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Abstract

A direct secant method used to predict the plastic limit load of framed structures is

presented in this thesis. Instead of using clasical techniques, it utilizes two or more

purcly clastic analyses to predict the limit load. Secant rigidity of structures is

modified based on the result of the frs purely elastc analysis.  terative reanalyses

By sclctng the
potnia pastic hinges arelsed. The esult can be used to prcict the plastic limi
ood s wel as the colapse meshanism. The imit load calculated by the diret
sccan method i compared 1o the solution of other rdionl analyses, where
applcable.  Generaly, th direct sccan method s an atractive alematve for

evalusting the limit load of framed strctures.  The results are a significant

improvement over traditional methods which are illustrated in the thesis.  Similar

At the it p o
prliminary and cmpirical mehods for analyzing sabilty ae suggested. Factor C
and factor are invesigted o evaluste the crical load. Ths tesis inestgaes
large deflcetion by using smilr idea nspird rom the diret scantmethod usd for

analyzing frame stability. Factor 1 i investigaed and uscd to analyzing the lar

deflection

The method is excuted by ANSYS software using APDL routines. The problems.
solved include: Portal frames, Two-bay Single-storey frame, Two-bay Two-storey.
frame as well s Multistorey Frame Subject to Concentrated and Distrbuted Loads,

The results from the sbove analyses compare with other traditional methods closely,



‘and the error s no more than 5%, thus demonstrating the usefulness of the direct

secant method.
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Chapter 1

Introduction

1.1 General

primary goal One

of the main issues in such a design process s the identification of all the potential

devise strategies and techniques for avoiding collapse and saving cost while
implementing the design. During the design process, they are expected 0 use fust and
aceurate methods 1o estimate the limit load carrying capacities. Therefore, such

methods are of significantintrest 0 current researchers.

r these maximum

developed on the basis of the two bounding theorems, viz, the upper bound theorem

and the lower bound theorem as well as approximate step-by-siep. iterative

formulation

Thre ars varioustehnigues ud for assssing “acual limit o such s theoretical
(Closed form') methods based on minimizing or maximizing the upper or lower
bounds respectively,the fnite clement nonlincar analysis and various other ‘robust”
methods.  Theoreticl analysis is casy 1o apply for simple strctures but i ot
prcical for complex strctures. Even if their aplicaton is fasibl, for most

siuations the procedures ae tedious.



With the development of computer techniques, cngincers are able o carry out

in coniy fiite
clement ansyss (FEA). T FEA has been succesfully appicd in a great many
fickds. Finite clment nonlincar analyses can be used to obtain the lmit load for
caborste and quit complx structural problems. 1 th procedure is appied with
srat car and propery vriied,the results of nonlinar FEA ca be coniderd o b

accurste for practical purposes. However, it costs a great deal of manual effort in

verifcation as well ite of the cheap

computing power available today, the discretizaion of practical problems is

increasing in complexity sicadily). To guarantee the accuracy, many iterations are

ai

necded. The control of convergene is some clt to handle, It reqires
engincrsto possess a vry strong background in nonlincar FEA and much procical
experience o dett and avoid mmerical diffieulis. Even so, we need an
independedt verficaton mechanism for the fina esuls.Theoretical closed form

Solutions are obviously unavailable for complex sirctures o act as verifiers. In

view of this, a resonably ‘accurate’, easy and fust method 10 solve the limit load

“Robust methods’ ry

Robust methods e one or more lincar analyses 1o solve. nonlincar probles.
Therefore, they are fste ke clastic snaysi and avoid the drawbacksthat ponlincar
ansysis methods have, such as ineremental erton problms, numerical insabily
and comvergenc diffiulcs. Using the “robust methods’, rescarchers can hope 10
evaluat it load capcitis in dirct maner and sove problems that adionaly
depend on onlincar anlyses. The word “rbust implies that the analysis can
withstand being ovely senstv to mumerical and ober dificulics while at th same

time being reasonably accurate. The ‘robust” nature allows these methods 10 be




potcntially appled with an extensive scope including diferent srctural shapes,
boundary conditons and loding types. 1t would be advantageous o develop such
robust methods forclementary design of components, plasic limit capaciy
cleultion,estimation of crtial loads fo buckling et It should be noted tha for
the purpose of the prsent stdy, it oad” implics the maximum lod capacity of
the sructure or component fo a givenset of propertcs and lod patems. 1 s ot
the stisical it load (obtained by using load facorson the service loads) tha the

structures are designed for s i limitstates design and LRFD.

I Canada,see structues are desgned as per CANCSA-SI6-01 [2005] and other
Sandards. The AISC LRFD) [2005) secification is sed in USA for sice desgn.
Usally, strctural limit sate dsign s performed using foctored loads and ther
efects on indivdual members wsing clsic anaysis. This ignores the poential
iengh thaexss beyond the il eacing of member capcity at any prticlar

location which implies that there is no reserve strength left when one member is

il a any par necded for
includin thereistibution fTctsand estimating th ulimate o e’ imitloads of
Srctures. - Although teative plastic analysis methods ar permittd by the codes,
they are raely used in practice.  One of the main essons for this nousage isthe
unavailability of simple 10 use techniqes.  On the other hand, icar lastic FEA is

extensively used in routine d In that sense, ‘robust methads' that use simple

linear analyses are a welcome addition 0 exsting methods.

Two main factors influence limit loads of steel sructures: plasicity and buckling.
Almost al the strength failure modes should include these effects. Therefore, it is

necessary to focus on plasticity and buckling when assessing the strength of sccl



strutures

“The curtent study focuses on investigating the use of direct secant modifications to

1o plasticity
and stability cffcts. An atmpt il be made t predict are defection behaviour
of beams, ctc., using these echniques 33 wel. The method used s adaped from
Adur(1999]and Bolar & Aduari, 2006] i inspird by existing echniques soch
a the plstic inge methods [Nea, 1977, the rnode method [Seshadi, 1997], and

nonlinear FEA [Bathe, 1996], tc.

1.2 Objectivities

Adapt the direet secant method 1o framed structures and implement it in
ANSYS software using APDL routines (o carry out the estimation of limit

Toads due to plasicty.

2

3. Investigate the use of the method to analyze the large defletion of simple
beams.

4 i from

other methods and estabish the applicabiliy.

1.3 Organization of the Thesis

“The organization of the thsis is briefly described bellow:



(Chapter 1 gives general background, objectives the present study, e

Chapter 2 givesltrature revien: Some of the basic knowledge relatd o it loads
and stabilty i deseibed. Next, raditona robust methods,such as R-Node method,
m, method ar reviewed. Lastly theprinciple of diret sccant mehods i genealy
discussed. Some of the rlevant lcatre review is inclded in aer chapers, 5
approprise

Chapte 3 focuses on the application of dirct sccant metbod to plasic limit load
stimaton. Review of pasic hinge methods i irst given. The basic concepts such
as plastic hinges and plastic colapse mechanisms ar reviewed.  The application of

robust direet secant methods on for plasic analysis is then introduced. ~The limit

load of ol

Chapter 4 describes the use of direet secant methods in solving buckling problems.

Poral
Subject to vertical and lateral forces are investigated. A proportionality factor s
suggested to linearze the procedure. ~ Critical loads for elastic buckling of different

portalframes are solved,

Chap i Direet
secant method s used for approximately analyzing the large deflction of the beams

(and sway of poral frames).

Chapter 6 quickly summarizes the thesis and outlins the main conclusions for the

thesis,




Chapter 2

Literature Review

21 Buckling and Structural Stability

Buckling is an instability phenomenon that results in sudden filure without much
warning. When relaively long members of structures are subjected to. axial

compressive forces which are large cnough, the members will suddenly suffr large:

failure. In practice,
for columns with imperfections and slight initial load eccentricities that will be

Subject o large lateral deflections at specific criical loads.

Buckling load s refrred to the soluion resulted from imperfect columns which cxist

allover the world in actual the

concpt, called critical load, is known as the solution calculated from the perfect

column. There is i column’” i the real world, s0 the concept of

absolutely st

ertical . and it

211 Stable Equilibrium

1fth elasic structure is applied a small enough external disturbances, it reacts simply

by vibr sate, In other words,

although the small disturbances cause the vibration of the structure, the structure is

able to mainiain the original stat afer the vibration disappears.




212 Unstable Equilibrium

1 the elastic structure s not abl o maintain the original sate afer it is applied the

disturbance, the equilbrium is unstable. It will isturb the positon of each point and

tend o diverge from the changed equilibrium stat.
213 Neutral Equilibrium

“The boundary between the stable equilibrium and unstable equilibrium i called as
neutral equilibrium. If the structure undergoes both stable cquilibrium and unstable:
equilibrium, the external reason which makes this process is called as “ritcal”, such

s ritcalload, erical moment and critial displacement’

22 Principle of Stationary Potential Energy

| R e partick work done

by all the forces acting on the particle is equal (0 7.

Consider that a st of forces /, act on a small particle, and it undergoes an

arbitrary displacement 4, During the displacement, each force acting on this

particle will o a st of work I, 0 the total work done by these forces is:

T

e
1 the parice s in cquiibrium, the total forces acted on the partice ar 7210,
which means thatthe toal work done by these forces must be also zer. This
esults in the soluion that the virual work must b zeo i the parile s in
cquibrium,

2. For any abitrary displacement, an clastc body is in equilibrium if the virtual

7 TP K.



work done by the extemal forces plus thevirual work done by th interal forces
iscqua 0 zer0, The ttal it ork done by the forces can be ividd ino two
parts: the irtua work done by the xtermal and the viral work done by the
intemal forces. Based on the previous theory above, if the clastic body is in
equiibrium,the ot viral work st be 7o, Therelore he viral work done
by the extemal fores can be considered a a group and corespondingly, the work
done by the intemal forces can sl be considered a5 another group. S0 it can be

expressed as:

oW+

@2

For any small displacement, the elasic structure is in equilibrium if no change
ocur in the otal potential energy of the system. The strain encrgy change stored

virtual work

GWi=—GU. The toal potetial enrsy comsists of the st enery and the
potntal enrgy due 1o exemal fores. I the strctre s in cqilibrium, he
ncrement of tolal potenial encrgy must be zero. If  siueture has an infnite
number of dgrees of feedoms,equiibrum must be esablished only under he
condiion that the toal potnal cnrgy does ot change fr any possble changes
in the displaement of the system, Therefore, he simcture has only a sigle
degre of freedom, equiibrium mst b esablished by equiing tht 1o change
oceurs n one dispacement

awn s
& @3)

Wy

Sine the d is arbit

W,
e e




2.3 Basic Approaches for Critical Load

Based on the theory of equilibrium, citcal load can be calculated in two ways. The
frst approach answers the question that at which load the neutral equilibrium is
possibe. I is not necessary 1o check whether the structure is stable or not. Instcad,

one has only 10 establish the equation to find the critical load in order that the total

potenial coergy is cqual o zro. By requiring (U+1)-0, crtical load can be
found. The second approac i to determin the load a which the changing fom
stable cqilbium to unstabe cqilbriumis ossbe. It dess with the load at which
the neutral cquilibium occurs. I other words, the cfical load makes the neural
cquilibrium appear. As the boundary of the siable cquilibrium and unstable
cqilibrium, neutal equilibrum can be determined by finding the load at which the
Sccond variton of the tota potental encrgy changes from postv 1o negative
accomplshed by

FU+1)-0 o
Alhough both of these approaches can be usd to fnd the riicl load, they siay in
iffrent levl, The fis approach can llow clastic deformtions ofsructues before

the buckling oceurs, which means that the first approach pertai

o “static leel”
Threfore, the first spprosch is wsualy refered 1o st approach -The second
approsch i said 0 obain the boundary betwee the sible cquiibrum and unstable
cquiibrium, and it can alow relaivly small free vibrton of the srutures, 5o the
Sccond approach perains to “dymamic lvel". This approac is calld as domamic

approach



2.4 Upper Bound Theorem and Lower Bound Theorem

241 Upper bound Theorem

I mathemaic, an upper bound of set § means an clemen P whichis greate or
equal o cvery clment inthe st . Insructuralanalysis, the upper bound method s
defined as:For certin frames which re subjctd 1 st ofload acor . very load
facor 4 calculstd from evey posible il mechanism must b grescr than or

called as “Kinematic Theorem”

242 Lower Bound Theorem

An lower bound of a set S, accordingly, means an clement P which is less than or
equal o every clement in the set 5. In structural analysis, the lower bound method is
defined as: 1f the load factor i both safe and statically admissible for cerain frames,

the value of lad fictor £ must be less than o equal 1o the load factor . corresponding

1o the collapse mechanism, It s also called as” Sttie Theorem’”
25 Critical Load of Columns with Various Supports

251 Ideal Column

The issues involving structural stability are complex. The behaviour of an ideal
column s well known and s reviewed below. The following assumptions are made

for ideal column

1. The column is perfectly straight.



Loads are appled along centroidal axis.

Material follows Hooke's Lavw and s homogencous

Column bends and bucks in a single plane.

5. Deformations of the columns are small enough.

252 Euler Equation

A hinge-hinged column is axially loaded, which is shown in figure.2.1. The intermal

‘moment at ny locations with defletion yis

@6

@
“This is homogeneous, linear and sccond-order differental cquation with constant
coeffcient. It can be solved using methods of differential equations. The general
solution of equation 2.7 is:

y=CetrCe Ty
-
here k=L

Using the elation

coskrisinke @9
e general soluton is writn n the form:

AT @10
I order to caleulate the value of A and B, we need to give the boundary condition of

hinged.

inged column:




@1y

@12)
8=0 @13)
Asinki=0 @19

s not allowed to be zero because  can be any value under this condition. Since

e @15

‘Substitute the expressions o the equation 2-10 leads to

poneEl
G @16
P is obained by seting n-1
prEl
7 @in

“This is the Euler load. 1t i the maximun load for the column capacity and it on the
verge of neutral neutral cquilibium. In other words, Euler load is the transition from

stable 0 unstable equilibrium. The column keeps i

ight until external applied loads
reach the Fuler load. At Euler load, the column suddenly bows out and he lateral

defection becomes extremely lrge.

253 Critieal Load of Columns with Various Supports




Boundary Condition | Hinged-hinged | Fixed-Tied ged-fixed | Fincd-free
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26  Limit Load and Limit State

261 Limit Load

Limit oad 7, s the maximum load which structures can take in srvice. It i equal 1o
the product ofload factor A and external applied load P, = AP Itis known tha imit
load s proportional 1o load factor, which implies if the external applicd load is

‘constant load ictor can be used o predict the limit load

262 Limit State

Basiclly, it fond givesthe structures thelimit state. Limitsae n fct s the state
When the fictor loads reach the lmit loads. It namely means the fnal st of the
Sructres subjectd to incresing load. Gencrally, Limit st desgn includes two
types thefet s cale stength i stte and the other i called servceabily i
ate Stength it state i concemned with the situations of load capaciy such s
collpse mechanisms due o plasti hinges nd as instabilty because of bckling. On

the other hand, serviceablity deals with the situations of the unacceptable




serviceabilty. ol

The strengh lmit sate design i governed by the limit load design which is carricd
out by the factor loads. When the factor loads reach the limit load, the structures are
Dot allowed to have any potental strength (0 resist the factor load. In other words, if

loads, th

wil collapse. The collapse mechanism because of plastc hinges can be successfully
solved by the secant method. Based on the modified geometrical properics, the
reanalyss can predict the limit sate and calculate the limit loads. The results
generated by secant method are better than 95% or more. Instability including the

effectof buckling, howe

27 Elastic Perfectly- plastic Model

2. in Relation of Mild Steel

1 Stress-s

10 necessry t inroduce the stres-stin relaion of mild siel The mateil is
widely usd inthe contrcton ofsrutures. The relation btween siess and siin
for mild stel in tenson i Janer in he clastic region unilthe srsses causd by
facor loads rsch the upper yield srngth. This is shown in Fig 22. The point a
represents th upper yickd srength locaton. As the factor loads keep incrasing, the
tress il suddenly drop down o the lower yild stres lcaton b, The incrasing
extemal applied facor loads cause th incess of the strin which s in he egion
called stain hardening range. This i shown i region be. The maximum s is
reschod at the point ¢, beyond whicha neck forms and then the sress decrease uni



Fuptures happen at d.

272 Elastic Perfectly- plastic Model

Engineers showed much interest in the yield line oa , which is described in Fig. 23
Strain scale is enlarged {0 give a more legible diagram. The slope of the frst clatic

line s known as Young's modulus. ~ However, i

is not casy 1o find the ral stress and

srain curve of mild steel near the yield point, because inevitable cccenticitis of

Morrison in
the yield point, proportonal lnit of elsti line and clastic limit were coincident and
that the strss-strain curve in compression s the same as the onc in tension until

strain-hardening happens. [R. C. Hibbeler., 2005]

“The upper yied s not usually exbibied by some maeral, and the uppe yield strss
can not iflence plastc moments. Therefor, the clastc perfetly plastic relation
forsrss-stin s often identifed s the neglct siminhardening. a, is defincd as
the yield strength,at whih the extermal appied fonds can not make the srss

increase anymore.  The sireses keep constant while the strains keep increasing until

This




2.8 Failure Criterion

281 Maximum Principle Stress Criterion

th,yieldding will

%Sy @18
282 Von Mises Yield Criterion
“The Von Meises stressis expressed as:
e, + .~
@19

inwhich 0,,,and
case, this stress becomes uniaxial sress.  If the expression is based on a local

coordinate system, it is written s:
0, =10, =0, +(0,-0.) +(@,~0,) 165y + L+
A S R L T )

Plastic yield occurs when the von-mises sress or equitalent stress reaches the yield

@20

strength

The von-mises yicld erterion i based on the concept of maximu distortion strain
energy. It states that failure occurs when the energy of distortion reaches the same

2y for yi Mathematicaly it i expressed as:

1 .
(-0 +1-0,) +(0,-0,F |5}
e+ ¢ 1 @21



In the two dimensional situation, one of the principal strsses s 7¢r0:, =0 and the
‘Von-mises yield eriterion reduces o the expression:

ol-00, 40’50} e
We can also interpret the von-miscs yield eriterion in term of octabedral shearing

sress the

ritcal value , the material yields

(0,-0, +(0-0,)" +(0) -0 =6k @)

the loading s uniaxial, the above equation can be reduced 1o

@2

2.9 Nonlinear Analysis of Structures

I the fint clement echnique, the relation between load and displcement is given
by

Fekd @29
in which £ is the  xtemaly appied oad mat, K is the stiffess mati and
dis the displacement matex.  Whether the analysis of strctures i nar or

nonlinear depends on the siffness matrx. ~Ifthe siffness matix is constant during

he entire nalysis, it is called lysis (Fig. 2.4, otherwise it (Fig

25). Lincar analysis implies stiffness matrx is not changing. ~Nonlinear analysis,

in contras, leads to changing stffness mateix. In other words, the fundamental

s known that stiffness s related to Young’s modulus, moment of inertia and the

"



length of members.  Any changing of them occurs among them leads 10 nonlinear
behavior of structures.  The changing of Young's modulus leads to maerial

onlinearitis. Geometric nonlinearites resuls from the changing of geometric

propertes, such as moment of inertia and length of members.  Another Kind of
nonlinearities s caused by the changing status which includes the changing of loads,

‘contact forms, or other extenal reasons.

2.10  Limit Load Prediction

Traditional methods of analyzing the limit load utilze the upper and lower bound
theorem, If high degree indeterminacy structures are involved, the methods are
much more time consuming and tedious and they are ot always practicable for

Therefe

Over the years, FEA has been successfully applied o structure analyses.  For clastic

analyses, it s very popular because of its universalty and generalty. There are

almost no restritions about the types and the shapes of structures if proper clements

and techniques e chosen. The anslyses can be saic ordynanic. Howeve,if he
retures behave inclastcally,lncar analyses can ot work and nonlinear analyses
ar nosded. - FEA i abl todeal withthe nnlincar problems but it has drawbacks.
i, because FEA uss terative clastic cacultions 0 do the nonlincar analyses, o

great amount of computer resources and time are needed. ~ Second, convergence

appear.
Many factors can influence the results, such as the types of element, the way of

meshing, load step control and convergence criterion. Litle changing from the




above factors may produce significant differences in the solution. Therefore, it

encouraged 1o develop simpler methods and simplified software for  practical

application

The techniques used for nonlinear analyses generally can be divided into two

categories: they are tangent i thod.

method s Newton-Raphson technique. Sccant methods include the direct secant
method and the incremental secant method. Robust methods are one of the direct

thods. Various 10 analyze the inelastic cffect

based on elasic thearies

The robust methods arc powerfl techniues of analyzing the limit load. They are
more popular and atractive than fnte clement nonlncar analysis when used for
complex stuctures.  This chapter descibs et of efficient echniques used for
anlyzing the lmit load  Instead of sing it cloment nonlincar aalyss, these

Joad cawsed by plasicty, creep

or buckling. Fi

 this implies that the time of iterations is reduced 10 a very small

peci Because fewer
iterations are carried ou, robust methods save more time than traditional methods.
Second, nonlinear analysis sometimes has 1o deal with the diffculty of convergence

for obuaining a solut

. and many mathematical techniques are wilized to define

: prog
are writien to make sure finite element nonlincar analysis can work in computers.

Robust method, however, ha the merit of casy convergence. ~One does not need 1o



sive complicated convergenc crtrion and can obtain a inal solution with simple
aleultons. Thir, anther mporiant signifcance of robust methods s hat they
can b used a  criterion o cvaluat the esult of any nonlicar nalyss, Because
they are reatvly quick and scurae, one can judge the resul gencried from

raditional methods right or wrong by using robust methods. For example, people

judge the result of ANSYS. Robust methods give good theoretical estimation, 5o

that engincers can check thir esult by using them.

2.

)1 Reference Stress Method

1t was recognized that in a crecping beam, siresses at certain skeletal points kept
constant.  Soderberg (1941) in his experiment first found that some stresses kept

constant in a softened system.  He calculated the multi-axal creep deformation and

widelysofened
in a lrge range due t0 softning, ther e il some skletal srsses which alvays
remained constant.  Lte,the rference stress for pressure vessls was obained by
i, Schule (1960) observe that in  cresping bea, thre were two points n the
ross sccion at which srsses never changed and at the same tme, h esimated the
defections of thie points. Marriot (1963) and Lecki (1964) obseved tht some.
esss of crain ponts which underg the rasintcrep kept consant with e

Those points were defined as skeletal points. Sim (1971) introduced the analytical

technique independent of the ereep,

Sim reasoned as the creep exponent approaches i

ity the stress distribution is

similar 1o the distribution in the perfectly plastic model when plastic hinges form in



certain cross-sections.  Therefore, the siresses of infinity. exporint creep are

@26)

where P the applicd load , s the limitload and. o, i the yield tres.

2102 Partial Elastic Modulus Modification
Marriot (1988) developed  technique used 1o identify the stress redistribution
generated from post yield stress. This method includes performing a scquence of
clastic analyses and the lower bound theorem. 1 the strsses caused by the factored
loads are greater than the yield sires, the stress redistrbution due 10 the inelastic
effect needs 1o be considered. The modulus of each element should be modified
according o the equation: £, 5%7 where S1is the maximum cquivalent stress
calculated from the previous iteation , S, s the arbitrary stress, and. S, s the code:

allowable sires.

Several iterations are then run based on this modification. Since it should be less

is less than the code allowable value.

decreases untl it converges o a value
The equivalent stress calculated from the previous calculation should be statically
admissible, so the factored load thus can be considered as a lower bound of the limit

oad.



“This reduced modulus method is imed to find the maimum equivalent stress for
factored loads rather than find the limit load. Thus the reduced modulus can not

Tt should be.

noted that only specified porions of structures undergo the modified moduli,
therefore this method does not totaly deseribe the strss redistibution during plastc

collapse

Futher work has been cxtended by Seshadri (1991) and his co-workers

(Fernando, 199 1997). The R-Node method

them 1o predict the limit load. R-Node stress and repeated elastic moduli

‘modification are used in the R-Node method.

2103 Gloss R-Node Method

Based on the theory above,the Gloss R-Node Method was introduced by Seshadri in
1991, “Gloss” is an acronym for “Generalsed Local Sress Stain” and “R-Node” s
known as the “Redistrubuted Node™.  This method is used o evaluate the

approximate limit load for both plastc nonlinearity and material nonlineariy. 1t s a

robust and effctive technigue based n two lastic firit l which e
detemine the R-Node locatons.  ReNodes ar introduced s the load conirolled
Jocstions in the sructurs, and some of the R-Nodes pesks, ating as the possile
plastic hing locations, finaly pedict the plasti colapse mechanism and the limit

oad s thus obtained.



2104 Gloss Method

There are two types of controlled sress: load controlled s and deformation
contolled strss. Load contrlled steses result from st determinae actons.
They are caused by the structures o keep the statc cqulibrium when the stuctures
ae subjec o extenal appied forces and moments. - Deformation conrlled sess,
however, occus inthe structures a the esult of th saticaly indeteminate actons.
Once the stucures undergo the plasticityor crep, th saically indeteminate srss
edistibution happens a most porions of the iuctures except i cerain lcatons,

which are known as R-Node locations. The structures under consideration can be

gion. The local fibe
structure undengo inclasic deformation, such as plasticity and creep.  The remainder

regions exhibit clastic deformation.

“The principle of the Gl

“The inclastc stres redistribution due 1o plasticty or crcp can be anlyzed by
following uniaxial sress relaxaton. In an elasic perfetly plasic model, srsses
el o yild sres due to plasticity:. 1F deformation contrl govern, i will keepthe
s constant value which can be deermined by requiing 0 1 be equal 0 €10,

To ensure the effect of both plasticity and deformation control, the modulus of this

o

E=E I
L @2

£ . E,is the original Ois

an arbitrary stress value and o, i the equivalent stress for cach element. ~ Afier

‘modifying the modulus, a second analysis is then run. I was suggested that this

n




re:26 presents the Gloss diagram. ~Line OAC is the elastc perfectly plastic

curv for seess and stin. Line OAB i th prcudo clstic line on which the first
lastic analyss s based. Point B (0,0.¢,,) is the pscudo point. Deformation
Contol i performed from the point B, The slop of line OCE i the new slope
‘which s modified fom the agina slop ofine OAB.  The second clsic analysis
is performed by using the new slope of the line OCE, which s clled the scant

‘modulus.

2105 R-Node Method

Seshadri in 1991 introduced an approximate method used 10 deermine the limit loads
based on two clstic analyses. ~ The method, known as the Gloss R-Node method, is
inspired by the reference stress method and modulus modificaion.  When structures

encounter inclasticty, such as plasteity and creep, sress redistribution will oceur.

Most porons of the sirctures undergo stress redistributions except at statically

determined loc

a5 ReNode Iocations. ~R-Nodes ahways maintain the same sires lvel though strss
edisibutions oceur in most portons of the cros setions. I othe word, those
sticalyindetrminat srcses undrgo redisribuion while no dissbution happens
at ReNodes, which are the load controlld locations.  Therefor, the strsss at

Ifwo

wo

ReNod be uilized




o locate R-Nodes [Seshadri.R..,1991].

Imagine that a beam with rectangular cross section i subject 10 pure bending. It is

shown

827, The relation between stress and strain i expressed as

e=Eo" @2
inwhich £ and n are determined by the material and external loads. ~Ifthe cross

section behaves clasticall,

Tand if the cross section is totally plastc, n=2

“The intersection of these two lines s the location of the R-Node and it i recognized

that all the ibutions pass through the same. and

Seshadr, 1997).

This method suggests that except i R-Node locations, llthe stresses redistribute due
o plasticty within components or structures. In the elastic perfectly plastic model,

by:

(@) = Hy 229

ince the induced strsses are proportional t the factored loads or load combinations,

his relaionship canbe given by
@i =rl 20
@)rms =12 <PM> @

whers 7 i the scling fcor detemine by loading, matral, snd grometica
opertie. 1l pefcly plsic model,when th ndced s eches e
yield srss, the actoed loads wil bcome the li loads.  Theeor, i
JT——

@,k am

2




@, =<t am

Combine equation (2-13) and (2-15)

@3

@35

=[]

The o imit load of

‘and sructures in th following steps:

1. Alincar elasic analysis is performed by the factored loads, which can be greater

limit loads
clastic analysis without any limitation for the structures, such s yield stress and
buckling. ~ Stabilty is not under consideration for this analysis.

2. The modulus of each element is mdified by the equation: £, = £,

as mentioned before, is an arbitary nozero value,  According to. this

modif

on,the scond clstic analysis s then caried out.
3. Two clstc anlyses are perfommed and they resultin two clastc lines which act
a5 the basis of the fllowup angle 0. The locations with 0=90" are
dentifd as the R-Node locations.  Actually, R-Node means no redistibutions
oceur for the stes, o ifthe itersectons of these two analyses can b obisined,
ReNode location can naturally be found. The sreses at the R-Node locations

are known as R-Node stess.



4. A plot of R-Node pesk srss identifcs certain locations within the strctures
Theses locations imply that as the extemally appied load ncreases, te cross
ccton of the peak trss locatons il become totaly plstic fser than ambient
ross: setions. I other word, the sk strss locations form plastic hinges

faster than the neighbor paints.

ReNode stresses are the resuls of load control. The limit load thus can be

caleulated when R-Nodes stress reach the yield stres.

$o.

@36

Where o, is theyild st and. ;i the psk aversge ses.

Compared with other inclastic methods, R-Node method gives relatively simple
procedures and conservative results. 1t is successfully applied on two dimensional

sitations. For three dimensional structures, it s suggestcd that a R-Node stress

R R, 1997)

2106 The m-a Method

An improved limit load cstimate techrique inspird from Mura's variaional
formulation is known s the m-a method (Seshadi and Mangalaramanan 1997)
Basod on the solution of Mura's varitonalformulation,the limit lod i achieved by
leapfogging on a basis of two lincar clastic snalyss which reul in the upper and

Candm’. Similar L the m-a method

modifies the initial clastic moduli for each clement in order that stresses can

redistribute about oad controlled locations. ~ Afer the second linear elastic analysis,

n



an upper bound muldplier m' which satisfes the theorem of nesting surface.

(presented in 2.10.7) s determined based on the inelastic action of the structures.

volume of tructures,
based on this new upper bound theorem is more conservative and advanced. The

for biaining m,

1. “The firs clastic analysis is performed to analyze the stress distribution which is
wilized for modulus modificaton.

2. Acconding to the modification equation

K [ £ "L-nT
A @3

all the clement moduli of the structures are modified, in which Eis the Young’s
modulus , .. an arbitary stress o, is the equivalent sress and g is the modulus
adjustment (usually chosen as 1)

3. The second i Jduli

and a e equivalent stess distribution i evaluated.

Caleulate the energy dissipation of cach element in the prescribed structures and
estimate the upper bound ¢ for cach clement, ~ Two conservative analyses give

two maliplies denoted as ! and . Ploting these two curves gives the

i ) e obtined.

“The lower bound is given by the equation:

2

o+ oD

@3

m' m*and (%), are all functions of the iteraion variable. Based on iterative



calculations, the multipler m, in the end can result in good estimation of the

reference volume.

2107 Nesting Surface Theorem

Calladine and Drucker in 1962 introduced the “theorem of nesing surface”, which is
used to estimate power law creep. Boyle in 1982 redefined the theorem which is

used to simplify the analysis of stress in complex stuctures. The average encrgy

ot

muliple loading.

(g 239)

“The material of structuresis given by the equation

eutor (2a»
o= ariar
Qan
“Therefore, the reference stress can be written as :
1 ey P
@ gw,..r_m"y-[;[‘.,, w] )

The functo

s stictly monotonic with the component 1. When =1, the structures
behave clastically and the function is at lower boundary.  Whenn - , the function

is perfctly plastic and the uncton is bounded above. ~ At this time, s considered

0, constant ,

it must “nest inside the region between the upper and lower boundary.  The

.



When =1,

itis bounded outside and when 1 —> <o, it s bounded inside.

01420 5lmQ, 43)

2108 Extended Lower Bounded Theorem

Mura and Lee in 1965 introduced a lower bound theorem used for est

ting limit

Toads of structures subject o tensile loads. This theorem is based on variational

load. However,
complicated because they are not only under tension. o a generic approach is

necessary.  Seshadri and Mangalaramanan in 1997 proposed a method which

timit
Toad s on the basis ofclastic tres distrbution.
Muraand Lee demonstsated tht i the function

Fan =[£G+ Jav o
where Q@45

s stationary, the fuctors m', and ¢"can be determincd.  This leads direetly to
the ollowing three equaions:
o

' @46

=0 247




248)
Comparing the expression for m" with the one proposed by Calladine and Drucker
in 1961 and Boyle in 1982 which is obained from the rference siress equations, it is

given that

% 249)
Therefore, monotonic inereasing reference stress willlead 10 the decrease in the value
of m.Since it shows a lower bound of the reference stress when 1o, the "

is thus a upper bound muliplier when =1

Mura in 1965 proposed the lower bound theorem.

M m s
Temax 76D+ @] /28

'

TS
ECYCH

Q@sn

in which (07)is the maximum equivalent sirss fo cerain facored load. The

it load can thus be estimated by the equation:

Ba=m'P @52
Tower i the

it load bound is evaluated by :
m'smsm 53
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Fig. 2.1 A Simply Supported Beam subject o Axial Forces.



Fig, 22 Stress-strain Curve of Mild Steel [Neal, 1977



Young’s Modulus

Fig. 2.3 Elastic Perfectly- plastic Stress and Strain Relation



Fig, 2.4 Lincar Relation between Load und Displacement
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Fig. 2.6 Gloss Diagram (Sheshadri and Fernando, 1992)




Fig. 2.7 R-Node in Rectangular Cross-Section

(Sheshadri and Fernando, 1992)
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Multiplier, m®

Fig 28 m-a method: Calculation of Reference Volume

[Seshadri and Mangalaramanan, 1997]



Chapter 3
Plastic Limit Load Estimation

3.1 Introduction

Structuressubject o relativly smal loads behave clastcally. When rgerfoads are
applicd, they exhibit plastc behavior. In frames and fame ik siuctures, plastc
Zones and eventually plastic hinges are formed with incrasing loads.  This leads 0
the redisribution of stcses. A plastic collpse mechanism takes plac if nough

plastic

inges are formed. This procedure can be analyzed by traditional plastic

analysis

techniques.  Neal [1977] developed a method using minimization of work
done 10 determine the final plastc collapse mechanism. ~ This method can give good
estimation of limit loads for simple structures. ~ For more complicated structures, it

becomes tedious.  One has to determine the collapse mechanism by comparing all

the independent and combined mechanisms, especially when the plastic. hinge
ocations are not obvious at the outset, ¢.g., frames with unevenly distributed loads.
The method also completely ignores the effect of laeral displacements.  The

allemativ s 1o carry out full scale nonlinear fnite clement analyses which require

complete discretization of the entire cross-section throughout the frame.  The mesh
needs 10 be especially fine near the locations of plastc hinges. ~ Although the

computational time needed for very fine meshes is no longer an overriding issue,

plete dis the frames needed to capture the progressive pl

quiring initial
input and extensive. cross-checking.  Simplified techniques thercfore become:

atractive.  Such methods should be progressively more advanced and yet be simple,



accurate and robust.  The r-node method [Seshadri, 1997; Seshadri & Fernando,

1992] is one such technique as outlned in the previous chapter. The Direct Secant
Method is a new technique which is nspircd by both the traditional plastic analysis

and the r-node method [Adluri, 1999a]. ~In this method, based on the solutions ofthe

The results of the sccond elastic analysis can be uilized to predict the imit loads of

structures

“This chapter first illustrates the principles of raditional plastic analysis.  The
concepts of plastic moment and collapse mechanism are reviewed. Three basic
collapse. mechanisms, viz, beam mechanism, sway mechanism and combined

‘mechanism are explained. - Afer listing the inspirations of traditional plstic method

of the dircet secant method. I the end, verification examples are shown.

3.2 Plastic Analysis Review

The material nonlincar analyses of structures have been investigated by researchers

for many years. 1t s well known that the redisrbution of sreses caused by
plasticity can generate cxra strength which can be used o design the siructures
beyond the smple “clastc i’ Kzinczy [1914] was one ofthe carly rsearchers
10 reportexperiments o investigating the collapse of a scl beam. He found tht
the collpse of this fixed endod beam occured whe th cros-sectonsat the middle

and the end become full plastic. The moment which causes the cross-section to

flly plastic is called fully,

it can rotate like a hinge. Normal hinges in structures are not able to take any




‘moments.  However, the hinge caused by a plastic moment, known as the plastic

hinge, can resist the plastic moment but would not have any further moment

resistance.  The formation of plastic hinges can lead to the colape of sroctures
Asloads incrsase,cnough plastc inges form ladin to the colapse o the srcture
under consideration. Just pror 0 the collpse, the siat of the sructur, including
the locations of plastc inges, ctc. i calld the collapse mechanism. The collpse
mechanismis assumed to beth final st of thesictures [Nea, 197]. The loads
leading t0 the collapse mechanism re ermed as limit loads fo the pupose of the
curent study. The it loads depend upon the load coniguraton a5 well g5 the
Stuctue’s propertes, geomety, boundary condions, cic. Thus, for a_ given

structure, I Toadi

For a given ptter, ther s unique it oad. The it oad is usually iden
by a muliplying fatorspplicd to incease the ominallod t the it lowd.  This
factor i calld s the o fctor in the curent sy, The detrminaton of the losd
fictor and the ssocated fure mechanism is the purpose of limi snalysis and

design.

Structural design, most often, ignores the redistribution effects that oceur beyond the
elastic fimit (except some cases, such as seismic design). The resuls of clastic
analyses are used 10 design the member cross-sections in a plastc sense. This

generally implics that as soon as the most eritcal location reaches its limit, the

structure is
thus significantly improving the limit load. This extra capacity usually occurs in

structures that are highly indeterminate. The purpose of the plastc design is thercby



mechanism filure pattem. For the current study, it is assumed as per normal
convention, that the effects of combincd moment and shear are not significant. It
should be noted however, tha this is not a necessary condition fo the method being

studied.

o My
‘scometrical propertis and the yield stess. For the rectangular cross-section, the

plastic moment capaci

(&)

where, Zis the plastic section modulus, bis the widih and d is the height of the

cros.section.
In general, the plastic modulus can be obiained using.

Z=[bln) dn G2

here,the ross.section widh can change with thelocation 7 along he eight._ The
wradiional method to detrmine the limit load of frames had been 0 use he upper
bound theorem, cquating the work done by the load 1 the work absorbd n the
plastic hinges fo a series of possible mechanisms and selecting the least it load
factor, I the mechanisms depend on plasic hinge location that ae continuously

changesbl, a simple minimizaton process s cared out This s ilustted in
hangeabl, 3 simp

several standard references such as Neal [1977)
-



Mechanisms of Failure for Frames

For frames, three possible mechanism types will be shown in this section. Fig. 3. 1
shows a beam mechanism where a portal frame is subject o a verical force in the

midle of the

beam as shown, The end hinges can be ocatd cithe i th beam islfor at the
ends of the columa, As the load incrasesfrom a compltly lastc stat of srcss,
sess at the extreme fibrs of the midde of the beam first reaches yild.  An
incrasin lod then makes the cros-setion n the middle become otaly lastc and
turns it nto & lastc hinge. A redisibution ofany frterincrease will prompt the

‘end of the beam to start yiclding and eventually 1o the formation of two additional

inges.  Since three hinges in a line imply instability, the structurs will then reach
itslimit load. ~ Equating the work done by the applied factored load (P 4) for a given

rotation (9 of the beam segment, with the interal work done due 10 the rotation of

plastic hinges (thus ignoring
the elastic deformation of the remaining structure), we can obiain the load factor 74
forthe beam mechanism as,

@ &o)-s00)00) =

The deflection in this case is assumed t0 be small so that the displacement under the

oad i directly calculated using the rotaion of the beam.
A=TE e

Following a similar procedure, the sway mechanism s shown in Fig. 3.2 Imagine that



a portal frame subject 10 a lateral force which can cause the lateral deflecion. The
collapse mechanism include 4 hinges for instabilit. If the cross-section capacites

are all equal o My, and

gives,

(4F)(L0)=4(M,)(0)

G5)

Both beam and sway mechanism in the above are assumed to be independent which
do not influence cach other. The limit load factor (4) generated from these

mehanismsfllows the pper bound theorer,
Asmin(a.) oo

The examples given are simple poral frames. In a real plastic analysis, most

eometries. fthose

independent mechs way 1 solve plasti problems. ill (Fig
3.3) ifthe portl frame is subject to both the lteral and vertical force, we can sec that
mast rotations in the combination of the two mechanisms exist, while two disappesr.

Thisis sign a these locations

1o the nea e e locations i the sway meshaism, T et gives,
u{% )oM(L,s):A(a;(u,)‘(zﬂ)(%) on
The cxtemal work i cqua 0t sum oftet it eam mechani s st i e
oway mechanism. This implcs e he pates of work don by the appid louds
e independent and do ot inflence cach aler. On other hand, the iral
masimum work bsorbed s no simply eqal th sum o the work doe by te o



independent mechanisms.  Therefore, the load factor calculated bused on plastic
hinge cancellation may be smaller than tha for cach independent mechanism, [Neal,

1977

“The method outlined above gives good estimates of the limit load for frame type
structures. However, the procedure is tedious for real structures. The method
requires us 10 locate all the hinge cancellations and calculate the exact maximum

intemal work, the frame has loads distributcd

in an uneven manncr. The method is also not casily amenable for computer

implementation. ~ The method also completely ignores the effect of column sway on

the column moments due to vertical loads (interaction between the sway forces and
vertial forces leading to moment amplificaon), which, in some cases may reduce
the load factor to  certain extent,  However, the method gives excellent results in

‘most cases and s used here for comparison purposes.

322 Plastic Design of Structures

Plastc analysis is of significance that

have redundancies and can withstand extra deformation beyond the

of include
include local and overall stability effects, the plastc analysis is called “first order

plastic analysis”, such as in the case of a fixed-fixed beam subject (0 vertical loads.

filing in & beam mechanism. 1f geometric nonlinearity is (o be included in the

inclastic analyss, it is known as “sccond order plastic analysis”.

For stecl structures, the deformation beyond initial yield depends upon. the



crosv-sction classifiaton. For exampl. the CISC. [Canadian Insiute of Stcel
Consruction] lasifis stel sections nto four categories. “Class 1" s sectons
permit both plastc hinge development and increased rotations faclatng strss
edisibuton t other locaions afer th formation of inital plastic hinge at a critcal

location. ~ The moment-curvature reationship is “ductil” as represented by the bold

line in Fig. 3.4, “Class 2" steel sections allow successive plastc hinge formation but
can not withstand the effect of large rotations aflr that. Classes 3 and 4 do not
permit full plastification of the cross-scctions. ~ Therefore, all stcel frames that are

designed with class 1 sections and some redundancies (sttical indeterminacy), will

As long as the material has ductile behaviour, direct sccant method can be used for
‘analyzing the limit load in the similar way. In conerete structure, beams that have

i below the “balance” limit w©

exhibit ducile behaviour similar 0 that shown in Fig. 3. 4 by the bold line.  For all

h

3.3 Alternative Methods

Since the computer implementaton of the radionl pasic hinge method s
cumbersome, i did not ind praticalutity.  The method also ignore the efet of
Sy on the column moments as mentioned above and fads o what s uualy caled
as“rigid plasticity”. On the other hand, ful scae nonlincar anayss of prctical
stel or conree frames i even more invlved in tes of cffor and the pecd 0

verify whether a proper nonlinear analysis is carred out. _Hence, it

not employed



on & rouine basis. Some of these difficules can be overcome. though the
devcloment o stemtive methods. ~Such methods need 1 be simpe,robust and
relisble, These altemative methods can be extcnsions of the cureily avalable
methods.  One such procsdurs whic s inspired by the rdiionl plastic hinge
ansysis[Nea, 1977]as wlla the r-node method [Seshads, 1997] i described and

implemented in the present chapter

34 Hing Analysi

In the section below, the main inspirations forthe development of the method based
on direct secant moifications are described [Adlur, 1999 & 2001, Bolar and Adluri,

2001].The points also include some of the main assumptions.

After the first yield stress takes place, structural members begin 10 lose their

stiffness, gradually becoming members with negligible tangent stffncss.  The

pe of the

point also changes a the load increases.

relative stiffness of structural lements.  The changing of the stiffness of certain

parts of the changing of anis lso. A
noted by Adiu

[2001], the “exact” secant stiffess, if known, will give the

“exact” results with one single el

i analysis.
3. There are three types of plastic filure: complete collapse, parialcollapse and

over-complcte collspse.  Complete collapse and over-complete collapse arc

achieved by removing the redundancies unil structures become determinate.

“ -



Partil collapse happens when part of the structures s determinate. The

changing of indeterminate structures o determinate structures i achieved by

AU falure, the moments at plasic hinge locations are all equal 1o the plastic
moment My of the respective sections. ~ The scction behaviour is assumed 10 be

“ductile” where some transition zone might be present as well

The node method s bused on the undesianding that the s from the first
easic anaysis can be used 1o abtin the secant modulus. This stress changes
continuously a cach point i the sracure.Thus,there il be  diffrent sccant
modulus forcach point slong the depth ofthe section a5 wel a5 slon th lengih
of the members. - Thersfors, the discreizaton gencrally results i a 3-D model.
o obtain the r-nodes, one necds 10 do two clastc analyses by modifying the
modulus of cach point.The dirct sccant method o be used in th present work
is alo based on o similar concept. Insead of modifying the modulus, the
method maifisth rigidiy. Ths resuls in 1D mesh for frames as opposed 0

3:D mesh for the -node method.

In the R-Node method, the concepts of load and displacement control arc used to
find the limit load. ~In the GLOSS disgram, the following up angle 6 is equal
10.90° at the time of collapse. Similar concepts are applied in the Dircct Secant

Method.

1 the -node method, th fnal limit load i achieved by increasing the average
pesk stress o the yield sress while increasing the applicd load by the same
proportion. The analogy of two-bar model is used for this pupose. The
proportionait ctor denots the limit load fctor. Simila concepts ae used by

w9



the Dircet Sccant Method.

8. Although the R
or stability of a structure, the method can be used as an inspiration for further

development of the Direct Secant Method towards these goals.

These inspiratons from rditonl plastic hinge analyss method and the R-Node
method have becnusedto enhancethe methds esdin o the “Direct Scant Method".
“The mehod has previously been descibed by Adluri (1999, 2001]. Bolar & Adiu
2006] wed it 1 obtain the lmit oads of various plate srctres, They uilzed

moified geometrical propertis and elasic analyses to estimate the collapse statc of

plates.In the present work, this method has been used 10 obtain collapse loads of
frame structures and to study the stability and large deflection effets of frames and

beams. 1 y

3.5 The Direct Secant Method

Adilur [1999] proposed a method called “Dircet Secant Method It is inspired by

the xisting methods o find the limit losds using simple elstic analyses -maily, the

R iques. I this metho, first carried

out withou th consideration o yield strss. Based on the reuls caleulted from
he is clastic anslysis,the rigidiy s modified.  When the rigdiy is modified, the
cross-sction is changed at cach point and hence the siructure becomes highly
non-uniform slong the length of the members.  The modifid sirueture s analyzed
agan with th same load, the same suppors but the new rigidity.  Aferthe second

clastic analysis, the peak moments and other relevant stress resultants are obisined.



‘These moments (or strss resultants) may have nothing (o do with the corresponding

the peak values from the frs analysis.  These peak values can be used to predict the

the limit load. very

1. A purelyclasticlnear analysis i fist caied out. I the analyss, siability i not
under consideration.  Global o focal collapse due o plastcty and buckling never
Happens in this anslysis. By using FEA, the bending momen at any locaton can be
casily obtained. The first clstic anlyss s of significance fo invesigtng the

distribution of bending moments

2. The results from the irst. purely lastc analysis can be used to modify the rigidites
of the structure o be analyzed. ~ Adluri [1999] modified the moment of inrtia of the

beam based on the bending momens.

o8

The proportionality constant can be chosen o be any nonzero value. o avoid
numerical difficuly, Adluri [1999] used the maximum bending moment as the

proportionaliy constant.

9

Usualy,the exponent q can be taken between 1 and 2. I his analysis, b took 1 as the

exponent.



IF the Youny's modulus i kept constan, from this cqation we can find that the
modifcation stiffns the flexura riidites of all the clements of the sircture.
Because M, . i not less than M(), . (0)is greater or cqual 10 L, (5)
Howeve, e signifiance of the modifiatonis not ik this. As mentioned carler

in this chapter, the distribution of bending moments does not simply depend on the

riidts.
also changes the relaive floural rigdies of strctures,  Because M, . is &
constant vale,the clements whih have relatiely reser bending moment wil have
relatvely les flexural riidites afler modifcation. The clement at the masimum,
bending moment location will have the mirimum relativ rigdies, and viee versa.
Therefoe,the modification implics that i th frt casic analyss,te igdies of
{he clements tht hav reltively grester bending moment are sofened and stfened
igiesare given 1o the clements which have the eltvely ess bending momenis

“The modification actually means “harmony”. ~ The elements which are weaker when

abilties and bili

applied on the stronger clements. ~ Therefore, the modification can be understood as:

The clements of the structure are given the same abilities to resist the bending
moment. In other words, the elements of structure have the same opportuniics 10
reach the same bending moment. Of course, this same bending moment can be the

plastic moment o cross-sectons.

that the structure is of the same size of cross-sections. Al the elements of the

Structure have the same cross-section so that they can have the same moment of



hel hasif . then the “harmany”™

“This will i apte

30

By using FEA, the disributon of bnding moments can be casily obtined. There
must e some clments whose moments arc reser than the oncs of ngbboring
clements.Those clements in the bending moment diagram are of peak momeris
These clements having pesk moments “go” st than ncighboring clmenis, which

means although the modification of rigidities gives all the clements the same

opportunities o reach the plastic moment, the peak moment clements fist reach the

plastic moments, Therefor, they are at possible locat

s of plastc hinges. The

sk moment locations are considered as the potential locations of plastic hinges.

hinges form a collapse mechanism. ~ The bending moment at plastic hinges locations
at collapse are cqual 1o the plastic moment. Thus, locating the plastic hinge

locations are of importance for determining the limit load.

1 the i clstic anaysis,the maximum bending stess locaton s the fis ocation
of a plastic hinge. Afe the formaton of the fist plasic hinge, the srss will
redisibut. - The oter pesk momeots n the frst clastic anlyss e thereby ot st
e locations of potetial plstic hinges. I the sccond anlyss, the modification of

moment of analysis,

lead toal plastic




hinges appearing at the same time. This explains why all the locations of peak

Potential locations of plastc hinges are not the exact locations of plastic hinges

contributing to the final collapse. S0 we need 10 select some of them to form the

collapse mechanism. The sclection of potental location of plastc hinges can be

done in several ways. ~ This will be llustrated in the later sction of this chapter

4. After selecting the locations of plastic hinges, limit load can be calculated by the

following equation:

B M,
Ba 310
P M 210,

where P is the extemlly applied veetor load, and can have any non-zero value,

Myis the plastic moment, and it is determined by the geometical properties of the

crosssection. M. i the peak average bending moment n the second analysis
AU the locations of these peak bending moments, plastic hinges form and they.
‘contribute the plstic ollapse.

In the R-Node method, the imit load obiained in the R-Node method depends on the

Toad

@




“To better understand the significance of this load factor, we can modify the equation

into:

n[ o
. 312
o [(a,j, ...] o

3.6  Plastic Limit Load of Non-uniform Structures

Just prior o plastic collaps, th factored load becomes the limit oad and the stresses
at certain locations are equal 1o the yield stress.  Therefore, the numerstors at both

sides of the equations are the properties just prior o collapse. ~They are in the same

sute, - Pisthe
extmally applicd load . (3, . i te refrencesress resulin from the lod P
Thershy they ae also corresponding and they re als i the same s, which is
allod the “normalsae”, The load facor actully s the raio of properis n these

o sates.

In the R-Node method, the propertis are the bending stresses. In the concept of
dimension,

load

200l . area @13
Sress

‘and load thus is proportional to the stress. Area is the proportional factor and is
never changed in the analysis. Therefore, the exponent of the ratio of these two

sresses is equal 10 one. In equation (3-12), @, /), . is considered s the load

55




factor,

We also can rewrite equation (3-10) into

G-14)

Where 4 s the load factor. - Similar to the sitation of the R-Node method,
M, /M, can be viewed as the load factor.  The numerators at both sides
of the equation are in the same state of “collapse sate” and the denominators

are in the “normal stte”. _In the concept of dimension:

moment
length
Toad "

@135)

and in Therefore,

the exponent of therato of these two moments is equal (0 1.

‘The total procedure can be described in Fig. 34, Line OA represents the first
pseudo-clastic analysis with the slope EJ,. Because i i the relationship between
the moment and the curvature, the slope is the rigidity.  The moment line OA does

ot involve the limitation, so the moment can be higher o lower than the plastic

moment. The moment is assumed higher. The following behavior of the line

depends on the technique used in the analysis. I the structures under consideration

i load controlled which implies that it is determinate prior o collapse,the subsequent
ehavior of the line wil be horizontal, 990", If it i displacement controlled, the

line will go down and ¢ =0". ~In ircct Secant Method analysis to be shown in the



at the location C.  The line AC goes downward directly intersect the X axis at the

point D, Anew slope s obtained based on the old siope.

16

I the structure has geomerical nonlinear properies, the Yong’s Modulus on both
sides of equation (3-16) can be cancelled.  Then the moment of inertia is modified

base upon the equation:

@1m

T

[AdIuri,199]. In fact, this i the modification that modifies the relative
moment of ineria of structures. The plastic moment A, is a constant value that
docs not influence the modificaion of the relative moment of ineria of siructures
Therefore, the proportionality factor can be used any nonzero value.  Another
analysis is done with the new slope. lterative analyses are carried out until
convergence oceurs.  This s represented by the curve line AB. ~If the line AD does
not go downward, it can go between the horizonal line and vertical line, and
0" Sps90'. At this time, g is not equal 1o 1, and it can be other values. No
matier how much q is chosen, the iterative calculations are performed until

convergence happens.



Ifthe

ekt sres i consiant, the same cosssecions il led t0 the same momens of
incriaand the same plastic moments. - Howeve, i the ralcase,th cross-sections
o the sructural members are ot lvays the sume. 1 implic that the sivaion of
Stuctursl members with iffernt plas. moments necds o be incloded. 1
cross-sections are o the same,fo soving non-uniform strctures, the tchnigue of

Robust Method will be different from the previous one.

The main principle of the direct sccant method is that:al the elements are given the

same abilities 10 resist the bending moment and they are thus given the same

. and it can b the i Afe the
anayss based on the modifction, e nceds o find which clemens elatvly st
each the peak moments. I the cros-cctons re not the same, the opporuniis
siven for cach clment are differnt Thi is because the same opportuniies re
siven based on the modification which resuts from two fcors: moment o inerta

and plstic moment.

by the equation

'
TR 619
[2x8]

“The distribution of moments M, (xi determined by the relative moment of inertia
in the fist analysis. The proportonality facor can be any nonzero value.  From
equation (3-18), the plastic moment can no be seen. This is because our purpos is



are expected 1o reach the same moment.—-plastic moments, there is 10 need o give

propori In P
the numerator:
»,

e G-19)

Hoveves ifth siucomal mambers bav, et o aecons, e sitin
s, With ifien patc moments beveen cch rember, s
xpetod e difien s o e odicion. To sty the ppoeof
i s ppacier, e i s ity
"
b gl

@20

where M, are the plastie moments of cross-sections. The bending. moment
M,(x)should correspond 1o the plastie moment. In equation (3-20), the plastic

moments M,

rom the fist analysis M,(x).~ After the modification, the tructural member are of

Same moments.



Finally, the load fctor s caleulated by the peak average ratio of the plastic and the

moment afer the first analyss.

@21

1. The first clastic analysis is camicd out based on the original geometrical

propertes.

4. I the bending moment diagram of the second analysis, peak moments are
considered as the potential locations of plastic hinges. Some of the peak

moments areselected o form the collapse mechanism.

5. The load factor s caleulated from the expression

o)

implified as:

@)




ind the ot

i the section modulus resulting from the cross-section propertes. The analysis
mentioned above only  includes the consideration of different cross-sections but
without involving different yield strength. - However, if more than one type of

m

rial i used, the yield strength will be different. This is common n the real
constructions of structures.  Therefore, the Robust Method including changing yield

strength should be proposed in urther work.

A ponaniform portal frame i investigated. The strctural membersare of diffret
cros-sctions with th same srength. This i shown in Fig. 316, The frame can
e subjoc ta atral forc that results i sway mechanism, suject o 8 vertcal
forc that resuls i the besm meshanism and subict to bothof them tha st i

the beam

is stronger than the columns, the columns ar stronger than the beam and the beam is

stronger the other o

ar diffrent between sructural mermbers, the moments of eria are diffrent.
“Thtee moments of ncrtia ar given and they arc applied o the structural members
separatly depending on the cases. The resuls from the diret secant method are
compared it the theoretical valuesfrom plasic analysis. Load foctors e used as

the results.




3.7  Comparison between Direct Secant Method and R-Node
Method

371 Modification

Diret sccant method: The modifcation is based upon changing the rigdiics of
srcturs. The rgidites of srutures incle crosssecton geometical propertes
and mateial properics.The modificaton of cithe of them can succesfuly modify
the rgidties of srctures, This implcs two advantage: frs, in the compucr
progam,enginces an select any propertes hey wish {0 modif, s te imiaion of
the computer program can b avoided. For example, modifing the moment of
incrtia in ANSYS is much casi than modifyng he Young'smodlus when APDL s
used. Second, the riidites are madifid along the siructural members, but for
certain locaions, the rgidites are of consant value, The new rigidites can be
modifcd bused on the od rgiiies except at the locaion of hinges.  The
isadvantage i that:at the oriinal hinge locatons, because a hinge cal ake any
moments, the moments at thes locaions are thereically qual o 770, In the
et sccant method, vy tiny moments ar sed instcad of 7ero.Theefoe, the

new rigidities are huge but not infnite.

ReNode method: The modification is based on changing the Young’s modulus of
structural cross-sections. In the R-Node method, one has to modify the Young's
modulus without any other choices. This generates difficultes for cerain FEA
Software. ~ Also, the modifcation is based on equation (2-13), and the equivalent
stresses of cach cross-section 0, may be equal to zero at cerain locations of
cross-section.  Numerical difficultes are then encountered.  Even if we can
successfully modify Young's modulus along the cross-sections, a the top and bottom




of cach cross-section, we stll can ot give accurate modification. In FEA, the
changing of stress for each clement inside the cross-sections is not continuous.
Although smaller sizes of elements are given, difference sill exists and the time of

The

of the hinges in truss siructures. At the locations of hinges, no bending moment

Theref

372 Element Type

The direct secant method uses member level elements, in this case, beam clements 1o

model the frames. ~ The direct secant modification s for the entir cross-section and

on stres self. i

modificaion i based on local stres.

373 Failure mode and yield criterion

Dircet secant method: Many failure modes now have been successfully solved by the
direct secant method, such as plasic collapse and buckling.  Any yield criterion can

be taken by this method.

R-Node methad: It can solve the plastic collapse. ~ Uniil now, there has been no other

extension for the limit load calculation. ~The R-Node method is now only used for a

ele yield citrion. i




374 Limi

load

Dircet secant method: Limit load is calculated by calculating the pesk. average
moments. The collapse mechanism can be determined by this method. R-Node
‘method: Limit load is determined by the yield strss. Collapse mechanism can not

be determined by this method.

3.8  Test Cases and Examples

“The method described above using direst sccant modification is applied to several

Toads. frames,

muli-bay and malt-storey frames with different oadings and arangements. The
loads inchde concenrted and disrbutd forces, verical and sway forces. Three
methods e used to find the lmit onds and compare the results, vz, radiional
plastic hinge analyss (as described by Neal [1977), full scale nonlincar analysis
using FEA and the direct secant method preseted n the current chaptr. 1 must be
ot that the R-Node methad [Seshadl, 1977), which forms part o the inspiration
forthe currnt work gives very clos resuls to that iven by thediret secant method
albeit with significantly greser extra effort (bolh programming and computationa)
For comprisan purposcs, the FEA nonlicar analysis s taken s he base insiad of
the plastic hinge analyss, This s 5o since the FEA nonlincar analysiscan include
he cffct of sway o column moments where s theplastic hings analysis ignore .
Besides, the plastic hinge analyss s not casy o apply for mltsory frames with

mixed




381 Fi

te Element Modeling

Forthe " structures ing th finite clement

Software ANSYS [2006]. This was used for both the nonlincar analysis and the
Direct Sccant Method. ~ Traditional elasic analysis using FEA is well known [e.g.

Logan, 2005] and s not be explained here in detai.

“The diret secant analyss wsd i the curent chapter has becn implemented in
ANSYS using beam elements (BEAMS). As mentioned sbove, tis faclates the
modifcation of the sccant rigidiy at the leve of the enire crosssecion. The
‘modificaton is based on stres resutants sch as moments and is not based on the

A th il anlyss reslts v obtined, the moificatons (0 the igdity i this
case 0 the moment of ineri of cach beam clemen) have been implemented using
APDL routines within ANSYS. - Sample routins fo the modifications are given in
the Appendices at the end of the thesis. They are based on the caric such
modifictons implementcd by Bolar and Adiuri [2006] who did the same for plte

structures

For the nonlincar anlyss, the structres were modeled using diferent options
available in ANSYS (for comparisan purposes and comveience). The norlinear
anlyses e ben caried out using beam clements BEAM3. In cach case, mesh
convergence sudie have been carried ou.The esultsfr cach clement ype have

been tested with known theoreticl results for tst cases.

Several test cases are shown in Figs. 35.1 10 3.16.1. In the figures, the properties
shown next 1o the figures are all non-dimensional. ~The lengths, loads, ctc., are all
theratos of a coresponding base it of value 1



‘Normally,load factorsare greater than 1 the real cases. Inthis work, the loads were
chosen such that the load factors are less than 1 1o facliate the work of FEA

nonlincar analyses using a single load sep.
382 The Description of the Test Cases and Examples
382.1 Uniform Frames

“The cases tested by FEA nonlinear analysis and the direct secant method include;
beam mechanism, sway mechanism, and combine mechanism as well as several

o

“Table 3.1 shows the esults ofthe frames presnted in Figs. 3.5 10 3.15.1 amalyzed
by the it scant method. The magitudes o the peak bending moments i the
veanalyses of thediee scant method are lstd i the table. By using the results in
Wbl .1 the it oads i e ofload corsanalyzed by th diret sccant method.
st shown in able .11 Alo, the same frmes ae analyzed by the tradtional
plastic analyss (excep stuctures in Figs. 314 10 3.19) and fll scle nonliear

anlysi

“The results obtained by two methods in terms of load factors are also
presented in table3.1.1. The frames shown in Fig. 3.14.1 and Fig. 3151 are
relatively complicated, and it is not casy (o apply the taditional plastic method (o

them.  Therefore, oy the dirct secant method is used to analyze the it load for

par
In table 31,1, the results of FEA nonlinear analysis are used to compare with the
results of both the traditonal plastic analysis and the direct secant method. It is

assumed that if the results of FEA nonlinear analysis are closed 1o the ones of

the results of FEA



‘and can be used to compare with the direct secant method. I the case of reltively

feasible. FEA. nonlinear analysis in this case is used 10 be the only base for

‘comparison. In table 3.1.1, the difference of the comparisons is within 3.5%. It

Fig3.5.1 presents a portal frame subject 10 a concentrated force in the middlc of the

beam. It is used 10 test the beam mechanism. Fig. 3.5.2 and Fig3.5.3 presents the

direct secant method. In Fig. 3.6.1, sway mechanism is tested. Fig. 3.7.1 shows the

test of combine mechanism.

A muli-bay structure, which is subject 1o verical and lateral forces, has been

analyzed by Neal [1977]. To ol

in the limit load, the forces are applicd
independently and each corresponding collapse mechanisms are analyzed by the

plastic analysis. Al the independent collapse mechanisms arc combined

respectively to obiain the minimum load factor which is the limit load factor. The
same procedure i followed by the analysis of the direct secant method.  From Fig.

381 0¥

111, ol the independent and combined mechanisms are tested by FEA

nonlinear analysis and direet secant method. ~ Finall, the collapse. mechanism

inthis

3111, and the e
aaseis071

Fig. 3141 presents the test of the parial collapse of a frame. The collpse
mechanism is the. beam mechanism. The plastic hinge locations are marked in
Fig3.143. Fig3.15.1 shows a mors complicatcd frame subect to aeral wiformly
disibuted forces and vertical concemratd forces. The cllapse mechanism btaned




frame. Ten p

marked in Fig. 3.15.3.

A portal frame with non-uniform geometrical propeties subject 0 a later force and a

vertical forc

hown in Fig. 3.16.1.Thelinit load preicion s performed by the
et secant method and comparsd with FEA. nonincar amlyss.  Thee cases
incding diffrent propertes of bems and columns ae iven. Fr cachcase, hee
basc collapse mechanisms (beam, sway and combine mechanisms) are amalyzed
“Tubles 3.1 10 341 show th sructural geometricl properis. The rsuls btined
from FEA nonlincar analysis and the dieet scant anayss are presened i tbles
52210342, The dirct sccan method gives gond cstimation and the diffrence s

with 3%,
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Fig. 3.1 Beam Mechanism for a Portal Frame

A5

Fig, 3.2 Sway Mechanism for a Portal Frame
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Fig. 34 Dircet Sccant Estimation of Plastic Limit Load [Adluri, 1999]



Portal Frame Subject to Concentrated Vertical Force

Fig 352 N

ar Analysis Results for the Portal Fram

Fig 351




353 Direct Secant Method Results from Re

for the Problem in Fig. 3.
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Fig. 361 Portal Frame Subject to Lateral Force

Fig. 362 Direet Secant Res

s from Reanalysis for the Problem in Fig. 3.6.1




Portal Frame Subject to Both Lateral and Vertical Forces

®

Fig. 372 Direct Secant Results from Rear

sis for the Problem in Fig. 3.7.1
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Fig 381 Two-bay §
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Fig. 3122 Direct Secant Res

from Reanalysis for the Problem in Fig. 12,1




Fig. 3132 Direct Secant Results from Reanalysis for the Problem in Fig, 3.13.1




Fig. 3042 Nonlincar Analysis Results for the Problem in Fig. 3.14.1
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Fig. 3043 Direct Sccant Results from Reanalysis for the Problem in Fig.

3141
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Fig. 3151 Mulistoried Frame Subject to Concentrated and Distributed Loads

Fig 3152 Direet Secant Results from Reanalysis for the Problem in Fig, 3.15.1
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Fig. 3161 Non-Uniform Portal Frame Subject to Lateral and Vertical Forces
for Case 1

Table 32 Load Factors for the problem in the Fig. 3.16.1

Fig. 3162 Non-Uniform Portal Frame Subject to Lateral and Vertical Forces.
for Case2



Table 33 Load Factors for the problem in the Fig. 3.16.2

Fig. 3163 Non-Uniform Portal Frame Subject to Lateral and Vertical Forces

for Case3




Chapter 4

Estimations for Frame Stability

4.1 Introduction

Stability is o major design consideration for structural columns, frames and allied

sirutures subject 0 compression or compression and bending in some combination.

bt s
of nginceing curiculum (s, .3 Hibbeler [2008]).Some o i is eviewed in
Chapier 2. The theoreticalbass for stabily thory are ound n several wel known
eferences, .5, Timoshenko and Woinowsky-Kricger (19751, Sabily of frames i

explored by others such as Chajes [1993],etc.  Using the inite element analysis for

Jariy many author
(@i Chen and Lui [1991]). Using the finite clement method usually involves full
nonlinear analysis with varying degree of adjustments or adaptations for joint

[ and other isues.

| I this chapter, these routes are bypassed in fvour of a simple attempt 10 explore the

possibilty of obiaining the critical load capacities for frame sability by using
algorithms based on methods in Chapter 3. It must be clearly noted that this is only
‘@ rdimentary ttempt and hence theoretical rigor for full investigation is beyond its

scope.




4.2 Observations from Elastic Buckling Theory

‘We can gather several observations from the theory of elastic buckling that re useful

forthe present study.

1.1  prfetly strsigh coumn member s applicd  small concentic aial fore, i
will have only a small compressive displacement slong the column and the
column remains stight. The column at this time is in sible equiibrum.
Latrs dispocement aused by a disubing ateralfrce (or momeri)a his siate
will vnish when the disturbing forc i removed and the column sl kees its
susighiness. As the axial load increases, @ smal latral disturbing force can
caus inressingly larger lateal deflections. These il suddenly cause a huge
luteral defletion i a paricularly high enough axal force. At this sage, the
lateral deflection of the column can o recover 10 orginl value even i the
disurbing forcs is removed. The colurn at hi time s in an unsable sate
The axal force that causes hi is very spesifc and is called as riticl (or

“buckling”) load,

2. One of the key observations from clastic buckling analysis is that the flexural
Stfiess that esss bndin is progressively weakened with the incrase i the
axial fores i the column, The sifnss eventually reaches negligible levels
hen the axial forc reaches the critcal (or buckling) load. 1t is postlted that
{his los of stifnes may be simulated to some extent using ideas from secant

tiffness modification from Adluri [2001] and used in Chapter 3.

3. The same observations as above apply o columns tha ar part of  frame. ~ Such
frames will also have “buckling” loads the same way that columns do.  This is
the case whether the frames permit or prevent side sway. ~ These frames can have




different types of comnections between beams and columns.  The column

stability will depend upon the efective end restraint. The beams and their
connections will act as partial end restaints 10 the columns thus modifying the

effective length of the columns and their buckling capacitis.

4. For frames, the lteral deffction n columns may be produced by aial frces,
Iateral forces andlor bending moments. We can cal the deleton caused by
loteral forces and direet bending moments s the primary deflction whie the
deflection produced by avial forces a5 the secondary deflecion.  This

“sccondary” deflection n fact i more signficant or the current chapter.

5. Fig. 4.1 shows the diagram of a segment of an isolated colum. If we take the

‘moment equilibrium,

Qe iy -+ B <0
13 @
[ —
av-riy “

Therefore, if lateral force effects are removed, the moment increment in the
column s cqual o the product of axial force and displacement increment at that

ocation.

6. The lateral forces such as Q in Fig. 4.1 cause laeral displacements. The




patterns at the time of column or frame buckling. Therefore, the latral loads or

may have the maximum displacement a a different locaion.

7. Just prior 1o buckling, the maximum displacement of cach column can be
considered to be the eritical displacement. This implies that if any displacement
exceeds the crtical displacement, fulure will occur. We reterate that as

mentioned above, when buckling occurs, the huge displacement location is not

exactly the same as the critcal displacement  location. However, these

displacements are most ikely 1o be close o each other. ~This can be shown i the

4.3 Inspiration from Robust Plastic Limit Load Analysis

In addition 1o the observations above, we can use some of the ideas gained in

Chapter 3 to try and simulate frame buckling.

1. W will asume that the frame buckling for tis siuation docs not folow the
casical mode of “bifncation” or & sudden change in st Rathe, the
buckling i a ransition from more o less lincar clastc deformaton (involing
both axial and ltra displacements of members) 0 a eltvly very lnge set of
ol diplacements due 1o insiabilty. The magnitude of this “lage”
displacement s not of as much importance as the fcttht it took place i all,

“This

somewhat smilar (0 the fact that at lastc limit loads,the curvature of the

rather tha it ook place at al)



Jicd loads ical locaion is

somewhat analogous 10 that between moment and curvature of the critical

cross-se tially lincarly

in Chapter 3. Both the relationships have
increasing portions which tum to large horizontal portions (with lie increase in
effecive load).  An approximate load-displacement curve for buckling is shown

in Fig. 42. It is of course neglecting a realistc post buckling drop in the

buckl Ttalso neglects
the nonlinear transition that usually precedes the onset of buckling. ~The figure

imilar 0 the moment-curvature relatonship from

(although highly idealized)
Chapter 3 (Fig. 3.2).

“The plasic limit load estimation of Chaptr 3 relis on a secant modification of
the rigidiy to simulae the redistribution of bending moments caused by the onset
of yielding. The bending moment re-disribution reles on the relaive secant

rigidity of different parts of the frame. ~Similarly, we can postulate that the

stability of frames is influenced by “effetive secant stiffess.” Just s in

Chapter 3, the secant moification here can try and ive all the parts of the frame
an equal “opportunity” 1o buckle,  Schematicaly, this modification is shown in

Fig. 4.2.

1t must be noted that the word “secant siffnss” is used loosely here, It is not
exactly the same as that used in ierative modified Newton schemes for nonlincar

matix analysis

Tocations of peak redistributed 3, we can try
1o obiain locations of peak displacements in the siructure whose stiffess is

modified by the scheme shown in Fig. 42, These peak displacements can



potentially be indicative of frame instabiliy.

4.4 Robust “Secant” Analysis Trials for Elastic Buckling
Using the observations above, we can attempt 1o investigate the elastic buckling of
frames.  We repeat that this is a very preliminary idea and needs o be thoroughly
analyzed before any firther development.

It is postulated that frames exhibit “buckling” behaviour when a certain critical

displacement i,

Inthe propos load fo

 column member i a frame.

For a set patem of applicd loading <12 M> and an arbitrary load muliplication
factor 4, we carry out an initial clatic analysis. This gives us the general

displacement pattern for the structure which we assume increases monotonically

with factor il the
decides 10 buckle.  As mentioned earlier even at buckling, the displacement is

ot assumed to “bifurca”. 1 rather increases significantly at some paints thus

possil Joad

2w

5. 42, the line OA represents thelincar lastc reltonship between pplicd
load and dispacement, 11 i obained based upon the il stifnes (lope) K.
As the oad increases, the stiffess remaing. relatively constant while the
comesponding displcement incesses proporionatly. This continues il a

crtical displacement d,, s reached at point A The tangent siffcss becomes.

n



ly very low thereafier. (We are, as mentioned above, neglecting @

point A). L Fy and that it

produces a displacement d based on initial stffness K. In order to simulate
buckling, we can moify the tiffess of the segment using the secant line shown

in Fig. 42 (smila tothat used in Chaptr 3)

@)

where, s the moment of inerta forthe scgment under consideration. The value

ofda s notacully
vl il srve the purpose of st adjustment ofsifnes.  This s line with
the procedure from Adiuri [1999] and that in Chapier 3. Noie that we are
modifing moment of inertia which s proporional o the stifness of the member.
The new moment of inerta rie to incrase the siffoss of thos arcas which
produced ess dispacement and reativly “reducs” the sifnss o thos arcas
that produced more dispacement s encouraging all sgmentstowards

“buckling”

Re-anlysis of the frame is performed on the basis of the modification above.
“The locations of peak displacements are obtained. ~ These locations might have
shifted from the corresponding oncs in the previous analysis (analogous 10 the

situation in Chapter 3).

After re-analysis, the criical load can be caleulated by one of the following two
empirical merhods. The first method obiains the load factor corresponding 10

critical load from the

o of two average displacements. The second method

s the ratio of moment integral and displacement integral. - Both the methods



are illusrated below:

441 Method 1 for Critical Loads

Let Pmees be the total compressive foce n the columns, Mas s b the bending

moment at 0 of peak dis Cbeafactor type

of frame. Compute an “equivalent” displacement dupe s below. There may be

more than one peak locations. Note that the subscript “mpc” is not 1o be confused

with used in several commercial packages such as

ANSYS and ABAQUS.

@
@)
"
here, ., isthe peak displacement n the reanlysis.
“The facor C depe e tal -

values.  We do not yet have the necessary theoretcal development (0 determine the
factor cxactly. Pending the development of the theory, it has been decided to
empirically estimate the factor using finite element geometric nonlincar analysis.

“The factor C s likely

frame.  However,forthe present study, it has been assumed 1o be @ constant.



Fig. 4.3 shows result for the factor C for portal frames with different aspect ratos,

where, Lis the length of column and L,s the length of the beam. The maximum

value of C is 0.817 when %: 1and the minimum value of C i 0.461 wmu%
“The curve shows lile difference ‘.m% <Hand it floatssround a consant value. It
implics that a constant value can be used to cover the changing of hi portion of the

curve.  This constant value i selected 0 be 0.72.

Fig. 44 i the load factor 4 Iy
that for robust secant analysis when C=0.72. In the figure, beams are shorter than

1), The sl v denocs cngevalue sl and the dshed e

columns

denotes robust secant analyss. It must be poined out that the factor C is being
calibrated using the “exact” analyss with the expectation that such fuctors will be
investigated in further work and procedures for finding them will be developed

without recourse to the back-calibration used here.

442 Method 2 for Critieal Loads

1. Mdentify the locations of peak displacements and the nearby locations of zero

displacements. ~Find the bending moments and displacements at these locations
2. Caleulate

)




where, d,is the peak displacement in reanalysis d s the zero displacement,

M,, is bending moment at the peak displacement location and M, s the

bending moment i zero displacement location.

3. Estimate the critcal load by using the equation

)

C inMethod 1. It

nonlinear analysis as used in Method 1.

Fig. 45 investigates the factor . for porta frames subject 0 a verical force on the
beam, where, L, is the length of columns and L,is the length of beam. The

‘maximum value of /1 is 0.2581 for Ly/Ly=1 and the mi

wm value of 4 is 0.1378.

when Ly/Ly=2.  The curve shows

le diference when Ly/Ly<=1 and it floas around
‘a constant value, 1 implies that a constant value can be used 10 cover the range

LyLy<=1. This constant value s selected to be 0.22.

Fig. 46 shows the comparson of th load fcor between geometrical nonlincar
anlyss nd robust secant aalyss Mthod 2. The sl i i th fgur rpresnts
he theoretcal load fctor for @ portal frame with iffernt aspet oo, The dshed
Hin denotes th curve for robust secant anlysis when -022, These two lines are

los and do ot show much diffeence When0277 21 <1. - The masimam cror

shown in the figure is 9%.



443 Comparison Between Method 1 and Method 2

1t is obvious that Fig. 4.3 and Fig.5, show general trends that are proportonal to

cach other. The value d,., in Method 1 is equal toAdin Method 2. The value

g i Method 1 is proportional to. AM in Method 2 because AM = M, ~M,,
“The difference between the factor Jand the factor C comes from the difference

between M., and AM

Although Method 1 and Method 2 e obviously closcly relaed,the it of AM in
Method 2 s not the same as the value of My in Method 1. The use of AM was
meant 1o represent the total area of bending moment diagram between the peak.
losation and the 7ero location thus indicting “ripping” pe unt displacement that
causes buckling. - Sine the use of an ntgral is somewhatcumbersome attis s,
it was decided that a simple “change of valus” will be used inscad.  This ncds

further investigation.

Tmust that we used the actors C and the range.

of aspect ratios selected for the present study). They are not acwally constants as

can be scen from Figs. 43 and 45 In fact for Ly > L, these factors seem 10 be

45  Results

Several portal frame problems have been analyzed using empirical Methods 1 and 2

Figs. 436,



“The resuls of some of those analyses are presented in Figs. 47 0 4.13. For the

analyses, the following physical data was used (Tuble.4.1).  Although the data was

can casily be shown to be non-dimensional in thir naure.

‘Table 4.1 The Physical Data Used in Analyzing the Structures in Figs. 47 o 4.13

The analyses include portal frame with one load, two loads and three loads on the

beam as well lteral

sway due to wind. ~The frames cover different aspect ratios.

As can b scen from the results presened,the crors from the propased analyses e
ressonably smal in comparison with the rsuls of geometric nolincar aalyss, 1t
must be noted that the geometrc nonlincar analysis rsults are ever o slghtly
diffrent rom thos in Figs. 4.6 snce those use the matrx cigen value analyss
However the diffrence is within tolrable margins.  Typcalinput s for ANSYS

analyses are included in the Appendices.



Fig. 41 Segment of an Isolated Column




Fig. 4.2 Dircet Sccant Modification for Stiffness
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Fig. 47 Portal Frame with Concentrated Foree on the Beam Case 1 (L2 <L1)
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Portal Frame Case 2:

Fig. 4.8a Portal Frame with Concentrated Force on the Beam Case 2 (L2 = L1)

Properties




Fig. 4.8b Displacement Distribution in Reanalysis for the Portal Frame in Case2
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Portal Frame Case 3:

]

Fig 4.9 Portal Frame with Concentrated Foree on the Beam Case 3 (12> L1)
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Portal Frame Case 4

Fig. 4.108 Portal Frame with Concentrated Force on the Beam Case 4 (12 <L1)
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Portal Frame Case 5
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Fig. .12 Portal Frame with Three Forces on the Beam ~Case 6 (12 < L1)

Prop .
B [B | & | &
7 B B 7 A
ST T Y T
Resut
‘peak displacement® =)
(D’ﬁ —
wises
‘peak displacement® iy
3y i
i2ie2
Eutimate of Ciical Losd

€ Theoretical Load factor | Robust Secant Load.
0n 049 -



Es

Fig. 4.12b Displacement istribution in Reanalysis for Portal Frame in Case 6
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Portal Frame Case 7
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Fig. 4.13a Portal Frame with a Force on the Beam and a lateral force -Case 7







Chapter 5

Estimation of Large Deflections in Beams

5.1 Introduction

“The study of large deflections is a vast and complicated subject. It has many
applications and i used dircetly and indirectly in several design situations. A very

preliminary attempt ai estimating large deflections of beams or beam type structures

“Total deflection s the vector sum of the deflction in al directions. There are many

diatos that can b used 10 identify i inerestneeds large defl
considerations,fo cxampl,if th valu ofth rotation 0 of beams cannot be casily
replaced with sing or vie versa, In a desgn siation, typialy, a deflection in
excess of “Span/120° is comsideed exceeding smll deflcton it When lrge
deflction takes place, sructural members devite significanly fom their oriinal
positions. This devision s considrsd 1o be large enough s that the cquations
formed on the original geometry are o longer valid fo @ good cstimae of the

behaviour.

In this chapter, the large deflection of beams is investigated using Euler-Bemoulli

beam theory, linear and nonlinear FEA and robust secant analysis used in earlier

chapters.  Three cases of beam, iz, canilever beam, simply supporcd beam with a
roller and simply supported beam without rlles.




5.2 Euler-Bernoulli Beam

5.2.1 Linear Theory

Elementary Euler-Bemoulli beam equation s well known and is widely taught in

12008) is that the
beam section that is originally plane remains plane afler bending. The popularly
Known form o the cquation assumes that the beam s isotropi. It elates the applied

by the load from

Fig. 5.1, the equation i expressed as:

L M), 1= dyede 6

where, . 1 inertiaof

. () i the deflection at any point x, M(x) is the bending moment, and w(x) is the

uted load at x. The equations are derived using the following

intensity of the dist

assumpions:

1. Beams have small deflections. The stresses, except bending stresses, arc

negligible. - Beams behave clasticaly

52

M@= [[yow) dvds 3



V) =[fo, () dvds (5-4)

Since the main assumption s that plane cross-sections remain plane after

deformation, the shear effect on the deflection is not included.

522 Modified Euler-Bernoulli Equation
If beams experience large deflction, the linear beam theory illstrated abov is not

&
r

0 s no longer

A cantilever beam subject 10 a concentrated force at the free end i shown in Fig. 5.1
“The vertcal force P causes vertcal displacement ds, horizontal displacement dy and

rotation 0 of the beam. The total deflection s the vector sum of the horizontal

displacementd, and verical displaccmentd, .1 = M(x)is el to cvalute

intemal

of Extemnal

bending moment M(x) is not equal to P(L~x) but to P(Lox

). where & is the

shortening of lengih in the horizontal direction

The modified form of Euler-Bemouli equation is then given by

W'] F M) (55

In the above, the curvature term is no longery* = d’y/d’ . Insead, it became.

/4 (F]". The bending moment M (x) on the other side of the cquation




should include the ffect of changing length.

53  Scope of the Analysis

“The beams analyzed in this chapter have deflections that range from 5% 1o nearly
50% of the beam length. 1t is assumed that the concentrated forces applied on the
beams  maintain their orginal direction, cven if beam orientation is altered

significanty due 10 large deflection. It must be noted that the calculation is for

“total” deflection !

are applicable for the investigation

“The materia i sotropic and homogencous

2. The material is relaively soft. Material filure or plasticity does not govern the
deflections.
3. The calulation s

4. Shear cffect is negligible. Only bending siresses and axial stresses govern the

defl

Cros-scetions maintain ther original shapes.

Lateral buckling is not considered.

The total deflection is a vector sum of vertical and horizontal deflections, as
mentioned earler. The horizontal deflections are influenced by change in length as
well as the curvature of the beam. For simple cases, the change in length can be

shown to be



o 9

Fora cantilever,the integral evaluates to

n)_r n’[

“AE 6EI|

larly, we can find the horizontal displacement u(x) due to curvature of the beam

using,

= dx X
R o &9

AUl these cquations (e.g. ¢q. 52.5) can be solved using well known numerical

methods such as Runge-Kutta (Order 4), etc. in combination with “shooting”
algorithms as demonstraed by Adiuri [2009].  Application of such methods becomes
complicated if the deflections are being computed for more elaborate cases such as

frames. In the following, fini

clement models have been used o run lnear,

5.4 The Direct Secant Technique

The dircct secant technique presented earlier by Adlui 2001], Bolar and Adluri

12005), ., has been used in Chapter 3 for plastc limit load estimation. ~Similar

Toads of
frames

Fig. 5.2 describes the basic idea of secant analysis. The i

linear analysis

predicts stress and srain based on the original elastic modulus. I the strss excecds

m




The secant modulus i updated teratively as

59

of Adiuri [2001] may not change the modulus.  Tnstead, it

may change any item tha s direcly proportional o secant stiffncss such as moment
of inerti,rigidity, or even the stiffess matrx iself [Laha and Adluri, 2005}, In that

sense, secant stiffness for the e ieraion can be expressed as

K, (&10)

where, K,is the original stffness, K, is the new stiffcss and 7is the modification

factor.

541 Cantilever Beam

A canieverbeam subcet 1 a concentratd lod a the fce nd i shown in Fig. 5.1
This beam is analyzed for licar and onlincar cass. The algoritims wed in
Chaper & have been mployed for abaiing the robut secant analyss resuls The
resuls ar shown i Fig. 53, The plots ar on-dimensionalzed for the masimum
delcton that we ca expect at the p of  canlever of we use he simple linese
{heory (the sope of the results ofth inr theory on this graph should be 1), The
robust ansysis esults are fiy close 10 thos from fll nonlinear aalyss.  Up oo
defection of ahout 25% ofthe ength of b, thre il e, The error sarts 1

m




increase when the deflccion increases beyond half the lenth of the beam. 1 s
decmed that this is probubly the most that we can expect in & normal sructural
application cven for eltively “soft” materias 1t s to b noted that the delection
includes the shortening of the ever arm as well as the tensike componcnt of the

applied load at lrge defl

Fig. 5.4 shows the comparison between th noninear resals, inar resuls and &
implifiedalgorithm which considers the sccant modificaton 7 i Eq. 542 10 be
consant value of 105, From Figs. 5.3 and 5.4, we can find that the simplifed
procedure virually gives the same reslts a5 those from detiled sccant analyss
The good ft secms to be maily because the nonlncar resuls are eltively fnear
even at high displcements  Als, somevhat unexpectedy the onlincar deflction

is smallerthan that from linear theory

542 Simply Supported Beam with a Roller Support

A simply suppored beam it a rollrsupport on e end s shown n Fig 55, A
concentrated force is applied at the mid span ofthe beam.  The olleron the imply
Supporid beam,a s clar, nly permits the horizontal displcement and restics the
vertcal movement.  When large defletion occurs at the mid span, the total
displacement s influcnced by both the verial defecion and orizontal movement

of the beam.

The (normalized) results are shown in Fig. 5.6, For tis case, ulike the cantilever
case, the nonlinear deflection is larger than that from linear theory. The sccant

analysis approximates the nonlincar resut furly closely
For this case also, a simplified approach was attempted similr (0 that used in the

12



case of cantilever.  The factor 1 was found 10 be 0.95. The resuls for this

ified approach are virtually identical o those from secant analysis. At this

stage, i is unknown why the simplified approach works except for the obvious

reason that the deflection, even in case of nonlinear analysi, is almost lincar and
hence a uniform reduction of stiffcss (through the use of moment of inertia) might
Somehow work.  We need to remember that the deflection being considered i the

tota deflction and not simply the usual vertica deflection.

543 Simply Supported Beam without Roller Support

A simply supported beam without the roller support is shown in Fig. 5.7, The beam
is subject to a concentrated force at the mid span. Because there is no roller at the
support, the horizontal displacement is constrcted. The concentrated force at the

‘mid span only leads o the vertical deflection

Fig. 5.8 shows the (normalized) results of the analysis.  As in the case of the

previous beams, the secant analysis results are acceptable. For this case also the
simplified technique was tred. A value of 7-0.95 gives good resuls.  Again, we

are simply calibrating the value of 7 by using nonlinear analysis, W do not yet

forthe use of
A comparison of the results for simply supported beam with and without rollrs is
shown in Fig. 9. The difference is obviously not very much. However, this
difference must be scen in light o the results for incar analysis shown i the same

eraph.



544 Portal Frame with Lateral Load

A simple portal frame with a lteal load at the heam level is shown n Fig. $10. 1
s the same height a the width.  Both beam and column have the same propetcs.
“Thelage deflcction analysis and secant anaysis rsuls are shown in Fig. 511, As
can be.seen, the sccant analyss gives reasonably close reslt 1o that from the

nonlincar analysis.
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Chapter 6

Conclusions

6.1 Introduction

Limit load et bothin design

and anaysis type problems. There has aliways been a need for robust methods for
plasic limit load analyss fom the point of vew of numercal sabilty and effor
Robust limit load analyss has ginod considersble atention over the past several
years. Available robust methods adopt sccant modulus moificaton a3 means o
cause rodistibution in an clastic structure therchy producing it bebavior.  The

most significant among these methads are the r-node method, elastc compensation

family of methods.
1o define an effective stres. This effective stres is used 10 obtain an estimate of

dul

Jimit londs. ~ Such identification might require considerable judgment in some cases
“The clastic compensation method i based on @ maximum stress value. Because of

numerical local errors,

can sometimes be difficult o properly identify the fuilure
mechanism and the consequent limit load. The m, family of methods have beter

theoretial basis but

i many cases and unconservative i several other situations -especally for bending

type problems. Al of these modulus modification methods need stress level
modifications and consequent discretization requiremens. that are very claborate.

The present thesis made use of a robust method which has several features of the




above mentioned robust techniques for the estimation of limit loads along with

methods o that it can be applid fo any yield cieion and any finit clment ype
Adir, 1999, 200111 s previously been shown to work quit well for beam
(@) and plte type siructurs by Adiur, Bolar and others. The i can be in
{erms of streses or generalized forees such as moments and shears.  The clements

can be beam

tleast i aper

10 apply since any type of finite clement can be used. ~ The use of this technique has

for a variety of beam and

imitloads,elastic buckling.

“The method has a good theoretcal bass for plastc lmit loads. ~ Howener, the theory

established.

62 Summary

Chapter 2 of the theis gives an over view of the limit theorems, buckling, arge
deflectons, et. It reviews the maierial on the current robust methods such as the
Fnode technique, m technigue, tc.

(Chapte 3 reviews the methods used by Adluri and associates o esime plastic limit

loads for beam and plate type structures.  The methods are used to predict frame.

loads. s aken from Ad

11999, 2001] and i summarized below:



2. Modify the cross-section propertes using

o,

M, o1
e L

where M, are the plastic moment capacites of the cross-sections.  The

M)

4. From the second analysis, the peak bending moments are considered as the
ocations of plastic hinges. Not all of these locations may be needed 1o form a
mechanism for collapse.  Sufficient combinations of these hinge locations are

selected 1o form all possible hinge mechanisms. Usually, there are only a few

5. For cach of the sleted mechaniss, the lond fctor for plastic colase is
calelted fromthe cxpresson:
.
0 62
B o
& M,
Mlsconsta. i
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Thisis the same as expression a that from Adluri (2001].
"



6. The lowest of these load factors amongst all possible combinations for hinge

mechanisms i the applicable plastc limit load factor

“The results of the above procedure have been compared against the full nonlinear
analysis results for many types of frames including portal frames, one-storey frames

with multiple bays, and mulistory frames.

(Chapter 4 applis two adapted versions of the above secant technique (o predict the

buckling loads of clastc frames.

It is assumed tht the frame buckling docs not follow the clssical mode of
“bifuraton” or a sudden change i siatus.Rathe,the buckling is a ransition
from more o les linear clastic deformation (inalving both axial and lateal
displacements of member) to 8 relatively very lnge st of lteral noninear
displacements due 10 instaily, The magnitade of this large” displacement is
ot ofas mach imporance s thefct tht it tok place at il This s similar to
the fact that a plastic limit loads,the curvature of the beam at crieal segments
reaches very large values (is magnitude i not important —rather that i took place

atall),

T rlationship bt sppled londs and he dispacementat il locaton is
somewhat amlogous o tha between moment and curature of the criial
cross-section in Chapter 3. Both the reltonships have intaly lincaly
incrcasing portons which tur to large horizotal portions (wih ltle icrease in

effective load).

3 Justas we obtain locations of peak redisributed moments in Chapter 3, we obtain

odificd by the




Sccant scheme.  These peak displacements can potentally be indicative of frame

instabilty.

Two alternai

empirical methods have been used in this chapter. Method |

‘computes peak displacements as given below

(64)

“The load factor 4 for th critical load P s obtained from the peak displacemetts,

i
Py=Pli=—tl— (6-5)

" S
Where, s thepeak displacement i the reanlysis.

The factor C depends on the type of frame. We do not yet have the necessary
theoretical development to determine this factor exactly. Pending the development
of the theory, it has been decided o empirially estimate the factor using finite

element geometric nonlinear analysis.
In empirical method 2, after reanalysi, the critcal load i calculated as below:

1 Ldentify the locations of peak displacements and the nearby locations of zero

displacements.

2 Caleulate

©6)



where, d, is the peak displacement in reanalysis, d, i the zero displacement,
M,, is bending moment at the peak displacement location and M, is the

bending moment at zero displacement location.

3 Estimate thecrtica load by using the cquation

)

“The factor in Method 1

nonlincar analysis as used in Method 1.

portal

frames. Further work is needed 1o establish the theoretical basis for these methods

ool improved i

Chapter . iaues a5
in Chapter 3 are use to prcict thelrge deflccions of beams up 1 a valu of ey
50% of the span length. The results are encouraging. A malifed form of the
st tchmique wher the modificaton s uniform hroughout the lenth ls seems
10 give quite aceptabl resuls. However,as in the case of Chapter 4, more work s

eeded o establish the theoretical basis for the methods.

The analyses i the theis are caried out using ANSYS software. ~ Typical input files

fferent dyses and the APDL et P inthe

Appendices.

6.3 Conclusions

“There were several studics in the current thesis.~Some of the main conclusions are




T

gathered below.

Plastic Limit Loads Estimation

“The best conclusion of the plastic collapse study of the frames in Chapter 3 is
that the method works very nicely and had a sound theoretical basis. The
ertors compared to the fll nonlincar analyses are well within acceptable

margins.

“The method works cqally wellfo fames with non-uniform crosssetios,
poral frame, singe story muli-bey frames, and maltistorey frames.  They
inchde. beam mechanism fulurs and sway mechaism filures as wel as
combined filurs meshanisms.  The studis very clearly confrm what has
been suggested or claimed by carler swdies. This is peshaps the best

contrbuton of the present thesis.

Buckling

The load:

isplacement relationship in a buckling problem is analogous o the
elationship between moment and curvature i  plastc limit load cstimation

problem.

of inetia (n liew
displacement profiles in order to simulate critcal displacement patters at
buckling.

Two empirical methods have been examined in Chapter 4 1o predict the




633

buckling load capacites of poral frames. Factors C and 8 have been
clibrated for use i Ea, 442 and cg, 445, These factorsae ndicive of
cetain theoreical algortms for buckling loads. The resuls using these
scem 10 be firly good fo arang of poralframes and loadings.  However,

ther theoretical basis needs further study.

Large Deflection Analysis

For beam like structures studied in this thesis, the linear analysis deflections
could be cither larger or smallr than those predicted by nonlincar analysis.
For cantlever, nonlinear analyss gives less deflection than th linear analysis.

For other beams and frames, it i the other way around.

For th Jes studied, linear and much il

the deflection reaches about 20% of the span. ~Even afer that, the diference

is not very large tll the deflection exceeds 50% of the span.

The direct secant approach gives reasonably good estimate of the nonlinear

deflcctions.  However, many more examples need 1o be studied (0 confirm

This is because it can be analyss is

fairly close o theresults of nonlinear analysis.

i odification or
modificaton that gives @ non-uniform beam cross-scction) seems (0 give
resuls that are almost identical 10 the full secant analysis.  The niform
modifcaton. factor wsed for moment of incria has & namow range:

0.95.<7<1.05. 1 lincar deflction is greater than toal nonlinear deflection,

w




1> 1.0, Iflincar deflecton is smaller than total nonlinear deflection, 7 <1.0.
“This needs to be studied further and theoreical bsis established in order for it

10 be of practcal use.

6.4 Recommendations for Further Work

In the present thesis, the rescarch involved limit load estimation due 1o plastc

" clastc large
defctions in b, The work s lmited o crain types of structures. - Moch work
nesds o be carmied out to csablish the validiy of thse approsches. - Chapeer 3 s
pehaps withthe most teorstical justification s given by Adiui 2001]. Chapter 4
and S need considrable furher rescarch o cstabis their thoretical basis. Further
work s recommended 1 the following conent:

1

2. Extend the robust sccant estimation of Chaper 4 (o include material nonlinear

analysis

4. Factors C and f ore used to caleulate the ritical load. The meaning of the

5. Large deflection estimation needs o be extended to more complicated structures

with different boundary conditions and load combinations.
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APPENDICES

Appendix A incdes al the first purely st analyss i robust scant methods in
{his rescarch. The macros usod for modifying secant rgidity are all presencd in
Appendix B, Appendix A and appendix B ar used tgether to consist of the ntie
obust scant aalyss. AppendixC involes al the FEA nonlinar anlyses in his
escarh. The esuts of robust scant anslysis obtined fom Appendix A and B are

‘compared with the nonlinear esults from Appendix C.




APPENDIX A

AL A UNIFORM PORTAL FRAME SUBJECT TO A LATERAL
FORCE AND A VERTICAL FORCE

1PLASTIC ANALYSIS USING MODIFIED SECANT RIGIDITY.
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DALLALL
NSELALL,

1SOLU

ANTYPEQ { DEFINE STATIC ANALYSIS

AV

SOLVE

/INPUT MACROL

A12 ATWO BAY AND ONE STOREY FRAME SUBJECT TO
TWO VERTICAL FORCES AND ONE LATERAL FORCE

t PLASTIC ANALYSIS USING MODIF

SECANT RIGIDITY
SOR

I VERTICAL FORC

Vv

| LATERAL FORCE

{INPUT AREAMOMS
{INPUT YOUNG'S MODUL!
FINPUT PASSION'S RATION

1DE)

[1ON OF KEYPOINTS

I DEFINITION OF LIN

* DEFINITON OF MES
*MESH LINES

151

NSEL,, LOC, X, 200 1Al

LY THE VERTICAL FORCE



FALL,FY.P1

NSELSLOCX,600 L APPLY THE VERTICAL FORCE
FALLFY, P2

NSELSLOCX$00 L APPLY THE LATERAL FORCE
NSELR,LOC,Y,400
JP3

LLF,
NSELSLOCY0 IAPPLY BOUNDARY CONDITIONS
DALLALL

NSELALL
soLu
ANTYPED IDEFINE STATIC ANALYSIS
SOLVE

INISH
/INPUT MACRO1
A13 A UNIFORM FRAME SUBJECT TO THREE VERTICAL
FORCES AND ONE LATERAL FORCE

t PLASTIC ANALY:

USING MODIFIED SECANT RIGIDITY

! ENTER PREPORCESSOR

ET, 1LBEAM3 T USE BEAM 3 ELEMENT
“SET, EM 200E3 IYOUNG'S MODULUS.
SET,A, S0 LAREA
#SET, 1, 266,67
[ H,8
L, 150
122
SETPL, 463 {FORCES|

SSETP2256
RIALH {INPUT AREA,MOMENT INITIAL
MPEX.1.20063
MENUXY,L0 LINPUT PASSION'S RATION
K100 * DEFINITION OF KEYPOINTS
K201
K308°LL
KA08'L0

K502'L
K608°L2L




K713°LL
KS13°L0

Li2 * DEFINITION OF LINES

* DEFINITON OF MESH SIZE

TAPPLY THE VERTICAL FORCE

IAPPLY THE VERTICAL FORCE,

LAPP

THE LATERAL FORCE.

L APPLY BOUNDARY CONDITIONS

oLy
ANTYPED {DEFINE STATIC ANALSIS

SOLVE
FINISH
/INPUT MACRO1




Al4 A UNIFORM BIG FRAME SUBJECT TO UNIFORMLY
LATERAL  DISTRIBUTED ~FORCES ~AND  VERTICAL
CCONCENTRATED FORCES

£ PLASTIC ANALYSIS USING MODIFIED SECANT RIGIDITY
PREPT ! ENTER PREPORCESSOR
ET, LBEAM3 IUSE BEAM 3 ELEM

IYOUNG'S MODULUS
TAREA

MOMENT OF INERTIA
HEIGHT

ILENGTH

{ MESH SIZE

1 FORCES

1 FORCES
FORCES

RIALH LINPUT AREA,MOMENT INITIAL
MPEX,1,20063
NUXY,LO LINPUT PASSION'S RATION

K100 *DEFINITION OF KEYPOINTS
K212°L0

KI0A4LL
KI102°L

KIZI2L2L
KI324L2°L
KI434L2'L
KISA4L2L
KI612L,3°L
KI724L3L
KIS34 L3 L

K19,12¢L,4°L
K202.414



K234 L1

Li718

L1619

| DEFINITON OF MESH SIZE
I MESH LINE:

! APPLY THE LATERAL

FORCH
SPBEAMALLLPRES P

ESEL,S ELEM, 706,780
SFBEAMALL,LPRES.PI

SELEM, 1411,1485
SEBEAMALLLPRES




ESELS ELEM, 80,1875
SFBEAM,ALL,1PRES.PI

ESELS ELEM, 1336,1410
SFBEAMALL,1,PRES,P2

IAPPLY THE VERTICAL FORCE

NSELSLOCX.L8'L
NSELRLOCY.2°L
FALLFY,P3
1801
NSELRLOCY3L.
| FALLFY,P3

NSELSLOCX,L8L.
‘ NSELRLOC,YA*L

FALLFY, P
NSELSLOCY0
DALLALL
NSELALL

TYPEO
OUTRESALLALL
SAVE.

NSELALL

ELSLOCy0 TAPPLY BOUNDARY CONDITIONS
DALLALL
NSELALL

oLy
ANTYPEQ FINE STATIC ANALYSIS
SOLVE
NISH

/INPUT MACROL
| A1S A NON-UNIFORM PORTAL FRAME SUBJECT TO A

LATERAL FORCE AND A VERTICAL FORCE

1 PLASTIC ANALYSIS USING MODIFIED SECANT RIGIDITY



IPREP?
ET, LBEAMY
ET, EM 20063
SETL 300

“SETAL3000

Ti9e
SETHI60

TAZ, 5000

SET.12, 417
SSETH2,100

! ENTER PREPORCESSOR
L USE BEAM 3 ELEMENT

IYOUNG'S MODULUS

£ DEFINE DIFFERENT
 GEOMETRICAL PROPERTIES

LINPUT AREAMOMENT INITIAL

UNPUT YOUNG'S MODULUS
HINPUT PASSION'S RATION

IDEFINITION OF KEYPOINT

IDEFINITION OF LINES.

ISELECT LINE |
IAPPLY  REALCONSTANT 2 TO

LECT LIN
IV REALCONSTANT 1 TO

10




Lw ESH LIN
1SOLU
NSELSLOCX0 LAPPLY THE LATERAL FORCE
NSELRLOC,Y,L
FALLFX,PI
NSELS,LOCX ML L APPLY THE VERTICAL FORCE
NSELRLOC,Y,L
FALLFY P2
NSELSLOCY0 IAPPLY THE

IBOUNDARY CONDITIONS
DALLALL

* DEFINE STATIC ANALYS

FINISH
/INPUT MACRO1

A21 A UNIFORM PORTAL FRAME SUBJECT TO THREE
VERTICAL FORCES ON THE BEAM

£ BUCKLING ANALYSIS USING MODIFIED SECANT RIGIDITY
ETBEAMS 1USE BEAM 3 LEMENT

IYOUNG'S MODULUS
ILENGTH DEFINITION

SETLL 600
SETL2, 800
isETA% IAREA DEFINITION

" OF  INERTIA

ESH SIZE DEFINITION
IFORCE DEFINITION

RIALH INPUT AREAMOMENT INITIAL
MPEX1, 20063 PUT YOI MODULUS
TB, BKIN EFINE BILINEAR MATERIAL
TBDATA, 1,300 E YIELD STRESS AND
ik AFTER YIEDL STRESS
HE SLOPE AFTER YIEDL STRI

K100 * DEFINITION OF KEYPOINTS
k2001




k3121
KdL20

L12 IDEFINITION OF LINES.
L23
L34

LESIZEALLLZ IMESH LINES
LMESHAL
oLy

NSELS LOCY 0 L APPLY THE
IBOUNDARY CONDITIONS
DALLALL

NSELSLOC, X, 03 L2 ! APPLY THE VERTICAL FORCES
NSELRLOC
FALLFYPI

NSELSLOCX0512
NSELRLOC,Y.L
FALLFY, P2

NSELSLOCX08 L2
NSE}

I DEFINE STATIC ANALYSIS

SOLVE
FINISH
/INPUT MACRO?

A22 A UNIFORM PORTAL FRAME SUBJECT TO A VERTICAL
FORCE AND A LATERAL FORCE

1 BUCKLING ANALYSIS USING MODIFIED SECANT RIGIDITY

ETLBEAM3 1USE BEAM 3 LEMI

IYOUNG'S MODULUS
ILENGTH DEFINITION

{AREA DEFINITION
IMOMENT  OF  INERTIA




T

HT DEFINITION
e LZ. ESH SIZE DEFINITION

RIALI HNPUT AREAMOMENT INITIAL
MPEX,I, 20063 NPUT YOUNG'S MODULUS
TB, BKIN NEAR
TBDATA, 1,300,0 IDEFINE VIELD
Tk SLOPE AFTER VIEDL STRI
ITHE SLOPE AFTER YIEDL STRI
K100 ¢ DEFINITION OF KEYPOINTS
k2oLt
k312
ey
L12 INITION OF LINES

LAPPLY THE
IBOUNDARY CONDITIONS
DALLALL

SILOC,X, 05412 IAPPLY THE VERTICAL FORCE,
NSELRLOC, YL
FALLFY,PI

ELSLOCX0
RLOC)
[t}

PPLY THE LATERAL FORC

/INPUT MACRO2

A3.1 A CANTILEVER BEAM SUBJECT TO A CONCENTRATED

FORCE AT THE FREE END

El

! LARGE DI USING MODIFIED ROBUST SECANT

THOD

LECTION ANALYS




PREP?
*SETEM200E3 1USE BEAM 3 LEMENT

e LAREA
IMOMEN
HEIGH

INT OF INITIAL

ILENGTH
IMESH SIZE

'SEBEAM 3 EL
irur (‘roM:Tm(AL murul’rlEs

MODULUS
MPNUXY,LO IINPUT PASSION'S RATION
* DEFINITION OF KEYPOINTS
K.z‘u 0
L12 IDEFINITON OF LINES
IZEALL, LZ IDEFINITION OF MESH SIZE
LMESHALL 'SHALL THE LINES
NSELS.LOCX.0 {APPLY THE BOUNDARY CONDITIONS
NSELRLOCY,0
DALLALL
NSELS,LOCX, L1 IAPPLY THE VERTICALLOAD
NSELRLOCY,0
FALLFY P
NSELALL
ANTYPE( * DEFINE STATIC ANALYSIS
| 1SOLU
SOLVE
FINISH
/INPUT MACRO3

A32 A SIMPLY SUPPORTED BEAM WITH ONE ROLLER
SUPPORT SUBJECT TO A CONCENTRATED FORCE IN THE
MIDDLE

! LARGE DEFLECTION ANALYSIS USING MODIFIED ROBUST SECANT

METHOD

IPREPT



“SETEM20083

sSETALOOL

“SETLZ, 1150
“SETR(2) 12

ETIBEAM3
RIALILHT
MPEX,1,20063
MENUXY,L0

IUSE BEAM 3 LEMENT

AREAIN M
OMENNT OF INITIAL IN MM*
HEIGH IN MM

ENGTH IN MM
IMESH SIZE IN MM
IFORCE IN NEWTON

1USE BEAM 3 ELEEMNT
UINPUT GEOMETRICAL PROPERTIES
HNPUT Y
INPUT PASSION'S RATION.

{ DEFINITION OF KEYPOINTS

EFINITON OF LINES

EMESHALL

N .
NSELRLOCY.0
DALLUX
DALLUY

NSELSLOCX,LI
NSELRLOCY.0

DALLUY

NSELSLOCX0SLI
NSELRLOCY.0
FALLFY.P
NSELALL
ANTYPED

S0LU

INISH
JINPUT MACRO

IMESH ALL THE LINE

{APPLY THE BOUNDARY CONDTIONS

IAPPLY THE VERTICAL FORCE,

IDEFINE STATIC ANALYSIS

A33 A SIMPLY SUPPORTED BEAM WITHOUT ROLLER

SUPPORT SUBJECT TO A CONCENTRATED FORCE IN THE

MIDDLE

ARGE
METHOD

DEFLECTION ANALYSIS USING MODIFIED ROBUST SECANT

165 B -



PREPT
SET,EM200E:

“SETAL 0.01
*SETIL 8.3366

“SETEG2) 1

ETIBEAM3

L'esxzmu, 1z
LMESHA

LSLOCX0
NSELRLOCY.0
DALLUX
DALLUY

NSELSLOCXLI

DALLUY

LSLOCX05°LL
NSELRLOCYS
FALLFY P

1USE BEAM 3 LEMENT
NIOMEMNT OF INFTIAL IN Mt
HEIGH

MESH SizE
IFORCE.

1USE BEAM 3 ELEEVN
HNPUT GEOMETRICAL PROPERTIES
HINPUT YOUNG'S MODULUS

HINPUT PASSION'S RATION
IDEFINITION OF KEYPOINTS
IDEFINITON OF LINES

IDEFINITION OF MESH SIZE
IMESH ALL THE LINES

IAPPLY THE BOUNDARY CONDTIONS

IAPPLY THE VERTICAL FORCE

IDEFINE STATIC ANALYSIS.



B.I MACROI FOR MODIFYIN

PLASTIC ANALY:

SIS

“GETSZELEM0,COUNT

Sz
ST

RRAYSZ1

“DIM.COLYARRAY,
“DIM.COLSARRAY,
“DIM,COLGARRAY,
“DIM.COL7ARRAY,
“DIM.COLYARRAY,

ETABLEMLS

M

ETABLEMJSMISC|

“DoxKLS

]
SZ.
Sz
ST
Ll

Co

12

APPENDIX B

SECANT RIGIDITY I

IOBTAINING THE.
INUMBER OF ELEMENT

* DEFINE ARRAY PARAMETERS

IDEFINE THE NAMES OF
IBENDING MOMENT

! GETTING THE BENDING MOMENT OF EACH
IEM INTO PARRAYS

L PLEM KK ETABMI

MJELEM KK ETABMJ

SVFILLOOLIKIO.DATAMI

CVHILLCOLAKKDATA M

PARRAYS

IGETTING THE
IBENDING MOME?
IEACH ELEMENT

IPUTTING  THEM  INTO

IPUTTING  THEM  INTO

ET.COLYKI)HCOLIKI)HCOL2000Y2

VACRUN.COLIMAX,COLI() (GETTING THE MAXIMUM BENDING
MOV

“CFOPENMODIFYI

IMODIFY ARRAY,SZ,1

DIV IMODIFYARRAYS
oot

IE PROPETIE



GET,MJELEM,JJETABM)

L CoDATAL
VFILL,COLG

ETCOLGCOLSamCOLEaIY

*SETIMODIFY(10)(absCOLICOLTGL)"T  IMODIFY MOMENT OF

HNIT)
ASETHMODIFY(,(2IMODIFYIYAY*(72) IMODIFY HEIGHT

“CFWRITE,RJJ,AIMODIFY(J3),IMODIFY(1J) !INPUT MODIFIED
IPROPERTIES

“CFWRITEREALJJ
*CFWRITE,EMODIFJS

SENDDO
“CFCLOS

THE MODLE

B2 MACRO2 FOR MODIFYING SECANT RIGIDITY IN

BUCKLING ANALYSIS
*GETSZELEM,,COUNT LOBTAINING THE
INUMBER OF ELEMEN
{DIMCOLLARRAYS2,t IDEFINE ARRAY PARAMETERS
{DIMCOLLARRAY:52,1

OLIARRAYSZ,1

ETABLEUX.UX IDEFINE THE NAME OF
ILATERAL DISPLACEMENT

“DOKK,
“GET.UXELEMKK.ETABUX
"OLIKK)DATAUX

“VSCFUN,COL2 (1) MAX,COLI(1) IGETTING THE MAXIMUM



IDISPLACEMENT

“CFOPE!
“DIMIMODIFYARRAYSZ:1
FYARRAYSZ,1

‘DO
“GET,UX ELEMJJLETABUX
“VFILL,COL3 (J)DATAUX

“SET,IMODIFY(1J),(abs(COL2 (IVCOL3 (19))*] IMODIFY MOMENT OF
{INERTIA

“SETHMODIFY(J),(12IMODIFY(JYA)**(12) IMODIFY HEIGHT

“CFWRITERJJAIMODIFY(15) HMODIFY(JJ) !INPUT MODIFIED
{PROPERTIES

“CFWRITEREAL JJ
*CFWRITE.EMODIFJ)
DO

REANALYZE THE MODLE

B3 MACRO3 FOR MODIFYING SECANT RIGIDITY

LARGE DEFLECTION ANALYSIS

! ANALYSIS FOR CANTILEVER BEAMS

“GETSZELEM,0.COUN IOBTAINING  THE  NUMBER  OF
T1

“DIM.COLILARRAYSZ1 | DEFINE ARRAY PARAMETERS

ETABLE.UY.U,Y IDEFINE TH

[LATERAL DISFLACEMENT

“DOKK.LSZ



“GETUYELEVLKK ETAB.UY
“VFILL,COLI(KK).DATAUY
ENDDO

THE CTIES OF THE BEAM

“CFOPENMODI
“DIMIMODIFYARRAY,SZ,1
“DIMHMODIFYARRAY,SZ,1

“DOIIISZ1
“GET.UVELEMJLETABUY
“VFILL,COLT (), DATA,UY

“SETIMODIFY(9) L0511 MODIFY MOMENT OF INITIAL
(ODIFICATION FACTOR 13 105

“SETHMODIFY(1)(12*IMODIFY(IJVAD**(172) IMODIFY HEIGHT
“CFWRITERJJALIMODIFY (1) HMODIFY (1))
“CFWRITEREALJ)

REANALYZE THE MODLE

LU
SOLVE

B4 MACRO4 FOR MODIFYING SECANT RIGIDITY IN
LARGE DEFLECTION ANALYSIS

! ANALYSIS FOR  SIMPLY  SUPPORTED  BEAMS
“GETSZELEMO,COUNT  1OBTAINING THE NUMBER OF ELEMENT
POST}

IDEFINE THE NAMI

1
“DIM.COLIARRAY,SZ,1 I DEFINE ARRAY PARAMETERS
ETABLEUY,UY E OF
ILATERAL DISPLACEMENT

“DOKKLSZ

GET.UYELEMKKETAB.UY
SVRILLCOLIKKMDATADY




BEAM

“CFOPEN,MODIFY1
“DIMLIMODIFY,
“DIMHMODIFYARRAYSZ,1
“DOJLISZ]
TUYELEMJLETABUY
L,COLL .DATAUY

v

OMENT OF INITIAL

S ¥ M
IMODIFICATION FACTOR 15055

IMODIFY(13)

95

SELANOEYGNFISIENAIIG) RUSFY BEGHT
RJJALIMODIFY (1)), HMODIFY(23)

REANALYZE THE MODLE




APPENDIX C

C.11 A UNIFORM PORTAL FRAME SUBJECT TO A LATERAL
FORCE AND A VERTICAL FORCE

IPLASTIC ANALSIS USING GEOMETICAL NONLINEAR METHOD
/PREPT N CESS

ETLBEAM 23

“SETEM,200E3
*SETAS0

SETLZ 2
“SETPLE2

1 LATERAL FORCE
“SETP, 7202 1 VERTICAL FORCE
RIALH | INPUT AREAMOMENT INITIAL
MPEX.1, 20063 HNPUT YOUNG'S MODUL

TB,MISO. DEFINE MUTILINEAR MATERIAL
INE DIFFERENT STRESS AND
TBPT,210 /200e3)210 STRAIN POIN

TBPT,14ME-03230
TBPT,2.086-03250
TBPT,A38E.03270
TBPT,7.25 E-03,290
TBPT,1SE-02,300

(BPT, 301

MP,NUXY, 1,0 IDEFINE PASSION'S RATIO

K100

ITION OF KEYPOINTS

K20.400
K3.400400
Ki4,4000

L12 IDEFINITION OF LINES



EALL, 10
LMESHALL

NSELSLOCX,200
F -l

¢ DEFINITON OF MESH SIZE
I MESH LINE:

L APPLY THE LATERAL FORCE

T APPLY THE VERTICAL FORCE.

L APPLY BOUNDARY CONDITION

IDEFINE STATIC ANALYSIS

IDEFINE TIME
1USE LNSRCH TEHCNIQUE

| C.12 A TWO BAY AND ONE STOREY FRAME SUBJECT TO

\ TWO VERTICAL FORCES AND ONE LATERAL FORCE

{PLASTIC ANALSIS USING GEOMETICAL NONLINEAR METHOD

ET1LBEAM 23

SSETPS Se2

RIALH
MPEX1, 20063
MIS

TBPT, 210 /20063210
TBPT,144E-03230

ENTER PREPORCESSOR

IUSE BEAM23 ELEMENT
TYOUNG'S MODULUS IN

EMOMENT OF INERTIA
{HEIGHT

| MESH SIZE
 VERTICAL FORCE

ATERAL FORCE

L INPUT AREAMOMENT INITIAL




L oanaSalbR L o 4

TBPT,2.086-03250
TBPT,3.38E-03270

P, 1 SE-
‘ TBPT, 3.0E-02 300

ME,NUXY 10

K100
400

SLOCX20
ALLFY, P

NSELSLOCX,600
YP2

LOCX800

ANTYPED
OUTRESAL

01

EFINE PASSION'S RATIO

IDEFINITION OF KEYPOINTS

EFINITION OF L}

IDEFINITON OF M1
IMESH LINES

siz

IAPPLY THE VERTICAL FORCE.

IAPPLY THE VERTICAL FORCE.

IAPPLY THE LATERAL FORCE

IAPPLY BOUNDARY CONDITION

IDEFINE STATIC ANALYSIS




C.13 A UNIFORM FRAME SUBJECT THREE VERTICAL

FORCES AND ONE LATERAL FORCE

IPLAS

IPREPT

ETLBEAM 23

RLALW

Towiso

TBPT,210/200¢3)210
TBPT,1L44E-03230

TBPT, 30602 300

ME,NUXY 1,0

KS02L
K608 L2L
KTidLL

IC ANALSIS USING GEOMETICAL NONLINEAR METHOD

HINPUT AREAMOMENT INITIAL
ITYOUNG'S MODULUS

3 MATERIAL
DIFERENT STRESS AND
ISTRAIN POIN'

IDEFINE PASSION'S RATI
IDEFINFTION OF KEYFOINTS




L7
L8

LESIZEALLLZ IDEFINITON OF M Stz
L I MESH LIN

LAPPLY THE VERTICAL FORCE

FALLFY.F1

NSELSLOCX L
NSELRLOCY2'L
FALLFYPI

CX,L05'L
NSEL RLOCYL

FAl
NSELSLOCX0 LAPPLY THE LATERAL
2oL

ORCE

NSELRLOCY.
FALLFxP2

NSELALL
NSELSLOCY0 L APPLY BOUNDARY CONDITION
DALLALL
NSELALL,

YPE 1 DEFINE STATIC ANALYSIS
OUTRESALLALL
DELTIML0.01,0.001,0.01 IDEFINE TIME SIZE STEP
LNSRCH,ON 1USE LNSRCH TEHCNIQUE.
NONY, 1

LVE

C.14 A UNIFORM BIG FRAME SUBJECT TO UNIFORMLY
LATERAL  DISTRIBUTED FORCES ~AND  VERTICAL
CCONCENTRATED FORCES

IPLASTIC ANALSIS USING GEOMETICAL NONLINEAR METHOD



IPREPT
ET,LBEAM 23

“SETEM.200E3

K1102°L
Kl

K.
Kisasan

Kz
puficrtac

NTER PREPORCESSOR

1USE BEAM23 ELEMENT

EFINE DIFFERENT STRESS AND
STRAIN POINTS

IDEFINE PASSION'S RATIO
IDEFINITION OF KEYPOINTS



K912 4°L
K2024°L4°L
K2A34LL

1821
11920

L2021
LESIZEALLLZ
LMESHALL

oLU

ESELS.ELEM, 1,75 IAPPLY THE LATERAL FORCE
SFBEAM,ALL,1,PRES,P1

SEL,S,ELEM,/706,780
FBEAMALL,],PRES.PI




ESELS ELEM, 411,145
SFBEAMALL,1PRES,P1

ESELSELEVL, 1801
SFBEAMALLLPRES.PI

LA
SFBEAM,ALL,LPRI

ESELALLALL
NSELSLOCX.L$L.

NSELRLOCY.L
FALLFY,P3 *APPLY THE VERTICAL FORCE

NSELSLOCX,L8L.
NSELRLOCY2'L
FALLFY,P3

NSELSLOCX,L$L.
NSELRLOCY3'L
FALLFY,
NSELSLOCX,L8L.
NSELRLOCYA'L
FALLFY,P3

NSELSLOCY0
DALLAL
NSELALL

OUIRESALLALL
SAV]

1 DEFINE STATIC ANALYSIS

IDEFINE TIME

C.15 A NON-UNIFORM PORTAL FRAME SUBJECT TO A
LATERAL FORCE AND A VERITICAL FORCE

IPLASTIC ANALSIS USING GEOMETICAL NONLINEAR METHOD



IPREP? ! ENTER PREPORCESSOR
ET, 1BEAM23 1USE BEAM 23 ELEMENT
“SET, EM 20083 OUNG'S MODULUS INNMM?
SETL800
ETAL3000 IDEFINE DIFFERENT
GEOMETRICAL
IPROPERTIES

SET.11,5060%60°60/12
ETHIG0

o —
SETH2,100

TA3,7000
ET,13,50°1404140° 140112

NPT AR

EAMOMENT INITIAL

HINPUT YOUNG'S MODULUS
IDEFINE MUTILINEAR MATERIAL

STRAIN POINTS

EFINITION OF LINE




IAPPLY REALCONSTANT 2 TO

SELECT LINE
IAPPLY  REALCONSTANT 1 TO

CTLINE
IAPPLY  REALCONSTANT 3 TO

* DEFINITON OF MESH SIZE
*MESH LINES

L APPLY THE LATERAL FORCE

FALLFX.PI

NSELSLOCXIAL. ¢ APPLY THE VERTICAL FORCE.

NSELR.LOC,

FALL,

NSELSLOCy0 ! APPLY THE  BOUNDARY

CONDITION

DALLALL

SAVE

NSELALL

ANTYPED 1 DEFINE STATIC ANALYSIS
ALLALL

DELTIM,0.01,0.001,0.01 IDEFINE TIVE SIZE STEP

LNSRCH,ON 1USE LNSRCH TEHCNIQUE

NCNV 1

C:

.1 A UNIFORM PORTAL FRAME SUBJECT TO THREE
VERTICAL FORCES ON THE BEAM

IBUCLING ANALSIS USING GEOMETICAL ~NONLINEAR
METHOD

IPREPT
ET,LBEAM23 1USE BEAM 23 LEMENT

“SETEM200E3 IYOUNG'S MODULUS
s ILENGTH




RIALH tINPUT  AREAMOMENT
INITIAL

M INPUT YOUNG
INPUT PAS

NP1, EX,
MENUXY,LO

IDEFINITION OF KEYPOINTS

APPLY
IBOUNDARY CONDITIONS

VERTICAL

SLOCX0.51.2
RLOCY,LL
LY P2

LOCX08 112
LLOCY.LE
Py

FINE STATIC ANALYSIS

LARGE DE}




DELTIM, 0.001,0.0001,0.001
SOLVE

IDEFINE TIME,

ZE STEP

2.2 A UNIFORM PORTAL FRAME SUBJECT TO A VERTICAL

FORCE AND A LATERAL FORCE

IBUCLING ANALSIS USING GEOMETICAL NONLINEAR

METHOD

/PREPT
ET1LBEAM23
“SET.EM,200E3

“SETLI, 600
“SETIL2, 800

sSET

RIALH
UIMPL, EX,, EM
MENUXY,L0

K100

1USE BEAM 23 LEMENT
IYOUNG'S MODULLUS INNMM?
ILENGTH IN M!

IAREAIN MM
OMENT OF INITIAL IN MM*
EIGHT IN MM

H SIZE IN MM
RCE IN NEWTON

L INPUT AREA,MOMENT INITIAL
PUT YOUNG'S MODULUS
PUT PASSION'S RATION

I DEFINITION OF KEYPOINTS

INES

EFINITION OF L

PPLY THE BOUNDARY CONDITIONS

L APPLY THE VERTICAL FORCES



NSELSLOCX,0
RLOCY.LI
FALLFYPS

* DEFINE STATIC ANALYSIS

NLGEOM, ON LARGE DEFLECTION CALCULATION
'DELTIM, 0.001,0.0001,0.001 IDEFINE TIME SIZE STER

G

1 A CANTILEVER BEAM SUBJECT TO A CONCENTRATED
FORCE AT THE FREE END

ILARGE DEFLECTION ANALYSIS USING GEOMETRICAL
NONLINEAR ANALYSIS

SETemames 1USE BEAM 3 LEMENT

ETA, 8550 IAREAIN MM
 MOMEMNT OF INITIAL IN
HEIGH IN MM

ILENGTH IN MM

I MESH SIZE IN MM

preieretid IFORCE IN NEWTON
ET,LBEAM 3 wse LEMI
RIALI RICAL PROPERTIES
MPEX.1,20063 SINPUT YOUNG'S MODULUS
MPNUXY,1,0 1INPUT PASSION'S RATIO
K100 IDEFINITION OF KEYPOINTS
K2L10

IDEFINITION OF LINES
LESIZEALLLZ IMESH LINES
LMESHALL

NSELSLOCX.0
JRLOCY.0
DALLALL

OUNDARY CONDITIONS

ERTICAL LOAD




s0LU
ANTYPED IDEFINE STATIC ANAI
OUTRES, ALL, ALL

NLGEOM, ON

s

j ILARGE DEFLECTION CALCULATION
DELTIM, 0.001,0.0001,0.001 IDEFINE TIM
SOLVE

€32 A SIMPLY SUPPORTED BEAM WITH ONE ROLLER
SUPPORT SUBJECT TO A CONCENTRATED FORCE IN THE
MIDDLE

! LARGE DEFLECTION ANALYSIS USING GEOMETRICAL
NONLINEAR ANALYSIS
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