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Abstract

g had-
Specti-
cally, i HARPO/L

(standing for HARdware Paralll Objects Language), outputs hardware configura-

method, which

other high-Jevel paralel bject-orented programing languages.
In addition, this thesis propeses an automati verifcation system for HARPO/L

which

inteoduced.

helps verifying the absence of data race and the absenco of deadlock, and has good

interplay with grainkss semantics.
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Chapter 1

Introduction

1.1 High Level Programming on CGRA

Traitional computing desciptions are lassifie ot b kinds,structural dscip-
ous or handvare desciptions) such a5 Applcation Speciied Tnegratd iruit
(ASIC) and bebavioural descrptions or softnre desciption) expresibl i high-
Jevel programing languges, which are performod on mieroprocesors. ASICH are
dignd for particlar compatation, s the bave bt o ficincy, b e

diffrent

combinations of the isteuctions ca complet difeeent computatonal tasks without
any modifation to the hardvace Hovever, the loading of instructions fom the
mennory and the decodingof the instrctions brig, great overbead, 5 the effcency
ofmiceoprocssors i much over ]

Recoufgurable compoting s
ffciency than software and bigher bty than hardvare. In the reconfgurable

apts to be & compromising solution with igher




deviom, such FPGAS),

formed by an array of computational logic bocks (CLB). The CLBS' fu

tonality
s programmable through configuration bit, The CLBs are connected by intercon-

Afine grained

system b o lacger aumount of smalle primitive computations and requires more

communication,

that it requires

FP

brought by routing
Contrasted with FPGA an other fne-graine] systerus, conre-graind reconfigurable
architoctures (CGRAS) use computational funetion blocks (CFBs) t0 buikl reconfi-

ble datapath Us) o

For instance, s typical CGRA, the RaPID architecture (Fig 1.1) 4] is composed

of ALUs, muliplien,rogist Allthe

and flow through the datapath, and the data and intermedite resuts are loeally
stored in registers and small RAMs which aro close (0 their destination FUs. Ax

 rewul, i very sl

igh arch

Accordin to {4, usually the progeaau
low-evel angaages such as hardware description language (HDL) and assernbly I

of reconfigurable arhitectures s i

3



Figure 11: The RaPID Architecture

puage. Althoagh there are & muber of belavioural Ianguages such as VHIDL (VH-
SIC HDL where VHSIC mexns Very High Spood Integrated Circuit) and C, none of
the existing Ianguages has as high level s object-orinted programuming languages.
The HARPO (standing for HARdware Parallel Objects) project aims to define o
highvlevl objectoriented programming lnguage (HARPO/L) which can be comn-
pild into course-grained hardvare coufigurations. 1t will provide  high-eficiency
highflex

t solution to the computations desribed o high-lvel object-orented

progeamming lnguages.

1.2 Overview of HARPO/L

The ementil idens of HARPO/L are: (1) the croations of objocts start threads

n inerconnections between rDPUs.  Accordingly, HARPO/L mst have folowing

3



kkaati . . . o L e o

fonturs.
 Static: The allocations are done at compile-time. Dynaie allocating and ref-
exencing are not allowed.
‘» Concurrent: The threads in all the objects shall be concurrently executed. Bo-
sides, the language supports paralel compositions.

 Grainkss Semantics: HARPO/L shall have o assumption of gramlsity and

- it

“The compilation/synthesis flow4] of HARPO/L is shown in Fig 1.2. The fron-
ndls] does type checking, and generates abstract syntax tres (ASTS) and an objoct
graph from the source code. Then the middle module generates dataflow graph.

Finally the back-end|] generates hardware confgurations,

1.3 Contribution and Thesis Outline

Thefint

hven abet A oblect graphs, and the othec I how

verfy the partial corroctnens of HARPO/L prograns.
“The contributions of this thess include (1) an extension of State Token data flow

»

lel objoct-orented programming languages, and (2) the architectue of an auto
HARPO/L

ing th an algoith Hiberal precondi-

tion of paralel compositons.



Chapter 2

Related Work

21 HARPO/L Language Design

This subsection il briefl descrbe the syntax of HARPO/L. The detals can be
found in 8. First, [ will give some metanotations which are wsed later

N E  Nouterminal N can be an E
[E] Grouwing

B Zewo or more

Zoro o more sepasated by s
One or more

One or more separated by Fs

A HARPO/L program consists of a sct of casss, nterfaces, objects, and con-
stants, The class declarations and inteface declarations ad new types o the type

systom, and the obj

ot graph. The details of abjoct declarations and constant declarations are similar



R L sk

0 other abject.oriente programming langages and will not b isted in this thesis,

program — [ ClassDec| ntDecl| OectDec] ConstDee;
ObjectDect — obj Name[: Type] = InitEsp

ConstDect — const Name [: Type" = ConstErp.

The clases and intefaces may b geneec or nongeneric. The geveric lases
and intcfacs can be paramterzed by other nongenerc types. Each clas has
constructor method with a It of contructor parameter epresenting objcts
hich this objectis connecte.

Dt (inertnco Nme GParuns! extands Tie* '
tnttenter” [ntetace [Name]"] )
ClassDect — (class Name Gparums' [implements Tipe™ |
comtructor (07 ) [Castlnterl” [eas (a1}
CPar = obj Name : el in Name : Tipe
GParams — {GParun}

GParom — type Name [extends Type]

Inteface members can be fieds, methods, and constants, and clas members can
be fiekds, methods, threads, and constants. Fiekds can be either private or public,
i the




inital expresion. Methods can b either private or public.

|
tber — Fidd Methd| ConstDect |
ClossMember — Fild Method Thrad| Contecl ‘
Field — Access obj Name [: Type]" := InitErp
Methd — A pros Name [ Diton Thame 1 ] ")
A private | pubic

Direction — in | out
Types can b names of classes, aray types, or specialzations o generic types.

| P ——
Gitrg — {Tpe* )
) Bounds — ConstniEy

Threads consists of Statements which are exccuted once the object is nstanti-
ated. Spocifcaly,each throad has a block statement, which represents the sequential

compositon of the statemonts

Thread — (thread Bk [crond’)

Block — Statement®

Beside soquential compositons (block), statements can be local variabie decl-
rations, constant declarations, asignments, method calls, sequential control flows
. whill, o for), parale lockings (with), and




Iniiaizaion of an object can b an expression or an array

ialization

InitEp — Expresion| Arruylni| new Tipe (CAr* )
1(GF Expression then InitEzp
else i Expression InitEsp]" else InitExp i)
Arraylnit — (for Nome : Bounds do InitBzp for)

Carg — Expression

1 HARPO/L, method calls are implemmented in the threads of objects, and play.

a olein thread synch

this functionality. Tn clent’s view, rendezvous is almost the same s method calls
anguages such as Java and C+-+.
In server's view, rendezvous is an accept. statement; when the thread reaches the
" i . o otber words,

but also

in other high level bject-orinted programni

e it s 0wt fortheserver’ hrc 0 reach the rendezvons, The rendervons
mechanism s provides uacds i accept. satements the clint has to vt or the
server to el the endezous with e vale guael. 1 the gused s falac when
e seevr seaches the rendezvous, the client has o wait for the server o reach the

rendezvous again and then re-evaluate the guard

2.2 Grainless Semantics of HARPO/L

Grainless semanties11] i inteodced for shared-vaiable concurent. programs with
‘smallest gramlaity[12] in which none of the operations s consdered atomic. The
word “grainless” b




 semantic of “wrong”, Le. not to have any wseful meaning, Because HARPO/L i
 programning language in which th programs are compild into hadware confs-
arations, and small gramarity is  natureof hadware, HARPO/L nods to b
i semntin

“The grinkss semantics of HARPOYL i given in 12]. Becase HARPO/L is
static langug, the object instantaton and connection are done at compile.time,
and ther s o referenco/ponker assigament i ru-time. The context of HARPO/L.

commands s based on the approach in [11].
n all Jated

e or infiite sequence of primitive actions. The primitive actions include start,
in, chaos, try, acq, and rel. Some nonprimitive actions are alo defined such a5
Alter and enter. The detailed meanings of the actions can b fid in [12) o (13

2.3 HARPO/L Compiler Front-End

“Tho abject graph is one of the ot of tho HARPO front-end (others ineude
ypo system, which s o inolved i ehis Chsis, and tho ASTs) whih is based on
o il semantio of HARPO/L{12] There are 7 types of object graph nodes:
Constant, Objct, Arvay, Location Variable, Methor, and Thread. Tho diffrence

addess while the Varibles e not. Specifialy the fieds with priitive types, the
iy clements with primitive types the shared vaiabls i paralel compostions,
aund the asguments of the methods are Locations, i the local variables which o
only acssd by at most one thrad are Variabe,

A complete objoct graph ha a root Objct whaso fields ae the public Obects

n

.S R s



doclaed i the progran. Each Objct s et of Constant, Lacations, or Varibies,
s primiiveflds, se of Arrys as sy fekd, a st of Objecs s rferenco ks,
et of Methods, and a et of Thrends. An Array s an ntege sie,and hs s
ofcements of Array type, Objct type, or Laation type. A Location node has an
nteger addres. A Variable node s a name. A Method s & MethodType which
provides the information of method name, argument, eturn vales, et. A Thread
has o st of local Variables o Constants, and has 8 AST of the statemens in the
thrad.

The Locations, Variables, and Methods

method expresion).

“The AST of a thresd in HARPO/LS] s  root ode,and all the tre nodes e
Statement vodes, or Exprssin nokes,

Beforo enersting the ASTS, the frontend pormalizes ll the statements. Al the
FOR Statements e teassformod into, WHILE Statements, and all the COLOOP
Statements ave transformee it CO Statements. Eaeh ACCEPT body contais &
uard, a et of arguments,  body, and an aferbody IF Statements with muliple
el clases e transformedin multiple [F Statements; cach IF Statement hos a
guard, o then-clause,and an els-clsse; and cach WITH Statement s  guand and
abody.

Figures 2.1 t0 2.5 show the ASTs f § ypes of Statenents. A block with an arow
unde it (suh s the “accptbodies” blockin the abstrat syntax tre of ACCEPT
Statement)roprsents st (a List i the fron-end implmentation) of AST odes.

The Expression nodes ace divided into a number of types. The Expresson types
s in this thesis are NULL, IDENTIFIER, REFERENCE, INDEX, LITERAL,

12



Figure 2.1 Abstract Syntax Tree of ACCEPT Statement

)
e R

Figure 22: Abstract Syntax Troe of ASSIGN Statement

‘!PI

Figure 2.3: Abstract Syntax Troo of BLOCK Statement



(] l:Tn
==
Fre .4 A Sy e of CALL Sutemen

?

Figure 2.5: Abstract Syntax Troe of €O Statement

Figure 2.6: Abstract Syntax Tree of IF Statement

e

Figure 2.7: Abstract Synta Tree of WHILE Statement



Figure 2.8 Abstract Syntax Troe of WITH Statement

NEG, and MATH =
Esprssions of NULL type ave wal; Expressions of IDENTIFIER type are names;
Esprssions of REFERENCE type have a lef child Expresson and a right child
Espression connected by operstor “ Espessions of INDEX type are the array
clements, and have et child Espresson idenifing the areay and  right child

Exprssions o sy

that cild Expression; Expressions of MATH typo aze expressions with one opeator
and two operands. If an Expression does not have left. child o right child, it is
considered to have  NULL lef child or a NULL right chil.



Chapter 3

Data Flow Synthesis of Parallel

Object-Oriented Programs

I this chapter | araphs for p
he AST. into

which
i, The data flow graph il be scheduled into n hardvare configuration by the
backend of a HARPO/L compiler

3.1 Background

The cxcntial pit. of data flow analysis s to fnd al the uso-definiton chais for
cach e of the aiables{14] A defsition of & varablo is & write sccs o that
aiable, and . we of a vaiabl i a read acees to that variabe. The ink fom
e e o defiiton i calle us-defnition chain which ndicaes the data fow of
e oo defined variabl. Tn  usedefiton chain, we ko say that the defnition

reaches tho wse.




“The idea s to perform o pases of computations o each satement. The it
pass comptes the variabe st that e the non-context property of the statemert,
such s what. variabls are used, what variales aro defined, and %0 o, Difirent
approaches may have diffent sets o compute. For instanc, the approach in (1]
comptes usd variable et us e defined aviable et df [14] chocses wsed var-
able st IV THRU; n 15, def

hat e s o dfioed, and ot illd, and billed, o et of variabos that are e
or defined, and kil ave computed alon with . wsod variable et use; tc. These

o) which ar th descendants s the AST. Th secord s computes the sariable
st that rlaes o the contxt, such as what vaiables ae v befor executing the
tatements acording t the previos program context, what. sariables e ive fter

Conmon choices o varable s
includo e (lve before) and Heout (liv ate) such s in 14, 7, e

Toop, in any st live variable
(o vriablo that T boen nsignes and s ot boen illed before)either comes from

loop boxdy, or comes from

analysis can be dono diredly on & sequence of staterments,



3.2 Related Work

In the state-of art data flow analysis techniques, the sequence of statements i in an

A) form16] adds the vari-

bothof

branch control flow that one branch s the loop body and the other is the provious
statements). The asigned variables
siguments

the branches are renamed and those extra

the variable with the old name to the vl of g-function on the

branches). Ths, the wses of all the vaiables can fnd only one previous definiton.
For exampl, if  variablo  is defins i both branches of a branch control flw, all

n one branch e
of 2 n the other branch are renamee a 215 both o and 2, are defined by 7 ot the
beginning of . theend o, there
o extr sgnment that. = 1, 1) which menns i g 0 cithee 7 o

4. Al the s of 2 in the branches, which have boen renaimed s 7 or 2, willfind
 definition of 2 or 2, 0 link the e defnition chain, an al the wses of  afer the
branch control low willsill i  deinition of .

(581 form17] form. In SS1

form,

o-function, such s (zo,2,) = @ (z), are ackdet i front of the branch control flow,
1 form guarantons that. for & we-definition chain, the path from the defnition to




the s in the program is determined (contains 1o branch or loop control flow). In
dition, a loop control flow s treated 4 not only the merge of the control flow for

Ton S Tk () ] 4 cstendn o 5 brm. 1 T o, ek

o o-fmction s bscri “The choie can
and they e Kinds of nodes
of program which Jens
7 18]
here 2l means “data @ ted

adge 27 the recive operation ATa means “wait until data a is received from edge
A oth send and receive are synehronous. - Assignment operation a = b means

“usign the value of b to ; Bookean assignment opers
g teue / false to B, Sooction structure (G — ).
P "

e ! o the guards, and. s Repetition
stvetare +Gy — [ Ga — 1 = 5.~ 1] meaus “chonse one of the teue guards
and execute the corresponding operaions, and then repeat. this il all guards e
folae”. The angle brackets () mean atomic operations. The semicoons in

sequential compesitions, and the commas indicate paralel compositions.

In SSA, SSI, or ST approach, the resson fo renaming and inserting extrn -
signments before the data flow analysi i to preserve the data flow information for
generating the graph, becanse the two pass data flow analysis and data flow graph
i i s, the staion () (1) mena factons e from & ool

b aoation 1 ()1 () énae Sacions 1 om tegrs o 10 = 1. 05, 1
0 41 G- G o G, G, v G




eneration are considere as two separated steps. I we could combine the analyss

i would be uaec-

esary:
definitions and uses of the variabls.
= Lshow vof p

in HARPO)/L, which is an object-orented] programming language with concurrency.
HARPO/L e flow

tructures such aslock, I reat the conrol flow a5  special Kind of dat flow, and
e data flow graphs generated are & misture of control fow and data flow and are
exccutable: the activenes of all the non-control data fows are contolled by the
contrl flows which epreset b the paths of controlsignals in hardwar and the

simple enovgh to implement i hardware, and the behaviour of the executable data

3.3 Overview of Dataflow Graph for HARPO/L

A datafiow graph is a directed graph reprsented by a tuplo (N, E, type, 1,0) where
Vi sk of s, . st of drecte s, type is a unction: N — NodeTTipes, |
i wd

the graph. Bach
dges, an each dge b exacly one source node and exacly one target node.

The dircted edges betwoen dataflow graph modes ae dividd ko 6w Kinds:
B = CUD whero C isa et of control flow eges and D s st of dta flow s,

A data flow edge represents the synchronized transmisson of a primitive value

between dataflow graph nodes. When a node is receiving data from an edge, it is

»




will transnit the data and et the e active. The control flow edges are the edges
transmiting only the activeness and vo data.
There are 13 types of datafiow graph nodes. The graphic representations are

shown in Fig 3.1
In addition, 1 2t means.
g2 i (2 means “wait untl g A

INIT = Zcomstant®; + [A%a; Z1a]

SINK = A7

COPY = + [A%a; Zua,

MERGE = +(C76; 4.7 Zla]

SPLIT = «[C7e, A%a; Zela]

FETCH =« [A%i0 = ot ) 2]
STORE = +[C7, Aa;stor (0) 2]
FUNC = » AT, .o, A

w JOIN = +[As?,

001321 (0012 0m)]
21

MULTILOCK = » A7, i, .., Cacien-ti

(eo A Jocky — locky 2= 0 .. [
Cas A lock1 = locka-y 1, 2= n = 1) D, Z]

2



Figure 3.1: Dataflow Graph Nodes

Loy

A% (dock — lock 1) 2]

UNLOCK =+ [A%lock 1;21]

Additonal comments ae lsted below:

‘& MULTLLOCK: each MULTLLOCK node is associate with a mumber of hocks,
and locks, .. Jocka-

‘+ LOCK and UNLOCK: each LOCK or UNLOCK e i associated with  lok,
and Boolen vaiable lock indicates whether the lock i frve.




s fetch the vaue in the location”.

 STORE: Each STORE node s assciated with a Jocation. The operation

store(a) means “tore the value of a in the location”.

« FETCH and STORE: If the asociate location is represented by an INDEX
Espression with nowconstant index(s), the node will have additional input
dgo(s) providing the evaluation of the index(s).

Note that the defnition of data fiow graph s diffrent with the defnition of
exccutabledata low graphin 6], altbough they areverysimilar. The inRote i 6] is
the e before 1, E "

i shown that  and E ae always COPY nodes which have only one e before
them. Therofore,the results of my daa o synhesis can b e a8 an iput of the

back-end described in ]

3.4 Generating Dataflow Graph for HARPO/L

“Tho dataflow graph generation takes an object graph and an AST of  thread from
the front-end s its
w0 pases. I this subsection, 1 il call all the local variables *Variabies”, and

uts, and uses o high level dataflow analyss algorithin with

al the sharod vasiables *Cocations” (because they require real memory locations in
the hardware configurations). Tn adeliion, 1 il use tho teaditional defsitions of
“defniton” and *use”  definition is an asignment of some value to & Variable or

 Location; and  use is & read-only access 0 Variable or a Lovation.



3.41 The First Pass

‘The firs: poss computes ey, sseLc, defVar, deflor, and. defVir ox ouch statarent
according to its AST. The deiition of thes five functions are:

syn: Statement — Boean
sseLoc : Statement — (Loction — Boolean)
weVar: Statement — (Variable — Boolean)
deflc - Statement — (Location — Bovlean)

defVar : Statement — (Variable — Boolean)

The syn 2 The
useLocuse Var functions give the st of Locations/ Variabes wsed and without prior
definitions i the Statement. The defLoc defVar functions give the set of Lo

tions
will il the definitionsof al the Locutons. For example, suppose S i the folloving
1P Sttement
(6 Varg < Locy then
Stmty: Locy = Varo
Stty  Var, = Locy

Stmty  (with Lock when true do Var, = Locs)
Locy

= Locy

Stmty  (with Lock, when true do Locy
Stmts  Locy = Vars

elso Simi : Vary = Locs if)

)



The first. pass results are

n (8) = e
waelac () = {Locy, Locs}
wseVar (5) = {Vare, Varz}
deftc(5) = {Locs}
defVar () = {Varo, Var,, Vars)

Note that Loe, guseLoc(S) athough Sty uses it because Locy s defined in

ad Var, toes gdeoc(s)
; lthough Sty defios i, becas St b synchronization that kil that defn-
on
e computations s four ot fnctons: cpUseLoc/ capUs Vo, he e of
‘ — thosetof
p—

expUseLoc : Expression — (Location — Boolean)
indexUseLoc : Expression — (Location — Boolean)
expUseVar : Expression — (Variable — Boolean)

indexUse Var - Expression — (Variable — Boolean)

“The computations of the above i functions are liste below. Fist 1 will ive the

praanmar instantiati Then 1 will give dons o the.




o i

Statement — (sccept. (Methodlmp)" | faccopt]
Methodimp — Nome ((Argument)” ) when Erpression
Statement then Statement

S = (accept S aceeptiodis accept)
b Sacceptbodics

when b guand
sy (S) = true
wweloc (5) = | {espUscLoc (s guerd) b € S.aceepthodies)
wseVar (5) = | {ezpUse Var (b.quard) U eapUse Var (b.body b.ofterbodsy) |b € S.acceptbodies}
0 (U tdefVar (t-body baferod) - [ {defVar (b body b aferbods))
deftac (S) = | {defLoc (b.ofterbody) b € S.acoeptbodies}
defVar () = ) {defVar (bbode) U defVar (. aferbody) o € S.accpthdics)

The wseVar sot contains not only the Variables that are wsed in the implemen-
tation bodies but. also those that. are defined in some bodies (and not. define in the
others) because i  define Variabe s not defined in some other bocdie, the merging

‘ " e defLoc st

in bofterbody

Statement — Objectld

ol
wseloc () = indesUseLoc (S.efi) U ezpUseLoe (S.right)

weVar (9 = st Vo (S1) U cpliv o (S right)
ey 190 548 b

n(s)



wariable (S.1et) I S.eft represents a Variable
ar ()= 4 ¢ i

“The defsition of known Loation (dstinguss with wnknoun Location) will be
siven ner,

Statement  Blck

_Block — (Pudemint)®

St b

Let 1 b ieger s that. by i th . synchronized Statement in bk, o f
equals to size in case that black s not synchronized. In other words, f satisfios that

() AVE€ {0y} egm(b) V ([ = sie AV € (,...sie) ~eyn(h)

Lot 1 e o nteger s that by i the st synchronied Sttement in block, or
cquals to 0 in case that block i not synchronis. In other words, st that

(= OAVE€ {0,... size} ~ayn (b)) V (syn(be) AVE € {1 +1,... size} ~oym(b))

an($) = \/ {oun (0) [ € {0.....size}}
el (5) = et () U
(U{ (ssetioe ) - U teftioc )11 € (0,40}l € (1,11 })
wae Var () = use Var (b) U
(U] (wsevar () = U v ()1 € 10,00}l € {1, osie} })
oo ($) = Ueftoc ()1 € {1}
defVar (8) = | (defVr ()1 € {0...sizc)}
“The wsea st i th ion of th e Locatons i by the Locations hat, e

o i b bt ot dofied in b, the Locations that are wed in by but not defined in
b, 2 90 00 il iation. The e Var et




Statement — call loo;-rzu Namel Ve
Arguments — (Espression

5 = call S name (S parameters)
S parameters : Direction x Expresson
P& Sparameters
»=(pDPE)
an(S) = true
wacLoc (5) =0
waeVar (S) = epliseVar (S name) U
{alg € Sparameters £.E € Variables A g.D = “u"}
defLoc () = (el € S.parameters 1 q.E & Locations  g.D = out"}
defVar (5) = {ala € S parameters A q.E € Variables .0 = “out”}

“The diection information of the parameters comes from the MethodType of the
method in the object graph (se descrption in page 12).

Statement — (co (Statement)* o]

5= (€ bl .. [hue-s €0)
() = e
weloc(5) =0
wseVar (§) = | {useVar ()| € {0,... sze} }
deftoc (5) =0
defVar (S) = | (defVar (b) i € {0,.... size}}

e (i B o St oo Sitmert i)

S = (i 5 guard then S.then e S lse if)
sy (8) = syn (S.then) V sy (S.else)



expliseLoc (S, guard) o
‘wseLoc (. then) U useloc (S.else)

wseloc () = {  eplUseLoc (S.guard) U
wseLoc (S.then) U wseLoc (S.cle) U
((defLoc (.then) U defLor (.lse)) =
(defLo (5.then) 1 deftoc (5.ese)))

weVar (5) = explUseVar (. guard) U use Var (S.then) U useVar (S.else) U

(S.ele))
defLoc (S) = defloc (S.then) U defLoc (S.else)
defVar () = defVar (3.then) U defVar (S.else)

it an(s)

I an IF Statement is ot synchronizd, the wseLoe st contains not only the

becanse ifa Zocation s defis n e v only one branch, the merging (¢-functon)

of it e of i, The use Var set contains not nly the Variables that ave used, bt

ko thoe e definee i xacly one of the branches for the same reason.

S mpmt ke
oy (S) = sy (S.body)
0 et s i 1o
e a7 i (i (o
sl Epdain
defVar (S) = defVar (S.body)

The useloe st contains ot only the Locations that e wed, but abso those that

are dofind in the Joop body bocase i a Location is deined in the loop body, the

El



0 the useloc st.

e (o Oy v B do Sement T

5 = (with S.lock when S.guand do S body with)

defVar () = defVar (S body)

Typo of Expression E | eapUscloc (E) ndesUsela (E)
WULL [
IDENTIFIER Tlocation (E)) [
'REFERENCE {ocation ()} indesUseLoc (E.ef)
U indestseloc (E)
INDEX Tlocation (E)) caplclax (E.ight)
U indextn
ther eopliseloe (EIt) | indesUseLoc (E.ef)
U caplse
Type of Expression E | capUse Vr (E) ndesUse Vo (E)
NULL []
IDENTIFIER {oariabie ()} [
‘REFERENCE indexUse Var (E) indexUse Var (E.Ieft)
EX ndesUneVar (E) “apUseVar (E.righ)
U indexlUe Var (E.Ieft)
otber CapUscVar (Eefi) | indeaUseVr (E.left)
U caplseVar (E.right) _| U indexUse Var (E.right)

£l



342 The Second Pass
The second pass analyss i o generate datafiow graph for each Statement. The
interpret proceddure of each Statement s theve inputs, a control flow root node, an
alive Variable set, and an alive Location set, and has four outputs, a control flow
oot node, an alive Variable set, an alive Location set, and a sub datafiow graph. |
denote the inputs as rotin, ivelnVar, and lielnLoc, and the outputs as rotOut,
liveOutVar, lieOutLoc, respectively.

livelnVar : Statement — ( Variable — Boolean)
livelnLaoc : Statement — (Location — Boolean)
liveOutVar : Statement — Vriable — Boolean)

liveOutLoc : Statement — (Location — Boolean)

IFthe Stotement has st Statement, the analyis also gives the thee inputs
of the anlyss of those nested Statements: the rootln node will be shown i the
dataflow graph 2 an it g ofthe est nterpret rectanghes the computations
ofthelelnVar set.an the Kl st wil be gven in & formul It

interpret. Procedure The nterpret procedure the four 2ud-pass sets and the
dataflow graph generation. The detil of the rost past of the interpret. procedure
T——
“Statement — (necept (Methodimp)” | accept])
Methodimp — Nome ((Argumen)” ) when Expression
Statement then Statement

Figure 3.2 (page 35) shows the dataflow graph of the Statement § which is in-
stantinted a3 an ACCEPT Statement. The * symbols represents mltiple similar

3




dges, an overlapped contents (such as the evaluate procedures) represents multi-
pl smilar subs-graphs. The dashec arrows represent the data dependency or control
dependency which indicates the order of construction of either control flows or data
lows. The function method(..) i to ge the method from the object graph. For in-
the name of bname in the objoct whose thread i being analyzed. All the STORE
odes and SIVK nodes have the side ffct of killing all definitons.

P —
b Sacaptiotics
= bname (b arguments) when b ard bbdy then b frbody
bguments : Dietion x Neme
acbarguments
s p—
eindoc (b bod) = 0
livelnVar (b.body) = liveln Var () U use Var ($)U
(e (aname)la € barguments Ao = ']
nendoc b apertody) = 0
WaclnVar (b aerbod) = cOutVr i)
icOuLoe (5) = U dfle (b arody) b € S acrptodis)
tnenbar (50 (e

{variable (o.name) la € b.arguments) s € S.acceptboies}



The data ow graph of ASSIGNMENT Statement is shown in Figure 33.

Statement — Block
Block — (Statement)"

5= S.statements

“The data fiow graph of BLOCK Statement is shown in Figure 3.1
Statement — call [Objectid Namel Nare] (Arpuments)
Arguments — (Erpression)”

5= call S name (S porameters)
liveOutLoc () = defLoe (5)
liveOutVar (5) = tvelnVar (S) U defVar (5)

The data flow graph of CALL Statement is shown in Figure 35.



S

5= (co S statements co)
be S.statements
tvelnkoc (5) =0
ivelnar (b
liveOutloc () =0
liveOutar ()

welnVar (5)

iwelnVar (5) U defVr (5)

“The data flow graph o CO Statement is shown in Figure 36.

Statement — (if Espresion hen Statement else Statement [if])

1§ = (if 5 guard then S.then else S.ele if)
ivelnLac (S.then) = ivelnLoc (S) U ezpUseLoc (S.guard)
livelnVar (S.then) = HivelnVar (5)
livelnLaoe (S.cle) = livlnLoc (S) U ezpUseLoc (S.guard)
livelnVar (S.cle) = lielnVar (5)
HiveOutLoc () = lveOutLo (5.then) U ive OutLoe (S.else)
liveOutVar (5) = lvelnVar (S) U defVar (5)

“The data flow graph of IF' Statement s shown in Figuro 37.

St (o i o St w41

$= (wh S guand do S.body wh)

livelnVar (S.body) = lvelnVar (5)
liveOutLoc () = livelnLoe () U liveOutLa (S.body)
liveOutVar () = lvelnVar (S) U defVar (5)

‘The data flow graph of WHILE Statement is shown in Figure 3.

3



Figure 3.2: Data Flow Graph of ACCEPT Statement \
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Figure 3:3: Data Flow Graph of ASSIGN Statement

Figuro 34: Data Flow Graph of BLOCK Statement
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Figure 3.6: Data Flow Graph of €O Statement



Figure 8.7 Data Flow Graph of IF Statement



Figure 38 Data Flow Graph of WHILE Statement
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Figure 3.9: Data Flow Graph of WITH Statement



Sttement  (with Ot when Expresin do Sitemend TwithT)

5 = (with 5 lock when S.guand do S body with)
lvelnLoc (S.body) = expUseLoc (S guard)
HivelnVar (S.body) = livelnVar (5)

ielnVar (5) U defVar (5)
“The data flow graph of WITH Statement is shown n Figure 3.9.

evaluate, use, and def Procedures During the analyss, the defitions of all
the Variables and Locations axe tracked by two functions, defNode Var and defNode-
Lor. The defnition of a Variable/Location can be found by one of these functions.
(using use procedure which rturns  dataflow graph node), and the defuition can
e adkdec, removed, or upeated by modifsing the mapping of these functions (using
def procodur).

defNodeVar : Variable — DataFlowGraphNode
defNodeLoe : Lovation U Espression — (Boolean x DataFlouGraphode)

“The Bootean v in the defNodeLoc indicaes whether the Location i defined.
T will b fale Fthat Location is only fetched et used. The Expression sub-donai
of defNodeLoc function is wsed f and only if the Expression represents an unknoun
Lovation (defives Iter).

Compared with the data flows of the Variabies, the data flows o the Locations
o more complicated because (1) when a Location s wsed, it is llowed to have no
reaching definition, and then it will be FETCHed, and (2) a synchronization will



Before an unknoun Laction i ither wsd or defined, al the alive Locution that
are potentially the same a8 it have o b tor and renove from the domain of
e function defNodeLoc; and when s wnkmoen Locatin i ither Jtche o sored,
tho evaluations of the index components of that INDEX Espression (sometimes an
Expression has more than one ndex companents) ae provided to the Fetch noe or
the Store node, and the addresing can b accomplished st run tme.

‘procedure use( Espression exp) returns DataFlowGraphNode
If (exp represents a Variable var)
return defNodeVar (vas)
elso i (exp ropresents a known Location loc)
Store or Sink each alive potentiaksame unkonown Location
remove the mapping of each Stored Location from defNodeloc
Join thee Stores, and Copy the Join
update the oot 0 the Copy of the Join
A (loc i n the domain of defNodeLoc)
o s DataFlowGraphNode so that
(o +— (teue/fose, ) € def NodeLoc
roturn s
olse.
s s mew Copy(new Fetch(loe))
d (loe — fals,es)) (o defNodeLoe.

Store o Sink each alive potentialsame Loation
remove the mapping of exch Stored Laration from defNodeLoe
Join thaso Store, and Copy the Join
update the oot o the Copy of the Join
Fetch the exp, aud Copy the Fetch
d (exp — the Copy of the Ftch) o defNodeloc

roturn the Copy of the Ftch




end if
end

‘procedure def{Expression exp, DataFlowGraphNode eDef)
i (exp represents  Variable var)
modlify the mapping of vax in defNode Var into eDef
elso i (exp represents a known Location loc)
Store or Sink cach alive potential-same Location
remove the mapping of exch Stored Location from defNodeLoc
Join thaose Stores, and Copy the Join
update the rot to the Capy of the Join
i (Joc i in the domsan of defNodeLoc)
i (defNodeLoc(loc) is ot wsd) Sink defNodeLoc(loc) end if
moxtify the mapping of loc in defNodeLoe into eDel
else.
add (loc — (teue, Do) to defNodeLoc
construct  Store of loc for frther wse
else
Store or Sink each alive potentia-same Location
remove the mapping of each Stord Location from defNodeLoe
Join thaso Stores, and Copy the Join
pdate the oot 10 the Copy of the Join
add (exp—s (1, eDef)) to defNodeLoc
construct  Store of exp for futher wse
(a0 evaluate all the index components in exp)
end it
end



3.5 Low-Level Optimization

To perfor a low-leve optimization which gots ri of some unnecwssary nodks, 1 do-
fined thre primitive procodures, ciminate, replace, and disconnect. The climinate
procedure removes  certain descendant of a certain node, and connect al the do-
scendants of the removed descendant 10 that node as new descendants. The replace
ocad i o node of that

removes  cortain node from al ts ascondents’ descondant lists.

(1) f & MULTLLOCK or SPLIT (dese two types are descendantindex sesiiv)
oot node has  noneSINK descndant node with o descendant, disconneet the de-
scondant and replace it with a SINK node in the root's descondant st e (2) if a
oot mode s & non-SINVK descendant node vith o descndant and the root s ot
MULTELOCK or SPLIT, disconnect the dscendan and remove it froms the root’s
docendant s

“The optimization procedure contains four steps, each of which s a bottonup
traverse of the dataflow graph. ‘Tho s stp deals with thee situntons: (1) i a
COPY node lias & COPY asccndent, climinate that. COPY s (2)if n COPY
node s anly one descenda, eiminate that. COPY ode; ane () if o JOIN oo
s only one ascendact, climinate the JOIN node. The second step i to apply
e removeRedundency procsdure. The thixd sep is to replaco COPY or SPLIT
nodes with only SINK descendants by SINK nodes. The fourth stp i t apply the

remoeRedundency procedure again.




Figure 3.10: Class Dingraun of Objoct Graph Package

3.6 Implementation Details

paste: the It pass
s implementee s an extension of the AST module in the front-end; and the 2ud
pass i implemented s an individual modul. | implement. them in Java. using the

nterfaces and the data strueturs describod i this section.

3.6.1 Interfaces and Extensions of the Front-End

The interfaces of object graph module are shown in Fig 3.10. The method et
Type() returns the object graph node type of a node. The emum OGNodeTipe wed
in the data flow synthesis includes LOCATION, OBJECT, ARRAY, VARIABLE,
and CONSTANT, ropresente by subinteaces OGLocation, 0GObject, OGArray,
OG Variable, and OGConstant,respectively. The method potentialSame() in OGOb-
ject class judges whether a Locatin is passibly refered by an Eepression efering
0 an walwon Loation, or whether an Espresson referting to an unknown Loca.

@



tion is possibly refering to a same Location with the other Expression. The ge-
Primtie()/getObject() method i OGNdelnf inexfac is 0 fnd the OGPrimi-
ive/ OGOWict node reprsente by a given exprssion whose path starts fom the
current node. The class MethodType i providd by the ront-end s a part of the
type system. The instancesof this clss provide information of a method such a s
parameters, e tc.

ASTNodelntf s the intefac ofthe AST vode which is descibod in Fig 5.1

Figure 8.11: Class Diagram of interface ASTNodelutf

7 o . e . At i
e o s s e b
|



ASTNodeType | normalizaion
ACCEPT_BODY | Each ACCEPT_BODY node has fllowing descer
dants: methodType, gused, body, and aferBody.
o 8 CO vode.

COLOOP

FOR o a WHILE node.

¥ Each IF node s following doscendants:  guard,
thenClause, and elseClause.

WiTH Each WITH node has following descendants: guard,

lock, and body.

The enum
ASTNodeType use in the data flow synthesis includes ASSIGNMENT, ACCEPT,

ACCEPT_BODY, CALL, IF, WHILE, BLOCK, THREAD, CO, and WITH. The

which i isted i the following table, and the method getEzp() returns a descendast
Espresion node.

ASTNodeType | # exp | description
ASSIGNMENT | 2| one for the lefi-hand-side, and the other for
the right-hand-side

ACGEPT [
ACCEPT_BODY | nt1 | oue forthe guasd, and 1 for the paremeters
[Z

ALL 11 ove for the name, and 1 for the parameters
¥ for the guard
WHILE for the guard
BLOCK
THREAD -
WITH ‘one for the lock, and the other for the guard
The method 0 AsT

T, which i st i he following table, and the method getDescendant() returus o

2



descendant AST node.

description

o n acoept bodies

ASTNodeType | #
ASSIGNMENT |0
ACCEPT w

2

ACCEPT_BODY|

“ome for the by, and the other for the after-
Body

CaLL [
i 2 [‘ome for the then clause, and theother for the
o clase
WHILE T for the body
W for n statements i the block

THREAD T the body.

[ w for n bodis

WiTH T for the body

“The meshods syn(), weLoe(), defl(), . defVar() rcurn the sl of the 15
s computation. The method frstPass() s o process the 1st pass computaton.

ol

bt 3
.‘.-..;..\.u ) Lanc:

etae.) ¢ Lclotogr>

Figure 3.12: Class Dingram of interface Expressionli

Expressioniutf i the interface

of Expression clas (Fig 3.12). The method get-

OperatorType() roturs the operator type of the current, Espresson. The enum
OperatorType s in tho data low synthess includes LITERAL for the constants,
IDENTIFIER, REFERENCE, INDEX for the array clements, MATH for the mathe-

d EQUAL




ITY and COMPARISON for the comparisons. The method copy() returns a copy

of the current. Bapression. The n

thods expUseLoc() and indexUseLoc() are parts

of the 1t pass computation. The inerface also provides some other methods 10 the

Expressions with particular operator types.

1TV, COMPARATION

operator types method
IDENTIFIER, REFERENCE eToken() : Token
LITERAL etValue()  Value
LITERAL etConstant() : boolean
‘REFERENCE, INDEX, MATH, EQUAL- | gelLef() : Exprosioniutl

INDEX, MATH, NEG, EQUALITY, COM-
PARATION

wetRight() - Exprossiontut

3.62 Data Structure of the Data Flow Graph

Figure 3.13: Clas Diagram of DFGNode

“Tho data low graph s constructed s s of nodes that ach pode knows both
it descendants and i ascendents. The abatract clus of the nodes is shown i Fi
313, Tho method resctAscendent() s to break ll thoe s with the given node
s the s and the currnt mode s th target. The method resetDescendant() i
o brosk all those dges with th curret ode s th source and the targe ode 4




the target. The enum DFGNode Type includes START, SINK, FUNC, COPY, JOIN,
MERGE, SPLIT, MULTILOCK, LOCK, UNLOCK, FETCH, STORE, wd VALUE.
“The methods visit() and reset Visited() belp the traversal of the graph. The method
hasDescendant() returns teut f the node has no descendant.

Figure 3.14: lmplementations of de/NodeLoc and defNode Var

The design of implemnenting the functions defNodeLLoc and. defNode Var (e sub-
section The Second Pass) s shown in Fig .14, The method contains() of cither

(n Lovation can bo represented by an integer value or an Espreasion). The method
aetisDefinc() in DefNodeloc class returns teue if n Location is defied, and false
if the Location s FETCHwd for wes. ‘The method getDef() returms the data flow
raph oo whichisthe living definiton of the given Location Variable. The method
uplateDef () et the mapping of the function. The method remove() removes all

. The method

the function.
Each Loc object has four feds: loction or ezp is the asgument of  mapping,
and isDefined an def constitute the image of the mapping. Each Var object has

2



w0 i name s the rgument of 3 mappin, nd def s th imageof the mapping.
“The method copy() returns a copy of the object.
3.7 Example

The first example® s the data flow graph of a FOR Statement (which hs been
normalized into a WHILE Statement) with a nested IF Staement. The HARPO/L

“The data low graph of the thread in object “obj1" i shown in Fig 3.15. The
bi-connected SPLIT and MERGE (on the right-haside) are control flows of the
T Sugmind by Rl Granaaive



Figure 3.15: Data Flow Graph of Objoct “obj1”



IF Statement. They are equivalent 10 a node that keeps wating for data from the
COPY of the FUNC oStz

e whatever it rceives, it il pas the control flow
along its output edg (10 the MERGE on the top). This simplification is lf to the
frther optimization.

> producee”
oblect implmenting a FIFO buffe, The buffr i dscribed by the clas FIFO with
w0 public procedues which are implemente in one ACCEPT Statement, which
meansthat they can ot smultancously exeeute Once  cliot. calls ither o thes
procedure, the lient will wai unil nest time the ACCEPT Statement is s,
“Then, the guards are evalunte o julge whether the call i acceptabi, and if o,
e calle procedsr’simplementation by s xecuted. The guaeds e the asign-
ments of flds producersize nd prodscer font ensuves that the FIFO
P p——

(class FIFO (type T extends prinitive)
constructor (in capacity: int5)
public proc deposit (in value: T)
public proc fetch (out vau: T)
private obj bufT(capacity) = (for icapacity do 0)
b front = 0

deposit (in value T) when size<capacity
bl ront e eapacity] = value
s = s 1

fotch (out valueT) when size>0.

TSuggeted by Dy Thoodore § Norvll




obj producer = new FIFO{i32}(40)

‘The constructor fiekd capacity has primitive type, 50 it is considere] @ constant.
HARPO/L{12], each method o,
66,2, and e, Al the a locks are controlled by a MULTILOCK node: every time.

the ACCEPT Statement is exccuted, only one of the a locks are locked (only one
client call s processe) and only one of the MULTI-LOCK's outputing control flows
i activated. As shown in this data flow graph in Fig 316, guards of the ACCEPT,
size < capacity, and size > 0, e evausted in parallel, and fod o the MULTF-
LOCK node. The MULT-LOCK node spi

bodie ofthe two metlods, deposi and fetch. Tn deposit, afer FETCHing the “in”
angument value and evaluating the value of an areay indes (font + sze) hcopacity,
the ssiguments of a[(front + sze)Soapacity] and size ave procese in parallel, Tn
ek, the assgmments of front and size aro procossd in paralel, snd the “out”
angument vl is STORE bfore fetch. is unocked.

A number
of nodes, such s the SINK node and the SPLIT nodes of capacity and siz, are

nnecessary. y are et »

and sie a8
variables rather than filds. The data low graph of the folloving program is shown
in Fig 317



Figure 3.16: Data Flow Graph ofthe Thread of the “producer” Object



(class FIFO {type T extends pmmm)
constructor (in capaci
‘public proc deposit (in value: n
‘public proc fetch (out value: T)

private obj bufT (capacity) = (for icapacity do 0)

(thread

deposit (in value: T) when size<capacity
buf](front+size) capacity] = vlue
size 1= size+1

ftch (out value:T) when size>0

value := buffrone]
front = (font+1)eapacty
size o= sz |
accept)
i)
thrend)
class)
b producer = new FIFO[it32)(10)

In the data flow graph, front. and size see o longer FETCHod. Instead, they ace
MERGEA and SPLIT with the control iow of the WHILE Statement, and SPLIT
and MERGEA with the control fow of the ACCEPT Statement.



Figure 3.17: Data Flow Graph of the Thread of the “producer” Object version 2



Chapter 4

Verification of Parallel

Object-Oriented Programs

| i chaper,  how b to sutomate vrifaton of parall objctoriete ro-
; s, ™ HARPOL
‘ Athough his sk i ot sccomplishod, | make positive progress on il the gap

between wutomatic verification of sequential programs ane that of parallel prograns.

4.1 Background

programs judge i Z Us
a a preconditon,

may p
Verification has been formalized axomaticall since Hoare tiples were define i
1969120} A Hoaro triple {P) 5 (Q) contains  pair of Boolean expressions (precondi

®



tion P and posteondition Q) and a program S. I P being teue befor the execution
of  guarantees Q to be teue when the execution terminates, then wo say this riple
s vald, denoted - {P).5 {Q), which represents that the command S has partial

With the (sign-
branches,

and loops), the verifcation of the ntire program can be achieved.

The axiomatic approaches have been extended 10 paralel prograns by Gries
and Owiki{21]22], and Lamport{23). This extension is summarizel by proof out-
line logie{24[25]. In proof outline logi, the contrscts (preconditon, pasteondition,
and sanotations) help verify both sequential reasoning (ocal reasoning) and concur
rent. seasoning (sbsence of intrference). A typical proof outline i the motation of
[25) i

(precondition)
{Annotationa}
Command
{Amotatons)
{Amnotatons)

{postoondition)

The contents between { )} aro the assertions, and other contets are program

1 com-

toxta,
mand i thread 0 be

o




change the value of that annotation from tru (o fale), we say the command iner-
For example, i -

fore with Amnotations i - { Annotaions A Annolations) Commandy ( Annotations ),
where Annotaiony is the ertion preeding Commanda.
“The prdicate transformer wil26]27, saning for weskest iberal prconditon

provides programs. A pro-
sram § i partially correct if the proconiton (pre)imples it weskest iberal pro-
condition (wipre = WS, pos]). The formula pre = wipre s called  veification
condition.

)
solvers, uch as 2328 and Sipl{20], may bo s o automat the verfcaion
ol

Boogie3] i  verificatio tol fr cthe oboct kot prograns( 312 334]
orprocedure crented prograns{3] based o  wesket bl preconditon et
logy: I a Boogi Fig. 410,

BoogiePL6)
which is in a proceure-riented style. Then, the type invariants and explicit loop
imariants are inforrd for the BoogioPL program. A Boogie compiler il generate
st order formulas as the verificaton conditions from the contracts and the -
mentations of the metheds, and then use the theorem proves to verify then.

In object-oriented applications of Boogie, the verfication conditions for meth-
o’ partial correctnes are lightly diffrent. The weakest iberal precondition wipre
quals to wip], post A inv] where S is the program, post is the postcondition, and
inu i the type invariant. The verifiation condition i pre A ino = whpre. The
method implementation in BoogiePL is composed o variable/constant doclarations

®




I -t

‘ B S © =

Figure 4.1: Boogie Pipel

an satemments. Each statement. grammar rule s an asociated wip rule 32

Stmt — Stmt Stmt.
wp[ST,Q) = wip[S, wp 7. Q]
St — skip:
whlskip, Q) = @
St — 73 1= Era;

wiples = 55, Q]

St — (B =
wtp ] = £3,Q) = Qi)

Stat — while (Expr) I (Sint)
wip whil (E) invariant J;(5),@] = JA

(Va3 J A E = wlp[S, ) A (Vs - T A~E = Q)

where 23 denotes the shared assignment targets of §
Stmt — i (Erpr) (Stmt) else (Stmt)

wholif (E) (5} else (7),Q]

= (E = wip(S,Q)) A (-E = wi[T,Q))

®



Stmt — havoe 15 (t0 asign asbitrary values 0 the variables)
wipavoc 751,
Stmt — assert Expr:

(as-Q)

wipassert E;,Q] = EAQ
Stmt — assume Epr:
wipassume ;,Q| = = Q

Stmt — eall zs = P(EE)

The cal statement is decoded into a sequence of other statements(32,. The se-

copying
ok valuss of variables in modifies clause, iitialization of tho output parameters by
anbitrary v " wd

parameters.

method postoandition and the object imoriant.
Consider the folloving procodur:
P (in ins,out outs);
requires Pre;

modifis gs:
ensures Post;

“The callto this procedure call s = P (EE) ;s decode ino:




havoe g5, outs';
assume Post’

= outd;

New variables ins’, outs', and g5 are inroduced for each variable n s, o,
Prein which

wd Ay, The expresion Pre
al the variables from ins are substtuted by the corresponding ones from ins'. The

expression Post’ represents & copy of expresion Post in which (1) al the variables

ol old(£),
in .
Dafny(32]34),

ion to Spoc33), and VOCIT], concurrent fetures are atempec. Mt of these
appliations we the monitor8] mechasim o provide mutual exclision fo sy

chronous method calls. Hower, none of these applicatons solved the prob of
automaticall veifying parallel compositon.

from: L to parallel BoogiePL

paralll BoogiePL o the verification conditons

4.2 Verification of HARPO/L

HARPO/L is  statc lan-

In contrast to other Boogie applications(31332), s
guage, the input of the Boogie Translation is  specified object graph with specified
AST in i, and the target BoogiePL prograum s an objectJeve prograum, rather than



In additon, ll the modifies-clauses of an objoct’s methods are assigned 10 the et
of the objoct’s primitive fiekds unionee with the variables n the thread whero the
method s, In the following transltions, 7 ] means the recursive transation of

statement 5.
%S TS| s
[y = B By= By

v [E:m (In, .., Iy, OuE .., OutE)]
= call Outbo,..., OuE = E:m (InF .., InB):
(i E then Sy else 5, 6] = If (£) (T[S} el (775}
7 {(wh £ invariant J do $ wh)]
= whill (E) invariant J; (77 (5]}
7 (accept Mo when G| .. [V when Gy accopt)]
= nssert Gy V...V G havoe ll thefekds and shared varinbls;
¢ (with L when G do S with)]
= havo all the fikds and shared variabls;
(await (G L # “locked”) L i= lockad; T [5])
(o Sll... IS co)] =co (TSI (S):
Acconding to the semantis{12] of accept statement, the guards are evaluated

i it

for & cliont’ call. Note that the veriication of the aceopt bodies (ie. the fmple-

conditons), and when verifying o thread, the aceept statements are translated

w




i & . o o

shown. The verifcation conditions of implementation bodies are G A [y A pre =
Wl B, I A post], where G s the guard, fn s the object imariant, pr is the pre-
conditon, past is the posteondition, and B is the implementation by

The avait statement. and the paralel compasition are the main extensions to
BoogiePL.

pStmt —co {Thrd)
Thrt — Stmt
Thrd — Stmt | Thrd
Stmt — (await. (Expr) Stmt)
‘We assume that avait statements are not nested within other svait statements.

An await statement. (avwait. (E) ) means “woit until £ i teue and L is unlocked,

then exccute 5" where L is a global lock. 1f E s alvays teue, or S is skips, the
statement can be abbroviated.

&

fawait (teue) )

(await (E)

fawait (E) skip:)
“The wealest liberal preconditon of avait statements is

wp(avait (E) $).GQ]

(E = wipls,Q))

Eands.



4.3 Weakest Liberal Precondition of Parallel Com-
positions

1o not give a formal algebra ule of wip for parallel compasitons n this paper
Tostead, | give an lgorithn to compte i 1 assume an nteleaing model o concur-
For Sction 43 i

aris fom data races;thse sues e addresod i Section 4.5.
For the convenience of the desciption of my algorithm, exch sple statement
i a parllel compasiton i marke by two sumbers: thread munber and satement
umber, The thread mnber i sraightforward; th statemet mumbe is givn in
e fllowing way. Supposo the paallel composition has ¢ threads. For each thresd
et to-ight depthfirst travl of that thread's abotrnct synka tree is performed,

and each statement node is given & statement mumber according o the order of
being visited. Specifically, theearle a statement i visited, the sale its statement
Jeri 0,

o

and the second subseripts ae tho tatement mumbers.

Sttt = b
Stmt 38 (0 0)

ematll;
while (¢ < 10) invariant ¢ < 10;
(Stmts

-t 1)

)
Stmiyy e mexe;




Now e defne  umber ofhelpfl concepts et to program counters. The
fr— s denctd . A -
prssion rof  paralle compostion, s uple o, ... a.1) where s € (..., 5,+ 1)
“The rangeofall program connter expresions i called cotrol pace, denote .

0 € NV € {0,...} -0y € (0., S+ 1}}

Each thread § hasa ghost variabie, program counter £, and the progran counter
@), 10 s first order
Eu

expresion (o, .., 1) mens (Fy = aw) .. A(Picy

i an abbreviation of

Eus ((A=00) Ao APy = i) = B)

A formula in FormulaSet form is  se of program counter expression asociated
st oder formuls, and the mesning of & FormulaSet i

o (1620) <
SR —
pute a global invariant representing the relationship between program counters and
program states. For the convenience of the computations, the global invariant G is
e e b 1. (31 et e o b
program couter expresion. T e of  forula i G with . ot pro-
et oo 5, e e

has 10 hold when the parallel execution enters a state that is at the beginni
e

e condition which
of the




Take the above parallel compasition a5 an example, according o the weakest
iberal preconditon ressoning, the formula G5 must imply wh[Stmio,, Gassl A
Wp{Stmt0,Ga 03] A Wip{Stmtzs, G Note that semantically Sty s followed
by Stmtag rather than Stmts, which s in the else-clause

A pastial order < s defined in control space C:

asd e ) asa

“The computation of & formula G, should be processed afte the computations of all
the formulas Gy where o < .

(any o s processed after the computations of ll @ > a)
forie (0,1}
a<sl
i St T the last statement in

£



[ —
uppon e IF st i lloved by St
o o[ Simn G141

e f Stm

the loop body of a while statement.
suppose the loop imvariant of the while statement s /no
-

followed by a statement St

mpim (B> Gonm
AT e ——
el f St s an whil statment
uppose th guard s E, the loop maraa i J, ad
o st satement i the op body s et
tmpim JA(E Gon o,
A(-E = o sho

tmp = Wip[Sttin, G,
ir

ond it
Go = G A trp
ond if
ond for

ond for

1/ Generating Results
wlpre = Go,_o

“The inialization asigns an over-weakened condition teue 0 each formula in G,
Finally each G, is




the weakest A stae a. The weakest i
of the parallel composition i the formula Go,_o.

“The number of wlp computations is ¢ x | (S,-+1) where ¢ i the munber of
it

o
threads, and S is the mumber of internal annotations in thread i.

compasition i very simple way. The annotation preceding St is P, = k, and
the annotated threads along with the precondition and postcondition of the paralel
‘compasition and the global invariant compose a valid proof outline. We say it is &
‘weakest vald proof outlin for the given pastcondition.

4.4 Example

“The first example shows that the rosult of the algorithm covers al the interlasing
possibilitis, Consider the following parallel compositon.
o
Stmtog: (= 2+3;)

Stmio, : (=2 +2)

Stmtyg: (e =2 x )
Stmit ¢ (=2 x %)

W give this paralll composiion a specifcaion i which the preconditon is
Qo2 = 2 and the postconditon s @, ¢ € (17,20,2,3,42). We want o verify
that this progeam satisics his specificaton. By eoumeraing all the nterleasing
possibilte, we kaow that a precondiion of 2 = 2 keads t0 & postcondiion of 7 €
{17,20,22,32,34,42). Since i @, the range of  does nok contain 4, the verifcation
result should b egative.




Formulaset

form)

G = {flst, (2 € (6] (x € {12,15,17,27,37)s.

ooty (= € {9)),,(x € {15,18,20,30,40}) 5,

| (oA, Ceffmnna)),
(e im0, 2,3.0),,) ‘
vlre = fase

Therlre, thecomplte weskest proof utlne i
{pre  fioe)
j { global invariant G
\ (R=07P =0 fose)
A(R=0AP=1=z¢6)
A(R=O0A P =2 2 € {12,15,17,27,37))
APy= AP =0 = flse
MR =1AR =126 (0))
AR =1AP =25 2 € {16,18,20,30,40))
AR=2AP=0=ze{{.0.4.4.7)
AR=2nR =15z (§,10.11,1621))
AR=2AP =2z € (17,20,22,32,42)) }
e
=0}
Stmiay (212 24)
{P=1}
Stitoy s (2 1= +%)
R=2

I
{P =0}



Stmtyg: (= 3)
=1

}
{posteondition : x & {17,20,22,32,42})

Because the specifi precondition @y : = = 2 does not imply the weakest iberal
procondition wlpre

fatae, the verification result is negative, as expected. We can
o check the local

his proof utline, and
find that this proof outlive i valid.

Now,

<z,

the precondition @y : 7 = 2

“The global invariant G in the result is:
G:{('F‘<x<;)u,(%<z<1a)m4(n<;<:9]“.
(Geoclt) reecmaucrcar,

(g<z<2‘:)[”‘(3<1<5’z.-(|5<Z<“Ju}

AR=1AP=1=T<z<m)



0
Stmton: (&= 7 +3)
{R=1)
Sty : (2= +2)
=2

(Ri=0)
Stmtyg : xom 2 % 35)
P

)
{postoondition : 16 < = < 44}

2 < §, the verification reult is positive, as expocted.

4.5 Enhanced Weakest Precondition of Parallel Com-
positions

4.5.1 Absence of Data Race

and ace ot both reads.

o e (ot
exampl [12) This aesnutive. dfition e o b oo



Two statements are said to potentially confict if they may make conflcting ac-

e wheu " starting state. For

ments or expressions, we can asily compute the weakest precondition that ensures

. =0yi=1) i thre
yomil=
43 it each other, po
e (=1 0).
1] = false. ‘more than
o cxpressions:
wncpe[X] wncple

Define a synchroisation point s cither the start or the end of an vt state-
ment. An exceution of a concurent program can be thought of 5 a sequence of
acions inteleaved from the arious threads. The (executions of) synchronization
poins split an execution o segments. An exccution has . data mce i actions fom

different threads make conflcting data acccses i the sae segment, 1, without

any intervein synchronization poit.

“The prodicate ehat. charateize thase i sates that ensure date rao e
exccutions is & concurrnt. program's weakest data-rue-fee preconition, iten
wiplS]. A program that has potentially conflcting statements i differnt threads
may still be race foe, a5 the programmer may use mechanisms sich s semaphores
o prevent confliting satements from excrting in th same perio.

For xaunpl, coside the follwing parale composition S.

Stmtog : (avait s > 0)




pply the lgorithm with a specified postcondition (= = 0V 7 = 1), the eslt i

G (450 < g (o <Oyt s,

(8 0yl ez e s,

g ey, (2 = 0V 2 = Vg (1= 0V 7 = D)y,
sty (2 = 0V = )y (= 0V 2 = D)5}

whpre =530V <0

As shown, wlpre’ implie 5 # 0 which guarantoes the absence of data races.

in[39) which did not give the computation method.

452 Absence of Deadlock

the the thread or

(2) at least a
vt statement i in the state fal.
o {// threwd 0

{Amnato,)
Sty : (await (Eo)

{Annotos}
117/ thread 1

(Annotys}
Stmty - (await. (1)



{Annotys}

For cxample, the bt threaded paralel composition hias three psiilis
t0 have a deadlock: thread 0 i waiting for Eo to become teue and thread 1 reaches
the end; thread 1 s wating or E; to become tue and thread 0 reaches the end; and
thred 0 waiting fo & to become true and thread 1 is witing for E; (0 bocome

o
the weakest deadlock-fee precondition of S, denoted wdifp(S|,

We improve the lgorithm agan so that i can compute a preconditon wipre”
which ensures the postcondition, ane implies both its weakest dota-race free -
condition and weskest deadlock-fee precondition, . wlpre” = wipre wertp(S| A\
wifls]

“The soution s similar to the one of weakest data-race-free precondition. In this
example if we strengthen the intil state of G, 1 10 Ea, Ge11 0 By and Gy 0
[y By, the resul of whre” will guranice the aboence of deadlock. Formaly, the
lization of the enhaneed (sgain) alorith is:

1/ nitination
Gi= {tuea [a€C)
forench statement par St and Sty
for cach 0 € ({00, ac1) € C [ =
Gai= Gu s wncpel{Stmiy St}
end for

end for.
for cach a other than (So-+1,.... S + 1) such that,
for all € {0t} Annot , s cither the last annotation of thread ¢

£



Note that fale, s for thedata races between Sty and Stmt 1 aned (s > 0V 5 < gy,
(5> O)y30 and (s < 0} ave for the deadlocks on Stmap or Stmtys. The result of
the enbanced algorich i

6= (<O Oy bt 4 U,
[
ooy s (=0 2 1 (£ OV = s

s}

(5 <Ot (= OV 2 = )y (£ =0V T

wlpre = (s < 0)

4.6 Grainless Semantics Issues

exccution i an eror of the worst sort; one that makes 1o guarantees, 1ot even of
termination or any indication of erro. O benefit of grainkss semantics s that it
| i 1 t0 make any other

| e e

the set. of data accesss in regions between synchronization points. A statement

, e
| e o i e, i o i
e A i et e et o

sexnantics we st ensure that there are no data races, as discused in Section 4.5.1

s



Homeve, as long a8 we do that, it s safe 1o igore the passibiiy of concurrent
acosses, i ot words, o assume that al interkaving s at the synchronization
poits.

Therefore, when verfing a program, we only need to consider program countr
postions tha are synchronizaton ponts, or that imsmedisely follo branches. This

For example, in the following program, Stmto, St is considere a5 an atomic:
i Stmt, xSt 1 i considered

o f

1/ synchronization point

Sty // no guaraotee of mutua exclision

// not a synchronization point.

Stmiayus; // v0 Euarantesof mutual exlision
/  synehronization poins

1/ syncvonizaion pint.
Stmty /o guaranoe of mutualexchsion
1/ 0 3 syochuonzation poin

Stmtyans 1 10 of mutual exclusion
1/ syncnonizaion pint

With an assumption of the absencs of data racs, the ordr of the exceutons
has o impact on the bekaviou, 50 we can consider Stmio, Stf.1 atomic, and
Sttty atonic.

Thersfore, the global ivariat dos not have to contain the for

®




With G-+ 1,k +1), Gk + 1), 06 ]+ 1, A). However, it must contain the formulas for
i which all the points.
Take the following program for example.

Stmtaa: (await 5 > 0)

 {
£

Stmtga:yi= 41
St : (s:= 1)

 (await s <0)

{posteondition -y =1

wd

s fae:

Pusy Pray Pag, and Pra. The result after runing the algorithn is

= ({5 <0V > U< O (0 <Oyt e,

(55 0), sy sy, 5 0,
(8> D)y, falseyy alseya, (£ = O)ys, (2 = Oy
ety et (= Dy (9 = Do (0= Dy
g, e, (2 = Do (0 = Do (0= D}

whpre = (s < 0V £>0)

‘The synchronizations occur when Py € {0,1,3} and P, € {0,1,3). Therefore the.

s



‘lobalinvariant G does not necd to contain the conditon of Fy = 2or Py = 2. I other
words, Stmia, Stmtq is considered as an atomic segment, and 50 s Stmt, St
The result is

@ = {(s <OV 5> gy (s < Oy b, trus,

[CE

ey ey,

iz (0=,

truegg truegs, (5 = D)y (5 = 1),

whpre = (s <0V s >0)

i n G, excep that
G contains the conditonsof A= 2o P, = 2.
Another example shows tha the posiions immediatly ollving branches nesd
0 be considered i the gobal imariat.
el
-
<0




}
{posteandition  teue)

‘The conffcting statemeats assigaing y and = are not in any await statement,
However, if a =

the pre-execution state, the data race will not occur. 1f we do.

ot consider the posiions that 7y , we will btain &

wlpr” = false,

‘consider thase postions, we will obtan the correct result

G {(a= O (0 0 (5 O v,
(0200, 8015l . 15,
(@< 0 flsy ez s,
[

wlpre” = (a=0)

4.7 One More Example

allowed mathematic operations are adkdition, comparisons, and Bookean opeations,
we want to find a natural number a 5o that a%31 = 19 and a%83 = 62. We wse
rainless semantics and n BoogiePL's syle) below, but we do not

the program (s
Know

is correc.

0,040, 0, = 19,62, s, flse
cof

whille (~eq) {




(await (a<b) (

aimatdl;
= (a=b);
»
i
]
while (~eq,)
(await (b<a)
bembasy;
e =(a=b);
»
)

In his prograum, @ and b are shared variables, an eqy and gy are local variables.
The requirement. indicates the postcondition must fmply %31 = 10 A 0583 = 62,

and 1, o vorfer, will ive a postcondition a = bA %31 = 10 A\ U583 = 2. 1w
o give . procondition ofthe parall compesition that a 4 b AaSE31 = 19583 =
2 which i uaranteed by the initaizaton. - In addition, the Joop invariats are
o for verfcation (given belor). Now,the spocication (nchding proconditon,

poscondit is complte, ot will bo appled o

compute tho global invaiant of the follovin, proof ouline.
{precondition :a 4 b7 %31 = 19,7 V583 = 2)

(global invariant G = )
of

(Ry=0}
Stmtqy: while (~egy) invariant inog : %31 = 19ego = (a = ) {
(R=1)
St (await (a < 8) {
a3



(Ri=0}

Stmtyo: while (~cg,) invaiant inv, : 183 =
(R=1
Stmty: (await (b <) {

wi=lo
»
(=2
)
(7=
)
{postconditon :a = b o531 = 19 A U85 = 62}

At the beginning of the procedue of the algorithm, G, is intialzed t0 0 # b,
Gt nitilioed 0.0 < b, and G s intialized 0 b > a, o provent deadlocks.
“The esult after we run the algorithen s

o+ a%31 = 19 ABKS3 = 027 ey

=Wne

et Aoy = folse) A (ego Ve, = 0 = b)
Goy %31 =19 A 183 = 62 oy
Gio: %31 =19 A VES3 = 620 g,

a#bA(a<bo> %3 =10A (5< ot 31 = 1%83 = 62))
A(b<a=1%83= 62 (a < b+ 53 o531 = 19))

5



Neto=(a=b) Aeay = a=5)
) A (et > 0 <B) A (et = a = BABYSS = 62)
) Ao < b= %31 = 19)
) A (b < 0= 83 = 62)

) A (~egy = b < ) A (egy = a = b A a%31 = 19)

Aetg=(a=b) A e,

Through a brief observation, wo can find that there are potential doadlocks i the
execution of the programm. Tmagine that a is 2201 and b is 2220 when both threads
i Theead 0 il go 20, asign e t0

v, and then quit the loop. In his cas, thread 1 will wait forever, and thus there
will be & dendlock.
Now, the deadlock problem is somehon: ied as below, and we st ro-veriy s

comectness.

abeueq, = 19,62, fase, fale;
e
while () {
(await (a<b) {
if(a<h) fo
B




while (~eq,) {
(avait (b<a) {

The specificaion reasains the same. Gy, G, and Gay are nitialze to true,
@<, and b < o respoctvely. The rsult of the algorithm is

Gon %31 = 10 AUES3 = 62 A g

—HAa=(a=b)
Aeto ety = 0 < DA et A ety = b @) A egg ety = 0 =)
Gay %631 = 10 AUASD = 621 e

Gyo a3l = 19A 1S3
Gua %31 = 10A RS9 = 62
Gua:(a<bes UREI = 02A o = (a+31 =)
Ao <as LA (a+ 1= b= oy
o= b= o531 = 19 AIES) = 62 et =
MO <a= oK1 = 19 A o = (a=b+83)
Ao B A (0= b+83 > 183 = 02))

A = (0= b)A (e > a <)
®




Chapter 5

Conclusion and Future Work

Recoufigurable computing s & computation slution with higher eficiency than soft
‘ware solutions and higher flexibilty than hardvare solutons. In reconfigurable ar-
chiteturs, (CGRA)

for many applications, than fine grained architectures such as widely wod fild-
progeammable gate amays (FPGAS) 3]1]
The HARPO project sims to deine a high-lovel object-oriened programming

nits (sDPUS), and

call are mapped into nterconnections between thase rDPUs. Besides, HARPO/L is

 Statie: All the allocaions an connoctions of objocts e done at compiletime
due o the nature of bardvare configurations.

‘» Concurrent{8: Bach objoct has a mumber of threads and is considered as an
active datapath afer the compiling, The threads of allthe objects are coneur-
reutly exceuted.

 Grainkss{12}: The snantics of the language does not depend on the gramiasity

®



of memory access.

5.1 Contributions

Dataflow synthess s an importait comporient in the HARPO/L compiling process.

odule. This thess mumber o Erwph
nodes in CHP notation, and wses a bigh-levl data flow analysis algorithm, which

programs, T
datafow synthesis s extendable to most object-oriented paralll anguages.

HARPO/L i f il based on Boogiel
for L od, and an algorith st global nvariant

and weakest liberal preconiton (wip) of paralll composition is proposed. This
algoithm il tho gap betwwen state-of-art wlp appronches and verifing languges
with paralll compositions. The weakest proof ouline can be generated from the

Moreover,

invariant. and enhanced weabost iberal precondition can bo used 1o veify absence
of data race or absence of deadlock along with the behavioural corrctuess. This
algorithim also has good interplay with grainlss semantics.

5.2 Future Work

The following medule remains incomplete in HARPO/L project.

 Frontend: The object graph geners

s ot yet been implemented.



A b . s sl

‘o Midle mosdule: L only implementec a very ko lvel optimization of the datafiow
raph. More optimizations are oo
 Backend: The seheduling module has not yet been implemented.
 Verification: The proposed erification system has not et been implemented.
‘ Besid Theodore
S Norvell.
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