REFERENCE VOLUME CONSIDERATION IN LIMIT LOAD DETERMINATION

PHANI SURESH REDDY, GUDIMETLA

001311 THE FOR NELD

Reference Volume Consideration in Limit Load Determination

By

Phani Suresh Reddy, Gudimetla., B.Tech., M.E.

A thesis submitted to the School of Graduate Studies

In partial fulfillment of the requirement for the degree of Doctor of Philosophy in Engineering

Faculty of Engineering & Applied Science Memorial University

St. John's, Newfoundland and Labrador, Canada 26th Aug 2010.

ABSTRACT

Reference volume plays an important role in finding out the limit loads of mechanical components and structures. In the current research work, new and simplified methods are proposed in order to determine the reference volume (i.e., elastic and plastic reference volumes) for any given general mechanical component or structure.

Many methods have been developed for estimating limit loads in general components and structures; these methods depend on an upper bound multiplier which takes the total volume into consideration. Considering total volume results in overestimating the upper bound multiplier. To overcome this deficiency, two methods are proposed in this research to find reliable estimate of limit load using the reference volume.

The Elastic Reference Volume Method is developed by extending the well established pressure bulb concepts in soil mechanics to general mechanical components. This method is basically for second category components, like components with notches or cracks. The results obtained are within the range of 2 to 5 percent lower bounded to non-linear results. On the other hand, for the first category components which are well designed, the Plastic Reference Volume Method is developed. The results obtained are with in the range of 2 to 7 percent lower bounded to non-linear routs.

To obtain a reliable lower bounded limit loads, other than the dead volume effect peak stress effect is also need to be corrected. A new method which can correct both the reference volume effect and the peak stress effect is developed. This method given a lower bounded m_a tangent multiplier for all the examples. The results are compared with the non-linear analysis results and results are found to be very close estimates (< 2 percent) on the non-linear results. Taking the practical material usage in industry into consideration, a new method is developed for finding out limit loads of components or structures made of anisotropic materials by incorporating the reference volume correction. The usage of anisotropic materials in industries is increasing day by day, and so is the need for finding out accurate limit loads for components considering such material properties. The results are found to be in good agreement with the non-linear results.

Whenever a component or a structure is subjected to continuous leading and the stress exceeds the yield limit, the component undergoes strain hardening. It is very important to consider this strain hardening effect while obtaining the limit loads for optimal utilization of material. A new method developed in this research will take the strain hardening effect upto a 5% strain limit into consideration, while calculating the limit loads. Multipliers obtained using this approach are found higher then the ones obtained by regular limit analysis, suggesting the usage of reserved strength.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor, Dr. R. Seshadri, for his intellectual guidance, tireless support and valuable discussions during the course of my Doctorial program. His vast knowledge and immense expertise in diversified areas provided me with working in industrial, projects. I would also like to thank Dr. K. Munaswamy for all his support and co-supervision. I would also like to thank Dr. Bipul Hawaldar, Dr. A. S. J. Swamidas and Dr. S. M. R. Adluri for their help and support. I am also thankful to Dr. Rezra Adibi-sal and Dr. Mosharraf Hossain from Nuclear Safety Solutions (NSS) for their valuable technical discussions.

The financial support provided by the School of Graduate Studies and the Faculty of Engineering and Applied Science, Memorial University is gratefully acknowledged. I also thank Dr. Leonard Lye, Associated Dean of Graduate Studies, and acknowledge Ms. Moya Crocker, office of the Associate Dean, for her administrative assistance during the course of my program.

I would like to extend my acknowledgements to my friends in the Asset Integrity Management Research Group for their cooperation. I would like to thank all my friends for their support and encouragement. I also would like to thank Ms. Heather O'Brien, Canada Research Chairs office, for her administrative assistance during the course of my program.

I owe my deepest thanks to Dr. S. P. Reddy and Ms. Parvai Reddy for their continuous support and encouragement throughout my program. I also owe my thanks to my family members, Dr. G. P. R. Vittal Reddy and G. Rama Devi for their inspiration and understanding through all these years.

TABLE OF CONTENTS

Abstract		ii
Acknowledg	ements	iv
Table of Cor	itents	v
List of Table	18	xi
List of Figur	cs	xv
Nomenclatu	re	xxiii
Chapter-1	Introduction	1
1.1	General Background	1
1.2	Objectives of Research	2
1.3	Scope of Research	2
1.4	Organization of Thesis	3
Chapter-2	Theoretical Background Review	6
2.1	Introduction	6
2.2	Elastic Concepts	6
2.3	Plastic Concepts	7
2.4	Incremental and Deformation Theories	8
2.5	Bounding Theorems in Plasticity	9
	2.5.1 Classical Lower Bound Theorem	10
	2.5.2 Classical Upper Bound Theorem	10
2.6	Limit Load Multiplier	11
	2.6.1 Classical Plasticity-Statically Admissible Multiplier	12
	2.6.2 Classical Plasticity-Kinematically Admissible Multiplier	12

v

2.7	Closure	13
Chapter-3	Review of Limit Load Multipliers	14
3.1	Introduction	14
3.2	Mura's Extended Variational Formulation	14
3.3	Upper Bound Limit Load Multipliers	15
	3.3.1 Multiplier m ₁ ⁰	15
	3.3.2 Multiplier m_2^{\oplus}	16
3.4	Lower Bound Limit Load Multipliers	17
	3.4.1 Classical Lower Bound Multiplier m ₁	17
	3.4.2 Multiplier m'	17
	3.4.3 Multiplier m"	18
3.5	ma Multiplier Method	18
3.6	Generalized Two-Bar Method	21
3.7	ma Tangent Method	25
	3.7.1 The ma Tangent	25
	3.7.2 Blunting of Peak Stresses	27
	3.7.3 Significance of $\zeta^* = 1 + \sqrt{2}$	28
	3.7.4 The General Procedure	29
3.8	Elastic Modulus Adjustment Procedure (EMAP)	30
3.9	Non-linear Analysis	32
	3.9.1 Incremental Procedure	32
	3.9.2 Iterative Procedure	33
	3.9.3 Mixed Procedure	34
3.10	Closure	34
Chapter-4	Reference Volume Approach	35
4.1	Introduction	35
4.2	Reference Volume Concept	35
4.3	Elastic Reference Volume Method	37

		4.3.1 Cut-off Stress	41
	4.4	m^0 vs. \overline{V}_{η} plot	42
	4.5	General Procedure for Finding Lower Bound Limit Loads Using	43
		Elastic Reference Volume Method	
	4.6	Application to General Components	46
		4.6.1 Thick Walled Cylinder	46
		4.6.2 Torispherical Head (TSH)	49
		4.6.3 Unreinforced Axi-symmetric Nozzle (URASN)	51
		4.6.4 Reinforced Axi-symmetric Nozzle (RASN)	53
		4.6.5 Pressure Vessel Support Skirt (PVSS)	56
		4.6.6 Compact Tension (CT) Specimen	59
		4.6.7 Single Edge Notch Bend Specimen	61
		4.6.8. Plate with Multiple Cracks	62
		4.6.9 Plate with a Hole	66
		4.6.10 Indeterminate Beam	69
		4.6.11 Oblique Nozzle	71
		4.6.11.1 Nozzle Angle $\theta = 30^{\circ}$	72
		4.6.11.2 Nozzle Angle $\theta = 45^{\circ}$	74
		4.6.11.3 Nozzle Angle $\theta = 60^{\circ}$	77
		4.6.11.4 Nozzle Angle $\theta = 90^{\circ}$	79
	4.7	Discussion of Results	82
.F	ter-5	Plastic Reference Volume Method	83
	5.1	Introduction	83
	5.2	Plastic Reference Volume Method	83
		5.2.1 Categorization of Components	85
	5.3	General Procedure for Finding Lower Bound Limit Loads	86
		Using Plastic Reference Volume	
	5.4	Application to General Components	87
		5.4.1 Thick Walled Cylinder	87

Chi

	5.4.2 Torispherical Head	88
	5.4.3 Unreinforced Axi-symmetric Nozzle	90
	5.4.4 Reinforced Axi-symmetric Nozzle	92
	5.4.5 Pressure Vessel Support Skirt	93
	5.4.6 Compact Tension (CT) Specimen	95
	5.4.7 Single Edge Notch Bend Specimen	97
	5.4.8. Plate with Multiple Cracks	99
	5.4.9. Plate with a Hole	101
	5.4.10 Indeterminate Beam	103
	5.4.11 Oblique Nozzle	105
	5.6.11.1 Nozzle Angle $\theta = 30^{\circ}$	105
	5.6.11.2 Nozzle Angle $\theta = 45^{\circ}$	107
	5.6.11.3 Nozzle Angle $\theta = 60^{\circ}$	109
	5.6.11.4 Nozzle Angle $\theta = 90^{\circ}$	111
5.5	Discussion of Results	113
Chapter-6	Lower Bounded ma-Tangent Method	114
6.1	Introduction	114
6.2	Theoretical background	114
6.3	Method for Correcting Dead Volume and Peak Stress	115
	Effects Simultaneously	
	6.3.1 Dead Volume Correction	115
	6.3.2 Peak Stress Correction	117
6.4	General Procedure	118
6.5	Numerical Examples	119
	6.5.1 Compact Tension (CT) Specimen	119
	6.5.2 Single Edge Notch Bend	120
	6.5.3. Plate with Multiple Cracks	121
	6.5.4 Plate with a Hole	122
	6.5.5 Indeterminate Beam	123

	6.5.6	Oblique Nozzle	124
		6.5.7.1 Nozzle Angle $\theta = 30^{\circ}$	124
		6.5.7.2 Nozzle Angle $\theta = 45^{\circ}$	125
		6.5.7.3 Nozzle Angle $\theta = 60^{\circ}$	126
		6.5.7.4 Nozzle Angle $\theta = 90^{\circ}$	127
6.6	Discus	ssion of Resulits	128
Chapter-7	Refere	ence Volume for Orthotropic Material	129
7.1	Introd	uction	129
7.2	Consti	itutive Relationships of Orthotropic Material	129
7.3	Multip	oliers for Orthotropic Material	132
7.4	Genera	al Procedure	133
7.5	Applic	cation to General Components	134
	7.5.1	Orthotropic Thick Cylinder	134
		7.5.1.1 Elastic Reference Volume Method (ERVM)	135
		7.5.1.2 Plastic Reference Volume Method (PRVM)	137
	7.5.2	Transversely Isotropic Bridgman Notch Bar	137
		7.5.2.1 Elastic Reference Volume Method (ERVM)	138
		7.5.2.2 Plastic Reference Volume Method (PRVM)	139
	7.5.3	Transversely Isotropic Plate with a Hole	141
		7.5.3.1 Elastic Reference Volume Method (ERVM)	142
		7.5.3.2 Plastic Reference Volume Method (PRVM)	144
7.6	Discus	sion of the Results	144
Chapter-8	Incorp	poration of Strain Hardening Effect into Limit Analysis	146
8.1.	Introdu	action	146
8.2	Theore	etical Background	147
	8.2.1	Bilinear Hardening Material Model	148
	8.2.2	Ramberg-Osgood Hardening Material Model	149
8.3	Genera	al Procedure	150

8.4	Application to General Components	151
	8.4.1 Thick Cylinder	151
	8.4.2 Compact Tension (CT) Specimen	154
	8.4.3 Indeterminate Beam	157
8.5	Discussion of Results	159
Chapter-9	Conclusions, Contributions and Future Research	161
9.1	Conclusions	161
9.2	Original Contributions	164
9.3	Future Research	164
Publications	and Presentations during the PhD Program	166
References		167
Appendix A	: ANSYS Command Listing	

Appendix B : MATLAB Files

Appendix C : EMAP Iteration Results of All Examples

LIST OF TABLES

S. No.	Name of the Table	Page No
Table 4.1	Comparison of Various Multipliers for Thick Walled	47
	Cylinder (EMAP)	
Table 4.2	Comparison of Various Multipliers for Torispherical Head (EMAP)	51
Table 4.3	Comparison of Various Multipliers for Unreinforced Axi-symmetric Nozzle (EMAP)	53
Table 4.4	Comparison of Various Multipliers for Reinforced Axi- symmetric Nozzle (EMAP)	56
Table 4.5	Comparison of Various Multipliers for Pressure Vessel Support Skirt (EMAP)	57
Table 4.6	Comparison of Various Multipliers for CT Specimen (EMAP)	61
Table 4.7	Comparison of Various Multipliers for Single Edge Notch Bend (EMAP)	62
Table 4.8	Comparison of Various Multipliers for Plate with Multiple Cracks (EMAP)	66
Table 4.9	Comparison of Various Multipliers for Plate with a Hole (EMAP)	67
Table 4.10	Comparison of Various Multipliers for Indeterminate Beam (EMAP)	71
Table 4.11	Comparison of Various Multipliers for Oblique Nozzle 30 ⁰ (EMAP)	74
Table 4.12	Comparison of Various Multipliers for Oblique Nozzle 45 ⁰ (EMAP)	75
Table 4.13	Comparison of Various Multipliers for Oblique Nozzle 60 ⁰ (EMAP)	78
Table 4.14	Comparison of Various Multipliers for Oblique Nozzle	80

90⁰ (EMAP)

Table 5.1	Comparison of Various Multipliers for Thick Walled	88
	Cylinder (EMAP)	
Table 5.2	Comparison of Various Multipliers for Torispherical	90
	Head (EMAP)	
Table 5.3	Comparison of Various Multipliers for Unreinforced	90
	Axi-symmetric Nozzle (EMAP)	
Table 5.4	Comparison of Various Multipliers for Reinforced Axi-	92
	symmetric Nozzle (EMAP)	
Table 5.5	Comparison of Various Multipliers for Pressure Vessel	93
	Support Skirt (EMAP)	
Table 5.6	Comparison of Various Multipliers for CT Specimen	95
	(EMAP)	
Table 5.7	Comparison of Various Multipliers for Single Edge	97
	Notch Bend (EMAP)	
Table 5.8	Comparison of Various Multipliers for Plate with	99
	Multiple Cracks (EMAP)	
Table 5.9	Comparison of Various Multipliers for Plate with a Hole	101
	(EMAP)	
Table 5.10	Comparison of Various Multipliers for Indeterminate	103
	Beam (EMAP)	
Table 5.11	Comparison of Various Multipliers for Oblique Nozzle	105
	30 ⁰ (EMAP)	
Table 5.12	Comparison of Various Multipliers for Oblique Nozzle	108
	45° (EMAP)	
Table 5.13	Comparison of Various Multipliers for Oblique Nozzle	110
	60 ⁰ (EMAP)	
Table 5.14	Comparison of Various Multipliers for Oblique Nozzle	112
	90 ⁰ (EMAP)	
Table 6.1	Comparison of Various Multipliers for CT Specimen	119
	(EMAP)	

Table 6.2	Comparison of Various Multipliers for Single Edge	120
	Notch Bend (EMAP)	
Table 6.3	Comparison of Various Multipliers for Plate with	121
	Multiple Cracks (EMAP)	
Table 6.4	Comparison of Various Multipliers for Plate with a Hole	122
	(EMAP)	
Table 6.5	Comparison of Various Multipliers for Indeterminate	123
	Beam (EMAP)	
Table 6.6	Comparison of Various Multipliers for Oblique Nozzle	124
	30 ⁰ (EMAP)	
Table 6.7	Comparison of Various Multipliers for Oblique Nozzle	125
	45 ⁰ (EMAP)	
Table 6.8	Comparison of Various Multipliers for Oblique Nozzle	126
	60 ⁰ (EMAP)	
Table 6.9	Comparison of Various Multipliers for Oblique Nozzle	127
	90 ⁰ (EMAP)	
Table 7.1	Comparison of Various Multipliers for anisotropic thick	135
	cylinder (EMAP)	
Table 7.2	Comparison of Various Multipliers for anisotropic thick	137
	cylinder (EMAP)	
Table 7.3	Comparison of Various Multipliers for Transversely	139
	Isotropic Bridgman notch bar (EMAP)	
Table 7.4	Comparison of Various Multipliers for Transversely	140
	Isotropic Bridgman notch bar (EMAP)	
Table 7.5	Comparison of Various Multipliers for Transversely	142
	Isotropic Plate with a Hole (EMAP)	
Table 7.6	Comparison of Various Multipliers for Transversely	144
	Isotropic Plate with a Hole (EMAP)	
Table 8.1	Comparison of various multipliers for different material	- 152
	hardening models (LEFEA)	

Table 8.2	Comparison of various multipliers of thick walled	152
	cylinder for bilinear material hardening model (EMAP)	
Table 8.3	Comparison of various multipliers of thick walled	154
	cylinder for Ramberg-Osgood material hardening model	
	(EMAP)	
Table 8.4	Comparison of various multipliers of CT Specimen for	156
	different material hardening models (LEFEA)	
Table 8.5	Comparison of various multipliers of CT Specimen for	156
	bilinear material hardening model (EMAP)	
Table 8.6	Comparison of various multipliers of CT Specimen for	156
	Ramberg-Osgood material hardening model (EMAP)	
Table 8.7	Comparison of various multipliers of Indeterminate	157
	Beam for different material hardening models (LEFEA)	
Table 8.8	Comparison of various multipliers of Indeterminate	159
	Beam for bilinear material hardening model (EMAP)	
Table 8.9	Comparison of various multipliers of Indeterminate	159
	Beam for Ramberg-Osgood material hardening model	
	(EMAP)	

LIST OF FIGURES

S.NO	Name of the Figure	Page No
Figure 2.1	A Body Subjected to Traction Load	11
Figure 3.1	Regions of lower and upper bounds of m_{α}	21
Figure 3.2	Reference two-bar structure	22
Figure 3.3	ma-tangent construction	26
Figure 3.4	Stress distribution ahead of notch tip	28
Figure 4.1	Cylinder and Square prism with a circular hole	35
Figure 4.2	Total, Reference and Dead Volumes	36
Figure 4.3	Influence coefficients for vertical stress from a concentrated load	38
Figure 4.4	Influence factor for vertical stress beneath the corner of a rectangular Foundation	39
Figure 4.5	Bulbs of Pressure for vertical stresses	40
Figure 4.6	Bulbs of Pressure for shear stresses	41
Figure 4.7	Symmetric thick plate subjected to strip loading.	44
	(a) Geometry and dimensions (b) Typical finite element mesh with loading and boundary conditions	
Figure 4.8	Stress profile of plate with a concentrated load	45
Figure 4.9	Variation in m ⁰ with various percentages of cut-off stress for plate with a strip load	45
Figure 4.10	Thick walled cylinder (a) Geometry and dimensions (b) Typical finite element mesh with loading and boundary conditions	47
Figure 4.11	Invariant m ⁰ for Thick Walled Cylinder	48
Figure 4.12	Variation of $m^0(V_{Re})$ and $m_{\sigma}^T(V_{Re})$ with iterations for Thick Walled Culinder	48

Figure 4.13	Torispherical Head (a) Geometry and dimensions	49
	(b) Typical finite element mesh with loading and	
	boundary conditions	
Figure 4.14	Invariant m ⁰ for Torispherical Head	50
Figure 4.15	Variation of $m^0(V_{Re})$ and $m_{\alpha}^{\gamma}(V_{Re})$ with iterations for	50
	Torispherical Head	
Figure 4.16	Unreinforced Axi-symmetric Nozzle (a) Geometry and	52
	dimensions (b) Typical finite element mesh with loading and boundary conditions	
Figure 4.17	Invariant m ⁰ for Unreinforced Axi-symmetric Nozzle	52
Figure 4.18	Variation of $m^0(V_{Re})$ and $m^T_a(V_{Re})$ with iterations for	53
	Unreinforced Axi-symmetric Nozzle	
Figure 4.19	Reinforced Axi-symmetric Nozzle (a) Geometry and	54
	dimensions (b) Typical finite element mesh with loading	
	and boundary conditions	
Figure 4.20	Invariant m ⁰ for Reinforced Axi-symmetric Nozzle	55
Figure 4.21	Variation of $m^{\phi}(V_{Re})$ and $m_{\alpha}^{T}(V_{Re})$ with iterations for	55
	Reinforced Axi-symmetric Nozzle	
Figure 4.22	Pressure Vessel Support Skirt (a) Geometry and	57
	dimensions (b) Typical finite element mesh with loading and boundary conditions	
Figure 4.23	Invariant m ⁰ for Pressure Vessel Support Skirt	58
Figure 4.24	Variation of $m^0(V_{Re})$ and $m^T_{\alpha}(V_{Re})$ with iterations for	58
	Pressure Vessel Support Skirt	
Figure 4.25	CT Specimen (a) Geometry and dimensions (b) Typical	59
	finite element mesh with loading and boundary conditions	
Figure 4.26	Variation of m^0 with various Percentages of cut-off	60
	stars for CT Presimen	

Figure 4.27	Variation of $m^0(V_{Re})$ and $m^T_{\alpha}(V_{Re})$ with iterations for	60
	CT Specimen	
Figure 4.28	Single Edge Notch Bend Specimen (a) Geometry and	62
	dimensions (b) Typical finite element mesh with loading	
	and boundary conditions	
Figure 4.29	Variation of m^0 with various percentages of cut-off	63
	stress for Single Edge Notch Bend Specimen	
Figure 4.30	Variation of $m^0(V_{Re})$ and $m_a^T(V_{Re})$ with iterations of	63
	Single Edge Notch Bend Specimen	
Figure 4.31	Plate With Multiple Cracks (a) Geometry and dimensions	. 64
	(b) Typical finite element mesh with loading and	
	boundary conditions	
Figure 4.32	Variation of m^0 with various percentages of cut-off	65
	stress for Plate with Multiple Cracks	
Figure 4.33	Variation of $m^0(V_{Re})$ and $m^T_{\alpha}(V_{Re})$ with iterations for	65
	Plate with Multiple Cracks	
Figure 4.34	Plate with a Hole (a) Geometry and dimensions	67
	(b) Typical finite element mesh with loading and	
	boundary conditions	
Figure 4.35	Variation of m^0 with various percentages of cut-off	68
	stress for Plate with a Hole	
Figure 4.36	Variation of $m^0(V_{Re})$ and $m^T_{\alpha}(V_{Re})$ with iterations for	68
	Plate with a Hole	
Figure 4.37	Indeterminate Beam (a) Geometry and dimensions	69
	(b) Typical finite element mesh with loading and	
	boundary conditions	
Figure 4.38	Variation of m^0 with various percentages of cut-off	70
	stores for Indeterminate Dans	

Figure 4.39	Variation of $m^0(V_{Re})$ and $m_a^T(V_{Re})$ with iterations for	70
	Indeterminate Beam	
Figure 4.40	Schematic of Oblique Nozzle Geometry and Dimensions	71
Figure 4.41	Finite Element Mesh of Oblique Nozzle 300 (a) Isometric	72
	View (b) Front View	
Figure 4.42	Variation of m^0 with various percentages of cut-off	73
	stress for Oblique Nozzle 300	
Figure 4.43	Variation of $m^0(V_{Re})$ and $m^T_{\alpha}(V_{Re})$ with iterations for	73
	Oblique Nozzle 30 ⁰	
Figure 4.44	Finite Element Mesh of Oblique Nozzle 45º (a) Isometric	75
	View (b) Front View	
Figure 4.45	Variation of m^0 with various percentages of cut-off	76
	stress for Oblique Nozzle 450	
Figure 4.46	Variation of $m^0(V_{Re})$ and $m_a^T(V_{Re})$ with iterations for	76
	Oblique Nozzle 45 ⁰	
Figure 4.47	Finite Element Mesh of Oblique Nozzle 600 (a) Isometric	77
	View (b) Front View	
Figure 4.48	Variation of m^0 with various percentages of cut-off	78
	stress for Oblique Nozzle 600	
Figure 4.49	Variation of $m^0(V_{Re})$ and $m^T_{\alpha}(V_{Re})$ with iterations for	79
	Oblique Nozzle 60 ⁰	
Figure 4.50	Finite Element Mesh of Oblique Nozzle 900 (a) Isometric	80
	View (b) Front View	
Figure 4.51	Variation of m^0 with various percentages of cut-off	81
	stress for Oblique Nozzle 900	
Figure 4.52	Variation of $m^{0}(V_{Re})$ and $m_{\alpha}^{T}(V_{Re})$ with iterations for	81
	Oblique Nozzle 900	
Figure 5.1	Plot of m^0 vs. \overline{V}_q	84
Figure 5.2	$m^{0}(V_{\lambda p})$ in first iteration for Thick walled Cylinder	87

Figure 5.3	Variation of $m^0(V_{pp})$ with iterations for Thick Walled	88
	Cylinder (EMAP)	
Figure 5.4	$m^0(V_{R_p})$ in first iteration for Torispherical Head	89
Figure 5.5	Variation of $m^{\oplus}(V_{Rp})$ with iterations for Torispherical	89
	Head (EMAP)	
Figure 5.6	$m^{0}(\mathcal{V}_{kp})$ in first iteration for unreinforced axi-symmetric	91
	nozzle	
Figure 5.7	Variation of $m^{\oplus}(V_{R_{P}})$ with iterations for unreinforced axi-	91
	symmetric nozzle (EMAP)	
Figure 5.8	$m^0(V_{gp})$ in first iteration for reinforced axi-symmetric	92
	nozzle	
Figure 5.9	Variation of $m^{\oplus}(V_{Re})$ with iterations for reinforced axi-	93
	symmetric nozzle (EMAP)	
Figure 5.10	$m^0(V_{pp})$ in first iteration for Pressure Vessel Support	94
	Skirt	
Figure 5.11	Variation of $m^{\phi}(V_{\rm Ap})$ with iterations for Pressure Vessel	94
	Support Skirt (EMAP)	
Figure 5.12	$m^{\phi}(V_{Rp})$ in first iteration for CT Specimen	96
Figure 5.13	Variation of $m^0(V_{gp})$ and $m^T_{\alpha}(V_{gp})$ with iterations for CT	96
	Specimen (EMAP)	
Figure 5.14	$m^0(\mathcal{V}_{Ap})$ in first iteration for Single Edge Notch Bend	98
	Specimen	
Figure 5.15	Variation of $m^0(V_{pp})$ and $m^T_a(V_{pp})$ with iterations for	98
	Single Edge Notch Bend Specimen (EMAP)	
Figure 5.16	$m^0(V_{p_0})$ in first iteration for Plate with Multiple Cracks	100

Figure 5.17	Variation of $m^0(V_{Rp})$ and $m^T_{\alpha}(V_{Rp})$ with iterations for	100
	Plate with Multiple Cracks (EMAP)	
Figure 5.18	$m^0(V_{g_p})$ in first iteration for Plate with a Hole	102
Figure 5.19	Variation of $m^0(V_{g_p})$ and $m^T_a(V_{g_p})$ with iterations for	102
	Plate with a Hole (EMAP)	
Figure 5.20	$m^0(V_{gp})$ in first iteration for Indeterminate Beam	104
Figure 5.21	Variation of $m^0(V_{Rp})$ and $m^T_{\alpha}(V_{Rp})$ with iterations for	104
	Indeterminate Beam (EMAP)	
Figure 5.22	$m^0(V_{Rp})$ in first iteration for Oblique Nozzle 30^0	106
Figure 5.23	Variation of $m^{\oplus}(V_{Rp})$ and $m_{\alpha}^{T}(V_{Rp})$ with iterations for	106
	Oblique Nozzle 30 ⁰ (EMAP)	
Figure 5.24	$m^{0}(V_{Rp})$ in first iteration for Oblique Nozzle 45^{0}	107
Figure 5.25	Variation of $m^{0}(V_{p_{0}})$ and $m_{\alpha}^{T}(V_{p_{0}})$ with iterations for	108
	Oblique Nozzle 45º using EMAP	
Figure 5.26	$m^0(V_{p_0})$ in first iteration for Oblique Nozzle 60^0	109
Figure 5.27	Variation of $m^0(V_{Rp})$ and $m^T_a(V_{Rp})$ with iterations for	110
	Oblique Nozzle 60° (EMAP)	
Figure 5.28	$m^0(V_{pp})$ in first iteration for Oblique Nozzle 90^0	111
Figure 5.29	Variation of $m^0(V_{Rp})$ and $m^T_a(V_{Rp})$ with iterations for	112
	Oblique Nozzle 90º (EMAP)	
Figure 6.1	Schematic of m^0 vs. $\overline{V_{\eta}}$ plot for different EMAP iterations	115
Figure 6.2	Constraint Map	116
Figure 6.3	Variation of multipliers with iterations of CT Specimen	119
Figure 6.4	Variation of multipliers with iterations of Single Edge	120
	Notch Bend Specimen	
Figure 6.5	Variation of multipliers with iterations of Plate with	121
	Multiple Cracks	

Figure 6.6	Variation of multipliers with iterations of Plate with a	122
	Hole	
Figure 6.7	Variation of multipliers with iterations of Indeterminate	123
	Beam	
Figure 6.8	Variation of multipliers with iterations of Oblique Nozzle	124
	300	
Figure 6.9	Variation of multipliers with iterations of Oblique Nozzle	125
	450	
Figure 6.10	Variation of multipliers with iterations of Oblique Nozzle	126
	60 ⁰	
Figure 6.11	Variation of multipliers with iterations of Oblique Nozzle	127
	- 90 ⁰	
Figure 7.1	Anisotropic thick walled cylinder (a) Geometry and	134
	dimensions (b) Typical finite element mesh with loading	
	and symmetric constraints	
Figure 7.2	Variation of $m^0(V_{Re})$ and $m^T_\alpha(V_{Re})$ with iterations for	136
	anisotropic thick cylinder	
Figure 7.3	Variation of $m^0(V_{Re})$ with iterations for anisotropic thick	136
	cylinder	
Figure 7.4	A Transversely Isotropic Bridgman Notch bar (a)	138
	Geometry and dimensions (b) Typical finite element mesh	
	with loading and symmetric constraints	
Figure 7.5	Variation of $m^0(V_{w_c})$ and $m^T_{\alpha}(V_{w_c})$ with iterations for	139
	Transversely Isotropic Bridgman notch bar	
Figure 7.6	Variation of $m^0(V_{sn})$ with iterations for Transversely	140
	Isotronic Brideman notch har	
Figure 7.7	Transversely Isotronic Plate with a Hole (a) Geometry	141
1.5.00 1.1	and dimensions (b) Typical finite element mesh with	
	loading and symmetric constraints	
	iouung and symmetric constraints	

Figure 7.8	Variation of $m^{\phi}(V_{Re})$ and $m_{\alpha}^{T}(V_{Re})$ with iterations for	143
	Transversely Isotropic Plate with a Hole	
Figure 7.9	Variation of $m^{\oplus}(V_{Rp})$ and $m_{\alpha}^{T}(V_{Rp})$ with iterations for	143
	Transversely Isotropic Plate with a Hole	
Figure 8.1	Illustrative determination of σ_y^*	148
Figure 8.2	Bilinear Hardening Material Model	149
Figure 8.3	Variation of $m^{\varphi}(V_{Rp})$ with iterations for bilinear	153
	hardening thick cylinder	
Figure 8.4	Variation of $m^{0}(V_{Rp})$ with iterations for Ramberg-	153
	Osgood hardening thick cylinder	
Figure 8.5	Variation of $m^0(V_{Rp})$ and $m^T_{\sigma}(V_{Rp})$ with iterations for	155
	bilinear hardening CT Specimen	
Figure 8.6	Variation of $m^0(V_{Rp})$ and $m^T_{\alpha}(V_{Rp})$ with iterations for	155
	Ramberg-Osgood hardening CT Specimen	
Figure 8.7	Variation of $m^0(V_{p_p})$ and $m^T_{\sigma}(V_{p_p})$ with iterations for	158
	bilinear hardening indeterminate beam	
Figure 8.8	Variation of $m^0(V_{p_p})$ and $m^T_{\alpha}(V_{kp})$ with iterations for	158
	Rambers Oceand hardening indeterminate heam	

NOMENCLATURE

Symbols	
Ď	Increment of plastic dissipation for unit volume
Ε	Modulus of elasticity
E_0	Initial modulus
E_i	Tangent modulus
$f(s_{ij})$	Yield function
F	Peak stress
L	Length of beam
m	Exact limit load multiplier
m°	Upper bound multiplier
$m^0(V_{re})$	Upper bound multiplier with elastic reference volume method correction
$m^0(V_{sp})$	Upper bound multiplier with plastic reference volume method correction
m_{α}	Improved lower bound multiplier
m_{α}^{T}	m-alfa tangent multiplier
$m_{\alpha}^{T}(V_{re})$	m-alfa tangent multiplier with elastic reference volume method correction
$m_{\alpha}^{T}(V_{\tau p})$	m-alfa tangent multiplier with plastic reference volume method correction
m	Kinematically admissible multiplier
m_L	Classical lower bound limit load multiplier
m_{α}	Classical upper bound limit load multiplier
M	Bending moment
p	Internal pressure
Р	Primary stress, Normal force
q	Modulus adjustment index
Q	Secondary stresses
	Pill of an Alexandree

R, r	Radius
Ri	Inner radius
R_{θ}	Outer radius
R^{0}	Ratio of m ⁰ / m
R_L	Ratio of m _L / m
R_{α}	Ratio of ma /m
s_{ij}	Deviatoric stress field
s^0_{ij}	Statically admissible deviatoric stress field under applied load m^0T_i
\bar{s}_{y}^{0}	Statically admissible deviatoric stress field under applied load T_i
Seq	Equivalent stress
S_T	Surface of the body where surface traction is prescribed
S_V	Surface of the body where velocity is applied
In .	Required minimum wall thickness
T_{l}	Applied surface traction
ů	Velocity field
$\bar{\nu}$	Volume of the component
V_R	Reference volume
V_{η}	Sub-volume
\overline{V}_η	Sub-volume ratio
V_T	Total volume
w	Width
Greek	
Symbols	
δ_{ij}	Kronecker's delta
ε	Strain
Ė	Strain rate
$d\varepsilon_{e}^{p}$	Plastic strain increment

ė,	Kinematically admissible strain rate
v_i^*	Kinematically admissible velocity field
φ^0	Point function introduced in the yield criterion
dλ	Positive scalar of proportionality in the flow rule
μ	Plastic flow parameter
v	Poisson's ratio
σ_{ij}	Stress tensor
$\sigma_{\rm max}$	Maximum stress
σ_{eq}	von-Mises equivalent stress
σ_{ref}	Reference stress
$\sigma_1, \sigma_2, \sigma_3$	Principle stresses
σ,	Yield strength
σ_{r}^{*}	Equivalent yield strength
6	ratio of m^9/m_L
ξ	Iteration Variable
Subscripts	
e	von-Mises equivalent
1.1	Tensorial indices

- k Element number
- L Limit, lower bound
- u Upper bound
- α Parameters based on m_a method
 - y Yield

Superscripts

- 0 Statically admissible quantities
- T Tangent
- Kinematically admissible quantities

Acronyms

ASME	American Society of Mechanical Engineers
DBA	Design by Analysis
EMAP	Elastic Modulus Adjustment Procedure
ERVM	Elastic Reference Volume Method
FEA	Finite Element Analysis
LEFEA	Linear Elastic Finite Element Analysis
NFEA	Nonlinear Finite Element Analysis
PRVM	Plastic Reference Volume Method
TBM	Two Bar Model

CHAPTER 1 INTRODUCTION

1.1 General Background

Mechanical components and structures could be designed based on elastic analysis and elastic-plastic analysis or limit analysis. Among these design philosophies, limit analysis is of considerable interest as it provides protection against gross plastic deformation i. e, eatastrophic failure of the components or structures. In addition, it provides a measure of reserve strength of the structure. The limit analysis could be defined as the determination of load that results in cross-sectional plasticity in the structure, which leads to uncontained plastic flow (basic could plasse).

The limit load could be determined either by analytical methods, numerical methods or by using simplified methods. Approximate methods use the bounding theorems to estimate the limit loads. Numerical methods include the monitorar finite element analysis (FEA) which is a permitted method for limit analysis by the codes and standards (e.g., ASME Boller and Pressure Vessel Code [1]). Nonlinear FEA is quite complicated as it is carried out in an iterative and incremental manner. It requires detailed information about the material properties at respective operating conditions. Finally, the analysis and interpretation of nonlinear analysis require in-depth knowledge and expertise in nonlinear analysis techniques. Nonlinear analysis for a complex problem takes longer duration and there is always the possibility shear and volumetric locking [2].

In order to avoid the complicated elastic-plastic limit analysis in designing mechanical components and structures, the development of robust and simplified methods is considered to be an attractive alternative. The advantage of these methods heing able to estimate the limit loads by using linear elastic FEA. These methods significantly overcome the limitations of the time consuming and costly nonlinear FEA. In recent years, significant efforts are directed in developing the robust and simplified methods in limit analysis. For any simplified method developed to far finding out the reference

Faculty of Engineering and Applied Science, Memorial University.

volume of the structure has been a challenge. In this thesis the efforts are focused on developing the methods for finding the reference volume for any general component.

1.2 Objectives of Research

The primary set of objectives of the proposed research work is as follows:

- 1. To develop new and simplified approaches for reference volume determination.
- To achieve lower bound limit load multipliers for any given general component by incorporating above reference volume approaches.
- To achieve a lower bounded m_a tangent multiplier by correcting the peak stress and dead volume effects.
- To achieve lower bound estimates for anisotropic materials components using reference volume concepts.
- To develop new and simplified method for accurately incorporating the strain hardening effects into the limit load analysis.

1.3 Scope of Research

Estimation of limit loads using simplified methods is of considerable interest due to the simplicity and cost effectiveness, the m_e -method proposed by Seshadri and Mangalaramann [3], and m_e -angent methods proposed by Seshadri and Hossain [4] for predicting the limit loads are able to obtain reasonably close estimates of limit load in most of the cases.

These methods depend on upper bound multiplier which takes the total volume into consideration. By considering total volume, we are overestimating the upper bound multiplier. This over estimated upper bound multiplier leads to inaccurate limit load stimates. To overcome this difficulty two methods are developed in this research to find the reference volume. The objective of the present research is to develop simplified methods for estimation of good lower bound limit loads of a general class of mechanical components and therefure.

For getting good approximations of the limit loads we need a proper method of finding the reference volume. In the current literature there are reference volume methods

Faculty of Engineering and Applied Science, Memorial University.

developed for certain set of specific components. P. Tantichattanout *et al.* [5], [6] developed reference volume calculation for hot spots and corrosion damages in spherical and cylindrical vessels, F.Ahmad *et al.* [7] developed reference volume calculations for hydrostatic storage tanks. The new approaches of finding the reference volumes are being developed in the current research. These methods are developed to predict reference volumes of any given mechanical component and structure.

Modern components are made not only of materials that can be considered as isotropic, but also of anisotropic materials, due to there mechanical and strength advantages. When compared to isotropic material, the anisotropic materials show appreciable difference in material properties in different directions. Some examples for such components are rolled sheets in pressure vessels, composites and directionally solidified super-alloys in gas turbine blades. The knowledge of the limit load is useful in design and sizing of components and structures made from these materials. The Li Pan and Seshadri [8] proposed a method for determining limit loads in anisotropic material using *m*, method. In certain cases the overestimated upper bound multiplier leads to inaccurate limit load estimates. So a new method is developed to obtain reliable reference volume to estimate the lower bound limit loads of any given general component or structure made of anisotropic materials.

In general when ever a component or a structure is subjected to monotonic loading, once the stress crosses the yield limit, the component starts to experience strain hardening. In the general limit analysis this strain hardening effect is not considered while calculating the limit load multipliers, which leads to the under utilization of the material strength. If the strain hardening effect is incorrelated into limit analyses while calculating limit loads, the material can be used to its optimal strength level. A new method is developed in this research which will take strain hardening into consideration while calculating more reliable limit loads.

1.4 Organization of the Thesis

This research thesis is composed of nine chapters,

Chapter 1: It covers general background, objectives and scope of the proposed research work.

Faculty of Engineering and Applied Science, Memorial University.

Chapter 2: Provides a brief literature review related to the current research work. The chapter covers the theoretical aspects of classical elasticity and plasticity including bounding theorems and admissible limit load multiplier.

Chapter 3: It gives an overall review of development of various multipliers. It discusses m_a and m_a -tangent methods in more detail. It discusses the limitations of these methods which will lead way to the necessity of the current developed methods. In this chapter 2-Bar method is generalized to any given component.

Chapter 4: Reference volume concepts in a component is lattorbaced. The effect of the reference volume on the limit load estimates is discussed. *Elastic Reference Volume method*, its theories and general procedure for incorporation of this method is discussed in detail. The method is applied on different mechanical components and there results are discussed.

Chapter 5: Plastic Reference Volume method, its theories and general procedures for incorporation of this method is discussed in detail. The method is applied on different mechanical components and there results are discussed.

Chapter 6: A method to obtain the lower bounded *m-alfa* tangent multiplier using a simultaneous correction of dead volume and peak stress effects is introduced. Its theories and general procedure for incorporation of this method is discussed in detail. This method is applied on different mechanical commonents and the results are discussed.

Chapter 7: In this chapter constitutive Relationships and Multipliers of Anisotropic Material are discussed. The method for incorporating reference volume approach for calculating lower bound limit loads for any general anisotropic material is introduced. General procedure for incorporation of this method is presented. Method is tested on different mechanical components and its results are discussed.

Faculty of Engineering and Applied Science, Memorial University.

Chapter 8: In this chapter concepts of strain hardening in materials are presented. Different strain hardening material models are studied in detail. The method for incorporating strain hardening effect into limit analysis, its general procedure and its applications are discussed in detail.

Chapter 9: In this chapter achievement of the research work, original contributions are summarized followed with a discussion on the future research scope in these areas.

CHAPTER 2 THEORETICAL BACKGROUND REVIEW

2.1 Introduction

In this chapter the theoretical concepts of the current research are presented. The research work covers an extensive volume of literature covering the areas of elasticity, plasticity and limit analysis. Is befir review of the basis theoretics in elasticity, plasticity and limit analysis including limit load multipliers are presented. A brief overview of variational principles in limit analysis is also presented. These theories and concepts form the background for the current research work.

2.2 Elasticity Concepts

The theory of elasticity deals with those bodies which can recover back to their original shape after the external loads have been removed. The deals canalysis of a mechanical component or structure essentially means the determination of stress and strain fields that simultaneously satisfies the equilibrium equations, compatibility conditions and constitutive relationships. The equilabrium equations are basic physical laws that represent a balance between the applied external forces and/or moments with that of the internal resistive forces and/or moments. Where as, compatibility conditions are the generitier calorations that excerns the continuity of the structure.

The stresses and strains within the elastic limit are more of instantaneous and are independent of the loading history. The stresses are related to the strains using constitutive relationships. The principles and mathematical interpretations of the theory of Elasticity are available in number of standard texts Timoshenko and Gere [9], Shames and Cozzarelli [10].

The constitutive relationship for a linear elastic body can be established by generalized Hooke's law. The most generalized relationship between the stresses and strains could be expressed by,

$$\sigma_{\nu} = C_{\mu\nu} \varepsilon_{\mu} \qquad (2)$$

Faculty of Engineering and Applied Science, Memorial University.

where, σ_{ij} is the stress tensor, ε_{ij} is the strain tensor and C_{ijkl} are the material dependent elastic constants.

In case of isotropic materials, where all possible symmetries are considered, the elastic strains are related to the stresses according to the following relationship,

$$\varepsilon_{g} = \frac{1 + v}{E} \sigma_{g} - \frac{v}{E} \sigma_{g} \delta_{g} \qquad (2.2)$$

where, ε_{ψ} is the strain tensor, σ_{ψ} is the stress tensor, E is the Young's modulus, ν is the Poisson's ratio and δ_{ψ} is the Kronecker's delta.

In design using the theory of elasticity, the maximum stress based on certain specified conditions is limited to the *allowable stress* of the material. The allowable stress is usually defined on the basis of design *safety factor* and *vield strength* of the material.

2.3 Plasticity Concepts

The theory of plasticity deals with those bodies which can not recover back to their original shape after the external loads have been removed. The principles and mathematical interpretations of the theory of plasticity are available in a number of standard texts Mendelson [11], Calladine [12], Hull [13] and Kachanov [14]. In the plastic range, the strains are dependent on the history of the loading. In order to determine the final strain, the incremental strains are accumulated over the full loading history. The stress-strain relationship in plastic range is generally expressed by *Prandtl-Reuss* equation and is characterized as *flow rule*.

In the plastic theory it is assumed that the solids are isotropic and homogeneous and onset of yielding is identical in tension and compression. Volume changes are considered to be negligible and hydrostatic stress state does not influence yielding.

Theory of plasticity is the basis for limit analysis. The limit analysis is an idealized form of elastic-plastic analysis, where an elastic perfectly plastic material model is assumed with out considering any strain hardening.

Faculty of Engineering and Applied Science, Memorial University.
2.4 Incremental and Deformation Theories

When the material is loaded with in the elastic range, the strains are linearly related to stresses by Hooke's law. In this case, the stresses can be computed directly from the current state of strain regardless of the loading history. But in the plastic range, the relationship between stresses and strains are nonlinear and the final strain depends on history of loading. Therefore, the total strain can be computed by summing the increments of plastic strain through out the loading history. The onset of yielding is defined by the appropriate yield criterion and the subsequent plastic strain increment is prescribed by the corresponding plastic *flow* rule. The most general form of the plastic flow nucle for ideal posticity is as follows.

$$d\varepsilon_{v}^{\mu} = d\lambda \frac{\partial f(\sigma_{v})}{\partial \sigma_{v}}$$

(2.3)

where, $d\varepsilon_{\theta}^{\rho}$ is the plastic increment at any instant of loading, $d\lambda$ is the plastic flow parameter, *f* is the yield function and σ_{a} is the stress tensor.

The plastic flow parameter $d\lambda$ is equal to zero when the material behaves elastically i.e., $f(\sigma_{i}) < k$ and takes a positive value when the material behaves plastically i.e., $f(\sigma_{i}) = k$. The direction cosine of the normal to the yield surface is proportional to $\partial_{i}(\sigma_{i})/\partial_{i}\sigma_{i}$. Therefore, Eq. (2.3) implies that the plastic flow vector is directed along the normal to the yield surface when plastic flow takes place.

As mentioned earlier, onset of plastic flow is characterized by the appropriate yield criterion. For instance, von Mises yield criterion can be expressed as,

$$f(s_{g}) = \frac{1}{2} s_{g} s_{g} - k^{2}$$
(2.4)

The associated flow rule corresponding to von Mises yield criterion can be expressed as,

$$d\varepsilon_{\nu}^{p} = d\lambda \times s_{\alpha}$$
 (2.5)

where, s_{μ} is the deviatoric stress tensor.

Faculty of Engineering and Applied Science, Memorial University.

The platic strains and stresses are related by the infinitesimal strain increments and deviatorie stresses; Eq. (2.5) is called *incremental stress-train relations* because they relate the increments of plastic strain to the stress. To obtain the total plastic strain components, one must integrate these equations over the whole history of loading. Hends/[11] proposed total stress-strain relations whereby the total strain components are related to the current stress. This can be expressed in the form of the quartien softlows:

$$\varepsilon_{v}^{p} = \phi \times s_{v}$$
(2.6)

where ϕ is an unspecified proportionality factor, analogous to $d\lambda$ in Eq. (2.5). The plantic strings them are functions of the current state of stress and are independent of the history of loading. Such theories are called *total or deformation theories*. In contrast to the incremental or flow theories previously described, this type of assumption greatly simplifies the problem.

In case of proportional or radial loading, the incremental theory reduces to the deformation theory. $\sigma_{\varphi} = K \sigma_{\varphi}^{\varphi}$, where $\sigma_{\varphi}^{\varphi}$ an arbitrary reference state of stress and K is the monotonically increasing function of time, and then Eq. (2.5) on integration leads to Eq. (2.6). So the plastic strain is a function only of the current state of stress and is independent of the loading path.

From a practical viewpoint, there are a great many engineering problems where the loading path is not far from proportional loading, provided one is careful when unloading occurs to separate the problem into separate parts, the loading parts and the unloading parts.

2.5 Bounding Theorems in plasticity

Most of the practical engineering components and structures are complicated in nature and hence the complete plastic analyses of these structures are generally more involved and time consuming. The complexity arises from the irreversibility of plastic flow and

Faculty of Engineering and Applied Science, Memorial University.

dependency on the history of loading. Since the failure prevention is the primary objective of any structural design, therefore, it is justified to concentrate on the collapse state of the structure, which results in a considerable saving of effort. The plasticity theory offers the well known bounding theorems in order to estimate the collapse load of the structure. There are two approaches, the equilibrium approach for lower bound estimate and the geometry approach for upper bound estimate. The bound at plastic collapse is termed as limit load of the structure. In the classical limit analysis, material nonlinearity is included by assuming perfectly plastic material model, while the geometric nonlinearity is not taken into account.

2.5.1 Classical Lower Bound Theorem

It states: "If any stress distribution throughout the structure can be found, which is everywhere in equilibrium internally and balances the external loads and at the sane time does not violate the yield condition, those loads will be carried safely by the structure" [12].

Therefore, the load estimated by the lower bound theorem will be less then or at most equal to the exact limit load. In lower bound theorem, the equilibrium equations (statically admissible stress field) and yield conditions are satisfied with out considering the mode of deformation of the structure.

2.5.2 Classical Upper Bound Theorem

It states: "If the estimation of the plastic collapse load of a body is made by equating the internal rate of dissipation of energy to the rate at which external forces do work in any postulated mechanism of deformation of body, the estimate will be either high or correct" [12]

In upper bound theorem, only the mode of deformation (kinematically admissible velocity fields) and energy balance are considered with out considering the equilibrium equations. Applying the principle of virtual work, the upper-bound theorem can be expressed as,

$$\int_{V_r} T_i \dot{u}_i dS \leq \int_{V_r} \dot{D} dV \qquad (2.7)$$

where, T_i is the surface traction acting on the surface S_r . \dot{u}_i is the rate of displacement. \dot{D} is the corresponding plastic dissipation rates per unit volume and V_r is the total volume.

2.6 Limit Load Multipliers

Consider a structure with volume l' and surface S (as shown in Fig. 2.1), which is in equilibrium under surface traction T_i applied on the surface S_T and the geometric constraint $v_i = 0$ applied on the surface S_T . It is assumed that the surface traction is applied in proportional loading, i.e. the external traction is assumed to be mT_i , where m is the monostonically increasing parameter. For sufficiently small value of m_i , where m is will be in a purely elastic state. As m gradually increases, plastic flow starts to occur at a certain point in the structure. If the value of the m continues to increase, the plastic region syncals further and the structure will each a state of impounding plastic collapse.

Figure 2.1 A Body Subjected to Traction Load

The set of loads corresponding to the impending plastic collapse state is called the *limit* load of the structure and the corresponding value of *m* is the *safety factor*. Therefore, the safety factor is the ratio of the limit load to the actual applied load.

Faculty of Engineering and Applied Science, Memorial University.

2.6.1 Classical Plasticity - Statically Admissible Multiplier

A given stress field, σ_{ij}^{0} is said to be statically admissible when it is in equilibrium internally, balances the external load mT_{ij} and nowhere violates the yield criterion. The multiplier m_{i} corresponding to such a stress field is called the statically admissible multiplier. Therefore, a statically admissible stress field should satisfy the following conditions,

$$\sigma_{k,i}^0 = 0$$
 in V, (2.8)

$$\sigma_{ij}^{0} n_{j} = mT_{i} \qquad \text{on } S_{T}, \qquad (2.9)$$

$$f(s_{g}^{0}) = \frac{1}{2} s_{g}^{0} s_{g}^{0} - k^{2} \le 0$$
 in V, (2.10)

where, k is the yield stress in pure shear and s_{g}^{0} is the statically admissible deviatoric stress tensor which can be defined as,

$$s_{\nu}^{0} = \sigma_{\nu}^{0} - \delta_{\nu} \sigma^{0} \qquad (2.11)$$

$$\sigma^{0} = \frac{1}{3} \sigma^{0}_{kk} \qquad (2.12)$$

where, δ_{ψ} is the Kronecker's delta. Eqs. (2.8 and 2.9) are the equilibrium equations and Eq. (2.10) is the yield function.

2.6.2 Classical Plasticity - Kinematically Admissible Multiplier

A given velocity v_i¹ is said to be Kinematically admissible if it satisfies the displacement (velocity) boundary conditions and also the rate of total external work done by the applied loads on this velocity field is positive. Therefore, a kinematically admissible velocity field about satisfy the following conditions,

$$\delta_{\mu} v_{\mu}^{*} = 0$$
 in V, (2.13)

$$v_i^* = 0$$
 on S, (2.14)
 $\int T_i v_i^* dS > 0$ (2.15)

where, δ_q is the Kronecker's defua. Here, Eq. (2.13) is the condition of incompressibility. The generalized strain-rate vector associated with a given kinematically admissible velocity field can be defined by δ_s^{-1} , where the asterisk is used to indicate that it is not necessarily the actual strain-rate vector but is kinematically admissible. If von Mises yield criterion is applied, plastic strain occurs when deviatoric stresses are on the yield surface i.e. $\frac{1}{2}s_s^{+}s_s^{+} = k^{+}$ where k is the yield stress in the pure shear. The Kinematically admissible miltipler, m^{+} can now be expressed as,

$$m^{*} = \frac{k \int_{V} (2 \dot{s}_{ij} \dot{s}_{ij})^{b_{2}^{*}} dV}{\int_{V} T_{i} v_{i}^{*} dS} \qquad (2.16)$$

where,

$$\varepsilon_{ij}^* = \frac{1}{2} (v_{i,j}^* + v_{j,i}^*)$$
 in V, (2.17)

According to the classical limit theorem the following relation holds,

$$m_s < m < m'$$
 (2.18)

where, m is the actual collapse load multiplier.

2.7 Closure

A review of the classical theories of clasticity, plasticity and limit analysis is presented in this chapter. The admissible limit load multipliers are also been discussed in this chapter. In the next chapter plastic multipliers using the variational concepts are discussed.

Faculty of Engineering and Applied Science, Memorial University.

CHAPTER 3 REVIEW OF LIMIT LOAD MULTIPLIERS

3.1 Introduction

A review of how the multipliers in limit analysis have been developed so for is presented in this chapter. Using Mura's extended variational formulation [15] as an alternative to the classical limit horems, Seshadri and Manglaramanna [3] proposed the m_{s} method, which provides better lower hound limit load over Mura's lower bound estimation, m_{s} . Tangent Method proposed by Seshadri and Hossain [4] which gives better estimates of limit loads when compared to m_{s} method and over comes certain limitations of m_{s} method. These methods and there limitations which lead the way to the current research an efficaceoid in more detail in this chapter.

3.2 Mura's Extended Variational Formulation

Mura et al. [10] showed by using the variational principles, that the safety factors the statistically admissible lower bound multiplier and Kinematically admissible upper bound multiplier for a component or structure made of perfectly plastic material and subjected to prescribed surface tractions are actually extremum values of the same functional under different constraint conditions.

In classical theory of limit analysis, the statically admissible stress field (equilibrium set) can not lie outside the yield surface and the stress associated with a kinematically admissible strain rate field (compatibility set) in calculating the plastic dissipation should lie on the yield surface. Mura *et al.* [16] proposed an approach that eliminates such a requirement and replaced it by the concept of integral mean of yield criterion based on a variational formulation. The integral mean of yield criterion can be expressed as,

$$\int_{V} \mu^{0} [f(\bar{s}_{\theta}^{0}) + (\phi^{0})^{2}] dV = 0 \quad (3.1)$$

where, the superscript '0' refers to the statically admissible equilibrium stress fields and μ^0 is the plastic flow parameter. The deviatoric stress \bar{s}_{ψ}^0 corresponds to the impending

Faculty of Engineering and Applied Science, Memorial University.

limit state, where $\bar{s}_{g}^{0} = m^{0} s_{g}^{0}$. Here, m^{0} is the limit load multiplier and s_{g}^{0} is the deviatoric stress field that is in equilibrium with the applied loads. The parameter ϕ^{0} is a point function that takes a value of zero if s_{g}^{0} is at yield and remains positive below yield.

3.3 Upper Bound Limit Load Multipliers

3.3.1 Multiplier m⁰

Since \bar{s}_{ϕ}^{a} corresponds to the deviatoric stress state for impending plastic flow, s_{ϕ}^{a} represents the deviatoric stress state for applied traction T_{i} . The von Mises yield criterion is given by,

$$f(\bar{s}_{g}) = \frac{3}{2} \bar{s}_{g}^{0} \bar{s}_{g}^{+} - \sigma_{r}^{2} \qquad (3.2)$$

and the associated flow rule can be expressed as

$$\dot{\varepsilon}_{g} = \mu \left(\frac{\partial f}{\partial s_{g}} \right)$$
 where, $\mu P0.$ (3.3)

Mura et al. [15] and [16] have shown that m^0 , μ^0 and φ^0 can be determined by rendering the functional F stationary in

$$F = m^{0} - \int_{F_{e}} \mu^{0} [f(\bar{s}_{g}^{0}) + (\varphi^{0})^{2}] dV \qquad (3.4)$$

Leading to set of equations

$$\frac{\partial F}{\partial m^0} = 0, \frac{\partial F}{\partial \mu^0} = 0, \frac{\partial F}{\partial \phi^0} = 0$$
 (3.5)

For the von Mises yield criterion, the functional becomes

$$F = m^0 - \int_{F_0} \mu^0 \left[\frac{3}{2} (m^0)^2 s_{\bar{g}}^0 s_{\bar{g}}^0 + (\phi^0)^2\right] dV \qquad (3.6)$$

Faculty of Engineering and Applied Science, Memorial University.

Assuming a constant flow parameter μ^{0} and setting $\partial F = 0$, the foregoing functional can be written in a finite element scheme, for $\phi^{0} = 0$, as

$$m_1^0 = \frac{\sigma_J \sqrt{V_T}}{\sqrt{\int_{T_T}^{N} (\sigma_{r_N})^2 dV}} \Leftrightarrow \frac{\sigma_J \sqrt{V_T}}{\sqrt{\sum_{k=1}^{N} (\sigma_{r_k})^2 \Delta V_k}}$$
(3.7)

where N is the total number of elements, σ_r is the yield stress, σ_{st} and ΔV_s are the equivalent stress and volume of elements k, and V_T is the total volume of the component.

The m_1^0 limit load multiplier has been shown to be greater than the classical lower bound (m_t) and classical upper bound (m_t) limit load multiplier [19].

3.3.2 Multiplier m⁰₂

Eq. (3.7) implies that the calculation of m_i^n is based on the total volume P_i . If plastic collapse occurs over a localized region of the structure m_i^n will be significantly overestimated. To overcome this problem, LI Pan and Seshadri [17] have proposed a new formulation for evaluating m_i^n namely m_i^n .

On the basis of deformation theory of plasticity, the flow rule can be expressed as,

$$e_{\mu} = \mu s_{\mu}$$
 (3.8)

where e_{ij} and s_{ij} are the deviatoric strain and stress, respectively. Therefore, μ can be defined as,

$$\mu = \frac{3}{2} \frac{\overline{c}}{\overline{\sigma}}$$
(3.9)

where $\overline{\sigma} = \sqrt{(3/2)s_g s_y}$ is the effective stress and $\overline{\varepsilon} = \sqrt{(2/3)e_g e_y}$ is the effective strain.

Faculty of Engineering and Applied Science, Memorial University.

Substituting Eq. (3.9) into the integral mean of yield criterion, the m_2^0 limit load multiplier can be obtained as

$$u_2^0 = \sigma_j \frac{\sqrt{\int_{r_j}^{r_j} (\sigma_{eq} \circ \sigma_{eq}) dV}}{\sqrt{\int_{r_j}^{r_j} \sigma_{eq} \sigma_{eq} dV}} \Leftrightarrow \sigma_j \frac{\sqrt{\sum_{k=1}^{N} (\sigma_{eq} \circ \sigma_{eq})_k \Delta V_k}}{\sqrt{\sum_{k=1}^{N} (\sigma_{eq} \sigma_{eq})_k \Delta V_k}}$$
 (3.10)

3.4 Lower Bound Limit Load Multipliers

3.4.1 Classical Lower Bound Multiplier, m,

The lower bound limit load can be calculated by invoking the lower bound limit load theorem that states that if a statically admissible stress distribution throughout a given body can be found in which the stress moderne exceeds yield under given loading and everywhere is in equilibrium internally and balances certain external loads the applied load is a lower bound on the limit [3]. A lower bound load can therefore be established by estimating the load required to give a maximum equivalent stress equal to the nominal vield strength, σ_c . Therefore, the classical lower bound multiplier m_c is given by,

$$n_{L} = \frac{\sigma_{\gamma}}{(\sigma_{eq})_{rms}}$$
(3.11)

3.4.2 Multiplier m'

Mura's extended principle leads to a new lower bound multiplier m' smaller then the unknown actual collapse load multiplier m and can be expressed as,

$$m' = \frac{m^0}{1 + \frac{1}{2k^2} \max[f(\bar{s}^0_g) + (\phi^0)^2]} \le m \qquad (3.12)$$

Eq.(3.12) includes the classical definition of lower bound multiplier where the use of $\max\{f(\overline{e}_{g}^{k}) + (\varphi^{n})^{2}\}$ with Eq.(3.12) leads to $m_{L} \leq m$. Eq. (3.12) for m' can be rewritten in terms of the classical limit load multiplier m_{r} in a component as:

Faculty of Engineering and Applied Science, Memorial University.

$$m' = \frac{2m^0}{1 + (m^0 / m_L)^2}$$
(3.13)

3.4.3 Multiplier m"

Based on the "Integral mean of yield criterion", Eq. (3.1) the Mura's lower bound multiplier is stated as an inequality, which can be expressed as,

$$m^0 \le m + \int_{V_f} \mu [f(\bar{s}^0_{\phi}) + (\phi^{\phi})^2] dV$$
 (3.14)

Eq.(3.14) can be rewritten as

$$m^0 \le m + \int_{V_r} \mu f^0 dV$$
 (3.15)

A lower bound multiplier m^* can be obtained from Eq.(3.15) in terms of m_2^0 upper bound limit load multiplier

$$m^{*} = \frac{m_{2}^{0}}{1 + G}$$
(3.16)

where G is calculated from the following expression,

$$G = \sqrt{\frac{\int_{r_i}^{r_i} \left(\left(m_2^0 \frac{\sigma_{eq}}{\sigma_j} \right)^2 - 1 \right)^2 dV}{4V_T}} \Leftrightarrow \sqrt{\frac{\sum_{k=1}^{k} \left(\left(m_2^0 \frac{\sigma_{eq}}{\sigma_j} \right)^2 - 1 \right)_k^2 \Delta V_k}{4V_T}} \qquad (3.17)$$

The parameter G acts as a convergence parameter, and is indicative of any deviation of . statically admissible stress distributions from the limit state. That is, $G \rightarrow 0$ corresponds to the converged exact solution.

3.5 ma Multiplier Method

The m_a Method, invokes the notion of reference volume to account for localized collapse and the technique of "leap-frogging" to a limit state. These concepts are used in

Faculty of Engineering and Applied Science, Memorial University.

conjunction with the elastic modulus adjustment technique, described by Seshadri and Fernando [18], for obtaining improved lower and upper bound limit load estimates.

Differentiating Mura's lower bound limit load multiplier, $m' = f(m^0, m_L)$, with respect to iteration variable, ξ_i leads to the expression

$$\frac{dm'}{d\xi} = \left(\frac{\partial m'}{\partial m^0}\right)_{\xi \leftarrow \xi} \frac{dm^0}{d\xi^2} + \left(\frac{\partial m'}{\partial \frac{1}{m_k}}\right)_{\xi \leftarrow \xi} \frac{\partial \frac{1}{m_k}}{d\xi} \qquad (3.18)$$

In terms of finite differential Eq.(3.18) can be expressed as,

$$\Delta m' = \left(\frac{\partial m'}{\partial m^0}\right)_{\xi \sim \xi_*} \times \Delta m^0 + \left(\frac{\partial m'}{\partial - \frac{1}{m_L}}\right)_{\xi \sim \xi_*} \times \Delta \left(\frac{1}{m_L}\right) \qquad (3.19)$$

where $\Delta m' = m' - m_a$, $\Delta m^0 = m^0 - m_a$, $\Delta m_L = m_L - m_a$.

The limit load multiplier m_{α} is assumed to be the estimated actual limit load [3]. Therefore,

$$m^{i} - m_{w} = 2 \frac{1 - {m^{i} \choose m_{w}}}{\left(1 + {m^{u} \choose m_{w}}\right)^{2}} (m^{0} - m_{w}) - 4 \frac{(m^{0})^{2}}{m_{L} \left(1 + {m^{u} \choose m_{L}}\right)^{2}} \left(\frac{1}{m_{L}} - \frac{1}{m_{w}}\right)$$
 (3.20)

Eq.(3.20) is a polynomial of second degree in m_{in} which can be shown in general form as

$$Am_{a}^{2} + Bm_{a} + C = 0 \qquad (3.21)$$

where

$$A = \left(\frac{m^0}{m_L}\right)^4 + 4\left(\frac{m^0}{m_L}\right)^2 - 1, \ B = -8m^0 \left(\frac{m^0}{m_L}\right)^2, \ C = 4\left(m^0\right)^2 \left(\frac{m^0}{m_L}\right)^2 - 1, \ B = -8m^0 \left(\frac{m^0}{m_L}\right)^2 - 1,$$

Faculty of Engineering and Applied Science, Memorial University.

The parameters A, B and C can be calculated from the results of linear elastic FEA. Therefore,

$$n_{a} = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$
(3.22)

Keeping in mind that the limit load multipliers are positive, Eq. (3.22) results in following expression [3],

$$m_{w} = 2m^{0} \frac{2\left(\frac{m^{2}}{m_{c}}\right)^{2} + \sqrt{\frac{m^{2}}{m_{c}}\left(\frac{m^{2}}{m_{c}} - 1\right)^{2}\left(1 + \sqrt{2} - \frac{m^{2}}{m_{c}}\right)\left(\frac{m^{2}}{m_{c}} - 1 + \sqrt{2}\right)}{\left(\left(\frac{m^{2}}{m_{c}}\right)^{2} + 2 - \sqrt{3}\right)\left(\frac{m^{2}}{m_{c}}\right)^{2} + 2 + \sqrt{3}\right)} (3.23)$$

When the expression under the root in Eq. (3.22) becomes negative (i.e. B^2 - 4AC < 0) the solution of m_a vanishes.

Dividing both sides of Eq. (3.23) by the exact multiplier, we get

$$R_{\alpha} = 2 R_{\alpha} \frac{2 \zeta^2}{(\zeta^2 + \sqrt{\zeta}(\zeta - 1)^2)(1 + \sqrt{2-\zeta})(\zeta - 1 + \sqrt{2})}{(\zeta^2 + 2 - \sqrt{5})(\zeta^2 + 2 + \sqrt{5})}$$
(3.24)

where $R_{\alpha} = m_{\alpha} / m$, $\zeta = m^0 / m_L$ and $R_0 = m^0 / m$.

 $R_{\alpha} = 1$ is the boundary between the upper bound $(R_{\alpha} > 1)$ and the lower bound $(R_{\alpha} < 1)$, as shown in the figure 3.1. The expression under the root in Eq. (3.24) encompasses four factors, which define the sign of the whole expression under the root. Therefore, the m_{α} limit load multiplier becomes imaginary fore the following conditions:

$$0 < \zeta < \sqrt{2} - 1$$

 $\zeta > \sqrt{2} + 1$
(3.25)

Since $\zeta = m^{\alpha}/m_{L} \ge 0$, the first expression in Eq. (3.25) will never occur; therefore, the only case which causes m_{α} to be imaginary is $\zeta > \sqrt{2} + 1 \approx 2.4142$, as is the case for components with notches and cracks due to presence of peak stresses.

Faculty of Engineering and Applied Science, Memorial University.

Figure 3.1 Regions of lower and upper bounds of m.

In Eq. (3.24), the exact multiplier *m* for a given component is unknown. Now $m^{*}/m_{e} = (f_{cr})_{max}/\sigma_{crr}/i$ is a measure of the thorestical stress-concentration factor at the notch. Therefore $m^{*}/m_{e} \ge 1 + \sqrt{2}$ represents the threshold for pronounced notch effects. The region bounded by $m^{*}(max), 1 \le m^{*}/m_{e} \le 1 + \sqrt{2}$ and $1 \le m^{*}/m \le 1 + \sqrt{2}$ is designated as the "machingle".

Reinhardt and Seshadri [20] showed that m_a estimates are lower bounds in the greater majority of the cases. But there are still cases where m_a multiplier is upper bound. Pan and Seshadri [17, 21] applied the m_a multiplier to various types of practical mechanical components.

3.6 Generalized Two-Bar Method

The two-bar method proposed by Seshadri and Adibi-Asl [22] invoking the concepts of equivalence of "static indeterminacy" that relates a multidimensional component configuration to a "reference two-bar structure", in actual method the areas of both the reference bars in the reference two bar structure is assumed to be equal. In the following

Faculty of Engineering and Applied Science, Memorial University.

section the two-bar method is more generalized by assuming unequal areas ($A_1 = X A_2$) and variable lengths ($L_1 = \lambda L_2$). A general pressure component can be related to a two bar structure as shown in Fig. 3.2.

For the general mechanical components from the integral mean of yield criterion can be expressed as

$$\int \mu^{0} \left(f(\bar{s}_{\theta}^{0}) + (\varphi^{0})^{2} \right) dV = 1 \qquad (3.26)$$

where $\tilde{s}^{\sigma}_{\theta}$ is the statically admissible deviatory stress for impending plastic flow, and ϕ^{σ} is the point function that takes on a value of zero if $\tilde{s}^{\sigma}_{\theta}$ is at the yield and remains positive below yield. Using Eq. (3.7)

$$m^{0} = \frac{\sigma_{y} \sqrt{A_{1}L_{1} + A_{2}L_{2}}}{\sqrt{\sigma_{1}^{2}A_{1}L_{1} + \sigma_{2}^{2}A_{2}L_{2}}}$$
(3.27)

It is already shown by Reinhardt and Seshadri that m^0 is an upper bound except at the limit state. The classical lower bound multiplier (m_ℓ) is given by

$$\eta_L = \frac{\sigma_y}{\sigma_y}$$

It is assumed that L1<L2, A1= XA2, as shown in Fig.3.2.

$$\frac{m^0}{m_L} = \frac{\sigma_1 \sqrt{A_1 L_1 + A_2 L_2}}{\sqrt{\sigma_1^2 A_1 L_1 + \sigma_2^2 A_2 L_2}}$$

$$\frac{m^0}{m_L} = \frac{\sigma_1 \sqrt{XL_1 + L_2}}{\sqrt{\sigma_1^2 XL_1 + \sigma_2^2 L_2}}$$

Taking σ_2^2 common from the denominator

$$\frac{m^{0}}{m_{L}} = \frac{\sigma_{1}\sqrt{XL_{1}+L_{2}}}{\sigma_{2}\sqrt{\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}XL_{1}+L_{2}}}$$
(3.29)

We know that $\frac{L_2}{L_1} = \frac{\sigma_1}{\sigma_2}$ since E₁=E₂.

Substituting these values back in equation (3.29)

Taking $L_1/L_2=\lambda$, clearly $\lambda \le 1$ for the range of pressure components.

$$\frac{n^0}{n_{\perp}} = \frac{1}{\sqrt{\lambda}} \sqrt{\frac{X\lambda + 1}{X + \lambda}}$$
(3.30)

From the equilibrium consideration $P=\sigma_1A_1+\sigma_2A_2$

$$P = (\sigma_i A_i + \sigma_j A_i)$$

$$P_k = (A_i + A_2)\sigma_j$$

$$m = \frac{P_i}{(\sigma_i A_i + \sigma_j A_i)}$$

$$m = \frac{(X + 1)\sigma_j}{(\sigma_i X_i + \sigma_j)}$$
(3.31)

Dividing Eq. (3.27) by Eq. (3.31)

Faculty of Engineering and Applied Science, Memorial University.

$$\frac{m^0}{m} = \frac{\left(\frac{\sigma_x \sqrt{A_t L_1 + A_2 L_2}}{\sqrt{\sigma_1^2 A_t L_1 + \sigma_2^2 A_2 L_2}} \right)}{\left(\frac{(X + 1)\sigma_x}{\sigma_1 X + \sigma_2} \right)}$$
$$\frac{m^0}{m} = \frac{(\lambda + X)}{(1 + X)} \sqrt{\frac{L_2}{L_1}} \sqrt{\frac{X + \frac{L_2}{L_1}}{\frac{L_2}{L_2} X + 1}}$$

The above equation is similar to Eq. (3.29) with an extra term of $(\lambda+X)/(1+X)$ the equation then becomes:

$$\frac{m^{0}}{m} = \frac{(\lambda + X)}{(1 + X)\sqrt{\lambda}} \sqrt{\frac{X\lambda + 1}{X + \lambda}}$$
(3.32)

The parameters m^0/m and m^0/m_L are useful for characterizing the state of static indeterminacy a component undergoing plastic flow.

Eq. (3.32) can be rewritten as follows:

$$\frac{m}{m^0} = \frac{(1 + X)\sqrt{\lambda}\sqrt{X + \lambda}}{(X + \lambda)\sqrt{X\lambda + 1}}$$
(3.33)

The value of 'X' for which the function m/m^0 is extreme can be obtained as follows:

$$\frac{d\binom{m}{m^{\delta}}}{dX} = 0$$

$$1 - \frac{(1+X)\lambda}{2(X\lambda+1)} - \frac{(1+X)}{2(X+\lambda)} = 0$$

$$(\lambda^{2} - 2\lambda + 1)X = \lambda^{2} - 2\lambda + 1$$

which leads to X = I, Therefore substituting X = I into Eq. (3.30) and Eq. (3.33) gives the scaling equations as :

Faculty of Engineering and Applied Science, Memorial University.

$$\frac{m_{Comp}^0}{m_{L,Eoup}} = \frac{m_{Ror}^0}{m_{L,Ror}} = \frac{1}{\sqrt{\lambda}}$$
(3.34)

$$\frac{m_{Comp}^0}{m_{Comp}} = \frac{m_{hw}^0}{m_{hw}} = \frac{\lambda + 1}{2\sqrt{\lambda}}$$
(3.35)

These equations are similar to those proposed in the 2-bar method; hence the assumption of equal areas is proven to be valid.

3.7 ma Tangent Method

The m_n Tangent Method proposed by Seshadri and Hossain [4] is an extension of the m_n method of analysis. The method enables evaluation based on a single linear elastic analysis or on an assumed statically admissible stress field. The formulation of the method is based on the variational principles in limit analysis.

3.7.1 The m_{α} tangent

The *m*_t multiplier method was developed on the basis of variational concepts in plasticity. The method has explicit dependency on the upper bound multiplier, *m*⁺, and the classical lower bound multiplier, *m*⁺, m. The upper bound multiplier, *m*⁺ depends on the entire stress distribution in a component or structure where as *m_t* depends on the magnitude of maximum stress. Therefore, for components with sharp notches and eracks the value of *m*⁺, *m*₁ will be high due to reserve of peak treases.

With respect to Fig.3.3, the following can be stated:

- When m→m_L, the domain of statically admissible m⁰ is bounded by the 45-deg (R⁰ (max)) line and the positive x-axis.
- When m→m⁰, the domain of the statically admissible m⁰ is represented by the line m = m⁰.

Faculty of Engineering and Applied Science, Memorial University.

- The exact solution (m) locus would lie somewhere between the positive x-axis and the 45-deg line (R⁰ (max))
- The tangent to the R_a = 1 curve at the limit state (m_L = m⁰ = m) will locate the m_a tangent, which can then be used to estimate the multiplier m.

The determination of m_u tangent is as follows. Eq. (3.24) describes R_u as a function of the two variables, R^2 and ζ_u where $\zeta = m^2 / m_L$. For $R_u = 1$, Eq. (3.24) can be represented by a curve in two-dimensional space as shown in Fig. 3.3. The slope of the tangent at the limit state, where $m_u = m_L = m_L$ can be obtained as:

$$\frac{dR_a}{d\zeta} = 1 - \frac{1}{\sqrt{2}}$$
(3.36)

Therefore, the slope of the tangent $(R_u^{\tau} = 1)$ line at the limit state is $tan(\theta) = 0.2929$. Where θ is the angle made by m_{σ} tangent with ζ axis.

Figure 3.3 m, tangent construction [4]

Faculty of Engineering and Applied Science, Memorial University.

The equation corresponding to $R_a^T = 1$ can be obtained as:

$$\frac{m^0}{m} = 1 + (\zeta - 1) \tan(\theta) \qquad (3.37)$$

The exact limit load multiplier (m) for most of the practical components and structures being analyzed is not known a priori. For the m_e -tangent method, R^2 can be defined by making use of the tangent $(R_e^2$, line in Fig. 3.3) for any value of C_e Boh R^2 and ζ are greater than one, except at the limit state for which $R^2 = \zeta = 1$. In this method it is assumed that the reduction of m^2 along the $R_e^2 = 1$ trajectory implicitly accounts for the reference volume. Therefore, m^2 will converge to the exact multiplier as the trajectory approaches to the origin.

3.7.2 Blunting of Peak Stresses

Secondary and peak stresses are set up by redundant kinematical constraints (or static indertimized) in a component. ASME Boiler and pressure Vessel codes [2,3, 24] explicitly recognize these stresses are related to constraint effects. Fig. 3.4 shows the stress distribution in the ligament adjacent to the notch fip, where x-axis represents the distance ahead of the notch fip, and y-axis is the equivalent stress. As can be seen from the figure, the magnitude of the equivalent peak stress (σ_0) at the notch tip is considerably high; however, it is assumed that the peak stresses are very localized and that the following expression is valid [24]:

$$\int \sigma_F dA = 0$$
 (3.38)

where A is the representative area on which σ_F acts.

With respect to constraint map, $R_a^f = 1$ line can be identified as shown in Fig. 3.3. This line is tangential to the R_a^{μ} 1 curve at the origin $(m^2/m-1)$, $m^2/m_i^{\mu-1})$. The curve $\frac{m^2}{2\sqrt{\lambda}}$ for reference two-bar model (TBM) can also be located as shown in Fig. 3.3.

Faculty of Engineering and Applied Science, Memorial University.

3.7.3. Significance of $\zeta^* = 1 + \sqrt{2}$

The point D (Fig. 3.3) can be determined by finding the intersection of the $R_a^T = 1$ line and the reference two-bar model equation, i.e.,

$$\frac{m^0}{m} = 1 + (\zeta - 1) \tan(\theta) = \frac{1 + \lambda}{2\sqrt{\lambda}} \qquad (3.39)$$

Where $\lambda = \frac{1}{\zeta^2}$ and $\tan(\theta) = 1 - \frac{1}{\sqrt{2}}$.

The intersection point worked out to be $\zeta^* = 1$ and $1 + \sqrt{2}$. The $R'_z = 1$ line represents a combination of primary and secondary stresses that exist in the pressure components. On the other hand, the TBM trajectory represents the combination of primary, secondary and peak stresses. Therefore, at point D the peak stresses are negligible (theoretically equal to zero).

3.7.4 The General Procedure

Once the $R_a^T = 1$ line is identified, the m_a^T value can be readily estimated by the relationship.

$$m_a^T = \frac{m^9}{1 + 02929(\zeta - 1)}$$
(3.40)

where $\zeta' = m^0 / m_L$.

The slope of the $R_{u}^{T} = 1$ line is equal to $\tan(\theta) = 1 - \frac{1}{\sqrt{2}}$. The value of m^{θ} and ζ can be determined from statically admissible distributions obtained from liner elastic FEA.

Two cases are considered next:

Case-I: $\zeta \leq 1 + \sqrt{2}$ (negligible peak stresses)

For this case, point A (Fig. 3.3) is assumed to lie on the $R_a^T = 1$ line. The value of m_a^T can be obtained from Eq. (3.45). This case usually applies to well-designed pressure components with gentle geometric transitions.

Case-II: $\zeta \ge 1 + \sqrt{2}$ (presence of peak stresses)

This case applies to well-designed components that develop flaws or cracks in service, or components with sharp notches. The aim here is to blant the peak stresses prior to evaluating m_{μ}^{r} . With respect to Fig. 3.3, the initial linear elastic FEA locates point *B* on the $R_{\mu}^{r} = 1$ line and point *B* on the TBM locus corresponding to $\zeta_{\mu}^{r} = m_{\mu}^{+}/m_{e,r}$. The subscript u^{rr} refers to the initial points *B* on *B*. The calculation procedure is as follows:

- 1. Perform a linear elastic analysis.
- Locate point B and B'. Point B represents the combination of primary and secondary stresses where as point B' represents the combination of primary, secondary and peak stresses.

Faculty of Engineering and Applied Science, Memorial University.

 Construct a horizontal line from point B to B" signifying an invariant m^b_i (blunting of peak stresses). Designate the value of m^b/m_L at B" as \(\xi_f\), which can be obtained by solving the equation

$$\frac{m^{0}}{m} = 1 + 0.2929 (\zeta_{i} - 1) = \frac{1 + \zeta_{j}^{2}}{2 \zeta_{i}}$$
(3.41)

The roots of Eq.(3.41) are

$$\zeta_{f} = (1+C) + \sqrt{(1+C)^2 - 1}$$
 (3.42)
where $C = 0.2929 (\zeta_{i} - 1)$

4. The value of m_a^T can be evaluated by the equation

$$m_{\alpha}^{T} = \frac{m_{i}^{0}}{1 + 02929 (\zeta_{T}^{\prime} - 1)}$$
(3.43)

For some geometric transitions for which $\zeta > I + \sqrt{2}$, redistribution of secondary stresses could occur along with peak stresses. In such cases, the value of m_i^k is not constant during the blunting of peak stresses, and there is a gradual reduction in its magnitude. There causes are usually attributed to components undergoing highly localized plastic flow such as beam and firme structures

3.8 Elastic Modulus Adjustment Procedure (EMAP)

The aim of EMAP is to establish an inelastic-like stress field by modifying the local eastic modulus in order to obtain the necessary stress relativitudino [125]. Jones and Dhalla [26] were one of the earliest users of EMAP. Marriott [27] developed an iterative procedure for estimating lower-bound limit loads on the basis of linear elastic FEA by generating statically admissible stress fields and using them in coojunction with established theorems of limit analysis. Seshadri and Fernando [28] made use of the elastic modulus adjustment procedure to determine lower bounded limit loads by adopting reference stress concept in creep design [29]. Their technique, called the Reistribution

Faculty of Engineering and Applied Science, Memorial University.

Node (R-Node) Method, is based on two linear elastic FEA in which the load control location (R-Nodes) are determined and using stresses in these locations, the limit load of the component will be achieved.

Mackenzie and Boyle [30] utilized the clastic modulus adjustment proceedure suggested by Marriott [27] and Schahrl [31], named as the clastic compensation method, (ECM), and obtained for every iterations lower and upper-bound limit loads by invoking the classic theorems of limit analysis. The ECM procedure has been used to estimate the lower and upper bound limit loads for different pressured components, which are available in Mackenzie et al. [32] and Boyle et al. [33] The method has been also applied for shakedown analysis by Hamilton et al. [34] and Nadarajih et al. [35]. Ponter et al. [36] developed a formal basis for the classic modulus adjustment and related procedures.

Numerous sets of statically admissible and kinematically admissible distributions can be generated using the EMAP, which enable calculation of both lower and upper bounds limit loads. The elastic modulus of each element in the linear elastic finite element scheme is modified as

$$E^{i+1} = \left(\frac{\sigma_{ref}^{i}}{\sigma_{eq}^{i}}\right)^{q} E^{i} \qquad (3.44)$$

where q is the elastic modulus adjustment parameter, σ_{rq} is the reference stress [3], σ_{rq} is the equivalent stress and "r" is the iteration index (*i*=1 for the initial elastic analysis). Where,

$$\sigma_{rqr}^{i} = \sqrt{\frac{\frac{\hbar}{2}\sigma_{k}^{2} V_{k}}{V_{T}}}$$
(3.45)

This formula describes how the elastic modulus at a location with the equivalent stress σ_{-} (e.g., the von Mises equivalent stress) is updated from the i^{ab} to the $(i+1)^{ab}$ elastic

Faculty of Engineering and Applied Science, Memorial University.

iteration. This procedure continued until suitable convergence of a subsequent iteration is achieved. In this research a 'q' value of 0.1 is used for the EMAP, ensuring a slow but less fluctuating convergence [36]. The same 'q' is used for all the problems.

3.9 Non-linear Analyses

A system of nonlinear equilibrium equations can be written as

$$\{F\} = [K][u]$$
 (3.46)

where [K] is stiffness matrix. The nonlinearity occurs in the stiffness matrix [37] and is a function of nonlinear displacement $\{u\}$ and load $\{F\}$. therefore, Eq. (3.46) can be rewritten as a general form, i. e.,

$$\{F\} = [K(\{u\}, \{F\})][u]$$
 (3.47)

The solution of this nonlinear Eq. (3.47) can be obtained by one of the following procedures:

- · Incremental procedure
- · Iterative procedure
- Mixed procedure

3.9.1 Incremental Procedure

This procedure is similar to likely's method of solving the differential equations. In this procedure the total load is divided into a number of load increments $\{\Delta F_i\}$, and it is applied to the system incrementally. The stiffness matrix $\{K\}$ is assumed to be constant throughout each increment. Therefore, the equilibrium equation will be linear. The solution for each load step is obtained as an increment of the displacement $\{\Delta w_i\}$, and the coll displacements will be the summation of this increment displacement solution. At

Faculty of Engineering and Applied Science, Memorial University.

each increment the stiffness matrix is calculated using the values of $\{\Delta F_i\}$ and $\{\Delta u_i\}$. After application of the given increment (i) the load and displacement are given as

$$\{F_i\} = \{F_0\} + \sum_{j=1}^{i} \{\Delta F_j\}$$
 (3.48)

$${u_i} = {u_0} + \sum_{j=1}^{i} {\Delta u_j}$$
 (3.49)

where $\{F_{n}\}$ and $\{\mu_{n}\}$ are the values of load and displacement obtained from an initial equilibrium state, which usually corresponds to the condition before load application [38]. For the next iteration (*i*+1), the relation between load and displacement can be determined from the following equation

$$\{F_{i+1}\} = [K][u_{i+1}]$$
 (3.50)

The incremental procedure is repeated until the total load reaches to its final value.

3.9.2 Iterative Procedure

This procedure is similar to the Newton-Raphon procedure. In this iterative proceedure the total load, $\{F\}$, is fully applied to the body in each iteration. Therefore the equilibrium equation is not toreasmly satisfied dirating the iterations. After each iteration, the part of the total load that is not balanced is calculated and used in the next step to compute an additional increment of displacement [37]. For f^{th} iteration, an increment for the displacement is computed as

$$\{F_{\mu}\} = [K_{i+1}] \{\Delta u_i\}$$
 (3.51)

The procedure is repeated until the unbalanced loads become zero or within a suitable convergence range.

Faculty of Engineering and Applied Science, Memorial University.

3.9.3 Mixed Procedure

This procedure is based on a combination of incremental and iterative procedures. The load is applied in an incremental manner, but after each increment successive iterations are applied to achieve more accurate results.

In this research, the results obtained from the nonlinear analysis are taken as the actual limit load multipliers for comparison purposes. In the non-linear analysis the elastic perfectly plastic metral models are used for the calculation of limit loads. The nonlinear analysis is done on the same model with the same kind of loading with increased magnitude. The unconverged time step is taken as the limit multiplier of the component with that particular loading condition.

3.10 Closure

An overview of the development of different multipliers is given in this chapter. A detailed discussion on both m_a and m_a -tangent methods have been done. In this chapter, A detailed discussion on both m_a and m_a -tangent methods in power valid. The choice of reference volume plays an important role in finding out the correct estimates of limit loads. Generally for the component for which $\zeta > 1 + \sqrt{2}$, finding the limit load estimates require the proper estimation of reference volume as these components have highly localized plastic regions being developed leading to larger dead volumes. In the coming chapter methods are developed which will predict the lower bound limit loads of general components or structures with the help of a systematic approach of finding reference volume.

CHAPTER 4 ELASTIC REFERENCE VOLUME METHOD

4.1 Introduction

In his Chapter the reference volume concepts are introduced. *Elastic reference volume method* for reference volume correction while finding out limit loads in the components or structures are presented. These reference volume correction concepts are used in combination with *m_a* Tangent method to obtain the lower bound limit load of general component or structure. The *Elastic Reference Volume Method* proposed in this paper, derival in sorth of more than the lower bound limit load of general derival in sorth from the pressure bulb concepts of soil mechanics [39]. In this method reference volume effect will be corrected based upon the maximum stress developed in the content. The proposed method is also tested on a range of components and results obtained net discussed.

4.2 Reference volume concept

It is well known that at limit load state of a component/structure, there are some regions that do not participate in inelastic action (dead volumes) and may remain rigid or elastic. On the other hand, the remaining volumes are directly active in plastic action (reference volume) are the only regions that carry the external loads at the limit state.

Figure 4.1 Cylinder and Square prism with a circular hole [40]

As schematically presented in Fig. 4.1, plastic spread at the collapse mechanism of an square prism with a central hole subjected to the internal pressure is a good example. The

Faculty of Engineering and Applied Science, Memorial University.

shaded regions in Fig 4.1, represents the dead volume. The remaining region is the reference volume.

In the reference volume approach, it is assumed that the plastic collapse occurs only over a kinematically active region of the mechanical component or structure. Clearly, m^0 (or the initial linear density $m_i^0 = m^0 = m^0$) will be significantly overestimated if it is based on the total volume V_T . The concept of reference volume has been introduced to identify the "kinematically active" region of the component or structure that participates in plastic action.

Consider a component subjected to arbitrary loading condition, Fig. 4.2. The component is divided into two regions: (1) reference volume (P_{δ}) , which is kinematically active volume; and (2) the dead volume (P_{0}) . It means only some portion of the total component takes part in plastic action, while the remaining does not. If V_{F} is the total volume thus,

$$V_{\tau} = V_{s} + V_{m}$$
 (4.1)

where $V_{\bar{R}}$ is the reference volume, and V_D is the volume of the dead zone in the component.

Figure 4.2 Total, Reference and Dead Volumes

Faculty of Engineering and Applied Science, Memorial University.

Therefore, the multiplier m^0 , Eq. (3.10), can be written in terms of the reference and the dead volume as

$$\begin{split} m^{k} = \sigma_{\nu} \frac{\sqrt{\int_{e_{\nu}}^{e_{\nu}} (c_{n} / \sigma_{n}) dV + \int_{e_{\nu}}^{e_{\nu}} (c_{n} / \sigma_{n}) dV}}{\sqrt{\int_{e_{\nu}}^{e_{\nu}} \sigma_{e_{\nu}} dV + \int_{e_{\nu}}^{e_{\nu}} \sigma_{e_{\nu}} dV}} \\ m^{k} = \sigma_{\nu} \frac{\sqrt{\int_{e_{\nu}}^{e_{\nu}} (\sigma_{\nu} / E, \sigma_{n}) dV + \int_{e_{\nu}}^{e_{\nu}} (\sigma_{\nu} / E, \sigma_{n}) dV}}{\sqrt{\int_{e_{\nu}}^{e_{\nu}} \sigma_{\nu} / E, VV + \int_{e_{\nu}}^{e_{\nu}} (\sigma_{\nu} / E, V) V}} \end{split}$$
(4.2)

If we assume that the dead zone has no plastic flow occurring, then Eq. (4.2) can be simplified as

$$m^{\dagger}(V_{\chi}) = \sigma_{\chi} \frac{\sqrt{\int_{\tau_{\chi}}^{\tau} dV}}{\sqrt{\int_{\tau_{\chi}}^{\tau} \sigma_{\chi}^{\dagger} dV}} = \sigma_{\chi} \frac{\sqrt{\sum_{q=1}^{K} V_{q}}}{\sqrt{\sum_{q=1}^{K} \sigma_{qq}^{2} V_{q}}}$$
(4.3)

The magnitude of the upper bound multiplier, m^0 , would therefore depends on the reference volume, $V_{g,i}$ where

$$V_{R} = \sum_{q=1}^{k} \Delta V_{q} \qquad (4.4)$$

In order to identify the reference volume V_{β} and multiplier with reference volume correction $m^{0}(V_{\beta})$, two methods are currently being proposed.

4.3 Elastic Reference Volume Method (ERVM)

The method is named elastic reference volume method as we will be using the elastic stress profile of a component as obtained from the EMAP iterations to define the reference volume and dead volume. This method derived its roots from the pressure bulb concepts which are generally used in soil mechanics. These concepts are covered by the strength of the strengt

Faculty of Engineering and Applied Science, Memorial University.

Smith [39], Wilun and Starzewski [41], and Helwany [42]. In the Pressure Bulb theory, using Boussinesq [43] equations, six stress components can be determined that act at a point in a semi-infinite elastic medium due to action of a vertical point load applied on the horizontal surface of the medium.

The expression for the vertical stress is given as follows:

$$\sigma_z = \frac{3P}{2\pi} * \frac{z^3}{(r^2 + z^2)^{5/2}}$$
(4.5)

where P = Concentrated load

$$= \sqrt{x^2 + y^2} =$$
 Radial distance from point of application

The expression has been simplified to:

$$\sigma_z = K * \frac{P}{z^2}$$
(4.6)

where K is an influence factor. Values of K against values of r/z are shown in Fig. 4.3

Faculty of Engineering and Applied Science, Memorial University.

This method is only applicable for point load, which is a rare occurrence in soil mechanics. Steinbrenner [44] developed a method for finding out the vertical stress increment under a foundation of length L and width B exerting a uniform pressure p on the soil. The vertical stress increment due to the foundation at a depth z below one of the coments is given by expression:

$$\sigma_z = p \times I_{\sigma}$$
(4.7)

where I_{a} is an influence factor depending upon the relative dimensions of $L_{a}B$ and z. I_{a} can be evaluated by the Boussinesq theory and values of this factor were prepared by Fadum [45]. The variation of influence factor with m=B/z and n=L/z are shown in Fig. 4.4.

Faculty of Engineering and Applied Science, Memorial University.

If points of equal pressure are plotted on a cross section through the foundation, a diagram of the form shown in Figs 4.5 A and 4.5 B is obtained. These diagrams are known as pressure hults and helpful in determining out vertical stress at points below a foundation that is of a regular shape. The bulb of pressure for a square footing is obtained by assuming that it has the same effect on soil as that of a circular footing of a same area. In the case of a restangular footing the bulb pressure will vary at cross sections taken along the length of the foundation, but the vertical stress at points below the center of such afondation can still be obtained from the charts by either one of the two following ways:

- (i) Assuming that the foundation is a strip footing or
- Determining values for both the strip footing case and the square footing case and combining them by proportioning the length of the two foundations.

Figure 4.5 Bulbs of Pressure for vertical stresses [44].

It is sometimes necessary to evaluate the shear stresses beneath a foundation in order to determine a picture of the likely overstressing in the soil. Jurgenson [46] obtained

Faculty of Engineering and Applied Science, Memorial University.

solutions for the case of the circular footing and for the case of a strip footing (Fig.4.6.). It may be noted that, in case of a strip footing, the maximum stress induced in the soil β_{17} , this value occurring at points lying on a semi-circle of diameter equal to the foundation with B (diameter in circular foundation and width in rectangular foundation). Hence the maximum shear stress under the center of a continuous foundation occurs at a depth of B2 benchm the center.

Figure 4.6 Bulbs of Pressure for shear stresses [46].

From a bulb of pressure one has some idea of the depth of soil affected by a foundation. From the plots it can be seen that significant stress values go roughly to 2.0 times the width of the foundation.

4.3.1 Cut-off Stress

Finding the elastic reference volume in mechanical components involves finding the volume in which an effective stress profile is acting. According to Boussinseq and Jurgenson theories a limit of 5% of the applied load can be used as the limit for finding out the active volume under the foundation. To extend these theories to the mechanical

Faculty of Engineering and Applied Science, Memorial University.

components an Cut-off Stress (σ_a) is proposed which is the ratio of the equivalent stress to the maximum stress.

$$\tau_{ci} = \frac{\sigma_{cq}}{\sigma_{max}}$$
(4.8)

Different precentages of eut-off are studied and finally 5% is selected due to consistancy of lower boundedness. The other percentages are presented in plots for all the examples. The choice of the equivalent stress will include the effect of both the nominal and shear stresses into the analysis. By knowing the cut-off stress and by using multiplier (m^3) vs. sub-volume ratio (\vec{F}_{2}) plot, the actual volume that participates in the stress distribution can be predicted. The volume so obtained is the *Elastic reference volume*. Plots for various components are shown in coming sections. In these plots, the variation in contribution of *Elastic Reference* Volume with various percentages of *ut-off* stresses is shown. The contribution from the day down in is shown as zero.

4.4 m° Vs. V. plot

After the first linear elastic FEA run, the elements are sorted in the descending order of there equivalent stresses i.e., $\sigma_{a_{1}}^{i} > \sigma_{a_{1}}^{i} > \sigma_{a_{2}}^{i} > \dots > \sigma_{a_{1}}^{i}$ [47]. The corresponding subvolumes are calculated. The multiplier m^{b} is calculated using the following equation:

$$m^{0} = \frac{\sigma_{y} \sqrt{\sum_{q=1}^{k} V_{q}}}{\sqrt{\sum_{q=1}^{k} \sigma_{q}^{2} V_{q}}}$$
(4.9)

Using the Eq. (4.9) the different m^{0} values for different sub-volumes will be calculated as shown below.

$$m^{0}(V_{\eta = 1}) = \frac{\sigma_{y}\sqrt{V_{1}}}{\sqrt{\sigma_{1}^{2}V_{1}}} = m_{L}$$
 (4.10)

Faculty of Engineering and Applied Science, Memorial University.

$$m^{0}(V_{\eta=2}) = \frac{\sigma_{y}\sqrt{V_{1}+V_{2}}}{\sqrt{\sigma_{1}^{2}V_{1}+\sigma_{2}^{2}V_{2}}}$$

(4.11)

In a more generalized form

$$m^{0}(V_{qsk}) = \frac{\sigma_{\gamma}\sqrt{V_{1} + V_{2} + \dots + V_{k}}}{\sqrt{\sigma_{1}^{2}V_{1} + \sigma_{2}^{2}V_{2} + \dots + \sigma_{k}^{2}V_{k}}}$$
(4.12)

If the "k" in Eq. (4.12) is the last element in the sorted elements of a component then $m^{0}(V_{g+1}) = m^{0}(V_{T})$. These m^{0} values are then plotted against the sub-volume ratio (i.e., \overline{V}_{c}).

$$\overline{V}_{\eta} = \frac{\sum_{q=1}^{k} V_{\eta}}{V_{T}}$$
(4.13)

The m^6 vs. \vec{V}_{q} plot of a plate subjected to concentrated load with different cut-off percentages is presented in Fig. 4.9.

4.5 General Procedure for Finding Lower Bound Limit Loads Using Elastic Reference Volume Method

This section explains how to apply the above explained methods to any general component.

- Initially a linear elastic finite element analysis is performed on a given component.
- Once the equivalent stresses are obtained, the elements are arranged in the descending order of there equivalent stresses. Then the m⁰ value is computed with the increasing sub-volume till the total volume.
- These m⁰ values are plotted against the sub-volumes ratios V₀.
- From the plot using cutoff stresses the dead and reference volumes are identified. Elements having less than 5% cutoff stress are considered as dead volume and the

Faculty of Engineering and Applied Science, Memorial University.
remaining elements together are considered as the reference volume. Corresponding to this reference volume, the corrected reference volume multiplier $m^0(U_{w})$ is obtained from the plot.

- Using the corrected reference volume multiplier m^b(V_{BL}), and lower bound multiplier m^t_k the value of lower bound limit load multiplier m^t_k(V'_{BL}) should be calculated as explained in section 3.7.4 in chapter 3.
- The above steps are continued using the EMAP iterations until the converged solution are obtained. The results of fifty EMAP iterations and convergence criteria are provided in appendix C.

An example of a rectangular plate subjected to a uniformly distributed load on its top corner is studied in the following section. This problem is synonymous to semi infinite soil sample under a strip foreing. The schematic of the problem is shown in Fig. 7. Since it's a strip loading, 2D plain strain analysis along a vertical symmetric axis through the footing and fixed bottom is performed. The footing load is applied as a Pressure of 100 KPa.

Faculty of Engineering and Applied Science, Memorial University.

Figure. 4.8 Stress profile of plate with concentrated load

To avoid the influence of the constrain conditions sufficiently large model is considered. The young's modulus of 200 GPa and a poisons ratio of 0.47 were used. By considering 5% of peak stresses as the curoff the contours of the stresses are plotted. The stress contours generated from initial linear elastic EFA Fig. 4.9 matches closely with the theoretical stress contours in Fig. 4.5 and Fig. 4.6.The volume covered by these contours represents the active volume which is considered to be the *elastic reference volume*. Whereas the empty spaces represent the *Dead Fohme*. These volumes can be easily obtained from m^6 vs. $\overline{F_q}$ plot as explained in the section 4.5. The upper bound multiplier m^4 value obtained from first linear elastic run considering the total volume is 10.23 and the lower bound multiplier is 4.5.1. If these multipliers are used to compute m_s^2 its value is 7.47. It is slightly upper bounded when compared to the non linear analysis value of 7.45. With the elastic reference volume correction the new m^6 value is $m^4(v_{4b}) = 10.12$. The $m_s^4 v_{4b}$ is $2.6 v_{4b} v_{4b}$ who is bower bounded.

4.6 Application to General Components

4.6.1 Thick Walled Cylinder

A thick walled cylinder (Fig.4.10) with inside radius of R = 65 mm and thickness t = 25mm is modeled. An internal pressure of 50 MPa is applied. The material is assumed to be elastic-perfectly plastic. The modulus of elasticity is specified as 200CPa and the yield strength is assumed to 8300 MPa. For inducing a plastic flow state the Poisson ratio of 0.47 is used in elastic analysis. A 'q' value of 0.1 is used for the EMAP for ensuring a slow but less fluctuating convergence. The same 'q' value is used for all the problems. The geometry is modeled using Plance2 elements with plane strain consideration.

The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.11. Variation of $m^0 O'_{44}$) and $m^d_{\mu} O'_{540}$) with different iteration for thick walled evlinder are presented in Tab. 4.1 and Fig. 4.12.

Figure 4.10 Thick walled cylinder. (a) Geometry and dimensions (b) Typical finite element mesh with loading

As the thick walled cylinder problem is not supposed to have any dead volume effect, In Fig. 4.11 we can see that no correction has been applied it can also be seen from m^6 and $m^6 (T_{uv})$ columns of the Tab.4.1. both these values are equal. For the simplicity in comparison of various methods the results are presented at the equal interval sets and the raw data (i.e., m^6 and m, values) is presented in the appendix.

Ite	ration	m^0	m_L	$m^{\oplus}(V_{Re})$	$m_{\alpha}^{T}(V_{Re})$	m_{non}
	1	2.294	1.706	2.294	2.081	
	6	2.268	1.901	2.268	2.152	
	12	2.258	2.053	2.258	2.194	2.254
	18	2.255	2.142	2.255	2.223	
	25	2.255	2.199	2.255	2.244	

Table 4.1 Comparison of Various Multipliers of Thick Walled Cylinder (EMAP)

Faculty of Engineering and Applied Science, Memorial University.

Figure. 4.12 Variation of $m^0(V_{Bc})$ and $m_{ac}^T(V_{Bc})$ with iterations of Thick Walled Cylinder

4.6.2 Torispherical Head (TSH)

A torispherical head (Fig.4.13) with average diameter D=2000 mm, normalized spherical cap radius $R_1/D = 0.8$, normalized knuckle radius of $R_e/D = 0.12$ and normalized thickness of 1/D = 1/40, subjected to an internal pressure of 5 MPa is examined here. To avoid the discontinuity effect at the boundaries, the length of the cylindrical part (H) is specified as $H = 6\sqrt{D/t/2}$. The material is assumed to be classic-perfectly plastic. The modulus of elasticity is specified as 2x3GPa and the yield strength is assumed to be 2x62 MPa. The geometry is modeled using Plane82 elements with axi-symmetric consideration.

Figure 4.13. Torispherical Head (a) Geometry and dimensions (b) Typical finite element mesh with loading

The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.14. Variation of $n^a (\sigma_{4u})$ and $m_b^2 (\sigma_{4u})$ with different iteration for Torispherical Head are presented in Tab. 4.2 and Fig. 4.15. From the Fig. 4.14 it can be concluded that the torispherical head is a component without any dead volume effect in it. It can also be seen both m^a and $m^a (t'_{4u})$ columns of the Tab.4.2, as they are equal. For such components $m_b^2 (\sigma_{4u})$ calculated will be equal to the require m_b^2 .

Faculty of Engineering and Applied Science, Memorial University.

Iteration	m°	m_L	$m^0(V_{Re})$	$m_a^T(V_{Re})$	m_{xov}
1	3.029	1.458	3.029	2.303	
10	2.932	1.883	2.932	2.521	
20	2.893	2.211	2.893	2.654	2.808
30	2.879	2.415	2.879	2.732	
42	2.871	2.559	2.871	2.775	

Table 4.2 Comparison of Various Multipliers of Torispherical Head (EMAP)

4.6.3 Unreinforced Axi-symmetric Nozzle (URASN)

An unreinforced axi-symmetric nozzle (Fig.4.16) is examined here. Inner radius of the head is R=914.4 mm, and the nominal wall thickness is mm. Inside radius of the nozzle is r = 118.5.25 mm and nominal wall thickness is $t_r = 2.54$ mm. The required minimum wall thickness of the head and the nozzle are $t_r = 76.835$ mm and $t_m = 24.308$ mm, respectively. The material is assumed to be elastic-perfectly plastic. The modulus of elasticity is specified as 262 GPa and the yield strength is assumed to be 262 MPa. The geometry is molecule using PlaneS2 tenems with axi-symmetric consideration.

The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.17. Variation of $m^0 U_{40}$) and $m_s^2 U_{40}$) with different iteration for Unreinforced Axi-symmetric Nozzle are presented in Tab. 4.3 and Fig. 4.18. From the Fig. 4.17 it can be concluded that the unreinforced axi-symmetric nozzle is a component without any dead volume effect in it. It can also be seen that both m^3 and $m^2 U_{40}$, columns of the Tab.4.3 as they are equal.

Figure 4.16 Unreinforced Axi-symmetric Nozzle. (a) Geometry and dimensions (b) Typical finite element mesh with loading.

Figure. 4.17 Invariant m⁰ for Unreinforced Axi-symmetric Nozzle.

Table 4.3 Comparison of Various Multipliers of Unreinforced Axi-symmetric	Nozzle
for Elastic Reference Volume Correction (EMAP)	

Iteration	m^0	m_L	$m^0(V_{Re})$	$m_{\alpha}^{T}(V_{Ee})$	m_{ven}
1	1.870	0.922	1.870	1.444	
12	1.858	1.254	1.858	1.632	
24	1.850	1.388	1.850	1.691	1.773
36	1.842	1.473	1.842	1.723	
50	1.834	1.539	1.834	1.744	

4.6.4 Reinforced Axi-symmetric Nozzle (RASN)

A Reinforced Axi-symmetric nozzle (Fig.4.19) is examined here. The unreinforced nozzle, modeled in the previous example is reinforced according to ASME Code VIII Div.2, AD-560.1(a) of [24].The geometric transitions of the reinforcement are modeled with filler fadius, r_{-} = 10.312 mm, r_{-} = 83.312 mm and r_{+} = 115.214 mm. The other

dimensions include $T_1 = 54.61 \text{ mm}$ and $\theta = 45^\circ$. The distribution of reinforcement is bounded by the reinforcement zone boundary specified by circle of radius $L_2 = 14.51 \text{ mm}$. The other geometric dimensions are same are the previous example. The material is assumed to be classic-perfectly plastic. The modulus of elasticity is specified as 262. Of m and the yield strength is assumed to be 262 MPa. The geometry is modeled using Plast28 elements with Asi-symmetric consideration.

Figure 4.19 Reinforced Axi-symmetric Nozzle (a) Geometry and dimensions (b) Typical finite element mesh with loading

The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.20. Variation of $n^{\mu}(v_{4\nu})$ and $n^{\mu}_{\nu}(v_{4\nu})$ with different iteration for Reinforced Aix-symmetric Nozc2a are presented in Tab. 4.8 and Fig. 4.21. From the Fig. 4.20 it can be concluded that the reinforced axi-symmetric nozzle is a component without any dead volume effect in it. It can also be seen from m^5 and $m^0(v_{4\nu})$ columns of the Tab.44 as they are equal.

Figure. 4.20 Invariant m° for for Reinforced Axi-symmetric Nozzle.

Iteration	m°	m_L	$m^0(V_{Re})$	$m_{\alpha}^{T}(V_{Re})$	m_{non}
1	2.011	1.248	2.011	1.713	
3	2.006	1.351	2.006	1.762	
6	2.002	1.489	2.002	1.823	1.924
9	1.998	1.608	1.998	1.871	
14	1.993	1.764	1.993	1.922	

Table 4.4 Comparison of Various Multipliers of Reinforced Axi-symmetric Nozzle (EMAP)

4.6.5 Pressure Vessel Support Skirt (PVSS)

A Pressure Vessel Support Skin (Fig.4.22) is examined here. It's geometrically a cylinder attached to a cone. The top support ring is fixed to the rigid foundation. A blend radius is used at the cylinder-one-junction. The inner radius of cylinder $R_{em} = 1400 \text{ mm}$ and outer radius is $R_{em} = 1290 \text{ mm}$. The cone inner radius is $R_{em} = 1400 \text{ mm}$; the blend radius at the inner radius is modeled using fillet radius, r = 50 mm. The height of the cylinder portion is $h_c = 760 \text{ rm}$ and the total height of the pressure vessel support skirt is h = 1600 mm. The material is assumed to be classic-perfectly plastic. The modulus of elasticity is specified as 275.8 GPa and the yield strength is assumed to be 275.8 MPa. The bottom of the cylinder is subjected to an axial load of P = 77.362 MPa, and it is free to deflect and rotate. The geometry is modeled using Plane82 elements with Axisymmetric consideration.

The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.23. Variation of $m^0 \sigma_{kn}$) and $m_h^2 \sigma_{kn}^2$ with different iteration for Pressure Vessel Support Skitr at presented in Tab 4.5 and Fig. 4.24. From the Fig. 4.23 it can be concluded that the pressure vessel support skitr is a component without any dead volume effect in it. It can also be seen from m^2 and $m_h^2 O'_{kn}$) columns of the Tab.4.5 are varies can be constant of the transmission of the Tab.4.5 and Fig. 4.24.

Figure 4.22 Pressure Vessel Support Skirt. (a) Geometry and dimensions (b) Typical finite element mesh with loading

Table 4.5 Comparison of Various Multipliers of Pressure Vessel Support Skirt for Elastic Reference Volume Correction (EMAP)

Iteration	m°	m_L	$m^0(V_{Re})$	$m_a^T(V_{\rm Re})$	m_{vev}
1	3.614	1.522	3.614	2.583	
12	3.463	2.064	3.463	2.891	
24	3.377	2.427	3.377	3.032	3.161
36	3.325	2.640	3.325	3.094	
50	3.288	2.800	3.288	3.132	

Figure 4.23 Invariant m⁰ for Pressure Vessel Support Skirt

Figure 4.24 Variation of $m^{\theta}(V_{Bc})$ and $m_{a}^{T}(V_{Bc})$ with iterations of Pressure Vessel Support Skirt

4.6.6 Compact Tension (CT) Specimen

A Compact Tension Specimen (Fig.4.25) with a width $W = 100 \, \text{mm}$, height $H = 125 \, \text{mm}$, thickness $t = 3 \, \text{mm}$ and erack length $a = 46 \, \text{mm}$ is subjected to a tensile load of P = 108 N. The metrical is assumed to be elastic-perfectly platic. The modulus of elasticity is specified as 211 GPa and the yield strength is assumed to be 250 MPa. Due to symmetry in geometry and loading, only a half of the plate is modeled using PlaneS2 elements with plane stress with thickness consideration. Singularity elements are used around the erack-lip.

Figure 4.25 CT Specimen (a) Geometry and dimensions (b) Typical finite element mesh with loading

The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.26. Variation of $m^0 \sigma_{40}$) and $m_s^0 \sigma_{40}$) with different iteration for CT Specimem are presented in Tab. 4.6 and Fig. 4.27. From Fig. 4.26 it can be seen from m^1 and $m^0 (\tau_{40})$ columns of the Tab.4.6 the upper bound multiplier is corrected. Using this reference volume corrected multiplier $m_s^0 \sigma_{40}$ is calculated. The presence of the peak stresses in the CT Specimen is causing the lower bound multiplier in the first iteration to be bit conservative, but with the EMAP iterations the results seen to be converting to nonlinear malviss obtain.

Faculty of Engineering and Applied Science, Memorial University.

Figure 4.26 Variation of m^0 with various percentages of cut-off stress for CT Specimen

The time taken for the ERVM is 146 CPU units when compared to 186 CPU units for nonlinear analysis.

Iteration	m^0	m_L	$m^{\circ}(V_{Re})$	$m_{\alpha}^{T}(V_{Re})$	m_{son}
1	1.549	0.108	1.283	0.412	
5	1.395	0.162	1.334	0.543	
10	1.273	0.248	1.272	0.664	0.812
15	1.189	0.346	1.191	0.742	
21	1.115	0.462	1.124	0.791	

Table 4.6 Comparison of Various Multipliers of CT Specimen for Elastic Reference Volume Correction (EMAP)

4.6.7 Single Edge Notch Bend

A Single edge notch bend (Fig.4.28) with a span $S = 400 \,\text{nm}$, a width $W = 100 \,\text{nm}$, thickness $t = 3 \,\text{nm}$ and erack length $a = 50 \,\text{nm}$ is subjected to a point load of $P = 24 \,\text{KN}$. The material is assumed to be elastic-perfectly plastic. The modulus of elasticity is specified as 211 GPa and the yield strength is assumed to be 488.43 MPa. Due to symmetry in geometry and loading, only a half of the specimen is modeled using Plane82 elements with plane stress with thickness consideration. Singularity elements are used around the erack-tip.

The variation of the upper bound multiplier with various cut-off precentages for the first iteration is shown in the Fig. 4.29. Variation of $m^0 \sigma_{kn}$) and $m_b^2 (\sigma_{kn})$ with different iteration for Single Edge Notch Bend are presented in Tab. 4.7 and Fig. 4.30. From Fig. 4.29 it can be concluded that the single edge notch bend is a component with the dead volume effect. As can be seen from m^0 and $m^0 (\sigma_{kn})$ columns of the Tab.4.7 the upper bound multiplier is corrected. Using this reference volume corrected multiplier $m_c^2 (\sigma_{kn})$ is calculated. The presence of the peak stresses in the Single Edge Notch Bend is causing the lower bound multiplier in the first iteration to be bit conservative, but with the EMAP iterations there avoid seen to be converging to nonlinear analysis solution.

Faculty of Engineering and Applied Science, Memorial University.

The time taken for the ERVM is 250 CPU units when compared to 556 CPU units for nonlinear analysis.

Iteration	m	<i>m</i> ,	$m^{\circ}(V_{u_{e}})$	$m_{\alpha}^{T}(V_{\mu_{\alpha}})$	m
1	4 750	0.202	2.073	0.734	
5	3.632	0.287	2.204	0.922	
10	2.709	0.417	2.252	1.141	1.353
15	2.159	0.564	2.043	1.233	
20	1.843	0.712	1.831	1.264	

Table 4.7 Comparison of Vari	us Multiplier	s of Single	Edge Note	h Bend f	for Elastic
Reference Volume Correction	EMAP)				

4.6.8. Plate with Multiple Cracks

A plate with multiple cracks (Fig.4.32) has one horizontal crack (length 2a=20 mm) at the center and four cracks inclined at 45⁶ (length 2b=21.2 mm) symmetrically located on both sides of the horizontal and vertical lines of symmetry.

Faculty of Engineering and Applied Science, Memorial University.

The crack tips are spread vertically with c=20 mm and horizontally with d=40 mm. The Plate has a width W=100 mm and height H=200 mm, and is loaded by the tensile stress of $\sigma = 100$ MPa.

Figure 4.31 Plate with Multiple Cracks (a) Geometry and dimensions (b) Typical finite element mesh with loading

The material is assumed to be elastic-perfectly plastic. The modulus of elasticity is specified as 211 GP and the yield strength is assumed to be 250 MPa. Due to symmetry in geometry and loading, only a quarter of the specimen is modeled using Plane82 elements with plane atress with thickness consideration. Singularity elements are used around the crack-tip.

The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.32. Variation of $n^{0} \sigma_{(m)}$ and $n_{n}^{2} \sigma_{(m)}$ with different iteration for plate with multiple cracks are presented in Tab. 4.8 and Fig. 4.33. From Fig. 4.32 it can be concluded that the plate with multiple cracks is a component with the dead volume effect. As can be seen from m^{0} and $m^{0} \sigma_{(m)}$ columns of the Tab.4.8 the upper bound multiplier is corrected. Using this reference volume corrected multiplier $m_{\alpha}^{T}(V_{Re})$ is calculated.

Figure 4.33 Variation of $m^0(V_{Rc})$ and $m_a^T(V_{Rc})$ with iterations of Plate with Multiple Cracks

Faculty of Engineering and Applied Science, Memorial University.

With the EMAP iterations the results seen to be converging to nonlinear analysis solution. The time taken for the ERVM is 139 CPU units when compared to 175 CPU units for nonlinear analysis.

Iteration	m	m_L	$m^0(V_{\mathrm{Re}})$	$m_a^T(V_{Re})$	m_{vor}
1	2.359	0.197	2.314	0.752	
7	2.270	0.312	2.269	0.984	
14	2.167	0.484	2.165	1.203	1.362
21	2.059	0.645	2.058	1.312	
29	1.935	0.773	1.934	1.351	

Table 4.8 Comparison of Various Multipliers of Plate with Multiple cracks (EMAP)

4.6.9 Plate with a Hole

A Plate With a hole (Fig. 4.3 y) with the following dimensions are considered: Plate with 2W = 150 mm; length 2L = 300 mm; hole radius r = 23 mm. It is subjected to a tensil tool of P = 100 MP. The material is assumed to be elastic-perfectly platistic. The modulus of elasticity is specified as 152.95 GPa and the yield strength is assumed to be 131.90 MPa. Due to symmetry in geometry and loading, only a quarter of the plate is modeled using Planet2 elements with plane teres consideration.

The variation of the upper bound multiplier with various cut-off precentages is shown in the Fig. 4.35. Variation of $m^0 \sigma_{ka}$) and $m_a^0 \sigma_{ka}$) with different iteration for plate with hole are presented in Tab. 4.9 and Fig. 4.36. The Fig. 4.25 is can be concluded that the plate with a hole is a component without any dead volume effect in it. It can also be seen from m^0 and $m^0 (t_{ka})$ columns of the Tab. 4.9 as they are equal. The Plate with a hole is a good example for the noch problem, as this is a notch the result from the initial analysis is much closer to the non linear analysis results when compared to the crack problems. EMAP takes less number of iterations to converge. The time taken for the EVM is 7.4 CUV in its when compared to 190 CUV units for nonlinear analysis.

Faculty of Engineering and Applied Science, Memorial University.

Figure 4.34 Plate with a Hole (a) Geometry and dimensions (b) Typical finite element mesh with loading

Table 4.9 Comparison of Various Multipliers of Plate with a Hole for Elastic Reference Volume Correction (EMAP)

Iteration	m°	. m _L	$m^0(V_{\rm Re})$	$m_{\alpha}^{T}(V_{Re})$	m_{vor}
1	1.221	0.481	1.221	0.852	
2	1.216	0.496	1.216	0.863	
4	1.206	0.526	1.206	0.884	0.922
6	1.197	0.556	1.197	0.902	
8	1.188	0.584	1.188	0.911	

Figure 4.36 Variation of $m^0(V_{Rc})$ and $m_{\alpha}^T(V_{Rc})$ with iterations of Plate with a Hole

Faculty of Engineering and Applied Science, Memorial University.

4.6.10 Indeterminate Beam

An Inderminate beam (Fig.4.37) with length L = 508 mm; height h = 25.4 mm; is modeled. It is subjected to uniformly distributed load of P = 1.0 MPa. The material is assumed to be clastic-perfectly plastic. The modulus of elasticity is specified as 206.85 GPa and the yield strength is assumed to be 206.85 MPa. The beam is modeled using Plant2d elements with plane stress consideration.

Figure 4.37 Indeterminate Beam (a) Geometry and dimensions (b) Typical finite element mesh with loading

The variation of the upper bound multiplier with various cut-off preentages is shown in the Fig. 4.38. Variation of $m^{a}(\sigma_{ba})$ and $m_{a}^{a}(\omega_{ba})$ with different iteration indeterminate beam are presented in Tab. 4.10 and Fig. 4.39. From Fig. 4.38 it can be concluded that the indeterminate beam is a component with the deal volume effect. As can be seen from m^{b} and $m^{b}(V_{ba})$ columns of the Tab.4.8 the upper bound multiplier is corrected. Using this reference volume corrected multiplier $m_{a}^{b}(w_{ba})$ is calculated. EMAP takes less number of iterations to corrected multiplier $m_{a}^{b}(w_{ba})$ is calculated. EMAP takes less number of iterations to corrected. The intertaken for the ERVM is 550 CPU units when compared to 553 CPU units for nonlinear analysis.

Faculty of Engineering and Applied Science, Memorial University.

Iteration	m^0	m_{L}	$m^{\circ}(V_{Re})$	$m_a^T(V_{Re})$	m_{new}
1	2.649	0.613	2.522	1.454	
4	2.357	0.711	2.324	1.473	
8	2.124	0.837	2.121	1.471	1.543
12	1.988	0.951	1.985	1.514	
15	1.920	1.027	1.918	1.532	

Table 4.10 Comparison of Various Multipliers of Indeterminate Beam (EMAP)

4.6.11 Oblique Nozzle

An Oblique Nozzle (Fig.4.40) with length of cylinder $L_v = 2400 \,\text{mm}$ with an internal radius $R_v = 300 \,\text{mm}$ and length of the nozzle $L_v = 1200 \,\text{mm}$ height $R_v = 156.5 \,\text{mm}$ is and average thickness $t = 6 \,\text{mm}$ with four different nozzle angles $\theta = 30^\circ, 45^\circ, 60^\circ$ and 90° is been analyzed. The cap height of the cylinder cap $H_v = 175 \,\text{mm}$ and for the nozzle is $H_v = 106 \,\text{mm}$. The cylinder is mounted on supports which are separated by a distance of $S = 1600 \,\text{mm}$.

Figure 4.40 Schematic of Oblique Nozzle Geometry and dimensions

It is subjected to a uniformly distributed load of P = 3.0 MPa. The material is assumed to be elastic-perfectly plastic. The modulus of elasticity is specified as 108.08 GPa and the yield strength is assumed to be 339.40 MPa. The beam is modeled using solid 95 elements.

4.6.11.1 Nozzle Angle $\theta = 30^{\circ}$

The Finite Element mesh of oblique nozzle 30⁶ is presented in the Fig. 4.41. The variation of the upper bound multiplier with various cut-off percentages is shown in the Fig. 4.42. Variation of $m^0 U_{(k)}$) and $m_n^2 U_{(k)}$ with different iteration for oblique nozzle 30⁶ are presented in Tab. 4.11 and Fig. 4.43.

(Ъ)

Figure 4.41 Finite Element Mesh of Oblique Nozzle 30⁹ (a) Isometric View (b) Front View

Faculty of Engineering and Applied Science, Memorial University.

From Fig. 4.42 it can be concluded that the oblique nozzle 30° is a component with the dead volume effect. As can be seen from m^{+} and $m^{0}(T_{hc})$ columns of the Tab.4.11 the upper bound multiplier is corrected. Using this reference volume corrected multiplier $m_{a}^{c}(T_{hc})$ is calculated. The time taken for the ERVM is 3431 CPU units when compared to 5200 CPU units for nonlinear analysis.

Iteration	m°	m_{L}	$m^0(V_{\rm Re})$	$m_{\alpha}^{T}(V_{Bt})$	mass
1	1.867	0.127	1.514	0.483	
2	1.811	0.141	1.643	0.531	
4	1.698	0.171	1.642	0.602	0.712
6	1.589	0.201	1.571	0.652	
9	1.432	0.244	1.434	0.694	

Table 4.11 Comparison of	Various Multi	pliers of Oblique	Nozzle 30" (EMAP)
--------------------------	---------------	-------------------	-------------------

4.6.11.2 Nozzle Angle $\theta = 45^{\circ}$

The Finite Element mesh of oblique nozzle 45⁶ is presented in the Fig. 4.44. The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.45. Variation of $m^0(t_{12})$ and $m^2_u(t_{12})$ with different iteration for oblique nozzle 45⁶ are presented in Tab. 4.12 and Fig. 4.46.

From Fig. 4.45 it can be concluded that the oblique nozzle 45⁶ is a component with the dead volume effect. As can be seen from m^0 and $m^0 V_{\mu\nu}$ oolumns of the Tab.4.12 the upper bound multiplier is corrected. Using this reference volume corrected multiplier $m_a^* \sigma_{\mu\nu}^*$ is calculated. The time taken for the ERVM is 3228 CPU units when compared to 24300 CPU units for nonlinear analysis.

Faculty of Engineering and Applied Science, Memorial University.

(b)

Figure 4.44 Finite Element Mesh of Oblique Nozzle 45[®] (a) Isometric View b) Front View

Table 4.12 Comparison of Various Multipliers of Oblique Nozzle 45⁶ (EMAP)

Iterat	tion	m	m_L	$m^0(V_{Re})$	$m_a^T(V_{\rm Ee})$	m _{nen}
	1	2.400	0.242	2.362	0.864	
	2	2.364	0.263	2.344	0.903	
	4	2.288	0.304	2.283	0.971	1.072
	6	2.210	0.343	2.201	1.022	
	9	2.083	0.398	2.082	1.071	

4.6.11.3 Nozzle Angle $\theta = 60^{\circ}$

The Finite Element mesh of oblique nozzle 60° is presented in the Fig. 4.47. The variation of the upper bound multiplier with various cut-off precentages is shown in the Fig. 4.48. Variation of $\pi^{0} \overline{U}_{(k)}$ and $\pi^{2}_{\kappa} \overline{U}_{(k)}$ with different iteration for oblique nozzle 60° are presented in Tab. 4.13 and Fig. 4.49.

(b)

Figure 4.47 Finite Element Mesh of Oblique Nozzle 60⁰ (a) Isometric View b) Front View

Faculty of Engineering and Applied Science, Memorial University.

77.

From Fig. 4.48 it can be concluded that the oblique nozzle 60⁴ is a component with the dead volume effect. As can be seen from m^5 and $m^0 U'_{\mu\nu}$) columns of the Tab.4.13 the upper bound multiplier is corrected. Using this reference volume corrected multiplier $m_{\omega}^{*}U'_{\mu\nu}$) is calculated. The time taken for the ERVM is 3031 CPU units when compared to 23600 CPU units for nonlinear analysis.

Iteration	m	m_L	$m^0(V_{Re})$	$m_a^T(V_{\rm Re})$	m_{vov}
1	2.558	0.351	2.548	1.104	
4	2.476	0.420	2.467	1.202	
8	2.361	0.503	2.356	1.281	1.314
12	2.237	0.552	2.235	1.293	
15	2.141	0.594	2.140	1.304	

Table 4.13 Comparison of Varie	us Multipliers of Obli	que Nozzle 60°	(EMAP)
--------------------------------	------------------------	----------------	--------

Faculty of Engineering and Applied Science, Memorial University.

Figure 4.49 Variation of $m^{\theta}(V_{Re})$ and $m_{\sigma}^{T}(V_{Re})$ with iterations of Oblique Nozzle 60⁰

4.6.11.4 Nozzle Angle $\theta = 90^{\circ}$

The Finite Element mesh of oblique nozzle 90⁶ is presented in the Fig. 4.50. The variation of the upper bound multiplier with various cut-off percentages for first iteration is shown in the Fig. 4.51. Variation of $m^0 \hat{\sigma}_{W^0}$ and $m^2_{w} \sigma_{W^0}$ with different iteration for oblique nozzle 90⁶ are presented in Tab. 4.14 and Fig. 4.52.

From Fig. 4.51 it can be concluded that the oblique nozzle 90⁶ is a component with the dead volume effect. As can be seen from m^5 and $m^6 (U_{g_0})$ columns of the Tab.4.14 the upper bound multiplier is corrected. Using this reference volume corrected multiplier $m_a^* (U_{g_0})$ is calculated. The time taken for the ERVM is 2030 CPU units when compared to 22400 CPU units when also in a state of the the table of table of

As can be seen from the plots of the m^0 vs cut-off stress for the Oblique Nozzle problem, the reference volume of the oblique nozzle increases with the increase in the oblique angle.

Faculty of Engineering and Applied Science, Memorial University.
Iteration	m°	m	$m^0(V_{Re})$	$m_{\alpha}^{T}(V_{Re})$	m_{non}
1	2.624	0.513	2.622	1.362	
6	2.515	0.588	2.515	1.423	
12	2.383	0.676	2.382	1.461	1.523
18	2.249	0.781	2.249	1.493	
23	2.140	0.881	2.140	1.514	

Table 4.14 Comparison of Various Multipliers of Oblique Nozzle 90⁰ (EMAP)

Figure 4.50 Finite Element Mesh of Oblique Nozzle 90⁰ (a) Isometric View b) Front View

Faculty of Engineering and Applied Science, Memorial University.

Faculty of Engineering and Applied Science, Memorial University.

4.7 Discussion of Results

This Elastic Reference Volume method is simple and straightforward as it does not require any sub-classification of the components. After obtaining the stress distribution from the initial classic analysis, the corrected $n^2 \sigma_{4b}$, a classical to your gradient by cutting down all the elements having stress less than 5 percentage of peak stress as dead volume. The variation of the $n^0 \tau_{4b}$, with various percentages of cat-off stress are presented in the results. As seen from the examples using the $n^0 v_{5c}$, \vec{F}_{c} plot, the components which requirement dead volume correction can be identified.

For the well designed components (i.e., Section 4.6.1 to Section 4.6.5) which do not have much dead volume, the correction applied is less as can be seen from their plots, where the variation of σ^2/σ_{40} with variato percentages of cut-off stress is very less. For those components which develop flaws during the operation (i.e., Section 4.6.6 to Section 4.6.10), there will be presence of dead volume. Whenever there is a flaw, the peak reseases present in the component are high and the amount of dead volume correction applied is also high. This case is demonstrated using the cracked components. There is no need to categorize the components for this method as the method will take care of the correction by vitef.

A few other models like indeterminate beam and oblique nozzles are also studied to show the method's applicability to the more complicated structures. Using the corrected $n^{er}(v_{u_1})$ and n_{er} , $n_{er}^{er}(u_{u_1})$ is calculated, which is found to be a lower bounded value of limit toad multiplier. The results obtained after the initial linear elastic iteration are a bit conservative in the case of the components with flaws, due to the peak stress effect on the n_{er} multiplier, but with the EMAP iterations the estimated limit loads reached a good agreement with the non-linear finite element analysis (i.e., e^{-5} % error). The time taken for the ERVM is also compared with the nonlinear analysis and it is shown that there is a considerable advantage. It is seen that this advantage increases with the complexity of the problem. In the next chapter another method for reference volume correction, The *Plastic Reference Volume Method* is explained.

Faculty of Engineering and Applied Science, Memorial University.

CHAPTER 5 PLASTIC REFERENCE VOLUME METHOD

5.1 Introduction

Plastic reference volume endeds for reference volume correction while finding out limit loads in the components or structures are presented. This reference volume correction concept is used in combination with m_a - Tangent method to obtain the lower bound limit load of general component or structure. The Plastic Reference Volume Method for finding out the reference volume of any general component involves integration of the upper bound multiplier vs. sub-volume ratic ourve. Reference volume is a sub-volume of the component which will actively participate in plastic action at failure. Finally this method is tested with the help of different components ranging from well designed components to components with highly localized stresses.

5.2 Plastic Reference Volume Method

The proposed method for finding out the reference volume of any general component is a new approach which involves integration of the $u^{ab} v_{b}$, F_{c} curve. Reference volume is a sub-volume of the component which will actively participate in plastic action at failure, where as deal volume is the sub-volume that does not participate.

Plastic Reference Volume method is a different approach of calculating the reference volume. In this approach by integrating the m^2 vs. F_g^2 curve the multiplier is been calculated at the reference stress location. In the elastic reference volume method the complete elastic stress distribution is considered and some portion of it is cut down to define the dead volume. where as in plastic reference volume method reference volume multiplier is been calculated at the reference stress state which is the average of the complete stress profile.

After the first linear elastic FEA run, the $m^0 vs. \overline{V_0}$ plot will be generated as discussed in Sec. 4.4. A schematic of $m^0 vs. \overline{V_0}$ plot is shown in Fig.5.1. As each of the sub-volume

Faculty of Engineering and Applied Science, Memorial University.

had a corresponding m^{2} value, the reference volume which is also a sub-volume will have a corresponding m^{2} known as reference multiplier, $m^{2}U_{\pi}^{2}$). As can be seen from Fig. 5.1, when ever the sub-volume ratio is close to zero $m^{2} = m_{e}$ and when the sub-volume ratio reaches one $m^{2} = m^{2}U_{T}^{2}$). Integrating the m^{2} vs. F_{μ} curve, is based on the assumption that the maximum stress developed within the component will be sufficient large to correct the deal volume effect in a component. The integration leads to a statistically determines stress field which satisfies the timit state condition of $m^{2}U_{\mu \mu}^{2} = m^{2} = m_{e}$. The stress field achieved after the integration is similar to the plastic failure stress field, and will reach the plastic failure stress field with the FLAVI fermions. Due to this reason the method is mand as the Plastic failure stress Volume Method.

Figure 5.1 Plot of m^0 vs. \overline{V}_{a}

The relationship between the upper bound multiplier and the sub volume ratio is given by the Eq. 4.9. The multiplier with plastic reference volume correction $m^{0}(P_{igi})$ can be

obtained by integrating the m^{ϕ} vs. \overline{V}_{η} curve

$$m^0(V_{\delta p}) = \int_{0}^{1} m(\overline{V}_{\eta}) d\overline{V}_{\eta}$$
 (5.1)

For ease of calculations this value can be numerically obtained as follows:

$$\int_{0}^{1} m(\overline{V}_{q}) d\overline{V}_{q} = m_{L} + \sum_{k=2}^{N} (\overline{V}_{k} - \overline{V}_{k-1}) (m_{k}^{0} - m_{L}) \qquad (5.2)$$

For the case of calculation the equation is expressed in terms of m^{0} and m_{1} . The point 'C' which is the point of intersection of the $m^{0}U_{sp}^{*}$) line with m^{0} vs. \overline{F}_{a} curve will give us the value of reference volume factor \overline{F}_{ap} . This Reference Volume Factor is the measure of the reference volume (or) measure of the dead volume corrected in this particular iteration.

5.2.1 Categorization of Components

For the purpose of this method the general components are categorized into two groups depending on there initial m^0 / m_L values. The value of m^0 / m_L is used as an indicator for finding the presence of peak stress in a component.

- If m⁰/m_t < 1+√2 then the components are well designed, which have negligible peak stress. In these components the correction applied due to the maximum stress is sufficient to correct the dead volume effect completely, which leads m⁰(t⁰_m) being a lower bound values.
- 2. If $m^2/m_1 > 1 + \sqrt{2}$ then the components will have peak stress effect. Peak Stresses causes a lower m_1 . In this category components are again divided into two groups. First ones that develop laws or defects during operation (ie, eracked components) and second hose which have large deal volumes because of their geometry (i.e., notebed components). In both these cases the presence of peak stresses, narrows the amount of correction being applied leading $m^2(r_{\mu_1})$ to be a unper bound values.

Faculty of Engineering and Applied Science, Memorial University.

5.3 General Procedure for Finding Lower Bound Limit Loads Using Plastic Reference Volume

In this section a general procedure is being outlined in a step by step manner to find out the lower bound multipliers for general mechanical components and structures using the proposed method.

- The first linear elastic finite element analysis is carried out for the model with the
 prescribed loading and boundary conditions.
- The elements in the component are sorted in the descending order of the equivalent stress values.
- Then values of m^θ are plotted against V_q as discussed in Sec. 4.4 and m^θ(V_{ρp}) will be calculated using the Eq. (5.2).
- Depending on the value of m⁰/m₁ the components are grouped.
- For the components whose m⁰/m_t < 1 + √2, the value of reference volume corrected multiplier m⁰(θ'_m) is taken as the final value of the multiplier.
- For the components whose m⁰ /m_k > 1 + √2 , the value of m⁷_n(V_{βp}) should be calculated using the corrected multiplier m⁰(V_{βp}).
- The above steps are continued using EMAP until the converged or near converged solution are obtained. The results of fifty EMAP iterations and convergence criteria are provided in appendix C.

In the following sections various components are analyzed using the plastic reference volume correction method and the results are been discussed. The examples are chosen in such a way that there will be components from each of the eatlgories explained in Sec. 5.2.1. For the EMAP analysis a fixed 'q' of 0.1 is used. The non-linear analysis results with the perfectly plastic material properties are used as the actual multiplier for the comparison purposes.

Faculty of Engineering and Applied Science, Memorial University.

5.4 Application to General Components

5.4.1 Thick Walled Cylinder

The geometry, material properties and loading is similar to the example discussed in the section 4.6.1. The reference volume multiplier calculation for first iteration is graphically represented in the Fig. 5.2. From the Fig. 5.3, it can be seen that, as $m^0/m_e < 1 + \sqrt{2}$ for the thick walled cylinder, $m^0(T_{g_P})$ calculated is always lower bounded. The variation of $m^0(T_{g_P})$ with different iteration for thick walled cylinder is presented in Tab. 5.1 and Fig. 5.3.

Figure 5.2 $m^{\oplus}(V_{k_{F}})$ in first iteration for Thick walled Cylinder

Figure 5.3 Variation of $m^{+}(V_{Re})$ with iterations for Thick Walled Cylinder (EMAP)

Iteration	m ⁰	m_L	$m^0(V_{Rp})$	mass
1	2.294	1.706	1.994	
6	2.268	1.901	2.063	
12	2.258	2.053	2.161	2.254
18	2.255	2.142	2.204	
25	2.255	2.199	2.232	

Table 5.1 Comparison of Various Multipliers for Thick Walled Cylinder (EMAP)

5.4.2 Torispherical Head

The geometry, material properties and loading is similar to the example discussed in the section 4.6.2. The reference volume multiplier calculation for first iteration is graphically prepresented in the Fig. 5.4. From the Fig. 5.5, it can be seen that, as $m^{6}/m_{e} < 1 + \sqrt{2}$ for the torispherical head, m^{0}/w_{ee}) calculated is always lower bounded. The variation of

Faculty of Engineering and Applied Science, Memorial University.

Faculty of Engineering and Applied Science, Memorial University.

 $m^0(V_{\rho_0})$ with different iteration for torispherical head is presented in Tab. 5.2 and Fig. 5.5.

Iteration	m	m_{\perp}	$m^{\oplus}(V_{Sp})$	m_{vov}
1	3.029	1.458	2.592	
10	2.932	1.883	2.684	
-20	2.893	2.211	2.743	2.808
30	2.879	2.415	2.772	
42	2.871	2.559	2.791	

Table 5.2 Comparison of Various Multipliers for Torispherical Head (EMAP)

5.4.3 Unreinforced Axi-Symmetric Nozzle

The geometry, material properties and loading is similar to the example discussed in the section 4.6.3. The reference volume multiplier calculation for first iteration is graphically perpresented in the Fig. 5.6. From the Fig. 5.7, it can be seen that, as $m^{(2)}m_{(2)} < 1 + \sqrt{2}$ for the unreinforced axi-symmetric nozzle, $m^{(2)}U_{(0)}$ calculated is always lower bounded. Even after the convergence the lower boundedness continues. The variation of $m^{(2)}U_{(0)}$ with different iteration for unreinforced axi-symmetric nozzle is presented in Tab. 5.3 and Fig. 5.7.

Table 5.3 Comparison of Various Multipliers for Unreinforced Axi-symmetric Nozzle (EMAP)

Iteration	m^0	m_L	$m^{0}(V_{sp})$	m _{now}
1	3.029	1.458	1.724	
10	2.932	1.883	1.771	
20	2.893	2.211	1.774	1.773
30	2.879	2.415	1.763	
42	2.871	2.559	1.764	

Figure 5.7 Variation of $m^0(V_{p_p})$ for unreinforced axi-symmetric nozzle (EMAP)

Faculty of Engineering and Applied Science, Memorial University.

5.4.4 Reinforced Axi-symmetric Nozzle

The geometry, material properties and loading is similar to the example discussed in the section 4.6.4. The reference volume multiplic calculation for first iteration is graphically represented in the Fig. 5.8. From the Fig. 5.9, it can be seen that, as $m^2/m_e < 1 + \sqrt{2}$ for the reinforced axisymmetric nozzle, $m^2(V_{fp})$ calculated is always lower bounded. The variation of $m^2(W_{fp})$ with different iteration for reinforced axisymmetric nozzle is presented in Tab 5.4 and Fig. 5.4.

Table 5.4 Comparison of Various Multipliers of Reinforced Axi-symmetric Nozzle (EMAP)

eration	m°	mL	$m^0(V_{P\rho})$	m_{nov}
1	2.011	1.248	1.852	
3	2.006	1.351	1.863	
6	2.002	1.489	1.884	1.924
9	1.998	1.608	1.892	
14	1.993	1.764	1.903	

Faculty of Engineering and Applied Science, Memorial University.

5.4.5 Pressure Vessel Support Skirt

The geometry, material properties and loading is similar to the example discussed in the section 4.6.5. The reference volume multiplier calculation for first iteration is graphically represented in the Fig. 5.10. From the Fig. 5.11, it can be seen that, as $m^2 m_c < 1 + \sqrt{2}$ for the reinforced axi-symmetric nozzle, $m^2(U_{2p}^*)$ calculated is always lower bounded. The variation of $m^2(U_{2p}^*)$ with different iteration for reinforced axi-symmetric nozzle is presented in Tab. 5.5 and Fig. 5.11.

Table 5.5 Comparison of Various Multipliers of Pressure Vessel Support Skirt (EMAP)

Iteration	m^0	m_L	$m^0(V_{Rp})$	mana
1	3.614	1.523	3.053	
12	3.463	2.064	3.114	
24	3.377	2.427	3.121	3.161
36	3.325	2.640	3.122	
50	3.288	2.800	3.133	

Faculty of Engineering and Applied Science, Memorial University.

Figure 5.10 $m^0(V_{g_p})$ in first iteration for Pressure Vessel Support Skirt

Figure 5.11 Variation of $m^{\circ}(V_{Rp})$ with iterations of Pressure Vessel Support Skirt (EMAP)

5.4.6 Compact Tension (CT) Specimen

The geometry, material properties and loading is similar to the example discussed in the section 4.6.6. The reference volume multiplier calculation for first iteration is graphically preparential in the Fig. 51.2. From the Fig. 51.3, it can be seen that, as $m^2 m_{\nu} > 1 + \sqrt{2}$ for the CT Specimen, $m^2 (U_{\mu\nu})$ calculated is upper bounded. using the corrected reference volume multiplier $m^2 (U_{\mu\nu})$, the $m_{\nu}^2 (U_{\mu\nu})$ is calculated. The variation of $m^2 (U_{\mu\nu})$ and $m_{\nu}^2 (U_{\mu\nu})$ with different iteration for CT Specimen is presented in Tab. 5.6 and Fig. 51.3.

The presence of the peak stresses in the CT Specimen is causing the lower bound multiplier in the first iteration to be bit conservative, but with the EMAP iterations the results seen to be converging to nonlinear analysis solution. The time taken for the PRVM is 138 CPU units when compared to 186 CPU units for nonlinear analysis.

Iteration	m^0	m_L	$m^0(V_{Rp})$	$m_{\alpha}^{T}(V_{Rp})$	m_{nov}
1	1.549	0.108	1.164	0.402	
5	1.395	0.162	1.113	0.504	
10	1.273	0.248	1.071	0.602	0.812
15	1.189	0.346	1.033	0.671	
21	1.115	0.462	0.992	0.743	

Table 5.6 Comparison of Various Multipliers of CT Specimen Pressure

Faculty of Engineering and Applied Science, Memorial University.

Figure 5.12 $m^0(V_{Rp})$ in first iteration for CT Specimen

Figure 5.13 Variation of $m^{\circ}(V_{Rp})$ and $m_{a}^{T}(V_{Rp})$ with iterations for CT Specimen (EMAP)

5.4.7 Single Edge Notch Bend

The geometry, material properties and loading is similar to the example discussed in the section 4.6.7. The reference volume multiplier calculation for first iteration is graphically represented in the Fig. 5.1.4. From the Fig. 5.1.5, it can be seen that, as $m^2, m_{\mu\nu} > 1 + \sqrt{2}$ for the single edge notch bend, $m^2 (U_{g_{\mu\nu}})$ calculated is upper bounded. using the corrected reference volume multiplier $m^2 (U_{g_{\mu\nu}})$ calculated is upper bounded. Using the variation of $m^2 (U_{g_{\mu\nu}})$ and $m_{\mu}^* (U_{g_{\mu\nu}})$ with different iteration for single edge notch bend is presented in Tab. 5.7 and Fig. 5.15.

The presence of the peak stresses in the Single Edge Notch Bend is causing the lower bound multiplier in the first iteration to be bit conservative, but with the EMAP iterations the results seen to be converging to nonlinear analysis solution. The time taken for the PRVM is 242 CPU units when compared to 556 CPU units for nonlinear analysis.

Table 5.7 Comparison of	Various Mul	tipliers for	Single	Edge	Notch Bend	(EMAP)
-------------------------	-------------	--------------	--------	------	------------	-------	---

Iteration	m^0	m_L	$m^0(V_{g_p})$	$m_a^T(V_{Sp})$	m_{uuv}
1	4.759	0.202	3.304	0.854	
5	3.632	0.287	2.752	1.011	
10	2.709	0.417	2.251	1.142	1.353
15	2.159	0.564	1.933	1.194	
20	1843	0.712	1.724	1.221	

Faculty of Engineering and Applied Science, Memorial University.

Figure 5.14 $m^{0}(V_{Rp})$ in first iteration for Single Edge Notch Bend

Figure 5.15 Variation of $m^{\pm}(V_{R_P})$ and $m_{\pi}^{T}(V_{R_P})$ with iterations for Single Edge Notch Bend (EMAP)

Faculty of Engineering and Applied Science, Memorial University.

5.4.8. Plate with Multiple Cracks

The geometry, material properties and loading is similar to the example discussed in the section 4.6.8. The reference volume multiplic calculation for first iteration is graphically prepresented in the Fig. 5.16. From the Fig. 5.17. It can be seen that, as $m^2/m_c > 1 + \sqrt{2}$ for the single edge notch bend, $m^2(V_{g_0})$ calculated is upper bounded. using the corrected reference volume multiplier $m^2(V_{g_0})$, the $m_s^2(V_{g_0})$ is calculated. The variation of $m^2(V_{g_0})$ and $m_s^2(V_{g_0})$ with different iteration for single edge notch bend is presented in The 5.8 and Fig. 5.17.

The presence of the peak stresses in the Plate with multiple cracks is causing the lower bound multiplier in the first iteration to be bit conservative, but with the EMAP iterations the results seen to be converging to nonlinear analysis solution. The time taken for the PRVM is 127 CPU units when compared to 175 CPU units for nonlinear analysis.

Iteration	m^0	m_{\perp}	$m^0(V_{Rp})$	$m_{\alpha}^{T}(V_{p_{\beta}})$	manu
1	2.359	0.197	2.001	0.712	
7	2.270	0.312	1.943	0.913	
14	2.167	0.484	1.874	1.101	1.362
21	2.059	0.645	1.791	1.204	
29	1.935	0.773	1.712	1.263	

Table 5.8 Comparison of Various Multipliers for Plate with Multiple (EMAP)

Faculty of Engineering and Applied Science, Memorial University.

Figure 5.16 $m^{+}(V_{Re})$ in first iteration for Plate with Multiple Cracks

Figure 5.17 Variation of $m^{\circ}(V_{Sp})$ and $m_{\alpha}^{T}(V_{Sp})$ with iterations for Plate with Multiple Cracks (EMAP)

5.4.9 Plate with a Hole

The geometry, material properties and loading is similar to the example discussed in the section 4.6.9. The reference volume multiplic calculation for first iteration is graphically perpendent the Fig. 5.18. From the Fig. 5.19, it can be seen that, as $m^5/m_c > 1 + \sqrt{2}$ for the plate with a hole, $m^6(t'_{H_0})$ calculated is upper bounded, using the corrected reference volume multiplier $m^6(t'_{H_0})$, the $m_c^2(t'_{H_0})$ is calculated. The variation of $m^6(t'_{H_0})$ and $m_c^2(t'_{H_0})$ with different iteration for plate with a hole is presented in Tab. 5.9 and Fig. 519.

The Plate with a hole is a good example for the notch problems, as this is a notch the result from the initial analysis is much closer to the non linear analysis results when compared to the crack problems. The time taken for the PRVM is 72 CPU units when compared to 191 CPU units for nonlinear analysis.

Iteration	m	m_L	$m^0(V_{pp})$	$m_{\alpha}^{T}(V_{p_{p}})$	$m_{\rm nov}$
1	1.221	0.481	1.054	0.781	
2	1.216	0.496	1.053	0.793	
4	1.206	0.526	1.051	0.812	0.922
6	1.197	0.556	1.042	0.834	
8	1.188	0.584	1.040	0.851	

Table 5.9 Comparison of Various Multipliers of Plate with a Hole (EMAP)

Faculty of Engineering and Applied Science, Memorial University.

Figure 5.18 $m^{0}(V_{R_{p}})$ in first iteration for Plate with a Hole

Figure 5.19 Variation of $m^0(V_{g_p})$ and $m^T_a(V_{g_p})$ with iterations for Plate with a Hole (EMAP)

Faculty of Engineering and Applied Science, Memorial University.

5.4.10 Indeterminate Beam

The geometry, material properties and loading is similar to the example discussed in the section 4.6.10. The reference volume multiplier calculation for first iteration is graphically represented in the Fig. 5.20. From the Fig. 5.21, it can be seen that, as $m^{*}/m_c > 1 + \sqrt{2}$ for indeterminate beam, $m^0(U_{g_0})$, calculated is upper bounded. using the corrected reference volume multiplier $m^0(U_{g_0})$, the $m_a^{*}(U_{g_0})$ is calculated. The variation of $m^0(U_{g_0})$ and $m_a^{*}(U_{g_0})$ with different iteration for Indeterminate beam is presented in Tab. S10 and Fig. 5.21.

The Indeterminate beam is a good example for the problems which has the dead volume due to the geometric properties, the result from the initial analysis is much closer to the non linear analysis results when compared to the crack problems. The results in all the examples are chosen at equal interval, for ease of comparison for both the ERVM and PRVM. Due to this reason at times the PRVM results look little conservative. The time taken for the PRVM is 535 CPU units when compared to 583 CPU units for nonlinear analysis.

Table 5.10 Comparison of Various Multipliers for Indeterminate Beam (EMAP)

Iteration	m°	m_{L}	$m^0(V_{Rp})$	$m_{\alpha}^{T}(V_{Rp})$	m_{aaa}
1	2.649	0.613	1.913	1.231	
4	2.357	0.711	1.841	1:274	
8	2.124	0.837	1,792	1.343	1.543
12	1.988	0.951	1.744	1.401	
15	1.920	1.027	1.731	1.442	

Faculty of Engineering and Applied Science, Memorial University.

Figure 5.20 $m^0(V_{Rp})$ in first iteration for Indeterminate Beam

Faculty of Engineering and Applied Science, Memorial University.

5.4.11 Oblique Nozzle

The geometry, material properties and loading is similar to the example discussed in the section 4.6.11. Four different Nozzle angles are been studied (i.e., $\theta = 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°)

5.4.11.1 Nozzle Angle $\theta = 30^{\circ}$

The reference volume multiplier calculation for first iteration is graphically represented in the Fig. 52.2. From the Fig. 5.2.3, it can be seen that, as $m^2/m_1 > 1 + \sqrt{2}$ for oblique nozzle $3\theta^0$, $m^0 U_{40}$) calculated is upper bounded. using the corrected reference volume multiplier $m^0 U_{40}$, the $m_s^0 U_{40}$) is calculated. The variation of $m^0 U_{40}$, and $m_s^0 U_{40}^0$ with different iteration for oblique nozzle $3\theta^0$ is presented in Tab. 5.11 and Fig. 5.23. The time taken for the PRVM is 3415 CPU units when compared to 25200 CPU units for nonlinear analysis.

Table 5.11 Comparison of V	arious Multi	pliers of Oblique	Nozzle 30°	[EMAP]
----------------------------	--------------	-------------------	------------	--------

Iteration	m°	m_L	$m^0(V_{\rho\rho})$	$m_{\alpha}^{T}(V_{Rp})$	m _{noe}
1	1.867	0.127	1.393	0.473	0.712
2	1.811	0.141	1.362	0.504	
4	1.698	0.171	1.291	0.551	
6	1.589	0.201	1.222	0.582	
9	1.432	0.244	1.123	0.614	

Figure 5.22 $m^{\circ}(V_{Re})$ in first iteration for Oblique Nozzle 30⁰

Figure 5.23 Variation of $m^{\circ}(V_{Rp})$ and $m_{\alpha}^{T}(V_{Rp})$ with iterations of Oblique Nozzle 30⁶ (EMAP)

5.4.11.2 Nozzle Angle $\theta = 45^{\circ}$

The reference volume multiplier calculation for first iteration is graphically represented in the Fig. 5.24. From the Fig. 5.25, it can be seen that, as $m^{\mu}/m_c > 1 + \sqrt{2}$ for oblique nozzelt 4^{μ} , m^{μ}/m_{μ}) calculated is upper bounded. using the corrected reference volume untiplier m^{μ}/m_{μ}), the m_{μ}^{μ}/m_{μ} is calculated. The variation of m^{μ}/m_{μ} and m_{μ}^{ν}/m_{μ} by with different iteration for oblique nozzle 45^{μ} is presented in Tab. 5.12 and Fig. 5.25. The time taken for the ERVM is 3212 CPU units when compared to 24300 CPU units for nonlarear analysis.

Figure 5.24 $m^{\circ}(V_{sp})$ in first iteration for Oblique Nozzle 45⁶

Iteration	m^0	m_L	$m^{\oplus}(V_{sp})$	$m_{\alpha}^{T}(V_{Rp})$	m_{nan}
1	2.401	0.242	1.931	0.794	1.072
2	2.364	0.263	1.902	0.822	
4	2.288	0.304	1.843	0.881	
6	2.210	0.343	1.784	0.923	
9	2.083	0.398	1.683	0.952	

Table 5.12 Comparison of Various Multipliers for Oblique Nozzle 45[®] (EMAP)

Figure 5.25 Variation of $m^{\circ}(V_{Rp})$ and $m_{a}^{T}(V_{Rp})$ with iterations for Oblique Nozzle 45⁶ (EMAP)

5.4.11.3 Nozzle Angle $\theta = 60^{\circ}$

The reference volume multiplier calculation for first iteration is graphically represented in the Fig. 52.6. From the Fig. 5.27, it can be seen that, as $m^{*}/m_{\lambda} > 1 + \sqrt{2}$ for oblique multiplier $m^{*}\ell'w_{\lambda}$) calculated is upper bounded. using the corrected reference volume multiplier $m^{*}\ell'w_{\lambda}$) the $m_{\lambda}^{*}\ell'w_{\lambda}$ is calculated. The variation of $m^{*}\ell'w_{\lambda}$) and $m_{\lambda}^{*}\ell'w_{\lambda}$ with different iteration for oblique nozzle 60° is presented in Tab. 5.13 and Fig. 5.27. The time taken for the ERVM is 3007 CPU units when compared to 25600 CPU units for nonlinear analysis.

Figure 5.26 $m^{\circ}(V_{RP})$ in first iteration for Oblique Nozzle 60⁰

Table 5.13 Comparison of Various Multipliers for Oblique Nozzle 60⁰ (EMAP)

Figure 5.27 Variation of $m^{\circ}(V_{Rp})$ and $m_{\alpha}^{T}(V_{Rp})$ with iterations for Oblique Nozzle 60⁶ (EMAP)

5.4.11.4 Nozzle Angle $\theta = 90^{\circ}$

The reference volume multiplier calculation for finit iteration is graphically represented in the Fig. 5.28. From the Fig. 5.29, it can be seen that, as $m^0/m_c > 1 + \sqrt{2}$ for oblique multiplier m^0/w_{p_c} calculated is upper bounded. using the corrected reference volume multiplier m^0/w_{p_c} be m_a^0/w_{q_c} is calculated. The variation of $m^0(T_{q_c})$ and m_a^0/w_{q_c} via different iteration for oblique nozzle 90⁰ is presented in Tab. 5.14 and Fig. 5.29. The time taken for the PRVM is 2805 CPU units when compared to 22400 CPU units for nonlinear analysis.

Figure 5.28 $m^{\circ}(V_{Re})$ in first iteration for Oblique Nozzle 90⁶

Faculty of Engineering and Applied Science, Memorial University.

Table 5.14 Comparison of Various Multipliers for Oblique Nozzle 90⁰

Iteration	m°	mL	$m^0(V_{gp})$	$m_{\alpha}^{T}(V_{Rp})$	m_{nan}
1	2.624	0.513	2.223	1.244	1.523
6	2.515	0.588	2.141	1.291	
12	2.383	0.676	2.042	1.334	
18	2.249	0.781	1.934	1.352	
23	2.140	0.881	1.843	1.391	

Figure 5.29 Variation of $m^{\circ}(V_{Rp})$ and $m_{\alpha}^{T}(V_{Rp})$ with iterations for Oblique Nozzle 90⁶ (EMAP)

5.5 Discussion of Results

From initial elastic analysis for any general component m^{0}/m_{1} can be calculated; depending on the m^{0}/m_{1} the components are categorized into one of the categories as explained in section (5.2). The examples in this chapter are so chosen that there will be presentation from each of these categories. For the components which fall under the first category (i.e., Section 5.6.1) to Section 5.6.3), the peak stress will not be present and the maximum stress present in the component is sufficient to correct the dead volume effect. m^{0}/m_{0} , will be the lower bound.

For the components which fall under the second category (i.e., Section 5.6.6 to Section 5.6.12), due to the presence of the peak stress the amount of the correction applied will not be sufficient. The $m_i^{(2)}U_{p_i}$ calculated using the $m_i^{(2)}U_{p_i}$) and m_{\pm} will be lower bound. It can be concluded that if the plastic reference volume correction is employed, the $m_i^{(2)}$ multiplier will always be a lower bounded value. The applicability of the proposed procedures is demonstrated through numerical examples (both 2D and 3D models). The estimated limit loads are in good agreement with the ones obtained from nonlinear finite dement analysis (i.e., c^{-1} 's error).

The time taken for the PRVM is also compared with the nonlinear analysis and it is shown that there is a considerable advantage. It is seen that this advantage increases with the complexity of the problem. When compared to ERVM there is a slight more advantage of time for PRVM.

The limit load estimates obtained by the plastic reference volume correction are conservative when compared to the ones obtained by elastic reference volume method. The reason for these conservative results is the presence of the peak stresses effect in the second category components. This problem is addressed by a new method in the following charger.

Chapter-6 LOWER BOUNDEDNESS of m_a TANGENT METHOD

6.1 Introduction

Using the reference volume methods as discussed in the previous chapters, the reference volume effect of the components can be taken care-off. The results from the reference volume methods are bit conservative: the reason for these conservative results can be explained as the presence of the peak stresses in the components, which will lower the lower bound multiplier m, . This kind of behavior can be seen mostly in the second category components (categorization is explained in section 5.2.1), which have some cracks or notches developed during the operation. In the current chapter a new method is presented which will take both the reference volume correction and peak stress correction into consideration and calculate a lower bounded limit load multiplier. The proposed method combines the newly developed reference volume correction with the m_ -tangent method to ensure the lower boundedness of ma-tangent multiplier. In ma-tangent method developed by Seshadri and Hossain [4] assumes that the secondary stresses will not get redistributed when the peak stresses are being blunted. This assumption is not always true particularly in cases of components undergoing highly localized plastic flow such as cracked and notched components and structures. Proposed method will address this issue by taking the reference volume of the component into account and calculating m_{a} -tangent multiplier for only kinematically active areas of the components. Using this method we can obtain the ma -tangent multiplier which is always lower bounded.

6.2 Theoretical background

A Schematic $m^4 vs. \overline{\Gamma}_g$ plot for different EMAP iterations is presented in Fig. 6.1. From the plot it can be seen that wher $\overline{\Gamma}_g = 0$, value of the multiplier is equal to the lower bound multiplier m_i^* , and where $\overline{\Gamma}_g = 1$, the value of the multiplier is equal to the upper bound multiplier m_i^* . A typical $m^4 vs. \overline{\Gamma}_g$ curve generated from a linear clastic analysis is been represented as curve ABC in $\overline{\Gamma}_g^*$ of 1. When this curve is compared with the actual

limit load multiplier, which is represented as the straight line (i.e., m), can be divided into two sections. Section AB, which includes the peak stress effect. Section BC, which includes the dead volume effect. For the curve ABC to reach the straight line we need to correct both ends of the curve. This will be achieved by the following method.

Fig. 6.1 Schematic of m^0 vs. $\overline{V_0}$ plot for different EMAP iterations

6.3 Method for Correcting Dead Volume and Peak Stress Effects Simultaneously

This method makes use of both Two-bar method and m_a -tangent method. On a constraint map (i.e., Fig. 6.2) the Two-bar method can be represented by the TBM curve and m_a -tangent method is represented by the $R_a^r = 1$ curve.

6.3.1 Dead Volume Correction

The Point B' on TBM represents a combined primary, secondary and peak stresses and will be denoted as B_{μ}^{r} . The point B on $R_{\mu}^{T} = 1$ curve represents a combined primary and secondary stress state and will be denoted as R_{μ}^{s} .

Fig. 6.2 Constraint Map [4]

From the linear elastic analysis the m^0 calculated will have contributions from the dead volume as well as the reference volume.

The dead volume contribution (DVC) in the m^0 can be calculated using the following equation

$$DVC = \frac{\left(R_{B'}^{\circ} - R_{B}^{\circ}\right)}{R_{\nu}^{\circ}}$$
(6.1)

Therefore, the reference volume contribution (RVC) in m^0 can be calculated using the following equation

$$RVC = 1 - DVC$$

 $RVC = 1 - \left(\frac{R_{\psi}^{\psi} - R_{\psi}^{\psi}}{R_{\psi}^{\psi}}\right) = \left(\frac{R_{\psi}^{\psi}}{R_{\psi}^{\psi}}\right)$
(6.2)

Using the reference volume contribution from Eq. 6.2, m^0 due to the reference volume contribution is calculated as follows

Faculty of Engineering and Applied Science, Memorial University.

$$m_{B,ref}^0 = m^0 \left(RVC\right)$$

 $m_{B,ref}^0 = m^0 \left(\frac{R_\mu^0}{R_\mu^0}\right)$
(6.3)

The $m_{B,rer}^0$ calculated using Eq. 6.3 will be free from the dead volume effect.

6.3.2 Peak Stress Correction

As the point B on $R_{n}^{\ell} = 1$ curve represents a combined primary and secondary stress state, its corresponding point on the TBM curve $(k_{n}, Point B^{2})$ will give us the ζ_{j} which will be independent of peak stresses. ζ_{j} will be evaluated by solving the followine causation:

$$\frac{m^0}{m} = 1 + 0.2929 (\zeta_j - 1) = \frac{\zeta_j^2 + 1}{2\zeta_j}$$
(6.4)

The roots of Eq. (6.4) are

$$f_{ef} = (1 + C_e) \pm \sqrt{(1 + C_e)^2 - 1}$$

(6.5)

where $C_c = 0.2929(\zeta_1 - 1)$.

The ζ_j calculated using the Eq. 6.5, will be free from the peak stress effect for that particular iteration. Once the $m_{p,ej}^0$ and ζ_j are established, the new lower bounded limit load multiplier can be calculated using the following equation

$$m_{\alpha}^{T} = \frac{m_{\beta,ref}^{0}}{1 + 0.2929(\zeta_{c} - 1)}$$
(6.6)

The m_{e}^{\prime} calculated using the Eq. 6.6 will be free from both dead volume and peak stress effects for that particular stress distribution. This procedure need to be continued with the help of EMAP until we reach the point 'D' on the constraint plot. At this point the m_{e}^{\prime} calculated will be completely independent of dead volume and peak stress effects of the component. According to Reinhard! (20) within the m_{e} riande any point that lies below

Faculty of Engineering and Applied Science, Memorial University.

the $R_a = 1$ curve represents a lower bounded multiplier. In the current method as we always travel along the $R_a^T = 1$ and reach the m_a triangle below the $R_a = 1$ curve we can theoretically say that the multiplier obtained by this method is always lower bounded.

6.4 General Procedure

In this section a general procedure is being outlined in a step by step manner to find out lower bounded m_u -tangent multiplier by applying the reference volume and peak stress corrections.

- · For any given component, initially a linear elastic analysis is performed.
- The m⁰ and m₁ values are calculated using Eq. (3.10) and Eq. (3.11) respectively.
- The value of m⁰/m₁ computed.
- If m⁰ / m_k < 1+√2, the value of limit load multiplier can be calculated using the regular m^T_k formula.
- If m⁰ / m₁ > 1 + √2 then the following steps are continued.
- Using Eq. (6.3) the m⁰ value is corrected for reference volume effect.
- Using Eq. (6.5) the ζ value is corrected for peak stress effect.
- Once m⁰_{R,ref} and ⊊_f are achieved, the lower bounded m^T_a is computed using Eq. (6.6).
- These steps are repeated using the EMAP iterations until the converged or near converged solution are obtained. The results of fifty EMAP iterations and convergence criteria are provided in appendix C.

For non-linear analysis elastic perfectly plastic material model is assumed, the results from this analysis is taken as the actual multiplier. These results are used for the comparison with the linear elastic results obtained through above mentioned method. In the following section, different components whose $m^{\#}/m_{z} > 1 + \sqrt{2}$ are analyzed using the above method and the results are compared with the results from non linear analysis.

6.5 Numerical Examples

6.5.1 Compact Tension (CT) Specimen

The geometry, material properties and loading is similar to the example discussed in the section 4.6.6. Variations of different multipliers with different iteration for CT Specimen are presented in Tab. 6.1 and Fig. 6.3.

Iteration	m°	mL	m ⁰ _{B,ref}	51	m_{α}^{T}	m _{nee}
1	1.549	0.108	1.061	9.692	0.444	
5	1.395	0,162	1.035	6.294	0.553	
10	1.273	0.248	1.064	4.182	0.663	0.812
15	1.189	0.346	1.093	3.101	0.742	
21	1.115	0.462	1.122	2.423	0.791	

Table 6.1 Comparison of Various Multipliers for CT Specimen (EMAP)

Faculty of Engineering and Applied Science, Memorial University.

6.5.2 Single Edge Notch Bend

The geometry, material properties and loading is similar to the example discussed in the section 4.6.7. Variations of different multipliers with different iteration for Single Edge Notch Bend are presented in Tab. 6.2 and Fig. 6.4.

Table 6.2 Comparison o	Various Multi	pliers for Single E	dge Notch B	end (EMAP)
------------------------	---------------	---------------------	-------------	------------

Iteration	m^0	m_L	$m^0_{S,ref}$	51	m_{α}^{T}	m _{wow}
1	4.759	0.202	3.071	15.181	0.601	
5	3.632	0.287	2.524	8.724	0.773	
10	2.709	0.417	2.133	5.023	0.982	1.353
15	2.159	0.564	1.932	3.361	1.144	
20	1.843	0.712	1.801	2.422	1.273	

Faculty of Engineering and Applied Science, Memorial University.

6.5.3. Plate with Multiple Cracks

The geometry, material properties and loading is similar to the example discussed in the section 4.6.8. Variations of different multipliers with different iteration for Plate with Multiple Cracks are presented in Tab. 6.3 and Fig. 6.5.

Table	6.3	Comparison	of	Various	Multipliers	for	Plate	with	Multiple	Cracks
(EMA)	P)									

Iteration	m ⁰	mL	man	5,	m_{α}^{T}	maaa
1	2.359	0.197	1.654	8.292	0.533	
7	2.270	0.312	1.744	5.494	0.754	
14	2.167	0.484	1.862	3.773	1.024	1.362
21	2.059	0.645	1.933	2.951	1.232	
29	1.935	0.773	1.922	2.422	1.353	

Faculty of Engineering and Applied Science, Memorial University.

6.5.4 Plate with a Hole

The geometry, material properties and loading is similar to the example discussed in the section 4.6.10. Variations of different multipliers with different iteration for Plate with a Hole are presented in Tab. 6.5 and Fig. 6.7.

Iteration	m^0	m_L	$m^0_{B,ref}$	5,	m_a^T	m_{uov}
1	1.221	0.481	1.214	2.503	0.844	
2	1.216	0.496	1.213	2.441	0.852	
4	1.206	0.526	1.205	2.291	0.881	0.922
6	1.197	0.556	1.196	2.154	0.904	
8	1.188	0.584	1.186	2.032	0.913	

Faculty of Engineering and Applied Science, Memorial University.

6.5.5 Indeterminate Beam

The geometry, material properties and loading is similar to the example discussed in the section 4.6.11. Variations of different multipliers with different iteration for indeterminate beam are presented in Tab. 6.6 and Fig. 6.8.

Table 6.5 Comparison of	Various Multipliers for	Indeterminate Beam	(EMAP)
-------------------------	-------------------------	--------------------	--------

Ite	ration	m^0	m_L	$m^0_{\mathcal{B},ref}$	5,	m_{α}^{T}	m _{aaa}
	1	2.649	0.613	2.304	3.673	1.294	
	4	2.357	0.711	2.193	3.034	1.371	
	8	2.124	0.837	2.104	2.502	1.464	1.543
	12	1.988	0.951	1.986	2.092	1.512	
	15	1.920	1.027	1.919	1.811	1.533	

Figure 6.7 Variation of multipliers with iterations for Indeterminate Beam

Faculty of Engineering and Applied Science, Memorial University.

6.5.6 Oblique Nozzle

The geometry, material properties and loading is similar to the example discussed in the section 4.6.12.

6.5.6.1 Nozzle Angle $\theta = 30^{\circ}$

Variations of different multipliers with different iteration for Oblique Nozzle 30^o are presented in Tab. 6.7 and Fig. 6.9.

Table 6.6 Comparison of Various Multipliers for Oblique Nozzle 30⁰ (EMAP)

Iteration	m^0	m_L	$m^{\oplus}_{B,ref}$	5,	m_{α}^{T}	m _{noo}
1	1.867	0.127	1.271	9.964	0.354	
6	1.589	0.201	1.204	5.871	0.493	
12	1.288	0.283	1.103	3.813	0.604	0.712
18	1.053	0.352	1.002	2.812	0.661	
24	0.900	0.407	0.886	2.214	0.674	

6.5.6.2 Nozzle Angle $\theta = 45^{\circ}$

Variations of different multipliers with different iteration for Oblique Nozzle 45° are presented in Tab. 6.8 and Fig. 6.10.

Iteration	m ⁰	mL	m ⁰ _{B,ref}	5,	m_{α}^{T}	masa
1	2.400	0.242	1.732	7.084	0.622	
6	2.209	0.343	1.744	4.992	0.804	
12	1.951	0.429	1.673	3.824	0.911	1.072
18	1.687	0.501	1.564	3.063	0.974	
25	1.429	0.605	1.425	2.363	1.024	

Table 6.7 Comparison of Various Multipliers for Oblique Nozzle 45⁰ (EMAP)

6.5.6.3 Nozzle Angle $\theta = 60^{\circ}$

Variations of different multipliers with different iteration for Oblique Nozzle 60⁰ are presented in Tab. 6.9 and Fig. 6.11.

Iteration	m^{0}	mL	$m^0_{B,ref}$	51	m_{α}^{T}	m _{see}
1	2.558	0.351	1.963	5.502	0.843	
6	2.420	0.464	2.004	4.241	1.032	
12	2.237	0.552	1.968	4.052	1.144	1.314
18	2.044	0.641	1.918	3.194	1.222	
25	1.829	0.764	1.825	2.391	1.301	

Table 6.8 Comparison of Various Multipliers for Oblique Nozzle 60⁰ (EMAP)

6.5.6.4 Nozzle Angle $\theta = 90^{\circ}$

Variations of different multipliers with different iteration for Oblique Nozzle 90^0 are presented in Tab. 6.10 and Fig. 6.12.

- Ohli

O (PMAD)

	company		inous manuput	to tot oblight	ritorate so	(
Iteration	m^0	<i>m</i> ,	me	51	m^{7}	<i>m</i>

1	2.624	0.513	2.184	4.172	1.133	
6	2.515	0.588	2.194	3.651	1.231	
12	2.383	0.676	2.183	3.161	1.332	1.523
18	2.249	0.781	2.149	2.743	1.432	
24	2.119	0.902	2.117	2.354	1.513	

Faculty of Engineering and Applied Science, Memorial University.

6.6 Discussion of the Results

The objective of the proposed method is to obtain the lower bounded m_a -tangent limit load multiplier by simultaneously correcting the peak stress effect and the reference volume effect. This method is particularly helpful in the components in which peak stresses are present, like the components that develop notches and cracks during their operation.

Different cracked components (Section 6.5.1 to Section 6.5.3), notched components (Section 6.5.4) and complex components (Section 6.5.5 and 6.5.6) are examined in the chapter and the results are presented in tables and plots. The examples covered both 2D and 3D models, which demonstrate the robustness of the method.

From the results it can be seen that m_{π}^{ℓ} calculated using the dead volume corrected upper bound multiplier (m_{π}^{ℓ}) and peak stress corrected m^{ℓ}/m_{ℓ} ratio (ζ_{ℓ}) will always be a lower bound multiplier. This gives support to the theoretical assumption of always lower boundedness of m_{π}^{ℓ} multiplier due to the incorporation of both corrections. Using the EAAPt this lower bound multiplier will converge very well out to the non-linear limit load multiplier ($\sim 2\%$ error). The other benefit of this method is that the formulas are so simple that they can be readily added onto the APDL macro and we can obtain the lower bounded limit load multiplier directly from the FE commercial code.

Faculty of Engineering and Applied Science, Memorial University.

Chapter-7 REFERENCE VOLUME FOR ORTHOTROPIC MATERIAL

7.1 Introduction

In the modern world, components made of anisotoppic material, for which the material properties show appreciable differences in different directions. The anisotoppic material used in the current proposed research is specified as orthotoppic, which means is that three orthogonal planes of material property symmetry. The material is assumed to be homogeneous. The knowledge of the limit load is useful in the design and sizing of components and structures made from these materials. Finding out the limit loads of components made of orthotopic material, involves predicting kinematically active volume (reference volumes) at the plastic collapse. The proposed method uses the reference volume approach for anisotopic material and m_n tangent method together to obtain the lower bound limit loads for components made of anisotopic inaterials.

7.2 Constitutive Relationships of Orthotropic Material

The constitutive relations ships of orthoropic materials are been discussed by Pan and Seshadri [8]. The deformation of an isotropic material can be characterized by two parameters, the stiffness modulus, E_i and the Poisson' ratio, v_i In most cases, the change in the effective stiffness, E_i dominates over the change in v in going from the purely elastic to the elastic-plastic structure. Therefore, a good estimate of the collapse load can usually be obtained by adjusting E and choosing a constant v. The starting value of E is choosen as the elastic value.

In an orthotropic structure, on the other hand, the deformation is controlled by nine parameters. Which of these dominates the collapse depends on both mechanical properties and loading [48]. If one parameter is used to characterize plastic flow (i.e., an equivalent stress defined in terms of the stress components), only one parameter is adjusted during the softening procedure, and the others must be chosen such that they can become compatible with the plastic limit state. At collapse, it is expected that the stress and strain states in the significant regions of the structure are determined by the plastic

Faculty of Engineering and Applied Science, Memorial University.

flow rule. During moduli modification, all material parameters change in fixed proportion to each other, and a realistic stress distribution at collapse should be obtained if the initial each other as the elastic names are chosen in such a proportion to each other as the plastic flow rule suggests. The objective is to allow, as much as possible, for the stress fields to follow the orthotropic yield surface. Hill's yield criterion for characterizing an orthotropic material is given by [13].

$$f(s_{ij}) = F(\sigma_y - \sigma_z)^2 + G(\sigma_z - \sigma_x)^2 + H(\sigma_x - \sigma_y)^2 + 2L\tau_{ii}^2 + 2M\tau_{ii}^2 + 2N\tau_{ii}^2 = 1(7.1)$$

where F, G, H, L, M, N are parameters characteristic of the current state of orthotropic. If X, Y, Z are the tensile yield stresses in the principal directions of orthotropy, the following relationships are valid [49]:

$$\frac{1}{\chi^2} = G + H, \ 2F = \frac{1}{\gamma^2} + \frac{1}{\chi^2} - \frac{1}{\chi^2}$$

$$\frac{1}{\gamma^2} = H + F, \ 2G = \frac{1}{\chi^2} + \frac{1}{\chi^2} - \frac{1}{\gamma^2}$$

$$\frac{1}{\chi^2} = F + G, \ 2H = \frac{1}{\chi^2} + \frac{1}{\gamma^2} - \frac{1}{\chi^2}$$
(7.2)

If R, S, T are the yield stresses in shear with respect to the principal axes of orthotropy, then:

$$2L = \frac{1}{R^2}, 2M = \frac{1}{S^2}, 2N = \frac{1}{T^2}$$
(7.3)

The elastic moduli are modified on the directional basis as follows:

$$(E_{sg})_{s} = \left[\frac{\sigma_{acb}}{\overline{\sigma}_{s(n-1)}}\right]^{s} (E_{sg})_{n-1}$$
(7.4)

In the above equation, the subscript *s* refers to the element number, while *i*, *j* can be any combination of x_1 y and *a*, *n* refers to the iteration number. In order to ensure that plastic flow type deformations are favored, the initial elastic moduli and Poisson's ratio are determined by comparing elastic and plastic strains. The elastic stress strain relations are given by [50]:

Faculty of Engineering and Applied Science, Memorial University.

$$\begin{split} \varepsilon_s &= \frac{\sigma_s}{E_s}, \frac{\sigma_s}{E_s}, \sigma_s - \frac{v_B}{E_s} \sigma_s, \\ \varepsilon_s &= \frac{-v_m}{E_s} \sigma_s, \frac{\sigma_s}{E_s}, \frac{-v_m}{E_s} \sigma_s, \\ \varepsilon_s &= \frac{-v_m}{E_s} \sigma_s, -\frac{v_m}{E_s} \sigma_s, \frac{\sigma_m}{E_s}, \\ \tau_w &= \frac{\sigma_w}{G_m}, \tau_s - \frac{\gamma_w}{G_m}, \tau_s = \frac{\gamma_w}{G_m}, \\ \end{split}$$
(7.6)

The plastic component of the flow rule can be expressed as:

$$d\varepsilon_s = d\lambda \left[H(\sigma_s - \sigma_j) + G(\sigma_s - \sigma_i)\right]$$

$$d\varepsilon_y = d\lambda \left[H(\sigma_y - \sigma_i) + G(\sigma_y - \sigma_s)\right]$$

$$d\varepsilon_s = d\lambda \left[H(\sigma_s - \sigma_s) + G(\sigma_s - \sigma_j)\right]$$
(7.7)

$$d\gamma_{y_{y}} = 2d \lambda N \tau_{y_{y}}$$

 $d\gamma_{y_{z}} = 2d \lambda N \tau_{y_{z}}$ (7.8)
 $d\gamma_{w} = 2d \lambda N \tau_{w}$

By relating Eq. 7.5 and Eq. 7.6 with Eq. 7.7 and Eq.7.8 the expressions for the elastic properties can be obtained as [51 & 52]:

$$E_s = C\sigma_{as}^2, E_y = C\sigma_{ay}^2, E_z = C\sigma_{as}^2$$
(7.9)

$$G_{xy} = Cr_{axy}^2, G_{yx} = Cr_{ayz}^2, G_{xx} = Cr_{axx}^2$$

$$\nu_{yx} = \frac{\sigma_{yy}^2}{2} \left[\frac{1}{\sigma_{gx}^2} + \frac{1}{\sigma_{gy}^2} - \frac{1}{\sigma_{gz}^2} \right]$$
(7.10)

$$v_{zy} = \frac{\sigma_{zy}^2}{2} \left[\frac{1}{\sigma_{zy}^2} + \frac{1}{\sigma_{zy}^2} - \frac{1}{\sigma_{zy}^2} \right]$$
(7.10)

Faculty of Engineering and Applied Science, Memorial University.

$$v_{zx} = \frac{\sigma_{ax}^2}{2} \left[\frac{1}{\sigma_{ax}^2} + \frac{1}{\sigma_{ay}^2} - \frac{1}{\sigma_{ay}^2} \right]$$

where, the variable $C = 3/(L_{HO}^2)$, and has a dimension of Pa^{12} . Since the value of Cwould not affect the stress distribution of the component, it can take values such as $1 Pa^{11}$. The dashest properties given in Eq. (7.9) and Eq. (7.10) are used as the initial elastic properties for the repeated elastic analysis, and are modified using Eq. (7.4) for each iterations. The Poisson's ratio values in Eq. (7.10) are kept unchanged during the territoris. The Poisson's ratio values in C and the current investigation ratios expressions is replaced by 3.3.3 in the current investigation it is similar adjustment as used by Pa and Schuhaf in [18]

7.3 Multipliers for Orthotropic Material

According to the Li pan and Seshadri [8], the upper bound multiplier for an Orthotropic material can be calculated using the following equation.

$$I^{0} = \sigma_{0s} \left[\frac{\sum_{k=1}^{N} (\Delta V_{k} / E_{Sak})}{\sum_{k=1}^{N} (\overline{\sigma}_{k}^{2} \Delta V_{k} / E_{Sak})} \right]^{1/2}$$

(7.11)

where N is the total number of finite elements of the structure; $\vec{\sigma}_i$, ΔV_i , E_{aa} are the effective stress, element volume and secant modulus in x direction of element k, respectively, σ_{a_i} is the yield stress in the reference direction x. The reference direction is chosen in the direction where the yield strength is minimum. The lower bound multiplier can be given by the following expression:

$$m_L = \frac{\sigma_{ee}}{\overline{\sigma}_{max}^0}$$
(7.1)

Faculty of Engineering and Applied Science, Memorial University.

where $\bar{\sigma}_{sm}^{\dagger}$ is the maximum effective stress in the finite element model. Indermohan *et. al* [53] used the m_g multiplier Method to finding out the limit load multipliers which is bit complicated due to the β calculation [54].

7.4 General Procedure

The following is the procedure for finding out the reference volume and lower bound limit loads of a general component with orthotropic material properties.

- Modify initial elastic properties derived from Eq. (7.9) and Eq. (7.10) are used as material input.
- The first linear elastic finite element analysis is carried out for the model with the prescribed loading and boundary conditions.
- The elements in the component are sorted in the descending order of the equivalent stress values (directly available from FEA run).
- The m⁰ value will be calculated using Eq. (7.11) for the component in steps of each sub-volume and m_i is calculated using Eq. (7.12).
- Then these values of m⁹ are plotted against V_n.
- Either the Elastic Reference Volume Method (ERVM) (i.e., Chapter 4) or the Plastic Reference Volume Method (PRVM) (i.e., Chapter 5) can be employed for the dead volume correction.
- The above steps are continued using the EMAP iterations until the converged or near converged solution are obtained.

In the following section different components are examined to demonstrate the method's robustness and validity. In this chapter both ERVM and PRVM are employed for the dead volume correction.

7.5 Application to General Components

7.5.1 Orthotropic Thick Cylinder

A cylinder under internal pressure (Fig.7.1) is analyzed using plane strain considerations. The inter radius of the cylinder is 30 mm, and the outer radius is 40 mm. An internal pressure of 250 My is applied. The cylinder is made of Zircalloy. The alloy is assumed to be perfectly-plastic and possesses orthotropic symmetry. A general three dimensional orthotropic material has nine independent elastic constants. For two-dimensional problems, the number of independent elastic and plastic constants. For use of independent elastic constants and plastic constants.

Figure 7.1 Orthotrpic thick walled cylinder (a) Geometry and dimensions (b) Typical finite element mesh with loading

In the present investigation, the following material properties are specified:

1. Original elastic properties are (for nonlinear finite element analysis)

$$E_x = 95.79$$
 GPa; $E_y = 100.59$ GPa; $E_z = 100.99$ GPa;

$$G_{-} = 36.15$$
 GPa; $v_{-} = 0.361$; $v_{-} = 0.345$; $v_{-} = 0.341$;

2. Yield stresses in the respective directions are given by

 $\sigma_{p_x} = 472.3$ MPa; $\sigma_{q_x} = 579.2$ MPa; $\sigma_{q_x} = 630.9$ MPa;

$$\begin{split} r_{top} = & 366.6 \ \text{MPa}; \ r_{tor} = & 262.9 \ \text{MPa}; \ r_{ew} = & 262.9 \ \text{MPa}; \end{split}$$
3. Modified initial elastic properties based on Eq. (7.9) and Eq. (7.10) are as follows: $E_{\perp} = & 223.07 \ \text{GPa}; \ E_{\perp} = & 335.47 \ \text{GPa}; \ E_{\perp} = & 398.03 \ \text{GPa}; \ G_{\perp} = & 345.49 \ \text{GPa}; \ G_{\perp} = & 69.12 \ \text{GPa}; \ G_{\perp} = &$

7.5.1.1 Elastic Reference Volume Method (ERVM)

From the initial elastic analysis the upper bound multiplier m^0 is 0.779 and m_t is 0.557. The m^0 / m_t ratio 1.3986 is less than $1 + \sqrt{2}$ limit, the m_s^0 / v_{hs}) calculated using ERVM is 0.70 which is lower bounded. Variation of $m^0 v_{hs}$) and m_s^0 / v_{hs}) with different iteration for anisotropic thick cylinder are presented in Tab. 7.1 and Fig. 7.2. m^0 and m^0 / v_{hs}) columns of the Tab. 7.1. are equal which shows that this component is independent of ded volume effect.

Table 7.1 Comparison of Various Multipliers of anisotropic thick cylinder for Elastic Reference Volume Correction (EMAP)

Iteration	m°	mL	$m^0(V_{Rt})$	$m_{\alpha}^{T}(V_{Re})$	m _{new}
1	0.779	0.557	0.779	0.704	
6	0.772	0.613	0.772	0.713	
12	0.769	0.655	0.769	0.731	0.744
18	0.767	0.681	0.767	0.741	
22	0.766	0.691	0.766	0.742	

Figure 7.2 Variation of $m^0(V_{n_k})$ and $m^T_{\alpha}(V_{n_k})$ with iterations for anisotropic thick cylinder

7.5.1.2 Plastic Reference Volume Method (PRVM)

From the initial elastic analysis the upper bound multiplier m^6 is 0.779 and m_t is 0.557. The m^6/m_t ratio 1.3986 is less than $1+\sqrt{2}$ limit, the plastically reference volume corrected multiplier $m^6(V_{sp})$ calculated using PRVM is 0.69 which is lower bounded. Variation of $m^6 O_{sp}$) with different iteration for anisotropic thick cylinder are presented are presented in $3h^2$ 2 and Fig.c7.3.

Table 7.2 Comparison of Various Multipliers of anisotropic thick cylinder for Plastic Reference Volume Correction (EMAP)

Iteration	m°	m_L	$m^{\oplus}(V_{Rp})$	m_{aoa}
1	0.779	0.557	0.694	
6	0.772	0.603	0.713	
12	0.769	0.644	. 0.724	0.744
18	0.767	0.670	0.731	
22	0,766	0.691	0.738	

7.5.2 Transversely Isotropic Bridgman Notch Bar

A Bridgman notch subjected to remote tensile load is modeled and analyzed axi symmetrically (Fig. 7.4). The notch bar has a maximum diameter of 2.6.416 mm, minimum diameter of 21.082 mm and notch radius of 6.858 mm. the remote tensile load is 500 MPa. The Notch har is made of Zircalloy. The alloy is assumed to be perfectlyplastic and transversely isotropic, which means the material is isotropic in the y-z plane. Due to symmetry in geometry and loading, only a quarter slice of notch is modeled using Planet2 elements with axi-symmetric consideration.

Faculty of Engineering and Applied Science, Memorial University,

Figure 7.4 A Transversely Isotropic Bridgman Notch bar (a) Geometry and dimensions (b) Typical finite element mesh with loading

2. Yield stresses in the respective directions are given by

 $\sigma_{p_s} = 472.3 \text{ MPa}$; $\sigma_{p_s} = 579.2 \text{ MPa}$; $\sigma_{a_s} = 579.2 \text{ MPa}$;

 $r_{ayy} = 262.9 \text{ MPa}$; $r_{ayy} = 262.9 \text{ MPa}$; $r_{ayy} = 366.6 \text{ MPa}$;

3. Modified initial elastic properties based on Eq. (7.9) and Eq. (7.10) are as follows:

E, = 223.06 GPa; E, = 335.47 GPa; E, = 335.47 GPa;

 $G_{m} = 69.12$ GPa; $G_{m} = 69.12$ GPa; $G_{m} = 134.39$ GPa;

 $v_{11} = 0.451; v_{12} = 0.149; v_{12} = 0.451.$

7.5.2.1 Elastic Reference Volume Method (ERVM)

From the initial elastic analysis the upper bound multiplier m^{4} is 1.111 and m_{t} is 0.477. The m^{4}/m_{t} ratio 2.3291 is less than $1 + \sqrt{2}$ limit, the $m_{t}^{2} \sigma_{ta}^{*}$) calculated using ERVM is 0.80 which is lower bounded. Variation of $m^{4} \sigma_{ta}^{*}$) and $m_{t}^{2} \sigma_{ta}^{*}$) with different iteration for anisotropic thick cylinder are presented in Tab. 7.3 and Fig. 7.5. m^{3} and $m^{2} (\sigma_{ta})$ columns of the Tab. 7.3. are equal which shows that this component is independent of ded volume feet.

Table 7.3 Comparison of Various Multipliers of Transversely Isotropic Bridgman notch bar for Elastic Reference Volume Correction (EMAP)

Figure 7.5 Variation of $m^0(V_{Re})$ and $m_a^T(V_{Re})$ with iterations for Transversely Isotropic Brideman notch bar

Driugman noten oa

7.5.2.2 Plastic Reference Volume Method (PRVM)

From the initial elastic analysis the upper bound multiplier m^0 is 1.111 and m_L is 0.477.The m^0/m_L ratio 2.3291 is less than $1+\sqrt{2}$ limit, the $m^0(V_{R_0})$ calculated using

Faculty of Engineering and Applied Science, Memorial University.

PRVM is 0.75 which is lower bounded. The comparisons of various multipliers for Plastic reference volume correction for first iterations are presented in Tab 7.4. Variation of $m^0 \sigma_{gs}$) with different iteration for Transversely Isotropic Bridgman notch bar are presented are presented in Tab 7.4 and Fig.7.6.

Table 7.4 Comparison of Various Multipliers of Transversely Isotropic Bridgman notch bar for Plastic Reference Volume Correction (EMAP)

Iteration	m^0	m_L	$m^0(V_{Rp})$	m _{non}
1	1.111	0.477	0.984	
8	1.096	0.611	0.993	
16	1.084	0.724	0.994	1.004
24	1.074	0.801	1.001	
32	1.065	0.851	1.002	

notch bar

7.5.3 Transversely Isotropic Plate with a Hole

A Plate with a hole (Fig. 7.7) with the following dimensions are considered: Plate with 2W = 150 mm; length 2L = 300 mm; hole radius r = 23 mm. It is subjected to a tensite load of P = 100 Mm2. The Notch her is made of Ziraellow; The alloy is assumed to be perfectly-plastic and transversely isotropic, which means the material is isotropic in the x_2 plane. Due to symmetry in geometry and loading, only a quarter of the plate is modeled using Plane 2 tensors with plane trens consideration.

In the present investigation, the following material properties are specified:

1. Original elastic properties are (for nonlinear finite element analysis)

E, = 95.79 GPa; E, = 95.79 GPa; E, = 100.99 GPa;

 $G_{vv} = 36.15$ GPa; $v_{vv} = v_{vv} = 0.361$; $v_{vv} = 0.341$;

2. Yield stresses in the respective directions are given by

 $\sigma_{0x} = 472.3$ MPa; $\sigma_{0x} = 472.3$ MPa; $\sigma_{0x} = 579.2$ MPa;

 $v_{xy} = 0.149$; $v_{yy} = 0.451$; $v_{yy} = 0.451$.

7.5.3.1 Elastic Reference Volume Method (ERVM)

From the initial elastic analysis the upper bound multiplier m^0 is 5.3.17 and m_{\pm} is 1.985. The m^0/m_{μ} ratio 2.6786 is greater than $1 + \sqrt{2}$ limit, the $m_{\pm}^2(m_{\pm})$ calculated using ERVM is 3.62 which is lower bounded. Variation of $m^0(\sigma_{\pm})$ and $m_{\pm}^2(\sigma_{\pm})$ with different interation for Transversely lostropic Plate with a Hole are presented in Tab. 7.5 and Fig. 7.8. m^0 and $m^0(T_{\pm})$ columns of the Tab. 7.3. are not equal which shows that this component is having some dead volume effect, but the correction applied is small as the m^2/m_{\pm} is observed $1 + \sqrt{2}$ limit.

Table 7.5 Comparison of Various Multipliers of Transversely Isotropic Plate with a Hole for Elastic Reference Volume Correction (EMAP)

Iteration		m°	m_L	$m^{\circ}(V_{Re})$	$m_{\alpha}^{T}(V_{Re})$	m_{vov}
	1	5.317	1.985	5.314	3.622	
	2	5.291	2.053	5.288	3.664	
	4	5.243	2.189	5.240	3.723	3.994
	6	5.198	2.323	5.195	3.824	
	10	5.114	2.579	5.112	3.969	

Faculty of Engineering and Applied Science, Memorial University.

Faculty of Engineering and Applied Science, Memorial University.

7.5.2.2 Plastic Reference Volume Method (PRVM)

From the initial elastic analysis the upper bound multiplier m^6 is 5.317 and m_t is 1.985.As, the m^8/m_t ratio 2.6786 is greater than $1+\sqrt{2}$ limit, the $m_s^2(U_{g_0})$ calculated using PRVM is 3.30 which is lower bounded. Variation of $m^8(U_{g_0})$ and $m_s^2(U_{g_0})$ with different iteration for Transversely Isotropic Plate with a Hole are presented in Tab. 7.6 and Fig. 2.9.

Table 7.6 Comparison of Various Multipliers of Transversely Isotropic Plate with a Hole for Plastic Reference Volume Correction (EMAP)

Iteration	m	mL	$m^{\circ}(V_{Rp})$	$m_{\alpha}^{T}(V_{\delta p})$	mass
1	5.317	1.985	4.551	3.304	
2	5.291	2.053	. 4.544	3.352	
4	5.243	2.189	4.532	3.453	3.994
6	5.198	2.323	4.514	3.544	
10	5,114	2.579	4.493	3.694	

7.6 Discussion of the Results

The objective of the proposed method is to ensure the lower boundedness of the m₄, tangent multiplier for components made of orthotropic materials by combining the newly developed reference volume concept with m₄ tangent method. The secant modulus in the reference direction in the elastic analysis is used to estimate the plastic flow parameter for the orthotropic components. Modified initial elastic properties are adopted to ensure the elastic stress field follows the anistective jet jet duraface.

From initial elastic analysis for any component we can calculate the value of m^{σ}/m_{L} . Depending on the m^{0}/m_{L} the components are classified into two categories as explained previously. In this chapter the examples are so chosen that there will be representation

Faculty of Engineering and Applied Science, Memorial University.

from both the categories. For these examples, both the elastic reference volume correction as well as the plastic reference volume correction has been applied.

For the components which fall under the first category (Section 7.5.1) and Section 7.5.2), the upper bound multiplier with plastic reference volume correction $m^{\mu}(U_{i\mu})$ gives the lower bound value, and for the components which fall under the second category (Section 7.5.3), m_{μ} tangent multiplier with plastic reference volume correction $m_{\mu}^{\mu}(U_{i\mu})$ gives the lower bound value. The method is demonstrated using the examples and results are found to be in good agreement with the non-linear finite element solution. When the elastic reference volume is applied m_{μ} tangent multiplier with elastic reference volume correction $m_{\mu}^{\nu}(U_{i\mu})$ gives the lower bound value in both the categories.

From the comparison of the results, it can be concluded that the lower bound multiplier obtained by platics reference volume correction is a bit conservative, when compared to the one obtained using elastic reference volume correction method, as the presence of peak stress in the second category components are delaying the convergence of plastic reference volume method.

Chapter-8

INCORPORATION OF STRAIN HARDENING EFFECT INTO LIMIT ANALYSIS

8.1 Introduction

In an actual component or structure when the stresses exceed the yield strength of the material, the component starts to experience strain hardening. Due to strain hardening the component or structure can withstand more loads [10]. In the traditional way of limit load calculations, the material models are assumed to be elastic perfectly plastic (EPP) [30]-[36]. However, this will lead to a very conservative estimate of limit load for a material that has a significant stain hardening. Therefore, by considering the effect of strain hardening while estimating the limit load more realistic limit load can be obtained. This novel method addresses the effect of material strain hardening on limit load estimation. The commonly used material models including Bilinear Hardening (BH) and Ramberg-Osgood (RO) models are investigated. Bilinear hardening material model, which the elastic modulus and tangent modulus, is the simplest representation of the strain hardened material properties. Ramberg-Osgood material model is more complicated and closer to the actual material properties of a component [55]. In the stress-strain curve once the yield strength point is exceeded then plasticity occurs. In the initial portion of the plastic region, the rise in the curve is due to the presence of the strain hardening in the material. The hidden strength due to strain hardening can be utilized if vield strength of an equivalent elastic perfectly plastic material model is obtained by integrating this portion of the curve. By integrating the equation for the material models, the expressions for equivalent yield strength is obtained. In these expressions all the other variables are known material properties, so these equations are readily solved to obtain the values of the yield strength of equivalent elastic perfectly plastic model. The estimated equivalent yield strength value is used instead of the regular yield strength, and limit analysis is carried out.

Faculty of Engineering and Applied Science, Memorial University.

8.2 Theoretical background

Generally one of the basic assumption in calculating the limit load values of any general component is, that the material behavior is elastic perfectly plastic (EPP). However, if the material behavior is elastic-plastic hardening then the approach needs to be modified. Assuming a hardening material model:

$$\varepsilon = f(\sigma_a, \sigma)$$
 (8.1)

where σ_{ψ} is a reference value of stress that is usually taken as the yield strength, and σ is the applied stress [56].

By equating the strain energy densities shown in Fig. 8.1, the strain hardening curve can be represented by an equivalent elastic-perfectly plastic curve in which σ'_i is the assumed yield strength, i.e., area A_1 should be equal to area A_2 . Therefore, σ'_a can be determined by following equation:

$$\int_{\sigma_s}^{\sigma_s} \varepsilon d\sigma - \varepsilon_{\phi} \left(\sigma_y^* - \sigma_{\phi} \right) - \frac{1}{2} \left(\sigma_y^* - \sigma_{\phi} \right) (\varepsilon_1 - \varepsilon_{\phi}) = \varepsilon_f \left(\sigma_f - \sigma_y^* \right) - \int_{\sigma_s}^{\sigma_f} \varepsilon d\sigma \quad (8.2)$$

where (σ_i^*, e_j^*) is equivalent yield strength point and (σ, ε) is an arbitrary point on a strain hardening curve, and σ_j related stress to the fracture strain, $\varepsilon_j^*, \varepsilon_i^*$ can be calculated using the linear relation $\varepsilon_i = \sigma_i^* / E_0^*$.

Different material models such as the BH material and RO relationship have been studied here in. These material models can represent true stress strain material curves with in the small strain regions (57-59). Therefore, the portion of the curve which is used for finding out the equivalent yield stress of equivalent elastic perfectly plastic material model is limited to these regions only, by choosing the cut-off strain, e_{μ} to be at 0.05. In this way this equivalent yield stress is different from the flow stress normally used in the industry, as flow stress is the average of yield outlimate strength of the material.

Faculty of Engineering and Applied Science, Memorial University.

Figure 8.1 Illustrative determination of σ_{v}^{*}

8.2.1 Bilinear Hardening Material Model

The stress strain relation ship of a bilinear hardening material model is given by:

$$\varepsilon = \frac{\sigma_0}{E_0} + \frac{(\sigma - \sigma_0)}{E_t} \qquad (8.3)$$

A Bilinear material model is presented in Fig. 8.2.

For a bilinear material model the Eq. (8.2) can be rewritten as:

$$LHS = \int_{\sigma_0}^{\sigma_0'} \left(\frac{\sigma_0}{E_0} + \frac{(\sigma - \sigma_0)}{E_i} \right) d\sigma - \varepsilon_0 \left(\sigma_y^* - \sigma_0 \right) - \frac{1}{2} \left(\sigma_y^* - \sigma_0 \right) (\varepsilon_1 - \varepsilon_0)$$

$$RHS = \left(\frac{\sigma_0}{E_0} + \frac{(\sigma_f - \sigma_0)}{E_i}\right) \left(\sigma_f - \sigma_f^*\right) - \int_{\sigma_i}^{\sigma_f} \left(\frac{\sigma_0}{E_0} + \frac{(\sigma - \sigma_0)}{E_i}\right) d\sigma$$

$$LHS = RHS$$

 $\sigma_{+}^{*} = (1 - \beta)\sigma_{0} + \beta \sigma_{\ell} \pm \sqrt{\beta(\beta - 1)}(\sigma_{\ell} - \sigma_{0})$
(8.4)

Faculty of Engineering and Applied Science, Memorial University.

Using Eq. (8.4) the equivalent yield strength for bilinear hardening material can be obtained.

Figure 8.2 Bilinear Hardening Material Model

8.2.2 Ramberg-Osgood Hardening Material Model

The Ramberg-Osgood material model can be written as

$$\varepsilon = \frac{\sigma}{E_0} + \frac{\alpha \sigma_0}{E_0} \left(\frac{\sigma}{\sigma_0} \right)^{\mu} \qquad (8.5)$$

where α is dimensionless material constant, usually chosen to be equal to 3/7, and *n* is the strain hardening exponent.

Simplifying Eq. (8.2) using Eq.(8.5), we get an expression that leads to the equivalent yield strength, σ^*

$$A\sigma^{*2} - B\sigma^{*} + C = 0$$
 (8.6)

where A, B and C are expressed in terms of material properties

$$A = 1$$

Faculty of Engineering and Applied Science, Memorial University.

$$B = 2\left(\sigma_f + \frac{\alpha\sigma_f^*}{\sigma_0^{n-1}}\right)$$
$$C = \frac{2\alpha n \sigma_f^{n-1}}{(n+1)(\sigma_0^{n-1})} + \sigma_f^2$$

Usually, the value of fracture strain, ε_{γ} , is available as a material parameter. Therefore, in order to calculate σ_{γ} the following equation need to be solved [56].

$$\sigma_j^s + \frac{\sigma_0^{s+1}}{\alpha} \sigma_j - \frac{E_0 \sigma_0^{s+1} \varepsilon_j}{\alpha} = 0 \qquad (8.7)$$

Once σ_f is known Using Eq. (8.6) equivalent yield strength of the Ramberg-Osgood Material model can be calculated.

8.3 General Procedure

In this section a general procedure is being outlined in a step by step manner to find out the lower bound multipliers for components undergoing hardening material model using the proposed method.

- Initially equivalent yield strength is calculated for the given hardened material.
 For bilinear hardened material Eq (8.4) is used and if it's a Ramberg-Osgood one then Eq (8.6) is used.
- The first linear elastic finite element analysis is carried out for the model with the
 prescribed loading and boundary conditions.
- The elements in the component are sorted in the descending order of the equivalent stress values.
- The m⁰ value will be calculated using Eq. (5.1) for the component in steps of each sub-volume as being discussed in Sec. (5.2) and m₁ is calculated using Eq. (3.11).
- Then these values of m⁰ are plotted against V
 q and m^o(V{jp}) will be calculated using the Eq. (5.7).

Faculty of Engineering and Applied Science, Memorial University.

- Depending on the value of m⁰/m_L the components are grouped as discussed in the section 5.2.1.
- For the components whose $m^0/m_z < 1 + \sqrt{2}$, the value of $m^0(V_{gp})$ is taken as the final value of the multiplier.
- For the components whose m⁰ / m₁ > 1 + √2, the value of m⁷_a(V_p) should be calculated as explained in Sec. (5.3)
- The above steps are continued using the EMAP iterations until the converged or near converged solution are obtained. The results of fifty EMAP iterations and convergence criteria are provided in appendix C

In the following section, the method is applied to several component configurations, and the results are compared with the limit load using nonlinear malaysis. The elasticperfectly plastic material is employed to estimate the limit loads using nonlinear finite element analysis. In the plastic limit state the body fully or partially undergoes unrestricted plastic deformation under constant external load. Therefore, the limit load using numerical approxic li sestimated when the magnitude of strains goes very high and the convergence cannot be achieved any more by further increase in the load. In the following action couples of components are examined to verify the method's robustness and validity.

8.4 Application to General Components

8.4.1 Thick Cylinder

A cylinder under internal pressure (Fig.4.11) with geometric dimensions as described in Section (4.6.1) is examined here. Two different kinds of strain hardening material properties are considered for examination.

Bilinear Hardening Material Model:

 $E_0 = 200 \text{ GPa}; \sigma_0 = 300 \text{ MPa}; E_T = 0.02 \times E_0; \varepsilon_T = 0.05;$

The equivalent yield strength calculated using Eq. (8.4) is $\sigma_v^* = 397.50$ MPa;

· Ramberg-Osgood Material Model:

 $E_n = 200$ GPa; $\sigma_n = 300$ MPa; $\alpha = 1.34$; n = 8.60;
The stress at the cut-off strain calculated using Eq. (8.7) is $\sigma_j = 433.69$ MPa; Various coefficients of Eq. (8.6) is calculated and given below: A = 1; B = 1999.19; C = 7.62E6;

The equivalent yield strength calculated using Eq. (8.6) is $\sigma_v^* = 388.62$ MPa;

The comparisons of various multipliers with different material hardening models for first iterations are presented in Table 8.1. As $m^2/m_p < 1 + \sqrt{2}$ this component fall under first category, so $m^2(U'_{4p})$ is lower bounded. Variation of $m^2(D'_{4p})$ with different iteration for bilinear hardening material model is presented in Table 8.2. Variation of $m^2(U'_{4p})$ with different iteration for Ramberg-Osgood hardening material model is presented in Table 8.3. The variation betas are given in Fig. 8.3 and Fig. 8.4.

Table 8.1 Comparison of various multipliers for different material hardening models (LEFEA)

Problem	m^0	mL	m^0 / m_L	$m^0(V_{\rho\rho})$	m_{vev}
With out Stain hardening	2.294	1.683	1.36	1.992	2.264
Bilinear	3.039	2.212	1.37	2.653	2.981
Ramberg-Osgood	2.972	2.163	1.37	2.592	2.913

Table 8.2 Comparison of various multipliers of thick walled cylinder for bilinear material hardening model (EMAP)

Iteration	m^0	mL	$m^0(V_{pp})$	mase
1	3.039	2.212	2.653	
5	3.009	2.439	2.754	
10	2.994	2.641	2.833	2.981
15	2.989	2.772	2.893	
20	2.987	2.856	2.934	

Faculty of Engineering and Applied Science, Memorial University.

Figure 8.3 Variation of $m^{+}(V_{Rs})$ with iterations for bilinear hardening thick cylinder

Figure 8.4 Variation of $m^{0}(V_{xp})$ and $m^{T}_{a}(V_{xp})$ with iterations for Ramberg-Osgood hardening thick cylinder

Iteration	m°	mL	$m^0(V_{sp})$	m
1 .	2.972	2.163	2.592	
5	2.942	2.384	2.682	
10	2.927	2.582	2.774	2.91
- 15	2.922	2.710	2.832	
20	2.921	2.792	2.861	

Table 8.3 Comparison of various multipliers of thick walled cylinder for Ramberg-

Osgood material hardening model (EMAP)

8.4.2 Compact Tension (CT) Specimen

A CT Specimen (Fig.4.26) with geometric dimensions as described in Section (4.6.6) is examined here [60]. Two different kinds of strain hardening material properties are considered for examination.

Bilinear Hardening Material Model:

 $E_0 = 211$ GPa; $\sigma_0 = 250$ MPa; $E_T = 0.015 \times E_0$; $\varepsilon_T = 0.05$;

The equivalent yield strength calculated using Eq. (8.4) is $\sigma_{\gamma}^* = 327.54$ MPa;

· Ramberg-Osgood Material Model:

 $E_0 = 211 \text{ GPa}; \ \sigma_0 = 250 \text{ MPa}; \ \alpha = 1.69; \ n = 8.60;$

The stress at the cut-off strain calculated using Eq. (8.7) is $\sigma_{1} = 361.97$ MPa;

Various coefficients of Eq. (8.6) is calculated and given below:

A = 1; B = 21101.72; C = 6.74E6;

The equivalent yield strength calculated using Eq. (8.6) is $\sigma_v^* = 324.33$ MPa;

The comparisons of various multipliers with different material hardening models for first iterations are presented in Table 8.4. As $m^0/m_L > 1 + \sqrt{2}$ this component fall under second category, so $m_L^2(V_{ds})$ is calculated.

Variation of $m^{0}(V_{g_{0}})$ and $m_{\lambda}^{*}(U_{g_{0}})$ with different iteration for bilinear hardening material model is presented in Table 8.5. Variation of $m^{0}(U_{g_{0}})$ and $m_{\nu}^{*}(U_{g_{0}})$ with different iteration for Ramberg-Osgood hardening material model is presented in Table 8.6. The variation blocks are given in Fig. 8.5 and Fig. 8.6.

Table 8.4 Comparison of various multipliers of CT Specimen for different material hardening models (LEFEA)

Problem	\dot{m}^0	m_L	m°/m_{L}	$m_{\alpha}^{T}(V_{R})$	maaa
With out Stain hardening	1.590	0.167	9.52	0.468	0.809
Bilinear	2.084	0.218	9.53	0.684	1.059
Ramberg-Osgood	2.023	0.212	9.54	0.662	1.044

Table 8.5 Comparison of various multipliers of CT Specimen for bilinear material

Iteration	m	mL	$m^0(V_{p_0})$	$m_{\alpha}^{T}(V_{Rs})$	masa
. 1	2.084	0.218	1.56	0.684	
4	1.918	0.277	1.50	0.763	
8	1.761	0.369	1.44	0.844	1.059
12	1.644	0.470	1.39	0.912	
18	1.514	0.626	1.32	1.004	

Table 8.6 Comparison of various multipliers of CT Specimen for Ramberg-Osgood

Iteration	m	mL	$m^0(V_{Rp})$	$m_{\alpha}^{T}(V_{Rp})$	m _{eev}
1	2.023	0.212	1.51	0.662	
4	1.863	0.269	1.46	0.742	
8	1.710	0.358	1.40	0.823	1.044
12	1.597	0.456	1.35	0.884	
18	1.471	0.608	1.28	0.973	

material hardening model (EMAP)

hardening model (EMAP)

Faculty of Engineering and Applied Science, Memorial University.

8.4.3 Indeterminate Beam

An Indeterminate Beam (Fig.4.41) with geometric dimensions as described in Section (4.6.11) is examined here. Two different kinds of strain hardening material properties are considered for examination.

Bilinear Hardening Material Model:

 $E_0 = 206.85$ GPa; $\sigma_0 = 206.85$ MPa; $E_T = 0.01 \times E_0$; $\varepsilon_T = 0.05$;

The equivalent yield strength calculated using Eq. (8.4) is $\sigma_v^* = 257.66$ MPa;

· Ramberg-Osgood Material Model:

 $E_0 = 206.85$ GPa; $\sigma_0 = 206.85$ MPa; $\alpha = 2$; n = 8.47;

The stress at the failure calculated using Eq. (8.7) is $\sigma_{1} = 301.43$ MPa;

Various coefficients of Eq. (8.6) are calculated and given below:

A = 1; B = 20685.59; C = 5.50E6;

The equivalent yield strength calculated using Eq. (8.6) is $\sigma_v^* = 269.65$ MPa;

The comparisons of various multiplices with different material hardening models for first iterations are presented in Table 8.7. As $m^2/m_{\pi^2} > 1 + \sqrt{2}$ this component fall under second category, so $m_{\pi^0}^{\mu} W_{\mu_0}$ is calculated. Variation of $m^0 W_{\mu_0}$ and $m_{\pi^0}^{\nu} U_{\mu_0}$) with different iteration for bilinear hardening material model is presented in Table 8.8.

Table 8.7 Comparison of various multipliers of Indeterminate Beam for different material hardening models (LEFEA)

Problem	m	m_L	m^0/m_L	$m_{\alpha}^{T}(V_{Rp})$	mana
With out Strain hardening	2.649	0.613	4.32	1.231	1.543
Bilinear	3.300	0.763	4.33	1.529	1.924
Ramberg-Osgood	3,453	0,799	4.32	1.603	2.013

Figure 8.7 Variation of $m^{\pm}(V_{\rho_{\mu}})$ and $m_{\mu}^{T}(V_{\rho_{\mu}})$ with iterations for bilinear hardening indeterminate beam.

Figure 8.8 Variation of $m^0(V_{pp})$ and $m_a^T(V_{pp})$ with iterations for Ramberg-Osgood hardening indeterminate beam.

Variation of $m^0(l'_{xy})$ and $m_{\pi}^T(l'_{xy})$ with different iteration for Ramberg-Osgood hardening material model is presented in Table 8.9.The variation plots are given in Fig.8.7 and Fig. 8.8.

Table 8.8 Comparison of various multipliers of Indeterminate Beam for bilinear material hardening model (EMAP)

Iteration	m ⁰	m_L	$m^0(V_{Rp})$	$m_{\alpha}^{T}(V_{Rp})$	m _{noo}
1	3.300	0.763	2.37	1.529	
4	2.935	0.885	2.29	1.584	
8	2.645	1.042	2.22	1.673	1.924
12	2.476	1.185	2.17	1.754	
16	2.369	1.309	2.14	1.809	

Table 8.9 Comparison of various multipliers of Indeterminate Beam for Ramberg-

Osgood material hardening model (EMAP)

Iteration	m^0	m_L	$m^0(V_{Rp})$	$m_{\mu}^{T}(V_{pp})$	man
1	3.453	0.799	2.48	1.603	
. 4	3.072	0.926	2.39	1.649	
8	2.768	1.091	2.32	1.744	2.013
12	2.591	1.240	2.27	1.828	
16	2.480	1.370	2.24	1.894	

8.5 Discussion of Results

A simple approach is discussed in this chapter to determine equivalent yield strength of a material model with strain hardening. Two different strain hardening material models, namely the Bilinene Hardening and Ramberg-Ogosod models, are specifically investigated. The estimated yield strength along with limit load multipliers (using the reference volume approach) are used to estimate a more appropriate limit load of a component with strain hardening material.

Faculty of Engineering and Applied Science, Memorial University.

Once the components material properties are know, by using the Eq. (8.4) and Eq. (8.5)its equivalent yield strengths for billnear material model and Ramberg Oogood material model are calculated respectively. This yield strength is used to perform the elastic finite element analysis. In this research both the material models are studied and the user can choose which ever model they are more comfortable with.

From Initial elastic analysis of any component m^2/m_{\pm} is calculated. Depending on the m^2/m_{\pm} the components are classified into two categories as explained previously. For the components which fall under the first category, $m^2(V_{g_0})$ gives the lower bound value, and for the components which fall under the scated category, $m_{\pm}^2(V_{g_0})$ gives the lower bound value. The results obtained are lower bounded in all the cases.

The applicability of the proposed procedure is demonstrated through numerical examples (section 8.4.1 to section 8.4.2). The estimated limit loads are in good agreement with the ones obtained using nonlinear finite element analysis.

Faculty of Engineering and Applied Science, Memorial University.

CHAPTER 9 CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH

9.1 Conclusions

The newly developed reference volume approaches are found to be very useful in determining the lower bound limit loads of mechanical components and structures. These methods are easy to implement in practice. When compared to the non linear analysis they demand little skill sets, so it can be readily used by any engineer. The other advantage of this methods is it takes less comparational time as demonstrated by the examples. In this research it is observed that the time advantage increases with the complexity of the problem. When compared to the regular EMAP method, the methods proved in this theirs are found covering faster.

The *Elastic Reference Yolume Method* derived its roots from the pressure balb concepts of soil mechanics. In this method reference volume effect is corrected based upon the maximum stress developed in the component. The Elastic Reference Volume method is simple and straight forward. After obtaining the stress distribution from the initial clastic analysis, the m^2 vs. $\overline{V_g}$ curve is plotted. All the elements having stress less than five percentage of peak stress are considered as dead volume. Using this m^2 vs. $\overline{V_g}$ curve we can easily identify the components which need dead volume correction. From the research it's found that all the components whose $m^2/m_z \le 1 + \sqrt{2}$ needs either no or less correction. For these components whose $m^2/m_z \ge 1 + \sqrt{2}$ the corrected $m^2(w_{2s})$ and m_z are used to calculate $m_z^2(w_{2s})$, which is found to be lower bounded limit load multiplier for all the camponents research.

The Plastic Reference Volume Method for finding out the reference volume of any general component involves integration of the upper bound multiplier vs. sub-volume ratio curve. From initial elastic analysis for any general component m^4/m_t can be calculated, depending on the m^4/m_t the components which fall under first category, m^4/w_{ab} .

Faculty of Engineering and Applied Science, Memorial University.

will be the lower bound multiplier and for the components which fall under second category, $m_a^{\prime}(w_p)$ will be the lower bound multiplier. From the results it can be concluded that if platic reference volume correction is employed $m_a^{\prime\prime}$ multiplier will always be a lower bounded value. The clastic reference volume method is from 4 to be effective for both category of components, where as the plastic reference volume is more effective in first category components and conservative when compared to elastic reference volume method in second category components.

The reason for these conservative results can be explained as the presence of the peak stresses in the composents, which will lower the lower bound multiplier m_i . This kind of behavior can be seen mostly in the second category components (categorization is explained in section 5.2.1), which have some eracks or notches developed during the operation. A new method is developed which will take both the reference volume correction and peak stress correction into consideration and calculate a lower bounded limit load multiplier. The proposed method combines the newly developed reference volume concept with the $m_{\rm s}$ tangent method to ensure the lower boundedness of $m_{\rm s}$ tangent multiplier.

Taking the practicality of the material usage into consideration a methods is developed to find out limit loads of orthotropic materials. As the usage of orthrotopic materials in industries is increasing day by day, so is the need for finding out limit loads for components made of such material is vary important. Finding out the limit loads of volume (reference volumes) at the plastic collapse. The method uses the reference volume approach for orthotropic material, involves predicting kinematically active volume approach for orthotropic material and $m_{\rm s}$ tangent method together to obtain the lower bound limit loads for components made of anisotropic materials. The secant modulus in the reference direction in the elastic analysis is used to estimate the plastic flow parameter for the naisotropic components. Modified initial elastic properties are adopted to ensure the elastic atrust field follows the anisotropic yield surface. From Initia elastic analysis for any component we can calculate the value of $m^2/m_{\rm s}$. Depending on

Faculty of Engineering and Applied Science, Memorial University.

the m^2/m_e the components are classified into two categories as explained previously. For the components which fall under first category, $m^2/T_{\mu\nu}$ gives the lower bound value and for the components which fall under second category, $m_e^2/T_{\mu\nu}$ gives the lower bound value.

In an actual component or structure when the stresses exceed the yield strength of the material, the component starts to experience strain hardening. Due to strain hardening the component or structure can withstand more loads. In the traditional way of limit load calculations, the material models are assumed to be elastic perfectly plastic (EPP). However, this will lead to a very conservative estimate of limit load for a material that has a significant stain hardening. Therefore, by considering the effect of strain hardening while estimating the limit load more realistic limit load can be obtained. The hidden strength due to strain hardening can be utilized if yield strength of an equivalent elastic perfectly plastic material model is obtained by integrating this portion of the curve. By integrating the equation for the material models, the expressions for equivalent yield strength is obtained. In these expressions all the other variables are known material properties, so these equations are readily solved to obtain the values of the yield strength of equivalent elastic perfectly plastic model. The estimated equivalent yield strength value is used instead of the regular yield strength, and limit analysis is carried out. Two different strain hardening material models namely the Bilinear hardening and Ramberg-Osgood models are in particular investigated. The estimated yield strength along with limit load multipliers (using the reference volume approach) are used to estimate more appropriate limit load of a component with strain hardening material. From Initial elastic analysis for any component we can calculate the value of m^9/m_L . Depending on the m⁰/m₁ the components are classified into two categories as explained previously. For the components which fall under first category, $m^0(V_{a_n})$ gives the lower bound value and for the components which fall under second category, $m_{\alpha}^{T}(V_{ke})$ gives the lower bound value. The results obtained are lower bounded in all the cases. ANSYS [50] software is used for doing all the analysis in this thesis.

Faculty of Engineering and Applied Science, Memorial University.

9.2 Original Contributions

The following are the original contributions from the current research work:

- The two-bar method is generalized, and the previous assumption of taking equal areas of two bars is proved as an accurate assumption.
- The Elastic reference volume method has been developed, which by correcting the reference volume effect elastically gives the lower bound limit load multiplier.
- The Plastic reference volume method has been developed, which by correcting the reference volume effect plastically and gives the lower bound limit load multiplier. The multipliers obtained from this method are bit conservative when compared to elastic reference volume method.
- A new method which corrects both the dead volume effect and the peak stress effect and always maintain a lower bounded m_n method has been developed.
- The Elastic and Plastic reference volume methods are extended to the anisotropic materials.
- Using the Integration of true stress strain plots, the strain hardening effect is incorporated into the limit analysis.

9.3 Future Research

Using the results from Elastic Reference Volume method, a simplified method can be developed in future. This method can be developed by generating the relationship between the reference volumes of different components and there corresponding unsing a single linear elastic iteration, the reference volume of the multiplier. These relations thips can be shown in the graphical forms and there after, by using a single linear elastic iteration, the reference volume of the multiplier can be predicted. Using the so obtained reference volume the lower bounded limit load multiplies: on the estimated.

All the reference volume methods developed in this thesis can be extended to different fields like ship structure design, complex pressure vessel design and complex mechanical components in future.

Faculty of Engineering and Applied Science, Memorial University.

Currently all the methods proposed are developed and tested using the fixed 'q' EMAP, which is one of the reasons for the solve convergence. In future these methods can be extended and studied using the variable 'q' EMAP. While using the variable 'q' EMAP we may need to address the issue of sudden change in the multipliers in the second iteration and fluctuation in the lower bound multiplier with iterations.

The new method proposed with the simultaneous correction of dead volume and peak stress effects is using the EMAP iterations, which can further be developed for a single elastic analysis. The multipliere obtained from this method are giving closer approximates of limit load multipliers, so these can be further used in fitness for service (PF3) and Integrity assessment of in-avervice components.

The reference volume method developed for the anisotropic material in this thesis limited itself to the study of the orthotropic materials. In future it can be further extended to the study of completely anisotropic materials.

The inclusion of the strain hardening into the limit analysis proposed in the current research used the actual stress strain plots as it's their basis of development. In future, this method can also be developed for engineering stress strain plots which is more generally used material stress-strain plot. The cutoff-strain limit can be further studied and a direct relationship can be developed between cutoff-strain and the equivalent yield stress.

Publications and Presentations during the Ph.D Program

- P. S. Reddy, Gudimetla., R. Adibi-Asl and R. Seshadri., 2010, "Incorporation of Strain Hardening Effect into Limit Load Analysis", J. Pressure Vessel Technology, Accepted.
- P. S. Reddy, Gudimetla., R. Seshadri and Munaswami Katna., July 2010, "Limit Load Estimate Using Reference Volume Approach", Proceedings of the ASME PVP Conference, Bellevue, Washington, USA.
- P. S. Reddy, Gudimetla., R. Adibi-Asl and R. Seshadri., July 2010, "Incorporation of Strain Hardening Effect into Limit Load Analysis", Proceedings of the ASME PVP Conference, Bellevue, Washington, USA.
- P. S. Reddy, Gudimetla., March 2010, "Reference Volume for Anisotropic Material Components", presented at Aldrich Conference, St. John's, Canada.
- P. S. Reddy, Gudimetla., March 2009, "Recent Developments in Limit Load Analysis", presented at Aldrich Conference, St. John's, Canada.

Faculty of Engineering and Applied Science, Memorial University.

REFERENCES

- ASME Boiler and Pressure Vessel Code, 2001, American Society of Mechanical Engineers, New York.
- Mahmood, S. L., Haddara, M. R. and Seshadri, R. 2010, "Limit Loads of Ship Components using the Elastic Modulus Adjustment Procedure (EMAP)", Int. J. Ocean Engineering, Vol. 37, pp. 1452-1463.
- Seshadri, R. and Mangalaramanan, S. P., 1997, "Lower Bound Limit Loads Using Variational Concepts: The m_a -method", Int. J. Pressure Vessel & Piping, Vol. 71, pp. 93-106.
- Seshadri, R. and Hossain, M. M., 2009, "Simplified Limit Load Determination Using the m^T_a-method", ASME J. Pressure Vessel Technology, Vol. 131, pp.1-7.
- Tantichattanont, P., Adluri, S., and Seshadri, R., 2007, "Fitness-for-Service Assessment of Spherical Pressure Vessels with Hot Spots", Int. J. Pressure Vessels Piping, Vol. 84, pp. 762-772
- Tantichattanont, P., Adluri, S., and Seshadri, R., 2009, "Fitness-for-Service Evaluation of Thermal Hot Spots and Corrosion Damage in Cylindrical Pressure Components", ASME J. Pressure Vessel Technology, Vol. 131.
- Ahmad, F., Hossain, M. M., and Seshadri, R., 2010, "Fitness-for-Service Assessment of Hydrocarbon Storage Tanks", ASME J. Pressure Vessel Technology, Vol. 132.
- Pan, L. and Seshadri, R., 2002, "Limit Analysis for Anisotropic Solids Using Variational Principle and Repeated Elastic Finite Element Analysis", Proceedings of ASME Pressure Vessels and Piping Conference, Vol. 442, pp.149-155.
- Timoshenko, S. P. and Gere, J. M., 1961, *Theory of Elastic Stability*, McGraw-Hill, New York.
- Shames, I. H. and Cozzarelli, F. A., 1992, *Elastic and Inelastic Stress Analysis*, Prentice-Hall, New Jersey.
- 11. Mendelson, A., 1968, Plasticity: Theory and Application, Macmillan, New York.
- Calladine, C. R., 2000, Plasticity for Engineers: Theory and Application, West Sussex, England.

Faculty of Engineering and Applied Science, Memorial University.

- Hill, R., 1950, *The Mathematical Theory of Plasticity*, Oxford University Press, London.
- Kachanov, L.M., 1971, Foundations of the Theory of Plasticity, North-Holland, Amsterdam.
- Mura, T., Rimawi, W. H. and Lee, S. L., 1965, "Extended Theorems of Limit Analysis", Quarterly of Applied Mathematics, Vol. 23, pp. 171-179.
- Mura, T. and Lee, S. L., 1963, "Application of Variational Principles to Limit Analysis", Quarterly of Applied Mathematics, Vol. 21, pp. 243-348.
- Pan, L. and Seshadri, R., 2001, "Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analysis", ASME J. Pressure Vessel Technology, Vol. 124, pp. 433-439.
- Seshadri, R. and Fernando, C. P. D., 1992, "Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method", ASME J. Pressure Vessel Technology, Vol. 114, pp. 201-208.
- Mangalaramanan S. P., 1997, Robust Limit Loads Using Elastic Modulus Adjustment Technique, Ph.D. Thesis, Faculty of Engineering and Applied Sciences, Memorial University of Newfoundland.
- Reinhardt, W. D. and Seshadri, R., 2003, "Limit Load Bounds for the m_a Multiplier", ASME J. Pressure Vessel Technology, Vol. 125, pp.1-8.
- Pan, L. and Seshadri, R., 2002, "Limit Loads for Layered Structures Using Extended Variational Principles and Repeated Elastic Finite Element Analysis," ASME J. Pressure Vessel Technology, Vol. 124, pp. 425-432.
- Adibi-Asl, R. and Seshadri, R., 2007, "Simplified Limit Load Determination of Cracked Components Using the Reference Two-Bar Structure", ASME J. Pressure Vessels Technology, Vol. 129, pp. 280-286.
- 23. ASME Boiler and Pressure Vessel Code, 2007, Section III, New York.
- ASME Boiler and Pressure Vessel Code, 2007, Section VIII, Division 2, New York.
- Adibi-Asl, R., Fanous, I. F. Z. and Seshadri, R., 2006, "Elastic Modulus Adjustment Procedures- Improved Convergence Scheme", Int. J. Pressure Vessel and Piping, Vol. 83, pp.154-160.

- Jones, G. L., and Dhalla, A. K., 1981, "Classification of Clamp Induced Stresses in thin Walled pipe", ASME PVP, Vol.81, pp. 17-23.
- Marriott, D. L., 1988, "Evaluation of Deformation or Load Control of Stress under Inelastic Conditions using Elastic Finite Element Stress Analysis", ASME-PVP Conference, Pittsburgh, Vol. 136, pp. 3-9.
- Seshadri, R., and Fernando, C. P. D., 1992, "Limit Loads of Mechnanical Components and Structures using the GLOSS R-Node Method", ASME J. Pressure Vessel Technology, Vol. 114, pp. 201-208.
- 29. Kraus H., 1980, Creep Analysis, John Eiley & Sons.
- Mackenzie, D., and Boyle, J. T., 1993, "A Method of Estimating Limit Loads Using Elastic Analysis, I: Simple Examples", Int. J. Pressure Vessel Piping, Vol. 53, pp. 77-85.
- Seshadri, R., 1991, "The Generalized Local Stress Strain GLOSS Analysis -Theory and Applications", ASME J. Pressure Vessel Technology, Vol 113, pp. 219-227.
- Mackenzie, D., Shi, J. and Boyle, J. T., 1994, "Finite Element Modeling for Limit Analysis by the Elastic Compensation Method", Computers and Structures, Vol. 51, No. 4, pp. 403-410.
- Boyle, J. T., Hamilton, R., Shi, J., and Mackenzie, D., 1997, "A Simple Method for Calculating Limit Loads for Axisymmetric Thin Shells", ASME J. Pressure Vessel Technology, Vol. 15, pp. 236-242.
- Hamilton, R., Boyle, J. T., Shi, J., Mackenzie, D., 1996, "A Simple upper-bound method for calculating approximate shakedown loads", ASME J. Pressure Vessel Technology, Vol. 120, pp. 195-199.
- Nadarajah, C., Mackenzie, D. and Boyle, J. T., 1996, "Limit and shakedown analysis of nozzle/cylinder Intersections under Internal Pressure and In-plane Moment Loading", Int. J. Pressure Vessels and Piping, Vol.68, pp. 261-272.
- Ponter, A. R. S. and Carter, K. F., 1997, "Limit State Solutions, Based upon Linear Elastic Solutions with a Spatially Varying Elastic Modulus", Computer Methods in Applied Mechanics and Engineering, Vol.140, pp. 237-258.

- Desai, C. S., and Abel, J. F., 1972, Introduction to the finite element method: A numerical method for engineering analysis, van Nostrand Reinhold Company, New York.
- Spyrakos, C. C. and Raftoyiannia, J, 1997, Linear ans Nonlinear Finite Element Analysis in Engineering Practice, Algore Inc., Pittsburgh, PA
- Smith, G.N., 1974, Elements of Soil Mechanics for Civil and Mining Engineers, Crosby Lockwood Staples, London.
- Adibi-Asl, R., 2008, Simplified Limit Load Determination for Integrity Assessment, Ph.D. Thesis, Faculty of Engineering and Applied Sciences, Memorial University of Newfoundland.
- Wilun, Z. and Starzewski, K., 1975, Soil Mechanics in Foundation Engineering, Surrey university press, London.
- Helwany, S., 2007, Applied Soil Mechanics with ABAQUS Applications, Wiley, Hoboken, New Jersey.
- Boussinesq, J., 1885, Application des potentials a léquilibre et de movement des solids elastiques, Gauthier-Villars, Paris.
- Steinbrenner, W., 1934, "Tafeln zur setzungsberechnung", Die Strasse, Vol. 1, pp. 121-124.
- Fadam, R. E., 1941, Influence Values for Vertical Stresses in a Semi-Infinite Solid due to Surface Loads, School of Engineering, Harvard University.
- Jurgenson, L., 1934, The Application of Theories of Elasticity and Plasticity to Foundation Problems, Proceedings Boston Society of Civil Engineers, Boston.
- Fanous, I. F. Z. and Seshadri, R., 2009, "Limit Load Analysis Using the Reference Volume Concepts", Int. J. Pressure Vessel and Piping, Vol. 86, pp. 291-295.
- Reinhardt, W. D., and Mangalaramanan, S. P., 2001, "Effective Tube-sheet Design Using Repeated Elastic Limit Analysis", ASME J. Pressure Vessel Technology, Vol. 123, pp.197-202.
- Shih, C. F. and Lee, D., 1978, "Further Developments in Anisotropic Plasticity", J. Engineering Materials and Technology, Vol. 100, pp. 294-302.

- Valliappan, S., Boonlaulohr, P. and Lee, I. K., 1976, "Non-linear Analysis for Anisotropic Materials", Int. J. for Numerical Methods in Engineering, Vol. 10, pp. 597-606.
- Reinhardt, W. D. and Mangalaramanan, S. P., 1999, "Effective Tube-Sheet Design Using Repeated Elastic Limit Analysis", Proceedings of ASME Pressure Vessels and Piping Conference, Vol. 385, pp.141-149.
- Reinhardt, W. D. and Mangalaramanan, S. P., 2001, "Plastic Limit Analysis of a Tube-Sheet Using an Elastic Modulus Modification Method", ASME J. Pressure VesselsTechnology, Vol. 123, pp. 197-202.
- Indermohan, H., Reinhardt, W. D. and Seshadri. R., 2004, "Limit Load of Anisotropic Components Using the m-Beta Multiplier Method", J. Pressure Vessel Technology, Vol. 126, No. 4, Nov 2004, pp.455-460.
- 54. Seshadri, R. and Indermohan, H., 2004, "Lower Bound Limit Load Determination: The m_g-Multiplier Method," ASME J. Pressure Vessel Technology, Vol. 126, pp. 237-240.
- William, F. and Hosford. R., 2005, Mechanical Behavior of Materials, Cambridge University Press, New York.
- Adibi-Asl, R., and Seshadri, R., 2009, "Simplified Estimation Method for Inelastic Energy Release Rate,", Proceedings of 12th International Conference on Fracture (ICF-12), Ottawa, Canada.
- Kim, Y. J., Huh, N. S. and Kim, Y. J., 2001, "Enhanced Reference Stress Based J and COD Estimation Method for LBB Analysis and Comparison With GE/EPRI Method", J. Fatigue and Fracture of Engineering Material and Stractures, Vol. 24(a), pp. 243–254.
- Kim, Y. J., Huh, N. S., and Kim, Y. J., 2001, "Effect of Luders Strain on Engineering Crack Opening Displacement Estimations: Finite Element Study," J. Fatigue and Fracture of Engineering Material and Structures, Vol. 24(b), pp. 617– 624.
- Kim, Y. J., Huh, N. S., Kim, Y. J., Choi, Y. H., and Yang, J. S. 2004, "On Relevant Ramberg-Osgood Fit to Engineering Nonlinear Fracture Mechanics Analysis", ASME J. Pressure Vessel Technology, Vol. 126, pp. 277-283.

- Adibi-Asl, R., and Seshadri, R., 2007, "Limit Load Analysis of Cracked Components Using the Reference Volume Method", ASME J. Pressure Vessel Technology, Vol. 129, pp.391-399.
- 61. ANSYS, 2008, Ver. 11.0 Online User Guide, ANSYS, Inc., Canonsburg, Pennsylvania.

Appendix-A ANSYS COMMAND LISTING

Macro's for Linear Elastic Finite Element Analysis:

Following are some of the sample macro's used for doing linier elastic analysis in the research:

1) Thick Walled Cylinder

A program to analyze the thick cylinder with internal pressure

/prep7	
*set, ri, 65	! Internal radius=65mm
*set, ro, 90	! External radius=90mm
*set, vs. 300	! Yield stress=300mpa
*set, ym, 200e3	! Young's modulus=200e3mpa
*set, pr, 0.47	! Poisson's ratio=0.47
*set, p, 50	! Internal pressure=50mpa
et, 1, plane82,,, 2,,	! Defining axi-symmetric element
	! Defining material properties
mp, ex, 1, ym	
mp, prxy, 1, pr	
immed, 1	! Creating the model
k, 10, 0, 0	
k, 1, ri, 0	
k, 2, ro, 0	
k, 3, 0, ro	
k, 4, 0, ri	
k, 5, ro, ro	
lstr, 1, 2	
lare, 2, 3, 10, ro	
lstr, 3, 4	
larc, 4, 1, 10, ri	
lstr, 10, 5	
lsbl, 2, 5,, delete, keep	
Isbl, 4, 5,, delete, delete	
lstr, 6, 7	

Faculty of Engineering and Applied Science, Memorial University.

lsel, s, line,, 1,2,1 lsel, a, line,, 4,6,2 al, all lsel, all	
lsel, s, line,, 3,4,1 lsel, a, line,, 7,8,1 al, all lsel, all	
aglue, 1, 2	
esize, 2 mshkey, 1 amesh, all	
lsel, s, line,, 1 dl, all,, symm lsel, all	! Applying boundary conditions
lsel, s, line,, 3 dl, all,, symm lsel, all	
lsel, s, line,, 2,8,6 sfl, all, pres, p lsel, all	! Applying load
esel, all	
/quit	! End of prep7 commands
/solu solve /quit	! Entering solver ! Solving the problem ! Exiting solver
/post1	! Entering post1 post processor
pldisp, 1 /wait, 3	! Plotting displacement
plnsol, u, sum, 0 /replot /wait 3	! Plotting 'u' sum

plnsol, s, eqv, 0 /replot /wait,3 ! Plotting stresses (equivalent)

plnsol, epto, eqv, 0 /replot ! Plotting total strains (equivalent)

2) Torispherical head

......

! A program to analyze Torospherical head subjected to Uniform Pressure https://www.internet.com/pressure/ /prep7

*set, pi, 3.1415926536 *set, vm. 262e03 *set, vs. 262 *set, pr. 0.47 *set, prsr, 5 *set. t. 50 *set, Isbyd, 0.8 *set, rbvd, 0.12 *set, tbvd, 1/40 *set, phitwo, asin((0,5-rbvd)/(lsbvd-rbvd))*180/pi *set, phi1, 90.0-phitwo *set, d, 2000 *set, rk, rbyd*d *set, rh, lsbvd*d *set, hh, rh-(rh-rk)*cos(phitwo*pi/180) *set, a, d/2-rk *set. ri. d/2.0 *set, ro, ri+t *set, h, 6*sart(d*t/2) *set, ndiv1, 5 *set, ndiv2, 70 *set ndiv3 30 *set. ndiv4, 120 antype, 0 et, 1, 82...1 mp, ex, 1, ym mp, nuxy,, pr k. 1. ri k. 2. ro k, 3, ri, h

Faculty of Engineering and Applied Science, Memorial University.

k, 4, ro, h

local coordinate system for knuckle

local, 11, 1, a, h csys, 11 k, 5, rk, phi1 k, 6, rk+t, phi1 csys, 0

local coordinate system for the head

local, 12, 1, 0, h+hh-rh. csvs. 12 k, 7, rh, 90 k. 8, rh+t.90 csys, 0 1, 1, 2, ndiv1 1, 3, 4, ndiv1 1, 5, 6, ndiv1 1, 7, 8, ndiv1 1, 1, 3, ndiv2 1, 2, 4, ndiv2 csys, 11 1, 3, 5, ndiv3 1, 4, 6, ndiv3 csvs, 12 1, 5, 7, ndiv4 1. 6. 8. ndiv4 csys, 0 a. 1.2.4.3 csvs11 a. 3.4.6.5 csys, 12 a. 5.6.8.7 aglue, 1, 2, 3 amesh, all csys, 0 nsel,, loc,x,0 d. all. ux. 0 nsel, all

Faculty of Engineering and Applied Science, Memorial University.

```
nsel,, loc,y,0
d, all, uy, 0
nsel, all
csys, 0
sfl, 5, pres, prsr
```

```
sti, 5, pres, prsr
csys, 11
sfl, 7, pres, prsr
csys, 0
csys, 12
sfl, 9, pres, prsr
csys, 0
```

finish /solution solve /quit

3) Unreinforced Axi-symmetric Nozzle

```
    A program to analyze Unreinforced Axi-symmetric Nozzle
```

/prep7

 $\label{eq:statistical} $$ limits of heat(R) \rightarrow 914 A dum $$ limits a dimension of heat(R) \rightarrow 94.5 A dum $$ limits relative statistical $$ limits relative statistical $$ limits relative statistical $$ limits relative statistical $$ relative statis$

!****Setting up of parameters****

*set, hr, 914.4 *set, ht, 82.55 *set, nr, 136.525 *set, nt, 25.4

Faculty of Engineering and Applied Science, Memorial University.

*set, p, 24.132 *set, YM, 262e03 *set, PR, 0.47 *set, nh, 762 *set, ys, 262

!****Defining the Element type****

ET, 1, plane82... 1

Defining the axi symmetric type of the element Change the value to 0 for plain stress Change the value to 3 for with thickness

!****Defining of material properties****

mptemp, 1, 0 !Defining the material properties mpdata, ex, 1,, YM mpdata, prxy, 1,, PR

!****Creation of model****

IMMED, 1

! Creating the model

Creating four faces of rectangle

 k_1 (10, 0, 0 k_1 (1hr, 0) ! Creating the corner key points k_1 (1hr+ht), 0 k_1 3, (nr+nt), (hr+ht) k_2 (nr+nt), (hr+ht+nh) k_2 5, nr, (hr+ht+nh) k_2 6, nr, hr

lstr, 1, 2, 6 larc, 2, 3, 10, (hr+ht) lstr, 3, 6, 6 larc, 6, 1, 10, hr lstr, 3, 4 lstr, 4, 5, 6 lstr, 5, 6

lsel, s, line,, 1, 4, 1 al, all lsel, all

lsel, s, line,, 3 lsel, a, line,, 5, 7, 1

Faculty of Engineering and Applied Science, Memorial University.

```
al. all
Isel, all
aglue, 1, 2
esize, 10
mshkey, 1
amesh, all
Irefine, 3., 4, 3, smooth
Isel, s, line, 1
lplot
nsll, r, 1
nplot
d, all, uy, 0
nsel, all
Isel, all
Isel, s, line., 4
Isel, a, line,, 7
nsll, r. 1
sf, all, pres, p
nsel, all
Isel, all
*****Entering the solver processor****
/solu
                     ! Solving the problem
solve
/quit
4) Reinforced Axi-symmetric Nozzle
A program to analyze Reinforced Axi-symmetric Nozzle
/prep7
! Inner Radius of head(R) =914.4mm
! Nominal wall thickness (t) =82.55mm
! Inside radius of nozzle(r) =136.525mm
! Nominal wall thickness (tn) =25.4mm
! Required minimum wall thickness of head (tr) =76.835mm
! Required minimum wall thickness of nozzle (trn) =24.308mm
! Internal pressure (p) =24,132Mpa
```

! Young's modulus (YM) = 262Gpa

Faculty of Engineering and Applied Science, Memorial University.

Vield stress (YS) = 262MPa Poisson ratio (PR) = 0.47 ! Height of the nozzle (h) =10*sart(R*trn) =1490.8801(or) 30"=762 rei-bou-rad(Ln)=143.51mm

!****Setting up of parameters****

*set. hr. 914.4 *set. ht. 82.55 *set, hnt. 76.835 *set. nr. 136.525 *set. nt. 25.4 *set, nnt, 24.308 *set. In. 143.51 *set, p. 24.132 *set, YM, 262e03 *set, PR, 0.47 *set, nh. 762 *set, vs. 262 *set, r1, 10.312 *set, r2, 83.312 *set, r3, 115,214 *set, t2, 54.61

!****Defining the Element type****

et,1,plane82,...1

Defining the axi symmetric type of the element ! Change the value to 0 for plain stress ! Change the value to 3 for with thickness

!****Defining of material properties****

mptemp, 1, 0 mpdata, ex, 1., YM Defining the material properties

mpdata, prxy, 1., PR

!****Creation of model****

IMMED. 1

! Creating the model

k. 10, 0, 0 k. 1. hr. 0 ! Creating the corner key points k, 2, (hr+ht), 0 k, 100, (nr+nnt), (hr+hnt) k. 3. (nr+nt+t2), (hr+ht) k. 4. nr. hr

Faculty of Engineering and Applied Science, Memorial University.

k, 5, (nr+nt), (hr+hnt+nh) k, 6, nr, (hr+hnt+nh) k, 7, (nr+nt), (hr+ht) larc, 1, 4, 10, hr larc, 2, 3, 10, (hr+ht) lstr, 5, 7 lstr. 6, 4 circle, 100, In Isbl, 1, 8,, delete, keep2 Isbl, 2, 8,, delete, delete Isbl. 3, 5., delete, delete Isbl. 4, 6., delete, delete Isel, s. line., 3 Isel, a, line., 7, 8, 1 Isel, a, line, 10, 11, 1 Idele, all., 1 Isel, all k, 16, (nr+nt+t2), (hr+ht) k, 17, (nr+nt+t2), (hr+ht+ln+t2) k, 18, nr, 887,0535 Ithis value is taken from ansys point at the same level as 13 larc, 14, 16, 10, (hr+ht) lstr, 16, 17 k, 200, (nr+nnt), (hr+hnt) larc, 17, 15, 200, -r3 lstr. 15. 8. 6 lstr. 8, 18 lstr, 18, 13 lstr, 13, 14, 6 lfillt, 3, 4, r2 lfillt, 8, 10, rl lstr, 1, 2, 6 lstr, 5, 6, 6 Isel, s, line,, 3, 4, 1 Isel, a. line., 6 Isel, a, line., 12 lcomb, all., 0 Isel, all Isel, s, line,, 8 Isel, a. line., 10 Isel, a, line., 13

Faculty of Engineering and Applied Science, Memorial University.

lcomb, all., 0 Isel, all Isel, s, line,, 1 Isel, a, line,, 9, 11, 2 Isel, a. line., 14 al, all Isel, all Isel, s, line,, 3 Isel, a, line,, 7, 8, 1 Isel, a, line., 11 al, all Isel, all Isel, s, line,, 2 Isel, a, line., 5, 7, 2 Isel, a, line,, 15 al, all Isel, all mshkey, 1 esize, 20 amesh, all lsel, s, line,, 14 lplot nsll, r, 1 nplot d, all, uy, 0 nsel, all Isel, all Isel, s, line., 5 Isel, a, line., 8, 9, 1 nsll, r, 1 sf, all, pres, p nsel, all Isel, all *****Entering the solver processor**** /solu solve

/quit

! Solving the problem

Faculty of Engineering and Applied Science, Memorial University.

5) Pressure Vessel Support Skirt

A program to analyze Pressure Vessel Support Skirt

!****Setting up of parameters****

*set, cyi, 1240 *set, cyo, 1290 *set, ci, 1400 *set, p, 77.362 *set, P, 77.362 *set, YM, 275.8e03 *set, PR, 0.47 *set, sy, 275.8 *set, cyh, 760 *set, cyh, 760

!****Defining the Element type****

et, 1, plane82,.., 1

Defining the axi symmetric type of the element ! Change the value to 0 for plain stress ! Change the value to 3 for with thickness

!****Defining of material properties****

mptemp, 1, 0 mpdata, ex, 1,, YM mpdata, prxy, 1,, PR Defining the material properties

Faculty of Engineering and Applied Science, Memorial University.

!****Creation of model****

immed, 1

! Creating the model

k, 1, cyi, 0 k, 2, cyo, 0 k, 3, cyo, cyh k, 4, co, (cyh+ch) k, 5, ci, (cyh+ch) k, 6, cyi, cyh

!Creating four faces of rectangle

! Creating the corner key points

lstr, 1, 2, 6 lstr, 2, 3 lstr, 3, 4 lstr, 4, 5 lstr, 5, 6, 6 lstr, 6, 1 lfillt, 5, 6, t lstr, 3, 7, 6 lstr, 3, 8, 6

lsel, s, line,, 1, 2, 1 lsel, a, line,, 6, 9, 3 al, all lsel, all

lsel, s, line,, 7, 9, 1 al, all

lsel, s, line,, 3, 5, 1 lsel, a, line,, 8 al, all lsel, all

aglue, 1, 2, 3

Isel, all

mshkey, 1 esize, 5 amesh, all

!krefine,3...1,1,smooth,on

Isel, s, line,, 4

lplot nsll, r, 1 nplot d, all, all nsel all Isel, all

Isel, s. line., 1 nsll, r, 1 sf, all, pres, p nsel, all Isel all

!*****Entering the solver processor****

/solu solve ! Solving the problem

/quit

6) CT Specimen

A program to analyze CT Specimen /prep7

! Height (h) =125 mm ! Width (W) =100 mm ! Tensile load = 10KN ! Young's modulus (YM) = 211Gpa 1 Yield stress (YS) = 250MPa Poisson ratio (PR) = 0.47 ! Thickness (t) =3mm ! Crack length (a) = 46mm

!****Setting up of parameters****

```
*set. h. 62.5
*set, w1, -25
*set, w, 100
*set t.3
*set, tl, 10e03
```

total load should be divided with thickness when ever we are using with plain stress option and plain stress with thickness option is being used we can luse the total value of load

Faculty of Engineering and Applied Science, Memorial University.

*set, ym, 211e03 *set, pr, 0.47 *set, a, 46 *set, ys, 250 *set, d1, 20 *set, d2, 25 *set, s, 3 *set, c, 27.5 *set, r, 2.5

!****Defining the Element type****

et, 1, plane82,,, 3 r, 1, 3

!****Defining of material properties****

mptemp, 1, 0 mpdata, ex, 1,, ym mpdata, prxy, 1,, pr Defining the material properties

!****Creation of model****

immed, 1	creating the model
k, 1, a, 0	! Creating the corner key points
k, 2, w, 0	
k, 3, w, h	
k, 4, 0, h	
k, 5, w1, h	
k, 6, w1, s	
k, 7, 0, s	
k, 8, d1, s	
k, 9, d2, 0	
k, 10, 0, c	
lstr, 1, 2, 25	!Creating four faces of rectangle
lstr, 2, 3, 32	
lstr, 3, 4, 50	
lstr, 4, 5, 13	
lstr, 5, 6, 32	
lstr, 6, 7, 13	
lstr, 7, 8, 10	
lstr, 8, 9, 2	

```
lstr, 9, 1, 15
circle, 10, r., 4,, 16
Isel, s, line,, 10, 25, 1
lesize, all... 5
Isel, all
Isel, s, line., 1, 9, 1
al, all
Isel, all
lsel, s. line., 10, 25, 1
al, all
Isel, all
asba, 1, 2,, delete, delete
esize, 5
type, 1
kscon, 1, 5, 1, 9,
amesh, 3
Isel, s. line., 1
lplot
nsll, r, 1
nplot
d, all, uy
nsel.all
Isel.all
Isel, s, line., 10
Isel, a, line., 25
nsll, r. 1
*get, nn, node, 0, count
f, all, fy, TL/nn
nsel, all
Isel, all
!****Entering the solver processor****
```

/solu solve /quit ! Solving the problem

Faculty of Engineering and Applied Science, Memorial University.
7) Single Edge Notch bend

A program to analyze Single Edge Notch Bend problem /prep7

*set, s, 200 *set. w. 100 *set, vs. 488.43 *set, ym, 211e3 *set, pr. 0.47 *set, pl, 12000/3 *set. a. 50

et, 1, plane82... 3 r. 1. 3 mp, ex, 1, vm

! Total span=400mm ! Width=100mm ! Yield stress=488.43MPa ! Young's modulus=211E3MPa ! Poisson's ratio=0.47 ! Internal pressure=12KN ! Crack tip length=50mm

Defining plain stress with thickness

Defining material properties

mp, prxy, 1, pr immid, I

Creation of model

Creation of end points

k. 1. 0. 0 k, 2, 197.5, 0 k, 3, 197.5, 15 k. 4. 200. 25 k. 5, 200, 50 k. 6, 200, 100 k, 7, 0, 100 k, 8, 175, 0 k. 9, 175, 100

lstr, 1, 8 lstr, 8, 2 lstr. 2. 3 lstr. 3. 4 lstr. 4, 5 lstr. 5, 6 lstr, 6, 9 lstr, 9, 7 lstr. 7, 1 lstr. 8.9

Faculty of Engineering and Applied Science, Memorial University.

lsel, s. line., 2, 7, 1 lsel, a, line., 10 al, all Isel, all lsel, s, line,, 1 Isel, a. line., 8, 10, 1 al, all Isel, all aglue, all esize, 2 mshkey, 1 amesh, 2 mshkey, 0 kscon, 5, 1, 1, 6, 2 amesh, 1 nsel, s, loc, x, 0 Insel, r, loc, v, 0 d, all, uv, 0 nsel, all lsel, s, line,, 6 nsll, r. 1 dsym, symm, x Isel, all nsel, all Isel, s. line., 6 nsll, r, 1 *get, nn, node, 0, count f, all, fy, -pl/nn lsel, all nsel, all /auit /solu solve /auit

lend of prep7 commands

entering solver solving the problem exiting solver

8) Plate with Multiple Crack

A program to analyze Plate with Multiple Crack problem

/prep7

 Height (b) =100 mm
 Actual height is 200mm

 Width (W) =100 mm
 1

 Tensie stress = 100Mpa
 1

 Young's modulus (YM) = 21LGpa
 1

 Pisiosion's ratio (Pk) = 0.47
 1

 Thickness (t) = 30MPa
 1

 Crack tends (t) a = 10mm
 1

!****Setting up of parameters****

*set, H, 100 !*set, W1, 25 *set, W, 50 *set, T, 3 *set, c, 10 *set, d, 20 *set, b, 21.2 *set, TL₂-100

b,c and d are to locate linclined cracks

!here stress is given !so no need to divide the total load !by thickness

*set, YM, 211e03 *set, PR, 0.47 *set, a, 10 *set, ys, 250

1****Defining the Element type****

et, 1, plane82,... 3 r, 1, 3 Defining the type of the element

change the value to 0 for plain stress change the value to 3 for with thickness

!****Defining of material properties****

mptemp, 1, 0 mpdata, ex, 1,, YM mpdata, prxy, 1,, PR Defining the material properties

!****Creation of model****

immed, 1

!creating the model
!creating the corner key points

k, 1, 0, 0 k, 2, 10, 0 k. 3, 15, 0 k, 4, 25, 0 k. 5. 32.5.0 k. 6, 40, 0 k. 7, 50, 0 k. 8, 0, 5 k. 9, 15, 5 k, 10, 27.5, 5 k, 11, 32.5, 5 k, 12, 50, 5 k. 13, 20, 10 k. 14, 27.5, 17.5 k. 15, 35, 25 k, 16, 27.5, 17.5 k, 17, 0, 10 k, 18, 27.5, 50 k. 19, 50, 40 k. 20, 50, 50 k. 21, 50, 100 k. 22. 0. 100

A, 1, 2, 3, 9, 8 A, 3, 4, 5, 11, 10, 9 A, 5, 6, 7, 12, 11 A, 8, 9, 13, 14, 18, 17 A, 9, 10, 16, 13 A, 10, 11, 12, 19, 15, 16 A, 14, 15, 19, 20, 18 A, 17, 18, 20, 21, 22

kscon, 2, 0.25, 1, 12 kscon, 13, 0.25, 1, 6 kscon, 15, 0.25, 1, 6

esize, 1 lesize, 2,.., 8

Faculty of Engineering and Applied Science, Memorial University.

amesh,1,2

esize, 2 lesize, 15... 10 lesize, 23., 15 lesize, 16,., 12 lesize, 21,.., 12 lesize, 24... 12 lesize, 25... 12 amesh, 3 amesh, 4, 5 amesh 6 7 esize, 2 amesh, 8 nsel, s, loc, x, 0 d, all, ux, 0 nsel, all nsel, s, loc, v, 0 nsel, r, loc, x, 10, 50 d, all, uv, 0 nsel all nsel, s, loc, y, 100 sf, all, pres, tl nsel, all

/solu antype,0 solve finish

9) Middle Tension Panel

A program to analyze Middle Tension Panel problem
 prep7

! Height (h) =300 mm ! Width (w) =125 mm ! Tensile load = 100Mpa ! Young's modulus (ym) = 211Gpa

Faculty of Engineering and Applied Science, Memorial University.

! Yield stress (ys) = 250MPa
! Poisson's ratio (pr) = 0.47
! Thickness (t) =3mm
! Crack length (a) = 25mm

!****Setting up of parameters****

*set, h, 300 !*set, w1, 25 *set, w, 125 *set, t, 3 *set, tl, 100

! Here stress is given !so no need to divide the total load !by thickness

*set, ym, 211e03 *set, pr, 0.47 *set, a, 25 *set, ys, 250

!****Defining the Element type****

et, 1, plane82,,, 3 r, 1, 3 Defining the type of the element

Change the value to 0 for plain stress Change the value to 3 for with thickness

!****Defining of material properties****

mptemp, 1, 0 mpdata, ex, 1,, ym mpdata, prxy, 1,, pr Defining the material properties

!****Creation of model****

immed, 1

!Creating the model

 $\begin{array}{l} k,\, 1,\, a,\, 0\\ k,\, 2,\, a\!+\!a/2,\, 0\\ k,\, 3,\, w,\, 0\\ k,\, 4,\, w,\, h\\ k,\, 5,\, 0,\, h\\ k,\, 6,\, 0,\, a\!+\!a/2\\ k,\, 7,\, 0,\, 0\\ k,\, 8,\, a\!+\!a/2,\, a\!+\!a/2\\ k,\, 9,\, w,\, a\!+\!a/2 \end{array}$

!Creating the corner key points

lstr, 3, 9 lstr, 9, 4 lstr, 4, 5 lstr. 5.6 . lstr. 6, 7 lstr, 7, 1 lstr. 6, 8 lstr, 8, 9 lstr, 8, 2 Isel, s, line,, 2, 3, 1 Isel, a, line,, 10, 11, 1 al, all Isel, all Isel, s, line,, 4, 6, 1 Isel, a, line,, 9, 10, 1 al, all Isel, all Isel, s, line., 7, 9, 1 Isel, a, line,, 1 Isel, a, line., 11 al all lsel, all aglue, all lecatt, 9, 10 mshkey, 0 esize, 5 kscon, 1, 4, 1, 9 amesh, 3 mshkey, 1 amesh, 1 amesh, 2 Isel, s, line,, 1, 2, 1 lplot nsll, r, 1 nplot dsym, symm, y

lstr. 1.2

lstr. 2, 3

Faculty of Engineering and Applied Science, Memorial University.

```
nsel, all
Isel, all
Isel, s, line,, 6, 7, 1
lplot
nsll, r. 1
nplot
dsym, symm, x
nsel, all
Isel, all
Isel, s, line., 5
nsll, r. 1
sf, all, pres. -tl
nsel, all
Isel, all
*****Entering the solver processor****
/solu
                    ! Solving the problem
solve
/auit
10) Plate with a Hole
A program to analyze Plate with a Hole problem
/prep7
! Height (2h) =300 mm
! Width (2w) =150 mm
! Hole radius(r) =23 mm
! Tensile stress = 100 Mpa
! Young's modulus (vm) = 152.95 Gpa
! Yield stress (ys) = 131.90 MPa
Poisson's ratio (pr) = 0.47
!****Setting up of parameters****
```

*set, h, 300/2 *set, w, 150/2 *set, tl, 100

! Here stress is given !so no need to divide the total load !by thickness

Faculty of Engineering and Applied Science, Memorial University.

*set, ym, 152.95e03 *set, pr, 0.47 *set, r, 23 *set, ys, 131.90

!****Defining the Element type****

et, 1, plane82... 0

Defining the type of the element
 Change the value to 0 for plain stress
 Change the value to 3 for with thickness

!****Defining of material properties****

mptemp, 1, 0 ! Defining the material properties mpdata, ex, 1., ym mpdata, prxy, 1., pr Impdata, dens, 1., d

!****Creation of model****

immed, 1	! Creating the model
k, 10, 0, 0	
k, 1, r, 0	! Creating the corner key points
k, 2, w, 0	
k, 3, w, w	
k, 4, w, h	
k, 5, 0, h	
k, 6, 0, w	
k, 7, 0, r	
lstr, 1, 2	! Creating four faces of rectangle
lstr, 2, 3	
lstr, 3, 4	
lstr, 4, 5	
lstr, 5, 6	
lstr, 6, 7	
lstr, 3, 6	
lare, 7, 1, 10, r	
lsel, s, line,, 1, 2, 1	
lsel, a, line,, 6, 7, 1	
lsel, a, line,, 8	
al, all	
Isel, all	

Faculty of Engineering and Applied Science, Memorial University.

Isel, s, line., 3, 5, 1 Isel, a, line,, 7 al. all Isel, all aglue, 1, 2 lccat, 2, 7 In 1.3 1 3-Plain stress with thickness esize, 4 Imshane, 0, 2D mshkey, 1 amesh, all Isel, s, line,, 1 lplot nsll, r, 1 nplot dsym, symm, y nsel, all Isel, all Isel, s, line,, 5, 6, 1 lplot nsll, r, 1 nplot dsym, symm, x nsel, all lsel, all Isel, s, line,, 4 nsll, r, 1 sf. all, pres. -tl nsel, all Isel, all *****Entering the solver processor**** /solu ! Solving the problem

solve /quit

11) Indeterminate Beam

A program to analyze Indeterminate Beam problem

/prep7

! Length (1)=508mm ! Width (w)=25.4mm ! Pressure (p) = 1 Mpa ! Young's modulus (ym) = 206E3 N/mm2 ! Poisson's ratio (pr) = 0.47 ! Density (d) = 2500 n/mm3

!****Setting up of parameters****

*set, l, 508 *set, w, 25.4 *set, p, l *set, ym, 206.85e3 *set, pr, 0.47 *set, ys, 206.85 *set, d, 2500

!****Defining the Element type****

et, 1, plane82,,, 3 r, 1, 1 Defining the type of the element

! Defining the material properties

!****Defining of material properties****

mptemp, 1, 0 mpdata, ex, 1,, ym mpdata, prxy, 1,, pr mpdata, dens, 1,, d

> ! Creating the model ! Creating the corner key points

k, 1, 0, 0, 0 k, 2, 1, 0 k, 3, 1, w k, 4, 0, w lstr, 1, 2 lstr, 2, 3

immed 1

! Creating four faces of rectangle

lstr 3 4

lstr, 4, 1

al, 1, 2, 3, 4

Creating the area Area defined using previously defined lines

!****Meshing****

esize, 1 mshkey, 1 amesh, all

!Meshing the Area

!**** Applying Boundary conditions (Left End)*****

lsel, s, loc, x, 0	! Selecting a line with the help of location
nsll, r, 1	! Selecting the nodes attached to the previous ! Selected line including the keypoint nodes
nplot	
d, all, all	! Constraining all above picked nodes in all directions
nsel, all nplot lplot lsel,all	! Reselecting all nodes and lines
!****Applying bour	ndary conditions (Right End)****
leal a loa a l	
Isel, S, IOC, A, I	
nell r 1	
instr, i, i	

nplot d, all, uy nsel, all nplot lsel, all lplot

!**** Applying pressure load on the top layer of beam****

lsel, s, loc, y, w lplot nsll, r, 1

nplot nsel, all nplot lplot sfl, all, pres, p lsel, all lplot

/quit

! End of Prep7 commands

!****Entering the solver processor****

/solu solve /quit ! Solving the problem

12) Oblique Nozzle

A program to analyze Oblique Nozzle Problem	
1	

/prep7

*set, ri, 300	! Internal radius of cylinder =300
*set, ro, 306	! External radius of cylinder =306
*set, mi, 156.5	! Internal radius of nozzle=156.5
*set, mo, 162.5	! External radius of nozzle=162.5
*set, ys, 339.4	! Yield stress=339.4mpa
*set, ym, 108.08e3	! Young's modulus=108.08e3mpa
*set, pr, 0.47	! Poisson's ratio=0.47
*set, p, 3.0	! Internal pressure=3.0mpa
*set, 11, 2400	! Length of cylinder
*set, 12, 1200	! Length of nozzle
*set, t, 6	! Thickness of cylinder
*set, t, 6	! Thickness of nozzle
*set, h1, 175	! Cylinder cap
*set, h2, 106	! Nozzle cap
et,1,solid95	Defining element
	Defining material properties
mp, ex, 1, ym	
mp, prxy, 1, pr	

immid,1

creation of model

Faculty of Engineering and Applied Science, Memorial University.

```
cylind, ri, ro, -(11/2), (11/2), 90, 270
wpoffs,, (ri+(t/2))
wprota, ,-30
                           trotation of workplane, change this angle for different
csvs, wp
                           Inozzle angles
cylind, mi, mo, -(12/2), (12/2), 90, 270
vsba, 1, 10
vsba, 2, 19
vdele, 1, 3, 2, 1
vadd, 4, 5
wprota., 30
wpoffs,, -(ri+(t/2))
CSVS, WD
wpoffs,... -(11/2)
                           ! Creating right cap
wprota,., 90
CSVS, WD
k, 49, 0, 0, 0
k, 50, 42.25, 290,4738
k, 51, 84.5, 259,8076
k, 52, 126.75, 198.4313
k, 53, 169.00,0
k. 54, 175, 0
k, 55, 131.25, 202.4
k, 56, 87.50, 265.0038
k, 57, 43.75, 296.2832
spline, 2, 50, 51, 52, 53
1. 53. 54
spline, 54, 55, 56, 57, 1
Isel, s, line., 1
Isel, a. line., 31, 34, 1
Isel, a. line., 37
Isel, a. line., 40, 43, 1
al, all
vrotat, 16,..... 53, 54, -180, 1
lsel, all
wprota... -90
wpoffs... (11/2)
```

wpoffs,,, (1/2) ! Creating left cap wprota,,, -90 csys, wp k, 99, 0, 0, 0 k, 100, 42,25, 290,4738

Faculty of Engineering and Applied Science, Memorial University.

k. 101, 84.5, 259,8076 k, 102, 126.75, 198.4313 k, 103, 169.00, 0 k, 104, 175, 0 k, 105, 131.25, 202.4 k. 106, 87, 50, 265, 0038 k. 107, 43,75, 296,2832 spline, 8, 100, 101, 102, 103 1, 103, 104 spline, 104, 105, 106, 107, 5 1, 5, 8 Isel, s. line., 8 Isel, a. line., 61, 69, 1 al, all vrotat, 28,..... 103, 104, +180, 1 Isel, all wprota... 90 wpoffs,... +(11/2) CSVS, WD wpoffs., (ri+(t/2)) wprota., -30 csys, wp wpoffs.,, (12/2) wprota... -90 CSVS, WD k, 199, 0, 0, 0 k, 200, 25, 151.5305 k, 201, 50, 135.5330 k. 202, 75, 103, 5150 k. 203, 100, 0 k, 204, 106, 0 k, 205, 79.50, 107.7291 k. 206. 53. 140.7291 k. 207. 26.50, 157.3399 spline, 16, 200, 201, 202, 203 1, 203, 204 spline, 204, 205, 206, 207, 13 1.13.16 Isel, s. line., 20 Isel, a. line., 87, 95, 1 al, all vrotat, 39,...., 203, 204, 180, 1 Isel, all wprota... 90 wpoffs... -(12/2)

! Creating nozzle cap

Faculty of Engineering and Applied Science, Memorial University.

```
wprota., 30
wpoffs,, -(ri+(t/2))
csys,wp
vadd, 1, 2, 3, 4
esize, 15
mshkey, 0
mshape, 1
vmesh 5
asel, s, area,, 3, 4, 1
asel, a. area., 6, 7, 1
asel, a. area., 10, 16, 6
asel, a, area,, 13, 14, 1
asel, a, area,, 28
asel, a, area,, 39
asel, a, area,, 56, 58, 1
aplot
da, all, symm
allsel
asel, s, area,, 9
asel, a, area,, 11, 12, 1
asel, a. area., 15, 19, 4
asel, a, area., 20, 22, 2
asel, a, area., 31, 33, 1
asel, a, area,, 42, 44, 1
asel, a, area,, 50, 53, 3
asel, a. area., 55
aplot
                            ! Application of pressure
sfa, all., pres, p
allsel
nsel, s. loc. z. 780, 820
nsel, a, loc, z, -780, -820
nsel, r, loc, x, 0,- 80
nsel, u, loc, y, 0, 3000
d, all, uy
d. all. uz
allsel
                            ! End of prep7 commands
/quit
/solu
                            ! Entering solver
solve
                            ! Solving the problem
/auit
                            ! Exiting solver
```

Faculty of Engineering and Applied Science, Memorial University.

Macro's for Non-Linear Elastic Finite Element Analysis:

The macro for the non-linear analysis can be obtained by doing some minor changes to the linear elastic analysis macros. The changes will be in the material property definition and the load definition.

The generalized macros for these changes are given below:

Material Properties:

*set, ys, 339.4	! Yield stress=339.4mpa
*set, ym, 108.08e3	! Young's modulus=108.08e3mpa
*set, pr, 0.47	! Poisson's ratio=0.47

!****Defining of material properties****! mptemp, 1,0 mpdata, ex, 1,, ym mpdata, prxy, 1,, pr tb, bkin, 1, 1,, 1 tbtemp, 1, 1 tbdata, 1, ys, 0

!**** Apllication of load and solving****! /solu ! Entering solver antype, static

Isel, s, line,, 10 Isel, a, line,, 25 snil, r, 1 *get, nn, node, 0, count *get, nn, node, 0, count isel, all solcontrol, on outres, all, all time, 1 autots, on nsubst,100 Iswrite,1 Sample load application

! Load is increases 10 folds so multiplier ! should be multiplied by 10.

lssolve,1 /quit Solving the problem

Faculty of Engineering and Applied Science, Memorial University.

Macro for EMAP Iterations:

The EMAP iterations are used to obtain the converged solution. The following is the generalized macro used to do the EMAP iterations, in the current research a 'q' value of 0.1 is used, but this macro can be used with any value of fixed 'q'.

! Def. Eval array

Imacro for finding out multipliers;

/post 1

*ask, NI, Required Number Of Iterations,1 *ask, q. Enter the 'q'val 1 for plane strain and 2 for plane stress, 1 ! NI_number of iterations to be run ! Input the number of iterations to be run

*dim, enub, array, nd2, nd1 *get, ecou, elem, 0, count *dim, eval, array, ecou, Nl+1 *yget, eval(1,1), elem, attr, mat *do, i, 1, ecou, 1 *fic, eval(1,1), eq, 1, then eval(1,1) = ym *endif *fic, eval(1,1), eq, 2, then eval(1,1) = ym/3 *endif *endid ! Def. an array for writing the element numbers.

*dim, ests, array, ecou, 5 *dim, ests2, array, ecou, 5 *dim, vol, array, ecou, 1

Def. array for element stress.

! Getting the centroidal location of the elements

*dim, loe, array, ecou, 3 *do, lo, 1, ecou, 1 *get, loe(lo,1), elem, lo, cent, x *get, loe(lo,2), elem, lo, cent, y *get, loe(lo,3), elem, lo, cent, z *enddo

Faculty of Engineering and Applied Science, Memorial University.

tvol = 0 *do, v, 1, ecou, 1 *get, vol(v,1), elem, v, volu tvol = tvol + vol(v,1) *enddo

! Reading volumes of each element and summing ! them up.

*do, gp, 1, NI, 1 sp = gp+1

etable, sige, s, eqv etable, sot, s, eqv esort, etab, sot, 0, 0 *get, meqs, sort, 0, max etable, eqst, epto, eqv ! Reading stress into element table. ! Sorting of element stresses.

! Reading strain values into element table.

trn = 0

*do, k, 1, ecou, 1 *get, els, etab, 1, elem, k m = els * els * vol(k,1) tm = tm + m *enddo srv = (tm/tvol) sr = sart(srv) ! Calculation of reference stress.

ML=ys/meqs

! Calculation of lower bound multiplier

MUN2=0 MUD2=0

M01D2=0 M01D=0 M01N2=0 M01N=0

M02N2=0 M02N=0 M02D2=0 M02D=0

*do, z, 1, ecou, 1 *get, elsa, etab, 1, elem, z *get, elst, etab, 3, elem, z

Faculty of Engineering and Applied Science, Memorial University.

```
MUN1 = elst * vol(z,1)
MUN2 = MUN2 + MUN1
MUD1 = elsa * elst * vol(z,1)
MUD2 = MUD2 + MUD1
```

! Calculation of upper bound multiplier

```
M01N1 = vol(z,1)

M01N2 = M01N2 + M01N1

M01D1 = vol(z,1) * clsa**2

M01D2 = M01D2 + M01D1
```

! Calculation of M01 multiplier

```
M02N1 = vol(z,1) / eval(z,gp) ! Calculation of M02 multiplier

M02N2 = M02N2 + M02N1

M02D1 = elsa * elsa * vol(z,1) / eval(z,gp)

M02D2 + M02D2 + M02D1
```

*enddo

MU = ys * MUN2 / MUD2

M01N = sqrt(M01N2) M01D = sqrt(M01D2) M01 = ys * M01N / M01D

M02N = sqrt(M02N2) M02D = sqrt(M02D2) M02 = ys * M02N / M02D

*SET, JETA, (M02/ML)
*SET, Tan theta, 0.2929 ! This is the fixed value shown in the formula of paper

*if, JETA, LE, (1 + sqrt(2)), then MAT = m02 / (1 + (Jeta - 1) * Tan_theta) *endif

*if, JETA, GT, (1 + sqrt(2)), then ccc = 0.2929 * (JETA - 1) JETAF = (1 + ccc) + sqrt(((1 + ccc) * (1 + ccc)) - 1) MAT = M02 / (1 + (Jetaf-1) * Tan_theta) *endif

```
!*cfopen, MULT%gp% !Writing out the multipliers
*cfopen, MULT,,, append
*vwrite, gp
(9.4)
```

Faculty of Engineering and Applied Science, Memorial University.

```
!(1x,'ITERATION NO : ',f9,4)
*vwrite, ML
(19.4)
!(1x,'Multiplier ML : ',f9.4)
*vwrite, MU
(f9.4)
!(1x,'Multiplier MU: '.f9.4)
*vwrite, M01
(f9.4)
!(1x,'Multiplier M01 : ',f9.4)
*vwrite, M02
(f9.4)
!(1x.'Multiplier M02 : '.f9.4)
*vwrite, MAT
(f9.4)
!(1x,'Multiplier MAT : ',f9.4)
1*cfelos
*do, k, 1, ecou, 1
*get, ests(k,1), etab, 1, elem, k
*enddo
!*if, gp, eq, 1, or, gp, eq, 10, then
*cfopen, ESTS%gp%
                                  ! Opening a file to write element stress.
*do, k, 1, ecou, 1
*get, elsts, etab, 1, elem, k
1*get, elst, etab, 3, elem, k
*set, ymv, eval(k,gp)
*set, volu, vol(k,1)
*set, lx, loe(k,1)
*set, ly, loe(k,2)
*set, lz, loe(k,3)
*vwrite, k, elsts, volu, ymv, lx, ly, lz ! Writing element stresses to a ESTS1 file.
(f7.0,3x,f9.4,3x,f11.3,3x,e21.10,2x,f11.4,2x,f11.4,2x,f11.4)
*enddo
*efclos
1*endif
                                   Def. the values of eval.
*do. c. 1. ecou. 1
```

*set, eval(c.gp+1), eval(c.gp) *enddo

****EMAP PART****

*do, m, 1, ecou, 1 ests(m,3) = sr / ests(m,1) ! Dividing limit stress with individual stresses. ests(m,4) = (ests(m,3)**q) ! Elastic Adjustment parameter eval(m,gp+1) = eval(m,gp) * ests(m,4) *endo

/quit /prep7

*do, x, 1, ecou, 1 mp, ex, x, eval(x,gp+1) *if, gp, eq, 1, then mp, prxy, x, 0.47 *endif emodif, x, mat, x *enddo

! Creating suppurate material properties !for individual element.

/quit /solu Solve /quit /postl

! Resolving the problem with new ! material properties

*enddo

! Closing of Iterative loop.

The out put from theses macros will be two types of files, one is MULT, which contains the multiplier values and the second is EST* that contain element stresses and location values in them. Further have two files will be processed using MTLAB to obtain the required polis and multipliers. For using in MATLAB these files need to be converted to text tiles which can be easily done by renaming them. The MATLAB these used for the research are provided in Appendix B.

Appendix-B MATLAB COMMAND LISTING

The following MATLAB macros are used to process the output files from the ANSYS. The MULT file should be renamed as MULT.txt file. We can choose any file Iteration files and name them as b.txt, b.2txt, b.3txt, b.4txt, files. That files.

Macro for Single Iteration

```
%m alfa tangent plot(macro with mref=m0-(volrat)*(mo-ml))
tenter number of iterations(noi) and actual multiplier(mact)
agat the mult file from angys and correct it and save as a text file in
ssame directory as this file is
clear
load mult.txt
load b.txt
b=sortrows(b, -2);
                        * Number of Iterations
mact=0.81
                        % multiplier from non-linear analysis
en=2674
                        * Number of Elements
                        ¥ Yield Stress
im-alfa triangle formation
aa=1:0.0001:1+pgrt(2);
bb=aa;
d=1:0.0001:1+sqrt(2);
c(i)=(d(i)^4+4*d(i)^2-1)/(4*d(i)^2+2*sart(d(i)*(d(i)-1)^2*(d(i)-
1+sqrt(2))*(1+sqrt(2)-d(i))));
f=1:0.0001:1+scrt(2):
    e(i)=1+sgrt(2);
for i=1:6:noi*6
    ml(i)=mult(i+1);
    mu(j)=mult(i+2);
    m01(j)=mult(i+3);
    m02(j)=mult(i+4);
    mat(i)=mult(i+5)
    ma(j)=mact
for k=1:noi
    mObyml(k)=m02(k)/ml(k);
```

```
lam(k) = (1/m0bvml(k))^2;
        $1am(k)=0.171;
    m2bar(k) = (2*sgrt(lam(k))*m02(k))/(l+lam(k));
    m0bym2bar(k)=m02(k)/m2bar(k);
    m0bym(k)=m02(k)/ma(k);
for i=1:noi
if (m0byml(i)<=1+sqrt(2))
    malft(i)=m02(i)/(1+0.2929*(m0byml(i)-1));
    m0byml(i);
    lim(i)=m0byml(i);
    m0bvmlf(i)=((2+0.5858*(m0bvml(i)-1))+sgrt((2+0.5858*(m0bvml(i)-
1))^2-4))/2;
    %m0bymlf(i)=(1+0.2929*(m0byml(i)-1))+sqrt((1+0.2929*(m0byml(i)-
    malft(i)=m02(i)/(1+0.2929*(m0bvmlf(i)-1));
    lim(i)=mObymlf(i);
part1=-({(g^2+2)^2-5)*(8*g)-16*g^3*(g^2+2))/((g^2+2)^2-5)^2
part2=-(((g^2+2)^2-5)*((g-1)*(-3*g^2+4*g+1)+2*(-g^3+2*g^2+g))-
8*g^2*(g^2+2)*(g-1)*(1+sqrt(2)-g)*(g-1+sqrt(2)))/(((g^2+2)^2-
5) 2*sqrt(g*(g-1+sqrt(2))*(1+sqrt(2)-g)))
s=part1+part2;
z=1:0.001:5;
li=s*(z-1)+1;
$Caliculating the total volume of the component
for i=1:en
    vol=vol+b(i,3);
    voli(i,1)=vol;
tot_vol=voli(en.1);
    vol rat(i,1)=voli(i,1)/tot vol;
    sq_vol_rat(i,1)=sqrt(voli(i,1)/tot_vol);
$caliculation of total denominator
tot din=0:
for i=1:en
   din1(i,1) = (b(i,2)*b(i,2)*b(i,3))/(b(i,4));
    tot din=tot din+din1(i,1);
   num1(i,1)=b(i,3)/b(i,4);
```

din=0

```
$caliculation of mo with step by step increase of volume;
for i=1:en
    num=num+numl(i.1);
    nu(i,1)=num;
    din=din+din1(i,1);
    di(i,1)=din;
    mo(i,1)=sig_y*sqrt(nu(i,1))/(sqrt(di(i,1)));
    m0bml(i,1)=mo(i,1)/mo(1,1);
   mactbml=mact/mo(1,1);
Acalculation of ml for individual elements
for i=1:en
    mll(i,1)=sig v/b(i,2);
    mll vol(i,1)=tot vol-voli(i,1);
    mll volrat(i,1)=mll_vol(i,1)/tot_vol;
    sg mll volrat(i,1)=sgrt(mll volrat(i,1));
hh=(1/en);
$caliculation of average m0(trapizoidal method)
% mrefn=0
% for i=1:en-1
       mrefn=mrefn+((mo(i+1,1)+mo(i,1))*(vol rat(i+1,1)-
vol_rat(i,1)))/2;
* mref=mrefn
 for i=2:en
     mrl=mrl+(vol_rat(i,1)-vol_rat(i-1,1))*(mo(i,1)-mo(1,1));
     %mrw=mrw+(vol rat(i,1)-vol rat(i-1,1))*(mo(i,1)+mo(i-1,1))/2;
     mr(i-1,1)=mr1:
 end
      mr(en,1)=mr1;
     mrow=mo(1,1)+mr1;
    if (mrow>=mo(i,1))
        vrreq=vol rat(i,1);
mref=mrow:
mrefbml=mref/mo(1,1);
for i=1:en
    if (mref>=mo(i.1))
       mreg=mo(i.1):
       vreg=vol rat(i,1);
```

%caliculation of average m0(trapizoidal method)

```
mrefn1=0
% for i=l:en-1
      mrefnl=mrefnl+((mo(i+1,1)+mo(i,1))*(sg vol rat(i+1,1)-
sq_vol_rat(i,1)))/2;
%. end
% mrefl=mrefn1
mrow1=0
$mrwl=0
for i=2:en
    mr2=mr2+(sq vol rat(i,1)-sq vol rat(i-1,1))*(mo(i,1)-mo(1,1));
    %mrwl=mrwl+(sq vol rat(i,1)-sq vol rat(i-1,1))*(mo(i,1)+mo(i-
    mrow1=mo(1,1)+mr2;
for i=1:en
    if (mrow1>=mo(i,1))
        vrreql=sq_vol_rat(i,1);
mrefl=mrowl;
mreflbml=mrow1/mo(1,1);
  for i=1:en
    if (mrefl>=mo(i,1))
      mreql=mo(i,1);
      vreql=sq vol rat(i,1);
  end
gel=0;
geh=0;
ge=0:
gee=0:
vreeq=0;
qe2=0;
mgel=0:
mge2=0:
  for i=1:en
    geh=gel+((((mo(en,1)*b(i,2)/sig y)^2-1)^2)*b(i,3))/(4*tot_vol);
    ge=sqrt(geh);
    sig ref=(b(1,2)+(mp(en,1)/sig v))/2;
    gel=sqrt(((((mref*sig_ref/sig_y)^2-1)^2)*vreq)/(4));
    if (mref>=mo(i,1))
      gee=gee+((((mo(en,1)*b(i,2)/sig_y)^2-1)^2)*b(i,3))/(4*tot_vol);
    end
    ge2=sart (gee);
  mge=mo(en.1)/(1+ge);
  mgel=mref/(1+gel);
 mge2=mref/(1+ge2);
*construction of st.line for finding out new mavy
x1=vol rat(en,1)
v1=mo(en, 1)
```

Faculty of Engineering and Applied Science, Memorial University.

```
x3cvreg
alope(ty-y1)/(x2-x1)
y1urty-1 x1 * z10)
y1urty-1 x1 * z10 * y10
or xco(1,1)**0, rat(i,1):
yco(i,1)**0, rat(i,1):
yco(i,1)**0, rat(i,1):
end
meyintsalopevreq
```

```
teometruction of st.line for finding cut new many
xlinequoi.rem,i)
yline(sen,i)
allowreqi
allowreqi
allowreqi
yline(yline(yline(yline(yline)))
for inter the statistic form and to control the extent of line
xcol(li)e(you(line(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(yline(ylin
```

```
%plotting mo vs volume ratio
```

```
figure(1)
hold on
i=1:en;
heplot(vol_rat(i,1),mo(i,1),'k')
for j=0:0.011
plot(j,mref,'-=k')
plot(j,mart,'==k')
end
```

```
xlabel('V_EV', T', 'PontAngle', 'Italic', 'NontSise', 12)
ylabel('mô', 'YontAngle', 'Italic', 'NontSise', 12)
legend('\it mô', '\it mô', '\it mô', 'Nit mo, o, n', o)
title('Piot of mô' vo Y_EV', T', 'PontAngle', 'Italic', 'PontSize', 12)
saveas(h, 'mref.fig')
hold off
```

\$plotting mo vs sqrt(volume ratio)

```
figure(3)
5-1-en-
h=plot(sq vol rat(i,1),mo(i,1),'k')
plot(i,mrefl,'-+k')
plot(i,mact,'-*k')
xlabel('\surd (V R / V T)', 'FontAngle', 'Italic', 'FontSize', 12)
vlabel('m^0', 'FontAngle', 'Italic', 'FontSize', 12)
legend('\it m^0'.'\it m^0(\surd (V R p))'.'\it m n o n'.0)
title('Plot of m'0 vs \surd (V R /
V T)', 'FontAngle', 'Italic', 'FontSize', 12')
saveas(h, 'mrefl.fig')
```

```
tplotting mo/ml vs sart(volume ratio)
i=l:en:
h=plot(pg vol rat(i,1),m0bml(i,1),'k')
for j=0:0.01:1
plot(j,mreflbml,'-+k')
plot(j,mactbml,'-*k')
xlabel('\surd (V R / V T)', 'FontAngle', 'Italic', 'FontSize', 12)
vlabel('m'0/m L', 'FontAngle', 'Italic', 'FontSize', 12)
legend('\it m^0/m L','\it m^0(\surd (V R p))','\it m n o n',0)
title('Plot of m'0/m L vs \surd
(V R/V T)', 'FontAngle', 'Italic', 'FontSize', 12)
saveas(h, 'mobml1, fig')
```

```
% % caliculating ml for individual element
% for i=1:en
$
     mll(i,1)=(sig y*sqrt(b(i,3)))/sqrt(dinl(i,1));
```

Acountor plots at different tof max stresses

```
ps1=0.01*b(1,2)
ps2=0.02*b(1.2)
ps3=0.03*b(1.2)
ps4=0.04*b(1.2)
ps5=0.05*b(1,2)
```

omrefn=0 fimrefn=0

```
for i=1:en
    if (b(i,2)>ps1)
        ops(i,1)=b(i,2);
       omo(i,1)=mo(i,1);
```

```
opmo=omo(i,1);
opmobym=omo(i,1)/mact;
omrefn=mo(i,1);
else
ops(i,1)=0;
omo(i,1)=0;
```

end

```
if (b(i,2)>pa2)
    tps(i,1)=b(i,2);
    tmo(i,1)=mo(i,1);
    tmoctmo(i,1);
    tpmobymetmo(i,1);
    tpmobymetmo(i,1);
    else
    tpp(i,1)=0;
    tmo(i,1)=0;
```

end

```
if (b(i,2)>ps3)
thps(i,1)=b(i,2);
thmo(i,1)=mo(i,1);
thmoothmo(i,1);
thpmoothmo(i,1);
thpmoothmo(i,1)/mact;
thmrefn=mo(i,1);
```

else

```
thps(i,1)=0;
thmo(i,1)=0;
```

end

```
if (b(1,2)>pr4)
fps(i,1)=b(1,2);
fmo(i,1)=mo(i,1);
fpmo=fmo(i,1);
fpmobyme=fmo(i,1)/mact;
fpmobyme=fmo(i,1)/mact;
else
fps(i,1)=0;
fmo(i,1)=0;
```

end

```
if (b(i,2)>ps5)
    fips(i,1)=b(i,2);
    fimo(i,1)=mo(i,1);
    fipmofimo(i,1);
    fipmoffmo(i,1)/mact;
    fimmefn=mo(i,1)/mact;
    fimefn=mo(i,1);
    fips(i,1)=0;
```

```
Faculty of Engineering and Applied Science, Memorial University.
```

```
fimo(i,1)=0;
```

.....

end

omref=omrefn; tmref=tmrefn; thmref=thmrefn; fmref=fmrefn; fimref=fimrefn;

```
VFloting W-alfa triangle
fjuure(3)
plot(a, bb)
plot(a, bb)
XLan(*auto*)
XLan(*auto*)
belot(a, 1)
plot(a, 1)
plot(a,
```

figure(6)

```
j=1:noi
xlim([1 noi])
vlim([mo(1,1)-0.02 mo(en,1)+0.02])
Zlim([1 noi])
h=plot(j,m01,'+-k')
plot(j,m02,'x-k')
%plot(j,mu,'o-k')
plot(j,ma,'.-k')
plot(j,mat,'.k')
plot(i.ml.'*-k')
xlabel('Iteration Number', 'FontAngle', 'Italic', 'FontSize', 12)
ylabel('Multiplier', 'FontAngle', 'Italic', 'FontSize', 12)
legend('\it m^0 1', '\it m^0 2', '\it m n o n', '\it m^\propto T', '\it
title('plot of Multipliers vs
Iter.No', 'FontAngle', 'Italic', 'FontSize', 12)
saveas(h, 'mult vs iter.fig')
```

figure(7)

Faculty of Engineering and Applied Science, Memorial University.

i=1:en

figure(8)

```
figure(10)
```

```
Alinelingsace(min(bi,5),max(bi,5),60);

yihnilmgace(min(bi,6),max(bi,6),max(bi,5),60);

(X,Y]=seburid(bin,Yih);

(K,Y]=seburid(bin,Yih);

Newuriac(X,Y,S)); (A, f, yet(i,1), X,Y, 'enhice');

Newuriac(X,Y,S, 'Hôgeobler',[.8. 8. 0], 'PaceColor', 'some')

grid off

yet(a);

colorseg coll

colorseg coll

colorseg (A, 'mox,fig)';

tile('etrame profile :% peak.

tile('etrame profile ?% peak.
```

```
figure(11)
ial:en;
xlin=linspace(min(b(i,5)),max(b(i,5)),60);
ylin=linspace(min(b(i,6)),max(b(i,6)),60);
[X,Y]=meshgrid(xlin,ylin);
Zegriddata(b(i,5),b(i,6),thps(i,1),X,Y,'cubic');
```

```
contour3(X,Y,Z,60)
k=surface(X,Y,Z,'EdgeColor',[.8 .8 .8],'FaceColor', 'none')
grid off
view(0.90)
colormap cool
colorbar
title('stress profile 3% peak
stress', 'FontAngle', 'Italic', 'FontSize', 12)
saveas(k, 'sp3.fig')
i=1:en:
xlin=linspace(min(b(i,5)),max(b(i,5)),60);
ylin=linspace(min(b(i,6)),max(b(i,6)),60);
[X,Y]=meshgrid(xlin,vlin):
Z=griddata(b(i,5),b(i,6),fps(i,1),X,Y,'cubic');
contour3(X,Y,Z,60)
k=surface(X,Y,Z,'EdgeColor',[.8 .8 .8],'FaceColor', 'none')
grid off
view(0.90)
colormap cool
colorbar
title('stress profile 4% peak
stress', 'FontAngle', 'Italic', 'FontSize', 12)
saveas(k, 'sp4.fig')
figure(13)
xlin=linspace(min(b(i,5)),max(b(i,5)),60);
vlin=linspace(min(b(i,6)),max(b(i,6)),60);
[X,Y]=meshgrid(xlin,vlin);
Z=griddata(b(i,5),b(i,6),fips(i,1),X,Y,'cubic');
contour3(X,Y,Z,60)
k=surface(X,Y,Z,'EdgeColor',[.8 .8 .8],'FaceColor', 'none')
arid off
view(0,90)
colormap cool
colorbar
title('stress profile 5% peak
saveas(k, 'sp5.fig')
figure(14)
i=1:en;
xlin=linspace(min(b(i,5)),max(b(i,5)),60);
```

```
klin-linguce(min(b(i, j)), aw(b(i, j)), (o);
ylin-linguce(min(b(i, j)), aw(b(i, j)), (o);
[X,Y] sempirid(xlin,ylin)
[X,Y] sempirid(xlin,ylin)
Repurface(X,Y,S, Yidgecolor', (.8, .8], 'FaceColor', 'none')
yrid off
yriew(0,90)
colorang cool
olorang roofile', 'PontAngle', 'Italic', 'PontSize',12)
arweet(k,'ng, Ita)
```

Macro for Multiple Iterations

```
%m alfa tangent plot(macro with mref=m0-(volrat)*(mo-ml))
Sthis macro is to plot m0 vs sgrt(volrat).
tenter number of iterations(noi) and actual multiplier(mact)
agat the mult file from ansys and correct it and save as a text file in
tsame directory as this file is
load mult tyt
load b.txt
load b2.txt
load b3.txt
load b4.txt
load b5.txt
noi=18
                               I number of Iterations
mact=0.81
                               Multiplier from non-linear analysis
                              * Number of Elements
tot vol=0;
seg=[1.4.8.12.18]
for ind=1:5
    if ind==1
            b=sortrows(b, -2);
    elseif ind==2
            b=sortrows(b2,-2);
    elgeif indes3
            b=sortrows(b3,-2);
    elseif ind==4
           b=sortrows(b4,-2);
    else
            b=sortrows(b5,-2);
aa=1:0.0001:1+pgrt(2):
bb=aa;
d=1:0.0001:1+sqrt(2);
c(i)=(d(i)^4+4*d(i)^2-1)/(4*d(i)^2+2*sort(d(i)*(d(i)-1)^2*(d(i)-
1+sart(2))*(1+sart(2)-d(i))));
f=1:0.0001:1+sqrt(2);
    e(i)=1+sgrt(2):
```

Faculty of Engineering and Applied Science, Memorial University.

```
for i=1:6:noi*6
     ml(i)=mult(i+1);
      mu(j)=mult(i+2);
      m01(j)=mult(i+3);
     m02(j)=mult(i+4);
     ma(i)=mact
     malf(i)=mult(i+5);
 for k=1:noi
      m0bym1(k)=m02(k)/m1(k);
      %if (m0byml(k) <=1+sqrt(2))
          lam(k) = (1/m0byml(k))^2;
     m2bar(k) = (2*scrt(lam(k))*m02(k))/(l+lam(k));
     m0bym2bar(k)=m02(k)/m2bar(k);
      m0bym(k)=m02(k)/ma(k);
 $m0bml=m0byml(1)
 for i=1:noi
 if (mObyml(i) <= 1+sgrt(2))
      malft(i)=m02(i)/(1+0.2929*(m0byml(i)-1));
 else
      m0bymlf(i)=((2+0.5858*(m0byml(i)-1))+sgrt((2+0.5858*(m0byml(i)-
      $m0bymlf(i)=(1+0.2929*(m0byml(i)-1))+sqrt((1+0.2929*(m0byml(i)-
      malft(i)=m02(i)/(1+0.2929*(m0bymlf(i)-1));
      mObymlf(i)
 end
 part1=-(((g^2+2)^2-5)*(8*g)-16*g^3*(g^2+2))/((g^2+2)^2-5)^2
 part2=-(((g<sup>2</sup>2+2)<sup>2</sup>-5)*((g-1)*(-3*g<sup>2</sup>+4*g+1)+2*(-g<sup>3</sup>+2*g<sup>2</sup>+g))-
 8*g^2*(g^2+2)*(g-1)*(1+sqrt(2)-g)*(g-1+sqrt(2)))/(((g^2+2)^2-
 5) 2*sqrt(g*(g-1+sqrt(2))*(1+sqrt(2)-g)))
 s=part1+part2;
 z=1:0.001:5:
 li=s*(z-1)+1;
      voli(i,1)=0;
      vol_rat(i,1)=0;
      sg vol rat(i,1)=0;
 $Caliculating the total volume of the component
 for i=1:en
      vol=vol+b(i,3);
      voli(i,1)=vol;
```

```
Faculty of Engineering and Applied Science, Memorial University.
```

```
tot vol=voli(en.1):
for i=1:en
    vol rat(i,1)=voli(i,1)/tot vol;
    sq vol rat(i,1)=sqrt(vol rat(i,1));
Vcaliculation of total denominator
tot din=0;
for i=1:en
    dinl(i, 1) = (b(i, 2) * b(i, 2) * b(i, 3)) / (b(i, 4));
    tot din=tot din+din1(i,1);
    num1(i,1)=b(i,3)/b(i,4);
din=0
num=0
    mo(1,1)=0;
    mobml(i,1)=0;
    refmbml(i,1)=0;
    refmlbml(i,1)=0;
vcaliculation of no with step by step increase of volume:
for i=l;en
    num=num+numl(i,1);
    nu(1,1)=num;
    di(i,1)=din:
    mp(i,1)=mig_v*mart(nu(i,1))/(mart(di(i,1)));
    mobml(i,1)=mo(i,1)/mo(1,1);
    if ind==1
        moo(i,1)=mo(i,1);
        bs(i,1)=b(i,2);
        bv(i,1)=b(i,3);
        vvr(i,1)=vol rat(i,1);
        vvrl(i,1)=sq_vol_rat(i,1);
    end
end .
mObml=mo(en,1)/mo(1,1);
* contour plots at different tof max stresses
ps1=0.01*b(1.2)
ps2=0.02*b(1.2)
ps3=0.03*b(1,2)
ps5=0.05*b(1.2)
```

if (b(i,2)>ps1)

Faculty of Engineering and Applied Science, Memorial University.

```
ops(i,1)=b(i,2);
omo(i,1)=mo(i,1);
opmo=omo(i,1);
opmobym=omo(i,1)/mact;
omrefn=mo(i,1);
else
ops(i,1)=0;
omo(i,1)=0;
```

end

```
if (b(i,2)>p22)
    tps(i,1)=b(i,2);
    tms(i,1)=mo(i,1);
    tpmo=tmo(i,1);
    tpmobym=tmo(i,1)/mact;
    tpmobym=tmo(i,1)/mact;
else
    tps(i,1)=0;
    tms(i,1)=0;
```

end

```
if (b(i,2)>ps3)
    thps(i,1)=b(i,2);
    thmo(i,1)=mo(i,1);
    thpmosthmo(i,1);
    thpmosthmo(i,1)/mact;
    thmrefn=mo(i,1);
```

else

```
thps(i,1)=0;
thmo(i,1)=0;
```

end

```
if (b(i,2)>pa4)
    fps(i,1)=b(i,2);
    fmo(i,1)=mo(i,1);
    fpmo=fmo(i,1);
    fpmobymefmo(i,1);
    fpmobymefmo(i,1);
    forefn=mo(i,1);
    fore fn=mo(i,1);
    fps(i,1)=0;
    fmo(i,1)=0;
    fm
```

```
end
```

```
if (b(i,2)>ps5)
    fips(i,1)=b(i,2);
    fimo(i,1)=mo(i,1);
    fipmo=fimo(i,1);
    fipmobym=fimo(i,1)/mact;
```
```
fimrefn=mo(i,1);
fivrefn=sq_vol_rat(i,1);
else
fips(i,1)=0;
fimo(i,1)=0;
```

end

omref(ind,1)=omrefn; tmref(ind,1)=tmrefn; thmref(ind,1)=thmrefn; fmref(ind,1)=fmrefn; fimref(ind,1)=fimrefn; fimrefv(ind,1)=fimrefn;


```
for i=1:en
    mll(i,1)=sig_y/b(i,2);
    mll_vol(i,1)=tot_vol-voli(i,1);
    mll_volrat(i,1)=mll_vol(i,1)/tot_vol;
    sq_mll_volrat(i,1)=sqrt(mll_volrat(i,1));
```

hh=1/en;

```
$caliculation of average m0(trapizoidal method)
% mrefn=0
% mref=0
% for i=2:en
       mrefn=mrefn+(((mo(i-1,1)+mo(i,1))/2)*(vol_rat(i,1)-vol_rat(i-
$
mref=0
mrow=0
     mrl=mrl+(vol_rat(i,1)-vol_rat(i-1,1))*(mo(i,1)-mo(1,1));
     mrw(i,1)=mo(1,1)+mrl;
     mrow=mo(1,1)+mr1;
mref=mrow:
vrreg=0;
reffv=0;
for i=1:en
    if (mact>=mp(i.1))
        vrreg=vol rat(i,1);
     if (mref>=mo(i.1))
```

```
reffv=vol rat(i,1);
* end
reavr(ind)=vrrea;
% refv(ind)=reffv;
    refm(i.1)=mref:
    refmbml(i,1)=mref/mp(1,1);
$caliculation of average m0(trapizoidal method)
% mrefn1=0
% mrefl=0
  for i=2:en
      mrefnl=mrefnl+(((mo(i-1,1)+mo(i,1))/2)*(sq vol rat(i,1)-
sq_vol_rat(i-1,1)));
% mrefl=mrefnl
 mref1=0
 mr2=0
 for i=2;en
     mr2=mr2+(sq vol rat(i,1)-sq vol rat(i-1,1))*(mo(i,1)-mo(1,1));
     mrw1(i,1)=mo(1,1)+mr2;
 end
 mrow1=mo(1,1)+mr2;
vrregl=0;
for i=1;en
    if (mact>=mo(i,1))
       vrreql=sq vol rat(i,1);
     if (mrefl>=mo(i,1))
          reffvl=sq vol rat(i,1);
mrefbml=mref1/mo(1,1);
reqvrl(ind)=vrreql;
for i=1:en
    refml(i,1)=mrefl;
    refmlbml(i,1)=mref1/mo(1,1);
    mat(i,1)=mact:
    matbml(i,1)=mact/mo(1,1);
Scalculating malf tan for iterations Vr/Vt
```

```
mgl(ind, 1)=mref:
```

```
mal1(ind.1)=mo(1.1):
mzbymal1=mz1(ind.1)/mal1(ind.1);
if (mzbymal1<=1+sqrt(2))
    malftan1(ind,1)=mz1(ind,1)/(1+0.2929*(mzbymal1-1))
    mzbymal1
else
    mzbymalf1=((2+0.5858*(mzbymal1-1))+sgrt((2+0.5858*(mzbymal1-1))^2-
    malftanl(ind, 1) = mzl(ind, 1) / (1+0.2929*(mzbymalf1-1))
    mzbymalf1
$calculating malf tan for iterations sgrt(Vr/Vt)
mz2(ind, 1)=mref1:
mal2(ind, 1)=mo(1, 1);
mzbymal2=mz2(ind, 1)/mal2(ind, 1);
if (mzhymal2<=1+sort(2))
    malftan2(ind, 1)=mz2(ind, 1)/(1+0.2929*(mzbymal2-1))
    mgbymal2
    mzbymalf2=((2+0.5858*(mzbymal2-1))+sgrt((2+0.5858*(mzbymal2-1))^2-
    malftan2(ind,1)=mz2(ind,1)/(1+0,2929*(mzbymalf2-1))
    mzbymalf2
$calculating malf tan for iterations sort(Vr/Vt)
mz3(ind,1)=fimrefn;
mal3(ind, 1)=mo(1, 1);
mzbymal3=mz3(ind,1)/mal3(ind,1);
if (mgbymal3<=1+sgrt(2))
    malftan3(ind, 1)=mg3(ind, 1)/(1+0,2929*(mgbymal3-1))
    mzbymal3
    mzbymalf3=((2+0.5858*(mzbymal3-1))+sgrt((2+0.5858*(mzbymal3-1))^2-
    malftan3(ind, 1)=mz3(ind, 1)/(1+0.2929*(mzbymalf3-1))
    mzbymalf3
% for j=1:en
      if (mref1>=mo(j,1))
          refv1(ind, 1)=vvr1(j, 1);
          if (mact>=mo(j,1))
          rv(ind, 1)=vvr(i, 1);
         rrv(ind, 1) = vvrl(j, 1);
$ end
```

```
Faculty of Engineering and Applied Science, Memorial University.
```

```
elseif ind==4
%h=plot(vol_rat(i,1),mo(i,1),'--b')
```

```
h=plot(vol_rat(i,1),refm(i,1),'-k','linewidth',1.5)
```

else

```
%heplot(vol_rat(i,1), mo(i,1), '-b', 'linewidth',1.5)
h= plot(vol_rat(i,1), refm(i,1), -b', 'linewidth',2.5)
legend('\it m'o', '\it m_n_o_n', '\it iter 1', '\it iter4', '\it
iter m', '\it iter 12', '\it iter 16',0)
```

end

```
xlabel('V_R/V_T','PontAngle','Italic','FontSize',12)
ylabel('m^o','FontAngle','Italic','FontSize',12)
title('Flot fm 'o ve X_R/V_T','FontAngle','Italic','FontSize',12)
saveas(h,'mrefiter.fig')
hold off
```

figure(2)

```
hold on
i=l:en;
if ind==1
```

```
h=plot(sq_vol_rat(i,1),mo(i,1),'-k')
plot(sq_vol_rat(i,1),mat(i,1),'-k','linewidth',3.5)
plot(sq_vol_rat(i,1),refml(i,1),'--k')
```

```
elseif ind==2
%h=plot(sg_vol_rat(i,1),mo(i,1),':b')
h=plot(sg_vol_rat(i,1),refml(i,1),':k')
```

```
elseif ind=-3
    theplot(eq_vol_rat(i, 1), mo(i, 1), '-, b')
    heplot(eq_vol_rat(i, 1), refm(i, 1), '-, b')
    leaft ind=-
    theplot(eq_vol_rat(i, 1), refm(i, 1), '-, b')
    heplot(eq_vol_rat(i, 1), refm(i, 1), '-, b')
    else ind=vol_rat(i, 1), refm(i, 1), '-, b')
    heplot(eq_vol_rat(i, 1), refm(i, 1), refm(i, 1), refm(i, 1), '-, b')
    heplot(eq_vol_rat(i, 1), refm(i, 1), refm(i, 1), refm(i, 1), refm(i, 1),
```

```
% caliculating ml for individual element
for i=l:en
    mll(i,1)=(sig_y*sqrt(b(i,3)))/sqrt(dinl(i,1));
end
```

```
Plotting H-shfs triangle
figure(1)
h=joi(ss,16)
this(ss,16)
this(ss,16)
this(ss,16)
this(ss,16)
this(ss,16)
plot(ss,16)
p
```

```
Plotting variation of multipliers with iteration number
figure(4)
i=1:noi
hold on
h=plot(i,m01,'+-r')
daspect ('auto')
xlim([1 noi])
plot(i.m02.'x-b')
$plot(j,mu,'o-y')
plot(j,ma,',-k')
%plot(j,malf,'.k')
plot(i.ml.'*-a')
xlabel('Iteration Number', 'FontAngle', 'Italic', 'FontSize', 12)
vlabel('Multiplier', 'FontAngle', 'Italic', 'FontSize', 12)
legend('\it m'0 1', '\it m'0 2', '\it m n o n', '\it m L',0)
Iter.No', 'FontAngle', 'Italic', 'FontSize', 12)
saveas(h, 'mult vs iter1.fig')
```

```
hold off
figure(5)
i=1:en
if ind==1
        h=plot(vol rat(i,1),b(i,2),'--k')
    elseif ind==2
        h=plot(vol rat(i,1),b(i,2),':k')
    elseif ind==3
        h=plot(vol rat(i,1),b(i,2),'-,k')
    elseif ind==4
        h=plot(vol rat(i,1),b(i,2),'-k','linewidth',1.5)
       h=plot(vol rat(i,1),b(i,2),'-k','linewidth',2,5)
xlabel('V R/V T', 'FontAngle', 'Italic', 'FontSize', 12)
vlabel('Stresses', 'FontAngle', 'Italic', 'FontSize'.12)
$legend('\it iter 1', '\it iter4', '\it iter 8', '\it iter 12', '\it iter
legend('\it iter 1','\it iter4','\it iter 8','\it iter 12','\it iter
title('Stresses vs V R/V T', 'FontAngle', 'Italic', 'FontSize', 12)
saveas(h, 'str_vs_volrat.fig')
figure(6)
i=1:en
if ind==1
        h=plot(vol rat(i,1),mo(i,1),'--k')
    elseif ind==2
        h=plot(vol rat(i,1),mo(i,1),':k')
    elseif ind==3
        h=plot(vol rat(i,1),mo(i,1),'-,k')
    elseif ind==4
        h=plot(vol rat(i,1),mo(i,1),'-k','linewidth',1.5)
       heplot(vol rat(i,1).mo(i,1).'-k'.'linewidth',2.5)
xlabel('V R/V T', 'FontAngle', 'Italic', 'FontSize', 12)
ylabel('m'0', 'FontAngle', 'Italic', 'FontSize', 12)
title('Plot of m'0 vs V R / V T', 'FontAngle', 'Italic', 'FontSize', 12')
%legend('\it iter 1', '\it iter 2', '\it iter 3', '\it iter 4', '\it iter
legend('\it iter 1', '\it iter4', '\it iter 8', '\it iter 12', '\it iter
saveas(h.'m0 vs volrat.fig')
figure(7)
i=1:en
if ind==1
        h=plot(sq vol rat(i,1),b(i,2),'--k')
    elseif ind==2
        h=plot(sg vol rat(i,1),b(i,2),':k')
    elseif ind==3
```

```
h=plot(sq_vol_rat(i,1),b(i,2),'-.k')
    elseif ind==4
       h=plot(sg vol rat(i,1),b(i,2),'-k','linewidth',1,5)
       h=plot(sq vol rat(i,1),b(i,2),'-k','linewidth',2.5)
xlabel('\surd (V R/V T)', 'FontAngle', 'Italic', 'FontSize', 12)
ylabel('Stresses', 'FontAngle', 'Italic', 'FontSize', 12)
$legend('\it iter 1', '\it iter 2', '\it iter 3', '\it iter 4', '\it iter
legend('\it iter 1', '\it iter4', '\it iter 8', '\it iter 12', '\it iter
title('Stresses vs \surd (V R/V T)', 'FontAngle', 'Italic', 'FontSize', 12)
saveas(h, 'str vs sqrtvolrat.fig')
figure(8)
if ind==1
        h=plot(sq vol rat(i,1),mo(i,1),'--k')
    elseif ind==2
        h=plot(sq_vol_rat(i,1),mo(i,1),':k')
    elseif ind==3
        h=plot(sq vol rat(i,1),mo(i,1),'-.k')
    elseif ind==4
        h=plot(sq vol rat(i,1),mo(i,1),'-k','linewidth',1.5)
       h=plot(sq vol rat(i,1),mo(i,1),'-k','linewidth',2.5)
xlabel('\surd (V_R/V_T)', 'FontAngle', 'Italic', 'FontSize', 12)
vlabel('m'0', 'FontAngle', 'Italic', 'FontSize', 12)
title('Plot of m'0 vs \surd (V R /
V_T)', 'FontAngle', 'Italic', 'FontSize', 12')
$legend('\it iter 1', '\it iter 2', '\it iter 3', '\it iter 4', '\it iter
legend('\it iter 1', '\it iter4', '\it iter 8', '\it iter 12', '\it iter
saveas(h, 'm0 vs sqrtvolrat.fig')
   refv(i)=0:
    refv1(i)=0;
for i=1:5
  for j=1:en
     if (mg1(i,1)>=moo(j,1))
         refv(i)=vvr(j,1);
    if (mz2(i,1)>=moo(i,1))
        refv1(i)=vvr1(j,1);
    if (mact>=moo(j,1))
```

```
rrv(i)=vvrl(j,l);
end
end
```

end

```
w2=plot(seq,malftan1,'+-g',seq,mz1,'*-b',seq,mact,'o-k')
daspect ('auto')
xlim([1 noi])
xlabel('Iteration Number', 'FontAngle', 'Italic', 'FontSize', 12)
ylabel('Multiplier', 'FontAngle', 'Italic', 'FontSize', 12)
legend('\it m'T_\propto(V R p)', '\it m'O(V R p)', '\it m n o n',0)
title('Plot of Multipliers vs
Iter.No', 'FontAngle', 'Italic', 'FontSize', 12)
w2=plot(seq,malftan2,'+-q',seq,mz2,'*-b',seq,mact,'o-k')
daspect ('auto')
xlim([1 noi])
xlabel('Iteration Number', 'FontAngle', 'Italic', 'FontSize', 12)
ylabel('Multiplier', 'FontAngle', 'Italic', 'FontSize', 12)
legend('\it m'T_\propto(V_R_p)','\it m'O(V_R_p)','\it m_n_o_n',0)
Iter.No', 'FontAngle', 'Italic', 'FontSize', 12)
figure(11)
w2=plot(seq,refv,'+-b',seq,rv,'*-k')
xlim([1 noi])
xlabel('Iteration Number', 'FontAngle', 'Italic', 'FontSize', 12)
ylabel('V R/V T', 'FontAngle', 'Italic', 'FontSize', 12)
legend('\it (V R/V T) p', '\it (V R/V T) n o n',0)
title('Plot of V R/V T vs Iter.No', 'FontAngle', 'Italic', 'FontSize', 12)
figure(12)
w2=plot(seg.refv1,'+-b',seg.rrv,'*-k')
daspect ('auto')
xlim([1 noi])
xlabel('Iteration Number', 'FontAngle', 'Italic', 'FontSize', 12)
ylabel('\surd (V_R/V_T)', 'FontAngle', 'Italic', 'FontSize', 12)
legend('\it \surd (V R/V T) p', '\it \surd (V R/V T) n o n',0)
title('Plot of \surd (V R/V T) vs
Iter.No', 'FontAngle', 'Italic', 'FontSize', 12)
figure(13)
w2=plot(seg.malftan3,'+-g',seg.mz3,'*-b',seg.mact,'o-k')
daspect('auto')
xlim([1 noi])
xlabel('Iteration Number', 'FontAngle', 'Italic', 'FontSize', 12)
```

ylabel('Multiplier', 'FontAngle', 'Italic', 'FontBize', 12)
Faculty of Engineering and Applied Science, Memorial University.

```
legend('\it m'T_\propto(V_R_e)','\it m'0(V_R_e)','\it m_n_o_n',0)
title('Plot of Nultipliers vs
Iter.No', 'FontAngle', 'Italic', 'FontSize',12)
```

Sample macro for simultaneous correction of peak stress and dead volume effect

```
clear
load mult.txt
mact=1.35
for i=1:6:noi*6
    ml(i,1)=mult(i+1):
    mu(1,1)=mult(1+2);
    m01(j,1)=mult(i+3);
    m02(i,1)=mult(i+4);
    mat(1,1)=mult(1+5):
    ma(i,1)=mact;
    nobml(j,1)=m02(j,1)/ml(j,1);
    crit1(1,1)=(m02(1-1,1)-m02(1,1))/m02(1-1,1);
        iter1=1:
   crit2(1,1)=(mat(1,1)-mat(1-1,1))/mat(1-1,1);
    if (crit2(1,1)>=0.01)
   end
for i=1:1:50
   gei(i,1)=m02(i,1)/ml(i,1);
```

Faculty of Engineering and Applied Science, Memorial University.

```
if (gei(i,1)>=1+8grt(2))
    Robd(i,1)=(1+(gei(i,1)*gei(i,1)))/(2*gei(i,1));
    Rob(i,1)=1+0.2929*(gei(i,1)-1):
    mac(i,1)=m02(i,1)*(Rob(i,1)/Robd(i,1));
    gef(i,1)=((1+0.2929*(gei(i,1)-1))+sqrt((1+0.2929*(gei(i,1)-1))^2-
    % gef(i,1) = ((2+0.5858*(gei(i,1)-1)) + sgrt((2+0.5858*(gei(i,1)-1))^2-
    malf(i,1)=mac(i,1)/(1+0.2929*(gef(i,1)-1));
    malf(i,1)=m02(i)/(1+0.2929*(gei(i,1)-1)):
    mac(i,1)=m02(i,1);
    crit3(i,1)=(malf(i,1)-malf(i-1,1))/malf(i-1,1);
    if (crit3(1,1)>=0.01)
        iter3=i;
mc(i,1)=mac(i,1):
malc(i,1)=malf(i,1);
mlc(i,1)=ml(i,1);
for 1=5:5:20
mc(i,1)=mac(i,1);
malc(i,1)=malf(j,1);
mlc(i,1)=ml(i,1):
end
figure(1)
daspect ('auto')
XLim([1 noi])
hold on
plot(1.m01.'+-r')
h=plot(i,m02,'x-b')
plot(j,ma,'.-k')
plot(j,malf,'.k')
plot(1.ml.'*-q')
plot(i.mat.'.g')
xlabel('Iteration
Number', 'FontAngle', 'Italic', 'FontWeight', 'bold', 'FontSize', 12)
vlabel('Multiplier', 'FontAngle', 'Italic', 'FontWeight', 'bold', 'FontSize'
$legend('\it m^0 1', '\it m^0 2', '\it m a c t', '\it m L'.0)
title('Plot of Multipliers vs
Iter.No', 'FontAngle', 'Italic', 'FontWeight', 'bold', 'FontSize', 12)
saveas(h, 'mult vs iter3.fig')
```

```
figure(2)
k=1:20
daspect ('auto')
XLim([1 20])
% YLin([1 15])
% ZLim('auto')
hold on
plot(k,m01(k,1),'+-r')
h=plot(k,m02(k,1),'x-b')
plot(k, ma(k, 1), '.-k')
plot(k,malf(k,1),'.k')
plot(k,ml(k,1),'*-q')
%plot(j,mat(j,1),'.g')
xlabel('Iteration
Number', 'FontAngle', 'Italic', 'FontWeight', 'bold', 'FontSize', 12)
vlabel('Multiplier', 'PontAngle', 'Italic', 'FontWeight', 'bold', 'FontSize'
legend('\it m'0 1','\it m'0 2','\it m a c t','\it m'\propto_T','\it
title('Plot of Multipliers vs
Iter.No', 'FontAngle', 'Italic', 'FontWeight', 'bold', 'FontSize', 12)
saveas(h, 'mult vs iter4.fig')
```

Appendix-C

EMAP Iteration Results for All Examples

In the Following Section the EMAP analysis results if all the problems, upto fifty iterations have been provided. For the EMAP analysis a 'q' of 0.1 has been used. It can be seen from the results that even after fifty Iterations of EMAP the solutions are not completely converged onto non-linear, where as using the methods developed in the thesis they are coverging much faster.

The convergence criterion used for different methods in this thesis are:

S. NO	Method	Category of Component	Convergence Criterion
1	Elastic Reference volume Method	Any Category	$\frac{m_{\alpha}^{T}(V_{\text{Re}})_{\zeta} - m_{\alpha}^{T}(V_{\text{Re}})_{\zeta-1}}{m_{\alpha}^{T}(V_{\text{Re}})_{\zeta}} \leq 0.01$
2	Plastic Reference Volume Method	1st Category	$\frac{m^{0}(V_{Rp})_{\xi} - m^{0}(V_{Rp})_{\xi-1}}{m^{0}(V_{Rp})_{\xi}} \leq 0.01$
		2nd Category	$\frac{m_{\alpha}^{T}(V_{pp})_{\xi} - m_{\alpha}^{T}(V_{pp})_{\xi-1}}{m_{\alpha}^{T}(V_{pp})_{\xi}} \leq 0.01$
3	Lower bounded m_a^T Method	2nd Category	$\frac{\left(m_{\alpha}^{\tau}\right)_{\xi} - \left(m_{\alpha}^{\tau}\right)_{\xi-1}}{\left(m_{\alpha}^{\tau}\right)_{\xi}} \leq 0.01$

	Thick	Walled C	ylinder	Tori	spherical l	Head	Unreinforced Axi- symmetric Nozzle		
Iteration	m_1^0	m20	<i>m</i> ,	m10	m_2^0	<i>m</i> ,	m_1^0	m_{γ}^{0}	<i>m</i> ,
1	2 2941	2.2941	1.7061	3.0293	3.0293	1.4584	1.8704	1.8704	0.921
2	2.2937	2.2865	1.7507	3.029	3.0126	1.5109	1.8704	1.8686	0.968
3	2.2927	2.2804	1.7923	3.0279	2.9979	1.5623	1.8702	1.8671	1.01
4	2.2912	2.2754	1.8312	3.0262	2.9849	1.6126	1.87	1.8656	1.055
5	2.2895	2.2714	1.8673	3.0239	2.9734	1.6615	1.8696	1.8644	1.096
6	2.2876	2.2681	1.9007	3.0213	2.9632	1.7089	1.8693	1.8632	1.135
7	2.2855	2.2654	1.9316	3.0183	2.954	1.7549	1.8689	1.8621	1.163
8	2.2835	2.2633	1.9601	3.0151	2.9459	1.7993	1.8685	1.8612	1.185
9	2.2814	2.2616	1.9863	3.0117	2.9386	1.8421	1.8682	1.8602	1.203
10	2.2794	2.2602	2.0104	3.0082	2.932	1.8833	1.8678	1.8594	1.221
11	2.2775	2.259	2.0325	3.0045	2.9261	1.9228	1.8674	1.8586	1.238
12	2.2757	2.2581	2.0527	3.0008	2 9208	1.9608	1.867	1.8578	1.254
13	2.2739	2.2574	2.0712	2.9971	2.916	1.9972	1.8667	1.857	1.269
14	2 2723	2 2568	2.0881	2 9934	2 9117	2.032	1.8663	1.8563	1.283
15	2.2707	2.2563	2.1036	2.9897	2 9078	2.0654	1.866	1.8556	1.295
16	2 2693	2 25.59	2 1176	2 9859	2 9042	2 0972	1.8656	1.8549	1.307
17	2.268	2 2556	2.1304	2.9822	2.901	2.1276	1.8653	1.8542	1.318
18	2 2668	2 2653	2 142	2 9786	2,8081	2 1567	1.865	1.8636	1 329
19	2 2657	2 2551	2 1526	2.9749	2.8955	2 1844	1.8648	1.8529	1.340
20	2 2646	2 255	2 1622	2 0714	2 8032	2 2108	1.8645	1.8522	1 350
21	2 2637	2 2548	2 171	2.9678	2.891	2 236	1.8642	1.8516	1.360
22	2 2628	2 2547	2 1780	2 0643	2 8801	2.26	1.864	1.8500	1 360
23	2 282	2 25.46	2 1861	2.9609	2.8873	2 2820	1.8637	1.8503	1.378
24	2 2613	2 2546	2 1926	2.9575	2.8857	2.3047	1.8635	1.8497	1.387
25	2 2607	2 2645	2 1085	2 0541	2 8843	2 3254	1 8632	1.840	1 306
28	2 2601	2 2545	2 2038	2.9508	2.883	2 3451	1.863	1.8484	1.404
27	2 2595	2 2544	2 2087	2.9475	2.8818	2 3639	1.8628	1.8478	1.412
28	2 250	2.2544	2 213	2 0443	2 8807	2 3818	1.8626	1 8472	1 420
20	2 2586	2 2544	2 217	2.0412	2 8797	2.3089	1.8624	1.8466	1.428
20	2.2682	2.2544	2 2206	2.0281	2.0707	2.4161	1.8622	1.0400	1 425
31	2 2578	2 2544	2 2238	2.0352	2.0707	2,4205	1.0022	1 8454	1.440
32	2 2575	2 2544	2 2268	2,0002	2.0778	2.4462	1.002	1 0440	1 440
33	0.0570	2.2544	2.2204	2.0020	0.0700	0.4500	1.0010	1.0440	4.466
33	2.2012	2.2044	2.2284	5.9590	2.0703	2.4092	1,0010	1.0442	1,400
34	2.2309	2.2043	2.2310	5.9508	2.0700	2.4/20	1.0014	1.0430	1,401
30	2.2307	2.2043	2.234	2.8243	2.875	2.4602	1.0013	1.043	1.407
36	2.2564	2.2543	2.230	2.9218	2.8744	2.4973	1.8611	1.8424	1.473
37	2.2562	2.2543	2.2378	2.9195	2.8738	2.5088	1.8609	1.8418	1.478
38	2.2561	2.2543	2.2394	2.9172	2.8733	2.5198	1.8607	1.8412	1.48
39	2.2559	2.2543	2.2408	2.915	2.8728	2.5303	1.8605	1.8406	1.489
40	2.2557	2.2543	2.2421	2.913	2.8723	2.5403	1.8604	1.84	1.494
41	2.2556	2.2543	2.2433	2.911	2.8719	2.5498	1.8602	1.8394	1.499
42	2.2555	2.2543	2.2444	2.9091	2.8714	2.5589	1.86	1.8388	1.50
43	2.2554	2.2543	2.2453	2.9073	2.871	2.5604	1.8599	1.8382	1.508
44	2.2553	2.2543	2.2462	2.9056	2.8706	2.5315	1.8597	1.8377	1.513
45	2.2552	2.2543	2.247	2.904	2.8703	2.5076	1.8595	1.8371	1.517
46	2.2551	2.2543	2.2477	2.9024	2.8699	2.4881	1.8593	1.8365	1.522
47	2.255	2.2543	2.2484	2.9009	2.8696	2.4723	1.8592	1.8359	1.526
48	2.255	2.2543	2.2489	2.8995	2.8693	2.4596	1.859	1.8353	1.530
49	2.2549	2.2543	2.2495	2.8981	2.8689	2.4496	1.8588	1.8348	1.534
50	2.2548	2 2543	2.2499	2.8968	2.8686	2.4419	1.8587	1.8342	1.538

	Reinfor	ced Axi-sy	mmetric	Pressure Vessel Support Skirt			CT Specimen		
		1402210			- m0		0	⁰	
Iteration	m1	m2	m _L	m1	2.0420	mL 4 6040	1 5408	m2	m _L
	2.011	2.011	1.2470	3.0130	3.0130	1.0219	1.5490	1.0490	0.1004
2	2.0109	2.0086	1.3003	3.0129	3.5935	1.0700	1.5502	1.0034	0.1205
3	2.0107	2.0004	1.3307	3.0114	3.5753	1.0347	1.5465	1.403	0.1330
4	2.0105	2.0046	1.3991	3.0091	3.5560	1.0093	1.040	1.4272	0.1475
5	2.0101	2.0029	1.4453	3.0002	3.5434	1.7424	1.5399	1.3952	0.1623
0	2.0097	2.0015	1.4693	3.0020	3.5293	1.7938	1.5330	1.3003	0.170
/	2.0093	2.0002	1.5311	3.5991	3.5102	1.0430	1.5207	1.3399	0.1944
8	2.0088	1.999	1.5700	3.5951	3.5041	1.8915	1.519	1.3158	0.2116
9	2.0084	1.9979	1.608	3.591	3.4927	1.9375	1.5108	1.2935	0.2296
10	2.008	1.9969	1.6432	3.5867	3.482	1.9816	1.5023	1.2729	0.2481
11	2.0076	1.9959	1.6763	3.5824	3.472	2.0239	1.4935	1.2538	0.2672
12	2.0072	1.9951	1.7075	3.5781	3.4625	2.0643	1.4846	1.2359	0.2867
13	2.0068	1.9942	1.7366	3.5738	3.4535	2.1029	1.4757	1.2192	0.3066
14	2.0064	1.9934	1.7639	3.5695	3.4449	2.1397	1.4668	1.2035	0.3265
15	2.006	1.9927	1.769	3.5653	3.4367	2.1748	1.458	1.1888	0.3464
16	2.0057	1.9919	1.768	3.5611	3.429	2.2082	1.4493	1.1749	0.3663
. 17	2.0054	1.9912	1.7673	3.5571	3.4215	2.2401	1.4407	1.1617	0.3859
18	2.0051	1.9906	1.7669	3.5531	3.4144	2.2705	1.4323	1.1492	0.4053
19	2.0048	1.9899	1.7666	3.5491	3.4075	2.2994	1.4241	1.1374	0.4245
20	2.0046	1.9892	1.7666	3.5453	3.4009	2.327	1.4161	1.1261	0.4433
21	2.0043	1.9886	1.7667	3.5415	3.3946	2.3533	1.4083	1.1154	0.4618
22	2.0041	1.988	1.767	3.5377	3.3886	2.3785	1.4007	1.1052	0.4799
23	2.0039	1.9874	1.7675	3.534	3.3827	2.4025	1.3934	1.0955	0.4976
24	2.0037	1.9867	1.768	3.5304	3.3771	2.4255	1.3863	1.0862	0.5148
25	2.0035	1.9861	1.7687	3.5267	3.3717	2.4475	1.3795	1.0773	0.5315
26	2.0033	1.9855	1.7694	3.5231	3.3665	2.4686	1.3729	1.0687	0.5476
27	2.0031	1.985	1.7702	3.5195	3.3616	2.4888	1.3665	1.0606	0.5631
28	2.003	1.9844	1.771	3.5159	3.3568	2.5082	1.3604	1.0527	0.5781
29	2.0028	1.9838	1.772	3.5122	3.3522	2.5269	1.3546	1.0452	0.5925
30	2.0027	1.9832	1.7729	3.5086	3.3478	2.5449	1.3489	1.038	0.6062
31	2.0025	1.9826	1.7739	3.5049	3.3435	2.5622	1.3435	1.031	0.6193
32	2.0024	1.9821	1.7749	3.5012	3.3395	2.5789	1.3383	1.0243	0.6318
33	2.0023	1.9815	1.776	3.4974	3.3356	2.595	1.3333	1.0179	0.6437
34	2.0022	1.9809	1.7771	3.4937	3.3319	2.6105	1.3284	1.0117	0.6497
35	2.0021	1.9804	1.7781	3.4898	3.3283	2.6256	1.3238	1.0057	0.6519
36	2.002	1.9798	1.7792	3.4859	3.3248	2.6401	1.3194	0.9999	0.6543
37	2.0019	1.9793	1.7803	3.482	3.3215	2.6542	1.3151	0.9944	0.6569
38	2.0018	1.9787	1.7814	3.4781	3.3184	2.6678	1.311	0.989	0.6596
39	2 0017	1.9782	1.7825	3 4741	3 3153	2 6809	1.307	0.9839	0.6623
40	2 0016	1.9776	1.7836	3.4701	3 3124	2 6937	1 3032	0.9789	0.6651
41	2 0015	1 9771	1 7847	3 4661	3 3096	2 706	1 2996	0.9741	0.6678
42	2 0014	1 9765	1 7858	3 4621	3 3068	2 718	1 2961	0.9694	0.6706
43	2.0014	1.976	1.7869	3.4581	3.3042	2,7295	1.2927	0.9649	0.6734
44	2.0013	1.9755	1.7879	3.4541	3.3016	2,7406	1.2894	0.9606	0.6761
45	2.0012	1.9749	1.789	3.4501	3.2992	2.7512	1.2863	0.9564	0.6788
46	2.0011	1.9744	1.79	3.4461	3.2968	2.7616	1.2833	0.9524	0.6814
47	2.0011	1.9739	1.7911	3.4422	3.2944	2.7715	1.2804	0.9484	0.6839
48	2 001	1 9733	1 7921	3 4 3 8 3	3 2922	2 7812	1 2776	0 9447	0.6864
49	2.0009	1.9728	1.7931	3.4345	3.29	2.7905	1.275	0.941	0.6888
50	2 0009	1 9723	1 7941	3 4308	3 2879	2 7996	1 2724	0.9375	0.6912
00									

	Single	Edge Note	h Bend	Plate with multiple Cracks			Plate with a Hole		
Iteration	m_1^0	m_2^0	m_L	m_1^0	m_{2}^{0}	m_L	m_1^0	m20	<i>m</i> ,
1	4.7588	4.7588	0.2015	2.3588	2.3588	0.1974	1.2214	1.2214	0.481
2	4.761	4.4382	0.221	2.359	2.3433	0.2138	1.2214	1.2162	0.496
3	4.7586	4.145	0.2417	2.3588	2.3282	0.2314	1.2213	1.2112	0.511
4	4.7524	3.8769	0.2637	2.3583	2.3134	0.2501	1.2211	1.2062	0.526
5	4.7428	3.6324	0.2868	2.3574	2.2987	0.2698	1.2208	1.2014	0.541
6	4.7304	3.4098	0.3111	2.3562	2.2842	0.2906	1.2205	1.1967	0.555
7	4.7157	3.2075	0.3363	2.3548	2.2697	0.3122	1.2202	1.1921	0.5
8	4.6991	3.0242	0.3626	2.3532	2.2552	0.3347	1.2198	1.1875	0.584
9	4.6811	2.8585	0.3896	2.3513	2.2406	0.3581	1.2193	1.183	0.597
10	4.6621	2.7089	0.4174	2.3494	2.226	0.3821	1.2189	1.1786	0.611
11	4.6426	2.5741	0.4459	2.3472	2.2114	0.4068	1.2184	1.1743	0.624
12	4.6228	2.4529	0.4749	2.345	2.1966	0.4321	1.218	1.17	0.636
13	4.603	2.3441	0.5043	2.3426	2.1817	0.4579	1.2175	1.1658	0.649
14	4.5835	2.2465	0.534	2.3401	2.1667	0.4841	1.217	1.1617	0.66
15	4.5645	2.1591	0.5639	2.3376	2.1517	0.5107	1.2164	1.1575	0.672
16	4.5459	2.081	0.594	2.335	2.1365	0.5375	1.2159	1.1535	0.683
17	4.528	2.0111	0.6239	2.3323	2.1212	0.5644	1.2154	1.1495	0.694
18	4.5108	1.9485	0.6537	2.3296	2 1059	0.5913	1,2149	1.1455	0.704
10	4 4043	1 8027	0.6833	2 3260	2 0004	0.6183	1 2143	1 1417	0.714
20	4 4785	1.8427	0.7124	2 3241	2.075	0.6324	1 2138	1 1378	0.723
21	4.4634	1 708	0.7411	2 3213	2.0504	0.6446	1 2133	1 1 24	0.723
22	4.4402	1 750	0.7602	2 3186	2.0430	0.659	1.2128	1 1 202	0.741
22	4.4366	1 7221	0.7066	2,3166	2.0430	0.6724	1.2120	1.1266	0.740
24	4.4300	1 6800	0.8232	2.3100	2.0203	0.6977	1 2117	1.1200	0.767
26	4.4408	1.6600	0.02.02	2.0120	1.0071	0.7037	1 2112	1 1103	0.765
20	4.4100	1.6340	0.0491	2.31	1.0015	0.7037	1.2107	1.1160	0.772
20	4.3091	1.0349	0.0741	2.3071	1.0650	0.7204	1.2107	1 1100	0.770
20	4.3003	1.6002	0.0902	2.3043	1.0505	0.7513	1.2007	1.1123	0.77
20	4.370	1.0902	0.0213	2.3010	1,9000	0.7001	1.2007	1.1000	0.70
29	4.3004	1.071	0.9304	2.2907	1.930	0.7729	1.2092	1.1004	0.792
30	4.3093	1.0030	0.9356	2.290	1.9197	0.791	1.2000	1.102	0.790
31	4.3007	1.0370	0.9415	2.2933	1.9045	0.0093	1.2003	1.0907	0.803
32	4.3420	1.5232	0.9475	2.2900	1.0094	0.0217	1.2078	1.0955	0.809
33	4.335	1.51	0.9536	2.2879	1.8744	0.846	1.2074	1.0922	0.814
34	4.3279	1.4979	0.9597	2.2853	1.8596	0.8644	1.2069	1.0891	0.819
35	4.3211	1,4808	0.9659	2.2828	1,8449	0.8820	1.2005	1.080	0.823
36	4.3148	1.4765	0.9721	2.2802	1.8304	0.9007	1.2061	1.0829	0.828
37	4.3088	1,4671	0.9783	2.2/1/	1.8101	0.9187	1.2057	1.0799	0.832
38	4.3032	1,4584	0.9844	2.2753	1.802	0.9304	1.2053	1.0769	0.830
39	4.2979	1.4503	0.9904	2.2729	1.7881	0.9538	1.2049	1.074	0.840
40	4.293	1,4429	0.9904	2.2700	1.7744	0.9709	1.2045	1.0711	0.843
41	4.2884	1.4359	1.0022	2.2683	1.7609	0.9877	1.2041	1.0083	0.847
42	4.2841	1.4295	1.008	2.200	1.7477	1.0041	1.2037	1.0055	0.850
43	4.2801	1.4235	1.0137	2.2639	1.7347	1.0202	1.2034	1.0627	0.853
44	4.2764	1.4179	1.0192	2.2617	1.722	1.0358	1.203	1.0601	0.856
45	4.2733	1.4128	1.0247	2.2597	1.7095	1.051	1.2027	1.0574	0.85
46	4.2707	1.4081	1.0301	2.2576	1.6973	1.0657	1.2023	1.0548	0.861
47	4.2686	1.4038	1.0354	2.2557	1.6854	1.08	1.202	1.0523	0.86
48	4.2681	1.4002	1.0408	2.2538	1.6737	1.0938	1.2017	1.0498	0.866
49	4.2692	1.3974	1.0462	2.2519	1.6623	1.1071	1.2014	1.0473	0.868
50	4.2706	1.3948	1.0516	2.2501	1.6512	1.1199	1.2011	1.0449	0.870

	Inde	terminate l	Beam	Obli	que Nozzl	e 30 ⁰	Oblique Nozzle		ie 45°	
Iteration	m_1^0	m20	mL	m10	m_{2}^{0}	m	m_1^0	m_2^0	m_L	
1	2.649	2.649	0.6132	1.8673	1.8673	0.1265	2.4004	2.4004	0.2422	
2	2.6475	2.5359	0.6456	1.8699	1.8106	0.1413	2.402	2.3639	0.2632	
3	2.6428	2.4393	0.6781	1.871	1.7542	0.1563	2.4028	2.3267	0.2838	
4	2.6354	2.3565	0.7106	1.8709	1.6984	0.1714	2.403	2.2884	0.3041	
5	2.6255	2.2853	0.7428	1.8697	1.6432	0.1864	2.4026	2.2493	0.3238	
6	2.6136	2.2237	0.7746	1.8675	1.5888	0.2012	2.4015	2.2091	0.3431	
7	2.6	2.1702	0.8059	1.8644	1.5353	0.2158	2.3998	2.1679	0.3618	
8	2.5851	2.1236	0.8366	1.8604	1.4829	0.2301	2.3976	2.1258	0.38	
9	2.5692	2.0829	0.8666	1.8555	1.4318	0.2439	2.3947	2.0829	0.3976	
10	2.5526	2.0471	0.8958	1.8498	1.3821	0.2575	2.3911	2.0393	0.409	
11	2.5355	2.0155	0.9241	1.8431	1.334	0.2706	2.3868	1.9952	0.4186	
12	2.5182	1.9875	0.9514	1.8355	1.2877	0.2834	2.3817	1.9506	0.4288	
13	2.501	1.9625	0.9778	1.8269	1.2432	0.2959	2.3756	1.9059	0.4395	
14	2.4839	1.9402	1.0031	1.8172	1.2008	0.3081	2.3685	1.8613	0.4507	
15	2.4671	1.9202	1.0274	1.8062	1.1604	0.32	2.3602	1.8168	0.4625	
16	2.4508	1.9022	1.0507	1.7938	1.1222	0.3317	2.3505	1.7729	0.4748	
17	2.435	1.8859	1.073	1 7799	1.0863	0.3433	2.3393	1 7297	0.4876	
18	2 4 1 9 8	1.871	1 0942	1 7642	1.0526	0.3516	2 3265	1 6873	0.5009	
10	2.4053	1 8574	1 1145	1.7467	1.0213	0.36	2 3110	1.6461	0.5147	
20	2 3014	1.845	1 1337	1 7272	0.00222	0.3687	2 2055	1.6061	0.5280	
21	2 3783	1 8336	1.1521	1 7057	0.0854	0.3778	2 2773	1.5676	0.5438	
22	2.3650	1.0330	1 1606	1.6924	0.0409	0.3972	2.2574	1.5205	0.5595	
22	2.3038	1.0231	1 196	1.6572	0.0192	0.3072	2 226	1.4051	0.5300	
24	2.3042	1.0133	1 2016	1.6204	0.9103	0.0071	2.200	1.4612	0.5730	
24	2.3433	1.7059	1.2010	1.6022	0.0378	0.4071	2 1905	1.4202	0.605	
20	2.000	1 7970	1.2200	1.672	0.07.04	0.4173	2.1000	1.9202	0.6161	
20	2.32.34	1 7905	1.2300	1 5421	0.0020	0.4270	2.1045	1.3505	0.5041	
20	2.3144	1.7005	1.2439	1.0401	0.0475	0.4150	2.1350	1.3/04	0.0041	
20	2.300	1.7733	1.2000	1.0127	0.0340	0.4110	2.1141	1.0400	0.5705	
20	2.2902	1.707	1.2000	1.4022	0.0220	0.4030	2.0004	1.0104	0.5018	
30	2.2909	4.766	1.2799	1.402	0.0123	0.4013	2.0020	1.290	0.0490	
31	2.2042	4 7404	1.2907	1.4221	0.0031	0.3961	2.0374	1.2/32	0.5396	
32	2.2179	1.7494	1.3009	1.3929	0.795	0.3902	2.0124	1.203	0.532	
33	2.2/21	1.7992	1.3100	1.3044	0.7047	0.3953	1.9679	1.2343	0.5259	
34	2.2007	1.7392	1.3190	1.3309	0.7017	0.3953	1.9639	1.217	0.5215	
35	2.2017	1.7344	1.3205	1.3104	0.7763	0.3951	1.9405	1.2011	0.5165	
30	2.2571	1.7299	1.3368	1.200	0.7710	0.3956	1.91/0	1.1005	0.5167	
3/	2.2021	1.7250	1.3440	1.2000	0.7675	0.3969	1.0957	1.1/31	0.510	
38	2.2487	1.7210	1.3521	1.23/4	0.764	0.3988	1.0743	1.1008	0.5163	
39	2.245	1./1/0	1.3592	1.2104	0.761	0.4013	1.8535	1.1495	0.515	
40	2.2410	1.7137	1.3059	1.1944	0.7584	0.4042	1.0334	1.1392	0.5143	
41	2.2364	1.7101	1.3724	1.1/44	0.7561	0.4076	1.814	1.1298	0.5144	
42	2.2354	1.7066	1.3785	1.1555	0.7542	0.4113	1.7952	1.1212	0.5154	
43	2.2327	1.7033	1.3843	1.1376	0.7525	0.4153	1.7769	1.1134	0.5171	
44	2.2301	1.7001	1.3899	1.1206	0.7511	0.4195	1.7592	1.1063	0.5195	
45	2.2277	1.697	1.3952	1.1045	0.7498	0.424	1.7421	1.0998	0.5226	
46	2.2255	1.694	1.4003	1.0893	0.7488	0.4286	1./255	1.0939	0.5261	
47	z.z234	1.6911	1.4051	1.0748	0.7479	0.4334	1.7094	1.0884	0.5302	
48	2.2215	1.6883	1.4097	1.0611	0.7471	0.4382	1.6938	1.0835	0.5347	
49	2.2197	1.6857	1.4141	1.0481	0.7464	0.4431	1.6786	1.079	0.5396	
50	2.218	1.6831	1.4172	1.0358	0.7459	0.4476	1.6638	1.0749	0.5448	

	Obli	ique Nozzl	e 60 ⁰	Obli	ique Nozzl	ie 90°	Orthotropic Thick walled Cylinder		
Iteration	m_{1}^{0}	m_2^0	mL	m_1^0	m_{2}^{0}	mL	m_1^0	m_{2}^{0}	m_L
1	2.5581	2.5581	0.3508	2.6244	2.6244	0.5133	0.7798	0.7798	0.5574
2	2.5592	2.531	0.3746	2.6253	2.6023	0.536	0.7797	0.7777	0.5702
3	2.5598	2.5037	0.3978	2.6258	2.5804	0.5485	0.7795	0.776	0.582
4	2.5601	2.4761	0.4203	2.6261	2.5586	0.5612	0.7791	0.7745	0.593
5	2.5599	2.448	0.4423	2.6261	2.5369	0.5743	0.7787	0.7733	0.6032
6	2.5593	2.4195	0.4637	2.6258	2.5152	0.5877	0.7782	0.7723	0.6127
7	2.5584	2.3905	0.4844	2.6253	2.4935	0.6015	0.7777	0.7714	0.6214
8	2.557	2.3609	0.5034	2.6245	2.4717	0.6156	0.7772	0.7706	0.6294
9	2 5552	2.3307	0.5147	2.6234	2.4497	0.63	0.7767	0.77	0.6367
10	2 5528	2 3001	0.5265	2 6219	2 4277	0.6449	0.7762	0.7694	0.6435
11	2.55	2 2689	0.5389	2 6201	2 4055	0.6602	0 7758	0.7689	0.6497
12	2 5465	2 2374	0.5519	2 6179	2 3832	0.6759	0.7753	0.7685	0.6554
13	2 5424	2 2054	0.5654	2 6153	2 3608	0.6921	0 7749	0.7681	0.6606
14	2 5374	2 1732	0.5794	2.612	2 3384	0 7088	0 7745	0.7677	0.6653
15	2 5215	2.1408	0.5041	2.6092	2 2150	0.7261	0.7741	0.7674	0.6607
16	2.5246	2.1002	0.6002	2.6036	2.0108	0.74201	0.7797	0.7671	0.0007
17	2.5240	2.0750	0.0085	2.0030	2.2000	0.7433	0.7734	0.7669	0.0730
10	2.5105	2.0738	0.6412	2.0001	2.2/11	0.7022	0.7721	0.7666	0.0773
10	2.0071	2.0430	0.0413	2.0010	2.2400	0.701	0.7739	0.7662	0.0000
20	2.4904	2.0110	0.000	2.0040	2.2201	0.0003	0.7726	0.7665	0.0030
20	2.4043	1.9790	0.0752	2.5702	2.2047	0.02	0.7723	0.7001	0.0003
21	2.4708	1.9485	0.6928	2.5008	2.1829	0.8401	0.7723	0.7658	0.6888
22	2.4501	1.9177	0.7106	2.5505	2.1012	0.8604	0.7721	0.7656	0.691
23	2.4401	1.8875	0.7287	2.5453	2.1398	0.8809	0.7719	0.7654	0.6931
24	2.4232	1.8578	0.7467	2.5332	2.1187	0.9015	0.7717	0.7652	0.695
25	2.4054	1.8289	0.7643	2.5204	2.0977	0.9221	0.7715	0.765	0.6967
26	2.3869	1.8006	0.7802	2.507	2.077	0.9427	0.7714	0.7647	0.6982
27	2.3679	1.7731	0.7467	2.4931	2.0565	0.9631	0.7712	0.7645	0.6996
28	2.3487	1.7465	0.7185	2.4789	2.0363	0.9833	0.7711	0.7643	0.7009
29	2.3294	1.7206	0.6948	2.4645	2.0164	1.0032	0.771	0.7641	0.702
30	2.3102	1.6956	0.675	2.4501	1.9968	1.0228	0.7709	0.7639	0.7031
31	2.2911	1.6715	0.6586	2.4357	1.9774	1.0224	0.7708	0.7637	0.7039
32	2.2724	1.6482	0.6452	2.4215	1.9584	0.9961	0.7707	0.7635	0.7045
33	2.254	1.6259	0.6344	2.4076	1.9397	0.973	0.7706	0.7633	0.705
34	2.2362	1.6045	0.626	2.394	1.9214	0.9527	0.7706	0.7631	0.7053
35	2.2188	1.584	0.6197	2.3808	1.9034	0.9351	0.7705	0.7629	0.7055
36	2.202	1.5644	0.6152	2.368	1.8858	0.9198	0.7704	0.7627	0.7057
37	2.1857	1.5457	0.6124	2.3557	1.8686	0.9066	0.7704	0.7625	0.7058
38	2.17	1.5279	0.6111	2.3438	1.8518	0.8955	0.7703	0.7623	0.7058
39	2.1549	1.511	0.6111	2.3325	1.8354	0.8861	0.7703	0.7621	0.7059
40	2.1403	1.4949	0.6122	2.3216	1.8194	0.8785	0.7703	0.7619	0.7059
41	2.1263	1.4797	0.6145	2.3112	1.8039	0.8724	0.7702	0.7618	0.7058
42	2.1128	1.4652	0.6177	2.3013	1.7888	0.8678	0.7702	0.7616	0.7058
43	2.0997	1.4515	0.6218	2.2919	1.7742	0.8646	0.7702	0.7614	0.7058
44	2.0871	1.4386	0.6267	2.2829	1.76	0.8626	0.7701	0.7612	0.7058
45	2.075	1.4264	0.6322	2.2743	1.7462	0.8617	0.7701	0.761	0.7057
46	2.0633	1.4149	0.6383	2.2661	1.7329	0.8619	0.7701	0.7608	0.7057
47	2.0519	1.404	0.645	2.2583	1.7201	0.8621	0.7701	0.7606	0.7056
48	2.041	1.3938	0.6521	2.2509	1.7076	0.862	0.7701	0.7604	0.7056
49	2.0304	1.3841	0.6597	2.2438	1.6956	0.8627	0.77	0.7602	0.7056
50	2.0201	1.3751	0.6676	2.237	1.6841	0.8643	0.77	0.76	0.7055

	Transversely Isotropic			Transve	rsely Isotn	opic Plate	Cylinder Bilinear		
	Brid	gman note	h bar		with a hol	e	1.1		
Iteration	m_1^0	m_{2}^{0}	m_L	m_1^0	m_{2}^{0}	m_{\perp}	m_1^0	m_{2}^{0}	m
1	1.1105	1.1105	0.4767	5.3165	5.3165	1.9849	3.0394	3.0394	2.212
2	1.1107	1.1081	0.4976	5.3162	5.2911	2.0531	3.0389	3.0293	2:274
3	1.1107	1.1059	0.5179	5.3154	5.2666	2.1213	3.0375	3.0211	2.333
4	1.1106	1.1038	0.5377	5.3142	5.2429	2.1892	3.0356	3.0145	2.387
5	1,1105	1.1018	0.5569	5.3127	5.22	2.2566	3.0333	3.0091	2.438
6	1.1104	1.0998	0.5755	5.3109	5.1977	2.3232	3.0307	3.0048	2.485
7	1.1101	1.098	0.5934	5.3088	5.176	2.389	3.028	3.0013	2.529
8	1.1099	1.0962	0.6106	5.3065	5.1548	2.4537	3.0253	2.9984	2.569
9	1 1096	1 0945	0.6271	5 3041	5 1341	2 5172	3.0225	2 9961	2 606
10	1 1093	1.0929	0.643	5 3015	5 1139	2 5793	3.0199	2 9942	2 640
11	1 1089	1.0913	0.6582	5 2989	5 0941	2 6399	3.0173	2 9927	2 671
12	1 1086	1 0807	0.6727	5 2061	5.0747	2,6080	3.0149	2 0015	2 700
13	1.1082	1.0882	0.6866	5 2033	5.0557	2.7563	3.0125	2.0005	2 726
14	1.1078	1.0867	0.0000	5 2005	5.037	2.8110	3.0104	2.0807	2.750
16	1.1074	1.0952	0.7124	5 2976	5.0197	2.9659	3.0083	2.0801	2 772
10	4 407	1.0000	0.7124	E 0047	5.0107	2.0000	3.0000	2.0001	0.700
10	1.107	1.0639	0.7244	5.2047	3.0007	2.9170	3.0004	2.8003	2.192
17	1.1000	1.0626	0.7356	5.2010	4.9031	2.9079	3.0047	2.8001	2.010
10	1.1002	1.0613	0.7400	5.2769	4.9057	3.0103	3.0031	2.9070	2.020
19	1.1058	1.08	0.7569	5.276	4.9487	3.0627	3.0016	2.9875	2.841
20	1.1054	1.0787	0.7666	5.2731	4.9319	3.1073	3.0002	2.9873	2.855
21	1.105	1.0775	0.7759	5.2702	4.9154	3.1501	2.9989	2.9871	2.867
22	1.1046	1.0762	0.7846	5.2674	4.8993	3.191	2.9978	2.987	2.879
23	1.1042	1.0751	0.7929	5.2646	4.8834	3.2302	2.9967	2.9869	2.889
24	1.1038	1.0739	0.8008	5.2618	4.8677	3.2676	2.9958	2.9868	2.898
25	1.1034	1.0727	0.8083	5.2591	4.8524	3.3034	2.9949	2.9867	2.906
26	1.103	1.0716	0.8153	5.2564	4.8373	3.3375	2.9941	2.9866	2.914
27	1.1026	1.0705	0.822	5.2537	4.8225	3.37	2.9934	2.9866	2.921
28	1.1022	1.0694	0.8284	5.2511	4.8079	3.401	2.9927	2.9866	2.927
29	1.1018	1.0683	0.8344	5.2486	4.7936	3.4305	2.9921	2.9865	2.933
30	1.1015	1.0672	0.8401	5.246	4.7795	3.4585	2.9916	2.9865	2.938
31	1.1011	1.0662	0.8455	5.2436	4.7657	3.4852	2.9911	2.9865	2.94
32	1.1008	1.0651	0.8505	5.2412	4.7521	3.5105	2.9907	2.9865	2.947
33	1.1004	1.0641	0.8551	5.2388	4.7388	3.5346	2.9903	2.9865	2.95
34	1.1001	1.0631	0.8595	5.2365	4.7257	3.5574	2.9899	2.9865	2.954
35	1.0997	1.0621	0.8635	5.2342	4,7129	3.5791	2.9896	2.9865	2.957
36	1.0994	1.0611	0.8673	5.232	4,7003	3.5997	2.9893	2.9865	2.960
37	1.0991	1.0602	0.8709	5.2298	4.6879	3.6192	2.989	2.9865	2.962
38	1.0988	1.0592	0.8741	5.2277	4.6757	3.6377	2.9888	2.9865	2.965
39	1 0985	1.0583	0.8772	5 2256	4 6638	3 6553	2 9885	2.9865	2.967
40	1.0982	1.0573	0.8802	5 2236	4 6521	3 6719	2 9883	2 9865	2.96
41	1 0979	1.0564	0.8829	5 2216	4 6406	3.6877	2 9882	2 9865	2 970
42	1.0976	1.0555	0.8855	5 2196	4 6293	3 7027	2 988	2 9865	2 972
43	1.0973	1.0546	0.8879	5.2177	4.6183	3.7169	2.9878	2.9865	2.973
44	1.097	1.0537	0.8903	5 2159	4 6074	3 7303	2 9877	2 9865	2 974
45	1 0967	1.0528	0.8925	5 2141	4 5968	3 7431	2 9876	2 9865	2.97
45	1.0965	1.0519	0.8945	5 2123	4 5864	3 7552	2 9875	2 0865	2.97
40	1.0962	1.0511	0.8965	5 2106	4 5762	3 7667	2 9874	2 9865	2 977
47	1.0050	1.0502	0.9094	5 2080	4 5661	2 7776	2.0972	2.0865	2.079
40	1.0959	1.0404	0.0904	5.2009	4.5001	2 7970	2.00/3	2.0000	2.970
49	1.0907	1.0494	0.0002	5.2073	4.0003	2 7077	2.0072	2.0005	2.019
50	1.0934	1.0400	0.0019	0.2057	H.040/	0.19/1	2.00/1	2.0000	2.800

	Cylinde	r Ramberg	-Osgood	CT Specimen Bilinear			CT Specimen Ramberg-		
					Hardening	2			
Iteration	m10	m_{2}^{0}	<i>m</i> ₁	m_1^0	m_{2}^{0}	m_L	m_1^0	m_2^0	m
1	2.9715	2.9715	2.1629	2.0835	2.0835	0.2179	2.0233	2.0233	0.2116
2	2.971	2.9616	2.224	2.0865	2.0219	0.2367	2.0261	1.9634	0.2299
3	2.9697	2.9536	2.2812	2.0863	1.9673	0.2565	2.026	1.9104	0.2491
4	2.9678	2.9472	2.3346	2.0835	1.9182	0.2773	2.0232	1.8627	0.2692
5	2.9655	2.9419	2.3842	2.0786	1.8738	0.2989	2.0184	1.8196	0.2903
6	2.963	2.9377	2.4303	2.0719	1.8331	0.3215	2.012	1.7801	0.3122
7	2.9604	2.9342	2.4728	2.0639	1.7957	0.3448	2.0042	1.7437	0.3349
8	2.9577	2.9314	2.5121	2.0548	1.761	0.3689	1.9953	1.7101	0.3582
9	2.955	2.9292	2.5483	2.0449	1.7288	0.3936	1.9857	1.6788	0.3822
10	2.9524	2.9273	2.5816	2.0344	1.6987	0.4187	1.9756	1.6496	0.4066
11	2.9499	2.9259	2.6121	2.0236	1.6706	0.4441	1.965	1.6223	0.4312
12	2.9475	2.9247	2.6401	2.0124	1.6442	0.47	1.9542	1.5966	0.4564
13	2.9452	2.9237	2.6657	2.0012	1.6193	0.4962	1.9433	1.5725	0.4818
14	2.9431	2.9229	2.689	1.9899	1.5959	0.5226	1.9323	1.5497	0.5075
15	2.9411	2.9223	2.7104	1.9786	1.5738	0.549	1.9214	1.5283	0.5331
16	2.9393	2.9218	2.7298	1.9674	1.5529	0.5752	1.9105	1.508	0.5586
17	2.9375	2.9214	2.7476	1.9564	1.5331	0.601	1.8998	1.4887	0.5836
18	2.936	2.921	2.7637	1.9456	1.5143	0.6259	1.8893	1.4705	0.6078
19	2.9345	2.9208	2.7784	1.935	1.4965	0.6502	1.879	1.4532	0.6314
20	2 9332	2 9206	2 7917	1 9246	1.4795	0.6738	1 8689	1.4367	0.6543
21	2 9319	2 9204	2 8038	1 9144	1 4634	0.6966	1.859	1 4 2 1	0.6764
22	2 9308	2 9202	2 8148	1 9045	1 4 4 8	0.7186	1 8494	1 4061	0.6978
23	2 9298	2 9201	2.8248	1.8949	1 4334	0.7397	1 8401	1 392	0.7183
24	2 9289	2.92	2.8338	1.8855	1 4195	0.7601	1.831	1 3785	0 7381
25	2 928	2.02	2 842	1.8764	1.4063	0 7797	1 8221	1 3656	0.7571
26	2 9272	2 0100	2 8494	1.8676	1 3036	0.7985	1.8136	1 3533	0 7754
27	2 9265	2.0100	2.8562	1.850	1 3816	0.8164	1.8052	1 3416	0.7928
28	2 9259	2 0108	2.8622	1.8507	1 37	0.8336	1 7071	1 3304	0.8095
20	2.0253	2.0108	2.8678	1.8426	1 350	0.8400	1 7893	1 3107	0.8254
30	2.0248	2.0108	2.8728	1.8340	1 3485	0.8655	1 7818	1 3005	0.8404
31	2.0243	2.0108	2 8773	1.8273	1 3385	0.8802	1 7745	1 2008	0.8548
32	2.0239	2.0100	2.0775	1.8201	1.3280	0.8025	1.7674	1.2005	0.8666
33	2 9235	2.0100	2.8851	1.813	1 3197	0.9018	1 7606	1 2816	0.8757
34	2 9231	2 0108	2 8884	1.8062	1 311	0.9107	1 754	1 273	0.8844
35	2 9228	2 0108	2.8914	1 7007	1 3026	0.0103	1 7476	1 2649	0.8927
36	2 9225	2 0107	2.8042	1 7033	1 2045	0.9275	1 7415	1 2571	0.9007
37	2 9222	2 0107	2.8966	1 7872	1 2860	0.9353	1 7355	1 2496	0.9083
3.8	2 022	2 0107	2.8080	1 7813	1 2705	0.9428	1 7208	1.2425	0.0000
30	2 0218	2.0107	2,0000	1.7756	1 2725	0.9488	1 7243	1 2356	0.0214
40	2 9216	2 9197	2 9027	1 7701	1 2657	0.9493	1 7189	1 2291	0.9218
41	2.0214	2.0107	2.0044	1 7648	1.2503	0.0400	1 7138	1 2228	0.0225
42	2 9212	2 9197	2.0044	1 7597	1 2531	0.951	1 7088	1 2168	0.9235
43	2 9211	2 9197	2 9072	1 7548	1 2472	0.9523	1 704	1 2111	0.9247
44	2.921	2.9197	2.9084	1.75	1.2415	0.9537	1.6994	1.2056	0.9261
44	2 9208	2 0107	2 9095	1 7454	1 236	0.9552	1 6040	1 2003	0.9276
46	2 9207	2 0107	2 9105	1 741	1 2308	0.0568	1.6906	1 1952	0.9292
47	2 9206	2 9197	2 9114	1 7367	1.2258	0.9585	1.6865	1.1903	0.9308
48	2.9206	2 0107	2 0122	1 7326	1 221	0.9603	1.6825	1 1857	0.9325
40	2.0200	2 0108	2.0122	1 7286	1 2164	0.962	1.6786	1 1812	0.9342
50	2.0200	2.0108	2.0136	1 7248	1 212	0.9638	1.6749	1 1769	0.0350
00	4.0204	A.0100	a100	1.1240	1.212	0.0030	1.0740	705	0.0000

	Indeterminate Beam				terminate	Beam			
	BIII	nos zialos	anne	0	anorag-Osq	5004		-	-
Iteration	m ⁰ ₁	m_2^0	m_L	· m1	m22	m _L			
1	3.2997	3.2997	0.7638	3.4533	3.4533	0.7993			
2	3.2978	3.1588	0.8042	3.4513	3.3058	0.8416			-
3	3.292	3.0385	0.8447	3.4452	3.1799	0.884			
4	3.2827	2.9354	0.8851	3.4355	3.072	0.9263			
5	3.2704	2.8466	0.9252	3.4226	2.9791	0.9683			
6	3.2556	2.7699	0.9649	3.4071	2.8988	1.0098			
- 7	3.2387	2.7033	1.0039	3.3894	2.8291	1.0506			1
8	3.2201	2.6453	1.0421	3.37	2.7684	1.0906		1 1 1	
9	3.2003	2.5945	1.0795	3.3492	2.7152	1.1297		1.1	
10	3.1796	2.5499	1.1158	3.3275	2.6686	1.1677		1.00	
11	3.1583	2.5105	1.151	3.3053	2.6274	1.2046			
12	3.1368	2.4757	1.1851	3.2828	2.5909	1.2402			
13	3 1 1 5 3	2.4446	1,2179	3 2603	2.5584	1.2746			
14	3 094	2 4168	1.2495	3 238	2 5293	1.3076			-
15	3.0731	2 3919	1 2798	3,2161	2 5032	1 3394		1	
16	3.0528	2 3694	1.3088	3 1948	2 4797	1.3697			
17	3.0331	2 3401	1 3365	3 1742	2 4584	1 3087		-	
18	3.0142	2.3306	1 363	3 1544	2 430	1.4264	-		
10	2.0081	2 3137	1 3882	3 1365	2 4214	1.4528		-	-
20	2.0700	2.2092	1.4122	2 1176	2.4052	1 4770		-	-
20	2.0625	2 2002	1.4122	3 1004	2 2002	1.6019		-	-
22	2.0023	2.204	1 4667	2.0942	2.3803	1.5010		-	
22	2.0471	2.2708	1 4772	3.0042	2.3703	1 546		-	-
23	2.9325	2.230/	1.4773	3.069	2.3030	1.540			-
24	2.9189	2.2474	1.4900	3.0547	2.352	1.5005		-	
25	2.900	2.2309	1.5153	3.0413	2.341	1.0808	-		-
20	2.8941	2.221	1.5329	3.0287	2.3307	1.6042		-	-
21	2.8829	2.21/8	1.5495	3.017	2.321	1.6216			
28	2.8724	2.2091	1.5653	3.0061	2.312	1.6381	-		-
29	2.8627	2.201	1.5802	2.9959	2.3034	1.6537			
30	2.8537	2.1933	1.5944	2.9865	2.2954	1.6685	-		-
31	2.8453	2.186	1.6078	2.9777	2.2878	1.6826			-
32	2.8375	2.1791	1.6205	2.9695	2.2805	1.6959			-
33	2.8302	2.1726	1.6325	2.9619	2.2737	1.7085	Sec. 2.	100	
34	2.8235	2.1664	1.644	2.9549	2.2672	1.7205		-	-
35	2.8173	2.1605	1.6548	2.9484	2.261	1.7318			
36	2.8115	2.1548	1.6651	2.9423	2.2551	1.7426		1	
37	2.8061	2.1495	1.6749	2.9367	2.2495	1.7529			
38	2.8011	2.1443	1.6842	2.9315	2.2441	1.7626			-
39	2.7965	2.1394	1.6931	2.9266	2.239	1.7718		12.00	
40	2.7922	2.1347	1.7015	2.9221	2.234	1.7806			-
41	2.7882	2.1302	1.7095	2.918	2.2293	1.789			
42	2.7845	2.1258	1.7171	2.9141	2.2248	1.797	1.1		
43	2.7811	2.1217	1.7244	2.9105	2.2204	1.8046			
44	2.7779	2.1176	1.7313	2.9072	2.2162	1.8119			
45	2.7749	2.1138	1.7379	2.904	2.2122	1.8188			
46	2.7721	2.1101	1.7442	2.9011	2.2083	1.8254		1	
47	2.7696	2.1065	1.7502	2.8984	2.2045	1.8317			
48	2.7672	2.1031	1.756	2.8959	2.2009	1.8377			
49	2.7649	2.0997	1.7615	2.8936	2.1974	1.8435			
50	2.7628	2.0965	1.7653	2.8914	2.1941	1.8474			

