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Abstract

Based on the psychological and physiological fact that humans employ a visual attention
mechanism to connect perception and action by selecting the relevant parts of the en-

vironment in an unconscious or conscious way and using the relevant parts to produce

an appropriate action, this thesis presents a cognitive visual perception paradigm that

determines how visual inputs reach awareness and guide actions.

Based on the idea that a general way of organizing the visual scenc is to parcel it

into discrete objects, object-based visual attention theory is employed in the proposed

paradigm. This proposed paradigm models robotic visual perception as a three-stage
process: pre-attentive processing, attentional selection and post-attentive perception.

It indicates that robotic visual perception starts from a low-level cognitive attentional

selection procedure that guides attention to the relevant object of the scene, followed

by a high-level post-attentive analysis procedure that analyzes the attended object and

formulates it into an internal mental representation used for further cognitive behaviors
The pre-attentive processing stage extracts pre-attentive features and divides the

input scene into uniform proto-objects by using an irregular pyramid based segmentation

method. The attentional selection stage guides attention to one proto-object of interest
by means of unconscious bottom-up competition and conscious top-down biasing, The
bottom-up competition is modeled by estimating the saliency of each proto-object. The
top-down biasing is modeled by using integrated competition hypothesis: by directing
attention to a task-relevant feature of an object, a competitive advantage over the whole

object is produced. Furthermore, this thesis asserts that the task-relevant feature can be

autonomously deduced from the internal representation of the task-relevant object that

is specified by or inferred from the current task.




Once a proto-object s selected by attention, it proceeds to the post-attentive percep-

tion stage, which includes perceptual completion processing, extraction of post-attentive
features, object recognition, and development of the internal representation of the at-
tended object in long-term memory. The internal representation is autonomously orga-
nized and learned under the framework of probabilistic neural networks in the sense that
an object is modeled as a hicrarchical cluster. Thus, each instance in the cluster can be
abstracted as a mental state that can be used for high-level cognitive behaviors, such as

attentional prediction and action determination

This proposed cognitive visual perception paradigm is applied into distinct robotic
tasks, including detection of salient objects, detection of task-relevant objects and target
tracking. Experimental results under different conditions are shown to validate this

paradigm
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Traditional Visual Perception

In the standard artificial intelligence literature [1], a robot agent is defined as something
that perceives the external environment and acts on it, whose abstract model is shown
in Figure L1. Perception and action are therefore two fundamental units for robots

in the sense that the perception unit provid

ensory information obtained from the

environment, based on which the action unit produces corresponding behaviors by using

the learned knowledge.

Figure 1.1: The abstract model of a standard robotic agent.

Thus designing a satisfactory perception sy

tem is the first important step for devel-



oping intelligent robots. Although a variety of sensing modalities, such as laser, sonar and

audition, can be used for robots to perceive environmental information, vision is the pri-
mary sensory modality based on the fact that it has the ability to provide a large amount
of information about the environment. This thesis therefore focuses on the research in
the area of visual perception mechanisms used for robots.

However, every coin has two sides. Although the availability of a large amount of

pere

ved data about the environment is a great advantage of visual perception in order
to provide enough information for producing actions, it imposes a difficulty of how to

effectively keep the balance between computing resources, time cost and fulfilling different

visual tasks in the natural, cluttered and dynamic environment,
Organizing an effective representation of the environmental input is the key point
to deal with this problem. There have been three categories of traditional methods

proposed in the communities of computer vision and robotics: local feature based, local

region based and global appearance based

‘The local feature based methods attempt to repr

nt the environment by detecting
a set of features. These features are extracted using some specific methods, such as
edge detector (e.g., Sobel operator (2] and Canny operator [3]), line detector [4], corner
detector [5,6] and scale-invariant feature transform (SIFT) [7]. These methods have
been successfully applied to robotic tasks, such as localization [8), self-localization and

mapping (9] and homing [10]. The advantage of (

category of methods is that these
local features are robust to scaling, lighting changes and so on. However, their main
problem is that these extracted features are predefined by the programmers for a given
special task or a special environment such that the robot has little fexibility and plasticity
to observe new features when it is facing a new task or environment.

The local region based approaches segment a whole image into s

veral regions and
form a representation using those regions and their relationships. These methods have

been mainly applied to roboti

navigation [11-13). The advantage of this category of

methods is that an object region rather than a set of local spatial points is perceived,




which results in a higher perceptual resolution in the sense that more environmental
information over the object region is available for visual perception. However, their
main problem is the difficulty in effectively perceiving the object regions and adaptively
forming the appearance representations of those local regions according to tasks and
environments.

The global appearance based methods regard the input image as a whole and extract a
profile that compactly summarizes the image’s statistics and semantics. In these methods,
several specific features, such as colors [14], textons [15], spatial envelope [16] and gist
of the scene [17], are used as descriptors of the image and the histogram is employed for
statistical analysis so as to create an overall profile of the image. These methods have
been applied to robotic localization (14, 18] and navigation [19). The great advantage of
this category of methods is the capability for fast scene classification and localization
However, their main problem is the loss of local environmental information. The result
is that they have difficulty producing precise actions, especially when there are local
changes in the environment.

It can be seen that a common property of the above traditional perception methods

is that perceptual behaviors are manually designed by programmers for a given task

and environment. For instance, the edge feature is sclected by the programmer for path
tracking in the structured environment, whereas the SIFT feature is selected by them for
localization in the cluttered environment. That is, the robot itself does not know what

it is doing when it runs the perception program.

1.1.2  Cognitive Visual i ive A i t:
Perception to Action

The above discussions lead to a question: what type of perception system produces an

intelligent robot? The intuitive idea s that an intelligent robot should have the mental

capability of knowing how to perceive the environment autonomously. In other words,

the intelligent perception system can give a robot the capability to explain what it is

3



doing during the perception process [20].

The best example of the intelligent perception system is human perception. Research
on psychology and physiology [21,22] has shown that a typical visual scene contains
much information, not all of which can be fully processed by the visual system at a
time. A selection mechanism is therefore employed by the human brain to filter out the
irrelevant information. Selective attention [23-25] is such a mechanism, which serves to
limit processing to one relevant item either in a conscious way according to the current

task or in an unconscious way according to the present situation. In other words, the

human brain knows how to perceive the by using
attention mechanism for perception. Since only the relevant part of the world is selected
10 be represented for action, perception and action can be linked through the process of
selective attention [26,27].

It can be seen that two aspects are required for this intelligent perception system

o One s the conscious aspect, which can direct perception based on the task, context

and knowledge learned from experience.

 The other is the unconscious aspect, which can direct perception in the case of
facing an unexpected, unusual or surprise situation
This selective attention based intelligent perception mechanism of humans is called
cognitive visual perception in this thesis.
The objective of this thesis is therefore to develop a cognitive visual perception
paradigm for robots, which can be used as the first step for further research on cog-

nitive perception-action mapping.

1.2 Problem Statement

The proposed cognitive visual perception paradigm involves three successive stages

pre-attentive processing, attentional selection and post-attentive perception. The pre-

attentive processing stage extracts pre-attentive features, based on which the attentional

4




selection stage mentally draws visual attention to an item at a moment. The objective of

the post-attentive perception stage is to interpret the attended item in more detail in or-
der to produce the correct action at the current moment and guide the further conscious
attentional selection at the next moment. Thus this stage mainly includes perceptual
completion processing, recognition and learning of the attended item.

ception starts from a low-level cogni-

‘This paradigm indicates that robotic visual per
tive attentional selection procedure that guides attention to the relevant item of the scenc,
followed by a high-level post-attentive analysis procedure that analyzes the attended item
and formulates it into an internal mental representation used for further cognitive behav-
iors. Since the attentional selection stage includes the conscious and unconscious ways,

isual

cognitive perception capability is realized by this stage. Therefore modeling the
attention mechanism is the core part of the proposed perception paradigm,

Four fundamental problems will be solved in this thesis for modeling the proposed

cognitive visual perception paradigm:

1. Object-based Attention or Space-based Attention

There are two assumptions in psychological and physiological literatures attempt-

of selective attention. The fundamental difference

ing to understand the proces
between them is the underlying unit of attentional selection. The space-based at-
tention theory [23,28-30] holds that attention is allocated to a spatial location,
The object-based attention theory, however, posits that some pre-attentive pro-
cesses serve to segment the field into discrete objects, followed by attention that
deals with one object at a time [25,31]

In psychological and physiological communities, both theories can be supported
32-85]. However, in the area of computational research, object-based attention

has the following advantages

© Object-based attention models are more robust than space-based attention

s est

models. This is because the attentional activation at the object level




Ak i e

mated by i of all continuous or di
within that object, whereas the activation at the spatial location level is esti-

‘mated without accumulation. For instance, space-based attention has a higher

possibility to be incorrectly attracted to a noisy location than object-based
attention in a noisy scene, and space-based attention is more likely to be
attracted to a wrong location than object-based attention in the case that
objects overlap in a cluttered scenc.

o Attending to an exact object can provide more useful information (e.g., shape
and size) for robots to produce appropriate actions than attending to a spatial
location

o Object-based attention mechanism is the only way to realize top-down atten-
tion if the task-relevant feature is represented in terms of global features (e.g.,

shape).

Thus this thesis adopts the object-based visual perception idea [36] and the object-
based visual attention theory [25]. That is, the world is pre-attentively parceled
into objects, which are the underlying units for further attentional selection and

post-atter

perception
At present, most computational models of visual attention [37-41] focus on space-

based attention. Little research [42,43] has been presented in modeling object-based

attention. There are two main challenging problems about modeling object-based
visual attention:

(1) Designing an effective and efficient pre-attentive segmentation algorithm;

(b) Estimation of object-based attentional activation.

Modeling Conscious Attentional Selection

Psychological and physiological research [24,25,28,44-49)] has shown that there are

‘manners which can direct attentional selection: bottom-up attention




and top-down attention

Bottom-up attention guides attentional selection by means of the competition be-
tween cach item and its spatial neighbors in terms of pre-attentive stimuli, which
are extracted pre-attentively from the visual input. The salient and distinctive
item that has competitive advantage over its neighbors can capture visual atten-
tion. Bottom-up attention can be regarded as an automatic and unconscious way to
guide attentional selection since it captures attention based only on input stimuli

without considering any task influences. Bottom-up attention has been succ

fully simulated and modeled in both psychological and computational attention
models [37,38]. Bottom-up saliency of each item in the scene is estimated and then
used to dircet attention in these models.

It is important to note that the term item is generally used to represent the can-

didate unit of attentional selection, such as a spatial point and an object, in th

thesis.

However, the purely bottom-up manner cannot guide attention to a desired item if
the feature properties of that item are not unusual or salient [44]. Thus a top-down
manner is also required. Top-down attention modulates the attentional selection

based upon task instructions by biasing the pre-attentive stimuli preferred by the

task. Therefore top-down attention can be seen as a cons

us way to guide atten-
tional selection,

Compared with the well-developed bottom-up attention models, how to build com-
putational models of top-down attention is still a challenging problem. Some psy-
chological models, such as guided search model (GSM) [44] and integrated compe-
tition (IC) hypothesis [49,50], have been proposed as the basic theories to guide
the modeling of top-down attention. Recent neurophysiological findings [51) have
provided the neural response evidence to support the IC hypothesis: by directing

attention to a task-relevant cue of an object, a competitive advantage over the



whole object is produced. This indicates that one type of task-relevant information
can guide attentional selection to the desired object. It can be seen that the IC

hypothesis not only summarizes a theory of the top-down attention mechanism but

alko integrates object-based attention theory. Therefore this thesis employs the 1C
hypothesis to model top-down attention.

Furthermore, four computational issues about modeling top-down attention by us-
ing the IC hypothesis will be solved in this thesis. Three of them are included in

the attentional selection stage:

() Autonomous deduction of the task-relevant information given the task, context
and learned knowledge;

(b) Estimation of the top-down biases based on the task-relevant information;

(¢) Combination of top-down biases and bottom-up saliency.

The fourth computational issue s involved in the post-attentive perception stage:

(d) Learning of the attended object during the post-attentive perception stage.

Development of Object Representations in Long-term Memory

Object-based attention theory indicates that a general way of orga

zing the visual
scene is o parcel it into discrete objects. These objects are the fundamental units,
based on which perception and action are both performed. Thus the development
of object representations in long-term memory (LTM), each of which is used as a
carrier of the learned knowledge, is another key part of the proposed perception
paradigm. The object representation in LTM can be scen as an internal mental
representation of the object and it is termed as LTM object representation in this

thesis. The term development represents two types of functions. The first function

is constructing a uniform structure for the LTM object representations and the

sccond function s learning the corresponding LTM object representation given the

attended object at each moment




Three issues will be solved for developing the LTM object representations in this

thesis.

() Dual-function: The LTM object representation can be used to guide both top-
down biasing during the process of perception and action selection during the
process of action

(b) Robustness: The developed LTM object, representation can represent, various
instances of the object.

(c) Discriminability: The developed LTM object representation has the capability
to discriminate itself from other objects, such that it can be effectively used
for top-down biasing and action selection.

Perceptual Uncertainty

Sensory measurement is alway

ubject to uncertainty. This perceptual uncertainty
results in uncertainty in actions. A probabilistic approach is an alternative for deal-
ing with uncertainty [52). Thus, how to climinate the uncertainty by integrating
necessary probabilistic techniques during pre-attentive processing, attentional se-

lection and post-attentive perception is an important issue

1.3 Thesis Contributions

‘This thesis presents a cognitive visual perception paradigm for robots by solving the above

challenging issues. This proposed perception paradigm has also been applied to robotic

applications, including object detection and target tracking. A detailed discussion on the

proposed work follows in the respe h id a summary of the main

of the thesis work is given below.

Presenting a framework of cognitive visual perception for robots using object-based
attention mechanism: This framework divides visual perception into pre-attentive

processing, attentional selection and post-attentive perception. As a result, robotic
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visual perception starts from a low-level cognitive attentional selection procedure
that guides attention to an object of the scene, followed by a high-level post-
attentive analysis procedure that analyzes the attended object and formulates it
into an internal mental representation used for further cognitive behaviors. The
attentional selection stage supplies robots with the mental capability of knowing

how to perceive the environment according to the current task and situation. Thus

the proposed cognitive visual perception paradigm is adaptive and general to any

task and environment

Proposing a novel top-down attention method for object-based attention: Based on

the IC hypothesis, this method uses one or a few conspicuous low-level feature(s) of

the task-relevant object to guide attentional selection. These conspicuous low-level
feature(s) can be autonomously deduced from the developed LTM representation
of the target-relevant object. Meanwhile, the proposed method models top-down

attention as a probabilistic procedure by using Bayes’ rule and probabilistic estima-

tion techniques. Thus this top-down attention method is more effective, efficient
and robust than other methods and it is adaptive and general to any task and

environment.

Proposing a ilistic LTM object ion: The neural net-
work (PNN) [53] is used to construct the LTM object representation by probabilis-
tically embodying various instances of that object. The result is that the learned
representation can be used to direct top-down attention in the attentional selec-
tion stage, perform object recognition and learning in the post-attentive perception
stage and guide action selection during the process of action. Dynamical learning

algorithms are developed for training the LTM object representation.

Developing & pre-attentive segmentation algorithm: Pre-attentive segmentation is
a demanding requirement to model object-based attention. This proposed algo-

rithm divides the input scene into homogeneous proto-objects by extending irregu-

10




lar pyramid techniques [54,55] and using a novel scale-invariant probabilistic sim-
ilarity measure. This algorithm provides automatic, rapid and satisfactory results

of pre-attentive segmentation for object-based visual attention.

Developing an effective, efficient and general method for object detection and target
tracking by using this proposed cognitive visual perception paradigm: Two stages
are used to model the processes of detection and tracking, The purpose of the
attentional selection stage is to rapidly localize a candidate object by using cither

bottom-up attention or top-down attention; and the purpose of the following post-

attentive stage is to validate the attended object by using high-level analy

1.4 Organization of the Thesis

The remainder of this thesis is structured into another eight chapters. Chapter 2 is

concerned with the psychological and physiological background of visual attention, the
state of the art of computational attention systems and robotic applications of visual

attention, whereas the following six chapters present the details of the proposed cognitive

isual perception paradigm.
Chapter 3 introduces the framework of the proposed cognitive visual perception

paradigm. 1t gives an overview of the proposed perception paradigm.

Chapter 4 presents the pre-attentive processing stage. It includes pre-attentive feature
extraction and a pre-attentive segmentation algorithm

Chapter 5 presents the attentional selection stage. It involves a bottom-up attention
model, a top-down attention model, the combination of bottom-up saliency and top-down
biases, and the estimation of proto-object based attentional activation.

Chapter 6 presents the post-attentive perception stage. It includes perceptual com-
pletion processing, extraction of post-attentive features, development of LTM object rep-
resentations and object recognition. Particular emphasis is placed on the development

of LTM object representations.




Chapter 7 presents one robotic application of the proposed cognitive visual perception

paradigm: object detection. This includes the detection of salient objects using bottom-

up attention and the detection of task-relevant objects using top-down attention.

Chapter 8 presents another robotic application of the proposed cognitive visual per-

ception paradigm: target tracking. Experimental results show that the proposed percep-
tion paradigm can achieve a satisfactory tracking performance to cope with difficulties,
including changes in the background and the target, large variations of motion, partial
and full ocelusion and so on

ates the conclusion of the thesis work and presents further research

Chapter 9 finally

directions.



Chapter 2

Background on Visual Attention and

Its Robotic Applications

2.1 Introduction

The visual attention mechanism is the core part of the proposed cognitive visual per-
ception paradigm. This chapter aims to discuss the important background information
related to the visual attention mechanism. Section 2.2 introduces some concepts and
neurobiological findings of the human visual attention mechanism, which is the basis to
model visual attention. Section 2.3 introduces several psychological models of visual at-
tention, which are abstract theories attempting to explain the visual attention mechanism
of humans and primates. Section 2.4 presents the state of the art of computational mod-
els of machine visual attention, which are built based on psychological models. Finally,

section 2.5 surveys current advances on robotic applications of machine visual attention.



2.2 Concepts of Visual Attention

2.2.1 What is Visual Attention?

The term attention is widely used in our daily language and familiar to everyone. How-

ever, it is difficult to define and clarify visual attention precisely. It seems advisable to
define visual attention from its intrinsic properties. Research in psychology and phys-
iology has shown that visual attention has two basic aspects: limitation and selectiv-
ity [21,22,46,56,57). Limitation means that the capability of processing information

is limited in the brain, whereas selectivity represents the ability to filter out unwanted

information. These two properties are interactive in the sense that either of them can

be the reason for the other. If the limitation is regarded as the reason, visual attention

can be defined as the mechanism that allocates limited visual resources for processing
selected aspects of the visual input more fully than the non-selected aspects [58]. On the
other hand, if the selectivity is regarded as the reason, visual attention can be defined as
the mechanism that mentally selects one aspect from the visual input for processing ac-
cording to the current task and situation [25,27]. This thesis adopts the second definition
since it not only explains why visual attention is required (i.c., the processing resource
is limited) but also clarifies how visual attention works (i.e., which aspects should be
selected). The second definition can also be used to better explain why visual attention
is the core mechanism for cognitive visual perception for robots in the sense that the
visual attention mechanism gives robots the capability to know how perception works

and what should be perceived.

2.2.2 Covert Attention and Overt Attention

Directing the focus of attention to an item of interest can be categorized into two ways
[23,59-61]: overt attention (i.c., saccadic eye movement) that directs attention associated

with eye movement, and covert attention that directs attention without eye movement

Some studies [59] have shown that covert attention and overt attention can work together
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That is, covert attention guides the focus of attention to an item of interest followed by a
saccade that fixates the item and enables the perception with a higher resolution. On the
other hand, other studies [60,61] have shown that either of them can work independently
without the other.

An advantage of covert attention is that it is independent of motor commands [41].
The movement of eyes and head is not required to direct the focus of attention, with the
result that covert attention is much faster than overt attention. Thus this thesis only

studies the covert attention mechanism.

2.2.3 Space-based A fon and Object-based Attenti

Whether attentional selection is space-based or object-based has been a controversial
topic during the past decades [32,33]. The fundamental difference between them is the
underlying unit of attentional selection.

Space-based attention theory holds that attention is allocated to a spatial location.
For instance, the “spotlight theory” [23,28] proposes that attention is like a spotlight to
illuminate the focused location and attention shifts along a path from one location to
the next one, the “zoom-lens theory” [20] asserts that attention is covertly directed to
a spatial region with the varying scope of its focus, and the “spatial gradient theory”
[30] indicates that attentional selectivity is enhanced at a spatial location where the

target stimulus s expected and the selectivity generally decreases with distance from

that location. Numerous and y [62-67]
have shown the space-based attention effects in the visual cortex.

In contrast, object-based attention theory posits that some pre-attentive processes
serve to segment the visual field into discrete objects, followed by attention that deals with
one object at a time [25,31). Although the object-based theory is still in development,
& number of useful findings from psychology [68-70] have been achieved. Furthermore,

using the functional magnetic resonance imaging (IMRI) technique, neurophysiological

experiments [51,71-73] have shown the object-based attention effects in the visual cortex
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Whether attentional selection is space-based or object-based is a controversial topic

during past decades in psychological and physiological communities [32,33). Neuro-
physiological experiments have shown that attentional selection is space-based in some
cases [62-67] and object-based in other cases [51,71-73]. The above research has shown
that space-based attention and object-based attention are not exclusive. In fact, they
are reciprocal and intimated [34,33]. The spatial location of an object can be treated as
one of the various properties (e.g., color, shape and motion) of that object. The focus of
attention, which is cued by one of these propertics, is confined within the limits of the
selected object.

Motivated by the object-based attention theory, an object-based visual perception idea.
has been furthermore exploited by recent psychological research (36]. Based on the ex-
perimental results of object-based attention, this idea holds that parsing the world into
objects may occur quite early, and even pre-attentively. This idea challenges the tradi-
tional perception theories, which assert that perceptual systems do not parcel the world
into objects and the organization of the perceived world into objects may be the central
phenomenon of a human’s thought systems [74].

Those findings indicate that object-based attention and perceptual organization must

proceed together [25] and that they are reciprocal. More precisely, perceptual organi-

zation includes | i ion and i Without

pre-attentive segmentation, object-based attention will lose its selection ability. On the
other hand, object-based attention can facilitate the post-attentive organization by se-
quentially putting the limited processing resource for the high-level perceptual analysis

only on the attended object region at each moment.

Thus this thesis adopts the object-based visual perception idea and the object-based
visual attention theory for modeling the proposed cognitive visual perception paradigm
It is important to note that the term object used in the object-based attention theory

can be best understood as the term proto-object that means the results of pre-attentive

segmentation [36,75]. The definition of proto-objects will be discussed in section 4.3,
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Chapter 4

2.2.4 Bottom-up A

and Top-d A i

Directing the focus of attention can be initiated in two interactive mechanisms: bottom-
up attention and top-down attention [44,46]. The bottom-up attention mechanism directs
the focus of attention based on the conspicuousness of items in the spatial context,
resulting that a salient item is selected to be attended. For instance, a white object will

capture the bottom-up attenti

nin the case that its neighbors are all black ones. Bottom-

up attention can be seen as an innate perceptual behavior or as a behavior that can be

developed gradually with experience [76]. In summary, bottom-up attention represents
the unconscious aspect of perception, i.¢., it is automatic and stimulus-driven

An extensive concept of bottom-up attention can be described using the newly pro-
posed term surprise [77-79]. Surprise is a mechanism that can attract the attention to
an unusual or an unexpeeted item in both spatial and temporal contexts. In other words,
it is referred to as both spatial conspicuousness and temporal novelty. This thesis only
treats bottom-up attention as spatial conspicuousness

On the other hand, the top-down attention mechanism directs the focus of attention

based on the conscious instructions sent out from the brain. These conscious instructions
are generated based on the knowledge, the current task and the context of mental states.

For instance, if the task is to search for an orange, the item with orange color will attract

the attention more casily than other items. In other words, top-down attention represents
the conscious aspect of perception: The task, context and knowledge determine where

you look 57),

e., what you sce is what you need [56]. Thus it can be said that top-down
attention is conscious and task-driven

Although understanding the top-down attention mechanism is still in development,
three components which are responsible for guiding top-down attention have been clari-
fied:

o Autonomous deduction of the task-relevant information given the task, context and
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knowledge (c.g., the feature of the target) stored in LTM: Cognitive control [27,76,

80] is thought to be the mechanism to realize this component. Some psychological

attention models, such as the IC hypothesi

[49], have been proposed to model this

component in detai

o Estimate of the top-down biases based on the task-relevant information: Some

psychological attention models, such as the biased competition (BC) hypothesi

[46], have been proposed to model this factor in details.

o Combination of top-down biases and bottom-up saliency: Psychological research

[44] has shown that bottom-up and top-down contributions are combined to decide

which item is attended. The cognitive control mechanism is responsible for the

combination.

2.2.5 Visual Cortices

‘ Since visual attention is a concept of human perception, it is worthwhile to introduce

some background information about visual cortices related to visual attention.

Figure 2.1: Visual cortices related to visual attention. Visual processing is divided functionally:
the ventral stream (i.e., “what” pathway) leads to the inferior temporal cortex from V1, whereas
the dorsal stream (i.c., “where” pathway) leads to the posterior parietal cortex from V1




isual cortices refer to the visual processing areas in the brains of primates and
humans. The components related to the visual attention mechanism mainly include the

primary visual cortex, the extrastriate cortical areas and the prefrontal cortex.

Primary Visual Cortex (V1)

The primary visual cortex is also known as striate cortex or V1. It is the most studied

visual area in the brain. V1 receives information directly from the lateral geniculate

nucleus (LGN). Area V1 has a well-defined map of the spatial information, i.c., the

mapping from retina to area V1 is topographical in that nearby regions on the retina
project to nearby regions in V1

‘The main function of area V1 is analogous to local spatiotemporal energy filters. In
other words, area V1 is associated with the neuronal processing of spatial frequency and
local orientation energy [58]. These orientation-sensitive cells in area V1 can be grouped

into three functional classes: simple cells, complex cells, and hypercomplex cells [81). The

receptive fields of simple cells are sensitive to lines and step edges as well as orientatio

mmetric filters (i.c., line detectors) and odd-symmetric filters (i..

of them. Even-s,

step

edge detectors) can be used to model simple cells. Complex cells respond to more complex

patterns, such as specific orientations and directions of movement without any phase

information. Thus, complex cells can be modeled by summing the outputs of a group of

simple cells with similar orientations. Hypercomplex cells, also called endstopped cels,
exhibit end inhibition o s o localize line-ends and corners. Based on the fact that the
excitatory influence from the small receptive field and the inhibitory influence from the
large receptive field converge in the hypercomplex ccll [82], the model of hypercomplex
ng the differ

cells can be achieved by nce between the responses of two complex cells

at the same central position and orientation, but of different receptive size.
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Extrastriate Cortical Areas and Visual Pathways

The extrastriate cortical areas include V2, V4, inferior temporal cortex (IT), middle
temporal area (MT or V5) and posterior parietal cortex (PP),

These visual processing areas appear to be organized as two major pathways or
streams: ventral stream and dorsal stream, as shown in Figure 2.1 Along each pathway,
the complesity of visual processing increases and the receptive field size of an individual

neuron increases.

o Ventral stream: It begins with V1, goes through areas V2 and V4, and goes on to
the IT cortex [83]. This stream is responsible for object recognition and thereby it
is also named as the “what” stream. In this stream, area V2 responds to illusory or
subjective contours [84], area V4 mainly responds to colors [83] and the IT cortex

responds {0 the complex object features, such as shapes [86]

o Dorsal stream: It begins with V1, goes through area V2 and area MT, and
goes on to the PP cortex. It is associated with motion processing and location
representations, and thereby it is also named as the “where” pathway. Motion and
depth are processed in this pathway [87]. For example, area MT plays a role in

perception of motion (6],

Neurobiological studies have shown that a single cortical area can not successfully
guide attention. That is, attentional selection is correlated with nearly all visual cortices
(88], including the IT cortex [63,89], the PP cortex [62], area MT [66], area V4, area V2
and area V1 [64,67,71]

Prefrontal Cortex

The prefrontal cortex (PFC) is the anterior part of the frontal lobes of the brain, lying in
front of the motor area. Neurons in the PFC encode many different types of information
at all stages of the perception-action cycle. The PFC provides the neural basis of the cog-

nitive control mechanism [27,76,80], whose function is to plan and control external and
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internal behaviors according to the task, situation and perception-action rules. External
behaviors include the actions executed by the external effectors, whereas internal behav-
fors include the attentional selection. The PFC exhibits the following neural properties

related to cognitive control

 Development of Perception-action Rules: It develops the perception-action

rules, which regulate two types of associations [27,80,90,91): One is the association

between attentional states and external behaviors, and the other is the association
between the current attentional state and the conscious prediction of the next

attentional state.

o Memory retrieval: The PFC has the ability to recall the corresponding perception-

action rule and the representations of the task-relevant object from LTM [27]

« Top-down selectivity: The PFC plays a central role to direct top-down attention

[46,92], including deduction of the task-relevant information as well as combination

of autonomous bottom-up attention and conscious top-down attent

2.3 Psychological Models of Visual Attention

Modeling visual attention can be categorized into two levels: psychological and com-

putational. The objective of psychological modeling is to simulate data from behay-
ioral and neurophysiological experiments. Psychological models include descriptive ones
[24,25,28 30,44,46-48] that summarize the basic theories and principles of attention,
and computational ones [93] that are used to compare with experimental data. On the

basis of psy ical models, biologically-plausit models can be built

for applications in computer vision and robotics. Following subsections describe four

psychological models of visual attention in detail since they have been widely used as the

fundamental theories for computationally modeling visual attention
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Figure 2.2: Feature integration theory (FIT). The visual scene is initially coded in parallel
along a variety of feature dimensions, such as brightness, color, orientation and direction of
movement. Al features are combined together spatially to achieve a location-based master
map that exhibits the saliency of each location, and attention is focused on a salient location
by scanning that master map. The figure is from (94].

2.3.1 Feature Integration Theory

The feature integration theory (FIT) [24], proposed by Treisman in 1980, is one of the
carly and highly regarded theories in the field of visual attention. It is graphically illus-
trated in Figure 2.2. The basic idea of FIT is that features, rather than a unitary object
as claimed by Gestalt psychologists, come first in perception. In this model, features are
registered early, automatically and in a parallel mode across the visual field, while objects
are identified separately and only at a later stage, which requires focused attention [24].

This theory characterizes two properties of visual attention:

o The vi

1 scene is

ially coded in parallel along a variety of feature dimensions,

such as brightness, color, orientation and direction of movement.

2



» Focused attention provides a way to integrate the initially separated features into
a whole object. That is, locations of these separated stimuli are processed serially
with focused attention. Any features that are present in the central fixation of
attention are combined to form an object for further perception. Without focused

attention, features cannot be related to each other.

FIT was further developed by adapting recent research findings [94,93], in which a

detailed framework of attention was presented to elucidate several important aspects
about how the focus of attention is directed.

« Each feature dimension consists of several feature maps. For example, color dimen-

sion is composed of red, green, blue and yellow.

o Location information is coded in the feature maps. That is, feature maps are

topographically organized.

o Attentional competition performs in a location-based serial manner. That is, all
features are combined together spatially to achieve a location-based master map
that exhibits the saliency of each location, and attention is focused on a salient
location by scanning that master map.

It can be seen that the main contribution of FIT is that it provides a basic framework
of the bottom-up attention mechanism. A spatial location (extensively called an object)
can be detected very quickly in the case that it differs from its spatial neighbors in terms
of one or more features.

It should be noted that FIT uses the term feature dimension to represent a separated
feature domain and uses the term feature map to represent a discrete category in a feature
dimension. For instance, color and orientation are regarded as feature dimensions; red
feature maps, green feature maps, blue feature maps and yellow feature maps are regarded
as feature maps in the color dimension.

In summary, FIT can be seen as a psychological model of bottom-up, space-based

attention.



Basic Components of Guided Search
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Figure 2.3: Guided search model (GSM). The strength of bottom-up activation for one
is based on the differences between it and items at neighboring locations in terms of feature
maps. The top-down request for a given feature will activate the locations that might contain
that feature. An overall activation map is created by a weighted sum of all top-down and
bottom-up activations. The figure s from [44].

2.3.2 Guided Search Model

Another theory, named guided search model (GSM), was proposed by Wolfe [44] to
model the top-down attention mechanism in conjunction with bottom-up attention. 1t
is graphically illustrated in Figure 2.3,

G

SM is built by extending FIT and it asserts that human perception, such as search
behavior, can be divided into two stages. A pre-attentive stage carries out a parallel

information processing in terms of basic features (e.g., color, motion and depth) across

the whole visual field, followed by a post-attentive stage that performs further complex
operations (e.g., object recognition) over a limited portion of the visual field with the

guidance of visual attention

It is important to note that GSM uses the term activation, rather than saliency, to



represent the attentional strength obtained by a combination of bottom-up and top-down

attention, since saliency can only represent the bottom-up attentional strength.

GSM asserts that the role of the pre-attentive stage is to identify locations that are
worthy of further attention. Similar to FIT, GSM proposes that in the pre-attentive
stage the input stimuli are in parallel separated into several independent topographical

feature maps along each feature domain, such as a “red” map in the color domain or

a “vertical” map in the orientation domain. In particular, GSM adopts the idea that

the orientation domain consists of broadly tuned categories (i.e., feature maps), which
respond to steep, shallow, left or right

GSM proposes that the strength of bottom-up activation is dependent on the differ-
ences between a location and its neighbors. It codes the differential activation of locations
in each feature map. In other words, the activation of bottom-up attention for one lo-

cation is based on the differences between that location and its neighbors in the relative

feature maps.
‘The most important contribution of GSM is to model top-down attention. It posits
that a top-down request for a given feature will activate the locations that might contain

that feature. In each feature map, the top-down activation of a location is determined

by its mateh to the corresponding properties of task-specific targets,

Furthermore, GSM claims that the combination of contributions of different feature
maps and the combination of top-down and bottom-up activations can be modulated
by the cognitive control mechanism. However, it does not give a method to model the

modulation process

Finally GSM asserts that an overall activation map can be created by a weighted

sum of all top-down and bottom-up activations. This map is used to guide attentional

selection in the sense that the location with the greatest activation is selected to be
attended
In summary, GSM can be seen as a psychological model of space-based attention by

the combination of bottom-up and top-down attention.




2.3.3 Biased Competition Hypothesis

The biased competition (BC) hypothesis [46] was proposed by Decimone and Duncan in
1995. It is based on two aspects of visual attention: selectivity and limitation, as have
been discussed in section 2.2.1

Unlike FIT and GSM, which assert that attentional selection is a combination pro-
cess based on activations along feature maps, the BC hypothesis posits that attentional

selection is a biased comp

ition process. Comp

ition is biased in part by the bottom-
up mechanism that separate items from their background and in part by the top-down
mechanism that favors items relative to the current task

Bottom-up bias competition is based on two neural mechanisms. One is the com-
petition in the spatial context. The responses of many neurons to an optimal stimulus

within their classically defined receptive field may be completely suppressed if similar

stimuli are located within a large surrounding region. This results in the biasing towards

local inhomogeneities, i.e., items that are larger, brighter, faster moving and so on. The

other is the competition in the temporal context. This indicates the case of biasing to
novelty. In the temporal domain, stimuli stored in memory may function as the tempo-
ral surround against which the present stimulus is compared. The temporal context of a
stimulus may contribute as much to its saliency as its spatial context.

BC hypothesis also holds that the neural mechanism underlying the selection of top-
down specification requires a means o hold the sought-ater item in working memory
(WM) and uses this memory to resolve competition among the items in the scene. This
top-down bias competition is modeled as follows. According to the task, an attentional
template in WM is formed to represent the short-term description of the task-relevant

information currently needed (e.g., an object with a certain feature or in a certain lo-

cation), such that input stimuli matching that attentional template are favored in the
visual cortex. BC hypothesis further proposes that top-down biasing performs not only
in the feature domain (e.g., shape, color and size) but also in the spatial domain (i.e.,

location).



Thus the idea of an attentional template is one of the contributions of the BC hypoth-

esis. It regulates the way to estimate top-down biases given the task-relevant information.
However, how to deduce the task-relevant information is not considered in the BC hy-
pothesis.

In addition, the BC hypothesis holds that features and locations might be linked to
some extent within the ventral stream, which supports the idea of constructing topo-
graphical feature maps proposed by FIT and GSM.

In summary, the BC hypothesis can be seen as a psychological model attempting to
explain the visual attention mechanism, regardless of being space-based or object-based,

through the novel view of biased competition.

2.3.4 [ iti pothesi

By extending the BC hypothesis, Duncan et al. [49,50] further presented the integrated
competition (IC) hypothesis to explain the object-based attention mechanism.
1C hypothesis regulates the object-based attentional selection by using the following

three general les.

« Competition: In most of the neural systems activated by visual input, processing
s competitive in the sense that enhanced response to one object is associated with
decreased response to others. In other words, responses to different objects may be

mutually inhibitory.

« Top-down biasing: Top-down priming of neural activity biases the competition
towards objects of relevance to the current task. Furthermore, this selective prim-
ing shows flexibility in top-down attentional control. That is, any kind of visual

properties can be task-relevant information used to direct attention and assign lim-

ed processing capacity to the task-relevant object. These properties include color,
size, shape, direction of motion, location and so on. Each property is processed in

its own neural system.




« Integration: The competition is finally integrated between components of the

sensorimotor work. As an object gains dominance in terms of any one property
(i.c., relevant property), responses to this same object are enhanced elsewhere (i.c.,
irrelevant properties). In this way the numerous properties of the object are made
concurrently available for subsequent attention processing. In other words, one or
some of the task-relevant features can activate the whole object including relevant

and irrelevant properties to be attended.

One contribution of the IC hypothesis s to elucidate how object-based attention works
by using the integration principle. This principle supports the object-based attention
theory [25], i.e., the unit of attentional competition is an object. Once any property of
an object successfully captures the attention, the other properties of that object can be
integrated to form a complete object to be attended. This means that the construction
of object representations in WM from the conjunction of many different features appears
to oceur in parallel before individual objects are selected for attention.

The other contribution of the IC hypothesis is the top-down biasing principle, which

asserts that any property of an object can be used as task-relevant information to guide
the top-down attention. The task-relevant property can be cither deduced from the
intrinsic properties of the task-specific object or directly specified by the task.

It is important to note that the IC hypothesis has been supported by recent neu-
rophysiological research. The results of some neurophysiological experiments reported
recently [51,71] are in accord with the IC hypothesis.

In summary, the IC hypothesis can be seen as a psychological model of object-based

attention with special emphasis on regulating top-down attention.

2.4 Computational Models of Visual Attention

Based on psychological models, several computational models of visual attention have

been proposed. This section introduces some of the most important computational mod-
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els in the areas of computer vision and robotics.

2.4.1 Koch’s Model

‘The first approach to the computational architecture of visual attention was introduced

by Koch and Ullman [37). It is inspired from FIT. The key point of this architecture

is that several features are computed in parallel and their conspicuity is collected in a

saliency map. This further presents a W ke-all (WTA) network to

determine the most salient region in the topograpl map. WTA is i

by the arti

al neural network, in which synaptic interactions among units ensure that
only the most active location remains whercas all other locations are suppressed. Thus
WTA is a biologically-plausible approach to selcction of a maximum. This architecture
also suggests an inhibition of return (I0R) mechanism for inhibiting the selected region

T0R causes an automatic shift towards the next most salient location

2.4.2  Itti’s Model

One of the popularly known computational attention systems is Itt's model [38], which

serves as o basis for many rescarch groups. It is derived from Koch' model. This model
characterizes space-based bottom-up attention as proposed in FIT. Figure 2.4 shows the
framework of 1tti’s model.

The most important contribution of Itti’'s model is that it provides a complete method
for modeling the space-based bottom-up attention mechanism. It basically includes two

nter-surround difference and across-scale combination.

operator
In Itti's model, three dimensions of pre-attentive features are first extracted from the

visual input. Those dimensions include brightness, colors and local orientations. Itti's

model employs the center-surround difference values, rather than the absolute feature

values proposed by FIT, to construct a set of multi-scale feature maps. This is on the

basis of two kinds of neural mechanisms. One is that intensity contrast is detected by

neurons sensitive cither to dark centers on bright surrounds or to bright centers on dark
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Figure 2.4: General architecture of 1tti's model. From the visual input, three dimensions of
features are extracted: intensity, colors and local orientations. A center-surround difference
opt'nnm s then used to model the bottom-up competition mechanism and achieve a set of
multi-scale feature maps. Those feature maps are finally combined to yield a location-based
bination operator. This figure is from [35]

master saliency map by using an across-scale cor

surrounds [38). The other is that color dimension is represented by using a so-called
“color double-opponent” system in the cortex [96]: in the center of their receptive fields,
neurons are excited by one color and inhibited by another, while the converse is true

in the surround. Such spatial and chromatic opponency exists for the red-green and

blue-yellow color pairs in the human primary visual cortex. Accordingly, Itti's model
creates a Gaussian pyramid at nine spatial scales for each feature category, including
intensity, red-green pair, blue-yellow pair and orientation with four preferred directions.
s are achieved by calculating the differen

The center-surround differenc between upper

and lower scales in the Gaussian pyramid of a feature category. It can be seen that Itti

model uses the center-surround difference operator to simulate bottom-up attentional

competition, based on the fact that the neural mechanism of bottom-up competition is
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the contrast between one location and its neighbors in terms of pre-attentive features so

as to highlight the location which has competitive advantage over its neighbors.

In order to simulate the feature integration process as indicated by FIT, Itti's model
normalizes all feature maps into a fixed value range and then combines them in a master
saliency map by using an across-scale combination operator. The master saliency map
is location-based. Finally, spatial locations compete for attention based on the master
saliency map such that only locations which locally stand out from their surround can
persist. The WTA network is used based on the master saliency map to find out the

most salient location, which is the focus of attention.

2.4.3 Navalpakkam’s Model

Itti’s model is a basic version that concentrates on computing bottom-up attention. The
need for top-down influences is mentioned but not realized in Itti's model. In recent
research, Navalpakkam and Iiti [39] introduced a derivative of Itti's model in order to

ion is called

deal with the task-specific guidance of visual attention. This derivative ve
Navalpakkam’s model in this thesis. It can be seen as a space-based attention model by

combining top-down and bottom-up attent

n

Navalpakkam’s model characterizes top-down attention as follows. Given a task spec-
ification in the form of keywords, the task-relevant entity is determined and the learned
representation of this entity is recalled from LTM. This representation is then used to
bias the pre-attentive features so as to guide the attention towards an instance of the
task-relevant entity in the present scene.

One contribution of Navalpakkam’s model is the approach to deducing the task-
relevant objects (termed as task-relevant entities in Navalpakkam’s model) given a task

by using the knowledge representation techniques in the area of artificial intelligence.

A symbolic LTM is built to act as a knowledge database, including entities and their

Given a task the task-rel entities are determined by

using the inference algorithm in the knowledge database.

31




Figure 2.5: General architecture of Navalpakkam's model. It is a space-based attention model
by combining top-down and bottom-up attention. Given the task, the task-relevant entity is first
deduced based on a knowledge inference algorithm. The representation of that task-relevant
ty is then recalled from LTM, based on which top-down biases are estimated. Top-down
biases are integrated into the corresponding feature maps and a location-based attentional
guidance map is finally produced to direct the for n. This figure is from (30)

Another contribution of this model s to build a multi-scale object representation in

LTM as the prior knowledge of the task-relevant entity. Once the task-relevant entity is

deduced, the prior knowledge of that entity is recalled from LTM and temporari

in WM s0 as to bias the p features. The object

is learnable. When attention is directed to a location in that object, a 42-component vec-
tor consisting of center-surround difference features at multiple spatial scales is obtained

around that attended location. By combination of those vectors obtained at different

views, the probabilistic distribution of this vector is produced and stored as the object

in LTM. However, one di is that the object can-

not represent the object precisely when that object consists of multiple parts since it is
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Figure 2.6: C ‘s model. In this
case, the target and a distractor ot me sl elmace, b b il mppo
values in a feature dimension. As a result, the top-down biasing of Navalpakkam’s model cannot
effectively work since it only uses the task-relevance. The red curves represent the distributions
of appearance and task-relovance of the target, while the blue curves represent the distributions
of appearance and task-relevance of a distractor in the same scenc.

only learned at one salient location in that object.
Once the abject representation of the task-relevant entity is recalled from LTM, the

top-down bias of each feature map is estimated by using the feature relevance, which

is computed based on the distribution parameters of that feature in the learned object
representation. Finally, Navalpakkam’s model multiplies each feature map with the cor-
responding top-down bias to yield a location-based attentional guidance map, based on
which the WTA network is used to find out the most salient location as the focus of
attention. However, this top-down biasing method might be ineffective in the case that
the environment contains distractors which share the relevance with the target in terms

of some features. This case is illustrated in Figure 2.6, in which the target and a dis-



tractor have the similar task-relevance, but have different appearance values in a feature
dimension. As a result, the top-down biasing of Navalpakkam’s model cannot effectively
work since it only uses the task-relevance.

A noticeable point of this model is that the gist information is integrated as a top-down

cue. Gist information represents what observers can gather from a scene with a single

glance. It can be regarded as a relatively low-level scene representation which is acquired
over very short time frames. It is likely to indicate the target location information in
top-down attention. For example, if the task is to find humans and the gist is an outdoor

beach scene, humans could be found by focusing attention near the water and the sand.

2.4.4 Other Space-based Attention Models
Frintrop’s Model

Frintrop [41] presented a computational system for space-based visual attention, which is
called VOCUS. This system extends and improves Iiti's model in several aspects, ranging
from implementation details to conceptual revisions, such that this system enables a
considerable gain in performance and robustness

One contribution of this system is the top-down attention method for target detection.
In the learning phase, the system learns the target’s features, which are the feature maps
computed by using Itti's model, and then computes the top-down bias weights for all
feature dimensions. In the search phase, the learned bias weights of the target are used
to bias the corresponding feature maps. This top-down attention method is similar to
the one in Navalpakkam’s model, except for the computational method of bias weights.

The other contribution of this system is the extension of the attention model to

different sensor modules, such as the laser scanner.




Hamker’s Model

Hamker [40] proposed a space-based attentional system to model the visual attention
mechanism of the human brain. Although the main objective of this model is to ex-
plain human visual perception and gain insight into its functioning, it also provides a
computational method used for a machine’s visual attention.

Hamker's model simulates bottom-up attention by sharing several aspects with the
architecture of Itti's model. It computes the contrasts in terms of several feature dimen-
sions, including intensity, red-green pair, blue-yellow pair and local orientations. Those
contrasts are then combined into a perceptual map (i.c., master salience map).

In addition to the bottom-up behavior, Hamker's model also simulates the top-down
infuences. This model learns the target by remembering the feature values of that target,
which is placed in a black background the background disturbance. Those

learned features are then memorized in WM in order to influence the conspicuity of the

features in the present scene. It finally merges the conspicuities of bottom-up and top-

down cues to direct attention.

Begum’s Model

Begum et al. [97-99] presented a probabilistic approach to modeling visual attention. The
most important contribution of this model is to regulate visual attention as a Bayesian in-
ference process. It uses a Bayesian filter and dynamically constructed Gaussian adaptive

resonance theory to recursively estimate the focus of attention.

2.4.5 Sun’s Model

Al the above reviewed computational models are for space-based attention. In contrast,
Sun and Fisher [42) presented a sophisticated framework for computing object-based
attention, which s the first computational model of object-based visual attention.

‘This model posits that the salience of a perceptual grouping is a function of all salience



contributions emerging from the components within that grouping. The component rep-
resents a spatial point within a perceptual grouping. Those salience contributions work

together to compete with their common competitors (i.e., other perceptual groupings)

and compete with each other. In Sun’s model, the salience of a component is estimated
by using Itti’s model. That s, the salience of a component is calculated by combining the
space-based conspicuity of that component in terms of intensity, colors and orientations,

Sun’s model guides attentional selection based on the grouping based salience, i.e.,

perceptual groupings are the basic units of attentional selection. At any given moment,

enhanced responses to one grouping will decrease responses to other compet

ive group-
ings. Once one grouping wins the dominance of selective attention, all other relevant
processing to this grouping and all components belonging to this grouping share the
same dominance.

In Sun’s model, the perceptual grouping is in a hierarchical structure. In this sense, a
grouping can be a point, a region, a feature, an object, a group of features or a group of
objects. Accordingly attentional selection is also hierarchical in the sense that attention
can select a location, a feature, a discrete object or a group of objects. Thus this model
integrates space-based attention and object-based attention into a uniform framework,
where space-based and object-based attentional selectivity are either cooperative or in-
dependent of each other for efficient selection according to the current visual situations
and tasks.

However, there remain two problems in Sun’s model. One is how to obtain the

perceptual grouping pre-attentively. The groupings used in Sun’s model are manually

created. The other is how to model top-down attention for the object based attention.




2.4.6 Other Object-based Attention Models
Orabona’s Model

Orabona et al. [43] presented another object-based attention model for humanoid robots.
In Orabona’s model, the salience evaluation s based on the psychological idea of proto-
objects, which ares defined as blobs of uniform color in the image. A watershed transform
algorithm is employed to implement the pre-attentive segmentation based on uniform
color to produce a set of perceptual blobs.

By training the humanoid robot to learn the object at different views, an internal

representation of that object is formed. Such representation is a vector consisting of color

opponent features (i.c., red-green and blue-yellow pairs). This representation provides
the top-down cues o bias attention towards the task-relevant target. The top-down
biases are caleulated as the Euclidean distance in the color opponent space between each

proto-object’s color in the real scene and the average color in the target representation.

Aziz’s Model

Az et al. [100] proposed another object-based visual attention model, which is promising
for real-time applications for robots. One contribution of Aziz's model is the integration
of perceptual segmentation into the attention model. This model introduces that hue-
intensity-saturation (HIS) color space is an appropriate representation of human color
perception [101]. It employs a region growing algorithm for perceptual segmentation in
the HIS color space. The resulting segments are then used to compute features via their
convex hulls

Although the pre-attentive segmentation algorithms are proposed in both Orabona’s

model and Aziz's model, there are two limitations of those pre-attentive segmentation
algorithms. The first limitation is that only color features are integrated such that a
variety of other features (e.g., intensity and orientations) are lost and those algorithms

cannot be used for an intensity image. The second limitation is that those algorithms




are not robust for various conditions, such as noisy and outdoor environments,

2.5 Robotic Applications of Visual Attention

This is an emerging and highly interesting topic of applying the visual attention mech-

anism to robots in recent years. This section categorizes current robotic applications of

visual attention into two groups. One is for a single and specific robotic task, such as

ion and navigation. The other is for general
d

object detection, target tracking, localiz

robotic perception. Also, the robotic applications of visual attention can be categor
as applying space-based attention or object-based attention, and applying bottom-up
attention or top-down attention. This section first reviews several applications of single

robotic tasks and then reviews a few applications of general robotic perception

2.5.1 Object Detection and Recognition

The most common application of visual attention is the object recognition task (102
The attention mechanism can divide object recognition into a two-stage procedure: the
pre-attentive stage selects a candidate objeet to be attended, and then the post-attentive
stage functions as a classifying recognizer on the attended candidate object [102]. In

the area of robotics, object detection and recognition is also an important ability for

completing more complex tasks

Although some example applications in object recognition have been proposed [103,
104], the most popular application of visual attention into object recognition is proposed
by Walther et al. [105]. In this system, ltti’s model [38] is used to select one object of

interest in the bottom-up attention way and then the SIFT (7] feature is employed to

recognize the attended object. The SIFT feature is a set of high-dimensional descriptors

racted keypoints. These descriptors have the invariance to scaling, rotation

at the e
spatial transformation and illuminative effects, such that they have a great advantage

for recognition. However, the SIFT feature is computational expensive for setting up
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the correlation during the process of recognition. Therefore, the integration of attention
can greatly reduce the computational cost since only an attended object, rather than the
entire image, is used for recognition.

The problem of all those proposed applications s that only bottom-up attention is
employed, with a result that the attended object is not the target to be recognized in

most cases.

2.5.2 Target Tracking

Target tracking in a dynamic environment is an important ability of robots in many tasks
such as surveillance. Some visual attention based tracking methods have been proposed,
such as [106], where the salient locations are tracked over time. One problem of current
visual attention based tracking methods is that only space-based bottom-up attention

is used, so that these methods fail in the case that the target is not salient. The other

problem is that the complete target region cannot be tracked

2.5.3 Localization

Visual attention, especially bottom-up visual attention, has a great potential for land-
mark detection in applications of robotic localization due to the selectivity of attention
The focus of attention highlights a limited number of possible items of interest in an
image, which provide the clues to select the landmarks. Especially in the outdoor en-

vironment and open areas, the standard methods for localization, like matching 2-D

laser range and sonar scans, are likely to fail. Thus selective attention is a promising
alternative to those cases.
Bottom-up attention for self-localization

A selt-localization method for robots based on space-based bottom-up attention has been

proposed in [107]. Basically this method employs the bottom-up attention mechanism to




locate the salient and reliable locations and uses the features at that location to form a
landmark representation. During the learning phase, the bottom-up attention model de-
tects the most salient features along the robot path. After characterizing them by using
a visual descriptor vector, this set of salient features together with location information
become the candidate landmarks. By tracking the detected features over time, the robot
evaluates their robustness and selects the robust candidates as the landmarks followed by

organizing the selected landmarks into  topographic map. The self-localization is real-

ized by matching the detected features in the current scene to the learned representation

of stored landmarks so as to determine the position of the robot.

Bottom-up attention for SLAM

A simultancous localization and mapping (SLAM) method using space-based bottom-up
attention has been proposed by [108]. The contribution of this method is to use the
salient locations to form a topographic map. ‘Thus this map has the capacity to predict
the position and appearance of landmarks. Comparison of the prediction with the current
observation allows redetection in loop closing situations.

Another method [109] is also proposed for a robot's environmental exploration. This

method estimates a bottom-up saliency map and integrates SLAM metric information

into that map,

Combination of attention and gist for localization

A new method of combining the attention mechanism and gist information for local-

ization was proposed by [17). Besides the selectivity of attention which is useful for
landmark detection, this method found that human vision exhibits the ability to rapidly
summarize the gist of a scenc. Attention and gist are contrasting and complementary:
selective attention prefers local and detailed information, whereas gist gives global and
coarse information. Both of them rely upon raw features that come from the same area,

the carly visual cortex. This method uses the gist information as a place (scene) recog-
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nition. During the training phase, the landmarks detected by the bottom-up attention

‘mechanism are clustered in terms of gist information. During the localization phase, gist

information can enable the system to prioritize the on-line landmark search process.

2.5.4 Navigation

Current applications of the visual attention mechanism in robotic navigation are limited
to some simple tasks and environments. In [110] a mobile robot uses an attention system

for navigation. In this application, the robot is guided towards a large object by its visual

attention based on the fact that the large object has great salience in the scenc.

Another application was presented in [111]. An attention system is used to support
autonomous road following by highlighting the relevant regions in a saliency map.
It is obvious that those proposed methods basically use bottom-up attention. There

potential in further research to use top-down attention together with bottom-up at-

tention for navigation applications. Top-down attention can decide what to be attended

according to the current task (i.¢., plan) and situation. For example, the top-down atten-
tion can direct perception to pedestrians for avoidance when the robot is passing through

a street intersection,

2.5.5 General Visual Perception for Robots

As we know so far, only one approach has been proposed in [112] to model robotic
perception by using the visual attention mechanism. This approach models robotic per-
ception as a two-stage procedure: pre-attentive processing and post-attentive processing.
‘The attention mechanism guided by the present behavior s modeled in the pre-attentive
stage.

One contribution of this approach s the top-down attention mechanism simulated by
deducing the behavior-relevant feature dimension based on both perceptual factors and

motivational factors and giving more weight to the relevant feature dimension. However,




this approach does not estimate the location-based top-down biases as posited by GSM

[44]. Tt is important to note that this approach employs space-based attention.

2.5.6 Mapping between Perception and Actions

A general paradigm of mapping between perception and actions for developmental robots
is proposed by Weng et al. [113,114]. This paradigm is called autonomous mental develop-
ment (AMD). The basic objective of AMD is to construct a cognitive mapping mechanism
between perception and actions, with which the robot can learn the association between
sensory information, internal states and actions,

One contribution of AMD is that it regards attention as a type of internal state and
builds a mapping between the attentional state and actions. However, AMD does not
model the intrinsic mechanism of attention. The attentional selection used in AMD is

directly specified by trainers

2.6 Conclusions

This chapter has reviewed the background that is important in the field of visual attention

and its

xobotic applications. It introduces the basic idea of the visual attention mecha-
nism, psychological models of visual attention, computational models of visual attention
and a variety of current advances in the robotic applications of visual attention

This chapter has shown that using the visual attention mechanism to build a general

and cognitive visual perception mechanism for robots is a novel and interesting topic

Several challenging issues require further rescarch on this research topic, such as how to

model the p o fon process for d attention, how to model
top-down attention for object-based attention, how to model the LTM object represen-
tation used both to deduce task-relevant information for guiding top-down attention and
to guide action sclection, and so on. The following chapters will present how to deal with

those issues in detail



Chapter 3

Framework of the Proposed

Cognitive Visual Perception

3.1 Introduction

The main objective of this thesis is to develop a cognitive visual perception paradigm for

robots by using the object-based visual attention mechanism, in order that the robot can
have the cognitive capability of knowing how to perceive the environment, autonomously.
This cognitive capability includes two aspects. The conscious aspect directs visual per-
ception based on the task, context and knowledge learned from experience, whereas the
unconscious aspect directs visual perception in the case of facing an unexpected, unusual
or surprise situation. Object-based visual attention is used in this proposed perception
paradigm as a core part to realize those two aspeets of cognitive capability.

This chapter presents the framework of the proposed cognitive visual perception
paradigm. Section 3.2 gives an overview of the proposed cognitive visual perception
paradigm. Section 3.3 discusses the relationship between the proposed cognitive visual

perception and active vision



3.2 Overview of the Cognitive Visual Perception

This section presents the framework of the proposed cognitive visual perception paradigm.
Figure 3.1 and Figure 3.2 illustrate a brief description and a detailed description of the
framework respectively. This paradigm involves three successive stages: pre-attentive
processing, attentional selection and post-attentive perception. It indicates that robotic
visual perception starts from a low-level cognitive attentional selection procedure that
guides attention to an object in the scene, followed by a high-level post-attentive analysis

procedure that analyzes the attended object and formulates it into an internal mental

representation used for further cognitive behaviors.

Pre-attentive processing stage: This stage provides the basic information used
for the attentional selection stage. It consists of two successive steps. The first step is
the extraction of low-level pre-attentive features. The second step is the pre-attentive
segmentation that divides the scene into homogeneous proto-objects in a bottom-up, un-
supervised manner. The obtained proto-objects are the fundamental units of attentional
selection,

Attentional selection stage: This stage involves four modules: bottom-up compe-

tition, top-down biasing, a combination of bottom-up saliency and top-down biases, as
well as estimation of proto-object based attentional activation.
The bottom-up competition module aims to model the unconscious aspect of cogni-

tive capability. This module generates a probabilistic location-based bottom-up saliency

map to simulate the bottom-up attention mechanism. This module is implemented by
extending Itti’s attention model [38]

The top-down binsing module aims to model the conscious aspect of cognitive ca-
pability. This module simulates the top-down attention mechanism by generating a

probabilistic location-based top-down bias map based on the current task, the current

context and learned knowledge. Duncan's IC hypothesis [49] is used to implement the
top-down biasing module. The related aspect of the IC hypothesis used to guide top-

down attention can be summarized as: by directing attention to a conspicuous cue of an

ks
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Figure 3.1: The brief framework of the proposed cognitive visual perception paradigm for
robots. This paradigm involves threo stages: pre-attentive processing, attentional selection
and post-attentive perception. Perception and action units are connected through the selective
attention m

Post-attentive Perception Stage

Proto-object based Activation
{ Location-hased Activation |

Pre-attentive,

ed framework of the proposed cognitive visual perception paradigm for

Figure 3.2: The
robots.



object, a competitive advantage over the whole object is produced. Accordingly, the top-

down biasing module includes four steps: Deduction of a task-relevant, object from the

task and context, deduction of the task-relevant feature(s) from the task-relevant object,
construction of the attentional template(s) and estimation of location-based top-down
biases. Once a task-specific object is deduced or given directly by the task, the top-down
biasing module recalls the LTM object representation from LTM, from which one or a
few task-relevant feature(s) are deduced. The task-relevant feature(s) then constitute
the attentional template(s). The location-based top-down biases are finally estimated by
comparing attentional template(s) with corresponding pre-attentive feature(s).

Top-down biases and bottom-up saliency are combined in a probabilistic manner to
yield a location-based attentional activation map.

By combining location-based attentional activation within each proto-object, a proto-
object based attentional activation map is finally achieved. The most active proto-object
is selected for attention.

Post-attentive perception stage: Following the attentional selection stage, the

attended proto-object is sent into the post-attentive perception stage. Although the

post-attentive perception stage could involve a varie

of processing, this thesis asserts
that the main objective of the post-attentive perception stage is to interpret. the attended

object in more detail. The detailed interpretation aims to produce the correct action

during the process of action at the current moment and consciously guide the top-down
attention during the process of perception at the next moment. Thus this stage mainly
includes four modules

The first module is perceptual completion processing. Since an object s always
composed of several parts, this module is required to obtain the complete region of the
attended object. It performs around the attended proto-object in the scene based on the

corresponding LTM object represen

ation

The second module is of P entive features

are a type of high-level features estimated based on the pre-attentive features in the
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region of the attended object. In order to interpret the attended object in more detail,
this module forms a high-level representation of the attended object in WM using the

extracted post-attentive featur

The third module is object recognition. This module identifies what the attended
object is. It can also identify which instance the attended object belongs to, which is
used for further action sclection during the process of action.

The fourth module is the development of LTM object representations. It is the most
important module in the post-attentive perception stage. The objective of this module
is to develop the corresponding LTM representation using the currently attended object
The development includes two types of functions. The first function s constructing the
structure of LTM object representations and the second function is dynamically learning
the corresponding LTM representation given the attended object. A robust structure of
object representation is built in this thesis by using a probabilistic neural network (53]
Dynamical learning algorithms are proposed. The learned LTM object representations
can be used o guide action selection at the current moment and they can also be used
to guide top-down biasing, perceptual completion processing and object recognition at

the next moment

3.3 Comparison with Active Vision

It is important to note that the proposed cognitive visual perception paradigm is close
to recent research on active/behavioral vision [115,116]. Active vision situates vision
within an interactive behavioral context and controls visual perception based upon the
observer's activity or the present task. The similar point between the proposed paradigm
and active vision is that the central aspect of both is attentional control. Thus it can be
said that the proposed cognitive visual perception paradigm is a type of active vision
However, most work on active vision does not model a general attention mechanism,

but just develops a specific attentional control algorithm for each distinctive task by




predefining distinctive features, such as junctions [117), depth [118] and iconic repre-
sentations [7]. Thus the attentional selection in those active vision systems s basically

That is, the robot still has no mental capability of

controlled by the programmer

knowing how to perceive the environment in those active vision system

3.4 Conclusions

‘This chapter introduces the framework of the proposed cognitive visual perception paradigm.
It consists of three successive stages: pre-attentive processing, attentional selection and
post-attentive perception. This chapter gives a brief description of each stage. Finally

the relationship between the proposed cognitive visual perception paradigm and active

vision is discussed.

stage in the

The following chapters will present the detailed implementation of each

proposed cognitive visual perception paradigm.



Chapter 4

Pre-attentive Processing

4.1 Introduction

Pre-attentive processing represents the visual processing work prior to attentional selec-
tion. Object-based attention theory [25] and a considerable body of psychological and
Physiological experimental evidence [45, 119] have shown that pre-attentive processing
in vision mainly fulflls two functions. The first function is to extract some types of

The second function is to

basic features, called pre-attentive features in this thes

of the extracted

carve the visual input into candidate objects, which are loose collectior

ntation in this

pre-attentive features. The second function is called pre-attentive segm

th

‘This chapter presents the computational methods used to realize these two functions
Section 4.2 deals with the extraction of pre-attentive features, including what features can
be regarded as pre-attentive features and how the computational methods are designed

to extract them. Section 4.3 deals with pre-attentive segmentation, including what the

properties of p are, what rules can be used to
model it and how an algorithm is designed to model it. Experimental results of those

two functions are also illustrated.



4.2 Extraction of Pre-attentive Features

4.2.1 Definition of Pre-attentive Features

Pre-attentive features can be defined as a type of basic properties analyzed from the input
stimuli by the visual cortex prior to attentional selection. A large body of psychological
research data (45, 119] has shown that there are at least four dimensions of pre-attentive
features: intensity [119), colors [45), orientation energy [45] and motion [119]. Further-
more, recent, psychological research has shown that at the earliest stages of visual cortical
processing neurons play a role in intermediate level vision, including contour integration

and surface segmentation [120]. Thus contour is also considered as a type of pre-attentive

feature in this thesis. In summary, five dimensions of pi features

in this proposed cognitive visual perception paradigm and they are intensity, colors,

orientation energy, contour and motion.

In fact, physiological rescarch has also provided evidence of the existence of these
pre-attentive features. As discussed in section 2.2.5 in Chapter 2, V4 neurons mainly
respond to colors [85], V1 neurons function as the orientation energy filters [83], MT
neurons play a role in perception of motion [66], and V2 neurons respond to illusory or

subjective contours [84]

Multi-scale pre-attentive features

In order to simulate the bottom-up attention mechanism, ie., bottom-up attentional

. multi-scale pre-

competition in the spatial context in terms of the pre-attentive featury
attentive features in each feature dimension are computed.

Note that symbol F is used to denote pre-attentive feature vectors in this thesis.

4.22 Intensity and Colors

Given the three 8-bit input color channels: red (r), green (g) and blue (b), the pre-

attentive feature of intensity Fiy is represented by a weighted average of these three
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Figure 4.1: Pre-attentive features in terms of intensity, red-green color pair and bl
color pair on the original scale. (a) Original image. (b) Intensity. (c) Red-green pair. (d)
Blue-yellow pair.

color channels:
Fin = (r+ g +b)/3. (a.1)
In order that each color channel yields the maximum response for pure and fully
saturated hue, four broadly-tuned color channels, including red (R), green (G), blue (B)

and yellow (Y), are created:
R=r-(g+b)/2,

G=g-(r+b)/2
B=b-(r+g)/2

(42)

Y= (e +g)/2-|r—gl/2-b.

The physiological findings 96] have shown that neurons in the cortex are excited

spatial and

by one color (e.g., red) and inhibited by another color (e.g., green). '



chromatic opponency exists for the red-green pair and blue-yellow pair in the human

primary visual cortex. Therefore, as proposed in Itti's model [38], the four broadly-tuned
color channels are transformed into two pre-attentive color features: red-green pair F,
and blue-yellow pair Fy,. These two types of pre-attentive color features can be expressed
as;

F,=R-G, (43)

F,=B-Y. (.4

Examples of the extracted pre-attentive features in terms of intensity, red-green pair
and bluc-yellow pair at the original scale have been shown in Figure 4.1.

Multi-scale pre-attentive features in terms of intensity, red-green pair and blue-yellow
pair are created by using the Gaussian pyramid [121], which progressively low-pass flters

and subsamples those pre-attentive features. For instance, if the image size is 640 x 480,

nine spatial scales can be created for each p . The detailed imp
tion of the Gaussian pyramid can be seen in Appendix A. These multi-scale pre-attentive
features in terms of intensity, red-green pair and blue-yellow pair can be denoted as
Fuu(l), Fry(l), Fuy(1) respectively, where L s the spatial scale. Examples of extracted
multi-scale pre-attentive features in terms of intensity, red-green pair and blue-yellow

pair are shown in Figure 4.2.

4.2.3  Orientation Energy

As discussed in section 2.2.5 in Chapter 2, the simple cells and complex cells in area V1
are responsible for extracting orientation energy in the pre-attentive stage [81). There
are two types of simple cells. One type is sensitive to lines of a particular orientation
and it can be modeled by using odd-symmetric filters. The other type is sensitive to step
edges of a particular orientation and it can be modeled by using even-symmetric filters.

The complex cells are sensitive to the specific orientations and they can be modeled by




Figure 4.2: The multi-scale pre-attentive features in terms of intensity, red-green pair and
blue-yellow pair from scale 0 to scale § respectively. From left to right in each row, the scale
is from 0 to 8. The original image has been shown in Figure 4.1(a). (a) Multi-scale intensity
features. (b) Multi-scale red-green pair features. (c) Multi-scale blue-yellow pairs features.

53




(@)

(®)

)
Figure 4.3: The multi-scale pre-attentive features in terms of orientation energy from scale
0 to scale 4 in four preferred orientations 6  {0°, 457, 90°, 135°}. In order to clearly illustrate
the features at small sales, al feature images are linearly normalized to (0,256] and are shown
in the same size. From left to right in each row, the scale s from 0 to 4. The original image
has been shown in Figure 4.1(a). (a) In orientation 0 = 0°. (b) In orientation 0 = 45°. (c) In
orientation 0 = 90°. (d) In orientation 0 = 135"

‘summing the outputs of line-sensitive simple cells and step-sensitive simple cells with the

same orientations.

s the pre-attentive feature of orientation energy in a preferred
orientation can be extracted by simulating the mechanism of simple cells and complex
cells,

The oriented 2-D Gabor filter, consisting of an odd-symmetric part and an even-

symmetric part, can be used to approximate the sensitivity of these two types of simple



cells [122]. The detailed techniques of the 2-D Gabor filter can be seen in Appendix B.
Thus the multi-scale pre-attentive features of orientation energy, denoted as F,, (1),
can be extracted by convolving the intensity image Fiy(1) with a 2D Gabor filter at

scale I. According to Itti's model [38], four preferred orientations 6 € {0°, 45°,90°, 135°}

are used in this thesis.

Examples of mul

scale local orientation energy features are shown in Figure 4.3,

where the feature images from scale 0 to scale 4 are shown.

4.2.4 Contour
The total orientation energy is used to approximate the contour feature, denoted as For.
It is obtained by applying a pixel-wise maximum operator over all orientations:

Fu(ril) = ax  Fy(ri,l), (45)

ma
0600 45° 907 135°)

where r, denote a pixel in the image at scale I

4.2.5 Motion Energy

The motion processing mechanism in the visual cortex is like a derivative analyzer that
estimates orientation in the space-time domain [123]. It inspires the idea to build a 3-
D derivative spatio-temporal filter in order to estimate the motion energy [124], which
is referred to as the spatio-temporal cnergy model (STEM). Correspondingly, a set of
oriented Gabor spatio-temporal filters has been proposed in [123] to yield motion en-
ergy in preferred motion directions. However, the 3-D Gabor filters are computationally

expensi

Simoncelli and Anderson [126] have shown that the standard gradient-based technique
can also be understood as a method for extracting motion energy. Thus a probabilistic

algorithm for m

n extraction is proposed in [127]. Based on the image gradient, it




estimates the conditional distribution of optical flow, which can be expressed as:

Pl dh) o exp{—H(ang — 9)TE (g~ )} (6)

where 1 is the optical flow vector, p(t|d,, d;) is the conditional distribution of the optical

flow given the spatial and temporal derivatives, and

= [d,(d78,d, + £)7'd] + Z;

) (1)

py = ~Sdy(dTE,d, + B))d, (4.8)

d=(d d,)l. (19)

where d, d, and d; are measures of spatial and temporal derivatives respectively, 1, and
3, are mean and covariance respectively of the conditional distribution of the optical
flow, %, 3 and X, are covariances of measure uncertainty of spatial derivatives, measure
uncertainty of temporal derivative and prior uncertainty respectively.

A fist-order derivative operator is used to calculate derivatives ds, d, and d;:
D (1 —1) (4.10)

The pre-attentive feature in terms of motion energy, denoted as F,y,., can be estimated

by using the norm of the mean vector of p(s|d,, d;):
Fona(r) = g )l (4.11)

where | - | is the Euclidean norm operator.
The above procedures are performed at each scale to yield multi-scale pre-attentive
features in terms of motion energy, denoted as Fo (1)
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Figure 4.4:  Pre-attentive features in terms of motion energy. The brightness reprosents the

motion energy. There are two kinds of motion, including foreground and background, since the

150 moving. The first three columns in each row are three successive original images.

(The s ooluan{n sesro 4t o ey mi

Figure 4.4 shows some examples of pre-attentive features in terms of motion energy

extracted from successive natural images at the original scale. This figure shows the

effectiveness of the proposed extraction method in a set, of different motion patterns (i.c.

speed and direction) of foreground and background.



4.3 Pre-attentive Segmentation

4.3.1 Definition of P i i

According to the object-based attention theory [25,34,45,128], pre-attentive segmentation
can be defined as an unsupervised perceptual grouping process with a certain degree of
accuracy prior to the attentional selection. It results in some groupings, which are the

units of attentional selection. This definiti

indicates three properties of pre-attentive

existence, primi and icity. That is, it is certain that the
visual scene is divided into groupings in the pre-attentive stage in an automatic way
whereas those groupings are primitive. This thesis calls those primitive groupings proto-
objects

Thus there exist two ssues for modeling pre-attentive segmentation. The first one is
how to define proto-objects and the second one is how to design an effective algorithm
to implement the pre-attentive segmentation.

In the next subsections, the psychological rules used to guide perceptual grouping
are firstly introduced. Based on those psychological rules and neurobiological properties
of pre-attentive segmentation, proto-objects are then defined. After reviewing the exist-
ing techniques of unsupervised image segmentation, a novel algorithm for pre-attentive

segmentation is finally proposed.

4.3.2 Gestalt Principle
The Gestalt principle [58] proposed in psychology is widely used to understand perceptual
grouping and to guide the design of perceptual grouping algorithms. It is important to
note that perceptual grouping includes both unsupervised and supervised manners. The
Gestalt principle mainly includes the following rules:

o Proximity: The pixels which are closer in the space domain are grouped strongly

together. This rule is always used for unsupervised perceptual grouping.
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 Similarity: The pixels or blocks of pixels which are similar in terms of at least one

attribute tend to be grouped together. The attributes can be color, size, orientation,
dircction or speed of motion and so on. Thus similaity is always regarded as a

general rule for unsupervised perceptual grouping.

« Continuity: This rule works for lines or edges. All else being equal, elements that
can be seen as smooth continuations of cach other tend to be grouped together.

Features, such as line terminations and line intersections, are required to realize

this rule. This rule is always used for unsupervised perceptual grouping.

o Closure: All else being equal, elements forming a closed figure tend to be grouped

together. Closure feature is required for this rule. This rule is always used for

unsupervised perceptual grouping

« Past experience: If clements have been previously associated with each other in
prior views, they will tend to be seen as grouped in the present situation. The
learned knowledge stored in LTM is required for this rule. Unlike the above rules
that guide the unsupervised grouping, this rule guides the perceptual grouping in
a supervised way.

It is important to note that which rules of the Gestalt principle can be used for

perceptual grouping is partly dependent on which features are available.

4.3.3  Definition of Proto-objects

It is obvious that p can only use p features, includ-
ing intensity, colors, orientation energy, contour and motion energy. Thus proximity and

similarity rules can be used for pre-attentive segmentation. It can be seen that those two

rules are able to divide the scene into homogencous regions. Thus the proto-objects ob-
tained by pre-attentive segmentation can be defined as the homogeneous regions obtained

by using proximity and similarity rules.




4.3.4  Background of Unsupervised Segmentation Algorithms

Designing an algorithm for unsupervised image segmentation is a challenging issue. Cur-

rent ional methods for unsup image ion can be categorized as
boundary-based and region-based.

Boundary-based approaches, such as (3], arc based on the fact that edges belonging
10 a single object are in adjacent positions. This is consistent with the proximity rule.
However, methods in this category are not robust in the cluttered environment.

Region-based approaches are dependent on the similarity rules and widely used for
unsupervised image segmentation. There are mainly three types of algorithms in this
category: global optimization based, region growing and region merging

The objective of global optimization based algorithms, such as [129-134], is to find a
grouping solution by globally optimizing a criterion. A good example of the algorithms
of this type is the normalized cut approach (132-134]. 1t divides the image into regions
by optimizing the normalized cut criterion that measures the similarity between the dif-
ferent groups as well as the similarity within the groups. Several similarity measurement
criteria, such as color, orientation and texture, have been proposed for this algorithm.
However, the disadvantage of these global optimization based algorithms is that they are

computationally expensive due to the computation of high-dimensional matrices during

the optimization procedure.

Region growing algorithms, such as 135,136, firstly select several interesting pixels
or regions as seeds, then search for similar neighbors around each seed gradually, and
finally organize each seed and its neighbors into an identical group. The challenging
issue of algorithms of this type is how to select the seeds, since these seeds are the initial
condition for segmentation. The selection of seeds is the most important factor to decide
the segmentation performance.

In contrast to the region growing algorithms, region merging algorithms, such as
[54,55,137-140], do not select seeds, but consider each pixel or regular region equally.
The algorithms of this type hierarchically merge the similar pixels or regions into the
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same group. A good example of the region merging algorithms is pyramid based segmen-
tation (54,55, 138-140]. This algorithm hierarchically builds each level of the pyramid
by accumulating similar local nodes at the level below, with the result that the final
global segments emerge in this process as they are represented by single nodes at some
levels. One advantage of this pyramid based algorithms is that it is computationally fast.
The other advantage is that the accumulation process of the pyramid can be used to
simulate the synchronization mechanism in the human visual system. Synchronization is

an effective signal for perceptual grouping. The firing activity of the scattered neurons,

which code different features of one segment, is sy ina way that .
to the prevailing context [141]. Analogous to the synchronization mechanism, nodes at
each level of the pyramid in the pyramid based segmentation algorithm can be seen as
the receptive fields of neurons with the corresponding spatial size. The accumulation
process, in which the similarity is estimated by integrating different features, can be seen
as the synchronization process in the spatial context.

Thus this thesis proposes a pre-attentive segmentation algorithm by extending the

hierarchical pyramid based segmentation technique.

4.3.5 Proposed P i ion Algorith:

Why Use An Irregular Pyramid?

Pyramidal structures, including regular and irregular pyramids, have been used in the
algorithms of image segmentation 54,55, 138-140, 142). The construction of a regular
pyramid is strongly constrained by a geometric criterion in that the neighbor nodes at
the same scale are always merged in spite of the similarity between them. The result
is that the segmentation methods based on the regular pyramid technique [138] have
difficulties in the case that the image has an irregular structure. In contrast, the con-
struction of an irregular pyramid is constrained not only by the geometric criterion but

also by the similarity. Thus this thesis employs the irregular pyramid technique to design
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Figure 4.5: A brief graphic description of image segmentation using the irregular pyramid
technique. The aggregation process of the irregular pyramid is shown from hnnmu ol
1.\ the left figure, the aggregation process is represented by vertices and each circle
. i 0 Cpion, 1 AGRsApec! Pt Dt B el pos
Bk epewcia s Longs pixel. It can be seen that the image is partitioned into three irregular
regions once the aggregation process is finished. The color of each vertex and block represents
{he anturs v, Note tht eachso vertex }w only one parent vnxtrx in this llustrative figure
in order to show the aggregation process aple way. In fact, each son vertex can have
iled

4 ok 000 parnt veri:  the paopoesd pr-a{aivs segmentation algo, The d
ques are discussed in the following text.
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the pre-attentive segmentation algorithm. Figure 45 show a simple example of image

segmentation using the irregular pyramid based technique.

Representation of the Irregular Pyramid

The graph technique is used to represent each level of the irregular pyramid. Level [
of the irregular pyramid is represented by a graph Gy = (Vy, Ey), consisting of vertices
v € Vi and intra-level edges ¢ € E. Intra-level edges represent the similarity between a
vertex and its neighbors at the same level. The symbol N, is used to denote the neighbor
set of a vertex v

Note that the index (e.g. i) for a vertex (e.g., v;) is determined at the base level { = 0
and it remains unchanged at high levels if the vertex survives at these high levels. An
example of this case can be seen in Figure 4.7(a)

Each vertex in G is also linked to its parent, vertices in Gyyy by inter-level edges
141, which represent the membership of a son vertex in Gy to its parent vertices in
Gii. A graphic illustration of inter-level edges and intra-level edges of the irregular

pyramid is shown in Figure 4.6

Strength of Intra-level Edges

Estimating the strength of intra-level edges, i.c., the

milarity between a vertex and its
neighbors at the same level, is very important for the final performance of pre-attentive
segmentation.

The first issue related to the similarity measures is which features are used. Since this

is used for the p only pre-attentive features can be

used. As intensity and colors can be easily used to estimate the similarity for region-based
segmentation approaches, the proposed pre-attentive segmentation algorithm employs

the pre-attentive features of intens

red-green pair and bluc-yellow pair. An aggregate



Inter-level edge —>]
(141)

Pis

A parent vertex

Vi

Py

neighbor of vertex ¥,

Intra-level edge

Figure 4.6: A graphic description of inter-level edges and intra-level edges of the irregular
pyramid. Note that each son vertex has only one parent, vertex in this illustrative figure in
order to show them in a simple way. In fact, each son vertex can have at least one parent vertex
in the proposed pre-attentive segmentation algorithm.

2
feature vector of a vertex v, denoted as ¥, can be built as:

where B,

Flug
£ | (112)

it
Fous

F},; vepresent the aggregate features of a vertex v; at a pyramidal

level 1 in terms of intensity, red-green pair, blue-yellow pair respectively.

“The second issue is which type of similarity measure should be used. A similarity mea-

sure can be generally defined as the distance between two stimuli. A number of similarity

‘measures have been proposed and they can be categorized into two groups: deterministic

and probabilistic. Deterministic similarity measures, such as Buclidean distance, aim

to estimate the distance between two deterministi

stimuli. In contrast, probabilistic

64



similarity measures aim to estimate the distance between two stochastic stimuli. There

are mainly four types of probabilistic similarity measures: Mahalanobis distance [143],
Jeffreys divergence (144], Kullback-Leibler (KL) divergence [145] and Bhattacharyya dis-
tance (146]

Which type of similarity measure is suitable for estimating the strength of the intra-
level edge is dependent on the properties of the two vertices linked by the edge.

At the base level of the irregular pyramid, each vertex is a single point of the image,
rather than an aggregation of vertices. Therefore, the features of each vertex at the base

level can be seen as deterministic and exponential Euclidean distance is used to estimate

the strength of intra-level edges at the base level [ =

exp(-[|E{ - ), (@13)

where v; is a neighbor of vertex v, at the base level, ¢f; denotes the strength of the
intra-level edge between vertices v, and v; at the base level 1 = 0, and || - || is the
multi-dimensional Euclidean distance operator.

In contrast, at higher levels of the irregular pyramid, each vertex represents an ag-
gregation of vertices at the lower levels. Thus the features of each vertex at higher levels
can be seen as probabilistic distributions. This indicates that a probabilistic similarity
measure should be used. There is an important requirement of this probabilistic simi-
larity measure. It should have the ability to measure the probabilistic distance between
two probabilistic distributions since the features of two vertices are both probabilistic.
Based on the facts that Mahalanobis distance cannot measure the similarity between
two probabilistic distributions, and that KL divergence is an asymmetric measure, Jef-
freys divergence and Bhattacharyya distance can be used as candidates. This thesis
selects Bhattacharyya distance for measuring the strength of intra-level edges, since it
computationally costs less and is easier to implement than Jeffreys divergence.

Bhattacharyya distance, denoted as D, between two Gaussian distributions can be
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expressed as:

1 1
D = gl = m) Eizlm — ) + 510 (4.14)

where pt, and 3 are mean vectors of those two Gaussian distributions, ¥; and X, are
covariance matrices of those two Gaussian distributions, and

LDt

. (4.15)

Assuming that the feature’s probabilistic distribution of a vertex at higher levels in
the irregular pyramid is Gaussian, the strength of intra-level edges at higher levels { > 0
can be therefore estimated as:

1 1 det(3,)
EATI B e A .
ey = oo { - 4B EEL) - ) - (=L
aet(£) det(E))
where ¢, denotes the strength of an intra-level edge between vertices v and v; at level
1, $ and £} are covariance matrices of aggregate features of vertex v, and vertex v,

respectively at level £, and

Il
of _E+E
By=—5—2 (4171
Scale-invariance of the Similarity Measure
One advantage of this imilarity measure s its scal during the

pyramidal aggregation procedure. With the accumulation of the son vertices to the parent
vertex, the feature data (e.g,, mean and covariance) of the parent vertex are changing,
i.e., the scale of the measurement space is changing. Since Bhattacharyya distance takes

into account the correlations (i.c., covariances) of the data sets, the estimated similarity

is approximately scale-invariant during the pyramidal aggregation procedure.




Initialization of the Base Level

The base level { = 0 of the irregular pyramid is initialized by using pre-attentive features

at working scale I,

2 (see details about the working scale in section 52.3). An

8-connected graph is used in this algorithm.

The Aggregation Process

The aggregation process of the irregular pyramid aims to hierarchically build each level

of the pyramid by accumulating similar neighbor nodes at the level below. During this

process, the final global segments emerge as they are represented by single nodes at some

level. This process consists of four procedures: decimation, estimating the strength of

inter-level edges, estimating the aggregate features and searching for neighbors. The

detailed implementation of these four procedures are given in the following paragraphs.

Procedure 1: Decimation

The first procedure is decimation, in which a subset of Vi (i.e., a set of surviving

vertices) is selected from the graph Gy to build the graph Giy1. The objective of the

decimation procedure is that the accumulated parent level G,y can represent the son

level Gy as enough as possible.

Two rules have been proposed to constrain the decimation procedure in [142]

o Rule 1: The decimation must be maximal: Any two neighbor vertices cannot both

survive to the next high level. This can be mathematically expressed as: Vv, € Vi

and Yu; € Ny, if v € Vigr, {v; € Vi

© Rule 2: Any son vertex must have at least one parent vertex at the next high level

This can be mathematically expressed as: Vv, € Vi, {vi € Vig JU{N:N Vi } # 0.

Those two rules can be illustrated in Figure 4.7
Based on these two rules, a stochastic pyramid decimation (SPD) algorithm (140, 142

has been proposed. In the SPD algorithm, a random value is first associated with each
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n of two rules wed inthe decimation procedure during the
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vertices at lovel £ do not survive. (b) llustration of Rule 2: any son vertex must have at least
one parent vertex at tho next high level. This sub-figure shows that ach son vertex at level [
has at least one parent vertex at level [+ 1. Blue solid lines represent the inter-level edges
the widths of those lines represent the strength of the inter-level edges. In both sub-figures, red
solid lines represent.the intra-level edges.
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vertex. Based on these random values, the selection of survivors are iteratively performed
with the constraints of rule 1 and rule 2

By extending the SPD algorithm, this thesis proposes a new decimation procedure,
called data-driven decimation (DDD). In the DDD algorithm, the similarity between a
vertex and its neighbors is used to determine the selection of survivors instead of the
random value used in the SPD algorithm.

Two logical variables are associated with each vertex v; at level L. Variable a{*'
indicates if the vertex v; will survive at level I+ 1. Variable b{*! indicates if rule 2 is not
satisfied for the vertex v;. This DDD procedure consists of two routines.

The first routine is called selection of local mazima. This routine is not recursive,
ie.,it only works in the first iteration of the decimation procedure. According to rule 1,

some surviving vertices can be first selected if they are local maxima. Therefore, vertex
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v, € Vy will survive at level I+ 1if it has the maximum similarity among its neighbors.
‘This routine is implemented by labeling those two logical variables. This routine can be

‘mathematically expressed as

A e, it > &, Vi €Ny
a1 = false,  otherwise 438)
gt gt p i)

where n denotes the index of the decimation iteration,  is the sum of strength of intra-
level edges of the vertex v, and it can be mathematically expressed as: & = ¥, ¢! where

v; € N,, & is the sum of strength of intra-level edges of the vertex v, and it can be

mathematically expressed as: & = ¥, ¢, where vy € N;, A denotes the “logic and”
operator, and @ denotes the negative of o

Since the surviving vertices selected by the first routine are sparse in most cases,
another routine is further required to satisfy rule 2 and this routine is called selection of
Iocal sub-mazima. During this routine, some vertices ae iteratively selected as the rest of

survivors with the constraints of rule 1 and rule 2. This routine can be mathematically

expressed

aftn = ot i > 8 Ve e N
afti® = gftin-L otherwise (4.19)
B < alh i A Al

where ndenotes the index of the decimation iteration and n > 1, & = 37 el ; where
vy € {NAB), E = X €l where vy € {N; AW}, and V denotes the “logic
or” operator.

B*1™ are false. Convergence of this routine

The second routine is iterated until Yu,

-ases the number of surviving vertices.

is guaranteed since each iteration strictly inc
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Procedure 2: Estimating the Strength of Inter-level Edges
The second procedure is to estimate the strength of inter-level edges pl/*!l by satisfying

the following conditions [55]

1L X Pl = 1, Vo € Vi, for every v, € Vi

2. pl#*V is proportional to ¢!, Yo € Vi, for every v, € VA\Vig

3. pMH = 1, for v € ViN Vi

Procedure 3: Estimating the Aggregate Features
The third procedure is to estimate the aggregate features and covariances of vertices
vk € Viuy based on the strength of inter-level edges. The aggregate features are first

estimated as:
= T alE (420)

cen o
where " denotes the aggregate feature vector of a vertex vy € Vi1, and | denotes
the nggregate feature vector of a vertex v € Vi.
Assuming that the pre-attentive features are independent, the covariance matrix of
s+

aggregate features of a vertex s diagonal. The diagonal entries 6L} of the covariance

st
matrix 5, of a vertex vy € Vi are then estimated as:

(4.21)

whete f € {int,rg,by} and 62, = 0,%, V.
The non-diagonal entries of the covariance matrix £ of each vertex vy at level {+ 1

are set to 0.

Procedure 4: Search for Neighbors
The fourth procedure is to search for neighbors of each vertex v, € Vi and simulta-

neously estimate the strength of intra-level edges et € Eqy; at level { + 1 using (4.16)

0




Figure 4.8: The similarity-d: cighbor search procedure in the
algorithm. Vertex vy is used as an example to illustrate the neighbor search procedure at level
14 1. Red lines, including solid and dash lincs, represent the candidate intra-level edges of v
Finally, the red solid lines are selected as the intra-level edges of ug since their strength is larger
than the threshold. At lovel , the black circles represent the vertices that survive at level [+ 1
and the green circles represent the vertices that do not survive at level [+ 1. At level 1+ 1, the
black circles represent the vertices at that level.

A new neighbor search method is proposed in this thesis and it is graphically illus-
trated in Figure 4.8. This method not only uses the graphic constraint for neighbor
search, but also considers the similarity constraint in the sense that the candidate neigh-
bors should be similar enough to the center vertex. This method is called a similarity-
driven neighbor search procedure and it can be expressed as: a vertex vy € Vi is
selected as a neighbor of vertex vy € Vi if e} > @,. Parameter ¢, is a similarity
threshold, which controls the precision of pre-atentive segmentation. Since the pro-

posed pre-attenti ion algorithm uses distance as a similarity

measure, which is approximately scale-invariant, the parameter . can be a fixed value
for all pyramidal levels. This thesis empirically sets this parameter as ¢, = 1.5.

It is important to note that v, and vy must have a connection path at level [ and
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path-length(k, K)

= {2,3} is adopted to search for neighbors in this thesis

Emergence of Proto-objects
In the case that no neighbors are found for a vertex v € Vi, it is labeled as a new
proto-object if its area is larger than the predefined threshold é,; Otherwise, it is merged
into the closest and most similar vertex at the same level. A proto-object is denoted
as Ry, where g is the index of the proto-object. This thesis sets the area threshold
90 = (A:4,/1000), where (A,, A,) are image width and height respectively at the base
level. The area of a vertex at a level can be iteratively calculated as follows:

A= (4.22)

where Af'! is the area of vertex v € Vi1, and Al is the area of vertex v, € V; which is

initialized by 1 at the base level I = 0.

Final Segmentation

ished once all vertices at a level have no

The construction of the full pyramid is

neighbors and the level is denoted as [y, Finally, the membership of each vertex at the
base level to each proto-object is iteratively calculated from i, to the base level 1 = 0. A

membership vector [, ...,1t,.... is assigned to a vertex v, at level [ in order to denote

o
its membership to each proto-object. Each entry of the state vector of a vertex vg € Vi,,,

is initialized at level l,, as:

i 1 ifu€R,
e = (4.23)
0 otherwise

The membership vector of a vertex v, at the base level s achieved by iteratively using



(4.24)
(4.24)

Results of the Proposed Pre-attentive Segmentation Algorithm

The proposed pre-attentive segmentation algorithm was tested using natural images ob-
tained in different scenes and under different settings, such as changing lighting condi-
tions. Some example results are shown in Figure 4.9. The discussion of these results is

given in section 4.3.7 in this chapter.

4.3.6  Principal Axes of Proto-objects

Once proto-objects are obtained, their principal axes are calculated as

(4.25)

where fg, denotes the direction of the principal axis of the proto-object R, with respect
to Y-axis in the image coordinate system, and 7y, Mg and Mo, are 2-order moments
relative to the center of mass of that proto-object
Those moments can be calculated respectively as
MMy

My =M - T (4.26)




()

Figure 4.9: Results of pre-attentive segmentation in natural scenes. (a)-(c) and (g)-(i) Original
images. (d)-(f) and (j)-(1) P on results. Bach color proto-
object,




where

My =Y a™", Vri€Ry, (4.29)

where m and n denote the orders of moments with respect to X-axis and Y-axis, x and

y are coordinates of the pixel r, € R,

4.3.7 Discussion

As shown in Figure 4.9, the proposed pre-attentive segmentation algorithm can success-
fully divide the complex scenc into uniform proto-objects. For example, as shown in
Figure 4.9(c), the chair (in the left side of the image) and the book (in the upper right
side of the image) have been successfully segmented. A problem of this pre-attentive

segmentation algorithm is that over-segmentation oceurs in some cases, g, in the case

that the lighting spreads unevenly on a single object. However, this is not a big prob-
lem since the perceptual completion of an object can be obtained through a top-down
knowledge-based post-attentive perception procedure

In fact, the Gestalt principle has illustrated that input stimuli and stored knowledge
in LTM are two fundamental cues for perceptual grouping. It indicates that there are

two ways for segmenting an image. One is unsupervised segmentation (i.e., bottom-up

segmentation) based on input stimuli; the other is supervised segmentation (i.e., top-
down segmentation) based on the stored knowledge.

Correspondingly, a few advanced algorithms that integrate bottom-up and top-down
segmentation have been proposed. The first type of those algorithms, such as (147, 148),
performs bottom-up segmentation and top-down detection simultancously. The second

type of those algorithms, such as [149], preforms bottom-up segmentation at frst, followed

by a serial top-down rectification on each segment. Compared with the first type, the

advantage of the second type is that the expens of top-down
sequentially operates only on one region at a time, not over the whole image.

‘The proposed cognitive visual perception mechanism can also be used for image seg-




mentation by integrating pre-attentive segmentation, attentional selection and percep-
tual completion processing. Pre-attentive segmentation achieves proto-objects at first
and then the perceptual completion procedure performs in cooperation with the serial
attentional shift from one proto-object to others. This idea is close to the second type of
algorithm presented above. The advantage of the proposed algorithm is that the atten-
tional selection can give an optimal scan path (i.c., the sequence of proto-objects to be

attended) for the serial top-down segmentation.

4.3.8  Computational Complexity

The computational complexity of this proposed pre-attentive segmentation algorithm
can be approximately estimated as the sum of three parts across all pyramidal levels
obtained during the accumulation process. Let n denote the number of vertices at a level
L. The first part is the computational complexity of the decimation procedure. It can be
denoted as O(N x n), where Ny denotes the number of iterations of the decimation and
Nu < n. The second part is the computational complexity of estimating the strength
of inter-level edges and estimating of the aggregated features. It can be denoted as
O(Ny x n), where Ny denotes the number of features and Ny = 3. The third part is
the computational complexity of the neighbor search procedure. It can be denoted as
O((Nuy + Nop % Np) x ), where Ny denotes the number of neighbors of a vertex and

Ny = 8. The number n decreases approximately with the decimation ratio 1/4 during

the multi-scale accumulation. It can be seen that the computation of this algorithm is

hm

linear to the number n. The experiments have shown that the time cost of this algor

for a 640 x 480 image is less than one second.

4.4 Conclusion

‘This chapter has presented the pre-attentive processing stage in the proposed cogitive

visual perception paradigm. Two parts have been discussed in this chapter. The first
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part s extraction of multi-scale pre-attentive features, including intensity, red-green pair,
blue-yellow pair, orientation energy, contour and motion energy.

The sccond part of this chapter presents an algorithm for pre-attentive segmenta-
tion by extending the irregular pyramid technique. This algorithm is one of the main
contributions of the proposed cognitive visual perception paradigm. There are several

advantages of this proposed pre-attentive segmentation algorithm

1. A probabilistic similarity measure (i.c., Bhattacharyya distance) is proposed for es-

timating the strength of intra-level edges in the irregular pyramid. Since each vertex
at upper pyramidal levels is an accumulation of vertices at the levels below, this
probabilistic similarity measure can precisely estimate the similarity between these
accumulated vertices, compared with the deterministic similarity measures (c.g.,

Euclidean distance estimated by mean values) used in most of other pyramid-based

methods, , since thi y measure is

ant during the pyramidal aggregation procedure, a constant similarity
threshold can be used at multiple scales in the procedure of similarity-driven neigh-

bor search.

A data-driven decimation routine s proposed. Compared with the SPD algorithm
140,142] used in other pyramid-based segmentation methods, this routine improves
the segmentation performance in the sense that the vertices that can represent the
neighbors as enough as possible deterministically survive during the decimation

procedure, such that some of them can successfully emerge as final segments

3

. A new similarity-driven neighbor search method is proposed. In most of pyramid-
based segmentation methods, the neighbor search procedure for the upper pyrami-
dal levels is not presented clearly and its influence on the segmentation performance
is extremely ignored. This proposed neighbor search procedure can improve seg-

mentation precision by deterministically cutting connections between vertices that,

are located at a place with emergence of great transition. In other words, it pro-
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scale way to accumulate the evidence of boundaries. As a result, the

neighbors obtained at each pyramidal level are similar enough to the center vertex,

such that the precision of final segmentation is improved.




Chapter 5

Attentional Selection

5.1 Introduction

The objective of attentional selection is to decide which proto-object should be attended

by a combination of both bottom-up and top-down attention mechanisms. In order to re-
alize this objective, four modules are required: bottom-up competition, top-down biasing,
& combination of bottom-up competition and top-down biasing, as well as estimation of
the proto-object based attentional activation. The bottom-up competition module yields
& probabilistic location-based bottom-up saliency map and the top-down biasing module
yields a probabilistic location-based top-down bias map. Once these two maps are prob-
abilistically combined, a location-based attentional activation map is achieved. Based
on the results of pre-attentive segmentation, a proto-object based attentional activation
map is finally obtained. This chapter presents the detailed computational methods for
realizing these four modules

The first challenging issuc in the attentional selection stage is the computational mod-
cling of top-down biasing, According to the IC hypothesis [49], this issue includes several
sub-problems: deduction of the task-relevant object given the task, deduction of the task-
relevant feature(s) given the task-relevant object and estimation of the top-down biases

given the task-relevant feature(s). The second challenging issue is the computational



‘modeling of the combination of bottom-up saliency and top-down biases at a uniform
scale. This chapter presents approaches o these issues.

It is important to note that the saliency map and bias map are both estimated in a
location-based manner. This is due to the fact that the extracted pre-attentive features

are | based, on which bottom-up ion and top-down biasing take place.

‘This chapter is organized as follows: Section 5.2 presents a bottom-up competition
method by extending Itti’s attention model [38]. Section 5.3 proposes a novel top-down
biasing method based on the IC hypothesis. Section 5.4 proposes a method for combining
bottom-up saliency and top-down biases in a probabilistic manner. Section 5.5 presents

a method for estimating the proto-object based attentional activation map.

5.2 Bottom-up Competition

5.2.1 Background

The bottom-up competition module aims to produce the unconscious aspect of the pro-
posed cognitive visual perception paradigm by modeling the bottom-up attention mech-
anism. The BC hypothesis [46] about the bottom-up attention mechanism posits that
items in the scene compete for attention in terms of their conspicuousness in the spa-
tial context, with a result that a salient item can be selected for attention. Thus how
to estimate the conspicuousness of each item is the key point for modeling bottom-up
attention. Conspicuousness represents the difference of an item from its spatial neigh-
bors in terms of pre-attentive features. Accordingly, the estimation of conspicuousness
consists of two components. The first component s contrast in terms of pre-attentive
features in the spatial context, i.e., across multiple scales. It can be seen that the first
component is consistent with the BC hypothesis. The second component is integration
of these contrasts in terms of all pre-attentive features and across all spatial scales. It is
obvious that the second component is consistent with the FIT [24]

Itti’s model [38] has given an approach to both contrast and integration components,
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finally yielding a location-based bottom-up saliency map. Thus, the bottom-up compe-

tition module proposed in this thesis is developed by extending Itti’s model. Compared
with Itti's model, two types of extensions are presented by the proposed bottom-up com-
petition module. The first extension is that contour and motion features are included in
the proposed bottom-up competition module. The second extension is that a new prob-
abilistic representation of the location-based bottom-up saliency is proposed for further
combination with the top-down biases

The following three subscctions respectively present the contrast algorithm, the in-
tegration algorithm and the estimation algorithm for the probabilistic location-based

bottom-up saliency map.

5.2.2 Contrast

The contrast component can be modeled as calculating the difference between a pixel
and its spatial neighbors in terms of pre-attentive features. Thus it can also be called
center-surround contrust. The center is represented by the pixels at the fine scales (i.c.,
center scales) and its spatial neighbors are represented by the pixels at the coarse scales
(i.c., surround scales). The center-surround contrast produces center-surround difference
maps for each pre-attentive feature dimension. The implementation of center-surround

contrast can be expressed as:

Fiu(les |Fini(l) © Fine(L)1, (5.1)

Frolle, 1) = [Frg(le) © Fry(l)], (52)

Fiy(less) = |Fiy (L) © Fiy (L)1, (5.3)
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Foy(lebs) = [Foy(ic) © Foy (1)1, (5.4)

Froullesls) = |Fino(le) © Fno (L)1, (5:5)

where I, € {2,3,4) and [, = I, + & with § € {3,4} respectively represent the center

scales and surround scales, & denotes across-scale subtraction, § € {0°,45°,90%,135°},

and F(l,,1,) denotes a center-surround difference map.

The across-scale subtraction operator © consists of two successive operations. The

first one is interpolation, which interpolates the features at the surround scale to the
center scale using the interpolation technique of the Gaussian pyramid as shown in (A.4)
in Appendix A. The second operation is point-by-point subtraction between the interpo-
lated features and the corresponding features at the center scale.

Examples of the center-surround contrast are shown in Figure 5.1.

5.2.3 Integration

It can be seen that six center-surround difference maps for each feature dimension are
produced by the contrast algorithm and eight pre-attentive feature dimensions, i.c., in-
tensity, red-green pair, bluc-yellow pair, orientation energy in four preferred directions

and motion energy are used. Thus totally 6 x § = 48 center-surround difference

aps are

obtained. The integration component com!

s all these center-surround difference maps
to achieve conspicuity maps for cach feature dimension. Finally, the integration compo-
nent combines all conspicuity maps to achieve a location-based bottom-up saliency map.
‘The integration component mainly consists of two operators, including normalization and

across-scale addition, both of which are presented in the following subsections.




Figure 5.1: The center-surround contrast in terms of intensity, red-green pair and blue-yellow
pair. Column 1: Pre-attentive feature at scale 2. Column 2: Pre-attentive feature at scale
5 In order to illustrate clearly, the images shown in column 2 are linear to the same
size with the corresponding images in column 1. Col Interpolation of the pre-attentive
feature at scale 5 to scale 2. Column 4: Results of center-surround contrast, i.e., the cente

surround difference maps £}(2,5). Row 1: Center-surround contrast in terms of intensity. Row
2: Center-surround contrast in terms of red-green pair. Row 3: Center-surround contrast in
terms of blue-yellow pair.

Normalization

Since the center-surround difference maps represent multiple modalities, the normal-

ization of these difference maps is required before further integration. There are two
objectives of the normalization operator. The first objective is to provide an approxi-
‘mately uniform scale to combine all difference maps. The second objective is to globally
promote the salient items, so that the salient items that appear strongly in only a few
difference maps cannot be masked by noise or by less salient items that present in a

larger number of difference maps [38]. Thus, this normalization operator consists of two
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successive steps:

1. Normalizing the values of each d difference map into a fixed range

[0.255]. This is to satisfy the first objective by eliminating the influences of the

modality-dependent amplitude,

2. Computing the average 7 of all local maxima in each difference map and globally
)

multiplying the difference map by (255—77)%. This is to satisfy the second objective

by globally promoting the difference maps that contain a small number of strong
peaks of activity (i.e.,in the case that (255 ~7) is large), while globally suppressing
maps which contain numerous comparable peaks of activity (i.e., in the case that

(255 ~ 77) is small).

Across-scale Addition and Conspicuity Maps

These normalized center-surround difference maps of each pre-attentive feature dimension

bined to yield a conspic of that , which can be ex A
" 1A et
= 5@ @D NELL), (56)
i
i
D D VL), (67)
LA e
Fi,= 5D D Nl 8
A
N(Fo, (), (59
s
L
Fou=5 N(Fpy(le, 1)), (5.10)
DA




where F* denotes a conspicuity map, 6 € {0°,45°,90°,135°}, () is the normalization
operator described above, @) denotes across-scale addition.

The across-scale addition operator @ consists of two operations: 1) interpolation of

each normalized d difference to scale 2 by using the i ion technique

of the Gaussian pyramid as shown in (A.4) in Appendix A, and 2) point-by-point addition.

Conspicuity Map in terms of Contour: It can be seen that the contour feature
is not shown in both contrast and integration components. In fact, the conspicuity map
in terms of the contour feature can be estimated by a combination of the conspicuity
maps in terms of the orientation energy in four prefered directions, based on the fact
that the center-surround differences in terms of the contour feature can be approximately
estimated by combining the center-surround differences in terms of orientation energy in
four preferred directions. Therefore, estimation of the conspicuity map in terms of the

contour feature can be expressed as:

Fi=i NEL) [0}

4 06{0° 45°,90°,135°)
Working Scale: It can be scen that all conspicuity maps are obtained at scale 2 and
the following computation of the bottom-up saliency map also performs at scale 2. Thus,
scale 2 is called working scale in this thess.

Examples of conspicuity maps are shown in Figure 5.2.

Location-based Bottom-up Saliency Map

‘The obtained conspicuity maps in terms of all pre-attentive feature dimensions are finally
combined to yield a location-based bottom-up saliency map. This combination can be

expressed as:

Su = N(

O+ 3N + N + F [ NEL)] + M(F2) + VB, (12)
;
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Figure 5.2: Conspicuity maps. () Original image. (b) Conspicuity map in terms of intensity.
(€) Conspicuity map in terms of red-green pair. (d) Conspicuity map in terms of blue-yellow
pair. (e)-(h) Conspicuity map in terms of local orientation energy in four preferred directions.
(i) Conspicuity map in terms of contou.

where Sy, denotes the location-based bottom-up saliency map.

5.2.4 P ilistic Repr ion of Bottom-up Saliency

Ifonly bottom-up attention is used to guide the focus of attention, the bottom-up saliency
map obtained in (5.12) would be sufficient to guide attentional selection. However, the
integration of top-down attention will lead to a challenging problem, which is how the

bottom-up saliency and top-down biases are combined at a uniform scale. This thesis
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Figure 5.3: Probabilistic location-based bottom-up saliency maps. (a)-(c) Original images.
(d)-(F) Probabilistic location-based bottom-up saliency maps. The maps are normalized to

0.2

models top-down attention as a Bayesian probabilistic procedure, which will be presented

in section 5.3. Thus, a p of the I based bottom-up
saliency is required, so that a probabilistic method, as shown in section 5.4, can be
proposed to combine the bottom-up saliency and top-down biases.

Given the following two assumptions: 1) the selection process guided by the space-
based bottom-up attention is a random event, and 2) the sample space of this random

event is composed of all spatial locations in the image, the salience of a spatial location

can be used to represent the degree of belief that bottom-up attention selects that loca-

tion. Therefore, the probability of a spatial location r; being attended by the bottom-up

attention mechanism can be estimated using probability theory:
Sou(rd)

Pl = S Sl

where pp(r;) denotes the probability of a spatial location r, being attended by the

87



bottom-up attention mechanism, the denominator 32, ¢; Su(ry) is the normalizing con-
stant and T denotes the input image.
Some examples of probabilistic location-based bottom-up saliency maps are shown in

Figure 5.3.

5.3 Top-down Biasing

5.3.1 Background

The top-down biasing module aims to produce the conscious aspect of the proposed cog-
nitive visual perception paradigm by modeling the top-down attention mechanism. The
top-down attention mechanism s a conscious, task-driven way to guide the focus of at-

tention to a task-relevant object. Although modeling the top-down attention mechanism

is still in development, this the that object-based top-down attention is mainly

pos

influenced by two factors: the current task and LTM object representations.

The robotic task addressed by this thesis refers to a specification of the object, on

which an action executes. The object specified by the task is termed as a task-relevant

object in this thesis. In other words, the task-relevant object refers to an object whose
oceurrence is expected by the current task. Based on this definition, a task-relevant
object can be directly or indirectly obtained from the current task. Therefore the factor
of the current task leads to an issue of deducing the task-relevant object from the current
task,

Given the task-relevant object, its LTM representation can be recalled from LTM,
Then this recalled LTM object representation can be used to estimate the possibility
of each item in the current scene belonging to an instance of the task-relevant object.
Therefore the factor of LTM object representations leads to the issue of estimating the
top-down bias given a task-relevant object. This thesis proposes that Duncan’s IC hy-

pothesis [49] can be used for solving this issue. The related aspect of the IC hypothesis

for guiding the estimation of top-down biases can be summarized as follows: by direct-
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ing attention to a conspicuous cue of an object, a competitive advantage over the whole
object is produced. This indicates that the top-down biases can be estimated only using
the conspicuous cue of the task-relevant object. ‘This thesis terms the conspicuous cue of
the task-relevant object as a fask-relevant feature. This thesis further presents that the
task-relevant feature can be deduced from the learned LTM representation of the task-

relevant object. Since task-relevant features are conspicuous and low-level, this proposed

top-down biasing method is effective and fficient
Based on the above discussion, the proposed top-down biasing module consists of four

steps:

Deduction of a task-relevant object from the task.

2. Deduction of task-relevant feature(s) from the task-relevant object: The learned
LTM representation of the task-relevant object is recalled from LTM to deduce one

or a few task-relevant feature(s).

3. Construction of the attentional template(s) in WM using the task-relevant fea-

ture(s).

Estimation of location-based top-down biases: A | based top-down bias map
is estimated by comparing attentional template(s) with corresponding pre-attentive

feature(s).

The following subsections respectively present the deduction of a task-relevant ob-

ject, the structure of LTM object representations, deduction of task-relevant feature(s),

construction of attentional template(s) and estimation of top-down biases.

5.3.2 Robotic Tasks and Task-relevant Objects

‘This thesis proposes that robotic tasks can be grouped into two categories



Type I Tasks

In the first category, the task directly specifies the task-relevant object at a moment, e.g.,
searching for an apple. This category of tasks is called Type I in this thesis.

Type 1T Tasks

In the sccond category, the task does not directly specify the task-relevant object, e.g.,

navigation. However, this thesis proposes that the task-relevant object (.., a landmark)

can also be deduced based on the learned cognitive perception-action mapping. This
category of tasks is called Type 1T in this thesis

Cognitive perception-action mapping related to Type I1 tasks can be briefly discussed
as follows. Cognitive perception-action mapping can be generally defined as an associ-
ation between perception, context and actions. According to the proposed cognitive
visual perception paradigm, the cognitive perception-action mapping can be modeled as

an association between attentional states, context and actions. Consistent with recent

T

arch in the area of cognitive robots (e.5., AMD 113, 114]), this thesis proposes that
actions of a cognitive robot can be categorized into two types. The first type is exter-
nal actions, which guide the operation of effectors. The second type is internal actions,
which mainly includes guidance for attentional selection at the next moment. Thus, the
cognitive mapping related to Type Il tasks is the association between the current atten-
tional state and the next possible attentional state (i.c., attentional prediction). Since
the proposed cognitive visual perception paradigm is object-based, the attentional state
is an instance of the object that is attended at the current moment and the attentional
prediction is an instance of the task-relevant object at the next moment. It can be seen

that a Type II task corresponds to a learned cognitive perception-action mapping

It can be further proposed that the cogitive perception-action mapping used o rep-

resent a Type 11 task can be modeled by using a first-order discrete Markov process
(FDMP). The FDMP can be expressed as p(a;;1]a;), where a, denotes the attentional

state at moment ¢ and .., denotes the attentional state at moment ¢+1 (i.c. attentional
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prediction). This definition means that the probability of each attentional state predic-

tion for the next moment can be estimated given the attentional state at the current
moment. In the proposed object-based cognitive perception paradigm, a set of discrete

attentional states is composed of the LTM object representations based on the fact that

an LTM object representation encodes  couple of instances of that object. Constructing
the cognitive perception-action mapping related to Type II tasks includes two factors:
1) learning of LTM object representations, and 2) learning of the association modeled by
FDMP. Since this thesis only considers the perception mechanism, the learning of LTM
object representations is presented in section 6.4 in Chapter 6, whereas the learning of

association is considered as outside the scope of this thesis.

The conclusion of this subsection is that the task-relevant object can also be deduced

from Type Il tasks.

5.3.3  Structure of Object ions Related to Top-d
Biasing

Once the task-relevant object is obtained from the current task, its LTM object repre-

sentation is then recalled from LTM to deduce the task-relevant feature(s). Although

the construction and learning of LTM object representations are carried out in the post-

attentive perception stage, a brief description of the structure of LTM object repre-

sentations is given in this subsection in order to clearly present the deduction of the

task-relevant feature(s). It is important to note that this chapter only presents the struc-
ture of the LTM object representations related to the top-down biasing module. The
complete structure and learning algorithms of the LTM object representations will be

presented in section 6.4 in Chapter 6.

Dual-coding Structure

The proposed LTM object representation O includes two codings: the global coding Oy

and the local coding Oy. The global coding is built using the contour feature, whereas
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the local coding is built using intensity, color and local orientations.

Each coding includes two descriptors: appearance O° and salience O°. The appear-
ance descriptor represents the appearance value of each feature dimension. The salience

descriptor represents conspicuousness of each feature dimension and it is used to deduce

the task-relevant feature(s) at the beginning of top-down biasing

The proposed dual-coding LTM object representation can be expressed as:

05 O 0, Op 05, O, 05, O,
o= [ O O O O Ohe Ooe Oh Oose ) | (5.14)
o 0, 0, 0, 0, 0 0 O

e Ouse e

where O is the global coding in terms of contour, Oin, Org Obys Ooyes Oopyes O

and O,,,. respectively represent local codings in terms of intensity, red-green pair, blue-
yellow pair and local orientations in four directions.
Statistical Structure

The proposed LTM object representation is built in a statistical form in the sense that it
can statistically encode a couple of instances of that object obtained from different views

and under different conditions.

Statistical Global Appearance Descriptor: In this thesis, the B-Spline technique

[150,151] is employed to represent a contour. In other words, a contour s represented by

using a set of control points along the contour curve. Since a variety of contours could

ent from different views for an object, especially for a -dimensional object, the

be pre

global coding of an object is composed of a set of contours observed from multiple views,

Each entry of this set of contours s termed as a contour instance in this thesis. Therefore

the global appearance descriptor can be expressed as

oy=( oz o - o) (5.19)
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where N, denotes the number of contour instances in the global coding of an object.
The statistical structure of a contour instance in the global appearance descriptor can

be expressed as,

! ol
= (1 o (516)
o an”

s of the spatial position of a control point along

where 2 and i3 denote the mean in terr
the contour instance, o2 and 0% denote the standard deviation (STD) in terms of the
spatial position of a control point, n € {1,2,..., N} is the index of the contour instance
of that object, and N7, denotes the number of control points along the contour instance

indexed by n.

Statistical Local Appearance Descriptors: In the proposed LTM object represen-
tation, the local coding of an object s composed of local parts of that object. Low-order

statistics, including the means and STDs in terms of intensity, red-green pair, blue-yellow

pair and local orientations are used to represent the appearance of each part belonging
to the object. These low-order statistics constitute the statistical local appearance de-

scriptors, which can be expressed as

ol 02 N
int Pt " Hint
Hine M 'v X (5.17)
ol ot e o
ol a2 o
ey Hrg ctt M

o, = ¥ “N . (5.18)
o ot e o
o1 o2 ot
e e

og =" ™ x ) (5.19)
o o e o



(5.20)

where ji* and a® respectively denote the mean and STD of appearance values in terms of
the corresponding feature dimension of a part, N, is the number of parts of that object,

and 0 € {0°,45°,90°,135°}.

Statistical Salience Descriptors: The statistics, including the mean and STD, of

the conspicuity (calculated in (5.6), (5.7), (5.8), (5.9) and (5.11) respectively) in terms

of each feature dimension are used to build the salience descriptors in the proposed LTM
object representation.

The statistical global salience descriptor can be expressed as:

2R e e
' e W 1)
P

where ji2, and o respectively denote the mean and STD of the conspicuity values in

0,

terms of the contour feature over all control points along a contour instance.

The statistical local salience descriptors can be expressed as:

-

s Gy
Mg ey (5.23)

o o e ol
o=t M (520




ol 2 s

y ey .

0, = i i (5.25)
o5} o e ai

where * and o* respectively denote the mean and STD of conspicuity values in terms

of the corresponding local features of a part, and 6 € {0°,45°,90°,135°}.

5.3.4 Task-relevant Feature(s)

Once the task-relevant object is deduced, the salience descriptors in the LTM represen-
tation of that object are firstly recalled from LTM and used to deduce the task-relevant

fi i This deduction is by finding the feature dimension(s)

that have greater conspicuity. Therefore this deduction process can be expressed as:

(et re) = T (5:26)

ag  max  max
B et mngmon) neliheon) T+

or contour instances in the LTM representation

( when f

where N denotes the number of parts

N

ct, whereas N =

of the task-relevant object, i N, when f €

tors

{int, rg,by,00}; 1u* and o respectively denote the mean and STD of salience descri
in the LTM representation of the task-relevant object, frq denotes the fask-relevant
Jeature dimension(s), and n denotes the index of the task-relevant part or the index of
the task-relevant contour instance.

The term .#;* in (5.26) is called fask-relevance in this thesis.

The proposed cognitive perception paradigm first selects only one task-relevant fea-
ture dimension (i.e., the most conspicuous dimension) given the task-relevant object.
If post-attentive perception shows that the result of attentional selection is incorrect,
the proposed paradigm selects more task-relevant feature dimensions (i.c., several top
conspicuous dimensions) to guide attentional selection again.

The Type T task can also specify the task-relevant feature directly. For instance, if

the task is to search for a vertically aligned object in the present scene, then orientation
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in 90° will be the task-relevant feature. If the task is to search for a moving object, then
motion will be the task-relevant feature.

It can be seen that nine feature dimensions can be used as candidates of task-relevant
feature(s) in the proposed perception paradigm: they are contour, intensity, red-green

pair, blue-yellow pair, orientation in 0°, orientation in 45°, orientation in 90°, orientation

in 135° and motion.

There are two advantages of the proposed method for deducing the task-relevant
feature(s). The first advantage is effectiveness due to the conspicuousness of the task-
relevant feature(s). The second advantage is efficiency since the task-relevant feature(s)

are low-level

5.3.5 Attentional Template(s)

Once the task-relevant feature dimension(s) are deduced, the appearance descriptors in

terms of the task-rel feature in the LTM of the task-

relevant object are recalled from LTM. The appearance descriptors are thereby called

task-relevant feature(s). The task-relevant feature in each dimension is used to form
an attentional template [152) in WM in order to estimate the top-down bias in that
dimension. Note that F* is used to denote the attentional template in this thesis.

If /.t is contour, the global appearance descriptor of the task-relevant contour in-
stance, as shown in (5.16), is recalled from LTM to build an attentional template FY, in
WM

B

o« =

By Ry ) = (05 (27)

It can be further written as:

et e\ T
(v ry)= Ll el W T SR A
o By EY EEANE Lot -
(528)

If f,. is intensity, red-green pair or blue-yellow pair, the local appearance descriptor
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of the task-relevant part in terms of the ing feature dimension in the LTM
object representation, as shown in (5.17), (5.18) and (5.19) respectively, is recalled from
LTM to build an attentional template F},,, F;, or Fj, in WM:

ntr

= (£ g )= (e ot ), (529)
= (ry ry )= (g o). (530)
B, =(ry Ry )= (s o). (5:31)

If frer is the local orientation in a direction 6, it indicates that the task-relevant part

should be present in that direction in the current scene. Thus an attentional template

FYis built in WM by directly using . It can be expr

F

(5.32)
1If the motion is specified as fr, an attentional template F, is built in WM and is
set to 10

1 if motion is task-relevant

(5.33)
0 otherwise

It can be seen that the attentional templates in terms of most feature dimensions are
low-order statistics (i.c., the mean and STD) obtained from the LTM object represen-
tation that is developed statistically by encoding a couple of training instances of that

object at previous moments.



5.3.6  Estimation of Location-based Top-down Biases

Estimation of location-based top-down biases is a comparison procedure between the
attentional template and corresponding pre-attentive feature extracted from the input at

the working scale.

‘The Framework of Probabilistic Top-Down Biasing

Based on the fact that most of the attentional templates are in a statistical form, Bayesian
inference is therefore the best way to estimate the location-based top-down bias, which
represents the probability of a spatial location being an instance of the task-relevant
object. The advantage of this probabilistic approach is the robustness to perceptual
uncertainties.

The proposed probabilistic top-down biasing approach can be generally expressed by
using Bayes' theorem:

PulFlr,) X pa(r) .
T e PalFTee) % pulee)’ b4

PralrF"

where pya(r;) denotes the prior probability of a location r; being attended by the top-
down attention mechanism, py(F[r.) denotes the observation likelihood, pia(rF') is
the posterior probability of the location r, being attended by the top-down attention
mechanism, and the denominator 3=, ¢y pra(F'[r¢) % pua(re) is the normalizing factor.

Since the prior probability p(r,) can be seen as a prediction before the attentional

template s formed, py(r;) is assumed to be a uniform distribution. Alternatively, the
posterior distribution at the last moment can be regarded as the prior distribution at the
current moment if the attentional deployment is modeled as a dynamical Markov process.
However, this thesis only focuses on the research of attentional deployment without the
influences caused in the temporal context. Based on the assumption that each location
has the same probability to be attended by the top-down attention mechanism before

observation, the prior py(r;) is therefore modeled by using a uniform distribution in this
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thesis.

Given the assumption about the prior distribution, top-down biasing can be simplified
into the problem of estimating the observation likelihood pya(F'|r;). The following will
present the detailed implementation of estimating py(F'|r,) for each type of task-relevant

feature,

Biasing in terms of Contour

The contour is a type of global feature. In other words, each proto-object R, obtained
from the pre-attentive segmentation is the basic unit of top-down biasing in terms of

contour. Therefore, the observation likelihoods in terms of contour at locations within

the same proto-object are identical, i.c., pa(Fly|r:) = pua(F4|R,), if r; € R,.

If the task-relevant object includes multiple parts (the number of parts is N,), N,
neighbor proto-objects of a working proto-object are combined as a unified temporary
grouping to evaluate the bias of that working proto-object. In the following paragraphs,
the term proto-object is still used o represent a single proto-object or the unified tem-
porary grouping.

Due to the non-rigidity of contours, the accurate alignment of the contour specified

fficult to achieve. Thus, a set of

by the attentional template to a proto-object is
predicted contours estimated from the attentional template is required first for each
proto-object. ‘The result is that the estimation of pia(F4|R,) can be modeled as another
set of Bayesian inference processes in the sense that the posterior probability obtained
based on a predicted contour can be used as a candidate estimation of pi(FY|R,).
Finally, maximum a posteriori (MAP) estimation is used to select one candidate as the
final estimation of pra(F', [R,). That is, the maximal one among all candidates is selected
as the observation likelihood of that proto-object.

Five steps are included in the estimation of pia(FY|R,)




Step 1: In this thesis, a contour curve is represented by extending the active contour

technique and B-Spline technique (150, 151]. Thus, a contour curve can be defined as:
C=[(WX+Q), (5.35)

where C denotes a contour curve, f, and W represent B-Spline basis functions and the
shape factor respectively, both of which are fixed given Q, and the definitions of which
will be given in (5.40) and (5.41) respectively, X is the shape state vector, and Qg is the

control point vector that can be expressed as:

o (q;) . ( ) .
Qi Yotz P
where (21, 41), (22, 42),--.(zp, yp) are coordinates of control points along the contour C,
and P is the number of control points.

Control point vector Qq characterizes the object’s basic shape and thereby it can
be used for shape discrimination between the task-specific object and distractors. The
shape state vector X represents the spatial transformation of a contour instance C with
respect to Qq. Using both Q and X, the shape of a rigid object o a simple non-rigid
object can be described. In other words, a contour can be determined by the state vector
X and the control point vector Q,

It can be seen that the attentional template is used as the control point vector, ie.,
Qy = F'Y, when estimating the top-down bias in terms of contour. The shape state
vector X includes six elements as shown in (5.37). Translation is determined by the first
two entries 2, and 3, scaling is mainly controlled by the middle two entries x5 and z,

and rotation is controlled by all the last four entries from z3 to

"
X=(z 2 23 20 25 2) (537)




Thus, the first step is to predict a set of prior {XR, } for each proto-object,
where m € {1,2,...., Nc} and N is the number of prior shape states. According to our
experiments, N is empirically set to 200 to achieve a good balance between satisfactory
performance and computational cost.

At first, a deterministic prediction state X, is calculated based on the attentional
template and properties of the proto-object Ry. The objective of calculating Xp, is to
approximately align the contour represented by the attentional template to the proto-

object R, Thus X, can be obtained using the homogeneous transformation:

5
R EE)

o =ch,—

TH=ch, -4 (5.38)
2y =7y = /A, [Aqcosly — |

= =y = /A, [Aasinty

where (cj, . ch,) are centroid coordinates of the gy, proto-object Ry, (c§, c%) are centroid
coordinates of the contour represented by the attentional template FiY', Ag, is the area
of the gy, proto-object R,, A is the area of the closed contour represented by Fif', and
6, is the angular difference between the principal axis g, of the proto-object and the
principal axis 6 of the closed contour represented by Fi'.

Then the prior shape states are obtained by integrating random factors:

R, + Kow™, (5.39)

where K, is a 6 x 6 diagonal coefficient matrix and w™ is a 6 x 1 random vector whose

entries are normally distributed (the mean is 0 and the STD is 1 for each entry).
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Step 2: The second step is to caleulate predicted contour curves based on the prior

shape states. Equation (5.35) can be rewritten as:

c:(a‘” o )(wxu-*;) (5.40)
0 B

where C = (z(z),y(z))" is the contour curve parameterized by a real variable z, B(z) is a

1% P vector (i.e., the B-Spline basis function vector [150]) whose entries are polynomials

in 2, and W is the shape factor calculated as:

10 FM 0 0 B
w= . (5.41)
01 0 FIFM 0

Thus, a predicted contour curve CR, can be obtained from a prior shape state Xp,
by using (5.40). The number of predicted contour curves is also N for each proto-object.
It is important to note that a predicted contour curve CR, can be seen as one of the
candidate representations of the attentional template F(y" for the proto-object Ry

Figure 5.4(b) shows an example of the predicted contour curves for a proto-object.

According to (5.39), the prior probability of a predicted contour curve Cg, can be

calculated as:

pu(CR,) = exp{*%tx’ﬂ, = Xg,)"(50) 7 (XR, - Xg, ), (5.42)

where X7 is the covariance matrix of w™ in (5.39).

Step 8: The third step is to estimate the observation likelihood pa(Ry|CR,) for each
predicted contour curve CR, . For each predicted contour curve, the model draws several
measurement lines, as shown in Figure 5.4(c), which are normal to the predicted contour
curve and are spaced equally along the curve. As shown in Figure 5.4(d), the Buclidean

distance from the intersection of a measurement line with the predicted curve to the




starting point of the measurement line is called innovation and it is written as m,,. The
Euclidean distance from a contour feature point (obtained from actual contour Fe(Luk)

that is extracted using (4.5)) located on the measurement line to the starting point of

the measurement line is called an observation and it is written as m.. Assuming that

observations m, are normally distributed centered on m, along the measurement line,

the observation likelihood of a single measurement line is estimated as:

(5.43)

- 1 m, — my|?
PulByfma, CR,) = e me
e 7

where N,y is the number of contour feature points along one measurement line and g,

is the predefined STD of observations.

Assuming that measurement lines along one predicted curve are independent, the

observation likelihood of a predicted contour curve is calculated as:

Pl(Ry|CR,) = [T pra(Rylma, CR,), (5.44)

where Ny is the number of measurement lines along one predicted curve.

Step 4: The fourth step is to estimate the posterior probability pu(Cg, |R,) of each

predicted contour CR, . It is calculated by using Bayes’ theorem:

PRyl CR, )Pua( CR, )

T T T 5.45
T Ry CR )Pl (=

(R, [R,)

Step 5: The fifth step is to obtain the estimation of pu(FY|Ry) by applying MAP

estimation to all predicted contours {CF,}. It can be expressed as

PulFLIR) = pu(CRi R), (5.46)
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Figure 5.4: Probabilistic top-down biasing techniques in terms of the contour feature. (a)
Control points along a contour. (b) Predicted contour for a proto-object. (c) Measure-
‘ment lines along one predicted contour. (d) Innovation and observation along one measurement

[

where

myet =g max  pu(CR[Ry). (5.47)
me e} 4

Location-based Top-down Bias in terms of Contour: Finally, a location-based
top-down bias map in terms of contour is estimated by using (5.34). According to (5.34),
the posterior probability of the location r; being attended by top-down attention in terms
of contour can be estimated as:

PulFLlr)  pur) o

B) = pulelFe) = - Blee) % palee)’

where B, denotes the location-based top-down bias in terms of contour,




Biases in terms of Other Feature Dimensions

The observation likelihood pyg(F*|r,) in terms of intensity, red-green pair and blue-yellow

pair can be estimated respectively as:

L Fun(ri, but) = Fi

B L (549)
Frg (i, k) = Fi'l*
R ] (550)
5
L) ~ B
PulFly ) = np(*%% (551)
%

The observation likelihood pyg(F'|r;) in terms of local orientations can be estimated

Foy(ris buk)/255 if = F}

Pra(Fhylri) = ! (5.52)
otherwise
where 0 € {07, 457, 90°, 135°}.
The observation likelihood pa(F'|r;) in terms of motion can be estimated as;
. Foa(ris k) /25518 Flyy = 1
Pud(Fry,[ri) = (5.53)
0 i FL, =0

Finally, a location-based top-down bias map in terms of the corresponding feature
dimension can be obtained by using (5.34). According to (5.34), the posterior probability
of the location r; being attended by top-down attention in terms of the corresponding
feature can be estimated respectively as:

PualFlalr) X pua(ri) (5.54)

Bon(r) = paleiFl
o(r) = pralei|Fyy) et Pua(F
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Pra(Fglri) X pua(ri)

Bry(ri) = pralri|Fy T eaPaFLy ) P’ (5.55)
Buy(r) = pu(ri[F},) % (536)
Buy(r) = pulri|ES,) % (557)
Buulr) = puteFl,) = < LEoulr) X ) (559)

Deger Pl Frulri) X pra(r
where By, By, By, Boyy By denote the location-based top-down bias in terms of

intensity, red-green pair, blue-y

llow pair, orientation in 0, and motion respectively.

5.3.7 Co ination of Multi-di i Top-d Biases

Since it is possible that multiple task-relevant feature dimensions are used for guiding
top-down biasing at a moment, it is required to combine the estimated top-down biases
in terms of all task-relovant dimensions. Assuming that top-down biasing in terms of

all task-relevant feature dimen

jons are independent, the observation probability of all

task-relevant features can be estimated as:

pal{FYr) = ] puFyle), (5.59)
€t}

where pig({F"}|r;) denotes the observation likelihood of a location r, being attended by
top-down attention in terms of all task-relevant feature dimensions, {F} denotes the
set of attentional templates in terms of all task-relevant feature dimensions, and {f,.(}
denotes the set of task-relevant feature dimensions

Finally the total top-down biases can be obtained by using (5.34). According to

). the posterior probability of the location r, being attended by top-down attention
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in terms of all task-relevant feature dimensions can be estimated as:

Pal{F}ir) % ) o0)

Buat(ri) = pu(rd {F'}) TPl (FT ) % paee)”

where By, denotes the location-based total top-down bias.

5.3.8 Advantages of the Proposed Top-down Biasing Method

Existing methods for top-down attention can be mainly grouped into two categorics. The
first category s weight-based, such as Navalpakkam's model [39). This method evaluates
a weight for cach pre-attentive feature dimension based on the learned representation
of the task-relevant object. These weights are used to produce the top-down attention
effects by weighting the center-surround difference maps in terms of corresponding pre-
attentive feature dimensions during the bottom-up attention process. However, this
method might be ineffective in the case that the environment contains distractors which
share the relevance with the target in terms of some features, as shown in Figure 2.6

in Chapter 2. That is, the task-relevant object and distractors are possibly both biased

by using the similar weights in these shared feature dimensions. The second category

is high-level representation based, such as the iconic representation (153, 154]. This
method estimates the top-down biases by using a comparison procedure between the
entire input image and the representation of the task-relevant object in terms of high-
level features. However, one problem of this method is the expensive computational cost
since the representation of the task-dependent object is high-level. The other problem
of this method is the inflexibility. That is, different high-level representations have to be
designed by programmers for & variety of tasks.

Compared with these existing methods, the proposed top-down biasing method has
four advantages. The first advantage i effectiveness. It is because the top-down biases
are estimated by using both the appearance and salience descriptors of the target. On

the one hand, the task-relevant feature(s) are statistically conspicuous compared with a
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variety of background distractors presented in the learning process. On the other hand,
the statistical appearance descriptors (i, attentional template(s)) in terms of the task-
relevant feature dimension(s) are used to estimate the top-down biases. As a result, this
proposed method can improve the effectiveness in the sense that the task-relevant object
can be ffectively discriminated from distractors. For example, this proposed top-down
biasing method can cope with the case as shown in Figure 2.6 in Chapter 2, in which
Navalpakkam’s model might fail

The second advantage is efficiency. The computational complexity of Navalpakkam's
Model [39], the iconic representation based method [153,154] and this proposed method
can be approximated as O(din), O(dyn) and O(n) respectively, where d; denotes the
dimension number of pre-attentive features, dy denotes the dimension number of a high-
level iconic representation of the task-relevant object, and n denotes the number of pixels
in an image. Thus, it is obvious that the computation of this proposed method is much
cheaper since only one task-relevant feature is used.

The third advantage i The task-relevant feature(s) can b

deduced from the learned LTM representation of the task-relevant object such that the
requirement of redesigning the representation of the task-relevant object for a variety of
tasks is eliminated.

The fourth advantage s robustness. The proposed top-down biasing method gives a
bias toward the task-relevant object through a probabilistic procedure by using Bayes'
rule and probabilistic estimation techniques. Therefore, the proposed biasing method
is robust to work with noise, transformation, occlusion and a variety of viewpoints and
illuminative effects. This advantage will be shown in the experimental results in the
application of detecting task-relevant objects in Chapter 7 and in the application of

target tracking in Chapter 8
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5.4 Combination of Bottom-up Saliency and Top-
down Biases

In general, bottom-up attention and top-down attention work together to decide which
item s attended. This thesis proposes that the combination of bottom-up saliency and
top-down biases is dependent on two successive factors: the conscious factor and the
unconscious factor. The conscious factor is the first step and it consciously weights
the bottom-up saliency and top-down biases respectively according to the current task,
context and learned knowledge. It is called a conscious weighting step in this thesis. The

us factor is the second step and it automatically combines the weighted bottom-

uncons
up saliency and weighted top-down biases. It is called an unconscious combination step
in this thesis.

‘This thesis proposes a gating mechanism in the conscious weighting step. There arc
only two cases in any task: 1) only one attention mechanism is used (i.., bottom-up
attention or top-down attention); and 2) both attention mechanisms are simultaneously
used. Therefore, only two logic values are used for conscious weighting: 0 and 1. If

one attention mechanism is specified by the current task, 1 s set as the weight of that

mechanism, i.e., wy, = 1 or wy = 1. In other words, that attention mechanism is enabled
to enter the next unconscious combination step. Otherwise, 0 is set for that mechanism,

i.e., wp, = 0 or wyy = 0. In other words, that attention mechanism is inhibited to enter

the next unconscious combination step.

The unconscious combination

tep s difficult due to the multi-modality of bottom-up
saliency and top-down biases. However, this thesis proposes a probabilistic method to
combine these two modalities at a unified scale based on the fact that the estimated
bottom-up saliency and top-down biases are both in probabilistic form. Mathemati-
cally, assuming that bottom-up attention and top-down attention are two random events
that are independent, the probability of an item being attended can be modeled as the

probability of occurrence of either of these two events on that item.
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Thaus, the total combination process of integrating the conscious and unconscious fac-
tors can be expressed in (5.61), which achieves a probabilistic location-based attentional

activation map Pan-

Pattn(13) = Pou(r) 4 pea(rl {F')) = () X pra(ri {F'}) if w, = 1 and weg = 1

Pan(¥1) = pou(r:) if wp = 1 and wig = 0

0 and wy =1
(5.61)

‘The probabilistic location-based attentional activation pas (r;) represents the proba-

Paren(r) = pua(ril {F'}) if wp,

bility of the location r; being attended.

5.5 Estimation of Proto-Object based Attentional Ac-
tivation

Proto-object based attentional activation represents the probability of a proto-object
being attended. It can be estimated in a probabilistic way by a combination of the
probability of pixels in a proto-object. Mathematically, that a proto-object is attended

can be seen as a random event, denoted as ex,; and that a location in a proto-object is

attended can also be scen as a random event, denoted as e, with i € {1,2, .., N,} where
N, is the number of pixels in the proto-object R,,. According to Duncan’s IC hypothesis
[49),i.e., a competitive advantage over the whole object s produced by directing attention

to a spatial location in that object, the probability of e, can be calculated as:
1 ae
pler,) = 3plen Ven Vo Very,), (562)

where V denotes “logic or” operator, and

is included in order to eliminate the influence
of the proto-object’s size.

Based on the space-based attention theory, only one location can be attended at
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moment. It is thereby reasonable to assume that all events e,, are mutually exclusive.
The probability of a proto-object being attended, denoted as pyin(R,), can be calculated
by extending (5.62)
PanlRy) = 5 3 P (5:63)
=

The proto-object based attentional activation map is composed of the probability
Paun(Ry) of cach proto-object. The focus of attention is directed to the proto-object
with maximal proto-object based attentional activation. The dynamical shift of the focus
of attention is produced by allowing the next most active proto-object to subsequently
become the winner.

‘This estimation method for proto-object based attentional activation is also consistent,
with Sun’s model [42]. The attentional activation of a proto-object is modeled as a com-
bination of all activation contributions coming from the pixels within that proto-object
in the sense that those pixels work together to compete with their common competitors
and cooperate with cach other

It can be scen that a location-based attentional activation map (i.e., (5.61)) and
a proto-object based attentional activation map (ie. (5.63)) are both estimated. It
indicates that space-based attention and object-based attention are modeled into a unified

framework in this proposed cognitive perception paradigm.

5.6 Conclusion

‘This chapter has presented the attentional selection stage in the proposed cognitive visual

perception paradigm. Four modules have been presented in the attentional selection
stage: bottom-up competition, top-down biasing, combination of bottom-up salicncy

and top-down biases, and estimation of proto-object based attentional activation. The

bottom-up competition module models the bottom-up attention mechanism and yields
a probabilistic location-based bottom-up saliency map. The top-down biasing module

models the top-down attention mechanism and yields a probabilistic location-based top-
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down bias map. The combination module combines the saliency map and bias map
to yield a probabilistic location-based attentional activation map. Finally a proto-object
based attentional activation map is achieved and it is sed to guide the focus of attention.

There are several advantages in the proposed attentional selection stage.

The most important advantage of the proposed attentional selection stage is the

novel top-down biasing method proposed based on Duncan’s IC hypothesis [49].

This method uses one or a few conspicuous low-level task-relevant feature(s) of the

include effectivencss, efficiency, adaptability and robustness.

©

task-relevant object to guide top-down attention. The advantages of this method
. A bottom-up competition method is proposed by extending Itti's bottom-up atten- ‘
tion model [38]. There are two advantages in this new method: 1) Contour and
motion features are included in the bottom-up competition such that conspicuous- ‘
nness in terms of contour and motion can be achived; 2) A probabilistic bottom-up
saliency map is estimated, with the result that combination of bottom-up saliency

and top-down biases can be performed at a unified probabilistic scale.

3

. A method is proposed for combining bottom-up saliency and top-down biases by

integrating a conscious gating factor and an unconscious combination factor.

. A probabilistic method is proposed to estimate the proto-object based attentional

activation.
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Chapter 6

Post-attentive Perception

6.1 Introduction

Once a proto-object is selected to be attended, it is sent into the post-attentive perception

Although the post-attentive perception stage

stage for high-level perceptual analy
could involve a variety of processing according to the tasks, this thesis asserts that the
‘main objective of the post-attentive perception stage is to interpret the attended object in

more detail. Detailed i

pterpretation aims to produce an appropriate action at the current

moment, to correctly update the corresponding LTM object representation at the current

moment and to consciously guide the top-down attention at the next moment

Four functional modules are included in the post-attentive perception stage. The first

module is perceptual completion processing. An object is always composed of several

parts. According to Duncan’s 1C hypothesis [49], other parts of an object presented in
the current scene are also attended once one part (i.c., the attended proto-object) of that
object is sclected by attention. This indicates that perceptual completion processing is
required to perceive the complete region of the attended object post-attentively. This

thesis uses the term attended object to represent one or all of the proto-objects in the

complete region being attended

The second module s the extraction of post-attentive features. Post-attentive features




are a type of high-level features estimated based on the pre-attentive features in the

attended object. In order to interpret the attended object in more detail, these extracted
post-attentive features are used to build a high-level representation of the attended object
in WM. This high-level representation is termed as WA object representation in this
thesis, in order to distinguish it from the LTM object representation that is the learned
object representation stored in LTM.

The third module s object recognition. The WM representation of the attended
object is used for recognizing it. The object recognition module functions as a decision
unit that determines to which LTM object representation and/or to which instance of
that representation the attended object belongs. This module is used in three procedures,
including perceptual completion processing, unsupervised learning of the attended object
and action selection. It is important to note that the term object used in this chapter
can represent cither an entire object or a proto-object.

The fourth module is the development of LTM object representations. The term
development. indicates two types of operations. The first operation is constructing a

icture of LTM object representations. The second operation is dynamically learning

the corresponding LTM object representation given the attended object at each moment.
The corresponding LTM object representation can be retrieved using the object recog-
nition module. The WM representation of the attended object can be regarded as a

tri

g sample for learning. As a result, the learned LTM object representation can
incorporate all instances of that object during the lifelong cognitive development process
of the robots. The developed LTM object representations can be used for top-down bi-

ing, perceptual completion processing, object recognition and action selection at the

next moments.

These four modules indicate that all the work in the post-attentive perception stage
is centered around the attended object so that the attended object can be completely
perceived post-attentively.

In fact, these four modules are interactive during the post-attentive perception stage.
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Extract global post-attentive
features in{R.. |

Learn the maiched LTM
object representation O

Recall the matched LTM
object representation O

Recognize R

Have all neighbors
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R, belongs to the region of the
attended object R,. |

Recognize R, 10
determine if R, is
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Extract local post-atientive
Teatures in R,

Extract local post-aientive
features inR,

1

)

The attended proto-objeet R

A neighbor proto-object R, of the
autended proto-object R

Figure G.1: The flowchart of the
perceptual completion processiny

Perceptual Completion Processing’

post-attentive perception stage. Four modules, including
traction of post-attentive features, object recognition and

development of LTM object representations, are interactive in the post-attentive stage.

In particular, extraction of post-attentive features and recognition of attended proto-

objects are both performed d

g the procedure of perceptual completion processing

The flow chart of the post-attentive perception can be illustrated in Figure 6.1. The

following sections will give the detailed explanation of this flow chart.

Although post-attentive perception can perform at any spatial scale, the proposed

perception paradigm asserts that

the working scale Ly is more suitable for post-attentive
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perception. It is due to two facts. The first fact is that attentional selection performs at

the working scale and the second fact is that some results of post-attentive perception

at the current moment are then used in the attentional selection at the next moments
“This chapter is organized as follows. Section 6.2 presents the perceptual completion

processing. Section 6.3 presents of p ive features. bj

recognition algorithms are based on LTM object representations, section 6.4 presents the

development of LTM object representations and then section 6.5 presents the object

6.2 Per C ion Pr i

The module of perceptual completion processing works around the attended proto-object,
denoted as Ry, to achieve the complete object region. It consists of two steps.

‘The first step is recognition of the attended proto-object. This step explores LTM
object representations in order to determine to which LTM object representation the
attended proto-object belongs. The post-attentive features in the attended proto-object
are used for recognition. The extraction of post-attentive features will be presented in
section 6.3, The recognition algorithm will be presented in section 6.5. After recognition,
the matched LTM object representation, denoted as Ogy, is recalled from LTM for the
following completion processing. The routine of this step is shown in the lower left side
of Figure 6.1.

The second step is completion processing. The purpose of this step is to determ

which neighbor proto-objects around R belong to the compete region of the attended

object based on Oy The routine of this step is given as follows.
1. 1f the local coding of O,y includes multiple parts, several candidate proto-objects,
which are spatially close to R;, are selected from the current scene. They are
termed as neighbors and denoted as a set {Ri}
2. The local post-attentive features are extracted in one neighbor Ry.
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‘The neighbor Ry is recognized using the local post-attentive features of the neighbor
and the matched LTM object representation Oy, If the neighbor is recognized
as a part of O, it will be labeled as a part of the attended object. Otherwise, it

will be eliminated.
4. Continue item 2 and item 3 iteratively until all neighbors have been checked.

These labeled proto-objects constitute the complete region of the attended object,

which is denoted as a set {Ras ) in the following text

6.3 Extraction of Post-attentive Features

6.3.1 Definition of Post-attentive Features

Post-attentive Jeatures can be defined as a type of distinct high-level features that has
the capability to effectively represent the attended object in the cognitive perception
process. They are denoted as F.

Although a variety of methods have been proposed to extract high-level features for
distinct tasks, such as SIFT feature [7) for object recognition, post-attentive features
should be estimated using a distinct form in order to satisfy the special requirement of
cognitive visual perception. The function of post-attentive features can be presented as
follows. The extracted post-attentive features are first used to form a WM representation
of the attended object. The WM representation is then used to recognize the attended
object and train the corresponding LTM object representation. Finally, the learned LTM
object representation is used to guide action selection at the current moment and it is
also used to guide top-down biasing at the next moment. Therefore, this thesis proposes
two rules for extracting post-attentive features.

The first rule is that post-attentive features are estimated by using statistics in terms
of pre-attentive feature dimensions within the attended object. The use of statistics is

based on the fact that the perceived data can be reduced to more manageable amounts
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by using the statistical structure in the data to recode the information it contains [155].
This indicates that the WM representation of an object can be estimated by using the

statist

ics of the contributions coming from the pixels in that object. The advantage of

keeping the same types of dons with ive features is
guide top-down biasing for the next moment
‘The second rule is that post-attentive features should be estimated not only using the

appearance values but also using the saliency values that have been obtained from the

bottom-up competition module. Since the saliency values represent the conspicuousness
of an object compared with other objects in terms of a feature dimension, the inclusion
of them is helpful to guide top-down biasing at the next moment.

In order to satisfy these two rules, the post-attentive features are estimated based
on two facts. The first fact is that pre-attentive features can be mainly grouped into
two categories. The first category is the global feature, including the contour Fy. The
second category is the local features, including intensity, red-green pair, blue-yellow pair
and orientation energy. The second fact is that the top-down biasing module requires
both appearance and salience values of the task-relevant object for estimating biases
Therefore, the post-attentive features F consist of global features Fy, and local features

.. Each F also consists of appearance component F” and salience component F'.

6.3.2  Local Post-attentive Features
Structure of Local Post-attentive Features

Local post-attentive features Fy, can be defined as a type of high-level representations

of all local parts of an attended object. Each proto-object, denoted as Ri™, in the
complete region being attended (i.c., RY"" € {Ry}) is thereby the unit for estimating
local post-attentive features

Correspondingly, local post-attentive features can be estimated as a set, each entry of

which represents the statistical properties in terms of appearance and salience of a R{""
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Thus, the set of local post-attentive features can be expressed as:

B} = (Pl ) mgrocnn) o)

Each entry of the includes the app

and salience component FJ,(R¢"), as shown in the following
F tty se 2 7
FuRg™) = (LR FLR2) ) ©2)

Since local features include intensity, red-green pair, blue-yellow pair and local orien-
tations, the appearance component and salience component of an entry can be expressed

respectively as:

B = (B EGRE) ELRy) ERg)) . (03)

Py
2y (R5)
Fi (R
Fy . (Rg"™) (6.4)
F.,A,,m"“w
(R“”")
(®"™)

As shown in the module of perceptual completion processing (i.., section 6.2), each
entry Fio(RY") is estimated during the corresponding loop in the second step of percep-
tual completion processing. Estimation of appearance components and salience compo-

nents is given in the following subsections.
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Appearance Components in terms of Intensity and Colors

The appearance components in terms of intensity, red-green pair and blue-yellow pair

arc estimated by using two types of statistical measures. One is low-order statistica

‘measures, including the mean of a RS in terms of the corresponding feature dimension.

The other is high-order statistical measures using histograms, i.c., the histogram of a
RS in terms of corresponding feature dimension. The low-order statistical measures
arc used as types of low-level appearance representations of a RY"". Since these low-level
representations have low computational cost, they are used as task-relevant features in the
attentional selection stage to guide top-down biasing. The high-order statistical measures
are used as types of high-level appearance representations of a R{™". Since these high-
level representations have high computational cost, they are used in the post-attentive

perception stage for precise analysis, such as object recognition and development of LTM

object Thus, the app in terms of intensity, red-green

pair and blue-yellow can be expressed respectively as:

By = (g Hgg) ©5)
F e = (g HY )' , (6.6)
Eme = (s m ) ©)

where /i denotes the appearance mean in terms of a feature dimension of a RJ"", H*/
denotes the appearance histogram in terms of a feature dimension of the Ry"

The histograms with fixed bin size are used to estimate HZJ, Yy and Hyy. The
intensity histogram HZ has 10 bins. The red-green histogram HY; and blue-yellow

histogram H{ have 20 bins respectively. The procedure for calculating 3, HYy and

H{;/ can be expressed as follows. For each feature dimension f € {int, rg, by}, each pixel
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r, in RY" is accumulated into the corresponding bin in the histogram of that feature
dimension f according to its pre-attentive feature value Fy(r;,Lus).
It is important to note that the above settings about the bin sizes of Hiyj, Hyy and

ion of

Hy are obtained empirically. Furthermore, our experiments show that the var

the current settings can also work.

Appearance Component in terms of Local Orientations
As shown in section 5.3.5 in Chapter 5, the attentional template s directly built by using
the orientation direction when the local orientation is selected as the task-relevant feature
during the top-down biasing procedure. Thus, only high-order statistical measures are

tations.

used to estimate the appearance component in terms of local o

In order to build a rotation-invariant LTM object representation, i.c., the represen-

tation is robust to the object’s rotation, the appearance component in terms of local
orientations of a RJ*" is estimated with respect to the principal axis of R§*". Calcula-

tion of the principal axis of a proto-object has been given in (4.25) in Chapter 4.

Pizels with Available Orientation: An issue about local orientations should be

discussed first. It is obvious that the orientation of a pixel is unavailable when that pixel

does not have  large change rate of intensity, i.c. when the orientation energy is small

at that pixel. Therefore, only the pixels whose orientation can be obtained are used to
build the appearance component. These pixels are termed as available pizels. The set of

these pixels in a RS can be obtained by using (6.8):

ri€{r} if Fa(ri,bu) > 7o and r; € R 68

i @ {r)} otherwise

where {r]} denotes the set of available pixels in a R§"", and 7, denotes the threshold used

to determine if the orientation energy at a pixel is large enough. The pre-attentive feature
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Fu(ry, L) is used here based on the fact that it can represent the maximal orientation

energy among all orientations at a pixel r, at the working scale L, which can be seen

clearly in (4.5) in Chapter 4.

Relative Orientation: Given the principal axis of a R"", the relative orientation of
an available pixel £} with respect to the principal axis of R§“" can be estimated. It is
termed as relative orientation in this thesis. Since pre-attentive segmentation performs
at the working scale, the relative orientation feature is also estimated at the working
scale,

‘The calculation procedure of the relative orientation consists of two steps. The first
step is to calculate the absolute orientation of each available pixel in a R§"" at the
working scale. It is implemented based on the fact that the a pixel has the maximal
its absolute orientation and it can be expressed as:

tation energy i

Fuo(ry) = arg  Fon el k), (6.9)

max
06(0°,48°,90° 135

where Fy,(r]) denotes the absolute orientation of an available pixel r) in R{“" at the
working scale.
The second step is to caleulate the relative orientation of each available pixel in a

R{ at the working scale. It can be expressed as:

(6.10)

FLtd) = Fao(td) — Opg

where gy represents the principal axis of R3“".
Since only four preferred orientations are used in the proposed perception paradigm,
the obtained relative orientation F,(r3) is then categorized into a direction of {0°,45°,

90°,135°}, achieving the final relative orientation, denoted as Fo(r}).
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Appearance Histogram in terms of Local Orientations: A histogram, denoted

as HYJ, s used to represent terms of local This

histogram has 4 bins and each bin corresponds to an orientation 6 € {0°,45°,90°,135°}.

The estimation procedure of HZ can be expressed as follows. Each available pixel r}
in & RY"" is accumulated into the corresponding bin in the histogram of local orientations
according to its relative orientation Fyo(r}).

Finally, the appearance component in terms of local orientations can be expressed as:
F(R;") = HyY. (6.11)

Salience Components

Since saliency values represent the conspicuousness of a proto-object compared with
other objects, the salience components of local post-attentive features can be estimated
using the low-order statistical measure, i.., the mean of conspicuity of the attended

proto-object. They can be expressed as:

F (R

Figes (6.12)

(6.13)
(6.14)
Fo (R = i3}, (6.15)

where /"4 denotes the mean of conspicuity in terms of a feature dimension in a R{"",
the conspicuity values have been obtained respectively using (5.6), (5.7), (5.8) and (5.9)

in Chapter 5, and 6 € {0°,45°,90°, 135°},
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6.3.3 Global Post-attentive Feature

As shown in Figure 6.1, the global post-attentive feature is estimated after the complete

region of the attended object, i.¢., {Rqun}, is obtained. The contour is used as the global

feature. The pre-attentive feature in terms of contour, i.c.,Fy, is obtained from orienta-
tion energy, as shown in (4.5). However, Fy; does not provide a concrete representation
of a contour. At present, various representations of a contour have been proposed, such
as (156, in which a set of points along a contour are extracted by satisfying the condi-
tion that any two neighbor points have a fixed distance. Choosing a representation of
the contour used for the global post-attentive feature is dependent on the balance be-
tween precision and computational cost. In other words, the number of points included
in the representation should be as small as possible, whereas the amount of information
contained in those points should be enough to describe the contour accurately. Thus,
this thesis uses control points to represent a contour in cooperation with the B-Spline
technique [150]. This representation has been shown in (5.35) in Chapter 5. Thus, the
estimation of global post-attentive features Fy inchudes two steps. The first step is to
extract control points of the attended object’s contour. The second step is to estimate

the appearance and salience components at these extracted control points.

Extraction of Control Points

Control points can be defined as locations with significant changes in curvature. Physi-
ological rescarch has shown that hypercomplex cells in the visual cortex are responsible
for localizing these locations based on the fact that excitatory influences from the small
receptive field and inhibitory influences from the large receptive field converge in the hy-

percomplex cell [82]. The detailed mechanism of hypercomplex cells has been presented

in section 2.2.5 in Chapter 2. This thesis therefore proposes a two-stage process to ex-
tract control points. The first stage is across-scale interaction by taking the difference
of the responses of Gabor filters at the same central positions and orientations, but of

different receptive sizes (i.c., at different scales). The second stage is across-orientation
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cooperation based on the fact that the location of a control point has the maximal differ-

ence of responses over its neighbors in at least two orientation directions. An advantage

of this method is that it makes use of already available orientation energy features. This
method is expressed from (6.16) to (6.18). Equation (6.16) caleulates the across-scale
difference in order to implement the first stage. Equation (6.17) implements the second
stage. It first determines whether a point has the maximal across-scale difference in an
orientation and then accumulates the number of satisfied orientations. Finally, equation
(6.18) determines if a point is a control point by checking its accumulated orientation
number

Foy(ri, ey 1s) = [Foy (£, le) © Foy (i, L), (6.16)

dlr) =

im <(a) oy (5 les 1) = max F’a.(r,l,‘l,)) (6.17)

nE ) )22 o

1 ¢ {rg) otherwise

where scale [, = 2, scale I, = 5, © is across-scale subtraction, Ny, are neighbors of a
pixel r,, the set {0} includes 6 values that satisfy the condition, § € {0°,45°,90°,135°},
function dim(-) is to obtain the entry mumber of the set {0}, and {re,} denotes the set
of control points

Figure (6.2) shows some examples of the extracted control points.

‘The extracted control points at other views are transformed into the reference frame
by using affine transformation, whose parameters are estimated by matching SIFT key-
points between the image at the present view and the reference image frame.

To extract global control points, a band range R, is set manually along the object's

global contour in the reference frame to filter out local control points.



@ © ®
Figure 6.2: Extraction of global control points in the post-attentive perception stage. (a)-(c)
Original images. (d)-(f) Global control points extracted.

Estimation of Appearance and Salience Components

The global post-attentive feature is finally estimated as a set, each entry of which repre
sents the statistics in terms of appearance and salience at a control point r,. Thus, the

set. of global post-attentive features can be expressed as;

{Fo} = (Fp(ra)hw, (619)

Each entry of the global post-attentive feature set includes the appearance component

Fiy(ry) and salience component 'y (r,), as shown in the following:

P
Eylr) = ( Ey(ra) Fplrg) ) (6.20)

The appearance component of an s of spatial coordinates, denoted as
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(reps Yrey), i the reference frame at a global control point re,. It can be expressed as
- b
Fy ( Try Yren ) (6.21)

The salience component of an entry is built using the conspicuity value Fj(re,) in
terms of pre-attentive contour feature at a global control point ry, which is calculated

using (5.11). It can be expressed as:

(6.22)

6.4 Development of LTM Object Representations

6.4.1 Functions of LTM Object Representations

According to object-based visual attention theory [25] and the object-based visual per-
ception idea [36], perception and action are both performed using the fundamental unit
of objects. This indicates that LTM object representations can be seen as the mental
carriers of knowledge.

LTM object representations mainly have two functions in the robotic perception-
action loop. The first function is to guide top-down biasing during the process of per-
ception. Given the task-relevant object, its LTM representation is recalled to deduce
the task-relevant feature(s), which then constitute the attentional template(s) in WM to
estimate the top-down biases

The second function s to guide action selection during the process of action. LTM
object representations can be used to encode cognitive perception-action mapping. This
mapping represents the association between the attentional states and candidate actions
Since attentional selection is object-based in the proposed paradigm, the perception-
action mapping actually represents the correspondence between the learned LTM object

representations and candidate actions. This cognitive perception-action decision pro-
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cess can be described as follows. Once an object is attended at a moment, it is rec-
ognized by exploring the existing LTM object representations, and then the matched
instance of an LTM object representation leads to an appropriate action according to

d in this

the perception-action mapping. It can be seen that two procedures are requi

n of the

conitive perception-action decision process. The first procedure is the recogn
attended object, which will be presented in this chapter. The second procedure is the
learning of the mapping between attentional states and actions, which is not addressed
in this thesis.

Based on the above discussion, the main objective of developing an LTM object
representation is to encode various instances of the object into a representation so that
it can be effectively used to fulfill the above two functions

The following subsections are organized as follows. Subsection 6.4.2 to subsection
6.4.6 present the structure of the proposed LTM object representations. Subsection 6.4.7

presents the algorithm for learning the LTM object representations.

6.4.2  Neural Mechanisms for Object Codings

Neuropsychological studies have revealed the existence of two parallel forms of object

codings in space [157). One is within-object coding, in which elements are coded as
local parts of an object. It represents local properties of an object, including local part
formation and local features. The other is between-object coding, in which elements are
coded as independent objects. This indicates that global attributes of an object are also

encoded into its LTM representation

6.4.3 Infrastructure of LTM Object Representations

Accordingly, this thesis proposes a dual-coding LTM object representation O that in-

cludes global coding Oy, and local coding Oy.. Since contour is composed of clements

which characterize an entire object, it is used to build global coding. Intensity, red-green

pair, blue-yellow pair and local orientations are used to build local coding,
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According to the structure of post-attentive features, the proposed LTM object repre-
sentation also includes two descriptors: appearance O® and salience O°. The appearance
descriptor represents the appearance value of each feature dimension. The salience de-
scriptor represents conspicuousness of each feature dimension and it is used to deduce
the task-relevant feature(s) at the beginning of top-down biasing,

Thus, the infrastructure of the proposed LTM object representation can be expressed
as

o={0, 6, )= Dj’ Oj‘ ; (623)
5 O

where O, denotes global coding and Oy denotes local coding.
6.4.4 PNN based LTM Object Representations

PNNs and Extended PNNs

The probabilistic neural network (PNN) [53] is used in this thesis to construct LTM
object representations. A PNN consists of an input layer, one or several hidden layers

and an output layer. As an example, a three-layer PNN has been shown in Figure 6.3,

‘The input layer receives the input signals. The first hidden layer is composed of radial
basis functions (RBF) and Gaussian distributions are always used as RBFs. Each parent
node in an upper hidden layer or an output layer is a probabilistic mixture of its son nodes
in its lower hidden layer. The term probabilistic misture denotes a weighted sum of a set
of probabilistic distributions, e.g., a mixture of a set of Gaussian distributions. Thus,

nodal distributions

the nodes in higher hidden layers and the output layer are multi

Based on this multi-layer structure, a PNN can encode an object as a hicrarchical

mixture distribution. In other words, a PNN can hierarchically and probabilistically
incorporate various instances obtained under different viewing conditions. Thus, the
advantage of using PNNs for constructing LTM object representations is the robustness
to perceptual uncertainties, such as noise, changes of lighting conditions and changes of
views.
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Output Layer

“The First Hidden Layer

Tnput Laer

Figure 6.3: A three-layer PNN, including an input layer, a hidden layer and an output layer.

It can be seen that PNNs work using a probabilistic mixture method. Given an input

signal, the information flow of a PNN proceeds as follows. 1t starts by checking all nodes

n the first hidden layer, then checks all nodes in the upper hidden layers subsequently

and finally ends in the output layer. The advantage of this probabilistic mixture method

is precision since all hierarchical instances have been checked. However, the disadvantage
is the high computational cost.

Therefore this thesis extends the PNNs by including a probabilistic summary method.
‘This extension is based on the assumption that a unimodal distribution can be used to
approximately represent a set of similar and mutually exclusive unimodal distributions.
This assumption is inspired by Navalpakkam’s model [30]. This thesis calls this type
of probabilistic combination probabilistic summary and it can be illustratively shown in
Figure 6.4. For example, a new Ganssian distribution can be estimated as a probabilistic

summary of a set of mutually exclusive Gaussian distributions that have similar param-

eters of means and variances. This Gaussian distribution based probabilistic summary

can be mathematically expressed as:

P

7= Syt + b~

(6:24)

where ji and o; respectively denote the mean and STD of a Gaussian dis
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Figure 6.4: Probabilistic summary. The three blue curves respectively represent three Gaus-
sian distributions that are similar and mutually exclusive to cach other. The red curve rep-
ribution) of these three Gaussian

Output Layer

“The First Hidden Layer

Tnput Laer

Figure 6.5: A three-layer extended PNN. It includes an input layer, a hidden layer and an
output layer. The pink arrows represent the information flow using the probabilistic mixture
method and the blue arrows represent the information flow using the probabilistic summary
method.

by i, w; denotes the weight of the Gaussian distribution index by i, 77 and @ respectively
denote the mean and STD of the new Gaussian distribution (i.e., probabilistic summary).
“This new Gaussian distribution is called Gaussian summary in this thesis.

Compared with the probabilistic mixture method, the advantage of the probabilistic

summary method is that the combined distribution is unimodal so that it is computa-

tionally cheap, whereas the probabilistic summary is only an approximate estimation.
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Given an input signal, the probabilistic summary can provide an opposite direction of
information flow in a PNN. This opposite information flow is like a tree structure. It
starts by checking all nodes in the output layer and selecting only one node as a root.
Then this flow only checks the leaf nodes belonging to that oot node in the lower lay-
ers subsequently. As a result, recognition in the upper coarse layers is computationally
cheap. The extended PNN by combining both the probabilistic mixture method and the
probabilistic summary method is shown in Figure 6.5.

The following subsections will give the local coding and the global coding by using
the extended PNNs.

PNN of Local Coding

As shown in Figure 6.6, the PNN of a local coding O (termed as a local PNN) includes
four layers. The input layer receives the local post-attentive feature vector Fie, which
includes the appearance components and salience components in terms of intensity, red-
green pair, blue-yellow pair and local orientations. The first hidden layer is composed
of RBF, each of which is an instance of the learned object. Therefore, the first hidden
layer of a local PNN is called an instance layer in this thesis. Each node of the second
hidden layer is a probabilistic combination of the instance layer’s RBFs that belong to
the same part of that object. Therefore, the second hidden layer of a local PNN is called
a part layer. The output layer is a probabilistic combination of all the nodes in the part
layer. That is, it is the probabilistic combination of all parts belonging to the object.
Therefore, the output layer of a local PNN is called an object layer.

Each RBF in the instance layer of a local PNN is represented by using a multi-

dimensional Gaussian distribution:

@*(Fu) = N(Fu 2

) R . (6.25)
Ty (=3P — )T (B (P )}
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Object Layer

Part Layer

Instance Layer

Input Layer

Figure 6.6: Structure of the PNN based local coding of an LTM object representation (i.c., a.
local PNN). i s the index of an instance belonging to a part, j is the index of a part belonging
to the object, and  is the index of the LTM object representation.

where @* () denotes the probability density of a RBF in the local PNN, p/* and £/*
denote the mean vector and covariance matrix of a RBF in the local PN, i is the index
of an instance of a part, j is the index of a part in the local PNN of the object,  is
the index of the object in LTM, and d is the dimension number of a local post-attentive
feature F. Since all feature dimensions of a local coding are assumed to be independent,

327 is a diagonal matrix and STD values of all feature dimensions of a RBF in the local
X

PNN can constitute an STD vector
Each node in the part layer of a local PNN represents the probability density of a

part using a probabilistic combination of RBFs belonging to that part. The probabilistic

mixture estimation of a node in the part, layer of a local PNN can be expressed as:

NEGR) .
E) = Y ), (6.26)
d




where r¥(Fy,) denotes the probabilistic mixture estimation of the part j in the local PNN
of the object k, N (j, k) denotes the number of instances belonging to the part j in the
local PNN of the object k, and 7* denotes the occurrence rate of the instance i of the

part j in the local PNN of the object k, which holds:

N k)

(6.27)

‘The probabilistic summary estimation of a node in the part layer of a local PNN can
be expressed as
Th(FL) = R(Fwm ), (6.28)
where 74(F.) denotes the probabilistic summary estimation of the part j in the local
PNN of the object k and it is a multi-dimensional Gaussian distribution; 72} denotes
the mean vector of 74(Fy.), and ¥} denotes the covariance matrix of 7(Fy.). Since all
feature dimensions of a local coding are assumed to be independent, 5 is a diagonal
matrix and STD values of all feature dimensions of the probabilistic summary estimation
can constitute an STD vector 7%
The mean vector and STD vector of 74(Fic) can be estimated by using (6.24) and

they can be expressed as:

) (6.:29)

where 7 denotes an entry of the STD vector 7%, o7* denotes an entry of the STD vector

¥, u}* denotes an entry of the mean vector #/¥, and it denotes an entry of the mean
vector 7}

Each node in the object layer of a local PNN represents the probability density of
the object in terms of the local features by using a probabilistic combination of the parts

belonging to that object. The probabilistic mixture estimation of a node in the object
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layer of a local PNN can be expressed as:

N

)= Y eriFu), (6.30)
where py(Fic) denotes the probabilistic mixture estimation of the object k in its local
PNN, Ni(k) denotes the number of parts in the local PNN of the object k, and ¢}
denotes the contribution of a part to the object k. This thesis assumes that each part

contributes equally and therefore it holds constant, i.e.:

1,VK,Vj. (6:31)

Since the parts of an object are not similar to each other, a unimodal distribution

cannot be used to represent the probability of an object. However, a probabilistic sum-

‘mary estimation of an object in its local PNN is still proposed by using the probabilistic
mixture method to combine the probabilistic summary estimations of parts. Thus, the
probabilistic summary estimation of a node in the object layer of a local PNN can be
expressed as

Nk

A(F) = Y @R, (6.32)
=
where y(F) denotes the probabilistic summary estimation of the object k in its local
PNN
The maximal number of nodes in each layer is pre-defined. N, denotes the
maximal number of instances in a local PNN, and N5, denotes the maximal number

of parts in a local PNN.

PNN of Global Coding

As shown in Fig 6.7, the PNN for a global coding O, (termed as global PNN) also

includes four layers. The input layer receives the global post-attentive feature vector




1
Contour Instance Layer

Control Point Layer

Tnput Layer

Figure 6.7: Structure of the PNN based global coding of an LTM object representation (i.c., a
global PNN). i is the index of a control point belonging to a contour instance,  is the index of a
contour instance belonging to the object, and  is the index of the LTM object representation.

Fyy, which includes the ud sali f an extracted

control point of the attended object. The first hidden laer is composed of RBF, each
of which is a control point along a contour instance of the LTM object. Therefore the
first hidden laer of a global PNN is called a control point layer. Each node of the
second hidden layer is a probabilistic combination of RBFs that belong to a contour
instance of that object. Therefore the second hidden layer of a global PNN is called a
contour instance layer. Since contour instances are obtained from different views, the
second hidden layer of a global PNN is also called a view laer. The output layer is a
probabilistic combination of all the nodes in the contour instance layer. That is, it is the
probabilistic combination of all contour instances belonging to the object. Therefore, the
output layer of a global PNN is called an object layer.

Each RBF in the control point layer of a global PNN is represented by using a multi-




dimensional Gaussian distribution;

@H(F) = R(Fgi i, B4
(6.33)

= et (=3 — (B (B - )

where ¢*(F,) denotes the probability density of a RBF in the global PNN, p/* and
/% denote the mean vector and covariance matrix of a RBF in the global PNN, i is the
index of a control point along a contour instance, j is the index of a contour instance of
the global PNN of the object, k is the index of the object in LTM, and d denotes the
dimension number of global post-attentive feature Fy. Since all feature dimensions of a
global coding are assumed to be independent, /¥ is a diagonal matrix and STD values
of all feature dimensions of a RBF in the global PNN can constitute an STD vector o”*.

Each node in the contour instance layer of a global PNN represents the probability

density of a contour instance by a probabilistic combination of RBFs belonging to that
contour instance. The probabilistic mixture estimation of a node in the contour instance

layer of a global PNN can be expressed as:

m
HFe)= Y @ (Fa), (6.34)
i

where r4(F,) denotes the probabilistic mixture estimation of the contour instance j in
the global PNN of the object k, Nf3(j. k) denotes the number of control points along the
contour instance j in the global PNN of the object k, and 7* denotes the occurrence
rate of the control point i along the contour instance j in the global PNN of the object

k. which holds:
NEOK)

(6.35)

The probabilistic summary of a node in the contour instance layer of a global PNN
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() = REu L ), (6.36)

where 7#(F,) denotes the probabilistic summary estimation of the contour instance j in
the global PNN of the object & and it is a multi-dimensional Gaussian distribution; 7z
(Fgp)-

=
Since all feature dimensions are assumed to be independent, X is a diagonal matrix and

- < _
an vector of 7(F,), and 5 denotes the covariance matrix of 7+

denotes the me

STD values of all feature dimensions of 7%(Fy) can constitute an STD vector 7

The mean vector and STD vector of 7#(Fy) can be estimated by using (6.24) and it

can be expressed as;

0 ik

o

ZH [t

Hj

8 (6.37)

+ (e =

where 3% denotes an entry of the STD vector of &%, o7* denotes an entry of the STD

vector o*, 4" denotes an entry of the mean vector f*, and 7i¥ denotes an entry of the
mean vector 724

stance layer should be men-

One point of the probabilistic summary in the contour i

ot meaningful since the proba-

tioned here. The appearance component of 7z} and &% is
bilistic summary estimation by combining the spatial positions of all control points along
a contour instance cannot be used to represent the appearance distribution of that con-

p

tour instance. However, the salience component of 77§ and &% is meaningful since the

salience distribution of a contour instance can be represented using a combination of the
salience distributions of all control points along that contour instance.

Each node in the object layer of a global PNN represents the probability density of
the object in terms of the global features by using a probabilistic combination of the

contour instances helonging to that object. The probabilistic mixture estimation of a




n the object layer of a global PNN can be expressed as:
- Vi) .
nFp)= Y Gri(Fa), (6.38)
=

where py(Fy) denotes the probabilistic mixture estimation of the object k in its global

PNN, Nfj(k) denotes the number of contour instances in the global PNN of the object

k, and @} denotes the contribution of a contour instance to the object k. This thesis
assumes that each contour instance contributes equally and therefore it holds constant,

ie.

¢ = 1,Vk,Vj (6.39)

Since the contour instances of an object are not similar to each other, a unimodal

distribution cannot be used to represent the probability of an object. However, a prob-

abilistic summary estimation of an object in its global PN

ill proposed by using
the probabilistic mixture method to combine the probabilistic summary estimations of
contour instances. Thus, this probabilistic summary estimation of a node in the object
layer of a global PNN can be expressed as:

N
nfw) = Y oir
=

) (6.40)

where 7 (F ) denotes the probabilistic summary estimation of the object  in its global
PNN.

‘The maximal number of nodes in each layer is also pre-defined. N7, denotes the
maximal number of control points in a global PNN, and Ng5,,.. denotes the maximal

number of contour instances in a global PNN.

6.4.5 Complete Structure of LTM Object Representations

The complete structure of an LTM object representation can be expressed as follows.
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It can be seen that either a local coding or a global coding consists of three levels
The local coding includes an object level, a part level and an instance level, whereas the
global coding includes an object level, a contour instance level and a control point level

The object level of the local coding of an LTM object representation indexed by k,

~ (mr_‘u ) o
i)

denoted as O, can be expressed as:

denoted as Of, can be expressed as:

The part level of that local codin

rF) e ) ok (Fi)
o= A e Aiad’ . (6.42)
HF) o T e TR | (Fu)

The instance level of that local coding, denoted as OFY, can be expressed as:

r
at*(Fe) HEe) o g, (Fo)
Ol = AHFe) e @R e g (RO (643)
[ g %)

In the representations of the part level and the instance level, the remaining entries
are set as unavailable when the current number of nodes is smaller than the maximum.
The object level of the global coding of an LTM object representation indexed by k,

denoted as O, can be expressed as:

P
of, ("(_"' (6.44)
Pulf)
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The contour instance level of that global coding can be expressed as:

h(Ep) - T(Fy) (Fg)
0;'3;(— 1 -W i -!‘ P, A# (645)
TH(Fw) o T(Fw) o T (Fa)
The control point level of that global coding can be expressed as:
atFp) ot Fe) g (Fa)
@t Fg) - qHFp) (6.46)

In the representations of the contour instance level and the control point level, the
remaining entries are set as unavailable when the current number of nodes is smaller than
the maximum.

The LTM object representation with this complete structure is also called the high-

level LTM object representation.

6.4.6 L level LTM Object i

only

The compl LTM object ions is used for high-level anal

on the attended object during the post-attentive perception stage in order to produce an
appropriate action. In other words, the complete structure is used to fulfill the second

function of LTM object representations, i.c., guiding the action selection. However, the

first function of LTM object representations is to quickly and efficiently guide top-down
biasing over the whole input scene. Therefore a low-level, degraded version of the LTM

object representation is required for the attentional selection stage.

141



Low-level Local Coding

It i evident that a rule for building a low-level object representation is to use the prob-

abilistic summary estimation.

Furthermore, as shown in (6.5), (6.6) and (6.7), each appearance component F},,
F, and Fj, includes two types of statistical measures, i.e., mean and histogram. Since
top-down biasing performs based on the pre-attentive features, the mean measures are
used to build the appearance components of the low-level local coding.

Finally, only the part level of the high-level local coding is used to build the low-level
local coding based on the fact that the proposed top-down biasing method uses a salient
part to estimate the top-down biases in terms of local features.

Thus, the low-level local coding of an LTM object representation can be expressed

.

TH(F)

L (B ) . (6.47)

where Off denotes the low-level local coding, and Fit is identical to Fy,, except that

“
appearance histogram measures are removed in Fi.

Low-level Global Coding

Since the proposed top-down biasing method uses control points of a salient contour
instance to estimate the top-down biases in terms of contour, the appearance descriptor
at the control point level in the high-level global coding is used to build the appearance
descriptor of the low-level global coding

The salience component at the contour instance level in the high-level global coding
is used to build the salience descriptor of the low-level global coding based on the fact
that the proposed top-down biasing method uses the salience of a contour instance,

Thus, the low-level global coding of an LTM object representation can be expressed




Oy = 2 (6.48)

where Off

(4 . denotes the low-level global coding, and

03 = O
(6.49)
ot = (A - HED
where O denotes appearance descriptor of Off .

It is important to note that Off, and Of , are identical to the object representation

used for top-down biasing, which has been presented in section 5.3.3 in Chapter 5.

6.4.7 Learning of LTM Object Representations

Once the post-attentive features of the attended object have been extracted, they are

used to update the corresponding LTM object representation or to create a new one.

Dynamical Learning

In the proposed learning procedure for a local PNN, a local post-attentive feature,
ey, = Fio(R2"), extracted from a proto-object in the complete region being attended

is regarded as a t

ining pattern
In the proposed learning procedure for a global PNN, a set of global post-attentive
) = {Fo(rq)

is regarded as o training pattern,

features, i.c., extracted from the complete region being attended

Based on the structure of the PNN based LTM object representation, the learning

te the mean vector and covariance

procedure can be basically modeled as a proce

5 0 upd

matrix of each RBF as well as the weights of nodes at all layers in the local and global

PNNs,




If the number of nodes at each layer is known and unchanged, the expectation-
maximization (EM) algorithm is optimal for learning PNNs. However, the number of
nodes (i.e., the number of instances, number of parts, number of control points, number

of contour instances) might be dynamically changed during the lifelong trai

g course
in this proposed cognitive perception paradigm. Thus, inspired by a constructive train-
ing method [158], this thesis proposes a dynamical learning algorithm by using both the
maximunm likelihood estimation (MLE) and a Bayes' classifier to update the local and
global PNNs at each moment

marized as follows. The

This proposed dynamical learning algorithm can be s

g pattern to an existing LTM pattern. The
The

Bayes' classifier is used to classify the train

LTM pattern refers to a pattern of an LTM object representation at three level

or a global PNN; the second level is

first level is the object level for cither a local PN
the part level for a local PNN or the contour instance level for a global PNN; and the
third level is the instance level for a local PNN or the control point level for a global
PNN. In other words, given a training pattern, it is first recognized in the object level,
then recognized in the part level or contour instance level, and finally recognized in the
instance level or control point level. The recognition algorithms at these three levels will
be presented in section 6.5

If the training pattern can be classified to an existing LTM pattern at the instance

level in a local PNN or at the control point level in a global PNN, both appearance and
salience descriptors of this existing LTM pattern are updated based on MLE. Otherwise,
anew LTM pattern is created. Three thresholds i, 7 and 7, are introduced to determine

the minimum of the correct recognition probability to an existing object, to an existing

part or an existing contour instance, and to an existing instance or an existing control
point respectively. Furthermore, 7 s introduced to avoid misclassifications at the third

I e., the instance level for a local PNN or the control point level for a global PNN.

his parameter means that the recognition probabilities of a training pattern to incorrect

existing LTM patterns are less than 7~. Thus, 7~ is used to shrink the STD of all RBFs




after each learning routine. As a result, the recognition probabilities to all incorrect

RBFs are less than 7

nsupervised and Supervised Learning: The above presentation has shown that
the proposed dynamical learning is an unsupervised learning procedure. In addition, this
proposed leaming algorithm also supports supervised learning. In supervised learning
the trainer teaches the system what and/or where the attended object is. That is, a set
of pairs (F,k) is given. As a result, recognition at the object level is not required in

supervised learning.

Routines of the Learning Algorithm

Algorithm 1 shows the routine of the unsupervised learning algorithm for local PNNs. In

this algorithm, 7, (F) ) and 7* (F\,) respectively denote the recognition probabil-

ities of the training pattern Fy, at the object level, at the part level and at the instance

level of a local PNN. Caleulation of these recognition probabilities will be shown in sec

a2* denotes the occurrence

tion 6.5. In Algorithm 1, d denotes the dimensions of a F.

number of the instance i of the part j in the local PNN of the object k, ols,, denotes the
predefined initial STD vector of a new RBF in the updated local PNN, and Ny denotes
the number of existing LTM objects.

It is important to note that the recognition at the object level and the recognition at

the part level, i.e., steps 2 ~ 5 in Algorithm 1, have been carried out in the perceptual
completion processing module. This can be seen clearly in Figure 6.1. In order to show
the entire flowchart of the learning algorithm, these two recognition procedures are also
included in Algorithm 1

Algorithm 2 shows the routine of the unsupervised learning algorithm for global PNNs.
The set of global post-attentive features extracted in the complete region being attended

is used as a united training pattern for recognition at the object level and at the contour

instance level. Once the united training pattern is classified to an existing LTM pattern



Algorithm 1 Unsupervised Learning Routine of Local PNNs

en & local training pattern Fi. = Fi(R}™").

Recognize F, at the part level only in object k to obtain a recognition

probability 7 (Fi,):
5 if 7 (Fie) > 7 then
2 Recognize Fyc at the instance level only in part j of object k to obtain a

recoguition probability 7

/ r,”m the instance i in prt J o ot &
o ai*
10 m-‘p/‘ +F
11 Vd: 015 = \/otny
12 a* = al* +
13 else
1 // Create a new instance in part j of object k
15 UL/*\;“’/M\! i
16 ol a*
It end it
15 else
1o:  Create anew part of abjct &
P N i=NEG.K):

) NG k)
1

L =N

2 end if
20. // shrink STD of all RBFs

30 ¥(d,i, j,k): o7% = min

31: // Normalize weights =

3 Wi, 3): % = ¥/ T,
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1

Given a set of global training patterns {F}

Foi(rep) bore,
Recognize {F,s} at the object level to obtain a recognition probabilit
Fa}) > (73)% then

nize {F3} at the contour instance level only in object k to obtain a

({Fa})

tion probability 7 ({F}
if F({Fp}) > (2)¥ then
for Fyy € {Fyu}_do

Recognize Fyg at the control point level only along contour instance j

Create a new control point along contour instance j of object k
NE(Gk) = NfG.Kk) + ;i = NE G k):
¥ bl

end for

Nis=Nig+1; k=N NBK)=1 j=NE(k)
Do steps 23 ~ 26
end if
shrink STD of all RBFs
j.k): 2% = min {24,/ Fpa— 1 mv}




at the contour instance layer, all training patterns in that set are subsequently used for
e({F}), 75 ({F}) and ¥ (Fyp)

respectively denote the recognition probabilities of the united training pattern {Fys} at

recognition at the control pa

at level. In Algorithm 2

the object level and at the contour instance level as well as the recognition probability of
a single training pattern Fyy at the control point level. Calculation of these recognition
probabilities will be shown in section 6.5. Ny, denotes the entry number of the set {Fyy}
In this algorithm, d denotes the dimensions of a Fy, o, denotes the predefined initial
STD vector of a new RBF in the updated global PNN, and /* denotes the occurrence
number of the control point i along a contour instance j in the global PNN of the object
k

Since the STD of each RBF of local PNNs and global PNNs can only shrink and never

grow in the learning algorithms, it is obvious that the proposed learning algorithms are

convergent given a finite training set

6.5 Object Recognition

Based on the structure of the PNN based object representation, the object recognition
module can be modeled at three hierarchical levels. The top one is the object level. The

purpose of the top level is to recognize to which LTM object an attended pattern belongs.

The middle one is the part level or contour instance level. Recognition at the

level is performed given an LTM object to which the attended pattern belongs
the purpose of the middle level is to recognize to which part in a local PNN or to which
contour instance in a global PNN an attended pattern belongs. The bottom one is the

instance level or control point level. Recognition at the bottom level is performed given

& part o a contour instance to which the attended pattern belongs. Thus, the purpose of
the bottom level is to recognize to which instance in a local PNN or to which control point
in a global PNN an attended pattern belongs. The attended pattern is a unified term to

denote a local post-attentive feature Fi., a set of local post-attentive features {Fi.}, a




global post-attentive feature Fyy and a set of global post-attentive features {Fy}

At each level, object recognition can generally be modeled as a decision unit that is
based on Bayes' theorem by considering the observation likelihood and prior probability
of cach existing LTM pattern. The LTM pattern with maximal posterior probability

would be chosen,

6.5.1 Recognition at the Object Level

Recognition at the object level is computationally expensive in that it is required to
explore all LTM object representations. In order to reduce the computational cost, the
proposed recognition algorithm at the object level consists of two successive steps. The

step s to explore LTM object representations by using the low-level probabilistic
summary estimation of the node at the object layer of each PNN as an observation
likelihood. Once the LTM object with the maximal posterior probability is selected as
& candidate matched LTM object, the second step is to verify whether the attended
pattern belongs to the candidate by using the high-level probabilistic mixture estimation
of the node at the object layer of that candidate LTM object as an observation likelihood.
The algorithms of recognition in the object level for local PNNs and global PNNs are

presented respectively as follows.

Recognition Algorithm at the Object Level in Local PNNs,

The attended pattern, which can be processed by the recognition algorithm at the object

level in local PN

s, could be a local post-attentive feature, i.e., Fi, or a set of local
post-attentive features, i.c., {Fi.}

Assuming that the prior probability is equal for all LTM objects, the first step for
recognition at the object level in local PNNs is realized as follows. It explores the prob-

abilistic su

amary estimation of each node at the object level in each local PNN in LTM

and then selects an LTM object that has the maximal posterior probability by using
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Bayes' theorem. This step can be mathematically expressed as:

inne = g max{7i (Fio)}. ©50)

where P (F.) can be obtained using (6.32) and Ky is the index of the LTM object that
has the maximal posterior probability, i.c., the index of the candidate matched LTM
object.

In order to verify whether the attended pattern belongs to the candidate matched
LTM object, the truncated part of the probabilistic mixture estimation s used. As an
example, the truncated part, denoted as j(X), of a Gaussian distribution (with the input

vector X, the mean vector p and the covariance matrix ) can be given as:
PX) = expl(X - )" E7(X - )] (6:51)

Since the truncated part is invariant to the change of the dimension number of the

input vector, it provides a uniform measure scale for comparison with the prede

fined
threshold (e.g., 7). In other words, the truncated part provides a uniform measure scale

for verification.

s, the truncated part of the Gaussian probability is used to caleulate
the recognition probability in this thesis.
‘The recognition probability 7,(F\.) of the attended pattern F at the object level in

local PNNs can be expressed as:

(Fie) = e

where ji,,, (Fi) denotes the truncated part of the probabilistic mixture estimation

Plonar (Fic) that can be obtained using (6.30).

The second step for recognition at the object level in local PNNs can be mathemati-




cally expressed as:

Oy, is the matched LTM object if Pr(Fic) > 73
(6.53)
O, is not the matched LTM object otherwise

If the attended pattern is {Fi.}, each Fy, in the set is subsequently recognized. As-
suming that all Fy, are independent on each other, the first step for recognizing the sets

{F.} at the object level in local PNNs can be expressed as:
Kmaz = arg max {A({Fh} (6.54)

where py({Fic}) = [TAy(Fic)

“Then the recognition probability 7, ({Fic}) of the attended pattern

i} at the object

level in local PNNs can be expressed as:

FrllFie) = s ({Fic}). (6.55)

{Fic}) = [T s (Fic).

The second step for recognizing the sets {Fy.} at the object level in local PNNs can

where i,

be expressed as

0Oy, is the

tehed object B ({Fic}) > ()N

Oy, is not the matched object ~otherwise

where Ny, denotes the entry number of the set {F.}

Recognition Algorithm at the Object Level in Global PNNs

e attended pattern, which can be processed by the recognition algorithm at the object

level in global PNNs, is a set of global j features cted from th




region being attended, i.e., {Fy}

Assuming that the prior probability is equal for all LTM objects, the first step for
recognition at the object level in global PNNs is realized as follows. It explores the
probabilistic summary estimation of each node at the object level in cach global PNN
in LTM and then selects an LTM object that has the maximal posterior probability by

using Bayes' theorem. This step can be mathematically expressed as:
Knar = argmax {B({Fo}) }, (657)

where B,({Fg}) = [T5(Fys) and 7,(Fys) can be obtained using (6.40).
Then the recognition probability 7, ({Fy}) of the attended pattern {F,} at the object

level in global PNNs can be expressed as:

Fl{Fp)) = P ({F}), (6.58)

where e ({Fyp}) = T Pnas (Fgp), and i, (Fyp) is the truncated part of the proba-
bilistic mixture estimation py,,,, (F,s) that can be obtained using (6.38)

athemat-

The second step for recognition at the object level in global PNNs can by

ically expressed as:

Oy, is the matched object i Bu({F ) 2 (7)Non
O, is not the matched object  otherwise
where Ny, denotes the entry number of the set {Fy}.

Algorithm for the Combination of Local and Global PNNs

If the attended pattern includes both local post-attentive features and global post-

attentive features, the first step for recognition at the object level can be expressed




as

o = argmax {Bu({Fic)) x Bu({Fo})} (6.60)

Then the recognition probability 7, ({Fys}, {Fic}) of the attended pattern ({Fys}, {Fic})

at the object level can be expressed as

Ao}, {Fic))

P (F o) X P ({Fic}). (661)

The second step for recognition at the object level can be mathematically expressed

as
0Oy,,,. is the matched object i B({Fg}, (Fic}) > (73)n
2 ({Fa}, {F i )
O, is not the matched object ~otherwise
where N, denotes the total entry number of the set {Fi} and {Fy}

6.5.2  Recognition at the Middle Level

In order to reduce the computational cost, the proposed recognition algorithm at the

middle level also consists of two succ

sive steps. The first step is to explore the part

layer or contour instance layer in the PNN of the given LTM object by

g the low-
level probabilistic summary estimation as an observation likelihood. Once a part node or

contour instance node with the maximal posterior probability is selected as a candidate

matched LTM pattern, the second step is to verify whether the attended pattern belongs

to the candidate by the high-level probabilistic mixture estimation of the candidate

node as an observation likelihood. The algorithms of recognition at the middle level for

local PNNs and global PNNs are presented respectively as follows




Recognition Algorithm at the Part Level in Local PNNs

e the objective of recognition at the part level is to classify to which part a proto-

object in the complete attended region belongs, the attended pattern at the part level is
a local post-attentive feature, i.c., F.

Assuming that the prior probability is equal for all parts of the given LTM object
indexed by , the first step for recognition at the part level in local PNNs can be math-

ematically expressed s follows by using Bayes’ theorem:

Jmaz = argmax{F(Fio)}, (6.63)
f

where 74(F\) can be obtained using (6.28) and jimas is the index of the part that has the

maximal posterior probability, i.c., the index of the candidate matched part

Then the recognition probability 7 (Fi.) of the attended pattern Fy, at the part level

in local PNNs can be expressed as:
P ;
7 (Fi) = 74 (6.84)
where ) denotes the truncated part of the probabilistic mixture estimation

) that can be obtained using (6.26)

‘The second step for recognition at the part level in local PNNs can be mathematically
expressed as:

Jmas is the matched part 7 (i) > 7

(6.65)

Jmas is not the matched part  otherwise

Recognition Algorithm at the Contour Instance Level in Global PNNs

‘The attended pattern, which can be processed by the recognition algorithm at the contour

-attentive features extracted from

instance level in global PNNS, is also a set of global pos

the complete region being attended, i.c., {Fg}



Assuming that the prior probability is equal for all contour instances in the given
LTM object indexed by k, the first step for recognition at the contour instance level in

global PNNs can be mathematically expressed as follows by using Bayes' theorem

Jmar = argmax {T¥({Fy})}, (6.66)

where P4({Fys)) = [T74(Fys). 74(Fys) can be obtained using (6.36), and jya is the index
of the contour instance that has the maximal posterior probability, i.e., the index of the

candidate matched contour instance,

Then the recognition probability

% ({Fyu}) of the attended pattern {Fy} at the con-

tour instar

level in global PNNs can be

xpressed s

F({Fa)

Fae((Fa}), (6.67)

where 7% ({Fg}) = [T7% . (F,), and 7 (Fy) is the truncated part of the proba-

bilistic mixture estimation % (Fyy) that can be obtained using (6.34)

The second step for recognition at the contour instance level in global PNNs can be

mathematically expressed as

Jmax 18 the matched contour instance

3 Mo
SU{FaD) 2 ()% (008)

Jmas i ot the matched contour instance  otherwise

where Ny, denotes the entry number of the set {

6.5.3 Recognition at the Bottom Level

The proposed recognition algorithm at the bottom level also consists of two successive

steps. The difference from the other two levels is that only the unimodal G

ian
estimation of each RBF can be used to estimate the observation likelihood in both steps

at the bottom level. That is, the first step is to explore the instance layer or control




point layer of the given part or given contour instance by using the unimodal Gaussian
distributions of RBFs. Once an instance node or a control point node with the maximal
posterior probability is selected as a candidate matched LTM pattern, the second step
is to verify whether the attended pattern belongs to the candidate. The algorithms of
recognition at the bottom level for local PNNs and global PNNs are presented respectively

as follows,

Recognition Algorithm at the Instance Level in Local PNNs

The attended pattern, which can be processed by the recognition algorithm at the in-

stance level in local PNNs, is also a local post-attentive feature, i.e., Fi.

Assuming that the prior probability is equal for all instances of the gi

part in-

the first stance level in local PNNs can be

dexed by (j,

ep for recognition at the i

mathematically expressed as follows by using Bayes' theorem:
imar = arg max{g!* (Fie)}, (6.69)

where ¢*(F.) can be obtained using (6.25), and iy, denotes the index of the instance
that has the maximal posterior probability, i., the index of the candidate matched
instance.

Then the recognition probability 7“(Fy.) of the attended pattern Fy, at the instance

level in local PNNs can be expressed as:

(6.70)

) is the truncated part of the probability ¢/ _(Fyc).

where ¢*

The second step for recognition at the instance level in local PNNs can be mathemat-




ically expressed as:

imaz i the matched instance P F) 27

imaz is not the matched instance ~otherwise

Recognition Algorithm at the Control Point Level in Global PNNs

The attended pattern, which can be processed by the recognition algorithm at the control
point level in global PNNs, is a global post-attentive feature, i.c., Fg.
Assuming that the prior probability is equal for all control points in the given contour

instance indexed by (j, k), the first step for recognition at the control point level in global

PNNs can be mathematically expressed as follows by using Bayes’ theorem.
imaz = argmax {g/*(Fy)}, (6.72)

where ¢*(F ) can be obtained using (6.33), and iy, denotes the index of the control
point that has the maximal posterior probability, i.e., the index of the candidate matched
control point
Then the recognition probability 7. (F,s) of the attended pattern Fy, at the control
point level in global PNNs can be expressed as:
T (Fg) =

(Fy). (6.73)

where @/* (Fy) is the truncated part of the probability ¢/* (Fy).

‘The second step for recognition at the control point level in global PNNs can be
mathematically expressed as

imas is the matched control point T (Fp) 21
(6.14)

imax i not the matched control point otherwise



6.6 Conclusion

This chapter has presented computation in the post-attentive perception stage. This

chapter asserted that the main function of the post-attentive perception stage is to in-
terpret the attended object in detail to produce an appropriate action at the current
moment, to update the corresponding LTM object representation at the current mo-
‘ment, and to consciously guide the top-down biasing at the next moment.

Four interactive modules of the post-attentive perception stage are modeled in this

thesis: perceptual completion processing, extraction of post-attentive features, develop-

ment of LTM object representations and object recognition.

Based on the IC hypothesis, the perceptual completion processing module is per-
formed around the attended proto-object to obtain the complete region being attended.
Based on the fact that the complete region contains the local instances and global fea-
tures, it can provide more information used for learning the LTM object representation

and producing the appropriate action

The post-attentive feature extraction module builds a statistical WM object represen-
tation of the attended object. This WM object representation includes both high-level
and low-level statistics of the attended object to facilitate the following object recognition

and learning.

Development of the LTM object representations is the main module in the post-
attentive perception stage. A PNN based LTM object representation is proposed in this
thesis. One advantage of this proposed LTM object representation is that it can prob-

abilistically embody various instances of that object. The other advantage is that it

includes two i i methods (i.e., probabilistic mixture and proba-
bilistic summary) so that it can be used for both high-level post-attentive analysis and
low-level top-down biasing. The result is that the learned LTM representation can be
used to direct top-down biasing in the attentional selection stage, perform object recog-
nition and learning in the post-attentive perception stage and guide action selection in

the further action stage. Dynamical learning algorithms are also developed for trai

ng
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the PNN based LTM object representations.

Consistent with the structure of the PNN based LTM object representations, the
algorithms of object recognition have been proposed for three levels of recognition, in-
cluding an object level, a part level or a contour instance level, and an instance level or a

control point level. These algorithms are used for the perceptual completion processing

and learning of the LTM object representations.




Chapter 7

Applications for Object Detection

7.1 Introduction

One of the important robotic applications of the proposed cognitive visual perception
paradigm is object detection. That is, the proposed perception paradigm can direct the
rohot’s attention to a salient abject or to an object expected by the task, and then the
attended object is sent to the post-attentive perception stage to recognize what it is
or to verify whether it is the expected target. The unconscious perception path (i..
the bottom-up competition module) can be used to detect a salient object, such as a

landmark, whereas the conscious perception path (i.e., the top-down biasing module)

nt object, i.e., the expected target. The objective

can be used o detect the task-re

of this chapter is to show the effectiveness and advantages of the unconscious aspect and

conscious aspect of the proposed object-based cognitive visual perception paradigm.
Thus, this chapter includes two sections to show the robotic application for object

detection of this proposed perception paradigm. Section 7.2 presents the application for

»

detecting a salient object on 7.3 presents the robotic application for detecting a

task-relevant object
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7.2 Detecting a Salient Object

This section presents the application for detecting a salient object. The salient object
is defined as an object that is conspicuous to others in the scene. In other words, the

salient object is an unusual o unexpected object and the current task has no prediction

about its occurrence.

There are three objectives in this section. The first objective is to illustrate the
capability of unconscious perception of this proposed perception paradigm. The second
objective is to show the advantages of using object-based visual attention for perception
by comparing it with the space-based visual attention methods. The third objective is

ting the contour feature into the bottom-up competition

to show the advantage of integs
module. The result is that an object that has a conspicuous shape compared with its
neighbors can be detected

Three experiments are shown in this section, including the detection of an object that

is conspicuous in colors, in local orientations and in contour respectively

7.2 Experimental Setup

wce the objective of each experiment in this application is to show the effectivencss

of unconscious perception in a single feature dimension, artificial images are used in
these three experiments, such that the influences from other features can be removed.
The frame size of all images is 640 x 480 pixels. In order to show the robustness of

are obtained using different settings, including

our perception paradigm, these image

noise, spatial transformation and changes of lighting. The noisy images are manually
obtained by adding salt and pepper noise patches (noise density: 0.1 ~ 0.15, patch size.
10 x 10 pixels ~ 15 x 15 pixels) into original r, g and b color channels respectively.
The experimental results are compared with the results of Itti's model (i.c., space-based

odel (i.e., object-based bottom-up attention) [12].

bottom-up attention) [38] and Sun’s
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7.2.2  An Object Conspicuous in Colors

The first experiment is detecting an object that is conspicuous to its neighbors in terms
of colors and all other features are approximately the same between the object and its
neighbors. The results of one experiment are shown in Figure 7.1. The salient object is
the red ball in this experiment. Results of the proposed perception paradigm are shown
in Figure 7.1(d), which indicate that the proposed perception paradigm can detect the
object that is conspicuous to its neighbors in terms of colors in different settings. Results

pectively.

of Itti’s model and Sun’s model are shown in Figure 7.1(e) and Figure 7.1(f)

It can be seen that Itti's model fails to detect the salient object when noise is added

to the image, as shown in column 2 in Figure 7.1(e). This indicates that the proposed

object-based visual perception paradigm is more robust to noise than the space-based

visual perception methods.

7.2.3  An Object Conspicuous in Local Orientations

The second experiment is detecting an object that is conspicuous to its neighbors in

terms of local orientations and all other features are approximately the same between

the object and its neighbors. The experimental results are shown in Fig
this experiment, the salient object is the bar that lies in the 45° direction with respect
to the horizontal direction. Detection results of the proposed perception paradigm are
shown in Figure 7.2(d), which indicate that the proposed perception paradigm can detect

the object that is conspicuous to its neighbors in terms of local orientations in different

settings. Detection results of Itti's model and Sun's model are shown in Figure 7.2(c)
and Figure 7.2(f) respectively. It can be seen that Itti's model fails to detect the salient
object, when noise is added to the image, as shown in column 2 in Figure 7.2(c). This

nore robust to

indicates that the proposed object-based visual perception paradigm is

noise than space-based visual perception methods.
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Figure 7.1 Detection of a salient object, which is conspicuous o its ne

A type of experimental setting. Column 1 is a typical setting.

bors in terms of

Sach column represe)
Column 2 is a noise setting of column 1. Column 3 is  different lighting setting with respect
b respect to column 1. Row (a):
Sach color represents one proto-

to column 1. Column 4 is  spatial transformation setting w
Original input images. Row (b): Pre-attentive segmentatio
object. Row (¢): Proto-object based attentional activation map. Row (d): The complete
being attended. Row (): Detection results using Itti's model. The red rectangles highl
locations. Row (f): Detection results using Sun's model. The red circles highlight

it ¢

most salient
the attended proto-objects.
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Figure 7.2 Detection of a salient object, which is conspicuous to its neighbors in terms of

Each column represents a type of experimental setting. Column 1 is
Column 3 is a spatial transformation
Row (b): Pre-attentive

atations.
tting, Column 2 is & noise sotting of column 1
Row (x): Original input imag

setting with respect to colun
Gach color represents one proto-object. Row (¢): Proto-object based attentional

activation map. Row (d): The complete region being attended. Row (e): Detection results
using Itti's model. The red rectangles highlight the most salient objects. Row (f): Detection
The red circles highlight the attended proto-objects.

results using Sun's model




Figure 7.3: Detection of a salient object, which is conspicuous to its neighbors in terms of
contour. Each column represents a type of experimental setting. Column 1 s a typical setting.
Column 2 is a noise setting of column 1. Column 3 is a spatial transformation setting with
respect. to column 1. Row (a): Original input images. Row (b): Pre-attentive segmentation.
Each color represents one proto-object. Row (c): Proto-object based attentional activation
map. Row (d): The complete region being attended. Row (¢): Detection results using Itti's
model. The red rectangles highlight the most salient objects. Row (F): Detection results using
Sun's model. The red circles highlight the attended proto-objects.
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7.2.4  An Object Conspicuous in Contour

The third experiment is detecting an object that is conspicuous to its neighbors in terms
of contour and all other features are approximately the same between the object and its
neighbors. The experimental results are shown in Figure 7.3. In this experiment, the
salient object is the triangle. Detection results of the proposed perception paradigm are

shown in Figure 7.3(d), which

indicate that the proposed perception paradigm can detect
the object that is conspicuous to its neighbors in terms of contour in different settings.
Detection results of Itti's model are shown in Figure 7.3(c) and it can be scen that Itti's

model fails to detect the salient object when noise is added to the image, as shown in

column 2 in Figure 7.3(c). Detection results of Sun’s model are shown in Figure 7.3(f)
and it can be seen that Sun’s model also fails to detect the salient object when noise is
added to the image, as shown in column 2 in Figure 7.3(f). This experiment indicates
that the proposed object-based visual perception paradigm is capable of detecting the

object conspicuous in terms of contour in different scttings due to the inclusion of contour

conspicuity in the proposed bottom-up competition module.

7.3 Detection of a Task-relevant Object

7.3.1 Background

It is an important ability for robots to accurately detect a task-relevant object in the
cluttered environment. As presented in section 5.3.1 in Chapter 5, the task-relevant object
is defined as an object whose occurrence is expected by the current task or defined as
an object for which the current task searches. The detection of a task-relevant object is
widely used in several robotic tasks, such as tracking, localization and navigation. Since
most research documents use the term object detection to represent the detection of a

task-relevant object, the term object detection is used in the following text of this section.
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Related Work
A variety of approaches to object detection have been proposed during the past decades
The typical object detection strategy is to learn a representation of a single object or a

of objects by using a set of distinctive features and then use the learned representa-

clas
tion to identify an instance of the single object or the class of objects in the test image
Three major components can be distinguished in the object detection systems: object

ntations.

representations, learning/identification algorithms and image repre

Two categories of features, most of which are high-level, have been proposed to build

object representations. The first category is global features, such as [159,160). The second
category is local features, such as edge fragments [161], rectangle features (162, Gabor
filter based features [163], wavelet features [164] and interest point based features (7,165
By using these extracted features, three categories of object representations have been

[166,167). In this category

proposed. The first category is point-based representatio
both the object and the image are represented by using a set of interest points. Object
detection is modeled as a matching process at these interest points. This category of
methods is always used to detect a single object since the interest points are cligible to
characterize a single object rather than a class of objects. The second category is global
model based methods, such as (159, 168]. This category of methods attempts to match

representation to different regions of the test image. The third category

the global objec
is part-based methods, such as [169-172]. This category of methods defines a part-based

object representation and attempts to find a matched instance of a part of the object in

of methods are always used to detect an instan

the test image. The last two categori
entations not only characterize the common

of the class of objects since these object repres
properties of the objects that belong to the identical class but also are flexible enough to

accommodate the within-class variability of objects.

ple nearest-

A number of learning algorithms have been proposed, ranging from sis
neighbor schemes to complex approaches, such as neural networks [173], probabilistic

methods (159,169, 174] and polynomial classifiers [164). However, the problem with these
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learning algorithms s that they rely on some manual steps to eliminate the background
clutter.

In the area of image representations, two types of image representations have been

proposed in the existing object detection methods. The first type is point-based rep-
resentations [166], in which the image is regarded as a set of independent points. The
second type is block-based representations [171,172], in which the image is modeled as a

set of fixed

ize rectangular arrays of pixels. The problem with these two types of image
representations is that completion and accuracy of the object region cannot be achieved
Recently, a region-based representation [175] has been proposed for object detection. It
‘models an image as a set of homogencous components using the technique of image con-

tent. based segmentation. Although

‘gmentation requires an additional computational

cost, the obtained segments facilitate object detection in that each segment can elimi-

nate distractors before identifi to improve the of The

segmentation procedure in this object detection method is

similar to the pre-attentive
segmentation module in the proposed cognitive visual perception paradigm

Recently, a cascaded object detection method has been proposed [1

con

tructs a cascade of classifiers using a degenerate decision tree. The authors claim
that the cascade can be seen as an object specific focus on attention mechanism. However,

this detection method does not really model the visual attention mechar

Current Issues of Object Detection

There are three problems in this traditional strategy of object detection. The first one

is that identification becomes computationally expensive in the cluttered environment

since feature matching using high-level object representation is performed over the entire

scene in which a large number of di

ractors exist
The second problem is that it has little flexibility to use a fixed set of distinctive
features. It ignores the fact that discrimination between an object and the background

will be changed in different scenes and the background cannot always be specified in
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advance. Thus it is possible that a set of features have to be re-designed for detecting a
new class of objects or for the case that a new background shares some types of features
with the object

The third problem is perceptual completion of the object region. In most commonly
studied object detection systems, e.g., [166], the training stage requires a manually seg-
mented region of the object and the detection stage is actually a decision process to
determine whether or not the input image contains an instance of the object. Although
some detection systems, e.g., [171,172], obtain a fixed-size block region of the detected

object, the complete and accurate region of the object is not achieved. However, the ob-

ject detection system for robots requires the ability to automatically obtain the complete
and accurate object region since it can provide more useful information, e.g., shape and

size of the region, for learning and producing appropriate actions

7.3.2  The Proposed Method of Object Detection

This thesis therefore attempts to propose a new object detection method to solve the
above problems by using the proposed cognitive visual perception paradigm. The pro-
posed perception paradigm can improve the efficiency of object detection in the cluttered
environment, since the attentional selection stage can serially select a candidate object

using the low-level features, followed by high-level post-attentive perception only on the

attended object. Therefore this thesis models object detection as a two-stage procedure.
The first stage is attentional selection, which performs top-down biasing over the whole
scene using the low-level LTM object representation. The second stage is post-attentive
recognition, which performs only on the attended proto-object to verify whether it is the
target and obtains the complete region of the target by using the high-level LTM object
representation.

Since low-level features are used during the attentional selection stage in the pro-
posed perception paradigm, the proposed object detection method is computationally

efficient. Some methods have been proposed to show the effects of integrating attention
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into object detection, e.g., [105,177). However, these methods only use the bottom-up
attention. Their disadvantage is that bottom-up attention can only detect an object that,
is conspicuous to its neighbors. In other words, these bottom-up attention based meth-
ods cannot guide attention to the target dircctly when the target is not the most salient
object in the scene. Thus, integrating top-down attention is an appropriate way to model
object detection. The challenge of involving top-down attention is to find a compromise

between effectiveness and efficiency. Traditional identification methods for object detec-

tion, .., [166,171,172), can be scen as a high-level top-down process. However, these
traditional methods perform over the entire cluttered environment using high-level fea-
tures and thereby they are computationally expensive. Thus, an efficient and effective
top-down attention procedure using low-level distinctive features is required so that the
candidate target can pop out as soon as possible during the attentional selection stage.
Since the IC hypothesis s used to model top-down attention in the proposed perception

paradigm, i.e., only one or a few conspicuous features of the object is deduced to effec-

tively and efficiently guide top-down biasing (as shown in section 5.3 in Chapter 5), the
proposed object detection method keeps the balance between effectiveness and efficiency
for top-down attention.

As for the second issue, the proposed perception paradigm uses a set of pre-attentive

feature dimensions and autonomously deduces a conspicuous feature from these dimen-

sions for guiding top-down biasing. In other words, the learned cor

icuity between the
object and a variety of backgrounds is used as a metric of autonomous feature selec-
tion. Therefore the proposed object detection method is flexible enough to distinguish
the object and the distractors in different scencs. That is, the proposed method is more
adaptive to various scenes than other methods,

With regard to the third issue, the proposed perception paradigm provides a way

to obtain a complete and accurate region of the object in the post-attentive percep-

tion stage. In fact, the completion of the object is obtained by the combination of

pre-attentive segmentation and post-attentive perceptual completion processing. Pre-
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attentive segmentation divides the scene into homogeneous proto-objects, one of which
s then selected by attention, and finally post-attentive perceptual completion processing
yields the complete and accurate object region around the attended proto-object.

Compared with other detect

n methods, the proposed method therefore has three
advantages: 1) good balance between cffectivencss and efficiency, 2) adaptivity, and 3)

perceptual completion of the target region.

7.3.3 Framework of the Proposed Object Detection

According to the proposed cognitive perception paradigm, the proposed object detec-
tion method involves four modules: pre-attentive segmentation, attentional selection,
post-attentive recognition and post-attentive learning of the object representation. It is

illustrated in Figure 7.4,

Learning of LTM
Compicms

Astended
nnn.n Proto-object
—_—

Pre-attentive

Selection by Trainers

Figure 7.4: The framework of the proposed object detection method. The red lines represent
learning pathways (solid lines denote the autonomous learning pathway, while dashed lines
denote the interactive learning pathway) and the blue lines denote the detection pathway.

This method consists of two phases: a learning phase and a detection phase. The
objective of the learning phase is to develop the LTM representation of the object to
be detected. The objective of the detection phase is to detect the object in an input
image by using the learned LTM representation of that object. During the first several
moments, only the learning phase works. Given a training image, the complete region
of the object in the image is manually selected by the trainer and it is sent to the post-

attentive learning module. That is, the attentional selection module and post-attentive
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recognition module do not work in these moments. Since manual selection is involved,
the learning process in these moments is called the inteructive learning way. Once the
developed LTM representation of the object is capable enough to guide top-down biasing,

the detection phase and learning phase start to work together. Given a test image, the

object is detected by of the p module, attentional
selection module and post-attentive recognition module. Then the detected object is used
for learning, That is, the trainer’s selection is no longer required. Thus, the learning
process in these moments is called autonomous learning way.

The pre-attentive segmentation module divides the input image into a set of proto-
objects, which are basic units of the following processing, including attentional selection,
post-attentive recognition and post-attentive learning, The technical implementation of
this module has been given in Chapter 4

The attentional selection module rapidly localizes a candidate proto-object using the

top-down attention mechanism. A kerelevant feature is
deduced from the low-level LTM representation of the object, as shown in (5.26) in
Chapter 5. Then the task-relevant feature is used to estimate a location-based top-down

bias map and the technical implementation has been given in section 5.3.6 in Chapter 5

Finally, the obtained location-based top-down bias is used to estimate the proto-object
based attentional activation by subsequently using (5.61) with wg = 0 and wye = 1 and
using (5.62),

ion module

Once a proto-object is selected by attention, the post-attentive recogn

first obtains the complete and accurate object region around the proto-object and then

recognizes the attended object in order to validate whether the attended object is the
target to be detected. The detailed implementation has been given in section 6.2, section
6.3 and section 6.5 in Chapter 6. If the attended object is not the target, another
procedure of attentional selection is performed by using more task-relevant features of

the target.

Once the attended object is verified or the complete region of the object is selected by
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the trainer, it is used to learn the corresponding LTM object representation. The learning

algorithms for the local coding and the global coding have been given in Algorithm 1 and
Algorithm 2 respectively in Chapter 6. In both algorithms, the index of the LTM object

representation k s known.

7.3.4 Experimental Results
Experimental Setup

Three task-relevant objects are used to test the proposed object detection method: a file
folder, a book and a human. For training for the file folder and the book, 20 images
obtained under different viewing conditions are used respectively. For testing for the
file folder and the book, 50 images obtained under different settings (including noise,
transformation, lighting changes and occlusion) are respectively used. The size of each
image is 640 x 480 pixels

For detecting the human, three videos are obtained by a moving robot under different
viewing conditions (including noise, transformation, lighting changes and occlusion). Two
different office environments have been used. Video 1 and video 2 are obtained in office
scene 1 with low and high lighting conditions respectively. Video 3 is obtained in office
scene 2. All three videos contain a total of 650 image frames, in which 20 image frames
are selected from video 1 and video 2 for training and the rest of the 630 image frames
are used for testing, The size of each image is 1024 x 768 pixels. It is important to note
that each testing image includes not only a target but also various distractors. The noise
images are manually obtained by adding salt and pepper noise patches (noise density:
0.1, patch size: 5 x 5 pixels) into original r, g and b color channels respectively.

The results of the proposed method are compared with the results of Itti’s model [35]
(i.e., a space-based bottom-up attention model), Sun’s model [42] (i.e., an object-based
bottom-up attention model) and Navalpakkam’s model [39] (i.e., a space-based top-down

attention model) respectively.
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Detection of An Object Having A Single Part

The first task is to detect the file folder. Due to the page limitation of the thesis, only
the learning result of the low-level LTM object representation of the file folder is shown
in Table 7.2. However, it is enough to show how the proposed object detection method
works in this task since the low-level LTM object representation, rather than the high-
level LTM object representation, is used to guide the top-down biasing that is the most
important module in the proposed detection method. An example of the learning results
of the high-level LTM object representation will be shown in the second task.

Table 7.2 shows that the file folder has only one part and the blue-yellow feature can
be deduced as the task-relevant feature dimension since the value ju*/(1 + 0*) of it is
maximal. Detection results of the proposed method are shown in Figure 7.9(c). It can

be

cen that the file folder is successfully detected. Results of Itti's model, Sun’s model
and Navalpakkam's model, as shown in Figure 7.10(b), Figure 7.10(c) and Figure 7.10(d)

respectively, show that these models fail to detect the target in most cases.

Detection of Objects Having Multiple Parts

The second task is to detect the book that has multiple parts. As an example, the
learned high-level LTM local coding of the book in terms of the red-green pair and the
learned high-level LTM global coding of the book are shown in Figure 7.7 and Figure 7.8
respectively. The learned low-level LTM representation of the book is shown in Table
73,

Table 7.3 has

shown that the book has two parts and the blue-yellow feature in the

first part can be deduced as the task-relevant feature dimension since the value */(1+0*)
of this feature is maximal. Detection results of the proposed method are shown in Figure
7.11(c). It can be scen that the book is successfully detected. Results of Itti's model,
Sun’s model and Navalpakkam's model, as shown in Figure 7.12(b), Figure 7.12(c) and
Figure 7.12(d) respectively, show that these models fail to detect the target in some cases.

The third task is to detect a human. The learning result of the low-level LTM object
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representation of the human is shown in Table 7.4. It has shown that the human has
two parts (including face and body) and the contour feature can be deduced as the task-
relevant feature dimension since the value */(1+0°) of this feature is maximal. Detection
results of the proposed method are shown in Figure 7.13(e). It can be sen that the human
is successfully detected. Results of Iiti's model, Sun’s model and Navalpakkam's model,
as shown in Figure 7.14(b), Figure 7.14(c) and Figure 7.14(d) respectively, show that

these models fail to detect the target in most cases.

Performance Evaluation

Detection performance is evaluated using true positive rate (TPR) and false p

(FPR), which are calculated as:

TPR = TP/nP, (1)

FPR= FP/nN, (72)

where nP and nN are numbers of positive and negative objects respectively in the testing

image set, TP and FP are numbers of true positives and false positives. The positive

object is the target to be detected and the negative objects are distractors in the scene.

Detection performance of the proposed detection method and other visual attention

based methods is shown in Table 7.1. Note that “Naval's" represents Navalpakkam’s

method in Table 7.1

Discussion
Experimental results have shown that bottom-up attention models, e.g., [38,42], cannot
detect the target successfully in most cases since they do not integrate the top-down atten-
tion mechanism. Although Navalpakkam’s attention model [39] simulates the top-down

attention mechanism, it is ineffective to detect the target in the environment containing
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Table 7.1: Object detection performance.
Task | Method | TP | FP | nP | nN_| TPR (%) | FPR (%)
Proposed | 50 | 0 | 50 | 268 | 100.0 0.00
| s |2 fas |50 | 268 | a0 1791
Sun's | 2 [ 48 |50 | 268 | 400 1791
Naval's | 17 [ 33 | 50 | 268 | 3400 | 1231
Proposed | 47 | 3 | 50 | 244 | 9400 123
o, | Mis | 16| 34|50 | 214 | 3200 | 1393
Sun’s |27 23|50 | 244 | 5400 943
Navals | 41| 9 | 50 | 244 | 8200 360
Proposed | 581 | 49 | 630 | 30049 | 9222 016
5 | mis | 5 |62 6303009 079 202
Sun's | 2 | 62863030049 | 032 203
Naval's | 36 504 | 630 30949 | 571 192

distractors which share some features with the target, as shown in Figure 7.10(d) and
Figure 7.12(d), or containing a lot of clutter, as shown in Figure 7.14(d). The exper-
imental resulis indicate that the proposed detection method is effective. Furthermore,
the task-relevant feature(s) of the target can be selected autonomously from the learned
LTM object representation. Thus the proposed detection method is adaptive to detecting
any object without the requirement of pre-defining distinet, types of features for different
objects or scencs. Experimental results under various settings, including noise, transfor-
‘mation, lighting changes and occlusion, have also shown the robustness of the proposed
detection method. Finally, experimental results have shown that the complete target

region can be obtained in the proposed detection method

Table 7.2: Learned low-level LTM object representation of the fle folder. f denotes a pre-

attentive feature dimension. n denotes the index of a part or a contour instance. The definitions

of 1%, 0*, u* and 0* can be seen in section 5.3.3 in Chapter
a 2 T W T Ta)
05

n] @ | o
Figure 7.6(a) | 79 | 162
7 128

T
int [ T[T 315 [ 138 21
rg [1] 34| 92 | 635|281 22
by |1 71 1914 58 28.1
o | 1| N/A| N/A | 426 | 265 15
oge | 1| N/A| N/A | 388 | 188 20
owe | 1| N/A| N/A | 204 | 175 16

1

N/A| N/A | 391 | 250 15
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Figure 7.5: Training samples of the task-relevant objects. (a),(b),(c) Original images of
training samples of the file folder, the book and the human respectively.

= |
= )
® ®) ©

Figure 7.6: Learned appearance descriptors in the low-level global codings. (a) The file folder
(b) The book. (€) The human (the figure is from a bird's-eye view)
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Table 7.3: Learned low-level LTM object representation of the book. f denotes a pre-attentive
feature mmnmon n denotes lhc mdcx of a part or a contour instance. The definitions of 4?,

* can be seen in n 5.3.3 in Chapter
7 In oo [ w | o [w/i+e?
o 1 Flgurc T6(0) | 750 [197] 36
Tt [ 1] 1066 ] 58 | 279 [145| 18
rg |1 221 | 87 [ 1996182
by | 1-1080| 91 |2156| 87
op | 1f N/A [N/A | 418 | 98
o 1] N/A | N/A | 414 [ 128
owe [ 1] N/A | N/A | 347 | 163
owse | 1 N/A | N/A | 465 | 15.7
int [ 2] 605 | 82 [ 800 | 57
g |2 04 |43 [ 18364
by |2 1208 [ 67 [1947] 81
oe 2 N/A | N/A| 485 [111
oo 2] N/A | N/A| 538 | 99
owe |2 N/A | N/A | 384 | 146
o | 2| N/A | N/A | 504 [203

7.4 Conclusion

This chapter has presented the robotic applications of the proposed cognitive visual
perception paradigm in the task of object detection. Based on this perception paradigm,

object detection consists of two types. The first type is the detection of salient objects.

It is based on the unconscious aspect of the proposed cognitive perception paradigm.
This type of detection can be further applied for a variety of robotic tasks, such as
landmark detection. Experimental results have shown the effectiveness of the bottom-
up competition module and the robustness of the object-based attentional selection of
the proposed cognitive perception paradigm. The second type is the detection of task-
relevant objects. It is based on the conscious aspect of the proposed cognitive perception
paradigm. This type of detection is implemented as a two-stage process. The first stage is
attentional selection. The task-relevant feature(s) of the object to be detected are used

to guide attentional sclection through top-down biasing to obtain an attended proto-
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Table 7.4: Learned low-level LTM object representation of the human. f denotes a pre-
attentive feature dm\ensmn n denotes the index of a part or a contour instance. The definitions

of %, 0%, p* an an be seen in section 533 in Chapter
/ n] u* o Tw/(+0%)
o |1 Figure 7.6(c) | 6853 | 69 | 8.6
Wt |14 217 [ 188|139 13
g |1 70| 71 |286]108] 24
by 1| 109 54 484 | 109 41
o | 1[N/A|N/A |334] 67 43
oge | 1| N/A | N/A | 398|114 32
oo | 1| N/A [ N/A [[37.4] 61 53
owse | 1 N/A| N/A |375]135| 26
it 2520 | 125 [ %6 156]| 15
g |2 23| 174 |495|188] 25
by [2]-203| 69 [604|223| 26
oe |2 N/A|N/A | 121] 66 16
oo [ 2| N/A [ N/A 165 | 8.3 18
oo 2 N/A [ N/A [ 150 79 17
ouse | 2 N/A [ N/A [172] 81 19

object. The second stage is post-attentive recognition. It performs only on the attended
proto-object to verify whether it is the target and to obtain the complete region of the
target by using the high-level LTM object representation. If not, another procedure of
attentional sclection is performed by using more task-relevant features. Experimental
results have shown that this new two-stage object detection process is more effective,

efficient, adaptive and robust than other methods.
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(b)

Figure 7.7: Learned high-level LTM object representation in terms of the red-grcen pair of
the book. It can be seen that the complete structure of a PNN based local coding consists of
three layers, including an object layer, a part layer and an instance layer. The curves in the
instance layer show the Gaussian distribution of each instance. The curves in the part layer
show the probabilistic mixture estimation of each part. The curves in the object layer show
the probabilistic mixture estimation of the object. (a) Appearance descriptor. (b) Salience
descriptor. -




(a)

)

Figure 7.8: Learned high-level gln\u\hndmg ulllu- LTM object representation of the book. It
be seen that the complete structure of a. ased global coding consists of three layers,
including an object layer, a contour m.d a control point layer. The curves
the control point layer show the m,m.u. distribution of each control pas 'n curves in
the contour instance layer show the pr ixture estimation of each c instance.
"l e i 4 e npae st gocbalilotle i ikl of e object. (a)
Appearance desciptor. (b) Salienco descripar.
181
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Figure 7.9: Detection of the file folder using the proposed object detection method. Each
colum represents a type of experimental setting. Column 1is a typical setting. Column 2 is a
noise setting of column 1. Column 3 is a spatial transformation (including translation, scaling
and rotation) setting with respect to column 1. Column 4 is a different lighting setting with
respect to column 1. Column 5 is an occlusion setting. Row (): Original input images. Row (b)
Pre-attentive segmentation. Each color represents one proto-object. Row (c): Location-based
top-down bins map in terms of blue-yellow feature. Row (d): Proto-object based attentional
activation map. Brightness represents the attentional activation value. Row (¢): The complete
region of the target. The red contour in the occlusion case represents the illusory contour [175],
which shows the post-attentive perceptual completion effect.
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igure 7.10: Detection of the file folder using other object detection methods

al setting. Column 2 is a noise

represents a type of uxw'nmvnhﬂ<Hm;, Column 1 is a typi
setting of column 1. Column 3 is a spatial transformation (including translation, scaling and
otation) seting with reopec $0 columa 1, okuma 4 I ¢ ifleent lghiog seting with respect
on results using 1tti’s model

to column 1. Column 5 is an occlusion setting. Row (b): Det
The red rectangle highlights the most salient location. Row (c): Detection results using Sun’s

he red ellipse highlights the most salient object. Row (d): Detection results using
ighlights the most salient location.

Navalpakkam’s model. The red rectangle
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Figure 7.11: Detection of the book using the proposed object detection method. Each column
Feprsnts 90 of xperimentalsting Column 1 is a typical setting. Column 2 is a noise

ting of column 1. Column 3 is a spatial transformation (including translation and rotation)
wmng with respect to column 1. Column 4 s a different lighting setting with respect to column
1. Column 5 is an occlusion setting. Row (): Original input images. Row (b): Pre-attentive
segmentation. Each color represents one proto-object. Row (c): Location-based top-down bias
map in terms of blue-yellow feature. Row (d): Proto-object based attentional activation map.
Brightness represents the attentional activation value. Row (¢): The complete region of the
target. The red contour in the occlusion case represents the illusory contour [178], which shows
the post-attentive perceptual completion effect.
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Figure 7.12:  Detection of the book using other object detection methods. Each column
represent xXpi Column 1 is a typical setting. Column 2 is  noise
setting of column 1. Col Al transformation (including translation and rotation)
setting with respect to column 1 4 is n different lighting setting with respect to
occlusion setting. Row (b): Detection results using 1tti's model
ts the most salient location. Row (c): Detection results using Su

5 1 type of

5
column 1. Column 5 is
The red rectangle highli
model. The red ellipse highlights the most salient object. Row (d):
Navalpaklam’s model. The red rectangle highlights the most salient location.

tion results using
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Figure 7.13: Detection of the human in the cluttered environment using the proposed object
detection method. Each column represents a type of experimental setting. Column 1 is a typical
setting (from video 1). Column 2 is a noise setting of column 1. Column 3 is a scaling setting

with respect to column 1 (from video 1). Column 4 s a rotation setting with respect to column
1 (from video 4). Column 5 is a different lighting setting with respect to column 1 (from video
2). Column 6 is an occlusion
Pre-attentive segmentation.

etting (from video 4). Row (a): Original input images. Row (b)
ch color represents one proto-object. Row (c): Location-based
top-down bias map in terms of contour. Row (d): Proto-object based attentional activation
map. Brightness represents the attentional activation value. It can be se
object based attentional activation maps are the same with the corresponding location-based
top-down 1

1 that these proto-

tis due to two facts. The first fact is that the units of top-down biases
in terms of contour are proto-objects. The second fact s that only top-down biases cont
to the attention
red contour

activation in this task. Row (¢): The complete region of the target. The

1 the occlusion case represents the illusory contour [178], which shows the post
attentive perceptual completion effect
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7.14: Detection of the human in the cluttered environment using other object detection
mothods. Each column represents a type of experimental setting. Column 1 is a typical setting
(from video 1). Column setting of column 1. Column 3 is a scaling setting with
repect o cohuma 1 (fom video ). Coluun & i 8 rotaton etlng with rspct o column 1
ghting satting with respect to column 1 (from video
Detection results using 1t

Fig

(from video 4). Column 5 is a differ
2). Column 6 is an occlusion setting (n.,m video 4). Row (b):
model. The red rectangle highlights the most salient location. Row (c): Detection results using
Sun's model, "Tho red clipso highlights the most salient object. Row (d): Detoction rosults
Navalpakkam’s model. The red rectangle highlights the most salient location.




Chapter 8

Applications for Target Tracking

8.1 Introduction

Target tracking is another important application of the proposed cognitive visual paradigm
in the sense that the conscious perception path can direct the visual attention to the tar-
get to be tracked. Thus, this chapter presents the method of target tracking using the
proposed cognitive visual perception paradigm

Four sections are included in this chapter. Section 8.2 introduces some challenging
issues in target tracking. Section 8.3 reviews some existing methods of target tracking.

Section 8.4 presents the proposed target tracking method. Section 8.5 illustrates the

experimental results using the proposed target tracking method.

8.2 Background

8.2.1 Current Issues of Target Tracking

important ability for a moving robot in several types

Tracking a target of interes
of applications, including surveillance, guiding people and driving assistance.
A typical visual tracker can be formulated as a state estimator [179]. The tracked

target. is defined by a state sequence that evolves over time. At each moment, the target
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state s estimated by a combination of dynamical prediction and data association. Thus
& tracker mainly consists of three components: target model, dynamical prediction and
data association,

There are mainly three types of challenging issucs in the target tracking task. The
first challenging issue is caused by the cluttered and dynamically changing background.
This challenge could occur in two cases: 1) Background contains a variety of clutter that
shares some features with the target; 2) Discrimination between foreground and back-
ground will change dynamically during tracking and this change is especially evident in
robotic applications, such as following or guiding a target on a long course. The ability to
dynamically adapt the target model to the environment is one of the key points to tackle

this challenge. Various features, such as contour [180-182], edge [183), optical flow [184],

color [185-187), steerable pyramid [188] and Haar wavelet feature [189], have been used to
build the target model. To cope with this challenging issue, two requirements for building
the target model should be satisfied: robustness and discriminability. Robustness means
that the target model can represent various instances of the target in different viewing
conditions. Several probabilistic models, such as Gaussian distributions (185, 188] and

histogras

186, 187), are proposed to improve the robustness. Subspace appearance

models [190, 191] are also proposed to cope with varying pose and illumination. Di

criminability means that the target model can be discriminated from the background
A method [192) is initially proposed for online selecting n discriminative feature from
aset of color features by comparing likelihood variance of the target and surrounding
background. This method is further extended in (193,194]. Another method (195] is also
proposed for online feature selection from a set of Haar wavelet features. However, these

feature selection methods require further improvement in the following issues. Firstly,

some important features are not included in the candidate feature set, such as contour.
Secondly, simple geometric shapes, such as rectangles or ellipses, are used to outline the
target and surrounding regions, with the result that outliers included in cither region
isturb the selection. Th

probably dly, the selected feature in these methods is locally
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discriminative since only the background region around the target is used for comparison

The second challenging issue is related to the recoverability of the target in the case
of tracking failure. Besides background clutter, a large variation of motion and full
occlusion during some sequential frames are another two major reasons causing tracking
failure.  Although some methods 189, 196,197] have been proposed to accommodate
abrupt motion, the occurrence of tracking failure cannot be absolutely eliminated based
on the fact that the designed tracking systems cannot accommodate all possible reasons
that cause failure. Thus an automatic recovery mechanism is required. This thesis
proposes that two components are necessary for the recovery mechanism:  validation
and global search. For each frame, the estimated target state is validated. If it is
inappropriate, a global search process then attempts to detect the target in the entire
image. It is obvious that online selecting a target's feature that is discriminative over
the entire image s required by the global search

The third challenging issue is related to the target completion. A precise and complete
target region can provide important information for a robot’s following actions, such as
grabbing and path planning. At present, some tracking methods only use primitive geo-
metric shapes, such as an ellipse [186, 188], to represent the target roughly. Contour based
target representation [180-182, 198] could achieve the completion, but it will be unsatis-
factory in the cluttered environment without some segmentation processing in advance.
Thus, this thesis proposes that unsupervised image segmentation that achieves homoge-

nous subregions is helpful to achieve the target completion by subsequently applying a

top-down process to these subregions. Consistent with the proposed idea, a blob-based
tracking method [185] has been presented in the environment with little clutter. How-
ever, integrating an effective and efficient unsupervised segmentation into tracking for

the highly cluttered environment is still an open issuc.
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8.2.2 Proposed Method for Target Tracking

Therefore this thesis attempts to propose a biologically-inspired visual target tracking

method using the proposed cognitive visual perception paradigm in order to solve the

above issues in a unified framework. The target tracking process is modeled as a three-

stage process, consisting of pre-attentive segmentation, attentional selection and post-

attentive recognition. The p v ion stage ly divides the
scene into homogencous proto-objects. The attentional selection stage performs top-
down biasing based on the task-relevant feature of the target to attentionally select one
proto-object. If the attended proto-object is confirmed to be the tracked target in the
post-attentive recognition stage, a complete target region is then achieved. Otherwise,

it means an occurrence of tracking failure and another attentional

selection proces

(i,
recovery procedure) is carried out over the entire image.
By using the proposed LTM object representation and the dynamical learning algo-

rithms, as shown in section 6.4 in Chapter 6, the target model can be built and learned

online. The PPN based target model can improve the robustness in that it can embody
a variety of instances of the target. The inclusion of salience descriptors in the target
model can also improve the discriminability in that the salience descriptors can repre-
sent the global discriminability between the target and the background over the entire
image. Furthermore, the target model is built using the pre-attentive features, including
intensity, red-green, blue-yellow, local orientations and contour. Thus, this target model
not only reduces computational cost due to the low-level property of these pre-attentive
features but also covers a broad feature space for tracking

‘The integration of the post-attentive recognition stage based on the high-level LTM
representation of the target can provide a high-level and precise identification of the at-

tended object to activate the automatic recovery mechanism for tracking failure. Mean-

while, the task-relevant feature(s) deduced from the salience descriptors of LTM target
representation are globally discriminative such that they are cligible for global search

during the recovery procedure.
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Bya of ion and p ive perceptual com-

pletion processing, the complete region of the target can be obtained. The complete
target region can furthermore outline the target and background precisely to improve
the selection of the task-relevant feature for the next moment

Therefore this new tracking method has the following advantages

1. Adaptivity: The task-relevant feature(s), which can globally discriminate the tar-
get and the background, can be autonomously deduced online from the learned
salience descriptors such that they can cope with cluttered and dynamically chang-
ing environments. Furthermore, a broad feature space can be used as the candidate

of the task-relevant feature(s)

Robustness: It has the ability to automatically recover tracking failure caused by

any reason.

Target completion: By a combination of pre-attentive segmentation and pos

attentive completion processing, the precise and complete target region is achieved

8.3 Related Work

Target tracking from stationary cameras has been effectively achieved by using frame
differencing or adaptive background subtraction techniques [179]. However, target track-
ing from a moving camera is a great challenge due to background motion. Egomotion
estimation [199] is a popular approach to dealing with the background motion. It cal-
culates the background’s motion vector, which is then used for compensation. Most of
egomotion methods are based on registering the background motion using a linear spatial

200], e, affine These methods assume that the appar-

ent motion of background is dominant in the image sequence. Feature matching between

two consecutive images is applied to estimate parameters of the spatial transformation

Although egomotion estimation performs well in the area of computer vision, there is
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one problem in robot applications: the background motion is sometimes geometrically
nonlinear if images are taken from moving robots. For instance, the background motion
is a radial expansion outward the center field of view when the robot moves forward.
Appearance-based methods are good candidates for coping with the challenge of track-
ing from a moving camera. There are mainly two categories of appearance-based meth-
ods for visual tracking. The first category is image registration based methods, such as
kernel-based tracking [186], template-based tracking [183], contour-based tracking [182)
and motion-based tracking (180, 188,190, 191]. These methods are based on an image
constancy assumption. The target region has no or small changes in terms of some
appearance features (e.g., ilumination and texture) between the present frame and pre-
vious frame. Thus, these methods attempt to optimize a correlation-like criterion, which
‘measures the similarity between the previous state and observations in the present scene.
The second category is recursive Bayes' filter based methods, which model probabilis-
tic representations of states, dynamics and observations and estimate the optimal state at
cach time step using Bayes' theorem and probabilistic estimation techniques. Thus these
methods adapt to uncertainties. The Kalman filter [179] is always used to implement the
recursive Bayes' filter in the case that both dynamics and observation functions are linear.
The extended Kalman filter (EKF) [179] and the unscented Kalman fiter (UKF) [201)
are further proposed for the case that dynamics or observation functions are nonlinear,
The particle filter [202] is a general approach to implement the recursive Bayes' filter by
representing the density using a set of weighted samples. For tracking in the environ-
ment containing multiple targets, a probabilistic data association filter (PDAF) [179] and
a joint PDAF (JPDAF) [203] are proposed. Applications of these algorithms in a variety

of scenarios have been presented: (204] uses the Kalman filter for tracking vehicles; [205]

and [206] use the EKF for object tracking and 3-D pose estimation; and the condensation
algorithm [181] as well as other tracking algorithms [189,207-209] are presented based
on particle filters.

Some methods [210,211] are also proposed to model tracking as a foreground-background
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classification procedure.

Visual attention applications for target tracking have been proposed recently. A few
tracking approaches based on bottom-up attention mechanism have been reported re-
cently [212], but these methods suffer if the background is more salient than the target
In the case of biological visual attention, humans keep the target model in their memory
while tracking the object. Hence top-down biasing is necessary when tracking in a highly
cluttered environment. As we know, a top-down attention based tracking approach is
firstly presented by [213]. In that method,  target model is learned at the beginning
of tracking in terms of low-level features according to the target's uniqueness of each
feature, and tracking is modeled as a top-down visual search procedure based on the
learned target model. One difference between the proposed method and [213) is that the
proposed method is object based by using Duncan’s IC hypothesis. The IC hypothesis
provides two advantages: 1) A task-relevant feature of the target can be explicitly dis-
criminated from the background online so as to effectively and efficiently guide top-down
attentional selection, and 2) the complete target region can be achieved after attentional
selection. The other difference is that the task-relevant feature can be selected from a

broader feat

space, including contour, intensity, colors and orientations, in the pro-

posed method

8.4 Framework of Proposed Tracking Method

The proposed tracking method consists of four modules

as shown in Figure 8.1: Online
learning of the target model, pre-attentive segmentation, attentional selection and post-

attentive recognition

The p dul s aset of ive features at mul-

tiple scales and then divides the scene into homogenous proto-objects in an unsupervised
manner. The technical implementation of this module has been given in Chapter 4

The target model is learned simultaneously with the tracking process, as shown using
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Figure 8.1: The framework of the proposed target tracking method.

the red lines in Figure 8.1, In the first tracking frame, the target model is initialized by

using only one type of supervision information: the trainer specifies which proto-objects
belong to the target. In the following tracking frames, the tracked instance of the target is
used to update the target model so that it can accommodate changes in the environment.
The learning algorithms for the local coding and the global coding have been given in
Algorithm 1 and Algorithm 2 respectively in Chapter 6. Tn both algorithms, the index
of the LTM object representation k is known. A minor change is made in both learning
algorithms for the tracking task. It is that some inactive RBFs of the global PNN and
the local PNN are discarded in order to keep track of the most recent target’s state. A

pre-defined threshold is used to determine whether a RBF is active or inactive.

Following lection module, including spa-

tial biasing (i.c., dynamical prediction) and appearance biasing (ic., data association),

is carried out. Spatial biasing estimates a spatial bias map based on the target region
at previous moments and dynamical prediction techniques. Due to the variation of tar-
get’s motion, target, dynamics is difficult to estimate. Thus, this thesis only predicts a
large region centered at the target, position at the last moment as the predicted region.
Appearance top-down biasing is then performed in that region. Using the task-relevant
feature of that target, appearance biasing then evaluates a proto-object based attentional
activation map, which represents the likelihood of each proto-object to be the tracked
target in the predicted region. The proto-object with the maximal attentional activation

is selected as the attended proto-object. The detailed implementation of the appearance
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biasing has been given in Chapter 5

Once the attended proto-object is obtained, it is sent to the post-attentive recognition
modaule, including validation and post-attentive completion processing. If the attended
object is confirmed to be the target, a precise and complete target region around the

attended proto-object is obtained. Otherwise, it means an occurrence of tracking failure

and the recovery ism is triggered by PP biasing procedure
again over the entire image to globally search for the target. The detailed implementation
of the post-attentive recognition and perceptual completion processing has been given in

section 6.2, section 6.3 and section 6.5 in Chapter 6.

8.5 Experiments

This proposed tracking method is tested in four tasks in different scenes to show its
advantages. All tracking results are shown in the attached videos.

Meanwhile, performance of the proposed method is also compared with CamShift
(Continuously adaptive mean shift) algorithm [214]. Camshift algorithm is one of the
appearance-based target tracking approaches. It is an adaptation of the mean shift
algorithm [215), which is a non-parametric technique to find the distribution mode of the

target by climbing the gradient of the probabilistic distribution

8.5.1 Experimental Setup

Four videos are obtained by a moving robot in four different scenes under different set-
tings, including variations of lighting and viewing conditions and occlusion. The frame
size of video 1 and video 2 is 1024 x 768 pixels and the frame size of video 3 and video
415 720 x 576 pixels. In order to test the robustness of the proposed tracking method in
cases of large variation of motion, lower frame rates are accepted in these experiments.
‘The frame rate of video 1 and video 2 is 2 frames/sec and the frame rate of video 3 and

video 4 is 2.5 frames/sec.



8.5.2 Task 1

The first task is to track one moving human (i.c., target) by a moving robot in scene
1, in which the background shares some featurcs with the tracked target. The objec-
tive of this task is to show the adaptivity of the proposed tracking method in the
sense that it can adaptively track the object by automatically selecting a discrimi-

native feature. The task-relevance of each feature dimension, i.e., ij/(1 + 0}) where

1 € {int,rg,by, 00, 015+, 00, Oy3se, t}, obtained from the online learned low-level LTM
object representation of the target in scene 1, is shown in Figure 8.2. It indicates that
contour is the task-relevant feature. The tracking results of the proposed method are
shown in Figure 8.3(m) - 8.3(p): The proposed method succeeds in tracking the target
when it is passing by the red board. Results of the Camshift algorithm are shown in
Figure 8.3(q) - 8.3(t): It fails to track the target when it is passing by the red board,

since the red board shares hue values with the target.

8.5.3 Task 2

‘The second task is to track one moving human (i.c., target) by a moving robot in scene 2,
in which there is full occlusion during several sequential frames. The objective of this task
is to show that the proposed method can automatically recover the target after it goes
through the full occlusion. The task-relevance of each feature dimension, i.e., u3/(1+07)
where f € {int,rg, by, 0, 0yse, Oaoe 0135+, ct}, obtained from the online learned low-level
LTM object representation of the target in scene 2, is shown in Fig 8.4. It indicates that
contour is the task-relevant feature. The tracking results of the proposed method are
shown in Figure 8.5(m) - 8.5(p): The proposed method succeeds in tracking the target
after it goes through the full occlusion. Results of the Camshift algorithm are shown in
Figure 8.5(q) - 8.5(t): The tracking region covers almost the whole scene after the target
goes through the ocelusion, so the CamShift algorithm fails to recover the tracking after

the full occlusion
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8.5.4 Task 3

The third task is to track one moving human (i.c., target) by a moving robot in scene 3

in which there is another moving robot (i.e., distractor). The objective of this task is to
show that the proposed tracking method is effective in the environment with distractors
and clutter. The task-relevance of each feature dimension, i.e., uj/(1+ o) where f €

{int,rg,by ct}, obtained from i Tow-level LTM object

representation of the target in scene 3, is shown in Figure 8.6. It indicates that contour is
the task-relevant feature. As the target is small in this video, the head part of the target
human is not segmented. As a result, the learned target has only one part. The tracking
results of the proposed method are shown in Figure 8.7(m) - 8.7(p): The proposed method
succeeds in tracking the target. Results of the Camshift algorithm are shown in Figure
8.7(q) - 8.7(t): It fails to track the target when the target passes by the dark door (Figure
8.7(1).

8.5.5 Task 4

The fourth task is to track one moving human (i.e., target) by a moving robot in scene

4 in which there is another moving human (i.e., distractor). One objective of this task

is to show that the proposed method is robust to variations of lighting on the target.
The other objective is to show the proposed method can provide the completion of the
tracked target that includes several parts. The task-relevance of each feature dimension,
L., 13/(1+0}) where [ € {int,rg, by, 0o, 0 ovor, 0155, ct}, Obtained from the online
learned low-level LTM object representation of the target in scene 4, is shown in Figure
88, It shows that red-green of the part 2 (i.c., the upper body of the target) s the
task-relevant feature. The tracking results of the proposed method are shown in Figure
8.9(m) - 8.9(p): The proposed method succeeds in tracking the target and achieves target
completion. Results of the Camshift algorithm are shown in Figure 8.9(q) - 89(t): It
fails to track the target when the target passes by the blue door (Figure 8.9(t))
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8.5.6 Performance Evaluation

Tracking performance s evaluated by using tracking precision Prpp, which s calculated
as a true positive rate:

Prpn = nTP/nTOT, (8.1)

where nTP is the number of frames in which the target is correctly detected and nTOT

is the total number of frames in a video.

Target completion is evaluated by using both true positive rate Crpp and false positive

rate Crpp, which are caleulated respectively as:

Crer = Arp/Area

, (82)
Crpr = Arp[Areat

where Ay is the pixel number of the real target, Arp is the number of pixels that are
both in the tracked region and in the real target, and App is the number of pixels that are
in the tracked region but not in the real target. Note that target completion is evaluated

only for frames in which the target is tracked successfully,
Performance evaluation of the proposed method and the Camshift algorithm is shown
in Table 8.1. 1t can be seen that the tracking performance and target completion perfor-
mance in the proposed method are both better than those in the CamShift algorithm.

In task 2, Prpp is decreased in the proposed method since the target is fully occluded

in a total of 15 sequential frames. Except for the frames of full occlusion, the proposed
method can successfully track the target in different scenes and viewing conditions and

can achieve the precise target region, shape and size as well,

8.6 Conclusion

This chapter has presented a target tracking method using the proposed cognitive visual

perception paradigm. This tracking method consists of four modules: online learning
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Figure 8.2: Learning results of task 1: The task-relevance of each feature dimension obtained
from the online learned low-level LTM object representation of the target in scene 1 (.) Bt
1 (Body of the human) and global contour. (b) Part 2 (Head of the human). This
invisible in several frames due to the target’s posture. (<) Combination of part 1, part 2wl
global contour.




(@ ) ® ®

Figure 8.3 Tracking results of task 1: Tracking of a moving human by the moving robot
in scene 1, in which the background shares some features with the target. ()-(d) Original
images in frame 9, 11, 13 and 16 from video 1. (¢)-(h)
represents a proto-object. (i)-(I) Proto-object based attentional activation map. I
represents attentional activation. (m)-(p) The final tracking region after post-attentive comple
tion processing. (q)-(t) Tracking results using the CamShift algorithm. Red ellipses represent

Pre-attentive segmentation. Each color

the tracking regions.
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Figure 8.4: Learning results of task 2: The task-relevance of each feature dimension obtained
from the online learned low-level LTM object representation of the target in scene 2. (a) Part
1 (Body of the human) and global contour. Part 1 s invisible in several frames due to the full
occlusion. (b) Part 2 (Head of the human). Part 2 is invisible in several frames due o the full
occlusion and target’s posture. (c) Combination of part 1, part 2 and global contour.
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Figure 8.5 Tracking results of task 2: Tracking of a moving human by the moving robot
in scenc 2, in which full occlusion exists. (a)-(d) Original images in frame 13, 31, 33 and 35
from video 2. (¢)-(h) Pre-attentive segmentation. Ench color represents a proto-object. (i)-(1)
Proto-object based attentional activation map. Brightness represents att
(m)-(p) The final tracking region after post-attentive completion processing. (q)-(t) Tracking
rosults using the CamShift algorithm. Red ellipses represent the tracking regions

utional activation,
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Table 8.1: Tracking performance. In this table, “I” means task, “M" means method, “0"

means the proposed method and “C* means the Camshift method.

T[M[Fm # [ Prew (%) | Crer (%) [ Crer (%)
Lo @ [ w000 | e 670

C 44 11.36 39.34 2.09
S0’ [ 620 | 916 813

C 42 26.19 36.38 3.32
3 [ 43 100.00 95.15 5.31

C 43 86.05 93.06 34.83
4 [ 65 96.92 97.80 248

c| 65 | so00 | 9250 509

oY

Figure 8.6: Learning results of task 3: The task-relevance of each feature dimension obtained
from the online learned low-level LTM object representation of the target in scene 3



images i f nd
attentive segmentation. Each color represents a proto-object. (i)
(1) Proto-object based attentional activation map. Brightness al activation.
(m)-(p) The final tracking region after post-attentive completion processing. (q)-(t) Tracking
results using the CamShift algorithm. Red ellipses represent the tracking regions.

66 from video 3. (¢)-(h) P

presents attentiona




Figure 8.8: Learning result of task 4: The task-relevance of each feature dimension obtained
from the online learned low-level LTM object representation of the target in scene 4. (x) Part
1 (Head of the human) and global contour. (b) Part 2 (Upper body part of the human). (c)
Part 3 (Lower body part of the human). (d) Combination of part 1, part 2, part 3 and global
contour.
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Figuro 8: Tckng rsuls of task & Trcking of s moving luman by the movig rob
in scene 4, in which another moving human exists and the lighting cond the target
i changing. (w)-(d) Oriinal images In e 90, 103, 126 e 128 from video 4. (40
Pre-attentive segmentation. Each color represents a proto-object. (1)-(1) Proto-object based
attentional activation map. Brightness represents attentional activation. - (m)-(p) The final
tracking region after post-attentive completion processing. (q)-(t) Tracking results using the
ComShift algorithm. Red ellipses represent the tracking rogions
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of the target model, pre-attentive segmentation, attentional selection and post-attentive
recognition. Compared with other tracking methods, this proposed method has three
advantages. The first one is adaptivity. The task-relevant feature(s), which can globally
discriminate the target and the background, can be autonomously deduced online from

the learned salience descriptors such that they can cope with cluttered and dynamically

changing . o broad pace can be used as the candidate

of the task-relevant feature(s). The second one is robustness. It has the ability to
automatically recover tracking failure caused by any reason. The last one is precision and
completion of the tracked target. By the combination of pre-attentive segmentation and
post-attentive completion processing, the precise and complete target region is achieved.
Experimental results in natural and cluttered scenes have shown that this proposed
tracking method can achieve satisfactory tracking performance and it is capable of coping
with the difficulties including appearance changes of the background and the target, large

variation of motion, partial and full occlusion and so on.
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Chapter 9

Conclusions and Future Perspectives

The main focus of this thesis is to investigate the visual attention mechanism and outline a

cognitive visual perception paradigm for robots by using the object-based visual attention

mechanism. The rest of this chapter will summarize the research issues that have been

addressed in this thesis and present future research directions

9.1 Research Summary

Robots produce corresponding actions based on perceptual information obtained from a

variety of sensing systems, among which vision is one of the primary modalities. Unlike

traditional robots whose perceptual behaviors are manually designed by programmers for

a given task, truly intelligent robots should have the mental capability of knowing how

10 perceive the envi Based on the and
fact that humans employ a visual attention mechanism to connect perception and action
i the sense that only the relevant parts of the environment are selected to be present for

actions, this thesis has presented a cognitive visual perception paradigm that determines

how visual inputs reach awareness and guide actions. This thesis further asserts that

two aspec

are required for the cognitive visual perception system. One is the conscious

aspect that can direct perception based on the task, context and knowledge learned from
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experience. The other is the unconscious aspect that can direct perception in the case of
facing an unexpected, unusual or surprise situation.

The proposed paradigm divides visual perception into three successive stages: pre-
attentive processing, attentional selection and post-attentive perception. Using this

paradigm, robotic visual perception starts from a low-level cognitive attentional selection

procedure that guides attention to an object of the scene, followed by a high-level post-
attentive analysis procedure that analyzes the attended object and formulates it into an
internal mental representation used for further cognitive behaviors

The pre-attentive processing stage extracts low-level pre-attentive features and then
segments the input scene into homogeneous proto-objects in a bottom-up, unsupervised
fashion. The contribution of this stage is the pre-attentive segmentation algorithm. It is
based on the irregular pyramid techniques and has several innovative extensions, includ-
ing a scale-invariant probabilistic similarity measure, a data-driven pyramidal decimation
method and a similarity-based neighbor search method. Experimental results have shown
that the proposed pre-attentive segmentation algorithm provides satisfactory results.

‘The attentional selection stage involves four modules: bottom-up competition, top-
down biasing, the combination of bottom-up saliency and top-down biases, and the esti-
mation of proto-object based attentional activation. The bottom-up competition module
aims to model the unconscious aspect of visual perception and generates a location-based
bottom-up saliency map.

The top-down biasing module aims to model the conscious aspect of visual perception
based on Duncan’s IC hypothesis [49] and generates a location-based top-down bias map.
The top-down biasing method is one contribution of the attentional sclection stage. In
this method, a task-relevant object is first deduced from the task, then one or a fow

task-relevant feature(s) are deduced from the LTM representation of the task-relevant

object, and finally top-down biases in terms of the task-relevant feature dimension(s) are
estimated by using a Bayesian inference process. Thus, this top-down biasing method

has the following four advantages: effectiveness, efficiency, adaptability and robustness.
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After bottom-up competition and top-down biasing, a location-based attentional ac-
tivation map is obtained by combining the bottom-up saliency map and top-down bias
map at a unified probabilistic scale. Finally, a proto-object based attentional activation
map is obtained by combining the activation contributions within each proto-object.

Following the attentional sclection stage, the attended proto-object proceeds to the
post-attentive perception stage, which includes four functional modules: perceptual com-

pletion processing, extraction of post-attentive features, development of LTM object rep-

resentations and object recognition. The main function of the post-attentive perception
stage is to interpret the attended object in detail to produce an appropriate action at the
current moment, to update the corresponding LTM object representation at the current
moment, and to consciously guide the top-down biasing at the next moment. The main
contribution of this stage is the PNN based LTM object representation. One advantage of
this proposed LTM object representation is that it can probabilistically embody various
instances of that object. The other advantage is that it includes two probabilistic com-
bination methods (i.c., probabilistic mixture and probabilistic summary) so that it can
be used for both high-level post-attentive analysis and low-level top-down biasing. The

result is that the learned LTM representation is robust and discriminative. Dynamical

learning algorithms are also developed for training the PNN based object representations.

The proposed cognitive visual perception paradigm has been applied to two types of
robotic tasks. The first type of task is object detection, including the detection of salient
objects using the bottom-up attention mechanism and the detection of task-specified
targets using the top-down attention mechanism. The second type of task is target
tracking. The processes of detection and tracking both include the attentional selection
module and the post-attentive recognition module. The attentional selection module
can rapidly localize a candidate object by using cither bottom-up attention or top-down
attention. The following post-attentive recognition module can validate the attended
object by using high-level analysis. Experimental results have shown that the proposed

perception paradigm can achieve a satisfactory detection and tracking performance to
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cope with difficulties, including changes in the background and the target, large variation

of motion, partial and full occlusion and so on.

9.2 Publications Related to the Research Work

This thesis is based on the following technical publicat

ns that report the contributions

of the proposed work

e

Yuanlong Yu, George K. I Mann, and Raymond G. Gosine, “An Object-based Vi-
sual Attention Model for Robotic Applications”, in JEEE Transactions on Systems,

Man and Cybernetics, Part B: Cybernetics, appearing in 2010,

Yuanlong Yu, George K. I. Mann, and Raymond G. Gosine, “Target Tracking for
Moving Robots Using Object-based Visual Attention”, in the Proceedings of IEEE
International Conference on Robotics and Automation, Taibei, Taiwan, October,

2010,

. Yuanlong Yu, George K. 1. Mann, and Raymond G. Gosine, “A Novel Robotic Vi-

sual Perception Method Using Object-based Attention”, in the Proceedings of IEEE
International Conference on Robotics and Biomimetics, Guilin, China, December,

2009.

. Yuanlong Yu, George K. I Mann, and Raymond G. Gosine, “An Autonomous

Visual Perception Model for Robots Using Object-based Attention Mechanism”, in
the Proceedings of IEEE International Conference on Robotics and Biomimetics,
Guilin, China, December, 2009,

Yuanlong Yu, George K. 1. Mann, and Raymond G. Gosine, “Modeling of Top-
down Influences on Object-based Visual Attention for Robots”, in the Proceedings
of IEEE International Conference on Robotics and Biomimetics, Guilin, China,

December, 2009
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6. Yuanlong Yu, George K. 1. Mann, and Raymond G. Gosine, “Modeling of Top-down
Object-based Attention Using Probabilistic Neural Network”, in the Proceedings of
IEEE Canadian Conference on Electrical and Computer Engineering, St. John's,
Canada, May, 2009

7. Yuanlong Yu, George K. I. Mann, and Raymond G. Gosine, “An Object-based
Visual Attention Model for Robots”, in the Proceedings of IEEE International
Conference on Robotics and Automation, Pasadena, California, USA, May 2008

8. Yuanlong Yu, George K. 1. Mann, and Raymond G. Gosine, “A Task-driven Object-
based Attention Model for Robots”, in the Proceedings of IEEE International Con-

Jerence on Robotics and Biomimetics, Sanya, China, December 2007.

©

Yuanlong Yu, George K. 1. Mann, and Raymond G. Gosine, “Task-driven Moving
Object Detection for Robots Using Visual Attention”, in the Proceedings of IEEE-
RAS International Conference on Humanoid Robots, Pittsburgh, USA, November
2007.

9.3 Future Research Directions

The proposed cognitive visual perception paradigm leads to several potential research
topics in the area of cognitive robotics.

An important potential research topic is cognitive perception-action mapping. Cog-
nitive perception-action mapping can be generally defined as an association between
perception, context and actions. According to the proposed cognitive visual perception
paradigm, this cognitive mapping can be modeled as an association between attentional
states, context and actions. Actions of a cognitive robot can be categorized into two
types. The first type is external actions, which guide the operation of effectors. The

second type i

internal actions, which mainly includes guidance for attentional selection

at the next moment. Thus, cognitive perception-action mapping can be modeled to fulfll
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two functions. The first function is the association between the current attentional state
and the current action, termed as mapping betucen attention and esternal actions. In
other words, the attended object is recognized by finding a matched instance in LTM and
then the matched instance is used to select an appropriate action based on the learned
perception-action mapping. The second function is the association between the current
attentional state and the next possible attentional state (i.e., attentional prediction),
termed as mapping between attention and internal actions. Since the proposed cognitive
perception paradigm is object-based, the attentional state is an instance of the object

that is attended at the current moment and attentional prediction is an instance of the

task-relevant object at the next moment

A potential rescarch approach to modeling cognitive perception-action mapping is the
FDMP. An FDMP of perception-action mapping can be expressed as p(act{, act}, lattn,),
where attn; denotes the attentional state at moment f, actf,, denotes the external ac-
tion at moment f, and act}, denotes the attentional prediction at moment ¢ + 1. This
definition means that the probability of each candidate action and each candidate at-
tentional prediction can be estimated given the attentional state at the current moment.
According to the proposed object-based cognitive perception paradign, the set of discrete
attentional states is composed of the developed LTM object representations,

Another potential research topic is the integration of the surprise mechanism into the
attentional selection stage in the proposed cognitive visual perception paradigm. Surprise

is a mechanism that can attract attention to an unusual or an unexpected item in the

temporal context. In other words, it is referred to as temporal novelty. The integration of

surprise can enable robots to pereeive novel objects and events in an unconscious manner.



Appendix A

Gaussian Pyramid

‘The Gaussian pyramid technique [121] includes two types of operations: generation and

interpolation.

A.1 Gaussian Pyramid Generation

TN |

igure A.1: Graphic representation of the generation operation of a 1-D Gaussian pyramid.

A Gaussian pyramid is a sequence of images Iy, ..., , in order of both decreased
resolution and sample density. A one-dimensional graphic representation of the gener-
ation operation of the Gaussian pyramid is given in Figure A.1. The purpose of the
Gaussian pyramid is to progressively low-pass filter and sub-sample the image on the
original scale. Thus the Gaussian pyramid can be obtained by convolving the image

on the original scale with one of local, symmetric weighting functions. The convolution
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procedure used in this thesis can be shown as:
+
Iig) = 32 37 wlmn)loa(2i 4 m,2 +n), (A1)
=

where I; denotes the convoluted image at scale { > 0, (i,) represents the spatial co-
ordinates of a point in i, o is the input image at the original scale, and w(m,n) is a
two-dimensional 5-by-5 weighting function that should satisfy three constraints. These

three constraints for a one-dimensional weight function w(m) can be expressed as

w0) =ec,
w(-1) = w(1) = 1/4, (A2)
w(-2) = u(2) = 1/4-¢/2,

where ¢ is the parameter used to determine the shape of the weighting function. In the
case ¢ = 0.4, the shape of the weighting function is Gauss-like.
Based on the 1-D weighting function, the 2-D weighting function can be caleulated

as:

wm,n)

w(m)un). (A.3)

A.2 Gaussian Pyramid Interpolation

Interpolation is a reverse convolution operation of the Gaussian pyramid. Its effect is to

expand a I lution image into a high-resolution image by new nodes

between the given ones. The interpolation procedure can be expressed as:
2

s
> Y ulmmi(t
s

-m j

Tanoti-1)(i,4) (A4)
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Appendix B

2-D Gabor Filters

The 2D Gabor filter is the product of a complex sinusoidal, known as the carrier, and

a Gaussian-shaped function, known as the envelope. As shown in [122), a family of 2-D

Gabor functions and their Fourier transforms can be respectively expressed as :

ou(z,y) = K exp{=n{(x - za’a? + (y ~ gl Wl}x ®1)
exp{=2mifuo(z — 7o) + voly — wo)]}

Galu,v) = K exp{=r|(u = uo)*/a® + (v — v)?/8*]} x . ®2)
exp{=2nilzo(u = uo) + yo(v = )]}

where (g, up) are the spatial center frequencies where the filter has the maximal re-

sponses and those two center frequencies determine the orientation 6, (a, b) are standard

deviations of the Gaussian envelope and determine the bandwidth of the filter, (zo, 1)

are the centroid of the Gaussian envelope in the space domain and they are set as (0,0)

in this thesis, and K scales the magnitude of the Gaussian envelope.
Since actual impulse-response functions and neural receptive field profiles are real
functions, the above Gabor filter can be decomposed into a quadrature form including

an even-symmetry (cosine) part as shown in (B.3) and an odd-symmetry (sine) part as
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®)

Figure B.1: Examples of 2-D Gabor filters (in the frequency domain) in four orientations.
Column 1: In orientation 6 = 0°. Column 2: In orientation 6 = 45°. Column 3: In orientation

0 = 90°. Column 4: In orientation 6 = 135°. Row 1: Even-symmetry parts. Row 2: Odd-
symmetry parts

shown in (B.4)

guola,y) = K exp{~nl(z - z0)%a? + (y — o) 4]} x )

cos{~2nuo(x — 20) + voly — )]}

}x

sin{—2r[uo(z — z0) + vo(y — wo)]}

9o 1a(29) = iK exp{={(z — z0)'a + (y —
g v, P (v = v (B4)

The corresponding forms in the frequency domain can be respectively expressed as

Go(u,0) + Gol—u, =), (B5)

G-yl v) = 1/2(~iGo(u, v) + iGo(~u, ~v)] (B.6)

The examples of even-symmetry parts and odd-symmetry parts of the Gabor filters

in four preferred orientations (i.c., 0 € {0°,45°,90°, 135°}) are shown in Figure B.1



In order to extract the orientation energy at multiple scales, a set of multi-scale 2-D
Gabor filters is used to convolve the intensity images at the corresponding scales. These
multi-scale 2-D Gabor filters are obtained by adjusting the parameters (a,b, uq, vo) for
each scale.

Given the intensity image Fiy at scale 1, it is convolved with the even-symmetric part

and the odd-symmetric part respectively of the 2-D Gabor filter at scale L. The orientation

energy in a preferred orientation  at scale [ can be finally obtained by a combination of

the convolution results of the even-symmetric part and the odd-symmetric part:

Foy(ril) = gl + 75y (D), (B7)

where roo(ri,1) and r,_y.(r;,1) respectively represents the convolution results of the
even-symmetric part and the odd-symmetric part of the 2-D Gabor filter at a pixel r; at

scale |
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