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Abstract

In biomedicl, socal, behavioral, and environmental stuie, the data are fre-
qently collected from surveys, reistraton systems, clinicaltras,and other bser
ational or experimental studis, which e ofien contaminted with measurment
erors. This may b e o the imperfec istruments and procedires, lmitd ex-

perience and knowledge of examiners and examinees. Ignoring measurement errors

in responses results i biased estimates of model parameters. Explicit models are
required to describe the misclassifications on catogorical responses and count errors

on aggregation responses. To obtain more reliable inference, one needs 10 take the

mis-measured data.
In this thesis, we define  generalized thinning operation, based on which we
propose a transiion model for categorical longitudinal data. This new transition

node e

lexibly acommodate  vriety of lnea and nonlinea transition models.
We albo discus  thining-operation-bse tansiton model e an ordinay linear
trausiton el for dynamic count dota

Most importantly w prsent s e messurement. eror el for ntgorial

dnta and count data, which link the truo responses with the observed, possbly mis-

mensured responses by explicit expressions. A meaningful application of the explicit

misclasification model i to deseribe the unbalanced misclassfications in categori-

cal data, which provides an alternative way to jontly model the data suffering from

both misclassification and some mising values due to answers. Moreower,

the count error models which accommodate both the overcounted and undercounted




data can be wsed to deseribe some interesting count data of discase cases with dif-

forent situations of the dynamic population sizes of an area. We apply these explicit

measurement error models and

data subject to measurement errors.

likelibood (GQL), the second order GQL (GQL2), and maimum likelsood (ML) are
developed to abtain unbiased hence consistent estimates of the unknown parameters

ertor models lead to simple development of the GEE, GQL and GQL2 approaches

v ed
prsngl
o isappl-
I
E de ) ML ap-
pronch
e modeling. The pro-

posed methods aze illustrated by an example of chidren asthma data from Harvard

Six Cities Study.
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Chapter 1

Introduction

1.1 Longitudinal Studies

111 Overview
Longitudinal discrete data such as categorical and count data often appeas in a
wide range of areas: public health, medicine, economics, sociology, and o on. I

economics, continons data are often collected an are called panel data. I addition,

for example,

a juudinal data are collcted from

tere data, and time sercs. Basically, the lo

 sample of subjocts, cach of the subjects are repeatedly measured over time. For

example, the Harvard School of Public Health conducted a large longitudinal study,
which began in the 1970's, in six cites to evaluate the effcts of air pollution on
respiratory health among adults and children [Ferris, et . (1985), Ware, ct ol

(1984)]. As pact of the study, a mumber of children were recruited (o investigate

ape years. Their healh status



was determined based on the information provided by their parents through some
standard questionnaires and the results of pulmonary function test by means of a

portable survey spirometry.

Infongtinal studis, besides the observations of ntrestd responses, the data
sbout some related covaiates are aso collcted over time. These covriates ey
b time-dependeat of time-independent. For time-dependent covarate, the values
change with time. Fo exanpl,in Harvad sixctes sty (HGCS),some covriaes

such as the cigarette smoking habits, weights, heights, diets and ages are collected

‘and they often vary with time. The time-independent covariates may represent some.

basline factors which do not change over time, for example, gender and race. As a

cross-sectional study, only one outcome for cach participant is colocted. The focus

~ i longitudinal study, the dynaics

among the response variable over time s lso of scientific interest.  Actually, the

d observations in a long allow the efects of

covarate variables and the pattern i the response varabies over time.
Tho defining characteristic of longitudinal data i that the multiple observations
within subjects aze not indepedent of each other, Therefore, in data analyss, one

should the corrlation

ati I statistical meth-

o reliable statistical inference, especially for

ods are required. This helps to draw.

discrete data.
. " . o)

for longitudinal data: marginal models, random effcts maodels and transiton models

of the responses is not. of direct

In marginal models, when the correlation struct

2




interest 10 the eseachers, one mainly focuss o the effcts of covariates. Henco the
marginal expectation, i = E(Y;) s modelod a5  function of some explanalory
aribles. Therefore, the regrssion of th responses on covaiates can be modelod
separately from the corrltion within subjocts. For example, » logstic margial

model for longitudinal binary data can be given by

logitlug) =
Var(Yy) = (1 = ),
Corr(¥yYe) = p

e, "

covariates, for i
When we are intrested in making statstial inference about the individuals but
ot population average, & random effects model will be helpful. Random offects

cficient

of some covariates follow a probability distribution. For example, a random effct

modelin the GLM framework can be gisen by

(1) 185 = i+ 5,00, where s = (¥ = 103),

(2) Uy i=1,2,...,1, are mutually independent with a common multivariate distri-

bution F,
() (0} is the inverso of  specific ink function in GLM. For binary data, it may be.

the logi
and Yy{Us ~ b1, 5). Whereas, for count data, g(z) = log(), and Yy{Us ~

or probit function, that i, logi() = log(rZ;) or probit(z) = ~'(z),

Poison(yy). Given i, ¥y[Ui, = 1,2......J, are independent of each other.




1f one i interested in both the effcts of covariates and the dynamic dependence

‘among observations within subjects,  transition model serves as a good alterntive.

ly influenced by the histori-
1
Therefore, both the explanatory variables and the past outcomes are treated as pre-

Under a transition model, the present response is expl

cal observations prir to time j, which is denoted by My = {yart

dictor variables. Let 15 = E(Yy[Hy) and vy = Var(Y,[Hy) be the conditional
expectation and variance of ¥, given past outcomes and the covriates. Ther, &

generltramsiton model ca be given by

Wy = 9l I an
= e a2)

states s represented by a seris of known functions / LY 10 the current

respouse. Due to the intuitive dynamics among outcomes within subjects, in this

thesi, we il focus on developing statistical analysis of transition modes for the.
corelated categorical and count data
112 Transition models for dynamic categorical data

“There are different transition models proposed for dynamic categorical data

1. Tong (1990, p. 118) discwsed a linear transition model for dynamic binary

data. This model is given by
Wy = bythg-r + (1= b, a3

e b, ~ 1, ) i the rndom dymamic dependence ariable, ¢ ~ (1,6

4



and b is independent of . This can be casily generalized o accommo-
date the dynamic categorical data of dimension r by assuming that b stll

dimensionl mlt distibution, that

Tolows B(1, ), but ¢ follows

larly by ey T then

Y~ bl ), where

by = g+ (=

;
= 7 (=) 3 2 (4

s discusses by Sutradhar and Farel (2007), the mesn
 function of not oly the currnt covariate 7, but also al historical covariate
{5t < ). Actually,this model can further be genralze o the kth order
ransition mandelfor categoricaldata o follows

s = 3 btwthsea + (1= 2 bl s

inomial(1,7), and 7 is & vector of probability. Sutradar

where by ~
‘and Farrell (2007) pointed out that the corelation coeficients between binary.
observations under model (13) do not cover the full anges from -1 t0 1, which

Tt the o of this linear model i practice,

e linear transition model was proposed by Qaaish (2009). They used o

expectation to construct the lincar dynamic model. This conditional linear
family o order k can b given by

)

PAYy = 1Y) = EQGIME) = iy + 3 b (thg-u = by



where Hly = (Uij-1,ij-2. .- is—s) denotes the history at the previous k time
poits. The vetor by = (b, b n)’can be compte basd on the
speifid corel

fon structure or using
by = [Cou(r)|*Cou(aeh, Y.

‘As mentioned by Mallck (2009), this model can use diffrent working corre-
lation structures, such as Gauss type AR(1), MA(1) o exchangeable corre-

PCN", where

lation, by specifying it 1o C, which s from Coo(1) =

Vi= diag(ou,...., o) with 0, = Var(Yi). However,it was noticed by Mallck

(2009) and Farrell and Sutradbar (2006), the ranges for the correlations in C;

ae o b el sne 0 < B, 23) < 1 (16)

A

Ling and Self (1955)].

chain which s given by

logit(y) = logit(P(Yy = 1[Hy)) = 248+ 1es1 n

‘Some econometricians [Amemiyn (1985); Manski (1987)] calld it o nonlinear

binary dynamic model. 1t has been shown by Farrell and Sutradhar (2006) that

the correlations to be from -1 to 1. Diggle et al. (2002, p. 191) extended model

(1) to order k, that i,

logity) = logit(PYy = 1H)) = 2+ Lvuhns (15)

where 5 i the regression coeffcent with the Markov chain of order k.

6



1.1.3  Transition models for dynamic count data
For dynamic count data, there are also some transition models proposed.
1. Wong (1956) discused a transition model
1y = explal )1 + expl=r — gl where 3 >0, (19)
As a consequence of the constraints on 3o and 7, this model only allows for a
Jegatve coreation between the prior i current response. In adeiion, the

conditional expectation s, must vary within a limited range from ezp(zl,5) to

ot 2 and 71,

impractical in some cases.

2. Besag (1974) and Diggle, et al. (2002 p204) discussed a nonlinear dynamic

model fo longtudinal count. data whic i gven by
iy = DB+ ) 1) ‘

(17). How-

over it has limited application i practice because the conditional expectation

iy function of thges when
3> 0. I the case that the conditional expoctation s independent. on covari-

ates, the assumption

op(e ) = 1 lead 10 a stationary process ouly when
5 < 0. Hence the model can only characterize nogative asocintion without

exponentially growing pattern over time

ot + iy = g o)

\ 3. Zoger and Quaish (1988) introdced another log-linear transition model
7




where y7;_, = maz(yis-1,4) and 0 < d < 1. When 7 = 0, it reduces to an

ordinary log-linear model. When < 0, there is a negative correlation between
iy o0 iy When > 0 there i a positive correlation. This model describes

‘ multipliative pattern among the vy’

Blundell, Griffth and Windmeier (2002) proposed  linear feedback model
(LFM) to analyze the relationship between R&:D and patents for a panel of US.

frms. Let € = exp(ey8), and E(Yyln) = explalyf + 1) = &y, where 1, is
the subject-specific random effct, and v, = ezp(1), then the LEM is given by
EVigluig1,0) = g1 + 65 (12)

Since the &v, i non-negative, the conditional mean of y is bounded by 70,51

from below

Melenzie (1988) discused a stationary AR(1) model for count time series,
and Sutradhar (2003) used it to model longitudinal count data. The model in

ongitudinal contxt i given by
= vg ey )

Under ~ Poisson(p,

€xp(x,8)), s ~ Poisson((1 ~ 7)), and e i independont of 1. The con-
trnints o the expectation of ¢ leads to  stationary process for Ty’ Sutrad-

hiar, Jowaheee and Sneddon (2008) consider & non-stationary AR(1) model with

assume that. gy ~ Poisson(u) with i = exp(y ), for 3




and y ~ Poissonlye; 1 oy, -1 s ssumed o be inde-

pendent of ¢y, Under the nonstationary model, one may then show that
E(Yy) = Var(Y) = iy = exp(a}y8) for j = 1,2...... This non-stationary

model can be used for the dynamic count data with time-varying covariates.

114 Generalized estimating equations and generalized quasi-
likelihood approaches

dife e

are proposed. Among these approaches, the maxinum likelihood (ML) method is

‘considered to be the most efficient estimation procedure. Suppose that longitudinal

data yy, for i = 1,2, T wnd j = 1,2, J, follows a frs-order transition model,

the lkelinood function can be written as

L(OW)

TL5 ) TT S lons-) (114
w00

The estimates can be obtained by maximizing the likelihood function or the log-

likelibood functi

w0 =

(L0 For example, Sutradbar and Farrl (2007)
deveoped e P

i e ML

that the jont distibution of y s known and exact. Its applcation i limited because

of two reasons. The frst one is that, in many cases, the joint distibution of y is very.

compleated which leads to considerable diffculty in developing the ML approach
For example, under the stationary AR(1) model (1.13), McKenzie (1088) presented
tho complex likelihood function. The other reason is that the assumptions about the

Joint distibution may be violate in practie, o it can even be completely unknown.




is proposee by Liang and Zeger (1956) for continuous or discrete longitudinal data.

Their metho is based on the estimat

equations

- (1)

Lo,
T

where = E(¥), and W, s the working covaiance matrix which can be decomposed
into VC,V;!". In the decomposition of W;, V = diag(aa, .., 0u), and C = C(6,a)
is the working corrlation matrix which may depend on the parameters 0 in the
mean steucture 4, and a corrlaton parameter a. In practice, an estimate of @ can
sk be obiained, ither based on & moment estimator or & second st of stimating
cquatons. There are sveral popular correlaion stuctures n practce. For example,

, the

subjects

s constant, in which ion of the

time between observations, and the unstructured corrlation in which there is not

an assumed pattern of correlations. 1t can be seen that the consstency of the GEE.

estimates only depends on the mean structure

Therofore, regardlies of the choiee

of the ways ob " 0

the model

assumptions makes the GEE approach one of tho most popular methods in dealing

with correlated data. More discussions can be found in Zeger and Liang (196) also

sger and Qaaish (1988); Hardin and Hilbe (2003); Diggle et al. (2002),

covariance structure W, i the estimating cquations. However, if the chosen W

0



s far from the true covariance matrix %, it will esult in loss of offcency. To
improve the effcioncy of cstimation, & quasi-Helibood-based method was proposed
by Wedderburn (1974) by using the true covariance matrix. Sutradhar (2003) and

‘method, of which the estimating equations are given by

(116)

where 3 i the truo covariance matrix of Yi. The use of & leads o higher effcency

of the GQL estimate than the GEE estimates which are derived by using a working

covariance structure. The GQL approach only depends on the first and second order
moments of response Y; which are availabe for many specific models
To further improve the eficiency of estimation of model parameers, Sutradhar

the

and Farrel (2007) introduced a second order GQL approach by employin

‘and the socond order responses i tho estimating procedure. We efer i to the GQL2

Yol nd S,

approach n this thesis. Let £y = (Y, S, where ¥, = (
Yo', then & = E(R) = (s ) with v, =

O Y Y YidYa

Con¥)  Cou(¥i, )
CofsiY)  Couls)

o the m{m +8)/2 % m(m +8)/2 cownriunce matrix of Fl. The GQL estimating

Yo

B(S). Purther, et

o

equations are given by
LT
EwW -s0=0 (1)
where f; is the observation of Fi. Tt can be seen that the GQL2 approach utilizes
the woments up to order 4. However, the comsistency of the estimates of model



‘pasameters dopends on the corroctly specified first and second order moments. Due
to the use of more information from the data, the GQL? s demonstrated to gain
higher efficiency than both GQL and GEE approaches. In some cases, the GQL2
‘approach performs almost s well a the ML approach [Sutradhar and Furrll (2007)).

Thercfor, n this situation, the GQL can be the optimal GQL (OGQL) approach.

1.2 Measurement Errors

Although most. studies are wel designed o obtain accurate information, mea-

ment ertons in data stil occur due to many known and unknown factors such s

and examinoes, and 50 on. Meastrement errors may oceur in continous data (c.g,

foction status), and count data (e,

reported mumber of cancer case). For catogorical data, the measurement error takes.

the form of i

For count data, which

s e to undernumerated or overnumerated aggregations,

Asan o  largo population-based study to examino the effct of pasive

wle

smoking on children asthia, researchers often ely on some profortun questionnaires
because they are relatively smplo and cconomical to conduct when comparod to

the clinical examination of each child, However, it s mpossible o design a perfctly

dical knowledgo among the public [Jenkins et al. (1996)]

riggers, and Ik of n

Morcover, the aceuracy of a diagnosis based only on reported symptoms may be

12



very poor because of the great overlap of measurements between healhy children

and those with previous wheezing. Therefore, the true health state of a chid is

ot directly observable. Instead, what we can obtain is the diagnostic status based
on some imperfect information from the questionnaires. The data may therefore
be contaminated by clasification errors. Another cxample is that the new cancer

cases by state in USA collcte from the National Cancer Institute’s Surveillance,

coverage of the SEER registries [Wang et al. (200, 2001)], as well as the inconsistent

and (2007), faclit

[Colby etal. o (1997); Motto, dih

inaccuracie of data coding by hospitals (Fisher et al. (1992); Cooper et al. (1999)}
Therefore, the annully reported counts of cancer cases may be contaminated with

ot eron.

There are many lteratures sbovt meswement. ezor modes fo difcent types
of mesmrement crron i contonons data, for example, the clusical messirenent
additiv eror model, the Berkson crror model (Fule (1987); Carol et al. (2006)
Bz, Tosteson, nd Stcnskiet (2005, cation eror model [Kpnis ¢ l. (1999;

Kipais et l. (2003), regresion calibeation model [Mallick and Gelfand (1996)). As

A, the

ation from the true (laten, nberent) esponse T o the observed (manifest,

crtor-prone) response Y is only based on a series of misclassification probabilities 7.,

s given o from the vth class may be categorized
nto the uth category with probability . We refe to the misclassifcation model
based on Table 1.1 as the descriptive misclassfication (DMC) madel. To the best of

13



Table 1.1: Misclasification from true category T into observed category ¥ with equal

mmbers of categorics.
true category (Y)
observed category(T) | 1 2 r+1
1 W om Tn
2 ™ T
re1 Trota T
our knowldge,

data which clarly describe the relationship between the true response T and the

observed response ¥ that is s

10 the continuous data case. In this thesis,

we propose sach explict misclssification models for mis-measured categorical da

this model which

an be use (0 deal with a special type of missing values.

Asido from the s categorical data, Al

for mis-measured count data, The first model is the additive measurement error for

Poisson count data proposed by Cameron and Trivedi (1998). 1 s given by
Y=Tte (1)

Tn this 7 and the additive error ¢ are assumed to be.

e, both the true co
nomnegativerandom vaiabes, fo example, T ~ Poisson(s) ad ¢ ~ Poisson(e). So
tho nonnegative messurnment eroe leds to  arger mean and variance rltive to
7. Therloe, it el only for dscribing count infaion

1




‘Whittemore and Gang (1991) presented the other count ertor model for the mis-

clasifed count based on an example abe

t mortality rate of cervical cancer. Let m,
‘and n; denote, respectively, the corrct and incorrect disease clasification, and they.

e assumed to be independent Poisson variables. However, it is also assumed that,

iven the sum ny -+, my follows a binomial distribution, that i my ~ bm + s, 5*),

where 7 Suppose that T and ¥

count of disease cases, and L s the population size which is assumed to be known.

Then count error modelfor ¥ is given by

where 7 i the mean of . This model allows for satistical inference on the discase
rate X [Whittemore and Gong (1991); Bratcher and Stamey (2002), Stamey et al.

(2005); Brandi, Young and Stamey (2000)]. Howover, the model is only suitable for

the case of perfct specifcty, e, 7~ = 1, but imperfect senstivity, that is, 7 < 1
[Cameron and Trivedi (1998) p. 307-312]. As we know, there is not an explcit

‘model which can secommodate the overcount, undercount, and miscount ith both

mperfct s thes,
such a model

Clasic approsches for analyss of longitudinal data ave ofen based on the as-
sumption that there are no measurement rros n the observations. I pracc, it
s often not the case Thereloe, there cxist, eratures studying the adverse offocts
of measuremeat crcos. Most of them are abovt the measurement, rtors i covae
ates. Pullr (1987 condicted an extensive discusion on inear measurement erors

15




models, and Cartol ot . (2006) investigated measurcment crrors in nonlinear mod-
els. Al Stofanski and Carrol (1955) and Stefanski (1995) studied the efects of

mis-measured covariates in generalized inear models, especialy for logstic model for

binary data [aso see Schafer (1987): Speiogelman, Rosner and Logan (2000); Hossain

and Gustafson (2009); Rabe-Hesketh, Pickis and Skrondal (2003).

There are also some lterature focusing on the mis-measured responses. For ex-

ample, Gustafson (2007, 2003), Roy, Banerjee and Mait (2005), Roy and Baner-
ee (2009), Rosychuk (1999), Rosyehuk and Thompson (2001), Rosyehnk and Islam.
(2009) and Neuhaus (1999, 2002) discused the adverse effects of misclassification on

binary responses. All of these lteratures claim that failure to account for measure-

ment errors in biased and st

mates.

regresson coefficient for misclassfed binary response. The bias henece leads to erro-

neons conclusions to various degrees.

ealth-related stdies. To correet the atten-

ation in

‘posed, for example the Bayesian method [Gustafson (2003); McGlothiin, Stamey and

Scaanan, (2008); Rosychul and Tlan (2009, SIMEX metbod [Kicheboff, Mol
and Lesafe (2000)) an th expectd estimting cquations method by [Wang et o)
(208). I additon, Ry, Banerj and Mai (2005) i Roy and Banerjoo (2009)
discussd a modebasd appronch which i s o dal ith the misclasifid biny

response with covariates subject (o messurement rrors.

In his thess, GEE, quasi-likelihood and ike-
ihood methods to handle the statistical inference on mis-mensured longitudinal cat-

egorical and count data.




1.3 Objective of This Thesis

from studies in epidemiology, medicine, cconomics, and sociology. Simply ignoring
measurement. errors in either covariates o responses leads o biased estimation of
model parameters and los of power in detecting interesting association amon vari-

ables. However, there are lss discussions about measurement errors in discrete re-

dif

lty in developing estimation approaches de to the unobserved true responses

on which the interesti Another

of expliit measurement error models for categorical data and count data
There are two main objectives of this thesis. The first oue i to develop explicit

‘mensurement exvor modes for categorical data and count data which can cleatly

the inber

“The other objective i to develop approaches to consistently estimate the unknown

model parameters for longitudinal categorical data and connt data.
“The veminder of this theis i organized as ollows. Tn Chapter 2, wo introduce &

eneraliaed which can be wsed between

integer-valued variables. Based on the generalized thinning operati

\ an explicit
it

mode i proposed

egorical data or multinomial data. The explicit model can be wsed (o describe the

Differe

Jodel, the new model helps in the simple development. of etimation appronches to

obtain effective estimates of unknown parameters. Two new count error models are

”



ted count data. These two.

proposed i Chaptes 2 (o describe the error-conta

count "

count data.

e responses. For example, offcts of covariates and asociation with past outcomes

be included in a transition model for true responses. Therefore, we introduce

some fst order transiton models for dynamic categorical data and count data in
Chaper 3. The thisning-operation-base transiton model for categorial data s
very fleible and it can sccommodate vaious linear s nolinea transiton el
For count data, we il propose a nostationary AR(1) model and o inear transton
model which have wide applicaions in practce.

For the misclassified longitdinal categorcal data, we consider  onliear trn-

sition model and the expl i for

the relationship between the latent response and the observed response in Chapter

4. We develop three approaches, namely the GQL, OGQL and ML approaches, to

obta

o cstimates of model parameters. T the ramework o the OGQL ap-
proac, e use information fom bth the first e second order rsponses to gin
higher efficiency on the parametr cstimations.  Under the ML approach, we wse
the expectation & maximization (EM ) algorithm o get etimates of model parame-
ers. Tn pracic, the data may contan missng informaton due o some paticipans'
“unsare” cesponses to  specific question. Thiscan be modeld by the unbalaneed
misclssfcation model. Tn Secton 4.4 of Chapter 4, we investigat the modeling of

the imperfect categorical data caused by clasification errors

 n special type of

missing information.




In Chapter 5, we app model and th e
error model to the mis-measured longitudinal count data. In Section 52, we use
 combination of the binomial count exror model, a binomial model for true count

of discase cases, and the linear transition model for dynamic population sizes. The

response, to analyze the miscounted data in areas with litle information

bou “The GEE and GQL s are employed o consistently

Finally,



Chapter 2

Classification Error and Count

Error Models

2.1 Overview

Measurement . ke tho form of
For cxample,  paient. nfectd by asthana might be misclssified o tho healthy
eroup and an individual who i fre of sthina may bo misdingnosed as an asthma
case. When the variable of interest and its observation are hoth catogorical, the
clsification eor i oftn ot independent of the inberent categorical variable, To
descibe the misclasifcation betxeen the true (inberent, or ltent) varable T and

its surrogate ¥, the observed (manifest) variabl, the classical models are defined

by o series of clasification probabilitios. The relationship between T and ¥’ can be
described by Table 2.1, 1t can be seen that & subject from the vth class may be

categorized into all of classes with a probability veetor (Tiu,Tap -+ Ty’ where




Table 2.1: Misclassfication from true category T into observed category ¥ with

umequal mumbers of categoris.

true category ()
observed category(T) | 1 r+1
1 o Tt
2 ™ i
s+1

e 5 the probability that a member of the vih catogory is classified into the uth

category. In general, r

. which mplics the numbers of the observed categories and

the true categories are the same. But sometimes it might be the case that r > s o
< 5. Some examples aro iven in Section 2.3 in this chapter

‘We now define a matrix cousisting of the classification probabiltes in Table 2.1

s follows:
™ mm T )

In the thoory of stochasti processe, T ropresents the sate of a process at & specific
ime point j and ¥ be the state of this process at  tie point k after . The matrix

1 can be used to model the dya

transiton of this process from time j 10 k. In

this case,

. and T is the so-called transition matix.



In the clasification context, wo rofer to the matrix Il as the full misclasification

matrix (FMC-matrix) due to the fct that ' 7, =1 for any v =1,.._,7 + 1. This

also implies that the misclassification from T to ¥ can be completely characterized

by o simplificd matrix T obtained by deleting the last row from 1

1= £ o Tho et T can e ghen

ao| o | o

and it i named the misclassification matrix (MC-matrix). We rewrite MC matrix as

) e L

Let T, = fm1, ..., ] b submatix of I with the st cotumn 41 deleted fom
L Then T, dscribes th classifcation romthe fist. 7 categorie o 10 Y., a1
reflocts th casifcation from the (r-+ th categor to Y.

i xisting teratures, the EMC-matrx i s 1o capture the reltionsip be-

twoen the lntnt. variable 7 and the manifest response Y. ‘The classic model is just

 descriptive way to characterize the miscassifying relationship between T and ¥,

therefore, we naume it the desciptive misclasification (DMC) model. To the best of
our knowldge, there s not et an explicit expression clearly formulating the dynamic
reationship between 7 and Y’ like the clssic ercor model or Berkson error madel for

the mis-measured continons data. To bridge the gap, we propose such an explicit

misclasification (EMC) model which addresses the connection between T and Y.

model is based




2.2 Generalized Thinning Operation

I ineger-valud tim seis,a probabilstic operation clled binomial thiing
operation i often sed to describe th transition between vaiables at diffnt time
points. Thi operation has ben proposd by Steteland Har (1979) and appled to
modeltme series by McKinzie (1985, 198, 1988, For . discrete random varinble
N defne on the non-negative intgers and . salr ¥ such that 0 < 7 < 1, the

random variable 7 ¢ N i defnc as 5 (), where (b)) is  sequence of

independent identically distributed (1i1) binary random variables with Ploy(x) =

1~ )0, 10,5201 e e 2 ) . Gl

e e e il i £+ = &) 0. Bl i

operation works as the integer-valued analogue to multplication by a scala 7. More

detailed discussion can be found in [Steutel, Vervant and Wolfe (1953))
As a goneralization of the binomial thinning operation, & multinomial thinning
operation has been Introduced by McKenzio (1991 and 2009) to develop the vector-

valued time serios models, 1t is also denoted by +. 1 7 = (i, --.,m) i 0

meona vetor ofprobablies with 1, 1, N  n nomnegtiv negee
)

o endom aibl, . N conitonal on N = i e 10 b  rndom vetor

s of ot o s

from Multinomial(n, ). The ith clement of 7+ N i the

i in n independent and identical trials where the probability of such an outcome in

& trial is 7, Therelore the operation can be rewritten a5 1+ Nyo = ii,u, and

weNlvo= £, ich i ), where {0} % Mult 1




and 0 i the vector of zeros. Actually, for a non-zero n, we can equivalently define
4 Nlyew = U, where U ~ Multinomial(n, ). ‘The inequality 1'r < 1 means

that there will be N — U subjocts being clasifed into the (s +1)th category, while

Tn

implics that all o theso 1 subjects are classifid fnto the frst. s categorios

1and

and 0o subjects are clasified into the (s + 1)th category. In the case of n
the inequality 1 < 1, a zero vector U implies that this subject s classified into the
(5++ 1)th eategory but ot one of the first. s categories, 1f 1'% = 1, one and only one
clement of U/ i equal to 1, which means that the subject should be clssifie into one
‘and only one of the first s categoris. In adition, McKensie (2003) also defined the

mnlinomial thinning operati

i matri form. Suppose that we have a non-negative

integer-valued veetor N = (Ny, N, .., N,) and a8 x r matrix I1 = [y, w3, 7],

e thinning operation i defined as

Ui =MeN =T m o,

I this thesis, we lot Ay denote n matrix A of dimension 1 x n.

sultinomial thinning operation + to mode the rela-

To comprehensively use t
tonship between multple categorical variables, we further generalize ts definition,
especially in form of matrix, as

Def. 2.0 71« Ny & Uiy where U = £ 0 and U, % Multnomial(, ). The

otation 4 means “s dofined as”;

Dof. 2.2 My Nosa & £ (e Moo N 0 Nyt



Def. 2.3 1 Npuvuo i  three-dimension aray, the matrx i it jth flder is
us Ny - Ny
[ e
Noj Noj Mo

ee # st the matrix in the jth,

where Ny is a sealar. Let Usniem =

folder of theee-dimensional array U is

Uk = Tong s (V)ouk

= e # (Mgt T Nty e (Nigha]

Some special cases are given as follows:

s Tl N 2 (£ 700

-

. the formula in Def, 2:2 beeo

L

2. 16 =1, the formula in Def. 2.2 bocomes ,sq+ Nyt 2 (7 Ny,

where N = (Ny, N, Ne) and N7's e sealaes.

Actualy, the two-dimensional matrix N, can be viewed as a reduced form of the

three-dimensional atrix Nt in the case that there i only one folder, e. m

Therelore, the Def. 2.3 can accommodates the Def. 2.2, Furthermore, the geeral-

according to the definition above hence further to the binomial thinaing operation
From the defiition, it can be seen that the generalized thinning operation is
similar to the multiplication prodiuct for matrices in the operation ruls. Tn addition,

the multinormial thining operations have good properties and some are given below.

o109 Nt



ra Ny Ny, where Ny i = 1,2 are non-negative integer-valued

L we(Nit )

scalars, and the notation £ means “identical in distribution”.

2 e o (Nt + Most) £ Doy @ Nt + Tl Mo

then Z = T+(P+X) £ (D) e X

30 Zoek = Tony oYy a0 Yok

i X

It i straightforward to prove the first two propertics from the definition. Here,

we just give the justification of the third one. We firt show that the matrix A,

Ty can work as  MC-matrix in the operation. Let A

1= [,y 0 T = 3,0, where A, 7,5 and 's are column

vectors of probabilities. The sum of the probabilties in %, and , respectively, do.
Dot excoed 1, that is, 1'm, < 1 and 1'y; < 1. Next, we will show that the sum of
ench column of A is at most 1.

We have

“The sum of lements i jth column of A

1N = V(X mong) = 3 VMt € Xy = 19 < 1.

Therefore, A can work as & MC-maei in the thining operation.

Next we prove that the third property is true for vectors Zpet, Yons 1 X

Given that ¥ = y, Z = T+ Y

of Multinomial(y,,w,). 1t is clar that W,'s are independent of each other given

¥ = yforu=12...,r, and theic moment generating functions (mg) are given

%




by M) = (1 =V, + e

£ mav, -

other with

Yoz~ B for = 1,2,
gt Mg, () = (1~ 1'% + 2. Thereloe, given X = 7, the mgf of Z i given by
Maxarlt) = B(e®'|X =)

= BIECY.X =2)

= BEeE " x =)

-

= Sl 3 Hist - T i = 1

B TR — o
= fifi-rme S rmsme]”
/l}[lfl"v,+§~r.,(l*l’vrn)+$’)':'m I
I
(e Eae)
= [ (-ra+ x5
»
This means 2 4 A+ X
As: Youhy d, 22,

Zua= T 4 Yot = (10 Vv T Yoo L0 ),
and
Yok = Lo Xk = 00 X000 T8 Xy, Do Xl

7



1t naturally follows that 2's ith column vector Z, = 11+ ¥, £ (IIN) + X, = A X,,
bence Z£ A0 X,
Note: vari

ables X, ¥ and Z. We denote the complete clasification indicator vectors of X, Y

and Zby X = (X, 1-1X), ¥ = (V"

— VY and

(2,112, respectivly.
We further denote that the coresponding FMC-matice are 1 and I, espectivey.

i and Pis cqual to 1

from X t0 7 is expressed as ¥ = o X, which is equivalent to

Y = PeX=Tns X4 qmns(1-1X),

y, the transition from ¥ t0 Z is given by Z = Tl + ¥, and it is equivalent to

LY s (1= 1)

ly deseribed as Z = i F

Hence,the transition from X o Z can be

In the Def. 2., let ¥ = 4 V, it i easy (o obtain the conditional expectation
and varianco of ¥ given N aro given by

E(YIN) = =N, 3

Var(Y|N) = Vi, )

where Vs defined s a diagonal matrix derived from n vector , that is, Ve &

ding(m) — . Similarly, in the Def. 22, let Yoxy = ey # Ny, the expectation




and variance of ¥ given N can be given by

E(YIN) = TN,

@3)

Var(YIN) = 3NV 6

Similar o the Kronecker product for matrices in algebra, we ako defne the Kro-

based

necker thinai b wseful in
The Kronecker

the generalized
L

moN2

FITIE

where 7 is a vector of dimension s, and N is a matrx of dimension m k.

Specially, when m = 1, %, ® Niss =
2
Hond (manmen,
where I = ), - ] i 0.8 7 matr
3

Nony Mons

Nom Mom -

neNa

N @1

and i s wor-negath

o s Nk

-

Non

Mona

N n

where Tl is a8 x r matrix, and N is o m x k matrix

2



Ezamp

variable T, of dimension r for § = 1,2,..., and j = 1,2,..., J. We denote that

Ty = (1~ VT,) and %, = (V)1 = 1%, There e three differeat ways to

describe the between the inh

Case It Ifour focus i on the transition between ¥, and Ty, it can be written as

Yy = T,
= el 4w s (1-1T)
= Tme Ty + e s (1-1T,),

or in an alternative way,

i,

Case II: 1f we are interested in the transition between (¥, and (T)., we can

write it as

Yoo T = (Tt B T s B,

Yol V., smilacly, 7, = (Ti,Ta.... Tu]

and T, = (T, T, Tl
Gase ITI: 1f we are interested in the transition between Y, and Ty, then we.

have



F=iled,

‘where the matrix in the ith folder of T, T, ¥ and ¥ are, respectively,
and §.

2.3 Classification Error Models

In this section,

e on the generalized thinning operation. Let Y, and T, represent the observed

‘and the inberent multinomial variables, whero T ~ Multinomial(N.p). Then

E(T) = Np. Lt T = (T',N = 1'T) and ¥ = (¥, N = 1'¥) denote the full vectors

TandY. i for multinocial d

can be expressed a5

14T 4+ gy (N = 1) @n

cler ) as expli

el for multinomial data contaminatad with clasifiction errors. For tho miscls-
i catagorical data with = 1, model (27) s named the explict mselsifcation
(EMC) model, For binomial vaiabl T Y, that i = = 1, wo rfr t0 model
(27) us tho explict binomin wisclasifcation (EBAC) model.

Based on the th

i operation, we can o buikd the marginal EMMC models

for each lement of . For the jth clment Y;, it can be written s
¥ = Tre Tt mn s (V-1T),

3



where TL; = (71,72, Tr41) i the vector composed by elements in the jth row.

of I The 1 model Fo01 ofthe subjects clasified into

the (s + 1)th observed category of ¥ i given as

Vmep) + (N = 1)

Notice that i the joint misclasification model (27), Fos1 = N = 'V
It should be pointed out that the s marginal misclassification models are not

enough to describe the transition between the two categorical variables. This is

because, given T, the Y;'s from the marginal models are independent and there are

10 constraints on the corrlation between the ¥;'s. For example, in the case of N

both ¥, and Y, may be 1 at the same time, which i impasible for a catogorical
vaiabl. However, f we are only intrested in  speciflc category, for exampl, the
3t category,the marginal modelfor ¥, can be usful o describe how many subjects
ar clssifio ot this catgory. The jth marginal el can compleel desrib the
clasifcation ofall ofthe categoris o the jh catogory:

Generally, the mean and variance of a

sl categorical or multnational
variable may be use i developing estimating equations o estimate model parome-
term. So, we give the mean and variance of ¥ as follows:
no= E()
Elll, o T+ my « (N - 1T)]
= N+ (= m)n

Nt + (I, = 7Y, (28)



where = E(T) = Np, and

= ElVar(YIT) + VarlEiT)
= E[S VT + Var((, = o t)T)
= oV Ve (V= )+ Ty = W ar (D)0, = XY

= 3 NVt NV (1- 1)

N, = )V

1L~ 71, 29)

Let g = a1+ (IL, = 2 2)p, it can be shown from the following mgf of ¥’ that

the ervor-prone vasiable Y also fllows a multinonyal distribution with a probabilty

vector g, that s ¥ ~ Multinomial(N,q). The mgf of ¥ can be caleulated as

E(exp(y't) = ElB(exp(y'DIT)]

Elcrp($: 0w M 50T s s =y (V= 1T)

EIH(

mame -
(hp e = Vi )
S o e P ')

pmw«

I = T+ )

(0= 1P = Vs + m(‘) + Z(p.u ~ i me

0= o)1 = 19) + (1 = V) + Sl + (1 Vo)l

1o+,

where q s the vector of mltinomial probabiltics of dimension s




Table 2 Balanced sication of air quality in "

True Level (T)
Classifid Level (Y) H(1) M(2) L(3)

HO) Woom M
M) ™ T mm
L) W T T

Therefor, it ollows that
E(Y) = Na, (210)
Var(¥) = NV, (211)

m.v

Vw1 = 1)+ (I, = V)40, = s
Generally, the true variable T and the observed variable Y in the EMMC model

eorbl= a1, leadingtor

(2.7)often have equal total mmbers of categories

We rofer to this case s the balanced misclassification (BMC). For example, in the

environmental studies given in Table 22, air qualty in an area can be categorized

o three levels high (H), medium (M) and low (L). Thero may be clasification
ertons involved in the categorical data due to imperfoct measurement instruments.
and procedures

In some cases, r < s, which implies that there are more observee catogorios than




Table 2.3 Unbalanced misclassiication with 1 < s in an example of asthma study.

Discase (T)

Diagnosis of test (¥) Positive (1) Negative (2) Suspected(3)

Infected (1) ™ £ ™

Healthy (2) ™ ™ ™

23, an individual may be diagnosed as “Posi

which means “infected”, or “Nega-

ive” which implies “healthy”, or even diagnosed as “suspected”. In some situations,
the arising of the extra category on observes variable ¥ may be due to incomplete

information such as an “unsure” answer from a questionnaire. For example, in the

study of jve an “unsure” ot the

children’ st

ua statuses. Another example in cconomie studies which focus on the.

evel the question

about the level ofincome in the past year. However in the questionnaires, they may

pation, age, educa

ion el etc. Bas on the supplenentary information, we can make an etime of
e probbity that bis/he income belongs 1o it of the high, medium and low
lovel

1o adition, model (27) can be wsed to describe the relatonship between latent
enotypes and masifet. phenotypes. For example, it is known that there e four
blood types fo humans,that i, A, B, AB and O, and three types of related gnes,
L. A, B and O, All o posible genotype o an individual are AA, AB, BB, A0, BO

and 0O In genetis,it i well known that both the genes A and B are dominant over

E




“Tuble 2.4: Blood types and their genotypes, an example of unbalanced

ton with s <

Genotype (1)
Blood type (Y) A AB BB AO BO 00
A o010 0
B 001 0 1o
A 01 0 0 0 0
o 0 0 0 0 0 1

the gene O. Therelre,the relationsip betwen th genotypes and blod types can
be describ by Table 24 Actully, i practie,the blood type o an individual may
be misclsifiod due o the mistakes by unexperince examiners, which means some
s for . may b ok s

From the dicusions abave, i can be seen that the new EMNC model (27)
can be widely usd to characerize ifferent classificaion patters for categorical or

multinomal data.

2.4 Count Error Models

epidemologic stndies, data like the total of patients infected by o kind of

' dif ly used to evaluate

efects on population health. These data are often collcted by some survivance

systems. For example, the now cances cases by state in USA can be obtained from
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Staistical anlyss which takes measurcment.erros i count data into considen-
o i f grea inteest, Howeve, s mentioned in Chiapte 1, there i nokye ot
eror model whih can sccommodate both the overmerted and undermumersted
count dat for imperfet sensitvity and spcifity. Thercfore, in this setion, we

develop the measurement error models for count data.

2.4.1 Multinomial count error model

In the previous section, we discussed the classfication error model for categorical

‘and multinomial data. For the misclussified multinomial data, we assume that the

However, the population size may be unknown in the intercensal years. Further, it

canbe ton, death, birth and 50 on. It is ssumed

that N ~ (6,7), where ¢ and = aro the mean and variance of N, respectively. Then

the reported count of disease cases ” and the true count 7 in an open area

unknown and random population size N can be modeled by

Y =TT =T e Tt mey s (N - 1'T) (212)

‘We name this model s the multinomial count error model for & random N.
From expressions (2.11) and (2.12) in setion 2.3, we derived the conditonal ex-

‘pectation and variance of ¥ given the population size N to be:

E(YIN) = N, + (11—

),

Ed



T

AN = e V)Var(TIN)I, — 1Y,
whete Var(TIN) = NV,. So the unconditional expectation and variance of ¥ based
on the assumptions on N can be given as

n o= EEQYIN) = éfm, + (1, - i), (213)

Var(¥) = EWar(YIN)]+ VarlEQYIN)]
= B(S NVapt NVa (1= 1)

+0, = )V ar(TIN) (I, = w1}

+VarNfm, + (Il = w1 1)pl]
= O Vit Ve (1= 1)

(I = g VI, = 1]

e+ (0, = e V)plVar(N) e + (1,

el
Alternaivel, if we lt g = 17+ (1, = 1 1)p, we can get that, given N =1, ¥ ~
multinamial(1q) from the previous section. Therelore, the unconditiona variance
Of ¥ i another form, that is
Var(Y) = EVar(¥|N)] + Varl EQYIN)]
= EINV, +Var(eN)
= WVt aVar(N)g. @

3



Now we consider a special case that the population size N ~ Poisson(6). Suppose

that 7,

ulaton 41 So given N = n, T ~ multinomial(n,p)

an area, where j

Tyt e E, =1 b ET =

“The joint moment generating function of T can be developed as follows:

Mrft) = B

x
= B )
- EEE" M)
= BE e

= Blemn(Voo(S )]

- txptoi'):::»,er -1

Jie
i

tian

“This il that, e 15,7y 5 = 1,2,..., -+ 1 v independent Poison
ariabls and 7, ~ Poisson(r = ¢p;). Similacly, we can lso conclde that ¥,
tho connt. of subjects cassfod into the (th ctegor, for { = 1,2, + 1, e also
ndependent Pojson varibles and ¥ ~ Poisson(u = 6a). This means that under
theassunptin that the popudaton size N followsn Poison disrbution, the counts
ofsubjcts flling into diferent caegories ae independent of each other

I . i popultionsize. The

st is migration including immigration and emigration, and the other i the natural

3



growth or dectease of the population due to birth and death. I both situations, the

population size N can be assumed to be random. If one is n

rested in modelng
the count of people who are attacked by an epidemic disease, for example, asthma

in an open district, then the popuat

can be paritioned into two subpopulations,
healthy group and infected group. This leads to binomial count data with a random
population size N. We wil present some results or this kind of data in the following
paragraphs.

As shown by Figure 2.1, T denotes the true count of infected subjects in an
area, and ¥ be the observed count of reported disease cases from some registration

systems. Suppose that, given the populati

size N = n, T~ b{n p), where, p s the

true disease rate n this arca. The relationship between T and ¥ is given by

¥

FeT+(1-x) o (N=T), (215)

whero x+

- Table25,

siven N =, YIN = n ~ b, q), whero g = 1= 7~ + (5 + 7% = 1)p is the reported

disenso ate i this area. The marginal distribution of ¥ is a Poisson distibution,

thatis, ¥ ~ Pl = g4). Actunlly, 7 £ p N, smilrly ¥ £ g+ N.




Table 25: Example of misclassified disoase cases

Disease cases
Reported cases Healthy (1-p)  Count (N=T) lnfected (p) Count (T)
Negative = N-T-(-7)s(N-T) 1-x* T-x*eT

Pstive 1-r (1-7)e(N-T) w weT

Figure 2.1: Tho True and Reported Discase Cases in An Area



242 Corrected additive count error models

From the last parageaph in Section 2.1, the size of infecte subpopulaion is
nder son that the pop-

lation size  follov a Poison distribution. The sizes of the two subpopalations
follow two diflent Poisson distributions. We et 7 denote the true size of infcted
popuition and 79 represent the szeof healhy population i an area. Similrly, et
Y and Y denote the reported size of infected population and healthy population,
repectivey. So the siz of the total population in this area N =T+ 79 = ¥ + Y.
Under the assumption that N ~ Poisson(§), T s independent of T, and ¥ is inde-
pendent of Y°. Furthermore, T ~ Poisson(p) and T~ Poisson((1-7)6), smilaly,

¥ ~ Poisson(g#) and Y ~ Poisson((1 - 9)é), where g = 1 = =~ + (x* +7~ = 1)p.

‘We rewrite the binomial count error model (2.15) in an alternative form because we.
do not have any he on of N. -
s given by

Yart T4 (1-n) e 1% (216)

I the expression (2.16), the count of nfecte subjects being correctly clssified 7 +

misclasified fnto infcted

7 i idependnt o the count. of el subjcts b
ctegory (1 77)+ 7% 1w ot ¢ = (1 =) 7°,thonew count eror model can b
riton ax

YerteTee, )

where 7 is th We cal this model s th '

it s compared with the additive model (1.18) which was discussd by Casmeron and
Triveds (1098)




Therefore, we can apply the model (2.17) to model the miscounted discase cases
in an area with unknown population size. We suppose that the unknown population
size follows a Poisson distribution. This s a popular and reasonable assumption i

practice, but we may not have any knowledge about ts expectation. In thissituation,

itean

‘cases among healthy subpopulation in an open are is independent of the mumber of

/= exp(8) where  represents covariates associatee with the true count of disease.

cases,for example, the environmental exposures, The additive error ¢ ~ Poisson(¥)

‘) wh people

for example,
i this area. There may be some common covariates shared by 7 and =
“The expectation of Y is given by the folloving expresson:
= BY) = EIE(YIT) = 70 + ¥, @1
and the variance o Y is formlted by
Var(y) = VarlE(YIT)] + EVar(YIT)]
= Var(e'T +9) + Bla(l = m)T + )
= (P Var(T) + 7= 7w

Wt G fVar(D) =l

It casy to see that in the corrected additive count error model (2.17), the expectation
of ¥ can be greater than the expectation of T, that is i > 7 when ¥ > (1 = 7).

r



On the other hand, the expectation of Y’ can be smallr than the expectation of T,
that is, 4 < when ¥ < (1 - 7). Therefore, the corrected additive error model

I with imperfect

ity (= < 1) and i 0). In addit

=0, this implies that 1o healthy people were misclassified nto the infected group.

Therefore, case deinitely,
1.
It should be poiated out that, n the corrected additive count error model (2.17),

the perfoct sensitvity (x*

we focus on  specific subpopulation. For example, if we know the total population
size N in a district, but we do not know the size o the subpopulation at least 50 years

old Ny, Then Ny can be assumed to folow a binomial distribution with probabilty

. that is, Ny ~ b(N, p). In this case, the size of the healthy group T° and the size

o the group infcted by lung cancer T i thi subpopulation are ot independent

variables. In this situation, the miscount data can be modeled by model (2.12) if we
Kaow the probabilty .

Howeve, even we do ot Kaow the distributon of the populaton sze of an seea

n o intercensal year i pracic, . is  popula asumpion that.the sizes of the

healthy and the infected groups are independent o cach other, The count of the mis-

reported pop e=r" e TV isolh to

variable to a Poisson distribution when the size of the healthy subpopulation i very

large. Thercfore, i (@)
distrbution of the population size is unknown.

“




Chapter 3

Longitudinal Transition Models for

Categorical Data and Count Data

3.1 Transition Models for Categorical Data

3.1.1 A transition model for dynamic categorical data
In this section, we develop a transition mode for dynamic categorical data based
o the generalize thinning operation. This trassition model has similarstructur as

the explicit misclassification model (2.7) with N = Lin Section 2.3 of Chapter 2.

welt ta

variable Ty = T, Ty for theith subject in

where i = 1,2,...,0 and j = 1,2,...,J. We define a matrix iy = (e

),

tisoago = 1), that is the probability of the.

with element iy = P(Ty =

transition from the vth state at the (j — 1)th

it 10 the uth state at the jth

time poiat, for u,u = 1,2,..... Define the vector

= () ith clements

©




Tablo 3.1: Transiton probabilities from T3 to T

AR B

[N v

2 [en Ten

| e e e

vl e B 1=Vl

11521 = 0), that s, the probabilty of the transition from the

M) = P(Tito

state r+1 at time 1 to the uth state at time j, where u

. In adition,
he probabilty oftransitng from state  a e j ~ 140 state -+ 1 at the next time
point s cqual 101~ 1, Similarly, the probabiiy that a subjet withsaie -+1
a time 1 kosps i/l state at the next. time point J is 1 ~ 1

“Tuble 3.1 shows the trasition probabilis of the ith subjec’s state from the
(- 1)h tme point to the th time point. Sinilr t the wisclsifcation probem

for.




matix i given by

s Wy
) Ay s e
W

r-viy 1-1n
e e

1= Vi = 1= iy 1=V

()
s il o matixcan b deined
LR TR )
[T T a4
LSRR T )
By defining T,; = (Tij, 1-1'T;), the new transition model based on the generalized
hining oerstion canbe defned s
Ty = Asfun
= T e (- T o

. denotes the transiton

fist prt o he right side o the model (33), i + Ty

from the first r states, and the second part i + (1~ 'Ty1) represents the transtion
from the last state 7+ 1 at time point j — 1.
‘We next present some usefulresults of calculations about expectations, variances,

and covariances. Firstly, based on model (33), i i casy to see that the conditional



expectation of T, given the provious T, is

B@Ty) = T + 1 = 1Te)
= (il = g2 i + e (3.4)
We further have the expectation of T, given T fo k < j
emim) = M Ge-natar £ 1 Go-mine 69
1 shoukd be notice that, i thi scton, f] e — ) for k < 5 i defined
(1)) ) it 2 () —hbst) Gy
figl').

“The unconditional expectations can be given as

w8 BT
= = Ay )
= o nms £ - ©n

For any k < j, the expectation of the pairwise produet 7, T} is

BT = BB TTa)
; "oy
11 O =)ETT) + 3 T Ghe

Hence,the covniance boween T, and T i
Con(Ty Ta) = BT Th) - BTE(TS)
RIS QUSRI AYS o3 | QUSRI

= 11 G-tV + 3 f‘1 (e = Tl VM

= 1T (o~ utWar(Ta) (39

s



For catgorial vaiabe T, ~ multinomial(1,7,) i i obvious that

Var(Ty) = Vy, = diag(ns) = iy
e rowTte T, = (T3, T - )y o0 e 1 = E(T), the varince-comaiance
matrix of T, can be writin as

Za Ban W
S Bm o Sar

n= (3.10)

S B B

where Sy = 54, = CoulTy T) for j # k, and 5y = Var(Ty) = Vs,

Model (3.3) can acommodate various transiton models basod on diffret as-
sumptions o R or A Tn adition, A, can be a constant maix over time for

any subject, or it can be a matrix function of some covariates, even time-varying.

covariates. For example,in the full ransition matrix Ay, we can suppose that

explalyfu+ )

A PPt )
)

o . )
1 *’_ZI“P(";M +m)
wd
o = B @12)

1+ £ captay)
i expresion (311), 7 = (g0, ) i voctar consisting of p explanaory
ariables. The parametes matrx




Wt = (s . ) denting the elfcts of covrinte

denotes the dynamic dependence.

Indeed, the transition model (3.3) can accommaate the following model (3.13-

3.14) in nature. The lattr

(3:3) based on the assumptions (3.11) and (3.12). The model s given by

T
1y = B(TufTiges = o) = [ gy | @13)
o)
valucs of covarites. The loment of f s defined by
= BT tte) 1)

1 B exntyh+ tym)

th row of matrix T.

for j = 1,2,...,J, whete 3. = (..., Tur) consist of the

This model leads 1o more complicated derivation of moments compared with model

(33)

tion, we

To addres the e of est t present the first estimating method

based on model (3.3) with mssumption (3.11) and (3.12). The interested parameters

include all the clements of # and T.



il o i o |

Lok 0= (Vec(@, VeeTYY, whero Ve i the aperation of vetorin a maii.
“The GEE approach Linng and Zeger, (198) has the esimatin equatons given by

3 Zhwii-m =0, ©15)
where W, I the “vorking” covriance matix of ;. I the true covrancs mate
51 (310) is e, he GEE becomesthe Gl mechod [Sutrdbar (2009, The
dmiaivs ol in 00 s i

)
.

w1 = ) = (1= sttt

mmm

*):\w- o= TG+ (1 = By, (3:16)

p2LTELT

b 10

')m w,

L ):Mu(..‘n(l = )] =
o _ 5

o
P T & P O

- mw}:(mw =it

o1 = Tt g0 + gl\w- o = Tyl

e L o
= bt Eliton = ol Tt



where

w1 = )i,

Ao

i
(L= ).

0 m#kforany v
Ay
a1 = )t

Tt o s

=0 (matriv).

The most cfcient e

s ofthe model parameters can be obtained by applying

the maxi

lihood approach. Based on model (3:3), the likeliood fun

siven abservations T = ¢ s

£40) = T I ou-r. (320

where

s Iy [0 - s

[m‘vw” ] -

v

Then the logHkelibood function is

0 = S trmligen) (= Y0 -solos1 Vi)

S

0= 1)1~ Tl og(d = 1) + 3t = Veagloatu))-




),

2500~ e + e~ )~ Vel

a2

-1

- £5iE e - Bt

2 2t gt =0 @2)

However, the expressions (3.13-3.14) lead to a simpler development of ML ap-
proach than model (3:3). In the ikelihood function based on (3.13) and (3.14),
G = (1-1ng) I:l.[v;uﬂ"“"

1 sl (B + nin]

1+ F erteuti
and the log-kelibood function s
)= 53 [0 + o1t — log{1 + 3 expteuf + )] - 529

This leads to a seies of simpler score cquations,

L @29
e )

and they are equivalent to equations (321) and (3.22),

It can be seen that, in the first order transition model, the pairwise products

it pro-

vide sufficent information for the estimation of  and Y. This finding implies that

B



estimators based on the second-order GQL (GQL2) may be as cficient as the ML
estimators. This suggests the promising application of GQL2 in the case that the full
likelihood fanction i diffcult o develop.
3.1.2 The transition model for dynamic binary data
Analogous to model (3.3), the dynamic binary data model can be written as
Ty =+ Togor 475+ (1= T, (3:26)

with the baseline observations ta in a longitudinal study, where { =

J=12e

Under assumptions that 7y = 5 + (1= 7)€ and 7y = (1 = 7)€y for j =

1 J

of the following linear binary dynamic model given by

7

T+ (1= b)ey 1)
[Tong (1990)). In model (327), it is also assumed that by ~ #(1, %), and b is

independent of .

Loty = 5oy and 1y = S, model (3:26) will be the thinning:

operation-version of the non-lineas binary dynamic model whih s given by

Wy = Py = 1T = t)

_ el
T ety

[Amemiya (1985); Manski (1987). Tn fact, 75,

2

3 (328)

fgteg-s + gl = taga), s the

conditional expectation E(Ty[Tiy-y = tis-r) derived from model (3.6). This is a

special case of model (3.14) for longitudinal binary data.

5




“The mean and variance of 7, base on el (3.26) are gven by
5 8 BT) = thgealy =) + =)
o VarTy) = (1) a0)

ad the covriance between T and T s

e & Cou(Ty, T,

Var(Tu) T1 =), foru<i,  G31)

where 10 = L.

Recently, the non-linear dynamic model (3.28) was applied by Sutradhar and
Farrell (2007) to analyze a longitudinal chidren asthma data set. They developed
three approaches to estimate the model parameters § and 7, namely, the generalized
ol

quasi-likelibood (GQLY, the second order GQL (GQL2) and maimum likel

(ML) approaches. In the GQL2 approach, they combined the first and second order
Highly efcient

timates which are comparable to ML, estimates. They oo showee that the GQL2
appronch i the optmal GQL (OGQL) method in th Ing 1 dynnic dependence
wodel (427). The detaled stimating procdures er tho thro approaches axe
siven below.

1. GQL approach

The paranmeters 0 = (%, 7)’ are etimated by wolving the estimating equations (Su-
tradar (2009)]

(332)

L W —

oo = (3 2857'58) ot )

%




2. ML approach

The likelihood function of the cbservations £ = {ty,i = 1,2,..../, andj =1,2,...,.L}
is given by

M- (334)

Guapet = A = )1y g0kt

Then the loglikelibood fanction is
UO) = 3 D{tytis-1tog(iiy) + (1~ ty)tig-1log(1 = a)
+1y(1 = tgeaog(y) + (1~ to)(1 ~ ty-1og(1 = ).

To maximize the function £(6), we solve

following equations:

T ™ B s =

= Tl =0, ru =12 o)
B
35,

Ifone wants to derive the ML method based on model (3.28), the lkelibood function

o)
o

1 =0, (330)

is given by
o = I
where -1 = (1) (1 = 7)™, ane the b ikelibood funtion i

w0 = )l:):u,u,’,,iniu )= 35 S loglh + explely + atig-)l



This yields equivalent score equations to (3.35) and (3.36).

The covariance matrix of fy;, can be estimated by

Vi) = (15" (337)

I
s the Fisher Information matrix.
3. GQL2 approach

“To utilize more information of data, Suteadhar and Fareell (2007) suggested that it
would b mare effcient to combine the second order statstics of the responses into
tho estimating procedure. The estinting equations [Sutradhar and Farrell (2007)]
are given by

Wl -
Setarin- o) =0, 339

where i the observation of Hy = (T, ), nd g = B(H). Here Ty = (Ti, ... T,

and Ry = -iTia) i the covarinnce mate of H, that

(Tl Tl

Cou(r)  Cou(Ti, R)
0= Cou(H) = [
ColRT)  ColR) /s sppaesissnn

The GQL2 approach involves some moments up to order four, say.

BT T)

g+ Tt o8 0 4,
EGTT0) = ST gy hamtsumaen,for different j,u,v,

BTy for diffrent ., v,1,

T) = ;Y[’[}Huua)m—u..



where 501 = £,)9(1 = 16)1 for gy = Gt T
i 0o k0,5, sy e he
summation vl 4 =0 o k 1,1, .
The covrince matrx of fgia i extimated by
Voo = (£ 3500%5) ot @40

A fr s the matx 9, (339) i concernd, sme authors o & “working” covari-
ance mate,for cxample, normality basd covriance [Zhao and Pretice, (190),
independence comrince [Sutradbar, (2005). But these working covinnce
tany il i o ofefficency.

o conductstatstica nfernce, o ex

e consrucing confdence iterval or
esting hypotbess, e ned the asymplote distributions of these eimaton s,
Gogua, and s, Under some mikd roularity conditons [Nowey and MFudden
(1999, it follows rom cqutions (1.32) m (335, (335:3.36) that a1 — o,
iy an )
Vitqu ) ~~(n‘{§ Storta) ) @

Villagia - 0)~ N (n‘ {8 Yot} ) ) )

Vi = 0)~ N (0,15") (343)

3.2 Longitudinal Models for Count Data

L models
[Besag, (1974); Wong (1986); Zeger and Quaish (1988); Diggle et al. (2002)]. In

®



a o for
example, the dynamnic populaton sizes i  disrict. Among; the population o sze
- i the prior year, some people may die o move ot in the (j ~ 1)th year, and.
the rest are stll iving in this area. At the same time, there may be some newborns

or immigrants i this area.

» of an ep which is defined

2 the total number of the disease cases an

g the pop

fon at a given year. Let
-1 denote the prevalence count in the (j ~ 1th year and T, denote the prevalence.

in the jth year. The overlap of T, and 7, consiss of those patients who
survived over the (j — 1th year and are still suflring from the disease in the jth
year, In fact, the new cancer cases or new mortality cases due o cancers are ot

expor he next

ally or multiplicatively growing over time. The expected cou

uy y of discase
eases in the previous year, Therefore, the linear transition model i very promising

i epidemiologie studies.

321 Non-stationary AR(1) model

Let T, denote the count response in distrit i in the jth year, i = 1,2,/ and

5= 1,200, . MeKenzio (1988) and Sutradhar (2003) discussed a stationary AR(1)

wodel for count data. The model i given by

Tym e Tyt @

B



It was assumed that T, ~ Poisson(s, = exp(a; 8)), nd e; ~ Poisson((1—1))

data with

‘which lmits its application in practice. Sutradhar ct l. (2008) moified the model

They assumed

that i ~ Poisson(j) with

cxplaly), i ~ Poisson(uy = 7its), and gy

i independent of e, j = 2,..., J. Under 1

son-stationary model, the expectations

are tme-varying, that i,y = €2p(9). The new model can be wsed to describe the

longitudinal count data with time-dependent covariates. However, the restriction of

the expectation of the additive error c; may not be suitable in some practical cases.
In this thesis, we generalize model (3.44) to a new no-stationary AR(1) (NS-
AR(1)) model which allows for time-varying covariates and unrestricted expectation

of the additive error. The new model is given by
Ty =1+ Tigr + Dy (3.45)

fons. 1t s assumed

that Dy ~ Poisson(€), where & may be a function of - and some explanatory

variables, Howeer, gven T = -1, Dy i independent of o £,1. 1t s obvious

i, given the Tt = g 7, e

be formulated by

Wy = BTy Tiger = tge) = €+ 2Miger (346)

In practic, the new model (3.45) can be exploited to model different types of data

et with various background, then the assumptions about €, may vary nccordingly.

Two exampls are presented in the following paragraphs.

©



1. For the dynamic population, T; denotes the population size at the jth year in

distr

. In model (345, the it tem 7 + 731 consists of people who are

ict from the. year, vl

new residents due (o birth and immigraion. Ty ~ 7+ Tig-1 i the number
of people who died or emigrated during the (j ~ 1)th year. In this situaion,
e munber of people included in D due 0 newborns may be related o the
previous popultion sie T, Therelor & can be  functon of the previous

population size .1 and covarates ., for example, & = ezp{z8 + les).

2. For the data about prevalence of a disease, T denotes the prevalence count of
the disease cases at. the jth year in district i. The fist part in model (3.45)
74T;1 is composed of casos who survive over the (j — 1)th year and are stll
suffring the disease i the jth year. D, includes new disease cases including
people who became infcted in the jth year and patients immigrating from

other disticts. Ty =7+ Ty includes patients who died or move out of

district i the jth year before the survey. Dy can be reasonably assumed to

be independent of the prior observation f1

Alternatively, the term 7 + 7,y in the two examples can oo be interpreted as the.
dynamic dependence of T; on .. Therefore, in the firs, example, i ono assumes.
that 5+ Tyy-; can complotely characterize the dynamic dependence, the Dy can

be supposed t0 be independe

i of Tyg-1, which leads to simple development of the

inference of the model. Therefoe, in this thesis, we assume that these Di's are

ly d of

As far as & is concerned, it can be assumed that &

o




For the NS-AR(1) model (3.45), it can be concluded from Section 24 in Chapter

3 that a Poson variable T, leads to.a Poisson-distibuted 77,1, then it further

leads to a Poisson variable T There are three diflerent cases of model (3.44)

Case 1. The zero baseline observation tip = 0 leads to a unconditionally Poisson

variable Ty, hence lads to a Poisson sequ

ace (T, ~ Potsson(n)}. This can
Ve s 0 e nw caes o  lsase i flrent pariods fromthe cutbreak
of th diseas in amal ares. Howeve, i a large dtrct, it i diffult 0 go

back to the outbreak of some discase,for example, cancer

Case 2. Suppose that we have a non-zero baseline t, 1t eads to a Binomial variable

4+ Ti. Therelore we get  non-Poisson variable T, and hence a sequence of

non-Poisson vasiables {73}

Gase 3. 1f the bascline observations fy's ace not available, we can assume that Ty
follows  Puisson distribution with expectation € with a regression intercept

b describing the baseline expectation. This assumption results in a sequence

of Paisson variables {T; ).

I the second case with non-sero baseline absersations, the ikelibood function of
the data becomes vry complicated, which will be show in the following subsection.
322 Linear transition model

In some eases, Ty and T3, may not follow the NS-AR(1) model (3.45), but the
conditional mean structure (3.46) decribing the relationship between these two may.

still hod. For exaumple, o model the incidence count of an epidemie dsease in disrict

@



4, the count of the new disease cases i the jth year T}, may wot follow the NS-AR(1)
model (3.45). Even the dynamic population data may not exactly folow the NS-

AR(1) model due to the mixture of migration with death

d birth. Taking this
into consideration, the linear transition (LT) model based on the conditional mean
structure (3.46) becomes an appropriate alternative of the NS-AR(1) model (3.5).

The LT model is gven by

Tyl &+ i) (247)

“This model can be viewsd s a specil case of the lnea feedback model (LFM)
by Blundel, Grifith snd Windimeir (2002 i which thre i no subjet-specifc
random effec. However, our model has diffeent ntepretaions rom the LEM. For
the incdence count o a disease, unde model (347), £ denotes the incidence count
o the disese at the jth time in district i, The term ¢,y reflcts the dynaic
depandence of T, on T2, and € can b assumod to b fanction of covriates

s factors which contribute

of the disease.
When the LT model is applid t0 data ses in the two examples in the previous
subscction, the terms 3,1, € ol (1-7)t,-1 have similar interpretations o those.

e the NS-AR(1) model presented in Section 8.2.1. However, the term 1,1 can

P

1 i apparent that the conditional disribution of 7, given the prior observation

-1 15 Poisson distribution. However, except T with baseline t = 0, the marginal

distibution of T is not Poisson, for j =1,2,.....J.

5



3.2.3 Moments of the NS-AR(1) and LT models

In this subsection, we provide the calculations of some moments of the responses
based on the NS-AR(1) model (3.45) and the LT model (3.47). These moments are

used the GQL and

Some higher order moments, for example, the third and fourth order moments, are

a One may NS-AR(1)

model and LT model share the same expressions.
Under the NS-AR(1) model and LT model, we have the same expression of the
expectation of T, which s given by

;
g sg= 3 Gty

wloru<i,  (3.48)

where 1ia = tg. We also have the same expression of the expectation of the pairwise

product T Th as follows:

w3 Pgn + BT

E(TTa) = by + 7E(TTiy

= ConlTi Ty) =
= Corr(Tu,T,) = min{1, ¥~

The expectations of 73 under NS-AR(1) and LT models are, respectively, given



NS-AR(1) model: ETE) = g+ oy + P ET) = o = g

[

oy =+ 70— M),

LT model: =g+ + (BT ) =y

= o=y 4ol

Under both NS-AR(1) smodel and LT model, some third and forth rder moments
with the same expressons are given by

E(TAT,) = E(T3)& +E(ILT,

= B 3 G4BT,

E(TAT,) = E(T3)& +1E(ILT,

= B E et

u<i

u<i

T

E(TWTuTy) = E(TuTu)éy +1ETTT,

= BT 3 a4

BTATAT) = zmm;?“mm Tig1)

- BT 3 e

E(TWTAT,) = 5<T.ﬂ?u1£k;:'mmﬂ’.m

- BEal) $ et

BT = BTy + BT ), 1<u<us
) gﬁu‘v”"*»‘""l{’hﬂ.

= BT

Under the NS-AR(1) model, the third and fourth order moments can alo be



calculated s follovs:

B(T)

E(T))

E(TTY)

E(TTY)

1+ 30+ 1+ BT ) = s = 3 = ]
b

g+ Ty + Oy + iy + 7 BT 0) = g = Ty = By

A3 (14 6y = EWE-) = tgor =0

gl

PO+ 46 = 61)[E(T) ~ g = s —

AP = 39(6 +465) + 7+ 186, + OIIE(TE ) = tugor = 1

(6 + )+ 701 =7+ 26 ETTiger) 47 E(TTE ), w <5

3 Attug®-0 40 ET)

(6 + BT +2(1 =1+ 26)ETTy-0) P EOZYE ), u<)
B

3 A2 40V,

s + 365 +€3) +9(1 = 37 +27" + 06, + 3¢, — 367 E(TuTiy1)

0 -7+ )BT )+ B(TuTly ), u< i
3 ALY 4 U E(T), the underbraced par
(6 + GE(T) +9(1 = 7 + 26 ECTuTis)

APETTWT ), v<u<i

3 AUy BT,




ol o i i

whereas under the LT modl these moments can are
E(T) = Bl + 305 + 06"

= g 30+ + 304 G BT ] — ] + VLT ) =

E(T3) = Ely + 700" + 605 + 15)"]

= T+ Oy 4977+ 186 + BEE)E(TE ) —

71+ 46 [E (T

= Ryl + VBT ) = iy

= (6 + & +9(1 4 26)E(TuTiymr) +°

= T A B,

E(TATE) = (& +E)E(TR) +7(1 +26) E(TAT,

3 A2 4 BT,
E(TWTY) = (6 +3€ + &) + (1 + 66 + 36) E(TuTig1)

+ 3P+ ) ETTE )+ BTy ), w<
B T

B(TLT) = (6 + € ETuTia) + 901+ 26) B(TuTuTio1)

erbraced part = 4235,

APEITWTY ), veu<s

= F AN VBT

3.2.4 Estimation of the model parameters

The parameters ofinterest in these two models are 0 = (3, 7)’ where § represents

the effcts of covariates, and 7 s the dynamic dependence parameter refecting the

o




correlation betuween the current ontcome and the prior outcome.

3241 Generalized quasi-likelihood method

The generalized quasi-likelisood method (GQL) [Sutradhar, (2003)] is to obtain

the estimates by solving the estimating equations:

Py %E:'u. -m)=0, (249
where dn,/08 is the f of s with respect
(p+1) x J. pis the dimension of z;; in &;. Among dn/08,
caple P + 2t @50)
g 472 @5

o

L. 8 = AJWiA, i the variance-covariance matrix of T, where A,

diag(o,..-,0u) and W, is the true corrlation structure of T. If W, s replaced by

 general “working” correlation structure I, the GQL approach becomes the GEE

covariance matix can be stimated by

(352)

Peboa) = (£ 5857'%8) ot

3242 GQL2 approach

(2007) developed the GQL2 approach which utilizes both the first. and second order

o




his section,

i quation e given by

0 (353)

Sutradbar and Farrell, (2007), where H, = (T7, Y with T, = (Ta,..., T and
R (Theoo T T T

LT hy s the observation of Hi, and

@0 = E(H,) s the expectation of H,. The variance-covariance matrix of H, is given

by

- ( Cott) Cotri) )
CoulBT) - CovR) /i somusisron
‘Some quantities required in this approach such as g, Cov(T;), Cov(R,,T;) and
Con(R)ca o e ot ot et 1 Sction 323
Some useful derivatives required in (3.53) are given below.

Under the NS-AR(1) model,

OB, "
= Ssan) 420 - B ),

oy (OB  Onger o
G-+ ) 4Gt = S )

FNEE ) = gt = g
Unnder the LT model,
o) on 2 OB ) s
95 = ) g g S,

BID - Dy P ) vt

-l



Under both of the NS-AR(1) and LT models,

DE(T,

OE(TuTy) P,
OETLT,) _ O i
il TR
o O N~y - i 4 p-wOE(TE,
= T e D G e,

ont) _ on 087,
EORT) - S+ BT+ 2T

= G % et S
m

e

(354)

As mentioned in the Section 3.1.2, it s shown by Sutradhar and Furell (2007)
that the GQL2 method provides as eficient stimators as the ML approaches under

the frst order transition model (3.28) for dynanic binary data, which i the reason

iy, in tansition
model (3.47) i s expect 10 prodicn bt a efficint s the MLE' fo model
parametas, which can b demonstrated n our e s, Thereore, we do ot
conduct simlations under tho GQL method e the LT model, Wo expect that

the thieo methods yild estmates with very sl cfficency.

3243 Maximized likelibood method

In thi subsection, we develop parameter estmuation based on the lkelibood ap-

proach.



Under NS-AR(1) model, the conditional probability that T = t; given the prior

observation ty-1 is

S 5 ]

(L - i @59

Tty = R Bltugor = )l

i
It very difcult to caleulate the joint likelibood of T, with the observation £; be-

canse of the complcated conditional probabilty (3.55). Therfor,the ML estimators
of model parameter aredificult o obtaine under the NS-AR(1) model. T the -
‘meric studics, we oy condrc simlations to chec the performance of GQL and
GQL methods for the NS-AR(1) model

s fr s the LT model i concered,the it lkelood given observations T = ¢

s written as
war=1 = [/
T sl
N Hn(vr)’ww( ) prens
S
where T = {Tyi = 1,200, = 12....,}, its observatons are £ = (1
L2 L= 7} with bascline observations ta,i = 1.2,..., 1, a1
exp(aaff) + tto. The log likelibood can be exproser as
8) =33 tyloglezplayf) + tug-i] - 1 lexp(zy) + 2t 357




“The ML estimates f,, are obtained by solving the cquations:

B

‘):: )i:ln.,/rt,
P

Derplal Oy =

(/= Dtger =

£

‘matrix which can be given by
(o)
. ((#) —s(w))
) e}
-~ el ( (B - B Dt lintutisermy )l

= TtatisaT it

2 Grdy Ytz
= g[S =% & @0

Then, covariance matrix of Gy, can be estimated by

vme[}’I)‘Z( s oo )] @o1)

AN T

i
T can be seen from (3.58) and (3.59), the ML estimating equations under the LT
model (3.47) only involve the fest and socond ordes response, which is very similar

to (3.35-3.36) under dynaumic binary model (328). This means that the GQL2 ap-

g the irst and » 1d almast identical
estimates to the ML estimates. Therefor, the GQLZ under the LT model may be

the optimal GQL (OGQL) approach.




3.2.5 Simulation studies

In this section, we condct simulations to examine some nteresting isues i sta-

tistical inference

e diffrent model settings and designs of covariates. Fistly, we.
will check the performance of the proposed estimation approaches. Under the NS-
AR(1) model (3.45), 1000 simulations are carried out for both the GQL and GQL2

approaches. However, we do ot conduct simulations for the ML approach under
the NS-AR(1) model because of the complexity of the likelibood function. Similaly,

under the LT model (3.47), 1000 s

tions are implen

st for the GQL and ML
method. The resson that we do ot conduct simulations for the GQL2 approach

s that the GQL approach produces almost same effcient estimates as the ML ap-

proach. 0 be almost and ML

™~

Next, it is noticed that correct specification of the buseline observations is also

of mportance producing reliable estimates of model parameters in transition models

! model (3.47). In practice there

b diffrent chaices of the . for cxample, the

1o the studying period i available. Therefore, i i possible that false baseline obser-

vations are e in stimation procedures, 500 simulations about wisspecifcation of
bascline obscrvations aro conducted in Soction 3253,

It can be soen that the NS-AR(1)

vodel and the LT model are very similar n

ny spects including model structure, conditional and nconditional expectation

structures Section 323,




may lead to challenges in distinguishing them. Therefore, it is meaningfl to check

the posible misspecification ofthe two models. For this purpose, 500 simulations are

carried out in Section 3254

3251 Designs

In the simulation studies in Section 3.25.2 and Section 32.53, welet € = exp(fu+

iy +Batiy) for both the NS-AR(1) model (3.45) and LT model (3.47). Howerer,

diflerent designs of a

s below

Design I: In the NS-AR(1) modd, we hase chosen the sample size I = 60, and

umber of repeated observations J = 4. Throe values are chosen for : 02,05,
and 8. The baseline abservations to are sampled from a Poisson distribution,

that is o ~ Poisson(50). Among the two tn

dependent covarintes follows,
the first one denotes a categorical variable, for example the cconomic lvel, air

aquality leve

2and i=1.., 1/

Aand i=/2+1,..., 1,

and the but time-varying.

represents & consituous vriable.

2y ~ NG/0-01,1), j=1,2,3,4forall i

Design I In the LT mode, we choose the same sample size [ = 60, but diffrent

n



umber of = 6. For different

0.05,02,0.3, and 0.9, The baseline observations t are also sample from the

Poisson distribution Poisson(50). Similar to two covariates in the NS-AR(1)

model, the two time-varying covariates are given by

=10,
L

|
1
i

o o
and
{ v
NG =1/101), for =1,
’wwi N@/10.1), 1
{ venon, N

In Section 3:25.4, we uso Design I for both the NS-AR(1) model and the LT

sodel to compare the misspecfication between then.

2 Estimation of model parameters

I thi section, 1000 simulation are conducted to check the performance of the

proposed approaches in estimating intereted parameters in the NS-AR(1) model

(3.45) and LT model (3.47). The results under the NS-AR(1)
are given in Table 3.2 and Table 3.3, respectively.

L]

2
a5

o

odel and LT model




In cach case of 7, we applied the GQL and GQL2 approaches to estimate the
model parameters 0 = ()’ where § = (fo, s, B are the regression coeficents,

1 is the dynamic dependence parameter. From Table 32

. it can be seen that both

the GQL and GQL2 approaches yield approsi

tely unbiased estimates of model

2, we v the GQL estimates of foqs

parameters. For example, when 7
(10009, ~1.0010,0.9985), and the GQL estimate of 7 is 0.1990. In the same case,
faarz

true values

1.0093, ~1.0000,0.9985 and aguz = 0.1997. They are very close to the.

1,-1,1) and y

2. The estimated standard errors (ESE) derived

from GQL estimator (3.52) and GQL2 estimator (3:50) are almost dentical o theie

dard E). Therefore,

of 95% CI'
Auother point is that the GQL2 approach tends to have slightly higher efficency
than the GQL approach when the ESE's and SSE' are concerned. For example, in
the case that y = 03, the (SSE, ESE) of f; are (0.1899, 0.1874) under the GQL
appronch, and (0.1891, 0.1570) under the GQL approach. However, in most cases
the GQL performs almost as well as the GQL2 as fr as the SN, SSE, ESE and CPr

are concerned.

ader the LT mode,for differnt valuesof the dynamie dependence parameer,
ho GQL and ML approches re s to etimate mocel prasetens 0 = 4,7 with
5= (o34, The simulation resls ae given in Table 43. I is shown that the
QL and ML appronchesyield spproximately unbissed etimates of 6. For cxamie,

when 7 = 0.5, wo have the GQL estimates of fagr = (1000

 ~1.0007,0.9989)"
with SSE's (0.1045, 0.0813,0.0131) and ESE's (0.1070, 0.0856, 0.0430),

the GQL

e of 7 is 0.4994 with a SSE 00100 and an ESE 0.0008. In this case, the ML

™



Tabe 32:

eters = (L=L1)

o results for the NS-AR(1) model with the true values of param-

1=02 1=08
Quanity| GQL GQL2 | GQL Gai2 | caL Garz
SM(%) | 10009 10093 | 0.9949 0.0951 [0.0976 0.9983
SSE 00701 00692 |0.1032 0.1031 | 0.0964 0.0961
ESE (00608 00691 01019 01018 | 00966 00965
CPe | 092 096 | 0943 0941 000 094
SM(3) |-LODIO -L0000 10163 -1.0160-1.0128 -1.0127
SSE | 00572 0056401825 01823 [0.1899 01801
ESE | 00545 00541 (01796 01793 [0.1874 01870
CPe | ooa oo |02 0952 090 0952
SM(3) | 09988 0.0985 | 0.0086 0.0081 [ 0.0091 0.0987
SSE | 0017 0.0346 | 0.0567 0.0566 [0.0409 0.0408
ESE | 0036 00345 |0.0563 0.0562 [0.0418 0.0417
CPr | oou 0051 0951 0010 | 0951 0953
SM(y) | 01999 01907 [ 04090 0.4090 | 07090 07090
SSE 00080 00079 | 0.0083 0.0083 | 0.0053 0.0053
ESE | 00079 0.0079 00083 00083 | 00054 00054
cPr | 0019 0o |00 0951 | 0956 095




estimates are (s = (10014,~1.0002,0.9959) with SSE's (0.1020, 00819, 0.0425)
and ESE's (0.1045, 0.0836, 0.0425) an 42, = 0.4993 with a SSE 0.0099 and an ESE.
0.0098. These etimates of  are very close to the true values 0 = (1,-1,1,05), asd
these ESE's are alo very close t0 the corresponding SSE's.

It also can be scen through Table 3.3 that ML approach tends to have slightly
higher effciency than the GQL approach, that s, the SSE's (ESE') under the ML
‘approach are a ltle smaller than the corresponding SSE's (ESE's) under the GQL

‘approach. However, in most cases, the GQL approach produces estimates that are

very close to the ML estimates as far as the SM, SSE, ESE and CPr are concerned.

de almost all information about

“This implics that the first order respanses {7, }
the model parameters 6. This is also why we did not conduct the simulation about
the GQL2 approach under the LT moel

In s

aty, the proposed approaches can efectively estsmate the model paraim-

eters n the NS-AR(1) model and the LT model. The GQL approach yieds highly

e  parameters. i this method

and the ML method under the LT model

3253 Misspecified baseline observations

To check the influence of passible misspecification of baseline observations on

parameter estimation, in this subsection, we conduct 500 simulations to check the
performance of the proposed approaches for NS-AR(1) model (3.45) and LT model

Insimulation,

we choose 8 = (6 81 B’ = (1,~1,1)" and 7 = 0.65. The true baseline observations

L]




jon resuls for the LT model with the true values of parameters

1=005 1=02 1=05 4=09
Quanity| GQL ML | GQL ML [GQL ML [GqL ML
SM(&) | 10025 10029 | 10007 10021 [ 10004 10014 09909 09934
SSE 00509 00600 | 00701 0.0692 [0.1054 0.1020 [0.1956 0.1928
ESE (00507 0.0505 00698 0069101070 01045 | 01576 01547
CPr | 0918 000 | 0912 0946 0950 0949 0938 093
SM(3) |-0.9900 -0.9988 |-10010 -1.0000-1.0007 -1.0002 -1.0047 1002
SSE | 00539 00539 | 0.0572 0.0561 [0.0843 00819 |0.1585 0.1564
ESE | 00522 00521 | 0.0545 0.0501 |0.0856 00836 | 0.1507 0.184
CPr | 0937 0037 | 0041 094 0962 0955 0937 093
SM(3) | 09972 0.9971 | 0.0958 09985 | 09989 0999 | 10013 10008
SSE | 00278 00278 | 0.0347 0.0346 | 00131 00425 | 00653 00647
ESE | 00217 00277 | 0.0346 00315 | 00430 0025 | 00643 00639
CPr | 0951 0954 | D04t 0951 0950 0019 093 0946
SM(y) | 0.0199 0.0198 01999 0.1097 | 0.4094 04093 | 05094 08994
SSE | 00054 0.0053 0.0050 00070 | 00100 00099 | 00083 00082
ESE | 0.0053 0.0052 0.0079 00079 | 00008 00098 | 00083 00082
cPr | 091 0030 | 0900 0919 | 0912 0950 | 0951 0916




to are generated from Poisson(50) under both the NS-AR(1) model and the LT
model, whereas, in conducting statistical nference for the two models, we assume
that all the baseline observations are mis-specified to be 50. The simulation results
in presence of the mis-specifed baseline observations under the NS-AR(1) moel and
LT model are given in Table 3.4,

As discusse in Section 32.1, the basline observations have much influence on
the NS-AR(1) model. Actually, misspecified baseline observations are expected to
have significant influence on the statistical inference based on both the NS-AR(1)
‘model and the LT model. This is because the misspecifiod bascline observations lead

1o wrong expectations 1, hence lead to incorrect 7y for j = 2,...,J. Futh

all moments of the response are ncorrect due to the misspecification of bascline.

observations. Therel

appronches and the ML approach which highly depends on the accuracy of data are

ot relable any more. This can be demanstrated from Table 3.4. For example, under
the NS-AR(1) model, the GQL estimate of f = 1 5 0.9300, and the corresponding

GQL? estimate is 0.0411. The CPrs under the two approaches are 0.900 and 0912,

which are significantly Jower than the nomiual level 0.5, Sinilarly, wnder the LT

el Aty = D94TL and gy = 0952 bt o vhich b iicnt bises

from the true value 1. The CPE's of Gy under the GQL approach is 0.936 which is

much smaller than 0.95. Purther note that the biases of i, J and 3 under both
approaches are significant telative to the biases of these estimates employing correet
baseline observations, and the CPrs in the case of misspecifiod observations are
siguificantly biased from 0.95.

Based on the simulation resulis in Table 3.4, we conclude that the baseline ob-

t



Table 3.4 Mis-specifying the baseline observation t

8

,—11)

50 when t ~ Pais(50) with

Misspecified

[

Method

NSAR(1) model

cqL

cquz

09054 10120 10000 05404
00065 01553 00122 00060
00971 0157 00135 00069
090 0960 0916 0950
09950 L0132 09097 05195
00067 0150 00122 0006
00960 01565 00433 00069
0912 0962 0916 0916

09000 -1.1531 10270
00066 02055 00110
0097 02185 00128
%0 0971 0900
09411 10820 10243
00077 01956 00110
007 02048 00127
0o12 007 0010

06573
00060
00060
o051
06557
0006
o0
ose2

LT model

09978 10024 0974 06491
01352 01070 00525 00004
01369 01077 00516 D001
0956 0958 0960 0954
L0012 L0000 09068 06193
01303 0100 00516 00091

E|0.1340 0.1054 0.0510 0.0094

0962 0961 0958 0952

o7t 10203 10168
01391 01004 00539
01976 01083 00509
0936 0948 0906
09520 10256 10157
01344 01062 00520
01352 01072 00502
092 0960 0916

06536

0001

00005

038

06535

00001

00091

0934




servations do influence the statstical inferences about models. Therefore, one should

b careful to choose baseline values n practice.

Misspecification of models
In this sectin, 500 simulation are conducted to chck the influence of the mis-

specifcation of models on the estimates of mode effcts. We consider two cases of

the misspecification of models.

Case 1. Under the true NS-AR(1) model (3.45), we mis-specify the model s the LT
model (3.47), of which the simulation resuls are given in the Tuble 3.5.

Case 2. Under the true LT model (3.47), we mis-specify the model a the NS-AR(1)
model (3.45), of which the reslts are given in Table 3.6.

(Case 1 and Case I ae till approsimately unbiased. For example, when 7 = 05 for
(Case i Tble 3.5, the GQL xtimaten (T ar) = (0.9984, ~1.0002,0.906,0.4990),
and the ML stmates (3 fuz) = (09996, 0.9906,09999,0.4998). For Cose 11
in Tuble 3.6, the GQL cstimates (Fq car) = (1.0009 ~1.0230,0.9085,0.4907),
and the ML estimates (g, fare) = (10066, ~0.9826,0.0976,0.4983). All o these.

estimates have ignorable biases from the true values (7,7)

1,-1,1,05). This
s bcanse that the expectations 7, e both the NS-AR(1) model and the LT
model share the same formula sccondin to (345 in Sction 323, which lads t0
the nbiased GQL estimating cquations (3.49) even under the mispecied models
Similat, the e conditional expectations 1 accondin to (346) e (3.47) leads
o the unbinsed ML, etimating equations (3553.50) undee the mispecifd models.

2



As far as the GQL2 approach under the misspecifiod NS-AR(1) model in Table

| the GOL ightly greater bi the GQL
09, the GQL

estimates have, especially for large values of 7, for nstance, when

estimate of 4 is 09913, which has less bias than the corresponding GQL? estimate

fcars) = 09845 . This may be due to the differen expectations of T under the

NS-AR(1) and LT models showed in Section 3.23, which

ads o a lttle bias of
the GQL estimating cquations (3.53) wnder the misspecifed model. However, it is
obvious that the biase of the GQL stimates are no signficant compared with the
true values of parameters. This is because that the frst order respanses {7} and
the pairwise products of the response (T, T} , which have the same expectations

under the two models, have already ncludod almost suffcient nformation about the

model parameters, especially for small values of 7. Therefor, the GQL? estimating

of model parameters.

However, the estimated » Clisdo

 takes Jarge valnes n both Case | and Cose 11, Iu Cose I, the GQL estimators and

the ML estn

tors of standard errors derivd from (352) and (361), respectiely,
tend to have worse overestimatee standard ertors as the value of 7 increases, which

leads to conservative confidence intervals, As  resul, the CPF's aro much bigher

than the nominal level 0.05. For cxample, when 7 = 0.0 in Table 3.5, the ESE of
fiaqr is 0.1925, whereas the corresponding SSE takes  much smallr value 0.1001,

il the vl of ESE o Ao is 01020 whih i sl mch g tan the

The CPrsof fy

5




are,respectively, 0999 and 1,000, which are ll much geeater than 0.95.

As far as Cose 1T is concerned, the GQL estimators and the GQL2 estimators

of standard errors derived from (352) and (3.54), respectively, tend to have more
severely underestimated standard errors as  increases, which leads to lower CPr's

than the nominal level 0.95. For instance, when 7 = 0.0 in Table 36, the ESE of

fivoau i 00801, and it is much smallr than the value of the corresponding SSE

01965 Iy of ESE of Aaarz is 0.0890,
is a much larger value 0.1964. The CPF's for fy under the two approaches have the

same value 0624 which is much smaler than the nominal level 0.05. The occurrence.

of this phenomenon may be because much error information is used in estimating
standard errors and in constructing confdence intervals under all approaches in the
w0 cases. 1t may be because the other moments, besides those expectations of the.

first. order response and pairwise prodcts of the response, also play important roles

i estimating standard errors of § as the degree of dynamic dependence increases.

In summary, the misspecifcation of models described in Case 1 and Case Il do

ot affect the unbiasecness of estimates of model parameters. However, the misspec-

fcation may lead to severcly biased estimation of standazd crrors of d, then lead to

poor confidence intersals.



Tablo 35: Misspecified LT model under true NS-AR(1) model, where § = (1,~11),
=005 1=02 1205 1=09

Quuity| GQL ML | GQL ML [caL  wu [cqL  mu

SM(&%) | 09970 09972 | 0.9977 0.0987 [ 0.9981 0.9996 [ 0.9953 09958
SSE | 00500 00588 | 0.0702 0.0699 [ 0.0000 0.0894 [0.1001 00090
ESE (00599 00507 [00m0 0012|0065 01050 | 01925 01920
CPe | 095 0953 | 0958 095 [09%0 0976 090 1000
SM(3) |-0.0998 -0.0997 |-1.0005 09999 |-1.0002 -0.9996 |-1.0036 -1.0034
SSE | 00523 00521 |0.0575 0.0571 | 00723 00720 | 00853 00852
ESE | 00523 00522 | 00599 00591 | 00851 00830 01510 01506
CPr | 00w 0ot | 0951 095 | 0075 0078 | 0999 0999
SM(%) | 0.0909 0.0090 | 0.0088 09986 | 09096 09093 | 09099 09999
SSE [ 00210 0.0270 00318 0007 | 00372 00370 | 00362 00362
ESE | 00217 0.0277 [0.0320 00318 | 00490 00128 | 00065 00065
cre | ooss 0958 | 0055 005 0072 0970 | 0098 0908
SM(2) 00500 00500 | 02003 02002 | 0.4999 04998 | 0.0000  0.9000
SSE 00053 00053 | 00077 0.0076 | 0.0070 0.0070 | 0,002 0.0032
ESE [ 00053 0.0053 [ 0.0082 00082 | 00007 00007 | 00082 0.0082
cpe | 0913 093 | 0960 0965 [ 0991 0991 | Low 1000




“Tablo 3.6: Misspecifid NS-AR(1) model under true LT model, where
4=005 1=02 1205 1=09
Quantity| GQL GQL2 | GQL  GQL2 | GQL  GQL2 | GQL  GQL2
SM() | 09950 0.9986 | 0.0947 09950 | 10009 10066 | 09913 09845
SSE | 00693 0.0690 [0.0704 00791 |0.1169 0.1170 | 01966 01961
ESE | 0.0660 0.0657 |0.0736 00730 | 00011 00008 | 00591 00890
CPr | 096 0o |09 093 | 086 0864 | 0621 002
SM(3) |-0.9966 -0.9970 | -1.0022 10016 |-1.0239 09826 10045 10099
SSE 01016 0100901206 01291 02508 0.2490 | 0.7070 06753
ESE 01030 0011|0284 0.1279 | 01884 01811 02080 01731
CPe | 0934 0932 | 096 0952 |07 0818 | 066 0616
SM(2) | 09992 0.9993 | 10025 10021 09988 09970 | 09983 10022
SSE | 00325 00323 | 0.0364 0031 00527 00520 | 00769 00765
ESE | 00318 00315 | 00357 00352 | 00125 00423 | 00385 00381
cre |09 oo | oo 09 |0ss0 0866 |06 0ss2
SM() | 0.0i99 0.0i96 | 01095 01997 | 0.4097 0.4083 | 08092 08903
SSE 00053 00053 | 00082 0.0081 | 0.0110 0.0110 | 00101 00101
ESE [ 00050 0.0050 00077 00076 | 00081 00081 | 00039 00039
cpe | o093 o097 | 0934 o0om o2 0si2 058 05i6




Chapter 4

Modeling Misclassified

Longitudinal Categorical Data

4.1 Overview

Suppese that T, s the true but unobservable categorial sesponse and ¥, is
the abserved response for subject i a the jth time point, § = 1,2,...,1 and j =
1,212, J. It s assumes that the tru categorical response T follows a mltinomial
distribution, that i, Ty ~ Multinomial(, 7). We also assume that the dynamic

pattern of Ty follows the nonlinear transition model (33, 3.11, 3.12) or (313:3.14)

developed in Section 3.1 of Chapter 3. Suppose that the categorical variable Y, is
vector of dimension s and it's inbereat, variable T is of dimension r. In most cases,

= . However there are cortain situations where s and r are diffrent, see examples

-

in Chapter 2. Let T = (T3, 1~ VT, and %, = (¥3,1~ 1Y, bo the full atent

and observod categorical variables, respectively. We assume that the FMC matrix fI




is constant over time and subjects.

where 7w, = PV = Wy = D). Furer = PV = Ty = 0). s =
POY, = 0Ty = 1) = 1= 5 7o, a0d Faprper = POV, = 01T = 0) =

e foru=1.2,... s and

The MC matrix I is given by

Pl Ty

where 7,5 are vectors of dimension 5. 1 5, = 1 for all i = 1,2,...,r +1, Tl will

41

tos Let 1L, = 7o 7] 1 deeting the

ast column 7,41
The misclasifcation model for the longitudinal data ¥, and T i given by

Yy = ey
= Tyt (21T o)
2 Ty + 7+ (1= 1T,
& the expectation




Vyin
ny = E(Y)
= Elll Ty 4 s (1= 1T,)]

= (= mal)ny + e “2)

The covarinaee matrix o ¥ i
Var(Yy) = Var[B(Y;|Ty)] + EVar(¥,|T)]
= Var(UTy) + B[ Tiga Ve, + Bl = VTV,
= Var(F)T + 3 Ve, + (1= 13V
Varlty) V(s
- [I'l,,vr,u\( gt ’)m..n,.w
=1'Var(T,) 1'Var(Ty)1
+ 5 Vo + (0= VngVons
3 oo+ (1= 10 Vo

(I, — m W ar(T )0, — 7o 1),

s shown in Section 23 of Chapter 2, iy ~ Multinomial(1, ). Hence the covari-

ance of Y, ean be witten in an alternative for

Var(Yy) = Vi, = diag(ng) ~ sl




The covariance between ¥, and Yiu

siven by

ConlYy, Vi) = E(Vy¥) =gl

Effrrss = (= 5ot V) Tyllress = (Ml = 7y 0)Tal'}
~lress = (e = e Vg1 = (0L = Fra V)l

= (0 = e t)Cor( Ty, Tu) I = 7.
These moments will be s to develop the GEE, GQL methods to estimate model
parasmeters.  Actually, it is much easier t0 calculate theses moments based on the

explicit model (4.1) than th ’ sode.

We now discuss the maximum likelibood (ML) approach which produces efficent
estimators of the interested parameters. Suppose that we have observations of the.

‘manifest variable Y’ and the latent T, that i, y = {yigi = 1,...,  and j

and £ {ty i =1,..., T and j

1), where ta's are bascline observations and

asumed to be known. The complete ikelihood function is given by

Lo = Tis)

Wy

= ISl 1T I o
where g1 given in section 1 of Chapter31. Under some regulasity conditions,

such as all lements of FM(

ix 1 are within the interval (0,1), which mplies

that 0 < 7, < 1, for LsLand = 1,...,r+1, the conditional ikelibood




function of abservations 1 given £ i given by

o) = [0 -]
<IL [u -1 ‘“"II ""“"] =
s [IIII-=] Lnu

x Lr'[ s ’] [ - Prt-rmi-re]

)

(s)

From expressions (4.4) and (45), it can be seen that it is diffcult o calelate the

marginal likelibood of the observed data y. Hence the ML estimates cannot be ob-

tained by directly maximize the ikelihood fnction of y. In this case, the expectation

& maimization (EM) algorithm is helpful to caleulate the ML estimates in an ter-

ative procedure.
“The log likelibood function of complete data can be expressed as

) = EE [ oottt + Syt ]

3 I8 = ) + 0 )= o = V)]

+ ):):\Z }:m.xtum-w N Eu = Vg tugalog(t =

=tk

)]

In this function, the vadues (i = 1.,/ and j =

(46)

4 wre ot obwervable. The

EM algorithmn starts with an inital value 0. Denoting 01 us the estimte of 0t

the kth teration, the (k-+ 1)th ieration of the EM can be developed below.
E-stey
QO ) = Er((Y = y,0%)

ind the expected e

Mestep: Determine () by muimizing this expected log-likelibood

Q).

pletedata log-lkelibood function if 0 were 0

o,




1 the reglarty condiion fo 7,.'sare violate,for cxample, 7 = 0, we have
ot 09(7ie) = O, i the o kelibood fnction ((0). Therfore the ML estimat-
ing proceure is sl appicable

W conside two special cases i the following setions. In Section 42, we con-

duct the analyss of the misclasificd longitudinal binary data. In section 4.4, the

misclssified binary data with nor-ignorable mising information are analyzed.

4.2 Misclassified Longitudinal Binary Data

based on

prof eted by the parents. e widely used

because they are reltively simple and cconomical when compared to the clinical ex-

1d. However,
reliable questionnaite due to the complexities of wide range of severity ofthe discase,
riggers, and lack of medical knowlodge among the public [Jenkins, et al. (1996)]. In

addition, it is challenging sometimes for parents to identify symploms of wheezing

from cold symptoms. Al of theso reasons result i classification errors on chidren

asthima statuscs. Tn this section, we develop statisical models and methods to deal

3

mensurement rrors into necount,




Table 4.1: Misclasifed Asthma Status

Asthma (7))
Diagnosis of test (V) Infected (1) Healthy (0)
Positive (1) x ¢

Negative (0) - -

4.2.1 Model description

Let ¥, denote the dingaosed status (positive=1, nogative=0) for the ith child

at the jth time point, and T, denote the corresponding true status (infct

healthy

). for i = 1,2, and j = 1,2,...,J. The possible diagnoses for a
ehilds asthma status are shown in table 4.1 Tn this table, =~ = Pr(¥;; = 0/T; = 0)

individual, ¢~ is the probability of type I ertor of a diagnostic test, that is the.

probability of misclassifying a healthy subject s  disease case. It is obvious that

=+ = 1. Similrly, 7 rofors to the sensitivity which is defined as the probabiliy

of the correct. dinguosis for an

alecte) subjoct, that Is, Pr(Y

7 = 1)
s the prabability of type 11 error of  diagnostic test, that i, the probabiliy of

misclassifying a patient to be free of the discase. 1t s apprent that 7* 4+ ¢

“The corresponding FMC-mateix s given by

wn




“To ccommodte the biomedical backgroud, we develop the misclsifcaton model
for binary data based on the two quantitis, namely, the sensitvity 7* and the
specifciy 7~

i assumed that T, ~ K1, 1,), where 5, = P(T, = 1) i function of some

sk factors or covariates. The clasification eror model is expressed s

T+ (1= 7) s (1-T5) ]

where + i the binomial thinning operaton descrbod in Chapter 2. (¥, T,) may

take ane of thefou paes of vacs: (1, 1), 0, 0), (0, 1) and (1, ). The former
w0 casesindicat the o correct dingnoses, respectivel while theltter two cases
imply two type of misdiagnoses. This model can completly and explicly descibe
the misclssication from T, o ¥,

Based on the model (48),i s sy to caleulte th reqired moments for the
devlopment of the cstimation approache, The expectation nd variace of ¥, see

eiven by

BQ) = =1 (4w

Do

ond
Var(Vy) = w0y () )+ 6 5~ 1V ar(Ty)

=l =),




The covariance between ¥; and Y, for u < j, is formulated by

Canly, BV, ) = E(Y) (Vi)

= E(I#Ty+ (=7 )(1 = Tl T+ (1 = 7)1 = T}

=) = g1 + 4~

= (4~ (T, T),

where (x~ + " ~ 1) is the Youden's

lex which captures the performance of &
dinguostic test [Youden (1950)]

To develop
eters, one necds to compute the moments of the response up to order four. Keeping

i mind ¥ = ¥, the caleulations involved are given by

E0Ya) = (1= P4 (L= w0 ) +7° = D+ + (™ +5° — BT T),

E(¥aa) = E{IT =%+ +5* = DTal}
.

i+ = Dl + o+ 0)

= (-rPa-r
H1 =) 4w = I (E(TT) + E(TuTa) + B(TT)]

Ho e VBT,



BV YuYaa)

BT -

= =) = (=T 0= 7 =7+ e+ )

]

=8P + 7 = VBT T+ Ty + Ty + TuTi + TuTa + Toi)
H =m0 4 = )P BT T+ BT + TuTyTu+ TuTuTy)
+Ho 47 = )BT

%

s clear that
the 15t to 4t order moments of the true response 7. The corresponding quantities
s canbe calculated under the

abont. the true response T avolved i the f
assumod model (3.28) of T in Section 3.1.2.
covariances under model (48) are nooded for the parametes st

The followi
‘mation in the GQL? (it is OGQL under the assumed model (3.28) of 7) framework:

They are given by

ConYy, YY) = (8 +7% = 1)(1 = 7°)Cou(Tyy, Tus + )

1 = 1P Con(Ty, TuTa)

ConlyYunYa¥a) = (5~ + 7 = 1)\CoulTy T, TiTa)

A = )1 = ) Cou(Ty + T,

Hr 4 = 1)1 = ) Con(Ty +

A1) + (1= 7Y Con(Ty T, T + )]




In additon, since ¥ = ¥, we ave

Conl¥y, Yay) = E(Y¥u)(1 = E(Yy),
Conl¥¥a V) = E(Yi¥i¥a) ~ E(YiYu) BQYiYa),
which are linear combinations of the moments of the true responses,
Noto that if we have a perfect specificity 7~ = 1, that i, the completely exact
diagnoses among; the healthy population, then the 1st 1o 4th moments given above

ean be greatly simplified s follows:

PERL™
EOGY) = (VBT
EOYaYe) = ()BT,
E(yYuYula) = () E(,TuTT),

1. follows that the covariances can be simplifed by

Con¥y,Ya) = (*FCon(Ty, Tu),
ConlYi, YY) = (r*)Con(Ty, TuTy),
Conl¥y, Yaa) = () Con(Ty, TuTu).

ConlYyYou Vi) = (1) Con(liyTou T

CoulVy¥au YaYi) = (*)'Con(Ty T, TuTh).
I addition, the variance of ; can b simplifie o ollows
Var(Yy) = wong(t=n*ng)
= (P Var(Ty) + 7= 7y

o



Therefore, in case of perfect specficity, the estimating cquations approaches become

much simplr.

To be specifc in developing estimation approaches, we assume that the true re-

sponse T, fllow the transiton model (328). We rewrit it s
Ty = PO = AT = b))
et
) 1 @)

The Ist-4th moments of T under this model can be found in Section 3.1.2

4.2.2  Estimation of the model effects

“To develop the methodology, we assume that the s

itvity * and the specficity
= are known, mainly for the simplicity of the derivation. In fact, in epidemiological

studies, eves i and 7~ aro unkown, some reasonable stimates can be obtained

from previously similar studies or from independent. validation studies of the clas.

ification scheme, ar from some more exact clinic cxamination of  rolatively small

. o that the &

1l [Roy; Banerjo and Maiti (2005). Wo further as

o response
7, folows the transition model (49) with bascline obwervations ta = 0.
4221 GQL method

When the sensitivity 7+ and the specifcity =~ are known, the parameters of

interest a0 = () from the transiton el (1), where § = G, ..., ) i the

Vector of regession coeffic

and 7 is the dynamic dependence parameter

To estimate the model parametens based on the GQL method, we solve the fol



lowing estimating equations

3B = (110)

where gy = (s, -+t = i), anc O3/ 0 i the first ocder derivtive

matrix of 1, with respect t0 0 of dimension (p-+ 1) x J for known * and = The

Jkth clement of 0 /00 s given by

P = A + 101 A=
o gy Yt
iy~ ) 2 y
=
e ert -0 Emeutt=i) Il =m0 @

for j

10 and Ona/0y = 0 = a0y = 0. T is the variance-cowarince

‘matrix of ;. 115, is replaced with a general “working’” covariance matrx ¥, n the.

case that s unkaown,the GQL approach becomes the GEE appronch (Liang and
Zoger (195)].
Once wo lave the estimate fgi, the comesponding comssent esimat of the

coninncs matof G s gve by

Vioa = (£ %

[ (13)

4222 Maximum likelihood method

lariy conditions, such as imperfoct sensitivity and specificity, that s 0 < 7, 7~ < 1.

0



plete likelibood fnction given observations ¥ = y and T = ¢ is formulated

L0.) =TT/ tnomumber (1)
= lfllf(m.w.l

= M/ ] (1)

where gy are given in Section 3.2, and

Sults) = (P01 =l (1 =

o (A YO )R )1 (416)
The o elbood fnctionca b cxpreed as
Wity = ?;‘-(”-l‘vh)
- i);“ruw.,ﬂw.m—.);?;rwllnw,,uw.,,.»
+.:tim;(l-1u)"'ﬂlfw‘]fég(l*h)l.ﬂaﬂ“*“‘)
E Emitorr* + 5550w~ osr ()

In €0, the values t,i

i 17 are ot abservable. We,
therelore, apply the EM algorithin o find the ML estimates of the model parameters.
Given an nitial value 69, wo denote 0% as the estimate of 8 at the Kt iteration

The (k -+ 1)th iteration of the EM algorithm can be derived s follows




E-steps

ind the expected complete-data log lkelibood function if 0 were 0

Q)

= BT,y =y,0%)

= ST 42t )

=3 5ol + oty + MY + Lol + sl

+ 2Dt ot + 35300 -1 = g

where

(a19)

and

(tgtigmt) ™+ = Egu(TyTigal

Let 0% = {12 om), 9f = 0¥\ {5} and Oy = 0¥\ (j = 1) For

k€ 0%), A= ta = Lk € 0} and

siven i, we denote A = {k

Agjer = {k s ta = 1,k € Qf_,}, where ¢ i the value of T, the probabilities involved

n (4.18) and (4.19) can be calculated as
PO=3)

lTigmr = tig ) P(Tiga

T PYi=ulli=t)P(T; 117,
= =

b WS I T ow P
5 e B e B ey aei™ (i
-3

I - Il — )i (m,,):...m, -

setra

0



P(Yi= Ty =1)

= T Pt Ty T T )= By tigois

T L PR T w
£ B B ™ et

JL a0 [T e (Bayy,

and
PO= 0Ty =1 Ty = 1)

= T P T Ty e Ti) = (oo L1

4T R aeeE

I -0 JL0 - ) oen ()™ g,

o

- E P
r) et (1 g peina™

where |A] denotes the size of A, A = AUk +1: k € A), and Jpien = 1

K+ 1€ A, 0, otherwise, 2% = {B: B C 2#) consisting of all subsets of 2%

Mestep: Deter

we solve equations:

=),

5 = = g = )5 e

(CUPIES Wi

102

1 649 by maimizing the expecte log-ikelibood. To do s,

()

(12)



Once the ML estimates i, are achieved from the EM algorithm, we can es-
timate the variance-covariance matrix of the estimator Gy, by the inverse of the
observed Fisher information matrix Jy. Denote the first and second order deriva-

tives of the log-likelibood functions ((0;1,3) and 6(0;ti, ) as S(0;1,3)

s

B@:tY)

Ty

L, Si0:t,) = 4G, and B(O;

ivel. Then we e S034,9) = 5 506t ) ad BO31,) = 5 B05 ). Lowis

(1952) suggested a formula for the observed information

Iy = EyB®Y,T)ly] - ES@:T,Y)S'(6;T,Y)ly] + E;[S(6: T, Y )|y E;lS(6: T.Y)ly]
- BBV~ gsl[s,u.r.‘msw. il
5 BISET B OT, )
Foe multoomial varabes, Iy educs to
?;5.\515 T3 Yol EalSI(6: T2, Yo ] (a23)
e o thefact that
EIB(O:Y, )] = EIS0; T YOS T, ). (20

e to undeestimate the tue standard erors tho MLE's based EM algorithn. 1
may b bocaune th dffrencsbekweenthe baervod vl o he o skdes of -
o (121) i ot guorable, We next ntroduce  coreted etmato o the Fisee
informaion based on fantion (4.17) Fromthe full lkelibood function (114, it can
be seen that the conditional density f(y|t;) do not contain the parameter of interest
0. This lads 0 2290 = 5(65,1), bence Z50 = BB5,1). We dofin the complte
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rmation matrix as the expected complete-data log ikelihood function (1.17), that

gty

(1= s+ (0= A0 = -l (1

) [ 0= g1y (1= s

which can be evaluated at the fn e, we define another

estimate ;. Furthe

quantity as

o - -5(22)
oo

‘. ]x.,[m,u )1 = ¢5) + 51—

=2
1=

Sl s = A ’.’x..]

e

Alveth Al = A5

In EM algorithm, Iq can be estimated by employing (%) from the last Estep.

and

16, Let 7 be the analogy of S for subjoct i, which is actually equal to

)840 from the last

S o) by eoplacing £ and bty with €5° and (1
Bstep,respectively. Our simulations rovel that the estimated Fry and g ae very
close. Howover ther differenc i siguiicant fa from 0, which can be used to corect
the bins of Lovis estimator (125). Therelore, our new estimate of the abservod
information s given by

I = Uy~ To + 355Dl (u2)
Therefore, the estimt of G can be gven by

Var(luee) = (7)™ (126)

l



1 i shown from the simulation in the next section that the new es

uator (4.26)

can consistently estimate true V(fyz) in EM algorithm. In addition, this new es-

imator i n good concordance with ¥ (o) which willbe iven in the Section
1223
Romark:

1. Suppose that we have the observations of T, = £ and Y = . As mentioned

in Sction .1, f we have perfctspecfciy, then (1) = 0 and 1 -

‘And we define that 0° = 1. The con

ional likelibood part i the fll likeibood

function then can be modified to accommodate this case, and it s given by

lta) = (1 pa(a = 24w mA(1 )t
= (et )
hen the cormsponing g elhood fonction an be xprsed s
w = .)A’:u)l:‘l‘,(z:,»iﬂi-(ﬂ*)’:i“‘w[l el g

+ 1 Ltylogr® + 32 3(1 - vytylog(1 - 1) (a2

b (4.29).

2. In the case of perfoct scnsitivity, a smilar EM procedure can be developed.
3. Tho GQL approach developed in Section 4.2.2.1 automatically accommodates
these two special cases.
4223 GQL2 (OGQL) method

Here we develop the GQL2 approach, that i, the optimal GQL (0GQL) ap-
proach in Sutradhar and Fasrell (2007) o estimate the model parameters under the
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first-order logistic transition model (19) for dynamic binary data. This approach

tioned

can also accommodate the case of perfect sensitivity or specifcty. As

by Sutradhar and Farrell (2007), under the dynami dependence model (49), the
estimating equations based on both the ML and OGQL approach involve the frst
‘and the second order response. They demonstrated that the estimators obtained by

0GQL are almast. s ffcient as the ML estimators but with fower assumptior

he maodel However,this conluson was reached uder the assumption tht thero
5 0 misclassficaton in the data.

o this sction, we develop the GQL2 approach by expltng the fst a sc-
ond onder statistcs of th binary responses with misclsification being taken into

account. Tt wil be shown that the GQL2 method belaves sinilar to the maximunn

Hikelood approach in sinulation. Therefoe, in presence of misclasifcation, the
GQL2 approach tends to be aso the OGQL approach under the model (19). And

and caleulations are

the OGQL s

i simpler s far as methodology develops

concerned.

L
(Ve Vi

Futher,let

110 the observation of F, = (1,81, where Y, = (Y, .., Y, and S, =

Yiga¥a), then b = E(F) = (4,)), where v, = E(S))

oo Coti) Conttis)
T\ cwisiv) cots)

b tho J(J + 1)/2 % J(J + 1)/2 covrinnes matrix. The estimating oquations take

the saumo form as those in (Sutradhar and Farrel (2007). Bt the menning of the

components in ourwetting s differet rom the ones in [Suteadhar and Farrell (2007)]
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Our OGQL approach s given as

(129)

“The quantities required in this equation such s i, 1, Cou(¥), Cov(S, ;) and.
Con(S) can be caeulate based on the moraents given i section 42.1

Now, let , denote the expecte value of the true response S, with clements
Gue = E(TT.). The clements of thefirst order dervatve of & with respect 0 0 are
formlated by

RS S

T

where %' are given by expressions (22) and (23) in the paper [Sutradbar and
Farrel (2007)]. %' are given in the following equtions

51 T ot (35~ K)o + 6 = ) zalcrseen, (430
o 0 [l
3 Tl st A5 Nl )
[Suradhar and Pl (2007)
can b constetly cimated by
Vdooan) = (£ 5005 58) ot )

4.2.3 Simulation Studies

As those in some other estimating-oquations-based approaches, the estimators

proposed in a
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In this subscetion, we study the properties of the proposed st
tors, through Monte Carlo simulation. Random samples

tors, namely, the

GQL, 0GQL and ML et

with a size similar to that of a subset of the HGSC study were generated based on
different designs of covariates. Model parameters are then estimated by using the

three proposed approaches.

e designs.

1 Cova

In the simulation study, we consider / = 560 independent subjects each with

1,

repeated observations. The true data 1560 and j =1,2,3,4,are
sencrated following the dynamic model (19), and the obsered data i are gener-
ated following the misclassification model (18). To be speciic, s can be generated

following the procedure described below.

(1) Once weh

r1-7).

(2) Secondly, we generate another binomial ariable V from binomial (1

(3) Lastly, we get iy = U+ V.

‘Sutradhar and Farrell (2007) conducted simnlations for error-free binary data

based on the fol

1 threo covariate designs. o our simulation studics i this sec-

ry data. The three designs are given by:

Design 1: 1) = 1 and iy = j/A for i = 1,.... 560 and j

Design 2: 2 = 1, (G = 1,2); 20

g =1, J



250 =0, G 1560,

T =34, 3

,2) 7y = -1, (5 =3,4),

Ty = =05, (= 1,2); 2y =05, (
Ty =i, 5= 1A, = 1,020,
um =050 ~2),

=21, 560,

Simulation

the choices of parameter values are presented

he subscquent subsections in the
form of tables

4232 Estimation of the model parameters

In this subsection, wo carry out.a simulation study (o examine the finite sample

behaviors of the GQL, OGQL, and ML approaches discussed in the Section 4.22

for the estimates of the model parameters 0 = (,7)' involved in the model (19)

and (48). o this purpose, we it geneate data s = (st ) for

1,241,500 nd J = 4 by model (49) and (48), in each of 1000 simulations, using

the three covariate designs as mentioned fn the previous subsection. As fr as the

model paramoters are concerned, we have chosen

8= (s =017

¥ =15,0,and




(x*,7) = (095,090) and (0.75,080),

where = 0 implies dynamic independence. The higher values of sesitvity 7+ and

the speciiity 7, that i, (0.05,0.90)in the simulation, means lessclasifieation exror

for an excellet diagnostic test, whereas the lower values of this two quantities, for
example, (0.7, 0.80) in the simulation, implies more classfication error for a poor
dingnostic test.

The simulated means (SM), simulated standasd eerors (SSE), estimated standard
ertors (ESE), and coverage probabiliies (CPr) of the 95% confdence intervals for
)

the interested parameters  and 7 are reported in Tables 42-04 when (r*,
(0.95,0.90) under the covariates designs 1, 2, and 3, respectively.  Simlarly, the
computed M, SSE, ESE, CPr's of § and 7 are reported in Tables 4507 when

(r*,7) = (075,0.80) under the covarintes designs 1, 2, and 3, respectively. It

iven a signifcant level a, where 0 denotes the th lement of 6, = 1,2,3.
Furthermore, in each of Tables 42-47, three different estimates are computed

wnder cach of the GQL, OGQL and ML approaches. Namely, they are the ideal

stimates (1) when the abservations of the eror-ree response T are s, the naive
stimnten (2) when the data {1} are o with ignoring misclasifation, o the

cortcted estimates (3) taking casification error the data. {u;} into consideration.

0GQL, and ML

339 I 1

e caleulatst basee on the estimating equations under the three proposed estimation



approsches which are given in Sction 42.2 in thischaptr.

Obviously, the ideal xtimates (1) can be expectd 1o perform the best when
observations of the latent responses are milble. However, this s ot awys the
case i practice. Thersore, it i o main nteest i this subsection 1o cxamine
e performance of the nave stimaes and the correted estmates under the three

estimation approaches.

First, wo check the performance of the GQL, OGQL, and ML estimates under

asumed

1t s clear from Tables 4.2-47 that all of the three approaches yield ignorable biases

o the estimates of 6

(9,1 The OGQL method soems to prodce lmost the
same rsuts a the ML et docs. The SSE's under the GQL method ar lrger
han those under the OGQL and ML methods. Howeve, generally spesking, these
e appronches are highly competitive, as fa as the closenes of the ESE's (0 the
corresponding SSE's, d the CPr's are concered. Sinilar conclsions are eached

by Sutradhar and Farell (2007). For instanece, the ease when (1%, 77) = (0.95,0.90),

7= 10 under covariate dosign 1 is & good evidence of this conclusion. Howerer,

the performance of the ideal estimates is not of our main interest, due o the linited
application of the ideal estimates i practice,

One of aur main objectives i to comparo the performance of the naive estimates

er the three estimation approaches, Generally, all of the three approachcs pro-
duce ighly biased estimates through the three covariate designs, and the situation

et worse when (%, 77) take low values, . (x*,7°)

(0.75,080). To be spe-
i, the naive estimates of 6 = (7,7)’, when (z%,77) = (0.75,050), are greatly
iderestimated. In addition, the computed coverage probabilities are basically lower

m




than

e expected value 0.05 e to the bias of the estimates of the parameters. For

example, whe

(r%,77) = (0.75,0.80), the CPe’s are all neasly 0000 in the case that

=15 It is, however

eresting to see that from Tables 42-4.7, the GQL method
docs ot necessarily perform worse than the other two methods. In some cases, the.
GQL method even performs better than the OGQL and ML methods. For cxample,
under covriate design 2, when (¥, 57) = (0.95,0.90) (Tuble 4.3, for 0 = (1,1,-1)

s 3= 1, e gt g = (0579,0973, ~0574Y,skong wit the epective CPrs

(0862,0.853, ~0.725)' with a cor-

iven by (0725,0961,0.938), wo b et o

responding P vector given by (0.653,0.808,0.292). I this example, the GQL es-
timates aro Jes binsod than the OGQL estimates, and the corresponding CPEs are

closer 0 0.95 than those un

 the OGQL method, which may be due to the less

error information used by naive GQL approach compared with the naive OGQL and

ML approaches. The nive OGQL estimates perform sinilarly o the naive ML sti-

wates, ke i the deal case, 1 can be undorstood that the clasification ertors phays

an important role i the process, The estimates are all attenated by it

Now, we move on to examine the performance of the corrected stimates under

the GQL, OGQL, and ML appronches. Form Tables 42-47, we can see that all

of the three approaches produce approximately unbinsed estimates, with coverage.

he nominal lvel o 0,05, L and ML

0GQL wnd ML methods wse more information from the data than GQL does. This

can be demonstratest by the smaler SSE' undor the OGQL and ML methods than

those under the GQL. Furthormore,

continues 10 be seen that the OGQL method

ekl efficient etimation results almost z




by the rslts i the case that 3 = 0 when (%,7°)

0.95,0.90) under design 3 in
Table 4.4, The correted GQL estimates g = (1004, 1003, ~1011) with CPr's

(0.955,0.954,0.956) and the corrected OGQL estimates focqr

1004,1.004, 1012
a
,0.145,0.101),

with CPrs (0.944,0.953,0.052) e all very close to the true value 1) with

and the SSEsof foaqu. are given by (0.080,0.121,0135Y, it can be found that the

SSE's under the OGQL method are smallr than the SSE's under the GQL method.

At last but not least, we compare the ideal stimates with the corresponding
corrected estimates under the three estimation approaches. It can be seen that both
isesd,

probabiltcs e near 095, Hovever, the SSE's of the ideal estimates appear o bo
lghtly smallr than the correted estmates. Al of this soems qite reasonabe,
becae the ideal cstimates e suppese to be the best. among the thrce inds of
stimates. However,the corrcte estmates e lmost s fficent s th ideal nes,
i they are more pracicl ince mislasification rtors may oftn happen in s
of casen

Now, before we esch onr fnal concusion, hore are e uportant ponts 0 be

-

1. The OGQL and ML approaches perform almost identically in most of coses
s fr s the unbiasednss, estimated standard errors, and coverage probabiltes of

the 0.95 confidence intervals are concerned. This is because the OGQL approach

tilizes as much information as the ML approach docs, that s, both approaches use
the frst and second order statistics of the responses in their estimating cquations.
Becatse of this similarity of theoretic development, these two approaches are found

n3




to perform as poor as each other in the naive cstimation. This frther explains that

the OGQL aud ML be surpassed by the GQL method in some cases

of the naive estimation because the GQL approach uses

A the first order statistics
of the erro-prone responses, hence lss rror information is used in the estimation

2. For the ideal and naive cstimates of the parameters 0

(#,7)', the ordinary
ML approach is applied, whereas or the corrected estimates under the ML approach,
the EM algorithm is utilized. Accordingly, the covariance matrices of Var(f)
for the ideal and naive estimates are consistently estimated by the inverse of the

observed information matrices 17 and I, respectively. For the corrected fy ob-

algoritin, ly

estin

ted by (4.26)

In conclusion, the simulation reslts in Tables 4.2-47 show that. the three pro-

posed estimation approaches, namely, the GQL, OGQL and ML approaches, are
highly competitive in both situations where the latent responses aze known, or the.
‘misclassifcation of responses is corrected, whereas the GQL approach appears to be.

lightly lessefficient than the other two approaches, a far s the simulated standard

ertons (SSE's) are concerned. On the other hand, under the naive situation, where.
misclasification of responses is ignored, all three approaches are found to perform
poarly, with the GQL approach being slightly better than the other two approaches

Throughout the simulations in this section, the OGQL and ML methods produce.

quite similar results, due to the similariy of their theoretic development. However,
considering the complexity of the EM algorithim wsed fo the corrected ML method,

nend the use of the corrected OGQL estimates i practice.




Tk 43

S
e vl ofparamtacs

Ttk Dugn | i ()
1)

(0.95,090) and the

T 0GQL ML

T Quuiy [ @ _ @[ @ O[O @ ®
15 SM(#) | 1015 0909 1007 | 1032 0083 0092 | 10T 0.983 0905
SSE 171 0161 0314 | 0160 0144 0251 | 0160 0144 0250
ESE  [0171 0165 0310 0165 0142 0244 | 0165 0142 0242
cpr 0954 0174 0940 | 0963 0850 094 0962 0851 0.946
SM(%) | 1002 0696 1011 (0989 0771 1052 | 09589 0771 1054
SSE 0461 0319 0702|0427 0323 0732 [ 0427 0323 0631
ESE | 0.465 0704 | 0425 0318 0716 [ 0425 0318 0616
cpr 0952 0492 0950 0807 0948 805 0945
SM(y) | 1505 1402 1512|1582 0852 1501 | 1582 0850 1501
SSE 0385 0277 0515|0236 0181 0450 0235 0180 0450
ESE | 0379 0275 0511 (0200 0177 0437 | 0230 077 0435
cpr 0936 089 0951 | 0950 0071 0947 0955 0070 0047
0 SM(7) |1009 0950 1010 [ 1005 0975 1005 | 1005 0975 1005
SSE 0136 0126 0164|0130 0125 0161 (0130 0125 0.161
ESE | 0132 0128 0167 0132 0127 0164 | 0132 0127 0164
cpr 095 0952 0.048 | 0957 0945 0952 0056 0945 0.952
SM(%) | 0989 0727 095 | L007 0760 105 | 1007 0760 1015
SSE 1380 0350 0456 | 0273 0241 0360 [ 0273 0241 0350
ESE | 0375 0344 0470 [ 0207 0212 0360 | 0267 0212 0362
cpr 0912 0869 0954 | 095 0827 0953 0,955 0824 0952
SM(y) | 0.008 00250 0013 [-0.000 -0.003 -0.013-0.000 -0.003 -0.013
SSE 0285 0275 035 | 0453 0137 0213 [ 0.153 0137 0213
ESE | 0275 0206 0343 [ 0048 0135 0212|0148 0135 0213
cpr 951 0951 0951 [ 0013 0018 0954 | 0043 0047 0052
LT 0955 LOIO | 100G 0949 1LO0S | 1006 0949 1008

121 0421 0151|0120 0118 0150 [ 0120 0.118 0150

ESE [ 0120 0120 0151 (0122 0119 0150 | 0122 0119 0151
cpr 0951 0926 0060 | 0953 0925 0957 | 0.053 092 0956
SM(%) | 0994 0838 1000 | LOGD 0.706 1008 | 1 06 1007
SSE 0200 0260 0325 0213 0200 0276 | 0213 0206 0275
ESE 0261 03220213 020 0272 | 0213 0203 0273
cpr 096 0891 0952 | 0.950 0049 | 0950 0.682 0950
SM(y) [-1.002 -0.861 -L009|-1009 0717 -LOIT [-L000 0717 -LOIT
SSE 0200 0214 0249 [ 042 0117 0169 012 01T 0169
ESE | 0200 0213 0245 (0120 014 0168 0120 0114 0166
cPr 0952 0908 0942 | 095 0296 0946 | 0.055 0205 047

15



true values

Tl 43 St sl uder Dosgn 2 it (x,1)
wes of parameters = (1,1)

(0.95,0.90) and the

Tar QL ML

T Quuiy[ 0 B0 @ @0 @ 0
15 SM(7) | 1005 0805 05 [ 0998 0.797 0.099 | 0998 0707 0999
SSE [ 0120 0103 0161|0113 0000 0143 0112 009 0143
ESE  [012 0107 0160|0117 0104 0147 (0117 0104 0148
CPr [ 0950 0553 0950 | 0956 042 0967|0951 0.8 0.9
SM(3) [ 0997 11 1010 | 1019 1217 1027|1019 1217 1030
SSE | 046 0367 057 | 0234 0207 0328|021 0207 0323
ESE  [0410 0368 208 0205 030 0239 0209 0333
CPr 097 0920 045|090 0821 0960 0958 0831 0.960
SM(y) | L1 OS5I 1550 | L498 0777 1505 | 1498 0777 1501
SSE [ 0483 032 0643|0181 0150 0300 0181 0150 0299
ESE [ 0475 0365 0627 | 0191 0156 0313|0192 0158 0313
CPe 0945 050 0917 | 0958 0003 0961 0960 0008 0961
0 SM(B) | 1008 0875 1 002 0873 1003 | 1002 0873 1003
SSE [ 0008 0116 [ 0093 0093 0116 | 0093 0093 0.116
ESE [0 o1 | 0 091 0114 | 0091 0001 0114
CPr 0961 0711 048 | 0967 0702 0912 0957 0703 0T
SM(3) | 0981 0958 0984|0096 0939 1001 | 099 0939 1001
SSE [ 0277 0261 0331|0173 0166 0225 0173 0166 0225
ESE [ 0265 0206 0320|0166 0150 0217 0167 0160 0218
CPr 0941 090 0950 | 0931 0925 0953 [ 099 0928 0952
SM(y) | 0024 0028 0.025 | 0.006 -0.008 0003 [ 0.006 0008 0.004
SSE (0271 0205 0328|0131 0121 0179 0131 0121 0170
ESE [ 0260 0257 0315|0130 0123 0180 0130 0123 0181
CPr 0010 0915 0051 | 0038 0051 0952 [ 099 0950 0950
Loe2 0879 1001|1002 0862 L001 | Lo2 0862 1001

SSE | 0001 0080 010 0087 008 0107|0087 0081 0107
ESE 0003 0000 0113 | 0090 0087 0110 [ 0090 0087 0111
CPr {0057 0725 0955 0961 063 0961 | 0961 0652 0.960
0999 0973 0992 | 1003 0853 0999 [ L003 0853 0999

0192 0199 0231|0135 0133 0172 [ 0134 0133 0173

0202 0206 0289|0141 0137 0181 0111 0137 0181

0962 0961 0061 | 0950 008 0957 0958 0800 0957

L000 0874 0902 1005 0725 1001 |-L005 -0.724 -1.001

SSE | 0212 0213 0248|0109 0105 0147|0109 0105 0147
ESE  [0214 0219 0250|0111 0108 0153 0111 0108 0153
CPe | 0953 0938 0952 | 0958 0202 0962 | 0959 0202 0961




Table 4.4: Simulation results under Design 3 with (x*,77) = (0.95,0.90) and the
e values of parameters 3= (1,1)

[0
2 Quutiy [0 @ |
15 SM(m) | 100 0807
SSE | 0072 0065
ESE [ 0071 0065
cpr 0o 0162
SM(E) | 1001 0.607
SSE [ 0160 0158
ESE [ 016 0152
| 0985 0492
| SM(y) | 1506 102
018 01ms
ESE [01m 01m
Pr 013 0001
0 SM(B) | 1005 o
SSE | 0068 0062
ESE [ 0066 0063
cpr [omr o,
SM(z) |09 0sI7
E |01 0125
ESE  [0128 0126
; 093 0680
SM@) | 0001 0132
E 0165 0143
0182 0143
cpr [ oot osyT
1A 1003 0851
SsE | o007 oo
00m
chr |oo o
1003 0854
ssE |00 oo
ESE [012 010
cpr |06 07t
3 1010
sse | o7 0157
e | o161 015
crr | o o510




Table 4.5 Simulation results under Design 1 with (v*,7°) = (0.75,0.80) and the
truo values of parameters = (1,1)
GQL

7 Quantity [T ()
15 SM() | 0999

SSE 060

ESE | 0071

cPe | 0o

SM(3) | 0990

SSE 161

ESE | 0165

cPe | 0956

SM(y) | 1520

SSE 181

ESE | 0180

P 951
0 SM(#) | Lo

SSE 063

ESE | 0066

cPe | 006

SM(B) | 1006

SSE 127

ESE 128

cpe | 09w

SM(r) | -0

SSE. 143

BSE | 0142

e 51
s | oo

SSE 129

ESE | 0123

e 36

SM(3) | Lood

SSE | 022

ESE | 02687

cpe | oo

SM(y) [ -0907

SSE | 0214

ESE | 0210 )

cpe | oo 0619 095 | 0958 0000 0960 | 0 o0 0965




Die 44 Smaon ez dc D 2 with (1)
a

(0:75,0.50) and the

true values of pars
GQL OGQL ML
Quutiy [T @) @ [0 @ & [ 000
15 LN e e R
122 0100 01610112 0005 0130 | 0112 0086 0130
B [0 ows own|oms otor o1 |oar oid omst
P 958 0955 0.960 078 0954 [ 0962 0472 0952
SM(3) | 1003 11613 1009 | 1037 1231 10N | 10T 120 1003
SSE 430 0357 0571|027 0119 03120227 0200 0331
ESE |01 o. 5% | 020 0215 03% 020 0210 0331
CPr |04 0914 0048|0958 052 0959 | 0958 082% 0962
SM(z) | 1550 082 L5 | 1501 0776 1534 | 142 07M 150
SSE A% 0350 0661 | 0181 0149 0434|0180 0149 0432
ESE  [0457 0365 0501|0102 0158 043 0192 0158 0431
CPr 02 0516 0946 | 0956 0002 0959 | 0946 0002 0.953
0 SM(A) |09 0421 1020|0997 0423 1014|0997 0428 1012
SSE 091 0050 0197|0093 0080 0197 0093 0080 0195
ESE | 0001 0082 0202|0091 0082 0200 (0034 00s2 0201
cPr 941 0000 0955 | 0953 0. 951 | 0953 0000 056
SM(3) | 0985 0383 0971 | L0 0371 1017 | 1006 0371 0995
SSE 212 0232 059% | 0168 0123 0465 | 0168 0123 0442
ESE | 0263 0226 0565|0167 0127 0456 | 0167 0127 0438
CPe [ 004 0175 0953|007 0002 0950 | 0048 0002 0962
0020 0039 00I7 0001 0000 0007|0001 0000 0014
212 0285 0601|0132 0007 0437|0132 0097 i1l
0259 0273 0562|0132 0099 0422|0130 0009 0.21
0911 0945 0951 | 0044 0957 0949 | 0944 0957 0958
10D 0412 1007 [ 1003 0.425 1005 | 1003 0425 1002
SSE 02 0085 0196|0089 0080 0190 0089 0080 0180
BSE 093 0083 0197 | 0090 0081 0.193 0090 0081 0191
CPr 095 0000 095 | 0955 0000 0955 0958 0000 0950
SM(3) | 0992 0406 0999 | 1 22 1014|1000 0202 Loot
SSE 203 0195 0402|0138 0119 0341|0138 0119 033
ESE [ 0202 0107 0303 011 0120 0313 (0141 0119 0344
CPr 098 0160 095 000 0952 | 0954 0000 0951
SM(3,) [0990 -0573 0994 (-L001 0262 -L0I2 [-L001 0262 0997
SSE [ 0218 0255 0423|0109 0095 0313 0109 0005 0306
ESE  [0214 0251 0406 |01 0091 0319 (0111 0094 0320
CPr |09 0618 094 | 095 0000 0961 | 0959 0000 0963




Simulation results under Design 3 with (x%,77)
0

Table 4.
true values of parameters 3 = (1,

(0.75,0.50) and the

3L
2 Quantity O RE

B 107099 08T 1013

0166 | 0066 0019 0161

0160 | 0060 0051 0160

0955 | 0958 000 0958

1000 [ 099 0401 1005

015 0088 03%

01 oo 07

0962 000 0962

) 1512 0361 1530

SSE o121 0081 0307

ESE 012 008 032

cer 0952 0000

0 sM() 1003 0431 Lot

SSE 0056 009 013

ESE 0133 [ 0060 0051 0.133

cre 0963 | 0961 0000 0962
M) 100 [ 1001 0381 1

E 0201 [ 0103 0085 0213
ESE 0245 | 0106 0087 0.

cer 0963 | 0953 0000 0966

M) 00100002 005 0007

SSE 0206 0005 0080 0214

ESE 0200 | 0005 01

cer 0017 | 0951 0920 0952
A 1 0908 0379 1

sse o | 0059 0052 0146

ESE o015 [ 0060 0051 0149

crr 0055 [ 0961 0000 0951

b 1013 [ 090 0312 1008

s 006 0223

ESE 0095 0083 0223
cer 0943 000 0

5 0999 0357 1011

SsE 009 0083 0255

ESE 0007 008 0264

cr 0915_00m_ 0057




3 Insight to robustness: a continued simulation study

Recall that

the previous subscetion, we checked the performance of the ideal

estimates, naive estimates, and correeted estimates of 0 = (,7) under the GQL,

0GQL, and ML approache i i

situation best. Tn this subscetion, we continue (o examine the robustness of the cor-

Note we

simply assumed that the sensitvity =+ and specificity 7 are known. This assump-

tion, however, may not applicable in practice. Some anthors suggest that estimates.

of these two parameters, =+ and 7, may be derived based on some independent vali-

istorical knowledge. historial values may

be biased from he true values. Therefore,

i interest n this subsection o

biased estimates of 7+ and 7 are used when they are wnknown.
For the regression parameter 3 and the dynamic dependence parameter 7, we

chose 3= (1,1, and two values for 71 1 and 0. As ar as the true values of =+ and

£ arecomerned,
ich are (s, °) = (095,090) an () = (0T5,010). To be speifc i the
e o (r,57) = (095,090),thr pios of bised etimtes of (x*,77) re wed
hen 3 = 1 or 0, they ace (096,09, (09, 050) i (097, 0.92), and two etz
s (0965, 0915 nd (0935, 0.855), are usd when y = 0. 500 simulations are

conducted when the true values (x°,7)

(0.95,0.90). Similarly, for the true values

(x*,77) = (0.75,0.80), three pairs of biased estimates of (x*,7) are used for both

cases where 7 = 1 or 0, they are (0.76, 081), (074, 0.79) aud (0.77, 082). Two more
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pairs (0.765, 0.815) and (0.735, 0.785) are used when 7 = 0. 500 simulations are
conducted i the case of (x*, %) = (0.75,0.80). The simulation resuls are reported

Table 48 for (x*,77) = (095,090), and Table 49 for (",

= (075,080),

where in both tabls, covariate design 3 given in Subsection 42.3 is used.
1t can be soen from Table 48 and Table 49 that the OGQL approach continues
to perform similarly to the ML approach in most of cases. Therefore in the following

part of this paragrap, we focus on the comparison betwoen the GQL approach with

the ML approach at the same time. 1t i clear from the simulation results that all

" ches pr biases on = (7.7 when the

biases of of estimated (*,7) are very small. Howover, the estimate of parameters

‘and confidennce intervals for some paraimeters way ot perform well whe the bias of

* and ~ gets larger. For example,for true values of (1°,%

(095,090) when
e values (0.97,0.02)are wsee i the case that 3 = 1 (Table 48, fcar = 0.89 (the
CPr's 0.934), and foagu = 0.88 (the CPr's 0.860). They are sigaificantly smaller
than the true value y = 1 (the nominal level 0.95). Thercfore, when the biases of
e cstimated snsiivity * and specificty 7 become larger, the estimate of model
parameters 0 produce more and more bises from their true values.

Furih

e, the simmulation reslts in Tables 48 and 4.9 show that the 0GQL

ppronch tends o perforts better

i the GQL appronch as far as the simulated

standard esrors (SSE) are concerned. For exan

e, when (",

) = (095,090),

1 (Table 48), an the “working’ value (x5 = (0.94,0.89) e use, the computed

12



both n

thods, the ESE's of § are quite close to the respective SSE's. Howover, the

biases of the OGQL estimates of # may be greater than the GQL estimates in the

case that the “working” sensitivity and specificty have much biases. For example,
ocgr = 0:844 more bisse from the true vlue 1 than gz = 0.883. This is because
the OGQL approach G

the much biased sensi

ity and specifcity used,

Another interesting finding is that when the working values of (x*, ) are slightly

overestimated, s, especially,

underestimated. For instance, for (%,

(075,080, 7 = 0 (Table 1.9), when
(0.76,0.81) are used s the working values of (x*, ), the SSE's of focqs = (#,2)

are given by (0.108,0215,

311), which are smaller than the corresponding SSE's

iven by (0.125,0.251,0.36%) when the underestimated values (x*,7°) = (074,0.79)

are used. The same finding holds for the GQL and ML approaches.
In summary, based on the simulation reslts in Tables .8 and 49, we recommend

the wse of slightly overestimated sensitivity 7+ and specifcty 7,

torily robust estimation sesults. Also, we suggest the use of the OGQL approach,
i it prodces tiny biases on the stimates of model parameters and smallee SSE's
than the GQL method when the “working” sensitivity and specifiity have small bi-

ases. I addition the, OGQL han the ML N

when computation s concerned
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Table 49: Robustness about estimated () on 500 simulations under
Domign 3 withthue vels (4%, 1-) = (0.75,0.80), 8 = (11,7 = 1.0
U ooqr | 1
() Quantiy) B B 7T B
T075080) SM_ (L0172 103 1058|1007 T T35 0903
SSE 37 0309 0672|0121 0216 0.362(0.119 0213 0358
ESE  [0.13% 0300 0677 [0121 021 0219 0366
cPr 960 o
(076081 SM
SSE
ESE
P
(074070)  SM
SSE
ESE
cpr
(077082)  SM
SSE
ESE
CcPr
0 075080 SM
SSE
ESE
cPr o
076081 SM X
SSE (0110 0208 0562 (0108 0215 0311(0.108 0215 0.303
ESe oo oot 08| oai o 00001t 0o 0210
e 5 0039 0.018 | 0944 0941 0962|0944 0.944 0965
OmoT) S| 107 1051 0055 1065 1 1061 1 i
SSE (0127 0320 0607 [0125 0251 0365|0124 0213 0358
ESE [0.133 0323 0596 0128 0247 0360( 0.120 024
CPr (0910 0010 0946 0941 0910 0958 | 0945 0.
(07650815 SM |-095 0.923 0038 |0942 0.933 0003|0942 0.920 0010
SSE (007 028 0515|0105 0211 0300( 0.105 0200 0294
0112 0267 0407 [0.108 5[ 0108 0203 0:
CPr |03 0912 0918 (0922 0.024 0958(0.926 0920 0961
(07350755 SM |-1009 1080 0157 [-1094 1095 0003|1092 1078 0.037
SSE (0131 0349 0608 0130 0. 120 0251 0379
0138 0322 0605|0131 0.252 0376( 0.134 0251 0377
CPr (0912 0940 0946|0922 0 0928 044
(077082 SM |-0928 0.901 0035|0921 0.910 0001|0922 0907 0.008
s (o104 o oo 001 o0t 0260/ 0101 020 o
ESE (0108 0266 0493 0104 0.196 0281(0.105 0197 085
cPr [ 0592 0356 0916|0552 0.902 0952| 0.566 098 0961
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4.3 Application to Children Asthma Data

HGCS is a large population-based longitudinal study designed to asess the effect

of indoor air pollution on the respiratory health of residents of selected cites n the

United States, which began in 1974, As a part of HGCS, a study was conducted

Steubenville, This

study has collcted complete information from 537 children. Each child was visited
at home annually from age 7 10 10, At each home visit, parents were interviewed

about the symptoms and diagnoses relevant to asthma and allergy history of their

ehild(ren) throvgh a proforma questionnaire [Ware, et al. (1984)). A Child's asthma.

status (Positive=1, Negative=0) was decided based on the information collected

the interview such as diet, 1

which was determined at the first interview, are also collected

Compared with clinical examination of each child, questionnaires are rlatively

easier and more economical to conduet. Unfort

ately, becanse of the complesitos of

wide range of severty,trggzers, and lack of mdical knowlodge among the public, it i
imposible to formulate completely relisble questionnaires [Jenkins, et al. (1996)].
Besides the inherent shortcomings of questionnaires, the challange for parents to

distinguish the symptoms of wheezing from cold symptoms, along with the great

overlap. it

i reduced . based only on reprted symptoms by questionnaires
[Dundas and McKenzie (2006)]. Therefore the reported asthma data are likely to be

contaminated wit However, the. ted

by the mothers at the beginning of the survey on a yearly basis, can be reasonably
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sumed t0 be fre of clasifiation errors.

In this study, mother's smoking habit is considered to be an important risk factor

children respiratory health, HGCS reported an significant increase in the frequency
of coughing and wheezing in chidren living in parental smoking fanilies [Frebele
(1996)). In addition, the 1986 sty conducte in Tecumseh, Michigan, reported that

accounted for o and risk of asthma
in chidren [Fricbele (1996)]. 1t was also pointed out by Gilliand et al. (2001) and
Pattenden et al. (2006) that the prevalence of wheezing in childhood is strongly

asociated with exposure to maternal smoking. In order to evaluate the effct of

o babit on cildzen asthima, analyis s
on the 557 chidren'sobservations s condeted, and theresult s shown n Table 110,

It can be seen from Table 4.10 that amon those chidren living with smoking
mothers, 36.95% of them have had at. Jeast 1 asthma attack in the past 4 years, as

compared to the rate 32.3% among the children with nonsmoking mothers. We have

conducted the Pearson Chi-square test and Belihood ratio test to check whether

there is  significant difference between these (wo percentages. The Pearson Chi-

square test (p-value=0.252) and likelitood ratio test (p-value=0.253), however, indi-

cate nonsignificant efect of maternal smoking, There are many reasons those cause
in the analysis.

the chidren at 1) with those

healthy children (asthna attacks

) redces the detectibiity of the efect of ma-
ternal smoking effect. When re-clasifying the children with more than 1 reported
asthima attack in the past 4 years into the high risk group, while others i the low.
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Table .10 Exploratory Analyssof Asthema Datof 537 Chidzen from Steubenville
Olio i HeC:
Materual smoking

Status | Astlma | 0 Percemtage | 1 Percentage [ Total Percentage
attacs

ety | 0 | ek |ns eu% | 8% o1

Whced| 1 |65 me% |® % | o7 1s1%
2 s oux (w0 owm | e osm
3 |2 s |n s [® 0 e
4 |n amm |7 sm [ s
svowl |13 ;% | @ wo% |1 3%
Total | 350 157 57

ik group, which

once from nge 7-10, the Pearson Chisquare test (p-value=0.066) and iklibood ratio

est (pvalue=0.070) indicate a non-ignorabe associnton between pusive smoking
and cidren b
Lotsofstudies hase been done to valute theadserseeflect of mother's smking
on chidren asthina based on this data set. For example, Zeger and Qagsh (1985) an-
alyzd the HOCS data by sing the generalized esimating equations (GEE) approach
s on . random efct model. Fitzmaurice an Lai (1999) developed Hielibood
ference s on the mothers' smoking sttus,the childrn's age avd the inierac-
tion betwen the tyo. Due to the srong asociation between the currnt asthma

status and the reported previous attack (Fulibrigse et al, 2001), the linear transi-
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tion model (2.1) appears to be a reasonable choice to analyze the data, and it was

used by Sutradhar and Farrll (2007) to exan

the cffect of mother's smoking and
the ke on cildeen asthma. Sutradhar and Furell the

generalized qusi-lkelinood (GQL), optimal GQL (OGQL) and maximum lkelisood

(ML) approaches to estimate the effect of mother's smoking habit and the provious

asthma aitack on the current asthma status of children in a dynamic model st-up

[Sutradhar (2003); Sutradhar and Farrell (2007).
However, all of these analysis were caried out. under the assumption that the ob-
served data are free of measurement errors and the data colleted by questionnaires

Wehave

‘mentioned collcted prone

rors, and the simulation study conducted in the previous section aso indicate that
ignoring measurement ertors i the data leads o biased estimates of the unknown
parameters. Therefore, n this section, we reanalyze the asthma data by using the

corrected GQL, OGQL and ML approaches taking the misclasification into consid-

eration to avoid misleading concluson.
Recall that the inherent asthma status of the ith child in the juh year, which was
denoted by T, may not be directly observable. Instead, his/hor manifst status Y

can be cas

obtained from the information provided by the pareat-reported HOCS.
questionnaires. Therefore, the relationship betwoen Y and 7 can be doscribed by

the misclasification model given by

AT+ (=) (=T, fori= 1 ST and = 1,230, (13)
here 7 i the sensitivity and 7~ s the specfictyof the HOCS questionnaive. We

2



further assume that the dynamic asthma status of  child can be characterized by

the non-inea transition model:
=

i,
explh + S,
T eapl+ M5, + 7ty

(a1

where M. d

We assume that the sensitivity 7* and specificity 7 of the questionnaire used in

“To our best knowledge, the senstviy and specificity of this sty are o yet well
estimated. Hovever, Yang et a. (1905) conducted a survey to ases the effect of
ndoor eavironment o clikdren ssthuna in Towan basd on quesionnairs which
aresimilar o those sed i the HOCS and they reporte . senstiviy of 050 and a

specifcty of 0.95. Therefore, we use their resuls (+*, 7

(0:80,095) as a close

estimate of the true sensitivity and specificity in our study.

Recall that i the s 123,

of 0 = (7,7’ were computed by assuming that (+*,7) = (10,10) and that the

bservations are errors-free. Whereas,in fact, it may be ot this case, which implies
that 7+ < 1 and 7~ < L. Sinilarly, in this subsection, we choose o compare the
nive estimates ((*,7) = (10,1.0)) with the corrected estimates where (x*, )

090) “The stimation

resutsarelsed in Table 411

1t can be sen from Table 411 tha, when taking miscasifcaton into account,
the estimates of the model parametes e very diflrent from thoe obiained by is-
and Farel (2007)




“To e spoifc the coreected OGQL etimatesof 5, an  are larger than the corr-

sponding naive estn

tes. Noticethat in Table 4.1, g, revenls » egative dynamic

per which may be information
from the higher onder responscs, 1 can be verfd by the fct tht oagy and 7

from d ion with

the prior asthma status which is

good accordance with medical practce. Even
more, the OGQL and ML approaches demnonstrate bigher eficiency over the GQL
approach. We therefore prefer to accept the results provided by the OGQL and ML
approaches.

Although the maternal smoking cffct 3 and the dynamic dependence effct

are the main interest of statistician

the odds ratio (OR) of asthma with respect
to maternal smoking, and the odds ratio with respect (o provious asthima attack
are the main focuses in epidemmiological studics, The OR with respect 1o maternal

reveals diseetly the relative risk of asthuna attack of chid

living with

A with those living with

smoking I can be

0 Table 4,11 that the OR with respect. o maternal smoking, the corrected
OGQL estimate of ¢ is equal to 19606 which i greater than the naive estimates

12468, This b in total agreement wih the fact that the corrected estimtes of b

s greate, than the corresponding naive cstimates of 5 unde all thee etimation
appronces.

Another quantity of interst n thi sty s €, the okl rato of deeloping
asth with espect thecild inthep

year. As mentioned above the GQL estimate shows an unreasonable negative efect

of a previous asthma attack, while the OGQL and ML estimates inic

e strongly

m



positive efect. Therefore, we profer to use the results under the OGQL and ML
approaches. From Table 411, we can see that the corrected OGQL estimate of

this odds rato of developing further ssth

attack s 43,6822 (095 ClLis (18.9339,

050,0.95)

(5:2340, 9.05417)) when misclasificaion is ignored. Analysis taking diagnosis erors

the a previous attack, which i in concordance with the medical practice. Therelore,
the report of  prior asthma attack is o importance in diagnosing a child’s current

asth

i status,
Recall that in the simulation study in Soction 4.23, we conducted a robustness

n = (@) with

of 7% and 7. In the analysi of the asthma data, we have also examined the ro-
bustnes of the corrected estimates of % and 7, together with the robustness o the.
s of the odds ratio, & and ¢, namely.

e The parameters are plotted versus

the sensitivity 7+ and specifcity 7 in Figures 4.1-4.3, whereas the estimated odds.
ratios are plotted in Figures 4.4-45. An interesting inding is that it is always more.

robust when estimating the intercept 5, which fuctions as the baseline information

of asthimn. incidence. Diffrent values of estimated sensiivity and specifiity have

milder influence on the estimation of £ than on the other model parameters.

1 can be soen from Figure 4.4 (a), (b), (¢) that when both the sensitivty and
specificty increase, the estimated OR ¢ decreases. This indicates the attenuation

fect of overestimated sensitvity and specifcity on the estimation of model param-

eters. Furthermore, the decreasing rate of the OGQL and MI estimates of OR (¢%)

eher that in the case of



high specificity. Also the docrease of estimate reltive risk along specificity s much

faster than that along the disection of sensitivty, which implies that the estimated
specificity has much stronger influence on the estimation of OR (¢%) than that of
the estimated sensitivity. Furthermore, from Figure 4.5 (o) and (b), it is apparent
that the estimate of ¢ under the OGQL or ML approaches increases with decreas-
in senstivity and specificity. On the contrary, the estimated ¢7 under GQL has an

opposite tendency and the varition is also slighter (Figure 45 (¢).

among,the responses of the actual asthma data may carry important information

rested parameters, especially the dynamic dependence parameter 7.

the first order responses. Therefore the OGQL and ML approaches are recommended

10 analyzo the asthma data.
! Inthisectio
Ohio based on the misclassification model (1:33) and the lag 1 dopendence model

(4:34), the corrected estimates of interested effects under the GQL, OGQL and ML

et stimates of 0, the.

methods were abtaned. We not only cxkultod the
o ratio ¢ and 7, which were reportd in Table 4.1, bt wo als chocke the
Tobustnoss of the estimates and ods atios, which were ploted in Figures 4.1-43
and 44145, B on bl 411 e Fgures 41145, we can s that the OGQL ap-

proach produced similar results o those of the ML approach. Under OGQL and ML

pproaches, the cortected estimates roveals stroner sociation of chidren asthma,

with the passive smoking from mothers than the results ign ut er-

rors. Ao,



atacks n prodicting the curent asthima statuse. By the comparison of the GQL
approach with the OGQL and ML approsches, the second orde statstis of the
esponses nclude fmportant information about the interestd effects, especally the
pover of the previons ssthma atack in preicting the fature stats. So we recom-
mend the OGQL and ML approach to do statstical inferene. Furthermore, due t0
strong dependence of the ML approach on model assumptions, the OGQL approoch

s therefore preferable when real If data sets are concerned.

Finally, we give a ltle discussion about the sensitivity 7 and specificity = to

sitivity and specifcity which are independent of covariate, tme, and subject groups.
But in practice, theso two quantities may change over these factors. For example, in
some other pasts of HGCS, asthima of children are reported by parents up to age 9,

an self reported aft that [Speizer (1990)]. Jenkins (1996) reported the diference

It would be very intersting to estimate the rolative risk of maternal smoking, the
odds ratio of previous attack and the sensitiviy, spocifieity simultancously for those.

data st




Table 4.11: Analysis of Asthma Data of 537 Children from Steubenville, Ohio in
HGCS Taking M s feration

GaL ocqL ML
R R N

(x*,7) Quantity | By

(L1)  Estimate [177370.2543-0.4950|2.18860.2205 19554 [2.18860.2205 19554
St [0.11850.1261 12068 0.0891 0.1323 0.1532 [0.0893 0.1307 01444
\ — value’|0.0000 0.0245 0.6811 0,000 0.0955 0.0000 0.0000 00916 0.0000

‘ ORP 1.3258 0,600, 12468 7.0660 12168 7.0660
B¢ 1057200572 09620 52340 09650 53252
st 17024 6.4538| 16150 95017 16108 93782

(08,0.95) Estimate 19567040710 5419| 278580.8070 37760 2777103206 37206
Ste (01656 0.1902 19958 0.1628 0.1092 0.4265 0.1157 0.1622 02308
‘ palue 0,000 0.0323 0.78580.0000 01221 0.0000 0.0000 00481 00000

OR 15024 05816 1.3606 430822 13779 41.6622
i 1031900117 09200 189330 10027 26,5010
uB 2181228957 20031007787 18936 654596
dard error
b king and » e given by exp(fh) and ¢

CLaver bound of 5% condence el of R gven by ¢4~ an -t

AUpper bound of 95% confidence interval of OR. given by ¢%* ™% and ¢*+mmsics

“p-vles from Wald type test for two sided hypotheses 8 = 0; f = 0 and 1
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€) ML i of 5,
Figure 4.1: Bstimates of the Intercept 3y in Model (1:3) for Asthma Data of 597

HGCS Ta

Children from Steubenvile, Ohio 1 Misdiagnosis into Consideration




N

(4 GQL et of 8, ) 0QL stimate of

() ML st of 5

Figure 4.2 Estimates of the Effect of Mother's Smoking Status 3 in Model (434) for
Asthma Data of 537 Children from Steubenville, Ohio in HGCS Taking Misdiagnosis

into Consderation.
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Figure 4.3: Estimates of the Dynaric Dependence Parameter  in Model (1.34) for
Asthina Data of 537 Children from Steubenville, Ohio in H6CS Taking Misdiagnois

into Consideration
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Figure 4.4 Estimates of the Ocds Ratio abont Mother's Smoking Status for Asthma

Data of 537

ldzen from Steubenvill, Ohio in HGCS.
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Figure 4.5 Estimates of the Odds Ratio about Prior Asthma Status for Asthma Data

of 537 Children from Steubenvill, Ohio in HGCS.
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4.4 Joint Modeling the Misclassified Data with Miss-

ing Information Due to “Unsure” Responses

441 Model description

The classical mi defined between the
latent categorical variable T and the observed categorical V. 7 and ¥’ gencrally have

an cqual musnber of clases, for example the misclassification described by Table 22

in Chapter 2. But, in practice, there are some cases that the manifest variable ¥ may

have more categories than the inherent variable T docs, of which an example s given
in Table 2.3 of Chapter 2. In sociologial, peychological and epidemiclogic stuie,

it s often the case that data are collcted through some proforma questionnaires,

ke
“unsure” or “1 don't know". For instance, in studics of chidren asthima, a question
may e st as follows:

Do you think that your child had asthasa in the past 12 months?

(1) Yes; (2) No; (3) Unsure.

be shown by Table 4.12. Th i d

the unbalanced misclassification in Chapter 2. A child's asthima status may be re-
portsd by bis o her parents as “nfected” (answer: yes), “bealthy” (answer: no), or

e of the

“undecided” (answor: unsue), while his or her true status can only be

two statuses: infocted and healthy: The information about those children who are re-

ported by responses “unsurc” i partially missing, Therefore, the “unsure” responses

1



Tablo 412 Unbalancod misclasification of chidren nsthima.

Asthma status (1)

Reported status (¥) _Infected (1) Healthy (2)

Yes (1) ™ ma
No () ™ ™
Unsure(3) ™ e

are often treated s Kind of wissing values in practice. Generaly, the quantity

Table 4,12, the probability that the parents of an actually infected child give an

unsure” answer, s diffrent from r; which is the probabilty that the pareats of

@ healthy child give an “wnsure” response. This implics that whether  subject hs
an “unsure” response is related o his/ber true status. Therefore, it i missing at
random (MAR) but not missing completely at random (MCAR). I fct, even these

“Yos" or “No” responses may fnvolve clssifiation errors. Although the true statuses

of all subjects are impasible to know, the probabiltis in Table 4.12, i the
two probabilities 7y and 73 related to the subjects with “unsure” responses, can be
estimated through some validation sudies.

T this section, we apply the unbalanced misclasification model (o deseribe this
Kind of data subject to both misclasification and missing information. Statistical
inforence based on the GQL appronch about the unbalancingly misclassifed data s

developed.



We define the observed response Y as follows:
(10, the ith child's parents answer “yes” at the jth time poiat;
Yir={ (0,17, the answer is “no”;

(0,07, the answer s “unsure”.

where i = 1,2, ..., T and j = 1,2,..., J. The true response T, takes the value

the true status is “infected”, 0 otherwise. So ¥ s a trinomial variable, while T; s

a binary variable
Let Tl denote the FMC-matrix which is defined by

(135)

Then the MC-matrx is given by

n- ( e ) =l (43

= (ruts 7, i 73 = (s, 7). Based on the MC-matr, the unbolanced
odel dscribing the relationship between Y, and T, according to

Section 4.1, can be witten as

=maTy4me(1-T,), (437)

Yy =1+ 7,

whre = (T 1- Ty
Tho apes

the o »

Itis casy
tation of ¥, is given by

) :"( " ) =t (-
"

1=

13




where 1, = E(T,) is the expectation of the true response T which is a scalar. The.

variance-covariance matrix of ¥ is given by

Var(¥y) = VarlE(Yy[T,)] + E[Var(Y, T

Ve + (L= 15)Vey

+r = m)Var(Ty) 1 = .

As discus in Section 4.1, ¥, ~ Multinomial(1, ), hence the covarianee maizix

of ¥, can be written in an alternative form
S5 = Var(Vy) = Ve, = diag(pg) — gty (a38)
For u < j, the covariance between Y and ¥;, s given by

Ty = Conl¥yYu)

— e

Cpf ememo enti-T)
eon(1 =Ty i) eon(l =Ty 1 = T)

= (m = m)Con(Tu, Tu)(m = m2)

It can beseen that g, is singular and of roak 1
Based on the previous development, we can write the covariance matsx of Y; in

the form of

Zm Baa o By
T e o s

S )
S B B ),

1w



442 Estimation of model effects

There are several methods to deal with the imperfect categorieal data subject to

both misclassifcation and missing values due to the “unsure” responses

Case I: Delting the “unsure” responses and ignoring misclassificaton. Tn this case,
the observed response has only two categories, “Yes” and “No", which leads to

 inary variable ¥, Actully, ¥ i th fstclement o oigial esponse Y

iy of Yy i the frst lement of iy,

Stmilarty, the corseponding expecta
and the covarance Var(¥;) s the (1, th clement of Cou(¥,). So, we e a
bulanced misclasifcaion model to descibe the reltionship between ¥, and

T

Lo Tyt (1= ) s (1= T, (440

and the “working” FMC matrix s

therefore the “working” sensitivity and specificity (r,75) = (1,1). Notice

o the “unsure” values.

Case I Deleting the “unsure” values but taking misclassification into considera-
wisclassification moel as (4.40) due to

tion. T this case, we. use the wame

deleting the third category “wnsure” from observed response ¥, Accordingl,




the probabilities in a FMC mateix will be proportionally reasigned as follows

he “vorking™ y (vt 73) = (s )
The subjects may also have uncqually:spaced observations similar to those in
Case 1.
Case IHT: Ignoring these subjects with at least one missing values but taking mis-

I the case that

at least e “unsure” response from the study, the misclassification model (4.40)
can still e usel becanse there are no “wnsure” responses in the data any more

At the same time, the probabilities in a FMC matrix will be proportionally

reassigned as ollows.

and the “working” sensitivity and specifcity (v, 75) = (534 77%8). Dit-

ferent from Case 1, the data in this case do not imvalve wuncqually:sprced ob-

sorvations,

Case IV Ignoring the misclasifcation but taking the “unsure” values into consid

eration. 1 we take “wssure” responses into consideration, there will be three
bserved categories. In this situation, the response Y s a trinomial variable

of which the value (0,0)' implcs that we get an “unsure” answer. Ignoring

‘misclassifcation meaus that the probabiltics of Type I and type I errors are

116



‘assumed to be 0s. Therefore, the “working” FMC matrix is

Tt 0
0 matm

In this case, all subjects have complete data at time j = 1,2,...., J. Then we use
the unbalanced misclassification model (437) with the assumed FMC matrix

i, which is given above.

Case V' Tubing bot the missng vahies and misclasificaion into consideraion.
One may take both the “unsur” values and clsification errrs ino considr-
ation to obtain more reliable statstical inference. In thi situation, e e the
model (437) with the true FMC matix to devlop statistcal inference. The

true FMC matrix s

I this case, we have equally-spaced obsersations for all subjects at time j

Loy

.

Case V1

deal case that the data {1} are avalable. Suppose that we know the

data 1 of the true response, and use the data to conduet tatistical inference

Soction 3.2 In an al way,

wo can use the model (426) with the FMC




2,0, J. Tn this case, the sensitivity

for the data ty, i = 1,2..... I, and j
4 and specificity 7 are (1, 1). It should be pointed out that, this case is
sekdom posible in practice, and it is oy applicable i simulation studie.

I the

GQL approach i the six cases. Fo this purpose, we assume, like that in Section 4.2,

that the true response T follows the nonlinear transition model (49). Therclore, the

moments of the true responses T} can be easly obtained from Section 3.1.2

An “unsure”
in Section 4.4.1. Therefore, f we simply delete this kind of mising values in cases I,

i e ca ey i the deveopment of GQL. timation. The expecttion i

and covariance Var(¥,;) of ¥;; are similar o those in (4.12) and their computations
can follow the similar development in Section 421 Tn cases 1V and V, we use the.
original response Y. In fact the following development can be generalizd 1o some.
other cases of missing values with MAR mechasism which can be modeled by the.

nbalanced misclasifcation.

1 Ignoring the “unsure” responses

Generally, there are o mechanisns to delte the missug values among longi
il data, which sre descibe i Gas 1 Case 11, Gase I i o delete the
subjects with at least. one “unsue”, which males the anlyss smple but leads 0
o of eficiency. The othe one, s that i Case 11 i o ol dlete thoe “unsur”
esponses and e ll vlid observations (“yes” o “0a"), whichreslts i s of s

alormation than the first mechanism. However, the sccond way may lead to more

‘complexity in simulation studies of GQL approach. The estimating equations only
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based on the available data can be written as

DY - i = ()

In the observed GQL estimating cquations (1.41), 37 denotes the observed values

of subject i, and i and 53 represeat the corresponding expectation and covariance.

matrix, respectively. In addition, 1* denotes the total mumber of subjects with at

least. o values ( responses

indicated by (0,0) for i's) are randomly asigned for both subjects and time points.

So, one has to ideatify the 7, 7§ and F for every subjoct and to construct the.

observed cstimating equations in each simulation run. Furthermore, 7, jif and £

ary in difi " ™ in carrying

*

 large number of simulations. Therefore,

this subsection, we consider  simple

‘metho to construct the abserved GQL estimating equations. In this simple way, we.
s the complete data f, and its expectation i, and an adjusted covarinnee matrix

S0 but not 5, nor £, The adjusted GQL estimating equations are given by

o (442)

3t -

where the adjusted covariance matrix £/ is built by introducing a missing indicator

matrix (MIM) A, to tho complete covariance matrix . (5)* denotes the Moore-
Penrose inverse of S Tn the folloving part, we will show how to construct. the

adjusted covarinnce matrix 7.

For simplicty in notation, we here consider one subjoct. with a series of e

peated measurements, which can be easily generalized to longjtudinal studies with

tple participants. o be specif

ippose that the complte data are § =
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(G the observed data ate 57 = (G-~ 55)' ot the time points

i< < s € oy We also assume that the answers at time

Ky < ks <. <k, where m 4 s = J. Similar to the previous paragraph, we let
5 and £ denote the variance-covariance matix of complete ¥ and tho observed 77,

tersection of

respectively. It is easy to see that £ is composed by elements at the
the (j, g2 --,4)th rows and the (i, .- Ju)th columns of E. We defne the MIM

25 A= (A} of which the(u, )th clement is given by

v and 7, is a valid answer (“yes” or “no’

o, for

v and g is an
) forufe.

So the diagonal vector of A is the missing indicator vector. It is obvious that A is
an identity matrix for the complete data 7, and is singula in presence of “unsure”

sales with A* = A, Then the adjusted covariance matrix i defined by

4= AZN, (443)

ho lemnts a the (b1, k.- )t rows (b1 . .t columns of 4 e
allseros, £ sl

Following thedevelopment of the adjusted covriane matrx 4, we can prove
Ut the adjuted GQL etimating oquations 142) basod on 5 areeqivalen o the
oberved GQL stimting equatons (141,

sy o et T e oty o | )

Orim

L=
by cxchanging the non-zero rows and columns (i s ) with the ze10 rows and
columns (ky, ks, ... k). The covariance matrix £° of the observed data §° is a non-
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ular submatrix of £, This implies that.

5 o
Bt =l Tag Bl (444)
00

A matrix L is defned by

1

o) 1

1 o)

1

where the clements 0(u) and 0(v) in the diagonal line mean that the uth and uth

. For any matrix

clements are zeros. 1t s known that I

e

B, 1,8 represents exchanging the uth and vth ows of marix B, while Bl

exchanging uth and veh columns of B.

ind

Keeping the following well-known conclusion i

(50)-(%2)




it s easy to show that the Moore-P

&
htageot | €
0

By comparing (4.41) with (4.40), one can seen that (£4)* has the same zero rows.

E Tashian (445)

and columns as 4

We now show that the adjusted GQL estimating equations (1.42) s equivalent to
the observed GQL estimating equations (1.41)

Denote

aw
%

U
%%



and g = i = G = i o = i = ). We have

OF gaveey _ o 3 @& o
V-i) = Zghaha-
- - & (o

hahaG=i)

=

=i

o
i =
oy | B~
- i),
where 1l O 0 0) and L, Fh G ) =

s hin result o ll par-

G = s = 1 = i 0,0 By one
eipants, we can conclude that the st GQL extimating oquations (1.2) are
equivalent t0 the observed etimating quatons (141), Therefor, theadjusted GQL
etimating equatons ca be rewritten as

(1.46)

where A, is the MIM of the subjoct i, for i = 1,2, 1. By applying the adjusted

studies, we do not have to identify the 7, i and 5 for

GQL appronch in smulati




cach sample wnit, and we only neee t0 ind A I the practical applications, we can

simply assign any finite values to the “wnsure” responses.

In addition, if one simply delete » subject with at least one “wnsure” answer,
e/ can still use the adjusted GQL approach by asigning a zero MIM for this
subject. The MIM for a subject § can be defined as

0., for subject # with incomplete data;
(am)

Lcs, for subject # with complete data,

tix. Lot iy u = 1,2,..., I denote the

where 1 represents the J x J identity n

individuals with complete observations during the studying period. I is apparent

that the adjusted etimating equations are equivalent o

0. (1.48)

2 Taking missing values into account

Although, some particpants may gve “unsure” answers, the value of the cort-
ponding covariates uay sl be weful. Tn additon, we may have good knowlodgo
about the prabability in the unbalanced misclasifcation matrix T fn (136). Tn
i ituntion, the missing vlues together with the corresponding covtines e the

chasification probbiltis can also provide some weful information for tatistical

erence. Therefore, one may want o take these “unsure” answers nto consider-

ation. Notice that, as mentioned before, there are three observed categories “yos”,

o and “unsure”. So wo will se the oriinal data y; as given in Section 4.4.1.

In Case 1V and Case V, we construct the GQL estimation based on the unbal-

anced model (4:37) and FMC matrices described




in Section 4.2, The estimating equations are given by

&L o
- m =0, (w19)
\
i a5, can b compted base on the calculations i Secton 4.4.1 \

In fact, the misclasification model (1.37), the related FMC matrix in (435) and
‘an adjusted version of the GQL estimating cquations which are given by

b

(MEA) (= )

(450)

can accommodate the three cases where

ng values are deloted in Section 4.4.2.1. ‘

In (450), A, s defined s |

where

Taua, - tho answer of the subjoct ot the time J s *yes” or o'
[
i Case 1 and Case 11, wherens

Tayeas there aze no “wnsure” anwser for the subject i;

Ouyuas, the ith subjoct has at loast one “unsure’

n Case 111



“The workiug FMC i

e in (437) s, in Case I,

Anditis

inboth Case 1 and Case 11 n equations (450), we use the data y, and expectations

s nd covarince matrices Y instead of g, and its moments,
4.4.3  Simulation

In this sction, we carry out simulation studies to check the performance of the

GQL estimates in al the six cases deseribed in Section 4.4.1, The ideal case means

hat we use the data, 7,

model (49) o estimate parameters n this wodel

4431 Design

We apply the same covariate design as Design 3 described in Section 4.2:3.1. It is

rewitten here by

Zym =1, (= 12) 2y =0, (G=3,4), i=1,..., 140,

Ly G Ly = M 420,

=1 = 1.2): 20 (G=3,4), = 421,.....560

2o = =05, (= 1,2); sgm =05, 0y

3.4),
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T =/ T =1 a,

=050 =2), J= 1,4, § = 421,560

As far as the FMC matrix design is concerned, we consider three diferent settings
which are given by

08 00

=] 003 09

017 008

01 o7

02 015

08 008

[CR]

003 002
From setting (), (b)to (¢, the clasifcation erors becomes severer and severer. On

the other hand, among the three settings, setting (¢) involves the fewest values of

(0,0)for 1, which cortespond to “unsure” answoss, while stting (b) generate the

most values of (0,0)' for .

In each seting, the true binary data by, § = 1,2,...,560 and

enerated folowing the model (49). The observed data y; are generated from the.

13

described below.

(1) Once webavet, from Ty

In R package, it should be U < ~rmaltinom(t[, ], 1, ), where &, = (.1~
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1n).

(2) Secondly, we generate another trinomial variable V' from Trinomial(1 —

).

R pacage, it should be V' < —rmultinom(1 — tf,},1,7%), where %,

(w1~

'7,). Then we let IV

e

(3) Finally, we get y = W1 : 2}, which means i takes the vector consists of the

fist two lement of V.

Noticethat in R package, U, amd W e three dimensional vectors. Therlore, to
accommodte the development i thisthess, o two dimensional response i takes
e frst two clements of W, that syl ] < W1 :2]in R paciage. When o
takes (0,07, it menns that this subjectgivesan “unsure” nswer which ca be urther
trented s o mising valuc

W conduct 500 simulations in cachcase decribod i Section 4.42.Tn Case 1, 1
17, we apply the djusted GQL estimating cquations (442), and i Case 1V ol
¥, we apply the GQL estmating cquatons (449). For Case V1 we apply the GQL
timating cquaions (412) but wse data & with perfct sensitvity and speifcty,

thatis, m, = 1 and m = 1, wehich s cqivalent to the estimating eq

tions (3.32) in

Section 312,

2 Simulation results

The simulation results are presented in Table 4.13. It can be seen from the table

(BB
when there are higher degroo of misclasification in the three setings of FMC matrix
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from (a) (b) to (c). For example, in Case I, the GQL estimates of 0 in three settings

are, respectively, (0510,0.506, 1274), (0.554,0.491, 1079) and (0.452,0.438,0.821)

These estimates are more and more biased from ther true values (1, 1, 15) as the
degree of misclassfication increases. Accordingly, the coverage probabiltis of 95%

‘confidence intervals becomes Jower and lower, When we only ignore misclasification

a “unsure’

better, which can be soen by the comparison of rsults in Case I and Case IV in the

table. However,

Case I and IV with those in Case V, we can conclude that ignoring misclasification

oep very close
Ignoring these “unsure” responses (1 = (0,0)), o delting those ; of which at

least one observation vy = (0,0) results n smal biases of GQL estimates of model

parometers as long s we take misclassification into consideration. For example,

5= (1032, 1046, 1526)" (the true valucs are 0 = (1,1,1.5)) in Case 11 with stting.

(c) which s the severest mensurement errors among, the three settings, and 0

¢ missing values.

(1,035, 1,114, 1403)"in Case 1 with stting (b) which has the
Althongh, the estimates in Case 1/ and Case I have ltle biass, the CPrs of 95%

Gl tend t0 be much lower than the nominal evel 095, especially in Case 11 whete we.

For instanee,

3

leads to mst

g vales, we have CPrs of (0856, 0.882,0525). In adition,
he cstimates in Case 1 tend 1o hav greste ESE', SSE's and worse CPr's than
he estimates i Case 7 when we deetng more values s th fst two sttngs. This
s becatse we gnore more iformation from mising vlues due t0 “unsure” responses
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i Case 1L Moreover, it can be scen that, in Case 11 and 111 estimates in setting

(b) tends to be the worst and estimates i setting (c) exkibit the best performance

as far as the CPr's and ESE's are concerned. Therefor, it can be concluded that

igoring mising values results n loss of eficiency And deleting all observations of
those subjects with incomplete data causes severer loss.
To correct biases of the estimates caused by misclassification and los of eff-

ciency due to mising values, we use the corrected GQL estimating equations (1.49)

parameters into
‘consideration. The results are reported Case V' in Table 4.13. In this case, the results
show that the corrected GQL approaches provide excelent parameter estimates, e-
timated standard errors and coverage probabiliies. For example, we have estimates
of parameter § = (1.026,1.026,1.514)’ with CPr's (0.945, 0.961, 0.956) in setting
(c) with most mesurement crrors, and § = (1.001,0.985, 1.548) with CPr's (0958,

095, “unsure” values.

o very close to their true values 0 = (1,1, 15)" and the CPrs are o very close
10 the nominal love 0,95, In addition ,the ESE's alo have satisfactory performance

compared with the corresponding SSE's,

Bsed on the above discusson and the comparisons, or example, Case [ and IV,

with Cose V, Cowe 11 and 11 with Case V, Case | and 1V with Case I8 and 111,

wo can conclude that ignoriug misclssification leads to nor-gnorable biases o sti-
wates of model parameters, wherens neglecting missing values resls n sight biases

on esti neters and significant biases on estimated standard errons of 6.

tes of par




Table .13
ales and misclassification with the true value:

Case_Quantity
T

(521 | 1000
o119 0277 0120 0280
0120 0278 0303|0120 0277 0.305
0918 0953 09510956 0.949 0916 | 0948 0956

Vi
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sification and very few missing values. Our corrected GQL ean effctively estimate
model parameters and the cormesponding standard errors as wel as the confidence

intervls with a specifc nominal level,
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Chapter 5

Modeling Mis-measured

Longitudinal Count Data

5.1 Overview
In Chapter 2, we developed two models (215) and (2.17) to deseribe count errors

in aggregated data. The two models can be wsed to characterize overcounted and

undorcountod data with mperfect sensitivity and specificity. Ao, they can nccom-
modate the perfect semsitivity or specifieity or both of thern. Actunly,in soue large

Tongitudinal studis, the of count responses

are often contaminated with measurement errors. Analysis taking thess count. erors

et In this chapter,
we apply models (2.15) and (2.17) to 6t mis-measured count data from longitudinal



5.2 Miscounted Binomial Count Data with Dy-

namic Population

521 Models

i

del dealng with miscounted binomial data is given by

YartaT4(l-x) s (N=T), 1)

where N s population size in an area, 7" s the tru count of patients infected by

an epidemic disease in this area, ¥ i the reported count of discase cases from a

dxt andx ively »
of the registration system. As mentioned before, in a longitudinal study lasting for
several years, the annual population in an area generally changes over time due to

bisth, death tion and emigration. Therefore, it i reasonable 10 assume that

the population size  is random, and it is ollowing a longitudinal process. Tn this

soction, we ssume that the population size ollows a specified dynamic model
Lt 1y be the observation of the population size Ny of tho ith distrit in the jth
year. The true response T, descebing the count of disease cases (e, infetion by

asthima) in this area can be assumed to follow the binomial model which i given by

Tylsyen, ~ o). 62)
where
) -
P et 63



Jth year. i s fom
 dynamic model and s expectation and ariance ar, respectivel, & and 3. The

e 7, is o latent variable and it However,

its surrogate Y can be obtained from the regitration system. The relationship

between the true response T, and the observed response Y;; can be descrbed by the

following expression:

Vy=atoTy+(1-7) e (Ny T,

64

where 7+ ivity, and =~

¥, Similar

to the interpretation of model (2.15) in Chapter 2, the term * » T, in model (5.4)
d

(1= 57) (N~ ) reprsents the mumber of people who are incorectly reprted
s disnse: cases rom the heskhy population i the ith aren during the jth yer.
Ty = % + Ty i the mumber of patents who are wrongly disgaosed as bealhy, and
(N = Ty) = (1= 57) + (S Ty i the totl mamber of heachy people who e

correetly counted into the helthy group.

the binomial model (5:25.3), it is easonablo to ssume that, for 1 < j # u < J,

a0 Lo, TNy, N 2 T4y, 0 Tl N ) T o The later

asumption alo means that, given Ny and N, T, will be independent of Ti. Iy

fact, Y, nd Y are nlso independent of each other conditional on Ny and N

As discussed in Soction 2.3, given the population size Ny = niy, the observed

esponse fllows  binomial disribution Y ~ b, ), where gy = 1 =5 + (5~ +
% )py i the reported discas rate of the ith area in the jth year based on the
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segisration system. This means that wo can skip the unobservable T, and build the
direct relationship between Y, and Ny In fact, the dynamic patterns of both Y,

and T ave determined by the longitudinal process of Ny, Therefore, once we have

defined a specific model for Ny, it is casy to model Y, and Ty, As o resul, it is

ensy t0 caleulate the mos

5 0f ¥y The expoctation and varianco of ¥y, which are

similar to the expressions (2.13) and (2.14) in Chapter 2, aro given by

B(YINy) =

= E(Yy)

and
Var(¥y) = oytgll - ag) + dVar(Vy). (Gu)

“The expectation of pairwise product of Y, and Y i formulated by

E(YyYu) = E[B(YyYalTu Ty N Ng)]
= E[E(YyYiul Ny, Nu|

= ElagauNyVal

= GytuE(NyNu).

Hence, the covariance botween Y and Y, is

c

Vi Yia) = E(VYi) - EYV)E(Y)
= At ENN) = i)

= GytuCon(Ny, N, ©8

These moments are very useful in the development of the GEE and GQL approac

for the estimation of model parameters.
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To address the issue of estimation, it is assumed that the population sizes Ny of

in sction 3.2.12 of Chapter 3. The LT model is given by

NolNogy =gt~ Potsson(tugses =+ 5-1). ©9)
whers

exvisya). ©10
Ny The

and vaiance of Ny
B e S )

with = i, and
&= Var(Ny R ]

foru<j becanse Ny ~ Poisson(éa). For convenience, we assume that

4= 0. The covariance between Ny and Ny is

Cav(Ny, N) =126k, for u < (513)

“The correlation couficient between Ny and N s given by

Corr(Niw Ny) = min1, 2/

5.2.2 Estimation of the model parameters

We apply the GEE and GQL methods to estimate the model parameters. In
s the working.

the GEE approach, we choose the independent corrlation structu
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correlation.

Suppose th

= (07,7, whete  represents the cffcts ofrisk fctors 2, which are assacated
with the disease rate i in (5.2), o deseribes the ofects of covrintes =, which is
relatod 10 6, in the LT model (5.9) defined on the population size Ny, and 7 s the

dynamic dependence paramete in the LT model

timating equatons
- Oy N .
ZW =) =0, )

1) s the observation vector of response ¥;. T the oquation

where

(5:14) i the expectation of ¥;. W, i the “working’ covariance matrix and it can

<a)y oy = VY). O/ i the first

b written n the form of IV, = ding(o%, o2,

order derivtive of 4 with respect to 6
te the

The GEE approach is considered to be an effctive procedsure to est

model parametes in the situation that the true covariance matrx of ¥, which is

denoted by ¥, i unknown. However, f we know the true covarianco matei 3, in

GEE appronch employing working covariance matrix 1V, willlead to

some cases

L approsch that exploits the true covariance

o of efficiency, compared with the

trix . The GQL estimating equations are given by

> - ) =0, (5.15)

el h loments of 3, ean e caleulated s on expressions (5.6-58) and (5,10
513)
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The expressions (5.6) and (5.11) lesd to the following relationship betwoen the

expectations of Y and Vi

T ®16)

Therelor, under the joint model (54) and (5.9), the lements of 9 /00 aro given by

Iy
w -
= ©1m)
L
0
- w8 re)w
- (e k) )
7,
Oy o Oy
2 [
0yt
= (02 0)
[ "
el ] (5.10)
for =

Once wo have the estimates of 6 under the GEE and GQL approsches, say fors

ity i W
Vi) - [$5 o)
wi
Vo = [3 24502 s o)
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respectively.

One may notice that even we do not know the specifc dynamic model of (N},
the GEE and GQL approaches are still fesible as long as the first and the second

Vi, N’ are kinoren. M 1

moments of N, =

approaches can b expected due to this flex

5.2.3 Simulation studies

‘We lave two abjectives of the simulation studics n this subsection. The irst one

is to cxamine the attenuations of the ive st

s of model parameters due to

igoring the measurement errors, The second one is to check the performance of the

corrected GEE and i y

ertors into consideration when using the measurement eror model (5.4).

“The parameters of interest includo  in the binomial model (5.2:5.), and (a',7)
i the LT model (5.9). The sensitvity and the specificity (x*, %) in the count error
model (5.4) are assume 1o be known in simlations, The covariates will be sclected
s thase in the simulation design in Section 5.2:3.1. Then the data of N, 7, and ¥

ean 5232, The

parameters will

ly, the GEE and

(5.14) and (5.15), respect

Table 6.1 and Table 62 from 500 simulation runs.

231 Covaiate design

‘We consider I = 100 indopendent rogions cach with J = 4 repeated observations
for the count responses N, 7, and Y. As far as the time dopendent covariates are
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concerned, we consider the following design. The covariates 7 imvolved in the true.

disense rate model (5.3) aro given by

) 12,0010,
g = in(§), for = 1,2,0,4 and i = 1,2,...,100,
which fmplis that

% explfh + Bysin(F4)) (5:22)

T el + (57

The covariates = related to the population sze in the LT

odel (5.9) are given by

s~ log(P(104 ), § = 1,234,

s~ log(P(2045). §

s = (0101,

= (,0,11)

sy ~ NG = D/A4,05),5 =

5282 Data goneration

Wo choose two diferent settings for the bascline observations of the population
it g i the LT mode (5.9), that is, & = 200 and 10, The first.setting prodhces

Targe population size i, whereas the latter yields wmall values of . By ass

"
1,00, 100, 100Y, 7 = 0:85,

the true values of parameters as = (~2.50,0.50), o

and (4, 7°) = (075,090), the data of sty and g can b generated from the

procedure described below.
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1. The baseline observations of population sizes are generated from the Poisson

model, say No % P(éu), i =1,2,...,100.

2.y ar generate rom the iear transiton model (5.9 Ny Ny = gt ~

Plamigei-+ &), where &,

3. 1 is sampled from the binomial model b py ), where p is given by (5.22).

4. 5y i generated from the measurement error model (5.4). We first sample Uy
), then we calculate y; by adding

from bty 7*) and Vi from b by,

Uy and Vi up, that s y; = Uy + Vi

3 Simulation results

In this subscetion, we consider o settings of baseline obeervations of the pop-

ulation size nq. Simulation results under the first setting with no % Poisson(gy

200) are given in Table 5.1, and the results under the second seting with g

Poisson(dy = 10) are presented in Table 5.2

From the two tables, it can be seen that ignoring measurement errors in the

count data o the estimates o involved in the
model (5.2-5.3) which divectly defins the inberent response 7. The biased estimates.
subsequently result in poor performance of coverage probabilties (CPrs) of CTs
with confidence lovel 95%. For example, in Table 5.1, the simulated mean (SM)

of the naive GEE estimate of 3, i -1.7521 which is ar avay from its true value

25, and the CPr=0.000 i extremely poor compared with the nominal level 95%

Similar phenomena also happen in Table 5.2 with small population size ie. do
10, Therefore, we conclude that ignoring measurement error in count data leads to

m



o the estimates of effcts of covariates n the binomial model

sigaificant attenn

(5:2:53) o the true T Asaresal,

disease rate p s obtained.
I

a ‘modl (5.9) and (5.10)

Ny, are vy close o ther true valucs. For fnstance,in Table 5.1, the naive GEE

estimate of a i gz = (10017, ~10076,0.9930)', and the naive GEE estinate of

75 08484, They are quite close to thei true values a = (1, ~1,1) and 7 = 05

‘The naive GQL method has similar results. To check the performance of the naive.

estimates of o in the situation that the count error | ¢, — y | is lrge relative o

the total mumber of studying subjects 1, we conduct 500 simu

tions by setting up.

 small ¢y = 10 of which the results are reported in Table 5.2. In the simulation,
when the ratios |  — vy | /ny sometimes are greater than 209%, the naive estimates
of @ and 3 under the GEE and GQL approaches are stil acceptable. Therefore,

wo can conclude that gnoring misclassification docs not leads to biase estimates of

10) »
ata i o the teue count data ; ave e i stimation,the total mumber o prople
i the sty kecps th saan, which can bo expresse by
population size (1)
e count f disease cusa(ty) + true umber of healthy people(sg — 1)
—reportal count of disease cuses(t) + reported mumber o healthy people(r ~ )
As far s the corrctod GEE and GQL approaches are concerned, Table 5.1 and

Tuble 5.2 show that they can effectively estimate all the model parameters. The

attenuation on the naive estimates of 7 in the function p; can be welladjusted under

"3




the corrected GEE and GQL approaches.  As an example, in Table 5.1, fere =
(-2.4097,0.4989) and s
altes = (~25,0.5). Similrly, the bisses of corected GEE and GQL estimtes

(~2.4910,0.493), which are very close to their true

of @ and 7 are ignorable. In addition, it can also be seen from Table 5.1 and Table
5.2 that the estimated standard errors (ESE) of corrected GEE and GQL estimates

a, "

standard errors (SSE).
As mentioned in Section 5.2.2, the GEE approach borrowin the *working” inde-
‘pendence correlation structure tends to yicld loss efficient estimates compared with,

this conclusion for error-free data. Most of our simulation results in Table 5.1 and.

Tuble 5.2 about the estimated s it standard o and coverage probabil
e (CPr) of 95% confdenc iterval o support this conclsion. For example, i
mostofcaes, th SEE'sand ESE's of GEE stimateste 0 b smaller than those
of GQL. etimate

A fr s tho ffciencies o thecorected extimates aro concered, the coreted
GEE approac b s t ks of efciney. 1 can be s tha i most casesof

“Tublo 5.1 and Table 5.2, the CPr's under the corrected GQL appronch are closer 10

the true nominal level 095 than the CPe's under the corrected GEE approach. For

e the corrected GEE

cxanpl, in Table 5.1, the CPrs of 4 are (0956, 0.970)
approsch,and they ave (0945, 0.96) under the corrcted GQL appronch. Actualy,
it can b scn that, in most cass, o naiv cstimats e the GQL approch
o tend 10 have igher fficency than the maive GEE esimats, specinly when

parameters o and 7 are concerned.



Table 5.1: Simulation resuls of GEE and GQL approaches
model (6.4), the binomial model (62:63) and the LT model (69) with (3

based on the count error

(-250,050), & 100,1.00), 7 = 085 and (x*,5°) = (0.75,0.90) under the
setting dy =
GEE
Quantity Naive.
SM(3) 17521
SSE 00541 0672
ESE 00588 00670
e %0 0000 0952
SM(3) | 03022 02219
SSE 1201 01070 01227
ESE [ 01347 01188 01285
cPe [ 090 03u 0960
SM(ay) | L0012 Lo01T L0011
SSE 03 00330 0302
ESE [ 00391 00325 00108
cPe [ 00% 0930 0950
SM(az) [ -L00S1 -10076 1008
SSE [ 01508 0213 01474
ESE [ 01492 01238 01516
e 044 0915 0952
SM(ag) | 09940 09950 09051
SSE [ 01106 00913 0.1086
ESE [ 01057 00802 01118
o | o 0932 0918
SM(y) | 08187 08481 08188
SSE [ 001 00232 000 0.
ESE [ 0031 00260 00905 00251 00252
cpr | 0962 0956 960918 0948

It



“Table 5.2 Simulation resltsof GEE and GQL approaches based on the count ertor
model (54, te ol ol (353} e e LT matl (83 with (159
(-250,050), & ~100,100),y = 0:85 and (", ) = (0.75,0.90) under the |

sattng = 10.
o
Quuntity [ Tieal Naive Cormetad | ormctad
M) | 250 LT 2501 | w07
o1sM 01099 031
01856 01001 0938
P o0 0o oo
SMs) [ 000 02638 050
ss 306 01951 0.4270
ESE | 02089 02155 04780
cre [aom om0 oom
SMa) | 10026 09007 10006
SE o0 omw 0w
oo ooz 00ws
a0 om0 090
o2 9002 09017
w2 0078t 0072
00940 00700 00767

00850

00005 00512 00513 00508
ESE | 00004 00106 00107 00190
cpe | oot 0o 09 | 0om oo oo




Inconch

attenmation on the estimates of the effects of covariates in the true disease rate piy

(5:3), which is used to define the model of the true response T, However, count

errons do not nfluence the statistical inference on the effcts of covariates associated
with the population size N in the LT model (5.9)

Based on the count error model (5.4), the b

del (52:5:3) for true count.
response T3, and the LT model (5.2) for population size Ny, our corrected GEE.
and GQL approaches can consistently estimate all model parameters. In addition,
the independence GEE approach leads to loss of effcien

in due to the

¢ covariance structure. Therefore,if the true covariance matrix

choice of a "worl
i available, the GQL approach using the true covariance structure can improve the.

performance of the nference.

5.3 Miscounted Longitudinal Data with Little In-

formation about Population

53.1 The model

In some situation, it is impossible to know the population size of an aren and its

it onder moment, for ex: e years o from the censal

aple, the population size

year, Suppose that there aro two censuses n yoars 1090 and 2000, espectively. The

population sizes in the intercensal years close o 1990 or 2000, such s 1991, 1092, are

cany to model based on the information of the censal years. But the population sizes
n 1994, 1905, 1996 may be difficul o model. The information of censal year may

m




ot be helpful due to widely and complicated rigration, birth and death. Although,
i this case, it i reasonable to assume that the population size in one of these years

follows a Poisson distribution, however, we do not know anything more. This mears

that we do not have any knowledge about. the expectation of the distribution, and we

s

sears. In el (5.4) i

‘among the population. And the corrected additive o

ervor model (2.17) developesd
in Chapter 2 appears to be an approprinte aliernative,

We s

i that T, is the true count of

bjects who are infected by a kind of

epidemic diseaso i the ith area during the jth year, i

o Fand = 1,0 And

¥, is the corresponding total of reported disease cases from & surveillance system

The corrected between ¥, and
T, i given by

Y=t o Ty ke

where x* . The term 7+

total

sber of patients who aro correctly roported by the sursellance system. The

e iz of the infected population T is assumed to follow a specific dynamic model,

and it may bo associated with some risk fctors 2, for example, the environmental

exposures. e denotes the

e of healthy people who are incorreetly reported
an disense case, and it i assumes to b indeperdent. of T}, hence independent of
7+ T Howeve, given a specifc disrict i, c's may be cortlatd due to th fact
that they are feom the same distict. Furthermore, . i assumed to bo a Posson

variable with expectation ¥, = erp(2}a), where 2, are covariates relted to the



miscounted subjects from the healthy population, for example, the health care level

of an area. Tn some cases, 2 and =,; may share some common covariates.

Similar to the calelations in Sction 2.42, we can writethe expectation of ; in
the following expression
V) = g = 5+ ¥ G20
whee 7 i the expectation of the true count of disease cases T The varinee of ¥,
isgiven by
Var(¥y) = s + (x*)"(Var(Ty) - g (6525)
“The expectation of the pairwise product of ¥, and ¥ can be expressd by

EQY)

Ellat Tyt eg)(r* « Tt cal]
= (W PE(T,T) + 7 (g + Vistha) + Eleyein).
Therefor, the covariance between ¥, and Yy is given by
Covl¥i, Ya) = (#*'Cor(Ty, Tu) + Covfeg, ). (526)
s for s the model of T, i conccrnod, we assume that the true cont of disase
cass 7, follows the LT model deseribes in Secton 322 of Chapter 3, which s given
by

Tyl ~ Possont =6+t o)
e
&y = explaly0). ®2)
. 55 oo (ot thaerpec
and varance of Ty The aregiven by
R o )
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with 1 = t, an

& =Var(Ty) =

= B w4 Ga)

foru<. Letch=

) and therelore ¢ = 1. The covariance between T, and T, is

Cov{Ty T) = 7'k, foru <, (531)

and the correlation coeffcient between T and T, is given by

Corr(Ta,

532 Estimation of the model parameters
1 this subsection, we apply the GEE and GQL methods (o estimate the model
parameters. The itereted parameters are 0 = (7,7, n the case that the sensi

ivity s known or it estimate can be obtained rom prior knowledge or vlidation

studics, while the nterested parameters are 0 = (¥,7,',7*) in the case that the.

sensiivity =+ is unknown, 3 tepresents the effocts of risk fctors 2, which are as-

sociated with the true count of diseaso casos i distrct § during the jth yoar, and 7

i the dynamic parameter in model (5.27-5.28). o describes the effocts of covariates

5 which s related ¢, the total offulse discase cases reported by the surveilance.
system. % i the seasitivity of the survillance system

- the

In the GEE approach

\ we choose the independent correlation struc

ug corrlation. The estimating equations are given by




where % = (s, o)’ i the observation vector of ¥;, and g is the expectation of

¥i. Under the i W = ding(03, 0% ... %), where
% = Var(Y,). dys/00 s the first order derivtive of s with respect o 0.
\ we use the GQL b by explot-

in the true covariance matrix of ¥; which is denoted by ;. The GQL estimating

quations are given by
(5:33)

where 5, can be calculated based on formulas (5.21-5.26) and (5.20-531)),
Under the model assumptions, we can calculate the first. order derivative of i,

with respect to 0. Here, if the sensitivity * i known or can be estimated from other
studis, the parameters of interest are 0 = (3,0,7)'. 1 5* is unknown, then one.

may b iterested in estimating 0 = (o', 7*)'. The fint order derivatives are

an Lp—
Oy O ey sy g,
o5 ="' g5 el

o
= ety ®3)
gy *J_,,’|-,ﬂl_+,h
” r’)
A by, (5.35)
on
W = vy, ©30)
oy
Yy oy, )
or = 1o d = ..., 1. Notco that tho 2o bl olervatons of 7,
Bt st = 0, e t0 00 = 0, e therlore, /0 = 0
i, th i
fagu, i are given
5




Vs [i. Lo . (539)
o

Voo = [$ Lo ] o, @3
repectivey

533 Numerical study

Similar to the simulation study in Subsection 2.2, we conduct a finite sample

hes. o b specific, we app

(5:32), and the GQL estimating equations (5.33) to the randomly generated data to

I In the simulation, 6. The

with known 7, = (3@, whe he second

case that * s unknown, we estimate § = (5,7,/, ). We have 500 simulation

runs for the data generation and parameter estimation.

1 Covariate design

We consider 1 = 60 indopendent distriets cach with J = 4 repeated count re-

sponses 7 and Y. As far as the choice of the true values of the parameters are

concerned, we consider —10,10), o = (030, ~0.50), 7 = 08 and 03, and

% = 0.7 and 0.85. The covariate values for the simulation are given i the folloving.
paragraphs.

The fist covariates is assumed to be a variable related to the population size.
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‘Suppose that we randomly divide the 60 distrits into 6 groups each conssts o 10

districts. Each group is assigned a set of growth rates of population (pgr) which are

porll] = (1,100,108% 108%),

porf2] = (1,099,0.99° 090

genty ;

porfd) = (1,101,099,099),

porfd] = (1,0.99,1.01,101%)
prls] = (1,101,099,100),
porl6] = (1,099,101,099).

rocedure describod

“The time-varying population sizes are generated following the

below

opl(g=1)10+K, 5] ~ Poisson(1000(g+K)parly. )0

Then we randomly order the rows of matrix pop by the code

population < —poplsample(60,60).]
in statistical package R. Then the first. covariate 2, is deined as
i ~ log(populationfi, ), for §

Other covariates of z, are defined s

T = (L1,0,0,i=12,

a3,

z = (0.011),

Ty ~ NG = 1/A05).5

1




The following covariates ; are defined on e We assume that =, shares the irst

clement of . S0, the design for 2 is iven a5

= mnd= 1234

2y ~ NLOS),G

i ~ N(L065),5

sy~ N(LOSS),j = 1,2 =31,32,

i ~
5332 Data generation

We set. the baseline observations for the population sizes o = 0 n the LT model

(527). The data Ty, and ¥, can be generated follow

the procedure described

below:

1. The true count  are generate based on the.

 transition model (527)

With ta = 0 Ty, 14 fllows Poisson(aty + exp(zya),

2 iy b enerated from the corrected additve error

del (5.23).

(1), Firstywe generate U ~ bty =)

(2). For simplicity, we generated independent. additive ereors e given i, that

is 0y ~ Plexp(ea).

(3). The observed count data iy = Uy + e




3 Simulation results

In this subsection, we consider two sets of values of parameters 0 = (%,7,/,7*)’,

where

(h, o ) ave elfects of cowrintes 7, asociated with the true count
of discase cases in the LT model (5.27), 7 is the dynanmic dependence parameter in
the LT model, @ = (a3, )’ epresent the effcts of explanatory variable 2, in the
count error model (529, and * s the sensitivty in model (5.29). One et of values

of 0is § = (06,-10,10), 7 = 08, @ = (0.3,~0.5) and * = 07, and the other

setis = (06,-10,10), 7 = 03, @ = (03,-05) and x* = 0.85. For each set of
Values of parameters, we consider four types of estimates: deal, mave, corrected] and

of estimates, the idenl estimates are obtained by wsing the data of true response

7, the naive estimates are based on the error-contaminate data y ignoring the
seasurement errors; the corrected] estimation mplies that all parameters including

the sensitivity 7 aro estimated by enuploying the observs data y; and taking erors

o consideration under the assumption that 7 is uaknown, and the last one, e

the corrected? s e basesd

s, moans that all parameters excopt 1* are estin

on 1 taking count errors into account for known 71*, Notice that, in the ideal and

nive frameworks, the parametens need to cstimate only comsist of 4 and 7. The

simulation results are presented fn Table 5.3 and Table 5.4

From Tuble 53 and Table 5.4, i is ensy to see that both maive GEE and GQL

stimates of biases die to
the observed data. For exampl, for the true value of &, = 1.0 in Table 5.3, we

e it 0 By = ~09978 and Bygr) = ~0.912 with bias mare than 5%.
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Expecaly, the coverage probabiite of 055 CT's for the nnve ctimates of § and
 are considersbly bissd from the mominal lve 095, For nstance, the CPF' for
(i
are (0000, 0015, 0010,0028),while the specified nosinalleve s 0.5

Swces) are (000, 0020, 0012, 0014, the CPes for (hcgr. ncar)

o improve the usatisactry naie ctimate, we appy the corrected GEE and
GQU approsches to estmate the model parameters and constrct conidence in-
tervals. Two types of stimates, the corected] estimates for unknown senstv-
ity 7 and the comected? etimates for known 7 ave computed, and the sim-
ultion results are given in Table 53 and Tble 5.4. It can be seen that both
comecte and corrected? cstimates under the GEE and GQL approaches produce
tiny bisses which can be neglected. For example, for the parameters (7,7’ with
e values (06,-10,10,08) in Table 53, the frs corrctd GEE estimates ave

(05094, ~0.9995,0.9997,0.8001), and the second corrected GEE

(Becrenicarm)

tes e (Ao, focres) = (06000-0.9997,0.9998,0.8002). Similasly, the cor-

rected1 GQU estimates ve (T ) = (05994, ~0.999,09998,0.7500), and
900,050,

the corrected2 GQL estimates are (g1, feaarr) = (0.6000,~0.9994,

Under the corrected approaches, we also abtain escellent estimates of parameters

. az) which are defined on e, the number of flse disease cases miscounted
from the healthy population. For instance, in Table 5.3, for the true a = (0.3,~0.3),
we have e = (02980, ~0.5517), e = (0.2982,0.5685) under the GEE.

0557, dcagua = (0.2983, ~0.5714) under the

approach, and Gcgqun
GQL approach. Beside the parameters mentioned above, we also obtained approx-
mately unbiased estimates of the sensitivity 7*. For example, with the true value

- Table 53, we get Foore = 0.7113 and #caqus = 0.7115, which are very
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7. From these examples, the second cor-

rected estimates asuming a known =+ often perform better than the first corrected

estimates in the case of unknown 7. 1t should be pointed out that the estimation

about the error-related parameters o and = i of greatly scientific interest, They

can be sed in a

programs and registration systems
Similar to the discussions in the simulation study in Section 5233, the ideal
and the two types of corrected estimates under the GQL approach tend to have.

higher effciency than those estimates under the GEE approach in estimating model

parameters. This is becase the corrected GQL approach uses the true corelaton
structure in it estimating equations (533, while the GEE method wses a working
independence covarince matrix. Tt can b seen that, in st cases i Table 5.3 and
Table 5.4, the CPr's under the coreted GQL approsch are close (0 the nominal
Jevel 0.95 than the CP's under the corrctd GEE approach. For example,the CPr's
o ae (0926, 0,956, 0.930) under the corectd ] GEE approach, and (0964, 0954,
0.042) under the corectdi GQL approach in Table 5.4 Sinilary, in the same tabie,
the P of  are (0910, 0954, 0.940) under the corrcted2 GEE appronch, and
(0045, 0952,0959) under the corrctod2 GQL appronch

In summary, ignoriug measurement errors in count data leads to nom-ignorable

i of th etimates of efcts of covariats asociate with the rue response T,
Our cormeted GEE and GQL approaches, base on count eror model (52) and
the LT model (5:27) fo true response T can estimate model pacameers almost
unbiasedl. In adeition, the independence GEE approach fds t Joss of e
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Tuble 53 Simulation results
e (29) and e LT ol (827) with 7 = (00,1010, 1
01)

of GEE and

aqL

based on the count
08,

0910 0014

o nm

um

0061
o o




Tabl 54 Simuladon reuls of GEE and Gl approsches basd on Lhe count
e () e ol (A7) .= (35212
85).
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jon due to application of a false covariance structure. Therclore, if the

available, we prefer 10 use the GQL
model effcts. As mentioned previously, the estimation of the error relate effects
o and + under tho corrocted approaches i of siguificant interest in evaluating the

accuracy of the data collcted through a seres of specific procedures.

\
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Chapter 6

Discussion and Future Studies

6.1 Some Remarks

f great it

inference.
leads to complexity and difficuly in the analyss of measurement errors, especially
for count data. To our best knowledge,there are sl not any modls proposed t0 ac-
commodate both overnumerated and undermumerated data. There are few methods
avuilable i existin lteraturesfor madeling count rrors. Tn Chapter 2 of tis thess,

we propased  generalized thinning operation by extending the binomial thinning

operation [Steutel and Harn (1979)] and multinomial thinning operation [Mel
(1991) (2000)]. The im of this operation is to model diffrent types of transtions
between discrete variables. Based on the generalized thinning operation, we gave

an explicit misclassfcation model (2.7) for categorical data and multinomial data




‘which clearly describes the relationship between the latent variable and its observed
but error-prone surrogate. This model can be used (o deseribe both balanced and

unbalanced It can also be wsed to

from some longitudinal processes. More importantly, we initally build two measure-

pent error models (2.15) and (

These two models can effectively accommodate overcounted data as well as under

In additon, the binomial version of the misclassification model (2.7) can be wsed to

years. The binomial count error model (2.15) can be used to describe the reported
discase cases in an area with an unknown but partially informative population size.

The corrected additive error model (2.17) ean be used to model the reported count

almost non

of disease cases in o area rmative unknown population size.

Most of the existing litceatures about messuren s are focusing

at error probl

o the mis-mensure covariates for diffeent types of responses. T recent years, the

analyss of longitudinal responses subject o mensurement. errors hs attracted more

and more attentions, This thesis mainly focuses on the analysis of mis-measured

Todoso,

ondi car transition models. In the second part of Chapter 3, we.

ey linear or non

doveloped two dynamic models for longitudinal count data. One is the thiny

operation-based linear teansition model, that i, the non-stationary AR(1) model

2



(3.45), the other is the ordinary lnear transition model (3.47). These two models

can be used to model dynamic population, incidence counts, or prevalence counts in
public health studics. The simulation studies based on the two models showed that

the GQL approach produced highly eficient stimates of model parameters which

were competitive with the OGQL approach under the NS-AR(1) model, and the ML

pproach under the LT model. This implies potentially wide applications of the GQL

approach and del

Chapter 4. For

s purpose, we combined the Jongitudinal models in Chapter 3 with the explict

models in Chapter 2 e

latent and the observed longitudinal The analysis of

inary responses showes that, gnoring clasifcation eror can lad to bissed nave
etimate of parametes of nters, hence resul i oo peformance of conidence
intervals. To obtain more rliabl sttistcal iference, we developod the corrcted
GQL, OGQL s ML approsches taking o account. the messurement errors which

ave described by EMC model (18).  All the three approaches produced approxi-

Especially, the OGQL approseh which ncludes the sccond ordes responses nto the

estimating procdure exhibited almost identical estimates to those from the ML ap-

proach. The EM algorithm was applied in the ML approach de to the unobservable
atent response. Wo teached the same conclusion as that in the case where data are

free of errors. Tn the EM algori

we proposed  new estimator of the Fisher infor-

mation In addition,

we also considered an intereting situation under which the data involve usbalanced
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‘misclassifcation. This approach can be used to deal with a special type of mising

information which s MAR caused by “unsure” responses. It showe that ignoring the

3 msure” . but still prods

approximately unbiased estimates of model parameters. On the other hand, ignoring

of model parameters.

Kinds of mis-measure count responses in Chapter 5. In the frst. case, the dynamic

population sizes of an area are assumed o folow the LT model. The error-prone

‘count respouse is described by the binomial count error model. Sin

Jation study

demonstrated that ignoring measurement errors in count responses leads o biased

estimates, for both the GEE and GQL approaches, of the effects of covariates msoci-

ated with true disease rate. However, measurement errors do ot affct the estimates

of parametens in the n Jation sizes. This is becanse the data. of

el defined for poy

‘population size keep the same no matter we use the true counts or the error-prone.

counts of disease cases. Our analysis also showed that the corrected GEE and GQL

appronchos can consistently estimate all parameters of uterest, Tn the sccond case,

the population size was only asumes to follow a Poisson distribution of which we

was e to follow

do ot have any further knowlodge. Tho true count. respon

the LT model, and by th A ol

error model. Analysi showed that gnoring measurement errors leads to biase est-

tes of all paranmeters i the wmodel of true response. [t s ineresting o see that,

s, benid the

odel, we have obtained satisfactory estimates of the error-elated parameters,




including the parameters in the model of additive errors and the sensitivty, which de-

scibe the type |

be used h of
of the data collection procedure.

6.2 Future studies

Our
tonal research opportunites.

1. W proviously assumed that all the miscassification probabilties in the EMC

odge. However,

ates are navailable in practic. Tn this

may bo unknown, and even thei est
case, the estimates of these probabilites are of considerable importance because

aterests an thir nfluence on the estimates of the parameters

of their scin

10 estimate these miselssifiation probabilities through independent validation
studios. 1t thercforo follows that an appropriate validation study design based

o to be investigated, especially when

on the original sampling scheme des

for example,

there are some other factors e to be taken nto considerat

Mancously

expense of the validation study.  Another intuitive way is to

estimte these probabilties together with other intereste parameters, Ik the

nalyss of the miscounted data under the corrected additive ertor mod
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Section 5.2. The second way may involve many extra parameters

5263

ug problem related

they may not be constant over time and subjocts. The MC matrix in the

EMC models (4.1), the sensitivity and spocificity in the binomial count error

model (5.4), and the sensitvity in the corrected additive error model (523)
u

may be associated with some time dependent covarintes. Or they may vary

over different. subpopulations. For example, n the chidren asthm. studies,
e athann statuses of cildren are reportec by parents up o the age 9, and
el seportd e that [Speizer (1990). The sensitiviy and the spocifcity
e

between the parentaktepart group and the slf-report group are demon
10 be different. [Jenkins (1996)]. T¢ would be very interesting to develop the
analysis of mis-measured longitudinal data with time-varying, or group-specific,

or covarintes-dependent MC matrices

e cormecte akitive mensurement eror modl, e assumption tht the pop-
wlation sze ollows a Poison distribution may be vioated. This may lad o
volation of the independence between 7, 7 and ¢ e the sumpion about
e Poision diseibution of e Fo exampl, we are nterested i the lng cancer
inckdance count " amon; people who ae okder than 50 in an ren. n o consal

year the total population size K s known, but the size of this age-specific sub-

population N may own. T this cxample, the size of the specifc group N

can be assumed to follow a binomial distribution, that is N ~ binomial(K. p),

196




‘where i the proportion of the people oder than 50 amon the population

thi area. Uncder this assumption, thesiz of the nfected group T and thesize of

the healthy group T° are not any longer independent Poisson variables. Hence

assumptions about the correcte] additive model should be adjusted. Therefore,

thi problem deserves further investigations.

4. Rocall that in Chapter 4, we discussed the misclasified categorical data with a

spcial type of mising information due to "unsure” responses which can be

accommodated by the unbalanced misclassification. This reminds us that it

would be an interesting topic in epidemiologic studies to analyze data suflring

from both measu

meat. exrors and missing values. In this con

mising at random (MAR) mechanism. Recently, some reated literatures have
appeared [Yi (2008); Wan et al. (2008); Lin (2006); Nicoltti, Peracchi and

Foliano (2009)]. However, all of these discussions are focus

the i

ment errors in covarintes. Tking this into considerate wodeling

of measurenent errors and non-ignorable missing values on the responses s of
reat interest

ment ertors in health

5. Furthermore, it can be reasonably meumed that mens

and population data are ot likely to bo spatially independent.  Therclore,

o missing values is very promising in gaining extea elficiency in the statistial
6. In practice, data,
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the first type is the misclasificaton, the other type is the random error caused

by unknown and unpredictable changes. I this thess, we focusee on the mea-

Surement. ertors on count data due to misclasification. As far as the rand

| they tend to yield the observed

variable ¥ and the true variable 7. It is known that the measurement error

model fo contimuons data, takes the for

Tte, ©1)

where ¢ s the random eeror which follows a distibution with 7ero mean. For
normally distributed measurement, ¢ is often assumed to follow N(0,0%). For

ut, one may attempt 1o build a count error model with a

similar form o (6.1) in which the random error follows  distribution with o
mean, unique mode and symmetric probability mass function about 0. The

question is bow to construct such a distribution for integer-valued variabies.

Hete we introduce two typesof disrete omal distributons with these prop-
rtis which deserve fucher insight. The st is Dasgupta's (1993) “discrete
version of the noral distibuton” of which the probaliy of mass function s
given by

Pla) = e, forsome 00, ©2)

o integer support (~oc, +00), where ¢ is such that the total probability s

s one, that s,

55 exp(-00%). The other s a modiied verson of Roy's

heref

we call it the “ltticed normal distribution”. A latticed normal (Luormal)
variate, LX, can be viewed as the disrete concentration of the normal vasiate
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X following N(,0%). The corresponding probability mass function of LX
be written as

TH05 -y gr-05-p

©3)

Pla)

mal random variable Z. It s casy to see that both Dasgupta’s (1993) discrete

distibution and our laticed normal distribution have similar proper-

ties as the standard normal distibution such as, symmetry, zero mean and the

mode at 0 and so on. Studies about other propertics and the specific

‘applications o these two models are very promisng.

Besides the problems mentiones abose, the more relevant topics are to be inves-

tigated



Bibliography

1] Aweniya, T. (1985) Advanced Econometrics. Harvard University Press, Cam-

bridge, Massachusetts.

[2] Besag, J. (1974) Spatial interaction and the statstical analysisof attce systems.

Jourmal of the Roya of Statistial Society: Series B, 36, 102-236

[3] Biswas, A, Datta, S, Fine, J.P. and Segal, M. R. (2008) Statistical Advances
in the Biomedical Sciences: Cliical Trials Epidemiology, Survival Analyss, and

Bioinformaties John Wiley & Sons Inc., Hoboken, New Jersey

4] B

| R, Grifith, R, and Windmefjer, F. (2002) Individual ff

s and dy-

amics n count data

odels. Journal of Econometrics, 108, 113-3

6] Brandi, A.G., Young, DM, and Stamey, J.D. (2009) Bayesian infeence for com-

A validation data

tistical Methodology, 7, 98-108.

(6] Brateher,

and Stamey, J.D. (2002) Estimation of Polsson rtes with misclas

sifid counts. Biometical Journal, 44, 916-56



7] Busas, 1. and Tosteson, T.D. and Stefanski, L.A. (2009) Measurement error

Institute of Statstics Mimeo Series, paper No. 2541,

8] Comeron, A.C. and Triedi, P. (1908) Regression Analysis of Count Data. Cam-
bridge Universty Press, Cambridse.

(o] Caroll, R.J., Ruppert, D., Stefanski, L.A., and Crainiceanu, M. (2006) Measure-
ment Ervor in Non Lincar Models: A Modern Perspective. Chapman & Hall, New
York

[10] Chen, T.T. (1959) A review of methods for misclasified categorical data in
epidemiology. Statistics in Medicine, 9, 1095-106; discussion 1107-5

[11] Colby, T.V., Taselaar, H.D., Travis, W.D. , Bergstralh, E.J. and Jett, L. (2002)
Pathologic eview of the Mayo Lung Project cancers feorected]. Is there a case for
‘misdingnosis or overdiagnosi of lung carcinoma in the screened group?  Cancer ,
95, 236165,

[12] Cooper, G:S., Yoan, ., Stange, K.C., Dennis, LK., Amiui, SB., and Rimm,

A (1909) The sensitivity of Medieare claims data for case asce

inment of six
‘common cancers. Medical Care, 37, 436-41.
13] Cui, Y. and Lund, R. (2000) A new look at time seris of counts. Biometrika,

96, 78192

[14) Dasgupta, R. (1993) Canchy equation on disrete domain and some characteri-

zation theoremns. Theory of Probability and ts Applicaions, 38, 520-21.

201



[15] Diggle, P.J, Heagerty P., Liang, K.-Y. and Zeger, S.L. (2002) Analysis of Lon-

gitudinal Data. Oxford University Press, Oxord.

[16] Dundas, 1. and Mekenzie, S. (2006) Spirometey in the diagaosis of asthma in

childven. Current Opinion in Pumonary Medicine, 12, 25-33.

1] Farrel, P.J. and Sutradbar, B.C. (2006) A

car conditional probabiity

delfor generating correlated binary data. Statistics and probability Letters, 76,
35361

(18] Ferrs, B.G., Ware, J M., Berkey, C:S. Dockery, DV, Spro, 111 A and Speizer,
F.E. (1985) Effects of passive smoking on health of children. Environmental Health

Perspectives, 62, 280.95

19) Fisher ES., Whaley F.S, Krushat W.M., Malenka, D.J., Fleming, C., Baron,

JA. and Hsia, DC. (1992) The accuracy of Medicare’s hospital claims data:

Drogress has been made, but prob

82,2138

win. American Journal of Public Health,

20] Fitzmaurice, GM. and Laird, NM. (1999) A like

hood-based method for

Iysing longitudinal binary responses. Biametrika, 80, 141-51

[21] Frichele, E. (1996) Tho attack of asth

Environmental Health Perspectioes,
104, 2225

[22] Fulibrigse, AL, Kitch, B.T., Paliel, AD, Kuntz, K.M., Neunann, P.J, Dock-
ery, DW. and Weiss, ST, (2001) FEV1 is ssociated with risk of asthima attacks

i  pediatric population. Journal of Allergy Clinical Immunology, 107, 61-67.

m



23] Fuller, W. (1087) Measurement Error Models. Wiy, New York

4] Furlow, B, (2007) Accuracy of US cancer survellance

er threat. Lancet On-
cology, 8, 76263

25] Giercksky, K E. (1997

wlommas. European Journal of Surgry, Supplement, 579, 11-14,

[26] Gilland, F., Li, Y-F., Peters J. (2001) Effect of maternal smoking during pres-

ey and environmental tobaceo smoke on asthma and wheezing in chiklren.

American Journal of Respiratory and Critical Care Medicine, 163, 129-36.

27] Gustatson, P. (2007) Measure

deling with an approximate fnstru-

l vasiable. Journal of the Royal Statistcal Socity, Series B, 69, T97-815.
28] Gustafson P. (2003) Measurement Error and Misclssification in Statistics and.
Impacts and Bayesian Adjustments. Chapman & Hall/CRC, Boca Raton.
29 Hardin, J. and Hilbe, J. (2003) Generalied Estimating Equations. Chapman aad
Hall/CRC, London.
[00] Hossain, 5. and Gustation, P, (2009) Bayesian adjustment for covariate measure-

ment ertors:  flexible parametric approuch. Statistics in Medicine, 28, 1580-600.

[31] Jenkins, M.A., Clarke, L., Carln, J.B. , Robertso

, Hopper, J.L., Dalton,

MF, Holst, D.P, Choi, K. and Gils, G.G. (1996) Validation of questionnaire

an bronchial hyperresponsivencss against respiratory physician assessment in the

dingnosis of asthuna. nternational Journal of Epidemiology, 25, 609-16

0



[52] Kanter, M. (1975) Autoregression for discrte processs mod 2. Journal of Ap-

plicd Probability, 12, 371-75.

[33] Kim, J.H. (2009) Estimating clasification error rate: Repeated eross-valdation,
repeated hold-out and bootstrap. Compulational Statistes and Data Analysis,
53(11), 373545

[34] Kipnis, V., Carroll, R.J, Freedman, LS. and Li, L. (1999) A new dietary mea-

surement exror modem and fts application to the estimation of relate risk: Appl

cation to four validation studics. American Journal of Epidemiology, 150, 642.51

35) Kipuis, V., Midthune, D, Fredman, LS, Bingham, S., Day, N.E. Riboli, E.

‘and Carroll, R.J. (2009) Bias in dictary-report nstruments and it implications for

‘mutritional epidemiology. Public Health Nutrition, 5, 9152

6] Korn, E.L. and Whittemore, A.S. (1979) Methods for analyzing pane st

acute health effects of ai pallution. Biometrics 35, 795802

67] Kiichenbof,H., Mwalil, . M. and Lesaffe, E. (2006) A general method for deal-
g with misclasifcation in rogression: the misclusification SIMEX. Biometrics,

62,8596

[39) Linng, K.L. and Zeger, S.L. (1986) Longitudinal data analysis using goneralized

lincar models. Biometrika, 73, 13-22

39) Lin, W. (2006) The theory and Methods for measurement errors and missing

data problems in semiparametic nonlinear mixed-effoct model. Doctorial Thesis,

The University of British Columbia, Vaccover, British Columbia, Canada.

0



40] Louis,

I. A. (1982) Finding the Observed Information Matrix when Using the
EM Algorithm. Journal of the Royal Statistcal Society: Series B, 44, 226:33

[41] Mallick, BK., and Gelfand, A.E. (1996) Semiporametric error-in-variables mod-

ol A 52,3071

2] Mallck 5. fe

ete longitudinal models for binary and count data. Doctorial Thesis,

Memorial University of Newfoundland, St. John's, Newfoundland, Canada.

[43) Manski, C.F. (1987) Semiparametric analysis of random effcts linear models
from binary panel data. Econometrica 55, 357-62.

4] Marshall, R.J. (1990) Validation study methods of estimating proportions and
ks ratios with misclassified data. Journal of Clinical Epidemiology, 43, 94147

45] McGlothlin A., Stamey, J.D. and S with

i, JAV. (2008) Binary regressi

‘misclasified response and covariate subject o measurement error: & Bayesian
appronch. Biometrical Journal, 50, 123-31
16] MeKenzie, E. (1085) Some siuple madels for discree variate tie eries. Water

Resources Bulletin, 21, 645-50.
[47] McKenzie, E. (1986) Autoregressive-moving average processes with negative.

rinal distributions. Advances in Appliod Probability

binomial and geor

e

18, 679.705

48] MeKens uces of Poisson

E. (1988) Some ARMA models for dependent s

counts, Adsances in Applicd Probabilty, 20, 822-35

2%



[49] MeKensi, E. (2009) Discree variate time seies. In Handbook of Statistics, Rao,

C.R. and Shasbhag, D., Eds., Elsvier Science, Amsterdam, 573606

[50] Motoo, Y., Watanabe, H. and Sawabu, N. (1996) Senitivity and specifcity of

kers in cancer dingnosis. Nigpon Rinsho, 54, 158791

[51] Neuhaus, J.M. (1999) Bias and effcency loss due to miscl

binary regresion. Biometrika, 86, $13.55

52) Neuhaus, J.M. (2002) Analysis of lustered and o

o response misclasification. Biometrics, 38, 675-83.

53) Newey, W.K. and MeFadds

. (1993) Extimation i large samples. I Handsook
of Economics, MeFadden, D. and Engle, R. eds., North Holland, Amsterdan.

4] Nicolett, C, Peracchi, F. and Foliano, F. (2009) Estimating income poverty

ment ertor, German Socio-Ecoomic

Panel Study, paper No. 252

[65] Pattenden, S., Antov, T., Neuberger, M, Nikiforov, B., De Surio, M, Grize,
L. Hi

rch, 1, Hrubo, F., Janssen, N., Lutt

wa-Gibson, H., Privalov, L., Rud-
nai, P, Splichalova, A, Ziotkowska, R. and Fltcher . (2006) Parental smoking
and childre

tory ealth

dependent.efect of prenatal and postnatal
exposure. Tobaceo Control, 16(1), 204-301

[66] Quaish, B.F. (200) A faunily of multivariate binary distributions for simulat-

ing corrlated binary variables with specified marginal means and correlations

Biometrika, 90, 455-63,



57) Rosychuk, R.J. (1090) Acconnting for misclasification in binary longitudinal

data. Doctorial Thesis, Waterloo Universty, Waterloo, Ontario, Canad

58] Rosyechuk, R.J., Thompson, M.E- (2001) A semsi-Markov model for binary longi-
tudinal responses subject to misclassiication. The Canadian Journal of Statistis,

20, 395404

59) Rosychula, R.J., and Islm, S. (2009) Parameter estimation in a model for mis-
classifcd Markov data - a Bayesian approach. Computational Statistics and Data
Analyss, 53, 350516,

60) Roy, D. (2003) The discrete normal distibution. Communications in Statisics

Theory and Methods, 32(10), 187

5
[61] Roy, 5., Bancrje, T. and Maiti, T. (2005) Measurement error modelfor misclas-
sifed binary responses. Statstcs in Medicine, 24, 200-83,

[62) Ry, S., Banerjee, T. (2009) Aualysis of misclasifed correlaed binary data

using  mulivariate probit model when covariates are subject to measurement
extor, Biometrical Journal, 51, 42032,

[69] Rabe-Hosketh, S., Pickles, A. and Skrondal, A, (2003) Correcting for covariate
messurement error in logistc regresson using onparametric maximun ikelihood
estimation. Statisical Modelling, 3, 215-32.

64) Schafer, D.W. (1957) Covariate measurement error in generalizd inear models

Biometrika, 74, 38591,

27



(65] Speizer, F.E. (1990) Asthima and persistent in Harvard Six Citis Study. Chest,
98, 1915.955.

6] Spiegelman, D., Rosner, D.L. and Logan, R. (2000) Estimation and inference
for logistic regresion with covariate misclassification and measurement error in
‘main study/validation study design. Jounal of American Statistical Association,

95(149), 51.61.

(67] Stamey, D 1W. and Young, DM, (2005) iy
mentary Poison rate parameters with data subjct t0 miscasication. Journal of
Statstical Planning and Infernce, 134, 3648,

{68 Stefansk, L.A. and Cook, J. (1905) Smulation extrapolation: The messurement
exvor nckkaife. Journal ofthe American Staistics Asociation, 90, 124756

[69) Stefunsk, L.A. and ool .1 (1085 Covrinte mensurement eror i lgistic
ogression. Annal of Statistisic, 13, 133551

[70) Stcfund, LA, (1987) The et of mensurement eror i prasneter estimation.
Biometrik, 72,385,

7] Steutel, F-W. an Harn K-van (1979) Discrete anloguesof self-decomposabilty

and stabily. Aol of Proabily, 7, 8939

o branching

[72) Stontel, F-W., Vervaat, W. and Wolfe, S.. (1083) Integer v

processes with umigration. Adances in Applicd Probability, 15, 713-25

73] Sutradhar, B.C. (2003) An overview on regression models fo discrete longtudi-

nl responses. Statistical Science, 18, 377-93.

208




{74] Sutradhar, B.C. (2008) Inferences in fomilial Poisson mixed models for survey.

data. Sankhya, 70, 1833

75] Sutradhar, B.C. and Fasrell, PJ. (2007) On optimal lag 1 dependence estimation
for dynamic binary models with application to Asthma data. Sankhye, 60, 445- 67

76) Sutradhar, B.C. and Das, K. (1990) On the efficency of regression estimators in
eneralized linear models for longitudinal data. Biometrika, 86, 450.65.

[77) Sutradhar, B.C., Jowabeer, V. and Sneddon, G. (2008) On a unified general-

faed non- data.

‘Scandinavian Journal of Statistics, 35, 597-612.

78] Tong, H. (1990) Nonlincar Time Serics: A Dynamical System Approach. Oxford

University Press, Oxford.

ametric maimum kelibood estimation for Cox re-

[70] Wang, C:. (2008) Ne

ression with subject-speci

Measutemen. Error. Scandinavian Journal of Stats-

i

. 35, 61325,
[80] Wang, C.Y., Huang, Y., Chao, E.C., aud Joffcoat, M.K. (2008) Expecte esti-

mating eqations for missing data, measurement error, and misclassfication, with

application to longitudinal nonignorably missng data. Biometrics, 64, 85.95
81) Wang, PS., Walker, AM, Tsuang M.T., Orav, E.J, Levin, R. and Avorn, J

(2001) Finding

dent breast cancer cases throngh US claims data and  state

cancer registry. Cancer Causes Control, 12, 257-65

20



[52] Wang, PS., Walker, A., Tsuang, M, Orav, E.J., Levin, R. and Avorn, J. (2000)

Strategies for improving comerbidity measures based on Medicare and Modicaid

claims data. Journal of Clinical Epidemiology, 53, 571-78.

[83] Ware, JH., Dockery, DW., Spiro, A. I, Speizer, F.E. and Fertis B.G. (1984)

American Reviews of Respiratory Discase, 120, 36674

[84] Wedderburn, R.W. (1974) Quasi-likelihood unctions, generalizd inear models,
and the Ganss-Newton method. Biometrika, 61, 43947

[85] Whittemore, AS. and Gong, G. (1991) Poisson regression with misclassified

counts: application to cervical cancer. Journal of Royal Statistcs Society, Series

€40, 5198

[86] Wong, W.H. (1956) Theory of partia ikelihood. Annals of Statistics, 14, 85-123.

[87] Yang, C-Y., Tien, Y.-C, Hsich, H.-J, Kno, W.-Y. and Lin, M.

C. (1998) Indoor
environmentl risk factors and child asthmas a case-control study in a subtropical
aea. Pediatric Pulmonology, 26, 120-24.

85] Yerushalmy, J. (1947) Statistical problems in ascssing methods of medical di-
aguosis with special reference to X-ray technique. Public Health Respectie, 62,
13240,

89) Yi, G.Y. (2008) A simulation-based marginal method for longtudinal data with
drop-out and mismeasured covariates. Biostatistics, 9, 501-12.

90) Youden, W.J. (1950) Index for rating dingnastic tests. Caneer, 3, 32.35

a0



[01] Zoger, S.L., Liang, K-Y. and Albest, PS. (1958) Models for longtudinal data:

A gneralized estimating equations approach. Biometrics, 44, 1040-60.

[02] Zoger SL and Lisng K.-Y. (1986) The analysis of discrete and cor

tudinal data. Biometrics, 42, 121-30.

Y. and Sef,$.G. (1985) The analysis of binacy longitudinal

93] Zeger, L., Liang,
data with timeindopendent covariates. Biometrika, 72, 318

04] Zeger, S.L. and Qadish, B. (1955) Markov regression models for time seres: a
quasi-likelibood approach. Biometrics, 44, 1019-31

95] Zhao, L.P. and Prentice, RL. (1990) Corclated binary rogression using a

quadratic exponential model. Biometrika, 77, G12-43.

96] Zucker D.M. and Spiegelman D.
Mededicine,

27(11), 101138






TR T
> 3

0L 18 197
& J
< w‘.;)“-",‘w)







	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Title Page
	0005_Abstract
	0006_Page iii
	0007_Acknowledgments
	0008_Table of Contents
	0009_Page vi
	0010_Page vii
	0011_Page viii
	0012_List of Tables
	0013_Page x
	0014_Page xi
	0015_List of Figures
	0016_Introduction
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Page 95
	0111_Page 96
	0112_Page 97
	0113_Page 98
	0114_Page 99
	0115_Page 100
	0116_Page 101
	0117_Page 102
	0118_Page 103
	0119_Page 104
	0120_Page 105
	0121_Page 106
	0122_Page 107
	0123_Page 108
	0124_Page 109
	0125_Page 110
	0126_Page 111
	0127_Page 112
	0128_Page 113
	0129_Page 114
	0130_Page 115
	0131_Page 116
	0132_Page 117
	0133_Page 118
	0134_Page 119
	0135_Page 120
	0136_Page 121
	0137_Page 122
	0138_Page 123
	0139_Page 124
	0140_Page 125
	0141_Page 126
	0142_Page 127
	0143_Page 128
	0144_Page 129
	0145_Page 130
	0146_Page 131
	0147_Page 132
	0148_Page 133
	0149_Page 134
	0150_Page 135
	0151_Page 136
	0152_Page 137
	0153_Page 138
	0154_Page 139
	0155_Page 140
	0156_Page 141
	0157_Page 142
	0158_Page 143
	0159_Page 144
	0160_Page 145
	0161_Page 146
	0162_Page 147
	0163_Page 148
	0164_Page 149
	0165_Page 150
	0166_Page 151
	0167_Page 152
	0168_Page 153
	0169_Page 154
	0170_Page 155
	0171_Page 156
	0172_Page 157
	0173_Page 158
	0174_Page 159
	0175_Page 160
	0176_Page 161
	0177_Page 162
	0178_Page 163
	0179_Page 164
	0180_Page 165
	0181_Page 166
	0182_Page 167
	0183_Page 168
	0184_Page 169
	0185_Page 170
	0186_Page 171
	0187_Page 172
	0188_Page 173
	0189_Page 174
	0190_Page 175
	0191_Page 176
	0192_Page 177
	0193_Page 178
	0194_Page 179
	0195_Page 180
	0196_Page 181
	0197_Page 182
	0198_Page 183
	0199_Page 184
	0200_Page 185
	0201_Page 186
	0202_Page 187
	0203_Page 188
	0204_Page 189
	0205_Page 190
	0206_Page 191
	0207_Page 192
	0208_Page 193
	0209_Page 194
	0210_Page 195
	0211_Page 196
	0212_Page 197
	0213_Page 198
	0214_Page 199
	0215_Page 200
	0216_Page 201
	0217_Page 202
	0218_Page 203
	0219_Page 204
	0220_Page 205
	0221_Page 206
	0222_Page 207
	0223_Page 208
	0224_Page 209
	0225_Page 210
	0226_Page 211
	0227_Blank Page
	0228_Inside Back Cover
	0229_Back Cover

