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Abstract

One of the best ways to decrease breast cancer mortality

s through early detection.

X-ray mammography is widely used to screen women with an increased risk of breast

cancer. Computer aided detection (CAD) programs have been developed in an effort
to boost efficiency and accuracy, but studies have shown that the CAD programs

currently in use are not particulaly effec

ve,

In this

project, a new CAD algorithm was developed. The two main components

of the method were the use of whole image classification and a novel feature extraction

step using the discrete cosine transform. The features were generated from moments

of the mean of square sections centered on the origin of the transform. Feature vectors

were then run through k-nearest neighbour and naive Bayesian classifiers.

It was found that the discrete cosine transform could be used to manually filter

suspicious characteristics from images. Features extracted from the images were found

to change dramatically when a mass was introduced into the image. Using a k-nearest

neighbour classifier, sensitivities as high as 98% with a specificity of 66% was achieved.

sian classif

With a naive Baye sensitivities as high as 100% were achieved with a

ficity of 64%
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Chapter 1

Introduction

The first chapter of this thesis consists of background information related to the mam-

mogram computer aided detection (CAD) system developed in this project. Section
L1 states the problem being investigated and the general approach taken to solve

it. Section 1.2 discusses basic breast anatomy and cancer. Section 1.3 explains how

mammography works, how images are interpreted, and how computers can be used to
aid in the detection of cancer. Section 1.4 provides some mathematical background

o the discrete cosine transform and the moments about the mean and what they

d

represent. Section 1.5 introduces the two classifiers used, k-nearest neighbour a

naive Bayesian, as well as the cross validation process of training and testing them.

1.1  Objective and approach

The object of this work is to develop and test a computer aided detection method

for x-ray mammography with a high level of sensitivity and specificity. Whole image
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ion will be used in an effort to avoid the n false positives per image problem

ific

choice

s approach is in the

i many CAD programs suffer. The novelty of thi

from w
of feature vectors. Discrete cosine transforms will be used in conjunction with a
unique sampling method to generate feature vectors that can be used to distinguish

normal from abnormal images.

1.2 Breast cancer

Breast

cer is a serious problem for women in Canada. 1t is the most common form
of cancer diagnosed in women, with one in nine women expected to be diagnosed with
some form of breast cancer in their lifetime. 1t is second only to lung cancer in cancer
related deaths. With increasing rates of breast cancer diagnosis, mortality has been
in decline since the mid 1980s [1, 2]

The decrease in breast cancer associated mortality may be attributable to several

ion. Both have seen

of treatment and detec

factors falling under the broad categori
siguificant advances over the past 30 years, due to the vast amount of research in the

is the stage at which it is

field. The most important proguostic factor in breast cance

have a much higher

diagnosed. Cancers caught when they are still in the early stage

ed than cancers that have metastasized. Screening programs

probability of being c

are widely used o detect potential breast cancers. In any screening process, the

ate diagnosis, but rather to separate the individuals

objective is not to obtain an ace

within a large population,

who may possibly have cancer from those who do not fror

In order for a screening program to be effective, it must have a high throughput and
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must offer reasonably accurate results.

Breast cancer serecning involves mammography and occasionally clinical breast

however there is a growing

examination. Many women perform breast self exam:
body of evidence that suggests that there is no benefit to this [3, 4]. Clinical breast

s may not be large or close

many cance

exams also suffer from low accuracy sine
enough to the surface to be detected. MRI is more sensitive than x-ray (5], but is

expensive and time consuming and therefore not well suited to a screening program.

on of masses that are not yet palpable, as well

X-ray mammography allows the detey
as calcifications that way indicate maliguaney. This can be done with good accuracy,

tively low cost, making it ideal as a screening method

high throughput, and

An understanding of breast anatomy is essential to the successful interpretation
of x-ray mammograms. In women, the breasts develop during puberty under the

ale breasts generally develop some subarcolar ducts during

influence of estrogen.

breast cancer is

adolescence, but seldom form lobules (6], partially explaining wh

50 rare in men. Figure 1.1 shows the most important structures found in the female

breast that can be seen on a mammogram.

Each breast contains a complex mammary gland composed of many simple mam-

tissue of the breast is made up of ducts and lobes. Each

mary glands. The glandu

lactiferous ducts which drain to the nipple [§]. The

breast contains a median of 2
ducts are connected to lobes made up of many branching lobules which contain the

e consists mostly of connec-

ting exocrine cells. The remaining stromal

milk sec

ary adipose

tive tissue (Cooper’s ligaments) and ft (subeutancous and retromam
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Figure 1.1: Breast anatomy:

nipple, 5. arcola,

Chest wall, 2.
ducts, 7. fatty

pectoralis major, 3. lobules, 4
issue, 8. skin. Image from [7].

Blood is supplied to the breasts through the internal thoracic, lateral thoracic,
posterior intercostal, subscapular, and thoracodorsal arteries and drains through the
axillary, intercostal, and internal thoracic veins [9]. Blood vessels are often visible in
mammograms. They are sometimes calcified, but this is a benign finding,

Breasts are bilateral and are generally located between the clavicle and eighth
ib, and between the sternum and the midaxillary line, superficial to the pectoralis

major. When imaging the breast with mammography, care must be taken to reduce

the iy

of the neighbouring chest wall and to include tissue around the lateral
margin of the pectoralis major muscle (6],

The term breast cancer refers to a large group of cance

s originating in the breast
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the primary concerns

with many different histopathological types. In mammography,
are ductal and lobular carcinomas. Not only are these the most common forms of

1c of the breast, where physical

breast cancer, they occur deep in the glandular tis
changes are generally diffieult. to detect through visual inspection or palpation in the
early stages. 55% of breast cancer diagnoses are for invasive ductal carcinoma, 13%

are ductal carcinoma in-situ and 5% are invasive lobular carcinomas [10]

of breast cancers, they are further subdivided

In addition to the histopathology

according to the presence or absence of three receptors. Estrogen receptor pos
cells grow in the presence of estrogen and may be treated with drugs that either

reduce estrogen concentrations or antagonize estrogen receptors such as Tamoxifen

unless is present. Pro-

[11]. Proges receptors blod
gesterone receptor positive cancers grow faster in the presence of progesterone [11]
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase in-

1 lead to

fluencing cell growth and differentiation. When it is over expressed, it c
increased cell proliferation. HER2 positive cancers are often treated with the drug

Herceptin [12). While mammography is able to detect the presence of such cancers,

e them.

biopsies must be performed to actually charactes

The two most important risk factors of developing breast cancer are female sex

ancer than men.

and age. Women are roughly 100 times more likely to develop breast

As women age, the chances of developing breast cancer steadily increase. Anmual risk

of breast cancer increases with each year of age (table 1.1)

There are a number of factors that can lead to a greater risk of developing breast
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Table 1.1: Risk of breast cancer per year by age decade [13]. As a woman ages, her
chances of developing breast cancer each year increases.

Age Range Annual Risk_ Annual Risk (%)
29 0.05/1000 0
3039 0.4/1000 0.044
4049 5/1000 0.146
5059 2.7/1000 0273
60-69 3.8/1000 0.382

cancer. Most notably, a personal or a family history of breast or ovarian cancer

generally indicates an increased chance of developing breast cancer [14]. Several
genes have been identified that make an individual much more susceptible to breast
cancer. In particular, BRCA1 and BRCA2, two tumor suppression genes have been
shown to greatly increase the risk of breast cancer in women carrying a mutation in
cither of these genes. Lifetime risk of developing breast cancer for women carrying
BRCA mutations is 82 % [15]. Women with a high risk of breast cancer may have
additional testing outside of normal screening mammography. This may include more
frequent mammograms, starting at a younger age in addition to MRI and ultrasound

exams.

Breast cancer is staged with the TNM (tumor, node, mass) system. T, the size of
the primary tumor, is graded as TO (no tumor), TX (evidence of a tumor, but cannot
be found), Tis (tumor is in situ), or T1-T4, with T4 being the largest. Lymph node

involvement is graded as NX (nodes cannot be measured), or NO-N3. Finally, MO

indicates the cancer has not metastasized, M1 means it has, and MX means it is

unknown if it has metastasized or not [16]. These factors are combined to determine

a stage for the cancer. Stage 0 indicates a non invasive cancer in which the tumor is
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highly localized and there is no evidence of it invading nearby tissue. Stage [is an
invasive cancer of up o two cm in diameter without lymph node involvement. Stage
11 indicates lymph node involvement and/or tumor size of up to five cm. Stage 111

indicates that the cancer has invaded further but has not yet metastasized. Finally

stage IV indicates the cancer has metastasized to distant organs, most commonly
bone, liver, brain, or lung [17]. Five year survival of these stages for ductal and

lobular carcinomas are 92% for stage 0, 87% for stage I, 75% for stage 11, 46% for

rs are discovered, the

stage 111, and 13% for stage IV [18]. The carlier these canc

higher the chance of survival. This is the rational for using mammographic screening,

1.3 Mammography

Xeray mammography has long heen the subject of fierce debate as to its efficacy. Dif-

ferent organizations have different recommendations for screening intervals and th
recommendations periodically change. Recommendations generally vary from once a

year starting in the late 305, to not at all. Proponents of frequent and carly

nammo-

grams claim that this is the only way to catch cancers while they are still curable and

that the only reason not to do this is ecconomic. While opponents question the value

of mammography at all, citing radiation exposure, false positives, and unnecessary
interventions in cases that might never become symptomatic. While the validity of
cither of these arguments is not the subject of this research, the Canadian Breast

Cancer Foundation recommends regular screening between the ages of 50 and 69 [19].

The most important consideration in determining the best possible screening in-
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1 sojourn time that a cancer will remain curable

terval for mammography is the me

[6]. Th

s the amount of time expected to be between the point when a cancer be-
comes large enough to be detected with mammography and when it is too advanced

to be cured. In order for sereening to be cffective it must be repeated at intervals

shorter than the mean sojourn time. Unfortunately. this varies widely. Breast cancey

usually grow faster in women younger than 50. This is why when mammography

recommended for individuals under age 50, it may be at yearly intervals, where as

individuals over 50 may be once every two years [20]

A mammography unit consists of three vital components. The x-ray tube gene

of the

ates low energy x-rays that are filtered according to the density and thicknes

breast to provide x-ray photons in the region of the spectrum that will provide good

contrast in the resulting image. Secondly, there must be plates, which are transparent

to x-rays, to compress the breast and keep it still during imaging. Thirdly, there must

cither be a film, or a digital devi

be a detector to capture the image. It

X-rays are a form of electromagnetic radiation with wavelengths in the range of
10 ®m - 10" "'m. They can be characterized as high energy (hard) or low energy (soft)

softer x-rays are used because their limited penetration

rays. In mammography,

results in higher contrast in soft tissue. At the appropriate wavelength range, photons

are absorbed and scattered by some breast tissues and not by others.
The x-ray tube is a vacuum tube with and cathode at one end and a rotating

anode at the other. Electrons are liberated from the cathode through thermionic

s the anode [21]. At

emission and accelerated across a potential difference towa
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the anode, the clectrons generate x-ray photons through bremsstrahlung and x-ray
fiuorescence. Bremsstrahlung (braking radiation) occurs when an electron passes close

to an atomic nucleus, The electric field decelerates the electron and the lost kinetic

energy is converted to a photon as shown in figure 1.2 [22]. Bremsstrahlung forms the
continuous spectrum, indicated in figure 1.4, X-ray fluorescence occurs when a high

energy photon knocks an electron from an inner orbital of an atom in the anode. The

hole created in the inner orbital is quickly filled by an electron from an outer orbital

and a photon is released as it moves to the lower energy state as shown in figure

13 [21]. Xeray fluorescence is a quantw s and creates a discrete emission

proces

spectrum characteristic of the anode material indicated in figure 1.4

Figure 1.2: As the kinetic encrgy of an clectron is lost through interaction with
an atomic nucleus, an X-ray photon is emitted.  This is called
Bremsstrahlung. Image from [23].

T

e anode is angled so that the emitted radiation is directed towards a window.

Filters can be placed in the window to absorb radiation that is not in the desired

range, to reduce exposure. Denser and/or thicker breasts require more energetic

Xerays to penetrate the breast.
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igure 1.3: When an electron is lost from an inner orbital, higher energy electrons
transition down 1o fill the hole and emit a photon with the encrgy
difference. This is called fluorescence. Tmage from [24].

okt

Figure 1.4: A typical X-ray spectrum. Bremsstrahlung caus
part of the spectrum, whereas fluorescence caus

s the broad smooth
sharp peaks.

X-ray photons interact with the breast tissue primarily in two way

. In Compton

scattering, some of the photon energy is absorbed by an electron, causing it to recoil,
and the rest s released as a degraded photon at an angle § = arccos (1 — ™<=V} to

the original photon [23]. Since the photons are scattered at &

ngle to the incident
photon, Compton scattering can cause blurring of the image. In the photoelectric

effect the photon is completely absorbed by an electron causing it to be ejected from
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the atom [26]. This contributes to the sharpness of the image, since an absorbed pho-
ton will not reach the target. While both processes play a role in photon attenuation,

Photoelectric effect dominate

In order to obtain the best images possible, the breasts must be compressed during
the imaging process. Typically the breasts are compressed with a force of 10-20 Ibs
(44-89 N) up to 45 Ibs (200 N)[6]. Not only does this hold the breast still and out
from the chest wall while the image is being taken, but also increases the surface area
and decreases the thickness. Since x-ray mammography produces projection images,
increased surface area results in less overlap of tissues in the breast making it casier

to determine where one structure ends and another begins. The decrease in effective

thickness of the breast also means lower beam energies can be used.

c x-ray detectors currently in us

There are two main types of mammograph

and digital. In film based machines, the image is captured on a photosensitive film

and developed so they can be viewed in light boxes. These images may subsequently

be scanned into a computer for more convenient storage and analysis. Digital man-
mogram machines are more modern and expensive. They capture the image with a
CCD sensor and store images directly on a computer. Digital mammograms use, on

average, 22% less radiation [27], and have greater contrast. Digital mammograms

aceuracy in women with dense

have been shown to significantly increase sereens

breasts and those under age 50 (28]

In a typical mammographic exam, two images are taken for each breast. The

‘mediolateral oblique (MLO) view is through the side of the breast angled parallel to
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the pectoralis major, so that breast tissue extending lateral to the muscle and into the

axilla can be viewed without obstruction [6]. Craniocaudal (CC) views are straight

down through the top of the breast. The two views are taken because some features

are visible in one vie

and not another. It also provides the radiologist with a way of

.

ng the 3D structure of the breast from the projected images, and loc

any abnormalities found.

The accuracy of the test can be broken up into sensitivity and specificity. In
order to define these two terms, we must first define four more. A true positive
is when a test correctly identifies a positive result. A false positive is when a test

incorrectly returns a positive result. A trie negative is when a test correetly identifies

anegative result. A false negative is when a test incorrectly returns a negative result
Sensitivity is a measure of how well a test can detect positives; that is, individuals

who test positive for some condition. It is defined as the number of true positives

divided by the actual mumber of positives ;% Specificity is a measure of how well

a test can detect individuals who are negative for some condition. It is defined as the

number of true negatives divided by the total number of actually negative individuals

w

T3+ In a perfect test, sensitivity and specificity will both be 100%. Less than 100%
sensitivity can mean that some individuals will have delayed treatment and therefore
poorer prognosis. Less than 100% specificity can mean that some individuals will
be given unnecessary testing and/or treatment. While neither of these situations are
ideal, in the case of mammography, more importance is placed on high sensitivity

: as low sensitivity can directly lead to increased mortality.

than high specific
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1.3.1 Mammogram interpretation

No matter the skill of the radiologist, there will always be cancers missed that, in

widely. In

retrospect, were visible on the mammogram. The accuracy rate var

a study of 209 radiologists between January 1, 1995 and December 31, 2000, each

of 77% with a

reading an average of 6011 mammograms, had a mean sensitivi
range of 20% to 97%. Specificity ranged from 71% to 99% with an average of 90%
[29]. Higher specificity has been shown to correlate with more experience. There is a

specificity with more than 25 years of experience vs less than

10, and interpreting more than 2500 mammograms per year vs less than 750 [20].

Positive predictive value has been measured at 34% higher for radiologists reading
over 2000 mammograms per year compared to those reading between 480 and 699
[30].

Mammograms are typically read by one or two radiologists. There are many
different strategies used for double readings. Anywhere from all images to only a
very small portion may be double read. The second reader may or may not be aware
to the outcome of the first reading. Action may be taken based on a consensus
between radiologists, or on the recommendation of cither radiologist alone. Double
readings have been shown to significantly increase accuracy [31, 32, 33]. The problem
with double readings is that they can also significantly increase costs which may, in
some cases, make mammography less accessible [6].

Mammography is an excellent tool for detecting abnormalities. 80-85% of cancers

can be seen with x-ray [34]. It is not, however, used in making a definitive diagnosis.




1

CHAPTER 1. INTRODUCTION

Specificity for distinguishing between benign and malignant lesions is typically around
60%(34].

Mammograms are generally arranged for viewing by placing left and right images

allows the radiologi

next to each other so that they appear as mirror images. Thi

to casily assess for asymmetries. If previous images arc available they will usually be

o that the radiologist can assess for any changes in the

placed above the current ones s

sses, calcifications,

breasts since the last screen. Then the radiologist can search for mas
or architectural distortions that may indicate cancer.

Shapes can be

Masses can he categorized according to their shape and margi

cribed, obscured,

round, oval, lobulated, or irregular. Their margins can be circums
micro-lobulated, ill-defined, or spiculated, as shown in figure 15. They can be very
obvions or quite subtle, as show in figure 16

Architectural distortions are caused by desmoplastic reactions (abnormal growth
of fibrous or connective tissue). While they are sometimes the result of harmless
process such as scar tissue, they are often a sign of malignancy [38]. They have the

i figure 1.7,

appearance of tissue being pulled in toward a central point as

Most breasts have at least one calcification. Calcifications can be formed from

cellular secretions or necrosis. They can be found in breast tissue or on the skin.

There are several different types of calcifications, some are usually benign and some

The BIRADS groups calcifications into the categories: ‘typically

indicate malignancy,

shape, and

benign’, 'intermediate concern’, "higher probability of malignancy’. Si

distribution can provide clues as to the origin of a calcification. In general, large
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Figure 1.5:

Cancerous masses can have many different appearances

A sample of
five types of cancerous masses is shown here

a) Cirumseribed, b)

obscured, ¢) micro-lobulated, d) ill-defined, and ) spiculated. Images
from [35]

rounded calcifications, like lucent calcifications, are benign and small irregular shaped

clusters, like pleomorphic or fiue lincar caleifications, are malignant. Figure 18 shows

some different types of calcifications

The first mammogram a woman receives provides a frame of reference that can be
compared with subsequent mammograms. By comparing current images with those of

the patient from two or more years ago, it is easier to appreciate any changes that have
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Figure 1.6: Cancerous masses are sometimes easy to spot, but often are not

The

first image shows a very obvious mass, the second shows a subtle one

[36, 37).

Figure 1.7: An architectural distortion is shown in this image.
an indicator of malignancy [35]

This is sometimes
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Figure 1.8: Calcifications can appear in numerous forms as the result of different

processes. Certain types of classifications are strongly correlated with

cancer whereas others are not. A sample of breast calcifications: a

Lucent, b) pleomorphic, and c) fine linear [35]

occurred in the breast in the interveni

ime. Generally, as time goes on, breasts
become less radiopaque. Any changes should be carefully assessed to determine if
they are suspicious. Using older scans makes it possible to see if any areas of tissue

owing and potentially cancerous; this has been shown to significantly increase

reading accuracy (34

1.3.2 Computer aided detection

Computer aided detection is a tool a radiologist can use to assist in the detection of

abnormal pathology in medical images. It is often used either to replace or augment
double readings. Computers are able to rapidly analyze the large amount of data in

a medical image and draw the radiologist’s attention to any images/regions that may
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require attention. They are able to do this by utilizing machine learning and pattern

recognition to match an image being tested to known patterns of disease.

One of the most common applications of CAD is in mammography. In order for

any computer aided detection method to be used on a mammogram, it must be in

arly all CAD

a digital format, whether a scanned film or digital mammogram.

programs do region of interest (ROI) analysis, where images are divided into sections

and these sections are tested for abnormalities. When abnormalities are detected,

they are marked for the radiologist’s review. The problem with this method is that

many more objects are marked than there are suspicious areas [10]. Specificities are

often cited as a number of false positives per case. Having such a high number of areas

that require a radiologist’s attention may slow the process of reading a mammogram

in addition to biasing the radiologist to unnecessarily call back more patients than

they ordinarily would.

A common problem with CAD is a slight increase in sensitivity, but significant
decrease in specificity. Research by Joshua Fenton has shown a significant decrease
in specificity from 90.2% to 87.2% with use of CAD programs and no significant
increase in sensitivity [41). There is a wide variation in the reported performance
of CAD software. The actual performance of a CAD program rests largely on the
radiologist using the program. It is also important not to make the assumption that
the CAD programs reviewed are representative of all CAD programs. David Gur et

al. showed a statistically significant difference in the accuracy of two commercially

available CAD systems [40].
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Michael Barnett developed a method of whole image classification using the dis-

crete wavelet transform [42]. Using this method, he was able to achieve near perfect

sensitivity with greater than 60% specificity. Whole image classification could po-
tentially decrease the physician bias seen in ROI analysis. When a whole image is
flagged for further review, the radiologist must still asses the image and determine

for themselves if and why it needs review.

1.4 Mathematics

1.4.1 Discrete cosine transform

The cosine transform is a modification of the Fourier transform, in which only the

cosine term is considered. 1t decomposes a wave into its component cosine waves and

plots the amplitudes of these waves in frequency space. Unlike the Fourier transform,

the discrete cosine transform (DCT) is real valued, and hence outputs only magnitude
formation and not phase

The DCT is used when there are a finite number of data points in a set. There

are eight variants of the discrete cosine transform. For the purpose of this work, only

the four most common (I, 11, 111, and 1V) were used (equation 1.1 [43]).

(% 45 wens (DY iy

o (1.2)

D

DCT II:v, =

DCT 111 :v, (1.3)

i
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DCT IV :v, = ‘/g(gu,m(%(p%) (N-%))) (14)

ecified, the term

DCT I is the most commonly used variant. Unless otherwise sj

DCT refers to DCT 11, The values of v, are coefficients of a cosine basis function
and are plotted in frequency space. Each wave in the basis function is orthogonal,
forming a linearly independent sct [44]. The first cocfficient in the DCT 1l trausform
(s = 1) will always be 1/y/ii ¥, u,. It is an average of sorts and is called the
DC coefficient. The other coefficients (s > 1) are called the AC coefficients [45, 44].
In the transform, the DC coefficient represents a constant value, where as the AC

coefficients correspond to the waves in the basis function.

The DCT can easily be extended into higher dimensions. The 2D-DCT 11 trans-
form is defined in equation 1.5 [43). This allows us to take the transform of a two
dimensional array of data, such as an image. The basis functions in the two di-
mensional case can be derived simply by superimposing horizontally and vertically
oriented basis functions on a grid. In the two dimensional transform, the coefficients
are mapped to 2D frequency space where cach point corresponds to one of the 2D
basis functions.

PR T BT B

=1

A simple way of calculating the 2D DCT is to do one dimensional transforms for
each row, then repeat for each column. In practice, since equation 15 is symmetric
and separable, matrix multiplication can be used to rapidly calculate the transforma-

tion. The transformation matrix of an N x N image can be calculated from equation
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1.6. Then the transform is simply T = Af A [46, 44].

(1.6)
VEcos B G #0

The DCT separates the components of an image according to frequency. High

frequency characteristics, such as small points with sharp edges are mapped to the

such as large objects with

outer regions of the transform, while low frequency features

smooth edges are mapped to the inner portion of the transform. The DCT therefore

at types of abjects in an imay

separates the dif

The DCT exhibits a high degree of encrgy compaction. This means that a large
proportion of the information stored in a signal is represented in the lower frequency
coefficients of the transform [44]. It is this property that makes DCT a popular choice

for data compression, and is a motivating factor in the feature extraction method

described in chapter

Like the Fourier transform, the cosine transform is a lossless operation. The trans-

form contains the same amount of data as the original signal and for each transform

there exists an inverse transform that can be used to reconstruct the original signal

The inverse of DCT 1 is itself, the inverse of DCT I is DCT IIT and vice versa, the

inverse of DCT 1V is itself (43, 44]. That is, two consecutive DCT T or DCT IV
transforms result in the original signal, and DCT 11 followed by DCT IIT or vice versa
results in the original signal. As with the transform, the inverse transform can also

be calculated with matrix multiplication using the equation f = A~'TA™', where

A" denotes the inverse matrix of the transformation matrix. Since A is orthogonal,

its inverse is simply its transpose.
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1.4.2  Central moments

There are four statistical measures used in feature generation in this work: mean,
variance, skewness, and kurtosis. They are derived from the central moments about
the mean. The central moments about the mean are caleulated from equation 1.7
[47). Where g1, is the n* central moment, (z) is the expectation value, j(= j}) is

the mean, and P(x) is the probability density fnction of z.

= = (=)") (17

[y pai 18

Mean is simply the total of a list of numbers divided by the number of items in
the list (equation 1.9).

(1.9

The second moment i is called variance. The positive square root of variance is
the standard deviation, o (cquation 1.10). Standard deviation measures how much a
point in the data set can be expected to deviate from the mean. Low standard devi-
ation indicates that data s clustered about the mean, while high standard deviation
means the opposite.

e J;',I);‘;(c.f,,)z (1.10)

Skewness is defined as the third standardized central moment. The n'* stan-
dardized central moment is simply the n" central moment divided by the standard
deviation to the power of n (equation 1.11) [47]. It measures the symmetry of a

distribution. A symmetric distribution will have a skewness of zero. Distributions
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skewed to the left of the mean will have negative skewness and distributions skewed

to the right will have positive skewness as shown in figure 1.9.

PAVAN

Negative Skew Positive Skew

(1.11)

Figure 1.9: Examples of curves with positive and negative skewness. The distri-
bution on the left has a longer tail on the left of the mean so it has a
negative skewness. The distribution on the right has a longer tail on
the right of the mean so it has a positive skewness. Image from [48].

Kurtosis is defined as the fourth standardized central moment (equation 1.12) [47).

Kurtosis is the measure of how much the standard deviation is due to infrequent large

deviations and how much is due to small frequent deviations. Distributions with

kurtosis tend to have sharp peaks and long tails, while distributions with low kurtosis

are more rounded and have short tails as shown in figure 1.10.

3 (112)

1.5 Classification

Machine learning is a branch of computer science where algorithms are used that

allow a computer to extract relevant data from patterns and use that data to make
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Figure 1.10: Kurtosis of some common functions. Sharper points have greater kur-
tosis. Image from [19].

telligent decisions. It is especially useful in situations where patterns may be very

complex and not feasible for a human to develop instructions for every possible situ-

ation, or even recognize the patterns. In the case of classification, the decision would

be to what class the data belongs.

Computer learning falls under two broad categories: supervised and unsupervised

used when there is no class data available for a

learning. Unsupervised learning

data set. In this case objects are partitioned so as to best cluster the data. Super-

vised learning is used in situations where there is some sample data available with

ons that can be used as a training so

appropriate decis

the relation-

lassifiers often operate in two phases. The training phase is whe

ship between certain features and outcomes is determined and optimized. This is

often a long and computationally intensive process. The operating phase is when the

training data is put to use to classify an object. This is usually much quicker.

Possibly the most important component of a classification routine is the feature

vector. The feature vector is a set of scalar quantities that describe an object. The
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choice of a feature vector is vital to the success of a machine learning algorithm,

The algorithms work by comparing the feature vector of a test object with those of

objects already classified. If the data in the feature vector is not appropriate for the

classification task, it will fail.

Usually, the initial choice of a feature vector is not the best one. Some features
may not contribute to the classification task or might be made redundant by other
features. Attempting to classify with these features can not only significantly increase
computation time, but can make classifications less aceurate. To mitigate this prob-

lem, a feature reduction step should take place. A good feature reduction process will

result in faster learning due to less data, higher accuracy, and better generalization
to other data sets [50]. There are two approaches of choosing a feature vector from
all available features, top-down and bottom-up. The top-down approach takes a vec-
them one-by

tor of all features and remove one, testing the classification accuracy

at each step. The bottom-up approach does the opposite. It starts with an empty

vector and adds features to it one by one (50].

Classifiers can be either soft or hard. A hard classifier classifies an object without
giving a probability. The assumption is made that an object that meets a certain
criteria always belongs to a particular class. Soft classifiers give a probability of their

classification. The assumption made is that sometimes objects with similar features

may belong to different classes [51]
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1.5.1 K-nearest neighbour classifier

K-nearest neighbour classification is performed by finding the K nearest neighbours
in the feature space defined by the feature vector. Each neighbour votes on the
classification of the unknown object. Each vote may be counted equally, or more
priority may be given to votes of the closest neighbours. Closencss of neighbours in
n-space is usually calculated from the n-dimensional Euclidean distance metric [52].
For example, votes may be weighted by 1/d where d is the distance to the object in
feature space. The optimal choice of K and the weighting fnction, if any, depend on
the data set used. The choice of a feature vector is especially important when small
K is used due to the effects of features unrelated to the classification task at hand.

K-nearest neighbour is classified as a lazy learner, and as such, there is no initial

training phase. Lazy learners have two drawbacks. First, they require more storage
space, since all of the training objects must be available each time the classifier runs.

Secondly. they require more caleulation at the time of classification, since they have

to retrain for each object classified (53]

1.5.2 Bayesian classifier
Bayesian Statistics

Bayes’ theorem states that for two related events, A and B, the probability of A, given
B is dependent on the probabilities of just A, just B, and B given A according to

equation 1.13. Where P(A|B) is the posterior probability, P(B|A) is the likelihood,

P(A) is the prior probability, and P(B) is the evidence [54]. For our purpos
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posterior probability is the probability the object belongs to a class based on its
feature vector. The likelihood describes the chances that an object in a class could
produce a particular feature veetor. The prior probability is the probability that
any object belongs to a particular class, aud requires a priori knowledge about the

distribution of data. The e

es o that they sum to

idence normalizes the probabi

one.

P(A)P(B|A)

PAIB) = =

(1.13)

Naive Bayesian classifier

The naive Bayesian classifier is a type of supervised learning classificr using Bayesian
inference and the (often incorrect) assumption that features are independent of one
amother. Despite this assumption the classifier works well on many types of data [55]
1f features were assumed to be related to one another then objects would need to be
classified in n dimensional space, instead of in 1 dimensional space n times with the
independence assumption. Since many times more points are needed to adequately

cover n dimensions than 1 dimension, an advantage of the independence assumption

is that a relatively small amount of training data is required to train the classifior

This leads to a drastic reduction in the complexity of the classification process.
Where n features are used, the probability is written as p(C|Fy, Fy, ... F,), where

C'is the classification and F, is the nth feature in the feature vector. Without

the independence assumption the probability is defined by equation 1.14, with the




‘ CHAPTER 1. INTRODUCTION 2
independence assumption it can be simplified to equation 1.15 [53].

P(C|Ry, ..., F,) = P(C)P(R\|C)P(F|C, F)...P(F,

C, Ry, Fay o Fa=1)  (L14)

P(CIFy, . )

The most common implementation of the naive Bayesian classifier bins feature

space into histograms for each classification. When a feature for an image is tested, it

is first determined to which bin in cach histogram the data point would fit, then the

number of training data for that bin in each histogram is used to make a classification.

The naive Bayesian classifier is an eager learner, so all that needs to be taken from

s to be

the training phase is the histogram for each classification. Since it only n

trained once, it has a fast operational phase.

1.5.3 Cross-validation

Cross validation is used to estimate how a machine learning algorithm will perform

when faced with unfamiliar data. It is intended to reduce error associated with one

‘ of the pit falls of machine learning, where a hypoth formed based on the same

data used to test it [51].
In K-fold cross validation the data is randomly divided into K partitions. Data in

one partition are used to test, and the remaining partitions are used to train. This

means that training data needs to be caleulated K times as each partition gets tested
Leave one out cross validation is the limiting case of K-fold where K is the number

of data points in the set. One image is tested against all other available images. This

is repeated for each image. This allows the maximum possible use of a set of data
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ticularly useful when either the data set is not

for both training and testing. It is pa
particularly large or the classification problem is particularly complex. It is also the

tem needs to

most computationally intensive means of cross validation since the

be retrained for each image tested.




Chapter 2

Materials and Methods

This chapter discusses the design of the computer aided detection system. The overall

approach taken consisted of four sequential steps. Preprocessing, in which images are
prepared by removing useless information and standardizing size, resolution, and bit

depth. Transformation, in which images are cosine transformed to arrange image

data by spatial frequency in two dimensions. Feature extraction, in which feature
sets consisting of a small group of values are calculated from the transform for each
image. Finally classification, in which machine learning was used to classify images
by comparing them with images of known pathology

Section 2.1 describes how the computer programs were written for this project

2 discusses the mammogram images collected

and how the data was stored. Section

from two sources. Section 2.3 explains adjustments made to the raw images. Section

ment

2.4 describes how the DCT was applied to images and a proof of concept expe

to test its usefulness. Section 2.5 discusses how features were extracted from the

30
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DCT. Finally, section 2.6 explains how the k-nearest neighbour and naive Bayesian

classifiers were implemented to classify images

2.1 Programming environment

Since this work involves complex calculations on very large datasets, it was necessary
to automate the process by developing computer programs. All calculations were
carried out on a desktop computer with an Intel core 2 duo E7200 processor and
2 GB RAM. Programs were developed for this work in two different programming

em

nments - Mathematica, and C++. The bulk of the work was done in Mathe-

ctions and the s

matica for its large number of built in fu peed at which scripts can

be devel

ped. C++ was used in situations where running programs in Mathematica

would be too time consuming. Programs compiled in C++ tend to run much faster

than those in Mathematica, but generally take longer to develop.

2.1.1 Database

All the data generated from the various programs was stored in a relational database
using MySQL server 5.1. This enabled rapid and efficient storage and retrieval of

data. In order to handle some of the large datasets used, the database server had to

be configured to allow for large data packets. The line mazallowed_packet = 100M

was added to the my.ini configuration set

ings under fmysqld]. This allows packets
of up to 100 megabytes, and prevents stack overflow errors when working with large

bitmap images. Most queries were performed using the DatabaseLink toolkit for
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Mathematica. It was also necessary to increase the f the Mathematica Java

heap in order to accommodate the large amount of data being passed back and forth
from the database.

The database contains eight tables: mias, mias_features, mias-knn, mias_bayes,
ddsm, ddsm_features, ddsm_knn, and ddsm_bayes. These tables will be discussed as

they are used in the sections to follow.

2.2 Data collection
Two tables, mias and ddsm were created to locally store all the raw image data. The

data stored in the table is as follows:

id: A unique identifier for cach image. Images are in right left pairs with right

images being odd mumbers and left being even.

character (mias only): The density of the breast as determined by a radiologist.

7 (fatty), g (fatty-glandular), or d (dense-glandular).

class (mias only): The class of the abnormality as determined by a radiologist.
cale (calcification), cire (well-defined/ circumscribed masses), spic (spicu-
lated masses), misc (other, ill-defined masses), arch (architectural distortion),

asym (asymmetry), or norm (normal).

m (ma-

severity: The severity of an abnormality as determine

lignant), b (benign), or n (normal).
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image: The binary of each PGM image. Header information is not included since

all images are P5 PGMs with 1024 by 1024 resolution and 255 maximum

gray value,

img_hash: A md5 hash of the image binary to be used as a check number to verify
the database is consistent with the original PGM files.

Data was obtained from two publicly available mammographic image databases.

The digital database for screening mammography (DDSM) [36, 37) and the mam-
mographic image analysis society (MIAS) database [35]. These two databases are
extremely useful for development and testing of computer aided detection schemes.

Combined, there are thousands of images available for download. All images have

been carefully examined by radiologists specializing in mammography, and their
biopsy confirmed findings documented with each image. Patients were then fol-
lowed for several years to ensure that no suspicious features had been missed. Both
databases include "ground truth” data that describes both the type and location of

abnormalities present in the images

The two databases contain images saved in different formats, with different resolu-

tions, collected on different machines, by different technicians. This varicty provides

extra challenges for any CAD program. While similar images with slight differences

in intensity or scaling may not even be noticeable to a human reader, the changes
in the raw data will be significant. For example, masses in a 50 micron image may

appear 16 times larger than masses in a 200 micron image if the pixel resolution s
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not taken into account. By testing the program on images from different sources, it

can be ensured that it will be robust enough to handle the variations in images from

multiple screening sites.

All images used in this research are stored in PGM format. This is an image

format that stores data in a very easy to access and read pattern. The P5 variant of

PGM was used, which uses binary encoding of the gray map. Comment lines begin

with a hash sign (#) and end with a new line. The first three non comment lines
of the file contain information about the image; the remainder contains the binary
for the image. The first line contains two characters which identify the type of file it
is. In this case those characters are P5. The second line contains two numbers that
define the width and height of the image. The third line contains one number which

The rest of the file contains one byte

defines the maximum gray value for a pixe

saved

intensity values for each pixel in the matrix that makes up the image. Files ar

with a_pgm extension.

2.2.1 MIAS database

“The MIAS database consists of 322 mediolateral oblique images (161 left, right pairs

with ground truth data for each one. Images are characterized according to density,

class of abnormality, and the severity of the abnormality present. There are 112 dense,
104 glandular, and 106 fatty images. Among these images, there are 209 normal, and

113 suspicious (61 benign and 52 malignant). The suspicious images are further

broken down into 23 images containing calcifications, 23 containing circumseribed
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masses, 19 containing spiculated masses, 14 with ill-defined masses, 19 containing
architectural distortions, and 15 pairs with asymmetric densitics.

All images have been scaled to 200 micron resolution, cropped to no larger than
1024 px by 1024 px, and padded with black to no smaller than 1024 px by 1024
px. The images are saved in cight bit portable gray map format with pixel intensity
ranging from 0 to 255. The reduced size and contrast is roughly at the limit of where
small calcifications are still able to be resolved as seen in figure 2.1, The advantage of
having all images the same shape is that they can all be fed into the same algorithm
without having to account for different aspect ratios. 1024 pixel edges is convenient
because it is a power of two, which simplifies the partitioning of images into chunks
1024 pixels square and one byte per pixel greatly reduces the computation necessary
to process each image as they contain only around one thirtieth the data of an original

image.

2.2.2 DDSM

The DDSM database is much larger than the MIAS. It contains 2620 cases. The

cases are partitioned into 43 volumes. 12 normal, 15 cancer, 14 benign, and 2 be-

nign without callback. Bach case contains between six and ten files: four lossless
jpeg mammogram images (left and right craniocandal and mediolateral oblique), one
overview pgm image of the case, one ics file containing information about study date,
patient age, density, date of digitization, type of scanner used, image resolution, sizes,

and bit depths, and between zero and four overlay images indicating the locations and
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ure 2.1: The small calcifications in this image are still visible when downsampled
to 1024 pixels square. This shows that an acceptable amount of detail
is retained at this resolution
sizes of any abnormalities. Images in the DDSM database were much higher quality
than the MIAS images. Resolutions were in the range of 42 to 50 microns per pixel,
and bit depth was in the range of 12 to 16 bits per pixel (4096 to 65536 gray values)
Normal volume 1 and cancer volume 1 were used as training data. These two
volumes have a combined total of 360 images, with 285 normal and 75 suspicious (5
benign and 70 malignant)
‘This database uses images stored in a proprietary variant of the jpeg image format
Since there is no documentation available to describe the method used to encode and

compress the images, software provided with the dat

se had to be relied upon to
convert, the data to a more readable form. The decompression program provided with
the database was used to decompress and convert the images into PGM (P5) format

The problem with these programs, however, is that they have poor compatibility with
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most currently available operating systems.

The software was written for the SunOS 5.6 operating system by Michael Heath in

2000 (http: .csee. usf. \_vi.1.

tem available, Sun OpenSolaris 2009.06,

0.html). The most compatible operating sy
with legacy C compiler packages installed was used to compile and run the software
in o tesh shell. This was run as a virtual machine on a Windows XP system using
Sun Virtual Box 3.1 The program was modified to swap bytes from big-endian to
little-endian format to make the output files compatible with windows. These images
were much too large to be able to perform the required calculations in a reasonable
amount of time, so they were scaled to match the MIAS images. The program was
altered to output images in eight bit gray scale with a resolution of 200 microns per

pixcl.

Once images were down sampled to 200 microns per pixel they were cropped in
cither dimension that exceeds 1024 pixels. Since images are usually centred on the
films, lines or rows are removed equally from both sides. This proved effective in all
but a few images where the breast exceeded the borders of the image. These images

were discarded. Dimensions with less than 1024 pixels are padded with zeros (black)

on both sides of that dimension to make up 1024 pixels. At this point, all images are

1024 pixels square.

‘The DDSM has three main advantages over the MIAS database. It has more

images, it has higher resolution images, and it has craniocaudal images in addition

side is that it is not nearly as user friendly.

to mediolateral oblique. Its only dow
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2.3 Preprocessing

Preprocessed images from the two image databases were added to the mias and ddsm

tables. Two columns were added to each table.

nary of each preprocessed PGM image,

proc_image: The

omit: Whether or not to use the image. Either 1 (omit) or 0 (do not omit).

The first step in the image classification process is preprocessing. In this step the

. Other image

goal i to produce a set of images that only contain the breast tisst

variations unrelated to pathology such as orientation tags, resolution, intensity range,

and aspect ratio should be removed or standardized. Differences from one image to
another that are unrelated to the final classification should be removed so as to not
influence the classifiers.

The most complicated step in the preprocessing stage is removal of extrancous

objects, such as orientation tags, from the images. In order for this step to proceed

autonomously, the computer must recognize different discrete objects in the imag
be able to determine which one is the breast, and remove everything clse.

In the first step, intensity values are binned into a histogram with bins for each
of the 256 intensity values (figure 2.2. The distribution of the histogram for mammo-
gram images is roughly bimodal with a sharp peak for very low values corresponding

to the background, and a broad peak for the brighter foreground. Using this his-
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togram, a cutoff point was chosen, above which, values were considered foreground,

and below which, values were considered background. Dense breast

s produce very
bright wammogram images with a sharp relatively casy to define border between
the background and foreground. Fatty breasts yield dim images with a much fuzzier

border between the background and foreground

Counts|
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400000
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200000

100000
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Figure 2.2: Intensity histogram for each pixel of a typical mammogram. The sharp
peak at and around zero intensity is due to the dark background

Four algorithms were used to find threshold values and the results were visually
inspected to find which resulted in the best borders between background and fore-

ground. The algorithms used were Otsu's algorithm, Kapur's method, mean, half

mean, and the Kittler

llingworth minimum error thresholding method [56]. Images

of all densities were tested.

With background and foreground pixels separated, background was assigned a
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value of zero (black) and foreground was assigned a value of one (white). At this
point, background noise had been climinated and foreground objects were distinet

white objects

A mammogram after the thresholding algorithm was applied. The back

ground is black, foreground objects are white. Objects within the image

can now be easily distinguished from one another
The next step was to separate and quantify the foreground objects. The image
was raster scanned to find distinct white segments along each line of the image. When
a white pixel was encountered it was assigned a number and all adjacent white pixels
on that line were assigned the same munber. When a black pixel was encountered
the number was incremented and the process continued when the next white pixel
was detected.

Once the entire image had been divided into numbered line segments, each pixel
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in each line segment was tested to determine if it neighboured a pixel of another line

segment cither on a straight or diagonal line. The segments comprised the nodes
of undirected graphs with edges drawn between neighbouring segments. The largest
graph was assumed to represent the breast tissue in the image. All the pixels in all
the nodes of the largest graph were assigned a value of one and all other pixels were
assigned a value of zero. The Hadamard product of the mask and the original image

was taken to produce a final image containing only the relevant breast tissue.

Figure 2.4: A graph representation of the white line segments making up an image.
Each white line segment is a node in the graph. Adjacent segments
are joined by edges. The four connected graphs correspond to the four
objects visible in Figure 2.3. The largest belongs to the breast tissue.

Finally, left facing images were inverted horizontally to produce mirror images

50 that they all faced the same direction. It was arbitrarily chosen that all images

should face right. To determine the orientation of the images, left and right borders

of the breast were found by raster scanning each line from left to right, with the first

non zero pixel lying on the left border and the last non zero pixel lying on the right

border. These left and right borders were then fit to a vertical line. The border with

the best fit was on the chest wall side. Images with the chest wall on the right side
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gure 2.5: The mask shown on the left is the result of removing all but the largest
object from the binary image in Figure 2.3. Overlaying the mask with
the original image leaves only the region of interest shown on the right
Only the actual breast tissue remains in the image
were inverted horizontally
While this process worked extremely well, it was limited by the quality of the input
images. Images that were out of frame, had overlapping tags, or other artifacts were
discarded. This step was performed manually by displaying and spot checking all

images for any abnormalities. Since images only required a brief glance to determine

ch one was

whether or not the preprocessing program was successful, spot checking

not a time consuming task. Imag

that were not properly preprocessed were given

a value of 1 in the omit column of their respective database table

2.3.1 Chest wall

The chest wall is a prominent, non pathological, feature in mammograms that could

potentially mislead computer aided detection programs. Early attempts at removing
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chest wall from mammogram images involved edge detection and smoothing meth-
ods to filter the chest wall while leaving the underlying soft tissue, where cancers
are sometimes found, relatively undisturbed. It, however, proved to be exceedingly
difficult to achieve consistent results on all images without some human input. Even
with human input, it was difficult to determine the boundary of the chest wall on
some images as shown in figure 2.6. Because of these obstacles, a discrete chest wall

removal step was not used.

: The chest wall has been removed, with soft tissue still visible. The
blood vessels and other soft tissue overlapping with the chest wall are
much easier to see in the second image. Edge detection worked poorly

Figure 2.

in this example where the border of the chest wall is fuzzy

2.4 Transformation

Four fields were added to the mias and ddsm tables.



CHAPTER 2. MATERIALS AND METHODS a4

det1: The discrete cosine transform T of each preprocessed image represented as a

floating point array

det2: The discrete cosine transform 11 of each preprocessed image represented as

a floating point array.

det3: The discrete cosine transform I11 of each preprocessed image represented as

a floating point array.

detd: The discrete cosine transform IV of each preprocessed image represented as

a floating point array.

Preprocessed image data from the database were imported into Mathematica as

1024 by 1024 arrays. 2D Discrete Cosine transforms (I, 11, 111, and IV) were performed

on all preprocessed images using the built in FourierDCT function as seen in figure
27, The DCT images were then saved to the mias database as 32 bit floating point

arrays,

2.4.1 Filtering

To test the potential efficacy of extracting useful features from the discrete cosine
transform, a proof of concept experiment was performed. This involved writing a
Mathematica script that allowed regions of a DCT to be selected and extracted. The

extracted region of DCT would then be inverse transformed and the resulting image
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re 2.7: The DCT of a mammogram image. Space has been transformed into
the frequency domain. The bottom left of the image represents low
frequency features. Points along the horizontal and vertical directions

represent higher frequency features in those directions

sulted in the

displayed. Inverse transforming different sections of the DCT image v
original image with some characteristics emphasized and others removed entirely (fig-
ure 2.8, The ability to slide through the different components of an image according

to frequency spectrum may even make this a useful tool in and of itself

2.5 Feature extraction

The tables mias._features and ddsm_features were created to contain all the features

generated from the DCT transforms. The data stored in the table is as follows:

id: A unique identifier for each image. Matches images in this table to the ones in

mias and ddsm.
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view (ddsm only): The view of the mammogram. Either MLO or CC

o fea

det1_origin - detd_kurt10_abs: Each of the 321 features generated in th

ture extraction step.

The next step in the process involved the generation of feature vectors for each
image. The general strategy here was to partition the DCT into blocks and perform

statistical calculations on them, yielding a list of scalar quantities for each im;

Ideally, some of these quantities would be useful in the detection of cancer

It was decided that the data would be partitioned according to distance from the

origin 0 as to separate features according to frequency. There were two methods

Figure 2.8: Screenshots of a program written to test the effects of removing por
tions of the DCT image. The sliders at the top are used to remove
low frequency rows and columns. The inverse transform image is then
displayed. Filtering parts of the DCT for a normal image causes some

characteristics of the image to be removed and others to be emphasized
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considered for partitioning the data in the DCT images. The first method tested was
to use concentric quarter rings centred on the origin. This seemed like a good choice,
since the distance range of points from the origin would be constant in any direction.

ethod that occurred for very

However there were some technical problems with this

low and very high frequency data. At the low frequency end, narrow rings with a very

small radius sampled on a square grid had very disjointed edges and irregular shape.
At high frequency, the outermost ring would have to have a curved interior border
but a square exterior, making this region radically different from the rest. L shaped

blocks were chosen because they sample in a much more uniform way as frequency

space is traversed

A
Figure 2.9: Two potential sampling schemes, ring shaped partitions and L shaped
partitions. Values of the transformed image would be taken from each

numbered partition.

Once the shape of the blocks had been decided, it was necessary to determine an

1, the DCT exhibits a high

e for each one. As explained in section 1.4

appropriate si

degree of ener paction. Since a large portion of the image data is encoded close
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to the origin in a DCT, it was deemed important to focus more on this area. With
this in mind, the widths of blocks were smaller closer to the origin so that more of the
features would come from this data rich part of the transform. Blocks were chosen
so that each would have twice the width of the proceeding block. This means that in
21024 by 1024 matrix, there will be ten blocks which span the following frequency
ranges. Block 1: 12, block 2: 3-4, block 3: 5-8, block 4: 9-16, block 5: 17-32, block
6: 33-64, block 7: 65-128, block 8: 120-256, block 9: 257-512, block 10: 513-1024.
These blocks are labeled in figure 2.9. In addition to these blocks, the origin (DC
coefficient) was also used.

The partitioning was done for cach of the four DCTs. Absolute values of the
transforms were also used in addition to the four original transforms. This makes
a total of eight transform images for each mammogram image. For each of the ten
blocks in each of the cight DCT images, the four statistical quantities, mean, stan-
dard deviation, skewness, and kurtosis were caleulated giving a total of 320 features.

Finally, the intensities of the four DC coefficients were added to the feature sets.

Since the DC coefficient is always positive, the absolute value is not necessary. This

brings the total number of features calculated for each image to 324.

2.5.1 Feature reduction

A large feature set would make some of the following calculations extremely com-
putationally intensive. This becomes especially problematic when we consider that

combinations of features will be used in the classifiers. For example. if one feature is
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classification scheme.

used in a classifier, there will be 324 classifiers to test for eac
Combining two features, we get 52 362 combinations. There are 5 616 324 combi-
nations of three features, all the way up to 151 + 10° combinations of 182 features.

Testing all combinations of 324 features would be computationally infeasible.

Before any extensive testing can take place, a feature reduction step is necessary to
discard redundant or poor performing features. To this end. preliminary tests of single
and double feature classifiers were conducted on the Bayesian classifier described in
section 15.2. It was observed that some features taken from DCT IV produced near
identical results and largely found the same images suspicious and normal. Since these
features appear to be redundant, all but the DCT 1T based features were discarded,

bringing the total feature count down to 81.

These DCTs were chosen for removal from the dataset even though some indivi
ual remaining classifiers performed worse than some of the removed classifiers. The

justification for this is that the removed features show a high degree of redundancy in

the image classification. A feature in DCT I might agree on 95% of their classifica-
tions with the corresponding feature in DCT 111 This is of litle use when combining
features as their combination will produce results that are only a marginal improve-
ment over using just one of them alone. A poorly performing feature that classifies

will offer a unique combination classi

pletely different from other featur

images co

fication. This poorly performing feature may be able to pick up the sus

that all others missed.

The second trend noted was the poor performance of the features calculated from
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the absolute value of the transforms. In general, absolute value features did not
perform as well as their connterparts. Because of this, absolute value features were
also discarded, bringing the total feature number down to a more manageable 41.

41 features can be combined in sets of two in 820 ways, and in sets of three in
10660 ways. This is a large reduction from the original set and makes combining
features possible.

Each of the 41 features was assigned a number to make referencing them easier.
Feature mumber one is the DC coefficient of the DCT. The remaining 40 features are
numbered as shown in table 2.1. This numbering system remained constant for the
entire of the project.

Table 2.1: Feature numbering scheme. Each of the four moments of the mean for
each of the ten partitions were assigned a number for use in database

storage.
Region | Mean [ Standard deviation | Skewness | Kurtosis
1 2 12 2 32

2 3 13 23 33

3 1 11 21 31

1 5 15 2% 35

5 3 16 2% 36

3 7 17 27 37

7 8 18 28 38

B 9 19 29 39

9 10 20 30 40
10 11 21 31 a1

2.5.2 Phantoms

Phantom images were used in order to test the potential efficacy of the features

chosen. A phantom image consisted of a normal, preprocessed, image with a mass
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digitally superimposed into it. Oval circumseribed masses were generated roughly
in the centre of the image. Size, cccentricity, and intensity were all variable and
gradients were used for the intensities at the edges of the mass in order to simulate
the decreased attenuation at the border of an ellipsoid mass. A normal image and a

phantom constructed from it are shown in figure 2.10.

igure 2.10: Results of the phantom image generation. Left: Normal image. Right

The same image with a round mass digitally superimposed in the cen

tre.
The original image and the phantom with the mass were then run through the
DCT and their features extracted. The features were plotted on a graph and com

2.6 Classifi

There were two types of classification attempted using the feature sets generated

for the available images, k-nearest neighbour and naive Bayesian classifiers. The
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[ MLO, DDSM CC, and

classifiers were tested on four datasets, MIAS (full), DDS

MIAS with benign images removed (MIAS reduced). Tmages labeled as omit from
seetion 2.3 were left out of both training and testing of the classifiers. Including poor
quality data in the testing set would negatively impact the classifications of all other
images.

Asymmetric images were not used in any experimentation. Since a classification

s of images, which the k-

of asymmetric density really requires comparison of
nearest neighbour and naive Bayesian classifiers do not do, they were omitted for

those classifiers

2.6.1 K-nearest neighbour

The tables mias_knn and ddsm_knn were created to contain all of the k-nearest neigh-
bour data for each image for all possible combinations of three features. The data

stored in the table is as follows:

£1: The first feature number.

£2: The second feature number. 0 indicates the second feature was not used.

£3: The Third feature number. 0 indicates the third feature was not used.

image: The unique identification mumber of the image; matches the image to th

other tables.
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set (mias only): Which set the image belongs to. Can be cither full or reduced.
view (ddsm only): The view of the mammogram. Either MLO or CC.

Pp1-p25: The 25 nearest images with respect to the features used

ferenced in pl-

dist1-dist25: The Euclidean distances of the 25 nearest images

25 with respect to the features used.

ced in the image column. Can

imageseverity: The severity of the image rofer
be either n, b, or m. This column is somewhat redundant, but serves to speed

up queries.

The severity of the images referenced in p!

severity l-severity25:

valuel-value25: A value assigned to p1-25 according to the severity of the image.

-1 for normal, 1 for suspicious.

paluel-pvalue25: valuel-25 multiplied by a weighting factor according to the

prior probabilities of the set

The k-nearest neighbour classifier was tested on the DDSM mediolateral oblique

MIAS sets. The first step

and craniocandal, as well as both the full and reduced
in the k-nearest neighbour classifier was to generate a table containing the 25 near-

est neighbours of each image for each feature vector. 25 neighbours was chosen to
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allow classification using any mumber less than or equal to 25 neighbours. Adding
more neighbours is unlikely to be beneficial, as the closest neighbours are the most
significant, and would increase computational time.

For each feature, differences were caleulated with respect to all other images. Since
all the features had different typical ranges for their values, the difference calculated
was weighted to compensate for this. For example, using difference alone, with a
feature equal 1 for one image and 2 for another, the difference is 1. I a feature has a
value of 100 for one image and 101 for another, the difference is also 1. However, in
the first example, the difference is 100% while in the second example, the difference
is ouly 1%. To compensate for this, the value used in the algorithm is the difference
of the two features divided by the sum (equation 2.1). This prevents features that

naturally have a large range from dominating the feature vectors.

test image feature — neighbour feature
image feature + neighbour feature

@1

The 25 closest neighbours to each image were stored in the database. There are
two important pieces of information gathered in this step: the ordering of the nearest
neighbours, and the distance to each one. Storage in the database permits rapid
retrieval and analysis. While it is not necessary, the classification of each neighbour
is also stored in the database. This increases the storage requirements, but decreases
processing time associated with querying data from more than one table at a time.

Combinations of two and three features were also tested. Percent differences were
used again, with the Euclidean distance in two or three dimensional space (d =

VT F 7+ 22) caleulated for each pair of images and each feature vector. More than
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three features at a time was too computationally intensive.

There are a few ways in which the classification algorithm was modified. In
addition to the standard vote taking approach, distances to neighbours were also
considered, as well as the proportions of normal and suspicious data in the training
set, (prior probability).

Since k-nearest, neighbour classifiers tend to have a slow operational phase, ad-
ditional columns were added to the database for each neighbour in order to speed

classification, at the expense of storage space. Vote columns were added for each

ve (normal). Columns

neighbour with +1 for positive (suspicious) and -1 for negat
were also added for votes weighted by prior probabilities so as to reduce the effect
of having an uneven st of potential neighbours. For example, if there are twice as

jous will

many normal images as suspicious in the training set, then votes for suspi

count for twice as much as votes for normal. Normal votes have a fixed value of -1
while suspicious votes have a value of auser of ormals

The vote taking algorithm was tested for between 1 and 25 calculated neighbours
for each test image (leave one out cross validation). Each neighbour gets a vote as to
the classification of the test image. For example, if the five nearest neighbours of an

image are being used with two of them suspicious and three normal then the image

will be classified as normal (three to two).

Next, a weighting on the votes based on the prior probability of an image being

ining data sets,

suspicious was applied. There are many more normal images in the tr

50 there was a lower probably of randomly having suspicious neighbours. Because of
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this, there was more significance placed on a suspicious neighbour. For example, if

there are twice as many normal images as st

ispicious, then suspicious images will get
two votes and normal images will get one each. So, in this case, if an image has

three normal neighbours and two suspicious, it will be classified as suspi

three). This is especially crucial since we place greater importance on sensitivi

having a much higher chance of a neighbour being normal skews the results toward

higher specificity and away from sensitivity.

Finally, distance to each neighbour was considered. If an image has one really
close neighbour and the rest are relatively distant, it makes sense to assign more
priority to the vote of the closest neighbours and less to the farther ones. To achieve
this, each vote is divided by the distance to that point. For example, a point that is

0.2 away will get 5 votes while a point that is 2 away will only get half a vote.

In order to calculate a sensitivity and specificity for each of the datasets for each
number of neighbours, the number of true positives and true negatives from each

lar

feature vectors was found. Both true positives and true negatives used a
algorithm. For true positives, with the plain vote taking method and single feature

classifiers, first a database query was performed to find all suspicious images and

their neighbours. For k neighbours the classification was found by adding the values

assigned to the first k neighbours for each image returned in the query together. Since
positives are assigned a value of -1 and negatives are assigned a value of +1, adding
the votes together for the neighbours results in a value greater than or equal to zero

if the consensus is suspicious and less than zero if it is normal. The number of images
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for each clas

ifier from this set with a positive value is the mumber of true positives.

True negatives were caleulated in an almost identical fashion except the database

query was for all normal images and their neighbours and the sum of votes should

be -1 for a correct classification. This was calculated for each number of neighbours

ranging from 125

For classifiers using the prior probability weighted values, the votes were switched

u

out for the weighted votes discussed above and added together as normal. ssifiers

using distance weighted votes used instead, vote/distance and added as normal. This

was done for classifiers using 1, 2, and 3 features. There were twelve variations of this

classifior calculated. Unweightod votes, votes weighted by prior probability, weighted

by distance, and weighted for both prior and distance for combinations of 1, 2, and 3

features. For each variation, and each number of neighbours, the feature vector with

the highest sensitivity was selected and recorded along with its specific

2.6.2 Naive Bayesian classifier

The tables mias_bayes and ddsm_bayes were created to contain all the caleulated

probabilities for each image for all combinations of one, two or three features. The

data stored in the table is as follows:

numbins: The number of bins used in the Bayesian classifier. Ranges from

0.
fL: The first feature number
\
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£2: The second f

ture number. 0 indicates the second feature was not used.

£3: The third feature number. 0 indicates the third feature was not used,

image: The unique identification mumber of the image.

posterior_norm: The Bayesian probability that an image is normal with respect

to all other images using the same feature set

posterior_susp: 1-posterior normi.

The final classifier tested was the naive Bayesian classifie

The program was

designed to run in two stages. First all the probabilities were calculated and stored

in a database, and then these were compared with the truth data to find the s

tivity /specificity of each feature. Storing the probabilities before assessing the sen-

sitivity /specificity allows greater flexibility for analysis and refinement of thresholds.

Like with the k-nearest neighbour classif

the DDSM

tiolateral oblique and eran-

iocaudal were analyzed separately, and both the full MIAS set and the reduced set

without benign images were analyzed

First, the number of normal and suspicious (malignant and benign) images was
counted to find the prior probabilities of each classification from equation 2.3. Data
was then queried from the appropriate database for the appropriate view. For each

featu

two identically binned histograms for normal and suspicious images were
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setup. The size of the histograms was determined from the entire set of data. The

lowest feature value for any of the images was set as the lower bound for the histogram

and the highest value was taken for the upper bound. The values in between were

divided equally into the desired number of bins. Each image was then placed in its

appropriate histogram (figure 2.11).

number suspiciou
total images
number normal
total images

PriOspicions =

PriOTuorma =

~ ~
Ll el
Fes Vi L . .
(a) Normal histogram (b) Suspicious histogram

Figure 2.11: 13 bin naive Bayesian classifier histograms for a single feature for nor-
mal and suspicious images. In this example, lower value features have
a greater likelihood of belonging to suspicious images, than higher val-
ues. 13 bin:

Once the number of normal and suspicious images in each bin was known, each

image was tested using leave one out cross validation. To prevent images from being

compared with themselves, the corresponding bin in the appropriate histogram was

decremented while an image was being tested. The likelihoods were calculated from

cquation 2.5, This is the probability that the image is in that bin if it is suspicious
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or in that bin if it is normal.

number of counts in suspicious bin
total number suspicious

number of counts in normal bin
total number normal

likelihood,

(2.4)

likelihood,

(25)

Next, unnormalized posterior probabilities were caleulated. These are the likeli-

hoods multiplied by the prior probabilities for both normal and suspicious probabili-
ties. The normalized suspicious posterior probability was then calculated by dividing
the unnormalized suspicious posterior by the sum of the normal and suspicious pos-

terior (equation 2.6. The posterior probability that an image was

ispicious was then
added to the database.

POSLETIO uspic
POSLETIOT normat + POSLETIOT suspicions

POSLETION suspicious (normalised) = (26)

The whole process was repeated for all images in the set, for each feature and
using between two and 20 bins. Sturges’ rule [57] was used to approximate the best
number of bins to use. Using Sturges’ formula (equation 2.7 the optimal mumber of
bins should be approximately cight. However, this is only an estimate and may not

be accurate for the data sets being used, so it was tested experimentally.

= loggn+1] (@7

This process was then expanded to use more than one feature in the feature vector.
Combinations of two and three features were used where there were 820 and 10660

possible combinations respectively. For four features there were 101270, Because of

the rapidly increasing amount of computation for increasing number of features, three
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feature vectors were the largest that could be computed in a reasonable amount, of

time.

For each additional feature added, scparate histograms were generated and likeli-

hoods calculated. Using the i tion, (section 15.2)

posteriors were calculated by multiplying the likelihoods from each feature with the

prior probability (equation 1.15. The posteriors were then normalized in the same
way as for one feature.

One problem frequently encountered when doing this calculation occurred when
a test image was assigned to an empty bin. If a bin in cither a normal or suspi-

cious histogram was empty, and o testing image falls within the range of that bin,

it would result in a zero percent likelihood for that feature, and thus a zero percent
posterior probability, despite the outcome of other features in the vector. If a bin
in both the normal and suspicious histogram was empty, this would result in a zero
percent likelihood the image was normal, and a zero percent likelihood the image was

suspicious, regardless of the outcome of other features in the vector. To mitigate this

problem, one count was added to each bin. This way, images falling in a formerly

empty bin still received a low probability of belonging to that classification, but the

lated from

probability was not so low that it completely dominated probabilities

other features

With a database populated with probabilities for each image for cvery possible

combination of one, two, and three features, sensitivity and specificity was then cal-

culated. In order to determine if an image was suspicious, a certain threshold proba-
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bility had to be chosen, above which the image was classified as ious and below

which, the image was classified normal. The threshold could be adjusted to empha-

ieve a balance for the

size sensitivity or specif For example, stting

a threshold of 0% posterior probability the image was suspicious would guarantee

100% sens

vity, but specificity would suffer and be 0%. A threshold of 100% could

be chosen with the opposite result. Since the classifications of images in the training

set were known and all posterior iliti lculated, thresholds

based on this data. For 100% sensitivity, the lowest probability of a suspicious image

being suspicious was used as the threshold. Specificity was then incrementally in-

creased by using the second lowest probability of a suspicious image being suspicious

as the threshold. This did however lower sensitivity since the suspicious image with

the lowest probability of being suspicious was now classified as normal. Because prob-

abilities were calculated and stored first, sensitivity and specificity could be rapidly
calculated for any threshold, without having to retrain. Sensitivity and specificity

were calculated for various threshold values in order to gencrate recciver operating

characteristic (ROC) data.

To find the optimal number of bins, the single feature classifier was tested for each

mumber between 2 and 20, The munber of bins with the highest specificity with 100%

sensitivity was used for that image set. In the event that two binning schemes had

the same specificity with 100% sensitivity, the specificity of the two feature classifier

would be used as a tie breaker. It would be not be feasible to fully test all binning

schemes for all datasets since there are 19 binning schemes and four datasets (76
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combinations). Testing each one for three features takes 10+ hours. Testing just the

single feature classifiers should provide a close guess



Chapter 3

Results

This chapter contains a summary of the results obtained in the project. Section 3.1
deseribes the outeome of the preprocessing step. Section 3.2 shows the feasibility of

using the DCT to detect cancer. Section 3.3 shows the ability of the chosen features to

detect cancer. Section 3.4 presents the accuracy of the k-nearest neighbour classifier
and the effects of various parameters. Section 3.5 presents the accuracy of the naive

Bayesian classifier and presents the effects of various parameters

3.1 Preprocessing

The preprocessor was applied to three datasets, MIAS, DDSM mediolateral oblique
(MLO), and DDSM craniocaudal (CC). For both the MIAS and DDSM MLO sets,
between the various background thresholding algorithms, it was found by visual in-

spection that half mean performed best for most images. Otsu's method performed

slightly better for fatty breasts, but worse for all others. Half mean was chosen as the

64
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thresholding algorithm. Half mean was initially used for the DDSM CC set, but that

resulted in an unaceeptable number of poorly preprocessed images (nearly 20%). All
the thresholding methods were tested again on the craniocaudal set and it was found
that mean worked best.

Tmages deemed to be of insufficient quality after preprocessing were excluded from

further testing. Table 3.1 shows the distribution of data in each of the sets before

Table 3.2 shows th of data in each sct after preprocessing.

2% of images were lost from the MIAS set, 6% from DDSM MLO, and 3% from

DDSM ce. Since the detection of asymmetric densities requires the comparison of

two images, which the classifiers do not do, 15 images classified as asymmetric in

ow the numbers with

the MIAS database were not used. Values in parenthes
asymmetric images removed.

Table 3.1: Total number of normal, benign, and malignant images in each dataset.

Normal Benign_Malignant_Total
MIAS 209 @ 52 322
DDSM MLO 285 0 360
DDSMCC 285 0 360

b
5

Table 3.2: Number of normal, benign, and malignant images remaining after poor
quality images were removed. Numbers in parenthesis indicate numbers
images were removed.

after asymmetrs

Normal _Benign_Malignant __Total
MIAS 205 60(54)  50(41)  315(300)
DDSM MLO 269 5 65 339
DDSMCC 278 5 68 351

In most cases, the preprocessor was able to successfully remove objects unrelated

to breast pathology from the images such as in figure 3.1. However, in some images,
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either some tags remained or some of the breast tissue was lost. Figure 3.2 shows a

poorly preprocessed ims

gure An image before and after the preprocessing step. Non-relevant objects

have been removed and the image has been flipped to face right

Figure 3.2: An image where preprocessing failed. Part of a tag overlapping with
the breast remains, the edge of the breast s rough, and the bottom left

corner is clipped. This image was discarded
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3.2 DCT filtering

It was found that appropriate selection of a region in the DCT transform could be

used to filter all suspicious masses from an image. Figure 3.3 shows an image with

a malignant mass that has been filtered to only show the mass. T

his was done by
simply removing the bottom two rows and three left most columns of the transform
performing the inverse transform

and increasing the gain. This program clearly

demonstrated that suspicious objects can indeed be isolated from regions of the DCT

: Using the program described in section 2.4.1, everything but the mass
has been manually removed. In this case it only required removing the
two lowest frequency rows and the three lowest frequency columns from

the transform

A second discovery made was an effective meth

of chest wall removal. It was
found that for all the images tested, the chest wall could be cleanly removed from an
image by cropping the bottom two lines and leftmost two columns from the transform.

The images were first transformed into frequency space using

he DCT 11 algorithm
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The first two lines and first two columns were removed and the image was transformed

ly distinguish the

back using DCT TII (figure 3.4). The DCT can be used to accura
chest wall from the rest of the breast. This could potentially be exploited to remove
the chest wall from an image while leaving the soft tissue of the breast intact. Not

only does this method do an excellent job of removing the chest wall, it also means
that the chest wall does not need to be removed in a discrete step. The localization

of the chest wall in the cosine transform means that due to the inherent nature of the

feature extraction step, it will have limited impact on the features

: The chest wall has been completely removed fron
the two lowest frequency rows and columns from the transform and

gur

inverse transforming the result
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3.3 Phantom

As expected, at most frequencies, the features of the phantom were nearly identical

to those of the normal image. At the frequencies corresponding to the size and shape

of the mass, the features diverged from those of the original image. This show
the potential of using features generated in this manner to classify images with and

without masses. The example shown in figure 3.5 plots the percent change for each

feature from the phantom shown in figure 2.10.

“ome wome

(c) Skewness features (d) Kurtosis features

: Percent change in feature values upon adding a phantom mass to an
image. Note that all plots have different scales.

Figure 3.

In this example, the feature mumbers (see table 2.1) with the greatest changes
were 33 (2%), 14 (2.9%), 23 (3.2%), 31 (7.3%), and 24 (160.3%). It would seem that

for this particular mass, feature number 24 would do an excellent job at determining
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whether o not the image is suspicious,

Since this was only a proof of concept experiment, a more rigorous analysis was not
performed. The results demonstrate quite clearly that there is a change in features
when an abnormality is introduced into the image. This was enough evidence to move

forward with using the feature set to attempt to classify real images.

3.4 K-nearest neighbour

The k-nearest neighbour classifier was tested on four datasets. The full MIAS set,
MIAS with benign images removed, DDSM MLO and DDSM CC. Testing single
feature classifiers for between 1 and 25 neighbours took on the order of minutes for

each set. Testing for all combinations of two features took on the order of hours, and

testing for three features took about two days per set. For each of the 12 variants of the

classifier, the most sensitive feature or feature set was recorded with its corresponding

specificity. Full results can be found in appendix A,

3.4.1 Best features

The best. performing features for the k-nearest neighbour classifier were found by
tallying all the features from the top performing classificrs for 1-25 neighbours, for
each data set, for cach of the 12 variants of the classifier. The most frequently
oceurring features are the best. For MIAS full, the best features were 30 (14.6% of
classifiers), 8 (16.7%), and 12 (17.7%). For MIAS reduced, the best features were

23 (16.8%), 33 (21.9%), and 12 (39.4%). For DDSM MLO the best features were
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24 (19.1%), 5 (26.7%), and 13 (42.0%). For DDSM CC the best features were 37

(10.8%), 32 (21.9%), and 24 (69.1%).

3.4.2 Majority voting

The first variant of the k-ncarest neighbour classifier assigned all votes an i al

value. For cach data set, the best sensitivity was found when using two neighbours

and three features. The highest sensitivity for the MIAS full set was 69.5% with
51.7% specificity. For the reduced MIAS set, the highest was at 58.5% sensitivity and

75.6% specificity. For DDSM MLO the highest was at 82.9% sensitivity and 78.8%

specificity. For DDSM CC the highest was at 83.

% sensitivity and 80.9% specificity.
This classifier leans towards high specificity and low sensitivity. As the number of
neighbours increases, this effect becomes greater, especially for the MIAS sets, as scen

in figure 3.6

3.4.3 Distance weighted votes

Using votes weighted by distance, the best sensitivities were found using three fea-
ture classifiers. For the MIAS full set, the highest sensitivity was 51.6% with 72.2%

specificity for 1 or 2 neighbours. For the MIAS veduced set, the highest was 43.9%

sensitivity and 87.3% specificity for 1 or 2 neighbours. For the DDSM MLO set, the

highest was 65.7% sensitivity and 85.1% specificity for 3 neighbours. For the DDSM
CC set, the highest was 61.6% sensitivity and 89.6% specificity for 5 neighbours. As

to have high specificity and low sen-

with the vote taking method, this classifier t
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(b) MIAS reduced

() DDSM MLO (d) DDSM CC

Figure 3.6: KNN classifier with majority voting sensitivity and specificity by mum-
ber of neighbours used. Using more neighbours results in higher speci-
ficity but lower sensitivity

sitivity. With more neighbours, the sensitivity and specificity diverge further, with
the effect more pronounced in the MIAS sets. The distance weighted classifier tends

to smooth out the fluctuations seen in the vote taking classifier, as seen in figure 3.7.

3.4.4 Prior adjusted votes

With votes adjusted for the prior probabilitics, again. the best classifiers used three
features. For MIAS full, the highest sensitivity was 83.2% with 34.6% specificity
for 3 neighbours. For MIAS reduced, the highest was 92.7% sensitivity and 30.0%
specificity with 6 neighbours. For DDSM MLO the highest was 98.6% sensitivity

and

2% specificity with 13 neighbours. For DDSM CC the highest was 98.6%
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(a) MIAS full (b) MIAS reduced

i T
() DDSM MLO (d) DDSM CC

Figure 3.7: KNN classifier with distance weighted voting sensitivity and specificity
by number of neighbours used,

sensitivity and 75.2% specificity with 23 neighbours. Unlike the first two classifiers,

this one favored sensitivity over specificity (figure 3.8).

3.4.5 Distance weighted and prior adjusted

When using both distance weighting and prior probabilities, the best classifiers used

three featy

. For MIAS full, the highest sensitivity was 69.5% with 52.5% specificity

for 2 neighbours. For MIAS reduced, the highest was 85.4% sensitivity and 55.1%

specificity with 24 neighbours. For DDSM MLO, the highest was 98.6% sensitivity

and 65.7% specificity with 15 neighbours. For DDSM CC, the highest was 97.3%

sensitivity and 75.9% specificity with 12 neighbours. Weighting the prior adjusted
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[re——.

(a) MIAS full

(c) DDSM MLO

e

R

(b) MIAS reduced

(d) DDSM CC

Figure 3.8: KNN classifier with prior adjusted voting sensitivity and specificity by

number of neighbours used.

votes by distance has similar results to the un-weighted prior adjusted classifier, but

with most of the fluctuations removed from the curves (figure 3.9).

3.5 Bayesian classification

The naive Bayesian classifier was tested for all four data sets. Feature vectors with

between one and three features and histograms with between two and 25 bins were

tested. Using various thresholds, sensitivity /specificity levels were adjusted to gener-

ate ROC curve

. Training/testing took a sin

lar amount of time to the KNN classifier

- minutes for all single features, hours for all double features, and days for all triple

feature vectors,
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(a) MIAS full (b) MIAS reduced
(¢) DDSM MLO (d) DDSM CC

Figure 3.9: KNN classifier with distance weighted and prior adjusted voting sensi-
tivity and specificity by mumber of neighbours used.

3.5.1 Best number of bins

The highest accuracy single feature classifiers at 100% sensitivity generally remain
the highest accuracy classifiers when the sensitivity is lowered for any number of bins
for cither the MIAS sets or DDSM MLO. The same is true when using the same
number of bins in 2 features sets. Table 3.3 shows the specificity at 100% sensitivity
when using different mumber of bins in the histograms. The best number of bins to
use at 100% sensitivity can be expected to remain constant for lower sensitivities as
well.

In the cases of both MIAS full and MIAS reduced, there were ties for the best

number of bins when using single feature classifiers. In MIAS full, both eight bins



CHAPTER 3. RESULTS 7

Table 3.3: Naive Bayesian classifier performance by number of bins. Specificity at
100% sensitivity, one feature.

Bins | MIAS full [ MIAS reduced | DDSM MLO
2 07%
8 156 %
1 41.3%
5 320 %
6 156 %
7 43.1 %
8 41.3%
9 275 %
10 4.6 %
1 40.9 %
12 49.1%
13 16.1 %
14 43.1%
15 42.0 %
16 6.5 %
17 435 %
18 215 %
19 472 %
20 446 %

and 12 bins had a specificity of 9.3% with 100% sensitivity for one feature. With two
features and 100% sensitivity, eight bins had a maximum specificity of 13.7%, and

12 bins had a maximum specificity of 16.6%. In MIAS reduced, both eight bins and

12 bins had a sensitivity of 25.9% with 100% sensitivity for one feature. With two
features and 100% sensitivity, eight bins had a maximum specificity of 31.7% and 12
bins had a maximum specificity of 43.4%. Therefore, 12 bin histograms were chosen
for use in hoth these scts.

For DDSM MLO, the best mumber of bins was also 12. The DDSM CC set, how-
cver, had a drastic jump in specificity when going from 100% to 98.6% (one false

negative) sensitivity. As shown in table 3.4, the best number of bins at 100% sensi-
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tivity does not remain the best as the sensitivity drops. For sensitivities lower than

98.6%, the best performing number of bir 3. With 13 bins at 100% sensitivity,

the specificity is 20.5%, whereas for 98.6% sensitivity, specificity jumps to 68.3%.
Therefore, for the DDSM CC set, 13 bins was chosen,

Table 3.4: Naive Bayesian classifier performance by mumber of bins for DDSM CC.
Specificity at less than 100% sensitivity for DDSM CC, one feature

Bins | 100 % sensitivity | 98.6 % sensitivity | 97.3 % sensitivity
2 32% 2% 140 %

Y 59.4 %

388 %
59.8 %
59.4 %
61.9 %
65.8 %
59.4 %
59.8 %

61.9 %
59.8 %
62.7 %
60.9 %
619 %
61.9 %
478 %

3.5.2 Best performing features

For the MIAS full data set, the best performing features for 100% sensitivity were
number 34 for one feature classifiers, 1 and 34 for two feature classifiers, and 1, 22, and
34 for three feature classifiers. For the MIAS reduced data set, the best performing

features for 100% sensitivity were number 12 for one feature classifiers, 12 and 22
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for two feature classifiers, and 12, 22, and 24 for three feature classifiers. For the

were number

DDSM MLO data set, the best performing features for 100% sensiti

aud 24

and 24 for two feature classifiers, and 1

5 for one feature classific
for three feature classifiers. Finally, for the DDSM CC data set, the best performing

rs, 13 and 24 for

features for 100% sensitivity were number 13 for one feature class

two feature classifiers, and 5, 13, and 24 for three feature classifiers.

3.5.3 Feature vector size

In most. cases, two feature classifiers performed better than one, and three feature

classifiers performed better than two. However, there were diminishing gains with

cach feature added. Table 3.5 compares the best sensitivity /specificity for each of the

data sets using one, two, or three features.

Table 3.5: Sensitivities and specificities for the four datasets using one, two, or three

features.

Specificity
Set Sensitivity | 1 feature | 2 features | 3 featurcs
MIAS full 100% 9.3%
MIAS full 94.7% 18.0%
MIAS full 90.5% 22.0%
MIAS reduced | 100% 25.9%
95.1% 25.9%
90.2% 48.9%
DDSMMLO | 100% 19.1%
DDSM MLO | 95.7% 61.0%
DDSM MLO | 90% 69.5%
DDSM CC [ 100% 20.5%
91.5% 68.3% g
90.4% 74.8% 80.6% 8L7T%
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3.5.4  Overall accuracy

The

est classified data sets were the DDSM MLO and DDSM CC. They performed
far better than the original MIAS full set. Upon removing the benign images from

MIAS full to form MIAS reduce

 the set. performed mueh better. Tn fact, speificity

nearly tripled at 100 sensitivity. ROC curves are presented for MIAS full (figure
3.10), MIAS reduced (figure 3.11), DDSM MLO (figure 3.12), and DDSM CC (figure
3.13)

[EESI—G— § S
............. 2 Features
sesesaea. |Feature

Random

- (1-spctisy)

Figure 3.10: ROC curve for the naive Bayesian classifier using one, two, or three
features with the MIAS database.

Solid diagonal lines indicate a random classification, red dashed lines represent
single feature classifiers, green dashed lines represent double feature classifiers, and

blue dotted lines repres

triple feature classifiers. In all cases classification was

significantly better than random,
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Figure 3.11: ROC curve for the naive Bayesian classifier using one, two, or three
features with the MIAS reduced database.
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Figure 3.12: ROC curve for the naive Bayesian classifier using one, two, or three
features with the DDSM MLO database.
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Figure 3.13: ROC curve for the naive Bayesian class
features with the DDSM CC database.

fer using one, two, or three



Chapter 4

Discussion

This chapter discusses the significance of the results reported in chapter 3. Section 4.1

reviews the effectiveness of the preprocessor. Section 4.2 discusses the results of the

3

KNN classifier and the effects of the four variants of the classifier used. Secti

discusses the results of the naive Bayesian classifier. Finally, section 4.4 compares the

two classification algorithms and the different data sets, and summarizes the success

of the features used

4.1 Preprocessor

The preprocessor performed quite well. Only 2% - 6% of images were lost in the data

sets used. The images lost were largely poor quality to begin with (figure 3.2) and
therefore not appropriate for use in a training set. The preprocessor was ancillary to
the main goal of the project and sufficiently accurate, so further improvements were

not necessary. In a clinical setting, where images would not be used for training,

82
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ed regardless of their quality. With some additional fine

they would need to be clas

ssifier could likely be improved further in order to properly process a

tuning, the
greater portion of poorer quality images

s will have a gradual decrease

Since the breast is a curved structure, the bord

ay attenuation decreases

in intensity as the cross section becomes thinner and x-

cates a sharp border around the peripher

The nature of the thresholding process cr
Where intensity decreases gradually, there will be a thin layer of dim foreground that
is classified as background. This affects all images, but the effect is especially pro-
nounced in fatty breasts. The region lost, however, is quite thin and any abnormalities

this close to the surface should be plainly visible without mammography.

4.2 K nearest neighbour

Despite the long amount of computational time taken to test the cl , the op-

crational phase of this classifier should take less than a second per image on the

is a lazy

classifi

computer setup described in section 2.1, Even though the KNN
learner, with only approximately 300 images in the training set, it does not take long
to evaluate distances between a test image and all the training images. 1f more images

were added to the training set, the computation time would increase.

There is a significant amount of fluctuation in the sensitivity /specificity graphs

of the non-distance weighted classifiers. In the majority voting classifier (figure 3.6),

all even mumbers of neighbours tended to have higher sensitivity and lower specificity

than odd numbers of neighbours. The reason for this is that when vote values sum
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to zero (equal mumber of suspicious and normal neighbours) the default classification
is suspicious. Since vote values can only sum to zero when there is an even mumber
ore images classified as suspicious with an even mumber of

of votes, there will be me

neighbours. Classifying a higher portion of images as suspicious will raise sensitivity

¢ pronounced with lower mumbers of

and lower specificity. The effect is especially

neighbours, due to the fact that with less votes, there will be a higher chance of the

values totaling 7

There is similar fluctuation in the prior weighted votes. However in this case, the

spikes are farther apart, with a slow rise in sensitivity followed by a sharp drop and

a slow drop in specificity followed by a sharp rise. With prior weighting, votes for

suspicious are worth more than votes for normal, so if one neighbour is suspicious,

then it takes several normal neighbours to flip the classification back to normal. For

example, in the MIAS full set, normal votes are worth -1 and suspicious votes are
worth 2.16. It therefore takes three normal votes to overpower one suspicious vote.

o, if one, two, or three neighbours are being used, it only takes one vote of suspicious

to classify the ious. Four, five, or six neighbour classifiers require at

1age As Susp

least two suspicious neighbours for a suspicious classification, and so on

Surprisingly. weighting by neighbour distance, did ot have much of an effect
on the aceuracy of the classifiers. The graphs with distance weighting do, however,

rth less than the

have much less fluctuation since each successive neighbour is w

last. Because of this, cach successive neighbour has less of a chance of changing a

classification assigned by the preceding neighbours

i
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4.3 Naive Bayesian classifier

The times reported for testing each classifier are not representative of the time it
would take to classify a single image. For example, taking roughly two days to test
three feature classifiers involves generating all the histograms with between two and

20 bins for all 10660 combinations of three classifiers and testing for approximately

300 images in each set. In the operational phase, where the histograms have already
been generated for the feature vector with a fixed mumber of bins and only one image is

tested at a time, classification should take much less than one second on the computer

setup described in section 2.1. Increasing the size of the training set would not have

a significant impact on the time to test a single image.

100% sensitivity means both that all suspicious images are classified as suspicious
and that all images classified as normal are normal. 100% specificity means both that
all normal images are classified as normal and that all images classified as suspicious

are suspicious. So. in our 100% sensitivity classifiers, all the images classified as

normal are actually normal. Tn our 100% specificity classifiers, all images classified

as suspicious are actually

suspicious.

One of the advantages of the naive Bayesian classifier is that the detection thresh-

old can be easily tuned to suit the needs of the individual using the program. For

example, a radiologist may use the program to double check a small number of i

ages with the highest probabilities of cancer. Tn this case, a high specificity would be

important and a low sensitivity would be acceptable. Conversely, with some further

testing, the program could be used as a prescreening step, whereby some portion of
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the images with a very high probability of being normal would not need to be reviewed

and

by a human at all. In this case, a high ("100%) sensitivity would be necessary

lower specificity would be acceptable. Taking the results of the DDSM MLO three

feature classifier, for example, this could reduce the radiologists work load by more

than half.

With 100% sensitivity, for DDSM MLO with & three feature classifier, there is
64.3% specificity. This means that 173 normal images can be safely removed from

the set. In a set consisting of 269 normal images and 70 suspicious images, like

DDSM MLO, if one were to choose a single image at random, there would be a 1 in

1.26 chance of picking a normal. Choosing two images at random, there would be a

1 in 1.59 chance of selecting two normal images. Choosing 173 images at random,

there would be a 1 in 6.70 + 10% chance of selecting all normal images. Since all

possible combinations of three features were tested in the classifier, there were 10660

i that the feature set used in the naive Bayesian classifier

classifiers tested. We could s

is 6.3+ 10*! times better than a random guess.

An odd result found in the data was the classification of the craniocaudal view of
image number 336 in the DDSM data set. This image has a very obvious irregular
shiaped mass with cirenmscribed margins. Yet for single feature classifiers, using fea-

tures that work well on other

s, it was consistently assigned a very low probability
of being suspicious. In fact, for classifiers that classify other images well, this image
often had the lowest probability of being suspicious of any images. This is probably

due to there being no images in the training set that closely resemble this one. Ma-
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chine learning requires that there be training data similar to any test image used. If
there are no similar images, then the classifier will not be able to accurately classify
the image. Once the sensitivity threshold is dropped, the seusitivity /specificity aligus

with that found for the MLO im

ure 4.1: An image that was poorly classified by all the classifiers, despite a large
obvious mass.[36, 37)

The MIAS full, MIAS reduced, and DDSM MLO all used 12 bins in their naive

where as the DDSM CC used 13. 1t is natural for the DDSM CC
set to work better with more bins since it contains the most images. More images
will allow the use of more, smaller bins.

The leave one out cross validation used with the naive Bayesian classifier actually

has a slight bias against correct classification built in. Using the MIAS full set as an
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example, there are 95 sus

ous images and 300 images total. The prior probability
of an image being suspicious for the entire set is 31.7%. When testing an image, it

is removed from the training set. This means that when testing a suspicious image,

the training set has 94 suspicious images and 200 images total. This brings the prior
probability of the image being suspicious down to 31.4%. When testing a normal

image from the same set, the prior probability of the image being suspici

us goes up
t0 318%. So, when testing a suspicious image, there is a slightly higher chance of it

being classified as normal than when testing a normal image

4.4 Overall

The MIAS set was tested with the classifiers before the DDSM images were intro-

duced. The algorithms were adjusted for MIAS to get the most accuracy possible.

The best result was a sensitivity of 100% and a specificity of 19.0% using the naive

Bayesian classifier. When the DDSM MLO set was introduced, using the exact same
algorithm, there was a substantially higher accuracy rate. The best result had a
sensitivity of 100% and a specificity of 64.3%. Having more data with which to train

can improve the accuracy of a classifier, but the DDSM set wi

only slightly larger

than the MIAS, so that probably did not have a siguificant impact. Another pos-

sibility was that the DDSM images were less subtle than the MIAS images. This

would be difficult to prove quantitively, since MIAS does not grade the subtlety of
abnormalities in images, and even if it did, the subtlety assigned by one radiologist

may not be identical to that assigned by another. Qualitatively, I cannot see a sig-
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nificant difference between MIAS and DDSM images. The third possibility was that

the number of calcifications in the MIAS set outnumber those in the DDSM set. Out

3 of them were due to calcifications. Out of 70

of 95 suspicious images in MIAS,
suspicious images in the DDSM set, only seven of them were due to calcifications.

cations from the MIAS set had little effect on

Removing all images contai

ing ca

the accuracy.

Finally, in the MIAS set, 60 of the 95 suspicious images were benign, whereas

in the DDSM set only 5 of the 70 suspicious images were benign. Furthermore, all
five of those benign finding were contralateral to a malignant image. Removing all

the benign images from the MIAS set showed a s This

ificant gain in accuracy.

gain could be due to two different effects. First of all, having benign images in

the training set may blur the difference between normal and suspicious classes. If

there is a difference between the feature vectors of benign and malignant images,
then this problem becomes three classifications rather than two. This would require
more training images to achieve a proper classification. Since the detection of benign
images only leads to unnecessary testing and stress for the patient, we are better off
not. detecting them anyway. The second contributing factor to the increased accuracy

is the change in ratio of suspicious to normal images. The MIAS full set had a 2.16:1

normal to suspicious ratio, whereas DDSM MLO had a ratio of 3.84:1. The more

the distribution is skewed toward normal or suspicious, the higher the probability of

correctly classifying all images. For example, in a set of 10 images, if we know one of

them is suspicious, there is a 10% chance of guessing the correct classification of all
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images. If we know five of them are icious, then there is only a 0.4%

guessing the correct classification of all images. While the classifiers themselves do

not use gues

g, it does tip the chance of correct classification in our favor

From the results of both classifiers, the ones with the highest sensitivities were

chosen as the by

While high sensitivity and low specificity is preferable to low

sensitivity and high specificity, the ideal classifier would have a balance between the

two. Overall accuracy is not a useful metric since there are usually many more

normal images than suspicious and a classifier with a high overall accuracy could

miss all suspicious images in a st as aceuracy is pushed toward specificity and away

from sensitivity. There is no way to define what an acceptable level of sensitivity

is for a given specificity. Choosing the classifiers with the highest sensitivity just

give 1. As

a consistent way of choosing and comparing the better classifiers from a s
discussed in section 4.3, the ideal mix of sensitivity and specificity depend largely on

how the system would be used.

t

Unless one classifier has both higher sensif

vity and specificity than another,
is impossible to say which is better. Because of this, we cannot say that cither

the KNN or naive Bayesian classifiers was better than the other. Qualitatively, the

results were quite evenly matched. The naive Bayesian classifier, however, had some

favorable characteristics

As discussed in section 15.2 it is an eager learner. Thi

means that it has a more efficient operational phase. Since all that needs to be
taken from the training phase are two histograms per feature, storage requirements

are low. Since all that is needed to classify an image is a simple equation (equation
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1.15) using the histogram data, computational requirements are low. The k-nearest
neighbour classifier on the other hand requires the feature values and classifications
for all images in the training set to be saved, requiring more storage. Classification of
a new image then requires comparison to every image in the training set before votes

can be tabulated.

More importantly, is the flexibility of the naive Bayesian classifier. The threshold
of what to consider normal and what to consider suspicious can be changed without

having to retrain the classifier. This allows the selection of how much emphasis to

place on sensitivity and how much to place on specificity. Using this, sensitivities of

anywhere between 0-100% can be attained with the specificity appropriately increas-

ing or decreasing. An adjustable KNN classifier could be developed by changing the

weighting assigned to suspicious and normal neighbour votes. As seen for the prior

adjusted classifier though, this produces some odd behavior in the classifier depending

on the number of neighbours used.

There were several features that were consistently used by the best performing
classifiers. Of the three-feature classifiers for both naive Bayesian and k-nearest neigh-
bour, for each of the data sets (eight classifiers total), there was a lot of overlap in
the features used. Feature 24 ocenrs in five of the cight classifiers, and features 12 or
13 occur in six classifiers. Among the 24 features used in these eight top classifiers,
there were 11 unique features. The consistent high performance of these features
for different data sets and different classification algorithms indicates that the high

classification rates are due more to the features themselves than to the classifiers or
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to random chance,

Three quarters of the high performing classifiers come from regions one, two, or

three (figure 2.9) in the transform. Of these 24 features, four were mean, six wore

andard deviation, ten were skewness, and four were kurtosis.
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Conclusions

The objectives of this project were all met. Whole image classification was effectively
implemented and a high level of sensitivity and specificity was achieved in the various

classifiers

The use of a discrete cosine transform to separate normal from cancerous breast

tissue was tested. It was found that the discrete cosine transform can indeed be

used for this purpose. Partitioning the transform in square sections centred on the

origin with increasing thickness for regions farther from the origin was tested. Mean,

standard deviation, skewness, and kurtosis were calculated from these regions to

produce a feature set. It was found that there are indeed differences in these features

when comparing a normal image to a cancerous one. K-nearest neighbour and

aive

Bay

ian classifiers were tested using these features and both provided highly accurate

classifications

The methods developed in this project could be used before, or after a radiologists




CHAPTER 5. CONCLUSIONS 94

reading, With 100% sensitivity, it could be used as a prescreening tool. At a digital
mammography clinic, images could be assessed by the computer instantly, and results
like 'no abnormalities present’, or ‘requires further review’ provided to the patient.
The radiologist would then have fewer images to read, and be able to dedicate more

than 100% sensitivity, it

time to the ones with higher chances of cancer. With I

results. Similar to a double readi

could be used to double check the radiologis g, the

radiologist would first read the images without knowing the outcome of the classifier

s0as tonot be biased. Then the classifier would be applied to all the imag

2

as normal by the radiologist. The ones with the highest probability of being

us would then be marked for further review. In both of these cases, the

radiologist spends more time analyzing suspicious images and less time on the images

with a high probability of being normal

The high sensitivity attained using the DCT generated feature set means that one

of the classifiers develaped in this project could be used in series with other computer
aided detection methods to increase overall accuracy. Using a classifier with near
100% sensitivity, such as the one developed in this project, before applying a second

classifier could only boost the accuracy of that classifier. At 100% se

sitivity, no

spicious images are lost, while some (64% in the case of naive Bayesian of DDSM

MLO) of the normal images can be removed. This gives the second classifier a smaller

group of images that are more likely to be suspicious,

It would ot be possible to accurately predict which features will perform a given

classification task well and which will not. When developing a new feature set, the
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usually to make a hypothesis as to which will be most accurate, and then

strategy is
testing that hypothesis. Several of the features in the feature set developed in this
project displayed an excellent ability to distinguish normal from cancerous images.
Al the classifiers used feature vectors of no more than three features. Despite
the small feature vector size, the results were still quite accurate. Using such a small
number of features ensured that over training would not be an issue. However, before
using such a system in a clinical setting, further testing on larger data sets will be

necessary.

5.1 Future directions

The preprocessor algorithm could be modified to generate automated feedback as to
whether or not it was successful. While manually reviewing all the images is a quick

process, it does somewhat defeat the purpose of an automated system. In a clinical

s, or give feedback as

ing the preprocessor would either need to work on all imag

o images would need

ul. Un:

cessfully preproc

to whether or not is was succ
to be classified as suspicious so that they would be reviewed by a human

It has been demonstrated both in this thesis and elsewhere (58] that craniocaudal
images are equal, if not better than mediolateral oblique for detecting cancers. In cases
where both mediolateral oblique and craniocaudal images are available, combining
the classifications of both views could boost accuracy. If one view is classified as

suspicious and the other normal, then that breast would warrant further attention

This would increase sensitivity, as images with abnormalities

from a radioloy
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that are not visible in one view could be properly classified. Specificity would also

increase, since thresholds could be lowered for individual views where detection in

only one view would be necessary.

While data is not currently available, it would be interesting to use the DCT
features to track the changes in a patient’s mammogram over time. Having a baseline
feature vector available for an individual would enable the creation of a classifier that
could detect the emergence of a new cancer. While mammograms are expected to
change gradually with age or with slightly different positioning in a mammogram

exam, a large departure from a previously recorded feature vector would likely be

caused by a c:

ncerous proc

As long as over training is carefully avoided, adding more features to the feature
vector can inerease the accuracy of a classifier. By performing an additional feature
reduction step, many of the 41 features used could probably be eliminated. With a

ble to test combinations of more features

smaller feature set, it would become possi

the vector.




Appendix A

K-Nearest Neighbour Results

Legend:
Neighbours: the number of neighbours used
£1, £2, £3: the feature numbers used in a classifier
sens: sensitivity

spec: specificity
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Table A.3: DDSM MLO non-weighted non-prior

Neighbours | 1 | sens [ spec |[ 1 | 2 | sens [ spec |[T1 | 2 | f3 | sens
1|3 825 |[5 [ 6 571|844 |5 | 6 33614
2 721 (| 5|6 |8 (784 | 5|17 30829
3 90 |24 38571907 || 5|6 |37|61.4
4 836 || 5| 6 |714 836 | 5 (1523|757
5 5|6 [557|88.1| 5|6 (37586
6 13|40 | 643 | 855 || 5 | 6 | 37| 729
7 5|6 [557|888| 6 |23|25|614
8 5|6 |629 6 |23(25|686
9 5|6 |514 5| 15|36 |57.1
10 16 | 24 | 57.1 13 64.3
1 13 | 36 [ 48.6 2 52.9
12 13| 37571 5 62.9
13 132250 13 52.9
14 13| 36 | 60 5 614
15 13|36 | 47.1 5 52.9
16 13 | 20 | 58.6 13 58.6
17 13 |35 | 514 5 54.3
18 13 | 36 | 54.3 13 58.6
19 13 (35 | 514 24 54.3
20 13 | 36 | 54.3 13 58.6
21 13 (35 | 514 13 54.3
22 13|37 | 586 13 58.6
23 13 |35 | 50 13 513
2413|529 13|36 | 52.9 13 57.1
25 (13| 486 13|35 | 486 4 514
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Table A.8: DDSM CC distance weighted non-prior

Neighbours

spec

i

2

sens

[7]

842
842
87.1
885
89.2
888
89.9
89.2
89.2
89.2
90.3
89.9

32
32

575
57.5
548
548

26
26
20
2
2
2
31
31
26
2
2
31
24
31
25
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