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Abstract

This work studies some regularity estimates for mild solutions to fractional heat-type and
Navier-Stokes equations. Indeed, we mainly focus on the following topics: Carleson measures
for homogenous fractional heat-type equations and their Cauchy problems, Strichartz type
estimates for the inhomogeneous initial value problems of fractional heat-type equations,
and the well-posedness and regularity for fractional Navier-Stokes equations.

Firstly, we characterize nonnegative Radon measures 1 on R} having the property
el paqgtn sy < Nullprnggienys 1S < g < oo, whenever u(t,z) € B5(RE™) N WP(RL™).
Here b%(RY*") (see [57]) is the space of solutions having finite L?(R}*") norm to the ho-
‘mogeneous fractional heat-type equations

Bo(t,z) + (—0)Pu(t, ) = 0, (t,z) € RL™

with # € (0,1]. Denote the solution of the above equations with Cauchy data vo(z) by
(t, ). Then, we give a characterization of nonnegative Radon measures 1 on R}*" satisfying
(%8, 2) | ogar+n 1y < ltollipgany: 8 € (0,7), p € [1,n/s] and g € (0, 00).

For the inhomogeneous initial value problems of fractional heat-type equations, we ob-
tain Strichartz estimates involving norms in Lebesgue spaces by using both the abstract
Strichartz estimates of Keel-Tao and the Hardy-Littlewood-Sobol li i
Strichartz type estimates involving norms in BMO(R™), Sobolev and Besov spaces are es-
tablished.

We introduce a new critical space Q2:!(R™) which is useful for studying fractional
Navier-Stokes equations. First, we give a Carleson measure characterization of Q3(R") by
investigating a new type of tent spaces and an atomic decomposition of the predual for
QB(R™). Then, via the Carleson measure characterization of Q2 (R"), we define Q25! (R")
as the derivative space of Q2(R") and study some properties of Q2:5! (R"). In addition, we
establish the mean oscillation characterization of Q3(R™), John-Nirenberg and Gagliado-
Nirenberg type inequalities in QZ(R").

Finally, using our results about Strichartz estimates and Q23! (R"), we prove the well-
posedness and regularity for fractional Navier-Stokes equations in some Lebesgue spaces
and Q45! (R"), 1/2 < A < 1. Especially, when 3 = 1, the well-posedness for incompressible
Navier-Stokes equations in QX3! (R") was established by Xiao in [78].
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Chapter 1

Introduction

This work studies regularity estimates for mild solutions to fractional heat-type and Navier-
Stokes equations. We mainly focus on Carleson measures and Strichartz type estimates for
fractional heat-type equations, the existence and regularity of mild solutions to fractional
Navier-Stokes equations. These two types of equations share a similar form as follows:

{ Byv(t,x) + Av(t,z) = F(t,z), (t,x) € RY™ (101)

v(0,2) = vo(x), z€R",

with operator A. For fractional Navier-Stokes equations, we assume that V - v(t,z) = 0 for
vector v(t,x), where V is the gradient with respect to the spatial variables. A common
approach to find a solution v(t,z) of (1.0.1) is to prove the existence of a fixed point v(t, )
of the operator T defined by

7)) = SWu(e) + [ S~ OF(e2)ds

fixed point is called a mild solution of (1.0.1). For evolution equations similar to (1.0.1),
we hope that a mild solution is smooth enough to qualify as a classical solution. However,
‘ for many evolution equations, we can not obtain the smoothness but estimates of a mild
solution in some function spaces such as Lebesgue spaces. These size estimates are referred

‘ on an appropriate space. Here S(t) is a semi-group with ¢ lized by A. This

to regularity size estimates.
Carleson measure was firstly introduced (see Carleson [15] and Johnson [34]) as a means
of describing measures for which solutions of the Dirichlet problem satisfied particular a
priori estimates. As one of the most important concepts in modern analysis, Carleson
‘ measure has been applied in many areas, such as theory of partial differential equations, see
Hastings [32], Johnson [34] and Xiao [76]-(77).
In Chapter 2, we consider Carleson measures for the homogeneous heat-type equations
\
|
\
|
\

du(t,z) + (=0)Pu(t,z) =0, (t,z) € RY™ (1.0.2)

3




CHAPTER 1. INTRODUCTION 4
and their Cauchy problems

{ du(t,z) + (—~0)%u(t,z) =0, (t,z) € R (103)

v(0,z) = vo(z), z€R",
with 8 € (0,1), where A is the Laplacian with respect to  and
(=8)%u(t,z) = FH(EPF (u(t,§))(z)

with F and F~! being the Fourier transform and the inverse Fourier transform, respectively.
Indeed, we are motivated by the case § = 1 which was studied by Xiao in [76]. The mild
(classical) solution of equations (1.0.3) is given by

olt, ) = "2 v (z) = Sp(t)uo(a) = K (x) * vo(x),
where
Kf(z)= (2")""/ e=te =t e > 0, v(t,x) € R (1.0.4)
-
and g(z) * h(z) denotes the convolution between g(x) and f(z) on the spatial variables.
More i we i ive Radon measures 4 on R} having either the
property

ull oty S Nulliraieny, Vu(t @) € BH(REF™) N WHP(RL™),

for 1 < p < g < 0o, where bj(R}*™") (see [57]) is the set of all solutions to (1.0.2) with finite
LP(RY*™) norm, or the property

100822, 2 oquisn ) S Wollmnqays Voo € WHP(RY),

for s € (0,n), p € [1,n/s] and g € (0, 00), where v(t, z) solves (1.0.3).
Our main results in Chapter 2 imply the following weighted mixed norm estimate for
solution to (1.0.3): for 8 € (0,1), s € (0,n), 1 < p <n/s and v € (~1,00),

(/m Io(t,2)] 5 t“ﬁﬂmz) S Meollpnsqunys Vo € WHP(RD).

Such estimates are efficient to control the size of solutions to the linear problems in terms
of the size of the initial datum when we perturb fractional heat-type equations. It turns
out that for semi-linear equations such as nonlinear Schrodinger equations, nonlinear wave
equations and nonlinear fractional heat-type equations, the estimates of solutions in mixed
Lebesgue norms L{ L% (I x R"), more generally mixed Sobolev norms L{W2" (I x R") and
mixed Besov norms L{ Byj,(I x R"), are called Strichartz estimates and particularly useful,
see Tao [67].
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In Chapter 3, we study Strichartz type estimates for the inhomogeneous initial problems
associated with the fractional heat-type equations

{ du(t,z) + (-8)Pu(t,z) = F(t,x),  (t.z) e RY™; (1.05)

v(0,2) = f(x), T €R",
where § € (0,00) and n € N. The work in this chapter is the main content of [82] which will
appear in Journal of Mathematical Analysis and Applications.

By the Fourier transform and Duhamel’s principle, the mild (classical) solution of (1.0.5)
can be written as

t P
(t,z) = e f(z) +/ e =92 F(s 5)ds.
o

The main goal of Chapter 3 is to determine pairs (q,p) and (¢1,p1) ensuring

e flliaqrezany S 1 liacamys (1.0.6)

(1.0.7)

/‘ =900 F(5,)ds
0

SNt 18y
LY(ILE(R™) i

where I is either [0,00) or [0,7] for some 0 < T < o0, and p} = 52 is the conjugate of a
given number p; > 1.

The Strichartz types estimates for (1.0.5) have just been studied by a few experts. Pier-
felice [60] considered such estimates for (1.0.5) with § = 1 and small potentials of very low
regularity. Miao-Yuan-Zhang in (53] studied the non-endpoint case of (1.0.6) for (1.0.5).

For the Schrédinger and wave equations, the Strichartz estimates have been well studied
in recent years, see, for example, (62], [16], [38], (61], [10], (9], [36], 44], [55] and [79]. These
estimates play an important role in the study of local and global existence for nonlinear
equations, well posedness in Sobolev spaces with low order, scattering theory and many
others, see, for example, [39], [40] and [24]. The Strichartz estimates for the Schrédinger
and wave equations can be directly derived from the abstract Strichartz estimates of Keel-
Tao [38] since the solution groups of these two equations act as unitary operators on L?(R™)
and such operators obey both the energy estimate and the untruncated decay estimate.
While, since {e~(~2)"},54 is a semigroup and acts as a self-adjoint operator on L*(R")
—see Lemma 3.2.1, we can only apply the abstract Strichartz estimates of Keel-Tao directly
to obtain (1.0.6) if we have the energy estimate and untruncated decay estimate. But for
(1.0.7), we can make use of the LP—decay estimates and the Hardy-Littlewood-Sobolev
inequality.

Moreover, if (1.0.5) has a time dependent potential V'(t, ), then it becomes

{ d(t,z) + (-8)Pu(t,z) + V(t,z)v(t,2) = F(t,z), () € RY™ (1.08)

v(0,2) = f(=), zeR"
We can obtain Strichartz estimates for (1.0.8) by using the Banach contraction mapping
principle and assuming an appropriate integrability condition in space and time on V(t,z).
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A similar idea was used by D’Ancona-Pierfelice-Visciglia in [24] to get analogous estimates
for the Schrédinger equations.

In addition, we also establish an endpoint case of (1.0.6) by replacing L(R") with
the space of functions of bounded mean oscillation (BMO, (R")). Meanwhile, we obtain a
parabolic homogeneous Strichartz estimate for (1.0.5), the two dimensional case of which is
very useful for dealing with the global regularity of wave maps when combined with Lemma.
3.2.2 for § = 1 and the comparison principle for heat equation, see Tao [68]. Moreover, we
generalize (1.0.6) and (1.0.7) via replacing LP(R") with either a Besov space or a Sobolev
space. These function spaces will be made precise later.

In Chapter 4, we study QZ(R") which is defined as the set of all measurable functions
£ on R" with

o 12
Wlagn = a0 (@ayreso-n=s [ [ MO JOL o)™ <o

where the supremum is taken over all cubes I with the edge length [(7) and the edges parallel
to the coordinate axes in R™.

When 8 = 1, Q3(R") becomes Qq(R™) which was introduced by Essen-Janson-Peng-
Xiao in [25]. Xiao in (78] characterized Qq(R") equivalently as

o
1£lgu@m = sup r’“*"/ / Vet f(y)Pt-2dtdy < oo
2€R",r€(0,00) 0 Jy-al<r

and by this characterization he studied the classical Navier-Stokes equations in Q; A (R") =
V- (Qa(R™)" (Xiao [78]). The ad of this equi ization is the occur-
rence of e'® which generates the mild solutions for the classical Navier-Stokes equations.
Motivated by Xiao (78] and noting that the mild solutions for the fractional Navier-Stokes
equations can be generated by e#(-®)"  to study the fractional Navier-Stokes equations in
a space similar to Q1. (R™), it is natural to introduce a new space Q5! (R") and charac-
terize QA(R™) by the operator ¢~*~4)". In fact, we should prove that f € Q&(R") if and
only if

s
,waM/ -/| ‘ [Vet=8 f)PeBdydt < oo, (109)
ymsi<r

s
2€R",r€(0,00)

Obviously, for each j = 1,-- ,n, 8;K7(2) = ¢;(c) is real C*°(R") satisfying:

6 € LR, 6@ S 0+ a0, [ gy(a)de = 0and (@5)(e) = 17705 (3).
e
(1.0.10)
Here K7(2) is defined in (1.0.4) when t = 1. This observation leads us to characterize
Q2(R™) more generally as

FEQRY =  sup ,'Jafni»lﬁfz/ / 1f * el - 0+20=8+ D gy < 00
2ER" re(0,00) o Jiy-al<r
(1.0.11)
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by a general C* real-valued function ¢ on R" with the property (1.0.10).

In order to get (10.11), inspired by Coifan-Meyer-Stein (19] and Dafi-Xiao [22], we
introduce new tent spaces T2 5 and 7%, then define a space HH', 4(R") as a subspace
of distributions in homogeneous Sobolev space -~ #+2(-12, Finally, we identify Q2(R")
with the dual space of HH'., 5(R"). Then by (1.0.11), QA (R") is defined as the derivative
space of Q2(R™) and will be useful in studying the fractional Navier-Stokes equations in
next chapter.

In addition, we establish the mean oscillation characterization of Q2(R"). Using this

we obtain John-Ni g type i lities in Q2 (R"). Then, from a
special John-Ni type i ity, we get Gagliardo-Nirenberg type i ities in
L’(]R") NQa(R™). Moreover, we deduce ’I\-udmger—Moaer and Brezis-Gallouet-Wainger type

ities from Gagliado-Ni g type i tis in Qa(R").
John-Nirenberg i ity and Gagliardo-Ni ity are two classical inequal-

ities in modern analys:s and widely applied in theory of partial differential equations. There
are many similar John-! Nlrenberg mequalmes in different function spaces and many gen-
of Gagliardo-Ni lities which are very important for dealing with
a prior estimates of various partial differential equations, In Qq(R™), an analogue of the
John-Nirenberg inequality was conjectured by Essen-Janson-Peng-Xiao in [25] and finally an
modified version was established by Yue-Dafni [81]. Recently, in 18], Chen-Zhu established
& Gagliardo-Nirenberg inequality for function in L7 (&") N BMO(R") via a John-Nirenberg
inequality. In [43], Kozono-Wadade proved the ized Gagliardo-Nirenb
in critical homogeneous Sobolev space and in BMO(R"). From the generalized Gagliardo-
Nirenberg inequality in BMO(R™), they also get a John-Nirenberg inequality in BMO(R")
used by Chen-Zhu in [18]. Obviously, in BMO(R"), these two kinds of inequalities are
equivalent.
In Chapter 5, by using the results obtained in previous chapters, we study the well-
d and regularity of fractional Navier-Stokes system on the half-space R}*™, n > 2:

(t,z) + (~A)Pv(t,2) + (v- V)o(t,z) - Vp(t,z) = hit,x),  (t,x) € RL™
{ V- u(t,z) =0, (t,z) € RY™;
v(0,2) = g(x), z€eR"

(1.0.12)
with 8 € (1/2,1] and V is the gradient with respect to the spatial variables. The system
(1.0.12) is very important since it becomes the classical Navier-Stokes system when § = 1
which is a celebrated nonlinear partial differential system. The mild solution for system
(1.0.12) is

¢
u(t,z) = e g(z) + / e~ (=2 p(h — V(v ® v))ds,
o
where P is the Helmboltz-Weyl projection:
= {Pjk}ik=1,0n = {8k + RjRic}jk=1,0 n

with & being the Kronecker symbol and R; = 8;(~A)~'/2 being the Riesz transform.
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In some Lebesgue spaces, we obtain the well-posedness and regularity for system (1.0.12)

by applying the Strich type estimat i in Chapter 3. The well-posedness
and regularity for system (1.0.12) with h = 0 are also established in the critical spaces
LI RY) = (Qﬂ(lR"))“ defined in Chapter 4. In addition, our regularity results apply
to the classical i Navier-Stok ions with initial data in Q42! (R") where

the well-posedness was established by Xiao in [78].

For equations (1.0.12) with h = 0, J. L. Lions [45] proved the global existence of the
classical solutions when 3 > g in dimension 3. Similar result holds for general dimension n
if 8>} + %, see Wu [71]. For the important case 8 < j + %, Wu in [72]-[73] established
the global existence for equations (1.0.12) with h = 0 in the homogeneous Besov spaces

oo (R™) with > max{1,1+ % — 26}, and B, "' (R"), where 1 < g < oo, and either
1/2 < f whenp=2or1/2< 3 <1 when2 < p < oc. For the corresponding regularity
criteria, we refer the readers to (74]. The function spaces listed above are critical spaces. A
space is called critical for equations (1.0.12) with h = 0 if it is invariant under the scaling

fa(@) = 71 (). (1.0.13)

Note that, for 1 < g < 0o and 2 < p < oo, Byy? > (R") are continuously embedded in
Q=1 (R") which s also a critical space for (1.0.12) with h = 0. Thus, our well-posedness
and regularity results in Q2! (R") generalize known results in Byy? " (R").




Chapter 2

Carleson Measures for
Fractional Heat-Type Equations

This chapter studies the Carleson measures for fractional heat-type equations. We divide
our discussion into two parts: Carleson measures for the fractional heat-type equations

B(t,z) + (-A)%u(t,z) =0, (t,z) € RY™ (2.0.1)
with 3 € (0,1] (called §—parabolic equations, see [57]), and the associated Cauchy problems

{ d(t,z) + (-08)%u(t,x) =0, (t,x)€RY™

v(0,z) = vo(z), ZER™ (20.2)

Before stating our lemmas and main results, let us agree to some conventions in next section.

2.1 Notations and Preliminaries

In this chapter, we always assume that s € (0,n)\N when p = 1 or n/s. W'?(R}*") is the
completion of C§°(RY*™) with respect to the norm

p
1 llrr o greny = (/m* |v“,,)f\"d:dz) g

B(RY™)(8 € (0,1]) introduced by Nishio-Sh ki [57) is the parabolic Bergman
space on R1*", which is the set of all solutions of the parabolic equation (2.0.1) having finite
LP(RL™) norm. W*P(R") is the homogeneous Sobolev space which is the completion of
C§°(R™) with respect to the norm

(=2 fl|Lss pe(L,n/s),

£ lemmny = NARfY®, 24
e (mfi%ﬁ.{—”,eldh) T p=lorp=n/s,s€ Om\N,

9
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‘where .
ALAF f(2), k>1,
aff@={ """
feth) - @), k=1,
k=1+[8], s = [s] +{s} with {s} € (0,1).
X =R s=1andp> 1, 0r X =R", s € (0,n) and p € [1,n/s], capyppnx(S)
(see Maz'ya [49]) is the variational capacity of an arbitrary set S C X :

capeny(S) =0t {1150 5 £ € Vi(S)}

Here

Vi (8) = {f € WHP(RY™) : S C Int({z € RY™: f 21}))
and

Van(S) = {f e W*P(R"): f 2 0,S CInt({z € R": f 2 1})}
with Int(E) be the interior of a set E C X. For t € (0,00), L-,‘f(u; t) is the (p, 3)—variational
capacity minimizing function associated with both W‘i-"(lk") and a nonnegative measure j
on R}™ defined by

¢p(u;t) = inf{capyja p(gny (0) : bouded open O C R", u(T(0)) > t},
where T(0) is the tent based on an open subset O of R” :
T(0) = {(r,2) € RY*™ : B(z,r) C O},

with B(z,r) be the open ball centered at z € R™ with radius r > 0.

For handling the endpoint case p = n/s we also need the definition of the Riesz potentials
(see Adams-Xiao [7) and Adams [2]) on R?" as follows. The Riesz potential of order v €
(0,2n) is defined by

1 g(6) = [ 1= )y, s R
R
From Adams [2, Theorem 5.1], we have that if u(z) and 1" x| f|(z, 0) are both in L}, (R")
with
f(@,h) = B~ Afu(z), (21.1)

then u(z) = CI{*™ « f(2,0), for a.e. z € R* and some C > 0. Note that if u € W*"/*(R")
and 5 = 2s € (0,2n) then the function f(,-) in (2.1.1) belongs to the space L"/*(R*"). For
any 7 € (0,2n), £5(R?") = I2" » LP(R®") defined by |12"  f|| gz gany = Ifll3, -

For 0 < p,q < oo and a nonnegative Radon measure y on X = RY*™ or R", LYP(X, 1)
and L(X, 1) denote the Lorentz space and the Lebesgue space of all functions f on X for
which

o p
£l oncx,m = (‘L (n{z € X2 |f(@)] > f\)))"/"'ﬂ’) <o
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and e
Wlesien = (f 1@iean) <,

respectively. Moreover, we use L#™(X, 1) as the set of all y—measurable functions f on X
with
I e = supAGu({ € X < | (@) > ANV < o0

2.2 Carleson Measures for §—Parabolic Equations
In this section, we establish our main results about Carleson measures for §—parabolic

equations. We need the following lemma which studies the capacity strong-type inequalities
for f € W*P(R") and its Hardy-Littlewood maximal operator

Mm@ =spr [ (i, e r
>0 B(z,r)

Lemma 2.2.1 The following three inequalities hold:
(a) If s € (0,n) and p € [1,n/s], then, ¥f € W*P(R"),

/D capyns ({2 € R : @) 2 ANV S 1 1Py oy

If1 < p< oo, then, Vf € WHP(RY™),

2 AN S £

"
I comin ey (.0) € RE™ 110 2) E—

(b) If s € (0,n) and p € [1,n/s], then, Vf € W*P(R"),
/u ~ capipesam({z € R £ MF@)] 2 ANAN S 111y

Proof. (a) Part 1, f € W'P(RL+") : This assertion is due to Maz’ya [49, Section 2.3.1] or
his another work [46]. Part 2, f € W*P(R") : Case I, p € (1,n/s) : This case is due to
Maz'ya [48, Proposition 4.1] or Maz'ya [49, p. 368 Theorem]. Case 2, p = 1 : This case
is essentially proved by Wu [75] when s € (0,1) and Xiao [77) when s € (0,n). Case 3,
p=mn/s: It can be found in Maz’ya [47] or Adams-Xiao [7].

(b) If f € W*P(R") : We divide the proof into three cases.

Case 1, p=1:1t is due to Xiao [77). Case 2, p = n/s : This is proved by Adams-Xiao [7].
Case 3, p € (1,n/s) : It follows from Maz'ya [49, p. 347, Theorem 2] or his earlier work [51]
that for 1 < p < n/s, f € W*P(R") if and only if

J=(=0)"g=1Ixg(x) and [flesmn) = I9lLomn):
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for some g € LP(R"), where
1 9()
1, =— [ Z¥_,
s =3 [
with 5, = 7"/22°T(s/2)/T(252). Then for fixed f € W*P(R"), and g € LP(R") with

7
(@) = I, * g(x), according to Johnson [34, p. 33, Proof of Theorem 1.9], we have

M(Iy % g) < I, x (Mg)

and
MA(Mf(z)) © Ma(Is % (M(g)).

It follows from Maximal Theorem Stein (64, p. 13, Theorem 1] that
M(g) € LP(R™) and | M(9)llzo(rn) < llgllLomn)-
Thaus (a) implies (b). O

Theorem 2.2.2 Let 1 < p < g < co and p be a nonnegative Radon measure on R}*™. Then
the following statements are equivalent:

(a)
lullogisn iy S lullroqgieny, w € WHPRE™) NB(RY™),
() _
lullogisn iy S Melliproqgieny, w€ WHPRE™) NOHREF™),
(c) .
lull e gien gy S Nullyproqgieny, w€ WHP(REF™) N OB(RLT™),
(d)

(40" 5 capyys p(aisn)(O), open O C RY™™.
If0<g<p=1, then (b) => (c) = (d) = (a).

Proof. Assume that 1 < p < ¢ < co. In what follows, for A > 0 and u € W'P(RY™) n
B(RYH™), let
Mi(w) = {(t,2) € RY™ : Ju(t, 2)| 2 A).

(a) = (b) = (c). Since 0 < Ay < Ay implies (Mp, (u)) < p(Ma, (), we can conclude

o alp
RN < ( / (u(Ms(u)))”/"dS")

This implies

00 rla 00
o’ < (o [ onnian) ™ < [Cuonwprae, o
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and obtains the desired implications.
(¢) = (d). Let (c) be true. For an given open set O C R}*", and any function u €
W (RL) 005 (RE™) with

O C Int({(t,) € RY™ s u(t,z) > 1}),

we have 1(0) < u(Mi(w) £ [[ully , gysn)- This derives (d).
(d) = (a). If (d) is true, then for u € WIP(RL*"), k € N and B(0,k) C R", Lemma 2.2.1
(a) implies

8

(u(Mx(u) N ((0, k) x B(0,k))))*/%dX"

N

o g o =g ©

OBy (Ma () N (0, k) X B0, k)N

S [ camrnuin (M @)AN S [l i

Letting k — oo we see that (a) holds. When 0 < g < p = 1, the implications are obviously.

Nishio-Yamada [58] gave a characterization for a nonnegative Radon measure s on R}
to be a Carleson type measure on b(R}*"), which is called (0,1)-type Carleson measure
and means that |V, )u(t,z)| € LP(RY™, 1), that is,

19yt ) ogmien y < Il @)l oqgienys Yo € O5(REFT).

We find a sufficient condition for a nonnegative Radon measure x on R1*™ to be a Carleson
type measure on b, (RY*").

Theorem 2.2.3 If i is a nonnegative Radon measure on RY™ satisfying the property

(TB@ )"

suj o
z€Rn >0 CaPy1/a0 (B, 7))

Jor 1< p<2n and %2 < g < oo, then j is a (0,1)-type Carleson measure on b}y (RY™)
2n-
forpy = B 1.

Proof. Assume that 4 is a nonnegative Radon measure such that

(W (T(B, 1))
- capyy1/an(B(z,7)) 12
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for 1 < p < 2nand %2 < g < co. According to the definition of 1/2—parabolic rectangle
(see Nishio-Yamada [58])

Q%(s,y) = {(s,y) € RY™ : |z; —y] < 8/2,1 < j <m,s <t < 23}
with center (s,y), we have
Q'*(s,y) = [5,28] x By, Vis/2).
The definition of T(B(y, ) implies that there is a dimensional constant ¢(n) such that
Q'%(s,y) € T(B(y,c(n)s)),
for each (s,y) € RY*™, so
H(Q'*(5,1) < WT(B(y,c(n)s)) $ 57"~ /D/0.
If py = 28} — 1, then for each (s,y) € RY™™,
u(Ql“(s,y)) 5 ymu)(upx)_

Note that py > 1 since g > 1%%1 and p < 2n. It follows from Nishio-Yamada (58, p. 91
Theorem 2] that v is a (0,1)-type Carleson measure on b{,,(R}*") (¢ > 1) if and only if
Y(Q'2(s,y)) < s HNIHD) for each (s,y) € RYT™. Thus u is a (0,1)-type Carleson measure

on B,(RE™). O

2.3 Carleson Measures for Cauchy Problems

In this section, we study Carleson measures for the Cauchy problems of fractional heat
equations. We divide this section into several parts as follows.

2.3.1 Case: 0<g<pandl<p<n/s

We need the following lemmas which are useful in this chapter.

Lemma 2.3.1 (58] For (€ (0,1, there are positive constants o and C such that
inf{|K7 (@) : o] < ot} > Co7H,

where o and C depend only on n, f3.

Lemma 2.3.2 Let 3 € (0,1] and s € (0,n). Given f € W*P(R"), A > 0, and a nonnegative
measure p on RY™, let

EY*(f) = {(t,) € RY™ : S5(t) f(2)| > A}
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and

0§ () ={yer": A 15(#) £ ()| > A}.

Then the following four statements are true:
(a) For any natural number k,

w(B ()N T(BO.K)) < 1 (TOF* ()N BO.K)).
(b) For any natural number k,
capasey (057 (N NBOK)) 2 ¢ (i (TOZ" () N BO.KD)).
(c) There exists a dimensional constant 6, > 0 such that

sup [S(t*)f(y)| < rM[(z),z € R".
y-al<t

(d) There exists a dimensional constant 65 > 0 such that

(t,2) € T(0) = S3(t*)\f|(x) 2 b,
where O is a bounded open set contained in Int({z € R" : f(z) > 1}).
Proof. (a) Since sup |Ss(t*)f(z)| is lower semicontinuous on R", OF*(f) is an open
subset of R”, By L:e— :lz:f;nition of EJ*(f) and 0*(f), we have

E$*(f) S T(O°(£)) and w(ES* (£)) < T((OF*(£))-
Then
1 (BE*(5) NT(BO,K)) < w(T(OF* (1) NT(BO. ) = u (TOF* (N BO.K)).-

(b) It follows from the definition of cj(u;t).

(c) By (2.3.4), we have

28
183091 (@)| = KEa(a) S0 € [ g Iy = Hle) @)
Thus
sup |S5(2) 1W< s Hiy)+1£0)] € OMS(@).
ly-z|<t ly=z|<t
The last inequality follows from Stein (64, p. 57, Proposition].
(d) For any (t,z) € T(O), we have

B(z,t) €O C Int({z: f(z) >1}).
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1t follows from Lemma 2.3.1 that there exist o and C which are only depending on n and 3
such that
inf{KP () : |o| < otB} > Ot~ .

Then
Sp(t*)\fl(z) = /R K (@ = y)If1(v)dy
A L(wmlnt({r/(z)zmWy)dy'
If o > 1, then
B(z,ot)NInt({z : f(z) > 1}) 2 B(x,t)NInt({z : f(z) > 1}) = B(a,t);
if o <1 then

B(z,0t) NInt({z : f(z) 2 1}) = B(, 0t).
Thus Sg(t)|f(x) > 0 for some dimensional constant 0 > 0. O
The following result is a special case of Adams [2, Theorem 5.2] or Adams-Xiao [7,

Theorem A].
Lemma 2.3.3 Let s € (0,n). Then there are a linear estension operator

£ WensR") — L3/°(R?")
and a linear restriction operator

R: £5]°(R*) — W/ (R")
such that RE is the identity, and

(a) _
UE g3y iny S I hirrnguny, VI € W0/ (RE;

()
IR lireunraqany S I9ll e gany> V9 € Pudal(: SO
In the rest of this chapter, v(f,) is the solution of equation (2.0.2) with data vo(z).
Theorem 2.3.4 Lets € (0,n),0 < q < p, 1 <p<n/s and y a nonnegative Radon measure
on RY™. Then the following two conditions are equivalent:

("')
[0(t*, @)l aien iy S Noollyrsnqmeys Yoo € WP(RT).
L ) (

/N( wia )mvm @ _
o \cp(uit) t .

®)
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Proof. Let 0 < ¢ < p. Then we finish the proof in two steps.
Part 1: (b) = (a). If
Fropla \TT g
- <0,
w-[(55) "
0

then for each vy € W*P(R"), each j = 0,£1,%2,-- and each natural number k, Lemma
2.3.2 (c) implies

CaPygnn(any (O (10) N B(O,K)) < apyirn oy ({7 € R™ : 61 Muo() > 27} 01 B(O,K).

Let pt;,x(v0) = p(T(O2s (vo) N B(0, k)), and

o0

.
Syl vo) = Z (15,6 (v0) = py41.k(v0)) =
=20 (capyyn n) (O (10) 0 BO, )"

Lemma 2.3.2 (b) implies that

S (436 (v0) = Py 1, (00)) 77
> ==
5 (capypn ey (Ous (10) N BO,K)))

SN (4gk(t0) = i1 (0)) 7 ’
< )7
G (,;m (e 1y (10)) 7 )

(Spakluivo) 5 =

~ (m(mﬁ“.
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On the other hand, using Hélder’s inequality and Lemmas 2.2.1 (b) and 2.3.2 (b)-(c), we

have
/ (2, 2)*dut, )
T(B(0.k))

/w " (Ef-*(nu) mT(B(o,k))) e
0

I

3 (lw0) = e i(v0))2

i=—00

b2

alp
S (Spaklisvo) 7 (Z 27capyiyn.p geny (O (v0) N B(0, k)))

j=—o0
N
3

“oo

< (Spak(pive) @ (Z 2Pcapypgn)({z € R™ 1 61 Muo(z) > 2} 1 B(O, k)a

o0

alp
< (Spali )7 ( [ sz € R 01 Mun(o) > A})d»’)
0
< (sp‘c,k(#?UO))L;!”UDH?;V.,(W)-
Hence e
(/ [v(¢, ) dp(t, I)) S Upg (1)) 5 ool oo oy
T(BOK

Letting k — oo in the left side of the above estimate, we have

1/q »
(/m o 006, >\°dw:)) £ Upali) 5 ool

Part 2 (a) = (b).
If (s) is true, then
(Jasen I 2rant,2)) ™

Jpalw) = sup T
V€W (R™), 10l n) >0

<oo.
[vollyirs.p )

Thus for each vo € W*?(R™), with [[vo]lyjs.s(gn) > 0, we have

1/a
( L. 1u(:’5,z)l"du<z,z>> A

Since u(E}"*(v0)) is nonincreasing in A, we have

sup A (1B (00))0) S Jpali) ol e cany- (231)
A>0
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For fixed positive vy € W*P?(R"), and a bounded open set O C Int({z € R" : vo(z) > 1}),
then (2.3.1) and Lemma 2.3.2 (d) imply that
uT0)) < M(Eif(vo)) S pa()*1v0llfy 0 gn)

This along with the definition of capyy..» gn(") give

WO S Upal)? (ep1p-0001 (@) 232)

1t follows from (2.3.2) and the definition of cj(u;t) that for 0 < t < oo, ¢j(u;t) > 0. The
definition of ¢j(u;t) implies that for every integer j there exists a bounded open set O; C R™
such that

Capyenany(05) < 2 ¢h(;27) and u(T(0;)) > 2/

We divide the following proof into two cases.
Case 1, p€ (1,n/s):
It follows from Maz'ya [49] that
capypenqany(S) = 0t {915 ey 9 € LP(R"),9 > 0,8 C Int({z € R": Ly g(a) 2 1D)}.
By this equivalent definition we can find g;(x) € LP(R") such that
05 2 0,1, % g5(x) > 1,Vz € Oj and g5l ny < 2 caPyunan)(05) < 4 (i 2).

Given integers i, k with i < k, define

( 2 )p-a
k= up | e ’
bl xSygk (13 27) o

Since LP(R") is a lattice, we can conclude that g; x € LP(R") and

3 k

il ey < Z(p,“,) o3y S 2(

=i i=i

Note that for i < j < k.

p S 2 =
2 €0; = I, * gi(z) > (5)’1("—2))) i

1t follows from Lemma 2.3.2 (d) that there exists a dimensional constant 6 such that

(t,2) € T(0;) = Sp(t*) |1, * gin(@)](2) 2
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This gives
2 < p(T(0)) <p | B e Uxgin(@)
(i) " (8
Thus

Uralldioan) 2 [ 1950 s gua(a)ld(e )

2

v
[v])r

e

u,21 )
e
Thei ()™ ¥
T
H

(Efm (?fm) e e 21))

1%
™M~
-

—

I (tn e (B2 gate) < 1)

(inffa s (BE* (1, gun(a))) < 2})" 2

I1gi k1 gy

& 2% .
f (T ) ol
(cp(r;29)) 77

This tells us

ko ”
< =
2 ey S a0

Case 2,p =1 : By the definition of capyj.,gn)(O;), there is f; € W*P(R") such that

£520,£5(2) 2 1,Y2 € O and |11, gy < 2 CaPyyenan(O5) <

Lemma 2.3.3 implies that for each j there is g;(-,+) € LP(R") such that
fia) = 15"  9;(2,0) = REfy(x)

and
2n
175" % g3l c3, amy = €S lcg, am) < 1 llmqan)-

Given integers i, k with i < k, define

( 27 )B—G
n = up! | = .
sk = Gt \awm) ¥

4cp(m2).

(233)
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Since LP(R2") is a lattice, we can conclude that g;x € LP(R?") and I{2") « g i € £5,(R*").
Then (2.3.3) and Lemma 2.3.3 imply that

IRAE™ % 91 By oy

¥\ (2n) »
Seo)  IRE" *9) G

W

=
*en »
122" # 9illZp (gany

™M=

A
™M~

N
M~
—~ Y~ o~
2
e
2

i

i
150y camy

s

)

c;(im)# VE 1, gony
)
)

 eaus2?).

M~

Note that for i < j <k,
21 =
2 €0; = RULY + i) (@) 2 (W) ‘
Then Lemma 2.3.2 (d) implies that
(t,2) € T(0;) = SalPRUL + g.01(@) 2 (o) 0
T 4 cl s 9ik)l(z) 2 ) 2.

This gives

2 <u(T(0)) <u| B

(RUSE" * gi)())
25) T ()
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Hence
‘
(FraIRAE * g1 lweram)

[ 1S8R i) o)t )
[T (mtn (B2 R+ g0@) < 11)' 0r
k

2 3 (nfr e (B R gui)(@) < 2}

(2")
FIRUE™ * gy oy

o ;2]))

o
T\ @)

This tells us we obtain the same inequality as in the first case

p=
5

IRAE™ * 91 By oy

3 27% N
g
2 (ep(ui2) ™ S (pa(m)

Note that the constant involved in the last inequality does not depend on i and k. Letting
i — o0 and k — 0o, we have

ey

ol \Ta & o
./n (G;(W)) T3 Zm (epus2i))™ ~ S Upali) .

Therefore, (b) holds. O

2.3.2 Case: 0<g<p=1

When 0 < ¢ < p =1 we obtain necessary conditions for such embeddings.

Theorem 2.3.5 Let s € (0,n), 0 < q < p = 1 and 4 a nonnegative Radon measure on
R, Then (a) = (b) = (¢) = (d) :
(a) .

(%, 2) | aggin iy S IWoluncmnys Yoo € WHHR™).
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(®)
(%, 2)l oo (gien iy < Ivollyrns )y Voo € WH(R™).
(c) y
(T n
sup{m. open O CR' }<oo.
(d)

(%2, @)l o g1+ ) S [0llires ey Yoo € WHHR™).

Proof. Suppose 0 < ¢ < 1. Since the proof of (a) = (b) = (c) is similar to that of
(5) = (c) => (e) of Theorem 2.3.6, we only need to verify (c) = (d). Let (c) be true.
Then Lemma 2.3.2 (a)—(c) imply

w(EPw) < (u(T0F*w)))
< (u(T{z € R™ : 6r.Muo(x) > A})))
5 (cpios ny (o € R : 01 Muo(@) > A)).

This and Lemma 2.2.1 (b) imply that (d) holds. O

2.3.3 Case: 1<p<n/sand p<g<oo

If we change 1 < p < n/sand 0 < ¢ < p in Theorem 2.3.4 into 1 < p < n/sandp < q< oo,
then the conditions (a) and (b) of Theorem 2.3.4 can be replaced by a weak-type one and
two simpler ones, respectively.

Theorem 2.3.6 Let s € (0,n), 1 < p < n/s,p < q < oo and p a nonnegative Radon
measure on RY*™. Then the following five conditions are equivalent:

(a)

19, 2)l| pasqaisn uy S Wollirmsre)s Voo € WP(RT).
) )

(%, @)l awin iy < Ntollyrnsqmny: Yoo € WP(R™).
() )

106, 2)| o gt 1y S N0llem ey Vo € WP(R™).
(d)

/e
—
oot -

(e)

(@O =
sup { ey 0] bounded open O CR™ ) < oo.
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Proof. Let p < q. The proof consists two parts.
Part 1: We prove (a) = (b) => (c) = (&) => (a).
(a) = (b) = (). Since u(Ex(vo)) is nonincreasing in A,
alp

A
B )N < ( /n (B2 (o))" ds”)

This gives, for r > 0

ottt < (o [ etreomman) < [ (uegenn) v,

and establishes the desired implications.
1€ (c) s true, then
sup A (i ({(t,2) € REF™ : [u(t28,2)] > A}))*

A>0
= < oo.

Kpq(n)= sup
vo€W P (R™), [v0llys.p(any >0 llvollwe.p )

For a given vy € W*P(R") and a bounded set O C Int ({ € R™ : vo(z) > 1}), then Lemma
2.3.2 (d) implies

(1(TON* S Kpq(m)llwollyancan)
and hence (e) follows from the definition of capyj...» ga)(O). To prove (¢) = (a), we assume
(e). Then

/:
Qpas) = { LLLOVE . ot e 0 w} <o

Ifvy € W”"’(IR") and k= 1,2,3,-++ , then Lemmas 2.3.2 (a)-(c) and 2.2.1 (b) imply
- 3 /4

/" (i (B2 o) n (B0, K)) " ax

[ (1 (2003 w0) 1 B, )" " axe

/m (e (T({x € R™ : 6, Muo(z) > A} 1 B(O,K))))"* dNP
o

A

In

A

‘/Do (1 (T({z € R™ : 6, Muo(z) > A} N B(0,k))))"/* dN?
o

N

Qy.q(u)/u Capyipnp ey ({2 € R™ 1 01 Mug(2) > A} 1 B(0, k) AN

b2

Qx«q(/")A Capyunan) ({2 € R" 1 61 Muo(z) > A}) AN

SN -~
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Letting k — oo in the above inequality we have

o0 o vla
I (e (B0))™ 43 £ @pall0lfy g

This derives (a).

Part 2: We verify (c) = (d) = (a).

If (c) holds, then for any bounded open set O C R", we have

RTONY S Kpg(m)lvolliresar)-
Note that
179 < (K q(1)” Capyinsany(O) whhenever 0 < t < (T(0)).
Hence
19 S (Kpq(W) ch(uit).

Therefore (d) holds.

If (d) holds, then Lemmas 2.3.2 (b)-(c) and 2.2.1 (b) imply that for each k = 1,2,3,---,

[ (s(B2 @ nre0.0)) " ax

o

[ (w(B w0 nTBO.K))""
S A i ) e |
i (2 ]
b (»a%)/ capyyspgan ({& € R™ : 61Mug(a) > A} N B(0, k) N

p/q
< (=" Vool
5 (spem) ol

Letting k — oo in the previous inequality we have

[ (a0 5 (a5 o

This implies that (a) holds. O

Corollary 2.3.7 Let s € (0,n), 1 < p < min{g,n/s} or 1 =p<q<oo,v€(0,1,(>0
and ¢ +ny > n — ps. If iy (t,x) = t¢Ha|" ¢~ Vdtdz, then

(12,0 (T(0))) %5 S capyyun(sn)(0), open O CR™.

Equivalently

u(t?, < lvollypenggny, Voo € WHP(R™).

[lo(*, ) LS e lvolly ey, Yoo (R")
Proof. This assertion follows from the case g = p(¢ +17)/(n—ps) and t = jiy¢ of Theorem
23.6.0
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2.3.4 Case: 1 <p<min{gn/s}orl=p<gq

Furthermore, the family of all bounded open sets in the inequality (e) of Theorem 2.3.6 in
some situation can be replaced by the family of all open balls. To see this, we need the
following two lemmas.

Lemma 2.3.8 Ifs € (0,1], s € (0,n) and (t,x) € RY™, then
L Khaly sl 5 (¢ + o)

Proof. By Miao-Yuan-Zhang (53], Nishio-Shi Suzuki [57) or Nishio-Yamada (58],
we have the following point-wise estimate

|Kl(@)| < C V(t,x) € RL™. (2.3.4)

t
@7 1 a2
So, it suffices to verify
J(t,x) = / 2t + [y) Py — o]y S (8 + o) T
Rn

Changing variables: # — tz, y — ty, we see the previous estimate is equivalent to the
following one:
J(1,2) S (1+ 2T

Since J(1,0) S 1 we may assume that [¢| > 0. Then

1
2) < ————dy = I In(z).
RO (A(J»\t\/?)+/R"\B(:M1’V77) Tyl o ¥ = 1@ + (@)

Since [z - y| < [z]/2 implies that |y| ~ ||, we have

1
Iz :/ _— e dy
[ S e ) G P
S =
Bla,jzl/2) 1Y — T
|z/2
5 @i [T
0
Sl +l) Y
S (),
with the last inequality using the fact 1 < (1 + [«[)?. If |& — y| > |2]/2, then
1

(@) / AT, =g
Re\B(z,fzl/2) (1+ )2 |e — y|"=*
1
<l e dy
Re\B(aal/2) (1+ Y™+
< el
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with the last inequalities using the fact rfywss € L'(R"). Since [ —y| > |z|/2 implies

T+[y)™
lyl < 3lz - yl, .

n@s | s
R S () i
Thus I; < (1+ [2])*~" and J(1,2) < (1+ \z\’)"il, o

Using f(z) = (—A)*/2 ((~A)*/2f(x)) and the definition of Riesz potentials, we can
easily derive an integral ion of 1 Sobolev functions.

1.

Lemma 2.3.9 [6] Let p € (1,n/s), 0 < s <n and f € WHP(R"). Then
/ (&) f()

P’
-

where 7y, = T/22°T(s/2)/T(%52).

Theorem 2.3.10 Let s € (0,n) and pu a nonnegative Radon measure on RY™. If 1 < p <
min{g,n/s} or 1 =p < q < oo, then the following two conditions are equivalent:
(a) _

[0(t*, )| on iy S 10llrnnqmey Yoo € WP(RT).

o .
(L (T(B(.r)"

su et < 00,
<cR 50 APy pear) (B(E.T))
But, this equivalence fails to hold when 1 <p =q <n/s.

Proof. Part 1: We prove (a) <= (b).
It follows from Theorem 2.3.6 that it is enough to prove that (b) implies (c) or (e) in

Theorem 2.3.6. We consider the following three cases.

Case 1,1 =p < ¢ < o0 : If (b) holds, then [Jull1 4 < co. Suppose that O C R™ is a bounded

open set and is covered by a sequence of dyadic cubes {I;} in R" with 37, |[;|*** < oc.

According to Dafni-Xiao 22, Lemma 4.1] there exists another sequence of dyadic cubes {J;}

in R™ such that

Int(J;) NInt(Ji) =0 for j#k, (JJy =k
3 3

SO < 3 Il
7 ¥

7(0) € | JT(Int(5v/n;)).
]

Then

WTO) £ lulhad l5vad;
7

mm«Zw%j'
7

S llhe (Zw,

Fl

N
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By Xiao [77] (see also Adams [4] or [5]) we have capyyu. (gn)() & HZ™*(), where the HZ ()
is the d— dimensional Hausdorff capacity. Thus, these along with the definition of HZ"*(0)
imply
q

WT(O) S Ihlq (capiyszn(©))'s
that is, the inequality (e) in Theorem 2.3.6 holds.

Case 2 1 < p < min{g,n/s} : Let vo € W*P(R") and px be the restriction of 4 to
EZ*(W*P(R")). If (b) holds, then
#(T(B(x,1)))

Wil = _sup <.

2€RM,r

It follows from Lemma 2.3.9 that
(=8)2f(w) i n
15/ 2Ly, feWSP(R"), z€R™
|f()] e Ty—a ! (R™).
This inequality along with Lemma 2.3.8 and Fubini’s theorem tell us

w(Ew) 5 [, IS
~/Ef"(va)

S ([ (@ —z\*)‘*’r") =3 (5)d) dis(t)

N

RO wdy‘ ault,2)

s /! 2)"u0(2)| (/R ((ZZ-HZ—I\) *) duat, z))
5 [ Icar e (/ﬂmﬁu(T(E(yw))r”"")dT)dy
S () +hE),
where
3= [ (107wt (B ay) r-rtar
and

n) = / " (L 187t (TG ay) o=t

By the definition of [[u]l¢, we have

1 (T(B(y 1) < (ua(T (B, )Y /e ™5
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for % + ’% = 1. So, using Holder’s inequality and the estimate
< B
[ (B ) e 517 (B )
we obtain
- ‘. 1 n - ps]
1) 5 [ ([ ICAr @B lulhar“Fay) -t
e [° w nope) g n—1
3 touhwno ity [ ([ i @@Grmay) e
= . Ur' gn=pa) yyn_
B A T ) )
" 1/p = p)(n—ps)
S Mool 02 (i (B (0))) 7 25852

Similarly, we have

o y ¥
e 5 (m/ !PA)"WD(y)P’m(T(B(y,r)))dy) (“/u,\(T(B(y,r)))dy) 7ol

N

I 1l 3 @B ([ 2 B0 ) Y gy
Veohsan (1 (B2@0)) [0 (B an) " rrrtar

£ Toollenqany (4 (B2 00))) =777,

N

Combing the above estimates on I () and Iy(2) together, we have

MBS @) S Neollimsunyiin (B (20))

| 2 (z""/”'*(HMHp,a @ (Ei’"(vw))")w

Taking

&

<= (Il (n (B2 @) )) ™7

in the above inequality, we have
. 1/a
A (HES* @) " S IklEdvoll e gy

This implies the condition (c) of Theorem 2.3.6.
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Part 2 We find a nonnegative Radon measure to show that if 1 < p = g < n/s then (b)
does not imply (a) in general.

In fact, suppose K C R™ is a compact set with the (n — p)—dimensional Hausdorff mea-
sure H®"=P)(K) > 0, then by Maz'ya [49, p. 358, Proposition 3] we have capyy..» gn(K) =
0, on the other hand by Adams-Hedberg [6, p. 132, Proposition 5.1.5 & p. 136, Theorem
5.1.12) we can find a nonnegative Radon measure v on R" such that

sup LBEI) o and 0 < HIP(K) S u(K).
z€R",r>o0 -
Define pu(t,x) = 8,(t) ® v(x). Then (b) hold for this nonnegative Radon measure on R}*™.
However, (a) is not true, otherwise, we would have 0 < v(K) S capypugn)(K) = 0
Contradiction. O
Working from RY*™ to R, a trace inequality can be derived from W*P(R").

Theorem 2.3.11 Let s € (0,n), 1 < p < q < 00, p < n/s and  be a nonnegative Radon
measure on R™. Then

) 0/
R S wp(Rn) W*P(R"™
Wllsrn S W lheraey, SEWPRY @ g @) <

If1=p<q<oo, orl<p<min{g,n/s} then
i (u(B(z, )"
aRr ) S wimey fEWP(RY) & sup ——————F— <
Il Lowe sy S W f i gnys £ (R™) P Bipenam (BETY
Similarly to Theorem 2.3.6 & 2.3.10, we obtain the following result which covers Theorem

2.3.11.

Theorem 2.3.12 Let s € (0,n), 1 < p < q < 00, p < n/s and u be a nonnegative Radon
measure on R™. Then the following statements are equivalent:

(a) :

[IflLenmnpy S N flyspgny: f € WP(RT),
() )

f o) S Wflropqmnyr £ € WHP(RT),
(c) .

[1fllose @) S Iflwowmny f € WHPRT),
(d)

((0))"'7 S capyipspgny(0), open O CR™.
If1=p<q<oo, orl<p<min{g,n/s} then all of them are equivalent to
(e)
B
>0,2€R" CaPyyap(gn) (B(@,T))
f0<q<p=1, then (b) = (c) = (d) => (a).

oo
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Remark 2.3.13 The case 1 = p < q < 00 of Theorems 2.3.12 was shown by Xiao in [77].
Corollary 2.3.14 Let § € (0,1), s € (O,n), 1 < p < n/s and v € (~1,00). Then the

following two conditions hold:

(a)

( /R ) e S loollyennys Voo € WHP(RY).

()

sup ([ 1062 #5d) ™ S obhyany oo € WORY).

Proof. In Theorem 2.3.10 we take

p(l+n+1)

du(t,z) = (1+7)""dtdz, ¢ = —_—

»Y>-1
respective ™
du(t,2) = b (1) ®dz, g = 2o, v — L,
where 6y, (t) is the Dirac measure at to > 0, then an application of the capacitary estimate
of ball (see Maz'ya (49, p. 356] for p € (1,n/8), Xiao [77, p. 833] for p = 1):

APy roy(B(z, 7)) % TP, T € R, 1 >0,

we can finish the proof. O

According to Miao-Yuan-Zhang [53, ition 2.1], the condition (a) of Corollary
2.3.14 amounts to that W*P(R") is embedded in the homogencous Besov or Triebel-Lizorkin
space (see Triebel [69] for more details about these spaces)

-~ -z p(l+n+7)
Bgg® R") =Fpq" (R"), g= ———.
00" (R")=Foq® (R"), ¢ —=
At the same time, the condition (b) of Corollary 2.3.14 can be treated as extreme case of
the condition (a) in Corollary 2.3.14.
Finally, according to Theorems 2.3.6 & 2.3.10, we can establish the following decay of
the solutions of equation (2.0.2).

Theorem 2.3.15 If v € W*?(R") for 1 < p < n/s and s € (0,n), then
[0(65, 20)| S 5" [ollns(gnys Vlto, 7o) € RYF™

Equivalently

[o(to @)l S to 7 [vollyenrys Vltor0) € RYF™.
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The special case § = p = 1 of Theorem 2.3.15 was proved by Xiao in [77).
Proof. From the proof of Theorems 2.3.6 & 2.3.10 for 1 < p < n/s and ¢ > p, we have

2
_ W(T(BEN))
lulleg = sup o B <

2R, r>0
i

o ( / \“(125~z)\"dﬂ(1v1)) S Mlllpalivollvpencgnys Voo € WP(R™).
Rit

Given (to,@o) € R{™™. Let q = 225 and u(t, ) = 8(sq,z) be the Dirac measure at (to, zo).
It suffices to prove [[[§o,eo)lllpg < t5°~". In fact, if (to, o) is not in T(B(z,r)), then
8(to,z0) (T(B(z,7))) = 0. If (to, 20) € T(B(,r)), then B(zo,to) C B(x,r) and r™ > . This
give the estimate

o
=

B(toyz) (T(B(z, 1)) < to"r

The above estimate and capyy..pgny(B(@, 7)) & r" 7P verify

(tanzo) (B2, 7))
COBynr ) (B 7))

Therefore, |||8(ty,z0)lllpq < th" ™. O




Chapter 3

Strichartz Type Estimates for
Fractional Heat-Type Equations

This chapter studies Strichartz type estimates for the inhomogeneous initial problems asso-
ciated with the fractional heat-type equations
B(t,z) + (-A)Pu(t,z) = F(t,z),  (t,z) € R, (30.1)
v(0,2) = f(x), z€eR", :

where 3 € (0,00) and n € N. The main goal is to determine pairs (¢, p) and (g1, p1) ensuring
Ho=t(=2) ;
1le=* A fllarzmey S I Flleaan)s (3.0.2)

2|

< (3.0.3)
L{(ILE(R™))

¢
~(t-s)(-8)" 2)ds| I g 5
/ﬂ e F(s,2)ds 11 12 ey

where I is either [0,00) or [0,7] for some 0 < T < oo, and pj = 524 is the conjugate of a
given number p; > 1.
3.1 Notations and Preliminaries

In the following, for a Banach space X, L?(X) (where p € [1,00)) is used as the space of
functions f : X — R with

Wlere = (f, \f(znpd.r)w <oo;

for a function space F(R") on R", LI(I; F(R")) (where ¢ € [1,00)) represents the set of
functions f : I x R" — R for I C R with

1/q
Wzspany = ( 17N ortt) <o

33
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Given an infinitely differential function 7 with compact support in R™ satisfying

wo-{§ 83}

define the sequence {t;};ez in the Schwartz space S(R") by

wi(£)=n(2%) ~n(5ff,). (3.1.2)

This sequence is applied to define the inhomogeneous and homogencous Besov spaces B o (R")
and B, (R") for 1 < p,g < coand s € R :

7.0(R") = {f € 8'(R™) 5 1f]13; vy < o0} and B ,(R™) = {f € S (R : |35 @y < 0},
respectively. Here S'(R") is the space of tempered distributions,

o 1/q
(21(2"\If"(w;f(f))Hu(wy)" if g < o0,

=

521:2”\\"“(¢:’“’(/))1\L04R") if g=00
2
(3.1.3)

I1£135 , &) = IF " IF (D o@n) +

and

1/a
(JEN(Z“Hf"(w]}'(f))!h.vmn))" if g < 00, @.14)

11125, ey = ‘ _
up 29 |7 Wy F () e if g =oo.
;

On the other hand, Besov spaces can be defined by interpolation between the Lebesgue
spaces and the Sobolev spaces of integer order (see Triebel [69]). It follows from Bergh and
Lofstrom [8] that for s € R and 1 < p, g < oo,

By (R) = [H*P(R™), H**P(R")]o,q and B} ,(R") = [H*P(R"), H**"(R")]o,q,
where s1 # 82,0 < 6 < 1 and s = (1 — §)s; + 0sy. Here H*?(R") and H*P(R") are the
inhomogeneous and homogeneous Sobolev spaces which are the completion of all infinitely
differential functions f with compact support in R™ with respect to the norms

£ llsew@n) = 1 = BY/2flliognys and (1l gongeny = 1(=2)2fl|o@n)

respectively, where (I — A)2f = F=1((1+ [€2)*/2F f(€)).
BMO(R™) is the set of equivalence classes of locally integrable functions f modulo
constants for which the following supremum is finite:

Wilasiorn =supi()™" [ |7(e) = fldz,

where I is a cube in R" with sides parallel to the coordinate axes, [() is the sidelength of

Tand fr = (1) [, f(2)d.
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Definition 3.1.1 The triplet (q,p,r) is called a o—admissible triplet provided

where 1 <r <p< oo ando > 0.

3.2 Strichartz Estimates Involving Norms in Lebesgue
Spaces

We first establish the Strichartz estimates with norms in Lebesgue spaces for fractional heat
equations. Before doing this, we need the following lemmas.

Lemma 3.2.1 Forallt >0 and "m’ > 0, we have
(a) =2 (—p)Y = (—a)re~=8)

(b) e==2° (I = AYY = (I = A)Yet(~ A)"‘

(c) (-2 f,g) = (£, f), Vf,g € LA(R").

Proof. The proofs of (a) and (b) will follow from the definition of e=*=2)", (~A)" and
(I=2A)". For (b), let f,g € L?*(R™). According to the Fourier transform and the Plancherel’s
identity we have
(g = [ i
[77 (e 110) @it
= [ene EreFaE
= [FroFTT R
- [ 10T
= (f,e=S’g).

This finishes the proof of Lemma 3.2.1. O
Miao-Yuan-Zhang in (53] established the forthcoming two lemmas.

Lemma 3.2.2 [53) Let 1 <r < p < oo and f € L"(R"). Then
€72 fllipmmy St BED Sl @nys

1972 £ pqany S tH=BGD) Lo o).
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Lemma 3.2.3 [53] Let (¢,p,7) be any f5—admissible triplet satisfying

nr
w5 n> 20,
< { oo, n<2B,
and let ¢ € L™(R™). Then ¢~*~2)"p € LI(I; LP(R™)) with the estimate
=0y
lle™ =2 el Lorizmny S lellr@ny,
for I =10,T),0<T < oo.

Lemma 3.2.3 gives us the homogeneous Strichartz estimates of equation (3.0.1) except
endpoint cases. To obtain the endpoint estimates we need the abstract Strichartz estimates
of Keel-Tao [38].

Lemma 3.2.4 (98] Let H be a Hilbert space and X be a Banach space. Suppose that
U(t) : H — L*(X) obeys the energy estimate:
U@ fll2cx) S I1flla
and the untruncated decay estimate, that is for some o > 0,
U@ W) fllze S 1t =7 flle, Vs #t.
Then the estimates
U fllgez S I1flles

|fwerFeas S VPlguy

/ VU (s)) F(s)ds
-

hold for all o—admissible triplets (¢,p,2) and (q1,p1,2) with ¢,q1 > 2, (¢,p,0) and (q1,p1,0)
are not (2,00,1)

SIEN ot ot
L v Le

Proposition 3.2.5 Let (¢,p,2) be f5—admissible. If q > 2 and (q,p, £5) is not (2,00,1),
then (3.0.2) holds.
Proof. We only need to prove (3.0.2) for I = [0, 0c) since the proofs for other cases are
similar. Assume that (q,p,2) is a 25 —admissible triplet with ¢ > 2 and (q,y,%) is not
(2,00,1). It follows from Lemma 3.2.2 that we have the energy estimate
e

le™ " fllzamny < Iflacgny, Ve > 0, (3:21)

and untruncated decay estimate
A - -
le= @AY £l ny S [+ 817 | FllLirny S [t = 8B fllLarny, V8 #t,5,t € (0,00).
(3.2.2)

By (3.2.1), (3.2.2) and Lemma 3.2.1, we can apply Lemma 3.2.4 with U(¢) = e~*-&)" for
t>0, H = L*(R") and X = R" to obtain (3.0.2). O
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Remark 8.2.6 Proposition 3.2.5 eatends Miao, Yuan and Zhang’s (53, Lemma 8.2] to the
cases: (g,p,7) = (2, 7235,2) when n > 28; (¢,p,7) = (£, 00,2) when n < 28.

It is well known that for the Schridinger equations, there are pairs (¢,p) and (q1,p1)
such that (g,p,2) and (g1,p1,2) are not n/2—admissible but the inhomogeneous Strichartz
estimates hold (see Cazenave-Weissler [17], Tao [65] and Vilela [70]). Similarly, we will prove
that (3.0.3) holds for some pairs (¢,p) and (q1,p1) satisfying the property

p ! 1 n (1 1
LI PO 0 BT 3.2.3
(q§ q) 28 (P’x P) (8
This property is weaker than the 7% —admissibility of (g,p,2) and (q1,p1,2).

Theorem 8.2.7 Let 1 < p} < p < 00 and 1 < ¢} < ¢ < o0o. If (,p) and (q1,p1) satisfy
(3.2.8), then (3.0.8) holds.

Proof. We only need to prove (3.0.3) for I = [0.00), the proofs for other cases being

similar. Assume that (¢,p,2) and (q1,p1,2) satisfy 1 < pj < p < 00, 1 < ¢} < ¢ < oo and

F+3 (% 1) =1+1 1t ollows from Lemma 322 that
e

HE-(I-—.')FA)“F(S.l.)uL,x,m")5“_5‘719,( 1 )HF(,q,J:)HL , Vs<t.

AED)

Then the Hardy-Littlewood-Sobolev inequality implies that

.
/ e~ (t==2)"p(g 7)ds|
o

& s
5 | e Pl lae
) 0
¢ alyd
JAR () pe,an,
0

SIFN

LYILE R )

< ds

HIED)
L1

L Lk mn)’
This finishes the proof of (3.0.3). O

Remark 3.2.8 Since e=/-&)" commutes with (~2)" and (I = &)Y for 5 > 0, if (2.p)
satisfies the assumption of Theorem 3.2.5 then (3.0.2) holds with || - ||»gn) replaced by
cither || || gr.pqgny 07 ||+ |12 an)- Similarly, if (a,p) and (a1,p1) satisfy the assumption of
Theorem $.2.7, then (3.0.) holds with the same replacement.

Corollary 8.2.9 Let n > 28, I = [0,T) or [0,00). Suppose V. is a real potential and

n

1
V € L{(I; L;(R")), Fat i 1,
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Jor some fized r € (1,2) U (2,00) and s € (g5,5) U (§,00). Let f € LA(R") and F €
LE(1; LB (R™)) for some f—admissible triplet (q1,p1,2) with p; € [1,2) and ¢} € (1,2).
Then equation (1.0.8) has a unique solution v(t,x) satisfying

IWllcrzzmey S I fll2@n + IFI o —p— (3.2.4)

for all 35—admissible triplets (q,p,2) with 2 < q < cc.

Proof. We shall prove this theorem for n > 24. In the case n = 23, we can replace in the
sequel the space L¥(J; LI (R")) by any L{(J; LE(R™)) for 1-admissible (q,p,2) with p
arbitrarily large. We consider the following two cases.

Case 1, 1 € (2,00): Let (q,p,2) (2 < q < 00) be 2 —admissible. Let J = [0,¢] where
&> 0 will be determined later and (k,1,2) be £5~admissible with ¢ < k < 0o, and set

=

X = L R N B LT R)
with
ol = ma {olgssyon ol e -

By interpolation (see Triebel (69]), X can be embedded into L{®(J; LI*(R")) for each
2 —admissible triplet (0,po,2) with 2 < go < k. Define T(v) on X by

T(v) = et "7 4 /‘e*“ﬂ)(*m‘(ms.x) — V(s,2)0(s,z))ds, ¥v=u(t,z) € X.
o

Applying Proposition 3.2.5 and Theorem 3.2.7, we have

IT@)ll L0 (ss20 @nyy < Cllf 2@ + CIFI 5+ eIVl

(L2 e B (L% Rn))

for all 5 —admissible triplets (qo, po, 2), (1,1, 2), and (qa, p2, 2) satisfying
2<qo <k, ¢1€(1,2), g€ (1,2), 1<py<po<oo, 1<py<py<oo.
Here and later C' > 0 is a constant. Clearly, Holder’s inequality implies

I7@)llzg0 a0 @my) < CllSlz2@n)+CIF +CIV Lz @y vl

e LBULE &)

provided
1
@
This and the assumption on r and s imply that gj € (1,2), pj € [1,2) and

1,01 _1 nn+za_(n1 l)_n

@ Wm 2% o \s )T
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Again, by Hélder’s inequality we have

7)o s;220ny) < CllflL2n) +CIF TVl ins @ vl gz @)

L8 (L% (R
Similarly, taking (qo, po,2) be (k,1,2) and (2, ;237,2), we have

IT(@)Ix < Cllfllz2@ny + C”F”Lf;(.];lli; an T ClVllzgzs@epllvlix.

The rest of the proof is similar to that of the first case. O

3.3 Strichartz Estimates Involving Norms in Other Spaces

In this section we obtain several Strichartz type estimat ining parabolic Strichart
estimates and other Strichartz type estimates with LP(R") norms replaced by the norms in
BMO(R™), Sobolev and Besov spaces.

Theorem 3.3.1 Let n = 23. Then

_i(-a)®
11”2 fll 20,000 8005 RRY) S I1flL2@m)- (3.3.1)

Proof. Let n = 2a. Define ¢ € C(R) with supp(¢) C (1/2,2), p(x) = 1 for « € (3/4,9/8)
and $yez @(27%) = 1 for all t > 0. Let @i(t) = ¢(27*t). Define Pyf = F~(Ff()ox(l- )
be a Littlewood-Paley decomposition with respect to @y (see [64]). Since BMO(R™) =
FO2(R™) (see Frazier-Jawerth-Weiss (26]),

172
(z IPMZ)
keZ

lgllsrown) ~

L>=(R™)

Let My, = B(0,25+1)\B(0,2%~") and xa, its characteristic function. Since ¢ is supported
in (1/2,2) and n = 23, we have

00 2
I Bl ospszay < [ | [ 1N E o2 e
0 . 2
< [0 anteesup [ et eten zpppeHe| acar
0 R™ z R™

< Z(kAl)n(22v.71)/0m /M 24" | ()2 eD| dedt

A

2kt ) [
@ = 12 quy
1£11% 2 ey

A N
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Taking (g0, po,2) be (k,1,2) and (2, 7233,2), we get

IT@)lx < Cllflawe) + CIF g, ), 54 gey + CIVIiizz@mpllvilx-
Hence T(v) € X and T is a operator from X to X. Since r < oo, we may choose such an
£>0 that 1

ClVilzzwazmey < 3- (32.5)

This fact yields that
1
IT(@) = T(e2)llx < 5llv1 = vallx, Vor,v2 € X.

Thus T is a contraction operator on X, and 7 has a unique fixed point v(t,z) which is the
unique solution of equation (1.0.8) and v satisfies

& - . . »
Tollx S 1flamn) + WF s oy

Since X is embedded in L{(J; L2(R")), one finds

Iollecrzzey S Il + \IFllL.;(J_,_g; ®)

Now, we can apply the previous arguments to any subinterval J = [t1, 2] on which a
condition like (3.2.5) holds, and obtain

lvllegosezmny < llo@)llLa@n) + \|F||,_:; - (3.2.6)
Note that (3.2.6) implies
llo(t2)llL2@ny S llo(ta)llzagm) + “F"L:; ey’ (32.7)

If I = [0,T) for 0 < T < oo, we can partition I into a finite many of subintervals on which
the condition (3.2.5) holds. If I = [0, 00), since V € Lj(I; L3(R")) we can find 7} > 0 such
that C|[V |1 ((r, soys(xe)) < § and partition [0, T3] similarly. Thus we can prove (3.2.4)
by inductively applying (3.2.6) nnd (3 2.7).

Case 2, r € (1,2). Since (r, 25

o 2) our assumption on r,s implies

L, ns=2_n  ns=2_n
¥ 2025  2Bs 26 25 48

Thus (', 2%5) is 75—admissible with r € (1,2). In a fashion analogous to handling Case I,
we use Theorems 3.2.5 & 3.2.7, to obtain

1@ sezomny < Ol e + CUFNl ot gy + CIVON 2 -
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Again, by Holder’s inequality we have

17 (@)l 30 (s;120 @y < CllF 2wy +CIFN +CIWVllzpiLs @IVl geaiLzmny)-

L8 i 'm)

Similarly, taking (qo,po,2) be (k,1,2) and (2, 72%5,2), we have

IT@)llx < Cllfllz2@n) + CIF| +ClVILyis@epllvlix-

L (e )

The rest of the proof is similar to that of the first case. O

3.3 Strichartz Estimates Involving Norms in Other Spaces

In this section we obtain several Strichartz type estimates containing parabolic Strichartz
estimates and other Strichartz type estimates with L?(R™) norms replaced by the norms in
BMO(R™), Sobolev and Besov spaces.

Theorem 3.3.1 Let n = 243. Then

e
le= =2 £l 20,00y BMOL 7)) S I lan)- (3.3.1)

Proof. Let n = 2a. Define ¢ € C*(R) with supp(¢) € (1/2,2), p(x) = 1 for z € (3/4,9/8)
and Yyez 9(275t) = 1 for all £ > 0. Let @i (t) = ¢(27%t). Define Pif = F~'(Ff(-)ei(| - ))
be a Littlewood-Paley decomposition with respect to @i (see [64]). Since BMO(R") =
F92(R™) (see Frazier-Jawerth-Weiss (26]),

(Z \Pmi’) N

Let My = B(0,2¥+1)\B(0,2*~") and xy, its characteristic function. Since ¢ is supported
in (1/2,2) and n = 28, we have

lgll mo@n) =~

L(R™)

. o ™
€72 Pz 0opnze@ny < sup eIl F £(6)p(27(€])dE d‘
R"

< / / xandsup [ [e6e e 7 eyot-Hie | dee
< otk ) / / 2" |Ff()p(27He]) [ dede

5 aimn ) [T

5 @ =1/

5 sy
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Take ¢ € C*(R) with supp(y) C (1/4,4) and $(x)p(z) = ¢(z). Define

Bof = FN(FDw).
Then we have
—t(-A)? - -H(-8)
le™ =" £l 30 onmMO. @) S /0 sup (Z\e =AY Pkflz) dt
k
-t(-8)p P,

D lem =2 PePefllgs o 00nzze @y
k

S YIS iaeny
n

N

S Mgy
That is, (3.3.1) holds. O

Theorem 3.3.2 (a) Let 1 <1 <p< o0 and 0 < T < oo. If n < 28, then
/ B e i s S T ey 3832)
(b) Let 2 < p < 0o, If n = 28, then
[ o7 e S U (333)

Remark 3.8.3 We can refer to (3.3.8) as a parabolic homogeneous Strichartz estimate. The
special case n = 2 of (3.8.3) was proved by Tao in [68]. On the other hand, according to
Miao, Yuan and Zhang’s [53, Proposition 2.1], (3.3.3) amounts to that L*(R") is embedded
in the homogeneous Besov space

(2-p)

. n
1a®), 8= ES2E, 2<pson

Proof. (a). Let 1 <7 < p < ooandn < 26. It follows from Lemma 3.2.2 that

_an _aC8) e . .

& B[ A Y ) S BN -
On the other hand, n < 28 implies that

T
- 28 -
fids = T #
sTHds .
/o 28-n

Thus (3.3.2) holds.
(b). The following proof is essentially the same as the proof Tao's 68, Lemma 2.5]. For the
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sake of completeness, it is provided here. We use the TT* method. Thus, by duality and
the self-adjointness of e~*~2)" it suffices to verify

00 2 2
/ s~ WPems =B F(s,z)ds
(] L

< F 3.34
- L 1, D2y oy (3:3.4)
for all test functions F. The left hand side of (3.3.4) can be written as
‘ 0o 00
| / / sy /Pgm1lp <5'JTL("A)4F(5,$),e’lrl(’A)aF(s‘,z)> dsds,.
{ o Jo z
\

Let g(s) = || F(s, )|l 5 (gn)- According to Lemma 3.2.2, we have

(R™)
| [(em 220 (s, ), =0 Fisy, ) |5 (6490 D glodgton.
Hence, it suffices to prove that

/ / _9)g(s1)dsdsy 5/ g(s)2ds. (33.5)
(s+s;)‘ 2/951/175 0

On the other hand, by symmetry we can only consider the region s; < s which can be
decomposed into the dyadic ranges 2-™s < s; < 27™*+!s. Hence the left hand side of
(3.3.5) can be bounded by

o
= Z2m/p/ / 9(s)g (s‘)dslds
e 3-mace <2-mily 8
2'"(#*%)/ 9(s)%ds
m=1 o
=
< [ ot
0
with the second inequality using the Schur’s test of Tao [66]. O

Using the imbedding of H#2(R") into L7233 (R") when 0 < 23 < n, we prove the
following result.

A
Me

Theorem 3.3.4 Letn>28>0,p€[1,2), g€ (1,2). I/% +a (,l, - then

holds with Z = HZP(R™) or HEP(R™).

'
/ e~ (t=0(-2° (s, 2)ds
o

2 S Fllz3crzy
LULET @) '

Proof. We only need to prove (3.3.6) for Z = H?(R"). Suppose

1. n (1 1
n>28>0, pe(l,2), g€ (1,2) and '+ﬁ(_"§)’

ol
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Thus (;', = g) € (0, 1). According to the imbedding of H#2(R") into L733 (R"), Lemmas
3.2.1 & 3.2.2 and the Hardy-Littlewood-Sobolev inequality, we obtain

.
‘V e (=2 F(s z)ds
0 L;

.
< ‘Ve-"-"‘-m"r(s,x)ds
o

s|araf:

& ”/'e_“_”(-ma((—A)"“F(mI))ds
o

LRI R™)

=(=2)" (s, z)ds|

Li(ILE(R™)

LA(ILE R

¢
S ”/Ile'“")"m’((-A)‘”’F(&r))ll:.z(un)ds
o

\
S “ 1= o5 GDI-002F (0Dl
o

S I=2Y2Fll ez @my
S NFlzgrig»@my-
This finishes the proof of (3.3.6). O
Using the Littlewood-Paley decomposition, we establish the following estimates in the
Besov spaces.

Theorem 3.3.5 (a) Let (¢,p,2) be 35—admissible. If ¢ > 2 and (¢,p, 35) is not (2,00,1),
then

1€ fllugerxn S Wlxa (33.7)
holds with (Xy,X2) = (B;v,(k"),B;'g(R")) or (B,‘,;(R"),Bh(k"))
(b) Let 1 < p) < p < o0 and 1 < ¢ < q < oc. If (¢,p) and (q1,p1) satisfy (3.2.3) and
@1 2 2, then

.
"/ e~ =0=2)" F(g 5)ds| (338
o

< .
oy S VP

L (1:Ya)

holds with (Y, Y2) = (B} a(R"), By, o(R") or (B3o(R"), B, o(R").

Proof. We only check (3.3.7) with (X1, X2) = (B;(R"), B3(R") and (3.38) with
(Y1, Y2) = (B} 5(R™), By 5(R™)) because the proofs of other cases are similar. We assume
that p < oo since the case p = oo is similar. Let 7 and ¥ satisfying (3.1.1) and (3.1.2).
Part 1. Proof of (3.3.7). We assume that ¢ < oo, note that the case g = 0o is obvious.
Define u(t) = e~*~2)" f. Then

FlF(w) = F- (e 167y 7 (f)) = e O (F @ F ().

)

L

L3

()
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Hence

2/q

a/2
Vol g = | [ (Z22"HE’“’A)“(f'"(W"(f)))H’L»mn)) i
1

f]

Letting A; (t) = 229~ (F (4, F(£)) 3 s(gey and k = ¢/2 > 1, we have

k
Bsp iy = | ) (zm)) i
7

“ZAJ(')”L“(I)
7
< VIO
i

= 3 2 A (F U F D egrinme-
7

1k

Using Proposition 3.2.5, we deduce

1/2
Nl 3y acamy S (22‘“1ur-‘(w,f(f))nim) NP

f]

Therefore, (3.3.7) holds.
Part 2. Proof of (3.3.8). Let u(t) = [ e=="(=2)" F(s,z)ds. Then

’
2N Fw) = wr‘/ B F (e =2 F(s, z))ds
0

.
= 2'7}"*‘/0 eIy F(F(s,6))ds

¢
2 /D F (e R (R (5,6)) ds
.
- / e~=9=2)° (981 F=1 (4, F(F(s,€)))) ds
o
_ /'e—u—a)(vm“w(t)d&
0

where v;(t) = 29F 1 (; F(F(s,£))). Thus
2/q

2 a2
dt
Lr(R")

.
Wl geag o S | ] (z” [ s
J
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In  similar manner to verify (3.3.7), we have
00000 5 52 H/ )
Applying Theorem 3.2.7, we get

:
LSED S 3 ([ roa) .
;

where (1) = fus (175, )

2/k <
(A | £ X0

LiLeRn)

and k = 2/g} > 1. An application of the Minkowski inequality
yields

it
(@)

5 [ IR0l

q1/2
s /(Zuw, uw) dt
< 1P,

L sy, @)

Thus (3.3.8) holds. O
We can obtain the following estimate by estimating K{(z) in mixed norm spaces.

Theorem 3.3.6 Let 3> 0,0<T <00, 1<py<p<oo,1<q<q<oo, t=1+1 and

L1, 1 » o
p=i+dy ’
nh 1
LT P T
0< % ( T) 1
then
‘ /-z E_(L—JN—AWF(S o < Th-f0- ))I\FH @39)
g ' LI0T):X) S lomy)

holds with (X,Y) = (LB(R™), LI (R")), (HP(R™), HI" (R™)) or (HIP(R"), HY" (R"))
for all y > 0.

Proof. We only prove the case (X,Y) = (LE(R"), L% (R™)) since similar arguments apply
tootherca.ses Assume that T € (0,00), 1 <pj <p< o0, 1< ¢ <g<oo, t =2+,

L=14Land g (1-1) € (0,1). Let J = [0,T). According to the Young’s inequality and
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the definition of e=*(-2)", we have

. ’
H/ e~ (=08 F(s,z)ds < H/ le==2Y=2)" P(s,z) || g ands
o LILER™) o L)
.
S AL R
o L)
:
S| K @) ez @ 1F @) @S]
| vttt g gyt

< B @Nep iz @op FG DN ot ot oy

Thus it suffices to prove [|K7 (@)l (:zan) < TH B4, In fact, it follows from Miao,

Yuan and Zhang’s [53, Lemma 2.1] that K7 (z) € L¥(R") for all 1 < k < oo. Since 1
and p} < p imply that r > 1, K} (z) € L"(R"). Hence

A

" PN Y
IKE@iprzzary = (/ (L ([ ewermeae) ) dt)
o n \JRn
3 o
(/ ,-ﬁ“‘“dt) [T P
o

< rh-d0-b),

]

This finishes the proof of Theorem 3.3.6. O




Chapter 4

Some ()—Spaces of Several Real
Variables

As mentioned in Chapter 1, in this chapter, we study the Q2(R") and its derivative space
QL ®R™).

Definition 4.0.7 For a € (—00,f) and § € (1/2,1), define Q4(R") as the set of all mea-
surable complez-valued functions f on R™ satisfying

)2 12
Wlgzan = s (snpes=es [ [ MO o) " <0 oy

where the supremum is taken over all cubes I with the edge length I(I) and the edges parallel
to the coordinate azes in R"

In Section 4.1, we introduce some notation and some facts about homogeneous Besov
spaces, Hausdorff capacity and Carleson measures. In Section 4.2, in order to establish
Carleson measure characterization of Q(R"), we introduce a new type of tent spaces, their
atomic decompositions and the predual space of Q4(R"). The proofs of the main theorems
in this section are similar to that of Dafni-Xiao [22]. For the completeness, we provide
the details. In Section 4.3, via the Carleson measure characterization of Q4 (R"), we define
QB:51(R™) as the derivative space of Q(R") and investigate some properties for Q3:!
In Section 4.4, we establish the mean oscillation characterization of Q2(R"). Using this
characterization, in Section 4.5, we study John-Ni g type and Gagliardo-Nibenb
type inequalities in QF (R").

4.1 Notations and Preliminaries

A ball in R" with center z and radius r will be denoted by B = B(z,r), its Lebesgue
measure by |B|. A cube in K" will always mean a cube in R" with side parallel to the

47
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coordinate axes. The sidelength of a cube I will be denoted by I(J). Similarly, its volume
will be denoted by |I]. The characteristic function of a set A will be denoted by 14.

Recall that B, (R") s the homogeneous Besov space (see Chapter 3). When 0 < s <1,
we have the following equivalent characterization. If 1 < p,q < oo, then f € B} (R") is

equivalent to
alp dy
o 4) - f@)P )
/W (/R 1f(@+y) - fla)l dz) s <o (411)

if0<s<land1<p<g=oo, f€ B, (R") amounts to

1/p
sup |y|~* </ \f(z+y)—f(;)\ﬂ) <o (4.1.2)
YER™ R™
The homogenous Besov spaces obey the following inclusion relations (see [8]).

Theorem 4.1.1 Let s € R and p,q € [1,00].
(i) If1< q1 < gz < 0o, then By, (R) C By, (R");

(i) f1<p1 S p2 S0 andsy =y +n (& = L), then Byt (R") € Bz (R").

We recall the definition of fractional Carleson measures (see Essen-Janson-Peng-Xiao (25])
and their connection with Hausdorff capacity established by Dafni-Xiao in [22].

Definition 4.1.2 For p > 0, we say that a Borel measure p on RY*™ is a p—Carleson
measure provided that
wSI)
el = sup 222 < o0 (4.1.3)
lills =@ Gy

where the supremum is taken over all Carleson boves S(I) = {(t,x) : z € I,t € (0,1(I))}.
Obviously, the 1—Carleson measures are the usual Carleson measures. On the other
hand, similar to the case p = 1, if we denote by
T(E) = {(t,z) € R} : B(a,t) C E}

the tent based on the set £ C R™, then a Borel measure u on R} is a p—Carleson measure
if and only if |u|(T(B)) < C|BJP holds for all balls B C R". That is to say p—Carleson
measures can be equivalently defined in terms of tents over balls.

We review some definitions and properties about Hausdorff capacity (see Adams (3],
Dafni-Xiao [22] and Yang-Yuan [80]).

Definition 4.1.3 Let d € (0,n] and E C R™.
(i) The d—dimensional Hausdorff capacity of E is defined by

Affc'(E);:inf{Zr‘f:ECU?‘;,B(IJ,T,)}, (4.1.4)
7
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where the infimum is taken over all covers of E by countable families of open (closed) balls
with radii r;.
(i) The capacity A$®(E) in the sense of Choquet is defined (see Yang-Yuan [80]) by

ASN(E) := inf {Zzu,)" tEC (u;;.l,)"} s
3

where the infimum ranges only over covers of E by dyadic cubes and A° means the interior
part of A.
(iii) For a function f : R™ — (0,00, we define

/ FAAG = /wAff")((x €R": f(z) > A}dA.
R™ 0

Remark 4.1.4 (i) AY™ is not a capacity in the sense of Choquent. But, its dyadic coun-
terpart AY™ is a capacity since it is monotone, vanishes on the empty set, and satisfies the
strong subadditivity condition

RSB, U By + A5 (By 0 Bp) < A§9 () + K§(Ba),
as well as the continuity conditions (see Adams [3] and Yang-Yuan (80)):

) (niKq) = i . ACO(Kq), {Ki} a decreasing sequence of compact sets,
AP (UK = lim A$V(KQ), {Ki} an increasing sequence of sets.
o

(ii) There exist positive constants C1(n,d) and Ca(n,d) such that
Ci(n, )ALV (E) < R§(E) < Ca(n, )ASD(E)  for all E CR™. (4.1.5)

(iii) The integral with respect to A (E) satisfies Fatou’s lemma
/ liminf f,dAy® < liminf £, / dA%). (4.1.6)
Rn an

For & € R, let ['(z) = {(y,t) € R} : |y — a| < t} be the cone at . Define the
nontangential maximal function N(f) of a measurable function on R:*! by
N(f)(@) = sup |f(y,t)].
(t)er(z)
In [22], Dafni-Xiao characterized the fractional Carleson measures as follows.

Theorem 4.1.5 (22, Theorem 4.2]) Let d € (0,n] and  be a Borel measure on RY*™.
Then p is a d/n~ Carleson measure if and only if the inequality

Lo ieoian < a [ N (.17)
e e

holds for all Borel measurable functions f on RY*™. If this is the case then in (4.1.7) the
constant A~ |[[alllayn which is defined by (4.1.3).
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4.2 Carleson Measure Characterization of Q7(R")

In this section, we establish the equivalent characterization (1.0.11). We first give some basic
properties of Q2(R™). Then inspired by Coifman-Meyer-Stein [19] and Dafni-Xiao (22, we
introduce new tent spaces T2 5 and T2%. Finally, we obtain the predual space of Q2 (R™).

4.2.1 Basic Properties of QJ(R")
Lemma 4.2.1 Let —c0 < a and max{a,1/2} < 8 < 1. Then f € Q(R™) if and only if
—n+2(a+6-1) _ 2 dady
sl;p(l(l)) e /\v\«u)/,‘f(”” f(@)| pRa—p <% (4.2.1)

Proof. If the double integrals (4.0.1) and (4.2.1) are denoted by Ui (I) and Us(I), re-
spectively, then by the change of variable y —  +y and simple geometry one obtains
Ui(I) < Uz(V/nl) and Up(I) < U1(31). O

Theorem 4.2.2 Let —o00 < a and max{a,1/2} < 3 < 1. Then
(i) Q3(R™) is decreasing in o for a fized 3, i.c.
Q5,(R") C QA (R™), ifaz <ay;
(ii) If a € (~00,3 — 1), then
QAR™ = Q%4 5, (R") = BMOP(R").
Proof. This theorem can be proved by a similar argument used in the proof of (25, Theorem
2.3)

In the following, we establish the connection between Qﬂ(lR") and homogeneous Besov
spaces.

Theorem 4.2.3 Let n > 2 and max{1/2,a} <8 < 1.

(i) If1<q<2anda+f-1>0, then B::,”f{q(m“) C QA(R™). )

(ii) Let 1< qg< oo, m > (a—B+1) andv2 > 0. If 1 —v2 = 2 — 203, then B:A“/wz.a(R") c
Q3(R™).

Proof We can prove this theorem by using similar arguments applied for the special case
=1 by Essen-Janson-Peng-Xiao in (25, Theorem 2.7).

4.2.2 New Tent Spaces

We introduce new tent spaces motivated by similar arguments in Dafni-Xiao (22].
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Definition 4.2.4 Fora >0, a+ 4 > 1 and max{1/2,a} < f < 1, we define T35 be the

af
class of all Lebesque measurable functions f on RY™ with,

1 ay )"
. .
R ey M ) B

where B runs over all balls in R™.
Definition 4.2.5 Fora >0, a+f > 1 and max{1/2,a} < 8 <1, a function a on R}*" is

said to be a T} 5—atom provided there eists a ball B C R" such that a is supported in the
tent T(B) and satisfies

dtd, 1
2 Y
/T(B) ot VI e < TpE=mera7

Definition 4.2.6 Fora >0, a+f > 1 and max{1/2,a} < B < 1, the space T} ; consists
of all measurable functions f on RY™ with

1/2
" - dtdx
Ifllzy, = inf (/R 12w ‘(z.r)m) <o,
where the infimum is taken over all nonnegative Borel measurable functions w on RY*™ with
/uv- NwdAR gar5-1) S 1
and with the restriction that w is allowed to vanish only where f vanishes.

Lemma 4.2.7 If ; lg;lir1 , < 0, then g = 5, 9; € T3 5 with

llgllz;

2, SVCT Ao, d) Y lgsllr o
7
where Cy(n,d) and Ca(n,d) are the constants in (4.1.5).

Proof. The proof of this lemma is similar to that of Dafni-Xiao (22, Lemma 5.3). O
Theorem 4.2.8 Let a > 0, a+ 4 > 1 and max{1/2,a} < § < 1, then

(i) f € T35 if and only if there is a sequence of T2 5—atoms a; and an I'~sequence {;}
such that f = ¥, Aja;. Moreover

fllzs , ~ inf {zw f= Zm,}
7 7
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where the infimum is taken over all possible atomic decompositions of f € T2 5. The right-
hand side thus defines a norm on T3 ; which makes it into  Banach space.
(i1) The inequality

11 Dot ) 2

o 7 S Clflly ,lglrs (4.22)

holds for all f € T2, 5 and g € T,
(iii) The Banach space dual of T\ ; can be identified with T, under the following pairing

()= [ fenoen L

Proof. (i) Let a be a T2 ; atom. Then we can find a ball B = B(zp,r) C R" such that
supp(a) C T(B) and
dtdy /)
2
/”B’\a(t-y)\ =57 S [Baerim

Fix € > 0 and define

Ve -zl + 2
where \/[z — 257 + £ is the distance between (t,z) and (0,z5). For z € R", the distance

in R{*™ from the cone I'(x) to (0,zp) is =32, So

w(t,z) = g H2@B-1) i {1,( r )n-z(nw—uﬂ} .

n=2(a+8-1)+¢
Nu(x) sup |wrnEA-Dmin {1 [ —L
(tw)er(@) Viz =zl +£
n-2(a+8-1)+e
< wrmraesen i ) Var )
[ERET]]
Thus

=
W [ NN sy < [ Mgy e Not@) > ar

If A < Nw(z), then [z—zp| < V2 (&) ™77 77  Meanwhile, A < Nw(z) < xr=n+2(a+h=1),
50 we obtain

- (00)
w7 [ Nodb o < [

Moreover, on T(B) we have w™'(t, z) = r"~2@+3=1), By the definition of T y—atom, we
get

p-n+(a+8-1)

dtdx
21
/T(m\au.y)\ W™ (t,2) ey S 1
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Thus a € T} 5 with [lallzs , S 1. For any sum 3; Aja; with [[{A;}l, = 3| < oo and
T} ;—atoms a;, Lemma 4.2.7 implies that the sum converges in the quasi-norm to f € T} 5
with || fllzz , S X; (Al

Conversely, suppose that f € T} 5. There exists a Borel measurable function w > 0 on
RY™ such that

= dtdx

. 1£(t,2)Pw ‘(tvr)tl_,m—_ﬁﬂ, <27,
For each k € Z, let Ex = {z € R" : Nw(z) > 2*}. According to Dafni-Xiao [22, Lemma
4.1], there exists a sequence of dyadic cubes {I; x} with disjoint interiors such that

STt < oK) o 1) (Ek) and T(Ex) € U;S" (Tyk).
7

Here we have used a Carleson box: S*(I;x) = {(t,y) € RY™ 1 y € L.t < 2diam(Z;x)}
to replace the tent T(I7,,) over the dilated cube I3, = 5/, k. Consequently, if we define
Tk = S*(Ijx)\ Umsk UiS* (I1,m), these will have disjoint interiors for different values of j
or k. Now

UKk Uj Tjk = UjS* (1= k )\ Um> k UiS* (It.m) 2 T(E-k)\ Um>k US" (Ii.m)-
Similar to the discussion in the proof of Dafni-Xiao [22, Theorem 5.4], we have
Uk Uj Tk 2 UkT(Bk)\ Mk Uk U S*(Im) = {(t,2) € RYT™ s w(t,7) > 0N\Too

with A} (Tw) = |Ta| = 0. Since w is allowed to vanish only where f vanishes,
n—2(a+8-1)

=Y flr;, ae. on Ry Defining ajx = f1r,,(A;x) " and

172
. dtdz
Ajk = ((l(ljk))"’“"*s ”/T kl/(ivm){zt,_z(,,—_ﬂ,,,)> B
)

we get f = 3, 5 Aj st almost everywhere. Since §°(I;) C T(Bj ) where By s the ball
with the same center as I x and radius I(I7)/2. aj is supported in T(Bjx) and

dtdy
2
/ruz, ) 1t VI tasem

=
dtdz dtdx
- —n+2(a+f-1 2 2
(I(I7)) 72t )(/T,_. 1£(t,2)f t4142(a__u+1)) (/na,.n 12 s

S (I(I))) YD < | By 1B/,

IN

Thus each a; is a T} ;—atom.
Next, we prove that {A;x} is ' ~summable. Noting that w < 2*+1 on

Tk C (US™ (Ik+1))" C (T(Brsa))*
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and applying the Cauchy-Schwarz inequality, we obtain

1/2
3Pl < S ( /T v<t<x>\’,.,§i;‘fm)
o 4

12
< ))3-(a+o- . ded.
> supw!2((I5,)) 8D (/ 1£(t,2)Pw I(t-I)T-Im.n)
SE Tk Tya t

<
12 1/2
< (;2(“n(,(,;k)),..umsm) (Zk:/;k|f(t,z)12wfl(z,z)t—,_zigm)
3 bl ’
1/2
< W, (22* Z(t(l,,m""‘“*""’)
k J
"
S Wi, (ZQkA(muMa n<E~>>
k
1/2
S Winy, ([ Mothhapon) S Wi,

Thus T} 4 is a Banach space since it is complete in the quasi-norm (Lemma 4.2.7) and

17l = WSl = ind {Zw if= Zm,}
7 7

where the infimum is taken over all possible atomic decompositions of f € T3 5 and [||-|[73
is a norm.

(ii) Let w be a nonnegative Borel measurable function on RY*" satisfying [y, NwdATS < 1.
For g € T3S,

12
dtdy =

2 1-2(a+8-1)/n

(/r(e) lg(t. v)I t‘*’(“"’“)) S|Bji-HatA-l/n,

Thus, ditgn-2(a+8-1)(t:2) = |g(t, z)[2t~1=2@=3+Ddtdz is a 1 - 2(a + B - 1)/n—Carleson
measure. Then (4.1.7) tells us, with A % |[[jtg,n-2(a+5-1)lln-2(a+s-1)/n = 932,

ottt 20 sy S ol [, Moty S Vol

Thus if f € T} 5, then

1/2
Lo el %E < (/",‘"|/(t,r>|*w"(t.z)ﬂ+ﬂm) Nz,
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Hence we finish the proof of (i) by taking the infimum on the right over all admissible w.
(iii) Form (ii), we know that for every g € T5%, the pairing
dtd;
(f.9) = / 1t gt ) =L
i t

defines a bounded linear functional on 7! 5. Now we prove the converse. Let L be a bounded
linear functional on T} . Fix a ball B = B(xp,r) C R If f is supported on T(B) with
f € L¥(T(B),t™'dtdz) then
dtdz dtdx
(60 ey <o [ (P
[ 69 NI
1 dtdx
< n-2(a+A-1)+2(aB+1) 2
S prEwEE IR

1 n-ag+a) 12
s \EP"(“”"‘V"T [1£IZ2 78y -1 dtaz)

This tells us that f(t,) is a multiple of a T} y~atom and L is a bounded linear functional
on LA(T(B),t~'dtdz) which can be represented by the inner-product with some function
gs € LA(T(B),t"dtdz). Taking B; = B(0,j), j € N, then gg, = ga,,, on T(B;). So we
get a single function g on RY*™ that is locally in L2(¢~'dtdz) such that

L= [ s

Lin
Ry

whenever f € T 4 is supported in some tent T(B). By the atomic decomposition, the
subset of such f is dense in T2 ;. We only need to prove g € T5% with gllzz, < [|L]l.
For a ball B C R" and every ¢ > 0, we set
fe(t2) = 472G D) e ) (t,2)

where T(B) is the truncated tent T(B) ({(t,z) : ¢ > €}. Since g € LA(T(B)), we have
dtdz dtdz
2 _ 2
/T(m\/,(t,r)[ T = /r'tﬂ) lo(t, 2 =gy < o
Hence we can obtain that f, is a multiple of a T} ;—atom with

n=2(a+h- ddx
Wl o2 [ gttt

T*(B)

According to the representation above, we also get

172
dtdx 2a+8 dtdx
)2 n-2(a+8-1) 2
JNCC ( [y 965 t,+2((,_ﬂ+,.) :
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This gives us

1/2
S dtde
(T +2(ats n/mm\g(:.z)\?m) <Ll

that is, g € T3% with ||g]lre, <

e~

||L]l. This completes the proof of Theorem 4.2.8. O

4.2.3 The Preduality of Q°(R")

In this subsection, we introduce a new space which can be viewed as the predual space of
QB(R™). Then, we give an atomic decomposition for this space. For this purpose we need

the following lemma which is Lemma 1.1 in [26].

Lemma 4.2.9 Fiz N € N. Then there exists a function ¢ : R* — R" such that
(1) supp (¢) C {x €R™: x| < 1};

(2) ¢ is radial;
(3) ¢ € C*(R™);

(4)fgn T0(@)dz = 0 if y € N", 27 = 27'a] --

(5) I3~ (Fo(t€)*¢ =1 if € € R"\{0}.

For ¢ satisfying the conditions of Lemma 4.2.9 and any f € §'(R"), we have the well

known Calderén reproducing formula

00 N di
1= [Trsad = g [ reacad
0 t e t

e—0,N—00

We introduce the notation of HH!, 5(R") in the sense of distributions.

Definition 4.2.10 For ¢ as in above lemma, a > 0, a+ 3 > 1 and max{1/2,a} < § < 1,
we define the Hardy-Hausdorff space HH', 5(R") to be the class of all distributions f €

L2 4 1351 (R") with

s, @y = 1 * @)l , < oo.

Theorem 4.2.11 |- [lus  ,wn) i @ quasi-norm. Furthermore, HH! , 5(R") is complete

under this quasi-norm.

Proof. Obviously, ||| 1 _ (e is & quasi-norm according to the linearity of py(t, z) = f+
() and the corresponding property of |-|l7; , - Suppose that {f;} is a Cauchy sequence. By
the Calderén reproducing formula and Theorem 4.2.3, we get H #=2(3-D:2(R") < Q3 (R")

and for every ¢ € S(R")
[(fi = fir ¥

s
]
s

a8

oot = Fidlzy , I9v * Yl
ool = fllzs ¥l ga ey
ool = fllzs , 191 53 -a0-.3(q0:

N M =mtrt
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This deduces that {f;} is a Cauchy sequence in H~#+2(3-0:2(R"). By completeness, f =
lim f,, exists in H~#+28-12(R"). Thus there exists a subsequence such that f = f; +
o1 (f1 = £5) in 8'(R™) with 3 [ fy41 = fillara ,gn) < 0. Then we have

leo(H)lizs , S el + D o fia1 = f)llza,) < 00
and so f € HH', 4(R"). Similarly we can prove f; — f in HH!, 4(R"). O

Definition 4.2.12 Leta > 0, a+0 > 1 and max{1/2,a} < 4 < 1. A tempered distribution
ais called an HH" , 5(R") atom if a is supported in a cube I and satisfies the following two
conditions:

(i) a local Sobolev—(a — § +1) condition: for all ) €

[a,¥)| < diam(1)~#+a+A-1 (/’ W(I;‘;u,ﬁl,)dxdy) :

(ii) a cancelation condition: (a,¥) = 0 for any € S which coincides with a polynomial of
degree < 3 + 1 in a neighborhood of I.

In [22], Dafni-Xiao established the following factional Poincaré inequality which will help us
to understand the previous definition.

Lemma 4.2.13 Let ¢ € C*°(R") and I be a cube. Denote by y(I) the average of ¥ over
1. If0 < ay,az < B for a fized B € (1/2,1), then

e - v vl N
I = ¥(Dlzsny < 0" diam(1)* =P+ (// ‘_y‘»+2x(.1{)zl+l7d d”)

2 12
a yoa=B+1 W)
< n"Mdiam(I)®s (//\z~y\"*’ M_M)dzd;/>

< Cdiam(I)||VY |2

with C depending only on the dimension and az. If in addition [; B"—&da: =0 forallk =
1,-++ ,n, then the quantities above are also bounded by

v 2 1/2
Cdiam(I)[| V% — (V)| ary < Cn™*diam(1)* =7+ (//“Wﬁd dy) ’

Here (V) denotes the vector whose coordinates are the means (u—"‘) (), k=1, ,n.

Remark 4.2.14 Similar to Remark (2) after Lemma 6.2 of Dafni-Xiao [22], we can prove
that an HH' , ;—atom a belongs to the homogeneous Sobolev spaces H™**(R") with & +
B—1<s< %+ 1. Particularly, we have

I, )1 S (diom(1)™ 354 a-ssvsqamy-
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This deduces [[all -ca-s+1.2(zn) S (diam(1))~# 451, Meanwhile,
[(a.¥)| < (diam(I)[[V]l ;g -25+5.3gn)
< diam(1).

and 50 [la] -3 309,35y

We can obtain the atomic decomposition of HH', 4(R") as follows.
Theorem 4.2.15 Leta >0, a+ 8 > 1 and max{1/2,a} < B < 1. A tempered distribution

£ on R™ belongs to HH , 5(R") if and only if there exist HH! , 4(R")—atoms {a;} and an
1! —summable sequence {);} such that f = 3; Aja; in the sense of distributions. Moreover,

H/]\HHLM(MWI{ZM, Zm;}

i

Proof. Part 1. “=" By the completeness of HH' , 5(R"), we only need to prove that if a
is an HH, 5-atom then a is in HH!,, 5(R") with the quasinorm bounded by a constant.
Since a is an HH', 4(R")~ atomanda+ﬁv1< 2_-2(8-1) < 2 +1, Remark 4.2.14
implies that @ € B~ #+2(3=1:2(R") with norm bounded by a constant. On the other hand,
assume that I is the support of a and a; represents its center. For ¢ € (0,2), let

l([) n-2(a+f-1)+e
w(t,z) = »c(l(]))-nu(a»ﬁm min { 1, (\/—W) }

where & is a constant to be chosen later. Similar to the proof of Theorem 4.2.8, we have

n-2(a+8-1)+e
Neo(z) < w(l(1)-"+Ha 8- g {1 (‘/_l ) }

|z — 21|

and 50 fg NwdA™) .4 ) S % < 1 by choosing & small enough.
Now, let B; = B(z,diam(1)), E; = (0,diam(I)) x By and E§ = R*"\E}. Suppose S,
is the support of a * ¢ (z) in R‘:". We have

dtd
/ﬂm lax de(2)*w™ (t,z ) T m Eﬂ = (/E’ /E(ms>\ll~¢z @)W (b )wmﬁ'

By the definition of the cylinder E; in R}*", we can find a half-ball centered at (0,z;) to
cover Ey. Thus we have w™! S (I(I))*~*@*+#=1) on E;. This fact implies that

o dtdx
[, lax 0@ ,2) gy

2 di
< e [7 [ ra@Riree) gy

A

o dt
oyl \fa({)\’\er?‘“"“”ds/n IFSOF omamrny

<UDV allfamprnragny S 1.
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For the integral on E§()S,. If z € I, z ¢ By and t < |z — /|/2, then
le = 2| > |o - @] - diam(1)/2 > & — 2/]/2 2 t,
and a * ¢¢(z) = [ a(z)ée(z — z)dz = 0. Otherwise, we have
lax 6e(2)| < llall - g+a0-22gn 197 ]| 3 -20432 g0

1/2
< a9 ([ 7o 5oae)
-
< diam(J)¢= (2849,

It is easy to check ¢ ~ \/[e — 272 + £ := r(t, x) >diaml. This implies that

N i i

Wi (tz) ~ wOHI(I))PAeHsL ((1))-en2lata=1ve,

(n))r—2amr+e <

Then we can get
dtdx
[l @™ )y 5 W) S
Ol ) S (P S 1
r(t.)>diam(r)

Part 2. “=" Suppose f € HH",, 5(R"). Note that the Calderén reproducing formula
(4.2.3) holds in the sense of distributions. Since the support of ¢ is the unit ball, we can

denote dtd
@ = [ Fenete -0
-

where F(t,y) = f * ¢(y) and SV is the strip {(t,z) € R{*" : ¢ <t < N}. Similar to the
proof of Theorem 4.2.8, there exists an w > 0 on R}Y*™ such that fp, NwdA(™), 5 1) <1
and .
i r
Jo PP ) s < 2Pl
i

Let Ty« be the corresponding structures over the set Ej = {Nw > 2%} as those in Theorem
4.2.8 (i). Noting that T} have mutually disjoint interiors and F = ¥ Fxr, , a.e. on R{*™,

we let
€N

dtdy
gf@= [ Fepae-nTE

SN\ Ty
Since Tjx C T(I;), these smooth functions in  is supported in {2 : (@) Ty # 0} C I}y
and have the same number moments as ¢. We want to verify that there are distributions
g5.x such that g5 — gjx as e — 0 and N — oo with f = 5, gjx in S'(R"). To see
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this, noting that w < 251 on T, we have

dtd
/(/ F(t.mo,(ww——”)m)d,
n \JSENN Tk t
dtd i
(k+1)/2 2 1 _dtdy
< 2 (/Slmm\r(w)u (t,y)“’z("iw)
1/2
dtdy
e 2 Y
([, 1o+ 0 ety
dtd v
(k+1)/2 )21 Y

1/2
o)
(/a L R ﬂ*”m) '

Similarly, we obtain that for £; < ez and Ny > N,

N
g5 o) =

N N2
g5 5™ = g5%™ o)l

dd 1/2
G / )P (00 ) bl passraany-
k( [ oo PP i ) Wl-svse

his gives us that 5] LA

2|y -a-s+1ragn) — 0. 88 €1, €2 — 0 and Ny, Ny — oo

Thus, ¢ — gjx € H~ <"—”+”? R") in the sense of distributions and g,k is supported
g — 9. 95,
in Iy, with

12
dtdy
19541l i1 -ca-s403¢a13 ) S otk+b/2 (/7 F(t,y)*w™'(t, y)“m—ym .
n

Let
5 = Gkl934 1 5 o sragar ) (BT TD 7R
and
Nk = 93l -co-sen agar; ) (LT @D
Then

[(ask: ¥

(3I;,)) e *-D-3
losalliz otz

(@) - v .
x (/S‘.W,_k‘F"'”W"”’ . >) (/ Lo B ,“)My)
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This means that a;x are HH!, 5(R")—atoms. On the other hand, the Cauchy-Schwarz
inequality implies that

> Al

P
1/2
< Z2k+l”(31;*))"77(04-%-1) Z/ 2t y) ngyam
ik Tyn t
12
o0 . - dtd
< (Zz“‘/\" 2a+A- 1»(317.'«)) (Z/ﬂ;m IF(ty)*w ‘(t,y)t‘im_ygm)
Jk Ik +
1/2
< (Z foans ., .m)) Wl
+ JEx
1/2
< ( IR ,,) T T pp—

The above estimates tell us that 3 gjx = Y Ajxa;x converges to a distribution g in
HH!, 4(R"). We need to verify that g = f. Since for a fix ¥ € S(R"), every 0 <& < N,

g5 )
ady \"*
k+1)/2 2 - Y
S N (/Tk\ \w(fy)'m)
1/2
/ / ICORI ()
[ s, B tsen
ady  \"
k+1)/2() (3] (a+8-1) - Y )
< 2L (/T“\F(:ww(:.m ‘m) 1¥uatany
< Wllaar, @ 1¥llQa,s@m-

Then, _lm  5,0°" = ¥, ;4 = 9. Meanwhile, we can also obtain that
€0, N o0 25 -

dtd
Y[ tsennutnFens v 5L = [ e v S = e 0.
e TR seN
This tells us 5, , g5 = /N — f in §'(R"). Therefore f = g in §'(R"). O

Lemma 4.2.16 (i) If a is an HH‘,, 5(R™)—atom, then there ezists a nonnegative function

w on RYF™ with [y, NwdA() o 1) <1 and

1/2
dtd
o5(a,w) = sup (/lh lax (e —y)—ax w,(z)J*w(z,r)*‘Fm%) e

lyl<é
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(ii) HH' , 5(R™) N C(R™) is dense in HH', 4(R").

Proof. (i) For a fixed £ € (0,2), the same w defined in the proof of Theorem 4.2.15,
y € B(0,5) and z € R", we have a x ¢,(z — y) — a * ¢(z) = (a, 67 ¥ — ¢f) and

|(FoF™Y = FoF)(E)| = 1 - ™V ¢|| Fy(€)| < Cmin{2, 81€]}|F e (€)|- (4.2.4)

Note that
dtdx 0
—y) - 207 (b, &) e
;\ﬁ(pﬁ (/RL“ la* @e(z —y) — axde(x)Pw™ (t,2) t]_z(a_[“.]))

1/2
dtdx
< sup/ + su / ax bu(z - y) - as (@) P (L) e )
(( i s;nsa.s)‘ i ' e

lyl<é JE,

where By is the ball B(z;,2diam(I)), and E; = (0, 2diam(I)) x B. By Fourier transforms,
we can estimate the first term as

- dtd:
up [ fax (e =1) = s 8@ 00) ity

lyl<s
o dtdx
I Lt @ - 000 gy

(D) ~2e+8-D) gy
(=20 sup [ )P min(2, a1} [ ol o o€

N

N

P
lyl<é
lyl<s

N

Py ~ampiy [ at
()20 sup [ rat@rsieriees) [~ Fuo ez de =0
as § — 0 according to the dominated convergence theorem.

For the second term. Since supp(a) = I, when ¢ By and t < |z — z;|/4, we obtain
yl < diam(1) < 4[a — /] for y € B(0,3) with § < diam(I). Therefore

3
lz—y—zl >z -l =lz -l =yl 2 gle - 21| 2t

On the other hand |o—2| > 3[z—a;| > t. These estimates imply that ax(é;(z~y)—~¢(z)] =
0. Otherwise, we have

lax @ =1)=as G S lallg-smsmagn |65 = 671350135000
"
5 dwn() ([ 176770 - For@Per—oac)

172
5 dam(r) (| ming2 817005 ac)

RN

1/2
aiam(ns ([ Fod0ier—veie)

diam(1)6t?8 4",

N
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Using the above estimates and the fact w=! < "~ 2(@+8=D+¢ e have

dtdz
R B

o0
< () A78dA — 0

un

as § — 0. Thus o5(a,w) — 0 as § — 0.
(ii) For an HH} 4(R")—atom a, take € C*(R") with support in B(0,1) and [ = 1.
G (R") and 1; = §7(j2) form un approximate dentity, a+7; — ain S'(R")

Then axn; €

as j — oc. For any nonnegative function w on RY*" with [, NwdA™

have

N

s

(/m lawn » @) = s 6(a) ™ (1,2)

=54t
Sa.é

s e f

n-! mmi n s

172
dtdz
f-2a-5+1)

1/2
L (/ﬁ las dila — 1) = a s au(@) P, I)ﬁw)

o1 (a,w).

63

<1, we

From (i), we know that for every & > 0 there exists an w such that ¢} (a,w) < € with j large
enough. Taking the infimum over all w induces

lla*n; = allgmr =) < € for large j,

that s, axn; — a in HH!,, 5(R"). Hence, we can get the desired density from the fact
that every f € HH!,, 4(R") can be approximated by finite sums of atoms. 0

Lemma 4.2.17 Fora >0, a+ /> 1, max{a,1/2} < 8 <1, f € L}, (R") and ¢ € S(R")
with [y, d(z)da =0, let

g .08t 0) = |(f * G0 W) Pt~ D atdy.

Then there is a constant C' such that for any cubes I and J in R™ with center xo and

U(J) = 3U(I),

(i)

nroas(S(I))

(ii) If in addition supp(¢)

npgas(S(IT))

—JWE e (/ @) = S0,
R

1f(=)

) C {z €R": [2] <1} then

<c//l‘17

()2
‘vlv?[n A1)

i [E -z

dady

)’.
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Proof. This lemma is a special case of Dafini-Xiao [22, Lemma 3.2]. O

Theorem 4.2.18 Let ¢ be a function as in Lemma 4.2.9, 0 < a < B, a+ 8 > 1 and
1/2 < B < L If f € QUR™) then dpugp.a(t,7) = |(f * ¢)(@)*t™1 -2~ Vdtdz is a
1—2(a+ B — 1)/n—Carleson measure.

Proof. The proof follows from (ii) Lemma 4.2.17 by taking J = 37. O
To establish the equivalent (1.0.11) we need another theorem which contains the converse
of Theorem 4.2.18.

Theorem 4.2.19 Consider the operator my defined by
e dt
W(F)= | Ft.)*xdey- (4.2.5)
0

(i) The operator 4 is a bounded and surjective operator form TS% to Q3(R™). More pre-
cisely, if F € TS then the right-hand side of the above integral converges to a function
feQf and

1fllga @my < IFllTzm,
and any f € Qa,5(R™) can be thus represented.
(ii) The operator my, initially defined on F € T} 5 with compact support in RY*™ extends to
a bounded and surjective operator form T} 5 to HH' , 5(R™).

Proof. (i) Taking f = my(F), we only need to prove sup; Dy.q,4(I) < 0o where

Dpasth = wnfe 2 [ fifa )~ 1P it

Denote the function  — f(z +y) by f, and note that the integral in (4.2.5) is valid in
S'(R™) modulo constants, that is, when it acts on test functions of integration zero, we
obtain

fu=f= /Dm[(F(t,-) * @)y — (F(t,-) *o,)]? in S'(R").

Fix a cube I and y € B(0,1(I)). For any g € C3°(I), we write

vl dtd
//lFthm J—0)(@) 2
dtdx

(1)
[ L) 000 - (R ) s @lotel T

dtdz‘
/‘m/ F(t,2)]161 % (9-y - 9)(@)| 2
= Ai(g,y) + A2(g,y) + As(g,y)-

[(fy = fo9)l

In
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For Ay(g,y), |yl < I(I) verifies that g_, — g is supported in the dilated cube 3/. Also if
t < |y| we have that ¢, * (g, — g) is supported in the large cube J = 5I. Then we can get

lyl . 1/2 dt
[ ([ rearas) tocs ool
0 J

] = l/2d?
S Hw\lu(mn)l\g\\um/o (/qu)\ dr) e

For Ay, if [y| < t, by changing variable z — y = z, we get

IN

Alg,v

[(F(t,) * ¢ (@ +y) = (F(t, ") x o) ()]
6(t™"y + 2) — 6(2)||F(t,x — t2)|dz

S 7yl sup [Ve(6)] |F(t,x — tz)|dz
(G} l2l<2
< Cot™'l |F(t, — tz)|dz
lz|<2

with Cy = sup |V¢| < co. Fubini’s theorem and the fact that g is supported in I imply that

(1) dt
atg) < clil [ [ [1Pta-tla@las
lvl |z1<2J1

(1) " 1/2 dt
CCwHyH:.n(un.\y\/ / (/lF(t,z—tz‘H dz) ey
Wl Jlzls2 \J1

where || < 2 and C = Vol(B(0,2)).
For As, let Gy(t,z) = ¢ % (9-y — 9)(@)1((0pe}y))- Then the inequality (4.2.2) implies
that

N

dtdz
Ay = /n"“ IF(t,2)Gy(t,2)| == S IFllrgs, I Cylns
if we claim that G, € T} 5. To prove G, € T} 5, we follow the proof of Lemma 4.2.16 (i)
and choose w be the same function as that in Theorem 4.2.15 with 0 < 2(a+ 4 -1) <¢e <
2 — 4+ 48. Note that if S, := supp (G, ), then we obtain w™!(z) = I(I)~¢¢n-2a+A-D+e,
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Hence

dadt
S 1607 .2) i

R I R R
in Jre t

.
< 1D lole [ ot~ et
-

o
= l(l)""\\ﬂ\]%?(w)[m/i [(Fe¥ — Fou)(©)Pdgt=*0+5+<at

s dt
<UD gl auny / - emepirog g

2riy|2

< UI)llgl2, mn/ de/ |Fo(t)pen-ip+are Sl

S Cal(D)"llglfacan Iyl =444

dt

In the last inequality we have used the fact:

1 e »
/ e % S Wl b

In fact, we can write

/ [I—etmmep / L= 2 apsare dUE)
e [€]797 ~ Jrn lygIn=8 [yl

e—48+4 1-¢ ‘dz
Il (/ ot )H) Tt

= |y + b).

N

It is easy to see that

W [-emmisp Hia
2= | nre—ap+d 0~ nre—ap+a e~
2121 2] o121 12l

& (emiz)ktT e
] l [z[rre— wrad

‘ 2miz|2
| L = [L-erme
lsl<a J2nremtpra T

/H l\z\"”“’“d\zl <1
2l<

lzl<1

k=1
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Then [1Gylz3 , < llol e Iy~ PF5. Ths we gt
Iy = Fllzzeny < Ky = £.9)1

sup
9ECEE (1), llgllast

yl 1/2 103) 1/2
/ (/ \F(t,z)lzdz) R (/ Itz — n,)\?dz) -
0 J t W \Jr t

I )=y /22342,

N

Then, by Hardy’s inequality(see Stein [64]), we have

@)l
/‘W“”/'\f(uy) f@)| PR

[ ps 12 4 ds
2
< /D (/O (/J'F(’vz)‘ ‘t’f) 7 | s+ a-A
1y el 12 g\ ? di
1 2,
+/ﬂ (/a </,\F(¢v£*t2z)\ 42> !—2) AT

o (1) Sn—lss-dﬁ+4
Py [ s

)
< / /\F(:,z)\%-‘-%-f’“mzdg
0 J

(1)
+/ /|F<:,z»tz,)\zr"f(“‘ﬁ“)dm
0 1
HIF I, LD UD)e 24D
< n—2(a+6-1)|| p|12,
< Q) I1F Iz,
since for each ¢ < (), |2| < 2 implies T — tz, C J = 5I. Then we get sup; Dyas(I) S
[Flf3e, < oo, that is f € QZ(R") and [|fllg ) S IFll7zs, -

(ii) Firstly, we verify that for a T} ;— atom a, the integral in (4.2.5) converges in
H~"/2-2+23.2 o  distribution which is a multiple of an HH!, 5(R")—atom. Assume
a(z, 1) is supported in T(B) for some B. For & > 0, let

= dadt
wi@ = [ alt) - 2
g
and T¢(B) be the truncated tent T(B) N {(t,) : ¢ > €}. The Cauchy-Schwarz inequality
and (ii) of Lemma 4.2.17 imply that

|(mg(a), ¥)|

awa \" aa \"
2 s 2 £
(/T,(E) la(t, 2)] m) (/T‘(B)W’*W(I)‘ mﬁ)

(,(E)z.,,m,; / (@) - v)? my>‘“

5 Jp B

In

N
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hold for any ¢ € S(R™), where B is some fixed dilate of the ball B. Since the right-hand
side is dominated by [[v[|os < [¥llfrn/a+2-20.2(gny, the same argument also gives, for
0<er<ey,

(R")

dxdt
”(m\mm)\a(tﬁ)\?“_m‘—_ﬁ_m) ¥l as2-20.3mn)-

[ (@) = 72 (@), v)| < ( /T

Thus 74(a) = lim,—o75(a) exists in H~"/2-2+23:2(R"), This distribution is supported
in B and satisfies condition (i) of Definition 4.2.12 since ¢ satisfies the same condition.
Therefore 74(a) is a multiple of an HH! , 5(R")—atom. For a function F = ¥, A;a; in

Ty 5 and a test function ¥ € S(R™), by Theorem 4.2.8, we have

Jon )+ 0000 5 = 0o 0) = <z A,W,,w>,
+ J J
since p(w)(t, ) = (¢ * ¥)() is a function in TXy. So ms(F) = ¥, A;maa; € 8'(R™) and

Imo(FMs=s oy < inf 3 gl = 1Fl,
7

the infimum being taken over all possible atomic decompositions of F' in T} 5. This finishes
the proof of Theorem 4.2.19. 0

By Theorem 4.2.18, Lemma 4.2.16 and Theorem 4.2.19, using a similar argument of
Dafni-Xiao 22, Theorem 7.1], we can prove the following duality theorem.

Theorem 4.2.20 The duality of HH' , 5(R") is Q3(R") in the following sense: if g € QF
then the linear functional

1) = [ feotei,

defined initially for | € HH', 4(R") N Cg°(R™), has a bounded eztension to all elements
of HH' , 4(R") with ||L|| < Cllgllgs gn)- Conversely, if L is a bounded linear functional on
HH! , 4(R") then there is a function g € QA(R") so that ||gllgagn) < CILI and L can be
written in the above form for every f € HHY, 5(R"™) N Cg°(R™).

4.3 Some Properties of Q7! (R")

Definition 4.3.1 For 0 < a < f, a+ 8 > 1 and 1/2 < f < 1, we say that a tempered
distribution f € Q4! (R") if and only if

a8
g T2n~u+2d~2/ / KB » £(y) 2t 3 dydt < oo.
zeRmre(0,00) o Jiy-zi<r
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Remark 4.8.2 In Definition 4.9.1, if we take 3 = 1, the space QL 3} (R™) becomes the space
Qa1 (R") introduced by Xiao in [78].

In the next theorem, we prove an useful characterization of Q2'5!. For this purpose, we
need the following lemma.

Lemmaua Fora € (0, 1),a+ﬁ>landmax(u,2) <B <1, let fip = 00k(-0) f(j k=
Sn). I £ € QEIR™), then fix € QA (R™).

Proof. Take ¢ € C§°(R") with supp (¢) C B(0,1) = {z € R : |¢ < 1} and [y, d(x)dz =
1. Write ¢,(z) = r~"¢(Z) and define g,(t,z) = ¢, » 80 (~ L) e= =) f(z). Then

U0 (@) = 0,0(~8) e f(@) = fo(t,3) + gr(t, ).

Since BY ™! (R") is the predual of the homogeneous Besov space BY; 23 (R") and Q45! (R™) —
BL28(R") (see Remark 4.3.5 and Theorem 4.3.6 below), we have

0,04(=8)1 e sy SO P iy

llgr(ts Yl zoe @my < N6l 281 gy
Therefore
L ot e S o gy S5 g

To estimate f. we take ¢ € C§°(R") with ¢ = 1 on B(0,10) = {z € R : [¢| < 10} and
define ¢,z = p(L5Z). Then f, = Frz + Gz with
Grie = 0,0(~L) " prze™ A f = 60 2 0,81(~ 1) prae™ AV .

Using Plancherel’s identity, we have

28

" = _t(-a)° dt
[ 10000 e a7

/ (/ Jeesei27(enae= 2" e de) 2z

28

< /D N (rae™ 2 1) sy

N

28

o —t(-a)? dt
$ [ N g o

Similarly we can prove

28

= (- dt S dt
6 % 0504(=8) " prze™ A a2 < [ rae™ A fRagnysars-
a ol o /)
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Thus, we obtain

.
u dt T _t(-a) dt
/0 1Grott Mo S [ e s s

To bound F;;, noting that

/ [Fra(t,y)lPdy S T"“/ e72 f(w) Pz - w|~"+dw,
ly-al<r

|lw—z|2r

we establish
28

/ (/‘ Fralt.)] dy) s
s
< Tn“/ & — w|~(+) / e~ t=8 {2 iy
\wﬂ'\av‘ ! o I ft)l 2"“’

o aa
< 2"“"*'1/ / Je=t=8)" f(u)[? dw
é lw-zi<2x+ir \Jo ( "“’
23 (24+1r)20 it
< Zrk(nu) / / et fu) e dw
pet o lw=x|<2++ir :

s N gzt ey 2 27 HH
=

rxx—Zn—Z{i-*)”I”Q:: o

N

Now we have proverl that

2@yl o o2a-2p42) o2
/ / e s U2 ey

that is, f;x € Q4i}(R). O
Using Lemma 4.2, we can prove the following theorem. By this theorem, we can regard
Q2= (R™) as derivatives of QZ(R").

Theorem 4.3.4 Q2:3}(R") = V- (Q4(R™))", where a tempered distribution f € R™ belongs

t0 V- (QA(R™)" if and only if there are f; € Q3(R") such that f = Y}, 8; f;.

Proof. This can be proved similarly to that of (78, (iii), Theorem 1.2).

Remark 4.3.5 Q%! (R") is critical for equations (1.0.12) for h = 0 since Qf:5} (R") is the

derivative space of Q2 (R™) and Q¥ (R") is invariant under the scaling f(z) —» A9~ f(\z).
In the following theorem we apply the arguments in the proof of the “minimality of

BY, (R™)" used by Frazier-Jaweth-Weiss in [26] to prove that B 2% (R") contains all critical

spaces for equations (1.0.12) for h = 0. The special case = 1 of this theorem was proved

by Cannone in [14].
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Theorem 4.3.6 If a translation invariant Banach space of tempered distributions X is a
critical space of the generalized Navier-Stokes equations (1.0.12) for h = 0. Then X is
continuously embedded in the Besov space Bi28(R™).
Proof. It follows from the assumption that X < &' and for any f € X

1) llx = 1IN~ f(A- =z0)llx, A > 0,20 € R™. (43.1)
X — &' implies that there exists a constant C such that

(K, ) < Cllfllx VS € X.
According to the transformation invariant of X, we have
_(-a)
le= 2" flleany = KT » fllimime) < Clfllx - for VS € X.
Using the fact Ff(Az)(€) = A~"Ff(€/), the definition of e~(~2)" f(z) and the scaling
property (4.3.1), we obtain that
AN B £ oy < Clfllx-
1t follows from Miao-Yuan-Zhang (53, Prorposition 2.1] that for s < 0, f € B3, . (R") if
and only if N
supr =" 2" f]| oo gn) < 00.
>0

Thus X — B2 (R™). O
Theorem 4.3.7 Leta>0,a+ﬁ>landnxu(a,2)<ﬁ<1. If1<g<o00,2<p<oo
anda+ B <1+2 <28, then Byy? " (R") and B}y (R") are continuously embedded
in QB (R").

14328 14+8-25 14828

Proof. We first prove Byy”  (R") < Q2i5) (R™). Since By (R") C Byt (R™).
Assume that g = oo, it follows form 1+ 2 — 2§ < 0 and Proposition 2.1 of [53] that for any
fe B PR,

~(+8-20)/28 | g=r(~

"
supr A fllogn) < 00
>0

Then we have

/ / ‘ et pRi-/Bayat
y-zi<r

< pnle= 2)/v/ le~t= A)”f””m 1=alBgp
o
2

an—m/»/ (supr“*‘»‘"f’)/’”ue""-m”fu,,,m
0 t>0

2
) 1145 -28)/8-a /By

R

A

~
Tn(pfn/p/ (1+8-20)/8y-a/8 g4

0
pn-2a+B-1),

A
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Thus f € Q2 (R"). Now we prove Byh# ™ (R") — Q42! (R™). Since 0 < a < § and
1/2 < B < 1, we can find p € (2,00) large enough such that a + 4 < 1+ % < 24 and

143-26=1+2-284n (; = %)‘ Then (ii) of Theorem 4.1.1 implies

BEP R < Bt R - QAL RY).

This finishes the proof. 0

4.4 Mean Oscillation Characterization of Q/(R")
‘The main goal of this section is to establish the following theorem.

Theorem 4.4.1 Let —00 < a < [ and f € (1/2,1). Then Q3(R™) equals the space of all
measurable functions f on R" such that sup; Wy q 5(I) is finite, where I ranges over all
cubes in R". Moreover, the square root of this supremum is a norm on QS (R"), equivalent
10 |fllgs(gny a5 defined above.

We need recall the definition of W4 5() and some facts about square mean oscillation
over cubes, see Essen-Janson-Peng-Xiao [25).
For any cube I and an integrable function f on I, we define

(= ﬁ/lltr)dz (4.4.1)

the mean of f on I, and

w0 = i [156) - spas (44.2)

the square mean oscillation of f on 1. Obviously, ®;(I) := ®3(I) < 0o <= f € L*(I). Note
the well-known identities

17170~ alas = 0,1) 1) = o (443)
for any complex number @, and
1 2 _
T /I /1 1£(@) - FWI? = 20,(0). (4.4.4)
Moreover, if I C J, then we have
a0 < Hloyn (@a5)

and /i
() - S < o). (4.46)
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Let Dy = Do(R™) be the set of unit cubes whose vertices have integer coordinates, and
let, for any integer k € Z, Dy = Dy(R") = {251 : I € Dy}, then the cubes in D = U, Dy
are called dyadic. Furthermore, if I is any cube, we set Di(I), k > 0, denote the set of the
27 subcubes of edge length 2-*1(1) obtained by k successive bipartitions of each edge of
I. Moreover, put D(I) = UF*D(I). For any cube I and a measurable function f on I, we
define

\I’/O‘d 4[7 42 Z 2(210 B+1)— Vl)k¢ (J)
k=0 JeDx (1)
- a3 (YT 0 (447)
- [1%3) ALEE -
JeD(I)

We first establish the following lemmas.

Lemma 4.4.2 Let a € (—00,4) and 8 € (1/2,1]. For any cube I and f € L2(I), with J
ranging over the 2" subcubes in Dy (1),

3o+ Y W) - fOE (.4.8)
JEDL (1) JED (1)
and )
Vyas()m 3 Urapld)+ AN P - DR (449)
JED (1) JEDI(I)

Proof. (4.4.8) is a consequence of (4.4.1). For (4.4.9), since Dy(I) = Uyep, (1 Dk-1(J) for
k> 1, (4.4.8) implies that

%
Vpapl) = (D001 + Y (D)) #B-t2(@-B+1-mkg (k)
k=1J€D,(1) KED_1(J)

= (WP + Y 2Ee-smy ()
JEDL(T)

Y (Tpaa(d) + UI)PR (D) + A PSW) = £DP),

JED (1)
which gives (4.4.9), since Wy,q,5(J) + (U(D)P=4D;(J) ~ W} 0,5(J). O
Lemma 4.4.3 Ifa < 8- 1 and § € (1/2,1] then Wy q 5(I) = (I(1)**~4%(I).

Proof. By Lemma 4.4.2 and induction, we have ¢, ) 2~"¥®; () < ®;(I), and hence

(D)4 4(I) < Vgap(1) i =DM ().
k=0
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Lemma 4.4.4 Let a € (00, ) and 8 € (1/2,1). Then, for any cube I and f € L*(I),

- 2
Vi) < cunpersa=n [ [ MCOZIOE gy wan)

Proof. According to (4.4.5) and (4.4.2),
- -1 (a=f1)-n)k L jg—nk 1y~
Vpaall) = (WSS 5 aepevmii ooy [ [ 5) - gy

k=0J€Dy (1)
= (s / / ar@y)|f(@) - f)dady,
where
L=
gr(z,y) = (UDYF=4230 37 2RE=BDR =20 (2)1,(y). (4.4.11)
k=0 JEDx(I)
‘We divide the following proof into two cases.
Case 1: a > 3 ~1~ 3. Since z,y € J € Di(I), we have [z - ylo < I(J) = 2-kI(I). Thus
2t < S < o/l Then we have
ICR) BN U0) LD DIt ! (e
<UD/ le=ylo
ur 2(a=B+1)+n . .
c(3;) -2
< c([“))ilah’ifl)ﬂl‘z - w—z(n»a-n)—n.

furthermore g;(z,y) = 0 unless 2,y € I. Thus, the desired inequality holds.
Case % a < B-1- 3. 1a,yel, then the set { € I : min(|z — 2|, |y - 2)) > }I(I)} has
measure at least 37| and thus for —2a —n+ 26 2 > 0,

[min{jz -1 - =92y x> ) (o = cln)
;
Hence we can get

w5 [ [1560) - pofdeay

IA

. @) - S@)?
< ()t ‘)/,/,\I—:\"’%dmy'
This tells us
o sessrrn [ [ U@ =F@P
AD)"=2a,(1) < (D) /, /, e ey

Combining this fact with Lemma 4.4.3, we can finish the proof of (4.4.10). O

U(,)Jru-zmzu—z/’/l/"/(z) — () min(jz — 2| ~20-"+20-2 |y _ 5|=20-n+20-2) gy gy g
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Lemma 4.4.5 Let a € (—00,8) and § € (1/2,1]. For any cube I and f € L}, (R"),

))2ats-2-n )l
wr [P L doy

£ Vyas(l+t)dt+C¥pas(l)
Ml Jitw<ucny

< C sup Vrap(l+t).
Itloo<t(ry

Proof. According to the proof of Lemma 4.4.4 and Fubini’s theorem,
1 1
= Vst +oa= [ [ o grae(a, 1 (z) ~ £(3) Pz,
11 Sitto<t(ny o Jrn |1 i<ty
Thus it suffices to prove
m 9r4e(@,y)dt + gi(2,y) 2 CUUD)HOFA=D Mg — y|~2@=BED=n g y e I
[tloe <U(X)
(4.4.12)
Suppose that @,y € I with |¢ - ylee < 31(I) and take j > 0 such that
2792(1) < |z — yloo < 27971,
If |t|oo > I(I), then & ¢ I +t and s0 g74+(z,y) = 0. Thus
= z,y)dt
T < gree(z,y)

1 —q1 B 1 Fim

T NPt 3 2Cem i, @)()
JED;(I+t)

15 2B D)

= W

v

JREREIeY
Jem; (1) 'R
> CUPet et S @

JED;(I)
Note that 1y4¢(z)1y4¢(y) = Ly—a(=t)1y—y(=t). Thus fknlm(z)lm( Ydt = |(J - z) N
(J = )], which for each J is a rectangular box with edges at least I(1) - |z — yloo > 3(I),
and thus volume at least 2-7|.J|. Consequently, the sum over J is at least 27"|1|. Thus
(4.4.12) holds for |z —y| < 31(I). Finally, if z,y € I with |z —y| > 3i(J), then taking k = 0
n (4.4.11), we have

1 -1)-n —2(a— -n
ar(@y) 2 GNP 2 CUNY =DM — y|=Hemdeh)
and so (4.4.12) holds in this case. O

Remark 4.4.6 The case § =1 for Lemmas 4.4.2-4.4.5 and Theorem 4.4.1 were established
by Essen-Janson-Peng-Xiao in [25]. Here we follow their ideas to prove these lemmas.
Theorem 4.4.1 can be deduced from Lemmas 4.4.4 and 4.4.5.
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4.5 John-Nirenberg and Gagliado-Nirenberg Type In-
equalities in QJ(R")
This section studies John-Nirenberg type inequalities in Q2 (R") by the mean oscillation

characterization of Q2 (R"). Then, we obtain Gagliado-Nirenberg type inequalities in Q7 (R")
by a special John-Nirenberg type inequality in Q2 (R™).

4.5.1 John-Nirenberg Type Inequalities in Q7(R")

Using the mean oscillation characterization of Q2(R") and the following two lemmas, we
can obtain John-Nirenberg type inequalities.

Lemma 4.5.1 Assume that a < 8-} and B € (1/2,1]. Let I',--- I be j cubes of the
same size, that is, |[I'| = -+~ = |I/| = V, for some V > 0. If a cube I C I'U---U I, with
V < |I| < 2"V, then,

;
)< e LD Z ™) - SmP, @s.1)
& ity
and
Vo <C Z\w)w OB Y 1 - s (452)
- ol

Proof. Inequality (4.5.1) was proved by Yue-Dafni in [81]. The proof of (4.5.2) follows from
23, Lemma 2.6] used a similar argument in Essen-Janson-Peng-Xiao [25, Lemma 5.6]. O
We need the Caderén-Zygmund decomposition [11].

Lemma 4.5.2 Assume that f is a nonnegative function in L'(R") and § is a positive
constant. There is a decomposition R" = PUSQ, PNQ = 0, such that

(a) 0= U, I, where Iy is a collection of cubes whose interiors are disjoint;

) f(= )<{/arae zeP;

(¢) € < i J, f(@)dz < 2°€, for all I in the collection {Ii}.

(d) |01 < [ f(@)da < 2%€|A, if A is any union of cubes I from {Ii}.

Theorem 4.5.8 Let —c0 < a < @, § € (1/2,1] and 0 < p < 2. If there exist positive
constants B,C and ¢, such that, for all cubes I C R™, and any t > 0,

(1(1))“"4iziﬂﬂ'“‘)*"“‘ > m"](r)<Bm&x{l (%)p}exv(—rvt), (45.3)

k=0 JEDk(I)

then f is a function in QS (R™).
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Proof. We apply similar arguments used by Yue-Dafii in the proof of [81, Theorem 1].
According to Theorem 4.4.1, it suffices to prove that ¥y, 5(1) is bounded independent of
£ or I. More specially, we will prove the for any ¢ < p, we have

W, 5(0) = (D) sz ANk 8™ @) < gBK G (4.5.4)
k=0 JED(I)
where B, C,c are the constants appearing in (4.5.3), and K¢ cq,p is a constant depending
only on C,c,p, and q. When q =2, ¥}, 5(I) = Wy,a,4(1), 50 this implies the theorem.
For a fixed cube 7, and any J € Di(I), let [, |f(z) — f(J)|%dz = q [3° t9 my(t)dt.
Using the Monotone Convergence Theorem and the inequality (4.5.3), we have

W?'Q'E(I) . ([ AB AZZ(?(G B+1)=-n)k ‘J‘/
k=0 JEDLD)
L q/mtqfl (,(I))wfaizu(u—ﬂm—m b my() ) 4
o = séonn V1

o »
< q/ t““B(l+<£> Ye~ctdt
o i
o o0
= qB (r"‘/ u'"du+C”c'(‘7”’7/ u“””‘c"‘du)
o o

= qB(c™'I(g) + C"c™“"PT(q - p))
where I'(y) = [ u/~1e~"du. Since 0 < p < g, I'q) and T'(q — p) are finite. Thus, we can

get the dcslred inequality by taking Kc,epq = ¢~9I'(g) + CPc~@~PT(g - p). O

Theorem 4.5.4 Let —00 < a < f, B € (1/2,1] and f € QE(R™). Then there exist positive
constants B and b, such that

2
49-4 = o(2(a-B1)-n)k my(t) AP —bt
) Z;’z > o ggmx{l,( i exp Tt

JEDK(I)
(4.5.5)
holds for t < ||fllga any and any cubes I C R™, or for t > | fllga an) and cubes I C R™ with
(I(1))*8=2 > 1. Moreover, there holds

()84 Y a@(a-s+1-mk Z m‘/J(If) <B (45.6)
k=0 JEDK(I)

for t > |fllga any and cubes I < R™ with (I(1))**~2 < 1.

Proof. Assume that f is a nontrivial element of Q5 (R"). Then v = sup;(¥,q,5(1))"/? <

oo, For all cubes I we have

) ’li‘ /\/ Dldz < (UD)*~ VG < (Wpap ()P <7 (457)
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For a cube I and each J € Di(I), we have by the Chebyshev inequality, for ¢ > 0,
ma) <02 [ 1) - f0) e
Thus we get
(o=t Y gessn-me 5 P R A L
k=0 JED(I)

Thus, if ¢ < 7, then (4.5.5) holds with B = ¢ and b= 1.
To consider the case of ¢ > , we will apply Lemma 4.5.2. In the following we fix a cube
1. For € = (I(1))*~* with any ¢ > 0, we apply the Calderén-Zygmund decomposition to
|f(z) = £(J)| on a subcube J € Dy(I). Set @ = Qy(t), P = J\Qy(t).
From Cauchy-Schwarz inequality and (d) of Lemma 4.5.2, we get

(=2 \A1</ () - () Pde @59)

for any union A of the cubes K in the decomposition of ©;(t). Inequality (4.5.9) with
A = Q(t) gives us a variant of inequality (4.5.8):

454 3= g (2(af1)-mk 1)) Vsa8(l) 3 :
e T < ottt < (waym)

JEDk(I)
(4.5.10)
for all ¢ > 0.
When ¢ > 7, we can strengthen the estimate (c) in Lemma 4.5.2 as follows:
D)= < —/ 1f(z) = f()ldz < (2" +)(UD)*** (4.5.11)

for all cubes K in the decomposition of €,(t). In fact, note that K is such a cube, then
K # J. Otherwise, (4.5.7) implies

71 10 = 1l <= < oy,

This contradicts (c). It follows from the proof of the Calderén-Zygmund decomposition
(see, Stein [64] ) that K must have a “parent” cube K* C J satisfying K € Dy(K"),
I(K*) = 2I(K) and

|f(K*) = () < K™~ ‘/ |f(@) = f(J)lde < (U(1))*~*.
B
Then (4.5.7) implies

|f(@) = f(J)ldz < lKII |f(= dz + |f(K*) = (D]

In

-20
L @) = sz +

< @+ f)(l(I)Jz‘”-
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There holds Q,(t) C Q,(t) for 0 < ¢ < ¢'. In fact, for any cube K € Q,(t)\Qy(t), we
get K C J\Qy(t). So, property (b) tells us

U ‘K‘/ 1£(2) - F()ldz > ¢(1(1))2.

This is a contradiction.
Letting ¢’ = t 4+ 2"*'5 for t > v, we claim that

12t < 27710 (2) (4.5.12)
To prove this, take a cube K in the decomposition for ,(t). Then (4.5.11) implies that
7 1) = Al < 2+ 0D < .
Thus, K is not a cube in the decomposition of Q,(t'), and was further subdivided. Set

A= KN Qy(t'). If A’ # 0, it must be a union of cubes from the decomposition of ().
Thus, according to (d) of Lemma 4.5.2, (4.5.7) and (4.5.11),

P < [ 1 - )i
< m’r‘/A, 1£@) = F(Elde + |£(K) - £

A

-1 gl L - L =
K [ 150 = 100+ g [ 1@ - e

< IO KRR + (2 + U1
< BRI + @+ U

since 2 — 23 > 0 and K C I. Replacing ¢’ by ¢ + 2715, dividing by (/(1))?~%%, subtracting
t and dividing by 7, we have

@ -2 < |7K] and K NQy(E)] =07 <27 K]
for any cube K in the decomposition of ©,(t). Summing over all such K, and noting that
Qu(t') = Q(t) N Q(¢), we prove (4.5.12).
For each J € Dy(I), property (b) of the decomposition for |f — f(J)| implies that

my(HUD) ) = [{z € T 1 |f(2) = ()] > U1} < 19(1)]. (4.5.13)




For t >, let j be the integer part of 577 and s = (1+52"*!)y. Then y < s < t. Thus
one obtains from (4.5.13) that

48402 o(2(aBs1)-n)k my(t)
w3 > T

JEDK(I)

)
\
\
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\
\
]
]

_ (l(]))lﬂ—lig(l(a—ﬁ-ﬂ)—n)‘c b my (D) 254(1(1))*~2)

k=0 JEDK(I) 171

WD)+ 3 geesn-me MJ((l(l))”"J‘"S(l(I))”’Z

A

k=0 JEDK(I)

A

11

195 GI)*2 + g2+ )]
J|

& o L (1(1))2-2)]
(D)1 pa-8+1-nk 195 ((1 + 2"+ )(
> P R

JEDy(I)

IA

(I()yss-+ izum—mnvn;k
k=0 JEDy(I)

(g 1)) 481 S = gl2(a-B+1)-m)k 125 UINP 2 + (= 12"+
27 (UD)PY 2 7

<
k=0 JEDL(T)

if (I(1))?#=2 > 1, by using (4.5.12) for
t= (¥ + (G- 12" )y and t = (D)2 +j2"H)y.
Iterating the previous estimate j times and using (4.5.10) with ¢ = y(I(I))**=2, one has

(,(1))«5-«izwm-ﬂm—mk D 7”‘.‘11(‘1)

k=0 JEDK(I)

x
- - —p1)— 192, (v((1)* %)
< 2oy ae-sen-m y FOELT
k=0 JED(I) ‘J‘
< 27y
< o(#Fh)

~ gmamt/mggiren,

Taking B = 2"/2""" " and b = 5+ In2, we get (4.5.5) when (I(1))?~2 > 1.
If (1(1))?9-2 < 1, using (4.5.13) and (4.5.9), one has

(1)1 o p(2(a-B+1)-n)k my(t)
an) kzﬂz > T

JEDK(I)

< (-t 3 gee-smne Y R
k=0 JED(I) I
< g
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which yields (4.5.6). O

4.5.2 Gagliardo-Nibenberg Type Inequalities in Q,(R")

When k=0 and a = —2% + - 1, (45.5) implies a special JN type inequality, that is, for
1 € AR N BMOP(R") and ¢ £ | flvros(any
B e —u
e ere: 1> 1) < 2 o, () (45.14)
BMO3(R")

When t > ||f|| paos(n), We get a weaker form of (4.5.14) from which we establish the GN
type inequalities in Qq (R™)
In the following, C..... . denotes a constant which depends only on the quantities ap-
pearing in the subscript indexes.
Proposition 4.5.5 Let § € (1/2,1]. If f € BMO®(R™) N L*(R"), then
(i) (4.5.14) holds for all t < |fllparosn);
(ii)
Blf Iz

{z e R™: f(z) >t} < TMrosan

(4.5.15)

holds for all t > || f|l paros )

Proof. Taking k =0 and a = =% + - 1 in (4.5.5), we get that
mi(t) B\I/H,ﬂ,ou(m, - ( —bt )

s 2 [1flrros ey

e

holds for ¢ < [|fl| paros(wn) and any cube I. Thus for ¢ < ||fl|pyos(en) and any cube I, we
have

(y-2at) 2 [ 1160~ 1(nyPas

Hf”smaﬂ(m)
< o / dz
12 =B ( Hf\lmmu RO ) Yt Ha?
< nmﬂ*ﬂexp(;)/mz)m
s [ Ifllsmos ey / Ji

R Ry
S B—Fpf——« | 7 r— )|*dz.
- e (l\f”s.\ml(mn) o V@

- s
0= T e e

”f”muon(m") - 2
bl N S ———— dx. 5.
= R (wumoww) Jvera (£5.16)

This tells us
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According to the definition of BMO®(R™), see Theorem 4.2.2, we have

((1

1 € BMO(®") = I yusosar) = 4P~ —{7r— / /@) - (1) Pd < oo.

Thus, we get

11 s e
m,u)u/ngw(w)<3Mexp(m) [ @ibas, s

for t < || f|l mos(rn)- Then, taking an increasing sequence of cubes covering R", we obtain

HzeR™: f(x) >t} < exp( / |f(x)|*dx (4.5.18)

””lBMO’ R") )
for t < [|fllmarosany, since f(I) — 0 as I(I) — oo, Finally, we get (4.5.14). Similarly, we

can prove (4.5.15) since exp (WL) <1fort> ||fllamos@n. O

We can prove the following Gagliardo-Nibenberg type inequalities in Qs (R”) from (4.5.15)
or 18, Theorem 2] and [25, Theorem 2.3].
Theorem 4.5.6 Let —00o < a < 1, and 1 <r < p < co. Then, one has
1 lzony < CopllF I 1k (4.5.19)
for f € L"(R") N Qq(R™).

As an application of Theorem 4.5.6, we establish the Trudinger-Moser type inequality
which implies a generalized John-Nirenberg type inequality.

Corollary 4.5.7 (i) There exists a positive constant v, such that for every 0 < ¢ < 1
) ) (M )

o, ERAC) | Y LA LU 45.20

Lo (ufua,,m <\ lumn) (3520)

fELPR)NQa(R") with 1<p<oo and -oco<a<l.

holds for all

Here ®, is the function defined by
Dy(t)=e' - Y ;;,lelR
J<p.i€NU(0}
(ii) There ezists a positive constant vy, such that
/11328y 1

[ S ey S B

{z eR":|f| >t} < Cn (4.5.21)
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holds for all t > 0 and
feL*R")NQa(R") with —oco<a<l,

In particular, we have

/13 112 @ny ty
reR": 'n e 5.
He €R™:1f1> 8} < Coippa - “""( Nf”o,,(nn)) 522

holds for allt > |fllq. &) and
f €L} RMNQa(RY) with -—oco<a<l
Proof. (i) According to Theorem 4.5.6, we have

Lo (ciens)e = [ 5 (Haas)

ispgen !

¢ M wny

]

iznzen ' 1lg @n

& (CaFIan 9052

< il 7
szpaen I 1£1G. ey
£ llzomy \”
s T ar (e
2PN QalR?)

with a; = 7. Since lim; .o ;% = €™, the power series of the above right hand side
converges provided (C < e™! i.e. ( < 7:= (Ce)™!
(i) According to (i) with p = 2, we have

Y@L\ U@ oMy
/nv-(exp('HfHQ.,(m")) ! 1\f\|q,.<m)"’< Y

On the other hand, since the distribution function m(t) = |{z € R" : |f(z)| > t}| is
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non-increasing, we have

=

Y@l ) _,_, @l
R (eXp (th/I\ou(kn)) ! y\\fﬂa‘,m"))dz
4 Il @y
T

; -
——/ mis)s'~ds
IS, gey Jo

S .

> m(t)zv—;/ 8- 1ds

1/

o 1
= mt
m ),Z:; ! <”/\|q,.(w;)
P S
I\f\lq,,m) 1/ llgan)
for all t > 0. Thus, we have

oMMy 1
T m =
P\ T

We can also deduce from Theorem 4.5.6 that the following Brezis-Gallouet-Wainger type
inequalities hold.

e E,MX

=R

m(t) < C

S-mi)

o

Theorem 4.5.8 For every 1 < q < 0o and n/q < s < 00, we have
[z @) < Cnipas (l + (Iflzo@n) + 1l @amn)) log(e + H(—A)’“/Humn;)) (4.5.23)
holds for all (~A)*/2f € LI(R™) satisfying
fELP(R")NQa(R") when 1<p<oo and -oo<a<l.
Proof. For any g(z) in the Schwartz class of rapidly decreasing functions S(R"), define
v(t,a) = =@ g(a).

be the solution of fractional heat equation

Ayu(t, @) + (=0)"u(t,2)
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with initial data g. Fix f € L*(R") N Qa(R") with (—=A)*/2f € L%. Then
¢
/ (~(=8)f(x),v(s,2))ds = / (f@), ~(=0)"0(s,2))ds
0

-/ (F(e) Ouulo, 2t
= (@) u(t.o) - (@) g(e)).

Thus
[(£.9)] < (@), o(t,2)) \+/\ A2 f(@),vls,2)lds = Iy + I

forall t > 0. Here (-, ) denote the inner-product in L2. Thus Holder inequality, Lemma 3.2.2
and Theorem 4.5.6 imply that

LS Il I et gy = D el ™2 iy
< Cat™ i (| fllocany + 1 lgu@n)lgllcien)
for all t > 0 and p < g1 < oo. Similarly, we have
.
L2 e o e s
.
= U-AF st [ 1 gl s

’
S Cl=F Pl lalue [ o s
< OER|(=0) e lgllL @m)

for all t > 0. Combing the duality argument and these two estimates about I) and I, we
have

Ifllze@ny = sup [(f.9)l

o1 umy S1.9€S
< (@t (1 flioian) + Wllauen) + 1 312)" uxcen)
for all t > 0 and p < q; < 00. Take
.
-

= tog(1/0), t= (& + 12215 )

Then t-7/(sm) = (¢1/108t)/s = ¢n/s gnd
. a —a-3) )
B8 1-0)" e = (& + 1PN ) T A i 1

Note that we can find constant C such that gy < Clog (e + [[(=)*?f||La(an)) - Therefore,
(4.5.23) holds. O



Chapter 5

Well-Posedness and Regularity
of Fractional Navier-Stokes
Equations

In this chapter, we study the well-posedness and regularity of fractional Navier-Stokes equa-
tions in some Lebsgue spaces or critical Q—spaces.

5.1 Well-Posedness and Regularity of Fractional Navier-
Stokes Equations in Some Lebesgue Spaces

In this section, we use the notation LP indiscriminately for scalar and vector valued functions.

Proposition 5.1.1 Let 3> 1/2 and T > 0. Assume that u,v € L%([0,T}; L*(R")) with p,q

satisfying
28 n

¢ P

.
£ s , 28
L

Then the operator

.
B(m-):/ e (t=-2"py . (4@ v)ds
o
is bounded from L7([0,T); LP(R™)) x L9([0,T]; LP(R™)) to L9([0,T); LP(R")) with

11B(w, )| Loo,r:Lr@ny) S llull oo, 7y Loy 1Vl Lagio, ;Lo (m))-

86
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Proof. By Lemma 3.2.2 and L?~boundness of Riesz transform, we have
¢
1B, 0)llLrmn) S / Ve~ t=2 P(u(s, ) @ (s, )| oands
o

£ 1
/Dm”(“(&')®1l(3v‘))”1_m(kn)ds

/ ‘ m"“‘* Miscanllo(s, N ocands.
Since 8> § and p > 374,
0< 2_1ﬁ + 2%5 <1
It follows from 23 — 1 = % + % and the Hardy-Littlewood-Sobolev inequality that
(s, Moy 66, Mool ooy

lull oo, ry:ee @ 1Vl oo, 7o (n) -

11B(u, v)ll oo, ryiLe(rn))

N 2N

We can obtain the following estimate from Lemma 3.2.2.

Lemma 5.1.2 Let 1/2 < # < 1,T > 0, and p.q satisfy

n 28 n
> =4
5 e P

-1=
w1 ¥
Assume that f € L"(R") with g5 <r < p. Then we have

o Cp(ied
1€ fllaqomarmmy S T HED 1] 1o o).

87

Applying Theorems 3.2.7 & 3.3.6, Proposition 5.1.1 and Lemma 5.1.2, we obtain the

global existence and uniqueness of solutions for system (1.0.12).

Theorem 5.1.3 Let € (1/2,1, 0< T < 00, p> 78 and 2+ £ =25 -1,
(a) Assume that 3 <7 <p,1<p; <p<o0, 1<) <q<ooand

n (1 1 11
0<—<—+—) (1——v—><1.
28\¢ @ P n
If there exists a constant C > 0 such that

) iy
T BE) gl + T a3 ”)nhn c

“ " <
L0 T]L (RY)

(5.1.1)
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holds for all g € L™(R") with V- g = 0 and h € L ((0,T); L% (R™)), then (1.0.12) has a
unique strong solution v € LY([0,T}; LE(R™)) in the sense of

v=

.
=2 4(z) +/ =8 Plh(s, ) - V - (v ® )(s,2)]ds,
0

(b) Assume that g € LTT(R") and h € LY ((0,00); L% (R")) with ¢ and p} satisfying
1<gq)<g<oo,

2
» 26 <n, n 28
1<p) <p<{ G- ' oand —+—=20-1

=RLsE {m, 28 >n, o w
I gl e oy + 1Bl 7 oy STl enough and Vg = 0, then. (1.0.12) has o
unique strong solution v € LY([0,00); LE(R™)).
Proof. (a) Under the assumption of (a), let X = L7([0,¢]; L?(R")) for some positive &
which is to be determined later. Define

"
Ty =2 +/ e =8V p(h_ V. (v ® v)(s,z)ds. (5.1.2)
0

We will prove that if ¢ is small enough then 7" is a contraction operator on the ball B in
X with radius R which is to be determined later. For any v', v? € Bg, we have

. .
IT() - T(2)llx = / e A" PY . (v @ vy)ds — / e =08V PY . (v @ vy)ds
0 0 X

= [|B(v1 = vz,v1) = B(v2,v1 = v2)[|x
< 1B = vz, v)lIx + (| B(va, 01 — va)llxs

where :
B(u,v) =/ (e~ PY . (1@ v)(s)ds.
5

It follows from Proposition 5.1.1 that B is bounded on X. Thus
IT(v1) = T(v2)llx < Cllvr = vallxllallx + Cllvallx ller = vallx,
where C > 0 is only dependent on 3, p and ¢. Thus
I7(1) = T(w2)llx < Cllallx + llvzllx)llvr = vallx < CRlfvy = va|x-

To estimate || Tv||x for v € Bg, we use

¢
T(0) = e-'<-A7"g+/ e (t=9/=2" Ph(s,x)ds
0
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to obtain

(4l drdk-d(H-d
ITO)x < Ca = Ce= B+ g rmy +Ce* ™ (-2) (10 2ot g0 2% umyy
according to Theorem 3.3.6 and Lemma5.1.2. Consequently,

IT@)lx = IT() = T(0) + TO)]Ix < T - 0)llx +[T(O)lx < CRlv]x + Ca.
Letting R = 2Ca and letting ¢ be small enough with

CR<, (5.1.3)

ol

we have L
IT") = T")x < 5lv* = v¥lx and IT@)x < R

It follows from the Banach contraction mapping principle that there exists a unique v €
X = LY(0,€]; L(R™)). According to assumption (5.1.1), we can apply the above arguments
on any interval [t;, 5] on which (5.1.3) holds and prove (a) inductively.
(b) Note that & + % = 23 — L implies that (¢,p, z7) is g3 —admissible. By Lemma 3.2.3,
we get

—-b)°

lle 9lliqocontz@n) S N9l iy gn)-

On the other hand, Theorem 3.2.7 implies

“-“"A"’h(a,z)ds < ””H,_

. T
LI((0.00)LE(R™) i (0eoNLat (R7))

Applying Proposition 5.1.1 for 7' = 0o and fixed point arguments, we can prove (b). 0
We show that the solution established in Theorem 5.1.3 is smooth in spatial variables.
For a non-negative multi-index k = (k, -+ , k) we define

o= () ()

Proposition 5.1.4 Under the hypothesis of Theorem 5.1.9 we assume further that for a
non-negative multi-index k

and [k = ky + -+ + kn.

Dkg € L'(R") and D*h € L¥ ([0, T]; LY (R™)).

Then the solution v established in Theorem 5.1.8 satisfies for any non-negative multi-index
J with || < k],
Div e L9([0,T); LP(R™)). (5.1.4)
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Proof. The proof is similar to that of Theorem 5.1.3. We only demonstrate the case |j| = 1,
since similar arguments apply to the cases |j| = 2,3, -+ ,[k|. Define

T(Dv)

(Dg) + /nle"“'”"mgP(Dh) - B(Dv,v) - B(v,Dv).  (5.1.5)

Consider the integral equation Dv = T(Dv). Then T is a mapping of the space X of function
v with
v € LY([0,T); LP(R")) and Dv € L9([0,T}; L”(R"))

The norm in X is defined by
Ilollx = llollago,ryer @y + 1DVl ao,yizrmn)-

The assumption on Dg and Dh implies that the first two terms in the right hand side of
(5.15) are bounded in X. The boundness of the other terms follows from Proposition 5.1.1.
Thus, like 7' in the proof of Theorem 5.1.3, T is a contraction mapping of X into itself.
Thus it has a unique fixed point in X. Therefore, the solution v established in Theorem
5.1.3 satisfies Dv € L9((0,T); LP(R™)). O

5.2 Well-Posedness of Fractional Navier-Stokes Equa-
tions in Q% (R")

In Q%51 (R") = V-(Q8)"(R"), we study the well-posedness of the \zed Navier-Stok
equations on the half-space RY™ = (0,00) x R", n > 2

Vou=0, (t,z) € RY™; (5.2.1)
a, z€R

{ du+ (=0)°u+ (u- V)u—Vp=0, (t,z) € RY™;
ule=o

with 8 € (1/2,1).

5.2.1 Several Technical Lemmas

‘We prove several technical lemmas used in the proof of our well-posedness result.

Lemma 5.2.1 Given a € (0,1). For a fized T € (0,00] and a function f(-,-) on R, let
A(t) = ff e ()8 f(s,x)ds. Then

g dt ” dt
[ 1A s [ 1 e g7 (522)
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Proof. According to the definition of e~(*=*)(=2)" by Fubini’s and Plancherel’s theorem,
we have

- d
o= [T 1A
= ‘ 28 d
- L \Il\é\wruﬂm r/(s,g)diﬂiqm,tn%
. e N
/° </ (/0 mﬁ!ﬂ(s,s)m) e
S ?
/R“ (/0 </° I(DS”S”WW“’EW&) ;n/u)ds
B 28 i
] /“ ( 1((1<,<neu‘elwd6) (/u- = ”W,\r/ 5,6)| da) "’r(.N) i
Since f! |¢[9e~(¢="IeP ds < =116 (6™ _ 1) < 1, we have
([l
/" (/v (/n im0l ds)d W>d£
- 29161 m-&> ﬂ)
Jo (e ([ oigmm) it ) o
/mr- (/u ‘-7:/(Hv5)\75"‘“”(fe-z\e\”‘m%) i

dt
/n R
This finishes the proof. O

A

P2

Ia

A EZ N

N

Lemma 5.2.2 For § € (1/2,1) and N(t,z) defined on (0,1) x R™, let A(N)) be the quantity

as

s [ dad
A@BN) = swp r“-"”H/ / £(t,0)/
2€R",r€(0,1) 0 Jiy-al<r G

Then for each k € Ng := NU{0} there exists a constant b(k) such that the following inequality

holds:
! s | dods
/ th(-0)" e 4 A‘/Nx, ds ,h(AAnwv//w” 3
o b r"/’ o8

(5.2.3)
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Proof. Using the inner-product (-,-) in L? with respect to the spatial variable 2 € R", we

obtain
t 2
t%(fmﬂe—‘e—ﬂ—m“/ N(s, )ds dt
o

1
- [ =

A o

|

Lo stis ¢ d
=A % 2“‘(—A)‘E%Le’5(’mnl\'(y,-)ds,/o ti(-A)‘@re*h*A)“N(h.qdh)mmtofﬂ

3
—ome(f [ o | (-2 N b, it s )
0<h<s<l 8

! s dhds
-8 [ (= p)Pyke—t-2) A= APY) arme
(/ / 0 (-8 [ N -6 7

(Lk 1) = Li(8))N (h,-)dh) L2n)

ds
a8

where Li(t) = o bm(k)E™ (= A)mBe=t=2)" 1
‘We consider che v—th derivative of the kornel K, (z) and let
(K (@) = (0K (@) and (K[)(2) = (-0)2K{ ().
Using the estimates
5 1 Bioras— g 8 z
(Ha el 1+ [zl and (K0 (@) = BB () (g!/zﬁ)

(see Miao-Yuan-Zhang([53, Lemma 2.2 and Remark 2.1]), we get the kernel of the above
operator satisfies the estimate:
\

«
_amgeniacy b (k)
(=) L(@y) § Yot e AT
mZ _,,,_a(m Ty T
< L bk

)
(1t 1738 — M)nﬁmmz-w'

we have
‘/ )18 Ly(s)N(h, z)dh‘
e N (h, y)|dydh
< 4 J’rrzﬁ/ / P ()] S
A "MZ;G ()(l+r‘/”\a~—y\)"+2m/jn"”
k
_nss N N (h, y)|dydh
< S bk // — INGyldydh
’é m kizz:n b Lty exsioan (Lr s3]z - yl) o0
.
5 b sup sup 5 [0 f IN(h,y)ldydn
z€R" 0<t<1 |lz—yl<tr/28
o
< b(k) sup sup p’“-"“"’“/ / \N(h,y)\%v
2eR" 0<p<1 la-vi<p he
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Hence we can get
! dsd:
1500 ([ [ 1806, 21%295) 5.8,
This completes the proof. O

Remark 5.2.3 Similarly when k = 0, we can prove the following inequality:

/al”(-A)ie-“-A” /:N(s,~)ds

Lemma 5.24 For 1 < j,k < n and t > 0, the operator Q7 , = %0;0e™2" is a
convolution operator with the kernel K2y ,(z) = 5bs K2y (;x%) for a smooth function K,
such that for all @ € N"

2
dzds
=7 (624)

1
s S A@a N [ [ N2

L2(R)

(1+|a))"elor K2, € L=(R™).

Proof. Since FKJ,(€) = $f#e™1¢"", we have FOKJ,(€) < I¢[/° §gf# 71" and
/ FOUKS(€)d€ < .

Thus 8K}, () € L®(R").
For |z| < 1, we have

(1 + 2" 0° Ky (2)] S 10 K@) S 1.

For [z > 1, we write K, = (I = So)K[}y + o AKJ), where (I - So)Kj, € S and
AKD, = 200, (27) with Fufly, = 0(€)$e €™ € LY. Then the set {wf),, 1 < 0}
is bounded in & and there exists an uniform constant Cy such that

a+ 21|I|)N2A(n+\an‘3aA,ka(I)| <Ch.

Thus
0% SoK; ()] S z ol(ntlal) 4 Z 2l(nHlal=N) |z =N < |z|-n-lal,
2zl<1 2!z[>1
This finishes the proof. O

5.2.2 Well-Posedness

In this subsection, we establish the well-posedness result for the solutions to the equations
(5.2.1). Throughout this subsection, we always assume 8 € (1,1). Our results can be
regarded as a generalization of the result of Koch-Tataru [41] when a = 0,4 = 1 and that
of Xiao (78] when a € (0,1),8 = 1.
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Definition 5.2.5 Leta >0, a+ (3 > 1 and max{1/2,a} <3 < 1.
(i) A tempered distribution f on R" belongs to Qo' (R") provided

28 12
Wlggsram = swp (o= [0 [ i jo)pe St ) <o
- z€R",r?9€(0,T) 0 ly-zl<r

(ii) A tempered distribution f on R belongs to V Q& ™ (R") provided lim [1fllga.-1(an) = 0;
(iii) A function g on RY*™ belongs to the space X1(R") provided

llgllxs gy = sup 7 g(t, )l any
7(R")
4 te(0,T)

12
+ sup 720*"*25*2/ / lg(ty)Pt=o/Pdydt | < oo.
z€R",r?9€(0,T) 0 ly—z|<r

Theorem 5.2.6 Letn >2, a >0, a+f > 1 and max{a,1/2} < § < 1. Then

(i) The fractional Navier-Stokes system (5.2.1) has a unique small global mild solution in
(X8, (R™)" for all initial data a with V - a = 0 and |all gs.-1 ey being small.

(ii) For any T € (0,00) there is an € > 0 such that the fractional Navier-Stokes system
(5.2.1) has a unique small mild solution in (X2 1(R"))" on (0,T) x R™ when the initial
data a satisfies V' +a = 0 and lall gg.1 (goyyn < €. In particular for all a € (VQR™(R™)"

with V-a = 0 there egists a unique small local mild solution in (X2, (R™)"™ on (0,T) x R™.

Proof. By Picard’s contraction principle, it sufficient to verify the bilinear operator
.
Blu,v) :/ e (== Py (ugv)ds
o

is bounded from (X27(R™)™ x (X2.0(R™)" to (X&.(R™)".
Part 1. L*~bound. We want to establish that if z € R” and r2° € (0,T) then

20
ds

2a-n+28-2 2, 2 2

y |B(u, v)Pdy— S Jful ol e (525

/n /W,,K. Wazm S el oy 10k camy )

To this aim, define 1r(y) = 1y—s/<10r(y), ic., the indicate function on the ball {y € R" :
|y — 2] < 10r}. We divide B(u,v) into three parts: B(u,v) = Bi(u,v)+ Ba(u, v) + Ba(u,v),
where
Biu) = [ NS Y (= Laue i,
o

5

By(u,0) = (~0) VPV - [ e hE (L a) (=) (1 — e (1 )u @ v)dh

Ba(uv) = (~8)2PY ()2 [0, pue v)a.
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At first, we estimate B (u,v) as

28

v dt
1 =/U 1B2(w, )z ) 775

38 s
S A A e O e (WS UT B Jr2
< / u/ o8 (A () AT €)1, )i @ e o
< 5 AVW/2B(] _ o=h(= 1ra)u  vdh|2 dt
s/ \|( ) (=2 ) (12 u @ v lt2@n 75
Since Sup,e (g o0y ' (1 — €7*"") < 00 for § < § < 1, we can obtain that (~4)"/2~5(1 —
e%(=8)") is bounded on L*(R™) with operator norm < s'~ 31, Write (1,,.)u(s, z)@v(s, z) =
M (s,z). Thus, using the Cahchy-Schwarz inequality, we have

= ds
R e IO e

.
a ds

N 8274 Ju(s, )05, ) *dy— 75
/o ly-zl<r ) so/8

S ( sup s‘-ﬁwlumwumm) ( S(UP)8"7‘”\\11(3.!/)“”(11"))

S€(0,

(L L)L

pn-2a=2(8- ‘)HUH

o woyellEs_ oy

Now by Lemma 5.2.2 with k = 0, we estimate the term By as follows.
a8

7 a
[ 18w 75
/M
< pn2at68- 2/ ” Q)20 (/ M(r*%, r)dﬁ)

d
g proares / 1M 5,71 ey o
4 v

[l
rn=20468-2 5 IT x A(a, B; M(r%s,y)).

dt
L 77

,m
< H(_A)n/ze-u—m

dr
TalB

L2(R")

Cla,B:f)
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For 11, we have

_ jane3s
o= / /] LG z)\tw

< 2 48
< lull s, @myye 0l x8, . rmyne

For C(a, B; M(r*s,1y)), we have

dyd
ClaBiM(¥s,ry) S pPo- 20D / / (s, 203
ly= ZI<F
(rp)*®
< pramntaE-1), gamn w/"’ / M(t,2) d:/d;
lz—zl<rp t
dzdt
< p2-4B(p ) 2a-n+2(B-1)
< ) /0 [ o, MO
o
5 Pl s, o 19cxs o

Therefore we get

dt
2 n—2a+68- — 2— 2 2
L 1Bt oMoy a7 S Il e

5 R, e ol gy

that is,
e dt
2a-n+2(8-2) 2 2
v [ 1B a7 S Wl a0 e
For the estimate of By. According to Lemma 5.2.4, we have

HAPY (o /VK e
1
wE (e ”w\z—m)"“ S

and VK (z-9) S

Thus

o P
[Biwv) < |[ e ¢ MEAPY((1- 1, )u@v)dh

Ju(h, lfe) (b, )]
< —d dh.
= // —apzior (G = W)V + [z =y

thn\z-z\zlor,0<s<rﬂ’and|y—z\<r,wehave|y— |2 |2—2|-ly—z| 29>
9ly —z|. Thus [z — 2| < Ja —y \+\g—z|5g\y—zu\y—z\:%\y-z\,Thisgivesus

1By (u,v) / / u(h, 2)llv(h, ’)‘dzdh =5 %
|z=z|210r

\I =z
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where

-

a\

/2
/ Jut 2 '
|e-zlz10r |2 — 2"

1/2
= Ju(h, 2)[?
S i dzdh
- (; o Joirgiz-aigarny (F)"F!
o0 28 dedh 1/2
< 720Y0/8 (9 7)28=2 (91 )2~ m/ / u(h, 2)P %2
3 (Zﬁ R Cl RaCl el A SR e
aa 12
- 4 dzdh
< F)2an(2r) =} (27) 22 (20 zfz,s/ / u(h, 2)
5 (; )H@)P () A !,_1(5;,.-,[( 578

e
s (= ) [P

Similarly, we obtain I < (;d=r)'"/* 10l x3 , nyyn- Thus

1
1B1(w,v)| § = Il xs oy 10l xg ey
When 0 < a < 3, we have

Gl dydt 1 7
. . .
L mwors s e [ st e g oo

pn-2a=2042)|

N

b2

2
ul v 2
N(X” . (R™)) ol H(X:_r_ (Rry)n

This implies that

2
¥ o dyd
2a-»+2(a—n/ / 1By < 112
T 1 (u,0)[? lullfyo  gmya el -
o Jiy-zi<r ta7B ~ WX E ey TP (XE 7 ()
Part 2. L®—bound. The aim of this part is to prove
o rn) SEB! t g
1B )l e gy S 877 Hull xo @y llvllxs  gnyyns V2 € (0.T)
If § < s <tthen

HU”L“(R")H’/”LN(H"V
(t-9)%
- -2,
S (=9 B ull ks @uynlvllen, e

le=t==2PY .. (u@ )1
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If0<s<$thent—s~tandso

e~ =8Py . (4@ )|
[ el
(= s)B +1z—yl)
[u(s, w)llv(s,y)|
AL VS Y dy
4 (th+1e—u)"™
/ [u(s, y)llv(s,y)|
eyee® (ko) (£9 (1+ k) 4D

N

AN

dyds

N

kezn

This gives us

/2 ¢
IBwv)| S / \e"“')('A)SPV-(u®v)\ds+/ e~ =087 Py . (y @ v)|ds
o t/2
/2
Tebay e [T el
o Jo-yetB kroam)

kezn

.
+//1(t =)™ B s ullxg o Il oo
]

N

= I3+ 1,
Here,

Iy

N

:
/ (=)Ao
< th-2l-ds
S 7B ull ooyl oy
o
S T ullixs gepe 0l e rmpe
On the other hand, we have

/2 1/2
Lo Z(t"”(lﬂkl))"“*”(/o [ ; ﬁlu(s,y)\“dyds)
_—

kezn

/2 1/2
\y)|*dyd;
x (/0 /4,_”5,,5'““ R s)

= Y B AR x T

kezn
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Here,

&
It

/2 1/2
:
( L L ew dyds)

s 12
t}{7[vh?/“l]Hﬁ(Zu‘vMZﬂ»'Z}/ / (s, y)‘zdllds
o Jiz-yiged 8o/0

S Oy,

r(R™)"*

Similarly, we get g2 S ¢% "2 s o) .. These estimates about I,y and Iy z imply
that )

I S By <

)| s 51 )|
@y Vllexs @y S th lellixg ey 10l xRy
Thus
£79|B(u,v)| S llullxs vl s
()l S ullxs, mpn 10l x2 oy

Therefore, we establish the boundedness of B(u,v) and finish the proof of (i) and (ii) by
taking T = oo and T € (0, 00), respectively. (]

5.3 Regularity of Fractional Navier-Stokes Equations in
8 (RN
Qa(R")
In this section, we study the regularity of the solutions to the equations (5.2.1) with
B € (1/2,1). For B = 1, that is, the classical Naiver-Stokes equations, the regularity has
been studied by several authors. In (28], Germain-Pavlovié-Staffilani analyzed the regular-
ity propertics of the solutions constructed by Koch-Tataru. More precisely, they showed
that under certain smallness condition of initial data in BMO~'(R"), the solution u to
the classical Naiver-Stokes equations constructed in [41] satisfies the following regularity
property:

t4Vku € XO(R"), for all k € No := NU {0}

where X°(R") denotes the space where the solution constructed by Koch and Tataru be-
longs.

In this section, we establish a similar result for the solutions of the equations (5.2.1)
evolving initial data in Q25! (R") with 8 € (1/2,1]. In fact we get the solution u to the
equations (5.2.1) satisfies:

thvky e XBOR) for all k
where X2°(R") is the space X2, (R") constructed in (iii) of Definition 5.2.5 for § € (1/2,1)
and X}, (R") in Xiao [78] for = 1. For convenience of the study, we introduce a class of
spaces X2*(R™) as follows.
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Definition 5.3.1 For a nonnegative integer k, a > 0, a+8 > 1 and max{a,1/2} < § < 1,
we introduce the space X2*(R™) which is equipped with the following norm:

g ey = Ml gt ooy + 2t oy
where

PP,
llell g ny = sup  supt™ 3 [|O} -+ OFru(:,t)l| oe rn),
aytotan=k t

30 1/2
. 20-n+26-2 A gar... gon o dydt
up  sup (r /u /‘Hm\z ool

B
atotan=ko,r

s vy =

In the following, we will denote V¥u = 82 ---82ru with (a1,az,...,as) € N and k =
i+t an.
5.3.1 Several Technical Lemmas

Before stating the main result of this section, we prove several preliminary lemmas associated
5 i "

with the fractional heat semigroup e~*(~2)". Recall that e=~2)° f(z) = K/ * f(z) where

K/ is defined by FK/(€) = e~ and P is the Helmboltz-Weyl projection.

Lemma 5.3.2 Let § € (1/2,1). There ezists a constant C > 0 depending only on n such
that
|08 PV K (2)| < CRKM/2547H% (k=5 ¢3 + o)~

Jorallt >0,z € R" and k € N.
Proof. By a dilation argument, we have
KPVKP (x) = t 7 - Bk PYKD (w/t9).
If we could prove [9£PVK? ()| < C*k*/2 (k™35 + |z))="~1, then we have
-n-1
)
< KR (kR g o)

s PVES (@) < H B (k4

Hence we obtain the desired.
By the semigroup property, it is easy to see that 05 PVKY = PVKY, x 05K}),. So we
need to prove the following two estimates:

IPVKY (@) < O(1 + [2)) ™! (5.3.1)

[05KD ()] < CH KB (k™ 4 fa) (53.2)
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For (5.3.1). Taking a = 1 in the Lemma 5.2.4, we have
(1+ [a)"* [PV KD ,()] < C, 1

that is, (5.3.1) is obvious.
For (5.3.2), we claim that |9,K{),(2)| < C(1+ |#])~"~!. In fact when [a] < 1,

(el Houy(all < 24 [ e < 0.

When |z] > 1, we define the operator

L(z,D) = that is L(z, D)e'*¢ = ™€ ‘

1\1\2 '

and choose a C§°(R™)—function p(x) satisfying: ‘

L s,
w0={g 132

/R“ 7 <§> ,»&efm”/?ewed{‘
- oo

= L+l

I 5/ » (5) ele~162gg 5/ Sde < o™,
e\ lel<28

For I, using the integration by parts and L* = — %, we have

oo v

N
e oo e
Cnlal-N / |e[28k-N+1-16 /2g¢

2 1> A'Z

| + CN\zr‘\'/ ch—k ZCN CJE[2AN R IE 2
5<l€1<28 k21

we have

0Ky (@)] <

For I3, we have

L =

AN

dg

k2

N

Cwlal™ [ I =Nag + Clal
1€1>6

Clz|~Nont1=N,

/ 5-k[e[1-N+kqg
5<lel<26

I
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So we get, taking § =
(0K (2)] S 87+ + ClalNamH1=N < Cylal ="+ S Oy (1 +[al) ="+,
Then we have
10:K7 (@) < kB k10, K7, (K1/%2)| S Ok~ +[a)) ™"

Because the following integral inequality(see [54]):
/ (a+|z=y)™ b+ [y) " 'dy < ca”a+ [a]) " for 0 <a < b,
s
we have

0%, @) = \ /R O (@ = )KL )y

AN

L o= )y
< RBETH )

102

Operating the process above k — 1 times, we get [05K 7, () < k' (k™ + [2)~"~" and

|05PVK(2)| = } /m PYK ja(x — y)OEK] 5 (y)dy
5 [ i) R )y
.

Crks (k™ + [a]) " kT

=
< CrEB (kT 4 Ja)) "

This completes the proof of this lemma. O
The following lemma can be regarded as a generalization of Proposition 3.2 of [28].

Lemma 5.3.3 If r is a natural number, a € (0,1), a+ 8 > 1 and max{e, 3} <8 <1,

operator

POf(t,x) = /‘e,(,,,)(,mu(tﬁ — )Y (s, 2)ds
o

the

is bounded on L*([0, T}, L*(R", da), 7%) for any T € [0, 00] with constants p(r) and q(r).
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Proof. By Plancherel’s theorem and Holder’s inequality, we have
¥ dt
[ 12 MW o7

JA (/,’“"""“"”W = ~"‘+’)'1£\’””f/(5-5)'13>2 e

0

L7 ([ et e - by asas)
di

¢
A . t
x </U e~ (= (¢l _ gdryrg) *”\Ff(s,{)ﬁd«) e,

N

RN

Because t'/29 — s1/20 < (t — 5)'/29 for 23 > 1 and 0 < s < t, it is easy to see that
Z & 2 r
/ e 4 _ oIy Bdy < / (=0 (4 _ )33 |e|r 3 g
0 Dm
< / ey S 1.
o

Then we have, by £1/29 — §1/28 < (t — §)/%% for 2 > 1 and 0 < s < t again,

00 dt
/D NP1t s a7

- - (28 . dsd
s [ [TiEreor (/ emte-oie <:7s>mer*“m) 2L
- / Lac i e (Ax E,“\fz’u“,'-”glwzidu) %
o 5 ds
s [ Freor e

This completes the proof of this lemma. 0

Lemma 5.3.4 For any k > 0 and 8 € (1/2,1), there exists a constant C(k) such that
™2 ul g gy < Ol ey

Proof. Because [[uf xa.x gny = lullya.x

For the L (R™) part of the norm. Because Q2:5}(R") — Bl 2(R") and
vE BIRR) — BLETHRY),
we have

—t(=0)? 1=gpet
[V*e A | oo gy < 7% ull 3284 oy

1=30- 1ogeet
<t lull gy St llull g,z my-

(R")

103

(e * l1ull y2.1 e we split the proof into two parts.
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Then we can get t*T [ VAe 2 u]| o gn) < [lullga=t -
For the Carleson part. Because u € Q5] (R™) = V- (Q2)"(R™), there exists a sequence
{f5} € QA(R™) such that u = 5, d; f;. We only need to prove

ZERM, >0 0 ly-z|<r

S CNO sy = CONSi s gy (533)

2 dydt

oA
thvre 8 1) 25

Taking
Y(@) = VRoe 8 (@) = / (i€)Figye € ez e,
e
we can justify the function v(z) with Fyy(€) = (ité)k (it€;)e=t""16I"
in (1.0.10):

satisfying the conditions

(@) S (1 +]2) ™, ¥() € L} und/ Y(@)dz = 0.
-

By the equivalent characterization of Q2(R™) (see(1.0.11)), we have

s|xpr2"“"”""2//
z,r 0 Jly-al<r

By a change of variable: ¢ = s*°, we get the desired result (5.3.3). O

2
. 5 S CON il g

s vkem =0 (30,) £y )|

5.3.2 Regularity

Now we state our regularity result.

Theorem 5.3.5 Let a >0, a+f > 1 and max{a,1/2} < 8 < 1. There exists an € = &(n)
such that if [|uol| g1 (gey < € the solution u to equations (5.2.1) verifies:

tH Yk € XBOR™)  for any k > 0.
Proof. We can see that the solution to the equations (5.2.1) can be represented as
u(t,z) = e~ u(0,z) - B(u,u)(t, z),
where .
B(u,v)(t,x) =/0 e~ (=2 Py . (y(s,2) ® v(s, z))ds.

Here u® v denotes the tensor product of u and v. For the linear term e=*(=2)"4(0,z) :=
e~t=2)" 4y, by Proposition 5.3.4, we have He""m”uuuxc *gn) S C(K)[luoll g1 (gn)- Now
we estimate the nonlinear term. We write X2*(R") = Nk X2*(R") equipped with the
norm 3§ ||+ |yt gy We shall prove that the bilinear operator maps

B(u,v) : XI*(R") x XBHR") — X2k R").
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Part 1 N2k (R™) norm. Here we shall prove that
1B, )llygi@my S Colk)lull xgogm 1Vl xgomn + CR) D lullygt, oy 1ol g a1y
=1

+ Cullull gz om0l g2y + Ol oy 10l s gy

f0<s<t(l-%), & <t-s<t ByLemma 532, we have

1—/ |v’° ~(t=9(=8) Py . (u(s,z) ® v(s, 2. )‘ds

—ohh lu(s, (5,0 o
/ / (t=8)B(t = 8)% (k™ + Gzt )nis

<ot (W) /’“"*’/ fuo, IS, g,
,,E,n artveation (k7 + gl

B . 1 ~ kY28 we h:
ocase Fyepn s we have
(n+k+1)/26 t(1-3%)
1< o ()" [T fus, )0, ) s
e-yet® (g4l0,11")

(n+k+1)/28
k k)20 A5 galf
ot (T k / /| e DI wﬂ
< ORI ] g o 0] 0 an)
= Colk)t ™ ul gy 0] 0 an)

A

where Co(k) = Ckk*T m ™9,
If (1 - ;%) < s <t, by Young’s inequality, we have
[Vhe= =08 PY . (u(s, ) @ v(s,2)|
= |PVe =089k (u(s,2) ® v(s, z))|
< [PV A (@) gy |V (u(s, 2) @ 03, 2)) oo an)-

By the estimate for the generalized Oseen kernel:

1
Pyitle-(-8)"
I @I = 0+ )i+t
and ™ a5
—u(—n) _ - (-
Pyltle-u(-8)" _ =25 poltl —(-8) (u‘/?l’)’
we have

1

1
<
Hndl ~ 2 +n+l"
(1+ ) @)

‘Pvl-ﬂe—u(—a)”‘ < S
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Then we take [ = 0 and have

||PVe"‘"°"’I|u(u-) < /w L.ﬂﬂ < L_
o (u® + |a|)n+! ul/28

Hence we can get

|T*e= =92 PY(u(s,z) ® v(s, )|

.
1 k -
5 a2 (§) 17 Mmoot e
=0
&k Bl Pl
S (!_s)l/wg | ) sGA-1+D/2B @B 1+k-0/28"

So we have

.
/ Ve (t-9(=2)" pyk+l(y(s, z) ® v(s, ))ds|
t(1-%)

k t
k 1
< ‘Z; ( f ) Il vgs, o 121l w2 st ey [“"-l.l =)/ sw=zi7as &

For the integral in the last inequality, we make the change of variable: s = zt. Because
t(1- %) <s<timplies (1- %) <z <1, we have

11

[ ——
(1-4) (¢ )28

(- 2) @)

Denote g(m) = (1 - &)™ “F* (1)""% and take m = m(k) = k=¥, We can prove that
g(m) — 0 as k — oo. Then we have I1 < Ct" 5~ for k > 1.
Therefore we have

/‘ Ve (t=9)(-=2)" pyk+l(y(s, z) x v(s,z))ds
(=)

=23k

’
k
s o [Z( ) g g+ Balags Bz, + Balaga otz |-
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Part 2 N2'& norm. We split B(u,v) as follows: B(u,v) = By(u,v) + Ba(u,v) with

Bi(u,v)(t,a) = /z e=(t=0(-8)" py [1 -4 (IRI_/;“)] u(s,2) ® v(s, 2)ds

By(u,v)(t, z) =/0 e~t-a-a)’ PV¢(R]/2H>“(5v1J®v(s,z)ds

where ¢, 1, = 6((z~20)/ A7) for a smooth function ¢ supported in B(0,15) and equals
to 1 on B(0, 10).

For the estimate for By. Because |[PVF+le=(t=9)(=8)"(z)| ¢ —_K®)__ and

[(t—8)1/28 4 |z—y]]
0 <t < R, we have
143 9% By (u, v)(t, )|

.
tﬁ‘vk / / Pmmef“—wm"Pvu—y)u<s,y>v(a,y)dws

wet [ lus. (sl dyds
o Jiy-zolz10m120 [(t = 5)1/26 1 [& — y|]"T*H

R
o N 1) 0 R
) A /\ym.\zmmm o [ . *w g ]MM yds

ngkil dyd.
< KRS szmw”n A / (e, oo, )] Lt

y—zo|<RV/24
< K(K)D(K) R"mﬁn

N

N

RN

ull gm0l x25ca0y
Then we have, taking R = r?
w38 2
et 5 \za‘av*u,(u,v>(t,u>| o
778
ly-z|<r
K (k) D(k))2r2a-n+26-2 22-48 )12 dydt
(K()D(R)*r [ T gl 15

< (K(R)D(K)? Huuxg‘nmn)nvnxg‘nm,.l.

b2

For the estimate for B. We further split By as By = B} + B with

7= /0' e'“-')(-A"’\/% (1-e7C2) (¢, uls,2) © v(s,2)) ds,

:
Pvg-u—m”/' Gy U(3,) © (s, 2)ds.
o Ot g
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At first we estimate the term ¢35 V¥ B). Without loss of the generalization, we assume k is
odd. The proof of the case that k is even is similar. If k is odd, we have k = 2K + 1 for
K € Z. Because } < 8 < 1, we have

thoo (oo st em) ™ (vt g o)

K

_ Z( e ) (8 - )™ b (i — o 4 o)

1=0
2K 2K

= B )T 2K N 4 _ g ypr-ig
g( s )(z ) +§( ; >(z ¥ )2K-lg

Then we have, setting M(s.2) = ¢, (@)u(s,2) ® v(s,a),

o

Py
thvgy = 3 (2f) Lk fk,,,,((—A)iﬂ’uVe*“*m")aﬁv‘)w(s,z))

=0

—P_EV ? (-8 - em-2") s ¥ VK M (5,0))

2k

Z( A ) Py (-2 - e =20)s B Vi 0 (5,2))
=

v .
== (oo -
Since Sup,e (g,0) 8 "2(1 = €™*") < 00 for § < B < 1, we can obtain that (—4)/2-3(I —

e=*(-2)") is bounded on L? with operator norm < s'~%. By Lemma 53.3 and the
2_boundedness of Riesz transform, we have

) U (s, )

28 2
T2n—n+2/7—-2/ / PV Pfk,l(fA)i"’(I—e"(’m”)s‘ﬁ'V‘“M(s,z) ‘:Z/d:
lo—: an<r
2
< p(2K — lr2e-n+2s- 2/ / ‘ 1 O 15, )| izjﬂs

< (2K — Dyre-nt2s= 2/ / - v (s, ;)‘2 dzds
Jz—: ru!<7

sa/B
Because 0 < s < r?? and

\ ST M (s, 2) = sﬁ“v‘“(am u(s,z) ®v(s, z))
0

[s55 = Tmu(s, )] [sVru(s, o) [strHi- a2 mdipieionong

o,
men<iil



CHAPTER 5. FRACTIONAL NAVIER-STOKES EQUATIONS 109

then we can get, taking R = r2%,

-
p2a-n+28-2 / /
o Jiz—zol<r

ESED S e e
m4n<i+l

2 dads
5o78

5= H U M (5, 2)

In a similar way, we have

20(—1)4-219 2/ /
le-zal<r

2
P" (( AYEB(L = om0 ) g g z))‘ dads

578
1 2

SP(O)r“""””"/ / |«"=ﬁﬁ‘fv"‘+w<s,z)\ g

o Jrn se/

2

o
Sp(o)rh—vwwuz/ / SH+ T vmuynyEKammeng d”:/d;

0 Jlje-zol<r m+n<2K+1 Ea

<000) (Il Il gwes + Iollg Il ) + O lgan ol g

Similarly we can estimate the terms associated with P{ and Py_,,,. Combining all the
estimates together, we can prove

28
p2o-n+26-2 / /
0 Jiy-zol<r

< Cllullggslivlizgs + Crllvlgpollull gox + CR)lul g full ga-s.

1/2
2 dadt
95 V* Bl (u,v)(t, x) W)

Now we estimate the term B3. Taking the change of variables: s = r%, z = rz and
t =17, we have

1=t [ ]
0 ly—zol<r

a0 PV ¢
_ Tmfuuﬁfz/ / RV /—AE'!['A)”/ M(s,x)ds
o ly—zo|<r V=& U

2 drdt

175 VK B2 (u, v)(t, @) =

? dedt
L]

L2 " 2
20-n+20-2 ket1,—t(~0) ; dedt
< 7 ; / / (ke /M(s,t)ds P

T 2 ,n+28,

2a-n+28-2 kb1 g=r(=B.)° 24 28 4| T dzdr

< + // rr? ﬁk—ﬂv* /l)M(r 0,72)r de‘ —alF
o [T ? dedr
< Txa‘aA /n k/2BkH1 (=) / M(r2%9,r2) e
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Denote by V¥e~"(=2""*(z,y) the kernel of the operator V¥e~"(=4:)"/2,1 > 0. Because
1 <B <1, we have

M58 k(1) g-r(-20)° /2 R S Y
@ vEI-Ag (r,y)l ST (72 (L4 Ef)reka-) €5

uniformly in 7. By Young’s inequality and Lemma 5.2.2, we have

JE—T 4/ / T R0 r(- 80" 2, § g+ gr(- 00 y’/z/ M(r290,rz) dld"’
864 kB+1g=r(=0:)/2 25, ? dadr
< 7 /Q / 4 kBT A M@0,z 75
1
< r9%(k)A(a, B, M) W(r“’a,n){@
. ]
= (k) A, B, M) Iy
For A, 8, M), we have
A, B, M) = pra-nas- 7/ / |M(r23s,ry)| B
lv-al<p se/

IA

()™ dedt
Tsz(rp)za—nn/i-z/ / |M("Z)|¢n/6
0 |z=rz|<rp

1279 ull g0 ey 0l 2 02n)-

1 dzdb
28,
// 1M(™0,72) 5o

26-n,
r dtdz "
/ / M, g™ < Pl g o Il gy

In

For I, we have

Then we get

o ly—zo|<r

Now we have proved that

2 dzdt
BV B, 00 2)] g < Nl om0l o

Rh)

F+Crlul yg.0gm 10l xox(gmy + Cullull xgx @y 0l xg0(mn)-

Similar to the method applied in Lemma 4.3 of [28], if we construct the approximating

’ 1B, )l xaxgny < Colk)lullygomnllvll xgo@mn) + CE)Iull gg4-1 gy 0l 4= omy
‘ sequence u’ by

s
ut =0, u® = et yp, Wt =0 + B, W),

we can get the following lemma and hence complete the proof of Theorem 5.3.5. O
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Lemma 5.3.6 Let a >0, a+f > 1 and max{},a} < 8 < 1. Suppose ug be small enough
in Q%31 (R™). Then for any k > 0, there exist constants Dy and Ex such that

=
o
W lsgaqn S0k and % = @z S B (3) -

In particular, for any k > 0, ul converges in X3*(R").
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