

0Ct.L311

Extending the instance-based data model: Semantics,

performance and security considerations

St. John's

by
Jianmin Su

A thesis submitted to the School of Graduate Studies

in partial fulfi llment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Memorial University

November 20 I 0

Newfoundland

Extending the instance-based data model: Semantics,

performance and security considerations

Jianmin Su

Memorial University of Newfoundland, School of Graduate Studies, 20 I 0

Abstract

Current databases are typically designed for particular predetermined purposes.

However, users may need to use the same dataset for multiple and changing purposes,

some of which may not be known when the database is designed. To handle multiple

purposes in traditional data models, it is often necessary to construct multiple databases

or views. When new information needs arise, additional databases or views may need to

be constructed.

The instance-based data model (IBDM) supports instances independent of any

classes to which those instances might be assigned. The model adopts a two-layer

approach to data organization (instance layer and class layer), so that an instance may

belong to more than one class or, alternatively, none of classes defined in a database

schema. The model makes it possible to construct multiple and flexible schemas for a

dataset to support multiple and changing needs of users. However, previous research on

the instance-based model does not address a number of issues related to the strengths of

separating instance and class layers in the lBDM in fulfilling the needs of particular

applications, including supporting database administration issues such as providing more

flexible security policies.

In thi s thesis, we propose theoretical and practical enhancements to the

instance-based model. First, we extend the semantics and implementation methods of

data expressed in the instance-based model. The semantic extension of components of the

instance-based model clarifies the definition of the mode l and the implementation of the

components simplifies applications to real database systems. Second, we provide a

theoretical comparison and an empirical simulation to show that the instance-based

model is more efficient than the relational model on some typical queries. Third, we

propose a securit y model to address security issues in multilevel security applications

using the instance-based approach. To ensure the model's security, we also provide

operating methods and rules for the proposed model. Finally, we evaluate the proposed

model and prove that the model is secure. By app lying the instance-based mode l to the

multilevel security area, the research fonns the foundation for using the instance-based

model to construct multiple schemas and to support multiple applications.

Acknowledgment

First and foremost, I would li ke to thank my supervisor, Dr. Jeffrey Parsons, for his

patience, guidance and friendship during the years that we worked closely together.

Without hi s help, the completion of the work of th is scope wou ld not have been possible.

I would also li ke to thank the members of my supervisory committee, Dr. Jian Tang and

Dr. Krishnamurthy Vidyasankar, for their efforts in reviewing and prov iding valuab le

comments on this thesis . I would also li ke to thank all members of the Parsons Research

Group for their generous help and friendships. During my years in graduate study, I was

also honored to work with and to learn from a number of individuals. Among those, Dr.

George Miminis, Dr. Siwe i Lu, Dr. Miklos Bartha, Dr. Harold Wareham, Dr. John Shieh

and Dr. Manrique Mata-Montero deserve special thanks. I would also like to take this

opportunity to thank Ms. Elaine Boone for her continuous support throughout my

program, and the head of the Computer Science Department at Memorial for academic

advice and consu ltation. I would like to thank the entire Computer Science Department at

Memorial University, all the facu lty and staff members who made my li fe so comfortable

during my years in graduate study. I wou ld also like to thank my circle of friends, too

numerous to list here, who have supported me throughout my graduate study. Finally, I

would like to thank my fa mil y, my parents, my lovely wife Lin and my son Ning, for

being so loving and supportive. Without them, I would not be the person I am today, and

for that, I thank them.

Abstract

Acknowledgments

Table of Contents

Li st of Figures

I Introduction
1.1 Background

1.1. 1 Databases

1.1.2 Data Models
1.1.3 Ontologies

TABLE O F CONTENTS

1.2 Problems with Current Data Mode ls

1.3 Our Contributions

1.4 Thesis Organization

iv

vi ii

2 Data Models 12
2.1 Review of Data Mode ls 12

2.1 .1 Flat File Model 12

2. 1.2 Hierarchi cal Model 13

2.1.3 Network Mode l 14

2.1.4 Relational Model 15
2. 1.5 Entity·Relationship (ER) Mode l 16

2.1.6 Object-Oriented Model 17
2.2 Problems with Current Models 18

2.2. 1 Merging Problem 19

2.2.2 Multiple Applicat ion Problem 20

2.2.3 Design Prob lem 22

2.2.4 User Prob lem 23
2.2.5 Summary 23

2.2.6 Current Solutions 24

2.3 The Instance-Based Data Model (IBDM) 25
2.3.1 Ontology Principles Used in the Instance-Based Data Mode l 25

2.3.2 Basic Concepts of the Instance-Based Data Model 26
2.4 Advantages of IBDM 30

2.5 Summary 32

3 Ontology Principles
3.1 Basic Ontological Principles

3.2 Things

3.3 Properties and Attributes

3.3.1 Properties

3.3.2 Attributes

3.4 Relations between Instances

3.5 Class and Kind

3.5.1 Class

3.5.2 Kind

3.6 Summary

4 The Semantic Extension of the Instance-Based Data Model

4.1 Instance Identifiers

4.1.1 Semantics of Instance Identifiers

4.1.2 Creating an Instance Identifier

4.2 Properties and Their Relationships
4.3 Relationships Between Instances

4 .4 Class Identifier

4.5 Representing Data Semantics to Support Queries

4.6 Integrity Rules
4.7 Summary

5 Query Perfonnance in the ffiDM
5. 1 Introduction

5.2 Environment of the Comparison
5.3 Select and Proj ect Queries

5.4 Join Query

5.4. 1 Jo in on the Key Attribute

5.4.2 Join on non-Key Attribute
5.5 Test

5.5 .1 Environment of the Test

5.5.2 Results of the Test

5.5.3 Summary of the Test
5.6 Summary

6 Multilevel Security Model

6. 1 The Research Field Overview

33
33
34

37
37
39
40
42
42
43

44

45

46

47

49

51
56

60
61
62
64

66

67
68
70
75

75

75
76
78
80
83
83

84

85

6.2 Problems with the Tradit ional Models

6.2. 1 Data redundancy

6.2.2 Null value inference prob lem
6.2.3 Sensit ive key value problem

7 The Instance-based Multil evel Security Model (IBMSM)

7. 1 1BMSM

7.2 Data Interpretat ion in IHM SM

7 .2. 1 Property P1 and its Security Level Cj
7.2.2 An Instance 's View and its Security Levels

7.3 Data Access and Integrity Rules

7.4 Two-Layered Access Control

7.5 Operations

7.5. 1 Inserti on

7.5 .2 Deletion

7.5 .3 Select

7.6 Security

7.7 Structure and Implementation Methods of IB MS M

7.8 Summary

8 Power and Securit y
8. 1 Dupl icate Records Problem

8.2 Null Values

8.2 Sensiti ve Data in the Key Attributes

8.2. 1 Multileve l Key Attributes Prob lem

8.2.2 Key Loophole Problem

8.4 Summary

9 Conclusions and Future Work

9. 1 Conclusions

9.2 Con tributions

9.3 Future Works

10 Bibliography

I I Appendi x: Wisconsin Benchmark Queries and Results

vii

95

95
97

99

102

102

106

107

107

Il l
115

117

11 7

12 1

124

126

135

139

140

140
143

144

144

145

149

15 1
151

154

155

157

164

List of Figures

Number page

Figure I An Example of Multiple Schemas in the Instance-based Model 7

Figure 2 An Example of the Hierarchical Data Mode l 13

Figure 3 An Example of the Network Model 14

Figure 4 An Example of the Relational Model 15

Figure 5 An Example of the ER Model 16

Figure 6 Merging Problems 19
Figure 7 Constructing a Higher Level Schema for Multip le Databases 21

Figure 8 Two Layers in the Instance-Based Data Model 27

Figure 9 Data Storage Methods for the Instance Layer 28

Figure I 0 Data Storage Methods for the C lass Layer 29

Figure II

Figure 12

Figure 13
Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22
Figure 23

Differences Between Views and Schemas

How Peop le Refer to Things

Class and Kind

31
36
44

An Instance Identifier Represents a Globall y Recognized Un ique Property
48

Implementation System of Instance Identifi ers 50

Transfonning Joint Properties to Discrete Propert ies

Representing the World at the Instance Level

Data Representation at the Instance Level

Three- level Structure of a Fami ly

Two- level Structure of a Fami ly

An Employee Table

The Second Data Structure of!BDM
Architecture of the Instance-based Database System

54

57
58
59
59
69
69
77

Fi gu re 24 Attribute Specification of Sca lable Wisconsin Benchmark Relations 79
Figure 25 Non-indexed Property Queries 80

Figure 26 Non-Clustered-Index Property Queries

Figure 27 Update Operations

Figure 28 An Example of the Tup le-level Labeling Model

80
81
86

Figure 29

Figure 30

Figure 3\

An Example of the Element-level Labeling Model 87

A Query Result for an ~ User in the Element-leve l Label ing Model 88

An Example Data of Smith and Winslett Model

Figure 32 Typical Data of the SeaView Security Model

viii

88
90

Figure 33 An Example Table for the Sandhu-Jajodia Model 91

Figure 34 An Example Data of the MRL Model 93

Figure 35 An Exam ple Data of the BCMLS Model 93

Figure 36 Unambiguous Results to the Users in the BCMLS Model 94

Figure 37 A Customer Relation 96

Figure 38 A Customer Relation in BCM LS Model 97

Figure 39 The Null Va lue Inference Problem 98

Figure 40 Data Redundancy Problem 98

Figure 41 The Sensitive Key Value Problem 99

Figure 42 The Belief Problem 110

Figure 43 Two-layered Controls 116

Figure 44 IBMSM Database States Transformation 129

Figure 45 Different Security Levels of Users Affect Each Other 130

Figure 46 Users Affect Each Other on Different Leve l Data 130

Figure 47 Affecting on Different Levels 134

Figure 48 Architecture of the Instance-Based Multilevel Security System 136

Figure 49 An Example Data Structure of IBMSM 137

Figure 50 Entity Po lyinstantiation and Element Polyinstantiation in MLR Model

141

Figure 51 Multip le Key Attributes Problem in MLR Model 145

Figure 52 Passenger Relation 146

Figure 53 Different Level Views on Passenger Table 147
Figure 54 Mask John's Name in Passenger Re lation 147

Figure 55 Hidden Passenger John from Lower Level Users 148

Extending the instance-based data model: Semantics, performance and security considerations

Chapter I

Introduction

Building a database to support multiple applications is an essential aspect of

database systems. However, traditional database models suffer from a serious drawback.

Let us take an example. In the relational model, information has to be stored in tables in

which each row represents an instance of an entity type (or class) [I]. Any presentation of

the data in the database is based on the meaning of these tables (classes). So, in traditional

models, for each application, one has to build a separate database. For example, we have

bank management systems for bank applications, healthcare systems for hospital

applications, sales management systems for retail applications, and so on. When the

relational model was first proposed, the requirement for a separate database for each

application was not a problem since there was no network connection between different

systems. One specific system for one kind of application was reasonable. However, with

the development of networks, systems now can be connected to many others. Meanwhile,

some applications might need to combine several data sources from different databases

E"tending the instance-based data model: Semantics, performance and security considerations

after these databases were built. For example, a customer in a retail system may also be a

patient with an infectious disease (for example, the swine flu) in a hospital. It will be

more efficient if physicians at the hospital can combine the data in the two systems to find

out the whereabouts of other customers who had contacted with the patient. Not only

would it be inefficient to bui ld a system to combine data for the application but also

traditional models have lots of inherited problems when combining data. For example,

how to combine the customer's categorical age (e.g. child, adult, and senior) with the

patient's age (in the form of an exact numerical age)? It will be more efficient if the two

systems can be combined together without any additional steps. However, in traditional

models, a system can be built only if we know the applications for which the system will

be used. It is difficult also to use a system to support a non·defined application after the

system is built. For example, in the traditional models, we cannot query information of a

patient from a retail system. That is, traditional models can support an anticipated

application of a database, but they cannot support any non·anticipated appl ication of a

database after the database was built.

To overcome the problems of traditional models, Parsons and Wand proposed a

new model, the instance-based data model (IBDM) [2], by applying ontological theory [3]

[4] to data modeling. The model adopts a two-layer approach so that an instance may

belong to more than one class. By using a two·layered approach, the model makes it

possible to construct multiple and flexible schemas for a dataset to support multiple or

changing purposes. However, previous research only focused on the abstract model. How

the semantics of components should be and how they should be implemented not been

considered. In the absence of these considerations, it is difficult to apply the model to any

Extending the instance-based data model: Semantics, performance and security considerations

real application. In this thesis, we address several issues of the instance·based data model

and their implementation methods according to Bunge's ontology. The research provides

clear understanding of the components of the instance-based data model so that they can

be implemented easily. We also propose a new security model, the instance·based

multilevel security model [5], based on the instance based model, to solve problems in the

current multilevel security data models. The research also demonstrates that the instance

based data model can be applied to some special areas to make databases more suitable

for applications in these areas.

l.l Background

I. 1.1 Databases

By definition, a database is a structured collection of related data (I]. Despite this

general definition, currently databases usually have many restrictions. For example, a

database is designed for a special purpose. It can be used only for the applications it is

intended to be used for. For example, when we use a bank machine (essentially a

computer or computer-based machine) to deposit/withdraw money, we arc dealing with a

bank database system. Or if we check our util ity bill online, we are dealing with a

supplier's database system. We cannot deposit/withdraw money to/ from our bank account

by using a supplier's database.

As a component of computer sofnvare, database technologies are important in all

areas where computers are used [6]. With the increase of related computer usage, the use

of database technology has increased in recent decades as well.

Extending the instance-based data model: Semantics, performance and security considerations

1.1.2 Data Models

A data model is a collection of concepts that can be used to describe the structure

of a database [7]. Most commonly, the structure of a database includes types of data,

relationships between data and constraints that hold on data.

Based on the constructs data models provide to users, we categorize data models

in two types: conceptual data models and physical data models [8]. Conceptual data

models provide higher level constructs that are closely related to how users perceive data.

For example, conceptual data models express what kinds of entities arc stored in a

database and what kind of relationships exist behveen entities. Conceptual models, such

as the entity-relational model [9], are widely used by either database designers or end

users. On the other hand, physical data models provide lower level concepts that describe

data stored in computers. They describe how the infonnation represented in the

conceptual model is actually implemented, how the infonnation exchange requirements

are implemented, and how the data entities and their relationships are maintained. The

physical data model usually is used to calculate storage estimates and may include

specific storage allocation details for a given database system. Since the physical data

models are so closely related to computer technology, in most cases, they are only used

by computer specialists. In this thesis, we largely deal with conceptual data models. Only

Chapter 4 refers to physical data models.

Extending the instance-based data model: Semantics, performance and security considerntions

1.1.3 Ontologies

Ontology is the study of being or existence and its basic categories and

relationships [3]. Ontology attempts to describe what things exist, and how these things

can be related together or can be grouped according to similarities and differences. There

are several ontological theories used in the computer science and information systems

field. Different ontologies may be used for different objectives. For example, domain

specific ontology [I 0] and upper ontology [II] arc mostly used in the area of information

science. In this research we usc a general ontology, Bunge's ontology [3] [4], because it

has been used to analyze infonnation systems model ing concepts and has produced useful

results [2] [12] [13] [14] [15] [16] [17] [18] [1 9].

1.2 Problems with Current Data Models

Current databases are designed for particular purposes. However, users may need

to use the same dataset for multiple purposes. For example, in a university, the head of a

department may be interested in the academic information of a student; library staff may

need to know the information about the books people borrowed; and an officer in the

campus security department may need information about the names of the faculty

members who are authorized to enter lecture halls during a period of time. To handle

these purposes in traditional database models, it is often necessary to construct multiple

databases. As the need for infonnation increases, more databases need to be constructed.

Enabling a database to support multiple applications is an essential issue for the

effective use of database technologies. For example, the relational model [23] provides

E;o;tending the instance-based daLa model: Semantics, pcrfommnce and security considerations

"views" to support multiple purposes. However, views in the relational model and other

traditional models are only subsets of the schemas of the database schema. That is, a view

can only provide infonnation that is included in the schema of a database. It cannot

provide infom1ation that is beyond the schema.

The idea of a global schema has been proposed to accommodate multiple

applications [20]. However, at least two problems have since emerged: First, it is nearly

impossible to identify all the potential queries that a user could make beforehand. For a

global purpose, before building the actual database, designers will probably have very

limited knowledge of who will query the database and what their interests will be.

Second, even if all the potential queries were considered in advance, a new problem

arises: designing a global schema that is able to support all these queries. For example, to

design a large database system (even a large database system may not be a global

system), a group of designers may need to work for many months [I]. As a result, 'the

universal data model may be unaflainabie.' [20]

The fundamental problem with existing data models is that they arc schema-based

[2]. ln these models, data stored in a database is organized based on the schema of the

database. However, the schema of a database is designed only for a particular application

and it is fixed. It can merely represent data related to the application under the schema

and answer only questions pertaining to this application.

E~ttcnding the instance-based data model: Semantics, performance and ~urity considemtions

1.3 Our Contributions

To overcome the problems of the traditional models, the instance-based data

model (lBDM) was proposed [2]. The instance-based data model supports instances

independent of classes. The model adopts a two-layer approach so that an instance may

belong to more than one class or, alternatively, it may not belong to any classes at all in a

database. By using a two-layered approach, the model makes it possible to construct

multiple and flex ible schemas for a dataset to support multiple, even unanticipated or

changing purposes. Figure I illustrates multiple schcmas (each related to an application)

built on top of one set o f data. As shown in Figure I, each schema in the Class-level may

only deal with part of data in the Instance-level. However, no global schema is needed in

the model. So, with the model, it is easier to build a database for multiple applications.

Schema 1 Schema 2 Schema 3 Class-level

Instance-level

Figure I: An Example of Multiple Schemas in the Instance-based Data Model

Extending the instance-based data model: Semantics, performance and security considerations

Previous research on the instance-based data model does not address a number of

issues related to the strengths o f separating instance and class layers in the IBDM in

fulfi lling the needs of particular applications, including supporting database

administration issues such as providing more flexible security policies. In this thesis, we

extend the semantics of the instance-based components and implementation methods for

data expressed in the instance-based data model. We address several issues of the

instance-based data model and their implementation methods according to Bunge's

ontology. The main contributions of the thesis are follows:

I. Extending semantics of Bunge's ontology to the instance-based data model

a. We clearly define the semantics of the instance identifier and propose a

possible method to implement instance identifiers in the instance-based

data model .

b. We address how to express properties and their relationship in the

instance-based data model in order to reduce the complex ity of

managing an instance-based database and increase the query capability

of the model.

c. We build a model to demonstrate how to represent the real world in

different levels in the instance-based data model according to Bunge's

ontology: instances related to each other fonn a higher level conceptual

thing so that all instances combine together fanning the real world in

the highest level.

d. We define several integrity rules of the instance-based data model to

reduce possible inconsistencies in the model.

E)(tcnding the instance-based data model: Sem:mtics, performance and security considcrotions

2. We demonstrate that, in theory and in practice, the instance-based data model

is not only flexible for queries, but also faster than the relational model in

processing a broad range of queries.

3. We propose a new security data model, the instance-based multilevel security

model (lBMSM), based on the instance-based data model as an application of

the theory. The new model solves several problems in the multilevel security

control area. ln the thesis:

a. We formally define the instance-based multilevel security model to

solve data polyinstantiation and data inference problems in class-based

multilevel security model. This includes:

i. Definition of data interpretation and integrity rules.

ii. Definition of a two-layered control model for the instance

based multi level security control.

b. We extend operations of the traditional SQL statements and instance

based iQ L[70J statements to the multilevel security model.

c. We prove that the instance-based multilevel security model is a secure

model.

I .4 Thesis Organization

In the next chapter, we first review the most commonly used data models. We

point out the problems with the current data models in more detail. Next, we review the

instance-based data model. The introduction of the instance-based data model includes:

EJ~;tending the instance-based data model: Semantics, performance and security considerations

the ontological principles used to build the instance-based data model, the basic concepts

of the instance-based data model, and the possible structures and implementation methods

in the instance-based databases. We also briefly discuss advantages of the instance-based

data model.

In Chapter 3, we introduce the basic elements of Bunge's ontology: what is a

thing, what are properties and attributes, what kinds of relationships exist between

instances, what is a class and a kind, and the concept of systems.

In Chapter 4, we discuss some semantic extensions of the instance-based data

model: what are the semantics of the instance identifier and how to implement them, what

are properties and rela1ionships between them, and how to represent the real world in the

instance-based data model. In the final part of Chapter 4, we introduce integrity rules for

the instance-based data model.

In Chapter 5, we compare querying in the instance-based data model with

querying in the relational model. The comparison has two parts, the first part is a

theoretical comparison and the second is an empirical evaluation on a test database.

Chapter 6 introduces the concepts of multi level security control and the problems

with current models. In Chapter 7 we propose the instance-based multilevel security

model (IBMSM) and provide data interpretation, integrity rules, and operation methods of

the model in this chapter. In this chapter, we also prove that the IBMSM is a secure data

model and show that it addresses several unsolved problems under the traditional

multilevel security models.

10

Extending the instance-based data model: Semantics, performance and security considerations

Chapter 8 compares the lBMSM model with other class-based multilevel

relational models and indicates how the new model solves the problems of the current

models.

Chapter 9 provides some conclusions and summaries the primary contribution of

this research. It also suggests several research areas for future investigation.

II

Extendingtheinstance-bilseddatamodei:Semantics,performanceandsecurityconsiderntions

Chapter 2

Data Models

A database is an organized collection of data. A data model is a collection of

logical constructs used to represent the data structure and the data re lationships within the

database. [6]

2.1 Review ofData Models

Many data mode ls have been proposed. Most of them are class-based models. For

better understandings of the concepts of the instance-based data model, we will review

some of the most popular models in the following sections.

2.1.1 Flat File Model

This is not considered as a data model by some scholars, si nce it merely shows

tab les of values . The relationships between records and between tables cannot be

12

Extending the instance-based data model: Semantics, performance and security considerations

represented in such a model. Data are simply stored in the database. This model was

mainly used in the early age of computer database, but it has no obvious advantage,

compared to modem database systems. For example, users may have to search the entire

database to find required results in the flat file model. Therefore, querying a large

database is very slow.

2.1.2 Hierarchical Model

In the hierarchical data model (21], data are organized into a tree structure. The

structure allows repeating different types of information using the parent/child (or

hierarchical) relationships. However, the relationship between parent and child can only

have one·tO·many relationships. Figure 2 shows an example of the hierarchical model.

Figure 2: An Example of the Hierarchical Data Model

The hierarchical model is the first model which represents relationships between

different data tables. Compared to the flat file model, hierarchically structured database

13

Extending the instance-based data model: Semantics, performance and security considerations

systems are very fast for certain types of queries. Hierarchical structures were widely

used in the first generation of mainframe database management systems.

Because of its one-to-many relationship, the hierarchical structure is simple to

construct; however, the limitation of this model is also a consequence of its simplicity.

Relationships in the real world are not just parent/child relationships, as many-to-many

relationships are also very common. But it is costly to represent many-to-many

relationships in the hierarchical data model. Thus, the hierarchical data model is often not

able to adequately represent many structures that exist in the real world.

2.1. 3 Network Model

System

ESSN Pnumber Hours
f.k f.k

P_workson
De endent

Em SSN Name Sex Bdate Relationsh
f.k

Figure 3: An Example of the Network Model (I]

The Network model was introduced in the same period as the hierarchical model

by Codasyl data base task group [22]. Its structure is very similar to the hierarchical

model. The only difference is that, instead of a tree of records such that each record has

14

Extendingtheinstance-baseddatamodet:Semantics,performanceand security considerations

one parent but many ch il dren records, the network model a llows records to have multipl e

parent and child records, forming a net\vork structure. An example of the network model

is illustrated in Figure 3. The advantage of the network model, in comparison to the

hi erarchical model, is that it allows a more natural way of modeling re lationships

benveen enti ti es.

2.1.4 Relational Model

With the growth of data intensive applications and of computational capacity, a more

flexible database model, the re lational mode l [23], emerged to replace the hierarchical

and network models. The fundamental assumptio n of the relational model is that a ll data

can be represented as mathemat ical re lations. The relat ional data model permits designers

to create a consistent logica l model of information and refine it through database

nonnalization. An example of the relational model is shown in Figure 4.

Customer

I Customer 10 I Name I Address I mv I State I Phone I

Order

I Order No I Customer ID I In voice No I Date Placed I Date Promised I Status I

Invoice

I Invo ice No I Customer 10 I Order No I Date I Status

Product

I Product Code I Product Description

Figure 4: An Example of the Relati onal Model

15

Extending the instance-based data model: Semantics, performance and security considerations

The foundation for the relational model is set theory. Set operations, such as union,

intersection and Cartesian product, fonn the basis for querying data. The use of sets and

set operations provides independence from physical data structures (in contrast to the

hierarchical model and the network model), a pioneering concept at the time it was

introduced.

The relational model is a successful commercial model; even today, most database

systems still use this model. Its ultimate success also comes from continuing research

efforts after the model was proposed [24].

2.1.5 Entity-Relationship (ER) Model

The entity-relationship (ER) model was proposed by Chen in 1976 [9J. The ER

model is a conceptual data model (or semantic data model) that views the real world in

tem1s of entities and relationships. A basic component of the model is the entity

relationship diagram, which visually represents data objects. The basic model has been

extended [25} [26], and today it is frequently used to design databases.

Figure 5: An Example of the ER Model

16

Extending the lnstance·based data model: Semantics, performance and security conslderntions

There are two primary advantages of the ER model. First, it maps well to the

relational model. The constructs used in the ER model can be easily transfonned into

relational tables. Given this advantage, the model is mostly used as a design plan by the

database developer to implemem a data model using specific database management

software. Second, it is easy to understand with minimum amount of training. Therefore,

the model can be used by the database designer to communicate the design with end

users.

2.1.6 Object-Oriented Model

The Object-oriented data model (27] integrates databases with obj ect-oriented

technologies. Several object-oriented models were proposed in the early 1990s [28].

However, these models suffered from two drawbacks, lack of standardization and lack of

successful implementation approaches to ensure interoperability between products [29].

Even today, there are only a few applications using object-oriented data models, and they

are usually specialized applications such as engineering databases or molecular biology

databases rather than mainstream commercial data processing. However, object database

ideas were picked up by the relational vendors and influenced extensions made to these

products and indeed to the Structured Query Language (SQL). For example, both Oracle

[30] and Microsoft [3 1] add extensions in their database platform to support some object

oriented features.

Based on the popular data models, Hammer and McLeod define database and

database model as follows:

17

Extending the instance-based data model: Semantics, perforn1ance and security considerations

A database is more than just a collection of values. At eve1y point in time, the

contents of a database represent a snapshot of the state of an application system, and the

changes to the database over time reflect the sequence of events occurring in the

application environment. In olher words, a database is a model of a real world system

[32].

2.2 Problems with Current Models

All the above models are based on a common assumption that data instances (e.g.

records, tuples, entities, objects) should always be classified into certain types (record

types, relations, emity types, classes) and relationships exist between the types.

Therefore, they represent each entry by a sequence of values and then assign the entry its

type. The meaning of the entry is provided by the type to which it belongs. For example,

the entry {Ford, 50, 80} that belongs to the type {name, age, weight}, which means a

person name is Ford, his age is 50 and his weight is 80kg, wi ll be completely different if

it belongs to the type {Maker, Year, engine}, which means a car is made by Ford in 1950

and it has 80 horse power engine. We call this kind o f model a 'class~based dma model'.

In a class~based data model, each type (record types, relation, entity types) can be

expressed as a class. Class~based data models have been very successful for the past 50

years, but there are a number of problems with them.

18

Extending the instance-based data model: Semantics, performance and security considerations

2.2.1 Merging Problem

The merging problem is a problem of semantic integration in class-based data

models. In the models, since each database is designed for special purposes, the schema

of each database is different. Each database is a closed world under its schema [I] [33].

When it is necessary to query multiple databases for a new application, the databases first

have to be merged. However, how to merge these databases is a cmcial issue. Since

models are based on classes, one has to merge the classes (schemas) first before merging

the data itself.

There are lots of difficulties in merging schemas and data [34] [35] [36] [37] [38].

Figure 6 shows some of the basic problems when merging schemas of multiple databases

in class-based data models. The schemas of two relational databases 1-1 and L on house

listing and the semantic correspondences between them are shown in Figure 6. Database

Figure 6: Merging Problems [34]

\9

Extending the instance-based data model: Semantics, performance and security considerations

H consists of two tables: HOUSES and AGENTS; database L consists of the single table

LISTINGS. Figure 6 also shows the duplicate record problem of merging data of multiple

databases. The first record in schema H is the same as the second record in schema L.

The list price is arrived by combining price and fee-rate.

Many challenges have been encountered in perfonning semantic integration [34]

and researchers have proposed several approaches to do the matching, such as rule-based

solutions [39] [40] [4 1] and learning-based solutions [42] [43] [44] [45]. Even with these

methods, problems may not be eliminated. The basic idea of a rule-based solution is to

design some rules for mapping one schema to another schema or a global schema. The

rule-based methods do not require training so they are faster when trying to build a

matching system; however, they cannot exploit data instances effectively since they need

to calculate the matching (rules) at query time. Also, they cannot exploit previous

matching efforts to assist in the current ones. The learning-based method is efficient after

the calibration; however, the calibration process itself is much more complicated. Also,

since it operates on records, it is quite slow when working on a large dataset. For

example, most learning-based algorithms may take more than an hour to generate a

higher level model on large datasets.

2.2.2 Multiple Application Problem

A database should support multiple classifications so that the user can choose a

preferred classification as the basis of a query. A database should also be able to translate

between different classifications. However, current database systems are not suited to this

20

Extending the Instance-based data model: Semantics, performance and security considerations

task [46] [47]. A database is designed for a specialized purpose in class-based data

models; however, users may have several interests at the same time. For example, in a

university, the head of a department may need academic infom1ation; library staff may

need information about the books people borrowed; and an officer in the campus security

department may need informat ion about the list of faculty who are authorized to enter

lecture halls during a period of time. To handle these purposes in traditional database

models, it is often necessary to construct multiple databases. As the need for infonnation

increases, more databases (or views) need to be constructed. Bui lding views may reduce

some complexity to query databases, but views depend on base tables of databases. After

base tables in a database are created, views of the database cannot provide any more

infom1ation other than querying the base tables. It will be much more efficient if a master

database system can be constructed to handle all the needs; however, predicting such

Figure 7: Constructing a Higher Level Schema for Multiple Databases

21

Extending the instance-based data model: Semantics, performance and security considerations

needs is challenging. Some researchers have tried to solve this kind of problem. The idea

is to construct a single higher level schema to cover all the applications. Figure 7

demonstrates the basics behind this idea. However, such an approach will give rise to the

merging problem from the previous discussion. The problem also will grow if no shared

common schema of the multiple applications can be found.

2.2.3 Design Problem

In class·based data models, designers have to create a schema of a database in

advance and it will be rarely changed after the database is built. This places a heavy

burden on the designers and the process is time consuming. Designers have to discuss

with the users and make sure they have understood what the users' demands may be for

querying the database and what should be in the database. Therefore, it is difficult and

time·consuming to build a schema for a large database [I]. Scholars have tried to

simplify this step by building some standard schemas for similar applications and calling

these schemas the universal data model [48]. The idea of the universal data model is to

build standard schemas for people to reuse them. It may reduce some duplicated effects:

"Universal data models can substantially reduce the time to complete a corporate data

model, logical data model or data warehouse design. " [48] However, at least two

problems with the universal data model emerge: First, nearly infinite numbers of

potential applications exist for which people may need to query data. Using only a few

schemas to cover all these applications is impossible. Second, another problem is that

there is no method to evaluate whether the designed schema will be satisfactory or not

22

E1ttending the instance-based data model: Semantics, performance and security considerations

before the database is buill and used. So there is always the risk that such a database will

not satisfy all the users' demands.

2.2.4 User Problem

In the traditional (relational) model, data are stored in tables (classes) and users

have to follow the structure of the tables and their relationships (schema) to operate on

the database. However, especially in large, complex databases, users may not have much

knowledge about the database and/or may not be familiar with the schema of the

database. Graphic interfaces could be helpful, but such interfaces also limit users' access

based on the purposes of the interface [49].

2.2.5 Summary

The common problem of class-based data models is that they are specialized and

application-based, in which the data stored in databases are based on its application.

When a dmabase is built, database designers only design a schema that structures the data

to support the infonnation needs for a proposed applicmion. Since different information

is required for each different application, there will be problems when users try to

combine information coming from several different applications. Merging problems as

we have described above could occur.

23

Extendingthe instance·baseddatamodei:Semantics, performanceand securityconsiderations

2.2.6 Current Solutions

There are t\vo alternate solutions to the problem: one is that when one bui lds a

database, one designs a data model that will be suited for multiple applications. However,

although designers may have some idea about the proposed appl ications, they cannot

predict if and what kind of new applications could be applied in the future. So, unless

designers can build a universal data model which covers all the potential applications,

this solution is not pem1anent to solve the multiple-application problem. However, there

is no universal data model for class-based data models. Therefore, in a class-based data

model, it is impossible to design such a database that covers a lithe potential needs of the

users.

The second method is to build a new database whenever a different appl ication is

desired. Repeatedly constructing database systems will cause several problems, both

technical and non-technical. For example, it wi ll cause problems in maintenance of each

of the databases in the future (technical), and it will waste time and money to build

multiple databases (economical).

Since class-based data models have the problems above, researchers have

proposed other models to overcome the problems by using instances as a basic unit of a

database system. However, most proposed models are not efficient in class-related

queries. For example, the functional data model [50] [5 1], the logical data model [52], the

item-centric data model [53] and the attribute based data model [54] are inefficient when

queries refer to classes since they do not store any infonnation about classes.

24

Extending the Instance-based data model: Semantics, performance and security considerations

2.3 The Instance-Based Bata Model (IBDM)

The instance-based data model is based on the ontology of Bunge [31 [4] and

research on classification theory [2]. It does not rely on the concept of inherent

classification, which is fundamental to class-based models such as the relational and

object oriented models. This section wi ll review some of the important concepts of the

instance-based data model, based on Parsons and Wand [2].

2.3.1 Ontological Principles Used in the Instance-Based Data

Model

The instance-based data model is based on research in the field of cognitive

classification. It also depends on several ontology principles:

Principle 2.1: The world is made of things that possess properties.

An ontological principle connects the ex istence of a thing with its properties.

Principle 2.2: No two things can possess an identical set of properties.

Principle 2.3: Classes are abstractions created by humans in order to describe simi larities

among things.

Two conclusions can be derived from above principles [2]:

Implication 2.1: Recognizing the ex istence of things should precede classifying them.

25

Extending the instance-based data model: Semantics, performance and security considerations

Implication 2.2; There is no single "correct" set of classes to model a given domain of

instances and properties. The particular choice of classes depends on the application.

The instance-based data model also assumes an "open world";

Postulate 2. 1; Whether a property of a thing exists is not detem1ined by human's

recognition but by the thing itself.

When people refer to a property of things, there are two meanings: one is that it is

possessed by things; the other is people realize and define a property (or a set of

properties) of things. In Bunge's ontology [3] [4], we call th is property an attribute. We

will discuss this in more detail in Chapter 3.

2.3.2 Basic Concepts of the Instance-Based Data Model

The basic idea of the instance-based data model is to separate instances from

classes. To achieve this goal, the instance-based data model suggests a two-layered

approach using layers to store infonnation separately; the Instance Layer, which stores all

the information about instances, and the Class Layer, which only stores information about

classes (structured as in Figure 8).

The instance layer consists of instances and their properties. Properties may be

intrinsic (belonging to an instance) or mutual (shared by more than one instances, and

often represented by relationships or associations in traditional data modeling terms). An

instance in the Instance Layer can be represented as an instance-id followed by a set of

26

Extending the instance-based data model: Semantics, performance and security considerations

Instance 1 Instance 2 Instance 3

Pro~erty1 Pro~ertv2 Pro~ertv 1

Property n Propertym Property q

Instance Layer

Class 1 Class P

Class Layer

Figure 8: Two Layers in the lnstance·Based Data Model

27

Extending the instance-based data model: Semantics, performance and security ronsiderations

instance!

property l-ID
property 2-ID

property 3-ID
mutual ropcrtv l-ID

instance)

property l-ID
property 2-10

mutua\propeny\-10

Figure 9: Data Storage Methods for the Instance Layer

pairs of properties and values, i.e., lnstance-id {(property!, value I), (property2, value2),

... } . Figure 9 shows the structure of data in the Instance Layer. In Figure 9, there are two

possible structures in the Instance Layer: one is only to use the shaded part to store the

infonnation; the other is to use both parts (shaded and unshaded) to do so. A framework

for implementation and comparison of the two structures is discussed in [49]. From the

implementation and comparison we know that the second data structure (using the shaded

part) is suitable for small database systems, but the first data structure (both shaded and

unshaded parts) is suitable for general purposes. Query operations on the Instance Layer

consist of: (I) instances that exist and (2) properties of an instance (and their values).

Update operations on the Instance Layer include: (I) addition and deletion of instances,

(2) addition and deletion of properties of instances, and (3) update of values of properties.

The Class Layer consists of a collection of classes. A class is a set of instances

that share common properties [3]. In the instance-based data model, a class is defined as a

28

Extendingtheinstance-baseddatamodel:Sernantics,performanceandsecurityconslderatlons

set of properties. Any instance that possesses these properties belongs to this class. The

possible structures of the Class Layer are shown in Figure I 0. Two possible structures

exist. One is to use the shaded part only to store the information; the other is to use both

shaded and unshaded parts for storage. A detailed comparison of the two structures is

Class I

Propcrty\ _10

Property2_1D

Mutualpropcrtyl_ID

Instanccl_ID

lnstancc2_1D

Class2

Propcrtyl_ ID

PropertyJ_ID

Mutualpropertyi_ ID

lnstance i_ ID

lnstanceJ_ID

Figure I 0: Data Storage Methods for the Class Layer

discussed in [49]. From that comparison we know that the first one (using the shaded

part) is suitable for databases which have more update operations, but the second one

(using both shaded and unshaded parts) is suitable for query intensive applications.

Suggested query operations at the class level consist of: (I) classes that exist, (2)

properties that make up a class, and (3) instances that belong to a class (this query

associates the Class Layer with the Instance Layer). Update operations at the class level

include insertion and deletion of classes (modification of class definitions can be done by

a sequence of deletions and insenions).

The two-layered approach gives the instance-based data model two distinctive

characteristics. First, instances can be added and stored to a database directly, not as an

29

Extending the instance-based data model: Semantics, performance and security considerations

instance of some classes, even if they do not belong to a class, or altematively, they can

belong to many classes simultaneously. Second, changes can be made at the class level

without operations on the instance level.

2.4 Advantages of the !BDM

The instancc·based data model uses two layers to store classes and instances

separately. Since it supports the existence of instances in a database without classes and

class definitions only depend on the concepts (properties) in the database, the major

advantages in this model are:

(I) Designation of a schema prior to populating a database is unnecessary in the instance·

based data model. In the model, the schema can be defined according to the applications

so that it enhances system efficiency in query operations. In this model, a fixed schema is

unnecessary.

(2) In traditional database models, relationships are often described as links between

classes (e.g., foreign keys in the relational model). Relationships are only between classes

(and are part of the schema in the traditional database). Therefore, it is important to

analyze carefully the relationships between classes during database design in traditional

models. Therefore, it is arduous and laborious for the program designers to create all

relationships beforehand. However, the instance·based data model supports relationships

between individual instances. If an additional relationship is found or created between the

instances, simply adding a mutual property shared by these instances will store this

relationship and solve the problem.

30

Extending the instance-based data model: Semantics, performance and security considerations

(3) A database built using the IBDM can store properties about instances, regardless of

whether there is a class to hold the data, in contrast to the traditional model in which the

schema (e.g. , relations) determines what properties can be kept about instances (via the

attributes they possessed by virtue of their membership in classes).

(4) In the traditional database models, onl y one schema ex ists for one dataset (that is the

schema of the database). Some views can be defined for query convenience. However,

the views only support structure within the schema of a database; that is, a view on ly

supports one spec ific purpose within the more general database purpose. As shown in

Figure II (a), in the traditional database models, the schema o f database abstracts the

meaning of the database. A view can be and in most systems is a partial database schema.

It cannot contain informat ion that is not in the database schema. In contrast, in the

instance·based data model a data set has dynamic schema, as shown in Figure II (b),

D:o.t:o.b :u .. Scheon :o.

Tr:o..ndition:o.ld:o.ta •nodd n ... h qtan ce. b,....,d d>tt:O. rnodd

(a) (b)

Figure II : Differences between Views and Schemas

31

Extending the instance-based data model: Semantics, performance and security considerations

supporting different schema to meet different application needs. These schemas (views)

are completely distinct from the views in the traditional models. ln this model, there is no

need to design a global master schema to include other schemas (views).

2.5 Summary

The instance-based data model provides a new approach to the field of databases.

The model is guided by ontological principles recognizing that the world and instances

are extendable and independent of classes. Those distinctive aspects of the instance-based

data model make it an open-world system, compared to the traditional model that

imposes a closed-world system. Several advantages show that the model is more

appropriate for multiple applications in one single data set. In fact, some of the

applications might not have been anticipated when the database was constructed.

In this chapter we reviewed several class-based data models. We described the

common aspects of each model and pointed out the basic problem of the class-based

model. We then introduced the instance-based data modeL We introduced the principles

of the instance-based data model and its possible data structures. Finally, we compared

the instance-based data model with the class-based model and indicated the advantages of

the instance-based data model. Since the instance-based data model is developed based

on Bunge's ontology, to take advantage of this model, in the next chapter, we wi ll discuss

some related ontological issues to address these needs in the instance-based data model.

32

Extending the instance-based data model: Semantics, performance and security considerations

Chapter 3

Ontology Principles

The instance-based data model can resolve numerous problems that occur in

class-based data models due to the restriction that instances must belong to classes.

However, the model also faces technical challenges that are not addressed in the original

180M proposal [2}. Prior to studying appl ications of the instance-based data model, some

concepts and their operations under the model need to be described in detail. We do this

in this chapter. In the next chapter, we extend the semantics of the instance-based

components and implementation methods for data expressed in the instance-based data

model .

3. 1 Basic Ontological Principles

"Ontology is the study of being or existence and forms the basic subject mafler of

metaphysics, describing the basic categories and relationships of being or existence to

33

,--------------------------

Extending the instance-based data model: Semantics, performance and security considerations

define entities and types of emities within its framework" [3]. The ultimate objective of

ontology is to study the most general features of reality. In the field of information

analysis, ontology is used by philosophers and scientists working in artificial intelligence,

database theory, and natural language processing. In recent years, ontology has been

introduced to a variety of applications ranging from system design and analysis, to Web

services, to biomedical infom1atics, to the semantic Web. Ontology in these fields can be

categorized into such tools as conceptual analysis or as approaches to solve technical

problems [55] [!OJ. Our research focuses on the conceptual analysis category.

Wand and Weber first introduced Bunge's ontology [3] to the information system

field [14] [15] [1 6] [17] [18] [19]. They define a mapping from the ontological concepts

into modeling language constructs. They use ontology to analyze the meaning of

common conceptual modeling constructs and provide a precise definition of several

conceptual modeling constructs. Their research makes building a conceptual model closer

to reality. Parsons and Wand developed several information models [2] [57] based on

Bunge's ontology to solve problems in current models.

3.2 Things

In Bunge's ontology, the world consists of two types of things, concrete and

conceptual. Concrete things are substantial individuals or entities. A concrete thing must

exist in the real world. However, conceptual things are concepts that people use to

describe the real world. They only exist in the human mind.

34

E)(tending the instance-based data model: Semantics, performance and security considerations

A thing can be simple or composite. An individual is composite if and only if it is

composed of individuals other than itself and the null individual. Otherwise, the

individual is simple. Simple things are basic objects that cannot be subdivided into other

objects. A thing can be either a concrete or a conceptual thing. For example, a person is a

concrete thing. A fami ly, however, can be considered as a composite of persons.

Things can only be described by properties. If we define all unarized properties

possessed by a single instance (we discuss this in more detail in the next section) as P and

all substantial individuals as S, then the totality of unarized properties of a substantial

individual xeS is called

p(x)~(Pe P lx possesses P)

Using the above notation, Bunge defines a thing as follows:

Definition I Let xeS be a substantial individual. Then the thing X is the individual

together with its unarized properties:

X ~ <x, p(x)>.

The definition of thing indicates that a thing should be described by two parts: an

individual and a set of properties that the individual possesses. The first part indicates the

thing itself and the second part describes the characteristics of the thing. In the absence of

either part, the definition of things wi ll be meaningless. This definition closely resembles

the logic that people use to describe things in real life. In Figure 12, imagine several

bowls on a shelf. If a person is referring to the bowl that is depicted with an arrow in

Figure 12, how does this person let others know which bowl he/she is referring to? This

35

Extending the Instance-based data model: Semantics, performance and security considerations

person might designate the bowl as " that center large bowl". In that phrase, ' that .

bowl' indicates the bowl itself and 'center large' describes the characteristics of this

bowl. However, neither "that bowl" nor "center large" is sufficient to designate the

bowl.

oo
CboO

! 0

Figure 12: How People Refer to Things

Bunge posits that individuals have at least one unique property.

Postulate 3.1 No two substantial individuals have exactly the same properties. That is:

for all x,y e S, if x 1 y thenp{x) 1 p(y).

Postulate 3.1 points out that two different substantial individuals must have two different

sets of properties. An immediate consequence of this is:

Corollary 3.1 For all x,y eS, ifp(x) = p(y) then x = y.

Here, Corollary 3. 1 indicates if two substantial individuals have exactly the same

properties, then they themselves are the same one. Following Postulate 3. 1 and Corollary

3.1, Bunge concludes as follows:

36

Extending the Instance-based data model: Semantics, performance and security considerations

Corollary 3.2 Everything is identical to itself.

3.3 Properties and Attributes

3.3.1 Properties

Properties can only be possessed by things. The existence of properties depends

on things. There are hvo types of properties: intrinsic (unary) properties and mutual (n

nary) properties. An intrinsic property only describes the characteristics of a single thing,

whereas a mutual property refers to the characteristics of more than one thing. For

example, the hair color of a person is an intrinsic property, but marriage is a mutual

property since it is referring to a relationship between more than one individual.

Bunge's ontology categorizes properties into general properties and specific

properties. lnfonnally, a general property represents a common aspect of a set of

individuals, but a specific property only represents an aspect of an individual. An

intrinsic property may be a general property or a specific property. Whether an intrinsic

property is a general or a specific property is not decided by the concept of the property

but by the instances that possess it. Bunge defines two kinds of properties:

Definition 3.2 Let T ~ S be a nonempty set of substantial individuals and P the set of

unarized substamial properties. Then

(i) the set of unarized properties of individual x E T is called

p{x) = {P e P Ix possesses P)

37

Extending the instance-based data model: Semantics, performance and security considerations

(ii) the set ofunarized substantial properties ofT is called

p(T) = {P E r I Forallxe T, xpossesses p }.

As described above, in most cases, an intrinsic property possessed by a set of

individual instances should be a general property; an intrinsic property possessed only by

a single instance should be a specific property. However, this is not always true. An

intrinsic property possessed by a set of individual instances may be a specific property.

For example, people with black hair is a set of individuals. However, the property they

possessed, with black hair, can be considered a specific property. Bunge's ontology

considers general and specific property as follows:

Poswlate 3.2 Let S be the set of substantial individuals or some subset thereof, and letT

to Z be arbitrary noncmpty sets, equal to or different from S. Then:

Any substantial property in general is representable as a predicate of the

fonn

A: S x T x .. x Z;

2. Any individual substantial property, or property of a particular substantial

individual s e S, is representable as the value of an attribute at s, i.e. as

A(s, t, ... , z), where t e T, ... , z e Z.

That is, the postulate represents general properties as domains (each as a set of all

possible values of an independent variable of a function) and specific properties as values

of general properties, which resembles the representations in the class-based data models.

Properties may be compatible or incompatible with each other.

38

Extending the instance·based data model: Semantics, performance and security considerations

Definition 3.3 Two properties P1 and P2 are incompatible over a set T ~ S of substantial

individuals if and only if possessing one of them precludes having the other. They arc

mutually compatible overT if and only if they are not incompatible overT.

A property may be preceded by another property.

Definition 3.4 Let P1 and P2 designate two properties. P1 will be said to precede P2 if and

only if every thing possessing P2 also possesses P1.

3.3.2 Attributes

Everything has properties. However, not every property of a substantial individual

is human-recognizable; some of them can be ignored. Human-recognized properties are

called attributes. An attribute is a representation of a property or a set of properties.

Properties are characteristics of things themselves. However, attributes are characteristics

assigned to models of things according to human perceptions.

Humans can only recognize properties by attributes. By this definition, all

properties possessed by a conceptual thing are attributes. Properties possessed by a

concrete thing may not be attributes.

Bunge's ontology fom1alizes the representation of properties as follows:

39

Extendingthe instance-baseddatamodei:Semantics,performance and securityconsiderations

Postulate 3.3 Let P be the set of all properties and A the set of all attributes. The

representation of properties by attributes is via a funct ion p: P ---+ 2A such that for each P

e P, p(P) is a set of attributes Ae2" such that for any a e A, a represents P.

Note that the postulate also indicates that different attributes may represent the same

property.

3.4 Relations Between Instances

Several association theories have been proposed to distinguish relations between

individuals. Bunge's ontology defines associations by adapting the semi-group theory

and assembly.

The term semi-group was defined by Ljapin [58]. A semi-group (monoid) is a

structure <S, 0 >, where S is a nonempty arbitrary set and 0 a binary operation in S. A

fin ite semi-group, <S, 0 >, means only a finite number of clements is in the setS. Bunge's

ontology assumes that 0 operation is commutative (which means: if x, y e S, then x 0 y =

y 0 x) and idempotent (which means: for all x e S, x 0 x = x).

Bunge assumes that the set of individuals is a commutative monoid of

idempotents and it is suitable to all real things.

Postulate 3.4 Let S be a non-empty set, 0 a selected element of S, and 0 a binary

operation in S. Then the structure (/) = <S, 0 , D> satisfies the following conditions:

(i) (/) is a commutative monoid of idempotents;

40

Extending the instance-based data model: Semantics, performance and security considerations

(ii) S is the set of all substantial or null individuals;

(iii) The neutral e lement 0 is the null individual;

(iv) 0 represents the association of individuals;

(v) the string a1° a2 ° .. . 0 an, where a; e S for I~ i ~ n, represents the

individual composed of the individuals a 1 to an.

By Bunge's ontology, individuals can associate to form further individuals. That

is: if x, y e S, then there is always a z e S which makes z = x 0 y . So, an individual may

be composite.

Definition 3.5 An individual is composite if and only if it is composed of individuals

other than itself and the null individual. Otherwise, the individual is simple.

Definition 3.6 If x andy are substantial individuals, then xis part of y if and only if x 0 y

= y. We use a symbol x C y to express this relation.

The symbol C indicates the relation, which is what we called the part-whole

relation. The part-whole relation follows the rules:

(i) for all x e S, C is reflexive. That is x C x ;

(ii) for al l x,y e S, C is asymmetric. That is ifx -:1: y then x C y =::) -.(y C x);

(iii) for all x,y, z e S, C is transitive. That is ifx c y &y c z then x c z.

Following the part-whole relation we can fomully define the simple things as:

41

Extending the instance-based data model: Semantics, performance and security considerations

Dejinilion 3. 7 For any x e S: x is simple if and only if for all x e S, y C x => y = x or y =

D.

A thing may be composed of many components. The composition of a composite

thing is defined as:

Definition 3.8 The composition of a composite equals the set of its parts. That is if~: S

- 2s is a function from individuals into sets of individuals, and if for any x e S there is

~(x)={ye Si y C x }, then ~(x) is called the composition of x.

A composite thing may possess two types of properties: one is the properties

possessed by its components. Bunge designates these properties as hereditary properties.

And the other is the properties that describe the whole composite thing itself. Bunge

designates the second type as emergent properties. Of course, some composite things may

not have any hereditary property. However, any composite thing must have at lease one

emergent property. In fact, the ontology also assumes that the set of properties of a

composite thing is not equal to that of all the properties of its components. That is: for all

x,y, z e S, ifz is composed by x andy then p(z) :f:. p(x) u p(y).

3.5 Class and Kind

3.5.1 Class

To define a class, we need to first introduce the concept of scope.

42

Extending the instance·based data model: Semantics, performance and security considerations

Definition 3.9 The scope of a property, P, is the set of things possessing it. That is, the

scope is a function (jJ: P ~ 2s such that for P e P, lf(P) is the set of a ll individuals

having property P.

After introducing scope, Bunge defines a class as follows:

Definition 3.10 A non-empty subset X of the set of things, S, is called a class if and only

if there is a property P e P such that X = tAP) .

Postulate 3.5 The intersection of any two classes of things, if non-empty, is a class.

Since a class is a scope function t;l(P), or a set of things that possess the same

property (property P) in their property set, Postulate 5 indicates that for any two

compatible properties P, Q e P there is at least a third property R e P such that tAR) =

~P)n ~Q).

3.5.2 Kind

A single property determines a class. A set of properties will determine a kind.

The members of a kind a re all the things that share all the properties in the given set. For

example if three classes, CJ, C2, and C3, have the intersection, K, then K represents a

kind (this relation is illustrated in Figure 13).

Definition 11 Let k: 2r ~ 2s be the function assigning to each nonempty set R e 2r of

substantial properties the set, k(R) = n t;l(P), of things sharing the properties in R. This

value k(R) is called the R-kind of things.

43

Extending the Jnstance·based data model: Semantics, performance and security considerations

Figure 13: Class and Kind

Note that since R is finite, the corresponding R-kind is a class.

3.6 Summary

In this chapter, we introduced several onlOiogical concepts related to the instance-

based data model. These ontology concepts form the basis for the instance-based data

model. ln the next chapter we will discuss several semantic extensions of the instance-

based data model based on the concepts outlined in this chapter.

44

Extending the instance-based data model: Semantics, performance and security considerations

Chapter 4

The Semantic Extension of the Instance
Based Data Model

In the last chapter we introduced several ontological concepts related to the

instance based data model. ln this chapter, we discuss underlying principles of the

instance-based data model and their semantic extensions: the semantics of the instance

identifier and the proposal of a possible implementation approach; detai led explanations

of properties and their relationship; and the definition of classes. We also consider how 10

represent the real world using the instance-based data model. The research indicates types

of relationships between instances in the instance-based data model. Finally, we present

several integrity rules for the instance-based data model to assist future investigation.

45

Extending the instance·based data model: Semantics, performance and security considerations

4.1 Instance Identifier

In Bunge's ontology, an instance possesses properties and people recognize a

thing by recognizing its properties. Based on this recognition, Bunge identifies an

instance as fo llows:

If x e S is a substantial individual and p(x) 1:: P the collection of its properties, the

individual together with its properties is called the thing X: X=ctr<X, p{x)> [3].

Following Bunge's definition, in the previous chapter we have described an

instance in an instance-based data model consisting of two parts, an instance identifier

followed by a set of properties. However, an instance identifier was only referred to but

neither the definition nor the implementation method was described in detail. Since the

instance identifier is an important part of an instance, in the next section, we wi ll examine

instance identifiers to a greater extent.

4.1.1 Semantics of instance identifiers

People recognize a thing by its properties; and from the definition of instances, an

instance cannot be equal to a set of properties.

An instance identifier has to be outside of the set of the properties of a thing and

should not be any human-recognized property (or properties) of the instance, otherwise it

would not be consistent with the definition of instances. In fact, an instance identifier is

not a property of any thing that occurs naturally, which means instance identifiers do not

46

Extending the instance-based data model: Semantics, performance and security considerations

belong to things themselves, but rather they are the notation that people use to distinguish

one instance from another.

Bunge's ontology postulates that 'No two substantial individuals have exactly the

same properties'. That is: 't/x, ye S, ifx #- y then p{x) #- p(y). On the other hand, 't/x, y

e S, ifp(x) = p(y), then x = y. The ontology also posn•lates that the totality of things is an

uncountable set.

Following the above postulates, the semantics of an instance identifier, which

people use to distinguish a substantial individual from others, should represent all

properties of an instance. One should note that the total number of properties of an

instance may be very large [3], whereas the number of properties people recognize and

represent via attributes is limited and always less than the total number of properties that

the instance possesses.

The expression of an instance in the ontology can be considered a represent

describe model: that is, the instance identifier represents an instance while a set of

properties describes the instance.

ln the instance-based data model, an instance is an instance identifier followed by

a set of properties. In this expression, the instance identifier and the properties describe

two different concepts; on one hand, the instance identifier represents the summary of

aspects of all properties of the thing and these aspects are only detem1ined by the thing.

But on the other hand, the properties are those that humans use to describe the

represented particular thing in greater detail. Those properties are the properties of the

thing recognized by people but not the actual total number of properties of the thing. That

47

Extending the instance-based data model: Semantics, performance and security considerations

is, when we describe an instance, instance_id{P1, P2, ••• , Pn} in the instance-based data

model, it does not mean that instance_id""{P1, P2, ... , Pn}- Therefore, when people begin

to recognize more properties of the thing, the attributes increase, approaching the total

number of properties of the thing, whereas the instance identifier, the representative of

the thing itself, remains unchanged.

In summary, the instance identifier is a unique representation of a thing. Humans

use the representation to indicate a thing. It represents the summary of all the properties

of the thing. Since only the intrinsic properties are possessed by individual instances, an

instance identifier should represent all intrinsic properties of the instance. Ideally, an

instance identifier represents a globally recognized unique property of an instance, which

can be used to distinguish the instance from others. For example, a human being has one

unique brain; no one has the same brain as any other. This representation can be shown as

following:

An Instance Identifier

, .. /.//./
~"'""""

An instance

,,:
{A globally recognized unique property _.c:P'-"""'''"';""-' - •• Properties}

Figure 14: An Instance Identifier Represents a Globally Recognized Unique

Property

48

Extending the instance-based data model: Semantics, performance and security considerations

4.1.2 Creating an Instance Identifier

In class-based data models, the most obvious way to create an unambiguous

identifier for every distinct object is to count the objects and assign each object a value.

For example, in the relational model, if there is no natural candidate attribute{s) for a key,

the database system will alternatively create an identification field and use an ordered

number for each record.

In the class-based approach, the number indicates there is a difference but such

difference is ambiguous. Whereas the syntactic difference that each record is different

from the others is achieved, the semantic difference (how each one is different from the

others) is not achieved.

Currently, numerical values are widely used in software design and other industry

fie lds to distinguish instances from each other. For example, manufacturers of

automobi les assign a unique serial number on each car they produce. This number works

as a real world identifier. Whenever a car is built, this serial number will be attached to

the car and will not change. This number also is location insensitive; that is, the serial

number remains unchanged wherever this automobi le goes. This kind of system involves

some aspects of a real instance identifier. It may be different from other approaches, like

URLs [63], which are location sensitive. For example, the same website stored on

different servers wi ll have different URLs.

However, as noted in [64], to create a unique namespace to define instance

identifiers has proven to be difficult, historically. The problem stems "from a confusion

49

Extendingtheinsrance·baseddaramodei: Semantics,performance andsecurityconsiderations

between the abstract idea of a global namespace, and the physical devices that have been

created over the years to operate in this namespace."[64]

It is possible, in theory, to create a global namespace using a combination of local

uniqueness and a tree of identities, like the long distance telephone system, so that any

user who understands the path down through the tree could understand the identity of the

infonnation objects at the leaves of the tree. This approach is as shown in Figure 15.

There are three steps to generate a system:

I. Each instance gets a locally unique identifier from a local system.

2. Several local systems combine together to fonn a higher level system (level I).

3. When there are more than one intermediate level systems in the same level,

they are combined together to fonn a higher level system until there is only one

highest level system (the root level).

Figure 15: Implementation System of Instance Identifiers

50

Extendfngthefnstance-baseddatamodel:Semantics,performanceandsecurftyconsfderatfons

An instance identifier system is generated from the lowest level to the top level.

After the system is built, an instance can be identified from the top level down to the leaf

level, as indicated by the dash arrows. Our approach is also call ed a hierarchical

approach.

4.2 Properties and Their Relationships

People recognize a thing by recognizing its properties. Properties always be long

to instances. However, as Bunge's ontology indicates, attributes of things are only the

aspects of things that humans recognize. So, to describe real world things, we have to

define what an attribute is and to find relationships between them.

Corollary 4. 1 Attributes are concepts that humans use to describe the real world things.

ln Bunge's ontology, human recognized properti es are called attributes. However,

to be consistent with the previous papers of the instance-based data model [2], we sti ll

use the name 'property' not 'attribute' for these type of properties. In the following,

unless otherwise specified, the tem1 property wi ll imply attributes. In contrast, we use

'real property' to indicate properties possessed by things.

Technically, a property is a concept possessed by instances and recognized by

people. However, as suggested in the previous section, a real property of things may be

represented by a set of properti es and several properties may represent the same real

property.

51

Extending the Instance-based data model: Semantics, performance and security considerations

Previously, two types of properties, general property and specific property, were

distinguished. A general property represents a domain which may be shared by a set of

individuals, while a specific property represents one fundamental aspect of an individual,

i.e. the aspect cannot be further divided. A property can be either general or specific.

However, it is difficult to define general and specific properties in tenn of words instead

of mathematical expressions. In class-based models, general properties are interpreted as

attributes of classes, which describe entity types, and specific properties are interpreted as

values of general properties. For example, weight may only be manifested as a numerical

value in the unit of pounds. Consider the specific property (weight, 150lb), or 150 pounds

in weight. Here, the property weight is a general property whereas 150\b is a specific

property and it can be considered as a value of the property weight. Any further

specialization of 1501b in such systems is impossible. Following the above logic, the

property (weight, \50lb) is a specific property as well, as further specialization is not

pennissible in this property.

A class may not be solely based on general properties. In Bunge's ontology, a class

is a set of individuals that share the same set of properties, which is in the class

definition. The shared properties can be either general properties or specific properties.

However, in class-based models we have to generate attributes to describe properties of

the class and assign values to each individual in the class. In this case, a class definition

can only be on general properties. Returning to the weight example, if we need to define

a class that includes everything that has the weight of 150lb, we have to use the property

(weight, 1501b) which is a specific property as discussed above. However, a general

52

Extending the lnstance·based data model: Semantics, performance and security considerations

property is required for class definition, but any further specialization is not permissible

for specific properties. The simplest way to resolve the situation would be to introduce

another specific value for each individual instance, so that the property, (weight, 1501b),

can be used to generate the specific values. For the above weight problem, the class

definition could be ((weight, 150lb)) but any instance that possesses this property will be

denoted as ((weight, 150lb), true). Of course, this approach is both redundant and

increases the required space. Parsons and Wand introduced two-layered approach to solve

the problem [2]. In their approach a class definition can use both general properties and

specific properties.

Instead of general and specific relationships, the very simple relationships of

properties in the class-based models, we define two types of relationships between

properties in the instance-based data model. We call them compatible-related and non

compatible-related relationships between properties.

Compatible-related relationships depend on human recognition of properties.

They describe how the relationships between the concepts of properties are related. Three

types of compatible-related relationships ex ist between properties: belongs, joint, and

discrete. If the set of concepts of one property is a subset of concepts of another property,

then we say the first property belongs to the second property. The belongs relationship

between properties may have hierarchical structures. For example, if there arc two

properties, weight and weight is 150/b, then these two properties have a belongs

relationship. They also have the hierarchical structure of concepts. If the concepts of two

properties have an intersection, the two properties are called joint properties.

53

Extend!ngthe!nstance-based datamodel:Semantics,performanceandsecurityconsiderations

Subsequently, if the concepts of two properties do not have any intersection, they are

called discrete properties. In our research, we will largely deal with properties that either

have the belongs relationship or have the discrete relationship. If there is a j oint

relationship between two properties in a system, we will translate them into discrete

properties. The translation is based on Bunge's ontological assumption that for any nvo

compatible properties P, Q e P there is at least a third property R e P such that

q.:(R)=q:(P) ri q:(Q). The steps of translation are shown in Figure 16. The concepts of

property P1 and P2 have an intersection. A new property, P3, manifests the joint part and

we redefine the rest of P1 and P2 as P1' and P2'. After the translation, the three properties,

P1 ', P2 ', and P3, are discrete properties.

In traditional class-based models, the relationships of properties are expressed

between classes. After the schema is defined, relationships between properties are fixed,

which means only compatible-related relationships are between them.

The non-compatible relationship bet\veen properties was first introduced in the

IBDM. To bring more clarity into explaining these kinds of relationships, the IBDM used

Bunge's ontological concept of scope.

Figure 16: Transforming Joint Properties to Discrete Properties

54

Extending the Instance-based data model: Semantics, performance and security considerations

In the IBDM, an instance may gain or lose properties. This enables dynamic

modification of the scope of a property P, the set of instances which possess the property

P.

Now, we introduce two non·compatible relationships between properties,

preceding and preceded [57].

Let ~(P) denote the power set of P. Then we have:

Definition 4.1: The preceding properties of P in P are defined by the function Preceding:

r~ s(P), such that Preceding(P)~(Qe PIScope(Q) ;;,Scope(P)).

Definition 4.2: The preceded properties of a property P are all properties for which P is a

preceding property. That is, the function Preceded: P-+~(P) such that

Preccdcd(P)~(Qe PIScope(P) ;;,Scope(Q)).

Definition 4.1 indicates that a set of instances possessing property P may possess

other properties, Qe P, such that {Qe P[Scope(Q) ~Scope(P)}. Conversely, the preceded

properties of a property P are those properties such that an instance possessing any of

those properties must possess P. Note that whether one property precedes other properties

or is preceded by other properties is based on which instances possess the properties. It

does not matter whether these properties are in the same domain or not. So, we name

them non·compatible relationships. Since an instance may gain or lose properties in the

IBDM, the above hvo operations, Preceding(P) and Preceded(P), will generate outputs

55

Extendingtheinstance-baseddata model:Semantics,performanceandsecurityconsiderations

that will dynamica lly reflect the semantics, which instances possess P also possess some

other properties (Preced ing(P)) or instances possess other property also possess P.

Several technologies, such as data mining [65] and data warehousing [66] in

particular, have been suggested recently in attempt to ana lyze a dynamic relat ionship

between properties. Those technologies analyze attributes of instances to get related

results. For example, a class ic AI problem is market analysis: Who is most likely to buy a

computer? A student, a young man with great cred it, or a middle-aged white-collar man

[67]? To tackle this kind of problem, numerous learning methods such as supervised

learn ing [68] and non-supervised learning [69] have been suggested. By ana lyzing one

set of values of an attribute (or a set of attributes) with values of other attributes, those

approaches try to get useful infonnation from data. However, in the class-based models,

the stati stical analys is is done on values of instances. The values are based on the schema

of classes to wh ich the instances belong. We believe that this severely limits the analys is

capability in class-based models, and by using preceding and preceded relati onsh ips, the

IBDM generates more useful infonnation between properties.

4.3 Relationships Between Instances

In the relational data model, a relationship is defined between entity types. This is

why sometimes designers find it difficult to define relationsh ips in this mode l. It has

always been a great confusion to designers whet her a relationship is binary, ternary or

even more complex [I]. However, expressing relationships in the instance-based data

56

Extending the lnstance·based data model: Semantics, performance and security considerations

13

11

10

Figure 17: Representing the World at the Instance Level

LE'\'E'I J

Ltwl 1

L t \ 't l l

L tHI 0

model is relatively simple. We need only use the binary relationship to represent all

relationships in a system.

Bunge's ontology assumes that "1he world is formed of 1hings and relarionships

beflveen rhem, and only binary relationship exists between things" [3}. It also indicates

that ''one thing associating with another thing will form a new thing (conceptual thing)"

[3]. Database systems also assume that things associated with each other do not erase any

intrinsic properties of things themselves. Following the assumptions above, we express

the world of things in two parts: things and associations between things. According to

Bunge, an association between basic things fonns a higher level conceptual thing. Each

level of things stores its own information in its level. So, the whole world in the instance

based data model is modeled as a binary tree structure, as shown in Figure 17. All the

basic things are on the bottom level (leaf nodes). All the internal nodes are concepts

abstracted from the basic things. Finally, the root is the model of the real world. Our

approach to abstract concepts of things is only to store binary relationships of the lower

57

Extendlngtheinstance-based datamodel:Semantlcs,performanceandsecurityconslderations

level th ings into hi gher levels. Higher level re lationships can be formed between things in

multipl e levels. For example, between the neighboring levels in level I, thing 10 is

abstracted from two lower leve l things 5 and 6. However, in leve l 2, thing 12 is fanned

by thin g 10 and thing 7. So, thing 12, in level2, is actuall y fo rmed by three things, 5, 6,

and 7, in leve l 0; that is, a ternary relationship forms between leve l 0 and level 2.

A system may not store all internal nodes . For example, it might fonn the tree

structure shown in Figure 18. A simple comparison with Figure 17 reveals that two

interna l things, things 8 and 10, are missing. A miss ing internal thing (e.g. thing 10)

means the system does not conta in any information relating onl y thing 5 and thing 6

(from which thing I 0 is abstracted) . However, for the implementation, when more than

two things fonn a higher level thing, it is also safe to assume an abstract thing ex ists

between two things in lower level so that we can always express the fanned thing

between two things as we showed in Figure 17.

13

Figure 18: Data Representati on at the Instance Leve l

58

Len12

Ltnll

L tnl 0

Extendingtheinstance-baseddatamodel:Semantics,performanceandsecurityconsiderations

A family The third level

The second level
I

/"\
A young man A young woman A girl The fi rst level

Figure 19: Three-level Structure of a Family

/'\
The second level

A young man A y ung woman A girl The first level

Figure 20: Two-level Structure of a Family

We have an example to illustrate the tree structure formed in the instance level as

follows:

Assume there are three instances: a young man, a young woman, and a girl. The

man and the woman are married and the girl is their child. We could express the

relationship between these instances in three levels as Figure 19. That is, in the bottom

59

Extending the Instance-based data model: Semantics, performance and security considerations

level, we have three instances: a young man, a young woman, and a girl. In the second

level we have an instance: the young man and the woman married fanning a couple. ln

the top level we have an instance: the couple and the child fonn a family. Of course,

sometimes the middle relationship is missed. In our case, three instances may have

relationships in two levels as shown in Figure 20: at the bottom level there arc three

instances: a young man, a young woman, and a girl; at the top level they fonn a family.

After defining relationships between instances, the relationship between two

individual instances is represented in the highest level thing of the path connecting the

two instances. We refer to this thing as the view-relationship of the individuals. In a

database, all the internal nodes represent view-relationships of individuals. The difference

between the levels of the individuals and their view-relationship represents how closely

the individuals are related. A lower number means they are closely related to each other.

A higher number means their relationship is more distant.

4.4 Class Identifier

In the instance-based data model, we state that a class is a class identifier

followed by a set of properties. The semantics of the class identifier is different from the

instance identifier. An instance identifier is a representation of an abstraction of all the

(possibly very large number of) properties of the instance itself whether or not they have

been recognized by people. Thus, the semantics of an instance identifier docs not equal to

the properties that have been recognized by people. In contrast, by Bunge's ontology, a

class is a set of instances which possess a common set of properties. A class identifier is a

60

Extending the instance-based data model: Semantics, performance and security considerations

label that people use to indicate common finite properties recognized by people and

shared by a set of instances. So, the semantics of a class identifier is equal to its

definition, which is a set of common properties recognized by people.

Since a class identifier only expresses a finite set of properties recognized by

humans, its implementation is much easier than the implementation of an instance

identifier. To do this, we need first somehow to map the class identifier to its definition.

This mapping should be onto, but is not necessarily one to one. Here, onto means a class

identifier must map to a set of properties. However, in some cases, it is possible that

several class identifiers map to the same set of properties.

4.5 Representing Data Semantics to Support Queries

ln class-based models, the semantics of data is represented by the schema

defining classes to which instances belong. One schema and its bounded data can only

express one level of semantics. The models have no way to answer queries in different

semantic levels. For example, if a system stores some information about persons and

there is a field to express how tall this person is in centimeters, even a simple query

' identify the tall person' cannot be answered automatically. The system docs not have the

ability to transfonn the semantics of tali into centimeters. In the instance-based data

model, properties can be preceded by a set of other properties. Back to the above

question, in the instance-based data model, we can define a property as tall, which can be

preceded by any one whose height is more than 180 em. So, for the query 'tall person',

any one who is higher than 180 em will be in the results set. A property also can precede

6\

Extending the instance-based data model: Semantics, performance and security considerations

other properties [57]. Using this method, a class can be defined as merely one property

that precedes a set of properties, which are common properties of the instances in the

class. Reducing properties in a class definition will speed up querying and updating the

members of the class. For example, if a class can be defined using only one property in

the instance-based data model, the speed to query the membership of the class in this

model will be as fast as the relational data model [70].

4.6 Integrity Rules

As we have discussed, the instance-based data model separates instances from

classes and stores infonnation about instances and classes in two layers, the instance

layer and the class layer. To guarantee the consistency of data in databases, we have to

build rules for the model. There are four integrity rules: three for components of the

instance-layer and one for classes in the class-layer.

Rule 4.1 (Instance integrity) An instance i can be inserted into an instance-based database

if and only if no identical instance j exists in the database. This rule can be formally

expressed as:

For all Pke P, k e (N is a natural number), and i,j e I, if i possesses P., andj

possesses P., are always true, then i = j.

Rule 4.1 guarantees that no duplicated object(s) exists in a database. It matches

the semantics of the instance identifier. Since an instance identifier includes all the

features of the instance and no instance should have completely the same features as

62

Extending the instance·based data model: Semantics, performance and security considerations

other instances in the real world, rule 4.1 assumes uniqueness of the identification of each

instance.

Rule 4.2 (Property Integrity) : The instance i{Pp I Pp e P}satisfies property integrity if and

onlyiffor anyPpE i,andPqE i,p :/= q, then Ppn Pq=$.

Rule 4.2 states that a property Pp of an instance i cannot be in a database if it

already has property P P• or the instance i possesses other properties which is a compatible

property ofPw

Rule 4.3 (Association integrity) An association (a murual property), mp, of two instances,

i{Ppi PPe P}and i'{Pp·I Pp·E P},exists ifandonly if:

(a) i and i ' exist in database

(b) No another mutual property, mp', between i and i' exists such that mp n mp'

Rule 4.3(b) follows the property integrity rule. We assume that associations

between things fonn conceptual things in a higher level. Properties of higher level

conceptual things should have the same constraints compared to basic things. Rule 4 .3(a)

means associations can be formed between things only if the things exist in the database.

The meaning of this rule is similar to the requirement of referential integrity in the

relational model.

Rule 4.4 (Class Integrity Rule): A class C{P111 Pp e P}satisfies class integrity if and only

if the following expressions are always true:

63

Extending the instance-based data model: Semantics, performance and securily considerations

a. For any property Ppe C, Scope(P11)if;$

b. ForanypropertiesP11 e C,and P11 e C,pif;q, then Pp n Pq = $.

c. If {Ptlk= l , ... n} is a subset of properties which define class C, then

Scope(P,J r. Scope(P2) r. ... r. Scope(P") * $.

In the instance·based data model, the basic information is stored in the instance

layer. The class layer is generated from the instance layer. Rule 4.4(a) guarantees that

only properties possessed by some instances can be used to define classes. Rule 4.4(b) is

similar to Rule 4.2 (property integrity) in the instance layer. Rule 4.4(c) guarantees that

any defined class must have some instances belonging to it.

4.7 Summary

In this chapter, we discussed several semantic extensions of the instance·based

data model and the recognition concepts based on the instance·based data model. The

semantic extension of the components of the instance-based data model clarifies the

definition of the model and the implementation of the components simplifies the

applications to real database systems. We also discussed re lationships between instances

in the instance-based data model and expressed these relationships in a balanced tree. The

discussion provides a clear approach to build relationship between instances as well as a

means to define how an instance is closely re lated to others by using the tree. Hopefully,

this will provide some insights on how to query data efficiently in the instance·based data

64

Extendingtheinstance·baseddatamodel:Semantics,performanceandsecurityconsideratlons

model. In the final secti on, we presented several integrity rules for the instance-based

data model that reduce the redundant data and make the data more consisten t.

65

-----~--~-

Extending the instance-based data model: Semantics, petiormance and security considerations

Chapter 5

Query Performance in the IBDM

We have discussed in the previous chapters how different data models are suited

for different applications and how, unfortunately, no data model is best suited for a ll

applications. For example, a query using the hierarchical data model is genera lly faster

than one using the relational model; however, the flexibility in the former model is

considerably less than in the latter. The 180M provides much additional flexibility to

users relative to previous relational data model, but what is its efficiency compared with

the class-based models? In this chapter, we investigate the query ability of the IBDM

compared to the re lational model. The comparison consists of two parts: the first is a

theoretical comparison and the second is testing on sample data. The comparison will

suggest some suitable application areas of the IBDM.

66

Extendingtheinstance-baseddatamodei: Semantics,performance andsecurityconsiderations

5.1 Introduction

Currently, SQL or SQL-like query languages are widely used to manage

databases. When we query a database using SQL, we always need a Select clause, which

is equivalent to a relational algebra project operation, to indicate what attributes we need

to appear in the result set. The results of an SQL query will be a new temporary table that

includes all attributes in the Select section. So, in an SQL query a user is looking for a set

of attribute values that satisfy certain conditions or restrictions (specified in the Where

clause). However, in relational database systems a record is stored together as a tuple.

Whether a user queries only one attribute or all the attributes of a tuple, the system needs

to access the whole tuple (that is, all the attributes of the table). This is a time-consuming

process, especially when a table is so large that it cannot be fully loaded into the memory.

Using indexes may speed up some query processing. When attributes arc indexed,

queries on these attributes only need to search a part of the records to get results.

However, indexes are not an original technology of the relational model; they are

structures stored in a database to increase the performance of certain queries (7 1].

Indexes also have the drawback that they reduce the perfonnance of updates, as the

indexes themselves also need to be updated. So, when using indexes in a rela1ional

database there are always some questions. For example, how many indexes are needed?

Which attributes should be indexed? Meanwhi le, when a query predicate is not very

selective, an index would not be useful and the entire relation would be scanned. In this

case, the relational data model will have poor perfom1ance.

67

Extending the instance-based data model: Semantics, performance and security considerations

Recently, Cwstore [72] has provided a method called "columnwstores" to increase

performance on analytical workloads such as those found in data warehouses, decision

support, and business intelligence applications in the relational model. The idea of

"column·stores" is to store records in the column format instead of the row format of the

relational data model so that the method wi ll provide more efficient performance on some

queries. However, as a method, "columnwstores" lacks semantics of several operations.

For example, what is a record 10? I-I ow is it generated? The method also has a drawback

for mapping a record to its logical schema.

Compared to the relational model, the instancewbased data model provides a new

way to access a portion of the attribute values of a class (i.e., a table in the relational

model) to answer a query. In the following section, we compare the differences between

methods of relational queries and the instance·based queries for two basic SQL queries:

select and project query, and join query.

5.2 Environment of the Comparison

We begin by defining an environment that is convenient for our comparison. In a

real database system, data types of attributes arc not the same. Currently, commercial

databases support various data types which we may use for storing infonnation. In most

cases, the number of bits required to store a value of an attribute in a table is much larger

than an instance identifier, which is a numeric type. For example, a company database as

shown Figure 2 1 in Fundamentals of Database Systems [I], the attribute first name is

varchar(15), which needs 2*15""30 bytes in Java, the minit needs 2 bytes, the !name

68

[)(tending the instance-based data model: Semantics, performance and security considerations

needs 2• !5=30 bytes, and so on. The total number of bytes needed for this table is 192

bytes per tuple. Since there are I 0 attributes in the table, the average number of bytes

needed to store a value of an attribute in the employee table is 19.2 bytes, which is nearly

five times more in size compared to the instance identifier (nonnally it needs 4 bytes).

Create table employee
(fname varchar(15) not null,
minit char,
!name varchar(15) not null,
ssn char(9) not null,
bdate date,
address varchar(30),
sex char,
salary decimal(I0,2),
superssn char(9),
dno int not null,
constrain! empsuper _pk
primary key (ssn));

Figure 21: An Employee Table

class 1 class 2

propertyl·ID Propertyl·ID

property2·ID Property3·ID

fmutualpropertyl·ID mutua!property l ·ID

Figure 22: The Second Data Structure of IBDM [70]

69

Extendingtheinstance-baseddatamodel:Semantics,performanceandsecurityconsiderations

However, to simplify the comparison, we assume that all the attributes have the

same data type; they have the same data type as the instance identifier, and the length of

that data type is q bits. Also, we assume each class (table) has m attributes and n records.

Then, to store a table, in the relational database we need at least q*m*n bits, but in the

instance-based data model (we use the second data struchire introduced in [70], shown in

Figure 22, for the comparison) we need 2*q*m*n bits. It seems that the instance-based

data model needs double the space to store the data. However, when we consider more

than one related table, the relational model needs to repeated ly store some infonnation in

both tables, for example, the foreign key attributes; therefore, the instance-based data

model needs somewhat Jess than twice the storage space than that of the relational model.

In this chapter we compare the original relational database model with the IBDM;

the comparison only uses indexes of the primary attribute(s).

5.3 Select and Project Queries

In the relational data model, for any query purpose, the system needs to load all

the records into the memory first, which requires time (qmn)*v (v is the time needed for

loading one bit of data to memory). After loading the data to memory, the system will

compare the cond itions in the Where clause; we assume this step takes time u for one

comparison. There are n records to be compared, the ti me needed for this process is n*u.

We will ignore the time spent to display the results. So the total time for the select/

project query in the relational data model is:

(qmn)*v + n*u (I)

70

Extendingtheinstance-baseddatamodei:Semantics,performanceand securityconsiderations

In the instance-based database, the data that the system needs to load into memory

for the query arc the values of the attributes that are in the Select clause and Where

clause. If we assume there are p attributes to answer a query, the data size loaded is:

2*q*p*n. Thus, the time required to load those data is: (2qpn)* v. After loading, we need

to combine values of attributes to records. This process will consume time (we assume

data is stored in a a+ tree):

n*(p-l)* log8 (2qpn)*u (where 8 is the page size of the operating system).

Then the comparison takes time 2*n*u (one for value comparison, one for class check).

So, the total time is:

(2qpn)* 1>+ n*(p-l)* loga(2qpn)*u + 2*n*u. (2)

In expressions (I) and (2), the only variable is n. By the theory of complexity [73]

when n grows larger, the value of expression (2) will grow at a much faster rate than

expression (I), so that the value of (2) is larger than (I). This is true when n is large

enough. However, how large is large enough? With the increasing memory capability of

computers, is there an 11 large enough to make the value of expression (2) greater than the

value of expression (I)? We know that in a system the capacity of the memory is always

less than the hard drive (typically less than I percent) and the access speed of the hard

drive is less than that of the memory (typically less than one millionth). So, in a system

we have to consider both factors. If we assume the memory size is M, then the time

needed for relational system will be:

(qmn!M-I)*v *M*2+ n*u. (3)

For the instance-based data model, the time needed will be:

71

Extending the instance-based data mode l: Semantics, performance and security considerations

(2qpnfM· I)* v*M*2+ n*(p·l)*log8(2qpn)*u + 2*n*u. (4)

Then the question becomes: how large must n be to make (3) less than (4)? That is:

(qnmiM·I)*v *M*2+n*u < (2qpniM·1)* v*M*2+n*(p·1)*1og8 (2qpn)*u + 2*n*u (5)

Add v *M*2 on both sides:

(qmn/M)*v *M*2+n*u < (2qpn!M)* v*M*2+n*(p. J)* Iogo(2qpn)*u + 2*n*u

Divide by n on both sides:

(qm/M)*v *M*2+u < (2qp!M)* v*M*2+(p·l)* logo(2qpn)*u + 2*u

Delete M on both sides;

(qm)*v *2+u < (2qp)* v*2+(p·l)*logo(2qpn)*u + 2*u

Move the left to the right and switch the sides:

(2qp)*v*2+(p· l)*log0(2qpn)*u + 2*u· (qm)*v *2 · II > 0

That is:

(2qp)*v*2· (qm)*v *2 + u + (p·l)* log0(2qpn)*u > 0

Finally, Expression (5) can be simplified into:

((2p·m)* v *2 *q + u) + (p· I)*Jog13(2qpn)*u > 0

Since p>=l, we know that when p= l , expression (6) will become expression (7):

(m·2)* v *2 *q > u

(6)

(7)

In the relational database we have m>=2 {the number o f attributes in a table is at

least 2), and in most cases m>2. We also know that q>O (the number of bits required to

store a value of an attribute is always positive) and v > u (loading data from hard drive to

memory is always slower than computing). So, in this case, expression (7) wi ll be true

72

Extending the instance-based data model: Semantics, performance and security considerations

whatever value 11 adopts. That is to say that the instance-based data model wilt always be

faster than the relational model when we query only one attribute.

In the next step, we will consider the situation of p> 1. In this case, (6) can be

simplified as follows:

log6(n) > ((m-2p)' v'2 ' q /u- 1)/(p- 1) - log6(2qp) (8)

On the right hand of expression (8), since on average, a query will not select more than

ten attributes, we assume p< IO. We also assume that the space needed to store an

attribute is not more than 20 bits (q<20). Moreover, the page size of the operating system

is assumed to be larger than 32K (8 >32K). Therefore, we can reasonably assume that

Jog8 (2qp) is much Jess than 0.01. Let L = v*2 *q lu, then L>> IOO (v will be millions o f

times larger than u). Then we consider three situations:

l) m>2p

This is the most general case when users query a database. In this case, the right

hand of expression (8) will be larger than 10 (m-2p>l , L= v*2 *q lu >IOO,p-1<9). So, if

the left hand side in expression (8) is greater than the right hand side, n must be larger

than 8 10. Even if 8 equals to 32K (which is the minimum value that 8 could take), 8 10

will be bigger than 1045. In reality, there is no possibi lity of having a database that

includes equal to/more than I 045 records in a table. So, there hardly exist any n to

establish expression (8). This implies that there is no 11 in any real system that will result

in a query in the relational data model being faster than the same query in the instance

based data model. That is, when query attributes are less than half of the attributes in a

table, the instance-based data model will be faster than the relational model.

73

Extending the instance·based data model: Semantics, performance and security considerations

2) m=2p

In this case, expression (8) will become:

log0{n) > - 1/{p-1) - log0{2qp)

Since p<lO, a re latively smalln will make the left hand side in expression (8) larger than

the right. In other words, we do not need a large number of records in a table to make

query in the relational data model faster than the instance-based data model. That is,

when query attributes are equal to half of the attributes in a table, queries in the relational

data model faster than the instance-based data model.

3) m<2p

In this case, the absolute value of t he right hand of expression (8) will be larger

than I 0 but it is negative. So, n only needs to be larger than I or 2 for expression (8) to

hold. This implies, when query attributes are more than half of the attributes in a table,

queries in the relational data model will be faster than the instance-based data model.

As explained before, in a real database the average size of attributes is more than

3-4 times of the size of the instance identifier. So, the results of the above comparison

should be:

when m> 1.25p tol.33p, que1y on the instance-based data model will be faster

than the relational model; when m<=l.25p to 1.33p, query on the relational model will

be faster than the instance-based data model.

Although, the above comparison only shows one condition in which case the

instance-based data model will be faster than the relational model, a broad range o f

74

Extending the instance· based data model: Semantics, performance and security considerations

queries fit this case. Thus in the most cases, queries on the instance-based data model are

faster than queries on the relational model.

5.4 Join Query

There are two kinds of join operations in the relational data model: join on the key

attribute and join on non-key attribute. However, in the instance-based data model they

are the same.

5.4.1 Join on the Key Attribute

In the relational data model, the system needs to load at least two tables. So it

needs time: 2*(qmn)*v. Then the join operation needs time: n• log3(qmn)*u. So, the total

time needed is:

(10)

5.4.2 Join on non-Key Attribute

In the relational data model, the system still needs to load at least two tables, but

the join operation itself needs more time. In this case, the join operation needs time

n*n*u. In total, the time needed is:

(II)

ln the instance-based data model, the system only needs to load p attributes plus a

mutual property. So, the loading time needed is: (p+ I)qn* v. And there is no join needed

75

Extending the instance-based data model: Semantics, performance and security considerations

in the instance-based data model. The only operation is a select operation (on key

attribute), so, the needed time is: u* log8(n). Then the total time needed is:

(p+ I)qn* v + u*log8(n) (12)

Since p<m, (12) wi ll always be less than (10) or (II).

5.5 Test

A direct comparison of query performance of an instance-based DBMS with a

relational DBMS is di fficu lt, since commercial relational DBMSs incorporate proprietary

query optimization techniques. In contrast, query optimization for the instance-based data

model has not yet been studied. To provide a baseline for comparison, we implemented

an instance-based data structure using a commercial relational DBMS based on the

second data structure described earlier. We used a relational database to manage most

parts of the instance-layer data, and binary and ternary relations to store properties. We

implemented each intrinsic property as a binary relation with the property name as the

name of the relation. In each binary relation, there is a key attribute Instance _ID and an

attribute Value. The key attribute lnstance_ID stores the identifiers of instances that

possess the property, while the attribute Value stores the value of the property for each

instance possessing the property. We implemented each mutual property as a ternary

relation. Each ternary relation has three attributes. Instancc_IDI and lnstance_ID2 fonn a

key o f the relation and indicate two instances related to each other by this mutual

property. Also, another attribute Value in the relation is used to store a value o f the

mutual property between the instances (if there is one). In this way, we implemented all

76

Extendingtheinstance-baseddatamodel:Semantics,performanceandsecurityconsiderations

the architectural components below the Query or Update Algorithm in the instance layer

of Figure 23 on a relational platform. However, the relational platfo rm cannot implement

Algorithm Manageme~t

Data Storage

Figure 23: Architecture of the lnstance~based Database System

77

Extending the Instance-based data model: Semantics, performance and security considerations

all parts of the instance-layer. We implemented the Query or Update Algorithm and the

instance engine of the instance-layer using a separate program that interacted with the

relational database. The Query or Update Algorithm includes the methods and algorithms

that relate to spec ifi c query or update operations and a translator that translates these

methods and algorithms to relational operations.

5.5.1 Environmentofthe Test

We used MySQL [86J as the underl ying platfonn to implement two databases,

one based on the relational model (referred to as Rdb) and the other based on the

instance-based model (referred to as idb). To compare query perfonnance, both databases

were based on the Sca lab le Wisconsin benchmark data set [56]. This data set includes

three relations, ONEKTUP, TENKTUPl, and TENKTUP2. Each relation is composed

of the thirteen integer attributes and three 52 byte string attributes. ONEKTUP has

100,000 records. TENKTUPl and TENKTUP2 both have 1,000,000 records. The

structure of each relat ion is shown in Figure 24. Further details are avai lab le in [56].

In the instance-based implementation, we used MySQL to store the instance-layer

data, consist ing of all the intrinsic properties and the mutual property. Each intrinsic

property was implemented as a binary table, where the table name is a Wisconsin

attri bute name, the instance-id is an integer (not an ex isting identifier from one of the

Wiscons in relations), and the property value is the value of the correspondi ng attribute. A

mutual property was implemented as a ternary tabl e to serve as a join attribute. However,

unlike the relational model, we stored the class layer information in a class folder. Each

78

Extending the instance-based data model: Semantics, performance and security considerations

class was stored as a fi le with the class definition under the class fo lder. Therefore, three

relations in the relational database become three classes in the instance-based model:

Tenkl {unique2}, Tenk2 {unique22}, and Onek{unique23} .A class is defined as

all common properties of a set of instances. However, for efficiency purposes, we

essentially index class membership using a single property that, in tum, is possessed by

all instances possessing all the properties that define the class.

Attribute Name Range of Values Order Comment
unique1 0 - (MAXTUPLES - 1) random unique, random
order
unique2 0- (MAXTUPLES-1) sequential unique, sequential
two 0-1 random (unique1 mod 2)
four 0-3 random (unique1 mod 4)
ten 0-9 random (unique1 mod 10)
twenty 0-19 random (uniquel mod 20)
one Percent 0-99 random (unique1 mod 100)
tenPercent 0-9 random (unique1 mod 10)
twentyPercent 0-4 random (unique1 mod 5)
fiftyPercent 0-1 random (unique1 mod 2)
unique3 0- (MAXTUPLES-1) random unique1
evenOnePercent 0, 2,4, . . ,198 random (one Percent 2)
oddOnePercent 1, 3,5, . -. '199 random (onePercent . 2) +1
stringu1 random candidate key
stringu2 random candidate key
string4 cyclic

Figure 24: Attribute Specification of Scalable Wisconsin Benchmark Relations

We applied the modified Wisconsin benchmark queries to both databases. The

Rdb versions of the queries used are listed in the Appendix. The idb equivalent versions

were constructed as relational algebra operations (and consequently SQL queries) over

the properties implemented as relations. The main activity in constructing these queries

was to translate a property selected in iQL to a corresponding relational table storing that

property. We tested all queries in the two databases running on a personal computer in

79

Extending the instance-based data model: Semantics, perfonnance and security considerations

the Windows 7 environment. The processor of the computer is Pentium(R) Dual-Core

CPU T4400 at 2.20GHz.

5.5.2 Results of the Test

We tested all queries in the two databases. Selected comparative results are shown

in Figures 25-27. Complete results are provided in the Appendix.

Q ueries 1 to 4

Number of Attributes Projected

Figure 25: Non-indexed property qucries1

30

-rdb

-idb

Number of Attributes Projected

Figure 26: Non-Clustered- Index property queries

1 Clustered-index properties provide similar results (see Appendix).

80

Extendingtheinstance-baseddatamodel:Semantics, performanceandsecurity conslderntions

From Figure 25 (and the Appendix) we can see that for Non-indexed property

queries and Clustered-Index property queries, idb is faster than Rdb when a small number

of attributes is projected in the query. These results are somewhat less favorable to the

IBDM than we would generally expect to observe because a higher proportion of the

attributes in the Wisconsin benchmark (13 of 16) are of integer data type than would

typically be the case in most business datasets. As analyzed in the previous section, if a

table has more text attributes than integer attributes, the instance-based model will

perform better than the relational model. We believe that if hal for more of the attributes

in the relations were text, idb will be faster than Rdb on projections of 40% or more of

attributes.

Queries 35-37

0 5

,; 4 t--

E ' >=

Clustered-Index Non-Ciu~tcrcd-lndcx Non-Index

Figure 27: Update Operations

Figure 26 indicates that for Non-Clustered-Index property queries, the idb model

has a greater performance advantage over the Rdb relative to clustered-index property

81

Extending the instance-based data model: Semantics, performance and security considerations

queries. In this case, the idb is faster than the Rdb even on projection of more than 40%

of the attributes of a class.

Figure 27 indicates that the idb and the Rdb have comparable query perfom1ance

on clustered-index update operati ons (simi lar results hold for aggregation queries - see

Appendix). However, when these operati ons deal with non-clustered index or non

indexed data, the idb is much faster than the Rdb.

Overall , these results provide ample query perfo rmance support for the viabi lity

of instance-based data structures as a mechanism for organ izing data. By implementing

these structures in a relati onal database environment and comparing performance to an

equ iva lent benchmark based on a traditi onal relational (multi-attribute) design, we prove

that the instance-based structures can perfo rm better than the re lati onal model in some

queries. We believe that, with a nat ive DBM S implementation and the development of

appropri ate query optimization techniques for the IBDM, further gains in perfonnance

over relat ional data structures are possible. Our objective was not to show that instance

based structures outperfo m1 class-based ones on all operations, but to show that

reasonable performance could be achieved on a range of operati ons.

Notwithstanding this, the results of this comparison are quite interesting, and

immediately suggest an approach to substantiall y improve database perfo rmance within a

traditi onal relational database management system for queries that project a few attributes

from a class. Th is requires reconceptual izing traditi onal thinking about database design.

Unlike traditional methods in which a class-based conceptual model deve loped using the

Entity-Relationship model is converted to a class-based relat ional design, our proposed

82

Extending the lnstance·based data model: Semantics, performance and security considerations

alternative would implement an instance-and-property based design based on binary and

temary relations, with some class support defined outside the DBMS.

5.5.3 Summary of the Test

We show how an instance-based database can be supported using a relational

database platform and demonstrate that this approach leads to faster query processing

than an equivalent relational design, even though it does not provide "native" support of

the !HOM. From this result, we conclude that database query perfonnance can be

improved by taking an instance-based approach to implementing a design using a

relational database management system.

5.6 Summary

Ln this chapter, we compared the query perfonnance in the lBDM with that in the

relational model. A theoretical comparison and an empirical simulation show that the

instance-based data model is faster than the relational model on some typical queries.

Although we did not compare all possible operations, the results demonstrate the speed

advantage of the instance-based data model. That is, the instance-based data model has

much more flexibility than the relational model [2] and it can perfonn better than the

relational model in certain applications.

83

Extending the instance-based data model: Semantics, performance and security considerations

Chapter 6

Multilevel Security Model

Multilevel database systems have been proposed to address the increased security

needs of database systems. The word "multi level" means that there are multiple clearance

levels. A multilevel database is intended to provide the security needs for database

systems that contain data at a variety of security classifications and serve a set of users

having different clearances [74}. In multilevel databases, higher-level security users can

access lower-level security data but not vice versa. If lower-level security users can use

any means to access higher-level security data, directly or indirectly (e.g., by guessing),

then the security system is termed broken. Such a means to allow a lower-level security

user to access higher-level security data is referred to as a covert channel [I]. The basic

motivation of multilevel database systems is to share data from different clearance levels

but prevent any covert channels between levels. Many multilevel security database

models have been proposed. Different models have advantages for different applications.

For example, the Bcli-LaPadula model [75] addresses two basic needs of multilevel

84

Extend ing the instance· based data model: Semantics. performance and security considerations

security systems: (I) a lower-level user cannot read any higher level data; and (2) a

higher-level user cannot update any lower-level data. The seaView security model

provides an applied multilevel security database system by extending the standard

relational model (74). Several extensions of the seaView model have been proposed, for

example the multilevel relational data (MLR) model [76] and the belief-consistent

multilevel secure relational data (BCMLS) model [77] . However, the Beli-LaPadula

model is the first one which clearly defines a situation where a multilevel security

database may need to secure its data.

6. 1 The Research Field Overview

The Beli-LaPadula model is expressed in tenus of objects and subjects. An object

is used to express a passive entity such as a record or a field within a record. A subject is

used to express an active process that can request access to objects. A subject refers to a

user in this thesis. Every object is assigned a classification and every user has a clearance.

Classifications and clearances are expressed as labels, which signify the sensitivity of

information. Labels are in hierarchical order of sensitivity, which means that higher

hierarchical level labels are more sensitive than lower level ones. For example, a business

information system might define levels Top Secret, Secret , Confidential and Unclassified

with sensitivity labels L1, L1, L1 and L4 (here, the hierarchy is defined as L1>L1>L3>L4).

Given two labels, L1 and Lz, the Bcli-LaPadula model proposes that the fo11owing

two restrictions should be applied on all data accesses:

85

Extending the lnstance·based data model: Semantics, performance and security considerations

I) "No Read Up": A user assigned at level L1 is authorized to read an obj ect assigned at

level~ if and only if the user's label L1 is higher than or equal to the level of the object' s

2) "No Write Down": A user assigned at level L1 is authorized to modify an object

assigned at level L2 if and only if the object's label l-:2 is higher than or equal to the level

of the user's label L1•

An easy implementation of the Betl-LaPadula model in the relational database is

the tuple-level labeling model [78]. In the tuple-level labeling model, each record is

considered as an object of the Bell-LaPadula model and assigned to a security level.

Users are also assigned to different security levels. They access records according to the

above two Betl-LaPadula's restrictions. A simple example of the tuple-level labeling

model is illustrated in Figure 28.

Label Age Home Phone

21 (709)737- 1234

L, 2 1 (709)737-1234

25 (709)781-432 1

Figure 28: An Example of the Tuple-level Labeling Model

In the tuple-level labeling model, a tuple is assigned a single label, so the system

can either allow or deny a users access to a tuple. For instance, in the above example, if

LPL1 (the security level L1 is higher than the security level ~) and if a ~ level user

86

Extendingthe instance-baseddatamodei:Semantics,performanceandsecurltyconsider.ltions

attempts to query the table, it can only access the second and third records. It cannot read

or write any portion of the fi rst record.

Compared to the tuple-level labeling model, in the element-level labeling model

[78] each attribute of a record can be assigned a security level. Different attributes of a

record may be assigned different security levels. Figure 29 illustrates an example table

using the element-level labeling model.

Figure 29: An Example of the Element-level Labeling Model

In Figure 29, the first record's name and home phone number arc assigned to L1

level. However, the age is assigned to ~ level. The same strategy can be applied to the

second record, as well; the two attributes name and age are assigned to ~ level but home

phone a/tribute is assigned to L1 level.

In this model users are also assigned to different security levels; the accessibility

of records is based on the accessibility of each attribute in the record to users, govemed

by the above two Bell-LaPadula's restrictions. In contrast to the tuple-level labeling

model, in this model a user may access a portion of a record (tuple). For example, a user

at the L2 security level querying the table in Figure 29 will get the results in Figure 30.

87

Extendingtheinstance-baseddatamodel:Semantics,performanceandsecurityconsiderations

Figure 30: A Query Result for an L2 User in the Element-level Labeling Model

Compared to the tuple-level labeling model, the element-level labeling is more

nexible. For example, properties in one record may be assigned to different security

levels as shown in Figure 29. However, this nexibility also creates a problem for this

model. Since the elements of a record can be assigned to different levels, a lower level

user may get a lot of null values (we call it the null value problem) in this model as

shown in Figure 30.

Smith and Winslett proposed another multilevel security data model, the Smith-

Winslett model [80]. It combines the aspects from both the tuple-level labeling and the

element-level labeling models. In this model, each record is assigned to a security level,

identical to the tuple-level labeling security model; the difference with the tuple-level

labeling model lies in the fact that in a record the elements may belong to a security level

lower than the ruple-Jevel. A sample table based on the Smith-Winslett model is shown in

Figure 3 1.

TC Name Label Age Home Phone

L, John L, 21 (709)737-1234

L, John L, 21 (709)737-1234

L, Alice L, 25 (709)781-4321

Figure 3 1: An Example Data of Smith and Winslett Model

88

Extending the instance·based data model: Semantics, performance and security considerations

TC expresses the tuple· level label. Label expresses the element label. In Figure

31, two records, the first and second, have the same values on attributes. The only

difference is the tuple·levellabeling of the two records. The security level TC of the first

record, L~o is higher than its element label, ~. The major difference between the Smith·

Winslett model and the tuple·level labeling model is that the Smith· Winslett model is

belief.based, in which a higher level tuple TC may "believe" a lower level record and

borrow the lower level data as its record. In Figure 3 1, the first record believes the second

record (lower level record) and borrows the data from it. The greatest advantage of the

Smith and Winslett model is that it achieves semantic integrity at the tuple level. For

example, in Figure 31 , if a L2 level user updates the attribute Age value of the second

record from 21 to 22, the first record, which is a L1 level record, will automatically

update its record value since the L1 level users believe the L2 level record. However, if

the same update happened in the tuple level labeling model, users have to update the data

in each level. In the model, different levels' records cannot co·operatc with each other.

For example, in the tuple·level labeling model as shown in Figure 28, when an ~ level

user updates the attribute Age value of the second record from 21 to 22, the first record,

the L1 level record, wi ll not update its value since the L1 level's data are separated from

the L2 level ' s data even though they represent the same object.

Although the Smith·Winslet1 model is a belief·based model, it is based on the

tuple·level. In the model, a higher·level security record either believes an entire lower·

level record or builds its own record. It cannot believe partial lower·level record. This

limitation reduces its flexibility.

89

Extending the instance-baseddata modei:Semantics, performance and securlty conslderations

The SeaView security model was proposed by Denning and Lunt in 1987 [74]. It

was also the fi rst multilevel model used in practice. The model labels each record at the

tuple level and also at the attribute level. The typical data format of SeaView security

model is shown in Figure 32.

TC Name Label1 Age Labeh Home Phone Label,

L, John L, 2 1 L, (709)737-1 234 L,

L, John L, 25 L, (709)737-1234 L,

L, John L, 2 1 L, (709)737-1234 L,

L, Alice L, 25 L, (709)781-4321 L,

Figure 32: Typical Data of the SeaView Security Model

The SeaView security model integrates the entity and the referentia l integrity

rules of the re lational model with the security model. It also proposes a new concept,

poly instantiated data. In the SeaView model, a multilevel relation may have multiple

tuples with the same primary key with different security levels. These tuples are referred

to as polyinstantiated tuples. Another type of polyinstantiatcd data is the polyinstantiated

element. Polyinstantiated clements are elements identified by a primary key, the security

level of the primary key, and an element security level, so that multiple clements for an

attribute may have different security levels but are associated with the same (primary key,

security level of primary key) pair. By introducing the polyinstantiation integrity rule, the

SeaView security model is able to solve most security problems in relational databases.

However, some problems still remain. For example, null values arc not a llowed in a

90

Extendfngthe instance-baseddatamodei:Semantics, performanceand securlty conslderatlons

database based on the SeaView model. But it is common to have null values in some

attributes of a record in the application of relational databases. So, the restriction limits its

applications.

The Sandhu·Jajodia model [79] is a derivation of the SeaView security model.

The basic difference between the SeaView security model and the Sandhu·Jajodia model

is that there are more restrictions in the insertion and update operations in the latter. In

the Sandhu·Jajodia model, a given entity can be assigned to only one tuple on each

security level. For example, in the Sandhu·Jajodia model, the fi rst and the second records

of Figure 32 cannot co·exist in the database since they express the same entity (the same

key value) on the same security level. This restriction is based on the assumption that the

same level security users should have the same view on one object. It reduces the

ambiguity when multiple records represent the same object at certain security level but

have different infom1ation. The Sandhu·Jajodia model achieves the semantic integration

in the tuple level through this restriction. Typical data in the Sandhu·Jajodia model will

be similar to data shown in Figure 33.

TC Name Label1 Age Labeb Home Phone Labeb

L, John L, 2 1 L, (709)737-1234 L,

L, John L, 2 1 L, (709)737-1234 L,

L, Alice L, 25 L, (709)78 1-4321 L,

Figure 33: An Example Table for the Sandhu.Jajodia Model

9 1

Extending the instance-based data model: Semantics, performance and security considerations

The Sandhu·Jajodia model provides security control by using tuple·level labeling

combined with the flexibility of the element·level labeling. By playing with the

requirements, an object must have the same view in the same security level; the model

achieves data view integrity in each security level.

The multilevel relational model (MLR model) [76] is substantially based on the

Sandhu·Jajodia model and it is an improvement of the SeaView security model. It also

combines the belief·based semantics used by the Smith-Winslett model. The model

introduces several new concepts. For example, higher level security data can be borrowed

from lower security levels. This approach reduces some data redundancies in databases.

The model introduces the uplevel statement, so that lending a lower level security data to

a higher level becomes easier. The model also introduces data-borrow integrity rules that

ensure the consistency of data in the lower-level with the data borrowed in higher levels.

This rule eliminates ambiguity and retains upward information flow which exists in the

SeaView security model and its extensions. For example, according to the data-borrow

integrity rules, in Figure 34, if the second record is deleted from the table then the age of

the first record should set to null since no L2 level value of this attribute can be borrowed.

However, since the SeaView security model does not allow null values, the system may

not allow this deletion or it may allow the lower level user to delete data at its level (the

second record) but the value remains unchanged at the higher level (the fi rst record). In

the first case, a covert signal channel wi ll result. In the second case, ambiguous

information will appear since there is no lower level view of data in the database. In

addition, Sandhu-Chen proved the soundness, completeness, and security of the model.

92

r---

Extending the instance-based data model: Semantics, performance and securicy considerations

Name Label1 Age Labeb Home Phone Labeb

L, John L, 21 L, (709)737- 1238 L,

L, John L, 21 L, (709)737-1234 L,

L, Alice L, 25 L, (709)781-4321 L,

L, Alice L, 25 L, (709)781-4321 L,

Figure 34: An Example Data of the M LR Model

The Belief-Consistent Multilevel Secure Relational Data (BCMLS) model is a

belief-based multilevel security model [77]. It extends the SeaView security model by

allowing higher-level users to interpret the information on lower-level data (Figure 35).

TC Name Label1 Age Labeb Home Phone Labeb

L, John L, 21 L, (709)737-1238 L,

L,- L, John L,L, 21 L,L, (709)737-1234 L,- L,

L1 L2 Alice L IL2 25 L1L2 (709)781-432 1 L1L2

Figure 35; An Example Data of the BCMLS Model

In the BCMLS model, a tuple or an attribute may be assigned more than one

label. In F1gure 35, the second record at tuple level (TC) has two labels and a hyphen sign

between them. In the model, any label before hyphen means that users of this level

believe the labeled object (a tuple or an attribute) is true. Any label after the hyphen

means that this level of users do not trust the labeled object. For example, the tuple level

93

Extending the instance-based data model: Semantics, performance and security considerations

labels of the second record in Figure 35 means that the L:! level users believe this record

but the L1 level users do not believe the record.

By introducing more than one level of security label to a tuple or an attribute, the

model provides an unambiguous interpretation to users. For example, when an L1 level

user queries the table in Figure 35, it will obtain the results shown in Figure 36 (a),

whereas L:z level users wi ll obtain different results as shown in Figure 36 (b). Users at

each level will obtain exactly one record for each entity. So, the BCMLS model addresses

the interpretation problem.

Figure 36: Unambiguous Results to the Users in the BCMLS Model

From the above introduction, one can see that after constructing the basic

multilevel security model, either the tuple-level label ing model or the element-level

labeling model, researchers have attempted to add constraints to reduce ambiguity and

improve data sharing in databases. For example, to reduce ambiguity, the Smith-Winslett

model introduces the belief-based constraint to achieve semantic integrity at the tuple

level; the Sandhu-Jajodia model adds the entity rule to achieve a constant view of an

entity in each security level; the MLR model introduces the borrow concept to achieve

semantic integrity at either the tuple or the attribute level. Increasing labels, of course,

94

Extending the instance-based data model: Semantics, performance and sectJrity considerations

will increase the complex ity of accessing of data. On the other hand, the belief-based

constraint increases the data sharing between higher-level and the lower-levels and

finally the BCMLS model combines some higher-level data and lower-level data

together.

We have reviewed several main data models that provide multilevel database

security. Although some other successful proposed models ex ist, most of them are related

to the introduced models. However, although many models have been proposed, some

problems remain unsolved. ln the following sections, we will point out some problems of

the current models. In the next chapter, we introduce a new model, the instance-based

multilevel security model.

6.2 Problems with the Traditional Models

Multi level security database systems face many challenges. A multilevel security

database system is govemed by the two restrictions that Beli-LaPadula proposed above.

The purpose of the two restrictions is to avoid any covert channel between security

levels, including direct and indirect covert channels. However, when applying the two

restrictions to a data model, in all the above models, there is a tradeoff between sharing

data and getting more security. Some of the problems arc listed below.

6.2.1 Data Redundancy

The SeaView security model and its derivatives define the polyinstantiation

integrity to achieve the goal of protecting the higher security data. However, the

95

Extendingtheinstance-baseddatarnodel:Sernantlcs,performance andsecurityconsiderations

polyinstantiation integrity rule is not a data-sharing rule. The basic principle of the

polyinstantiation integrity rule is to split data into security levels. For example, the

relation in Figure 37 is a polyinstantiation example in a multi level security database.

Name is the primary key of the relation and the security classifications are assigned at the

granularity of individual data elements. TC (namely L ,, Lz, L;, and L,> Lz>L1) is the tuple

class of each record.

Name Weight Age TC

John 11 180 L, 28 L, L,

John 11 180 L, 28 L, L,

John 11 180 L, 28 L, L,

Figure 37: A Customer Relation

As we can see in the relation, the three records express the exact same real world

thing, a customer John. However, the polyinstantiation integrity rule splits data to

different security levels. This approach, of course, increases the data stored in database,

resulting in a data redundancy problem. The MLR introduced the borrow concept and

stores pointers, but not real data, in the higher-level to deal with this problem. However,

even in that model, we still need to store three records. The BCMLS model can solve the

problem only if the redundancy of all attributes in an entity belongs to the same security

leveL Otherwise, the redundancy cannot be reduced. For example, data in Figure 37 can

be stored as one record in BCMLS model as shown in Figure 38.

96

Extendingtheinstance-baseddata modei:Semantics,performanceandsecur!tyconsiderations

The BCMLS model can reduce redundant data in Figure 37 because all attributes

of each record have the same security level. However, returning to the data shown in

Figure 35, although the first two records differ in the values of only one attribute, home

phone, the system still has to store both records with all other information as well. So, the

BCM LS model still cannot address the problem.

Figure 38: A Customer Relation in the BCM LS Model

6.2.2 Null Value Inference Problem

The second problem is inference when dealing with sensitive data in multilevel

security models. A covert channel in a database is a means by which one can infer data

classified at a high level from data classified at a low level. The inference problem is the

problem of detecting and removing covert channels. An inference of sensitive data from

nonsensitive data can only be represented within a database if the nonsensitive data itself

is stored in the database. For example, if we have the set of data shown in Figure 39(a), a

query from L3 level user may result in null values, as shown in Figure 39(b). The null

values generated may result in security risks of inference. The lower level user may infer

that there is a value for John in Weight data attribute that is not accessible.

97

Extending the Instance-based data model: Semantics, performance and security considerations

Name Weight Age Name Weight Age

James !, 180 L, 32 L, James !, 180 L, 32 L,

John !, 225 L, 28 L, John !, Null 28 L,

(a) (b)

Figure 39: The Null Value Inference Problem

Name Weight Age TC

James !, 180 L, 32 L, L,

John !, 225 L, 28 L, L,

John !, 220 L, 28 L, L,

Figure 40: Data Redundancy Problem

And in some cases, L3 users can even breach the security system and obtain the sensitive

infonnation by using some statistics queries [I].

The null value inference problem can be reduced if tuple-level labels are added

and each tuple-level label is set to at least the highest security level of its components.

However, since lower-level users cannot access tuples with higher tuple-level labels,

additional tuples have to be created for the lower-level users to access. In Figure 40, a

tuple needs to be created for L3 level users. In general, for each lower level, we may need

to add a tuple. However, this will result in the data redundancy problem as previously

described.

98

,----------------- -------- --

Extending the Instance-based data model: Semantics, performance and security considerations

6.2.3 Sensitive Key Value Problem

In the traditional multilevel security model, the polyinstantiation integrity rule,

intended to protect sensitive data from lower level users, allows only non-key attributes

to have different values at different security levels. However, these models leave a

problem unsolved: i f the sensitive data is in the key attribute(s), how should the model

deal with it? Since the relational model uses key attribute(s) to indicate records

(instances), when sensitive data is included in the key attribute(s), the polyinstantiation

integrity rule can be relaxed and therefore cannot protect the sensitive data. Figure 41

demonstrates this problem. ln the Person table, the attribute Name is a key attribute.

Three records are assigned to different security levels. In the first record, the value James

in Name attribute is assigned to L3 level. In the second record, the value is still James for

the L2 level; however, in the third record, the value for Name attribute has changed to

John and is assigned to the L1 level. This will not be a problem if the records contain data

of two real world people. However, in this case, the three records express one real world

thing, possibly a government agent, whose real name is John. In this case, the highest

level's users (L1 level users) will access all three records as in Figure 41. However,

without further infonnation they would not recognize that the first two records are only

Person
Weight Age TC

160 L, 32 L, L,
170 L, 30 L, L,
170 L, 31 L, L,

Figure 41: The Sensitive Key Value Problem

99

Extcndingthcinstancc·bascddatamodei:Scmantics,performanceandsecuritycons!derations

masks, which protect the last record from lower level users.

The difficulties with multilevel security models arise from the basic concepts of

class-based models as indicated in [2], rather than multilevel security models themselves.

In a class-based database, a schema is the global view of the data in the database. The

schema presents a closed world for any data in the database. Because of the existence of

such schema, any data (and/or users) have to be assigned to a certain (global) security

level; this is where problems arise. Since the designer has to decide security levels in

advance to match the schema, a number of questions also arise: How many security

levels will be sufficient for the application? Should users with the same security level but

different needs access the same portion of the dataset? For example, does the sensitive

information in a security department share the same security level as an academic

department? Users also encounter very similar problems: Do all users in the sensitive

level share identical authorization to access the data? How can administrators modify the

authorizations of users after the system is built? If a user is initially assigned with

medium security level, how can we allow this person to access sensitive data beyond

his/her security level?

Based on its theoretical principles, the multilevel security model should be a

reliable and convenient method for protection of sensitive information. However, the

basic concepts of class-based models have limited the applications of this security control

methodology, hence its success.

In the next chapter we propose a new multilevel security model, the instance

based multilevel security model (IBMSM), based on principles of the instance-based data

100

Extending the lnsrance·based data model: Semantics, performance and security considerations

model, ontology, and basic security theory, to solve current problems associated with

class-based models.

101

Extending the instance-based data model: Semantics, performance and security considerations

Chapter 7

The Instance-based Multilevel Security
Model (IBMSM)

In thi s chapter we propose a new security model, the instance·based multi level

security model (IBMSM), based on the instance-based data model. The research will

fom1all y define the IBM SM. We will also prove that the model is secure.

In the fo llowing sections, the problems raised by mu ltilevel securi ty contro l

models will first be addressed. Several concepts based on th e instance-based data model

will be introduced. Finally, the instance-based multi leve l security model will be formall y

defined. The work also includes an extension of SQL operati ons to the model.

7.1 IBMSM

People recognize a thing by recognizing its propert ies . However, since the

knowledge that different people have about the real-world thing is di fferent, the level of

102

Extending the instance-based data model: Semantics, performance and security considerations

understanding, or level of recognition, of users is different as well . For example, a young

child may only describe the sun as a bright sphere. However, an astronomer will

characterize the sun in much more detai l, including properties such as its mass,

temperature and photospheric composition. In the multilevel security model, the abilities

for users to recognize an object in terms of its properties are directly related to their

security levels. In the context of the above example, the astronomer can be considered to

be in a higher security level than the young child. To recognize this hypothesis, we

propose the fo llowing about an instance's views:

Proposition 7.1 (Property Views) Users in different security levels recognize an object by

recognizing its properties. Different levels of users have different capabilities to identify

a property; hence there are different views of the same real property. We call these views

of the real property.

In Proposition 7.1, we assume that all users in the same security level have the

same capability to identi fy a property. However, they may not have the same interests in

the objects. For example, in a company a technical manager may be interested in objects

related to the technical area; however, a business manager may not have interests in

technical issues but in promoting and merchandising company products. So, we offer

another proposition to deal with this situation.

Proposition 7.2 (Class View) Different users may be interested in different sets of

instances; each set of instances could be recognized as a class, which expresses all the

common aspects of the instances.

103

Extendlngthelnstance-baseddata model:Semantlcs,performanceandsecurltyconsideratlons

Following the above propositions, the instance-based multilevel security model

consists of three parts, the instance, the class and the control models. The definitions of

the three parts are:

Definilion 7.1: A view of an instance at a security level L1 is denoted by i {(P;, L1) I P; e P

and L1e L}, where i is an instance identifier, P1 is a view of a property over the set of all

properties (which is P), and L1 is a security level over the domain L. A pair (P1, L1)

indicates that a property' s view, P1, belongs to the security level L1.

An instance may have a different view in di fferent security levels. For example,

an instance instancel{(NameJames, L3), (Weight 160, Lz), (Weight 160, L3), (Age 30, L1),

(Age 32, Lz)}, where L1> Lz> L3 (in this chapter and the following chapter we will always

assume that L1> L2> L3), has a view at the Lz level as following:

instancei{(NameJames, L~, (Weight 160, LV. (Weight 160, LJ), (Age 32, LV}

However, in the L3 level, the instance will have view as following:

instance/ {(Name James, LJ), (Weight/60, L3)}

As we can see, since the lower level user cannot access the higher level data, the

instance view at the L3 level includes less infonnation than at the Lz level.

Note that a higher level user can sec lower level data in the Definition 6.1 , which

is the same as traditional multilevel security models (for example, the MLR model). In

the IBMSM, an instance may not have one view of a property at high security levels but

several views of the same property at lower levels. However, in traditional multilevel

security models, if a higher level record needs to access values of a lower level record, it

has to borrow a value from a certain level record before higher level records can be

104

Extending the Instance-based data model: Semantics, performance and security considerations

inserted into a database (we call it the belief~based assumption in traditional multilevel

security models). We will discuss the problem of the belief~based assumption in the next

section.

Definition 7.2: A class is denoted by Class_ID ({P1}, {U1}), where Class_ID is a class

identifier, {P1} is a subset of properties of all properties (which is P), and {U1) is a subset

of user identifiers over all the system.

A class contains two pieces of infonnation. First, it includes infom1ation about

which instances should be included in the class. Second, it includes information about

which users can access this class. For example, if we define a class Classi({Name, Age),

{user /, user3}) then an instance lnstancel {(Name James), (Weight 170), (Age 30)}

belongs to the class. However, an instance Jnstance2{(Name John), (Weight 170)} does

not belong to the class. Meanwhile, user! and user3 can access this class. However, other

users cannot access this class.

Definition 7.3: A view of an instance at a certain security level Lb which is i {(P1, Lq) f P;

E P, Lq~Lj, and Lq, LjE L}, belongs to a class C({Pt}, {U;}) if and only if {Pk) is a subset

of {P1} . A user U can access a class C((PJ, {UJ) if and only if Ue{U;) .

As we already indicated, an instance may have different views at different

security levels. Thus, an instance may belong to different classes at different security

levels. For example, if we define two classes, Classi ({Name, Age}, {user/, user3}) and

Class2({Name, Weight}, {user2, user3}), then an instance, /nstancei{(Name James, L3J,

(Weight 160, L,), (Weight 160, L,), (Age 30, L1), (Age 32, L,)}, belongs to Class! and

Class2 at the L1 and L2 levels. However, it only belongs to Class2 at the L3 level. At the

105

Extending the instance·based data model: Semantics, performance and security considerations

L3 level, the instance only has a view lnstancei{(NameJames, L3), (Weight 160, L3)}. Of

course, at this level it does not have the set of properties {Name, Age), which is in

Class 1 's definition.

To enhance system security, we propose a rule for the IBMSM model originating

from the two Bell-LaPadula restrictions for the instance-layer.

Rule 7.1: A user U at a certain security level L (designated as UL) can read a property

(which is a view of the property) of an instance at a security level Lj (we express this

property asPy) if and only if L&?Lj . However, UL can update Py if and only ifL=Lj.

Rule 7.1 indicates that the data that users at a certain level security can read

consists of two portions: One is the data in the same security level as that of users, and

the other is the data in the security levels lower than that of users. The latter can be

updated by lower-level users who have the same security level as the records. In other

words, a user can update the data in the same security level as itself (the user); it cannot

update data in any lower security levels even though it can read them.

7.2 Data Interpretation in IBMSM

For all instances i {P; IP; e P}, in the IBMSM, data are interpreted in two parts,

the instance part and the property part. We describe each of them as follows:

106

Extending the instance-based data model: Semantics, pe rformance and security considerations

7.2.1 Property P; and its Security Level L1

An instance possessing a property view, P;, at a security level, Lj, is denoted as a

pair, (P;, Lj), as in Definition 7. 1. However, since an instance may possess views of the

same property in more than one security levels, (P;, {Lj}) is used to denote more than one

pair, (Pio Lj), for instance (P;, L1) , (P;, L1) . (P;, L10). Conversely, if an instance

possesses more than one property view of different real properties in the same security

level L, they are denoted as ({P;} , L).

7.2.2 An instances View and its Security Levels

An instance identifier i identifies an instance in the database. i(L) denotes that an

instance i possesses some properties at security level L. To represent that an instance

possesses properties that belong to more than one security level (i.e. an instance i which

possesses some properties in security levels {Lj} e L) the notation i({Lj}) is used.

If an instance possesses a property at a security level L, the notation (P;, L)

represents that an L level user has created a property, P;, of the instance.

Instances p and q are identical at a security level L if and only if they have the

same view at the security level. That is, if for all P;, (P1, L) is a view of a property

possessed by instance p if and only if (P;, L) also is a view of a property possessed by

instance q.

For example, two instances, instance I{{NameJames, L.J), (Weight /60, Lz}, (Weight /60,

L.J), (Age 30, L1), (Age 32, LV} and instance 2{{Name James, L.J), (Name Jolm, Lz},

107

Extendingtheinstance-baseddatamodel:Semantics,performanceandsecurityconsiderations

(Weight 160, LJ), (Age 32, LJ, (Age 30, L:J), are identical at the L3 level since they have

the same property view, {(Name James, L3), (Weight /60, L3)}, at that security level.

Notice that the semantics of data in the IBMSM model is different from the class

based model. In particular:

1) In the IBMSM, the requirement that an instance should belong to any class

(schema) is eliminated. So, the greatest lower bound to define a view of an instance at

any security level, common in all class-based multilevel security models, is unnecessary.

Eliminating this assumption in the IBMSM will enhance the security of the model (we

discuss this further in the next section). For example, the null value problem does not

exist in the IBMSM.

2) An instance's views at different security levels may belong to different non

hierarchical classes. In the IBMSM model, users recognize an instance by recognizing its

properties. Users at different security levels have different abilities to recognize

properties of an instance. Since a higher-level user can access any lower-level data, the

higher-level users may recognize that an instance belongs to a class that the lower-level

user may not recognize. For example, we define an ovent•eight class: a person (which is

an instance) is overweight if his weight is more than 3001b. Then an instance {(Name

James) L3, (Weight 280/h) L3, (Weight 305/b) L2. (Age 21) L3} belongs to the ovenveight

class at the L2 level since its Weight is 305/b at the ~ level. However, it does not belong

to the overweight class at the L3 level since the L3 level users only recognize its Weight as

280/b.

108

Extending the instance-based data model: Semantics, perfonnance and security considerations

3) The absence of a property of an instance for users at a security level means that

this property is not present at the security level. However, the absence does not reflect the

rejection of this property. Users in the security level may define the property later. For

example, in the relational model any instance must belong to a table. We have to use null

to indicate a value of an attribute of the instance if the value of the attribute is missing or

the instance does not have this attribute. However, the mill value could be confusing (this

is the closed-world problem). On one hand, the null value itself tells that we do not know

whether the instance has this attribute. On the other hand, the schema indicates that any

record in a table must have the same set of attributes. In the instance-based data model,

this problem is solved. The instance-based data model uses the open-world model to

indicate an instance. If users recognize a property of the instance, they just add it to the

instance.

4) There is no beliefbased assumption in the lBMSM. ln class-based security

models, most recent models use a belief model to share data between higher levels and

lower levels. For example, the MLR model utilizes the concept called borrow to allow

sharing between high and low level records [76]. The BCMLS model has multiple labels

to indicate whether or not higher level records can trust a lower level record [77].

However, whether a higher level record trusts lower level data has to be specified in

advance of a query, not spontaneously with a query. This could cause the belief problem.

Figure 42 illustrates this problem. Assume the three records refer to one object, a person

James, in each relation. The actual age of James is 32. ln the beginning L3 level users

recognize that the age of James is 32, and the ~ level users think the age of James is 30.

109

Extending the Instance-based data model: Semantics, performance and security considerations

The L1 level users believe the L3 level users' view of the property, thus they inherit from

it. Figure 42(a) illustrates these kinds of recognitions. Afterwards, the L3 level users think

that the real age of James was 30, whereas the ~ level users realize that they were wrong

in the beginning and update the age of James to 32, thus their initial views have switched;

if the L1 level users still believe the L3 level view, thus continue to inherit from it, the

proper view of the property age to the L1 level user is lost. Figure 42 (b) shows the final

views of the di fferent security levels.

Weight Age TC
160 L, 32 L, L,
170 L, 30 L, L,
170 L, 32 L, L,

(a)

Name Weight Age TC
James L 160 L, 30 L, L,
James L 170 L, 32 L, L,
James L 170 L, 30 L, L,

(b)

Figure 42: The Belief Problem

5) In class-based security models, an object could have several views in different

security levels. For example, most class-based security models combine several key

attributes of a table and a security level as the real key to identify records in the table.

Since the key attributes identify objects in the relational model, it is possible that several

I 10

Extending the lnstance·based data model: Semantics, performance and security considerations

records (as many as there are security levels) could refer to one object. However, in

LBMSM, any object is described by its instance identifier. An object only has one

identifier however many security levels it might belong to. This is the biggest advantage

of the IBMSM model compared to class-based security models. The model solves several

problems caused by class-based models. We will discuss this issue in more detail in the

next chapter.

7.3 Data Access and Integrity Rules

A database is a collection of related data. A database state is a collection of all

instances of a database at a particular time. A secure database is a database in which the

state of the database can only change from one secure state to another secure state. In this

section we define data access and integrity rules to guarantee that data in an IBMSM

database is secure and consistent.

Rule 7.2 (Instance View Integrity) An L level view of an instance i, which is i(L), can

exist in an instance-based multilevel security database if and only if no identical view of

another instancej,j(L), exists in the same level in the database.

Rule 7.2 guarantees that no dupl icate objects ex ist in any level of a database.

guarantees the semantics of the instance identifier. Since an instance identifier includes

all the features of the instance, and no instance should have completely the same features

as any other instances in the real world, if a user discovers that any objects have

completely dupl icated properties, the objects arc identical. The original idea of Rule 7.2

I l l

Extending the !nstance·based data model: Semantics, performance and security considerations

comes from the semantics of the instance identifier in the instance-based data model;

however, in the security model, we extend the rule to each security level.

Rule 7.3 (Property Integrity} Instance i{(Pp, Lj)l Pp e P and Lj E L}e i satisfies property

integrity if and only if for any pair of (Pp, L) e i, (P11, L) e i, and Pp -:f:. P11 the expression

Pp r'l P11 = ¢is always true.

Rule 7.3 states that a user at security level L can create a property Pp, which is (Pp,

L}, of an instance i, if and only if the instance does not have property P P at the security

level L and there is no other property of the instance i at the level L that is a compatible

property of Pp. Rule 7.3 is also a rule extended from the instance-based data model (Rule

4.2 defined for the instance-based data model in Chapter 4) to the IBMSM.

Note that the property integrity rule only appl ies to properties in the same security

level. If two properties of an instance belong to d ifferent security levels, then it does not

matter whether they have an intersection.

Rule 7.4: A user at security level L can read a property P; of an instance at security level

Lj, which is the pair (P;, Lj). if and only if L:2: Lj.

Rule 7.5: A user at the security level L can only create (or update) a property P; of an

instance at the security level L (not higher, not lower).

Rule 7.4 and Rule 7.5 extend the basic Bell-LaPadula rules, which are No Re(ld

Up and No Write Down, to the instance-based setting.

112

Extending the Instance-based data model: Semantics, performance and security considerations

Rule 7.6: A user at security level L can read the instance identifier of an instance i({Lj })

if and only if L>-L', where L' is the lowest level of {Lj }·

Note that an instance identifier is a symbol that humans use to indicate an

instance. By Bunge's ontology, properties can only be possessed by things. The existence

of properties depends on things. If a user can recognize a property of an instance, it

should know which instance this property belongs to.

Rule 7.7: (Association Integrity) An association of two instances, i{(P;, Lj)l P; e P and

Lje L }and i'{(P1·, Lr)l P;· e P and Lre L }, at a certain security level L!i exists only if

(a) i and i' exist in the database. That is ie i and i 'e i.

(b) The security level of the association, Ly, should belong to both {Lj}e i and

{Lj) Ei ' . That is, Lije {Lj} n {Lj)-

Rule 7.7 (a) follows the referential integrity of the instance-based data model

introduced in the previous chapter, but (b) is new to the security model. Rule 7.7 (b)

indicates that instances can be associated in a security level if and only if they both can

be updated in that level. For example, assume there are 1\vo instances, instance I {(Name

John. L,), (Age 21, L J , (Weight I 20. L,), (Sex M. L,)J and inSiance 2 {(Name Alice, L,),

(Age 20, ~. (Sex F, ~}. in an IBMSM database. If the two instances associate together

to fonn a higher level thing (e.g. they are married), such an association can only be

formed at the ~ level. Although instance I belongs to the L1 level and users at the L1

level can read instance 2, instance 2 docs not belong to the L1 level. Following Rule 7.4,

users at the L1 level cannot update any information about instance 2. Adding an

11 3

Extending the instance-based data model: Semantics, performance and security considerations

association between instance I and instance 2 at the L1 level means to update information

of both instances at the L1 level, so the operation is not allowed.

Rule 7.8: A user u, can access data through a class, C({P1}, {Uj}), if and only if u e {Uj}.

Rule 7.8 represents the basic idea of the two-layered access control in the IBMSM

that plays an important role in the security control. We discuss it in more detail in the

next section.

In this chapter, we introduced eight data access and update rules for the IBMSM.

Some rules are inherited from previous multi level security models. For example, Rule 7.4

and Rule 7.5 come from the Bell-LaPadula model. However, some of the rules are unique

to the IBM SM. For example, Rule 7.8 is used for the two-layered security control. In

combination, these rules guarantee the consistency and security of the model (a proof of

this claim is provided in Section 7.6). We will show how the rules can be applied in

different operations in the next sections.

The rules proposed in this section are extended directly from the instance-based

data model. The origina! IBDM did not have these rules [2]. Instead, earlier work focused

on how to present the query ability and the flexibility of the model rather than on whether

rules are needed to ensure that data remain consistent. Even when a prototype system was

implemented based on the IBDM [70], the rules were not all included. After proposing

the instance view integrity rule and the property integrity rule for the IBMSM (the first

two rules of IBMSM), we found that the instance-based data model itself needed these

rules to make the model consistent, even though the rules in the instance-based data

model may not be as strict as in the IHMSM. So, we added a section in Chapter 4

114

Extendingthe lnstance·baseddata modei:Semantics, performanceand securityconsiderations

(Section 4.6) to discuss integration rules in the instance-based data model. We have

proposed rules in Section 4.6 and in this section in conjunction. Finally, we have rules for

the instance-based data model to improve the consistency and reduce possible

redundancy of data in the model. We also have rules for the lBMSM to guarantee the

consistency and security of the model. Since the IBMSM is based on the instance-based

data model, when we describe the rules in lBMSM, we indicate that some rules are

extended directly from the instance-based data model. But most rules in lBMSM were

developed in order to ensure a secure model and were not part of the original IBDM

specification.

7.4 Two-Layered Access Control

The instance-based multilevel security model uses two layers to control access to

data: the instance layer and the class layer. In the model, access is first controlled by the

class layer. The class layer governs the range of objects accessible to a particular user.

The second access is controlled by the instance layer, which controls the accessibility of

the sensitive data in a class to a user.

Figure 43 in the next page illustrates such control in the two-layered approach.

The dataset constitutes the instance layer; the classes represent the class layer. The

original dataset is divided into different sections, and each section contains both sensitive

and non-sensitive data. To access the data in each section, either non-sensitive or

sensitive, users have to be able to access different classes first. As shown in the Figure,

11 5

E11:tending the instance-based data model: Semantics, perfonnance and security considerations

User i(L2) User3(L3)

[:><_
User2(L,)

I
Class I Class2 Class 3

Figure 43: Two· layered Controls (Darker color indicates L2 level data, grey color

indicates L3 level data)

in order to access the dark section (sensitive data), users have to be authorized to access

classes first. Both User I and User 3 may access data in the dark data section since they

both have ability to access Class I; however, User 2 cannot do so since it docs not have

authorization to access this class. Users' abilities to access the same class docs not

necessarily mean that they share the same abi lity to access the data in the data·section

through this class. For instance, a L3 level user, User 3, can only access the L3 level data

but not the ~ portion, even if it is authorized to access the same classes as the ~ level

user, User I.

The SeaView and its derivatives use views to control access, as well. However,

the two. Jayered security approach in the instance·based multilevel security model is

different from the original multilevel security models in class·based models. For

example, in the MLR model, even if a real object has several records in different security

levels, they belong to the same class. However, in the IBMSM, an instance may belong to

different classes on different security levels. For example, an instance I{(NameJoJm, LJ),

11 6

Extendingtheinstance·baseddatamodei:Semantics,performanceandsecurityconstderations

(Student/D 200000/, L,), (Birthday 93/05/06, Lo)} is a student (defined by

student{StudentiD}) on ~ level, but it docs not belong to the class student on L3 level.

This approach increases the security of the IBMSM (we will discuss this in greater detail

in the next chapter).

7.5 Operations

7.5.1 Insertion

Insert an instance

The syntax to insert an instance, issued by a L level user, is the same as the

instance-based data model as follows:

Insert Instance ins_!D (pJ[, p1, ... , p,J) (I)

In (l), Insert and Instance are key words which indicate the insert instance

operation. The ins_ID is an instance identifier. p~, p2, ... , Pn are properties. []is used to

indicate optional elements and ' ... ' indicates repetition.

Each Insert Instance command can insert at most one instance into a database. The

inserted instance is constructed as follows:

(a) If ins_ ID is not in the database, the insertion will insert the instance, ins_ID{(P~.

L) j P1 E{ p 1[, p1, ... , pJ} and LEL }, into the database.

(b) If ins_!D is in the database, the insertion will add the property pairs, {(P,., L) l P,.

E{ pi{, p1 , p,J} and LEL }, into the instance ins _I D.

11 7

Extending the Instance-based data model: Semantics, performance and security considerations

There are two constraints to restrict the insertion of an instance. The instance, i, can

be inserted into the database if and only if after insertion

(a) No properties Pi and Pj exist such that (Pi, L) e i and (Pj, L) e i, and Pin Pj '#

(b) No instance} exists for which ({P1}, L) e i(L) equals ({Pj), L) e j(L) for any

Le L

For example, if there are some instances in a database including an instance,

instance/ {(Height 200, LJ), (Weight 180, LJ), (Color red, LJ}, then a user at L3 level

can insert an instance, instance2 {(Height 200, L3), (Weight 180, L3), (Color red, L3)},

into the database. However, the user cannot insert an instance, instance] {(Height 200,

L3), (Weight 180, L3)}, into the database, since instance \ and instance) have the same

property set in the security level L3.

The first constraint indicates that the inserted instance must satisfy the property

view integrity rule, while the second ensures that the resulting database satisfies the

instance view integrity rule.

Insert a mutual property

The syntax of the insertion of a mutual property issued by L level user, UL, is the

same as the instance-based data model, as follows:

Insert Mutua/property mp_JD shared by ins/DI, ins/D2{, .. .] (2)

11 8

Extending the lnst<lnce-based dat<l model: Semantics, performance and security considerations

In (2), Insert and Mutualproperty are key words used to indicate the insertion of a

mutua l property. The mp_ID is a mutual property identifier. The sequence ins!DI,

ins!D2[, .. .] are instance identifiers.

Similar to the Insert Instance operation, each Insert Mutua! property command inserts

at most one mutual property into a database. The inserted mutual property is constructed

as follows:

(a) If the sequence insiDI, insiD2[, .. .). which indicates the concept of combined

instance, is not in the database, the insertion wi ll insert the concept of combined

instance identifier, which is the sequence insiDI, insiD2{, .. .}, followed by the

pairs ((mp_ID, L) l mp_IDeMPand LeL) ..

(b) If the combined instance is in the database, the insertion will add the pairs,

((mp_ID, L)l mp_!DeMP and Le L), into property set of the combined instance.

From the above method, construction of a mutual property is like construction of an

instance. However, more constraints are applied to it:

(a) The combined instance can be inserted into the database if and only if for any

ie(insiDI, insiD2[, .. .}}. i(L)e i

(b) After the insert ion, for any two property pairs (MP;, L) and (MPJ'o L) of the

combined instance, M P; n M Pj = q,

The above two insertion operations are in the instance leve l. They operate on the

basic data of the database. An insertion operation on the class level is also proposed,

designated by the command insert class and is intended for system administrators.

119

Extending the instance-based data model: Semantics, perfonnance and security considerations

Insert a class

The syntax of the insert class issued by a system administrator in the instance

based security model as follows:

Insert Class C/ass_/0 ({P1[, P2, .. , P,J }. {U1[. U2, ..]}) (3)

In (3), Insert and Class are key words used to indicate the insertion of a class.

Class_ID is a class identifier. P1, P1, ... , P, are properties, and U, VJ, ... are user

identifiers.

Each Insert Class command will insert one class into a database. The inserted class is

constructed as follows:

(a) If Class_ID is not in the database, the operation will insert the class,

C/ass_ID{({PJ, {0})1 P1 e{ P,[,P,. ... , P,J} and 0 e{ U,[.U,, ..]}.

(b) If Class_ID is in the database, the operation will update the class with the new

definition: Class_ID{({PJ, {0})1 P1 E{ P1[.P,. ... , P,J} and 0 e{ U,[.U,, ..]}.

Several restrictions have been placed to restrict the operation of Insert Class; a class c

can be inserted into the database if and only if:

(a) For any property, P;, if P; is in the definition of class c then P;e P.

(b) For any two properties P1 and P1, P; e c and P1 e c, there is no precedence

between P1 and P1 such that P; __.P1 or Pr -+P;. (Here the arrow-+- indicates

preceding relation between properties [57].)

(c) For any Ue {Ui }, Ue U.

Restriction (a) indicates that any property in the inserted class must be in the

instance layer. By Bunge's ontology, a class is a set of instances that share some

120

Extending the instance-based data model: Semantics, performance and security considerations

properties. If no instance possesses a property, then, of course, no class will exist.

Restriction (b) indicates that any inserted class should have as few properties as possible

in its definition. One property preceding another means they are possessed by the same

set of instances. Restriction (b) eliminates this possibility which reduces the number of

properties in the class definition. The restriction (c) indicates that only ex isting users can

access a class.

7.5.2 Deletion

Delete an instance

The syntax of the deletion of an instance issued by an S level user is very similar

to the operation of insertion. The basics of the operation on the instance-based data model

are as follows:

Delete Instance
Frome
[Where Pp {%}} (4)

Similar to the insertion operation, Delete and Instance in (4) are key words to

indicate deletion of an instance. The % sign indicates any lower (lower than L) security

levels of the property, Pp, that need to be considered as a condition of the command. The

From and Where clauses are conditions added for the deletion, which have the same

semantics as their definitions in the relational model.

The semantics of command (4) is implemented as follows:

For any instance i, a user at security level I issuing a Delete Instance command

will result in the following:

121

Extending the instance-based data model: Semantics, performance and security considerations

(a) if the instance, i, does not have any property view at / level or the instance

does not exist in the database, then no instance or instance view will be

deleted.

(b) If i is only in the security level /, that is the operation will delete all properties

of i and the instance identifier, i, itself.

(c) If i belongs to more than one security levels, that is, then the Delete Instance

command issued by / level user only deletes the properties of the instance, i, in I

level. Other security levels' properties and the instance identifier of the instance

are preserved.

An /-level user issuing a Delete Instance operation must meet two requirements

before the command can be executed. For the deletion of the instance i, selected by

clause From and Where conditions:

(a) The user must be able to access the class c.

(b) The L level instance does not participate in a mutual property.

Delete a mutual property

The syntax of the deletion of a mutual property issued by an I level user is defined as

follows:

Delete Mutua/property mp_ID [shared by instance ins!D1, ins!D1, .. .} (5)

In (5), Delete and Mutua/property arc key words used to indicate the deletion. mp _!D

is a mutual property identifier. The sequence ins/DI, ins!D2, ... are instance identifiers.

122

Extending the instance·based data model: Semantics, performance and security considerations

The semantics of the command (5) are simi lar to the Delete Instance command. The

implementation of (5) is as follows:

for the mutual property, mp _ID,

(a) If mp_ID is only in the security level /, then the operation will delete the

association (mp_ID) between the sequence insiD1, insiD1, .. from the database.

(b) If mp_ID belongs to more than one security level, then the operation issued by

I level user only deletes the I level association bet\veen each instance of the

sequence. The associations on other security levels will still be preserved.

The requirements of an L level user to issue a Delete Mutua/property command

follow the rules of the security control:

(\)The mutual property, mp_ID, must possess a security level view equal to the

security level L.

(2) The user must have the ability to access each instance member in the sequence

ins1D1, ins1D1 • ... through some classes.

Delete a class

In the instance-based security model, instances are stored separately from classes.

Classes serve as security control functions most of the time. So, class deletion, with

syntax as delete class className, issued only by system administrators in the model, is

very easy to implement The system simply deletes the class and no condition needs to be

met for the operation.

123

Extending the instance-based data model: Semantics, performance and security considerations

7.5.3 Select

The syntax of the select operation issued by an /level user, u, is as follows:

Select Pt[/%1. P, .. 1
From c1 [, c1, •• .}

[Where P" f%1 1
[Sharing mp [%}] (6)

In (6) ? 1, P1••• and P11 are properties, c1[. c1, .. .} are classes, mp is a mutual

property, and the % sign indicates to include all security levels lower than user u's

security level I.

The semantics of the Select statement is that only the instances accessible from

the class c 1 to the user u and possessing properties P1[, P1 ... J in I level (or lower if there

is a %sign) will be present in the results. If there are more than one class in the From

clause, whenever the user u accesses instances from these classes, the query results will

be presented. The Where and the Sharing clauses place restrictions only on the final

results, which is identical to the lBDM model.

There may be a %sign followed by a property in both Select and Where clauses in

the IBMSM model when a query is issued as shown in (6). The sign indicates the biggest

difference between class-based security models and the lBMSM model. As we have

discussed, most of the multilevel security models are belief-based models. For example,

the MLR model uses borrow to allow a higher level record to share some information

from a lower level record. However, their belief model is based on pre-belief, which

means that whether a higher level record believes some information of lower level

records is decided before the higher level record is added to a database. We already

124

Extending the Instance-based data model: Semantics, performance and security considerations

discussed the problems of pre~belief in section 6.2. The IBMSM does not use the pre

belief model. It uses a post~belief model, which means that whether a higher level user

believes a lower level information is determined at the time he/she issues a query. In the

model, we use the % sign to indicate which level of information the higher level user

wants to query or use the % sign to add some conditions which are in lower levels (in the

Where clause or Sharing clause). For example, an / level user may issue a query:

Select Name L3 From student (7)

This query will give the / level user all the student names at the L3 level.

The Select statement is very Oexible in the instance~based security model. Users can

query almost anything and the statement will always return results (even if the result is

empty).

A user may declare a query as:

Select P 1 From c (8)

The user may issue query (8) even if P1 is not in the definition of class c. However, in

general, we assume that P1 is, at least, a property preceded [57] by properties of c to

make more sense of the queries. This restriction is useful in the security model. For

example, if a class student is defined as enrolling a university, then a user may issue a

query:

Select Name, Student/D From student (9)

Query (9) will be fine in the LBMSM model since any student should have a name and

student number. So, the properties Name and StudentiD precede enrolling a university.

However, if a user issues a query:

125

Extending the Instance-based data model: Semantics, performance and security considerations

Select Name, Salary From student (10)

Query (I 0) makes no sense if students do not have a salary (as students).

The restrictions on Query (8) are also important in the lBMSM. As we already

discussed, the IBMSM is based on the IBDM. In the IBDM, an instance may belong to

more than one class. For example, an instance lnstancel{Name James, Age 30, Weight

380, Salary 4800} might belong to two classes: Oven veight{Name, Weight> 300} and

Employee{Name, Sa/my}. However, in the IBMSM, the ability for a user to access an

instance is controlled by two-layers: the class layer and the instance layer. Assume a user

is a doctor and can access patient information through the Overweight class. However, he

cannot access any employee information. If we do not have the restriction, he may issue a

query:

Select Name, Salary From Overweight (II)

to get some infonnation about his patient's employment, which we suppose he should not

have the need or capability to access.

After we introduce the restrictions above, Query (11) is not allowed since Salary

is not preceded by Overweight class.

7.6 Security

Since the IBMSM is based on the instance-based theory, it is fundamentally

different from the traditional class-based models. ln this section, we will prove that the

IBMSM is a secure model, which means there is no covert channel between any security

levels.

126

Extending the instance-based data model: Semantics, performance and security considerations

As we have discussed, IBMSM utilizes a two-layer approach to control access,

the class and the instance layers. In the class layer, the accessibility of a class to a user is

not detennined by a user's security level. Users at different security levels may access the

same class (the definition of the class). Also, sensitive information is not accessible by

users in the class layer. Any data in the class layer is maintained by system

administrators. A user may query a class definition if he/she can access the class.

Therefore, the fom1ation of covert channels is essentially impossible at the class layer.

The following proof will focus on the instance level.

The following notations will be used:

U: the set of all users with varying security levels.

/ : the set of all instances with varying views in all security levels.

P: a property with varying security level views in an instance.

For a certain security level/,

UL(f): the set of users with security levels lower than or equal to /.

UH(f): the set of users with security levels higher than /.

IL(f): a set of views of instances with the security level / or lower.

Iff([): a set of views of instances with the security level higher than /.

PL(f): a set of views of properties of instances with the security level equal to or lower

than /.

PH(f): a set of views of properties of instances with the security level higher than /.

From the above notations, six equations can be obtained:

UL(/) u UH(I)~U (I)

127

Extendingtheinst<lnce-baseddat<Jmodel:Semantics,performanceandsecurityconsiderations

UL(/) n UH(I)~ $ (2)

Equations I and 2 mean that all users are in a security level either higher than I

level or lower (or equal to) than I leve l, and no user is in a security level both higher than

/level and lower (or equal to) than I level at the same time.

I L(/) u iH(/)~1

IL(/) n I H (i)~ $

(3)

(4)

The equations 3 and 4 mean that: all views of instances have their security leve l

either higher than I level or lower (or equal to) than I level, and no view of any instance

has its security level both higher than I level and lower (or equal to) than I level.

PL(/) u PH(/) ~ P (5)

PL(/) n PH(/) ~ $ (6)

The equations 5 and 6 mean that all views of properties are in a security level

either hi gher than /l evel or lower (or equa l to) than /level, and no view of any property is

in a security level both higher than I level and lower (or equal to) than / level.

Note that in rBMSM, if an instance i is in I security level, i(l) , this means that it

has at least one view of at least one property of the instance i at the security level/.

A database is collection of values of data. A database state is the coll ection of data

in database at a particular time. A secure state of a database is a state in which data can

on ly be accessed by following Beii-LaPadula 's rules (No Read Up and No Write Down).

A secure database is a database in wh ich the state of the database can only change from

one secure state to another secure state.

128

Extendingtheinstance-baseddatamodei:Semantics,performanceandsecurityconsiderations

One Database State IBMSM Operations

Select
Insert
Delete

Another Database State

Figure 44: IBMSM Database State Transformation

A secure data model is a database model that takes a database from one secure

state, through a number of operations, to another secure state. Figure 44 ill ustrates this

idea. Goguen and Meseguer suggest a noninterfering security data model [81]. In this

model, they define several concepts for security data models. We wi ll also use their

definition for a secure database. For any security level/, a command to delete any data

issued by users at a higher security level does not affect the view of data to any user at

the lower security levels.

Theorem 7.1: The IBMSM is a secure data model.

As shown in Figure 44, a database is modified from the in itial to the fina l state by

a series of user operat ions. To prove that lBMSM can only go from one secure state to

129

Extending the instance-based data model: Semantics, perfonnance and security considerations

another secure state through a sequence of operations, we only need to prove that

IBMSM operations are secure, since those are the only operations allowed.

In IBMSM, all database operations are issued by users on a certain security level.

First, we will prove any security level database operation will not affect (here affect

means increase or reduce infonnation) at another security level. For example, a higher

security level user operating on data should not affect any lower security level users.

Also, a lower security level user operating on data should not affect any higher security

level users. Thus, a direct path from neither left to right nor right to left is possible, in

Figure 45.

Figure 45: Different Security Levels of Users Affect Each Other

Figure 46: Users Affect Each Other on Different Level Data

130

Extending the Instance-based data model: Semantics, performance and security considerations

In fact, a user at a certain security level, /, may operate on two types of data. One

is the data at security levels equal to or lower than /. The other is the data at the security

levels higher than /. So, whether users affect each others in Figure 45 can be expressed as

Figure 46.

We will prove Theorem 7.1 by following two steps:

To prove that any higher level data change will not affect any lower level user in

IBMSM, we must fi rst prove Lemma 7. 1.

Lemma 7.1: For any security Ievell, changing data at higher level security views

of instances, JH(I), will not affect any users ueUL(l).

Proof A user u at security level 1' can use several operations to access database, namely

Select, Insert, and Delete. The user, u, at security level/',/' :S /,means ue UL(/).

For the select operation, the user u can access any view of an instance, i(/')e IL(/'), whose

security level is equal or less than the security Ievei i'. IL(I') is a set of views of instances

that are in 1' level. Only p(l') or lower security level properties of instances, or PL(l'}, can

be accessed by the user 11. Views of instances at levels higher than I' level are not

accessible by user u. Since I'S 1, so PH(/');;;;;;! PH(/) and IH(I') ~ IH(/). We already know

that ¢= IL(/') n IH(/') and ¢ = PL(/') n PH(/'). So, ¢ = IL(/') n IH(/) and$ = PL(/') n

PH(/). That is, any changes in PH(/) and IH(/) will not affect PL(/') and IL(l'). Therefore,

changes of PH(/) and IH(/) do not affect I' level users ue UL(/) with 1'$. 1.

For Insert and Delete operations, any operation can be either a success or a

fai lure. However, since IBMSM only allows 11 to operate on the data with these

operations at its own security level, successful operations only modify the data at the

131

Extending the instance-based data model: Semantics, performance and security considerations

security level I '. Changes at other security levels of data other than / ' will not affect the

users at those levels at all. That is, changing PH(/) and IH(/) will not affect any / ' level

users ue UL(/) with /'~ I.

Several factors can result in failures of operations:

(I) An Insert Instance command issued by a I' level user, u, to insert an instance i,

could fail if and only if

(a) There are two properties P; and Pj, which (Pi, l')e i and (Pj, /')e i, and Pi

n Ppt¢

(b) There is an instance, instance}, which i(/')=j (/') for any /'e L

(2) An Insert Mutua/property command issued by a I' level user, u, to insert a mutual

property of two instances, i and}, could fail if and only if

(a) i(/') E i or J(I')E i

(b) There are two property pairs (MP;, /') and (MPj, /') of the combined

instance, MP; n MPj :/; cj)

(3) A Delete Instance command issued by a I ' level user, u, to delete an instance view

at the I' level, i(/'), could fail if and only if a combined instance (mutual property)

is formed by the instance at the I' level.

(4) A Delete Muw afproperty command issued by a I' level user, u, to delete a mutual

property view at the / ' level, mp(f'), could fai l if and only if a combined instance

(mutual property) is formed by the mutual property at the I' level.

All above situations arc dealing with the/' level data (instance view, property view,

etc). However, any data at the/' level, either p(/'), mp(/'), or i(/'), belongs to PL(/') or

132

Extending the instance-based data model: Semantics, performance and security considerations

IL(/'). Since /'5 /, PH(/');;~ PH(/) and IH(/') ;;~ IH(/). So, p(/'), mp(/') < PH(/') ;;~ PH(/),

and i(/') e IH(/') ~ IH(I). That is, changes in PH(/) and IH(/) do not affect any I' level

users ue UL(/) with 1'-:i I.

The proof of Lemma 7.1 is complete. 0

Second, we are going to prove that any higher level user will not affect any lower

level data in IBMSM. Using the same strategy, we obtain Lemma 7.2.

Lemma 7.2: For any security level I, higher level security user u, ueUH(I),

changing data does not affect any data PL(i) or IL(I).

Proof: A user may change data in two ways: insert data to or delete data from an IBMSM

database.

(I) An Insert Instance command issued by the/ ' level (/'>/) user 11, ue UH(/), to

insert an instance view i(l'), can only add a set of property views of the instance i,

{p(/')}e PH(/), to the database. Since/'>/, the added data {p(/')}e PL(I).

(2) An Insert Mutua/property command issued by the I' level (/'>/) user u, ue UH(/),

to insert a mutual property view of two instances, i and j , can only add a mutual

property view of the instances i and j, mp(l')e PH(/), to the database. Since /'>/,

the added data mp(/')< PL(I).

(3) A Delete Instance command issued by the I' level (/'>/) user u, ueUH(/), to delete

an instance view at the I' level, i(/'), can only delete a set of property views of the

instance i, {p(l')}ePH(/), from a database. Since/'>/, the deleted data {p(l'}}i!

PL(I).

133

Extending the instance-based data model: Semantics, performance and security considerations

(4) A Delete mutua/property command issued by the /' level user, u, to delete a

mutual property view at the I' level, mp(l'), can only delete a mutual property

view mp(l')ePH(l) of instances formed to a database. Since /'>/, the deleted

mutual property mp(l')e PL(I).

From the above operations, it becomes clear that if the/' level user,/'>/, changes any

data it does not affect any data in PL(I) or IL(I).

The proof of Lemma 7.2 is complete. 0

From the above two lemmas, neither path from higher level users to lower level data

nor higher level data to lower level users is applicable. Figure 47 shows the results of the

two lemmas.

Figure 47: Affecting on Different Levels

Finally, Theorem 7. 1 can be proven.

Proof: As shown in Figure 47, since U = UL(I) u UH(l) and ¢ = UL(I) n UH(I). no user

is in between UL(/) and UH(/). Because I = /L(I) u/H(I). ¢ = /L(I) n IH(I). P = PL(I) u

PH(/), and¢ = PL(I) f1 PH(/). the intersection between two sets of data, (PH(/) & IH(I)}

134

Extending the Instance-based data model: Semantics, performance and security considerations

and {PL(I) & /L(I)}, is empty, as well . Thus, no connection can be made between either

different security levels of users or different security levels of data, which in tum proves

that the IBMSM is a secure model.

The proof of Theorem 7.1 is complete. 0

7.7 Structure and Implementation Methods ofiBMSM

We have proposed the instance-based multilevel security model and proven that

the model is a secure model. In this section, we will discuss a possible way to implement

the model.

In chapter 5, we have shown that the instance-based database management system

consists of three parts. However, the IBMSM system needs additional components as

shown in Figure 48. These four categories are (from the bottom to the top of Figure 48):

data storage, algorithm management, security management, SiQL language, and database

management. The components of each category are as the following:

Stored Data: This component includes two parts. The first is the instance layer

data, which includes instances, intrinsic properties and mutual properties, and security

infonnation for each intrinsic and mutual property, as well as the values of intrinsic and

mutual properties for all instances. The data structure may vary according to the features

of the instance-based data model. For example, in the instance layer the stored data of an

IBMSM database may have a structure as shown in Figure 49, according to the second

data structure in the instance-based data model. In this data structure, we maintain each

intrinsic property as a list, consisting of the property identifier, fo llowed by a set of three

135

Extending the instance-based data model: Semantics, performance and security considerations

~- ···-·· -··-··--·-···-··-···-···-··-··-··-··-----------··-· ' '

I .,.,.~ i

!_ l

Figure 48: Architecture of the Instance-based Multilevel Security System

values: an instance identifier, the value of the property for this instance, and the security

level. In the same way, a mutual property is maintained as a list of mutual property

136

Extending the instance-based data model: Semantics, performance and security considerations

identifier fo llowed by a set of four values1: first two are instance identifiers which jointly

possess the mutual property, the third one is the value of the mutual property, and the last

one is the security level of the mutual property. The second part is the class layer data. It

includes class definitions (in tenn of properties), followed by a set of users who can

access the class (Figure 49).

101

10 3

The Instance Layer

Class I
Pro crt I
Pro crt 2

Mutual Pro rt I
Set of Users

The Class Layer

Figure 49: An Example Data Structure of IBMSM

L,

L,

Data Storage Methods: This area also includes two types of methods. The first

methods are the methods used to store the instance layer information, (i.e., methods to

store instances themselves, intrinsic properties, mutual properties and the security

1 We only show a mutual property jointly possessed by two instances; if a mutual property is jointly
possessed by more than two instances, we can combine the identifiers of all instances that jointly possess
the mutual property to form a new identifier indicating the instances are related to each other using this
mutual property.

137

Extending the lnstance·based data model: Semantics, periormance and security considerations

information of properties). The second are the methods used to store the class layer

information. This includes a method to store class definitions.

Algorithms for Accessing Data: This component is related to the data storage

method. Because data access methods are based on data structures, the algorithms can be

categorized into two major types: methods to access instance layer information and to

access the class layer. The first type includes an algorithm that specifies how to insert,

delete, and retrieve instance information; an algorithm that specifies how to insert, delete,

and retrieve intrinsic property infonnation; and an algorithm that specifies how to insert,

delete, and retrieve mutual property information. The second type includes algorithms to

access class layer infonnation. It includes inserting, deleting and retrieving the definition

of classes. Each algorithm above must adhere to the rules we have defined for the

instance· based data model in Chapter 4.

Query or Update Algorithm: This component includes the methods and

algorithms to query or update operations. The algorithms need to follow the constraints

that we have discussed in Section 7 .5. For example, an insert of an instance operation

should be denied if an instance has the same set of properties as the insert instance in a

certain security level.

Instance and Class Engine: The instance and class engines are the same as the

instance·based data model. The instance engine manages the instance layer. It creates a

unique identifier for each instance, intrinsic property, and mutual property in the

database. The class engine manages the class layer. It creates a unique class identifier for

each class.

138

Extendingtheinstance-baseddatamodei:Semantics,performanceandsecurltyconsiderations

Security Access Algorithm: This component implements algorithms for the

multilevel security control, for example the No Read Up and No Write Down algorithm.

All rules we have discussed in Section 7.3 and Section 7.4 must also be implemented in

this component.

Security Level Management: This component manages security levels in an

IBMSM system, for example the number of levels in a database and/or the kinds of

relations between two different levels will be managed by this component.

Compiler: It is used to compile SiQL commands.

SiQL language: This component uses the standard language of the IHMSM

database system. It is a security extension of the iQL (instance-based Query Language)

(70]. It supports a SQL-Iike query language as described in Section 7.5.

7.8 Summary

In this chapter, we proposed a new multilevel security model, IBMSM, according

to instance-based concepts. The model uses two layers to ensure complete security

control compared to the traditional multilevel security control methods, and we built

several rules and operation methods for the model. After providing these rules, we proved

that the model is a secure model. At the final section we discussed a possible way to

implement the IBMSM system. The described method shows that the IBMSM system is

implementable. In the next chapter, we will give some examples to illustrate that the

IBMSM model solves several problems raised in traditional MLR models.

139

Extending the Instance-based data model: Semantics, performance and security considerations

Chapter 8

Power and Security

In the last chapter we proposed the IBM SM. The IBMSM is more powerful and

secure than traditional multilevel security models. In this chapter, we discuss how the

instance-based multilevel security model addresses several unsolved problems under the

traditional multilevel security models.

8.1 Duplicate Records Problem

First, when traditional models, for example the seaView model and the MLR

model, deal with entity polyinstantiation or clement polyinstantiation (82], we have to

store infom1ation about the same real world thing in different security levels. The number

of security levels a system has determines how many records are needed, even if only

one real world thing is being represented. Entity polyinstantiation implies a relation that

140

Extending the Instance-based data model: Semantics, performance and security considerations

contains multiple tuples with the same key attribute values but with different security

levels. Figure 50(a) illustrates entity polyinstantiation. ln Figure 50(a), the first and the

second records of the relation Person have the same key attribute value, John. However,

they belong to different security levels. In the first record the value of name belongs to

the L1 level, but in the second record the value of name belongs to the LJ level. Figure

50(b) illustrates clement polyinstantiation. In Figure 50(b), the first record and the second

record of the relation Person have the same key attribute value in the same security level,

where name is Jolm and the security level is L1. However, the record itself belongs to the

different security levels. The first record belongs to the L1 level but the second record to

the L1 level.

Person

TC Name Label, Age Label2 Home Phone Labe\3

L, John L, 21 L, (709)737- 1236 L,

L, John L, 21 L, (709)737-1234 L,

L, Alice L, 25 L, (709)78 1-4321 L,

(a)

Person

TC Name Label1 Age Labeh Home Phone Labeb

L, John L, 21 L, 709-737-1236 Lz

L, John L, 21 L, 709-737-1234 L,

L, Alice L, 25 L, 709-781-432 1 L,

(b)

Figure 50: Entity Polyinstantiation and Element Polyinstantiation in MLR Model

141

Extending the Instance-based data model: Semantics, per1ormance and security considerations

As we have already seen, in the semantics of class-based models, records having

the same key value represent the same real world thing. However, in class-based models,

as shown in Figure 50, whether we adopt entity polyinstantiation or element

polyinstantiation, we have to store the same real world thing to different security levels

even if they only have one attribute that belongs to different security levels. This kind of

approach reduces the possibility of data sharing and induces data storage duplication. In

general, there is always a balance between sharing data and securing data in class-based

models. For example, if we build a separate database for each security level, there wi ll

not be any possibility of any covert channel occurring between any security levels; thus,

the data is the most secure. However, data sharing between these databases is nearly

impossible. Users have to maintain these databases separately. To conclude, building a

separate database for each security level will cause at least two problems: the fi rst is that

it will significantly increase the cost to maintain several databases compared to

maintaining only one database with the same size. The second problem is that it will be

difficult to maintain consistency of data between these databases. If we bui ld a database

for each individual security level, we have to maintain the non-secured data consistently.

In the IBMSM, any real world thing only has one identifier. An instance will

belong to a security level if the instance possesses a property that belongs to the security

level. In this model, the first and the second records in Figure SO(b) can be combined to

store as one instance, lnstancel{(Name John, LJ),(Age 21, LJ), (Home Phone 709-737-

1234, LJ), (Home Phone 709-737-1236, LJ)}. In this case, no redundant data will be

stored. So, the IBMSM is more efficient in storing multilevel data.

142

Extending the instance-based data model: Semantics, performance and security considerations

8.2 Null Values

As we have discussed before, in traditional class-based models all records of a

class (relation, table) have the same number of attributes. These attributes express the

lowest boundary of the class. Any record has to be assigned to a class before it can be

stored to a database. However, there are lots of possibilities where some values of

attributes cannot be decided or obtained when users insert a record into a database. The

relational model introduces a null value to deal with this kind of situation [85]. But the

semantics of the null value is incomplete. For example, the most commonly asked

question about a null value is whether it means "we do not know" or "it is not

accessible". In the multilevel security model a null value may also produce a covert

channel as we have discussed before. So, the most traditional class-based M LR models

do not support a null value. For example, SeaView and the MLR do not allow null values

to avoid this kind of confusion and the problems that result. However, the null value

problem comes from the theory of class-based models. Traditional relational models are

based on the class-based model. They simply cannot avoid null values. Null values

widely exist in traditional relational databases. By not supporting null values, class-based

security models cannot be applied to this kind of dataset. Of course, this limits the

applications of models.

The IBMSM is based on the instance-based data model, which is an open world

model. In contrast to class-based models, which only support fixed attributes in a class, in

the instance-based multi level security model, an instance may be independent of any

class. In the model, before an instance is stored into a database, one does not need to

143

Extendingtheinstance-baseddatamodel: Semantics,performanceandsecurityconsiderations

assume the instance belongs to certain classes. An instance belongs to a class because the

set of properties in the class definition is a subset of the properties of the instance. An

instance does not need to store any infonnation about a property if the property does not

belong to it. So, in the IBMSM the null value problem does not exist.

8.3 Sensitive Data in the Key Attributes

When dealing with sensitive data in the key attributes, traditional multilevel

security models generate several problems.

8.3. 1 Multilevel Key Attributes Problem

When the key consists of multiple attributes, traditional M LR models need to set

all the key attributes in the same security level. In this case, the values of the key

attributes cannot be borrowed from the lower level as indicated in MLR. Let us assume

that we have the same relation as Figure 50(a); however, the key of the relation is defined

as two attributes: Name and Age. Since the key attributes should be in the same security

level, the value of the age attribute in the first record of Figure 50(a) cannot be borrowed

from the second record (the lower level record). We have to set a separate value of this

attribute at L2 level, which is the same security level as the name attribute level. Figure 51

shows the resulting relation. The value of the Age attribute in the first record and the

value of the Age attribute in the second record belong to different security levels. They

are not related to each other even though they have the same value and represent the same

144

Extending the instance-based data model: Semantics, performance and security considerations

aspect of the same thing. Of course, reducing the borrow capability in key attributes

reduces the flexibility of databases. On the contrary, an lBMSM database does not have

key attributes. An instance will automatically belong to a security level if it possesses a

property that is in the security level. In the IBMSM model, the instance depicted in

Figure 50(a) can be stored as lnstancei{(Name John, Lz), (Name John, LJ), (Age 21, L3),

(Home Phone 709-737-1234, LJ), (Home Phone 709-737-1236, Lz) }. In this case, the L1

level users will get all stored information of the instance, whereas the L3 level users will

get a view of the instance as: lnstancel{(nameJohn, L3) , (Age 21, L3}, (Home Phone 709-

737-1234, L,j}.

The IBMSM is clearly flexible to represent things that belong to multilevel security

levels.

Person

TC Name Label1 ~ Labeh Home Phone Labeh

L, John L, £)_ L, (709)737-1236 L,

L, John L, £)_ L, (709)737-1234 L,

L, Alice L, ~ L, (709)781-4321 L,

F1gure 51: Multiple Key Attributes Problem in MLR

8.3.2 Key Loophole Problem

Another problem when traditional M LR models deal with sensitive data in the key

attributes is the key loophole problem [83]. A key loophole occurs when key attribute

145

Extending the Instance-based data model: Semantics, performance and security considerations

values are di fferent in different security levels but represent the same entity in the real

world. To illustrate the problem, consider the following example:

A fictional airline company, let us call it West Airline, keeps track of its

passengers in an MLS database. The airline classifies its employees into two clearance

categories, L; and L1, by the sensitivity of information they are allowed to see. Every

passenger must be accounted for, on every clearance level. However, the actual

passenger's age and occupation may be hidden from some security levels. The sample

relation shown in Figure 52 contains information about two passengers. All the

information on passenger Alice is available for all two clearance levels. However, the

infonnation on passenger John, an air marshal, is more sensitive. The subjects on the L1

level view John's age, the correct occupation and seat number. The subjects on the L;

level can only see the seat number; both John's age and occupation are masked.

Passenger

Name Age Occupation Seat# TC

Alice /,J 25 L, Student L, 123 L, L,

Alice /,J 25 L, Stt1dcnt L, 123 L, Lz

John /,J 28 L, Teacher L, 125 L, L,

John /,J 30 Lz Air Marshal Lz 125 L, Lz

Figure 52: Passenger Relation

There will not be any problem to use MLR in this case. For example, the L; level

and L1 level users will have their views as in Figure 53.

146

Extending the instance-based data model: Semantics. performance and security considerations

However, if we need to mask John's name on LJ level as well, then we only have

one way to do that in the current class-based MLR models, as shown in Figure 54.

Passenger L1 Level View

Name Age Occupation Site# TC

Alice 0_ 25 L, Student L, 123 L, L,

Alice 0_ 25 L, Student L, 123 L, L,

John 0_ 28 L, Teacher L, 125 L, L,

John 0_ 30 L, Air Marshal L, 125 L, L,

Passenger LJ Level View

Name Age Occupation Site# TC

Alice 0_ 25 L, Student L, 123 L, L,

John 0_ 28 L, Teacher L, 125 L, L,

Figure 53: Different Level Views on Passenger Table

Passenger

Name Age Occupation Seat# TC

Alice 0_ 25 L, Student L, 123 L, L,

Alice 0_ 25 L, Student L, 123 L, L,

David 0_ 28 L, Teacher L, 125 L, L,

John 0_ 30 L, Air Marshal L, 125 L, L,

Figure 54: Mask John's Name in Passenger Relation

147

Extending the Instance-based data model: Semantics, performance and security considerations

In Figure 54, if we simply change mask John under a fictional name David on the

L3 level, it seems very simple. However, we now have a problem. In this case, the user on

the L2 level should know that David is simply a mask for John, and the passenger named

David is fictional. The L2 level user should treat all records related to David as non-

existing. This can cause problems in situations when an L2 level user has to communicate

with lower level users. For example, the L2 level user would not know that LJ level users

are aware of the passenger David in case he has a medical emergency.

Another way for the MLR models to deal with the key loophole problem is to

hide the higher level data from lower level users. This approach is illustrated in Figure

55.

In this case, the information about the passenger John is completely hidden from

the lower level users. However, unless we physically separate the seats of a higher

security level passengers from the lower security passengers on an aircraft, which is

impossible and against the purpose of having air marshals on board, this will cause

confusion and possibly leak information to the lower level users.

Passenger

Name Age Occupation Seat# TC

Alice 0 25 L, Student L, 123 L, L,

Alice 0 25 L, Student L, 123 L, L,

John 0. 30 L, Air Marshal L, 125 L, L,

Figure 55: Hidden Passenger John from Lower Level Users

148

Extending the instance-based data model: Semantics, performance and security considerations

For example, a stewardess (assuming a L3 level user) wi ll notice that a passenger is in the

seat number 125. However, according to the database, this seat should be empty. This

apparently conflicting information can cause confusion and, more importantly, the LJ

level users to become aware of the fact that that information was kept hidden from them.

Therefore, this approach has a potential to open covert channels [84].

In the instance·based multilevel security model, the instance identifier represents

the real world thing. It is not assigned to any security level. And there is only one

instance identifier for one real world instance. For example, to set a cover story for

passenger John, in IBMSM model what we need to do is set a mask value for his name,

age, and occupation. An IBMSM database stores John's information like the fo llowing

Jnstancei{(Name John, Lz), (Name David, LJ), (Age 30, Lz), (Age 28, L3), (Occupation

Air Marshal, Lz), (Occupation Teacher, L3), (Seat# 125, LJ)}. When a L3 level user

queries John's infonnation, he/she will get a view as the following lnstancel{(Name

David), (Age 28), (Occupation Teacher), (Seat# 125)}. John 's information is completely

covered. The potential to produce covert channels in relation to traditional class·based

MLR models is greatly limited because, in the instance·based multilevel security model,

no key attribute needs to be dealt with.

8.4 Summary

In this chapter we have given several examples to demonstrate how the IBMSM

model solves the problems which traditional MLR models cannot. The most significant

difference between IBMSM and the class·based traditional multilevel security models is

149

Extendingtheinstance·baseddatamodei:Semantics,performanceandsecurityconslderatlons

how the data are stored in databases. ln the IBMSM, there is only one instance stored in

databases, regardless of how many security levels to which the instance belongs. This

gives IBMSM an advantage in achieving the purpose of building a multilevel security

database that supports sharing data under different security clearances without any covert

channel. Meanwhile, the IBMSM model also solves several problems that occur when

traditional MLR models deal with sensitive data in the key attributes. The model also

does not have the null value problem which widely exists in traditional MLR models.

Therefore, the IBMSM model is very suitable for management of multilevel security

data.

!50

Extending the Instance-based data model: Semantics, performance and security considerations

Chapter 9

Conclusions and Future Work

This chapter has three major sections. The first section describes the primary

conclusions that have been arrived at through this research. The second section

summarizes the research contributions. The third section outlines a number of directions

for future research.

9. 1 Conclusions

Traditional databases are designed for special purposes. Designing a database for

multiple applications is a difficult task using traditional database models. The instance

based data model adopts a two-layered approach to manage data in a database. It provides

the possibility to use one data set for multiple applications by storing data on the bottom

151

Extending the lnstance·based data model: Semantics, performance and security considerations

level (the instance level) and building multiple applications on the top level (the class

level). This thesis addresses issues related to the instance-based data model in three parts:

First, we assigned ontological semantics to the instance-based data model to

address several semantic problems. We provided an ontological interpretation of the

instance identifier and proposed a method to implement it. The research also provided a

mean to express properties and their relationships in the instance-based data model,

which reduced the complexity in the management of the instance-based database and

improved the query efficiency of the model. Also, by assigning the semantics of Bunge's

ontology to the instance-based data model, we developed a method to represent things in

the real world as instances in the instance level. Related instances form a higher level

conceptual thing; thus, in principal, when one combines all instances, the real world

could be represented in the highest level. This method makes the instance-based data

model closer to an ontological view of the nature of the real world, which in tum benefits

the future development of the model. The research also defines several integrity rules of

the instance-based data model to prevent possible inconsistencies in an instance-based

database.

The instance-based data model provides not only flex ibility and multiple

application potential [2], but also comparable or better performance than the traditional

model. In the second part of the research, we provided evidence that the instance-based

data model can perform queries even faster than relational model in some cases. The

theoretical analysis and the empirical evaluation showed some interesting results and

152

Extending the Instance-based data model: Semantics, performance and security considerations

improved our confidence to develop the instance·based data model for future

applications.

In the final part of the research, as an application to the instance·based theory, we

proposed a new security model, the instance-based multilevel security model (IBMSM).

We fonnally defined the instance·based multilevel security model. By defining data

interpretation, integrity rules, and two-layered control model for the instance-based

multilevel security control, we showed that the new model solves several problems in the

multilevel security control field. The research extended operations of the traditional SQL

and instance-based iQL statements to the IBMSM. We also proved that the instance·

based multilevel security model is indeed a secure data model. There are two key features

that make the IBMSM more secure than traditional multilevel security models: first, the

model uses the 'post-belief method so that the higher level users can share lower level

data without pre-definitions. This method improves flexibility in data sharing and reduces

possible data redundancy in different security levels. Second, the model uses a two·

layered control method to restrict database access. Since higher level security users can

recognize all the properties which have been recognized by lower level users but not vice

versa, this method guarantees that higher level security users may access more instances

even through the same class as lower level users. By using two·layered control, the

IBMSM acquires more powerful security than traditional multilevel security models.

153

Extending the instance-based data model: Semantics, performance and security considerations

9.2 Contributions

Our research provides several contributions for the instance-based database

development.

First, following Bunge's ontology and [2], we have mapped the concepts in the

database area to the real world and provided several implementation approaches for such

mapping; thus, it provides an opportunity for further instance-based application

development without the restriction implied by the traditional class-based model. Second,

the perfonnance of the instance-based data model was not addressed in previous research.

It might seem natural that by providing more flexibil ity to applications the instance-based

data model may have to trade off with lower efficiency. However, in this research, we

proved that the instance-based data model can be even more efficient than the class-based

model for certain query operations. For example, we proved that if the number of

attributes in a table is more than 1.25-1 .33 times the number of the queried attributes, the

instance-based model (by using the second data structure) is much faster than the

relational model. By developing a more suitable data structure that incorporates query

optimization techniques, we believe the instance-based data model may perform even

better than class-based models.

Third, previous work on the lBDM focused on building the model itself [2] [49]

[57}. Our research proposes a new application model, the IBMSM model, to the security

control area to solve several problems that exist in class-based security models. The

success of the IBMSM demonstrates the instance-based data model is not only an abstract

model but can be a platfonn to generate specific security models for different

154

Extendingtheinstance·baseddatamodei:Semantics,performanceandsecurityconsiderations

applications. Our research provides an example to implement the instance·based data

model to an applied field. We believe that the instance-based data model can be explored

in many other fields in the futu re.

9.3 Future Work

Future research on the instance·based data model can be of two categories. The

first is related to the model itself. Although property precedence has an excell ent

capabi lity for managing semantics in the instance·based data model , to manage the

precedence system efficiently is a challenge. By definition, one property precedes another

property because any instance that possesses the latter property must possess the former,

as well. However, in the instance-based data model, an instance may gain or lose a

property at any time. So, the preceding relation between properties may change over

time. This presents a unique chal lenge to database developers. Also, since the structure of

the instance·based data model is different from the class·based model, the access method

(structure) should not be the same, as well . [70] provides a basic structure (8+ tree) to

implement an instance·based database system, since 8 + tree is designed to store fixed

length of data, we believe B+ tree is not the best structure for the instance.based data

model. The next challenge would be to suggest a better structure other than a 8 + tree for

the instance·based data model.

The second area of needed research is related to the application of the model. We

already know that the instance·based data model is suitable for building multiple

applications on one data set. For example, in this research we have built the IBMSM

155

Extending the instance-based data model: Semantics, performance and security considerations

which had several security level applications on one data set. Developing suitable models

for application areas will be the next direction. Another challenge of the research is on

merging the instance-based data model with the current models. As of now, data are still

stored in different systems for different purposes. For example, sales systems are used for

retail applications, and bank systems are used for financial organizations. To build an

instance-based system that can efficiently utilize those data directly with the minimal cost

would be the next research area. To build a two (or more) layered model is a possibility,

as suggested in [2]. However, better approaches to integrate data from class based model

to the instance-based database are still desired.

The instance-based data model provides many potential opportunities for database

applications. We believe that as more research is done on the topic, new application areas

will be found and more advantages of the model would be discovered.

\56

Extending the Instance-based data model: Semantics, performance and security considerations

Bibliography

[I] Ramez Elmasri and Shamkant Navathe. Fundamentals ofDarabaseSystems. Addison

Wesley Longman Inc. 2000. Print.

[2] Jeffrey Parsons and Yair Wand. "Emancipating Instances from the Tyranny of

Classes in lnfonnation Modeling." ACM Transactions on Database Systems 25.2 (2000):

228-268. Print.

[3] Mario Bunge. Ontology 1: The Fuwre of the World, Treatise on Basic Philosophy.
New York: D. Reidel Publishing Co. lnc. 1977. Print.

[4] Mario Bunge. Ontology 11: A World of Systems, Treatise on Basic Philosophy. New

York: D. Reidel Publishing Co. Inc. 1979. Print.

[5] Jeffrey Parsons and Jianmin, Su. "The Instance-based Multilevel Security Model

(IBMSM)." Global Perspectives on Design Science Research. Lecture Notes in Computer

Science 20 10.6105 (2010):365-380. Print.

[6] Peter Rob and Carlos Coronel. Database Systems. Boyd & Fraser Pub Co. 1995. Print.

[7] A vi Silberschatz, et a l. Database System Concepts. McGraw-Hill. 1996. Print.

[8] Scott Ambler. Agile Database Techniques: Effective Strategies for the Agile Software

Developer, John Wiley & Sons, Inc. 2003. Print.

[9] Peter Chen. "The Entity-Relationship Model--Toward a Unified View of Data." ACM
Transactions on Database Systems 1.1 (1976): 9-36. Print.

(10] Michael Ashbumer, et al. "Gene Ontology: Tool for the Unification of Biology."

Nature Generics 25. 1 (2000): 25-29. Print.

[II] Nicola Guarino. "Fonnal Ontology, Conceptual Analysis and Knowledge

Representation." Spec. issue of International Journal of Human and Computer Studies
43.5/6 (1995): 625-640. Print.

[12] Jeffrey Parsons and Yair Wand. "Using Objects for Systems Analysis."

Communications of the ACM 40.12 (1997): I 04-110. Print.

157

Extending the Instance-based data model: Semantics, pe rformance and security considerations

[1 3] Yair Wand and Ron Weber. "A Model of Control and Audit Procedure Change in

Evolving Data Processing Systems." The Accounting Review 64.1 (1989): 87- 107. Print.

[14] Yair Wand and Ron Weber. "An Ontological Evaluation of Systems Analysis and

Design Methods." Information System Concepts: An In-depth Analysis. Elsevier Science

(1 989): 79- 107. Print.

[15] Yair Wand and Ron Weber. "An Ontological Model of an lnfonnation System."

IEEE Transactions on Software Engineering 16. 11 (1990): 1282- 1292. Print.

[16] Yair Wand and Ron Weber. "Mario Bunge's Ontology as a Fonnal Foundation for

lnfonnation Systems Concepts." Studies on Mario Bunge's Treatise, Ed. Paul,

Weingartner, and Georg, Da m. Atlanta: Rodopi. 1990. Print.

[1 7] Yair Wand and Ron Weber. "A Unified Model of Software and Data

Decomposition." /CIS '91 Proceedings of the twelfth international conference on
Information systems. Ed. Janice, DeGross, et a!. University of Minnesota Minneapolis.

1991. Print.

[18] Yair Wand and Ron Weber. ''On the On10logica1 Expressiveness of lnfonnation

Systems Analysis and Design Grammars." Journal of Inf ormation System 3.4 (1993):

2 17-237. Print.

[19] Yair Wand and Ron Weber. "On the Deep Structure of Infonnation Systems."
Journal of Information System 5,3 (1995): 203-223. Print.

[20] Joshu, Greenbaum. "The Quest for the Universal Data Model." Intelligent Enterprise.

Web. May 3 1, 2003.

<http://www .inte lligententerprise.com/030531 /609enterprise I_ I .jhtml>

[2 1] Dennis Tsichritzis and Frederick Lochovsky. "Hierarchical Database Management:

A Survey." ACM ComputingSurveys 8. 1 (1976): 105-1 23. Print.

[22] Robert Taylor and Randall Frank. "CODASYL Data-Base Management Systems."

ACM Computing Surveys 8. 1 (1976): 67 - 103. Print.

[23] Edgar Codd. "A Relational Model of Data Large Shared Data Banks." Spec. issue of
Communications of the ACM 26. 1 (1983): 64-69. Print.

[24] Christopher Date. Database Relational Model: A Retrospective Review and Analysis.
Addison-Wesley. 2000. Print.

158

Extendlngtheinstance-based datamodel:Semantics,performanceandsecurltyconslderatlons

[25] Peter Chen. "Entity-Relationship Modelling: Historical Events, Future Trends, and

Lessons Learned." Software Pioneers: Contributions to Software Engineering. New York:
Springer, 2002. Print.

[26] Peter Chen. "A Preliminary Framework for Entity-Relationship Models"
Proceedings of the Second International Conference on the Entity-Relationship Approach

to Information Modeling and Analysis. Amsterdam: North-Holland. 1981. Print.

[27] Grady Booch. Object-Oriented Analysis and Design with Applications. Addison
Wesley. 1994. Print.

[28] Pedro Sampaio and Nonnan Paton. "Deductive Object-oriented Database Systems:
A Survey." Lecture Notes in Computer Science. Berlin I Heidelberg: Springer. 1997.
Print.

[29] Douglas Barry and Joshua Duhl. Object Storage Fact Books: Object DBMSs and
Object-Relational Mapping. Barry & Associates Inc. 200 I. Print.

[30] Burleson Consulting. Oracle Object Oriented Relational Features. Oracle Tips. Web.
200 1. <lntp://www.dba-oracle.com/art oracle obj .htm>

[3 1] Steven Wort, eta\. Professional SQL Server 2005 Performance Tuning. Wrox Press.
2008. Print.

[32] Michael Hammer and Dennis McLeod. " Database Description with SDM: A
Semantic Database Model." ACM Transactions on Database System 6.3 (198 1): 35 1-386.
Print.

[33] Ray Reiter. "On Closed World Data Bases." Readings in nonmonotonic reasoning.

San Francisco: Morgan Kaufmann Publishers Inc. 300-310. 1987. Print.

[34] AnHai Doan and Alon Halevy. "Semantic lntegration Research in the Database

Community: A Brief Survey." AI Magazine 26 (2005): 83-94. Print.

[35] Carlo Batini, et a \. "A Comparative Analysis of Methodologies for Database Schema
Integration". ACM Computing Surveys 18.4 (1986): 323-364. Print.

[36] Ahmed Elmagannid and Calton Pu. "Guest Editors' Introduction to the Special Issue
On Heterogeneous Databases." ACM Computing Surveys 22.3 (1990): I 75- 178. Print.

[37] Amit Sheth and James Larson. "Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases." ACM Computing Surveys 22.3
(1990): 183-236. Print.

159

Extending the instance-based data model: Semantics, performance and security considerations

[38] Christine Parent and Stefano Spaccapietra. " Issues and Approaches of Database

Integration." Communications of the ACM 41 .5 (1998): 166- 178. Print.

[39] Tova Milo and Sagit Zohar. "Using Schema Matching to Simplify Heterogeneous
Data Translation." Proceedings of the 24rd International Conference on Very Large Data
Bases. Morgan Kaufmann Publishers Inc. 1998. Print.

[40] Jayant Madhavan, et al. "Corpus-based Schema Matching." Proceedings of the 21st
International Conference on Data Engineering. IEEE Computer Society Press. 2005.

Print.

[41] Jayant Madhavan, et al. "Representing and Reasoning about Mappings between
Domain Models." Eighteenth National Conference on Artificial intelligence. Menlo Park:
American Association for Artificial Intelligence. 2002. Print.

[42] Wen-Syan Li, et al. " Database Integration Using Neural Network: Implementation
and Experience." Knowledge and Information Systems 2.1 (2000): 73-96. Print.

[43] Chris Clifton, et a!. "Experience With a Combined Approach to Attribute-Matching
Across Heterogeneous Databases." Proceedings of the JFJP Conference on Data
Semantics. Chapman & Hall, 1997. Print.

[44] Jacob Berlin and Amihai Motro. "Database Schema Matching Using Machine

Learning With Feature Selection." Proceedings of the 14th International Conference on
Advanced Information Systems Engineering. Springer-Verlag, 2002. Print.

[45] Mauricio Hernandez and Salvatore Stolfo. "The Merge/Purge Problem For Large
Databases." Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, New York: ACM. 1995. Print.

[46] Jason Wang, et al. Data Mining in Bioinformatics. London: Springer-Verlag London
Limited, 2005. Print.

[47] Cedric Raguenaud and Jessie Kennedy. "Multiple Overlapping Classifications:
Issues and Solutions." 14th International Conference on Scientific and Statistical
Database Managemem. IEEE Computer Society Press. 2002. Print.

{48] Josh Howard. Universal Data Models and Patterns: Developing Higher Quality Data
Models in Less Time. Embarcadero Technologies. Web. June 2009.
<http://datamodel.wordpress.com/2009/06/ I J/universal-data-models/>

160

Extending the instance-based data model: Semantics, performance and security considerations

[49] Jianmin Su and Jeffrey Parsons. "Analysis of Data Structures to Support the
Instance-based Database Model." First International Conference on Design Science
Research in Information Systems and Technology. Claremont, California. 2006

(50] Edgar Sibley and Larry Kerschberg. "Data Architecture and Data Model
Considerations." AFIPS '77 Proceedings of the June 13-16, 1977, national computer

conference. New York: ACM. 1977. Print.

[51] David Shipman. "The Functional Data Model and The Data Language Daplex."

ACM Transactions on Database Systems 6, I (198 1): 140-173. Print.

[52] Gabriel Kuper and Moshe Vardi. "The Logical Data Model." ACM Transactions on
Database Systems 18,3 (1993): 379-413. Print.

[53] Mikko ROnkkO, et a!. "Benefits of an Item-Centric Enterprise-Data Model in
Logistics Services: A Case Study." Computers in Industry 58.819 (2007): 8 14-822. Print.

[54] Tsau Lin. "Attribute Based Data Model and Polyinstantiation." Proceedings of the

IFIP 12th World Computer Congress on Education and Society -Information Processing

'92. 2. 1992. Amsterdam: North Holland. Print.

[55] Jan Niles and Adam Pease. "Towards a Standard Upper Ontology." In Proceedings
of the 2nd International Conference on Formal Ontology in Information Systems. 200 I.
New York: ACM Press. Print.

(56] David Dewitt. ''The Wisconsin Benchmark: Past, Present, and Future." The
Benchmark Handbook for Database and Transaction Systems. 1993. Ed. Jim, Gray.

Morgan Kaufmann. Print.

[57] Jeffrey Parsons and Yair Wand. "Property-Based Semantic Reconciliation of
Heterogeneous lnfonnation Sources." Proceedings of the 21st International Conference

on Conceptual Modeling. 2002. London: Springer-Verlag.

[58] John Howie. Fundamentals ofSemigroup Theory. Springer New York. 1995. Print.

[59] Von Bertalanffy. "General System Theory -A New Approach to Unity of Science
(Symposium)." Human Biology 23.4 (195 1): 303-361. Print.

[60] Von Bertalanffy. "An Outline of General System Theory." British Journal for the
Philosophy of Science 1.2 (1950): 139-164. Print.

[61] Ross Ashby. An Introduction to Cybernetics. London: Chapman & Hall. 1956. Print.

161

Extending the instance-based data model: Semantics, performance and security considerntions

[62] Kenneth Boulding. "General System Theory: The Skeleton of Science."
Management of Science 2.3 (1956): 197·208. Print.

[63] URL. W3C Web set. Web. <http://www.w3.org/Addressing>

[64] Peter Lucas, et a!. "Distributed Knowledge Representation using Universal Identity
and Replication." Technical Report MAYA·05007. MAYA Design Inc. 2004

[65] Mehmed Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms.

John Wiley & Sons. 2003. Print.

[66] Joachim Hammer, et al. "The Stanford Data Warehousing Project." IEEE Data

Engineering Bulletin 18 (1995): 41·48. Print.

[67] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd
ed.). Upper Saddle River: Prentice Hall. 2003. Print.

[68] Sotiris Kotsiantis. "Supervised Machine Learning: A Review of Classification

Techniques." Informatica Journal31 (2007): 249·268. Print.

[69] Richard Duda, et al. Unsupervised Learning and Clustering (2nd edition). New York:
Wiley. 200 I. Print.

[70] Jianmin Su. A Database Management System to Support the lnstance·based Data
Model: Design, Implementation, and Evaluation. Master's Thesis, Memorial University
of Newfoundland. 2003. Print.

[71] Daren Bieniek, et al. Implementing and Maintaining Microsoft SQL Server 2005.
Microsoft Press. 2006. Print.

[72] Mike S10nebraker, et al. "C-Store: A Column·Oriented DBMS." Proceedings of the
31st International Conference on Very Large Data Bases, Trondheim, Norway, 2005.

ACM. Print.

[73] Thomas Connen, ct a!. Introduction to Algorithms. The MIT Press and McGraw·Hill
Book Company, 200 I. Print.

[74] Teresa Lunt, et al. "The SeaView Security Model." IEEE Transactions 011 Software
Engineering 16.6 (1990): 593·607. Print.

[75] Elliott Bell and Leonard Padula. "Secure Computer Systems: Unified Exposition and
Multics Interpretation." Technical Report MTR·2997, The Mitre Corporation, Burlington
Road, Bedford, MA, USA, 1973. Print.

162

Extending the instance-based data model: Semantics, performance and security considerations

[76] Ravi Sandhu and Fang Chen. "The Multilevel Relational Data Model." ACM
Transaction on Information and System Security 1.1 (1998): 93-1 32. Print.

[77] Nenad Jukica, et al. "A Belief-Consistent Multilevel Secure Relational Data Model."
Information Systems 24.5 (1999): 377-400. Print.

[78] Xiaolei Qian and Teresa Lunt. "Tuple-level vs. Element-level classification." Results
of the Sixth Working Conference of IFJP Working Group on Database Security on
Database security, VI: Status and Prospects. New York: Elsevier Science Inc. 1993.
Print.

(79] Sushi! Jajodia and Ravi Sandhu. "'Toward a Multilevel Secure Relational Data
Model." ACMSIGMOD Record20.2 (199 1): 50-59. Print.

[80] Kenneth Smith and Marianne Winslett. "Entity Modeling in the MLS Relational

Model." Proceedings of the 18th International Conference on Very Large Data Bases.
San Francisco: Morgan Kaufmann Publishers Inc. 1992. Print.

[81] J. Goguen, and J. Meseguer. "Security Policies and Security Models." IEEE
Symposium on Security and Privacy. Oakland: IEEE Computer Society Press. 1982. Print.

[82] Teresa Lunt. "Polyinstantiation: An Inevitable Part of a Multilevel World."
Proceedings of Fourth IEEE Workshop Computer Security Foundations. Menlo Park:

IEEE Computer Society Press. 1991. Print.

[83] Nenad Jukic, et al. "Closing the Key Loophole in MLS Databases." ACM SIGMOD
Record 32,2 (2003): 15-20. Print.

[84] Ira Moskowitz, et al. "Covert Channels and Anonymizing Networks." Proceedings
oft he 2003 ACM Workshop on Privacy in the Electronic Society New York: ACM. 2003.
Print.

(85] Edgar Codd. "Extending the Database Relational Model to Capture More Meaning."
ACM Transactions on Database Systems 4.4 (1979): 397-434. Print.

[86] MySQL work bench 5.2. Web. <hltp://www.mysql.com/>

163

Appendix: Wisconsin Benchmark Queries and Results

Qu ery Non-indexed property queries Rdb idb Comment

1 Select unique! from TENKTUPl where unique! between 0 and 10099; 5.4 0.73j l% selection

Select unique!, two from TENKTUPl where uniquel between 0 and 10099; 5.37 3.76

Select unique!, two, four from TENKTUPl where unique! between 0 and 10099; 5.6 8.43

Select unique! , two, four, unique3 from TENKTUPl where unique! between 0 and 10099; 5.87 12.9

insert into tmp Select unique! from TENKTUPl where unique! between 792 and 100791; 7.78 2.71 I to% selection

insert into tmp Select unique!, two from TENKTUP1 where uniquel between 792 and 100791; 7.73 7.8

msert mto tmp Select un1quel, two, four from TENKTUP l where umquel between 792 and 100791; 79 12 61

insert into tmp Select unique1 from TENKTUP1; 21.22 12.57 \ 100% selection

insert into tmp Select unique1, two from TENKTUP1; 21.06 18.25

10 I insert into tmp Select unique1 , two, four from TENKTUP1; -~ 24.1

Clustered-Index property queries
11 Select unique2 from TENKTUP1 where unique2 between 0 and 10099; 0.14 0.06 I 1% selection

12 Select unique2 , two from TENKTUP1 where unique2 between 0 and 10099; 0.13 0.14

13 Select unique2 , two, four from TENKTUP1 where unique2 between 0 and 10099;

~~:
0.19

14 Select unique2 from TENKTUP1 where unique2 between 792 and 100791;
··--·-·-·-

-0~2 I 10% selection

15 Select unique2, two from TENKTUP1 where unique2 between 792 and 100791; 0.62 0.66

16 Select unique2 , two, four from TENKTUP1 where unique2 between 792 and 100791; 0.72 0.67

17 insert into tmp Select unique2 from TENKTUP1; 21.15 11.28 I 100% selection

18 insert into tmp Select unique2, two from TENKTUP1; 21.01 17.77
19 insF>rt into tmp Select unique2. two. four from TENKTUPl: 21.67 22.77

Non-Clustered-Index property queries

20 Select unique3 from TENKTUP2 where unique3 between 0 and 10099; 0.11 I 0.06 I 1% selection
21 Select unique3, two from TENKTUP2 where unique3 between 0 and 10099; 0.33 I 0.14

164

22 Select unique3, two, four from TENKTUPl where unique3 between 0 and 10099; 0.33 0.19
23 Select unique3 from TENKTUP2 where unique3 between 792 and 100791; 0.2 0.2 I 10% selection

24 Select unique3, two from TENKTUP2 where unique3 between 792 and 100791; 1.45 0 .66
25 Select unique3, two, four from TENKTUP2 where unique3 between 792 and 100791; 1.4 0.67

26 insert into tmp Select unique3 from TENKTUP2; 13.88 11.28 I 100% selection
27 insert into tmp Select unique3, two from TENKTUP2; 25.44 17.77
28 insert into tmp Select unique3. two. four from TENKTUP2: 26.72 22.77

Al!erel!ation

29 select min{uniquel) from tenktupl; 5.34 0.84

30 select min(unique2) from tenktupl ; 0.05 0.05
31 select min(unique3) from tenktupl group by one percent; 6.8 4.52
32 select mi n(unique2) from tenktupl group by onepercent; 5.65 4 .48
33 select sum{unique3) from tenktupl group by one percent; 5.38 5.6
34 select sum(unique2) from tenktupl group by one percent; 5.65 4.91

Update

35 I update tenktupl set unique2=1000001 where unique2=19000; 0.11 0.09 Clustered -Index

36 I update tenktup2 set unique3=1000002 where unique3=19000; 0.13 0.09
Non-Clustered-
Index

37 J update tenktupl set unique2=1000002 where unique1=19000; 6.79 1.4 Non-Index

Join
38 1 select tenktupl.uniquel, tenktup2.unique3 from tenktupl, tenktup2 where Join on clustered-

tenktupl.unique2=tenktup2 .unique2 and tenktupl.uniqu el <lOOOO 6.49 4.15 index property

39 I ~=~ek~u~l~~~~~~~~~~nek~·u:;~~~~~u2n~~~e;e~~t:p~.~~t~~~!·3~e1:~2 w here 0.27 0.36

165

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Title Page
	0005_Abstract
	0006_Page iii
	0007_Acknowledgments
	0008_Table of Contents
	0009_Page vi
	0010_Page vii
	0011_List of Figures
	0012_Page ix
	0013_Introduction
	0014_Page 2
	0015_Page 3
	0016_Page 4
	0017_Page 5
	0018_Page 6
	0019_Page 7
	0020_Page 8
	0021_Page 9
	0022_Page 10
	0023_Page 11
	0024_Page 12
	0025_Page 13
	0026_Page 14
	0027_Page 15
	0028_Page 16
	0029_Page 17
	0030_Page 18
	0031_Page 19
	0032_Page 20
	0033_Page 21
	0034_Page 22
	0035_Page 23
	0036_Page 24
	0037_Page 25
	0038_Page 26
	0039_Page 27
	0040_Page 28
	0041_Page 29
	0042_Page 30
	0043_Page 31
	0044_Page 32
	0045_Page 33
	0046_Page 34
	0047_Page 35
	0048_Page 36
	0049_Page 37
	0050_Page 38
	0051_Page 39
	0052_Page 40
	0053_Page 41
	0054_Page 42
	0055_Page 43
	0056_Page 44
	0057_Page 45
	0058_Page 46
	0059_Page 47
	0060_Page 48
	0061_Page 49
	0062_Page 50
	0063_Page 51
	0064_Page 52
	0065_Page 53
	0066_Page 54
	0067_Page 55
	0068_Page 56
	0069_Page 57
	0070_Page 58
	0071_Page 59
	0072_Page 60
	0073_Page 61
	0074_Page 62
	0075_Page 63
	0076_Page 64
	0077_Page 65
	0078_Page 66
	0079_Page 67
	0080_Page 68
	0081_Page 69
	0082_Page 70
	0083_Page 71
	0084_Page 72
	0085_Page 73
	0086_Page 74
	0087_Page 75
	0088_Page 76
	0089_Page 77
	0090_Page 78
	0091_Page 79
	0092_Page 80
	0093_Page 81
	0094_Page 82
	0095_Page 83
	0096_Page 84
	0097_Page 85
	0098_Page 86
	0099_Page 87
	0100_Page 88
	0101_Page 89
	0102_Page 90
	0103_Page 91
	0104_Page 92
	0105_Page 93
	0106_Page 94
	0107_Page 95
	0108_Page 96
	0109_Page 97
	0110_Page 98
	0111_Page 99
	0112_Page 100
	0113_Page 101
	0114_Page 102
	0115_Page 103
	0116_Page 104
	0117_Page 105
	0118_Page 106
	0119_Page 107
	0120_Page 108
	0121_Page 109
	0122_Page 110
	0123_Page 111
	0124_Page 112
	0125_Page 113
	0126_Page 114
	0127_Page 115
	0128_Page 116
	0129_Page 117
	0130_Page 118
	0131_Page 119
	0132_Page 120
	0133_Page 121
	0134_Page 122
	0135_Page 123
	0136_Page 124
	0137_Page 125
	0138_Page 126
	0139_Page 127
	0140_Page 128
	0141_Page 129
	0142_Page 130
	0143_Page 131
	0144_Page 132
	0145_Page 133
	0146_Page 134
	0147_Page 135
	0148_Page 136
	0149_Page 137
	0150_Page 138
	0151_Page 139
	0152_Page 140
	0153_Page 141
	0154_Page 142
	0155_Page 143
	0156_Page 144
	0157_Page 145
	0158_Page 146
	0159_Page 147
	0160_Page 148
	0161_Page 149
	0162_Page 150
	0163_Page 151
	0164_Page 152
	0165_Page 153
	0166_Page 154
	0167_Page 155
	0168_Page 156
	0169_Page 157
	0170_Page 158
	0171_Page 159
	0172_Page 160
	0173_Page 161
	0174_Page 162
	0175_Page 163
	0176_Page 164
	0177_Page 165
	0178_Blank Page
	0179_Inside Back Cover
	0180_Back Cover

