CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

Hardware Implementation of Message

Authentication Algorithms for Internet Security

By

Janaka T. Deepakumara ©

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of

Master of Engineering

May 2002

St. John’s Newfoundland Canada

Dedication

To My Dearest Mother, Father and Chamali
who always give me a better Life.

Abstract

Verification of integrity and icity of i ion is a prime i in

computer networks. In open networks such as the Internet, a strong mechanism to provide
these security services is essential. With the introduction of Internet Protocol Security
(IPSEC), the need has arisen to have a simple, efficient and widely available Message

Authentication Code (MAC) mechanism. The standard approach for message

in Internet ications has been based on the use of cryptographic hash

functions such as Secure Hash Algorithm-1 (SHA-1) and Message Digest 5 (MDS5). The

wide availability of software i i i in software and freedom of
license and export restrictions are some of the reasons for adoption of hash-based MACs
or HMACs. In high-speed network applications hardware encryption and authentication
have become essential to meet the performance requirements. Field Programmable Gate
Arrays (FPGAs) are an attractive option because they are capable of providing the

required speed, algorithm agility and flexibility of dynamic system evolution. When these

factors are considered, FPGA devices are a isil ive for i
cryptographic algorithms.

In this research, FPGA implementations of MDS5, SHA-1 and HMAC using SHA-
1 as the basis hash algoritim have been carried out. MD5 and SHA-1 have been
implemented using an iterative and full loop unrolled architectures. The target device has
been selected as the XILINX Virtex series FPGA. Performance analysis in terms of
hardware utilization and speed are executed. Different design optimization techniques are

also discussed.

The Internet is one of the main areas of application of cryptographic hash

functions and the size of the message has a idi impact on the of

these algorithms. Hence the performance of HMAC both in hardware and software are
investigated using four Internet traffic models. The same analysis is performed on CBC-
MAC-AES for performance comparison.

Due to the sequential nature of the structure of these algorithms, it is difficult to
make them fast enough to ensure suitability for very high-speed applications. Therefore

some alternative methods have to be i i for high-speed icati One of the

proposed algorithms based on universal hashing, the Universal Message Authentication
Code (UMAC), is analyzed for its hardware performance. Finally the conclusion and

recommendations for future research are presented.

Acknowledgments

I would like to convey my sincere and foremost gratitude to my supervisors as
well as my mentors, Dr. Howard M. Heys and Dr. R. Venkatesan for their guidance and

financial support throughout this research. Their directions, constructive suggestions and

are not only i but will also be remembered.

Thanks are also extended to the Dean, faculty of engineering and applied science,
Memorial university, for providing the facilities for carrying out this work. I gratefully
acknowledge the department of computer science for facilitating Synopsys tools
throughout this research. Special thanks are conveyed to Dr. Paul Gillard for his
invaluable support for the smooth running of the tools. I gratefully acknowledge Dr.
Theodore S. Norvell for providing Xilinx Foundation tools for this research. I also
appreciate the timely support provided to me by Mr. Nolan White during problematic
periods of the Synopsys tools.

My sincere thanks are also due to all my past and present friends in MUN for
giving me a pleasant time throughout this work. Especially the friendly and cordial
environment in the CERL was a definite encouragement during my research. Therefore I
am grateful to all the professors and friends in the lab, I am greatly beholden to my
father, mother, two sisters and brother as well as all the other members of my family for
providing me the moral support throughout my life. Last but not least, I pay my heart-felt
gratitude to my Chamali for being with me in all the moments during this work. Her

unflagging support was a constant source of energy and motivation.

Abstract

Table of Contents

Table of Contents

List of Tables

List of Figures

L1

1.2 Objective of the Thesis

1.3 Thesis Outline

2. Background of Study and Previous Researchc..coevuveriiiiinniennnnns

2.1 Internet Protocol Security (IPSEC)ccovivirniienininniianiniinnnn

2.2 Hash Functions

2.1.1

212

221
222
223

224

Security Associations (SA)

IPSEC Packets

Properties of Hash Functions .

Digital Si

General Approaches to Hash Function Construction

Message Digest 5 (MDS)oeveeeiuvnnieeieiinnneeeannnns

3. Design

225 Secure Hash Algorithm 1 (SHA-1)ccooeenis

2.3 Message A ication Codes

2.3.1 Block Cipher Based MACs

2.3.2 Keyed Hash Function Based MACScccccevvinnnnn

2.3.3 Universal Hash Function Based MACSceu.

2.4 Attacks on Hash Functions

24.1 General Attacks

24.2 Special Attacks

2.4.3 High Level Attacks

2.5 Concli

and ion Choices

31 vs. Software

3.2 Implementation Using Custom Hardware

3.3 Field P Devices

3.4 FPGA ion of Cr

ic Algorithms

3.5 Device Selection

351 Virtex

352 Design

3.5.3 Design Flow

3.6 Hardware

37C

vi

41
42

42

43

43

46

48
50
51
53
54
56

57

4. Implementation of MD5, SHA-1 and HMAC-SHA-1ooooiiiiiiiiinnnn

4.1 MD5

4.1.1 Tterative

4.1.2 Full Loop Unrolled Architecturecccuveeennn
413 Synthesis and ion Results
4.2 SHA-1

4.2.1 TIterative A

422 Full Loop Unrolled Architecturecoeveeeennns

423

Synthesis and ion Results

4.3 Performance Analysis of MD5 and SHA-1cccoovveiiiiinnnnn

4.4 HMAC-SHA-1

44.1 Design D«

442

Synthesis and ion Results

4.5 Performance Analysis of HMAC-SHA-1ccccocvrvrviiineenne

4.6 C

5. Performance of MAC Algorithm for IPSEC

5.1 Previous Studies of Internet Trafficc.ccccooviiiiiniiniiinns

5.2 IP Packet Size Models

5.3 Performance of MACs in Internet

5.3.1 Average Number of Blocks per Packetc..ccocones

532 P

in Hard

vii

82

91

107
110
112
113
117

5.3.3 Performance in Softwareccocviiiiiiiiiiiiiins 118

5.4 Conclusion 119

6. A New Approach: Uni Message ication Codeoeeennnn 121
6.1 UMAC C HOMY 2o S s, 122

6.1.1 UMAC Key Derivation . 124

6.12 TagG ion .. 124

6.1.3 Universal Hash Function (UHASH) . 125

6.2 Hard C ity of UMAC 133

6.3 Conclusi 136

7. C 138
7.1 Summary and Conclusions of the Studycooevvvvenneeenns 139

7.2 Suggestions for Future Work

143
Appendix A 153
Appendix B ... 159

viii

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.

Table 6.

Table 7.

Table 8.

Table B1

List of Tables

Timing report summary of MDS5 iterative design

Timing report summary of MD5 full loop unrolled design

Timing report summary of SHA-1 iterative design

Timing report summary of SHA-1 full loop unrolled design

Timing report summary of HMAC-SHA-1 design

Times of HMAC-SHA-1 and CBC-MAC-AES on FPGA for general
1P traffic

Times of HMAC-SHA-1 and CBC-MAC-AES on FPGA for general
IP traffic

Main operations of three layers of UHASH

Read and write operations of RAM set up of SHA-1 iterative design

119

161

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11,
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.

List of Figures

IPSEC ication Header Format 9

IPSEC ESP header format . 10

Cryptographic hash functions in digital signature scheme

General model for round function of block cipher based hash function .. 15

Generation of message digest 19
Compression function Hups 21

Operations in a single step of MDSccvvuuieeiiiiniieneiniunneenaininn 22
Compression FUnction HSHA1 eeeeevvrereeennirereniiinnnereenniensesnnina 23

Operations in a single step of SHA-1 ..

CBC-MAC 28

Round function using nested hash functions .

Modified keyed hashed function with nested hash functions 32
Carter-Wegman MACs 37
2-slice Virtex CLB [Virtex 2.5 V Xilinx 2000]coerirurririanarinnnn 52

Virtex architecture overview [Virtex 2.5V Xilinx 2000] .

FPGA Design flow [Xilinx home page]ovrereverrrrrnin 54
Optimized operation tree 60
MDS5 iterative core 61

Block diagram of MDS5 iterative design .

State diagram for MDS iterative designcoooeeriiieiiiiiniiiniien 63

Figure 21.

Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31,
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.

Figure 41.

MDs full loop: lled core

Block diagram of full-loop-unrolled designoooeiiiiieriiinnns 65
State machine for full loop unrolled designccccovvieiiiiiiiiiinnn 66
Functional si ion of Iterate design 70
Interface of the MDS5 iterative design ...

Interface of the MDS5 full loop unrolled designoocveeeieinninnn 73
Functional simulation of full loop unrolled designccoeuveen 74
RAM setup for creating 80 WOIdScocveivueeeiiiinniiniiiniannns 77
SHA-1 Iterative core 78
Block diagram of iterative design

SHA-1 full loop unrolled core 80
Block diagram of SHA-1 full loop unrolled design 81
Functional simulation of SHA-1 iterative design.ccccoeune 85
Interface of SHA-1 design 87
Functional simulation of SHA-1 full loop unrolled design 90
Timing diagram with loading delayccooeeiiieiiniieenins 91
Timing diagram without loading delayccccooviiiiiiiniinnn 91
HMAC i 95
HMAC-SHA-1 Block Diagramccceeeeeeiiiieeeiiiinineecnininnenn 97
State diagram for HMAC-SHA-1 designoocoenreinninieninianens 98
Functional simulation of HMAC-SHA-1ccoviniiinininininiiniinn 101

xi

Figure 42.

Figure 43.

Figure 4.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.

Figure 50.

Figure 51.
Figure 52.
Figure 53.
Figure 54.

Figure 55.

Figure Al
Figure A2

Figure A3

Interface of HMAC-SHA-1 deSign «.........vveveesnrrrismmnrsreessnsonn

Timing diagram for HMAC-SHA-1 operations ..

Cumulative distribution of packet SiZesccoevriririiiiniinnns 108
Cumulative distribution of IP packet Sizesccvvvreveriennnns 109
Uniform PDF 110
Rule of thumb of the PDF of IP packet $izec..ovvvririririvinnnnnn 111
Discrete PDF with 3 impulses 111
Discrete and Uniform PDF 111
Interface of UHASH 125
General structure of UMAC 126
NH-32 construction for 256-bit message Stringcccoevvveeennnns 128
UHASH Layer 1 128
UHASH Layer 2 129
UHASH Layer 3 132
Timing simulation MD5 full loop unrolled designcooeevenn 154
Timing simulation SHA-1 full loop unrolled designcoeenunne 155
Timing simulation HMAC-SHA-1 full loop unrolled design 157

xii

Chapter 1

Introduction

The signi of i ion and ications systems for society and the

global economy is intensifying with the increasing value and quantity of data that is
transmitted and stored on those systems. At the same time those systems and data are also

increasingly vulnerable to a variety of threats, such as unauthorized access and use,

and i As well, the system vulnerability has been
increased due to proliferation of computers, increased computer power, interconnectivity,
decentralization, growth of networks and number of users and also the convergence of

and

Cryptology is the term which describes the whole meaning of secret
communications. This has been originated from the Greek meanings “hidden” and
“word”. Cryptology can be divided into two subfields: cryptography and cryptanalysis
[1]. The cryptographer finds the ways to ensure secrecy and/or authenticity of messages.
The cryptanalyst seeks to break that secrecy and/or authenticity by attacking a cipher or
by forging coded signals that would be accepted as authentic. Cryptography is an

important of secure icati systems and a variety of applications

have been ped that incorp cr ic methods to provide data security.

Security of information and communications systems involves the assurance of the

integrity, icity and availability of those systems and the data that is
transmitted and stored on them.

The widespread use of cryptography raises a number of important issues.
Governments have many services engaged in the use of cryptography, including

protecting the privacy rights of people and izati ilitating i ion and

communications systems security, encouraging economic well-being by, in part,

public safety, enabling the enforcement of
laws and the protection of national security, among others. Traditionally, cryptography
was most often used by governments. However in recent years cryptography has become
an important issue among individuals and businesses as it has become more accessible
and more affordable [2]. The explosive growth in computer systems and their
interconnections via networks have greatly influenced today’s human life. The storing
and communicating of information using these systems have become an essential part of
our lives. As a result there is a growing awareness of the necessity for information
security.

In information security, message authentication and integrity are essential
techniques to verify that received messages come from the alleged source and have not

been altered during the transit. These techniques may also be useful to verify sequencing,

and to provide iation. A key element of authentication schemes is
the use of a message authentication code (MAC). One technique to produce a MAC is
based on using a cryptographic hash function, which is referred to as Hash based

Message Authentication Code (HMAC) [3]. The most popular cryptographic hash

functions are the Message Digest 5 (MD5) [3], which was proposed by Ron Rivest, and
the Secure Hash Algorithm-1 (SHA-1), which has been certified by the National Institute
of Standards and Technology (NIST).

There is a high demand for high quality products and expertise in the field of
information security. Recently very high bandwidth networking technologies such as
ATM and Gigabit Ethernet are becoming more prevalent. Network applications such as
virtual private networks (VPNs) need high-speed cryptographic algorithms to match these

new high-speed networks [S].

1.1 Motivation

Internet Protocol Security (IPSEC) [6] is one of the key security standards that
provides security services at the IP layer by enabling a system to select required security
protocols, determine the algorithm(s) to use for the service(s), and put in place any
cryptographic keys required to provide the requested services [6]. IPSEC offers a secure
communications across Local Area Networks (LANS), private and public Wide Area
Networks (WANs) and the Internet. By employing IPSEC tunnel mode operation, a
company can build a secure VPN over the Internet or through a public WAN [7]. IPSEC
provides an open framework for implementing industry-standard algorithms. The
algorithms employed for MAC value calculation are specified by the security association
(SA). Keyed message authentication codes based on symmetric encryption algorithms or
one-way hash functions such as MD5 [4] or SHA-1 [8] have both been specified for

IPSEC i ions must support hash based message authentication

codes with MD5 (HMAC-MD5-96) [9] and SHA-1 (HMAC-SHA-1-96) [10]. The
algorithm details and the issues in hardware implementation of MDS5, SHA-1 and
HMAC-SHA-1 are discussed in Chapters 2 and 6 respectively.

In all these applications the performance of IPSEC processing is a crucial issue as

cryptographic operations, in general, cause a fora In high-speed

routers and other networking equipment that apply IPSEC to aggregated traffic, hardware
encryption and authentication is almost essential to meet performance objectives [11].
For some applications such equipment may have to handle a large number of security

associations and hence key agility and algorithm agility become important issues. There

is an increasing interest in high-speed cr; ig for IPSEC
such as VPNs. Most of the available products are microprocessor based cryptographic

They the i intensive i of encryption and

authentication. Hence the study of the performance of hardware implementation of

algorithms, especially using logic devices such as Field
Programmable Gate Arrays (FPGAs), has become a timely and important field of

research.

1.2 Objective of the Thesis

The objective of the thesis is the performance analysis of the hardware

of the icati i which are widely used in Internet
protocol security. The hardware utilization and timing analysis with respect to a high-end

field programmable gate array device are studied using several possible optimization

hni The potential th of the impl ions are analyzed in the context
of traffic characteristics of the Internet. This is done using four traffic models which have

different degrees of accuracy.

1.3 Thesis Outline

The thesis consists of 7 chapters. Chapter 2 gives the background of the research
and the literature review of the previous research, which are related to this study. Chapter
3 discusses the design environment and implementation choices, which are used for the
research. The implementation details and results are discussed in Chapter 4. In Chapter 5
the Internet traffic modeling that was used to analyze HMAC algorithm is discussed. The
new approach in message authentication is discussed in Chapter 6. Finally in Chapter 7,

conclusions and future work are presented.

Chapter 2

Background of Study and Previous Research

In this chapter the background of the research and some of the key areas of
application are discussed. Hash algorithms are widely used in Internet security to provide
message authentication. In fact the Internet has become one of the main areas of

of cr; ic hash i Hence at the inning of the chapter, the

protocol used in Internet security is briefly described. Various studies have been carried
out in the areas of cryptographic hash functions, message authentication codes and

hardware i i of cr i i Some of these studies are

discussed in the subsequent chapters.

2.1 Internet Protocol Security (IPSEC)

IPSEC [6] is one of the key technologies for providing security as a foundation
network service [12]. It is the security standard defined by Internet Engineering Task
Force (IETF) for IP network layer security. According to [6], IPSEC provides security
services at the IP layer by enabling a system to select required security protocols,
determine the algorithm(s) to use for the service(s), and put in place a cryptographic
technique to provide the requested services. The key services used to protect against the

threats are confidentiality, integrity and authentication. IPSEC allows for end-to-end

encryption and authentication making TCP/IP communications secure for use in both
public and private networks. The IP layer of the TCP/IP protocol architecture has been
chosen as a place to operate IPSEC.

The security services offered by IPSEC include access control, connectionless

integrity, data origin icati ion against replays, iality and limited

flow confidentiality. These services are provided at the IP layer offering protection for IP
and /or upper layer protocols such as TCP, UDP, ICMP and so on. These objectives are
achieved through the use of two traffic security protocols - the Authentication Header

(AH) [13] and the Encapsulating Security Protocol (ESP) [6] - and through the use of

cr ic key and protocols. AH provides connectionless
integrity, data authentication and anti-replay services. ESP provides confidentiality,

limited traffic flow iality and/or i integrity. It opti provides

data authentication and anti-replay services as well [6]. Both AH and ESP provide access

control based on the distribution of cr ic keys and of traffic flows

relative to these security protocols. Both may be applied alone or in combination with
each other to provide a desired set of services in Internet standards, IPv4 [14] and IPv6

[15].

2.1.1 Security Associations (SA)
This is a key concept fundamental to IPSEC. An SA is a one-way relationship
between a sender and a receiver that affords security services to the traffic carried [16].

This is uniquely identified by a triple consisting of a Security Parameter Index (SPI), the

IP destination address and the security protocol (AH/ESP) identifier. Each IPSEC
connection can provide encryption and integrity/authentication, or both. When the
security service is determined, the two parties must determine which algorithms to use
(e.g. DES or IDEA for encryption; MDS or SHA-1 for authentication) [12]. Then they
must share session keys. SAs are used to manage this information. To ensure
interoperability and for providing management capability, some external aspects of
IPSEC processing are standardized. Hence a nominal model has been described in terms
of two databases: the Security Policy Database (SPD) and Security Association Database
(SAD) [6]. The former specifies the policies that determine the disposition of all IP traffic
inbound or outbound from a host or security gateway IP implementation. The latter

database contains parameters that are associated with each security association.

2.1.2 IPSEC Packets

IPSEC defines a new set of headers to be added to IP datagrams: IP
Authentication Header (AH) [13] and IP Encapsulating Security Payload (ESP) [17].
These new headers are placed after the IP header and before the layer 4 protocol (TCP or
UDP). These two can be used in two modes: transport and tunnel modes. In transport
mode the protocols provide protection mainly for upper layer protocols. Hence the
protection extends to the IP payload. In tunnel mode the protocols are applied to tunneled

1P packets, which become the payload in a new IP packet.

Authentication Header (AH)

The AH format is given in Figure 1 [13].

Bito Bits Bit 16 Bit 31
Next Payload
header | length

Security Parameter Index (SPI)
Sequence Number

Authentication Data
(MAC/ICV)
(Variable length)

Figure 1. IPSEC Authentication Header Format

This header when added to an IP datagram ensures connectionless integrity and
authenticity of the data and optionally protection against replays. This enables an end
system or metwork device to authenticate the user or application and filter traffic
accordingly. It prevents the address spoofing attacks as well. In this format the next
header identifies the type of the next payload after authentication header. Payload length
specifies the length of AH in 32-bit words minus 2. SPI is used to identify the SA for the
datagram. Sequence number can be used as an anti replay service. Authentication data is
a variable length field that contains the MAC or Integrity Check Value (ICV) for this
packet. This field must be a multiple of 32-bits in length. The ICV or MAC value is
computed as a function of the IP datagram and the secret authentication keying material,
which is part of the SA. Only the sender and receiver know the secret keying material. If

the authentication value is valid the data has come from the other party of the SA [6].

Encapsulating Security Payload (ESP)

ESP provides confidentiality and integrity services to IP datagrams. It may also

provide limited traffic flow iality, data origin

integrity and anti replay-service for IP ing upon the i

and header use mode (tunnel or transport). Limited traffic flow confidentiality requires
selection of tunnel mode, and the encryption occurs only between an external host and
the security gateway or between two security gateways. This relieves the hosts on the
internal network of the processing burden of encryption and simplifies the key
distribution task by reducing the number of keys. Hence it thwarts traffic analysis based
on ultimate destination. The set of services provided depends on options selected.

Confidentiality may be selected independent of all other services but the use of

without i i ication may be subject to certain forms of active
attacks. Data origin authentication and connectionless integrity are joint services and are
offered as optional services. The anti replay-service may be selected only if data origin
authentication is selected. The ESP header is inserted after the IP header and before the
upper layer protocol header (transport mode) or before an encapsulated IP header (tunnel
mode). The ESP header format is given in Figure 2. Most of the fields have similar
purposes as mentioned under AH. The payload data is a variable field, which is the
transport level segment or IP packet protected by encryption. The padding field is used to
expand the plaintext, to conceal the actual length, or for any other alignments required by
the ESP format. The Authentication Data is a variable length field that gives the MAC

computed over the ESP packet minus the authentication data field.

Bito 8 16 24 31

Security Parameter Index (SPI)

Sequence Number

Payload (Variable)

Padding

5 bytes)

Next
| Pad length |
Data (Variable)

Figure 2. IPSEC ESP header format

2.2 Hash Functions

Some important algorithms and techniques resulting from various studies related
to hash functions and message authentication codes are discussed in the following

sections.

2.2.1 Properties of Hash Functions

A hash function is a mathematical function that maps values from a large (or very
large) domain into a smaller range, and that reduces a potentially long message into a
"message digest" or "hash value". It provides a fast method of storing information in and
retrieving from large databases. Hash functions are used in implementing associative
memories and error correction as well. With the advent of public key cryptography and

digital signature schemes, cryptographic hash functions have gained more attention in

their role of providing authenticity for a message. A "good" hash function is one that
results in a set of values that are evenly (and randomly) distributed over the range [18]. In
order to avoid the possible attacks, a hash function used for cryptographic purposes
should have several properties [19]:

e Weakly collision-free: Let M be a message. A hash function H is weakly

llision-free for M if it is i infeasible to find a message M’ # M

such that H (M%) = H (M).

Strongly collision free: A hash function H is strongly collision-free if it is
computationally infeasible to find messages M and Msuch that M M and H (M)

=HM).

One-way property: A hash function is one-way if, given a message digest Z, it is

computationally infeasible to find a message M such that H (M) = Z.

The input can be of any length and output has a fixed length.

The hash function H is relatively easy to compute for any given M.

2.2.2 Digital Signatures

‘We now briefly describe one of the principle cryptographic applications of hash
functions. Sometimes it is required to verify the origin of a document, the identity of the
sender, the time and date a document was sent and/or signed, the identity of a computer
or user, and so on. A digital signature is a cryptographic means through which many of
these may be verified. The digital signature can be computed using the Digital Signature

Algorithm (DSA) [20] and a set of parameters such that the identity of the signatory and

integrity of the data can be verified. The DSA provides the capability to generate and
verify signatures. Signature generation makes use of a private key to generate a digital
signature. Signature verification makes use of a public key, which is related to, but is not
the same as, the private key. Each user possesses a private and public key pair. In general
public keys are assumed to be known to the public. Private keys are never shared.
Anyone can verify the signature of a user by employing that user's public key. Signature
generation can be performed only by the possessor of the user's private key. A
cryptographic hash function is used in the signature generation process to obtain a

compressed version of data, called a message digest (Figure 3).

Signature generation Signature verification
Cryptographic Cryptographic
Hash Function Hash Function
Digital "
. Private Key Signature i Public Key
DSA sign DSA verify
operation < operation <

Digital Signature Verification
(Yes / No)

I

Figure 3. Cryptographic hash functions in digital signature scheme

The message digest is then input to the DSA to generate the digital signature. The digital
signature is sent to the intended verifier along with the signed data (often called the
message). The verifier of the message and signature verifies the signature by using the
sender's public key. The same hash function must also be used in the verification process
[21].

2.2.3 General Approaches to Hash Function Construction

Many have di a number of i to develop hash
functions. We now describe some of the approaches of constructing hash functions.
Hash function based on block ciphers

This is an effort to build hash functions on the existing block ciphers rather than
constructing them from scratch. The encryption of plaintext X with key K will be denoted
with E (K, X). The size of the plaintext and ciphertext in bits is denoted with and the
size of the key size in bits is denoted with k. The argument of the iterated hash function is
divided into ¢ blocks X; through X,. If the total length is not a multiple of n, the argument
has to be padded with some accepted padding rule. If the round function is denoted by f;
the hash function H can be described as follows:

Hi=f (X Hi) i

where, Ho is Initial Value (IV), specified with the scheme and H, represents the hash
code.

The general construction for the round function of the hash functions is shown in
Figure 4. For simplicity it is assumed that k = n. The block cipher has two inputs: the key

K and the plaintext P and the output C. The inputs P and K can be selected from one of

the four values: X;, Hi.;, X; @ Hy.,, and a constant value V. It is also possible to modify
with feed forwarding (FF) the output C by XOR of one of these values. Preneel shows
that these possibilities yield 4? = 64 different schemes [22]. He also shows that, only 12

of these schemes are secure.

V, X,, Hiy, Xi® Hiy

Figure 4. General model for round function of block cipher based hash function
Hash functions based on modular arithmetic
Two important hard problems in number theory, factorization and the discrete
logarithm, are used to build these hash functions. These can have variable digest length
depending on the size of the modulus [23]. The purpose of deploying modular arithmetic
is to save on implementation cost by using existing cryptographic systems such as RSA
public key cryptosystem [24]. Due to their various weaknesses, these kinds of hash

functions are not popular in today’s cryptographic applications.

Dedicated Hash Functions
While many hash functions are based on existing security mechanisms such as

block ciphers or modular schemes, performance critical applications require the use of

functions designed for explicit use of hashing. These are called dedicated or customized
hash functions [25]. Dedicated hash functions tend to be fast, achieving a considerable
advantage over algorithms that are based on other techniques. These hash functions are
not provably secure, as they are not based on a hard problem such as factorization. But
most of them are computationally secure. Message Digest (MD)-family hash functions
fall into this category, which were proposed by RSA Data Security Inc. These are
iterative hash functions based on a compression function with fixed size input. The
compression function consists of operations such as modular 2*? addition, rotation and
permutation, which can be easily performed either in software or hardware. MD4 [26] is
an early example of a popular hash function with such a dedicated design. Although MD4
is no longer considered secure for most cryptographic applications, most new dedicated
hash functions make use of the same design principles as MD4 in strengthened versions.

Their strength varies ing on the ig or inati of

employed in their design. Some of the popular dedicated hash functions in current use

include MDS, SHA-1, RIPEMD-160 and HAVAL.

Other Approaches

Hash functions based on the Knapsack problem and Cellular Automata are some
other approaches. Since hash functions never have to be inverted, completely random
generated knapsacks can be used for their construction. Two examples of the hash
functions based on the Knapsack problem are hash functions based on additive knapsacks

and multiplicative knapsacks. [27] But it has been proven that these can be broken [28].

‘Wolfram has suggested a random sequence generator using cellular automata [29]. Using
this pseudo random generator Daeman et al. suggested a hash function called “cellhash”
[30] in which the hash result of a message M of length n is computed in two phases. In
the first phase the message is extended with minimum number of zeros so that its length
in bits is at least 248 or congruent to 24 mod 23. Let the resulting message be Mo,
M;...My.; each of 32-bit words. Then in the second phase the hash function F.(H, A) is
applied. The hash function F,(H, A) is a function with argument H, a bit string of length
257 and A, a bit string of length 256. It returns a bit string of length 257. Initial value (IV)
i the all-zero bit string of length 257. The computation involves determining values for
H:
H = FAH, Mj.s Minoan.... Mjss moan), = 1...N

where H° = IV and H" is the 257-bit hash result.

This is a hash function suitable for hardware implementations. The core is made
up of two cellular automata operations and permutations. In this algorithm the diffusion
and confusion properties have been obtained by linear cellular automaton and non-linear
automaton respectively.

F(H, A) has five step ion of H. Let ho, h hase denote the bits of

H and ag, aj....... azss represent the bits of A.
Stepl: by =y @ (hy V) 0Si<257
Step2: hy = hy 0si<257

Step3: b =h_,®h ®h,, 0<i<257

Stepd: b =h @a,, 0<i<257
StepS: b, =y, 0<i<257

where ®, v and represent XOR, OR and NOT operations respectively.

2.2.4 Message Digest 5 (MD5)

MD5 [4] is a message digest algorithm developed by Ron Rivest at MIT. It is
basically a secure version of his previous algorithm, MD4 which is a little faster than
MDS5. This has been the most widely used secure hash algorithm particularly in Internet-
standard message authentication. The algorithm takes as input a message of arbitrary
length and produces as output a 128-bit message digest of the input. This is mainly
intended for digital signature applications where a large file must be compressed in a
secure manner before being encrypted with a private (secret) key under a public key
cryptosystem.

Assume we have an arbitrarily large message as input and that we wish to find its

message digest. The processing involves the following steps.

(1) Padding
The message is padded to ensure that its length in bits plus 64 is divisible by 512, that is,
its length is congruent to 448 modulo 512. Padding is always performed even if the
length of the message is already congruent to 448 modulo 512. Padding consists of a

single 1-bit followed by the necessary number of 0-bits.

(2) Appending length

A 64-bit binary representation of the original length of the message is concatenated to the
result of step (1). (Least significant byte first). The expanded message at this level will
exactly be a multiple of 512-bits. Let the expanded message be represented as a sequence
of L 512-bit blocks Yo, Y1,.Y;,,Y..1 as shown in Figure 5 [16]. Note that in the figure, IV

and CV represent the initial value and chaining variable, respectively.

Lxstzbis Padding (1512 bis)
i

Figure 5. Generation of message digest

(3) Initialize the MD buffer
The variables IV and CV are both represented by a four-word buffer (ABCD) used to
compute the message digest. Here each of A, B, C and D is a 32-bit register and they are
initialized as IV to the following values in hexadecimal. Low-order bytes are put first.

Word A: 0123 45 67

Word B: 89 ABCD EF

Word C: FE DC BA 98

WordD: 76 54 32 10

(4) Process message in 16-word blocks
This is the heart of the algorithm, which includes four “rounds” of processing. It is
represented by Hups in Figure 5 and its logic is given in Figure 6. The four rounds have
similar structure but each uses different auxiliary functions F, G, H and 1.

F(X,Y,2)=(X /\Y)V(YA Y)

G(X,Y,2)= (X AZ)V (Y AZ)

H(X.Y,.Z)=X®Yez
IX.Y,2)=Y® (X vZ)

where, v, A, ® and ~ represent the logical OR, AND, XOR and NOT operations,
respectively. Each round consists of 16 steps and each step uses a 64-element table T [1
... 64] constructed from the sine function. Let T[i] denote the i-th element of the table,
which is equal to the integer part of 2% times abs(sin(i)), where i is in radians. The value i
represents the step number. Each round also takes as input the current 512-bit block (¥g)
and the 128-bit chaining variable (CV,). An array X of 32-bit words holds the current 512-
bit ¥,. For the first round the words are used in their original order. The following

permutations of the words are defined for rounds 2 through 4:

) =i
P2(i) = (1+ 5i) mod 16
Pa(i) = (5+ 3i) mod 16

Pa(i) =7i mod 16

20

In Figure 6, Xp:()], Xtpa()), Xos()] and Xips(3] represent 16 words of X, permuted according

to P1(i), Pa(i), P3(i) and pa(i) respectively.

Figure 6. Compression function Hups

The output of the fourth round is added to the input of the first round (CV,) to produce

Vi

(5) Output
After all L 512-bit blocks have been processed, the output from the L™ stage is the 128-bit
message digest.

Figure 7 shows the operations involved in a single step [16]. The additions are

performed as modulo 22 operations. Four different circular shift amounts () are used

21

each round and these are different from round to round. Here X[k| represents the

corresponding word for the step according to the permutation rule mentioned earlier.

L& [&] e [5]

- Figure 7. Operations in a single step of MD5
The operation of a step can be represented mathematically as follows:

AeD
B ¢ B+((A+ Func(B,C,D) + X[k] + T[i}) << S)
CeB
De«C

2.2.5 Secure Hash Algorithm-1 (SHA-1)

SHA-1 is the algorithm specified in the Secure Hash Standard [8], which was
developed by NIST. When a message of any length < 2% bits is input, SHA-1 produces a
160-bit output as a message digest. The overall processing of a message follows the MD5
structure given in Figure 5 with Hvps and the hash / chaining variable lengths replaced

with Hspa-1 and 160 bits, respectively. The processing consists of following five steps.

22

(1) Padding

The message is padded to ensure that its length in bits plus 64 is divisible by 512. That is,
its length is congruent to 448 modulo 512. Padding is always performed even if the
length of the message is already congruent to 448 modulo 512. Padding consists of a

single 1-bit followed by the necessary number of 0-bits.

(2) Appending length

A 64-bit binary representation of the original length of the message is concatenated to the
result of step (1). (Most significant byte first). The expanded message at this level will
exactly be a multiple of 512-bits. Let the expanded message be represented as a sequence

of L 512-bit blocks Yo, Y3,.,Y;,., Y21 as shown in Figure 5 [16].

(3) Initialize
The variables IV and CV are represented by a five-word buffer (ABCDE) used to compute
the message digest. Here each of A, B, C, D and E is a 32-bit register and they are
initialized as IV to the following values in hexadecimal. These values are stored in big-
endian format, which has the most significant byte of a word in the low-address byte
position.

A: 67452301

B: EFCDAB89

C: 98BADCFE

23

D: 10325476
E: C3D2ELIF0Q
(4) Process message in 16-word blocks
As in MD5, this is the heart of the algorithm, which includes four “rounds” of processing

and its logic is given in Figure 8. Each round has 20 steps.

F4, K, W [60..79] 20 steps

OV gu

Figure 8. Compression Function Hsna.i
The four primitive functions are,
FIXY.2)=(X AD)VXAY)
FXX,Y,2)=X®Y®Z

F3X,Y,2)=(Y AV)V(X AZ)V(Y AZ)
F4X,Y,2)=X®YDZ

The four rounds have similar structure but each uses different auxiliary functions FI

(steps 0 < ¢ < 19), F2 (steps 20 < ¢ < 39), F3 (steps 40 < ¢ < 59), and F4 (steps 60 < ¢ <

24

79). Each round utilizes an additive constant K,, where 0 < ¢ < 79 indicates the step.
Unlike MD5, SHA-1 uses only four distinct constants. The constants in hexadecimal are

as follows.

Step K,in Hexadecimal
0<r<19 Ki=5A827999
20<1<39 K=6ED9EBA1
40<1<59 K=8F1BBCDC
60<:<79 K=CA62C1D6

Each round also takes as input the current 512-bit block (¥;) and the 160-bit chaining
variable (CV,). Then CV, is updated through the four rounds and the output of the fourth
round (80"' step) is added to the input to the first round to produce CV,,,. This addition is
done independently for each of the five words in the buffer with each of the

corresponding words in CV, using modulo 2%
(4) Output:

‘When all the blocks have been processed, the 160-bit output will be the message digest.

The generic step of the compression function is shown in Figure 9.

25

T~
[=]

Figure 9. Operations in a single step of SHA-1

The operations in a step can be represented in mathematical form as follows.

A E+F(B,C,D)+S5(A)+W' +K,
Bea

sV
Dec
E«D

Here, A, B, C, D and E are five words of the input buffer. 5" denotes the circular left shift
of the 32-bit argument by n bits, K, is the additive constant for step 7. W, represents 32-bit
word derived from the current 512-bit input block. All additions (+) are modulo 2%

additions.

26

2.3 Message Authentication Codes (MACs)

Message authentication is the procedure to verify that received messages come
from the alleged source and have not been altered. A MAC is an authentication tag
(checksum) derived by applying an authentication scheme, together with a secret key, to
a message so that the recipient can verify the message authenticity. There are several
types of construction available to produce MACs. These include

(a) Block cipher based MACs

(b) Keyed hash function based MACs

(c) Universal hash function based MACs.
In our work we have focused on the important technique of combining a key with an
unkeyed hash function, referred to as HMAC which is of type (b). Apart from these
methods there are other techniques as well. Unconditionally secure MACs [19] based on
encryption with a one-time pad and stream cipher based MACs [31] are other examples.
A MAC is said to be secure if it can resist existential forgery under an adaptive chosen-

message attack [32].

2.3.1 Block Cipher Based MACs

Cipher Block Chaining MACs (CBC-MACs)
This is the most widely used MAC, first used in the mid 1970s. A block cipher is

used in Cipher Block Chaining mode as shown in Figure 10. Let a message space for M

27

be binary strings whose lengths are a positive multiple of /. Hence the message M can be
broken into blocks such that

M =My, Mo, My with M|

Then each block is passed through the encryption E with key K and the result is XORed
with the next block. Ex represents the encryption using a key K. Cipher block chaining is

given by
CBC,, (M)= Y E¢[M,®C] Fori=l..mand Co=0'
S

where, ¢' indicates ! bit vector of all zeros.

l M, M, M Mn

MAC

Figure 10. CBC-MAC
The standards ANSI X9.9 [33] and FIPS 113 [34] describe CBC-MAC. Although it was
proven secure for fixed length messages by Bellare et al. [35], CBC-MAC does not
directly give a method to authenticate messages of variable lengths. If the length of

strings varies from a multiple of block length, the CBC-MAC becomes more vulnerable.

28

Bellare suggested three methods: input-length key ion, length ding and

encrypting last block to overcome that vulnerability [32].
XOR MACs
This is an approach for authenticating a message using a Finite Pseudo Random

Function (PRF). This PRF can be instantiated with a block cipher or a compression

function of a cryptographic hash function. The of this are
incrementability and provable security. There are three main steps in this algorithm [36].

1. Encode message M as a collection of blocks.

2. Apply the finite PRF to each block creating collection of PRF images.

3. XOR the set of PRF images together.
XOR MAC has two schemes namely, randomized and counter based. In the randomized
scheme, it is assured that there is a PRF F with input size /, output size L and key length k
bits. A parameter b is fixed where b < I, which is the block size. Assume the message to
be authenticated M has length at most b x 2!, By standard padding arguments we may
assume Lh.al the message is a multiple of b. Usually b is taken as /2. So

M=My, My, ..My
where |M]| = b. Let <i > denote the binary representation of the I-b-1 bit encoding of the
integer i. It is the binary representation of the block index i € {1,2,...n}.
Assume K € {0, 1)¥is the shared key of length k. To compute the XOR MAC of a

message the sender chooses a random I-1 bit string r (known as seed) and then computes
the tag(r, #) using

1= F 0] N® F (15| M) ®F ([25| M) ®... F (Ul n > M,) .

29

Here || denotes concatenation and Fx represents a finite pseudo random function such as a
block cipher (e.g. DES) with a key K. Set the MAC of M to the pair (r, #). Thus the sender
transmits (M, r, £). The receiver verifies the message by computing ¢’ from M and r (and
K). This is a parallelizable structure and hence suitable for long messages and/or
expensive PRFs. The other feature is the MAC is incremental with respect to
substitutions. When it is computing the tag for a related message (e.g. only one block is
different) only a constant amount of computation is required [36].
In counter based XOR scheme, a sender maintains an n-bit counter C which is

initially 0 and incremented for each message. Authentication has to follow these steps.

- increment the counter C by 1

- set1=F0|0)®F(15|M)SF,0lk25|M,)®..Fl<n>|M,)

- setthe MACof Mto(c, 1)
The sender transmits (M, c,-t). The receiver calculates ¢”using the received (M, ¢’,t’) and

accepts the message if £ =1",

2.3.2 Keyed Hash Function Based MACs
A function H() that maps a fixed length key K and an arbitrary length message M
to a n-bit message digest MD is a keyed hash function, if it satisfies the following
properties [23].
* The description of H() is publicly known.

o Given K and M, it is easy to compute H(K, M).

* Without knowledge of X, it is hard both to find M when H(K, M) is given, and to

find two distinct messages M and M”such that H(K, M)= H(K, M”).

Given (possibly many) pairs of {M; MD;} with MD; = H (K, M), it is hard to find

the secret key K.

Without knowledge of K, it is hard to determine H(K, M) for any message M,
even when a large set of pairs {M;, H(K, M;)}, where M; s are selected by the
opponent (M # M;, ¥ M), is given.
Keyed hash functions can be constructed from existing hash functions. Hence some
security requirements of the designed keyed hash function rely on the security of the
underlying hash function. Basically three methods have been adopted in constructing
keyed hash functions [23]. “Hash then encrypt” is the simplest keyed hash function which
can be defined as

H(K,M)= E (K, H'(M))
where K is the secret key, M is the message, H"is the one-way hash function and E is the
encryption algorithm.

The second method is the nested hash function. There are many schemes of
constructing keyed hash functions using this method. In these schemes the hash function
immduce‘s akey by setting it as the initial vector. Hash functions are nested with different
initial vectors. Suppose H’is a one way hash function. The round function f can be
defined as

fXu M) = H'(H' (X)) || M)).

31

where, M; is the i message block, X;is the chaining variable (output of the last round),
“|I" represents concatenation and X, = IV’, which is set to the key K. This is shown in
Figure 11. The keyed hash function would be
H K, M) = f(f(of (F(K M), Mo),..., Ma1), My).

It has been found that this scheme does not satisfy the fourth property required for a
keyed hash function. This also suffers from padding attack, which is explained in section
2.4.3. Hence a modified keyed hash algorithm was developed which introduces a new
“salt value” S. The construction is given Figure 12. The H” can be built using the round
function explained earlier. In these schemes the several hash operations increase the

overhead and decrease the hash throughput.

Figure 11. Round function using Figure 12. Modified keyed hashed function

nested hash functions with nested hash functions.

32

Other methods using a key as part of a message or initial vector have been
proposed. In doing so the speed of the constructed hash function remains almost as fast as
the hash function. Many schemes have been developed according to this method.

Tsudik [37] suggested three methods: secret prefix, secret suffix and envelop
method. These methods are only based on one-way hash functions and use keys to make
them secure. If H” is a collision free hash function, K (= K || K,) is a secret key, then the
keyed hash function H(K, M) is defined as follows.

Secret prefix method:

H (K, M)=H'(V, K|| M)).
This method is not susceptible to the birthday attack, which is explained in 2.4.1. But
since the attacker knows the underlying hash algorithm and the integrity value is not
protected, there can be a padding attack (see section 2.4.3). A counter measure for this
attack is to include the message length in the secret prefix calculation, as part of the first

block. Some protocols such as Simple Network Management Protocol (SNMP){38]

utilize this method.
Secret suffix method:
HK,M)=H'(V, M || K)).
This is suitable for high idth and low delay i such as ized voice

and video applications. One drawback of the secret suffix method is the susceptibility to
the birthday attack (see 2.4.1).
Envelope method:

HE M =HUV, (K ||M|| K2)).

The message is enveloped with a secret prefix and a secret suffix before its digest is
computed. This is claimed to be more secure than the previous methods and is resistant to
both padding and birthday attacks.

In all these three methods the key size would be either the block size of the
message or twice that. Hence the processing speed is reduced by extra block processing
time. The security solely depends on the underlying hash function. A detailed analysis of
these methods can be seen in [39]. In that Preneel et al. also have suggested a heuristic
construction, MD,-MAC which is free from some of the previous weaknesses. This trend
was continued further by Bakhtiari et al. as in [40]. They introduced six improved
methods using small keys (128 bits). In these schemes H’ () is a collision free hash
function, K=(K; || K2) is the secret key, @ and @ are special XOR operations between
two entities (X and Y) of different lengths as described below:

X ®Y - The shorter one (between X and Y) is padded by zeros from the right hand
side to make its length same as the other and then they are XORed.
X®Y - The shorter one is padded by zeros from the left hand side to make its length

same as the other and then they are XORed.

The methods are summarized below.

(WH(K,M)=H'(IV,(K®M))
(QH(K,M)=H(IV,M)
(HH(K,M)=H'(IV,(M@K))
(4)H(K,M)=H'(IV,(K & M@K))
()H(K,M)=H'(IV,(M®K)) where IV=K
(6)H(K,M)=H'(IV,(M@K,)) where IV=K:

The concatenation of the key to the message in earlier methods has been
eliminated by using XOR operation. Since the key does not increase the length of the
input, processing speed is not affected. But some of these methods have some
weaknesses. For example (1) and (2) methods suffer from padding attack. The authors
claimed that the method (5) would be the best as it is safe enough against the possible
attacks and at the same time is efficient.

In 1996 M. Bellare et al.[3] presented two constructions, which could be formally
analyzed without resorting to unrealistic assumptions such as “idealness” of the
underlying hash functions. Their approach of keying the hash function is to substitute the
secret key for the functions fixed initial value IV. The fixed and known IV of the original
function is replaced by a random and secret value X known only to the communicating
parties. The two constructions proposed by them were nested MAC (NMAC) and the
hash-based MAC (HMAC). In these schemes the iterated construction methodology for
construction of collision—resistant hash functions [27), is utilized. The input is hashed by
iterating the compression function. If the input is M, then

M=M, M, ..M,
where |M;| = 1. The value of iterated function F on M is h,, where

hy=1V

35

hi=f (i, Mi).
Their approach is to substitute the secret key to the functions fixed IV. Let the keyed
compression function and its iterated function be defined as fi and F, respectively. If K=
(K1, K2) where K| and K; are the keys to the function of length / each:
NMAC (M) = fx (M) = (Fi1 (Fiz (M)

Here the outer function acts on the output of the iterated function and hence involves
only one iteration of the compression function. That is, the outer function is the
compression function acting on the Fxz (M) padded to a full block size. So, even though
NMAC construction is simple and efficient, it requires direct access to the code for the
compression function rather than the overall hash function. HMAC was suggested to
avoid that requirement [3].

In HMAC the two keys are derived pseudorandomly from a single key, which is
an advantage at the level of key management. Let F be the key-less hash function with
initial value 7V. The arbitrary length message is processed with random string K of length
1 as follows

HMAC (M) = F (K’® opad, F (K’® ipad, M))
where K”is the padded K with required ‘0’s to a one b-bit block size of the iterated hash
function. Here, ipad is the byte 0X 36 and opad is the byte 0X SC each repeated 64 times.
These values are chosen to have high hamming distance between the pads. They are set to

exploit the mixing properties attributed to the compression function underlying the hash

schemes in use. These are important ies to provide

36

between the two derived keys. The complete implementation and performance analysis of

HMAC based on SHA-1 is discussed in Section 4.4.

2.3.3 Universal Hash Function Based MACs

The idea of the universal hash function was introduced by Carter and Wegman in
1979 [41]. Two years later they introduced MACs using universal hash families [42].
According to this, the message M is hashed to a smaller size using a function from a
universal hash function family, which has only a combinatorial (rather than a
cryptographic) property. Then a cryptographic primitive with one-time pad and
encryption is applied to the resulting smaller string to produce the MAC as in Figure 13

[43).

M

Hashing H

H(M)

Cryptography E(K)

Tag

Figure 13. Carter-Wegman MACs

By definition, a finite multiset of hash functions H=({h: A—B} is said to be universal if
for every x, y €A where x # y: Pryey [A(x) = h(y)] = 1/|B]. Further, a finite multiset of
hash functions H={h: A—B} is e-Almost Universal (¢-AU) if for all x, y €A where x # y,

Praen [h(x) = h()] S €.

The above approach has been ;uggcsled as a promising way for a highly secure,
ultra-fast MAC. The speed of universal hashing MAC depends on the speed of hashing
step and the speed of the encryption step. If hash function compresses messages well,
encryption will be faster. The combinatorial property of the universal hash function
family can be mathematically proven without cryptographic hardness assumptions.

Several fast-to-compute hash functions have been developed. Among them, the

divisional hash is a method related to Cyclic Check (CRC) p

which is shown to be e-AU for a small &. A Linear Feedback Shift Register (LFSR) based
Toeplitz hash is another method, which is based on matrix-multiplication. Both these
methods allow efficient hardware implementation [43]. In 1995 Rogaway suggested
bucket hashing [44], which is used in the context of Wegman-Carter authentication [42].

This has been explicitly targeted for software i ion. Halevi and K k

proposed Multilinear Modular Hashing (MMH) and Nonlinear Modular Hashing (NMH)

which take full of mi ies such as Intel’s MMX and 64-

bit architecture, to achieve Gbps rates [45]. The Universal Message Authentication Code

(UMAC) was proposed in 1999 [46]. This has been targeted for high throughput software

Unlike traditi b ly serial MACs, UMAC is parallelizable. The

underlying hash function family is known as New Hash (NH), which is a simplification

of MMH and NMH. The details of this algorithm are discussed in Chapter 6.

2.4 Attacks on Hash Functions

A successful attack on a hash function means finding a method to falsify a
claimed security property of the hash function. There are two main groups of attacks:
general and special attacks. The special attacks depend on the weaknesses of the

underlying algorithm and the general attacks are independent of the algorithm.

2.4.1 General Attacks
This group of attacks only depends on the message digest length. The birthday
attack, exhaustive key search, pseudo key attack and random attack are some examples of

this group.

Birthday attack:

This attack is one of the most powerful attacks on hash functions with uniform
message digest distribution and short message digest length. This is based on the
“birthday paradox” which is a label for the following phenomenon: Given a random
variable that is an integer with uniform distribution between 1 and N and a selection of k
instances (k < N) of the random variable, it can be shown that[16]

P(N, k) > 1- e ®kD0N

where, P(N, k) is the probability that there is at least one duplicate. According to this, the
value of k required for P(V, k) > 0.5 can be shown as 1.18(N)"2, which is approximately
(N)'™. The birthday paradox gets its name from a special case with N =365 for which the
value of k is = 19. This means that the minimum number of people required for at least
two people have the same birthday with the probability about 0.5 is 19. Suppose the
message digest of m bits is produced by a hash function on the message M. According to
the birthday paradox, if the hash function is applied to k random inputs, the value of k so
that there is a probability about 0.5 for at least one duplicate will be 22, The adversary
creates a pool of many message and digest pairs. When the attacker intercepts a message
digest, it is compared with all message digests in the pool. In the case of a match, the
corresponding message is sent instead of the original message. If an adversary generates
ry variations on a bogus message and r; variations on a genuine message, the probability
of finding a bogus message and a genuine message that hash to the same result can be
approximated by
P=l-eT

where r;>>1 [47]. When r;= r, =22, the above probability is about 0.5. To achieve

security against a birthday attack, the hash value should be at least 128 bits [48].

Exhaustive key search
If the adversary has access to at least one message-digest pair, the key can be
found by examining the key space elements against the message-digest pairs. As the

message space does not have a one-to-one map to digest space, more than one key could

40

be found. However there is a possibility to determine the key if a large number of pairs is
given [23].
Pseudo Attack

The adversary tries to find a pseudo key K with H (K, M) = H (K , M) where H is
the keyed hash function, K is the actual key and M is the message. This is similar to
finding more than one key in exhaustive key search and may allow the enemy to identify

himself as a legitimate user.

Random Attack

In this attack the adversary chooses a random message (or part of a message) and
expects that its message digest is equal to a genuine one. If the message digest length is r
then the success probability of this attack for a hash function, which has the required
random behavior, is 1/2. By having at least 128 bits for the message digest this attack

can be thwarted [23].

2.4.2 Special Attacks

These attacks depend on the round function or in general the hash function design.
These are not successful in keyed hash functions as the key protects the hash components
against outsiders. Examples of this attack are meet-in-the middle attack, correcting block
attack, fixed point attack, attack on the underlying block cipher, and differential and

linear cryptanalysis. The details of these attacks are given in [48] and [40].

41

2.4.3 High Level Attacks

These are attacks on hash functions when used in a protocol or for non-hashing
purposes. Examples are the replay attack and padding attacks. Attaching time stamps to
the messages can thwart the replay attack. In padding attacks the intruder tries to append
(or prepend) a message to the existing one such that the legitimate parties would accept
the result. If [M, MD] with MD = f (M, K) is sent to the receiver, the intruder tries to find
M such that [(M || M”), MD] or [(M’ || M), MD] is sent instead of [M, MD] [40]. Padding
attacks can be thwarted by pre-pending the message length to the message or by using

some fixed suffixes that do not appear within the message.

2.5 Conclusion

We discussed the background of this research with the brief description of the
IPSEC, which is one of the main areas of application of hash algorithms. Next, a detailed
investigation of hash functions and message authentication codes that have been
developed so far was carried out. In this section, many popular cryptographic hash
functions and message authentication codes were elaborated. The attacks on hash

functions were described there after.

42

Chapter 3

Design Environment and Implementation Choices

The main objective of this research is to develop an efficient hardware design for
the hash algorithms widely used in Internet security, to give maximum speed and
minimum hardware utilization. In this chapter we discuss some of the main issues that

have to be considered in this effort.

3.1 Hardware vs. Software Implementation.

Today, software implementations of cryptographic algorithms are more prevalent
than hardware implementations. They provide more flexibility since any algorithm can be
executed on a processor. They allow ease of upgrading, ease of use and portability. But
there is a growing trend of many companies in security business in developing

T, i The hardware implementation of

cryptographic algorithms is thriving in the new century because of the growing
requirement for high speed, high volume secure communications combined with physical

security [53]. Hardware implementation is more attractive due to the fact that it can take

advantage of bit level and i ion-level ism that is not ible to general-
purpose processors [54]. A software implementer is trying to efficiently express an

algorithm in terms of an existing hardware device. Hence the speed of the software

43

implementation is restricted to the speed of the computing platform. Whereas a hardware
implementer is designing a device to perform the algorithm that has far more degrees of
freedom. He can explore different versions of the same design as alternatives. This is
clear when exploiting the parallelism of an algorithm. In software, the available execution

units of a processor are used to maximize A hardware i ion can

be designed to best exploit the inherent parallelism of an algorithm. As well, hardware
implementation can be optimized for speed or size. In this case size translates much more
directly into cost than in the case for software implementation.

Primarily hardware implementations can be targeted for two general technologies:

custom, k-1 d and Both of these
technologies have their own advantages and disadvantages. Typically these two are
known as Application Specific Integrated Circuits (ASICs) and Field Programmable

Devices (FPDs).

3.2 Implementation Using Custom Hardware

ASIC may be further categorized as full custom IC and semi custom IC. Full
custom ICs require the development of all the mask layers at the transistor level. Since it
does not use pre-compiled, pre-characterized cells, it is a time consuming process. The
full custom ASIC design methodology offers high system performance since special

attention can be given to critical devices and i il System can

be optimized by sensibly controlling factors such as device location, transistor sizing and

interconnecting (routing) length [55]. This process takes a long time and more personnel.

Hence this is expensive to manufacture and to design. The manufacturing lead-time is
about 8-weeks. Thus full custom ASICs are generally pursued only for performance
critical designs or high volume products, which can regain the initial investment.

In semi-custom ASICs all of the logic cells are predesigned and some (or all) of
the mask layers are customized. There are two types of semi custom ASICs: standard
cell-based ASICs (CBICs) and gate array based ASICs [56]. CBICs use predesigned
standard logic cells. These cells can also be used along with larger predesigned cells
known as mega cells such as micro controllers. The designer can place a cell anywhere
on the silicon and hence all the mask layers are unique to a particular customer. The
advantages of CBICs are saving time and reducing risk by using standard cells. The main
disadvantages are the cost of standard cell libraries and time needed to fabricate all layers
for each new design.

In gate-array (GA) based ASICs the transistors are predefined as a base array on
the silicon wafer by replicating a base cell. Only the top few layers of metal, which define
the interconnect between transistors, are defined by the designer using custom masks. To
distinguish these from other types of gate arrays, this type of ASIC is often known as
Masked Gate Array (MGA) [56]. The designer chooses pre-designed gate array cells
known as macros from a library. The base-cell layout is the same for each logic cell, and

only the interconnect (inside cells and between cells) is customized. There are three types

of GAs; hannel-less and GAs. The costs for all the initial

fabrication steps for an MGA are shared for each customer and this reduces the cost of an

MGA d to a full-custom or standard-cell ASIC design. These custom ASICs

45

provide a specific functionality for a particular design. The design must be implemented
all the way from the behavioral description to the physical layout and sent for the

expensive and time-consuming fabrication [56].

3.3 Field Programmable Devices (FPDs)
FPDs have a fast design turnaround. FPGAs are a complex version of FPDs. They
have no customized mask layers. The core is a regular array of programmable logic cells

that can be i d inati or

Basically the FPDs can be divided into three categories. Simple Programmable
Logic Devices (SPLDs), Complex Programmable Logic Devices (CPLDs) and FPGAs
[571.
SPLDs
All small FPDs including Programmable Logic Arrays (PLAs), Programmable Array
Logic devices (PALSs) and PAL-like devices come under this category. These are suitable
only for small designs.
CPLDs.
This is a large capacity device based on SPLD architectures interconnected on a single
chip. For commercial CPLDs the main switching methods are Erasable Programmable
ROM (EPROM) and Electrically Erasable PROM (EEPROM). Both methods use floating
gate transistor technology. Due to rapidly growing market, there are many CPLD
products including the Altera Max5000, 7000 and 9000 series and the Xilinx XC9000

series. CPLDs provide logic capacity of about 50 typical SPLD devices. So they can have

around 9000 system gates. They are widely used for many applications including high-
speed networking, power conscious portable designs and in-system programming
applications.

FPGAs

FPGAs consist of an array of uncommitted circuit elements (logic cells) and
interconnecting resources. The end user can configure it through programming. There are
two types of logic cells: multiplexer based (e.g. Actel) and lookup-table based (Xilinx,
Lucent). A basic logic cell has a fixed number of inputs and outputs and can implement a
certain set of functions. There are two classes of commercial FPGAs depending on the
switching technology: antifuse and Static-RAM (SRAM). Actel, Cypress, Crosspoint,
Quicklogic are some devices of antifuse technology. Antifuse-based devices are
programmed once and hold their programs across power cycles and are not mutable once
programmed. Xilinx, Altera-Flex, Atmel’s CLI family, Toshiba are some examples of

SRAM switching technology. These devices have the advantage of in-circuit re-

ility, but must be each time they are powered up and hence the
configuration data has to be stored in an external ROM [57]. FPGAs promote short time

to market, high flexibility with capability for frequent modifications of hardware and low

P! cost. For cr; i ication, they also have a capability to allow for
time sharing of one integrated circuit. Hence they provide many advantages for vendors
and users of cryptographic equipment [53]. Due to the immense flexibility of FPGAs by
incorporating a large amount of routing resources into a device, the gate-to-gate delays in

such devices are higher than those of ASIC devices. But it is still possible to overcome

47

such drawbacks by using more parallelism in the FPGA designs. Unfortunately complex
designs tend to create many more logic levels in FPGAs than ASICs and become difficult
to debug. As well, much of the mixed-signal functionalities available in ASICs are not
common in FPGAs. But today’s highly competitive market, the first product to market
establishes strong market share. In this case FPGAs provide an alternative that save

designers time in the final verification cycle and in the long ASIC design process.

3.4 FPGA Implementation of Cryptographic Algorithms

In general, hardware implementation can achieve superior performance compared

to software i ion. FPGA i ion is a highly ising all ive for

The fine ity of FPGAs matches

extremely well the operations required by most of the cryptographic algorithms.
Especially the basic operations involved in private key cryptographic algorithms such as
bit-permutation, byte substitution, lookup table readings and boolean operations can be
implemented in FPGAs more efficiently than in a general purpose computer. As well the

inherent ism of the i can be i exploited in FPGAs but not in the

serial ing of a uni i This was widely studied during the

process of developing an Advanced Encryption Standard (AES) by the National Institute
of Standards and Technology (NIST) [49] in the U.S. Apart from the rigorous security
analyses, AES candidate algorithms were studied for efficiency in both hardware and

software implementations. It has been seen that use of a simple cipher design with simple

48

operations that possesses both cryptographic and good overall cipher efficiency is
desirable for FPGA implementations [50].

The AES candidate algorithms involve boolean operations, modulo 2* addition
and subtraction, fixed point shifting, variable rotation, modulo 2*? multiplication, Galois
Field 2° multiplication and lookup tables [51]. Modern FPGAs have a structure of two-

array of logic units i via a large routing matrix.

Configurable logic units are comprised of look up tables and flip-flops. Lookup tables
can be configured as either combinational logic or memory elements. Modern FPGAs
have variable size RAM blocks, which can be used as memory elements or as look up
tables. The most complex operations of the block ciphers are the modulo 2%
multiplication and the variable rotation. The substitutions or S-boxes can be implemented
in either combinatorial logic or embedded RAM blocks. However due to the limited bit
width, limited number of RAM blocks and the higher switching time of the RAM
compared to that of a standard CLB slice elements, the latter option is not feasible [51].
‘When a cipher consists of larger S-boxes and more complex operations it becomes more
resource intensive. The basic operations such as bit-wise XOR, modulo 2°2 addition and

subtraction and fixed value shifting are implemented from simple hardware elements and

hence they are fast. The Galois field iplication in AES i is i
efficiently in hardware as it involves multiplication by a constant [51]. It utilizes fewer

resources than general iplicati At the cr i d level of the AES

candidate block ciphers, multiple operations can be executed concurrently. Some

operation modes (e.g. Electronic Code Book mode) allow concurrent processing of

49

multiple blocks of data. Hence if multiple rounds are implemented, any desired speed up
of throughput can be achieved compared to a single round implementation. FPGA also
provides agile key-context switching. This is the ability to generate key dependent data in
early rounds before the data is required. This avoids the excessive latency in context
switching that appears in software implementations [52].

There are several other potential advantages of cryptographic algorithms
implemented using FPGAs. Algorithm agility is one such benefit. Many security
protocols such as SSL and Internet Protocol Security (IPSEC) allow multiple
encryption/authentication algorithms. These are generally negotiated on a per-session

basis. For instance, IPSEC allows 3DES, Blowfish, CAST, IDEA, RC4 and RC6 as

with future i Algorithm agility offers the capability of switching of
cryptographic algorithms during operation. It is possible to upgrade a programmed device
with a new algorithm, which did not exist (or was not standardized) during design stage.
Swapping a standardized algorithm with a proprietary one or changing the mode of

operation are possible as well.

3.5 Device Selection

When examining cryptographic hash functions for hardware implementation,
various key aspects involving the selection of the target device, design development
environment and the design architectures emerge. It is clear that the number of input /
output (I/O) pin requirement would be a significant factor as the algorithms deal with

large data streams and the keys of minimum size of 64-bits (in case of HMAC-MD5)

50

[58]. The output also has at least 64 bits (truncated HMAC-MDS5 output). The MD5
algorithm utilizes 64 constants each of 32 bits in length. It would be reasonable for them
to be stored in a ROM. As well the necessity of exploring different architectures and
optimizing the design using various techniques, results in selecting a resource-rich
device. It should be able to provide the large amount of hardware resources and it should
be flexible so that the design can be optimized. Although the cost of high-end FPGAs is
relatively high, the rapid pace of developing these devices may result in the decrease of
the FPGA cost in the future market. Therefore a high-end FPGA device was selected for
this design. Based on the above requirements, the Xilinx Virtex XCV1000FG680-6 was

chosen as the target device.

3.5.1 Virtex Architecture

The XCV1000 virtex device comprises a 64 x 96 array of look-up-table based
configurable logic blocks (CLBs) each of which includes four logic cells (LCs). These
CLBs provide the functional elements for constructing logic. Each LC has a 4-input
function generator, carry logic and a storage element (Figure 14). Two logic cells form a
slice which is often used as the unit to express the hardware utilization. The function
generators are implemented as 4-input Look-Up-Tables (LUTs). Each LUT can be
configured as 16x1 bit synchronous RAM. Two LUTS can be combined to create a 16x2
bit or a 32x1 bit synchronous RAM, or a 16x1 bit dual port synchronous RAM [59]. The
storage element can be configured either as edge triggered D flip-flops or as level

sensitive latches.

51

I I
CIN CIN

Figure 14. 2-slice Virtex CLB [59].

The XCV1000 device has a 680-pin ball grid array package, which provides 512 I/O pins
and over one million system gates. The Virtex device incorporates several large block
select RAMs (BRAMs), organized in columns. These complement the distributed LUT
based RAM structure in CLBs. The XCV1000 has 32 block select RAM blocks. Each
block is a fully synchronized dual port 4096-bit RAM. These can be configured either as
RAMs or ROMs.

Virtex devices feature a flexible, regular architecture that comprises an array of
CLBs surrounded by programmable input output blocks (IOBs). All these are
interconnected by a rich hierarchy of fast, versatile routing resources (Figure 15). The
abundance of routing resources is attractive for implementing large and complex designs.

“VersaRing” facilitates pin swapping and pin locking, which are required for adopting

the existing PCB layouts when the device is redesigned [59]. Virtex device also includes

four clock delay locked loops (DLLS) for advanced clock controls.

DLL| 10Bs DLL)
VersaRing

CLBs

108s
VersaRing
BRAMs
swvua
Bupgesiap
saol

VersaRing
DLL| 10Bs DLL|

Figure 15. Virtex architecture overview [59].

3.5.2 Design Methodology

Basically two hardware design methodologies are available: Hardware Design
Language (HDL) based method and schematic based method. In general schematic based
designs give slightly better results in terms of area and speed compared to their HDL
based counterparts. However a schematic based method is not feasible for large complex
designs [51]. Hence an HDL based methodology, with Very High Speed Integrated
Circuit Hardware Description Language (VHDL) as the language, was chosen. For the
synthesis and implementation the tools provided by Canadian Microelectronics Company

(CMC) were used.

53

3.5.3 Design Flow
In these implementations, the FPGA design flow given by Xilinx was utilized.

Figure 16 shows the main steps of this flow.

Manggsr Functional Simulation Data.
v

Reports €————

Reports €————

PROM file formatter H/W debugger

Figure 16. FPGA Design flow [60]

Timing Simulation data

Initially the behavioral model of the design is implemented using VHDL. In this design
there are some standard operations for which we can use the Xilinx library cores, which
have already been optimized. These components can be generated using the Core
Generator. This is a tool used for parameterizing cores that have been optimized for
Xilinx FPGAs. The advantages of using a core based design process include shorter
design cycle time, reduced risks and improved performance through higher levels of

integration, among others [61]. The behavioral model is simulated for functional

54

correctness using Synopsys VHDL System Simulator (VSS). Then the VHDL model is
synthesized to create the netlist file using FPGA Express provided by Synopsys Inc.
During synthesis the design is flattened to a large number of processes that communicate
via signals known as nets. The netlist file is a data structure that describes all of the
components connected to each net [62].

In order to carry out the functional simulation, the design has to be translated
using the Xilinx flow engine. This uses the Native Generic Database Build (NGDBuild)
program to read the netlist file along with any constraints specified and create the NGD
file. The NGD file contains the logical description of the design expressed both in terms
of the hierarchy used when the design was first created and lower level Xilinx primitives
to which the hierarchy resolves [63]. Therefore this functional simulation is also known
as the post-NGDBuild simulation. If this is satisfactory the design is mapped. At this
level it is possible to carry out post-map simulation, which is a gate level simulation with
real gate delays and estimated delays for routing. This simulation is useful in determining
if there are obvious timing issues in the design before carrying out place and route [64].

Finally, after the placed and route (PAR), the post-route simulation is carried out.
This is a gate level simulation with real delays for the gates and routing. At this point the
static timing analysis is carried out. Using the NGD file it is possible to create a structural
VHDL file and a Standard Delay Format (SDF) file. SDF is an industry-standard format
for passing back-annotated delay information to the structural HDL. With these files the

timing simulation with back annotation can be carried out.

After the PAR step, the CLBs on the chip must be configured to implement the
behavior of the netlist components that have been mapped, placed and routed to them.
This is done by determining the values of configuration bits required to program the
device. This is called bit generation. By loading these configuration bits into the FPGA,

the device can be customized [62].

3.6 Hardware Architectures

The cryptographic hash functions studied in this thesis have an iterative structure

based on the method proposed by Merkle and Damgard [65]. The inherent sequential

nature of this structure provides only limited ities to enhance its

However several architecture options can be adopted. Loop unrolling architecture allows
for unrolling of multiple steps, up to the total number of steps required by the algorithm.
In this approach as the number of unrolled steps increases the hardware utilization
increases but the complete algorithm processing delay decreases through hardware
minimization across steps. Iterative looping is a subset of loop unrolling in which only
one step is unrolled. The iterative approach in general minimizes the hardware

but imizes the time i since it needs a large number of clock

cycles to perform a hashing. By implementing partially unrolled designs it is possible to
have a rmge of area vs. time trade offs. In this study, the following two extreme cases of
these hardware architectures are investigated:

e Full loop unrolling

o Iterative looping

56

Full loop unrolling

This architecture allows for unrolling of multiple rounds up to the total number of
steps required by the hash algorithm. In this case all the rounds are implemented as a
single combinatorial block. Operations such as variable shifting can be directly
implemented without any hardware such as barrel shifters. The number of required
multiplexers can be reduced too. However, while this approach minimizes the time for a

hash operation, it maximizes the hardware utilization.

Tterative looping

Only a generic step is implemented and it is iterated for the number of steps
required for the hash operation. This approach has a low register-to-register delay but
requires large number of clock cycles to perform a hash operation. In general, although it
needs extra components such as multiplexers and barrel shifters, the hardware utilization

is reduced.

3.7 Conclusion

In this chapter the i of FPGA i ion of cr

algorithms was discussed with a description of some previous studies related to AES

candidate algorithms. Here, several potential ges of
implemented using FPGAs were mentioned. Following the main issues of

implementation associated with this research, the design environment and

57

implementation choices were discussed. The architecture of the target device and the

design flow utilized for the synthesis and implementation were explained. Finally the two

architectures that were adopted for the i were briefly introd In the

next chapter the details of implementation of MD5, SHA-1 and HMAC-SHA-1 will be

presented.

58

Chapter 4

Implementation of MD5, SHA-1 and HMAC-SHA-1

In this chapter, various aspects of the implementation of MDS5, SHA-1 and
HMAC-SHA-1 algorithms are discussed. Initially the design details of the architectures
are explained and then the simulation results are discussed. The actual implementation

results and some imizati i are thereafter. Finally the

performance analysis is carried out for all the designs based on the implementation
results.

The design flow given in Section 3.5.3 was used throughout the implementation
process. The implementation involves several simulations at different stages. This
process assures the correct functionality of the design at each stage before proceeding to

the next level of the design flow.

4.1 MDS5 Implementation

MD5 algorithm is a block-chained hashing algorithm. The hash for a block
depends on both the block data and the hash of its preceding block. As a result, blocks
cannot be hashed in parallel. Each step consists of four additions, three component
logical operations, two table lookups and one rotation. The tree of operations can be

optimized by performing operations, which involve items not dependent on the previous

59

step, early. According to Figure 7, the item that depends on the previous step is word “B”
and hence the result of logical operation has a considerable delay. The optimized tree of
operation (assuming each operation takes one unit time) will be as given in Figure 17.
According to this one time unit step can be reduced from the times required for the

general structure given in Figure 7 [66].

B C D 4 \+/
NI\
Logical .

operation
N/
B* N °
- Vakue depends on <
mmw AN /
¥
B**- Value that next step [
depends on B

Figure 17. Optimized operation tree
As discussed in the previous chapter, two architectural options are investigated
and implemented: iterative looping and full loop unrolling. Both architectures are
implemented at the behavioral level in VHDL, synthesized and functionally simulated.
After verifying the functionality, the design undergoes the process of the flow engine.

The ionality of the PAR i ions is then re-simulated with back ted

timing using the same test vectors used in functional simulation, thereby verifying that

the i ion of the design is In both designs, it is assumed that the first

two phases of the algorithm have already been performed and the input of message

blocks can be controlled according to the state machine states.

60

4.1.1 Iterative Architecture

By implementing a generic step of the MD5 algorithm, a looping architecture
with 64 iterations provides the greatest area optimized solution. In this design “MD5
iterative core” is the generic step, which is shown in Figure 18. A few additional
multiplexers and a barrel shifter have to be used to perform the selection of the round
function and the variable shifting in each round. Among the several components, the
block select RAMs, ROMs, adders, registers and multiplexers are parameterized using

core generator modules of the Xilinx tool.

v g
Figure 18. MD5 iterative core

61

The block diagram of the iterative design data path is shown in Figure 19. The
message is loaded using a 32-bit bus “X_in" and the digest appears as four 32-bit words.
The “X_in counter” provides the addresses (X_count) for 16 words of a message block to
be written into the RAM modules. The “X_sel” signal from the “MD5 iterative state
machine” provides the address for reading the appropriate message word from a RAM
module. The “RAM select counter” is used to count the cycles required to switch

between the two RAMs for reading and writing.

Load_done
X.n 32 J' X_sel
OV sol
. Func_sel
(Digest) MDS iterative
core
T X addr
Koot T RAM select
- XCsel MDS iterative counter
Inf, J:oumﬂ Count_ . ;;
unt_en
Start Count_done X x
_—A—_J ! Rment_reset oK'
CLK - e . &
Reset_state Rment_en
End_msg
Done

Figure 19. Block diagram of MDS5 iterative design.

The “MDS5 iterative state machine” provides all the control signals required for all the
operations. The basic state diagram is shown in Figure 20. This has 68 states including

the three states required for initializing and loading the very first block to the core. The

62

subsequent block operations need 65 states. An important feature of this design is the
loading of message blocks in parallel with computation. The two RAMs can be utilized to
load the next block while the present block is being used in computation. This eliminates
the loading time from the total time to process all but the first block. The 512-bit message

block is loaded to the core using a 32-bit bus.

Count_done

EHTMSQ/

Step 17 - step 64 {stopt - stept6

End_msg / Dong :' ’ i

Reset_state

Figure 20. State diagram for MDS5 iterative design

The “Reset_state” signal initiates the state machine and the counters at the “idle” state.
Then with the “Start” signal the function starts with moving to “get_set” state. The initial
vectors are loaded in parallel to the input register and to a buffer. The initial vectors as
well as the chaining variables are kept in this buffer until the 64 step to get added with
the last result to form the chaining variable for the next block. Then during the “loading™
state, the first block is loaded to the “XRAMI" using the addresses given by the “X_in
counter”, After that the state machine starts to provide addresses for reading of

“XRAM1". Using the first 16 addresses provided by the state machine, the next block is

63

written to “XRAM2”. After the 64" step, “XRAM?2” is read. During the first 16 steps of
processing the second block, the third block is written to “XRAMI”. This reading and
writing of RAMs alternates in every 64-clock cycles. Subsequent blocks utilize the
previous chaining variable as their initial values. At the end of 64" step, if the
“End_msg” signal is asserted, digest appears at the output as four 32-bit words. The

“Done” signal indicates that the digest has been created.

4.1.2 Full Loop Unrolled Architecture

The full loop unrolled i has a 64-step inati logic core as

shown in Figure 21. This provides the best time-optimized solution.

xin —7

(Message)

X_in_Count

A_out Bout Cout D_out

Figure 21. MDS5 full loop-unrolled core

In this architecture all the elements of each step are implemented as
combinational logic. The barrel shifter has been replaced by direct wiring of appropriate
shifted bits in each step. As with the iterative design, the use of double buffering (“XX"
and “YY”) eliminates the loading time from the critical timing path. The next block is
loaded during the computation of the present block. “IV ROM” provides the initialization
vector for the first step. The “Load_done” signal makes the initialization vector and the
chaining variables available for the first block and for the subsequent blocks respectively.

During computation of the digest for a block, the next block is stored in buffer
“YY” and after the computation the “YY2XX" signal goes high and hence “XX” obtains
the new input for the next computation. The block diagram of the complete data path is

given in Figure 22,

Xin o En2
(Message) >
MD5
" full loop CV_sel
Aout — unolod Load_done
B_out R
(Digest)) ¢_out 2
D_out
X_in_count
N MDS5 full loop
Wakicoume unrolled
Count en state machine
X_in counter |7
san * Count_done T A T
Reset Stz - T
GK H T
Done
End_msq

Figure 22. Block diagram of full-loop-unrolled design.

65

In addition to the core, the other main components are the state machine, “X_in counter”
used for loading the blocks to the core and “Wait_counter” utilized to count the number
of cycles for the combinational logic delay of the computation.

Similar to the iterative design, the “Reset_State” signal initiates the state machine
and the “X_in counter”. The initialization vectors are taken into the register “CV_Reg”.
With the “Start” signal, the initial block is loaded to buffer “YY” and right after that
“YY2XX" signal loads it to buffer “XX” and the computation is commenced. During
computation, the next block is loaded to buffer “Y'Y”. When all the blocks in the message
are processed, “En2” signal makes the digest available at the output of register,
“Digest_Reg".

The state machine is simpler than that of the iterative design. It has 11 states
including idle initializing and loading states as shown in Figure 23.

Gount_gene
D
oo«

‘Wait_done

Figure 23. State machine for full loop unrolled design.

66

As in the iterative design, the “Reset_state” signal initiates the state machine and
the counters at the “idle” state. Then with the “Start” signal the function starts by moving
to “pre_load” state. The initial vectors are loaded to the input register. The first block is
loaded to buffer “YY” during loading state and then it is transferred to buffer “XX”
during “buff_transfer” state. In the state “computing-01" the next block is loaded to
buffer “YY” while the chaining variable for the present block is being calculated. In the
state “computing-10” the end of the message (“End_msg”) is checked. If “End_msg” is
asserted the present calculation is continued in “pre-done” state otherwise the next state
will be “computing-11" state. When the state is “computing-11" the computation of
chaining variables of the intermediate blocks is carried out. The chaining variable of the
last block, which is the digest, is computed in “pre-done” state. Finally the “Done” signal
is asserted in “digest_done” state. The output holds the digest in “MD5_digest” state until

the chip is reset by “Reset_state” signal.

4.1.3 Si ion, Synthesis and Impl ion Results

Iterative Design

The implementation followed the design flow described in Section 3.5.3. All the
simulations were carried out using the test vectors given in [4]. Appendix Al gives the
complete simulation results. Figure 24 gives a functional simulation result. This has to be
studied along with Figure 18 and Figure 19. The test message and the expected results in

hexadecimal are given below. These are represented in little endian format.

67

Test vector:

ABCDEFGHIKLMNOPQRSTUVWXYZabedefghijkimnopgrstuvwxyz012345

6789

Expected digest (grouped in words):

D174AB98 D277D9F5 A5611C2C 9F419D9F

The 496-bit long message has to be appended with 463 zeros preceded by ‘1’. Then the

64-bit representation of the length of the message (“000001F0”) is appended. The words

of the resulting message are given below:

44434241, 48474645, 4C4B4A49, S04F4EAD, 54535251, 58575655, 62615A59,

66656463, 6A696867, 6E6D6C6B, 7271706F, 76757473, 7A797877, 33323130,

37363534,

00000000,

00000000,

00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000,

00000000, 00000000, 000001FO, 00000000.

Hence, this message has two 512-bit blocks.

‘The signals shown in Figure 24 are related to those of Figure 18 as follows:

imsl:
ims2:
ims3:
ims4:

ims6:

CV_sel ims7: Shift_amnt ims12:
“Func_sel ims8: T_addr ims13:
Init ims9: X_count ims14:
Enl ims10: Count_done imslS5:
X _sel imsll: WE1L ims16:

68

XEN1
X_mux_sel
X_addr
Load_done

Count_en

ims17:
ims18:
ims19:
ims26:

ims27:

En2

WE2

XEN2
Rmcent_reset

Rmcent_en

The first block of message is written to X_RAMI using the address “X_addr” (ims14)
provided by “X_in counter”. During this time the “Ram_select_counter” is disabled by
setting the signal “Rment_reset” (ims26) high. As “Load_done” signal (ims15) becomes
high the state machine starts to give the addresses for loading the next block to X_RAM2.

C

y, the time jon of first chaining variable begins. Now the
“Ram_select_counter” is enabled for alternating the RAMs for reading and writing. The
signals “WE1" (ims11) and “WE2” (ims18) are asserted accordingly. Since the reading
of first 16 words is in sequence, those addresses can be used for writing the next block on
to the other RAM. At the end of the message the “Start” signal goes low and after the last
step the four outputs, A_out, B_out, C_out and D_out hold the message digest.

The interface of the synthesized MDS5 iterative design is given in Figure 25. The
design was implemented using medium effort for synthesizing and PAR. Then the

process was repeated with high effort. Next, according to the critical path timing details,

“Period” timing int was i Different int values were applied to

get the best timing result.

69

uSisap JATEIAN] JO UONTINUIS [PUONIUN] “pT NBL]

70

CLk [H>» A aut<atip>
Reset_state [HC>Baut<at: o>
Star t [H»Cout<atia>
X_1n<31: 8> [Co M>D_out<3l:a>
end_nsg [> H—> Done

Figure 25. Interface of the MD5 iterative design

In the case of the iterative design, for all the implementation trials of different
effort levels or constraints, the utilization of the external IOBs was 161 out of 512 (31%)
and the block RAM usage was 2 out of 32 (6%). The number of slices used for this
architecture was significantly low. It was 877 out of 12288 (7%) and from this the barrel
shifter utilized 288 (2%). There is 4% utilization of three state buffers (TBUFs). The
summary of timing reports is given in Table 1. In this table the critical path delay is the
delay for a single iteration.

Table 1. Timing report summary of MDS iterative design

Medium High High Effort
Effort Effort with a
Timing
Constraint
Number of slices (% of total) 7% 1% 7%
Number of I/O block (% of total) 31% 31% 31%
Logic delay (% of total) 258% 31.7% 37.1%
Routing delay (% of total) 742 % 62.3% 629 %
Critical path logic levels 16 33 25
Total delay of critical path (ns) 39.57 35.75 34.68

71

The critical path differed for different implementation trials. However, as the effort level
becomes higher and the constraints get tighter, the critical path logic level has been
changed. But this has been limited to the CLBs, which have already been utilized for the

design during implementation with medium effort. Hence the total slice utilization has

not been changed. The maximum delay of the critical path decides the frequency at which

the design can operate. According to the timing simulation the maximum frequency of

the design was 28.83 MHz. The performance is discussed in Section 4.4.

Full loop unrolled design

The same procedure used for the iterative deign was adopted for implementation of full
loop unrolled design. The functional simulation results, for the same set of test vectors
used in iterative design, are shown in Figure 27. This has to be referenced to the Figures
21 and 22. Initially the test message has to be prepared by adding the padding bits and
length field as described for the iterative design. As “Reset_state” becomes low and
“Start” becomes high, the initial vectors appear at the output of “CV_reg™: A_o, B_o,
C_o and D_o. The “X_in counter” is enabled by “Count_en” signal (cnt_en) for loading
message blocks to the array “YY” during the states “loading” and “computing11”. It is
disabled during the other states. The address for each 32-bit word is provided by
“X_in_count” signal (count). The first block is written to both “YY” and “XX” arrays, as
the “YY2XX" signal (Y2X) is high during “loading” state. When it is done the
“Count_done” signal (cnt_done) becomes high and the block is used for computation of

the first chaining variable. The “Wait_counter” is enabled as the “Wait_reset” (wt_rst)

signal becomes low. Unlike the iterative design, the computation time in this case is a
combinational delay of the critical path of the design. This delay is allocated by the
“Wait_counter” by counting a fixed number of clock cycles (60 cycles in this case). The
actual number of clocks has to be obtained according to the timing simulation results
after the design is place and routed. After the allocated time “Wait_done” (wt_done)
signal becomes high and the first chaining variable is available at the output as well as at
the output of the “CV_reg”. Then “YY2XX" signal (Y2X) becomes high and the next
block is loaded to the array “XX” and it becomes available to the core for computation.
After the second computation the last chaining variable appears as four 32-bit words:
A_out, B_out, C_out and D_out. This is the expected digest in the little endian format:
“D174AB98D277D9F5A5611C2C9F419DIF".

The hardware interface of the synthesized full loop unrolled design is shown in
Figure 26. As in the case of the iterative design, here also for all the three-
implemenialion trials the utilization of the external IOBs was 162 out of 512 (31%). The
number of slices used for this architecture was 4838 out of 12288 (39 %). There was 2%

utilization of three state buffers (TBUFs).

e M A_out2<31: B>

Start [H>B_out2<at:n>

X_1n<31:8> [Com > C_out2¢at B>

end_nsg > M D_cutz<at: o>
reset H—>done

Figure 26. Interface of the MD5 full loop unrolled design

73

......

.....

The summary of timing reports is given in Table 2. In this table the critical path delay is
the delay for all the 64 steps.

Table 2. Timing report summary of MDS5 full loop unrolled design

Medium High High Effort
Effort Effort with a Timing
Constraint
Number of slices (% of total) 39% 39% 39%
Number of /O block (% of total) 31% 31% 31%
Logic delay (% of total) 37.8% 40.7 % 43.6 %
Routing delay (% of total) 62.2 % 59.3 % 56.4 %
Critical path logic levels 857 860 882
Total delay in the critical path (ns) 1195.90 1121.01 1054.12

According to Table 2, the optimization has improved the timing performance by
approximately 12 %. Although the logic level in the critical path has been increased,
there has been a reduction in the routing delay. Due to the combinational nature of this
design, the block select RAMs could not be used for memory modules. The constructs
used to build the RAMs and ROMs have been configured using the LUTSs. The possibility
of optimizing using high levels of efforts and timing constraints has been limited owing
to these factors.

The maximum clock frequency at which the design can operate does not depend
on the delay of the critical path, as it is purely combinational. Only the loading time of
the very first block into the design core depends on this clock frequency. It has to be

decided by the maximum clock rate at which the controller can generate the signals

5

without any set up violations. For this purpose the timing simulation was done for the
controller separately and the minimum clock period was found to be 14 ns. This will be
discussed later, under the performance analysis. The timing simulation at this frequency

is shown in Appendix A2.

4.2 SHA-1 Implementation

The structure of SHA-1 is based on that of the MD4 algorithm. Hence many of

the same modules used for MDS5 can be adopted for SHA-1 as well.

4.2.1 Iterative Architecture

As given in Section 2.2.5, for SHA-1, the words processed in each step are
derived from the words of the block being processed. The initial 16 words, which are
used for the first 16 steps are directly obtained from the incoming message block. While
they are being processed, the next words (17 word and onwards) can be calculated by
XORing four words from the previous 16 words together. In this case four words have to
be read at a time and the calculated word has to be stored in a suitable RAM to prevent
any clash between read and write operations among the modules in future steps. This can
be achieved by using eight RAM modules each of size 512 bits. The arrangement of the
RAM modules (RAM setup), which is an important part of the iterative design, is given

in Figure 28.

76

The initial 16 words are written into eight RAMs during the loading period of the
block. Thereafter four RAMs are read at a time and " word (t 2 17), W, is calculated
while processing the first step using following relationship:

Wi=S' (Wiis @ Wit © Wig @ We)
where, S' is circular left shift of 32- bit argument by 1 bit. This is repeated until all the

80 words are available for computation.

Xn

Figure 28. RAM setup for creating 80 words.

The calculated word is written in a RAM, which will not have to be read and written at
the same time in a future step. The read and write process of the RAMs are given in

Appendix B. Using this RAM arrangement each step obtains the corresponding block

7

word for that step. The iterative core of the design was constructed as in Figure 29. As in
MDS5, the adders, multiplexers, registers, RAMs and ROMs were generated by
parameterizing the core generator modules. SHA-1 has no variable shifting in its
compression function but has a fixed circular rotation. This can be easily implemented by
direct wiring of the shifted bits. SHA-1 uses only four distinct constants, which are stored
in a small 4-word ROM, “T_ROM”.

Vel Load_done

['“”’”il MR

A

i 160[aql Ho
cv M

Ul fes]

INTER X
M En2
- &
160

Figure 29. SHA-1 iterative core
As mentioned earlier, an iterative looping architecture provides the most area-
optimized solution where a few multiplexers and RAMs are the additional hardware

components. The block diagram of the complete iterative SHA-1 is given in Figure 30.

78

The main components are the “SHA_counter”, the “SHA_1 Iterative Core” and the “State

Machine” with 84 steps.

32
X_in /
SHA_1
lterative
Core
Digest
CLK 32
ount_done,
—>| SHA_counter Sount State Machine
Init
Count_en
Start T
Reset_state
Done
End_msg

Figure 30. Block diagram of iterative design
The 512-bit message block is loaded to the core using a 32-bit bus. While the
“Reset_state” signal initiates the state machine and the counters, the “Start” signal begins
the operation. The initial vectors are loaded in parallel to the input registers (A... E) and
to the buffer (A_buf....E_buf). The initial vectors as well as the chaining variables are
kept in the buffer until the 80 step to get added with the last result to form the chaining

variable for the next block. Initially the first block is loaded to the “RAM set up” using

79

the addresses given by the state machine. Then a particular RAM module is read to obtain
the appropriate word for each step using the address given by the state machine.
Subsequent blocks utilize the previous chaining variable as their initial values. The digest

output comes as five 32-bit words.

4.2.2 Full Loop Unrolled Architecture
This architecture is similar to the full loop unrolled architecture of MDS. In full
loop unrolled architecture, the core has an 80-step combinational logic block as shown in

Figure 31. All the elements of each step are implemented as combinational logic.

w

Xin
(Message)

X_in_count

Figure 31. SHA-1 full loop unrolled core
In this architecture all the elements of each step are implemented as combinational logic.

Again, the use of double buffering (“XX” and “YY") eliminates the loading time from

the critical timing path. The next block is loaded during the computation of the current
block. “IV ROM” provides the initialization vector for the first step. The “load_done”
signal makes the initialization vector and the chaining variables available for the first

block and for the blocks i During ion of the digest for a

block, the next block is stored in buffer “YY” and after the computation the “YY2XX”
signal goes high, hence the array “XX” obtains the new input for the next computation.

The block diagram of the complete design is given in Figure 32.

] En2
Xy Load done
CV_Sel
& 'su’ﬁ“‘\"-‘ X in_Count
Core YY2xx
Digest
CLK -
Count dong—
Count
SHA_load_ e] State Machine
counter +
&Lount en
- Wait done
SHA_wait_
counter Wait_end
Wait_reset
Start
Beset state
End_msg
Lone

Figure 32. Block diagram of SHA-1 full loop unrolled design

81

The state machine has eleven states. Further, the design has two counters,
“SHA_load_counter” and “SHA_wait_counter”. The former is used for loading the
blocks to the core and the latter is utilized to count the number of cycles for the
combinational logic delay of the computation. The “Reset_State” signal initiates the state
machine and the “SHA_load_counter”. The initialization vectors are taken into the
register “CV_Reg". With the “Start” signal, the initial block is loaded to buffer “YY" and
then “YY2XX signal loads it to buffer “XX” and the computation is commenced.
During computation, the next block is loaded to buffer “YY”. When the state machine
observes the “End_msg” signal as high, all the blocks of the message are processed. Then
“En2” signal makes the digest available at the output of register, “Digest_Reg”. The

“Done” signal indicates the completion of the computation.

4.23 Si ion, Synthesis and i

Both architectures were behaviorally simulated and then synthesized. The design
was initially synthesized and implemented with medium effort. The process was repeated
several times with high efforts and with timing constraints. During implementation,
functional simulation was carried out and then timing simulation was done with back
annotation following synthesis. All the simulations were carried out using the test
vectors provided in secure hash standard [8].

Tterative Architecture
The simulations were carried out using following test suite. All the values are in

hexadecimal. The 32-bit values are stored in registers in big-endian format.

82

Test vector: abc
Expected digest (grouped in words): A9993E36 4706816A BA3E2571
7850C26C 9CDOD8ID
The ASCII binary code of the test vector is “0110001 01100010 01100011 (61 62 63 in
hexadecimal) and the message length is 24 bits. According to the algorithm, initially “1”
is appended and then 423 “0”s are appended. Then the 64-bit representation of message,

00000000 00000018” is appended at the end. The resulting block is as follows:

61626380
00000000 00000000

00000000 00000018.
The simulation was performed using a 20 ns clock period. Figure 33 shows that, at the
end of “loading” state the signal “Enl” makes the initial value available for step 1.
Concurrently it is stored in the four 32-bit buffers “A_buf”, “B_buf”, “C_buf”, “D_buf”
and “E_buf”. During the loading time, all the 8 RAMs are enabled for writing by exerting
write enable signals (wea, weal, etc). The addresses are taken from the counter through
the state machine. During the 80 steps reading from and writing into each memory
module are done in alternative manner. The primitive function for each round is selected
by the signal “Func_sel”. The RAM setup controls (Figure 29, 30) make the appropriate
word “x_in_read” available at the RAM setup output for each step. At the end of 80 step
“En2” is asserted and the output is available. In this design double buffering of data
loading has not been employed. However this could be achieved by employing several

methods. One of the methods is to have two identical RAM setups and alternating them

83

for different blocks using a counter. Another method is to re-use the memory locations of
the RAM setup after the contents are used and by carefully managing the read and write

operations.

“uS1sop 9AnRIAN [-YHS JO UONE[NUIIS [EUONOUN, "g¢ AMIL]

85

The interface of synthesized SHA-1 design is shown in Figure 34.

Lk o H> A_outz<at:

End_nsg [> B_outz<at:

Start o] H—>C_outz<an

) H > D_cutz<al:
X_in<31:8> > | 7 Done

meswll] H—> e _outz<al

Figure 34. Interface of SHA-1 design

8>
B>

8>

8>

£ B>

For the three-implementation trials shown in Table 3, utilization of external IOBs was

194 out of 512 (37 %). The number of slices used for the above architecture was 1446 out

of 12288 (11 %). Furthermore there was 10% utilization of three state buffers (TBUFs).

Timing reports of the SHA-1 iterative design are summarized in Table 3. In this table the

critical path delay is the delay for a single iteration.

‘Table 3. Timing report summary of SHA-1 iterative design

Medium High High Effort
Effort Effort witha
Timing
Constraint
Number of slices (% of total) 1% 1% 1%
Number of /O block (% of total) 37% 37% 37 %
Logic delay (% of Total) 179 282 37.1
Routing delay (% of total) 82.1 71.8 62.9
Critical path logic levels 24 32 40
Total delay in critical path (ns) 70.917 63.24 52.996

87

The routing delay in the critical path has been reduced by 23 % with the use of high effort
and period timing constraint. The use of many core modules and avoiding components

such as barrel shifter are among the reasons for the above achievement.
Full Loop Unrolled Architecture
For the simulation, following test suite was used. The test vector is a collection of

English letters and the digest is in hexadecimal.

Test vector:

Expected digest: 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1

According to the algorithm the padded message in words is:

61626364 62636465 63646566 64656667 65666768 66676869 6768696A

68696A6B 696A6B6C 6A6B6CED 6B6CEDGE 6C6DEESF 6DGECFT0

6E6F7071

00000000 00000000 00000000 00000000

00000000 000001C0.

The functional simulation results of full loop unrolled architecture are shown in Figure
35. Most of the signal operations are similar to those of the MD5 full loop unrolled

design. The signal “YYYtoXXX" transfers the loaded data from array “YY” to “XX”. At

the end of computation the signal “IMMM]1” which indicates the “Load_done” signal
makes the chaining variable available at A_o, B_o, C_o, D_o and E_o for the
computation of second block. When the “End_msg” is observed the last chaining variable
is appeared at the output with the asserted “Done” signal. The implementation results are
summarized in Table 4. The slice utilization was 6963 out of 12288 (56%) and IOB
utilization was 194 out of 512 (37 %). There was only 2% use of three state buffers. The
timing simulation showed that the minimum clock period of the design was 25 ns. As in
the MD5 full loop unrolled design, only the loading delay of the first block is affected by

this clock

The loading and ing times are analyzed under performance

analysis in Section 4.3. In this table the critical path delay is the delay for all the 80

steps.
Table 4. Timing report summary of SHA-1 full loop unrolled design
Medium High High Effort
Effort Effort witha
Timing
Constraint
Number of slices (% of total) 56 % 56 % 56 %
Number of /O block (% of total) 371% 37% 37%
Logic delay (% of total) a1 46 518
Routing delay (% of total) 59 54 482
Critical path logic levels 1136 1263 1337
Total delay in critical path (ns) 1097.3 1009.8 906.2

‘uBisap pafjorun ooy [[ny [-VHS JO UOHE[AIIS [PuORoUN ‘g HInB

4.3 Performance Analysis of MD5 and SHA-1

The timing analysis and throughput calculation of the three designs can be performed as
follows. The two cases with and without the message loading delay are illustrated in
Figure 36 and 37.

‘With loading delay:

lLoadingl |Cump\lling cvi | Loading2 | Computing CV2

Tioad Teompute Tioad

Throughput = (512)/ (Teompue+ Tioad) bits/sec
Figure 36. Timing diagram with loading delay

‘Without loading delay (double buffering data):

I LoadinglJ Computing CV1 | Loading3 | Computing CV3 [
>

Tioaa Teompue

l Loading2 LCompudng cv2 Ll.oading4] lCompul.ing cva

Tiost Teompue
Throughput = (512)/ Toompu bits/sec

Figure 37. Timing diagram without loading delay

‘We now discuss the results each design with respect to the timing reports.

91

MDS iterative design
The use of two 512-bit RAM modules to double buffer data avoids loading delay. The
minimum clock period obtained was 34.68 ns (from Table 1). So the loading time and
computation time can be found as follows:

Tioad = 16 x 34.68 ns = 554.88 ns

Teompue = 64 X 34.68 ns = 2219.5 ns
The expected throughput (from Figure 37) is = (512) /(2219.5 ns)= 230.68 Mbps. In MD5
iterative design the critical path minimum delay is the minimum delay of the clock.
‘Without the use of dual RAMs the throughput would be 184.5 Mbps (from Figure 36). It
was evident that the use of dual RAMs leads to almost 25% improvement of the timing
performance. The area utilization of this design was considerably smaller (11% of slices).
The unuséd area could be used to implement several designs in the device and process

multiple messages in parallel as far as the I/O ports can be utilized successfully.

MDS full loop unrolled design
For this désign the minimum clock period obtained was 14 ns. The minimum delay of the
critical path = 1054.12 ns (from Table 2). The loading and computation times are,

Tioad =16 X 14 ns =224 ns.

Teompue = 1054.12 ns.
The throughput with double buffering (from Figure 37) is (512)/(1054.12 ns) = 485.7
Mbps. Without the use of double buffering the throughput would be 400.5 Mbps. The

critical delay of this design is the i time, which is i of the clock

92

period. The use of double buffering has given 21% improvement. In this case the slice
utilization was 39%. Hence it is possible to have two design modules in the same device

and process two different messages in parallel.

SHA-1 iterative design
In our design the loading time has not been eliminated. The minimum clock period was
52.996 ns (from Table 3). Hence the loading and computation times are,

Tioad = 16 x 52.996 ns = 847.936 ns

Teompue = 80 X 52.996 ns = 4239.68ns
The expected throughput (from Figure 36) is (512) /(847.936 + 4239.68ns) = 100.636
Mbps. If the loading delay is eliminated the throughput would be around 120.764 Mbps,

which is a 20 % improvement.

SHA-1 full loop unrolled design.
The minimum clock period obtained was 25 ns and the minimum delay of the critical
path was 906.284 ns (from Table 4). Hence the loading and computation times are,
Tload = 16 x 25 ns = 400 ns
Teompue = 906.284 ns.
The throughput (from Figure 37) is (512)/(906.284 ns) = 565 Mbps. It would be 391.95

Mbps with the loading delay (from Figure 36). So the double buffering has caused 44%

imp; in which is signi d that of the MDS design. When

the two full loop unrolled designs are compared, the SHA-1 design showed better results.

93

The percentage routing delay of the critical path of full loop unrolled MD5 and SHA-1
were 56.4% and 48.2 % respectively. The device utilization of this design is fairly high
(56% slices). It is not possible to accommodate more than one design in the same device.
The ability to reduce the routing delay has become a major reason for better
performance of SHA-1 over MD5. In MD5 full loop unrolled design, the operations of
each step need a unique 32-bit constant that has to be read from a ROM. This ROM that
consists of 64 number of 32-bit words is configured with LUTs. The routing associated
with this operation is tighter than that of SHA-1, which has only four distinct constants.
Therefore the full loop unrolled design of SHA-1 could be optimized better than MD5.
However, in iterative design the percentages of routing delays of MD5 and SHA-1 were
almost the same. Total critical path delay of the iterative core of SHA-1 was higher than
that of MDS. This is due to the larger number of logic levels in the iterative core of SHA-

1 compared to MDS5. Therefore in iterative designs, MDS5 has better timing than SHA-1.

4.4 HMAC-SHA-1 Implementation

HMAC is a keyed message authentication code, which shall be used in
combination with cryptographic hash functions specified in a Federal Information
Processing standard (FIPS) [8]. Let H be the hash function initialized with its fixed Initial
Value, IV, which results in an n-bit hash value. The function HMAC works on inputs m
of arbitrary length, which is a multiple of 512 bits. It uses a single random string K as its
key. If the key length is greater than 512, it is input to the hash function to produce an n-

bit key. The recommended key length is 2 n. The HMAC can be expressed as follows:

HMAC (m) = H(K ® opad, H(K* @ ipad,m))
where K™ is K, padded with zeros on the left so that the result is 512 bits long, ipad is the
inner pad, which is the byte hex 36 repeated 64 (512/8) times and opad is the outer pad,
which is the byte hex 5C repeated 64 times. The symbol @ denotes the XOR operation.
Let the input m = mo, my...m.1. The HMAC block diagram is shown in Figure 38

[58](16].

512

Figure 38. HMAC operations

HMAC was

ped to fulfill the iency and other i of the
Internet along with a more rigorous analysis of security. In HMAC [67], the underlying
hash function is considered as a component that can be replaced if it is found to be weak

or when new more efficient or secure hash functions are developed. HMAC has been

95

chosen as the mandatory-to-implement MAC for IPSEC and is used in other Internet
protocols such as Secure Socket Layer (SSL).

To obtain the MAC there should be minimum of three hash operations. We
choose to investigate the implementation of HMAC using the full loop unrolled SHA-1
core. In the same manner, any architecture of SHA-1, or MD5 or other Internet specified

hash algorithm could be used as the underlying hash function.

4.4.1 Design Description

In the HMAC-SHA-1 design, the SHA-1 core is used to obtain the hash operation.
Similarly it is also possible to use the iterative SHA-1 or iterative or full loop unrolled
MDS5 as the cryptographic hash function for HMAC. The block diagram of the design is
shown in Figure 39. The full loop unrolled core is a sub module in the "HMAC_SHA-1".
The other main component of the design is the 16-state "HMAC_ state_ machine". The

two counters are used for the same purposes explained under SHA-1 implementation.

96

[
X in count Sha_load_
CV sel Count_en counter
i
7> HitoxX
b S200XX Count_dofe
i HMAC_state_{
K i S1toXX -
[Machine
~7-> HMaC_sHAL Rewiing T GiK
32| Core
end_msg Cw_lkk
A_out Kev
B_out Cv_lk WﬂfLSM Sha_wait_
_out VioX Wait_dong counter
_out oad done Wait_resel
out En2
3
T ax |

Figure 39. HMAC-SHA-1 Block Diagram
‘An important component in this design is the 16-state HMAC state machine for which the
basic state diagram is given in Figure 40. The "Reset" signal initializes the state machine
and counters. With the "Start" and the "Key_load" signals asserted, the particular key is
loaded to the "HMAC-SHA-1". Using this key, the initial blocks for the two hash
operations are prepared and stored in two arrays (S1 and S2) after which the first block is

loaded and the computation is started.

97

Count_done

Computing?

Computing3
Wait_done .

Wait_done
Figure 40. State diagram for HMAC-SHA-1 design

During the computation the next block is loaded. The signal "S1toXX" loads
the next block to the core after the computation. This is continued until the full length of
the message has been processed. When the end of the message is met ("End_msg"), the
resultant hash value is padded so that the length is 512 bits. This is appended to the

second initial value, which has already been created using the key. These two blocks are

hashed to create the MAC for the message. The "S2toXX" and "HtoXX" signals load the
first and second blocks respectively, at the appropriate states. "SHA_load_counter" is
used to load 16-word blocks to the core. "X_in_count" is the address of the block words
for loading into and reading from the core. "SHA_wait_counter” counts the time required
for a computation of one CV. The MAC will be presented as four 32-bit outputs,
“A_out”, “B_out”, “C_out”, “D_out” and “E_out”. Once the HMAC for a message is
done, if there is no key change, the computation can continue for the next message.
Otherwise a new key can be loaded using "Key_load" signal. The MAC can be chosen as

the complete HMAC result or a part of that depending on the requirement.

4.4.2 Simulation, Synthesis and Impl ion Results.

The si; ion, synthesis and i ion of HMAC-SHA-1 were performed

using the same design flow applied for implementations of previous designs. The
functional simulation result of the design is shown in Figure 41. The test case used for
this simulation utilizes a 25-byte key and produces a 20-byte HMAC. The test vectors

and the simulation details are as follows;

Test message: CD repeated 50 times.

Key: 10111213141516171819

The key and the message are loaded when the “New_message” and “Key_load” go high

when the “reset” signal is low. At the end of the key load, “S1toXX" goes high and the

array “XX" takes the initial block value, which is the XOR of the extended key and
“ipad”, The first chaining variable is calculated using the initial value and the result can
be seen in the registers “inter11”, “inter22”, “inter33” and “inter44”. At the end of the
computational time (64 clocks in this case) the signal “YYYtoXXX" goes high loading
the message block into array “XX”. At the end of calculation “S2toXX" becomes high
and the XORed value of the extended key and “opad” is loaded to array “XX". At the end
of this computation “H1toXX" signal becomes high and the padded hash value of the
message is loaded to array “XX”. As the “Start” is low, the HMAC value has appeared at
the output.

The design was initially synthesized and implemented with medium effort and
then it was synthesized several times with high effort and “period” timing constraint.

The design interface of HMAC-SHA-1 is shown in Figure 42.

1-VHS-OVNH Jo uoe[nuis [euojouny 1 218t

EETE

EEEES

Err

[T

Fssod oo

dll

101

(P1U09) 1-VHS-OVINH JO UOlE[nuWS [euonouny *1 2n3td

102

cLk [>+
K_in<31:8>
A0 g M-S A outz<at: o>

x_insza;: g M—>B_out2<3t: 8>
end_nsg o] H>C_out2¢3t:a>
H—>D_outz<3t: o>
kev-tosd [H>E outzeat: o>
neu_nessage >
reset [
HMAC _sha2

Figure 42. Interface of HMAC-SHA-1 design
The PAR results indicate that, in the cases where different efforts and constraints were
used, the slice utilization is 7517 out of 12288 (61%) and IOB utilization is 229 out of
512 (44%). So the design is well fitted to a single device. According to Table 5 the effort

level and period constraint has improved the performance by about 25%.

Table 5. Timing report summary of HMAC-SHA-1 design

Medium High Effort | High effort & Period
Effort Constraint
Number of Slices (% of total) 61 % 61 % 61 %
Number of /O Blocks 44 % 4% 44 %
Logic Delay (% of total) 36.4% 45.1% 52%
Routing Delay (% of total) 63.6% 2% 48%
Logic levels 1113 1235 1305
Total Delay (ns) 12129 1021.5 900.5

103

4.5 Performance Analysis of HMAC-SHA-1

The timing diagram for HMAC-SHA-1 operation for one single block message is given

in Figure 43.
Tioad Teompute
|Toad|ng blk1 | Computing H1 l ProcessingS2 | Processing H2
Tt Timpuee Tt Teompuie

Figure 43. Timing diagram for HMAC-SHA-1 operations.
According to Table 5, though timing optimizing has increased the number of logic

levels, it has not affected the slice utilization and routing delay has been reduced

ly. A ding to the area utilization, the design can be fitted to a single Virtex

device. The minimum total delay was 900.5 ns. The throughput of this depends on the
length of the message. As the length of the message increases the throughput gets closer
to the throughput of in-built SHA-1. Hence if the length of the message is Npu ,

Throughput = (Npi X512)/(Npux+ 3) X Teompuee) bits/sec
From Table 5, Teompue = 900.5 ns. Therefore,

Throughput = (N X 512) / (Nou+ 3) X 900.5 x 10°%).
For large messages the throughput would be almost as 568 Mbps, which is the throughput

of the underlying SHA-1.

In the same way, the maximum throughput of HMAC with MDS (full loop
unrolled) as the underlying hash function can be estimated as (Npi X 512) / (Noic + 3) X

1054.12 ns) = 485 Mbps when Nyy — 0.

4.6 Conclusion

The five designs of the three il have been ized and

implemented. Each design can be easily fitted into a single Virtex device. Some of the
optimizing methods have been explored to improve the timing performance. The
“Period” constraint has been effective for all the implementations. When a design
comprises components, which can be generated by parameterizing the library
components, the design can be well optimized using the features of the Xilinx tools. This
is because the components are well mapped into the target device and hence the less
amount of logic delay in the total delay of the critical path. The ability to reduce the
routing delay has become a major reason for better performance of SHA-1 over MD5,
Due to Lh'e reasons mentioned in section 4.3, the full loop unrolled design of SHA-1 could
be optimized better than MD5. However the total critical path delay of the iterative core
of SHA-1 was higher than that of MDS5 due to larger number of logic levels in the
iterative core of SHA-1 compared to MDS. Therefore in iterative designs, MD5 has a
better timing than SHA-1.

The throughput values obtained for the three algorithms can meet most of the
currently available IP bandwidths. Hence, FPGA implementation can be used as

in cr i for use in IPSEC. The results can be further

105

improved using more constraints, enabling delay based cleanup router passes and
hardware floor planning. The use of latest FPGA devices with more resources and better
speed performance will also provide better results. These three altogether are widely used
in Internet security, which deals with a large range of message lengths. The size of the
message has a significant impact on the performance of these algorithms. The next
chapter discusses the performance of HMAC and CBC-MAC considering the

characteristics of Internet traffic.

106

Chapter 5

Performance of MAC Algorithms for IPSEC

The cryptographic algorithms employed in Internet security must be able to
handle packets which may vary in size over a large range. Most of the cryptographic hash
algorithms process messages partitioned into blocks. Due to this fact the messages have
to be prepared by padding the required amount of zero bits to get an integer number of
blocks. The length of the message is also appended at the end. This process becomes a

considerable overhead when the short messages are more dominant in the message

stream. Hence the size of the message has a signi impact on the of
such algorithms.

The statistical properties of Internet traffic are complex and the amount of data to
be studied is very large. The understanding of Internet traffic is useful to study the
performance of authentication algorithms. In this chapter we will analyze the
performance of HMAC and CBC-MAC in the context of the traffic characteristics of the

Internet.

5.1 Previous Studies of Internet Traffic

Various attempts have been made over the years to study the nature of the wide
area Internet traffic. Many of the studies have used Internet traffic trace data as input to
evaluate specific protocol performance issues but have not concentrated on characterizing

the underlying traffic contained in the traces. Among them Feldmann et al. [67] have

107

performed a detailed characterization of Hyper Text Transfer Protocol (HTTP) response
traffic since the World Wide Web has a dominant influence in network dynamics. Figure
44 highlights the basic traffic characteristics of incoming and outgoing packets obtained
by Feldmann et al. for a one-week trace. According to this study, half of the outgoing
traffic consists of 40-byte Transport Control Protocol (TCP) acknowledgment packets,
contributing to a low average packet size of 123 bytes. The remaining short packets are
mainly HTTP requests. One-fifth of the incoming packets stem from 40-byte TCP
acknowledgements. According to this study, more than 60% of the incoming packets

have 552, 576 or 1500 bytes, that correspond to common maximum transfer unit sizes on

the Internet [67).

e J

c ®

S S 1

3

2

iz

2z

L

I

LS 4+ —— incoming
B X —— outgoing
o |
g

0 500 1000 1500
packet size (In bytes)

Figure 44. Cumulative distribution of packet sizes [67].

108

Several important observations have been made by the analyses of actual traffic

carried in the Internet backbone. The C i iation for i Data
Analysis (CAIDA) has performed studies on backbone traffic characteristics at a site
inside a major Internet traffic exchange point over a period of 10 months [68]. The traces
for the study were collected from an OC-3 ATM link using an optical splitter. The

distribution of IP packet sizes is shown in Figure 45.

100 T T T T T T T

Packets

\\
§
\
\

e 200 400 600 800 1900 1200 1400 1600
Packet Size (bytes)

Figure 45. Cumulative distribution of IP packet sizes[69].

According to this study, TCP has contributed to about 85% of the traffic in the
traces. A large portion of TCP traffic has been generated by bulk transfer applications

such as HTTP and FTP. The packet size has been categorized into three groups namely

40 byte packets (minimum packet size for TCP), which carry TCP acknowledgments but
no payload, 1500 byte packets (maximum Ethemnet payload size) and 552 and 576 byte
packets, from TCP.

A rule of thumb employed in some of the IP traffic analysis has three packet sizes
each having equal probability of occurrence. They are 40 bytes, 256 bytes and 1500

bytes, each having a probability of occurrence of one third [70].

5.2 IP Packet Size Models

Studying the behavior of IP packet size of the Internet messages allow the
estimation of actual performance of authentication functions such as HMAC-SHA-1 or
CBC-MAC. The average block size can be derived by analyzing the statistical
observations. For analytical purposes the probability density function (PDF) of the IP

packet size will be approximated as one of the following four cases:

Case (i)

PDF 1/(1500-40)

40 1500 Packet size (Bytes)

Figure 46. Uniform PDF

110

Case (ii)

PDF
03333 03333 03333
40 256 1500 Packet size (Bytes)
Figure 47. Rule-of- thumb of PDF
Case (iii)
PDF 0.5
03
02
40 576 1500 Packet size (Bytes)
Figure 48. Discrete PDF with 3 impulses
Case (iv) PDE| 05
0.005/(576-553)
0.15/(552-41) 0.06/(1500-577) | 0.15
0.115
\ P \
M
122
40 552 576 1500 Packet size (Bytes)

Figure 49. Discrete and Uniform PDF

111

Each case has a different degree of accuracy in modeling Internet traffic. Case (i) is the
straightforward assumption of uniformly distributed packet sizes; Case (ii) is a typical
rule-of-thumb; Case (iii) is a better rule-of-thumb; Case (iv) follows most closely Figure
4s5.

The average number of blocks per packet (I') can be obtained as follows. If the
number of blocks of the message of packet size i bytes is Nblk(i) and the probability of

the message has i bytes is p(i),

@
T'= Y, p(i)x Nblk(i) 6.1
&

5.3 Performance of MAC:s in Internet

HMAC-SHA-1 has been for message ication in several

network security protocols. The key reasons behind this are the provable security, free
availability, flexibility of changing the hash function and reasonable speed, among others.
The MAC based on the block ciphers such as CBC-MAC-DES [34] was generally
considered as slow due to the complexity of the encryption process. As well, since DES
has already been broken it is not recommended any more. However, after selecting the
AES encryption algorithm, this situation merits reevaluation as Rijndael [49] shows good
performance in both hardware and software and it has better security features than DES.
CBC-MAC is likely to be standardized as an AES mode of operation. For HMAC one
block has a size of 512 and for CBC-MAC analysis, we assume a block size of 128 bits

(as is the case for AES).

112

The CBC-MAC comes in different versions varying in details such as padding,
length variability and key search strengthening [71]. The general way of padding for
CBC-MAC is by considering the final input block as a partial block of data, left justified
with zeroes appended to form a full block [34]. Let us take the number of blocks of the
message of packet size i bytes for HMAC and CBC-MAC using AES (CBC-MAC-AES)
are Nblkyac and Nblkgs, respectively. According to the padding method described in

Section 2.2.5, Nblkyac can be obtained as follows:

[Gx8)/512141 if (ix8)mod512=0 or
Nolkyye = (ix8)mod512 > 448
[Gx8)/512] if (ix8)mod512 <448
Assuming the general way of padding described above has been adopted for CBC-MAC-
AES,
Nolkyes = [(i 8)/1281
5.3.1. Average Number of Blocks per Packet
The average number of blocks per packet of the IP traffic can be estimated
according to the four cases mentioned earlier.
Case (i):
In this case the PDF of the packet size is assumed to be uniformly distributed. From
Figure 46, the average number of blocks for HMAC can be estimated as follows. From

equation (5.1),

113

150

= Y [(0.5/1460)- Nblkyy,c ()]

=)
=634.

Therefore the average number of HMAC blocks for this model is 6.34.

Similarly the average number of blocks for CBC-MAC can be estimated as
1500

follows. For 128 bit block size,Z[Nblkm(i)] =71086. Hence from equation (5.1), the
=0

average number of CBC-MAC blocks for a uniformly distributed packet size, is I =

24.34.

Case (ii):
This is a rule of thumb used in some performance analyses related to IP traffic. From
Figure 47, the average number of blocks for HMAC can be estimated based on:
Nblkyac (40) =1
Nblkyac (256) =5
Nblkyac (1500) =24.
Therefore, the average number of HMAC blocks for the model used as a rule of thumb, is
10. The average number of CBC-MAC blocks also can be calculated in the same manner:
Nblkses (40) =3
Nblkses (256) =17
Nblksgs (1500) =94

Hence, the average number of CMC-MAC blocks for this model is 38.

114

Case (iii):
This model has a PDF with three impulses as shown in Figure 48. The average number of
blocks for HMAC can be calculated using:

Nblkyac (40) =1

Nblkuac (576) =10

Nblkyuac(1500) = 24
Therefore, using (5.1) the average number of HMAC blocks when the discrete PDF with
3 impulses model is used for the IP packet size, is 8.3. In the same manner the average
number of blocks for CBC-MAC can be estimated by noting:

Nblkses (40) =3

Nblkygs (576) =37

Nblkags (1500)= 94
Hence, the average number of CBC-MAC blocks for a packet size model with discrete

PDF shown in Figure 48, is 31.4.

Case (iv):
This model closely follows the cumulative distribution given in Figure 45. From Figure
49 the average number of blocks for HMAC can be estimated using:

Nblkyac (40) =1

Nblkyac (552) =9

Nblkyac (576) = 10

Nblkyac (1500) =24

115

From equation (5.1), the average number of HMAC blocks can be found as follows:

T'=(0.51)+ ﬁ[(O.IS/(Sl 1): Nblkyo (i)]+(0.02)9)+ f{(o.oos«z:;)). Nblk gy ()]
= “

+(0.115)(10) + ‘f‘:(o,oa /(923))- Nblk () + (0.15X24)
=

=
‘Where the summations of the number of blocks can be easily found as shown below:
§ Nblk e (i) = 2687 , ﬁmm @)=215, f)vblkm (i)=15558..
= = i
Therefore, the average number of HMAC blocks with this model, which closely follows
the actual packet distribution is used for the IP packet size, is I' =7.28.
In the same manner the average number of blocks for CBC-MAC can be
calculated using:
Nblkags (40) =3
Nblkags (552) =35
Nblkags (576) =37
Nblkyses (1500) = 94

From Figure 46 and equation (5.1) the average number of CBC-MAC blocks is given by

=053+ %{(0.15/(5 11)): Nblk g5 ()] + (0.02)(35) + f[(onos 1(23))- Nblk g5 (i)):
& =

Hence, the average number of CBC-MAC blocks for the model, which closely follows

the actual packet distribution, is 27.51.

116

5.3.2 Performance in Hardware
The performance of the FPGA implementations of HMAC-SHA-1 (using full
loop unrolled results of SHA-1) and CBC-MAC-AES is compared in the four IP traffic

cases previ ioned. The FPGA i ion results of Rijndael published by

NIST have been used for this analysis. An FPGA implementation of Rijndael has been
carried out using Xilinx Virtex XCV1000BG560-4 device by A.J Elbirt et al. [51] for the
evaluation of AES finalist algorithms. The clock frequency that has been obtained by
them for the loop unrolled architecture in feedback mode is 14.1 MHz. One block has
taken 6 clock cycles and thus a throughput of 300.1 Mbps has been obtained. The delay
for one block encryption is 426.5 ns. However, for comparison purposes the speed grade
of the Virtex device has to be taken as —6 as with our implementations. The change of

speed grade —4 to —6 gives i 28% of speed [60]. Hence, the

delay for block encryption would approximately be 307.08 ns.
The average time for calculating MAC using HMAC and CBC-MAC-AES can be

determined by the following relationships:

Average HMAC calculation time
= (3 +(I")) x(time for a hash] (5.2)
Average CBC-MAC calculation time
= (I"') x{time for a block encryption] (5.3)
The calculated values for HMAC and CBC-MAC-AES using equations (5.2) and (5.3)

are given in Table 6.

117

Table 6. Times for HMAC-SHA-1 and CBC-MAC-AES on FPGA for general IP traffic

Case () Case (i) Case (iii) Case (iv)
Average | Average | Average | Average | Average | Average | Average | Average
packet | packet packet | packet packet | packet packet | packet
size (in [time(us) size (in | time(us) | size(in [time(us) | size (in | time(us)
blocks) blocks) blocks) ‘blocks)
HMAC- | 634 821 10 1n71 |83 1018 | 728 925
SHA-1
c8ac-
MAC- | 2434 748 38 167|314 964 2751 845
AES

5.3.3 Performance in Software

Both HMAC-SHA-1 and CBC-MAC-AES were run on a 927 MHz Pentium II

machine. The C code which has been used for assessing the speed performance of

Rijndael by NIST [72] was used in CBC mode for CBC-MAC-AES. The plaintext of

128-bit was encrypted 1,000,000 times in CBC mode using a 128-bit key. The average

time for encrypting a 128-bit block was 1.14 ps. The C code of SHA-1 published by DI

to NIST

was used to

73]

the software

speed of hashing. The average time taken for creating a hash value for a 512-bit block

was 3.001 ps.

118

Table 7. Times for HMAC-SHA-1 and CBC-MAC-AES on software for general IP traffic

Case (i) Case (ii) Case (iii) Case (iv)

Average | Average | Average | Average | Average | Average | Average | Average
packet |packet | packet |packet | packet |packet | packet | packet
size(in | time(us) | size(n |time(us) | size(n |time(us) | size(in | time(us)
blocks) blocks) blocks) blocks)

HMAC- | 6.34 2803 |10 3001 |83 3391|728 30.84

SHA-1

cBC-

MAC- | 2434 2775 |38 4832 |314 3580 | 2751 3136

AES

5.4 Conclusion

According to Table 6 the average times of MAC calculations of the FPGA
implementations of HMAC and CBC-MAC-AES do not differ significantly. Particularly,
they are almost the same as the size of the packets becomes larger.

The software results given in Table 7 show that the timing performances of
HMAC-SHA-1 and CBC-MAC-AES do not have a significant difference. As observed in

FPGA implementations HMAC offers better timing performance as the packets become

larger. In general, the size of the packet has a consi impact on the of
cryptographic hash algorithms as the padding has to be carried out all the time even if the

message has a length of multiples of 512 bits. This becomes a large overhead for small

119

packets especially in case of HMAC algorithm. Most of today’s cryptographic algorithms
follow a sequential structure, which is difficult to pipeline. Many of them cannot meet
today’s speed requirements. Hence the new approaches of hash algorithms, which are
more efficient in speed, have to be explored. The next chapter discusses one of the new

approaches in message authentication.

120

Chapter 6

A New Approach: Universal Message Authentication Code

For many applications sufficient speed has already been obtained from algorithms
such as HMAC-SHA-1 [67] or CBC-MAC of a block cipher [33]. However for the most

some ive methods have to be identified. The well

speed
known technique for message authentication using universal hash functions seems to be
very promising as it provides schemes that are both efficient and provably secure under
reasonable assumptions [74]. During the last few years, progress has been made both in
theory and practice of universal hash functions. For example, Universal Message
Authentication Code (UMAC), a non-cryptographic hash algorithm has been developed.
This does not need to have any cryptographic hardness property but some combinatorial
properties that can be proved [46]. Halevi and Krawczyk have developed a very fast
scheme, multi-linear modular hashing (MMH) which makes optimal use of multiply and
accumulate instructions of the Pentium MMX processor [45] which provide small-scale
single instruction multiple data (SIMD) parallelism in its instruction set.

Recently, Back et al. have further improved the performance on high-end
processors with Universal Message Authentication Code (UMAC) construction, which is
faster than MMH on processors with fast multiplication [46]. The authors of UMAC
report a software performance of 5.6 G bits/sec on a 350 MHz Pentium IL In this chapter
the structure and the complexity of the UMAC algorithm, in terms of hardware

implementation, are discussed.

121

6.1 UMAC Construction

UMAC is a parameterized algorithm. Various low level choices have not been
fixed. The values for these parameters are chosen before the authentication generated by
UMAC becomes well defined. Hence instead of making generic compromises, an
application that uses UMAC can choose the parameters which best suit its requirements
or implementation environment. There are two sets of parameters chosen as UMAC-16
and UMAC-32. UMAC-16 is designed to exploit small-scale SIMD parallelism found in
modern processors and UMAC-32 is designed to do well on processors with good 32-bit
and 64-bit support. There are six basic parameters as given below.

Word length: The size of word in bytes can be either 2 or 4 bytes.

’ UMAC-32 uses 4 bytes.

UMAC output length: Specifies the length of the authentication tag in bytes. It can
be any value between 1 and 32 bytes. The default value is 8
bytes.

Block length: Specifies the message block length in bytes, which can be
any value between 32 and 2% bytes. The default value is
1024 bytes.

UMAC key length: Specifies the user supplied key length in bytes. This can be

' either 16 or 32 bytes. The default value is 16 bytes.

Endian Favorite: Specifies which endian orientation is used in reading data.

Operations sign: Specifies whether string operations are signed or unsigned.

122

Moreover UMAC offers a tradeoff between forging probability and speed, which
is not common in the construction of other authentication algorithms, UMAC also enjoys

better analytical security ies than the existing

The overview of UMAC operation is as follows. The message to be authenticated
is first applied to the universal hash function (UHASH) resulting in a string, which is
much shorter than the original message. The UHASH has three layers, which use
different sizes of keys. The keys have to be derived from the shared key through a pseudo
random function (PRF). The same PRF is used for the tag generation. The PRF is applied
to a nonce and the authentication tag is the logical xor of the two outputs of the hash
function and the pseudorandom function. The nonce is a parameter such as a counter that
varies with time. It is widely applied in key management protocols to prevent message
replay and other types of attacks. The authentication tag is generated as

tag = f (nonce) XOR h (message)
where fis the pseudorandom function and £ is the universal hash function shared by the
sender and the receiver. The sender does not reuse the nonce under the same MAC key.
Typically the nonce would be incremented using a counter with each message. UMAC
defines the creation of authentication tag using the message, shared key and nonce. The
receiver can recompute the tag using the received message and nonce to see the
authenticity. A shared key is used to key the PRF, f, to generate all of the pseudorandom
bits required by the layers of the universal hash function. Therefore the f is used for

generating both the tag and all of the pseudorandom bits used in the algorithm 75].

123

6.1.1 UMAC Key Derivation

The user-supplied key is expanded into the internal keys using the key setup
process. The total keys needed for all iterations are found by repeating this process until
the required key lengths are achieved. Key setup can be carried out using a block cipher
or some cryptographic hash function. Example block ciphers are Rijndael, DES, RC6 and
MARS. Examples of hash functions are HMAC-SHA-1, SHA-1, MD5 and RIPEMD-160
[46]. The Internet draft of UMAC [75] describes the key derivation using AES block
cipher (Rijndael) in output feedback mode to produce pseudorandom bits needed within
universal hashing. Depending on the size of the user supplied key the 128-bit and 256-bit
block length variants of AES cipher are used. An index is used so that using the same key

different pseudorandom outputs can be generated with different indices.

6.1.2 Tag Generation

The output of the universal hash function is XORed with a pseudorandom string
to produce the tag. The pseudorandom string is generated by applying AES block cipher
to a nonce. The nonce can be 1 to 16 bytes of length but all nonces in a single session
should be of equal length, AES may provide more or fewer bits per invocation than are
needed for the tag generation. Then one part of the AES output could be used to generate
one tag and the other part could be used for the tag of the next message. This
optimization is effective only when the nonces are sequential. The low bits of the nonce

are used as an index into the AES output, which is generated using higher bits of the

124

nonce, which are not used for indexing. If the UMAC output is larger than 16, then two

AES invocations are required to produce sufficient number of bits [75].

6.1.3 Universal Hash Function (UHASH)
UHASH is the keyed hash function, which takes a message of an arbitrary length
and produces a string of fixed length (e.g. 8 bytes). This has been constructed in three

layers.

. Non-linear hash (NH) compresses input messages into strings, which are typically

many times smaller than the input messages.

o

. The compressed message is hashed with an optimized “polynomial hash function’

into a fixed length of 16-byte string.

w

. The 16-byte string is hashed using “inner product hash” into a string of length 2
or 4 bytes, which is repeated to the appropriate tag length.

Figure 50 shows the generic interface of UMAC for 32-bit operation.

Message Key

%a’“ bytes % 16 bytes

UHASH 32

/i’ 8 bytes

Figure 50. Interface of UHASH

125

Figure 51 shows the structure of UMAC di

This diagram

one

of the applications of UMAC in 32-bit architecture. Here the block length on which the

hash function initially operates is 1024 bytes.

Message
< 2% bytes

1024 bytes

Nonl inear <—— Layerl key K11_10r2
Hashing

24-bytes
<

<«
4-bytes

Tag

Layer2 key Kiz_tor2

S4-byies Layer3 keyl Kis1_tor2
Layer3 key2 K132 10r2

Figure 51. General structure of UMAC

1-16 bytes

In the figure, / is the number of blocks in the message. In this case the three layers have

to be run twice with different set of keys to get the required 8 bytes output (shown in

dotted lines). For the tag generation, half of the AES output bits could be used and the

second half of the same could be used for the tag of the next message. This optimization

is effective only when nonces are sequential.

These three layers are repeated with a modified key until the required output

length is obtained. Since this repetition is independent, each word of the final output can

126

be d i . Hence ing a prefix of the tag can be done

significantly faster than computing the whole tag. If the message being hashed is no
longer than 1024 bytes (for the case shown in Figure 51), then Layer 2 hashing is skipped
as an optimization. To reduce memory requirements the first and the third layers reuse
most of their key material between iterations. The values used for the UMAC parameters

in following description are related to UMAC-32 construction.

Layer 1: Nonlinear Hashing (NH)

This is designed to be fast on modern processors. NH hashes an input string M
using a key K and performing a sequence of arithmetic operations. There are two
versions, NH-16 and NH-32 depending on the word length parameter of UMAC.
Consider a message M = Mo, My,..M; where M; € {0,.2°%-1}. In order to limit the length
of key required in the first layer, the message is broken up into chunks no longer than the
key length of Layer 1. Each chunk is hashed with a key of the same length. NH-32 is
constructed using a sequence of n > [32-bit sub keys derived from the shared key K. The

Layer 1 keys are represented as Ki,= (Ko, ..K,).

NHgw (M) = Y {[(My, + Ky)mod 2% X (M, +K ;) mod 2]} mod 2%

Here the operations are 32-bit and 64-bit addition and 32-bit multiplication. These are
modular operations on 2°2 and 2%, Figure 52 shows the NH-32 construction for 256-bit

message string. All the string sizes are given in bytes.

127

Figure 52. NH-32 construction for 256-bit message string

The input message is broken into chunks of Block length bytes (e.g. 1024 bytes).
The last block is zero padded to an appropriate length. Then each chunk is hashed with
NH and the outputs from all the invocations are annotated with 8-byte length information

of the message block. This produces the Layer 1 output (¥1) as shown in Figure 53.

8 bytes 8 bytes 8 bytes
[ik tengtn] ik tength] [[Bik length]

Figure 53. UHASH Layer 1

128

With respect to hardware implementation, the major operations involved in Layer 1 are
the 32-bit addition in modulo 2%, 64-bit addition in modulo 2% and 32-bit multiplication

in modulo 2%, The complexity is discussed in Section 6.2.

Layer 2: Polynomial hashing.

The overview of Layer 2 is shown in Figure 54.

Messaglg string 1 output)
Y1
Polynomial K2
Hashing
24 bytes
n 16 bytes

Figure 54. UHASH Layer 2

The output of Layer 1 hashing is still has a considerable length (16 x (number of
message blocks) bytes). Polynomial hashing is used to reduce this to a fixed length of 16
bytes. In this hashing the input string of bits is treated as a sequence of coefficients of a
polynomial and the hash key is the point at which the polynomial is evaluated. The
security assured by polynomial hashing degrades linearly in the length of the message
being hashed. The collision probability of two messages of n words in polynomial
hashing with a prime modulus p is no more than n/p [75]. There should be some way to

ensure the collision probability does not increase beyond a certain limit. By dynamically

129

increasing the prime modulus used in polynomial hashing the collision probability bound
is achieved.

As Layer 1 produces quite long strings and the security guarantee of polynomial
hashing degrades linearly, some scheme is required to allow long strings while ensuring
that the collision probability never grows beyond a certain preset value. However,
polynomial hashing under a small prime modulus is faster than hashing under a larger
one. Hence the prime modulus is increased according to a preset value so that short
messages are hashed faster still accommodating long ones [75]. In UMAC-32 if the
length of the message is < 2" bytes, then only the prime number (2% -59) is used for
hashing. Otherwise the first 2'7 bytes are hashed under (2% -59) and remainder under
(218 ~159). A 24-byte Layer 2 key (Ky2) is utilized to obtain two keys of 8 bytes and 16
bytes, which are required, in polynomial hashing under prime numbers (2%-59) and 2'*
-159) respectively. For this purpose two 8-byte and 16-byte masking values are used.

kes = (Kp2[1..8]) AND (8-byte Mask)
kizg = (K12[9..24]) AND (16-byte Mask)

The polynomial hashing algorithm takes a string of bits of length divisible by 4
bytes, the prime number (p), the integer value of key k (which can be either kg4 or ki25)
and an integer (maxrange) to adjust the word strings so that their values are always less
than the prime number and produces an integer in the range of [0.... p-11. Any word
larger than maxrange is split into two words and guaranteed to be in the range. The

maxrange would be either 59 or 159 depending on whether the prime number is @%-

130

59) or (2'% -159), respectively. The input word string size can be cither 8 bytes or 16
bytes and accordingly the prime numbers are chosen.
If the integer values of each 8-byte (or 16-byte) input word string are my, my,
...my, then the output ¥2 would be
n=1
Fori=lton
If (m;>maxrange) then
Y2=(kx Y2+ (p-1)) mod p
Y2 = (kX Y2 + (mi— (2% - p))) mod p
else
Y2= (k x Y2 +m;) mod p
Return Y2
The operations in Layer 2 are somewhat complex. The main operations that have

to be i in hardware ij ion are iplication between 64-bit and 128-

bit numbers in modulo (2% - 59), multiplication of two 128-bit numbers in modulo (2'%
- 159), 64 and 128-bit addition, and logical AND operation. The details are discussed in

section 6.2.

Layer 3: Inner Product Hashing

The 16-bit output of Layer 2 is hashed into a 4-byte result using a simple inner

product hash with affine translation. The prime modulus of (2* -5) is used to improve

131

security [75]. Two keys, Ky3.; and Ky, of length 64 bytes and 4 bytes respectively, are
used for the inner product. The 16-byte input and 64-byte key (Ky3.1) are broken into 8

chunks as follows. Here M;and k; will be 2 and 8 bytes respectively.

Fori=1to8

Mi=M[(i-D)X2+1,, ix2]

k=K [G-1) X8+ 1, ..., ix8]
The inner product hashing is defined as follows.

¥3 = {[[(My X ki + ..+ My ks) mod (2*°~5)] mod 2%]} XOR Ki32

Since layer 3 output is only 4 bytes long, multiple iterations of the three layers are used
with different keys each time until the UMAC output length is obtained. For example, in
32-bit implementation UHASH has to be done twice to get 8-byte output. Figure 55

shows the Layer 3 input and output details.

16-byte
n ytes
64 bytes
- Kz
Inner Product
Hashing
Ki3;
< " 132

4 bytes
Y3 T 4 -bytes

Figure 55. UHASH Layer 3

132

Layer 3 has multiplications between 16-bit and 64-bit numbers in modulo 2°2 and
modulus operation on prime number (2* -5) as major operations. In addition to those the

trivial operations such as mod 2% and logical XOR operation are also involved.

6.2 Hardware complexity of UMAC

UMAC has primarily been targeted for software implementation. Most of the
operations have been structured to suit some enhanced architectural features of modern
processors. However, due to the attractive features such as the ability to trade off speed
and security and the flexibility, it is worthwhile studying the suitability of UMAC for
hardware implementation. The operations of each layer are summarized in Table 8.

The block length in bytes gives the minimum storage required during run time
environment for the UMAC internal keys. UMAC has been designed to allow

which “on-line” ication where the pieces of the

message may be presented to UMAC at different times (but in correct order) and an on-
line implementation will be able to process the message correctly without the need to
buffer more than a few dozen bytes of the message.

Operations involved in Layer 1 are straightforward in hardware except the 32-bit
multiplication. The Layer 1 has to be repeated until the full length of the message is

hashed. The throughput of this layer can be easily improved by pipelining.

133

Table 8. Main operations in the three layers of UHASH.

Layer 1 | Layer2 | Layer3

32 - bit addition (mod 27%) v

64-bit addition v v

32-bit multiplication (mod 2%) v

128-bit x 64-bit multiplication v

128-bit x 128-bit multiplication (for long messages) v

Modulo (2%-59) v

Modulo (2™-159) (for long messages) v

Logical AND or XOR v v
128-bit addition v
Modulo (2%-5) v
16-bit x 64-bit multiplication v

In Layer 2 there is 128-bit multiplication, which could be expensive in terms of
speed. In Layer 3 too there are 16-bit and 36-bit multiplications. The other operations are
not critical in terms of the speed. The modulo 2% or 2% can be easily implemented by
merely ignoring any bits beyond the least significant 32 or 64, respectively. The modulus

operations under a prime number as p such as (2%-59) can be implemented without

134

division in following manner. Consider X as a number larger than 64 bits, which can be
represented as
X=a2®+b

In the field of the prime number p (which is (2%-59)),

2%-59.=0, hence

Xmodp=b+5%
Hence, it is possible to carry out these modular operations without any division.

With respect to the area utilization of the UMAC, it is useful to consider the

possible area consumption of the components that would be instantiated by the

implementation. When a high end FPGA device such as Virtex V1000FG680 is targeted,

the area utilizations (without optimization) of some major are as follows.
Here the of slice utilization for each is given.

Component % Slice Utilization
32 - bit addition (mod 2*%) 0.13%
64-bit addition (mod 2%) 0.26%
32-bit multiplication 44%
128-bit x 64-bit multiplier 8%
128-bit x 128-bit multiplier 3420 %
Modulo (2%-59) 1.20%
Modulo (2'%-159) 297%
Modulo (2%-5) 0.46 %

135

16-bit x 64-bit multiplier 403 %

128-bit addition 0.52 %
Logical AND <«<1%
Logical XOR (16 bit) <«<1%

The most expensive operation of the algorithm is the 128-bit multiplication which
is carried out for messages of length > 2. Xilinx core generator library modules were
parameterized to create 32-bit and 64-bit addition and 32-bit multiplication. The other
operations were coded in VHDL to be implemented using the device resources. The
throughput of the algorithm can be improved by introducing both parallel operations and
pipelining. Since the operations of different message blocks are independent, it is
possible to perform them in parallel by avoiding resource sharing. Layer 1 operations
can be eh’sily pipelined to improve the throughput. In this case some of the device
resources have to be allocated for pipelining. This implies that the device will be fully
utilized for UMAC hash operation. The key generation employs Rijndael, which has an
area utilization of the 43 % of slices [51]. This has to be implemented separately. The
evaluation of the hardware speed requires a full implementation of the design, which is

beyond the scope of this thesis.

6.3 Conclusion

‘The UMAC is a complicated algorithm for hardware implementation. An efficient

(fast) implementation in hardware could be very expensive in terms of complexity and

136

thus the FPGA device required. Although the algorithm can be pipelined and the

are i those cannot be easily achieved with the
constraints of the device resources in many of the today’s popular FPGA devices.
Although it might be implemented on a large FPGA device or using ASIC technology,
the most critical operations have to be fully optimized to improve the throughput. This
again could increase the resource utilization. However, because of the novel features and
the efficiency in software, it is worthwhile to study the ways of adopting UMAC for

hardware implementation.

137

Chapter 7

Conclusions

In many commercial applications protecting the integrity of information is even
more important than its secrecy. With the advent of public key cryptography, digital
signature schemes and Internet security schemes, cryptographic hash functions have
gained much more prominence. In many applications the performance of cryptographic
operations is a crucial factor, as it often becomes a bottleneck. As well, many security
services handle a large number of security associations. Therefore key agility and
algorithm agility are important issues in this context. Hence, in high-speed applications
that employ the above-mentioned schemes, hardware encryption and authentication have
become essential to meet these performance requirements. When these factors are

for i ing cr

considered, FPGA devices are a
algorithms. In this study, two of the most common cryptographic hash algorithms and a
hashed message authentication algorithm were implemented using FPGAs. Two
hardware architectures, iterative and full loop unrolling, were investigated and efforts

were taken to optimize the performance results of the designs. Some of the new

of message ication were also i ig In this chapter, the summary

of this thesis, the conclusion and suggested future work are discussed.

138

7.1 Summary and Conclusions of the Study

The background of this research, which motivated towards this study, was first
discussed. After a brief overview of IPSEC, which is the main area of application of
MD5, SHA-1 and HMAC, different constructions of hash functions and message
authentication codes were investigated. Some of the constructions, which are more
suitable for hardware implementation, were also discussed. Followed by the descriptions
of the constructions of MDS, SHA-1 and HMAC, the main issues related to hardware
implementation were explored. In particular the overview of FPGAs and their
applications were discussed. As the FPGA technology is a growing area that has a
potential to provide performance benefits of ASICs and the flexibility of processors, it
was selected as the target device for these implementations. FPGAs allow application
specific hardware circuits to be created on demand to meet the requirements of a design.
Moreover these hardware circuits can be dynamically modified partially or completely in
time and space.

For both MD5 and SHA-1 implementations, two architectures were used: the
iterative and full loop unrolled. As expected the iterative design provided the most area-
optimized solution whereas the full loop unrolled design offered the most speed
optimized solution. MDS iterative design with double buffering offered about 185 Mbps
throughput. High efforts in synthesizing and implementation were used along with
“period” timing constraint for optimum speed results. As the area utilization was
significantly low, several designs could be implemented on the same device and process

multiple messages in parallel with proper management of I/O ports. The full loop

139

unrolled design of MDS, which was also implemented with double buffering and the

same optimizi gave a of 486 Mbps. According to the area

utilization, at least two design modules could be accommodated in the device and process
two messages in parallel.

SHA-1 full loop unrolled design with double buffering gave a throughput of 565
Mbps. As the area utilization was fairly high only one design can be fitted into a single
device. The iterative design of SHA-1 showed a throughput of 121 Mbps. In this design
the usage of memory was considerably high and the design is more complex than MDS.

The HMAC was implemented using SHA-1 full loop unrolled design as the base
hash function. The maximum throughput obtained was 485 Mbps. As a consequence of
these implementations, it was evident that the FPGAs were suitable to implement hash

algorithms and hash based message ication codes. The results meet

some of the currently available IP bandwidths. Hence, these FPGA implementations can

be used as in cr i for use in IPSEC and other

applications.

The size of the message has a considerable impact on the performance of
cryptographic hash algorithms as padding has to be carried out all the time even if the
message has a length of multiples of 512 bits. This becomes a large overhead for small
messages especially in case of HMAC algorithm. As the Internet is one of the main areas
of application of cryptographic hash functions, the understanding of Internet traffic is
useful to study the performance of authentication algorithms. This was investigated using

four traffic models. According to these models the average times of MAC calculations of

the FPGA implementations of HMAC and CBC-MAC-AES did not differ significantly.
Particularly, the average times were almost the same as the size of the messages became
larger. The software results showed that the timing performances of HMAC-SHA-1 and
CBC-MAC-AES did not have a significant difference. As observed in FPGA
implementations HMAC offers better timing performance as the message becomes larger.

As most of today’s i i follow a ial structure,

pipelining cannot be adopted to optimize the throughput. Hence, many of them cannot
meet today’s high-speed requirements. A recently reported approach that addresses this
issue was then investigated. The universal message authentication algorithm that has been
proposed by researchers was analyzed for hardware performance. It was shown that the
complexity of the algorithm causes high resource utilization, and it would not be feasible

for hardware implementation using existing FPGA devices.

7.2 Suggestions for Future Work

According to the area utilization of MDS5, several design modules could be

accommodated in the same device and process multiple messages in parallel. This would

be an interesting effort for further i igation. In these i i only the
“period” timing constraint was used. This constraint covers only timing paths that start
and end at a flip-flop, latch or synchronous RAM, which is clocked by a referenced net. It
does not cover paths to output pads. By using other constraints such as “offset” it might
be possible to improve the performance further. Therefore, implementation trials with

other timing constraints are recommended. The use of a more recently introduced FPGA

141

device would also enhance the timing performance. However, as the structure of MD5
and SHA-1 does not allow parallelization, it is hard to achieve high throughput results.
Two possible alternatives will be either to modify the general structure of cryptographic

hash algorithms or to go for i hash i with ions that are

suitable for hardware implementation.

For the former alternative, several methods have been suggested by other
researchers. One such methods is to use interleaved block chained digest structure. This
replaces the original linear block chain with a finite number of block chains. A pre-
determined finite number of chains are processed from independent initial values, such
that the i block is part of the “i mod K™ chain. The resulting sequence of k digests forms
another message, which can be hashed as a single block. There are several other
proposals, which support parallelism in the general structure of the cryptographic hash
algorithms. However, these proposals need further analysis for their security properties.

For the latter option, some of the members of the universal hash function family
that have suitable properties for hardware implementation could be utilized. These have
to be further investigated for the optimum hardware implementations as well as the
optimum cryptographic properties. Though the proposed UMAC would be too large for
the existing FPGA devices, it may be suitable for ASIC implementation. The complete
implementation of UMAC on hardware is recommended so as to investigate its speed

performance.

142

References

1.

[21.

Bl

[4].

[51.

6).

.

81

G. J. Simmons, Contemporary Cryptology: The Science of Information Integrity,
Piscataway, NJ, IEEE Press, 1992
Organization for Economic Co-Operation and Development (OECD) Guidelines,

“Guidelines on the Protection and Transborder Flows of Personal Data”,

available at http: w1.0ecd. i/sti/i pi RIV-EN.HTM#2.

M. Bellare, R. Canetti and H. Krawczyk, “Keying Hash Functions for Message
Authentication,” in proceedings of Advances in Cryptology- CRYPTO’96, Lecture
Notes in Computer Science Vol. 1109, Springer-Verlag, pp. 1-15, 1996.

R.’ Rivest, “The MD5 Message-Digest Algorithm,” IETF Network Working

Group, RFC 1321, April 1992.RFC 1321.

E. Hong, JH. Chung and CHLim, * Design and P
Estimation of the 128-bit Block Cipher CRYPTON,” in Proceedings of first
International Workshop, CHESS'99, Lecture Notes in Computer Sciencel717,
Springer-Verlag, pp. 49-61, 1999

S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol,” IETF
Network Working Group, RFC 2401, November 1998.

Cylan IP Security white paper, 1997, available at http://www.cylan.com/files/
whpaper.htm.

FIPS PUB 180-1, “Secure Hash Standard,” Federal Information Processing

Standard (FIPS), Publication 180-1, National Institute of Standards and

, US D of Commerce, i D.C., April 1995.

143

91

[101.

1.

2.

[13].

[14].

[1s].

[16].

[17).

(18]

(191

S. Kent and R. Atkinson “The Use of HMAC-MD5-96 Within ESP and AH,”
IETF Network Working Group, RFC 2401, November 1998.

C. Madson and R. Glenn, “The Use of HMAC-SHA-1-96 Within ESP and AH,”
IETF Network Working Group, RFC 2404.

D. Whiting and Schneier, “Improved Twofish Implementations” Twofish
Technical Report #3, available at http://www.counterpane.com.

Cisco Systems Inc, IPSEC white paper, available at http://www.pipelinks.com/

warp/ publi i ip >_wp.htm.

S. Kent and R. Atkinson, “ IP Authentication Header” IETF Network Working
Group, RFC 2402, November 1998.

S. Kent and R. Atkinson, “ Internet Protocol- DARPA Internet Protocol
Specification” IETF Network Working Group, RFC 791, September 1981.

S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPV6) Specification,”
IETF Network Working Group, REC 2460, December 1998.

W. Stallings, Cryptography and Network Security, Second edition, Upper Saddle
River, NJ: Prentice Hall, 1997.

S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP),” IETF

Network Working Group, RFC 2406, November 1998.

ANS Glossary 2000, available at http:// its.bldrdoc proj 1glossary
2000/_hash_function.html.
D. Stinson, Cryptography: Theory and Practice, Boca Raton, FL, CRC Press,

1995.

[20].

[21].

[22].

[23].

[24].

[25].

[26).

FIPS 186-2, “Digital Signature Standard (DSS)" Federal Information Processing
Standard (FIPS), Publication 186-2, National Institute of Standards and

T US D of Commerce, i D.C., January 2000.

FIPS 186, “Digital Signature Standard (DSS)" Federal Information Processing
Standard (FIPS), Publication 186, National Institute of Standards and Technology,

US D of Commerce, i D.C., May1994.

B. Preneel, R. Govaerts and J. Vandewalle, “Hash Functions Based on Block
Ciphers: A Synthetic Approach,” in proceedings of Advances in Cryptology-
CRYPTO’93, Lecture Notes in Computer Science Vol. 773, Springer-Verlag, pp.
368-378, 1996.

S. Bakhtiari , R. Safavi-Naini and J. Pieprzyk, Cryptographic Hash Functions: A
Survey, Technical Report 95-09, Department of Computer Science, University of
‘Wollongong, July 1995.

R. L. Rivest, A Shamir and L. Adleman, “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems” Communications of ACM, vol. 21, pp.

120-126, 1978,

B. Preneel, “The State of Cr ic Hash ions,” in ing of
Lectures of Data Security, Lecture Notes in Computer Science vol. 1561,
Springer-Verlag, pp. 158-182, 1999.

R. Rivest, “The MD4 Message Digest Algorithm,” IETF Network Working

Group, RFC 1320, April 1992,

145

[27.

[28].

[29].

(301

B1.

32

33].

I. B. Damgard, “A Design Principle for Hash Functions,” in proceedings of
Advances in Cryptology-CRYPTO’89, Lecture Notes in Computer Science vol.
435, Springer-Verlag, pp. 416-427, 1989.

P. Camion and J. Patavin, “The Knapsack Hash Function Proposed at
CRYPTO'89 Can be Broken” in proceedings of Advances in Cryptology-
EUROCRYPT’91, Lecture Notes in Computer Science vol. 576, Springer-Verlag,
pp. 39-53, 1991.

S. Wolfram, “Random Sequence Generation by Cellular Automata” in
proceedings of Advances in Applied Mathematics, vol 7, pp. 123-169, 1986.

J. Daeman, R. Govaerts and J Venewalle, “A Hardware Design Model for

Cr ic Algorithms,” in ings of Computer Security-ESORICS’92,

Lecture Notes in Computer Science vol. 648, Springer-Verlag, pp. 419-434, 1992.
X. Lai, RA. Rueppel, and J. Woollven, “A fast cryptographic checksum
algorithm based on stream ciphers,” in proceedings of Advances in Cryptology -
AUSCRIPT '92, Lecture Notes in Computer Science, Springer-Verlag, pp.339-
348, 1992.

M.Bellare, J. Kilian and P. Rogaway, “The Security of the Cipher Block Chaining
Message Authentication Code,” in journal of computer and System Sciences, Vol.
61, No. 3, Academic Press, pp. 362-399, 2000.

ANSI X9.9, American National Standard for Financial Institution Message

Authentication (wholesale), American Bankers Association, 1981-Revised 1986.

146

[34].

[35].

36].

[371.

[38].

[39].

[40).

[41].

FIPS 113, “ Computer Data Authentication,” Federal Information Processing
Standard (FIPS), Publication 113, National Institute of Standards and Technology,

US D of Commerce, i D.C, 1985.

M. Bellare, J. Kilian and P. Rogaway, “ The Security of Cipher Block Chaining,”
in proceedings of Advances in Cryptology- CRYPTO'94, Lecture Notes in
Computer Science vol. 839, Springer-Verlag, pp. 340-358, 1994.

M. Bellare, R. Guvaerin and P. Rogaway, “XOR MACs: New Method for

Message ication Using Finite P Functions,” in p

of Advances in Cryptology- CRYPTO’95, Lecture Notes in Computer Science vol.
963, Springer-Verlag, pp. 15-28, 1995.

G. Tsudik, “Message Authentication with One-Way Hash Functions” ACM
Computer Communications Review, vol. 22, No. 5, pp. 29-38, 1992.

J. Givin, K. McCiognrie and J. Davin, “Securc Management of SNMP
Networks,” IETF Network Working Group, RFC1157 1990.

B. Preneel and P.C. VanOorschot, “MDx-MAC and Building Fast MACs from
Hash Functions,” in proceedings of Advances in Cryptology- CRYPTO'9S,
Lecture Notes in Computer Science vol. 963, Springer-Verlag, pp. 1-14, 1995.

S. Bakhtiari, S. Safavi-Nani and J. Pieprzyk, “Practical and Secure Message
Authentication,” Series of Annual Workshop on Selected Areas in Cryptography
(SAC’95), pp. 55-68, May 1995.

J. L. Carter and M. N, Wegman, “Universal Classes of Hash Functions,” Journal

of Computer and System Services, vol. 18, pp. 143-154, 1979.

147

[42].

[43].

[44].

[45].

[46].

[47).

48].

J. L. Carter and M. N. Wegman, “New Hash Functions and Their Use in
Authentication and Set Equality,” Journal of Computer and System Services, vol.
22, pp. 265-279, 1981.

J. Black Jr., “Message Authentication Codes,” PhD Thesis, University of
California Davis, California, USA, 2000. PhD Thesis 2000.

P. Rogaway, “Bucket Hashing and Its Application to Fast Message
Authentication,” in proceedings of Advances in Cryptology-CRYPTO'95, Lecture
Notes in Computer Science vol. 963, Springer-Verlag, pp. 29-42, 1995.

S. Helvi and H. Krawczyk, “MMH: Software Message Authentication in the
Gbit/second Rates,” in proceedings of 4" workshop on Fast Software Encryption,
Lecture Notes in Computer Science vol. 1267, Springer-Verlag, pp. 172-189,
1997.

J. Black, S. Halevi, A. Hevia, H. Krawczyk, T. Krovetz and P. Rogaway,
“UMAC-Fast and Secure Message Authentication,” in proceedings of Advances
in Cryptology-CRYPTO’99, Lecture Notes in Computer Science vol. 1666,
Springer-Verlag, pp. 216-233, 1999.

K. Ohta and K. Koyama, “Meet-in-the-Middle Attack on Digital Signature
Schemes,” in proceedings of Advances in Cryptology- AUSCRYPT’90, Lecture
Notes in Computer Science vol. 453, Springer-Verlag, pp. 140-154, 1990.

J. Pieprzyk and B. Sadeghiyan, “Design of Hash Algorithms,” Lecture Notes in

Computer Science vol. 756, Springer-Verlag, 1993.

148

[49].

[50].

(511

[521.

531

[54).

FIPS PUB ZZZ, “Advanced Encryption Standards (AES),” Federal Information
Processing Standard (FIPS), Publication AES Draft, National Institute of

tandards and Te US D« of Commerce, ington D.C.,

2001.
M. Riaz and HM. Heys, "The FPGA Implementation of the RC6 and CAST-256
Encryption Algorithms", in Proceedings of IEEE Canadian Conference on

Electrical and Computer ineering CCECE '99, Alberta, May

1999.

A. Elbirt, W. Yip, B. Chetwynd and C. Paar, “An FPGA Implementation and
Performance Evaluation of the AES Block Cipher Candidate Algorithm
Finalists,” in proceedings of 3™ AES Candidate Conference, available at
http://www.nist.gov/aes.

A. Dantalis, V. K. Prasanna and J. D. P. Rolim, “A Comparative Study of
Performance of AES Final Candidates Using FPGAs,” in proceedings of 3" AES
Candidate Conference, available at http://www.nist.gov/aes.

K. Gaj and P. Chodoxiec, “Comparison of the Hardware Performance of the AES

Candidates Using Hardware,” in p ings of 3 AES
Candidate Conference, available at hitp://www.nist.gov/aes.

R. R. Taylor and S. C. Goldstein, “A High: Flexible Archi for

Cr " in proceedings of Cryptographi and

Systems, Lecture Notes in Computer Science vol. 1717, Springer-Verlag, pp. 231-

245, 1999.

149

[55]

[56].

[57).

[58].

[59].

[60].

611

[62].

[631.

A. Dewey, Analysis and Design of Digital Systems with VDL, PWS Publishing
Company, 1997.

M. Smith, Portions from Application-Specific Integrated Circuits, available at

p: .eng.hawaii.edu/- ith/ ASICs/HTML/Book?2/.
S. Brown and J. Rose, “FPGA and CPLD Architectures: A Tutorial,” in
proceedings of IEEE Design and Test of Computers, vol. 12, No. 2, pp. 42-57,
1996.
FIPS PUB # HMAC, “ The Keyed Hash Message Authentication Code (HMAC),”

Federal Information Processing Standard (FIPS) Publication # HMAC, National

Institute of and T US D of Commerce,
‘Washington D.C., 2001.

Xilinx Virtex 2.5 V programmable date arrays product specification, available at
http://www.xilinx.com/products/virtex.

Xilinx home page: http://www.xilinx.com.

J Case, N. Gupta, J. Mittal and D. Ridgeway, “Design Methodologies for Core-
Based FPGA Designs,” Xilinx white paper available at http://www.xilinx.com/
products/logicore/core_papers.htm.

S. Y: ili, Introductory VHDL: from Si ion to Synthesis, Prentice Hall,

Upper Saddle River, NJ, 2001.
Foundation Series 3.1i Quick Start Guide, available at http:/toolbox.xilinx.com

/docsan/3_Li 02000.htm.

150

[64].

[65].

[66].

[671.

[68].

[69].

[70].

713

Xilinx records #2703, available at http:/support.xilinx.com/xInx/xil_ans_
display.jsp?iLanguagelD=1&iCountryID=1&getPagePath=2703 1999.

R. C. Merkle, “One Way Hash Functions and DES” in proceedings of Advances
in Cryptology-CRYPTO’89, Lecture Notes in Computer Science vol. 435,
Springer-Verlag, pp. 428-446, 1989.

J. Touch, “Performance Analysis of MD5, in proceedings of SIGCOMM’95,
Boston, pp 77-86, 1995.

H. Krawczyk, M. Bellare and R. Canetti, “HMAC: Keyed Hashing Message
Authentication,” IETF Network Working Group, RFC-2104, February 1997.

A. Feldmann, J. Rexford and R. Caceres, “Efficient Policies for Carrying Web
Traffic Over Flow-Switched Networks,” IEEE/ACM transactions on Networking,
pp. 673-685, December 1998.

S. McCreary and K. Claffy, “Treds in Wide Area IP Traffic Patterns,” A view

from Ames i Exch Co-operative Association for

Data Analysis (CAIDA) Report, 2000, available at http:/www.caida.org/
outreach/ papers/AIX0005.

J. Black, S. Halevi, H. Krawczyk, T. Kovetz and P. Rogaway, “Update on UMAC
Fast Message Authentication” available at http://www.cs.ucdavis.eduw/~rogaway/
umac.

J. Black and P. Rogaway, “ CBC MACs for Arbitrary-Length Messages: The

Three-Key Constructions,” in proceedings of advances in Cryptology-

151

[72].

[73].

[74].

751

CRYPTO'00, Lecture Notes in Computer Science, Springer-Verlag vol. 1880,
pp. 197-215, 2000

NIST home page, “AES Algorithm (Rijndael) Information”, available at
http://csrc.nist.gov/encryption /aes /rijndael/.

“Shal.c: Implementation of the Secure Hash Algorithm”, November, 2000,
available at http://www.di-mgt.com.au/src/shal.c.txt.

V. Shoup “ On fast and Provably Secure Message Authentication Based on
Universal hashing,” in proceedings of advances in Cryptology-CRYPTO'96,
Lecture Notes in Computer Science, Springer-Verlag vol. 1109, pp. 313-328,
1996.

T. Krovetz, J. Black, S. Halevi, A. Hevia and H. Krawczyk, P. Rogaway, “
UMAC: Message Authentication Code Using Universal hashing,” IPSec Working

Group, Internet-Draft, October 2000.

152

Appendix A

Results of Timing Simulation with Back A

This appendix shows the timing simulation results of MDS, SHA-1 and HMAC-
sha-1. For this the Standard Delay Format (SDF) file which is created during the
implementation is used. The SDF file contains the timing details of the design that have
to be used during the back annotation. This has to be invoked with the timing simulation
model. The timing simulation model (VHDL file) is created from the Native Generic
Database (NGD) file by running NGD2VHDL. The same test benches utilized for

behavioral and functional simulation were used.

153

ugisap payjorun doof [y~ SN uone|nuits Fupury, |y 2By

sgig s
FERzEEEf::

100 TNV
(IR MK OT T
N0 W WIS NI TV
A0 WE AN oY Ty vt
1NN RN o
.............. oot

IO WIN TR NI oo
NI WAIN RSN NI WY vt
............... oo

154

ugisap pajjoun doo [y [-VHS Jo uone[nuiis Suruity, ‘7v amsLy

155

(pyuoD) usisap peyjoun dooy [[ny [-VHS Jo uone[nuis Suruny, -7y 2indrg

156

uo
nenus Surun |-eys-DVINI gV o)
g

57

(pwoD) uonenuais unun [-eys-DVNH "€V 281

158

Appendix B

This appendix gives the read and write operations of the RAM set up during the
80 steps of SHA-1 iterative design. During the loading time, the message block is written
in all the 8 RAM modules. Then the read and write operations of each RAM module vary
according to Table A1. The RAM set up for this is given in Figure 25. While reading the
initial 16 words, the next words (17" word and onwards) can be calculated by XORing
four words from the previous 16 words together. In this case four words have to be read
at a time and the calculated word has to be stored in a suitable RAM to prevent any clash
between read and write operations among the modules in future steps. The notations

used in the table are as follows.
ReadX Reading the word for step X.

R# Reading memory address # of a RAM to calculate a future word.

Wi# ‘Writing of a calculated word at memory location # of a selected RAM

159

Step| RAM_A RAM_B RAM_A1 RAM_B1 RAM_A2 RAM_B2 RAM_A3 (RAM_B3
0 | rean |Wi6 |r2 R13 16 IR
1| readt |R3 w1z w1z R14__ |me
2 | reae |R4 R10 wis 18 R15
3 read3 |R16 IRS R11 19 P 19
4 | reads R17 R12 Re w20 [_/_v 20
5 | reads 1 R18 R7 R13 Jwa1
6 readé 22 R19 IR8 R14 w22
7 w3 read7
8 reads [R16
9 [a0 |11
10 R23 read10
11 |H_|3
12 jwes
13 M
14 W30
15| mes |Wat
16 read16_|R24 Fﬂ_/sz
17 Jpao adt7 |R2s | wss
18 Ra1 | |Reads |H_2e wa4
19 IR21 was lmse read1s_|R27 35
20 R22 lras read20 |R28
21 war |n23 R34 read21 |29
22 |R30 [was IR24 lRas read22
23 | reaces |R31 39 |R25 IR3s
24 JRar read24_|A32 40 ’w lR2s
25 IR3s [read25 |R33 lwat lR27
26 [ros P read26 |R34 42
27 R29 lRao read27 [R35 W43
28 \Wa4 IR30 144 R41 read28 |R36
29 |R37 /45 [R31 IR42 read29
30 | reasso [A38 [wae lRa2 Ra3
31 heasst |ras Rda |nss

/47
2 Ras |
33 |nss Twag
34 [rss lRaz
35 W51 |R43
36 read36
37 IR45 /52
38 s lRas
39 Jwss ns2
40 [psa wss — lRaz

Stej RAM_A RAM_B RAM_A1 RAM_B1 W_Q RAM_B2 | RAM_A3 |RAM_B3
41 Jnsa IRa3 readd1 56 | IRag
a2 lRss readd? |Raa IRso 57

43 IRas reads3 A5t lRse 58

44 59 |Rs2 readdd. IRas IR57

45 |Rs3 hadﬁ 60 |naz lRse

46 |Rss Rse 61 readds Ras
47 lss 62 |Reo reada7 Rag
48 w63 Ir61 [R50 IRS6 readds
49 64|62 lRs1 lRs7 road49
50 res lRs2 reads0 W65 |Rs8

51 |nss [Rso IRe4 im

52 |nss reads?

53 | readss |R5S IRet lres

54 | roadss lre2

55 |nes readss

56 1 lRea

57_wre IRso

8 R71 3 lmes

59 [nr2 reads9 |61

60 73 lRe2

61 |nes read1

62 64 | reade2

63 | roades I

64 [p2 lr77 reads4_|RE6

65

66 read6

67 road67
68 r0a068
69 read69

70 read70

71 read71

72 r0ad72

73 read73

74 read74

75 read7s

76 read76

7 read77

78 read78
79 read70

Table B1. Read and write operations of the RAM set up of SHA-1 iterative design

161

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Dedication
	0007_Abstract
	0008_Abstract iii
	0009_Acknowledgements
	0010_Table of Contents
	0011_Table of Contents vi
	0012_Table of Contents vii
	0013_Table of Contents viii
	0014_List of Tables
	0015_List of Figures
	0016_List of Figures xi
	0017_List of Figures xii
	0018_Chapter 1 - Page 1
	0019_Page 2
	0020_Page 3
	0021_Page 4
	0022_Page 5
	0023_Chapter 2 - Page 6
	0024_Page 7
	0025_Page 8
	0026_Page 9
	0027_Page 10
	0028_Page 11
	0029_Page 12
	0030_Page 13
	0031_Page 14
	0032_Page 15
	0033_Page 16
	0034_Page 17
	0035_Page 18
	0036_Page 19
	0037_Page 20
	0038_Page 21
	0039_Page 22
	0040_Page 23
	0041_Page 24
	0042_Page 25
	0043_Page 26
	0044_Page 27
	0045_Page 28
	0046_Page 29
	0047_Page 30
	0048_Page 31
	0049_Page 32
	0050_Page 33
	0051_Page 34
	0052_Page 35
	0053_Page 36
	0054_Page 37
	0055_Page 38
	0056_Page 39
	0057_Page 40
	0058_Page 41
	0059_Page 42
	0060_Chapter 3 - Page 43
	0061_Page 44
	0062_Page 45
	0063_Page 46
	0064_Page 47
	0065_Page 48
	0066_Page 49
	0067_Page 50
	0068_Page 51
	0069_Page 52
	0070_Page 53
	0071_Page 54
	0072_Page 55
	0073_Page 56
	0074_Page 57
	0075_Page 58
	0076_Chapter 4 - Page 59
	0077_Page 60
	0078_Page 61
	0079_Page 62
	0080_Page 63
	0081_Page 64
	0082_Page 65
	0083_Page 66
	0084_Page 67
	0085_Page 68
	0086_Page 69
	0087_Page 70
	0088_Page 71
	0089_Page 72
	0090_Page 73
	0091_Page 74
	0092_Page 75
	0093_Page 76
	0094_Page 77
	0095_Page 78
	0096_Page 79
	0097_Page 80
	0098_Page 81
	0099_Page 82
	0100_Page 83
	0101_Page 84
	0102_Page 85
	0103_Page 86
	0104_Page 87
	0105_Page 88
	0106_Page 89
	0107_Page 90
	0108_Page 91
	0109_Page 92
	0110_Page 93
	0111_Page 94
	0112_Page 95
	0113_Page 96
	0114_Page 97
	0115_Page 98
	0116_Page 99
	0117_Page 100
	0118_Page 101
	0119_Page 102
	0120_Page 103
	0121_Page 104
	0122_Page 105
	0123_Page 106
	0124_Page 107
	0125_Page 108
	0126_Page 109
	0127_Page 110
	0128_Page 111
	0129_Page 112
	0130_Page 113
	0131_Page 114
	0132_Page 115
	0133_Page 116
	0134_Page 117
	0135_Page 118
	0136_Page 119
	0137_Page 120
	0138_Chapter 6 - Page 121
	0139_Page 122
	0140_Page 123
	0141_Page 124
	0142_Page 125
	0143_Page 126
	0144_Page 127
	0145_Page 128
	0146_Page 129
	0147_Page 130
	0148_Page 131
	0149_Page 132
	0150_Page 133
	0151_Page 134
	0152_Page 135
	0153_Page 136
	0154_Page 137
	0155_Chapter 7 - Page 138
	0156_Page 139
	0157_Page 140
	0158_Page 141
	0159_Page 142
	0160_References
	0161_Page 144
	0162_Page 145
	0163_Page 146
	0164_Page 147
	0165_Page 148
	0166_Page 149
	0167_Page 150
	0168_Page 151
	0169_Page 152
	0170_Appendix A
	0171_Page 154
	0172_Page 155
	0173_Page 156
	0174_Page 157
	0175_Page 158
	0176_Appendix B
	0177_Page 160
	0178_Page 161
	0179_Blank Page
	0180_Blank Page
	0181_Inside Back Cover
	0182_Back Cover

