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Abstract

Based on a review of previous literature on the subject of modal testing, it was determined that
modal parameters such as frequency, damping ratio and mode shape change with the
introduction of damage to a beam or structure. However, relating those changes back to the exact
nature and location of the damage is a subject of ongoing study. In the current work, a method
has been proposed for quantifying and localizing defects in structures using multiple regression
models and response surfaces obtained through design of experiments (DOE) techniques, which
are initially developed to relate modal frequencies to parameters such as defeet location and
defect depth. Once the models are developed, multiple models can subsequently be inverted and
solved for the multiple defect parameters required to characterize a defect by using modal
frequency measurements of a test specimen. The method was also successfully employed in
many scenarios involving theoretical, finite element and physical models. In addition to the
development of this method, a series of full-scale utility poles were tested in order to investigate

whether modal impact testing could be used to assess their condition. Static destructive tests

were used to determine material properties as well as failure stress at the ground line and break
Tocation for cach pole. It was found that each modal damping ratio correlated to some degree
with these maximum stress values. Moreover, it was found that the average of damping ratio
across multiple modes correlated with maximum stress better than either individual damping
ratio, and that correlation progressively improved as a greater number of modes were considered
in the averaging process. Regression models were developed to relate average damping ratio to
maximum stress and proved to provide better predictions of maximum stress for the specimens

involved in the study than did commercial ultrasonic NDT equipment.
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Chapter 1
Introduction

Wooden poles are widely used by utility companies to support transmission lines. In
Newfoundland and Labrador alone there are approximately 26000 wooden poles in service
ranging in age up to 38 years with about 34% over 30 years of age (Haldar, 2003). Ensuring their
struetural integrity is important to the people who work around them as well as those who rely on
them for uninterrupted power transmission. Defects due to rot, ant and woodpecker damage can
be serious threats to the bending strength and load carrying capacity of a pole. These types of
defects can be hidden from view and can oceur in relatively new poles that would otherwise have
a long service life. Treatment using fluoride and boron based preservatives as well as creosote
coverings can slow the formation of these types of defects. However, there is still a need for non-
destructive test methods to detect hidden defects and estimate pole strength. Various non-
destructive test methods are already being used and include sonic and ultrasonic devices, x-ray
and nuclear magnetic resonance, decay detecting drills and electrical resistance instruments

(Wareing, 2005). Many of these methods are used locally but do not provide a definite indication

of a pole’s condition, especially when i the intermediate stages of deterioration. The author and
research collaborators have proposed the use of modal impact testing as a new non-destructive

test method for detecting hidden internal defects in wooden poles.




A somewhat novel approach will be suggested by the author for detecting and quantifying

defects

beams using their modal frequency. The method involves first using design of
experiments theory to create regression models of multiple modal frequencies of the beam. Each
regression model expresses a particular natural frequency in terms of a number of factors that
have a significant effect on that natural frequency. The factors could include easily measurable
parameters of the beam as well as parameters that are desired to be predicted. If defects are

desired to be detected, then the

parameters (such as dimensions and location) should be
included as factors in the regression models. Once the regression models are acquired, they can
be used to detect defects by first measuring the natural frequencies of the beam using some
experimental technique (such as modal impact testing). The natural frequencies are then used as
inputs for the regression models. Any other easily measurable parameters are also collected and
input into the regression models. The regression models are then rearranged and solved for the
appropriate defect parameters. The regression models can only be solved if there are at least as
many equations as unknowns. Therefore, the number of defect parameters that can be predicted
is limited to the number of modal frequencies that can be accurately measured. It is also
important that the regression models be an accurate fit to the beams actual modal behaviour in
order for them to provide good predictions of defeet parameters. Since the modal frequencies of

a beam are affected by its length, cross sectional arca, second moment of area of the cross

section, modulus of elasticity and density then any easily measurable parameters that affect the
above parameters should be included in the regression models. For example, a wood beams
density is affected by its moisture content. Therefore, if moisture content can be measured casily

in practice then it should be included in the models in order to increase their accuracy. The

benefit to using this of approach s that it could be used for complex structures that are difficult



1o determine theoretical natural frequencies for in order to compare to experimental values. The
regression models simply have to be developed first by experimental measurements on the
desired structure type. It may be useful for quality control purposes as well where products are
produced in mass quantities and dedicating a number of specimens from an assembly line may
not be significant if they allow for the development of regression models that can be used for

future inspection.

‘The goal of this study is to confirm or deny the validity of the above method by applying it to
controlled theoretical, finite element and small scale experimental models. Models for frequency
will be developed according to the above approach, and then used to predict the defect condition
of validation specimens. The predictions made by this method will be compared to the actual
known (and controlled) defect parameters in validation specimens for accuracy assessment.

Some preliminary work will also be done to determine if this method, or a similar approach, is

practical for testing full scale in service utility poles. Full-scale utility poles will be tested in the
lab using existing non-destructive test (NDT) methods as well as modal impact testing. The poles
will then be tested to destruction in the lab to determine strength. The existing NDT as well as
the modal impact results will then be compared to strength measurements in order 0 assess the

relative value of modal testing.



Chapter 2
Literature Review

For any structure, there exist an infinite number of vibration modes. Each of these modes has a
unique shape by which deformation occurs during vibration and a corresponding natural
frequency at which that vibration takes place. Generally vibration is damped in non-ideal
situations and each vibration mode has a certain (but not necessarily unique) degree of damping
which is expressed as a modal damping ratio. Any state of vibration can generally be expressed

as the superposition of an infinite number of these modes. The amplitude of each mode’s

vibration response, due to the addition of energy to the structure via an input force or initial
condition, will be dependent upon the degree to which that mode’s natural frequency is excited.
These three parameters; mode shape, frequency and damping ratio; are often measured through
experimental modal analysis and are typically the focus of attempts to perform vibration based

damage assessment.

Modal testing has already been used in various applications to detect material defects. For

example, it has been used to detect cracks in a wheel end spindles of US Army vehicles (Ackers,

et al., 2006). It has also been used to characterize the properties of fiber-

forced composite
materials for quality control purposes (Gibson, 2000). In addition, it has been used to determine
modal parameters that helped to design more dynamically wind resistant steel, aluminum and
fibreglass light poles (Caracoglia & Velazquez, 2008). However, current applications are mostly

4



limited to materials that are manufactured to be homogeneous and isotropic in nature. Wooden

poles are normally non-homogeneous and usually contain naturally occurring defects such as

knots and spiral grain. In addition, wood is an orthotropic material with independent material
properties in three mutually perpendicular directions relative to the direction of grain growth
(Green, Winandy, & Kretschmann, 1999). This means that material properties can vary between
specimens depending on their individual pattemns of grain formation. For these reasons, any
modal impact-test method that is developed for use on wooden poles must be based heavily on

experimental data (with some validation of experimental results by finite element and theoretical

means)

‘The current research initiative stems from a preliminary study by Budipriyanto et al. In their
study, three rectangular cross section cantilevered beams were analyzed under random excitation
1o determine modal frequencics and damping ratios for the first two transverse modes. The
beams were tested intact and with rectangular slotted defects at the clamped end. Input force was
measured with a load cell and response was measured with two strain gauges (near the clamped
end) and two accelerometers (one near the clamped end and one near the tip). With slots
introduced it was found that natural frequency decreased and damping ratios changed but with no
definite trend. Finite clement analysis validation achieved different frequency values but did
show a similar percentage change with slot introduction when compared to experimental results.
“The numerical study also included results for the first ten modes (including torsion and axial
modes as well as transverse modes along two planes) with three different sized slots. It was
found that all modal frequencies decreased with increased slot size. In addition, a damage index

was proposed as a function of the modal frequency, the modal damping ratio, and the response. It



was claimed to increase for defected beams. The damage index increased with slot introduction
when determined based on response from the accelerometer mounted near the clamped end but
showed no definite trend when determined using response from the accelerometer mounted near
the tip. The authors suggested that the damage index increased using the base mounted
accelerometer because that accelerometer was located near the defect. This result was said to
confim that the damage index could quantify as well as localize damage (Budipriyanto,

Swami

Adluri, & Haldar, 2007). However, even though the damage index did increase for

the accelerometer mounted near the base for all specimens, the magnitude of the increase was not

consistent between specimens. In addition, the ratio of damage index increase between the first
and second modes was not consistent between specimens. While some of the results of this study
are promising and show that defects can cause some change in modal characteristic of beams,
more work has to be done in order to accurately quantify these changes. Prediction models have
yet 10 be derived that relate vibration response directly to defect size or to bending strength
reduction. Since the goal is to ultimately use this method for field evaluation of in-service poles,
expanding this work to include full-scale pole testing will need to be done. In addition, modal

impact testing should be investigated since random excitation is impractical for field use.

Chui et al. suggest that a pole’s modulus of elasticity is an important quality control parameter

since it correlates well with strength. They present a method to dynamically determine a tapered

pole’s modulus of elastiity based on its first transverse modal frequency. Ten poles were tested

using this method and the dynamically determined modulus was compared to a statically

determined modulus based on ASTM standard procedures. The relationship between them was,

good except for one outlier that was determined to be weakened by ring shake. When comparing



the statically determined modulus of elasicity to bending strength there was a good correlation
However, when comparing the dynamically determined modulus of elasticity to bending strength

the damaged pole did not correlate well. The authors feel that this result means vibration testing

may not be able to accurately identify defected poles due to the low stress levels involved (Chui,

Barclay, & Cooper, 1999).

In a review of studies that used modal frequency as an indicator of structural damage, Salawu

pointed out that frequency can be a useful parameter but has some downfalls. Many researchers
have confirmed that the existence of a defect is comparable to the local reduction of cross

sectional moment of inertia which in turn reduces local bending stiffness (defected beams have

been modelled in previous studies as two sections joined by a torsion spring). This loss of

siffiess results in a lowered natural frequency and the frequency reduction is most severe when

a defect is located at a point of high curvature for any particular mode. There are some

exceptions, but at modal nodes, the stress in a structure is often low and therefore damage
oceurring near those areas may not have a significant effect on the frequency of that particular
vibration mode. This means that changes in the frequency of multiple modes may need to be
considered together in order to provide an aceurate picture of whether or not damage is present.
There also is some debate about whether low order modes or high order modes should be used to
detcct damage. It has been shown that high order modes are the most sensitive to damage but at

the same

¢ are much harder to aceurately measure in practice. In addition, high order modes
obviously have a greater number of nodes that could potentially hide the presence of defects

(Salawu, 1997).



1t has been shown that changes in the stiffness of the connection between a structure and its
supports can change the measured natural frequency of the structure. This may be of some
concen to pole testing since varying soil conditions (ic. drying, freezing etc.) could change the
stiffiess of a pole’s support and influence modal test results. In addition, many researchers have
had difficulty quantifying the effects of environmental conditions (such as temperature and
humidity) and have not been able to accurately incorporate these factors into their test methods.
‘Testing on-site wood poles would likely mean dealing with this same problem. In order to avoid
having to account for environmental factors it has sometimes been found useful to define a
threshold value beyond which damage can be assumed as present. Others have simply ensured
that measurements are made a the same time of year to minimize the change in environmental

conditions (Salawu, 1997).

Like modal frequency, modal damping ratio (or loss factor) has also been shown to change with
the presence of defects. One study involved drilling an increasingly large number of holes into a
Wooden beam and tracking how the modulus of elasticity and loss factor changed. It was found
that as a general trend the loss factor increased as the number of holes increased. The trend
however was erratic suggesting that loss factor is difficult to measure experimentally. It was also
found that the modulus of elasticity decreased as the number of defects increased (Ouis, 2003).
“This is significant since the modulus of elasticity has been found to correlate well with strength
(Chui, Barclay, & Cooper, 1999). In a follow up study, a similar experiment was conducted
using sand filled holes instead of void holes and a similar trend was found for modulus of

elasticity. However, In this case damping increased at a greater rate with defect introduction. The



sand filled holes were intended to better simulate rot pockets and scemed to amplify the effect of

defects on loss factor (Ouis & Zerizer, 2006).

Most of the previously mentioned works have limited their study to changes in modal
frequencies and damping in order to detect damage in structures. While these methods seem
promising for examining overall specimen properties, they are less useful for localizing defects.
‘The use of changes in mode shapes to localize defcts is another possibility. However, using the
change in displacement mode shapes between intact and damaged specimens has shown little
success. The change in a parameter called the curvature mode shape had been proposed as a
better indicator of damage location. This parameter can be calculated using central difference
approximation from a displacement mode shape or can be determined directly by measuring
ocalized strains. In a numerical study, Pandey et al. demonstrated that, for the first five modes,
the absolute difference in curvature mode shape between intact and defected specimens were

roduced as a local reduction in the modulus of

useful in localizing the defect. The defect was

elasticity (E). As the modulus of elasticity was incrementally lowered, the magnitude of absolute
difference in curvature mode shape at that location was shown to proportionally increase for all

five modes (Pandey, Biswas, & Samman, 1991).

Lestari et al. used the difference in curvature mode shapes to identify defects in laminated
carbon/epoxy composite beams. In a study involving six beams they found that curvature mode
shapes gave a reasonable estimate of damage location for three distinct types of defect. The
defect types studied include de-lamination, impact damage and saw cut damage. In their

analytical study, the curvature mode shapes for each of the first four modes localized damage

very well except when the damage occurred near a node. In their experimental study, beams



were tested using impact excitation as well as actuator induced sine sweep excitation. For impact
testing, the response of the beam was measured at sixteen nodes and the frequency response
function from twenty different data sets were averaged for cach node. The curvature mode
shapes were measured directly using PVDF film sensors to avoid loss of accuracy that may oceur
when converting displacement mode shapes to curvature mode shapes. The authors found that
impact testing was better at localizing damage despite sine sweep excitation giving smoother
mode shapes (Lestari, Qiao, & Hanagud, 2007). This work shows that curvature mode shapes
can be used to experimentally localize defects in beams. However, the beams used in this study
were manufactured and could be assumed to have constant material properties along their entire
length. In addition, the authors focused on comparing experimentally determined curvature mode
shapes for defected beams to analytically determined curvature mode shapes for intact beams.
“This method may be less useful for indentifying defects in wooden beams given that naturally

occurring defects such as knots could make curvature mode shape of intact beams different from

their theoretically expected shapes. A more useful method of localizing introduced defects in
wood may be to compare experimentally determined curvature mode shapes of each individual

beam for both the intact and the damaged condition.

One other noteworthy area of study is the use of added mass as an indicator of damage in beams.
Al-Said suggested that the change ratio of the first natural frequency reaches a maximum
algebraic value as an added mass is moved near the location of a crack. The same can be said for
the second frequency, except that the change ratio now reaches a minimum near the crack. He
also showed that as the added mass was moved past the crack, the trend in the change ratio for

each of the first two modes showed a discontinuity. Plots showed that the first modal frequency



generally decreases while the second modal frequency oscillates as a mass traverses towards the
tip of a clamped-free beam (Al-Said M. S., 2008). This oscillating behaviour of higher modal
frequencies, occurring as added masses traverse along beams, has been shown in many studies.
Frequency generally drops by a greater amount as an added mass traverses away from a modal

node. Iis effect diminishes as it approaches the next modal node resulting in an oscillating

behaviour (Al-Said & Al-Qaisia, 2008)(Fung & Yau, 2001)(Zhong & Oyadiji, 2008). As was

noted carlier damage can be hidder is located near a modal node. The use of change in

frequency due to an added mass shares this downfall since its effect is reduced when the mass is

located near a node.

Despite its weaknesses, modal analysis continues to be a widely studied topic in the area of
damage assessment and non-destructive testing. It shows promise when applied to controlled and
familiar structures such as cracked beams with ideal end conditions. With further work, it could
be developed into a staple method for condition monitoring which s applicable to a wide range

of practical situations.




Chapter 3
Theory and Background Information

Some theory and background information will be presented in the following sections.
Knowledge of these topics is essential for following the work presented in later chapters. Some
of the results presented here will also be directly referred to i later chapters. Note that the terms
“frequencies’, ‘modal frequencies’ and ‘natural frequencies” will be used interchangeably in this
and subsequent chapters and unless otherwise stated they will refer to transverse modal vibration

frequencies (as opposed to axial modes, torsion modes etc).

3.1 Modal ies of an U Clamped-Free Beam

Here we will derive the theoretical modal frequencies for a general un-damped cantilever beam.
“This theory is useful for understanding what parameters affect modal frequencies and thus what
parameters should be considered when trying to use modal frequency as an indicator of defect
presence. It will also be used as a baseline when solving for frequencies of intact beams for
comparative purposes in later chapters. The theory used here models the beam as a distributed

parameter system and is covered in Inman’s text (Inman, 2001).

For a cantilever, the boundary conditions are clamped-free. We will define an origin at the
center of the cross section on the clamped end and the positive x-axis extending along the length

of the beam for a beam of length L.
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Figure 3.1 - Clamped-Free Beam Schematic

For free vibration the beams is governed by the wave equation:

Pwxt) |, wxt)
o ¢ e 0

Where:

The beam’s motion w(x,t) can be expressed as a function of a spatial equation X(x) and a

frequency equation T(t) as follows:
wx ) = X()T(©)

‘Through separation of variables, we solve the wave equation for the spatial function X (x);

X(x) = aysinfx + axcosPx + asinhfix + ascoshpx

“The coefficients a;through ay can be found by applying the boundary conditions for a clamped-
free beam. The spatial function has an infinite number of solutions for f corresponding to

different mode shapes. Each solution represents a mode with the natural frequency (in rad/s):
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Where p = density, / = moment of inertia, £ = modulus of elasticity and A = cross sectional area.
The derivation of the values of § for a fixed-pinned beam is presented in Inman. However, we

ue to derive them ourselves.

want the natural frequencies for a fixed-free beam so we can cor

From the boundary conditions at each end, we get four equations:
Atthe clamped end. (x = 0)we know the deflection is zero:
Deflection =w =0atx =0
w(x,t) = X()T(t) = 0atx =0
Since T(t) # 0:
X(x) = aysinBx + a,cosfx + assinhfx + acoshpx

X(0) =

2+,
Atthe clamped end (x = 0), we also know that the slope is zero:
Stope =22 = 0atx =0
ox
X'(x) = a;Bcospx — a,Bsinfx + asfcoshpx + a,Bsinhpx

X'(0)=a,f +a:f

Atthe free end (x = 1), we know that the bending moment is zero:

14




Bending Moment = M = EIW =0atx=1

Assuming EI # 0:

X"(x) = —ay Bsinfx — a,B*cospx + asf?sinhBx + a,f*coshBx
X'(1) = —a,B3sinpl — acospl + af*sinhBl + ayf*coshBl = 0

Atthe free end (x = 1), we also know that the shear force is zero:

a
Shear Force =v =~

X7(x) = —a,cospx + azBsinpx + asfcoshfx + aufsinhfx
X"(1) = —a,8%cosPl + a;f*sinfl + s coshBl + a B sinhBl = 0

We now have four equations (one for each boundary condition) and four unknowns

(a3,a3,a5 and ay). These give us the following matrix:

u 1 0
B _1lo
ﬁ'smm —ﬂzmﬁl B2sinhpl ﬂ’mmﬂ[ l-lu]
~B3cospl  BPsinpl  ficoshpl f’sinhfl 0

A non-zero solution exists only if the determinant of this matrix is zero:



B B 0
—p2sinpl  Bisinhpl BEcoshpl]
—B3cospl  BicoshBl Bsinhpl

B 0 B
—|-B?sinpl —p?cospl  FZsinhfl
—B3cospl  BPsinl  Bicoshpl|
~BIB?sinhpL - Bsinhpl — fZcoshBL - fcoshpl)
+ B[—~p2sinfl - f*sinhBl + B*coshpl- B*cospl]
— Bl—P2cospl- B*coshPl — Bsinhpl - B*sinfl]
— B[-B?sinpl - B*sinpl ~ Bcospl - fcospl] = 0

—Besinh?Bl + Bocosh?BlL — BOsinpl - sinhBL + focospl - coshBl + fcosBl - coshpl

+ Bosinpl - sinhpl + osinpl + focos*Bl
BE[=sinh?Bl + cosh?l + 2cospl - coshpl +1] = 0
2f°[1 + cospl - coshfl] = 0
Since 266 # 0:
1+ cosl - coshpl = 0 i

Solving this equation numerically we can get the value of 1 that corresponds to ach mode (the

first five values are approximately A1 = 1.87,4.70, 7.85, 11.00 and 14.13).
3.2 Modal Frequencies of an Undamped Single-Stepped Clamped-
Free Beam

We will refer to the follo

g theory in later chapters. For now, the theory is presented for

reference purposes.



In order to derive the exact solution of a stepped Euler-Bemoulli beam we can represent the
beam as two separate spans each with its own unique parameters and wave equation. Theoretical
guidance for this approach comes from Inman’s derivation of natural frequencies for constant

cross section beams (Inman, 2001) as well as Koplow's description of the basic steps involved in

deriving the natural frequencies of a ‘stepped” free-free beam with applied force exci

(Koplow, Bhattacharyya, & Mann, 2006),

We begin by representing the beam as two spans (span a, and span b) as shown in Figure 3.2,
with each span having its own unique length, density, elastic modulus, cross sectional area and
second moment of area (ic. span ‘" has parameters Lg, P, Ea Aqila and span b’ has

parameters Ly, . Ey, Ay, I;). For our application, the elastic modulus and density of both

sections will be the same but we will keep them as separate parameters in order to derive a more

general beam.

T

Lo e
Figure 3.2 - Clamped-Free Single-Stepped Beam Schematic

Each spans motion is governed by the wave equation so that

0'Wa(Xa, ) 0*Wa(Xa )
S U

%Wy (X, t)
Ey M

2
I Wi (%o, )+/Jo
9%y
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We first need to recognize that the transverse motion of cach section of the beam, Wy (X, t) and

Wy (Xp,t). are functions of space and time such that:
Wa(Xa,t) = Ya(xa)T(O)
Wi (xp,8) = Yy (xp)T()

Through separation of variables, we can then solve each wave equation for the spatial functions

Ya(xa) = AsinBoxq + Bcospaxa + Csinhfaxq + Deoshfyxy

Yo(xy) = EsinByxy + FeosByxy + GsinhByxy + HeoshByx,

In a similar fashion to the continuous cross section beam, we need to use boundary conditions to
set up a system of equations that are reduced to a frequency equation. The roots of the frequency
equation determine the natural frequencies of the beam. Here our boundary conditions are

(recognizing that we only need the spatial portions of wq (xa,£) and W (x5, £)):

At the clamped end, we have no displacement and no slope:

Ya(0)=0

Y'a(0) =0

At the interface between the two sections displacement, slope, bending moment and shear are all

equal:

Ya(La) = Y(0)



Ya'(La) = %'(0)
EalaYa"(La) = EplyY,"(0)
Eala¥a""(La) = EylyY,"'(0)
Atthe free end, we have no bending moment and no shear:
Eply¥y'(Ly) =0
EplpYy"(Lp) = 0

By solving the spatial functions Y, (xg) and ¥y (x,) for their first three derivatives (with respect
10 xq and x, respectively) and then applying the above boundary conditions we can solve for a
characteristic equation in terms of f; and . In order to solve this characteristic equation for ts
roots, we need a second equation that relates g and B, This equation comes from the two beam

scctions making up a single beam, with a single set of modal frequencies expressed as:

Edl £y,
_p 2 |Bala _p 2 |Ebly
=B’ foute =P ady

Therefore for cach mode:

Eala
Po=fa (Paﬂa Byl

Jang has performed this type of derivation and presents a reduced version of the characteristic
equation as follows (Jang & Bert, 1989) (note that variable syntax in Jang’s solution has been
modified slightly here to be consistent with the syntax above):
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52 - SH2 —c2-CH2
Cl-cH1 -si-si1  KC2+CH2)  K(=S2+SH2)|
~S1-SH1 —Cl1-CH1 K2I(S2—SH2) K?I(C2 - CH2),
-C1-CHL S1-SHL —K3I(C2—CH2) K*I(S2+CH2)

S1-SH1  €1-CH1
0
Where:
S1=sinfalq
52 = sinByLy
1= cosalq
€2 = cos Pyl
SH1 = sinh Bl
SH2 = sinh ByLy
CH1 = cosh Ly
CH2 = cosh fyLy

b
Pa

Iy
la




We can solve this characteristic equation for its roots and subsequently solve for the
corresponding modal frequencies of various stepped beams with unique parameters. Appendix A
contains a Maple worksheet that was used for solving for these roots when they were required for

the current work,

3.3 Modal Impact Testing

Experimental modal analysis involves exciting a structure and using a transducer to measure its
response. The response is then analyzed to estimate modal parameters. Excitation can be

provided by a modal hammer (modal impact testing) that excites a wide band of frequencies at

the same time or by a shaker that progressively sweeps through a range of frequencies. Typi

transducers include accelerometers, strain gauges or LVDT’s (Inman, 2001). Modal impact

testing and the specific arrangement that was used in the current study are discussed in more

detail below.

Modal impact testing uses a modal hammer to supply an impulse force to a specimen. A force
transducer on its impact head relays the measured force to a signal conditioner. An accelerometer
mounted on the specimen measures its response due to the impact and relays this response back

to the signal conditioner as well. The signal conditioner provides a supply voltage to each of the

transducers and measures the response voltage. This measurement is amplified and sent to

computer software through a data acquisition card, which is conneeted to a computer. Computer
software samples a time series of data from each of the transducers. It then converts the time
series data into a frequency response function (FRF) using Fast Fourier Transforms (FFT). Italso
estimates modal frequencies, modal damping ratios and mode shapes by applying curve-fitting

techniques to the FRF. Many texts, including Inman’s, go into further detail about modal testing
21



methods and how modal parameters are calculated from measured data (Inman, 2001). Table 3-1

lists the specific equipment used for modal testing in the current study and the schematic in

Figure 3.3 shows the equipments arrangement.

tor [Model [Manufacturer
[Impact Hammer [2:208 mV/N (Actual) Used for Small Scale Specimens [8206-002 _|Bruel & Kjaer
lossoso lpca
|4507-8-004  |Bruel & Kjaer
[Accelerometer Calibrator (1.0 AMS @ 79.6 Hz WP 304805 [Agilent
Input Module) scove s
[software [Test.LAB (spectral Testing with PolyMAX) Rev. 9 juvs

‘Table 3-1 - Modal Testing Equipment Used in Current Study

Conditioning FFT

Response Impact

Parameter
Estimation

Figure 3.3 - Modal Impact Testing Schematic

Best practices were kept in mind throughout each series of modal tests performed in the current

study. There are also

were performed. Not all will be discussed in detail

mentioning:

many specific technique related notes to be made about how the modal tests

but some of the following are worth




All equipment shown in Table 3-1 (except for the accelerometer calibrator) was newly

purchased, and this was the first study undertaken using that particular set of equipment.
“The sensitivities of the modal hammers were determined through factory calibration prior
to purchase. The sensitivity of each accelerometer was determined using  the
accelerometer calibrator. Those determined values for the accelerometers were double-
checked against factory calibration values and were found to be in good agreement. The

values determined by the on-site calibrator were used in the current study.

The modal hammer was always kept as close to vertical as possible during impacts.

Double hi

hits that produced a noisy autopower, and hits that did not produce an

autopower that maintained at least 80% of ial value across the band of interest were

rejected. An attempt was made to maintain consistent force between impacts as well.
Voltage ranges were adjusted appropriately so that a reasonable percentage of full scale
output was realized for the accelerometers and the modal hammer during each test.

In general, coherence was monitored and maintained as close to unity as possible,
especially near the frequency bands of prospective modes.

The bandwidth for each test was set at an appropriate level to allow for the desired
measurement band to oceupy no more than 80% of the entire band. This was done to

avoid modes in the high portion of the band to be influenced by the bandwidth filter.

Sampling rate was automatically set by the software in order to adequately provide a

specified frequency resolution. Frequency resolution was set an appropriate level by the

user prior to each test and was chosen depending upon the nature of the test.




Frequency response was averaged over at least five impacts (but usually six) before being
analyzed to determine modal parameters. When obtaining mode shapes by impacting

‘multiple locations along a specimen, at least five impacts at each loc

were averaged.

Speculation about the nature of a mode was avoided, unless there was sufficient
information to identify the mode. For example, if frequency alone was desired for a
particular mode, and upon analyzing the frequency response function multiple stable
‘modes appeared within the frequency band of the anticipated mode, then further testing
was performed to obtain the mode shape for each of those stable modes in order for the

desired mode could be properly identified.

For cantilevered specimens, torque was controlled using a torque wrench cach time the
fixed end was secured in its clamp. A level was also used to ensure that round specimens

were clamped in the appropriate plane.

In order to enforce some of the above techniques, a display such as the one shown in Figure 3.4
was produced and inspected after each measurement run. Time domain plots for the modal

hammer and accelerometer are shown on the top left and ri

t respectively. An overlaid plot of
autopower of the hammer and accelerometer is shown on the bottom left. In addition, an overlaid
plot of frequency response and coherence is shown of the bottom right. Modal hammer and
accelerometer output levels, as well as measurement run data were also provided 1o the user (but

are not displayed in the figure).
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Figure 3.4 - Software Output for Each Modal Impact Run
3.4 Response Surfaces, Regression Models and Design of Experiments

Throughout this study there will be references made to response surfaces regression models and

design of experiments (DOE). A very brief introduction to these coneepts will be presented here.
Further discussion of these topics can be found in many texts including Montgomery's

(Montgomery, 2009).




Design of experiments theory lays out an approach for determining the effects of various factors

on a response. It was traditionally used to increase agriculture yields. For example if we wished

to determine how factors such as amount of water and amount of fertilizer had on a crop yield we

could segment our field and apply different fertilizer and water treatments to each segment.
Design of experiments theory tells us exactly how many segments are needed and what
treatments are required on each segment. By measuring the response (crop yield) for each field
segment, we can then use statistical techniques to develop an equation that expressed yield as a

function of the factors investigated. This is usually referred to as a regression equation. Shown

below is a generic regression equatior

Response = f(factor A, factor B, FactorC ...)

The design of experiments approach gives us a structured framework for designing the
experiment runs, and often the minimum number of runs, required to develop accurate regression
equations. It also lets us determine which factors have a statistially significant effect on the
responses studied. However, the most important aspect of this approach may be that it allows us
to determine how factors interact with one another. For example, if we revisit the crop yield
scenario, we may find that water has some moderate effect on yield and fertilizer has its own
moderate effect as well. By varying water and fertlizer levels independently, we may be able to
estimate the effect that cach has on yield. However, if they are used in combination the yield
may increase to a level much higher than we would expect based on their summated individual
effects. This is referred to as an interaction effect. These interactions show up naturally as
interaction terms in the regression equations when using a design of experiment approach. If we.

express the effect of water as factor A, the effect of fertilizer as factor B, the level of water as X,
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the amount of fertlizer as X and the response (crop yield) as Y we get the equation below

(assuming a first order model) where C is the interaction effect:
¥ = Const + AX, + BX, + CX,X,

“This type of lincar equation is casily obtained by using a factorial (2*) design. A factorial design
allows us to fit a linear regression equation and normally consists of us performing experiment
runs where the factors are at all possible combinations of their high and low levels. Fractional
factorial designs are also possible, where some subset of the runs required in the factorial design

are performed and important factor effects can still be estimated with adequate accuracy.

By plotting the regression equation of a response in terms of two factors, it is casy o imagine
that we get a surface. The x and y axes would be reserved for the two factors and the z axis for
the response. We could abtain a surface of any imaginable shape depending on how the factors
affected the response. However, complex surfaces are harder to develop, require more
experiment runs and are not commonly found in most physical systems. One of the most

common types of response surfaces is a second order surface that can be obtained using a central

composite design consisting of nine experiment runs. The term ‘response surface’ is often used
o refer to a second order surface even though response surfaces can technically be of higher
order. A second order regression equation could be of the following form for two factors (X, and

X

Y = Const + AX, + BX, + CX,? + DX,>+DX, X,

A generic second order response surface based on the above equation could look like the one

shown below:



Figure 3.5 - Generic Second Order Response Surface
Itis also very plausible to have responses that are affected by more than two factors. This type of
response cannot completely be represented by a three dimensional response surface. However,
we could fix all but two of the factors and then plot a response surface to show how the response
is affected by those two factors alone. In this case changing the values of the other fixed factors

would fikely results in different response surfaces for the two factors in question.

Note that the commercial package predominantly used in this study to handle DOE calculations
and response surface modeling was Design Expert 8. JMP 8 was also used in some instances but

to a lesser extent.



Chapter 4
Proposing a Method for Detecting Defects

A somewhat novel approach will be presented here for detecting, quantifying and localizing
defects using modal frequency. The method will be presented with the target application being
inspection of beams. With a little more development, the method is hoped to be applicable to
testing in-service wooden utility poles. However, as will be discussed later, one of its benefits is
that it could casily be applied to other applications. As mentioned in Chapter 3 the terms
“frequencis’, ‘modal frequencies’ and ‘natural frequencies” will be used interchangeably in this
and subsequent chapters and unless otherwise stated they will refer to transverse modal vibration
frequencies (as opposed 1o axial modes, torsion modes etc). This is worth mentioning again
because even though the method will be presented here with transverse modes in mind it could

very well be applied using any type of vibration mode.

4.1 Introducing the Proposed Method

‘The method involves first using design of experiments theory to create regression models of

multiple modal frequencies of a beam. Each regression model expresses a particular natural

frequency in terms of a number of factors that have a significant effect on that natural frequency.

‘The factors could include easily measurable parameters of the beam as well as parameters that



are desired to be predicted. If defects are desired to be detected, then their parameters (such as

dimensions and location) should be included as factors in the regression models.

Once the regression models are acquired, they can be used to deteet defects in other specimens.
“This involves first measuring the natural frequencies using some experimental technique (such as
modal impact testing). The natural frequencies are then used as inputs for the pre-acquired
regression models. Any other required parameters (such as overall geometry measurements) are

also collected and input into the regression models. The regression models are then rearranged

and solved for the appropriate defect parameters. The regression models can only be solved
there are at least as many equations as unknowns. Therefore, the number of defect parameters

that can be predicted is limited to the number of modal frequencies that can be accurately

measured and the amount of data that is available for fitting regression models. Note that the
goal of our defect detection method is normally to identify whether a defect is present, and if so
then characterize it in terms of its severity and location. If this is done then the load carrying

capacity of the specimen can be obtained by simply applying mechanics of solids methods for

the appropriate loading type.

It s important that regression models be an aceurate fit to the beam’s actual modal behaviour in
order to provide good predictions of defect parameters. Since the modal frequencies of a beam
are affected by s length, cross sectional area, second moment of area of the cross section,
modulus of elasticity and density then any casily measurable parameters that affect the above
parameters should be included in the regression models. Note that a significant benefit comes
naturally from the design of experiments approach here. We can include any derivative of the

factors that are known to have an effect on natural frequency instead of actually having to
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include the specific factors themselves. For example, a wood beam’s density affects its natural
frequency but density may be difficult or impractical to measure in the field. However, we know
that the density of a beam is affected by its moisture content, Therefore, if moisture content s the
main contributor to density variations, and it can be measured easily in practice, then it should be

included in the regression models in order to increase their accuracy.

Another benefit to using the design of experiments approach is that it could be applied to
complex structures with natural frequencies that are difficult to determine theoretically. The
regression models simply have to be developed first by experimental measurements on the
desired structure type. It may be useful for quality control purposes as well where products are

s and therefore sacri

produced in mass quanti

ing a number of specimens from an assembly
line may not be significant if they allow for the development of regression models that can be

used for future inspection.

4.2 Illustrating the Proposed Method

To add to the above description we can progress though a couple of general cases in order to

illustrate how the proposed defect detection method works.
4.2.1 Manipulating the Regression Equations
Generally, a simple lincar regression model with two factors could be of the following form:

Wn =y +byA + B +d,AB



Where in this case wy, is the natural frequency of mode n, ay is a constant for mode 1, A and B
are defect parameters (such as defect location and depth for example) and by, c, and d, are

constants corresponding to the effect of these defect parameters on mode 1.

We would normally solve for the constants @y, by, ¢, and d,, when building the regres

ion
models from experimental data. Using the proposed method described earlier to we would take
our established regression models and solve them for the defect parameters we wish to predict in
other specimens. In this case, we have two defect parameters (A and B) and therefore need at

least two equations in order to solve for them. The equations required in this case are:

Wy =ay+biA+c,B+dyAB

W = ay + b A+ ;B + d,AB

Here we have chosen n = 1 and n. = 2 for our two equations. This refers to us choosing to use
regression models that reflect the behaviour of modes 1 and 2. Note that we could have chosen a
combination of (nearly) any two modes as long as their modal frequencies were measureable and
we were initially able to develop their corresponding regression models. Mode number, along
with model order, will be discussed further in the next section. For now, we can solve the two

equations above for A and B to get the following:

w7

b,

_ab-ba, b b

B =
bic;—ciby  bic;—ciby ' bye —ciby



We are now left with explicit equations for the defect parameters A and B in terms of regression
model constants and the first and second modal frequencies. In practice, we could now take a
specimen, measure its first and second modal frequencies experimentally and solve for its defect

parameters according to the above equations.

Note that this is a very simple case and is only intended to help demonstrate the suggested
procedure for detecting defects. The lincar models, as we will see later, are not actually
indicative of typical modal behaviour. In addition, it may be very difficult to find explicit
equations for defect parameters if the regression models are of higher order. Numerical solvers

would likely have to be employed for most practical cases.

4.2.2 Visuali

g the Solution

In order to provide a visual demonstration of how the method works we can plot two simple
regression models as response surfaces. The two regression equations obtained from

experimental data could be as follows:
;= 4+014+038
w;=7-0.6A+028

‘The response surfaces corresponding to the above equations would look like the ones shown in

Figure 4.1.



Figure 4.1 - Simple Planar Response Surfaces
Note again that planar surfaces are not indicative of actual modal behaviour and are only used

here out of convenience in order to demonstrate the procedure.

Say, for example, that we experimentally measured two modal frequencies w; = 6 and ; = 8.
It may not be immediately intuitive but for this case there is only one combination of factors A

and B that can accommodate those (or any two) frequency measurements. To demonstrate that

this is indeed the case let’s first find all the values of A and B that satisfy the condition w; = 6.
This can be done by simply intersccting a horizontal surface at @, = 6 with the ‘omega 1°
response surface in Figure 4.1. The line that lies along the intersection of these planes is
therefore made up of all A and B combinations that satisfy @; = 6. The projection of the

resulting line on the A-B plane is shown below in Figure 4.2. This can also be thought of as a

contour line of the ‘omega 1” response surface at @,




Figure 4.2 - Contour Line of ‘omega 1" Response Surface
The line above has been projected onto the A-B plane to show the A and B combinations that
satisfy w; = 6. Since the A-B plan is common between both response surfaces we can take the
above line and apply it to the A-B plane of the ‘omega 2° response surface in Figure 4.1. From

the *omega 2" response surface we now have to find out which of the A and B combinations

from this contour line satisfies w, = 8. To do this we can simply project this line up onto the
“omega 2" response surface. We can imagine that this projection creates a new line in the three
dimensional *A-B-Omega 2' space. We can also imagine that this new line will pierce a
horizontal w, = 8 plane at only one point (assuming that this new lin is not parallel to the

@, =8 plane). The [A.B] coordinates of this point of this piercing corresponds to the A and B

combination for our solution.

A slightly easier way to visualize the solution may be to make contour lines on the A-B plane for
each of the two response surfaces at their respective measured frequencics. Since the A-B plane
is common between the two response surfaces, we can plot the contour lines together on the

same axis. The [A,B] coordinate where the contour lines intersect represents the solution to the
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regression equations. In addition to demonstrating how the method works this approach is
suggested as a graphical method for solving the regression models in practice and is shown in

Figure 4.3 for the above problem.

Ormega 128 and Oega2+ 8

Consider again the example and explanation from section 4.2.2. The existence of a unique
combination of A and B that meets the requirements of the two measured natural frequencies
seems to have an exception, to which we have already alluded. This exception occurs if the new
projected line in three-dimensional *A-B-Omega 2' space (that was said to pierce the w;

response surface at one point) were parallel to the w, = 8 surface (i.e. if it were horizontal). In

this case, there would cither be no solution (if the projected line were offset from the w, =

surface), or an infinite number of solutions (if the projected line was coineident with the w, =
surface). We can also think of this as the two contour lines in the graphical solution being
parallel or coincident. However, if for a moment we think back to what the ‘omega 2° response

means we can determine that this exception would never be an issue. The projected line would
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only be horizontal if the response surface itself was horizontal, and if the response surface itself

was horizontal then it would not have been created in the first place since the response (i.e. w; in

this case) was not significantly affected by either of the factors (i.e. A and B in this case). Note

also that by the same logic if a response surface is horizontal with respet to one of its factors
(and not the other), then that factor’s effect is not significantly affecting the response and can

therefore be eliminated from the model. The problem then becomes one-dimensional and the

remaining 2 one regression model and a single

nificant factor can still be predicted u:

measured frequency.

The above rebuttal against the potential exception to the existence of a unique solution may seem
unnecessary; however, it does serve as a prelude to some actual concems. If a planar response
surface is angled only slightly away from horizontal then its factors have very weak effects on
the response. Considering the example of section 4.2.2 again this would mean that A and/or B
have only a weak effect on w; and/or w. In this case, even if the data used to obain the
regression model was obtained very carefully allowing for an accurate portrait of actual modal
behaviour and a very high R” value, small errors in measuring the frequencies of a test specimen
could be projected into large errors in prediction due to the shallow response surface. This

illustrates that strong factor effects are desired in order to obtain accurate predictions.

4.4 Independence of Responses

Since we plan to use a system of equations to solve for unknown defect parameters, it follows

naturally that those equations should be independent. Because we are obtaining our equations by

fitting regression models to experimental data there will naturally be some error involved in the



coefficients of each equation. If an insufficient number of runs are used to fit systems that have a

large amount of variability, we may even get an incon:

ent set of individual terms showing up
as significant in the models depending on the data that is obtained. Choosing a different model
order and significance threshold for use in regression may even result in slightly different models
from the same data set. Because of this, physical responses that are actually dependant may
actually result in algebraically independent equations. This should be taken into consideration
when attempting to use a set of equations for prediction. Two equations that appear “ncarly
dependant’ (or conversely ‘loosely independent’) should be approached with caution. If two

equations have common terms, and the ratio of coefficients are nearly the same between terms,

then the equations could actually be representing dependant responses in the physical system. In

this case, a graphical approach of overlaying contour lines may result in two (or more) lines that
are nearly the same shape and run almost parallel to cach other. Even though they may intersect
at a certain point that represents a legitimate algebraic solution to the system it should be

understood tht this solution is illegitimate du to the responses involved being dependant in the

actual physical system. This is one of the reasons why the numerical and graphical approaches

should be used in conjunction while making predictions.

4.5 Issues with Higher Order Linear Regression Models

Up until now, we have considered only first order linear models for purposes of illustrating the
suggested defect detection method. Other issues arise if we have higher order models. An

example of a higher order linear regression model could be the following second order model:

On =y + byA + B + dyAB + eq A% + fB? + g, 4B + hyAB?



Where again in this case wj is the frequency of mode n, A and B are defect parameters and

.. hy are constants obtained in developing the regression models from experimental data.

4.5.1 Extrema Considerations

Higher order models are likely to contain a number of extrema and any extremum point becomes
horizontal by its nature. Areas elose to these points are also nearly horizontal. Therefore, an issue
similar to the one described in section 4.3 for weak factor effects arises; near each extremum
point, exists an area with potential for higher error in prediction. In general, as mentioned in
section 4.3, if any response surface has areas that are nearly horizontal (i.e. where factor effects
are weak) then prediction is expeeted to be less accurate in those areas due to the significance of
errors in measurement becoming relatively higher. For higher order models, these horizontal
areas will be present at various locations depending on where extrema exist in the models

themselves. This will be discussed further in section 4.6.4 as it relates 10 actual vibration modes.

4.5.2 Dealing with Multiple Solutions

By extending our scope to models of higher order, we also introduce the possibility of multiple
Solutions emerging from the proposed defect detection technique. Determining which solution
relates back o the actual defect conditions of a test specimen is of great importance and will be

addressed here.

First it will be noted that when developing regression models we specify upper and lower limits
for each factor level and within this range lie all of the design points from which our models are
derived. Therefore, as with any curve-fitting scenario, we should be cautious of problems that
may arise when making predictions outside the range of our data set. Obviously, our regression
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‘model may not be accurate if we are extrapolating solutions outside of this range. The actual

behaviour of the physical system may be inconsistent with the behaviour of our model outside of

the considered design space, and thercfore making predictions outside of the design space is

somewhat reckless, and should be avoided whenever possible. However, the main focus of 4
argument as it relates to the current section is that extra solutions may exist outside of the design
space and these extra solutions should be the first omitted from consideration when attempting to
make predictions of defect parameters from a potential set of multiple solutions. Solutions
outside the design space should be considered suspect for multiple reasons. First, consider the
‘graphical approach of overlaying contour lines. Extrapolation may cause errors large enough that
contour lines redirect and intersect at solutions outside of the design space where solutions would
not otherwise exist. Even if the models were accurate for some portion of space outside of our
design space we may get solutions that do not even physically make sense. For example,

predicted defect sizes could be larger than the specimens themselves, or defect location could be

past the limits of the specimen’s geometry. By being aware of these issues, we may be able to

filter out some obvious incorrect solutions.

In order to actually solve our regression equations for a finite number of defect parameter

solutions, we need as many regression equations as we have defect parameters to predict. If one

or more of these regression equations is nonlinear, we may end up with multiple solutions that do

lie within our design space. In this case considering extra regression models (that define the

can be

behaviour of other vibration modes) will aid in narrowing in on the correct solution. T}

done in many ways:



The defect parameters from each predicted solution can be fed into the extra regression
model and then that regression model can be solved for its corresponding response (the
response being modal frequency in our case). This calculated response can then be
compared to the actual measured frequency of the extra mode being considered and the
agreement should be substantally better for the correct solution. Note that this agreement
will not generally be exact due to errors involved in experimentally measuring the modal
frequencies that were used in fitting the regression models themselves as well as

measuring those used for prediction. The regression models will also have extra error

related to its goodness of
Numerical optimization built into some design of experiments software will not only
allow us to automatically solve for the original solutions based on the minimum number
of responses but also allows us (o add extra responses that we can use to eliminate
multiple solutions. The software will numerically solve for the solutions that best satisfy
each of the specified responses (including the extra, added response). Each response can
even be weighted so that we can better maintain the initial solution values by adding
higher weight to the responses that were used to get the original set of multiple solutions.

Each solution can be returned with a desirability value associated to it. The correct

solution will have a distinetively higher desirability. It is even possible to plot solution
desirability over the entire design space o visually show where the most desirable
solutions lie.

The graphical approach from section 4.2.2 can also be employed to distinguish between
multiple solutions. By simply adding the extra contour line (from the added response) to

the plot and observing which of the solutions it intersects, we can determine which of the
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solu

ns is correct. Note again that the errors involved will make this approach non-
exact. The extra contour line will not generally intersect exactly at the correct solution,

but it should be noticeably closer to the correct solution than any other solutions,

This process of adding extra regression models to eliminate multiple solutions will be

demonstrated

Chapter 5 as we progress through various validation examples. It is expected
that in most practical cases we will need to consider n+1 regression models if we wish to
predict n defect parameters. In this case, we may still get multiple remaining solutions, but by
continuing to add extra responses, we should eventually arrive at a definitive solution. Note that

in anticipation of having to deal with multiple solutions in this manner we should consider n + 1

as the minimum number of regression models that are required for prediction prior to developing
the models. We can then ensure that an appropriate number of design points and responses are
considered upfront.

Multiple solutions can sometimes arise when a single defect condition can actually be defined in

a number of different ways. For example, consider a beam with two defect parameters.

defines the loc:

n to the center of a defect and *B’ defines the length of the defect. It is easy to
imagine that if the defect happens to occur at either end of the beam there may be multiple [A,B]

combinations that are valid for defining the defect. Actually, there will be an infinite number of

valid solutions. This is shown in Figure 4.4. The [A1,B1] combination on the left of the figure

can be considered as the simplest form. However, there are an infinite number of equally valid

[A2,B2] solutions as well. We will have to deal with a similar scenario in section 5.3.



Figure 4.4 - Defining a Single Defect in Multiple Ways
Note that this type of multiple-solution scenario is distinet from the earlier case where we
discussed omitting solutions that occurred outside of our design space. In this scenario we may
consider the dimension A to be anywhere along the length of the beam. The [A2,B2] solution
above demonstrates that a defect can extend past the limits of the physical system even though

the defect parameters are within the limits of the design space.

One approach to dealing with this type of situation may be to use a design space with non-
constant factor ranges. This type of design space is depicted in Figure 4.5. Here the range of
possible A values would be dependent upon the value of B. Note that if we considered defects so
large that they extended the entire length of the beam (so that B=0) this design space would
actually become triangular. This approach involves actually modeling our response surface to fill
only the necessary design space despite it being somewhat irregular. However, this approach
may not be possible in some commercial DOE software packages. An alterate approach would
be to simply recognize by inspection whether or not a particular solution creates a defect that
extends beyond the physical limits of the system and then manually deduce the simplest possible

form of the solution. This calculation would be straightforward.
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4.6 The Behaviour of Actual Vibration Modes

Up until this point, we have considered the approach in very general terms and assumed that we
have no prior knowledge of how actual vibration modes behave. This assumption s not strictly
true. Here we will discuss some issues that arise when applying the method using actual

vibration modes as our responses.

4.6.1 Independence of Modal Frequencies

In section 4.4, we discussed that all responses should be independent in order to be used in the
suggested method of defect detection. Therefore, it is required that regression models for our
actual modal frequencies be independent. Note that a distinetion should be made between modal
frequencies being independent and the independence of regression models where modal
frequencies are considered as the response. For a given physical system (with fixed parameters),
the theoretical modal frequencies are obviously linked to each other though a common

characteristic equation from which they are all derived. With respect to our defect detection
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method, each modal frequency should respond to changes in the varied defect parameters in an

independent manner. This is a fundamentally different matter.

It will be demonstrated in Chapter 5 through validation examples that modal frequencies are

actually independent in this sense. For now, we wi

simply give justification for why this should
be the case. Take, for example, a beam with a single defect parameter: the location of a crack.
‘Though various works that have been cited in the literature review of Chapter 2 we know that as

a defect nears a modal node

effect on frequency is diminished. This is due to lower stress
occurring near modal nodes of a vibrating specimen. As discussed, many authors view this
occurrence as a downfall of using frequency as a defect detection parameter it essentially masks
the effect of defects that occur near a node for any particular mode in question. However, for our

case i

insures that the response of each mode is independent with respect to our defect parameter
(change in crack location) because each mode shape s unique and has a different number of

nodes at varying locations.

4.6.2 Required Regression Model Order and Number of Design Points

In order to accurately capture the trend of each mode as it relates to the factors being considered
we must ensure that an adequately high model order is used. Different defect parameters may
require different model orders in order for their effects to be accurately modelled. The model
order required for some parameters may also be dependent upon the vibration mode considered.
As we discussed in section 4.6.1 the effect of defect location on a particular modal frequency is
dependent upon the mode shape and number of nodes associated with that mode. Therefore, we
expect that the profile of a response surface will show oscillation with respect to the effect of
defect location. Required model order will increase for higher modes in this case. The model

45



order required to capture the effects of defect severity may be dependent upon the geometry of
the defect being considered. For example modelling the effect of changing the radius of a
circular defect will be different from modelling the effect of changing the length of a rectangular
defect. This is expected simply because the area of a circle changes with the square of the radius
(as opposed to the first power of length for the rectangular defect). The second moment of area
will also change in a different manner for each defect type. For each case, these differences will
simply be reflected in regression models by following the standard procedure and will not have

10 be direetly attended to by the user.

Traditional two-level factorial and second-order response surface designs, as we will see, are
often inadequate for capturing the behaviour of modal frequencies as they relate to defect
parameters. Therefore, some rough guidelines for a space filling approach will be suggested here

for determi

g the model order and number of design points required to create our regression
models. The aspects of this approach will be demonstrated through various validation examples
in Chapter 5. Before presenting the approach, note that the focus of the current body of work is
simply to demonstrate and validate the proposed method of defect detection using modal
frequency measurements. This work does not attempt to derive design of experiments theory and
these rough guidelines will likely not dictate the most efficient method for fitting the complex

regression models that are involved. These guidelines are suggested only because they have been

found by the author to work well in practice. Future work may significantly reduce the required

number of design points by using some subset of the overall set of design points suggested here

and perhaps by better positioning them within the design space.




4.

.1 The Order of Individual Effects

Before attempting to develop our regression models, we first need to determine the model order

required 1o capture the effect of cach individual response. This is done by simulating closely

spaced design points in a finite element environment and meshing them together to create single
response plots or response surface plots. These plots can then be examined to determine the
typical number of inflection points that oceur with respect to each factor. Considering the cross

section at various locations of response surface plots can be useful for this purpose. Once we

know the number of inflection points that are typical for cach factor considered, two design

points are required for cach section of the curve between those inflection points. If there are no
inflection points, we can consider a first or second order model (requiring two or three points
respectively). This suggested method for choosing the number of design points to use in

modelling is demonstrated in Figure 4.6. Note again that these are only suggested guidelines.

N
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Figure 4.6 - Number of Desi Fit Models of

It is common knowledge, however, that in polynomial interpolation we can use n points to fit a

polynomial of order n — 1 (Chapra, 2005). This is shown up to order 4 in Figure 4.7.
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Figure 4.7 - Fidting Polynomials to Minimum Number of Points
The number of design points suggested for fitting curves up to third order is the same as the
minimum number required. For every increase in required order, above third order, the suggested
number of design points s increased by two (instead of the minimum of one). Note that
including extra design points does not necessarily mean that we will use the extra points to allow

fitting of a higher order model tha

required to capture the effects of the physical system. It is

widely known that fit d, at least

2 models of higher order than req

the case of single
factor polynomials, can result in oscillation and large errors through Runge’s phenomenon
(Chapra, 2005). The curve fit will be a best fit to the extra data and will not generally pass

directly through each design point in this case. The extra points are suggested in part because we

will not know the ideal positions at which to locate a minimum set of points. Because we will not
‘generally know the optimum location for a minimurm set of design points, and to avoid uneven
weighting of points throughout the design space that may favor one region over another in terms
of predictive power, design points will be positioned in an even distribution throughout the

space.

The shape of a response with respect to any single factor may change as the values of other
factors change. This will happen when interaction effects are significant. Therefore even if an
ideal set of design point locations was established for modeling each factor that set would only
be valid while all other factor levels are constant.
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we may end up with a situation similar to the one shown in Figure 4.8. The figure

shows the same curve attempting to be fit to a minimum number of design points and an evenly

distributed set of design points.

Figure 4.8 - Demonstrating the Meritof Extra Design Points
1’s easy to imagine that the minimum number of points would be adequate for fitting the curve if
the points were ideally spaced. However, if we use an even distribution of the same number of
points we would likely not get an accurate curve fit. The suggested number of design points is
only modestly above the minimum number required and will not allow for an ideal fit of any
possible curve, but it should help to mitigate the demonstrated problem when it oceurs with

moderate severity. Using extra design points also helps to mitigate the effect of experimental

random error on the accuracy of the fitted regression models. The suggested number of design
points essentially represents a balance or appropriate middle ground between accuracy and

resource expenditure when developing the regression modals.

4.6.2.2 The Overall Model Order

Once we know the number of design points required to accurately fit each individual factor
effect we can simply take their product as the overall required number of points to fit the
regression models. In other words for n factors each with N; required design points (where
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i=1..n and refers to the mode number) we can find the overall number of required design

Points Negear as follows:

Neotar = Ny * Ny * Ny v Ny,

For example if we are investigating two factors with the first factor (factor A) requiring six
design points and the second factor (factor B) requiring four design points. Our two dimensional
design space would then be made up of twenty-four evenly spaced design points in a six point by
four point mesh. This is demonstrated in Figure 4.9. By even spacing here we mean that points
are evenly spaced with respect to other points in the dimension of each individual factor.
Obviously each factor in the space may be scaled individually resulting in a space that appears
uneven between dimensions (in other words a point may not appear equidistant from the next
closest point in either direction but all points lying on any linear path will have equal spacing).
Note again that in the figure each point represents an [A,B] combination that would be used
when performing an experiment run. Each experiment run is done to determine the response at
that particular set of factor levels. In the figure the response would be measured along the z-axis
which would be coming out of the page. By measuring the response at all these points we can fit
a surface. This procedure, while not as easy to visualize, remains valid when considering more

than two factors.



Figure 49 - Example Six by Four Design Space
4.6.3 Splitting the Design Space

Some commercial design of experiments software packages, including the one predominantly

used in this study, have an upper limit to the model order that can be used when developing

regression models. If this maximum available model order is insufficient for the particular

system being considered then we have the option of splitting the design space into sections. It
will be suggested that an extra design point be granted to each factor that is split by this method.
The extra point can be thought of as added at the interface between the new design space
segments where the design space has been split. For example consider the six by four point
design space considered in section 4.6.2.2. If the factor that required six design points cannot be
aceurately modeled due to software constraints then we can add an extra point to that factor and
split the design space into two separate four by four segments. The extra point s added at the
interface between segments and is therefore shared by cach scgment so that the overall space
remains continuous. Each segment should then be modeled individually and will require a lower
model order than the original design space. The locations of the design points can be adjusted so
that they remain evenly distributed after the addition of the extra point. This splitting process is

demonstrated in Figure 4.10.
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Multiple splits may be required for complex problems that consist of a variety of high order

factors. When using this splitting method all individual design space segments will have to be
analyzed for each response whenever the models are being used for prediction of defect
parameters. When using the graphical method of overlaying contour lines these segments can

simply be positioned next to each other in order o show the entire design space.

4.6.4 Choosing Which Modes to Use for Predi

on

As was discussed in the literature review of Chapter 2 higher modes are more sensitive to
defects. Therefore, in the spirit of trying to use factors with strong effects we may be inclined to
choose higher modes to use for defect detection. However also mentioned in the literature review
was that higher modes are harder to measure accurately through experimental means. This would

affect the accuracy of developed regression models as well as the accuracy of experimental

measurements made for prediction purposes. In addition, factor effects become progressively
more complex and therefore the number of design points required to develop regression models
becomes inereasingly prohibitive for higher modes. These issues tend to lead s towards
choosing the lowest ranked set of modes possible that would allow us to make accurate

predictions.



A fact also mentioned in the literature review is that modal nodes seem to hide the effect of
defects located near them. Higher modes would obviously contain more of these problem arcas.
However, our modelling process accommodates for this problem by considering the combined
effect of multiple modes simultancously. One issue remains though relating to the sensitivity
issues raised in sections 4.3 and 4.5.1. We must be aware of where extrema and other regions of

weak factor effects are located within the design space of each response.

W

these issues in mind, a somewhat algorithmic approach can be suggested here for choos

2

which modes to use for prediction. Generally, we would only develop regression models for the

minimum number of responses necessary to make definitive predictions. It was suggested in

section 4.5.2 that n + 1 regression models are required if we wish to predict n defect parameters.

Several ways were also suggested for how the extra model could be used for making predictions.
Keeping those methods in mind it will be suggested here that to make the best use of our 1 + 1
models we would first make a prediction for the defect parameters using all of our available
models without giving precedence to either individual mode. This means that we would use
equal weighting in our numerical optimization. When using the graphical technique we would
also estimate an equally weighted solution since we will not typically get the contour lines of all
of our n+1 modes to interseet at exactly the same location. However, as mentioned earlier, it
should be obvious that they are close to an intersection point and their deviation from true
intersection will be dependent upon experimental error and the goodness of fit of the regression
models. In this case, we would pick a point based on inspection, which is close to where a true

intersection point is thought to be, as demonstrated in Figure 4.11 for some hypothetical system.
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Once we have an estimate of our solution we can then inspect each of our regression models to

determine if this solution lies near any maxima or other areas that are expected to have low

accuracy. If we find that the solution does lic in an area of concem for one of the modes used

then we can re-evaluate our solution with that in mind. For numerical optimization we can apply

custom weighting so that the modes with the best expected sensitivity. in the general region of
design space near the solution, are more heavily favored. Using the graphical approach we can
also adjust our estimate of factor levels accordingly. We can shift our estimated intersection

point towards, or even so far as to be at, the actual intersection of the contour lines of the best

modes. In this case the extra mode is still required to isolate the correct solution from multiple

solutions that may lie within the entire design space. However,

does not necessarily have to be
considered with respect to estimating the actual numerical values of predicted factor levels at any

particular solution.

The accuracy of each regression modal will vary within different regions of the design space

depending on how strong the factor effects are in each region. Each model’s accuracy will be
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higher in certain regions and those specific regions will vary between models. Naturally weak

factor effects as well as poor model fit may both contribute to design space regions where we get

poor predictions. The overall accuracy of different regions of the design space, when considering
all modes used for prediction, may vary depending on the nature of the structure being studied. It

would be of interest to identify the accuracy of each design space region, and we will attempt to

do this for one of our validation studies in section 5.2.3. We will see that defects occurring in
different design space regions will result in the contour lines of some modes being visibly better.

|

n, at least when u

‘Thus the act of choosing which modes to use for pre 2 the graphi

method, will become somewhat straightforward.

465 y Factors and ing Accurate
Models

So far, we have focused on including the defect parameters that we wish to predict, such as

defect location and severity, as factors in our regression models. However, in many applications

it may not be valid to assume that all specimens are identical on all measures other than the
parameters required to characterize a defect. Regression models with modal frequency as their

response need to be an accurate fit to the modal behaviour of the actual specimens considered.

As demonstrated in sections 3.1 and 3.2 modal frequencies are functions of geometry as well as
density and elastic modulus. Defects in this study have primarily been associated with localized
changes in geometry alone with the assumption all other factors including overall geometry are
otherwise constant between specimens. However, if the overall physical dimensions of a

specimen are subject to change then the parameters that characterize those dimensions should

nt effect

also be included as factors in the regression models since they will have some signi
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on the response. In addition, if any other factors such as density or stiffess are variable then
they should be included as well. As mentioned carlier the method is somewhat flexible and
parameters that are more casily measurable can be used in place of density and stiffness as long

as they are the underlying cause of the density or stiffness variation. The example that was used

carlier for wood specimens is that if moisture content is the cause of variation in density then it
can be included in regression models instead of density. This makes the procedure more practical
since moisture content is far more easily measured than density for large and secured structures.
We can assign the label *supplementary factors” to those factors which are required for obtaining
accurate regression models but do not characterize defects. The regression models would assume

the following general form when supplementary factors are included (where aw, is the natural

frequency of mode n):

w, = f(Defect Parameters, Supplementary Factors)

Supplementary factors would typically be easily measured and supplied as inputs to the
regression models prior to any predictions being made. By measuring supplementary factors
first, the regression models can be reduced o a form where only modal frequencies and desired
defect parameters are the unknowns. Defect parameters would then be estimated in the usual way

using experimental modal frequency measurements to solve the system of regression equations.

4.7 Choosing and Controlling Factors

“The choice of which factors and how many modes to include when developing a set of regression
‘models is very much dependent upon the specific application. It may not be necessary to include

a comprehensive set of factors that affect frequency response if in the desired application some.
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of those factors are known to be controlled. In most cases, a minimum set of factors is desired

because of the time and resource savings that accompany a reduction in experiment runs.

In some situations the actual development of regression models may also be complicated

somewhat because one or more factors that need to be included in the models are not easily

controllable. In this case only experiment runs at random factor levels may be available. This

may make the design space uneven resulting in some arcas having better prediction power than

others. In general, if naturally oceurring defects are not easily introduced in a controlled manner,
such as with closed or intemal cracks for example, then only the data that is obtained from
specimens with naturally developed defects may be available for fitting regression models. On
one hand the behaviour of these specimens, on an individual basis, would likely better represent
the behaviour of in service specimens because their defects are naturally developed, as opposed
o artificially introduced in an idealized manner in the lab. However, depending on the available
distribution of naturally occurring defects the resulting regression models may be biased in
favour of certain regions. Predictive power may be better for small, intermediate or extreme
defects. For example, if only severely defected specimens are identified and removed from
service for assessment, and subsequently used in developing regression models, then those
regression models would likely tum out to be very well fit in the regions of design space
corresponding to severe defects (assuming that random error and random variation is consistent
throughout the space). Other regions may conversely have a less than ideal fit. However, it may
be desired that the method ultimately be used to identify specimens early in their deterioration

phase when defects are smaller and less obvious. In this case, the resulting regression models



may not be best suited to the desired application because of the restriction of not being able to

control defect parameters during their development.

We will not attempt to dictate here the best statistical practices for developing regression models.
with non-controlled design points. That is an issue somewhat outside the scope of the current
study. However, we should keep in mind that in some practical applications data may come from
production line rejects or specimens removed from service and therefore in order for the
proposed defect detection method to be applied we may need to compromise on best model

development practices and use whatever data that may be available,

4.8 Potential Applications

As mentioned earlier the above defect detection method has been developed with the end goal in

mind of assessing the condition of in-service wooden utility poles. However, an effort has also
been made to present the method in a very general way so that it is be applicable to a broad range

of applications beyond pole testing. Here we will consider some of those other potential

applications.

Identifying cracks in beams or structures is an obvious and widely studied application. The
proposed approach could be applied to many different structure geometries. Geometry
parameters that vary between specimens would simply have to be included as supplementary
factors in the regression models. Since the models are obtained from experimental runs and

designed for the cach specific application, they can easily handle geometries where calculating

theoretical modal frequencies may be difficult. Even non-ideal end conditions are automatically

accounted for in the models, and do not have to be considered on a theoretical level
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Quality control on a production line would be an ideal candidate for modal testing. Since the

goal is often to make every unit identical (or at least within manufacturing tolerances) they
should all have the same material properties and geometry. Therefore, they should all
theoretically have the same modal frequencies. For a simple approach, we could gather modal
data from a number of random samples. Random samples are regularly pulled from production
lines for quality control anyway and gathering the modal data would just be one extra step in the
process. We could develop mean and standard deviation values for one or more modal
frequencies from those test specimens. We could also determine frequency thresholds for what
constitutes an acceptable specimen (since each specimen removed from a production line would
also be subjected to other tests that asses condition). Once we obtain these thresholds, automated

non-destructive modal tests could be carried out on each specimen that passes through the

production line. Note that some existing software already automates the process of choosing
modes and estimating parameters from frequency response functions. Therefore, the technical
challenges involved in developing completely automated modal testing equipment seem
somewhat modest. Specimens with cither modal frequency outside of its established threshold

could be automatically cjected from the line. In order to determine specifically whether the

problem was inappropriate density, geometry or material stiffness we would have to develop

models reflecting how those parameters affect multiple modal frequencies (as per this chapter’s
proposed method). Using this simple approach, the actual problem with each specimen would
not necessarily be known. However, a greater quantity of defected specimens should be ejected
from the production line, and those ejected specimens could subsequently be subjected to
existing or alternate quality control tests in order to determine the specific nature of each defect.

In this case, modal testing would initially be installed in parallel with existing quality control
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techniques. Upstream and downstream random samples could be removed from production and
tested using existing techniques in order to assess the effectiveness of modal testing. If a
significant improvement in the quality of samples downstream of modal testing was realized,
then some quality control efforts could potentially be shifted away from testing only a truly
random sample of specimens (which normally involves destructive testing of many intact
specimens and is inherently wasteful in terms of labour and lost merchandise). More effort could
be allotted to testing known defective samples that were cjected by modal testing. By testing

more known defective samples, we would get a better idea about which types of defects occur

most often. Focus could then potentially be shifted towards making appropriate changes in the
manufacturing process in order to mitigate the occurrence of specific regularly occurring defect
types. This has the potential to improve overall product quality and better streamline quality

control efforts.

Some manufacturing processes may be inherently prone to certain defect types. If so regression
‘models could be used to capture the behaviour of those specific defect types. For example, if we
are attempting to make castings, the overall dimensions may be fairly consistent (allowing them
10 be omitted from the regression modals), and we may be able to easily inspet the surface for
defects. However, the interior of castings may be prone to voids or inclusions. In this case, the
location and extent of voids could be included as factors in our regression models and predicted
using the proposed method. It is possible that simply weighing a specimen in order to determine
its mass will give some indication about whether voids are present in a casting. This has its own
merit but it also means that we could characterise a defect as a localized loss of mass. The

specimens could then be weighed and their corresponding mass could be input into the




regression models in the regular way. This would allow us to obtain models that are more
accurate. It could also allow us to use fewer regression models and simplify our approach if mass

alone is considered adequate for characterising defect severity. Material from specimens with

inappropriate mass may normally be melted down and reintroduced in future castings without

actually determining where the void existed. However if, in addition to severity, the location of a

void could be determined through modal testing then it may be possible to identify areas in the
part that are prone to voids. This could lead to ideas about how to change the casting process or

mould design in order to avoid future problems. One downfall with this approach is that

regression model development may be difficult depending on the scale and material of parts
Defect extent and location would have to be determined for defective parts through dissection or

some other means in order to obtain data that could be used for model development.

‘The factors predicted using the proposed method do not necessarily have to be related to a defect
such as a void, crack or other compromise of structural integrity. With a little imagination, we
could expand this method to fit many other applications. For example. if we had a pipe that was
prone to clogging we could potentially use this method to locate a blockage. Since the blockage
would add a somewhat localized mass to the pipe, it would affect the pipes modal frequencies,
since they are dependent upon density. In this case, we could develop regression models to
predict two factors: blockage location and extent. If the pipe were drained this would simply be a
matter of localizing the added mass of the blockage in the above manner. However, if the pipe
were not drained this method could still be applicable. The density would be somewhat constant
along the section of pipe upstream of the blockage (since it would still be full of fluid), and after

the blockage the density would abruptly decrease by an amount dependent upon the extent of the



blockage. Models could still be developed in this case for blockage location and extent because
of this change in density. The regression models would be distinct, and not interchangeable
between the two cases (drained and un-drained), but the general procedure could likely still be

applied in cither case.

‘The above examples represent a small number of applications that may be appropriate for
applying the proposed defect detection method. It is casy to imagine that there are still further

applications that would be well suited, if a little creativity was employed in choosing factors.

4.9 Distributed Damage and Real World Concerns

‘The proposed method should be well suited to applications where continuous numerical factors
are able to adequately define a specific irregular geometry such as the location (in one, two or

three dimensions) and extent (diameter, width, length etc.) of one or more eracks or material

voids. It could even be applied to locating localized reductions in density or stiffiess. Models
and factors would just have to be tailored to meet the needs of the specific application. However,
if damage is not localized but rather a continuously varying level of deterioration over the entire
specimen then the problem is somewhat more complex. We raise this issue here to bring into
light that while the proposed method so far has been very accommodating to a wide spectrum of
applications it does have some limitations. Real world applications are continuous and do not

always include defects that can be defined using step changes in parameters.

As mentioned carlier this method has been developed with an end goal in mind of testing in-
service wooden utility poles even though that particular application s perhaps a less than ideal fit

o the existing form of the method. With wooden utiity poles, many complications and practical
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challenges arise.  Individual poles are of varying length, diameter and taper making
supplementary factors necessary in the regression models. In addition, the state of deterioration
is not likely to be a step change in one or more parameters. It is more likely to be a continuously
variable level of deterioration along the pole. Other factors such as density may also be variable

along the poles length. This issue of con

nuously variable (or distributed) factors lies on the

boundary between current and future work. It will be discussed further in Chapter 6 (as it relates,
0 pole testing) and section 7.2 (as it relates to future work). Some suggestions will also be made
for how this issue may be handled with further development of the proposed defect detection

method.

Admittedly, there are limitations to assessing damage condition using the current form of the

proposed method, and further work is required to expand its scope before it can be used in many
real world applications. We will nonetheless first focus on validating it for simple cases. In
Chapter 5 we will use the proposed technique to determine the location and severity of various

controlled defects in beams.
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Chapter 5
Validating the Proposed Method for Detecting Defects

In order to validate the defect detection method that was suggested in Chapter 4, we will first
present some example scenarios involving unique geometry and defect parameters. Each
scenario will then be investigated further by applying the proposed method to theoretical, finite
element and/or experimental models. Since the method has already been well explained in
Chapter 4, only somewhat modest explanations of method and technique will be provided
throughout these examples. For each example, the method will be employed as it was presented
in Chapter 4 unless otherwise stated. Since the goal here is simply to assess whether the
proposed method is useful for predicting the presence of defects in controlled conditions,
supplementary factors will not generally be considered in the following examples. However, the
importance of accounting for supplementary factors in many practical situations is nonetheless

recognized.
5.1 The Two-Factor Beam

Part of our focus is to investigate how modal testing could be used to detect hidden defects in

utility poles. The first example, which we will refer to as the ‘two-factor beam’, will therefore

include a simplified version of a typical type of hidden defect found in utilty poles. As can be



seen in Figure 5.1, ants (in addition t0 rot) can penetrate poles and deteriorate the center of their

cross section. This can start at the ground line and extend to various heights up the pole.

Figure 5.1 - Utilty Poles with Ant Damage (Halds

- 2003) (Haldar & Tucker, 2006)
The first example will therefore be a cantilevered beam with defects appearing as holes of
varying diameter and depth. The holes will start at the clamped end and penetrate lengthwise
along the centerline. Since we will later try to validate this example experimentally, we will
choose the beam’s cross sectional geometry to be the standard lumber size of 3.5 in x 3.5 in for
convenience (a nominal 4x4 post). The defect factors to be predicted are defect diameter and

defect length.

Note that modal frequencies and sirength in bending are each directly related to the second
moment of area of a pole’s cross section. Note also that defects located near the center of a
pole’s cross section will have a less significant effect on these properties than defects located
near the surface, since they are closer to the neutral axis. The reason for choosing to investigate

this internal type of defect, as opposed to more severe surface defects, is that it is not easily

detected by visual inspection. In addition, internal defects can often appear in a pole before

surface defects, due to the surface being better protected by higher preservative levels.



5.1.1 The Two-Factor Beam Scenario

Figure 5.2 presents a schematic and the appropriate parameters for the *two-factor beam’.
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Figure 5.2 - Schematic of Two-Factor Beam
Here the two defect parameters are diameter and length of the defect. The diameter will have a
low level of 0.75 in and a high level of 1.75 in. The length will have a low level of 6 in and a

high level of 12 in.

5.1.2 Experimental Two-Factor Beam

In the early stages of developing an understanding about what factors affect modal frequency,
and how those factors interact, the ‘two-factor beam’ scenario was chosen for a series of
experimental tests. This series of tests was done before the method in Chapter 4 was developed.
Tt was as much an exercise in learning to use the modal impact testing equipment and run a series
of experiments, as it was an attempt to characterise defects using modal parameters. Therefore,
the method of Chapter 4 will not be strictly adhered to in this section and some of the procedures
and choices made seem ineflicient in hindsight. However, the results do apply standard design of
experiments techniques, and are still worthwhile to present as an intermediate step towards
validating the proposed method of defect detection. Here two series of experiments were
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performed on the same set of wester red cedar specimens. Western red cedar was chosen for the
material since it is a common species used for full-scale utility poles. The experiment setup and

specimens are shown in Figure 5.3.

Figure $.3 - Two-Factor Beam Experiment Setup and Specimens

5.1.2.1 First Series of Experiments

‘The first series of experiments for the two-factor beam scenario followed a traditional 2 factorial
design with one replicate and four center points. The factors studied were defect diameter and

location as well as moisture content and location. Since no humid led

room was available for conditioning the specimens, controlled moisture content was only

obtained by purchasing specimens with two distinet initial moisture content levels. The

experiments were then performed as quickly as possible in order to avoid progressive drying
throughout the series of experiments. By following a random run order, the effect of drying
should only show up as random error if it occurs. This is obviously not standard practice for
controlling moisture content but there were no other options at the time of this series of

experiments. Note that since only two factor levels were available for moisture content, it could

not be incorporated into center points and was the rhe

fore considered as a categoric variabl
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‘measured responses included the first two transverse modes and the first two torsion modes. For
each mode, the frequency and damping ratio were obtained. Mode shapes were also obtained for

ach test in order to help identify cach appropriate mode.

Since wood is an orthotropic material, having properties that vary depending on grain direction,
then grain orientation should have been controlled unless it was chosen as one of the studied
factors. However, since the specimens were pre-cut before purchase, there was no way to control

grain direction. Therefore, some lack of fit is expected to show up in the resul

models due to the random error caused by variations in grain direction.

Data for the initi

1 two-factor beam experiment, including factor levels and measured responses

can be found in Table 5-1.
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‘Table 5-1 - Factor Levels and Measured Data for I

2-Factor Beam Experiment



Data was collected and analyzed following design of experiments procedures. Half-normal plots
were employed to help indentify significant factors, and factors were deemed significant by
using a 0.95% confidence level. Residuals were also analyzed in order to assure that the
assumptions of normality, constant variance and independence of runs were justified. Once
analysis was complete, only the first and second transverse modal frequencies resulted in decent

regression models for this set of experiments.
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Figure 5.4 1st Trans. Freq. Half-Normal and ANOVA for Initial 2-Factor Beam Experiment

Figure 5.4 shows the half-normal plot and analysis of variance (ANOVA) results for the first
transverse modal frequency. We can see that diameter of the defect and moisture content were

the two most dominant factors. There were some significant second order interaction effects as

well. One interaction that involved accelerometer position was just inside the target significance

should not have affected the

Tevel. It was kept in the model for that reason; however in reality
results. Modal parameters are a property of the specimen and accelerometer position should have
no significant effect on them. The added mass of the accelerometer and the accelerometers lead

wire could theoretically have some effect on modal response, although this effect would not
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likely be noticeable given the scale and accuracy level of the experiment. However, if the
accelerometer was mounted near the node of any particular mode (although it was not in this
case), that would have the effect of making measurement of the mode more difficult. The main
effect of accelerometer position was included in the model as well, but only to maintain
hierarchy, and it was not significant as a standalone factor. The resulting regression model for
the first transverse frequency in terms of actual factors, as opposed to coded factors, is presented

below:

1t Transverse Frequency [Hz)

= 41.67 - 1364 — 0.031B — 0.14D + 0.544B — 0.48AD + 0.298C + 0.53BD

Where A, B, C and D represent the coded factors of defect diameter, defect length, accelerometer
position, and moisture content respectively. ‘Coded factors’ refers to the studied factors being
scaled to range between -1 and 1 (for example, defect diameter = 1.75 in would be expressed as

A=

in coded units since it is the maximum defect diameter factor level used in the design
space). If desired, coded equations can easily be transformed into equations that accept actual
factor levels. However, using coded units does allow all categoric and numeric factors to be
represented in a single equation. This equation actual resulted in a respectable R* value of 0.9686

(with an adjusted R value of 0.9407).

The second transverse frequency did produce a model with some significant effects, but the

overall model was not as strong as the model for first natural frequency. Again, moisture content

and defect diameter strongly affected the response. However, in this case they were the only two
significant factors. A half-normal plot and ANOVA results can be found in Figure 5.5 for the

second transverse frequency. The resulting model, which had an R* value of 0.7729 (adjusted R*
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of 0.7426), is presented below in terms of coded factors. Again, A and D represent the coded

factors of defect diameter and moisture content respectively:

2nd Transverse Frequensy [Hz] = 276.60 — 5.084 — 9.77D
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Figure 5.5 - 2nd Trans. Freq. Half-Normal and ANOVA (Initial 2-Factor Beam Experiment)
For second transverse frequency, the pure error is found to have a more significant effect than
lack of fit in the model. Some of the error in measuring the second transverse frequency may

have arisen naturally from sources such variation in matg

properties between specimens.
However, one likely source is related to the measurement of torsion modes at the same time as
transverse modes. It can be seen in Table 5-1 that the frequencies of the second transverse mode
and the first torsion mode are very close. This resulted in some difficulty analyzing the FRF in
the band near those two modes. Extracting both modal frequencies from essentially a single peak
on the FRF was at times ambiguous and made the measurement procedure for this series of
experiments very tedious. High resolution three dimensional mode shapes often had to be
obtained in order to positively identify each mode. This may have been a major contributing
factor to the first torsion mode not yielding a viable regression model. On one hand, this
interference between modes could be considered as an oversight in choosing what specimen
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geometry to use. However, it is important that modal testing be robust enough to handle any
given specimen, and this interference inadvertently brings to light at least one concern that must
be addressed when employing modal testing as a quality control technique. Despite being
somewhat concerning, this interference could easily been avoided in future tests by choosing

appropriate impact and measurement locations that excite and capture only the transverse modes.

If nothing else, these models at least indicate that a defect parameter (diameter in this case) can
have some effect on multiple modal frequencies. As expected, moisture content has a significant
effect on modal frequency as well. This is likely a reflection of moisture content’s effect on

stiffiess and density, which are important factor affecting theoretical modal frequencies.

We could have used the two regression equations derived above to predict the diameter and

length of defects in further validation specimens. This could have been done by inverting them

according to the proposed method in Chapter 4. However, due to the weak presence of defect
length in these equations (only significant with respect to one response and even then only
showing up as part of an interaction effect), and the weak overall model for second transverse
frequency, the predictions may not have been very accurate. At this point in the study, effort was
thought to be best directed towards improving the models and developing a further
understanding of the underlying theory behind modal vibration. These results are nonetheless a

relevant first step in validating the proposed method of defect detection using modal frequency.

We will eventually attempt to calculate how the specimens in this experiment would have

behaved using theoretical predictions of frequency, but first a second set of experiments using
the same specimens will be discussed. This set of experiments was performed after the

iens had been left to dry for a sufficient amount of time.
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.2 Second Series of Experiments

After the series of experiments in section 5.1.2.1, the specimens used were set aside for a period

of about three months to allow for drying to occur. The goal was for each specimen to arrive at

common equilibrium moisture content, This was done by storing the specimens
environmental conditions. They were stored in the same lab in which they were o be tested

during the second series of experiments. Humidity and temperature in that lab were fairly well

controlled. Moisture content was peri

lly checked at the surface with a hand held moisture
meter and was found to be consistent at the end of the drying phase. However, interal moisture
content could not be accurately determined without cutting into the specimens (to access the
center with a moisture meter) or baking them (to determine the mass change when moisture is

expelled). Either of these methods would have compromised the structure of the specimens.

Once the specimens were conditioned to common moisture content, they were subjected to a

second series of experiments. In this series of experiments, defect diameter and defect length

were the only factors considered. This time it was assumed that all specimens were identical
except for the nature of their imposed defects. Therefore, we will essentially determine if the
effects of defects are strong enough to outweigh random error due to variations in geometry and
material properties between specimens. The measured responses included the first three

transverse modal frequencies.
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Table 52 - Factor Levels and Measured Data for ‘Dried’ 2-Factor Beam Experiment
“This time only the first transverse frequency produced a model of any interest. Even for that
response, the model was quite poor, with a R? value of 0.676. However, the defect diameter, and
an interaction effect between the defct diameter and defect length, were found to be significant.
A half-normal plot and ANOVA results are found in Figure 5.6. Note that defect length was only
included to maintain model hierarchy again. The corresponding regression model, in terms of
coded factors, can be found below (where A and B are the coded factor levels of defct diameter

and defect length respectively):

1t Transverse Frequency [Hz) = 43.80 ~ 1.614 + 0.13B + 0.83AB



Figure 5.6 - st Trans. Freq. Half-Normal and ANOVA (‘Dried” 2-Factor Beam Experiment)

‘The poor models resulting from this serics of experiments indicate that other supplementary
factors, such as grain direction, density and geometry variations, are likely significant in
affecting the modal behavior of the specimens. All supplementary factors were assumed to be
constant in this series of tests, and therefore none were considered. However, despite efforts to

ensure that supplementary factors were adequately controlled, according to the results that scems

not to have been a valid assumption.

Despite the poor models, all is not lost in these results. Defect parameters were again proven to

have some significant effct on frequency, at least for the first mode. It can be imagined that
greater care in accounting for supplementary factors, models with suitable accuracy for making
predictions could be obtained. In upcoming examples, focus will shift away from physical
Wooden tests towards theoretical and numerical modeling of defected beams. This will at least
confirm that the method proposed in Chapter 4 can be used to predict defects under ideal
conditions. Once this is confirmed for the ideal case, a shift can be made back to laboratory
testing. In future laboratory tests, greater care for controlling (or accounting for) supplementary

factors and variation between specimens will have to be ensured as well.
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5.1.3 Theoretical Representation of the Two-Factor Beam

As a first attempt to validate the proposed defect detection method under ideal conditions, we
will resort to a theoretical representation of the two-factor beam scenario presented in section
5.1.1. We will perform and analyze a series of experiments on this theoretical model, instead of a

physical model. Thus, supplementary factors will be well controlled.

We can solve for theoretical natural frequencies of the two-factor beam using theory presented in
section 3.2. To do this we can simply consider the ‘two factor beam’ to be a stepped beam with
two distinet spans. The defected section near the clamped end of the beam can be labelled as

span ‘a’ in the theoretical ion (with parameters Lq, P, EasAg, o). Span °b’ can

represent the un-defected section towards the free end (with parameters Ly, py, Ep, Ap, ).

Using the theory and method presented in section 3.2 and Appendix A respectively, we can solve
for the natural frequencies of a stepped beam at the various required factor levels, and develop

regression models in the usual way. Factor levels will be chosen here to allow each natural

frequency to be modelled as a second-order, d, I-composite resp fa

Since each experimental run will now be carried out using a theoretical model, instead of a
physical specimen, we can easily add extra points and expand our model from the simple two-
level factorial models used in section 5.1.2 to a second order response surface. The material
properties were taken here as average values published for western red cedar. The elastic
modulus was taken as 8.47 GPa (value corrected for shear effects and assuming 12% moisture

content) and the density was taken as 320 kg/m’ (Green, Winandy, & Kretschmann, 1999). The

specific runs completed in this experiment are outlined below in Figure 5.7
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Figure 5.7 - Factor Levels and Results for Theoretical Two-Factor Beam Experiment
We can see that the absolute values of the first three modal frequencies are somewhat different
from the frequencies obtained in section 5.1.2. However, this is not alarming since material
properties of wood can vary greatly between specimens. This is even true when specimens are of
the same species. In fact, the source from which published material properties were obtained for
this example actually published two very different values of elastic modulus (6.5 Gpa and 7.7
Gpa respectively, before correction is made for shear effects) depending upon whether the wood
was ‘green’ or at 12% moisture content. Published elastic modulus values for some other wood

moisture

species even double between these two moisture contents. In addition to stiffness.

also said to

content s also shown to affect density. The  region where specimens are growr
contribute to material properties (Green, Winandy, & Kretschmann, 1999). Therefore, since
modal frequency of wood depends heavily upon these variable properties, it is expected for there
0 be some difference between measured frequencies and theoretical predictions of frequencies
made using published properties. Clamping conditions not being ideal and mass loading from the

accelerometers, among other factors, could also account for some of the difference between

‘measured and theoretical frequencies.

Using stepwise regression and techniques similar to those used in section 5.1.2 o develop sceond

order models with this data, we get the three prediction equations presented below in terms of
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coded factors (note that A and B refer to coded factor levels of defect diameter and defect length

respectively):
1st Transverse Frequency [Hz] = 65.37 + 0.94A — 0.52B + 0.56AB — 0.488%
2nd Transverse Frequency [Hz] = 417.62 + 5.884 + 0.27B + 2548
3rd Transverse Frequency [Hz] = 1155.86 + 12574 + 3518 + 2.99AB + 1.904%

Note that the three equations above have R values of 0.9994, 0.9897 and 0.9944 respectively.
Also, note that some second order effects did show up as significant in the models, which

fied. Here we seem

suggests that expanding to the second order response surface design was jus
to have obtained three acceptable regression equations, with each indicating that both defect
parameters significantly affect frequency. We also have very good R values, which indicate that
the regression models adequately represent the behaviour of the theoretical model (which is
obviously somewhat more complex). This portrays the essence of using the design of
experiments approach for this application; it allows us to represent the behaviour of complex

systems by using simple statistical models. Because of this, the proposed method of predicting

defects should be able to adapt to complex systems where finding theoretical modal frequencies
would be difficult. Only experiment runs on physical specimens would be required for

developing the regression models.

Since for this set of experiments we seem to have obtained adequate regression models, we can
now use those models to make predictions of defect parameters for other validation runs. To do
this we will simply choose arbitrary defect parameters, use the theoretical model o solve for
modal frequencies of a beam with those parameters and input the resulting modal frequencies
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into our regression equations. We can then rearrange and solve the regression equations for

ions of defect parameters, and compare the predicted defect parameters to the actual

prec

parameters that were initially chosen. This exercise is useful for determining whether the

regression models do indeed reflect the actual behaviour of the theoretical model in areas of

design space away from the design points. It also allows us to assess whether defect parameters
can practically, and definitively, be predicted from modal frequency measurements in the manner

described in Chapter 4.

with the first two

After performing four validations runs, and using numerical optimizat
modal frequencies to predict defect parameters for each run, we get the results shown in Table
5:3. As we can see, the predicted values are very close o the values of the actual defect
parameters, indicating that the regression models do accurately reflect the behaviour of the
theoretical model. Note that the third mode did not need to be employed since multiple solutions
were not obtained for either prediction. There were nonlinear terms in the models; however, the
nonlinear terms were not strong enough to create multiple solutions within the design space for

cither of our validation runs.
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ion Runs for Theoretical Two-Facior Beam Experiment

If we plot these numerical optimization predictions against the actual defect parameters wi

our overall design space, we can see that the predictions are actually quite good.
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Figure 5.8 - Validation Runs for Theoretical Two-Factor Beam Experiment

1 we pursue the graphical approach that was suggested in section 4.2.2, we get the results shown

in Figure 5.9. The left plot in the figure shows our prediction using the first two modes and the
right plot shows the result when the third mode is added. The predicted solution is where the

contour lines for each modal frequency intersect within the two-dimensional design space.
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Figure §.9 - Graphical Solution to Validation Run 1 of Theoretical Two-Factor Beam
In the left plot of the figure it can be seen that when using the first two modes, the graphical
solution agrees well with the actual defect parameters. It also agrees well with the parameters

predicted using numerical optimization. However, if we add the third modal frequency to the
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plot, as shown on the right of the figure, it does not quite intersect that solution. We anticipate a
small amount of deviation between the third frequency and the intersection of the first two
frequencies simply based on the regression models not being a perfect fit to the theoretical
model. However, since the predicted defect parameters found using the first two frequencies
alone were 5o close to the actual defect parameters, this seems to indicate that the regression
model for third frequency is not such a good fit to the actual behavior of the third frequency
within the theoretical model. Here we simply selected a textbook second order response surface
design and attempted to capture the behavior of all three modes with it. However, as we have
mentioned in Chapter 4, and will witness in upcoming examples, it is not easy to capture the
behavior of higher modes and more complex regression models are actually required. Since

higher order modes require higher order regression models, determining the minimum number of

‘modes required to make definitive predictions is paramount. We have suggested a guideline in
Chapter 4 of obtaining 7 + 1 regression equations if we desire to predict n defect parameters.

However, as we have seen in this example, as long as no multiple solutions exist, then

equations are adequate. Knowing when n parameters are adequate requires experience and a
depth understanding of how each modal frequency generally behaves with regard to specific
defect parameters. It also depends upon the ranges of those parameters. In this example we
considered only limited ranges for defect diameter and defect length. The ranges chosen here
were meant to match the ranges used in the physical experiments of section 5.1.2, and they were

initially chosen in that section to allow for defects to be practically introduced into the test

specimens. In this case the limited ranges are at least partially responsible for the second order

I behavior, and definitive solutions for two

models provi

ing an adequate fit to the theoreti

defect parameters being obtained using only two regression equations. We will see in future
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examples that the extra regression model is indeed often required to te multiple solutions.

However, before moving on to another example scenario, we will revisit this example using a

finite element model, in place of the theoretical model, for simulating the behavior of the stepped

beam.
5.1.4 Finite Element Representation of the Two-Factor Beam

In order to confirm the results that we obtained using the theoretical model in section 5.1.3, and

o continue our attempts to validate the method proposed in Chapter 4, we will revisit the two-
factor beam scenario and use a finite clement model to simulate the behavior of the stepped
beam. Ansys 12 was used to run the finite element simulations and the same published material
properties were used here for westem red cedar. The procedure here is very similar o the
procedure in section 5.1.3, and therefore we will quickly progress to the results. A sample finite
element analysis output for this series of experiments, which shows the first three modes, can be

found in Figure 5.10.

Figure 5.10 - Example Three Mode Finite Element Result for Two-Factor Beam
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Table 54 summarizes the results of the experiment. Notice that a central composite, face-

centered response surface design was again used. The actual frequency values obtained from the
finite element model seem to correspond fairly well with the frequency values obtained using the
theoretical model in section 5.1.3. The two models produce values within about five to ten
percent of each other. However, note that the actual values of frequency are not as important as

s what we must

the behaviour of frequency when defect parameters are changed. This behaviour
capture when developing regression models for prediction. In physical systems, the actual
frequency values will always vary depending upon the structure being tested. However, since
regression models are tailored to cach situation, they should still perform well in identifying

defects and the actual frequency values are not of high importance.
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Table 5-4 - Factor Levels and Results for Finite Element Two Factor Beam Experiment
Once we use the data from Table 5-4 to develop regression models, and then perform validation
runs to tests the predictive ability of those models, we get the predicted defect parameters shown
in Table 5-5. These predictions are also plotted against the actual defects in Figure 5.11. The two

dimensional area within the plot represents the considered design space. We can see that the

predictions are again quite good, indicating that the regression models adequately capture the




behaviour of the finite element model and are able to be definitively solved for defect parameters

when provided with a measured set of modal frequencies.
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Figure 5.11 - Validation Runs for Finite Element Two-Factor Beam Experiment

ctor beam’ scenario indicate that the

Overall, early results based on investigating the ‘two-

proposed method of defect detection is promising. We found that defect parameters do actually

affect frequency response, and that regression models can be developed to capture the behay
of that response. We also found that those regression models can be solved to give accurate
predictions of defect parameters in validation specimens. Next, we will further investigate the

proposed technique by investigating a slightly more complex scenario, the ‘two-factor rod.



5.2 The Two-Factor Rod

‘The second example for validating the proposed regression model techniue will involve a
circular cross section rod. The defect will be a localized reduction in diameter of the cross
section, which could be considered as an open crack. The factors will thus be the defect’s

diameter and its location. The motivation for choosing this arrangement is that it will provide

insight into how well the method can localize a defeet in addition to quantifying its severity.

For the two-factor beam, we started with a physical experiment essentially to become familiar
with the modal testing equipment and to begin looking into the problem of detecting defects.
Here we will attempt to characterize the behaviour of the two-factor rod within the finite element
environment before attempting a physical experiment. This will allow us to gain an
understanding of how the specimen behaves when localized defects are added, and will allow us
10 be better prepared when we do attempt a laboratory experiment. In this section, we will
investigate a finite element as well as a physical model of the two-factor rod scenario. We will

also examine whether the defect detection method is able to perform well in each case.

5.2.1 The Two-Factor Rod Scenario

The two-factor rod will generally be a circular cross section length of aluminum and is depicted
in Figure 5.12. In this case, the only two factors to be studied are the location and diameter of the
defect. Overall length and overall diameter have not been specified here, since they will be
different for each implementation of this scenario in the coming sections, however, they will

remain fixed within each specific implementation and will not be studied as factors.
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Figure 5.12 - Schematic of Two-Factor Rod
5.2.2 Finite Element Representation of the Two Factor Rod

Here we will consider the two-factor rod scenario within a finite element environment. We will
use an overall length of 500mm and an overall diameter of 25mm for our specimens. A general
“non-linear aluminum alloy’, built into the database of the finite element package, was chosen as
the material. However, the actual material properties are again irelevant since we only wish to

validate the proposed defect detection method.

When examining the two-factor beam scenario, we continued to use simple and established

experiment designs, such as the factorial and central composite response surfaces, t0 investigate

which factors had significant effects on frequency response. However, we found that the U

frequency might not have been adequately modelled by even the second order response surface.

For the two-factor rod, instead of blindly applying an established design structure to investigate
effects, we will follow the procedure that was presented in sections 4.6.2 and 4.63. This
procedure dictates that we should use closely spaced finite element runs to determine what the
actual behaviour is in advance, and then determine an appropriate number of design points that

would be required to capture that behaviour in a regression model. If this approach is followed
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o attempting a physical experiment, then we can be somewhat assured that only one series

P

ur of a system.

of experiments will be required to adequately model the behavi

If we create the two-factor rod within a FEA setting and gradually increment each of the two
factors (defect location and diameter at the defect), we get response surfaces for the first five
modes as shown in Figure 5.13. Note that these response surfaces were obtained by meshing
these closely spaced FEA runs and are not fitted regression models. Therefore, they should give
a true representation of the actual behaviour of the system. Note that the location is measured

from the clamped end and diameter refers to the diameter at the defect, not the reduction in

diameter at the defect. Therefore, lower diameter here corresponds to a more severe defect.
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We can see that frequency of each mode is generally reduced (rel

€ to the intact case) by the
introduction of a defect, as long as the defect is not near a location of low curvature (or the node
of a curvature mode shape). As the defect nears a node, its effect becomes progressively less
severe. In addition, more severe defects generally result in higher frequency reduction. If we plot
two-dimensional cross sections of these response surfaces, we can get a better idea of exactly
how each factor affects the frequency response of each mode. These two-dimensional sections

are found in Figure 5.14 and Figure 5.15.
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Figure 5.14 - Effect of Defect Location on FEA Meshed Surfaces (Two-Factor Rod)




Figure 5,15 - Effect of Diameter at Defect on FEA Meshed Surfaces (Two-Factor Rod)



Following the general procedure described in section 4.6.2, we willfirst use the above plots as a
guide so we can determine the minimum model order required to adequately capture the effects

of each factor on each mode. We will then determine the minimum number of design points

n models to that model order.

needed to fit our regre:

Since we wish to predict the values of two defect parameters here (defect location and diameter
at the defect) we need to model surfaces for at least two frequencies. Two frequencies would
give us the same number of regression equations as unknowns and therefore allow us to find
solutions for our unknowns. However, as we will see later, the regression equations that result

from the first two modal frequencies are nonlinear and therefore will have multiple solutions. In

anticipation of this problem, and to avoid having o determine a new model order and run the

required experiments again later, we will adhere to the guidelines presented in Chapter 4 and

assume that models of three frequencies are required to predict for two defect parameters

If we wish to obtain response surface models and regression equations for a number of
frequencies, we need to include enough design points in our experiment runs to model the
highest order frequency of interest. Since we wish to model modes one through three, the
frequency with the highest required model order i the third frequency in our case (as can be seen

in Figure 5.13 through Figure 5.15)

Keeping with the guidelines presented in section 4.6.2, we determine that in order to accurately

model the third frequency across our entire design space, we require four design points in the
defect diameter dimension and ten design points in the defect location direction. This i
determined by following the rough guideline that for every span between inflection points we
require two design points. The defect diameter plots had one inflection point and the defect
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location plot had four inflection points. Note again that this is only a rough guideline and future

work may dictate more efficient methods for modeling these complex surfaces.

Using the method described above we should be able to model our highest order mode using a
four by ten point design space. However, due to model order limitations of the commercial
design of experiments software used in this study, we are forced to split the design space into
two segments. Each segment will be analyzed separately for modeling and prediction purposes.
Splitting the design space was discussed in section 4.6.3, and following the guidelines presented
in that section we add an extra point in the defect location dimension at the interface between the
two segments. This point is also shared by each segment in order to maintain continuity in the
space. Hence, we finally arrive at a procedure for developing regression models for the two
factor rod scenario. We will consider two symmetric design space segments, each consisting of
an evenly spaced four by six design point mesh. The total number of unique design points will be

forty-four in this case.

We will consider the defect diameter values to range between 6 mm and 24 mm for cach design
space segment (note that the overall diameter was chosen as 25mm). For defect location we will
choose a design space that ranges between 25 mm and 475 mm (note that our overall length is
500 mm). Since we have two separate design-space segments, with respect to defect location, our
first segment will range between 25 mm and 250 mm and our second segment will range
between 250 mm and 475 mm. Therefore, this design space considers nearly every physically
possible defect of the form considered. We cut off our design space slightly before the physical

limits in order to avoid anomalies at those limits (such as a beam with a defect diameter of zero).

92



Using the design structure established above, we can now develop our finite clement model and

perform the required simulation runs. A summary of the specific factor levels for cach design

point, and results obtained from cach finite clement simulation, are presented in Table 5-6 and
Table 5-7 respectively for the two design space segments. Note again that four points at the

interface between the two segments are common and appear in both tables.
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Table 5.7 Results for FEA 2-Factor Rod

After we analyze this data in the normal way using stepwise regression, we obtain six individual
regression models; two models for each frequency, using three frequencies. The models are
somewhat complex and consist of various high order terms. R values are quite good and range
between 0.9936 and 1.0000. We can use these models to predict defect parameters of additional
validation runs, as we have done in previous sections. However, validating the models in this

case is a little more complex. We need to insure that splitting the design space did not inhibit the

ability of the models to give accurate predictions of defect parameters. To do this we need to
ensure that an accurate solution is retuned when using the correct design space segment, and
that the other segment does not falsely retur extra solutions. The results from a number of

validation runs are summarized in Table 5-8.
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“Table 58 - Validation Runs for FEA Two-Factor Rod
We can see that cach of the validation runs resulted in fairly good predictions of defect
parameters using our models. The predictions were made here largely from numerical
optimization across all three responses. However to obtain those predictions we had to use both

design space segment models.

For validation runs one through four, we can see that only one solution was obtained in each
case. For the segmented model that was supposed o retum a solution, a fairly good solution was

returned with a high desirability in cach case. For the segmented model that was not supposed to

return a solution, either at least one of the frequency inputs were outside the range of frequen
that were obtained when developing that model, or no solution with an adequately high
desirability was found. In each case desirability of solutions was compared between models and

one was clearly higher than the other.

For validation runs five and six, two high d

irability solutions were obtained using numerical
optimization. However, in this case both solutions are somewhat acceptable, since they both lie
near the interface between the two design space segments (which s at a location of 250 mm). It
would not necessarily be clear which solution was best if we were employing the method in
practice. The one with the slightly higher desirability could be chosen, or recognizing that they
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are both relevant predictions, the solutions could be averaged to obtain a single solution. In any

event, these results at least verify that solutions near the interface between design space segments

do not pose a serious problem when using the technique.

ive solution was a little more difficult.

For validation runs seven and eight, obtaining a defi
Numerical optimization retumed a solution with high desirability from cach design space
segment. Using the graphical approach was also a lttle ambiguous, but when the better graphical
solution was chosen (knowing in this case that there should only be one unique solution) we
were able to correctly eliminate the incorrect prediction. However, based on this difficulty, it is
not clear whether we could choose the correct solution for all potential defect conditions. The
difficulty experienced here with identifying certain defects will be discussed further in section

5.2.3 as we investigate which areas of the design space are more sensitive.
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Figure 5.16 - Validation Runs for FEA Two-Factor Rod

ns were by again plotting actual

We can gain a better perspective for how accurate the predi

defects and predicted defects together in the two dimensional design space, as shown in Figure



5.16. From the figure, we can see that more severe defets better predicted in general. This
relates to the discussions in Chapter 4 relating to sensitivity. Design space regions in which the
factor effects are stronger (or they have a high slope) are generally prone to better predictions
than regions with weak cffects (where the response surface is more horizontal). In this case,
smaller defects result in weaker effects, correspond to more horizontal regions of each response

surface, and thus are prone to higher error in their predictions.

‘The prediction process for the two factor rod experiment scenario is proving to generally be

more complex than the two factor beam scenario presented in section 5.1. The graphical

technique in particular provides a more interesting result. Shown in Figure 5.17 are the response
surfaces for the first design space segments of modes one through three (left o right top), and

their corresponding contour lines for the first validation run in Table 5-8 (left to right bottom).
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Figure 5,17 - Validation Run 1 Response Surfaces and Contour Lines for FEA 2-Factor Rod

If we use only the first two modes in our numerical optimization procedure for the first
validation run, we get two solutions, each having a high desirability. They occur at location =
173.55, diameter = 14.03 and at diameter location = 3633, diameter = 17.47. If we overlay the
contour lines of the first two modes for this particular validation run, we get the plot shown in

Figure 5.18. Those two solutions are clearly visible when using the graphical technique as well.
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Figure 5.18 - Two-Mode Graphical Solution for Validation Run 1 of FEA 2-Factor Rod
Whereas when we were examining the two-factor beam we only required the first two modes to
predict two defect parameters, it is obvious here that the extra mode is indeed required to isolate
the correct solution. Because of the nonlinearity of the models in the current case, we have
obtained multiple solutions when using the minimum required number of modes. If we now
overlay the contour line of the third mode, we get the plot shown in Figure 5.19. The correct

solution is now clearly visible using the graphical method. Employing a combination of

numerical optimization and the graphical approach shown here can ofien be uscful for

identifying and fully understanding predictions.

Figure 5.19 - Three-Mode Graphical Solution for Validation Run 1 of FEA 2-Factor Rod
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We have examined the behavior of the two factor rod, obtained a suitable design structure and
determined that the method of defect detection that was proposed in Chapter 4 can be

successfully applied to this particular scenario. Therefore, it seems feasible that we can now

pursue a set of laboratory experiments to continue exploring the two-factor rod scenario, and to

validate the proposed defct detection method on a physical system.

5.2.3 Experimental Representation of the Two-Factor Rod

Here we will attempt to produce two factor rod results similar to those found in section 5.2.2 by
performing a series of experiments on physical specimens. The overall length will be taken here
as 1000 mm. This length was chosen, instead of the S00mm length used in the finite element
model of section 5.2.2, since it produced frequencies that were more practical to quickly and
accurately measure using our modal testing equipment. The overall diameter of the specimens

was taken as 25.4 mm (

). instead of the 25 mm used in the finite element model, since that

standard size of aluminum rod was readily available. TL 6160 grade aluminum was chosen as the

material.

The previously used FEA models could be updated to match the material and dimensions of the

specimens used in the upcoming experimental trials. However, this is not strictly necessary since

we arc only interested in validating the defect detection method, and not the agreement between
actual values of the FEA and experimental runs. We expect that there would be some
disagreement in these actual values anyway due to non-ideal clamping conditions for the
physical experiments, mass loading from the accelerometer, variations in properties and
dimensions between specimens, temperature variations and many other factors. Repeating all
work done in section 5.2.2 using updated specimens properties simply to try and match actual
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values does not add a significant level of weight to the study and does not seem to be justified. If
we expected to obtain similar values in our experimental model development runs, we could

simply have skipped the model development process and used the FEA generated regression

models for prediction of experimental validation runs. This would likely result in disappointing

n models

results. In later sections, we will discuss the possibility of eventually scaling regre:

developed from FEA runs in order to allow them to be used for predicting defects in physical

specimens. However, for now we will develop application specific regression models in the

usual way using the indicated specimens.

Apart from the overall dimensions being slightly different, the design structure, modelling

procedure and prediction method are much the same as those applied in section 5.2.2. Therefore,

we will avoid many repetitive comments concerning method choices and direely discuss results.

shown in Figure 5.20.

First, note that the setup for this series of experiments i

Figure 5.20 - Experiment Setup for Two-Factor Rod

Using a similar forty-four point split design space, with each half containing a four by six mesh

of evenly spaced design points, we get the data shown in Table 5-9.
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“Table 59 - Factor Levels and Measured Data for the Experimental 2-Factor Rod
As shown in the Table 5-9 we only obtained enough data to model one half of the overall design
space. This was due to concerns over budget, time investment and material consumption.
However, one segment is enough to validate the method. This one segment had defects that
ranged from a location of 0 mm, t0 a location of 500 mm, from the clamped end (note again that

the overall length was 1000 mm in this case).

One notable sacrifice that was made in this ser

s of experiments, which would not be considered
o follow best design of experiments practices, is that all of the experiment runs that were used to
develop our half design space model were performed using only three specimens. The specimens
were simply designed in such a way that they could be notched at one location and then tested
twice, once while clamped from each end, to create two unique design points. The notches were

also cut progressively deeper afier cach pair of tests so that all defect diameters could be
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obtained from each specimen. This decision to perform the experiment in this way was again
made in light of budgetary and material consumption concerns. This method obviously raises
some concerns about obtaining appropriate random error, as well as other effects leeching into

our studied effects, especially for the case of defect diameter. However, attempts were made to

igate these concerns. The angle at which each specimen was clamped (about its centerline)
was purposefully chosen to be random for cach experiment run so that it reinstated some random
error. This variation in angle meant the modal frequencies were always measured in different
planes. This is not quite as good as using separate specimens for each run, in terms of accounting
for random variation between specimens, but it does help in capturing a similar type of variation.
In addition, each specimen had to be remounted before each run, which meant that clamping
foree and clamping location (along the specimen’s length) had some slight variation, and thus
resulted in random error as well. Since defects had o be cut progressively deeper, runs were
placed under some restriction and could not truly be random. However, random run order was

chosen with respect to defect location between each successive round of notching.

Accelerometers were always dismounted and remounted between tests and thus may have been
positioned slightly different each time. In addition, random error always results because the
hammer hits are manually imparted, and are therefore somewhat imperfect. It i the hope that all
these sources of random error outweigh the random error that was lost by not using separate
specimens for cach run. In the end, the accuracy of predictions should show whether or not the
models were obtained adequately. In any event, this set of experiments is simply meant to
validate the proposed method of detecting defcts. As long as we get somewhat decent models

ions from those models,

that agree with our finite element results, and can make adequate predi
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then that task will have been accomplished. A small amount of bias in our results in this case is

acceptable and worth the material savings.

Using the data obtained from the experiment runs we again obtain regression models in the usual
way. Response surface models for the first half of the design space are shown in Figure 521 for
each of the three modal frequencies measured in this set of experiments. These three models had
R? values that were again quite good at 0.9974, 0.9967 and 0.9781, for modes one, two and three
respectively. If we compare these response surfaces to the ones generated for the first half of the
design space using the finite element model of the two-factor rod (shown in Figure 5.17), we can
see that there is very good agreement in the behavior of both mediums. Note again, that the
overall dimensions of the specimens in the finite clement model were different from the
dimensions used in the physical experiments, and therefore the actual values shown in each
response surface will obviously be somewhat different. However, the agreement in behavior is

most important.



Figure 5.21 - Response Surfaces for the 15t 3 Frequencies of the Experimental 2-Factor Rod

1 we again perform validation runs using these models we get the results shown in Table 5-10. A

visual depiction of the results is also presented in Figure 5.22. We can see that for defects that

fall within the upper portion of the defect diameter range, no definitive prediction could be

obtained for defect parameters. Therefore, less

¢ defects here resulted in poor predictions.
The results are somewhat worse in this particular case for small defects; however, this result is
consistent with what was suggested in Chapter 4, and what was obtained in scction 5.2.2. The
poor predictions are again due to less severe defects being more prone to error because they

create weak factor effects,
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‘Table 5-10 - Validation Runs for Experimental Two-Factor Rod

Validation Runs for Experimental Two Factor Rod

Figure 5.22 - Validation Runs for Experimental Two-Factor Rod
‘While these results have been somewhat consistent with previous results obtained from the finite

element model, the fit of the actual regression models in ths case is a contributing factor towards

poor predictions. It should be noted that the determination of ‘no solution’ was arrived at using
the graphical approach for each of the three points above. The numerical optimization approach

did actually retum a solution in each of those cases. To understand how the graphical technique

loyed to reject th sl

ion, we can refer to Figure 5.23.
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Figure 523 - General Contour Plots for Experimental Two Factor Rod

Figure 5.23 shows general contour plots for the first three modal frequency models of the current

two-factor rod. As frequency rises for each, we initially see a smooth set of curves that have
generally the same shape and progress towards the upper part of the design space. However, for
each model we can sce that at a certain point those smooth curves become unstable and local
oscillation in the response surface occurs. This seems to occur between 168 Hz and 16.9 Hz for
the first frequency model, between 105 Hz and 106 Hz for the second frequency model and
between 299 Hz and 301 Hz for the third frequency model. This limit, at which the models

become unstable, occurs when the contour lines are no longer able to be expressed as a function
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with respect to defect location (a *function’ meaning that only one value of defect diameter is
possible for any given defect location). We know that the true behavior should be such that these
contour lines are always functions of defect location. This is because we know that for any given
Tocal defet, a reduction in defect diameter should always reduce frequency (as seen in Figure
5.15). If these contour lines can no longer be represented by a function, then for a defect at any
given location, there can be two or more distinct diameter reductions that produce the same
frequency. If the frequency were to always decrease, as expected for any defect diameter

reduction, then these multiple frequencies of this type would never exist.

If we plot one of our failed prediction points, we can see that each of the thre frequency models

produce contour lines that are above the stability limit which we have set. The resulting plot can
be found in Figure 5.24 for the first validation run. It is obvious that the contours are above their
suggested stability levels and there is no definite solution in this case. Compare this to the

successful predi

ion of a two factor rod defect in Figure 5.19 and we can clearly see the

difference.
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Figure 524 - Failed Graphical Approach for Validation Run 1 of the Two-Factor Rod
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The regression models for each of the three modal frequencies are generally more stable for
more severe defects. More severe in this case refers to a greater reduction in diameter. However,

each of the three modal frequencics are stable in a slightly different portion of the design space.

Variation in stability between the models is especially sensitive to defet location. Therefore,
given a certain set of measured frequencies, we may find that some models are more stable than

others. The nature of the defect in a test specimen will dictate which models are most stable.

Hence, a guideline can be set that the two most stable models should generally be chosen when

making predictions for this scenario. In this case, if the third mode’s model (which is normally
reserved for distinguishing between multiple solutions) is nearly stable, then we can at least use
it to speculate about which solution is correct, given multiple solutions that were found using the
first two modes. By simply speculating about what the shape of this extra contour line would
Took like at the given measured frequency, if the model were still stable and continued to hold
the same general shape as lower frequency contour lines, then we may in some cases be able to
use it to isolate the correct solution. This will depend upon the degree of stability of that extra
model. As the frequencies get higher, this method may no longer be appropriate, and the true

solution may become progressively more ambiguous.

We know that different regions of the design space are more stable than others for each model
Therefore, it would be of interest to find the limits of stability of each model. To take that idea

one step further, we can find the limits of stability of each model and plot them within our design

space in order to get a better idea about which regions will produce better prediction results.
Figure 5.25 has the approximate stability limits of each model plotted within the design space. It

also has the number of stable models that should result within each region of the design space.
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Figure 5.25 gives us some idea about how accurate a prediction should be for each region of the

design space. For example, if we obiain three stable models and make a prediction within a white
region of the design space we would likely obtain a much more accurate prediction than if we
obtained one stable model and had to make a prediction within one of the regions corresponding
10 “one stable model’, while using two slightly unstable models. This plot does not indicate that
we cannot make predictions outside of the regions labeled to result in three stable models. There

is generally a continuous degradation of stability of each model towards the upper part of the

space and the limits here merely represent where the original shapes of the contours are no

longer preserved. Within these limits the models are definitely stll stable, and likely to result in

ood predictions. However, if we have a defect that is slightly outside the region corresponding

10 one of the stability limits, then the resulting contour line would likely still be fairly stable. It

may continue to somevwhat resemble the shape of more stable contour lines, and may still help in

making decent predictions. This plot merely suggests regions where the best predictions will

likely result from cach model. When using the graphical approach, the most stable modes should
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generally be most heavily weighted in the prediction process. Therefore, the modes that should
be most heavily weighted will depend on the nature of the defect, and will be determined on a
case by case basis. Note the three failed predictions from Table 5-10 and Figure 5.22 occurred
for defects that were within, or at least very near to, the region of Figure 5.25 that corresponds to
0 stable modes'. Also, this region of general instability is likely due to weak factor effects
within the region, which result in slight oscillations in the goodness of fit of the models. In any
case, when the corret prediction is not obvious, the experience of the user will likely dictate

how graphical results are interpreted.

‘The experimental and finite element results presented in this section indicate that the defect
detection method proposed in Chapter 4 is promising for applications under somewhat controlled
conditions. Further work could likely be directed towards streamlining the regression model
development process. The effects involved are fairly complex, and would definitely not be
captured well using simple factorial or central composite design structures. For now, setting
specific modeling concens aside, we have at least accomplished our goal of validating the
method. Next we will begin to investigate applying the method to predict more than two defect

parameters.

5.3 The Three-Factor Rod

In this section, we will investigate how complexity increases when we apply the proposed defect
detection method to predicting more than two defect parameters. The three-factor rod will extend
upon the two-factor rod and include length of defect as its third factor. It will allow us to
investigate the feasibility of using this method to predict three factors using three or more

‘measured modal frequencies.
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5.3.1 The Three-Factor Rod Scenario

A schematic and the appropriate parameters for the ‘three factor rod” are presented in Figure
5.26. It essentially has the same geometry as the finite element representation of the two-factor
rod in section 5.2.2. The only obvious difference is the addition of ‘length of defect’ as a third

factor.
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5.3.2 Finite Element Representation of the Three-Factor Rod

In this scenario, we will use a finite element model of the three-factor rod to produce data, which
can then be used to develop regression models in the usual way. We will then predict defect

n models. This will be done in order to

parameters for extra validation runs using those regres
Verify that the regression models accurately capture the behaviour of the finite element model.
By doing so we will also determine whether the proposed defect detection method can actually

be employed to definitively solve for three defect parameters simultaneously.

‘Table 5-11 - Summary of Factor Ranges and Design Points for FEA 3-Factor Rod
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Here we will consider the overall set of factor ranges and design points shown in Table 5-11. The
number of design points shown here for each factor is slightly more than the minimum number
that we would expeet to be required according to section 4.6.2. However, in light of the concems
with model fit and instability of certain design space regions that was highlighted in section
5.2.3, we will fit the regression models in this section to a set of design points that we are certain
will be adequate for capturing the specimen’s behaviour. By doing this we can commit to
validating the essence of the defect detection method for the case when three factors are to be
predicted simultancously. Thus, the method can be validated without concemning ourselves with
the details of choosing an appropriate design structure, consisting of a minimum set of design
points. In addition, since we are attempting to predict three defect parameters here we need to
develop models for the first four modes, so that we have one extra model to be used for
eliminating multiple solutions. Since higher modes require a higher model order and a larger
number of design points, the number that we have chosen in Table 5-11 is essentially only
slightly higher than what was suggested as a minimum set. In addition, we are somewhat unsure
at this point about how defect length will affect modal frequencies, and thus including a few
extra design points in our models is good practice. One the behaviour of this scenario is better
understood, efforts can be taken to reduce the design points used. We are using an automated
finite element model to produce the data that will be used for developing regression models as
well, and therefore adding extra design points is not of great concem. However, if we were
planning to subsequently investigate this scenario using a set of laboratory tests on physical
specimens, as we did for the two-factor rod, then investigating a more efficient design structure
would be of higher importance. Again, further work is required for developing more efficient

design structures that are well suited to fitting the complex regression models involved here.
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Hence, conceming ourselves only with examining the nature of the behaviour of the defect

detection method in this scenario will suffice for the current study.

In this case, we again need to split our design space according to the method presented in scction
4.6.3, due to software restrictions on model order. We already employed this splitting procedure

when investigating the two-factor rod scenario so we will not discuss the process in detain here.

However, in this case we have two factors that will likely require splitt

g We will assume that

defect length interacts with modal frequency according to the shape of each mode’s curvature,
and the relativity of the defect to areas of low curvature, in a manner similar to the way defect

location did for the two-factor beam. Therefore, we will need to split both defect location and

defect length in this case. In addition, we are trying to predict three defect parameters and so,
adhering to the suggestions of Chapter 4, we assume that we need to develop models for four
modal frequencies. Sinee the fourth mode will require a higher model order, we will split defect
location into three segments. Since the range of defect length does not span the entire specimen,
we will split that factor into two segments. Defect diameter has been shown to be adequately
modeled using one segment in the two-factor rod scenario; therefore, we will not split the design

space in terms of defect diameter here. We end up with a three dimensional, six-segment design

space.

Since obtaining data and modelling six separate design space segments would be time
consuming and tedious, we will only model and investigate one of the six segments in this study.
Investigating one segment should be adequate since we have already demonstrated that the

splitting process works well. This was done when we considered the two-factor rod scenario

ier. The segment we will investigate ranges from § mm to 180 mm in terms of defect location
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and between | mm and 100 mm in terms of defect length. In the usual manner, we can now
proceed to run the finite element simulations necessary for model development. Due to the large
number of design points involved we will not reproduce all of the modal frequency data from the
finite element runs here. Instead, we will only reproduce the data for our single design space
segment of interest. The amount of modal frequency data required to model this single design

space segment i still extensive on its own, and can therefore be found in Appendix B along with

the individual factor levels used for cach design point. Once we obtain the data, and develop our
single segment regression models for each of the first four transverse modal frequencies, we can

proceed to validate the models by using them for prediction.

Tocaton | Dlameter | Length
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‘Table 5-12 - FEA Measurements for 3-Factor Rod Validation Runs

‘The modal frequency data for a number of validation runs is presented in Table 5-12. Note that

the first four validation runs were actually design points used in model development. Attempting

to predict design points is a good first step, since it will allow us to employ the prediction
process for validation runs where we expect to obtain somewhat decent predictions. As shown in
the table of validation runs, we will perform predictions for a number defects removed from our

original set of design points as well.




It should be noted that for some predictions of three-factor rod parameters, we may be required
to transform our set of predicted defect parameters back to an equivalent set that does not result
in defects extending outside of the geometric limits of the specimen. This technique, as well as.
the motivation behind it, was described in detail in section 4.5.2. In general, without restricting
our models 1o a certain irregularly shaped design space, we may get defects that can be
accurately characterized by multiple sets of defect parameters. Only one solution, out of the
maltiple solution set, is such that the defect fits within the specimen’s geometry, and thus we
should always transform back to that solution. For now we will simply note that the
transformation is straightforward, and that we did have to perform the transformation for

validation run number four in our current set of validation runs.

During the prediction process here, we simply wished to determine whether the single design
space scgment that we considered would perform as it was supposed to. Proper performance
would mean that we obtain accurate predictions when a defect is actually within the factor limits
of the segment. It also means that when a defect is not actually within (o at least not close to)
the factor limits of the design space segment, then no solution is retuned. Thus, if this design

space segment behaves in the proper way on its own, then i

s easy

imagine that we would get
proper predictions over the entire design space using a complete set of design space segments.
They would simply have to be considered simultancously as was done in section 5.2 for the two-

factor rod.

Keeping the considerations that were discussed above in mind, we carry out predictions by

employing numerical optimization. Numerical optimization was done by considering all four of
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our modal frequencies in each case. For our series of validation runs, we get the prediction

results shown in Table 5-13.

e - T

‘Table 5-13 - Defect Predictions for the 3-Factor Rod Validation Runs

We can see that the pred;

jons were quite good and the model behaved exactly as it should have
for each validation run. The model retumed an accurate prediction when the defect was within its
factor range limits and it returned no solution when the defect was outside of those limits. Since
the design space is three-dimensional in this case, it would be difficult to produce a visual
comparison of the actual and predicted defects within the design space, as we did for the

previ

us two-dimensional problems. Therefore in order to gain a litle further insight into how
accurate our predictions were, we can determine the percentage error of each defect parameter
for each prediction. Percentage error here is considered as the difference between the actual and
predicted values divided by the range of the entire design space for the particular defect
parameter in question. These calculated errors are presented in Table 5-14. The errors scem

reasonably low for most predicted parameters.
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‘Table 5-14 - Error Involved in Predicting 3-Factor Rod Defects

By spending time to properly weight some modes more than others, and check each prediction
using the graphical method, it may be possible to further refine these predictions. However, for
now we will consider them to be adequate validation of the method, and we can say that it

performs reasonably well when predicting three factors. However, the extra complexity and

design points needed to develop regression models do begin to make it somewhat impractical.

Before concluding our validation process, we will look at how the graphical approach works for
these three-parameter predictions. Figure 5.27 shows the solution for validation run number

seven. We can see that when we use contour lines from one two or three models there is still

some ambiguity in the solution. When using three contour lines, they still intersect at two

locations. The fourth contour line is indeed required to isolate the correct solution, and when
added the correct solution becomes obvious. This figure obviously shows only a cross section of
our three dimensional design space. The value of defect length in this case is the value returned

in the numerical optimization solution for run number seven.
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The graphical solution in Figure 5.27 was produced for visualization purposes afier we already
knew our solution based on numerical optimization. Therefore, we knew the value at which

defect length should be set in order to see our sol

. However, if we wished to employ the
graphical approach to obtain a prediction without any prior knowledge of the solution, then we
could still produce two-dimensional cross sections of our design space but sweep through the
third dimension until we saw a solution emerge. This process is depicted in Figure .28 for

validation run seven.
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As we produce various contour plots using a gradually increasing defect length, we can sce that a
solution takes shape at the appropriate defect length. When we find the defect length that
produces a contour plot with a solution, we simply read the defect diameter and defect location

from that two-dimensional plot. In our case, producing these plots was somewhat time-
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consuming since contour lines were manually superimposed for each plot. However, this process

could be casily automated and incorporated into future commercial design of experiments
software packages. A superimposed display could be automatically produced for a given set of
response measurements and then the user could scroll through a continuous series of plots, which

would essentially animate how the contour lines change as the third response changes.

Since this problem is essentially four dimensional for each individual contour line (one
frequency response and defect three factors), the solution becomes somewhat more difficult to
visualize. The graphical approach also becomes somewhat more complicated. However, as we

have shown, it s still possible to employ a graphical approach when predicting three factors and

the resulting predictions can generally be good.

In this chapter, we have proven that the defect detection approach suggested in Chapter 4 can be
successfully applied in a broad range of scenarios. Further work is still required to expand the
method and allow it to handle multiple defects. Further validation also has to be done to see
whether three or more factors can accurately be predicted in physical specimens. In addition,
refining the design structure is important for reducing the number of design points required in
developing regression models. It is also essential for improving the fit of those models to the
behaviour of the physical systems that they represent. Nonetheless, the results obtained so far are
in favour of using regression models of modal frequency as a basis for detecting damage in

structures though the use of modal testing. In the next chapter, we will depart from this method

and look at a more practical application of modal testing. We will begin to investigate whether it
can be used as a successful non-destructive technique for assessing the condition of full-scale

wooden utility poles.



Chapter 6
Full-Scale Utility Pole Testing

As a step aside from the purely academic problems that were addressed in Chapter 4 and Chapter
5., we will now undergo a preliminary investigation to determine whether modal impact testing is

feasible for assessing the condition of in-service wooden utility poles.

the form

As was alluded to earlier, wooden poles do not generally contain simple ideal defects
of notches and holes. The condition of a utility pole can be such that various forms of
deterioration, including rot, ant and woodpecker damage, can be randomly dispersed throughout
the specimen. Cracks, knots and grain defects are also likely to be present in most specimens.
“This, combined with the orthotropic behaviour of wood, makes for a specimen that is very
difficult to assess structurally. In this case, localized defects cannot be considered on an
individual basis and material condition measured at a single location is not sufficient to make a
judgement call on structural integrity. Some method that considers the specimen as a continuum

must be pursued.

In this chapter, we will discuss the difficulties involved with applying the method suggested in
Chapter 4 and Chapter 5 to full scale pole testing. We will also focus on a separate technique that
uses measured modal damping ratios for assessing the maximum stress that a pole can withstand

before failure occurs. The difference between this concept and determining a pole’s ultimate
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material strength will be clarified as well. Note that Appendix C and Appendix D contain
supplementary data relevant to this chapter. Appendix C contains measurements from the full-
scale pole tests. Appendix D contains plots and other material related to the use of damping ratio

for assessing the condition of poles.

6.1 Static Testing of Full Scale Poles

Since we eventually plan to relate modal parameters to the condition of full-scale poles, a series
of destructive laboratory tests were performed on fourteen full-scale poles in order o determine
their material properties. Three of the fourteen poles were five years old, but never used in
service (labelled BF1, BF2 and BF3). The others were removed from service after an appropriate
service lfe (which was not necessarily consistent between specimens). As much as possible
ASTM standards were followed during the series of static tests, as well as for calculation of
material properties from the test data (ASTM, 1999). The equipment used in the static tests is

presented in Table 6-1 and a test in progress is shown in Figure 6.1.
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‘Table 6-1 - Equipment used in Static Tests of Full Scale Poles
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Figure 6.1 - Full Scale Utility Pole Test Bed (Testing Specimen BE3)

6.1.1 Static Test Procedure and Results

Each destructive test was performed by first weighing the specimen using a load cell attached to
the laboratory’s overhead crane, so that density could later be determined. The specimen was
then clamped at an appropriate ground line position near the butt end. The location of ground
line for each specimen was measured from the butt end as ten percent of the specimens overall

length plus two feet. This is typical of an in-service pole. The clamp was secured to the lab’s

concrete floor.

Next, appropriate non-destructive tests (NDT) were performed on the pole including modal
impact testing (which will be discussed further in section 6.2), ultrasonic testing (which will be

discussed in section 6.2.4) and resistograph drill testing (performed using a RESIF300-S

mferences (taken at five

resistograph manufactured by IML). Geometry such as length and

foot intervals) were also measured and recorded.
Once all non-destructive tests were complete, the static test was performed by applying a vertical

Toad until failure occurred. The load was applied at a position of two feet from each poles tip
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using a hydraulic winch mounted above the point of load. A load cell attached in-line with the
wineh measured applied load. The hydraulic winch was positioned on a carriage which was held

in place using the laboratory’s overhead crane. The winch was mounted on a trolley, and was

fiee to move in the longitudinal direction (along the poles length) as the pole deflected (as shown

in Figure 6.2). This lon;

udinal displacement was measured during each test, and was taken into

account for stress calculations. Controlled flow in the winch's hydraulic lines ensured that a

proper strain rate was maintained during tests. Vertical deflection of the pole was also measured
at four locations (at the point of load as well as twelve, twenty-four and thirty-six feet from the
ground line) as each pole was stressed. LVDT’s were positioned on either side of the clamp and
measured the angle of flexure in the clamp. This flexure was also taken into consideration when
performing calculations. All measurements were sampled at a rate of two Hertz and recorded to a

computer file.

Figure 6.2 - Winch and Trolley System used to Apply Loa

Appropriate calculations were later performed for each pole in order to determine clastic

modulus, density, maximum stress at the break location, maximum stress at the ground line,




yield stress at the break location and yield stress at the ground line. A summary of the results for

all fourteen poles is presented in Table 6-
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‘Table 6-2 - Static Test Results for Full Seale Poles
As was mentioned in the literature review of Chapter 2, strength has been found to correlate to

some degree with elastic modulus

other applications. In order to determine if this is the case
for our full scale poles as well, we can plot maximum ground line stress against elastic modulus.
“This is shown in Figure 6.3. Note that we do not know the ultimate material strength at ground
line, since the poles did not always fail at the ground line. This point will be emphasized in

further sections.
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Figure 6.3 - Max. GL Stress vs. Elastic Modulus for Full Scale Poles
The left plot in the figure shows that when considering all specimens there is a significant
correlation of R?=0.797. We can also see in the right plot that the goodness of fit improves to
RP=0.8812 when only ‘0ld’ southem yellow pine specimens are considered in the regression
process. An exponential regression model was employed in each case because it yielded slightly
better results than other common models. The westem red cedar specimens, as well as the ‘new’
southern yellow pine specimens were also plotted on the right for comparative purposes. We can
see that the new pine specimens fell significantly above the trend line of old specimens. The old
cedar specimens fell reasonably close to the trend line. Some upcoming sections will focus
heavily on creating models for only the pine specimens (new and old together). Grouping all pine
specimens together is done because of the limited amount of data that has been collected in the
current study. However, the results shown here for maximum stress vs. elastic modulus indicate
that there are distinct differences in the behavior of certain parameters between age groups, and

age should likely be taken into consideration in future work if sufficient data is available.

127




.2 Some Sources of Error in the Static Tests

Some sources of error were noticed in this series of tests and should be attended to for future
tests. First, the trolley was noticed to stick and move in sudden incremental steps throughout
each test. The rollers or tracks may require modification so that the trolley rolls more smoothly.
‘The hydraulic lines were oversized for the application as well, and added unnecessary weight.
“The lines had to be pulled along as the trolley moved, which likely contributed to some of the
sticking. In addition, the trolley did not start from a position that was perfectly level. This made
it difficult to correctly position the trolley before each test. It also affected ‘trolley displacement
vs. point of load” curves. Three different ‘trolley vs. POL’ deflection curves are shown in Figure
6.4. The first curve shows an instance where the trolley was positioned well ahead of the POL,
resulting in the trolley not moving until a significant POL deflection was realized. The second

curve depicts the actual anticipated behavior, where the trolley moves in a smooth curve, which

is essentially tangential to the x-axis. It should be tangential if the trolley starts applying a
vertical load near the tip of a horizontal pole, so that the point of load initially deflects directly
upwards and then progressively more towards the butt end of the pole. The third curve shows an
instance when the trolley likely started behind the POL. The trolley initially moves quickly to
catch up with the POL once the load is applied and the winch line is drawn tight. Discontinuities
in the curves also show that the trolleys motion was abrupt. A curve fit was used in most cases to
estimate trolley deflection due to the discontinuous nature of the curves. These curves were used
to estimate the trolley displacement at yield and failure deflections, so that the longitudinal

displacement of the point of load could be taken into account during stress calculations.
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Therefore, error in estimating trolley displacement likely resulted in some error in our measured

properties.
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Figure 6.4 - Trolley vs. POL Displacement Curves Depicting Error in Results
Other error sources could include the LVDT's, which were used to measure clamp flexure, being
initially positioned on the pole at some distance away from the clamp. Since the section of pole
between the LVDT and the clamp on the poles cantilever side was under stress during the static
tests, there was likely some pole deflection in this section that showed up as clamp deflection.
Error in the measurement of clamp deflection may have also introduced error in the calculated
properties. This was noticed to be the case for at least one pole that failed at the ground line.
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Significant deflection in the section of pole between the LVDT and the clamp was witnessed
after the pole began to yield. Bulging of surface fibers in this region during yiclding added to the
error from pure pole deflection. The cantilever side LVDT was positioned as close as possible to

the clamp for subsequent pole tests.

One other notable source of error is that poles were not loaded from a purely unstressed
condition. Since they were all cantilevered, they were subjected to some initial loading under
their own weight. The weight loading applied to each pole would have affected the material
property calculations due to initial displacement errors from sagging, as well as applied load
errors as poles had to be lified up to their unstressed position before *positive” stress started to be:
applied. In addition, poles were of varying density and geometry (including taper) which meant
that each pole was affected differently due to mass loading. Attempts to correct for this error, by
determining the load and displacement required to align the tip directly with the butt at the same
height above the floor), were abandoned since misalignments due to irregularities in the shape of

the poles often outweighed by far mis

lignments due to mass loading.

6.2 Modal Impact Testing of Full Scale Poles

The procedure for the modal impact tests of full-scale poles followed the general guidelines
presented in section 3.3. For the tests on full-scale poles, bandwidth was always taken so that all
frequencies of interest occurred within the first cighty percent in order to mitigate errors due to
bandwidth filtering. This resulted in a chosen bandwidth of either 64 or 80 Hz, depending on the
specimen. 4096 spectral lines were taken within the band, resulting in a resolution of at least
001953 Hz for each specimen, sometimes better depending on the chosen bandwidth.

Accelerometers were positioned in the vertical plane (the same plane as loading during the static
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tests) at twelve and thirty feet. Another accelerometer was positioned at the position of impact
for each pole, which was always near the tip. Impacts were performed near the tip in order to
avoid modal nodes (for all reasonably low order modes), and to adequately excite the pole with

modest impact forces. A hammer tip with appropriately low stiffness was chosen so that the

frequency band of interest could be excited reasonably well. Six impacts were performed at a
single impact location in each test. The six runs were then averaged, and software determined

modal parameters in cach case.

Impacts near the tip would not be feasible for upright, in-service poles. Therefore, to determine

the fe: y of performing the impacts within reach from the ground line in the field, two

specimens were tested with impacts at five, seven, ten and fourteen feet. Indeed, modal data was
adequately obtained in cach case. The first mode, however, was somewhat more difficult to
excite with impacts closer to the ground line. Higher impact forces were required when testing

near the ground line as well, although the impacts were still physically manageable.

For each pole, attempts were made to measure frequency and damping for six modes. The tests
were only performed once in most cases and therefore modal parameters for each of the six
modes were not definitively obtained for cach specimen. Results from modal impact tests on the

full-scale poles are summarized in Table 6-3.
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Table 6-3 - Modal Impact Test Results
6.1 Modal Frequency as an Indicator of Pole Condition

Chapter 4 and Chapter 5 dealt exclusively with modal frequency, and used the combined effect

of multiple modal frequencies to define the location and extent of individual defects. The method
presented in those chapters, as least at its current stage of development and with the limited
amount of data available in the current study, is not suited to defining the condition of wooden
utility poles. As previously mentioned, damage in a utility pole is not likely to be localized, and
is not likely to be characterized by some modest number of numeric factors, such as depth and
width. It is more likely that some nonlinear distribution of deterioration exists throughout the
pole. This topic will be discussed further towards the end of the chapter. In addition, material
properties and geometry, which also have an effect on frequency, are likely to be unevenly
distributed throughout the pole. Chapter 5 showed that the regression model method of using

frequency was well suited to specimens with known and consistent properties. However, if

properties change throughout the specimen, then the effect of those changes on frequency must

be included in the regression models somehow. That would make the regression models very
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complex, and the amount of data required 1o characterize all distributed factors would be

prohibitive. With the already limited dataset for full scale poles in this study, developing
regression models to characterize all the necessary factors that affect frequency is simply not an

option.

‘The predicted modal frequency, based on finite clement analysis, is presented in Appendix C
along with the experimentally measured modal frequency for each pole. The finite element
frequencies are found using models with geometry based on the measured lengths and
circumferences of individual poles. They are found in two ways for each specimen, first using
the measured density and elastic modulus of each pole, found from the laboratory static test
‘measurements, and second using published material properties for the appropriate wood species.

‘These frequencies are presented in a table similar to Table 6-4 for each pole.
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‘Table 6-4 - Modal Test Data for 'Ist Old Pole’

By dete

ing the ratio of measured frequency to frequency found using finite element analysis
with published properties, we essentially arrive at a parameter that is normalized with respeet to
the varying geometry of each pole. If we were attempting to develop regression models to

express

ratio as a function of factors that affect frequency, we could possibly neglect

‘geometry as a significant factor. Essentially, geometry should be accounted for by deter
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the ratio. This has not been confirmed yet and is only a suggestion. If regression models of
frequency are to be obtained for future pole assessment, then this type of normalization may be
needed in order 1o create decent models from limited data. Other factors would definitely have to
be considered as well, such as density (which may possibly be represented by moisture content).
Even then, characterizing the geometry of all the defects present in a pole is not likely to be

possible, and models that define strength, instead of particular defects, would likely have to be

pursued. By normalizing frequency in this way, and not considering any other potentially
important factors, we see that some level of correlation does seem to emerge. The measured first
modal frequency essentially has no correlation with either maximum break location stress or
maximum ground line stress. However, when they are normalized with FEA predictions of first

natural frequency usin

idual pole geometries and published properties, modest correlations
take shape. However, the correlations are in fact quite modest, at 0.305 and 0.243 respectively.
‘The slope of the linear model is also very shallow. This level of correlation is obviously not
sufficient for strength predictions, and further work has to be done. Although, it is at least holds

some promise for the eventual use of frequency in assessing the condition of full scale poles.



Figure 6.5 - Normalizing Modal Frequency using FEA Predictions

Even though measured modal frequencies will not be used here to develop models for pred

the strength of full scale poles, it can at least validate the results of our static tests to some
degree. Referring back to Table 6-4, we can see that each measured modal frequency is much
closer o its comesponding FEA predicted frequency when measured properties are used, than
when published properties are used. This is consistently true for each pole tested. Note again that
the measured properties were obtained from our static test data. This leads us t0 belicve that the
true material properties of each specimen, which affected modal frequencies, are much closer to
our measured properties than they are to published average values. This provides one more level
of certainty that our static tests were performed adequately. There are obviously some errors that
will account for the difference between the measured frequency and the FEA predicted
frequency using measured properties. These include, but are not limited to, the FEA model
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having an ideal fixed end condition, whereas the physical poles were secured by a clamp with
some compliance. Also, the material properties of the physical poles were probably not evenly
distributed throughout the pole, whereas properties were evenly distributed in the FEA models.
For example, we measured an average density based on the poles geometry and mass. However,
density is likely to change throughout the pole. In fact, moisture content, which is known to
affect density, was noticed to be much higher near the center of the poles cross section compared

to its surface. Other such variations in material properties are likely in the physical specimens.

6.2 Modal Damping Ratio as an Indicator of Pole Condition

Throughout most of the current study, modal frequency has been the parameter of primary
concern. It was the only factor considered in the defect detection method presented in Chapter 4
and Chapter 5, partly because of the ease of determining undamped natural frequencies for ideal

specimens using theory and finite clement analysis. This allowed for simulation of a number of

scenarios before laboratory experiments were undertaken. However, it was discussed in the

previous section that frequency is not suited to assessing full-scale poles at this point. Therefore,

‘we will shift our focus towards the use of modal damy

e

Determining the modal behaviour of a specimen with a known level of damping is

straightforward. If that were of interest, it would have been covered along with the other
theoretical background in Chapter 3. However, attempting to deduce through theoretical means

how modal damping changes with the introduction of defects is a more complex matter. Distinct

‘geometric defects in an otherwise clear specimen (such as a lab specimen with an artificially
machined defect) will possibly affect damping much differently than a specimen with a localized

deterioration of material. With material that is deteriorating progressively, such as wood. there
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may be layers separated (or splintered) from the surface that are unstable during modal
excitation. These fringe pieces may *flap’ around (for lack of a better word) as the specimen
vibrates, continuously impacting the surface at various locations and dissipating energy; thus
creating a higher level of damping in the specimen. For a wooden pole in transverse vibration,
cracks or even separation along the rings of grain may allow for layers of material to rub against
each other as well. Many sources of damping such as these could potentially be distributed
throughout the specimen with varying degrees of severity. This type of deterioration is complex
and essentially impossible to introduce in a controlled manner. It is also prohibitive with respect
to simulation or traditional design of experiment techniques that require controlling parameters.
As a result, the exclusive use of experimental testing of actual deteriorated specimens, with
random levels of naturally developed deterioration, seems like the best approach for examining

the way damping changes with damage in wooden poles.

Note that Appendix D contains supplementary material relating to this section including extra

plots and figures that are not includes here.

6.2.1 Modifying the Regression Model Method to Accept Damping as its
Response

Some of the various means by which damping could be developed in wooden poles were

‘mentioned above. It stands to reason, by comparison to the behaviour of modal frequency, that if

any of these sources of damping were located near a location of low curvature for a mode shape,

then their effect on the modal damping ratio of that particular mode should be di

ed. For

example, if a longitudinal crack is located near a location of low curvature then there is little
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oscillation of strain t0 allow for surfaces within the crack to rub together. This type of behaviour

(varying degree of effect depending on the proximity of damage to locations of low curvature)

was the foundation for proposing the use of frequency as a damage identifier in previous
chapters. It allowed for regression models of individual modal frequencies to be independent
with respect to how they were affected by multiple defect parameters (such as defect size and
Tocation). That in tum allowed multiple modal frequencies to be used simultancously for
determining multiple defect parameters. Since it is logical that damping sources should behave in
a similar manner, it may be possible for the method to be modified so that modal damping,

instead of frequency, is used to indentify localized damage. However, applying this approach in

practice would be a difficult task to accomplish.

In order to apply the approach suggested above, the nature of defect would have to be such that
localized deterioration was naturally preferred over distributed deterioration. In some scenarios
this could potentially occur. For example, if wooden poles were located in wet marshy soil one
can imagine local ot being more common near the ground line. Other arcas of poles, such as
near holes that were drilled to mount cross members or hardware, could also be prone to
Tocalized rot due to the exposure of heartwood with potentially lower levels of preservative. Note
that failure did actually occur at a drilled hole for at least one specimen in the current study.
However, it is unclear whether this was due to local deterioration near the hole, the hole itself
creating a stress concentration or simply due to the hole’s effect on reducing the eross sectional

second moment of area. Additional applications where localized deterioration may be favoured

could exist in other ficlds as well, such as when dissimilar alloys are coupled resulting in

localized galvanic corrosion. This type of approach could be pursued here if enough specimens



with localized damage were analyzed, allowing regression models to be fit to an appropriately
high order. However, as was the case with modal frequency, the low number of specimens
involved in the current series of full-scale pole tests is very likely to be inadequate for
developing regression models that capture the effect of every important factor. In addition,

di

uted deterioration and distributed properties (such as density, grain direction, diameter
etc.) actually seem far more common than local deterioration for full-scale poles. These issues
essentially render the regression model method unsuitable for the current application, at least at
its current level of development. Therefore, the described method of adapting the regression

model method to aceept damping as it response, although noteworthy, will not be pursued here.
6.2.2 Damping Ratio as an Indicator of Maximum Fiber Stress at Break
Location

Despite the low number of specimens, and the difficultics involved in fitting regression models,

we can try an alternate approach here for the use of damping as an identifier of the condition of

-scale poles. Since for each pole deterioration is observed to be distributed over the entire

s likely that each mode’s damping ratio is somewhat affected because of the
likelihood that at least some deterioration occurs in areas of high curvature for each mode. In

addition, deterioration should be proportional to reduction in maximum allowable fiber stress by

6.2.2.1 The Use of Actual Measured Modal Damping Ratio

We can determine whether the above statements are valid simply by plotting modal damping

vs. fiber stress for each mode and observing whether a correlation exists. Note we are
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assuming here that maximu siress oceurs at the surface furthest away from the neutral axis of
the cross section for any given bending load. This may not strictly be true if material properties
vary across the cross section. In general, properties probably would not be constant across any

given cross section of a wooden pole. Heartwood and sapwood would vary in their prope

Preservative level gradients, that favour wood towards the surface, would also leave some arcas

more prone to deterioration than other arcas. Nonetheless, for simplification purposes, we will
assume that deterioration varies only along the poles length, and not across any given cross

section.

For wooden poles in the current study there does indeed seem to be a distinct correlation between
damping ratio and strength. In Figure 6.6 we can sce the first six modal damping ratios (data

t the maximu fiber stress realized at the break location for cach

from Table 6-3) plotted ag:

is also fit to the data for each mode. Note

pole (date from Table 6-2). A second order polynomi
that in the plots, SYP refers to southern yellow pine and WRC refers to wester red cedar. The
number of cedar poles included in this study was not adequate to allow for modelling each
species separately. They were included in the plots for comparison with the behaviour of pine.
However, they were not included in the data used to determine the goodness of fit. Also, note

that data for the fifth and/or sixth modes was not obtained for some specimens.
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Figure 6.6 - Modal Damping Ratios vs. Maxinum Break Location Stress
By inspecting Figure 6.6, we can see that the damping ratio is generally higher for poles with a
lower maximum fiber stress at the location of failure. Using the second order polynomial fit,
damping ratio also shows correlation, to some degree, with maximum fiber stress at the break

location for each of the first six modes. However, the goodness of fit, represented here by the R*
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value, has a high degree of variability between modes. The R value does not seem to favour

higher or lower modes, and because of the high variability, we may not be convinced that the

relative goodness of fit for each individual mode would be retained if we were to perform the

same test on a separate set of poles.

At this point, there no clear explanation for the var

y in goodness of fit between modes.
Perhaps this variability is somehow related to the natural frequency of the corresponding modes,
more so than the damping itself. The clamp is known to have some compliance, and perhaps a
mode exists where the un-deflected pole rotates via flexure in the clamp. The frequency of this
type of mode, if present, would depend on the stiffiess of the clamp. However, it would also
depend upon the location of the center of mass of the pole, which is actually somewhat variable
between poles. This can be seen in Appendix C along with the rest of the measured full-scale
pole data. If the frequency of this mode is near the frequency of a particular transverse mode,
then interaction between them could affect how easily the transverse modes are excited and
measured in practice. These issues could create higher variability in the accuracy of damping
measurements for the particular modes affected. Torsion modes, or transverse modes in other

planes, with frequency near the frequency of transverse modes we wish to measure, could also

milar manner. Note that this is

cause interference and affect damping measurements in a
merely speculation at this point. Perhaps future work will shed light on the nature of the variation

in goodness of fit between modes.

6.2.2.2 The Use of Average Modal Damping Ratios

There was shown to be a significant correlation between modal damping ratio and maximum
stress at the location of failure for each the first six modes. However, as mentioned carlier the
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level of correlation varied between modes. Here we will investigate whether averaging the modal

damping ratio for multiple modes is effective in diluting some of this variability.

As mentioned earlir, each specimen may contain a variable amount of deterioration, which is
distributed along its length, and therefore each mode may be affected in a different manner
depending on the proximity of that deterioration to areas of low curvature. By averaging the
damping ratios of multiple modes, we can attempt to ensure that the deterioration condition of

each pole is represented in a consistent way. Damping should be affected, for at least some of the

modes considered, regardless of the specific distribution of deteriorat

n. The average damping

©

across multiple modes is summarized in Table 6-5. These averages start with lower modes
(initially only the first two) and progressively consider an increasing number of modes until all

six measured modes are averaged. The averages then progressively consider a fewer number of

modes by eliminating lower modes from the process. The initial set of averages that consider an
increasing number of modes (up to modes one through four) is plotted against the maximum
stress at each poles break location in Figure 6.7. Again, data for stress comes from Table 6-2,
and a second order polynomial is fit to the data in each case. The other averages, that

progressively eliminate lower modes, will be discussed later in this chapter.
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Figure 6.7+ ing Ratios vs. Maximum Break L

Tt can be seen in Figure 6.7 that as the number of modes used in the averaging process increases
so does the goodness of fit. Note again that only southern yellow pine specimens were included
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in the goodness of fit calculation. While the number of averaged modes increases from two to
five the R? value progressively increases from 04415 to 0.8555. If we include all six measured
modal damping ratios in the averaging process then the goodness of fit increases once again to

favor of

0.9387, as shown in Figure 6.8. This seems to be a significant and promising resul

as an indicator of the condition

using modal testing, and more specifically modal damping r

of full scale poles.

Average Modal Damping Ratio vs. Max Stressat
Break Fist S Modes)

" Masimum Break

1t also becomes increasingly clear that, as the correlation improves with consideration of extra
modes, the cedar specimen does not fit with the trend of the souther yellow pine. It clearly

becomes an outlier as the southern yellow pine data progress

ely converges to fit the second

order polynomial model. This suggests that separate models should ultimately be developed for
cach individual species used in the field. Also note again that fewer points are included on cach

plot that uses the fifth and sixth modes, since data for those modes was not obtained for all

specimes
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6.2.2.3 The Use of Average Normalized Modal Damping Ratios

1 we look back at Figure 6.6 we can see that the magnitude of damping is not necessarily the
same for each mode. Notably, damping ratio for mode two does not reach 0.015 for any of the
specimens, whereas for modes five and six some specimens reach levels of damping above
0.035. This difference in amplitude between modes is difficult to explain with any certainty,
However one possible explanation could be that each pole’s cross section is not constant along
its length. Each pole has a certain degree of taper and therefore areas with a smaller cross section
could be more susceptible to larger deflections during vibration. Larger deflections in some cases
could potentially increase the relative effect of damping sources in those areas. Therefore
depending on the shape of each mode, and the location of high levels of curvature, these areas of
increased damping effect could affect each mode differently. If this is feasible, then variation in
taper between individual poles could result in some of the lack of fit in the damping vs.
maximum stress curves as well. Therefore, normalizing data for each pole with respect to the

pole’s relative taper could potentially improve the fit of the above models. This possil

noted, but will not be investigated in the current work.

Regardless of the root cause of the variability in relative amplitude of damping ratio between
modes, it s of interest to try and alleviate the weighted preference of any individual mode during
our averaging process. The averaging process used earlier was one attempt to consider the
cumulative effect of damage on damping ratio evenly across all modes. However, modes with
higher average damping ratio, and larger ranges in damping ratio, would indeed have been more
heavily weighted. This is simply because a certain percentage change over a large range for one

mode has a larger effect on the average than an equal percentage change over a small range for
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another mode. Therefore, a further attempt to bring all modes into equal consideration would be

to employ a simple normalizing process. Here we will consider the normalized damping ratio of

ven as the rel

each speci ive magnitude of individual damping ratios with respect to the range in

damping ratios for the entire set of specimens. This will be done on an individual mode basis and

i perhaps better explained in equation form:

R A

Index Number Identifying Individual Specimens

n = Mode Number
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“Table 6-6 - Normalized Damping Ratios for Full Scale Poles
After normalizing the modal damping ratio data for each pole according to this equation, we get
the data shown in Table 6-6. We can also plot this normalized data vs. maximu stress at the

break location for each pole (as shown in Figure 6.9) in order to observe any potential
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differences in behavior between the normalized damping ratio and the actual damping ratio

(which was used in Figure 6.6).
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We can see that the general appearance of each plot in Figure 6.9 for normalized damping ratio is

roughly the same as its corresponding plot in Figure 6.6 for actual measured damping ratio. The
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R? values are also identical between the two figures. This is expected since the normalizing
process served only to rescale each individual mode so that the damping ratios were measured on
a scale of zero to one. This was done so an averaging process would not favour any individual
mode. It does not affect the relative damping ratio between specimens for any given mode. Note

that western red cedar specimens will no longer be included in our analysis, since they were

recognized earlier as outliers that did not it with the trend of the southem yellow pine data. In
addition, too few cedar specimens were tested to allow for independent normalization of the
cedar specimens. Since a maximum of two exist for any mode, then we would have one with a
normalized damping value of zero and one with a normalized value of one, no matter what their

original damping values were. This is of little interest even if plotting in parallel with souther

yellow pine specimens for comparative purposes

We will now perform the averaging process that was first employed in section 6.2.2.2, using

normalized damping ratio instead of absolute damping ratio. The corresponding data for average
normalized modal damping ratio is shown in Table 6-7 for various combinations of modes.
Figure 6.10 shows average normalized modal damping ratio plotted against maximu stress at
the break location for an incrementally increasing number of modes, up to and including the first
five modes. Again the data shown in Table 6-7 for averages that progressivly eliminate lower

modes will be discussed later in
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Figure 6.10 - Averag Ratios
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Figure 6.10 shows that by incrementally considering a greater number of modes in the averaging
process, we again see a progressively improving goodness of fit. By changing the number of
modes from two to five, the R? value improves from 0.6035 to 0.9036. These results, for
normalized damping ratio, are somewhat better than when absolute damping ratios were used.
We see an even further level of improvement when the sixth mode is added. Inclusion of sixth
mode results in a very respectable R* value of 0.9722, as shown in Figure 6.1
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Figure 6.11 - Six Mode Avg. Normalized Damping Ratio vs. Max. Break Location Stress
6.2.2.4 The Use of Average Percentile Rank of Damping Ratios
Here we will basically follow the same process as previous sections and consider the average of
an increasing number of modes. However, this time we will examine one last factor, percentile
rank of damping ratio, instead of absolute or normalized damping ratio. Using the percentile rank
is one last attempt to evenly weight cach mode when employing the previously explained

averaging process. We will determine whether this factor is any better suited to indentifying the

maximum stress at the break location of full scale poles. Obtaining the percentile rank
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(represented by ‘PR’ here) is a standard statistics technique, and

performed here for all

individual damping ratios according to the following formula:

Where:

i = Index Number Identifying Individual Specimens

Mode Number

¢ = The Number of Specimens with a Lower Value than Specimen i
f = The Number of Instances of the Value of Specimen i

N = Total number of Specimens

After applying the above equation to each measured modal damping ratio, we get the damping

ratio percentile ranks shown in Table 6-8.




We also determine the average percentile rank of various combinations of modes for each

specimen. This data is shown in Table 6-9.

Table 69 - of Damping Ratio

We again plot the data for individual modes, as well averaged data considering an increasing
number of modes, against maximum stress at the break location for each pole. This time we use
percentile rank of damping ratio as our dependant variable. These plots behave in a manner
similar 1o the plots for absolute and normalized damping ratios. In Appendix D the interested
reader can find a comprehensive set of plots. There is again variation in goodness of fit among

individual modes, but considering the average value of an increasing number of modes

progressively improves the R value. This time the R* value inercases from 0.5794 (for the first

two modes) to 0.9419 (for the first six modes). The goodness of fit of average percentile rank for
the first six modes is essentially on par with using averaged absolute damping ratios. Figure 6.12
shows the average of the percentile ranks of the first six modes for each pole, plotted against

‘maximum stress at the poles break location.
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Figure 6.12- Six-Mode Avg. Percentile Rank of Damping vs. Max. Break Location Stress

6.2.2.5 Comparing Damping Ratio, Normalized Damping Ratio and
Percentile Rank

Here we will compare how measured damping ratio, normalized damping ratio and percentile

rank of damping ratio compare in their correlation to maximum stress and the location of failure

for ful scale poles.

Shown in Table 6-10 are the R? values of the three parameters of interest when plotted against

maxit

um siress at the break location of full scale poles. The table shows data for the first six
transverse modes. These results are presented in a bar graph in Figure 6.13 to allow for visual

comparison between modes and between the three parameters.
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“Table 6-10 - Fit Summary for Damping Parameters vs. Max. Break Location Stress
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Figure 6.13 - Comparing Fit for Damping Parameters vs. Max. Break Loc

As mentioned earlier, there is variability in the goodness of fit between modes. The variability is

ifficult to explain at this point. This was discussed in 6.2.2.1. However, the rat

also

goodness of fit between modes seems to be maintained for each of the three parameters stu

Next, Table 6-11 summarizes the R® values when averaging each of the three damping

parameters over a number of modes. A bar graph is again presented for this data in Figure 6.14.
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Figure 6.14 - Comparing Fit for Avg. Damping Parameters vs. Max. Break Location Stress

ively for each of the three parameters when

We can see that the goodn

s of fit increases prog:
considering an increasing number of modes in the averaging process. Using average normalized

damping ratio here generally seems o result in the best fitting model. Also, note that when lower

modes are incrementally removed from the averaging process the R values seem to drop. T

suggests that in practice, if attempting to predict the maximum stress in a pole at its break

the data for the

location, then as many modes as possible should be measured. The curve that fi
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maximum number of modes measurable in the specimen of interest should be considered when
trying to predict the stress. For example, if only the first five modes are able to be measured in
practice for a certain test specimen, then the polynomial curve that was found earlier by
averaging the first five modes should be used as a model to predict maximum stress from the
measured data of the test specimen. Figure 6.14 also shows that when using a fixed number of
modes in the averaging process, higher modes seem to produce models with slightly better R*
values. For example, if generating a model using three modes, modes three through six seem to
produce a better model than modes one through 3. This scems to be true regardless of the
parameter being considered (absolute, normalized or percentile rank). However, no data should
be left out when choosing a model since more modes generally result i a better model. Note that
if in practice an intermediate mode cannot be measured for some reason (such as environmental
noise at the corresponding natural frequency or interference with other mode types at nearby
frequencies), then models can be developed from our original data set to be used for prediction

by averaging only the modes that were able to be measured for the test specimen. For example, if’

in the field we were able to obtain damping ratios of a test specimen for modes one, two, three
and five, but not mode four. Then we could use a model that was developed from our database

by averaging modes one, two, three and five for predicting the maximum siress of the test

ferent modes,

ien. Note that due to the variation in fit between models developed usi

Spe g
we should refrain from making predictions of stress using models developed from any set of

modes other than the set we were able to obtain from the test specimen of interest.

In all the above models that were developed using either of the fifih or sixth modes (average of

the first through fifth or the average of third through sixth for example), there were less




specimens included in the models due to the fifth and/or sixth modes not being measureable for

some specimens. Some of the specimens, where all six modes were not measurable, seemed to

have had more severe levels of deterioration as well. Therefore, it is not definitive whether the

entire extent of the increase in R value when the fifth, and subsequently the sixth, mode were
added to the averaging process was actually due to the consideration of more modes, as
suggested, or the exclusion of some of the more deteriorated and potentially unpredictable
specimens from the models. However, if we look at the rightmost portion of Figure 6.14, the
same trend holds true when we progressively remove lower order modes from the averaging
process. The R’ value generally decreases as those lower order modes are removed. This leads us

10 believe that the averaging method is sound.

ince all the rightmost models consider the sixth
mode, they must all consider the specimens where the sixth mode was measurable. Therefore,
the trend of degrading correlation with fewer averaged modes. at least on the right portion of the
plot, was obtained using the same set of specimens. Thus the trend was solely due to the number

of modes considered, and not the inclusion or exclusion of particular specimens.

6.2.3 Damping Ratio as an Indicator of Maximum Fiber Stress at

Ground Line

While the above results are promising, determining the maximum stress at the break location
during failure does not allow us to definitively solve for the maximum load carrying capacity of
a pole. This is because failure does not always occur at the same location, and we have no way to
determine the location of the failure beforchand. For this reason, we will pursue a model here
that allows us to predict the maximum stress that occurs at the ground line during failure. If we

can predict the maximum stress that occurs at ground line, then we can calculate the applied load
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that would be needed to produce that stress, simply based on the geometry of the pole. Note that

the maximum stress that occurs at the ground line during failure (which we will be using here) is
not necessarily the same as the ultimate fiber stress at ground line. It is possible, and likely in
most cases, that failure will occur at some location away from the ground line. We will still use
the stress that occurs at the ground line at the instant of failure, but that stress will likely be less

than the ultimate stress at the ground line.

To develop models for damping parameters, as they relate to maximum stress at ground line, we

will follow the same general procedure used in section 6.2.2. We will plot each idual

damping ra d damping ratio and percentile rank of damping ratio against the
maximum stress at ground line. We will also plot the average of these parameters when
considering an increasingly large number of modes, to determine whether the models improve
when a greater number of modes are considered, as they did earlier when plotting against the
maximum stress at the break location. Because these calculations are essentially the same as

section 6.2.2, they will not be presented here in detail. We will instead progress directly to the

results. For the interested reader, Appendix D contains all relevant tables and plots.

‘Table 6-12 - Fit Summary for Damping Parameters vs. Max. Ground Line Stress.
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Figure 6.15 - Comparing
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Table 6-12 and Figure 6.15 show the variability in goodness of fit between modes for each of the

three damping parameters considered (damping ratio, normalized damping ratio and percentile
rank of damping ratio), when plotting against maximum stress at ground line. The ratio of fit
between modes here, despite being slightly less extreme, is very similar to Figure 6.13 where

maximum stress at the break location was used. Percentile rank scems to show a slight

improvement in results here over damping

and normalized damping ratio, at least while we

are comparing them on an individual mode basis.
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Figure 6.16 - Comparing Fit of Average Damping Parameters vs. Max. Ground Li

When we consider the average of an increasing number of modes we again see goodness of fit

ely

progre prove for cach parameter. However, this time average percentile rank seems to
offer the best fit of any of the three parameters. When using percentile rank averaged over six
modes here, we obtain a model with an R* value of 0.8834. This fit is not quite as good as was
scen for the average normalized damping ratio plotted against maximum stress at break location

in sections 6.2.2.3 and 6.2.2.5. However, it is still quite respectable. Also, since the goodness of
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fit improves with the consideration of a greater number of modes, there is promise of improving

this fitif we focused on measuring higher modes in practice.

In this case, when considering a fixed number of modes, higher modes did scem to produce
better models than lower modes. However, as was the case with maximum stress at break
location, the goodness of fit decreases as we remove lower modes from the averages. This
suggests that no data should be omitted, and using the maximum number of measurable modes is
desirable in any case. When attempting o use models for assessing the condition of a test
specimen however, we should again use models that were developed from only the specific
modes measureable in the test specimen of interest. Repeating the previous example, if we can
only measure modes one, two, three and five in a test specimen, then we should predict its
condition using a model developed from averages of modes one two three and five (not all

possible modes that are available in our database for developing models).

While the models here show adequate fit, the most important thing is that they show promise of

e we now know that

improvement by considering further modes in the averaging process.
models are available to predict the maximum strength that occurs at a specific location, the
ground line, we can directly estimate the load carrying capacity of any pole by using measured
modal damping ratios, these models and the poles geometry. This is a significantly useful result

in favor of assessing the condition of in service wooden poles using modal impact testing.

6.2.4 Maximum Stress Prediction Using Modal Damping Ratios

Based on laboratory trials, section 6.2.3 developed models relating modal damping ratios to the

ground line stress at which failure will occur in full-scale poles. We will now evaluate the ability
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of these models to predict failure in the lab specimens that were tested in the current study. Note
that due to the limited number of full-scale specimens available, we will not used these models to

assess the condition of an independent set of specimens at this time. We will compare the

predictions made using modal damping rat predictions made on the same specimens using
commercial ultrasonic NDT equipment. The ultrasonic equipment used here has the commercial
name of “POLETEST" and is manufactured by EDM. This equipment is widely used in line

management programs for strength assessment of wooden utility poles.

6.2.4.1 Predictions Using Second Order Polynomial Models

H
H
13333335§33333)§

‘Table 6-14 - Max. GL Stress Predictions Made Using Modal Impact and Ultrasonic Tests

‘Table 6-14 summarizes the predictions of maximum ground line stress made using modal impact

and ultrasonic tests. The predictions for modal impact testing were based on models in Figure
6.17 for average percentile rank of multiple damping ratio combinations. These models were
developed based on a second-order polynomial regression model in section 6.2.3, and presented

in Appendix D (along with other supplementary results from that section).
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Figure 6.17 - Avg. Damping Ratio Percentile Rank Models for Predicting Max. GL Stress
Predictions were made for each pole using one of the three models presented in Figure 6.17. The
‘maximum number of modal damping ratios measured for each specimen determined which of
the models was used. Since second order models were used, two numeric solutions resulted in
cach case. The lower of these two numeric values was always chosen as the stress prediction,
since the higher value corresponds to an ascending portion of the parabola, which extends 1o the
right and outside of the range of values used to develop the models. Note that no predictions
were made using modal impact testing for the western red cedar specimens. This is because the
number of cedar specimens tested in this study was insufficient for developing models to relate
damping ratio and maximun stress. Also, note there were two southem yellow pine specimens

that could not be tested by the ultrasonic equipment. Upwards of twenty attempts were made 1o

164



test those particular specimens without obtaining a measurement. The data in Table 6-14, once
rearranged in order of descending values of actual maximum stress at ground line, is plotted in

Figure 6.18 and Figure 6.19.

M Strss o Ground Line redicted with Mods and Utasoic Tests
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Figure 6.18 - Comparing Max Stress Predictions Made Using Modal and Ultrasonic Tests

Modal Impact Testing | Commercil Ultrasonic Test Equipment

Figure 6.19 - Individual Max Stress Predictions Made Using Modal and Ultrasonie Tests

165



Inspection of Figure 6.18 and Figure 6.19 reveal that, despite the low number of specimens
available for developing models of modal damping ratios in the current study, the predictions

made using modal damping ratio measurement are generally better than predictions made using

intermediate or

. Thi

the commercial ultrasonic devi ly true for specimens that are

espect

advanced stages of deterioration and have lower values of maximum ground line stress. In
addition, very good predictions were made using modal impact testing for the two specimens that
could not be assessed using the ultrasonic device. Note that maximun stress at ground line was
the parameter of interest in this case. However, if maximum load carrying capacity was desired
for any given specimen, it could easily be determined based on the geometry of the specimen of
interest. The applied load that results in the appropriate ground line stress would simply have to

be solved for using straightforward mechanics of solids techniques.

6.

2 Regression Model Considerations
All models used so far, including the ones used for the predictions in the previous section, were
second order polynomials. However, this poses the previously mentioned problem that two

solutions are returned in each prediction. In order to avoid this we have a number of options.

One option is to simply consider only the leftmost portion of the curve. This was the method
used in the last section. However, if we take the six-mode model from Figure 6.17, determine its
derivative and solve for the fiber stress at which the derivative of this curve is equal to zero, we
get the location of the minimum point on the curve. This minimum point turns out to have an
average maximum stress at ground line value of 55.55 and an average percentile rank of damping
ratio as 0.145057. Note that this stress value is below the actual max stress value of the BF3
specimen and therefore the model, if used in this manner, could not have made an accurate
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prediction of the maximum stress for BF3 no matter what the damping values were for BF3.
Also, note that the minimum percentile rank of damping value for the second order model was
also slightly above the average percentile rank value for the 7 OId" specimen. Therefore, the
model returned no solution when attempting to make a prediction for the seventh old pole, and
the minimum of the curve was assumed as the predicted value. The algebraic issues of limited
range, and occasional specimens not having solutions, can easily be solved by inverting the axes

of the appropriate stress-damping graphs and performing an altenate polynomial regression,

which will naturally result in an equation with inverted causality. However, the alternate

equation would be prone to the same algebraic issues for specimens with high damping ratios.

Either the original or the inverted cquation would be chosen for use in prediction depending on
the damping ratios obtained. Note that an inverted model was actually obtained and employed

for comparison, and resulted in prediction values very similar to the original model.

Putting the above discussion aside, numeric issues seem more likely 1o have been imposed by the
model choice than the physical system. The only reason for choosing a second order polynomial
fit in previous sections s that it resulted in slightly better R? values. However, damping values
generally decrease for poles that are in better condition, at least for poles that fall within the
range of maximum stress values of our current population of specimens. And, if we think of
damping as having been introduced by defects and material decay, then we would not expect real
world damping to increase in a parabolic manner for poles with maximum stress values above
the range of our current population. For these reasons, it scems appropriate for an exponential
decay or power regression model to be considered, rather than the second order polynomial,

which we have previously entertained.
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ns made in section 6.2.4.1 u

For the reasons presented above, we will duplicate the pre g
a power and an exponential regression fit. The scenario here is the same as section 6.2.4.1 except
for the modeling choice. Note that the six mode models for the power and exponential fits

maintain respectable R? values of 0.8514 and 0.8254 respectively. Again, the corresponding plots

can be found in Appendix D for this case.
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Figure 6.20 - Max Stress Predictions Made Using Power and Exponential Models
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By inspecting Figure 6.20, the predictions made using power and exponential models appear
slightly better than predictions made using the second order polynomial model, with the
exception of specimen 7 Ol The slightly lower R® values for these two regression models (as
opposed to the second order polynomial) may have been largely due to that one outlier. Upon
reviewing details of the seventh old pole, two potential reasons for its somewhat poor predicted
value were found. The first reason is that even though six modes were obtained in the modal
impact test, only the first three had very distinet solutions. The frequency response function
(FRF) was somewhat noisy in the band containing modes four through six. Multiple stable
solutions appeared near each of the noisy peaks of the FRF corresponding 10 the fourth through
sixth modes. The solution candidate that seemed to be nearest 1o the center of the peak, with the
most appropriate phase (+-90deg for each of the three accelerometers) and the most stable poles
was chosen in each case. At the time of testing, the current method of using damping ratio was
not foreseen as an option. Frequency was the parameter of primary concern at that time, and
frequency was very close between the potential solutions. However, damping varied significantly
between the potential solutions and the wrong potential solution could have been chosen for
cither of modes four through six, resulting in poor prediction based on damping ratio
measurements for that specimen. This prediction may have been improved if the modal test was
repeated with an increased number of runs and a higher sampling rate. If a poor measurement of
damping is indeed the root cause of the somewhat poor prediction of maximum ground line
stress for the seventh old specimen, then that is not of great concern with regard to the overall

feasi

y of the method.
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One other possible cause of the poor maximum stress prediction of the seventh old pole could be
that it failed at a drilled hole. That particular pole was not a mono-pole, it came from a structure

and the drilled hole was used for mounting a cross member. This failure is shown in Figure 6.21.

Figure 6.21 - 7th Old Pole Breaking at a Drilled Cross Member Hole

The drilled hole could have resulted in a local strength redu

n that was not detected by the

damping ratio method. The possibility that very localized defects, such as a drilled hole, may not
be detected using the damping ratio method raises some concerns about its potential. However,
note that a number of other poles did break at knots, which would have presumably caused a
similar localized strength reduction, and the predictions do not seem to be unreasonable for any
of the other poles. This could lead us to believe that an artificially imposed defect, such as a
notch or hole, may not impart a localized damping effect on a pole in the same way a naturally
developed defect would. This seems feasible if the artificial defect is “open’, such as the drilled
hole is in the current case. Here an “open’ defect can be thought of as a defect that does not

completely close as the specimen is stressed under vibrat

n imposed by an impact from the
modal hammer. For a *closed” defect, such as a crack or a knot, the two separated surfaces of the
defect could continuously open and close during oscillatory motion, thus impacting one another
and releasing energy which damps that motion. The defect could also remain closed during
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vibration while the two surfaces rub against one another, resulting in friction losses that damp the
specimen’s motion. IUs easy to imagine that an artificial defect may not impose significant
damping on the system in this way. If this is indeed the case here, it stll allows the use of
damping ratio for assessment of poles which have not been purposefully compromised. Wooden
mono-poles would still be an ideal candidate; since they would not be compromised by cross
member holes to as great an extent. The holes in monopoles would not be positioned as far
down the pole towards the ground line, where moments are higher for given applicd loads (as the
hole was in the *7" old" pole). Further works has to be done to study the effects of ‘open’ and
“closed defects in this way. However, if naturally occurring defects do impart damping more
consistently than imposed defects, then validating the suggested method of using damping to
predict pole condition would likely have to be done solely based on experimental means.

‘Theoretical and finite element models would become very complex and impractical if they were

required to model grain interactions at the local level. As a side note, at least if drilled holes exist

in a specimen, they would be known to exist, and if we knew they were not readily accounted for
through modal impact tests then they could be manually accounted for to some degree,
subsequent to modal testing. In addition, frequency has been shown to be a very useful parameter
for locating and quantifying geometric defects such as a hole (in Chapter 4 and Chapter 5), and
thus a method where both frequency and damping are jointly considered is conceivable, through

further development and study.

6.2.4.3 Further Discussion on Predictions

What has been referred to in previous sections as ‘maximum stress at ground line’, is more

specifically ‘the ground line stress at which failure occurs’. Since failure does not always occur
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at the ground line, this parameter is not equivalent to the ultimate strength at ground line. With

that being said, one additional point should be made concerning the inaceuracy of the ultrasonic
predictions. This device measures the fiber strength at the location of the test, and the tests were
always performed at the ground line. Therefore, it is expressing the ultimate strength at ground
line, and not the ground line stress at which failure occurs. Even though the maximum bending
moment occurs at the ground line for poles under an applied load, failure will not necessarily
oceur at the ground line. This likely accounts for some of the ultrasonic device’s inaccuracy
when only testing at the ground line location. Note that the two specimens that actually did fail
near the ground line, labelled *BF3" and ‘5™ OId", were two of the specimens that were

adequately predicted using the ultrasonic device.

If a pole is somewhat deteriorated, the fiber stress may not necessarily be consistent along the
pole’s entire length. In addition, poles generally have some degree of taper, which results in the
second moment of area of the pole’s cross section being a function of the location along the
pole’s length. Therefore, failure may result at a location away from the ground line if fiber stress
at that location is higher (based on a lower second moment of area due to the pole taper), or if the
ultimate fiber stress at that location is lower (based on localized deterioration). This topic will be
discussed further in section 6.2.6 and it s depicted in Figure 6.29. Essentially, if ultrasonic tests
were performed at many locations along a specimen’s length, predictions of the maximum stress
at ground line may be more accurately determined. First, the location where failure should occur
could be determined based on localized ultimate stress measurements (in a manner similar to
Figure 6.29), then the load required to obtain that particular local stress could be calculated, and

finally the ground line stress resulting from that particular load could be determined. This
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process s somewhat indirect and, in addition, multiple ultrasonic measurements along the pole’s
entire length would be time consuming and impractical for upright in-service poles. Modal
impact tests, however, can excite the entire pole from one impact location. The state of
deterioration over the entire poles length is then dircely reflected in the results of a single modal
impact test, as long as enough damping ratios are obtained during the test. The more useful
“ground line stress at which failure occurs’ is then dircetly obtained, for a specimen subjected to
‘modal impact testing, from regression models as we have developed earlier. Note that in order to
obtain the maximum stress at ground line using a modal impact test, the impact does not actually
have to be at the ground line. It can essentially be performed at any practical location along the

pole’s length, except exactly at the actual ground line. However, some locations are more

favourable than other locations for adequately exciting the vibration modes of interest, due to the

presence of modal nodes.

“The results presented in this chapter are promising and suggest that further work should be done

order to expand and better understand the modal damping models. Looking into the issues
involved in assessing the condition of in-service poles using this method should also be a
priority. The models we have obtained in the current study would not likely be directly
applicable to assessing in-service poles. This is because factors such as attached transmission
lines and different soil conditions may affect modal damping ratios. For example, soft soil could
introduce external damping more so than firm soil. Therefore, soil conditions would have to be
considered when developing models. Fully separate models may have to be developed in order to
account for different categoric variables, such as structure configuration and wood species.

Multi-factor regression models could possibly be pursued as well, taking into account factors that

173




can be expressed as continuous numeric values, such as added mass of attachments or moisture

content. Including extra factors in this way could serve to enhance the aceuracy of predictions.
These models would resemble, in some ways, the multi-factor regression models covered in
Chapter 4 and Chapter 5. Additional concerns, such as how modal impact test results are affected
by vibration disturbance due to varying wind conditions, ultimately have to be addressed before

the method can be widely used.

6.2.5 Damping as an Indicator of Ground Line Stress for Old Poles

Previous sections were concered with relating damping ratio to maximum stress by considering
all southern yellow pine species in regression models. However, the question was raised of
whether the method is applicable when considering only the old deteriorated poles, since
assessing the condition of old poles is of primary concern in the field. The issue will be briefly
addressed here of whether including the three new southem yellow pine specimens simply
provided enough high strength samples to allow the range of values to be expanded, and
regression models to show an adequate goodness of fit. We will investigate here whether the

correlations break down if only old poles are considered.

In the interest of brevity, we will only consider the most important case for field assessment;
predicting maximum ground line stress. Also, since percentile rank of damping ratio was most

useful for pred

ing maximum stress at ground line when all pine specimens were considered, it
will be the only parameter considered here. We wish to again prove that averaging more modes
progressively improve goodness of fit, despite the fit of models that consider individual modes.
A simple liner regression model will be considered in this case, since it will allow easier
prediction, and show that complex models may increase the goodness of fit, but may not actually
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be necessary. Using second order models may have only improved the fit when old and new
poles were considered simultaneously, because near the high strength end of the spectrum new
poles were actually falling above the natural trend of the old poles. These more complex models
would have adjusted to accommodate those high strength specimens. Further data is needed to
adequately investigate these issues and to determine which regression model format is more

closely related to the theoret

1 underpinnings of the method. Simply proving the approach of

averaging modes for old poles alone will be the primary focus of this section.

Considering only old southern yellow pine specimens, we get the damping ratio percentile ranks

ns of

shown in Figure 6.22 and the average percentile ranks in Figure 6.23 for various combinat

modes. These were obtained in a manner similar to previous sections.

Figure 6.23 - Average Poles
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Individual plots that accompany the data in Figure 6.22 and Figure 623 can be found in
Appendix D along with other supplementary material related to this topic. When the R values
are determined from cach of these plots in a manner similar to previous sections, we get the data

found in Table 6-16 through Figure 6.25 below
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Figure 6.24 - R Values for Damping Percentile Rank vs. Max GL Stress (O1d SYP)
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Figure 6.25 - R Values for Avg. Damping Percentile Rank vs. Max GL Stress (Old SYP)

By inspection of Figure 6.24 and Figure 6.25 we can see that in this case averaging the damping

ratios of an increasing number of modes again increases the goodness of fit of the model. This i
shown 1o be true here even when old poles alone are considered. Note that the data here is very

an increased database should be done. However, these results are

limited, and further work

s the condition of old in-service poles.

indeed prom he goal is to a




With the above results in mind, we can again take the average percentile rank of damping ratio of
each pole and input it into the appropriate average multi-mode regression model in order to
obtain predictions of maximun stress at ground line. This procedure s similar to what was done
in section 6.2.4. Here we will use one of the models from Figure 6.26. The model used again
depends upon the maximum number of modes able to be measured for each individual specimen.

lly to

“The resulting predictions are found in Table 6-18 and the predictions are compared graphi

the predictions made using the commercial ultrasonic device in Figure 6.27.
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Figure 6.27 - Predictions of O1d SYP GL Stress

We can see in Figure 6.27 that the predictions are still quite good when only old poles are

considered in the models. Note that the particular model used for each prediction is

ted for
each specimen. Each specimen that was predicted using all six modes was predicted quite well.
This is expected since they all used the six mode’ regression model, which had a decent
goodness of fit o its data. We can see that the four poles in the worst condition were also the
poles where all six attempted modes could not be obtained. This suggests that higher modes may
have been harder to measure because of the condition of the poles. Those four poles also
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accounted for three of the four worst predictions of maximum ground line stress. For these
reasons, once further data becomes available, it might be worth creating separate models for
poles depending upon the number of measurable modes. Here the *four mode” mode model, for
example, was still developed using all poles, and even the poles where more than four modes
were able to be measured were included in the model. The higher modes for those other poles
were simply omitied when developing the “four mode’ model. However, if sufficient data
becomes available with further testing, then dedicated *four-mode’ models could be developed
using only poles with exactly four measurable modes. The range of this model would probably
be in the low stress portion of the overall range, and therefore may give better predictions within
that low stress range. In the current study, there was only one pole available with four as its
maximum number of measurable modes. This one specimen is obviously insufficient for creating

a*four mode” regression model.

As a good practice, separate models should have been developed for each prediction which

omitted the specimen desired to be predicted. However, due to the limited data set here, and the
fact that percentile rank was used for modeling, it was simply not feasible. Percentile rank is only
able to be calculated for a specific modal damping ratio of a specific specimen if that damping
ratio falls within the range of damping ratio values used for calculating its rank. Therefore, if the

specimen for which percentile rank is desired to be calculated cannot be included in the data st

used to calculate rank, then for each mode there would be two specimens with indeterminate
percentile rank. Those two specimens would correspond to the maximum and minimum values

of damping for each mode. In addition, if e are using average percentile rank of all available

modes of each specimen when developing prediction models, then it becomes very likely that at



least one of the modes included in the average has a maximum or minimum damping ratio value,
and therefore it becomes very likely that at least one of the modes included in the average has an
indeterminate percentile rank. Due to these constraints, if specimens desired to be predicted are
required to be omitted from their corresponding prediction models, then number of specimens.
able to be predicted from our already limited database becomes very low. The number of
specimens able to be predicted in the current case, if using the ideal method, would actually be
about half of the already limited set of old southern yellow pine specimens. Since using that
method also results in the added complexity of creating multiple prediction modes, it will not be

pursued in the current study. However, it should be kept in mind for future work.

6.2.6 Further Discussion on the Use of Damping Ratio

While the results of previous sections are promising. and suggest that we can use modal impact
testing to predict the load carrying capacity of in service wooden poles, the underlying reasons
why the results are so favorable seem somewhat mysterious. These results are simply based on
experimental finding and no theory has been developed yet for why they should ocur. In this
section we will speculate on some possible reasons for why they occur, and also make
suggestions for how a better understanding of the results could be achieved with further study. In
addition, the results thus far only allow for estimation of the load carrying capacity of a pole.
While that is a significant finding in its own right, it does not allow us to determine the specific
location at which failure will oceur. Failure location is a factor of inerest since it could allow for
appropriate bracing to be attached to deteriorated poles. The bracing could be designed to best
support the weakest arcas. A possible method for estimating the specific break location, and

other weak areas, in addition to the failure load of a pole will be developed and suggested here
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based on the var

Il be made. Note again that this section does not contain

us speculations that
any hard evidence to support ts claims. It is merely to provide inspiration for potential future

work.

The progressive increase of R* value with the increase in modes considered in the averaging

process employed in previous sections could possibly be attributed to additional modes removing
bias between different locations, in terms of the effect of damage on damping ratio. It can be

imagined that if an increasing number of modes were considered, then damage located near a

less sensitive area of any one mode becomes less significant and we should be able to detect it
regardless of its location. Conversely, since we are assuming that the effect of damping is
determined by its relativity to areas of low modal curvature, then localized damage is more likely
to be far away from any of those areas for at least some modes if we increase the number of
modes considered. In Figure 6.28, we can see that the area above the cumulative set of mode
shapes diminishes as more modes are considered. This demonstrates that damage is more likely
to be adequately far from any nodes (which often correspond to areas of low curvature) if we
consider a greater number of modes. Note that considering the absolute value of cach mode
shape, or the shape that would result if all points were in phase, would have been more
appropriate in Figure 6.28 (since modes obviously vibrate between two extremes). However, the
figure would have become untidy, and modes might have become difficult for the reader to
identify. Also, note that for any given loading, the stress distribution along the length of the
specimen is better represented by the second derivative of these displacement mode shapes. As
mentioned in Chapter 2 the second derivative is also referred to as the curvature mode shape.

The various sources mentioned in that chapter develop the idea of stress being related 1o
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curvature mode shapes. A filling of space similar to Figure 6.28 also occurs when considering

curvature mode shapes instead of displacement mode shapes.

Figure 6.28 - Increasing the Number of Considered Modes Improves Damage Derection
By this logic, and considering the behaviour of the full-scale poles, if we consider an increasing
number of modes, up to an infinite number, then the cumulative average normalized damping
ratio should become solely dependent upon the extent of damage, and tend to become
independent of location. Referring again to Figure 6.28, the space would become completely full

for all area under the maximum normalized deflection.

We have shown that more modes continuously improved the fit of models when we attempted to
relate damping ratio o stress at the break location in previous sections. Some of the lack of fit

when a limited number of modes were considered could have been due to the break location not

always occurring at the same location. Thinking of Figure 6.28, deflections are generally

different at different locations and for low numbers of modes the averaging process gives
different results depending on where the damage occurs. If this is true it makes sense that any
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deterioration of fixed magnitude should result in the average nomalized damping ratio

converging to one single value, independent of where it is located, if an infinite number of modes
are considered. This means that in practice if we consider an adequately large number of modes,
we should be able to estimate the maximum stress at the break location fairly accurately,
regardless of the location of the break. This should occur if the data for our test specimens
converge and perfectly fit our regression model when an infinite number of modes are

considered, as our current data does indeed suggest. However, the most appropriate type of

regression model (second order polynomial, power, exponential, lincar etc.) is currently
unknown by the author, as are the physical reasons behind which model is actually most

appropriate.

Although, even if we do know the maximum stress at the break location, based on this method
(or even based on some finite number of modes in practice), it is of lttl use if we o not know
the location of the break. Since stress varies along the length of the specimen because of the

vari

ion in bending moment with applied load, and possibly the variation in moment of inertia
for specimens with non-constant cross sections such as wooden poles, knowing the stress at the
break alone is not sufficient. There are likely multiple location and applied load combinations
that give the predicted stress at more than one unique location. Essentially, knowing the

maximum stress,

ithout knowing the location of failure, does not allow us to definitively solve
for the maximum load carrying capacity of the specimen. Using this procedure to isolate the
maximum stress at a specific location, such as at the ground line (as in section 6.2.3), would be

of more use since then we can find the applied load based on the length of the specimen. We



D TETRET

only first need to determine the bending moment required to get the appropriate ground line

stress, based on cross sectional geometry.

Continuing on this thought, if we know that damping is dependent upon the relativity of damage
10 a areas of low modal curvature, we should be able to develop some means for locating damage
based on its variation between modes. Again, consider an increasing number of modes,
approaching an infinite number. If the amplitude of each modes curvature shape is weighted by
the relative increase in damping of its comesponding mode, then mode shapes with high
curvature near the location of damage should become more heavily weighted and therefore
exhibit higher amplitude. Therefore, if we superimpose an increasing number of these weighted
shapes the resultant should be a shape with high amplitudes in the regions of high damage. We
would essentially approach a continuous damage profile, plotting the relative deterioration of
each point along the length of the specimen. This damage profile should consider the cumulative

effect of all damage, regardless of location, as long as enough modes were considered in the

superposition process. If we normalize this resulting damage profile with the maximum stress at
ground line (or any other specific location) from our method of averaging multiple modal
damping ratios, we should get a curve that defines the maximum fiber stress (or local ultimate
strength) at any point along the specimen’s length. From this curve, we could determine the

exact location of failure as well as the corresponding failure load.

In addition to maximum fiber stress, the local bending moment is not generally constant along
the length of a beam (or pole) for any given applied load at the free end. For the case of tapered
utility poles, the cross scctional geometry is non-constant with respect to location. Therefore, the

fiber stress realized under any given applied load is also generally non-constant along the




specimen’s length, since it is related to the bending moment and cross sectional geometry, i

are generally variable with length.

Despite both applied stress and maximum stress being generally non-constant along the length of
any specimen, we should still be able to predict failure load and failure location using a graphical
approach. We would essentially have to overlay plots of ultimate failure stress vs. location and
applied stress vs. location. Applied stress vs. location would be a series of curves for varying
applied loads. The minimum applied load that resulted in the two curves intersecting would be
the maximum allowable applied load of the specimen. The location along the length of the
specimen where that intersection takes place would be the failure location. This is demonstrated

in Figure 629 for a hypothetical case.

i P—
-

I ——— Aophdtress

Camped tnd Freetod
Location Along LengthofSpecimen

Figure 6. i i and Break L of Full Scale
‘The main difficulty with attempting to use this method for evaluating full-scale poles could be
. It can be

that the true ultimate stress vs. location may have significant spikes or discontinuiti

imagined as the superposition of at least two curves. One curve is a smooth and gradually

changing; varying as rot or general fiber deterioration gradually changes along the specimen’s
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length in a continuous manner. The other curve is a series of Dirac delta or step functions, with
many discontinuities corresponding to knots, drilled holes and other abrupt changes in damage
condition. This type of complex function would require a large number of measured modes to
model accurately using regression, or the superposition method suggested above There is also a
limit to the number of modes that can actually be measured in practice. In the current work, six
modes were measured casily for most specimens. The maximum practical number of modes

measurable with the equipment used in this study was not determined.

One potential way to validate this method would be to actually try it in the suggested manner, by
measuring as many modes as possible for a single specimen in order to obtain the ultimate stress
profile through the superposition method described above. The applied stress profiles are

straightforward to obtain for a constant cross section specimen. For a tapered pole, the cross

section would simply have to be considered at a number of locations along its length, in order to
piece together the applied stress profiles. The predictions could then be validated once the static

test to destruction is done.

One other way to see if the graphical technique is sound would be to employ a currently used
NDT method. An ultrasonic device is already part of the standard arsenal of utility pole testing
equipment. It can essentially estimate the maximum fiber stress at any specific location. Its
downfall as a stand-alone method is that maximum fiber stress may be adequate at the location
where the test is performed but may be dangerously low in other locations along the pole.
Testing many locations is time consuming and impractical to do on a large scale, especially if the
poles are standing upright in service. However, here we could validate the graphical method by

measuring local ultimate strength at incremental locations along a poles length using ultrasonic
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tests. These measurements could then be pieced together in order to obtain a maximum strength
profile of that specific pole. Predicting failure load and location would then be done graphically

in the suggested manner, and validated using destructive static test results.

Figure 6.29, while hypothetical, portrays some of the difficulties involved in using any modal
testing technique to assess structural integrity. Modal testing has been shown in earlier chapters
10 be well suited to characterizing ideal defects in controlled conditions, and even though modal
vibration shows some promise of assessing entire structures by testing at one location, real world

structures are often complex and nonlinear; therefore somewhat removed from any ideal

representation. In addition to material-specific difficulties, there are usually environmental and
equipment related issues to consider as well. When performing modal tests in the field, wind
could disturb vibration response, ice could affect the structures mass and stiffness, and rain could

affect the sensitive measurement equipment. Problems such as these could severely restrict the

method to be used only on limited occasions. In addition, the equipment is somewhat

specialized, and any linesperson would require training on its use. Perhaps the most realistic
short-term goal is that modal testing be used as a final check on poles that have already been
targeted as problem specimens using other, more practical, inspection methods. Further work is

required in order to determine the effectiveness, robustness, and ultimately the role of modal

in assessing the condition of in-service utilty poles.
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Chapter 7
Closing Remarks

To conclude this study, we will discuss what has been accomplished and then make
recommendations for potential future work that could further develop the methods applied in the

current study.

7.1 Conclusions

In this study, we ultimately pursued some non-destructive technique that would allow us to
assess the condition of in service wooden utility poles. However, a more general goal was simply
to validate that modal impact testing is indeed a feasible method for detecting damage under

ideal circumstances.

Based on reviewing literature from a number of previous studies, there seemed o be some
promise in using modal testing for the purpose of damage detection. Since modal frequency is
tied to a specimen’s geometry and material properties, such as stiffness and density, any damage
that affects those parameters will result in a change in frequency. The magnitude of this change
can be used to assess the extent of damage. Damping ratio has also been shown to change with

the addition of defects in specimens. However, when frequency or damping from a single mode

ed it

is considered alone, effects of damage may be di it oceurs near an area of low
curvature for that particular mode. Mode shapes, particularly the second derivative of modes
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shapes (or curvature mode shapes), have also been proven useful for detecting localized damage,
since they depart from a smooth function when localized damage exists. However if deterioration

is evenly distributed throughout a specimen, these abrupt changes in mode shapes would not

occur, even though the strength of the specimen would be compromised. While no existing
method for assessing damage using modal parameters seemed perfect, there was definitely

enough evidence gathered to warrant further study on the topic.

In this study, a somewhat novel approach was suggested first for making predictions of various
defect parameters, such as defect location and depth. The method involves developing regression

models of multiple modal frequencies u

2 a design of experiments approach. The regression
models express each modal frequency as a function of the defect parameters that are desired to
be predicted using modal testing. Other factors that are variable and that have some effect on

frequency should also be includey

the models in order to improve their accuracy. Once the
regression models are obtained, they can be inverted and used in the field to predict defect

parameters in other specimens of similar type. The appropri

(¢ modal frequencies would simply
have to be measured using modal testing and fed into the set of regression equations so that they
could be solved for the desired defect parameters. A graphical method has also been suggested
for solving the series of regression equations. The graphical method involves overlaying contour
lines for a set of response surface models at the frequencies of the test specimen. The defect

parameters are then taken as the point where these contour lines intersect.

In order to validate the proposed method, regression models were developed for various
scenarios and then successfully used to predict defects in other specimens. The method was.

applied to theoretical, finite element and physical beam models, and was proven useful in cach
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case. Scenarios where investigated that involved two and three defect parameters. The chosen
defect parameters related to defect severity and location. Using the proposed method, accurate
predictions of cach defect parameter were made in cach case. The graphical approach also
proved to be useful for making predictions. In addition, it aided in visualizing the solution and

determining how much confidence should be placed in each prediction.

One of the downfalls of the proposed regression approach is that it is so far only useful for
idealized defects that can be defined by a modest number of numeric factors. For distributed and
irregular damage, such as we find in wooden utility poles, the method is not as useful without
further development. However, an alternate method of applying modal testing to assess the

condition of utiity poles was found to be promising

In order to investigate how modal testing could be used to predict the strength of full-scale utility
poles, a series of destructive pole tests was performed. During each test, poles were stressed in
bending until failure occurred. Load and deflection measurements from the tests were used to
calculate elastic modulus as well as maximum ground line stress and break location stress at
failure. Prior to cach destructive test, modal impact tests were performed to measure modal

frequencies and damping ratios. Strength predictions were also made using non-destructive

ultrasonic equipment that is currently used for monitoring utility poles in the field.

1t was found that individual modal damping ratios correlated with maximum stress at the break
location as well as with maximum stress at the ground line to varying degrees for full-scale
poles. In addition, it was found that the average of multiple modal damping ratios correlated
better with maximum stress than cither individual modal damping ratio. Moreover, the level of
correlation increased with the inclusion of a greater number of modes in the averaging process.
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“This was found to be true for absolute damping ratio, normalized damping ratio and percentile
rank of damping ratio. Correlation was slightly better for maximum stress at the break location
than maximum stress at ground line. However, the break location of a pole is not generally
known in advance of failure. Therefore predicting maximum stress at ground line is of greater
interest since it allows us to estimate the load carrying capacity of a pole based on its geometry.
We assessed the accuracy of a regression model that was developed to relate average percentile
rank of damping ratio to maximum stress at ground line by using it to make predictions of
maximum ground line stress for the poles tested in our study. The model was found to predict
maximum stress better than the ultrasonic equipment. A model was developed using only low
strength specimens as well, in order to investigate the merit of applying the technique
specifically to highly deteriorated poles, and predictions were again better than the ultrasonic
predictions. Further work is required to expand the models and use them make predictions of
maximum stress for poles outside the current series of tests. However, the results seem promising

for eventually using modal impact testing to assess to condition of in-service wooden ut

poles.

In any event, current and previous work relating to damage detection through modal testing
indicate that it can be a useful technique. Most methods to date, including the methods suggested

in the current study, have focused on us

g only one of the three main modal parameters at any
given instance; the three main parameters being modal frequency, modal damping ratio and
mode shape. However, an effort has been made in this study to at least consider multiple modes
simultaneously, even if only one modal parameter from each of those modes is considered at a

time. The *frequency regression modelling’ and *damping ratio averaging’ approaches, which
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were suggested in this study, have indeed seemed to substantially expand and improve damage

detection results simply because they do consider multiple modes simultancously.

“The approach suggested in section 6.2.6 that involved superimposing curvature mode shapes that

are weighted by each modes corresponding damping ratio, might be one possible way o assess

the condition of specimens by using two modal parameters simultaneously. This suggested
method is by no means substantiated, and is only speculation at this point. However, we can
imagine that some similar type of unified method, which makes use of all three modal
parameters simultancously, s plausible. Each of the three parameters has alrcady been

independently proven useful to some extent. Each of the three therefore holds information that

can be related back to the structure from which it was measured.

It is a fundamental law of physies that information is never lost though any physical process,
although, it is often true that information becomes so disorganized that it cannot be deciphered.
However, based on the results of this study and literature reviewed from previous studies, it is

the belief of the author that the ability to decipher enough modal response information so that the

medium through which an initial excitation travels can be adequately characterised based on its

modal response to that exci

ion, is not out of reach. To do this, enough factors that significantly
affect the measured modal response simply need to be accounted for in the proper manner. This
may in fact include factors that are extemal to the specimen in many practical cases. Further
work, combined with some creative thinking, could likely lead to a unified method that allows

damage assessment to be performed quite adequately using modal analysis.
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7.2 Recommendations for Future Work
Future work relating to the current study generally falls into two categories: work relating to the
regression model technique and work relating to full scale pole testing. Some suggestions will be
made here for what that work could involve.
7.2.1 Further Development of Defect Detection Technique

A method was proposed and applied in Chapter 4 and Chapter 5 where regression models,

initially developed to relate multiple modal frequencies to defect parameters, are later used in

conjunction with experimental modal frequency measurements to make predictions about the
nature of defects in test specimens. This method has been proven useful for localizing and
quantifying idealized defects in controlled specimens, and with further development, it could

potentially be applied to a variety of more practical applications.

In section 3.2, we presented the derivation for a single stepped clamped free beam and then in
section 5.1.3 we used that theoretical model to calculate modal frequencies of a defected beam,
where the defect was a hole drilled lengthwise from one end. We then used those frequency
calculations to develop regression models and validate the proposed defect detection technique
through validation runs. A similar type of exercise could be performed by deriving a two-step
beam. This type of theoretical beam could represent the “two-factor rod’ scenario that we

investigated in section 5.2, and be used o gain a further understanding of that scenario.

Added mass and curvature mode shapes were discussed in the literature review, and continue to
hold a fair amount of promise for detecting damage, but were largely neglected in the current
study. However, if we observe the shape of the regression models that we obtained in some of
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our validating scenarios, we notice that they closely resemble the absolute value of curvature
modes shapes as well as plots of frequency reduction as added masses are traversed along beams.

This hints towards the possibly of eventually developing regression models much more

2 measured curvature mode shapes could be one possibility. In addition,

adding a mas

has the effect of reducing frequency, and behaves in a manner similar to adding a

defect, then there is promise of developing regression models that could be used for predicting

defects by simply taking frequency measurements with masses added at various locations. The
regression models taken from these measurements would behave similarly to the models

developed using many sp

ens with locally imposed defects. These response surfaces would
have to be scaled somehow to allow for actual prediction of defect parameters. However, if
models could be obtained in this way, we would considerably reduce the effort, time, cost and
materials required for model development. These savings would make the method much more
feasible for a wide range of applications. Note that if models were eventually developed in this
way, they would likely require inversion, since added mass has a larger effect when added to the

free end of a cantilever, whereas a defect has a larger effect when added near the clamped end.

In

encral, scaling response surfaces that were obiained by indirect methods so that they can fit
the desired application is very enticing, since it would allow regression models to be obtained

much more easily and with great cost sa

1gs. We could atiempt to scale response surfaces that

were developed from finite element runs. Since the finite element and experimental response

surfices were shown to behave very similarly in our study of the *two factor rod" scenario in

t can be imagined that there may be a way to transform the finite element response

surface in order to allow it to make predictions on physical specimens. A simple case would be i




the frequency of all physical specimens were simply a consistent fraction lower (or even at a
consistent offset lower) than the frequency of the FEA specimens over the entire design space. If
we expected that o be the case, then simply testing one physical specimen would allow us to
scale the entire FEA derived models. In general, even if this ratio between FEA and physical
specimens did change throughout the design space, as long as the behaviour of that change could
be characterized by fitting a transformation model which required less design points to derive
than would be required to derive the complete regression model using physical specimens, then
we would accomplish some savings in required design runs. An alterate method could involve
developing regression models using FEA runs in order to determine which terms are significant,
and thus required in the regression equations. If we then assume that the same terms should show
up in the models developed from physical specimens, then we could use a number of physical
runs 1o solve for a set of regression equation coefficients that would characterize the physical
system. If each term found to be significant in the FEA regression equations were assigned a
coefficient representing the effect of that term on the physical specimens, then we would only
have 10 test the number of physical specimens required to set up a matrix of equations, which
could subsequently be solved for the regression equation coeflicients. This would allow models

10 be developed from many closely spaced FEA runs, so that we can accurately determine the

ignificant regression model terms, and then scale that fine tuned model 10 fit the behaviour of
any similar set of physical specimens. This method would be worthwhile as long the number of
specimens that would be required to develop regression models from physical specimens in the
regular way is moderately greater than as the number of terms in the highest order FEA derived
regression equation for which we wish to determine coeflicients. This is likely to be true in most

cases.
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Since we wish to expand the defect detection method to fit situations that are more practical, we

need to confirm that including supplementary factors can maintain regression model accuracy
under varying practical conditions. We have deemed supplementary factors to be necessary in

Chapter 4, but have mostly studied scenarios with controlled conditions thus far. We should also

attempt to detect multiple localized defects simultaneously using the method. Investigating a
“four-factor beam’ scems like a logical first step in accomplishing this. The four factors could be

the location and depth of two separate localized defects.

If we realize savings in design points required for fitting regression models by using more

efficient design structures, or though one of the scaling methods described above, then we may

be able to develop regression models that make use of a large number of defect parameters. In
this case, using a larger number of defect parameters could mean that we are able to predict the
superposition of a number of individual defects. This superposition, if enough individual defects
are able to be included, could begin to resemble continuously variable distributed damage.
Modelling distributed damage is an ultimate goal since it would mean that the method could be
applied in essentially any situation, likely including the assessment of full-scale poles. Of course,
including more defect parameters also means that we would be required to measure more modal
frequencies in order to solve our regression models. There are an infinite number of modal
frequencies to use for these predictions, however, there are obviously physical limits to the
number of modes that can be practically be measured using our modal testing equipment, and

thus there is some limit to how detailed our predictions can ultimately be.

One other, perhaps farfetched, potential method for detecting variable distributed damage would

be to model the damage profile (or altemately the strength profile) of a specimen as some
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function of the location along the specimens length. Suppose that this function were generally
considered as a polynomial. We could develop regression models that could be used to predict
the coefficients of the polynomial terms instead of predicting actual physical dimensions of
defects. For example, if we represented the change in strength along a beam by third order
polynomial, then we would need to measure four modal frequencies to predict the four constants
in that polynomial equation. Obviously, we would still be required to develop the appropriate

regression models beforehand to be used for prediction. If this was proven to work, it could

potentially be useful for predicting complex damage using a small number of measured
frequencies. However, if we have a superposition of smoothly varying distributed damage and
abrupt step changes in condition (which is anticipated to be the case for wooden poles as we
have varying degrees of rot interspersed with knots and holes), then the function required to
represent the change in condition along the specimens length would become prohibitively

complex.

As we mentioned earlier, the proposed method of defect detection has so far been proven useful
for prediction of idealized defects under controlled conditions, and with future work, it could be
applied in situations that are more practical. Some of the work presented above could be pursued

to help extend the scope of the method.

7.2.2 Future Development of Methods Relating to Full Scale Pole

Testing

The method of averaging modal damping ratios, which we have so far found to be promising for

assessing condition of wooden poles, should definitely be the initial focus of future efforts. More
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poles should be tested in the lab in order to expand the database that is being used to develop
models. In addition, models should be developed and used to predict the condition of specimens

that were not used in the model’s initial development. Because of the limited number of

ens in this study. and the fact that were using percentile rank instead of actual damping

removing the predicted specimens from the models was not feasible.

Modally testing poles in the field is another target area for future work. Since modal testing is
desired to be used in the field for assessment of in-service poles, then models for damping should

be developed from data collected from in-service poles. This would allow damping effects from

sources such as soil and attached hardware to be included in the models. It would also allow the

practicality of performing modal tests on in-service poles to be assessed. It was found that modal
impact tests could be performed adequately in the lab by impacting at heights between five and
ten feet from the ground line. It scems reasonable that someone standing on the ground with a
large hammer could impart a suitable force at least five o seven feet from the pole’s ground line.
However, field trials are required to validate this assumption. In addition, field trials would

determine whether modal impact tests are practical in the presence of varying environmental

challenges such as wind, rain and ice.

For in-lab full-scale tests, some minor issues relating to the test bed were discussed in section
6.1.2 and should be addressed. For other in-lab work, attempting to use the average damping
ratio method to predict the strength of small-scale beams could be an option. Many more tests
could be done with much less effort that way. We could easily get enough data to develop

aceurate prediction models if the method works. The beams could be subjected to crude

techniques of impa

¢ damage, so that damage better represents the random, naturally
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developed damage that occurs in in-service poles. Techniques such as chipping the surface with
tools could be applied to achieve that effect. Precise machined defects that cleanly remove

‘material may not have the same effect on damping, as we discussed in Chapter 6.

Since we have only employed modal damping for assessment of full-scale poles thus far, further

investigation into the use of modal frequency is warranted, based on the success that we have

had using modal frequency in other applications. Model frequency will likely be a little more

difficult to incorporate into our assessment methods, simply because it is affected by so many

factors. Pole length, diameter, taper, density and stiffness all affect frequency and would have to
be accounted for somehow. In addition, many of these factors would not be evenly distributed.
Perhaps some averaging technique, similar to what we used for damping ratio, could be
employed for frequency. In this case, frequency may first require normalization in order to
moderate the effect of factors such as variable geometry. Normalizing with respect to finite
element predictions of frequency, using constant properties (such as published average
properties) and specimen specific geometry, could help alleviate the effect of geometry on
frequency. Determining whether moisture content is closely correlated with stiffness or density
should also be a priority. If it is, and if we later wish to use natural frequency as an indicator of
damage, then we can account for variation in stiffness or density between specimens simply by

measuring moisture content.

Determining which factors impose the need for completely separate regression models is also of
importance. We have scen that the westem red cedar specimens were outliers relative to

regression models that related damping to maximum stress. Therefore, separate regression

models would likely need to be developed for individual wood species. Other factors likely
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demand the use of separate models as well. For example, it may be best o ereate separate models

for poles falling within certain age groups. Since old poles likely have lower strength, regression
models developed specifically from old poles may better reflect the behaviour of lower strength
specimens, and thus may be more accurate in the lower strength regions of the spectrum. Other
factors, such as structure arrangement (monopole vs. double pole structures) will likely mean
even further model creation. However, with the creation of different models, comes the need for

larger quantities of test data. More test data would be required in order to accurately develop

If the modal test method does indeed turn out to be useful for accurately testing the strength of
poles in the field, then other challenges will likely arise, such as how the data will be kept

organized and accessible. Models will continuously need updating with the collection of new

ble each time a decision is to be

data, and predictions of condition will have to be readily avail
made about the remaining service life of a particular pole. Developing in house software for
these organizational challenges scems like a logical choice, once the modelling and prediction
method has been well developed. Software would allow moderate levels of automation to be
incorporated as well. If results prove to be very good, then developing commercial products
could potentially be an option, based on the idea that investments have already been made to
collect data and develop accurate models. Despite the fact that the method used for assessing

n could be widely known, it would only be widely known in a general way. Having put

condi

forward the significant initial investment required to obtain pole test data would be enough to

secure a commercial advantage,
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Modal testing has already been proven useful in idealized specimens, and now assessing the

condition of more complex structures such as wooden utility poles seems promising. No matter
what avenues are pursued for future study in this field, work completed in the current study at

least provides motivation for doing future work of some kind.
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Appendix A - Solving a Stepped Beam in Maple

The following Maple worksheet was used for solving for the roots and the natural frequencies of
stepped beams according to the theory presented in section 3.2. Note that the roots are actually
solved for here by zooming in on the plot of the characteristic equation at points where it crosses

the x-axis.

Solving for Roots of Clamped-Free Beam
with two Different Cross Sections According to Paper by Jang ~

restart;
dia = 004064,
LI = 04064

EI = 8470000009

Bl = 00889,

Bl = 0.0889,
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A2:=b2:h2;

=L 3,
2= b2oh2;

o o [ ELILp2A2
prALELL2
ol
L2
21 E.

€1 = cos(KI-LI);

cos(K2-L2);

]nzs



SHI = sinh(K1-L1);
SH2 = sink(K2-L2);
CHI += cosh(KI-LI);
CH2 = cosh(K2:L2); 1

il Mt [L(S1 = SH1), (C1 — CHI), (-52

[(c CHI), (~S1 = SiH1), (K- (C2 + CH2)), (K- (52
+8H2))).

(=81 = st1). (~c1 = cHn), (K*121-(52 = sH2)), (K121
-(c2 - cu2))].

((-c1 - can). (st - s, (-K*-121-(c2 - c2). (K
<121-(52 + cH2) |k

CharEgn = Determinant(Mat);

plot(CharEqin, K1 =0..5);
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Klplot = 43367,

4367
E1-11 \**
wrad = evalf | Kiplot®- [ = |;
/[ Lt [p“;]
263082550
e = evap 2L
all: = [‘”z""]

426666630
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Appendix B - Three Factor Beam FEA Model Development Data




A?
EE
T

SEERERES

§
BREEEENERE

b s
- o on

BEEEE.uSBEEANNNE L AOENEANYEE,SASEBERS

212




F I I 5w o A vl e e el
b I I - fe I (R B I e o
= I o I (R N [ s e e




s | s Wi Fregserey P
oade 1| Mode 2] Mode 3 ose

Wl un el ] sed | o =t




215



Appendix C - Full Scale Pole Test Data and Measurements
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Modal Test (BF1)

ransverse mode | Messured Measured | FEA Undamped Frequency | FEA Undamped Frequency
Frequency [He] | Dampingratio | (Measured Properties) | _(Published Properties)

st 63| 0,007 153

and 681 o.0081 6110]

j3rd 11908 00090 15975|

Jath 2558 0012 303%0|

sth 35.799) 00097 a2

lsth s1680) 00053 7293

Loadvs. POL Displacement (851) |

\
- A - \
1
o it i
|

217




Pole tatisics (8F2)
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Modal Test (BF2)
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Modal Test (BF3)
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Pole Statistcs (TL-222 108 SYP A)(1st OId Poe)
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Modal Test (TL-222 108 SYP A) (1t Old Pole)

Transverse Mode
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Pole statstcs (TL-222 108 SYP B) (2nd Old Ple)

T Tamars  Jom WA
[y Na
— Ve (et i) Vol mper i)
i e
6oL mm) 0w s
o L) 2 s0m
Jpovsoip e ass um
lotoses el a s
e sk n e
o rames o wn an
o cramerence w3 o ] s
reumirere o) o s rom L Greumteanc () s
"o na
S e otcramre o 23
Mocramree &« [rpci xa
Iolome () 100 ey na
[owrom ut ) o Mfromue ) me
o Sping ) 20 oo e
s mau b 15
oensi e w61 e oies as
rouesr s en oy no
i I o an a0 s
Static Test (TL-222 108 5YP B) (2nd Old Pole)
Propeny (Mevicunis) Messured valve Propeny impera nis) Messued Value
=T S0 o T
IVeldtosa ) 36087 tosdarvild 11 o
a
pree
sed
st 1] sress o G o) a1
o sves e i ) 2arfarsvessavealps 2120
200
2
Mosutus of sty (sl 754853 Modulo ofEsticty ps*10°%] 1
loensy g/ s
24




Modal Test (TL-222 108 SYP B) (2nd OId Pole)
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Pole Statistcs (TL-222 142 WRC A) (3rd O1d Poe)
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Modal Test (TL-222 142 WRC A) (3rd Old Pole)

F— Measured Measured | FEA Undamped Frequency | FEA Undamped Frequency
Frequency (Hr]_| Damping ratio
st 0893 00070) 0839 1050
2nd 3755 0.005s| 353 a6
3 9235 0.0062] 8512 513
fatn 16.738) o210 166%) 2173
st N/a| N/a| 27,061 35.359)
o N/a) N/a| 39867 52,088
Loadvs. PoL Loadvs. P
A)(3rd Old Pole) ) (3¢d Old Pole)
1o 1"

(TL-222142 WRC A) (3¢ Old Pole)

L Deflection (TL-

is pol
222142 WRC A) (3rd O1d Pole)




Pole Statistics (1L-222 142 WRC B) (4th Old Pole]
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Pole Statistics (TL-201 5YP &) (sth Old Pole)
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Modal Test (TL-201 SYP A) (Sth Old Pole)
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Pole staistcs(TL-201 244 SYP) (6th Old Pole)
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Modal Test (TL-201 244 SYP) (6th Old Pole)
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Pole statstcs (TL-201 242 SYP) (7th Old Pole)
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Modal Test (TL-201 242 SYP) (7th Old Pole)
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Pole Statstcs (TL-201 241 5YP) (8th Old Pole)
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Modal Test (TL-201 241 SYP) (8th Old Pole)
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Pole Statstics (TL-222 140 SYP A) (9th Old Pole)
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Modal Test (TL-222 140 SYP A) (9th Old Pole)
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Pole Satisics(TL:222 140 $YP 8) (0ld Pole 10)
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Modal Test (TL-222 140 SYP B) (Old Pole 10)
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Pole Statstics TL-222 97 SYP) (11th Old Pole)
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Modal Test (TL-222 97 SYP) (11th Old Pole)
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Appendix D - Supplementary Results Using Damping Ratio of

Damping ratio, normalized damping ratio and percentile rank of damping rato da

Full Scale Poles
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Damping ratio and average damping ratio plotted against maximum break location stress:
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Normalized and average normalized damping ratios plotted against max. break location stress:
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Actual and averaged percentile rank of damping ratios plotted against max. break location stress:
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Summary of results for damping ratio parameters plotted against maximum break location
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Damping ratio and average damping ratio plotted against maximum Ground line stress:
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Actual and averaged percentile rank of damping ratios plotted against max. ground line stress:
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Summary of results for damping ratio parameters plotted against maximum ground line stress:
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Power and exponential regression models that were used for predicting max. stress at GL:




Linear models of actual and average percentile rank vs. max GL stress using only old SYP:
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