Complexity and Continuity: Labrador Archaic Occupations at Nulliak Cove, Labrador

By.

Corey Allan Hutchings

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Arts

Department of Anthropology and Archaeology

Memorial University of Newfoundland

February 2011

St. John’s, Newfoundland
ABSTRACT

The Labrador Archaic site of Nulliak Cove 1 contains the highest number of reported longhouse structures yet recorded. Since its discovery in 1968, this site has played an important role in the interpretation of Labrador Archaic culture history, despite the limited attention paid to the site as a whole. This thesis attempts to address some of the problems associated with this limited understanding of Nulliak as a large scale site.

This investigation of Nulliak Cove suggests that there are recognizable continuities in Labrador Archaic cultural traditions over the millennia. This runs counter to our current interpretation of the Labrador Archaic as a population who underwent marked and rapid culture change at various points in their history. Understanding this continuity within Labrador Archaic culture allowed for a reinterpretation of Nulliak Cove that suggests a long period of occupation at the site but also recognizes that change did occur due to both external and internal forces.
Acknowledgements

The completion of this thesis would not have been possible without the assistance of many individuals and funding agencies. Before anyone else I must thank my supervisor Lisa Rankin. Lisa taught me my first class in archaeology and has provided me with immeasurable friendship, advice and support ever since and who without I would have never been able to complete this work.

Labrador archaeological field research is incredibly expensive and undertaking the research for this thesis could not have been conducted without the financial support of several agencies. First I would like to thank the Newfoundland Provincial Archaeology Office, Smallwood Centre for Newfoundland Studies Northern Scientific Training Program, and the Institute of Social and Economic Research (ISER) for providing me with research grants

I also wish to thank the people who accompanied me during the 2008 field season Andrea Wilson, Jason Burt and Randy Cahill. I would also like to extend my thanks to the faculty and staff of the Archaeology Unit for their support and kindness. I would particularly like to thank John Erwin and Amelia Fay for their continued advice and help. I would also like to say a special thank-you to my fellow graduate students for providing distraction and help.

Finally, I wish to thank my mother Esther Hutchings as well as my brother and sister William and Allana, for their unending encouragement and support of me throughout my university career.
Table of Contents

Table of Figures ..ix

Table of Tables ..x

Chapter One: Introduction ...1

Chapter Two: History of Research ..4

2.1 Origins, Both Research and Cultural ...4

2.2 Culture Identification ...6

2.3 Researcher Impact ...8

2.4 Continuation versus Disconnection ...11

2.5 Conclusion and Summary ..21

Chapter Three: Theory ..23

3.1 Theoretical Framework ...25

3.2 Archaeological Application ..26

3.2.1 Modified Archaeological Application ..27

3.3 Interpretative Approach ...29

3.4 Summary ..31

Chapter Four: Methodology ...33

4.1 Previous Research ...33

4.2 Regional Investigation ...35
Chapter Five: Results

5.1 Introduction: ... 39

5.2 Clustering the Structures ... 45
 5.2.1 Structures 10-14 .. 45
 5.2.2 Structures 2-4 ... 47
 5.2.3 Clusters and Landscape Change ... 48

5.3 Structure 15. .. 48
 5.3.1 Construction and Features ... 48
 5.3.2 Location and Elevation ... 49
 5.3.3 Interpretation ... 49

5.4. Structures of Cluster 10-14 .. 50
 5.4.1 Construction and Features ... 50
 5.4.2 Interpretation ... 53

5.5. Structure 9 ... 53
 5.5.1 Construction and Features ... 54
 5.5.2 Elevation, Location and Orientation ... 54
 5.5.3 Interpretation. ... 54

5.6. Structure 8 ... 55
 5.6.1 Construction and Features ... 55
5.10.2 Location, Elevation and Orientation 71
5.10.3 Artifacts ... 72
5.10.4 Associated features ... 73
5.10.5 Interpretation ... 74
5.11 Structure 2-4 cluster ... 75
5.11.1 Construction ... 75
5.11.2 Location, elevation orientation .. 78
5.11.3 Interpretation ... 79
5.12. Structure 16 .. 80
5.12.1 Construction and Features .. 81
5.12.2 Location, orientation and elevation 82
5.12.3 Interpretation ... 83
5.13 Conclusion ... 83

Chapter Six: Discussion .. 84
6.1 Creative Narrative in Labrador Prehistory 84
6.2 Interpretation of Increasing Complexity 85
6.2.1 East-west progression of occupation 86
6.3 Archaic Politics and Pre-Dorset Arrival 88
6.4 Place of Our Elders .. 93
6.5 Labrador Archaic and the “Others” ... 99
6.6 Conclusion .. 102
Chapter Seven: Conclusion .. 103
Table of Figures

Figure 1. Nulliak Cove location...1
Figure 2. Percentage of Ramah chert tools from east to west................35
Figure 3. Labrador Archaic Longhouse Site Locations............................36
Figure 4. Nulliak Cove 1 overview from northeast.................................40
Figure 5. Longhouse locations at Nulik Cove...41
Figure 6. Longhouse locations at Nulliak Cove in relation to ground cover.42
Figure 7. High eastern beach ridge, structures 9-15 right to left...............46
Figure 8. Structures 2-4..47
Figure 9. Structure 12 from south..52
Figure 10. Structure 8 and Structure 17...55
Figure 11. Structure 17, Structure 8 and burial behind............................59
Figure 12. Structure 7, caches to north-west..63
Figure 13. Structures 5 and 6...67
Figure 14. Structure 5 wall attached external cache................................69
Figure 15. Structure 6 location...72
Figure 16. Structure 2 burial 2 in background..78
Figure 17. Structure 16 A and B...80
Table of Tables

Table 1. Raw Materials by Structure ... 34
Table 2. Structure Characteristics ... 43
Table 3. Structure Features .. 44
Chapter One: Introduction

The site of Nulliak Cove 1 (lbCp-20) (Figure 1) represents the largest single expression of Labrador Archaic culture found to date. Located on Labrador’s northern coast, Nulliak Cove is unique due to its high visibility and large size. It is distinguished by the presence of multiple large linear structures that have been interpreted as longhouses (Fitzhugh 1975, 1984, 1985). The site also contains both Paleo-Eskimo and Thule culture components which are evident from diagnostic house structures and material culture (Fitzhugh 1984:18). As a result, Nulliak Cove is often cited in models of Labrador Archaic social organization and possible Pre-Dorset and Archaic interaction (Fitzhugh 1981, 1984, 1985; Hood 1993). Despite the significance accorded this site in Labrador culture history (Fitzhugh 1984, 1985), the site’s specific purpose has proved elusive, and its chronological development has never been thoroughly or satisfactorily explained.

Labrador Archaic longhouse sites are generally thought to be the end product of resource procurement strategies which required large numbers of people to unite to access
important resources such as Ramah chert (Fitzhugh 1985: 49-50). In this model, groups would travel to northern resource locales en mass from central Labrador. Sites such as Nulliak Cove supported these trips by providing access to abundant food resources to support a large population (Fitzhugh 1985:98). Tangentially, the development of Labrador Archaic longhouse sites has also been linked to developing interactions between the Labrador Archaic and the Pre-Dorset Palaeo-Eskimo who colonized Labrador via the eastern arctic. Fitzhugh (1984: 22-23) suggests that upon arrival on the Labrador coast the Pre-Dorset occupied regions that were previously settled by the Labrador Archaic. The competition for resources and settlement locations between these groups worked to create cultural boundaries. This fractioning of the Labrador coast separated the Labrador Archaic from desired northern resources such as Ramah chert and caribou. This threat of loss of traditional resources necessitated that the Labrador Archaic create the high visibility longhouse sites to maintain “cultural enclaves” within Pre-Dorset regions (Fitzhugh 1984).

These models, though reasonable, fail to incorporate the chronological depth observable at Labrador Archaic longhouse sites. They indirectly treat each settlement as a single event, rather than complex settlements which may have changed and evolved, serving different purposes over centuries. In order to advance our understanding of Labrador Archaic history it is essential that site level history assumes a more prominent role in our interpretation of the past.

Nulliak Cove contains a minimum of twenty-seven longhouse structures which were not concurrently occupied (Fitzhugh 1984:11, 1985:89-98; Hood 1993:168). It has also been noted that the longhouses were likely occupied for short spans of time,
(Fitzhugh 1984:18, 1985:98). Unfortunately, there has been no attempt to determine which structures, if any, might have been occupied concurrently nor has there been a demonstration of the order in which they were constructed. Nevertheless, it has been suggested that the majority of Nulliak Cove longhouse structures were occupied within a short time frame making the settlement one of the largest known (Fitzhugh 1984:17). However, recent evidence suggests that the site has a much longer time depth than what has previously been suggested (Hutchings 2006) and challenges the assumption that Nulliak was ever home to a large population.

This thesis re-examines the site of Nulliak Cove in order to demonstrate the significance of site history in the construction of explanatory models of the Labrador Archaic’s use of places and resources. Its goals are 1) to undertake an analysis of Nulliak Cove in order to determine the sequence in which the Labrador Archaic features at the site developed. 2) To determine which, if any, features at the site may have been occupied at the same time. 3) To see if interactions between the placement of cultural features can suggest reasons for the course of development at the site.

Finally, I will try and relate Nulliak Cove to the wider Labrador Archaic context with a view toward using the site-scale evidence to explain the use of longhouse sites in a regional context.
Chapter Two: History of Research

This chapter will outline the history of research which underlies our present understanding of the Labrador Archaic culture. Emphasis will be placed on both the successes and shortcomings of this body of work, which despite its immense contribution has resulted in a highly regionalized framework of cultural development that has generally overlooked the significance of long-term cultural continuities. Only by recognizing this cultural continuity, can a greater understanding of Nulliak Cove and the Labrador Archaic population in general be developed.

2.1 Origins, Both Research and Cultural

The origin of Maritime Archaic culture and by extension the Labrador Archaic, remains poorly understood. An early suggestion was that this culture developed in situ from early marine adapted Paleo-Indians who inhabited the Gulf of St. Lawrence. However, it is now believed that the Labrador Archaic culture resulted from an immigration of a maritime adapted Archaic people with roots that extend into New England (Deal et al. 2006). Given the similarities in tool types between the two locales, the southern Labrador Archaic appears to have been a descendant population of these older pre-established Archaic groups from the south. Unfortunately, this may never be conclusively proven given that many older Archaic sites in the Maritimes are now submerged, making data concerning the movements of these populations inaccessible (Deal et al. 2006). Nevertheless, archaeological work on the Quebec north shore may eventually help us overcome this issue (Pintal 2006: 124).
The earliest discoveries of Maritime Archaic material culture occurred in the New England region. In his extensive work in the state of Maine from 1912-1920, Warren K. Moorehead found hundreds of sites along the coastal zone belonging to a culture he called the Red Paint People (Moorehead 1922). Moorehead’s (1922) definition of the Red Paint culture was based on cemetery collections which contained richly appointed grave goods and vast amounts of red ochre, but no bodies due to poor preservation. These boneless graves proved frustrating, and with a lack of comparative material available, Moorehead eventually abandoned his study. In his concluding remarks in *The Archaeology of Maine* he states: “The Red Paint people appear to be separate and distinct from other tribes of the New England region. Their culture is peculiar and cannot be correlated with any known tribe, historic or prehistoric” (Moorhead 1922:150). Interestingly, the Maritime Archaic continued to be primarily identified through burial sites until recently, ensuring that the identification of cultural traits was based on a highly symbolic context. The use of exceptional, non-habitation sites to define the Maritime Archaic would eventually lead to some problems.

The Red Paint cultures were rescued from obscurity when Willey and Phillips (1958) introduced the concept of the Archaic stage. The idea of an Archaic development stage allowed the Red Paint culture to be linked throughout New England, the Maritime provinces and Newfoundland and Labrador, because these related groups had similar tool types and shared certain cultural traditions such as similar burial forms. Willey and Phillips referred to this widespread group as the Boreal Archaic, but cautioned that this was undeveloped theory (1958:117). Again, the northeastern Archaic culture was left
largely undefined due to lack of data, but the groundwork had been laid for further research which resumed in 1967 at Port Au Choix, Newfoundland.

In 1967 the accidental uncovering of human remains at Port Au Choix was brought to the attention of Memorial University, who dispatched Dr. James Tuck. Tuck reported that he had found artifacts and some additional graves in this locale (Tuck 1971). Returning the following summer, Tuck uncovered three clusters of graves and more than 100 skeletons. The evidence from these excavations led Tuck to define the Maritime Archaic tradition by describing the culture, its resource exploitation, ideology and mobility. Despite the undeniable value of this contribution it was once again based on burial evidence.

2.2 Culture Identification

In designating the Maritime Archaic tradition Tuck (1971) had no problem placing the burials from Port aux Choix into the Archaic period using similarities such as site dates with other Archaic sites found along the St. Lawrence. The Archaic designation allowed archaeological material from Newfoundland to be united with archaeological material drawn from a much greater region, while it also acknowledged the marine-oriented cultural subsistence strategy of the population. “Tradition” refers to “certain persistent themes that dominate the life of a people” (Tuck 1971: 350-351) and requires an overview of all systems used to constitute a cultural whole. By using this terminology, Tuck demonstrated that the Archaic of the northeastern coast not only pursued marine oriented resources, but carried with them longstanding traditions of ideology and hierarchy that were tied to marine resources.
While the origin of the Maritime Archaic remains uncertain, it is absolutely certain that they were the first people to enter southern Labrador. A series of very old dates, most notably an 8000 B.P. date for the L’Anse Amour burial incontrovertibly confirmed this, and suggested that the Maritime Archaic settled on the Labrador coast soon after the retreat of glacial ice (Clark and Fitzhugh 1992:197). This enabled the Maritime Archaic people to access marine resources along the newly uncovered coastline (Clark and Fitzhugh 1992:207-208). Unfortunately, these early assumptions about Maritime Archaic culture were all drawn from symbolically constructed cemetery sites that were near exclusively situated near important marine resources. It is not surprising that sea-oriented burial places contained large numbers of marine-associated objects, and thus was a poor basis for separating this group and region from the larger family of Archaic people of the eastern coast.

During the same period that Tuck was interpreting his finds from the Port au Choix cemetery, William W. Fitzhugh began conducting surveys and test excavations in Hamilton Inlet, Labrador (Fitzhugh 1972; Hood 1983). Here Fitzhugh (1972) excavated the first Maritime Archaic habitation sites and demonstrated that the daily life of the Maritime Archaic was significantly different than that implied by cemetery sites. Most notably, the Maritime Archaic appeared to engage in a much more diverse subsistence strategy, balancing terrestrial and avian resource procurement strategies alongside marine mammal hunting (Fitzhugh 1972, 1975). Nevertheless, archaeological research in Labrador continued to focus on the discovery of other symbolic sites, including the cemetery at Rattler’s Bight in central Labrador (Fitzhugh 1972; Hood 1993:166), and the L’Anse Amour Mound in the Strait of Belle Isle region of southern Labrador (Tuck and
symbolism represented at these sites runs counter to other important cultural themes. That these ritual attributes are shared by populations residing from the southern Labrador coast to New England is even more significant because these same cultural attributes can also be found among many of the
burial sites of the Labrador Archaic people inhabiting northern Labrador. This cluster of cultural traits not only spans an enormous area, but demonstrates a continuous link between the earliest sites in the south and the latest dated sites in the north. Yet, regional and temporal difference have always been emphasized more than continuity in Maritime Archaic culture even within smaller regions such as Labrador where there is limited archaeological evidence concerning the Archaic (Fitzhugh 1978). However, some differences clearly do exist between chronologically and geographically separated Labrador Archaic sites and researchers have been able to demonstrate enough difference to identify several complexes (Fitzhugh 1978).

In order to understand how the Maritime Archaic became viewed as a diachronically segmented population, while being a population that shows marked continuity of cultural practices it is necessary to consider the ways in which individual researchers contributed to the dominant culture-historical framework. First there have been a limited number of primary archaeological researchers working in Labrador. According to Hood (1998:8), the archaeology of Labrador follows a pattern common to northern study whereby a research area is dominated by a few pioneer researchers and the students they personally introduced to the region. As a result, new researchers tend to follow the frameworks developed by their mentors, eventually establishing rigid models that leave little room for dissenting opinion.

Research concerning the Labrador Archaic has been dominated by two scholars: William Fitzhugh of the Smithsonian and James Tuck of Memorial University. Tuck's research was focused largely on the Northern Peninsula of Newfoundland and southern Labrador along the Straits of Belle Isle, but also in the Sagleak region of northern
Labrador. Fitzhugh’s work in Labrador expanded from Hamilton Inlet to the Nain region and points north of Saglek Fiord. Fitzhugh and Tuck both completed pioneering work on the Maritime Archaic, but interpreted this culture in quite distinct ways. Attempting to combine their effort has ultimately resulted in a tenuous series of cultural complexes and stages that were sometimes only represented at a single location (see Whale Island group below).

Tuck’s early research (1970, 1971) on the island of Newfoundland and in the Strait of Belle Isle identified cultural links in the two regions. During this same period Fitzhugh (1972, 1975, 1978) was pursuing his work in Hamilton Inlet, which established a Maritime Archaic culture history for the central Labrador region. Although there was interaction between the two researchers their style and agenda did not easily connect. During the late 1960s and early 1970s, Maritime Archaic research was marked by far-flung surveys of southern, central and northern Labrador. Projects included the Smithsonian Central Labrador survey under the direction of William Fitzhugh (1972) and the Survey of Saglek Bay conducted by James Tuck (1975). Tuck and Fitzhugh both found sites that confirmed that the Maritime Archaic inhabited regions well north of the current tree line (Tuck 1975; Fitzhugh 1978). It was also discovered that the Maritime Archaic had two regional variants (Hood 1993: 167) which led to the divide between the northern and southern branches of Maritime Archaic culture. This had a profound impact on later research and caused further problems in the interpretation of the Northern branch, now called the Labrador Archaic or Labrador Maritime Archaic, by further limiting the amount of comparable material.
In the 1980s Memorial University’s Labrador Archaic research slowed, leaving the majority of research to be continued by Smithsonian projects which continued into the 1990s. Most published material from this time concerns the excavation and interpretation of large habitation sites including: Rattlers Bight, Aillik, Nulliak Cove, and Nukasusutok Island (Fitzhugh 1984, 1985; Hood 1981). Other Labrador Archaic research during this period included examining Ramah chert trade routes, and locating the lithic sources used by the northern prehistoric groups (Lazenby 1980). The investigation of the relationship between Paleo-Eskimo and Labrador Archaic people also became a significant topic during this period (Fitzhugh 1984; Hood 1993). However, the later research moved away from the debate and discussion of Labrador Maritime Archaic cultural development, demonstrating that the culture history had become codified and accepted.

To date, literature concerning the Labrador Archaic has placed emphasis on cultural change rather than continuity. The result has been to split Archaic culture history into multiple complexes on the central and northern coasts of Labrador. Yet, much of what is discussed as cultural change may simply be an aspect of external factors such as publication history of individual researchers rather than actual internal cultural change among the Labrador Archaic people. Therefore we must also consider evidence of long term continuity in explanations of the Labrador Archaic culture history.

2.4 Continuation versus Disconnection

Despite similarities in environment and food resource availability in northern and central Labrador, two completely separate culture-historic sequences represented by various complexes are used to discuss Archaic cultural development (see below). Many
of the researchers working here willingly point to problems with this system, but it continues to be used (Hood 1983). Often sites do not completely fit either complex or fit multiple complexes. Even Fitzhugh (1978:69) states that these complexes are not strictly chronologically distinct. Geographic problems are also rampant. For example the Rattlers Bight complex was originally defined as part of the central Labrador sequence (Fitzhugh 1978:70), but is most often used as the standard comparison for collections from northern sites (Fitzhugh 1984:17-18, 1985:98-99). More recently, Fitzhugh (2006:51-54) re-categorized these complexes into a simpler system of early, middle and late phases. Unfortunately, both systems are now being used concurrently leading to further confusion and overlap in description of artifacts.

The complexes in general are defined through a variety of aspects such as site location, features and burial practices but it is tools and debitage that are the main hallmarks. Relying on tool typology and raw material percentages to act as defining characteristics of archaeological complexes has an inherent flaw in the Labrador Archaic context due to the variability in manufacture of tool types and raw materials used. The central and north coast Labrador Archaic populations followed very loose cultural traditions in the production of both chipped and ground stone tools. The production of stemmed points serves to illustrate this point. During the excavation of the Rattlers Bight habitation site, Fitzhugh recovered a variety of points with no less than five stem types ranging from bi-pointed, to steep shouldered, to near rectangular stems (1978). This variation in production is common through all the complexes, making it difficult to rely solely on point style to define them. Another problem occurs when using the presence or absence of certain tools in order to define the various Archaic complexes, as certain sites
may not include the full range of tool classes that were used. While this work was undertaken with best intentions contemporary researchers need to be aware of the potential flaws inherent in culture-historic schemes.

Before outlining the Labrador Archaic culture-historic complexes of the central and north coast it is useful to investigate how the differences in these complexes were developed. The late Labrador Archaic culture (as defined by Fitzhugh 2006) relied heavily on Ramah chert for tool production, occupied large scale sites and participated in long distance trade networks. The adoption of Ramah chert is often seen as the driving force in the development of the other late Labrador Archaic cultural attributes. This underlying notion that the discovery of Ramah chert changed all other aspects of the Labrador Archaic culture seems oversimplified because evidence suggests that the wide scale adoption of Ramah chert was not instantaneous, but was instead intensified over an extended period (Fitzhugh 1978). Furthermore, Ramah chert never completely replaced all other lithic materials. This distinction is significant because archaeologists use the adoption of Ramah chert, to date sites and situate different temporal and regional Labrador Archaic populations based on the intensity of their adoption of this resource.

As mentioned in Chapter One, a primary model explaining the development of Labrador Archaic longhouses suggests that they were developed to support trips to acquire Ramah chert (Fitzhugh 2006). However, there are a variety of longhouse sites that seem unsuitably located to be associated with the Ramah chert acquisition (See Chapter 4). Additionally, long distance trade travel must date back to the initial appearance of the Archaic in the Maritimes given that archaeologists note concurrent changes in tool types despite differences in geography (Deal et al. 2006). Given that both the introduction of
the longhouse and the development of long distance trade seemed to exist before the widespread adoption of Ramah chert it seems unlikely that adoption of this raw material was the driving force behind the other attributes of the late Labrador Archaic culture.

To date there are three Labrador Archaic complexes identified along the central coast of Labrador: the Black Island complex, the Sandy Cove complex, and the Rattler's Bight complex. Additionally, there is some evidence that a fourth archaeological complex, the Hound’s Pond complex, was present in the region. Since the Hound’s Pond material seems to be very closely related to the more southerly Strait of Belle Isle material (Fitzhugh 1975), and there are limited publications and physical evidence concerning Hound’s Pond it will not be discussed here.

The Sandy Cove complex (6000-4500 B.P.) is one of the most clearly defined complexes from the Hamilton Inlet region. It is defined as an early exploratory cultural movement of the Labrador Archaic into the central region of Labrador. Despite the aforementioned problems associated with comparisons of raw materials, it is the most legitimate category in which differences between complexes can be seen. The Sandy Cove complex population relied heavily on locally available quartz to make their stone tools (Fitzhugh 1978:69). In addition, Sandy Cove campsites included large quantities of slate, and red quartzite debitage. Small numbers of fine-grained cherts were also found along with a recognizable purple chert which was used almost exclusively for the production of flaked points (Fitzhugh 1978:69). Ramah chert is present, but poorly represented in Sandy Cove complex sites. A significant ground stone component which includes small stemmed points, a number of asymmetric knives and ulus is also present. There are some examples of ground slate celts and at least one chipped red quartzite celt
During the Sandy Cove complex, material culture consists mainly of bifacially flaked points with either bi-pointed bases or tapered stems. These stemmed points have no particular complex-diagnostic characteristics and are nearly indistinguishable from later Rattler’s Bight points aside from the material from which they are manufactured. The flaked tool industry also includes knives of various construction, namely asymmetric leaf shaped, small bi-pointed examples, and flake knives. Other tools that appear in small numbers include wedges, pecking stones and flake scrapers. The lack of other tool types such as end scrapers helps to distinguish this complex.

The Black Island complex (4200 B.P.) was designated from a single, large site and marks a complete break from the typological tool tradition of the other central Labrador Archaic coast complexes. This complex has since been interpreted as a short migration by an intrusive southern group that moved north. Therefore, it is not a likely candidate for being an intermediary culture complex between Sandy Cove and Rattlers Bight. The material recovered is notably different from the other complexes for three main reasons: 1) it contained a high percentage of felsitic chert which was commonly used among southern groups; 2) there was a lack of ground slate tools, and 3) the assemblage contained an expanded tool base type that is unlike any outside southern Labrador. The assignment of this group to a separate complex makes perfect sense because it does not appear to be associated with other groups in the area. This complex should stand as the example of a meaningful distinction between groups, representing an aberrant group that
breaks from the overall progression. When we compare the reasons for the assignment of the Black Island Group to the reasons put forth for the separation of the Sandy Cove complex from the Rattlers Bight complex the uncertain nature of the assigned complexes is more apparent.

The Rattlers Bight complex (4000-3700) type site was discovered in 1968 and was further excavated in 1969 (Fitzhugh 1972). Due to the rich deposits and the near total excavation of the nearby associated cemetery, Rattlers Bight is the best known of the Labrador Archaic complexes. Rattlers Bight is considered the final Labrador Archaic complex in Hamilton Inlet, and also the apex of the Labrador Archaic culture in this region. When the Sandy Cove complex is compared to the Rattlers Bight complex differences are evident. The most notable characteristic of this complex is the complete abandonment of local materials and imported chert in favour of Ramah chert. During the Rattlers Bight complex the Labrador Archaic population, while implementing various materials as grinding stones, produced tools from only three raw materials and each was related to a specific tool type. Ramah chert, which was hardly present in the ancestral Sandy Cove complex, becomes the sole material from which chipped stone tools are produced (Fitzhugh 1978:70). Slate continues to be used in much the same manner as it was during the Sandy Cove complex but a single type of slate is adopted for all tools. Celts, gouges and a variety of small points dominate the slate assemblage (Fitzhugh 1978:70). Also present in the slate assemblage to a lesser extent are keeled double-edged knives, stemmed points, and asymmetric singled edged knives. During the Rattlers Bight complex pecking technology was abandoned as the manner of production for slate tools (Fitzhugh 1975). Conversely, the adoption of flaking and grinding in the production of
celts and gouges was a hallmark of the Rattlers Bight complex (Fitzhugh 1978:70). Other raw material types are of less importance. Miscellaneous stones were used as grinding stones, and soapstone was used extensively for net weights and some symbolic items (Fitzhugh 1985:89). Many sources have been suggested for this soapstone ranging geographically from Hopedale to New England (Fitzhugh 1978:70).

While there is a clear switch in dominant raw material type between the Sandy Cove and Rattlers Bight complexes, the significance of this change may have been exaggerated. For example, we could view the use of Ramah chert as a continuation of a cultural tradition rather than a cultural change in that the older Sandy Cove population also emphasized a single material in their tool production, namely the purple chert that had dominated the chipped tool assemblage before the discovery and widespread adoption of Ramah chert. The cultural importance of using a specific material for specific tools seems to represent a theme between these complexes that seems as important as the specific raw material used.

Extensive excavation at the Rattler’s Bight type-site enabled a clear classification of the material culture of this population. The chipped tool types include a large variety of stemmed points in various sizes and with greatly varied stylistic attributes including unifacial points, flake points and micro points (Fitzhugh 1975:130). These points are extremely similar to the Sandy Cove complex points and, save for material of manufacture. Along with these points is a selection of tools present in smaller numbers including asymmetric bifacial knives, semi-lunar knives, wide-stemmed knives, leaf-shaped bifaces and chipped rectangular adzes (Fitzhugh 1978:70). The ground slate component increases greatly in Rattlers Bight and becomes much more formalized and
finely made (Fitzhugh 1975). The chipped tool assemblage in general is similar to those from the Sandy Cove complex in many respects and despite the inclusion of some new tools types and the reduction of others, the two complexes could be interchangeable aside from the raw materials used. The similarity present in the tool types of both complexes again emphasizes that cultural traditions were maintained over time.

Changes to central Labrador coast Archaic complexes can therefore be explained as changes to particular components of their cultural traditions rather than a re-invention of the whole. The division of the Sandy Cove and Rattler’s Bight complexes of the Archaic only functions to obscure the continuities and similarities. Similar culture complex divisions have been established for the Labrador Archaic in northern Labrador, but here divisions are based on minimal collections of material. Of the four identified northern complexes two (the Whale Island and Gull Arm complexes, which differ greatly) are based on extremely small collections. At the same time, the Naksak (7000-5700) and Nukasusutok group, which are based on larger collections, have much more in common.

Because minimal data is available it is probable that the differences between the Whale Island group and The Gull Arm complex are over-emphasized. The Whale Island complex is interpreted based on two small sites east of Nain (Fitzhugh 1978:72). This complex is identified by the high elevation (35 meters) of the sites, two complete projectile points which are thick with wide stems, and a variety of wedges (Fitzhugh 1978:72). These two type sites were not considered to be Sandy Cove complex settlements because the only material present was Ramah chert. The presence of wedges separates the Whale Island complex from the later Rattlers Bight complex. There was
some attempt to link this group to the southerly Fowler Site, dated from 6855 ± 115 BP, but it remains segmented off into its own complex (Fitzhugh 1978:72). Creating divisions within a cultural scheme based solely on such limited material seems premature.

The Gull Island complex was similarity constructed from minimal data. This complex was defined by Fitzhugh (1978) as the most recent Labrador Archaic occupation in the Nain-Okak region. However, Hood (1981:18-19) suggested that this group should be included with the better established Nukasusutok complex because further excavation demonstrated that a greater variety of tool types and raw materials of the Gull Island complex are present on the sites dating to the Nukasusutok complex. Unfortunately, using minimal data may mean we are simply unaware of the full range of cultural attributes that might be present if more sites were excavated. This leads to the interpretation that cultural features suddenly appear at a point in time rather than developing from older cultural traditions.

The remaining two complexes, Naksak (7000-5700) and Nukasusutok group, follow much the same pattern as the Rattlers Bight and Sandy Cove complex with Naksak ancestral to Nukasusutok. These groups are the best understood in the northern region and researchers have been able to highlight small ways they differed from each other despite evidence that suggests that they share much.

The most common tool type from the Naksak complex sites are wedges (pieces esquillees) (Fitzhugh 1978:72). Projectile points occur in a variety of forms including: triangular; tapering stemmed based; and most commonly wide side notches with nipple-based points (Fitzhugh 1978:72). Among the other chipped stone tool types are a series of endscrapers and side scrapers of the eared variety. Poorly represented types include flake
knives, bi-pointed and round-based bifaces and rare large triangular bifaces. The predominant raw material used during the Naksak complex is quartz but this material was used almost exclusively for wedges, which were abundant. Ramah chert, slate and a variety of fine grained cherts were also recovered in large amounts (Fitzhugh 1978:72). Also present are some examples of red and purple quartzites. Ground stone tools are common, with some found at all Naksak sites (Fitzhugh 1978:73). The ground assemblages include heavy and light weight celts, miniature gouges and ulus. Less common tools include keeled double-edged slate knives and small slate points (Fitzhugh 1978:72).

As with the older Naksak complex, Nukasusutok’s chipped tools include chipped quartz wedges, as well as stemmed points with sharp shoulders and straight stems, some with evidence of side notching (Fitzhugh 1978:77). Almost all of these points are made from Ramah chert. This preference for Ramah is continued in most of the formal tool types, including flake points, micropoints, bifacial knives, utilized flakes and flake knives. Endscrapers are made exclusively from fine grained cherts (Fitzhugh 1978). The ground assemblage is made exclusively from slate and includes slate points, celts and whetstones.

For the northern groups it appears that the complexes identified from smaller collections (Whale Island and Gull Arm) look different because there is not the range of material to demonstrate their similarity to the general trends in the area, while the better known complexes are actually very similar. However, the researchers who worked on the material see it differentially. Hood (1981:16-17) suggests that the tool types used by the Naksak complex populations are stylistically different from each other and Fitzhugh
(1978:72) agrees that this complex will be subdivided at a later date pending the discovery of more material. But will more complexes actually allow a greater understanding of the Labrador Archaic? The introduction of further complexes may ultimately allow for a better understanding of cultural chronology and allow for more specific site comparison but it will also create further barriers that will inhibit our interpretation of cultural continuity.

2.5 Conclusion and Summary

Archaic peoples left New England, moved through the Maritimes and reached the Straits of Belle Isle at some point before 8000 years ago. These groups continued to move north, eventually occupying areas at least as far north as Nachvak Fjord (Penny 2006). This group changed architectural styles, adopted and abandoned the use of various raw materials and distinct tool types, and developed an elaborate maritime-focused ideology. It is not the movement into, or occupation of, Labrador that is in question. It is how this culture changed during this movement that offers the greatest challenge to researchers. Due to various factors including researcher goals and unequal survey and excavation between regions, we are left with a complex culture history which has segmented the Archaic tradition into multiple chronological and regionally focused complexes and presented this culture as a series of distantly related populations reinventing itself with each move to a new region.

The division of this culture into multiple complexes, especially in the central and northern regions, has obscured the continuity of cultural traditions such as long distance trade and use of uniform raw material. Furthermore, the limited discussion of transitional
sites has meant that small incomplete collections have been used to represent significant cultural change. In contrast, this thesis demonstrates that the Labrador Archaic maintained longstanding cultural traditions from their very origin.

The cultural background presented here has attempted to demonstrate that the Labrador Archaic people not only occupied a huge geographic space, but also maintained cultural traditions over the long-term and that it is appropriate to view existing Archaic sites along the northeastern coast from the standpoint of similarity. It is only through this long-term view of the Labrador Archaic that we can understand the changes that take place within the culture, not as quick reactions but as mediated decisions that must fit inside their cultural world view.
Chapter Three: Theory

The history of the Labrador Archaic presented in Chapter Two highlighted a variety of problems that inhibit interpretation of the Labrador Archaic culture. To solve many of these issues archaeology will need to find ways to compensate for limited site excavation in order to explain the variation of material culture recovered from different sites. The current resolution has been to systematically subdivide Labrador Archaic culture history into multiple complexes, but this has generally worked to obscure the continuity of cultural traditions. Attempts to resolve these issues will always be complicated by the realities of research in Labrador such as access to remote locations and the exorbitant cost of research in this region. What is needed is a new approach that will allow us to reinterpret extant data in a different way. Landscape theory, or more specifically an archaeological phenomenology approach, offers the potential to overcome many issues while opening new avenues of inquiry into the Archaic period in Labrador.

Despite its obvious potential, the environment or landscape is often viewed as the backdrop on which human activity took place. In reality, landscape archaeology tries to understand the interaction between humans and their environment; to explain the ways people addressed, used and altered their environment; and to extend the interpretation of individual sites to the wider cultural region. Despite these goals, the application of landscape theory to archaeology has often resulted in simplistic and functional descriptions, which describe the landscape in purely materialistic terms as a storehouse of resources, or a surface to situate human action. This not only obscures the complexity that lies within the human/landscape interaction sphere, but ignores one of the most
meaningful ways in which people define themselves and their place in the world. To enhance our understanding of the Archaic period in Labrador we must view the landscape as more than a series of points on a map, and instead try to interpret places as they would have been understood by the people who occupied them.

This understanding of place can only be accomplished by accepting that the occupants of these sites possessed the same human body that we do, and that these "embodied" individuals experienced their environment through the same senses as that of modern people (Tilley 1994). Using these human senses we can experience the landscape in much the same way as past cultures. This sharing of the experience of a place is at the heart of phenomenology (Brück 2005). Phenomenology, the study of landscape through the embodied individual, brings back many of the aspects of human experience that represent the mediation between the natural and the cultural constructed environments (Knapp and Ashmore 1999:15-17, 20). In this manner, Labrador Archaic sites can be viewed as an interaction between the natural landscape and the constructed features of the culture. Seen as such sites can represent the entirety of a culture played out in small scale, and the organization of a site and specific placement of site features may be seen from the point of view of a person that believed that the interaction with the environment was integral to both physical and spiritual survival. By extension an individual's interaction with their environment at the scale of a single feature encodes how a culture should be viewed at larger scales such as the region. The use of phenomenology to understand the individuals' interaction with both cultural and natural environments may help
archaeology to overcome the problems of remote site/limited data research by linking the interpretation of individual sites to a wider cultural understanding.

3.1 Theoretical Framework

The phenomenological approach offers an advantageous framework for identifying cultural continuities in the archaeological record. By focusing interpretations of the past on the interactions that occur between people and their environment, researcher bias can be minimized, because the physical description of the world and human/environment interactions that occur are more important than any overlaying of interpretation that we can apply (Tilley 2004a). The archaeological use of phenomenology, specifically as defined by Tilley, must be understood before proceeding.

Tilley drew heavily on the work of phenomenologist Merleau-Ponty (Tilley 1994, 1996, 2004a). When adapting this approach for archaeology, Tilley maintained Merleau-Ponty's belief that the body is the beginning and end of our understanding of the world, and that all experience of the world is gained through our senses, which are the only points of interaction between human consciousness and the world. Further, Merleau-Ponty rejected the mind/body divide and instead suggested that the mind was expressed by the body; or as Tilley (2004a: 3) states, consciousness is corporeal. Following this, interpreting the human past cannot be removed from the bodily experience, and the archaeologist is prevented from using abstractions of place that do not incorporate the human experience of them. More importantly, this approach allows us to gain the experience of a place through the same means as people in the past, the body.
3.2 Archaeological Application

While the phenomenology of landscape was introduced to archaeology through various scholars it was Christopher Tilley that brought the idea to the forefront (Brück 2005: 46-47). With the publication of his 1994 book “A Phenomenology of Landscape, Places, Paths and Monuments” Tilley demonstrated how the orientation and relationship between Neolithic monuments played an important role in the establishment and maintenance of a social hierarchy and enforced social differences (1994: 203-204). Tilley continued to reinforce and expand on these ideas in a following book “The Materiality of Stone, Explorations in Landscape Phenomenology” (2004a)

Tilley first uses “A Phenomenology of Landscape, Places, Paths and Monuments” as a platform to criticize earlier archaeological work which suggested that landscape was devoid of meaning until imbued with it through human interaction. Tilley (1994: 7-11) believed it was inherently wrong to see landscapes as neutral backgrounds on which human actors performed. This meant that the traditional archaeological methods used to describe landscapes (maps, diagrams, catchment areas) were invalid because they removed the landscape from the observer (Tilley 1994, 2004b). In Tilley’s view (1994:28) the observer is important because it is their presence in an environment that ensures memory, names, and identity are applied to places allowing a landscape to be identified.

Thus, Tilley suggests that the experiential aspect of landscape is more important than any other factor when interpreting the past. This allows the archaeologist to move away from a metric based two-dimensional understanding of space and re-engage with the qualitative aspects of a landscape (1994: 26-34). The approach that Tilley advocates
is not abstract, but gained through bodily experience. As Tilley (2004a: 2) stated “We experience and perceive the world because we live in that world and are intertwined in it”. This notion of an embodied experience of landscape changes our archaeological understanding of space. We are no longer able to view sites (places) simply as the locations where human activities happened, but must view them as places in which bodies moved, saw, smelled, heard and experienced through all their senses the reality of a place which they shaped and which shaped them. Thus, phenomenology attempts to describe the objects of consciousness in the manner in which they are presented to consciousness (Tilley 2004a: 1).

Interestingly, this notion that landscape needs be understood from a bodily perspective lead Tilley (1994:26) to suggest that landscapes must be investigated in the same manner. Instead of investigating places through reading or study, Tilley suggests that physical investigation by the archaeologist is the only means to gain a “bodily perspective” (Tilley 1994, 1996, 2004). In this manner, current interactions with contemporary landscapes allow a point of entry from which to understand these places in the past, based on the fact that both landscapes are/were mediated by the human body, and both are embedded with the meanings necessary for landscape/human interaction (Brück 2005: 48).

3.2.1 Modified Archaeological Application

In Watson (2001) we see the true value of phenomenological studies. Watson’s (2001: 296) introduction claims that traditional archaeological techniques for investigating landscape end with two dimensional, static and disembodied diagrammatic
representation of sites, which limits the value of landscape studies. Instead, Watson (2001) advocates an approach similar to Tilley’s which draws from multiple lines of evidence, including human senses, to create an embodied past: “Buildings and Landscape influence people through a combination of their senses and an emphasis upon these aspects would complement existing fieldwork” (Watson: 2001: 297). By finding a middle ground between traditional landscape studies and a phenomenological approach, Watson (2001) was able to reinterpret the traditional archaeological data with the aid of embodied techniques. This approach allows archaeology to explore a greater number of themes such as confinement, power, people’s sense of the world, and their centrality in the cosmos, in a way that is not satisfactorily addressed by standard landscape maps.

The use of the phenomenological approach at Nulliak Cove will allow for an examination of archaeological features and the surrounding landscape in a manner that will enable us to access the mindset of the people who occupied the site. The Labrador Archaic used, constructed, organized, aligned and placed features to mediate their place in this site and it should reflect their understanding of their place in the wider world. Of course this is not without problems, as discussed in the previous chapters the Labrador Archaic longhouse is a poorly understood feature. This extends to even the most basic aspects whether they were enclosed and the manner in which they would have been roofed. After viewing the archaeological remains at Nulliak Cove I have no doubt that the structures were roofed and used for habitation but these factors do have an impact on how the site would have been experienced by occupants. To confront this problem, and move the discussion forward have made the following assumptions about the structures: 1) longhouses were occupied for habitation. Aspects such as internal caches, internal walls
and large amounts of lithic material seem to confirm this. 2) The structures most likely took the form of interconnected tents. In the older structures the room divisions correspond to the size of Pit houses (Wolff 2009) it may be that this size corresponds well to available building material leaving only aggregation as the means for constructing larger structures. 3) Nulliak Cove was most likely only occupied for limited periods. The aggregation of a large number of people at the site would have taxed resources and was likely only possible during the migration of a specific resource. By keeping these aspects in mind when observing the archaeological remains that hope to imagine the site as it would have been.

If, as I have suggested in Chapter Two, there is continuity of various Labrador Archaic traditions over the long-term any change which occurred within their culture should be situated within the Labrador Archaic worldview. It may therefore be possible to use site-based landscape studies to understand both continuity and change over time. Interpreting the ways in which Labrador Archaic groups changed and maintained their interactions with the landscape may also help explain their response to external pressures such as changing access to raw material use or interaction with foreign populations.

3.3 Interpretative Approach

Despite the value of this modified phenomenological approach for collecting information on a culture’s understanding of the world and their place within it, it is still difficult to apply to the ephemeral material left by the highly mobile Labrador Archaic. Therefore, in looking for possible explanatory models, I chose to look for examples of research that have highlighted the link between the individual and the greater cultural
milieu over the long-term. Rankin (2008) explored the use of cache pits as an Amerindian tradition in Labrador. Specifically, Rankin (2008) attempted to demonstrate that the cache represented an extension of the household that encoded many of the different aspects of life. This paper brought forth the idea that small-scale constructed features are inherently linked to the overall life-way of a people, and that the full worldview of a culture, from everyday domestic tasks to larger more symbolic acts, is encoded in all cultural features. When observed over the long-term, they could also reflect the changes in the traditions of people. The attributes of a culture, including changes in traditions, are also represented through continuity or changes in material culture. These material traces are able to reflect other cultural manifestations such as the organization of sites or the expression of an individual. Following Rankin (2008) allowed me to view the features at Nulliak Cove not as only evidence of human activity, but as physical representations of the Labrador Archaic culture. Given the long occupation of the site, it should be possible to use Nulliak Cove as a key to understand the changing mindset and cultural organization of the sites population throughout the occupation.

I also hoped to use this modified approached to examine how large-scale regional organization was determined locally by Labrador Archaic individuals at sites such as Nulliak Cove. Ramsden (2010) demonstrates how the personal decisions of the occupants of two longhouses helped decide the manner in which the Huron associated with Europeans, showing how contingency also influences archaeological interpretation. The outcome of these personal decisions in villages across the Huron territory, identifiable through architecture, material culture and food resources, eventually shaped the limits of European influence. When speaking of prehistoric people, we must understand that the
idea of large scale, top down cultural communication/decision making is rare. People were not always involved in decision making processes beyond those that affected their daily life. Despite the cultural and geographical differences between Huronia and Labrador, there are significant parallels between the two. Specifically, there is suggestive evidence that there was some manner of interaction between the Labrador Archaic and Pre-Dorset people (Fitzhugh 2006:63; Hood 2000; Rankin and Squires 2006). This arrival of a new culture to an established area being reminiscent of the Huron's interaction with intrusive European goods and influence. Ramsden (2009) identifies a split within the Huron village between traditionalists and modernists concerning their association with the foreigners and access to European trade which is visible in everything from competitive house construction, food ways, personal decoration and even political one-upmanship. By observing small individual and site level changes at Nulliak Cove it should be possible to decode ways in which the Labrador Archaic occupants interacted with the wider world.

3.4 Summary

The theory of phenomenology opens many avenues for the investigation of the archaeological record. Despite the differences of race, age gender and ability, the human body remains a relative constant through time. The body is a human commonality and therefore allows an entryway to understanding the interactions between people and material objects and places. Understanding the landscape through the human senses allows an engagement with place that is often lacking in standard archaeological studies, which tend to dismiss memory, meaning, personal experience and identity from place.
There are clearly pitfalls associated with the archaeological use of phenomenology, such as lack of verifiable data, changes between past and present environments, and the limited suitability of certain kinds of sites. By incorporating approaches used by other researchers that are complementary to phenomenology, such as concepts of long-term history or contingency, these issues can be overcome.

The suggested modified phenomenology approach allows us to address the critiques of the original approach while still bringing the human element back to landscape studies. By using the ideas of phenomenology it may be possible to gain an understanding of the mindset of the Labrador Archaic people which is not possible in traditional studies. Through this approach the physical organization and appearance of material culture can hint at the less obvious aspects such as social organization or links between individual and regional action. This allows us to extend our conclusions beyond the single site toward a general interpretation of Labrador Archaic culture.
Chapter Four: Methodology

4.1 Previous Research

My investigation of Nulliak builds on research undertaken earlier (Hutchings 2006) which was designed to answer two specific questions: 1) was Nulliak Cove only occupied by Labrador Archaic, Rattlers Bight populations, and 2) can the different structures at the site be situated chronologically? I approached both of these questions through the analyses of large numbers of stylistically complex and culturally diagnostic artifacts that had been recovered from the site by Rankin and the Newfoundland Provincial Archaeology Office in 2003 and 2005 and provenienced to longhouse structures identified by Fitzhugh (1985).

This study concluded that Labrador Archaic populations from various cultural phases/complexes had occupied Nulliak Cove, not only Rattlers Bight complex populations (Hutchings 2006 Tables 1-7). The site of Nulliak Cove was first occupied during the Naksak complex (7000-5700 BP) as shown by the diagnostic tools recovered from structure 15. The presence of the many varied raw materials on the site would seem to negate the likelihood that the raw-material conservative Rattlers Bight used the site exclusively. There was enough artifactual evidence in the collection (300 complete and partial tools) to separate the Nulliak Cove structures into eight distinct chronological groupings (Hutchings 2006). The chronology of site occupation was complex. At the western end of the site, structure 16 was clearly occupied during the Rattlers Bight complex and is likely the most recent occupation by the Labrador Archaic at Nulliak Cove. Structures to the east of structure 16 contained collections that were distinct from
the Rattlers Bight assemblages. Differences included the use of varying raw materials (Table 1; Figure 2), older tool forms such as large bifaces, bi-points, and few, if any micropoints. At the eastern edge of the site, structure 15 had a completely different tool assemblage than those associated with all other structures at the site. In 2006 (Hutchings 2006: 37-38) I decided that the earliest occupations of Nulliak Cove by the Labrador Archaic took place at the eastern end of the site and the more recent settlements spread continually toward the western end of the site, coming to an end with the very large occupation of structure 16.

<table>
<thead>
<tr>
<th>House #</th>
<th>Ramah</th>
<th>Other</th>
<th>Total</th>
<th>Site Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>48</td>
<td>3</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>1</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>7</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>5</td>
<td>44</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>3</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
The results from this work still seem valid and were used as a framework to situate the general results from 2008 mapping work which proceeded on the assumption that the site was occupied over an extended period with the earliest to most recent occupations generally moving from east to west. As is detailed in Chapter Five, structures in the east were situated at higher elevations with lowers elevations for the more recent structures to the west. This corresponds to isostatic curves in the area, and supports the 2006 hypothesis (Clark and Fitzhugh 1992).

4.2 Regional Investigation

The first step in the 2008 investigation of Nulliak Cove was to identify its place in the greater Labrador Archaic settlement pattern of northern Labrador. I began by mapping all known Labrador Archaic sites with suspected or identified longhouses (see Figure 3). These results led me to two conclusions: First, claims that Nulliak Cove existed because
of it geographic location as a midway point between Ramah Bay and more southerly sites in part of a Ramah procurement route (Fitzhugh 1984) were suspect because there were multiple sites in the vicinity. As well, in the immediate area around Nulliak Cove there were some sites that contained multiple longhouses. Additionally it became clear that not all longhouse sites could be easily associated with the logical Ramah procurement route because of locations that were unsuitable. Suggesting that the longhouse’s role may extend beyond supporting northern foraging forays.

Figure 3. Labrador Archaic Longhouse Site Locations.
Second, several sites contain multiple longhouse features. Nevertheless, none contained as many longhouse features as Nulliak Cove. In fact, Nulliak Cove contains more longhouses than all sites within a 160 km radius combined. This suggests that the site is unique, but perhaps not because of its geographic relation to the Ramah Bay chert quarry.

After establishing that Nulliak Cove was unique I decided that a small scale investigation of the site’s unique history might shed light on any features that could explain the site’s development. Nulliak Cove contained at least 27 reported Labrador Archaic house features. The mapping of these features has been uneven in the past, leading to problems in interpretation. A primary goal for this project was to record all the Labrador Archaic longhouse structures and other visible features at a high resolution (<.5m) with the use of total station and prism, allowing for the first precise comparisons of all features in relation to surrounding landscape features including Nulliak Pond, current and paleo-beach ridges, and the surrounding cliffs. Additionally, this approach also provided exact elevation data for all features which is significant for determining a chronology of the site.

Unfortunately the contingencies of fieldwork in Labrador limited the amount of time that total station work could be completed and late season vegetation obscured many features. While not impossible to overcome, it did further delayed work. With limited time at the site it was necessary, to try and limit the investigation to the recording the exact position of features within the site and their elevations. I was only able to produce maps of the general outlines of structures, having to forego recording of internal features.
Site level, location data was prioritized and internal longhouse features were photographed or described. This mapping now forms the backbone of the project even though detailed structure maps were not possible I am confident that the vast majority of the cultural remains are recorded and can be used alongside existing maps and photos from previous work to develop the most detailed picture of the Nulliak Cove possible.
Chapter Five: Results

5.1 Introduction:

This chapter presents the longhouse data from Nulliak Cove resulting from my 2008 field mapping and observation. It is heavily influenced by my previous work on the analysis of tool types and material types (Hutchings 2006). This analysis, summarized in Chapter Four, suggested that not only did occupation of Nulliak Cove persist over a very long time, but that there were also significant cultural changes by the resident Labrador Archaic populations during that time (Hutchings 2006).

The specific traits that were chosen for analysis are the structures that best demonstrate the changes that took place during the occupation of the site. The following maps (Figures 5 and 6) and charts (Tables 3 and 4) serve to distill the information provided in the more detailed sections which follow. Table 2 provides the measurements from the various structures, including width and length, while Table 3 provides a list detailing the presence or absence of features within each structure.

Following these tables this chapter includes a discussion of single house structures or clusters of structures that were grouped for reasons discussed below. The order in which the structures are organized in this chapter does not follow the numbers assigned at their discovery. The original manner in which the house features were numbered indicates the order in which they were discovered, and does not follow the chronology of their construction. In addition I was unable to locate Fitzhugh’s (1985) structure 1. The order of feature presentation below follows the suggested chronology from Hutchings (2006), progressing from older structures in the east to younger in the west (See Figure 4 for
reference). The attribute headings enable comparisons between house feature and house structures. Where variation exists explanation is provided, but given the range of data this is not uniform for all structures. The presentation here is meant to describe the various data collected concerning each house feature, and to show that there are observable reasons for variation in these data. Only by recognizing the reasons for this variability can the history of the site be constructed.

Figure 4. Nulliak Cove 1 overview from northeast.
<table>
<thead>
<tr>
<th>Structure Number</th>
<th>Elevation above sea level(m)</th>
<th>Length</th>
<th>Width</th>
<th>Orientation</th>
<th>Wall Construction</th>
<th>Room Division Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>House 16a</td>
<td>14.79</td>
<td>74</td>
<td>4.0</td>
<td>N-S</td>
<td>4</td>
<td>Crosswall</td>
</tr>
<tr>
<td>House 16b</td>
<td>14.79</td>
<td>30</td>
<td>4.0</td>
<td>N-S</td>
<td>4</td>
<td>Crosswall</td>
</tr>
<tr>
<td>House 2</td>
<td>14.40</td>
<td>50</td>
<td>4.0</td>
<td>NE-SW</td>
<td>4</td>
<td>Crosswall</td>
</tr>
<tr>
<td>House 3</td>
<td>14.66</td>
<td>41</td>
<td>4.0</td>
<td>NE-SW</td>
<td>4</td>
<td>Crosswall</td>
</tr>
<tr>
<td>House 4</td>
<td>14.87</td>
<td>77</td>
<td>4.0</td>
<td>E-W</td>
<td>4</td>
<td>Crosswall</td>
</tr>
<tr>
<td>House 5</td>
<td>15.51</td>
<td></td>
<td></td>
<td>E-W</td>
<td>3</td>
<td>Crosswall/Depression</td>
</tr>
<tr>
<td>House 7</td>
<td>15.10</td>
<td>46</td>
<td>5.0</td>
<td>NE-SW</td>
<td>3</td>
<td>Depression</td>
</tr>
<tr>
<td>House 8</td>
<td>16.92</td>
<td>43</td>
<td>3.5</td>
<td>E-W</td>
<td>3,4</td>
<td>Crosswall</td>
</tr>
<tr>
<td>House 11</td>
<td>16.24</td>
<td>33</td>
<td>4.0</td>
<td>NE-SW</td>
<td>3</td>
<td>Depression</td>
</tr>
<tr>
<td>House 9</td>
<td>22.29</td>
<td>52</td>
<td>4.0</td>
<td>N-S</td>
<td>2</td>
<td>Depression</td>
</tr>
<tr>
<td>House 10</td>
<td>20.47</td>
<td>10</td>
<td>6.0</td>
<td>E-W</td>
<td>2</td>
<td>Depression</td>
</tr>
<tr>
<td>House 12</td>
<td>21.85</td>
<td>39</td>
<td>4.0</td>
<td>N-S</td>
<td>2</td>
<td>Depression</td>
</tr>
<tr>
<td>House 13/14</td>
<td>23.10</td>
<td>30</td>
<td>4.0</td>
<td>N-S</td>
<td>2</td>
<td>Depression</td>
</tr>
<tr>
<td>House 15</td>
<td>25.13</td>
<td>15</td>
<td>4.5</td>
<td>N-S</td>
<td>1</td>
<td>Crosswall</td>
</tr>
</tbody>
</table>

Room Division Type: Refers to how interior space is delineated
Stone crosswalls, built above ground surface
Depression of room floors resulting in berms between sections.

Wall Construction:
1 = Tent ring construction, larger rocks surrounding banked gravel
2 = Aligned room depressions, excavated material is piled to create outer wall
3 = Rock alignment, large rocks are moved to outer edges to create walls
4 = Rock construction, partial or complete use of transported rocks to create external wall. Rocks are placed into ground
Table 3. Structure Features.

<table>
<thead>
<tr>
<th>Structure Number</th>
<th>Internal-attached Cache</th>
<th>Bowed walls</th>
<th>Square central room</th>
<th>Single wall distinction</th>
<th>Pavement</th>
<th>Excavation</th>
</tr>
</thead>
<tbody>
<tr>
<td>House 16a</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>X</td>
</tr>
<tr>
<td>House 16b</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>House 2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House 3</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>House 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>House 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>House 5</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House 7</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>House 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>House 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House 13/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House 15</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
5.2 Clustering the Structures.

When interpreting Nulliak Cove certain structures seem to be much more closely associated than others. This association between structures adds a new path for inquiry, but complicates some of the comparisons of attributes. To simplify the presentation of data, similar and closely situated structures are discussed as a group. Below is the justification for the creation of these groups. Following the introduction of these structure clusters I describe the data collected for each cluster. Furthermore, some structures cannot be related to what would appear to be logical clusters, in these cases I outline the data collected for these individual structures and discuss the reasons for the exclusion.

5.2.1 Structures 10-14

Among the structures located on the beach ridge with the highest elevation to the east of the site (Figure 7) structures 10-14 have only two walls that are clearly visible on the surface. Heavy sod cover in this area made the identification of other walls difficult. Nevertheless, it is useful to discuss structures 10-14 as a group because the four structures were constructed at approximately the same elevation above sea level (+/- 1m), were orientated in the same direction (N-S), and as is discussed below, were constructed in the same manner (Tables 3 and 4). These practices all reinforce the connection between these structures. Furthermore, no features were identified inside or outside structures 10-14 making them the only cluster of structure which cannot be associated with storage caches. However, the dense ground cover in the area may have prevented the identification of smaller features.
Figure 7. High eastern beach ridge, structures 9-15 left to right.

Structure 15
Structure 13-14
Structure 12
Structure 11
Structure 10
Structure 6
5.2.2 Structures 2-4

A second clear cluster includes structures 2-4, Located west of the 10-14 cluster near the outlet for Nulliak Pond (Figure 8).

Structure 4 (Figure 8, Table 2) is one of the largest structures at the site. Hutchings (2006) demonstrated that this structure was associated with a Rattlers Bight material culture assemblage. Hutchings (2006: 33) also demonstrated that there was likely an association between structures 4, 3 and 2 based on tool assemblages, raw material use and house size. This original hypothesis seems to be supported by the outcome of the 2008 research and will be discussed below. Thus it is necessary to inter-relate these three structures.
5.2.3 Clusters and Landscape Change

The clustering of the above structures demonstrates that several longhouse characteristics are repeated. This replication is hardly universal as will be shown in the presentation of specific data below. The comparison of these clusters with individual structures highlights the variability in construction, location and other aspects.

Variability also needs to be discussed before specific structure data is presented. The long-term occupation of the site and the variability in sea level over that time means that the physical appearance of and access to Nulliak Cove would have changed during the various Archaic occupations. As will be elaborated upon below, the structures at the eastern edge of Nulliak Pond seem to have been oriented towards the pond, suggesting that what is now a fresh water pond was then a salt water bay. Clarke and Fitzhugh (1992) demonstrate that sea level curves for the area show higher relative sea levels during the earlier occupations. This gives us further information to consider in considering structure placement, orientation and associations between structures.

5.3 Structure 15.

Structure 15 is actually two conjoined circular features, with a gravel berm that connects both on the pond-facing wall (Figure 7). The conjoined features appear as a wide oval making this feature distinct from the long rectangular features generally described as longhouses which are commonly associated with this site.

5.3.1 Construction and Features
The construction of structure 15 is distinct from every other structural feature at Nulliak Cove. Structure 15 made use of both small beach rocks and larger rocks. Exposed bedrock was also incorporated into construction. The wall is reminiscent of tent ring construction as large stones appear to have been placed to hold down the outside edge of a tent. There are two distinct cache pits set inside the walls of the two separate halves of the structure. The cache pits have a square shape, measure one meter by one meter and are constructed out of four large stones. The published map (Fitzhugh 1985) did not show any external cache pits on this beach ridge and while I made a dedicated search I was unable to locate any other than the two internal examples.

5.3.2 Location and Elevation

Structure 15 is located at a significantly higher elevation than all other houses at Nulliak Cove (Table 3). The published map of the site shows structure 15 to be the only structure on this highest beach ridge (Fitzhugh 1985) and my study confirms this. This structure, with its unique shape, wall construction and conjoined single room may hint at the complex developmental history of structures at the site and the variation in housing requirements of the people who used these structures. This is significant because the next highest group of structures 10-14, are no more than 30m away, are densely packed, and include wall-scatter overlap suggestive of possible concurrent occupation.

5.3.3 Interpretation

Structure 15 is unique in that it lacks many of the expected hallmarks of the communal multi-family longhouse. Nothing, beyond the small berm located outside of the structure, suggests that this building housed a cooperative group or even large
numbers of people. Instead it is indicative of a single household or two connected nuclear families. There are no structural characteristics that suggest anything more than the close placement of two distinct households. If this structure was two separate households side by side, rather than a longhouse with a cooperative occupation, the separation of cache pits and placement of them internally may reflect the social organization of the occupants. This physical separation of cache pits within each house suggests that the personal nature of food storage was independent and may indicate that decision making was family based allowing each of the tent ring occupants or nuclear families to maintain autonomy.

5.4. Structures of Cluster 10-14

Structure 11 (Figure 7) was excavated in the 1980s, making it the most easily identifiable feature on its elevated eastern terrace (Figure 3). Edges of excavation units are still visible and marked by stakes. Structure 10, located just west of structure 11, has not been excavated which made it harder to locate and analyze. Structure 12 is situated in heavy sod, meaning that there is little evidence of the walls of this structure on the surface. I am uncertain that I would have found it if not for its proximity to structure 11. The two remaining structures 13, and 14, were not visible from the surface but appear to have been identified through elevation readings.

5.4.1 Construction and Features

The excavation does not seem to have had an impact on the appearance of structure 11’s construction techniques. The only effect excavation appears to have had on the ground surface above the structure was to reveal a series of small depressions through the entire length of structure. As you walk through structure 11 you can feel the
undulations of cross berms dividing the internal floor that may represent room divisions. The wall remains of structure 11 consist of two parallel gravel berms on each side of a flat, depressed centre indicating that gravel was pushed to the sides to in order to create individual room depressions inside of the longer structure. These deep interior rooms and external berm walls indicate a switch in construction practices, likely after the abandonment of structure 15.

Though less distinct on the surface, structure 10 is quite similar to structure 11. There are gravel banks on either side of a deep undulating interior, and these undulations appear to designate room divisions. These rooms are evenly spaced and become less prominent toward the ends of the structure. The area where structure 10 is located has significantly less sod cover than the other structures that it is associated with, which allowed for the identification of the only external features associated with this cluster of structures. This feature is a small flat cobble pavement that extends beyond the walls of the structure. The function of this feature is unknown, but there are other examples of this feature type associated with structures to the west of the site.

Structure 12 is marked by only a single line of rock is visible through the groundcover to delineate the eastern wall of the structure (Figure 9). Otherwise it is the 30m by 3m depression that indicates that there was a structure. Structure 12 has a depressed floor with banked sides that slope up to two high points on either side. There appears to be some overlap with the external walls of structure 11. Most likely, the construction techniques used to create structure 12 were identical to those used in structure 11, with gravel pushed out from the center to form the external walls and room divisions.
The differences in surface appearance between the two structures can be directly related to the excavation of structure 11. Fitzhugh (1985: Figure 2) indicates two additional structures in this area, structures 13 and 14. I was unable to find any evidence for structures but took general elevation readings in the area where they were previously mapped. The elevation revealed the presence of a long depression similar in shape to structure 12 which is likely structure 13. It overlaps slightly with the west wall of structure 12. Structure 14 remained elusive, but the thick vegetation in this area may have camouflaged the feature. However, in the area in which Fitzhugh (1983) located structure
14, caribou activity has cut through the surface vegetation (depth of .5m) and exposed extensive lithic debitage.

5.4.2 Interpretation

There appears to be a switch in structure design and construction methods between the tent ring-like construction of structure 15 and to the semi subterranean longhouse features indicated by the structure 10-14 cluster. This may reflect differences in surface terrain given that there is more gravel on the lower beach terrace, but I think that there is a more significant explanation. The house form and construction methods used in the structure 10-14 cluster seem more adaptable to increases in population than that associated with structure 15, suggesting that during this stage of occupation there was need for structures that could be adapted for unexpectedly large populations, which would likely be the case in areas that had developed some importance to a people (Rockman and Steele 2003).

5.5. Structure 9

Structure 9 (Figure 7) is smaller than any of the other structures at Nulliak Cove and has a unique construction and orientation (Table 3 and 4). Additionally, it was constructed at a higher elevation (+3m) than any other structure associated with external cache features. Even though structure 9 is located within 15 meters of the 10-14 cluster it differs significantly enough to justify separate consideration.
5.5.1 Construction and Features

Structure 9 room divisions are delineated by the depressions of living floors with the conglomerate of house pits to construct a longhouse. The major difference between this structure and those discussed in the 10-14 cluster is in the type of wall construction. The walls of structure 9 were neither constructed from a line of rocks, like that seen in structure 15, nor is it a continuous berm of gravel like that used in the construction of the structure 10-14 cluster. Rather, it is a loose mixed line of rocks and gravel that delineates the wall. There was a series of cache pits recorded near structure 9 that may be the first evidence of external storage at the eastern end of the site. Unfortunately, the scattered wall construction of this feature made it difficult to determine if these cache pits were built into the walls (see structure 2 and 7) or were actually external.

5.5.2 Elevation, Location and Orientation.

The orientation of structure 9 is the major reason that this structure was not included in the structure 10-14 cluster. The structure has a clear long-axis that is aligned east/west, while the houses in the structure 10-14 cluster are aligned north/south. The difference in orientation might reflect the fact that structure 9 was situated on a lower, smaller beach ridge than the 10-14 cluster (Figure 3).

5.5.3 Interpretation.

It is possible that structure 9 was placed in such a way to replicate the frontage, distance and elevation from Nulliak Pond seen in the structure 10-14 cluster. This replication of setting is odd considering the limitations of building in such a precarious location.
5.6. **Structure 8**

Structure 8 (Figure 10) was nearly completely excavated by Fitzhugh (1983). As a result back dirt piles, unit pegs and the excavated unit walls are still visible. The excavation footprint helped to define the limits of the structure during 2008 site mapping. Previous research (Hutchings 2006) indicated that structure 8 had a unique wall structure of large rocks and was located on a high elevation (highest elevation excluding the beach ridge of the structure 10-14 cluster, see Figure 3) suggesting an early position in the chronology of occupation at Nulliak Cove. However, it also contained a fairly recent Rattlers Bight artifact assemblage (Hutchings 2006:33, Table 5). This contradiction made interpreting structure 8 difficult.

![Figure 10. Structure 8 and Structure 17.](image)

5.6.1 **Construction and Features**

As mentioned, the wall construction of structure 8 is significantly different from the structures previously outlined, and from structure 17 which will be examined below. First, the walls are roughly 1m wide and were constructed from large flat rocks. Despite the labor involved in moving these rocks, they are not stacked nor are they buried deeply
into the soil, but were laid on the surface surrounding the outside edge of the living floors. All of the other structures at the site were constructed in a way that suggests that shelter was the primary concern, yet structure 8 seems to lack functional walls. Instead, large rocks were moved away from the inside of the feature arranged along with gravel to circumscribe the longhouse. The overall construction of the wall appears closer to the tent ring wall design of structure 15, but the room divisions, despite being divided with rock cross walls instead of gravel berms, are reminiscent of the structure 10-14 cluster.

Structure 8 contains one of the most varied collections of internal features at Nulliak Cove. First, there are two caches that look similar to the internal box caches seen in structure 15. However, most of the caches were external to this structure. In the unexcavated section of the structure some of the cache pit stones have been stood on end and resemble a Dorset box hearth.

A final feature associated with this structure is a circle of stones with a half meter high stone placed at its center. The feature appears relatively old, based on lichen growth, but it is unknown if it was contemporaneous with the actual use of the house. This unusual feature does occur in other structures at Nulliak Cove, but only among more recent structures at the western end of the site. This small feature serves as a link between structure 8 and the more recent Labrador Archaic occupations at Nulliak Cove despite its location among the older structures. There are two additional features associated with structure 8 that suggest that its unique positioning was not random: burial mound 1 and structure 17. Burial mound 1, which was excavated in the late 1970s (Fitzhugh 1984, 1985), is located less than 2m away from the wall of structure 8. While the proximity of the burial and structure suggests they are related in some manner it is unclear which of the
features was constructed first. The second significant feature is the recently discovered structure 17. Structure 17 is more typical of the structures at Nulliak Cove but lies at approximately the same elevation as structure 8 and is located less than 10 meters away.

5.6.2 Taphonomic elements

Structure 8 includes a variety of unique construction elements, which are further complicated by two major post-depositional events: excavation, and the frequent flooding of the structure. Despite providing important information, the excavation obscured the details of wall construction, and one wonders whether the structure is only visible because of the excavation. For example, at the unexcavated western limit of the structure there are room divisions, which are unclear in the undisturbed portion of the structure. This could reflect a lack of room divisions in this eastern part of the structure or it may result from multiple years of excavation as the structure was investigated.

The second post-depositional factor is flooding. The high hills and exposed bedrock surrounding the site funnels water into the cove, causing significant flooding in some of the structures. During the 2008 season after days of dry weather, rain runoff was still draining out of the hills causing a 3 meter wide area in the center of structure 8 to become inundated. This flooding occurs in the least clear section of the structure, and which may be due to this post depositional process.

5.6.3 Elevation, Location and Orientation

The long-axis of structure 8 was oriented east-west, while long walls are facing the ocean to the south and the high beach ridge of the older structures to the north. This orientation and location run counter to the structures situated at higher elevations. The
placement of structure 8 at the foot of the hill effectively blocks one side of the structure and obscures the view north. The view south to the ocean is also obscured by a raised cobble beach. Almost all of the other structures seem to be situated to be in view of either Nulliak Pond or the ocean, making the placement of structure 8 unique.

5.6.4 Artifacts

Hutchings (2006) was used as the primary source for artifact data which suggested an older occupation for the site. While the artifact assemblage will not be reviewed some discussion is necessary to incorporate new details such as the presence of a non-utilitarian artifact as well as the first diagnostic tools from the previously unmapped structure 17. During the excavations of structure 8 and structure 11 (Fitzhugh 1983), a variety of soapstone pendants, plaques and plates were recovered. I also surface collected one of these soapstone objects from structure 8- a 20 cm long and 8 cm wide disc with light etching on the back. This type of artifact was only found in structure 8 and adds weight to the interpretation of this structure as distinct from the standard house type at Nulliak Cove.

5.6.5 Interpretation

The association of structure 8 with both a burial mound and a structure with completely different attributes seems to suggest that structure 8 may require a more complex explanation than some of the other structures at Nulliak Cove. Structure 8 is unique in both orientation and placement and when considered with the Rattlers Bight complex date suggested by the tool assemblage (Hutchings 2006) it hints at the
importance of this feature to the interpretations of the Labrador Archaic occupations at the site.

5.7 Structure 17

Structure 17 is located directly to the south of structure 8 on the same area of the beach (Figure 3). This longhouse is demarcated by its high rock walls, substantial lithic scatter inside and outside the structure and associated features (Figure 11).

![Figure 11. Structure 17, Structure 8 and burial behind.](image)

5.7.1 Construction and Features

The construction techniques used to create structure 17 are unique among the structures at the eastern end of Nulliak Cove. The structure appears to be an adaptation of the construction technique used in the structure 10-14 cluster, whereby material is moved from the center of the structure to the edges in order to create walls. As well as bedrock,
stones up to 1m in diameter were incorporated into the walls and internal features. The use of these large structural stones, which would have been difficult to move, suggests that certain stones were incorporated in situ while smaller rocks were moved and arranged around them to fill gaps between the larger boulders and exposed bedrock sections.

There are no clear room depressions visible in structure 17, but there are internal walls. These are more substantial than the room dividers discussed in the structure 10-14 cluster and they would have completely blocked internal movement between sections of the structure. A possible hearth is located in the middle of the structure. It is identified by a circle of stones and includes a large white rock standing on end supported by two smaller stones.

This structure contains a smaller rectangular room in the most southerly segment which ends at a curved wall, giving the structure a lozenge shape rather than rectangular form. This internal feature may represent an internal storage area. This type of feature is also present in structures at the western end of the site, but structure 17 marks the most easterly example and may mark the earliest adoption of this large scale internal storage (Hutchings 2006).

5.7.2 Elevation, Location and Orientation

The long axis orientation of structure 17 is southwest/northeast which puts it at a 45° angle to the nearby structure 8, but an identical orientation to that of structure 7 (Figure 3). In addition to having the same orientation as the older structures in the 10-14 cluster, structure 17 was similarly situated in relation to the edge of the current pond
limits. This would seem to support the supposition that the majority of the earlier structures at the site were oriented toward an inner bay marked by Nulliak Pond (Fitzhugh 1984:16). All this suggests that structure 17, despite the lower elevation, represents a more typical orientation for temporally similar structures at the easterly end of the site. Given that the majority of structures at the easterly side of the site were oriented with their long sides towards the interior bay the odd nature of structure 8 is more distinct.

5.7.3 Artifacts

As structure 17 was only located in 2008, no artifact collection existed when the artifacts were analyzed in 2006 (Hutchings 2006). Nor did I formally surface collect in 2008. Rather, I brought back minimal samples. Debitage blanketed the interior area of the structure. While it appeared to be dominated by Ramah chert, a fine-grained white chert was also present, as well as quartzite. Artifacts included biface fragments, but few diagnostics. I collected one almost complete point, but it is missing the base and is therefore not diagnostic. Overall, the material culture from this structure, while abundant, did not have the variety and quantity of tools recovered from structure 8 (Fitzhugh 1984:16), but formal collection may resolve this in time.

5.7.4 Interpretation

The construction technique of structure 17 differs greatly from surrounding structures which may represent the evolution of the construction processes over time at the site. Alternate explanations for the construction method used include, for example there may have been an outer wall and inner wall, or that larger outer stones held edges of tents while smaller stones were stacked inside. Regardless of the reason, this technique is
substantially different from the gravel construction used in the structure 10-14 cluster, and from the construction of structure 8, demonstrating the high variability in longhouses form and construction over the limited area of Nulliak Cove.

5.8 Structure 7

A variety of taphonomic factors have also obscured much of the structure’s wall construction. Based on the visible remains the type of construction used in structure 7 is more pronounced in the structures located at the western side of Nulliak Cove, although it is similar in location and orientation to structure 17.

5.8.1 Construction.

Structure 7 is constructed with large, in situ stones along the perimeter which were interspersed with smaller rocks. It is likely that these smaller rocks were gathered from the interior of the structure to construct the wall. Structure 7 is neither a series of deep small rooms like the structure 10-14 cluster nor conjoined dwellings as seen in structure 15. Instead, structure 7 appears to have been pre-planned with the minimum size of the outer perimeter wall determined before construction.

Structure 7 has a prominent outward curve along the pond facing wall (Figure 12), a characteristic common to the structures on the western side of the site. Despite the curve there are also straight segments of wall. The curve becomes evident where the wall meets a large cache feature. Unfortunately, it is difficult to determine if this was the intentional shape of the wall, the result of post-depositional collapse or effects of caribou activity in the area. Nevertheless, it is important to note this characteristic because it does not occur in any of the earlier structures to the east, but appears to be consistent in
structures toward the west. It therefore seems reasonable to assume that this feature is related to a change in the use and/or construction of newer structures, and might hint at the evolving use of longhouses at Nulliak Cove.

![Diagram of Structure 7 and Cache Pits](image)

Figure 12. Structure 7, caches to north-west.

Problems in establishing the perimeter of structure 7 caused further issues. Structure 7 is one of the few structures that does not have a rounded end-wall like that recorded for structure 17. Instead, it ends with a perpendicular corner similar to the stone constructed, cross-walls seen in structure 17. If the end of the structure is just not visible, establishing a rounded end can only be accomplished by assuming that the very large stones beyond the mapped margin are structural, but this only accounts for the western end of the structure.

Structure 7, like other structures from the eastern end of the site, has no clearly associated external features though there are some possible caches in the area of the structure that are discussed in the interpretation section below. Internally, there are only traces of features. Most significant among these is a large rectangular feature,
incorporated into the external wall. This feature, though disturbed, might be a cache or hearth. It is rectangular in shape, 2 m x 1 m in overall size and is constructed of large stones. It does not appear to contain any cultural material, but this is difficult to confirm without excavation. No other identifiable features were found but deeply cut caribou trails in the vicinity may have erased some examples.

5.8.2 Location, Elevation and Orientation

Structure 7 seems to have been purposely placed to have access to Nulliak Pond as well as to observe the location of the distant densely placed features to the west (Figure 5 and 12). Like structure 17, the long-axis of structure 7 is oriented along an almost perfect northeast-southwest line. This would suggest that both structures 7 and 17 would have been oriented with their long-axis facing inward to what may have been an inland bay as discussed above. However, there is a difference in elevation between structures 7 and 17. Structure 7 is nearly two meters lower than structure 17. This suggests that structure 17 is likely older than structure 7. Additional support can be found in some of the possible feature associations of structure 7.

5.8.3 Taphonomy

Structure 7 is one of the most disturbed structures. The combination of a sand matrix, heavy erosion by rain and melt water, and caribou activity has taken a toll on the remains. Despite a very rich scatter of debitage and artifacts, the walls of this structure were difficult to locate and were little more than a collection of mixed large and small stones.
5.8.4 Interpretation

Structure 7 is uniquely suited as the dividing line between the older eastern structures and the more recent western structures at Nulliak Cove. As such, it contains attributes which indicate increasing complexity and more communal activity. This is shown in a variety of ways, but most notably through the slight changes in construction. Structure 7 has little in the way of internal walls or evidence of extending or shortening over time, which implies foreknowledge by the builders of the number of people that would be occupying the dwelling, and may imply that large groups of Labrador Archaic were traveling together and arriving to the site en masse rather than the gradual accumulation of numbers implied by the earlier conjoined structures (structure 15 and perhaps the 10-14 cluster) at higher elevations.

Evidence for the communal nature of structure 7 is also present when obtaining and storage of food resources of the occupants is considered. Caribou drive lanes are located at the narrowest point on the barachois near structure 7 (Fitzhugh 1985: Figure 2). There are also a variety of external features, including caches, and stone walls of an unknown purpose that are physically closer to structure 7 than any other structure. In fact, this area has the greatest density of cache pits anywhere on the site. With this in mind it becomes likely that there might be a subsistence/functional purpose behind structure 7’s location. This is in contrast to the older structures which were placed on higher beach ridges, and built in a parallel progression with no apparent external caches, suggesting that the development of the longhouses were not as intimately tied to group cooperation for harvesting resources as has been suggested (Fitzhugh 1985:98) and may instead have developed in concert with the changing requirements of populations at the site.
It has been suggested, that there is a change in cultural organization toward greater social and ceremonial complexity that coincides with changes to longhouse construction and organization (Fitzhugh 2009:64). It may be that the site of Nulliak Cove, regardless of its original purpose, needed to be adapted over time by the occupants to support larger populations. This suggests that Fitzhugh's (1972, 1984:18) ideas of organized caribou hunts may be correct and that the populations that congregated at Nulliak Cove would have benefited from cooperative hunting. Such an activity could result in house placement that is strategically designed to take advantage of resources.

5.9. **Structure 5**

Structure 5 is one of the smaller structures at Nulliak Cove (Table 3 and Figure 13). The structure does not resemble the others at the site, but appears to be the most intact example. It might be the best preserved of the structures because it sits slightly higher than the surrounding ground level, minimizing the effects of water damage, and its proximity to the edge of the beach ridge might have limited caribou activity.
Structure 5 is similar in shape to the nearby structure 6. It was constructed using mostly 20-35cm diameter rocks. It is located on a boulder beach away from the sandy matrix on which the structures to the west are located. The rockier location makes it difficult to determine whether the unique construction of this structure was due to functional change or simply a matter of adapting to a building material. Structure 5 contains two room-segments which are depressed suggesting excavation during wall
construction. Despite this there are distinct cross-walls constructed from larger rocks within the structure that divide the depressed floor.

There is an odd central feature that runs the length of structure 5. Strangely, it seems very similar to the central axial feature seen in some Dorset longhouse structures (Park 2005). It consists of a series of solidly placed larger stones in the middle of the structure which stand 20 cm above ground level. In addition, there is a square room segment in the center of the structure that is created by two cross-walls that has a visibly lower floor than the other segments of the structure. The function of this feature is unknown, but there are at least two possibilities. First, the longhouse may have been re-occupied and adapted over time. In this scenario the central area may have always been in use while occupation of the end segments varied: continuous re-excavation to maintain external walls would result in this deeper floor. Second, the lower segment of the floor may have been the only living space in the structure with the remainder of internal space used for storage.

There are a variety of small circular features located outside structure 5. Some are exterior caches which are similar to the caches seen in other areas of the site. However, there is one unique feature which appears to be an external cache extending from a section of exposed white bedrock that marks the corner of the eastern end wall (Figure 14). In this cache there are 15 smaller stones forming a standing circular wall 30cm in height. The use of bedrock as both an essential building resource and as a marker for a storage feature in this structure demonstrates the opportunistic use of large in situ stones that dominate the construction of the longhouses along this beach ridge.
5.9.2 Location, Orientation and Elevation.

The location and orientation of this structure is determined by the shape of the beach ridge behind structure 6. Structure 5 is located within two meters of the sharply sloping edge of this ridge, and likely positioned to take advantage of access to the ocean making it an ideal location to land boats. The location also allows good visibility of the open ocean.

Despite the fact that structure 5 is located at a similar elevation and in close proximity to Pre-Dorset structures, I do not believe that they were occupied during the same period. The presence of Paleo-eskimo structures at elevations equal to that of structure 5 or higher elevations than that of the Labrador Archaic structure 6 example
may be explained by the Paleo-eskimo practice of establishing sites at higher elevations away from the shoreline. The other interpretations of the association between the Labrador Archaic and Pre-Dorset structures are discussed below.

5.10. Structure 6

Despite the rather amorphous nature of this structure (Figure 13) the large collection of lithic debitage recovered here and the concentration of associated features leave little doubt that it is a longhouse. The identification of the structure was complicated by its location on a cobble beach terrace.

5.10.1 Construction and Features

Structure 6 was constructed using rounded beach cobbles approximately 50cm in diameter. As with the structures 7 and 17, the method of construction consisted of moving interior rocks to the side to form walls. The walls are straight and much thinner than those associated with other structures, giving the impression that the internal space was wider.

The identification of this structure was hampered by extensive caribou activity, as sections of the long walls of the structure coincide with the later caribou paths. In the places where the caribou trails curve away from the structures’ interior, a cobbled pavement is evident. This pavement is not perfectly flat but it is bounded by the walls, and appears to represent the original floor. Additionally, this floor looks like it has been compacted into the earth below the ground level surrounding the structure. No other structure at Nulliak Cove has this type of floor or reflects the same investment of labour to prepare internal space.
Structure 6 contains more internal features than the other Labrador Archaic structures at Nulliak Cove. One of these features is repeated frequently throughout the structure. It first appears at the eastern end of the structure and is similar to the larger internal cache described for structure 7. However, it has a more substantial construction consisting of eight stones arranged in a circle with a taller stone placed upright in the center. It resembles features located in the Labrador Archaic pit houses excavated at White Point (Wolff 2008). This feature is repeated at a spacing of 2.5m throughout the length of structure 6 with some variation in size. In total seven of these features were recorded along the southerly, ocean-facing wall of the structure. The landward side of this structure is mixed with rock fall from the steep hill that lies directly behind, but the features are still somewhat visible. There seems to be a similar series of cache pit/hearth features along the back wall, but they are not as regularly spaced as the ones on the southern wall. In one case the features on the front and back walls align across the structure. The placement of the features along the southerly wall seems to align quite well with what appears to be the average size for a room division at Nulliak Cove (2.5-3.5m). It may be that these internal features are not caches but are structural elements of the house like post stands.

5.10.2 Location, Elevation and Orientation

Structure 6 is uniquely situated in both location and elevation on a different beach ridge than other houses (Figure 15), oriented toward the current ocean coast, located 5m below most of the other structures and 10 meters below structure 15. Structure 6 is also meters below Pre-Dorset structures located 40m to the north. As Table 3 shows, the
differences in elevation between all Nulliak longhouses is minimal. Structures 2, 3, 4, 5, 7 and 17 are all located at roughly the same elevation. The greatest elevation difference exists between the structures located at the eastern and western limits of the site. The maximum difference in structure elevation over the entire east-west length of the site (well over a kilometer) is less than two meters.

![Figure 15. Structure 6 location.](image)

5.10.3 *Artifacts*

The lithic assemblage from structure 6 contained a high percentage of Ramah chert suggesting it was a later Labrador Archaic structure. Unfortunately, until 2008 no formal tools had been found. In 2008 a single diagnostic tool was recovered, which
confirms the structure's cultural chronological affiliation. The artifact found was a 10cm long Ramah chert point in the distinctive formalized Rattlers Bight style with extended parallel sided stem. The recovery of single tool from structure 6 versus the many examples of tools from other structures reinforces the notion that this structure represents a major change with other structures at the site. The absence of formal tools in structure 6 is unlikely to be random given that tools are plentiful at all other structures at Nulliak Cove.

5.10.4 Associated features

It seems significant to mention the density of cultural features surrounding this structure not only for comparative purposes, but as proxy evidence for a recent date for the structure. There is a circular cache that is a located 1m outside the wall as well as a cache that is set into the wall. It appears that this part of the site was used by various cultures as a number of features do not appear to be of Labrador Archaic origin. The area to the north of structure 6 contains two hunting blinds and there is a large cache pit to the south that likely represents Inuit/Thule activity.

There is a cobble-strewn hill directly to the north of structure 6 located between its landward wall and the beach terrace where both structure 5 and at least two Pre-Dorset structures are situated. The intervening area includes numerous cache pits, it is impossible to say whether they were constructed by Labrador Archaic or Pre-Dorset groups. Though we can say that they were constructed before or during a time when Archaic groups were situating their structures below the Pre-Dorset structures. One interpretation of this is that the Pre-Dorset were choosing to build their structures above the abandoned remains of the
most recent Labrador Archaic structures in a location that was poorly situated for access to open water, though these seems suspect. A more likely explanation is that this Labrador Archaic structure, constructed in a location that is below and distant from their other feature types and significantly distant from their symbolic features, represents a Labrador Archaic return to Nulliak after a period of abandonment.

5.10.5 Interpretation

Understanding the placement of structure 6 is important for understanding the site as a whole. The very low elevation of structure 6 implies that it is likely the most recent Labrador Archaic structure built at Nulliak Cove. Furthermore, the amount of elevation change is so large that it might suggest that there was a period of abandonment at the site, with return at a later date.

The location of this structure calls in to question the chronological sequence that I had originally suggested for the site (Hutchings 2006). Based on earlier work the tool assemblage associated with structure 16 was the best example of the Rattlers Bight complex occupation at Nulliak Cove suggesting the most recently occupied structure. However, this was based on a site artifact collection that did not include any diagnostic tools from structure 6. Now that structure 6 has been conclusively identified as a Rattlers Bight period longhouse, structure 16 is no longer obvious candidate for the most recent occupation. If structure 6 is the most recent structure it does not demonstrate the continuation of growth in longhouse size and complexity which has been associated with the Late Labrador Archaic (Fitzhugh 2006). Instead, structure 6 hints at a reduction in population size and smaller scale social organization at the site. The small repeated cache
or hearth features may signal a return to the segmented use of a longhouse similar to that seen in structure 15. There may be a different organizational tactic at play which emphasizes single household independence. This is in opposition to the western structure's apparent cooperative approach of widely spaced, unorganized caches.

Perhaps the overall switch in location, elevation and organization that is represented by structure 6 is evidence of a switch in Labrador Archaic use of the site. The possible intentional deposition of a diagnostic point may have been intentional to convey a message to the new arrivals.

5.11 Structure 2-4 cluster

These three structures from the western end of Nulliaq Cove are good representations of Rattlers Bight complex occupations due to their large size, near universal use of Ramah chert and tool assemblage (Hutchings 2006). For the reasons explained earlier they will be treated as a cluster, though it is useful to highlight individual aspects of one of the structures.

5.11.1 Construction.

The construction of structure 2 differs from that of structures 3 and 4. The walls of structure 2 consist of a combination of large and small rocks. The center of the structure is sandy and caribou trails divide the structure, making it difficult to interpret. Furthermore, the walls become indistinct toward the ends of the structure.

Structure 2 has the most visible room cross walls, suggesting that there were at least three room segments. The central room segment is a rectangular area and partially paved. I have suggested that this type of feature may represent a reoccupied segment of a
developing longhouse (see structure 5), but evidence from structure 2 does not support this hypothesis because this room’s floor is no lower than any of the other room divisions, and the walls continue past the feature.

The area surrounding this structure is littered with features; the vast majority of them are cache pits. Distributed among the cache pits are cache-like features, with a regular configuration of a circle of stones with a stone standing in the middle. There are also some caches directly attached to the structure. These are small, almost rectangular caches located just outside of the structure wall. This area of the site has the highest number of external caches that can be directly associated with structures. In a way this seems like a continuation of the pattern associated with structure 7, but structure 5 had nearly as many external caches and was significantly smaller in size. It may be that caches were located in places near resource extraction.

Structure 3 was located on top of a sand/gravel deposit rather than the cobble beach. It was constructed from 10-20 cm diameter stones that were used to delineate the interior from the exterior of the structure. As seen in others structures, one long wall was constructed much more heavily than the other. The construction of structure 3 required a greater investment of labor because rocks had to be carried to the locale to create the longhouse rather than shifting rocks from the center to the edges of the structure to form walls.

There were no noticeable depressions which could be used to signify room divisions. However, there was a central segment, similar to that located in structure 2, that was paved and bound by larger cross walls (see structure 2 and 5). There is also one
clear cross-wall toward the end of the structure, and large stones are present along the midline of the floor.

Externally, there were larger cache-like features (represented by circles of stones with single or double standing stones in the center) present near this structure. Unfortunately, it is not possible to determine if these were Labrador Archaic features. They are encrusted with lichen and do not appear modern, but the use of the site by multiple cultures makes cultural affiliation impossible to determine.

Structure 4 is the only Labrador Archaic structure situated on a sand beach at Nulliak Cove. The entire structure was demarcated by stones greater than 60cm in diameter that were purposely placed to form walls. The location on this sand beach meant there was no need to clear smaller rocks inside the structure to the edge. There were no visible room depressions or divisions in this structure. There were some indistinct internal features but nothing that provides any clues to the use of the structure.

Structure 4 has a curved profile. The curved end walls are repeated at least twice at both ends of this structure, demonstrating that the structure was shortened and lengthened over its occupation. Structure 4 also has one long wall that is more distinctive than the other. There are scattered paving rocks outside of this less definite wall, which were suggestive of an entryway or an external activity area. As with other structures on the site the taphonomic processes affecting structure 4 may be obscuring other features and construction methods. The sand matrix on which the structure is situated has been much disturbed by caribou trails and sheet wash.
5.11.2 Location, elevation orientation

Structure 2 is situated on low terrain between two ridges that are half a meter higher than the center of the structure. The structure is 15-20m away from the edge of the beach terrace to the south, which is extremely steep and rocky making boat landings difficult. Structure 2 is situated the farthest away from Nulliak Pond, if it was constructed to be oriented toward the interior bay this may hint and substantial shore line change.

![Figure 16. Structure 2 burial 2 in background.](image)

Structure 3 is situated in a similar manner to structure 2, in a low spot between two high points of land, partially obscuring any view from inside the structure. The difference in height between the low and high points here is approx 1m. Wall stones are
placed directly onto the beach sand. The orientation of structure 3 may have been
determined by the orientation of the hollows themselves.

Structure 4 has the highest elevation of the three structures in this cluster.
However, there is a great degree of variability of elevation in this locale, with undulations
roughly 2 m in height no more than four meters apart. Structure 4 is actually located
between two of these undulations. This obstructs sightlines from the structure, making it
impossible to see to the south and barring all sight of the open ocean. This suggests that
this structure, and perhaps the majority of other structures, were oriented toward the
inland Nulliak Pond instead of the open ocean.

5.11.3 Interpretation.

The similarity in the proportion of materials and types of artifacts (Hutchings 2006) as
well as the new data from the mapping and construction analysis all suggests that
structures 2,3,4 were occupied close together in time, potentially even concurrently,
during the Rattlers Bight complex period. Additionally, all of these structures were built
to take advantage of natural landscape features, which affected the ways in which they
were situated.
5.12. Structure 16

Fitzhugh (1985) reports that structure 16 is 120 meters long but my research suggests that it is in fact two separate, overlapping structures, which may even share a segment of wall. About 60 meters past the southerly end of the structure there is evidence for two diverging walls that run apart from each other giving the wall a dog leg shape (Figure 17). At this intersection the wall is twice its normal width or two meters wide. Interpretation of this structure is confused by the heavy sod ground cover over the easterly section of the structure, making the wall opposite the double width wall impossible to find. Nevertheless, evidence from mapping and wall width support the
notion that this is in fact two structures. For the remainder of this section, I will continue
to refer to both these structures as longhouse 16, but have altered the site map (Figure 3
and 4) to reflect this change.

5.12.1 Construction and Features

Structure 16 had walls 1 -1.5m in width which were constructed of stones less
than 50cm in diameter. This clear arrangement of walls continues for about 75% of the
structure. Approximately 20m after the intersection of the two structures the walls of
structure 16b start to become indistinct due to heavy ground cover.

The structure appears to have been constructed completely from transported rocks.
Both structure 16a and 16b are situated on sandy gravel, and there was no close source of
useable stone. The nearest source of building material was located 40-50m to the west, on
a beach berm (Figure 3 and 4), demonstrating the investment in labor used in construction
of this area.

The second longhouse (16b) ultimately terminates in the south, where the sandy
matrix is replaced by a boulder field. This switch in matrix obscures the walls.
Fortunately, large numbers of flakes and tools indicate the end of the structure. The
southerly part of the structure includes many of the standard elements expected of a
longhouse. The most convincing element is the lozenge shaped end. Opposite this, in
what would be the east wall, there is also a straight alignment of rocks that further
supports the suggestion that this area has elements of two structures (see Figure 17).

Internal features are present throughout structure 16a, but are less distinct in 16b.
In structure 16a the west facing wall was clear while the east facing wall was less distinct
and scattered. An external pavement extends from the less distinct wall toward the current outlet of Nulliak Pond.

There is little in the way of external features surrounding these structures as only three cache pits were recorded. Structure 16 has two glacially deposited stones over 70cm tall that were incorporated into wall construction. The first seems to have been used as a segment of wall, while the second one stands just behind the wall, but is possibly attached. This rock seems to have been used along with smaller stones to form a cache. External caches seem to have been replaced in structures 16a, 16b with internal and attached features.

5.12.2 Location, orientation and elevation

Even with structure 16 separated into two longhouses, the northern structure 16a would still be largest structure on the site, stretching over 70 meters in length, while the more amorphous 16b is between 25 and 30m. Structure 16a and b are the clearest examples of a Rattlers Bight complex longhouse. The location of these structures, on the western side of Nulliak Pond’s outlet river separates them from all other structures. In addition, their orientation (Table 4) is unique among structures on the western edge of the site. They have a low elevation (Table 3), similar to that seen in the structure 2-4 cluster. The westerly wall of the structure is oriented toward the large cliffs behind the site. The northerly limit of the structure is especially visible because it is situated in a sand matrix with little ground cover.
5.12.3 Interpretation

The lack of external features associated with these structures does not mean that collective food procurement was abandoned; the placement of caches might have been closer to the area in which food was collected (see structure 7). It seems unlikely that two structures of this size could have been constructed without some social organization toward communal food and work sharing.

5.13 Conclusion

This chapter presented data that was procured during the mapping and detailed observation of Archaic longhouses at Nulliak Cove. Outlining the results of the project inherently moves us toward interpretation of those results. The most interesting result is that there are identifiable changes in the construction of longhouses over time, involving more intensive labor practices and including a switch from excavated structures to the transport of material for walls. Despite the various overriding patterns, there are exceptions to these trends, in the form of a small number of features and structures that appear to run counter to the expected pattern. These are significant because they demonstrate that generalizing Labrador Archaic characteristics is too simplistic. The other extreme is too fine of a focus that highlights the differences, so that the common narrative thread is lost. In the discussion of the results I argue that the variety of evidence must be considered in multiple ways.
Chapter Six: Discussion

The site of Nulliak Cove plays a significant role in most interpretations of Labrador Archaic cultural development (Fitzhugh 1975, 1978, 1984, 1985, 2006; Hood 1983, 2000). However, the major problem with relying on Nulliak Cove to interpret the Labrador Archaic past is that the site itself is poorly understood. To advance our understanding of Nulliak Cove we need to move beyond the cultural historical framework that was originally established in the 1960s. This chapter attempts to construct narratives that bridge the gap between Nulliak Cove in particular and Labrador Archaic society in general.

6.1 Creative Narrative in Labrador Prehistory

Due to problems such as cost, weather, remote locations and short seasons it will always be difficult to collect data needed to develop large explanatory frameworks and the evidence available will never be sufficient to fully answer the questions asked (Fitzhugh 1972; Tuck 1975; Tuck and McGhee 1975). Few large-scale narratives are currently used to connect site based studies of the Labrador Archaic to more general trends in their cultural development. Yet the story of the longhouse provides an avenue from which to apply a narrative approach in the interpretation of Labrador Archaic culture.

As outlined in Chapter 2, the development and increase in size of Labrador Archaic longhouses has generally been used as evidence for a move toward greater complexity and larger settlement size over time (Fitzhugh 2006). Yet my research indicates that there is evidence to suggest that this interpretation needs revision. The
development of longhouses may be much more complex than traditionally presented and have involved a great deal of continuity as well as change. The interpretive narrative presented below employs a phenomenological perspective to try and move beyond the basic patterns of settlement data and interpret how the Labrador Archaic understood Nulliak Cove and their world in general. By using multiple narratives it is possible to provide interpretation at various scales and understand the various roles that cultural objects can fulfill.

6.2 Interpretation of Increasing Complexity

This examination of Labrador Archaic at Nulliak Cove indicates that the longhouses, generally, increase in length over time, supporting Fitzhugh’s (1981) idea that these features reflected increasing population size and cultural complexity over time. However, the settlement pattern at Nulliak Cove runs counter to other aspects of the current Labrador Archaic longhouse model which suggests that longhouses were an adaptation that developed in locations with a high density of single family households (Fitzhugh 1983). No single family structures have been located in the vicinity of Nulliak Cove, while several nearby sites do contain longhouses (Chapter 4). In fact, the oldest structure at the site, structure 15 was home to at least 2 families, even if it is not considered a classic longhouse feature. From the beginning of the Labrador Archaic occupation of the site to its abandonment it was exclusively occupied by multiple-family units.
6.2.1 *East-west progression of occupation*

Despite the seemingly consistent use of longhouse form among the majority of structures at Nulliak Cove, substantially different construction processes are reflected in structures just meters apart. In the structures located at the highest elevations in the northeast, including the structures belonging to the structure 10-14 cluster, construction consists of room depressions excavated into the gravel. In these structures small berms function as walls and room dividers and give the impression of allowing expansion as needed in an additive process. In contrast, the occupants of the more recent structures, located to the west, began to incorporate larger rocks for wall construction and built additional internal storage features into the ends of structures. These more recent structures appear to have been constructed with a set length in mind, rather than allowing for the addition of rooms and with little evidence of rebuilding end walls (structure 4 notable exception). This implies either a mass arrival of people at Nulliak Cove or the belief by some segment of the population that particular groups would soon be congregating. In addition, the switch to more substantial building materials would have drastically increased the time and labour involved in the construction of longhouses. This is particularly notable in structure 16a. This structure represents the largest of the structures at Nulliak Cove and contained a late Rattlers Bight complex tool assemblage (Hutchings 2006). The rocks used to build both structure 16a and a6b would have had to be transported some distance in order to be used in wall construction, and are deeply seated into the ground. The trend toward larger longhouses which required greater labor investment suggests that longhouses served to shelter groups larger than nuclear families and provided a way for small groups to unite for a certain part of the year (Fitzhugh
1984). This suggestion is supported by other features at Nulliak Cove. For example there was an increase in the number of external cache pits over time, as well as the construction of longhouse structures and features on highly visible beach ridges which could have served as markers on the landscape to traveling groups.

The gradual increase in labor invested in the construction of large structures and the increased complexity of features suggests that larger numbers of people gathered over time. This increase in people and features might suggest that Nulliak Cove was home to a culture expanding into a new area (Rockman and Steele 2003). Certainly, Tuck (1972) suggested that the Labrador Archaic expanded quickly northward into unoccupied, recently de-glaciated areas. After a small number of original occupants established a foothold at Nulliak Cove, the population and complexity of houses increased, as did the placement of important symbolic features such as burials. Eventually, this increase in Labrador Archaic features worked to establish a connection between the people and location (Rockman and Steele 2003), leading to the adoption of the site into the Labrador Archaic homeland.

However, this interpretation cannot be used to explain all structures at Nulliak Cove specifically structures 6 and 8. The unique aspects of structure 8 have been described extensively in Chapter Five, including its orientation to surrounding structures, symbolic artifacts, staged construction, association with a richly appointed burial (mound 2), and its recent tool assemblage. In a similar manner, structure 6 seems to break with the east to west progression of greater structural complexity. Structure 6 was difficult to locate because it is situated in an area of large beach cobbles which camouflaged it. It contains multiple unique structural features, was located at a significantly lower elevation
than the rest of the Labrador Archaic features at Nulliak Cove and contains very few items of material culture when compared to other structures.

The unique features of these two structures and their associated features cannot be explained by the current model of the occupation at Nulliak Cove. In order to incorporate these aberrant features into a full explanation of Nulliak Cove creative narrative and a phenomenological perspective is required. Furthermore, it is just this sort of archaeological anomaly that allows us to gain a deeper understanding of the use of the site by Labrador Archaic groups, and its significance to the greater Archaic milieu.

6.3 Archaic Politics and Pre-Dorset Arrival

The initial arrival of Pre-Dorset in Labrador marked the end of expansion across the Eastern Arctic (Cox 1978; Rankin and Squires 2006). However the Pre-Dorset arrival in Labrador was much different than the rest of their journey because they arrived on a landscape that had been previously occupied (Rankin and Squires 2006). Given the limited population size of the Labrador Archaic populations in northern Labrador and the density and visibility of the structures and features at Nulliak Cove, it was likely the first place in which the Pre-Dorset would have been aware that the Labrador Archaic populations were greater in number and more aggregated than themselves. The amount of architecture at Nulliak Cove would have clearly demonstrated to the Pre-Dorset that they were dealing with a substantial and complex population. Furthermore, Labrador Archaic groups may have tried to influence their interactions with Pre-Dorset ones by conveying particular messages through their construction of features.
Rankin and Squires (2006), suggest that the Pre-Dorset colonization strategy in Labrador was much altered from that employed in the Eastern Arctic. The re-occupation of Labrador Archaic sites by Pre-Dorset groups shows that they were able to interpret these sites as an expression of human occupation and extrapolate that there was a reason for the sites existence and location. They might have seen the Labrador Archaic sites as evidence that life was possible in northern Labrador despite the environmental difference from their arctic homeland. The Labrador Archaic sites would have been an affirmation of the availability of food, raw materials and potential of further travel. The Pre-Dorset explorers may have used these sites to help map a route through an unknown landscape (Rockman 2003:16-18). We must also consider that the Pre-Dorset must have interpreted this resident population differently depending on the appearance of different sites. In general, the more northerly expressions of Labrador Archaic culture are associated with more ephemeral, smaller single purpose sites (Fitzhugh 1978:78-79). In comparison, Nulliak Cove was a large site with multiple large family dwellings (Fitzhugh 2006:53). This must have affected Pre-Dorset group’s understanding of Labrador Archaic populations. If, as I suggest, Labrador Archaic groups were intentionally trying to convey messages to these new inhabitants of the Labrador coast, then structure 8 and its variety of odd features can be more easily understood. The perimeter wall of structure 8 appears to have been laid on the surface (Chapter 5). This would have made it more visible than some of the older structures, giving the impression that it was occupied more recently. Its unique nature would have also been immediately noticeable to the Labrador Archaic residents (Rankin 2008), conveying a separate message. Structure 8 is situated in the older area of the site, but is orientated like the more recent structures. In this manner it
works to bridge the past occupants with the more recent ones. It also indicated that this oldest part of the site was still in use and still claimed as part of the Labrador Archaic settlement. Finally, structure 8 is associated with Burial Mound 2, an unmistakable landmark and an old form of Labrador Archaic interment (Rankin 2008). Its shape is instantly identifiable as a cultural feature and it draws attention to the area from a great distance. Rankin (2008) has suggested that the interring of remains in proximity to this modern looking structure in a nostalgic manner, serves not only to connect the structure and this part of the site to the currently occupied part of the site, but links the structure to the ancestors, reinforcing Labrador Archaic populations ownership of the entire site. This large scale demonstration of ownership and connection to place is not repeated elsewhere at the site and is certainly not represented by the other atypical structure, structure 6.

That the appearance of Labrador Archaic features would have had an effect on Pre-Dorset groups is not in doubt. It is the ways in which the features were interpreted that is debatable. Nulliak Cove was also a sizeable settlement locale for the Pre-Dorset, who constructed a minimum of three structures here. In comparison, most other Pre-Dorset occupations in Labrador are limited to a single structure (Cox 1978). So it is fair to assume that the Pre-Dorset treated Nulliak Cove in much the same way as they did other Labrador Archaic sites throughout Labrador, as an indication of what was possible and proper at a location. Seeing the earlier Labrador Archaic features as evidence that the location was able to support a larger number of people, the Pre-Dorset seemed to have afforded a similar importance to the site as the Labrador Archaic population had by building multiple structures there over time.
The Pre-Dorset impressions of the Labrador Archaic might have varied drastically depending on when they arrived at Nulliak Cove. As other researchers have suggested, the extremely large Labrador Archaic longhouse structures may have been constructed to assert a sense of ownership of regions and support cultural enclaves as the Pre-Dorset occupation expanded (Fitzhugh 1978, 1983, 1985, 2006; Hood 1993, 2000). If so, longhouses were unsuccessful as boundary markers because it appears that the Pre-Dorset used this location as a source of information and applied a settlement strategy that mirrored that of Labrador Archaic groups. If, however, we view Nulliak Cove as having some ideological importance to Labrador Archaic people, perhaps as a site where non-functional ties to the place were emphasized, the Pre-Dorset occupation could be viewed as an appropriation of the Labrador Archaic groups’ history and cultural features, thereby linking Pre Dorset populations and Labrador Archaic groups in a single narrative of place and practice. If we view the highly atypical structure 6 along these lines its presence makes greater sense.

If, as suggested by Fitzhugh (1978), a change in environmental conditions as well as the arrival of the Pre-Dorset led to the abandonment of Labrador Archaic areas to the north of Nain, structure 6 may be indicative of the latter stages of Labrador Archaic occupations at Nulliak Cove. The hidden appearance of structure 6 is atypical of the longhouse structures at the site. Instead, the lack of cultural material associated with structure 6 suggests that Labrador Archaic groups seem to have had gone to great lengths to limit the impact of their presence on the landscape. This is a reversal of the earlier approach whereby highly visible cultural features were constructed and culturally identifiable tools were readily discarded. The unique aspects of this structure all suggest
that this house may signal a late occupation of Nulliak Cove but not a return to stake a claim to the site. It instead suggests that despite their continued presence at the site Labrador Archaic people were wary to advertise their presence. It may be that this structure represents a switch in political will among the Labrador Archaic populations, leading them to minimize their presence, in order to maintain success to this site for symbolic rather than resource based reasons. Similarity in settlement locales form a connection between the two groups who experienced similar landscape and cultural features. This suggests that Nulliak was a site of ideological importance to Labrador Archaic groups, but also an important site for the new Pre-Dorset population’s trying to establish their connection to the deep history of Labrador. Nulliak Cove served as a locale in which Pre-Dorset people could align themselves with a culture that already had a deep connection to the place. By establishing a connection to the deep past, Pre-Dorset groups were symbolically granted access to the region and available resources. Overall, the impression given by the Pre-Dorset occupation of the site is not that they were intimidated by the Labrador Archaic presence, but that they were drawn to Nulliak Cove because there was proof of human connection to the place. Nevertheless, this narrative requires we determine whether Nulliak Cove was continually occupied by the Labrador Archaic during this period. If the site was abandoned, either permanently or sporadically, during Pre-Dorset periods, Pre-Dorset groups’ impressions of the overall meaning of the site would have affected their ideas of how the site should be treated and understood.
6.4 Place of Our Elders

The data presented in Chapter Five can also be used to investigate the manner in which Labrador Archaic groups understood their world, and how this may have changed over time. The first Labrador Archaic occupation at Nulliak Cove is associated with structure 15. Structure 15 was little more than two separate structures with a shared wall. Each structure includes private internal caches and separate entrances. They lack any shared features. Therefore, it can be surmised that the Labrador Archaic occupants were maintaining an early style of hierarchy/organization and food provisioning, or were only planning a very short stay at the site (Fitzhugh 1983). Few Ramah chert tools were recovered from structure 15 (Hutchings 2006), but they were diagnostic of the early Labrador Archaic period when Ramah chert was a recent discovery. After this early stage of occupation there was a progression of larger and more labour intensive structures associated with the increased use of Ramah chert, which followed an east-west progression from early to late structures (Hutchings 2006). This progression of larger structures and Ramah chert adoption becomes more complex when we follow Rankin’s (2008) suggestion that Labrador Archaic groups’ cultural features are encoded with their understanding of the world and can only be constructed in a means that agrees with this view. Therefore, the structures’ increase in length cannot be seen as developing in a vacuum, but instead needs to be viewed as integral part of the Labrador Archaic cultural development.

Perhaps the switch between the excavation construction method used to create the earlier structures and the transported rocks used to build more recent structures represents evidence of change in the cultural understanding what a longhouse structure was
supposed to be. The later longhouses were not constructed expediently in order to save effort, but were labour intensive, which may have created a way to unite disparate groups. Whatever the reason for the growth in the number and size of longhouses, it does suggest that there was a change in the Labrador Archaic mindset with regard to house construction and use. The movement of cache pits from internal features located within separate room divisions (as seen with structure 15) to external pits (seen extensively surrounding the structure 2-4 cluster) holds promise for demonstrating a move to a more communal use of resources at Nulliak Cove. Overall, it seems that changes to physical features may also represent substantive changes to the Labrador Archaic worldview. The majority of features show that there was a move towards acting communally, linking smaller Labrador Archaic groups into regional groups that occasionally came together. These periods of congregation would no doubt have reinforced the cultural continuity through shared experience. The suggestion that Labrador Archaic populations used sites such as Nulliak Cove to reinforce continuity moves our understanding of the site from a place of resource acquisition toward an important cultural landmark.

For reasons outlined above, structure 8 is distinct from the other structures. As suggested by Rankin (2008), the burial located within meters of structure 8 may well imply that Labrador Archaic groups were trying to replicate an older style of burial tradition. The northern Labrador Archaic groups tended to have cemetery burials that were below ground. The return to a mound burial style, which predates all exploration of the north, would seem to be an attempt to visibly demonstrate a long-term ownership and continuing occupational tradition of this area (Rankin 2008). This differs significantly from the previous explanation in that the Labrador Archaic were not only communicating
to the intrusive Pre-Dorset populations with highly visible graves, but also reaffirming to themselves their worldview and their place in it by using symbols that Pre-Dorset groups had likely not encountered. In much the same manner my results suggest that structure 8 was not used as a standard longhouse, but served much the same purpose as this burial, linking the surrounding older structures with the current occupations. Structure 8 shares an orientation with the more recent structures 2 to 7, with an east-west alignment, and is almost completely different from structures 10 through 15 and structure 17 which have a north-south orientation. The orientation of structure 8, notwithstanding sea level changes, fails to orient its long axis to an accessible water source, suggesting that there was no practical reason for it. Instead structure 8 worked as a signpost to link together the currently occupied areas at the western end of site with the much earlier eastern occupations. The other atypical feature, structure 6, is much more difficult to interpret. Given my suggestion that structure 6 represents a switch in the Labrador Archaic’s approach to the interaction with Pre-Dorset groups and Nulliak Cove, and that its inhabitants took pains to minimize the evidence of their stay, it might represent a last attempt at maintaining a presence at the site after the intrusive settlement of the Pre-Dorset people.

The loss of an important spiritual place might well have affected the Labrador Archaic groups’ worldview. Having to construct a structure in a foreign part of the site that was not affiliated with the important inland bay, linked with a symbolic loss of ancestors by the inability to build near burials, must have affected the Labrador Archaic populations at the site. The near complete lack of artifacts associated with this house, the series of internal features that may represent a return to the use of interior caches the
reduction in length of this structure, and the hidden appearance of the structure may also suggest that this structure was intended to be a very short term occupation. This might mean they had lost access to the site except for brief stays. Alternatively, there might have been competition for food resources between Labrador Archaic and Pre-Dorset groups. The Pre-Dorset occupation of traditional Labrador Archaic territories might have pushed the Labrador Archaic to a point where they could no longer maintain larger communal settlements and had to return to nuclear family settlements and family-based provisioning. If Nulliak Cove may be considered a representation of Labrador Archaic organization, resource acquisition and spirituality, then it must also reflect changes in these characteristics over time at this site and throughout Labrador in general.

Despite this, very little has been published concerning Labrador Archaic understanding of place, and how this understanding may have contributed to the development of the Nulliak Cove. Labrador Archaic groups clearly occupied this site before the arrival of Pre-Dorset populations in Labrador. Therefore, it is clear that the site had a functional or ideological purpose before Labrador Archaic groups needed to develop cultural enclaves within Pre-Dorset settlement zones, and prior to the need to assert cultural ownership of an important locale (see Fitzhugh 2006). Labrador Archaic structures at Nulliak Cove continued to grow over time. By the time that structure 16 was occupied their length had reached 70m, suggesting either that there was some cultural stress that the features may have ameliorated or that the structures had taken on a function different than the original one. It seems that longhouses at Nulliak Cove were constructed by people who were adapting to change over time, but were adapting in ways that reflected tradition by maintaining traditional housing forms.
Much has been made about the proximity of Nulliak Cove to the lithic source in Ramah Bay (Fitzhugh 1984:20) even though there are Labrador Archaic sites much closer to Ramah Bay that includes longhouses (Figure 2). If Nulliak Cove existed for purely functional reasons, such as the procurement of Ramah chert, then longhouses may have developed purely logistically, serving to unite dispersed populations at a specific time of year for the exploitation of a remote resource (Fitzhugh 1983). Given that Nulliak Cove may have served as an aggregation site for dispersed populations we must also take into account scalar stress that would have taken place at a site like this (Friesen 1999). If small, dispersed bands came together at Nulliak Cove to form corporate groups, then there must have been some social mechanism employed to reduce stress. This could have taken the form of a hierarchy with boat owners or captains forming the leadership (Wolff 2008), or even ideologically with spiritual leaders working to resolve disputes. If complex social organizations of these types were already in place, any interruption of this traditional organization could have resulted in new or further cultural stress.

Even if the Pre-Dorset population did not directly affect Labrador Archaic survival, they must have altered the Labrador Archaic worldview, interrupting long established social mechanisms. Labrador Archaic groups could have adopted new social mechanisms to maintain the functional use of Nulliak Cove. One option would have been to completely abandon traditional social organization. Another option was that the traditional organization of structures may have been intensified. The continued use of the longhouse form at Nulliak Cove seems to suggest that there was an intensification of the communal approach until it was no longer feasible (see structure 6), rather than abandonment, as the larger longhouses appear to date from the later occupation of the
site. Fitzhugh (2006) suggests that this represents an attempt to intimidate or stake ownership of a cultural enclave in the face of Pre-Dorset colonization of northern Labrador, but given the burials, the development of structure 8, and wealth of symbolic objects manufactured during the late stage of settlement at Nulliak Cove it seems likely that the site was used to reaffirm social and symbolic structures to the occupants of the site to maintain its original functional use (similar to Park 2005). Therefore, Nulliak Cove does not show a break with classical Labrador Archaic cultural traditions, but instead a reaffirmation of their understanding of the world in the face of what could only have been interpreted by them as an undeniable change to established traditions. If we view Nulliak Cove, or at least specific things about the site and the culture that occupied it, as an example of the continuation and reaffirmation of ideas that were always possessed by Labrador Archaic groups, we can speculate on how the Pre-Dorset arrival affected the overall development of Labrador Archaic culture. The appearance of Pre-Dorset groups created new social and economic stresses on Labrador Archaic populations. This may have pushed them past their organizational capacity leading to overuse of natural resources and eventually forcing the culture and region beyond its carrying capacity. This overuse of traditional areas might have lead to the abandonment of sites and could have led to rejection of the social organizational practices meant to reduce scalar stress at these sites. This change in long held organization/hierarchy patterns may have altered their cultural practices to such a point that they were no longer archaeologically recognizable as the Labrador Archaic culture groups.
6.5 Labrador Archaic and the “Others”

The current models of Labrador Archaic development suggest that over time there was a move towards larger and more substantial structures, a greater reliance on Ramah chert and a move toward specialized use of specific tool types, such as finely made endblades (Fitzhugh 1983, 2006; Tuck 1975). Nevertheless, most of these elements were always present in the Labrador Archaic culture, albeit at a smaller scale. Therefore, these traits appear to represent an intensification of core elements within their culture over time. This intensification is represented in the microcosm of Nulliak Cove.

In his discussion of Dorset and Recent Indian contact on the island of Newfoundland, Holly (2005) attempted to interpret what occurred when the Recent Indian populations moved into an area occupied by a resident Paleo-eskimo population. In northern Newfoundland sites, this resulted in intensification of important resources to the exclusion of other available resources (Holly 2005:209-210). Holly’s (2005) model can also be applied in northern Labrador. If we apply this model to the interpretation of Archaic/Pre-Dorset interaction, it is possible to suggest that the late Labrador Archaic culture patterning, most visible at large rich sites such as Rattlers Bight (Fitzhugh 2006:55), was a reaction to the Pre-Dorset “others”.

At Nulliak Cove, there was a continuous move towards the intensification of the core culture traits which were always present in the Labrador Archaic culture; there was a general growth in the size of the longhouse structures at the site, as well as a move toward sole use of Ramah chert and the abandonment of older tool types. The reasons for the growth of structures might have been driven by gradual increase in the use of the site. This would have required a greater population and the construction of additional features
required for provisioning. The use of the site was therefore intensified with whatever resource the site provided becoming used to the point that the site was dominated by structures that would serve to provide labor for its procurement.

This intensification is also visible in other elements of the Labrador Archaic culture and at sites other than Nulliak Cove. Radiocarbon dates from multiple Labrador Archaic sites indicate that there was a general move toward a reliance on Ramah chert in late Labrador Archaic populations (Fitzhugh 2006). Assuming that the relative dating of structures at Nulliak Cove is correct, then we can see that the largest and most recent structures have the least variety of stone material and that the occupants used Ramah chert almost exclusively as a lithic source. However, Ramah chert is present in early phase collections at Labrador Archaic settlements (Fitzhugh 1978, 1983, 2006) and non-Ramah materials continue to be present at low levels until the latest phase of settlement. Only when Labrador Archaic groups needed to assert their identity did they move toward a system that required constant access to Nulliak Cove and extended travel. This explains why the greatest reliance on Ramah chert occurs during the Rattlers Bight phase when it would have been more logical to adopt more local lithic materials, to allow greater buffering space with Pre-Dorset groups.

Finally, Holly (2005) discussed the intensification of a cultural commitment to place. Nulliak Cove contained features beyond longhouse structures; it also contained cache pits and richly appointed burials (Fitzhugh 1983:10, 2006:58). The use of burial symbolism in Labrador Archaic culture has been well demonstrated (Fitzhugh 2006; Rankin 2008), and huge burial sites such as Rattler's Bight demonstrate the ideological importance of the interment of people (Fitzhugh 2006:58). Despite the importance of this
mortuary ritual, the number of individual burial mounds located outside of cemeteries is low (Fitzhugh 2006:62). Burying people in a cemetery linked people to their ancestors and ideas of continuity of place and replication of ceremony (Fitzhugh 2006). Therefore, the burial mounds at Nulliak Cove show a break with tradition because of the single burials in separate mounds (Rankin 2008). Nevertheless, the process was meant to invoke the same response and to convey the same message: linking people to their past and to a specific place. Furthermore, the burials at Nulliak Cove were not simple internments, but large richly appointed mounds with material goods that no doubt held a large degree of ideological importance such as Ramah bifaces and red ochre (Fitzhugh 2006:58). The similarities in approaches between the situations in Labrador and Newfoundland, allow Nulliak to serve as an example of Holly's (2005) intensification of a commitment to place.

While intensification has often been considered to be part of the Labrador Archaic culture it has not generally been well explained, highlighting the importance of interpreting individual sites. To see the response of Labrador Archaic groups to the arrival of Pre-Dorset groups, we need to begin by investigating the cultural evidence, in structures or features such as cache pits. Through this researchers can attempt to see the functional effects of interaction, and more importantly, draw out the implied messages of these features. This would allow archaeologists to see internal cultural changes that were part of the Labrador Archaic world view and changes to this mindset provoked by the arrival of a competing foreign invader, and how this played out on the scale of the individuals who built the cultural features that represent their cultures.
6.6 Conclusion

The application of multiple explanations relates to scales of time and space, the multivocality of multiple explanations, a desire to understand why people acted in the way they did, and small unpredictable contingent events. The desire to find the people in the past has been the driving force in what I have attempted here. As discussed in my theory section the purpose and use of archaeological traces are best understood when observed with the intention of seeing them in the same way they would have been seen in the past. To this end the use of new methodologies for interpreting the Labrador Archaic record allows us to move away from seeing cultures as dotted borders on a map and instead to see how the personal experience of people shaped their wider world.

In my attempts to construct multiple explanations for the development of Nulliak Cove, the degree to which early theories have been turned into facts became clear. For example, simply writing about Pre-Dorset/Archaic interaction from the viewpoint of the Pre-Dorset seems somehow wrong because original researchers had explained it from the Labrador Archaic standpoint. These subtle, subconscious ideas must be recognized and overcome in the creation of new explanatory narratives in Labrador Prehistory. This will prevent the “black boxing” (Hood 1998) of long held ideas by their constant replacement and instead promote the constant rethinking and multiple explanations of specific problems.
Chapter Seven: Conclusion

The site of Nulliak Cove 1 has had an immense impact on the published history of the Labrador Archaic populations. Despite the fact that the site has been visited multiple times since its discovery an adequate explanation of its place and function in Labrador prehistory has yet to be forwarded and it is still cited repeatedly in larger explanatory models of Labrador Archaic cultural evolution and as evidence of contact between Labrador Archaic and Palaeo Eskimo populations (Fitzhugh 2006, Hood 1993). The overall goal of this thesis was to re-examine the site of Nulliak Cove to demonstrate the significance of the site history in the construction of explanatory models of the Labrador Archaic’s use of places and resources. To do this, three research questions were posed that were intended to generate information about the development of the site and to see in what ways this site information could be related to larger questions of the Labrador Archaic’s lifeways on Labrador’s northern coast.

The first two research questions were an attempt to determine the sequence in which the Labrador Archaic features at the site developed and to determine which, if any, of the structures were occupied concurrently. A spatial analysis of the entire site was conducted providing the first detailed elevation data between structures. This approach yielded conclusions, suitably answering the first research question, but leaving the second more elusive. The elevation data suggests that Nulliak Cove appears to have had been occupied over an extremely long period. Heights above sea level showed the oldest structures existing to the east and youngest in the west which tending to follow the
chronology that had been suggested earlier based on tool typology and material type (Hutchings 2006). With the general agreement between the two datasets, the chronology of the site development should have been clear, when the mapping data was correlated to variability in longhouse structures raised new questions concerning the east-west progression of structure construction, suggesting some notable exceptions to this rule (see structure 6 and 8).

The third and most difficult of the research questions was to try and relate placement of cultural features to reasons for development at Nulliak Cove. During mapping it became clear that the construction practices and variability of structures forms at Nulliak Cove would be as important as the placement of structures. Identifiable changes in the construction of structures, including the move toward intensive labor practices, seem to be the underlying pattern, but there are various exceptions to this pattern in some features. Nevertheless, I still believe that the placement of features can be directly related to the development of the site, and that the examination of structure-specific data can help us to determine the purpose of the variability. Due to various difficulties in the weather and logistics the overall amount of recorded data was less than I would have liked, but I hoped to overcome these problems by suggesting multiple ways in which we may interpret the collected data and leverage existing knowledge.

In answering this third question it became clear that existent explanatory frameworks for both the Labrador Archaic and Nulliak Cove site development could be improved because the general Labrador Archaic longhouse models cannot account for the variability represented at Nulliak Cove, The original cultural historic interpretations have had consequences that have continued on for more than 30 years. This is not meant to
devalue this pioneering work or the research that has continued after, only to suggest that perhaps the literature had grown to a point where it must be reexamined. It was with these ideas in mind that I reviewed the culture history of the Labrador Archaic

Moving away from the published framework of the northern Labrador Archaic presented interpretative problems. Trying to establish new frameworks in the Labrador Archaic research while attempting to avoid the previous culture historic approaches the need for new theoretical approaches became clear. The phenomenological approach as advocated by Tilley (1994), in which sites are interpreted in the present in the same way as they were experienced by individuals in the past, fulfilled the requirement. This approach allowed the Archaic story to move from abstract movements of populations and resource pressure into one of tradition and cultural expression. Through this approach I was able to observe the physical changes that occurred on the site and also the ways in which an individual on a site would experience these changes and the impact they would have on a wider scale. Thus by deciphering what interactions are mediated by the constructed of the site I was able to gain some insight into the mindset of occupants of the site. Phenomenology worked as a way to link the Labrador Archaic household represented by each feature on the site into the greater realms of settlement, resource procurement, tradition and interaction with other groups.

The site of Nulliak Cove and the longhouse structures of the Labrador Archaic have been studied for over thirty years. This project in no way tries to offer definitive solutions to why the site exists or larger questions of cultural change. What I have tried to accomplish is to bring together the data that is available and construct a suitable framework to discuss further investigation. I believe that a framework that is more
focused on the existent knowledge of the Labrador Archaic culture and that incorporates this knowledge in interpretations of sites and regional patterns will provide a chance to discuss site histories in a more meaningful way while illuminating more wide spread investigations. By taking a step back from established frameworks, and using different theoretical and methodological approaches such as phenomenology, it allows us to see that the linking of individual sites and even individual features into the larger cultural realm brings the picture into finer focus. With this said understanding of the site of Nulliak Cove will be impossible without further investigation and additional publication of previously recorded results.
References

Brück, J.

Clark, P.U. and Fitzhugh, W.W.

Cox, S.

Deal M, Douglas Rutherford, Brent Murphy and Scott Buchanan

Fitzhugh, W. W.

Friesen, T. Max

Holly, D. H.

Hood, Bryan

Hutchings, C.
2006 Complexes and Chronology at Nulliak Cove. Unpublished B.A. Honours Thesis, Department Anthropology and Archaeology, Memorial University, St. John’s.

Knapp, A. and W. Ashmore,

Lazenby, Colleen

Moorehead, Warren

Park, Robert W.
Penney, Mark E.

Pintal, Jean-Yves.

Ramsden, Peter.

Rankin, Lisa

Rankin, L. and L. Squires

Rockman, Mary and Steele, J.

Tilley, Christopher
1989 Excavation as Theater. *Antiquity* 63:275-80

Tuck, J.A.

Tuck, J.A. and McGhee, Robert

Watson, A.

Willey, Gordon and Phillips, Phillip

Wolff, Christopher