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Abstract

on of a black hole in terms of an event horizon reies on

The clasical de
bl propertes of the spacetime. Realistic black holes have matter distributions
surrounding them, which negates the asymptotc fatness neoded for an event bor-
Jon. Using the (quasi-local concept of marginally trappee surfaces, we investigate

bution. We

‘Schwarzachild spacetime distorted by an axisymmetric matter di

mine that it is possible to locate a future outer trapping horizon for a given

nents. Furthermore, we show

certain value ranges of multipole.

foliation wit
that there are no marginally trappee surfaces for arbitrary values of the maltipole

moment magnitudes.

KEYWORDS: SCHWARZSCHILD; BLACK HOLE; DISTORTED SPACETIME; MARG

TRAPPED SURFACE; FUTURE OUTER TRAPPING HORIZON.
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Introduction

‘Well the thing about a black hole —its main distinguishing feature

s it’s black. And the thing about space

basic space colour) —is its black

What s a black hole? The pop-
ular notion of a black hole as an
outer-space Hoover vacuum  rampag-

g through the Universe, sucking up

overything —including light e

s misconception stems

e ot best, T
from the fact that there indeod exiss &
seon surrounding the back bole from
which ot even light can escape. The
perceived size of this ogion i, however,

eatly overestimated. The “no escape’

region extends only a distance of approx:

matly 3 42 from the cente of the ob-

joct (that i the radius of the region is approximately three kilon

mass.)

the colour of space (your

So how're you supposed to see

Holly - Recl Duarf, Marooned

@

FiGuRE 1. Not a black hole

es per solar

a. the gravitational influence of a black hole is the same



s any other massve objct. Were we o replace our sun with  black hle of the same
s, the “no escape’” region would only be 6 kan wide and there would be virtually
o diference i the orbit of any body n the solar systen.

“The i ofsuch an object i ot new one. I 1784, workin from Newton's s
of gravitation and corpuscalar lght, John Michel publishd  fettr, (1], in which e
escribes  method for finding the distance ad brightncss of o str. T this leter, e
specnlates o * sphere of the same density with the sun [whose mass] were o exceed
hat of the sun i proportion of 500 to 1. ] supposin light 10 be attrcted by
ach n body

alllight emitted from

the same foree in proportion to it vis inertiae.

wonld be made to return towards it, by its own proper gravity.” An abject could be

the speed of light

o that its escape K

“This saume idea-—an object from which light could not escape —was also discussed

by Laplace in the first. two editions of his Erpavsition du Systéme du Monde. However,

e remove it from Intr ditons as the wave theory of light took over from the
corpuscular theory [2, 3  light wave would hae 1o mass ad conld therclore not
e afected by graviy

The s was exived by Anderon i 1920 and Lodge in 1921 (2}, Both spectlated
on abjocts of sufficent densey and size such that. thei escape velocity would meet o
excend the speed of light, Lodge goos on todiscount the solar-sizs dark objcts on
the basi that i objoct that sl coukd ot have the sisie density. On the other

size of a galaxy

uan, e necepts the possibilty of dark objects ¢
Mathematically, objects that we would recoguize as black holes originate with
The

the Schwarzschild solution to Einstein’s feld equations i general relativity

e (the Ricci tensor) o the matter and

fild ecquations relate the curvature of spacet

iy tensor) in the spacetime. A common form of these

encrgy present (the stresseo




quations would be (see, e, [4)

where Ry s the Ricei tensor, R = "Ry is the Ricei scalar, g is the

binations of the metric and

and Ty is the stress-energy tensor. Since Ry involves co

its derivatives, Einstein's equations are then a complicated set of nor-linear partial

differential equations with the metric as the solutio

There are many solutions to the field equations, probably the simplest of these
being Minkowski's (fat) spacetime. The flat metric s given —in the usual spherical

polar coordinates by the line cement

5* = guoda® d = —di* 4 dr” 4 A6 + P sin 007

“This metric has Ry = 0-—no curvat

Aat—and Ty = 0 empt

‘The Schwarzsehild solution, named for Karl Sclwarzschild who first derived it in

netric

1916, describes the empty exterior portion of a static, spherically s .

(

where i the mass of the objoet and (¢, . 6, 8) are the Schwarzschild coordinates,

The metric is given by

@it

P

similar o sp Not only tatic, sphericall
‘symmetic spacetimes, but Birkholf showed that it is the only solution for spherically

e s static, then it must

symmetric spacetimes and srael showod that if the space

be Scwarzschild 5.
It might ot be immediately obvious that this solution necessarily describes a

black hole. Tndeed, it was not until the 19505 that it was recognized as such, and not



INTRODUCTION i

il the 19605 that the idea of black holes s real objocts was accepted. Notice that

andr = 2m.

0,is  true singularity and it desribes a breakdown of the spacetime.

orgin

At 7= 2m, however, there is simply a breakdown of the coordinate system. 1f an

im to 1 = m, they would notice no ill effects
1

observer were to travel from, say,

upon crossing r = 2m beyond the usual tidal efects (which may be rather pai

depending on m.) They would find, to their dismay, that they could not return to

could they 2m

excoedi

the speed of light

Though it is only a coordinate singularity, the spacetime at r = 2m s of so

interest and is given the name of the Schwarzschild radius or the Schwarzschild sin-

i by the Schwarzschild radius —the

ularity. For all spatial points de

H

{emo.010<0<n00<2)

we have, at any time ¢, » spherical surface, Hy, called the Schwarzschild surfuce.

“This surface separates the “normal” spacetime from the “odd” region r < 2m. In

ivarzschild surface i called the event horizon, o

more modern terminology, the $

term coined by Rindlee in the 19505 (3]

At the time of his solution, Schwarzsehild viewed the surfice which bears his

e a5 physical barrier and a true singularity (2], He caleulated that u body

2m would

could ot b compresed tofssthan 7 = §(2m) (6], 30 comprssin to

ot be possible, indeced unphysical and safely hidden away deep inside real bodis.

“This view was shared by many, including Einst

(3] and Eddington who callod the
e (2),

Schwarzschild radius  “magic circle which no measurement can bring us
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Despite these misgivings, it was show

tiple times that the Schwarzschild
metric truly s nonw-singular at 7 = 2m. Paalevé, 1921, and Gullstrand, 1922, obtained

 coordinate transformation such that the metic took the form [5]

dff—m+(dr+\F7"'a) i

Eddington. 1924, and Finkelstin, 1955, obtained (5]

0ao*.

am

) e+ vdr + A0 + s’ 07,

kal, 19505, and Szekeres, 1960, had (5]

Each of these is clearly non-singular at r = 2m. It seems odd that Eddington was
able to find a non-singular version of the metric, yet utter the quote above. This is

Jy due 10 the iew of the incomprssibilty of matter i the r > 3(2m)

limit that Schwarzschil caleulated —which was slowly erumbling away.

Oppenheimer and Suyder showed [7) that infnite gravitational collapse can not

only oceur, but it would occur in fnite time (for  solar mass sar, complete collapse
would take abont a day.) Roughly speaking, once the star’s core hs stopped burning
its muclear fuel, gravity will quickly overcome the outward light pressure that had

been present but would now fade away, caus

og collapse. The general acceptance of
the whole Schwarzschild spacetime (and not just the exterior region) as an object for

study was not achieved unil the 19605, The term that we s today 10 describe these

abjocts, “black holes,” was not introduced wntil 1967. Wheeler, who was tired of

calling them ‘g »l Ik in 1967
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where he solicted the crowd for a better term (8], He liked the shouted suggestion.

due to the conceptual connection to a black body, and used it at every opportunity.

(8) Minkowski (o) Scwarzschibd

Fiaure: 1. Comparison between Minkowski and Sclwarzschild spacetines.

A convenient conceptual way of exploring spcetine s through the wse of space-

time dingeams. We can see two examples in Figuro Tla and Figure 11b, where we

compare flat spcetime to Schwarzschild spacetime. Both have time on the vertical

‘i an radinl distance on the horizontal (the angular dimensions have been sup-
presseel.) To be able o see the structure of a spcetinne we use light cones, which are
displayed s shided regions on the dingeams. Light cones are formes by the paths

of ingoing; an outgoing light rays —callod mll curves — through a point in spas

For fla spa

0= dibdr? = =L



So, light cones have slope 1 (the spoed of light) in st spacetimes. The patls of

‘massive objects will necessarily travel inside of so in the

light cone at cach poi

spacetime. For Schwarzschil,
o 7(1 2%“)41% e =

L
B @
Perhaps surprisingly. the light cones in Schwarzsehild depend on the distance from

the black hole. As r - oc. the slopes of the light cones approach +1, and so the
spacetime becomes flat far from the source. But, as r — 2m, the slopes become

infn

Figure b, the lightcones close up.

As weve alrady noed, this i an artfact of the coordinate sysim, 5o we can
coose  diffrent system to investigate the whole spacetime. While spactime di-
agrams can be constructed for Panlevé-Gulltrand and Eddington-Fokelstein coor-
dinates, the most nstrucive for our purposes i the Kruskal-Skeres spacetme dic

agram, shown i Figure 111 The benefits of the Kruskal-

cheres coordinates are

twofold. First, U an V are mull coordinates. Notice that lightcones occur alon U

const. and V' = const., .. along lines of slope 1

Secondly, the Kruskal-Szokeres solution is a maximally extended Schwarzschild

Solution. There are no restrictions on the valies of U or V' and so we end up with

miror mages of the usual Schwarzschild spacetime. There are two exterior and two
interior regions. The usual Schwarzschild solution is contained in regions T and 11
Regions 111 and 1V mirror 1 and II respectively. The location to which we usually

V=0,U0md

horizons.

The Kruskal

e dingrams are useful tools in examining the structure of a

spacetime, but there is one further tool we will need t0 be able o present the modern
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—

Fioue 111, Kruskal S

res dingraum for Schwarzschild spacetime.

‘mathematical definition of a back hole. This tool, called the Penrose- Curter dingram
‘and the mathematical definiton it ihuminates wil be presented i the followin cha

e along with s associnted problems. Unlike tho furor over the Sehwarzschild s

Iarity, the problenys with the modern definition are subtle but 1o ess fundamental i
& sense more to do with semantics than just a poor choice of coordinates.

The solution obtained by Schwarzschild and extende by others i o highly ideal

e solution. To calculate the solution, Schwarzschild had to impose strict symme-

res that, while casing caleulations, meant the spacetine described by his solution i

ot terribly realstic one. This is ot such a great problem; in all areas of physics,
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e st make restrictive assumptions to obiain a first approximation. A more real-

ain all of the symmeris of the

istic solution o nest approximation —would ot co

orginalsolution, but would more ccuately descibe  physical black hole
Furthermore, the event horizon s a global object. As we will s below; a black

Hole i defined by an event. horizon. That s, it reles o propertis of the entie

spacetime rather than just the properties of the black hole itslf. A more realistic

black
by o spacetime with an event horizon. We would like, then, a defiition of a black

hole in terms quasi-local 10 the black hole. We use the distinetion quasi since they

h o

actually Different for such a local

all rely on the notion of trapped surfaces. Trappeel surfaces depend only on the local

strueture of a spacetime; the structure near the black bole. The idea of wsing trapped
surfaces 10 locate black oles predates the use of event horizons. Penrose [9] used

them to show that a singulasity must form in gravitational collapse like that described

by Oppentcimer and Snycer. The eveut horizon replacemest we il use s the future
outer trapping horizon. These are descibed by masginally trappee surfaces, which
are o limiting case of trapped sufaces.

For the purpose of this monograph, we will be nterested in Sewarschild soli-
tious that have been distortd by the presence of axisymmetric maiter distrbutions.
Tt ot entirey clas whether they remain black boles. The clssial dfiition dis-
cusse i the next. chiapter s of ittle use. Since the distortions destroy nsymptote
Mt n vacuum, we camnotinfct s such defnition. In that respect, we sk he

question: Do arbitrary distorted Schwarzschild spacetion

always contain a trappi

horizon? In other words: Are marginally trappes surfaces an appropriate framework



for describing distorted Sclsarzchild back ols? These questions will be answercd
thus: We will check whether a s of distorted Schwarzsehikl salutions are indecd
black holes by looking for marginaly trapped surfacs,

This monograph will be structured s follows, The frst. chapter will discuss
the mathematical framework of black hols, its problems and their soluions. The
second chapter will contan the methodology and some general results of distorted
Schmorzschild spacetimes. The final chapter will discuss specific esuls, Lengtly

calenlations and resuls wil be relegated to appendice.



CHAPTER 1

Classical Black Holes

Once it had been decided that gravitational collapse could occur and that the

Schwarzschild “sngularity” was nothing more than a coordinate singularity a ruitful

period of research nto black holes occurred. From the uniqueness theorems to the

laws of black hole mechanics which deseribe black holes as thermodynamic systems

complete with  temperature and entropy, the 19605 and 19705 were a busy time for

mathematical physicists. A powerful tool involved

this research was the Penrose-

Carter dingram.

FIGURE 1.1, Penrose-Carter mapping.
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»
in the Introduction, £ — %5 or 1 - oo is well off the page. To be able to examine
the whole of the spacetime on a single fiite diagram, we compactfy the spacetime

by performing the transformations [5]

arctanV

arctanll and

where U and V are the Kruskal-Seekeres coordinates from the Introduction. With

this transformation, we obiain the spacetime diagram shown

u Figure 11 and we
can make the following identifications.
1-

e surfces 0

ontain the end points of al outgoing mll rays. We

call these surfaces future null infinity and denote them by the symbol .5 Similarly,

the surfaces [ ad ¥ =~ are called past mull infinity and symbolized by 5~

The points where .7+ meets £~ are spacelke infinity (r = o0) labelled by & The

m stays at 0 = U = 0 and

0 bocomes the surfaces U/ + 7

points £5and r

= = 0, showing both singularities and both horizons present in the maximaly

extendod Schwarzschild solution. The points (0, 7) = (0.3) and (0, V) = (3,0) are

calle future imelke infinity. which represent any point. ¢ = o0 and  fnite, abellod
by ¥, Similrl, i represents ¢ = —oc, 7 fuite, thus the points (0,7) = (0,-)

and (0,7)

£.0). The fully labelled Penrose-Carter dingram for Schvarzschild
spacetime s shown n Figure 1.2,

These dingeauns allow for & map of the whole causal structure of a spacetime.

The mapping from Kruskal-Szekeres coordinates i conformal,
preserving, s the light cones still have slope 1. How can we use this t0 define a

black hole? To answer this, we need one final pioce of notation.
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i =0 i

T=0

FIGURE 1.2, Penrose-Carter diagram for Schwarzschild spacetiume.
1.2, Globally Defined Black Holes

Consider an event.p. Then, ll fu

directed (timelke or i) curvesfrom p are
denoted by the set J*(p),called the causl ftare ofp. Similrly, the causl past of
(9 wonld e the et of all past-diecte cueves fom p. We can extend this 0
Upesd* () a0 J7(8) = Upes J0)
W can now defie 4] & lack ble, B, i manifod, M, as

whole set of e

5 = {pi}, in that J*(5)

B=M-J (s) (1)

the region in o manifold without the causal past of future mallinfnity. 1f 5 is non-

canpty, then it is said that. there exists & black hole in the spacetime. The boundary

of the black bl rgion i then the event horizon,

Hm 0B (57) 12)
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ut of “no light can escape a black hole.” We.

Equation 1.1 s the mathematical state

thus defined a black hole by locating an event hortzon in a spacetime. Furthermore,

we can determine this existence graphically using a Penrose-Carter diagram. 1f we

13, to that of

compare the Penrose-Carter diagram of Minkowski spacetime, Figu

Schwarzschild spacetime, Figure 1.2, it is quite obvious which spacetime contains o

black bole. In wo see that J (S
and 50 B s cnnpty.
“The definition of a black hol

of the cansal structure of spacetime was.

u terms

established by Hawking & Ells [10),
and it provided the foundation for the

achicvements mentioned at the begin-

ning of this chapter. There are, unforti-

nately, problems in defining black holes

s way. The inclsion of #* meass
that we have 10 trace all mull curses to
determie the presence of  black ol
The event horizon s thus defined by
boundary conditions infinitely for vy
Hayweard remarks, (11], that “the loca-

o of the event horizon, or even it -

fatence, is known ouly after the niverse

s ended, or, depending on one's re
e ose-Carter diagram for

Fi Penn
oum bl oo gods ocking downon. Miakows pecei,

space-time as & vast Penrose dingranm
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Notice also that the definition in Equation 1.1 makes no mention of strong gravita-

tional fiekds or local aspects of  black hole. Furthermore, the event horizon seems
to be aware of its own future. For example, [12), an event borizon can form in a fat
region of Vaidya spacetime (L. no gravitational field at all in anticipation of future

collapse. As another example (see, 0. [13), in the collapse of two matter shells

in Vaidya spacetime the event horizon formee by the fist shel il sart to expand
efore the second shell reaches it and stops expanding when the las of the scond
el crosss the location of the new horizon. While the global defnitions of a black
ol provides many porwerful and tseful esults, it also ves some strange resulis, A

new definition s thus desired.

1.3. Loeal Horizons

“The use of a local definition 1o replace the notion of an event horizon was first put

forth by Hi

1973 [14], and promoted by Hayward [15] and Ashtekar, Deetle &
Fuiehurst [16]. All ofthese definitions sart from the coneept of trappec surfaces, but

before we can discuss trapped surfaces, we must st introduce the expansion scalar

The aptical scalars (the expansion, §: shear, o; and rotation, w) were orighually
introduced by Sachs who was investigating gravitational waves [17]. He needed o way.
10 determine how the image of an object would be altered us it travelet along a mull

geodesic. The current defnitions of the optical scalars are i terms of a congruence

of uall geodesics,

First, consider 5, s Figure 1.4

I geodesics through each point in 5, this st of geodesics i the congruence. Now

travel a fixe distance, ¢, along each of the goodesics. This defines a new 2surface



[pr—

S This, the xpansion can be writen as
Lix i
e L=

the surface along the congruence

the change in the aren clement around each point

k

FIGURE 1.4. Schematic of the expansion sealar, 6

Alternativel, we can consider a vector field, &2, tangent to the congruer

vector field will be mill, kok, = 0, and affinely parameterized, K44 = 0 (where

 to the full spacetime

the semicolon represent covariant differentiation with res

troduce another null vector, N, such that k,N* = ~1. Then the

metric) We
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induced metric on s given by

Ly

K= g =0,

3 = ¢ and = 2. Notice that the conditions on the auilary il vector do

where g

the ful spacetime

ot uniquely determine N,. However, © docs not depend on the choice of N°. and

Pr

aue.
Using the induced metric, g, and the tangent vector, &7, we can define the

expansion sealar as

O = ™ (15)
The evolution of the expansion scalar i determined by Raychaudhue?'s equation. If

ke s affinely parameterized by A, then [5]

WO Lgs oy R
T < 360~ ™+ s = Rk

where gy i the shear tensor and s s the rotation tensor and they are the tensor
extensions of the sealars introduced by Sachs 1f the congruence is hypersurfoce

orthogonal, s = 0, and if the null energy condition holds, Rypk?k® < 0. Then,

O
i

“This implies th fa congruence of geodesisstats o comverge, then they must et
ot some point i the future

W can now define trapped sufaces in the following manner. Consider a closed,
spaclike 2surface, 3, embedded in a spacetime, (M. ). Thero are then two future-

directed mull one-forms, €, and n, normal to 3 with associated expansions B and
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Oy We asociate £, with the outward dircction and n, the inward. 1f (o < 0 and

Oy < 0, then X s said to be a trapped surfuce. If O = 0 and Oy < 0, then ¥

s said 10 be o marginally trapped surface. 1t is these marginally trapped surfaces

which we will use black
spacetime.

main candidates for replacing the event horizon to define a black hole all

various local horizons, the interested

start from trapped surfaces. For reviews of

0[13] Hore,
(FOTHs). A FOTH is defined [11] as a hypersurface, H = Uy S;. of a spacetnne.
(M.9), which satisfes

i 6
i L6 <0

0 and 8, < 0; and

That s, a FOTH s foliated by marginally trapped surfaces, S, and, just inside the

horizon, the outseard null geodesics are also converging.

“The use of a FOTH provides a local definition of a black hole that we desire in

ral and which we requite for distorted spacetimes in particular. It s obvious

e
associated with strong gravitational ields since, n regions of weak fields, 6, > 0, and

rgnally apped.) Futhermore,
trapped surfuces i spacetime imply the existence of a singularity as shown first by

Penrose [9]
1.4. Weyl Solutions and the Distorted Schwarzschild Solution

As deseribeet in the beginning of this chapter, the usual definition of a black hole

involves #*. Thus, we need a spacetime with the appropriate conformal structure

at infinity: the spacetime must be asymptotically flat. There are many difer
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defnitions of asymptotic flatness, which are ll roughly equivalent in vacuum. A

working defnition which we find instructive is that a spacetime is asymptotically flat

bescen in, for example, [4] or [18]. The require

1 of asymptotic fatness in defining

an event horizon (and thus a black hole) is not completely arbitrary. Due to the non-

linear nature of Einstein's field cquations, we must make restrictive assumptions.

Among these assumptions, that the black hole is isolated figures prominently. This
. wa black holes. We
hole. Paraphrasing 19} if we distribution of

matter, what we are really doing is relaxing the assumption of asympotic fatness.

How then do we relax this assumpti

The effcts of an external

Invarzschild the 1960s and 19705

1 (that s, some distribution of matter) on the

A perturbative approsch was undertaken by Regse & Wheeler (20], Zerill (21] and
Vishweshwara [22]

his approach took a known solution (e.g. Schwarzschild) and

ded perturbations. It contimues to the present day; see, e, (28] for a gauge-

The,

spacetinme s stable against smal perturbations. Thus, Schwarzschild black holes caun

exist in more realistic situations. This approach kept the geometry of the original

sown solution; the perturbations are small and linear. The other approach was to

distort the metric itself, esulting in & new spacetime with new geometric properties.

Mysak and Stekeres asked if the Schwarzschild surface at r

m was affected by

i gemeral, exterior, static fild in terms of a polynomial expansion [24]. They found

that this type of distortion had no eflect on the surface. However, time-dependent
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surface to become & srael and.

“partcles” (no yet
clled black oes) [25]. They found that, for regular distortions, the Schvarzschild
surface semained regular and 1o new singulritios appeared. In the course of nves-
igating norwspherical gravitational collpse Doroshkevic, Zeldovich and Novikov

Showed that, for

ular [26]. T response to Bekenstein's conjocture (later proved by Hawking) that

black hole’s entropy is related o ts area, Isracl found that the event horizon was

tidally deformed by a static axisymmetric matter distribution, but remained regular

[27). However, there is no mention of asymptotic latness with regards to the

atter

distribution, so s use of “event horizon” s likely a matter of convention rather than

an actual event horizon,

-

proach of distorting the metric begins by using a special class of solutions
Kanown s the Weyl metric. For a static, axisymmetric, vacuun spacetime, the metric

takes the form (28]

st = e 4 ) (d? +d57) e A 10)

in Weyl cano

al coordinates (& . 2,6), where v = ¥(p,) and 7 = 7(p. ). This

motric contains all static, axisymmetic solutions to Einstein's field equations. Spe-

i

we can think of it in two diffrent ways. The firt s that the spacet

wam, in ehich case the distortions are implicit in the metric. The other method is to
consider the distortions to be causer by the presence of external matter. For exam-

ple, one could use spacetimesurgery techniques to replace the asymptotic region of

Equation 1.6 with an asympotically flat spacetime such as the usual Schwarzschild
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solution. The matter distribution at thefunetion of the spacetimes can then be viewed
s inucing the distortion. For the Weyl metric, the fild equations reduce t0 a set of
three equations: one for 1 and two for 5. The cquation for ¥ is given by [20]

1o

an
% oop

If we consider an unphysical three dimensional Euclidean space, ¥, defined by the
line clement

o

10t + 6+ d?

then Equation 1.7 s simply the Laplacian of - in . Recall that the Laplacian s lincar

. if ¥y and 3 are each solutions to the Laplacian, then 5o is v = v + v) Once
we have determined v, the other function, 5. can be caleulated from the remaining

field equations

BAAGN-@] o geEE

When considering the vacuum version of the Weyl metric, we check the Ricci

tensor, Recall that the Ricei tensor is given by contraction of the Riemann tensor,
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R 1.5. Identifying the Weyl rod with the Schwarsschild event
oo, Do adapecd o 0]

R = g Ruca. Tn Weyl canonical coordinates, wo get

[P 100 0
a7 ot o




where all other entries are zero. Now, u

ug.the field cquations — Equation 1.7 and

Equation 1.8 the Ricci tensor becomes

R,

(19)

s expected. The distorted Weyl metric represents vacu

we have 28]

m spacetimes.

For normal, undistorted Sclwarzschild space

where 13 = g7 + (= £ m)%.Furthermore, vs s si

ply the flat space Newtonian

potential of a rod, H, of length 2m and mass m placed symmetricaly on the p = 0

s [20]. This rod can be mapped 10 the Schwarzschild event horizon by identifying
the ends of the rod with the poles of the horizon and the middle of the rod with the

.

ecquator of the horizon as in Figure 15, The rod is, of course, only one-dimensi

We ean con

der u distortion s an addition to the potential vs. Since Equation 1.7

ar in v, we let

Vs +U (1.10)

nd, thongh the equations for  are not lnear, it is belpful o consider the same form

for 7,
r=atV

where v and

spacetime. We then associate the functions U = U(p, ) and V
v

(p,2) with the

distortion. If there is no distortion (

0) then = v and 3 = 7, which

i the undistorted Schwarzschild spacetime ws expected. We can also consider the
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distartion alone: let. v

5. we can regard the

distarted Weyl metric as a Schwarzschild black hole in some background spacetime.

From

Seroch & Hartle [31] and Fairhurst & Krishnan (20], we get rstrictions on
U. The fist s that U must take the same value, wo, at both ends of H (ie. both

poles.) This is 50 that V" vaishes ou the p = 0 axis (i. the location of the horizon

will not be affected.) Fusthermore, on the horizon,

w

= 2 (1)

The two different viewpaints introduced after the Weyl metric, Equation 16, lead

to restrictions on . Recall that the first is that the spaceti

However, since U satisfes Equation 1.7, it will diverge at infinity. This means that
Equation 1.6 will not approach Minkowski —asymptotic flatness is destroyesd. Then,
we must consider all values of uy. As Geroch & Hartle point out, the Weyl solutions

have vanishing stress-energy and so the distorting matter is not explicity seen in

Binstein's equations. To this end, we can consider that our Weyl soution reprsents
only . neighbourhood of the horizon. That s, U only saisies the vocuumn fild
cquations (Bquation 1.7) near the horizon and we st extend U and V' such that
ey tend 1o o at infinity: We regan asymptotic flatnes a the cost of osing the

v, This then leads 1 to the requirement that u < 0 f the distor

g matter is

10 obey the.

trong energy condition. We will dopt the second viewpoint. The efect
of the distorting matter wil be given by U and V' and the Weyl metric wil represent

only a neighbourhood of the horizon.
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Usi

s+ U and 5 = 55+ V, we can wite the distorted Schwarzschild

metic (in the usual Sehwarzschild coordinates) as

D)o [ ] e,

where U and V* are now functions of (r,6). Since U and V are regular and must obey

the condition in Equation 1.11, then the horizon remains at r = 2m. By regaining

& notion of asymptotic fatness, are we then to return to defining black holes in

terms of an event horizon? Not at al,since the distortions break the fiekd equations

betwoen that neighbourhood of the horizon describest by the Wey! solution and the

asymptotically fiat extension. The mill geodesics may become discontimious. It is

possible that the event horizon still exists in these distorte] spacetimes, but we have

ot found any verification of this hypothesi.
‘This uncertainty i the existence of an event horizon leads us 1o ask: Are there.
then no black holes in distorted spacetimes (and thus in more realistic situations)?

t make use of an alternate defin

n of black

Rather than throw them out, wo.

holes: a local defnition in terms of marginally trapped surfaces such as FOTHs.

In the following chapter, we will examine some general properties of the distorted

Schwarzschild spacetime, caleulate the null normals that describe our surfaces in

preparation for marginally tapped surfaces and determine appropriate distorting po-

tentials.



CHAPTER 2

Methodology
In order to investigate the distorted Schwarzschild spacetime locally, we have
three tasks ahead of us: (a) determine a good coordinate system; (5) caleulate an
appropriate pair of null normals; and () find appropriate solutions U and V.. Once
these have been completed, we can asses the existence of trapped surfaces, and thus

black holes

2.1. The Distorted Metric & A Good Coordinate System

1 we recall our distorted Sclwarzschild metrie, Equation 112,

we notice that it is singular at the classical event horizon, r = 2m. We can trams-
form 1o a nonesingular metric with an advanced time coordinate, v, much ike the

Eddington-Finkelstein transformation. W let
v f(n0) ey

fay= [,
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b bitcary point i from

Equation 2.1, the metric, Equation 1.12, takes the form

o (1= 2 a a2 (- 2) L

B [ ()| (g)”]mf

+e TP sin0de?, ©2)

as?

whic is non-singular at 7 = 2m. Furthermore, when no distortions are present this

reduces to the S metric in the usual E

(, . ZT"') de? 4 2dodr -+ r2d + 17 sin® 06"

Droperties of spacetime.

Let v = const. and r = 2m in Equation 2.2. Then the induced metric becomes

“The first quantity we would like to kuow i the surface area, A

A= [ s oo
= [ [ Voo
= 16T mie

since up is a constant with respect to 6. The surface area thus depends on the value

of U at the poles. When o distortion is present, A = 1677 as expected for the

\
\
ds? = 47N (VOO 4 5 0 d?) @3
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“The Gaussian curvature, ', can be found wsing (32]
=l (F0) % (=)

The vale we obtain for the Gaussian curvature of the horiz

Fs

where U, V' and their derivatives are evaluated on the horizon. Si
derivatives are regular at the horizon, then ¢ also remains rogular at the horizo

When o ditorton is prsent, X = ks s expecte for the Sclwarzscild event

The Kretschmann scalar provides a demonstration that the dist

o space

is regular at the horizon. It is giv

= Ralt®

K|

R [1, oo (%

I JW,A,,,W)”W(._,,,_,,H,

() (e
oo () - )

where we have used Equation 1,11 10 simplify the resulting expression. Again, sinee
the horizon,

the hortzon, K
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showing that . When

o distortion is present, K = gy as expocted for the Schwarzschild event horizon

Finally,

K i dofined by a Killng vector [20],
€08 = ot

This definition is not. unique, since € could be rescaled by a constant which will

will also scale 6. Thus, the surface gravity we caleulate will anly be defined up

to constant rescaling. The Killing vector we will use is € which satisfies

Kiling's cquation, €+ €y = 0. Then, the surface gravity is

(24)

spacotime [31],

e

1
5 mm)

With o good coordiniate systemn, we now €urn onr attention to the mill normals,

£, and . Wo will use these to determine the inward and outward expansion of the

distorted Schwarzschild spacetime.
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2:2. Null Normals

byr= normal
e an nward il normal. There e thrce reqirements for an appropriaic outward
il normal: (a) € x dr on the horizon (€, points outwards): (6 € > 0 on the
horizon (1 points forward in time); and (¢ 6 = 0 everywhere (6, is mll) To

‘accommodate these requirements, we choose our outward null normal 10 be

On the horizon, the normal and associated vector take the forn

. Thus, conditions (), (b) and (¢) are

and it can be verifid that 6% = 0 everywh

satifiod

The inward il normal can be ealeulated from a combination of the outward null

orizon. To foliate the horizon, we

normal and another normal associated with the

il consider the set of surfaces

{wam 0.0 10-50 -a} 0

where @ € R is o label for the surfaces and S(6) € € characterizes the folation.

We choose & general foiation of the spacetime, since the standard foliati

notice that the properties

ot provide marginally trapped surfaces,  Furtherm

discussed in the previous setion made 1o mention of this oliation. We have that £,
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s one normal o this surface and
o= [d0], - 56) o8],

s another normal, though not necessasily null

To ensure that we have a second mill normal, we take the combination
o= Blaly+ua).

Our conditions on n, are: (a) ngn® = 0; and (8) €un® = 1. And 50 we find that

The null normal we end up with is

(7"(.“ {2

atn ]+ n0) [ - ]}

e
S 430 [§ - F) 2
PR, 67 El @
whero
(e, ) = [o¥ +§(r,0)] + o m«r}% - '?’]
ad

Two of our three tasks are complete; on to the distorting potentials U and V
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2.3. Distorting Potentials
Recall that U satisfes Laplace’s equation, (17).

U
%t

We consider a multipole expansion in the Legendre polynomials. The

a

altipole ex-

‘pansion of a Newtonian potential is well known. The use of multipole expansio

eneral relativity began with Goroch (33] and Hansen [34], horne (35] provid-

1 v common framework focussing on gravitational waves. Let (28]

(.

Wo can transform this solution to Schwarzschild coordinates,

(28)

U(r6)

On the horizon, r = 2m, 50

= (2m.0) or (p

o that o the et poe 1.0 0] wete

bt the st ple [18) = 2.5) o 5) = 0, we e

St
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“To ensure clementary fatness, ie. the condition that U/(2m, 0)

must have

oyt @

This leads to
(210)

(&)

avsu | ows
%%t

i s, we g (i e ondni) 28]
e (-2 e
+le:nf# [ﬂ (x

where Py = Py (fr—mlcosd 17 (1 -

Rl e

wtente]

+mitcos0] H) asin U. At the north pole,

Voo (- a-o
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e (-1~
VS [ -1la

And s0, the conditions from Equation 2.0 and Equation 2.10 gve local fatness which

sinee 2555, axer 0. Similrly, at. the south pole

fixes the location of the borizon at r = 2m. Not only that, but we also ac

an equilibrium situation since, if there were 1o local fatness, the black hole would

experience a tidal force [19]. Equipped with our metric in & good coordinate system,

appropriate null normals and distorting potentials, we are at a point where we can

trappest surfaces will be the subjoct of the next chapter.



CHAPTER 3

Results and Discussion

We have seen that the event horizon does not provide an adequate local de-

scription of a black hole. To remedy this situation, we introduced the future outer

trapping horizon (FOTH) which relies on the local concepts of the expansion scalar

ne whether the distorted

and Lie derivative. In this chapr, we will seck to detern

by FOTHS
First, wo shall calculate the expansion scalars, ©, for which the sign of the in-

ward expansion, 6, cannot be determinee in the general case, but rather oy for

specifie foliations and multipole moments. We then choose a foliation to work with,
surprisingly the chosen folation turns out. 1o be surfaces of constant Schwarzschild

time. Then we find that the actual vabue of the Lie derivative does not matter, so long

a5 other properties of the spacetime hold. Finally, we investigate specific multipole

momeants and briefly examine alternate foliations

3.1. Expansion Scalars

With the null normals, £, and n, derived in the previous chapter we are now in

a posit

to caleulate the expansion scalars. Recall the that the induced
siven by

Q=g + a1l



and the expansion scalar of a congruence of mull geodesics with tangent. £ is given
by

O = 0™

Then the expansion of the outward null normal at the horizon s given by

L

s expected from the construction of £, in Equation 2.5, and the nvard expansion is

sl - G (G g)]}

where f, U, V' and ther derivatives are evaluateed on the horizon. We sce that the
mward expansion depends not only on the distorting potentials but also the foliation

a5 expected from the definition of n, in Equation 2.7,

3.2. Standard Fol

1 we were to e the standard foliation, S(0) e inward expansion

scalar would be

O =

N
o (s 1) o

where U, V., f and thei derivatives are evaluated at the horizon. Notice that when o

 =0) we gt B0 = -4

1 as expected.

oo e (1 s = 0
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FIGURE 3.1, Expansion scalas for the standard foliation

When we plot quadeup

(Figure 3.1a) and dipole-octupole, i = 1 & 3, (Figure 3.1) distortions, we find very

limited ranges of multipole moments where marginaly trapped surfaces could exist

“The standard foliation, the

s perhaps not the best choice

3.3, Improved Fol

Ideally, from Equation 3.1, we would like to solve 6 < 0 for S(6) so that we

have a gencral foliation of the space

. Unfortumately, deriving a general solution

£ then we

appears to be an insurmountable task. 1f we let 84, < 0, say €y

notice that Equation 3.1 can be put in the form of a Riceati equation, (36,

dy ]
% = 0(0) + (0 u6) +0:0)50)



2. IMPROVED FOLIATION

where y = 4. This equation docs not have a general soluion, except for relatively
simple g/, which s notthe case for Equation 3.1, Insted, wo wil attempt to

tice that a chaice of

e

where r is & point outside of the Schwarzschild radius, simplifies 6, substanially.

constrict a solution. Examining Equation 3.1, we

das _af
@9

Subs

@4

Tt s thonght that this should improve the range of multipole momer

magaitudes so
that FOTHs can be present for all multipole moments

Equation 2.6,

5. {0 om0, 10-501-)
Notc that thedscipton o th ol o o implifes i, from e
21

- 5@]‘ et om0 - 50)

+J(2m,0) - 1(2m,0)

Our folintions are simply slices of constant Schwarzschikd time. That is, the set of

points

(wmoorenosoen ozocu}
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1f we now substitute the solutions for U, Equation 2.8, and V, Equation 2.11,

O, Eaquation 3.4, wo get

s w»«[i(z.m-sa.m(mﬂw\ ‘o @

multipole moments (ic. fnitely many terms in Equation 3

el

tary atiess condition on the p

0 asis,

means that we cannot have individual odd

;«-m

ipole

nts, and that individual

be negative if is o be satis-
e, Belons, we will xamine a fow cases i greater detail a purely quadrupole (i = 2)

distortion; a purly hexadecapale (i

1) distortion; a dipole-octupole (i = 1 & 3)

distortion; and finally & dipole-gquadrupole-octupole (i

1,2 & 3) distortion. Before
e can perform these calcultions, howeser, we st tackle the second conditon of
our marginally trapped surfaces to foliate a FOTH, the value of the Lie deraive
L8 <0

3.

Lie Derivative

Recall the requirements for H to be a future outer trap

g horizon:

1 0 = 0 and B, < 0; and

ii. £,600 <0.
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1 the second condition

It would be convenient f there were another way of dete

since, if we naively ealeulate the Lie derivative of €/ along 1, we get

w_ovy,
£,60= 00, )+ o
(36)

where again f, U,V and their deivatives are evaluate on the horizon. Not a very
pleasant rsult, Consider again Figure 1.4, When we travel long e, we may ot
e up on  proper, distorted slice of spaceime even thogh we have exolved along.
the tangent to the congruence, We may, instead, be caleulaing on a surface that

ferent slices. Rather than perform this cumbersome-—and possibly

crosses between.
wrong —caleulation, we wil instead consider hov our masginally trapped surfaces

change under infinitesimal deformations, 5,6/, so that the surfaces become.
il be described by [37]

tapped, ) < 0 and O <0. The deformatin

STl @7

e

where s the Gaussian curvature on the horizon, &, =~y is the connection
form, d, is the covariant derivative compatible with the induced metric, g, and
s the stress-energy tensor. The evolution of 6y is given by the following, analogous

to Raychaudburi’s cquation (37),

LBy + 1 Oy = — X+ iy + Ao + STl (8

1f we now subtract Equation 3.8 from Equation 3.7, we fi

8080~ L) — R O = 2%




15, DISTORTED SCHWARZSCHILD SPACETINE o

We kinow that £6 = 0 and it can be shown that there always exists a scal

) such that & Consider a pair of null vectors (6, ) such that

1
e-lg d
A f
avdies
[T and weta
i
Then
SmO = KO-
What O < wrginally),

Jeformation

we nesd anly to check that there exists  scaling such that ;> 0 for th
o be negative and ths satisfy the second condition for our surfaces to describe o

FOTH, Equation 2.4

o= g

Since m > 0 and g € R, i will always be positive; we alrendy have the desired
scaling. Therefore, 50 log as the frst condition is satisied, we will always be able to
Tocate a FOTH. With both conditions determined, we shall now investigate specific
cases of the distorted Schwarzschild spacetine

.5, Distorted Sehwarzschild Spacetime

o can fix this value

toms, we will et m = 1. W

merieal cal

For any further

becanse the expansion scala, Equation 3.5, depends only on the inverse of m

m s poitive constant, its exact value ill not affct the sign of €.

investigations into the values of  ill be performed using Mathes



3.5.1. External Quadrupole Field. In this section, we willexamine a Scharzschild
spacetime i a backgeound quadrupole (i = 2) fekd. In that case, the expasion will

be given by

B = o1 e s s 200 @)

Rocall that clementary fltness roquirs that y = 3, age. 50 for  purely quadrupo-

—
. S
it By vl o . B met s sty e g gy
condition, s 0,50
wso
T mot comenit g g o et by plotin B, a8 shown i
-

As wo can see, there s a certain range for which () < 0. The maimum positive

value, o, i btainesd when 6 = 0 or . Then Equation 3.0 becomes

O, =~ (1- dau

and 50 we find that the masimom postive value of @ s given by

Thus, the range of as valtes for which 6,y < 0 ~2 < a < 1. For the distorting

matter to satisfy the strong energy condition, the range is reduced to non-positive
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FIGURE 3.2. Graph showing the positive and negative regions of 6,
in a quadrupole distortion.

valies. Thercfore we will say that, with onr chosen foliation, a FOTH will be present
i quadrupolarly distorted Schwarzschild spacetime when the magnitude of the dis-
tortions, o, flls within the range ~2 < az < 0.

We y aquadrpolar distortion

using an embodding diageam. Since the horizon s a 2surface, it may be possible to

aner in which we accomplish these

conbed it i it three-dimensionsl space. The

023,

). Equai

dingrams i as follows. Recall the induced metic (with m

45 = e (VO 4 s 0 ©10)
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G os um as w01
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FiGURE 3.3, Embedding diagrasms for a quadrupolarly distorted horizon.

and consider a fcttions Evelidean 3-space described by the mettic

8 4 e+

Now, we can perform an embedding by letting s = s(0) and = = =(6). Substituting
these into the flat metie, we get

(0 + (0] P + 5(0)%d". @
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Then we compare coefficients of Equation 3.10 with those of Equation 3.1 to find

S0 = 4 sin 0

and
SO + 50 = 4
Solving fo s(6) and 2(6), we find
o) =270 50 @)

@ (313

where 5(6) can casily be mmerically integrated using the known functions U and

V. The presence of a square root in the integrand above may be cause for concern:

might there be same region where embeddings are not posible? For the quadrapole,

it turns out there is & range, which coincides with the strong energy condition. So
long a5 a3 < 0, we can perform an embecding,

I

jgure 33 we sev the embedding diagrams for different values of as. In both

figures, the grey line represents an undistorted horizon, a3 = 0. Figure 3:3a shows

i and the dashed

relatively small values of ag: the dotted line ropresents ay

line represcnts ag = 4. For such distortions, the horizon retains a spheroidal
eometry-—the horizon is pulled asay from the poles, but the equator remains fixed.
For larger distortions, as in Figure 3.3b, the geometry of the horizon is no longer

sphercidal, Tn this plot, the dotted line is for az = ~1 and the dashed line for

a3 = 2. Again, the equator remains fixed, while the poles are stretched. Not only
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e the poles stretehed but, at 0 = § for ag = 1 and 8 = § for a = ~2, the horizon

s stretched quite drastically

020

015

~—
05 10 15 20 25 30
6

FIGURE 5.4, Gusian caratare ofthe borzon o & qudupole i
by nd 2.
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This is ot so surprising if we were to look at the Gaussian curvature. Recal,

from secti

. the Gassian curvature is given by

e o (g p
[1+2 (ot ) el 22

For a quadrupole distorti

we get (with m = 1),

oslem33)[1 _ (3.4 Sc0s20) o + (cond0 )] .

1 we plot this for some of the values of as from Figure 3.3, we sce from Figure 3.4

that the Gaussian curvature changes sign for suffciently large values of az. The grey

line s s expected for undistorted the
The dotted - though
Dot constant. The dashed line represents a3 = ~2 and notice that it goes negative

(the dotted grey line i zero curvature): the geometry deviates from spheroidal

3.5.2. External Field. =

1) distortion. Similarly to the quadrupole distortion, we have o = ¥257, anidia = 0

0 satisfy clementary flatness and ay < 01f the distorting matter satisis the strong

energy condition. From Figure 3.5, we again sec that there is a range of values for

maimum positive value will be

and the maximum negative value will bo

o =237
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+ +

FIGURE 3.5. Graph showing the positive and negative re

us of B4
in a hexadecapole distortion.

Therelore, the range of possible values for a hexadecapole field s 237 < a, < L.
For a FOTH to be present in our chosen foliation (s for the distorting matter to
satisfy the strong energy condition), the magitude of the distortion must full i the

range

H<ai<0

W can also cxamine the emberking disgras of the borizon in an external hex-
adecapole ik, shown i Figure 5.6, Like the quadrupole, smal ditortions retain
the overal spheroidal shape but sretch at the poles. Strong distortons will stetch
e borizon into 0dd shapes, s seen n Figure 3,60, Four valuesof a are shown: the
arey line shows an undistorted horizons the dottd ine shows = ~1; the dashel

line shorws a; = ~1.2 and the dot-dashed line shows o = ~2.3.
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—
— 0
“ |
Ol ~ o
- |

(o) Bl dingrom fr
i

Targ vl of 1 (~
3k ioried
borizon,

As in the quadrupole case, if we plot the Gaussian eurvature for some of the

valies of o from Figure 3.6, we see from Figure 3.7 that there are sign changes for
suffciently large values of . The grey line is positive and constant as expected

for undistorted Schwarzschild spacetime: the surfoce is  sphere. The dotted line

represents a, = — and is always positive, thotgh not constant. The dashed line

237 and notice that it goes negative (the dotted grey line i zero

represents oy

curvature); the geometry deviates from spheroidal.
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3.7, Gausian curvature of the horizon for a hexadecapole
- 237

Fioure
distortion for g = 0, — and —

3.5.3. External Dipole-Octupole Field. Though we cannot have individual
odd multipale distortions, we can have combinations, since the requirement (Equa

tion 2.9) i that the sum of odd maltipoles must be zero. Consider a dipole-octupole
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distortion. Then

3 s (B 8 = + a3 =0 — a=a

S0 the strong energy condition s satisfed regardless of the value of o

The expansion for  dipole-octupole distortion i given by

O =it (1 +9c0s* ) o 4 2 (cos ~ Feow’ ) a — 1
2
+
'
50 -

2
00 05 10 15 20 25 30

FIGURE 3.8, Graph showing the positive and negative regions of )
in  dipoloochupole dniorton

In Figure 38 we see that the range for a is bounded betwoen 4 50 th

O

for all values of 0. Thus, in s dipoleoctupole distortion with our given foliation, a

FOTH is present when the magnitude of the distortion is in the range ~} < a < |
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02

FIGURE 3.9, Graph showing the positive and negative regions of the
square of the integrand from Equation 3.13 for a dipole-octupole dis-
tortion

mbedding dingrams are possible for dipole-octupole distortion, with n caveat
ot all values of a can be embeddest in Euelidean space. The reason for this can be
scen n Figare 9. This is  graph of the square o the intogrand from Equation 313,

jons where it goes negative, thus the inte

e 1+ 30 - o]

rand bocomes

Notice that there are

012,

01250

maginary. Becanse of this, we are limited to o range of

Eabeddin dingas for threo values of a aro shown in Figure 310, The grey ling

shows @ = —5; and tho dashed line

shows an wndistorted horizons the dotted

ice that the behaviour of the negativo distortion is opposite to that

shows @ = 5. N
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00 05 10 15 20

o 3.10. Embedding dingram for s dipole-octupole distortion for
0, 0.1 and ~0.1.

of the positive distortion. When compared to the undistorted horizon, the positive
distortion (dashed line) pulls the orizon away from the north pole, but pushes the
horizon inward . the south pole. Altermatively, the negative distortion (dotted line)

pulls the horizon away at the south pole and pushes the north pole inward. The
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spheroidal geometry is from Figure 311,

remains positive for & = 5 (dotted fine) and o = 5 (dashed line.)

00 05 10 15 20 25 30

FiGuns 5.1, Guisian curatreof the horizon o dipol-octupole
distorton for @ = 0, ~  and %
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3.5.4. External Dipole-Quadrupole-Octupole Field. As a final investiga-
tion for our chosen foliation, we shall examine a dipole-quadrupole-actupole distor-
tion. Fquation 2. and Equation 2.10 still hod, so we will have a = a; = —ay and

< 0. The expansion scalar will be given by

| in 2003 + sin0 (14 9con'6) 0” + deos? Bz

o~
+ 20 (1 3ec0) - n] o)

(X) Contant o, wying o () Constant a varyig 3

FIGURE .12 Comparison of the effets of varying a versus oz

| hically by plotin E 34.asin

Figure 3.12. Figure 3.12a shows Equation 3.14 for  fixed value of a = —1 (the black
line) versus the usual dipole-octupole distortion (grey line.) Notiee that when the

0 increases. Figure 3.12b shows.

aquadrupole feld is present, the region where O <

Equation 3.14 for  fixed value of o = — (the black line) versus the usual quadruple
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distortion (grey line.) Notice that when the dipole-octupole field is preseat. the region

where 6, < 0 decreases in the nosthern hemisphere, but increases in the south

hemisphere.

3.6, An Alternate Foliation

ted range of mul-

We have seen that the standard foliation provides a very I

tipole moments for which FOTHs can exist. Aud, although the foliation chosen in

B 3 provides a gres we may wonder if

there is an even better foliation;  foliation such that the range of multipole mo

reased. As a first attempt, we will consider the following foliation.

() = —m si? 0+ f(2m.0). (313)

Then the expansion sealar, Equation 3.1, becomes

=[5 ot s o) 1]

A p——r 'u} w0

uation 3.5

W seo that wo got back. from E

w o new foliation-—along with two additional terms

presence of a f(2m, 0) ten

i the new foliation.  Have we achicved a better

avisig from the —m sin® 0 ¢

foliation? As in the previous section, to check this, we will examine the ranges of the

maguitudes,

angeof

From Figure 313, the range of a i now ~2 < a3 < 0.31. Recall

Equation 3.3, for s quadrupole disortion was ~2 < a3 < 025

the previous foliatio

wdrupole distortion in this new folation is better than that

Thus, the range of a




() Expaasion for qundrupo-
lar distortion with the

() Expusion for_dip-
ate lntion.

octupalar disortion with the
termate lation

e
FiGURE 3.13. Expansion scalars for the alternate foliation.

in Equation 3.3. From Figure 3.13b, the range of a is now —0.89 < a < 030 as

compared to the original range of ~0.25 < a < 0.25. Thus, the range of a dipole-
octupole distortion is also increased. The embedding dingrams will be unch

l
since they do not depend on the folation.

3.7. A Generie Foliation

siven
i Equation 3,15, we may wonder if even better foliaions exist that keeps ) < 0
regardless of the values of the . As

expansion sealar

entioned in section 3.3, the complesity of the
uits the lkelibood of such a foliatio

We will use the folloving
argument. to show that in general there is no folition that will make () < 0. We

will, however, be able to bound the range of quadrupole distorti
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other distortions. First, we shall st
S(6) = h(O) + f(2m.0)

where h will be the function that would admit an always negative expansion. The

presence of  is to avoid the positive regions as in section 32. Furthermore, we will
concentrate on a quadrupole distortion —if we can show that  diverges for even the
quadrupole, then 6 wil diverge in general. Then the expansion scalar will be

1 (dh -
7+ Tom (7) + et

«M(xmwm m.fum.wﬁr\)

2. Recalling

To simplify this expression, we can scale the metric such that 2m
the strong energy condition, we make the substitution a; = —a where a > 0. Then

we gt

#h 1 (dn dh I
= Z (B 2 s -t 1)

Notice that there arestill problems with this expansion at the poles. To avoid this,

tnwhere F<a<}

e work from the equator by making the substitution 0 =

and the cquator oceurs at =

We will then have

o hrms) - bt rs{sme

st have

Since we are concerned whether the expansion is positive or negative, we

Ltz +2(tc0sts ? — dsintra—1
3t 'z sin’r a* ~ Asin’ z @
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The question then becomes: can we find such & A? The firs. part i clearly greater
than ze10, s0 we neeed

i

cgrate both sides, we get

56150+ [ b s s 01

However, X(0) = &' (§

0 due to the symn

) > (- funi)

We fix 7= 5. Then Equation 3.18 becomes

v of the horizon. So

N T ™

A(2) > 0316 -0 107 )

which has a zero at a = 2, 50 we fix a = 4 to bound X; to pick a region where A is

positive. Then A (5) > 2:30. Furthermore, for a

. Equation 3.17 i greater than

2cro on the range 0.15 S = S 101 (i

1705 26), which means X/(z) > 0 on the
range § = 0.52 < 7 S 101 Because of this, A(z) > 0 on this same range, since it

began positive and i increasing on the range. Thus, we must also hae

A1 ) >
R (T
on this range. I seems obvious that this will diverge, and so A and A" wil also

@ with X (3)

Lo
b

diverge. 1 we let A = X + A where X,

and A(3) > 039
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+N 2*« AoA 3

KXo rs

Ane s, f A > 0 and X diverges, then A st diverge. We sove Xy = 13 for Ao t0
et
2
 Qlirey e

which clearly diverges when z = 1+ § Now, since Xy diverges, A will also

4

diverge. So A and K will diverge for a 2 4. Therefore, 6, will iverge for az < —
This lack of a generic solution, what does it mean for our distorted spacetimes.

and for our local defiition of back holes? First, it means that the sort of marginally

apped surfuces for which we have becn searhing do ot exist beyond a certain
nltipole moment magaitude. We mist thercfore say that we have reached a limit
of the e deiiton of a black hole s a region of spacetine where a FOTH exsts.
Howeser, we can turn this avound (o ask if the fllure means hat, beyond the lmit

the region nside the Schwarzschild radis is even o black hole. Tn other words, are

there no trapped surfaces at ail in

ik

e v = m? Its a possibilty, but the more

¢ occtmence is that none of the trapped surfaces inside r = 2 are swootl
perturbations of  marginaly trapped surfce (1. fom a 8 = 0 surfce). Consider
Figure 3,14, We lad boped o fnd trappee surfaces s the distored spacetime that
ok like Figure 3.14a; suraces just inside the Schvarzschild radis. What may

instead be the case is something more like Figure 3.14b. Rather than the set of
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foliating surfaces from Equation 2.6

. 0.9) [v-50) =0}

we may instead have surfaces that look like the example surfaces in Figure 3.14h

which would take the form

{wo. 00,0110 - 50 - ()

r=2m

(4) Hopekfor erapped s () Pt aernative

s dhed i) Al the (marginaly) trapped .

Schvaraschild radi ookl e (oo o) s the

Yoo, Schvarschild rads (ol
e

FIGURE 3,14, Possible types of trapped surfuces.

Now, rather than looking o m and v =const., we have the radius and

That means that

o backuwards in time as well as space. 1t seems plausil

ore general



38 CONCLUDING REMARKS @

surfaces will provide marginally trapped surfaces for arbitrarily large distortions of

the spacetime

3.8, Coneluding Remarks

We began this monograph by asking the question: what is a black hole? Along

the way we found two answers to this question. The first was provide by Hawking &

cannot be reached

that a black hole i a region of spacetime that

wll ifinity long any 13 I path. The boundary of this region

horizon ' that black hole

if an cvent. horizon is prese
“This definition providesfirm footin o describe lobal propertiesof  black hoke
spacetime. However, s we saw, there are problems with the defnition arsing from

ent. horizon. We then introduced the loeal

the non-local nature of the opt of

a future outer trapping horizon to replace the event borizon. A FOTH is describest
by marginally trappeed surfaces such that the outward expansion is zero (8 = 0)
e nward expansion is strietly negative (6, < 0) and the outgoing il geodesics

of “what is o back

converge just inside the horizon (£,6) < 0). So, our questi
hole® transformee into a question of the existence of a FOTH in the spacetime.

‘mathematical machinery of trappeed surfuces to examine distorted

We applied
‘Schwarzsehild black hole placed in an external

Schwarzsehild spacetime. ‘That is,

xisymmetrie distribution of matter.
I global semse, it fuils to be a black hole. Since we lose asymptotic fltness

pent for the Hawking & Ellis definiion), we lose the event horizon and

(a roqu

ce of external mat

s the black hoke. Are there then o black holes in the prese
We found

distributions? We look at. this question instead from a local perspectiy
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two foliations that admitted marginally trapped surfaces and so a FOTH. Using

first of these foliations, we then determined that —when the external field is

decomposed into multipole n

mentsthe sum of the odd multipoles st be zero

(i 10 purely dipole distortion, no purely octupole distortion, etc.) and that the sum

of we were able to

values for ap ap »
distortion and for a dipoke-octupole distortion. We then examined the effects of

dipole-quadrupole-octupole distortion, where we determined that the presence of a

the range of values, but

o a quadrupole distortion will decrease the range.

The second foliation we examined imj

ved the range of multipole moment m

nitudes whic ld s to wonder if there was a path to the general solution that eluded
st the beginning, This general foiation, it was hoped, would furnish an expan-
sion that was everywhere negative; that s, regardles of the value of the wiltipole

moments. W l

instead that for the quadrupole, there can be o such foliation

for 0z 5 4. By extension, there will be  bound ou the other moments as well. It

may be that the surfaces deseribed in Equation 320 could instead be required in the

ot formalisn

eneral case, however his is beyond our ¢

What thens i lef o be done in this line of researeh? We were unable to find o

eralsolution for our foliation, but i e

magaitudes. Tt

liation that approaches the limit fou

i the previous sction. Starting from another

set of surfces like Equation 320 may even provide the desired everywher

sative
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expansion, though 1o obvious method scems forthcoming on how to do so. Further-
more, we wonder what manner of matter distributions give rise to values ranges we.

order mulipale moments.

did find. On . purely technical level, the ranges of high

and other combinations of wultipole moments could be examined. Finally, it would

be sl to apply this methodology not only to static (i

but also to stationary (ie. Kerr or Kerr-Newman) spacetimes, as they would have

more applicabilty to astrophysical situations than the non-rotating Schwarsschild

spacetime.Coneeptually this is not a diffcult task, though it is computationally

danting,

o



APPENDIX A
Calculations
AL, Transformation from Weyl to Sehwarzschild
The Weyl metric is given by
d? = A 4 0 (47 +d2) 4 o g, (an
e distorted Sewarzschild solutions for v and 7

‘(”u 2”»)'[(;:' R ;‘”(D’[f)rdm

et tim

+Vipz)

where 12 = g 4 (= % m)?, we get the metric in the foru

(a0 i)

v (B "

rtr—m

a

Where U = U(p,) and V = V(p. ). Now, starting from Equation A2, we perform

the transformation [38]

=+ /2 sind

2o (- m)enst)



= (1B s [ ] et 0

ctions of (r,). As usual, in these coordinates, the borizon

where U and V are now f
a1 = 2m, where there is also a coordinate singularity. The spacetime singularity

oL =0,

A-2. Transformation from Weyl to Prolate Spheroidal

To obtain the distortod Schwarzschild metric i prolate spheroidal coordinates
from the canonical Weyl coordinates, we start from Equation A2 and perform the
tronsformation (28]

porm/E=D (-7

ric in prolate spheroidal coordinates (1, 7, y, 6) i given by

o1 24l @)
2 eIy g v [T @
e oo [+ S5

o mi(e 4 111 - e (an

whero U nd V' are now functions of (r,y). In these coordinates, the horizon is ot
v land

e coordinate singulariies at &

The spacetime singularity i ot = -1



A-3. Transformation from Prolate Spheroidal to Schwarzschild
We start from Equation A.1 and performing the trasformation (39]

2L

¥ cost.

6,6

(-2 a e [ L] s

where U and V are now functions of (r,0).

A-d. Metric Transformation Function
T section 2.1, we explicitly defined the transformation of the time coordinate as
ts o= fr6) (a3)

where
e
e

We may wonder why this sort of transformation is applicable. First, consider the
exterior derivative of Equation A5,
o= O
it=do- L ar -G,
Now, we know (sce, e, [40]) that d(da) = 0 for any a. o, we should have
d(dt) = 0. Furthermore, we also have die A dz = 0 and dy A dz = ~dz A dy for any z,

o df = s for any function f(e1 7. ... 7). Taking the exterior desaiive
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) = dav) — ,y(ﬂ,r,) ,,/(lf,m)

7f f &y
darndr— 2L apnar— 2L e nan - 2L ap nan
S donar— T drndo - Lo nan

r
DL 21 arnas.
Bro0 DA

this s indeed 7ero and f the sort

in Equation A.5 are valid coordinate transformations.
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