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ABSTRACT

Reference volume plays an important role in finding out the limit loads of mechanical
components and structures. In the current research work, new and simplified methods are
proposed in order to determine the reference volume (i.c., elastic and plastic reference
volumes) for any given general mechanical component or structure.

Many methods have been developed for estimating limit loads in general components and
structures; these methods depend on an upper bound multiplier which takes the total
volume into consideration. Considering total volume results in overestimating the upper
bound multiplier. To overcome this deficiency, two methods are proposed in this research
to find reliable estimate of limit load using the reference volume.

The Elastic Reference Volume Method

developed by extending the well established
pressure bulb concepts in soil mechanics to general mechanical components. This method
is basically for second category components, like components with notches or eracks.
The results obtained are within the range of 2 to 5 percent lower bounded to non-linear
results. On the other hand, for the first category components which are well designed, the
Plastic Reference Volume Method is developed. The results obtained are with in the
range of 2 to 7 percent lower bounded to non-linear results.

To obtain a reliable lower bounded limit loads, other than the dead volume effect peak

stress effect is also need to be corrected. A new method which can correct both the

reference volume effect and the peak stress effect

method given a

developed.
lower bounded m, tangent multiplier for all the examples. The results are compared with

the non-lincar analysis

lts and results are found to be very close estimates (< 2

percent) to the non-linar resul




Taking the practical material usage in industry into consideration, a new method is

developed for finding out limit loads of components or structures made of anisotropic
‘materials by incorporating the reference volume correction. The usage of anisotropic
‘materials in industries is increasing day by day, and so is the need for finding out
accurate limit loads for components considering such material properties. The results are
found to be in good agreement with the non-linear results.

Whenever a component or a structure is subjected to continuous loading and the stress

exceeds the yield limit, the component undergoes strain hardening. It is very important to

consider this strain hardening effect while obtaining the limit loads for optimal utilization

of material. A new method developed in this research will take the strain hardening effect

upto a 5% strain limit into consideration, while caleulating the limit loads. Multipliers
obtained using this approach are found higher then the ones obtained by regular limit

analysis, suggesting the usage of reserved strength.
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CHAPTER 1
INTRODUCTION

1.1 General Background

Mechanical components and structures could be designed based on elastic analysis and
elastic-plastic analysis or limit analysis. Among these design philosophies, limit analysis
is of considerable interest as it provides protection against gross plastic deformation i.c.,
catastrophic failure of the components or structures. In addition, it provides a measure of
reserve strength of the structure. The limit analysis could be defined as the determination
of load that results in cross-sectional plasticity in the structure, which leads to

uncontained plastic flow (plastic collapse).

“The limit load could be determined either by analytical methods, numerical methods or
by using simplified methods. Approximate methods use the bounding theorems to
estimate the limit loads. Numerical methods include the nonlinear finite clement analysis
(FEA) which is a permitted method for limit analysis by the codes and standards (e.g..
ASME Boiler and Pressure Vessel Code [1]). Nonlinear FEA is quite complicated as it is
carried out in an iterative and incremental manner. It requires detailed information about
the material properties at respective operating conditions. Finally, the analysis and
interpretation of nonlincar analysis results require in-depth knowledge and expertise in
nonlinear analysis techniques. Nonlinear analysis for a complex problem takes longer

duration and there is always the possibility shear and volumetric locking [2].

In order to avoid the complicated elastic-plastic limit analysis in designing mechanical
components and structures, the development of robust and simplified methods is
considered to be an attractive alternative. The advantage of these methods being able to
estimate the limit loads by using lincar elastic FEA. These methods significantly
overcome the limitations of the time consuming and costly nonlinear FEA. In recent
years, significant efforts are directed in developing the robust and simplified methods in

limit analysis. For any simplified method developed so far finding out the reference
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volume of the structure has been a challenge. In this thesis the efforts are focused on

developing the methods for finding the reference volume for any general component

1.2 Objectives of Research

‘The primary set of objectives of the proposed research work is as follows:

1. To develop new and simplified approaches for reference volume determination.

2. To achieve lower bound limit load multipliers for any given general component by
incorporating above reference volume approaches.

3. To achieve a lower bounded m tangent multiplier by correcting the peak stress and
dead volume effects.

4. To achieve lower bound estimates for anisotropic materials components using
reference volume concepts.

5. To develop new and simplified method for accurately incorporating the strain

hardening effects into the limit load analysis;

1.3 Scope of Research

Estimation of limit loads using simplified methods is of considerable interest duc to the
simplicity and cost effectiveness, the mmethod proposed by Seshadri and
Mangalaramanan [3), and m-tangent methods proposed by Seshadri and Hossain [4] for
predicting the limit loads are able to obtain reasonably close estimates of limit load in
most of the cases.

These methods depend on upper bound multiplier which takes the total volume into
consideration. By considering total volume, we are overestimating the upper bound

multiplier. This over estimated upper bound multiplier leads to inaccurate limit load

estimates. To overcome this difficulty two methods are developed in this research to find
the reference volume. The objective of the present research is to develop simplified
methods for estimation of good lower bound limit loads of a general class of mechanical
components and structures.

For getting good approximations of the limit loads we need a proper method of finding

the reference volume. In the current literature there are reference volume methods
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developed for certain set of specific components. P. Tantichattanont ef al. (S, [6]

developed reference volume calculation for hot spots and corrosion damages in spherical
and cylindrical vessels, F.Ahmad e al, [7] developed reference volume calculations for
hydrostatic storage tanks. The new approaches of finding the reference volumes are being
developed in the current research. These methods are developed to predict reference
volumes of any given mechanical component and structure.

Modern components are made not only of materials that can be considered as isotropic,
but also of anisotropic materials, due to there mechanical and strength advantages. When
compared to isotropic material, the anisotropic materials show appreciable difference in
material properties in different directions. Some examples for such components are rolled
sheets in pressure vessels, composites and directionally solidified super-alloys in gas
turbine blades. The knowledge of the limit load is useful in design and sizing of
components and structures made from these materials. The Li Pan and Seshadri 8]
proposed a method for determining limit loads in anisotropic material using 1, method.
load

estimates. So a new method is developed to obtain reliable reference volume to estimate

In certain cases the overestimated upper bound multiplier leads to inaccurate li

the lower bound limit loads of any given general component or structure made of
anisotropic materials.

In general when ever a component or a structure is subjected to monotonic loading, once
the stress crosses the yield limit, the component starts to experience strain hardening. In
the general limit analysis this strain hardening effect is not considered while calculating
the limit load multipliers, which leads to the under utilization of the material strength. If
the strain hardening effect is incorporated into limit analyses while calculating limit
loads, the material can be used to its optimal strength level. A new method is developed
in this research which will take strain hardening into consideration while calculating

more reliable limit loads.

1.4 Organization of the Thesis

‘This research thesis is composed of nine chapters,
Chapter 1: It covers general background, objectives and scope of the proposed research

work.
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Chapter 2: Provides a brief literature review related to the current research work. The
chapter covers the theoretical aspects of classical elasticity and plasicity including

bounding theorems and admissible limit load multiplier.

Chapter 3: It gives an overall review of development of various multipliers. It discusses
maand me-tangent methods in more detail. It discusses the limitations of these methods
which will lead way to the necessity of the current developed methods. In this chapter 2-

Bar method is generalized to any given component.

Chapter 4: Reference volume concepts in a component is Introduced. The effect of the

reference volume on the limit load estimates is discussed. Elastic Reference Volume

method, its theories and general procedure for incorporation of this method is discussed
in detail. The method is applied on different mechanical components and there results are
discussed

Chapter 5: Plastic Reference Volume method, its theories and general procedures for
incorporation of this method is discussed in detail. The method is applied on different

mechanical components and there results are discussed.

Chapter 6: A method to obtain the lower bounded m-alfa tangent multiplier using a
simultaneous correction of dead volume and peak stress effects is introduced. Its theories
and general procedure for incorporation of this method is discussed in detail. This method

is applied on different mechanical components and the results are discussed.

Chapter 7: In this chapter constitutive Relationships and Multipliers of Anisotropic
Material are discussed. The method for incorporating reference volume approach for
calculating lower bound limit loads for any general anisotropic material is introduced.
General procedure for incorporation of this method is presented. Method is tested on

different mechanical components and its results are discussed.
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Chapter 8: In this chapter concepts of strain hardening in materials are presented.
Different strain hardening material models are studied in detail. The method for
incorporating strain hardening effect into limit analysis, its general procedure and its

applications are discussed in detail.

Chapter 9: In this chapter achievement of the research work, original contributions are

summarized followed with a discussion on the future research scope in these areas.
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THEORETICAL BACKGROUND REVIEW
2.1 Introduction

In this chapter the theoretical concepts of the current research are presented. The research
work covers an extensive volume of literature covering the areas of elasticity, plasticity

and limit analysis. A brief review of the basic theories in elasticity, plasticity and limit

analysis including limit load multipliers are presented. A brief overview of variational
principles in limit analysis is also presented. These theories and concepts form the

background for the current research work.

2.2 Elasticity Concepts

‘The theory of elasticity deals with those bodies which can recover back to their original
shape afier the external loads have been removed. The elastic analysis of a mechanical
component or structure essentially means the determination of stress and strain fields that
simultaneously satisfies the equilibrium equations, compatibility conditions and
constitutive relationships. The equilibrium equations are basic physical laws  that

represent a balance between the applied extemal forces and/or moments with that of the

intemal resistive forces and/or moments. Where as, compatibility conditions are the
geometric relationships that express the continuity of the structure.

The stresses and strains within the elastic limit are more of instantaneous and are
independent of the loading history. The stresses are related to the strains using
constitutive relationships. The principles and mathematical interpretations of the theory
of Elasticity are available in number of standard texts Timoshenko and Gere [9], Shames
and Cozzarelli [10].

The constitutive relationship for a linear elastic body can be established by generalized
Hooke’s law. The most generalized relationship between the stresses and strains could be

expressed by,

6y =Cpy 6y @n
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where, o, is the stress tensor, &, is the strain tensor and C,, are the material dependent
clastic constants.
In case of isotropic materials, where all possible symmetries are considered, the elastic

strains are related to the stresses according to the following relationship,

where, &, is the strain tensor, o, is the stress tensor, £ is the Youngs modulus, v is the
Poisson’s ratio and &, is the Kronecker's delta.

In design using the theory of elasticity, the maximum stress based on certain specified
conditions s limited to the allowable stress of the material. The allowable stress is

usually defined on the basis of design safety factor and yield strength of the material

2.3 Plasticity Concepts

The theory of plasticity deals with those bodies which can not recover back to their
original shape after the external loads have been removed. The principles and
mathematical interpretations of the theory of plasticity are available in a number of
standard texts Mendelson [11], Calladine [12), Hill [13] and Kachanov [14]. In the plastic
range; the strains are dependent on the history of the loading. In order to determine the
final strain, the incremental strains are accumulated over the full loading history. The
stress-strain relationship in plastic range is generally expressed by Prandil-Reuss
equation and is characterized as flow rule.

In the plastic theory it is assumed that the solids are isotropic and homogeneous and onset
of yielding is identical in tension and compression. Volume changes are considered to be
negligible and hydrostatic stress state does not influence yielding.

Theory of plasticity is the basis for limit analysis. The limit analysis is an idealized form
of clastic-plastic analysis, where an clastic perfectly plastic material model is assumed

with out considering any strain hardening.
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2.4 Incremental and Deformation Theories

When the material is loaded with in the clastic range, the strains are linearly related to
stresses by Hooke’s law. In this case, the stresses can be computed directly from the
current state of strain regardless of the loading history. But in the plastic range, the
relationship between stresses and strains are nonlinear and the final strain depends on
history of loading. Therefore, the total strain can be computed by summing the
increments of plastic strain through out the loading history. The onset of yielding is
defined by the appropriate yield criterion and the subsequent plastic strain increment is

preseribed by the corresponding plas

flow rule. The most general form of the plastic

flow rule for ideal plasticity is as follows,

dsf =dA——" (ma A @3)

where, dsf

s the plastic increment at any instant of loading, dA is the plastic flow
parameter, fis the yield function and o is the stress tensor.
‘The plastic flow parameter d is equal to zero when the material behaves elastically i.c.

f(,)<k and takes a positive value when the material behaves plastically i.c.,

f(@,)=k. The direction cosine of the normal to the yield surface is proportional to
f(0,)/60,. Therefore, Eq. (2.3) implies that the plastic flow vector is directed along
the normal to the yield surface when plastic flow takes place.

As mentioned carlier, onset of plastic flow is characterized by the appropriate yield

eriterion. For instance, von Mises yield eriterion can be expressed as,

1
Sy,

fGs, 355~

@4)

The associated flow rule corresponding to von Mises yield criterion can be expressed as,

=dixs, (eX

where, s, s the deviatoric stress tensor.
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The plastic strains and stresses are related by the infinitesimal strain increments and

deviatoric stresses; Eq. (2.5) is called incremental stress-strain relations because they

relate the increments of plastic strain to the stress. To obtain the total plastic strain
components, one must integrate these cquations over the whole history of loading.
Hencky [11] proposed total stress-strain relations whereby the total strain components are

related to the current stress. This can be expressed in the form of the equation as follows:

¢xs, 2.6)

where ¢ is an unspecified proportionality factor, analogous to dA in Eq. (2.5). The
plastic strains then are functions of the current state of stress and are independent of the
history of loading. Such theories are called total or deformation theories. In contrast to
the incremental or flow theories previously described, this type of assumption greatly

simplifies the problem.

In case of proportional or radial loading, the incremental theory reduces to the
deformation theory. o, = Ko, where oan arbitrary reference state of stress and K is
the monotonically increasing function of time, and then Eq. (2.5) on integration leads to
Eq. (2.6). So the plastic strain is a function only of the current state of stress and is

independent of the loading path.

From a practical viewpoint, there are a great many engineering problems where the
loading path is not far from proportional loading, provided one is careful when unloading
occurs to separate the problem into separate parts, the loading parts and the unloading
parts.

2.5 Bounding Theorems in plasticity

Most of the practical engineering components and structures are complicated in nature
and hence the complete plastic analyses of these structures are generally more involved

and time consuming. The complexity arises from the ieversibility of plastic flow and
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dependency on the history of loading. Since the failure prevention is the primary
objective of any structural design, therefore, it is justified to concentrate on the collapse
state of the structure, which results in a considerable saving of effort. The plasticity
theory offers the well known bounding theorems in order to estimate the collapse load of
the structure. There are two approaches, the equilibrium approach for lower bound
estimate and the geometry approach for upper bound estimate. The load at plastic
collapse is termed as limit load of the structure. In the classical limit analysis, material
nonlinearity is included by assuming perfectly plastic material model, while the

‘geometric nonlinearity is not taken into account.

25.1 Classical Lower Bound Theorem

It states: “If any stress distribution throughout the structure can be found, which is

everywhere in equilibrium internally and balances the extemal loads and at the sane time

does ot violate the yield condition, those loads will be carried safely by the structure™
12).

Therefore, the load estimated by the lower bound theorem will be less then or at most
equal to the exact limit load. In lower bound theorem, the equilibrium equations
(statically admissible stress field) and yield conditions are satisfied with out considering

the mode of deformation of the structure.

2,52 Classical Upper Bound Theorem

1t states: “If the estimation of the plastic collapse load of a body is made by equating the
internal rate of dissipation of energy to the rate at which external forces do work in any
postulated mechanism of deformation of body, the estimate will be either high or correct™
(2.

In upper bound theorem, only the mode of deformation (kinematically admissible
velocity fields) and energy balance are considered with out considering the equilibrium
equations. Applying the principle of virtual work, the upper-bound theorem can be

expressed as,
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where, 7, is the surface traction acting on the surfaceS, . i, is the rate of displacement.

D s the corresponding plastic dissipation rates per unit volume and ¥, is the total

volume.

2.6 Limit Load Multipliers

Consider a structure with volume ¥ and surface S (as shown in Fig 2.1), which is in
cquilibrium under surface traction 7; applied on the surface Sy and the geometric

constraint v; = 0 applied on the surface S. It is assumed that the surface traction is

applied in proportional loading, i.c. the external traction is assumed to be m7}, where m is

the monotonically increasing parameter. For sufficiently small value of m, the structure

will be in a purely elastic state. As m gradually increases, plastic flow starts to oceur at a
certain point in the structure. If the value of the m continues to increase, the plastic region

spreads further and the structure will reach a state of impending plastic collapse.

mTion Sy

vi=0on Sy

Figure 2.1 A Body Subjected to Traction Load

The set of loads corresponding to the impending plastic collapse state is called the fimit
load of the structure and the corresponding value of m is the safety factor. Therefore, the

safety factor is the ratio of the limit load to the actual applied load.
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2.6.1 Classical Plasticity - Statically Admissible Multiplier

A given stress field, o) is said to be statically admissible when it is in equilibrium
internally, balances the external load m}, and nowhere violates the yield criterion. The
‘multiplier m, corresponding to such a stress field is called the statically admissible
‘multiplier. Therefore, a statically admissible stress field should satisfy the following
conditions,

inV, 28)
on S, 29
iV, (2.10)

where, k i the yield stress in pure shear and s} is the statically admissible deviatoric
stress tensor which can be defined

@1

@12)

where, 8, is the Kronecker's delta. Eqs. (2.8 and 2.9) are the equilibrium equations and

E

2.10) is the yield function.

2.6.2 Classical Plasticity - Kinematically Admissible Multiplier

A given velocity v, is said to be Kinematically admissible if it satisfies the displacement
(velocity) boundary conditions and also the rate of total external work done by the

applied loads on this velocity field is positive. Therefore, a kinematically admissible

velocity field should satisfy the following condi

inV,
ons,
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where, &, is the Kronecker's delta. Here, Eq. (2.13) is the condition of incompressibility.

The generalized strain-rate vector associated with a given kinematically admissible
velocity field can be defined by ", where the asterisk is used to indicate that it is not
necessarily the actual strain-rate vector but is kinematically admissible. If von Mises
yield criterion is applied, plastic strain oceurs when deviatoric stresses are on the yield
1o

50y =k* where k is the yield stress in the pure shear. The Kinematically

surface ... )
2

admissible multiplier, m" can now be expressed as,

k[s, &)iav

(2.16)
where,
inV, @17)
According to the classical limit theorem the following relation holds,
m o<m<m 2.18)

where, m is the actual collapse load multiplier.

2.7 Closure

A review of the clas

y. plasticity and limit analysis is pres
this chapter. The admissible limit load multipliers are also been discussed in this chapter.

In the next chapter plastic multipliers using the variational concepts are discussed.
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CHAPTER
REVIEW OF LIMIT LOAD MULTIPLIERS

3.1 Introduction

A review of how the multipliers in limit analysis have been developed so for is presented
in this chapter. Using Mura’s extended variational formulation [15] as an altemative to
the classical limit theorem, Seshadri and Mangalaramanan (3] proposed the m, method,
which provides better lower bound limit load over Mura’s lower bound estimation. , -
Tangent Method proposed by Seshadri and Hossain [4] which gives better estimates of
limit loads when compared to m, method and over comes certain limitations of
m, method. These methods and there limitations which lead the way to the current

research are discussed in more detail in this chapter.

3.2 Mura’s Extended Variational Formulation

Mura et al. [16] showed by using the variational principles, that the safety factors the
statically admissible lower bound multiplier and Kinematically admissible upper bound
multiplier for a component or structure made of perfectly plastic material and subjected
to prescribed surface tractions are actually extremum values of the same functional under
different constraint conditions.

In classical theory of limit analysis, the statically admissible stress field (equilibrium set)
can not lie outside the yield surface and the stress associated with a kinematically
admissible strain rate field (compatibility set) in calculating the plastic dissipation should
lie on the yield surface. Mura et al. [16] proposed an approach that eliminates such a
requirement and replaced it by the concept of integral mean of yield criterion based on a
variational formulation. The integral mean of yield criterion can be expressed as,

[ UG+ @) 1ar @)

where, the superscript *0° refers to the statically admissible equilibrium stress fields and

4" is the plastic flow parameter. The deviatoric stress 5] corresponds to the impending
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limit state, where 5 = m"s}. Here, m’is the limit load multiplier and s is the deviatoric

stress field that is in equilibrium with the applied loads. The parameter ¢'is a point

function that takes a value of zero if s is at yield and remains positive below yield.
3.3 Upper Bound Limit Load Multipliers

3.3.1 Multiplier m|’

Since 5! corresponds to the deviatoric stress state for impending plastic flow, s}

represents the deviatoric stress state for applied traction ;. The von Mises yield criterion

is given by,

/G, 37,‘,'.?; -a (3.2)
and the associated flow rule can be expressed as

&= ;1[%] where, PO, (3.3)

Mura et al. [15] and [16] have shown that m”, 4" and " can be determined by rendering

the functional F stationary in

(3:4)
Leading to set of equations
(.5
For the von Mises yield criterion, the functional becomes
o 013 0y 52 50 4+ (0°)] ¥
m' = [u 1505} + (9" 1 @V (3.6)
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Assuming a constant flow parameter 4" and setting oF = 0, the foregoing functional can

be written in a finite element scheme, for ¢° =0, as

R [N W
[y ar S ya,
> =]

where N is the total number of elements,o is the yield stress, o, and AV, are the

(X))

equivalent stress and volume of elements £, and V7 is the total volume of the component.

The m{ limit load multiplier has been shown to be greater than the classical lower bound
‘ (my) and classical upper bound () limit load multiplier [19].
3.3.2 Multiplier m’

Eq. (3.7) implies that the calculation of m]" is based on the total volume V7. If plastic
collapse oceurs over a localized region of the structure m{ will be significantly
overestimated. To overcome this problem, Li Pan and Seshadri [17) have proposed a new

formulation for evaluating m" , namely m} .

On the basis of deformation theory of plasticity, the flow rule can be expressed as,
= us, (8)

where ¢ and ; are the deviatoric strain and stress, respectively. Therefore, 4 can be

defined as,
3
p L) (39
i .
where 7= [3/2)s,5, s the effective stress and & = [(2/3)e,¢, is the effective
strain
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Substituting Eq. (3.9) into the integral mean of yield criterion, the m! limit load

multiplier can be obtained as

e, /o4 B an

(3.10)

ja £qdV i(‘f.mh a7,

3.4 Lower Bound Limit Load Multipliers
34.1 Classical Lower Bound Multiplier, m,

The lower bound limit load can be calculated by invoking the lower bound limit load
theorem that states that if a statically admissible stress distribution throughout a given
body can be found in which the stress nowhere exceeds yield under given loading and
everywhere is in equilibrium internally and balances certain external loads the applied
load is a lower bound on the limit [3]. A lower bound load can therefore be established by
estimating the load required to give a maximum equivalent stress equal to the nominal

yield strength, o . Therefore, the classical lower bound multiplier m, is given by,

@3.11)

3.4.2 Multiplier m’

Mura’s extended principle leads to a new lower bound multiplier ' smaller then the

unknown actual collapse load multiplier m and can be expressed as,

m

T N <m (3.12)
1+ maxl/E)+ )]

Eq.(3.12) includes the classical definition of lower bound multiplier where the use of

max[](if)ﬂw“)’] with Eq.(3.12) leads to m, <m. Eq. (3.12) for m’ can be rewritten

in terms of the classical limit load multiplier m, in a component as:
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2’

m=—=r
e’ m,)’

(3.13)

3.4.3 Multiplier m"

Based on the “Integral mean of yield criterion”, Eq. (3.1) the Mura’s lower bound

maultiplier is stated as an inequality, which can be expressed as,
m“sm]’#[rﬁf})»,(w”)f]dv (3.14)

Eq.(3.14) can be rewritten as

m’ Sm+jy/“m’ (3.15)

A lower bound multiplier m” can be obtained from Eq.(3.15) in terms of 3 upper

bound limit load multiplier

(3.16)

(3.17)

av,

‘The parameter G acts as a convergence parameter, and is indicative of any deviation of
statically admissible stress distributions from the limit state. That is, G — 0 corresponds

to the converged exact solution.

3.5 m, Multiplier Method

The m, Method, invokes the notion of reference volume to account for localized collapse

and the technique of “leap-frogging” to a limit state. These concepts are used in
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conjunction with the elastic modulus adjustment technique, described by Seshadri and

Fernando (18], for obtaining improved lower and upper bound limit load estimates.

Differentiating Mura’s lower bound limit load multiplier, m’ = f(m",m, ), with respect

{0 iteration variable, €, leads to_the expression

‘% (3.18)
In terms of finite differential Eq.(3.18) can be expressed as,
%)1 x Am'’ + l;’ x A{i] (3.19)
m ),
where Am'=m'~m,, Am" =m" ~m,, Am, =m, ~m

The limit load multiplier m, is assumed to be the estimated actual limit load [3].

Therefore,

%m“—m”wt—(’"—)—ﬁ[l-l ] (3:20)
]] [ [m“ ]] m e

|1+

my

Eq.(3.20) is a polynomial of second degree in m,, which can be shown in general form as

Am} +Bm, +C=0 321)

where

e )




The parameters A, B and C can be calculated from the results of linear elastic FEA.
Therefore,
-BVB' -44C

e (3.22)

Keeping in mind that the limit load multipliers are positive, Eq. (3.22) results in

following expression [3],
Ll 1ol s o
B - S (GRS

When the expression under the root in Eq. (3.22) becomes negative (i.c.

3.23)

4AC<0)

the solution of m, vanishes.

Dividing both sides of Eq. (3.23) by the exact multiplier, we get

. 202 + g1 [+ 2CJe -1442
i T+ 2=V5 e +2+45

where R, =m, /m, ¢ =m"/m, and R, =m" /m.

Ry = 1 is the boundary between the upper bound (R, > 1) and the lower bound (R, < 1),
as shown in the figu

1. The expression under the root in Eq. (3.24) encompasses four
factors, which define the sign of the whole expression under the root. Therefore, the m,,

limit load multiplier becomes imaginary foe the following conditions:

0<¢ <21

(325)
£>V2+1

Since ¢ =m®/m, >0, the first expression in Eq. (3.25) will never occur; therefore, the
only case which causes m, to be imaginary is ¢ >2+1x 24142, as is the case for
‘components with notches and cracks due to presence of peak stresses.
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Rmax) Line

Figure 3.1 Regions of lower and upper bounds of m, .

In Eq. (3.24), the exact multiplier m for a given component is unknown. Now

m® Im, =((@, )y, /3, ) is a measure of the theoretical stress-concentration factor at the

notch. Therefore m®/m, 2142 represents the threshold for pronounced notch effects.

The region bounded by m’(max),1<m’/m, <1442 and 1<m’/m<1+

designated as the “m triangle”.

Reinhardt and Seshadri [20] showed that m, estimates are lower bounds in the greater
‘majority of the cases. But there are still cases where m, multiplier is upper bound. Pan

and Seshadri [17, 21] applied the m, multiplier to various types of practical mechanical

components.

3.6 Generalized Two-Bar Method

‘The two-bar method proposed by Seshadri and Adibi-Asl [22] invoking the concepts of

cquivalence of “static i inacy” that relates a multidimensional component
configuration 1o a “reference two-bar structure”. In actual method the areas of both the

reference bars in the reference two bar structure is assumed to be equal. In the following
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section the two-bar method is more generalized by assuming unequal areas (A1 = X A2)
and variable lengths (L = & Ly). A general pressure component can be related to a two

bar structure as shown in Fig. 3.2.

7
Maltidimensional Pressure Reference two-bar
Component Structure

Figure 3.2 Reference two-bar structure.

For the general mechanical components from the integral mean of yield eriterion can be

expressed as
Jurlr )+ o) Jov =1 (326)

s the statically admissible deviatory stress for impending plastic flow, and ¢* is

the point function that takes on a value of zero if; s at the yield and remains positive
below yield. Using Eq. (3.7)

o, AL+ 4,
NOIAL +0i AL,

It is already shown by Reinhardt and Seshadri that m° is an upper bound except at the

@327

limit state. The classical lower bound multiplier (m) is given by
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m, =

L

Itis assumed that L;<La, A= XAz, as shown in Fig.3.2.
oA L+ AL

‘We know that

Substituting these values back in equation (3.29)

(3.28)

Taking Li/Lo=A, clearly A.<1for the range of pressure components.

m' _ 1 [Xa+1

m, IVX

From the equilibrium consideration P=c1A+ 5242

P=(o4+0,4,)
4,+ )0,

" oX+a,)

Dividing Eq. (3.27) by Eq. (3.31)

(3.30)
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o AL + 4L, ]

m' _ (A+X)

m 0+ X\

The above equation is similar to Eq. (3.29) with an extra term of (+X)/(1+X) the
equation then becomes:

m _ (2+X)

il (3:32)
mo XV VX

The parameters m'/m and m/m; are useful for characterizing the state of static
indeterminacy a component undergoing plastic flow.

2) can be rewritten as follows:

m :(HXW«/XfA
m' (X4 ANXG+T

for which the function m/m" is extreme can be obtained as follows:

dax

Eq.

(3.33)

]_(|+X)/1 _(+x)
2(x2+1) 2(X+2)

(#-2241)x =2 -2441

which leads to X = /, Therefore substituting X =
the scaling equations as :

into Eq. (3.30) and Eq. (3.33) gives
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34
Moy Mne N o
m,
& (3.35)
My

These equations are similar to those proposed in the 2-bar method; hence the assumption
of equal areas is proven to be valid.

3.7 m, Tangent Method

The m, Tangent Method proposed by Seshadri and Hossain [4] is an extension of the m,,
method of analysis. The method enables evaluation based on a single lincar elastic
analysis or on an assumed statically admissible stress field. The formulation of the

method is based on the variational principles in limit analysis.

371 The mg tangent

The m, multiplier method was developed on the basis of variational concepts in
plasticity. The method has explicit dependency on the upper bound multiplier, m®, and
the classical lower bound multiplier, , . The upper bound multiplier, ", depends on
the entire stress distribution in a component or structure where as m, depends on the
magnitude of maximun stress. Therefore, for components with sharp notches and cracks

the value of m" /m, will be high due to presence of peak stresses.

With respect to Fig.3.3, the following can be stated:

1. When m = m, , the domain of statically admissible m" is bounded by the 45-deg
(R” (max)) line and the positive x-axis.
2. When m —> m", the domain of the statically admissible m"is represented by the

line m=m" .
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3. The exact solution (m) locus would lie somewhere between the positive x-axis
and the 45-deg line (R (max))
4. The tangent to the R, =lcurve at the limit state (m, =m® =m) will locate

them, tangent, which can then be used to estimate the multiplier

The determination of m, tangent is as follows. Eq. (3.24) describes R, as a function of

. Eq. (3.24) can be represented

the two variables, R°and ¢ where ¢ =m" /m, . ForR, =
ig. 3.3. The slope of the tangent at the

by a curve in two-dimensional space as shown in

limit state, wherem, = m, =m® = m, can be obtained as:

dR,

(3.36)

Therefore, the slope of the tangent (R] =1) line at the limit state is tan(0) = 0.2929.
Where 0is the angle made by m, tangent with ¢ axis.

=

r=2
m
RO(max)
5/(
TBM
B
B
@
10
° 10 & s
r [ 3 £
Figure 3.3 m, tangent construction [4]
2
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The equation corresponding to R =1 can be obtained as:

M 14 (¢ - 1) tan(0) (337)
m

The exact limit load multiplier () for most of the practical components and structures
being analyzed is not known a priori. For the m-tangent method, R”can be defined by
making use of the tangent (k! -line in Fig. 3.3) for any value of ¢ Both R"and { are

greater than one, except at the limit state for which R° = ¢ = 1. In this method it is

assumed that the reduction of m"along the R} =1 trajectory implicitly accounts for the

reference volume. Therefore, m” will converge to the exact multiplier as the trajectory

approaches to the origin.

3.7.2 Blunting of Peak Stresses

Secondary and peak stresses are set up by redundant kinematical constraints (or static
indeterminacy) in a component. ASME Boiler and pressure Vessel codes [23, 24]
explicitly recognize these stresses are related to constraint effects. Fig. 3.4 shows the
stress distribution in the ligament adjacent to the notch tip, where x-axis represents the
distance ahead of the notch tip, and y-axis is the cquivalent stress. As can be seen from
the figure, the magnitude of the equivalent peak stress (o) at the notch tip is
considerably highs however, it is assumed that the peak stresses are very localized and

n is valid [24];

that the following expr

¢

[opda=0 3.38)

where A is the representative area on which oy acts

With respect to constraint map, R} =1 line can be identified as shown in Fig.

m"/m=1). The curve

line is tangential to the R,=1 curve at the origin (m"/m=

212 o reference two-bar model (TBM) can also be located as shown in Fig.
m 21
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3.7.3. Significance of £ =142

The point D (Fig. 3.3) can be determined by finding the intersection of the R =1 linc

and the reference two-bar model equation, ic.,

o1 (¢ -1 tan(0)
m

(3.39)

Where 2 and tan()

‘The intersection point worked out to be ¢ =1 and 1++2. The R =1 line represents a

combination of primary and secondary stresses that exist in the pressure components. On
the other hand, the TBM trajectory represents the combination of primary, secondary and
peak stresses. Therefore, at point D the peak stresses are negligible (theoretically cqual to

zero).

Heak Stresses
P

Elastic Analysis Based
Secondary Stresses (Q)

imary Stresses
P)

Figure 3.4 Stress distribution a head of notch tip
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3.7.4 The General Procedure

Once the R =1 line is identified, the m] value can be readily estimated by the
relationship.

o] -—— (3.40)
1402929(¢ ~1)

where =m"/m, .

The slope of the R] =1 line is equal to tan(d) 5 The value of m” and ¢ can be
determined from statically admissible distributions obtained from liner elastic FEA.
Two cases are considered next:

Case-1: ¢ <142 (negligible peak stresses)

For this case, point A (Fig. 3.3) is assumed to lic on the R =1 line. The value of m]
can be obtained from Eq. (3.45). This case usually applies to well-designed pressure
components with gentle geometric transitions.

Case-11:¢ 21+ 2 (presence of peak stresses)

‘This case applies to well-designed components that develop flaws or cracks in service, or
components with sharp notches. The aim here is to blunt the peak stresses prior to
evaluatingm . With respect to Fig. 3.3, the initial linear elastic FEA locates point B on

the RI =1 line and point B’ on the TBM locus corresponding to ¢, =m,"/m,,. The

subscript i refers to the initial points B and B". The calculation procedure is as follows:

. Perform a linear elastic analysis.

~

Locate point B and B". Point B represents the combination of primary and
secondary stresses where as point B represents the combination of primary,
secondary and peak stresses.
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3. Construct a horizontal line from point B to B” signifying an invariant

‘m (blunting of peak stresses). Designate the value of m”/m, at B”as ¢,
which can be obtained by solving the equation
m 14¢}

2 o1402929(¢, - ) =——
m ¢

(3.41)

“The roots of Eq.(3.41) are
£, =(1+0)+(1+C) =1

02929(¢,-1)

where C =

4. The value of m can be evaluated by the equation

padLinAs § (3.43)
1402929 (¢, -1)

For some geometric transitions for which¢ > 142, redistribution of secondary stresses

could occur along with peak stresses. In such cases, the value of m is not constant during

the blunting of peak stresses, and there is a gradual reduction in its magnitude. There

causes are usually attributed to components undergoing highly localized plastic flow such

as beam and frame structures

3.8 Elastic Modulus Adjustment Procedure (EMAP)

The aim of EMAP is to establish an inelastic-like stress field by modifying the local
elastic modulus in order to obtain the necessary stress redistribution [25]. Jones and
Dhalla [26] were one of the earliest users of EMAP. Marriott [27] developed an iterative
procedure for estimating lower-bound limit loads on the basis of linear elastic FEA by
generating statically admissible stress fields and using them in conjunction with
established theorems of limit analysis. Seshadri and Femando [28] made use of the elastic
modulus adjustment procedure to determine lower bounded limit loads by adopting
reference stress concept in creep design [29]. Their technique, called the Redistribution
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Node (R-Node) Method, is based on two linear elastic FEA in which the load control

location (R-Nodes) are determined and using stresses in these locations, the limit load of

the component will be achieved

Mackenzie and Boyle [30] utilized the elastic modulus adjustment procedure suggested
by Marriott [27] and Seshadri [31], named as the elastic compensation method (ECM),
and obtained for every iterations lower and upper-bound limit loads by invoking the
classic theorems of limit analysis. The ECM procedure has been used to estimate the
lower and upper bound limit loads for different pressurized components, which are
available in Mackenzie ef al. [32] and Boyle f al. [33] The method has been also applied
for shakedown analysis by Hamilton ef al. (34] and Nadarajah et al. [35). Ponter et al.

[36] developed a formal basis for the elastic modulus adjustment and related procedures.

Numerous sets of statically admissible and kinematically admissible distributions can be
generated using the EMAP, which enable caleulation of both lower and upper bounds

finite element

limit loads. The elastic modulus of each element in the linear elasti

scheme is modified as

(3.44)

where g is the elastic modulus adjustment parameter, o, is the reference stress [3]. o,

is the equivalent stress and “i” is the iteration index (i=1 for the initial elastic analysis)

Where,

(3.45)

This formula describes how the elastic modulus at a location with the equivalent stress

o, (e.g. the von Mises equivalent stress) is updated from the i* to the (i+1)" clastic
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iteration. This procedure continued until suitable convergence of a subsequent iteration is
achieved. In this research a *q" value of 0.1 is used for the EMAP, ensuring a slow but
less fluctuating convergence [36]. The same *g’ is used for all the problems.

3.9 Non-linear Analyses

A system of nonlinear equilibrium equations can be written as

{F}=

K Jfu} (3.46)

where [K] is stiffiness matrix. The nonlinearity oceurs in the stiffness matrix [37] and is a

function of nonlincar displacement f{u}and load {F}. therefore, Eq. (3.46) can be

rewritten as a general form, i. ¢.,

{7} = [K (bt ek (347)

The solution of this nonlinear Eq. (3.47) can be obtained by one of the following
procedures:

o Incremental procedure

o lterative procedure

« Mixed procedure

3.9.1 Incremental Procedure
This procedure is similar to Euler's method of solving the differential equations. In this

ivided into a number of load increments {AF,}, and it is

procedure the total load is
applied to the system incrementally. The stiffness matrix [K] is assumed to be constant

throughout cach increment. Therefore, the equilibrium cquation will be linear. The

solution for cach load step is obtained as an increment of the displacement {Au, }, and the

total displacements will be the summation of this incremental displacement solution. At
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cach increment the stiffness matrix is calculated using the values of {AF,} and {Au,}

After application of the given i

crement (i) the load and displacement are given as

(3.48)

(3.49)

where {F,} and {u,} are the values of load and displacement obtained from an initial
equilibrium state, which usually corresponds to the condition before load application
[38]. For the next iteration (i +1), the relation between load and displacement can be

determined from the following equation
{Fd= (KM} (3.50)
The incremental procedure is repeated until the total load reaches to its final value.

3.9.2 Iterative Procedure

‘This procedure is similar to the Newton-Raphson procedure. In this iterative procedure
the total load, {F'}, is fully applied to the body in cach iteration. Therefore the equilibrium
equation is not necessarily satisfied during the iterations. After each iteration, the part of
the total load that is not balanced is calculated and used in the next step to compute an
additional increment of displacement [37]. For i”iteration, an increment for the

displacement is computed as

= [k, Jaw,} (3.51)

The procedure is repeated until the unbalanced loads become zero or within a

convergence range.
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3.9.3 Mixed Procedure
This procedure is based on a combination of incremental and iterative procedures. The
load is applied in an incremental manner, but after cach increment successive iterations

are applied to achieve more aceurate results

In this research, the results obtained from the nonlinear analysis are taken as the actual
li

load multipliers for comparison purposes. In the non-linear analysis the elastic
perfectly plastic material models are used for the calculation of limit loads. The nonlinear
analysis is done on the same model with the same kind of loading with increased
magnitude. The unconverged time step is taken as the limit multiplier of the component

with that particular loading condition.

3.10 Closure

An overview of the development of different multipliers is given in this chapter. A
detailed discussion on both m and m-tangent methods have been done. In this chapter
the assumption of equal areas in two-bar method is proven valid. The choice of reference
volume plays an important role in finding out the correct estimates of limit loads.
Generally for the component for which ¢ >1++2, finding the limit load estimates
require the proper estimation of reference volume as these components have highly
localized plastic regions being developed leading to larger dead volumes. In the coming
chapter methods are developed which will predict the lower bound limit loads of general
components or structures with the help of a systematic approach of finding reference

volume.
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CHAPT!
ELASTIC REFERENCE VOLUME METHOD
4.1 Introduction

In this Chapter the reference volume concepts are introduced. Elastic reference volume
method for reference volume correction while finding out limit loads in the components
or structures are presented. These reference volume correction concepts are used in
combination with m, Tangent method to obtain the lower bound limit load of general
component or structure. The Elastic Reference Volume Method proposed in this paper,
derived its roots from the pressure bulb concepts of soil mechanics [39]. In this method
reference volume effect will be corrected based upon the maximum stress developed in
the component. The proposed method is also tested on a range of components and results

obtained are discussed.

4.2 Reference volume concept

It is well known that at limit load state of a component/structure, there are some regions
that do not participate in inelastic action (dead volumes) and may remain rigid or clastic.
On the other hand, the remaining volumes are dircctly active in plastic action (reference

volume) are the only regions that carry the external loads at the limit state.

Figure 4.1 Cylinder and Square prism with a circular hole [40]
As schematically presented in Fig. 4.1, plastic spread at the collapse mechanism of an

square prism with a central hole subjected to the internal pressure is a good example. The
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shaded regions in Fig 4.1, represents the dead volume. The remaining region is the
reference volume.

In the reference volume approach, it is assumed that the plastic collapse occurs only over
a kinematicaly active region of the mechanical component or structure. Clearly, m" (for

the

al linear elastic analysis m{ = m{ = m") will be significantly overestimated if it is

based on the total volume V7. The concept of reference volume has been introduced to
identify the “kinematically active™ region of the component or structure that participates

in plastic action.

Consider a component subjected to arbitrary loading condition, Fig. 4.2. The component
is divided into two regions: (1) reference volume (V4), which is kinematically active

volume; and (2) the dead volume (V). It means only some portion of the total component

takes part in plastic action, while the remaining does not. If Vs is the total volume thus,

@.1)

where Vg is the reference volume, and Vp is the volume of the dead zone in the

component. Dead Volume

Reference Volume
Total Volume
@9

Figure 4.2 Total, Reference and Dead Volumes
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Therefore, the multiplier m", Eq. (3.10), can be written in terms of the reference and the

dead volume as

i

2 EMV+ [(o'

If we assume that the dead zone has no plastic flow occurring, then Eq. (4.2) can be

o g 1
W W 4.3)

‘The magnitude of the upper bound multiplier, m", would therefore depends on the

simplified as

m'(Vy)

reference volume , V., where

V=24, (4.4)

In order to identify the reference volume ¥, and multiplier with reference volume

correction m” (V) , two methods are currently being proposed.

4.3 Elastic Reference Volume Method (ERVM)
The method is named elastic reference volume method as we will be using the elastic

stress profile of a component as obtained from the EMAP iterations to define the

reference volume and dead volume. This method derived its roots from the pressure bulb

concepts which are

Faculty of Engineering and Applied Science, Memorial Univ




Smith [39], Wilun and Starzewski (41], and Helwany [42]. In the Pressure Bulb theory,

using Boussinesq [43] equations, six stress components can be determined that act at

a

point in a semi-infinite elastic medium due to action of a vertical point load applied on

the horizontal surface of the medium.

‘The expression for the vertical stress is given as follows:

(4.5)

‘The expression has been simplified to:

kL “6)
e

where K is an influence factor. Values of K against values of r/z are shown in Fig. 4.3

o5 ‘ 5
JAN ]
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o4 \c\ [ 2
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k: & ozt
fo2 t T
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| SANENRER
L2 ) 20 30
Values of r/z

Figure 4.3 Influence coefficients for vertical stress from a concentrated load [39].
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This method is only applicable for point load, which is a rare occurrence in soil
‘mechanics. Steinbrenner [44] developed a method for finding out the vertical stress
increment under a foundation of length Z and width B exerting a uniform pressure p on

the soil. The vertical stress increment due to the foundation at a depth = below one of the

comers s given by expression:

=pxl, “@n

where 1,

s an influence factor depending upon the relative dimensions of £,B and z.
1, can be evaluated by the Boussinesq theory and values of this factor were prepared by

Fadum [45]. The variation of influence factor with m=B/z and n=L/z are shown in Fig.
4

Influence Factor

Figure 4.4 Influence factor for vertical stress beneath the corner of a rectangular
Foundation [45].
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If points of equal pressure are plotted on a cross section through the foundation, a
diagram of the form shown in Figs 4.5 A and 4.5 B is obtained. These diagrams are
known as pressure bulbs and helpful in determining out vertical stress at points below a
foundation that is of a regular shape. The bulb of pressure for a square footing is obtained
by assuming that it has the same effect on soil as that of a cireular footing of a same area.
In the case of a rectangular footing the bulb pressure will vary at cross sections taken
along the length of the foundation, but the vertical stress at points below the center of

such a foundation can still be obtained from the charts by either one of the two following

Assuming that the foundation is a strip footing or
(i) Determining values for both the strip footing case and the square footing case

and combining them by proportioning the length of the two foundations.

] [
LM \\;ﬁ %\\
TN 22 )\

Figure 4.5 Bulbs of Pressure for vertical stresses [44].

It is sometimes necessary to evaluate the shear stresses beneath a foundation in order to

determine a picture of the likely overstressing in the soil. Jurgenson [46] obtained
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solutions for the case of the circular footing and for the case of a strip footing (Fig.4.6). It
may be noted that, in case of a strip footing, the maximum stress induced in the soil
isp/ 7. this value occurring at points lying on a semi-circle of diameter equal to the
foundation with B (diameter in circular foundation and width in rectangular foundation).
Hence the maximu shear stress under the center of a continuous foundation occurs at a

depth of B/2 beneath the center.

Diometer =

e

Lol 2 8 —Jaoe

208 !
W) Cireular Footing () suip Footing

Figure 4.6 Bulbs of Pressure for shear stresses [46].

From a bulb of pressure one has some idea of the depth of soil affected by a foundation.
values go roughly to 2.0 times the

From the plots it can be seen that significant stres

width of the foundation.

4.3.1 Cut-off Stress
Finding the clastic reference volume in mechanical components involves finding the
volume in which an effective stress profile s acting. According to Boussinesq and
Jurgenson theories a limit of 5% of the applied load can be used as the limit for finding

out the active volume under the foundation. To extend these theories to the mechanical
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components an Cut-off Siress (0.,) is proposed which is the ratio of the equivalent stress

to the maximun stress.

oym—L (4.8)

Different percentages of cut-off are studied and finally 5% is selected due to consistancy
of lower boundedness. The other percentages are presented in plots for all the examples.
‘The choice of the equivalent stress will include the effect of both the nominal and shear
stresses into the analysis. By knowing the cut-off stress and by using multiplier (m") vs.
sub-volume ratio () plot, the actual volume that participates in the stress distribution
can be predicted. The volume so obtained is the Elastic reference volume. Plots for
various components are shown in coming sections. In these plots, the variation in
contribution of Elastic Reference Volume with various percentages of cut-off stresses is

shown. The contribution from the dead volume is shown as zero.

44 m" Vs. V, plot

After the first linear elastic FEA run, the elements are sorted in the descending order of

there equivalent stresses i.c., ol a2 >l >y [47]. The comresponding sub-

volumes are calculated. The multiplier m" is caleulated using the following equation:

Using the Eq. (4.9) the different m" values for different sub-volumes will be calculated as

m (4.9

shown below.

m'w,, (.10
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o, N+,
oV, +03 ¥,

@11y

In amore generalized form

m', “.12)

If the “A” in Eq. (4.12) is the last clement in the sorted elements of a component then

m'(F,.)=m'(,). These m” values are then plotted against the sub-volume ratio

(@.13)

The m"vs. 7, plot of a plate subjected to concentrated load with different cut-off

percentages is presented in Fig. 49.

4.5 General Procedure for Finding Lower Bound
Elastic Reference Volume Method

Loads Using

This section explains how to apply the above explained methods to any general
component.

« Initially a linear elastic finite clement analysis is performed on a given

component

* Once the equivalent stresses are obtained, the elements are amanged in the
descending order of there equivalent stresses. Then the m’ value is computed with
the increasing sub-volume tll the total volume.

These m” values are plotted against the sub-volumes ratios 7,

From the plot using cutoff stresses the dead and reference volumes are identified.

Elements having less than 5% cutoff stress are considered as dead volume and the
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remaining elements together are considered as the reference volume.
C ng to thi lume, the ed

m"(Vy,) is obtained from the plot.

Using the corrected reference volume multiplier m°(V,,), and lower bound
multiplier m, the value of lower bound limit load multiplier m (,,) should be
calculated as explained in section 3.7.4 in chapter 3.

 The above steps are continued using the EMAP iterations until the converged
solution are obtained. The results of fifty EMAP iterations and convergence
criteria are provided in appendix C.

An example of a rectangular plate subjected to a uniformly distributed load on its top
comer is studied in the following section. This problem is synonymous to semi infinite
soil sample under a strip footing. The schematic of the problem is shown in Fig. 7. Since
it's a strip loading, 2D plain strain analysis along a vertical symmetric axis through the
footing and fixed bottom is performed. The footing load is applied as a Pressure of 100
KPa.

=
® ®

Figure 4.7 Thick plate subjected to strip loading (a) Geometry and dimensions
(b) Typical finite element mesh with loading
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Figure. 4.8 Stress profile of plate with concentrated load
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To avoid the influence of the constrain conditions sufficiently large model is considered.
The young’s modulus of 200 GPa and a poisons ratio of 0.47 were used. By considering
5% of peak stresses as the cutoff the contours of the stresses are plotted. The stress
contours generated from initial linear elastic FEA Fig. 4.9 matches closely with the
theoretical stress contours in Fig. 4.5 and Fig. 4.6.The volume covered by these contours
represents the active volume which is considered to be the elastic reference volume.
Whereas the empty spaces represent the Dead Volume. These volumes can be easily

obtained from m"vs. ¥, plot as explained in the section 4.5. The upper bound multiplier

m°value obtained from first linear ela

run considering the total volume is 10,23 and
the lower bound multiplier is 4.53. If these multipliers are used to compute m, its value
is 7.47. It is slightly upper bounded when compared to the non linear analysis value of
7.45. With the elastic reference volume correction the new m” value is m® ()= 10.12.
The m] value calculated with this corrected reference volume multiplier value is

(V) is 743, m] (%) s0 obtained is lower bounded.

4.6 Application to General Components
4.6.1 Thick Walled Cylinder

A thick walled cylinder (Fig.4.10) with inside radius of R = 65 mm and thickness t = 25

mm is modeled. An internal pressure of S0 MPa is applied. The material is assumed to be

elastic-perfectly plastic. The modulus of elasticity is specified as 200GPa and the yield

strength is assumed to be 300 MPa. For inducing a plastic flow state the Poisson ratio of

0.47 is used in elastic analysis. A *q" value of 0.1 is used for the EMAP for ensuring a

slow but less fluctuat

& convergence. The same *q” value is used for all the problems.

‘The geometry is modeled using Plane82 elements with plane strain consideration.

‘The variation of the upper bound multi various cut-off percentages for first

iteration i

shown in the Fig. 4.11. Variation of m°(,) and m[ () with different

iteration for thick walled eylinder are presented in Tab. 4.1 and Fig. 4.12.
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Figure 4.10 Thick walled cylinder. (a) Geometry and dimensions
(b) Typical finite element mesh with loading

As the thick walled cylinder problem is not supposed to have any dead volume effect, In

Fig. 4.1 we can see that no correction has been applied it can also be seen from m° and

m"(V,,) columns of the Tab.4.1. both these values are equal. For the simplicity in

comparison of various methods the results are presented at the equal interval sets and the

raw data (i.c.. m’ and m, values) is presented in the appendix.

Table 4.1 Comparison of Various Multipliers of Thick Walled Cylinder (EMAP)

Iteration
1
6
12
18
25

o

2294
2268
2258
2255
2255

m,

1.706
1.901

2,053
2142
2.199

m' (V)

2294
2268
2258
2255
2255

my (V)

2.081

2152
2.194
2223
2244
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Figure. 4.11 Invariant m" for Thick walled Cylinder
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Figure. 4.12 Variation of m'(%,) and m] () with iterations of Thick Walled

Cylinder
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4.62 Torispherical Head (TSH)

A torispherical head (Fig 4.13) with average diameter D=2000 mm, normalized spherical
cap radius Ry /D =08, nomalized knuckle radius of R, /D =012 and normalized
thickness of 1/ =1/40, subjected to an internal pressure of § MPa is examined here.
To avoid the discontinuity effect at the boundaries, the length of the cylindrical part (H)
is specified as H = 63/Dr/2 . The material is assumed to be clastic-perfectly plastic. The
modulus of elasticity is specified as 262GPa and the yield strength is assumed to be 262
MPa. The geometry is modeled using PlaneS2 elements with axi-symmetric

consideration.

@ ®
Figure 4.13. Torispherical Head (a) Geometry and dimensions
(b) Typical finite clement mesh with loading
‘The variation of the upper bound multiplier with various cut-off percentages for first

iteration is shown in the Fig. 4.14. Variation of m°(,) and m[(y,) with different

iteration for Torispherical Head are presented in Tab. 4.2 and Fig. 4.15. From the Fig.
414 it can be concluded that the torispherical head is a component without any dead
volume effect in it. It can also be seen both m° and m°(V,,) columns of the Tab.4.2. as

they are cqual. For such components m (V) calculated will be equal to the regular m .
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Figure. 4.15 Variation of m*(V,,) and m (V,,) with iterations of Torispherical Head
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Table 4.2 Comparison of Various Multipliers of Torispherical Head (EMAP)

lieration ~ m® . W) W) .
1 3020 1458 3.029 2303
10 o093 1883 2932 2521
20 2803 2211 2893 2654 2,808
30 2879 2415 2879 2732
2 g 2559 287 2175

4.6.3 Unreinforced Axi-symmetric Nozzle (URASN)
An unreinforced axi-symmetric nozzle (Fig.4.16) is examined here. Inner radius of the

head is R=914.4 mm, and the nominal wall thickness is mm. Inside radius of the nozzle is

36.525mm and nominal wall thickness is ¢, = 25.4 mm. The required minimum wall

24308 mm,

thickness of the head and the nozzle are 1, =76.835 mm and 1,

respectively. The material is assumed to be elastic-perfectly plastic. The modulus of
clasticity is specified as 262 GPa and the yicld strength is assumed to be 262 MPa.. The

‘geometry is modeled using Plane82 elements with axi-symmetric consideration.

The variation of the upper bound multiplier with various cut-off percentages for first
iteration is shown in the Fig. 4.17. Variation of m°(y,) and m (V) with different
iteration for Unreinforced Axi-symmetric Nozzle are presented in Tab. 4.3 and Fig. 4.18.
From the Fig. 4.17 it can be concluded that the unreinforced axi-symmetric nozzle is a
component without any dead volume effect in it. It can also be seen that both m” and

m°(¥,,) columns of the Tab.4.3 as they are equal.
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Figure 4.16 Unreinforced Axi
(b) Typical fi

ymmetric Nozzle. (a) Geometry and dimensions
clement mesh with loading.
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Figure. 4.17 Invariant m" for Unreinforced Axi-symmetric Nozzle.
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Figure. 4.18 Variation of m’(V,,) and m[ (V,,) with iterations of Unreinforced
Axi-symmetric Nozzle

Table 4.3 Comparison of Various Multipliers of Unreinforced Axi-symmetric Nozzle
for Elastic Reference Volume Correction (EMAP)

Iteration m' m, m' (V) ml (V) M
1 1.870 0.922 1870 1.444
12 1.858 1.254 1.858 1.632
24 1.850 1.388 1.850 1.691 1773
36 1842 1473 1.842 1723
S0 14 1539 1834 1744

4.6.4 Reinforced Axi-symmetric Nozzle (RASN)
A Reinforced Axi-symmetric nozzle (Fig4.19) is examined here. The unreinforced
nozzle, modeled in the previous example is reinforced according to ASME Code VIII

Div.2, AD-560.1(a) of [24].The geometric transitions of the reinforcement are modeled

with fillet radius, 3312mm and 7, =115.214mm. The other

0312mm, r,
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dimensions include 4.61mm and@ =45°. The distribution of reinforcement is

bounded by the reinforcement zone boundary specified by circle of radius
L, =143.51 mm. The other geometric dimensions are same as the previous example. The
material is assumed to be elastic-perfectly plastic. The modulus of elasticity is specified
a5 262 GPa and the yield strength is assumed to be 262 MPa.. The geometry is modeled

using Plane82 elements with Axi-symmetric consideration.

® ®

Figure 4.19 Reinforced Axi-symmetric Nozzle (a) Geometry and dimensions
(b) Typieal finite clement mesh with loading

The variation of the upper bound multiplier with various cut-off percentages for first
iteration is shown in the Fig. 4.20. Variation of m’(y,) and m] () with different

iteration for Reinforced Axi-symmetric Nozzle are presented in Tab. 4.8 and F

From the Fig. 4.20 it can be concluded that the reinforced axi-symmetric nozzle is a

component without any dead volume effect in it. It can also be seen from m’ and

m (V) columns of the Tab.4.4 as they are equal.
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Figure, 4.21 Variation of m*(V,,) and m (,,) with iterations of Reinforced

Axi-symmetric Nozzle
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Table 4.4 Comparison of Various Multipliers of Reinforced Axi-symmetric Nozzle
(EMAP)

Iteration m" m, m" (V) m!l (V) m,,
1 2011 1248 2011 1713
3 2006 1351 2,006 1762
6 2,002 1489 2002 1.823 1924
9 1998 1608 1.998 1871
4 90 1764 1993 1922

4.6.5 Pressure Vessel Support Skirt (PVSS)

A Pressure Vessel Support Skirt (Fig.4.22) is examined here. It's geometrically a cylinder

attached to a cone. The top support ring is fixed to the rigid foundation. A blend radius is

used at the cylinder-cone junction. The inner radius of eylinder R, =1240mm and outer

s R, =1400mm; the blend radius at

s is R, =1290mm. The cone inner ra
the inner radius is modeled using fillet radius, r = 50 mm. The height of the eylinder
portion is &, =760mm and the total height of the pressure vessel support skirt is

/=1600mm. The material is assumed to be elastic-perfectly plastic. The modulus of

elasticity is specified as 275.8 GPa and the yield strength is assumed to be 275.8 MPa.
The bottom of the cylinder is subjected to an axial load of P=77.362 MPa, and it is free
to deflect and rotate. The geometry is modeled using Plane82 elements with Axi-

symmetric consideration.

The variation of the upper bound multiplier with various cut-off percentages for first
iteration is shown in the Fig. 4.23. Variation of n’(Vy,) and m () with different
iteration for Pressure Vessel Support Skirt are presented in Tab. 4.5 and Fig. 4.24. From
the Fig. 4.23 it can be concluded that the pressure vessel support skirt is a component
without any dead volume effect in it. It can also be seen from m" and m'(V,,.) columns

of the Tab.4.5 as they are equal.
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Figure 4.22 Pressure Vessel Support Skirt. (a) Geometry and dimensions

(b) Typical finite element mesh with loading

Table 4.5 Comparison of Various Multipliers of Pressure Vessel Support Skirt for
Elastic Reference Volume Correction (EMAP)

Iteration m m, m’ (V) ml (V) m,,,
1 1522 3614 2583
12 2,064 3.463 2891
24 2427 3377 3.032 3.161
36 2,640 3325 3.094
50 2800 3.288 3032
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4.6.6 Compact Tension (CT) Specimen
A Compact Tension Specimen (Fig.4.25) with a width I = 100 mm, height // =125 mm,
thickness ¢=3mm and crack length a=46mm is subjected to a tensile load of
P=10KN. The material is assumed to be elastic-perfectly plastic. The modulus of
elasticity is specified as 211 GPa and the yield strength is assumed to be 250 MPa. Due to
symmetry in geometry and loading, only a half of the plate is modeled using Planes2
clements with plane stress with thickness consideration. Singularity elements are used

around the crack-tip.

tr

=

@ ®

Figure 4.25 CT Specimen (a) Geometry and dimensions

(b) Typical finite element mesh with loading
The variation of the upper bound multiplier with various cut-off percentages for first
iteration is shown in the Fig. 4.26. Variation of m(y,) and m (V) with different
iteration for CT Specimen are presented in Tab. 4.6 and Fig. 4.27. From Fig. 4.26 it can
be concluded that the CT Specimen is a component with the dead volume effect. As can

be seen from m’ and m'(V,) columns of the Tab.4.6 the upper bound multiplier is

corrected. Using this reference volume corrected multiplier m}(vy,) is calculated. The

presence of the peak stresses in the CT Specimen s causing the lower bound multiplier in
the first iteration to be bit conservative, but with the EMAP iterations the results seen to

be converging to nonlinear analysis solution
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The time taken for the ERVM is 146 CPU units when compared to 186 CPU units for

nonlinear analysis.

Table 4.6 Comparison of Various Multipliers of CT Specimen for Elastic Reference
Volume Correction (EMAP)

Iteration m’ m, m' (V) ml (V) ",
1 1549 0108 1283 0412
5 1305 0162 1334 0.543
10 1273 0.248 1272 0.664 0812
15 1.189 0.346 1191 0.742
21 LIS 0462 1124 0.791

4.6.7 Single Edge Notch Bend

A Single edge notch bend (Fig.4.28) with a span S =400mm, a width # =100 mm,

thickness ¢ =3mm and crack length a = 50mm is subjected to a point load of
P=24KN. The mat

is assumed to be elastic-perfectly plastic. The modulus of
elasticity is specified as 211 GPa and the yield strength is assumed to be 488.43 MPa.
Duc to symmery in geometry and loading, only a half of the specimen is modeled using
P

with t

82 clements with plane stres

consideration. lements are

ngularity

used around the crack-tip.

“The variation of the upper bound multiplier with various cut-off percentages for the first

iteration is shown in the Fig. 4.29. Variation of m(y,) and m[(/y,) with different
iteration for Single Edge Notch Bend are presented in Tab. 4.7 and Fig. 4.30. From Fig.

4.29 it can be concluded that the single edge notch bend is a component with the dead

volume effect. As can be seen from m’ and m’(¥,,) columns of the Tab.4.7 the upper

bound multiplie

is corrected. Using this reference volume corrected multiplier m ()

i calculated. The presence of the peak stresses in the Single Edge Notch Bend is causing

teration to be bit conservative, but with the EMAP

the lower bound multiplier in the fi

iterations the results seen to be converging to nonlinear analysis solution.
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Figure 4.28 Single Edge Notch Bend (a) Geometry and dimensions
(b) Typical finite element mesh with loading

®

‘The time taken for the ERVM is 250 CPU units when compared to 556 CPU units for

nonlinear

analysis

Table 4.7 Comparison of Various Multipliers of Single Edge Notch Bend for Elastic

Reference Volume Correction (EMAP)

Iteration

1
s
10
15
20

4.6.8. Plate with Multiple Cracks

4.759
3.632
2709
2159
1.843

m,
0202
0287
0.417
0.564
0712

m' (V)
2073
2204
2252
2043
1831

my (Vo)

0.734
0.922
1141
1.233
1.264

m

1353

A plate with multiple cracks (Fig.4.32) has one horizontal crack (length 2¢=20 mm) at

the center and four cracks inclined at 45° (length 25=212 mm) symmetrically located on

both sides of the horizontal and vertical lines of symmetry.
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Figure 4.29 Variation of m' with various percentages of cut-off stress for Single

Edge Notch Bend
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Figure 430 Variation of m'(/,) and m] () with iterations of Si

Notch Bend
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The crack tips are spread vertically with ¢=20 mm and horizontally with d=40 mm. The
Plate has a width J7=100 mm and height =200 mm, and is loaded by the tensile stress of
=100 MPa.

—
-
—a
[
[
5

, ;

@ ®
Figure 4.31 Plate with Multiple Cracks (a) Geometry and dimensions
(b) Typical finite element mesh with loading

The material is assumed to be elastic-perfectly plastic. The modulus of clasticity is
specified as 211 GPa and the yield strength is assumed to be 250 MPa. Duc to symmetry
in geometry and loading, only a quarter of the specimen is modeled using Plancs2
clements with plane stress with thickness consideration. Singularity elements are used
around the crack-tip.

The variation of the upper bound multiplier with various cut-off percentages for first
iteration is shown in the Fig. 432 Variation of n°() and /(%) with different
iteration for plate with multiple cracks are presented in Tab. 4.8 and Fig. 4.33. From Fig.
432 it can be concluded that the plate with multiple cracks is a component with the dead

volume effect. As can be seen from m® and m’ (V) columns of the Tab.4.8 the upper
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bound multiplier is corrected. Using this reference volume corrected multiplier

is calculated.
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Figure 4.32 Variation of ' with various percentages of cut-off stress for Plate

with Multiple Cracks
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Figure 4.3 Variation of m"(,.) and m[ () with iterations of Plate with Multiple

Cracks
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With the EMAP iterations the results seen to be converging to nonlinear analysis
solution. The time taken for the ERVM is 139 CPU units when compared to 175 CPU

units for nonlincar analysis.

ble 4.8 Comparison of Various Multipliers of Plate with Multiple cracks (EMAP)

Iteration m’ m, m' (V) ml (V) My
1 0.197 2314 0.752
7 0312 2269 0984
14 2167 0.484 2.165 1.203 1.362
21 2059 0.645 2,058 1312
29 1.935 0773 1934 1351

4.6.9 Plate with a Hole

A Plate With a hole (Fig.4.34) with the following dimensions are considered: Plate width

2 =150 mm; length 2L =300 mm; hole radius r =

3mm. It is subjected to a tensile

The

load of P=100MPa. The material is assumed to be clastic-perfectly plas
d as 152.95 GPa and the yield strength

‘modulus of elasticity is spec assumed to be

131.90 MPa. Due to symmetry in geometry and loading, only a quarter of the plate is

modeled using Plane82 elements with plane stress consideration.

“The variation of the upper bound multiplier with v:

jous cut-off percentages is shown in

the Fig. 435, Variation of m"() and m](y,) with different iteration for plate with
hole are presented in Tab. 4.9 and Fig. 4.36. The Fig. 4.35 it can be concluded that the

ahole is a component without any dead volume effect in it. It can also be seen

plate
from m" and m"(V,,) columns of the Tab. 4.9 as they are equal. The Plate with a hole is
a good example for the notch problems, as this is a notch the result from the initial

analys

is much closer to the non linear analysis results when compared to the erack
problems. EMAP takes less number of iterations to converge. The time taken for the

ERVM is 74 CPU units when compared to 191 CPU units for nonlinear analysis.
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(b) Typical finite element mesh with loading

Table 4.9 Comparison of Various Multipliers of Plate with a Hole for Elastic
Reference Volume Correction (EMAP)

Iteration m’ m, m' (V) mL (V) "o,
1 0481 1221 0852
2 0496 1216 0.863
4 0.526 1206 0.884 0922
6 0.556 1197 0.902
8 0.584 1188 0911
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Figure 435 Variation of m’ with various percentages of cut-off stress for Plate

with a Hole.

i
12 N*\*\
115
11
& = milVp)
g —— V)
g1 —o—
095
09’ e ———
—
088f—+"""
1 4 5 7
Hteration Number

Figure 4.36 Variation of m°(¥,,) and m[(¥,,) with iterations of Plate with a Hole
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4.6.10 Indeterminate Beam

An Indeterminate beam (Fig4.37) with length L =508 mm; height 5 =254 mm is

modeled. It is subjected to uniformly

ributed load of P=1.0 MPa. The material is

assumed to be elastic-perfectly plast

The modulus of elasticity is specified as 206.85
GPa and the yield strength is assumed to be 206.85 MPa. The beam is modeled using

Plane82 elements with plane stress consideration.

% P!

®
Figure 4.37 Indeterminate Beam (a) Geometry and dimensions
(b) Typical finite clement mesh with loading

“The variation of the upper bound multiplier with various cut-off percentages is shown in
the Fig. 4.38. Variation of m(y,) and m () with different iteration indeterminate

beam are pr

ented in Tab. 4.10 and Fig. 4.39. From Fig. 4.38 it can be concluded that

the indeterminate beam is a component with the dead volume effect. As can be seen from

m® and m° (V;,) columns of the Tab.4.8 the upper bound multiplier is corrected. Using

this reference volume corrected multiplier m () is

lculated. EMAP takes less

number of iterations to converge. The time taken for the ERVM is 550 CPU units when

compared to 583 CPU units for nonlinear analysis.
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Figure 4.38 Variation of m’ with various percentages of cut-off stress for
Indeterminate Beam
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Figure 4.39 Variation of m’(,,) and m(V,,) with iterations of Indeterminate
Beam
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Table 4.10 Comparison of Various Multipliers of Indeterminate Beam (EMAP)

Iteration m m, m (V) ml (V) m.
1 2,649 0.613 2522 1454
4 2357 0711 2324 1473

8 1.543
2124 0837 2121 1471
12 1.988 0.951 1.985 1.514
15 1920 1027 1918 1532

4.6.11 Oblique Nozzle

An Oblique Nozzle (Fig.4.40) with length of cylinder L, =2400mm with an internal

radius R, =300mm and length of the nozzle L, =1200 mm height R, =156.5 mm is

and average thickness £ =6mm with four different nozzle angles 0 =30°,45,60° and

90" is been analyzed. The cap height of the cylinder cap /7, = 175mm and for the nozzle
is H, =106mm. The cylinder is mounted on supports which are separated by a distance

of §=1600mm.

nre .
-
O

Figure 4.40 Schematic of Oblique Nozzle Geometry and dimensions

Faculty of Engineering and Applied Science, Memorial University.



Itis subjected to a uniformly distributed load of 7= 3.0 MPa. The material is assumed to
be clastic-perfectly plastic. The modulus of elasticity is specified as 108.08 GPa and the
yield strength is assumed to be 339.40 MPa. The beam is modeled using solid 95

clements.

4.6.11.1 Nozzle Angle 6 =30

The Finite Element mesh of oblique nozzle 30° is presented in the Fig. 441, The
variation of the upper bound multiplier with various cut-off percentages is shown in the

Fig. 4.42. Variation of m’(Vy,) and m(¥,) with different iteration for oblique nozzle

30° are presented in Tab. 4.11 and Fig. 4.43.

®)

Figure 4.41 Finite Element Mesh of Oblique Nozzle 30° (a) Isometric View
(b) Front View
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Figure 4.42 Variation of m" with various percentages of cut-off stress for Oblique
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Figure 4.43 Variation of m* () and m () with iterations of Oblique Nozzle 30°
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From Fig. 4.42 it can be concluded that the oblique nozzle 30° is a component with the
dead volume effect. As can be seen from m” and m'(V,,) columns of the Tab.4.11 the
upper bound multiplier is corrected. Using this reference volume corrected multiplier
ml 0y, is calculated. The time taken for the ERVM is 3431 CPU units when compared

1025200 CPU wnits for nonlinear analysis.

Table 4.1 Comparison of Various Multipliers of Oblique Nozzle 30° (EMAP)

Iteration m" m, ml (V) My
1 1867 0127 0.483
2 1811 0.141 0531
4 1698 0171 0.602 L2
& 1589 0201 0.652
9 1432 0244 0.694

4.6.11.2 Nozzle Angle 6 = 45°

The

variation of the upper bound multiplier with vari

nite Element mesh of oblique nozzle 45"

presented in the Fig. 4.44. The

s cut-off percentages for first iteration
is shown in the Fig, 4.45. Variation of n° () and (V) with different iteration for
oblique nozzle 45 are presented in Tab. 4.12 and Fig. 4.46.

From Fig. 4.45 it can be concluded that the oblique nozzle 45 is a component with the

dead volume effect. As can be seen from m” and m”(¥,) columns of the Tab.4.12 the
upper bound maultiplier is corrected. Using this reference volume corrected multiplier
ml (V) s calculated. The time taken for the ERVM is 3228 CPU units when compared

1024300 CPU units for nonlincar analysis.
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Figure 4.44 Finite Element Mesh
b)

Table 4.12 Comparison of Various My

lieration
1 2400
2 2364
o 2288
6 2210
9 2,083

m,
0242
0263
0304
0343
0398

®)

m' (V)
2362
2344

m V)

0.864
0.903
0971
1.022

1071

Faculty of Engineering and Applied Science, Memorial University.
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Figure 4.45 Variation of m" with various percentages of cut-off stress for Oblique
Nozzle 45"
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Figure 4.46 Variation of m" (V) and m[ () with iterations of Oblique Nozzle 45"
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4.6.11.3 Nozzle Angle 6 = 60"

The Finite Element mesh of oblique nozzle 60° is presented in the Fig. 4.47. The
variation of the upper bound multiplier with various cut-off percentages is shown in the
Fig. 4.48. Variation of m’(y,) and m] (V) with different iteration for oblique nozzle

60" are presented in Tab. 4.13 and Fig. 4.49.

G
it

®

Figure 4.47 Finite Element Mesh of Oblique Nozzle 60° (a) Isometric View

) Front View
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From Fig. 4.48 it can be concluded that the oblique nozzle 60° is a component with the
dead volume effect. As can be seen from m” and m’ (V) columns of the Tab.4.13 the
upper bound multiplier is corrected. Using this reference volume corrected multiplier
ml (V) is caleulated. The time taken for the ERVM is 3031 CPU units when compared

1023600 CPU wnits for nonlincar analysis.

‘Table 4.13 Comparison of Various Multipliers of Oblique Nozzle 60° (EMAP)

lieration " m, m' (V) m] (V) ",
1 2558 0351 2.548 1104
4 2476 0420 2467 1202
] 2361 0.503 2356 1.281 1314
12 oy 0552 2235 1293
15 2 0.594 2.140 1304
25
_
; L
E
%15

o1 02 03 04 06 07 08 09 1

05
VeVr
Figure 4.48 Variation of m" with various percentages of cut-off stress for Oblique

Nozzle 60°
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Figure 4.49 Variation of m’(,.) and m[(;,.) with iterations of Oblique Nozzle 60°

4.6.11.4 Nozzle Angle 0 =90

The Finite Element mesh of oblique nozzle 90° is presented in the Fig. 4.50. The
variation of the upper bound multiplier with various cut-off percentages for first iteration
is shown in the Fig. 4.51. Variation of m’(,) and m (%) with different iteration for
oblique nozzle 90° are presented in Tab. 4.14 and Fig. 4.52

From Fig. 4.51 it can be concluded that the oblique nozzle 90" is a component with the
dead volume effect. As can be seen from m' and m° (V) columns of the Tab.4.14 the
upper bound multiplier is corrected. Using this reference volume corrected multiplier

m] (V) is calculated. The time taken for the ERVM is 2930 CPU units when compared

1022400 CPU units for nonlincar analysis
As can be seen from the plots of the m” vs cut-off stress for the Oblique Nozzle problem,
the reference volume of the oblique nozzle increases with the increase in the oblique

angle.
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Table 4.14 Comparison of Various Multipliers of Oblique Nozzle 90° (EMAP)

Iteration
1
6
12

m

2624

2515
2383
2249
2.140

0513
0588
0.676
0.781
0881

m' (V)
2622
2515
2382
2249
2140

®

m (V)
1.362
1.423
1.461
1.493
1.514

1523

Figure 4.50 Finite Element Mesh of Oblique Nozzle 90" (a) Isometric View

b) Front View
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Figure 451 Variation of m" with various percentages of cut-off stress for Oblique
Nozzle 90"
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Figure 4.52 Variation of w* () and m (V,,) with iterations of Oblique Nozzle 90°
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4.7 Discussion of Results

This Elastic Reference Volume method is simple and straightforward as it does not

require any sub-classification of the components. After obtaining the stress distribution
from the initial elastic analysis, the corrected m"('y,) is calculated by cutting down all
the elements having stress less than 5 percentage of peak stress as dead volume. The
variation of the m’(Vy,) with various percentages of cut-off stress are presented in the

results.  As seen from the examples using the m°vs. 7, plot, the components which

requirement dead volume correction can be identified.

For the well designed components (i.c., Section 4.6.1 to Section 4.6.5) which do not have

much dead volume, the correction applied is less as can be seen from their plots, where
the variation of m”(Vy,.) with various percentages of cut-off stress is very less. For those
components which develop flaws during the operation (i.c.. Section 4.6.6 to Section

4.6.10), there will be presence of dead volume. Whenever there is a flaw, the peak

stresses present in the component are high and the amount of dead volume correction
applied is also high. This case is demonstrated using the cracked components. There is no
need to catgorize the components for this method as the method will take care of the

correction by itself.

A few other models like indeterminate beam and oblique nozzles are also studied to show
the method’s applicability to the more complicated structures. Using the corrected
') andm, . m](Vy,) is calculated, which is found to be a lower bounded value of
ed after the initial linear elastic iteration are a bit

limit load multiplier. The results obt

conservative in the case of the components with flaws, due to the peak stress effect on the
m, multiplier, but with the EMAP iterations the estimated limit loads reached a good

e taken for

agreement with the non-linear finite element analysis (i.¢., <5% error). The
the ERVM is also compared with the nonlinear analysis and it is shown that there is a
considerable advantage. It is seen that this advantage increases with the complexity of the
problem. In the next chapter another method for reference volume correction, The Plastic

Reference Volume Method is explained.

Faculty of Engineering and Applied Science, Memorial University. 82



CHAPTER 5
PLASTIC REFERENCE VOLUME METHOD

5.1 Introduction

Plastic reference volume method for reference volume correction while finding out limit
loads in the components or structures are presented. This reference volume correction
concept is used in combination with m, - Tangent method to obtain the lower bound limit
load of general component or structure. The Plastic Reference Volume Method for
finding out the reference volume of any general component involves integration of the

upper bound multiplier vs. sub-volume ratio curve. Reference volume is a sub-volume of

the component which will actively participate in plastic action at failure. Finally this
method s tested with the help of different components ranging from well designed

components to components with highly localized stresses.

5.2 Plastic Reference Volume Method

The proposed method for finding out the reference volume of any general component is a

new approach which involves integration of the m” vs. ¥, curve. Reference volume is a

sub-volume of the component which will actively participate in plastic action at failure,

where as dead volume i the sub-volume that does not participate.

Plastic Reference Volume method is a different approach of calculating the reference

is been

volume. In this approach by integrating the m’ vs. ¥ curve the multi
calculated at the reference stress location. In the elastic reference volume method the

complete elastic stress distribution is considered and some portion of it is cut down to

define the dead volume. where as in plastic reference volume method reference volume

multiplier is been calculated at the reference stress state W the average of the

complete stress profile.

After the first linear elastic FEA run, the m°vs. 7 plot will be generated as discussed in

Sec. 4.4. A schematic of m"vs. 7, plot is shown in Fig.5.1. As each of the sub-volume
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had a corresponding " value, the reference volume which is also a sub-volume will have

a corresponding m" known as reference multiplier, m’(V,). As can be seen from Fig.

5.1, when ever the sub-volume ratio is close to zero m =m, and when the sub-volume
ratio reaches one m®=m"(V;). Integrating the m’vs. ¥, curve, is based on the
assumption that the maximum stress developed within the component will be sufficient
large to correct the dead volume effect in a component. The integration leads to a

statically determinate stress field which satisfies the limit state condition of

n'(W,,)=m' = s similar to the plastic

1, . The stress field achieved after the integr:
failure stress field, and will reach the plastic failure stress field with the EMAP iterations.

Due to this reason the method is named as the Plastic Reference Volume Method.

"
"y
W) B
£
Al
']
7 17

Figure 5.1 Plot of m'vs. 7,

‘The relationship between the upper bound multiplier and the sub volume ratio is given by

the Eq. 4.9. The multiplier with plastic reference volume correction m°(V,,) can be
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obtained by integrating the m" vs. 7, curve

m@,)av, 5.1)

m' W,

For ease of calculations this value can be numerically obtained as follows:

e

) mf =m,) (5.2)

jm("',,)'"?,

For the case of calculation the equation is expressed in terms of m"and m, . The point

which is the point of intersection of the m°(V,,) line with m’vs. ¥, curve will give

us the value of reference volume factor V. This Reference Volume Factor is the
measure of the reference volume (or) measure of the dead volume corrected in this

particular iteration.

5.2.1 Categorization of Components

For the purpose of this method the general components are catego

ed into two groups
depending on there initial m" /m, values. The value of m" /m, is used as an indicator for

finding the presence of peak stress in a component

It m"/m, <142 then the components are well designed, which have
negligible peak stress. In these components the correction applied due to the

maximum  str

sufficient to correct the dead volume effect completely,
which leads to m°(V,,) being a lower bound values.
2. 1f m*/m, >1442 then the components will have peak stress effect. Peak

Stress

causes a lower 1, . In this category components are again divided into
ked

components) and second those which have large dead volumes because of their

two groups. First ones that develop flaws or defects during operation (ie,

geometry (i

. notched components). In both thes

cases the presence of peak

stres

narrows the amount of correction being applied leading m°(V,,) to be a

upper bound values.
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5.3 General Procedure for Finding Lower Bound Limit Loads Using
Plastic Reference Volume

In this section a general procedure is being outlined in a step by step manner to find out
the lower bound mulipliers for general mechanical components and structures using the

proposed method

The first linear clastic finite element analysis is carried out for the model with the
prescribed loading and boundary conditions.
 The clements in the component are sorted in the descending order of the

s values.

equivalent s

Then values of m" are plotted against 7, as discussed in Sec. 4.4 and m"(V,,)
will be calculated using the Eq. (5.2).
« Depending on the value of m” /m, the components are grouped.

the value of reference volume

For the components whose m" /m, <1+

corrected multiplier m°(¥,) is taken as the final value of the multiplier.
 For the components whose m”/m, >1++2, the value of m[(V,,) should be

calculated using the corrected multiplier m’(Vs,) .

 The above steps are continued using EMAP until the converged or near converged
solution are obtained. The results of fifty EMAP iterations and convergence

criteria are provided in appendix C.

In the following sections various components are analyzed using the plastic reference

volume correction method and the results are been discussed. The examples are chosen in

such a way that there will be components from each of the categories explained in Sec.

5.2.1. For the EMAP analysis a fixed 'q' of 0.1 is used. The non-lincar analysis results

with the perfectly plastic material properties are used as the actual multiplier for the

‘comparison purposes.
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5.4 Application to General Components
5.4.1 Thick Walled Cylinder

‘The geometry, material properties and loading is similar to the example discussed in the
section 4.6.1. The reference volume multiplier calculation for first iteration is graphically
represented in the Fig. 5.2. From the Fig. 5.3, it can be seen that, as m® /m, <142 for

the thick walled cylinder, m"(V,) calculated is always lower bounded. The variation of

m(V,,) with different iteration for thick walled cylinder is presented in Tab. 5.1 and
Fig. 53.
25
24 ‘
23
22 ‘
|
T 2
19 m
—— (v
18 Mg
17 L
0 0.1 02 03 04 05 06 07 08 09
Yidl¥r
Figure 5.2 m"(V,,) in first iteration for Thick walled Cylinder
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Figure 5.3 Variation of m"(V,,) with iterations for T

jick Walled Cy

inder (EMAP)

‘Table 5.1 Comparison of Various Multipliers for Thick Walled Cylinder (EMAP)

Iteration m' m, m'(Vy,) ™
1 2294 1706 1.994
6 2268 1901 2,063
12 2258 2053 2,161 el
18 2255 2142 2204
25 2255 2199 2232

5.4.2 Torispherical Head

The geometry, material properties and loading is similar to the example discussed in the

on 4.6.2. The reference volume multiplier calculation for first iteration is graphically

represented in the Fig. 5.4. From the Fig. 5.5, it can be seen that, as m” /m, <142 for

the torispherical head, m’(V,,) calculated is always lower bounded. The variation of
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Figure 5.4 m"(V,,) in first iteration for Torispherical Head
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Figure 5.5 Variation of m"(V,,) with iterations for Torispherical Head (EMAP)
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m°(¥,,) with different iteration for torispherical head is presented in Tab. 5.2 and Fig.

5.5,
Table 5.2 Comparison of Various Multipliers for Torispherical Head (EMAP)

Iteration m’ m, m'(Vy,) m,,
1 3020 1458 2592
10 g0 1883 2,684
20 2893 2211 2743 2.808
30 ag79 2415 2112
2 gy 2559 2791

5.4.3 Unreinforced Axi-Symmetric Nozzle

The geometry, material properties and loading is similar to the example discussed in the
section 4.6.3. The reference volume multiplier calculation for first iteration is graphically
represented in the Fig. 5.6 From the Fig. 5.7, it can be seen that,as m" /m, <1++2 for
the unreinforced  axi-symmetric nozzle, m'(V,,) calculated is always lower bounded.
Even after the convergence the lower boundedness continues . The variation of m'(Vy,)
with different iteration for unreinforced axi-symmetric nozzle is presented in Tab. 5.3 and

Fig. 5.

rs for Unreinforced Axi-symmetric

Table 5.3 Comparison of Various Mult
Nozzle (EMAP)

lieration m m, n'(v,,) My,
1 3020 1458 1724
10 203 1.883 L1771
20 2893 2211 1.774 1773
30 2879 2415 1.763
2 ggn 2559 1764
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Figure 5.7 Variation of m’(V,,) for unreinforced axi-symmetric nozzle (EMAP)
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5.4.4 Reinforced Axi-symmetric Nozzle

‘The geometry, material properties and loading is similar to the example discussed in the
section 4.6.4. The reference volume mulfiplier calculation for first iteration is graphically
represented in the Fig. 5.8. From the Fig. 5.9, it can be seen that, as m® /m, <142 for
the reinforced axi-symmetric nozzle, m°(V,,) calculated is always lower bounded. The

variation of m‘(V,) with different iteration for reinforced axi-symmetric nozzle is

presented in Tab. 5.4 and Fig. 5.9.

Table 5.4 Comparison of Various Multipliers of Reinforced Axi-symmetric Nozzle
(EMAP)

Iteration m' m, m' V) Moo
1 2011 1248 1852
3 2006 1351 1863
6 2,002 1.489 1.884 1.924
9 1o9g 1608 1892
4 90 1.764 1903
21
2
19
18
17 m
% . : :‘rw
15 =
14
13|
07 0z 03 04 96 07 06 09

05
VlVr

Figure 5.8 m"(V,,) in first iteration for reinforced axi-symmetric nozzle
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Figure 5.9 Variation of m"(V,,) with iterations for reinforced axi-symmetric nozzle
(EMAP)

5.4.5 Pressure Vessel Support Skirt

The geometry, material properties and loading is similar to the example discussed in the
section 4.6.5. The reference volume multiplier calculation for first iteration is graphically
represented in the Fig. 5.10. From the Fig. 5.1, it can be seen that, as m® /m, <1++/2
for the reinforced axi-symmetric nozzle, m’(V,,) calculated is always lower bounded.
‘The variation of " (V,,) with different iteration for reinforced axi-symmetric nozzle is

presented in Tab. 5.5 and Fig. 5.11.

Table 5.5 Comparison of Various Multipliers of Pressure Vessel Support Skirt
(EMAP)

lieration  m" m, m'Wy,)
1 3614 1523 3.053
12 346 2064 3114
4 337 2427 3.121
36 335 2640 3.122
50 32g8 2800 3133
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Figure .10 m" (V) in first iteration for Pressure Vessel Support Skirt
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Figure 5.1 Variation of m"(V,,) with iterations of Pressure Vessel Support Skirt

(EMAP)
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5.4.6 Compact Tension (CT) Specimen

The geometry, material properties and loading is similar to the example discussed in the
Section 4.6.6. The reference volume multiplier calculation for first teration is graphically
represented in the Fig. 5.12. From the Fig. 5.13, it can be seen that, as m" /m, >1+2
for the CT Specimen, m’(V,,) caleulated is upper bounded. using the corrected
reference volume multiplier m°(,,). the m[(V,,) is calculated. The variation of
m'(V,,) and m] (V,,) with different iteration for CT Specimen is presented in Tab. 5.6

and Fig. 5.13.

The presence of the peak stresses in the CT Specimen is causing the lower bound
multiplier in the first iteration to be bit conservative, but with the EMAP iterations the
results seen to be converging to nonlinear analysis solution. The time taken for the

PRVM is 138 CPU units when compared to 186 CPU units for nonlinear anal;

Table 5.6 Comparison of Various Multipliers of CT Specimen Pressure

Iteration m’ m, m' (V) ml (V) My
1 1.549 0.108 1164 0.402
5 1.395 0.162 1113 0.504
10 1273 0248 1071 0.602 0812
15 1.189 0.346 1.033 0.671
21 Lis 0462 0992 0.743
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Figure 5.12 m"(V,,) in first iteration for CT Specimen
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Figure 5.13 Variation of m"(V,,) and m[(V,,) with iterations for CT Specimen
(EMAP)
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5.4.7 Single Edge Notch Bend

‘The geometry, material properties and loading is similar to the example discussed in the
Section 4.6.7. The reference volume multiplier calculation for first iteration is graphically
represented in the Fig. 5.14. From the Fig. 5.15, it can be seen that, as m” /m, >1++2
for the single edge notch bend, m°(¥,,) calculated is upper bounded. using the corrected

reference volume multiplier m’(V,,),

the m[(V,,) is calculated. The variation of
m'(V,) and m] (V,,) with different iteration for single edge notch bend is presented in

Tab. 5.7 and Fig. 5.15.

The presence of the peak stresses in the Single Edge Notch Bend is causing the lower

bound multiplier in the first iteration to be bit conservative, but with the EMAP iterations

the results seen to be converging to nonlinear analysis solution. The time taken for the
PRVM is 242 CPU units when compared to 556 CPU un

for nonlincar analys

Table 5.7 Comparison of Various Multipliers for Single Edge Notch Bend (EMAP)

Iteration m' m, m'(Vy,) mi (V) My
! 4759 3.304 0.854
5 3632 2752 Lot1
10 2709 0417 2251 1.142 1353
15 ogs9  0.564 1933 1194
20 g3 0712 1724 1221
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Figure 5.14 m"(V,,) in first iteration for Single Edge Notch Bend

Multiplier
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Figure 5.15 Variation of m’(V,,) and m(V,,)with iterations for Single Edge

Notch Bend (EMAP)
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5.4.8. Plate with Multiple Cracks

The geometry, material properties and loading is similar to the example discussed in the

section 4.6.8. The reference volume multiplier calculation for first teration is graphically

represented in the Fig. 5.16. From the Fig. 5.17, it can be seen that, as m" /m, > 142
for the single edge notch bend, m"(V,) calculated is upper bounded. using the corrected

reference volume multiplier m’(Vy,), the m] (V,,) is calculated. The variation of

m'(Vy,) and m] (¥,,) with different iteration for single edge notch bend is presented in

Tab. 5.8 and Fig. 5.17.

The presence of the peak stresses in the Plate with multiple cracks is causing the lower
bound mulfiplier in the first iteration to be bit conservative, but with the EMAP iterations
the results seen to be converging to nonlincar analysis solution. The time taken for the

PRVM is 127 CPU units when compared to 175 CPU units for nonlinear analysis.

Table 5.8 Comparison of Various Multipliers for Plate with Multiple (EMAP)

Iteration m' m, m' V) ml (V) m,,
1 2359 0.197 2.001 0712
7 a0 0312 1943 0913
14 67 0.484 1.874 1101 1362
2 g5 0645 1791 1204
29 1.935 0773 1712 1.263
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Figure 5.16 m" (V,,) in first iteration for Plate with Multiple Cracks
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Figure 5.17 Variation of m"(V,) and mj(V,,)with iterations for Plate with |
Multiple Cracks (EMAP)
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5.4.9 Plate with a Hole

The geometry, material properties and loading is similar to the example discussed in the
section 4.6.9. The reference volume multiplier calculation for first iteration is graphically
represented in the Fig. 5.18. From the Fig. 5.19, it can be seen that, as m® /m, >1+2
for the plate with a hole, m'(V,,) calculated is upper bounded. using the corrected
reference volume multiplier m°(Vy,), the m] (V) is calculated. The variation of
m'(V,) and m[ (V) with different iteration for plate with a hole is presented in Tab.

5.9 and Fig. 5.19.

The Plate with a hole is a good example for the notch problems, as this is a notch the
result from the initial analysis is much closer to the non linear analysis results when
compared to the erack problems. The time taken for the PRVM is 72 CPU units when
compared to 191 CPU units for nonlinear analysis.

Table 5.9 Comparison of Various Multipliers of Plate with a Hole (EMAP)

lteration ~ m" m, Wy, ml (V) My,
1 1221 0.481 1054 0781
2 1216 049 1053 0.793
4 1.206 0526 1051 0812 0922
6 1197 0.556 1042 0834
8 11ss 0584 1.040 0851
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Figure 5.18 m"(V,,) in first iteration for Plate with a Hole
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Figure 5.19 Variation of m"(V,,) and m; (V,,) with iterations for Plate with a Hole

(EMAP)
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5.4.10 Indeterminate Beam

The geometry, material properties and loading is similar to the example discussed in the
section 4.6.10. The reference volume multiplier calculation for first iteration is
graphically represented in the Fig. 5.20. From the Fig. 521, it can be seen that, as
m" /m, >14+2 for indeterminate beam, m"(V,,) calculated is upper bounded. using
the corrected reference volume multiplier m°(Vy,), the m] (V) is calculated. The
variation of - m"(V,,) and m (V) with different iteration for Indeterminate beam is

presented in Tab. 5.10 and Fig. 5.21.

‘The Indeterminate beam is a good example for the problems which has the dead volume
due to the geometric properties, the result from the initial analysis is much closer to the
non linear analysis results when compared to the crack problems. The results in all the
examples are chosen at equal interval, for ease of comparison for both the ERVM and
PRVM. Due to this reason at times the PRVM results look little conservative. The time
taken for the PRVM is 535 CPU units when compared to 583 CPU units for nonlinear

analysis.

Table 5.10 Comparison of Various Multipliers for Indeterminate Beam (EMAP)

Iteration m" m, m' (V) ml (V) M
1 2649 0613 1913 1231
4 2357 0.711 1.841 1274
8 2n4 0837 1792 1343 1543
12 1.988 0951 1744 1.401
15 1.920 1.027 1.731 1.442
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Figure 5.21 Variation of m’(V,,) and m’(V,,) with iterations of Indeterminate
Beam (EMAP)
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5.4.11 Oblique Nozzle

‘The geometry, material properties and loading is similar to the example discussed in the
section 4.6.11. Four different Nozzle angles are been studied (i.c., 0=30°,45°, 60" and
90°)

5.4.11.1 Nozzle Angle 6 = 30"

‘The reference volume multiplier calculation for first iteration is graphically represented
in the Fig. 5.22. From the Fig. 5.23, it can be seen that, as m* /m, >1+2 for oblique
nozzle 30°, m°(¥,,,) calculated is upper bounded. using the corrected reference volume
multiplier m(V,,), the m[(V,,) is calculated. The variation of m"(V,,) and
m (V,,) with different iteration for oblique nozzle 30 s presented in Tab. 5.11 and Fig.

5.23. The time taken for the PRVM is 3415 CPU units when compared to 25200 CPU

units for nonlinear analysis.

Table 5.11 Comparison of Various Multipliers of Oblique Nozzle 30° (EMAP)

Iteration m’ m, m'(Vy,) my(Vy,) m,,
1 1867 0127 1393 0473
2 1811 0141 1362 0.504
4 1.698 0.171 1291 0551 0712
6 1ss9 0201 1222 0.582
9 1432 0244 1123 0.614
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Figure 5.23 Variati
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of m"(V,,) and m}(V,,) with iterations of Oblique Nozzle
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5.4.11.2 Nozzle Angle 6 = 45"

The reference volume multiplier caleulation for first teration is graphically represented
in the Fig. 5.24. From the Fig. 5.25, it can be seen that, as m" /m, > 1++2 for oblique
nozzle 45", m"(¥,,) caleulated is upper bounded. using the corrected reference volume
multiplier m(V,,), the m](Vy,) is calculated. The variation of — m'(V,,) and
m! (V) with different iteration for oblique nozzle 45" is presented in Tab. 5.12 and

Fig. 5.25. The time taken for the ERVM is 3212 CPU units when compared to 24300

CPU units for nonlinear analysis.

25 ———
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=
1
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Figure 5.24 m" (V) in first iteration for Oblique Nozzle 45
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Table 5.12 Comparison of Various Multipliers for Oblique Nozzle 45 (EMAP)

m

1.072

lieration ~ m° m (W) m(Vyy)
1 2401 1931 0.794
2 2364 1902 0822
4 2288 1843 0.881
6 2210 1784 0.923
9 2,083 1683 0.952
2
18
16
514 —+— mlv)
g — vy
= 12 —o— My
1
08 /
4 s & 7 |8

Heration Number

Figure 5.25 Variation of m"(V,,) and m](V,,) with iterations for Oblique Nozzle

45" (EMAP)
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5.4.11.3 Nozzle Angle 6 = 60"

The reference volume multiplier caleulation for first iteration is graphically represented
in the Fig. 5.26. From the Fig. 5.27, it can be seen that, as m" /m, >1++2 for oblique
nozzle 60°, m°(V,,,) caleulated is upper bounded. using the corrected reference volume
multiplier m°(V,), the m](Vy,) is caleulated. The variation of ~ m"(V,,) and

m] (V) with different iteration for oblique nozzle 60 is presented in Tab. 5.13 and

Fig. 5.27. The time taken for the ERVM is 3007 CPU units when compared to 23600

CPU units for nonlinear analysis.
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Figure 5.26 m"(V,,) in first iteration for Oblique Nozzle 60°
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Table 5.13 Comparison of Various Multipliers for Oblique Nozzle 60° (EMAP)

Iteration m’ m, m'Vy) ml (V) m,,
1 2558 0351 2122 1014
4 2476 0420 2,064 1.093
8 2361 0.503 1971 1154 1314
12 a0y 052 1873 1163
15 2 0.594 1793 LI72
24
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2
& 18f [~ mlve)
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3 15} | —o— m,,
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Figure 5.27 Variation of m"(V,,) and m](V,,) with iterations for Oblique Nozzle
60" (EMAP)
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5.4.11.4 Nozzle Angle 6 =90°

The reference volume multiplier caleulation for first iteration is graphically represented
in the Fig. 5.28. From the Fig. 5.29, it can be seen that, as m® /m, > 1+ 2 for oblique
nozzle 90°, m°(V;,,) calculated is upper bounded. using the corrected reference volume
multiplier m°(V,,), the m](V,,) is caleulated. The variation of  m’(V,,) and
m] (V,,) with different iteration for oblique nozzle 90" is presented in Tab. 5.14 and

Fig. 5.29. The

e taken for the PRVM is 2895 CPU units when compared to 22400

CPU units for nonlinear analysis.

01 02 03 04 06 07 08 09 1

05
VgV,

Figure 5.28 m"(V,,) in first iteration for Oblique Nozzle 90"
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Table 5.14 Comparison of Various Multipliers for Oblique Nozzle 90"

m

1.523

lteration  m® m, n' (V) ml (V)
1 2624 0513 2223 1244
6 2515 0588 2.141 1291
12 g8y 0676 2,042 1334
18 o049 0781 1934 1352
23 240 0881 1.843 1391
—— ml{Vg)
24 )
——m
22 L)
| i
=
g
28
16
14 /‘,_//k,/‘
| —
2 4 6 8 10 12 14 6 18 2 22
Heration Number

Figure 5.29 Variation of m"(V,,) and m] (V,,) with iterations for Oblique Nozzle

90° (EMAP)
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5.5 Discussion of Results

From initial elastic analysis for any general component m®/m, can be calculated;
depending on the m® /m, the components are categorized into one of the categories as
explained in section (5.2). The examples in this chapter are so chosen that there will be
representation from cach of these categories. For the components which fall under the
first category (i.c.. Section 5.6.1 to Section 5.6.5), the peak stress will not be present and
the maximun stress present in the component is sufficient to correct the dead volume

effect. (1) will be the lower bound.

For the components which fall under the second category (i.c., Section 5.6.6 to Section

5.6.12), due to the presence of the peak stress the amount of the correction applied
not be sufficient. The m[ (V,,) calculated using the m"(V,,) and m, will be lower
bound. It can be concluded that if the plastic reference volume correction is employed.
the m] multiplier will always be a lower bounded value. The applicability of the
proposed procedures is demonstrated through numerical examples (both 2D and 3D
models). The estimated limit loads are in good agreement with the ones obtained from

nonlinear finite element analysis (i.c., <7 % error).

The time taken for the PRVM is also compared with the nonlinear analysis and it is
shown that there is a considerable advantage. It is seen that this advantage increases with
the complexity of the problem. When compared to ERVM there is a slight more
advantage of time for PRVM.

The limit load estimates obtained by the plastic reference volume correction are
conservative when compared to the ones obtained by elastic reference volume method.

‘The reason for these conservative results is the presence of the peak stresses effect in the
second category components. This problem is addressed by a new method in the

following chapter.
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Chapter-6
LOWER BOUNDEDNESS of m, TANGENT METHOD

6.1 Introduction
Using the reference volume methods as discussed in the previous chapters, the reference

volume effect of the components can be taken care-off. The results from the reference

the reason for these conservative results can be

volume methods are bit conservative;
explained as the presence of the peak stresses in the components, which will lower the
lower bound multiplier m, . This kind of behavior can be seen mostly in the second
category components (categorization is explained in section 5.2.1), which have some
cracks or notches developed during the operation. In the current chapter a new method is
presented which willtake both the reference volume correction and peak stress correction
into consideration and calculate a lower bounded limit load multiplier. The proposed
method combines the newly developed reference volume correction with the m, ~tangent
method to ensure the lower boundedness of m, -tangent multiplier. In m, -tangent
method developed by Seshadri and Hossain [4] assumes that the secondary stresses will
not get redistributed when the peak stresses are being blunted. This assumption is not
always true particularly in cases of components undergoing highly localized plastic flow
such as cracked and notched components and structures. Proposed method will address
this issue by taking the reference volume of the component into account and calculating
m, -tangent multiplier for only kinematically active areas of the components. Using this

‘method we can obtain the m, ~tangent multiplier which is always lower bounded.

6.2 Theoretical background
A Schematic m°vs. 7, plot for different EMAP iterations is presented in Fig .6.1. From

the plot it can be scen that when?, =0, value of the multiplier is equal to the lower
bound multiplierm, , and when?, =1, the value of the multiplier is equal to the pper
bound multiplierm®. A typical m’vs. ¥, curve generated from a linear elastic analysis is

been represented as curve ABC in Fig 6.1. When this curve is compared with the actual

Faculty of Engineering and Applied Science, Memorial University. 14



ided into

limit load multiplier, which is represented as the straight line (i.c.,m ), can be
two sections. Section AB, which includes the peak stress effect. Section BC, which
includes the dead volume effect. For the curve ABC to reach the straight line we need to

correct both ends of the curve. This will be achieved by the following method.

my(iter =2)
myGter=T) |y

Fig. 6.1 Schematic of m"vs. V, plot for different EMAP iterations

63 Method for Correcting Dead Volume and Peak Stress Effects
Simultancously

This method makes use of both Two-bar method and m, -tangent method. On a

constraint map (i.c.; Fig. 6.2) the Two-bar method can be represented by the TBM curve

and m, -tangent method s represented by the R =1 curve
6.3.1 Dead Volume Correction

The Point B'on TBM represents a combined primary, secondary and peak stresses and

will be denoted as R), . The point Bon R! =1 curve represents a combined primary and
Z 4 P

secondary stress state and will be denoted as R} .
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010 w/E/ [7'4 4

Fig. 6.2 Constraint Map [4]

From the linear elastic analysis the m° calculated will have contributions from the dead
volume as well as the reference volume.
The dead volume contribution (DVC) in the m° can be calculated using the following

equation

DIC= (©.1)

R
Therefore, the reference volume contribution (RVC) in m” can be caleulated using the

following equation
RVC =1-DVC
RV('=I—1R:'—:R:)-[£§] (62)
Ry R
Using the reference volume contribution from Eq. 6.2, m”due to the reference volume

contribution is calculated as follows
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my,, =m" (RVC)

o o R
- 63
My =m [R: ] 6.3)

The m,,, calculated using Eq. 6.3 will be fiee from the dead volume effect.

6.3.2 Peak Stress Correction
As the point Bon R

1 curve represents a combined primary and secondary stress
state, its corresponding point on the TBM curve (i.c., Point B") will give us the ¢,
which will be independent of peak stresses. ¢, will be evaluated by solving the
following equation:

m
—=1402929(¢, -1
g € -D== 3

The roots of Eq. (6.4) are

(6.4)

=(1+C,)0+C) -1 6.5)

.2929(¢, - 1).

<

where C,

The ¢, calculated using the Eq. 6.5, will be free from the peak stress effect for that
particular iteration. Once the m},, and ¢, are established, the new lower bounded limit
load multiplier can be calculated using the following equation

My

e (©6)
140.2929(¢,

The m caleulated using the Eq. 6.6 will be free from both dead volume and peak stress
effects for that particular stress distribution. This procedure need to be continued with the
help of EMAP until we reach the point *D’ on the constraint plot. At this point the m’
calculated will be completely independent of dead volume and peak stress effects of the

component. According to Reinhardt [20] within the m, triangle any point that lies below
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the R, =1 curve represents a lower bounded multiplier. In the current method as we

always travel along the R =1 and reach the m, triangle below the R, = I curve we can

theoretically say that the multiplier obtained by this method is always lower bounded.

6.4 General Procedure
In this section a general procedure is being outlined in a step by step manner to find out
lower bounded m, ~tangent multiplicr by applying the reference volume and peak stress

corrections.

o Forany given component, initially a linear clastic analysis is performed.
 The m"and m, values are calculated using Eq. (3.10) and Eq. (3.11) respectively.
o The value of m* /m, computed.

1f m/m, <142, the value of limit load multiplier can be calculated using the

regular m, formula.

1f m”/m, >1+/2 then the following steps are continued.

Using Eq. (6.3) the m” value is corrected for reference volume effect.

Using Eq. (6.5) the ¢ value is corrected for peak stress effect.

* Once mj,, and ¢, are achieved, the lower bounded m] is computed using
Eq. (6.6).

« These steps are repeated using the EMAP iterations until the converged or near
converged solution are obtained. The results of fifty EMAP iterations and

convergence eriteria are provided in appendix C.

For non-linear analysis elastic perfectly plastic material model is assumed, the results
from this analysis is taken as the actual muliplier. These results are used for the
comparison with the linear elastic results obtained through above mentioned method. In
the following section, different components whose m”/m, >1+ 2 are analyzed using

the above method and the results are compared with the results from non linear analysis.
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6.5 Numerical Examples

6.5.1 Compact Tension (CT) Specimen
‘The geometry, material properties and loading is similar to the example discussed in the
section 4.6.6. Variations of different multipliers with different iteration for CT Specimen

are presented in Tab. 6.1 and Fig. 6.3

Table 6.1 Comparison of Various Multipliers for CT Specimen (EMAP)

lteration  m" m, My < m’ .
1 yse 0108 1.061 9.692 0444
5 1305 0162 1035 6294 0.553
10 1273 0248 1.064 4182 0.663 0.812
15 1z 0346 1.003 3101 0.742
20 pqps 0462 1122 2423 0.791
1
H M
12
5 ——
e ——
2o S0 ek
ol 8 s
= il et ber
04 g te ¥ 3
02

0 12 14 6 18 2
Hteration Number

Figure 6.3 Variation of multipliers with iterations for CT Specimen
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6.5.2 Single Edge Notch Bend

The geometry, material properties and loading is similar to the example discussed in the
section 4.6.7. Variations of different multipliers with different iteration for Single Edge
Noteh Bend are presented in Tab. 6.2 and Fig. 6.4.

‘Table 6.2 Comparison of Various Multipliers for Single Edge Notch Bend (EMAP)
Iteration ~ m" m, my,., 17 m! m,,
1 4759 0202 307 15181 0.601
5 363 0287 252 8724 0773
10 2700 0417 2.133 5.023 0.982 1353
15 2159 0564 1932 3361 1144
20 843 0712 1.801 2422 1273
45
4
35
—
% 3
2 o
=25 —_—
g, o

207 490 8 TIERRSRRET 2, 185 18'] &
Meration Number

Figure 6.4 Variation of multipliers with iterations for Single Edge Notch Bend
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6.5.3. Plate with Multiple Cracks

‘The geometry, material properties and loading is similar to the example discussed in the

section 4.6.8. Variations of different multipliers with different iteration for Plate with

Multiple Cracks are presented in Tab. 6.3 and Fig. 6.5.

Table 6.3 Comparison of Various Multipliers for Plate with Multiple Cracks

(EMAP)
Iteration " m, My < m! My

1 2359 0197 1.654 8292 533

7 2270 0312 1744 5494 0.754
14 5167 0484 1.862 373 1.024 1362

21 050 0645 1933 2951 1232

29 g5 0773 1922 2422 1353

el
2

——
2
15/ oyt My

Muttiolier

bt

——m

0 15
Iteration Number

%

Figure 6.5 Variation of multipliers with iterations for Plate with Multiple Cracks
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6.5.4 Plate with a Hole

The geometry, material properties and loading is similar to the example discussed in the

section 4.6.10. Variations of different multiplicrs with different iteration for Plate with a

Hole are presented in Tab. 6.5 and Fig. 6.7.

Table 6.4 Comparison of Various Multipliers for Plate with a Hole (EMAP)

Iteration " m,
1 g1 0481
2 216 04%
4 1206 0526
6 1197 0556
8 jigg 0584

[
1214
1213
1.205
1196
1186

<

2503
2.441
2291
2154
2,032

ml ,,,

0.844
0.852

0.881 0.922

0.904
0913

11
———
— )
1 ——m)
g 3 — Mo
3 . . . 7
2 . oml
Soe ——m
07
06

05p_ ———4+

e

— ]

iation of multipliers wi

4 5
lteration Number

iterations for Plate with a Hole
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6.5.5 Indeterminate Beam

The geometry, material properties and loading is similar to the example discussed in the

section 4.6.11. Variations of different multipliers with different iteration for
indeterminate beam are presented in Tab. 6.6 and Fig. 6.8.
Table 6.5 Comparison of Various Multipliers for Indeterminate Beam (EMAP)
leration m®  m, M 7 m
1 2649 0613 2304 3673 1.294
4 357 071 2193 3.034 1371
8 o024 0837 2104 2502 1.464 1543
12 jogg 0951 1.986 2.092 1512
15 o0 1027 1919 1811 1.533
25 ~—t—d
87 ——
5 — g
2 18 3 fr e —— M)
i Vet o ol
N
1 S
| i
2 4 6 8 10 12 14
lteration Number
Figure 6.7 Variation of multipliers with iterations for Indeterminate Beam
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6.5.6 Oblique Nozzle

The geometry, material properties and loading is similar to the example discussed in the
section 4.6.12.

6.5.6.1 Nozzle Angle 6 =30°

Variations of different multipliers with different iteration for Oblique Nozzle 30° are

presented in Tab. 6.7 and Fig. 6.9,

Table 6.6 Comparison of Various Multipliers for Oblique Nozzle 30° (EMAP)

lteration  m® m, my 7 m! M
1 g7 0427 1271 9.964 0354
6 1sgo 0201 1204 5871 0493
12 13 0283 1103 3813 0.604 0712
18 053 0352 1.002 2812 0.661
24 (900 0407 0886 2214 0674
18) R
e
i g
14 ——m
512 ——m}
5, e m)
2 . oL
08
EGY ki3
08 Sl e :
2 4 6 8 10 12 14 6 18 2 2 2

Meration Number
Figure 6.8 Variation of multipliers with iterations for Oblique Nozzle 30"
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6.5.6.2 Nozzle Angle 6 = 45"

Variations of different multipliers with different iteration for Oblique Nozzle 45" are
presented in Tab. 6.8 and Fig. 6.10.

Table 6.7 Comparison of Various Multipliers for Oblique Nozzle 45° (EMAP)

lteration ~ m° m, A < ml My
1 p400 0242 1732 7.084 0.622
6 2209 0343 1.744 4992 0.804
12 95 0429 1.673 3.824 0911 1072
18 g7 0501 1564 3.063 0974
25 149 0605 1425 2363 1024

HW

g S|l

o R ¢ . m

Muttiptier

ot —

- WW
5 10 15 Edl 2
Heration Number

Figure 6.9 Variation of multipliers with iterations for Oblique Nozzle 45"

Faculty of Engineering and Applied Science, Memorial University.




65.6.3 Nozzle Angle 8= 60"

Variations of different multipliers with different iteration for Oblique Nozzle 60° are
presented in Tab. 6.9 and Fig. 6.11.

Table 6.8 Comparison of Various Multipliers for Oblique Nozzle 60° (EMAP)

Iteration " m, W 7 m! me,
1 pssg 0351 1963 5.502 0843
6 2420 0464 2004 4241 1032
: 12 9237 0552 1.968 4052 1144 1314
18 2044 0641 1918 3.194 1222
‘ 25 g9 0764 1825 2391 1301
258 i ‘W*\
2
]

Muttiphier

P R B e

| RS o
' BURPOT o \50 it
MW
5 10 15 20 2

Hteration Number

Figure 6.10 Variation of multipliers with iterations for Oblique Nozzle 60°
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6.5.6.4 Ny

Angle 6=90"
Variations of different multipliers with different iteration for Oblique Nozzle 90" are

presented in Tab. 6.10 and Fig. 6.12.

Table 6.9 Comparison of Various Multipliers for Oblique Nozzle 90° (EMAP)

Tteration ;" m, m,, &y ] -
1 264 0513 2184 4172 1133
6 2515 0588 2194 3.651 1231
12 2383 0.676 2.183 3.161 1332 1.523
18 2249 0.781 2.149 2743 1.432
24 2.119 0.902 217 2354 1513

pr. S o |

Multiptier

2 4 6 8 10 12 14 16 18 20 2 2
Meration Number

Figure 6.11 Variation of multipliers with iterations for Oblique Nozzle 90"
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6.6 Discussion of the Results

‘The objective of the proposed method is to obtain the lower bounded m, -tangent limit
load multiplier by simultancously correcting the peak stress effect and the reference
volume effect. This method is particularly helpful in the components in which peak
stresses are present, like the components that develop notches and cracks during their

operation.

Different cracked components (Section 6.5.1 to Section 6.5.3). notched components
(Section 6.5.4) and complex components (Section 6.5.5 and 6.5.6) are examined in the
chapter and the results are presented in tables and plots. The examples covered both 2D

and 3D models, which demonstrate the robustness of the method.

From the results it can be seen that m_ calculated using the dead volume corrected upper
bound multiplier (m,,) and peak stress corrected m" /m, ratio (¢,) will always be a
lower bound multiplier. This gives support to the theoretical assumption of always lower
boundedness of m/ multiplier due to the incorporation of both corrections. Using the
EMAP this lower bound multiplier will converge very well onto the non-linear limit load
multiplier (< 2% error). The other benefit of this method is that the formulas are so
simple that they can be readily added onto the APDL macro and we can obtain the lower

bounded limit load multiplier directly from the FE commercial code.
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Chapter-7
REFERENCE VOLUME FOR ORTHOTROPIC MATERIAL

7.1 Introduction

In the modern world, components made of anisotropic material, for which the material
properties show appreciable differences in different directions. The anisotropic material
used in the current proposed research is specified as orthotropie, which means it has three
orthogonal planes of material property symmetry. The material is assumed to be
homogeneous. The knowledge of the limit load is useful in the design and sizing of
components and structures made from these materials. Finding out the limit loads of

components made of orthotropic material, involves. pred

ing kinematically active
volume (reference volumes) at the plastic collapse. The proposed method uses the
reference volume approach for anisotropic material and 1, tangent method together to

obtain the lower bound limit loads for components made of anisotropic materials.

7.2 Constitutive Relationships of Orthotropic Material

The constitutive relations ships of orthotropic materials are been discussed by Pan and

Seshadri [8]. The deformation of an isotropic material can be characterized by two

parameters, the stiffness modulus, £, and the Poisson’s ratio, v. In most cases, the change
in the effective stiffness, £, dominates over the change in v in going from the purely
elastic to the elastic-plastic structure. Therefore, a good estimate of the collapse load can
usually be obtained by adjusting £ and choosing a constantv. The starting value of £ is

chosen as the elastic value.

In an orthotropic structure, on the other hand, the deformation is controlled by nine
parameters. Which of these dominates the collapse depends on both mechanical
propertics and loading [48). If one parameter is used to characterize plastic flow (i.c., an
equivalent stress defined in terms of the stress components), only one parameter is
adjusted during the softening procedure, and the others must be chosen such that they can

become compatible with the plastic limit state. At collapse, it is expected that the stress

and strain states in the s int regions of the structure are determined by the plastic
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flow rule. During moduli modification, all material parameters change in fixed proportion

t0 each other, and a realistic stress distribution at collapse should be obtained if the initial
elastic parameters are chosen in such a proportion to each other as the plastic flow rule

suggests. The objective is to allow, as much as possible, for the stress fields to follow the

orthotropic yield surface. Hill’s yield on for characterizing an orthotropic material
is given by [13];

fls,)=F(0,-0,)+G(0,-0,)" + H(o, -0,)" +2Lt}, +2Mr}, +2N7}, =1(1.1)

where F, G, H, L, M, N are parameters characteristic of the current state of orthotropic. If
X, Y, Z are the tensile yield stresses in the principal directions of orthotropy, the

following relationships are valid [49]:

(72)

then:

(7.3)

The elastic moduli are modified on the directional basis as follows:

(),

”—} (). .4
In the above equation, the subscript s refers to the element number, while i, j can be any
combination of x, y and z.  refers to the iteration number. In order to ensure that plastic
flow type deformations are favored, the initial elastic moduli and Poisson’s ratio are
determined by comparing elastic and plastic strains. The elastic stress strain relations are

given by [50]:
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@5

(7.6)
The plastic component of the flow rule can be expressed as:

ds, =di[H(o,~0,)+Glo, -]

| de, =d2 [H(0,~0,)+G(0, -0,)] an
ds, =d2 [H(0,0,)+G(0, ~0,)]
dy, =2dANT,
dy, =2dANt,, 18)
dy, =2dANt,

By relating Eq. 7.5 and Eq. 7.6 with Eq. 7.7 and Eq.7.8 the expressions for the clastic
properties can be obtained as [51 & 52]:

B, =Col; Co} ,E, =Co; (7.9)
Gy =C12y,6,, =C7,,,G, = Crpy
(7.10)
(7.10)
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where, the variable C =3/(2445?), and has a dimension of Pa”. Since the value of C
would not affet the stress distribution of the component, it can take values such as

1 Pa’. The elastic properties given in Eq. (7.9) and Eq. (7.10) are used as the initial
elastic properties for the repeated lastic analysis, and are modified using Eq. (7.4) for
cach iteration. The Poisson’s ratio values in

(7.10) are kept unchanged during the
iterations. To ensure the positive definiteness of the elastic matrix, the denominator 2 in
the Poisson ratios expressions is replaced by 3.33 in the current investigation it is similar
adjustment as used by Pan and Seshadri [§]

7.3 Multipliers for Orthotropic Material

According to the Li pan and Seshadri (8], the upper bound multiplier for an Orthotropic
material can be calculated using the following equation

i(AVA/I‘ ")
b

@11

AV, 1Ey,)

where N is the total number of finite elements of the structure; &, , AV, Eq,

are the
effective stress, element volume and secant modulus in x direction of clement k,

respectively. o, is the yield stress in direction x. The reference di is

chosen in the direction where the yield strength is minimum. The lower bound multiplier

can be given by the following expression:

(7.12)
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where &, is the maximum effective stress in the finite element model. Indermohan et. a/

(53] used the m, multiplier Method to finding out the limit load multipliers which is bit

complicated duc to the /8 caleulation [54].

7.4 General Procedure

‘The following is the procedure for finding out the reference volume and lower bound

limit loads of a general component with orthotropic material properties.

« Modify i

material input.

itial elastic properties derived from Eq. (7.9) and Eq. (7.10) are used as

The first linear elastic finite element analysis is carried out for the model with the

prescribed loading and boundary conditions.

The elements in the component are sorted in the descending order of the

equivalent stress values ( directly available from FEA run).

The m°value will be calculated using Eq. (7.11) for the component in steps of

each sub-volume and m, is calculated using Eq. (7.12).

“Then these values of m"are plotted against 7.

Either the Elastic Reference Volume Method (ERVM) (i.c., Chapter 4) or the
Plastic Reference Volume Method (PRVM) (i.c., Chapter 5) can be employed for

the dead volume correction.

‘The above steps are continued using the EMAP iterations until the converged or

near converged solution are obtained.
In the following section different components are examined to demonstrate the method’s

robustness and validity. In this chapter both ERVM and PRVM are employed for the

dead volume correction.
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7.5 Application to General Components

7.5.1 Orthotropic Thick Cylinder
A eylinder under intemal pressure (Fig.7.1) is analyzed using plane strain considerations.
The inner radius of the cylinder is 30 mm, and the outer radius is 40 mm. An internal
pressure of 250 MPa is applied. The cylinder is made of Zircalloy. The alloy is assumed
0 be perfectly-plastic and possesses orthotropic symmetry. A general three dimensional
orthotropic material has nine independent elastic constants and six plastic constants. For
two-dimensional problems, the number of independent elastic and plastic constants

required is seven and four, respectively.

@ ®)
Figure 7.1 Orthotrpic thick walled cylinder (a) Geometry and dimensions
(b) Typical finite element mesh with loading.

In the present investigation, the following material properties are specified:

1. Original elastic properties are (for nonlinear finite element analysis)

E, =95.79 GPa; E, =100.59 GPa; E, =100.99 GPa;

G, =36.15 GPa; v,, =0.361; v,

2. Yield stresses in the respective directions are given by
7y, =4723 MPa; 7, = 5792 MPx; o, = 630.9 MPa;
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75, =366.6 MPa; 7,,, =262.9 MPa; 262.9 MPa;

3. Modified initial elastic properties based on Eq. (7.9) and Eq. (7.10) are as follows:
E, =223.07 GPa; E, =335.47 GPa; E, = 398.03 GPa;

G, =13439 GPa; G, =69.12 GPa; G, =69.12 GPa;

v, =0498; v,

7.5.1.1 Elastic Reference Volume Method (ERVM)

From the initial elastic analysis the upper bound multiplier m° is 0.779 and m, is 0.557.

The m" /m, ratio 1.3986 is less than 1+ 2 limit, the m (4, calculated using ERVM is

0.70 which is lower bounded. Variation of m°(Vy,) and m (Vy,) with different iteration

for anisotropic thick cylinder are presented in Tab. 7.1 and Fig. 7.2. m* and m’(¥,,)

columns of the Tab. 7.1. are equal which shows that this component is independent of

dead volume effect.

Table 7.1 Comparison of Various Multipliers of anisotropic thick cylinder
Elastic Reference Volume Correction (EMAP)
Iteration m m, V) ml (V) .
1 0779 0557 0779 0.704
6 om 063 0172 0713
12 0.769 0.655 0.769 0.731 0.744
18 o767 0681 0.767 0.741
2 o266 0691 0.766 0.742
Faculty of Engincering and Applied Science, Memorial University.
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Figure 7.2 Variation of m‘(V,,)and m[ (Vy,)with iterations for anisotropic thick
eylinder
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Figure 7.3 Variation of m" (V) with iterations for anisotropic thick cylinder
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7.5.1.2 Plastic Reference Volume Method (PRVM)

From the in

elastic anal;

the upper bound multiplier m° is 0.779 and m, is 0.557.

The m"/m, ratio 13986 is less than 1++2 limit, the plastically reference volume

corrected multiplier m" (V) calculated using PRVM is 0.69 which is lower bounded.
Variation of m’(V,,) with different iteration for anisotropic thick cylinder are presented

are presented in Tab. 7.2 and Fig.7.3.

Table 7.2 Comparison of Various Multipliers of a

tropic thick cylinder for
Plastic Reference Volume Correction (EMAP)

Iteration m’ m, m'(Vy,) M
1 0779 0557 0.694
6 o 0603 0.713
12 0769 0.644 0724 0744
18 o767 0670 0.731
2 g6 0691 0.738

7.5.2 Transversely Isotropic Bridgman Notch Bar

A Bridgman notch subjected to remote tensile load is modeled and analyzed axi
symmetrically (Fig. 7.4). The notch bar has a maximum diameter of 26.416 mm,
minimum diameter of 21.082 mm and notch radius of 6.858 mm. the remote tensile load

is 500 MPa. The Notch bar is made of Zircalloy. The alloy is assumed to be perfectly-

plastic and transversely isotropic, which means the material is isotropic in the y-z plane.
Due to symmetry in geometry and loading, only a quarter slice of notch is modeled using

Plane82 elements with axi-symmetric consideration.

Faculty of Engineering and Applied Sci

nce, Memorial University. 137




@ ®

Figure 7.4 A Transversely Isotropic Bridgman Notch bar (a) Geometry and dimensions
(b) Typical finite element mesh with loading

2. Yield stresses in the respective directions are given by
0y, =4723 MPa; 0,, =579.2 MPa; o,, =579.2 MPa;
7o, =2629 MPa; 7,,, =262.9 MPa; 7, =366.6 MPa;

3. Modified initial elastic propertics based on Eq. (7.9) and Eq. (7.10) are as follows:
E, =223.06 GPa; E, =335.47 GPa; E, = 33547 GPa;

G, =69.12 GPa; G, =69.12 GPa; G, =134.39 GPa;

v, =0451; v,

.149; v, =

.451

7.5.2.1 Elastic Reference Volume Method (ERVM)

From the initial elastic analysis the upper bound multiplier m° is 1111 and m, is 0.477.

The m" /m, ratio 2.3291 is less than 142 limit, the n[ (v,,) calculated using ERVM is
0.80 which is lower bounded. Variation of m’(Vy,) and m (Vy,) with different iteration
for anisotropic thick cylinder are presented in Tab. 7.3 and Fig. 7.5. m” and m" (V)

columns of the Tab. 7.3. are equal which shows that this component is independent of
dead volume effect.
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Table 7.3 Comparison of Various Multipliers of Transversely Isotropic Bridgman

notch bar for Elastic Reference Volume Correction (EMAP)

Iteration
1
8
16

Figure 7.5 Variation of m"(V,,) and m] (V) with iterations for Transversely Isotropic

m' m, m' (V) ml (V) "
L1111 0477 L 0.803
1.096 0.611 1.096 0.889
1.084 0.724 1.084 0.952 1.004
1.074 0.801 1.074 0.984
1.065 0851 1.065 0.989
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Hteration Number

Bridgman notch bar

7.5.2.2 Plastic Reference Volume Method (PRVM)

From the initial elastic analysis the upper bound multiplier m® is 1.111 and m, is

0.477.The m"/m, ratio 2.3291 i

less than 142 limit, the m" (V) calculated using
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PRVM is 0.75 which is lower bounded. The comparisons of various multipliers for

Plastic reference volume correction for first iterations are presented in Tab 7.4. Variation

of m(,,) with different iteration for Transversely Isotropic Bridgman notch bar are

presented are presented in Tab.7.4 and Fig.7.6.

Table 7.4 Comparison of Various Multipliers of Transversely Isotropic Bridgman

notch bar for Plastic Reference Volume Correction (EMAP)

Iteration m’ m, m' (V) m,,
1 L 0477 0.984
8 L9 0611 0.993
16 1.084 0.724 0.994 1.004
24 g4 0801 1.001
32 e 0851 1.002
{ —————
095
. 09
3 —— mvg)
=Ne il
S 085)
08
g 5 15 20 0
Heration Number

Figure 7.6 Variation of m" (V) with iterations for Transversely Isotropic Bridgman

notch bar
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7.5.3 Transversely Isotropic Plate with a Hole

A Plate With a hole (Fig.7.7) with the following dimensions are considered: Plate width
2 =150 mm; length 2L = 300 mm; hole radius =23 mm. It is subjected to a tensile
load of P=100MPa. The Notch bar is made of Zircalloy. The alloy is assumed to be
perfectly-plastic and transversely isotropic, which means the material is isotropic in the

x-y plane. Due to symmetry in geometry and loading, only a quarter of the plate is
modeled u:

g Planc82 elements with plane stress consideration.

r

ARNRAAAAN T

T

® ®
Figure 7.7 Transversely Isotropic Plate with a Hole (a) Geometry and dimensions
(b) Typical finite clement mesh with loading.
In the present investigation, the following material properties are specified:
1. Original elastic properties are (for nonlinear finite clement analysis)
E,

95.79 GPa; E, =95.79 GPa; E, =100.99 GPa;

G, =36.15 GPa; v,

3613 v, =0341;
2. Yield stresses in the respective directions are given by
0, = 4723 MPa; 0, = 4723 MPx; o, =579.2 MPa;
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7, =262.9 MPa; 7, = 2629 MPa; 7,, =366.6 MPa;

3. Modified initial elastic properties based on Eq. (7.9) and Eq. (7.10) are as follows:
23.06 GPa; E, =223.06 GPa; 335.47 GPa;

G, =69.12 GPa; G, =69.12 GPa; G,, =134.39 GPa;

v,

Elastic Reference Volume Method (ERVM)

From the initial elastic analysis the upper bound multiplicr m® is 5.317 and m, is 1.985.
The m"/m, ratio 2.6786 is greater than 142 limit, the m/ (V) calculated using
ERVM is 3.62 which is lower bounded. Variation of m®(Vy,) and m? (V) with different
iteration for Transversely Isotropic Plate with a Hole are presented in Tab. 7.5 and Fig.
7.8. m" and m"(V,,) columns of the Tab. 7.3. are not equal which shows that this
component is having some dead volume effect, but the correction applied is small as the

m®/m, is close to 142 limit .

‘Table 7.5 Comparison of Various Multipliers of Transversely Isotropic Plate with a
Hole for Elastic Reference Volume Correction (EMAP)

Iteration m’ m, m' (V) ml (V) m
1 5317 1.985 5314 3.622
2 5.291 2053 5288 3.664
4 5243 2189 5.240 3723 3.994
6 5.198 2323 5.195 3824
10 5114 25719 s.12 3.969
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Figure 7.8 Variation of m”(V,,)and m] (V) with iterations for Transversely Isotropic

Plate with a Hole
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Figure 7.9 Variation of m"(Vy,)and m (V,, ) with iterations for Transversely Isotropic

Plate with a Hole
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7.5.2.2 Plastic Reference Volume Method (PRVM)

From the initial elastic analysis the upper bound multiplier m® is 5317 and m, is
1.985.As, the m* /m, ratio 2.6786 is greater than 1+2 limit, the m(V,,) calculated
using PRVM is 3.30 which is lower bounded. Variation of n°(%,) and m’ () with

different iteration for Transversely Isotropic Plate with a Hole are presented in Tab. 7.6

and Fig. 7.9.

Table 7.6 Comparison of Various Multipliers of Transversely Isotropic Plate with a
Hole for Plastic Reference Volume Correction (EMAP)

Iteration m’ m, m' (V) m;(Vy,) My
1 5317 1.985 4551 3304
2 5201 2053 4544 3352
4 5243 2.189 4532 3453 3.994
6 5198 2323 4514 3544
10 sy4 257 4493 3.694

7.6 Discussion of the Results

The objective of the proposed method is to ensure the lower boundedness of the m,
tangent multiplier for components made of orthotropic materials by combining the newly
developed reference volume concept with m, tangent method. The secant modulus in the
reference direction in the elastic analysis is used to estimate the plastic flow parameter for
the orthotropic components. Modified initial clastic properties are adopted to ensure the

elastic stress field follows the anisotropic yield surface.
From initial elastic analysis for any component we can calculate the value ofm” /m, .

Depending on the m" /m, the components are classified into two categories as explained

previously. In this chapter the examples are so chosen that there will be representation
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from both the categories. For these examples, both the elastic reference volume

correction as well as the plastic reference volume correction has been applied.

For the components which fall under the first category (Section 7.5.1 and Section 7.5.

the upper bound multiplier with plastic reference volume correction m’(V,,) gives the
lower bound value, and for the components which fall under the second category (Section
7.53), m, tangent multiplier with plastic reference volume correction m (V) gives the
lower bound value. The method is demonstrated using the examples and results are found
10 be in good agreement with the non-linear finite element solution. When the elastic
reference volume is applied m, tangent multiplier with elastic reference volume

correction m] (V) gives the lower bound value in both the categories.

From the comparison of the results, it can be concluded that the lower bound multiplier
obtained by plastic reference volume correction is a bit conservative, when compared to
the one obtained using elastic reference volume correction method, as the presence of
peak stress in the second category components are delaying the convergence of plastic
reference volume method.
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Chapter-8
INCORPORATION OF STRAIN HARDENING EFFECT INTO
LIMIT ANALYSIS

8.1 Introduction

In an actual component or structure when the stresses exceed the yield strength of the
material, the component starts to experience strain hardening. Due to strain hardening the
component or structure can withstand more loads [10]. In the traditional way of limit
load calculations, the material models are assumed to be clastic perfectly plastic (EPP)
[30)-[36]. However, this will lead to a very conservative estimate of limit load for a
material that has a significant stain hardening. Therefore, by considering the effect of
strain hardening while estimating the limit load more realistic limit load can be obtained.

‘This novel method addresses the effect of material strain hardening on limit load
estimation. The commonly used material models including Bilinear Hardening (BH) and
Ramberg-Osgood (RO) models are investigated.  Bilinear hardening material model,
which the elastic modulus and tangent modulus, is the simplest representation of the
strain hardened material propertics. Ramberg-Osgood material model is more
complicated and closer to the actual material properties of a component [35]. In the

stress-strain curve once the yield strength point is exceeded then plasticity occurs. In the

initial portion of the plastic region, the rise in the curve is due to the presence of the strai

hardening in the material. The hidden strength due to strain hardening can be utilized if
yield strength of an equivalent elastic perfectly plastic material model is obtained by
integrating this portion of the curve. By integrating the equation for the material models,
the expressions for equivalent yield strength is obtained. In these expressions all the other
variables are known material properties, so these equations are readily solved to obtain
the values of the yield strength of equivalent elastic perfectly plastic model. The
estimated equivalent yicld strength value is used instead of the regular yield strength, and

Timit analysis is carried out.
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8.2 Theoretical background

Generally one of the basic assumption in calculating the limit load values of any general
component i, that the material behavior is clastic perfectly plastic (EPP). However, if the
‘material behavior is elastic-plastic hardening then the approach needs to be modified.

Assuming a hardening material model

floy.0) .1

where ais a reference value of stress that is usually taken as the yield strength, and o is

the applied stress [56]

By equating the strain energy densities shown in Fig. 8.1, the strain hardening curve can
be represented by an equivalent elastic-perfectly plastic curve in which o is the

assumed yield strength, i.c., arca A; should be equal to area A;. Therefore, o) can be

determined by following equation:

[edo-z,(0; -

1o

,)~"fcua (82)

where (o7&} is equivalent yield strength point and (a,&) is an arbitrary point on a
strain hardening curve, and o, related stress to the fracture strain, &, .£, can be

caleulated using the linear relation &, = 7 / E, .

Different material models such as the BH material and RO relationship have been studied

here in. These material models can represent true stress strain material curves with in the

small strain regions [57-59. Therefore, the portion of the curve which is used for finding
out the equivalent yield stress of equivalent elastic perfectly plastic material model is
limited to these regions only, by choosing the cut-off strain, &, to be at 0.05. In this way
this equivalent yield stress is different from the flow stress normally used in the industry,

as flow stress is the average of yield to ulitmate strength of the material.
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“ & £=005
Figure 8.1 lllustrative determination of o}

8.2.1 Bilinear Hardening Material Model

‘The stress strain relation ship of a bilinear hardening material model is given by:

®3)

A Bilinear material model is presented in Fig. 8.2.

For a bilinear material model the Eq. (8.2) can be rewritten as:

-1{g ez

LHS = RHS

(1-p)o, +Bo, +JBB-D(o, -a,) (8.4)
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Using Eq. (8.4) the equivalent yield strength for bilinear hardening material can be
obtained.

an 5 =008 .

Figure 8.2 Bilinear Hardening Material Model

8.2.2 Ramberg-Osgood Hardening Material Model

‘The Ramberg-Osgood material model can be written as

] (8.5)

Ty
where a is dimensionless material constant, usually chosen to be equal to 3/7, and 1 is
the strain hardening exponent.
Simplifying Eq. (8.2) using Eq.(8.5), we get an expression that leads to the equivalent
yield strength, o]

40}’ -Bo,+C=0 (8.6)
where A, B and C are expressed in terms of material properties

A
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Usually, the value of fracture strain, ¢, , is available as a material parameter. Therefore, in
order to calculate o the following equation need to be solved [56].

o g
ar+ 2 ol 7

a a

Once o, is known Using Eq. (8.6) equivalent yield strength of the Ramberg-Osgood
Material model can be calculated.

8.3 General Procedure
In this section a general procedure s being outlined in a step by step manner to find out
the lower bound multipliers for components undergoing hardening material model using

the proposed method.

e Initially equivalent yicld strength is calculated for the given hardened material.
For bilinear hardened material Eq (8.4) is used and if it's a Ramberg-Osgood one
then Eq (8.6) is used.

The first linear elastic finite element analysis is carried out for the model with the

prescribed loading and boundary conditions.
© The elements in the component are sorted in the descending order of the
equivalent stress values.
o The m" value will be calculated using Eq. (5.1) for the component in steps of
cach sub-volume as being discussed in Sec. (5.2) and m, is caleulated using
Eq. (3.11).
« Then these values of m” are plotted against 7, and m*(V,,) will be calculated

using the Eq. (5.7).
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« Depending on the value of m*/m, the components are grouped as discussed in

the section 5.2.1.

For the components whose m” /m, <1++/2, the value of m° (V) is taken as the

final value of the multiplier.

For the components whose m" /m, >1+v2, the value of m (V,,)should be

calculated as explained in Sec. (5.3)

The above steps are continued using the EMAP iterations until the converged or
near converged solution are obtained. The results of fifty EMAP iterations and
convergence eriteria are provided in appendix C

In the following section, the methad is applied to several component configurations, and
the results are compared with the limit load using nonlinear analysis. The elastic-
perfectly plastic material is employed to estimate the limit loads using nonlinear finite
clement analysis. In the plastic limit state the body fully or partially undergoes
unrestricted plastic deformation under constant external load. Therefore, the limit load

using numerical approach is estimated when the magnitude of strains goes very high and

the convergence cannot be achieved any more by further increase in the load. In the

following section couples of components are examined to verify the method's robustness
and validity.

8.4 Application to General Components

8.4.1 Thick Cylinder

ensions as described in

A eylinder under interal pressure (Fig4.11) with geometric di
Section (4.6.1) is examined here. Two  different kinds of strain hardening material
properties are considered for examination.

« Bilinear Hardening Material Model:
00GPa; 7, =300 MPa; E,

0.02xE,

‘The equivalent yield strength calculated using Eq. (8.4) is o =397.50 MPa;

Ramberg-Osgood Material Model:
E, =200 GPa; g, =300 MPa; @ =134; n=8.60;
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‘The stress at the cut-off strain calculated using Eq. (8.7) is o, = 433.69 MPa;

Various coefficients of Eq. (8.6) is calculated and given below:
A=1; B=1999.19; C=T.62E6;
‘The equivalent yield strength calculated using Eq. (8.6) is o, = 388.62 MPa;

‘The comparisons of various multipliers with different material hardening models for first
iterations are presented in Table 8.1. As m"/m, <1+ /2 this component fall under first
category, so m”lV,p) is lower bounded. Variation of m" (Vy,) with different iteration for
bilinear hardening material model is presented in Table 8.2. Variation of m" (V) with
different iteration for Ramberg-Osgood hardening material model is presented in Table

8.3. The variation plots are given in Fig. 8.3 and Fig. 8.4.

Table 8.1 Comparison of various multipliers for different material hardening

models (LEFEA)

Problem m' m, m"/m, m'(Vy,) My,

Rt i 2294 1.683 136 1992 2264
hardening

Bilincar 303 2212 137 2653 2981

Ramberg-Osgood 2972 2.163 137 259 2913

Table 8.2 Comparison of various multipliers of thick walled cylinder for bilinear

material hardening model (EMAP)

lteration m' m, m' (V) My
1 3.039 2212 2653
5 3000 2439 2754
10 2994 2641 2833 il
15 2989 2772 2893
20 2987 2.856 2934
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Figure 8.4 Variation of m°(V,,) and m[(V,,)with iterations for Ramberg-Osgood

hardening thick cylinder
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Table 8.3 Comparison of various multipliers of thick walled cylinder for Ramberg-
Osgood material hardening model (EMAP)

Tieration m m, (V) My
1 2972 2163 2592
5 2942 2384 2682
10 2927 2.582 2774 22
15 2922 2710 2832
20 2921 2792 2.861

8.4.2 Compact Tension (CT) Specimen

A CT Specimen (Fig.4.26) with geometric dimensions as described in Section (4.6.6) is

examined here [60]. Two different kinds of strain hardening material properties

considered for examination.

« Bilincar Hardening Material Model:
E, =211GPa; 0, =250MPa; E, =0.015xE,; &

‘The equivalent yield strength calculated using Eq. (8.4) is o] =327.54 MPa;

Ramberg-Osgood Material Model:

E, =211 GPa; 0, =250 MPa; @ =1.69; n=8.60;

‘The stress at the cut-off strain caleulated using Eq. (8.7) is o, =361.97 MPa;
Various coefficients of Eq. (8.6) is calculated and given below:

A=1; B=21101.72; C=6.74E6;

‘The equivalent yield strength calculated using Eq. (8.6) is o} =324.33 MPa;

are

‘The comparisons of various multipliers with different material hardening models for first

iterations are presented in Table 8.4. As m’/m, >1+2 this component fall under

second category, so m_ (V) is calculated.
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Figure 8.6 Variation of m‘(Vy)and m](V,,)with iterations for Ramberg-Osgood

hardening CT Specimen
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Variation of m’(V,,) and m[(V,,) with different itcration for bilincar hardening

material model is presented in Table 8.5. Variation of m°(V,,) and m](V,,) with

different iteration for Ramberg-Osgood hardening material model is presented i

8.6. The variation plots are given in Fig. 8.5 and Fig. 8.6.

Table

Table 8.4 Comparison of various multipliers of CT Specimen for different material
hardening models (LEFEA]

Problem
With out Stain

Ramberg-Osgood

m m,

1,590 0.167
2084 0218
2023 0212

m'Im,

9.52

9.53
9.54

m(Vy)

0.468

0.684
0.662

m

0.809

1.059
1.044

Table 8.5 Comparison of various multipliers of CT Specimen for bilinear material

hardening model (EMAP)
Iteration m' m, m' (V)
1 2.084 0218 1.56
4 1918 0277 1.50
8 1.761 0.369 144
12 1.644 0470 139
18 1.514 0.626 132

my (V)
0.684
0.763
0.844
0912
1.004

m

1.05

9

Table 8.6 Comparison of various multipliers of CT Specimen for Ramberg-Osgood
material hardening model (EMAP)

Iteration m’
1 2023
4 1863
L 1710
12 1597
18 1471

m, m'(Vy,)

212 151
0269 146

358 140
0456 135
0.608 128

my (Vy,)
0.662
0.742
0.823
0.884
0973
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8.4.3 Indeterminate Beam

An Indeterminate Beam (Fig4.41) with geometric dimensions as deseribed in Section
(4.6.11) is examined here. Two different kinds of strain hardening material properties are

considered for examination.

«  Bilinear Hardening Material Model:
E, =20685 GPa; 0, = 206,85 MPa; E, =0.01xE,: £, =0.05;

‘The equivalent yield strength calculated using Eq. (8.4) is o)

57.66 MPa;

Ramberg-Osgood Material Model
E, =20685 GPa; 7, =206.85 MPa; a =

1 n=847;

‘The stress at the failure calculated using Eq. (8.7) is o, =301.43 MPa;

Various coefficients of Eq. (8.6) are calculated and given below:
A=1; B=20685.59; C=550E6;

The equivalent yield strength calculated using Eq. (8.6) is o, = 269.65 MPa;

‘The comparisons of various multipliers with different material hardening models for first
iterations are presented in Table 8.7. As m”/m, >1++2 this component fall under
second category, so m (V) is calculated. Variation of m"(V,,) and m](V,,)with
different iteration for bilinear hardening material model is presented in Table 8.8.

Table 8.7 Comparison of various multipliers of Indcterminate Beam for different
‘ material hardening models (LEFEA)

| Problem m’ m, m"/m, my (V) Moy
Qe e 2649 0613 432 1231 1543
hardening
Bilinear 3300 0763 433 1529 1924
Ramberg-Osgood 3453 0799 43 1,603 2013
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Figure 8.7 Variation of m°(V,,) and m](V,,)with iterations for bilincar hardening
indeterminate beam.
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Figure 8.8 Variation of m'(V,,) and m](V,)with iterations for Ramberg-Osgood

hardening indeterminate beam.
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Variation of m® (V) and m] (V,,,) with different iteration for Ramberg-Osgood
hardening material model is presented in Table 8.9.The variation plots are given in

Fig8.7 and Fig. 8.8

Table 8.8 Comparison of various multipliers of Indeterminate Beam for bilinear

material hardening model (EMAP)

Iteration m m, m'(Vy,) ml (V) [
1 3300 0763 237 1529
4 2935 0885 229 1584

8 1924
2645 1042 222 1673
12 2476 1185 217 1.754
16 2369 1309 214 1.809

Table 8.9 Comparison of various multipliers of Indeterminate Beam for Ramberg-

Osgood material hardening model (EMAP)

Iteration m’ m, m' (V) my (V) My,
1 3453 0799 248 1.603
= 3072 0926 239 1.649
8 2768 1.091 232 1744 Zs)
12 2591 1240 227 1.828
16 2.480 1.370 224 1.894

8.5 Discussion of Results

A simple approach is discussed in this chapter to determine equivalent yield strength of a
material model with strain hardening. Two different strain hardening material models,
namely the Bilinear Hardening and Ramberg-Osgood models, are specifically
investigated. The estimated yield strength along with limit load multipliers (using the
reference volume approach) are used to estimate a more appropriate limit load of a

component with strain hardening material.
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Once the components material properties are know, by using the Eq. (8.4) and Eq. (8.6)
its equivalent yield strengths for bilincar material model and Ramberg Osgood material
model are calculated respectively. This yield strength is used to perform the clastic finite
clement analysis. In this rescarch both the material models are studied and the user can

choose which ever model they are more comfortable with.

From Initial elastic analysis of any component m" /m, is calculated. Depending on the
m® /m, the components are classified into two categories as explained previously. For
the components which fall under the first category, m" (V) gives the lower bound value,
and for the components which fall under the second category, m] (V) gives the lower

bound value. The results obtained are lower bounded in all the cases.
‘The applicability of the proposed procedure is demonstrated through numerical examples

(section 8.4.1 to section 8.4.2). The estimated limit loads are in good agreement with the

ones obtained using nonlinear finite element analysis.
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CHAPTER 9
CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH

9.1 Conclusions

The newly developed reference volume approaches are found to be very useful in
determining the lower bound limit loads of mechanical components and structures. These
methods are easy to implement in practice. When compared to the non linear analysis
they demand little skill sets, so it can be readily used by any engineer. The other
advantage of this method is it takes less computational time as demonstrated by the
examples. In this research it is observed that the time advantage increases with the
complexity of the problem. When compared to the regular EMAP method, the methods
praposed in this thesis are found converging faster.

The Elastic Reference Volume Method derived its roots from the pressure bulb concepts
of soil mechanics. In this method reference volume effect is corrected based upon the
maximum stress developed in the component. The Elastic Reference Volume method is
simple and straight forward. Afier obtaining the stress distribution from the nitial elastic

analysis, the m° vs. 7,

, curve is plotted. All the elements having stress less than five

percentage of peak stress are considered as dead volume. Using this m° vs. 7, curve we
can easily identify the components which need dead volume correction. From the
research it's found that all the components whose m° /m, <142 needs either no or less
correction. For those components whose m’ /m, > 142 the corrected m"(¥y,) and m,
are used to calculate (V) , which s found to be lower bounded limit load multiplier

for all the examples considered in this rescarch.

The Plastic Reference Volume Method for finding out the reference volume of any
general component involves integration of the upper bound multiplier vs. sub-volume
ratio curve. From initial elastic analysis for any general component m°/m, can be
calculated, depending on the m° /m, the component will fall into one of the categories as

explained in section (5.2). For the components which fall under first category, m*(/,)
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will be the lower bound multiplier and for the components which fall under second
category, m! (¥, will be the lower bound multiplier. From the results it can be
concluded that if plastic reference volume correction is employed m multiplier will
always be a lower bounded value. The elastic reference volume method is found to be
effective for both category of components, where as the plastic reference volume is more
effective in first category components and conservative when compared to- elastic

reference volume method in second category components,

The reason for these conservative results can be explained as the presence of the peak
stresses in the components, which will lower the lower bound multiplier, . This kind of
behavior can be seen mostly in the second category components (categorization is
explained in section 5.2.1), which have some cracks or notches developed during the
operation. A new method is developed which will take both the reference volume
correction and peak stress correction into consideration and caleulate a lower bounded
limit load multiplier. The proposed method combines the newly developed reference
volume concept with the m, tangent method to ensure the lower boundedness of

m, tangent multiplicr.

Taking the practicality of the material usage into consideration a methods is developed to

find out limit loads of orthotropic materials. As the usage of orthrotropic materia

s in
industries is increasing day by day, so is the need for finding out limit loads for
components made of such material is vary important. . Finding out the limit loads of
components made of orthotropic material, involves predicting kinematically active
volume (reference volumes) at the plastic collapse. The method uses the reference
volume approach for orthrotropic material and m, tangent method together to obtain the

lower bound limit loads for components made of ar

otropic materials. The secant

modulus in the reference direction in the clastic analysis is used to

imate the plastic

flow parameter for the anisotropic components. Modified initial elastic properties are

adopted to ensure the elastic stress ficld follows the anisotropic yicld surface. From Initial

elastic analysis for any component we can calculate the value ofm” /m, . Depending on
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the m” /m, the components are classified into two categories as explained previously.
For the components which fall under first category, m" (V,,) gives the lower bound value
and for the components which fall under second category, m/ (V) gives the lower

bound value.

In an actual component or structure when the stresses exceed the yield strength of the
‘material, the component starts to experience strain hardening. Due to strain hardening the
component or structure can withstand more loads. In the traditional way of limit load
calculations, the material models are assumed to be elastic perfectly plastic (EPP).
However, this will lead to a very conservative estimate of limit load for a material that
has a significant stain hardening. Therefore, by considering the effect of strain hardening
while estimating the limit load more realistic limit load can be obtained. The hidden
strength due to strain hardening can be utilized if yield strength of an equivalent elastic
perfectly plastic material model is obtained by integrating this portion of the curve. By
integrating the equation for the material models, the expressions for equivalent yield
strength is obtained. In these expressions all the other variables are known material

properties, so these equations are readily solved to obtain the values of the yield strength

of equivalent elastic perfectly plastic model. The estimated equivalent yield strength
value is used instead of the regular yield strength, and limit analysis is carried out. Two
different strain hardening material models namely the Bilinear hardening and Ramberg-
Osgood models are in particular investigated. The estimated yield strength along with
limit load multiplicrs (using the reference volume approach) are used to estimate more
appropriate limit load of a component with strain hardening material. From Initial elastic
analysis for any component we can ealculate the value of m®/m, . Depending on the
m®/m, the components are classified into two categories as explained previously. For
the components which fall under first category, m" (¥, gives the lower bound value and
for the components which fall under second category, m/ (V) gives the lower bound
value. The results obtained are lower bounded in all the cases. ANSYS [50] software is

used for doing all the analysis in this thesis.

Faculty of Engincering and Applied Science, Memorial University. 163




9.2 Original Contributions

The following are the original contributions from the current research work:

The two-bar method is generalized, and the previous assumption of taking equal

arcas of two bars is proved as an aceurate assumption.

The Elastic reference volume method has been developed, which by correcting

the reference volume effect clastically gives the lower bound limit load multiplie.

The Plastic reference volume method has been developed, which by correcting
the reference volume effect plastically and gives the lower bound limit load
multiplier. The multipliers obtained from this method are bit conservative when

compared to elastic reference volume method.

A new method which corrects both the dead volume effect and the peak stress

effect and always maintain a lower bounded m, method has been developed.

The Elastic and Plastic reference volume methods are extended to the anisotropic

‘materials.

Using the Integration of true stres

strain plots, the strain hardening effect is

incorporated into the limit analysis.

9.3 Future Research

Using the results from Elastic Reference Volume method, a simplified method can be
developed in future. This method can be developed by generating the relationship
between the reference volumes of different components and there corresponding

multipliers. These relat

ns ships can be shown in the graphical forms and there after, by
using a single lincar elastic iteration, the reference volume of the multiplier can be
predicted. Using the so obtained reference volume the lower bounded limit load

‘multipliers can be estimated.

All the reference volume methods developed in this thesis can be extended to different

fields like ship structure design, complex pressure vessel design and complex mechanical

components in future.
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Currently all the methods proposed are developed and tested using the fixed ‘q” EMAP,
which is one of the reasons for the slow convergence. In future these methods can be
extended and studied using the variable ‘" EMAP. While using the variable q" EMAP
we may need to address the issue of sudden change in the multipliers in the second

iteration and fluctuation in the lower bound multiplier with iterations.

The new method proposed with the simultaneous correction of dead volume and peak

stress effects is using the EMAP iterations, which can further be developed for a single

clastic analysis. The multipliers obtained from this method are giving closer
approximates of limit load multipliers, so these can be further used in fitness for service

(FFS) and Integrity assessment of in-service components

‘The reference volume method developed for the anisotropic material in this thesis limited
itself to the study of the orthotropic materials. In future it can be further extended to the

study of completely anisotropic materials.

The inclusion of the strain hardening into the limit analysis proposed in the current
research used the actual stress strain plots as it's their basis of development. In future,
this method can also be developed for engineering stress strain plots which is more
generally used material stress-strain plot. The cutoff-strain limit can be further studied
and a direct relationship can be developed between cutoff:strain and the equivalent yield

stress.
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Appendix-A
ANSYS COMMAND LISTING

Macro’s for Linear Elastic Finite Element Analysis:

Following are some of the sample macro’s used for doing linier elastic analysis in the
research:

1) Thick Walled Cylinder

! Aprogram to analyze the thick cylinder with intemal pressure

Iprep?

*set, i, 65 1 Internal radius=65mm

*set, 10, 90 1 External radius=90mm

*set, ys, 300 1 Yield stress=300mpa

*set, ym, 200¢3 ! Young’s modulus=200e3mpa
*set, pr, 0.47 1P on’s ratio=0.47

*set, p, 50 1 Internal pressure=50mpa

e, 1, plane82, 1 Defining axi-symmetric element

1 Defining material properties
mp, ex, 1, ym
mp, prxy, 1, pr

immed, 1 ! Creating the model

Istr, 3,4
larc, 4, 1,10, ri
Istr, 10,5

1sbl, 2, 5,, delete, keep
Isbl, 4, 5., delete, delete
Istr, 6,7
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Isel, s, line,, 1,2,1
Isel, a, line,, 4,6,2
al, all

Isel, all

Isel, s, line,, 34,1
Isel, a, line,, 7,8,1
al, all

Isel, all

aglue, 1,2
esize, 2
mshkey, |
amesh, all
Isel, s, line,, 1

dl, all,, symm
Isel, all

Isel, s, line,, 3

Isel, s, line,, 2.8,6
sfl, all, pres, p
Isel, all

esel, all
Jquit
Jsolu
solve
Jquit

Jpostl

pldisp, 1
Jwait, 3

plnsol, u, sum, 0
Ireplot
Jwait, 3

! Applying boundary conditions

1 Applying load

1 End of prep? commands
| Entering solver

1 Solving the problem

1 Exiting solver

1 Entering post] post processor

1 Plotting displacement

1 Plotting '’ sum
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plnsol, s, eqv, 0 ! Plotting stresses (equivalent)
Jreplot

Iwait,3

plnsol, epto, eqv, 0 ! Plotting total strains (equivalent)
Ireplot

2) Torispherical head

! A program to analyze Torospherical head subjected to Uniform Pressure !

Iprep?

*set, pi, 3.1415926536
*set, ym, 26203

*set, ys, 262

st 047

*set, prst, 5

*set,t, 50

*set, Isbyd, 0.8

*set, tbyd, 0.12

*set, thyd, 1/40

*set, phitwo, asin((0.5-rbyd)/(Isbyd-rbyd))* 180/pi
*set, phil, 90.0-phitwo

*set, th, Isbyd*d
*set, hh, th-(rh-rk)*cos(phitwo*pi/1 80)
*set, a, d2-k

*set, ri, d/2.0

*set, o, ri+t

*set, h, 6*sqri(d*v2)

*set, ndivl, 5

*set, ndiv2, 70

*set, ndiv3, 30

*set, ndiv4, 120

antype, 0
et,1,82,,1
mp, ex, 1, ym
mp, nuxy,, pr
ki
k2,10
k3,1h
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ol . i R i

k4.r0,h
flocal coordinate system for knuckle
local, 11, 1,8, h

csys,

K, 5. 1k, phil

K, 6, +t, phil

csys, 0

tlocal coordinate system for the head

local, 12, 1,0, hthh-rh

csys, 11
1,3, 5, ndiv3
1,4, 6, ndiv3

csys, 12
1,5,7, ndiv4
1,6, 8, ndiv4
csys, 0

43

esyst

csys, 0
nsel,, loc,x.0
d,all, ux, 0
nsel, all
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nsel,, loc,y.0
d all, uy, 0
nsel, all

csys, 0
sfl, 5, pres, prsr
csys,

sfl, 7, s e
esys, 0

esys
sfl, 9, pres, prsr
csys,

finish
Jsolution
solve
Iquit

3) Unreinforced Axi-symmetric Nozzle

! A program to analyze Unreinforced Axi-symmetric Nozzle

Jprep?

! Inner Radius of head(R) =914 4mm

! Nominal wall thickness () =82.55mm
! Inside radius of nozzle(r)

1 Nominal wall thickness (tn)
! Required minimum wall thickness of head (tr)
1 Required minimum wall thickness of nozzle (tr) =24.308mm
! Internal pressure (p) =24.132Mj

! Young's modulus (YM) = 262Gpa

! Yield stress (YS) = 262MPa

! Poisson ratio (PR) = 0.47

1 Height of the nozzle (h) =10%sqrt(R*tm) =1490.8801 (or) 30"=762

14#4%Setting up of parameters****

*set, hr, 914.4
*set, ht, 82.55
*set, nr, 136.525
*set,nt, 25.4
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*set, p, 24.132
*set, YM, 262¢03
*set, PR, 0.47
*set, nh, 762
*set, ys, 262

1##**Defining the Element type****

ET, 1, plane82,,, 1 IDefining the axi symmetric type of the element
| Change the value to 0 for plain stress
! Change the value to 3 for with thickness

1#***Defining of material properties****
mptemp, 1,0 IDefining the material properties
mpdata, ex, 1, YM

mpdata, prxy, 1., PR

1#¥¥*Creation of model****

IMMED, 1 ! Creating the model
k,10,0,0

K 1,hr,0 ! Creating the comer key points
k.2, (hr+ht), 0

k.3, (or+nt), (hr+ht)

k.4, (ar+nt), (hr+ht+nh)

k.5, nr, (hr+ht+nh)

k,6,nr, hr

Istr, 1,2, ICreating four faces of rectangle

2,6
lare, 2, 3, 10, (hr+ht)
Istr, 3,6,6

Istr,
Istr, 4, 5,6
Istr, 5,6

Isel, s, line,, 1,4, 1
al, all
Isel, all

Isel, s, line,, 3
Isel, a, line,, 5,7, 1
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al,all
Isel, all
aglue, 1,2

esize, 10
mshkey, 1
amesh, all

tirefine, 3,,, 4, 3, smooth
Isel, s, line,, 1
Iplot

ns
nplot
d.all, uy, 0
nsel, all
lsel, all

Isel, s, line,, 4
Isel, a, line,, 7

Isel, all

*#+*++*Entering the solver processor****

Jsolu ! Solving the problem
solve

Jquit

4) Reinforced Axi-symmetric Nozzle

! A program to analyze Reinforced Axi-symmetric Nozzle !

Jprep?

! Inner Radius of head(R) =914 4mm

! Nominal wall thickness (1) =82.55mm

! Inside radius of nozzle(r) =136.525mm

! Nominal wall thickness (tn) =25 4mm

1 Required minimum wall thickness of head (tr) =76.835mm

1 Required minimum wall thickness of nozzle (tm) =24.308mm
! Internal pressure (p) =24.132Mpa

! Young’s modulus (YM) = 262Gpa
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! Yield stress (YS) = 262MPa

! Poisson ratio (PR) = 0.47

! Height of the nozzle (h) =10*sqrt(R*trn) =1490.8801 (or) 30"=762
! rei-bou-rad(Ln)=143.51mm

1¥*++Setting up of parameters****

*set, hr, 914.4
*set, ht, 82.55
*set, hnt, 76.835
*set, r, 136.525
*set, nt, 25.4
*set, nnt, 24.308
*set, In, 143.51
*set, p, 24.132
*set, YM, 262¢03
*set, PR, 0.47
*set, nh, 762
*set, ys, 262
*set, 1, 10312
*set, 12, 83.312
*set, 13, 115214
*set, 12, 54.61

1+*+*+Defining the Element type****
et,1.planes2,..1 IDefining the axi symmetric type of the clement
! Change the value to 0 for plain stress
! Change the value to 3 for with thickness
1#+*+*Defining of material properties****
mptemp, 1,0 IDefining the material properties
mpdata, ex, 1,, YM
‘mpdata, prxy, 1., PR

1##*+Creation of model ***+*

IMMED, 1 | Creating the model

L hr, 0 1 Creating the comer key points
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k.5, (ar+nt), (hr+hntnh)
k, 6, nr, (hr+hnt+nh)
k. 7, (ar+nt), (hr+ht)

larc, 1,4, 10, hr
lare, 2,3, 10, (hr+ht)
Istr, 5,7

Istr, 6,4

le. 100, In
Isbl, 1, 8., delete, keep2

Isbl, 2, 8., delete, delete

Isbl, 3, 5,, delete, delete

Isbl, 4, 6., delete, delete

Isel, s, line.,

Isel, a, line,, 7, 8, 1

Isel, a, line,, 10, 11, 1

Idele, all,,, 1

Isel, all

k, 16, (nrnt+12), (hr+ht)

K, 17, (nr+nt+2), (hr+ht+In-2)
k, 18, nr, 887.0535 Ithis value is taken from ansys point at the same level as 13
larc, 14, 16, 10, (hr+ht)

lIstr, 16,17

k, 200, (nr+nnt), (hr+hnt)

larc, 17, 15, 200, -r3

Istr, 15,8, 6

Istr, 8, 18

Istr, 18, 13

Istr, 13, 14,6

1l 3, 4,12
Ifillt, 8, 10, 11

Istr, 1,2, 6
Istr, 5,6,6

Isel, s, line,, 3,4, 1
Isel, a, line,, 6
Isel, a, line,, 12
Icomb, all,, 0

Isel, all

Isel, s, line,, 8
Isel, a, line,, 10
Isel, a, line,, 13
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Icomb, all,, 0
Isel, al

Isel, s, line,, 1
Isel, a, line,, 9, 11,2
. line,, 14

Isel, a, line,, 7, 8,
Isel, a, line,, 11
al, all

Isel, all

Isel, s, line,, 2
Isel, a, line,, S,

mshkey, 1
esize,
amesh, all

sf, all, pres, p
nsel, all
Isel, all

###++Entering the solver processor****
Jsolu 1 Solving the problem

solve
Jquit
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5) Pressure Vessel Support Skirt

! A program to analyze Pressure Vessel Support Skirt !

Iprep?

! Inner Radius of Cylinder (cyi) =1240mm
1 Outer Radius of Cylinder (cyo) =1290mm
1 Inner Radius of Cone (ci) =
1 Outer Radius of Cylinder (co)=1450mm

1 Wall thickness (t) =50mm

1 Axial pressure (p) =77.362Mpa

! Young’s modulus (YM) = 275.8Gpa

1 Yield stress (YS) = 275.8MPa

1 Poisson ratio (PR) = 0.47

! Height of the cylinder (cyh) =760mm

1 Height of the cone (ch) =0.16/tan(18.05)=0.4909m=490.9mm

1+#9%Setting up of parameters****

4 cyo, 1290
*set, ci, 1400
*set, co, 1450
*set, t, 50
*set, p, 77.362
*set, YM, 275.8¢03
*set, PR, 0.47
*set, ys, 275.8
*set, cyh, 760
*set, ch, 490.9

1444 * Defining the Element type****

e, 1, planes2.,, 1 1Defining the axi symmetric type of the element
1 Change the value to 0 for plain stress
! Change the value to 3 for with thickness

144+ Defining of material properties****

mptemp, 1,0 1Defining the material properties
mpdata, ex. 1, YM
mpdata, prxy, 1., PR
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1¥*++Creation of model**+*
! Creating the model

! Creating the comer key points

ICreating four faces of rectangle

al, all
Isel, all

Isel, s, line,, 7,9, 1

aglue, 1,2,3

Isel, all
mshkey, |

esize,

amesh, all
tkrefine,3,,,1,1,smooth,on

Isel, s, line,, 4
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Isel, all

Isel, s, line,, 1
nsll, 1, 1
sf, all, pres, p
nsel, all
Isel, all

1##+*+Entering the solver processor****

/solu ! Solving the problem
solve

/quit

6) CT Specimen

! A program to analyze CT Specimen !

Iprep?

! Height (h) =125 mm
1 Width (W)
1 Tensile load = 10KN

1 Young’s modulus (YM) = 211Gpa
1 Yield stress (YS) = 250MPa

1 Poisson ratio (PR) = 0.47

! Thickness (t) =3mm

1 Crack length (a) = 46mm

1#*4¥Setting up of parameters***+*

sset, b, 62.5

-m 0, 10003 total load should be divided with
Ithickness when ever we are using with plain stress option
tand plain stress with thickness option is being used we can
tuse the total value of load
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*set, ym, 211¢03

*set, ¢, 27.5

*set,r, 125

1#*++*Defining the Element type**+*

et, 1, planes2,,, 3

nl3

1+++*Defining of material properties****
mptemp, 1,0 IDefining the material properties
mpdata, ex, 1., ym

‘mpdata, prxy, 1., pr

1HerCreation of model*+++

immed, 1 tereating the model

1 Creating the comer key points

ICreating four faces of rectangle

5
2
.3, 4,50
Istr, 4,5, 13
Istr, 5, 6,32
Istr, 6,7, 13
Istr, 7,8, 10
Istr, 8,9,2

Faculty of Engincering and Applied Science, Memorial University.

186



Istr, 9, 1,15

circle, 10,1, 4,, 16
Isel, s, line,, 10,25, 1
lesize, all,,, 5

Isel, all

Isel, s, line,, 1,9, 1
al, all

Isel, all

Isel, s, line,, 10,25, 1
al, all

Isel, all

asba, 1, 2,, delete, delete
esize, 5

type, 1
kscon, 1,5,1,9,
amesh, 3

Isel, s, line,, 1

Isel,all

Isel, s, line,, 10
Isel, a, line,, 25

nsilr, 1

*get, nn, node, 0, count
f.all, fy, TL/nn

nsel, all

Isel, all

1#+#4*Entering the solver processor****

Jsolu 1 Solving the problem
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7) Single Edge Notch bend

! A program to analyze Single Edge Notch Bend problem !

Iprep?
*set, s, 200 ! Total span=400mm
*set, w, 100 ! Width=100mm
*set, ys, 488.43 1 Yield stress=488.43MPa
*set, ym, 211¢3 ! Young's modulus=211E3MPa
*set, pr, 0.47 1 Poisson’s ratio=0.47
*set, pl, 120003 ! Intemnal pressure
*set,a, 50 1 Crack tip length=50mm
e, 1, planes2,,, 3 IDefining plain stress with thickness
nl3
! Defining material properties

mp, ex, 1, ym
mp, prxy, 1. pr

mmid, 1 ICreation of model
k.1,0,0 ICreation of end points
k. 2,197.5,0
.3,197.5,15
k.4,200,25
k,5,200, 50
k. 6,200, 100
k,7,0,100
K,8,175,0
k.9, 175,100

Istr, 8,9
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Isel, s, line,, 2,7, 1
Isel, a, line,, 10
al, all

Isel, all

Isel, s, line,, 1

Isel, a, line,, 8, 10, 1
al, all

Isel, all

aglue, all

esize, 2
mshkey, |
amesh, 2

mshkey, 0
kscon, 5, 1,1,6,2
amesh, 1

nsel, s, loc, x, 0
tnsel, r, loc, y, 0
d,all,uy, 0
nsel, all

el s, line,, 6
nsll,r, 1
dsym, symm, x
Isel, all
nsel, all

Isel, s, line,, 6

nsll,r, 1

*get, nn, node, 0, count
.all, fy, -pl/nn

Isel, all
nsel,all

Jquit tend of prep7 commands
Jsolu tentering solver

solve solving the problem
Iquit lexiting solver

ce, Memorial University. 189




8) Plate with Multiple Crack

! A program to analyze Plate with Multiple Crack problem !

Actual height is 200mm

1 Tensile stress = 100Mpa
! Young’s modulus (YM) = 211Gpa
! Yield stress (YS) = 250MPa

1 Poisson’s ratio (PR) = 0.47

! Thickness (1) =3mm

1 Crack length (a) = 10mm

1#+#9Setting up of parameters****

*set, H, 100
I*set, W1, 25
*set, W, 50

th,c and d are to locate
tinclined cracks

*set, TL,-100 Ihere stress is given
150 no need to divide the total load
by thickness

*set, YM, 21103

*set, PR, 0.47

“set,, 10

*set, ys, 250

1444 Defining the Element type***+

e, 1, plancs2,, 3 IDefining the type of the element

ni tchange the value to 0 for plain stress
Ichange the value to 3 for with thickness

1#*%*Defining of material properties****

mptemp, 1,0 IDefining the material properties
mpdata, ex, 1,, YM

mpdata, prxy, 1,, PR
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14#+%Creation of model****
tereating the model

tereating the comer key points

kscon, 2,0.25, 1, 12
kscon, 13,025,1,6
kscon, 15,025, 1,6

esize, |
lesize, 2,,, 8
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amesh, 1,2

lesize, 21, 12
lesize, 24, 12
lesize, 25,1 12

ize, 2
amesh, 8

nsel, s, loc, x, 0
d, all, ux, 0
nsel, all

nsel, s, loc, y, 0
nsel, r, loc, x, 10, 50
d,all,uy, 0

nsel, all

nsel, s, loc, y, 100
sf, all, pres, tl
nsel,all

/solu
antype,0
solve
finish

9) Middle Tension Panel

! A program to analyze Middle Tension Panel problem

! Tensile load = 100Mpa
! Young’s modulus (ym) = 211Gpa
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1 Yield stress (ys) = 250MPa
 Poisson’s ratio (pr) = 0.47
! Thickness (t) =3mm

1 Crack length (a) = 25mm

**Setting up of parameters**++*

*set, h, 300

tset, wl, 25

*set, w, 125

*set, 1,3

*set,tl, 100 1 Here stress is given
150 no need to divide the total load
by thickness

*set, ym, 21103

-m S 047

°m‘ ¥ 2sn
14###Defining the Element type****
e, 1, planes2,., 3 1Defining the type of the element
13
1 Change the value to 0 for plain stress
1 Change the value to 3 for with thickness
1#4#%Defining of material propertics**+*
mptemp, 1,0 IDefining the material properties
mpdata, ex, 1, ym
mpdata, prxy, 1., pr
1#*+**Creation of model****
immed, | ICreating the model

, ICreating the comer key points

,

0

1
,2,
53w,
24w,
25,0,
6,0,
7
8,
9,

2

a2

0
2,
0
w,h
h
a
0
rHa

2, a+a/2
ata2

FrrrrrEES

0,
, a
49, W,
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Istr, 1,2 ICreating four faces of rectangle

Isel, s, line,, 2, 3, 1
Isel, a, line,, 10, 11, 1

Isel, s, line,, 4, 6, 1
Isel, a, line,, 9, 10, 1
al, all

Isel, all

Isel, s, line,, 7,9, 1
Isel, a, line,, 1

Isel, a, line,, 11

al, all

Isel, all

aglue, all
lecatt, 9, 10

mshkey, 0
esize,

kscon, 1,4,1,9
amesh, 3

mshkey, 1

amesh, |

amesh, 2

Isel, s, line,, 1,2, 1
nsll, 1, 1

nplot
dsym, symm, y
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nsel, all
Isel, all

Isel, s, line,, 6,7, 1

nsll,r, 1
nplot

dsym, symm, x
nsel, all

Isel, all

Isel, s, line,, §
nsll,r, 1
Sf, all, pres, -t1
nsel, all
Isel, all

¥+ Entering the solver processort***
Jsolu 1 Solving the problem
solve
/quit

10) Plate with a Hole

et
! A program to analyze Plate with a Hole problem

IprepT

! Height (2h) =300 mm
! Width (2w) =150 mm
! Hole radius(r) =23
! Tensile stress = 100 M
! Young's modulus (ym) 152 95 Gpa
! Yield stress (ys) = 131.90

! Poisson’s ratio (pr)

1¥*#%Setting up of parameters****

*set, b, 30012
*set, w, 15012
*set, 1, 100 ! Here stress is given
150 no need to divide the total load
by thickness
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*set, ym, 152.95¢03
*sel, pr, 0.47
*set,r, 23

*set, s, 131.90

1#++*Defining the Element type****
et, 1, plane82,,, 0 1 Defining the type of the element

! Change the value to 0 for plain stress

! Change the value to 3 for with thickness
1#+*+*Defining of material properties****
mptemp, 1,0 ! Defining the material properties
mpdata, ex. 1., ym
mpdata, prxy, 1, pr
Impdata, dens, 1., d
1+ Creation of model*#++

immed, 1 ! Creating the model

! Creating the comer key points

Istr, 1,2 ! Creating four faces of rectangle

Isel, a, line,
Isel, a, line,
al,al

Isel, all
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Isel, s, line,, 3, 5, 1

Isel, a, line,, 7 i
al, all

Isel, all

aglue, 1,2
lecat, 2,7

1,3 |
esize, 4 |
tmshape, 0, 2D

|

-Plain stress with thickness

mshkey, 1
amesh, all

Isel, s, line,, 1
Iplot

nsllr, 1

nplot

dsym, symm, y
nsel, all

Isel, all

Isel, s, line,, 5, 6, 1

dsym, symm, x

nsel, all

Isel, all

Isel, s, line,, 4

nsllr, 1

sf,all, pres, -t1

nsel, all

Isel, all
|
|

***4+Entering the solver processor**+*

fsolu 1 Solving the problem
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11) inate Beam

! A program to analyze Indeterminate Beam problem

! Young’ modulus(ym) 206E3 Nimm2
! Poisson’s ratio (pr) = 0.47

1 Density (d) = 2500 n/mm3

14+ ¥Setting up of parameters*++*

*set, 1, 508
*set, w, 25.4

*set, d, 2500
1##++Defining the Element type****

et, 1, planes2,., 3 IDefining the type of the element
nll

1##+*Defining of material properties****

mptemp, 1,0 1 Defining the material properties
mpdata, ex, 1,, ym

mpdata, prxy, 1., pr

mpdata, dens, 1., d

immed, 1 ! Creating the model
1,0,0,0 1 Creating the comer key points
k2,10

k31w

k4.0w

Istr; 1,2 ! Creating four faces of rectangle
Istr,2,3

Istr, 3,4
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Istr, 4,1

al,1,2,3,4 ICreating the area
1 Area defined using previously defined lines

443 Meshing***x
esize, 1

mshkey, |
amesh, all Meshing the Area

r#*** Applying Boundary conditions (Left End)****+ ‘

Isel, s, loc, x, 0 ! Selecting a line with the help of location
Iplot
nsil . 1 ! Selecting the nodes attached to the previous
1 Selected line including the keypoint nodes
nplot
dall,all 1 Constraining all above picked nodes in all directions
nsel, all ! Reselecting all nodes and lines
nplot
‘ Iplot
Isel,all
/replot ]

1#+#%Applying boundary conditions (Right End)****

Isel, s, loc, X, 1

1+ Applying pressure load on the top layer of beam***+ ‘

Isel, s, loc, y, w
Iplot
nsll,r, 1
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nplot
nsel, all

nplot

Iplot

sfl all, pres, p
Isel, all

Iplot

fquit 1 End of Prep7 commands

1##+*Entering the solver processor+*#*

Jsolu 1 Solving the problem

12) Oblique Nozzle

! A program to analyze Oblique Nozzle Problem

IprepT

*set, ri, 300 ! Internal radius of cylinder
*set, ro, 306

*set, mi, 156.5
*set, mo, 162.5

*set, ys, 3394
*set, ym, 108.08¢3 ! Young’s modulus= ms 08e3mpa
*set, pr, 047 1 Poisson’s ratio=0.4
*set, p, 3.0 ! Interal prnsum~3.0mpa
*set, 11, 2400 ! Length of eylinder
*set, 12, 1200 ! Length of nozzle
*set, 1,6 1 Thickness of eylinder
*set, 1,6 1 Thickness of nozzle
*set, hl, 175 1 Cylinder cap
*set, h2, 106 1 Nozzle cap
et 1 s0lid95 Defining element
1 Defining material properties
mp, ex, 1, ym

mp, prxy, 1, pr

immid,1 tereation of model
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eylind, ri, ro, (11/2), (11/2), 90, 270
wpoffs, (ri+(t12))

wprms, 30 trotation of workplane, change this angle for different
esys, Wi tnozzle angles

cylmd mi, mo, -(12/2), (12/2), 90,270

vaba, 1,

veba, 2, w

vdele, 1,3,2,1

vadd 4 5

ot et
esys, wp

wpoffs,., (11/2) ! Creating right cap
wprota,.,

0,

k. 50,42.25, 2904738
k, 51,84.5,259.8076
k, 52,126.75, 198.4313
k. 53,169.00,0
k,54,175,0

k, 55,131.25,202.4

k, 56, 87.50, 265.0038
k, 57,43.75,296.2832
spline, 2,50, 51,52, 53
1,53,54

spline, 54, 55, 56, 57, 1

Isel, s, line,, 1

Isel, a, nc,,ll 34,1
Isel, a,

Isel, a, llne“ 40,43,1

al, all

vrotat, 16,,,,, 53, 54, -180, 1
Isel, al

wpoffs,,, (11/2) | Creating left cap
wprota, -90

esys, wp

£,99,0,0,0

k, 100, 42.25, 2904738
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k, 101, 84.5, 259.8076

k. 102, 126.75, 198.4313

k, 103,169.00, 0

k, 104,175, 0

k, 105, 131.25,202.4

k. 106, 87.50, 265.0038

k. 107, 43.75, 296.2832
spline, 8, 100, 101,102, 103
1,103,104

spline, 104, 105, 106, 107, 5
15,8

lscl s, line,, 8
ne,, 61,69, 1

Al. all
vrotat, 28,,..,, 103, 104, +180, 1
Isel, all

csys, wp.

wpoffs,, (i+(t/2)
wprota,, -30 | Creating nozzle cap

csys, wp
wpoffs,,, (12/2)

wprota,, -90

esys, wp

k,199,0,0,0

k, 200, 25, 1515305

k,201, 50, 135.5330
k,202,75, 103.5150
k,203,100,0

k,204,106,0

k,205,79.50, 107.7291
k,206, 53, 140.7291

k, 207, 26.50, 157.3399
spline, 16, 200, 201, 202, 203
1,203,204

spline, 204, 205, 206, 207, 13
113,16

Isel, s, line,, 20

Isel, a, line,, 87,95, 1

al,all
vrotat, 39,.... 203, 204, 180, 1
ml a

rota,., 90
wpoffs, 1272

Faculty of Engineering and Applied Science, Memorial University.

202



wprota,, 30
wpofs,, (rit(t12))
esys.wp

vadd, 1,2,3,4
esize, 15
mshkey, 0
mshape, 1
vmesh, 5

asel, s, area,, 3,4, 1
asel, a, area, 6,7, 1
asel, a, area,, 10, 16,6

aplot
da, all, symm
allsel

asel, s, area,, 9
asel,a, area,, 11, 12, 1
asel,a, area,, 15, 19,4
asel, a, area,, 20, 22,2
asel, a, area,, 31, 33, 1
asel, a, area,, 42, 44, 1
asel, a, area,, 50, 53,3
asel, a, area,, 55

aplot

sfa, all, pres, p 1 Application of pressure
allsel

nsel, s, loc, z, 780, 820
nsel, a, loc, z, -780, -820
nsel, r, loc, x, 0.- 80
nsel, u, loc, y, 0, 3000

d,all, uy
d,all, uz

allsel

Jquit 1 End of prep? commands
Jsolu ! Entering solver

solve 1 Solving the problem
Jquit 1 Exiting solver
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Macro’s for Non-Linear Elastic Finite Element Analysis:

‘The macro for the non-linear analysis can be obtained by doing some minor changes
to the linear elastic analysis macros. The changes will'be in the material property
definition and the load definition.

‘The generalized macros for these changes are given below:

Material Properties:

*set, ys, 3394 1 Yield stress=339.4mpa

*set, ym, 108.08¢3 ! Young's modulus=108.08¢3mpa
*set, pr, 047 ! Poisson’s ratio=0.47

1####Defining of material properties****1

thtemp, 1, 1
thdata, 1, ys, 0

1%#++ Apllication of load and solving****!
Jsolu ntering solver
antype, static

1Sample load application

*get, nn, node, 0, count

f,all, fy, 10*TL/in 1 Load is increases 10 folds so multiplier
nsel, il 1 should be multiplied by 10.
Isel, all

solcontrol, on
outres, all, all
time,

autots, on
nsubst,100
Iswrite,1

Issolve, 1 1Solving the problem
/quit
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Macro for EMAP Iterations:

The EMAP iterations are used to obtain the converged solution. The following is the
generalized macro used to do the EMAP iterations, in the current research a *g” value
of 0.1 is used, but this macro can be used with any value of fixed ‘g".

Imacro for finding out multipliers;

fpost 1

*ask, NI, Required Number Of Iterations, 1

*ask, q, Enter the 'q'val 1 for plane strain and 2 for plane stress, |
INI_ number of iterations to be run

1 Input the number of iterations to be run

*dim, cnub, array, nd2, ndl ! Def. an array for writing the clement numbers.
*get, ecou, elem, 0, count
*dim, eval, array, ecou, NI+1 | Def. Eval array

*vget, eval(1,1), elem,, attr, mat
*do,i, 1, ecou, 1

*if, eval(i,1), eq, 1, then
eval(i,1 ) = ym

*endif

*if, eval(i,1), e, 2, then
eval(i,1) = ym/3

*endif

*dim, ests, array, ecou, 5 1 Def. array for element stress.
*dim, ests2, array, ecou, §
*dim, vol, array, ecou, |

! Getting the centroidal location of the elements

*dim, loe, array, ecou, 3

*do, lo, 1, ecou, |

*get, loe(lo, 1), elem, lo, cent, x
*get, loe(lo,2), elem, lo, cent, y
*get, loe(lo,3), elem, lo, cent, z
*enddo

Faculty of Engineering and Applied Science, Memorial University. 205




kel o it - B &

tvol =

*do, v, 1 ecou, 1 Reading volumes of each element and summing
*get, vol(v.1), elzm v,volu  lthemu

tvol = tvol + vol(v,1)

*enddo

*do, gp. 1, NI, 1

sp=gptl

! Reading stress into clement table.
1 Sorting of element stresses.

esor, etab, sot, 0, 0
*get, megs, sort, 0, max
etable, eqst, epto, eqv ! Reading strain values into element table.

tm=0 1 Caleulation of reference stress,
*do, k, 1, ecou, 1

*get, els, etab, 1, elem, k

m=els * els * vol(k,1)

st =sqri(srv)

pewwwens finding out the multiplyer values®*###sssansssnnsnnnsnnsn

ML=ys/megs ! Caleulation of lower bound multiplier

*do, z, 1, ecou, |
*get, elsa, etab, 1, elem, z
*get, elst, etab, 3, elem, z
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! Caleulation of upper bound multiplier

MUD2 = MUD2 + MUDI1

MOINI = vol(z,1)

MOIN2 = MOIN2 + MOINI

MOID1 = vol(z,1) * elsa**2 ! Caleulation of MO1 multiplier
MO01D2 = MOID2 + MOID1

MO2NT = vol(z,1) /ml(z,gm ! Calculation of M02 multiplier
MO2N2 = MO2N2 + MO2N

MO2D1 = elsa * elsa * vo!(7 1)/ eval(z,gp)

MO02D2 = M02D2 + M02D1

*enddo
MU = ys * MUN2 / MUD2
MOIN = sqrt(MOIN2)

MOID = sqri(M01D2)
MO1 = ys * MOIN / MOID

MO2N = sqrt(MO2N2)
MO2D = sqri(M02D2)
MO2 = ys * MO2N/ MO2D

*SET, JETA, (M02/ML)

*SET, Tan_theta, 0.2929 ! This is the fixed value shown in the formula of paper

*if, JETA, LE, (1 + sqrt(2)), then
MAT = m02/ (1 +(Jeta - 1) * Tan_theta)
*endif

JETA, GT, (1 +:qn(2)), then
2029 %

JETAF = (1 + m; + sqn(m +cee) * (1 +cee)) - 1)
MAT = M2/ (1 + (Jetaf-1) * Tan_theta)

*endif

cee

t¥cfopen, MULT%gp% 'Writing out the multipliers
*cfopen, MULT,,, append

*vwrite, gp

(.4)
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I(1x,ITERATION NO : ' 9.4)
*vwrite, ML
4)

.4)
1(1x, Multiplier ML : . 9.4)

*ywrite,

(D.4)

1(1xMaultiplier MU : 9.4)
*ywrite, M(

(9.4)

1(1x, Multiplier MO1 :
*ywrite, M02

(.4)
1(IxMultiplier MO2 :
*vwrite, MAT

9.4)

.4)
(.4)

!(1x, Multiplier MAT : ',f9.4)
I#cfclos

*do, k, 1, ecou,
‘w eels(k 1), clab 1, elem, k

14if, gp, eq, 1, o, gp, eq, 10, then

copen, ESTS%gp% 1 Opening a file to write element stress.
*do, k, 1, ecou, |

*get, elsts, etab, 1, elem, k

I¥get, elst, etab, 3, elem, k

*set, ymv, eval(k,zp)

*set, volu, vol(k,1)

*set, Ix, loe(k,1)

*set, ly, loe(k,2)

*set, Iz, loe(k,3)

*vwrite, k, elsts, volu, ymv, Ix, ly, Iz ! Writing element stresses to a ESTS] file.

(17.0,3%,19.4,3%.£11.3,3%,621.10,2x,f11.4,2,f11.4,2,f11.4)
*enddo

*cfclos

Iendif

*do, ¢, 1, ecou 1Def. the values of eval.

st evalle, .,pﬂ), eval(e.gp)
enddo
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I#4++4EMAP PART*#++

*do, m, 1, ecou, 1

ests(m,3) = sr/ ests(m, 1) ! Dividing limit stress with individual stresses.
ests(m,4) = (ests(m,3)**q) ! Elastic Adjustment parameter

eval(m,gp+1) = eval(m,gp) * ests(m,4)

*enddo

Jquit

Jprep?

*do, x, 1, ecou, |

mp, ex, x, eval(x,gp+1)
*if, gp, eq, 1, then

mp, pray, x, 0.47

*endif ! Creating suppurate material properties
emodif, x, mat, x or individual element.

*enddo

Iquit

fsolu 1 Resolving the problem with new
Solve | material properties

/quit

Ipost]

*enddo 1 Closing of Iterative loop.

The out put from theses macros will be two types of files, one is MULT, which
contains the multiplier values and the second is ESTS that contain clement stresses
and location values in them. Further these two files will be processed using
MATLAB to obtain the required plots and multipliers. For using in MATLAB these
files need to be converted to text tiles which can be easily done by renaming them.
The MATLAB files used for the research are provided in Appendix B.

Faculty of Engincering and Applied Science, Memorial University. 209



Appendix-B
MATLAB COMMAND LISTING

The following MATLAB macros are used to process the output files from the ANSYS.
The MULT file should be renamed as MULT.txt file. We can choose any file lteration
files and name them as b.txt, b2.txt, b3.txt, bd.txt, bS.txt files.

Macro for Single Iteration

volrat) + (mo-ml))

m_alfa tangent plot(macro with mref=mo-
$this macro is to plot mo vs sqrt(volrat).
Senter number of iterations(noi) and actual multiplier(mact)

%gat the mult file from aneys and correct it and save as a text file in
the

tsame directory as this file is

i=18 % Number of Iterations
mce=0s81 % multiplier from non-linear analysis
674 % Number of Elements
oig ye250 % vield Stress

tot_vol=0;

n-alfa triangle formation
0001:1+sqrt (2) ;

bb=aa;
0.0001:1+sqrt (2);

1:14143
(A (1) *4+4+d (1) *2-1) / (4*d (1) “2+2+5qrt (d (1) * (d(5) -1) 2+ (d (1) -
1esqrt(2))* (1+sqrt(2) -d(i))))
end

14
el mirqre(2);

For i=1:6:n0i*6
wl(§) (441) 5
mu(3) =mule (142) ;
2oLt (143)

mo2 (3 iva);
iat (3) =mult (1+5)
ma (j) =mact.
3=3+1;
end
for

~1:n0i
mobyml (k) =m02 (k) /m1 (k) ;
$if (mobyml (K) <=1+sqrt (2))
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Lam (k) = (1/mobyml (k) ) *2;
telse

#lam(k)=0.171;
tend

m2bar (k) = (2+sqzt (1am (k) ) #n02 (k) )/ (1+1am(k) ) ;

mObym2bar (k) =m02 (k) /m2bar (k) ;

mObym (k) =m02 (k) /ma (k) ;

end
e

i kmnhymluk 14sqrt (2))
2 (1) /(140.2929% (mobyml (1) 1)) ;

else
mObyml£ (i) = ((2+0.5858% (mobyml (i) 1)) +sqrt ( (2+0.5858% (mobym (1) -
1))2-4))/2;
SMObYWLE (4)= (1+0.2929* (nOBymL (1) -1) ) +5Grt ((140.2929* (mObymL (i) -
1)%2-1
maltr.m i (1) (140- 28208 fgbymle (1) 171
mobym1£
nmm.mebymmn,
end
end
=1

art:

5)*2+8qrt (g+ (g-1+sqrt (2)) * (14sqrt (2) -g) ) )
s=partlspart2;
:0.001:5;

*(2-1)+1;

g
partl=-(((g"2+2)*2-5)*(8+g) -16+g"3* (g"2+2) ) / ((g"2+2) *2-5)*2

- (((g"2+2) *2-5) * ((g-1) * (-3*g"2+4%g+1) +2* (-g*3+2+g"2+g) ) -
81g"2+(g*242) * (g-1) * (1+8qrt (2) -g) * (g-14sqre (2)))/ (((g°2+2) "2~

tCaliculating the total volume of the component

for

b(i,3);
ety

end

tot_vol=voli(en,1);

for i
Vol Fat (1, 1) avoli (4,1 /tot_vo1;
sq_vol_rat (i, 1) =sqrt (voli (I, 1) /tot_vol) ;

ena

tcaliculation of total denominator
tot_c

(b(3,2)*b(4,2)*b(1,3))/(b(1,4));
tot_dins=tot_dintdini(i,1);
numl (,1)=b(i,3) /b(i,4) ;




in=0
num=0

tealiculation of mo with step by step increase of volume;

isl:er

nu-...numnum: (i),

pririeryer
mo(i,1) =sig y*sqrt (nu(i, 1))/ (sqre(di(i, 1)));
Jzobal (1, 1) =m0 L, 1)/mo(1,1);

nactbmisnact/mo(1,1);

Soateulablon of ol tor inttvidiil elmeics
£

i9_y/b(1,2);

ml1_vel (1, 1) =tot_vel-voli (i,

ml1_volrat (i,1)=mll vaw,:uc ot_vol;
sq_mll_volrat (i,1)=sqrt (mll_volrat (i,1));

end

hh=(1/en) ;

* of average mo(t dal method)

+

¥

* refns ((motLe1, 1) smo (L, 1)) (vol, _rat(i+1,1)-
oL zat(x iy

v

¥

mrlemrl+ (vol_rat (i,1)-vol_rat(i-1,1))*(mo(i,1)-mo(1,1))

Smrw=mrw+ (vol_rat (1,1) -vol_rat (i-1,1))*(mo(i,1)+mo(i-1,1))/2;

mr(i-1,1)=mr1;

mr (en, 1) =mr1;
mrow=mo (1,1) +mr1;

if (mroy

ren

if (mref>=mo(i,1))
mreq=mo (1,1} ;
vreg=vol_rat(i,1);

tcaliculation of average m0 method)
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* refnle ((mo(+1,1)+mo(1,1)) * (sq_vol_rat (is1,1)-
saLvel T /2

' mxeil mrefnl

me2=

=10

smrwl=0

for is2:en
mr2emr2+ (sq_vol_rat(i,1)-sq vol_xat(i-1,1))*(mo(i,1)-mo(1,1));
smrwl=mrwl+(sq_vol_rat (i,1)-sq vel_rat(i-1,1))*(mo(i,1)+mo(i-

mrowl=mo(1,1) +mr2;
for i=lien
if (mrowls=mo(i, 1))
vrreql=sq_vol_rat (i1
nd

mreflemrowl,
nrefibulearova/no(l, 1) ;

for islien
if (m:ef))-mou m
nreqlemo

1
bl L

je220;
for islien
geh=gel+ ((((mo(en, 1) *b(i,2) /sig_y) *2-1)*2) *b(4,3))/ (4ot _vol);
ge=sqrt (geh) ;
sig_refs(b(1,2)+(mo(en, 1) /aig y))/2;
gel=sqrt (((((mref*sig_ref/sig_y)*2-1)"2)*vreq)/(4));
it (nref>smo(i,1))

gee=gee+ ((((mo(en,1)*b(i,2)/sig_y)*2-1)*2)*b(4,3))/ (4*tot_vol);

end
ge2=sqrt (gee) ;
end

mge=mo(en, 1)/ (1+ge) ;
mgelmref/ (1+gel) ;
mge2=mref/ (14ge2) ;

Sconstruction of st.line for £inding out new mavg
X1=vol_rat (en,1)
yl=mo(en, 1)

Faculty of Engineering and Applied Science, Memorial University.

213



x2evreq
y2emreq

slopes (y2-y1) / (x2-x1)
yint=yl- (x1*slope)

for islien ¥no of elements from end to control the extent of line
xco(i,1)=vol rat(i,1);
¥eo(i,1) =slopetxco(i, 1) syint;

end
meyintsslopesvreq

tconstruction of st.line for finding out new mavg
X11=5q_vol_rat (en, 1

q:
slopels(y21-y11)/ (x21-x11)
yint1eyll- (x11+slopel)
for imlien Ano of elements from end to control the extent of line
xcol(4,1) =sq_vol_rat (i,1);
Yoo1(i,1) =s1ope1sxcol (i,1) syint1;

end
ml=yintlsslopelsvreql

tplotting mo vs volume ratio
£igure (1)

hold on

ie1:e

y..pxeuvo] rat (i,1),mo(1,1), '

Sabe (v R/ ‘FontAngle', ‘Italic','FontSize',12)
yhbel( m*0', "FontAngle', ‘Italic', 'FontSize',12)

nd(*\it m*0','\it m"0(V_R_p)',"\it m n o n',0)
cithe(plor of m'0 ve ¥ R/V T, Fontangle: s Tealie:, Fon
aveas b, "nre. £i')

size',12)

hold of

splotting mo/ml v volume ratio

g

plot(j,mrefbnl, ' -+k')
plot (3,mactbml, '~+k')

xlabel('V_R/V_T', 'FontAngle', 'Italic', 'FontSize',12)
. 'Fonthngle', 'Ttalic', 'FontSize',12)
"\it m*0(V_R_p)*, \it m_n_o_n',0)
title('Plot of m-0/m L vs v

veas (h, 'mobnl. fig")
hold off

mo

tplotting mo vs sqrt (volume ratio)
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figure (3)

hold on

i-1:ien;

n:quol rat (i,1),mo(i,1), 'k') |

plom et ni]
Blat 3 jadct; -3k}

abel (" \surd (VR / V_T)','Fonthngle', 'Italic','FontSize',12)

ylabel('m*0", 'Fontangle', 'Italic', 'FontSize,12)
legend('\it m*0','\it m"0(\surd (V_R p))','\it m_n_o n',0)

title('Plot of mi0 va \surd (VR /

V_T) ', 'FontAngle', 'Italic’, 'FontSize',12') ‘
saveas (h, ‘nrefl.fig')

hold off

tplotting mo/ml vs sqrt (volume ratio)

h.pn.:(.euox at (i,1),mobml (,1), 'k')
for

plot (3, aeetibL, | eke)
plot (3, mactbml, ' -+k')

xlabel (*\surd (V_R / V_T)','FontAngle','Italic','FontSize',12)
ylabel ('m"0/m_L', 'FontAngle', 'Italic', 'FontSize', 12!
legend('\it m*0/m_L','\it m*0(\surd (V_R_p))','\it mn_on',0)

v \surd
Italic','Fontsize',12)

saveas (h, ‘mobnl1. £ig') ‘
hold off ‘

¢+ caliculating wl for {ndividual slesent
% for is1

' Pi1(1,2) = (adg_yveqre (b(i,3))) /eget (@in (1, 1)) 5
+ en

'

tcountor plots at different Vof max stresses

Ps1=0.01+b(1,2)
P8220.02+b(1,2)

P83=0.03+b(1,2)

Ps4=0.04+b(1,2)

PE5=0.05+b(1,2) !

omrefn=0

for islien
if (b(1,2)>ps1)

ops(i,1)=b(i,2);

omo(4,1)=mo (1,1} ;
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opmosomo (4,1) 1
bym-emou 1) /mact;
omrefnemo (1,1
else
ops (i,1)0;
omo(1,1)=0;

end

if (b(4,2)>ps2)
tetllentl.2);
tmo (4,1)=mo (1) ;
et faty

mm-cmu ll/ml::t,

tmrefnsmo (i

else
tps (4,1)=0;
tmo (4,1)=0;

end

if (b(1,2)5ps3)
thps (i,1)=b(4,2);
thmo (4, 1) =mo(i,1) ;
thpmosthmo (1, 1) ;
thpmobymsthmo (1, 1) /mact ;
thmrefnsmo (1,1) ;

else
thps(1,1)=0;
thmo (4,1)=0;

if (b(4,2)>ps4)
£ps(1,1)=b(4,2);
fmo (1, 1) =mo (i,1) 5
fpmo=£mo (1,1) ;
fpmobym=£mo (1, 1) /mact ;
fmretnemo (1,1) ;

else
p8(i,1)=0;
fmo(4,1)=0;

end
it mil.2)opm8)

Hpvm):ym-hmu 1) /mact;
finrefnsno (1,1

£ips (i,1)=0;
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£imo(4,1) =t

end

omref=omrefn;

fimref=fimrefn;

tPlotting M-alfa triangle
figure (s)
plot (aa, bb)
daspect (*auto’)
]

plot (e, £)
plot(z,1i)

plot (mobyml, mobym2bar, ' -5
plot (mobyml, mobym, '*3")

m_L*, ' FontAn 1t ,'FontSize',12)
T FontAngle’ s Tealic!  FontSize: 1)
of m0/m ve m*0/ml' Italic', 'Fontsize',12)

saveas (h, 'malfa triangle.fig')
hold off

figure (6)
j=1:noi

4 on
xlim([1 noil)

ylin([mo(1,1)-0.02 mo(en,1)+0.02])
Z1im([1 noil)

heplot (3,m0, ' +-k')

xt, Fonthngle', 'Italic!
ianer( nmmm | 'Fontangle', 'Ttalic

Tegend(\it ma0 1+, \it M0 2+, Vit mm it
,'Italic', 'FontSize',12)

saveas (h, ‘mult_vs_iter.fig')

hold of

figure (7)
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ten
1ot (vol_rat (i,1),0ps (i,1),vol_rat(i,1),tps(i,1),vol_rat(i,1), thps (i
(Mol ratid, 1), tpeda) ved cat T, n,np.u 1)
1( V', "Fontngle’, TItalic, ! ize',12)
‘Fontangle!, 'Italic', size',12)
Lh3xr, 1ant, 15k, 0)
ve V_R/V_T', 'FontAngle','Italic’,'FontSize',12)

legend('1%"
title('stres:

£igure (8)

en;
Lot (vol_rat (1,1) ,omo(1,1),vol_rat(i,1),tmo(i,1),vol_rat (1), thmo(i

Jabel (
ylabel (‘'n %o+, TrontAngler, ‘Ttalic:s
legend('1%', 24", 3%, "%, '5%",0)
title( v T4, 'FontAngle', *

Italic','Fontsize',12)

figure(s)

Filinelinspace (min(b(1,5)) max(b(1,5)) ,60) 5
ylin=linspace (min(b(i,6)) ,max(b(i,6)),60) ;
[X,Y) =meshgrid (xlin, ylin) ;
riddata(b(i,5),b(i,6),0ps(i,1),X,¥, ‘cubic');
contour3 (X, Y, 2, 60)

k=surface (X, Y, 2, 'EdgeColor', [.8 .8 .
grid off

view(0,90)

colormap cool

colorbar

title("stre:
stress', 'FontAngle
saveas (k, 'spl.£ig')

8], 'FaceColox", 'none')

profile 1% peak
‘Italic’,

ontSize',12)

hg\lxe(lm

inspace (min(b(i,5)) max(b(1,5)) ,60) ;
yJ)n:]snlyac& min(b(i,6)) ,max(b(i,6)),60);

[X, Y] =meshgrid (xlin, ylin)

2egriddata b (i, 5) b1, 6),tps (1,) X, ¥, ‘cublc’);
contour3 (X, Y, Z, 60)

=surface (X,Y, 2, 'EdgeColor’, [.8 .8 .8],'FaceColor', 'none')
grid off
view(0,90)
colormap cool
colorbar

title('stress profile 2% peal
Eicest. ‘Ponhogie!, Tealler, ‘Pont
saveas (k, £ig)

ize',12)

igure )
xunﬂ;mpa:emm(hu 5)),max(b(i,5)),60) ;
inspace (nin(b(3.6)) max(b(1,6)) 60);

T T emembgeia in piin

Zegriddata(b(i,5) b(i,6),thps (1,1) K.Y, 'cubic’);
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contour3 (X, Y, 2, 60)

lor',[.8 .8 .8], FaceColoxr

title('stress profile 3% peak
stress','FontAngle','Italic','Font
saveas (k, '=p3.£ig')

figuretaz)

xnnsnmpacg(mnmu 5)),max(b(i,5)),60
=linspace (min(b(i,6)) ,max(b(i,6)),60

A =meshgrid (xlin, ylin) ;

~griddata (b(i,5),b(i,6) , fps(i, 1), X,¥, ‘cubic');

contour3 (X, Y, 2, 60

k=surface (X,¥,2, '

ecolor'; [.8 .8 .8],'FaceColor, 'none')

title('stress profile 4% peak
stress', FontAngle','Italic','Fonts:
saveas (k, 'spi . fig')

figuretia)

i space (min(b(i,5)) ,max(b(i,5)),60) ;
ylin=linspace (min(b(i,6)) ,max(b(i,6)),60);

[X, Y] =meshgrid (xlin,

Zegriddatath(i,5),b(L,6), £4pa(t, 1), X, ¥, "cublc’);

.8 .81, 'Facecolor’, 'none')

rid off
view(0,90)

colormap cool

colorbar

title('stress profile 5% peak

stress', 'FontAngle','Italic', FontSize',12)

saveas (k, '=ps. £ig')

figure1s)
xnn.hnapace(mmbu 5)),max(b(1,5)),60) ;
ylin=linspace (min(b (i, 6)) max(b(i,6)),60);
[X, Y] =meshgrid (xlin, ylin)

Zegriadata b (i,5),b(L,6),b(4,2) X, ¥, "cubic’
contour3 (X, Y,2,60)
kesurface (X, ¥, 2, 'EdgeColor', [.8 .8 .8, 'FaceColor

Fontangle', 'Italic', 'FontSize',12)
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Macro for Multiple Iterations

0- (volrat) * (mo-ml) )

m_alfa tangent plot(macro with mre
#this macro is to plot m0 ve sqgrt (volrat)
tenter number of iterations(noi) and actual multiplier(mact)

%gat the mult file from ansys and correct it and save as a text file in

the
tsame directory as this file is

%+ number of Iterations
% Multiplier from non-linear analysis
% Number of Elements

% Yield Stress

g_y=250
tot_vol=0;

seq=[1,4,8,12,18) for fix-q
tseq: “for var-q

for ind=1:5

if ind==1

besortrows (b, -2) ;
elseif ind

b=sortrows (b2, -2) ;
elseif ind

b=sortrows (b3, -2) 1
elseif in

b=sortrows (b, -2) ;
else

besortrows (bS,-2) ;
end

tm-alfa triangle formation
2a=1:0.0001:1+sqrt (2) ;

£0.0001:14sqrt (2) ;

for i=1:141a3
) "4+a*d (1) *2-1) / (4+d (i) *2+2+sqrt (d(4) * (d (1) -1) "2+ (A (4) -

el
Lesart (2))+ (vsqre (2)-ati)))1

£0.0001:1+5qrt (2)
for i=1:1a14
e(i)=l4sqre(2);
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e - eatle
1(3)

3) -nact
malf (j)=mult(i+5);
EERy
ena

for kel:ne

mabyms (k) amo02 (k) /i (K) 1
¥if (mobyml (k) <=1+sqrt (2))
1am (k) = (1/mobynl (k) ) *2;

satasie)(2snar (Lanih)] cd k) /(1+1am(k)) ;
‘mobym2bar (k) =m02 (k) /m2ba
mObym (k) =m02 (k) /ma (k) ;

\mﬂhmlsmﬂbyml )

5% (mobym (1) <alesqrt (2)
Jmn.mnm)/mn 2929+ (mobyml (1) -1)) ;

mobym (
‘ else
‘ mObymL£ (1) = ( (240.5858+ (mObyml (1) 1)) +8qrt ( (2+0.5858* (mObyml (1) -
1))%2-4))/2;
‘ VmObyILE (1) = (140.2929° (mObyml (£) -1)) +aqrt ((140.2929% (mobyml (3) -
1)%2-1);
mnzm-mezm/um 2929+ (mobym1£ (1) -1)) ;
mobym1£
en
end
=1

g
partis- (((g*2+42)%2-5)+(8+g) -16+g*3* (g*2+42) )/ ((g*242) *2-5) "2
part2e- ({(g*2+2)%2-5) + ((g-1) * (-3%g*2+44g+1) 42+ (-g*3+249°24g) ) -
84g*2% (g°242) * (g-1) * (1+sqrt (2) -g) * (g-1+sqre (2))) / (((g*2+42) "2~
5)*2+8qrt (g* (g-1+8qrt (2)) * (1+sqrt (2) -g) ))

=partlepart2;
221:0.001:5;
limst (2-1)41;

vol n:u Heos
q_vol_rat (i,1)=0;

s
tCaliculating the total volume of the component
vo!

for islien
vol=voleb(i,3) ;
voli(i,1)=vol;
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ol (en, 1) ;

vol_rat (i,1)=voli (i, 1) /tot_vol;
5q_Vol_rat (i, 1) =sqrt (vol_rat(i,1));

tealiculation of total denominator

dinl(i,1)=(b(1,2)*b(1,2)*b(1,3))/(b(i,4));
dinstot_din+dinl(i,1);
(3,3)/b(i,4);

for i=lien

n

umenun (4, 1) ;

nu(i,1) =num;

din=din+dinl (i,1);

di(i,1)=din;

motl;themln vasare (u(h,20)/ (sgre 04 4.201);

mobal (3, 1) 30 (£,3) /mo (1,

if ind=
oo (L, 1) -moid, 1)1
ba(i,1)=b(i,2);

1,1);
wora (§,2) = sauux rat(i,1);
end

end
mobml=mo (en, 1) /mo(1,1) ;

% contour plots at different %of max stresses

Ps1=0.01+b(1,2)
Ps2=0.02+b(1,2)
za3 .03*b(1,2)

5420.04+b(1,2)
Pes0.08vb(1.2)

for i-lien
if (b(1,2)>ps1)
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ops(i,1)=b(i,2);

pmobym=omo (

omrefnemo(, 1.
el

ops(i,1)=0;

omo(4,1)=0;
end

if (b(i,2)>ps2)
tps(i,1)=b(1,2) ;
tmotl2iemoll, 1)
tpmostmo (i, 1
[pmobym-l’.moh /1) /mact;
tmrefnemo(i,1);

else
tps(i,1)=0;
tmo(1,1)=0;

end

if (b(1,2)>ps3)
thps(i,1)=b(1,2);
thmo(i,1)=mo (,1);
thpmosthmo (1,1) ;
thpmobymsthmo (1, 1) /mact ;
thmrefn=mo (1,1

else
thps(i,1)=0;
thmo(4,1)=0;

end

if (b(1,2)5psd)
«

fpmo=£mo (i, 1) ;
toockmatell 2)/uacr(
fmrefnemo (i, 1

if (b(i,2)>pss)
ips (i,1)=b(i,2)

S et )
£ipmo=fimo(i,
Eipmabrmetimo(L11) fmact
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fimrefn=mo(i,1) ;

fivrefnesq vol_rat(i,1);
e

£ips(i,1)=0;
£imo(i,1) =

end

omref (ind, 1) =onrefn;
tmref (ind, 1) stmrefn;
thmref (ind, 1) sthmrefn;
fmref (ind, 1) =fmrefn;
£inref (ind, 1) =finrefn;
finrefv(ind, 1) =fivretn;

tcalculation of ml for individual elements

for isl:en
B3 (5,1 msig_y/b(4,2) 5
mll_vol (i,1)=tot_vol-voli(i,1);
Al _volrat (i,1)=mll_vol(i,1)/tot_vol;
q_ml1_volrat(i,1)=sqrt (mll_volrat(i,1));

hhe1/en;

liculation of average 1 method)

mrlemrl+ (vol_rat (i,1)-vol_rat(i-1,1))*(mo(i,1)-mo(1,1));
mrw(i, 1) =mo(1,1) +mr1;

for {11
(mler.:-mu(i
reqevol_ i
enc
¥ if (mref>=mo(i,1))
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' reffvavol rat(i,1);
+

nd
requr (ind) svrreq; L
¥ refv(ind)=reffyv;

for i=l:en

refm(i, 1) =mref;
refmbml (1,1) amref/mo(1,1) ;

liculation of average 1 method)

mrefnl=mrefnly(((mo(i-1,1)4mo(4,1))/2)* (sq_vol
ovoL_rat (4-1,2)1)

at(i,1)-

refiaretd

mr2mrs (q_vol_rat (4,1) -aq Vol rat (i-1,1))* (mo(4,1) -mo(1,1)) ;

mrwl (1,1) =mo (1, 1) smr2

mrowlemo(1, 1) tmx2;
mreflemrowl

vrreqis0;
reffvi=0;
for i=lien
if (macts>=mo(i, 1.
s
end
v if (wefi>=mo(i,1))
v reffviesq vol_rat(i,1);
+

mrefbmlemref1/mo(1,1);
requrl (ind) =vrreql;
% refvl(ind)=reffvl;

for i=lien
refmi (i, 1) smre:
TesIaLR, n-mmn/mu 0
mat (i,1) =
Pathn (1, 1) emact/mo (1, 1)

tcalculating malf tan for iterations Vr/Ve
mz1(ind, 1) smref;
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st i 31
nabymal1enzi (ind, 1) /mall (ind, 1)

if (mzbymall<sl+sqrt(2))
el ek i 1. 10 03 (oA 1Y
1

v
mzbymalfl=((2+0.5856+ (mzbymall-1)) +sqrt ((2+0.5858+ (mzbymall-1))*2-
9)/2;
malttani (ind,1)emml (40d,1)/ (140.2929¢ (mebymal1-1))
mzbyma.
end

tcalculating malf tan for iterations sqrt (Ve/Ve)
m2(ind, 1) emratl

mal2 (ind, 1) =mo (1

mzbymal2emz2 (ind, 2 fmat2 (ind, 15

if (mzbymal2<=l+sqrt (2
T Fean2 (ind. ) cme2 (ind, 1)/ (100, 29290 (mzbyma12-1))
mzbymal2
else
mzbymalf2s ((240.5858+ (mzbymal2-1)) +sqrt ((2+0.5858+ (mzbymal2-1)) “2-
9)1/2;
malftan2 (ind, 1) =mz2 (ind, 1) / (1+0.2929% (mzbymal£2-1) )
mzbymalf2
end

tcalculating malf tan for iterations sqrt (Vr/Ve)

zbymal3nz3 (ind, 1) /mal3 (ind, 1) 5

if (mzbymalc=lssqrt(2))
malftan3 (ind, 1) =mz3 (ind, 1)/ (140.2929% (mzbymal3-1) )
ma}

else
mzbymalf

9)/2;
malftan3 (ind, 1) =mz3 (ind, 1)/ (140.2929% (mzbymal£3-1))
mzbymal3

(240.5858+ (mabymal3-1)) +sqrt ((240.5858+ (mzbymal3-1)) "2~

jelien
if (mref>=mo(3,1))
refv(ind,1)=vvr(§,1);

end
if (mrefl>=mo(3,1))
refvl(ind, 1) =vvrl(j,1);

if (mact>=mo(3,1))
rv(ind,1 1);
rrv(ind, 1)=vvrl(3,1)

+
+

+

+

+

v

+ end
+

*

s

v end
+
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splotting mo ve volume ratio

figure (1)

ielien;

if indes1
heplot (vol_rat (4,1) ,mo(i, 1), *
Plot (vol_rat (i,1),mat(i,1), -k’
Plot (volrat (4, 1) retni 1},

elseif inds:

‘heplot (vol_rat (1, 1) mold, 1),
he plot (vol_rat (i, 1), refm(i 1), '

)
*linewidth',3.5)
)

elseif indes
h:p]cllvn] rat (1,1),mo(
h= plot (vol_rat(i,1), it

b

elseif indeed
¥h=plot (vol_rat (1,1) ,mo(4,1), '=-b')
heplot (vol_rat (i,1) , refm(i, 1), ' -k

linewidth',1.5)
else

heplot (vol_rat(i,1),mo(i,1),

h= plot (vol_rat (i,1), refm(i,1), '

legend('\it m*0', "\it m n o n

iter 8','\it iter 12','\it iter 16',0)

linewidth',1.5)
,'linewidth',2.5)
\it iter 1','\it iterd

end

xlabel (*V_R/V_T', 'Font
ylabel('m*0', "Fontangle
title('Plot of m*0 ve VK,
saveas (h, ‘mrefiter.fig')
hold off

ngle', 'Italic
1

Eigure (2)
hold on

h=plot (sq_vol_rat (i,1) ,mo(i,1),
plot (sq_vol_rat(i,1),mat(i,1),
plot (sq_vol_rat (i,1) , refml (i,1), '~k

k1)

X,

linewidth',3.5)
)

STt foaey
heplot (sq_vol_rat (i,1) ,mo(i, .
hsplot(akvel Tt (1) retm i 1),

elseif ind==3

h=plot (sq_vol_rat(i,1),mo(i, 1), '-.b")

h=plot (sq_vol_rat (i,1),refmi(i, 1),
elseif ind==d

‘h=plot (sq_vol_rat (i,1),mo(i,1),

t (sq_vol_rat (i,1), refmi(i,

b')
At

linewidth',1.5)
else
th=plot (sq_vol_rat (i,1),mo(i,1),'-b', 'linewidth',1.5)
h=plot (sq_vol_rat(i,1),refml(i,1), -k', 'linewidth',2.5)
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tegena(\it no/n i, i
itera','\it iter 8','\it iter 12,
end

mn_on','\it iter 1','\it
iter 16',0)

xlabel (*\surd (VR /V.T)', Angle’, 'Italic’,'FontSize',12)

yisbel (wot, ponthngls), Tealic, ‘Ponzsize' 12)

tiela(:3lok G a3 a

V_T) ", 'Fenth ali
s B e A U 4

Vhotd ot

FontSize',12°)

§ calteulating ul'far individuel elemant
for ia:

BL1(1,1) = (mig_y*eqrt (b(1,3))) /agrt (@ind (1, 1) ;
nd

¥Plotting M-alfa triangle
figure (3)

/bb)
daspect (*auto')
XLim('auto’)

hold on
plot (d,c)

plot (e, £)

plot (z,14)

Aplot (mobyml, nobymbar, *-b')

plot (n0byml, mobym, '+ )

xlabel ('m"0/m L', ‘FontAngle ', 'Italic!, Fontsize',12)
ylabel (‘n"0/m’, ‘Fontangle', 'ftalic', 'FontSize’,13)
title('Plot of m"0/m ve m"0/nl', 'FontAngle’, 'Italic’,'Fonts
saveas(h, ‘malfa trianglel.fig')

hold

WPlotting variation of miltipliers with iteration number

figure (4)

j=1:noi

hold on

Beplot (3001, -1} |
ct (‘auto’)

SAta(it noi))
plot(j,moz2, x-b')
plot (j,m, 'o-y')
plot (j,ma, . -k')

Wplot (3, malf, *.k')

ntAngle’, 'Italic','FontSize',12)
ylabel (‘Multiplier', ‘hmmm]e‘ Tealie’, ! ontsize: 12)
legend('\it m*0_1',"\it m0_2', '\it m_n_on','\it m L',0)

alic','FontSize',12)
saveas(h, 'mult_ve_iterl.fig')
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hold off

figure (s)
i

heplot (vol_rat (i, 1), b(3,2), k')
elseif ind:
heplot (vol_rat (1,1),b(1,2), k')
elseif indes:
beplot(vol_gat(4,1) bi4,2), - k')
elseif i
n-p)ouvn) rat(i,1),b(4,2),'-k', 'linewidth',1.5)

linewidth',2.5)

“heplot (vol_rat(4,1),b(1,2),
end

xlabel('V_R/V_T', 'FontAngle', 'Italic', 'FontSize',12)
ylabel('Stresses', 'Fontangle', 'Italic', 'FontSize',12)

Vicgend (1\it iter'17, \it iterd’, \it iter 8%, '\t iter 12',\it iter
18',0)

Aessoniite Teke 2l VIEEIRHHEE dtar Llhehie dcasBn ol dres

alic', 'Fontsize',12)

el T s V_R/V_T','FontAngle',
aveas (h, 'str_ve_volrat.fig')

figure (6)
ielien
hold on
if indes1
heplot (vol_rat (i,1),mo(i,1), 'k
elgeif ind==2
heplot (vol_rat (i,1),mo(4,1), ' sk’
elseif inde=3
heplot (vol_rat (i,1),m0(i,1), '~ .k
elgeif ind==d
heplot (vol_rat (£, ) imo(L,2), (k! . Mnewideh, 1.8
18
h-plelYVel rat(4,1),mo(4,1), ' -k', ' linewidth',2.5

S (B TR Rt , Yootk )
ylabel('m*0', "FontAngle', 'Italic','FontSize',12)

Yitle('Plot of mi0 va VR / VT, -Fonthngle lic', 'Fontsize',12')

¥legend('\it iter 1','\it iter 2','\it iter 3','\it iter 4','\it iter

0)

legend('\it iter 1','\it iterd','\it iter 8','\it iter 121, '\it iter
[}

aveas (h, 'm0_ve_volrat.fig')

£igure (7)
ielien

1
heplot (sq_vol_rat (i,1),b(,2), k')
eloeif indee2

he=plot (sq_vol_rat(i,1),b(i,2), k')
elaeif indes3
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heplot (sq vol_rat (4,1) b(4,2). *
eloeif inde=
h-plot(lq_vul_rlt{l,n,b(i,z}. k!, *linewidth',1.5)
else
h=plot (sq_vol_rat(i,1),b(4,2), ' -k', ‘linewidth',2.5)
end

xlabel (*\ourd (V_R/V
ylabel ('Stresses’, 'FontAngle' , 'Italic', 'Fon ',12,
Siimal 1k Bl 1%, 8 i 3, "Vt S £ VI A N Lo

‘FontAngle', ‘Italic', '

ize',12)

iter 1v,'\it itera’,'\it iter 8','\it iter it iter

surd (VR
ve_sqrevolrat.fig')

ontangle', 'Ttalic', 'FontSiz

12)

if indesl
h=plot (sq_vol_rat (i,1) ,mo(i,1),

elseif indms2
he=plot (sq_vol_rat (i,1) ,mo(i,1),

elseif indes3
heplot (sq_vol_rat (i,1),mo(i,1), k')

elseif inde:
heplot (sq_vol_rat(i,1),mo(i,1), k', linewidth',1.5)

else
heplot (sq_vol_rat (i,1),mo(i,1), ' -k', 'linewidth',2.5)
end

xlabel("\su Fontangle', ‘Italic', ‘FontSize',12)
ylabel('m"0', 'FontAngle', 'Ita ‘Fontsize',12)

title('Plot of m"0 vs \surd (V_R

V_T)', 'FontAngle', 'Italic', ‘Fonts

Viegend("\it iter'1', "\it iter 2

',120)
"\it iter 3','\it iter 4','\it iter

)
legend('\it iter 1','\it iterd’,'\it iter 8','\it iter 12','\it iter

saveas(h, 'n0_vs_sqrtvolrat.fig') /
end

if (mz1(i,1)>=m00(3,1))
refv(i)svvr(3,1);

end
if (mz2(i,1)>=mo0(3, 1))
refvi(i)=vvri(3,1);

end
if (mact>=moo(3,1))
v =wr(3,1);
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rrv(i)=vwrl (3, 1);

x', 'FontAngle','Italic', 'FontSize',

title('Plot of Multiplier

Iter.No','FontAngle','Italic',

‘Fontsize',12)

£igure (10)
1=1:5

w2=plot (seq, malftan2,
daspect (*auto’)
xLim( (1 noi])
xlabel('Iteration Numbex','FontAngle','Italic','FontSize',12)
ylabel('Multipliex','FontAngle','Italic',FontSize',12)

,seq,mz2, '+ -b', seq,mact, "

Tegend('\it m*T_\propto(V_R_p) ', \it m"0(V_R_p) ',"\it m n o n',0)
title('Plot of Multipliers v

Iter.No', 'FontAngle', 'Italic esize!,12)

figure (11)

ie1:5

w2eplot (seq, refv, '+-b', seq,xv, ' *-k')

dagpect (*auto)

xLim( (1 noil)

xlabel (*Iteration Number!,'FontAngle', 'Italic’, 'FontSize',12)
ylabel('V_R/V_T', 'Fontangle', 'Italic', 'FontSize',12)

legend("\It (V_R/V_T) p','\it (V_R/Y.T) n_on',0)

title('Plot of V_R/V_T ve Iter.No','FontAngle', Italic','FontSize',12)

figure(12)
i=1:5
w2=plot (seq, xefv1, '+-b', seq, rrv, '+ k')

daspect. )

xLim( (1 noi])

xXlabel (' Iteration Nunber!,'FontAngle','Italic', FontSize',12)
ylabel('\surd (V_R/V.T)','Fontangle', ‘Italic','FontSize',12)
legend(‘\it \eurd (VR/V.T) p','\it \surd (V_R/V_T)_n_o_n',0)
title('Plot of \surd (V_R T)
Iter.No', 'FontAngle','Italic', FontSize',12)

aut

figure (13)

im1:5

wa=plot (seq,malftan3, ' -q',seq,mz3, '+ -b', seq,mact, ok ')
daspect ('auto')

xim([1 noil)

Xlabel (' Iteration Number!,'FontAngle', 'Italic','Fontsize',12)
ylabel (‘Multiplier', Fonthngle','Italic', Fontfize',12)
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legend(*\it n’T
title('Plot of i

Iter.No', 'Fontangle','Italic','FontSize',12)

figiean)

2-plotk5eq finrety, '
daspect ('auto’)
xlim([1 noil)
xlabel (' Ite:

ylabel (
legend ("
title(

.'Italic’, 'FontSize',12)
Fontsize',12)

Italic','FontSize',12)

Sample macro for simultancous correction of peak stress and dead volume effect

clear

for is1:6:n0i%6
mL(3,1) =mult (i41) ;
mu(3,1) =mult (i92)
m011(3, 1) smult (143
m02 (3, 1) mmult (i+4) ;
mat (1) -milt (4s)
ma(j,1
memm emo2(3,1) /13,17

if 1
erit1(l,1)=1;

erit1(l,1)=(m02(1-1,1) -m02(1,1)) /m02(1-1,1);
if (critl(1,1)>=0.01)
iter1=1;
end
end
1e141;

if 3
crit2(j,1)=1;
else
crit2(3,1) = (mat (3, 1) -mat (3-1,1)) /mat (3-1,1);
if (crit2(3,1)>=0.01)

iterz=3;
end

end
Je3e1;

for

¥ i=1:1:50
ged (i,1)=m02(1,1) /ml (4,1) 5
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if (gei(i,1)>=1+sqrt(2))

(gei (i,1)*gei (1,1)))/(2+gei (4,1)) ;

Rob(t, 1) 3o adbegdi L, 100

2 (4, 1) * (Rob (1,1) /Robd (i, 1.

GeEdDa((1s0, 2929+ (gei (i,1) - m.gqmma 29294 (gei (1,1)-1)) *2-

m;

¥gef (1,1)=((240.5858% (gei (1,1) -1)) +sqre ((2+0.5858+ (ged (1,1) -1)) *2-
9)/2;

mal (i, 1)=mac(i,1)/(140.2929% (gef (1,1)-1)) 1

else

PALE(L, 1) <n0a (1) (1402525 (geL (4,10 -22)s

mac (i, 1) =m02 (i, 1]

end

if

eterit

else

Crit3(i,1)=(malf(i,1) -malf(i-1,1)) /malf (i-1,1);

if (cri€3(d,1)>=0.01)

3-1;

ena

end
end

malc(i,1)=malf (i,1);
mle(i, 1)=ml(i,1);

figure(1)
3=1:inoi

pect (*auto’)
XLim([1 noi])

d on
plot (3,mo1, '+-x")

,'Italic', 'FontWeight
Fontangle

12)
negenm \it m*0_1,'\it m®0_2','\it m_a_c_t','\it m_L',0)

, 'FontWeight ",
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figuze(2)
120

d.a:pecr.( rauto’)

ok . wei (5. Ty M oF
h=plot (k,m02 (k, 1), 'x-b')
plot (k,ma (k, 1), .-k’ )
plot (k,malf (k, 1), k )
plot (k,ml (k, 1), ' )
tplot (3, mat (3,1),'.g")

xlabel (Iteration

Number®, ' gle’,'Italic’,
ylabeﬂ‘»m]r\‘]wn‘, Fontangle
,12)
legend{‘ itn

ontweight ', 'bold’ size',12)

ght', 'bold", 'FontSize

it m_a_c_t',’\it m"\propto_T','\it
Ctiatimes of Multipliers v
Iter.No','FontAngle','Italic ‘bold’, 'Fontsize',12)

saveas (h, ‘mult_ve iterd.fig')
hold off
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Appendix-C

EMAP Iteration Results for All Examples

In the Following Section the EMAP analysis results if all the problems, upto fifty

iterations have been provided. For the EMAP analysis a ‘g’ of 0.1 has been used. It can

be seen from the results that even after fifty Iterations of EMAP the solutions are not

completely converged onto non-lincar, where as using the methods developed in the

thesis they are converging much faster.

‘The convergemee criterion used for different methods in this thesis are:

s. Method Category of Convergence Criterion
NO Component
1 |Elastic Reference volume | Any Category
Method
2 [Plastic Reference Volume | 1 Category W) —m' V),
Bl <0.01
‘ Method m W),
2" Category my (V) 751(",,
m (V)
3| Lower bounded m] Method | 2" Category
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“Thick Walled Cylinder Torispherical ead Unreinforced Axi-

teratior

L

1.9601

2814 | 2.2616 | 1.0863

2794 | 2.2602 | 2.0104

2775 | 2.260 | 2.0325

20527

2,0881

2707 | 2.2663 | 2.1036
21176

I

1.86

1.8509

1.8507

1.8505

1.8503
1.8502
0

2.2477
22484

R

8

&

i

o

H

4992
1,504

22489 1.8353 | 1.6305

2.2495 5

2.2499 4419 | 1.8587 | 1.8342 | 1.5385
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terati

Reinforced Axi-symmetric | Pressure Vessel Support
Nozzle Skirt

CT Specimen

[1.5788

[1.6803

1.9855
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