

Efficient Computational Fluid Dynamics Methods

for GPGPUs

by

in partial fulfillment of the

requirements for the degree of

Computational Science

Memorial University of Newfoundland

November, 2010

St.John's,Newfoundland

Computational fluid dynamics (CFD) is an area of fluid mechanics that involvesusingnu

mericalmethodstosolvefluidsystems. Most practical CFDproblems involve solving a

minimum of two nonlinear coupled partial differential equations, whichiscomputationally

expensive for practical fluid systems. The methods proposed in this thesis take advantage of

the parallelism ofthe graphics processing unit (GPU) to increase theefficiency of two CFD

techniques for general purpose fluid flow simulations. The improved techniques produce

very good results for increased efficiency, while keeping the overall methods practical and

able to run on readily available and inexpensiveGPU hardware. Wediscuss the advantages

anddisadvantagesofthetechniquesdeveloped,alongwithhowdifferent techniques affect

theresults,applicationsofthedevelopedmethods,andpossibleextensions to the methods

We acknowledge NSERC, ACENET.and NVlDlA for their support ofthis work. Acknowl-

edgments are also made tomy supervisor. Wolfgang Banzhaf. for his support and guidance

throughout the course of the development of this work. Finally.acknowledgmentsaremade

to Simon Harding for his support and guidance in both the design anddevelopmentofthis

work. through collaboration on a related project, and of this thesis

Contents

2.2.3 Finite Volume Method•....•......

2.4 MethodsforSolvingFluidSystem .

2.7.3 Successive Over-relaxation Method•........•....

3.4 Performance Measures•...•....•....•....

4.1 Computational Fluid Dynamics on GPUs•.•....•.....

4.2 Solving Systems of Linear Equations on GPUs

5.1 DiscretizationTechnique•....•..•.. ·· .• ·· ..

6.1 Solvingsystemsoflinearequations .

6.3 MemoryRequirements .

7.1 Solving systems of linear equations•.....•..•........

8.1 EvolutionaryShapeDesignOptimization .

8.2 Direct Turbulence Modeling•....•...

A 20 Flnile--VolumeDiscretization of Governing Equations on StruduredGrid 93

List of Figures

2.1 Simplestructuredmeshwithonerepeatingpattem

2.2 Structured mesh with multiple repeating pattems

3.2 GPUvsCPUArchitecture[22].

3.3 GPU ProgrnmmingModel [22]

3.4 GPUStreamingMultiprocessorComponents(22)

3.5 ScalabilityofGPUStreamingMultiprocessors[22]

5.\ CFDNodetnGPUThreadMapping .

5.5 Parallel sum reduction using tree based approach within each thread block 53

6.1 A comparison of run times per iteration forGPU implementations of SOR

Gradient methods (separate plots) .

6.3 Comparison of run times for SIMPLE method across ditTerent GPUs

6.4 SpeedupsofGPU vsthe CPU in each respective test machine forSIMPLE

6.5 Full Speedup comparison for SIMPLE method using CPU AMDAthlon

6.6 Full Speedup comparison forSrMPLE method using CPU AMD Athlon

6.9 SpeedupforPISOme'hod .

6.13 Total memory usage for SIMPLE methods perGPU

6.14 Relative memory usage for SIMPLE methods per GPU

6.15 Total memory usage for PISO methods perGPU

6.16 Relative memory usage for PISO methods per GPU

A.least-west-north-southnotationtodefineneighboringnodes

8.1 rcdblacLshared-lllaxresjterationJeemelkemeloccupancydata

8.5 applyCorrectionsJeemelkemeloccupancydata

B.6constructCoefficients_uvkerneIoccupancydata

B.7 constructCoefficients..pckemeioccupancydata

B.8apply-Piso_correctionskerneloccupancydata•..•.....

8.9 calculate_uc_vckemeloccupancydata 107

B.IOconsrructCoefficients_pcckemeloccupancydata .108

List of Tables

6.3 Speedup Results Per Machine for SIMPLE Melhod

6.4 TestResultsofallGPUsvsallCPUsforSIMPLEMethod

6.5 Speedup Results Per Machine for PISOMethod

6.6 Test Results of all GPUs vs all CPUs For PISO Method .

6.7 CUDAkemeloccupancyandcalldatasummaryforPISOmethod

8.1 Optimized Shape Design Problem: Estimated Times

List of Algorithms

2.5 Successiveover·relaxationalgorithm

2.6 ConjugateGradientalgorithm•..•.••.....

2.7 Preconditioned Conjugate Gradient algorithm•.•.••.•...

1 Introduction

Comput8tional fluid dynamics (CFD) is an area of fluid mechanics that involvesusingnu

merical methods to solve fluid systems. Most practical CFD problems involve solving a

minimum of two nonlinear coupled partial differential equations, whichiscomputationally

expensive for practical fluid systems

The objective of this work is

• to develop efficient and accurate melhods for simulating and analyzing general pur

pose fluid ftowproblems for the parallel architccrure of graphics processing units

• to compare several perfonnance measures ofCFD on GPUs against thoseofCFOOD

• to analyze different CFD solution methods for the purpose ofdetennining which are

etodcscribeapplicationsthataregoodcandidatesforCFDonGPUs

If,forexample,anevolutionaryalgorithmwasuscdinashapeoplimizationmethod

where each evaluation was a solution ofa fluid syslem for the purposeofminimizingthe

drag andlor maximizing the lift (or any other physical variables),current CFD solvers would

be infeasible for usc in a reasonable lime period since an evolutionary algorithm could

require millions of evaluations (CFD solulions). A more efficient solution method is thus

required to perfonn so many evaluations, to successfully converge toward an optimal shape

This is Ihecontext in which the system described in this Ihesiswas designed,as a fitness

function in a genetic programming technique used for optimized shapedesign

This work builds on previously developed CFD methods for general purpose ftuidftow

initsdevelopmentofhighlyparallelCFDmethodsonGPUs.Chaplcr2isadescription of

some general CFD lheory and of these already-defined CFD methods

The method proposed takes advantage oflhe parallelism of graphics processingunits

(GPUs). GPUsare in almost all modem computers used mainly for video and graphics

display. They are many-core (like) processing units, originally designed for operating in

the graphics pipeline on individual pixels, but as theircomputationaI power increased they

became popular for scientific and general purpose computation. Chapter 3 is a review of

theGPU architecture and general programming techniques for GPUs

The proposed methods involve the design of an algorithm forCFD solutionmethods

that take advantage of the GPU parallelism. Since the initial conception and development

of this work there have been some algorithms designed and implementedthataccomplish

the task offluid simulations on GPUs. Chapter 4 isa literature review 0 fsomeofthecurrent

The proposed methods are still unique in that they take advantage of differentopti-

mizationtechniques, such as smart register usage and shared memory usage. ChapterS

describcs the methods used in the design and implementalionofthe proposed CFD tech

nique on GPUs, along with results and the analysis of the results in chapter 6

Computationalfluiddynamicsisa large field, with many applications and solution

methods. This thesis defines algorithms not only fora single CFD method,but formul

liplemelhods,anddescribesindetailtheirapplication(withresults) to an optimized shape

design technique. Chapter 8 describes some of the more important applications of the melh-

ethedcvelopmentofefficientandaccuratemethodsforsimulatingandanalyzinggen·

cral purpose fluid flow problems for GPUs

e the analysis of several different CFD so)ution methods and detennination of which

.ananalysisofseveralapplicationsthatarecandidatesforCFDonGPUs

2 Computational Fluid Dynamics

Comput3tionaIFluidDynamics(CFD)isanareaoffluidmechanicslhat uses numericaJ

melhods and algorithms 10 solve fluid flow problems. Within CFD itself there are many

difTerentareas,involvingditferentsolutionmethods. The choice ofa solution method is

largely dependent on the problem, on the context of the problem, and on whatisrequired

ofasolutionforlateranalysis(post.processing)

This chapter will give a briefoverview ofcurrent CFD solution methods andwhat their

advantages and disadvanragesare for different types of problems. It will start with the

governing equations for fluid ftow, and to solve these equations we mustdiscretizethegoY·

eming equations, and in order to do lhat we muslchoose a grid type for this discrctization

The folJowing section will cover some of these discretization techniques,followedbya

section on the different grid types. We will then discuss solution techniquesforsolvingthe

discrctized governing equations, and the advantagesldisadvantages 0 fthese techniques for

different types of problems. Finally, we will discuss and compare severai different methods

2.1 Governing Equations

The governing equations ofa fluid system are at a minimum the continuityequationfor

mass and the Navier-Stokes equation, although others maybe appliedas required by the

system in question, such as the equation of state, conservation 0 fmass,conservationof

energy, andlor boundary condition equations. Since our application offluiddynamicsre-

quiredoniy the continuity equation for mass and the Navier-Stokes equation, that will be

The continuity equation is a description of the transport of mass with aconservationof

wherep is the pressure, and lis any extemal forces [16J. Equations (I) and (2) comprise

the required equations for solving incompressible transient (time dependent) fluid flow. It is

important to understand that not all solutions to fluid flow are rcquired 10 be transient, some

simple flows have time independent solutions, or steady-state solutions. The steady-state

V·(piJ)=o

2.2 Discretization Techniques

Once a mathematical model is defined (i.e. Equations (3) and (4) define the mathematical

model for incompressible fluid flow) we need a method forapproximalingthedifTerential

academic applications are the finite difference method (FOM), the finiteelementmethod

(FEM),and the finite volume method(FVM) [12]. A description of each of the three main

The finite difference method (FOM) is the oldest method fornumericaJly solvingPOEs,it

is believed to have been introduced by Euler in the 18th cenrury [I]. The finite difference

method covers the problem domain by a grid. Any POE's in the mathematical model are

used in differential fonn, and at each grid point the differential equations are approximated

by using partial derivative approximations (such as a central difference approximation,or

a higher order approximation, depending on the accuracy requirements). Most of the time

theFOMisappliedtoastructuredgrid,butitcanbeappliedtoanygridtype(SeeSeclion

The finite element method (FEM) is similar to the finite volume method (FVM), in that

thc problcm domain isdividcd into a set ofdiscrcte volumes (see thenextsection),or

finite elcmcnts as the name of the mcthodsuggests. These finite elements are generally

unstructurcd,nonnallytrianglesorquadrilateralsin2D,andtctrahedralsorhexahedralsin

30. The FEM approximates the solution by a shape function within each element in away

that guarantees continuity across the element boundaries [12]

The main advantage of the FEM is that it can handle complex orarbitrarygeometries

quite easily, and its grid is easily refined. The main disadvantage isthat, as with any method

using unstructured grids, the matrices of the linearized equations are notstructured as well

The finite volume method (FVM) is the chosen method for the applications described in

(l) to (4). This method requires the problem domain be divided into controlvolumes(CVs)

so that the integral fonn of the equation can be applied over each control volume. The

reason for the popularity of the FVM is that it conserves the equatlons inquestionover

each CV, leading to a more stable solution than the FDM for many problemsthatinvolve

conservationequations(suchasfluidsimulations),andthatitiseasilyfonnulatedover

unstnicturedgrids.Forexample.ifwetakethesteady·stateincompressibIe Navier·Stokes

equation (4), neglecting the extemal forcetenn for simplicity,the firs t step in discretization

usingtheFVMistointegrateovereachCV,

pl(U.'VU)dV~-l'VPdV+lp'V'UdV

partsofthc conservation equations can be simplified 10 integrate 0 vcr the entire surface of

Thc advantage, as mentioned previously, that the solution is conservedovereachCV,

leading to more stable solutions. TheFVM is also very well suited for complex geometries

due to its capability to handle unstnlctured grids and that it conserves 1he solution over

eachCV. Themainadvantageisthesimplicityofthcmethod,il issimpletounderstandand

program, and all tennsthat are approximated have some physical meaning,whichexplains

its popularity amongst engineers [12]. One of the main disadvantages oftheFVMmethod

is that it is difficult to develop solutions of higher than second orderbecause it requires

interpolation, differentiation, and integration [12]

2.3 GridsandMeshTypes

A mesh,orgrid(thesetermswillbe used interchangeably throughout this thesis),isa

discretizationofa geometric domain into small simple shapes, such as triangles or quadri-

problems, such as the simulation ofa fluid system, there are three main typesofmeshes

Firstwediscussthestnlcturedmesh,alsocalJedaregularmesh,whichisnamedso

because the grid is laid out in a regular repeating pattern. The simplest fonn of this mesh

is a single repeating topographical pattern such as a grid ofquadrahedrals as shown in Fig

2.1,but a structured mesh can also be a set of different repeating patterns,sometimescalled

a block-structured mesh,asshown in Fig. 2.2. The main benefit of the useofa structured

mesh is its simplicity,it is easy to understand and construct, and also simple to implement

in most programming language (a simple array). Orawbacks of the use 0 fthistypeofmesh

isin its difficulty in accurately handling complex geometries inan efficient manner, and that

it may be difficult and time consuming to construct a structured mesh around an arbitrary

The second type ofmesh is the unstructured mesh,whichuses an arbitrary set of shapes

or elements to cover the problem domain, where the shapes are not required to have a

pattern. An example is given in Figure 2.3. A benefit of the use of this type of grid is

that it can easily handle complex geometries and conditioning the mesh is much simpler

Drawbacks of this type of mesh is that it is more computationally expensive to generate,

it uses much more memory because all control volumes must be stored along withtheir

locations and any neighbor infonnation required,and it is much moredifficulttoimplement

Figure 2.1: Simpleslructured mesh with one repeating pattern

Figure 2.2: Structured mesh with multiple repeating panerns

Figure 2.3: Unslructured mesh around circle

because it requires lookup tables for neighboring control volumes

Third,andfinally, is the hybridmesh,which as ilS name suggeslS isa mix between

a srructured and unstructured mesh. A hybrid mesh is a combination of small slructured

meshes in an overall unslructured panem [4]. This type of mesh has many of the same

advantages of the previous fWO meshes, such as easy grid refinement near boundaries and

require less memory. Thedisadvantagesarethatthistypeofmeshisdifficuh to implement

and 10 generate for complex systems, and since itrcquircs a lot of uscrinteractionitisslow

to generate compared to, for example, an automatically generated unSlructuredmesh

2.4 MethodsforSolvingFluidSystem

ing equations of fluid flow. Since the govemingequations that are used in this thesis are

nonlinear and coup!edby pressure, both solvers are in the category of'pressurecorrec·

lion'methods,whichisaguess-and.correctiterativeapproachfor so!ving these types of

equations [30]. The first method that will be discussed is for solving thesteady·stateequa-

tions, equations (3) and (4),and is called the Semi-Imp!icit Method for Pressure Linked

Equations (SIMPLE) method. The second method is for solving the transientgoveming

ftowequations, equations (1) and (2),and is called the Pressure Implicit with Splining of

The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) method was first de·

velopedinI972byPatankarandSpalding,[24],asameanstosolvenonlinearcoupledfluid

The reason this method is required to solve the goveming equations given in Section

2.1 is that these equations are coupled by the pressure field and that theNavier-Stokes

equations are nonlinear (because of the velocity variable}. Therefore we must decouple

these equations and linearize them. The decoupling of the equations (through the pressure

field} is accomplished by beginning each iteration with a guessed pressurefield,initially

this would beuser·defined. During subsequent iterations a corrected pressure field is used

This section will first present a general description of the SIMPLE algorithm,forwhich

any discretization technique can be applied. Thenwewillpresentanoutline ofa general

derivation of the SIMPLE method, again for which any ofthediscretizationmethodsde

scribed in Section 2.2 can be applied. It may be useful to follow along with the general

algorithm in Section 2.5.1 while going through the derivation in Section 2.5.2

A general algorithm for the SrMPLE method is described in Algorithm 2.1 [32]. For more

Here we will outline the general derivation [32] of the 2 dimensional SIMPLE method for

the steady-state fluid problem (since we use it only for the steady-state problem in this

1:1nitializeguessesforp"u*,v·
2:while!convergencedo
3 IISTEPI:Solvediscretizedmomentumequationstogetu·,andv·

~ ::~~::E:::~f:: t~f~~: ~;f;~:?~ii:: ;::
II STEP 2: Solve pressure correction equation to get p'
a;j~.] = a;-lj~_lj + a;+lj~+j + a;j-l~j_1 + a;j+I~,Hl +bij

:~: en:·;'iI~u* = u; v· = v

work) on a structured grid. which can be easily extended to higher dimensions andlor to

a time-dependent problem. Similar to other guess-and-correct procedures, the SIMPLE

method must begin with a "guessed" velocity field. Therefore the first step in the SIMPLE

structuredgrid(seeappendixAforaderivationofthcsecquations)for the guessed velocity

where we use the east-west-north-south notation for neighboring nodes(capitalE.W.S,N,P,

where P is the local point) and neighboring faces (Iowercasee,w,s,n) between nodes as

defined in appendix A,except for coefficient indices which are unique to every node (each

point Phas 5 coefficientsalV,aE,as,aN,ap). Since these equations are considered guesses

at this node, the SIMPLE method defines the two velocity and one pressurecorrection

values (can also be viewed as the error in the guess), respectively, as

p=p·+P'

The subtraction of the actual valued discrerized equations (with u and v) and the guessed

valued discretized equations (7) and (8) produces

Rearrangement and substitution of the correction values fromequat ions(9),(IO),(II)pro-

Here the main approximation of the SIMPLE method occurs, the L aJlbU~b and L aJlb~b

tcnns are dropped to simplify the equations to

whered_u = dy/apandd_v = dx/ap. Now that we can correct the velocity fields using

equations (10), (11), (16). and (17) all we need is the pressure correction inordertobe

abletoapplytheseequationsateveryiteration.Sincewealsoneedtoapply the continuity

equation (3). we can use this to denve an equation forthepressurecorrectionp'.The2

l(puAl,-(puAlwl+1(pvA).-(pvAl.1=0

Ifwe inscrt the corrected velocities (equations (10) and (I I»into th is equation (along with

equations (16) and (17) into these) we get

which can be rearranged to produce the pressure correction equation

b'p = pu;"dy - pu;dy+ pv;dx - pv~dx

The pressure correction equarioncan then be solved to produce the pressure correctionfield

and applied to the velocity and pressure fields using equations (16), (17), and (9)

The PISO (pressure Implicit with Splitting of Operators) method isderived directly from

theSrMPLEmethod. Like the SIMPLE method it is an iterative method. In fact, the first

three steps per iteration are exactly the same as those for the SIMPLEmethod.ltinvolves

two more steps to solve a second pressure correction equation and then apply this second

The PISO method uses the concept of operator spliuing to derive a secondpressure

correction equation. This technique is used to "split" the spacialandtcmporalcomponents

can be considered a timc step because of the application of the secondpressurecorrection

Similar to Section 2.5,this section will provide a description ofthePISOalgorithmand

a general derivation of the PISO method

A general algorithm for the PISO method is described in Algorithm 2.2 [32]. For more

infonnation on the exact nature of each step, see Section 2.6.2 fora complete derivation

: ;~~/:;~;::::seSforp.. u"v'
~ Exactly those of the SIMPLE method. See Section 2.5

II STEP 4: Solve second pressure correction equation togetp'
ai,jpj',;=ai_ljpj'_lj+Ili+IJP':+j+aiJ-IP:',;_I+aiJ+lpj'j+l+b,J

14 p·=p;u:=u;v·=v
15: until convergence

The PISO method is derived directly from the SIMPLE method,forthisreason a repetition

of the first three steps of this method will not be described here, see Section2.5.2forthis

addition to the steps from the SIMPLE method,and so can be loosely calledaguess-and-

correct·and-correct fypC solver. This extra pressure correction equation, that we will call the

p'''~p''+p''

stepsaswedidtoproducethefirstpressurecorrectionequation(seeSection2.5.2)we

b~= (~))=""(U:b-U;')- (~)):>n,(u;;-u;.)

(~).La,,'(V;;-v;·)-(~)nL""(V;;-v;,)

2.7 Methods for Solving Systems of Linear Equations

The Jacobi method is a method for solving systems oflinearcquations, or Ax = bmatrix

equationsforx.ltisnamedaftertheGennanmathematicianCariGustav Jakob Jacobi and

is also known as the methodoJsimultaneousdisplacements [18]

If we define A ElRNxM,bElRlxN,andxE lRMX1as

(
"'" "", ""M]

A= U2,1

aN,) aN,'"

One main requirement of this method is that the matrix fonnofthe systemoflinear

equations must have non-zero diagonal elements. The method simply solves each diag

onal clement of the matrix and then updates the value of the diagonal elements with the

newly solved approximate values after they have all been solved (approximated),asseenin

equation (35). This process is iterated until convergence is reached

Given a sparse matrix array, u, and coefficient arrays a_W, a-E,a.S, a_N, a_P,b(to

represent direct neighbor nodes in a structured mesh) that we would encounter in the CFD

techniques discussed in this work fora 2 dimensional systemofsizemxn,theequation

fori=2:m+landj=2:n+lrepresentthenodesintheCFDsystem(mesh). The

pseudo-code (MATLAB like) might look like Algorithm 2.3

2 fori =2:(m+l) do
3 forj=2:(n+l)do
4 unew(ij) = (a_W(ij) u(i-lj) + a..E(ij) u(i+lj) + a.5(ij) u(ij-I)+a.N(ij)

en~(~~;I)+b(ij)/a.P(ij)

end for

if~Or::~gencethen

end if

II: end for

The important feature to note about this method is that a temporary array must be usedto

store the updated diagonal elements of the matrix (unew array in the pseodo code) so that

they can all be updated at the same time at the end of each iteration (linelO),whichiswhy

this method is also known as the methodo!simultaneollsdisplacemen(s.Thisextratempo-

rary array to store updated values requires an extra memory overhead forthe application of

this method of the size m x n,whilethe worst case time complexity of this method is still

O(mxnxmaxiter)

The Gauss-Seidel (GS) method is an iterative method forsolvingthe same typesofprob

Iems as the Jacobi method (discussed in Section 2.7.1). It is named afterthe German math

ematiciansCariFriedrichGaussandPhilippLudwigvonSeidelandis also known as the

The GS method is very similar to the Jacobi method in that it does an update ofeachdi-

agonal element per iteration, but instead ofusing a temporary array tos imultaneousupdates

at the end of the iteration, it updates the diagonal values"on the fly".

lfwe describe A,b,andxas we did in the previous section, theGS formulationisas

where k.again. represents the iteration number. As it can be seen thedifferenee is in what

Given a array fora sparse matrix, u, and coefficient arrays 4_W. a-E. a...s.a....N,aJ',

b(to represent direct neighbor nodes in a structured mesh) that we would encounterinthe

CFD techniques discussed in this work for 2 dimensional systemofsizemxn.theequation

to solve at iterationk fortheGS method would look like

fori = 2: m+landj =2: n+l. The important difference between this equation

and its corresponding Jacobi method equation (Eq. (36))isthatvaluesfromiterationk+

lareusedtoupdatethecurrentvalueatk+lforprcviouslyencounterednodes.The

pseudo-code (MATLAB like) looks like Algorithm 2.4, where we can seethatatline4

we update the array II and not the temporary array lmewas in the Jacobi pseudo-code

At first glance it might seem like a common mistake to forget the temporaryarray. but

this method actually converges about twice as fast as the Jacobi methodfordiagonally

dominant or s.p.d l matrices [18]. NotonlydocstheGSmcthodconvergefaster,italsohas

lessmemoryoverheadsinceitdoesnotrequiretheextratemporaryarraytostore updated

2 fori=2:(m+l)do
3 forj-2:(n+l)do
4 u(ij)-(a_W(ij) u(i-Ij) + a-E(ij) u(i+lj) + a..5(ij) u(ij-I) + a-N(i j)u(ij+l)

en:~~j))/a..P(ij)

end for

if~Or~:~rgencethen

9 end if
10: end for

The successive over-relaxation (SOR) method is another variant ofthe Gauss-Seidel method

The SORmethod isarwostageiterativeupdatemethod,where the first stage is exactly

the same as the Gauss-Seidel method. and the second stage is to apply a relaxation to the

updated values at each iteration, through the application ofa relaxationparameter.This

relaxation parameter is denoted by the symbol w here and is less thanlforunder-relaxation

andgreaterthanlforover-relaxation.lfw=lthentheSORmethod is identical to the

<fS~EWI;J+,{j

{;+'={;+w({fs -{;)

-I

Again, given the field array in question, u, and coefficient arrays a_W, a...E, a..B,a...N,

aY. b (to represent direct neighbor nodes in a structured mesh) that we wouIdencounter

in the CFD techniques discussed in this work for 2 dimensional system of sizem x n.the

two-stage equations 10 so)ve foruat iteration k for the SOR method would look like

fori=2:m+landj=2:n+1.Thepseudo-code(MATLABlike)lookslikeAlgorithm

2.5, where we can see that if we letw = 1,thiscode reduces to that of the Gauss-Seidel

theoremofOstTowskistatesthatifAiss.p.d2 andD-wL(whereDandLare results ofa

2 fori=2:(m+l)do
3 forj=2:(n+l)do
4 u(ij)=w«a_W(i,j)u(i-l,j)+a-E(i,j)u(i+l,j)+a-S(i,j)u(i,j-1)+

en:-;;:~i,j)U(i,j+1)+b(i,j))ja_P(i,j))+(I -w)u(i,j)

end far

if~:~:~rgencethen

9 end if
10: end for

matrixsplittingmethod)isnonsingular),thentheSORmethodconvergesforaIlO<w<2

where1r is the constant 3.14159... andh is the mesh element width. Figure 2.4 shows

computational resullS for the SOR method (Wilh optimalw) vs the JacobiandGauss-Seidel

methods on a very simple 2 dimensional problem. It is clear tbatthe SORmethodconverges

ata faster rate than the Jacobi andGS methods

The conjugate gradient (CG) method is a pseudo-iterative method forsolvingsystcmsof

linear equations. It was first proposed in 1952 by Hestenes and Stiefel [18]. Thetenn

pseudo-iterative is used here because the method has the fearure that it always converges

10 the exaci solution of Au = Jinafinitenumberofiterations,andsoin this sense itis

~ 50

Figure 2.4: Errorvs iteration for three linear solver methods

mathematically a direct method like Gaussian elimination inwhicha finitcsel ofoperations

ThcCG method isa generalization oflhe method ofstcepesl decent, whichisanitera-

culatedusingtheresidualr = Au-f at Ihecurrent iteration, until a tolerance is satisfied

The general CG algorithm is documented in Algorithm 2.6 [18]

The convergence rate of this algorithm depends on the condition numberofthematrix

A.ltiscommonpracticetoreducetheconditionnumberforthismatrixAat each iteration,

The preconditioned conjugate gradient (PCG) has the same basic fonn as theCGmethod,

exceptforasteptosolvethesystemMz=r,whichistheapplicationofthe preconditioner.

The basic idea is to choose M for which M-1A is better conditioned than A and thatsys·

tems that involve M are easier to solve than those that involve A. The PCG algorithm is

This algorithm converges in much less iterations than thepreviouslymentionediterative

per iteration, its run time may vary depending on how efficient these operations are on the

3 GPUArchitecture

Graphics Processing Units (GPUs) have a many-core parallel architecture.Theyconsistof

a set of stream processors that execute programs (a!so called kernels) in parallel. GPUs

were originally designed for graphics processing, so the stream processorsaredesigncdfor

This chapter will discuss how GPUs compare to CPUs. We will also discuss how one

canprogramGPUs(theprogrammingmodel),andthenthehardwaremodelandarchitec-

tationallyandintermsofcost)thanthetraditionaICPU.Figure3.lilIustratestheevolution

oftheGPU vsthe CPU over past years with respect to the number of floatingpointopera

tions per second (f1opsls). Frorn this figure we can see that GPUs greatlysurpassCPUsin

this respect, even as CPUs evo)ve into having multiple cores. Today,averageGPU(even

the GPUs in most workstations) are more ef'ficient in this respect than high·end CPUs

main advantage with respect to GPUs(forcertain applications). The main difference in

CPUs and GPUs is how they weigh their priorities in design with respecttocontrolunits

that the CPU (on the left) has a lot more of its intemal structure dedicatedto control and

cache than to the number of cores available, while the GPU (on the right) puts much more

Figure 3.1: GPU vs CPU Performance Evolu1ion [22]

3.2 Programming Model

The programming model used for 1he nVidiaGPUs (called CUDA) is built aroundaSIMT

(single-insfruction multiple-thread) architecture concept. SIMTisno1thesameasthetra

ditional SIMD (single insln1ction multiple data) concept in1hat SIMDappliesthesame

instruction to mUltiple piecesofda1a simultaneously, while SIMT executes the same thread

(codeblock)simultaneouslywithasingleinstruclion.AtypicaICUDAexecutiononaGPU

consistsofa mapping of the threads (or kernels) 10 a two-level gridofauser-specifiedsize

The threads are mapped as a set of threads, grouped into blocks. The number of blocks

in 1hegrid is called the grid size and the number of threads per block is called the block

size. Figure3.3illustratesthisblockithreadmapping.Oncethethreads are mapped they are

then enumerated and distributed to the available cores on the device.Schedulingofthese

kemels, as threads of the grid are terminated and new ones are executed,isperformedau-

tomaticallyon the GPU itself,Section 3.3 describes how they are distributesandscheduled

The language that nVidia provides to develop programs for their GPUs is calledCUDA

ltisaC-likelanguage.wherethedeveloperisexpectcdtocreateindividualfunctionsthat.

asthekcrnelsdiscussedpreviously.areexecutedbyNtimesNnurnberofthreads. A sample

kernel that does simple vector addition and the associated call inC is (from [22])

_global_voidVecAdd(float*A, float*B,

The-,global_specifieridentifiesakemelfunction,thereareotherspecifiers that can

Figure 3.3: GPU Programming Model [22]

beusedbutareoutofthescopeofthisthesis,see[22].Sincethisfunction is executed in

parallel onN differentthreads,wehaveeach one doing asimpleaddition on its respective

location in the vectors. Thekemel function is given the thread number that it is executed

ThekernelisexecutedonthehostwiththecallVecAdd«< 1,N »> (A,B,C)

tellstheGPUtoexecutetheVecAddkemelwithlblockinthegridandN threads per block

This block/thread number can change depending on the application,forexamplewecould

_global_voidVeCAdd(float*A, float*B, float*C)

The GPUs inthiswork,nVidiaGPUs,aredesignedwithanarray ofmulti-threaded Stream

ing Multiprocessors (SMs). Each of these processors contain aset of Scalar Processor (SP)

cores (currently all nVidia devices contain eight cores perSM),a multithreaded instruction

unit, and a shared memory unit for that multlprocessor. Outside of the array ofSMs there

isamemoryspace, called device memory, that is in use by all componentsoftheGPU.De·

vice memory is the slowest on-card memory, while shared memory (per SM) is the fastest

on·card,next to the registers of course but not far behind [22]

Figure 3.4 illustrates the components of the SM. As we can seeitcontains the SPs, the

instruction unit, and shared memoryperSM,butit alsocontainsa"constant memory" and

a "texture memory". Constant memory space isa read-only region ofdevice memory and

texture memory space is again a read-only region of device memory,eachusedfortheir

specific purposes (and optimizations) in many different graphics processingapplications

Both memory spaces are preferred over the use of device memorydirecdy, inthattheyhave

faster read times. Shared memory is still preferred over both constant and texturememory

because they are spaces within device memory (which is the slowest on-card memory) and

therefore shared memory has much faster access time [22]

======1

Figure 3.4: GPU Streaming Multiprocessor Components [22]

An important factor in the design of these streaming muhiprocessorsonthe GPUsis

the scalability without having to aher the programming model. Figure 3.5 illustrates this

factor. We can see that each block is passed off to a singleSM,andsoasthe number of

SMs increase, the scheduler on the GPU can just divide any extra blocks that are waiting

in the execution queue amongst the additional multiprocessors with very little scheduling

Figure3.S:ScalabilityofGPUStreamingMultiprocessors[22]

Run time is defined as the amount of time required fora program to executetosuccessful

completion. For example, a solution method for solving systems 0 flinearequationswould

execute to completion when it has converged to a final result. ACFDsolutionmethod

(SIMPLE or PISO) would be complete when it executed a single iteration without failure or

convergedtoa final steady-state result or perfonned a sctamountoftimesteps,depending

on the post execution analysis to be perfonned

The speedup ofan algorithm (for the purpose defined in this work) is thecomparisonof

run time of execution of that algorithm on the GPU against run time of the samealgorithm

on the CPU. This measurement is important because it displays the increaseinefficiency

(with respect to TUO time perfonnance) of one technique over another. In thecaseofthis

work,runtimeofCFDsimulationsonGPUsovertraditionallyCFDsimulationsonCPUs

Memory requirements of a system is a simple measure of the amount of memory required

fora program to execute successfully on a system. The memory usage may fluctuate

throughout execution, so we can measure minimum, maximum, andlor average memory

usage on a system. This measure is important since we are developing a technique using

a different implementation (such as in this work). If the new technique requires too much

memory it maybe impractical,even it has other significant pcrfonnancegains

ThcCUDA Occupancy is a measure ofa kemcl invocationthatdescribeshowwelltheker

nels make use of the multiprocessor resources located on GPUs, such as allocated registers

and shared memory. This concept is best described by nVidia [22]

nVidia provides a very simple tool (in the fonnofan Excel spreadsheet) for calculating

the occupancy measure for various kernels. This tool is called the CUDA GPU Occupancy

Calculator and to use it one has to enter the number of threads per block that are being used

in the kernel invocation (detennined in the code prior to kernel invocation),thenumber

ofregistersperthreadinuse(retrievedbylookingatthegenerated.cubinfileaftercom

pilation),andtheamount of shared memory per block (also retrieved from the compiler

generated.cubinfile). This spreadsheet will not only calculate the total occupancy (as a

percentage),butindividualoccupancies(perresource)anddescribeanylimiting factors in

thekemelconsidered.Thisisaveryusefultoolforoptimizinganykeme1for invocation on

4 Related Work on GPUs

first discuss general CFD on GPUs and other sirnilar work that has been done in this field,

such as other solution methods to fluid systems. We will then discuss work relating to

solving systems of linear equations on GPUs

4.1 Computational Fluid Dynamics on CPUs

In scientific literature f'Iuid flow problems on GPUs follow two separate paths, due to the

nature of GPUs, which were originally designed for graphics processing.First,asinthis

work,theyaredevelopedtosolvescientificreal.worldftuidflowproblems.Second,they

are deveJoped to sirnply look realistic, with applications in video games,visual effects, or

This work focuses on the scientific application of fluid flow simulations.lnparticularit

focuses on the deveJopmentofa general purpose fluid flow solver and develops the methods

to be applicable to any general purpose fluid flow solver, including scalingofdimension,

In November 2006 nVidia released a new programming model for their GPUscalied

CUDA (Compute Unified Device Architecture) that allowed general purpose computations

(without knowledge of the graphics pipclinc) on their GPUs [34], and since then many of

themajorGPU manufacturers have followed,with the release of their own general purpose

programmingmodelsfortheircards.AIIGPUforCFDworkbeforethattimetookadvan

tageoftheshaderprogrammingmodel,thatwasdevelopedforGPUstoperfonngraphics

specific problems such as depth buffer and colorblendingoperations,sllchas[l9],[20),

and [31]. This shader programming model is graphics API dependent (therefore was dif

ferent for different graphics APls). with languages sllchasCg,OpenGL Shader Language

(GLSL),and High Level Shading Language (HLSL). The shader languageprogramming

model is now considered to be out-dated for general purpose programs andlessefficient

for general purpose applications on GPUs, since the problem wouldhave to be mapped to

Tong et al. in a 2007 paper [31] outline their study and design ofa fluid solver on GPUs

usingthisgraphicspipelinemethod,makinguseofOpenGLsshaderlanguage(GLSL)

Intheirstudy,theyusea fragment program that fetches packed texture data4 directlyand

processes the data in parallel by distributing among them several pipelines. They use a

Jacobi method for solving systems of linear equations, applying similar graphics pipeline

It should be noted that at the time of conception ofthc work prcsented in this thesis, the

majority of work on this subject used thc out-datcd shader language methods since the new

CUDA programming model was a very newdevelopmentatthetime,andthat the main

goal of this work is not to replicate other modem CFD on GPU work(that usc the CUDA

that can be used for a variety of fluid problems and will run efficiently on modem GPUs

The technique developed in [34] isdcveloped for non-physical visualizationsonlyusing

the Stable Fluids method, which is a method that discards components of the flow that have

little visual effects. The technique developed in [23] makes use of the Smoothed Particle

Hydrodynamics (SPH) method. TheSPH method is similar to the approach of this work in

that it isa general purpose fluid solvermethod,but it uses a very different technique called

a Lagrangian approach to simulating the fluid flow. The Lagrangian approach simulates

fluid by simulating particles or particle packets, as opposed to the methodinthiswork

4.2 Solving Systems of Linear Equations on GPUs

colored so that any given node has no neighbors with the same color as that of itself. The

work developed in this reference found that a 57x times speedup was achievedwithit's

developed melhod and that this technique leads to several implicitoptimizationsthatthe

GPU architecture, most notably is that memory readpanems are optimized forlheGPU

architeclUre (memory reads are coalescedS)

Finally, work such as that of[27] and [34] involve solving fluid sy5tems 0 nGPUs(as

discussed in the previous section). The fact that the linear solvers in both of these works use

point-iterativemelhods(suchasJacobiandGauss-Seidel)isaindicator that these methods

are possibly superior for solving systems of linear equations on GPUs.Thisfactisdiscussed

5 Methods

To describe the mcthodsused fOTthe design and implementation of the methodsdiscussed

in chapter 2 the chosen mesh type and discretization technique used for this workmustfirst

be defined. This chapter will first discuss the discretization technique and its advantage,

then discuss the mesh type used in the implementation of the methods and give reasons for

5.1 Discretization Technique

Thc discretization technique used for this work is thcfinite-volumemcthod(FVM).See

Section 2.2.3 for a description of this technique. Thejustificationforusing this discretiza-

5.2 MeshType

The mesh type used here is the strucrured mesh. See Section 2.3 for a dctailcd description

of this type of mesh. We use this mesh type because it is appropriatc forthearchitecture

of the GPU and it's the programming model. GPUswereoriginallydesignedfor graphics

number of pixels. For this reason, advantages can be gained by the use of an algorithm

designed with Ihis "pixel processing" idea in mind. Since the slructured mesh type isa

unifonn set of nodes on theCFD system, Ihismaps very well tothc "pixel proccssing"

approach so that we can map a single GPU threadtoaCFD mesh node, just asGPUthreads

The advantages of this compared to the unstructured mesh type arc. first that we save

memory since we do not have to store all the unstructured mesh nodes and edgesinmemory

(it is common to have much lessmemoryona GPU than on a host). secondthatmemory

access to CFD data such as flow field values (velocity and pressure) orcoefficientarraysis

inherently coalesced. Coalesced memory simply means that the pattem of memory access

The SIMPLE method requires 3 operations of both construction of the coefficientma

trices and solving of system of linear equations per iteration. It then onlyrequires I ap

plicarion of corrections to the ftow fields and I convergence step per iterntion. ThePISO

method requires. in addition to all oftheoperntions above. another one operationforboth

design of GPUs, that is, they were originally designed forgraphicsprocessingi.e.pixel

processing. This means that the GPU architecture is best suited for "small"6 operations on

many threads/nodes/pixels (see Section 5.2)

The following scctions will dcscribe the methods used for solving systemsoflinear

equations on theGPU in the SIMPLE and the PISOmethodsanddiscuss why they were

the beslchoice since this is largely the most important operation in the context ofefficiency.

We wiII then discuss the remainder of the operations in the order presentedabove

5.4 Solving Systems of linear equations

systcmsoflinearequations.Normally(onaCPU),apreconditioned conjugate gradient

solution melhod such as the Gauss-Seidel (GS) or successive over-relaxalion (SOR) meth

ods(withasingleupdateperiteration),ismuchmoreexpensivecomputationallyonaGPU.

The reason lhis issomuchmoreexpensiveonaGPU is that GPUs do nOl handie random

strategy (coalesced memory access). For this reason, the SOR methodisused for all linear

solvers (this will be justified in this section). Although the CG method converges in less

is implemented on the GPU through a two step ilerativemethod,also known as a red-black

method,at each iteration all odd nodes are first updated inparallel,and then aII even nodes

TheGPUimplementationoftheGauss-Seidelorsuccessiveover-relaxation method (both

melhodsareverysirnilarandthetennswillbeusedinterchangeablyinthe rest of this thesis)

astraightforwarddomaindecomposition,however,itinvolvesmaking two passes over the

system per iteration, although each node is only updated once per iteration. See Sections

Initially the method "colors" each node in the system two altemating colors so that no

node has neighboring nodes of the same color, such as in Figure 5.2. This coloring of

nodes (two colors fora unifonntwo dimensional mesh) is why this parallel techniquefor

theGS is also known as the red-black or the checkerboard method. Once each node is

Figure 5.2: Red Black Nodes

except for one change: at each iteration there are two passes over the nodes. the first pass

updates one color nodes {the red nodes) and the second pass updatesthesecondcolornodes

(black nodes). Then we iterate as nonnal until convergence is reached. So far the parallel

algorithmmaylooksomethinglike{insequentialfonnfornow)Algorithm5.1

2 fori=allREDnodesdo

~ en~p~:teu{i)

5 fori = all BLACK nodes do

~ en~~~eU(i)

: if~Or::~gencethen

10 end if
II: end for

The advantage of this algorithm, in a parallel sense, is that all RED nodes can be updated

simultaneously and all BLACK nodes can be updated simultaneously sineefromtheupdate

equation (42) we know that only neighboring nodes are read each nodeupdate.Since

As of the algorithm developed so far, we use global GPU memory for the 5 reads per

node update, which requires many duplicate reads per update since all neighboring nodes

of a singIe local node are being read at least one more time and up to4 more timesper

halfiteration(persinglecolorupdatepass).lfwerecaIlSection3,theGPUprogramming

model uses a set of blocks, where each block contains a set of threads, and eachblockhas

loading all nodes ina block into shared memory before we do the update. The set 0 fnodes

required fora block to update all of its associate threads (from the runningexampIe) are

indicated by white lines in Figure 5.4. If we load all oflhese nodes into sharedmemory,

includinglheghost layer which islhe layer of non loeal nodes (nodes thatdonotneedto

beupdatedbythiscurrentblock)thatsufToundtheedgesofthebloek,wecan reduce the

numberofduplicatcreads bya faclor of almost 4 along wilh the memory access time for

The pseudocode (with some real CUDA commands)CUDA kerncl (sec Section 3)

that is executed for each thread would then look something like Algorithm 5.2. Lines

210 15 load all loeal nodes and the ghost layer into shared memory. Line 17 uses the

--syncthreadsOfunction.whichcausesallthreadsinthebloektowaitatthisloeationin

the code until all of them have reached that point. this way all requireddataisloadedinto

shared memory before we start to do any updates (reads and writes) using this data.

1: /I Load local node inlO shared memory
2,u.shared[sj][s_j]=u[ij];

:~ ~~~~~a~;~:::~~~~ ifyes then load ghost layer

~: en~~:ared[Sj-l][S_j]~U[i-l]Ul;

7,iflhreadldx.x=BLOCK..SIZE-X-lthen

:: en~~:ared(Sj+l][s-jl~u[i+lJ(j];

IO:iflhreadldx.y=Othen

::' en~~:ared[Sj][S_j-1]~U[iJ(j-l];

13,ifthreadldx.y~BLOCK..SIZE_Y-lthen

::: en~~:ared[Sj][S_j+1]=U[iJO+1];

16:/Iwaitforallthreadsinblocktofinishloadingsharedmemory
17:_...syncthreadsO;
18:forij:::allREDorBLACKnodesonlydo

:~ en~P~~leU[i][jJ

~~: if~Or::~gencethen

23:endif

As discussed in Section 2.7.4,theconjugategradient (CG) method is a pseudo-iterative

method for solving systems of linear equations. The conjugate gradientmethodisactually

thebestchoiceasa linear solver for the SIMPLE and especially the PISO method since the

linear solver is required to act asa real solverandnotsimplyasmoother(seeSection2)

The reason it is usually the best choice is simply that it converges lothe actual solution in

less iterations than other linear solver options discussed. Asitwill be discussed in Section

7.I,where comparison results are showing in Section 6.I,the conjugategradientmaybe

this does not necessarily mean it is the mOSI efficient performance wisewhen compared to

Much of the literature on the subject of paralIelizing the CG method statesthatitisa

very good candidate for parallelization because it requires only two types ofoperations

They are matrix-vector multiplication (e.g. line 5 of Algorithm 2.6) and vector-vector sum

mation(e.g.line80fAlgorithm2.6)periteration,whichcanbothbe parallelized very effi

cientlyontraditionalparallelsystems7 forlargesparsematrices.AIthough both operations

canbeparallelizedfortheGPU,theyarenotasefficient(again,due10 theiroplimization for

unifonnmemoryaccess),andthereforemaketheCGmcthodlessefficient when compared

to other methods for solving systems of lincar equations such as the GS/SOR method per

The loss in efficiency per itcration comes from these twooperalions,matrix-vectormul·

tiplicationandvector-vectoraddition. The GPUparallelizationof the matrix-vector mu\·

tiplication is a simple and well established method [3] to map each thread in the GPU

programming model toa single matrix row. Each thread then simply performs the dot

contains only five elements and therefore each thread requiresonly5multiplicationsand5

float*b,intnuffi_rows,float*y_out,unsignedintNx)

dot+::a_P(row]*x(row];

if{row<nuffi_rows-l)dot+::-a_E[row]*x(row+l];

if(row>::Nx)dot+=-a_S(row)*x(row-Nx)i

if(row<nUffi_rows-Nx)dot+::-a_N(row)*x(row+Nx];

The GPU parallelization of the vector-vector summation is evensimplerthan the matrilt-

veclormultiplication. It isa simplelhread to veclor elernenl mapping where each thread

would perfOnD the addilion of its corresponding elements. Theveclor-vectorsumrnation

pier operations Ihat on a traditional distributed system one would nOI ordinarilyparallelize

(exceplforextremelylargevector.».Onesuchoperation,online8ofAIgorithrn2.6,is

cientlyon IheGPU especially when Ihe veClor is already loaded into GPU memory (as it

is for the GPU CG method) by simply mapping each vector elemenllo a thread and having

The first operation to be parallelized on the GPU architecture is theconstruction of the co

efficient matrix for the system of linear equations. This operation can be performed with

asingJeGPUprogram,orkemeJ,foreachtypeofequation.e.gvelocity,pressurecorrec-

direct neighbor nodes, memory on the device need only be allocated for these neighboring

coefficients, not for the full matrix. Access to field values at the Iocalnodeandatdirect

neighborsisalsorequired,andsinceglobalmemoryaccessonGPUsis their largest bot

tleneck,sharedmemory is used to store nodes per block in order to reduce the number of

Theapplicationofthecorrectionstotheflowfieldsissimplyakemelthatappliesthe

correctiontoeachnode.Sincethesecorrectionsrequireonlyaccessto local field values at

each node (as opposed to field values at neighbor nodes),a simple updateperkemel is most

5.7 Convergence

Convergence of both the SIMPLE and PISO methods can be determined in rnanyditTerent

ways, depending on the application of the method. The most popular methods are a check of

For both residual sum and norm calcu!ations on the GPU we must perform a sum

This may seem simplebuttoefficientlydothisonaGPUa Iinle work is required. To do

used in this work is defined in [25],andusesatreebasedapproach withineach thread block,

as illustrated in Figure 5.5. This algorithm works by assigning a unifonn and contiguous

subset of the vector to each thread block,each thread block then perfonns thesumofits

associated subset and stores the result in the first memory location of its subset (denoted

by the child node in the figure). It recursively does this until only one valueisleft(moved

downthetreeinthefigure),whichisthesumoftheoriginalvector.The time complexity

of this technique is O(N/#Blocks + logN),vs O(N) if we were to use a simple loop for

oooooov
~> ~~---.--Figure 5.5: Parallel sum reduction using tree based approach within each thread block

Advantages of this technique is not only that the majority of the computationsareper·

fonnedon theGPU but that the vector itself never needs to leave theGPU (whichispre·

6 Results

The results obtained in this work can be qualified by performance tests and compared to the

sequential version of the methods. Memoryrequirementsofthcdeve!opedGPU code, and

finally a measure known as CUDA occupancy of the GPU kemels can also bemeasured

CUDA occupancy is a measure of the multiprocessoroccupancyofa GPUbyagiven

the work was developed and what methods were used in the development.Someofthese

results related to methods for solving systems oflinearequationson the GPU

This section will first describe results obtained in comparingdifferentmethodsforsolv·

ing systems of linear equations on the GPU. We will then describethe results of perfor

mancemeasures of both CFD methods that have been developed in thi swork. Next we

describe the memory requirements of these CFD methods, and finally we report on the

A discussion of each topic in this section can be found in each respectivesectionof

6.1 Solving systems of linear equations

Figures 6.1 and 6.2 show a comparison of the run time per iteration of the GPU implemen

tationofthe SORand conjugate gradient methods as the numberofnodes in the system

increases. The purpose of these results is to justify the choice ofeilhermethod for use in

theGPU CFD methods. Both figures represent the same comparison tests, lhe two meth

odsaredisplayedtogetherin6.ltohighlighttheverylargedifferenee in run times, and

Athlon3200CPUat2.0GHz,and2GBofmcmory. ThisGPUisanaverageGPUfora

home desktop computer. The SOR method required about 55 iterations in order to reach

convergence, while the CG method required about 25 iterations forconvergence8

1 ~~ugate Gradientl

o 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Number of Nodes x106

Figure 6.1: A comparison of run times per iteration forGPU implcmcntalionsofSORand
Conjugate Gradient methods

Theperfonnance measures used here are run times and speedups, ascomparedtothese-

quential version of the algorithms running on CPUs only. These measures areevaluated for

an increasing number of nodes in the system, illustrating the scalability of our approach

ForthepurposeofcomparativeresultsonGPUsvsCPUsfourmachineswereused,

giving 3 CPUs and 3 GPUs to compare algorithm perfonnances. This section describes

first the machines used to test themethods,then the perfonnancesofboth the SIMPLE and

For test purposes, four machines were used,each one containingaditTerentGPU.Table6.1

shows CPU and GPU information (CPU, GPU, and Memory9) for each test machine used.

It must be noted that in any CPU test only one core per processor was used to provide a true

comparison with the sequential algorithm

nVidia GeForce 8200 AMDAthlon4850eat2.5GHz 2GB
nVidia GeForce 9800GT AMDAthlon3200at2.0GHz 2GB
nVidiaGeForce9800GTX+ AMDAthlon4850cat2.5GHz 2GB
nVidia Tesla Cl060 IntelXeonX5550at2.67GHz 3GB

Table 6.2 shows features of the GPUs that each machine contained, along with some

technical specifications of the GPUs. The GPUs range from avery 10wendnVidiaGeForce

8200, which is an onboard lO card that shares its global memory withthe host machine and

therefore has s)ow memory access, toa moderate nVidia GeForce 9800GT,andfinallyto

applications.whiletheGeForcemodelsaredesignedforgraphicsprocessing. e.g. video

~~:~:: ~~~~;~~ ~~~~ GT ~ 12 ~~~4M:ishared)
nVidiaGeForce9800GTX+ 128 512MB
nVidia Tesla CI060 240 4096MB

Table 6.3 shows a summary of Figure 6.4 using peak speedupbetweentheGPU and its

respective CPU in the leslmachine. From these results we can see lhat lhe nVidiaGeForce

apeak speedup ofaboul 360x, which decreases the least 3sthe number 0fnodesinthe

syslemisincreased(seeFigure6.4).Thisbchaviorisnolexpectedfor this GPU since it is

not the higher-end card in the test set, it is actually in the middle of the test set with respect

Table 6.3: Speedup Results Per Machine for SIMPLE Method

nVidiaGeForce8200 AMDAthlon4850eat2.5GHz 20x
nVidia GeForce9800 GT AMDAthlon3200at2.OGHz 360 x
nVidiaGeForce9800GTX+ AMDAthlon4850eat2.5GHz 360x
nVidiaTesiaCI060 IntelXeonX5550al2.67GHz 230x

l-€f- nVidiaGeFOrCe9800GT!~nVldiaGeForce9800GTX
nVidia Tesla C1060

Figure 6.3: Comparison of run times for SIMPLE method across differentGPUs

1.5 2 2.5 3 3.5 4 4.5
Number of Nodes x10e

:~~~6.4: Speedups ofGPU vs the CPU in each respective test machine for SlMPLE

ThespeedupofGPUs with respect toCPUs in the same machines are difficuIt to mea

sure since it is a comparison of the GPU against a different CPU than the one in the test

machine. For example, Table 6.3 shows that the PISO test with a higherend GPU (nVidia

TeslaCI060) has a smaller peak speedup (230x) than the PISO test with a muchlower

end GPU (nVidiaGeForce 9800GT) (360x). For this case, we would expectahigherend

GPU to have a larger peak speedup than the lower end GPU, but these results show the

opposite. This discrepancy is due to the different CPUs (in each machine) that the GPUs

are compared against for the speedup calculations. A better illustration of speedup would

comparison of all GPUsagainst all CPUs ofTable 6.2. Perhaps a benerway to analyze this

infonnation is to view plots for which the data in this table was derived; Figures6.5,6.6,

Tllh!e6.4: Test Resultsnfall QPtiS vsall CPIIsforSIMPI F Method

GPU CPU Peak Speedup

nVidiaGeForce8200 AMDAthlon4850eat2.5GHz 20x
nVidia GeForce 9800 GT AMDAthlon4850eat2.5GHz 300x
nVidiaGeForce9800GTX+ AMDAthlon4850eat2.5GHz 350x
nVidia Tesla CI060 AMDAlhlon4850ea12.5GHz 550x

20x
350x
4lOx
650x

IntelXeonX5550at2.67GHz lOx
IntelXeonX5550at2.67GHz 120x

nVidiaGeFon;e 980(1 GTX+ ~::: ~::~ ~~~~~:: ;:~~~~ ~~~:

I nVidia GeForce 8200 I
---e---nVidia GeForce 9800GT
~nVidiaGeForce9800GTX

nVidia Tesla C1060

Number of Nodes x10s

~:~~~~~i;: Full Speedup comparison for SIMPLE method using CPU AMD Athlon 4850e

I nVidiaGeForce8200 I
-a-nVidiaGeForce9800GT
-nVldla GeForce 9800GTX

nVidia Tesla C1060

Number of Nodes x10e

:ti~~~~i~: Full Speedup comparison for SIMPLE method using CPU AMD Athlon 3200

[nVidiaGeForce8200 I
-e-nVidiaGeForce9800GT
--nVidiaGeForce9800GTX

nVidia Tesla C1060

o 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Number of Nodes x106

~~:~~1:~7: Full Speedup comparison for SIMPLE method using CPU Intel Xeon X5550 at

Figure 6.8 depicisrun timesasweincreasethenumbcrofnodcsinthe numerical fluid

system using the PISO method,while Figure 6.9 shows the speedups of these tests

Table 6.5 shows the set of tests perfonned for the transient (PISO) developed in this

work a!ong with the hardware tested on (both GPU and CPU) and the peak speedupbetween

theGPU and its respective CPU in lhe test machine

I nVk1iaGeForce8200 I
--e---nVidiaGeForce9800GT
-*-nVidia GeForce 9800GTX

nVidia Tesla C1060

Figure 6.8: Comparison of run times for PISO method across ditfcrent OPUs

Table 6.5: Speedup Results Per Machine forPISO Method

nYidiaGeForce8200 AMDAthlon4850eat2.5GHz 20x
nVidia GeForce 9800 GT AMD Athlon 3200 at 2.0GHz 325x
nVidiaGeForce9800GTX+ AMDAthlon4850eat2.5GHz 365x
nVidiaTeslaC1060 IntelXeonX5550at2.67GHz 165x

I GeForce82oovsAMDAthlon485Oe I
-<>-GeForce 9800GTvsAMD Alhlon 3200
----GeForce 9800GTXvsAMD Athlon 4850e

TeslaC1060vslntelXeonX5550

Figure 6.9: Speedup for PISO melhod

the conclusion that we require a speedup measure of all GPUs against all CPUsforthetest

machines. Table 6.6 shows the speedup comparison of all GPUs against all CPUsinTable

6.2. Perhaps a better way to analyze this infonnation is to view plots for which the data in

this table was derived; Figures6.IO,6.II,and6.t2 illustrate the speedup comparisons for

nVidiaGeForce8200 AMDAthlon4850eat2.5GHz 20x
nVidia GeForce9800 GT AMDAthlon4850eat2.5GHz 350x
nVidiaGeForce9800GTX+ AMDAthlon4850eat2.5GHz 410x
nVidia Tesla CI060 AMDAthlon4850eat2.5GHz 550x

AMDAthlon32ooat2.OGHz 20x
AMD Athlon 3200 at 2.OGHz 325x

nVidiaGeFor<'" 9800 GTX+ ~~ ~~::~ ~;~:: ;~~ ~~:

5x
llOx
130x

I nVkliaGeForce8200 I
-<>-nVkliaGeForce9800GT
-w--nVidiaGeForce9800GTX

nVidiaTeslaC1060

~~~~r~:.lO: Full Speedup comparison for PISO method using CPU AMD Alhlon 4850e at



o 2 4 6 8 10 12 14 16 18
Number of Nodes x10s

;.ig~~Z6.1J: Full Speedup comparison for PISO method using CPU AMD Athlon 3200 at



c~

~.i::J-~~12: Full Speedup comparison for PISO method using CPU Intel Xeon X5550 at

6.3 Memory Requirements

Figure 6.13 represents total memory usage (on the GPU at the time of query)oftheSIM

PLE method as the number of nodes in the system increases on all testGPUsdescribedin

Table 6.2. Memory usage represents the total memory usage on the GPU, which includes

the usage of anything else involving the GPU at that time (suchGPU initialization memory

usage). Therefore a bener measure would be relative memory usage, whichismemoryus-

age fora zero node system subtracted from the total memory usagesjusr described. Figure

6.14 represents this relative memory usage as the number of nodes increases. Figures 6.15

and6.16 represent these measures for the PISOmethod,respectively.



2 2.5 3 3.5 4 4.5
Number of Nodes x106

Figure 6.13: Total memory usage forSlMPLE methods per GPU



2 2.5 3 3.5 4 4.5
Number of Nodes x106

Figure 6.14: ReJative memory usage for SIMPLE methods per GPU



2 2.5 3 3.5 4 4.5
Number of Nodes x10"

Figure 6.15: Total memory usage for PISO methods perGPU



2 2.5 3 3.5 4 4.5
Number of Nodes x10e

Figure 6.16: Relative memory usage for PISO mcthodsperGPU

6.4 CUDA Occupancy

Plcasc refer to Section 3.4.3 fora description of this result measurementon GPUs

Table 6.7 represents a summary of the occupancies and min/max numberofkemel

invocations for all kemcls implemented for both methods (SIMPLE andPlSO),inciuding

theCGmethod,whichisnOlusedineithermethod,butforwhichperfonnancemeasures

were required and will be discussed in Section 7.1. For a detailed listing of occupancy data

for each kcmel,seeAppendix B. From Table 6.7 we can calculatc theaverageoccupancyof

the SIMPLE method kernels (including shared kernels) to be 74%, with a minimum number

ofkemelinvocationsperiterationof28andamaximumof2018.Wecan also calculate the



average occupancy of the PISO methodkemels(includingshared kernels) to be 74%, with

a minimum number of kernel invocations per iteration of32 and a maximum of2022



............... --N ............... _~_M 0000000



7 Discussion

7.1 Solving systems of linear equations

Theconjugategradientmethodmaybethemostefficientapproachintennsof number of

iterations rcquired to converge (see Section 2.7.4) 10 a solution, but this does not necessarily

mean it is the most efficient performance wise when compared to other Iinear solvers on

the GPU. Section 6.1 contains Figures (6.1 and 6.2) that show lests of the twoGPUlinear

solversthatwehaveimplementedforthiswork,SORandconjugategradientmethods

As we can see from these figures, the runtime for lhe CG method is almost a faciorof

lo'greatcr than that fortheSOR mcthod at the largest possible number of nodes that we

could get a tcst to complete (due to a 5 second maximum kernel runtime timeout on nVidia

GPUs).IflhetrendweretocontinuefortheCGmethodalithewaytothe4x1Q6 nodes

that the SOR method was tenninated at (purposely stopped,norestrlctionsat lhatpoint for

SORmethod),theruntimewouldbeevermoreinfeasible.lndeed,ifthe run time were to

increaselinearlyitwouidbeabout70secondsperiterationat4xl06 nodes

The largest bottleneck in the CG method we suspect to be the timerequired to load and

execute the CUDA kernel on aGPUeachtimeamatrix-vectormultiplicationor a vector

vector addition is required. Since, according to the CG Algorithm(Algorithm2.6),each

CGitcrationrequires8kernelcalls(8oftheseoperations)asopposed to the SOR method

which requires only2 kernel calls (with the red-black parallel technique) per iteration. This

enforces the suspicion that kernel load time is vcry probably the largestbottleneck

Although the CG mcthodconvergesmuch faster than the SORmethod,these run time

results caused our choice of the solver for systcms of linear equations(withinlheCFD



The discussion in this section corresponds to the resultspresentedinSection6.2.Aswecan

see from Figure 6.3 (representing the run time pcr itcration of the GPU srMPLEmethod).

thenVidia GeForce 8200GPU iSlheslowestbya large margin of all testGPUs. while the

nVidiaGeForce 9800GT and GTX+ GPUs are very similar and in the middle of the pack.

and finally the nVidia Tesla CI060 is the fastest per iteration when running theSlMPLE

methodalgorithmdevelopedfortheGPU

Figure 6.4. representing the speedup of the GPU vs the respective CPU on each test

machine. and Table 6.3. representing the peak speedupoftheGPU vsthe respective CPU

on each test machine shows. that the GeForce 9800GT(X+) cards perfonn the best. This.

however. isa misleading test, since the CPUs on these machines varydrnstically.TheCPU

ontheTeslamachineismuchmorepowerfulthantherestoftheCPUs.Thepurposeofdis

playing this type of speedup (per machine) is to illustrate the different speedups that can be

achieved for different machines. since usually a user running the softwarewould not have

multiple machines to mix and match the GPUs and CPUs in order to find the best combi

nation. Even on the very powerful CPU. the GPU(although it is itselfthe most powerful

of the test set) shows a speedupof230x. This is substantial. especially considering that it

happens at every iteration, and there could be thousands ofiterationsperexecution

Figures 6.5. 6.6. 6.7, and Table 6.4 summarize these figures for peak spcedups and

representamixandmatchofthespeeduptestsforallcombinationsofGPUvsCPUinthe

test set. The purpose of this infonnation is to illustrate the perfonnance increase indifferent

machine setup situations. For example on the least powerful CPU (the AMDAthlon3200.

which is still very similar to the AMD Athlon 4850e).we obtain a speedupofuptoa650x

with the Tesla GPU. all the way down to a speedupof20x with the GeForce 82OOGPU

In fact. the most illustrative results are showing the mid-level GPUs (the 9800 GT(X+)'s).

which obtain a speedup of 350 x lo41Ox on this CPU. Since this type of card is very



--I

common amongst nonnal users and machines (and is a very afTordable card),weseethe

Perhaps the most interesting result is that of the GPUs on tbe most powerful CPU (the

Intel Xeon X5550). Traditionally, the way to decrease run timeofCFD code was to throw

more processing power at it, which is similar to these tests (since this isa powerful pro

cessor), bUlthese tests show that even wilh such aCPU one can achieve a furtherspeedup

of up to 220x. Even at the lower end a 10 foJd speedup is achievable, oraooul3120to

135 fold speedup for the average GPU. These results demonstrate that if we are running

our simu3tion on the least powerful card we can find (the onboard GeForce 8200) and our

simulation takes 100 iteations to converge (which isa very Iowestimate) we have achieved

an overall (CFD simulation run time) speedup of 10 * 100 = 1000 times over the fastest

A note must be made on the oscillatory bchaviorofall speedup results in Figures6.3,

6.5.6.6.6.7. This behavior is suspected to becausedbya combination of the system size

affectingtheGPU multiprocessor occupancy (since it perfonns best when the system isa

powerof2) and of host memory paging. This suspicion is suppol1ed by the fact that the

testing the PISO method (compared to the SIMPLE method). Thisisexpecledandisdueto

theextrastepsrequiredperiteration(seeSection2.6),whichinvolve construction ofanother

set of coefficients, solving another system of linear equations and applying corrections a

the least powerful GPUon the most powerful CPU produces a speedup of5x perPISO

iteration. while the most powerful GPU on the least powerful CPU producesapeakspeedup



7.3 Memory Usage

Memory requirements for this work are important since the amountofmemory on GPUs is

many faclors smaller than that of the hosl system on which the GPUs run, see Table 6.2 for

the amount ofmemory per test machine used to measure perfonnance of this work,whereas

itwouldbedifficulttofindapersonaicomputertodaywithlessthanlto2GBofmemory.

Many have even more memory than that. Malher issue with memory on OPUs vs memory

on their hosts is that it is much more difficult to upgrade the amountofmemoryonGPUs

Memory usage for this work is actually at the Jow end of the specrruffiofpossible

memory usage, depending of the mesh type and discretization technique. This means that

if we had chosen another mesh type. such as an unstructuredmesh,whichwouldrequire

lookup tables for all flow values and matrix coefficient arrays aJongwith memory for size,

position, and direction arrays for vertices and edges of the mesh elements, then the memory

requirementwouJdbemuchhigher.Sincethisworkusesastrucruredmesh type, the mesh

isunifonnandthercforcthecoderequiresnoJookuptables,positions,directions,orsizes

of the mesh eJements (since they can be produced from meshdimensions and size, which

are single intcgervaJues as opposed to arrays). Thereforc,structured meshes have a Jower

The peak memory usage of the SIMPLE method is about 40 MB fora mesh 0 fsize

1024x.256 nodes (which is the mesh size used in the shape design oplimizationappJication

described in Section8.J),comparedtothe PISO method,whichhasa peak memory usage

ofaboul63 MBforthesamemeshsize. The reason for the increase in memory usage

the transient system (see Section 2 fora descriplion of the this method compared to the



Thefactthatpeakmemoryusageissolow(lessthanlOOMB)forpracticalapplications

isaverygoodindicationofthepracticalityofthisapproachonGPUs.Thesizeofthe

systemscanbegreatlyincreased,forexampleindirectnumericalturbulencemodeling(see

Section 8.2),without worrying about the use of excessive memory fortheGPUtohandle

7.4 CUDA Occupancy

The most important kernel is the one that is invoked the most frequent ,which is the red·

black..shared.maxres.Jteration..kernel. Thiskemelisinvokedanywherebetween20and

2000 times per iteration, compared to other kernels which are only invokedafewtimesper

iteration. This kernel uses 9 registers per thread and 800 bytes ofshared memory per block,

128 threads per block this is just below the 100% threshold. Ifjust another 2 registerswere

in use this would drop to 83% occupancy which would cause a very large decrease in per·

fonnance due to the frequency of invocation of this kemel. Again, the full details of the

The worst occupancy is achieved by the three matrix coefficient construction methods

(conslrllCICoefficienls_·),at 33% each. Although these are only invoked a total of between

2 and4 times per iteration, this is still a very !owCUDA occupation resu Its. The reasons

forthelowoccupationistheuseofsomanyregisters,about3lregistersperthread,while

shared memory per block used isnegligable. The multiprocessors on theGPU have a lim

jtcdamountofregistcrstouseforeachthread,31 at 128 threads per block,which gives

about 3968 registers required for each block. Since most GPUs only alIow 4096 regis

ters per thread block this only allows 2 threads permutliprocessor,thereforethis kemelis



physical and numerical flow parameters such as viscosity,densiry, system size, meshpa-

rameters, along with write access to the memory locations forthc actual coefficients (which

for 2 dimensions consists of six arrays). Each one of these parameters requires a register to

So where does this leave us? First, we have optimized the most important kernel,red

black.shared..ma.xres...iteralionJcernel,foruseofthenVidiaGPUs.Second,there are some

low occupancies, which means that there is room for improvement in the designofthe

The discussion of conjugate gradient occupancies were inlcntionallyleft out until now

sinee we have delennined by the perfonnanee measurements (Section 7.I)thaI the SOR

method was the superiorchoiee for all CFD methods on GPUs. Still we can nOlethat

all CG kernels are 100% occupancy exeepl for the matrix-vectormultiplieation and the

sealar product (whieh is very similar to the rcduee method diseussed above). Thefaet

thaI there are so many kernels fortheCG method itself is a negative result,since we have

alreadydetcnninedthattheload/executiontimeofthekemclsiswhatcauseslhereduction



8 Applications

8.1 EvolutionaryShapeDesignOptimization

The purpose of the design of these CFD algorithms for GPUs W3S to increaseperfonnance

enough to allow for their use as fitness functions in a genetlc programming (GP) technique

usedforoptimizedshapedesign.SincetraditionalCPUalgorithmsrequiretoo much time

to allow fora realistic convergence ofGP, which may require millions ofevaluations, these

GPUmethodsweredesignedtoperfonnGPonac1usterofmachines(eachequippedwith

The optimized shape design problem is a problem where we are given a fluid system

(e.g. wind tunnel) and some constraints for an obstacle in the system (sllch asminimum

shape),and expected to provide results in the formofa shape around lhe initialconstraints

that would optimize specific parameters (sllch as drag and/or lift). For example, we could

be given the frame ofa car (with car seats, engine, etc) and would require the method to

generate a shape that could be used as the optimal aerodynamic body for that specific car

FigureS.1 illustrates a sample evolution using this technique. This image depicts a

timeline (top to bottom) of evolving shapes, beginning with the shape with the most drag

profile and progressively decreasing the drag as we move towards thcbouom.Thiswork

uses the self-modifying cartesian genetic programming (SMCGP) teehnique developed in

[15] and is in collaboration with Simon Harding and Wolfgang Banzhaf.Ateachevolution

stepintheGPanevaluation(CFDsolution)occursoneachindividual in the GP population

Forthepurposeofthisworkanindividualisconsideredtobetheftuidsystem (obstacle

shape),andisgeneratedthroughtheSMCGPmethod



_..- I



To tackle lheoptimized shape design problem we expect that a million evaluations are

required. Table8.l illustratesruntimeestimatesfortheGPtoconvergewithalO24x5l2

discretized fluid system. As shown in this table, it is evident lhatto perfonn this shape

optimizationonasingleCPU is very impractical (as it would require 10 years). Sutit

requiresonlyllhoursonaclusterof50(averagc)GPUs

Table 8.1: Optimized Shape Design Problem: Estimated Times

Hardware GPConvergenceTime

1CPU 10 yea",
50 CPU Cluster 70 days
lGPU 1.4 yea",
50 GPU Cluster 10 days



8.2 DirectTurbulenceModeling

Direct turbulence modeling, also called direct numerical simulation (DNS),isthepractice

of solving time-dependent govemingequ3tions (as defined inSection 2.1) on a sufficiently

fine spatial mesh and with a sufficiently small time resolution inordertoresolvethesmallest

DNS is useful for the development and validation of new turbulence models, for mea

surement of flow details that cannot be measured with traditional turbulence models or that

are too detailed to be measured, or for advanced experimental techniques such as calibrat

inghot-wire anemometry probes in near-wall rurbulence [32l, or even extendingturbulence

measurements to compressible flows which eQuid be useful in lhedevelopment and testing

of advanced high-speed mixing techniques

DNS has many disadvantages, compared to other turbulence simulation techniques,

among them is that it is very computationally expensive. To resolve the varying degrees

of length and time scales required to perfonn DNS would require a veryfinespatialmesh

and very small time scales. For example, to resolve the smallest and largest turbulence

length scales a DNS ofa turbulent flow with a Reynolds number ofl04 (just above the tur

bulentflow threshold) one would require on the order of 103 mesh nodesineachcoordinate

Ahhough this disadvantage ofDNS is reasonable, it can be overcome by more powerful

hardware and more efficient algorlthms. The technique developed in this work is exactly

that, a more efficient algorithm running on more powerful hardware. As we have seen from

theresultsofthiswork,wecanachieveverylargeincreasesinefficiency by taking advan

tageoftheGPUarchitecture,whichcanbeappliedtoDNStoovercomethis disadvantage



9 FutureWork

The methods developed here are a proof of concept in that we havedeveloped basic tech

nique and algorithms for efficient general purpose CFD simul31ionson GPUs. Thesemeth·

ods can be extended in many ways to further increase not only its efficiency but its practical

Improvements in efficiency can be achieved through an extension of the methods on

mu!tipleGPUs at once, whether the GPUs be in the same machine oracrossanetworkof

machines (in distributed network),which WQuid give multiple Jevels of parallelism. Such

parallelism would be a relatively simple extension in that it would requireonlytodecom

pose the problem into another set of domains to execute across each GPU. Anotherim

provement in efficiency can be achieved through the extension oflhe linear solvers used

toamultigridmelhod.Multigridmethodsusemultipleresolutionsoflhemeshinorderto

solve a systems of linear equations with increased efficiency. Therehas already been work

done in the area of multigrid techniques on GPUs since we started this work (see (I I])

Besides improvements inefficiency, the practicality of the code could be improved. One

could extend the approach to allow for simulations on unstructuredrneshes. Unstructured

meshes would perrnit more complex flow with iessmesh nodes (mcaning more efficiency)

because with unstructured meshes one can generate the mesh aroundobstacles and put

more mesh nodes near computationally complex areas that require more accuracy (such as

boundaries or wakes) and less in areas where the flow issimpleandrequiresiessaecuracy.



10 Conclusion

The purpose of this thesis was the development of efficient and practical general purpose

methods for simulating ftuid flow on graphics processing units. CFDiscomputationally

expcnsiveand requires a 101 of processing power to perfonn even moderatesimulationsina

reasonable period of time. With the techniques described in this work we can perfonnfast

andaccur3te fluid simulations with no major loss of accuracy to improveperfonnance

In Chapter 5 wedevelopedthetechniquesandalgorithmsusedontheGPUssimply by

extending traditional techniques onto this modem hardware. Chapters 6 and7illustratedthe

perfonnance gains that this work resulted in for general purpose ftuidsimula tions. These

results shOWlhat we achieve very high (up to 650 x) speedups per iteration (time step)

withthesimpleandinexpensivehardwarepresentedinthiswork.Wehavealsoseenthese

speedupsarepertimestep,sothatoverallthespeedupincreasesdramatically as most fluid

simulations require hundreds,sometimesthousands, of time stepstocomplete



References

[I] J. D. Anderson Jr. Computationa/FluidDynamics: TheBasicswilhApplicolions

[2] I. E. Barton. Comparison ofSIMPLE-and PISO-type Algorithms for TransientFJows

International Journalfor Numerical Methods in Fluids, 26:459-483, 1998

[3] N. BellandM. Garland. Efficient sparse matrix-veclor multiplicarions 0 ncuda.nVidia

Technical Report NVR-2008-004. nVidia Corporation, 2008

[4] M. Bern and P. Plassmann. Mesh generation. Handbook a/Computational Geome-

[5] J.Blazek. Computational Fluid Dynamics: Principles and Applicotions. Elsevier

Science Ltd, Oxford, UK, 2001

[6]T.Cebeci.TurbulenceModelsandTheirApplicotions.HorizonsPublishinglnc,Long

[7]T.Cebeci,J.P.Shao,F.Kafyeke,andE.Laurendcau.Comp/itotionofFllIidDynomics

JorEngineers.HorizonsPublishinglnc,LongBeach,Califomia,2005

CFD grid generation methods

htlp://www.chmltech.comlcfdlgrid..generation.pdf.

[9] H.CourtecuisseandJ.Allard. Parallel dense gauss-seidel algorithm on many-core

processors. HighPer!ormanceComputotionColI!erence(HPCC),IEEECSPress,

hnp:llwww.cs.caltech.edulkeenanlproject..fluid.html



(II] Z. FengandP. Li. Multigridongpu: tacklingpowergridanalysisonparallel simt plat

forms. Proceedingsojlhe 2008 IEEElACMlnternational Conjerence on Computer-

(12] J.H.FerzigerandM.Peric. Computational Methodsjor Fluid Dynamics. Springer

Verlag Berlin Heidelberg, third edition, 2002

(13] G.H.GolubandC. F. Van Loan. MatrixComplltations.TheJohnsHopkinsUniversity

Press, Baltimore, Maryland. third edition. 1996

(14]S.Haque.Convergenceofthesuccessiveoverrelaxationmelhod. lMAJournaloj

NumericaIAnalysis,7:307-31I,1987.

(15] S. L. Harding,J. F. Miller. and W. Banzhaf. Self-modifyingcanesiangenelicpro-

gramming. GECCO '07 Proceedings ojlhe 9th annualconjerence on Genetic and

(16] P.K.KunduandI.M.Cohen.FluidMechanics.Elsevierlnc,founhedilion,2008

[17] N. Lambropoulos,E.S. Politis, K. C. Giannakoglou, and K. D. Papailiou.Co-located

pressure-corrcctionformulationsonunslructurcd2-Dgrids.CompIItationalMechan-

[18] R.J.LeVequc.FiniteDif!erenceMethodsjorOrdinaryandPartiaIDijJerentialEqua

tions.SocietyforlndustryandAppliedMathematicsProcecdings,2007

[19] W.Li,Z.Fan,X.Wei,andA.Kaufman. GPUGems2: Chaptor47,FlowSimulations

with Complex Boundaries. Pearson Education Inc, Upper Saddle River, NJ, 2005

[20] Y.Liu,X.Lui,andE.Wu. Real-time 3D fluid simuJationson GPU with complex

obslacles.Proceedingso[lhe/21hPacijicConjerenceonComputerGraphicsand



[21] Lomax, Pulliam, and Zingg. Fundamentals ojComplltationalFluidDynamics

[22] nVidia.CUDAProgrammingGllide.nVidiaCorporation,2009. Version 2.3

[23] N.Osbome.GPUFluidSimulation.lntemreport,SchoolofComputerandlnfonna-

[24] S.Y.PatankarandD.B.Spalding. A calculation procedure for heat, mass, andmo-

mentumtrnnsferinthree-dimensionalparabolicftows./nternotionoIJournolojHeat

[25] Sengupta, Harris, and Garland. Efficientparallelscanalgorithmsforgpus. nVidia

Technical Report NVR-2008-003, nVidia Corporation, 2008

[26] T.W.H.SheuandR.K.Lin. An incompressible navier·stokes model implemented

onnonstaggeredgrids.NumericoIHeotTransjer,44(PartB):277-294,2003

[27] A. F. Shinn. Computational fluid dynamics (cfd) using graphics processing units

Mechanical Science and Engineering Dept., UIUC, 2009

[28] A.F.Shinn. Implementation issues forcfd algorithms on graphics processing units

Mechanical Science and Engineering Dept., UIUC,2009

[29] Shyy, Udaykumar, Roa, and Smith. Computational Fluid Dynamics with Moving

Boundaries. Dover Publications Inc, Mineola, NY, 1996

[30] T.Stoesser.SolutionMethodsfortheNavierStokesEquations.CourseNotes,Spring

2007. Georgia Tech,Computational Fluid Dynamics, CE775 I-ME775 I

[31] Z. Tong, Q. Huang,J. He,andJ. Han. An improved study of physically based ftuid

simulationsongpu. Compllter-AidedDesign andCompliler Graphics, 2007 10th



[32] Versteeg and Malalasekera. Computational Fluid Dynamics: The Finite Volume

Method. Pearson Educarion Limited,Harlow, England,secondedition,2007

[33] N.Wolovick. Peakperfonnance for an application in cuda. Universidad Nacionalde

[34] E.WuandY.Liu. Emerging technology about GPGPU. Circuits and Systems, 2008.

APCCAS2008.IEEEAsiaPacificConJerence,2008



A 20 Finite-Volume Discretization ofGoverning Equations

on Structured Grid

In order to discretize the momentum equations, which are just the Navier·Stokesequatton

for each dimension, using the finite·volume discretization techniquewemakeuseofequa-

tion5.SinceweareapplyingaunifonngridoUTcontTolvolume(CV)isconstant, and since

weare in 2 dimensions it will bean area, A,whereA = dx.dy, with dx anddy the in

finitesimal horizontal and vertical node sizes. Thisleadstothe2dimensionedfinite-volume

discretization of the Navier-Stokes equation for a unifonn grid

P!(il.VUjdA=-!VPdA+ !I'V
2
ildA

In2dimensions,ifweexpandthisoutusingthecomponentsi1=ui+v),this will simplify

Taking just one of these equations, say Eq. 45, the u momentum equation, and using the

fact that in 2 dimensions the control volume will be an arca,A,whcre A=dx*dyanddx

and dy are the horizontal and vertical node sizes in the mesh. we can rcwriteEq.45as



where the integrals can be solved in any order. Ifwe linearize this equation, by leningthe

extrauandvontheleft-handsidebecomeconstant,andwiththeknowledgethat

where fix and fiy are the actual horizontal and vertical node sizes in themesh,solvingall

inlegralsofEq.47becomes

where we employ theeast-west-north-south notation to define neighboringnodes(capital

E,W,S,N,P, where P is the central point) and neighboring faces (Iowercasee,w,s,n)between

Since the non-constant values ofu and p are all on the control volume faces we don't have

byknownnodevalues.Usingcentraldifferenceapproximationwegettheequations



tt-
N

-

.W w .p e -E

_ 5_ _

FigureA.l:east-west-north·southnotationtodefineneighboringnodes

WithasimpledifferenceapproximationtoapprOximate(~)and(~)wedefine



Gpu=..t>y). (UE+Up)- Gpu=..t>yt (Up+UIV)

+ Gpv-,t>X) n (UN +Up) - Gpv=..t>X). (Up +US) ~

_~(PE_PIV)t>Y+I'.t>y(UE;XUP)_jJ.",t>y(UP;XUIV)

+l'nt>X(UN;yUP)_I'.t>X(UP;yUS)

-I



ap=Fe-Fw+Fn-FIJ+De+Dw+DIl+DIJ

b= ~ (PIV - PE)t>y

which gives us the final 2 dimensions finite-volume discretization for a unifonn grid for

the u momentum equation. The same technique can be used todiscretize the v momentum



B CUDA Occupancy Data

The following figures represent the CUDA occupancy for all kernels inthiswork






























	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Blank page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgments
	0008_Table of Contents
	0009_Page ii
	0010_Page iii
	0011_List of Figures
	0012_Page v
	0013_Page vi
	0014_List of Tables
	0015_List of Algorithms
	0016_Introduction
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Page 95
	0111_Page 96
	0112_Page 97
	0113_Page 98
	0114_Page 99
	0115_Page 100
	0116_Page 101
	0117_Page 102
	0118_Page 103
	0119_Page 104
	0120_Page 105
	0121_Page 106
	0122_Page 107
	0123_Page 108
	0124_Blank page
	0125_Blank page
	0126_Inside Back Cover
	0127_Back Cover

