcnili~ and facilities such as schools. shopping and 

churches built in, residential land use i,still well separate..! from olhcr la nd uses insidclhc 

community_The use ofcur.·ilinearand cul--dc-sac slrc'Ct paUcms also inh ibitconnecti,'ity. 

and fa,'ours automobilc use ovcr pctlcstrian. 

With the continuing problems associated with the automobi lc-nrientoo desigm. 

andamidthcrisingwnceTllsonsustainablcde"eloptnentandc1inlatcchangcintncl980s 

and 1990s. various "ltemati~c urban theories and ncighrourhood designs ha,'C been 

proposed. Exarnplc.,. are the theoryoflhc rompact city. neo-traditional neighboumood 

development and the recently proposed fuSt...! grid design. These theories and designs Iry 

to provide a balance among walking. tnaSlj tramit and aUlomnbilc usc. 

Outsidc the world of planning. it was inilially hypothesized thaI wilh theadvanecs 

in telecommunication. telecommuting. telcshopping and other telecommunication-based 

activities would decrease thc nCLod for out-of-home tra,'cl. However. r"search sho"'s that 

lciecommuting reduces Ihe frequency ofuavcl bul increases thc distance of commute 

(Moos and Skaburskis. 2007). Total lTllvcI distance is still lo"'cr Ihan it would be without 

telecommuting. but thccomribution is 001 as significant as might have been CXpccled 



(Mokhtarianela/. 2004: Paczand Scou.2oo7), Research also shows thattclcshopping 

houschold,engage in morc shopping trips than otncr oouscholds (Fem:lI. 20(4). 

In the proposed alternatives. one of the most influential theories is the thl'Oryof 

the eompaet city. The compact cit y was proposed by Dantzig and S""ty (1973). It is 

designcdtocnhancclhcqualilyof life.bulnOlallhccxpcnseofthenextgcncralion 

(Jabarcen, 20(6). The basic idea is to enOOllrage high d"nsily and mixed land use. hoping 

Ihat a highcrpopulalion density ""ould make jI\Iblie tra,,-,it feasible and mi~ed land usc 

would reunite Ihe places of work and living. The effecliven",s of compact city policy is 

debaled. Studies show thaI high densilies could discourage car use (Kwok and Yeh. 

20(4). bul Ihc e/Toel may only be evident when combined with other faelors such as 

pl(}ximity to qual ily lransit service and large ronccnlral;on of aclivity opportunilies 

(Fihon c/al. 20(6). Furthcnnore.e\'en ",'ith mixed land use. I"-'Oplc 00 not noe essarily 

seck jobs nearby (Mall c/al. 2OOS). There is also no agreement on how dense" cily 

should be or what kind of social and environmental issues may arise from 100 densc an 

arca (Kwok and Yeh, 20(4), Nonetheless. compact city Iheory shl'<l a new lighl on Ihe 

direction of planning. Conventional planning tends to plan lo .... ns and cities al a larger 

seale, while in the compact cily theory. wilh Ihe local communilylneighhourhood seen as 

thc basic Ic,'c1 of provision. local and huma n scale factors arc givcn grca ler cmphasis (Kii 

and Ooi,2oo5) 

Nco.traditional dc;'clopment i. a recent neighbourhood design approach. Nco. 

traditional development promotes compact land use and social intcractioo in lown cenlers 

The idea has bcen applied to various master planning schcmc'S in the Uniled Siaiesand 



Canada (CMHC, 2(04). A famous example of n<...rtrdditional development is Seaside, 

Florida dcsigned hy Duanyand Plater.Zybcrk, even though Seaside is nowmoro like a 

reson than a residential ncighbourhood(Garvin, 1996), A grid like network structure is 

promoted in nco-tradi tional developments, bc<;ausc it is found that a grid network 

provides shorter wal\; ing access to facilities (Congress for the New Urhanism (CNU), 

2001) and better traffic flow (Duany and Plater-Zybcr\;, 1992). In practice, a modified 

grid with "T' intersections and strret deflcctions is ollen us.,d fUT trdffie calming 

Nc'O-tmditiunal dc'Velopmcnt is the real world outcome of the New Umanism 

movement, and the two terms are often used interchangcably in the literature (for 

example, .= Lund, 2002: Berke et al. 2003: Southwonh, 2003: Jaoorcen, 20(6) 

However, it is pointed out in wme re",areh that New Umanism is an umbrella term 

encompassing nco,traditional town planning. pedestrian rockets (which co,'er.; mixed 

land uSC and transii-<:cntercd design) and transit.oriented design (Bohl, 2000). or one 

encompassing n.'O-traditional design (NTD), transit oriented development (TOD), Sman 

Growth and even cenain clements from sustainable dewlopmcnt (South""onh, 2003), Or, 

as pointed out byCNU (2001), while New Urbanism has its roots in compact city theory, 

it has a wider scope and a more detai kd agenda, New Urbani.m covers the design of 

citics, thc reslOrati on and rc<:onfiguration of ex isting urban centers a nd suburbsnnd cycn 

the arc hitccture and lands<:apeofindividua\ hui ldings. Dcspite the name difTcn:ncc, thesc 

approaches under the umbrella of New Urbanism share common principles of building 

neighbourhoods that are diverse, compact, mixed lISe, pedestrian-<lricnted and transit· 

frict><lly (Bohl, 2000). Figure 2.3 shows an example of a neo-traditional neighbourhood 



which shows the uSC of the grid nClwork. thcT-intcrscctions and acont inuouspcdcstrian-

onlypalh syslcmjointlyfonncdbythcpcdcstrian--onlyroutcsandthcgaragcacccssroads. 

Figure2.J: hamptoofanc'Hri>ditionalneighbourhoood 

Comparol to the standard of a compact city. a noo-traditional develop"""'t 

gcnel'1lllyh .. lowcrdcnsity(Jabarcen.2006),andcanbcse<:na..acompromiscbclwccn 

post-war suburban development and the comract city. This low-density feature of nOO­

\raditiOtlllldcvciopmcnt iso!lcn criticized for bcing not sufficient 10 support mix,:d uSC 

and mass transit (Bcat lcy. 2000: Southworth. 2003: JaOO=. 2(06). Nco-traditiona l 

devciopment is al!;Q criticized for the high cost of road system maintenance. 6"OW 

removal andgarbagc pickup (CM HC_2004) 



Recenlly, the fused grid design (Figure 2.4). which claims to combine the 

ad"antagcs of the trnditional grid design and the automobileorientCil nC ighbollrhood,h.s 

genc'Tatcd considcrable interest with relatCil research ongoing at S<."Vcral Canadian 

universities. including the University of Guelph, the University of Toronlo and the 

Uni,'crsity of British Columbia (for c~ample, sec Hawkins (2007» 

Figure 2.4: Examplcofafuscdgridncighbourhoodw'ithtwinn«Jartcnal 

(Source: CMHC, 2(04) 

The fused grid design waS de,'cloped by Fanis Grarnmenos and hiseolleagues a t 

CMHC. It claims efficiency ofbnd use and traffic flow. bener quality of life and minimal 

environmental impacI (CMHC, 2(04). The design claims 10 c"mbine the advantages "r 

two Nonh American planning tradilion.: the effectivC1less of the grid netwo"'" in 

p"destrian traffic and the automobile oric'Iltation found in super blocks and cui-de-sacs 

The fuscd grid design claims to provideR balancebctwecn automobile and pedestrian 

mo,'cmenl. and to create safe. sociable streets and easy connc-clivily to rommunity 



facililics, while retainingefficicncy in land use and infmstruclure. The fu scd grid design 

is also said to be flcxiblc,i.e. easy to adapt from existing strect configum lion. 

A typical fuscdgrid neighbourhood design is comj"lOSOO of half mile grids. Each 

grid contain, fourbluch. with first order roads separating Ihe blocks. Grids are in lum 

sepamtoo by second and third ordertwinnoo artcrials that provide moderate t ohigh-spc<.-d 

one ",·.ytmffic while at the same time ai!owingcasycrossing for pedestrians. Inside 

bloch. cres<:cnts and cui-de-sacs are used 10 eliminate through Iraffic, wh ile a 

continuous. open-space pedestrian path system provides bener access 10 par~s, public 

transit. and retail and community faeiliti .. -s. The most intcn,i,'c land uses such as s<:bools. 

rctail and Ulmmunily facil ities and high density rcsidential uses.re I ncatoo between the 

parai!clanerial roads. 

Tahle 2.1 provides a summaryoflhe charncterislicsofthc four neighhnurhood 

2.2 INFLUENCES OF NEIGHBOURHOOD FORMS 

As described in S""tion 2.1, most neighbourhood forms are dcsigo .. -d to either 

promote or discourage a cen ain mode of traffic; pedestrian Or automobile. It is clear thaI 

traffic pallem. will be different wilh different neighbourhood design •. Most exining 

research in Ihis field focuses on hnw 10 quamilalivclydescribe neighbourhooddcsigns. 

and on howlheaggrcgalClmffi,paUcm is slatistically linked to neighhnu rhoodJ:Sigos 

(Boamet and Cr~nc. 2001a). 

D 
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Post-war 
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Tabl.2.1:Comparisonofneighbourhooddesigns 

Intcgrolioooflandu."" Sbona,,.,,,,di'taoce 
tofacilit i .. 

Large Sq>aration of Sidewalks provided 
hi""",hie.l Slrcct residenlial I.Dd use 00 cerlain Sl=t5. 
syslem. C'lcnsive from uti",r 1000 u<c$ pc<k>lrian-only 
use of loops. enl- (loose imegration of roul"" pr<l"ided in 

lalcr implementations 
impkmentalions) 

Intcgrotioooflanduse. Sbort""ces.d .. tanc<: 

fadliti ... 

pe<le,{rian-on ly 

Fused grid Rc<c'nlly Large bloch and High density re,idential Short walking 
propost:<! cul-de-sac, fo< and oth .... land use, distan<:<: to faeililies. 

aulomobil"". grid between lwinn..-d sidewalks 
TIC1WOrk in df",,{ arterial pc<k>trian-only 
for pedestrian "lth 
lhcpedestrian-only 

A,Bany(2003)poim, OUl. bchaviourin human sY"lcms isdctcnnincd not On Iyby 

I"'rsonal prcfercnces, imention, andd""ircs, but,lso "by the cnvironmcnt whichrcnccts 

Ihe spali al or geometric struclure in which the agents function as well as "ariabilily 

bctweenagcnts, in ICITllS oflheirimrinsicdiffcrcnccsand the unCCTtainly {hat thcyhavc 10 

deal with in making any rcsponsc", In facl. it is widcly accC'p{cd {hal {hcre are direcl 

relations bch,;ccn land usc pauems, socio-economic charaClen_'lic. and lra"d panem. 



(Vcldhuiscn e/ (J/. 2000: Matt el (J/. 2005). For example. a UK srudy ming multiple 

rcgrcssionanalysison UK national survey data rcveals that lan.d use and socio-c<;onomic 

chamctcristics can explain up to 80"10 of total distancc tra"dcd by rc sidents (Stead. 2001) 

The rcsearch shows that population density, settlement size and bus frequencies arc 

closclyrclatcd to travcl distances. Research in Copenhagen rcveals that distance to urban 

CCt1h:rs also hasclcar influence on tra"cl distancc (Na:ss. 2006). Rcscarch atso shows that 

a balance of home and jobs (mixed lan.d use) promoiCS shoner commutes to work 

(L • ."vinson. 199& Homer. 2002; Sultana. 2002; Cervcro an.d Duncan, 2006). and that 

incrcaseda"aibbilityofIOCilI facilities incrcases thcengagcment in associated activitics 

in these facilit ies (Lee el(J/. 2009) 

NeighbourhO<Xlchracteristics also intluencc mode choice. and =ent rcsea rch 

has diseo,'crcd that mixed land use (Cervcro and Duncan. 2(03). imprO"ed st=t 

conncctivity(Boamct and Crane. 1998. 2001; G .... 'Ct1wald and Boamct. 2000: Kitamura el 

<1/. 1997). sidc .... alk availability (Rodriguez and Joo. 2(04), perception of safety and 

traffic (Estupinan and Rodriguez. 2008). and walking distance to local shopping area 

(Coo.., "I. 2006) all ha,·c an influence on the ehoicc of ""alkingltransit mode and the 

numberof .... alkingtrips. 

It is also recognized that there might be inteT1lctions between land usc 

characteristics and socio-.cconomic characteristics, .... hich may ha,·c influenced the 

accuracy ofstat;st;cal analyses (Stead. 2001). For example, research by Sen and Baht 

(2006) confinns that ho-uschold location aUributcsand built environment Characteristics 



of thc household residential neighbourhood are correlated with the type and use of 

The situation isfurthercomplicatedbytheexistenceofsclf·""kction.l'coplcnot 

on ly react differently to different neighbourhood forms, they also choose different 

neighbourhoods to li,'e in based on their preferences, For example, it is believed Ihat most 

people prcfer living close togn'<.'O space and water, so it might be expected that peo pic 

who do nOI Ii"e close to green space will make morc trips to r~'01otc gn",n spaces, 

However, research shows thai wilh the exislence of self-selection, people who live close 

10 grccn spaces arc more likely to hc "natun:_lovers" and make rnorctrips to rcmote grccn 

spaces than people who do nOt live close to green 'paces (Maal and Vries, 20(6) 

Understanding the role of self-selection is important in understanding the causal 

relationship between the built environment and tm>'e\ behaviour (Handy cl ,,/.2005) 

Some research shows that thc observed associalions between tra,-cI beha.-iour and 

ncighbourOOod charactcristics can largely be explaincd by sclf-sclection (lJag Icy and 

Mokhtarian,2002),whilc Olhcrstudics find thai neighbourhood Iype docs influcn cetra>'ci 

behaviour,c"en afieranitudcs arc accounted for (Schwanen and Mokhtarian, 2005;Cao 

cr(11. 2006,2009: Chatman, 2(09) 

DilTcrco t trdffie patterns further translate into differences in lhe panems of daily 

life inside the neighbourhood_ DilTcrcnl levels of pedestrian and automobile tmvel 

influence Ihc chance of social internetion on the stn'<.1S, pedcstrian safety, local 

cnvironment,thc possibilily of congestion on the road,and the bcahh ofloc al residents 



Increasing social interaction iMide ~rban neighbourhoods is QIlC of the major 

object;,·cs of recent neighbourhood planning approaches. For example. new urba/1i sm 

ncighbourhoo • .is arcdcsigncd 10 "bring pooplc ofdi,'crsc ages. raccs. and ineoOl esinto 

daily interaction, strengthening the pcr.;onal and civic bonds csscnlial to an aulhentic 

comOlunity" (Chaner of the New UrbanisOl (CNU). 2(01). Urban streets arc considered 

iOlportant social placC' in the planning world. ne Geometric Design Guide for Canadian 

Roads by the Transponalion Association of Canada (TAC) (1999) statoo thaL "Sln,c{s in 

an urban SClling scrvc a varicty of functions indudingprovision formolorizoovchicies, 

cyclists, and pedestrians. and Ihc creatirtn of public spaccs for social interactio", and 

contact", Although it is debaled whether neo-traditional development or Olher 

neighbourhood fomtsdircctly influence social intcraclion and the SenSe of Nmmunity 

insidc lhc urban neighbourhood. il i<c1car thaI neighbourhood dcsign can en comage 

rcsidcnts to usc strccts. and "providc opportunilics for passivecontllcts. 0 runintentional 

encnuntersthatprcsentthcopponunityforacknowloogcOlcntofanother'sprcscnoc and a 

chance 10 discover the other. nature through obS<.'TVation and ~"()n"~'fSation" (Grannis. 

2005). The nUOlbcrofpassi,'c OOIltJcts is positivciyassociatcd wilh thcchanccof social 

interaction (Grannis_ 200S) which leads to.tleast "weak tics"antong rcsidcnls(Talen, 

1999). Weak tics. weak as lhcy sound. arc rcsponsiblc for the majority of the structure of 

social nctworks in socicty as wcll as the tranSOlission of novel infonnation th roughthcsc 

networks, The face_lo-face interaClion i. at", good for building oollective solidarity 



among different population/social groups and eroding intergroup stereotype and 

prejudiecs(GarsterandIloo71ll",2007) 

The socia l environment formed by social interaction in tum influences tra"cl 

decisions. Forexarnplc, rcscarch has eonfinncd that the frcqucncyofunplanncd 

interaction with neighbours is positively relatc'<l to the frequency of walking (Lund, 

200J), A San Francisco st udy sh<.>wed that social cohesion and uust influence the number 

of walking trips to school for children (MacDonald, 2(07) . The pedestrian traffic on the 

roads alSl) infl uences the route choicesofmher pedestrians. A California study f oundthat 

60% of pedestrians strongly agree or agrec that the .xi,tonce of "mher people out 

walking" influence their route choice (Schlossbcrg el al. 2(07) 

Pedestrian safety can be interprctC<l as the possibility of pedestria..rautornobile 

"chicle collisions. The US Ilurcau ofTransponation Safety data show that most common 

typcsofpcdestrianiautomobile collision are cro"ing at an imcrsc"<:lion (320/. ),mid-block 

cro"ing (26~.) and walking along road (8%) (StultS el al. 1996). I'Wcstrianiautomobile 

collisions mayalS() be the result of high spt."<:d and/or high ,'olume automobile traffic, 

which makos crossingdifficuh and makesdrivCTll unwilling to yicid incc'Ttainsituati01l ' 

(FHWA websile). The Walking Security Indc. projc...,t (Wella" 2(l()9) calculates the 

wal king sc.:urity indices based on traffic "olurnc, sidcw'alk and crosswalk quality, drive,'s 

beha"iour and scveral other faclors. A rcvicw by Southworth (2005) concluded Ihal 

cri teria thathavc been formulated for pedestrian safety includecr()<;sing times and length 



of CI"QSS walks, traffic spc<:ds, ~idcwalk widt~ and condilion, traflie controls and night 

lighling. 

l'edC!'trian safcty influcnces Ihe choice of walking mode and Ihe choice ofroule 

for pedestrians. Research shows t~at conne<:lcd pedestrian rath~ (less crossing). 

availabilityofsidcwalksand Icss "olume of traffic all contribulc 10 lh ec~oieeofwalking 

mode (Cao cl <II. 2006). and thai safely is the second mosl imporuml faclor (only neXI 10 

'shorte,t/fa'lesl route"') that influencespcde.trian ' s route choicc( Sc~l ossbcrgetaI.2007) 

The emission of gn."cnhome gases such as CO" NOx. HC and other polluling 

gases. which is direct ly rclalcd to the consumption of carbon-based fucl. is regarded as 

one of the most serious threats ta Ihe environment through the greenhouse effeet 

Transport is t~c second largest source of grcenhoose gas emission. and road transport 

accounts fo.92% of the total emissions in the transport SCClOr(Ericsson '-/<11. 2006). 

Neighbourhood fonns influence the amount of emission "<>1 only by changin g the demand 

for road transport (thus the 10lal dislanee lraveled and towl fuel used). but also by 

changing the charactcristicsof driving through differcntstrcctpancmsa nd traffic cantrols 

(thusehangingthcspeedoftra"cl,thenumberofstapsandacce1eralians)(Franker<ll. 

2000; Brundcll-Frcij and Ericsson. 2005). Rc ..... arch sho"" that a car generates much more 

emissions at thc lu:ccicrdtion stage Ihan duringcruisingo.-idling(F reyerol. 2000). Thus. 

nOI only docs the tollli disllIllCC traveled by automobiles mal1~T. the number "f short trips 

andthcnumlxTofslOpsonroutealsohasagrcatinflucncconthclcvclofcmi"ions 



E~posure tothe poll utants alwconstitutes a health risk for pedestrians (Kaur et .1 

2(06). and a properly selected route may sign ificantly reduee air pol lution exposure 

(Hcncl eI al. 2008). nus. automobile emissions hal'c the fc'<...Joock dfect of changing 

pedestrian mUle and mooe choice. as many pedestrians not only avoid bu. ,y traffLcareas. 

they also avoid exposurc to the emissions (Kaur etal. 2(06). 

Although thc origin of trnffi~ ~ongestion is a complex process (lkncnson and 

Torrens. 20(4). it is dear that tbe majordircct cause i.too manyca", on the road. Traffic 

congcstiOflnotOfllycauscslongcrtirnespcntontheroad.italwhasthcctT~of 

generating more cmission~ bccauseoftbe stop and go natureoftravcl during periods of 

congestion (Frank and Engelke. 2005). Depending on the design of a neighbourhood. 

cen.in streets in the neighbourhood may have high traffic volume during "","'ing and 

afternoon peak time which in \Urn is associated with the likelihood of traffic conge'tion 

Studics have also found a link between the Ievcl ofcongcstion and the me "'evel 

ofautomobiledriver!l which can be fimhcrlinkcd to the health of the drivcrs (H C"""My 

andWicscnthal,I999;llcnnessy elaI.2(00) 

Research O!l the relationship between neighbourhood fonn and health has been 

mainly focused on the influence of the neighbourlloods' socio.c<;onomiecharacteristics 

such as poveny rates and minority concentration on residents' health conditions (for 



examples of such studi cs. sec Pcnit el ar 2(03). Recently, a number of studies h.,·c 

begun to link the physical fonn of neighbourhoods with residents' health conditi[}n~. A 

US st ud y in 200 1 showed thaI neighbourhood charactcristics. including the pre!;c!lCe of 

sidewalks and enjoyable scenery. were positively associatc-J wilh physical activit y 

(Brownson e/ al. 2(01), and regular physical activily is widely bclievC<l to confer 

intponant health benefits (Ainsworth el al. 2000). The Canadian Inslitule for Health 

Infonnation (ellll) rc<:cntlyreponed thcdiseo"eryofa link between a neighbourhood'. 

physical fonn, residents' likelihood 10 perfonn physical activities and residents' 

likclihoodofbeingovcrweighl (Cil il. 2006). 

The physical fonnofa neighbourhood not only changes the accC'S.<ibility, and thus 

Ihc uSC of facilities for physical activities. it also encourages or disc ouragcswalking. 

which is one of the most oommon and most attcssible physical activit ies. In health 

research, the intensity of activities is measured with MET (metabolic cqui,·alcnt). For 

example. moderatc physical activity is defined as physical activity wilh. MET value of 3 

to 6. while vigorous physical acti"ity is definC<l as physical activily withaMETvalucof 

more than 6 (Ainswonh el af. 2000). Vigorous activity has na<iilionally been associated 

wilh improvements in heahh, but moderate physical acliv;ly has been sho"'n to confer 

such benefils as well (Ainsworth e/ al. 2000; Eyler cl "I. 2(03). Attording t[} th e 

Compendium of Physical Activities (Ains,,·onh .. / "I. 1993), walking on a finn surfa,c 

withlhcspeC<lof2.5milcsperhour(mph)isa3METsphysiealacti,·ity. wh;1c"'alking 

onafirmsurfaccwilhlhespeC<lof3mph("'hiehisoonsidcredamooernlespeed)isa3.5 

METs physical activity. The pc<Jeslrian speed defined in th e U.s. Manual on UnifOffll 



Traffic Control Devices (FI!WA. 2003);s L2 metres pcr secooo, which can be lnInslJted 

into 2.7 mph. So. not only docs brisk walking (with walking speed of3.5 mph or more) 

ha,·c hcahhbenefits. b\lt SO too do nom,al walking activities such as walking to school. 

walking to work or walking 10 shopping. 

Several olhcr factors are also related to community health . As stated earlier. 

exposure to automobile cmissions constitules a hcahh risk forpcdestrians .andlhclc\"clof 

congcst;on;srelatedtothcstrcsslcvclofautomoo;lcdri,·crs. 

In summary. ncighbourhood dcsign.through the characteristics ofstrcet nct works 

and localion of houses and facililies. innUC11CCS residents' acce"ibility. Together with 

local residents' !<OCio.economic Slalus and p<."TSonal preferences. these factors jointly 

influence residents' mode and route choice which in tum leads 10 difTc'TCnl pallerns of 

social inleraction oppo"unit ies. rommunity health. pedestrian safc'\y, pol lution and 

col1g~;;tiun in"dc 1:'C ncighbourhood, Thcsc <i\lt,o,",o patte", .. throuil,h feedback 

pl"OCi!SSCS. in tum innucrn;e accessibility in the neighbourhood and mode/routc choice 

bda'·iouroflocalresidcnts. FigureJ.1 in SC'CI;on 3.1 provides an Ol'ervicwoflhcabo,-c 

relationships. 

2.3 MODELLING CITI ES ANDTRANSPORTATIDN SYSTEMS 



For morc than 100 ycars afler ,on Thflncn published his land usc theory;n 1826. 

until the 1950s.1ocation theorics that describe an optimal and steady-state city strueturc 

dominated urban studies. with the most influemial thl-orybeingAlonso·sdc.:aying-,,'ith-

distance land rent theories (Fujita elai. 1999: Bcnenson and Torrcns, 2004 ). Alonso's bid 

rent theory can be seen as an extcnsion of the von ThOnen theory from rural to urban land 

usc, and both throries dcscribean optimal and steadyconccmric land usc st ructurcaround 

a singlc CrntTC. Many urban components such as population.jom. scrvicesand trnnsport 

networks remain beyond the frnmework of these model •. 

In the 1950s and 19605, equation·based models were widely use<! to model 

dynamic. in the city. Gnwity equations were widely use<! in these models to simulate the 

distribution and flow of population and industries inside urban areas (Torrens. 2(00) 

Major problems with these compTChe",i"e urban models arc that they are aggregated 

(thus lack details),equilibrium oriC1lted (lad' und=tanding of how a city changcsJ and 

black·boxed (,,'itb "mechanisms that even the modc1·bui ldC'fS might not perceive or 

distinguish" (Bcm.'nson and Torrcns. 20(4». 

With atlYanccs in system theory and eomplc\ity theory. it is now recognized that 

cities are intrinsically complex systems which. differing from simple systems. exhibit 

propcrties that arc beyondcon"crgcncc to a global ly stable equ ilibrium. propcrticssuch 

as creativity. emergence and other non-equilibrium phenomena (Bcnenson and TOlTens. 

2004J. As "on Benalanffy points out: "Concepts and models of equilibrium. homeostasis. 

adjustment. eIC .• are suitable for the maintenance of the .ystem. but (turned out to be) 

inadequ.te forphenorncna of change. diffcrcntiation,c,·olution. neg cntropy.prod~tjo" 



or improbable state, creativity, emergence, etc." (von BertalanfTy, 1%8, cite..! in 

Bcnenson and Torrens, 20(4). In mher words, tmditional mathematical and statistical 

analysisisnotenoughtoanaIY/.candprcdictlhcdynamicsofcomplcxsy.tcms like cities 

In light of the problem, new technique. and melhods were n.:cdc'tl. II waS found 

that in a complex system, system properties result fmm colleclive local intemctions oflhc 

conslitutingparts-hC1crogencousactOTS - andemcrgcoccassumesare<;ogni7.able,limited 

S<.1 of atomic rules Ihat are applied at local (individual) I"'els among a large number of 

heterogeneous enlilie'S (Bcne'Tlson and Torrens, 20(4). Thus, Cellular Automata (CA) and 

Multi-Agent Systems (MAS) whid uSC simple rules applied to a population of cells or 

agent. 10 generate complex 'ystem bcha"iour arc intrinsically suitable for modelling 

complex systcms. 

CAarcdcHncdasccllsinaccllspaccthatchangctheirsllltcsm·crtimebaS<...!on 

rules c.:>nccn;ing both tile , tates of the ~dl> themselves and tho: statc;; "f their 

neighbourhoods. An MAS is composed of a community of agents silualcd in an 

environment, with agents perceiving and acting upon their environment based on internal 

rules and intemal/extcmal infonnation. Agents can be used to model human-like 

bchavioumlprocesse,.uchasproblemsolving,planning,decision-makinSandleaming 

acti,·itics. CA and MAS also make possible the generation of structure from Ihe OOUOtn 

up (which is important for individual -based urban and transportalio1t simulation) rather 

than assigning activities fmm tOP down. 



CA and Agem.Ba>Cd Modelling (ABM) techniques have been widely u>Cd in 

many academic fields including Ecology (Grimm, 1999), Sociology (Gilbert and Conte, 

1995; Rindt el al. 2002) and Gcogrnphy (Benenson a/1d Torrens. 2flO..1; Parker el al 

20(8) . They are found to be ideal formodcll ing urban phcnomena, IlS citie, can be cas ily 

interpreted as a composition of cells (land lots) with agents (people, ente'PriM'S and 

organizations) interacting with each other Or moving around in the space. The increasing 

availability of fine scale data. modelling plalfonn. and eode libraries for CA/A8M and 

increasing eompuling power of modem cumputers also make CA/ABM simulations at 

higherresolutionsfeasiblo 

The use urCA in gcogrnphy originalcs from Ihcrastcrconccptualilatio nofspace 

in the laic 1950., Several modd, in the 1950. a/1d 1960s utiliz .. -d a cdl space with 

dynamically changing cell slales, though no neighbourhood effect was included 

(Rcnenson and T()1TCns. 2(04). It was not until the 1990s when true CA models began 10 

be widely used in large seale land use change and urban sprawl simulations (Wh ite and 

Engclcn.I993; Whilc elal. 1997; Li and Yeh. 2000; Chcngand Masscr. 2flO..1) 

Compared 10 CA models. agenl-based modds arc widel y used in finer scale 

simulations focusing On localion d)'TIamic. of hou!(;holds (Portugali ('/ (II. 1'197; 

Portugali. 2000), automobi les (Bencnson cl al. 2008) and pedeslrians (Helbing el "I 

2000; Ratty. 2003; Lceand Lam. 2008). Though it is believed that nearly all agcnt_ha>Cd 

models can he implememed in the fonn of CA (Benenson a/1d Torrens. 2flO..1). agenl-

based models an: oftCfl u>Cd in the simulation of complex systems that involve mo,'ement 



patterns of agents and spatia! interactions bctwttn agenlS, as it is more "intuitive" to 

intcrpret such systems as agcnt'based tnQdelswh= agents imeract in an environment , 

Like UJban tnQdclling in genern!, trnnsportation modd!ing traditionally relied 

heavily on aggregate analysis as well A common approach is to divide the process into 

fourstcps: trip gcnerntion, trip di stribution, mode clKlice and routc assignm cnt(Banister, 

2002), Network flow model. and regression tnQdc1, arc widely use'<l in thi s fic1d. In a 

network flow model, trame flow bctwttn diffeTCnt trnflie zooes arc eakulated as function 

of the charnctcri,tics ofrc'Spt."Ctivc2oncs. such as population oraeti vityopportunitics, The 

grnvity equation, which prc'<liets the .urueti,'cne'S' "fa region based on its rclati,·c 

population or activity 0pr:>rtuniti~s, is widely u.cd in nL1w~ri; flow model . (Torr.ns. 

2000). Regression models. which prc<lict trips ha.cdon existing trip data and regrcssioo 

analysis, are aTso widely used 

A 1ripis in csscntt a series ofhum.n decisions, The time. purpose, destination. 

mode and mute ofa trip all involve human decisions. Different approaches. including 

uti lity.based, activity·basedandcon, traint.hasedapproaches, h.vcbcen uscd tosludy and 

si mulalcthcdeci'innbchaviour, Thc utility.ha,ed approach is USl'<l in the eomparison of 

different destinations or tra,'cI tnQdes ba.cd on a oosUb.,nefit analysis (Timmenn.n •• 

2003). The activity·baSt.'<l approach puts tru,'d demand into a finer time scale, with 



people optimizing their emire activity pattern rather than maximizing utility for separate 

trips (Vcldhuisen .. I at. 2000). Constraim-ba ... -d approachcs put time and economic 

constraints imo deci.ion making, '" thattne result would closely follow reality 

A gene.,-al problem with traditional tmn,portati"n models is that they rely hea" ily 

on aggrcgate analysis (Vcldhuiscn elal. 200S, E,tupirnmand Rodriguez. 2008). NOlonly 

do they ignore personal intentions and preferences. the inlluence of the e'lwironmcnt is 

.lsurJIIClyconsiden.-d. 

Like cities, transporlation system, arc also complex systems. Transporlation 

systems are the outcome of human decisions. and ABM proviili:s an inluitive and easy 

way to indude personal intcntions and preferences in trao'portation mode lI ing. In,ucha 

model,individual persons, indudingdrivcrs, lransit passengers and peM mia,,-,.canbeen 

"""n as agent' that move around the tra,,-,portation network, making decisions from time 

lutimebascdonp,,,,,,nalchann:t<risticsa;>Jp,efer<;nccsandinfonr.at;OI,obtainedfrom 

the environment. [nitial attempt§ in this field focused on how eol lcct;ve phenomena such 

as traffic jams and detours arc fonned in the system (Eknenson and T(lrrens, 20(4). Rea[· 

world applications appean-d in the early 1980s wilh the appearance of the first MAS 

tmflic ,imulation systems ~uch as MUlTSIM (Gipps, 1986). Complex driver behaviour 

such as lane changing and way finding, and varioustmnsportat;rm net work characteristics 

such as imcrs.,ctions"t"p lines and signal timings are exp[orcd in this system. Currently, 

!'\!SCareh in this Held .. an bccla"ified into two approaches. MMt of the agent·based 

transporlation models, including the fa""",s TRANS1MS application dc>'eloped at los 

A[amos Nationa[ Laboratory (Smith el al. [995), use computeT generaled populalion (10 a 



real -world road nc1work. and rcsuils arc compared to charac(Cristics of car traffic in the 

real world. Many newer studies in this field focus on obtaining real_tin'c traffic 

infonnation from ~ehicul ar nc ...... orks (networks fonned by vehicles whi,h wirclessly 

interact with each other on the TOad)(Lccelal. 2009). and sludyinglhc influence of real-

timc infonnation on travel behaviour and traffic pal1ems(Dia, 2002; Wahle 01 al. 2(02). 

As discussed above. in temlS of s<;alc. initial simulalio", focus on the micrus<;opic 

phrnomcna such as local traffic pal1crns influenced by traffic signals and car-

followingllanc-<:hnging behaviour. while many recent studies begin to focus on thc 

tr"~ffic panems althe national or rcgionallcvcl (Raney 01 al. 2(03) and on the integration 

of micro-lc,'cI a .. lumobile traffic simulation wilh regional-level simulation (Smith 01 al. 

1995: Grangier. 2001i) 

On thc pedestrian side. agent·bascd research ha, be<.-nongoing sincclhc 1970s 

Compared to car traflk. pedestrian movement is more flexihle. and thus mOre difficull to 

simulatc. Mostofthcrescarehinihisficld focuscs on pedc'Strian mo,'cmmt in conslrained 

environments such as narrow passages (Helbing 01 al. 2000). building floors (Bally. 2(03). 

subway ,rations (Castle, 20(6) and pedestrian-only strccts (Schelhorn ~I 01. 1999: Battyel 

al. 2003). Also. most of these studies arc aimed at dealing with emClgency situations such 

asc"acuatingroomsandcontrul lingcrowdsinthestrccts 

With existing research focusing on either trip and tmffie pal1cms al the 

metropolitan/regional scale. 0.- micro-b'd mo"emen! pattcrns nf autnmobiles and 

p,.-destrians. thc d)TIamics at the ncigllbourhood-Icvel arc often ncgle<:tcd. The simulation 

and studying of ncigllbourhood·lcvcl trip and traffic pall,,", will contribute to thc 



metropolitan_level models with local dynamics, while provide input and coo,traint. to the 

micro-level mo"emenl models of automobiles and pedestrians 

The treatment of urban neighbourhoods as comp,"x sy1<ltmS will CtJntributc to the 

study and comparison of neighbourhood designs. Existing studies On neighbourhood 

designs mostly focuscd on building inlcgralOO modc1s thl arc bascd on aggregate trne! 

behaviour (McNally and Ryan. 1992: Stone el al. 1992: Crane, 1995). The complex 

nalure of lhe urban neighbourhoods means that an ag01lt -bascd model will be able to 

better represent Ihe OUtCOme of Ihe system, as " 'ell as Ihe internal dynamics associated 

with the system. An intcgrnte agent-based model thaI combines land usc characleristics 

and transrortation networks. that includes automobile dri,-cr, transit passenger atld 

pc<lestrianagents, Ihatconsidcrspcrsonal preferences and choices, .ndlhal focuscs un the 

neighbourhood scale has nol been scm in the literature. In such a model, patterns of 

pc<lcstrian and automobile mO"emen!, as well as how different neighbourhood funns 

innu~"1\Ccthcscmo"erT\CJltpal\cms,can beobscrvcdandanal)'7cd 



CHAPTER 3: METHODOLOGY 

Agcot.based modelling techniques arc employed in this study to explore the 

relationship betwec n neighbou rhood fom" and traffic pallcms imide urban 

neighbourh<.>ods. nis chapter gives an iotroduction to the study, and explain sthe 

underlying methodologies. 

3.1 STUDYOVERVIEW 

Various studies have suggeste<l that individuals decide their ~ctivityp"Uc-m part ly 

in rcsponscto neighbourhood fonns (Ba!ty. 2003: Ccrvcroand Duncan. 2003; Rodriguez 

and Joo. 2004: ClIO el al. 20(6). For an individual in the cily. Ihe aeli"ily pallem is 

shajll-.J by travel n.-cu,. personal preference anutime and c-conomie eon,lraillts. For 

example. a studentnc-cd,togolo school c"cry school day. a workcrneeds to go 10 ";0,1: 

evcryworkday.oncormorcpcr".-msinahouscholdnccdstogosl\oppingonceinaweel:. 

and may choose 10 walch a movic oc;:asionaliy. and prople may waotto visit Iheir friends 

oncc inawhile. People have difTcrcnt prcfcrenccswhich affect their tra,'c1 decisions. For 

example. some people may prefcr shopping at nearbY'lores whi le other people prefer 

shopping centers that may be at a distance . For a given distance, some people may prefer 

10 wall: whiie mhcr people prcfer to drive. And some people may prefer a spt.'Cific roUIC 

so tha t they can avoid crossings. roads withwt sidewalks or roads with busy lraffic 

Travel decisions arc also shape<! by time and economic conslrainls. including the 



avai lability off"", time, the possession ofa dri"er's liccnse and the availability of an 

It is expected that neighbourhood configuration influenc~'S tra>'cI behaviour in 

thrcc different ways: First. it dircctlydetermines the mute network. and thusestablishcs 

the possible route choices and detennines the eharacteristiesofthe c ho'!Cn routCS for 

pedestrians and automobiles. Socond. it influences the acccs~ihility to public transit and 

other facili ties. and thus affc.:ts modal split. And third. it dctennines the availability of 

activity opportunities inside the neighbourhood. thus affocting the distribution of 

8Ctivit ies inside and outside the neighbourhood. 

These characteristics in ncighoourhood configuration and sut.s~-q ucnt impacts on 

travel bchav iou r will affc.:t many aspects of life in urban neighhourhoods(Figure 3,1). 

For example, some neighbourhood cunfigurations may hc associated with relatively 

higher :nc!. of peJ.:strian tr~>'cl ~nd lower pCl'(cmage of aalol1mbite tra,'c1. Mon: 

pc'<lestrian travel meanS more social interaction opportunities 011 the stn:ct. More 

p<.'<l~'Strian trawl is also associated with a lower likelihood of overweight. obesity. and 

other related heallh problems. Also. for the pedestrians on the .treel. different strcet 

layout and roadcond,t inns Icadtodiffercnccs in -street safety levels ,hccausc strc<:1 layout 

and road cond,tions dce,dcthc numhcr ofcro"ings, the availability ofs idcwalksandlhe 

width {}f mads which influences the risk {}f croSliing the roads: this will further affoct the 

choice of route or the mode of travel. On the other hand. some neighhourhood 

oonfigurationsmaybc linked tu highcr Ic-'cl of au tom <!bi le traffic on certain roads. and 



Ihismcansahighcrb'clorpoliulion.highcrb'clorpcdcslrianexposurelOaUIOmobile 

cmissionsandgrcalcrchanccofcongCSlion 

FigureJ.I: lnnllC""".of""ighbourhooddc.ign 



These phenomena will be researehed in this study_ Moro specifically, this study is 

desi);llcd to find out how different neighbourhood designs influcnce travel behaviour, 

trdffic patlcms, pedestrian safety, social interaction opponunitics. residents' health and 

the environment inside the neillhoourhood. A list of outCOme mcas urcscan be found in 

Oll/come me<lSuI"Cs oflhe study 

Travel behviour (trip length, modal split, trips by Typo and by 

patterns dcmographicgroup) 

Trafficpattcm and possibilityofeongestion 

D"ilylife Pcdcstrian safely (rcprcsentcd by the numhcr of crossings, 
availability ofsidcwalh and pcdestrian-only routes, and strct:t traffi c 
conditions) 

Socialin tCT3C1ionopponunitics 

Envimnmemand Emi_"ions (Vehic1e distance tra"eied inside the neighbourhood, 
characteristics ofautomobilc trave1 which link to emissions) 

Total disiance tra"encd by pcdcstrians. and p"dcstrian cxposurc to 
automobi1ccmissions 

In general, the research problem concerns a group [)findividuals (agcms) acting 

and imcracling inside tho neighbourhood (map). with the objective being ohscrving and 

studying the pattern. of outcome. Hascd on the nature of the problem, an agent ·based 

model is pr<lfl"l':iCd. In land USC and transponalion studies. an agent-based model oonnally 

contains" ba.«emap which represents the study area. as wen as a popul.tion of.gcnls 



which represcnts individWlI JlCrsons in the study area. In this study. the base map 

rcprcscmsancigl1bourhoodinthestudyarca,andagentsreprescntallthelocalrcsidems 

of the area. The modcl simulates the travc1 behaviou, of local residents during a 24-hour 

pcriod. Each agent in the model has it, own schedule, and movc, on lhc map ae cordinKto 

theschedulc. The route and lransponat;on mode of each trip are influenced by both road 

network ehardeteristics (such as tnc a"ailabi lity of sidewalks a nd pc<Iestrian...,nlyroules. 

and lraffic le,'ci on the roadsjanti JlCrsonal charactcristies (such as socio·cconomie status 

andpc-rsonalprefc-rcnecs) 

In a simulation run. the model reads the map (which contains infonnation 

regard ing the location and characteristics of residential houses. 

work/sehoolishoppingl.crviccJtransit facilities and road networks). and generalcs the 

aKent population based on sUlveydata. The model then allocate, the agents (KfoujH!d by 

houscholds) on the map. and assigns an origin and a destination to each trip ofeaehag""t 

For trips ending inside the neighbourhood,thedcstinationcuuldeithe rbe a local facility 

or a local house depending on the trip purpose. For trips ending outside the 

neighbourhood. the destination is.set 10 be an c~il point of the neighbourhood. since the 

simulation only covers the arca inside Ihe neighbourhood. The route ufeach trip is 

calculatcd bascd on a customized shortest route function which takcs roa denaraeteristics 

and traffic conditioll' imoconsideration. The mode of each trip is dccided bascd un the 

utihtyofeach mode (which is in !um,alculatcdbascdon time, cost. safety and health 

measures). In the model, pedestrian agents avoid automobile tmffic. ",'hile Ihey are 

al1mcted to pedestrian tmffic, with a "spin·up" process usoo 10 stabilize model outpO! 



Measures lisled in Table 3.1 arecollecled as rcsul!s, which are then uscd toanalyzc Ihc 

innucoccofncighbourhood forms and conflguralion 

The simulation modd i. calibrntcd based on detailed trd"cl logs from sc"co 

Trame Analysis 7..one< (TAb) and aggregated trip data from 40 TAZs in OUa".", 

Ontario. After Ihe calibration. experiments are carried out on ,",,,·cn hyp01hctical 

ncighbourhood(."()nfigurationsrcprcscnlinglhcfllUrncighboorhoodtypcsdiSCQssed in 

s..clion2.I(trndilionalgrid,post-warsuburoan.nC<l-trdditionalncighbourhoodand fused 

grid de,il!Il),"s well asthn.'e neighbourhood configurations forll>ellarrhaven region of 

Ottawa. A detailc'<l description of the simulalion sortwarc and the data flow is prescmed 

in Chapter 4. while the fomlulation and calibration of the model arc presented in Chapters 

Agents are of coufsc thc most important part of an agelll-based model. In Ihis 

study. agents rcpres.cnl local residcnlS and ineoming visitors who tnak e decisions on mUle 

and modc choice. As discussed in Section 2.3.2. different approaches, including utility, 

bascd,activity-based and constraim-based approaches, have bcen used in trnnsporlat ion 

simulations. This study tries to combine the ;w.h·antagcs of each oflhe three approache •. 



Th~ utility-based al'Proach, or mndom utility model, has b.,,," widely used in 

tmnsponation res~areh_ The basic assumption of a mndom utility model is Ihat an 

individual will seltle on onc deci,ion from a sct of available option~ SO that the most 

"tilityisgained(Torrcns.2000)_Uti lityis thctmdc_offbctwecnthcbencfits (the rositi"c 

pHn of "tility) and the costs (the negative pan of utility, ollen called "disutilit)!,"). The 

notion of"disuti!ity" is " 'idely "sed in tmnsponation stlldics (Reder. 1994: Koc~clman. 

199~: lloogendoom and Hovy, 20(4), probably due to thc r .... 1 that c'OSt measures such as 

time and cost can hcmorc easily idc'Tltifiedand malhcmaticallycalculatcd than bencfil 

measur",_ It is al", argued thaI disutilily is a furm ofal'Ccssibility measured in lhe 

tmnsponation 'y'tem (Geurs and Wee, 20(4), While many diffe.,-ent measurements of 

acccssihilityhvc been used in tmnspo1'1ation studies (fo.example. sec Liu and Zhu, 

2004: Gcur];Nal. 2(06), utility-based accessibility. comhining an individual's spatial-

tempol1l1 constl1lints and fl-cdback mechanismshctwl'Cn accessibility. la nd us.candtravc1 

behaviour,is ",,'Cn as the future of ace "ssibi lily stu<lie-s (Gcurs and Wee, 2004. Liuand 

Zhu,20(4). 

Time and cost arc the mOlit commonly used disulilily items. hut many othe. 

foctors innuence mode and roule choice behaviour a' well (Man et al. 2005). For 

example. strecl safety and aUlomobile pollution emi .. ion would discoul1lgc people from 

choosing cenain routes or e,'en abandoning Ihc walking mode altogether (flhat et al. 

2009: King e/ al. 20(9). Measures ronsidered in this study inelude a,'ai lahility of 

side .... 'alksandp<.'ilestrian-onlyrouICs. number of road crossings nceded forJ'C'lestrians. 

automobile traffic level along the J'C'Ies!rian routes which innucnces bolh pedestrian 



safetyaOO pcdcstrian e~posuretoautomobilccmission>andpcdcstrian trafficlcvel which 

inl1ucne~." the chanec of social interaction, The intention is thai these factors, along with 

the .t<>chastic inl1uencc introduced into Ihc model (sec Section 3.4.2). wi ll explain the 

travel decision factors other than time and cost. Wilh timc, .. -ost and safcty mcasures, the 

utility function isof\cn wrinenas ' 

U=aT ~ pC+,s 

where U refers 10 the (dis-)utility of Ihe trip. with T, C. S ref"r to time, cost and safety 

measures respectively_ a, p aOO yare weighting parameters. 

For each trip (or each round trip, a seriesoftrif'S with the first trip stal1ing athomc 

and Ihe last trip ending at h"me)and each "ptinn f", route and mooe, the disutil ity is 

ea!cu latedasa weightcd total oftilllC, cost and olhcrdisut;lity mcasu res_ The probability 

of choosing a certain option is then calculated bascdon a variation ofMcFadd .. ~\' s logit 

model, For example. for a set of three options, the prot.ability of choosing option I is 

where r is a pammeter 1113t determines the probability of choosing the mode with the 

greatest utility (or the lcastdis-utility): asrbccomcs large,thi' prooabilityapprooches 

one, and probabilities of choosing the other options approach zero, while for r=O, al l 

modcsha"eancqualprobabilityofbcingchosenrcgardlcssofthcirutilityvalues 



A (",dilional non-hierarchical logit formulation suffers from SOme weaknesses 

For e~amp1c, the 10gil f"'mcwork assumes that individuals .,'aluate every available 

aitemati,'c before settling on an optimal [mc (Torrens, 2000) . In reality, because of 

constrainl6 such as lime and economic status, individual. often ""nlc on a subsct of the 

availablcuptions. Furcxamplc,lhcscIcClionofdriving",·ouldrcquircthcavailabililyofa 

car and thepos'iCssion ofa driver's licensc. In this sludy, such constraints arcevaluatC1:lin 

thcmodcchoiccp~s (secS~ion6_lfordetails). 

Time i,not only a (dis)utility, it is also a cooslr.int. Furcxample, " 'hen family 

members 'harc the use ofa car or scveral cars, they must di.'Cidc ,,'ho or whic hlripha.thc 

priorilyforthcu.cofthccar(s). Foran individual,tripssuehaswork aod school trips are 

inelaslic(Na:ss, 2(05). NOl on ly is thcdcmand nol influcnccd by neighbourhood design, 

thetimingofthesc uips isollen fixC1:l. But OlhcTtrips like shopping and social lrips arc 

clastic in that their time anddumtion can 00 chang .. -d to a ccnain dcgrce. I"decidinglhc 

modeoflrips. not only should the individual considi.'Tthc sch .. -dulc ofa ",hole day nT at 

leaSI a whole round trip, helshe also should cnnsider the demand and schC1:lu1c ofolheT 

family members. The solution is an activity·based approach, wilh the famil y as the unit 

for acti" ity and Car usc planning. This kind of mechanism has been u'iCd in other 

transj)Onalion simulalions (for example, sec Bowman and Ben-Akiva, 1996; Arentzc and 

Timmcnnans, 20(4). 

Utility is subjtt1i,'e (lioogcndoom and Bovy, 20(4) . The so-called "taste 

"arialion" .lICans Ihal, e'"en with Ihe same amount of time ""d cost spenl on a lrip, or with 

Ihe same amoont of Imfti~ on the road, different individual. will ha"e different 



[lCrccptionsanddifferemresponSl'S.Soci().cconomicstatusandpcrwnalprcfcrcnccafT.'Ct 

thepcrception ofuliTily. It is.ugge.tedthat utiTitypcrcCJItion in a population follows a 

nunnal distribution. with most fICOPTe having simiTar [lCrceptions while" fcw fICOPlc 

show extreme a!titudc •. The usc of tli e nonnal distribution to represem taSle "ariation is 

common in transportatiun studies (fur example. sec Hess e/ al. 2007; Euema et (JI. 2007; 

Takama and Preston. 2008). Assuming that;( is a nomlally distributed ,-ariable: 

Z - N(II.U' ) 

with the consideration oftastc variation,thc utilityfunctiun can bc rc written as 

U =uX,T + /JX<C+ n,S 

whercp and 17 rcfer to the mean and stan<iarddeviation oftlic taste varia tion valuc •. 

However. in practice. it is difficult to calculate and dctenninc the charnctcri,tic. 

such as the mean value and the standard deviation of the distribution. A rnndomly 

assigned taste variation value can also lead to calibration problem. especially in an 

individual_bascd rnodel,since the random value maynotrcflcct thett\>Ctaste value of the 

corrcspondingagcnt. A solution i.topararneteriscthctime.oostandsafctycoc fficicntsof 

the utility equation using socio-economic char.octeristics of the agents. With such 

parameterir.ation, the uti lity function can bc rcwril1cnas: 

U = (a. + ~a,EI )T + (P. + ~PIEI)C +(r. -+- ~rIEI)S 

where E refers to the sct ofsoci().oc{)Uomic variables considered in the model. 



Thus. given the characteristics of the individual. different "ta'teS' can be 

ge"C'r.ltoo in a (/ctenninistie !TI3nI1~T, This plITamcterisation .lIows incorpornting of taste 

heterogeneity in an economical way (Ortuzar and Wil1urnscn. 2001), This technique was 

proposed by Fowkes and Wardman (19~8) and has been u<;C(\ in a few other srudie. (for 

cxamplc .scc Ri7.ziandOrtu7.ar.2oo3), Thcuscofthistcdniqucwillbefunhcrdiscusscd 

It is nearly impos.ible to obtain individual Icvcl population data fore ,-cryresidcnt 

in a neighbourhood Of study arca. In transponation studics. it is common practice to 

generalca synlhetic population frumsur.:cydal ..... hich rqm:.scntsace rt.inpcrcentagcof 

the population in the area. Populatiun ~ynthcsis is even more irnportunl to ugcnt-ba>Cil 

models M it resolves many problems with the usc of aggregate data. and il helps get the 

maximum value out of the available data, For examplc, avcrage commute time is ol1en 

considered as an important indication oftransponation nc1work efficiency. An increase in 

average commute lime secms to mean heavy traffic and more congcslion. Howe,'cr. it 

could also be the resuh of more long-distanccanduncongcstcdcommutcs. S uchcxamplcs 

rcwallhc inadequacy ofagsregatc data in oomplcx situations (lkncnso" and Torrens. 

2(04). Thc usc of.,ynthctic data can hc1prevcal patterns. cbaractcristics or problcmsal 

Ihcindividuallc'·clorvcrysmallsca1c. 



Synthetic populations ha>'c i>t.'Cn used in microsimulations sincc the 1950s. One of 

thc initial uscsof.,ynthctic population can bctrnced to Guy Orcutt wlw uscd as) Tlthetic 

ropulation in his microsimulation model of household behaviour under diff"rent social 

policies (sec OrcUll eI 0/. 1976). In tran.rortation simulation, Greig Harvey' s STEP 

modcibuihin 1978 used a synthetic population fora simulation of the San FranciscoUay 

Area (Harvey. 1978). One of the most famous lranspoMalion simulation models, 

TRANSIMS, also usc. a synthetic populatioo (Smith "~I 01. 1995). 

T","sponation studies. especially in the United Slates. have widely used the 

Iterati~e Prop011io!llli fining (1I'F) method to build synthetic ro[llliations. ne main 

reaSOn is that in the United Stall'S. samples of individual levcl census data arc made 

availahle at the seale of the Public Use Microdata Area (PUMA). which is usually an arca 

with mOre Ihan 100.000 persons, while transroMation simulation oflen nceds to be carried 

out at smaller scales like census blocks. where only aggregate data arc ">'ailable. Thus. 

individual data must be synthesi zed so that thcy replicate the PUMA data while also 

fitting the aggrcgatc charncteristicsofthe census block. For a dcscriptio nofthell'F 

mcthod.sec Wong(I992) 

An II'F based synthesis method has bcc-n programmed for this study. Howe>·cr. the 

sUJ'\'eyda!a used in this study arc originally from the neighhoumood level and no II'F 

transfonnationis nceded. Instead. Ihccxpansion factors contained in the data, which arc 

calculated based on the proporlional difference between mrvey d3l~ arnI C"'Usus dalli. are 

used toob!ai~ thc entire po[llliation_ Thi s methodha. also been used in othcr s(udics (for 

example. see National Coopcrntive Ilighway Research Program (NCIlRP). 2005). 



h has bccn shown that many trip characteristics. such as tril'rlilepcrpcrsonand 

trip distance. follow the gamma distribution (Zhang and Mohammadi.n. 2008). This 

pro,-idcs an approa.h to cumining the output ofpopubtion syntllcsis (see Scction 5.2.4 

for details) 

3.3 THE ENVIRONMENT 

Agents live in an environment. For a map-ba5Ctl model. a Geographic Infonnation 

System (GIS) provides an imuili"e way to prescnt the environment 

The proposed model does n01 eomain a land use change mod ul e. Instcad.land usc 

changes are manually manipulated through the GIS map and database. and are the." 

instantaneously provided to the trip processing pan of the model U,ing an instantaneous 

link to join land usc and UlInsponatinn is one of the two major methods to bui ld 

integrated model •. with the other typc bcinglO link land use and Iran'ponation with a 

time-lagged link. so that feedback can occurbctween land use change and chang .. in 

transponation.y'tem'(Tom:n~2000) 

One of the main focuscsofthi,stu<iyison the OOnefitsofneighbuurhood d .. igns 

on pedestrians. Thus. the proposed model focuses on tlte neighbourhood characteristics 

that a..., most imponant to pedestrians. including sidewalks. pedcstrian-only routes and 

pedestrian crossings. Whilc automobilcs only run on the right-or Icft.dependingQllthc 

(oum')' side nfthc road. pedestrians Can walk on both sides ofthc road_Thc numbcr 0 f 



road crossing for pcdcstrians clearly dc".,nds on which side of each street the pcdcs trian 

willehoosc. PC<lcs{rians mayalro need to hc on the samc side of the Slrttt forpolential 

social inlcrdCtions to happcn, These phenomena cannot hc captunxi by Ihe lraditionaluse 

of GIS road map which represems a road as a simple line. In this sludy. the problem is 

rol>',..JusingacreativcuseofthenClwortmap(sceSections4.2.1 and4.2.2foreulIlplcs 

of GIS and network lIlap), In a nCt"'ort map. each im=tioo is represented asa "nodc". 

andcaeh road is rcprcscnted as twO "edgcs" between two nodcsw;th oppoSilcdircction S 

Whiledirtttcd cdges arc nonnally uscd 10 interprct dirtttionsoftraffoc, in thi sstudythcy 

arc imcrpretcd as sides of roads. Thus. pedestrian traffic can be assigned to one of the two 

oppositecdges rcprcscntingoneofthc two sitlcs of the road 

An impol1antlink betwCCll thc environment and the agents' choice Ix:haviouris 

the shorlcst palh algorithm, which dctennincs agents' route and mode of choice. The 

shonest palh algorithm i. an important arca of sludy in transportation studies, and 

different methods and algorithms ha"e bt.",n proposed and used in previous studics 

E~amplcs include: Swann Imell igence (SI) (BaUy e/ al. 2003), learning Agents (Zhang 

and Lcvinron. 2004) and Dijkstra's algorithm (Dijhtra. 1959). In an SI method. a numlx:r 

ofagcnls mo,'cOUI randomly to scareh for thc destination. The agenl,who discovcrlhc 

tlcstinalion would movcback to thc origin and laytrailssothatotheragcnl swhohavcnot 

discovcnxi the destination Can ieamaboutthediscovery. !na leaming Agen tsmClhod.an 

agent movcsalong the network. At each node in the network. the agenllclls the node 

about lhe agenl's path and lcams from the node about lhc palhs lakcn byprcviou sagents 

A shoncst pathesn thcn bediscovcrcd by n,,,.,tilivccomparirons and fcC<lback between 



the nodes and the agents. Dijkstrn's algorithm is a mathematical algorithm that solves the 

singic-sourcc sbortestpath problcm fora dircclcdgrnph (i.e. a graph with dircct cdcdges 

between linked nodes) with non-negalive edge weights. As road distance is al"'ays non_ 

negative. Dijkstra-, algorithm is natumlly , uitable for trdnsportation simulations. While 

all thc aoove mcthods are efficient, there is no comparison of the methodstod ate. In this 

studyashonest path algorithm bascdon Dijkstra·salgorithmisus<--dbt.-causcthemt.1hod 

is the most commonly used shonest path algorithm. it is reasonably fast, and it is 

adaptable and modifiable to the study's requirements. The length of each SI,,-...,t section 

can be weighted to reflect the influence of traffic. sidc".,.lk. pcdestrian·only routes. road 

crossings and personal preferences ("'taSlcs'"). The result can be fun her randomizc-d to 

reflect the nat ure of the agents' imperfect knowledge of the road. and TOad traffic 

condit ion,. These customizations make it possible to generate dynamic route and mode 

choice 

3.4 COMPLEX SYSTEMS 

Agents. th e environment. and corresponding rules form a comple~ system. As 

with al l complex sy-;tems, fc-edbacks nnd uncertainties arc impoTUmt for the emergence, 

bifureationand other phenomena ofthcsystc'TTl.ln this sleldy. the inclusion of feedbacks 

and unccnainties arc esscntial to tbc generation of real istic trip and traffic patterns. An 

urban neighbourhood is a comrle~ system that is constrained by spatial. environmental 

and technological factors. The behaviour of the individual agenb is also bounded by 



soc;al and economic conma;nts such as social values and COSI considerations. T~us. a 

model of such a system tends 10 produce stable ootput pallem •. However. typical 

complex system bchavioor can still be observed in t~c model. For example, in the 

prop<l"Cdmodcl,aspedcslrianagenlSareallractcd toothcrpcdestriana~cntsonthcroads, 

therandomroutcsclcctionofapcdcstrianagcntmayincreascthcdcsirabilityofaeertain 

sireet, and lead to the utiliZlltion of the same stre..,! by other pedestrians. While thc modal 

splil pattern produced by the model is normally stable, for the parameters of the modd, 

cspccially Ihe oneS that control the influence of automobile and pcdcstrian tf1lffic, there 

ex;sls a certain rdn~c of parameter value'S where a street may become unrealislically 

attracti," to pedestrians due to I~c positive fcedba,k process. causing an unrcalisti .. lly 

high number of pedestrians walking through the road and ultimately causing thc 

pcdeslrian mode dominating Ihc th,,:;: mode choices, This extreme example illustrates thc 

errn:rg~.",e. bifureation and p3lh.Jcpend .. ."ey features of the urnan neighbourhood as a 

complex system 

Feedback is important 10 a complex system_ Feedback is crucial to simulating 

dynamic behavioor, capturing features that don't emerge from hierarchical modds 

Feedback has been studied in many urnan and tr.msportal;on studies (Bovy and Slem, 

1990; Batty. 2001; Tcknomo and Gerilla, 2005). It is argued that weak positive fCi.'<lback 

is nec .. 'Ssaryto pe",i.tcnt structures "nd growth of the s}"lcm (B"tty, 2001). Feedback 



processes in this study include the following: The sight of pI,destrians "" the road 

encouragcsagents toehoosc walking and to choosc a certain route. whilc too many cars 

on the road discourages walk ing and discourages the u<;c of the roads with high 

Positivefc'edbackalsoleadstopathdcpcndency(Manson.2007),lnthisstudy.(he 

spin.up proce.'iS (see Section 4.2.4) can be interpretcd as the proccss in wh ich agen(s learn 

the environment (road and traffic condition). and react to choose new mute and mode, 

""hich in tum changes (he environment «(raffic condition). and so the feedback gocs on. A 

limita(;onoflhccurrc'lltmoocl is (hatthcrc is nodircct fccdbackbetwec" humanagcnts 

and (he physical environment (I,c. physical condition of roads and charactcristics of land 

Uncenainties are imponant to the modelling of complex systems, In an agcnl-

based model of. complex system, uncertainties ollen come from probabilistic clements. 

both from random "ariat;ons in exogenous factors and fmm the stochastic nature of 

cndogcnous processcs (Vcldhuiscn. 20(0) . Uncertainties considered in this study include 

the unccnaintics in agents' decisions and the uncertainties intrinsic to the model. In 

decision processcs.agent$ha'·elim;tooandimpcrfect infonnationabout road and traffic 

conditions. and ollen cannot make opt;mal decisions, For the model itself. while a model 



is built tocapturc the characteristics of the real world,thcmodcl isrequircd to be simple 

enough to be practical. Simplicity means selective indusion and exclusion of factors, 

which means that there are uncenaintics that are not captured by the model, or that the 

modcl may not be ablc to eapture all thc dynamies of the S)'5tem 

A common practice in complex system modelling is to incorporate random 

variablc(.) which represents uncenaintics in the model (for example, sec White and 

Engelcn, 1993: Alcxandridis ar>d Pijano,,'ski, 2002)_ 1lle mathematical nature of r,mdorn 

nymber Gcncrators Illeans that repeatable results can be produced whcn using fixed 

"set,ds", while sysh:m dynamics can be observed usinG different seeds_ This rcpeatable 

behaviour i. ess.ential for the calibration and analysi' of a complc~ system model. 

Randomi7,ation is essential to the Generation ofreali.!ic traffic p"ttcm in this study 

Furthcrdiscussion will bcprovided in Sct;tion66 



CHAPTER 4; THE SIMULATION SOFTWARE 

£lased on the requirements ofth;, study, a simulation pro~~m is developed based 

on the Repast simulation platfonn (,'crsion 3,1) and thc Opt.'TlMap GIS mapping platfonn 

(vcrsion 4,6,5), This chapter dcscribcs thc building process oftne simulation software 

MIND (Modelling thc !nflucncc of l:;:!eighbourhood ~ign), including thc selection of 

simulalion platfonn (Section 4.1. 1). comparison of thc usc of rastcr maps (Section 4.1.2) 

or vc'Ctormaps (S<-'Ction 4,1.3),as wcll as the pcrfonnancc tuningofth c software (Section 

4,1.4). The chapter also provides an introduction to thecompoocn" of the software 

(Section 4.2. 1 to4.2 .3),as well as thc data flow betwcen the cnm(l<lncms (Seclion 4.2.4) 

With the increasing popularity of agcnt-based modelling in G~'Ogrnphy and other 

academic fields, son"'arc platfonns for agcnt-based modelling arc nOw widely ",·ailablc. 

There are currently more than 20 different platfonns to choose from (Tobias and 

Hofmann, 2004; Swannwi"i website; Tesfatsion website). With a focus on fn'e and open 

source software, propriclllry software plslforms were exclude..! at Ihe beginning oflhe 

o;c lcctionproccss. Aftcrcxtcnsi"crescarch into documents and example sof lhcrcmaining 



software platfonns. seVCn pbtfonns were ",Ic<tex! for comparison: SeSAM, NetLogo. 

StarLogo. Swann, Re1'llst. MASON and Madki1. 

Comparisons were made in the following areas: difficul(y level of prol!fllrnming 

and huilding an ARM model. customilability of the plalfonn 10 specific TC<]uirCmCnlS of 

thisSlUdy.CXlCnsibililyofthcplatfonn.spcooofsimuiationandsupport00 rnapand dala 

fonnals. The popularily of a platfonn. and whether the platfonn is regularly updaled. 

wCTCalso considcn.x!.I><.-causc Ihe'Se faclors influence Ihe user base oflhe plalforrm and 

Ihuslhclc>'ciofsuppon Ihalmighlbeexpeclex!duringthcsoflwarebuildingandlesling 

RC'past, or Ihe REcursi>'e Porous Agc-nl Simulation Toolkil (Repast Organizalion 

for Archile-cture and o.,,,elopmcnl, 2003). was selcclex! for Ibis sludy oos..x! on the facl 

that il is regularly updatcd. has. large uscr 00...."has extensive modelling iibrnricsand 

programming Af'ls. i, relatively fast and can be easily linled willl GIS m~ps and 

popolation databascs. Of the other six pialforrm, NclLogoand SlarLogo are easy louse. 

bUI lack cu,lOmizabilily: model building in ScSAM is based on a Graphic Uscr Interface 

(GUI). n01 a prol!fllmming language, which is eXlremely inefficienl when dealing ",.ilb a 

modd Ihal has a large numl,,:r of agents and proc.:sscs; Swann is considerably slower 

than olher platfonns in model execulion ,peeds (also see Railsback ef a1. 20(6); MASON 

and MadKil both lack the level of GIS support in Repas\. Table 4.1 pro>'ides a 

compari son oflhcscsc"cn platfonns. 
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Repast is now one of the most poru'ar multi_agent simulation platforms and is 

frequemly uS<..,j in urban and transportation simulations. Ro:past is fre<: and open source, 

and rom~", ",ilh lib,.~ries which provide support for basic simulation needs as well as GIS 

inl egralion. Since il is based on Java. models based on Repast can easily use othorJava 

packages and hbrariL"S to e~tend their functionality. The GIS rompatibility of Repast i. 

provided by OpenMap (OpenMap. 2(05) ...... hich is fre<: and open source as ..... ell . 

OpenMap can handle and proc~'Ss GIS maps and data in most popular fom.alS like 

ArcGIS shapefileand Maplnfo map files 

In GIS. maps can be represented in two forms: rasler or Vee!Or. A raster map 

ronsisls of ms!cr cells. which mates it ideal for use in CA models a. well as ABM 

models. For example. for Ihe purpose of this study. counting nearby agems (with woom 

chance of social inlc'raclion exists) can be easily done by counting the numberofag~-nts 

in Ihesame cell orin Ihcncighbouringeclls 

Two prowlypc models "'0 made using raSler maps. The first prololype mode' ..... as 

built wilh a POMabie Gray Map (I'GM). I'GM maps are widely used in land use models 

The f,le fom.al is simple and is designed 10 be easily processed by software models. On 

the PGM map, each agent is assigned a home eell and a destination cell. and agents move 

between cell, as Ihey lra,d. Figure 4.1 shows an example of a I'GM map file (left) and 

Ihe nelwurk map generated based on the I'GM file (right). The p,ululypc model ... ·as able 



10 fuHili mosl requiremenTs of the proJlO""d model. Along with the bui lding of the 

prOTOtype model , it was also found that the shorl~-sl path algorithm that comes with 

Repast (\'ersion 3.1) was uflab le to produce ShOrleSlpalh undcrccnain circumSTances. A 

CUiitomi~ed procedure was then prosramme'<i for the calculation of shonest path. 

Figu,..,4.1 : ExampleofaI'GMfileandlhcI>CtwOfkg,ncralCdfmmlbefii< 

(Lcll : contcn' nfa P(iM file: righT: the netw,>rk gcn""lled I:>ased on the PMGfi\c) 

With the success of the first prototype, a second prototype model was created. The 

model used a rastcr map of the Barrha\'en region in Ottawa. While the m<.>del ,til l acted as 

c~pcctcd. il turned OUIIO be e~tremely slow. lbe problem is that. with a raster map, each 

mad cell is considered a node in Ihe road network. As there a...: thousand,o fn<.>desinthc 

network, and Ihe calc ulation time of shonest path increases eXJIOnemially with the 

number of n<.>des in the "",work. the m<.>del becomes ex,remely slow for a larger map 

Figure 4.2 shows age'Tlts moving 0" the network in the """ond pm'otype model. 



F;gure4.2,Exampleoforas,.,.mapbased model with agents moving on tlIc roado 

The solUl ion 10 the perfonnance problem is to usc vector maps . Different from a 

raster map. a "eClftr map uses points. lines and polygon. to repre""nl map objecls !ike 

imcrscctions. roods and regions (Figure 4.)). A nNworx map can be gcncrnlcd by 

iMmifyi ng inlersections,ofwhichlhereareoflenlesslhan200inancighbourhood.lhus 

making short""l mule caleu!.lion much fasler, 01h .. 'T ad>'anlages of using \,CClor maps 

includelhc following: hou!iChoJdseanbcallocalcdlodiffcr~'1l1s1rcelsandsUttlscgmcnls 

with different dCftsilie., and SUcci. can havedifferem charnelen.lic. such as sidewalk 



availability or pedestrian_only status. Traffic characteristics can al.o;o be integrated as 

properties of streets. While Ihis change requires more comple .• programming. it brings 

much impro'·edpcrformance.lhencxibilityofus;ngGlSmapsdircctly.andanintuiti,'c 

'_~_ L .,.... 

I!ID"::~ 

.-~ 

Figun:4.):AGtSmapinthe,'cctorbascdmodcl 

Wilhlhcw.;tormap. lhecxC<;utionspcedoflhcsofiwarc ..... asgrcallyimproved 

Forexamplc. lhccxc<;ut;ontimcofiterntionlhrough5.000agcnls(tomo,·c them on the 

map)shoncned from 5 seconds 100,3 seconds. Bul the vc<:lor map based sofiwarcSlill 



faced other performance issues. with the main issue heing slnw input/output (110) 

perfonnance 

lIO issues ex isted in Iwo situations: fi",l. when Ihe software im por1s populalion 

dala from existin): dma source,. and s • .'eond. when Ihe software saves synthesilcd or 

simulatoo data lOlhe hard drive and Ihen rcad.lhem from the hard drive a&ai " (dal. are 

saved and re·read helween processes so thai identical populations can he used for 

diffcrcntanalYl'csandexperimenls:se<:Section4.2.4 formorcdctails). Mo.t trip survey 

data. including the data to he used in Ihis slUdy. come in the fonnat of plain lext, 

Microsoft Excel or DIlF database fonnal. none of which allow effocient access and 

access the dala with JDUO'ODBC (Java Database ConncclivilylOpcn Dalabase 

Conncctivity) . Combined with !he usc of Ha,hMap and the mort.' efficienl IlemlOr mcthnd 

in Java programming. the data imponing lime was reduced 10 less than ]110 of Ihe 

original time nceded. The data readlv.'rite efficiency was imjlfO>'ed by Ihe uSC of la"a 

seriali7.aliOfl'. Initially. Ihe data f,les were saved and read in XML (eXtensible Markup 

Language) file format,oc'Cause Ihc code librnryforgeogruphicallocalions in Repasl rlOl.'S 

not suppon standard lava serialization. while some la"a 10 XML serialization packages 

such as XStrt.'arn (XStream Comincrs, 2008) and JSX (JSX Enterprises, 2008) suppon 

serialilation ofnClnly any Java objects. Ho ..... e>·cr. to save la"a objects (for example. 

agents) in XML fonnat requires extensive fonnalling oft~e XML fM. and the file size is 

oflen huge. The result was slow data reading and writing. It was later diseovered Ihat it is 

' tn J .... ood<>lheT ~mmi ni la",ual!<'- seoati,o<ioo i. ,1>< rro«SS ofWO'·''',ng ' data"""""",,,, 
obj.';lin""seqU<llC<ofbi"",thotll, .. be<torOOin . fi\e 



fastertorc...,rcatethcgcogrl\l'hicallocationnbjttts from scratch than to saVc them toa 

tile and read il again. So instead of saving the locationnbj .. "Cts to the hard drive. only the 

indices of these location nbj .. "Cts need 10 bcs;wcd. The location objects arc then rc-crcated 

e"crylime the soflwarc runs. and rcfercnces arc thcn made betw .. "Cn Ihcnb jectsandtheir 

indices. With Ihe usc of fixed random number generalo .... exacl <arne location I"'Hcms 

Can be replicaled. This allows Ihe usc of the standard J.v. scrializalion method which is 

Ie .. flexihle but more effocient. For Ihe data from a tcst area. the liO lime is impruH,,1 

from nearly Iwo minules 10 around Ihree seconds. Othcr lhan gcographicallocations. 

Olhernbjects in Ihe o;oflwarc. such 8'l agents, rolKls. nodes andedgcs in the n""Iwork ean 

also be saved by reference to Iheir indices. The result is much improved iteralion spc .. -d 

(Ihelime ne .. -ded to shumcthroug.h ai l iheagcnis forroule and ulililycalculalions. and 

movcments) 

Otherpcrfonnanceluningsincludelhcuscoffasllalilude/longiluderclrieval.the 

uSC of an effoeienl random number scneralor. and a euSlomi7.cd array c10ning melhod . It 

wasdisco"crcdlhallhe location nbjecls from RepaSloonol slore decimallalitudcand 

longilude valucs. bul insleadc.leulale Ihem from radian valuC'l evcrylime arequesl is 

r .. "Cci,·~-d ..... hichrequircsexlensivecompulinglime. Since Ihe "alucsarc fn."<]ucntlyused 

lliroughoullhc model. a simple solUlion is 10 slore Ihe decimal valucs 10 the objects when 

Ihey are created. Random number generalors arc used throughout the modd as well. For 

examplc, during the caleulation of shortest path. to simulate the nalure of agenlS' 

(espcciallypedestrian.gents·)ineomplclcandimpcrfcctlrnowlcdgeoflheenvironment. 

Ihe distance of each street is ,-,mdomized c~cry lime il is used in lhe slx,"esl TOUle 



algorithm, which means millions of randomization calculation each time the model 

shufllcs through all the agents. Forenmplc,5,OOOagems, IOOstrcetsandthrccdifferem 

method i, not efficient cn(}Ugh for thi s usc. Several random number generators Were 

reviewed and XORShifiRNG (Dyer. 20(9) was seiL'Cted. It is mOre than 40 times faster 

than Ihe Java built.;n random g<:f'C1'3tors, with a simple tesl showing Ihat the neW method 

rcquircd only 0.368 soxonds " 'hile the old method used up to 16 seconds for the same 

randomization task. A customizc-d array ciooing method was .Iso created for this model, 

with an cxceution time only 2% of that of the amly clone method thaI comes with Java 

In Java, it is kn own tl1at Ihc"cloncO" mClhod fOTObjccls docs not genern tealroe 

copy ofthc original object. The result isonlya rcferc>Jlc" ropy oflhc object with nO real 

COl1tcnlofitsclfolherthanprimilivcpropcrtics (propcrtiesthalarcc'prcssedinnumbers) 

So if certain non·primitive propcrtics of Ihe original objoxl change, the changes influence 

the 1\C ... ·objoxl as wcll . FUT use in this sludy (mainly for the gcncration oflhe synthClic 

population), a rca l clone method, oommonly known as deep copy, was programmed. The 

rcal eloneisdoncbyscrialilingthcobjoxlasastringandthcndc·serializingitfora 100% 

copy of the original object. Two difTercnt serializalion methods (XSlrcam and JSX) .... crc 

used fur pcrformance comparison. For a smallcrdalasctof300 houscholds,JSXis aboul 

f(}Ur times faster in scriah7.alion (4 .6 seconds vs . 16.4 'iCConds) and 30"10 fastcr in de· 

scriaIi7.alion(1'iCCondv •. l.4scconds).Whileforalargedatasctof5.100households, 

XSncam was proven to be faster, with a serialization time of 42 ~",on&; vs. 18 seconds 

n}T JSX. The reason may be Ihat XStrcam docs nOI create a ne"" serialization "machine" 



c\'CTytimc it is eal lcd. while JSX doe,. and the creation of these scrialization machines 

con,umcsconsidcrablc computing timc. Notc that the native Ja.'a scrialization mcthoo is 

notuscd hcrc,bec.au,e for this gpccific usc, JSX and XSucam are faSlcrand ca.icrto USC 

The mooelling <;oftwarc was bu ilt wilh consideration given 1()data compalib ility 

The usc of OpenMap cnSUI\--S Ihal all comnl()nly used map types including ESRI 

Shapefiles and Maplnfo map files arc supporloo, As fur population tiala, lripsur"cydala 

normal ly come in the formal of Pure Text (,Ixt), Microsoft Excel (,xis). DBF (.db/), SPSS 

(.sav). SAS (.sas) and Microsoft Access (.mdb) flmnal. All of Ihe abovc files can be 

casily imponed into Microsoft Access dalabasc which is used in the mooclling software 

Thcmoocl is dcvclopcd using Java. oncoflhe mos\ commonly used programming 

language for agent-based mooels. The mooel Can be expanded 10 incorporale more 

functionsusingc'tcmal}a"apackagcswhicbarcwidclya.·ailablc 

4.2 SOFTWARE INTRODUCTION 

MIND is oomposed of five Java classes representing fi,·c proccsses (MindReader. 

MindSynlhesizcr, Mindlnit. MindSpinUp and MindDaily). 12 Java classes representing 

12 types of ubjC<:1s in Ihe mood (MindHouschuld. MindAgcnt. Mindl{uundTrip. 



MindTrip. MindDcslinalion. MindRoad. MindRoadScgmcnl. MindNodc. MindEdgc. 

MirnlGeo. MindTexl and MindMarker) and cighl Java c1as<;eS represenling scllings and 

other computing jobs in Ihe model (MindScnings. MindTools. MindRouling. 

/o,lindGlobal. MindGra,·ity. Mind Dala. MindCalibmtion and MindExpcrimenl). The 

foliowing seclion. describe the basics oflhe SQftware and how Ihe SQftware wor\.:s. 

The GIS map represems the struclure of the road nCl\mrk and the locations of 

households and facililics. Agents move on the map based on Iheir OWn route and 

schedule. Figure 4.4 shows a comer ofa GIS map in Ihe software. Line. (MindKoad as in 

the software) represent roads (black lines represent nonnal roads. " 'hile g.rccn lines 

r.:p=: pcdes~';~n-()nl)" ro~tes). Green colour squ:m:s (/o,lindHou~hold) On the rreds 

rc-pre,ent household. in the simulation. The red square (at the upper.loft comer of the 

map. end nf thc street) represents onc of the exits nfthe ncighhoumood where traffic 

enters and eXil'lhc neighhourhood. while lhe blue square(allhcopJlOsitecndof thesamc 

strcct) represcnts one Oflhc locations of local faeilitics {including work places. schools. 

shopp ing/servicc facilities and transit faci lilies). The geographieal locations of houses. 

facil ities and exits arc reprcscnlcd by MindGeo in thc software. MirnlRoodScgmCI1! 

represents a straight line section ofa MindRoad (In olher woros. each MindRood contains 

several Mind RoadSegmcnts). The time display ("{J):30:00AM'') at Ihe upper-left comer 

oflhcmap iscon trollc-d by the MindText d ... 



Figure 4.4: Example of the GIS map display 

The MindRoad cla.s represent. the roads in the hase map. and cOIltains 

infonnalion"" road properties. Each road is composed of a list of points (MindOco) and 

a list of straight iincs (MindRoad&gmcnl) bch.'cen each pair of ncighbouring poims. 

Road prop<:rti"s incl ude rood length. density of households on road. the nodes 

(MindNodc)atcachcndofthcroad.ifthcroadhasasidcwal~oncach.idc. if the rood is 

pcdc"Strian·only and if the road is an exit rood (connection road 10 the area outside the 

ncighbourllOo,J). Each road is identified by a unique 10 which is USl-.j in shorlcst route 



MilldRrmdSe9meni 

MindRoadSegmcntrcprcscnts each Slmighl line 'K'Ction ofa road. Eachscgmcnt 

has a uniq ue 10, which is used to identify the location ofagcnts d uring shortest route 

calculation and during agent nto,'cmcnt 

MiooGeo n."re .. ,nts a location on the map. The location could be either the fi~ed 

location ofa houschold or facility. orthc rcal -time location of an agent when theagcnl 

moveS on the road network. Each household and facility localion is identified by a "nique 

lD.Andal l location,arcassociatedwiththeroadthcyarcon(onRoadJD).thcsidcofthc 

road Ihey arc on (onEdgclD) and the maight "'gment they arc On (onScgmcnIID). Each 

locationhasilslalitoocaoolongitoocvalucstol'C1Jas de<;imaldcg=sforfastrc1ricval 

MindTcxt is lI5t.'<lto displaycurrcnl limcon Ihe GIS map. 11 is s implya wrap upof 

the OMTcxt class from OpcnMap wilh an implementation ofOpcnMapAgcn1. All class,," 

"""Cd II} impkmcnllhc OpcnMapAgcnl interface for it 10 be displayed in the GIS map. 

Mind"brl:er is used to marl: location~ on the GIS map. 11 is 1lS<.-d 10 mar,; the 

locationsofpcdcstriancncountcrsandillWlmtcthcspatialpallcmofautom!>bile 



emi~sion~. See Chapler 7 for Ihc (X..:ieslrian enCOunter and aulomobile cmi .. ion maps 

gcncraledduringlhcexpcrimcnls 

The nelwork map is a nClworl< rC'JIrcscnlalion of Ihe rood nC1work. Figure 4.5 

shows an example ofth" nelwork map in the software. In the network map. blue squares 

represent nodes (M indNodc as represented in the software) in Ihc networl<, and 

correspond 10 interseclions in Ihc GIS map, Purple lines represenl edges (MindEdge) 

which connecl nodes, and ",,",,'pond 10 road. in Ihe GIS map. The smaller red squares 

(lwO on each line) rcprcscnllhedircclions oflhecdges, Each road corrcsponds 10 IWO 

cdges wilh opposile dirc'Clion •. As mentioned in Seclion 3.3. c'<lge, arc also ust.'<I lO 

rcprcscnlsidesofroads 

figurc4,S:Exampicofanclwor'<map 



MindNode represents nodes in the network. Each node has a location .... hich is 

represented by MindGoo. Each node has a unique node !D. Normal ly there arc two 

opposite edges between each neighbouring node pair. but sometimes more than two exist. 

esp • ."cially in the cases of looping streets. A "'getShortestEdgcO" function is written for 

MintlNode which returns the shonest c-<lge between any neighbouring node pairs. 

Mind£dBe 

MindEdgc rcprescntsedgcs in the network. Each edge is idcntilkd by a unique 

edge !D. and contains infomlation on .... hethcrthe edge (the side of the road) has a 

sidewal k. and wbcthcr the edge is pedcstrian-only. If a road ispedcstrian-onl y. ooth edge<; 

correspond to the road arc assign .. -<I pcdcstrian·only status. In MindSpinUp (o;ec Section 

4.2.4). tmffic C"Ollnts from different time periods arc stored with each edge In MindDaily 

(sec Section 4.2.4). each edge rc"Cords in real time the IDs of agents on the roads. 

separated by automobile and pedestrian mode. Each .. -<lge also ··kno .... s·· the number of 

road crossings nceded for a pedestrian to get from the edge to other cunncetC<l edges. This 

cm"ing info rmation is calculated during the initialization of the GIS map. and is used in 

The most important function of MindEdge is to return a strength ,·alue. which 

coold bc the physical distance ofthecom. ... ponding road. or the road distance weigh ted by 

road traflie. road renditions and individual perceptions. As traffic values are collccted 

based on edges (i.e. the "olume of traffic on each side of the road) .• switch in the 



soflwareenabJc, it to return thcdistan<:e weighted by cilhcrthc lraffic volume on lhe 

same side a. theagcm is on, or on both ,ide, of the road. Thcmodel as prcscnlcd in 

Chapters 5 and 6 only uses the latter option (i.e. traffic on both sides of the road arc 

considered) 

Agent, and lheir trips arc grouped in a hierarchical structure in the model as 

shown in Figure 4.6. For each neighbourhood, a gj"cn number of hou&Cholds 

(MindHou&Chold in the S<lftware) arc .'~'nlhcsizcd basc<.l on a real world population or 

study requirem,:n!. Each household may ha"c several members (MindAgcnt). and each 

member may have several round trips (MindRoundTrip) in a day. A roond trip is definc<.l 

as a scric-s "ft'ips (Min:lTnp) that both start and end at home. Eaeh sir.gle trip is assig.~cd 

a destination (MindDestination). The MindDcstination class is used to alter the location 

ofdcstinations during expcrimcnls 

Mindllou$ehold 

MindHooseholdreprcscnlshou&CholdsinlhcmodcL Each Mindllouschold objccl 

contains household level inf01malion, as well as references 10 the members of the 
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Figure 4.6; Da"'&lrut,~re for bousellolds and trips 

A spc<:ial function oftl>e MindHouschold dass;s to storc and dc..:idc car usc 

schcdules. Oncofthcconsuaintsoncaruscistheavailabilityofacarduringagi,·cn tinle 

period. Since a houschold oflcn sharcs the usc of cars within the houschold. a car usc list 

iscrcatcd for each houschold(figure4.7). Each line in the list dcscribcs Ihc s.;:hcdulcfor 

one cor. In cach line. every four numbers fonn a group des.;:ribing lhc staninglinlc. 

cndingli.rn:.uniquclDoftheperson{inthchouschold)anduniquelDofthcroundtrip 

(for the person). Each timc a family member necds access 10 a car, an inquiry is scnt to 

the car uSC lisl !o find thc first a,·ai lable car for the spccificd !imc peri od 



FigLltC4.7: An~umplcofrm,cat""'" li,{ 

MilldAge llf 

MindAgenl reprcscnts agenls in Ihe model. Each MindAgent ohject contain. 

"""",n le"01 informalion, as well a, rdercnces lO lhc round {rips and individu al {rip'lhal 

Iheagent makes. Each agent ha.aSCIofprcf.'fCncc>'alllCSagains{limc,C05{ands-afe{y 

which represenls laste variation. When moving on Ihe map. agenls also carry additional 

informalion including cum:nIIOCalion. {rip mode. iflhc agent is a local r.'Sidenl or a 

visitor. and Ihe nurnbcrofpcde'trian encounlcrs and automobile lraffic cncoumcrs. The 

GIS map in {he software displays Ihe agents in difTc,-cnl colourae<:ording {o Iheirnip 

MindRoundTrlp 

MindRnundTrip contains round trip lc~cI informalion. This class is basically a 

Wl1lP up of the Amlylist<MindTrip> class. This class facili{aleS round lrip related 

calculations ,uch as the sorting of round lrips aecording {Olheir di, utilitY"alues 

MlndTrlp 

MindTrip contains Irir level information The mode. rnule and disulility of each 

trip in each mude are also s{ol\:d with {he MindTrip object. The mosl imporuont funclion 



of the MindTrip class is to move agents On the GIS map depending on the timing of their 

Mindl.lcstinationcomains infomlation On the dcstination of each trip. including 

the type of the dcstination (IOiork place, school. shopping and scrvice fac ilitics. and social 

aClivitydcstinations).thelocationofthcdestinalion.whClherthe dcstination is (>Utsidc lhe 

neighbourhood and ifoutside. the additional distance outsidc the neigh bourhood 

The main processes in the software and the data flows between them arc sho .... ll in 

Figure 48. The rorulation data are san~t after each proccs.. so that f'I-"[)C8tahlc 

experimcmscan bcdonc with the idemical population. 

In this procc ... the model reads the population and trip data from an Acecss 

databascaod convens them to the data fomlat nceded in the following processes. The 

Accl"Ssdatabasccontainsrcal .... ·orld tripsurveydata which are. as iscomm On praclice in 

trip su .... 'eys. organizcrl into thrcctablcs' 



Figure 4.8: D.t. Ilowmap 



lIouscholdtablc:lhchouscholdlablcoonlainshouscholdlevcldatasuchai 

houschold size, number of vehicles, house lyp<: {single houses. attachcdlrow houses, 

apartmcmS),etc. Each household is idcn,ified bya unique houschold ID . 

I'crson tab le: the person lable .oma ins individuallc,'cl data such as sex, age, 

occupation, ~t<'. Each person is idcnlifled by a unique pctson ID, as wel l as the 

corrcspondinghouscholdlD. 

Trip table: Ihc lrip {ablecon{ains nip le,'cI dala such as {imc, origin, dcslinalion, 

purpose and mode of the lrip. Each trip is idcnliflctl by a unique {rip ID, and the 

com:sponrling houscholdlDandpcrsoolD 

MindRcadcr reads lhe lahles from Ihe database using JDllClODBC methods, 

whieh enables Java 1o rcad from and write to compaliblc dalabasc fonnals, anrlgmupslhe 

dala in{o {he hicrarehical srruclurcsho"'n in Figure 4.6. lhc grouping isdoncby 

matching Ihc unique IDs across Ihc lablcs. 

The result of MindKcadcr is a list of households (in la"a, an AlTllyLisl of 

Mindl !ouschold),whichislhcnsaved{odiskusingJavascri.lizalion 

MindSyntheslzer 

MindSymhcsizcr lakes th e result of MindRcadcr and generales Ihe size of 

population needed for usc in lhe model. The symhes;s method is explained in Seclion 



The synthcsizer module groops the mode and purposc of trips into ealegorics as 

required. Trip surveys usually record trip mode and purpose in dctailed categoric'S. For 

example, the Onawa 0-0 SUlVey. which is used in this study. n:cords trip purpose in 16 

categories (I-Work (usual place), 2=Work related, 3-Work on the road, 4-Sch(){}I, 

5-Shopping. 7-Recreation, g=Rcstaurant (takeout), 9~Rcstaurant (cat in), Io-Visit 

friends/family, II ~Ml-dicaIlDcmal visit, 12=Drive someone somewhere, 13~f'ick 

someone up, 14=Retum home, 15=Other, 16~ Dc<:linedldon1 know), while the proposed 

model group, trip purposes into only five categoric, (work, sehool, shopping and 

scrviecs, social and return home) for a simplified struclure oflhe model 

Anothcrjobofthesynlhesizcris to8eneratcarealistic startingtimeforca<.:hlrip 

Starting times rl1'1'rtl-d in trip surveys arc nOmlally rounded to the neareSt tens or 

quartcrs,but inasimulationthis wilieauseaproblcmas theinH\L'ofagcntS IO the strccts 

at the exact same time produces an unrealistically high traffic volume (and low traffic 

volume for other limes). The Hcneration of staMing lime will be discussed in Section 

Mincilnit takcs the synthe.izcd population, and puts it un the map 

The software reads Ihe neighbourhood map using OpcnMap. Ilooschulds arc 

allocated tu the stn:<.1S marked with "residential slrc-ct" status, with thc number of 

households on each street dctcnnincd by the density infonnation from thc map 

Iiouscholds arc c"cnly distributed on eaeh strcct, with halfofthc ho useholds on each side 



of the strcC'l (thc "sidc" informalion is internally recorded, but not displayed on the GIS 

display ofthc sofiwarc), 

Each map has an associaled parameler file which idenlifies Ihe number of 

households in thcncighbourhood,thc location and distribution of local fa cilities, and the 

dislribution of outgoing tTirs among the exits_ Local facilities , incll.lding wor1<Jschool 

spaces, shopping/scrvice faeilitics and transit fa.cilities, arc located al these prc-

dctcnnincd locations. A topological nctwor~ is generated from Ihe base map wilh 

intC1"SCCtionsbeingnodesandroadsbeingedgcs.Thisnctwoltisdisplayedinlhcnetwork 

displayoflhemodcl .• ndi susedinshom'Slroutcca1culalion. 

The allocation process works as follows. Each household is assigned a hollSc 

loealion, and il is possible 10 allocate cenain Iype' of households (for example. 

apartments) in cenain arcas of the neighbourhood wilh sf"'<'ificddcnsity_ Foreaeh trip, 

the origin i, either hoill~ <or the dcstin.-.ti<on of the pr~'Ccding lrip, and the dcstin.-.ti.m is 

assigned according to trip characteristics: Fortripsendinginsidcthcn cighbourhood, 

workh;chooll.hoppingnirsarcassigncdtolocal worldschoollshopping ,ites. while social 

trips arc assigned 10 a random local household: For trips ending outside the 

ncighbourhood,thedcstinationisassigncdtooncoflhcexitsba>cdonthcdirc'Clionoflhe 

remote dc-stination and the road network charactcristicsoutsidc then eighbourhood.As Ihe 

sofiwarc is designcd fOTncighbouThood Icvcl simulation, for trips that both starl and end 

outside the neighbourhood,thccorrcspondingagcnts' loeatinn. arc sct tn be Hxcd at the 

exits whc-rc they lca" cthe ncighbourhood during thcsimulalion 



Aftcr the allocation proccs~, an initial route is calculatl'<l and assii:"ed to each nip 

The initial routL'S ren""tthe shonest physical di'laocc, with no consideration of road 

traffic conditions 

In thi s slUdy, the maps and corrcspond ing cxpcrimcms arc arranged in such a way 

thatall faciliticsarclocatedc1osctothcc,itsofthcncighbourl>ood,andthereisnorass-

through traffic inside the neighbourhood. e~ccpt on the surrounding ancrials. This is to 

facililatc the comparison ofdiffcrent neighbourhooddesii:"s. For modelling dlicicncy. 

pass'lhrough uaffic on Ihc arterials is simulalc'<l by adding a numbcr to th c lraffic volume 

count, with no agcms created to rcprcsem Ihese nips, Social trips arc considered 

rc<;iprocal. SO a number of agenls arc crealed to carry out incoming social nips. and the 

numbcrofincomingsocial tripsisscttoocC<juallothcnumbcrofoutgoingsocial trips. 

Tl>c I\:suh of Mind In it is again saved to disk so that the samc population Can bc 

,'lhc11CAI'lCp" 

/IIindSpinUp 

In thi s step. a "spin-up" process is used to cxpl()re the rclationshipand f ecdhad 

octw""n automobile tramc. pcdcsnian trame and mode/route choice behaviour. The 

softwarcforst read, thebasc map and creates the road networx, then read, Ihcallocatcd 

houscholdsfromthcfilcsa"edinlheinitializationstcp(Mindlnitj,lflastcvariation is 

considcn.'<l,eachagcnlisassii:"L'<laprcfen.>JIcc,·alucforthccorrcsponding faclurs like 

time and cos1. l'hl'SC prcfcreocc "alues can be tailured fordifTcrent populatiun groups. 

For example , a cL>fll1in population group can be assii:"ed lower preference values fur 



certain factors_ Round trip,arecreatc'<l by I:f0upinga s.cricg of single Irips wilh the firs I 

trip slartingat home an<i the iast trip ending at home 

The spin_up process works as follows. 

SICP J: Initial trnffic values on the streets arc calculaled from mille information 

storoo with ead trip_ To speed up computing and simpli fy tloe model, traffic volume 

numbers arc counted by threc time pcriods in'tcadofevcry hour or ncry minu teofthc 

day_ This method has been frequently used in other Traffic modd, (for example. sec 

Lawson. 2006; Lee et tJ/. 2(09). ·ibe three pcriods are morning peak hours. afternoon 

pcak hou" and all OIherlimes. "ibccxact tirning ofthcsc periods can be adjum'<l for 

different datascts. For the Ottawa dJlasets. Ihe limings arc deHned.s: Morning (7AM to 

9AM). Aftc'TTloon (31'M to 7PM) and all off_peak time,. These lime pcriods arc designed 

Figurc4.9:[);wibuli"n"flripstarlingtimc 

(Time ,hown as the number of min utes since 3:30AM which is the time a simulation day 

begins) 



by examining the trip occurrence graph (Figure 4.9) and by consulting local 

transponationomccrs 

Step 2: Agents select new modes and new route, based on utility cakula1ions 

which ta~e into ac,ount the automobile and pedestrian tratTo, condit ions on the roads 

which they learnt from the previous stcp. The suflware alio,,·s three different methods uf 

mode cboicc. Method I calculales the disutility .. aluc for each single trip and agents 

sck-ct their trip mode for each individual trip. Method 2 calculates the disutility ofcwry 

roond (fip and agents choose trip mode for each round lrip insleoo of~·ycl)' single trip. 

Method 3 add,carownership and driver·s license intoconsider .. tion. SO that the whole 

houschold plans car usc in ad'·ancc.and it is assumed lhat incla'li, trips (round trips that 

i",'ol.·c work and school lrips) get the priority on car usc. For al l other round trips. the 

priority is decided by the calculated probabililyofchoooingthedri "ing !node using the 

utility and probability functions shown in Section 3.2.1. and the round trip that has the 

highest probability of choosing the driving mode gCl> to uSC the car firs!. For each round 

trip 1hat uses a car. the software will find the first ,arthat iS3vailablc fort he ti me pcriod 

in the houschold,and ifall thecars;n the houschold an: utili~ed for the timc period. only 

walking or transit modes can be sek-ctcd. The schedule fitting can also have §Omc 

flexibility. For example. the staning and ending timc of clastic trips c an be rcscheduled to 

accnain cxt""1lt (forcumple. ,*,10 minutes) so that thc round trip can fit into available 

Based on the disutility cakulation. a new mode and route arc selected for each 

trip. If the utility functions uS<."S the number of pedestrian and automobilc cneountcrs(scc 



Section 6.3). an extra SK'P is taken here wh~"rC the MindDaily mooule (S(.'(: next page) is 

used to calculate thesenumbclli. and the results are fl-d back 10 the spin·u pproccss 

Shop): The new roote infonnation iSlhcn assigned to each lrip. and the soflware 

jumps back to Step I fora new iteralionofcaiculations. 

The ··spin·up·· process can be interpreted as agents learning more about road 

traffic condiliOlls each day. then adjusting their mooe and mute choice accordingly. Or in 

other words. agents adapt to their envimnment. while the environment i. in fact a 

conscqucnceofagcnts" actions 

It is expc\;tcd that afier a few iter.tions of spin·up. the mooel will reach. 

relatively stable state. This is dctcnninl-d by mooal sp lit and road traffic conditions, For 

each iteration of the spin-up. mooal split data and road traffic charactc risties arc recorded 

and compa,,:d to the data collccted in the previous iteration. If the change sinmooalsplit 

and T03d traffic conditions.re bclo ... ' prcsct !cvc1. fora ccnain nurnberofiteT1lti ons.thc 

stabilized route and moocchoiccs are thcn sa"ed forusc;n the next step 

M/ndOal/y 

MindDaily i< designed to run a full day simulation by minutes (or any other 

intervals as required) for all the agents. Th is mooule simulates the spatial pallcm of 

pcdestrian encounter as well as vehiculartT1lffic cmissions on the roads. 

Trip su,vey data oficn record trip schedules for a whole day, In the Ouawa 

data.<cts. a survey day stan.s at 4:00 AM and endsa14:00 AM thcncxlday. Fkcau scofthc 



randomizalion of trip slaning lime (sce Ihe MindSynthesizcrpan in Scction4.2.4. also 

"""Seclion 5.2.2). sotnC trips maybcgin slightly earlier than 4:00 AM and end slightly 

lalcr Ihan 4:00 AM the next day. In Ille Olla""a model. the simulation runs from 3:30 AM 

to 4:30 AM of the next day. 

During the full day simulation.. thcsofl"" .. c n."eoru, the location of each ag entat 

each tick (which is a predelcnnined lime interval. for example one minUlc or len 

<;CCQnds).Al eaehliek.lhemodelmovesagenISlhalarealreadyon lher[}lldS.SlanSlrips 

Ihal shouldbcginallhClickalldcndSlripslhalhavearri"edallhcirdcslinalions.ForeReh 

agent in Ihe pedeslrian mode. the soft""are calculales Ito"" many other pedestrians are 

wilhin a pn:dclcnnined distaTl<:c. This proximity is us..-d in the modd as a surrogate for 

pedestrian encounlers alld potential social interaclion opponunilics. rorconvcniencc.lhc 

number is called "Ihe number of pedeslrian encoun1ers" in Ihis study. The software also 

dctcnnincslhelypcoflhecnl"<l-Unl<."r(forcxampie.eTl<:OUn1erwithapersonfrom inside or 

oolsidclhe ncighbourhood.orrcpeatcdencounters).hispossiblclochooscneighbouring 

agcnlSbascdon whClhcr they arc on the same side oflhe road. if they arc on the same 

road. or iflhcy arc on nearby roads bUI still within thcprcdctcnnined diSlanec. Forcach 

street, IhesoftwareeakulalCSlhctraffic "olumcon Ihestrc<:l.anddisplaysdiffcrcnllinc 

widlhs In rcprescnl Ihe traffic vnlumenn lhestree!. Thespalial pattern and inlensilynf 

pedCSlriancncounters and aUlnmnbile emissinns can also bc presentoo on Ihe map( ... .., 

Chapter 7 fnrexarnples of such thcmalic ",aJlS) 



MindGroyUy 

MindGr.,'ity isa supporlingmodule for analyting the relationship betw""," trip 

purpose.nd trip distance using the gravity model. It is used to sirnul"t~ the changes in 

trip destinations wh .. .., the amount of local facilities changes. The pn:dictions from the 

MindGravity module can be fed into the Mindlnit module. Sec Section 6.S for dCilliled 

discussion on the sctup "nd calibration of the gravity rnodcL. 

Sec App"ndix I for a dcscription of all supp<mingrnoduh.'S 

4.3 OUTPUT 

The software Can be customized to output various kinds of "",ults. A few 

cumplesarcprovidcdbclow' 

lIealih o"d cm'jro"mc,,' meaSure." Health efT .. 'Cts can be rcnccted in two 

rneasureS: I' .. -dcstriandistancetravelcdinsidetheneighbourhood.andpcdestriand;st. nce 

traveled weigh t .. -d by Ihe amount of automobile traffic on III<: strccts (which reflects the 

exposure level 10 aUlomobile emissions). Environment measureS include: lotal number of 

aUlomobilc trips. number of short distance automobile trips. numbcrnfpossi hie stops for 



automobiles, and veh;'lc di.tancc traveled inside the ncighoourh<><:>d. Based 0" existing 

studies of emission pancms (Frank ('I al. 1000; Frey ('I al. 1000: Brundcll-Freij and 

Ericswn,2005),it isalSO]lOSsiblc tocakulate total crnissions by automobile traffic inside 

thcncighbourhood, 

Mudul splil: Modal split and modal split by population groups can be col le<:K'<l 

from the outJlUt of the software 

Social interaction oppormnitieJ;; number of pedestrians o:ncou"tcred "tid 

possibihtyofrcpcatcdcncountcrwith Ihe same person, 

Slr~'C/ sulely mC(J.!;"r~s: For pedestrians, the numbt.>t of £rossings, the length of 

roulC w;th or without sidewalks, the Icnglhand pcrccntage of route that areped .. 'Strian-

only routes, and thc traffic volume on thepcdestrian's route, 

Traffic le,,,,1 "" lit.: roods: Trame volume for both automobile and pedestrian 

traffic during different time periods of the day, as well", the whole day pallcm can be 

obsc,.,,'ed,lnthisstudy,duetolhelowdcnsityofthestudyarcas,traffic ,'olume inside the 

ncig/loourh<><:>ds is likely lObe low. But depending on the internal conligurati011, high 

tr.ffic volumcon ecnain Slreets (and the ,hancc of congestion) is also possible, 

TripcharacleristicJ: Tripschardctcristics such as trip distance, distance travcll<.'<l 

insidelhcncighbourh<><:>dandothcrcharacteriSlicscanbccoliccted,andexl":';mcnlswith 

different neighbourhoods and population data can reveal how neighbourhood fonns alld 

popubtioncharnctcristicsinflucncclhcsctripcharacteristics 



CHAPTER 5: STUDY AREA AND MOD EL SETUP 

The soll,,'are platfonn described in Chapter 4 provides a basis for modelling 

ncighbourhood l cvc' tripandmovcmentpallcm~usi ngtrirsurvcydataandoorre,ponding 

GIS maps. Given appropriate data and maps, a Ilcighbourhood level model can be built 

andcalibrnlc'<l,.ndlhc-nbcuscdtoprovideprcdietionsforspc<:ificdsccnarios 

Inlhissludy,amodcl iscrca lcdbascdon Ihc maps and survcy dala from thc city 

of Ottawa. Thischaptcrdescribcsthechafll(;tcrislicsofthestudyarea,a~wella'thcbasic 

assumplion., ofthe model 

5.1 THE STUDY AREA 

Popuiation and trip su,,"'cydata from OUawa are uscd in Ihis study. OIlliwa is the 

cap ilal of Canada. Data from Ihe 200 1 Census show that for commuter trip,. among 

Canada's si~ major urban cenlres (Vancouver, Calgary. Edmonton. Toronto. Onawa and 

Montreal). Ottawa has the highest percentage of walking population. third highest 

pcrccntagcofpopulationthal utilizcpubl ielransitandlhchighcstpcrcentagearnonglhe 

urbancentrcs without a subway system. andlhc Icastpcrccntageofpopula tionthatdrive 

to work (The City of Ottawa website). These trip characteriSTics make Oltawa an ideal 

city for studying howncigl1bourhood dcsigns influcncc trip and traffoc pallcm s.espt...::ially 



how neighbourl!ood designs contribute to the grccncr transpon modes such as walking 

and publie transit 

For the model, detailed trip survey data from seven T AZs in the city ofOtt.wa arc 

used_ These seven TAz.. belong to three different areas of Ottawa: Harrilaven, 

Bridlewood and Westboro_ Jndividual TAZ maps are created based on the Gool3as.c 

National Road Network map (GooBasc, 2005). The original map dOl.'S TKlt have road 

characteristics like sidewal. availability. Pedesuian-<>niyroutes arc also nol included in 

Iheoriginal map. In addition, thc modcl rcquires the location. of local facilities.uch .... 

schools, shopping areaS and work places, whieh arc also TKlta"ailablc i nthcor;g;nal map 

Th= additior ... 1 features arc manually added hascd en munual interpretation of Goegle 

Earth and Goo~;Ic Maps satel lite imagery and Microsoft Bing Maps aerial ("bird's eyc") 

Figure 5.1 provides an overview of the location of these se,'cn TAZ. within the 

city of Ottawa. The yellow area in the upper right side of the map refers to Ihe six TAz.. 

which form downtown Ottawa. Westboro lies [,"e kilometers southwest ofthc city center 

(T Az.. 242 and 243), while Barrilawn (T AZs 433, 434 and 435) and Bridlcwood (TAz.. 

500 and 501) are both suburban areas. with a distance of 17 and 20 kilometcrs from the 

downtown area rcspc<:tivc1y. 



Figu,e 5.1: Locati"", of the .." ."" TAZ, w·iohin theCity ofOnaw. 

(Downtown Onawa shown in ~'ellow. SOURCE: the city of Onawa) 

TAZs 242 and 243 (Figure 5.2) fonn the Weslboroarea. wilh 242 On Ihccaslsi de 

aoo thlls slighdycloser to the downtown area. Both tbe nonh and SOIIth side of Westboro 

are oommc-rcial are .. and office spaces, with apanmcnt buildings also conccnlrdK"<l in the 

SOIIlhcndorthcarca. TAl 242 contains a largc park 10 Ihc cast and a pedeslrian-only link 

on thc SOIIthwc't side. TAl 243. on thc contrary. contains much Ie," green space. Both 

TAZs have very simi lar household densities (number of households per square 

kilometer). Between these lwo TAZs, TAZ 242 ha, slightly lower density, higl,.r 

percentage of single houses. higher number of vehicles per household and higher 



percentage of dri~er's license holders. Household size is much smaller in TAZ 242 (2.043 

,·s.2.661 inTAZ24J). 

FiK~rc5.2:TAZ242(righl)ar.d243(kft) 

Note that in Figure S.2 (and subsequent maps in this thesis). '"oomers·· (bluc 

squares on the map) refer to r<>ssiblc facility localions. and ··e~it"· (n:d squares on the 

map) rcfer to the locationswherc traffic leaves or enters !he neighbourhood. T hcword 

··comc"· is used in this thesis forco",·cniencc. Sud loca!ionsare notncces,,"rilyina 

comerof!heneighbourhood.Pcdcstrian·onlyroutcsarchighlighlcdingrccncolourin!hc 

TAZs 433. 434 and 43S (Figure S.3. Figure 5.4 and Figure S.S) form !he 

Barrhavcnarea, with 433 on Ihesouth sidc.4J4 on the nonhcast side and 435 O<l Ihe west 

" 



side. Theselhree TAZs arc quitcdiffercnl in size and shapc from each olher. TAl4J3is 

scparalCil from Il>colher IWO bya railroad, wilh a major shoppi ng arca tothc southeast 

side. TAZ 434 OOycrs the majorily area of Illlrrhaven. with SCYC1"IIl parks, a sc<xmdary 

school and a strip mall inside the area. TOlhenortheaSlcndoflhcarcaisamajortransil 

centre wilh a major bus slalion and a rail .talioo. TAZ 435 also contains a park in tlte 

middle and sc"eral strip malls alongside its borders. Of the three TAls. TAl 4J3 has the 

highest household density. bUI loweslhouscholdsizc. In general. Ihcsc thrccTAls sharc 

verycioschollSeholdandPOflulalionchal'dctcristics 

FiKW"tS.J:TAZ4]J 



Figurc 5.4: TAZ434 

FigurcS .S;TAZ435 



TAZ 500 and 501 (Figure 5_6 and Figure 5.7) form the Bridlewood area. This area 

i. s!ill under expansion. with many new houses buil! in !he laS! few years_ As a resul!. a! 

!hc !ime of survey. Ihe household density was signiHcamly lower than that of !he mhcr 

live TAb previously menlionl..:!. Commereial areas are also in Ihe process of expansion 

ncar this area_ The Bridlcwood area also features a long and continuous jJCdestrian-only 

roulCSyslcmlhrouglloullhcarca 

Figure 5.6: TAZ 500 



Figurc S.7, TAZSOI 

Dala corresponding 10 Ihe sc,'en TAZs arc provided by Ihe eilY ofOlla,,'a. These 

data arc from the 200S National Capital Region (NCR) Origin-DeSlination Travel Sur\'ey. 

The surveyeo\,ercd morc than 2S.0IXI randomlysel(Xtcd households (around S~. ofthe 

lotal population) in the NCR f"Cgion. The dala prO\'idc detailed information on the sample 

households. including household size. house type. and number of ,'chicles in each 

household . Addilionally. Ihc dala contain personal IC"d informal;on such as se~. age and 

occupalion. For each individual surveyed. Ihedala record Ihe trip sehcdulc on a spccificd 

date, inciuding lripslllrting and ending lime, lrip purpose. Irip modc and Ihcorigin and 



destination TAl of ca<;h individuallrip. No personal identifiable infom.ation is included 

ne data also provide "expansion fa<;tors", which d~'SCTibcs the slalistical difference 

between the sample houscholds and all the local residents. Thesc are used in population 

synlhesisasdescribedinScction3.2.2 

Additionally, for the purpose of.tatistical anal)"sis to find rolevant factors (hat 

influct>Ce mode and mute choice behaviour. additional data covering 4(1 Ottawa TAZs arc 

used. These data coyer (Ile same household, personal and lrip level information as the 

individual lcvcl data. but are aggregated byTAZs. For the purposc ofestimatingtramc 

flows between the TAls, aggregaled e'"plo)"mcn1 data h)" e<:onomic sectors (such as 

education. health care. private office. e,c.) for ","cry TAl in Ottawa are also used. 

For comparative purposes, Nationwide Personal Transponation Survey (NPTS) 

data for 1990 and 1995, and National Househo ld Travel Survey (NHTS)data fo,2001 for 

the Uroiti:d States (fr<JIr.~, and mdropolitJr, levcl1rip .m .... e)" .lat. 

covering man)" US cities (from hUp:1I .su ..... eyarchi,·e.onil are used 

As mentioned in Section 5.1.1, the SC\"C"Jl TAZ. and (hree areas used in this stud)" 

havedistinctivccharacteristics. Table 5.1 provides an OH"TVicwofthcsc thrcc areas. 



T.bleS.I:Generaldes<riplionofthc'tooyarea 

Reg;on 

242.243 

(Sourcc;Wikipc-dia.org) 

Genera/descriptian 

We,tboro is a thri,·ing and trendy oornrnunity closc to 

downtown Ottawa with a lively meet sccne including 
lots of boutiques. rcSiaurant,. ootTce sh0p',outdoors and 
spons Slores. and an ""n~1 WeSlfC-S1 music feSlival. Thc 
neighboorhoodisexpcricncingdcnsification 

The area features local durches, schools. recreation 
centres, two rapid·bus stations and two OC Trampo 

Barmavcn 433,434.435 Barrha,·cn is a r.pidly growing suburban area located 
inlheSO\llh",·csloflheurhanarcaoflhecilyof(}nawa 

Bridle",·ood 500.501 

The region oontain. severnl schools, numerous parks 
and playgrounds. and a locallibrnry. A cinema and a 
power ceOlrc featuring Wa).Man. Slaples, Winners. 
SportChek and lublaws are located to the south·casl of 
the region. The region isscrved by five local bu,routcs. 

five express bus routes and Iwo OC Transpo stations 

Bridlewood is a region in the west end of Ottawa. 
previously pan of the City of Kanata until 2001 . Both 
Barma,·C11 and Bridlewood be!:"n to develop as 

The area fea!Ures six clem,."ntaryschools and is served 

by three strip malls 

TableS.2providcsalistofph}"'icalcharacteristicsforthcsc,'en TAb.Thctablc 

shows that. while both Barmavc"tl and Bridlewood arc post·",'ar suburban style 

neighbourhoods. the household dcnsily(numbcrofhouschulds pcrsquarc kilometer) in 

Ihe Ilarrhavcn arca is much higherlhan Ihat oflhc Bridlcwood area. and Ihcdcnsityin 



HalThaven is comparable t{} (and in the case ofTAZ 433, higher Ihan) Ihat ofWcstooro, 

an old and traditional ~rid style neighbourhood (Table 5,2), Par1 of the reason is that the 

Bridlcwood area is slill und .. , acti .... , development, and thus not aU the land lots arc 

dcvdopedandused y"1, Thcarca of local green space and non·r .. 'Sidcntial land uSes also 

playanimportantmle 

Table 5,2: I'hy.ical cb.ractcristico of the TAZi 

Region /lrea(square [)o,si/y Road lenglh N,,,,,/Jcr vi 
Jan) (lwuseholds (km}fJ€T 

per .• qua,e squarekm persqua,ekm 

'm) 

For the TAZs, thc length of roads and number of intersections (per <quare 

kilon\ctcr) are measurcd andcnmparcJ in this study. It is inTuitivcly plausible that wilh 

more rQl\ds (thus longer road 1cngth per square blomCler),thc traffic volume distributed 

to each individual road would be lower, which in tum would lead to a higher safety level 

for pedestrians and a IOWl, potential for congestion for automobiles_ But on the other 

hand, depending on the design, more roads oflen means more intcTSeCtions, which limits 



automobiic trnflie by f"'quent stops and acceleration (which in tum causes higher 

pollution and higherchancesofcongeslion). and more roads also rneans that pedestrians 

have to walk through foore intersections. More roads may also be a chalkngc for 

rnaintcnancc tasks such as road surface mainlCnance and sn" .... clcaring . As evident in the 

dalll aoo,·c. W~'Stboro ..... ilh the troditional grid layout. has the highest rood d~'Ilsily (road 

length I"'r squarc kilometer), and also Ihe high~'St intersection dcnsity (number of 

inter:sections per square kilometer). Bridlcwood. on the O1herhand. has the lowest road 

densily and also the lo .... est intersection density. Note that pedestrian_only routes and 

intcrs~'Clionswith pedestrian-only rout~'S arc nOI counted in the table. 

Othcrlhan the ph}'Sical differcnccs. Ihe Ihrec regions also have quite d ifferent 

population characteristics (Table 5.3). Westooro. as a "trendy" region. nas smaller 

households. a much high~, pe,,:cntage of apartment d,,'cllcrs and a lower percentage of 

single-family hous~",. It al", has the lowest number of vehicles pcr household. BaITha"en 

has the highest number of vehicles per household and highest percentage ofdrin, 's 

license holders. hUllhis region also has a considerable numberof trnnsit pass holders. 

with the percentagc comparable to that of Westooro . Bridlewood has the largest 

Iwuschold size (which nonnally mcans more mature family households with parents. 

children. and grandparents). and the lowest percentage of apartment dwellers. It also has 

the lowest pcrcentageoftransit passIKJld<.TS 

TableS.J; llouscb(lldandJ>Cf$<l<lAtchanoc(c,,""", 



Region 

·\'umb«of Pm:t!nlo8' P'f'Cffll"P 
l~hid... of of 

M."IIoI<b /oousel>oJd. 
J.,,,,,,hald i~<lelarlmf i~ .. -

Table S.~; Percentage of trip. in each mode 

Tronsi//rips Walking trips 

trips 

6() ,4% 

82.7% )(l.5% 

10.2% 

On tile lripch.ractcristics side (Table S.4). Rridlcwood has the highcst pcrc cntage 

of automobile lrips, IOWCSl percentage of tmnsit trips, and lo"'cs! percentage of walking 



trips. Barmavcn has slightl y lower percentage of automobile \rips and slighlly higher 

percentage of transil trips. Wcstboro has Ihc highesl pen:enlage of ,,·alking lrips and 

Iransiltrips.andlhclowc.tpercentagcofaulomobi1elrips 

5 .2 ASSUMPTIONS AND SIMPLI FICATIONS 

DuClod"la a,·ai labilily. prograrnrning complexily and modelling fca sibilily. n few 

assumptions and simplificalions were madc. Thc following seclions dcscribe thc 

a .. umptiQlIs and .implifieatiOflS made and the reason for these assumptions and 

simplifications. 

The Oll"w" model docs nQI include Ihe mooe of car passenger. The main 

cQnsidcrnlions are difficultics in modelling and programming. The model focuses on 

neighbourhood Icvcl dynamics. and docs nQI conlain the road map and facil ily localions 

for thc regions outside Ihe neighbourhood. Thus thc model would nOI know which trip 

dcstinalion;s 011 the way to orclosc to another dcstinat;on, which is likc1y togcncrntc a 

shared automohile \rip. Evcn if thc model docs know. inclusion of car passcnger mode 

will.lso make route calculation vcry complex, sinee forcach agent. the mooel has to go 

through al l the potcntial car passcngc,,' trip sc hcdules to sce which tr ips are likely to be 



share'll based on starting time, possible route and (dis)utility for each ofthcsc sharing 

rossibil ihes 

For the seYen TAli;, car pas""ngcr nips account for 13.7% of all the trips. The 

currcn! solution is to remove all the carpassengcr trips from raw daw, so that !he li kely 

dcmandfurshaTl.'(\tripsiscliminatcd, 

During thc pupulatiun 'ynthcsis procl'SS,a starting time needs tuoosct for each 

trip. As discussed in Se<:tion 4.2.4,a realistic starting time has to 00 generntcd by using 

randomi?",!ion. The software suprorts 1"'0 methods of randomization. The simple method 

i. to add or subtract a random number of minute'S bet"'e<:n 0 and (for example) 5 minutes 

10 thc time m:orded in trip surveys, wbich norrnal ly re<:ord lime to \hc nC3rest lOs or 

quarters. The othcr method uscs a diffusion-like mc-chanism. For example, the diffusion 

method counts the number uflrips in any 30-minule framc (6:00 to 6:30, 6:01106:31. 

,,' ... ).Ihc-n distributes alilrips e,'cnly in the time period (for example.lwo trips ncry 

min ute). Puc to the overlapping of these 30-minute frames, a smoother starting time 

series wi ll be obtai ned. This proce<sean he repeated a few times for a realistic result 

Figure 5.8 shows the result of the diffusion method 



Figure ~,8: Generating'taningti mef()l"trips 

(Lefi: histogrnm of the rnw starting times as in the sur.-ey data: right: hi,t ogrnmofthe 

gcnernted starting times_x axis refers to trip start;ng timc -thenumbe rofminutes.ince 
3:30AM, and~' a~is refers to Ihe number oftr;ps) 

Currently th e simple method ofrnndomizal;on is used. because the diffusion 

method is found 10 shifllhcslarting limes towards Ihc afternoon pcak lime. For either 

melhod 10 work. for any IWo consc.:ulive trips, the model needs to make sur<.: that the 

rnndomization PlOCesS would not change the 6Cqucnce of the trips_ The rnw Irip sur.·cy 

data show that within all the recorded tr;p intervals (the intervals belween Ihe starting 

times of any two consl'Cutivc trip,j,only47 out of7161 ",,:ordsarc ic,slhanI5minuICS 

Thus. lhc modd iSSCllos"paralc any lwo eonscculive trips byatlcast15 minutes and 

thcndoa rnndomization of±5 minutes 10 the starting time. 

Wilh bol.b mClhods, the pcak trip slarting ralcs(lhc number of trips slarting d uring 

a given lime period) arc close 10 each olher. For example, for TAZ501, bolh method, 



gcnenucpcak trip starting rdtes of around 400 for any 15-minute framcaod around 100 

foranyJ_minutcframc 

S.2.3 RANDOM ALLOCATION OF HOUSEHOLDS AND FACILITIES 

Due to privacy concems. household locations are nonnallynot a"ailablc in tTavel 

sur ... eydata. In the model. a r.ndom allocation process ;s used to put the synthesiz .. -d 

households on the map. As previously mcntion .. -d. in thc Ouawa model. insidc trips arc 

sct to cnd at one of the facility locations or houses in the neighbourhood. whi Icoutgoing 

trips arc set to end at one of the ex;ts of the neighbourhood. The selection ofa specific 

facilitylocationor exitisaprobabi litybascdrandomchoice.withtheprobabilityofusing 

each facility location dctennined by the amount of faei liticsa"ai lablc at the location, 

while the probability ofming each exitdctennin .. -d by studying trip 110ws betwcen all 

TAZs in Ottawa as well as the characteristics Of lhe road networks in Ottawa. 

Figure 5.9 shows an example of the trip 110w map generated by the MindGlobal 

module (sec App<.-rnlix I). The map is generated based on the survey data. Since trip 

110ws between somc TAZ pairs Can be very low. regions instead ofTAls arc uS<."tl (except 

for the region where the studyTAZ is in. detailed TAZ toTAZ traffic 110w is identified) 

The regions arc generated based on the Cycling Distrier Map provided by the city of 

Ottawa which dividcs the metropolitan area into II rcgions. The probability of using each 

ex it;sestimat .. ..J based On thctrip 110w map and the road map of Ottawa 



Figure 5.9: A map ofwor\; [rip flow, between region, in Ouawa 

(The amount of trip Ilow is repres.entc><l by line width) 

TableS.S iihows changes in selectc><l trip and traftk characterist ics with different 

random allucation sintulation run, for TAl 501. While tripcharactcristie~f",a,pecifiC<l 

individu"1 in the region would change with different random al location. the regional 

aWT"4gc. as wel l as avcrage val ues among the same trip purpose gro up or trip mooe J>I"Oup. 

remains stable . Experiments carriC<l out later al,o prove that the change of random 

nu mt.cT generator. (wh ich meanS the generation of different sets or random localions) has 

liulcinfluence on modal ,plit prcdiClions 



TableS .S:lnflLICnc .. .,flherandom alloca!i<>nprocess 

Tmalpcdcslrianenc\}unh."TS 

Average lrip length inside (wor~ 

tri ps) (metre) 

Average trip length inside (driving 

mooe) (m<.1rc) 

CrossingsforpcdcslrianS.mean 

Crossings for pedestrians. standard 4.23 

In2.09 17113.53 

6.SI1 

The lrip survey data used in th is stud y do not contain trip length . For each lrip. 

only the origin TAZ and lhe destinalion TAZ are recorded In the moocl.the lenglh of 

each trip is estimated by the distance bctwern the T AZs. These distance measures were 

providedbythocilyofOnawa. rcprcscn!ingroadd;S!ancesbclweengeogrnphicalccntcrs 

The diS!anceor Icnglh for each outgoing trip is c"imatcd as 

In the equation, D"", refers to the raw distance between the CCnlcrs oflhe TAZs as 

provided by the city of Otillwa. L ..... and 1-._ refer 10 the distance from lhe 

geographical cenlcr of lhc origin or deSlination TAZ to Ihe exit point of the TAZ. and 



D_ .. refers to the distance travelled inside the origin TAZ. r is • random number 

between 0 and I. which reflects the fact that the actual dista!ICe tra"c11ed inside the 

de.tinati(}n T AZ is not known to the model. The length of each incoming trip is estimated 

in a similar manner. F(}r Ihe TAZ. in the (}ulSkirts (}f the city. the distance number.; 

betw~"1:n thc TAZs as well as between these TAZ. and inner arca TAZs arc not available. 

aSlh~'SC outskirts TAZscach occupy a large area. and Ihcgcographical ecnlers arcollen 

nola good rcpresemation ofthcpoJIulation center or the activity locations . Forthesc 

peripheral TAZs. the distance between them and the inside TAZs arc estimated to be a 

random numberbetw""" 25 and 75 kiloDlCtrcs based on mapcharac1l";slics of the rc gion . 

Thcgrdphs in Figure 5.10 refer to the dislance distribution of all tr ip •. work trip •. 

school trips.S<JCial trip' and returning_home trips rcspc<:tivc1y. For all g,"phsexcept the 

graph for work trips. the curve filled on Ihe graph represents a gamma distribution. This 

conforms to the findings of Zhang and Mohammadian (2008 ). In the case of work trip 

distances. normal distribution lils beuer Ihan gamma distribution. The filling of gamma 

distribution for school trip distances is not "cry satisfactory. The cxccpti(}ns with work 

and school lrips may be due to the inelaSlic nalureofsuch trips. as the destinations of 

such trips arc often fixed. Compared to other types of destinations. most work trip 

destinations (i.e. work places) lend to be funher away from home and the distance 

numbers coneentrate bet"'een IOand30kilomctcrs,whi leformostothcrtypcoftripslhe 

distance numbers concemrntc between 0 and 10 kilomcte.,.. Note that " .. hile this siudy 

docs nol make dir~"C1 uSC ofthcdistribulion pattem. il shows an approach to generate 

synlheliclripdi'la!lCCS,orloVl";fylhclripdislancesg~·f"."Talcdbyother methods 



Figure 5.10: Distnootionoftnpdi,(a""es meosured in met",. 



11 is suggcs!ed !hat Ihe ehanee of social inlCTaC!ion is posili"cly rclal ed !Olhc 

number of pedes Irian cncounlers {sec SCClion 2.2), Asmcnlioned in Se<:lion4,2.4. in Ihc 

model. pedestrian encounters are interpreted as Ihc proximilY belwe<:n 1,",'0 pedCSlrian 

agen!s.and!hcnumberofpcdcslriancneounlcrsiscaleulalcdbycountinglhenumbcrnf 

pedcslrianswoop3Sswithinagiwndi'lanceorthcpt.'<lcslrianinqucstionduringalrip 

The distance can be set to an arbitrary number. In this study. il is sello be 25 meln:, 

E.pcriments show Ihat the number nf calculaled pcdNuiancncountcrs increase slinearly 

with the distance settings (Figure 5.11). As Ihe sollw.", module thaI counls pedeslrian 

cncounter"msaI20-sccondinlervals,andapedeSlrianwalh24 mctres in20 seconds,thc 

2S metres scl1ing would eaplure all the agenls within a 2o-se<:ond wal~ing distance 

Number of simulated pedestrian encounters 

FigurcS.tt:Rd.""nshipbctwccnpcxk.'lrianr""oonl,-",numbe1"sandlbcdislancesctt ing 



DifTcrCnltimc inlc.,-yal. togelher with corrcspondingdi.tanecscnin gs will change 

lhe calculated enrounterrount for an individual region. Butcxpcrimcnts sbowthat the 

number of encounters remains roughly linear wilh the distance sel ling. and for two 

regions. the results remain compllrable with each olhcr(T.blc 5.6). 

Tabtc 5.6: Time in' ...... I.di,IJ,,\tcS<:uingal'\dpcdc>lrian"""ouo'crnumbcrs 

Calculated Co~nt oj 
enroullIusjor cmvullIersjor reg;Qf,A us 
r<'gion A regjan B pereentage oj 

regionS 

The result, show that. used in a linear utility equation, the distance and time 

interval settings would haye only slight influence on the output oflhe model. This is also 

confinned by cxp"rimenls. Note that the number ofaulomobilcs encountered during a trip 

is calculated using the same method and the tcsults follow thc same roughly_linear 

pattern. 



CHAPTER 6: MODEL FORMULATION AND CALIBRATION 

Hase'<l on the soflware pial form diseu'!SCd in Chapter 4, .nd the ."umptions and 

simplifications discusscd in Chapter S, a model can be eslablishcdlO simulate the 

influenceofneighhourllood dcsign on daily trip panem in urban ncighbourhoods 

As discus..ro in Secti.m 3.2.1, utility (w di.,ulility) is used in this study to 

cakulatc mode choice. Thcre is no universal agrcemcnl on how utility. houldbcdcfinod 

and caleulatcd. Depending on data availability and simulation requirements, different 

utility functions have been utilized in different srudics in the past. In this study, IwO 

diflerent utility function formulalions will bcexplorcd. Model 10 ($cction 6.I)uscs. 

simplcvrnionufthcutilityfunction, ..... ilhutililygi,'cnasafunetionoftime,co&t, safCly 

and individual preference'S, wilh the ,'ariation in prefe'TCncc'S reprcS<.'JItcd by a normal 

distributiun. The ... fety factur is represented by the use of "perceived distance", " 'hich 

takcs into account pedestrians' pcreeption of road characteristics (such as av ailabilityof 

sidewa lks and pedestrian-only roules) and traffic condilions (such as the "olume of 

automobile traffic and pedeslrian flow). The advantages and problems """""iated with 

Ihis formulation are discussed in Section 6.2. To address the problems faccd by model 1.0. 

modci 2.0 (Section 6.3) explores the U!iC ofsocio·cconomic daracteristics of household. 

and individual residcmstorcprcscmdiffcrenccs in individUJI pcrecptio nS and prcfcrenccs 

in the calculation ofutility,'alucs. Scclion6.4diseusscsthccalibralionofmodcl2.0.and 

the ad,·anlage. and problems associatcd wilh il. A further variation of Ihe model 

formulation. wilh socio·economic eharacleristics dirc<:tly representing pretCrence 



variali(lnS, is explored (model 2.1. see Scclion 6.3), The sravily sub-model and its 

ealibMion arc discussed in Scclion 6.5 , A scnsilivily analysis ofmodcl2.0 is provided in 

A model is built In simulate a real_world process or phenomenon. The validily of 

a software model can be examined using IWO crilcria: First, Ihc model should eom:ctly 

implcmenllhcinlcnded algorilhm, andlhere should be no error relatc<l to the software 

code and siruelure. This is often called Ihe"intemal vcrification" ofa modcl,and in this 

sludy,il is donc by rc]X:lilivc Icsling of individ ual softwarc cOOc blocks, modulcsandlhc 

whole software package. Sc'Cond, the oulpul of Ihc model should be a reasonable 

representalion of the rcal-world procc'SS or phenomenon being modelled, and the 

parametersofthc model should be optimized SO that the model outpUleloSc!y filS Ihe 

com:sponding real,world data, This is cal lc<l Ihe "calibration" oflhc model. II should be 

nOled Ihat "verification", "validation" and "calibration" ofa model nr~ closely rclalc<l 

The ,'alidily ofa modcl ean only be tcstc<l with a com:ctlycalibr.nc<l vcrsion 0 fthcmodci, 

and Ihc calibration process should also assist in Ihc \'crificatio" of Ihe model by 

disco>'cringdcsign and programmingcrrnrs 

A complex syslcm model is dynamic and siochastic in nature. For example, in this 

sludy,lrnvcl bchaviourofan indi>'idualinlhcncighbourhoodiscomplcx_ The choice, in 

a Irip including lirne, purposc, mode and mUle are intlucnced bya nurnberofim cmaland 

cotemal factors_Snrncofthese factors may have fixoo \'alucs, such as Ihe number of cars 

in Ihc family, orlhe availabiiilyofpedeslrian·onlyroUic'S in the nc ighbourhood: bUI some 

factors arc dynamic in nature, such a, traffic conditions on the roods and thcchanccof 



pcdestrianeneounters_ Even if all the extemal eonditions arc the same, humandoxisions 

arc still dynamic and stochaslic in naturc, partly due to imperfecl knowledge oflhe whole 

syslemandalwbccauscofthcuneertaintynaturcofhumandc-cisions 

Compared to lraditional models, agent.hased models can belter represent system 

dynamicsascollcclivcoutcomcsofindividualdoxisionsandintcraclions.However,these 

models slill partly rely on malhemalical relaliOl1ships to indooe or excludc faclors Ihal 

Ihe modcllcr finds imponanlor relaled. It is nOI possible to includcall Ihe faclors that 

might be relaled 10 choice behaviour. and the model is only expected to explain a portion 

oflhercalworldtrip-makingcharolCteristics(Mier£cjcwskiandJackson,I992) 

Thus, Ihc OUlput of a comple~ system model is nol to be expecled to confono 

exacllyto Ihc real world dala. InSlcad,thecalibMion and validation 0 fsuchsyslcmsa,e 

oficn donc "by applying il in as many siluations as possible" (Enge len and While, 2007), 

and Ihe pallcm of til~ rcsuas (ralher than Ihc dCiails of the re.ul .. ) is "fico> used in 

comparison 10 real·world data. For example, in land usc change studies, resullS ofCA 0.­

ABM models are olkn examined in lenos of measures like fractal dimensions (Andersson 

el al. 2002) or Icchniques such as fuzty comparison which compares the patterns of the 

mal"inslcadoflhccha,aclerislicsofcach individual land lot {Pow erelal. 2001; Hagen, 

2003) 

II was propoS<.-d Ihal Ihc model could be validated hy tesling it wilh multiple 

neighboumood~ in mull iple metropolitan arcas wilh available data, and Ihc pancm of the 

result, compared 10 Ihat from real world dala. However, as travel behaviour is heavily 



innucn~ed by the S<JCio-economi~ environment including S<JCialtraditions and economic 

conditions, darn from dilTcrcm cities face comparability problems. Thus, the model to be 

presented only uses wna from T AZs inside the ~ily of Ottawa for calibr.lion. However. 

extensive ICSIS and experiments arc Slill carried oul to examine the dynamics and 

uncerraimiesofthemodclandtocnsurcthatthemodeiprodu(."Csrcalisticandreasonable 

results. Trip su""'~y data from Ihc 2005 National Capital Region (NCR) Tra"eI Sur,'cy for 

the cily of Onawa arc used in the calibration of the modcl 

6.1 MODEL 1.0 

Model 1.0 prescnts a simple v.""ion of the utility funclion formulation. As 

discussetl in Section 3.2.1. agents decide their mode and route choice basetl on (dis-

)Ulility. ASAlnlingtltatagcn:.' t.:iSlcvaristionvalues.....:nonnallydi strilJulcd,lhct;;.te 

variationnlueofunindividualagentcanbeprcscnteda.: 

X ", N(P,o ' ) 

whcrcX ref."" 10 a normally distributed variable, and}J and (J refcr to the mean and 

'Iandard deviation of the com:sponding nomlal distribution . While it is assumed that the 

valucSlhat rcprcsent the prefncnccs or tastcs of individuals foml a normal distribution, 

thcrc is no agrcemcnt on lhceharaclcristicsofthediSlribution_Experim cnts in this study 

foundlhaladisnibutionwilhamcanvalucofl and a standard deviation of 0.05 100.Ob 

gcncrdtesgood rcsuh. 



Considcringlastc,'ariation,tllclltilityfunctioocanbcwrillcnas 

whe'Tc. r, C and S refe'T to the time, cost and safety values that are associated with the lrip 

a, p and y are coefficients which clTc<:ti,'cly dc<:ide the weight of lime, eo~t and safety 

factors in Ihe cakulation of the utility value U,XI.X,and",rcprescntper1urbationstothc 

cocfficicntsducto varialion. in I"'recptions or tastes among individuals, 

r e<lcstrian safety is often rcgardl-d as one of the mosl important faclors that 

influcnccpcdeSlrianmodcandrootcchoiccs(scc$cction2.2),andoncofthcobjcelivcs 

ofthcmodel iSlo find oul how neighbourhood designs influence p<.-dcstrian safelY, For 

p<.-dcstrians. the risk ofa vchiclc-pcdestrian col lision exists when t hey walk along the road 

and when they cross Ihe street. Sidewalh and pcdc.uian-only routeS would likciy 

dc<:rea,etheri,k,whileincrcasedroadtraffiewouldlikelyinercasctherisk. In the model, 

the availahility of sidcwalh and pcdesuian-only rout~'S, the number ofroad crussings and 

the traffic level on the roads arc used to calculate the safety measures for pedestrians 

These factors not only influence pcdemian safelY and thus mode choice, they also 

dirc<:lly influence route choice. To include the faclOrs dirc<:tly in shonest route 

cakulatiuns and ereale a dynamic routing mc<:hanism in the model, the safety measure is 

prcscnted in the form of"l"'rccivcd distancc",so that iflhcsafe1ylevci 0 fastrcel.lslrttt 

section is higltcr, the pcn:eivcd Icngth of the street would bc lower, and pcde'Slrians arc 

mOre likely to uSC the street. The s.afety measures for driving and lransit arc assumed 10 

befixedvaluesaslhcsludyconcenlralesonlhes.afctyofpcdcsuians 



The~alculalionof1hepedestriansafclymcasureis;nthn'Cstcps: 

SkI' I: To tate road Haffie into consideration. il is suggesled Ihal pedeSlrians Iry 

10 a"nid slreels wilh a high volume ofautornobile 1raffic ...... hile Ihey are attracled 10 

SIrc<:IS wilh more pedestrians. Taste variation may .Iso exist SO Ihal some pedestrians arc 

more sensilive to road lraffic volume ..... hile olhers arc less sensilive. Thus.. Ihe innuencc 

ofaulomobi lctr.fficandpedeslrianlrafficcanbccalculaledas· 

Wherepjrefers 10 the innuenceoftrnffic in modcjOlt pedeslrians ...... ilh j bcing either 

aUlomobile mode or pedestrian mode. N rcfc'IS 10 Ihc hourly traffic volume on a streel 

during Ihe lime period (morning peak. aIle-moon peak (}f ofT-peak period) ..... hen Inc trip 

occurs. Thcnumbcr is increascd by nne so Ihat when the trnffic >'olumc is O. Ih einnucnce 

value is L J:i rcfcon; 10 the oonnally distribuled penurbation applied to Irnffie "olume in 

moocj that repre""nts IheefTcct ofdifTcrcnce among individuals. II isas sumed that 1raffic 

volume increase is more perceivable by pedestrians when the "alue i. small and less 

perc<:i"able wlli."D the traffic >'olumc is already high . Figure6.1 showsthc;nnuC1ll.'Ccu,,'c 

for aulomobile lraffic ..... ncn " - 0.05. Experiments sho ..... ed thaI such fonnuialion 

pro<i..ccsslablcandreaiisliclrafficpaltcms 



Tramclnftuence 

V=I 
Figurc6.1;lnfl"""".oflraffic volumc 

Step !: A, automobile lraffic decreases the dcsirabililY of a S1rec{. while 

pcdcs{rian1rafficincrcasesiudcsirabili1y.1hccombincdinflucnceiscalculatcdaS 

L, ,", (I:!:R) E=.. O, 
p~ 

where D r.1'rcscnts the physical lcnglh of a streel. and p refers to the influence of 

aUlomobilcorpcdcwian traffic ncaleula1cd inStep l. Toaccoun{ for lhestochastic 

nature of human decisions, and agenls· impcrfecl koowlcdBC of the neighbourhood 

(inclooingroa<icharaclcnslicsand!rafflC condi!ions). the pcrcci,·ed dislanceis 

randomi7.Cd. and R represenls the e~tcn{ of randomiza1ion. The randomizalion is nceded 



ror the mooel to rmd~c a realistic traffic panem, see Section 6.6 for more detail •. The 

result (I.) is the perecivoo length f<lf tbe street ronsidering tbe innuence. of traffic 

Step] Rood conditions further innucnce th is percei~ed 1cngth. Availab1c 

sidcwalh w()\lld ma~e streets seem Ie .. risky, and I'l-destrian-ooly route'S mean even 

lowcrrisk levels. On the Olher hand. more road ero"ings incrc.", the risk level of the 

trip. For each trip. the ro ute is fo,moo by a number of meets together witb a Dumber of 

crossings. The "comhincdpcrccivoodi:;tance"iscalculatooaslhesumoflhcl'l'TCc;"cd 

1cngth of all strcets plus the Icnglhofall Cl'{)Ssings(i.c. the distancc to walk throu)l,h an 

intcrsC'Clion).lftaste,'arialion isconsidcrcd forthcv.luationof sidewalh, pedestrian­

only routcs and cro«ings as wcll, the equation can be wrinen as: 

whercprcprc",nlS the inllucnccsofsidcwalh. pedcslrian-{)nly routcs and crossings on 

pereeived distance. I. is the ~al ue ca1culatc-d in Step 2 which represents Ihe traffic_ 

weighted leDgth,and Drcprc",nts ihe crossing Icnglh.X rcfers 10 the nonnallydi stributcd 

variation in thc innucnee of sidewalk., pedeslrian only routes and crossings respcctivcl y 

thatrcprcscnt individual difTcrc'Ilccs in know1cdge,prefercnccs and tastes . Thccalculntc-d 

Svalue is then used in the ulilityequation asprcsenled at thc beginning ofthisscction. 

Finally. the probability of choosing une uflhe lransroM mode;s decided based on 

a random choice function 



whcreUislhculililyvaluecalculatedforeachmooe,andrisacomrolparamctcrlhat 

influclICesthcprobabilityofch<KIsingthcmodcwilhthchighestutilityvalue(sccS<:ction 

3.2.lfordc'llIileddiscussion) 

6.2 CAl.IBRATION AND ANAL VSIS OF MODEL 1.0 

As described in Sc.:tion 4.2 .4, it is e~I"-"<!'ed 'hat ,"'i,h al'l'ropriat~ parameters. the 

spin-up process will produce modal splil values which s,abilizc afler a few iter.,ions. The 

calibralioo is dooc by manuallychangin~ the model paramclCrs and observing whethcr 

lhcmodalsplitstabilizes.andwhethcrthc stabili7.edvalUi."5approximatelhcactual.'alues 

asdosclyasposs,bic 

Table 6.1 shows the si mulated modal spli, values generaled by lhe c~libmted 

model HT'SuS the !>Clual values. The results show that the model tan generolle a modal 

splitlhatc\osclyfoliows!>ClUalpallcms, Simulation resuhs for tran.il trips tend to bc Icss 

IICcurnlc, probablyduc 10 lhe f.ct that lransil routes and schedules arc not co nsidercdin 



Table 6.1: Obsc ... -edand predicledmodal.pl il 

Region T:/Z AClual o/Jsen'Ulilms (pen-enlagc) Simulalion ,""s,IIls (perce"U1ge) 

Driving Walking Driving Walking 

6S.6 8.5 2S.9 

79.9 

85.6 

80.2 

As dc;.cribcd in Soction 4.2 .4. th"-"e different mode choice melhods ",e 

progr .. mmed in Ihe model ling soflwalC. In melhod I. agents sclect trip mode f(}r each 

individual trip. In b01h mclhods 2 and 3. it is assumed !nal agC1lls ..,Iecl a single lransport 

mode for all bips in a round trip. Whi]e it is possiblc Ihal individuals maychoosc mixcd· 

mode fora round lrip (for example, walk 10 the destinalion and lake a bus hack), in 

realily, for lhe study areas. very few (less Ihan 2%) round trips use mixcd_tlJ()(\c. i.~ . most 

round nips use a single mode for all the trips wit hin Ihe round nip . Calculation of mode 

chuiccbascdon loundlripsgreallyimprovedlhcsimuiJlionspccd.whilcalsoa"oidedlhe 

rroblcmofgcncralingunrcaliSlicmixcd.modetrips. 

The dim .. ,cnce between melhod 2 and melhod 3 is lhal in method 3. Ihe 

availabililyofadriw,'s license and Ihe avai]abihty ofa car are taken intoconsidcrnlion 

in lhe mode choice process. hpcrimcnlS showed Ihal wilh appropriale model pammctcrs. 



ooth tlICthods can generate rcalistic modal split values. However. funher examination 

showed that when the mode choice results are examined by trip pUIpOSCS or population 

~roups. the result by method J is stn.tCturally more realistic. Tahle 6.2 shows an example 

of the modal split "alues ~encratcd using methods 2 and J. Both methods generate 

realistic modal split patterns, wilh similar ov,:rall prediction error on transit and walking. 

and slightly higher prediction C1TorOll driving for metho<l 2 

Table 6.2: M<:>dat &ptl1 p«:dietion foo-TAZ 435 using two modeehoice melhods 

Uo;la/'I'iil Dri;';ng Walking 

Acrualobscrvation 

Prediction using method 2 

Prediction using method J 

Ho .... w~r. wkn the simulation results arc examined by trip rurroscs (Table 6.3). 

it is found that method 3 gC"Jlef1lt~"!l very itCcuf1ltcdriving trips . and the prediction errors 

for all thrcc modcs are significantly lower than the predictionerrur using mcthod 2. 

Table 6.3: l'rcdictioocTTOTu,inglwomodcchoicc mcthod. 

I'redicrion error using melhodJ 

rebtcdtrip, trips rclatedtrips 

Driving 

9.110/. 

Walking 160.0"/0 ·51.1 % 



The resuh supports Ihe assumplion in melhod 3 I~a\ inclaslic \rirs likc work and 

sc hool uiJlS arc orlcn gi"cn priorily on car usc. II also show~ thai I~e model predictions 

can be improved by adding hierarchical mode choice algorithms and rcstric lions 

The model is e~pccted 10 gencralc nOI only a realistic modal spli!. bUI alw a 

realistic traffic flow patlem on the roads in Ihe neighbuurhood~. The ideal way would be 

!Ooblain traffic counts for each stn."C1 ore.ch intcr.;.,ction. and the ncomparethclraffie 

le,'cls generated by the model wilh the obscry~-d traffic b'Cls on 1he succts. However. 

this method isnOi feasiblc as traffic counts are often onIY" 'ailablc forma jorinterscc1ions 

or majo.screen lincs in a city, and are less likely to be a"ailablc for neighbourhood 

~trccts ur intcrscction~. Also, these data are alw often e~rcnsiyc to obtain. FurthernlOrc, 

traffic counts normally only Cover automobi le lraffic. and not pedestrian traffic which is 

the main focus of this study. 

A.idiscusscdalthcbcginningQfthi.ichapter, t~cc~lihratiQnof" c"'-"jllcx system 

model can be achic,'ed by comparing thc pa11en! oflhe results rather than the dCl3iled 

numbelS. lbe pattern ofpcdcstrian routcehoiee has bcencoamined in scvcral studies . It 

is fuund that "shurtcs1!fastcs\ roule" is Ihe most imponant factor Ihat influences 

pc-dcstrians' roulc choice (Sch lossberg cl u/. 2007),and thai about 75% wal kinguiJlStook 

the shonest path (Vcrlander and Hcydeckcr. 1997). Funhcnnore, it is found t~"t for 

walkingtrirslo lhc.amedcSlination, 74% ofpcdestrian,us.,d a consistcnt roule on the 

prcv;ous five occas;ons (Schlos,berg el u/. 2007). Thc study arcas in bolh st udiesha"eB 

mixed grid and loop/curve des;!:". Ba ... -d on these patterns, the parameters thai influence 

rcdcstrians' route ehoicc can bc cslimaled and a rcalistic pcdcslrian traffie flo wpattem 



ean be gcneralCd. Table 6.4 sh<.>ws the estimated pattern for the seven TAZs. In general, 

grid·basedneighbourhoods sec a lowcr pcrccntage of trips usingthc shonest route. and 

much less consistency of route choice. Thisean bc cAplaincd by the characteristics of the 

,tn,et nl1wo rk. In a grid·bascd neighbourhood. ~ pedeslrian can oflcn choose among 

many parallel SlreelS wilh close TOUle dislances. Thus in such a neighbournood. a 

p"destrian is kss likciy to eiwosc Ihc absolute ShOneSI route whid may be only several 

mctrc. shortl"T than Ihe altef!llllive routes. But ina neighboorhood mainly oon tainingloop 

rood. and cul-d.,..saes. a pedestrian often faces much k-ss choice as Ihe lenglh oflhe 

allemali"croutesisoftcnsignificanllylongcr 

Tabk6.4: I'rcdi<."lro pou,,,,, ofl"'desl1ian roolcci>oicebeha,'iOllr 

Pcrccmagcoftrip,u,inglheshoneSlrouIC 72.0 53.3 

Consislcncyofroutcchoicc 

The rcsults sllow Ihal model 1.0 is able 10 gcneralc realislic modal split and lraffic 

panem •. and III<: model fit can be funlte, inlproved by adding hierarchical mode choice 

algorithms 10 the model. BUllhe random taste varialion values Slill mcan Ihat the ·10.to'· 

gcncmledbylhcmodclcouldbcsignificanllydiffercnlfromthe"tructaSIc" oflhc agent 

By applying a hierarchical mode choice algorilhm so Ihal different trip pu'Jl'lSCs arc 

lreated differently in the modd. Ihc model is able 10 generale belter prediclions for each 

individual trip pu'Jl'lSC. 11 i, thl"Orelically possible 10 add more hierarchic. 10 Ihc mode 

choice algorithm so that certain household types. agcnllypes or lrip lypeS are gi"en 



spcciallrealmcntandlhallhcmodcl can gcncnllc bencr predictions for ,uch household. 

agclH Of lrip lypCS. Howe"cr, Ihis will create a "cry comp1c~ model structure which is 

extrcmclyhardlocal ibrale 

6.3 MODEL 2.0 

As diseussed above, the predictinn errors for individual pnpulalinn groups in 

model 1.0 mighl be reduced by adding more hierarehies tn the mode choice algorilhm. but 

Ihis will crealc a complex model .truelure. The lrial-and-error ealibralion method used in 

model LOisal",incmcicnt.ltnolonlyrc'<luirc'Scxten.i~ctimcandefTort.butalso lacks 

a thcorelical. and cspccial ly. a malhemalical. basis 

Given the problems. an alicmali,'c approach was taken. It is suggesled Ihal 

individual differences;n tOmlS of their p.:rccptions and prefclt.'nces lowards Ihc utility of 

a lrip (or mnre ,pccifical ly. towards thc t;mc. coS! and safcty values associalcd wilh an 

individual tripJ can beat least partly explained bytheirsocio-cconomic characteristics, 

and that there is a dirc<:t relationship betw.",n socio-cconomic characlerislics and tr~"cI 

panems. The raw data used ;n this study contain detailed infonnation aboul each 

household and individual' ,socio-c<:onomic characlcristics and corrcspnnding mode nf 

choice for cad trip. along wilh trip chraelcristics including ,taning time. purpose and a 

rough dislanc"C (as dctcnnincd by the distances betwcen TAbJ. By using correlation and 

logistic regression analysis. il is possible 10 diseover which socin_co;nnomic or utility 

faclorscontribulCluthcaClual modcchoicc. These factors can bcintcgratcd dirccllyinto 



the utility equations, and the mode cboices can be pn:scnh:d as. muitinomiallogit (MNL) 

model. The parameters of sucb • model can be estimated using maximum likelihood 

estimation (MLE) 

To find out which o;o<;io.cconomic ebaracteristics a,c most likely to inOuence Ibc 

choice of each mode(andthenonlytbcsesclcctedcharactcoristiesn~..,.j to be tcstctl in Ihe 

next steps), correlation analyse< were earned out on a;:.grcgdtc-d dllla from 4(1 T AZs in 

Ottawa. For each TAZ, the data contain the number of households and ,-chides in Ihe 

TAZ, the characteristics of the houscholds (the types of residence - single/detached 

houses, s .. :mi·dclachctl houses, to"'nhouscs and apanmems), total poPUlation and the 

charncteristies of the population (including the population rounts for cae hsex,ageand 

employment groups. as well as the popubtion counts for drinor's license and tmnsit pass 

holders). The numbers not only show the characteri,tics ofthc region, they also show the 

average charneteristics or the households and the individuals (when Ihe numbers are 

dividctl by hQusehold count or population count ofthc region). Thu., 10 find oul how 

thcsc chamelCristies inOuence at different 1cvels, thrc<: correlation analys.cs we recanied 

out respectively forlhe raw data, the mw data divided by the household counl of each 

T AZ, and the mw data divided by the population ,ount of each T AZ 

Table 6.5 shows the corre lation analysis results for the avcrage houSl'hold 

enamet.ri.ties (mw numbers dividcd by the total household count). FactOTS Ihat are 

strongly and positively relaled to Ihe driving mode are: number of .-chicles per household, 

perccntage ofhQuscholds living in singl c1dctachctl houses, household size, number of 

individuals aged undc-r 14 and between 35 and 49 per household, number of driver'. 



liccn>e holders pcr hooschold. number of fun'lime workers. homemakers and children pcr 

household . Thisrcveals a pielurc oflhc houscholds wh .. ,.., car lrips arc morc likely I obe 

lake.,,: large houscholds wilh more vchic1es and driver's licensc holders in lhe househol d. 

living in single/delachcd house,. wilh family members including a middle-aged full-lime 

worker, a homemaker, and childr .. ." under 14. On Ihe olher hand. Ihe facloTli Ihal are 

ncgalivclyrcialed10 Ihe driving mode are percenlage ofhouscholds in ajl3rtmcnls. and 

numberofindi,'idual,aged bt1weI.'Il 20 and 24 per household. TbC'SClwofaclorsareoolh 

I""'ilively relaled 10 Ihc walking mode. This gives a piclurc of Ihe household, where 

walking trips arc more li~cly 10 happen: young pc<Jplc hclwccn 20 and 24 living in 

apartmenl buildings. A few olher faelOr!i Ihal are posilivcly rdaloo 10 Ihc dri ving mode 

are also ncgali,'cly rclaled 10 Ihc walking mode, including number of ,·."ides pcr 

house"olds and number of children per households. Tbis seems 10 meall Ihal hooseholds 

wilh more vchicles and more children are more Ii~cly 10 choose Ihc driving mode al Ihe 

expense oflhc wal~i ng mode. For public lransil, Ihis correlalion analysis shows Ihal 

houscholds wilhmorcindividualsagedbelwccn 15 and 19 and belwccn 50 and 54. Ihosc 

wilh a Imnsil pass and Ihnse who arc students arc more likely 10 lake public Irdn!il, 

Correlalion analysis for the raw data (see Table ILl in Appendix 11) shows Ihal 

facIo", mongly rebl .. '<llo Ihc number of au 10m obi Ie lri]lS arc number ofvchiclcs. number 

pass holders is sho"'n 10 be slrongly rclaloo 10 Ihcnumberoflransil trips . Faelorsrclaled 

10 walking lripsincludcnumberofhouscholdsinapartmcols.nd numbcrof person.gcd 



Table6.5:Corrcla!ionanaly.i.oftbehousebolda,-.ragccharac!criSlies 

'ripJ 'rips 

Vchic1espcrhousehold 

Percen!age of households in sin g1c houses 

Percemageofhooseholds in semi_dcuche<l _0.13793 0.082823 

Pcrccnlagcofhouselioldsin(ownhouses 

Percentagcofhouseholds in apartmcnts _830" 

Percemagc of households in othertypcs of 
residences 

Number of male pcrS(lns pcr hoa<ehold 680" 

Numbcr orfemal. pcrwns pcr household 

Age4orundcr,pcrhoosehold 

Agc5Io9,p<'fhOlischold 

Age 10 to 14,pcrhollsehold 

Agcl5tol9,pcrhouschold 

Age 10 !o24, pcrhollschold -554" 

Age 25 !034,pcrhollschold _0.18187 

Age351044,pcrbou,ehold 

Agc4S 1049, pcr household 

Age SOw 54, pcrhouschold 

AgcSSw64,pcrhouschold 

Agc6S 10 74,pcrhouschold 

Walking 

- 362' 



Age 75 or over, rcrhoosehold 

Numbcrofdrivcr'.liccnseholdcrsrcr 
household 

Numbcroftransitpa.s holdcrsrcrhouschold 

Full time workers rcrhouschold 50S" 

Pan timc I,;orkcrsrcrhouschold 

Students p<."T household 

l!.etirccsp<."Tltooscoold 

Homcmakcrspcrhouschold 

Persons with otherjob typcs. pcrhousclK.>ld 

Chi ldren perhouschold 

·0.08988 

("CorTcia';onis,';gnificanr""h"O.Olicvei(2'lllileJ) . • C,jfTdali,," i. significrm' "I lloe 0.05 

ie,~I(2-I"ileJ)) 

Correlation analysi, for thc individual average data (sc", Table 11 .2 in Appendix 11) 

slK.>ws that nUnlbcrofvchicics per person is positivciyrelated to driving. whil cncgati>'ciy 

rciatcd to transit and walking. The perecntagc of population bctwecn 20 and 24. and Ihe 

pereentage of po[l\llation who are students are each ncgati,'cly related to driving. while 

bolh factors arc positively related 10 transit and walking. Other factors shown 10 be 

negativcly relatcd to transit trips are rcrecntage of population under 9. between 35 and 

44. the ]lCrcentage of population who arc homemakers. and children. Other factors 

positivc1y rclaled lolrdnsilincludepereenlagcoflhcpopulalionagcdhctwec" 15and 19. 

andbclwc<:n 50 and 54. and pcrccntagcoflhe population with transitpaS$cs. For walking. 



faclorssho""ingncgali"ceorrclalionsarcthcpcrecntagcofpopulalionundcr9andlhe 

pcrccnlageofpopuialionwhoarcchildrcn. 

Bcsidc"lhccorrcialionanalys<."basc'<lonaggrcgatcddala.alogitrcgrcssion 

analysis was also pcrforo,cd bascd on the houschold and individual lcvcl surveyd atafor 

thc S<:ycn TAZs used in this .tudy. The analysis shows the correlation between trip modes 

and the factorslistcd in Table 6.6 

Tabtc6.6; Summary oflbe t<>git regros~lon an.lysi~ result 

Driving Age. driver's liccnsc. oceupaliO!l. transit pass typc. IrippUrpose 

Age,dri,er's liccnsc, lransit pass, lripdislanec 

Walking Agc,drivcr's liecnSC,oc<;upation, telecommutc, trip pu'1"'sc 

Combining the rcsul\.S fmm the correlation analyses and thc logit rcgrCS$ion 

analysis, and cxeluding Ihe factors thaI migl1t bc eorrelalcd wilh caeh OIh cr(forexample, 

agc groups arc found 10 bceom:latC<l w;lh faclOrssuch as numbcrofcMdrcn in thc 

houscholdandwhcthcrlhcpt.'Twnisastudcm),thcsoci<rcconomicfaclorsconsidcrc'<lin 

Driving Number of"chicles pcr household, whether the person Ii,'cs in an apanment 

Whether me person hold. a tmnsit paSS,WhClher the person is aSludent, the 

Walking Whethcrlhcpersonisasludcnl 



Note that "whether the pernon lin'S in an apartment", "whether the pernon holds a 

transit pass" and "whcther the pernon ;s a student" are dummy variables . The value of a 

dummy variahle is one if the statement is true. and zero if thc statemcnt is false. For 

example. for an agent. if he/she lives in an apartment. then the dummy variable "whether 

the person livcs in an apartment" has a valuc of one 

6.4 CALIBRATION OF MODEL 2.0 

In model 1.0, utility is calculated as a weighted total of time. cost and safety 

measum. No pcn;onal characteristi" are include..! in the utility calculation, Whi le the 

equation uscs. random number drawn from a normal distribution to repre""nt taste 

variation. the taste variation value docs not take into account an indi' 'idllal' s pcrsonal 

characteristic •. Thus, while the lllOJeI is .. suaBy able to g,:nCTat~ a realistic mOO~1 split. 

Ihcreisoftenagreatdiscn:-pancybctweenthcprediclc..!moocandthcactualmooctakcn 

for individual agents and individual population groups. 

Withoutthcrandomtastevariation,·alucs.theutilityC<:juationwouldbccomc' 

In model 1,0. p<...!c"Strian safety is measured as the cumulative lotal of the 

"pcrceived length" of each succt and road crossing. While this enables the model to 

easily simulate traffic feedbacks and d)l11amics. i\ causes a problem in .alibmtion as the 

non·linear C<:juatiun can only be calibraled bascd on tr;al_and_errorcxpcrimcnts. Tosol.-c 



this pmblenl. a linear equati()fl is pm~ to include road charncteristics and traffic 

where R refcrs 10 one of thej factors thai represent road characteristics and traffic 

eorn.iitions, and? is a parameler elTcclivcly I:ontrolling the weight on the innuCIlCe of the 

cOlTCsl"'ndingfactor.ExamplcsofthefaclOrsarethepcrccmagcofroutcdistancelhathas 

availablc sidewalk, the pcreentage ofroulc di stance that i_pedestrian-n nl y, the numbcrof 

roadcrnssing.~onroulcandthcvolumeof,'chicular tmf1icencountcred. 

Ilased on the discussions in thc preceding "'"'Ction. eel1ain socio-economie 

characlc1'isliesofagcnlsean also bc directlyaddoo to the equation' 

where £ refers to one of the j socio-cctmomic charactcristics that arc considered in the 

equalion, and,) is the weighting parameter. Note that the utility function fordiff""'nt 

modi.'S may havcdiffercnt sclsofsocio-economic variables 

Selection of variables (including socio-eeonomie "ariahles, and variables that 

represent road characteristics and traffic conditions) and cstimation of the equalion 

parametcrs is done using Iliogemc (Ilicrlaire. 2003), a freeware package design~'tI for the 

development ofrcsearch in the context of discrete choice models. Biogemc. short for 

.!!!erlairc Qptimization toolbox for Q£v Model fstimalion, hs ocen used in many 



lransponalion and neighbourhood studies in recent ycars(Vnic era/. 2005: Dugundji, 

2008: Takantaand Preston, 2008: I'otoglou, 2008: Vega and Rcynold·Feighan. 20(9) 

Iliogeme uscs a maximum likelihood estimation (MLE) method to estimate parameters of 

multinumiallugit (MNL) models. 

The sclcc. ionoFvariablesFullu .... 'thcFullu .... ingcritcria: 

Variables strongly oom:lated tu the choice uFspccitie mode: 

Minimumcorrclationbct .... eensclcctedvariables: 

PaSSCSl-1estasshu,,·ninllio;>geme: 

The estimated variable parameter has a currect sign· i.~ . it rcf1ccts the 

inf1uenccofthcoorrespondingvariablcinacurrectdin:ction. 

Basroonc~tcnsi,·ccxpcrimC1ltswithdifTcrcnt,·ariablesinthccquations.lhctinal 

utility cquatiuns uscd in thi. study arc: 

u_ ~ oT_ + fJC_ +.5 ••• i'dop+.5~/H'r+ T_CSI<J+T __ Cin<I+f'_ Timp: 

U ....... aT -. •• +fJC_+.5,...pau+.5 ... ,Stud+o .... Kids +1{!..,/'urp+C_: 

U .... _ aT_I +fJC_ +o ... ,Stud + T_ P<W + T .... l'ind + T_Cenc+ TJi"nC +C ... 

Tablc 6.8 explains the variablcs uscd in the utilitycquations 



Table 6.8: Li'l ofvariab1<s in lbc ulililY"'lll3lions 

Typ.e 

Trip-specific variables T Time nceded for the trip 

Monetary coot for lhe trip 

Timp Whether lhc lrip occurs in the morning peak period 

I'urp WhclhC'Tlhclrip is indastic (j.e, a ..... ork or scl>ool trip) 

Yehp The number ofvchidc'S per person in Ihe household 

Apar Whcthcrthc person live, in an apartrncnt 

Whcthcrtheperwnholdsatransilp.,"" 

WhClhcrlheperwnisasrudcnI 

Thenumbcrofchildrcninthchouschold 

Routc characleristics for wt() The number of potential stop. inside 

driving neighbourhood 

Route characteristics for Cenc 

..... alking 

Thedrivingdislanceinsidcll1cncighbourllood 

The pelcc"tage of route Jistan~e that is pede;;t"ar,­

only 

The walking distance insidc the neighbourhood 

Thc'·olumcofpcdcstriantrafficenrounlc..ro 

C_ Constants that rcprcscnl cffCCIS not cxplained by the 

factors included in the c,<!uations C_. 

Wh ile there arc three equations for calculating thn."C utilityvalucs. onl yl ..... O 

constants are used: C ..... and C""", . The reason is that in a MNL modc1. if each utility 



function ha~ a constarn repr~-scrning factors 11<>1 explained by the othcr variables in the 

U,~ aT;+j£, + O, 

U, = aT, + {JC,+ O, 

U , = aT, +-j£, +O, 

U,-U, =a(T, -T;)+P(C, -C,) + (8,- 8,) 

V , -V, = a{T, - T;) + P(C, - C, ) + (O, - 0,) 

As the prnbabilityofchon,inga certain mode out Oflhn.'C modes is 

11 is clear that only the difference between the constants mattcrs when calculating mode 

choicc probabilities. Thus, there is no nc~'d (and in fact it i. not possible) to estimate thn.'C 

eonstarns for a discrete choice model with three allernati"cs (Onuzar and Willumsen, 

20(1), 

An imponant note here is tnat the e<ti"",tion of equation parameters through 

Biogeme is done by using a maximum likelihood approach, '0 tllat the estimated modd 

parameters will maximise tile probability of the model to reproduce the observed data SCt. 

The problem is thai the simulation in this study is done by randomly allocating 

synthesizedhouseholdunitsintheneighbourhood, asthe3Ctuallncationsoflhe 

houscholds are not known {the addresses were not recorded in the trip survey due to 



privacyconeems). Thus. for an individual agent in the model. the p.;rcenlage of route 

length that is pcdcstrian-only. the ,'olumc of automobile and pctlestrian traffic 

encountered. and thedistancctr",-ellcxl inside the neighbourhood may be totally diffe rcnt 

from th e situation encounlered by thc correspond ing rcal·world rc-sidcnt( as in the survey 

data)_ Thus. the mode prediction based on these data from the model is likely to be totally 

diffc-rcnt from the actual mode taken. The parameters estimated using SL>Ch data arc also 

likely to be insignificant or incorrect. The current solution is to use neighbourhood 

average ,'alucs_ So in the equations. C$IO. Gnd. Pedo. Pind. Cenc and Pene refer to the 

average number of ear stops insidcthe ncighbourhood.thea'·c-ragetravcllin gdistanecby 

ear inside the neighbourhood. the a,'cragc pcrcentagc of route Icngth with pcdcstrian-only 

status. thca"crage travcll ingdistancc for pc'<iemian tri]lS inside the neighbourhood. the 

average volume of automobile traffic encountered by all pedestrians. and the average 

volume ofpctlestrian tr.ffic encountered by all pcdc'Strians. The reasoning here is that 

agentsehoos<: their trip modebascd On their pcrccption of the road and traffieconditions 

aoo social en" ironment of the whole neighbourhood and that mode choice beha,'iour is 

infl uenced by prior experience io the neighbourhood and pereeption of the 

ncighbourhood. and not solely dccidcd by the conditions to be eXp<Xted fora singlc tr ip 

(for example. sec lund. 2002; Ewing <:1 0/. 2004; Humpel cl 0/. 20(4) 

Table {,.91ist'i the parameter values for the calibrated model. In the table. the sign 

of the value for each parameter means the direction of influence ofthc corresponding 

variable on the utility mea,ure. For ex.mple. for the driving mode. mOre ,·ehicles in thc 

houschold and 10ngcT average driving distance inside lhe neighbourhood incrc ascthe 



Hesl fJ"1'alue Robusl Sid err Robustt-Iest fJ"1't1lue 

21.5 

C.... .19.36 

~ 2.23 

5.33 

utility value (and in tum increase the likel ihood of choosing driving mode), while more 

potcmial stops insidc the neighbourhood,ifthe agcnt lives in an apanmcm an difthctrip 

happens in thc morning peak time de<:rea.c the utility value (and thus de<:reasc the 



likcl ihoodofchoosingdrivingrnodc),Forpublictransit. ifthcpc1"Son holds a transit pass. 

ifthcpc=n is a student. and if the trip is an in-clastic trip like work an dselwoltrip.th-c 

likelihood of choosing public trunsit is !!fCater. while more children in the household 

dccrcascsthelike1ihoodofchoosingl"'hlic tran,it . For the pcdestrian mode. if thepcrson 

isa student. the higher thc 3\'cragc pcrccntagc ofpcdcstrian_only paths 0 nthetriproutc. 

and thc highC'l" the avcrage volume of pedestrian traffic cncountcm:l. the grcatC'l" the 

likelihoodofchoosingthcpcdestrianmodc;whilchighcravc,"gcwalkingdi,tanceinside 

thcncighbourhoodandhigheravcrngcvolumcofautomobiletraffoccncountcreddecrease 

thclikclihoodofchoosingpcdcstrianrnodc. 

With socio-economie factors in the utility equations. the model is found 10 

gcneratcgoodmodai split resuits. Tablc6,IO showspn.'<lictoo modal spiit , 'alues 

Table 6.10: Modal splil prooictioos based 00 mOOel 2,0 



Compared to the predictions ofmodc1 1.0 using random taste variation values (sec 

Scction6.2).thencwprcdictionsarcgcnerallycloscrlOactualobscr\"ations. Asthc utility 

equations include five household and population charactcristics (J'~h". A{l«r. P(J$$. 51ud 

and Kids) and two trip level characteristics (Tim" and Pur!,). the model is able to generate 

more accurate predictions for population and trip groups based on these criteria. 

Funhermore. because of the cross·rde" .. ncc belween all these faclors. Ihe prediction 

accuracy for popublion groups 1x",,,1 on other criteria may also be improved. Table 6.11 

shows that for agents with transit passes. modc12.0 provides much better modal split 

predictiOn! 

Table 6.11; Comparing mode pmlictions for agents with .... """it pIL'<cS 

Whilcmodc12.0gcncrat~"'l!oodr .... ults.taslevarialionisnoldircctlyprcscnledin 

the model. II is suggested that instead of using random taste variation values. it is pos~ible 

to uo.c a sct ofsocio.cconomie characteristics 10 represent agents' taste va riation{Fowkes 

andWardman. 1988).ThisleadstotheformulationofmodcI2.1 

Forpcdestrians. the neighbourhood and traffic conditions considered in the 

cqua1ion cooldbe eXlraCled inl(> a new variable. which denOlCS safNy. andsoci al·related 

facto .... for pcdest,ians' 



A similar vari able can also bc created for driving trips: 

Using f' to dCl}()tc the two trip characteristics Timp and P"rp. the uti lity equations 

can be rewritten as' 

whcrt: £, refers to the ""t ofsocio-economic factors indudcd in each equation for the 

eorrcspondingmooc. 

Traditionally. taste variation is simulated by including a random variation in the 

cocflidentsu.jl.y •. _.torencctditferentpeop!e'sdiffere11tpcreeptionore,·aluationof 

caehfaclor, Assuming that l.isa nonnallydistributed random ,'ariable 

z = N(f/.a ' ) 

Then wilh ta'te ,'ariation and socio-economic charnet.ristic. in consideration, the 

utilityc'qu.tioncanbewriHenas: 

As Fowkes and Wardman (1988) suggested, the socio-c'Conomie ,""ri.bles can be 

added dircctlyintoihccocflicicnts, thus transforming the equation to 



v _ (a. + ~a,£, )r+(p. + ~PIEllC+(ro + ~rlt:I )S + .. 

Each socio-cconomic variable can ooenlered inlo one or morc cocfficicnls (Ri zzi 

and Onuzar, 2003), depending on the nature of the problem and the prior knowledge of 

the moocHer. The advantage of Ihi~ tran~formation is that taste variati{}!1 is direclly 

represemed by snci<:>-economic ,·ariable. in a detenninistic manncr. Conlparing to the 

random laSle "ariation ,·alues. Ihe ealculaled "tastc" using soc io-e<:otlOmic variablc~ is 

more likely 10 represcnl the real "Ia.te" of Ihe agenls. This melhoo has been used in 

se,-cml other studies (for example, see Rizzi and Onuzar. 2003) 

I.lascd on experiments using diffcrent sncio_e<:onomic ,'ariable. in differenl 

cocfficicnlSin1hccqualion.1hc final oplimized cqua1ions formOOc12.1 are 

U,... _ (a + a"Yeitp + a" A,oar)T_ +{JC_ + 1_S ... + it'_ Timp 

U _ r aT .... ,. + (P + P" Srud + P" Kkls lC_,. + it'..,/'urp+ C~. 

V .... _ (a + u" Smd)T .... +{JC .... + 1 ..... S .... + C ... 

The es1imated parameter "alues are shown in Table 6.12. As shown in Ihc table, 

f(l1" Ihedriving mode. more "chicles in Ihc hnIlschold increases thc li~cliltond of choosing 

the driving mooe, while Ihe li~c1ihood is lower if thc agent lives in an apanmcnt . for 

public transit. if the pers.on is a studcnl. the likc1ihood of choosing publ iC1ransitis 

increased. while mOre ,chicles in Ihe household de<:reascs Ihe likclihood. For thc 

pcdeslrianmode.iflhepersonis asludcnt.lhclikeliltondofchoosinglhepcdes!rian mode 

is irn:rcascd. Comparing the coefficients for Ihc three lranspon modes, il appears Ihat 

p,."ople who chnose 10 drivc lend 10 \"alue lime more Ihan p,."oplc who choose 10 takc 



public transit or wal~> and for Ihose who choose driving. iX'OPlc who h.'cs in househo lds 

with more "chicles per person tend to "alue time more than p"oplc who live in 

apartments. Of course ..... ith only one or two socio-cconomie charnc!cristics in each 

coefficient. such g"ncrnli7.alion may have neglected other imronant factors . For • .amplc. 

forpeoplcwhochooscpubliclransil.ilmaybcthallhcy havctransilpasscsorha"cbeuer 

aeCCSStotransit facilitics, instead of having lowcrvaluation for tim c 

Value Sid err 1_le .• 1 IH'I1(I<e Robusl Sid err Rabu..1 Hesl "-val,,e 

'(!OOO259 4.33E..(16 -~9,87 0 7.84E..(16 -33.02 0 

-73.85 

[I" OJ)()OI42 L6QE.()5 M.84 

1J1l '(),000416 4.30E'(!5 

C~ •• 



The difference belween Ihe modal 2.0 and model 2.1 where socia-economic 

faclOrs arc directly uscd in IheC«ualion cocfficicnls is listc>d in Table 6.13: 

Initial log-likelihood Finollog-likelihood 

Whi tClbeS<.'Condapproacbha5Ihcadvanlagcofbeingablclorcpn:scnllaSIC 

varialions witb bou .... hold and personal chamclcrislics. the final log-likelihood v.lue in 

Table 6.13 shows Ih.t Ihe prediction would be less accur:lle lban Ihe initiat approach. 

Tablc6.14shnwslheprediclionsbasedonthernodel2.L The prc>dictinn errors tend to be 

slighlly largcrcornparinglo Tablc 6.10 

Table6.14:ModaISplilpredictions""ingmoJcI2.1 

Region Obserl'(.ltions (per<'e~t(Jge) Predictions (percentage) 

Driving Walking Driving Walking 

82.7 10.5 6.8 



II sllould be noted that th e prulictions based on model vc'fSion LO(whcrc random 

!.aste variation "aluesarc used). 2.0 (wheTC socio .... 'Conomic chanetcristicsare adde-d to 

the ut ility C<.j uations) and 2,1 (whcrosocio-e'ConomiccharaclcriSticsarcdircctlyused in 

,'ariable coefficients) share 'lOme common pallem. ofpn.-diction elTOl"s. Transit trip. lend 

10 be undere.timated in TAl 242 and 243. hut o\"ereSTimated in TAl433. Pre-dictions for 

the other regions appear to be much more accurale. There may be se\"C'ral rea'lOns. First, 

as me"lltioned in Se'Ction 6.2, lransit routes and schedules arc not conside red in the model. 

The model aSSume"!> thaI agents walk to transit StoJ'S and thcn lhey can !.ake trJnSil 10 any 

destination at any time. Second. as the MNL approaches (models 2.0 and 2.1) estimatc 

equation parameters by maximizing the probability of gcnemting com:ct mode choice 

prediction •. regions with greater populations and trip. are in effc'Ct gi\"en higher weights 

in the process. Thus the pruliclions wi ll f.vour largcr rcgions while creating higher ermrs 

for smaller regions like TAZ 242 and 243. Third. it is also likely that these pn."'(liction 

ermrs arc caus..-d in part by factOlS that arc not included in thc model. For example. model 

1.0usesonlytwollouschold/agcntcharactcristics: whethcrtheagenlhasadri\"er·s liccnsc 

and the number of Cars in the household. Model 2.0 uses only fh·c household/agcn! 

faclOrs and two trip 1c,'cI factors. It is possible lhat lhe factol'i whi,h correspond to the 

pruliction crmrs are not included in the model. ei!herhcl:ause thcy are nnt av.i l. bleinthe 

original data. orbccausc thcy are found to \Ic statis!ically insignifi cant during the faclor· 

selcction proc""" Fourth.;t is also likely that the samples (which represcnt 5% of the 

whole population) arc not a good reprcscntation of the !oca! popu!ation. 



It should also be not .. -d that, in this study, any ,'ariables showing wrong signs in 

tile Biogeme analysis are excluded. For eumple, it is expect .. ", that if the socio-economic 

variable "whetherthepcl'S()n holds a transit pass" is used in the utilitycquation for the 

transit mode,lhe sign for the coefficienl Orlhis variable wnuld be po.itive, ie. if the 

pcrson holds a tnmsit pass. the utilitynlue forchoosinglhe transit mode will incrcase 

BUI under eenain circumstances, Biogemc may repon " negali>'c sign for the lransil pass 

variable. A wrong sign oflcn ajIpCani whcn thc variable is not related and shnuld not bc 

inc!uded,or thereexistscorrebtinnbt.1wcen Ihc Y3riable and Olherexislingvariablcsin 

Ihe equatinns. While Ihe inelltSinn of these wrong-sign variables may impro"e Ihc owrall 

prediction accuracy of the model (and in some cases, they do), il is thcon1ically less 

'i<JUnd to include such ,'ariablcs. The inciusion of such wrong_sign vari ahles may inereasc 

the fot of the mode1 to a particular dataset. but it is likcly to cause great erpredictinnerror 

The distribution of the IlISte variation valucs caiculated based the socio-ec onomic 

charncteristics was examined in Ihis sludy, For example, in the disutility equation for 

driving, thc coefficient for lime is represented as a +a,,vehp ~ ll, ,Ap(lr. Figure 6.2 

shows Ihe distribution of Ihe coefficient values . In $eetinn 6, I, the nmdom taste "arialion 

,'alues are nbtained from a nonnal distribulinn with a mean >'alueof I. Forcnmparison, 

the distribution oflhc time cocfficient is also transfonncd into a distrib ution with amc.an 

>'alue of I. Analysis sho .... 's that the standard deviation is 0.97. and the kurtosis value is 

99.95, which sho ..... s that Ihe distribution has a mu<:~ higherpcak and a heavier tail thana 

nonnal dimibution (the curve in Ihe graph). Note that the factors used to n'Prcscnt laste 



variations in this example have vcry limited values. Only two factors are used: the 

number of "chic1cs pcrpcrsoo.and whcthcrtheagem lives ioanapartmeot For all the 

agents, the fonnerfactor has ooly teo possiblc valucs while the latter factor has onlylwo 

possiblc,·alucs. Thus .... ·hilcthcn:sultsshowlhepancm that mosl people do ha,·c taste 

variation values close to each othcr. thc distributioo charnclerisl ics (standard dcviation. 

kurtosis. ('te) as estimated by Biogemc may not be an accurnte rcpreSl'otation of the real 

Fig ..... 6.2: Tastc,·.riatioo f<>rtirneford';"ingtripsase'timat,'<!usingBio gerne 

6.5 A GRAVITY MODEl. FOR SHOPPING AND SERVICE TRIPS 



To examine Ihe innucneeoflhe a,·ailability of local facilities. a sub·modcl based 

on the gravity equation was crealcd. The cily of Ottawa has 344 TAZs. For each TAZ. 

data arc available fm employment in each economic s.oclor (for example. school, 

shopping and scr .... ices). These numbel"'l arc used as rcprc<cntalions of the activily 

opportunities availahle in each economic seclor in Ihc TAZ-'_ Ilowever. tnanyTAb have 

few or nojobs io spccificse(;tors as shown in Ihcdata: Iheavail.bleaggrcgated I ripdala 

also show few or 00 trips belween many TAZs. Thus. Ihe dala from many TAZs may be 

foundstalisticallyinsignilicanlifusedalooe 

To sol~e this prohlem, concentric distance zones inSlead of T AZs are uSC<! fo.-

de\'clopmcnt of the 19'avily model. From each TAl, the whole city is divided inlo 16 

distance lones (wilh lhe firsl lonehcingtheTAZilself). and tne soxon d zonc IcSSlhan 4 

krn, 3'" < 8 km, ___ <56 km and >56 km). Figure 6.3 ,hows an example ofthc concentric 

diSlancezoncswilhlhebascTAZhcing242. 

In lhe gravity model. Ihe atlractiwn .. 'SS of each distance lOne is calculat .. "\! as 

where Ai i, Ihe atlmctiveness value. Ei is the total employment in a sp"eific oxonomic 

soxtor in distance lOne i. and di is the dislarn:c of the concentric zone from Ihc base TAl 

Thcn trips are assigncd 10 cach zone based on its relative allractivencss 



Figure ~.3, Thcc"""crotricdi,(a",,< ",nc< circl ing TAZ 242 

(Darl:er colour mean. closer dis(ancc (0 TAZ 242) 

The results show (ha( worl: and school (rips do nO! follow (he I>l""i(y ,node!, 

probably due 10 (he inela« ic nature of such (rips. For shopping and sc rvicc (rips, the 

estimah.>d a and 6 value are O.9H and 1.% rcspcctivcly, which is in line wi(h other gravity 

model estimations for shopping trips (for example. see Hansen. 1959: Jone. and 



Simmons, 1990), Figure 6.4 ~how~ the gravily model predictions for TAZ 242 and 433 

While the model repn."scnls a good fit of the aclual observalions in general, some dislanee 

~Ot1CS have larger prediclion crrors_ There arc ""-0 main reasons: First, bolh lrip and 

employment data are aggregated allhe TAZ Icvel, and lhe T AZs in Onawa vary 

Figure6.4: Gra'-itymo<klpr<:d,ctionsforTAZ242.nd434 



significantly in size and shape, thus the distance zoncscrcated in the gra,·;ty model are 

often fairlyirregular(scc Figure6.3),Second,thcdistaoceusedin thcsu b·modclisthc 

road distance between centres of thc TAZIi, which may differ from the actual trip 

distances, cspccially for shon distance trips and trips to TAZs with large Ofcas. 

6.6 SENSITIVITY ANALVSIS 

A simulation model will unavoidablyha,·c uncertaintics that arc intrinsic to the 

dala and to the model itself. These include cTIOrs ofmeasurcment. absence of information 

and poor or partial understanding or the system. Sensit ivity analysis is the process 10 

detcmtine the quality oflhe model 'p"eification!, Sensitiyityanalysis is used to identify 

the factors Ihalcomrihule most 1<) the <J\ltput variability, intcTaction ,betw .. "n factors and 

the optimal region, Wilhin Ihe pal'll",,;tcr spoce "f ,·&Iuo;; . The difference between 

sensitivity analysis and calibration is thai sensitivity analysis is used to sec if the model 

outcome will alter dramatically or une~pcctedly ~ause of chang'" in pal'llrnctCfS, while 

eal ibl'lltion is used I<} make Ihe model outcome confonn 10 real world data 

For the Ottawa modcl,S(;nsitivilyanalysis was earried <J\l1 fo.vcrsion 2_0 of the 

modcl"incctheoutputofthis,'crsionrcprescntsthebestfittoactualobscrvalions_lothe 

sensitivity analysis, the following equation coefficients or model parameters were tested 

l_Cocflkicnts for timC,oost and safety in thc disulility functions (a, ~andy); 



2. Coefficients t~at control t~e inOycoees of automobile traffic and pedestrian 

traffic; 

3. The model parameter that controls the extent of route randomization ..... hieh 

repTC!;CnlS impcrfect xno ..... ledge of the agents and uncertainties in choice behav iour. 

Table 6.15 .hows the scnsiti"ity ana l~is result. The analyses are done by 

changing the specific parameter as listed in the table while keeping all other parametC1"S 

unchanged. In the table. 0, I. and S indicate changes in mod:ll split "umocrs as the 

coefficients (listed in categorics I and 2 ab<we) change "0" means ··decrca!;C'·. "S' 

mcans"rclativelystablc"'and"f"mcans"increasc" 

Thcdirectio", of change shown in thc tablc abovc mostly conform toexpcctat ion 

Notable rcsults include: higherp value (whith mcanS decreasing the importaneeofrost. 

asflhs a negative sign) incrcas.cstransit trips. but car trips ".'mains stabtc :highcr y, ... ood 

y,;.J value (which means decreasing the imponancc of the number of potential stops for 

cars-as y, ... has a negative sign, and increasing the imponanceofthe driving distance 

inside the ncighbourhoodj incrca!;Cs me numberofcar trips whilc decrcasing both transit 

and walking trips. The number oftrnnsit trips remains stable in mm;! situations 



T.blc6.IS: Dire<l ionofintlucncef<:>rlhcglOOalparamc'cn 

(D:dccrcasc.S:slablc.J:increasc) 

Modoi;plil 
Diri:C/ionojChongc 

Driving Walking 

NOIC1h'llhccoc/Ttciems1h'loonlrollhc influence of au 10m obi Ie and pcdcslrian 

1mffie (,,-and ",.... ..... ) influence bo1h mode and roule choices. A hig)1cr value of 

Ihese IWO cocffici,:nls is likely 10 cause pedeslrians 10 be hig)1ly (and unrealiS1ically) 

conecnlralooonccnainpcdc'Slrian-fricndlyroads.aspcdeSlrianSa'·oidaulomobilctraffic. 

bUI are at1m~lcd 10 pedestrian-friendly streets including strects with sidewalks. 

pedestrian-only routes and streets with Olore sodal interaction opr><>rI"nilics. The 



concentration of pedestrian tr~me on such roads funhcr increases the attractiveness of 

Ihese roads. and the utility of choosing the pedestrian mode. This in tum crealCS more 

pedestrian lrallle. Figure 6.5 shows an example of an extreme scenario where pedc'Strians 

are highly concentrated On Ihc jlI.'<lestrian-only routes in TAZ 501. 

Figure6.S:An cxtremce .. mptcofpcdcstriantrafliccon<:<11tration. 

This oooc'Cnlral ion elTocl is ofTset by the randnmi711tion factor in the model . " 'hieh 

.. :prescnlslhc facl thaI indi vidual agcnts do not have rcrfect knowtc'<lgcnflhe road and 

lrafficcondilions.as well as individualdifTcrcoccs in taste and prefcn:nce,,'hieh means 

lhatlhcyoonolalways choose the routcwilh the best determinislic utility. Figure 6.6 

shows the distribution ofpcdCSlrian traffic with randornizalion considercd inlhemodel. 



F,~uro6.6: Pcdrt"';""wfficdiSlribulioowilhrand<Hn,z.uionconsidcre<l 

The eha" ge in the e~tenl of randomilation nOI only inn~enccs trip distribution 

~mo"g (hc "U"" t" il also dirc"Clly innucllCl., n.odal sVlil. hl'cri(IIl1,IS ,how lhal trafTie 

distribution and modal splil bolh stabilize when the c~tcnl of rando mil at ion increases 

from 0 to around ±IO%. Further increase of Ihe randomization faclor causes higher level 

ofnuclualionbchH'<.'1lilcralionsformodalsplilandlrafficdistribution. 

6.7SUMMARY 

ThrccdifTercnlmodci fonnulationswcrccxplorcdi"thischarter. The calibration 

process shows lhal each fonnulalion has ilS own I><h'anlage and disadvantage. Model 1.0, 



with its simple fonnulation. i~ ablc to gcncrdtc realistic trip and traffic pattcrns . Howe"cr 

the model suffer; from tcdiouscalibrntion process and relatively inaccurate prediction. 

for individual population groups. Whi le this can be improved by adding morc constrninlS 

to Ihe mode choice algorithm. lhe resull of such algorithm altemation is oficn a very 

oomplex modcl slruclure that is difficult to ealibrnteandjustify 

Wi thlhcinlroductionufsocio-cconomiccnardctcristicsdirc.:lly inlothcuti lilY 

equations. moocl 2.0 shows a model fOl1llulation which not only is easier tocalibrnlc.but 

also proouccs resulls thai beller fillhe observation. Funhcrmore. mood 2.1 shows that 

suchsocio-eoonomicchamctcri.ticscanbedirc.:lIyinlcgrnlcdinlolhccocfficicntsofthc 

utility equations. thu.canbeinlc'l'n.1c'<lasadin.~trcprc.,;cnllllionoflastcvarialion 

The sensitivity alllll),sis shows Ihat Ihe varialion of cenain mood parnmetcrs may 

lead to drnmatically different output patterns. and that an appropriale rnndurnizalion 

Ilrvce.s Wllich oefle<:ts the unccrtaimy n~ture ufhumdn knuwledgc dild boon"vio", is useful 

With the c.librated moocl, andthcgrnvitysub-moocl ""introduced in Sccti on 6.5, 

diITcTcnl cxpcrimrnl' will be carried oul to explore how daily trip patterns are influenced 

by ncighoourhood dcsigns in gcncrnl and by detailed dcsign fcaturcs such as ""ai lability 

offacililics and pedcslrian-onlyroulcs 



CHAPTER 7: EXPERIM ENTS 

As prupo>cd in Chapter I and 2, the model is designed to disc(lYer how different 

neigM"lUrhoodde,igns influence modal split, tripcharaClcristics, t rafToepa1lem.andlhe 

rel atlxlas~tsofdailylifeincludi ngsocialinteraction opportunities,hcalth.polluti<m. 

pcdcs1riansafC1yandeongcstionprobabilities.Fourneighboumooddesignsareexamined 

in this study. The traditional grid and post·war suburban designs are imponant bc<:ausc 

they arc widely used throughout North America. In the rtX:l'1lt years. thc Il<.,()·trdditional 

design has also bc<:n implemented in many neighbourhoods in the US and Canada. As 

discussed in Section 2.1. each of these designs has its own advantages. but also faces 

some cri ticisms. Experiment' ""ilh the calibrated modo! arc designed to disco>'cr the 

overall influeneesofthcsc designs on trip and lrafToc pal1ems. and also the influcnt",sof 

some of the internal characteristics ofthesc dl'Signs (for example. the location offacilities 

and the availability ofpcdestrian-ooly routes). The fused grid design. asa new approach 

to neighbourhood design. is also evaluated in thissludy 

To evaluate the influctlCc ofthesc designs. 1",'0 SCIsnfexperiments werc uscd ,The 

firstsctofexpcr;mcntsuscssc,"enhypothetkalneighbourhooddcsignmaps.reprcscnting 

the fnur ncighbourhood design,mentinned above. with two map' each forth etraditional 

grid. the post·w",suburtmn and the nro·traditional dcsignsn.'Spectively . and one map fnr 

the fused grid design. Each map represents one or more of the most di stinguishing 

chaT3ctcristicsofthccuITcspondingncighbourhooddcsign. Thesc.:ondSC1ofC~p'-'Timcnts 

,,",-'S three layout IIlilpS. with the first one being Ihe real·world map of the Barrha"co 



l 

region in Onawa, with the other two being planning scenarios represcnting thc nc'O· 

trnditionaland fused grid dcsigns applied 10 Sarma,·cn. ·Ibccalibrntc-d model i. used to 

find out how p""plc react to differem neighbourhood designs by choosing different 

trunsport modes and routes. and how these dccisions in lurn gcncratedislinetivclraffie 

and trip pallcrns 

Neighbourhood designs influence trip and traffi( patterns through IheiT intcrnal 

charactcristics.Thus.expcrimcnl.andcvaiualionsarenrric-doulnotonly for each design 

in its cmin."ly, but also for variations of some oflhe internal characleTistics of each design. 

inc1udingthc location and numbcroffacilitics.lhcavailabililyofpc<J cstrian-onlyroutcs. 

Ihc population densit y and the population struclurc, Byehanginglhe loc ationandnumber 

of local faci litic •. lhca,·a ilabiiilyofpedcSlrianonlyroutesandlhcdcnsityofthc 

neighbourhoods, experiments show how these internal characteristic. of the 

neighbourhood designs influence modal splil numbers, traffic pancms. and related aspc<:ls 

of dail y life, Experiments are also carried out lodiscovcr IKlw neighbourhood design 

afTl><:lsd ifTerentpopulaliQlls 

For each design.lhc influence oflhc design on se,·eral aspects of trip 

charadcristics and daily livcs ofn,.idcms is studied. Modal,plit numbcl1l rCl'rcscnt the 

perecntagcoftripscxpectcd forcach transport mode, Social imcmctionopportunilics for 

pedcstriansarc rcni.><:led in the pc<JCSlrian cncoumcr numbers (a, diseusscd inSl><:ti on 2.2. 

the nUlllberofpcdcslriancncOuntl-rs isbclicvoo to bc ass.ociated wilh lhcchan ccofs.ocial 

inter~cli'}fl). Total pedestrian dislance and the pollution eJ(posure index (sec Section 

7,1.2)reprc'SCnt h""lthrclatcdefTccl.ofancighbourhooddcsign.whilclOtal\'ehic1ctrip 



distance and the number of potential stops for cars are surrogates for the amount of 

pollution generated by automobile trips. Iloth Ihe number of road crossings for 

pedestrians and the pollution e~posurc index reflect pedestrian safety issues associated 

with automobile trnffic. The congestion probabilities arc shown by the peak trnffic 

volume on the streets, FunhemloTC. thematic maps were created 10 visually demonslrate 

the spatial pallem ofpcdestrian encounters. vehicle emi"ions and vehicular traffic flow 

The experiment' were carried out by hypothetically putting the resident 

population indilTcrenl ncighbourhooddesigns. Thisaliowssimulationofthesc~'Ilarioin 

which a neighbourhood design is transformc'd into a new one, or in which ecnain aspects 

of an exi.,ting neighbourhood design change, while in both cases all TCsidents TCmain 

living in the area. The experiments were designed to find out how traffic pallems, trip 

characteristics and daily lives in the neighbourhood will change under these 

The experiments were carried out under the commOn assumptiOll thaI the trip 

demand of local residents is not innuenced by the design chang~"S; onlyth. destinations. 

transpon modes and roulCS will change. It hasbecn suggested that neighbourhood des ign 

may have the effect of inducing or suppressing trip demand, especially for clastic trip 

types like shopping and social trips. The term "induced demand" is mO'llly used in the 

context of automobile t",ffie. and refers to the increase in the number or lenglh of 

aut,-"nobilc trips with the improvement of mad networks. "SuppresS<.'d demand", on the 

other hand, rerc-rs to the decreasc in such traflicor lrips when road networkcondilions 

deteriorate, Theehanges include both newly 8encrated trips and existing trips rnadcbya 



dilTcrcnl mode (i.l'. modal shift. which i, C(..-cred by this sludy) {CCf\,CTO and Hansen. 

200n It is commonly believed that induced demand for a cCT1ain mode is associated with 

improvements in road networks or facilities that arc associated with the mode. For 

example. as mentioned above. induced automobile traffic is often associated with 

impro,'ement of urban road or highway systems. Induced pedestrian traffic. on theoth er 

hand. is normally associated with impro"cmcnt in pcdestrian fricndly roUICS and faciliTies 

such as sidcwalks. pedestrian·only routes. tratliccontrols and shot'1cr acee "distanceslo 

facil ities. While the model in this study docs om simulate the clTeet of induced or 

SUJlPr~'Ssed latent traffic {i.I'. newly gencrated or cancelled trips),thc results already show 

that the noo-tradilional and fused grid designs are associated Wilh morepcde striantraffic 

Increased usc of the pedestrian modc i,associalcd wilh bencfits such as more pede slrian· 

nn lyroutes,shot'1erwalkingdistaneestofacililies.lesse~posuretnautomobilcemis,inn,. 

atld less autnmobilc traffic. With inducro lalent traffic. il is likely that tk advantages of 

Ihese two neighbourhood designs for pedestrians will be more e"ident, as the 

characterislic. of these two designs arc likely 10 induce pedestrian trip demand while 

sUJlPressingautomobile lripdemand. Ofcoursc. as frcquentlymcntioned in this study, 

urban neighbourhoods are complex systems. and Ihe actual influence of introducing 

ind uced demand into the model may be mOre complex. 

The chapter is organized into three sections. In Seetion 1.1. experiments arc 

camed out using thc scwn hypothctical ncighbourhood mar<. Aflcr a general descrip tion 

nf the design maps (Sectioo 7.1.1). the "replacement" c~pcrime-nts arc used tn fif}(! the 

changes in trip characteristics. traffic patterns and cnoounlerprobabilit;cs ifoncnfthc 



Ottawa TAZs were to De transfonncd to each of the seven hypolhetical designs in tum 

(Se<:tion 7,1.2). Ful1hcr cxperimcms show Iww Ihe imemal characlerislics of lhese 

designs. including the locatioo andnumberoffacilitics(Section7.1.J),1 he availability of 

pedestrian_only mutes (Seetion 7. 1.4). the population densi ty (Scetion 7.1.5) and the 

population structure (Stttion 7.1,6). infl ucr.ce modal split and trip pattcrns, In Stttion 

7.2. cxpcrimenlsarc carriedoul using Ihc Ihrcc design maps forlhe Barrha"cnregion, A 

general c"aluation is given in Se<:lion 7,2.1. while lhe influence ofpcdcstrian_only route 

a,'ailabilily is cvaluutC<! in Seclion 7,2.2. The findings from lhese experiments are 

7.1 THE HYPOTHETI CAL NEIGHBOURHOODS 

For the exisling neighbourhood foml. incl...tiug traditional griJ. po, t_war 

suburban and neo-lradilional neighbourhoods, diffe«:nl ,'arialionsofthc designsc.ist i" 

diffcn.'Tl1 pam oflhc world. The size of Ihe blocks. thc numDer of loops arid cui-de-sacs. 

layouloflhcroadnel,,-'orksand loe.lionoflocal facililil-s difTcr from onc neighbourhood 

10 anolher,cvc'Tl when Ihcyare oflhe same neighbourhood Iype. Thcdcfinilionoflhc 

word '"neighbourhood'" is also never clear. Many researchers ,imply usc this word 10 

"'Prescnt a census tracl (Galster and Booza, 2(07), a naturally form .. "! arCa or a 

historically formed arca. f or example, in the fused grid design, a neighbourhood is 

defmed as one oflhe four blocks surrounded by Ihe Iwinnoo .I1crial (CMHC. 2(02). Bul 

Ihc sile of each block. which is 400 , 400 melres. is much smaller Ihan a lypical post-war 



suburban or noo·traditional de"ciopmcm {forcxamplc. sce Stone el(Jl, 1992),andisalso 

much smaller than Ihe size us.:d in Tr~nsit Oriented Development (TOO), which is a 10· 

minute·walk radius from a lransit stop (sec Cahhorpc (1993», or in much other 

ncighbourhoodrcsearch, a 10·minute·walk distance from side to side (for example, sec 

Kirtland ('I,,/. (200J): Addy el ul. (2004», The distance of. lO'minute·,,'al~ ean be 

translated imo 720 metres using the standard in the U,S. Manual On Uniform Traffie 

Control Deyices (MUTCD) (U,S. Federal Highway Administration (FIIWA). 2003) 

For the pU!]XISC of this study. tw<) maps were crcatl-d for each of these three 

neighbourhood typ<."S, and one map as created by Cr.HlC is used t<:> represent the fused 

grid design. To make the mal'S com]lilrablc with each other. "lithe mal'S are CO,,-<lructed 

as SOO x 800 metres (approximately half a mile) in area, The area size is the 

reeommendcdsi7.c fora transit-<>ricntcd neighbourhood de>'ciopment. and half. milegrids 

arc also widely used in North America for difTen:nt kinds of neighbourbooos, As the 

layout maps arc created to represent the most distinctiyc characteristics of each 

neighbourhood trpc. they arc likely to produce rcsuhs that are unique to each of the 

dcsi)pls. 

Figure 7,1 and Figure 7,2 show two trad itional grid designs, The only difTerence 

betwccn the two designs (abbreYiated as TGI and TG2) is the block size. TG2 has a block 

si7.c that douhles that ofTGI. This is used to "".Iuatc the influence of block size. As 

mentioned in Section 5.1.1, the red squares on the map refer to the ex its of the 

neighbourhood. whilc the blue squares ("comers") rcferto the possible location of local 



Figure 7.I,Tl3d iliooal gnd J (TGI) 

Figure 7.2: Tradiliooal gyid 2 (TGl) 



Figure 7.3 and Figure 7.4 (PWI and PW2) represent NiO different post-war 

,uburban neighbourhood layouts. BOlh maps arc created based on residential 

tlcigl1bourhoods in Richmond. Be. Many ncighoourhoods in Ihis area ha" c lhe size of 

around 800 x 800 mClcrs (or half mile byhalfmilc), wbich make il possiblc 10 usc the 

neighbourhood maps from Ihis arca without much change. Oflhc Iwu mars. PWI uscs 

cul.Jc-,acs cxlcnsi,·ciy. while PW2 use, more loop roads. BOlh neighbourhood. arc 

surrounded by arterial roads and bolh have fi"e acccssroadsconncclingiheartcr ialroads 

andlhcinncrresid""Tllialarca.whichmaxesthcmhighlycomparablctDcaehulhcr. 

Figure 7.J:POSI-warsuburban I (PW1) 



Figure 7,4: POSI,warsuburban 2 (I'W2) 

The two noo·tradilional neighbourhood la)"outs (NU l in Figure 7.5 and NU2 in 

Figurc 7.6) arc also eonstructed based on rcal.wnrld nC<l-traditional neighbour hoods,NUI 

is based nn a neighbourhood in southeast Calgary. Allx:na, while NU2 is based on a 

ncigbbourhood in cast Denver. Colorado. Of the two maps, NUl uses mon:: loop roads. 

while NU2 shares more similarity with a trnditional grid neighbourhood. except with 

cxtensi>'c use of garage acccss roads (marked blue in the ma]lS). ,,·hich are also used in 

NUl. With the usenFloor roads. NUl also has a much largcrcfTeelive I}I()(k size than 

NU2.Nolelhatthegarngeac","ssroods(inbluccolour)arcbuilltoconneet the S"rnges at 

the back of the houses to the main roods. These roads arc often elc,'ated and have no 

through traffic. thus have ~ery little lraffic volume throughout the day. The green 

coloured lines r .. "rcscnt pcdcstrian-onlyroutcs. 



Figurc7.~;Nro.lradiljonalncighbourhood I (NUl) 

Figu.., 7.6: N ...... 1radi1io""l ncighbowhood 2 (NU2) 



Figure 7.7 sl!Qws a fusoo grid neighbourhood design (FG) as proposed byCMHC 

For automobiles, the neighbourhood contains only four blocks equal in si7.e. But for 

pedcstrians, the pcdestrian-only mutes throughout the neighbourhood make the cffcc tive 

block size mllCh smaller. The original fused grid design (sec Se..:tion 2,1) includes 

twinnoo arterials outside the rcsidential area, with facilit ies locatoo behn'Ct1 Ihctwinncd 

arterials. The'S(: Iwinnoo arterials arc omiuoo in the map here 10 make the map more 

comparoblc ""'ilh Ine olher six hypothC(iealdesigns. Facililies are assu moo to be locatroat 

thc corocrs of tnc neighbourhood ..... along ihc surrounding arterial depending on the 

experiments. 

Figure 7,7: A fused grid ncighbourhood (FG) 



Table 7.1 shows two of the phygical characteristics of each of the ""'en 

neighbourhood dc"Sigm. Grid-based neighbourhoods generally have greater road length 

(TG1. TG2. NU2) and smaller blocks (TGI. NU2) which nonnally me"n more 

intcrsoctions. The road lcnglh numhcrs shown here only include nonnal roads (nOl 

pedestrian-only routes or gar.go acec"SS roads). The numb,;" in brac~cts meanS the length 

ofgar.gcaccc" roads pcrsquare kilomctre for the new urbanism designs 

Table 7.1: Phy>1;CalcMrac1ef"isticsofthchypothctical ncighboorhood, 

Mop 

Traditional grid 

TG2 

Fuscdgrid 

R",.d length (kmJ Inle.~cc'i()/u 

persquarekilome,er ~qtlQrekj/omeire 

16.6(11.3) 

19.7(13.0) 

to local facilities. polential stops for automobiles and crossings fOf pedestrians. With 

looping roads and cul-de-sacs, post-war suburban designs hayc the highest a"er.gcaccC"Ss 

distance 10 1"",,1 facilities for both automobi le and pedestrian trips. With the us. of 



pedcstrian-only routes. the new urbanism dc-signs ollen feature slightly lower acrcss 

distanc..: for pedestrians than for automobiles. The fuSCti grid seems to be 1lI0S1 sucrcssful 

al maximizing Ihediffcrcncclx.1wcen driving and walking accc" di,tan cc-s 

Type 

Suburban 

FuSCtigrid 

Table7.2:CharacteriSlicsofthcanificialtleighbourilood5 

Map A,,,rage Average 
travel 

localfilCi/ities localfacilities 
for for 

pedestrians 
(m) (m) 

"" 

A,wagestops Average 

for vehicles crossings 

/0' 
pedes/'i'''''' 

ForaUlomobi1cS.lhe second traditional grid design {the onc with larger blocks, 

TG2). the post-war suburban design! (P WI . PW2) .... well as the first nc"O-tmdi tional 

design (NUl). have lower number of potential stops duc to their automobile-friendly 

characteristics inc1uding large blocks and looping roads which dccrcascs the nun'berof 

intersections in the neighbourhood. The first tr~ditional grid design (TGI). Ihe scrond 

nCl>-trnditional design (NU2) and Ihe fused grid design (FG) show higher number of 



stops, due to the small block .ize used in TGI (Figure 7.1) and NU2 (Figure 7.6) and the 

extensive usc of cui-dc-soc. in FG (Figure 7,7). Road crossings for pedestrian •• howa 

diffcrenlpicture. with fuscd grid. posl-war suburban. NUl andTG2(lhegriddc.ign ..... ith 

larger blocks) showing fewer crossings while the two designs with small blocks (TGI and 

NU2) showing higher crossing numbers. Note that .'ehicle ,tops and p"dcstrian crossings 

arc calculated in different ways. The model docs not contain a tmffie light module. and 

C"cry intC1"SCCtion i.c<m,idc!'CdapossibICW>pforautomobile •. Pedestrian crossings. on 

the other hand. arecaleulalcd based On the dctailed route ofcach agent_ Forcxamplc. if 

the pedcstrian is on the right side ofa road and tumingright. thcnumberofcrossi ngsisO. 

Notc that Ihenumbcrs in Tablc 7.2 areca1culated ba,ed on a unifonn distrib utionofthe 

pupulati"n inside the neighbourhoods. and ancvcn distributionoftmffi c towards the four 

comcrs/cxit, of the neighbourhood. 

Figure 7.8 compares thc diffc-rcncc in travelling distances betwC<.'1l driving and 

walking in I'W2, NUl. NU2 and FG. The graphs are created by plouing (x. y) point. 

whcrcxrcprescnts the distance t",,"elled in,ide the neighbourhood for the drivingmodc. 

while y rcprescnt. the distance tmvelled insidc the neighbourhood for the samc I rip if the 

walkingmodci,ehoscn. Thcautomobilc oriented post_war suburban dcsisn .hOl, ... linlc 

benefIts fOT pedestrians. and the grid-based noo-traditional design (NU2) show. only 

small benefits forpedes\rians_ The largCT variance maybc explained by the grid dcsign 

and the small block size which makes pedestrians morc likely to choose a sub-optimal 

route. The nco-traditional design ..... ilh looping road. (NUl) and the fus<-'<l grid design 



prescntmuchgreaterbcncfit.forpcdcstrians. The fuscd grid dcsign docs espccially well, 

with the walking distance almost always C<jual or lower than the driving distance. 

'fI7l7" !r-7.l17 I:~ 1:[Lj 

Figure 7.8: Comparisonofdfivingv"r5uswalkingd istanctlQ f.oi!ili"';uilS 



To examine the influence of neighbourhood design on traffie pallcms. the first set 

of experiments assumes that a current neighbourhood is transronned into one of the sewn 

h),pothctical ncighoourhood d .. 'Signs, whi le in population and lJip demand remain 

unchanged. The simulation model calculates new 1rip modes and routes based on personal 

characteristics and neighoourhood and traffic condi1ions. The population rrom TAZ 242 

is used. as 1he TAZ is roughly 0.64 square I<ilometres in area (excluding Humpton ParI<; 

see Figure 5.2), which i_,!he same size as !he hypothclical neighhourhoods 

Table 7.3 shows the prediction of modal split and other traffic·relak-d 

characteristics for each of the seven designs. Note that the original T AZ 242 is mostly a 

!ra(!itionalgridncighhourhood,andtrafliccancnterandexilfromthcncighbourhood 

from around 20 exit poin1S(see Figurc 5.2l_Such traflic is assigned to u,e thc c\oscst 

countcrpan(cJ<.it) in the hypothclical ncighbourhoods 

Driving (pcrcentage) 

Transit (pcrcentagc) 

Walk (percemagc) 

ncighhourhood(krn) 

To1alpedcs1rianDistlmccin~idclhc 

ncighhourhood(km) 

Pollu!i"" Exposurclndcx 

11.3 10.l! 



The modal spli t prediction as shown in thc first thn'C lines of Table 7.3 shows that 

poSHvarsuburban style ne ighbourhoods tend to produce more automobile tri ps, On the 

other hand. the grid-bascd new urbanism design (NU2) and the fus.ed grid design produce 

significantly more pedestrian trips. Characteristics that favour walking and discournge 

driving fur the ne ... urbanism and fused grid designs include shoneravc,"gcpcdestrian 

distancc tulucalfacilitiesandexits.morcvehicle_,topsand lo ... erpolIutionexpo'urc.The 

pollution exposure indcx is calcubled as 

... hc!"C ,, ;s a scali ng parnOlctcr to Olake thenumOCrs more readable , T,rcfcrs to the hourly 

automohiletrnfficmlumeonthct"strcctufthepedcstrian'sroulcatthetimc period of 

the trip. and I, refers to the durntion of time that Ihe pedestrian stays (walking) on Ihe 

wad. Tli eindc~ sho ... svast di fferences bctwcen diffcrcnt regions ...... ith the two poSI_ ... ar 

suburban designs showing much higher exposure than any other neighbourhood Iypes. 

due to Ibcconccnl rationofbolh automobi le and (>Cdcstrian trnfficon t hccollcctorroads 

Thc tmditional grade designs show lo ... cr(hetler) exposure indcx ,'alucs. whi le the nco· 

trad itional and fus.ed grid designs show the lowest values. The NU2 design eojo)" the 

Imvest exposure, as the (>Cde,trian-onlyroulcs and extensive garage accc "road'pro"ide 

pedestrians a ... alking c",'ironment where automobi le traffic volume is mi nimal. The);lid 

designs alw have the em,et "f distributing tramc more evenly among lbe stn'CI~. thus 



I'o<;t-warsuburba~ neighbourhood, also have much highcr total ,·chic1cdistancc 

(driven inside the neighbourhood) partly due to the high .... driving distaoc etolocal 

facilities and exils as shown in Table 7.2. On the other hand. e'·Cn with lower average 

walbng distance to local facilities and exits. the NU2 and FG designs still show much 

highcrtotalpcdestriandislanec 

The results forpcdcslrian encounter numbers show a different story. While the 

prcdictionshoWSIMlpost_warsuburbandesignshaycihe \owestpcreenlageofpcdeslrian 

lrips.lhepctleslriancncoomcrcoumsforlhescregionsareactuallycloscorhighcrthan 

thosc for Ihe new urbanism andfuscd grid designs . The rcason shoold bc the same as that 

for the high pollution indices for Ihcscrcgions. With a hierarchical strcc1 syslem,the 

pt.-.lestrian traffic level is likclyto bc higher on Ihe eollcctor roads. and the hi gher 

concentrationofpctlcslrians on such roads leads 10 more chance ofencoontcr. On the 

other hand. Ihe new umanism and fuscd grid designs often ha.'c signilicantly more road 

surfaces (II.'hcn garage access roads andpcdeslrian-only routcs are includ .. -.l) " 'hichhas 

thecfTcctofdispcrsing pcdestrian flows 

The lirsl neW urbanism dcsign (NUl) shows disappointing result, in the 

prediction with a low pcrccnlage ofpcdestrian trips. There are sc,'ernl rcaSOnS for this. 

While the design provides relativelyshon accessdistanccs to facilities. the a,'erage 

walking distance to local facilities is higher than Ihoscofall grid-bascd dcsi gns and only 

lower Ihan lhose of the two posl.war suburban designs. On the other hand. the design is 

alsoautomOOilcfricndly. wilhlhelowCSI numbcr of avernge stoJlS (even lo,,'erthan the 

numbcrsforthcIWoposl-warsuburbandesigns). 



The r"'Sults show that for the same neighbourhood typ<:o different implementation 

still has a large innuencc on trnffiecharacteristics. for example. the i argerblock uscd in 

TG2 creates signi ficantly higher polluti(}fl exposure comparing to TGI. The loop based 

new urbanism design (NUl) shows much lower share of pedestrian trips than its grid· 

bas.cdcounterpan(NU2) 

With the pedcstrian encounter and pollution eAposurc rcsulis in mind. it " 'oul dbe 

inleresTing 10 sec where in Ihe neighbourhood the encounter or the nposurc happens 

Figure 7_9 show. the simulation result for the morning peak period forTG2. PWI. I'W2. 

NUl. NU2 and FG re'pccti"cly_ The maps are creatoo by marking the locations (using 

small red cireles) where there arc other pedesTrian agents pass within 25 metres of the 

pedestrian agent in question duri ng a 20-sccond time;mc,,,"!. Note that the model only 

counts the first such encounter ft>r any two pedcstrians during a trip. to avo;d rcpeatcdly 

count encountcrs in scenarios like when two pedcstrian. wa lk on the same rood tuwards 

the same dire<:Tinn (in such a scenario, it is likeiythat they will be within 25 metre. of 

each other for many 20-sc<;ond intcn"als) 



Figurc 7.9: Spatial pall<Tn$ofpcdcSlrian<DCOUlltCf 

(Fim row:TG2. PW I, Sttood row: PW2. NUl, Third TOw: NU2. FG) 



Figure 7.9 show, Ihal for Ihc grid de,ign and Ihe 1"',I·war suhurhan designs. 

ptodeslrian naffic concenlrales on the colleclor roads where hi gh prohahilities of 

pcdemian cncounlers occur. The NU l design has an extensive nelwork of gamge access 

roads. bUlwilhlheioopingroadnelwort.theseroadsoftcn do nm represenl an optimal 

path to the facilities or cxit •. Thus many [lCde'trian encounlers .till happen on nonnal 

roads . The KU2 design shows Ihe benefil of Ihe grid design. Wilh such design. 

[lCdeslrians call effieienlly make USc of Ihe garage acc~"SS road, and pede'lrian-only 

roules, and mo,t pt-de,uian encounters occur on Ihese two types ofroad,iroUlcS. The 

fused grid design doe, h"'e the benefil of providing shoneraccess lofacili tics for 

ptode,trians and Ih c pede'trian paths providc a good environment for many [>Cdcstrian 

encounters, but with the dcsign of four hlocks inside the neighbourhood separnled by 

inlernal ancrial roads. pedcslria " Iraffic still has togo through the itllerscction of tilcsc 

roads (at thc eenter of the map FG}. 

Wilh aulomobile traffic likely 10 be concenlral~""II on Ihe (."{)IIc.:tor roads Or inlernal 

anerials for some neighbourhood designs. aulomobi le emissions arc also lii<ely 10 be 

conccntratedon thesc roads. The pollution concentration maps arc crea led by marting the 

localions whcre an automobile move< through in anytcn.minute period (i.e. afler tcn 

minutes the marker is removed). Figure 7.10 shows an example oflhe Icn-minute mO\'ing 

average of lhc vehicular lramc Ilow as represcnted by the number of mar~ers on the map 

F;g~rc 7.11 il lustrales Ihe spalial patterns of pollulion concen lration for TG2. 

rw I, rW2. Nil I. KIl2 and FG al th e li me w~en the 10_minute moving average "alue is 

the higl!~sl during the morni ng pea~ time. All th e neighbourhood dC'igns shown here 



.'01 Totttinumberofmttrkers 

Figure 7.10: lmffic f1o"' inlhe monlingpeakperiod(IO-millulemovinga,' emgc) 

(X axis shows the number of minute, (x 10') since 3:30AM) 

Comparing the maps with thc pedestrian encounter mars (Figure 7,9). i{ is dear {hat thc 

new urbanism designs (especially the grid-ba.cd NU2 de,ign) and the fuscd gridd"'ign 

l>cncfit local rcsidents by separating automobile and pedemian traffic. Note that the 

{hem"tie m.ps "TC mcant to illustrate the spatial pattern of automobile emissions and {he 

loc.{ionswherc higher Icvc! of pedestrian exposure 10 automohile cmi"io nsarclikelylO 

happen. Aetu.1 !X'ilutionconcentrationlcvc! is intlucnccd by vehidc { ype. andspced. and 

f:IClOrs influencing entission dispcrsion ratc inciudinghuil ding height andwind.pccd 



Figure7.II:PoUulionroncenlllllioo"lima(ion 

(Fil'Sl row: TG2. PW I; Scwnd row, pw2. NU I; ThIn! row, NU2, FG) 



Peak traffic "olume on the r03lJs is also examined in the modcl. With the small 

neighbourhood si7e (800 ~ 800 mctres) in mind. serious conge'tion is unlikely to happen 

But high traffic "olumcson certain streets also mcan increased emission concentration 

and higher col lision risk for pedeslrians. Figure 7. 12 shows the peak traffic volu me 

during the morning peak period for each road in the neighbourhoods, The width of the 

road display .. ..! in Ihc graphs depicts Ihc highest traffic ,'olume during any IO-minute 

period from 7:00AM 10 9:00AM, Wilh the fi~c Slreet ... 'dions with the highest traffic 

volume highlighlcd in red, As shown in lhe gr~phs. high traffic volumes are likely 10 

oreonnect two resideotial areas insidclhcsamcncighbourhuod. As expc.;ted. lhc peak 

traffic volume is slil l low. with the maximum 10-minUle lraffie volume around 20 10 40 

for all neighbourhood designs 

The uip and Ir~ffie panems inside uroan neighbourhoods are also influenced by 

Ihcl<>calion of facilities both inside and oulsidc the neighbourhood. Forcxamplc, iflhe 

facil iliesinsidclhcncighbourhoodarcconecnlralcdaloncoomcrofthcneighbourhood. 

then higher traffic \'(>Iumc is likclyt(>occuralorcl(>Sc tOlhis oo",cr. Loc.lionofthc 

facililies outside Ihc neighbourhood normally reflectslh. location oflhe neighbourhood 

in Ihc city, For example, ira ncighbourhood is localcd.l an extn:mc eOmi.T ofa city. m(>S1 

traffi,islikdyIOenler/cxilfromthcexil{s) lh.tarecl(>Scrlothecmploymcntor 



Figure7.12: Peak lraffi<duringmorningpeakl;me 

(Firsl row: TG2. PWI ; S«ond row: I'W2. NUl; Tbirdrow: NU2. FG) 



commercial center (or the main highway thai leads to these centcrsl, Many suburban 

neighbourhoods have only one or two conne<;lion roads 10 the main highway s)'Stem, 

which is likcly to eause the same e!fe<:t, as outgoing traffieis forcC<l to use these limitc'<l 

To test and highlight the influence of facility locatinns, thre<:c'trcmc scenarios 

aretcslcd:lnthcflrstsccnario("even-distribution"j,itisassumC<lthatinsidcfacililiesare 

c>'enly distribuIC<l among all cOrnClS of the neighbourhood, while oulgoing (and 

incoming) lraffic is al", e,"enly distribulC<l among the .,il' (i ... the four e~its of Ihc 

neighbourhood will sec equal volume of outgoing and irn;oming lraffi(J. This represents 

Ihc scenJrio where the neighbourhood has a central localion in Ihe cily, and inside 

faciliTie, are al", evcnl ydistribUled.ln Ihe s"cond secn"rio e'"nc-exit"), it is assumC<l 

that al l outgoing and incoming traffic use only one ex it. and all insid e facilities are also 

localC<l al the e<.>mer dose 10 Ihc same exit. This represents the scenario where Ihe 

ncighbouThoodis locatC<l in a remote e<.>mcr oflhe CiTy (or there is only oncconne<;tion 

road to the roa<I s)'Stemoulsidc),and all facililicsarc alsolocatc..:l dosc to Ihe ex ilpoint 

This sec'flari", "'hile extreme, rcprt:scnts Ihe reality facc..:l by many suburban 

neighbourhoods al Ihe oulskins of Ihe cily. For example, for T AZ 50! in Ouawa (see 

Figure 5.7J, most aUTOmnbile traffic is likely to use STOnchaven Dr. as it is the only road 

that h., good conncction to the highwaysY"'tem and tOlhc facililics insi de and oulside the 

neighbourhood. In the thinl scenario e"oPJlO,ite..:xits"), il is assumoo Ihal al l inside 

facilities arc ooncemratc..:l at one comer of the neighbourhood, while all 

outgoing/incoming tramc uses the exits on the opposite side of the neighbourhood. While 



o(ner scenarios will also provide insights into (he problem. (hesc (hree extreme situations 

wiliholpu,und .. ~tandtheinf1ucnecoffaeilitylocation,morcdir .. 'CtIy 

Tablc 7.4 shows (he prc<lietions for (hc snarc ofpcdcs(rian mode for (ne (hrcc test 

scenarios. Note (ha( in the one-cxit experiments. (he lower left Cnmer of each of (he 

hypothe(ical neighbourhoods was usC<l. while for (he opposite·exits experiment. it is 

assumed (ha( local facilitics occupies (he lower left romer. while outgoing/incoming trips 

u.., the exit at the upper right sideoflhe neighbourhoods. 

Table 7.4: Inft""",eoffacility locatioos 

Opposite 14 2 

The table shows some interesting results. Most designs benefit from an cvenly 

distribut .. ..! tram~ flow. with thc sharc of p<...!es(rian mode increasing when the 

comers/exits ar~ mOTe evenly used. Howc"er. Ihe results show that Ihc PWI design 

ocncflts from (he one-cxi( scenario. while sufTen! from Ihe usc of npposite exits_ The 

PW2 dcsign. on Ihe contrary. ocncfilS mOSI frollllhe usc ofnppositc exi! •. Detailed 

analysis sho,,'s Iha(lhesccminglysurprising rcsults arere\atC<l 10 the de lailsoflheroad 

nClwork layouts in (hesc neighbourhoods. For example. in Illap PWI (Figure 7.3). the 

lnwcrpartoflhcncighbourhoodisalmostcnt;rclyeutnfffrnillthcuppcrpan. Residents 



inlhc lower pan oflhe neighbourhood face a significantly longer lravclling diSlancc 10 

lravcllolhcupperrighlromcroflhcneighbourhood,Comparedlolhescenariowhere all 

lrip~ go 10 the low,:r left 00"".7 of Ihc neighbourhood. avcrdgc lruveiling distance 

increases from 830mctre, 10 1Il76 metres. Thcpoorlyconn""tcd rc'Sidential area meanS 

Ihat residents ha,'c to navel a much longer distance to reach cerlain comers of Ihc 

neighbourhood. The average traveiling distance i.966 mctn..,. for thc "e,'cn-distribution" 

scenano, which i. <lill much higher Ihan that oflhe "one-<oxit" scenario (830 metres), em 

Ihe Olher hand. Ihe "OPflO.ilc-<:xits" Kenario benefits the PWl design (Figure 7.4), 

bc<:auscthedcsignfeaturesronncctorroadsclosctothesclwoexils(andrelalivclyfu11hcr 

away from the other Iwo exits - Uppef lell and lower right). and Ihe inside region of Ihc 

neighbourhood is beltef ronncch:d compared 10 PWI, which means pedestrians do nOI 

have to walk long distances on the arlerial roads (whcre Ihc traffic volume is also high) 10 

reach cerlain eomersoflheneighbourhood 

The spatial pal1CmS of pedestrian enrounters yaIY drumatically under the Ihrcc 

exlreme scenarios. For the "OIlc-exiC' Kenario (Figure 7.13, right), areas of the 

ncighbourhoodlhatareawayfromthccxilsccmuchlcsschanccofpedeslriancncounters 

I'ollulion concennations also ,htlw Ihc same patlem. except Ihat even ~ea"icr 

conccntrationoc<:urson the arterial roadssinccautomobi lelraffieeannot usepedcSlrian-

onlyrouh;s.l'cakstrceltr-dffic"olumeforcaehncighbourhoodinercaseS1()50_70 for any 

lO-minule period, often doubles the volume in Ihe situation wilh a uniform distribulion of 

faei ]iti ... Note thai many pedestrian only routes in Figure 7.13 have few or none 

p,:dc.lrian en~ountcrs showing. This ;s musl likely duc to how Ihe 10,,"lion mar1<ing 



works in the soft .... arc. asitonlymarksthclocation .... hcn:anytwoagcnts .. firsl meet". as 

c~plaincd in Se<tion 7.1.2 

Figurc7.J3;C1\angcsinonoounlttloca<ioo 

(Left ; thc"c,·cn-t!istribut ioo"sccnario. right: thC"onc_cx;t"sccnar;o) 

pcdestrian) on fe .... streets. both pcdcstrian cncountcrcounts and pollution CApoS urcindcx 

valucs i1>Crcsscdramat;cally for all regions (Table 7.5) 

Table 7.5: Changcs inpcdc.trianeI>Countcraod pollution cAposurc 

TGI TGl /,WI I'Wl 

9.6 13.217.6 16.6 9.9 5.1 7.9 



All cxpcriments abo\'c arc carried out bascdon the assumption that local facilit ies 

are at the fool corners of the hypothetical neighbourhoods. In rcality, local facilities 

wooid be more dispcrsc'<!. This is paI1icu larlytrue for traditional grid ncigllbourhoods 

Expcrimcm, arc camc'<!oullO findoullhc influcnecof;ner<:asing facility locations_Table 

7.6 show, the simulation result for the lrdditional grid design TOL Note that in the case 

of 8,12 and 16 facility locations, these locations arc slill evenly distributed al(>ng the 

surmunding anerials (Le_ 2,3 or4 locations on each side). 

Table7.6: TheelTectofincreasingfacilitylocatioo. 

Shilr~ ()f 

cxposllre /raJfic enco"lIIer.' ""de.s/ri()11 
index 

5271 

With mor<: facility locations, a"emgc aecess distance 10 the facili(ies steadily 

decr<:as ... The average number of road crossings, the pollution e~fK'Sure index and peak 

traffic volume remain basically ,table. Pedestrian encounter numbers decrcase as 

pedestria", are more dispersed in the neigbbourhood. Thcc-ombinalionoflheseehangcs 

lead, 10 a basically stable share of pedestrian mode trd'·cis. The numbers alS<) show the 



paUcrn of diminishing rcturns. as morc facility locations beyond 12 only hrings s light 

ili.-crcasein access distance. Note thaI these cxpcriments arc bascd on Ihc ass umpliontMI 

rc-sidcnts "'ill choose a random facil ity location in the ncighbourh<XXl. nOI I he nearcstonc. 

Ifagents choose Ihe nearest location, thc bencfits forp"destrianswi 11 be more evident 

Other than Ihe location. Ihe number of facilities available may also change the 

modeloutcom<. ... While the influcnccsofincrcascd local faciliticsondifTercntlypcsof 

trnvel are debated (for example. researeh shows that won trips arc less likely to be 

influenced by increased localjoooppOflunities. secSc"Ction 2.1). it is bel ie"edthatciastic 

trips such as shopping and se"'icc trips are likely to be influcru:ed by changes in local 

facilitypmvision. Based on the grnvity sub-moocl {sec Scction 6.5). itisc stimated that if 

the number of local shopping/service faei litiesdoublcd. the numberofshoppinglscT\'ice 

trip, c"Ilding inside TAZ 242 would increase from 156 to 267. Using the gravity model 

p,,:diction together with the '"replacement"' experiments. the results (Table 7.7) show that 

for all designs. the share ofp"destrian mode tr"dvds remains stable or only secs minimal 

increases. There are severnl reaSOnS. first. the SUT\'cy data show that shopping/SC1"Vice 

trips ending inside the TAZ only aCCOUnt for a small pereentage of all trips (around 2% 

for TAZ 242). Sc-cond, only around half of all shopping/service trips are direct 

shopping/'iCrvice trips (i .... trips that start from homc. SlOp at a shopp inglservice facility 

and thcn cnd at home). Many shoppinglservicc~ activities arc done on the way to work or 

baek from work. Third. many shopping/service trips ending outside the TAZ (especially 

those to the nearby TAZs) are already pedestrian trips. fO\lnh, considering residents 

personal preferences. a shoner trip length docs not necessarily mcanthat a driving!rip 



",ill be turned into a pedestrian trip. Thus. while more sboppinglscrviec lrips are predicted 

10 be ending inside the TAZ. the trlwclling modc~ of these trips do not necessarily 

change. 

Table??: Jnnocnc<"fin<:",asin~ I"cal facilities 

Shureoil>e,kslrian mode Predjcted sharf! 0/ 
peik,'trilJnmo<ielrlJl'lds 

".-ilhdoubirdloclJl 
shoppingis<T"ice /acililies 

Thecharactcri,ticsofthcruadnetworkalsoinfiucncctra"cldccisirtnsand traffic 

patterns. For example. the availability of sidewalks and pedestrian-only mutes and the 

characteristicsofruad crussings may influence pedestrian safety le"el. The numbcrof 

intcrscctio", and tr.mceontrols influcnccs pedestrian safety and aUlon,obiie s ~as 

well as automobile emissions. Changes in p'--deSlrian safcty and automobile speed will in 



Oflhcsccharacteristics. pedcstrian·onlyr()Utcsarcprooably Ihe most innuemial 

factor for pedestrians. as Ihe.v.i labilityofpedcstrian·only roUles dircc tly(andonco 

dramatically) clutnges access distance 10 facililies. number of crossings. ~xposurc 10 

emissions and safCly level forp"destrians. In IhisSCClion.cxpcrimcnlS arccarrioo()UI10 

simulalcthcinnucnco:ofthca"ailabilityofp"dcstrian-onlyroutes 

FOfthccxpcrimcnts. thrcedcsignsareusoo:thepost · ,..arsuburhandesignsPWI 

and PW2. and the fused grid design FG. The PWI and PW2 designs are modified to 

inclooca pedestrian·only r()Ulessystem in boIh designs. Figure 7.14 and Figure 7.IS 

sho ..... thcPWlandPW2designswilhpedestrian-onlyrouleslinkingthccul-dc-sacs or the 

looping roads 

Figure7 ,14: ThePWldesignwithaddcdpcdcStrian-onlyroutes 



Figurc7.1S: ThcPW2dcs;gnw;thpc<Jc.,rian-onlyroutc, 

E~pcrimenlS arc...,1 up 10 compare Ihe influence of the desil9ls in Ihe following 

L The pedestrian-only mules (raRs) shown in the mars arc available for usc by 

pcd",nians: 

2. The PORs shown in lhe mars are nO! available for uSC (i.e. assuming thaI lhe 

pedCSlr;an_onlyroutes are climinatoo): 

3. The PORs shown in the maps can be used by both automobile and pedestrian 

lraffie(i.e. assuming that lOOsc mutes are not pcdcslrian-only.buljust normal r oods). 

The simulation resuhs are shown in Table 7.8 for the new PWI design. Table 7.9 

for the new rW2 design and Table 7.10 for the fuS<.-d grid design , To give a more general 



nalualionoflhcdcsigns,lhccxp<:rimcnlsarebascdonlhc"c'·cn·distribulion"sccnario 

(i.e,allCQme~exil<oftheneighbourhoodssceequal arnountoftrdflic). 

Exp<:rimcm, with the PW I design show that with PORs available, p<:dcstrians 

cnjoy shortcraccess distance to facilities, fcwercm"ings and lower pollution exposure 

(Tablc7.8). A,a rcsult, th c.harcnfpedestrianmodctnivel increases, bUll hcchanccnfa 

p<:destrian cnC<J\lntcr is slightly lower. as pedestrians are more disl"'r;ed with the 

increascdroad!routcicngth. lflhcsc PORs areconsidcrcd normal roads (ie. they can be 

used by autumooib as well). then pedestrians will sec slightly highcr crossing numbers. 

higher pollution exposure and even fcwerchancesufpedeslrian cncounlcr.as pedestrians 

arcless l ikclytobcal1mClcdlu(andcone~nlmh.'d)onsuchroads. 

I\{Innal 

rood, 

Table 7.8: TC>lingthc innucrn;cofJ>C(k,trian..,nly",IHCS ",ith PWI 

1
' «<"" 
pedestri"" 
diHimce/(} 

facilitie .• 

Alwage 
pedes/ri,m 

Shar('of 

pedesl'i"" 
•• k 

Pede.,tria" Pallutian Peak 

ex{Jm"r(' traffic 

""my 
I().min 

perioo 



Thc experiments with thc I'W2 design show simi lar results, but the benefits for 

pedestrians are less significant (Table 7.9). Wilh PORs, pedC'Slrians will still benefit fmm 

shoncraccess distance, fewer crossi n~s and lower pollution exposure, but the change is 

nol as ,ignificanl as s...-.:n in the I'WI d<.'Sign , With a much IOW<.T chance ofpc<lcslrian 

cncountcrs, the share ofpc<lestrian mode remai", unchangcd. On the other han d,ifthcsc 

PORs arc considered nonllal roads, the beneHts f(}r pedC'Strians are c,'cn lC'Ss significam 

With an even fcwer chance (}f pedestrian cnC(}\jmcTS. the share of pedestrian mode is 

predicted 10 dc.;reasc, Experiments with bolh PWI aoo I'W2 designs show that the peak 

lraffic ,'olume is not inOuenccd by introducing more roads (when PORs are considered 

normal roads) 

Tal>I.7,9:TeSlingtllcintl ucnccofpedc"rian~'"t}'rt)ulc'w;lhPW2 

.'>':e"ori" _~' '''r''ge SIt<Jreoj Pedcs'ri,m PolI'l/;on p""t 

jocililics 

eJ.f'OSw·" Ir(Jffic 
in any 
IO-min 
period 



On the other hand, pedcstrian-<>nly mutes playa much more impon&n! role ill the 

fused grid desi!9' (Table 7.10). Without the PORs. avcragc pedestrian distance to 

facilities is much higher, and the avcrdgc numlx:r of road crossings for pedestrians 

incruascs by 38%. Thcehanceofpcdcstrian encounteri! hig/ler. as pcdcstrians are more 

concentrated 011 the arterial roads. But this also leads to a pol lution e~posure index Ihat 

more than doubles the original prctliclion (when PORs are available). as pedl'S\rian arc 

a resuh, the share of the pcdcsuian mode is si!9'ilicantly lower. If the PORs are 

considcrctl nonnal roods, the share of pede sui an mode is pn:dictl..J to Ix: higher than 

when PORs are nOl availahle. but slill much lower thall whell PORs arc available, as 

pedestrians face hi gher pol lution expos ure and much lower chance of pc..Jcstrian 

T.blc 7.10: Jnnuenccofpcdcstrian-oolyroules(FG) 

Sunario Average A,,.roge Share of 

normal 

"""' 

pede,lrian pede,'trian pede5trian -facilitie. 

exposure trtifJic 
index many 

IO·min 
I",rind 



---------------------------------

While the avaibbilityofpcdcstrian-{)nly ruutcs hasdifTcrcnt impacts 0 nd ilfrn:nt 

ne ighbourhood designs, it is shown thaI imrooucing pecicstrian-{)nlyroUlcs, "sp"eia lly al 

strategic locations. wil l gC11crall y pmvidc benefits 10 pcdcstri"nsbyd~"'rcas;ng walking 

distance to faci lities. mad ero,sings and pollution exposure. forcxampic. the uSC of 

pecicstrian'only roU1CS in tllc fuscd grid dC'Sign succe<;sfullylcads ap"d ",trian·friendly 

environment with short acceSs distance to facilities. very low pedestrian crossings and 

pollution cXJXlSure. and high pcdcmian cnoountcrpossibi litics 

Figure 7.16. Figure 7.17 and Figurc 7.18 show thcoomparison of spatial patterns 

of pedestrian encounter location, with peciesuian-<Jnly routes (right) or without (i.l'_ 

JIl>destrian'onlyruutcsarcno[uscd, lcfl)fmlhePWI, I'W2andFGdcsgisnrcspcclivcly 

Pigure7.16:lnflueoceofpedeSlrian..",ly rou,,,,,r,,.-PWI 

(Ldl:PORsn01u<;Cd,rightPORsusc'<l) 



FigW"C7.17:lnfluenceofpcdtS!rian.(lf11Y'OIItesfor PW2 

(Lcfl:PORs not uscd.right: I'O Rsused) 

Figure 7. IS: lnflucnco ofpcdcstrian.(lf1ly routes for FG 

(Lefl:I'ORsnotuscd.right:PORsused) 



For all lhe designs 'ihown. pcdcsuian.()nly rO\lIC~ provide a good cnvimnmcnt fllr 

pl>Ssiblc pedeslrian cnwunlers. Wilh()U1 such pcdcslrian.()nly r()Ules. pedeslrians arc 

mncenlralion are also higl1er. The wnccntralilln ofpcdcmianson Ihe pedeslrian-only 

routes is more evident in PWI lhan PW2. as lhe PORs in PWI provide more significant 

benefils. The graphs show thai pedestrians make more ~sc llfpedCSlrian-only routcs when 

such roules provide mnlinuous. dir~"C1 and slxmer access 10 facilities. The uSC of 

pcdcslrian.()nly mulCS creates a significantl y different spatial pallem of pedestrian 

cnc()UntefS. especially for PWI and FG. which explains lhe hig change in pollUli"" 

eXpl>Sure index in Table 7.8 and Table 7.10 

Ncig.hbourhoodsarc nonnallydcsigncd In acenmmodale a speci fic density. For 

example. pl>S1-war suburban ncighbourftoods nonnally ha,·e Illwer densities than new 

urbanism neighbourhoods. Hnwe,·er. there is no specificalioo or conscns~s on whal 

populatilln density each kind of neighbourhood design should have (Bun(}n. 2(02) 

Densities arc also measun."<l in differenl ways, sometimes without clear dcfiniti(}n. Fllr 

example, populatimv}mu>chold density could be measured as the number of pcrwn~units 

pcr hcctare oftOlal land arca (Gross Density). or the number of pcl"SO!l~units pcr hectare 

ofdcvclopcdlandarca(Nc1 Density). 



Table 7.11: Neighbourhood density from different parts oftbe wodd 

Density/)"pe 

Forsythe/uf. Highdcnsity 

Rodriguez. 

200' 

Low density 

Conventional 

neighbourhood 

Slud), 

(jx:rsm, //ru) 

Citics,MN 

Gordon and 
Vipond,200S 

Markham. 61 
ON 

neighbourhood 

Burton, 2002 lIoward ',GardenCity flydcsi!:ll 

Unwin's standards. used 

formostintcrw3rh()\lsing 

K,,,,,, 
UK 

CUITentnewdevclopmcnt UK 

Planncddcnsity.1970s Singapore 

Sustainable density 
advcx:atcdby Fricnds of 

lfnuseholdsl /ru 



Table 7.11 lists some density values from previous studies. h shows that 

neig.hbourhoodd""Jlsity vari .. -s significan!ly in different regions and differen! countries, 

and that neighbourhoods built at different tintes also tend to h.,"c different density. Even 

neighbourhoods using the S3ntetypc ofdcsign havc different density indiff erent 

implcmentations. It is also noted that different cuhures may have different perceptions 

regarding density, and c,"enthc!lamedensi!ymaybefcltdiff .. ,cntlybydiffcrem people 

and cultures (Rapoport, 1975: Scoflham and Vale, 1996). This different perception of 

density may be due in pan to building height or lot size. Note that the density "alues in 

Table 7.11 are obtained from multiple sources which gi"e 1\0 clear indication of whether 

these arc gross or net dcnsity. 

The study arcaS in Onawa also have quite different population densit;e •. For 

different neig.hbourhoOOs. density not only appcars as gross density. strcct·level density 

(the number of houses p<.' given length ofstreetj is also imponant. Due todiffercnt road 

layout •. different neighbourhoods have different road lengths (and road Icngth persq uare 

km arca. as shown in Section 5.1.3 and Section 7.1.1) and diffe,,:ntlot Si lCS. Thus the 

number of hou"," on a gi"en length of street also differ.;. Table 7.12 shows density 

measures for the ,evcn TAZs in 011awa. Strect-le,·cI d""Jlsi!y sho,,'s some interesting 

differences from gr""s density. For example. T AZ 434 has a lower gross household 

density than TAZ 242. but il has. higher grosspopulat;on density, a similar stn. ... 1-lc,·c1 

household d""Jlsily and a m~h higher street·level population density. TAl 501 has a 

similar gross pol'\llation density to TAZ 242 (36 vs. 33), but a m~h higher streel·le,·"l 

population density (321.3 vs. 200.3). Compared to either gross density or net density. 



stroc\.lc\·eI dcn'ity i. more direetlypcrecivablc by local residcntsandpedcstria nS.Street-

icvcldcnsilyalsodireetlyinflucncCSlhcnumbcrofpedeslIiansonaslreelseclion with a 

gi"cn Icn)l;lh . For example. if the samcpcrcentagcofrcsidenlschoo<cs to walk on the 

streCis at 6PM, areas with higher street.level density will see more pede:;trians per 

kilometc,ofstrccllhanareaswith lower Slrcct-lcveld(.'J)sity. 

Table 7, t2 : Density me .. """ for the Ottawa TAZs 

Rl!gion TAZ lI{)l<s~hoIds Population Area(h<l) 1l1l11ta f'lha 

(!III) (I') 

A higher density of pedestrians on the roods will in tum irdns13lc into mOre chaoce 

of pedestrian cneounlCrs, Figure 7.19 shows the relationship between the number of 

pedestr;an encQUniersand the population density. Forth. experiment Ihc population in 

thetcst rcgion isset to be a givcn pcrccntagc(from 10"/. to 2000;0 wilh an int e,v.1of 10"k 

and 300";0. 400%. 500"/.) oflhe initial value. and Ihc same pcrccmage of pedestrian trips 

arcgcncralcdforcach ICSI. RcsullSshowthallhcnumbc1'ofpedcstriancncoun tcrsfollows 

a jIOwcr lawas dcnsilyehangcs. 



Figure 7.19: pedeslrian C1lcounter as a fa.rlOrofdc:ruity 

As chances of pedestrian encounters incrcaSl' with density. mode choice may aloo 

be innuenced. Table 7.13 shows Ihc results of density c~perimcnlS. The range of densities 

used in the cxpcriments arc betwccn 10 and 30 household'pcr hccrarc. which rcpresenta 

realistic densily value range as shown in Table 7.12. Populations in Ihc density 

experiments arc gencr~tcd based on survey data from T AZ 242. 

In all Ihe cases, the percentage of trips in pedestrian mode isrelatiHl y . .table. and 

there is no clear pattern of change. While density ;ncrcaSl' brings more chances of 

pedestrian encounters. it aloo brings higher aUlOmobilc traffic nowtothen cighbourl1Ood. 

With no changes in othcr neighbourhood conditions Ii~e facility accessibility and 

availability. lhc influcnces of automobile traffic and pedestrian traffic secm to be in 

balanceregardlc.sofdcnsity. This is in line with the finding of Fillion (200S) that density 

may only be effcctive when combined with other factors like proximity to quali ty lransit 



Table 7,13: Pe=ntage ofuips in pedestrian mode "'ith di!ferent de",ilies 

Map Densil)' (IIJ1Jhaj 

TG2 

17.5 

21.8 

22.2 

service and large cnnccntmtinn nfactivitynpponunitics. Ofcoursc, in a rcal-worldscning. 

feedbacks between population density and facility provisinn nnnnally mean that more 

iocal faciiilicswili appeal (ifallo,,·C<.lby I.uning)wilh ih~jJl",ca", n[popuialiu" Jcnsi ty. 

Thus,thcresuhsalsoillustratetheneedforaflcxiblc~oninglhalallows facilitycrcatinn 

As <.Iiscusscd in Scction6,3. lra"cldccision behaviour is influenccd by po pubtinn 

characteristics. Changing Ihccompositi(lnofthepopulati(ln will also changc the traffic 

paUems and ultimately the model outcomes. This can be investigated by replacing 

difTerent TAZs with a panicular neighbourhood design while kcepinS population 



characteristic. and density unchanged. Table 7.14 shows the rcsults of a sci of 

e~perimcn1S using the fused grid design in place of five OIlnwa TAZs. Nole that1he 

e~perimcnts are not done for T AZ 4JJ and 434. as the Iwo T AZs are irregularly shaped 

and il is hard 10 give" meaningful e'limation of how uamc flow would usc each of the 

fOllrcomers in the hypothelieal neighbourhood dcsigns 

Tab le 7.t4: Influc""cofP'>f'Ulal;onsrruelurconp<rccnl.~c()fl"pS;n pede,l"an mode 

Prcdiclion ,,·ilh Iheoriginal design 

I'redielion with lhc fu>t.-d grid design 

The r"Cllu lts sugg(:SI Ihat while all TAZs will benefit from a more pedcstrian-

fri~-ndly design. Ihe benefits arc more evident for regions with fewer p.,d.,strian-friendly 

facilities . Forcxamplc. TAZ 24J has very few pt.-destrian·only routes. and it is prcdicloo 

to 5<."(," an 18% increase in the share of pedestrian mode. The increas.:s in the share of 

pede.,.t"an mode navel for the post ·war suburban TAb arc also noticeable, bUI the 

increases may not be as significant as expec1<."<l. The Il}(xh."T"dte increase for these regions 

(TAZs43S. 500, SOil may be due to two reaSOnS. First. socio-c<:onomie charnet cristicsof 

the population do infl uence mode choice behaviour. For example. people from suburban 

neighbourhoods may be more inclin~-d to dri'·e givC!1 the same driving distance and traffic 

conditions. Second. these suburban TAb already have some pcdcsuian_friendly 

facililies. For example. TAZs 500 and 501 feature extensive pedestrian.only route 

systcrns which bencfits local pedcstrians 



7.2 BARRHAVEN: TH E PLANNI NG SCENARIOS 

Othcrthan the hypothetieal maps. three mapscm'cring thc Barrhavcnarea ",calso 

used in Ihecxpcrimenls. with one map representing the actual layout of the Barrhavcn 

area. and the olhcr Iwo represenling IWO planning scenarios in the fom. of the nco. 

tradilional design and me fuS(.'(\ wid design. Note that in the maps. the blue ooloured 

roads are acccss roads 10 gardg':s as mcntioned in Section 7_l.whilclhegrcenooloured 

roads arc pcdcstrian.only mutes, These maps co,'cr Ihe majority of the 8arrhavcn area. 

eKecptthe area cast ofGrecnbank Road and soulh oflhe railroad. Blue squares ("comers" 

as in the map) refer 10 possible facility locations while redsquarcsrcfcrtocxitpoinls 

Figure 7.2(1; Barrhavcn.lhca<,ualmap{IJH1) 



Theaetual map of the Rarrhavcn arca (Bill. Figure 7.20) shows a very typical 

post-war suburban design with hierarchical a~d curvilinear streets. cul-de-sacs and 

looping roads 

Figure 7.21 shows an overlay with a modi/led grid. a noo·trad itional 

!ransfommion of the la~·out (RII2). Loops and cul-de-sacs 3rC eliminated in fa,·our of 

grids with garage access roads. An extensive pedestrian-only route system (with 

parklandsalongsidc!hcpaths)iscreatcdinthcneighbourh<JOd 

Figure 7.21: B.rmavcn.onoo-1TIl(litiQ""I'rn""forma!ioo(BH2) 



Hcfuscdgridovcrlay(Al D,Figurc7_22).how'typicalfcaturesofthcfused grid 

design as inlroduecd in Section 2.1. He road sySlcm is fonned with a continuous and 

o~n grid of arterials, with a disconlinuous grid of minor collcclors and local streets 

Looping mads andcul·de-saC' arccxtcnsive1y used locnsuro no through trame, while 

~dcslrian,on l y routes arecrealed 10 make a continuous route system forpcdcstrians 

(CM HC,2002), 

Figure 7.22, DaJTl:Ia~en,a fu",d grid t"""fo,"'.tion (DIB) 



Tablc 7.15 shows a lis! ofgcnCTaI ehar..c!c";s!ie>;of!hc !hrccdifTen:n! de signs as 

well as pn..!ic!ion~ for !he ,h",c of pcdc'Sui.n mode. lbc grid·bas....! nc>()-!radi!ional 

design shows the mo,! ex!ensive road n .. 1work. with much more road distance and more 

imcT'icctions!han!heo!hertwodesigns. The dcsign.lso ha'thc highcs! a,'cf1Igc SlOpS for 

au!omobilcs.and!helowcstpe<lcsnianac,cssdislancestofacilities.l'ollulionexposureis 

also significanlly lower than !hat associated with the other two designs thanks 10 more 

dispcrsc..! traffic which meanS lower lraffie ~olume on each slreet. While the number of 

pe<lcstriancrossingsishigher.theolherad,·antagesforp<:<:les!riansmentionedearlier still 

lead 10 the highest percentage of trips in pc<les!rian mode. Pedestrians will also sec 

bcncfits from the fuscd grid design. bul thepn..!ic!ed in<:TCaSC in sharc ofpcdcstT ian trips 

is lcs~ signiticant due to higher aCcess dislance 10 facili!ie, and higher pollu!ion c~POSUT\: 

The number of pedestrian encounters is also lower. but when considering the lower 

numberofpcdestrian trips. the a,crdgc numbcTofencounters per person is only slightly 

lower than wilh the neo-tTll<litional design . 

Note thal1 hc p!'C<iiction in Table 7.15 i. bascd on the assumplion Ihat fac iliticsare 

allocated at th e tive "comers" of the neighbourhood. Thus. Ihe fuscd grid design feature 

wheT\: facilities are located along the twinned arterial roads is not well rcp",s.cnted 

Exrcrimcnts show that if facilities are e,enly distributed along the twinned arterial . 

• ,'cragc pedcslrian walking distance to loc.1 f""ilitics will dccrcasc from 1848 mclre. to 

1333 metre. for the fuscd grid dc'Sign . As this number is still bascdon lhcas sumptionlh.l 

residenls will choos.c random facilitics throughout the region. if all or mosl faci lities th.1 



n:sidcnts nccd are localedatlhcncarcsltwinncdancrial. thepredicli on fOTlhe fused grid 

dcsi)p'l ",'ould soow tx:nertx:nefits for pedestrians. 

Mup 

Roaddislancc(km) 

TotalintCfS«\ions 

Avcrngc stops for automobile uaffic 

Avcragccrossingsforpcdcstrian 

Average distance to local facilities 
(automobile) 

A,·cragcdistaneclOlocalfacilitics(pedestrian) 

Pollution cxpo5ure index 

Pcaktrafficvolumeinanyten-rninutepcriod 

Original NerHroJilionol Fwu,d grid 

45.0 

prcdicted shareofpedl"Stri3Jl mode 110.4 

Figure 7.23 shows the spatial pattern. of pedestrian encounters for the nC<)-

traditional design (Bill) aod the fused grid desi)p'l (BIB). Both designs showbcavy 

concentration ofcncountcTSon the pedcstrian path system. although the effect i.more 

cvidcm for the BH2dcsign.as lhcpedcstrian·onlymutcsarelocaledalthe eCflt crofthc 



Figure7.23:Spali.l pattcrm;ofpo:dc>trianen<OWltcrs 

(Lcft:BH2;right:BlIJ) 

figure 7.24 shows lhe spatial pat!em ofpnllulion COnccnlmtion. Comparing to the 

spatial paUern of pedeslrian encounters (Figure 7.23), it shows thaI Dolh designs 

successfullycrcatcagrccncrenvironrncntforpcdcstriansandpn"ihlcsociulintcracl;on 

DctwCCtt rcdcmians, ",signifkanl pcrccntagcs of thc cttcouttlers occur On lhc pedestrian. 

ottlyroutes and olhc.,. roads wilh low vchicular trall"Lc flows 



Figurc1.U:Spalia l l"'ttcmofpoliulionco""cntratioo 

(Lcft:BHl, rigN: BIU) 

Figure 1.25 shows lhe predicted peak trnffie "olumc on lhe Slreets for the 1 ..... 0 

hypothelical designs. roak tnofficgcncrallyoe<.:ursslthe com~"fS ..... hcrctrnffieemcl'Sand 

eXilS lhe rcgiOfL The neo-tradilional designs also sees higher lraffic ' ·olumc on Ihe 

coliec!orroadsc'pccially ..... herclhcroadsconneclthcrcsidcntialarcassC"fl'Iraledbylhc 

par'<lands)l5tem(cemrcofthcmap), Wi!hnothrwghtnofficallo ..... cd insidclheblocks. 

lhe fused grid design also shows high !raffic volumes on the inlcmal.nerial roods. Note 

thai Ihc Iwined anerials in the fused grid design arc supposed mbc onc·wayonly. bUI 

they arc considcn:d lwO·way in thc model to simplify lhe route calculations in lhc model. 



FigurenS'Peak""ffic~ol"mcon thc.tn."'C1S 

(Left: BH2;right BID. Thcfive~treets wi th highcslpcak lraffic volume shown in red) 

7."1.."1. I N~' LUtiNU;S O~' PIiDI::HRIAN-ON LV ROUHS 

The cxlcnsi~c network of pedeslrian-only routcs clearly helps the new urbani~m 

design and the fused grid design in aurae1ing more pedeslrian naffie. The expcrimcnt in 

\his<;cclioncxploreslhcinn"cnecof1heavai labi lilyofsuchroutcs. Thc expcrimcnts are 

designed in lhe same way as those in Section 7.1.4, with litree scenarios lesled 

Pedestrian-onlyroutcsavailabic.pede.tr;an.onlyromcsnoI3vailabic(ie. ciiminalc..:l from 

the maps). and pcdcslrian-only routes trcatoo as nonnal roods (i .e, can bc used by holh 

automobile and pedestrian lraffie). Thc fC'Sults are shown in Tablc7.16. 



Table7.16: II1flucTlCeofIOO,,·. il.bilityofpedesoian-onlyroul .. 

Mop 

Share ofpcdcstrian POR~ avai lable 

Avcragcpedcstrian 

Pollution exposure 

PORsnOlavailablc 

PORstrcalOdasnomlai 

~d. 

PORs3vailabie 

PORs not avai lable 

PORstrcatedasnonnal 

~d. 

Original Ntv· 
grid 

10.0 

., 

Witltoulped~'Strian-OltlyrouICS.alllhreenc;ghOOurhooddcsigns"""dccreasesin 

crossings and increased pollution exposure . The effecl is panicularly significant for the 

nCO-lradi!ional design. wh ich again confirms lhe importance of placing p"dcslrian-only 

rou!csalstra!cgiclocalions(asdiscusscdinScclion7.1.4),Withpcdestri"n-onlyroulcs 

lrealcd as nonnal roads. Ihe share of pedestrian trume remains slable or moderately 

increases compan"<l 10 Ihe scenario where such routes arc comple!ely elimina!ed. In lhis 

SCC"Tlario. [lCdcstrian benefits from lhe bener ronncclivilyand lower au!omobile traffic 



"olumc (a~ traffic i~ 1l101't: di~pcrscd (hanks to more road length). but the benefi(~ are noc 

assignifieant as when (hcscrootcseanonlybcuS<.-d bypcdcstrians. 

7.3 FINDINGS FROM THE EXPERIMENTS 

rheexpcrimcnt results largciyconfonn tOWhalolhcrs(udicsha"cf(lund and to 

what might be eXI",ctcd f(lr thc modelled neighoourhood (\csigns. Am(lng the designs 

studied.thcnt,o·tmditional neighoourllood designs aoo the fused grid design are found 

gencrnlly to be p"d",trian·friendly. " 'ilh fcwer crossings. less walking dista""c to 

facilitics.lcsstraflkandpol1utioncxposurcandmorcsocialintcractionopp<Jrtuni(icsfor 

pedeslrians. Bu(some M theseadvantagcsalwdcpcnd on thcspccific implementation. 

For cxomplc, the grid·based neo-lraditi(lnal design (NU2) is linked to more pedestrian 

crossings, but shorter walking distance to facilities, than loop·based nco-traditional 

designs (like thc NU l design). Pedestrians otlen cannot make maximum uSC ofthc garage 

access roads or pedestrian-onlyroutes ina loop_ba.oo dcs;gn. a, loopsollen mcanmore 

curved routes and significantly longer walking distancc. BMw""n the grid-based nCO· 

tl"dditional design and Ihe fused grid design, Ihe former i. linked to kss poUution 

exposu[C, but the chance ofa pedestrian cnCQUnicr is also lower, beC"use;n thc fomler 

design, more road surfaccs and shoncrstrect sections limit thcnumix:r ofpcdCSlriansthat 

can be seen on each streel section. The situalion is impro"ed by Ihc provision of 

pedestrian-only roules 3t the centre of the neighbourhood. which not only serve as 

optimal shonestroutes for pedestrians. but also erealea green aoo safe cn\'ironmenl for 

pedestrians and potential social encounters between pedestrians. The NU2 design and the 



fused grid de'Sign are found to be a-,,,,,,,iated wilh Ihc highest share of pede'Strian mode 

travel. Even wilh 1= walking dislancc 10 facil ities. these twO designs stil l show higher 

total pedestriandistancesforthewholcncighbourhood.Onthcothcrhand.lhepost-war 

suburban designs arc linked to moreautomobilc trips due 10 their automobile friendly 

characteristics including fewe, Stops for automobiles arn.I longer OCceSS distance to local 

facilities for pedestrians. Howe,·er. experiments also show that with appropriate 

modification (for example. adding a pedestrian-.Qnly rout'" 'y-,tcmj a post_war ,uburban 

design Can be madc to be mot"<: pedestrian friendly 

Experiments show that pedestrians generally benefit from more local facilities. 

more cven distributioo of these facilities and Ihe existence ofa continuous pedestrian· 

only routes system. but such benefit, can oflen be ov",",hadowed by a complex wcbof 

other factors. Experiments with population density show thaI thc relaTionship between 

populationdc"JIsityand the chance of pedestrian cncountcr follows the power law. Butlhe 

prcdietion also shows that the share of pedestrian modcrcrnainshasicall y stab 1cwiththe 

increascin popubtiondensity, as while the number ofJM.-destrian encounters increase.lhc 

e~posure tu traffic and emissiuns also increases. The experimcms wilh Ihe location of 

local faci lities show Ihat with local facilities concentrated in one comer of the 

neighhourhood, the numberofpcdcstrian encounters will significantly increase. but SO 

will the exposure to automobile emissions. The examplc of the grid-based nco·traditional 

design shows a similar story: while more garage occess roods and pedcslrian-.Qn Iyroutcs 

mcan pedestrian.gct bcttcr and shoneraccess to local facilities. the design also means 

more crossings for pedesnians. Funhermore. more roads mean less chance uf pedestrian 



-------------_ ... _- --- ---

cncail",.'. but also less poliUlion exposure. The combined influence of these factors may 

lead to sU'1'rising rC'Sults_ For example. in the cxpe,imcnts w;th facililylocalion •. while 

more faci lilY loc8tions certainly bring much shorter occess di,(ances for pedcslrians, lhc 

prcdictedsharcof lhcpcdcstrianmodcrcmainsbasical lySlablc 

Such findings during the calibration and uiU: of the modtl rcflCCI Ihcoomplcx a nd 

stochastic nature of the phenomena in question and the simulation rnodcl itself,Anuman 

neighbourhood is small. bUI iIi. a complex system in nature. While statistical analysis 

can reveal {he influcrn:c of certain characteristics of {he neighbourhood dO'Sign on the 

lrafficpancm insidc\hcncighbourl\ood,a factor oficn does not aclOll ilS own, bUl .... ther 

aCIS (ogclhcrwilh other neighbourhood characteristics. It is Ihc,ombination of all th~se 

contributing faclOrs, including the factors that may not bc includcd in the model. rather 

than an individual factor. that affects the modal split and traffic pal1cm ;n the 

ncighbourh<JOd. With an agent_based modd like the one in this study, it is possiblcnOl 

only 10 v;sually prcscnt such dynamics using livc traffic m:Jps,gTlIphsand hist ograms, but 

also t{) cxpl<m: the underlying feedback mechanism and the bol1om-up processes, such.s 

the feedback lx,ty{~'Cn p"destrians and automobi le traffic and Ihe coll""l;vc oulcome of 

individual mode and route choice bch.,-iouras prcscnted in this <tudy. A,withall non-

abstract modd., there arc always other feedback procC'Sscs, factors and uncertainties 

which arc nol eonsidcrcd, or may not !,,-,ssible to bcconsidcrcd, in the model. In such 

cas.cs, (:onstants and randomizations arc introduced 10 the modd in Ihc hope tn"t they will 

rcprcscnt a certain amoun\{}funcxplained factors, fccdbach <>r stochastic i nfluences. The 

calibrati{}nproccsssh<>wsthalsuchoon,tantsandrandomizationsoflenhavcthcabihtyof 

203 



inercasingmodcl predietion accuracy (as shown by the constant. in lhe Ul ilityfunctions) 

or impruvinglhe slabilityoflhe model output {as shown by thc random tasle variation 

va luC>,and by the randomiZlOtion in shorlest route calculation,) 

In general, lhe calibration and experiments show thaI, compared to traditional 

mClhods,agent.based modc!s cnable thecxamination and analysis of not on Iythctraffie 

pattern, but also the internal dynamics of neighbourhoods. And not only rcal world 

neighbourhoods can be simulated,te't scenari"" and hypothetical neighbourhoods can 

also he eas ily simulatcd,cxamincd andanal y.>.cd 



CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS 

This study is a ti ... t attempt in building an agent_based model that combines land 

use charneteristi es. lransponation networks, and tran'port by both automobile and 

pcdestrianmodes. thatconsiderspersonalprefcrenccsandcharacteristies,andthatfocuscs 

on the neighbourhood scale. Using agcnt-bascd modell ing tcchniqucs, the study int cndsto 

pro"idc ascicntiti c insight into the dynamics inside urban neighbourh oods 

8,1 THE MODEL AND TIfE SOFTWARE FRAMEWORK 

Urban ncighhourhoods are the basic units of citi es, and neighbourhood designs ar e 

directly related to many aSpC1:H of daily life pallcms and quality of life. While a 

neighbourhood is small. it has a numberofeonstitucnt pans, including lhe road nct"'ori: 

andsp"citic road charaetc'1isticsas well as local trnfficp"ttcms; IOCali(}n and availahility 

of loca l and ex ternal facilities; a local population with its particular chardclcristics, 

preferences andch(}icc behaviour. and local social dynamics. These pans interact with 

each Olher in eompicx ways, with bottom-up processes. feedback influences ar.d 

uncertainties f,,"ning the dynamics of neighbourhood traffic pallerns and social life 

Tradit ional rescarch methods and t",hn iq ue~. whi le useful in explain ing aggregate 

characteristics. Qften fail to reveal and explain the dynamics ar.d internal processes that 

cause the dynamics. Agent-based modelling techniques and an integrated rnOOelling 

frnmework are natural choices for the moddlingofsuch systems, especially at smalicr 



scales like Ihe neighbourhood level, where the dynamics ofOO((om up processes are 

cas;ertobe idcmifiedandanalYlcd, 

Customized software was develope<! for this study_ The combination oflhe Repasl 

simulat ion platform, OpcnMap GIS toolkit and Ja,'a programming language allowed the 

prod"'tionofasinlulationmodcllbatisbasedon frceandopcn source softwarc, that is 

highly extendable (so lhat additional fcaturi.'S Can be addi.'ll),andthatca nbeeasily 

customized andre-<;alibratcd for use in olher ncighOOurhood and transponalion s ludics. 

Thedevelopmcnt oflhe sollwarc proves Ihal, wilh propcrtcchniqucs, il is possible to 

buildahighlycftlcienlagCflI-baSi.'llmoddlhalis alsolow-<:oSl,flexiblcandcxlendablc 

Based on maps and <\ala from Ihe sludy arca in Ottawa as well as <\ata from Olher 

Iripsurvcys. an agent·based simulation model wll! dCyClopcd and calibralcd 10 explore 

the influences of neighbourhood dcsign on Irippatterns inside urban neighbourhood s_As 

alway., CCl1,lin simplification, and as.uillplions were maJc dur;ng the model sctup 

process!(} make the modelling of ndghOOurhood le\"el traflie patterns feasible_ IIowe\"cr, 

Ihesc simpl ifications did not apparently SC1iouslycompromise the quality 0 fthercsults 

For example, experiments show thai random allocation of households and facilities and 

Ihe selling ofpede'trian encounter distance ha\'e little influence On the oulpul generali.'ll 

by the modcl and hence on thecondusions that can be reached. Thesc experiments and 

Ihesub .... 'quentscCflari<>-basedcxperimcntsdcscribcd in Chapter 7 show that it ispos ,ible 

10 calibrate an agi.'Ot-based model to simulate neighbourhood dynamics and Ihc in flucncc 

ofncighOOurhood dcsign using trip survcy data lhal arc Strippcd ofdc!ailc dstrcet 



locations. As many sud data SCIS arc freely avai lable, moocHing can be done wilh(>ll{ 

cornptcx data eolh.'clionand without the data usc reslriclionscauscd by priva cyeonecrn. 

Differentapprooches. inc1udingutility-based,activity-bascd andconslraint-bascd 

arproad~-s. ha,·c been used in the simulation of travel choice bchavi(>llT. Thissludy in 

effect combined the advantages of these approaches. with u{ility measures. activity 

planning and constraims such as {imc and car a"ailability considcrc din {hecalculaliOll of 

route and mode choice. Utility is subjc"'Ctive. as laste variation always exists in a 

population. The sludy explored dilTercnt utility funclions with dilTcrcnt fonns of taste 

,'arialion representation. The first approach. wilh lasle vanalion r~'Prcscntc..:I by a normal 

dimibulion.andwilhlheutililyfunctionbuiltandcalibraledoornplc1clyfrornbon<>mup. 

proved ablc 10 gcneralc reasonable modal splil predictions (sce Seclions 6.1). Whi lclhc 

results ",'ere less a(."Curate when examined by populalion groups. the approach has the 

ad,-anlageofbeingsimpleandindcpcndc'fllofspcciflcpopulationcharaclc";slics.andit 

canbcfunherirnprovc..:lforuscinabslraclandronceplualslUdies.ThcMNLapproachcs 

(modd 2.0 and 2. 1. sec Seclions 6.3 and 6.4) show that with socio-cconomic 

charactcristiesdircctlyincludcdin the model. rcasonablcmodal split predictions can be 

obtained and the results arc m...:h morc accurate wllcn cxamincd by population groups 

The MNL approaches also sho .... that taste variation can be appropriately I"\:prcscmcd by 

socio-econom;c characleristics. The model f!}nnulation and ealibrati!}n proo;css shows {hat 

traditional research methods such as statistical analysis, and ne .... techniques such as 

agc'tll-based modelling, can be properly combined in crealing a model thaI not only 

produces good predictions, but also is easicrtocal ibrate 



As shown in Chapter 7. the software and Ihe model show promising simulation 

capabilities and good results. Funher improvements could increase thc predicti"e 

accurney and the usability ofthc model. For example. thc cum:nt model uses expansion 

factors to generate Ihe populations and trips. Whilc the results from this approach are 

satisfactory. a trip gencr~tion modu1c that genomtcs trips and sd"dules from semteh 

would give the model more flexibility. It would enable the model to simulate induced or 

suppressed trip demand. and better explore the influcnce'l of self-selection. The 

calibration proc"" ,hows that the model gene.,-ate," less accumte results for tmn,it trips 

While the reasons may be numerous (sce Scclion6.4). it is likc1ythat a moreacc umtc 

tmnsil usc predicTion may be obtained by adding transiT schedules and mutes to the 

model. Similarly. car passenger trips may be added to the model 10 producc a more 

eomplctetmvclpattcm. 

B.2 APPLICATIONS AND POLICY IMPLICATIO NS 

This study demonstmtes the e~aluation of neighboumood design' and 

conf'gumtions using agent-based modelling lechniques. With the flexible and extendable 

",flware, studie'l and expcrimcnt, can bc done for other regions and othcrdatasets . The 

modelling f"'mcwork can SCr.·c as a prediction tool forreal·world neighbourhoods. as 

well asa simulation and disc.$cry tool for hypothetical and planned neighbourhood 

designs. Ily experimenting wilh different neighbourhood forms and different 

neighbourhood characTcristics such as the numbcr and location offaciliTie,. 



characteristics oftmnspor1lltion nctworks and thcdcm<>gl1lphic oomposition of residents, 

the simulation soflwareis 1101 only able 10 enluatc a neighbourhood design in genernl, 

bUi also ab le 10 cvaluale delai leddesign s[lC<:ificalions such as Ihc avail abililyand 

location of local faci lities or pedcstrian-<Jnl y routcs. Thus. this siudy also provides an 

altcmati ~c method for Traffic Impact Analysi. (TIA). 

Man y large cilies have eily wide Irnnspor1lllion model, ,,·hich prcdicttraffic now 

belwe<:n TAZs on major roads and arterials. With proper imegrnlion. the model in this 

study can be combined with the city.le,·eI model 10 create a mode! that covers both local 

tl""dffic dynamics within urban neighbourhoods as well as the dynamics of trnffie flow 

betwe<:n neighbourhoods or TAZs. The combination will also improve the predictive 

accuracy of the local model. as the city-level model can provide information such as 

T AZ·le,·cI traffic pre"<iiction and tri p characteristics when the trip extends oulside • 

neighbourhood. which it is 1101 possible todiroctly oblain by means ofthcnei ghbourhood-

Inamorcgcncral scnsc.themodclscrvesasamcso-Ievelapproaehtourbanand 

transportation simulation. As discussed in S""tion 2.J,existinguroan and transportation 

models lend to focus either on the macro and aggfegate-d melro·wide or c,·en coumry_ 

wide phenomena. or on the micro and detai led movem,:nl pal1C111s of cars and pe<lestrians 

(for example, how the lane changing bchaviourofdrivers creates congestion. or how 

pedestrians mo,·c around obstacles or other pedestrians). The meso · le~cI, wher" "."sidenl' 

inte"nICt with each olher. where feedback ocCors between automobile and pedestrian 

traffic and bctwe<:n residenls and their neighbourhood environment, and whe ..... local 



pauem~ of modal spht and tramc flow emerge, is often neglected. Thc devclopment of a 

meso-level model nol only helps 10 discover and anal)"le phenomena at il~ own level, it 

also makes JIO"ible an intcgrdtion ofmicro-, meso- and macro-level models. 

The integration of the micro- and meso· level models would prO"ide the micro 

model with a realistic, dynamic and broader conlext, and would enable more flexible usc 

of the micro model. For example, in the lI\Ie micro models, traffic light controls and 

pedestrian ero«ing bcha"i(}ur are often studied in Ihe contexl of traffic fl(}w and 

pedestrian ... fety. An integration of such true micro models with this meso-level model 

would provide the micro-level models with dynamic input of automobile and pedestrian 

lraffic, and enablc Ihe observation oflhe collectivc outcomes at the neigh bourhoodscalc. 

This should also improve the accur""y of the models at both Icvok An integration of the 

meso- and macro--- level models through, for example, the integration of this model and 

the city wide (TAZ--ba~-d) transJlOT1ation model, would have a similar CfTl"'t by providing 

the lower Icvel model with a dynamic input and contcxt, and by providing the higher level 

model wilh the local dynamics which in tum collC(;ti,'c!Y fonn the global phenomena 

This sludy shows that, as the basic units of cities, urban neighbourhoods are 

complcx and dynamic in nature . It can bcexpected tnJt funhcr oomplcxity ex iSIs in the 

context of a whole c ity or a metroJlOlitan arca. The study shows that ccnain aspects of 

neighbourhood des;!:" arc p<>'<iti,-ely related to thc sclC(;tiOl1 of pedestrian mode, including 

thea,'ailabilityofpctlcstrian-onlyroutesandthcwalkingdistancelofacilitie •. Howe,-cr, 

the influence tends to be complc~ in nature. This suggests that urbon policies and 

planni"~ projects, while well-intentioned, could produce unexpected or cven unwanted 



resu lt •. Thu •. for trnn.ponation and land use planning at the ncighbourho<Xl le\"el in 

gcncral. or eVC1l for small modifications of the neighbourhood road network such as 

adding new road links, a thorough analysis of the possible cfTccts of planning rcg ulations 

or m",' policies based on complex system theory is suggesl<."d. Neighbourhoods and eities 

need to be trcated as the complex imcgrnh."d systems they arc. Ho,,·C>"er. Ihisdues nOI 

mean that neighboumoods and cities are n01 researchable or controllable. This study and 

many other ,tudics of complex systems show that. with carefully sc1c'Cted "ariables and 

wel l fonnulatcd models. cl'Ttain aspects of the system can be isolated, studic-d and 

explained. With propl" fonnubtion, Ihis model. and its software framcwork. can be used 

for S(:enario testing of new urban policies or planning initiati,·cs. It shall deepen our 

undcrstanding of how new urban policies, new planning projeets. or plannoo changcs in 

the neighbourhood eould influence trip and trnfflc !",Hc"TlIs, how these paucms are 

distributed and change S!"'tially and tcmpornlly. what arc the likely eauS<."S underlying 

these patterns and changes. a"d consequently how the policies and plans can be 

impw\'C-d 

This study concentrated on sc,,"rnl aspects of neighbourhood life Ihat arc 

rc<:civing widespread altention in today's world. With better infonncd planning of 

ncighbourho<Xls,i ntegrntingthedcsignad\"antagesofthcnco-traditionaldc.igns,thc 

fused grid design and e,'en certain eharaclerist;cs from trad itional grid and posl-war 

subwban designs that arc soo""n 10 be pedeslrian and transit friendly. cities could be 

grccnerandmoresociablc,and theirrcsidentshealthierandsafer. 



8.3 FUTURE RESEARCH DIRECTIONS 

This study examined the influence of nei~bourhood design On several 

neighbourhood phenomena that arc diTtttlyrclated to dai ly liv..'S. including social 

interaction opponunitics. hcallh. Jlcdestrian safety. pollution and congestion. These 

aspects covcr several academic fields including soo;iology, psychology, medicine, 

transronation and C1lvironmental sludics. Funhcrrescarehcould impfQvClheprcse ntation 

of the simulation results and the o"crall quality of the model. For example. soo;ial 

interaction opponunitics may be more aceuratc1y rcpfCSCllted by e~amining thc 

characteristics of the corresponding residents and the lime and location of th ese 

encounters. Walki ng distances and pollution exposure wercuscdasindi", Cl m"aSures for 

hcaltheffe<:ts. Thcsc may be uscd 10 idenlify the health benefits or risks using findings 

from medical studies, Pollution or vchicle cmissiOIls can also be "'ore accurately 

caleulaled by inlcgrating an emission modcl which considers driving specd. "chic1etYll'" 

It " 'as I'ropos"d that thi.local -scale model can be combined with the metropolitan 

level travel forecasting model of Ottawa, which provide"" I',edict;ons On the number of 

t,il'" from and to each traffic zonecatcgorize>d by the type and mode oft",,·cI. and is 

calibr.tcd for g<:ncr~ting tr~ffic for the coming ycars. Howc.'cr, while the metropolitan 

model is available. the soflware which tile metropolitan model is based on could nul be 

obtained. A future study inlegratingthe usc of that soflware would greatly increa.«ethe 

u«efulne.sandprobah lyalS(lthcaceuracyoflhcmodclproposc<linthisthcsis 
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APPENDIX I: SUPPORTING MODULES 

MindScttings. MindTools. MindRouting. MindGlobal. MindGrnvity. MindData. 

MindCalibration and MindExpcriment 

8 sUPVOl1Ja,'aClasscsareuscd in lhc'iOftwareformi><;cilaocouscompUlingjob 

nccdcd throughout thcsoftwJrc 

MindCalibration is u,ed to run thc software with maIlS and data from multiple 

ncigl1bourhoods in batch mode 

MindDat" cont"instoolswhichs\atisti cailyanalyzcthcr~wda\aand(heou(pUI Of 

MindF..rperimcn/ 

Similar 10 MindCalibration. MindExpcrimcnl is used to run the "alibmtcd model 

usiog diflcrent maps and data under diffcrcnl scenarios 

MindGlobal generates a map of trip flows betwccn different T AlsIrcgions based 



MindGmvilyisamoduic foranalyzinglherclalionshipbetwcc:n lrippurposcand 

trip distance u,ing the gravity model. It is used to simulate the changes in tripdc'Stinations 

when the amount of local facilities changcs. The prediction of MindGravity Can be fed 

into the Mind ln it module_ This module also generates a map showing the distance zones 

from a given TAZ. 

MindRouling 

Mi»dRouting is the shonest route generating module. The module generates the 

shonest route between spcciflcd nodes in a dircctcd network. The algorithm is based On 

the famous (and widely used) Dijkstra'S algorithm_ The algori thm is modiflc"<i 10 t"ke the 

jonucncc of sidewalk and pcdestrian-only route a'·ai lability. crossing count and road 

lrafficconditionintoaccoonl.lnadditiontogcneratingthcshoncstroute,the module also 

spccific'S which sidcofthe road a pcdcslrian agcnl will selcc1.A multi _threadcdvcrsion 

MindSellings 

MindScl1inSscontainsaliuserscllableparamcters 

olherparts of the so(lwaro. Thcsc melhods are pul in one place for easy maintcnancc of 

thecodc. The major ,,,,,thods arcdcscribcd bclow: 



mlg/eO'- calculates the angle between any three points in a map in the counter­

clockwiscdircction, Th;s is uscd to sort the strccts oonncctedto one imorseclion, and in 

lumlOealculate thcnumberoferossingsneededforpedestrians. 

arrayToListO: provides a quick method for convert a small army 10 an ArnyLisl. 

ussig"Geos(): assigns an aclual locat;on object to each houschold and agent h ascd 

on the reference number to the local ion which is internally stored wilh each agent. This 

f",ilitates fast serialization 

/mildROlJ<iNelli'orkO: gcncrutcs a directed network ba>ed on the GIS map. 

carUseO:inquiricslhecaru>e>ehedulcoflhccorrc.poodinghouschold 10 sec if 

anagcntcan u>eacarforoneofhis/lu:rroundtrip.ThcmClhodreturnsaHooIcan"alue 

"t",e'· ifa~ari.ava; lablc forlhe limc pcriod of the TOund lrip. and in>ertsthc new round 

trip 10 lhc cxistingcar usc 'lChedule. 

crealeGcvNeu.~NodeO: croates a location ohjed near a gi~cn node (intersection). 

createGrosO: creates all the location objeclS needed in the software. and pro "ides 

oachofthemwilhauniquciD 

da/a"""eTahieCoumO: counts the numbcroftablcs in an A"cssdatabasc. This is 

U>edlogencratencwtablcw; thoutdupl ; ~atetablcnam .. 'S. 

deepCopyO. generates a dCC'[! copy of an objcct A multi-thrcad .. 'd . 'crsion which 

utililCS modom multi-core crus is also available . 



deseriu/i;uli(HIO re-creat"" the obje>;;ls Ihal are saved in a file using Ihe 

dislUnceO: caiculal"" the distance behH>;;n I",·t> points in metrcs. 

edgesOnSameRoadO; dClcrnlincs if lwo given edges arc referencing 10 the same 

i<J.<IArrayC/oneO: a simple yel efficient amlY clone me1hod ""hich ge11C",les an 

idcntic.leopyofasmaliamlY 

geoQueucDi$lunceO." takes a list ofpoinls(MindGeos)arnI rcturns(he length of 

the line ft>rmcd bylhcsc points. Thi,i,uscd in rOUlc lenglh caiculation. 

gcIC/O.<eSIGwNeorNodeO; returns the closest poinl (MindGeo) ncar a 'p.:cific<i 

gelDistunccGroToGroO: takes IWO points on the SlIme road and returns the 

dista"""OC1wccnthem 

gerDislonccGeoToNode(); caiculatcs the distanee bel""ccn a point on Ihcroad and 

a spccificd cndoflhc mad (a node) 

gclGfflQ"e~eO." takes a shor1es( rO\ltcand return, Ihcdctai lcd listofpoinlS Ihal 

fonnslhc route. Thi. i,uscdto guide Ihcmovemcnt of agents on Ihc map 

gelGeoQueucGeoToGwO." returns the list of points between two points on the 



gelGeoQuelieGeoToNodeO: returns the list ofpoint~ bet,',ecn a point on the road 

and ~ specified end ofthe road (a node) 

getNodeQueucO: returns the list ofnode~ that form the shonest route between any 

two nodes in a network. The initial network graph only contains the interstttions as 

nooes. Anynon·inh:nlCCtion points are dynamicallya(\dcd to thc nClwork graph a s nodes 

(and they are rcmm'ed from the net ..... ork graph a~ soon a~thc sl>onest roote is genCTatc.:l). 

Thi~ cn~urcs that a shonest route can be ge",:rntc.:l beh,'een any 1 ..... 0 locations on a GIS 

map. and lhat the SilC of the nCl ..... ork (the number of nodes) remains ~mall ...... hich 

impro,-es tile dlieiency ofshonest I'()lItccakulation. 

g~IRe(JIEdge/DQueueO: n.1ums Ihe real lOs of a list of c.:lges. When non· 

intcnlCCtion points are temporarily added to the net ..... ork graph. temporary c.:lgcs are 

ercatc.:ltooonncctlhcsc nc ..... points ..... ith existing nodes in lhc graph. Thcsccdgesha\'c 

gelSwtislicsO: given a list of numbers, returns several stalislical measures 

includingmcan.slandarddcviation.variance,ske ..... nCSllandkunosisofthcli<t 

i~iti(JIi""PllrometerO: initializes model parameters ..... hen the simul.lion begins 

ijWolkingO· chccksifanagcntiswalking. 

logO: records propcnicsofahouschold, it~mcmbersandtheirtripstoapure text 

file for statistical analysis 



{ogge~O: gcncr~tcs a logging machine " .. bich rcoords s~ificd model output 

,'aluestoaspecificd file. The ootput can either o"erwritc existing data in the file. or tK: 

appcndcdlO the end of the file 

moooISplitCounIO:eaiculateslhemodalspiilgi"cnal istl\fageniS 

modcChoiccO: given a list of ulililies. rcturn~ the choice based On the probability 

function. hcan also be uScd to rcturn the probability values 

modeCh()iuPreferenccO: generates a nonnal distribution with given mean and 

standard deviation values. This is usc<l 10 gc",."rdtC tastc varialion 

ne ... i.<x;uli()n(): given a point. a direction and adistancc. rct urn~ the neW location 

numbcrToC()/or"{): returnS a colour based on the input ,·alue. This is used to 

create thematic maps ... here colours represent map propenies. For cxampie. different 

TAZs can be paintcd wi th diffcrent colours from a gray o;cale dcpcnding on thcir distanc"",, 

fromlhesp,."cifiedTAZ(sccSeclion6.5) 

randomlnReg;onIDO; givcn a list of regions and returns the probability that a 

random number would fail into any of these rcgions. 

R()nik>mi2alianO: randomizes trip staning time and trip distances 

~eodD;slon("eM"'ruO: reads the distanec malrix betwecn regions. In the Ottawa 

mn<kl.lhcdistancernalrixisprovidcdbyihccityofOuawawhichprm·idcsshonest road 



reaJPuraml'lerO: reads the parameter files. A plIr1Imctcr file rontains infonnation 

rcgard; n~acorrcspondingmap. induding the l;st ofnon·rcsidcntial Strccts. the location of 

local faci Tilics. the numbcrofh()ll>cholds in the area and thc distribution 0 ffacilities 

rmdRoadNef>lw"*O'- reads the road infonnatiOll from an map file. and creates a 

list of road objects. This method also calculates the map scale needed for correctly 

displaying Ihc GIS map 

roUl"rrriI'Mo''(1h/eO: <iclcrmincs ifan cxisling round lrip schedule in theca ruSc 

list can be adjusted so that a new round trip can uSC the car, or if a new round trip 

schcdulc can bcadjustcd so it can be fit into the car uSC schcdulc 

.<edoli:olionO:savcsobjectstoa file. thrcc scrialization mcthodsbascdon Jav8, 

XSlrcamandJSXarcpmsiblc 

lobieE:xisledO: check< if a specified table name already exists in an Access 

",dleDatabmeO · writes household. agent or trip infonnation to an Access 

:,,,,,,IDi$lllllceO: returns the distance bt.1wccn regions (T AZs) 

'" 



APPENDIX II: CORRELATION ANALYSIS RESULTS 

Table ILl : Com:latiooanalysi.fOftilera ..... data 

.984" 643" 

Households in Detached llooses 922" .585" 

Households in Semi-Detached 326" 

lIouscholdin To ..... nhouscs 614" .549"" 

Households in AparlmC01S 347" 

Households in Other Rcsidenees 

Population 804"" 

.903"" 192"" 

.9OS"· 809' " 

A£c4 and under 744'" 335" 

Agc5109 .819 
.. 

463"' 

Agc 10 to 14 849"" .601"" 

Age 1510 19 771"" 803"" 

A£o 2010 24 607"" 

A£0251034 569"" 537"" 

A£0351044 840"" .634"" 

A8045 t049 862"" .725"" 

Agc50 to 54 80g"" .768" 

A8C551064 700"" .709" 

A80651074 .467"" .347" 

A80 75 andover .102 

Driver"sLicenseHolders .883"" .804"" 

939"" 

.447"" 

.469"' 



FulltimcWorkers .90z" 777" 
.7 11 "" 744" 40)' 

.648" 840" 647" 

482" AIO" A08" 

775" .35 1' 

Population with otherjob lypc' 51s" .726" 

830" 423'" 

(0 0 Co"e/ation i .• .• ignijicanl at the O.Olle",,/ (2.tuil~d) . • C",,-dation is signijic{Jtl/ allheO.05 

k,-eI(l·t"ileti)) 

Table 11 .2, C",.,..,lation analy,i, for tlle iDd i'·idual le'·el a~eragcdata 

Tronsi/ 

IlouscholdslPopulalion 3U 

.81 2" -A68" -735" 

Malcpcrccnlagc 

Fem:J lc p.,rcenlagc 

Pcrccntage ofpopulation4 ·.585"' -.380' 

Pcrccntagc5to9 350' .529" ,.439" 

Pcrccnlagc lOlol4 382' · .399' 

l'erccntage l5101 9 5 12" 

I'crccnlage20to 24 - 668" 422" 788" 

Pcrccntagc25 to ) 4 -320' 

Pcrcenl"gc35 1(} 44 _431 " 

I'crcen tagc 45 1(}49 

I'crcen tJge 50t(} 54 452" 

l'crccntagc 5510 64 355" 

PCrl:cntagc65 to 74 



~ 
Percentage 75 ando,'cr ~ •. O27 

l'ercentagcofpopulation '" 335' 

I'crccmagcofpopulation -355' .949" 

wilhtransilpass 

l'crce ntagcof population .OJ7 -087 

whnarcful l timcwnr'<crs 

39''-
.480" 558" 482" 

. .567" -352' 

Withothcr jnb< 487" 

Child,,,,, 3"" -643" _489" 

(0' C"rrolillion I"~ "ignifiCOnl at!he 0,01 k",,1 (]·mileJ) , • Correlation is s igniji('onl 01 1M n.I/5 

1~',<,I(l-lailed)) 
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