

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

Hardware Implementation of Message

Authentication Algorithms for Internet Security

By

Janaka T. Deepakumara ©

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Engineering

May 2002

St. John's Newfoundland Canada

Dedication

To Ml1 J)tQrest Mot),er, R1ti1er aMod Chal'loUlU

who alWlll1S 9t\lt I'\ol.t a bettt:r Uft.

Abstract

Verification of integrity and authenticity of information is a prime requirement in

computer networks. In open networks such as the Internet, a strong mechanism to provide

these security services is essential. With the introduction of Internet Protocol Security

(IPSEC), the need has arisen to have a simple, efficient and widely available Message

Authentication Code (MAC) mechanism. The standard approach for message

authentication in Internet applications has been based on the use of cryptographic hash

functions such as Secure Hash Algorithm·l (SHA.l) and Message Digest 5 (MDS). The

wide availability of software implementations, efficiency in software and freedom of

license and export restrictions are some of the reasons for adoption of hash-based MACs

or HM:ACs. In high-speed network applications hardware encryption and authentication

have become essential to meet the perfonnance requirements. Field Progranunable Gate

Arrays (FPGAs) are an attractive option because they are capable of providing the

required speed, algorithm agility and flexibility of dynamic system evolution. When these

factors are considered, FPGA devices are a promising alternative for implementing

cryptograpruc algorithms.

In this research, FPGA implementations of MD5, SHA-I and HMAC using SHA

I as the basis hash algorithm have been carried out. MD5 and SHA-I have been

implemented using an iterative and full loop unrolled architectures. The target device has

been selected as the XILINX Virtex series FPGA. Performance analysis in tenns of

hardware utilization and speed are executed. Different design optimization techniques are

also discussed.

The Internet is one of the main areas of application of cryptographic hash

functions and the size of the message has a considerable impact on the perfonnance of

these algorithms. Hence the performance of HMAC both in hardware and software are

investigated using four Internet traffic models. The same analysis is performed on CBC

MAC-AES for perfonnance comparison.

Due to the sequential nature of the structure of these algorithms, it is difficult to

make them fast enough to ensure suitability for very high-speed applications. Therefore

some alternative methods have to be investigated for high-speed applications. One of the

proposed algorithms based on universal hashing, the Universal Message Authentication

Code (UMAC), is analyzed for its hardware perfonnance. Finally the conclusion and

recommendations for future research are presented.

iii

Acknowledgments

I would like to convey my sincere and foremost gratitude to my supervisors as

well as my mentors, Dr. Howard M. Heys and Dr. R. Venkatesan for their guidance and

financial support throughout this research. Their directions. constructive suggestions and

encouragements are not only appreciated, but will also be remembered.

Thanks are also extended to the Dean, faculty of engineering and applied science.

Memorial university, for providing the facilities for canying out this work. I gratefully

acknowledge the department of computer science for facilitating Synopsys toots

throughout this research. Special thanks are conveyed to Dr. Paul Gillard for his

invaluable support for the smooth running of the tools. I gratefully acknowledge Dr.

Theodore S. Norvell for providing Xilinx Foundation tools for this research. I aJso

appreciate the timely support provided to me by Mr. Nolan White during problematic

periods of the Synopsys tools.

My sincere thanks are also due to all my past and present friends in MUN for

giving me a pleasant time throughout this work. Especially the friendly and cordial

environment in the CERL was a definite encouragement during my research. Therefore I

am grateful to all the professors and friends in the lab. I am greatly beholden to my

father, mother, two sisters and brother as well as all the other members of my family for

providing me the moral support throughout my life. Last but not least, I pay my heart·felt

gratilUde to my Chamali for being with me in all the moments during this work. Her

unflagging support was a constant source of energy and motivation.

Table of Contents

Abstract.

Acknowledgements .

Table of Contents .

List of Tables .

LislofFigures .

1. Introduction ..

1.1 Motivation

1.2 Objective of the Thesis ..

1.3 Thesis Outline .

;,

2. Background of Study and Previous Research .

2.1 Internet Protocol Security (lPSEC) .

2.1.1 Security Associations (SA) ..

2.l.2 IPSEC Packets .

2.2 Hash Functions . II

2.2.1 Properties of Hash Functions . II

2.2.2 Digital Signatures. 12

2.2.3 General Approaches to Hash Function Construction. . 14

2.2.4 Message Digest 5 (MD5) . 18

2.2.5 Secure Hash Algorithm-I (SHA-l) .

2.3 Message Authentication Codes ..

2.3.1 Block Cipher Based MACs .

2.3.2 Keyed Hash Function Based MACs .

2.3.3 Universal Hash Function Based MACs .

2.4 Attacks on Hash Functions ...

2.4.1 General Attacks .

2.4.2 Special Attacks .

2.4.3 High Level Attacks .

2.5 Conclusion .

3. Design Environment and Implementation Choices .

3.1 Hardware vs. Software Implementation .

3.2 Implementation Using Custom Hardware .

3.3 Field Programmable Devices .

3.4 FPGA Implementation of Cryptographic Algorithms .

3.5 Device Selection.

3.5.1 Vinex Architecture .

3.5.2 Design Methodology .

3.5.3 Design Aow .

3.6 Hardware Architectures .

3.7 Conclusion...

22

27

27

30

37

3.
3.

41

42

42

43

43

44

46

48

50

51

53

54

56

57

4. Implementation of MD5, SHA·I and HMAC-SHA·I . 59

4.1 MD5 Implementation . 59

4.1.l lterativeArchitecmre. 61

4.1.2 FuJI Loop Unrolled Architecture . 64

4.1.3 Simulation, Synthesis and Implementation Results. 67

4.2 SHA·l Implementation. 76

4.2.1 Iterative Architecture. 76

4.2.2 Full Loop Unrolled Architecture . 80

4.2.3 Simulation, Synthesis and Implementation Results . 82

4.3 Performance Analysis of MD5 andSHA·l . 91

4.4 HMAC-SHA-I Implementation . 94

4.4.1 Design Description .

4.4.2 Simulation. Synthesis and Implementation Results. 99

4.5 Performance Analysis ofHMAC-SHA-l . 104

4.6 Conclusion . 105

5. PerfonnanceofMACAlgorithmforIPSEC . len

5.1 Previous Studies of Internet Traffic. 107

5.2 IP Packet Size Models . 110

5.3 PerformanceofMACsin Intemet . 112

5.3.1 Average Number of Blocks per Packet . II3

5.3.2 Performance in Hardware . 117

vii

5.3.3 Performance in Software .

5.4 Conclusion.

6. A New Approach: Univeversal Message Authentication Code .

6.1 UMAC Construclion .

6.1.1 UMAC Key Derivation ...

6.1.2 Tag Generation .

6.1.3 Universal Hash Function (UHASH) .

6.2 Hardware Complexity of UMAC .

6.3 Conclusion .

7. Conclusions.

7.1 Summary and Conclusions of the Study ..

7.2 Suggestions for Future Work.

References .

Appendix A .

Appendix B ..

viii

118

119

121

122

124

124

125

133

136

138

139

141

143

153

159

List of Tables

Table 1. Timing report sununary of MD5 iterative design 71

Table 2. Timing report summary of MD5 full loop unroUed design 75

Table 3. Timing report summary of SHA-l iterative design 87

Table 4. Timing report summary of SHA·! fu11100p unrolled design 89

Table 5. Timing report summary of HMAC-SHA·\ design 103

Table 6. Times of HMAC-SHA-l and CBC-MAC-AES on FPGA for general 118

lPtraffic

Table? Times of HMAC-SHA-l and CBC·MAC-AES on FPGA for general 119

IPtraffic

Table 8. Main operations of three layers of UHASH 134

TableDl Read and write operations of RAM set up of SHA-I iterative design 161

i,

List of Figures

Figure 1. IPSEC Authentication Header Ponnac . . 9

Figure 2. IPSEC ESP header format _ 10

Figure 3. Cryptographic hash functions in digital signature scheme . 13

Figure 4.

FigureS.

Figure 6.

Figure?

General model for round funclion of block cipher based hash function. 15

Generation of message digest.. . 19

Compression function HMDS 21

Operations in a single step of MD5 22

Figure 8. Compression Function HsHA.! .•• . 23

Figure 9. Operations in a single step of SHA-l 26

Figure 10. CBC·MAC 28

Figure 11. Round function using nested hash functions 32

Figure 12. Modified keyed hashed function with nested hash functions 32

Figure 13. Carter-Wegman MACs 37

Figure 14. 2·slice Virte:a:. CLB [Virte:a:. 2.5 V Xilinx. 2000J 52

Figure 15. Virte:a:. architecture overview [Vine:a:. 2.5V Xilinx. 2000J 53

Figure 16. FPGA Design flow [Xilin:a:. home page] 54

Figure 17. Optimized operation tree •.. ..60

MDSiterativecore 61

Block diagram of MD5 iterative design 62

Figure IS.

Figure 19.

Figure 20. State diagram for MD5 iterative design ..63

Figure: 21. MD5 full loop-unrolled core: .

Figure 22. Block diagram of full-loop-unrolled design ..

Figure 23. State machine for full loop unrolled design ..

. 64

. 65

.. 66

Figure 24. Functional simulation of Itcrate design 70

Interface: of the MD5 full loop unrolled design 73

Functional simulation of full loop unrolled design 74

Block diagram of iterative design 79

Figure 25.

Figure 26.

Figure: 27.

Figure 28.

Figure 29.

Figure 30.

Interface of the MDS iterative: design ..

RAM setup for creating 80 words ..

SHA-I Iterative core .

. 71

.. .. 77

. 78

Figure 31. SHA·I full loop unrolled core .. . 80

Figure 32. Block diagram ofSHA-1 full loop unrolled design 81

Figure 33. Functional simulation of SHA-I iterative design. . 85

Figure 34. Interface ofSHA-1 design 87

Figure 35. Functional simulation of SHA-I full loop unrolled design.. . 90

Figure 36. Timing diagram with loading delay 91

Figure 37. Timing diagram without loading delay. . 91

Figure 38. HMAC operations... . 95

Figure39. HMAC·SHA-I Block Diagram 97

Figure 40. State diagram for HMAC-SHA-I design... . 98

Figure41. FunctionalsimulationofHMAC-SHA-J 101

xi

Figure 42. Interface ofHMAC·SHA·1 design ...

Figure 43. Timing diagram for HMAC-SHA·l operations .

Figure 44. Cumulative distribution of packet sizes .

. 103

. 104

............. 108

Figure 45. Cumulative distribution ofIP packet sizes 109

Rule of thumb of the PDF of IP packet size 111

Discrete PDF with 3 impulses III

Discrete and Uniform PDF III

Interface ofUHASH 125

Figure 46.

Figure 47.

Figure 48.

Figure 49.

Figure 50.

Uniform PDF 110

Figure5!.

Figure 52.

FigureS3.

Figure 54.

Figure 55.

GeneralstructureofUMAC 126

NH·32 construction for 25&-bit message string. ... 128

UHASH Layer 1 . . 128

UHASH Layer 2 129

UHASH Layer 3 .,. .. 132

Figure AI Timing simulation MD5 full loop unrolled design 154

Figure A2 Timing simulation SHA-I full loop unrolled design 155

Figure A3 Timing simulation HMAC-SHA-I full loop unrolled design 157

xii

Chapter 1

Introduction

The significance of information and communications systems for society and the

global economy is intensifying with the increasing value and quantity of data that is

transmitted and stored on those systems. At the same time those systems and data are also

increasingly vulnerable to a variety of threats, such as unauthorized access and use,

embezzlement, modification and destruction. As well. the system vulnerability has been

increased due to proliferation of computers. increased computer power, imcrconnectivity,

decentralization, growth of networks and number of users and also the convergence of

information and conununications technologies.

Cryptology is the tenn which describes the whole meaning of secret

communications. This has been originated from the Greek meanings "hidden" and

"word". Cryptology can be divided into two subfields: cryptography and cryptanalysis

[1]. The cryptographer finds the ways to ensure secrecy and/or authenticity of messages.

The cryptanalyst seeks to break that secrecy and/or authenticity by attacking a cipher or

by forging coded signals that would be accepted as authentic. Cryptography is an

important component of secure communications systems and a variety of applications

have been developed mat incorporate cryptographic methods to provide dala security.

Security of infonnation and communications systems involves me assurance of me

confidentiality, integrity, authenticity and availability of those systems and the data that is

transmitted and stored on them.

The widespread use of cryptography raises a number of important issues.

Governments have many services engaged in the use of cryptography, including

protecting the privacy rights of peopLe and organizations, facilitating infonnation and

communications systems security, encouraging economic well-being by, in part,

promoting eLectronic commerce, maintaining public safety, enabling the enforcement of

laws and the protection of national security, among others. Traditionally, cryptography

was most often used by governments. However in recent years cryptography has become

an important issue among individuals and businesses as it has become more accessible

and more affordable [2]. The explosive growth in computer systems and their

interconnections via networks have greatly influenced today's human life. The storing

and communicating of infonnation using these systems have become an essential part of

our lives. As a result there is a growing awareness of the necessity for information

security.

In infonnation security, message authentication and integrity are essential

techniques to verify that received messages come from the alleged source and have not

been altered during the transit. These techniques may also be useful to verify sequencing,

timeliness and to provide non-repudiation. A key element of authentication schemes is

the use of a message authentication code (MAC). One technique to produce a MAC is

based on using a cryptographic hash function, which is referred to as Hash based

Message Authentication Code (HMAC) [3]. The most popular cryptographic hash

functions are the Message Digest 5 (MD5) [3J, which was proposed by Ron Rivest, and

the Secure Hash A1gorithm-1 (SHA-I), which has been certified by the National Institute

of Standards and Technology (NIST).

There is a high demand for high quality products and expertise in the field of

information security. Recently very high bandwidth networking technologies such as

ATM and Gigabit Ethernet are becoming more prevalent. Network applications such as

virtual private networks (VPNs) need high-speed cryptographic algorithms to match these

new high-speed networks [5].

1.1 Motivation

Internet Protocol Security (lPSEC) [6] is one of the key security standards that

provides security services at the IP layer by enabling a system to select required security

protocols, detennine the algorithm(s) to use for the service(s), and put in place any

cryptographic keys required to provide the requested services (6]. IPSEC offers a secure

communications across Local Area Networks (LANs), private and public Wide Area

Networks (WANs) and the Internet. By employing IPSEC tunnel mode operation, a

company can build a secure VPN over the Internet or through a public WAN [7]. lPSEC

provides an open framework for implementing industry-standard algorithms. The

algorithms employed for MAC value calculation are specified by the security association

(SA). Keyed message authentication codes based on symmetric encryption algoritluns or

one-way hash functions such as MD5 [4] or SHA·l [8] have roth been specified for

authentication. IPSEC implementations must support hash based message authentication

codes with MD5 (HMAC-MD5-96) [9] and SHA-l (HMAC-SHA-I-96) (10). The

algorithm details and the issues in hardware implementation of MD5, SHA-l and

HMAC-SHA-l are discussed in Chapters 2 and 6 respectively.

In all these applications the perfonnance of IPSEC processing is a crucial issue as

cryptographic operations, in general, cause a botl.leneck for a processor. In high-speed

routers and other networking equipment that apply lPSEC to aggregated traffic, hardware

encryption and authentication is almost essential to meet perfonnance objectives [11].

For some applications such equipment may have to handle a large number of security

associations and hence key agility and algorithm agility become important issues. There

is an increasing interest in high-speed cryptographic accelerators for IPSEC applications

such as VPNs. Most of the available produces are microprocessor based cryptographic

accelerators. They accelerate the computationally imensive algorithms of encryption and

authemication. Hence the study of the perfonnance of hardware implementation of

cryptographic algorithms, especially using programmable logic devices such as Field

Programmable Gate Arrays (FPGAs), has become a timely and important field of

research.

1.2 Objective of the Thesis

The objective of the thesis is the performance analysis of the hardware

implememalion of the authemication algorithms which are widely used in Internet

pro[QCol security. The hardware utilization and timing analysis with respect to a high-end

field programmable gate array device are studied using several possible optimization

techniques. The potential throughputs of the implementations are analyzed in the context

of traffic characteristics of the Internet. This is done using four traffic models which have

different degrees of accuracy.

1.3 Thesis Outline

The thesis consists of 7 chapters. Chapter 2 gives the background of the research

and the literature review of the previous research, which are related to this slUdy. Chapter

3 discusses the design environment and implementation choices, which are used for the

research. The implementation details and results are discussed in Chapler 4. In Chapter 5

the Internel traffic modeling thai was used 10 analyze HMAC aJgorithm is discussed. The

new approach in message authentication is discussed in Chapter 6. Finally in Chapter 7,

conclusions and future work are presented.

Chapter 2

Background of Study and Previous Research

In this chapter the background of the research and some of the key areas of

application are discussed. Hash algorithms are widely used in Internet security to provide

message authentication. In fact the Internet has become one of the main areas of

application of cryptographic hash algorithms. Hence at the beginning of the chapter, the

protocol used in Internct security is briefly described. Various studies have been carried

Ollt in the areas of cryplOgraphic hash functions, message authentication codes and

hardware implementations of cryptographic algorithms. Some of these studies are

discussed in the subsequent chapters.

2.1 Internet Protocol Security (lPSEC)

IPSEC [6} is onc of the key technologies for providing security as a foundation

network service [12]. It is the security standard defined by Internet Engineering Task

Force (IETF) for IF network layer security. Acconling to [6J. IPSEC provides security

services at the IP layer by enabling a system to select required security protocols,

determine the algorithm(s) to use for the service(s), and put in place a cryptographic

technique to provide the requested services. The key services used to protect against the

threats are confidentiality, integrity and authentication. IPSEC allows for end·to-end

encryption and authentication making TCPIIP communications secure for use in both

public and private networks. The IP layer of the TCP!IP protocol architecture has been

chosen as a place 10 operate lPSEC.

The securily services offered by IPSEC include access control, connectionless

integrity, data origin authentication, protection against replays, confidentiality and limited

flow confidentiality. These services are provided at the IP layer offering protection for IP

and lor upper layer protocols such as TCP, UDP, ICMP and so on. These objectives are

achieved through the use of two traffic security protocols - the Authentication Header

(AH) [13) and the EncapSUlating Security Protocol (ESP) [6) - and through the use of

cryptographic key managemenl procedures and protocols. AH provides connectionless

integrity, data authentication and anti-replay services. ESP provides confidentiality,

limited traffic flow confidentialily and/or connectionless integrity. It optionally provides

data authentication and anti-replay services as well [6]. Both AH and ESP provide access

control based on the distribution of cryptographic keys and management of traffic flows

relative to these security protocols. Both may be applied alone or in combination with

each other 10 provide a desired set of services in lntemet standards, IPv4 [14] and IPv6

[151.

2.1.1 Security Associations (SA)

This is a key concept fundamental to lPSEC. An SA is a one-way relationship

belween a sender and a receiver that affords security services to the traffic carried [16).

This is uniquely identified by a triple consisting of a Security Parameter Index (SPI), the

IP destination address and the security protocol (AHlESP) identifier. Each IP$EC

connection can provide encryption and integrity/authentication, or both. When the

security service is detennined, the twO parties must detennine which algorithms to use

(e.g. DES or IDEA for encryption; MD5 or SHA~1 for authentication) [12]. Then mey

must share session keys. SAs are used to manage this information. To ensure

interoperability and for providing management capability, some eXlernal aspeclS of

IPSEC processing are slandardized. Hence a nominal model has been described in tenns

of two databases: !he Securily Policy Database (SPD) and Security Association Database

(SAD) [6]. The former specifies the policies that delermine the disposition of all IP traffic

inbound or outbound from a host or security gateway IP implementation. The latter

database contains paramelers mat are associated with each security association.

2.1.2 IPSEC Packets

lPSEC defines a new set of headers 10 be added to IP datagrams: LP

Authentication Header (AM) [13) and LP Encapsulating Security Payload (ESP) [17).

These new headers are placed after the IP header and before the layer 4 prolocol (TCP or

UDP). These two can be used in two modes: transport and tunnel modes. In transport

mode the protocols provide protection mainly for upper layer protocols. Hence the

protection eXlends to the IP payload. In tunnel mode me protocols are applied to tunneled

IP packets, which become the payload in a new IF packet

Authentication Header (AH)

The AH format is given in Figure I (13].

SilO BitS Bit 16 Bit 31

N.~ I Payload I
header length

S&clJrity Parameter Indell (SPI)

8eqlJElnce Number

AuthenticatiollOala
(MAC/ICV)

(VariabJelength)

Figure 1. IPSEC Authentication Header Format

This header when added to an IP datagram ensures connectionless integrity and

authenticity of the data and optionally protection against replays. This enables an end

system or network devi~ to authenticate the user or application and filter traffic

accordingly. It prevents the address spoofing attacks as well. In this format the next

header identifies the type of the next payload aftef authentication header. Payload length

specifies the length of AH in 32-bit words minus 2. SPI is used to identify the SA for the

datagram. Sequence number can be used as an anti replay service. Authentication data is

a variable length field that contains the MAC or Integrity Check Value (ICV) fOf this

packet. This field must be a multiple of 32·bits in length. The ICV or MAC value is

computed as a function of the IP datagram and the secret authentication keying material,

which is part of the SA. Only the sender and receiver know the secret keying material. If

the authentication value is valid the data has come from the other party of the SA (6J.

Encapsulating Security Payload (ESP)

ESP provides confidentiality and integrity services to IP datagrarns. It may also

provide limited traffic flow confidentiality, data origin authentication, connectionless

integrity and anti replay-service for IP datagrams depending upon the implementation

and header use mode (tunnel or transpon). Limited traffic flow confidentiality requires

selection of tunnel mode, and the encryption occurs only between an external host and

the security gateway or between two security gateways. This relieves the hosts on the

internal network of the processing burden of encryption and simplifies the key

distribution task by reducing the number of keys. Hence it thwarts traffic analysis based

on ultimate destination. The set of services provided depends on options selected.

Confidentiality may be selected independent of all other services but the use of

confidentiality without integrity/authentication may be subject to cenain fonns of active

attacks. Data origin authentication and connectionless integrity are joint services and are

offered as optional services. The anti replay-service may be selected only if data origin

authentication is selected. The ESP header is inserted after the IP header and before the

upper layer protocol header (transpon mode) or before an encapsulated IP header (tunnel

mode). The ESP header format is given in Figure 2. Most of the fields have similar

purposes as mentioned under AH, The payload data is a variable field, which is the

transpon level segment or IP packet protected by encryption. The padding field is used to

expand the plaintext, to conceal the actual length, or for any other alignments required by

the ESP fonnat. The Authentication Data is a variable length field that gives the MAC

computed over the ESP packet minus the authentication data field.

10

BiIO

Security Parameter In<lex (SPI)

Seq\IerlceNumber

Payload (Variable)

I Padciog (0·255 byles)

I Padlength I' ext

AutheotleatlonData IVarlable\

31

Figure 2. IPSEC ESP header fonnat

2.2 Hash Functions

Some important algorilhms and techniques resulting from various studies related

10 hash functions and message authentication codes are discussed in the following

sections.

2.2.1 Properties of Hash Functions

A hash function is a malhematical function that maps values from a large (or very

large) domain into a smaller range, and that reduces a potentially long message into a

"message digest~ or ~hash value". It provides a fast method of storing infonnation in and

retrieving from large databases. Hash functions are used in implementing associative

memories and error correction as well. With the advent of public key cryptography and

digital signature schemes, cryptographic hash functions have gained more attention in

11

their role of providing aothenticity for a message. A "good" hash function is one that

results in a set of values that are evenly (and randomly) distributed over Ihe range [181. In

order to avoid !he possible attacks, a hash function used for cryptographic purposes

should have several propenies [191:

Weakly collision-free: Let M be a message. A hash function H is weakly

collision-free for M if it is computationally infeasible to find a message M':f' M

such that H (M) '" H (M).

Strongly collision free: A hash function H is strongly collision-free if it is

computationally infeasible to find messages M and M'such that M'':f' M and H (M')

=H(M).

One-way property: A hash function is one-way if, given a message digest Z, it is

computationally infeasible to find a message M such that H (M) ::: Z

The input can be of any lengm and output has a fixed length.

The hash function H is relatively easy to compUle for any given M.

2.2.2 Digital Signatures

W~ now briefly describe one of me principle cryptographic applications of hash

functions. Sometimes it is required to verify the origin of a document, the identity of the

sender. the time and date a documeot was sent and/or signed, me identity of a computer

or user, and so on. A digital signature is a cryptographic means through which many of

these may, be verified. The digital signature can be computed using the Digital Signature

Algorithm (DSA) {20] and a set of parameters such that the identity of me signatory and

12

integrity of the dara can be verified. The DSA provides the capability to generate and

verify signatures. Signature generation makes use of a private key to generate a digital

signature. Signature verification makes use of a public key, which is related to, but is not

the same as, the private key. Each user possesses a private aDd public key pair. In general

public keys are assumed to be known to the public. Private keys are never shared.

Anyone can verify the signature of a user by employing that user's public key. Signature

generation can be performed only by the possessor of the user's private key. A

cryptographic hash function is used in the signatUre generation process to obtain a

compressed version of dara, called a message digest (Figure 3).

Figure 3. Cryptographic hash functions in digital signature scheme

13

The message digest is then input to the DSA to generate the digital signature. The digital

signature is sent to the intended verifier along with the signed data (often called the

message). The verifier of the message and signature verifies the signature by using the

sender's public key. The same hash function must also be used in the verification process

[21).

2.2.3 General Approaches to Hash Function Construction

Many researchers have discovered a number of teelutiques to develop hash

functions. We now describe some of the approaches of constnlcting hash functions.

Hash runction based 00 block ciphers

This is an effort to build hash functions on the existing block ciphers rather than

coosuucting them from scratch. The encryption of plaintext X with key K will be denoted

with E (K. X). The size or the plaintext and ciphertext in bits is denoted. with n and the

size of the key size in bits is denoted with k.. The argument of the iterated hash function is

divided into r blocks Xl through X" If the total length is not a multiple of n, the argument

has to be padded with some accepted padding rule. If the round function is denoted by f,

the hash function H can be described as follows:

Hi=f(X~H;.l) i = 1,2.... r.

where, Ho is Initial Value (lV). specified with the scheme and H, represents the hash

'ode.

The general construction for the round function of the hash functions is shown in

Figure 4. For simplicity it is assumed that k = n. The block cipher has two inputs; the key

K and the plaintext P and the output C. The inputs P and K can be selected. from one of

14

the four values: XI> HI.], XI EJ1 HI.], and a constant value V. It is also possible to modify

with feed forwarding (FF) the output C by XQR of one of these values. Preneel shows

that these possibilities yield 43 = 64 different schemes [22]. He also shows that, only 12

oflhese schemc:s are secure.

~. ~
1- IK -I FF

~
Figure 4. General model for round function of block cipher based hash function

Hash functions based on modular arithmetic

Two important hard problems in number theory, factorization and the discrete

logarithm, are used to build these hash functions. These can have variable digest length

depending on the size of the modulus [23J. The purpose of deploying modular arithmetic

is to save on implementation cost by using existing cryptographic systems such as RSA

public key cryptosystem [24J. Due to their various weaknesses, these kinds of hash

functions are not popular in today's cryptographic applications.

Dedicated Hash Functions

While many hash functions are based on existing security mechanisms such as

block ciphers or modular schemes, performance critical applications require the use of

15

functions designed for explicit use of hashing. These are called dedicated or customized

hash functions (25). Dedicated hash functions tend to be fast, achieving a considerable

advantage over algorithms that are based on other techniques. These hash functions are

not provably secure, as they are not based on a hard problem such as factorization. But

most of them are computationally secure. Message Digest (MD)-family hash functions

fall into this category, which were proposed by RSA Data Security Inc. These are

iterative hash functions based on a compression function with fixed size input. The

compression function consists of operations such as modular 2]2 addition, rotation and

permutation, which can be easily performed either in software or hardware. MD4 [26] is

an early example of a popular hash function with such a dedicated design. Although MD4

is no longer considered secure for most cryptographic applications, most new dedicated

hash functions make use of the same design principles as MD4 in strengthened versions.

Their suength varies depending on the techniques, or combinations of techniques,

employed in their design. Some of the popular dedicated hash functions in current use

include MD5, SHA-l, RIPEMD-I60 and HAVAL.

Other Approaches

Hash functions based on the Knapsack problem and Cellular Automata are some

other approaches. Since hash functions never have to be inverted, completely random

generated knapsacks can be used for their construction. Two examples of the hash

functions based on the Knapsack problem are hash functions based on additive knapsacks

and multiplicative knapsacks. [27} But it has been proven that these can be broken [28].

16

Wolfram has suggested a random sequence generator using cellular automata [29]. Using

this pseudo random generator Daeman et al. suggested a hash function called "cellhash"

(30] in which the hash result of a message M of length n is computed in two phases. In

the first phase the message is extended with minimum number of zeros so that its length

in bits is at least 248 or congruent to 24 mod 23. Let the resulting message be Mo,

MI ...MN_1each of 32-bit words. Then in the second phase the hash function F«H, A) is

applied. The hash function F.(H, A) is a function with argument H, a bit string of length

257 and A, a bit string of length 256. It returns a bit string of length 257. Initial value (IV)

is the all-zero bit string of length 257. The computation involves detennining values for

ff=F.(Hj·I,Mj.IM)ModH... Mj+6modN),j=1 ...N

where If = Nand iI' is the 257-bit hash result.

This is a hash function suitable for hardware implementations. TIle core is made

up of two cellular automata operations and pennutations. In this algorithm the diffusion

and confusion properties have been obtained by linear cellular automaton and non-linear

aUiomaton respectively.

F.(H. A) has five step-transformation of H. Let ho, hih2$6 denote the bits of

Hand ao. alam represent the bits of A.

Stepl:h/=hi G1(hl+1 vh;:;) OSi<257

Step2: 110 ="h; O:Si<ZS7

I7

O~i<257

0:5i<257

where EEl, v and -represent KOR, OR and NOT operations respectively.

2.2.4 Message Digest 5 (MDS)

MD5 [41 is a message digest algorithm developed by Ron Rivest at MIT. It is

basically a secure version of his previous algorithm, MD4 which is a little faster than

MD5. This has been the most widely used secure hash algorithm particularly in Intemet

standard message authentication. The algorithm takes as input a message of arbitrary

length and produces as output a 128-bit message digcst of the input. This is mainly

intended for digital signature applications where a large file must be compressed in a

secure manner before being encrypted with a private (secret) key under a public key

cryptosystem.

Assume we have an arbitrarily large message as input and that we wish to fmd its

message digest. The processing involves the following steps.

(I) Padding

The message is padded to ensure that its length in bits plus 64 is divisible by 512, that is,

its length is congruent to 448 modulo 512. Padding is always performed even if the

length of the message is already congruent to 448 modulo 512. Padding consists of a

single I-bit followed by the necessary number of o-bits.

18

(2) Appending length

A 64·bil binary represemation of the original length of the message is concatenated to the

result of step (I). (Least significant byte first). The expanded message at this level will

exactly be a multiple of 512-bils. Let the expanded message be represented as a sequence

of L 5l2-bit blocks Yo. Yl. ... Yq.... YL,.J as shown in Figure 5 [16]. Note that in the figure, IV

and CV represent the initial value and chaining variable, respectively.

PaldiI1g(1,SI2l1llsj

+--+ +--+ +--+ +--+

~
. "..%...~.,

128 128 \28 128

t'oa t'oa Hta Hta ,--PJ 01. OI~,

Figure 5. Generation of message digest

(3) Initialize the MD buffer

The variables IV and CV are both represented by a four-word buffer (ABCD) used [()

compute the message digest. Here each of A, B, CandO is a 32·bit register and they are

initialized as IV to the following values in hexadecimal. Low-order bytes are put first.

Word A: 01 23 45 67

Word B: 89 AB CD EF

Word C: FE DC BA 98

Word 0: 76 54 32 to

19

(4) Process message in t6-word blocks

This is the hean of the algorithm, which includes four "rounds" of processing. It is

represented by HMOS in Figure 5 and its logic is given in Figure 6. The four rounds have

similar structure but each uses different auxiliary functions F, G, Hand T.

F(X,Y,Z)",(X AY)V(X AY)

G(X,Y,Z) .. (X AZ)V(Y AZ)

H(X,Y,Z)=XYZ

I(X,Y,Z)-Ye(xv"Z)

where, V, A, $ and - represent the logical OR, AND, XOR and NOT operations,

respectively. Each round consists of 16 steps and each step uses a 64-element table T [1

... 64] constructed from the sine function. Let 1'[11 denote the i-th element of the table,

which is equal to the integer part of 2J2 times abs(sin(I)), where j is in radians. The value j

represents the step number. Each round also takes as input the current 512-bit block (Y,)

and the 128-bit chaining variable (CV,). An array X of 32-bit words holds the current 512-

bit Y,. For the first round the words are used in their original order. The following

pennutations of the words are defined for rounds 2 through 4;

P2(1) = (I+ 50 mod 16

20

In Figure 6, Jctp,(~l, Jctp.zm .lqp,(~l and .xtPo(~1 represent 16 words of x, pennuted according

to Pl(i), P2(1), P3(i) and p4(i) respectively.

CV.

Figure 6. Compression function HMDS

The output of the fourth round is added to lhe input of the fint round (CV,) to produce

CV,+/.

(5) Output

After all L 512-bit blocks have been processed,lhe output from lhe Llh stage is lhe 12S·bit

message digest.

Figure 7 shows the operations involved in a single step [161. The additions are

perfonned as modulo 232 operations. Four different circular shift amounts (5) are used

21

each round and these are different from round to round. Here ~kl represents the

corresponding word for the step according to the pennutation rule mentioned earlier.

Figure 7. Operations in a single step of MD5

The operation of a step can be represented mathematically as follows:

A~D

B +- B +({A +FUIIC(B,C,D) +X(t}+ T[iJ)« S)

C~B

D~C

2.2.5 Secure Hasb Algoritbm-! (SHA·!)

SHA-l is the algorithm specified in the Secure Hash Standard (81. which was

developed by NIST. When a message of any length < i '4 bits is input, SHA-l produces a

160·bit output as a message digest. The overall processing of a message follows the MD5

structure given in Figure 5 with HM05 and the hash I chaining variable lengths replaced

with Hsw..[and 160 bits, respectively. The processing consists of following five steps.

22

(1) Padding

The message is padded to ensure that its length in bits plus 64 is divisible by 512. That is,

its length is congruent to 448 modulo 512. Padding is always performed even if the

length of the message is already congruent to 448 modulo 512. Padding consists of a

single I-bit followed by the necessary number of D-bits.

(2) Appending length

A 64-bit binary representation of the original length of the message is concatenated to the

result of step (I). (Most significant byte first). The expanded message at this level will

exactly be a multiple of 512-bits. Let the expanded message be represented as a sequence

of L 512-bit blocks Yo. Y1.... Yq....YL,.1 as shown in Figure 5 [16].

(3) Initialize

The variables IV and CV are represented by a five-word buffer (ABCDE) used to compute

the message digest. Here each of A, B, C, 0 and E is a 32-bit register and liley are

initialized as IV to the following values in hexadecimal. These values are stored in big

endian format, which has the most significant byte of a word in the low-address byte

position.

A: 67452301

B: EFCDAB89

C: 98BADCFE

23

CVq ~ 160

0: 10325476

E: C3D2ElFO

(4) Process message in 16-word blocks

As in MD5, Ihis is the heart of the algorithm, which includes four "rounds" of processing

and its logic is given in Figure 8. Each round has 20 steps.

y.
!'i12 J..A R J, r. n J, F

-Jii Ft, K~ W[O..19j20stops I

~ F2,Kt.W[20..39]20stops I

-J FS,K,WI,"..'.]20""" I

----.I F4,K,WI60··79)20""" I
A iW B C

160

Figure 8. Compression Function HsRA-1

The four primitive functions are,

FJ(X,Y,Z) =(X AY)V(X AY)

F2(X,Y,Z);XeYeZ

F3(X,Y,Z) =(Y Ay)V(X AZ)V(Y AZ)

F4(X,Y,Z)=XffiYlBZ

The four rounds have similar slrUcture but each uses different auxiliary functions F1

(steps 0 S; t S; 19), F2 (steps 20 S; t S; 39), F3 (steps 40 S t S; 59), and F4 (steps 60 S t :s;

24

79). Each round utilizes an additive constant 1(" where 0 ~ t ~ 79 indicates the step.

Unlike MDS, SHA·l uses only four distinct constants. The constants in hexadecimal arc

as follows.

...., K, in Hexadecimal

OS'S 19 KFSA827999

20:5t~39 Kr=6ED9EBAJ

4OSt~59 K,=8FIBBCDC

6OS1S79 K,-cA62CID6

Each round also takes as input the current 512-bit block (Y,) and the 160-bit chaining

variable (CV.). Then CV, is updated through the four rounds and the output of the fourth

round (801ll step) is added to the input to the first round to produce CV<J+l' This addition is

done independently for each of the five words in the buffer with each of the

corresponding words in CVQ using modulo 232•

(4) Output;

When all the blocks have been processed, the 160-bit output will be the message digest.

The generic step oCthe compression function is shown in Figure 9.

25

Figure 9. Operations in a single step of SHA·l

The operations in a step can be represented in mathematical form as follows.

At- E+F(B.C,D)+SS(A)+W, +K/

B~'

Ct-S 30 (B)
D~C

E~D

Here, A, B, C, D and E are five words of the input buffer. S' denoleS the circular left shift

of the 32·bit argument by n bits. K, is the additive constant for step t. W, represents 32·bit

word derived from the current 512·bit inpul block. All additions (+) are modulo 232

additions.

26

2.3 Message Authentication Codes (MACs)

Message authentication is the procedure to verify that received messages come

from the alleged source and have not been a(ccrcd. A MAC is an authentication tag

(checksum) derived by applying an authentication scheme, together with a secret key, to

a message so that the recipient can verify the message authenticity. There are several

types of construction available to produce MACs. These include

(a) Block cipher based MACs

(b) Keyed hash function based MACs

(c) Universal hash function based MACs.

In our work we have focused on the important technique of combining a key with an

unkeyed hash function. referred to as HMAC which is of type (b). Apart from these

methods there are other techniques as well. Unconditionally secure MACs [19] based on

encryption with a one-time pad and stteam cipher based MACs [311 are other examples.

A MAC is said to be secure if it can resist existential forgery under an adaptive chosen

message attack [32].

2.3.1 Block Cipher Based MACs

Cipher Block Chaining MACs (CBC·MACs)

This is the most widely used MAC, frrst used in the mid 1970s. A block cipher is

used in Cipher Block Chaining mode as shown in Figure 10. Let a message space for M

27

be binary strings whose lengths are a positive multiple of I. Hence the message M can be

broken into blocks such that

Then each block is passed through the encryption E with key K and the result is XORed

with the next block. EK represents the encryption using a key K. Cipher block chaining is

given by

where, d indicates I bit vector of all zeros.

{(" MAC

K E

Figure 10. CBC-MAC

The standards ANSI X9.9 [33] and FIPS 113 (34] describe CBC-MAC. Although it was

proven secure for fixed length messages by Bellare et al. [35], CBC·MAC does not

directly give a method to authenticate messages of variable lengths. If the length of

strings varies from a multiple of block length. me CBC-MAC becomes more vulnerable.

28

Bdlare suggested three methods: input-length key separation, length prepending and

encrypting lasl block to overcome that vulnerability [32J.

XORMACs

This is an approach for aUlhenticating a message using a Finite Pseudo Random

Function (PRF). This PRF can be inslantiated with a block cipher or a compression

funClion of a cryplographic hash function. The advantages of this are parallelizabilily,

incrementability and provable security. There are three main steps in this algorithm [36).

1. Encode message M as a collection of blocks.

2. Apply the finite PRF to each block creating collection of PRF images.

3. XOR the set ofPRF images together.

XOR MAC has two schemes namely, randomized and counter based. In the randomized

scheme, it is assured that there is a PRF F with input size I, output size L and key length k

bits. A parameter b is fixed where b < I, wlllch is the block size. Assume the message to

be authenticated M bas length at most b x 2'+1. By slandard padding arguments we may

assume that the message is a multiple of b. Usually b is taken as In. So

M=Ml,M2,."Mn

where IM,1 = b. Let <i >denote the binary representation of the J·b-l bit encoding of the

integer i. It is the binary representation of the block index i e {f,2•.. ,nl.

Assume Ke {a, lItis the shared key oflengthk. To compute the XOR MACofa

message the sender chooses a random 1-1 bit string r (known as seed) and then computes

thetag(r, t)using

t = F,(OIl,)<ll F,(lll< 1>II M,)<llF ,(I II< 2 >II M,)<ll .. F,(lll<" >11M.).

29

Here II denotes concatenation and FK represents a finite pseudo random function such as a

block cipher (e.g. DES) wilh it key K. Set the MAC of M to the pair (r, t). Thus Ihe sender

transmits (M, r. r). The receiver verifies the message by computing t' from M and r (and

K), This is a paraJlelizable slruclUre and hence suitable for long messages and/or

expensive PRFs. The other feature is the MAC is incremental wilh respect to

substitutions. When it is computing the lag for a related message (e.g. only one block is

different) only a constant amount of computation is required [36],

In counter based XOR scheme. a sender maintains an n-bit counter C which is

initially 0 and incremented for each message. Authentication has to follow these steps.

increment the counter C by 1

set t:: Ft (0 II c) El'l FlO II< I >II MI)El'lF tOIl< 2 >II M 2)El'l .• FtOll<n >11M.)

set Ihe MAC of M to (c, t)

The sender transmits (M, c•.t). The receiver calculates t'using the received (M', c: t') and

accepts the message if t = t',

2.3.2 Keyed Hash Function Based MACs

A function HO Ihat maps a fixed length key K and an arbitrary length message M

to a n-bit message digest MD is a keyed hash function. if it satisfies the following

properties [23].

The description of HO is publicly known.

Given K and M, it is easy to compute H(K, M),

30

Without knowledge of K, it is hard both to find M when H(K, M) is given, and to

find two distinct messages M and M' such that H(K, M)= H(K, M').

Given (possibly many) pairs of {M;, MDil with MD1 = H (K, M/), it is hard to find

the secret key K.

Without knowledge of K, it is hard to detennine H(K, M) for any message M.

even when a large set of pairs {MI, H(K, MI)}. where MI s are selected by the

opponent (M;t Mil 'rJ MI), is given.

Keyed hash functions can be constnlcted from existing hash functions. Hence some

security requirements of the designed keyed hash function rely on the security of the

underlying nash function. Basically three methods have been adopted in constnlcting

keyed hash functions [23}. "Hash then encrypt" is the simplest keyed hash function which

can be defined as

H(K,M)' E(K,H'(M)

where Kis the secret key,M is the message, Wis the one-way hash function and E is the

encryption algorithm.

The second method is the nested hash function. There are many schemes of

constructing keyed hash functions using this method. In these schemes the hash function

introduces a key by setting it as the initial vector. Hash functions are nested with different

initial vectors. Suppose H' is a one way hash function. The round function f can be

defined as

31

where, MI is the ,<111 message block, Xi is the chaining variable (output of the last round),

"II" represents concatenation and XI '" IV', which is set to the key K. This is shown in

Figure 11. The keyed hash function would be

H (K, M) = f(j(.. .fif(K, M,), M,), ." M•. ,), M.).

It has been found that this scheme does not satisfy the fourth property required for a

keyed hash function. This also suffers from padding attack, which is explained in section

2.4.3. Hence a modified keyed hash algorithm was developed which introduces a new

"salt value" S. The construction is given Figure 12. The H" can be built using the round

function explained earlier. In these schemes the several hash operations increase the

overhead and decrease the hash throughput

TV' Xi

Figure 11. Round function using

nested hash functions

Figure 12. Modified keyed hashed function

with nested hash functions.

32

Other methods using a key as part of a message or initial vector have been

proposed. In doing so the speed of the constructed hash function remains almost as fast as

the hash function. Many schemes have been developed according 10 this melhod.

Tsudik [37] suggesled three methods: secret prefix, secret suffix and envelop

method. These methods are only based on one-way hash functions and use keys to make

them secure. UH' is a collision free hash funclion, K (= KIll K2) is a secret key, then the

keyed hash function H(K, M) is defined as follows.

Secret prefix method:

H(K,M)=W(lV, (KIIM).

This method is not susceptible to the birthday attack, which is explained in 2.4.1. But

since the atlacker knows the underlying hash algorithm and the integrity value is not

protected, there can be a padding attack (see section 2.4.3). A counter measure for this

attack is 10 include the message length in the secret prefix calculation, as part of the flJ'St

block. Some protocols such as Simple Network Management Protocol (SNMP)(38]

utilize this method.

Secret suffix method:

H(K,M)=W(IV,(MII K)).

This is suitable for high bandwidth and low delay requirements such as packetized voice

and video applications. One drawback of the secret suffix method is the susceptibility to

the birthday auack (see 2.4.1).

Envelope method:

H (K, M) =W(IV, (K, II Mil K,».

33

The message is enveloped with a secret prefix and a secret suffix before its digest is

computed. This is claimed to be more secure than the previous methods and is resistant to

both padding and birthday attacks.

In all these three methods the key size would be either the block size of the

message or twice that. Hence the processing speed is reduced by extra block processing

time. The security solely depends on the underlying hash function. A detailed analysis of

these methods can be seen in [39}. In that Preneel et al. also have suggested a heuristic

construction. MD,,-MAC which is free from some of the previous weaknesses. This trend

was continued further by Bakhtiari et al. as in [4OJ. They introduced six improved

methods using small keys (128 bits). In these schemes H' () is a collision free basil

function, K=(KI II Kl) is the secret key, '$ and ~ are special XOR operations between

two entities (X and Y) of different lengths as described below:

X i" Y - The shorter one (between X and Y) is padded by zeros from the right hand

side to make its length same as the other and then they are XORed.

X§I Y - The shorter one is padded by zeros from the left hand side to make its length

same as the other and then they are XORed.

The methods are summarized below.

34

(I)H(K,M)"" H'UV,(K$M))

(2)H(K.M),H'(N.M)

(3)H(K,M). H'(N,(M~K))

(4)H(K,M)=H'(lV,(K"M~K»

(5)H(K,M)=H'(N,(M~K)) where TV= K

(6)H(K,M)=H'(lV,(M~Kl» where /V=K,

The concatenation of the key to the message in earlier methods has been

eliminated by using XOR operation. Since the key does not increase the length of the

input, processing speed is not affected. But some of these methods have some

weaknesses. For example (I) and (2) methods suffer from padding attack. The authors

claimed that the method (5) would be the best as it is safe enough against the possible

auacks and at the same time is efficient.

In 1996 M. Bellare et al.(3) presented two constructions, which could be formally

analyzed without resorting to unrealistic assumptions such as "idea!ness" of the

underlying hash functions. Their approach of keying the hash function is to substitute the

secret key for the functions fixed initial value IV. The fixed and known IV of the original

function is replaced by a random and secret value K known only to the communicating

parties. The two constructions proposed by them were nested MAC (NMAC) and the

hash-based MAC (HMAC). In these schemes the iterated construction methodology for

construction of collision-resistant hash functions [27J, is utilized. The input is hashed by

iterating the compression function. If the input is M, then

where IMII = 1. The value of iterated function F on M is h~. where

35

Their approach is to substitute the secret key to Ihe functions fixed IV. Lei the keyed

compression function and its iterated function be defined asfl(and FI(, respectively. If K=

(Kl. K2) where Kj and K2 are the keys to the function of length I each:

NMAC(M) =!I(.(M) = (FK1 (Fn(M»)

Here the outer function acts on the oUlput of the iterated function and hence involves

only one iteration of the compression function. That is, the outer function is the

compression function acting on the FK2 (M) padded 10 a full block size. So, even though

NMAC construction is simple and efficient, it requires direct access to the code for the

compression function rather than the overaJl hash function. HMAC was suggested to

avoid that requirement [3].

In HMAC the two k.eys are derived pseudorandomly from a single key, which is

an advantage at the level of key management. Let F be the key-less hash function with

initial value iV. The arbitrary length message is processed with random string K of length

las follows

HMAC (M) = F (K' lD opad. F (K'lD ipad, M»

where K'is the padded Kwith required 'O's to a one b·bit block size of the iterated hash

function. Here, ipad is the byte OX 36 and opad is the byte OX 5C each repeated 64 times.

These values are chosen to have high hamming distance between the pads. They are sel to

exploit the mixing properties atlributed 10 the compression function underlying the hash

schemes in use. These are important propenies to provide computational independence

36

between the two derived keys. The complete implementation and perfonnance analysis of

HMAC based on SHA-I is discussed in Section 4.4.

2.3.3 Universal Hash Function Based' MACs

The idea of the universal hash function was introduced by Carter and Wegman in

1979 [4IJ. Two years later they introduced MACs using universal hash families [42].

According to this, the message M is hashed to a smaller size using a function from a

universal hash function family, which has only a combinatorial (rather than a

cryptographic) property. Then a cryptographic primitive with one·time pad and

encryption is applied to the resulting smaller string to produce the MAC as in Pigure 13

[43J.

M

Tag

Figure 13. Carter-Wegman MACs

37

By definition, a finite multiset of hash functions H={h: A....,.B} is said to be universal if

for every x, y eA where x :F y: Prho;H [h(x) =h(y)J =I~BI. Further, a finite multiset of

hash functions H={h: A....,.BI is e-Almost Universal (E-AU) if for all x,y eA where x '*y,

Prho;H [h(x) = h(y)J:;; e.

The above approach has been suggested as a promising way for a highly secure,

ultra-fast MAC. The speed of universal hashing MAC depends on the speed of hashing

step and the speed of the encryption step. If hash function compresses messages well,

encryption will be faster. The combinatorial property of the universal hash function

family can be mathematically proven without cryptographic hardness assumptions.

Several fast-tQ-Compute hash functions have been developed. Among them, the

divisional hash is a method related to Cyclic Redundancy Check (CRe) computations,

which is shown to be e-AU for a small e. A Linear Feedback Shift Register (LFSR) based

Toeplitz hash is another method, which is based on matrix-multiplication. Both these

methods allow efficient hardware implementation [43J. In 1995 Rogaway suggested

bucket hashing [44], which is used in the context of Wegman-Carter authentication (42).

This has been explicitly targeted for software implementation. Halevi and Krawczyk

proposed Multilinear Modular Hashing (MMH) and Nonlinear Modular Hashing (NMH)

which take full advantage of microprocessor technologies such as Intel's MMX and 64

bit architecture, to achieve Gbps rates [45]. The Universal Message Authentication Code

(UMAC) was proposed in 1999 [46J. This has been targeted for high throughput software

implementations. Unlike traditional inherently serial MACs, UMAC is parallelizable. The

38

underlying hash function family is known as New Hash (NH), wh.ich is a simplification

of MMH and NMH. The details of this algorithm are discussed in Chapter 6.

2.4 Attacks on Hash Functions

A successful attack on a hash function means finding a melhod to falsify a

claimed security property of the hash function. There are two main groups of attacks:

general and special attacks. The special attacks depend on the weaknesses of the

underlying algorithm and the general attacks are independent of the algorithm.

2.4.1 General Attacks

This group of attacks only depends on the message digest length. The birthday

attack, exhaustive key search, pseudo key attack and random attack are some examples of

this group.

Birthday attack:

This attack is one of the most powerful attacks on hash functions with unifonn

message digest distribution and short message digest length. This is based on the

"birthday paradox" which is a label for the following phenomenon: Given a random

variable that is an integer with unifonn disuibution between I and N and a selection of k

instances (k ~ N) of the random variable, it can be shown that[16J

P(N,k) > l.e-{i(l.l))'2N

39

where, P(N, k) is the probability that there is at least one duplicate. According to chis, lhe

value of k required for P(N, k) > 0.5 can be shown as 1.18(N)112, which is approximately

(N)lll. The birthday paradox gets its name from a special case with N =365 for which the

value of k is '" 19. This means that the minimum number of people required for at least

two people have the same birthday with the probability about 0.5 is 19. Suppose the

message digest of m bits is produced by a hash function on the message M. According to

the birthday paradox, if the hash function is applied to k random inputs, the value of k so

that there is a probability about 0.5 for at least one duplicate will be 2ot1l
• The adversary

creates a pool of many message and digest pairs. When the anacker intercepts a message

digest, it is compared with all message digests in the pooL In the case of a match, the

corresponding message is sent instead of the original message. If an adversary generates

'I variations on a bogus message and "2 variations on a genuine message, the probability

of finding a bogus message and a genuine message that hash to the same result can be

approximated by

where "2»1 [47]. When '1= "2 ='J.""2, the above probability is about 0.5. To achieve

security against a birthday attack, the hash value should be at least 128 bits [48].

Exhaustive key search

If the adversary has access to at least one message-digest pair. the key can be

found by examining the key space elements against the message-digest pairs. As the

message space does not have a one-to-one map 10 digest space, more than one key could

40

be found. However there is a possibility to determine the key if a large number of pairs is

given [23J.

Pseudo Attack

The adversary tries to find a pseudo key K with H (K, M) = H (K ,M) where H is

the keyed hash function, K is the actual key and M is the message. This is similar to

finding more than one key in exhaustive key search and may allow the enemy to identify

himself as a legitimate user.

Random Attack

In this attack the adversary chooses a random message (or part of a message) and

expects that its message digest is equal to a genuine one. If the message digest length is r

then the success probability of this attack for a hash function, which has the required

random behavior, is In'. By having at least 128 bits for the message digest this attack

can be thwarted [23].

2.4.2 Special Attacks

These attacks depend on the round function or in general the hash function design.

1bese are not successful in keyed hash functions as the key protects the hash components

against outsiders. Examples of this attack are rneet·in-the middle attack, correcting block

attack, fixed point attack, attack on the underlying block cipher, and differential and

linear cryptanalysis. The details of these attacks are given in [48J and [40].

41

2.4.3 High Level Attaeks

These are altacks on hash functions when used in a protocol or for non-hashing

purposes. Examples are the replay attack and padding attacks. Attaching time stamps to

lIle messages can thwart the replay attack. In padding attacks the intruder tries to append

(or prepend) a message to the existing one such that the legitimate parties would accept

the result. If[M, MD] with MD :[(M, K) is sent to the receiver. the intruder tries to find

M'such that [(M II M'), MD} or {(M' II M), MOl is scnt instead of (M, MD] [40]. Padding

attacks can be lhwarted by pre-pending the message length to the message or by using

some fixed suffixes that do not appear within the message.

2.5 Condusion

We discussed the background of this research with the brief description of the

IPSEC, which is one of the main areas of application of hash algorithms. Next. a detailed

investigation of hash functions and message authentication codes that have been

developed so far was carried out. In this section, many popular cryptographic hash

functions and message authentication codes were elaborated. The attacks on hash

functions were described there after.

42

Chapter 3

Design Environment and Implementation Choices

The main objective of this research is to develop an efficient hardware design for

the hash algorithms widely used in Internet security, to give ma:<.imum speed and

minimum hardware utilization. In this chapter we discuss some of the main issues that

have to be considered in this effon.

3.1 Hardware vs. Software Implementation.

Today, software implementations of cryptographic algorithms are more prevalent

than hardware implementations. They provide more flexibility since any algorithm can be

executed on a processor. They allow ease of upgrading, ease of use and portability. But

there is a growing trend of many companies in security business in developing

multifunctional cryptographic accelerators. The hardware implemenlation of

cryptographic algorithms is thriving in the new century because of the growing

requirement for high speed, high volume secure communications combined with physical

security [53]. Hardware implementation is more attractive due to the fact that it can take

advantage of bit level and instruCtion-level parallelism that is not accessible to general.

purpose processors [54]. A software implementer is trying to efficiently express an

algorithm in terms of an existing hardware device. Hence the speed of the software

43

implementation is restricted to the speed of the computing platform. Whereas a hardware

implementer is designing a device to perform the algorithm that has far more degrees of

freedom. He can explore different versions of the same design as alternatives. This is

clear when exploiting the parallelism of an algorithm. In software, the available execution

units of a processor are used to maximize performance. A hardware implementation can

be designed to best exploit the inherent parallelism of an algorithm. As well, hardware

implementation can be optimized for speed or size. In this case size translates much more

directly into cost than in lhe case for software implementation.

Primarily hardware implementations can be targeted for two general technologies:

cuslOm, mask.~layered technology and re-configurable technology. Both of these

technologies have their own advantages and disadvantages. Typically these two are

known as Application Specific Integrated Circuits (ASICs) and Field Programmable

Devices (FPDs).

3.2 Implementation Using Custom Hardware

ASIC may be further categorized as full CUSlOrn IC and semi CUSlOrn IC. Full

custom ICs require the development of all the mask. layers at the transistor level. Since it

does not use pre-compiled, pre-characterized cells, it is a time consuming process. The

full custom ASIC design melhodology offers high system performance since special

attention can be given lO critical devices and interconnections. System performance can

be optimized by sensibly controlling factors such as device location, transistor sizing and

interconnecting (routing) length [551. This process takes a long time and more personnel.

44

Hence this is expensive to manufacture and to design. The manufacturing lead-time is

about 8-weeks. Thus full custom AS1Cs are generally pursued only for performance

critical designs or high volume products, which can regain the initial investment.

In semi-custom ASICs all of the logic cells are predesigned and some (or all) of

the mask layers are customized. There are two types of semi custom ASICs; standard

cell-based ASICs (CBICs) and gate array based ASICs {56). CBICs use predesigned

standard logic cells. These cells can also be used along with larger predesigned cells

known as mega cells such as micro controllers. The designer can place a cell anywhere

on the silicon and hence all the mask layers are unique to a particular customer. The

advantages of CBlCs are saving time and reducing risk by using standard cells. The main

disadvantages are the cost of standard cell libraries and time needed to fabricate all layen

for each new design.

In gate-array (GA) based ASICs the transiston are predefined as a base array on

the silicon wafer by replicating a base cell. Only the top few layers of metal, which define

the interconnect between transistors, are defmed by the designer using custom masks. To

distinguish these from other types of gate arrays, this type of ASIC is often known as

Masked Gate Array (MGA) [561. The designer chooses pre-designed gate array cells

known as macros from a library. The base-celliayout is the same for each logic cell, and

only the interconnect (inside cells and between cells) is customized. There are three types

of GAs; channeled, channel-less and structured GAs. The costs for all the initial

fabrication steps for an MGA are shared for each customer and this reduces the cost of an

MGA compared to a full-custom or standard-eell ASIC design. These custom ASICs

45

provide a specific functionality for a particular design. The design must be implemented

all the way from the behavioral description to lhe physical layout and sent for the

expensive and time-consuming fabrication [56).

3.3 Field Programmable Devices (FPDs)

FPDs have a fast design turnaround. FPGAs are a complex version of FPDs. They

have no customized mask layers. The core is a regular array of programmable logic cells

that can be implemented combinationally or sequentially.

Basically the FPDs can be divided into three categories. Simple Programmable

Logic Devices (SPLDs), Complex Programmable Logic Devices (CPLDs) and FPGAs

[571.

SPLDs

All small FPDs including Programmable Logic Arrays (PLAs), Programmable Array

Logic devices (PALs) and PAL-like devices come under this category. These are suitable

only for small designs.

CPLDs.

This is a large capacity device based on SPLD architectures interconnected on a single

chip. For commercial CPLDs the main switching methods are Erasable Programmable

ROM (EPROM) and Electrically Erasable PROM (EEPROM). Both methods use floating

gale transistor technology. Due to rapidly growing market, there are many CPLD

products including the Altera Max5000, 7000 and 9000 series and the Xilinx XC9000

series. CPLDs provide logic capacity of about 50 typical SPLD devices. So they can have

46

around 9000 system gates. They are widely used for many applications including high

speed networking, power conscious portable designs and in-system programming

applications.

FPGAs

FPGAs consist of an array of unconunitted circuit elements (logic cells) and

interconnecting resources. The end user can configure it through programming. There are

two types of logic cells: multiplexer based (e.g. Actel) and lookup-table based (Xilinx,

Lucent). A basic logic cell has a fixed number of inputs and outputs and can implement a

certain set of functions. There are two classes of commercial FPGAs depending on the

switching technology: antifuse and Static-RAM (SRAM). Actel, Cypress, Crosspoint,

Quicklogic are some devices of antifuse technology. Antifuse·based devices are

programmed once and hold their programs across power cycles and are not mutable once

progranuned. Xilinx, Altera-Aex, Atmel's CLl family, Toshiba are SOffie examples of

SRAM switching technology. These devices have the advantage of in-circuit re

programmability, but must be programmed each time they are powered up and hence the

configuration data has to be stored in an external ROM {57]. FPGAs promote short time

to market, high flexibility with capability for frequent modifications of hardware and low

development cost For cryptographic application, they also have a capability to allow for

time sharing of one integrated circuit. Hence they provide many advantages for vendors

and users of cryptographic equipment [53]. Due to the immense flexibility of FPGAs by

incorporating a large amount of routing resources into a device, the gate-ta-gate delays in

such devices are higher than those of ASIC devices. But it is still possible to overcome

47

such drawbacks by using more parallelism in the FPGA designs. Unfortunately complex

designs tend to create many more logic levels in FPGAs than ASrCs and become difficult

to debug. As well, much of the mixed-signal functionalities available in Asrcs are not

common in FPGAs. But today's highly competitive market, the first product [0 market

establishes strong market share. In this case FPGAs provide an alternative that save

designers lime in the final verification cycle and in the long ASIC design process.

3.4 FPGA Implementation of CryptograpWc Algorithms

In general, hardware implementation can achieve superior performance compared

to software implementation. FPGA implementation is a highly promising alternative for

implementing cryptographic algorithms. The fine granularity of FPGAs matches

extremely well the operations required by most of the cryptographic algorithms.

Especially the basic operations involved in private key cryptographic algorithms such as

bit-permutation, byte substitution, lookup table readings and boolean operations can be

implemented in FPGAs more efficiently than in a general purpose computer. As well the

inherent parallelism of the algorithms can be efficiently exploited in FPGAs but not in the

serial computing of a uniprocessor environment. This was widely studied during the

process of developing an Advanced Encryption Standard (AES) by the National Institute

of Standards and Technology (NISn [49] in the U.S. Apart from the rigorous security

analyses. AES candidate algorithms were 5tudied for effil;iem,;y in both hardware and

software implementations. It has been seen that use of a simple cipher design with simple

48

operations that possesses both cryptographic and good overall cipher efficiency is

desirable for FPGA implementations (50].

The AES candidate algorithms involve boolean operations, modulo 231 addition

and subtraction, fixed point snifting, variable rotation, modulo 232 multiplication, Galois

Field 28 multiplication and lookup tables [5IJ. Modem FPGAs have a structure of two

dimensional array of configurable logic units interconnected via a large routing matrix.

Configurable logic units are comprised of look up tables and flip.flops. Lookup tables

can be configured as either combinational logic or memory elements. Modem FPGAs

have variable size RAM blocks, which can be used as memory elements or as look up

tables. The most complex operations of the block ciphers are the modulo 232

multiplication and the variable rotation. The substitutions or S-boxes can be implemented

in either combinatorial logic or embedded RAM blocks. However due to the limited bit

width, limited number of RAM blocks and the nigher switching time of the RAM

compared to that of a standard CLB slice elements, the latter option is not feasible [51J.

When a cfpher consists of larger S-boxes and more complex operations it becomes more

resource intensive. The basic operations such as bit-wise XOR, modulo 232 addition and

subtraction and fixed value shifting are implemented from simple hardware elements and

hence they are fast. The Galois field multiplication in AES candidates is implemented

efficiently in hardware as it involves multiplication by a constant [51J. It utilizes fewer

resources than general multiplication. At the cryptographic-round level of the AES

candidate block ciphers, multiple operations can be executed concurrently. Some

operation modes (e.g. Electronic Code Book mode) allow concurrent processing of

49

multiple blocks of data. Hence if multiple rounds are implemented. any desired speed up

of throughput can be achieved compared to a single round implementation. FPGA also

provides agile key-context switching. This is the ability to generate key dependent data in

early rounds before the data is required. This avoids the excessive latency in context

switching that appears in software implementations [52J.

There are several other potential advantages of cryptographic algorithms

implemented using FPGAs. Algorithm agility is one such benefit. Many security

protocols such as SSL and Internet Protocol Security (IPSEC) allow multiple

encryption/authentication algorithms. These are generally negotiated on a per-session

basis. For instance, IPSEC allows 30ES, Blowfish. CAST, IDEA, RC4 and RC6 as

algorithms with future extensions. Algorithm agility offers the capability of switching of

cryptographic algorithms during operation. It is possible to upgrade a programmed device

with a new algorithm, which did not exist (or was not standardized) during design stage.

Swapping a standardized algorithm with a proprietary one or changing the mode of

operation are possible as well.

3.5 Device Selection

When examining cryptographic hash functions for hardware implementation,

various key aspects involving the selection of the target device, design development

environment and the design architectures emerge. It is clear that the number of input {

output (ItO) pin requirement would be a significant factor as the algorithms deal with

large data streams and the keys of minimum size of 64·bits (in case of HMAC·MD5)

50

{58]. The output also has at least 64 bits (truncated HMAC·MD5 output). The MD5

algorithm utilizes 64 constants each of 32 bits in length. It would be reasonable for them

to be stored in a ROM. As well the necessity of exploring different architectures and

optimizing the design using various techniques, results in selecting a resource-rich

device. It should be able to provide the large amount of hardware resources and il should

be flexible so that the design can be optimized. Although the COSI of high-end FPGAs is

relatively high, the rapid pace of developing these devices may result in the decrease of

the FPGA cost in the future market. Therefore a high-end FPGA device was selected for

this design. Based on the above requirements, the Xilinx Virtex XCV1000FG6S0-6 was

chosen as the target device.

3.5.1 Virtex Architecture

The XCVlOOO virtex device comprises a 64 x 96 array of look-up-table based

configurable logic blocks (CLBs) each of which includes four logic cells (LCs). These

CLBs provide the functional elements for constructing logic. Each LC has a 4-input

function generator, carry logic and a storage element (Figure 14). Two logic cells form a

slice which is often used as the unit to express the hardware utilization. The function

generators are implemented as 4-input Look-Up-Tables (LUTs). Each LUT can be

configUred as 16:<1 bit synchronous RAM. Two LUTs can be combined to create a 16:<2

bit or a 32x1 bit synchronous RAM. or a 16xl bit dual port synchronous RAM [59]. The

storage element can be configured either as edge triggered 0 flip-flops or as level

sensitivelatehes.

51

CIN

Figure 14. 2-slice Virtex CLB [59].

CIN

The XCVlOOO device has a 68Q-pin ball grid array package, which. provides .512 VO pins

and over one million system gates. The Virtex device incorporates several large block

select RAMs (BRAMs), organized in COIUITUlS. These complement the distributed LUT

based RAM structure in CLBs. The XCYlOOO has 32 block select RAM blocks. Each

block is a fully synchronized dual port 4096-bit RAM. These can be configured eilher as

RAMs or ROMs.

Virtex devices feature a flexible, regular architecture that comprises an array of

CLBs surrounded by programmable input output blocks (lOBs). AU these are

interconnected by a rich hierarchy of fast, versatile routing resources (Figure 15), The

abundance of routing resources is attractive for implementing large and complex designs.

"VersaRing" facilitates pin swapping and pin locking, which are required for adopting

52

the ex.isting PCB layouts when the device is redesigned (59]. Virtex device also includes

four clock delay locked loops (DLLs) for advanced clock controls.

DL lOBs DL
VersaRlng

HJl~ 1
m

CUI. i~ ";; ~ Ii'

VersaRlng

DLL 10.. DLL

Figure 15. Virtex architecture overview [59].

3.5.2 Il<sign Methodology

Basically two hardware design methodologies are available: Hardware Design

Language (HDL) based method and schematic based method. In general schematic based

designs give slightly betler results in terms of area and speed compared to their HOL

based counterparts. However a schematic based method is not feasible for large complex

designs [51). Hence an HOL based methodology, with Very High Speed Integrated

Circuit Hardware Description Language (VHDL) as the language. was chosen. For the

synthesis and implementation the tools provided by Canadian Microelectronics Company

(CMC) were used.

53

3.5.3 Design Flow

In these implementations, the FPGA design flow given by Xilinx was utilized.

Figure 16 shows the main steps of this flow.

HDL

Functional Simulatioo Data

Roports

Reports

<:];havioral Simulator::::>

, :10.. ,
: Design 'i Manager

t-,~~~~
TImin Simulation data

t-<:ij;;;"";;dtRi£out!niID<'L:::J--+-=~F='l=--'
Configuratioo Simulator

PROM file formatter HlWdeblJoger

Figure 16. FPGA Design flow [60J

Initially the behavioral model of the design is implemented using VHDL. In this design

there are some standard operations for which we can use the Xilinx library cores, which

have already been optimized. These components can be generated using the Core

Generator. This is a tool used for parameterizing cores that have been optimized for

Xilinx FPGAs. The advantages of using a core based design process include shorter

design cycle time, reduced risks and improved performance through higher levels of

integration, among others (61]. The behavioral model is simulated for functional

54

correctness using Synopsys VHDL System Simulator (VSS). Then the VHDL model is

synthesized to create the netlist file using FPGA Express provided by Synopsys Inc.

During synthesis the design is flattened 10 a large number of processes that communicate

vja signals known as nets. The nellist file is a data structure that describes all of the

components connected to each net [62J.

In order 10 carry out the functional simulation, the design has to be translated

using the Xilinx flow engine. This uses the Native Generic Database Build (NGDBuild)

program to read the netlist file along with any constraints specified and create the NGD

file. The NGD file contains the logical description of the design expressed both in terms

of the hierarchy used when the design was frrs! created and lower level Xilinx primitives

to which the hierarchy resolves (63). Therefore this functional simulation is also known

as the post-NGDBuild simulation. If this is satisfactory the design is mapped. AI this

level it is possible to carry out post-map simulation, which is a gate level simulation with

real gate delays and estimated delays for routing. This simulation is useful in determining

if there are obvious timing issues in the design before carrying out place and route [64].

Finally, after the placed and route (PAR), the post·route simulation is carried out.

lbis is a gate level simulation with real delays for the gates and routing. At this point the

static timing analysis is carried out. Using the NGD file it is possible to create a structural

VHDL file and a Standard Delay Format (SDF) me. SDF is an indusuy·standard fonnat

for passing back-annotated delay information to the structural HDL. With these files the

timing simulation with back annotation can be carried out.

55

After the PAR step, the CLBs on the chip must be configured to implement the

behavior of the netlist components that have been mapped, placed and routed to them.

This is done by detennining the values of configuration bits required to program the

device. This is called bit generation. By loading these configuration bits into the FPGA,

the device can be customized (621.

3.6 Hardware Architectures

The cryptographic hash functions studied in this thesis have an iterative structure

based on the method proposed by Merkle and Damgard [65]. The inherent sequential

nature of this structure provides only limited opportunities to enhance its perfonnance.

However several architecture options can be adopted. Loop unrolling architecture allows

for unrolling of multiple steps, up to the total number of steps required by the algorithm.

ln this approach as the number of unrolled steps increases the hardware utilization

increases but the complete algorithm processing delay decreases through hardware

minimization across steps. Iterative looping is a subset of loop unrolling in which only

one step is unrolled. The iterative approach in general minimizes the hardware

requirement but maximizes the time requirement since it needs a large number of clock

cycles to perfonn a hashing. By implementing partially unrolled designs it is possible to

have a range of area vs. time trade orfs. In this study, the following two extreme cases of

these hardware architectures are investigated:

Full loop unrolling

Iterative looping

56

Full loop unrolling

This architecture allows for unrolling of multiple rounds up to the total number of

steps required by the hash algorithm. In this case all the rounds are implemented as a

single combinatorial block. Operations such as variable shifting can be directly

implemented without any hardware such as barrel shifters. The number of required

multiplexers can be reduced too. However, while this approach minimizes the time for a

hash operation, it maximizes the hardware utilization.

Iterative looping

Only a generic step is implemented and it is iterated for the number of steps

required for the hash operation. This approach has a low register-to-register delay but

requires large number of clock cycles to perfonn a hash operation. In general, although it

needs extra components such as multiplexers and barrel shifters, the hardware utilization

is reduced.

3.7 Conclusion

In this chapter the appropriateness of FPGA implementation of cryptographic

algorithms was discussed with a description of some previous studies related to AES

candidale algorilhms. Here, several potential advantages of cryptographic algorithms

implemented using FPGAs were mentioned. Following the main issues of

implementation associated with this research, the design environment and

57

implementation choices were discussed. The architecture of lhe target device and lhe

design flow ulilized for the syn!hesis and implementation were explained. Finally the two

architeclures !hal were adopled for the implementation were briefly introduced. In the

next chapter the delails of implementation of MOS, SHA-l and HMAC-SHA·l will be

presented.

58

Chapter 4

Implementation ofMD5, SHA-l and HMAC-SHA·l

In this chapter, various aspects of the implemenlation of MD5. SHA-I and

HMAC·SHA-l algorithms are discussed. lnilially the design details of the architectures

are explained and then the simulation results are discussed. The actual implementation

results and some optimization techniques are elaborated thereafter. Finally the

perfonnance analysis is carried out for all the designs based on the implementation

results.

The design flow given in Section 3.5.3 was used throughout lhe implememation

process. The implementation involves several simulations at different stages. This

process assures the correct functionality of the design at each stage before proceeding to

lhe next level aCthe design flow.

4.1 MD5 Implementation

MD5 algorilhm is a block-chained hashing algorithm. The hash for a block

depends on both the block data and the hash of its preceding block. As a result, blocks

cannot be hashed in parallel. Each step consists of four additions, three component

logical operalions, two table lookups and one rotation. The tree of operations can be

optimized by perfonning operations, which involve items not dependent on the previous

59

step, early. According to Figure 7. the item that depends on the previous step is word "B"

and hence the result of logical operation has a considerable delay. The optimized tree of

operation (assuming each operation lakes one unit time) will be as given in Figure 17.

According to this one time unit step can be reduced from the times required for the

general structure given in Figure 7 [66].

S"VaiuldependlIcn-....
S""

Figure 17. Optimized operation tree

As discussed in the previous chapter. two architectural options are investigated

and implemented: iterative looping and full loop unrolling. Both architectures are

implemented at the behavioral level in VHDL. synthesized and functionally simulated.

After verifying the functionality, the design undergoes the process of the flow engine.

The functionality of the PAR implementations is then fe-simulated with back·annotated

timing using the same test vectors used in functional simulation. thereby verifying that

the implementation of the design is successful. In both designs, it is assumed that the fIrst

two phases of the algorithm have already been performed and the input of message

blocks can be controlled according to the state machine states.

60

4.1.1 Iterative Architecture

By implementing a generic step of the MD5 algorithm, a looping architecture

with 64 iterations provides the greatest area optimized solution. In this design "M05

iterative core" is the generic step. which is shown in Figure 18. A few additional

multiplexers and a barrel shifter have to be used to perfonn the selection of the round

function and the variable shifting in each round. Among the several components, the

block select RAMs, ROMs, adders, registers and multiplexers are parameterized using

core generator modules of the XiJinx tool.

.. ..
Figure 18. M05 iterative core

61

The block diagram of the iterative design data path is shown in Figure 19. The

message is loaded using a 32-bit bus "X_in" and the digest appears as four 32-bit words.

The "X_in counter" provides the addresses (X_count) for 16 words of a message block to

be written into the RAM modules. The "X_sel" signal from the "MD5 iterative state

machine" provides the address for reading the appropriate message word from a RAM

module. The "RAM select counter" is used to count the cycles required to switch

between the two RAMs for reading and writing.

tnil

s.., -=====-- --'

Figure 19. Block diagram ofMD5 iterative design.

The "MD5 iterative state machine" provides aU the control signals required for all the

operations. The basic state diagram is shown in Figure 20. This has 68 states including

the three states required for initializing and loading the very ftrst block to the core. The

62

subsequent block operations need 65 states. An important feature of this design is the

loading of message blocks in parallel with computation. The two RAMs can be utilized to

load the next block while the present block is being used in computation. This eliminates

the loading time from the total time to process all but the first block. The 512-bit message

block is loaded to the core using a 32-bit bus.

~Ioading

~ CounLdone

ReseLstate

Figure 20. State diagram for MD5 iterative design

The "ReseUtate" signal initiates the stale machine and the counters at the "idle" stale.

Then with the "Start" signal the function starts with moving to "geeset" state, 1be initial

vectors are loaded in parallel to the input register and to a buffer. The initial vectors as

well as the chaining variables are kept in this buffer until the 64d1 step to get added with

the last result to fonn the chaining variable for the next block. Then during the "loading"

state. the first block is loaded to the "XRAMI" using the addresses given by the "X_in

counter", After that the state machine starts to provide addresses for reading of

"XRAMI". Using the first 16 addresses provided by the state machine, the next block is

63

written to "XRAM2". After the 64th step, ';XRAM2" is read. During the first 16 steps of

processing the second block, the third block is written to "XRAMI", This reading and

writing of RAMs alternates in every 64-clock cycles, Subsequent blocks utilize the

previous chaining variable as their initial values. At the end of 64th step, if the

"End_msg" signal is asserted, digest appears at the OUlput as fOUf 32-bit words, The

"Done" signal indicates that the digest has been created.

4.1.2 Fun Loop UnroUed Architecture

The full loop unrolled architecture has a 64-step combinational logic core as

shown in Figure 21. This provides the best time-optimized solution,

32

"-"(Message)

4

64 -Sleps

Figure 21. MD5 full loop-unrolled core

64

In this architecture all the elements of each step are implemented as

combinational logic. The barrel shifter has been replaced by direct wiring of appropriate

shifted bits in each step. As with the iterative design, the use of double buffering ("XX"

and "YY") eliminates the loading time from the critical timing path. The next block is

loaded during the computation of the prese", block. "IV ROM" provides the initialization

vector for the first step. The "Load_done" signal makes the initialization vector and the

chaining variables available for the first block and for the subsequent blocks respectively.

During computation of the digest for a block, the next block is stored in buffer

"YY" and after the computation the "YY2XX" signal goes high and hence "XX" obtains

the new input for the next computation. The block diagram of the complete data path is

given in Figure 22.

._._---~_._----------------~------..:--------------_._._--~

Figure 22. Block diagram of full-loop-unrolled design.

65

In addition to the core, the other main components are the state machine. "}Lin counter"

used for loading the blocks to the core and "Waiccounter" utilized to count the number

of cycles for the combinational logic delay of the computation.

Similar to the iterative design. the "ResecState" signal initiates the state machine

and the "}Cin counter", The initialization vectors are taken into the register "CV_Reg".

With the "Start" signal, the initial block is loaded to buffer "YY" and right after that

"YY2XX" signal loads it to buffer "XX" and the computation is conunenced, During

computation. the next block is loaded to buffer "YY". When alllhe blocks in the message

are processed. "En2" signal makes lhe digest available at lhe output of register,

"DigescReg".

The state machine is simpler lhan that of the iterative design. It has 11 states

including idle initializing and loading states as shown in Figure 23.

Figure 23. State machine for full loop unrolled design.

66

As in the iterative design, the "Reset_state" signal initiates the state machine and

the counters at the "idle" state. Then with the "Start" signal the function starts by moving

to "pre_load" state. The initial vectors are loaded to the input register. The first block is

loaded {o buffer "YY" during loading state and then it is transferred to buffer "XX"

during "bufCuansfer" state. In the state "computing-Ol" the next block is loaded to

buffer "YY" while the chaining variable for the present block. is being calculated. In the

state "computing-tO" the end of the message ("End_msg") is checked. If "End_msg" is

asserted the present calculation is continued in "pre-done" state otherwise the next state

will be "computing-II" state. When the state is "computing_U" the computation of

chaining variables of the intermediate blocks is carried out. The chaining variable of the

last block, which is the digest, is computed in "pre-done" state. Finally the "Done" signal

is asserted in "digesCdone" state. The output holds the digest in "MD5_digest" state until

the chip is reset by "Resecstate" signal.

4.1.3 Simulation, Synthesis and Implementation Results

Iterative Design

The implementation followed the design flow described in Section 3.5.3. All the

simulations were carried out using the test vectors given in [4}. Appendix Al gives the

complete simulation results. Figure 24 gives a functional simulation result. This has to be

studied along wilh Figure 18 and Figure 19. The test message and Ihe expected results in

hexadecimal are given below. These are represented in little endian formal.

67

Test vector:

ABCDEFGHUKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz012345

6789

Expected digest (grouped in words):

Dl74AB98 D277D9F5 A5611C2C 9F419D9F

The 496-bit long message has to be appended with 463 zeros preceded by '1'. Then the

64-bit representation of the length of the message (''OOOOOlFO'') is appended. The words

of the resulting message are given below:

44434241,48474645, 4C4B4A49, 504F4E4D, 54535251, 58575655, 62615A59,

66656463, 6A696867, 6E6D6C6B, 7271706F. 76757473, 7A797877, 33323130,

37363534, ,OO3938סס 0000CXXl0. (l()()(X)()()(), OOOIJO()(X), 0000CXXl0, 0000CXXl0,

,0oooooס0 ,0oooooס0 ,0oooooס0 ,0oooooס0 ,0oooooס0 ,0oooooס0 ,0oooooס0

0000CXXl0, ,0oooooס0 OOOOOIFO, .0oooooס0

Hence, this message has two 512-bit blocks.

The signals shown in Figure 24 are related to those of Figure 18 as follows:

imsl: CV_sel ims7: ShifUunnt imsl2: XENt ims17: En2

ims3: Init

ims4: Enl

ims9: X30unt

imslO: Count_done ims15: Load_done ims26: RmcnCreset

ims6: X_sel imsll: WEI ims16: Councen ims27: RmcoCen

68

The ftrst block of message is written to X_RAMI using the address "X_addr" (imsI4)

provided by "X_in counter", During this time the "RarruelecLcounter" is disabled by

sening the signal "Rmcnuesel" (ims26) high. As "Load_done" signal (imsI5) becomes

high the state machine starts to give the addresses for loading the nellt block to X_RAM2.

Concurrently, the time computation of ftrst chaining variable begins. Now the

"Ram_selecLcounter" is enabled for alternating the RAMs for reading and writing. The

signals "WEI" (imsll) and "WE2" (imsI8) are assened accordingly. Since the reading

of ftrst 16 words is in sequence, those addresses can be used for writing the nell[block on

to the other RAM. At the end of the message the "Start" signal goes low and after the last

step the four outputs, A_our.. B_oul, C_out and D_out hold the message digest.

The interface of the synthesized MD5 iterative design is given in Figure 25. The

design was implemented using medium effort for synthesizing and PAR. Then the

process was repeated with high effort. NellI, according to the critical path timing details,

"Period" timing constraint was introduced. Different constraint values were applied to

get the best timing result.

69

I I

llllllllllllllllllllllllllllllllllliIII il IWfiiUWfiiUHUU H/iH

70

CL.K[J,,-out<31'"
Res.et_shtc !3-aut<:31,I1I'>

Shrt C_cut<31,11I>

X_ln<31:B> D_Dut<31: 0>

and_Asg Done

Figure 25. Interface of the MD5 iterative design

In the case of the iterative design, for all the implementation lrials of different

effort levels or constraints, the utilization of the extemal lOBs was 161 out 0(512 (31%)

and the block RAM usage was 2 out of 32 (6%). The number of slices used for this

architecture was significantly low. It was 877 out of 12288 (7%) and from this the barrel

shifter utilized 288 (2%). There is 4% utilization of three state buffers (TBUFs). The

summary of timing reports is given in Table 1. In this table the critical path delay is the

delay for a single iteration.

Table I. Timing report summary ofMDS iterative design

Medium High High Effort
Effort Effort with a

Timing
Constraint

Number of slices (% of total) 7% 7% 7%

Number of I/O block (% of total) 31% 31% 31%

Logic delay (% of total) 25.8% 37.7% 37.1%

Routing delay (% of total) 74.2% 62.3% 62.9%

Critical path logic levels 16 33 25

Total delay of critical path (ns) 39.57 35.75 34.68

71

The critical path differed for different implementation trials. However, as the effon level

becomes higher and the constraints gel tighter, the critical path logic level has been

changed. But this has been limited to the CLBs, wh..ich have already been utilized for the

design during implememation with medium effort. Hence the total slice ulilization has

nOI been changed. The maximum delay of the critical path decides the frequency at which

the design can operate. According to the timing simulation the maximum frequency of

the design was 28.83 MHz. The perfonnance is discussed in Section 4.4.

Full loop unrolled design

The same procedure used for the iterative deign was adopted for implementation of full

loop unrolled design. The functional simulation results, for the same sel of test vectors

used in iterative design, are shown in Figure 27. This has to be referenced to the Figures

21 and 22. lnitially the test message has to be prepared by adding the padding bits and

length field as described for the iterative design. As "Reseu.tate" becomes low and

"Start" becomes high, the initial vectors appear at the output of ''CV_reg'': A_o, 8_0,

C_o and 0_0. The "x.jn coumer" is enabled by "Councen" signal (cnLen) for loading

message blocks to the array "YY" during the states "loading" and "computing I I". It is

disabled during the other states. The address for each 32-bit word is provided by

"X_in30unt" signal (count). The first block is written to both "YY" and "XX" arrays, as

the "YY2XX" signal (Y2X) is high during "loading" state. When it is done the

"Count_done" signal (cnt_done) becomes high and the block is used for computation of

the first chaining variable. The "WaiLcounter" is enabled as the "WaiUeset" (wLrst)

72

signal becomes low. Unlike the iterative design, the computation time in this case is a

combinational delay of the critical path of the design. This delay is allocated by the

"Waiccounter" by counting a fixed number of clock cycles (60 cycles in this case). The

actual number of clocks has to be obtained according to the timing simulation results

after the design is place and routed. After the allocated time "Waiuione" (wUlone)

signal becomes high and the first chaining variable is available at the output as well as at

the output of the "CV_reg". Then "YY2XX" signal (Y2X) becomes high and the next

block is loaded to the array "XX" and it becomes available to the core for computation.

After the second computation the last chaining variable appears as four 32·bit words:

A_out, B_out, C_out and D_out. This is the expected digest in the little endian fonnat:

"D174AB98D277D9F5A561IC2C9F419D9F',

The hardware interface of the synthesized full loop unrolled design is shown in

Figure 26, As in the case of the iterative design, here also for all the three

implementation trials the utilization of the external lOBs was 162 out of512 (31%). The

number of slices used for this architecture was 4838 out of 12288 (39 %). There was 2%

utilization of three state buffers (TBUFs).

Cu(·u,,_eut2<at,S)
Shr t 8_eu t2<31 , S)

x_ln<31 '8) C_out2<31' 8)

end_"sg D_ou t2<31 i iD

re's:et done

Figure 26. Interface of the MD5 full loop unrolled design

73

Hi Il
I I

mblll I

I I

r ~ -.Ill
!!illllll!llliliiiliillllllllillllllll
!!I!!!!!!!lllllll!lllllllll!ll!ll!ll!!"l""" '111111111111111111111111111 1
II 1IIIIIIiiiiiiiiiiiiiiiiiiiiiiiiii i

74

;a
o

.2•
~..

The summary of timing reports is given in Table 2. In this table the critical path delay is

the delay for all the 64 steps.

Table 2. Timing report summary of MD5 full loop unrolled design

Medium High High Effort
Effort Effort with a Timing

Constraint
Number of slices (% oftota) 39% 39% 39%

NumberofIlO block(% of total) 31% 31% 31%

Logic delay (% of total) 37.8% 40.7% 43.6%

Routing delay (% of total) 62.2% 59.3% 56.4%

Critical path logic levels 857 860 882

Total delay in the critical path (os) 1195.90 1121.01 1054.12

According to Table 2, the optimization has improved the timing performance by

approximately 12 %. Although the logic level in the critical path has been increased.,

there has been a reduction in the routing delay. Due to the combinational nature of this

design, th~ block select RAMs could not be used for memory modules. The constructs

used to build the RAMs and ROMs have been configured using the LUTs. The possibility

of optimizing using high levels of efforts and timing constraints has been limited owing

to these factors.

The maximum clock frequency at which the design can operate does not depend

on the delay of the critical path, as it is purely combinational. Only the loading time of

the very first block. into the design core depends on this clock frequency. It has to be

decided by the maximum clock rate at which the controller can generate the signals

75

without any set up violations. For this purpose the timing simulation was done for the

controller separately and the minimum clock period was found 10 be 14 ns. This will be

discussed later, under the performance analysis. The timing simulation at this frequency

is shown in Appendix A2.

4.2 SHA.llmplementation

The structure of SHA-l is based on that of the MD4 algorithm. Hence many of

Ihe same modules used for MD5 can be adopted for SHA·1 as well.

4.2.1 Iterative Architecture

As given in Section 2.2.5, for SHA-l, the words processed in each step are

derived from the words of the block being processed. The initial 16 words, whiclt are

used for the first 16 steps are directly obtained from the incoming message block. While

they are being processed, the next words (17th word and onwards) can be calculated by

XQRing four words from the previous 16 words together. In this case four words have to

be read at a time and the calculated word has to be stored in a suitable RAM to prevent

any clash between read and write operations among the modules in future steps. This can

be achieved by using eight RAM modules each of size 512 bits. The arrangement of the

RAM modules (RAM setup), which is an important part of the iterative design, is given

in Figure 28.

76

The initial 16 words are written into eight RAMs during the loading period of the

block. Thereafter four RAMs are read at a time and 1'" word (t ~ 17), W, is calculated

while processing the first step using following relationship:

W, = 51 (W'.16 e W'_l~ e W,.g e W,.))

where, 51 is circular left shift of 32- bit argument by 1 bit. This is repeated until all the

80 words are available for computation.

Figure 28. RAM setup for creating 80 words.

The calculated word is written in a RAM, which will not have to be read and written at

the same time in a future step. The read and write process of the RAMs are given in

Appendix B. Using this RAM arrangement each step obtains the corresponding block

77

word for that step. The iterative core of the design was constructed as in Figure 29. As in

MD5, the adders, multiplexers. registers, RAMs and ROMs were generated by

parameterizing the core generator modules. SHA·l has no variable shifting in its

compression function but has a fixed circular rotation. This can be easily implemented by

direct wiring of the shifted bits. SHA-l uses only four distinct constants, which are stored

in a small4-word ROM. "TYOM".

CV_&eI L.oacLdone

Figure 29. SHA-l iterative core

As mentioned earlier, an iterative looping architecture provides the most area-

optimized solution where a few multiplexers and RAMs are the additional hardware

components. The block diagram of the complete iterative SHA-I is given in Figure 30.

78

The main components are the "Sf!A.-counler", the "SHA_l Iterative Core" and me "Slate

Machine" with 84 steps.

Figure 30. Block diagram of iterative design

The 512-bit message block is loaded to the core using a 32-bit bus. While the

"ReseCstate" signal initiates the state machine and the counters, the "Start" signal begins

the operation. The initial vectors are loaded in parallel to the input registers (A... E) and

to the buffer (~buf....E_buf). The initial vectors as well as the chaining variables are

kept in the buffer until the 80'" step to get added with the last result to fonn the chaining

variable for the next block. Initially the first block is loaded to the "RAM set up" using

79

the addresses given by the state machine. Then a particular RAM module is read to obtain

the appropriate word for each step using the address given by the state machine.

Subsequent blocks utilize the previous chaining variable as their initial values. The digest

output comes as five 32·bit words.

4.2.2 Full Loop Unrolled Architecture

This architecture is similar to the full loop unrolled architecture of M05. In full

loop unrolled architecture, the core has an 80-step combinational logic block as shown in

Figure 31. All the elements of each step are implemented as combinational logic.

Figure 31. SHA-l full loop unrolled core

In this architecture all the elements of each step are implemented as combinational logic.

Again. the use of double buffering ("XX" and "YY'") eliminates the loading time from

80

the critical timing path. The next block: is loaded during the computation of the current

block:. "IV ROM" provides the initialization vector for the first step. The "load_done"

signal makes the initialization vector and the chaining variables available for the first

block: and for the subsequent blocks respectively. During computation of the digest for a

block, the next block is stored in buffer "YY" and after the computation the "YY2XX"

signal goes high, hence the array "XX" obtains the new input for the next computation.

The block: diagram of the complete design is given in Figure 32.

Figure 32. Block: diagram of SHA·I full loop unroUed design

81

The slate machine has eleven staleS. Further, the design has two counters,

"SHA_load_counter" and "SHA.-waiccounter". The fonner is used for loading the

blocks to the core and the latter is utilized to count the number of cycles for the

combinational logic delay of the computation. The "ResecStale" signal initiates the state

machine and the "SHA_loa(Ccounter". The initialization vectors are taken into the

register "CV_Reg". With the "Start" signal, the initial block is loaded to buffer "YY" and

then "YY2XX" signal loads it to buffer "XX" and the computation is cOllUnenced.

During computation, the next block is loaded to buffer "YY", When the state machine

observes the "End~msg" signal as high, all the blocks of the message are processed, Then

"En2" signal makes the digest available at the output of register, "DigesCReg". The

"Done" signal indicates the completion of the computation.

4.2.3 Simulation, Synthesis and Implementation

Both arclUteetures were behaviorally simulated and then synthesized. The design

was initially synthesized and implemented with medium effort. The process was repeated

several times with high efforts and with timing constraints. During implementation.

functional simulation was carried out and then timing simulation was done with back

annotation following synthesis. All the simulations were carried out using the test

vectors provided in secure hash standard [8].

l!erstiveA«bilecture

The simulations were carried out using following test suite. All the values are in

hexadecimal. The 32-bit values are stored in registers in big-endian format.

82

Test vector: abe

Expected digest (grouped in words): A9993E36 4706S16A BA3E2571

7S50C26C 9CDODS9D

The ASCII binary code of the test vector is "0110001 01100010 01100011" (61 62 63 in

hexadecimal) and the message length is 24 bits. According to the algorithm, initially "I"

is appended and then 423 ''O''s are appended. Then the 64-bit representation of message,

''OOOOOOOO (X)(M)()()lS" is appended at the end. The resulting block is as follows:

61626380 OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO

OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO

OOOOOOOO 00000o IS.

The simulation was performed using a 20 ns clock period. Figure 33 shows that, at the

end of "loading" state the signal "Enl" makes the initial value available for step 1.

Concurrently it is stored in the four 32-bit buffers "A_bur', "B_bur', ''C_bur', "D_buf'

and "E_bur'. During the loading time, all the 8 RAMs are enabled for writing by exerting

write enable signals (wea, weal, etc). The addresses are takeD from dle counter lhrough

dle state machine. During the SO steps reading from and writing into each memory

module are done in alternative manner. The primitive function for each round is selected

by the signal "Func_sel". The RAM setup controls (Figure 29, 30) make the appropriate

word "x_in_read" available at the RAM setup output for each step. At the end of s<t" step

"En2" is asserted and the output is available. In this design double buffering of data

loading has not been employed. However this could be achieved by employing several

methods. One of the methods is to have two identical RAM setups and alternating them

83

foc different blocks using a eounter. Another method is to re-use the memory locations of

the RAM setup after the contents are used and by carefully managing the read and write

operations.

..

I I

, 'I' 'IIi! I lIIillllllillllllli mlill
m lmmllllllmlHlH lH ilil

85

] OOOOOONNNNN~N~=iiii nUi iiiUiiLooo

lmill!Ill!IIII!!i! I! IlIllli1111IIIIIII
86

The interface of synthesized SHA-I design is shown in Figure 34.

O
A out2<31 0>

eLI< -
8_out2<31 l2l>

End_n$g C_out2<31:a>
Start

D_out2<31' a>
X_in<31:B>

Done
r esE' t

E_out2<31:B>

Figure 34. Interface of SHA·I design

For the three-implementation trials shown in Table 3. utilization of external lOBs was

194 out of 512 (37 %). The number of slices used for the above architecture was 1446 out

of 12288 (II %). Furthennore there was 10% utilization of three state buffers (fBUFs).

Timing reports of the SHA·I iterative design are suounarized in Table 3. In this table the

critical path delay is the delay for a single iteration.

Table 3. Timing report summary of SHA·I iterative design

Medium High High Effort
Effort Effort with a

Timing
Constraint

Number of slices (% of total) 11% 11% 11%

Number of I/O block. (% of total) 37% 37% 37%

Logic delay (% of Total) 17.9 28.2 37.1

Routing delay (% of total) 82.1 71.8 62.9

Critical path logic levels 24 32 40

Total delay in critical path (ns) 70.917 63.24 52.996

87

The routing delay in the critical path has been reduced by 23 % with the use of high effort

and period timing constraint. The use of many core modules and avoiding components

such as barrel shifter are among the reasons for the above achievement

Full Loop Unfolled Architecture

For the simulation, following test suite was used, The test vector is a collection of

English letters and the digest is in hexadecimal,

Test vector: abcdbcdecdefdefgefghfghighijhijkijk.ljldmklmnlmnomnopnopq

Expected digest: 84983E441C3BD26E BAAE4AAI F95129E5 E54670Fl

According to the algorithm the padded message in words is:

61626364 62636465 63646566 64656667 65666768 66676869 6768696A

68696A6B 696A686C 6A686C6D 686C6D6E 6C6D6E6F 6D6E6F70

6E6F7071 800000OO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO

OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO

OOOOOOOO OOOOOOOO 0000lXl00 OOOOOOOO 000001CO,

The functional simulation results of full loop unrolled architecture are shown in Figure

35. Most of the signal operations are similar to those of the MD5 full loop unrolled

design, The signal "YYYtoXXX" transfers the loaded data from array "YY" to "XX", At

88

the end of computation the signal "IMMM 1" which indicates the "Load_done" signal

computation of second block. When the "End_msg" is observed the last chaining variable

is appeared at the output with the asserted "Done" signal. The implementation results are

summarized in Table 4. The slice utilization was 6963 out of 12288 (56%) and lOB

utilization was 194 out of 512 (37 %). There was only 2% use of three state buffers. The

timing simulation showed that the minimum clock period of the design was 25 ns. As in

the MD5 full loop unrolled design, only the loading delay of the ftrst block is affected by

this clock frequency. The loading and computing times are analyzed under performance

analysis in Section 4.3. In this table the critical path delay is the delay for all the 80

steps.

Table 4. Timing report summary of SHA-I full loop unrolled design

Medium High High Effort
Effort Effort with a

Timing
Constraint

Number of slices (% of total) 56% 56% 56%

Number of I/O block (% of total) 37% 37% 37%

Logic delay (% of total) 41 46 51.8

Routing delay (% of total) 59 54 48.2

Critical path logic levels 1136 1263 1337

Total delay in critical path (ns) 1097.3 1009.8 906.2

89

'iii" ~ H ~
f~l n fA H~

!

",I I I !"II I
~

'<I ~ H ~
hn~]

1
~
:l!

11111 I ~

Iill
'E

!, III
.~

]
HiU)

Ii ~

l r I!Hmml ~

.
,1I11ln Iliiiillilll IIIIii

m lliliiii iiiiliiiiiiiililii iill
'" 11111111 111111111111111111 III.

90

4.3 Performance Analysis ofMD5 and SHA-l

The timing analysis and throughput calculation of the three designs can be perfonned as

follows. The two cases with and without the message loading delay are illustrated in

Figure 36 and 37.

With loading delay:

Throughput = (512)1 (T"""'f'UU'+ T/odd) bits/sec

Figure 36. Timing diagram with loading delay

Without loading delay (double buffering dala):

T"""" T~

ILoading21~~~~1 ComputingCV2 ILoadmg4 --I CompuungCV4

..--..... ~):

TIo<ld TCOtfIP'4t

Throughput .. (512)1 T"""",," bits/sec

Figure 37. Timing diagram without loading delay

We now discuss the results each design with respect to the timing reports.

91

MDS iterative design

The use of two 512·bit RAM modules to double buffer data avoids loading delay. The

minimum clock perioo obtained was 34.68 ns (from Table I). So the loading time and

computation time can be found as follows:

TIM4 = 16 x 34.68 ns '" 554.88 ns

TCOhIf1"U = 64 x 34.68 ns = 2219.5 ns

The expected throughput (from Figure 37) is = (512) /(2219.5 ns)= 230.68 Mbps. In MDS

iterative design the critical path minimum delay is the minimum delay of the clock.

Without the use of dual RAMs the throughput would be 184.5 Mbps (from Figure 36). It

was evident that the use of dual RAMs leads to alm.ost 25% improvement of the timing

perfonnance. The area utilization of this design was considerably smaller (11 % of slices).

The unused area could be used 10 implement several designs in the device and process

multiple messages in parallel as far as the I/O ports can be utilized successfully.

MDS tuu loop unrolled design

For this design the minimum clock period obtained was 14 ns. The minimum delay of the

critical path = 1054.12 ns (from Table 2). The loading and computation times are,

T,.=16x 14 ns =224 ns

T""""",. = 1054.12 ns.

The thrOlfghput with double buffering (from Figure 37) is (512)1(10.54.12 ns) = 48.5.7

Mbps. Without the use of double buffering lhe throughput would be 400.5 Mbps. The

critical delay of this design is the computational time, which is independent of the clock

92

period. The use of double buffering has given 21% improvement. In this case the slice

utilization was 39%. Hence it is possible to have two design modules in the same device

and process two different messages in paralleL

SHA-l iterative design

In our design the loading time has not been eliminated. The minimum clock period was

52.996 os (from Table 3). Hence the loading and computation times are,

Tt_= 16 x 52.996 ns = 847.936 os

TCCWIf"'J~ = 80 x 52.996 os = 4239.680s

The expected throughput (from Figure 36) is (512) 1(847.936 + 4239.68ns) = 100.636

Mbps. If the loading delay is eliminated the throughput would be around 120.764 Mbps,

which is a 20 % improvement.

SHA·l Cull loop unrolled design.

The minimum clock period obtained was 25 os and the minimum delay of the critical

path was 906.284 ns (from Table 4). Hence the loading and computation times are,

T'-:I=16x25ns=400ns

T~ = 906.284 ns.

The throughput (from Figure 37) is (512)1(906.284 ns) = 565 Mbps. It would be 391.95

Mbps with the loading delay (from Figure 36). So the double buffering has caused 44%

improvement in throughput, which is significant compared thai of the MD5 design. When

the two full loop unrolled designs are compared, the SHA·l design showed better results.

93

The percentage routing delay of the critical palh of full loop unrolled MD5 and SHA-l

were 56.4% and 48.2 % respectively. The device utilization of this design is fairly high

(S6% slices). It is not possible to accommodate more than one design in the same device.

The ability to reduce the routing delay has become a major reason for better

perfonnance of SHA-l over MOS. In MDS full loop unrolled design, the operations of

each step need a unique 32-bit constant that has to be read from a ROM. This ROM that

consists of 64 number of 32-bit words is configured with LUTs. The routing associated

with this operation is tighter than that of SHA-l, which has only four distinct constants.

Therefore the full loop unrolled design of SHA-l could be optimized better than MD5.

However, in iterative design the percentages of routing delays of M05 and SHA·I were

almost the same. Total critical path delay of the iterative core of SHA-l was higher than

that of MOS. This is due to the larger number of logic levels in the iterative core of SHA

I compared to MOS. Therefore in iterative designs, MDS has better timing than SHA·!.

4.4 HMAC-SHA-llmplementation

HMAC is a keyed message authentication code, which shall be used in

combination with cryptographic hash functions specified in a Federal Infonnation

Processing standard (FIPS) [8]. Let H be the hash function initialized with its fixed Initial

Value, IV, which results in an n·bit hash value. The function HMAC works on inputs m

of arbitrary length. which is a multiple of512 bits. It uses a single random string K as ils

key. If the key length is greater than 512, it is input to the hash function to produce an n

bit key. The recommended key length is 2: n. The HMAC can be expressed as follows:

94

HMACdm) = H(K+ $opad,H(K+ $ipad,m»

where K+ is K, padded with zeros on the left so that the result is 512 bits long, ipad is the

inner pad, which is the byte hex 36 repeated 64 (51218) times and opad is the outer pad,

which is the byle hex 5C repeated 64 times. The symbole denotes the XOR operation.

LeI Ihe input m = 1n(l, ml .. ll4.I. The HMAC block diagram is shown in Figure 38

['8][16].

IV 512 *'
~Haan(SHA'l)

I< cpad of
h\~lIml

512
IV --,.----.....-c;---:--.J

Figure 38. HMAC operations

HMAC was developed to fulfill the efficiency and other requirements of the

Internet along with a more rigorous analysis of securil}'. In HMAC [67J, the underlying

hash function is considered as a component lhat can be replaced if it is found to be weak

or when new more efficient or secure hash functions are developed. HMAC has been

9'

chosen as the mandatory-to-implement MAC for IPSEC and is used in other Internet

protocols such as Secure Socket Layer (SSL).

To obtain the MAC there should be minimum of three hash operations. We

choose to investigate the implementation of HMAC using the full loop unroBed SHA-l

core. In the same manner, any arch.iteeture ofSHA.l, or MD5 or other Internet specified

hash algorithm could be used as the underlying hash function.

4.4.1 Design Description

In the HMAC-SHA-l design, the SHA-I core is used to obtain the hash operation.

Similarly it is also possible to use the iterative SHA-l or iterative or full loop unrolled

MD5 as the cryptograph.ic hash function for HMAC. The block diagram of the design is

shown in Figure 39. The full loop unrolled core is a sub module in the MHMAC_SHA-I".

The other main component of the design is the l6-state "HMAC_ state_ machine". The

two counters are used for the same purposes explained under SHA-l implementation.

96

''''
HltoXX

CounL e

,- "X In count

CV set

I<--':"~"'=~"':'--+--I HMAC_state1<--'=""--+---1 Machine

L_--.._~:f~d:=~=~=t:=~T __f_...,_r_~~~~~=
Figure39. HMAC·SHA-l Block Diagram

An important component in this design is the 16-state HMAC state machine for which the

basic state diagram is given in Figure 40. The "Reset" signal initializes the state machine

and counters. With the "StartM and the "Key_loadM signals asserted, me particular key is

loaded to the "HMAC-SHA-l". Using this key, the initial blocks for the two hash

operations are prepared and stored in two arrays (5 I and 52) after which the first block is

loaded and the computation is started.

97

Walt,.dorle
Figure 40. State diagram for HMAC-SHA-I design

During the computation the next block is loaded. The signal "SltoXX~ loads

the next block to the core after the computation. This is continued until the full length of

the message has been processed. When the end of the message is met (~End_msg"), the

resultant hash value is padded so that the length is 512 bits. This is appended to the

second initial value, which has already been created using the key. These two blocks are

98

hashed to create the MAC for the message. The "S2toXX" and "HIOXX" signals load the

first and second blocks respectively, at the appropriate states. "SHA_load30unter" is

used to load 16-word blocks to the core. "Xjn_count" is the address of the block words

for loading into and reading from the core. "SHA_wait30unter" counts the time required

for a computation of one CV. The MAC will be presented as four 32·bit outputs,

"A_out", "B_out", "C_out", "o_out" and "E_out". Once the HMAC for a message is

done, if there is no key change, the computation can continue for the next message.

Otherwise a new key can be loaded using "Key_load" signaL The MAC can be chosen as

the complete HMAC result or a pan of that depending on the requirement.

4.4.2 Simulation, Synthesis and Implementation Results.

The simulation, synthesis and implementation of HMAC-SHA-l were performed

using the same design flow applied for implementations of previous designs. The

functional simulation result of the design is shown in Figure 41. The test case used for

this simulation utilizes a 25-byle key and produces a 20-byte HMAC. The test vectors

and the simulation details are as follows;

Test message: CO repeated 50 times.

Key: 0102030405060708090a0bOcOdOeOflOII121314151617l819

The key and the message are loaded when the "New_message" and "Key_load" go high

when the "reset" signal is low. At the end of the key load. "s ltoXX" goes high and the

99

array "XX" takes the initial block value, which is the XOR of the extended key and

"ipad", The first chaining variable is calculated using the initial value and the result can

be seen in the registers "interU", "inter22", "inter33" and "inter44". At the end of the

computational time (64 clocks in this case) the signal "YYYtoXXX" goes high loading

the message block into array "XX", AI the end of calculation "S2toXX" becomes high

and the XORed value of the extended key and "opad" is loaded to array "XX", At the end

of this computation "HltoXX" signal becomes high and the padded hash value of the

message is loaded to array "XX", As the "Start" is low, the HMAC value has appeared at

the output.

The design was initially synthesized and implemented with medium effort and

then it was synlhesized several times with high effort and "period" timing constraint.

The design i~terface of HMAC-SHA-l is shown in Figure 42.

100

/lillI/II
lllllllll

101

! !

i i
II

! iii 111111]
j -

l
1 l 1

~, I:

ill
HI

l ". I

II! !!IIIIIIIIIII !!IIIiii
102

eLK

t<_in<31 13>

Star t
X_I n<31 13>

end_l"Isg

key_load

neW_f"If'ssage

r ese t

A_ou t 2<31: 13>

B_out2<31: 0>

C_out2<31: 13>

D_out2<31 0>

E_out2<31 B>

Figure 42. Interface of HMAC·SHA·l design

The PAR results indicate that, in the cases where different efforts and constraints were

used. the slice utilization is 7517 out of 12288 (61 %) and lOB utilization is 229 out of

512 (44%). So the design is well fitted to a single device. According to Table 5 lhe effort

level and period constraint has improved the perfonnance by about 25%.

Table 5. Timing report summary of HMAC·SHA·l design

Medium High Effort High effort & Period
Effort Constraint

Number of Slices (% of total) 61% 61% 61%

Number of YO Blocks 44% 44% 44%

Logic Delay (% of total) 36.4% 45.1% 52%

Rouling Delay (% of total) 63.6% 52% 48%

Logic levels 1113 1235 1305

Total Delay (ns) 1212.9 1021.5 900.5

103

4.5 Performance Analysis ofHMAC-SHA-l

The timing diagram for HMAC-SHA-l operation for one single block message is given

in Figure 43.

I loading keyl Processing $1

)(

TI«ld TC<tItIpIdt

ILoading b'kL-.-.-J Computing H1 I Processing 52 IProcessing H2 I
+---+ ~.===::;.~.===::;.~.===~

Tload T~ TcoropIU' Tcampwo

Figure 43. Timing diagram for HMAC-SHA·l operations.

According to Table 5, though timing optimizing has increased the number of logic

levels, it has not affected the slice utilization and routing delay has been reduced

significantly. According to the area utilization, the design can be fitted to a single Virtex

device. The minimum total delay was 900.5 os. The throughput of this depends on the

length of the message. As the length of the message increases the throughput gets closer

to the throughput of in-built SHA-I. Hence if the length of the message is NbU, ,

Throughput'" (NbIl xS12)1«Nbll+ 3) x T"""",,~) bits/sec

From Table 5, TC<IIIlP"4' '" 900.5 os. Therefore,

Throughput: (Nb/lx512)1 ((NIXJ:.+ 3) x 900.5 x 10·~.

For large messages the throughput would be almost as 568 Mbps, which is the throughput

of the underlying SHA-l.

104

In the same way. the maximum throughput of HMAC with MD5 (full loop

unrolled) as the underlying hash function can be estimated as (Nw x 512) I «Nblk+ 3) x

1054.12 ns) '" 485 Mbps when NbIk~co.

4.6 Conclusion

The five designs of the three algorithms have been successfully synthesized and

implemented. Each design can be easily fitted into a single Virtex device. Some of the

optimizing methods have been explored to improve the timing perfonnance. The

"Period" constraint has been effective for all the implementations. When a design

comprises components. which can be generated by parameterizing the library

components, the design can be well optimized using the features of the Xilinx tools. This

is because the components are well mapped into the target device and hence the less

amount of logic delay in the total delay of the critical path. The ability to reduce the

routing delay has become a major reason for better performance of SHA-I over MOS.

Due to the reasons mentioned in section 4.3, the full loop unrolled design of SHA-l could

be optimized better than M05. However the total critical path delay of the iterative core

of SHA-I was higher than that of MD5 due to larger number of logic levels in the

iterative core of SHA-l compared to M05. Therefore in iterative designs, MD5 has a

better timing than SHA·!.

The throughput values obtained for the three algorithms can meet most of the

currently available IP bandwidths. Hence, FPGA implementation can be used as

components in cryptographic accelerators for use in IPSEC. The results can be further

105

improved using more constraints, enabling delay based cleanup router passes and

hardware floor planning. The use of latest FPGA devices with more resources and bener

speed performance will also provide better results. These three altogether are widely used

in Internet security. which deals with a large range of message lengths. The size of the

message has a significant impact on the performance of these algorithms. The next

chapter discusses the performance of HMAC and CBC-MAC considering the

characteristics of Internet traffic.

106

ChapterS

Performance of MAC Algorithms for IPSEC

The cryptographic algorithms employed in Internet security must be able to

handle packets which may vary in size over a large range. Most of the cryptographic hash

algorithms process messages partitioned into blocks. Due to this fact the messages have

to be prepared by padding the required amount of zero bits to get an imeger number of

blocks. The length of lhe message is also appended at the end. This process becomes a

considerable overhead when the short messages are more dominant in the message

stream. Hence the size of the message has a significant impact on the performance of

such algorithms.

The statistical properties of Internet traffic are complc:t and the amount of data to

be studied is very large. The understanding of Internet traffic is useful to study the

performance of authentication algorithms. In this chapter we will analyze the

perfonnance of HMAC and CDC·MAC in the context of the traffic characteristics of the

Internet.

5.1 Previous Studies of Internet Traffic

Various attempts have been made over the years co study the nature of the wide

area Internet traffic. Many of the studies have used Internel traffic trace dala as inpul to

evaluate specific protocol performance issues but have not concentrated on characterizing

the underlying traffic contained in the traces. Among them Feldmann et al. [67] have

107

perfonned a detailed characterization of Hyper Text Transfer Protocol (HlTP) response

traffic since the World Wide Web has a dominant influence in network dynamics. Figure

44 highlights the basic traffic characteristics of incoming and outgoing packets obtained

by Feldmann et al. for a one-week trace. According to this study, half of the outgoing

traffic consists of 4O-byte Transport Control Protocol (TCP) acknowledgment packets,

contributing to a low average packet size of 123 bytes. The remaining short packets are

mainly HlTP requests. One-fifth of the incoming packets stem from 4O-byte rcp

acknowledgements. According to this study, more than 60% of the incoming packets

have 552, 576 or 1500 bytes, that correspond to common maximum transfer unit sizes on

the Intemet[67j.

~

" ~ J~
]I

" "~

~ ~.. I~ + Inoarrlng
~ X outgoing

~l..,:'------~----~-----,--J
500 1000 1500

packet size pn bytes)

Figure 44. Cumulative distribution of packet sizes [67].

108

Several importanl observations have been made by the analyses of aClUal traffic

carried in lhe Internet backbone. The Corporative Association for International Data

Analysis (CAlDA) has perfonned slUdies on backbone traffic characteristics at a site

inside a major Internet traffic exchange point over a period of JO months (68). The !raceS

for lhe sludy were collected from an OC-3 ATM link using an optical splitter. The

distribution of IP packet sizes is shown in Figure 45.

Packets

..
Figure 45. Cumulative distribution ofIP packel sizes[69].

According to lhis study, TCP has contributed to about 85% of !he traffic in the

traces. A large portion of TCP traffic has been generated by bulk transfer applications

such as HTIP and FfP. The packet size has been calegorized into three groups namely

109

40 byte packets (minimum packet size for TCP), which carry TCP acknowledgments but

no payload, 1500 byte packets (maximum Ethernet payload size) and 552 and 576 byte

packets.fromTCP.

A rule of thumb employed in some of the IP traffic analysis has three packet sizes

each having equal probability of occurrence. They are 40 bytes, 256 bytes and 1500

bYles, each having a probability of occurrence of one third [70].

5.2 IP Packet Size Models

Studying the behavior of IP packet size of the [nternet messages allow the

estimation of actual perfonnance of authentication functions such as HMAC·SHA·l or

CBC-MAC. The average block size can be derived by analyzing the statistical

observations. For analytical purposes the probability density function (PDF) of the IP

packet size will be approximated as one of the following four cases:

Case (i)

PDF

~,----"'-----,~~L
40 1500 Packet size (Bytes)

Figure 46. Unifonn PDF

110

Case (ii)

PDF

0.3333 0.3333 0.3333

Case (iii)

Figure 47. Rule-of- thumb of PDF

Packet size (Bytes)

Case (iv)

PDF~O.'
0.3

I
0.2

'-:---_ -,-------_--,'---1_
40 576 1.'500 Packet size (Bytes)

Figure 48. Discrete PDF with 3 impulses

PDF O.S

0.0051(S76-553)

0.1S/(552-41) li O.06I(lSOO-Sn)
O.IIS

0.02

40 SS2 S76 1SOO

Figure 49. Discrete and Unifonn PDF

III

0.15

Packet size (Bytes)

Each case has a different degree of accuracy in modeling Internel traffic. Case (i) is the

straightforward assumption of uniformly distributed packet sizes; Case (ii) is a typical

rule-of-thumb; Case (iii) is a better rule-of-thumb; Case (iv) follows most closely Figure

45.

The average number of blocks per packet (n can be obtained as follows. If the

number of blocks of the message of packet size i bytes is Nbfk(i) and the probability of

the message has ibytes isp(l).

r= ~P(i)XNblk(i)

5.3 Performance of MACs in Internet

(5.1)

HMAC·SHA· I has been recommended for message authentication in several

network security protocols. The key reasons behind this are the provable security, free

availability, flexibility of changing the hash function and reasonable speed, among others.

The MAC based on the block ciphers such as cae-MAe-DES [34J was generally

considered as slow due to the complexity of the encryption process. As well, since DES

has already been broken it is not recommended any more. However, after selecting the

AES encryption algorithm, this situation merits reevaluation as Rijndael (49) shows good

perfonnance in both hardware and software and it has better security featUfCs than DES.

CBC-MAC is likely to be standardized as an AES mode of operation. For HMAC one

block has a size of 512 and for CBC-MAC analysis, we assume a block size of 128 bits

(as is the case for AES).

112

The CBC-MAC comes in different versions varying in details such as padding,

length variability and key search strengthening [71]. The general way of padding for

CSC·MAC is by considering the final input block as a partial block of data, left justified

with zeroes appended to fonn a full block [34). Let us take the number of blocks of the

message of packet size i bytes for HMAC and CBC-MAC using AES (CBC-MAC-AES)

are NblkMIlC and NblkllES, respectively. According to the padding method described in

Section 2.2.5, NblkMllc can be obtained as follows:

1

rCiX8)/5121+1

Nblk/olAC:

rCiX8)15121

if (iXS)mod512:0 or

(ixS)mod5122:448

if (ixS)mod512<44S

Assuming the general way of padding described above has been adopted for CBC-MAC-

AES.

NblkllES: r(i x 8)11281

5.3.1. Average Number of Blocks per Packet

The average number of blocks per packet of the IP traffic can be estimated

according to the four cases mentioned earlier.

Case (i):

In this case the PDF of the packet size is assumed to be uniformly distributed. From

Figure 46, the average number of bLocks for HMAC can be estimated as follows. From

equation (5.1),

113

r", ~[(O.511460)'Nb{kM"'C(j)l

:::6,34.

Therefore the average number of HMAC blocks for this model is 6.34.

Similarly the average number of blocks for CBC·MAC can be estimated as

,~

follows. For 128 bit block Size'I~[Nblk.W'(j)1.71086. Hence from equation (5.1), the

average number of CDC·MAC blocks for a unifonnly distributed packet size, is r :::

24.34.

Case (ii):

This is a rule of thumb used in some performance analyses related to IP traffic. From

Figure 47, the average number of blocks for HMAC can be estimated based on:

NblkMAc (40) ::: I

Nblk/tlAC (256) ::: 5

Nblk/tlAc(1500) ::: 24.

Therefore, the average number of HMAC blocks for the model used as a rule of thumb, is

10. The average number of caC-MAC blocks also can be calculated in the same manner:

NbtkA£S(2S6) ::: 17

NblkAES (1500) ::: 94

Hence, the average number of CMC·MAC blocks for this model is 38.

114

Case (iii):

This model has a PDF wilh Ihree impulses as shown in Figure 48. The average number of

blocks for HMAC can be calculated using:

Nblk/.llld40) = I

Nbik/.lllc (576) = 10

Nblk/.lllc(1S00) = 24

Therefore, using (5.1) the average number ofHMAC blocks when the discrele PDP with

3 impulses model is used for the IP packet size. is 8.3. In the same manner the average

number of blocks for CBC-MAC can be estimated by ooting:

Nblkllcs (40) = 3

NbfkllES (576) = 37

Nblkllcs (1500)= 94

Hence, the average number of CBC-MAC blocks for a packet size model with discrete

PDF shown in Figure 48, is 31.4.

Case (iv);

This model closely follows the cumulative distribution given in Figure 45. From Figure

49 the average number of blocks for HlvIAC can be estimated using;

Nblkw.d40) = 1

Nbik/.lllc (552) = 9

Nblkw.c (576) = 10

Nblk,lflld1500) =24

115

From equation (5.1), the average number of HMAC blocks can be found as follows:

r = (0.5)(1) + .~[(0.15/(511)' NblkllAc(i)]+ (O.02X9)+ ;%)[(0.005/(23»). NblkllAc(i)J

+ (0. I 15XI0) + 1~(O.06/(923»)' NblkM,Oc(i) + (0.15X24)

Where the summations of the number of blocks can be easily found as shown below:

~,Nblklll.'.c(i)=2687. ;~JNblkMM:(i)=215, i~NblkM,Oc(i)=15558.

Therefore, llIe average number of HMAC blocks willi this model. which closely follows

llIe actual packet distribution is used for lhe IP packet size, is r = 7.28.

In the same manner the average number of blocks for CDC·MAC can be

calculated using:

Nblk~E.d40) = 3

NblkA£S(552) =35

Nblk~ES(576) =37

NblkA£S(1500)=94

From Figure 46 and equation (5.1) lhe average number of CDC-MAC blocks is given by

r: (0.5)(3)+ ~[(0.15/(511»)' Nblk~(m + (0.02X35)+ ~((0.OO5/(23»)' Nblk~@

Hence, llIe average number of CDC·MAC blocks for llIe model, which closely follows

the actual packet distribution, is 27.51.

116

5.3.2 Performance in Hardware

The perfonnance of the FPGA implementations of HMAC-SHA-l (using full

loop unrolled results of SHA-l) and CBC-MAC-AES is compared in the four IP traffic

cases previously mentioned. The FPGA implementation results of Rijndael published by

NIST have been used for this analysis. An FPGA implementation of Rijndael has been

carried out using Xilinx Virtelt XCVlOOOBG560-4 device by AJ Elbirt et aI. [51] for the

evaluation of AES finalist algorithms. The clock frequency that has been obtained by

them for the loop unrol1ed architecture in feedback mode is 14.1 MHz. One block has

taken 6 clock cycles and thus a throughput of 300.1 Mbps has been obtained. The delay

for one block encryption is 426.5 ns. However, for comparison purposes the speed grade

of the Virtelt device has to be taken as -6 as with our implementations. The change of

speed grade -4 to -6 gives approximately 28% of speed enhancement [60]. Hence, the

delay for block encryption would approximately be 307.08 os.

The average time for calculating MAC using HMAC and CBC-MAC-AES can be

detennined by the following relationships:

Average HMAC calculation time

'" (3+(r»x{timeforahash] (5.2)

Average CBC·MAC calculation time

'" (r) x[time for a block encryption] (5.3)

The calculated values for HMAC and CBC·MAC·AES using equations (5.2) and (5.3)

are given in Table 6.

117

Table 6. Times for HMAC-SHA-I and CBC-MAC-AES on FPGA for general 1P traffic

Case (i) Case (ii) Case (iii) Case(iv)

Average Average Average Average Average Average Average Average

packel packel

_.
-.. -" -" -- po-

size(ln timeUis) slzer~ -..., size (in time(j.l&) size (in 1ime(J.l&)

"""k>' b_' """"" """""
10.18HMAC·

SHA·1

cae
MAC
A'S

5.3.3 Performance in Software

Both HMAC-SHA-I and CBC-MAC-AES were run on a 927 MHz Pentium U

machine. The C code which has been used for assessing the speed perfonnance of

Rijndael by NIST [72] was used in CDC mode for CBC-MAC·AES. The plaintext of

128-bit was encrypted 1,000.000 times in CDC mode using a 128·bit key. The average

time for encrypting a 128-bit block was 1.14 ~. The C code of SHA-l published by DI

management {731 according to NIST specifications was used to determine the software

speed of hashing. The average time taken for creating a hash value for a 512-bit block

was 3.001 J.IS.

118

Table 7_ Times for HMAC-SHA-l and CBC-MAC-AES on software for generailP traffic

Case (I) Case (Ii) Case (iii) Case(iv)

Average Average Average Average Average Average Average Average

-" -" -" -" -" packet -" -"size (in tlme(us) slze(ln """"" stze(ln time{J.Is) slze(ln tlme!J.lS)

blocks) -, -, -,
HMAC· 39.01 8.3 33.91 7.28 30.84

SHA-1

cec-
MAC· 24.34 27.75 38 <3.32 31.4 38.80 27.51
A'S

5.4 Conclusion

According to Table 6 the average times of MAC calculations of the FPGA

implementations of HMAC and CBC·MAC·AES do not differ significantly. Particularly,

they are almost the same as the size of the packets becomes larger.

The software results given in Table 7 show that the liming perfonnances of

HMAC-SHA-I and CBC-MAC-AES do not have a significant difference. As observed in

FPGA implementations HMAC offers better timing performance as me packets become

larger. In general, the size of the packet has a considerable impact on the performance of

cryptographic hash algorithms as the padding has to be carried out all the time even if me

message has a length of multiples of 512 bits. TIlis becomes a large overhead for small

119

packets especially in case of HMAC algorithm. Most of today's cryptographic algorithms

follow a sequential structure, which is difficult to pipeline. Many of them cannOI meet

loday's speed requirements. Hence the new approaches of hash algorithms. which are

more efficient in speed, have to be explored. The next chapler discusses one of the new

approaches in message authentication.

120

Chapter 6

A New Approach: Universal Message Authentication Code

For many applications sufficient speed has already been obtained from algorithms

such as HMAC-SHA-I [67] or CBe-MAC of a block cipher (33]. However for the most

speed demanding applications some alternative methods have to be identified. The well

known technique for message authentication using universal hash functions seems to be

very promising as it provides schemes that are both efficient and provably secure: under

reasonable assumptions [74]. During the last few years. progress has been made both in

theory and practice of universal hash functions. For example, Universal Message

Authentication Code (UMAC), a non-cryptographic hash algorithm has been developed.

This does not need to have any cryptographic hardness property but some combinatorial

properties that can be proved [46]. Halevi and Krawczyk have developed a very fast

scheme, multi-linear modular hashing (MMH) which makes optimal use of multiply and

accumulate instructions of the Pentium MMX processor [45] which provide small-scale

single instruction multiple data (SIMD) parallelism in its instruction set.

Recently, Back et aI. have further improved the performance on high-end

processors with Universal Message Authentication Code (UMAC) construction, which is

faster than MMH on processors with fast multiplication [46]. The authors of UMAC

report a software performance of 5.6 G bits/sec on a 350 MHz Pentium II. In this chapter

the structure and the complexity of the UMAC algorithm, in tenns of hardware

implementation, are discussed.

121

6.1 UMAC Construction

UMAC is a parameterized algorithm. Various low level choices nave not been

fixed. The values for these parameters are chosen before the authentication generated by

UMAC becomes well defined. Hence instead of making generic compromises, an

application that uses UMAC can choose the parameters which best suit its requirements

or implementation environment. There are two sets of parameters chosen as UMAC-16

and UMAC-32. UMAC-16 is designed to exploit small-scale SIMD parallelism found in

modem processors and UMAC·32 is designed to do well on processors with good 32·bit

and 64-bit support. There are six basic parameters as given below.

Word length:

UMAC output length:

Block length:

UMAC key length:

Endian Favorite;

Operations sign:

The size of word in' bytes can be eilher 2 or 4 bytes.

UMAC·32 uses 4 bytes.

Specifies the length of the authentication tag in bytes. It can

be any value between 1and 32 bytes. The default value is 8

bytes.

Specifies the message block length in bytes. which can be

any value between 32 and 228 bytes. The default value is

1024 bytes.

Specifies the user supplied key 1engtlt in bytes. This can be

either 16 or 32 bytes. The default value is 16 bytes.

Specifies which endian orientation is used in reading data.

Specifies whether string operations are signed or unsigned.

122

Moreover UMAC offers a tradeoff between forging probability and speed, which

is not common in the construction of other authentication algorithms. UMAC also enjoys

better analytical security properties than the existing authentication algorithms.

The overview of UMAC operation is as follows. The message to be authenticated

is first applied to the universal hash function (UHASH) resulting in a string, which is

much shorter than the original message. The UHASH has three layers, which use

different sizes of keys. The keys have to be derived from the shared key through a pseudo

random function (PRF). The same PRF is used for the tag generation. The PRF is applied

to a nonce and the authentication tag is the logical xor of the two outputs of the hash

function and the pseudorandom function. The nonce is a parameter such as a counter that

varies with time. It is widely applied in key management protocols to prevent message

replay and other types of attacks. The authentication tag is generated as

tag =j(nonce) XOR h (message)

where j is the pseudorandom function and h is the universal hash function shared by the

sender and the receiver. The sender does not reuse the nonce under the same MAC key.

Typically the nonce would be incremented using a counter with each message. UMAC

defines the creation of authentication tag using the message, shared key and nonce. The

receiver can recompute the tag using the received message and nonce to see the

authenticity. A shared key is used to key the PRF,j, to generate all of the pseudorandom

bits required by the layers of the universal hash function. Therefore the j is used for

generating both the tag and all of the pseudorandom bits used in the algorithm [75].

123

6.1.1 UMAC Key Derivation

The user-supplied key is expanded into the internal keys using the key selUp

process. The lotal keys needed for all ilerations are found by repeating this process until

the required key lengths are achieved. Key setup can be carried oul using a block cipher

or some cryptographic hash function. Example block ciphers ace Rijndael, DES, RC6 and

MARS. Examples of hash funclions ace HMAC·SHA·l, SHA-I, MD5 and RIPEMD-l60

[46]. The Internet draft of UMAC (75] describes me key derivation using AES block

cipher (Rijndael) in output feedback mode to produce pseudorandom bits needed within

universal hashing. Depending on the size of me user supplied key me 128-bit and 256-bit

block length variants of AES cipher are used. An index is used so that using the same key

different pseudorandom outputs can be generated wim different indices.

6.1.2 Tag Generation

The output of the universal hash function is XORed with a pseudorandom string

to produce the tag. The pseudorandom string is generated by applying AES block cipher

to a nonce. The nonce can be 1 to 16 bytes of length but all nonces in a single session

should be of equal lengm. AES may provide more or fewer bits per invocation than are

needed for me tag generation. Then one part of the AES output could be used to generate

one tag and the other part could be used for the tag of the next message. This

optimization is effective only when the nonees are sequential. The low bits of the nonce

are used as an index into the AES output, which is generated using higher bits of the

124

nonce. which are not used for indexing. If the UMAC output is larger than 16. then two

AES invocations are required to produce sufficiem number of bits [75].

6.1.3 Universal Hash Function (UHASH)

UHASH is the keyed hash function, which takes a message of an arbitrary length

and produces a string of fixed length (e.g. 8 bytes). This has been constructed in three

layers.

I. Non-linear hash (NH) compresses input messages into strings, which are typically

many times smaller than the input messages.

2. The compressed message is hashed with an optimized "polynomial hash function"

into a fixed length of 16-byte string.

3. The 16·byte string is hashed using "inner product flash" into a string of length 2

or 4 bytes, which is repeated to the appropriate tag length.

Figure 50 shows the generic interface of UMAC for 32-bit operation.

Message Key

Figure 50. Interface of UHASH

125

Figure 51 shows the structure of UMAC diagranunatically. This diagram represents one

of the applications of UMAC in 32-bit architecture. Here the block length on which the

hash function inilially operates is 1024 bytes.

~!,,--~.:,c:----.~ Layer3 keyl KL3.Uo,1

L.J"""'t-----..J '\-bytes Layer3 key2 KL3_2~1 0,1

8-bytes f

P ~
6-"KAESCipher

8-byzes 8-bytes L-"(RI<11U>md"',.clCJ)'--J.....,~ Nonce

1- 16l1ytes
T.g

Figure 51. General structure of UMAC

In the figure, I is the number of blocks in the message. In this case the Ihtee layers have

10 be run twice with different sel of keys 10 get the required 8 byles output (shown in

dotted lines). For the tag generation, half of the AES output bits could be used and the

second half of the same could be used for the tag of the nexi message. This optimization

is effective only when nonces are sequential.

These three layers are repealed with a modified key until the required output

length is obtained. Since this repetition is independent, each word of the final output can

126

be computed independently. Hence computing a prefix of the tag can be done

significantly faster than computing the whole tag. If the message being hashed is no

longer than 1024 bytes (for the case shown in Figure 51), then Layer 2 hashing is skipped

as an optimization. To reduce memory requirements the first and the third layers reuse

most of their key material between iterations. The values used for the UMAC parameters

in following description are related to UMAC-32 construction.

Layer 1: Nonlinear Hashing (NIl)

This is designed to be fast on modem processors. NH hashes an input string M

using a key K and perfonning a sequence of arithmetic operations. There are two

versions, NH-16 and NH~32 depending on the word length parameter of UMAC.

Consider a message M = Mn. MI. ..Mt where MIE {0•..232_1}. In order to limit the length

of key required in the first layer. the message is broken up into chunks no longer than the

key length of Layer I. Each chunk is hashed with a key of the same length. NH-32 is

constructed using a sequence of n <!: I 32-bit sub keys derived from the shared key K. The

Layer 1 keys are represented as KLl= (Ko. ..K,.).

'"NHK,,(M)= fr{[(M lI- 1 +K1H)mod2J1 X(M 1f +K lI)mod2l2 l}mod26ot

Here the operations are 32-bit and 64-bit addition and 32-bit multiplication. These are

modular operations on 232 and 264
• Figure 52 shows the NH-32 construction for 256-bit

message string. All the string sizes are given in bytes.

127

Figure 52. NH·32 construction for 256-bit message string

The input message is broken into chunks of Block length bytes (e.g. 1024 bytes).

The lasl block is zero padded to an appropriate length. Then each chunk is hashed wi!h

NH and !he oulputs from all !he invocations are annolated with g·byte leng!h information

of !he message block. This produces the Layer 1output (ft) as shown in Figure 53.

Figure 53. UHASH Layer 1

128

With respect to hardware implementation, the major operations involved in Layer I are

!he 32·bit addition in modulo 232
• 64-bit addition in modulo 2M and 32-bit multiplication

in modulo 2M
. The complexity is discussed in Section 6.2.

Layer 2: Polynomial bashing.

TIle overview of Layer 2 is shown in Figure 54.

I MeSSagj string or!~~~~~~~~~~=:~~toutput) I
Yl

Figure 54. UHASH Layer 2

The output of Layer 1 hashing is still has a considerable length (16 x (number of

message b"tocks) bytes). Polynomial hashing is used to reduce this to a fixed length of 16

bytes. In this hashing the input string of bits is treated as a sequence of coefficients of a

polynomial and the hash key is the point at which the polynomial is evaluated. The

security assured by polynomial hashing degrades linearly in the length of the message

being hashed. The collision probability of two messages of n words in polynomial

hashing with a prime modulus p is DO more than nip [75). There should be some way to

ensure the collision probability does not increase beyond a certain limit. By dynamically

129

increasing the prime modulus used in polynomial hash.ing the collision probabilily bound

is aChieved.

As Layer I produces quite long strings and the security guarantee of polynomial

hashing degrades linearly, some scheme is required to allow long strings while ensuring

that the colHsion probability never grows beyond a certain preset value. However,

polynomial h.ashing under a small prime modulus is faster than hashing under a larger

one. Hence the prime modulus is increased according 10 a preset value so that shalt

messages are hashed faster still accommodating long ones [75]. In UMAC·32 if the

length of the message is S. 217 bytes, then only the prime number (2M -59) is used for

hashing. Otherwise the first 217 bytes are hashed under (264 -59) and remainder under

(i 28 -159). A 24-byte Layer 2 key (Ku) is utilized 10 obtain two keys of 8 bytes and 16

bytes, which are required, in polynomial hashing under prime numbers (264 -59) and (2 128

-159) respectively. For this purpose two 8-byte and 16-byte masking values are used.

Jqy, ::: (KulL8]) AND (B-byte Mask)

k128 = (KI..2[9..24)) AND (I6-byte Mask)

The polynomial hashing algorithm takes a string of bits of length divisible by 4

bytes, the prime number (P), the integer value of key k (which can be either Jqy, or kl28)

and an integer (maxrange) to adjust the word strings so thai their values are always less

than the prime number and produces an integer in the range of [0 ... p-l]. Any word

larger than maxrange is split into two words and guaranteed to be in the range, The

maxrange would be either 59 or 159 depending on whether the prime number is (264 _

130

59) or (2 128 -159), respectively. The input word string size can be either 8 bytes or 16

bytes and accordingly the prime numbers are chosen.

If the integer values of each 8·byte (or 16-byte) inpU! word string are ml. m2•

.. .mn then the output f2 would be

f2= 1;

For i=l ton

If(mj~maxrange)then

Yl = (kx f2 + (P-I)) modp

Yl = (kx f2 + (mj- (2
64 -p))) modp

else

Return Yl

The operations in Layer 2 are somewhat complex. The main operations that have

10 be considered in hardware implementation are multiplication between 64-bil and 128

bit numbers in modulo (264 - 59), multiplication of two 128-bit numbers in modulo (2128

- 159), 64 and 128-bit addition, and logical AND operation. The details are discussed in

section 6.2.

Layer 3: Inner Product Hashing

The 16·bit output of Layer 2 is hashed into a 4-byte result using a simple inner

product hash with affine U'aIlslation. The prime modulus of (236 -5) is used to improve

131

security [75}. Two keys, KLj./ and KLj.2, of length 64 bytes and 4 bytes respectively, are

used for the inner product. The 16·byte input and 64·byte key (KL3-I) are broken into 8

chunks as follows. Here M1and k1will be 2 and 8 bytes respectively.

Fori= I t08

Mi=M[(i·l)x 2 + 1, , ix2]

ki=KLj.l [(i-l)x8+ 1, , ix8]

The inner product hashing is defined as follows.

Y3 '" ([{(M X kl + ...+ Maxka) mod (236-5)J mod 212JJ XOR KL3-2

Since layer 3 output is only 4 bytes long, multiple iterations of the three layers are used

with different keys each time until the lIMAC output length is obtained. For example, in

32·bit implementation UHASH has to be done twice to get 8-byte output. Figure 55

shows the Layer 3 input and output details.

Figure 55. UHASH Layer 3

132

Layer 3 has multiplications between 16-bit and 64-bit numbers in modulo 232 and

modulus operation on prime number (236 -5) as major operations. In addition to those the

trivial operations such as mod 232 and logical XOR operation are also involved.

6.2 Hardware complexity of UMAC

UMAC has primarily been targeted for software implementation. Most of the

operations have been structured to suit some enhanced architectural features of modem

processors. However, due to the attractive features such as the ability to trade off speed

and security and the flexibility, it is worthwhile studying the suitability of UMAC for

hardware implementation. The operations of each layer are summarized in Table 8.

The block length in bytes gives the minimum storage required during run time

environment for the UMAC internal keys. UMAC has been designed to allow

implementations which accorrunodate "on-line" authentication where the pieces of the

message may be presented to UMAC at different times (but in correct order) and an on

line implementation will be able to process the message correctly without the need to

buffer more than a few dozen bytes of the message.

Operations involved in Layer I are straightforward in hardware except the 32-bit

multiplication. The Layer I has to be repeated until the full length of the message is

hashed. The throughput of this layer can be easily improved by pipelining.

133

Table 8. Main operations in the three layers of UHASH.

32 bit addition (mod 2)

64-bit addition

32-bit multiplication (mod 2')

l28-bil X 64-bil multiplication

l28-bit X l28-bil mUltiplication (for long messages)

Modulo (2 .59)

Modulo (2'''11_ 159) (for long messages)

Logical AND or XQR

128·bitaddition

Modulo (2 -5)

l6-bit)(64-bit multiplication

Layer I Layer 2 Layer 3

"
" "
"

"
"
"
"
" "

"
"
"

In Layer 2 there is 128-bit multiplication, which could be expensive in tenns of

speed. In Layer 3 too there are 16-bit and 36-bit multiplications. The other operations are

not critical in terms of the speed. The modulo 232 or 2604 can be easily implemented by

merely ignoring any bits beyond the least significant 32 or 64, respectively. The modulus

operations under a prime number as p such as (264_59) can be implemented without

134

division in following manner. Consider X as a number larger than 64 bits, which can be

represented as

X=a2M +b

In the field of the prime number p (which is (i'4-59»,

2S4 -59 = O. hence

Xmodp=b+59a

Hence, it is possible to carry out these modular operations without any division.

With respect to the area U1i1ization of the UMAC, it is useful to consider the

possible area consumption of !he components !hat would be inslantiated by the

implementation. When a high end FPGA device such as Virtex VlOOOFG680 is targeted,

the area utilizations (without optimization) of some major components are as follows.

Here !he percentage of slice utilization for each component is given.

Component

32 - bit addition (mod 232
)

64-bit addition (mod 2M)

32-bitmultiplication

128·bit x 64-bil multiplier

128-bit x 12S-bit multiplier

Modulo (2M_59)

Modulo (2 128_159)

Modulo (2J6_5)

135

% Slice Utilization

0.13%

0.26%

4.4%

8%

34.20%

1.20%

2.97%

0.46%

16·bit)(64-bit multiplier

12B-bitaddition

Logical AND

Logical XOR (16 bit)

4.03 %

0.52%

«1 %

«I %

The most expensive operation of the algorithm is the 128-bit multiplication which

is carried out for messages of length> 217
• Xilinx core generator library modules were

parameterized to create 32·bit and 64-bit addition and 32·bit multiplication. The other

operations were coded in VHDL to be implemented using the device resources. TIle

throughput of the algorithm can be improved by introducing both parallel operations and

pipelining. Since the operations of different message blocks are independent, it is

possible to perfonn them in parallel by avoiding resource sharing. Layer 1 operations

can be ea'sily pipelined to improve the throughput In this case some of the device

resources have to be allocated for pipelining. This implies that the device will be fully

utilized for UMAC hash operation. The key generation employs Rijndael. which has an

area utilization of the 43 % of slices [51). This has to be implemented separately. The

evaluation of the hardware speed requires a full implementation of the design, which is

beyond the scope of this thesis.

6.3 Conclusion

The UMAC is a complicated algorithm for hardware implementation. An efficient

(fast) implementation in hardware could be very expensive in terms of complexity and

136

thus the FPGA device required. Although the algorithm can be pipelined and the

operations are parallelizable. those advantages cannot be easily achieved with the

constraints of the device resources in many of the teday's popular FPGA devices.

Although it might be implemented on a large FPGA device or using ASIC technology.

the most critical operations have to be fully optimized to improve the throughput. This

again could increase the resource utilization. However. because of the novel features and

the efficiency in soflware, it is worthwhile to study the ways of adopting UMAC for

hardware implementation.

137

Chapter 7

Conclusions

In many commercial applications protecting the integrity of infonnation is even

more important than its secrecy. With the advent of public key cryptography, digital

signature schemes and Internet security schemes, cryptographic hash functions have

gained much more prominence. In many applications the perfonnance of cryptographic

operations is a crucial factor, as it often becomes a bottleneck. As well. many security

services handle a large number of security associations. Therefore key agility and

algorithm agility are important issues in this context. He~, in high-speed applications

that employ the above-mentioned schemes, hardware encryption and authentication have

become essential to meet these perfonnance requirements. When these factors are

considered. FPGA devices are a promising alternative for implementing cryptographic

algorithms. In this study, two of the most conunon cryptographic hash algorithms and a

hashed message authentication algorithm were implemented using FPGAs. Two

hardware architectures, iterative and full loop unrolling, were investigated and efforts

were taken to optimize the perfonnance results of the designs. Some of the new

techniques of message authentication were also investigated. In this chapter, the summary

of this thesis, the conclusion and suggested future work arc discussed.

138

7.1 Summary and Conclusions of the Study

The background of this research, which motivated towards this study, was first

discussed. After a brief overview of IPSEC, which is the main area of application of

MDS, SHA-l and HMAC, different constructions of hash functions and message

authentication codes were investigated. Some of the constructions, which are more

suitable for hardware implementation, were also discussed. Followed by the descriptions

of the constructions of MD5, SHA-l and HMAC, the main issues related to hardware

implementation were explored. In particular the overview of FPGAs and their

applications were discussed. As the FPGA technology is a growing area that has a

potential to provide perfonnance benefits of ASICS: and the flexibility of processors, it

was selected as the target device (or these implementations. FPGAs allow application

specific hardware circuits to be created on demand to meet the requirements of a design.

Moreover these hardware circuits can be dynamically modified partially or completely in

time and space.

For both MD5 and SHA·l implementations, two architectures were used: the

iterative and full loop unrolled. As expected the iterative design provided the most area

optimized solution whereas the full loop unrolled design offered the most speed

optimized solution. MD5 iterative design with double buffering offered about 185 Mbps

throughput. High efforts in synthesizing and implementation were used along with

"period" timing constraint for optimum speed results. As the area utilization was

significantly low, several designs could be implemented on the same device and process

multiple messages in parallel with proper management of va ports. The full loop

139

unrolled design of MDS, which was also implemented with double buffering and the

same optimizing parameters. gave a throughput of 486 Mbps. According to the area

utilization, at least two design modules could be accommodated in the device and process

two messages in parallel.

SHA·I full loop unrolled design with double buffering gave a throughput of S6S

Mbps. As the area utilization was fairly high only one design can be filted into a single

device. The iterative design of SHA·J showed a throughput of 121 Mbps. In this design

the usage of memory was considerably high and the design is more complex than MDS.

The HMAC was implemented using SHA·I full loop unrolled design as the base

hash function. The maximum throughput obtained was 48.5 Mbps. As a consequence of

these implementations, it was evident that the FPGAs were suitable to implement hash

algorithms and hash based message authentication codes. The perfonnance results meet

some of the currenlly available IP bandwidths. Hence. these FPGA implementations can

be used as components in cryptographic accelerators for use in IPSEC and other

applications.

The size of the message has a considerable impact on the performance of

cryptographic hash algorithms as padding has to be carried out all the time even if the

message has a length of multiples of 512 bits. This becomes a large overhead for small

messages especially in case of HMAC algorithm. As the Internet is one of the main areas

of application of cryptographic hash functions, the understanding of Internet traffic is

useful to study the perfonnance of authentication algorithms. This was investigated using

four traffic models. According to these models the average times of MAC calculations of

140

the FPGA implementations of HMAC and CBC-MAC-AES did not differ significantly.

Particularly, the average times were almost the same as the size of the messages became

larger. The software results showed that the timing perfonnances of HMAC-SHA-I and

CBC·MAC·AES did not have a significant difference. As observed in FPGA

implementations HMAC offers better timing perfonnance as the message becomes larger.

As most of today's cryptographic algorithms follow a sequential structure,

pipelining cannot be adopted to optimize the throughput. Hence, many of them cannot

meet today's high-speed requirements. A recently reponed approach that addresses this

issue was then investigated. The universal message authentication algorithm that has been

proposed by researchers was analyzed for hardware perfonnance. It was shown that the

complexity of the algorithm causes high resource utilization, and it would not be feasible

for hardware implementation using existing FPGA devices.

7.2 Suggestions for Future Work

According to the area utilization of M05, several design modules could be

accommodated in the same device and process multiple messages in parallel. This would

be an interesting effort for further investigation. In these implementations only the

"period" timing constraint was used. This constraint covers only timing paths that stan

and end at. a flip-flop, latch or synchronous RAM, which is clocked by a referenced net. It

does not cover paths to output pads. By using other constraintS such as "offset" it might

be possible to improve the perfonnance further. Therefore, implementation trials with

other timing constraints are recommended. The use of a more recently introduced FPGA

141

device would also enhance me timing perfonnance. However, as me structure of MD5

and SHA-I does not allow parallelization, it is hard to achieve high mroughput results.

Two possible alternatives will be eimer to modify the general scructure of cryptographic

hash algorithms or to go for paraJlelizable hash algoritltms with operations tltat are

suitable for hardware implementation.

For the fonner alternative, several metltods have been suggested by other

researchers. One such methods is to use interleaved block chained digest structure. This

replaces the original linear block chain with a finite number of block chains. A pre

determined finite number of chains are processed from independent initial values, such

that the j~ block is part of the "j mod It,u, chain. The resulting sequence of k digests forms

another message, which can be hashed as a single block. There are several other

proposals, which support parallelism in the general structure of the cryptographic hash

algorithms. However, these proposals need further analysis for their security properties.

For the latter option, some of the members of the universal hash function family

that have suitable properties for hardware implementation could be utilized. These have

to be further investigated for the optimum hardware implementations as well as the

optimum cryptographic properties. Though the proposed UMAC would be 100 large for

the existing FPGA devices, it may be suitable for ASIC implementation. The complete

implementation of UMAC on hardware is recommended so as 10 investigate its speed

perfonnance.

142

References

(I]. G. J. Simmons, Contemporary Cryptology: The Science of Infonnation Integrity,

Piscataway, NJ, IEEE Press, 1992

I2l. Organization for Economic Co-Operation and Development (DECO) Guidelines.

"Guidelines on the Protection and Transborder Flows of Personal Data",

available at hup:J/wwwl.oecd.orgldstiistilitisecur/prodlPRIV-EN.HTM#2.

(3]. M. Bellare, R. Canelti and H. Krawczyk. "Keying Hash Functions for Message

Aulhentication:' in proceedings ofAdvances in Cryptology- CRYPTO'96. Lecture

NOles in Compuler Science Vol. 1109, Springer-Verlag, pp. 1-15,1996.

[4]. R~ Rivest, "The MD5 Message-Digest Algorithm," IETF Network Working

Group, RFC 1321, Aprill992.RFC 1321.

[5]. E. Hong, lH. Chung and C.H.Lim, "Hardware Design and Performance

Estimation of the 128-bil Block Cipher CRYPTON," in Proceedings of first

fntematiollll1 Workshnp, CHESS'99, Lecture Notes in Computer Scicncel717,

Springer-Verlag, pp. 49-61,1999

(6). S. Kent and R. Atkinson, "Securiry Architecture/or the Internet Protocol," IETF

Network Working Group, RFC 2401, November 1998.

(7J. Cylan IP Security white paper, 1997, available at hup:l/www.cylan.comlfilesJ

whpaper.htm.

[8J. FIPS PUB 18().1, "Secure Hash StantkJrd," Federal Information Processing

Standard (FIPS), Publication 180-1, National Institute of Standards and

Technology, US Department of Commerce, Washington D.C., April 1995.

143

[9]. S. Kent and R. Atkinson "The Use of HMAC-MD5-96 Within ESP and AH,"

IETF Network Working Group, RFC 2401, November 1998.

[iO]. C. Madson and R. Glenn, "The Use of HMAC-SHA-I-96 Within ESP and AH:'

IETF Network Working Group, RFC 2404.

[II]. D. Whiting and Schneier, "Improved Twofish Implementations" Twofish

Technical Report #3, available at http://www.counterpane.com.

(12]. Cisco Systems Inc, IPSEC white paper, available at http://www.pipelinks.coml

warp! publicJccltechnolprtocoVipsecurelipsedtechlipsec_wp.htm.

[13J. S. Kent and R. Alkinson, "IP Authentication Header' IETF Network Working

Group, RFC 2402, November 1998.

[14J. S. Kent and R. Atkinson, " Internet Protocol· DARPA Internet Protocol

Specification" IETF Network Working Group, RFC 791, September 1981.

[15]. S. Deering and R. Hinden, "Internet Protocol, Version 6 (IPV6) Specification,"

IETF Network Working Group, RFC 2460, December 1998.

[16J. W. Stallings, Cryptography and Network Security, Second edition, Upper Saddle

River, NJ: Prentice Hall, 1997.

[17]. S. Kent and R. Atkinson, "IP Encapsulating Security Payload (ESP)," IETF

Network Working Group, RFC 2406, November 1998.

(18). ANS Glossary 2000, available at hnp:llwww.ics,bldrdoc.gov/projeclSltlglossary

2000Chash.Junction.html.

[19), D. Stinson, Cryptography: Theory and Practice, Boca Raton, FL, CRC Press,

1995.

144

[20J. FIPS 186-2. "Digital Signature Standard (DSS)" Federallnfonnation Processing

Standard (FlPS). Publication 186-2. National Institute of Standards and

Technology. US Deparunent of Commerce, Washington D.C., January 2000.

[2l}. PIPS 186, "Digital Signature Standnrd (DSS)" Federal Information Processing

Standard (FIPS), Publication 186, National Institute of Standards and Technology,

US Department of Commerce, Washington D.C., Mayl994.

{22]. B. Preneel, R. Govaerts and J. Vandewalle, "Hash Functions Based on Block

Ciphers: A Synthetic Approach." in proceedings of Advances in Cryptology

CRYPTO'93, Lecture Notes in Computer Science Vol. 773, Springer-Verlag, pp.

368·378,1996.

[231. S. Bakhtiari, R. Safavi-Naini and 1. Pieprzyk, Cryptographic Htuh Functions: A

Survey, Technical Report 95-Q9, Department of Computer Science, University of

Wollongong, July 1995.

[24]. R. L. Rivest, A Shamir and L. Adleman, "A Method for Obtaining Digital

Signatures and Public Key Cryptosystems" Communications of ACM, vol. 21, pp.

120-126,1978.

[25]. B. Preneel, 'The State of Cryptographic Hash Functions," in proceeding of

Lectures of Data Security, Lecture Notes in Computer Science vol. 1561,

Springer-Verlag, pp. 158-182, 1999.

[26]. R. Rivest, '''The MD4 Message Digest Algorithm." IETF Network Working

Group, RFC 1320, April 1992.

145

[27J. I. B. Damgard, "A Design Principle for Hash Functions," in proceedings of

Advances in Cryptology·CRYPTO'89, Lecture Notes in Computer Science vol.

435, Springer-Verlag, pp. 416-427,1989.

[28J. P. Carnian and J. Patavin, 'The Knapsack Hash Function Proposed al

CRYPTQ'89 Can be Broken" in proceedings of Advances in Cryptology

EUROCRYPT'91, Lecture Notes in Computer Science vol. 576, Springer-Verlag,

pp. 39-53, 1991.

[29J. S. Wolfram, "Random Sequence Generation by Cellular Automata" in

proceedings ofAdvances in Applied Mathematics, vol 7, pp, 123-169, 1986.

[30J. 1. Daeman, R. Govaerts and I Venewalle, "A Hardware Design Model for

Cryptographic Algorithms," in proceedings of Computer Security-ESORICS'92,

Lecture Notes in Computer Science vol. 648, Springer-Verlag, pp, 419434, 1992.

[311. X. Lai, R.A. Rueppel, and J. Woollven, "A fast cryptographic checksum

algorithm based on stream ciphers," in proceedings ofAdvances in Cryptology

AOSCRIPT '92, Lecture Notes in Computer Science, Springer-Verlag, pp.339

348,1992.

(32). M.Bellare, J. Kilian and P. Rogaway, ''The Security of the Cipher Block Chaining

Message Authentication Code," injoumnl ofcomputer and System Sciences, Vol.

61", No.3, Academic Press, pp. 362-399,2000.

[33]. ANSI X9.9, American National Standard for Financial Institution Message

Authentication (wholesale), American Bankers Association, 1981-Revised 1986.

146

(14}. FIPS 113, " Computer Data Authentication," Federal Information Processing

Standard (FlPS), Publication 113, National Institute of Standards and Technology,

US Depanment of Commerce, Wasrungton D.C., 1985.

[3S}. M. Bellare, J. Kilian and P. Rogaway," The Security of Cipher Block Chaining,"

in proceedings of Advances in Cryptology- CRYPTO'94, Lecture Notes in

Computer Science vol. 839, Springer-Verlag, pp. 340-358. 1994.

[36}. M. Bellare, R. Guvaerin and P. Rogaway, "XOR MACs: New Method for

Message Authentication Using Finite Pseudorandom Functions," in proceedings

ofAdvanas in Cryptology- CRYPTO'95, Lecture Notes in Computer Science voL

963, Springer-Verlag, pp. IS-28, 1995.

[37]. G. Tsudik, "Message Authentication with One-Way Hash Functions" ACM

Computer Communications Review, vol. 22, No.5, pp. 29·38, 1992.

[381. 1. Givin, K. McCiognrie and J. Davin, "Secure Management of SNMP

Networks," IETF Network Working Group, RFCI157 1990.

(39}. B. Preneel and P,C. VanOorschot, "MD.-MAC and Building Fast MACs from

Hash Functions," in proceedings of Advances in Cryptology- CRYPTO'95,

Lecture Notes in Computer Science vol. 963. Springer-Verlag, pp. 1-14, 1995.

[40J. S. Bakhtiari, S. Safavi-Nani and 1. Pieprzyk, "Practical and Secure Message

Authentication," Series of Annual Workshop on Selected Areas in Cryptography

(SAC'95). pp. 55-68. May 1995.

[41]. 1. L. Carter and M. N. Wegman, "Universal Classes of Hash Functions," Journal

ofComputer and System Services, vol. 18, pp. 143-154, 1979,

147

(42}. J. L. Carter and M. N. Wegman, "New Hash Functions and Their Use in

Authentication and Set Equality," Journal o/Computer and System Services, vol.

22, pp. 265-279,1981.

[43]. 1. Black Jr., "Message Authentication Codes," PhD Thesis, University of

California Davis, California, USA, 2000. PhD Thesis 2000.

[44]. P. Rogaway, "Bucket Hashing and Its Application to Fast Message

Authentication," in proceedings ofAdvances in Cryptology-CRYPTO'95, Lecture

Notes in Computer Science vol. 963. Springer-Verlag, pp. 29-42, 1995.

[45]. S. Helvi and H. Krawczyk, "MMH: Software Message Authentication in the

Obit/second Rates," in proceedings of<f" workshop on Fast Software Encryption,

Lecture Notes in Computer Science vol. 1267, Springer-Verlag, pp. 172-189,

1997.

[46]. J. Black, S. Halevi, A. Hevia, H. Krawczyk, T. Krovetz and P. Rogaway,

"UMAC-Fast and Secure Message Authentication," in proceedings of Advances

in Cryptology-CRYPTO'99. Lecture Notes in Computer Science vol, 1666.

Springer-Verlag, pp. 216-233, 1999.

[47). K. Ohta and K. Koyama, "Meet-in-the-Middle Attack on Digital Signature

Schemes," in proceedings 0/ Advances in Cryptology- AUSCRYPT'90, Lecture

Notes in Computer Science voL 453, Springer-Verlag. pp. 140-154, 1990.

[48]. 1. Pieprzyk and B. Sadeghiyan, "Design of Hash Algorithms," Lecture Notes in

Computer Science vol. 756. Springer-Verlag, 1993.

148

[49]. FIPS PUB 222, "Advanced Encryption Standards (AES)," Federal Infonnation

Processing Standard (FlPS), Publication AES Draft, National Institute of

Standards and Technology, US Department of Commerce, Washington D.C.,

2001.

[SOl. M. Riaz and H.M. Heys, "The FPGA Implementation of the RC6 and CAST-256

Encryption Algorithms", in Proceedings of IEEE Canadian Conference on

Electricaf and Computer Engineering CCECE '99, Edmonton, Alberta, May

1999.

[511. A. Elbirt, W. Yip, B. Chetwynd and C. Paar, "An FPGA Implementation and

Performance Evaluation of the AES Block Cipher Candidate Algorithm

Finalists," in proceedings of 3rtl AES Candidate Conference, available at

http://www.nist.gov/aes.

[52). A. Dantalis, V. K. Prasanna and J. D. P. Rolim, "A Comparative Study of

Performance of AES Final Candidates Using FPGAs," in proceedings ofrt AES

Candidate Conference, available at http://www.nist.gov/aes.

(53]. K. Gaj and P. Chodoxiec, ''Comparison of the Hardware Performance of the AES

Candidates Using Reconfigurable Hardware," in proceedings of r AES

Candidate Conference, available at http://www.nislgov/aes.

[541. R. R. Taylor and S. C. Goldstein, "A High-Performance Flexible Architecture for

Cryptography," in proceedings of Cryptographic Hardware and Embedded

Systems, Lecture Notes in Computer Science vol. 1717, Springer-Verlag, pp. 231~

245,1999.

149

[55]. A. Dewey, Analysis and Design of Digital Systems with VHDL, PWS Publishing

Company, 1997.

[56]. M. Smith, Portions from Application-Specific Integrated Circuits, available at

http://www-ee.eng.hawaii.eduJ-msmithiASICslHTMUBook2l.

[57). S. Brown and J. Rose, "FPGA and CPLD Architectures: A Tutorial," in

proceedings of IEEE Design and Test of Computers, vol. 12, No.2, pp. 42-57,

1996.

[58]. FIPS PUB # HMAC, " The Keyed Hash Message Authentication Code (HMAC),"

Federal Infonnation Processing Standard (FIPS) Publication # HMAC, National

Institute of Standards and Technology, US Department of Commerce,

Washington D.C., 2001.

[59J. Xilinx. Virtex. 2.5 V programmable date arrays product specification, available at

hnp:f1www.x.ilinx.comlproductslvirtex..

[60]. Xilinx home page: http://www.x.ilinx.com.

[61]. J Case, N. Gupta, 1. Minai and D. Ridgeway, "Design MetJuxiologies for Core

Based FPGA Designs:' Xilinx white paper available at hnp:/lwww.x.ilinx.coml

productsllogicorelcore_papers.hun.

[62). S. Yalamanchili, Introductory VHDL'from Simulation to Synthesis, Prentice Hall,

Upper Saddle River, NJ, 2001.

(631. Foundation Series 3.1i Quick Start Guide, available at http://toolbox.x.ilinx.com

Idocsan/3_1iJdatalfndtn/fqslchap02lfqs02000.htm.

150

e64]. Xilinx records #2703. available at htrp:lIsupport.xilinx.comlxlnxlx.il_ans_

display.jsp?iLanguageID=I&iCountrylD=l&getPagePath=2703 1999.

[65]. R. C. Merkle, "One Way Hash Functions and DES" in proceedings of Advances

in Cryptology-CRYPTO'89, Lecture Notes in Computer Science vol. 435.

Springer-Verlag. pp. 428-446.1989.

[66]. J. Touch. "Perfonnance Analysis of MD5. in proceedings of SlGCOMM'95,

Boston, pp 77-86. 1995.

(67). H. Krawczyk. M. Bellare and R. Canetti. "HMAC: Keyed Hashing Message

Authentication." IETF Network Working Group, RFC-2104, February 1997.

[68}. A. Feldmann, J. Rexford and R. Caceres. "Efficient Policies for Carrying Web

Traffic Over Row-Switched Networks," IEEF/ACM transactions on Networking.

pp. 673·685, December 1998.

[69]. S. McCreary and K. Claffy, "Treds in Wide Area IP Traffic Patterns," A view

from Ames International Exchange. Co-operative Association for International

Data Analysis (CAIDA) Report, 2000, available at http://www.caida.orgl

outreach! papersJAIXOOO5.

[70]. 1. Black, S. Halevi, H. Krawczyk, T. Kovetz and P. Rogaway, "Update on UMAC

Fast Message Authentication" available at hnp:llwww.cs.ucdavis.edul-rogaway/

[71]. J. Black and P. Rogaway. " CBC MACs for Arbitrary-Length Messages: The

Three·Key Constructions," in proceedings of advances in Cryptology-

151

CRYPfO'OO. Lecture Notes in Computer Science, Springer-Verlag vol. 1880,

pp. 197-215,2000

[72]. NIST home page. "AES Algorithm (Rijndae1) Infonnation", available at

http://csrc.nist.gov/encryption/aes/rijndaeV.

[73]. "Shal.c: Implementation of the Secure Hash Algorithm", November. 2000.

available at hup:/lwww.di-mgt.com.aulsrcJshal.c.txt

[74]. V. Shoup" On fast and Provably Secure Message Authentication Based on

Universal hashing:' in pTOCudings of advances in Cryptology-CRYPrO'96,

Lecture Notes in Computer Science, Springer-Verlag vol. 1109, Pl'. 313-328,

\996.

[75]. T.· Kravetz, 1. Black, S. Halevi, A. Hevia and H. Krawczyk, P. Rogaway, ..

UMAC; Message AuthentiC(Jlion Code Using Universal hashing:' IPSec Working

Group, Internet-Draft, October 2000.

\52

Appendix A

Results of Timing Simulation with Back Annotation.

This appendix shows the timing simulation results of MDS. SHA-I and HMAC

sha-l. For this the Standard Delay Fonnal (SOF) fLie which is created during the

implementation is used. The SOF file contains the timing details of the design that have

to be used during the back: annotation. This has to be invoked with the timing simulation

model. The timing simulation model (VHDL file) is created from the Native Generic

Database (NOD) file by running NGD2VHDL. The same test benches utilized for

behavioral and functional simulation were used.

153

~ i-
I i

linB:n
0" • III

154

i ;
11°1

[

]

155

~ ~

II

In1:Ii!H! § L @ ia~ ~i! !
1II"lp, .~

dlt .s
1
j
:E!

[~
1;

J
:~H mm -II ~ u! ~ ~

.~

.~h!i~:;;
;::
~
•l

156

j

.. ,gn ! !!!~nHii
: .111; ii;BPS ::!

ildlllil/llilill IIII
11\1/11 / 1///1/11/ 1///
,,,tlit I Iililitil IIII
Witit i iWitHinnmiil1

157

158

,
~ ~~

"2-
is

I
•I :1
~ -

~
";:;x
:;i

~ "~
s:,

<i:

AppendixB

This appendix gives the read and write operations of the RAM set up during the

80 steps of SHA-l iterative design. During the loading lime, the message block is written

in all the 8 RAM modules. Then the read and write operations of each RAM module vary

according to Table AI. The RAM set up for this is given in Figure 25. While reading lhe

initial 16 words, the next words (17lh word and onwards) can be calculated by XQRing

four words from the previous 16 words together. In this case four words have to be read

at a time and the calculated word has to be stored in a suitable RAM to prevent any clash

between read and write operations among the modules in future steps. The notations

used in the table are as follows.

ReadX Reading the word for step X.

R# Reading memory address # of a RAM to calculate a future word.

W# Writing of a calculated word at memory location 1# of a selected RAM

159

""_A FlAlICS RAM_B1 RAM_A2_"'_.. 1'1.....'-83

-'" 16 R2 A13 16 A.

".." A3 17 17 AI' A'- A. A" 18 18 A15-, A16 , All 19 19.... AU A12 •
"'" """ A18 7 A13 W21

read6 19 • " 22

w" read7 23 0 , A15...,. A16 2' 2' R21 A"

"'" All AU R22

" '" readl0 A" A16 28
11 "'3 R2. readll 19 ""'7 11m
12 ..." A25 A" "13 29 _13 R28 15 1

" WOO 30 Readl<4 "'7 ,. R22
15 '" 31 A17 W31 R28

" ...16 . 32 " R29
17 4417 A25 W33 19
16 A31 Read18 R28 W34 A20
19 R21 35 read19 A27 35
20 R22 A33 """'" R28 IN.1e
21 37 ,••,r"
22 36 A35 """"23 -, A31 39 A25 IN39 ""24 7 ""'. A32 .. R28

25 -, 41

" . A39 ~-
A34 '"27 A29 A40 ~.,'!7 A35 "" ~ A30 ",1 _8 A38

" 7 A42

30 ~ ... A32 R43

31 A39 A44

J2 Aead32

33 ""
.. A41 ~.d33

34 A36 A<2
~-

7 50

" '" 50 ""
36 read36 " A4'
37 A45 A50 ~4437 A39

36 " A45 ,
" " A52 1 7 """".. A42 ~.d40 A47 ...

160

51 RAM A
- -"-, -., RAM B1 RAIICB2 'AM .., RAM 83

41"" A43 read41 A43

" 55
~'"

A50 57
43 "" ,.."" A" R56 58.. 59 A52 read44 A.. A57.. A41 A58
46 59 ~_6

" R55 52 A60 ,-,
" A61 50 A58

43 64 A62 A" A57 ffl_'
50 A63 52 ,58d6Q A59

" '63 ,..,,,
52 ""

,58d52 A60 A55 67
63 ""'"

, 56 56

64 ,,,ad~ A62 A58 A67
55 63 W70 57 68
56 , A69 -.. 58
57wn A59 A70 A55 ~.'57

58 An 3 A60 ",.'58
59 Rn -- , it", 67
60 73 A62 -00 5 68

" read61 . ,
62 64 ffl'''' 70 75
63 n "

,
64 " n read64 A68 Iti79
55 ffl""
55
67 ,..<167

68 ,.....
69 ""'69
70 ffl.'70
n
72

73 ~0d73

74 read74
75 ,••'75

" ~"'"n ~dn

78 read78
read79

Table BI. Read and write operations of the RAM sel up of SHA-l iterative design

161

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Dedication
	0007_Abstract
	0008_Abstract iii
	0009_Acknowledgements
	0010_Table of Contents
	0011_Table of Contents vi
	0012_Table of Contents vii
	0013_Table of Contents viii
	0014_List of Tables
	0015_List of Figures
	0016_List of Figures xi
	0017_List of Figures xii
	0018_Chapter 1 - Page 1
	0019_Page 2
	0020_Page 3
	0021_Page 4
	0022_Page 5
	0023_Chapter 2 - Page 6
	0024_Page 7
	0025_Page 8
	0026_Page 9
	0027_Page 10
	0028_Page 11
	0029_Page 12
	0030_Page 13
	0031_Page 14
	0032_Page 15
	0033_Page 16
	0034_Page 17
	0035_Page 18
	0036_Page 19
	0037_Page 20
	0038_Page 21
	0039_Page 22
	0040_Page 23
	0041_Page 24
	0042_Page 25
	0043_Page 26
	0044_Page 27
	0045_Page 28
	0046_Page 29
	0047_Page 30
	0048_Page 31
	0049_Page 32
	0050_Page 33
	0051_Page 34
	0052_Page 35
	0053_Page 36
	0054_Page 37
	0055_Page 38
	0056_Page 39
	0057_Page 40
	0058_Page 41
	0059_Page 42
	0060_Chapter 3 - Page 43
	0061_Page 44
	0062_Page 45
	0063_Page 46
	0064_Page 47
	0065_Page 48
	0066_Page 49
	0067_Page 50
	0068_Page 51
	0069_Page 52
	0070_Page 53
	0071_Page 54
	0072_Page 55
	0073_Page 56
	0074_Page 57
	0075_Page 58
	0076_Chapter 4 - Page 59
	0077_Page 60
	0078_Page 61
	0079_Page 62
	0080_Page 63
	0081_Page 64
	0082_Page 65
	0083_Page 66
	0084_Page 67
	0085_Page 68
	0086_Page 69
	0087_Page 70
	0088_Page 71
	0089_Page 72
	0090_Page 73
	0091_Page 74
	0092_Page 75
	0093_Page 76
	0094_Page 77
	0095_Page 78
	0096_Page 79
	0097_Page 80
	0098_Page 81
	0099_Page 82
	0100_Page 83
	0101_Page 84
	0102_Page 85
	0103_Page 86
	0104_Page 87
	0105_Page 88
	0106_Page 89
	0107_Page 90
	0108_Page 91
	0109_Page 92
	0110_Page 93
	0111_Page 94
	0112_Page 95
	0113_Page 96
	0114_Page 97
	0115_Page 98
	0116_Page 99
	0117_Page 100
	0118_Page 101
	0119_Page 102
	0120_Page 103
	0121_Page 104
	0122_Page 105
	0123_Page 106
	0124_Page 107
	0125_Page 108
	0126_Page 109
	0127_Page 110
	0128_Page 111
	0129_Page 112
	0130_Page 113
	0131_Page 114
	0132_Page 115
	0133_Page 116
	0134_Page 117
	0135_Page 118
	0136_Page 119
	0137_Page 120
	0138_Chapter 6 - Page 121
	0139_Page 122
	0140_Page 123
	0141_Page 124
	0142_Page 125
	0143_Page 126
	0144_Page 127
	0145_Page 128
	0146_Page 129
	0147_Page 130
	0148_Page 131
	0149_Page 132
	0150_Page 133
	0151_Page 134
	0152_Page 135
	0153_Page 136
	0154_Page 137
	0155_Chapter 7 - Page 138
	0156_Page 139
	0157_Page 140
	0158_Page 141
	0159_Page 142
	0160_References
	0161_Page 144
	0162_Page 145
	0163_Page 146
	0164_Page 147
	0165_Page 148
	0166_Page 149
	0167_Page 150
	0168_Page 151
	0169_Page 152
	0170_Appendix A
	0171_Page 154
	0172_Page 155
	0173_Page 156
	0174_Page 157
	0175_Page 158
	0176_Appendix B
	0177_Page 160
	0178_Page 161
	0179_Blank Page
	0180_Blank Page
	0181_Inside Back Cover
	0182_Back Cover

