








DIRECT SECANT ESTIMATION OF LIMIT

BEHAVIOUR OF FRAMED STRUCTURES



Abstract

A direct secant method used to predict the plastic limit load of framed structuresis

presented in this thesis. Instead of using classical techniques, it utilizes two or more

purely elastic analyses to predict the limit load. Secant rigidity of structures is

are performed until convergence is reached. By selecting the peak bending moment,

potential plastic hinges are listed. Thcresult can be used to predict the plastic limit

load as well as the collapse mechanism. The limit load calculated by the direct

secant method is compared to the solution of other traditional analyses, where

applicable. Generally, the direct secant method is an allractive alternative for

evaluating the limit load of framed structures. The results are a significant

improvement over traditional methods which are illustrated in the thesis. Similar

idea is applied on fmmestabilityanalysis. Afterthefirstpurclyelasticanalysis,two

preliminary and empirical methods for analyzing stability arc suggested. FactorC

andfactor13areinvestigatedtoevaluatethecriticalload.Thisthesisinvestigates

largedenection by using similar idea inspired from the direct secant method used for

analyzing frame stability. Factor 'lis investigated and used to analyzing the large

The method is executed byANSYS software using APDL routines. The problems

frame as well as Multistorcy Frame Subject to Concenlr3ted and Distributed Loads

The results from the above analyses compare with other traditional methodsclosely,



and the error is no more than 5%, thus demonstrating the usefulness of the direet
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Chapter 1

Introduction

Slructural engineers consider as their primary goal a safe and cconomical design. One

of the main issues in sucb a design process is the identification of all the potential

devise stratcgies and techniques for avoiding collapse and savingc051 while

implementing Ihe design. Duringthedesignprocess,theyareexpectcd to use fast and

accurate methods to estimate the limit load carrying capacities. Therefore, such

Traditional approaches for the direct estimationofthesc m8ximum load capacities are

developcd on the basis of the two boundingtheofcms, viz., the uppcr bound theorem

and the lower bound theorem well as approximate step-by-step iterative

Therc arc various Icchniquesused for assessing "actual" limit 10ad such as theoretical

('closed fonn') methods based on minimizing or maximizing the upper or lower

bounds respcclively, the finite element nonlinear analysis and variousOlher'robust'

methods. Theoretical analysis is easy to apply for simple structures but is not

practical for complex structures. Even if their application is feasible, for most



With the development of computer techniques, enginecrs are able 10 carry out

complicated nonlinear analyses utilizing desktop computcrs in conjunctionwithfinite

elcmentanalysis(FEA). The FEAhas been successfully applied in a great many

fields. Finite elemcnt nonlinear analyses can be used to obtain the limit load for

elaborate and quite complex structural problems. If the procedure is applied with

great care and properly verified,the results of nonlinear FEAcan be considered tobe

accuratc for practical purposes. However, il costs a grcat deal of manual effort in

computing power available today, the discretization of practical problems is

increasingincomplexitystcadily). To guarantee the accuracy, many iterations are

needed. The control of convergence is sometimesdifficuh to handle. It requires

engineers to possess a very strong background in nonlinear FEAand muchpractical

experience to detect and avoid numerical difficulties. Even so, we need an

indepcndedntverificationmechanism for the final results. Theoretical closed form

solutions are obviously unavailable for complex structures to act as verifiers. In

view of this, a resonably 'accurate', easy and fast method to solve the limit load

Therefore, they arc faster like elastic analysis and avoid the drawbacksthatnonlinear

analysis methods have, such as incremental iteration problems, numerical instability

and convergence difficulties. Usingthc 'robust methods', researcherscanhopeto

evaluatc limit load capacities in a direct manner and solve problemsthattraditionally

depcndonnonlinearanalyses.Thcword'robust'impliesthattheanalysis can

time being reasonably accurate. The 'robust' nature allows these methods to be



potentially applied with an extensivc scope including different structural shapes,

boundary conditions and loading types. ItwouJd bc advantageous to developsuch

robust methods for elementary design of components, plastic limit capacity

the purpose of the present study, 'limit load'implies the maximum loadcapacityof

the structure or component for a given set of properties and loadpattems. It is not

In Canada, steel structures are designed as per CA ICSA-SI6-0l [2005] and other

Usually, structural limit state design is perfomled using factored loads and their

effects on individual members using clastic analysis. This ignores the potential

strength that exists beyond the initial reaching of member capaci tyat any particular

location which implies that thcre is no reserve strength lcft when one member is

consideredto"fail"atanyparticularlocation.Plasticallalysis methods are needed for

including the redistribution efTects and cstimatingthe ultimalc or 'true' limit loads of

structures. Although itcrative plastic analysis mcthods arc pcrmitted by the codes,

they arc rarely uscd in practice. One of the main reasons for this non·usage is the

unavailability of simple to use techniques. Ontheotherhand,lincarclasticFEAis

extensively used in routine design. In that sense, 'robust methods'thatusesimple

linear analyses are a welcome addition to existing methods

AlmostaJl the strength failure modes should include these effects. Therefore, it is

nccessaryto focus on plasticity and buckling when assessing the strengthofsteel



The current study focuses on investigating the usc of direct secant modifications to

member propcrties to estimate the limit loads of framed structures subject to plasticity

and stability effects. An attempt will be made to predict largcdcOection behaviour

of beams, etc., using these te<:hniques as well. The method used is adapted from

Adluri(I999]andBolar&Adluri,(2006]. Itisinspiredbycxistingtechniquessuch

astheplastichingemethods(Neal,1977],ther-nodemethodISeshadri,1997],and

1.2 Objectivities

I. Adapt the direct secant method to framed structures and implement it in

ANSYS software using APDL routines to carry out the estimation of limit

2. Attempt to use the method to investigate critical loads due toelasticbuckling

3. Investigate the use of the method to analyze the large dcncction of simple

4. Compare the analyses of the direct secant procedures with those obIainedfrom

O,ganizationoftheThesis



Chapter I gives general background, objectives the prcsenl study,etc

Chapter 2 gives literature review. Some of the basic knowledge relatedto limit loads

and stability is described. Next, traditional robust methods, such as R-Node method,

rTlamethod are reviewed. Lastly the principle of direct secant methods is generally

Chapter 3 focuses on the application ofdircct secant method to plastic limit load

estimation. Review of plastic hinge methods is first given. The basic concepts such

as plastic hinges and plastic collapse mechanisms are reviewed. Theapplicalionof

robust direct secant methods on for plastic analysis is then introduced. The limit

loadofframedstructurescausedbyplasticyieldingisobtainedforseveraltestcases

Chapter 4 describes the use of direct secant methods in solving buckl ingproblems

Basic theory of elastic buckling is quickly reviewed. Portal frameswith fixed supports

subject to vertical and lateral forces are investigated. Aproportionalityfacloris

suggested to Iinearizc the procedure. Critical loads for elastic buckling of different

ChapterS inlroducesapplication to large deflection analysis of simple beams. Direct

secanlmethod is used forapproxirnately analyzing the largedeflection of the beams

Chapler6 quickly summarizes the thesis and outlines the mainconclusions for the

Appcndices give typical inputs for analysis usingANSYS software



Chapter 2

Literature Review

Buckling and Structural Stability

Buckling is an instability phenomenon that results in sudden failure without much

warning. When relatively long members of structures are subjected to axial

compressive forces which are large enough. the members will suddenly sufferlarge

latemldeflection leading to dramatic faiJurc. In practice, design codes derive fonnulas

for columns with imperfections and slight initial load eccentricities that \vill be

subject to Jarge lateral deflections at specific critical loads

Bucklingloadisrefcrrcdlothesolutionresultedfromimperfectcolumnswhichexist

all over the world. The concept is used in actual cases, such asexpcriments, Another

concept,calledcriticalload,isknownasthesolutioncalculalcdfromthepcrfect

coiumn.Thereisllo"absolutelystraightcolumn"intherealworId,so the concept of

critical load is regarded as a theoretical value, and it is based on mathematical model

2.1.1 StablcEquilibrium

Iftheelasticstructureisappliedasmallenoughextemaldisturbances, it reacts simply

by vibration about its original state, the equilibrium is said to be stable.lnotherwords,

although the small disturbances cause the vibration of the structure, the structure is



2.1.2 Unstable Equilibrium

disturbance, lhe equilibrium is unstable. It will disturb the position of each point and

2.1.3 NeutralEquilibrium

The boundary between the stable equilibrium and unstable equilibrium is called as

neutral equilibrium. If the structure undergocsboth stabJeequilibrium and unstable

equilibrium,theextemalreasonwhichmakesthisprocessiscalledas"criticaJ",such

2.2 Principle of Stationary Potential Energy

1 For any arbitrary displacement, the particle is in equilibrium if the total work done

by all the forces acting on the particle is equal to zero

arbitrary displacement bd. During the displacemenl,each foree aClingon this

particle will doa set of work W;, so the total work done by these forcesis

If the particle is in equilibrium, the total forces acted on the particle arczero,

which means that the total work done by these forces must be also zero. This

2. For any arbitrary displacement, an elastic body is in equilibrium if the virtual



work done by the external forces plus the virtual work done by the internalforces

is equal to zero. The lotal virtual work done by the forces can bedividedintotwo

parts: the virtual work done by the external and the virtual work done by the

internal forces. Based on the previous thcoryabove, if the elastic body is in

equilibrium, the total virtual work must be zero. Therefore, the virtual workdone

by the external forces can be considered as a group and correspondingly,the work

done by the internal forces can also be considered as another group. So it can be

3. For any smaJl displacement, the elastic structure is in equilibrium ifnochange

occur in the total potential energy of the system. The strain energychangestored

in the slructures is equal in magnitude and opposite in sign to intemalvirtualwork

t5IVi=-t5U. The total polential energy consists of the strain energy and the

potential energy due to external forces. If the structure is in equilibrium, the

increment of total potential energy must bczero. Ifa structure hasan infinite

number of degrees of freedoms, equilibriulll must bc established only under the

condition that the total potential energy does not change for any possible changes

in the displacement of the system. Therefore, the structure has only a single

degree of freedom, equilibrium must be established by requiring that no change

Sincelhebxisarbilrary,theincremenlofpotentialenergyisequallo zero when

d(U;VJ OX : O



2.3 Basic Approaches for Critical Load

Based on thc theory of equilibrium, critical loadcanbccalculalcd intwoways. The

first approach answers the question that at which load lhe neutral equilibriumis

possible. It is not necessary to check whether the structure is stahle or nOI . Instead,

onehasonlytoestablishtheequationtofindthecriticalloadinordcrthat the total

potential energy is equal to zero. By requiring J(U+V)=O, critical load can be

found. The second approach is todetennine the load at which the changing from

stable equilibrium to unstable equilibrium is possible. It deals with the load at which

the neutral equilibrium occurs. In other words, the critical load makes the neutral

equilibrium appear. As the boundary of the stable equilibrium and unstable

equilibrium, neutral equilibrium can be determined by findingtbe load at wbicb the

second variation oftbe total potential energy cbanges from positive to negative

o'(u+V)=o

Although both of these approaches can be used to find the critical load,they stay in

different level. The first approach can allow clastic deformations 0 fstructurcsbefore

thebucklingoccurs,whichmeansthatthefirstapproachpcrtainsto"static level"

Therefore, the first approach is usually referred tostaticapprooch.Thesecond

approach is said to obtain the boundary between the stable equilibrium and unstable

equilibrium,anditcanallowrelativelysmallfreevibrationofthestructures,sothe

second approachpcrtains to "dynamic level". This approach is called asdynomic



Upper Bound Theorem and Lower Bound Theorem

Upper bound Theorem

In mathematics, an upper bound ofa set S means an element Pwhich isgrealefor

equal to every element in the sets. In strucluml analysis, the upperboundmethodis

equal to the load factorlcalcuJated from the collapse mechanism.Thisconceptisalso

An lower bound ofa set S,accordingly, means an element P which is less than or

equal to every element in the sets. In siructurai analysis, the lower bound mcthod is

the value of load faCl0rl must bc less than to equal to the load faciOf Acorresponding

Critical Load of Columns with Various Supports

The issues involving structural stability are complex. The behaviour or an ideal



2.5.2 Euler Equalion

A hinge-hinged colwnn is axially loaded,which is shown in figure.2.1. Theintemal

M~-£/B-

The externally applicdmoment isPy. Equating these two expressions

This ishomogeneous,lincar, and second-order differential equation with constant

coefficients. It can bc solved using mcthodsofdifferential equations. The general

Where k=iI



x=O,y=O

x=I,Y=O

P=~.PiStheCriticaIIOadneededtobcobtained,SinkliSthcrebyreqUired

Substitute the exprcssions into the equation 2-10 leads to

p=~

verge of neutral neutral equilibrium. Jnothcrwords, Euler loadisthetransitionfrom

stabletounstableequilibrium.T'hecolumnkeepsstraightuntilextcmal applicd loads

2.5,3 Critical Load of Columns with Various Supports



theproductofloadfaclor).andeXlemalappliedloadP:~=A.P.ltis known that limit

load is proportional to load factor, which implies if the external applied load is

Basically, limit load gives the structures the limit state. Limit state in faci is the state

structures subjected to increasing load. Generally, Limit state design includes two

types: the first is called strength limilstale and the other is called serviceobilitylimil

stale. Strength limit state isconcemed with the situations of load capacitysuchas

collapse mechanisms due to plastic hinges and as instability because of buckling. On

the other hand,serviceabilitydeals with the situations of the unacceptable



serviceability. The examples of the unacceptable serviceability involve deOection and

Theslrenglh limilslate design isgovemed by the limit load design whichiscarried

out by the factor loads. When the factor loads reach the limitload,the structures are

notalJowed to have any potential strength to resist the factor load. In other words, if

will colJapse. The collapse mechanism because of plastic hinges can be successfully

solved by the secant method. Based on the modified geometrical properties, the

reanalysis can predict the limit state and calculate the limit loads. The results

generatedbysecantmethodarebetterthan95%ormore.lnstabilityincJudingthe

effect of buckling, however, has not been properly so!ved by the secant rnethod

Elastic Perfectly- plastic Model

It is necessary 10 introduce the stress-strain relationofmildsteel. The material is

widely used in the construction of structures. The relation bctween stress and strain

factor loads reach the uppcryield strength. This is shown in Fig. 2.2. The point a

represents the uppcryicld strength location. As the factor loads keep increasing, the

slress wiJl suddenly dropdowo to the lower yield stress location b. The increasing

extcmalappliedfactorloadscausetheincreaseofthestrainwhich is in the region

calledslrain Iwrdeningrange. This is shown in region bc. The maximum stressis

reached at the point c, beyond which a neck forms and then the stress decreaseunti!



2.7.2 Elastic Perfectly-plastic Model

Engineers showed much interest in the yield line oa , which is described in Fig. 2.3

Stminscale is enlarged to give a more legible diagram. The slope of the first elastic

lineisknownasYoung'smodu!us. However, it is not easy to find the real stress and

strain curve of mild steel near the yield point, because inevitable eccentricities of

Joadswillgenerntcothersignificantbendingstress. Morrison in 1939 concluded that

the yield point, proportional limit of elastic line and clastic limit were coincident and

that the stress-strain curve in compression is the samens theane in tension until

strain-hardening happens. [R. C. Hibbeler.• 2005]

The uppcryield is not usually exhibited by some material,and theupperyieldstress

cannolinflllcnceplasticmoments. Therefore,theelasticperfcctlyplasticrelation

for stress-strain is often identified as the neglect strain-hardening.uyisdefinedas

the yield strength, at which the external applied loads can not make the stress

increase anymore. The stresses keep constant while the strains keep increasing unt il

instability occurs. This is termed the ideafpfast;crefationorcfasticper!ectfypfastic



Maximum Principle Stress Criterion

When the ma.ximum principal stress reaches the uniaxial yield strength, yielddingwill

a.=J(a,-a')'+(a,~a')'+(a,-a,),

inwhich ul,uland u)are the principal stress in three directions

case, this stress becomes uniaxial stress. If the expression is based on a local

Plastic yield occurs when the von-mises stress or equivalent stressreachestheyield

strength. Von-miscs stress can be used to predict the failure of ductile tcaring

The von-mises yield criterion is based on the concept ofmaximumdistortionstrain

energy. It states that failure occurs when the energy of distortion reaches the same

energy for yield or failure in unia.xial tension. MathematicallY,itis expressed as

~[(a,-a')'+(a,-a')'+(a,-a')']~a;



Inthe two dimensional situation, one of the principal stresses iszero:O'J=0 andthe

We can also interpret the von-mises yield criterion in term of octahedral shearing

stress. When octahedral shearing stress reaches the criterion which is defined by the

k=~

Nonlinear Analysis of Structures

In the finite clement technique, the relation between load anddisplacemcnt is given

in which F is the extemallyapplied load matrix, K is the stiffness matrix and

dis the displacement matrix. Whether the analysis of structures is linear or

nonlineardcpcndson the stiffness matrix. If the stiffness matrix is constant during

the entire analysis, it is called linear analysis (Fig. 2.4),otherwise it is nonlinear (Fig

2.5). Linear analysis implies stifTness matrix is not changing. Nonlinear analysis,

in contrast, leads 10 changing stitfness matrix. In olher words, the fundamental



Traditional methods of analyzing the limit load utilizc the upper and lower bound

theorem. If high degree indeterminacy structures are involved, the methods are

much more time consuming and tedious and they are not always practicable for

complicaledstructures. Thcrefore,quickandaccuratemethodsarenecded

Over the years,FEAhas been successfully applied to slructure analyses. Forelastic

analyses, it is very popular because of its universality and generality. Thereare

almost no restrictions about the types and the shapes ofstructuresifproperelcments

and lechniques are chosen. The analyses can be static or dynamic. I-Iowever, if the

are needed. FEA is able to deal with the nonlinear problems but it has drawbacks

First, because FEAuses iterative elastic calculations to do the nonlinear analyses, a

great amount ofcomputcr resources and time arc needed. Second, convergence

Many factors can influence the results, such as the types of element, the way of

meshing, load step control and convergence criterion. Little changing from the



above factors may produce significanl difTerences in the solution. Therefore,it

needs analysIs to have much work experience and expertise. Researchers are thereby

encouragedtodevelopsimplermethodsandsimplifiedsoftwareforpractical

The techniques used for nonlinear analyses generally can be divided into two

categories: they are tangent and secant stiffness method. One typical tangent stiffness

method is ewton·Raphson technique. Secant methods include the direct secant

secant methods. Various Robust methods are developed to analyze the inelasticeffect

The robust methods are powerful tcchniques of analyzing the limit load. Theyare

more popular and attractive than finite element nonlinear analysis when used for

complcx structures. This chapter describes a set of efficient techniques used for

analyzing the limit load. Instead of using finite element nonlinear analysis, these

methods use several linear analyses to predict the limit load caused by plasticity, creep

or buckling. First, this implies that the time of iterations is reduced loaverysmall

number for inelastic problems, especially for complicated structures . Becausefcwer

iterations are carried out, robust methods save more time than tradi tional methods

Second,nonlinearanalysis somctimes has to deal with the difficultyofconvergence

for obtaining a solution, and many mathematical techniques are utilized to define

certain criteria for convergence and at the same lime,complicmed computerprograms

Robustmcthod,however, has the merit of easy convergence. Oncdoesnotneedto



give complicaled convergencc criterion and can obtain a final solution with simple

they are relatively quick and accurate, one can judge lhe resuh generated from

traditional methods right or wrong by using robust melhods. Forexample,people

judge the rcsuh ofANSYS. Robust methods give good theoretical estimation, so

It was recognized Ihat in a creeping beam,stressesatcertain skelelal pointskept

constant. Soderberg (1941) in his experiment first found that some stresses kept

constanlinasoftenedsystem. Hecalculatcd the multi·axial creep deformation and

observed that even though thc systcm is widely softened and stresses are redistributed

in a large range duc to softcning, there are still somcskeletal stresses which always

him. Schulte (1960) observed that in a creeping beam, lhcre were two points in the

deOcctionsoftheirpoinls. Marriott (1963) and Leckic (1964) observed thai some

stresses of certain points which undergo the transientcrccp kepi constantwithtime

Those points were defined as skeletal poinls. Sim (1971) introduced the analytical

tcchniqueforreferencestress. Since the reference stress is independentofthecrcep,

Sim reasoned as the creep exponent approaches infinity,lhestressdistributionis

similar to the distribution in the perfectly plastic model whenplastichingesfonnin



analogoustotheyieldstress,andthusthereferencestressisexpressed as

wherePis the applied load , ~ is the limit load and uyistheyieldstress

MarTiot (1988) developed a technique used to identify the stress redistribution

generated from post yicld stress. This method includes performing a sequence of

elastic analyses and the lower bound theorem. If the stresses caused by the factored

loads are greater than the yield stress, the stress redistribution due to the inelastic

acCOrdingtotheeqUation:E;=E;_I~,whereSlisthema.ximumequivalentstress

calculatedfromthepreviousiteration,SJ,jisthearbitrarystress, and SJ,jis the code

decreases until it converges to a value which is less than the code alIowablevalue

The equivalent stress calculated from the previous calculation should bc statically



ensure that the converged stress is always less than the allowable 5lress.ltshouldbe

noted that only specified portions of structures undergo the modified moduli,

Iherefore this method does not totally describe the stress redislribution during plastic

(Femando,I992; Mangalararnanan, 1997). The R-Node method has heen developed by

them to predict the limit load. R-Node stress and repeated elastic moduli

Based on the theory above, the Gloss R-Node Method was introduced bySeshadriin

1991. "Gloss" is an acronym for "Generalised Local Stress Strain" and " R-Node"is

approximate limit load for both plastic nonlinearity and material nonlinearity. Hisa

robusl and effCclivctcchniquc based on two elastic finiteelemcnt analyses which can

plaslichinge locations, finally predict the plaslic collapse mechanism and the limit



There are IWO types of controlled stress: load controlled stress anddeformation

They are caused by the structures to keep the static equilibrium when the structures

aresubjcct toextemal applied forces and moments. Dcformationcontrolledstress,

however, occurs in the structures as the result of the statically indcterminateactions

Once the structures undergo the plasticity or creep, the statically indeterminatestress

redistribution happens at most portions of the structures except at certain locations,

divided into two regions: local region and remainder region. The local regions of the

structurcundergo inelastic deformation, such as plasticity and creep. The remainder

The principle of the Gloss Method is to utilize elastic analyses to calculate inelasticity.

The inelastic stress redistribution due to plasticity or creep canbeanalyzedby

following uniaxial stress relaxation. In an elastic perfectly plastic model,stresses

relax to yield stress due to plasticity. Ifdeformationcontrolgovems,itwillkeepthe

Tocnsuretheeffectofbothplasticityanddeformationcontrol,themodulusofthis

pseudo elastically stressed element is modified by the expression

Es isthenewmodulusforeachelement, Eo is the original Young's modulus , a,.,.is

an arbitrary stress value and an is the equivalent stress for each element. After

modifying the modulus, a second analysis is then run. It was suggested that this



Figure.2.6 presents the Gloss diagram. LineOACisthcelasticperfectlyplastic

curve for stress and strain. LineOABisthepseudoclasticlineonwhichthefirst

elastic analysis is based. Point B(u.... ,£..... ) is the pseudo point. Defonnation

Control is perfonned from the point B. The slope of line OCEis the new slope

whichismodifiedfromtheoriginalslopeoflineOAB. The second elastic analysis

is performed by using the new slope of the lineOCE,which is called the secant

Seshadri in 1991 introduced an approximate method used to detennine thelimitloads

based on two clastic analyses. Themethod,knownastheGlossR-Nodemethod,is

inspired by the reference stress method and modulus modifieation. When structures

encounterinelasticily, such as plasticity and creep, stress redistribution will occur.

Most portions of the structures undergo stress redistributions except at statically

as R-Node locations. R-Nodes always maintain the same stress level though stress

redistributionsoccurinmostportionsofthecrosssections.lnotherwords,those

statically indetenninatestresses undergo redistribution while no distribution happens

R-Nodcs are proportional to the extemal loads without inOuenceofmaterials. If two

difTcrentextcmalloadsareappliedonstructuressatisfyingthestable equilibrium. two



Imagine that a beam with rectangular cross section is subject 10 pure bending

shown in Fig. 2.7. The relation between stress and strain is expressed as

sectionbehaveselastically,n=landifthccrosssectionistotallyplastic,n=oo

thataJl thestrcss redistributions pass through the same nodcs (Mangalaramananand

This melhod suggests thai except at R-Node local ions, all theslresses redistribute due

to plasticity within components or structures. In Ihe elastic pcrfectly plastic model,

Sincc the induced stresses are proportional 10 the factored loads or load combinations,

where r is the scaling factor detennined by loading, material, and geometrical

properties. In an elastic perfectly plaslic model,when the induced stress reaches the

yield stress, the factored loads will become the limil loads



Combine equation (2-13) and (2-15)

p,~[(a.~~Jp

<P.M>~[(a.~~_]<P.M>

I. A Jinearelastic analysis is pe:rfonnedby the factored loads. which can be greater

clasticanalysiswithoutanylimitationforthestructures.such as yield stress and

buckling. Stability is not under consideration for this analysis

2. The modulus of each element is modified by the equation: E.~=Eo~. (jar+,

as mentioned bcfore, is arbitrary nonzcro value. According to this

3. Two elastic analyses areperfonned and lheyresult in two clastic Ii nes which act

asthebasisofthefollow-upangleB. The locations with 0=90° are

R-Nodc location can naturally be found. ThcslressesattheR-odclocations



4. A plot ofR-Node peak stress identifies certain locations within the structures

section of the peak stress locations will bccome totally plastic faster than ambient

Where u,.is the yield stress and ~isthepeakaveragestrcss

Compared \vith other inelastic methods, R- ode method gives relatively simple

procedures and conservative results. It is successfully applied on two dimensional

surface should be used to detennine the peak R-Node locations [Seshadri.R.,1997]

An improved limit load estimate technique inspired from Mura's variational

leapfroggingonabasisoftwolineareJasticanalyseswhichresultinthe upper and

lower bound multipliers: mOandm'. SimilartotheR- odemethod,them-amethod



an upper bound multiplier mO which satisfies the theorem of nesting surface

(presented in 2.10.7) is determined based on the inelastic action of the structures

Compared with the mil obtained from the total volume of structures, the one estimated

based on this new upper bound theorem is more conservative and advanced. The

main procedure used for obtaining mil isoutlinedasthefollowingprocedure

I. The first elastic analysis is performed to analyzc the stress distribution whichis

modulus, uurlIis an arbitrary stress ,unis the equivalent stress and q is themoduIus

4. Calculate the energy dissipation of each element in the prescribedstructuresand

cstimatetheupperboundmoforeachelemenl. Twoconscrvativeanalysesgivc

two multipliers denoted as m~ and m;. Plotting these two curves gives the

surface is satisfied (Fig. 2.8). Theupperboundmuhiplieristhusobtained

m'moand(u:>Alareallfunctionsoftheiterationvariable



calculations, the multiplier m~ in the end can result in good estimation of the

2.10.7 NestingSurfaceTheorem

used to estimate power law creep. Soylein 1982 redefined the theorem which is

dissipation rate is utilized as the expression of the dissipation rate of structures under

Using equivalent strcssand strain, the average energydissipation can bcexpressed by

The function is strictly monotonic with the component n. Whenn:=.l,thestructures

bchave elastically and the function isat lower boundary. Whenn-+«> ,the function

is perfectly plastic and the function is bounded above. At this time, Q.. isconsidered

it must "nest" inside the region betwcen the upper and lower boundary. The



referenceslress defines stress space with lwo boundaries or two surfaces

loads of structures subject to tensile loads. This theorem is based on variational

principle and gives good evaluation of limit load. However,realstructuresaremore

complicaled because they are not only under tension. So a generic approach is

necessary. Seshadri and Mangalaramanan in 1997 proposed a method which

F=m'-f,I"[f(s;)+(¢'»JdV

is stationary, lhe factors mO, j.J'and;ocanbcdclcnnined. This leads directly to

!£.=o £0=0 *?=o

¢'=o



m'=Jt.;:~6V.
Comparing the expression for rno with the one proposed by CalJadineand Drucker

in 1961 and Boyle in 1982 which is obtained from the reference stress equations, it is

Therefore, monotonic increasing reference stress will lead to the decrease in the value

or rna. Since it shows a lower bound oflhe reference strcss when n-+oo, the mO

This equation can be simplified by substituting equation (2-45) as

m'= C7;+~'::'f;C7:)~' $m
in which (a:)Mis the maximum equivalent stress for certain factored load. The

According 10 the upper and lower bound theorem and the solution obtained above, the

m'SmSm;
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Chapter 3

Plastic Limit Load Estimation

Structures subject to relatively small loads behave elastically. Whenlargerloadsare

applied, thcyexhibit plastic behavior. In frames and frame like structures, plastic

zones and eventually plastic hinges are fonned wit.h increasing Joads. Thisleadsto

the rcdistribution of stresses. Aplastic collapse mechanisrn takes place if enough

pJastic hinges are formed. This procedure can be analyzed bytradilional plastic

analysis techniques. eal [1977] developed a method using minirnization of work

donc to dctcnnine the final plasliccollapse mechanism. This method can give good

estimation of Ii mil loads for simple structures. For more complicated structures, it

the independent and combined mechanisms, especially when the plastic hinge

!ocations arc not obvious at the outset, e.g., frames with uneven Iydistributedloads

The method also completely ignores the effect of lateral displacements. The

altemative is to carry out full scale nonlinear finite element analyses which require

complete discretization of the entirecross·section throughouttheframe. Themesh

needs to be especially fine near the locations of plastic hinges. Although the

computational time needed for very fine meshes is no longer an overriding issue,

complete discretization of the frames needed to capture thc progressiveplastification

input and extensive cross-checking. Simplifiedtcchniquesthereforebecome



accurate and robust. The r-node method [Seshadri, 1997; Seshadri & Fernando,

1992] is one such technique as outlined in the previous chapter. The Direct Secant

Method is a new technique which is inspired by both the traditional piasticanalysis

andther·nodemethod[Adluri,I999a]. In this method,based on the solutions of the

first elastic analysis, rigidities are modified and are used to carry out a second analysis

The results of the second elastic analysis can be utilized to predict the Iimit loads of

This chapter first illustrates the principles of traditional plasticanalysis. The

concepts of plastic moment and collapse mechanism are reviewed. Three basic

collapse mechanisms, viz., beam mechanism, sway mechanism and combined

mechanism are explained. After listing the inspirations of traditional plastic method

(will be presented in 3.4) and the R-Nodemethod,thischapterexplainsthemainsteps

3.2 PlasticAnalysisReview

The material nonlinear analyses or structures havebccn investigated by researchers

for many years. It is well known that the redistribution of stresses caused by

plasticity can generate extra strength which can be used todesign the structures

beyond thesirnple 'elastic limit'. Kazinczy (1914) was one of the early researchers

to report experiments on investigating the collapse ofa steel beam. He found that

the collapse of this fixed ended beam occurred when the cross-sections atthemiddle

and the end become fully plastic. The moment which causes the cross-section to

becomerullyplasticiscalledtheplasticmoment. When a cross-section yields fully,

it can rotate like a hinge. Nonnalhingesinstructuresarcnotabletotakeany



moments. I-Iowever, the hinge caused by a plastic moment, known as the plastic

hinge, can resist the plastic moment but would not have any further moment

resistance. The fonnation of plastic hinges can lead to the collapse of structures

As loads increase, enough plastic hinges fonn leading to the collapse of the structure

under consideration. Just prior to the collapse, the state of the structure, including

the locations of plastic hinges, etc., is called the collapse mechanism. Thecollapse

leading to the collapse mechanism are termed as limit loads for the purpose of the

current study. The limit loads depend upon the load configuration as well as the

structure's properties, geometry, boundary conditions, etc. Thus, for a given

Fora given panem, there is a unique limit load. The limit load is usually identified

by a multiplying factor applied to increase the nominal load to the limit load. This

factor is called as the load factor in the current study. The determination of the load

Structural design, most often, ignores the redistributionetTects that occur bcyond the

elastic limit (except some cases, such as seismic design). The results of elastic

analyses arc used to design the member cross-sections in a plastic sense. This

generally implies that as soon as the most critical location reaches its limit, the

structure is unusable even though the most critical location can support redistribution

thus significantly improving the limit load. This extra capacity usually occurs in

structurcsthatarehighlyindetenninate. The purpose of the plastic design is thereby



mechanism failure pattern. For the current study, it is assumed as per normal

The plastic moment capacity, Ml',ofany given cross-section can be calculated using

geometrical propertics and thc yicld stress. Fortherectangularcross-section,the

where, lis the plastic section modulus, bis the width and dis the height of the

In general,the plaslic modulus can be obtained using

where,lhecross-sectionwidthcanchangewiththelocation"alongtheheight. The

bound theorem, equating the work done by the load to the work absorbed in the

plaslichingcs for a series of possible mechanisms and selecting the Ieast limit load

factor. If the mechanisms depend on plastic hinge locations that are continuously

changeable, a simple minimization process is carried out. This is illustrated in



For frames, three possible mechanism typcs will be shown in this scction

shows a beam mechanism where a portal frame is subject toa vertical force in the

beam as shown. The end hinges can be located either in the beam itself or at the

increasing Joad then makes the cross-section in the middle become totaJlypJasticand

turns it into a plastic hinge. Aredistributionofanyfunherincreasewillpromptthe

end of the beam to stan yielding and eventually to the formation of two addi tionaJ

hinges. Since three hinges in a line imply instabiJity,lhc structures will thenreach

its Jimit load. Equating the work done by theappJied factorcd load (P A) fora given

rotation (0) of the beam segment. with the internal work done due to the rotation of

the cross-sections at the plastic hinges (thus ignoring the small amount contributed by

the elastic deformation of the remaining structure),we can obtain Ihe load factorA I1

(V)(~B)=4(M,)(B)

A,=~
PL,

FolJowing a similar procedure, the sway mechanism is shown in Fig. 3.2. Imagine that



a portal frame subject to a lateral force which can cause the latera IdcOection. The

collapse mechanism include 4 hinges for instability. If the cross-section capacities

are all equal to Mp, equating the extemally applied work and internally absorbed work

(V)(L,B) =4(M,)(B) => l,=~

Both beam and sway mechanism in the above are assumcd to be independent which

lsmin(.l"l,)

The exanlples givcn are simple portal frames. In a real plastic analysis, most

structures encountered have complicated geometries. Thus the combination of those

indepcndent mechanisms is a way to solve plastic problems. As an illustration (Fig

3.3),iftheportalframeissubjecttoboththelateralandverticalforce, we can see that

This is bccause the rotation sign at these locations in the beam mechanismisopposite

The external work is equal to the sum of that in the beam mechanism plus that in the

sway mechanism. This implies that the patterns of work done by the applied loads

are independent and do not influence each other. On other hand, the internal

maximum work absorbed is not simply equal to the sum of the work done by the two



independent mechanisms. Therefore, the load factor calculated based on plastic

hinge cancellation may be smaller than that for each indcpcndent mcchanism, [Neal,

The method outlined above gives good estimates of the limit load for frame type

requircsustolocateallthehingecancellationsandcalculatetheexactmaximum

implementation. The method also completely ignorcs theefTecl of column sway on

3.2.2 Plastic DcsignofStr"ct"rcs

Plastic analysis is of significance fordesigningstcei and other kinds of structures that

have rcdundancies and can withstand cxtradeformalion beyond the initialyietd.lf

thecollapscmcchanism of structures does not include a sway mechanism 0 rdoesnot

include local and overall stability effecls, the plastic analysis iscalied "first order

plastic analysis",such as in the case ofa fixed-fixed beam subject to verticalloads

failing in a beam mechanism. Ifgeomelric nonlinearity is to be included in the



permit full plastificationofthecross.sections. Therefore, all steel frames that are

designedwithcJass I sections and some redundancies (statical indeterminacy),will

have strength beyond the normal estimates due to stressredistribution

As long as the material has ductile behaviour, direct secant method can beused for

analyzing the limit load in the similar way. Inconcretestructures,beamsthathave

Since the computer implementation of the traditional plastic hingemethodis

cumbersome, it did not find practical utility. ThemethodalsoignorestheefTectof

sway on the co!umn moments as mentioned above and Ieadstowhal isusually called

as "rigid plasticity". Ontheotherhand,full scale nonlinear analysis of practical

verify whether a proper nonlinear analysis is carried out



development ofahemative methods. Suchmethodsneedtobcsimple,robustand

methods. One such procedure which is inspired by the lraditional plastic hinge

analysislNeal,1977]aswellasther-nodemethod[Seshadri,I997]isdescriberland

3.4 Inspirations from Plastic Hinge and R-Node Analysis

In the section below, the main inspirations for the development of the methodbased

2001]. The points also include some of the main assumptions

I. After the first yield stress takes place, structural mcmbcrs begin to Iosetheir

stiffness, gradually becoming members with negligible tangent stiffness. The

secant stifTnessrepresented by the slope of the linejoiningtheoriginto the current

parts of structural elements can lead to the changing of stress resultantsalso. As

noted by Adluri POOI],the"exact" secant stitTness, if known, will givethe

3. There are three types of plastic failure: completecolJapse, partial-collapse and

over-complete collapse. Complete collapse and over-complete collapse are

achieved by removing the redundancies until structures become determinate



Partial collapse happens when part of the structures is detemlinate. The

changingofindetcrminatc structures todctcrminate structures is achieved by

reducinglhe redundancies through the progressive formation plastic hinges

4. At failure, the moments at plastic hinge locations are all equal to the plastic

moment Mpofthe respective sections The s<:ction lbehavic,ur is IlSsumed to be

continuously at each point in the structure Thus, there "ill be a dilTeiren' Sc<oanl

is also based on a similar concept InSleacI ofmlodifyir'gthe modulus, the

melhodmodifiestherigidity. Thisr,esultsinl-DmcshforfraI11esa",pposcdto

to 90° at the time of collapse SimiIlll:conccplSareapplic<linth"Direc'Secant

proportionality factor denotes the lirnit load factor. SimiIlll"COnCCIPlSareusedby



8. Although the R-Node method can not be applied to delermine the large deflection

or stability ofa structure, the method can be used as an inspiration for further

development of the Direct Secant Method towards these goals

These inspirations from traditional plastic hinge analysis method and the R- ode

[2006] used it to obtain the limit loads of various plate structures. They utilized

modified geometrical properties and elastic analyses to estimate the collapse state of

platcs.lnthepresentwork.thismethodhasbeenusedtoobtaincollapseloads of

beams. The following sections describe the proccdurc and illuslrnte with examples

the existing methods to find the lirnil loads using simple elastic analyses-mainly, the

R-Nodefamilyoftcchniques.lnthisrnethod,apurclyclasticanalysis is first carried

out without the consideration of yield stress. Based on lhe results calculated from

the first elastic analysis. the rigidity is modified. When the rigidity is modified,the

cross-section is changed at each point and hence the structure becomeshighly

non·uniform along the length of the members. The modified structure is analyzed

again with the same load,thesamesupports but thc ncw rigidity. Afierthesecond

elasticanalysis.thepeakmomentsandotherrelevantstressresuhantsareobtained



These moments (or stress resultants) may have nOlhingto do with thecorresponding

the peak values from the first analysis. Thesepcak values can be used to predict the

collapse mechanism and the limil load. This tcchnique gives a very good eSlimalion

I. A purely elastic linear analysis is first carried ouL In the analysis, stability is not

happcns in lhisanalysis. By using FEA,the bending moment at any location can be

easily obtained. The first elastic analysis is of significance for investigating the

of the structure to be analyzed. Adluri [1999] modified the moment of inertia of the

1~=IM:(X)I/.d

The proportionalityconstanl can bc chosen to be any nonzero value. Toavoid

numerical difficulty, Adluri [1999] used thc maximum bending moment as the

Usually, Iheexponent q can be taken bctween I and 2. Inhisanalysis,hctook I as the



If the Young's modulus is kept constant, from this equation we can find that lhe

modification sliffens the flexural rigidities of all the elements ofthestructure

Because Mo-_is not less than M(x) , I_(x) is greater or equal to IfIIJ(x)

However, the significance of the modification is not likelhis. As mentioned earlier

in this chapter, the distribution of bending moments does not simply depend on the

absolute flexural rigidities, but on the relatively flexural rigidities. Thismodification

also changes the relative flexural rigidities ofstruclures. BecauseMo-_is a

relatively less flexural rigidities after modificalion. The element at lhema.ximum

bending moment location will have the minimum relative rigidities, and vice versa

Therefore, the modification implies that in the first elastic analysis,lherigiditiesof

the elements that have relatively greater bending moment are softenedandsliffened

rigidities are given to the elements which have the relatively lessbendingmoments

The modification actually means "hannony". Theelemenlswhicharcweakerwhen

resisting the bending moment are given stronger abilities and the reduced abilities are

applied on the stronger elements. Therefore, the modification can be understood as

The elements of the struclure are given the same abilities to resist the bending

reachthesamebendingmomenl. Ofcourse,thissamebendingmomentcanbethc

Notclhat the significance of the modificalion mentioned above is underlhecondition

structure have the same cross-section so that they can have the same momentof



inertia and the same plastic moment. If the cross-sections arc not Ihesame between

each elcmenl,such as if the beams are stronger than the columns, thenthe "harmony"

cannot be simply achieved in this way. This will be mentioned later in this chapter

3. Thesecondelasticanalysisisexecutedonthebasisofthemodificationin step 2

By using FEA,thedistribution of bending moments can be easilyobtained. There

elements. Those elements in the bending moment diagram are of peak moments

These clements having peak moments "go" faster than neighboringelementS,which

means although the modification of rigidities gives all the elements the same

opportunities to reach the plastic moment, the peak momcntclemenls fi rst reach the

plasticmomenlS. Therefore, they are at possible locations of plastic hinges. The

peakmomcntlocationsareconsidercdasthepotcntiallocationsofplastichinges

As mentioncd abovc in this chapter, the plastic collapse occurs bccauseenoughplastic

hinges form a collapse mechanism. Thc bending momcnt at plastichingcs locations

at collapse are equal to the plastic moment. Thus,locatingtheplastichinge

locations arc of importance for determining the limit load

In the first elastic analysis, the maximum bending stress locationisthe first loc3tion

ofa plastic hinge. After the formation ofthc first plastic hinge, the stress will

redistribute. The other peak moments in the first elastic analysis are thereby not at

thc locations of potential plastic hinges. In the second analysis, lhe modification of

momentofinertiaisbasedonthebendingmomentdistributionfromlhefirstanalysis

The elements are modified to have the same opportunities of resisting the applied load

Thesameopportunitiesofalltheelementsleadtoallthepotentialloc3tionsofplastic



hinges appcaring at the same time. Thiscxplainswhyallthelocationsofpcak

moments in the second analysis are considered as the potential plasticmoments

Potential locations of plastic hinges are not the exact locations of plastic hinges

contributing to the final collapse. So we need to select some of them to fonn the

collapse mechanism. The selection of potential location of plastic hinges can be

done in several ways. This will be illustrated in the laterseetion of this ehapter.

4. After selecting the locations of plastic hinges. limit load can beealeulatedbythe

where P is the cxtemally applied veetor load,and can have any non-zero value

Ml'isthe plastic moment. and it is determined by the gcometrieal propertiesofthe

is the peak average bending moment in Ihe second analysis

At the locations of these peak bendingmomenls, plastic hinges formandlhey

IntheR-Nodemethod,thelimitloadobtainedintheR-Nodemethoddepends on the

load factor that is equal to the ratio of the yield stress and the peak average stresses



To better understand lhe significance oflhis load factor, we can modifytheequation

Just prior to plastic collapse, lhe factored load becomes the limit load and the stresses

at certain locations are equal to lhe yield stress. Thercforc, the numerators at both

sides of the equations are the properties just prior to collapse. Theyareinthesarne

state, which is called the "colJapse state"; at the locations of the denominators,P is the

cxtcmallyappliedloadand (u•.),._""", is the rcfercnce strcss rcsulting from the load P

Thereby they arc also corresponding, and they are also in the samestate, which is

and load thus is proportional to the stress. Area is the proportional factor and is

never changed in lhe analysis. Therefore, the exponent of the ratio of these two

stresses is equal to one. In equation (3-12), 0',.I(u~),._-.is considered as the load



A=~=~P M,.__

M,.IM"..". __ can be viewed as the load factor. Thenumemtorsatbothsides

of the equation are in the same state of "collapse state" and thedenominators

m::~nl =/englh

and the length is not changed in the modification of the second analysis. Therefore,

The total procedure can be described in Fig. 3.4. Line OA represents the first

pseudo-elasticanalysiswiththeslopeElo' Bccauseitistherelationshipbetwecn

moment. The moment is assumed higher. The following behavior of the line

depends on the technique used in the analysis. If the structures under considemtion

is load controlled which implies that it is determinate prior to coliapse, the subsequent

behavior of the line will be horizontal, tp=900
• Ifitisdisplaccmcntcontrolled,the

line will go down and tp=Oo. In Direct Secant Method analysis to be shown in the



sides of equation (3-16) can becancellcd. Thenthemomentofinertiaismodified

moment of inertia of structures. The plastic moment M"is a constant value that

analysis is done with the new slope. Iteralive analyses are carried out until

convergence occurs. ThisisrepresentedbythecurvelincAB. If the line AD does

notgodownward,itcangobetweenthehorizontallineandverticalline,and

OOSqJ's900. At this time, q is not equal to I, and it can he other values. No

matter how much q is chosen, the iterative calculations are performed until



yicldslress is constant. the same cross·sections will lead to the same moments of

inertia and the same plastic moments. However, in the real cases, lhecross·sections

oftheslructuml members are not always the same. Itimplicsthatthesituationof

structuml members with different plastic moments needs to be included. If

cross·sections are not the same, for solving non·unirorm structures, the techniqueof

The main principle of the direct secant method is that: all theelementsaregiventhe

same abilities to resist the bending moment and they are thus given the same

opportunitiestoreachthesamemoment,anditcanbetheplasticmoment. After the

analysis based on the moditication,one needs to find which elements rclativelyfirst

reach the peak moments. Ifthecross·sections are not the same, the opportunities

given roreach clement are different. This is because the same opportunities are

given based on the modification which results rrom two factors: momentorinertia

The distribution of moments Mo(x) is determined by the relative moment of inertia

in the first analysis. The proportionality factor can be any nonzcro value. From

cquation(3-18),the plastic moment can not be seen. This is because our purpose is



However, if the structural members have different cross-sections, the situation is

expected to reach different values after the modification, To satisfy the purpose of

"the same opportunities",we should adjust the modification by

where Mp,arc the plastic moments of cross-sections

Mo(x) should correspond to the plastic moment In equation (3-20), the plastic

moments Mp,is not a constant value and should correspond to the momentca!culated

fromthefirstanalysisMo(x). Afterthemodification,thestructuralmemberareof



Finally, the load factor is calculated by the peak average ratio ofthe plastic and the

Therefore, the procedures foranalyzingnon-unifonn structures are iIlustratedbelow·

2. Modify the cross-section geometrical properties by using equ3tion (3-20)

4. In the bending moment diagram of the second analysis, peak moments are

considered as the potential locations of plastic hinges

Foruniformstruclures, Mp,isconstant,and ifit is equal to M p , the equation can be



This is the same as equation (3-14) mentioned above forlhe unifonn structures

l\vo factors can detennine the plastic moments: one is the yield sirength and the other

mentioned above only includes the consideration ofdifTerentcross-sectionsbut

without involvingdifTerent yield strenglh. I-Iowever,ifmorethanonelypeof

material is used, the yield strength will bedifTerent. This is common in the real

Anon-unifonnportalframeisinvestigated. The structural membcrs are ofdifTerent

cross-scctions with the same strength. Thisissho\'m in Fig. 3.16. Thefrnmecan

be subject toa lateral force that results in a sway mechanism,subjecl 10 a vertical

forcelhat results in the beam mechanism and subjecl to both of them that result ina

is stronger than the columns, the columns are stronger than thebeam and the beam is

stronger than one column and weaker lhan the other one. Because the cross-seclions

Three moments of inertia are given and they are applied to the structuralmembcrs

separately depending on the cases. The results from the direct secant method are

compared with the theorelical values from plastic analysis



3.7 Comparison between Direct Secant Method and R-Node

structures. The rigidities of structures include cross-section geometrical properties

and material properties. The modification of either of them can successfully modify

the rigidities of structures. This implies two advantages: first, in the computer

program, engineers can select any properties they wish to modify, so Ihe Jimitalion or

the computer program can be avoided. For example, modifying the moment of

used. Second, the rigidities are modified along the slructural members, but for

certain locations, the rigidities are of constant value. The new rigidities can be

modified based on the old rigidities excepl at the location of hinges . The

disadvantage is that: at the original hinge locations, because ahingecannot take any

direct secant method, very tiny moments are used instead of zero. Therefore,the

modulus without any other choices. This generates difficulties for certain FEA

stresses of each cross-section Cfft may be equal to zero at certain locations of

successfully modify Young's modulus along the cross-scctions, at the top and bouom



changing of stress for each element inside the cross-sections is not continuous

Ahhough smaller sizes of elements are given, dilTerence still existsand the time of

calculation becomes longer. The R·Node method also can not deal with the situation

of the hinges in truss structures. At the locations of hinges, no bending moment

3.7.2 Element Type

depcndson stress resultants such as moments and shears and does notdirectlydepend

on stress itself. As opposed to this, the R-Nodemethod uses solid elements since the

3.7.3 Failure mode and yield criterion

Direct secant method: Many failure modes now have been succcssfullysolvcdbythe

direct secant method, such as plastic collapse and buckling. Any yield criterion can

R·Nodemethod:ltcansolvelheplasticcollapse. Until now, there has been no other



3.8 Test Cases and Examples

frame type structures to predict their limit loads. The examples include portalframes,

multi-bay and multi-storey frames with different loadings and arrangements. The

plaSlic hinge analysis (as described by Neal [I977]),full scalenonl inearanalysis

usingFEAand the direct secant mcthod presented in thccurrcnt chaptcr.ltmustbe

nOlcdthatthcR-Nodemethod{Seshadri,1977],whichfonnspartofthe inspiration

ror the current work gives very close results to that given by the direct secant method

albeit with signilicantly greater extra effort (both programming and computational)

For comparison purposes, the FEAnoniincaranalysis is lakenas the base instead of

the plaslic hinge analysis. This is so since thc FEA nonlinear analysis can include

the efTcct of sway on column moments whercas the plastic hinge analysisignoresit

Besides, the plastic hinge analysis is not easy to apply formuhistoryframeswith

mixed loading conditions. Finite element nonlinear analysis has no such limitations



3.8.1 FinitcElcmcntModcling

For the purpose of analysis Ihe structures have bccn modeled using the fini teclcment

software A SYS [2006]. This was used for both thc nonlinear analysis and the

Thedirectsecantanalysisusedinthecurrcntchaplcrhasbeenimplementcdin

A SYS using beam elements (BEAM3). As mentioned above, this facilitatcsthe

modification of the secant rigidity at the level of the entire cross-section. The

After the initial analysis results areobtained,the modifications to the rigidity (in this

the Appendices at the end of the thesis. They are based on the earlier such

modifications implemenlcdby Bolar and Adluri [2006) who did the same forplatc

Forthenonlinearanalysis,thestructureswercmodelcdusingdifferenloptions

available in ANSYS (for comparison purposes and convenience). The nonlinear

analyses have been carried out using beam elements BEAM3. In each case, mesh

convergence studies have been carried out. The rcsults for each element type have

shownnexttothefiguresareallnon-dimcnsional. The lengths, loads,clc., are all



Nonnally, load factors are greater than I in the real cases. In this work,theloadswere

3.8.2 The Description of the Test Cases and Examples

Thecascs tested by FEA nonlinear analysis and the direct secant method include

relatively complicated structures subject to concentrated forces and distributed forces

by the direct secant method. The magnitudes of the peak bending moments in the

reanalyses of the direct secant method are listed in thc table. By using the results in

plastic analysis (except structures in Figs. 3.14 to 3.15) and fu II scale nonlinear

analysis. The results obtained by two methods in terms of load factors are als0

presented in tableJ. 1. 1. The frames shown in Fig. 3.14.1 and Fig. 3.15.1 are

relatively complicated, and it is not easy to apply the traditional plastic method to

them. Therefore, only the direct secant method is used to analyL.e the Ii mit load for

results of both the traditional plastic analysis and lhedirect secant method. It is

traditional plastic analysis, the results of FEA nonlinear analysis is considered reliable



and can be used to compare with the direct secant method. Inthecaseofrelatively

complicated structures, traditional plastic analysis seems tediousandsomctimesisnot

fcasible. FEA nonlinear analysis in lhiscase is used to be the only base for

comparison. In table 3.1.1, the difference of the comparisons is within 3.5%. It

Fig.3.S.1 presents a ponal frame subject to a coneentrated force in the middle ofthe

bending moment distribution of nonlinear analysis and thedistribution of reanalysis in

direct secant melhod. In Fig. 3.6.I,swaymechanism istestcd. Fig.3.?1 showslhe

A multi·bay structure, which is subject to venical and lateral forces, has been

analyzed by Neal [I 977]. Toobtainthelimitload,theforcesareapplied

independently and each corresponding collapse mechanisms are analyzed by the

plastic analysis. All the independent collapse mechanisms are combined

respectively to obtain the minimum load factor which is the limit load factor. The

same procedure is followed by the analysis of the direct secant methad. FromFig

3.8.1 to Fig. 3.ll.1,all the independent and combined mechanisms arelestedbyFEA

nonlinear analysis and direct secant mcthod. Finally, the collapse mechanism

obtained is the combine mechanism shown Fig. 3.ll.l,and the limit load factor in this

Fig. 3.14.1 presents the test of the panial collapsc ofa frame. Thecollapse

mechanism is the beam mechanism. The plastic hinge locations are marked in

Fig.3.14.3. Fig.3.tS.1 shows a more complicated frame subject to lateral uniformly



istheswaymechanismonthefirststorcyoftheframe.Tenplaslichingelocationsare

A portal frame withnon·uniforrn geometrical propertiessubjecttoa later fo rce and a

vertical force is shown in Fig. 3.16.1. The limit load prediction isperforrned by the

direct secant method and compared with FEA nonlinear analysis. l1treecases

includingdifTerent properties of beams and columns are given. Foreachcase,three

basic collapse mechanisms (beam, sway and combine mechanisms) are analyzed

Tables3.2.lt03.4.lshowthestTUcturalgeometricalproperties.Theresultsobtained

from FEA nonlinear analysis and the direct secant analysis are presentedintables

3.2.2 to 3.4.2. The direct secant method gives good eSlimalion and the difTerence is
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Fig.3.5.J Porlal FrameSubjedloConcenlraled Vulical Force

Fig. 3.5.2 Nonlinear Analysis ResuUsforlhePorlal Frame in Fig. 3.5.1





Fig. 3.6.2 DiredSecanlResullsfrom Reanal)'sis for Ihc Problem in Fig. 3.6.1
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Fig. 3.8.2 Direct Secant RcsuUs from Reanalysis forlhc Problem in Fig. 3.8.1
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Fig. 3.10.1 Two-baySingle-storcyFrame-C

Fig.3.10.2 DircclSccant Results from RcanalysisforlhcJ'roblcm in Fig. 3.1 0.1
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Fig.3.J4.3 DireetSee3nt Results from Reanalysis for the Problem in Fig.



Fig.3.IS.2DiredSeeanIResultsfromReanalysisforlheProbleminFig.3.15.1
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Chapter 4

Estimations for Frame Stability

Stability isa major design consideration for structural columns, frames and allied

structurcs subject 10 compression or compression and bending in some combination

The elastic stability theory for columns is well known and is extensively taught as part

of engineering curriculum (see, e.g., Hibbeler [2008]). Some of it is reviewed in

Chapter 2. The theoretical bases for stability theory are found in several well kno\Yn

references,e.g.,limoshenkoandWoinowsky-Krieger[1975]. Stabilityofframcsis

expiorcd by others such as Chajes [1993], etc. Usingthc finite element analysis for

frame stability has gained popularity. The procedures aredescribcd by many authors

(e.g., Chen and Lui [1991]). Using the finitc element mcthod usually involves full

nonlinearanalysiswithvaryingdegreeofadjustmclltsoradaptationsforjoint

In Ihis chapter, these routes are bypassed in favour ofa simple attcmpt to explore the

possibilily of obtaining the critical load capacities forframestability by using

algorithms based on methods in Chapter 3. It must bc clearly noted that this is only

a rudimentary attempt and hence theoretical rigor for full investigation is beyond its



4.2 ObservationsfromElasticBucklingTheory

We can gather several observations from the theory of elastic buckling that are useful

I. If a perfectly straight column member is applied a small concentricaxia1 force, it

will have only a small compressive displacement along the column and the

column remains straight. The column at this time is in stable equilibrium

LateraJ displacement caused by a disturbing lateral force (or moment)atthisslate

will vanish when the disturbing force is removed and the column Slill keeps its

straightness. As the axial Joad increases, a small Jalcral disturbing force can

cause increasingly larger lateral deflections. These will suddenly cause a huge

lalcral deflection at a particularly high enough axial force. At this stage, the

disturbing force is removed. The column at this time is in an unstable state

The axial force that causes this is very specific and is called as critical(or

2.0neofthckeyobservationsfromelasticbucklinganalysisisthat the flexural

stiffnessthatresistsbendingisprogressivelyweakenedwilhtheincreascinthe

whcntheaxialforcereachesthecritical(orbuckling)load.ltispostulatedthat

this loss of stiffness may be simulated to some extent using ideas from secant

3. The same observations as above apply to columns thuturepartofa frame. Such

frames will also have "buckling" loads the same way that columns do. Thisis

the case whether the frames perrnit or prevent side sway. These frames can have



different types of connections between beams and columns. The column

stability will depend upon the effective end restraint. The beams and their

connections will act as partial end restraints to the columns thus modi fyingthe

Qdx+PdY+M-(M+~dx)=O

Q=~-P7/;



pattemsat the time of column or frame buckling. Thcreforc, thc latcral loads or

moments may have the max displacement at one location while the bucklingeffect

may have the maximum displacement at a different location

7. lust prior to buckling, the maximum displacement of each column can be

considercdtobethecriticaldisplacement. This implies that ifany displacement

exceeds the critical displacement, failure will occur. We reiterate that

mentioned above, when buckling occurs, the huge displacement location is not

exactly the same as the critical displacement location. However, these

displacements are most likely to be close to each other. Thiscanbeshowninthe

reanalysis of robust secant method,whichwill bediscusscd later.

4.3 Inspiration from Robust Plastic Limit Load Analysis

buckling is a transition from more or less linearelasticdeformation (involving

both axial and lateral displacements of members) to a relatively very large set of

lateral displaccments due to instability. The magnitude of this "large"

displacement is not of as much importance as the fact that it took place at all

This is somewhat similar to the fact that at plastic limit loads, the curvature of the



2. The relationship between applied loadsandthedisplacementatcriticallocationis

somewhat analogous to that between moment and curvature of the critical

cross-section in Chapter 3. Both the relationships have initially linearly

increasing portions which tum to large horizontal portions (with linlcincreasein

in Fig. 4.2. It is of course negleeting a realistic post buckling drop in the

buckling load and consequent changes in the structure bchaviour. It also negleets

(although highly idealized) is similar to the moment-curvature relationship from

3. The plastic limit load estimation of Chapter 3 relies on a secant modification of

the rigidity to simulate the redistribution of bending momentscauscd by the onset

of yielding. The bending moment re-distribution relics on the relative secant

rigidity ofdifTercnt parts of the frame. Similarly, we canpostll/ate that the

stability of frames is influenced by "efTective secant stifTness."Justasin

Chapter 3, the secant modification here can try and give all the parts of the frame

an equal "opportunity" to buckle. SchematicallY,lhis modification is shown in

exactly the same as that used in iterative modified Newton schemes for nonlinear

to obtain locations of peak displacements in the structure whosestifTnessis



4.4 Robust "Secant" Analysis Trials for Elastic Buckling

Using the obscrvations above, we can attempt to investigate theelast icbucklingof

frames. Werepea/lhat/hisisaverypreliminaryideaandneedsloberhoroughly

It is postulated that frames exhibit "buckling" bchaviour when a certain critical

displacement from simpJe elastic analysis exceeds a certain limit

InthefoJlowing,enmiricalproceduresareproposcdforeslimatingthe critical load for

1. Forasclpaucmofappliedloading<p,Af>andanarbitraryloadmultiplication

faclorA,\Vccarryolltaninitialelasticanalysis. Thisgivesllsthegeneral

displacement pancm for the structure which we assume incrcasesmonotonically

with load multiplication factor until oncor more members or the frameasawhole

!JS!.!.assumcdto"bifurcate".llratherincrcasessignificantlyalsome points thus

prevenlingrurtherpossibilityofincreaseinloadmultiplicationfactor

2. In Fig. 4.2, the line OArepresents the linear elastic rclationship between applied

load and displacement. ltisobtainedbasedupontheinilialstifTness(slope)K1

corresponding displacement increases proportionately. This continues until a

criticaldisplacementdcrisreachcdatpointA The tangent stifTness becomes



effectively very low thereafter. (We are, as mentioned above, neglecting a

tmnsitionzone near point A). Let us assume that the load applied is F\ and that it

produces a displacement dl based on initial stifTnessK I . In order to simulate

buckling, we can modify the stiffness of the segment using the secant Iineshown

valuc \v111 serve the purpose of secant adjustment ofstifTness. Thisisinline\v1th

thc procedure from Adluri [l999] and that in Chapter 3. Note that weare

modifying moment of inertia which is proportional to thc stifTness of the member.

produced less displacement and relatively "reduces" the stifTness Oflhosc areas

thatproducedmoredisplacementthusencouragingallsegmenlstowards

Re.analysisofthe frame is perfonned on the basis of the modification above

The locations of peak displacements are obtained. Thcselocationsmighthave

shifted from the corresponding ones in the previous analysis (analogoustothe

3. After re-analysis,the critical load can be calculated by one ofthcfollo\v1ngtwo

empiricaJmelhQds. The first method obtains the load factor corresponding to

critical load fTomtheratiooftwoavemgedisplaccments. Thesccond method



Let PQlIflprlOlal be the tota! compressive force in the columns, Mdlsp-ptak be the bending

moment at the location of peak displacement and Cbea factor depending on the type

of frame. Compute an "equivalent" displacement dmpc as below. There may be

more than one peak locations. Note that the subscript "mpc" is not to be confused

with the multi-point constraint used in several commercial softwarepackagessllchas

where, dfH" is the peak displacement in the reanalysis

The factor C depcnds on the typcofframe irrespcctiveoflheactual physicalproperty

values. We do not yet have the necessary theoretical deve!opment todelennine the

faclorexactly. Pending the development of the theory, it has been decided to

empirically estimate the factor using finite element geometric nonlinear analysis

ThefactorCis likely to beafunction of certain key non-dimensionalpropertiesofthe



Fig. 4.3 shows results for the faetorC for portal frames with difTerentaspcet ralios.

where. L, is the length of column and ~ is the length of the beam. The maximum

valucofCiSO.817whent=landthcminimumvalueOfCiS0.46IWhenr=2

Theeurveshowslinlediffereneewhen!::tSlanditnoatsaroundaeonstantvalue.1t
L,

implies that a constant value can be used to cover the changing of this portion of the

Fig. 4.4 shows the comparison between the load factor l for nonlinear analysis and

columns (rSI). The solid line denotes engenvalue analysis and thedashedline

denotes robust secant analysis. It must be pointed out that the factor C is being

calibrated IIsing the "exact" analysis with the expectation thatsuchfoctorsll'illbe

invesligoledinfurtherworkondprocedllresforfindinglhemll'iIIbedeveloped

Inempiriealmethod2.afierreanalysis,theeritiealloadiscalculated as below

I. Identify the locations of peak displacements and the nearby locations of zero

Find the bending moments and displacements at these locations



where, dcr is the peak displacement in rcanalysis, do is the zero displacement,

M<b is bending moment at the peak displacement location and Mo is the

bending moment at zero displacement location

The factorpisanalogous to the factorC in Method I It is calibratcd using the same

Fig.4.5investigatesthefactorpforportalframessubjecttoaverticalforeeonthe

beam, where, L.is the length of columns and~is the length of beam. The

maximum value of p is 0.2581 forL2/L.=1 and the minimum value of p isO.1378

a constant value. It implies that a constant value can be used tocovcr Ihe range

Fig. 4.6 shows the comparison of the load factor between geometrical nonlinear

analysis and robust secant analysis Method 2. The solid line in the figure represents

thetheorcticalloadfactorforaportal frame with different aspect ratios. The dashed

c10scand do not show much difference when 0.277 s:ts: I



4.4.3 Comparison Between Method 1 and Method 2

It isobviouslhal Fig. 4.3 and Fig.4.5,showgeneral lrenctsthat are proportionalto

each other. ThevaJue d~oA: in Method I is equal loMin Method 2. Thevalue

M ...... in Method I is proportional to M,1 in Method 2 because dM = M........ - MJo '

betwecnM....... and AM

AhhoughMethod I and Method 2 are obviously closely rclated,the intent of AM in

Method 2 is not the same as the valueofMpc,. in Mcthod I. ThcU5COf!J.Mwas

causes buckling. Since the use of an intcgral is somewhat cumbcrsome at this stage,

it was decided Ihat a simple "change of value" will be used instcad. This needs

It ffiustnlso be pointed out that we used the factors C and fJas constanIs (for the range

of aspect ratios sclcctcd for the present study). Thcyarcnotacluallyconstanlsas

can be seen from Figs. 4.3 and 4.5. In fact for L2> Ll, lhesc factors seem to be

linearly changing. Thisneedsjurther investigation and theoretical development

Several portal fmmeproblems havebecn analyzed using empirical Methods I and 2



The reslilts of some of those analyses are presenled in Figs. 4.7 to 4. 13. Forthe

analyses, the following physical data was used (Table.4.t). Althoughlhedatawas

neededtobcgiventoASYSinordertoobtainnumericalresults,theideas presented

can easily bc shown to be non-dimensional in their nature

Tabt~ 4.1 The Physical Data Us~d in Analyzing tb~ Struclures in Figs. 4.7 to 4.13

1]
20,000

L. 1200

L, 800

LJ 400

[ 200,000

The analyses include portal frame with one load,two loads and three loads on the

beam as welt as one latcral (horizontal) force parallel to the beam tosi mulate the side

sway due to wind. The frames cover difTerent aspect ratios

Ascanbeseenfromtheresultspresented,theerrorsfromtheproposed analyses are

reasonably small in comparison with the reslillsofgeomelric nonl incaranalysis.1t

must be noted that the geometric nonlinear analysis rcsults are cvcr so slightly

difTcrcntfromthoseinFigs.4.3-6sincethoseusethcmatrixeigen value analysis

However the difTercnce is within tolerable margins. TypicalinputfilcsforANSYS
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Fig. 4.6 Comparison between GeomclricaJ onlinearAnalysis

and Robusl Sccanl Mcthod rorp=O.22



Fig.4.7a Portal FramewitbConccntrated Force 00 IhcBcam Case I (L2<LI)

Fig.4.7b Displacemenl Distributioo in Reanalysis for the Portal Framc in Case I

(negalive for the lefl columo aod posilivc for tbe rigbt column)
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Fig.4.8a Portal FramewithCoDcentrated Force on tbc Beam Case 2 (L2=L.I)



Fig.4.Sb Dispillcement Distribution in ReanalysisforthclJorlalFramcin Casc2



Fig.4.9a Porlal FramewilhConcentrated Force on the Beam Case3 (L2>LI)
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Fig.4.9b I)isplaccmcnl Distribution in Reanalysis for the PortalFrameinCasc3



Fig.4.IOa Portal Framewitb Concentrated Force on the Beam Case 4(L2<LI)

Properties
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Fig. 4.IOb Displacement Distribution in Reanalysis for Ilorlal FrameinCase4

(negative for Iheleft column and positive for Ihe right column)
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Fig.4.llb l>isplaccmcnt Distribution in ReanalysisforPorlalFramcinCaseS

(ncgalivc for1he left column and positive for Ihc righl column)



Fig.4.12a Porlal Framewilh Three Forces on theBeam-Casc6(L2<LI )
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Fig.4.12b J>isplacemen' Distribution in Reanalysis for Porlal FrameinCase6



Portal Frame Case 7

~

Fig.4.13a Portal Framewitb a Force on the Beam and a lateral foree-Case7
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Fig.4.13bDisplacementDistribution in ReanalysisforPortalFrameinCase7

(negalive for tbe lefl column and posilive for the right column)



ChapterS

Estimation of Large Deflections in Beams

The sludyoflarge deflections isa vast and complicatcd subject

applications and is used directly and indirectly in scveral design situations. Avery

preliminary attempt at estimating large deflections of beams or beam typc structures

using inspirations from direcl secant analysis is made in this chaptc f.

indicators that can be used to identify if the problem of interest nccds large deflection

considerations, for example, if the value of the rotation 0 ofbcamscannotbceasily

replaced with sinO or vice versa. in a design siluation, typically,adcflcctionin

excess of "Span/I20" is considered exceeding small deflcclion Iimi t. When large

deflection takes place, structural members deviatc significantly from their original

positions. This deviation is considered to be largecnough so that the equations

formed on the original geometry are no longer valid for a good estimate 0 fthe

In thischapter,lhe large denection of beams is investigaled usingEuler-Bemoulli

bcam theory, linear and nonlinear FEAand robust secant analysis used inearlier

chapters. Thrcccasesofbeam,viz.,cantilcverbeam,simplysupportedbeamwitha



5.2.1 LincarThcory

Elementary Euler·BemoulJi beam equation is well known and is widely taught in

engineering curriculum (sec. e.g., Hibbeler [2008]). The basic assumption is that the

known fonn of the equation assumes that the beam is isotropic. Itrelatesthcapplied

load and the deflection caused by the load With reference to beams of the kind from

£,(EIB-)~W, ElB-=M(X), l~ JJy'.dy.dz

x,Y(X) is the denection at any point x, M(x) is the bending moment, andw(x)isthe

intcnsity ofthedistribulcd load at x. Theequationsarcdcrivedusingthcfollowing

x=-8=-~=-SinO

M(x)~JJY·<7(x,y).dy.dz



V(x)=Jfu".(x,y).dy.dz

Since the main assumption is that plane cross-sections remain plane after

5.2.2 Modified Euler-Bernoulli Equation

Ifbcams experience JargedeOection, the linear beam theory illustrated above isnot

entireIYCorrectsincethemagnitudeOfBiSnolongerthesameas~=Sin8""lanB.

Acantileverbeamsubjecttoaconcentratcdforceatthefreeendisshown in Fig. 5.1

The vertical force Pcauses vertical displacementdy, horizont81 di splacemcnt d" and

displacementl(, and vertical displaccmentd~. £/~=M(X)iS used to evaluate

internal bending moment (notc that O'*tinthecaseOflargcdcneCliOn). External

bcndingmoment M(x) is not equal to pel-x) but to P(L-x-8,),whcrc 8x is the

EI~=M(X)

Intheabove,thecurvaturetermisno)ongcrv·=d2y/dx 1

v'/[I+(v')'F' The bending moment M(x) on the other side of the equation



5.3 Scope of the Analysis

The beams analyzed in this chapter have deflections that range from 5%tonearly

beams maintain their original direction, even if beam orientation is altered

significantlr due to large deflection. It must be noted thatthecalculationisfor

4. Shear effect is negligible. Only bending stresses and axial stresses govern the



Similarly, we can find the horizontal displacement u(x) due to curvature of the beam

All these equations (e.g., eq. 5.2.5) can be solved using well known numerical

methods such as Runge-Kutta (Order 4), etc., in combination with "shooting"

algorithmsasdemonstratedbyAdluri[2009]. Application of such methods becomes

complicatcd if the deflections are bcingcomputcd for more elaboratc eascssuchas

framcs. In the following, finitcclement modcls havc bcen used to run linear,

nonlinear and robust algorithms todctcrminc total dcnections of beam structures

5.4 The Direct Secant Technique

The direct secant tcchniquc prescnted earlier by Adluri [2001],BolnrandAdluri

[20051, etc., hasbcen used in Chaptcr 3 for plastic limit load estimation. Similar

ideas are employed in Chapter 4 in a preliminary effort at cstimating buckling loads of

Fig. 5.2 describcs the basic idea of secant analysis. The initial linear analysis

predicts stress and strain based on the original clastic modulus



a set value (such as the yield limit), the material modulus isaltered using a secant line

A reanalysis is carried out and the process in continued iteratively till convergence

The direct secant analysis of AdJuri [2001] may not change the modulus

may change any item that is directly proportional to secant stifTness such as moment

ofinertia,rigidity,oreventhestiffnessmatrixitself[LahaandAdluri,2005]. In that

wherc,Koistheoriginalstiffness,K, isthenewstiffneSS8nd1]isthe modification

The analysis input files forANSYS arc given in the Appcndices

A cantilever beam subject to a concentrated load at the free cnd is shown in Fig. 5.1

This beam is analyzed for linear and nonlinear cases. The algorithms used in

Chaplcr4 have been employed for obtaining the robust secant analysisrcsults. The

rcsuhs arc shown in Fig. 5.3. Thcplotsarenon-dimcnsionalizedforthemaximum

deOection that we can expect at the tip ofa cantilcvcrofwe use the simplelinear

theory (the slope of the resuhsofthe liner theory on this graph should be 1:1). The

robust analysis resuhsare fairly close to thosc from full nonlinear analysis. Uptoa



deemed that this is probably the most that we can expect in a normal structural

applicalionevenforrclatively"soft"materials. It is lObe noted that the deflection

includes the shortening of the lever arm as well as the tensile component of the

Fig. 5.4 shows the comparison between the nonlinear results, linear results and a

simplified algorithm which considers the secant modification 'lin Eq. 5.4.2 tobea

constant value of 1.05. From Figs. 5.3 and 5.4, we can find that the simplified

procedure virtually gives the same results as those from detailed secant analysis

The good fit seems 10 be mainly because the nonlinear results are relatively linear

even at high displacements. Also,somewhatunexpectedly,thcnonlineardeflection

5.4.2 Simply Supported Beam with a Roller Support

A simply supported beam with a roller support on onecnd is shown in Fig. 5.5 A

cOllcentratcd force is applied at the mid span of the bcam. The roller on the simply

supported bcam, as is c!ear, only pennits the horizontal displacement and restricts the

vcrtical movement. When large deflection occurs at thc mid span, the total

displacement is influenced by both the vertical deflection and hori zontalmovement

The (normalized) resuhs are shown in Fig. 5.6. For this case, unlike the cantilever

case,the nonlinear deflection is larger than that from linear theory. The secant

For this case a!so, a simplified approach was attempted similartothat used in the



cascofcanlilever. ThefaclorrywasfoundIObeO.95. Theresultsforlhis

simplified approach are virtually identical lOlhosc from secant analysis. Althis

stage, it is unknown why the simplified approach works except for lhe obvious

5.4.3 Simply Supported BeamwilhoutRollerSupporl

A simply supported beam withoUl lhe roller support is shown in Fig. 5.7. Thebeam

is subject to a concentrated force at the mid span. Because there is no roller at the

support, the horizontal displacement isconslricted. Theconcenlratedforccatthe

Fig. 5.8 shows the (nonnalized) results of the analysis. As in the caseoflhe

prcviolls beams, the secant analysis resuhs are acceptable. For this case also the

simplified technique was tried. A value of,.,=O.95 gives good results. Again,we

arc simply calibrating the vallie of ry by using nonlinearanalysis. We do not yet

Acomparisonofthercsuhs for simply supported beam wilhand without rollers is

shown in Fig. 5.9. The difference is obviously not very much. However, this

difference must be seen in light of the results for linear analysis shown in lhe same



A simple portal frame with a lateral load at the beam level is shown in Fig.5.10 It

has the same height as the width. Both beam and column have the same properties

The large deflection analysis and secant analysis results are shown in Fig. 5.11. As

can be seen. the secant analysis gives reasonably close result 10 that from the
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Chapter 6

Conclusions

Limit load estimates are very useful for many engineering applications ·bolhindesign

and analysis type problems. There has always becn a need rorrobust methods for

plastic limit load analysis frorn the point of view of numerical stability and effort

Robust limit load analysis has gained considerable attention over the past several

years. Availablcrobustmethodsadoptsecantmodulusmodificationasameanslo

most significanl among these mClhods arc the r-nodemclhod,elasticcompcnsalion

method and thc Illu family of methods. AJloflhcseuscthevonMiscsyieldcritcrion

The clastic compensation method is based on a maximum stressvaJue. Becauseof

numerical local errors, it can sometimes be difficult to propcrly identi fylhefailure

mechanism and the consequent limit load. TheOla ramilyofmcthodshavebetter

in many cases and unconservativein severaJothersituations-espcciallyrorbending

type problems. All of these modulus modification methods need stress level

modifications and consequent discretization requirements that are very elaborate

The present thesis made use ora robust method which has several features of the



additional advantages. The method generalizes thc advantagcsofthe existing robust

[Adluri,1999,200I].lthaspreviouslybecnshoWJlIOWorkquitewcllforbeam

(frame) and plate type structuresbyAdluri,Bolarand others. The criteria can be in

to apply since any type of finite element can bc used. The use of this technique has

inprcdictingplasticlimitloads,elasticbucklingloadsandlargedeflections

Themethodhasagoodtheoreticalbasisforplasticlimitloads.l-lowever,thelheory

for buckling and large deflections needs considerably more work inordertobefirmly

6.2 Summary

Chapler 2 oflhe thesis gives an over view of the limit theorems, buckling, large

Chapter 3 reviews the melhods used by Adluri and associates loestimateplasticlimit

loads forbcam and plate type structures. The mClhodsare used to predict frame

collapse mechanisms and theirlimil loads. ThcbasicprocedurcistakenfromAdluri



1. Carryoulthe inilialelastic analysis based on original gcometricalpropcrties

where M"are the plastic moment capacities of the cross·sections. The

bcndingmoment Mo(x) correspond to the elastic results from initial analysis

3. A second elastic analysis is carried out based on this modification

locations of plastic hinges. Not all of these localions may be needed to fonna

mechanism for collapse. Sufficient combinalions of these hinge locations are

selected 10 fonn all possible hinge mechanisms. Usually,thereareonlyafew

For unifonn structures, Mp;isconstant.Thereforetheequationcanbcsimplified



analysisresuhsformanytypesofframesincludingportalframes,one-storeyframes

Chapter 4 applies two adapted versions of the above secant technique to predict the

1 It is assumed that the frame buckling does not follow the classical mode of

displacements of members) to a relatively very large set of lateral nonlinear

displacements duc to instability. The magnitudc of this "Iargc"displaccmcnt is

not of as much importanccas thc fact that it took placcatall. Thisissimilarto

reaches very large values (its magnitude is not important-rather thaI il took placc

2 The relationship between applied loads and thedisplacemenl aterilicallocationis

incrcasing portions which turn to large horizonlal portions (with littlc increase in



secant scheme. Thesepeakdisplacementscanpotentiallybeindicativeofframe

4 Two aitemative empirical methods have been used in this chapter. Method I

where, drw.isthepeakdisplaccmentinthereanalysis

theoretical development to detennine this factor exactly. Pending the development

of the theory, it has been decided to empirical1y estimate the fac lor using finite

In empirical method 2, after reanalysis, the critical loadiscaIculated as below

I Identify the locations of peak displacements and the nearby locationsofzero

Find the bending moments and displacements at these locations



wherc, de. is the pcak displacement in reanalysis, do is thc zero displacement,

MJcr is bending moment at the peak displaccmenllocation and Mo is the

bending moment at zero displacement location

The factor Pis analogous to the factorC in Method I It is calibrated using the same

andtoapplythem(orimprovedversionsofthem)formorecomplicatedframes

Chaptcr 5 deals with large deflections of beams and framcs. The same tcchniques as

in Chaplcr3 are uscdto predict the largcdcflcctionsofbeams up to a value ofncarly

50%ofthc span Icngth. The results arc encouraging. A modified form of the

secant technique.wherc the modification is uniform throughoulthclengthnlsosccms

togivequitcncceptablcrcsults.l-lowevcr,asinthecaseofChaptcr4,moreworkis

The analyses in the thesis are carried out usingANSYS software. Typicalinputfilcs

for all difTerent types of analyses and the APDL routines required are providedinthe



I The best conclusion of the plasticcoJlapsc study of the frames in Chapter 3 is

that the method works very niccly and had a sound thcoretical basis. The

errors compared to the full nonlinear analyses arc well within acceptable

2. The method works equally well for frames with non-unifonncross-sections,

portal frame, single storey multi-bay frames, and multistorey frames. They

6.3.2 Buckling

1 Theload-displacementrelationshipinabucklingproblemisanalogoustothe

relationship between moment and curvature ina plaslic limit load estimation

2 We can modify moment of inertia (in lieu of the stiffness) based on the lateral

displacement profiles in order to simulate critical displacement patterns at

3. Two empirical methods have been examined in Chapter 4 to predict the



buckling load capacities of portal frames. Factors C and phave been

calibratcdforuseinEq.4.42andcq.4.4.S. Thescfactorsareindicativeof

6.3.3 Large DenectiooAnalysis

could be either larger or smaller than those prcdictcd by nonlinear analysis

Forcantilcver, nonlinear analysis gives Icss deOection than the Iinearanalysis

2. For the examples studied,linearandnonlinearanalysesdonotdifTermuchtill

is not very large till the deflection exceeds 50% of the span

3. Thedircct sccanl approach gives reasonably good estimalc of Ihenonlinear

dcOections. However, many more examples need to be studied to confirm

modification that gives a non-uniform beam cross-section) seems to give

0.9S<T/<I.OS.lflineardeOectionisgreaterthantotalnonlineardeOection,



'1>1.0. IflincardcOection is smaller than lotal nonlineardeOect ion, '7<1.0

perhaps with the most theoretical justification as given by Adluri[2001]. Chaptcr4

I. Improve the aulomatic identification of plastic hinge mechanisms

4. Factors C alldfJare used tocalculatc the critical load. Themeaningoflhe

factors needs to be finnly established and madeavailablc fordifTerenlsituations

5. Large deOection estimation needs to be extended to more complicaled structures
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APPENDICES

Appendix A includes all the first purely elastic analyses in robust secant methods in

AppendixB. Appcndix A and appendix B are used together to consisl of the entire

robust sccant analysis. Appendix C involves all the FEA nonlinear analyses in this

comparcd with the nonlinear results from Appcndix C.



APPENDIX A

A.I.I A UNIFORM PORTAL FRAME SUBJECT TO A LATERAL

FORCE AND A VERTICAL FORCE

! PLASTIC ANALYSIS USING MODIFIED SECANT RIGIDITY
/PREP7 !ENTERPREPORCESSOR

!USE BEAM 3 ELEME T
!YOU 'G'SMODULUS
!AREA
!MOME TOFI ERTIA
!HEIGHT
!MESHSIZE
!VERTICALFORCE
!LATERALFORCE

MP,EX,I,200c3
Mil, NUXY,I,0

K,I,O,O
K,2,O,400
K,3,400,400
K,4,400,O

L,I,2
!DEFINITION OF LINES

L,2,3
L,3,4

LESIZE,ALL,LZ
LMESH,ALL

NSEL,s,LOC,x,200
F,ALL,FY,-PI

NSEL,S,LOC,X,O
NSEL,R,LOC,Y,400
F,ALL,FX,P2

IDEFINITON OF MESHSIZE
IMESHLINES



NSEL,S,LOC,y,O
D,ALL,ALL
NSEL,ALL

ISOW

~::iPE,O

SOLVE
IINPUTMACROI

A.1.2 A TWO BAY AND 0 E STOREY FRAME SUBJECT TO

TWO VERTICAL FORCES AND 0 E LATERAL FORCE

ALYSIS USING MODIFIED SECA T RJGIDITY
!E'TERPREPORCESSOR
!USEBEAMJELEMENT

!YOU G'SMODULUS
!AREA
!MOME TOFI ERTIA
!HEIGHT
! MESH SIZE
!VERTICALFORCE
!VERTICALFORCE
!LATERALFORCE

R,I,A,I,H
MI),EX,I,200c3
MP,NUXV,I,O

K,I,O,O
K,2,O,400
K,J,400,400
K,4,400,O
K,S,800,400
K,6,800,O
L,I,2

~~]
LESIZE,ALL,IO
LMESH,ALL

lDEFlITONOFMESHSIZE
1MESH LINES



NSEL,S,LOC,X,600
F,ALL,FY,-P2

SEL,S,LOC,x,800
SEL,R,LOC,Y,400

F,ALL,Fx,P3

A.1.3 A UNIFORM FRAME SUBJECT TO THREE VERTICAL

FORCES AND ONE LATERAL FORCE

II'REI'7
ET,I,BEAM3

R,I,A,I,H
MP,EX,I,200e3
MP,NUXY,I,O

K,I,O,O
K,2,O,L
K,3,O.8'L,L
K,4,O,S*L.,O

K,s,O,z'L
K,6,O.S*L,2*L

! ENTER I'REI'ORCESSOR
!USEBEAM3ELEMENT

!YOUNG'SMOOULUS
!AREA
!MOMENTOFINERTIA
!HEIGHT
!LENGTH
! MESfi SIZE
!FORCES



K,7,1.3*L,L
K,8,1.3*L,O

L,t,2

~~~
L,2,5

~~~

NSEL,S,LOC,x,O.4*L

~~i~i~~~,y,2*L

NSEL,S,LOC,X,1.0S*L
NSEL,R,LOC,Y,L
F,ALL,FY,-P2

~~:tL~ALL~C,y,O
NSEL,ALL



A.1.4 A UNIFORM BIG FRAME SUBJECT TO UNIFORMLY

LATERAL DISTRIBUTED FORCES AND VERTICAL

CONCENTRATED FORCES

! PLASTIC ANALYSIS USfNG MODIFIED SECANT RlGIDITY
IPREP7 IE TERPREPORCESSOR
ET,I,BEAM3 IUSE BEAM 3 ELEMENT

*SET,EM,200E3
*SET,A,50

:~~?~,~6.67

:~~~:~~5~
·SET,PI,le2
·SET,P2,1.5e2
·SET,P3,le2

R,I,A,I,H
MP,EX,I,200c3
MP,NUXY,I,O

K,I,O,O
K,2,1.2*L,O

~~:i:::~:~
K,5,4.4*L,O

K,6,O,L
K,7,1.2*L,L
K,8,2.4*L,L
K,9,3.4*L,L
K,IO,4.4*L,L

K,II,O,2*L
K,12,1.2*L,2*L
K,13,2.4*L,2*L

~::~~:::~~:~

K,16,1.2*L,3*L
K,17,2.4*L,3*L
K,18,3.4*L,3*L

K,19,1.2*L,4*L
K,20,2.4*L,4*L

IYOUNG'SMOD LUS
!AREA
!MOMENTOFINERTIA
I HEIGHT
!LENGTH
!MESHSIZE
I FORCES
!FORCES
!FORCES



L,I,6
L,2,7
L,3,8
L,4,9
L,5,1O
L,6,7
L,7,8
L,8,9
L,9,IO

L,6,II
L,7,I2
L,8,13

~:~~,~5

~::~::;

~::~:::

~::;::~

~:::::~
L,17,18

L,16,19
L,17,20

tim
LESIZE,ALL,LZ

~~tll,ALL

ESEL,s,ELEM"706,780
SFDEAM,ALL,I,PRES,PI

ESEL,s,ELEM"141I,1485
SFDEAM,ALL,I,PRES,PI

!DEFINITONOFMESHSIZE
!MESI1LiNES



ESEL,s,ELEM..ISOI,IS75
SFDEAM,ALL,I,PRES,PI

ESEL,s,ELEM..1336,1410
SFDEAM,ALL,I,PRES,P2

NSEL,S,LOC,X,I.8*L
NSEL,R,LOC,Y,L
F,ALL,FY,-P3

SEL,s,LOC,x,LS*L
SEL,R,LOC,Y,2*L

F,ALL,FY,-P3

NSEL,s,LOC,X,I.8*L
NSEL,R,LOC,Y,3*L
F,ALL,FY,-P3

NSEL,S,LOC,X,LS*L
NSEL,R,LOC,Y,4*L
F,ALL,FY,-P3

NSEL,S,LOC,y,O
D,ALL,ALL
NSEL,ALL
ANTYPE,O

~~:ERES,ALL,ALL

NSEL,ALL

A.LS A NON·UNrFORM PORTAL FRAME SUBJECT TO A

LATERAL FORCE A D A VERTICAL FORCE



!PREI"
ET,I,BEAM3

'SET,EM,200E3
'SET,L,800

*SET.It,9cS
'SET,HI,60

'SET,A2,5000
·SET,12,4.17e6
'SET,II2,IOO

R,I,AI,II,HI
R,2,A2,I2,H2
R,3,A3,I3,H3

~II~:GX~~:{M

K,I,O,O
K,2,O,L
K,3,3I2'L,L

gf'L'O

!ENTERPREPORCESSOR
!USEBEAM31:LEMENT

!DEFlNEDlHERENT
!GEOMETRICALPROPERTIES

!INPUTYOUNG'SMODULUS
!INPUTPASSION'SRATJON

!SELECTLINEI
!APPLY REALCO STANT 2 TO

!SELECTLlNE2
!APPLY REALCO STANT I TO

!SELECTLlNE3
!APPLY REALCONSTANT 3 TO



~~tfl,ALL

NSEL,S,LOC,x,O
NSEL,R,LOC,Y,L
F,ALL,FX,PI

NSEL,S,LOC,x,3/4*L
NSEL,R,LOC,Y,L
F,ALL,FY,-P2

IAPPLYTIIE
!BO DARYCONDITIO S

D,ALL,ALL
NSEL,ALL

~O~:;E,O
FINISfi
liNPUT MACRO I

A.2.1 A U IFORM PORTAL FRAME SUBJECT TO THREE

VERTICAL FORCES ON THE BEAM

! BUCKLING ANALYSIS USING MODIFIED SECANT RJGIDITY
II'REP7
ET,I,BEAM3

R,I,A,I,f1

~::i~,200.3

TBDATA,I,300,O

k,I,O,O
k,2,O,L1

IYOUNG'SMODULUS
ILENGTflDEFINITION

!AREADEFINITION
!MOMENT OF

IfiEIGflTDEFINITlON
IMESIISIZEDEFINITlON
IFORCEDEFINITION

;..~:~;¢~~~~~~~~~~~T1AL
IDEFINE BILINEAR MATERIAL
IDEFINEYIELDSTRESSAD
ITlIESLOPEAFTERYIEDLSTRESS
ITfiESLOPEAFTERYIEDLSTRESS
IDEFINITIONOFKEYPOI TS



k,3,L2,L1
K,4,L2,O

~:~~
L,3,4

LESIZE,ALL,LZ

~~~~H,ALL

!APPLYTHE
!BOUNOARYCO OITIONS

SEL,S,LOC,X,O.3*L2
SEL,R,LOC,Y,LI

F,ALL,FY,-PI

SEL, ,LOC,x,O.S*L2
SEL,R,LOC,Y,L1

F,ALL,FY,-P2

NSEL,S,LOC,x,O.S*L2
NSEL,R,LOC,Y,LI
F,ALL,FY,-P3

A.2.2 A UNIFORM PORTAL FRAME SUBJECT TO A VERTICAL

FORCE AND A LATERAL FORCE

! BUCKLING ANALYSIS USING MODIFIED SECANT RIGIDITY
IPREP7
ET,I,BEAM3

*SET,EM,200E3
·SET,LI,600
·SET,L2,800

!YOUNG'SMOOULUS
!LENGTHOEFl ITiON

!AREAOEFINITION
!MOMENT OF



·SET,H,IO
·SET,LZ,S
*SET,PI,2.0E4
·SET,P2,O.5E4

R,I,A,I,H
MP,EX,I,200e3
TB,BKlN
TBDATA,I,300,O

k,I,O,O

0:~tL,
K,4,L2,O

L,I,2

~~~

NSEL,S,LOC,X,O.S*L2

~,~~t~'~?r~'Y,LI

NSt:L,S,LOC,X,O
NSEL,R,LOC,Y,LI
F,ALL,FX,P2

NSEL,ALL

~~~:;E,O
FINISH
IINI'UTMACR02

!HEIGHTDEFINITION
!MESHSIZEDEFINITION
!FORCEDEFINITION

!INPUTAREA,MOMENTIITIAL
!I PUTYOU G'SMODULUS
!DEFI EBlLlNEARMATERIAL
!DEFIEYIELDSTRESSAD
lTHESLOPEAFTERYIEDLSTRESS
!THE SLOPE AFTER YIEDLSTRESS
!DEFI ITIONOFKEYPOI TS

1APPLY THE
mOUNDARYCONDITIONS

A.3.1 A CANTILEVER BEAM SUBJECT TO A CONCENTRATED

FORCE AT THE FREE END

! LARGE DEFLECTION ANALYSIS USING MODIFIED ROB STSECANT
METHOD



IPREI'7
'SET,EM,ZOOE3

·SET,AI,O.OI
·SET,II,8.33e-6
·SET,HI,O.I
*SET,Ll,1
'SET,LZ,IfSO
'SET,P,(3Z)"eZ

ET,I,BEAM3
R,I,AI,II,H1
MP,EX,I,200e3
MP, UXY,I,O

K,I,O,O
K,Z,L1,O
L,I,2
LESIZE,ALL,LZ
LMESH,ALL

NSEL,S,LOC,X,O
SEL,R,LOC,Y,O

D,ALL,ALL

NSEL,S,LOC,X,LI
NSEL,R,LOC,Y,O
F,ALL,FY,·P

NSEL,ALL

~::t'E,O

ISOLU
SOLVE
FINISH
IINPUTMACR03

!MOMEMNT OF INITIAL
!HEIGH
!LEGTH
!MESHSIZE
!FORCE

!USE BEAM 3 ELEEM T
!INPUTGEOMETRICALPROPERTIES
!I PUTYOUNG'SMODUL S
!I PUTPASSJO 'SRATION

!DEFI ITONOFLI ES
!DEFI ITIONOFMESHSIZE
!1ESHALLTHELIES

A.3.2 A SIMPLY SUPPORTED BEAM WITH ONE ROLLER

SUPPORT SUBJECT TO A CONCENTRATED FORCE IN THE

! LARGE DEFLECTIO 'ANALYSIS USI 'GMODIFIED ROBUSTSECA T
METHOD



ET,IDEAM3
R,I,AI,II,HI
MP,EX,I,200e3
MP,NUXY,I,O

K,I,O,O
K,2,L1,O
1.,1,2
LESIZE,ALL,LZ
LMESH,ALL

NSEL,S,LOC,X,O
NSEL,R,LOC,Y,O
D,ALL,UX
D,ALL,UY

NSEL,S,LOC,X,LI
NSEL,R,LOC,Y,O
D,ALL,UY

NSEL,S,LOC,X,O.S*L1
NSEL,R,LOC,Y,O
F,ALL,FY,-P
NSEL,ALL

~;~~E'O
IINPUTMACR04

IAREAINMM'

:~~~~7:~~FINITIAL IN MM'

ILENGTHINMM
IMESHSIZEINMM
IFORCEIN EWTO

IUSE BEAM 3 ELEEM T
II P TGEOMETRICALPROPERTIES
!I PUTYOUNG'SMODULUS
II PUTPASSIO 'SRATION

lDEFINITONOFUNES
!DEFIITIONOFMESHSIZE
IMESHALLTHEUNES

A.3.3 A SIMPLY SUPPORTED BEAM WITHOUT ROLLER

SUPPORT SUBJECT TO A CONCENTRATED FORCE IN THE

I LARGE DEFLECTION ANALYSIS SING MODIFIED ROBUST SECA T
METHOD



!PREP7
'SET,EM,200E3

·SET,AI,O.OI
*SET,II, 8.33e-6
·SET,HI,O,I

:~~~:~iIIlSO
'SET,P,(32)'1.2

ET,IBEAM3
R,I,AI,I1,HI
MP,EX,I,200.3
MP, XY,I,O

K,I,O,O
K,2,LI,O
L,I,2
LESIZE,ALL,LZ
LMESH,ALL

NSEL,S,LOC,X,O

~~~t(~~OC'Y'O

NSEL,S,LOC,X,L1
NSEL,R,LOC,Y,O

~:~~~:~~
NSEL,S,LOC,X,O.S'LI
NSEL,ll,LOC,Y,O

~~t~i~r
SOLVE
FINISII
IlNPUTMACR04

!AREA
IMOMEMNT OF INITIAL IN MM'
IHEIGH
ILENGTH
IMESHSIZE
IFORCE

IUSE BEAM 3 ELEEMNT
!I P TGEOMETRICALPROPERTIES
II P TYOUNG'SMODULUS
!I PUTPASSIO 'SRATION

IDEFIITONOFLIES
lDEFI ITIONOFMESHSIZE
IMESHALLTHELI ES



APPENDIXB

FOR MODIFYING SECANT RIGIDITY IN

PLASTIC ANALYSIS

!OBTAJ INGTHE
! UMBEROFELEME T

!DEFINE THE NAMES OF
!BENDING MOMENT

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! GEITINGTHEBENOING MOMENT OF EACH
ELEMENT AND INPUT THEM INTO PARRAYS

*DO,KK,I,SZ
'GET,MI,ELEM,KK,ETAB,MI

;>~~~y;OLI(KK),DATA,MI

;>~~y;OL2(KK),DATA,MJ

:~~~~gL3(KK),(COLI(KK)+COL2(KK)12

'YSCFUN,COL4(1),MAX,COLI(I) !GETfiNG '[HE ~IAXI~1UM IIENDING

'CFOPEN,MODIFYI
'DIM,JMODI FY,ARRAY,sZ,1
'D1M,HMODIFY,ARRAY,sZ,1

:g~~,~II~~~M,JJ,ETAB,MI



'GET,MJ,ELEM,JJ,ETAB,MJ
'VFILL,COL5(JJ),OATA,MI
'VFILL,COL6(JJ),OATA,MJ
'SET,COL7(JJ),(COL5(JJ)+COL6(JJ»12

'SET,IMOOIFY(JJ),(abs(COL4(1)/COL7(JJ»)'1 !MOOIFY MOMENT OF

'SET,HMODlFY(JJ),(12'IMODlFY(JJ)lA)"(II2) !MOOIFY HEIGHT

'CFWRITE,R,JJ,A,IMOOIFY(JJ),IIMOOIFY(JJ) ;~:~p~~.g~~FIEO

'CFWRITE,REAL,JJ
'CFWRITE,EMOOIF,JJ
'E DOO
'CFCLOS

B.2 MACR02 FOR MODIFYING SECANT RIGIDITY IN

BUCKLING ANALYSIS

!OBTAININGTHE
lNUMBER OF ELEMENT

/I'OSTJ
'D1M,COLI,ARRAY,SZ,1
'OIM,COL2,ARRAY,SZ,1
'OIM,COL3,ARRAY,SZ,1

!DEFINE THE NAME OF
lLATERALOISPLACEMENT

'OO,KK,I,SZ
*GET,UX,ELEM,KK,ETAB,UX

:~~~;OCOLI(KK),OATA,UX

'VSO'U ,COL2(1),MAX,COLI(I)



-CFOPEN,MODIFYI
-DIM,IMODIFY,ARRAY,SZ,I
-D1M,IIMODIFY,ARRAY,SZ,1
-DO,JJ,I,SZ,I
-GET, X,ELEM,JJ,ETAB,UX
-VFILL,COL3(JJ),DATA,UX

-SET,IMODIFY(JJ),(abs(COL2 (1)/COL3 (JJ)n-1 ;~OE~;':MOME T OF

-SET,HMODlFY(JJ),(12-1MODlFY(JJ)lA)"(II2) !MODIFY HEIGHT

-CFWRITE,R,JJ,A,IMODIFY(JJ),HMODIFY(JJ) ;~~p~~~~~FIED

-CFWRlTE,REAL,JJ

:~~~~TE,EMODlF,JJ

B.3 MACR03 FOR MODIFYING SECANT RIGIDITY IN

LARGE DEFLECTION ANALYSIS

~~~~i~~LEM,O,COUNT

/POSTI

~~~,~~~~~y,SZ,1



*DO,JJ,I,sZ,1
*GET,UY,ELEM,JJ,ETAB,UY
*VFlLL,COLl(JJ),DATA,UY

*SET,IMODIFY(JJ),I.OS*II !MODIFY MOMENT OF I ITIAL
!MODlFICATlONFACTORISI.OS

*SET,HMODIFY(JJ),(12*IMODlFY(JJ)/AI)**(II2) !MODIFY HEIGHT
*CFWRJTE,R,JJ,AI,IMODIFY(JJ),IIMODIFY(JJ)
*CFWRITE,REAL,JJ

:~~~~TE,EMODIF,JJ

8.4 MACR04 FOR MODIFYING SECANT RIGIDITY IN

LARGE DEFLECTION ANALYSIS

! ANALYSIS FOR SIMPLY SUPPORTED BEAMS
;.?O~~.~Z,ELEM,O,COUNT !OBTAINING THE NUMBER OF ELEMENT

*DIM,COLl,ARRAY,SZ,1
ETABLE,UY,U,Y

*GET, Y,ELEM,KK,ETAB,UY

:~F~;OCOLl(KK),DATA, Y



'Ct"OI'EN,MOOIFYI
'OIM,IMODIFY,ARRAY,sZ,1
'OIM,HMOOIFY,ARRAy,sZ,1
'OO,JJ,I,SZ,I
'GET,UY,ELEM,JJ,ETAB,UY
'YFlLL,COLl(JJ),OATA,UY

'SET,IMOOIFY(JJ),O.9S'11 iMOOIFY MOME T OF INITIAL
iMOOIFICATIONFACTORISO.9S

'SET,HMOOIFY(JJ),(IZ'IMODlFY(JJ)iAI)"(II2) iMODIFYHEIGHT
'CFWRITE,R,JJ,AI,IMOOIFY(JJ)JIMODlFY(JJ)
'CFWRITE,REAL,JJ

:~F~:6TE,EMOOIF,JJ



APPENDIXC

C.I.I A UNIFORM PORTAL FRAME SUBJECT TO A LATERAL

FORCE AND A VERTICAL FORCE

!PLASTIC ANALSIS USING GEOMETICAL NONLI EAR METHOD
IPREP7 !ENTERPREPORCESSOR

IYOUNG'SMODUL S
!AREAINMM2

! MOMENT OF I ITIAL IN MM'
!HEIGHTINMM
! MESH SIZEINMM
!LATERALFORCE
!VERTICALFORCE

R,I,A,I,H
MI',EX,I,200e3

TBPT,,210/(200c3),210
TBI'T,,1.44E-03,230
TBPT,,2.08E-03,250
TBPT,,3.38E-03,270
TBI'T,,7.25E-03,290
TBI'T,,1.5E-02,300
TDPT,,3.0E-02,300

K,I,O,O
K,2,O,400
K,3,400,400
K,4,400,O

L,I,2
L,2,3
L,3,4

!DEFINEMUTILINEARMATERIAL
!DEFINE DIFFERENT STRESS AND
!STRAINI'OINTS



LESIZE,ALL,IO
LMESH,ALL

NSEL,S,LOC,X,200
F,ALL,FY,-PI

SEL,S,LOC,X,O
SEL,R,LOC,Y,400

F,ALL,FX,P2

/SOL
A TYPE,O
OUTRES,ALL,ALL

DELTIM,O.OI,O.OOI,O.OI
LSRCH,O

s;~~,t

lDEFINITONOFMESHSIZE
lMESHLINES

lDEFINETlME SIZE STEP
lUSEL SRCHTEHCNIQUE

C.1.2 A TWO BAY AND ONE STOREY FRAME SUBJECT TO

TWO VERTICAL FORCES AND ONE LATERAL FORCE

!PLASTIC ANALSIS USING GEOMETICAL NONLINEAR METHOD
IPREI'7 lENTERPREPORCESSOR

lYOUNG'S MODULUS IN
lAREA
lMOMENTOFINERTIA
lHEIGHT
lMESHSIZE
lYERTICALFORCE
lYERTICALFORCE
lLATERALFORCE

R,I,A,I,H

~::~~0200e3

TBPT,,210/(200e3),210
TBPT,,1.44E-03,230



TBPT,,2.08E-03,250
TBPT,,3.38E-03,270
TBPT,,7.25E-03,290
TBPT,,1.5E-02,300
TBPT,,3.0E-02,300

K,I,O,O
K,2,O,400
K,3,400,400
K,4,400,O
K,5,800,400
K,6,800,O

~
LESIZE,ALL,IO
LMESH,ALL

NSEL,S,LOC,X,200
F,ALL,FY,-PI

NSEL,S,LOC,X,600
.~ALL,FY,-P2

NSEL,S,LOC,X,800
NSEL,R,LOC,Y,400
F,ALL,Fx,P3

NSEL,S,LOC,y,O
D,ALL,ALL
NSEL,ALL

ISOLU
ANTYPE,O
OUTRES,ALL,ALL
DELTIM,O.OI,O.OOI,O.OI
LNSRCH,ON

~~~~I

!DEFINITONOFMESHSIZE
iMESHLINES

!DUI ETIMESIZESTEP
IUSELNSRCHTEHCIQUE



C.1.3 A UNIFORM FRAME SUBJECT THREE VERTICAL

FORCES AND ONE LATERAL FORCE

!YOU G'SMODULUS
!AREA
!MOME'TOFI ITIAL
!HEIGHT
!LEGTH
!MESHSIZE
!FORCES

R,I,A,I,H
MP,EX,I,200<3
TB,MISO

TBPT,,2IO/(200<3),21O
TBI)Tll l.44E-03,230
TBI'T..2.0SE-03,250
TBPT,,3.3SE-03,270
TBI'T..7.25E-03,290
TBI'T..1.5E-02,300
TBI'T.. 3.0E-02,300

MP,NUXY,I,O
K,I,O,O
K,2,O,L
K,3,O.S·L,L
K,4,O.8*L,O

K,S,O,Z*L
K,6,O.S*L,2*L
K,7,1.3*L,L
K,8,1.3*L,O

L,I,2
L,2,3
L,3,4
L,2,5
L,5,6
L,6,3

!DEFINE PASSION'S RATIO
!DEFINITIONOFKEYI'OINTS



L,J,7
L,7,8

LESIZE,ALL,LZ

~~~tH,ALL

NSEL,S,LOCt''X,O.4*L
NSEL,R,LOC,Y,L
F,ALL,FY,-PI

NSEL,5,LOC,x,O.4'L
NSEL,R,LOC,Y,2'L
F,ALL,FY,-PI

NSEL,5,LOC,X,I.OS'L
NSEL,R,LOC,Y,L
F,ALL,FY,-P2

NSEL,S,LOC,X,O
NSEL,R,LOC,Y,2'L
F,ALL,Fx,P2

NSEL,S,LOC,y,O
D,ALL,ALL
NSEL,ALL

ISOLU
ANTYPE,O
OUTRES,ALL,ALL
DELTIM,O.OI,O.OOI,O.OI
LNSRCH,ON

:;L~~I

!DEFINITONOFMESHSIZE
!MESHLI ES

!DEFINETIME SIZE STEP
!USELNSRCHTHICNIQUE

C.IA A UNIFORM BIG FRAME SUBJECT TO UNIFORMLY

LATERAL DISTRIBUTED FORCES AND VERTICAL

CONCENTRATED FORCES



R,I,A,I,II
MP,EX,I,200e3
TB,MISO

TBJ'T,,210/(200e3),210
TBPT,,1.44E-03,230
TBPT,,2.08E-03,250
TBPT,,3.38E-03,270
TBPT,,7.25E-03,290
TBPT,,1.5E-02,300
TBPT,,3.0E-02,300

MP,NUXY,I,O
K,I,O,O
K,2,1.2*L,O
K,3,2.4'L,O
K,4,3.4*L,O
K,S,4.4*L,O

~:~:~:~'L,L
K,8,2.4*L,L
K,9,3.4'L,L
K,IO,4,4*L,L

!YOUNG'SMODULUS

;~~~~tO~21NITIAL
!HEIGHT
!LENGTH
!MESHSIZE
!FORCES
!FORCES
!FORCES

lDEFINEPASSION'SRATIO
lDEFINITlONOFKEYPOINTS



K,19,J.2*L,4*L

0~~:::t:::t

~j:~
L,3,8
L,4,9
L,5,IO
L,6,7
L,7,8

~:::~O
L,6,1I
L,7,12
L,8,13
L,9,14

~::~::i
L,12,13
L,13,14
L,14,15

L,12,16
L,J3,17
L,14,18
L,16,17
L,17,18

L,16,19
L,17,20
L,J8,21
L,19,20
L,20,21

LESIZE,ALL,LZ

:s~~tH,ALL

ESEL,s,ELEM"I,75
SFBEAM,ALL,I,PRES,PI

ESEL,s,ELEM,,706,780
SFBEAM,ALL,I,PRES,PI



ESEL,5,ELEM,,1411,14S5
SFBEAM,ALL,I,PRES,PI

ESEL,5,ELEM"ISOI,IS75
SFBEAM,ALL,I,PRES,PI

ESEL,5,ELEM,,1336,1410
SFBEAM,ALL,I,PRES,P2

NSEL,5,LOC,x,I.S*L
NSEL,R,LOC,Y,L
F,ALL,FY,·P3

NSEL,S,LOC,x,I.S*L
NSEL,R,LOC,Y,2*L
F,ALL,FY,-P3

NSEL,S,LOC,x,I.S*L
SEL,R,LOC,Y,3*L

F,ALL,FY,-P3

NSEL,S,LOC,X,I.S*L
NSEL,R,LOC,Y,4*L
F,ALL,FY,·P3

NSEL,S,LOC,y,O
D,ALL,ALL
NSEL,ALL
ANTYPE,O

~~:ERES,ALL,ALL

~~E~UALL

ANTY)'E,O
OUTRES,ALL,ALL
DELTIM,O.OI,O.OOI,O.OI
LNSRCII,ON

~;L~~,I

!DEFINETIME SIZE STEP
!USELNSRCIITEfiCNIQUE

C.1.5 A NON-UNIFORM PORTAL FRAME SUBJECT TO A

LATERAL FORCE AND A VERITICAL FORCE



/PREP7
I:T,I,JlI:AM23

*SI:T,I:M,2001:3
*SI:T,I..,800

·SET,ll,50*60*60*60/12
·SET,I-II,60

·SET,Al,SOOO
*SI:T,12,50*100*IOO*1001J2
·SET,H2,IOO

*SI:T,A3,7000
*SI:T,I3,50*140*140*140112
·SET,H3,140

R,I,AI,II,HI
R,2,A2,12,1I2
R,3,A3,I3,H3
Mll,EX,1,200e3
TB,MISO

MI', UXY,I,O
K,I,O,O
K,2,O,1..
K,3,3n*I..,1..
K,4,3n*I..,O
1..,1,2

~~~

!I:NTI:RPRI:PORCI:SSOR
!USI: BI:AM23 I:I..I:MI:NT

!YOUNG'S MODUI..US IN NIMM'

!DI:FINI:
GI:OMI:TRlCAI..

!PROPI:RTII:S

IINI'UTYOUNG'SMOIJUI..US
lDl:FINI: MUTIUNI:AR MATI:RIAI..
lDl:FINl:lJlFFI:RENTSTRI:SSAND
ISTRAINPOINTS

!DEFlNI:PASSION'SRATIO
!DI:FINITIONOFKI:YI'OINTS



~~~SH,ALL

SEL,S,LOC,x,O
SEL,R,LOC,Y,L

F,ALL,FX,PI

NSEL,S,LOC,x,3/4*L
NSEL,R,LOC,Y,L
F,ALL,FY,-P2

~~~~~i.g~'l"O
~:"iL,ALL

NSEL,ALL

ISOLU
ANTYI)E,O
OUTRES,ALL,ALL
DELTlM,O.OI,O.OOI,O.OI
LNSRCH,ON

~~~~I

!SELECTLJE2
!APPLY REALCONSTA T I TO

!SI:LECTLIE3
!APPLY REALCONSTA T 3 TO

iDEFINETlME SIZE STEP
lUSELNSRCIlTEHCNIQUE

C.2.1 A UNIFORM PORTAL FRAME SUBJECT TO THREE

VERTICAL FORCES ON THE BEAM

!BUCLfNG ANALSIS
METHOD

IPREP7
ET,I,BEAM23

*SET,EM,200EJ
*SET,LI,600

!YOU G'SMODULUS
!LEGTlI



~N:¢.'~~
UIMP,I,EX",EM
M.P, UXY,t,O

k,I,O,O
k,2,O,LI
k,3,L2,LI
K,4,L2,0

~:~~
L,3,4

LESIZE,ALL,LZ

~~~~H,ALL

~~~~~~OC,X, 0.3 .L2

NSEL,R,LOC,Y,LI
F,ALL,FY,·PI

NSEL,S,LOC,X,0.S·L2
NSEL,R,LOC,Y,LI
F,ALL,FY,·P2

NSEL,ALL
ANTYPE,O
OUTRES,ALL,ALL

~~~~~~A~~N

!AREA
!MOMENT OF INITIAL
!HEIGHT
! MESH SIZE
!FORCEI NEWTO

!INPUTYOUNG'SMODULUS
!INP TPASSIO 'SRATION

lAI'I'LYTHE
mOUNDARYCONlJlTIONS



~~~~~M, 0.001,0.0001,0.001

C.2.2 A UNIFORM PORTAL FRAME SUBJECT TO A VERTICAL

FORCE AND A LATERAL FORCE

!BUCLING ANALSIS USI G GEOMETICAL NONLI EAR
METHOD

/PREP7
ET,I,BEAM23 !USEBEAM 23 LEMENT

:~~~:~~~~~E3 ;~~~~;:ISt~~LUSIN NIMM'

*SET,L2,800

!AREAINMM'
!MOMENT OF INITIAL IN MM'
!UEIGHTINMM
!MESIlSIZEINMM
!FORCEINNEWTON

R,I,A,I,n
U1MP,I, EX",EM
MP,NUXY,I,O

k,I,O,O
k,2,0,LI
k,3,L2,LI
K,4,L2,0

~:~~
L,3,4

LESIZE,ALL,LZ

:S~~~H,ALL

NSEL,S,LOC,Y,O
D,ALL,ALL

NSEL,s,LOC, X,O.S *L2
NSEL,R,LOC,Y,LI
F,ALL,FY,-PI

;i~,~~;;~~G~~::~~~~~~TIAL
!INPUTPASSION'SRATION



NSEL,S,LOC,X,0
NSEL,R,LOC,Y,L1
F,ALL,FY,P2

NSEL,ALL
ANTYPE,O
o TRES,ALL,ALL
NLGEOM,ON

~~~~~'0.001,0.0001,0.001

!LARGEDEFLECTIO CALCULATIO
!DEFrNETIME SIZE STEP

C.3.\ A CA TILEVER BEAM SUBJECT TO A CO CENTRATED

FORCE AT THE FREE END

!LARGE DEFLECTION ANALYSIS USING GEOMETRICAL
NONLINEAR ANALYSIS
/PREP'
*SET,EM,200E3

·SET,A,8550
·SET,I,I.04E+08
·SET,H,257
*SET,LI,6000
*SET,LZ,LI/50
*SET,P,(32)*lc2

ET,I,DEAM3
R,I,A,I,H

~~:~~~~~~~3

K,I,O,O
K,2,LI,O
L,I,2

LESIZE,ALL,LZ
LMESII,ALL

SEL,S,LOC,X,O

Ds.;:t~~~C,y,O

SEL,S,LOC,X,LI
SEL,R,LOC,Y,O

F,ALL,FY,-P
NSEL,ALL

!AREAIN MM2

! MOMEMNT OF INITIAL IN MM'
!HEIGHINMM
!LENGTHINMM
! MESH SIZE IN MM
!FORCEINNEWTON

!USE DEAM3 ELEMENT
!INPUT GEOMETRICAL I'ROPERTIES
!INPUT YOUNG'S MODULUS
!INI'UTPASSION'SRATIO



ISOLU
ANTYPE,O
OUTRES,ALL,ALL
NLGEOM,ON

~~~~~'0.001,0.0001,0.001

!LARGEDEFLECfIONCALCULATlON
!DEFI ETIMESIZESTEP

C.3.2 A SIMPLY SUPPORTED BEAM WITH ONE ROLLER

SUPPORT SUBJECT TO A CONCE TRATED FORCE IN THE

! LARGE DEFLECTION ANALYSIS USING GEOMETRlCAL
NONLINEAR ANALYSIS
II'REP7
'SET,EM,200E3

·SET,A,8550
·SET,I,1.04E+1I8
·SET,H,2S7
'SET,L1,6000
'SET,LZ,L1/S0
'SET,P,(32)'lc2

ET,I,BEAM3
R,I,A,I,n
MI',EX,I,200c3
MI',NUXY,I,O

K,I,O,O
K,2,LI,O
L,I,2

LESIZE,ALL,LZ
LMESH,ALL

NSEL,S,LOC,X,O
NSEL,R,LOC,Y,O
D,ALL,UX
D,ALL,UY

SEL,S,LOC,X,L1
SEL,R,LOC,Y,O

D,ALL,UY

!AREAINMM2

! MOMEMNT OF INITIAL IN MM'
!HEIGHINMM
!LENGTHINMM
!MESHSIZEINMM
!FORCEINNEWTON

!USE BEAM3 ELEMENT
!INPUTGEOMETRICALPROPERTIES
!INPUTYOUNG'SMOIJULUS
!INPUT PASSION'S RATIO



NSEL,R,LOC,Y,O
F,ALL,FY,'P
NSEL,ALL

ISOLU
A TYPE,O
OUTRES,ALL,ALL

LGEOM,ON

~~~~~M,0.001,0.0001,0.001

lLARGEOEFLECfIONCALCULATlO
iOEFINETIMESIZESTEP

C.3.3 A SIMPLY SUPPORTED BEAM WITHOUT ROLLER

SUPPORT SUBJECT TO A CONCE TRATED FORCE I

! LARGE DEFLECTION ANALYSIS USING GEOMETRJCAL
NONLINEAR ANALYSIS
IPREP?
·SET,EM,200E3

!AREAINMM'
1MOMEMNT OF INITIAL IN MM'
!UEIGUINMM
!LENGTUINMM
!MESUSIZEINMM
!FORCE IN NEWTON

ET,I,DEAM3
R,t,A,I,H
MP,EX,I,200c3
MP,NUXY,I,O

K,I,O,O
K,2,LI,0
L,I,2

LESIZE,ALL,LZ
LMESU,ALL

NSEL,S,LOC,x,O

~~ctu~OC,y,O

O,ALL,UY

!USE DEAM3 ELEMENT
!INPUT GEOMETRICAL PROPERTIES
!INPUTYOUNG'SMOOULUS
!INPUTPASSION'SRATIO



NSEL,R,LOC,Y,O
D,ALL,UY
D,ALL,UY

NSEL,S,LOC,X,O.S'LI

~~~t,~;'~C,y,O
SEL,ALL

ISOLU
A TYPE,O
OUTRES, ALL, ALL
NLGEOM,ON

~~~~~M,0.001,0.0001,0.001

!LARGEDEFLECTIO CALCULATION
lDEFINETIME SIZE STEP
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