A SPECIFICATION LANGUAGE FOR
AGGLUTINATIVE ABORIGINAL LANGUAGES
FOR USE WITH FINITE-STATE SPELLING CORRECTION

RON KEATING

A Specification Language for
Agglutinative Aboriginal Languages for use with
Finite-State Spelling Correction

Ron Keating

School of Graduate Studies
i pastial flflment of the
requiements fo the degroe of

Mastr of Sience

Department of Comprter Scence

Mermorial Universit of Newfoundland

Apr, 2011

St Joha's Newfoundiand

Abstract

There are cotain North American aboriginal anguages which are in danger of
bocoming extnct, This i putially due to the younge gnerations laring more
major workd angunges i order to commuicate fn an incrasingly global soicty
Fusthermor, thess Junguagesten 0 baveonly developed writing sysems eltively
ocenty, and thas do not have a i legacy of written works to help preserve thern
I order to el alleviate thisprobien,cetan tols ar being dovelope 0 fuilitate

communication in those languges. One such tool that is expected (o help i digtal

ool 1 v tool will make . casier

those languages, rogard t0

the proper spellngs of vords.

 simplifsd specification language callod FSCL. Linguists can use FSCL to specify

the detals of natural langunges i format that s ensily readable by both humans

and comp relevant thus allow

ing liguists and even langunge speskers to buld and miatain a working model of
the natural Iangunge in question. The syntactc and semantic details of FSCL are
discuss, and an implementation buil on existing fnte-tate natural langusge pro-

a a data

from one such aboriginal unguage, now.

Acknowledgements

Tvould Todd Wareham
Without his el thisthesis woukd not have boen possble. 1 woukd aso ke t thazk
1y cosupervisor Bd Brownfor b frank edback. His perspectives helped very mnch
o focusand streamline this thess.

Furthermore,

Kolokolova for ther consteuctve and thorough evaluation.

1 would s well Tike to thank the consultants from the Lingustics department at

Memrial U

and Laurel Anne Hasler. Theie pate

s fiendly input and foedback was
10 the et n this thsi

I aiton, | would ke to sk Do Crag for bis valuable help with the type-
et of thisthsis in BTEX

Last bt ot s, | would ke o thank my frends and fmly o thee cncour-

agemment and moral support.

Contents

Abstract
Acknowledgements
List of Figures

1 Introduction

1 Motivation

12 Objectives

Organization of Thesis

2 Background

1 Natural Langunges

211

Notural Language Components

212 Word Formation Processes:

Natural Language Processing
221 Reference Materias

222 Natural Language Procesing Tasks

Finite-State Machines

23,

Automata

232 Transduoers

3 Design of Specification Language

31

32

LExC
11 Language Description
312 Discusion

FscL

321 Language Description

322 Discussion

4 Tmplementation of Specification Language

“

Spellng Correcion

411 Previons Work

412 Descripton of Algorithn

413 Discusion

Inerpreter

421 Previous Work

422 Description of Algorithns
4221 Word Lit to FSA
4222 FSCL File to Word List

423 Discusson

5 Conclusions

51

Results

@ 8

SLI Tm Language Description
512 Descripton of Testing Process
513 Discusion
Future Work
521 Extending the Dictonary
5211 Completing the Dictonary
5212 Creating oher Dictionares
522 User Interfce

Summary

Bibliography

A Test Data

List of Figures

o

A cyclic FSA that aceepts any word that starts with

followed by any numbes of “B's.

An acyclc FSA that accepts an “A" followed by a B"

ollowed by two.

aud s then

o an A

An FSA that sccepts any word that sarts with “A” and ends with

57, bt with wo intermedinte " charneters

An FSA that acoepts any word that contaius t lest one

An FSA that aceepts any word that stats with an

at lonst one.

An FST that chages all “A”s n tho input srin 0 “E"s.

Syntax Description for the LEXC specifcaion langunge

Example of casily readablo LEXC lnguage description [7,

EXC

B

 and contains

S which is at. some point. followe by at least e “M".

»2m)

7, . 390-301)

Description of FSCL syntas. This desiption uses the s

conventions a Figuro 3.1

Chapter 1

Introduction

1.1 Motivation

e 0 lck of speakers,such as the language spoken by the Tanu (19 One reon for

i that
Aucther reason i that while the mumber of oder speakers of those lunguages who.

jos i dinling, fower and fower of the younger

e up i the tradiional comm

eneration who grew up in a more westernied enviroument are learin the native

Jangunge. Futhermore, many such lunguages have only developed . writng system
relatively recently [10]. Up untl then, thei traditons, stories, and culture had to
e passd on verbally. Even now that they have a wrting systmn, it will be quite

o efore they have . rih writen logacy. Without such a writen traditio

the fewer people that Know the language, the greater the danger that the Iugunge

will become extinct. completely. The more value the world places on literacy and

text-based commanication, the greater the chancss that upconing generations will
abandon their traditional, primasily verbal-basod languages in favor of more major

workd languages such as French and English.

dangered Ianguages with continuing written commanication in thase languages. For
example, orthography tocs are important for reprsenting symbols i the angrage.
for writrs of

ingusge. Standardized

seful,sine these Ianguages, s s typieal of anguages that ace primasiy verbal, ex-
perience bigh degre of diakctalization, and having such standards would aciltate

communication across diaects. Pusthermore, speling correction tools woulkd help

regard
Due to the smallsze of the speake bas of such languages, it would not b prof-

table

ool for these lnguages. As a rosul, any toolscreate for such a purpose st be
designed with the assumption that there will ot be teams of people who con rigor-
ously scour code, and there will kel be only a small handful of linguists enterng

st be as

the system

the language data for the speling corection system. Th

ensy to nterac with s possibe for those users.

1.2 Objectives

The primary objective of this thess s to demonstrte that u robust specification

language for natural L "

I i

ing such a specification Ianguage and tsting it with known fite state automaton
constriction and spelling corsetion algorithns.
“The contibutions made by this thesis towaeds this goal are
« A specification language called FSCL, which i wellsuited (0 the types of
Tangunge features commonly seen in the target natural languages
« An interpreter to conert Langunges speciied in FSCL into fuitestate au-
« A spelling correction system which is ax hmplementation of common
type of algorthim i the existing literature which can operate on fnite-state
antomata: and
« A data set of Innu nouns which s used to testal f the above
FSCL and it interpreter ave the prissary orginal contributions of this thesis; the
speling correction system an Tnn L gusge data aze no orginal but were roquired

0o implemented in oder to st and evaluate FSCL

1.3 Organization of Thesis

In Chapter 2, the background necesary for understanding the concepts and ter-
minology employed in the remsinder of the thesis will be explained. Section 2.1

averview of Section 23
State mandels, » paradigm on which many of the speling correction algorithms in the

ierature, and pasiculrly the one ultimately implemented in the system proposed

i this thess,are base

A Chapter 3, the design of the spocification language will be desribed. Finst,

Section 3.1 gives a desciption of LEXC 7], an existing specification language from

the lterature on which many of the concepts in PSCL are based. Then, Section

32 describes the proposed spocification language FSCL and its similartics t0 and

diflerences from LEXC.

In Chapter 4,

of the specification langunge wil be described. - Section 4.1 desribes the spelling

spelling cornecton algorthn

I Chaptr 5, th sl of the test will b doscibo as el as the coneusons
it can be drawn basd o those st Section 5.1 describes the results of the
Lesting. Secton 52 proposs s passble dietions this research could take in the

futue. Section 5.3 provides conclusion.

Chapter 2

Background

“This chapter il defin and discuss the terms and concepts which the reader shovld

become funilar with i onder to understand the rest of the thesis. Section 2.1 w

s natural anguages,includin their components, and the processs by which
words are formed in natural languages. Sction 2.2 il discuss natural language
procssing, inludin discusion of diferent types of reference materials that aid in
uch processing, s wel a the izt typesof tasks that are often performed on

ol languages. Finall, Section 2:3 will contain a description of the finite-state

formalism,
langunge processin tasks. This descrption will include both ftestate automta,

and it state transducers.

2.1 Natural Languages

with each other. English, French, Turkish, and Japanese are ll examples of natu-

ol Ianguages. This section will discuss several properties of

languages with
respect o thei relevance 10 his theis. The classcal linguistc breskdown of co-

panents of natural languages willbe introduced (Section 2.1.1), then some con

‘word-forming processes will be discused (Section 21.2) with partcular emphass on

» process called ffixation. For a basi background n linguistic, e [1, 27|

2.1 Natural Language Components

« Phonetics: This is the study of the sounds involved in the spesking of &

language
« Phonology: This is the study of groups of sounds and how they interact with
cach other.
 Morphology: This s the sudy of morphemes, the uits of meaning that caa.
combine to form words, and how they internct with each othe.

 Syntax: This is the study of how words can be ordered 10 form phrases and

sontences.

« Semantics: This is thestudy of the meanings of words and sentences, given

her contexts.

morphology: Thus, that wil bethe main area with which this hesis will be concerned.

2.2 Word Formation Processes

Words by combini Thereare

maltiple processes that anguages can use o do this’ but one of the mest common
e elevant o this thess i clld affiation. Affixation i process by which e

word i created by combining a it of moaning known as stem, with one or ke

other wnits of meaning, caled affxes. For example, in English, one can begin with

o stem such s “wall”, and el the past tens aff: (i this case ") o crate
new word, “waled".

Notural langungs tha mke s of ffxaton usualy have many s dictating
what affixs can be combined ith what words. For example,the “” affix sbove

abined with a noun stem such as “keyboard” (o create “keybonrded”

As wel, an affx - take difrent forms depending on the form of the word it i

attaching to. For example,attaching the English pluralization affix 5" 1o the nown,

stem “church” docs ot resul n “chrchs” but ather an ' s propended to the °
i, resulting in “churches”. Likewise, when attacking the affx “d” to “rate”, the
S

il e in the “” alfx s droppre, resulting i “rated” enher than

AMhixs can be attached to words n diferent positions. An ffix that ataches o
the boginning of a word i called preflx. Fo example, “ro i & common Englsh
roview”,or . An afix that attachen

prefx, wsed in words such as “remy

For exaple, “or

e in words uch us “walker”, “playe

or “baker”

ot of anober morphn L creste s word, An example of i, o Enlh woud b
e word ork, which ends the . part of spoon wih the bt part of k.

B TR e

Most Ingungn ve lmitd o prefxs o sufesonly. Howeer, ther e ome
that ave affxs callod infxes that attach ino the middle of stem. An cxample
ofthis process i found in Tagalo, angusge spoken n the Philippines. The nfx
" s nsrted near the begnning of verb stem (0 indicate the active wice
For example, Tgalog borows the word “graduate” rom English and (0 express t i
the active voice (5. 1o expross the den of one graduating a apposod to one being
sraduate), ome inserts the - i o prodice *grumadunte” (0]

Different ntural languages incorporate afixation o diflerent degross. Some e

it seldomly,others often. Some allow many affxes to attach o a sngle word, others

. A langunge th both

s amber of allowable affses per s, i called an agglutinative language.
Turkish, P, and T azo examples of aatural languages tha are considered
0 be vry agglutinative, The systm bing preseted in this thess i desgnod in
a way that malaly facltates the encoding of aggutinative languages, in paticlr,

agglutinative North American aborignal langrages such as lnn.

2.2 Natural Language Processing

Onee one is familir with what a natural language i, the next concept that must be.

on that language, ither manvally or with the akd of an sutomated system. This

sction will

such 1), followed by .

natural language processing task is (Section 2.2.2), with partialar emphasis on the

task of spelling corrction. For o basic bockground in natural language processing,

see 14].

221 Reference Materials

natural

biguasly as possble.
 Lexicon: A leicon i a lst of words or morphemes i language 7]

« Dictionary: A dictionary isa lst of complte words i the languoge, usually
(though not ecessaril) associated with descriptions of their meanings 29]

« Grammar: A grammar is a description of the waya in which words can be
combined to form sentences in the language in queston. I can sometimes

nclude morphology as well a8 syntas [31.

ingly common.

For example, for many years the Oxford Englsh Dictionary exited anly in paper

form. Howewr it wow edsts i digial form as well
(http://dictionary. oed.con/entrance.dt1). There are even tools online that
e many diffvent digial dictionaris to produce a myriad of defintions, such

s dictionary. con.

Having digital versions of thes reference materials makes it possible to create

automated tooks to peform processing tasks on natural languages. One of the mare

dictionasy. Digita dictionaris can be encoded in a variety of ways (17, pp. 350-355]

‘Some common ones are:

« N-Grams (17, 21} In this approach, the complete dictonary itsef s ot -
coded, bt rather, groups o n et (whero s sually 2 o 3). Asociaied
ith cah group of letes,or gram, i mumber which indicates the el

par e O,

occuring after cach other n-gram.

« Hash Tuble [17, 25} A hash table storesenirics in table such that the index
of a given eatey is a function of some characteistic relted (o that entry. An

index

example misht be o table of phone sambees, whereeach phone b
i the table is some funcion of the name of the person who has that plone
sumber The fuscion v to dtermine the tabl e is called the hash
fanction. The pece of information that seves s fnput (0 the hash fucion i

caled the hash key. It i often diffcul or

ossble to design a hash fnction

hash
he unetion esult o two diferent keys coukd b the same; this event s calld
a collision. Since two difivent pieces o data camnot shave an indes, hash
s generaly have some secondary methor of compating the actual indices:

of entris that collde; this proces s callod secondary probing

10

« Finite-state [13, 17: In this approach, the dictonary is encoded as a inite

o dictio-

nary construction s explained in more detal in sction 2.3

Dictionary encodings can be created in fixed maner, where the creator of the

dictionary without iy

cation of the st

words o be

changed, bead
vantageous, as it can be hard-coded to take advantage of certan established features
H ‘which e sill beng

searched,

be more convenint

One way to do this i to maiatain a word list from which the encoing s l-
sorkhmically constructed. For some langaags, simple soquential word list may
o accptable, but fo an aglutinative Inguags, sch an approach woukd be highly
mpractialdue tothe combinatorial ature of such Inguages and the resltng ex-

of words. For example, word would mean

dding ot only that root word aloe, but also every combination of that word with
every subset. o allowable affixes to that word

A more appropiate way to dynamically encode a word st for on agglutinative

 grammar will beneforth be eferred t0 a5

ation language. Descriptions

languages currntly in use s callod LEXC 7] In Section 3.2 this thesis will ropose.
 new specification Inguage callod FSCL that s paticulrly suited 0 agghtinative

languages, and compare FSCL to LEXC.

222 Natural Language Processing Tasks

Auy automatee or computerssste actviy that operates on a natural anguage i
de

Known as o ntural Ianguage processing task. Some examples of such tasks

phewes) (16, 20], part-of-
basod on the .23,

pecch tagging (the automatic categorzation of words

of whether a iven sring s corretly spelled word in the lnguage) (17
it

Spelling corectionis smilr 0 spall checkin i that given word i chcked t s
‘et that word s corzctly speled word i the anguge o no, bt ather than
outputting o simpl affrmative or negative response, the output st consit of
ither an affrmativ respouse or It of correcly splled words fom the anguage

hat dos st of

comctly-speled words that they may have ntended to type. These corrections can

provide did not know th For

example,if the word “phat” were input nto a spelling corrction algorithm for the

English language, a possible output list might be “at”, “hat” ‘pat”, “that”, “what’,
and “chat”
There are several approaches to spell chocking ane spelling corrction available,

‘which depend on the nature of the encoling of th dictionary:

« N-Gram Analysis [17: To determine whether a given word is correctly
spelled, every sequence of n adjscent leters in the word woul be examined
and that squence woukd b checked against the et of -grams. If one o more

Sequences are o found ot all,they are agge as ervors, and suggestions with

put. 1 particular sequence i found in the list but i vry unlikely, » warning

‘may bo output along with some suggestions.

 Hash Table [17): The word itself i treated os the hash key, and each table

e or s vl

whose ol is *rue”, the word i found o the dictionary an thus correctly

spell; i€ maps o “fale” ey, tho word s ot found and i thus incorrectly
spello, Whike hash tables aze normaly only wed for spell checking s opposct
10 spelling corrction, it could b possible to design a hash function in such

& way that similaly speled words wap to table indices that are close to cach

{ndics that are far from each othe. Given such a function, one could perform

spellng corsetion by, upon receiving an nvald key, retuaing ll the “true”

 crtain proxiniy of that entry as suggestions.

« Finite-state [7, 4] A given word s fed as npat o the antomaton or trans-

Otherwise, suggested corrections are output based on cither the backiracks

ecded (0 accept the word, or the

sl of rewite rules employed. The pro-
cess of enerating corrctions base] on backtracking is discussd in more detail

i section 4.12,

ing of agelutinative languages:

« The main advantage of the -geam method s that since only combinations of
 smal mumber of ltters are being encoded, th list woukd be extremely light
on memmory in rlaton to other approaches which encode the entire language.

He it s

et xmt g i s n st s e it
O
et i o, e i o e e i e s
| b ot o ot e ¢ e
e, Sty ok o ok s e o by
cxpina o Ml opatd om st s
15t 510 ot sl vl g o sl
i g e " (o s e), b s
| U —

likely be erroncously rejected

e to be made in order for it toariveat decsion. However, it can be diffcult

iz of the table (Jt alone one that takes ito acconnt the smilrity of the
spelings of the words). Thereore, as an agglutinative anguage wil have &
ange mumber of words n s dctonary inding suiable hash uncton i kel
0 be auite a dauning sk

« The iitestate metbod, whie it may not be as spac-fficent a n-grams o
Gime-fficent a a bash table, docs have the advantage tha i lends el t0

word st or i dis

anderlying dictionarics aze more likely to

al Tanguages, snce the

tequire modifation.

Given the above, it would scem then, that the best approsch to spelling coreetion
for an agglutinative sboriginal languago wonld be the faite-state method.Tndecd,

o state approschs is commonly wsed i exsting speling correction systews for
other aggtinative Janguagessuch a Finnish and Turksh 21] Hence,the approaches.
o speling correction which will be discussd and compared latr in this thess are

e state

o exampl, i ca stz b diffcalt to disingih o 5" from %), can be bt 0

ompa he Bl o th pase bt sqences n st (17

2.3 Finite-State Machines

spelling cosrection, the next concept that ust b understood i that of the -
state fomalism on which the speling cornction alortns descrb cswhere i
it il b primarily based. This setion willdscribe faitestae automata
(Setion 2:31) and fitestate transducers (Section 2:32) n terms of thele syntax
o semantis, an theie difeencs wil e hihlghted. For o more comprebensive

o b

7,20,29)

231 Automata

A finite-state automaton (FSA) s an abstract mochanism, specifed relative to

 formal anguage L, where formal languag s a st of strings rela
alphabet.? Au FSA takes sting of symbols a faput s prodices o binary resul
“aceept i the sring of symbols i o string in L, or “reect” i it iy not. An FSA

consists of et of state, exactly one of which s staring state and one o more of

‘which are final states, and trassition functon which dscribes how the automaton
changes staes during exceution based on the current state and the curtent symbol

being examined in the inpot sting

ek, e waaral e, e angunge oy reprcnt the s forms of
ordewidhost any o 1o et e s

16

Definition 1 A fntestatc automaton is defined by the 5-tuple (Q,5,F,,8), where

. Q= (L) st of st
© 4 Qs the sating st

© FCQ e the st of v st

PR —————

5, parkl fnctianof he form 5 Q @, s the treniton fncin

FSAs e ofien represented using diected graphs, where the nodes of the graph
epresent the stats of the FSA and ar bl as such, whie te edges rpresent
wansitions and ar abeld with the comsponding nput symbos I the graph of s
FSA contains oneor more ycls, it s known s eyeli FSA (se Figure 21, Ifthe
raph contains o cyels, it i known a am acyelic FSA (o Figure 22), The FSAs
g ool with i this thes o acycli

T trace the execution of s FSA on a given sting, begin in the sarting state
cxnining the frt. synbol o the inpat. Then, conslt th transiton fuaction ox

hat. combination of state and symbol to determine the next state. The automaton

the next sate and 5o on. This process conisues until one of the following conditions

« There are uo fusther symbols in the faput to examine. T this case, if the
current state s a final stae, the automaton outputs “accept”; otherwise it

outpats “reject”

o‘sql

“A” |ql

wpr al

Figure 2. A cyclic FSA that accepts any word that starts with “A” and s then

followed by any mumber of “B°s. Note that In the fite state autamata diagrams in
cortain subsequent figures (e, Figare 2.3, a shorthand notation is wsed to combine.
transitions that have diffrent synbols but go from the same sourco state to the

o destination state - namely, sl trasition will be labeled with set notation

descrbing the s of symbols i queston.

@ qi

Figare 22: An eyellc FSA thataccepts an *A” followed by a “B", or an *A” followed

by two “C.

“A”|al ql

g a
agn @
Figare 2.3 An FSA that accepts any word that starts with *A” aud ends with °5",

bt with o ntermediate °S” cha

. from the current

State. In this case,the aatomaton outputs “rejoct”
For exaumple,tracing the automaton in Figure 23 with the input string “aress”
‘would result i the following sequence of steps

1. Let us call the startug state g0, the ntermediate sate g1, and the fnal state

2. We will alo rfer to the current state as ¢, and the symbo in the input

word which s currently being read a £, We begi with g = g0 ond |
2. Since 8(g0, ‘") exists, we contiue by setting g t0 8(40, ‘") which n this case
5 01, and seting to the next fnput lette, which in this case s .

3. Since 8(g1,) = g1, we continue by settng g (0 g1 (no change in this case),

and 0

4. 10 tuens out that d(gl =) exists and s cqual 10 g1 for any letter 7 € 3 other

than s 50 we may leve g = g1 until we tead cicher an s o symbol not in

5. Thus,for the purposes of this cxvmple, wo con read the cursent ¢ and the

Bt ' without any state change. This leaves s reading an s

5. Since (g1,) = 42, we now have q = g2 and the input s been compltely

consume. Since g2 i a il state and there s 50 more fnput, the input word
is accepted.
Conversel, if the same sutomaton were traced with the input string ‘ant”, &

diferent result wonld arie:

1

As before, we sart with g = 40 snd |

e 8(¢0,)

a we set g = g1 and

3. Next we set g to 8(g1,) = gl and [= ¢

4. Finally, we bave §(gl, *t) = g1 so we set g = g and the input has been
completely consumed. Notics that this time, the input has been consumed but
weare o n a fnal sate (s g = g1 whih i not fnal). Thus, the automaton
rjects the strng,

1t s possible to combine several FSAs together such that the fnal states of one

FSA in the cquence are cquivalent to the start sates of tho next. The combined
FSA would then accept any sring tha can be expresd as the concatenation of &

sing accepted b the frst FSA i thesequence fllowed by a sting accepted by the
socond FSA in the sequence, and 50 on for each FSA i the sequence. This process
of combining FSAS insuch a way is known as composition. To compose 0 FSAS

together, first.create the wnion of the sts of states, Next, create the union of the

trasition Fsaco

the sartig state of the second FSA, whase fuput symbel (and output symbolin the

case of FSTS) is the empty strng, Finally, make the final sates of the frs. machine

nonfual, ond et mackine
the frst machine. For example, consider the FSAs given in Figures 2.3 and 24, 11

these automata were to be composed together, the reslt would b the automaton i

Figure 254
T ot sy o ha the cnnpaition oprsion rsls n n FSA that b

one o more sl labeld with the cpty g, Soch an FSA b nondeterminitic (1)

E

) ‘

1= {"M"} 1
5 s ql
“M” |ql ql

“M}|s q
Figore 24 An FSA that accepts any word that contain at east one “M".

FSAs are generally used to determine whether a given sting is a member of a
purticlar Ianguage. This can have many uses in natural language processing [20)

\ They can be emplyed in spel checking, whercby the FSA represents the langunge’s

Drtermiiic FSAs oty alow coch symbol ta b o it (Jhongh trasion . be

o i il symbl), nd cch riion s e s e syl s ael T

— e el slowing
st o have ol (wich a b e witoot rdin frber)
Convatonal computers con oy e deermiite ot ths, 1 an ol st

o cxprwed g sondeerminisn o b st by computer,that. lorhm st s b

et i th itsdsction of o o e easions bl withthe mpty Srng.

e FSA sl with i it el il 10 deerministc FSAs

1= {"™™M"}
5 s al g2 q3
“A” al ql @2 a3
“gr @ @2 @
“M al a3 @

I- {4A”, %8", “M"}| - ql @@ a3

Figure 25 An FSA that accepts any word that starts with an *A”, and contans

least one *5" which i at some poiat fllowed by at least one M

dictonary and if a given input word is accepted by the FSA, it s found in the
dictionary and ths is coretly spellod. 1 it is not sccepted, it is not found in
the dictionary and thus is not correctly spelled. They can even be employed in

with,

with the input word, but cict the word when

faced with an input symbol for which there is o transiton i the FSA. Ratber, the

transiton from

of the word.
with the specication k

proposed i this thess empleys an FSA in this manner.

232 Transducers

A finite-state transducer (FST) s o varation of an FSA that recognizes o rea-
tion R betwoen two lungusges Ly and Ly, There are several modes of operation

transdnces can have:

1 Given 1 € Ly and & La, prodice binary “aocopt” o “refct” output, based

o whether or ot (2,9) € R
2 Given z € Ly, produce {y | (x.0) € R

iy € Ly, produce {z | (.)€ R}

Ouly the second mode above s relevant fo the pueposes of this thesis,

The transition function for an FST, rather than being from o combination of
sation of state and input symbol t0 &

state and symbal o 8 stte, s from . c
combinaion of stae and output symbol
Definiion 2 A finiestte transducer is deined by the 0-tupe (Q,5,F,55,9),
where

Q= (d0.q1.42...} i st of st

o 0E S, i the starting stat;

o FCS, i the st of fnal tate;

o 5 s theset ofsymiols compriing the input alphabet;
i the st of symbols comprising the outp aphatet; and

6, function of the form X x Q — & x Q i the transiion functio

Like FSAs,
bl such, while the edgs represent transitons

bols, o separator

tho states of the FST and ar

e ach s Tabeled with the corresponding fnput symbol or sy

ymbol of some Kind, and the coresponding output symbol or symbals. An example

contains one or more cycles, t i

FST is given i Figure 2.6, 1f the graph of an
Known s o cyelle FST; otherwise, It i known as an acyclic FST.
an FST, begin I the sarting st

To tracethe execution of an algorid

Then, consultthe for that

combination of sate and symbol to determine the ext sate sod the nest output

symbol

x/x

Figure 26 Au P s, The x/x

T that changes all “A" in the fnput string (0
notation above indicate that for any input symbol x (other than *A” since it has

nother transiton), output that same syuubal x

From there, the et input synbol s exarmined and the next state and outpt symbol

are determined, and 50 on, nti the entie input string s boen examined.

10 i s psible to compose FSTx together. A seres of compased FSTs i known

ate & cascade of FSTs, simply wsign them an order An input

0 caseade. To
tring given 1o the caseado fst has the first FST in the order applied 10 it, then

he resulting output sting i treaed a the input sting for the second FST in the

5 o the final FSTT asthe outpat sting,

sequence, sad 50 o, trating the output

of the cascade

Whereas FSAs are wseful fo determining membership in a partcular lnguage,

nniguage procesing i known as & ewrite rule. A rowrite rule i o

to another the input

trin; that match a particula pattern with asother substring. For example,the rule

6 would trausfor the sring “hat” o “hot”,or the string “mai

Likewis,the rule *a — ue” would transform the string “hat” into “hurt” orthe sting.
“mama’ into “murmr”

“The natural angnage tool XEST, which will e discussed extensively in chapter

s FSTS as ts underlying mechanism. Howeer, the approaches to dictionary

encoding and speling corretion propose i this thesis do ot make use of FSTs.

Chapter 3

Design of Specification Language

When a lnguist wishes to eacode a natural Ianguage for use with natural language
processing tasks, the nature of the specifcation anguage used to encode the natu-
ol Language i an important isue. Diffrent specification languages have diferent
foatures and abilites, and hence diffrent strengths and weaknesses in relation to
ench other. The natural language and processng task in question determine which
specilication lagunge features sce valuable and which ae not

For example, if inguist i ottempting to encode o complete langunge for the.

pepose of analyss, and th "
unge features and exceptions, then it would be vry importat that the specifiction
Jangunge be very ric in its scope of expressveness. 1f the specification langunge.

being wed cannot corretly ncode the language i al s deti, then o matter how

readable the cncoding i, or how efficiently the encoding can be compild, f it falls

0 meet the linguist's prisasy goal of encoding the entirelanguage, it is ot uscl

On the other hand, if the lingist is encoding o language, or a portion thereof,

her

Cant that the specification Inguage necessarily b very ich n terms of it ablity to
express o wide range of Ianguage features. Rather, the specifcation language woukl
suffice as long a it can encode enough to handle the language or language portion

estion. Mare impartast would b the eficiency with which computational tasks

can be exceuted on the language encoding,
Since the purpose of this thesis is to propase a specification language able to

encode northern North American aboriginal languages fo the purpases of speling

comction, the feature of interest to this thesis are s follows

« Agslutinating stuctursshould be sy ad senghtorward 0 coode. This
aguistc feture i fundanental to many aborgihal guages o fors the
Dackbone of how words n those anguages e pat ogecher (20, 1F the pec-
{feation language being usd 10 encod ono of thso Inguges cannot handle
asgltination i o simpl, saightforward way, it would make encoding these

angages an adaous task.

« Rendability by human users, cspecially ones who way not have crated the
original Ianguage specfication, s of particulr importance for speciication of

ges. The wrting aystems of aborigioal nnguages such as the

aboriginal lang

with »

10}, and s linguists sty those Languages, more i being discovered about

them aad

grammar references (19, Therefore, it i importaat for an encodi
Inguage for speling corection purposes 1o facltate the regular aditon and

odification of words and strucures in the exising encoding. To failate this,

it is important that the encoding be as huma-readable as possble.

« Spelling Correction algorithms should be easy to apply o the structures

crat by the spo anguge
iy language sk that i intender to be perormod onthe anguage encoding
he specication langunge mustbe deigaed n a way that facitats that task,
v the data sructares creste by it must be compatibe with sofowar that

can perform hat task

This chapter will introduce FSCL, a specificaion language created by the muthar of

s thess that sufficently ullls these crieria. The acconyin FSCL stands simply

for Longuage” It can
tion language itself,or 1o the entiee sotwaze system consisting o the specification

4). When it s not immeditely clea from contex, the spcification lnguage ill
e efrrd t0 5 e PSCL Ingnage nd the ntire system will be rfered 10 s the
FSCL syt

The ichst, most wlldscrbed speciation language tht s curently in com-
mon s by linguists for itestate natural Inguage processing tasks s LEXC. I
s chapter, LEXC will b doscibee in detal then examine i ters of 1 appro-
prstenes with regard o the crtria sbove (Secton 3.1). The PSCL anguage will

Hikewise be descrbed and evalusted in the same manner (Section 3.2). Discussions

E

will how that LEXC s sveral probenss with respect to these rieria, which FSCL

resolves.

3.1 LEXC

LEXC is a specification language fo naturallanguages created by Xera. It purpose

language procesing toolkit XFST. XFST stands for “Xero Fiite State Toof", nd
s desigaed to do a wide vriety o Gaitestate natural anguage procesing tasks on
the languages specified in LEXC. For example it can be used to creae fnte-sate
tokenizers, morphological analyzes or generators, part of speech disambiguatars, or
shallow syotactic parsers (7, p. ix]. LEXC and XFST are designed to do thir tasks
i & maner that i linguist-friendl. That i, they are designed in such a way 15 to
e ensly used, rend, and understood by linguists.

In his secton, the details of the LEXC language will be summariaed. Following.
the summary will be o discussion in which LEXC and XFST's appropriatencss wil

b evaluated with regard to the criteri in the Itroduction o this chapter

3.1 Language Description
‘The systax of LEXC is described in Backus-Naur Form notation (4] in Figure 3.1
Each eatity in this desciption is explained individualy n the bullets fllowing.

A LEXC fle (Fi2e) descibing n Ianguage s cssntially text file, divided into

exicons. 11 hose symbols

and ther reprsentations must be defincd in the beginning o the fle:

=

10 QMulticharsymbols><Doclarations><Lexicans>
'

Ml charsyebol> <Lattors>inicespace>

£
g
RN RNRNN

<Form>
<Forsside>

<ContimuationClase> —
e -
Flagiacritio
<Fragnype> =
<Lottors>

<nitospace> —

Figare 3.1: Syntax Discription for the LEXC specifiction langunge. This desciption
s in Backus-Naur Form notation (1] Ench entry s of the form clontersinal>
expression, whete expression can cousist of & sequence of nonterminal symbols

(enchosed in angle brackets <) and or tem

ynbol (nckned in dobhoqoses
22, o sevenl such sequences searat by vl b (1). The nontrminal 10
e e of the arrow can be eplacd anywhere it appears in n expresion by any of
he seqenceson the ight. I this descrption,the /7 symbol s wed 10 represnt

"o line” characte,

« WulticharSysbols: This s an optional section at the begianing of a LEXC
il for defining multicharacter symbols that will be use in the word forms

contained in the lexions.

o WulticharSysbol: Multicharacter symbols are characters n the target lan-

suage’s lphabet whose ASCII representations consist of more than one symbol

For example, one may wish to represent an ‘A" as o multicharacter symbol such

s A o /A

et of strings.

deseribest i detail in [7, pp. 45-74). Regular expressions are equivalnt i expressive.

power to fitestate automata 9] 1 an author wishes to make e of this eature,
owever, these abbreviations must be doclared before the lexicons, and fer any
multicharactr symbol decarations, i an optional ecton (Declarations)

 Daclaration: A declration s & name given to n rgular expression which s

expectee (0 b s frequently within the LEXC fle. Rather than typing out

the sane regular expression over and over agan, one may o a dechration

o give it & meaningfol name and imply use the name wherever the regular

exprssion would be use

Lexicons are the main content of & LEXC le. They define the const

forms of the angunge being encoded, and the ruls for combining 1

o Laxicons: This s the oaly roquired section and contains the st of lexicons

from which words i the target Iangunge will be constructed

u

« Loxicon: A lexicon i a list of word forms which can be combined with word
forms from other lexcons to form complete words. LEXC requies the frst
lexicon to be named ROOT, bt other lexicons have no name restritions.

 Entris: Each lexicon contains lst of enties associated with that lexcon.

« Entry: Each entry in a lexicon defnes a word form and it associated cont

ation clas.

o Fors: Since L

automata, it s possible o define word form s being tw-sied: an “input” or
“upper” ide, and an “output” o “awer” side. When te transduces i splied
“up” it will cogaiae s forms an ransorm them 00 the “upper” forms.
Likewise,when th transducer s applied o, will ecogaiae “upper” orms

e transfom then o lower” form.

« Forngide: Both the “upper” and “ower” forms define how o word or part

of a word appears as its sufoce form and as wel can fnclude some linguistic

cenaln conditions,

forms can atach from, i this form s ncludod in a word. In LEXC there i no

rstrction on which lexicon an entry can have as it continuation class.

The most LEXC
s the fng diacitc (FLagDiacratic); partculrly for haneling long distance depen-
dencis. A fng dincitc contains nformation about how a word form can combine

»

it otber forms from othe lexicon. A words ae being created o recogiaed, the
values of the figs ar “remembere” and can be “changed” when other word forms.
with matching flag names are encountere

“The st partofa fag diaciic s the fa type, the socond i the g name, and

the

i s the lag value, There are no restictons on what strings the user may use

. fng e o flag valne:
« FlagType: The fag type symbal defves exactly bow the diacitc behaves:
P St the specified fla o the specifed value (overwriting whatever value
it had before)

~ N: Set. the specified flag to the complement of the specificd vaue (ovr-

witng whatever alue it had befor).

~ R Rejec the word fthe specified i s ot et 10 the specfed value or
it has ot been st o any value),

~ D Rejct the word i the specfied fag s set. o the specifio value. The
i parnetr can e it i this type of g dinciti, n whichcae,
et the word fthe specifiod g has ben st 0 any ol

- C: Th vl paramoter i ot i this type of g diocritic. Cleas the
valeof the specified flag

~ U I the value ofth spcifio ;s not becn et e £ the specfed
alue. Otheris, if the vl has been st to any value other than the

speciied e, eject the word.

Although LEXC'sflag dincitc systm is sourc of great expresive pover, it can

™ 5 iy pect to readability o 3.22).

3.2 Discussion

o this chapter yelds the folloving:

« Agglutination: The LEXC language is quie rich. 1 i able to accout for

ich flag diacritic system aa XFST's abilty o apply fsite-stte fiters allows
erox's system to handle complicated processs such a infxation, reduplica-
ton, and intedigitation.

of lexicons and continuation clsses puts agglutination at the very cor of ts

operation.

« Readal

(= The LEXC languago can be quite readableaslon s there are ot

g di “upper”

forme from *lower” forms,asillstrated in Figure 8.2 1f these festures re used

\ Bowever,
follow, s lstrated in Figure 33
Even without regular expresions and defnitions of upper and lower forms,
the abilty for cortan types of flag diacritcs to change or erase nformation

from othersin 8 word means that the locaton of flag within a word matters

El

Figure 3.2 Example of casly readable LEXC Innguage desription [7, p. 244]

and even this can cause some clutter which hinders the readabiliy of a LEXC

descrption. For detals, see Section 2.2

« Spelling Correction: Surprisingly, despite the wido vriety of lnguags tasks

Chat XFST is welsuited to,spllng corretion s ot one o then. The wuthors

ofthe XEST. "

specification being familiae with common spelling exrors in the langunge and

crening o cascade of replacement rules (7, p. 451-459], However, i s bighly

unsensonabl to be expected to create a It of every passible spelling error in

 nngunge and its corresponding replcement e, This alone renders igorous

spelling correction using that technique out of the question

o dliton, s the authors point out, the order in which the replacement rules

e applied matters, o it is possible for one rule o wndo the work done by

B

LEXICON Stems
pakai -

o (rodup(-1]
N(rodupt:

2%
o8, PREF noli[rodup[-1]8" > ¥;

LG sraiup 3han

< romanlrodup (-1

“,“ :
R et

Figure 3.3 Example of ks readablo LEXC language desciption (abbrevinted from

7, . 390-301))

anotber [7, pp. 182143, For cxample, suppose there were a rule ph —
£ (s, 0 commect “phat” to ") Suppose, for the same langunge, there
were anotber ule £ — ph (sa; o cormct “one” to “phone”). 1f these two
ol ar i the same cascade,the 5o matter whih orde they are applied i,
one o the cxample words will g uncorecte. 1 ph — ¢ s applied frst and

£ — ph afterwards, then, given the fnput “phat”, it will st corretly trans-

form it into “at, but then cromeously ransorm it back into “pha”. Likewse,
¢ — phisapplid first and ph — £ alterwards, then, giventhe nput “fone”,
St ill st coretly teaasform i nto “phone”, but then eroneously trassform
it back nto “one”.

XFST offes a solution t this situation in the form of “paralll ules”, where

apply all splling corretion ules in an anitraily onderd cascade, one caniot
imply appy them all i parall cthe, For cxample, consider a rule such 15
2 — s ntended to coret. misspellngssuch as “hats” o “hats”. Consider also
a e such as 8 — e inended to corrct mispelings such as “churchs” 10
chusches. I these rules we to be applied f parlel, then when given the
aput ", the 2 — & rule would b applid, bt not the s — o3 ule,
st in the word bing exroneously transformed o “churc”. While i
o be possibl,for the sak of tissmple example, to merely crente 3 ule
hat cocapeulates boh peratons,such s 2 — o8, o itempt. o deine such
a vl for every such possible dependency i large et of rewrte ules would

b daunting task. Therefore, this approach to spelig corretion s highly

corections (and precsely define the contxtsin which those corrctons are 0
e applied), one mast oo py attention {0 the ordering of thos coretions.

A this point ane may sugest that perhage a language coukd sl e descrbed
i LEXC and compiled o an FSA ing XFST, then xtract that FSA and
pesorn oher,more sppropriae speling conetion techniques o i Howeve,
it turnsout. that akhough XFST docs bave buit-n function that llows the

this function works perfctly on small, simple automata, it refuss t0 operate

at all on anything lrge and complex enough to be nterestin, lt alone on an

automaton Irge and complex enough to properly encode a natural anguae.
Therefore, i one were t0 use the LEXC language as o specification langunge

o s with spelling correction, one would be unable to use the XFST soft-

ware it was desigued for e hence have to write thelr own LEXC compiler or

Interprete. Furthermore, if spelling corrction i the only task the linguist i

concered with, many of the featuros of LEXC that cltter s desciptions and
complicate it compilation coukd b siipped away.

“To summarie, although LEXC hndles agglutination well, it fals down with

respect to seadabilty and compatibility with speling correction,

3.2 FSCL

Kinds of angrages,the oly language task FSCL i desigee for i spllng correction,
e only kind of anguages it is designed for i those with an agglutinating struc-
ture. Therefore there aze many fatures of LEXC which are ot needed and therefore

ot inchuded in FSCL. Fu features from LEXC bave simpli

fied cquivalnts in PSCL for the same reason. Neverthelss, morphological analysis
an other anguage procesing tasks coukd st be done on the fnte-state automata
create by FSCL language desciptions i the appropriate tools were created.

I this section will

ton of the FSCL language, ollowe by an evaluation with respect o the citria in

the introduction o this chapter

321 Language Description

“This section will descibe the syntax structure of FSCL and explan in detail the
various entities n & FSCL Innguage desription and what they mean.

The syntax of FSCL is dseribed in BNF notation in Figure 3.4 Each ntity s

then explained individualy n the bullts olowing.
A FSCL lnguage descripion consists of theee separate text files: one containing

prefixes (ProfixFile), one containing word stems (StesFile), and one containing

suffxes (SutfixFile)
« Loxicon: A lexicon represents a group of stems or afxes and the Information
that imits the other stems and afixes to which they can be attached.

@

[N

I

<Lexicom>ProtixFile> | <Loxicon
Cemicons<SuttixFiles | <Laxicon>
Lexicon>

> /1 e

@it | Gty
<Form> *;* <ContinuationClase> /"
<Label> 1 .

esterediag Dharisioor> |

errersocror> | <latt
it ¢ Capammerice

Hppmericodabely | Algtanneric
ettar><iottars> | <Lottor

<hiphanuneric>
i

e

|

Figure 3.4: Description of FSCL syntax. This doscription ses the same notation

Uik LEXC, FSCL has no leding nformation required before the lexicons,such s

multichasacter definitons or declarations. The structure of s lexicons, however, is
Targely the same.

o EntryList: Au entry lis s the part of the lexicon which represents the lst of

from other lexicons.

o atry: form and the ot bow it

can combine with forms rom other lexicons.
« ContinuationClass: A contnuation class represents the next lexicon that
forms can atach from if this form s included in o word. Uike LEXC, which

allows any lexicon 10 serve as o contimuation class, FSCL only allows lexicons

b
in that lesicon, For the entris i lexicons n the prefx file, the continuation
las can b any lxicon specifid Iter in th pref e, or can b the stem lex-
fcon, For the entries i lexcons in the stem fle or uffi ke, the continuation

class can b any Jxicon sated e in the st

o can bo the ' reserved

symbol, represeaing the e of the word, . no further affation permittd.

Tho reason F I 1

while LEXC does not, s that the spelling corretion algorithuns which oper-

ate o automata prodcest by FSCL desciptions e ones which require acyclic

tomata, while the ones which operate on the automata produced by LEXC

descrptions evidently do not. Furthermore, FSCL is deigned for langusges

such s T which have fxe ordering of affxes, while LEXC is much more

“

eneral-purpose and thus canot afod to take this property for granted.

o Form:

Stem or affx in a lexicon and certain information about what other forms can

attach to words containing i

. ke LEXC, also bas & system for fiag diacite, albeit much simpler one:

o Flagbiacritic: A fla discritic contains information about what other fors

alues. 1f o word contains conflcting flag dineritis, it is reeced.

« Label: A label represents the name of a partiular lxicon to ety it and

cnnble the use of continuation classes
Ouly o type of fla is supported (equivalent to the U type in LEXC), which leads
o slightly s robust yet far simpler systenn to define and t0 work with.

322 Discussion

A analysis of the FSCL language in terms of the previously defined crterin yieds
the folloving

« Agglutination: Since PSCL uses the same type of lexicon and continuation

clss structure as LEXC, it too has agglutination at the very core of its op-

exation. While there are anguago features that LEXC can encode and FSCL
cannot, these feairs are ave and ase not o primary concern to the gonls of

5

this system.! The sarific that including the ability to hanele thse features
would requie i terms of readability would be too grea in relation to the ik
koo of those features actualy being encountere in the intended scope of

languages this system s desigaed for.

« Readability: Much of the unreadability of complicated LEXC specifications
comes from the requirement of positoning the symbls and notaton represet-
ing the information sbout the word forms in the middle of the word forms.
“This can easily lead t0 word form being broken up by symbols and otber
information and hinder the use from reading the word form itsell
For cxample, a “st” flag dincritic which comes after “cloar” flag diacrtic
rsults in & very difecnt s of words when compiled than If the “clas” flag

o the “et” g der Figure
35, This LEXC desription produces no strngs The frst etry stasts a word

consisting o just s and ses the A fla £ “ruc”. Then, the continuation class

e followed 1o leicon Sacond where it combines the " with 1" 10 prodce
a5 o cloarsthe value of he A flug. Next, thecontinution class s llowed
o Jexicon Toird, wher it concatenates a °”to the “a” but then rfects the
word on the bass that the A flag dors not have the valie “ruc” (since it has

0 value thauks to being cleard by the enry in lexicon Second). In contrast,

Figare 3.6, This

“abe Just 0" and ceaesthe A f

i e of spcation angiag 7.

LEKIGON First
a65.4.truod Second;

LEXICON Second
bec.ae hira,

LEXICON Third
CoR.A.truee #

Figure 3.5 o
LEXC.

wbines

Then, the continuation clas s followed to lexicon Second, where it
the 4 with " to produce “ab” and sets the A flag to “true”. Next, the

continuation clss is followed to the lexicon Third where it concatenates a

tothe “ab” e word,
A fla b s ot s b met, Thus, i th s of srings prodiced
by his doscripion e the previous one are difleent, and the nly diflerences
i the descriptions reth arder offla setingceain it cloae that changing
e order of “set” and “cle” fags can chan the sts of siings producd by
 langunge descripion in LEXC.

Likewis, differencs beteen “upper” forms and “lower” forms within words

i the word

f wherthey appes, o
form, espially when the word forms in question ar long o vary in length.
Consider the lexicons in Figare 3.7, Note that as long s the srings in the
upper forms e the same lengh, the ditinction of uppe and lower fors is

actually quit seadable and organized, even if the lngth of the srings in the

a

LEXICON Firse
ac.ae Second;

LEXICON Socond
Atroes Third;

LEXICON Third
<on.A.truon

lower forms diffe, as lstated i lexicon Neat. Howeve, since LEXC doss
ot allow whitespace between an upper and lowr form descripton, lexicons
hose upper-sid strings vaey i ength can cause cltter in the descrption,
s illstroted i lxicon Massy. Contrast this with the resdabilty of the same
‘words in leicon T11egat, which s ot posible in LEXC but would be wee it
oo whitespoce i ts descriptin of upper/lover ormdistinction.

EXC

o types o fng dincritics which et e extensivly, aliost 0 the poink
ofexcusiviy: the “unifcation” type. Restrictng the g dacitc sysem to
ony allow unification typo fag dincitis b several beneits. Not only does
¢ make implementatin of o compiler for the language osicr by having one
en peceofiformation o keep trac of, but it also malkes the synta smplr
o the wser t0 read s understand. This way, nithr the compler nor the

user s to worry about the possibility offlag diacritc vaues being changed or

LEXICON et

Jusp: jumped
inspire: inspired
underestinate-unde

LEXICON Tilegal
o

Jump
inspire

o
Snspired
underestisate iundorestigated

Figure 3.7 Mlsteaion of the readabilty of LEXC's mothod of distinguishing upper

forms from hower forms.

onghtforward fo the user. Althongh there may be crtain types ofnguistic
phencmena that cannot be modeled with only unification-type flag dincrtics,
hese phenormens axe rare, i the benefts o a unifcaion-oaly flag dicritc
systen s t0 fa vt this drawback?

‘Similarly, FSCL has o such concept of “uppee” forms and “lowee” forms. These.

LEXC

In simple FSM like the ones ereated from FSCL desciptions, a word i cither

in the dictonary or it i not; a word cannot b transformed to snother string,

Therefore, natural language spocification using FSCL can be written in a for-

mat which

ion. Keeping the word form separate from the other information rather than
having them intermingled with each other naturaly leads t0 a much clarer,

ates this

‘moce arganized, and hence more readable notation. Figure 3.8 il
diference in readabilt. The lexicons labeled “Messy” and “Alternatie” are

legal i both LEXC and FSCL, whil the one Ibeled “Neat” s only lgal in

FSCL I "My, the wrds are lined p with cach o, bt al the meta
nformation s agged. T “Alteruative, some of th fags are lined up with
o other, bt othrs s ot noe are the words themseves. - Addtonal
dependingon the natureofthe words and flag b wsed, LEXC may require

cortain figs to be in certln positions xelative (o the word, 5o the user may

[—

0t ave the freedom o choose between these alternatives. [n “Neat”,

other hand, ll information of the same type can be lined up with each other

verticaly, maki b caserfor human

LEXICON Mo
‘sanduiche0. Anisate. £215e080. Plural izeNi thES. truee
Churchal. Anisate. £also0el.

finchey. Anizate.
dogeU. Anszate. cruedel.
AT Animate. o, PluraL 2. (land

roret e oaeetn) Pt emb M. feteed

LEXICON Alternative
0. Animate. false0sandvichal. Plural zeithES. truce
0. Animate. falesdchurchel. PluralizedsthEs

Aninate. trueSinchel. Plural izeVShES trucd

0. Animate. trusGdogdU. Plural sze¥sthES. falsed

. it radeat. lural 241 . (e

B

rermste e e

1con
sanduicn nm.m frlend eLuatizatoan. et

churcn 112041 (hES. oot
finen PhuradseniitnEs. eroed
dog o.trued CPluralizeithes. falsed
cat rusd GPluralizelithES. falsed
hniante. falses GPluralizoevithEs. fals

Figure 38 iustration of the diflerence in readabilty achieved by the ability to

separate word forms from meta information. The lexicons abeled “Messy” and “AL

ternative” are legal in both LEXC and in FSCL, whi

legalin FSCL but not in LEXC.

e the lexcon labeled “Neat” s

« Spelling Correction: There ace not many algorithns i the iterature that

can perform spelin correction on passbly cyclic e state trausducers such
as those produced by LEXC desciptions. Howerer, there is wid array of
apelling corection algorithms avaiabl which aperate on acyclic fite-state
automata (ee Chapter 4.

(which can canse cycles) and “upper” and “lower” word forms (which reqire
transducers as opposed to simple automata), these features can be omitted,
reucing the complesity of the specification language whil at the same time

hence making it more sutable for us in spellng corrction lgorihuns

s s b shown above, FSCL remedics many of the problens LEXC had with
fespect to the critrin defines n the fntzoduction o this chapter. Now that a spec-
fcaion language has been designed, the next step i (o imploment softwre that

feracts with 3¢ and. allows the Iangusges defined i it 10 be compiled fnto nice

state aatomata s speling coreetion to be performed on those automata. Such s

mplementation will be descibod fn the ext chapie.

Chapter 4

Impl ation of Sp

Language

In the previous chapter, the specification language FSCL was described. Hawever,
smply having a specification Language i not suffcient or spelling correction. Rather,
an encoding of natural language using this specification language wil be the input

for speling correction algorithm that must be implemented. - Furthermore, the

may. inta a form that
algorithm can accept as input, for which an inerpreter il be required
Hence, in order to mplement spellng coroction o a anguage encoded in FSCL,

one s the folowing:

« Spelling correction algorithm: A spellng corroction alorithm appropriste
for agglutinaive aboriginal languages must be selocted aad fmplemented. For
reasons discussed in Chaptes 2, this algorithun should be one that operstes on

fiite state automata.

« Tnterpreter: Since the spellng correction algorithms n question operate on
FSAs, the FSCL description must be converte into such an automaton. For

thi, an interprter is need.

FSCL in a manner that i effic

of both space (computer memory) and running time.
In this chapte, Section 4.1 wil discuss the implementation of the spellng cor-

" 42wl

Each setion will begin with a discusson of previous work, followed by a desciption

of the implemented algorithim (ncluding peeudocode), aud finally a discussion of the

proces of implementing that component.

4.1 Spelling Correction

In cnder for a spellng correction algorthm 1o be approprinte for wse with FSAs

created from FSCL descriptions, there ar certain citria tht this algorithm shovid

as passible. 1 it mus leave any words uncorrected, this should Happen as

ufrquently as possibie

« Efficient

s function of input size. Note, however, that in the domain of spel

One can consider, fr example, the sumber of misspellings within a word, the
Jeagth of the word itsef,or even the it distance of the word rom & word

i the language. Depending on the nature of the language this operation is to

be carid out on, cetan variables may be of more consequence than obers.
For instance in a language with very shoe words but whose speakers tend to
produce very high sumbersof mispellings within o vord, one can aflod 0
s alorith that. scrifies fciency withrespect 0 word length o gain
efciency with rspect o mispeling rce

“The angunges on which PSCL is designed to operate tend to have long words,

and » pell words,
the actunl umber of misspllings within a word tends t0 be low, despte the

high word leugths invobved (19, Therelore, an appropriate sellng correction

passible with respect to word length,even 1 mesas saeificing some fficiency

with respect 1o the mumber of misspelings per word

T the nest. subsection, the most common types of spellng corrction algorthms in

the literature are described and examined i selation to thes criteia

411 Previous Work

Most of the haiques described fn

o one of the following catogories:

« Rewrite Rule: 3, 7| This i thetechnique suggested by the authors of XFST

for use with ther softwar. Such an lgorithn takes o language descripton in

the form of an FST and a list of ules representing comimon speling erors in
that language. The algorthm takes each word to be correted and applies the

rewite ules, then checks o s if the moifiod word is ccepted by the FST.

« Dynamic Programming: (23,36 This technique uses dynamic programing

accepted by the antomaton and produce that acceptod word. Here, the error

e s the mumber

as deletions, insertions,or transpasitons of charactes) reqire £ ransform
wyinto v

« Depti-First Search: (22,24, 32, 34, 35| This technique nvolves performing
et st sesech’on the FSA tha roogaizs the Ingaage with espct o the
word 10 be corrected, allowing for a speifed maximum suasber of cortection
operations. This represents form of lok-ahead andfor backizacking process

in the seach,

inthe previous subscction.

“The ewrie rule technique was ol appropriate for the goul of his projct. As
discusse in Section 3,12, this method's allowance for Incorseet words (o remin
uncorreted, not to mention the mpracticaliy of being able to speciy every type of
Dot (15, St 13 i tandoed tchaqe o exploring e s of 8 e
i operte by recariely explring s o dw e b a s befre rcurming

pellingextr one conld make i the angunge, ntweighod any beneft of ffiency:

Tho dynamicprogrammingtchaiqe,while it comprehensive, wasalso deed
inappropriste dus t itstime and space reqicements. The algorithn roqires both
pace and time propostional to 1 x <, where i the length of the word o be
comected, ane s the mumber of states i the automaton 35, While th languages
intended t0 be encoded by FSCL can Bave word lengths that are quite long, even
e high word engths ac iconsequential i slaion o the numbe ofsates. The.

‘mumber of states in & comprebensive automaton that accepts an entire language i

auie lage, For cxample, the
he T o i 25,163 sttes. Thisexteme esouree reqivement v threlore
cnongh 1 rejct thistchnique s an opion

The deptfirt search echnigu, on the ot o, reuires space propertonal
Lo, whese i the lenghof the word o be corrctd, and / s the masimum
fanout of any state i the automaton? Sinc the ransiions n th automaton are
s on the et et i th srin, the maximun unout any tats conld bave i
e automaton camot be sny grestr thas th s of the alphabet o the lnguage.
“This menns the mumber i ot only f sl than the mumber of sises in the
sutomaton, bt s actully sometbin practicl nd reasonable indeel can evn
e smale than th length ofthe word o b conected on ccason

The tine requiement for the deptfst serch technique is propertional 1o
iy () x 24 7, where i the Jength of the word 10 b comcted,
7 "

distance (3] Whie this may scem ke an unacceptably asge namber e 10 the d
scn i theexponent for some of th terms, ecll tht th speskers of the anguages
with which FSCL s conceene tend to prodice low mumbers of etors per word. I
fac,theeror distance in practic s sually very small mmber sich a 2o 3, ths
allowing thistime requirement to actually be very ressonable

I terms of comprehensiveness, while it i true that the existence of & maximun

very seldom

that this occurs, oven for ow maimum ereor distance values. In additon, asuning

that o, which

e given word will be corrected into a word accepted by the automaton, measing an

allows the word with

0 suggstions for corections, o s the algorithm on that word with a Higher
masimum eror distance until a suggestion i provided.

Therelore, since both the efficency and comprehensivencss of the depi-irst
searh techniquo soem reasonable for the purposes of this project, it was chosen os

the techaique fo the speling corection algorithin with which to st the automata

prodced by FSCL language desriptons.

412 Description of Algorithm
Tho pondocods o the deplft. sesech apeling cormection lgoricn i ghven i
Figures 4.1 and 42, This algorithn begins by tryin o sce i the given word is
scceptd i, without requiving any odits. Each time it enconntrs transiton it

cannot make within the given FSA, it recursively tries to “undo’ several diflerent

types of it operations i the word; specifically: fnsertion, transpasiton, deltion,
The

J substiation. As it docs o, it

with which the
imits the recursion depth and bence the mumber of odits that will be permitted in a
siven corection. For a mare comprebensive discussion and explanation of the details

ofthis algorithm seo 30]

Type Resultset
integer errr aisance
Set

State
Boclean £inal

Fnceion MdDrhaplace(RamSes. o, Rt sev)
RosultSot resul
1€ e aeror tlseance < old.arro.distance then
rosult < new

ose
suftizes < old.suffixes U ne.suffizes
rosult exror_distance <- old.orror_distance
eurn resule

Figure 4.1: Pseudocode of spelig corection lgorithn, Pevocode n thi figure
and the e following use th abject-orientd otatin .3 {0 repesent varable y
belonging to abject instance . The syibol U i wol o represent the et nion
opertor, and the symbal + s used to represent cither mathematical addition or
tring concatenatio, depending on the contest in whic it i wsed. The symbol {}

cepreseats an cmpty set and the symbol [] represents an empty artay:

Function Tolerantlookup(Sering v, n
Tnteger

E)

RosultSet. resule
Sot sutfix

oy
a1

st orvor_distance < infinity
i aen

Forals.rzer.distance <- 0
rosult suttizes <

100
it sramsiion (o, vop)) oxata then
e 1,

17 Teansposivion //

it

< langeh b wlp) 1= ulp < 1)
cranoition (s, ulup + 11) exiats th
e tramsition G, ulep o 11 ¥p) extats than
2 TotersatLookupte, v +
Vs 1), ¥(wpl), t-0)
for each string 2 1n n.suttix
2 < ulup + 1] + vivp) +

incrosent. n.error_distance

Tonls < Mdlrhaplaatranilt, n)

f romis erordatusce <t Chn
 Feveis.arrer disiance

Figure 4.2: Paeudocode of spellng coreetion algorithm (cont’d)

for each letter 1 1 the alpha
& raasivion (5, 1 sxivts vhen

. n.axror_dis
mxnyhc-(nwll »
€ resus ervr sisanc < ¢ fhon
eute. arrer distaace
7

Length
T reesaniupts, ¢ 1,]
for exch soring 2 B

- resulterror_distance
PR —.

Figure 43 Pseudocode of speling correction algorithm (cont'd)

4.3 Discussion

Although there were 50 problems with the implementation of this module of the
defit

sy in which it coukd W
o been taken for ranted rcber than erfying that they match up with thse in
the ik of lnuistic:

For cxampl, most Computer Science papers o this tpic deie “mispelings”

o terms o Hamming distance,or some light vaiation thercof, where the Hamming.

distance betwoen two sirings is the mumber of positons at which those srings are

diflerent 35,

Cants o this projec, it woukd have boen dangerous to take for granted that this was.

nay influence the weighting of erors. For example, the pasition of the misspeling

i word could have affcted how sigaificant an eror it was. Likewise, chn

wn
consonant nto vowel o & vawelinto o consonant could have boen more signifcant
ol sguificant than changin & consonant nto another comsonant o & vowe ko
asothar vowe. 1t i ako possble that deetng or changing an entire sylable could
Have had lssseveiy than deleting o changing purt of i

“This sy serves to exmphasiae the fact that in Computer Science, wo shovld

the cortd by thosein

ot flds,

4.2 Interpreter

The spelling correction algorithm discused in Section 4.1 operates on faitestate
antomata. However, FSCL descriptions i thei raw form arestore s flat text files.
Ths, an nterpreter must be implemented to convert » FSCL language desciption

into an FSA that

be used by the spelling coroction algorith
A

wever there were many which turn fa word lists nto FSAs [13, 7] Therefor the

bt

descripion fno & word st

Such an algorith converting & word It o an FSA must meet the following

erterin n ordor o be considered appropriate for FSCL:
« Space efficient: Since one does not know shead of time how lago the word
Hist il be, it imprtt ¢t the algorithm bo spaco efficient o ensure that

the comptations leading up to the nal FSA will it in mermory.
« Time effcient; Likewise, snce the word liss created from FSCL desciptions
cankd be quite larg, it s impartant that the algorthm be time fficient so that

the computation can be done i a rensonable timefreme.

421 Previous Work

There are several types of algorithms in the lterature which can convert a st of

words nto o miimized FSA. The two

» types e

« Post-construction minimization: Ones which crate the FSA in a brute
foce manner,then minimize it onee i has been fully reated. These lgorithms
are time eficent but tend to be space intensive. [37]

« Incremental minimization: Ones which creae the FSA word by word, min-

wizing aftr cach word addition. These tend to be more space efficient than

the previous type, but requise mare time. [13]

ortant o this st the algorthmn

Since both time and space eficency are both

e o cxtrenes. 1t comstaucts the atomaton ncrementally, partinly minimiziog
ol step of the way, then prforms final minimization step after the ull word
it s been added (8] This ahiev balance between tim effciency and space
lficiney that e docsnd sutable for the purpases of this projet. Hoveve, his

length, Thi meant

that the word st hiad to be sorte afer b ereated and efore being sent o the

A creation algorithn,

422 Description of Algorithms
4221 Word List to FSA

Given o word st this alorithm can convert i nto an FSA. To do this, the lgorithin
the words braneh-

g where appropriate and minimiing the automaton u it goes. A precondition of

tho particular lgorithm that was chosen for this proces s that the list b sorted n

decrensing order of fength. The pscdocode fo this algorithun s deseribed in Figures

1t01s

typo FiniteStatehutomaton

State Array states 71 The satne in the antonstan
State starting st / Tho starting st
e vy e 11 A votiations seeay todered
o and & sysbol.
Containing a reference fo 3

ety

gl Fintastasabsonson fes / The toaston
ity Sot. of mininized s
Fhova Svee herey v 71 5o ot somenininizs saien

Function CreateFSAFrosvordList
advords
return fea
Funceion AddState(Seato from, String letter)
set cransition(fron, lotter) to 3

Facrion astord(Suring
ing.state
ok onen dovemr T in
i miionta, 2 - 2 ik s
" hdastasa .
ase
- msivionts, D

Figure 4.4: Psendocode of word list o FSA conversion algorithm

Fnceion eeEqralons Sate o, Siate 0

a1
for sach letter 1 n the alphaber
“ransition(s, 1) then

i€ wrnsisionte,
st <- faise

e
o g

e

Function NextEquivalent(State 2)
el 2
for sach state s in fsa
if's 1o n then
it AroEquivalenc(s, 5) thon
it < 5

roturn rosult
Function BuildStack(State o)

stter 1 5n tho alphaber
) 1= mull then

eitestack(e>

m (cont'd)

Figure 4.5 Psendocode of wordlist to FSA conversion algori

Function Merge(State a, State b)
or each state s in fsa

for see et 1 the ighaer

it transicionts, 1 =

then
it 1) o s
resove b tron

resove b fros v

Function Minia:
“hile v is not sapty
i
e I-nrquwa]-nth)
itp 1= nu
e o
olse
s qton
Function Readit
for each word w in input file
BuildStack(Adiord(w))

BuslaStack(fsa.starting state)
Mininize

Figure 4.6 Pseudocode of word list o FSA conversion algorithm (cont'd)

4222 FSCL Files to Word List

In op

from its compact of words, sorted i de e

offength. Therefoe,there arc two pre-processing steps involved:

1. The word list must be created from the Jxicons. To do thi, each possible
prefix i create by combining the word form of cach ntey i the inital prefix
lexicon with ench formin it contimation class that does not cause aclsh due

‘which each combination of prefi, stem, and suffix that does not cause a flag
diacriti clash is produced. The psendocode for this algorithn i described in

Figure 47.

2. T ted

st by ierating through the it i one enty o a time and nseting each
enty encountend into the second list bfore the frst. ety enconntered in
the second list with shorter length. The pecudocode for this algoritim is
descibs . Figure 45, Athough the algortan that was mplmented ses &
form of serion soxt, it was suseqenty ez tha bkt sort approach

‘wouldalso have been applicable, and mre fficint.

To lusteate this rocess, the FSCL description given n Figure 4.9 would produce

Figure 4.10.

list given in Figure 411

Paceion Crosaorss(Fila rati, File st File ste)
resut < O
Pretises < Goebine(prais. Lexicona(1])

< CombinaCnttiz Loxicons (11

e e veterfam o)
retum result

Fncrion GembineLicon
- 0

o e emie 0 o for

continuation_class)
P

58 not. Clash(nos_form
v M
Frap—"

Function Clash(String 5)
Cosult < false
aoa = 4-name and £ valus 1= d.valus then

result < true
roturn result

Figure 4.7: Psendocode forcreating an unsorted word lst. rom FSCL description

®

Fnceion Sortylenia(sing ey sorde)

apper
: soturn Femt

Figure 4.: Pseudocode for sorting the word st

LexIco P
re B
u B
LexIco &
o ;
wina s
LEXTCON §
ing "
Figure 4.9: Exaumple of compilng a FSCL desciption into a sorte word it

Figure £.10: Example of conpiling FSCL doserption nto a sorted word ls (cont)

revsading

desciptin into n sorte word list (con’d)

Figure 4.1: Example of compiling a FS

n

423 Discussion

Function CreatotordLst(File irput)
< farst loxicon 1 aput
roturn Herge(t)

Function Nerge(Lexicon 1)
rosult <

e < ret U Nrga(.contimution.clas)

Figure 412 [

FSCL descrption

“The orginal implementation of the FSCL interpretr used a siogle exicon fle
imilr to LEXC and recursvly combined the wods base solly on lxicon and
contimuaion clss tratin the lst of stems as simply another lexicon. The pseu-
doco for this lgoriths i descrbod i Fige 4.12. Whie at. st this alorithin
iy seen i simpler and elegant than the one wltimately skt on (Figure 4.7),
it turms out that in practie it o up o ot of unnocessary and redundant
work

To ilusrate, suppose there are three lexicons: A, B, and C. The mumber of

forms containe by these lxicons are , b, and ¢ respectively. Every entry in A b
continuation class B, every entey in B b continuation class C, and every ntry in C

has contins

on clas #.

Suppse that. there are no g discritie in any of the lexicons. In such a case,

would
w

than, however,

AB, which s then combined with C; or world conbine B and C into a temporary

BO which A
it would fisttake b time to combine A and B into an intermediate it of X b
form, then take a x 0 ¢ tim to combine that It with C to create the final lst.

n would

take b x ¢ time to create the intermediate Jexicon, and then a x b x ¢ 1o reate the

fnal sl resaltng in b -+ 0 x b x ¢ time.

Thus, in the case that there are no flg diacritis, or at least, no flag dincitc

muber of flag dincritc clashes in the lexicons,the terative algorithm becomes mch

faster due o the seduction i size of the ntermodiate lesicon
For cxampl, suppose A contained 10 forms, B contaius 100, and C contans.

30, In that case, the mmber of combination aperations, and this the time taken

by the recursive alorithm would b 10 100 30 = 30,000, regardess of how,
wany words actualy end wp being eliminated due to flag dicitic clashes. Now.

Suppese that A and B are combined fis, esulting

in 10 % 100 = 1000 combination operations. Howeve, suppase that due to flag

dincitc clashes, only 500 of those combinations are legal. This means the nex! step.

15,000 con

will combine AB with C, sesulting in 500 x 30 ination operations.

16.000; f lss than the

“Ths the total time taken would be only 1000 + 15,000

30,000 taken by the recursive algoithn,

Note, however, that i order for the iteeative lgorithm to be appropriate, there
are several conditons that must be met:
« The number of flag diacritic clashes must be significant. If lashes do

ot signifcantly reduce the size of the ntermodiate lexicon, it wil take even

o general, FSCL

o meet. this condition, snce flag diacrites are such a fundamental pat of its

" LEXC,

‘and climinate llgal word forms. For example,the st of I nouns produced

from the tsting data containes 40,677 words, wherens if no clash removal

boen performee, oughly 2.049,625,570,500 words woukd have been prodced.

« Flag dicritic values must not be changeable. In LEXC, it is posibie for

 partcular fing dincitc’s value to be changed or cleared during the combina-

ton proces. Tn such a case, clsh in the Intermedite lexicon woukd not be

it — ; with
 subscquent word form may undo the clsh. T FSCL, hawever,th values of
g dliertcs azo immntable durin tho comblnation process and thus a clash
i st word is suffcent ground to climinat i from the s sice adding
frthee word form caunot undo the lsh.

« The continuation class o ench entry in each lexicon being combined

this way must be the next lexicon in the sequence. 1t woukd be meas:

b C, and somme had . In LEXC

" the i o restricton on what lexicon any.

siven entry can have as its continuation class. However, FSCL has been de-

and may o may not have some sufxe, bt must have & stem. Ths, it is
safe to divide al lexicons into thoe three categories (prefx,stem, and suffix),

and have a separate il for cach category. Thus, there may be several prefix

lexicons,or . but el i
st come before anything n the sten fle. Likewise, thre may be seeral sul
i lxicons, o there may be none, but. deinicly whateve lgal sufixes thre
arc must come after anyting i the stem fle. The stem e may contain sev-
exlleicons whiccombine togethe to form stms,or may b one onlihic

lexicon, but it cannot be empty.

Since

Lt represent the mamber of entros in the lexicon with the most. entie in the

prefx . Let s epresent. the umber of enties i the Jexicon with the most enties

in the semn . Let m represent the number of entres i the lexicon with the most

entrion n the suffix e, Lat represnt the number of leicons in the prefi fk, |

e nmunber of lxicons i the tem l, and p the mumbes of lexicons in the wuff

il S cach wntry in & given lexicon can only take o lexicon that comes after it

the worst case would s

v ben, the total be o, and

many seps would be nvalved in constucting those word forms, Thus, the worst-case

Seem intimidating, it i important to poin out that it makes the assumption that 1o
lag diaritc clashes occur. However, it turns out that high ate of fig diacritic

clashing resuls in a bigh reduction of running time. Thus, in practice, the running

Jiminated a rough idea of th i o the actual

data usd 0 perora th testing of FSCL o I nouns,there were rlatively fow
prfises t0 be combined, and the stexs were all tord in single exicon, however
e sufxes wold have generted roughly 991000 forms by the recrsive algoichn,
e climinating clases, hoveve, it resled i a mere 186 forms.

Now that the implementation detail have boen dscrbed, the nest hapter will

oting proces, s well 15 i oduoed.

Chapter 5

Conclusions

Now that the FSCL specifcation language has been desribed, as well a3 o system

A converting FSCL de into FSAs and performing

o be tested o determine the sit-

spelling corrction on those FSAs, the system

SCL and its asociate toos fo s intended target natural langunges. To

abiliy of
o thi, pat ofthe I lagange will be encodee n FSCL Soction 5.1 a descrption

of the esults of tesing the FSCL system on the Tunw Inngunge. Then, Setion 5.2

discusses posibilitics for expanding on this work in the future, Finally, Soction 53

discusss whit has b Jenenee and demonstrated in this hess

5.1 Results

of nterpreting that language and performing spellng correction operations on the

ngage can then be

1t by the interprete has been implemented, the

st to determine whether it indeed maets it intended design criteria, FSCL was

thus tested by attempting to encode the Ty language. Tnnu is an agglutinative

aboriginal language and hence woukd be an appropriate natural language on which

implemented o operate on i
Fies, Sction 5.1.1 bow these

features motivated decisons regarding the nature of the testing data. Then, Section

51 totest the FSCL hat data. Finally,

Section 5,13 will eport the resuls o the testing,

501 Innu Language Description

w s highy agglotinaive angaage, which, as discused in Secton 2.1.2 means
hat many ideas which in most other Jangusges would be expressd with sparate
words are nsend exprssd it affies to one of the i words of th sentnce.
See Figare .1 for an exampl of this phenomenon,

"our cats"

ni + minush + im + inan + at

it
cat m:l;
possessive

first person
obviative possessor

Figure 5.1: Example of agglutintion in lnn.

B

“The Innw Language consistsof three primary parts of speech [11]:

« Particles

connections, such s conjunctions and prepositons. Partices n Ty have fxed

forms which do not accept affixs, thus making them trivial (0 encode.

« Nouns: These e words which rpresent people, places, and things. Nouns in
Inmn have more complicated strcture than particles, and accept many types

of affixes,thus making them mere diffcult to encode.

« Verbs: In many anguages,vebs ot seprsent actions. T verbs, however,
con nclude concepts that n othe languages would be categorzed ifleetl
Such s the propety of being o or being daytime. Verbs in T e mach
more complicated than nouns, making thr il mre diffclt (0 ncode.

It was decided that it woukd be sufficent for the testing of the FSCL system to.
encode ol the members o one of the three man part of speech for the purposes
of testing the FSCL specification langunge specificall, the ouns, Pasticles aow 10

afsation, nd thus wonld have been t0o trivial 10 fully st the limits of the system.

The structure of b thiscomplsity
s such that it docs not bring saything fundamentally ne (o the table which cansot
be tested with the simplr structure of Tnn nouns. Therelore only the nouns were

implemented to test. the system

5.2 Description of Testing Process

The first step in testing was to use sme simple but comprehensive dumimy data to
st the aceuracy of the implementation of the integrated FSCL system described
in the previons chapter. Orce its accuracy had been verifie, the capabilte of the.

FSCL Innguage were fully tesed using Inno, by way of the fllowing process:

1. Obtin langusge data from linguists: As the author is ot an expert in
T, some knovledgeabe consultants were approsched, inclding Mrgueite
Mockenie, o promineat schlar of the I langunge. Two types of rlovant
nformation were obained fom thse consltans. The st was desription
ofthe structure of s s e how they are formed, as wll 2 a compre-

hensive st of possibie word stems (roughly 11500 sems) and affies (roughly

Spelld words for the purposes of sy veification (roughly 120 words).

2. Encode data in FSCL: Once the relevant information bad been obtained,
e stems, affixes, and proceses by which they are combine, o initial FSCL

encoding was croated.

Once that data bad been encodod, the FSCL description

Compile and tes

7

algorithin,

words abtained i Step 1 above were then fd into the spelling corrctor and

the rsulting ontput was recordec

4 Verify result

The rsults ocorded i the previous step were then shown

o the linguist consitants who analyzed them to ook fo istances of correct
words mistakenly corrected into icoreect words, o incorect words mitake
ey rocogniae a corect words. They then coreted any misunderstandings
or misntrpreation the antoe b with regard (o the language iformation
providd i Step 1 above that may have e to the oberved eror.

5. Revise and tests With the new information an corretions rom the inguist.
consuants, the author then revised the FSCL encoding and procosded again

with Step 3 above, repeatin this proces as deemed necessary.

5.3 Discussion

The process of encoding the T language in FSCL was an iterative one, rather

Language data was gathered from the linguiss, implemented as best understood by
e author, then the rests cxamined and veifed by the lnguists, and corrections

made il

(i this casethree times).
One shoukd expect any Ianguage encoding exeecise o have this nature. Even if
the person doing the encoding is a language expert himself or herel,he o she must

ot expect the encodin to necessasily be completely errorfre the frst time. The

encoding mast b rigorously tesed and debugged.

Even a in the

output (roughly 7 mistakes out of 17 test words). However,thes are a result of mis-

®

ol fon

with the Tnm language, and not result of FSCL's inabilty to code fundamental

encoding, FSCL has sufficient expressive powe to corrctly encode it

5.2 Future Work

There are many ways this work could be bullt upon i the future, such as the -

sensitive correction. However, this secton willprimasily focus on two main idess:

other similar languages), and implementing a better wser uterfae for the speling

corrction utilty.

521 Extending the Dictionary
5201 Completing the Dictionary
T verbs are fr richer and have & ek more complcated tructure than T
o, O way in which the limits of FSCL can truly b tested would be to complete
e encodin of the I Ianguage by icluding the verb ditionary.

I liton to testag FSCLs capabilites on more complicated steuetures, doing

s would provide the Ianu commuity with » complete speling corection software

rsoutce which will el {0 preserve thei language.

5212 Creating other

Though FSCL was only tested on the I Ingange, there e other northern North

boriginal i need onal langusge
spelling correctors. Creating such software by encoding those languages in FSCL
would be fr smpler and essier to modify than it would be f t were done i compa-

blesoft

belong.

522 User Interface

Though the speling corection software that was currently writen for we with the

have much in the way of a wse interface. The s st type sngle word at
a terminal command prompt. after which the program will compute and display &
list o corvetions. A proper interfce sl be abl t iterat with documents i
sandar formats, scanning coch word i the document for errors, and llowing the
er t0 selct words from the provided lis of sggstd cortections (0 replae the
eor wor,

There are some issus, hawever, that med o be addresed ifone s to create &

proper wser nteface:

 Exror threshold: What would be an approprinte errr distance fo the algo-
ithim t0 sean out to? Too snall distance could cause many words to have
cnpty conection liss, which workd ot be very helpful t the wer Likwse,
o0 lrge ditancecouldcause many words to have an unzeasonaby long cor-

s

etion list which would also not be very helpfl 10 the user since he or she

the one ho or she i lookng for (which still may not b there)

of the eror distance concep. As the list o coreetions provided at disanco d
s always a subse of the corrctions providod at distance d + 1, the interace
coukd b designed in such wa that, for example, the defaut error ditance
for the spallchecker i low, but should the user ot fnd th corrct word i the
Short st provided a tht distance, e o she canexpan the s, by hving tho
ot scan the word again t the next disance out, Tho wse may then

il the correct word I found.

Fepeat this process

High misspelling rates: Sinco the aboriginal nguages for which FSCL was

desigod typically bave oy recently devlopad a writing systen and have el
atively o ltracy rats, documents wrtten n these Ingunges tend to have
igh rates of mispelling. That i, & sigifcant proportion of the words i the
docuents containat fsst onecror, Thi s tha wsin spelling cornection
Software o arg or even moderatehngth document i these lngunges may

be o tne-consuming task,

There are existing tochniqun avallable that other spelling corretion oftware
s inplementec that could b s for this purpose. For example, one such

tochnique takes o it of common misspllngs and their corrections asociatod

with the by

XFST), and before running the comprehensive speling correction sysem the
user can simply have the document. “auto-corree”, replacing all instancs of

misspellngs n the st replace by thei corresponding corrctions.

5.3 Summary

FSCL is wellsuited to encoding aggutinative natural languages. The lexicon and

Jutination of meta-

FSCL works wellwith fnit state speling coretion. The ntepretr can asily
convert a FSCL desciption ot an FSA, an the depl st search with eror tok
exance algoritun which operates on that FSA allows for ficient corrction of log.
o with fe erors pee o, cxen with e FSAS.

Final

. the tesing done with FSCL has demonstrated it ity to do its ob

effecively,given that the natursl nguage in question has been accuratly encodod

Bibliography

1] Akama

A. (2010) Linguistcs: An Introduction to Language and Communi

cation. (6th Edition). MIT Press.

/2] Alanen M. and Porrs L. (2003) A Reltion Betueen Contest-Free Grammars and.
Meta Object Fuclity Metamodels. Turkn Centre for Computer Scince. Turks,

Finland,

3] Algria, L, Aramsabe, M, Eseiza, N, Esciza, A, and Urizar, R. (2001) “Using

Finite State Technology in Natural Language Procesing of Basque” In Con-
ference on Implementation and Application of Automata 2001, Lecture Notes in

Computer Scence no. 2194. Springer-Verag, 1-12.

4] Backs, J. (1939) “Tho synta and semantics of the proposed international
chraic langunge of the Zurich ACM-GAMM Conference.” Proccdings of the
Intermational Conference on Information Processing. UNESCO. 125-132.

(5] Baraby, A. (2002) “The Process of Spellng Standardization of - aimun (Mon-

taguais)." Indigenous Languages acros the Community. North Arizona Univer-
sity, Plagetal.
heep://fan.uce.nau.odu/ Jax/ILAC/TLAC21 pat

s

(6] Bartet, 5., Kondrak, G, and Chery, C. (2008)

Structured SVMs for Lette-To-Phoneme Conversion.” Procedings of Associa-

tion L s . L

s 568576

| Boesey, K.R. and Krtunen, L. (2009) Piite-State Morphology. Cente fo the
Study of Language and Information Publications; Stanford, CA.
] Bil, E. (1992) “A Simple Rule-Basod Part-of Speech Tagger.” In Proceadings

ofthe Third Conference on Applid Natural Language Processing Assocation or

Computational Linguistes. Trento, Italy. 152

] . A. (1999) “Re
oretical Computer Science 120, 107-213.
[10] Burmaby, B. (2001) “Linguistic & Cultural Evolution in an Unyiekling Environ-

Cultural Diversity and Education: Interface Isses. Memorial Univer-

ity St Johu's, 3150,
1] Clarke, 5. (1982) North-West Riser (Sheshatshit) Montagnais: A Grammatical
St National Misenms o Canada, National Museurn of Man, Mercury Seves,

Canndinn Ethinclogy Service Papes No. 80; Ottawa, Canad.

2] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001) ntrouction to Al

gorithms MIT Pres and MeGrawHill.

13) Dacink, 1, Watson, B., and Watson, R. (1995) “lucremental Construction of

Minimal Acyclic Fiite State Automata and Transducers” Proceings of the

5

International Workshop on Piritc State Methods in Natural Language Procesing
Association for Computational Linguistes. Aukara, Turkey. 45-56.

[14] Dale, R, Moisl, H., sud Sorners, H. (2000) Handbook of Natural Language Pro-
cesing. Mareel Dekker. New York.

[15] Gries, 5. “Shouldu't it be a breakfunch? A Quantitative analysis of blend struc-
tare in Englih " Linguisties 12, 639.67

16] Karttunen, L. (2001) *Applications of Fnite-State Transducers in Natural Lan-

ghuge Processing.” Procecdings of the 5th Intermational Conference on Imple-

2088, Springer. Berlin, 3440

[17] Kukich, K. (1992) “Tochniques for Automatically Correcting Wards in Text”

ACM Computing Surveys, 24(4), 371439

18] Lins, P. (2006) An Introduction to Formal Languages and Automata (4th Edi-

on). Jones and Bartlett Publishers.

[19] Mackensie, M. (2006) Personl communciation.

[20] McDoough, J., Whalen, D. (2008) “The Phonetics of Native North American
Languages.” Journal of Phonetics, 36(3), 423-426

21] McNarmee, P, and Mayfied, J. (2001) “Chiaractee N-Gram Tokenization for Eu-

sopean Language Text Retreval” Information Retrieval, 7, T3-07.

) Mibor, S. and Schuls, K.U.. (2004) “Fast Approximate Search in Large Dictio-
naries” Computational Linguistics, 30(4), 451477

s

23] Myers, E:W. and Miller, W. (1950) “Approximate Matching of Regular Expres-
sions.” Bullctin of Mathemaical Bioogy, 51, 537

24 Oftzer, K. (1996) “Esvor-Tolerant Finite-State Recogition with Applications
to Morphological Analysis a2 Speling Correction.” Computational Linguistic,
2(), 7350

5] Pagh, R. (2001) “Low Redundaney i Static Dictionares with Constant Query

Tin

SIAM Journal of Computing, 31(2), 353363

(26] Packes, A. (2008) A Concise Introduction to Languages and Machines Springes.

New York.

(7] Radford, A., Atkison, M., Britan, D, Clabisen, I, and Spencer, A. (2000)

Linguistcs: An Intrdsction (204 Bilton), Cabridge University Press.

[25] Roche, E. and Sclabes, Y. (1995) “Deterministic Part-of Speech Tagging with

Finite-State Trassducers” Computational Linguisties, 21(2), 227-253

Roche, B aud Shabes, Y. (1997) Fonie-State Language Processng. MIT Press,

E

Cambridge

(30 Swary, A, (2002) “Typographical.
con ad s Applcation o Speling Correction.” In Confeence on Implmenta-
tion and Apphication of Automata 2002 Lecture Notes i Computes Slence o
2101, Springer-Verlg: Bl 251-200

(1] Van Valin, R. aud LaPolla, R. (1997) Syntaz: Structure, Meaning, and Function

Cambridge University Pross.

32 Vilaces, M, Otero, 1., Barcala, FM., and Domingues, J. (2004) “Automtic
Speling Correction in Galican.” In ESTAL 200f. Lecture Notes in Artifical

Intelligence no. 3230. Spinger-Verlag; Berlin. 45-57.

E

Vilaes, M., Otero, ., Grana, J. (2004) “Regiona Fiit-Stae Error Repie” I
Procedings of the Confeence o Implementation and Appliction of Automata
2004, Lecture Notesin Computer Science no 3317, Springer-Verlag: Berlin 200
0

4] Vilres, M, Otero, 1., and Grana, J. (2005) “Regonal Versus Global Fiite-State

Eeror Repair” In Proceedings of the Conference on Inteligent Teat Processing
and Computational Linguisics 005, Lecture Notes in Compter Science 1o,

3406, Springer-Verlag; B, 120-131

[35] Vilares, M., Otero, 1., and Vilazes, J. (2006) “Robust Spelling Correction” In
Proceedings of the Confercnce on Implementation and Applcation of Automata
2005 Locture Notes in Computer Scince no. 3406, Springer-Verlag; Berlin. 120-

3

o

‘Wagner, A, (1974) “Ordee-n Cornection for Regular Languages” Communica-
ons of the ACM, 17(5), 265268

[37] Watson, B. (2002) *A Fast and Simple Algorithm for Constructing Minimal

Acyelic Deterministic Finite Au Joumal of Computer Science, $(2),

303367

[38] Watson, B. (2003) “A New Algorithn for the Construction of Minimal Acyclic
DFAS Science of Computer Programming, 8, $1-97.

o

(3] Zerrouki, T, Palla A. (2009) “Tmplementation of Infixes and Circumfixes in

the Spellcheckers” Procecdings of the Second Interntional Conference on Arobic
; Languape Resources and Tools The MEDAR Consortium; Cairo, Egypt. 61-65

Appendix A

Test Data

Word False Negative
stk

iamtiky

Nishuznu

sishikasau .
pitukamit .
uapiiur

akanes!

-

Figure A.1: The lst of corecly spele I words ued for testng. Thse with an
asteris inthe column labelled “False Negative” ar ones which the speling corrctor

mistaok as being ncorrecly spele.

Figure A.2: The lst of correctly splld T words use for testin (cont'd)

Word False Positive.

mistiku

nishuns

nisshunnu

Figure A3 The list ofincorectly speled T words e fo teting. Those with an
st i the columnn lbelled “False Postive” ace ones which the speling corrector

mistook as being correctly speled.

Word

akonoshan
Akanoshau

Figure A4 The lst ofincorrectly spelld T words used for estin (cont’d).

Word False Positive

uapiiunpishisy

uapikun-pihies

atinelash
iinekas

mashtonn

Figure A.3: The list of incorecly speled L words used fo testing (cont'd).

ok

i
ey

Tonut
ey

Figure A.6: The lst ofincorrctl spelld T words use for estin (cont'd)

	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Blank page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgments
	0008_Table of Contents
	0009_Page v
	0010_Page vi
	0011_List of Figures
	0014_Introduction
	0015_Page 2
	0016_Page 3
	0017_Page 4
	0018_Page 5
	0019_Page 6
	0020_Page 7
	0021_Page 8
	0022_Page 9
	0023_Page 10
	0024_Page 11
	0025_Page 12
	0026_Page 13
	0027_Page 14
	0028_Page 15
	0029_Page 16
	0030_Page 17
	0031_Page 18
	0032_Page 19
	0033_Page 20
	0034_Page 21
	0035_Page 22
	0036_Page 23
	0037_Page 24
	0038_Page 25
	0039_Page 26
	0040_Page 27
	0041_Page 28
	0042_Page 29
	0043_Page 30
	0044_Page 31
	0045_Page 32
	0046_Page 33
	0047_Page 34
	0048_Page 35
	0049_Page 36
	0050_Page 37
	0051_Page 38
	0052_Page 39
	0053_Page 40
	0054_Page 41
	0055_Page 42
	0056_Page 43
	0057_Page 44
	0058_Page 45
	0059_Page 46
	0060_Page 47
	0061_Page 48
	0062_Page 49
	0063_Page 50
	0064_Page 51
	0065_Page 52
	0066_Page 53
	0067_Page 54
	0068_Page 55
	0069_Page 56
	0070_Page 57
	0071_Page 58
	0072_Page 59
	0073_Page 60
	0074_Page 61
	0075_Page 62
	0076_Page 63
	0077_Page 64
	0078_Page 65
	0079_Page 66
	0080_Page 67
	0081_Page 68
	0082_Page 69
	0083_Page 70
	0084_Page 71
	0085_Page 72
	0086_Page 73
	0087_Page 74
	0088_Page 75
	0089_Page 76
	0090_Page 77
	0091_Page 78
	0092_Page 79
	0093_Page 80
	0094_Page 81
	0095_Page 82
	0096_Page 83
	0097_Page 84
	0098_Page 85
	0099_Page 86
	0100_Page 87
	0101_Page 88
	0102_Page 89
	0103_Page 90
	0104_Page 91
	0105_Page 92
	0106_Page 93
	0107_Page 94
	0108_Page 95
	0109_Page 96
	0110_Page 97
	0111_Page 98
	0112_Blank page
	0113_Blank page
	0114_Inside Back Cover
	0115_Back Cover

