‘M |

rﬂm

Efficient Computational Fluid Dynamics Methods
for GPGPUs

by
Jason Normore
A thesis submited o the
Sehool of Graduate Studies
in partal fulillment of the
requirements for the degree of
Master of Science
Computational Science
Memorial University of Newfoundland
November, 2010

St. John's, Newfoundland

CFD)

merical methods to solve fluid systems. Most practical CFD problems involv solving a

techniques for general purpose fluid low simulations. The improved techniques produce

Acknowl-

Contents

Listof Figures
Listof Tables
Listof Algorithms
1 Introduction
2 Computationsl Fuid Dynamics
21 Goveming Equations
22 Discretization Techniques
221 Finte Difference Method

222 Finite Element Method
223 Finite Volume Method

Gridsand Mesh Types
24 Methodsfor Solving Flid Systm
25 The SIMPLE Method

251 The Algoritim

252 Derivaton.

The PISO Method

261 The Algoritim

262 Derivation

Methods for Soving Systems o Lincar Equtions
270 Jacobi Method

272 GaussSeidel Method

273 Successive Over-elaation Method

274 Conjugate Gradient Method

GPU Architecture

31 GRUwCry

32 Programming Model

33 Handvare Model

34 Performance Measures
341 Run Time and Specdup
342 Memory Requirements
343 CUDA Occupancy

Related Work on GPUs
41 Computational Fluid Dynamics on GPUS

42 Solving Systems of Linear Equations on GPUs

Methods

S1 Discretzation Technique .

52 MeshType B

53 SIMPLEPISO -GPU Methods

54 Solving Sysems ofincar cquations
541 GPU Gauss-SeidelSOR Method

542 GPU Conjugate Gradicnt Method

543 Summary
55 Coeflcient Calculation
56 Comections

57 Convergence

Results

6.1 Solving systems of inear equations

62 Performance

621 Test Machines
622 The SIMPLE Method
623 The PISO Method
63 Memory Requirements
64 CUDA Occupancy
7 Discussion
7.1 Solving systems oflincar cquations
72 Performance .
73 Memory Usage
74 CUDA Occupancy

8 Applications
8.1 Evolutionary Shape Design Optimization

82 Direet Turbulence Modeling
9 Future Work
10 Conclusion

A

CUDA Occupaney Data

List of Figures

Simple sructured mesh withone epesting patirn
Structured mesh with e repating patirs
Unstructured mesh around crcle

Ermor v iteaionfrtrs icarsovermethods
GPU vs CPU Peformance Evolution 22)

GPU vs CPU Architecue 22]

GPU Programming Model [22]

GPU Strcaming Mltprocessor Components 22]
Scalbility of GPU Svcaming Muliprocesors (22]
(CFD Node to GPU Thvead Mapping .

Red Black Nodes

Red Black nodes with local and neighboring nodes .

‘and Conjugate Gradient methods
Run times per itration for GPU implementations of SO and Conjugate
‘Gradient methods (separate plots)
E
E
method

Full Specdup comparison for SIMPLE method using CPU AMD Athlon

4850¢ at2.5GHz

6.6 Full Specdup comparison for SIMPLE method using CPU AMD Athlon
320002.0GHz . &
67 Intel X 0
w267GHz F)
68 C s
69 Specdup for PISO method sa
610
WSH 5 5 73 7 . 6

11 Fll et ompron o PIS0 mthod sing CPU AMD Aton 3200 ‘

w2octs o o
612 ol Spnipcomparisn o FIS0 mtod i P i e X550
oo ... o
615 Tt mery v o SMPLE metods e GPU .. 7
6.14 Relative memory usage for SIMPLE methods per GPU ” ‘
pl ol e
616 Retive memry g o PISO ol e GPU ”
BYR— e
A1 et ou ot sonto et el e ”
1 rblck hred e o et e oy b .. 99
52 g g et sy i .. 0
B3 etBountayVaes ket el ey b . Lo
(PR — e
5.3 spyComecins st e ey s .
56 consracCons.o el ey o
87 coscCotiens e el ey i 15

B apply.piso.cormetions kemel occupancy data 295 et in v 00

B9 calculate.ue.ve kernel occupancy data 107

B.10 constructCoeflcient.pec kemel occupancy data 108

List of Tables

61
62
63
64
65

Test Machines
Test GPUs .

Specdup Results Per Machine for SIMPLE Metod . -
Test Results ofall GPUs v all CPUs for SIMPLE Method
Speedup Results Per Machine for ISO Method

est Results fall GPUsvsall CPUs For PSO Mithod

cups

‘Optimized Shape Design Proble: Estimated Times . -

List of Algorithms

21
22
23
24
25
26
2
51
52

SIMPLE algorithm,
PISO algorthm .

Jacobislgoritm

Gauss-Seidel agorithm

Successive overrelaxationalgoritm .
Conjugae Gradicntalgorithm
Preconditoned Conjugate Gradicnt agorith
Parllel (Red-Black) Gauss-Seidelalgorithm
GPU Guass-Seidel algorithm

1 Introduction

merical methods to solve fuid systems. Most practical CFD problems involve solving &

expensive for practcalfuid systems.

“The objecive of this work is

pose fuid flow problems for the paralll architecture of graphics processing units

(GPUS).

a traditional CPU.

best suited for general purpose CFD on GPUs.
« to describe applications tht are good candidates for CFD on GPUs.

I, for example, an evolutionary algorithm was used in a shape optimization method

where each evalustion was a solution of fluid system for the purpose of minimizing the

drag:
be infeasible for use in & reasonable time period since an evolutionary algorithm could

F A

“This is the context in which the system described in this thesis was designed, s a fitness

Chapter

some general CFD theory and of these alrcady-defined CFD methods.

the paralelism of graphi units
(GPUS). GPUs are in almost all modem computers used mainly for video and graphics

display. They are many-core (like) processing units, originally designed for operating in

became popular for scientific and general purpose computation. Chaper 3 i a review of

“The proposed methads involve the design of an algorithm for CFD solution methods

pars
of his work.

methods for CFD on GPUs.
“The proposed methods ar sl unique in that they take advantage of different opt-
mizaton echnique, such as smart register usage and shared memry usage. Chapter S
describes the methods usd i the design and implementation o the proposed CFD tech-
nique on GPUS, sl with results and te aalyss ofthe esuls n chapter 6.
Computational fuid dymamics s a lage field, with many applications and soluion
methods. This thsis defnes algorithms not only for single CFD method, but for mul-

e methods

ods developed in this thesis.
Contributions made through this work are

eral purpose fuid low problems for GPUS.

« the analysis of several ifferent CFD solution methods and determination of which

are best suited for general purpose CFD on GPUs.

 an analysis of several applications that are candidates for CFD on GPUS.

2 Computational Fluid Dynamics

Computtional Fuid Dynamics (CFD) is n ara of flid mechancs that uses numerical
‘methods nd algorthms t sove flid flow probles. Within CFD sl ther ar many
iffrent arcs,involving dfferent soluton methods. The choic of a solution methodis
Iargely dependen on the problem,on the conext of the problen, and on what i reguired
ofa sluion forltr analysis (post procesing).

hapter
advantages and disadvantages are for different types of problems. It will stat with the

nd

The following section will cover some of these discretization techniques, followed by a

Finally,
for solving systems of inear equations.

21 Governing Equations
“The governing cquations of a fluid system are at minimum the continuiy equation for
‘mass and the Navier-Stokes cquation, although others may be applid s required by the

system in question, such a the equation of stae, conservation of mass, conservation of

energy, Since our

@ quation for mass and the ki hat will be

the limit of what we discuss in his section.

that mass,

Navir-Stokes equation,

~Vp+uVii+ f @

where pis the pressure, and ['is any external forces [16]. Equations (1) and (2) comprise
s

simple flows have time independent soluions, o steady-state solutions. The steady-statc

governing equations for incompresible fluid flow are [12]

V(=0)
and

P(E V) = ~Vp+ i+] @
22 Discretization Techniques

is defined ic.
model flow) we need a method
4 diseete i

Many different discretization methods can be used, which should al give the same result

academic app! (FDM), the finte

FEM)

discretization methods fllows

221 Finite Difference Method

PDEs, it

the 18th century [1].
domain by a grid. Any PDE's

23 for description o diferent grid types).

222 Finite Element Method
“The finite clement method (FEM) is similar to the finte volume method (EVM),in that
the problem domain is divided into set of discrete volumes (see the next section), or

finite elements as the name of the method suggest. These finite clements are generally

unstructured, D, and e

3D The FEM

that guarantees continuity across the lement boundaries [12)
FEM

bl geomatrles

s for structured grids, which would make an efficient solution more difficult to produce
12)

223 Finite Volume Method

The finite) the in

this work. egral form
(o).

50 that the integral form of the equation can be applicd over each control volume. The
reason for the populaity of the FVM is that it conserves the equations in question over
each OV,

conservation cquations (such as fluid simulaions), and that it s easily formulated over
For cxample, -

using the FVM is (0 integrate over each CV,

of @onav - [wpave [uwaa ©
& & &
By using Gaus’ divergence theorem,

[vaav= [aaan o

parts of

the CV [32)
“The advantage,

The FVM. y
due 10 its capabilty to handle unstructured grids and that it conserves the solution over
eachCV.

which explains

One of FVM method

i that it s difficlt o develop solutions of higher than second order because it requires
interpolation, differentiaton, and integration [12],

23 Grids and Mesh Types

A mesh, or grid (these terms will be used interchangeably throughout ths thesis),

D)
problems, such s the simulation of fuid system, there ar three main types of meshes:
structured meshes, unstructured meshes, and hybrid meshes.

First we discuss the structured mesh, also called a regular mesh, which is named so

aid

it may be dificul

shape 8],

or clements to cover the problem domain, where the shapes are not required to have &
pattem. An example is given in Figure 2.3, A benefit of the use of this type of grid is
” h simpl

that it can easily handle
Drawbacks of this type of mesh is that it is more computationally expensive to generate,

it uses much more memory because all control volumes must be stored long with their

Figure 2.1: Simple structured mesh with one repeating patiern

Figure 22: Structured mesh with multple epeating patecrns

Figure 2.3 Unstructured mesh around circle

“Third, and finaly, is the hybrid mesh, which as its name suggests s a mix between

A hybrid mesh bination of small sructured
‘meshes in an overall unstructured pattern [4]. This type of mesh has many of the same

advantages of L

2.4 Methods for Solving Fluid System

“This section will deseribe two of the methods used in this thesis for solving the govern-

1 fuid flow. Si i A i this thesis are
nonlinear and coupled by pressure, both salvers ar in the category of *pressure corree-
tion” methods, which is a guess-and-corret ieratve approach for solving these types of

cquatons [30]
tions, cquation (3) and (4), and s caled the Semi-mplicit Method fo Pressure Linked
Equations (SIMPLE) method. The second method i for solving the transien governing.
flow 1) a0 (2), and s clled th Press

Operators (PISO) method.

25 The SIMPLE Method

The SIMPLE sure L
loped. 24,
flow equations.

“The reason this method is required to solve the governing equations given in Section

2.1 i that these equations are coupled by the pressure field and that the Navier-Stokes

equations are nonlinear (because of the velocity variable). Therefore we must decouple
I themn.

field is accomplished by beginning cach iteration with a guessed pressure fiel, nitaly

as the guessed pressure field 21].
E algorithm,for which

be applicd. Then we

derivation of the SIMPLE method, again for which any of the discreization methods de-

scribed in Section 2.2 can be applied. It may be useful o follow along with the general
1 2

251 The Algorithm

Igorithm 2.1 [32). For more.

information on the exact nature of each step, see Section 2.52 for a complete derivation

and defniion of this method.

252 Derivation

LE method for

the steady-state luid problem (since we use it only for the steady:state problem in this

u

‘Rigorithm 2.1 SIMPLE algoritin
T Initalze guesses forp", o, v
‘while convergence.

2 o
5" TISTEP 1 Solve discrtzed momentum equations o ge °, nd
« Sty + 10215~)i by
b Somviy + 3050 Py A + by
.
7. //STER 2 Solve presre comcion cquation o gt
8 0y = Ot bl + ot + gty by
| 5

B JSTER3: Cometpremy ad o

- Harg)
= Fig-1)

vork] d o o

a time-dependent problem. Similar 10 other guess-and-correct procedurcs, the SIMPLE

- E

values u* and v*

m
®

where P

the local point) and neighboring faces (lowercase ¢wsa) between nodes as
A

at this node, the SIMPLE method defines the two velocity and one pressure correction

©
(10)
an
and

Valued discreized equations (7)and (8)produces
ap (=13 = P o s =2+ 3 0~ 1) = (=Dl (12)
ap o= 13) = 3 s (= 50 + 3 0= 52) = O = ay
10) (1) pro-

duces

iy = 3 ot + 3 s~ 1) a4
apth = auta + 3 0= 1)z as)

Here the main spproximation of the SIMPLE method occur,the =ty and 3 0ty

terms are dropped to simplify the equations to

= ydon -1

where d.u = dy/ap and dv

a6
an

dz/ap. Now that we can corret the velocity felds using

quations (10), (11), (16), and (17) all we need is the pressure correction in order to be

‘cquation (3), we can use this to derive an equation for the pressure correction . The 2

[(pu). ~ (ud)] + (o), = ()] =0)
cquations (16)ad (17 nothse) we gt
(, (“; + 3~ w;,)) dx) N 9
(,, (“-, + 3 e —m) a) + e
(- (u; + yian o~) ay) - @y
(ﬂ (.,; + Lo ,/p)) M @
arp = iy + o +asts +anph + by @

aw = pady

ag = pudy
as=pdudz
ax = pl.unds
ap=ay +ag +as +ay

by = puldy = pudy + pud —

a7, 49

2.6 The PISO Method

The PISO (Pressure Implicit with Spliting of Operators) method is derived directy from.
the SIMPLE method. Like the SIMPLE method it is an iterative method. In ft,the first
three steps per iteation e exactly the same as those for the SIMPLE method. It involves
o mare steps t0 solve a second pressure correction equation and then apply this second
pressure correction o th flow felds.

‘The PISO method uses the concept of operator splitig o derive a second pressure

i
S0 that we can solve for a time step at each teation.

“This method i used s the transient (tme-dependent) solver i this work. The reason

this method is ideal s a transient slver for the governing equations i that each teration

equation 2],

Similar

a general derivation of the PISO method.

261 The Algorithm
A general algorithm for the PISO method is described in Algorithm 2.2 [32]. For more
information on the exact nature of each step, see Section 2.6 for a complete derivation
and defnition of this method.

Rigorithm 2.2 PISO algorithm
1. Tnitilize guesses fo 7, ', 0"
2 repeat

3 rsTeR 1
& Exactly those ofthe SIMPLE method. Sce Scton 25
s
& J/STEP 4: Solve second presurs coretion cqustion o et 7
T Gy = GeriFi + il + OBy + gl + s
s
5. /STEP ; Comst prssure snd velcies sin sccond pressurecomecton
10 py=piy
g = 0+ b g
1y =iy + {0, - s
s
I
is
262 Derivation
E method,
ofthe fint 252 for this

information. The PISO method involves solving an extra pressure correction equation in

additon t the seps from the SIMPLE method, and so can be loosely called a guess-and-

is derived [32] by w

16

equations at the end of the SIMPLE method to be:

@)

@)

where 1", 1", and p* are the values a the end of the SIMPLE method steps. I we solve

these momentum equations again, defining them as ™" and '™, we get

@6
an
P
-B") @s)
=) @9
where /i the second pressure cortection, dfined in
P @0

and
steps as we did to produce the first pressure correction equation (see Section 2.52) we

arive at the second pressure correction equation

any = awply + asp + sy + anth + b an

where

| o = oty
; a5 = pludy
as = pdvdr
ay = plunds

b",; (&), S =0~ (%) Cowieti -

(g)-):m (453~)

27 Methods for Solving Systems of Linear Equations

271 Jacobi Method

‘The Jacobi method is & method for solving systems o linear equations, or Az = b matrix

quations for 2. It i named afer the German mathematician Carl Gustav Jakob Jacobi and

Ifwe define A4 € RY*¥, be R™Y, and € R as

P @)

[s

where k is defined s th ieration number.
One main requirement of this method is that the matrix form of the system of linear
cquations must have non-zero diagonal clements. The method simply solves each disg-

onal clement of the matrix and then updates the value of the diagonal lements with the

equation (35). This process s iterated until convergence i reached.

Givn spase i sy, o, and cocficietamays .1V, ., 0.5, 0., a.P, b
s work o iz, the cqation
ool t e would ook ke
Wygull +aE, aSul, +aNull, +b,
il ity oSinll teinllathy

fori=2:m+1andj = 2:n+1 represent the nodes inthe CFD system (mesh). The
pseudo-code (MATLAB lke) might ook like Algorithm 2.3.

Aigorithm 2.3 Jacobi Aot
fer=0:maxiter do
2 fori=2(mrl),
5 for =2t de
“ new() = @ WG) uG-1) + aEG) ui+1d) + a6) uiD) + aNGd)

i) + bGij) /PG
for

F
& endfor
7. if comvergence then
& break
9 endif
10 u=unew
1 end for.

10), which is why
pdar
O(m x n x maziter).
272 Gauss-Seidel Method
prob-
Tems as th B
ematicians Carl Philipp Ludwig and s also k the

method of successive displacements [13].

atthe end of the teation, it updates the diagonal values “on the fy".
1f we describe A, b, and z as we did i the previous scction, the GS formulation i as

follows

@n

where k,
teration number is used for the elemens.

Given a armay for a sparse matri, u, and cocflicient arays a W, a_E, 0.5, a_N, a.P,

Cr the quat

0 solve at ieraton k for the GS method would look like.

o Wi+ 0 Bl + 0.5l + 0Nl + by
o i) o Bl e Sl llathy g

fori=2:m+lamdj=

+ -+ 1. The important difference between this equation

i Jaca) K+
1 are used o update the currat value at & + 1 for previously encountered nodes. The
pseudo-code (MATLAB like) lookslike Algorthm 24, where we can see that at line 4
We update the array and not th temporary amay unw asin the Jacobi psudo-code.
A it glane it might seem ke a common misake 0 forge he temporary aray,but
{his method actully convergs about twice s fst s the Jacobi metbod for diagonaly

‘matrices 18] talso

the extra t armay o store updated
diagonal vaues
mmerne snd postive defte

‘Algorithm 2.4 Gauss-Seidel algoritn
T for iter-0rmaxiter do

2 fori=2(mtl)do

3 forj=2(n+)do
B

WG uli-1) + 8 EG) uG1) + 0.54) wid-1) + NG uig+1)

i)
+bi) /P

s endfor

5 endfor

7 if convergence then

5 brek

o endif

10 end for

273 Successive Over-relaxation Method

“The SOR method is a two stage iferative update method, where the first stage i exactly
method, an tthe

updated values at cach iteration, through the application of a relaxation parameter. This
1

and greater than 1 for over-elaxation. 1 = 1 then the SOR method is identica t0 the

Gouss-Seidel method
I we describe A, b, and as we did in the previous two sections,the SOR formulation

is s follows

39

‘which can be combined to give

5 o,

= S - o)

‘These equations can be combined to give

™ (nrwdul".‘,‘mx; oSyt el by)Hkum‘?

@)
fori =2 mtLand j = 2: n+ 1. The pseudo-code (MATLAB like) looks like Algorithm
2.5, where we can sce that if we let & = 1, tis code reduces 1o that of the Gauss-Seidel
code in Section 2.7.2. This method has the advantage that it converges very much fister

than even the GS method [15].

Aisspd?and D — L (where D and L s of

Soymameic s posiive defte

- for fer-Ormaiter
for

f
P U LI B L0 +
oG, s P L
s e
& endfor
7 ifcomergence then
& break
o endit
10 end for
<2

08
ischosen as 18]

=2 __~2-mm @)

o= TG

where 7 i the constant 3.14150... and i is the mesh element width. Figure 24 shows

ata faste rae than the Jacobi and GS methods.

274 Conjugate Gradient Method

linear equations. 1t was fist proposed in 1952 by Hestenes and Stiel [18]. The term
has

o the exact solution of Au = f in a finte mumber of terations, and so in this sense it is

i A s porsingalar fhre s matis B such i AB = BA

10
Heration.

Figure 2.4 Emor v ieraion forthre linea solver methods

prodiuce an exactresul.

‘The CG method is & gencralzation of the metho of steepest decent, which s an iters-

which s cal-

Au-f
“The general CG algorithm i documented in Algorithm 2.6 [18).

A

which will speed up convergence of the algorithm.

‘Rigorithm 2.6 Conjugate Gradient algorithm
+ Choose

2
B

“

s

p

h

o

5. if o] i e than some toleance then
w0 break

i endit

i fhea = T/ araen)

B gt B

14 cnd for

‘The basic idea s o choose M for which M~ A is better conditioned than A and that sys-
tems that involve A are easier 10 solve than those tha involve A. The PCG algorithm is
described by Algorithm 27 18],

Gradient algorithm

Aigorithm 2.7 Preconditioned Conjug
Tre=/-

™
2 Solve Mz = rofor zo.

9 I ra] i les than some tolerance then
break

endir
12 Solve Mz, = for 2y
]
o

per iteation,

hardware used. This il be discussed in more detail in chapter 5.

3 GPU Architecture

Graphi ‘They consistof

a set of stream processors that exccute programs (aso called kemels) in parallel. GPUs

p We will

progs then the architee-

Finally,

applications on GPUs.

31 GPUvsCPU

. Figure 3.1

ofthe past P

P e sec that GPU g ass CPUs in
this respect, even as CPUS evolve into having muldiple cores. Today, average GPU (even

e GPU: Us.

As previously mentioned, GPUs are a set of stream processars. This concept is the
‘main advantage with respect to GPUs (for certain applications). The main difference in

(CPUs and GPUs is how they weigh thei prioities in design with respect o control units

Figure
that the CPU (on the Iet) has a lot more of s intemal structure dedicated to control and

™

il
»

Peak orLoPs
[

Gz
Cors2 Duo

dundu g Jin Mar Nev May Jdun

203 w0 w05 206 2007 2008

Figure 3.1: GPU vs CPU Performance Evolution (22]

32 Programming Model

SIMTis -
ditonal SIMD (single instruction muliple data) concept in that SIMD applics the same
while SIMT

“The threads are mapped as a setof threads, grouped into blocks. The number of blocks
i the grid s called the grid size and the number of threads per block is called the block

size. Figure 3

then enumerated and distrbuted to the avalable cores on the device, Scheduling of these

Kemels, s threads of the grid are terminated and new ones are executed, i performed su-
3

amongst the cores on the devi.

S AT SRS
T e e o
RS G
L I
IS) RS
S R AT
— TR R TR
cPU

GPU

Figure 3.2: GPU vs CPU Architecture [22]

\
// kernel function
__global__ void Vechdd (floats A, floats B, floate C)
{
int i - threadrax.x;
Cl) = Al + Bl);
}
// main program, run on host
int main()
{
// Kernel invocation
Vechddes<1, No>>(A, B, C);
}
The _global._ specifier idenifis a kemel function, there ar other specifies that can

30

Figure 3.3: GPU Programming Model [22]

. sec [22]. Since thi

parlelon
Jocaton n the vectors. The kemel fntion s given the thread number that i i exceted
an by the direadids varabe.

“The kemel i exceuted on the host with the call VeeAdd <<< 1,N >>> (4, B,C)

1

for

use the code

\

/1 kernel function

__global_ void VecAdd(floats A, floats B, floats C)
{

int § = blockIdx.x + blockDim.x + threadldx.x;

Cll = Al + BUI;

)

// main program, run on host

int main()
L

// Xernel invocation
VecAdde<<16, N/16>>>(A, B, C);

}

We will sec

‘method in use on the GPU.

33 Hardware Model

\Vidia GPUs,

D

on-card, next o the registers of course but not far behind [22],
Figure the SM. . the
per " and

a . Ce
texture memory space is again read-only region of device memory, each uscd for their
i

therefore shared memory has much faser access time [22).

Figure 3.4: GPU Streaming Multprocessor Components [22]

An importat factr in the design of these sseaming multprocessors on the GPUS is
the scalabilit without having to lter the programming model. Figure 3.5 ilusrate this
factor. We can sce that each block is passed off (0 a single SM, and 50 as the number of

SMs increase, the divid

in i very
overhead.

et it 255

Devcomthasws

Figure 3.5: Scalability of GPU Streaming Multiprocessors [22]

For more information about the nVidia GPU architcture(s) and programming model
(CUDA) reer o [22]

34 Performance Measures

the GPU. These measures will be used to evaluate the resuls in this work

341 Run Time and Speedup

Run time s defined

fora progr
completion, For exampl

exccute to completion when it has converged to a fnal result. A CFD solution method

o the post exccution analysis to be performed.

on the CPU. it displ
(with respect to run time performance) of one technique over another. In the case of this

work,
is observed

342 Memory Requirements

e
for a program to execute successfully on a system. The memory usage may fluctuate
throughout exccution, 5o we can measure minimum, maximum, and/or aversge memory
usage on a system. This measure is important since we are developing a technique using

a this work). IF the

343 CUDA Occupancy

“The multiprocessor occupancy is the raio of active Warps to the maximum
aumber of warps suppored on 8 mulprocesor ofthe GPUL El:h o,

programs. These registrs are @ shared resource that are allocated among s e
“The CUD/

minimize register usage to maximize the number of thread blocks tha can be:

3

launch a kemel f
which the registers uscd per thread times the thread block siz is grater than
N, the launch wil fal.

c

in the kemel invocation determined in the code pror o kerel invocaton), the mumber
ofregistes perthread in use retrievd by lookingat the generatedcubin fl afercom-
plation), and the smount of shared mermory per block (s retrieed from the compiler
generstedcubin file). This spreadsheet will not only caleulate the fotal occupancy (85 3

tago), 3

anVidia GPU.

4 Related Work on GPUs

™ thesis. We will

such as other solution methods to fluid systems. We will ten discuss work relating to

solving systems of linear equations on GPUs.

4.1 Computational Fluid Dynamics on GPUs

In scientific lterature fluid flow problems on GPUs follow two separate paths, due o the
nature of GPUs, which were originally designed for graphics processing. First, as in this
work, they are developed to solve scientfc real-world fluid flow problems. Second, they

ook realistic, games, visua effects, or

for non-scientifc simulation systems, such as n [23].

I partiular it

ol y general 3 3
size,and aceuracy.
In Noverber 2006 nVidia released a new programming model for their GPUS called

(without knowledge of the graphics pipelne) on their GPUs [34], and since then many of

i

A .
age of the for GRU

e 1 s depth buffer and color . such s 19], 20],
and 31], This s is graphics AP! at-

ferent for different graphics APIS), with languages such as Ce, OpenGL Shader Language.

(GLSL), and High Level Shading Language (HLSL). The shader language programming
‘model is now considered o be out-dated for general purpose programs and fes effcient

 graphics problem in oder to be solved efficintly [34].

Tong etal. ina 2007 paper
using this graphics pipeline method, making use of OpenGLs shader language (GLSL).
T their study, they use a fragment program that fetches packed texture data' directly and

processes the data in paralll by distributing among them several pipelines. They use a

Jacabi method for linear equations, eraphics pipel

techniques.

o
CUDA programming model was a very new development at the time, and that the main

goal of

and [27], pun

lite visual effects. The technique developed in [23] makes use of the Smoothed Particle
The SPH

a Lagrangian approach to simulating the fluid flow. The Lagrangian approach simulates
fuid by simulating particles or particle packets, as opposed to the method in this work

This type

Fevtre pocking s the method whers il valessre sord o single RGBA texe vctor for
memory s and resduie efficency

3

entirely compared to the methods used in this work.

42 Solving Systems of Linear Equations on GPUs

Recently there has been lot of scienifc literature on the subject of solving systems on

linear equations using GPUs, such as in (33}, [9), and [11}. All of this work has been

272 for a discussion of this method). The work outlined i thi thesis aso depends on
other methods on GPUs such as the conjugate gradient method. The reason for the lack
of litrature in ths subjectarea i not that this s the fisttime it b been conceived but

(see Section 54

description ofits implementation).

equations on GPUs.
Systems of linear equations on GPUs: row-based, column-based, and block-based. Each
. The row-based

in parallel and the block-based strategy involves solving custom blocks of the system in

parallel.

» . a5 oppe s that

linear equations can be derived from this work.

thesis. This work involves the development of a system of linea equations solver using

 Red-Black (or checkerboard) parallelizaton technique where all nodes in a system are

3

itelf. The

work developed in this reference found that a 57x times speedup was achieved wit
developed method and that this technique leads to several implicit optimizations that the
GPU architecture, most notaby is that memory read patterns are optimized for the GPU

architecture (memory reads are conlesced').

Finally, ©n

and tested in Section 5.4,

5 Methods

inchap

be defined. This chapter will first discuss the discreization technique and its advantage,

this choice. Finally Section 5.3 and following willdescribe the design of the SIMPLE and

PISO methods, and al operations required i these methods for GPUs.

51 Discretization Techs

“The discretizaion technique used for this work is the finite-volume method (FVM). See

Section 223 for

tion technique i that it is casy to implement and, since ths work is meant for general
purpose CFD simations, this technique provides a robust and stable backbone to this
work.

can be found in Appendix A.

52 Mesh Type

See Section 23 for

ofthis type of mesh. We use this mesh ype because i isapproprise for th architecture
ofthe GPU and ' the programmin model. GPUs were orignaly designed for graphics
procesing, such s image flring or any operatons that invlve processing of 8 arge
number of pixcls. For thi reson, advanages can be ganed by th use of n aloritim
designed with this “pixel processing” ida in mind. Since the stuctured mesh type is

‘uniform set of nodes on the CFD system, this maps very well o the “pixel processing”

a

‘were originally designed to map toa sngle graphics pixel.
“The advantages of this compared to the unstructured mesh fype are, first hat we save.

GPU than on a host),

inherently coalesced

i uniform across th threads.

53 SIMPLE/PISO -GPU Methods

Generally, both the SIMPLE and the PISO methods involve the same operations (as de-
scribed in Section 2):

o Consiruc oeficint marces forsystcms o incarcquations
« Solvesystems ofinar quatons

« Apply comrections o flow fields

+ Check comsrgence (rsidual sum)

The SIMPLE 3 operations of|

trices and solving of system of lincar cquations per teraton. It then only requires 1 ap-
plicaion of corrections o the flow felds and 1 convergence step per iteration. The PISO
oth

coefficient construction and solving a system of linear equations, and again another for

application of the new corrections to the flow ields.

threads,or st isaone-
to-one mapping (Sce Fig. 5.1), that is onc thread for cach node in the discretized CFD.

2

sysem. The jusicaion for thi oc-to-one mapping lis n the nature of the oriinal
design of GPUs, that s, thy were originaly designed for graphics processing . pixel
processing. This means tha the GPU architecture i bt suitd for “small" operations on
many thrads/nodespixes see Section 5.2).

Figure 5.1: CFD Node o GPU Thread Mapping

“The folowing sections will describe the methods used for solving systems of finear

equations on the GPU in the SIMPLE and the PISO methods and discuss why they were

54 Solving Systems of linear equations

‘The most important part of our implementatio is the solution method used for solving

systems of linear eqations. Normally (on a CPU), a preconditioned conjugate gradient

r

matrix-vector multiplication and a vector-vector summation, which, compared {0 a lincar

“The reason thi

For ti
solvers (this wil be justificd in this section). Although the CG method converges in less
iterations,the cost of run time out-weighs the cost of convergence time. The SOR method

ethod,

are updated in parallel

541 GPU Gauss-SeideUSOR Method

The GPU

b i the

System per ieration, although cach node s only updated once per teation. See Sections
272 and 273 for a deseription of the sequential Gauss-Seidel and SOR method from
which this method i derived.

- cach
node has neighboring nodes of the same color, such as in Figure 5.2. This coloring of
nodes (1o colors for a uniform two dimensional mesh is why this paalll technique for
the GS is also known as the red-black or the checkerboard method. Once each node is

Figure 52: Red Black Nodes

except for one change: at each iteation there are two passes over the nodcs,the first pass

nodes.

(black nodes). Then we iterae as normal until convergence is reached. So far the parale]

something form for now) Algorithm 5.1

igorithm

end for.
& ifconvergence then
break

endif
11 end for

The advantage of this algorithm, in & parallel sense, i thatall RED nodes can be updted

K from the update

equation (42) we know that only neighbeoring nodes are read each node update. Since

45

pdated at of the different

" i simultancously.

Now that we have the general idea of the algorithm, we can move on 10 a more custom

Firstofall, described

previously i Figure 5.1. With this implementation we now have, for a 2 dimensional

system, reads and 1 write per node up

thread (the local node) and the reads are from the local node and ts direct neighbers, as

icated by the white dos in Figure 5.3,

Figure 5.3: Red Black nodes with local and neighboring nodes

As of the algorithm developed so far, we use global GPU memory for the $ reads per
node update, whih requires many duplicat reads per update since all neighboring nodes
of a single local node are being ead at Ieast one more ime and up t0 4 more times per
half ieration (persingle color update pass). I we ecal Section 3, the GPU programming

model uses a st of blocks, where each block contains a set of threads, and each block has

access to the section above). I we make

use of this shared memry per block we can remove nearly all of these duplicate reads by

3

The setof nodes

required for & block o update allofitssssocate thrcads (from the running cxample) are
indicated by whitelincs in Figure 5.4. 1 we load ll ofthese nodes into shared memory,
including the ghos ayer which s the layer of non local nodes (nodes that do not need o
e updated by this current block)that suround the edges of the block, we can reduce the
number of duplicate reads by a factor ofalmost 4 along with the memory acces time for

these reads since shared memory is much more effiient

Figure 5.4: Red Black P Y

‘The pseudocode (with some real CUDA commands) CUDA kemel (see Section 3)

that is exccuted for cach thread would then look something like Algorithm 2. Lines

210 15 load all local nodes and the ghost layer into shared memory. Line 17 uses the

synetheads() function, which causes al threads in the block to wait at this location in

this way allrequired data i loaded ino

the code unilal of them have reached that p

shared

Afgorithm 52 GPU Guass- Seidel agorithm
7T Toad local node info shared memory.

T
2w shared[s il j) = ulil

3: /1 check if on edge node, if yes then load ghost ayer
4 if threadlx.

S wshared[s 1]fs) = ufi-UGL:

6 end it

7 if threadlx. SIZE X-1 then

p \uhmd[ud][s!] G

9

1o et

s 1

12 endif

13 ifthreadidxy == BLOCK SIZE Y- then

1 ushared(s s 3+1] = W1

15

16 I/ wait for all threads in block to finsh loading shared memory
17 _syncthreads();
for = all RED or BLACK nodes only do
19 update ufif)]
20: end.

211 i convergence then
2 brek

230 end it

542 GPU Conjugate Gradient Method

As discussed in Section 2.7.4, the conjugate gradient (CG) method is pscudo-ierative

linear 1 2.
“The reason in
7, Section 6.1, be

the most efficient in tems of number of iterations required fo converge 10 a solution, but

other lincar solvers on the GPU.

Much of parallelizing itisa

very good candidate for parallelization because it requires only two types of operations.

mation (e.g. -
© the GS/SOR method per
iteation.

iplication and vector-vector addition. The GPU parallelizaion of the matrx-vector mul-
tiplication is a simple and well estabished method [3] to map cach thread in the GPU

programmiing model to a single matrix row. Each thread then simply performs the dot

product a inatwo

T r———

‘additons. The CUDA kemel for matrix vector multiplicaion is

extern "C" __global_ void mat_vec_mult(
floats x, floats aW, floats aE,

floats a_s, floats a_N, floats a_Pp,

floats b, int num_rows, floats y_out, unsigned int Nx)
{

int i = blockIdx.xsblockDim.x + threadIdx.x;

int j = blockIdx.ysblockDim.y + threadidx.y;

int row = 4+ 3 « Nx;

1€ (row < num_rows)
{

float dot = 0.0f;

dot += a_plrow) » x(row);

L€ (xow >« 1) dot 4= -a_Wlrow) » x[row-1];

i€ (row < nun_rows-1) dot += -a_E(row] v x(rowsl];
§f(row >= Nx) dot += -a_S(row] + X[row-Nx];

4f (row < num_rows-Nx) dot += -a_Nl(row] + x(rowsNx];

y_out [row) = dot;
}
}

vector maltiplication.

‘would perform the addition ofits corresponding elements. The vector-vector summation
kemel looks ike

extern "C" __global_ void vec_vec_add(

floats x1, floats x2, floats x_out, unsigned int Nx)

{

int i - blockIdc.xeblockDin.x + threadlde.x;

x_outli) = x1[] + x2[il;

}

In order t0 be most efcien, there are different methods for both vector-vector addi-

and vector

(except for extremely large vectors). One such operation, on line § of Algorithm 2.6, is

there isalso a effi-

ciently on the GPU especially when the vector is already loaded into GPU memory (as it

the GPU precondi-
tioned CG method.

543 Summary

sion Section 7.1

55 Coefficient Calculation

effcient matrix for the system of lincar equations. This operation can be performed with

a single GPU program, or kemnel, for cach type of equation, e.£ velocity, pressure correc-

§ . is sparse,
direct neighbor nodes, o

coefficients, not for the full matri. Access to field values at the local node and at direct

neighbors is also required, and since globsl memory access on GPUS s ther largest bot-

teneck, in number of

duplicate memory accesses.

5.6 Corrections

“The application of the corrctions to the flow fields s simply a kemel that applics the

effcint.

57 Convergence

‘Convergence of boththe SIMPLE and o

againta tolernce

For both rsidual sum and nom caleulations o the GPU we must perform a sum.
This may s simple but o efficienly do this on & GPU a e work s required. To do
“The method

asillustrated in Figure S.5. This algorithm works by assigning a uniform and contiguous
subset of the vector o each thread block, each thread block then performs the sum of its

associated subset and stores the result i the first memory locaion of is subset (denoted

down the tre in the figur), which i the sum of the original vector, The time complexity

E) v O(N)
summation.

000000 00
(-] ® o o
[} [}
[}
Figure 5.5:
vages i

formed on the GPU but that the vector itself never needs to leave the GPU (which is pre-
ferred since al other calculations for the SIMPLE and PISO methods are on the GPU).
Further, retrieve the sum only one value needs (0 be copied from GPU memory to host

memory.

mstserious bottenccks in any GPU implementation.

6 Results

9 a code, and
finally & measure known as CUDA occupancy of the GPU kemels can also be measured.
CUDA occupancy is a measure of the multprocessor occupancy of a GPU by a given

CUDA Kermel (see Section 3.4.3 for a detailed description).

the work used Some of these

ing systens oflnear cquations on the GPU We will then describethe resuls of perfor-
mance messures of both CFD methods that have becn developed in this work. Next we
descibe the mermory reqirements of these CFD methods, and inally we repot on the
‘CUDA occupanecy of the GPU methods devloped here

A discussion of cah topc i thi section ca be found in each respctive sction of

Chapter 7.

6.1 Solving systems of linear equations
Figures 6.1 and 6.2 show a comparison of the run time per iferaton of the GPU implemen-
ation of the SOR and conjugae gradient methods as the number of nodes in the system

increases. is o justify for use in

the GPU CFD methods. Both figures represent the same comparison tests, he two meth-
ods are displayed together in 6.1 to highlight the very large diference in run times, and.

separately in Figure 6.2 o highlight the time scales.

GPU, AMD

Athlon 3200 CPU at 2.0GHz, and 2 GB of memory. This GPU is an average GPU for a

home desktop computer. The SOR method required about S5 iteration in order o reach

convergence, gen

20

‘ o soR
‘Conjugate Gradient

7 |

g §
| gxm
‘ H
& 100
j H
‘ e
o

i
ol

:

62 Performance

used here are run times and speed g :

appr
For the purpose of comparative results on GPUs vs CPUs four machines were used,
giving 3 CPUs and 3 GPUs to compare algorithm performances. This section describes
Eand

PISO methods.

621 Test Machines

Table 6.1

shows CPU and GPU information (CPU, GPU, and Memory”) for cach test machine used.

comparison with the sequential agorithm.

Table 61: Test Machines

U U Nemory

“Vidia GeForee 8200 AMD Athlon 4830¢ at 2511z 2GB
nVidia GeForee 9800GT AMD Athlon 3200t 20GHz 2 GB.
Vidia GeForce 9800 GTX+ AMD Athlon 4850c at 2.5GHz 2 GB.
nVidia Tesla C1060 el Xeon X3550 at267GHz 3 GB

“Tuble 6.2 shows feaures of the GPUs that cach machine contained, along with some

8200,

3 and finally to
a high-end nVidia Tesla C1060. Tesla cards are designed for use i scientiic computing

Tios memory, vt nchading GPU memory

applications, while the GeForce models are designed for graphics processing, ¢.5. video
games.

G Cores_Memory
Vidia GeForce 8200 8 256 B (Shared),
nVidia GeForce 9800GT 112 1024 M
nVidia GeForce 9800 GTX+ 128 SI12MB.
nVidia Tesla C1060 20

622 The SIMPLE Method

Figure 6
E method,

the CPU in cach respective test machine
Table i

respective CPU
‘9800GT/AMD Athlon 3200 combination provides the best specdup and scalability with
 peak specdiup of about 360, which decreases the least as the number of nodes in the

igure 6. for this GPU since itis

10 processing power.

Table 6.3 Speedup Resulis Per Machine for SIMPLE Method
U U Peak Specdup

Gtz 20%
nVidia GeForce 9800 GT AMD Athlon 3200 at 20GHz 360
nVidia GeForce 9800 GTX+ AMD Athlon 4850 at 2.5GHz 360
nVidia Tesla C1060 Tntel Xeon X555 at 2 67GHz 230

Figure .

G nVidia GoForce 8200

& nVidia GoForce 9800GT

—w— nVida GoForce 9800GTX|
" nVidia Tesla G1060

Figure 6.4: Speedups of GPU vs the CPU in cach respective test machine for SIMPLE
method

sure since it is a comparison of the GPU against a different CPU than the one in the test
machine. For cxample, Table 6.3 shows tht the PISO test with a higher end GPU (aVidia
Tesla C1060) has a smaler peak specdup (230 than the PISO test with a much lower

end GPU For this case, higher end
GPU to have a larger peak speedup than the lower end GPU, but these results show the
oppositc. GPUs
A
be produced i o - Table 6.4
“Table 6.2, Perhaps
» data i ; Figures 65, 66,

‘and 6.7 illstrate the speedup comparisons for all CPUs against all GPUs of Table 6.2 for
the SIMPLE method.

- Table 6.4; Test Results ofall GPUs v3 all CPUs for SIMPLE Methed___
G cPU Peak Speedup
‘nVidia GeForce §200 'AMD Atilon 4830e at 231z 20
Vi Gfrcs BO0GT - AMD Athon 4BSOe 230k 300«

AMD Athlon 4850¢ a1 2.5GHz 350

Vidia Tela 1060 AMD Athlon 4850c a1 2.5GHz 550

Vi OeForv 8200 AMD Athlon 3200 at20GHz 20

AMD Athlon 3200 at20GHz 350

AMD Athlon 3200 20GHz 410x

AMD Athlon 3200 20GHz 650

Il Xeon XSSO M 267GHs 10

el Xeon X550 at 120%

ol Xeom X3530 m367GHE 135w

nVidia Tesla C1060 el Xeon X$550 a1 267GHz 220

AMD Atlon 4850e 8t 2.5GHz

g 8
Number of Nodes. sit®

AMD Ation 3200 81 2.0GHz

15 2
Number of Nodes il

Figure 6.6: Full Specdup comparison for SIMPLE method using CPU AMD Athlon 3200
w20GHz

Intel Xeon X5550 at 267GHz

5 nidia GeForce 6200
e e Gerores s
fa GoForco 9800GTX
T ida Tos G100

Speed-ups

5 2 25 3
Number of Nodes. e

Figure 6.7 PU Intel Xeon X5550 at
267GHz

623 The PISO Method

Figure 6.8 depicts run times as we increase the number of nodes in the numerical fluid

PISO method, while
“Table 6.5 shows the se of ests performed for the transient (PISO) developed in this

the GPU and is respective CPU in the test machine.

‘Table 6.5: Speedup Resuls Per Machine for PISO Method
U Peak.

GPU

Specdup

E
nVidia GeForce 9800 GT AMD Athlon 3200 at 20GHz 325
nVidia GeForce 9800 GTX+ AMD Athlon 4850¢ st 235GHz 365
nVidia Tesla C1060 Intel Xeon X550t 267GHz 165

5 GeForcs 8200 vs AMD Alhon 48506
8 GeFoe SUOGT v A0 Abon 320
Vs AMD Athon 4850e|
Tesnrom e el Xeon 555

15
Numbor of Nodes:

Figure 6.9: Speedup for PISO method

x10"

|

Using . come 10

machines. Table

62. Perhaps ol
this table was derived; Figures 6.10, 6.11, and 6.12 llustrate the speedup comparisons for
all CPUS againstall GPUS in Table 6.2 for the PISO method.

G cPU. Peak Specdup
D Athion 7 Gtz 20x

orce 9800 GT AMD Athlon 4850c at 2.5GHz 350

Vil oo 3000 G+ AMD Aln 45002501 410

nVidia Tesla 1060 AMD Athlon 4850¢ at25GHz 550

nVidia GeForce 8200 AMD Atblon 32001 20GHz 20

nVidia GeForce 9800GT AMD Athlon 32001 20GHz 325

nVidia GeForce 9800 GTX+ AMD Athlon 3200t 20GHz 380

nVidia Tesla 1060 AMD Athlon 32001 20GHz 490

Force §200 Intel Xeon XS550 a1 267GHz 5

VM GeForee 90T Il Xeom Xs$80542 6701 10

BVidia GeForce 9800 GTX+ _Intel Xeon X5550 at 267GHz 130

nVidia Tesla C1060 Intel Xeon X550t 267GHz 165

AMD Ation 48500 at2.5GHz

G nVida GeForce 6200

—5— nVidia GeForoe S800GT

—w— n\Vida GeForce 9800GTX]
+— nVidia Tesla C1060

2 3
Number of Nodes.

Figure 6.10:
25GHz

AMD Athion 3200 a1 20GHz

CREETEEETIEY
x10°

5 8 10
Number of Nodes

Figure 6.11: Full Specdup comparison for PISO method using CPU AMD Athlon 3200 at
20GHz

Intel Xeon X5550 at 267GHz

1 15 2 25 3
‘ Number of Nodes 10

Figure 6.12: Full Speedup comparison for PISO method using CPU Intel Xeon X5550 at
267Gz

63 Memory Requirements

Figure 6,13 rep y

Table 6.2, Memory usage represents the total memory usage on the GPU, which includes.

usag). usage, -

ax Figure

Figures 6.15

Total Memory Used (MB)

2 25 3 35 4 45
Number of Nodes. xidh

05 1 15

Figure 6.13: Total memory usage for SIMPLE methods per GPU

Relatve Memory Used (MB)

Figure 6.14: Relative memory usage for SIMPLE methods per GPU

5 2 25 3 35 4 45
Number of Nodes ot

05 1 1

Figure 6.15: Total memory usage for PISO methods per GPU

Figure 6.16: Relative memory usage for PISO methods per GPU

64 CUDA Occupancy
34.
Tuble 6.7 represents a summary of the occupancies and mirmax number of kernel
Kemels E and PISO),including
the CG method, in cither method, but for which
i
‘ forcach kemel, ix B. From Table 6.
e SIMPL 454,
femel

4%, with

0

w398 0

oy
A0SO

7 Discussion

7.1 Solving systems of linear equations

of number of

mean itis o
the GPU. Section 6.1 contans Figures (6.1 and 6.2) thatshow tests of the two GPU lncar
Solvers that we have implemented for this work, SOR and conjugate gradicnt methods.

As we can sce from these figures, the run time for the CG method is almost factor of

10 for the SOR. odes that we
GPUS). y o the 4 10° nodes.
it the SOR

SOR method), Indeed,

increase linearly it wouldbe about 70 seconds per teration at 4 x 10° nodes.

exccut the CUDA kernl on a GPU each time a matx-vector mulipliction or a vector-
vector addion s reqired. Since, acordin tothe CG Algoitm (Algorthm 2.), cach
ca A cal method
This

‘Although the CG method converges much aster than the SOR method, these run time
results caused our choice of the solver for systems of linear cquations (within the CFD
Solution methods) o be the SOR method.

7.2 Performance

ween
SIMPLE method),
whie the
pac
and Tesla C1060 i the fstestper n £
method sgorithm developed for the GPU.
Figure 6.4, epresnting the speedup of the GPU vs the respectve CPU on each est
‘machine, and Table 63, the GPU.
on cach his,
howe e Thecry
onthe PUs.

multiple machines to mix and match the GPUs and CPUs in order 1o find the best combi-

nation. Even on the very powerful CPU, the GPU (although it i isef the most powerful

Figures 6.5, 6.6, 6.7, and Table 6.4 summarize these figures for peak specdups and

CPU inthe
estse.
(hlon 3200,
AMD Athlon 48506),
withthe Tesla GPU,
Infct,

which obtain a speedup of 350 to 410x on this CPU. Since this type of card is very.

%

ind machines (and is 3) we see the.

(be

Intel Xeon X5550). Traditionally,
more procesing power at i, which i similr t these et (since his i 8 powerfl pro-
cesor), further spocdp
of up o 220 Even a thefower end 3 10 od specdup i achievabie, orsbouta 120 o
135 ol specdup for the average GPU. These resuls demonsrte that i we are rnning

an overall (CFD simulation run time) speedup of 10 « 100 = 1000 times over the fastest
CPU we could find

A note must Fi 3
6.5, 6.6, 6.7, This behavior is suspected to be caused by a combination of the system size

upan per ystem is 2

power of 2) and of host memory paging. This suspicion is supported by the factthat the

. solving of lincar a
second time. Although there i slow-down, we stil achieve a very good speedup, even
the least powerful GPU on the most powerful CPU produces a specdup of 5 per PISO

iteration,

of 490x.

73 Memory Usage

, see Table 62 for

whereas

' Y

than on host machines (PCs).
Memory usage for this work is actually at the low end of the spectrum of possible
‘memory of the mesh i “This means that

if we had chosen another mesh type, such as an unstructured mesh, which would require

tons, dircetions, or sizes

of the mesh el which

alointoge Therefo red meshes have a lower
memory usage.
“The peak memory usage of the SIMPLE method is about 40 MB for a mesh of size

81, hich ha g
of about 63 MB for the same mesh size. The reason for the increase in memory usage

E

the transient system (see Section 2 for a description of the this method compared to the
SIMPLE method),

is a very good indication of the practicality of this approach on GPUs. The size of the

Section 8.2,

7.4 CUDA Oceupancy

“The most important kemel s the one that i invoked the most requent, which is the red-
black shared.maxres teration kernel. This kernel s invoked anywhere between 20 and

2000 times per pe

iteration. gisters per per

pe 100% threshold. I o

formance due to the frequency of invocation of this kemel. Again, the ull detals of the
B.

8133% cach
2 and 4 imes per tcration, this s sill very low CUDA occupation rsuls. The reasons
forthe lowoccupation is the se of o many rgisters, about 31 egistrspe hread, while

par haveal
ited amount of registers to use for cach thead, 31 at 128 thrads per block, which gives
about 3968 registes requird for each block. Since most GPUs only allow 4096 rgis-

ters per thread per mutiprocessor,
imited by the number of registers. So many registers are in use because the cocflcient
spect

]
of iteration) pr ighboring values, the

physical and numerical flow parameters such as viscosity, deasity, system size, mesh pa-

rameters,

pass the data o the kemel.

? First,
black sha kernel d, ther

low occupances, which means tha there s room for improvement n the design of the

Kemels with low occupancies.

since we have detrmined by the performance measurements (Section 7.1) that the SOR
method was the superior choic for sl CFD methods on GPUs. Still we can not that
ll CG kemels are 100% oceupancy except fo the mati-vector multiplicaton and the
Scala product (which s very simila 0 the reduce method discussed above). The fact

e tave

in effciency forthis method.

8 Applications

81 Evolutionary Shape Design Optimization

aGry).
“The optimized shape design problem s a problem where we are given a lud system

(e obstacle a5 minimum

b

that would optimize specific parameters (such as drag and/or i) For example, we could
be given the frame of a car (with ca seats, engine, etc) and would require the method to

generate a shape peci
‘ design.
Figure 8.1 illusrates a sample evolution using this technique. This image depicts a
file and the drag as “This work.

For the purpose of this work an individual is considered to be the fluid system (obstacle
shape), and s generated through the SMCGP method.

Figure 8.1: Sample Evolution

required. Table .1 illstrats un time cstmatesfor the GP t converge witha 10244512
disretized fuid system. As shown in thi tabl, it s evident that 10 prform this shape
optimizaion on sngle CPU i vey impracticl (s it would requie 10 yeas). But it
requires only 11 hourson a cluster of S0 (average) GPUS
Design Problen: Esimated Tmes
Tardware P Comergence Time

TCPU 0years
50 CPU Cluster m ﬂ.lys
1

[
oGP Chr 10

82 Direct Turbulence Modeling

turbulent eddics and th fastest luctuations.

DN i useful forthe development and validation of new turbulence models, for mea-

of advanced high-speed mixing techniques.
DNS has many disadvaniages, compared to other turbulence simulation techniques,

among then i that it i very computationally expensive. To resolve the varying degrees

DNS would require patial mesh,
and very small time scales. For example, (0 resolve the smallest and largest turbulence

length sl

directon [32].

hardware and more efficient algorithms. The technique developed in this work is exactly.

the

9 Future Work

These meth-

spplctions.

Improvemens in cffiieny can be achieved through an extcnsion of the methods on
mliple GPUs at ance,
machins indisrbutednetwork), which would give maliple leves of pralilism. Such

par
pose the problem into another st of domains to execute across cach GPU. Another im-
provement i eficiency can be achieved through the extension of the lincar solvers used
‘ in order to

(see (1)),
One

approach to Unstructured

because with unsiructured meshes one can generate the mesh around obstacles and put

10 Conclusion

“The purpose of thi thesis was the development of efficien and practcal general purpose

methods ® on graphi wnits. CFD

In Chapter §

performance gains that this work resulted i for general purpose fluid simulations. These.
resuls show that we achieve very high (up 1o 630x) speedups per itcration (tme stcp)

References

[1) J. D. Anderson Jr. Computational Fluid Dynamics: The Basics with Applications,
McGraw.HillInc, 1995,

[2] 1.E Barton. Comparison of SIMPLE- and PISO-type Algorithms for Transient Flows.
International Journal for Numerical Methods in Fluids, 26:459-4853, 1998.

[3] N. Belland M. Garland. i

Technical Report NVR-2008-004, nVidia Corporation, 2008,

[4) M. Bem and P. Plassmann. Mesh generation. Handbook of Computational Geome-
ries, Elsevier Science, 2000.

[5) J. Blazek. Computational Fluid Dynamics: Principles and Applications. Elsevier
Science L1d, Oxford, UK, 2001

(6] . Cebeci. Applications L
Beach, Califoria, 2005,

[7) . Cebeci, . . Shao, . Kafyeke, and E. Laurendeau. Computational Fluid Dynamics
Jor Engineers. Horizons Publishing In, Long Beach, Califomia, 2005.

[8] ChTech Lu. CFD gid generaion methods,
hitp /v chimltech comcfgrid generation pdf.

[9) H. Courtecuisse and J. Allard. Paralll dense gaus-seidel algorithm on many-core
processors. High Performance Computation Conference (HPCC), IEEE CS Press,
2009

[10] K. Crane. GPU Fluid Solver Web, 2006

/v, caltech edu Reenan/project luid il

[11] Z Fengand P L

forms, 2008

Aided Design, 2008.

[12] J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer-
Verlag Berlin Heidelberg,tird cditon, 2002.

[13] G. H. Golub and C. . Van Loan. Marrix Computations. The Johns Hopkins University
Press, Baltimore, Maryland, third cdition, 1996.

[14] S. Haque. Convergence of the successive overrelaxation method. M4 Journal of
Numerical Analysis, 7:307-311, 1981,

[15] S. L. Harding, J. F. Mille, and W. Banzha. Self-mdifying cartesian gencti pro-
gramming. GECCO 07 Proceedings of the 9th annual conference on Genetic and
evolutionary computaton, 2007.

[16) P.K. Kund and I. M. Cohen. Fluid Mechanics. Elsevir Inc, fourth edition, 2008,

[17) N. Lambropoulos,E. S. Politis, K. C. Giannakoglou, and K. D. Papaiiou. Co-located
pressure-correction formulations on unstructured 2-D grids. Computational Mechan-
s, 27:258-264, 2001

(18] R.J. LeVeque.

tions. 00

[19] W.Li,Z. Fan, X. Wei, and A. Kaufian. GPU Gems 2: Chaptor 47, Flow Simulations
with Complesx Boundaries. Pearson Education Inc, Upper Saddle River, NJ, 2005,

[20] ¥. Li, X. Lui, and E. Wu. Real-time 3D fluid simulations on GPU with complex

obstacles. Proceedings of the 12th Pacific Conference on Computer Graphics and.
Applications (PGO4), 2004

[21) Lomax, Pullism, and Zings. Fundamentals of Computational Fluid Dynamics.
‘Springer-Verlag Berlin Heidelberg, 2001

[22) nVidia. CUDA Programming Guide. nVidia Corporation, 2009, Version 23
[23] N. Osbome. GPU Fluid Simulation. Inern report, School of Computer and Informa-
tion Science, Edith Cowan Universiy, 2009.

[24] S. V. Patankar and D. B. Spalding. A calculaton procedure for heat, mass, and mo-

I’ He

Mass Transer, 15:1787-1806, 1972.

25) Sengupta, Harris, and Garland. Effcient parallel scan algoriths for gpus. nVidi
Technical Report NVR-2008-003, nVidia Corporation, 2005.

[26] T. W. H. Sheu and R. K. Lin. An incompressible navierstokes model implemented

Numerical Heat Transfer, 2003

[27] A. . Shinn. Computational fluid dynamics (cfd) using graphics processing units.

Mechanical Science and Engineering Dept., UIUC, 2009.

[28] A.F. Shinn. Tmplementat for

Mechanical Science and Engineering Dep,, UIUC, 2009.

29) Shyy, Udaykumar, Ros, and St Compuiational Fuid Dynanics with Moving
Boundaries. Dover Pblicatons Inc, Mineol, NY, 199.

(30) T Stocsser. Solution Methodsfo the Navie tokes Eguations. Course Notes,Spring.
2007, Georgia Tech, Computational Flud Dynarmics, CE7751-MET7S1.

(31) Z Ton, Q. Huang, 1. He, nd 1. Han. An improved study of pysiclly based lid
simlations on gpu. Compute-Aided Design and Computer Graphics, 2007 10th
IEEE Intenational Conference 2007

o1

[32] Verstceg and Malalasckera. Compuational Flid Dynamics: The Finite Volume
Method. Pearson Education Limited, Harlow, England, second editon, 2007

[33] N. Wolovick.
Cordoba, Argentin, May 2010.

[34) E. Wu and Y. Liv. Emerging technology about GPGPU. Circuits and Systems, 2005.
APCCAS 2008, IEEE Asia Pacific Conference, 2008

A 2D Finite-Volume Discretization of Governing Equations

on Structured Grid

I order

for cach d

tons V) nd.

we arein 2 dimensions i will be an area, A, where A = dx + dy, with dz and dy the in-

This keads o the

discretization of the Navier-Stokes equation for a uniform grid

ﬂ/m.m an= ,/v,..m + /uV’ﬂdA (4

= ui+vj,

o 1wo momentum equations

'/(”f*"‘)“’ Iz A/w/ (2% @9
.ﬂ’/(ww):iA [’Mm/u(;’z%)

Tuking just one of these equations, say Eq. 45, the u momentum cquation, and using the

fact that in 2 dimensions the control volume will be an rea, A, where A = dz + dy and dz

asas

Z/ 741@”/[2 dnty
- &/f"".mw// ?EMH// ——dzdy @n

by leting the

Joumso, [™

where Ar and ihe mesh, solving all

integrals of Eq. 47 becomes.

[(Puconat89), the = (PconsS9),] + [(Pemsi2)y tn = (PmarS2), 0] =

s pan(3) e (3)]
() o3

where we employ define
EWSNP,

nodes as illustrated in Figure A1

Since Vthave

vales at node poins at

Figure A.1: cast-west-north-south notation to define neighbeoring nodes.

uptuw
s 2

(50)

Rewriting Eq. 49 with these approximations we get

95

(gomamets) (on+um =

+ (Bamae) (o o) (Goronade) (or-bus)=

icmuldy) (up+)

I~ Y

s (u';,,”) —hs (ur;ym)

Ifwelet

Eq. 51 futher simplifes o

2

&)

F(up +up) — Fu (up -+ uw) + Fa (uy + up) = Fy (up + g

308 =) B0+ D (us = ur) = Do (ur —)

+ Do (u = up) = Dy (up — us) (s4)
‘which can again be rearranged to produce
g + o+ asus + axiy + apup = b &)
Here
ag=F.-D,
aw=-Fo-Du
ay=Fy=Dy (36)
ag=-F,-D,
ap=Fo=Fu+ Py~ Fy+ Do+ Dy+ Dat Dy
&)

1
b3 ow =) By

which gives us the final 2 dimensions finite-volume discrtization for a uniform grid for

quation o produce

)

agug + awvw +asvs + axvy + apu)

where Eq. 56 and Eq. 52 still apply.

B CUDA Occupancy Data

“The following figures represent the CUDA occupancy for all kemels in this work.

1 K200 o Y SNAKIpUROGRS -6 AL

101

rep Aoundnoso foussy sonpas 'y amBy

102

wp ourdnoa0 fousay I suowALOA|dd 5 Bt

103

wp ourdngo0 [ousay AT SIGAISTO) 19 ALY

104

wp ourdnoo0 jousa o ST (' B

ep Koudnsa0 [9ussy N 68 ABg

p Roundnooo o aod- SIGIOENISUO9 01 3L

[N TTTITe . _—

	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Blank page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgments
	0008_Table of Contents
	0009_Page ii
	0010_Page iii
	0011_List of Figures
	0012_Page v
	0013_Page vi
	0014_List of Tables
	0015_List of Algorithms
	0016_Introduction
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Page 95
	0111_Page 96
	0112_Page 97
	0113_Page 98
	0114_Page 99
	0115_Page 100
	0116_Page 101
	0117_Page 102
	0118_Page 103
	0119_Page 104
	0120_Page 105
	0121_Page 106
	0122_Page 107
	0123_Page 108
	0124_Blank page
	0125_Blank page
	0126_Inside Back Cover
	0127_Back Cover

