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Abstract

The elastic properties of porous silicon single layers and superlattices were deter-

mined by means of Brillouin light scattering. The quality of the Brillouin spectra
dependent. on the porosity of the porous layer and significant improvement was ob-

served with the increase of porosity. The morphology and thicknesses of the porous

silicon films were studied using scanning clectron microscope. The porosity of both

single and multilayered films was caleulated using gravimetric method.

The elastic constants of p-Si superlattices composed of layers of various porosity
were compared to values of effective elastic constants obtained from the model pro-
posed by Grimsditch and Nizzoli [M. Grimsditch and F. Nizzoli, Phys. Rev. B, 33,
8, 5891, 1986] which was reported to be applicable for other types of semiconducting

superlattices. As the model requires the elastic constants of the constituent layers of

the superlattice as input, the set of elastic constants was determined for each single
porous silicon layer assuming cubic symmetry.

The bulk phonon velocities and respective elastic constants of single layers and
superlattices decreased with increasing average porosity of the film. The effective

elastic constants of the superlattices were calculated directly from the spectra col-

lected at smallest incident angle as well as obtained through the fitting of data with
expressions for angular dependence of the velocities of the bulk phonons. The fitting

was done with and without constraints on the values of elastic constants (ci1 > c53).




i
‘The longitudinal and transverse elastic constants of the superlattice (css and cu)
showed excellent agreement with the model for all the approaches, while the values
of ey and ¢y agreed only when the constraints were imposed.

Based on the results only partial agreement with a model may be concluded. An
excellent agreement for two elastic constants for all superlattices may either mean
the other two cannot be determined due to uncertainties involved in the experiments
or that the model needs corrections in order to work for superlattices created by

electrochemical etching of a crystalline parent. wafer.
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Chapter 1

Introduction

1.1 Overview of Early Work

The fact that the electrochemical etch of monocrystalline silicon wafers under the

con (p-Si) was discovered

appropriate conditions leads to the formation of porou
and first reported by Uhlir in the ffties [1] while studying electropositive of silicon in

solutions of hydrofluoric acid. The discovery of p-Si was initially of limited interest

but the attraction to the material was renewed when the idea of formation of silicon
on insulator structures was presented in the early seventies [2]. The attractiveness
of p-Si boomed with the discovery of visible room temperature photoluminescence in
1990 [3). The material drew attention yet again when its biocompatibility [4] and

biodegradability (5] were shown.



1.1.1  Properties of Porous Silicon

A piece of silicon in an HF-based electrolyte behaves like a Schottky diode [6] and

under reversed bias (anodic or cathodic for n- and p-type Si, respectively) a space
charge region is present in the Si electrode. The studies of current - voltage curve
on the junction shows that the formation of p-Si is possible if the Si wafer is biased
and current, densities are below critical values. Additionally, in case of n-type or

semi-insulating p-type Si, light must be supplied [7].

The etching process of p-Si is self-limited (which means that the electrochemical

etching occurs mainly at the pore tips [6] and the already formed porous structure is
not affected other than by a slight chemical etching [7]) and the etch rate is a linear
function of current density for fixed electrolyte composition [8]. The porosity & of
the etched layer, defined as the percentage of void space in the material (9], depends
on the current density j (increase of € with increasing j), electrolyte composition
(decreasing § with increasing [HF]) and the doping of the parent crystalline silicon
substrate (7]

The pore morphologies depend primarily on the dopant type and its concentration
in the parent c-Si wafer. Typical, although rough characteristics of different types
of p-Si are summarized in Table 1.1, The size of the pores is independent of their
‘morphology [10] and accordingly qualifies the pores into one of the three categories
- macropores, mesopores and micropores. Macroporous Si has pores and interpore

distances larger than 50 nm, mesoporous Si is characterized by dimensions between



10 and 50 nanometers and in microporous Si pore sizes are below 10 nm.

‘The crystalline structure of p-Si samples is the same as that of silicon crystals [14]
dinmond structure consisting of two intercepting enbic face centered lattices displaced
along the cell diagonal by a quarter of the length [15). A detailed study of p-5i carried
out by Pickering et al. [16] however, showed differences in morphological propertics
in the layers formed in degenerate or non-degenerate ¢-Si of resistivity in the range
0f 0.01-25 © cm. In the case of degencrate samples (in which the number of electrons
in the conduction band approaches that of  metal) the resulting layer morphology
was a network of ~10 nm pores that under optimum conditions retain the single

crystal character of the original material. The studies of non-degenerate p-Si indicate

the existence of amorphous phases. Porous silicon is also characterized by a high
surface to volume ratio (a few hundreds square meters per cubic centimeter [17]).
Additionally, the surface of p-Si can be locally activated by irradiation 50 it can react
with various chemicals (18],

The conductivity of p-Si in meso- and microporous layers is a few orders of mag-
nitude lower than the crystalline substrate. This phenomenon in microporous layers

is associated with quantum confinement of charge carriers, whereas in the structures

Tuble 1.1: Morphologies of porous silicon.

Type_Pore Size [nm] Morphology
o 00-1000  proferential pore growth along high symumetry directions [11]
10-100 preferential pore growth along high symmetry directions [11]
branched, ordered, preferred growth in [001] direction [12], [13]

<10 nterconnected network uniformly distributed over the film [12]




with pores of larger dimensions the increase in electric resistance is explained by a
‘model based on constrictions of conductive paths by surface traps [19). As the dif-
ferences in structural properties of p-Si, controlled in the formation process, result in

the diversity of electrical properties of the material [20], the latter one can be tailored

accordingly. The reports on thermal conductivity provide data varying over a wide
range [21] depending on the morphology of the films and conditions in which they

were prepared, but show generally that it is lower than that of c-Si.

The luminescence of p-Si consists of three bands - blue, visible and infrared (22].
The first one is observed from hydrothermally etched p-Si after oxidation [23) and
from electrochemically etched p-Si that was illuminated with white light after an-
odization [24]. The visible band can be observed from wafers subjected to both elec-
trochemical etching and chemical dissolution and is associated with widening of the
Si bandgap through quantum confinement [3]. The luminescence in the infrared was
teported in samples prepared by high-temperature oxidation of porous silicon [25].

The interest in p-Si is nowadays driven not only by the adjustable and controllable

properties described above but also by the fact that its applications cover a wide
spectrum, from mechanics through biotechnology, electronics and energy, to use in

chemical sensing and optics [26,27]. The use of p-Si in some applications is limited

by the elastic properties of this material and by its mechanical instability observed,
for example, during the drying process [28].

In mechanics, one of the very few large scale applications p-Si layers is in the
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tion of SOl layers [20]. The sensitivity of the pore size to dopant concentration
and the wide range of elastic constants values allow creation of a wide range of pore
and crystallite sizes. Electrochemical pore formation is used to micromachine precise
structures yielding straight walls to depths of as much as 150 fum with high aspect
ratio [30], bridges, membranes and cantilevers [31],

Porous silicon is also used in the field of biotechnology for filters [32) and determi-

nation of particle size (3] due to the consistent and regulated pore size, especially in

the case of meso- and macroporous silicon. Additionally, the regularity of macropore

arrays in Si makes it useful for biochips. The p-Si photonic structures offer advan-

tages that can be useful for biomolecular screening and medical diagnostics (34]. The
growth of mammalian calls [35], phosphates and biological species in the presence of
protein [36] was observed on nanostructured Si and membrancs. It has been shown
that macroporous silicon provides an enviroument for adhesion and growth of os-
teoblasts and collagen fibers which, together with high mineralization rate, make
it a promising material for bone tissue engineering [37). Additionally p-Si can find

use in technological applications such as biosensors which release drugs or essential

hemicals depending on the chemical envi t. Due to their ility and
biodegradability, p-Si bilayers provide continuous drug release and can be used for

anticancer agent delivery (3] and as insulin providers [39]. Porous silicon lyers with

fine pore di

are expected to enh Aytic activity and have been consid-

ered as a coupling matrix for enzyme reactors integrated with Si [40] and modified



sutfaces of p-Si layers are employed for selective binding of proteins from complex
mixtures [41].

In microelectronics p-Si finds use as a buffer layer [2] and as high quality, stable
capacitors (42], fully compatible with Si technology. They combine an electrochemi-
cally enlarged surface and superior dielectrics.

In the field of encrgy p-Si finds use in solar cells both in sutface texturization
which results in increased efficiency, antireflection coating [43] and as gettering sites
for impurities diffusing from the bulk (44 Porous silicon is also used for fabrication
of fuel cells for portable electronic devices [45]. Microporous silicon filled with an
oxidizer creates a very potent explosive due to the huge surface area [46].

Chemical and biological sensing makes use of the fact that pore surfaces are sen-

sitive to only certain materials which by binding to p-Si single and multilayered film:
change their properties. This thereby permits determination of the presence and level
of concentration of the substance in the environment. Taking advantage of a change
in electrical resistance upon exposure to the environment allows the use of p-Si single
layers in chemical sensors sensitive to organic gases [47], the presence of pollutants,
humidity [48] and as little as 0.5 ppm benzene [49]. The change in the Bragg wave-

length of multilayered p-Si films when in contact with chemicals allows production

of small inexpensive detectors [50]. Carefully tailored p-Si was shown to work as
biosensors activated by enzymes (glicose) [51].

Due to its interesting optical properties p-Si is considered a promising photonic



‘material. The particular type of p-Si that finds application in optical components
are p-Si multilayered films, including those characterized by a modulation length A
significantly smaller than the wavelength of the visible light (7). One dimensional

p-Si photonic crystals are used as building blocks for optical modulators [52]. Brags

mirrors [53], surface wave structures [34], Fabry-Pérot interference filters [35), narrow
band filters [56] light emitting diodes, optical switches [57], grating structures [58]
and refractometers [59] have been realized using p-Si-based multilayered films. Bragg

filters and Fabry-Pérot interference structures made from p-Si were also investigated

for suitability in sensing applications [60] E p-Si multilayered

stacks can serve as the ideal material for optical modeling (61].

112 Elastic Properties of Porous Silicon Single Layers

As the focus of this work is on the elastic properties of p-Si single layers and

superlattices, the work done to date regarding the mechanical properties of the mate-
rial was examined more carefully. Considering the range of porosities, morphologies
and doping levels of the material the research area is extensive. Many of the reports
include comprehensive work, investigating the changes of the elasticity of the p-Si
Iayers with porosity, layer thickness or dopant type.

Tnvestigations of porous silicon by means of X-ray diffraction by Barla [62] showed
that the material behaves like a nearly perfect crystal. The mismatch between the

p-Si and c-Si lattice parameters and Young's modulus were determined for layers of



various porosity. Measurements of the microhardness (the hardness of a material

as determined by forcing an indenter into the surface of a material under very light

load [63]) of p-Si suggest that there is no connection between the morphology of the
layers and the hardness. The influence of the crystalline substrate on the p-Si layer is

pointed out as the Vickers parameter (ability of material to resist deformation [64])

decreases with increasing layer thickness and porosity [13).
The investigation of clastic properties of p-Si single layers shows dependence of
the values of the elastic constants on the porosity of the samples. Da Fonseca et

al. [65), (6] used high frequency microechography and acoustic signature in order to

characterize p-Si layers. Analysis of the porosity dependence of the surface Rayleigh

and bulk transverse and longitudinal modes suggested that their velocities decreased
lincarly with increasing porosity.
Andrews et al. [67] determined the elastic stiffness constants of a p* type 30%

porous layer using the Brillouin light scattering technique. This study also showed

that single layers of p-Si are not isotropic, as often approximated while investigating

the elastic properties of the material, but retain the cubic symmetry of the parent

materis

Brillouin light scattering was also used to investigate the elastic propertics of p-Si
by Beghi et al.[68]. The work describes the study of low porosity n- and high porosity
Drtype p - Si and explores the physical properties of a 1 um thick region. For n-type

p-Si layers the authors observed broadening of the peak due to longitudinal mode and




its shift towards lower frequencies, disappearance of the peak due to the transverse

mode, and shift towards lower frequencies of the peak assigned to the Rayleigh surface

‘mode. The reported velocity of the bulk longitudinal phonon was found to be higher

than that of ¢-Si. This was attributed to a skin layer with porosity lower than the

nominal porosity of the film. No bulk peaks were observed from high porosity p-type
layers but the presence of three surface peaks was reported.

Brillouin spectroscopy of p-type p-Si has shown two well resolved acoustic phonon
peaks associated with the surface and film modes of the thick (~25 yim) 80% porous,
(100) oriented layers investigated by Lockwood et al. [69]. The morphology of the
samples, determined using transmission electron microscopy and Raman scattering,
resembles interconnected spheres with diameters of order of 3 nm. The bulk phonon
velocities were estimated using the porosity dependence of the phonon velocity pre-
sented by Da Fonseca [65]. It is also noted that the intensity of scattered light is at
least order of magnitude larger than that from c-Si. This is attributed to the fact
that a sample of such high porosity is transparent to the excitation wavelengths. Both
ripple and elasto-optic mechanisms of scattering are present, resulting in a substantial
increase in the intensity.

A systematic study of acoustic modes in p-Si with porosity varying from 57%
to 83% and layer thickness from 1 to 22 jum, prepared from (100) oriented, p-type
Si was carried out by Fan et al. [70]. Three acoustic modes were observed: surface

Rayleigh, bulk transverse and bulk longitudinal. The bulk phonon velocities were
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found to decrease with increasing layer thickness, approaching an asymptotic value
for films thicker than 10 jam. This was attributed to the presence of a transition layer
between the p-Si layer and the crystalline substrate within which its elastic properties
vary from those of the p-Si to those of ¢-Si. The surface Rayleigh mode was found to
be nearly independent of thickness for layers thicker than 10 am. The almost lincar
decrease of velocity with increasing porosity in thick layers (>10 ym) agrees with
the prediction made by da Fonseca [65]. In addition, elastic constants of p* (heavily
doped) 70% porous layers are determined assuming elastic isotropy.

The same group (71] performed Brillouin light scattering experiments to probe the
acoustic properties of chemically modified p-Si films. It was shown that passivation
with organic chain compounds changes the frequency shift of the peaks originating
from the acoustic modes. The character of the changes depends on the mass, chain
length and the presence of the dipole moment of the molecules as well as to the type
of bond that it creates with the p-Si film.

Andrews et al. [72] used Brillouin light scattering spectroscopy to study the prop-
agation of surface Rayleigh phonon in low porosity, heavily doped layers. For all
studied layers the Rayleigh surface phonon velocity was found to be lower than that
for ¢-Si and exhibited weak or negligible dispersion. The porosity dependence of the
velocity is related to the resistivity of the substrate. The porosity dependence of the
surface Rayleigh phonon velocity for layers formed from c-Si substrates with resistiv-

ity smaller than 0.01  cm is different, from that of porous layers fabricated from c-Si



1

with resistivity larger than 0.01  cm. This difference is attributed to the combined,
effects of rapid native oxidation of the lightly p-doped layers compared to heavily
p-doped layers and differences in porosity gradient and morphology.

A study of p-Si films of comparable porosity, formed from p~, p* and n* ¢ -
Si was done by Andrews et al. [73]. The morphology and geometry of the pores
extibited by the films were found to influence the values of the acoustic phonon
velocities. The elastic stiffness constants and the Young's modulus (assuming elastic
isotropy) ealculated for ~60% porous p~ (lightly doped) silicon film were found to be
nearly three times smaller than those obtained from p* samples of the same porosity.

fon measurements of

A recent report by Aliev et al. [74] of acoustic trans
the longitudinal phonon velocities in heavily doped, (100) p-type porous Si layers
of porosity between 25% and 85% show dependence on the porosity. The velocities
obtained for heavily doped samples are higher than those reported for lightly doped
ones. The fit parameters of the empirical equation relating the velocity of the bulk
phonon and porosity, proposed by da Foncesa [65], suggested also the porous layer

had a relatively well-ordered structure.

1.2 Elastic Properties of

Most studies of the elastic properties of multilayered films have been carried out

in metallic superlattices (SL). This is because of the significant changes of the elastic

constants with variation of the modulation wavelength. The behavior of the elast
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moduli depended on the modulation wavelength and on the materials that make up
the superlattice. However, while most previous BLS studies of superlattices have
focused on the metallic ones due to anomalies in their elastic properties [75-81) there
have been some studies on semiconducting superlattices.

GaAs/Gay—Al,As superlattices with periods ranging from 45 A to 250 A were
examined by Raman and Brillouin scattering [82]. The surface-wave velocities ob-
tained from the measurement were slightly higher than the value calculated for the
‘mean homogeneous medium. It was suggested that the reason for the difference is
the stresses in the alternating layers that comprise the SL.

Similar GaAs/AlAs films of nonmetallic character were investigated

ing BLS
to determine elastic constants for both constituent GaAs and AlAs layers and the

constants were found to be

superlattice [83]. The sound velocities and the clast
independent of the modulation wavelength of the superlattice up to ~100 nm. The
elastic constants of the constituent layers were used to obtain the effective elastic con-

stants of the SL according to the Grim:

itch-Nizzoli model [84] and the experimental
values were found to be in agreement with the model values within uncertainty for
all modulation wavelengths. No anomaly in elastic properties was observed.

BLS experiments of semi i:H/a-SIHN,:H Fibonacci

multilayered films with different numbers of sequences [85] were performed. The
observation of the surface Rayleigh mode allowed the evaluation of effective elastic

constant cyy. The Grimsditch-Nizzoli model (84] was modified for this kind of mate-
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rial [86] and the caleulated values of cqq for the case of such quasiperiodic systems
showed good agreement with experiment. No elastic anomaly was observed in these
structures. Meanwhile, in the study of amorphous a-Si:H/a-SiN,:H superlattices, the

surface velocity was found to depend not on the modulation wavelength but only on

the relative thickness ratios of the constituent layers [87].
BLS was also used to investigate the elastic properties of a family of polymeric
Langmuir - Blodgett films (stacks of amphiphilic organic molecules deposited mono-

layer after monolayer). In these films the first layer was made of a polyglutamate

backbone molecule and is of hexagonal symmetry, with the z-axis in the plane of

the film while the second layer is built of hydrocarbon side-chain molecules and is
assumed to be isotropic [38]. The resulting multilayered film had orthorombic sym-
metry but it was assumed to be hexagonal in the analysis of Brillouin spectra and
determination of phonon velocities and elastic constants. With both bulk and surface
modes observed [89] a complete set of elastic constants was determined and were
fonnd to independent of the mumbers of layers when the film consisted of more than
10 layers. The ratios of transverse elastic constants, cyu/css, and longitudinal elastic
constants, c11/cay were found to be lower than for ordinary solids. The study showed
a decrease in each of the effective elastic constants ey, iz, €13, €33, €55 and ceg With
an increasing monolayer thickness. With the exception of css, the effective elastic

constants determined using the Grimsditch-Nizzoli model [84] assuming hexagonal

symmetry of the superlattice, showed good agreement with the experimental values.
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The analysis also yielded the individual layer thickness with an excellent accuracy.

Forrest et al. [90] used BLS to investigate the mechanical properties of thin

polyisop in a multilayers. Their
good agreement betwween the measured elastic constants and those calculated using
Grimsditch-Nizzoli [84) model. The agreement held even when the layer thicknesses
were significantly smaller than the unperturbed size of the polymer molecules. The
result suggest that the mechanical propertics of the polymers change very little when
the molecules are forced into confined geometries.

Simplification of the symmetry was also used by Carlotti [91]. In this work, the

structure of tetragonal | As/lnP i imated to be cubic.

The elastic constants, determined using BLS technique, agreed with the theoretical
ones calculated using the Grimsditch-Nizzoli model

‘The Grimsditch-Nizzoli model was also used to determine effective elastic con-
stants of various superlattices with constituent layers made of single atom materials
and agreement between the theory and experiment has been reported. Such agree-
ment is reported in case of Si/Ge, superlatices (92], where m and n denote the
‘number of deposited monolayers. The clastic constants tensor of the constituent lay-
ers and of the Si/Ge superlattice was determined using the angular dependence of
the surface acoustic phonon velocity. The symmetry of the films was assumed by the
authors to be cubic.

Superlattices made of Si and Ge constituent layers with modulation wavelengths
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between 1.4 nm and 5.6 nm with different thickness ratio of the constituent layers
were studied by means of BLS by de Bernabé et al. [93]. The clastic constants tensor

alculated using the Grimsditeh-Nizzoli model assuming the tetragonal symmetry

of the superlattice. The magnitude of the differences between elastic constants ci;
and cgy and ey and cog justified the approximation of the symmetry as cubic. This

assumption was kept in an extension of that study [94]. No anomalies in behaviour of

elastic constants were observed. The values for elastic constants cyy were determined
and a comparison to the effective elastic constants was made. It was found that for

the theoretical and experimental values of elastic constants of Siyn/Ge, and

superlattices agreed within uncertainty whereas for Sin/Gen, Sin/Ges, and

structures the measured values of c;; exceeded the calculated ones by up to 14%. The
differences between the superlattices and the lack of agreement with the Grimsditch-
Nizzoli model for some of them was explained by the differences in the interfaces
(relaxed Si-Ge alloy for Si,,/Ge, with m>n structures versus compressed Si-Ge alloys
for Si,,/Ge, with m<n with distances equal to Ge-Ge and Si-Si ones, respectively).
Preliminary results of the work presented in this thesis [95] showed crude agree-

i model

i ety using ditch

and determined experimentally via BLS from p-Si superlattices. The reason for the
lack of agreement is at the moment unknown, however it could be associated with
poor quality of the layer of lower porosity and the approximation of the single layers

by isotropic material.




1.3 Overview of the Present Work

In the present work the elastic properties of p-Si single layers and superlatices
have been investigated using the Brillouin light scattering technique. The primary

goal of this work is to determine the elastic properties of p-Si superlattices composed

of Inyers of various porosities and to compare them to values obtained from the model
for effective clastic constants proposed by Grimsditch and Nizzoli [84]. It is noted
that this model requires as input the elastic constants of the constituent layers of the

SL. The morphology and thicknesses of the porous silicon films were studied using

scanning electron microscopy (SEM). A gravimetric method was used to determine
the porosity of single layer films and hence the SL constituent layers.

The importance of this research on a fundamental level lies largely in the fact that,
p-Si superlattices differ significantly from other types of semiconducting multilayered
films. They are created from the same original crystalline material by etching the
conseeutive layers. The direction of layer creation is rversed, ie. rather than de-
positing materials on the top of each other, the layers are etched starting from the

top of the sample. The obtained structures consist of crystalline silicon and pores

filled with air. The constituent layers keep the cubic symmetry of the parent material
but are not uniform. Furthermore, the validity of the effective medium model could
be influenced in case of this system due to its porous structure. Although there is
1o definite periodicity in the plane of the layers, for the modulation wavelength A of

tens of nanometers the pore sizes become comparable with the layer thickness. The




investigated superlattices consist of 250 bilayers. One of the const

bilayer is always kept the same (50%) while the other changes for each superlatice,
ranging in porosity from 33% to 72%. Such a porosity range is selected to investigate
not only the suitability of the model in describing this particular system but also the
possible dependence of elastic constants on morphology of the layers and porosity
combinations.

In addition to current applications (Bragg mirrors, rugate filters, microcavities,

waveguides, etc.) p-Si superlattices gain importance as acoustic band devices. The

band gap ibuted to contrast ic properti ituent layers (06]
and the propagation of acoustic waves can be completely suppressed in the charac-
teristic bandwidth (97). The knowledge of constituent and effective elastic constants

is therefore crucial for this kind of material.



Chapter 2

Theory

2.1 Elasticity Theory

The position of any arbitrary point in a continuous medium in equilibrium can
be defined by an equilibrium position vector © = r,3 + ryji + r.k, where r, r, and

7+ are components of

respect to a rectangular coordinate system. When the

ints are displaced from their equilibrium positions the body either undergoes a
tigid transformation (translation or rotation) or s deformed (strained) (98], The
new position vector can be defined as R with coordinates R, that are functions of
the components of the equilibrium position vector r; [99]. The displacement u of a

particle located at 7 in the equilibrium state, as shown in Fig. 2.1 is then defined as

u(ri) = R(r) = r(r), @1

where i =

223

The displacement of a given point in the medium s determined if the displacement




Figure 2.1: Position of a point in a continuous medium in equilibrium and in a
deformed state.

vector u = u(r,,t) is given. The displacement vector w itself is not enough to define
the transformation, however, as it has nonzero values for both material deformations

and rigid transformations. A quantity that remains zero for all combinations of rigid

rotations and translations but is nonzero for deformations is the differential form of

(2.1) at constant time [100]

du(r,) = dR(r) - dr(r,). (2.2)

Deformation is, however, usually d

efined by a more convenient quantity that also

meets the conditions of being non-zero for deformations while remaining zero for




translations and rotations, namely d

du? = dR*(r,) — dr’(r,)

23)
= (dR:)?* + (dR,)? + (dR.)?* = (drz)* = (dr,)* — (dr.)".
Solving equation (2.2) for dR one obtains for each individual component
AR, = du, +dr; (24)
s0 Eq. (2.3) can be rewritten as
du? = (duy +dr,)? + (duy + dr,)? + (du, +dr.)? — (dro)? = (dr,)? = (dr)?
5)

(dug)? + 2duydr, + (duy)? + 2duydry + (du.)? + 2du.dr..
Each ordinary differential element can be written as the sum of partial derivatives, i.e.

du, = §iadr, + §eedr, + §e2dr.. Using Einstein’s summation convention du = §itdre

where i,k = z,y, 2. Eq. (2.5) takes then the form

(Gezdr, + Geadry + §dr.)? + 2(§dr, + Geadr, + §udr.) dr,
+ (Gadr, + Jadr, + Jadr.) + Aizdry + Gerdry + Grdr) dry,  (20)
+ (Beedr, + Bdry + Qixdr.)? + 2§ dre + Giadr, + Juadr,) dr.

After expanding each expression and using the summation convention mentioned

above, Eq (2.6) can be written as

o

- (@7)

au?
i r on

o,
Grdrrs +
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Expressing the first term of Eq. (2.7) in the symmetrical form (3% + 3 )dridry and

t

interchanging the dummy indices # and [ in the second term gives

o ou ouy o duy
— o dryds
il TS TR 28)
= 2ptadrydr,
where
1 (0w, Du  Oudu
=g ( ag (2.9)

The matrix elements i, are components of the strain tensor . This tensor is

rical, its describe a deformation in terms of particle displacement
and it reduces to zero for all rigid motions. Also, except for special cases like de-

s like

formations of thin rods, thin plates and cylindrical surfaces [99] or for materi
rubber, the displacement gradient has to be kept below the range of 107 to avoid

permanent deformation or fracture of the material [101]. In such a case the non-linear

ms in Eq. (2.8) are negligible and the strain-displacement relation takes the form

1 (0w | Ow
5(m ) (210)

.,
The strain tensor 4 obtained according to (2.10) can be presented in a simplified

form using a system of abbreviated subscripts so that ik +» 1, following the cyclic

pattern through the diagonal (v - 1, yy 1= 2, == = 3) and then back along the
off-diagonal elements (yz ~ 4, 2z = 5, zy + 6). This abbreviated notation allows

the strain tensor to be written as a 6 x 1 vector. The transformation occurs according



to the following

Ma by

Ll

Hye

In this notation the components f; of g can be written as

w=

where Vy; is a symmetric gradient operator defined as

Z
o

0

with 1 =1,2,3,4,5,6 and j = z,y, 2.

A continuous medium can be defined

"
2
s
2
e| — . (211)
s
bas
Hs
ho
Viuy (2.12)
[
& 0
0 £
el (213)
2 8
o
o
& 0

in a coordinate system as a group of in-

finitesimal volume elements dV with surface dS. When a body is deformed and its

deformation is characterized by displacen

nal elastic forces that tend to return it to

ment u(r, 1) and the strain j(r,t), inter-

o the original state of equilibrium arise. 1f
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the source of deformation is external, one must also consider two additional types
of forces, body forces and surface forces. Body forces F(r,t) are long-range forces
acting directly upon the elements of volume dV' = dzdydz in the body. They can
be produced by gravitational or, in some cases, by electric and magnetic fields [101]
and are proportional to the volume dV.. Body forces are sometimes accompanied by
body torques, G(r, t), however these are neglected in linearized vibration theory. The
surface dS of the volume element dV' can be subjected to surface (traction) forces
T(r,1). These surface forces applied on the boundary of the material do not act di-
rectly on the volume elements dV but the perturbation caused by them is transmitted
by elastic forces (stresses) between volume elements [102]. In a vibrating element of

arbitrary shape, with volume dV and an arbitrarily oriented sutface dS with normal

#, the components of the traction force per unit area acting on this surface Tip, can
be written in the form
Tin = 0y ;. (2.14)
where gy are the stress components.
The component of integated surfaceforce acing on the ptice i the | a1 dS
and the body forceis | FdV. Accordin to Newton's second lase (103] the cquation
v

of motion of the particle in the i* direction is

o
/m, nydS + /F. av /,, % av. (215)
is v e



Using the Gauss divergence theorem [104] one can transform Eq. (2.15) into

Bu o, o
/F}:lV:/deL. (216)
v v

With suffici 8V the values of d Eq. (2.16)

can be transformed into
Pu

S (217)

B0y
By T

which is the translational equation of motion for a vibrating medium. The solutions
to this equation are elastic waves propagating in the material [103]:

u(r,t) = uyexpli(r - g - v1)] (2.18)

As the stress matrix o is symmetric it can be expressed using an abbreviated

notation. The mapping procedure is identical to the one described for the strain

tensor and therefore the 3 x 3 stress tensor can be expressed as a six element column

matrix
a
o
o
- = 1
o= |ow oy o (219)
o
i O 0
a
a

The translational equation of motion can be written in abbreviated subscript

notation as

Vuos+ Fi=p 5 (2.20)
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where i = z,y,2, J = 1,2,3,4,5,6, and V,, is called the divergence of the stress

tensor and its matrix representation

(221)

* o
o 3
3k

o
*
B
EN
=

According to Hooke's law, for sufficiently small deformations, the displacement
is proportional to the strain and therefore the components of the stresses are linear
functions of the strains and vice versa [106]. In the general case of a lossless medium

the ideal Hooke’s law relation is
o0 = i s (@2)

where ; are the components of stress tensor, /i are the components of the strain
tensor, i,j,k, 1 = z,y, and the cu are called elastic stiffness constants.

In general there are 81 elastic constants (as (2.22) contains nine equations for o,
and cach equation has nine strain variables ) but they are not all independent.
Since the stress and strain tensors are symmetric (0, = 0y, and gy = pue), Cym =

Cjut = €k = Cyas. This reduces the number of elastic constants to 36. Additionally,

the elastic energy Us (strain energy) is a function of strain [107] according to the

equation

v
ﬁ = cyunt. (223)



2

Because Us is dependent only on the strain, the second partial derivative of the energy
will be independent of the order of differentiation

P PUs
i < (224)

OpugOpa DDy
and therefore ¢ = ey, reducing the maximum number of independent elastic
constants to 21 for a general medium. Hooke's law (2.22) can then be written using

the abbreviated notation as

ar=cry o, (2.25)

where 1,/ = 1,2,3,4,5,6 and ¢, are components of a 6 x 6 symmetric tensor that
given by
e e ey cu s Co

o en o o o o

Cy en ew o ox Cw

(2.26)

o eu cu cw cws Ci

o5 o cw Cs s o

Clo Cn Ca Cus Cos Con

The symmetry of the material can further reduce the number of elastic constants

[108]. The p-Si single layer films analyzed in this work are of cubic symmetry with

three equivalent directions z = y = z. Materials of such symmetry can be clastically

characterized by three independent elastic constants (cy1, 12, cur) and an elastic




tensor of the form [101]

e oenoen 00 0
e en e 00 0
e ez oen 00 0
c
0 0 0 ey 0 0O
0.0 0 0 cu O
0.0 0 0 0 cu
T by

with five independent elastic constants (¢

tensor of the form [101]

e
00 0
00 0
00 0

+ €12, €13, Cag, ¢aa) and an elastic co

00 0
00 0
00 0

w 00
0 cu O
00 o

(227)

(2.28)

When all three crystal axes are equivalent the pairs ¢z and ¢y, ¢y and ey and

ey and cgs become indistingu

able and the tensor given by Eq. (2.28) reduces to

that of  cubic system given by Eq. (2.27). The most symmetric (isotropic) media



need only two independent elastic constants to be fully characterized elastically.

Differentiating the lossless version of Hooke's law, (2.22) or (2.25), with respect
to time leads to (equations in the square brackets show the abbreviated subscript

notation)

(2:29)

ot

For the above and all of the following expressions, subscripts i,j,k,l = 2,4,z and

1,J,K,L'=1,2,3,4,5,6. Substituting ju from (2.10) (or i from Eq. (2.12)) trans-
forms Eq. (2.29) to

o0y _
Tl =

e
(% - e Svuu]. @

a

2(5%)
ot ar - On
As the time and spatial derivatives are independent, one can interchange the order
of differentiation and obtain

o,

day
ot ot

o
=t 0—::) [— =cky V“Am] (231)

where

(232)
is a component of the velocity of the particle. Differentiating the translational equa-
tion of motion (2.17) with respect to time , using the relationship between particle
velocity vy and its displacement w;, and taking advantage of the independence of time

and spatial derivatives, one obtains

9 (80,
ar; (W) *
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Eliminating 2;—"1 from Eq. (2.33) by substituting Eq. (2:31) transforms the former

equation into a wave equation
[ oo, ), OF _ u
o, (""’ 2 (91 37.,)) a o @)
or, in the abbreviated subscript notation

OF,
Vikeru kst = p g - (2:35)

1f the considered region does not include sources (F;=0) a uniform plane wave prop-
agating along an arbitrary direction { = il,, where I, are direction cosines as shown
in Fig. 2.2 and i = ,y,, has field proportional to expli(wt — ki - )], where w is
the angular frequency of the wave and k is the magnitude of its wavevector. The
operators Vik and Vx; acting on the velocity v, can be replaced by matrices ~iklx

and ikl respectively, where

L0001

=ikl ==ik 0 1, 0 1, 0 I, (2:36)

00 LI L o



x [100]

Figure 2. of an arbitrary direction .

and

0
—ikly, = —ik (237)

Lo

The wave equation (2.35) with F, = 0 then reduces to
R (eneliy) vy = pou (238)
Equation (2.38) is called the Christoffel equation. It applics to plane waves prop-

agating in media of any symmetry. The expression Lccxrdz, is the 3 x 3 symmetric
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Kelvin-Christoffel matrix [109] and is denoted by T;;. The elements of I\; are func-
tions only of the direction of wave propagation I and the elastic stiffniess constants

of the medium ¢7;. Since w =

kv where v is the phase velocity of the wave, the

Christoffel equation can be rewritten as
Ty = prui. (2.39)
The values pv? are the eigenvalues of this equation and they satisfy the secular equa-
tion [104]
Iy = p65 =0 (2.40)
where & is Kronecker's delta.

In the case of a cubic material with clastic constants tensor given by Eq. (2.27),

Eq. (2.40) for a phonon propagating in an arbitrary direction I has the form

lenl2+eu(ly+12)—p* (erz+ean)laly (cra+eu)lels
(era+eu)laly enlyteu(@G+E)-pr? (eraten)lyls =0. (241)
(erz+em)lals (eraten)lyl cullE+E)+enli—

In a cubic system, where z, y and z axes are equivalent, Eq. (2.41) factors iden-
tically for a phonon propagating in any of the planes including a cube face into one

linear term and one quadratic term. In the case where the phonon is propagating in



a (010) plane with ,=0, the two uncoupled dispersion relations are

culB+2)=p (2420)

(enli+eali=pr*)(culi+enti=—pr?) = (erten) ' = 0. (2.420)

ion 1 measured from the = axis in the

With the angle between the propagation

way shown in Fig. 2.2 s0 that L, = sin® and [, = cos®’ and using the trigonometric

identities 2cos ¢sin¢ in(2¢) and cos? ¢+sin’¢ = 1, the expressions for the ve-
locities of elastic waves propagating along the I direction may be calculated. From

(2.42a), the velocity of the pure shear wave is [101]

\/7 i (243)

Similarly from Eq. (2.42b), the velocity of the quasi-shear (the direction of the dis-

or

placement of the particles is mostly perpendicular to the direction of propagation)

wave for a phonon propagating i the (010) plane is

"
& (Cu +eu =y (en = cu)? cos*(20) + (c1z + c4a)? sin?(207) ) (2.44)

and the quasi-longitudinal (the di of of the particles is mostly

parellel to the direction of propagation) wave velocity s given by

"
v= % (cu +cu+ y/len — cu? cos?(20) + (e + r«)’sin’m)) . (245)

The anisotropy ratio a, a measure of the magnitude of the elastic anisotropy of a
cubic material, is calculated using

2cu
- c

o

(246)
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For an isotropic material the characteristic equation (Eq. (2.40)) and the disper-

sion relat with i sy y, (Eq. (2.41)

and (2.42)). In this case the elastic constants are, however, related through the rela-
tion (110

en=cnt2en (2.47)

and hence the anisotropy ratio given by Eq. (2.46) is equal to unity and the velocit;

given by Eqs (2.43)-(2.45) simplify to

vr= E (2.48)
= f ; (249)

In the case of the tetragonal symmetry with an clastic constants tensor as shown

and

in Eq. (2.28), Eq. (2.40) for a phonon propagating along an arbitrary direction 1 is of

the form
entZ+ealiteull=p?  (eteo)lely (eu+eulals
(enteoollaly  coalltenliteuli—p?  (uteuyls | =0 (250)
(erstea)lals (era+ealyls call+cull+ogli—p?

For a phonon propagating in the (010) plane Eq. (2.50) results in the following two



uncoupled relations

conl? +eal—pv

(enl+eaal? —pv?) (el +esali = pv?) = ((cratcan)lal.) (2.51b)

With the direction of propagation defined as above, Eqs. (2:51) have three solutions

There is a pure shear wave with velocity obtained from Eq. (2:51a)

(252)

1 hear and quasi-longitudinal waves with velociti 1 from Eq, (2551b)

and given by

(.-,, sin 0 + ey cos’ 0 + cay

e

12 (253)

= \/(["u — caa)sin 0' + (cas

39) €082 0)2 + (e13 + caa)? ’m‘[zﬁ’))

and

VB (2.54)

n
+f(en — cu) im0+ (cus - c) cos? O 1 (cua + :44)u,,,‘(zm)

respectively.

22 Bffective Blastic Constants of Multilayered Media

The most, general formalism that enables numerical evaluation of the effective

elastic constants of a superlattice made of two layers of arbitrary symmetry was
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presented by Grimsditch and Nizzoli [84] and it is this model that is applied in this
work. This model builds upon earlier work on the clectromagnetic properties of
layered media by Rytov [111] as well as the elastic properties of materials made of

alternating two isotropic layers done by Backus [112] and Behrens (113, [114). In

what follows, the components of stress, strain and the elastic constants tensor of

]

constituent layer ¢ are labeled off), Sl and cf, respectively, whereas gy, uy and

¢y refer to the stress, strain and effective elastic constant of the superlattice [115]

The thicknesses of the constituent layers are dil and the thickness fraction of each
material, f€ is defined as
7= m“"j:'dm, (2.55)
Each effective elastic constant c,; can be expressed as a function of the elastic con-
stants of the constituent layers ¢/ and the thickness fractions /I
The stress and strain of the superlattice can be expressed as a function of the

stress and strain of the individual layers:
o= flghl 4 fHlgl2 (2:568)
= A 4 g (256b)

where o, o1, u and pl are 6 x 1 matrices as the two index notation is being used.

The stress-strain relations are defined by Eq. (2.25) which for each of the constituent



layers and for the superlatice take the form
o= ddull, ¢=1,2 (2.57a)
o =cn (2.57b)

with ¢ and ¢ are 6 x 6 matrice: .56a) and (2.56b) into

Eq. (2.57b) one gets

Jigll 4 fllgl = o g0 4 fol (258)
Substituting Eq. (2.57a) into Eq. (2.58) leads to:

S = el £ e~ e = 0 (2:59)

To solve Eq. (2.59) the relationship between the strain tensors s and i must
be known. Tn order to obtain this relationship the boundary conditions for strains
and stresses on the layer interfaces are taken into consideration. In an orthogonal
coordinate system the superlattice s assumed to have the 2 axis normal to the layers
and 2 and y axes lying in plane of the layers (see Fig. 2.3). At the interfaces between

layers the components of stress acting on the plane perpendicular to 2 axis have to

fulfill the continuity con

(2.60)

and the components of the strain in the same plane have to obey:

Wl =pll i (261)
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Figure 2.3: Cross section of a porous silicon multilayered film through the XZ planc.
A - modulation wavelength (period) of the superlattice, d', d - thicknesses of the
constituent layers.

The latter equation, Eq. (2.61), can be written as

= M (2.62)
where M is a transformation matrix between the strain tensors of two layers. M can
be evaluated numerically if the components of the elastic tensor of the constituent

layers ¢} are known. Combining Eqs. (2.59) and (2.62) results in

(el = )M + £ - ) =0,

Eq. (2.63) must hold true for an arbitrary strain ul?, therefore it is true that

FUGHAL 4 fPIch = filepr 4 e, (261)



Solving Eq. (2.64) for elastic constants tensor ¢ leads to

UMM + P (fIIM 4 f2T

where T is the 6 x 6 identity matrix. Eq. (2.65) allows calculation of the components

of the elastic tensor at least numerically. It is noted that for the case of

tropic con-

stituent layers for i by the presented

model are identical with those derived by Behrens [113].
In the case of p-Si multilayered films the constituent layers keep the cubic sym-
metry of the c-Si parent wafer [116]. As can be seen in Sec. 2.1, crystals of cubic

symumetry have three independent elastic constants, ciy, cia and ¢y, and the elastic

tensor of the each individual layer is presented by matrix (227) [101]. Fitting the
velocities of the quasi-longitudinal and quasi-transverse phonons of single p-Si layers
s a function of the angle from the z-axis to Eqs. (2.44) and (2.45) allows the values of
<17 to be determined. Using the procedure described by Grimsditch and Nizzoli one
can obtain the effective elastic constants for a system consisting of two alternating
thin layers of cubic symmetry and different elastic properties repeating through a
thickness of a few microns [§2). The elastic tensor of this multilayered film, ¢, turns
out to have six independent elastic constants ciy, ciz, e, ¢, ut and con and is of

the form [101):



(2.66)

which means that in this case the superlattice is elastically equivalent to a tetragonal

crystal (see Eq. (228)) with clastic constants of the following forms (see Appendix

B)
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2.3 Brillouin Light Scattering

The scattering of light can occur only by an inhomogencous medium [117). From
the classical point of view, in a homogenous material the thermodynamic fluctuations
ither of thermal or strain character create local inhomogeneous regions which cause
scattering. At finite temperatures atoms in solids are in constant motion described
by the normal modes of the lattice. There are always three acoustic modes and a

number of optic modes [15]. The three acoustic modes are equivalent to clastic (or

sound) waves. In comparison to fluids the propagation of elastic waves in solids is
practically undamped (18] and causes fluctuations in the strain of the material, which

leads, through the pl ic effect, to fluctuations in local di g

‘The interaction between light and thermally excited acoustic excitations in solids was
first investigated and described in by Brillouin (120]. Although historically confined
to transparent media, since the introduction of the high-contrast spectrometer this

technique has also been used to investigate opaque materials (121]. Brillouin light

scattering is complementary to ultrasonic techuiques for the study of clastic and
photo-elastic properties of materials however, unlike ultrasonic techniques, in this

case no external forces are applied to the material. The frequency regime probed lies



a

in the so-called hypersonic frequency regime (1 MHz to 100 GHz) and il the region
between ultrasonic and neutron scattering techniques [122].

Light waves can undergo inelastic scattering in a material due to interactions
with acoustic waves conserving energy and momentum and giving rise to Brillouin
scattering [123]. Because of the interference of the scattered waves only the elastic

waves with a certain wave number, fulfilling the Bragg’s law of reflection

(268)

where m = 1,2,.., A is the wavelength of the acoustic wave, @ is the angle between

the direction of incident and scattered light, and A, is a wavevector of incident light,
contribute to the scattered light. What is more, the incident light upon reflection by
the elastic waves of particular frequency v experiences a v shift in frequency as a
result of the Doppler effect [124].

From the quantum-mechanical point of view the process can be visualized as first-
order scattering by acoustic phonons. The kinematics of the first order scattering
process is shown in Fig. 2.4. In this case the conservation of energy and momentum

during the scattering process are expressed according to
hwy % hy = h,, (2.69)
Ik, hq = hk,, (2.60)

where  and v, are frequencies of incident and scattered light, respectively, v is

frequency of the acoustic phonon, k; and k, are the wavevectors of incident and



Figure 2.4: Quantum picture of kinematics of first-order scattering process. The
Stokes process (creation) is shown on the left hand side while the anti-Stokes process
(annihilation) is on the right. After [125].

scattered photon, respectively, and q is the wavevector of the acoustic phonon. The

“4 sign indicates annibilation of a phonon and the *-" sign indicates a phonon
creation.

From Eqs. (2.69) one can see that

av= (2:70)

and

+q=k, -

(271)
For each phonon wavevector g, three possible phonon polarization vectors can be
identified. For an arbitrary direction of propagation the polarization vectors depend

on the components of elastic tensor ¢ characteristic of the symmetry of the medium

[126)
The schematics of Brillouin light scattering from a semi-infinite material is pre-

sented in Fig. 2.5 The vector Eq. (2.71) can be broken into components along the



Schematic of the scattering geometry showing incident, reflected and
s t wavevectors ky, ky and k,, and the bulk and surface phonon vectors
qand qr. After [127]
direction perpendicular to the surface of the material and along the direction parallel

t0 the surfce. The magnitudes of the perpendicular and parallel components of the

phonon wavevector are

(2.728)

(2.72b)

where 6 and 6] are angles the incident and scattered light make inside the mate-

rial with the normal to the surface. Squaring Eqs. (2.72a) and (2.72b) and adding
the equations gives the expression for the square of the magnitude of the phonon

wavevector:

= kP sin? 0] + KZsin® 0] + kP cos? ] + kK cos? )
(273)
-+ 2Kk, sin 0] sin 0] + 2K, cos cos

which can be simplified, using sin® ¢ + cos?¢ = 1 and the expression for the cosine



of the difference of two angles [104), into

4k + 2Kk, cos(#), — 6]). (2.74)

The angle between scattered and incident light wavevectors inside the material,

0=0-

% + . Using this relation together with the identity cos(r-+¢) =

cosg,

Eq. (2.74) can be transformed into

4= kP + k2 = 2K, cos(0), (273)

Using th Lrelationship between

. frequency

v and velocity c for the incident and scattered light [128]

(2.76)

and for the phonon

(@)

Eq. (275) becomes

20 [ + vk — 2y cosd. (278)

From Eq. (2:69a), as the frequency of the phonon v is several orders of magnitude

smaller than ; and v,

the frst approximation v & v, and in the case of a singly

refracting medium, where n, = n, = n Eq. (2.79) simplifies into

(279)




Using the trigonometric ideatity for sine of the half angle, sin 5 =

Eq. (279) is transformed into

(250

which, with substitution of A, yi for the wavelength of the incident light, yields

the velocity of an acoustic phonon propagating in the bulk material

(281)

with the phonon wavevector
q = 2nk;sin g. (2:82)
In the case of BLS the magnitude and direction of the wavevector of the probed
phonon depend on the scattering angle. The magnitude of g and hence the scattering
angle are important since the energy of the phonons with g < 1 cm™" depends almost
linearly on the wavevector [129]. In these experiments a backscattering geometry with
6 = 180° was used. Eq. (2.81) then becomes

mA
vy =222 (289)

where vy and vy are the velocity and frequency of a bulk phonon with particular
polaization. In general, in crystalline materials three acoustic bulk phonons can
be observed - one of longitudinal character (QL) and two of transverse character

(QT) [130]. A simplified diagram of a typical Brillouin spectrum of intensity versus

frequency shift is shown in Fig. 2.6. The tall central line due to elastically scattered
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Figure 2.6: Schematic of a typical Brillouin light scattering spectrum. R - Rayleigh
surface mode, QT - quasi-transverse modes, QL - quasi-longitudinal mode.

light is assigned zero frequency shift. The peaks due to surface Rayleigh (R), two

quasi (QT) and quasi-longitudinal (QL) ic pl located sym-
metrically on both sides, depending on whether they were created (Stokes process)
or annihilated (anti-Stokes process) during the scattering.

The coupling between incident light and thermally-excited acoustic excitations

within the material is called the elasto-optic mechanism and is described by the
Pockels tensor [131]. Close to the surface the phonon vibrations cause the surface
to a appear as moving grating, capable of changing the frequency of the incident
light without any modulation of the diclectric constant in the bulk of the crystal
(ripple mechanism). As the opacity and the refractive index of the medium increase
the depth that light penetrates in the material becomes comparable to the light

wavelength. The elasto-optic contribution to the scattering near surface decreases
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and the contribution due to the ripple mechanism increases. The refractive index
in opaque materials consists of both real and imaginary parts and can be written

1%, The high optical absorption & restricts the scattering volume in the

direction perpendicular to the surface (121). Those factors influence the Brillouin light
seattering and require the theory derived above to be modified [124]. The momentum
conservation Eq. (2.69b) is affected as the wavevector of the acoustic wave is no longer
uniquely defined.  All phonons with wavevectors within a range around the value ¢
may contribute to scattering along the direction of k, [132]. The expression for the
frequency of the acoustic phonon remains the same as in case of transparent materials

and, calculated from Eq. (280), is

(2.84)

with 7 being the real part of the refractive index. The width of the Brillouin peaks
increases and has full width at half maximum (FWHM) of

vk

av=5E (285)

The line width of the Brillouin peak is a means to obtain the sound attenuation [133]

Apart from the surface deformation that appears due to impingement, of bulk

acoustic waves, the presence of the free boundary (surface) introduces new types of

b lled surface phonons that t additional channels for seattering. The

possibility of a wave traveling parallel to the surface of a semi-infinite medium such

that the displacement of the atoms is confined to the boundary was considered by
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Rayleigh [134]. The surface waves, also called Rayleigh waves, penetrate into the

bulk over a distance comparable to the acoustic wavelength [122). The amplitude
of these waves decreases exponentially with the distance below the free surface and
their velocity is slightly smaller than the velocity of the transverse bulk mode [133].

In the case of seattering from phonons propagating on the surface of the material the

in the direction i aks down and

only the component parallel to the surface is conserved. In the case of backscattering

and with 1, > v Eq. (2.72b) becomes [136]

= 2kisin,, (2.86)

where gy = ga - the magnitude of wavevector of the surface phonon. With the surface

phonon wavevector expressed using (2.76) and the incident light wavevector given by

- 2)‘_” 128] Eq. (2.86) becomes

2mun
T (287)
Solving (2.87) for the velocity of the surface phonon vg leads to
vk
L 288
U Tsing (a88)

The surface of the opaque material is not only a boundary for the light but also
serves as o mechanical boundary and affects the excitation spectrum of the solid [121],
The component of the wavevector that is perpendicular to the surface is undefined,
but the existence of the parallel component of the wavevector permits new excita-

tions. Depending on the thickness and symmetry of the material and polarization,
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amplitude, frequency and velocity of the modes the new modes they are classified
as Rayleigh, Lamb and Love waves. The surface Rayleigh waves are polarized in
the sagittal plane. The amplitude of their displacement decreases exponentially with
distance into crystals. They can be observed on the free sutface of both isotropic and
anisotropic media. Al the elastic modes of a film are collectively referred to as Lamb

modes [131]. Lamb modes are bulk transverse modes combined with evanescent lon-

gitudinal mode strongly localized at the surface. They are observed in free standing

and supported films. Lamb modes propagate through reflections at the plate bound-

aries and their velocities lies between the velocities of transverse and longitudinal

bulk phonons. The number of Lamb modes observed in supported films depends on
the ratio of the velocity of the transverse (shear vertical) bulk phonon in the sub-
strate and in the film [137]. Love modes are shear horizontal waves propagating in
a supported films of finite thickness. They arc characterized by one evanescent wave
extending into the substrate. Their existence is possible only when the velocity of
the shear horizontal transverse phonon in the substrate is greater than the velocity

of the corresponding phonon in the film [131], (137).



Chapter 3

Experiment

3.1 Sample Preparation

The p-Si samples used in this study were prepared by electrochemical etching
of erystalline silicon (c-Si) wafers in an electrolyte consisting of 49% hydrofuoric
acid (HF) and anhydrous ethanol (C;H;OH) mixed in 1:1 proportions by volume,

was boron doped p*, 500-550 ym thick <100 oriented silicon

‘The parent, mat
substrates with resistivity between 0.005 and 0.02 Qem. All p-Si samples were made
in the dark, at room temperature and at atmospheric pressure.

A home-built, teflon electrochemical cell (138 presented in Figure 3.1 was used
for p-Si sample preparation. The seal between the teflon and the silicon wafer is
provided by a rubber O-ving pressed against the sumple so that only the front side of
the sample is exposed to the HF - based electrolyte. The fabrication process requires
forward bias of the wafer and current densities lower than the critical value at which

clectropositive occurs 7). A copper sheet in intimate contact with the back side of
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Figure 3.1: Cross section of the electrolytic cell

the wafer and connected to the positive terminal of a power supply served as the

working electrode. The counter electrode was a loop of platinum wire of  diameter

comparable to that of the cell’s opening (~13 mm). In this experiment the samples
were produced using currents between 15 and 300 mA supplied by a programmable
constant current source (Keithley 220). Prior to the etch each sample underwent a 60
s dip in 49 % HF to remove native oxide. After the etch, each sample was rinsed under
running water and then immersed for 1 min in pentane. The samples were then dried
in air at room temperature. The purpose of the pentane is to maintain the quality
of the porous layer since it reduces the capillary tension and prevents cracking of
the porous structure during drying. Moreover, it shows no chemical interaction with
p-Si [139]. The etch times t; were varied in order to obtain layers with a thickness
of a fow jum.

The porosity of the samples was determined using a gravimetric method. It uses
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the fact that an aqueous solution of potassium hydroxide (KOH) preferentially etches
away the p-Si layer while leaving the surrounding c-Si untouched [140]. The KOH
solution was prepared by dissolution of 9.97 g of KOH pellets in 990 m! of tap water.
It is worth mentioning that tap water was used to prepare the KOH solution because

it was found that use of nanopure water resulted in etching of the c-Si parts of the

sample. In order to determine the porosity cleaved c-Si samples were weighed three
times: before porosification (my), after the p-Si layer was formed (m,) and again
after the porous material was removed using the 4:1 solution of 1% KOH mentioned

above and anhydrous ethanol (CoH;OH) (ms). All masses were recorded using a

Sartorius CP225D microbalance with resolution 6m,=10"* kg. Such high precisi

required as the mass loss, Am observed during the etch of the samples can be of the

order of 10 kg. The porosity was calculated using the following equation [7]

B 31

m—m
‘The uncertainty §m, in cach mass value m, was determined by taking three measure-
ments and calculating the standard deviation. Due to the systematic uncertainty of
the balance the minimum error in mass 4,y is equal to its resolution. If the stan.

dard deviation was larger than the systematic uncertainty of the balance, it served
as the uncertainty in the mass measurement. If it was smaller, the systematic un-
certainty in the balance was taken as 6m;. It is noted that a disadvantage of the
gravimetric method is that it results in destruction of the porous layer and therefore

the sample cannot be used for any other experiments. The porosity and density s
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of the p-Si layers are connected by the relationship py-s; = (1 — &)psi, where ps; is
a density of ¢-Si (2330 k/m?).

A plot of porosity versus the applied current and current density is presented in

Figure 3.2. As can be seen, the porosity is a lincar function of current i over the

range explored (and current deusity j) and can be expressed as € = ag + bei with

ag = 36+ 3% and b = 0.17+0.02% - mA~". Although it appears that the etching

occurred with zero current applied, it should be noted that the lowest current value
that resulted in layers of consistent porosity was 13 mA. The slope of the plotted line
for the volumetric concentration of HF (25% used here) is lower than those reported
for lower concentrations and is therefore consistent with previous reports [7]. As can
be scen in Fig 3.2, the chosen range of currents resulted in single layers with porosities
ranging from ~30% to ~72%.

The gravimetric method can also be used to caleulate the porous layer thickness

h according to the following equation (7]:

Com—my

h
Apsi

3 (3:2)

where A=(1.47:£0.02)-10~% w s the area of the etched layer. Knowledge of the layer
thickness is necessary in order to determine eth rates for each current. Also as the
layer thickness s chosen to be larger than the penetration depth of the light (the

distance at which the power of the beam decreases to 1/e of its incident value). This

assures that the influence of the crystalline substrate can be ignored and p-i film
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Figure 3.2: Plot of porosity versus the applied current (bottom axis) and current
density (top axis) for ethanoic HF solution.

can be treated as a semi-infinite medium. It is noted that individual measurements of
the area carry significant uncertainty that is then carried into the calculations of the
thicknesses and etch rates. The precise values of etch rates are required for the for-
mation of the SLs. Thicknesses of individual layers are used as input information for

the ination of the values of effective elastic constants using Grimsditch-Nizzoli

model. To avoid this problem another set of thickness measurements was obtained
by performing scanning electron microscopy (SEM) measurements on cleaved cross-
sections. Sample SEM images of single layer films are shown in Figs. 3.3, 3.4 35
and 3.6, In first two micrographs (Figs. 3.3, 3.4) and in the last one (Fig. 3.6) the

difference between the porous layer and crystalline sample is clearly visible. The third
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picture shows the ¢-Si left after the p-Si layer was removed using a mixture of KOH
and cthanol. The sample was tilted so the difference between the top of the wafer
and the bottom of the removed layer can be seen.

The values of etch rates obtained both gravimetrically (eX©"') and using SEM
(eSM) are compared in Figure 3.7, which presents the dependence of the etch rate
on the applied current. The values obtained using SEM are used for all further
experiments and calculations due to higher accuracy. The dependence of the etch
rate e5FM on the current is characterized by linear equation ef*M = a grx + begeni
with a,gew = 0.57+0.03 nm -5~ mA~ and bgew = 1346 mA-s~". The etch rates
obtained from the SEM measurements of layer thicknesses were used to calculate the
etching times t) and ¢ needed to create a superlattice with the desired modulation
wavelength A and thickness fractions fI< as defined by Eq. (2.55).

Refractive indices, n, of the p-Si layers were calculated using Bruggeman's model [141]

for effective media [70]

(1= n)(N? +2n)

Bnp(1-N7) ©3)

1-¢=

22 is the refractive index of ¢-Si at A, = 532 nm. The uncertainty in

where
the porosity determines the possible range of variation of the refractive index. The
uncertainty in the latter is caleulated by adding the value half of the difference between

the refractive index calculated for € + 6 and € - 66 to np..

Table 3.1 presents fabrication conditions (etching current, time) and resulting
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Figure 3.3: SEM image of 33% porous layer  Figure 3.4: SEM image of 44% porous layer
etched for 300 s etched for 2475 5.

TOP SURFACE.

BOTTOM SURFACE.

Figure 3.5: SEM image of the leftover c-Si  Figure 3.6: SEM image of 72% porous layer
after removal of 59 % layer etched for 52s. etched for 43
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Figure 3.7: Plot of etch rates obtained via SEM measurement and gravimetrically
versus the applied current. (bottom axis) and current density (top axis

porous film parameters (porosity, density, refractive index and etch rate) for each of
the single layer films used in this study. The values are averages of data obtained for
at least two samples prepared under the same conditions.

The creation of multilayered structures is possible as the etching process is self-
limited as mentioned in Section 1.1.1. A schematic picture of a cross section along
the XZ plane of a multilayered film is shown in Fig. 2.3. All investigated superlattices

current between

and multilayered structures were prepared by variation of the electric
two values /1) and I for a predetermined number of cycles. The samples underwent

ingle layers did and the same teflon

the same pre- and post-etching treatment as the

cell, electrolyte and power supply were used.
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Table 3.1: Etching currents and times and resulting film porosity, density, refractive
index, and etch rates of single layer porous silicon films.

Cument Time Porosity "™ Densty  pror peh

LA i b efon  csEM

mAl ) (% Jhg/m’]  [/s]  [um/s]
15 300 33+2 3142007 1560£90 171 17.9+0.1

40 250 44£2 2724008 1300460 31£1 33.9+08
70 160 48:£3 256£008 1210480 5lkd  485+06
42 75 5243 2404010 1100460 90+10 1065
190 60 B4l 2314004 1070420 11344 1321
230 52 59+2 2114009 960£30 120410 1481
260 50 7042 L8007 T00£20 1135 1581
300 43 T243 1604010 65030 14010 17345

Sample SEM micrographs of the cross-section of multilayered structures are pre-
sented in Fig. 38 and 3.9. The layering is clearly seen in the multilayer with

A ~100 nm presented in Fig 38. Individual constituent layers with layer thick-

ness less than 100 nm could not be scen with SEM due to the limitations on the
instrument resolution. The overall thickness of the superlattice and the number of

bilayers served as indirect confirmation that the value of the modulation wavelength

is cqual to that determined from the etch rate in Table 3.1

In order to ensure that the etching process stopped after the planned number of
cycles 10 s etch stops were introduced after the formation of each bilayer. The fact
that eteh stops had to be introduced after formation of each bilayer instead of just
at the end of SL formation is due to the factory settings. Thus the presence of the
eteh stops can influence the porosity of the layer, i the length of the stop s at least

order of magnitude larger than the etching time (142]. In our case, depending on the



Figure 3.8: SEM images of a 59%-33% p-Si ~ Figure 3.9: SEM images of a 59%-33% p-Si
multilayered structure with d ~100 nm, multilayered structure with d ~10 nm.

etching current, etch times are 4 or 5 orders magnitude longer than the stop time.
‘The presence of such short etch stops should not influence the porosity of the layers
or the etch rate compared to the single layers, which were etched with no breaks.
The average porosity of each superlattice €, was calculated according to the
formula
&5 = S + i), (3.4)
where the €K1 are the porosities of constituent layers and £ are the thickness frac

tions. This method was used rather than calculating porosity gravimetrically due to

the fact that the p-Si single layers are well characterized. Furthermore the averag-

ing of the results takes care of possible slight discrepancies in porosity and thickness
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Table 3.2: Etching currents and times, structural information, porosities, densities
and refractive indices of multilayered films

Layer " " Refractive
Currents  Times ' Porosity  Density i
FON L) g g ng ng

Save Pave
(mA] [ms] [nm] %] [kg/m’]
W0 15 6757 8715 10 156 432 1330260 2802 27202
250 40 6757 495 10 20 4942 1190450 25402 25202
200 70 6757 218 10 10 54%3 1080460 2302 2302
200 142 6757 990 10 10 56£3 1025455 225303 22540
200 190 6757 7576 10 10 5742 1000435 2200 22302
230 260 6757 6320 10 10 6543 820240 1902 1902
20 300 6757 595 10 10 66+3  800+40 18401 18302

between the samples. The densities of the superlattices were calculated in the same
manner as for the single layers. The refractive indices were calculated using the
Bruggeman method for effective media [141], np, according to equation Eq. (3.3),
and the Rytov method for composite materials [111], [143], nz. For non-magnetic

media the Rytov equation takes the form:

ng = VR = VI + JAem, 35)
where ekl is the dielectric permittivity of the individual layer, e is the diclectric
permittivity of the superlattice. The values of refractive indices obtained using both
methods agree within uncertainty for all superlattices. The refractive index values
together with electric currents 11, etch times, (K], layer thicknesses, d¥), average

porosities €sy, and densities psy, are tabulated in Table 3.2.
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3.2 Brillouin Light Scattering Setup

The optical setup used for Brillouin light scattering is shown in Fig. 3.10 and con-

sists of two major components - a source of light and a frequency analyzer. Vertically
polarized incident light at 532 nm is generated by a Coherent Verdi Nd : YV O, single
‘mode laser operating on second harmonic. As all experiments required horizontally
polarized light, a half wave plate (HWP) was used to rotate the plane of polarization

from vertical to horizontal. The 2 W output power of the laser is initially reduced

by a set of variable neutral density filters VNDF. The beam is then incident on a

beam splitter BSP, where a small fraction of its power is reflected and directed to the
tandem Fabry-Pérot interferometer TFP-1 using mirror My. This part of the beam
serves as a reference beam and is used to maintain the mirror alignment for both in-
terferometers. It is also, together with the shutter system, used to prevent saturation
of the detector during scanning over the high intensity region of elastically scattered
light. The elastically scattered light is blocked from entering the interferometer and
the much less intense reference beam is used instead. The intensity of the reference

beam is controlled by the variable neutral density filter VNDF;. The light that is

transmitted throngh the BSP is incident on a mirror My that changes its direction
by 90°. The power of the beam is reduced to the desired level (usually less than
100 mW) by another set of filters F' and by a variable neutral density filter VNDF.

The beam then undergoes total internal reflection on the prism P and is focused on

the sample S by a lens f with a focal length of 5 cm and an fnumber adjustable
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Figure 3.10: Experimental setup for Brillouin light scattering. Nd : YVO; - laser,
HWP - half wave plate, BS ~ beam splitter, M ~ mirror, F - filter, VNDF - variable
neutral density filter, A — aperture, BF ~ bandpass flter, L - lens, P -~ prism, {
focusing/collecting lens, TFP-1 - tandem Fabry-Pérot interferometer

over the range 1.8 - 22. The two f-numbers used during collection of the spectra
depended on the incident angle 6. For 6; < 10° an f-number of 4.0 was used while an

fnumber of 2.8 was chosen for the spectra collected with higher incident angle. The

larger f-number was required in the case of small incidence angle in order to ensure
no specularly reflected light from the sample was directed into the spectrometer by
the collection optics. The same lens collects the scattered light which is then focused

on the adjustable pinhole of the interferometer by a lens L of focal length 40 cm.

The pinhole size for this set of experiments was set to 450 jan. Finally, the scattered

y-Pérot interferometer TFP-1 where it gets frequency

light enters the tandem Fabry

analyzed.
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The TFP-1 (JRS Scientific Instruments) combines two almost identical Fabry-
Pérot etalons. Each Fabry-Pérot, interferometer is constructed of two parallel, highly
reflective flat mirrors facing each other and separated by distance L; [144].The only
wavelengths that are transmitted by the individual etalon with the spacing Ly are

those satisfying condition

L=22 (36)

wherem =1,2,3... . i of an' distance

L, between the mirrors are therefore [125]

U= mi = mup, (37)
where c is speed of light and vy is the difference between two successive resonant
frequencies, called the free spectral range (FSR). The FSR of the FP1 was always
chosen to include the frequency shift range of interest. In the current work the
Brillouin shifts are usually between 10 and 50 GHz and thus the FSR was typically
sct to ~100 GHz

The Fabry-Pérot interferometer serves as a spectrometer by varying distance L, to
achieve transmission of different wavelengths and therefore frequencies. The instru-

ment acts as a tunable filter with transmission close to one over a narrow interval and

diminishing rapidly outside the interval [121]. The transmitted light has sharp peaks

centered at frequencies described by Eq. (3.7). This strict condition is relaxed if the
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interferometer has losses introduced by the imperfect reflection of the mirrors and

ists of peaks

absorption of the medium between them [143]. The spectrum then coy
characterized by certain width at half maximum, 6v,,. The width 81, is related to
the separation between successive resonant frequencies through the finesse §

Vn

- (38)

= v

The finesse is mainly dependent on the reflectivity of the mirrors but it is also
related to the mirror fiatness and instrumental aperture as well. For small values
of finesse the transmission of all frequencies is observed. With the increase in § the
transmission occurs only for a narrow band of frequencies centered at the value given
by Eq. (3.7). For given FSR, the greater the finesse the smaller the width at half
maximun, according to Eq. (3.8) (146]. For experiments performed in this work the
value of § is typically ~ 100. The finesse puts an upper limit on contrast C, the ratio

of maximum to minimum transition given by [121]

<0t (39)

As the function describing the behaviour of the set of etalons is given by a product

of their transmission functions, the contrast of the set increases when two or more

etalons are put in series, providing their scanning is synchronized or when multiple
passes of light through the same interferometer, providing the mirrors remain parallel

[145).
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Figure 3.11: Tandem Fabry-Pérot Interferometer. After [147]

The design of the tandem Fabry-Pérot interferometer combines two interferome-
ters with unequal distance L; using a scanning stage as shown in Figure 3.1, In each
of the interferometers in the tandem, one of the mirrors is mounted on a movable
stage, the other on a device that allows slight adjustments in mirror tilt around the
horizontal and vertical axis situated in plane of the mirror. The normal of the first
interferometer, FP1, lies in the direction of stage movement, the normal of the second

one, FP2 is at an angle W. The spaces between mirrors are therefore Ly and Ly cos ¥,

respectively, so for any value of ¥ # 0 the distance between etalons differ. The
frequencies transmitted by the combination of interferometers must simultaneously
satisfy Eq. (3.7) for FP1 and FP2. In order to scan a given increment in frequency,

the distance changes between mirrors 6L; and 6L, must satisfy




Figure 3.12: Tandem optics. FPI - Fabry-Pérot interferometer, PR - prism, M
mirror, A - aperture, in — input pinhole, out - output pinhole. After [147]

‘ % g (3.10)
A movement of the stage and change of spacing between mirrors in FP1 by scan-
ning distance L, creates a change of spacing 8Ly cos W in FP?2 thereby keeping the
scanning condition given by Eq. (3.10) satisfed [147]
A simplified diagram of the TFP-1 optics is shown in Fig. 3.12. After entering the

interferometer, the light passes through an aperture A1 which defines the accepted

mirror M2 to first Fabry-Pérot interferometer FPI1, where it passes through another

cone of light. The light is reflected towards the collimating lens L1 and directed by a
aperture A2 and is directed by M3 towards the second Fabry-Pérot interferometer
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FPI2. After transmission through the second interferometer, light is reflected back by
prism PR1. It passes through both interferometers and is focused on the mirror M4
which is placed so that it reflects the light back for a final pass through the system.
After that pass the light is dirceted by set of mirrors (M5 and M6) and a prism PR2 to
the adjustable output pinhole set to size of 700 jm. Three passes through each plane
parallel Fabry-Pérot interferometer improves the contrast enough for a measurement.
of Brillouin scattering for backscattering experiments from opaque materials, which
are examined in this work. The tandem Fabry-Pérot interferometer is stabilized
by external control unit. The scattered photons are counted by photodetector and

displayed using Ghost software (University of Perugia).



Chapter 4

Single Porous Silicon Layers

A set of Brillouin spectra with incident, angle varying from ~5° to ~75° was
collected in air for each single layer sample. The angle of incidence was measured,
from the normal to the surface of the sample, which is a direction equivalent to the
2-axis [001] in the porous layer. The range of incident angles was chosen to be as
wide as possible in order to allow investigation of the directional dependence of the
frequency shifts and consequently that of the velocities vy of the surface Rayleigh
phonon (R) and vy and vy of the bulk quasi-transverse (QT) and quasi-longitudinal

(QL) phonons, respectively.

4.1 Brillouin Spectra

The spectra collected from the single p-Si films are presented in Figs. 4.1(a)-(d)
and 4.2(a)-(d). In each figure the vertical scale of the figures is kept the same to

facilitate comparison between spectra for different incident angles and also between
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samples. The numbers on the right hand side of the spectra indicate the value of the
incident angle.
Although qualitatively the spectra collected from each sample are similar some

feat, b First of all, 3

the intensity of the peaks, and their full width at half maximum, with the porosity of

the p-Si layers can be noticed. As the porosity of the layers increases the signal to noise
ratio increases and, in all cases with exception of the 48% porous sample, the absolute

intensities of the Brillouin peaks increase. This may be a consequence of the fact that

as the opacity decreases so does the imaginary part of the refractive index, which is
xesponsible for the attenuation of the light as it enters the film [145], and therefore
the scattering volume increases. This is followed by the fact that as the opacity of
the sample decreases both ripple and elasto-optic scattering contribute to the spectral

peak intensities for Brillouin scattering (69]. The quality of the spectra collected from

the samples characterized by lower porosities (less than 50%) prevents the resolution

of all the peaks and results in an incomplete set of frequency shift values. In addition,
the obtained peak parameters (especially intensity) carry significant uncertainty.
In general, the sharp and highly intense mode labeled R can be observed at high

incident angle for all the samples. It can only be resolved at higher incident angles as

its frequency shift changes with angle such that and for lower incident angles it is in
the region of the spectrum cut off by a shutter. This peak is identified as originating

due to the surface Rayleigh mode because its frequency shift is the smallest of all
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Figure 4.1: Spectra collected from the p-Si layers of 33% (a), 44% (b), 48% (c) and
52% (d) porosity. The symbols above (R, QT, QL) the diagrams indicate the phonons
due to which peaks originate (surface Rayleigh, quasi-transverse and quasi longitudi-
nal, respectively). The labels to the right indicate the incidence angle measured from
the normal to the sample in the air




ity o]

[R—

(@ 0]

Figure 4.2: Spectra collected from the p-Si layers of 54% (a), 59% (b), 0% (c) and
72% (d) porosity. The symbols above (R, QT, QL) the diagrams indicate the phonons
due to which peaks originate (surface Rayleigh, quasi-transverse and quasi longitudi-
nal, respectively). The labels to the right indicate the incidence angle measured from
the normal to the sample in the air.




observed peaks and it depends linearly on the sine of the incident angle.

In all of the spectra apart from those collected from the 33% porous film, a broad
shoulder on the peak due to surface Rayleigh mode can be seen. It covers the fre-
quency range from ~7 GHz to ~20 GHz for low porosity samples and ~5 GHz to
~15 GHz at p-Si samples of high porosity. This feature is similar to that observed

by Sandercock (127] for opaque polyerystalline metals and crystalline GaAs and Cr.

‘The intensity and width of the shoulder varies depends on the sample and the
dent angle 0. Unlike in Sandercock's work, individual spectral peaks can be distin-
guished. Peaks identified in this region, although not labeled in the spectra shown in
Figs. 4.1(a)4.1(d) and 4.2(a)-4.2(d), are called . In most cases they show some de-

pendence on the incident angle, but there are also peaks identified within this region

that are insensitive to changes in incident angle, It is highly unlikely that they are

artifacts of the experimental sctup as those appear as narrow peaks at low frequency
shifts and are characterized by equal separation [149].

The peaks of main focus for this work, labeled QT and QL, are ides

ed as
originating due to quasi-transverse and quasi-longitudinal bulk phonons. The assign-
ment is based on several observations. Firstly, the frequency shifts of the peaks show
only weak dependence on the incidence angle, which is expected of bulk phonons as
only region of up to 30° from the z-axis inside the material is examined. Secondly,
no additional peaks were observed in any of the spectra for frequency shifts larger

than ~60 GHz, which is the frequency shift assigned to the QL mode for the sample
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with the smallest porosity. Although phonons are always present in the material,

the peaks originating due to them are not always apparent. The intensity of the QT
peak increases with increasing ¢ whereas the intensity of the QL decreases. In fact,
at 8 < 40° the QT peak is not observed for films with porosity lower than 50%.

A change in the overall quality of the spectra and intensity of the peaks with
incident angle and porosity of the p-Si layer was noticed. As the raw integrated
intensity of the Brillouin peaks is a function of many variables, including the number
of scans and the power of the laser beam, the ratio of the absolute intensity of the
quasi-transverse and quasi-longitudinal peaks was chosen to show this trend. Fig. 4.3
presents a. plot, of the ratio of absolute intensities, Ir/I, as a function of incident
angle. For the spectra. collected from films of higher porosity the ratio lies between
0.5 and 175 for all the incident angles. For all samples an increase of Ir/l, with
increasing incident angle can be observed. As it is not possible to obtain the values of
the intensities for the quasi-transverse phonon peak in the case of the lower porosity
samples, the presented ratios appear to be scattered. The lack of data s because
the peak due to the quasi-transverse phonon is very weak and the spectra are noisy.
The low value of Ir for all these samples suggests a low Ir/I ratio for low porosity
samples at low incident angles. What is also not seen in the plot in order to keep

it more transparent are th

uncertainties of the values, which, especially in case of

lower porosity layers, are quite high.




Incident Angle [deg]

Figure 4.3: Angular dependence of the ratio of intensities of transverse and lon
dinal phonons.

4.2 Frequency Shifts and Phonon Velocities

The positions of peaks originating due to the surface, quasi-transverse and quasi-

longitudinal phonons are labeled in the topmost spectrum of each set. The frequency

shifts of all peaks are presented in Tables 4.1 - 4.4, Unless indicated otherwise, the
presented values are averages of the shifts determined for Stokes and anti-Stokes
processes with uncertainty calculated by averaging the error in each frequency shift
given by software while fitting the frequency shift of each peak. The fit of a sample

spectrum collected from a single layer with porosity of 5962 % at the incident angles

of 5° and 60° are presented in Fig4.4.

As certain features are characteristic to groups of samples, the samples can be
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Frequency Shift [GHz]

Figure 4.4: Sample spectrum of (59:£2)% p-Si layer with fits of the Brillouin peaks.
‘The individual peaks are shown using dashed line, the sum of the all peaks is indicated
with thick solid line. The incident angles at which the spectra were collected are
indicated next to the lines.

divided into two groups, based on porosity. The first group includes samples with
porosity lower than 50%, (i.e. samples 2.9b#1, 2.14#2 and 2.13#8 with porosities
of 33%, 44% and 48%, respectively). The second group includes samples with higher

porosity, namely 2.13410, 2.15#6, 2.11#9, 215412 and 2.13#12, with porosities of

52%, 54%, 59%, 70% and 725%, respectively.
The spectra. collected from samples with porosity below 50% are presented in
Fig. 4.1(a), 4.1(b) and 4.1(c). It should be pointed out that the spectra collected

from by low signal ratio and low intensity of

the Brillouin peaks. Spectra collected from the 33% porous sample are of particularly
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poor quality. Only three Brillouin peaks are seen in the spectra collected from this
layer, R, QT and QL. The existence of other modes is not excluded, but it could
not. be confirmed cither by the plot of intensity versus the frequency shift shown
in Fig. 4.1(a). The frequency shifts of the three observed peaks are presented in
the top part of Table 4.1. The values are plotted versus the sine of the incident
angle, as shown in Fig. 4.5(a). They are identified as originating due to the Rayleigh
surface phonon (R) and quasi-transverse (QT) and quasi-longitudinal (QL) phonons

for reasons men

ned previous

Although slight improvement in the quality of the spectra collected is noticed with

increasing porosity within the samples belonging to the

st set, no transverse mode
can be distinguished below 40° incidence angle for either of the samples. In addition
to the peaks due to surface (R), quasi-transverse (QT) and quasi-longitudinal (QL)
phonons, additional peaks are resolved. Two of the peaks of unknown origin, seen
best in the top spectra (60°-80° in Fig. 4.1(b), at frequency shift between 10 and 25

GHz) show dependence on sine 6. The last peak in this region for the 44% porous

sample, similarly to the only peak observed in spectra collected from 48% porous fili,

shifts for

showed no dependence on the angle of incidence. The Brillouin frequency
all the peaks are tabulated in the bottom part of Table 4.1 for the 44% porous layer
and in top part of Table 4.2 for the 48% layer. The plots of the angular dependence

of the frequency shifts are presented in Figs. 4.5(b) and 4.5(c), respectively.

The quality of the spectra improves significantly when the examined layers are
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more than 50% porous. Although in a few cases the frequency shifts and inten-
sities of some modes are uncertain and therefore not included in calculations, the

quasi-transverse and quasi-longitudinal bulk phonons are observed in every spectrum.

Modes of unk igin showin the sine of the inci gl

are observed in spectra collected from each sample. Additionally, in the case of the
59% porous layer, a mode insensitive to the changes of the incidence angle is observed
and its frequency shifts reported. The frequency shifts of the peaks are tabulated in
the bottom part of Table 4.2 and in Tables 4.3 and 4.4 for 52%, 54%, 50%, 70% and
72% porous layers, respectively. The plots of phonon frequencies as function of sine
of the incident angle are presented in Figs. 4.5(d)-4.6(d)

The dashed lines in

5. 4.5(a)-(d) and 4.6(a)-(d) show the ft of frequency shift
versus sine of the incident angle for all of the surface Rayleigh modes. The line
represents a least-square fit with y-intercept taken to be 0. The velocities of the
surface Rayleigh phonons can be calculated from the slope of the v versus sinf;
plots (see Eq. (287)). As no assumption regarding the angular dependence of modes
identified as S; can be made, the dotted lines show the best fit for all the peaks
identified in the region of frequency shifts higher than R and lower than QT. They
could be related to the anisotropic character of the p-Si layer (150], however nothing
more can be said about their character. As the origin of these modes is uncertain
and they are not the main focus of this work they will not be discussed further.

As the p-Si film preserves the crystalline symmetry of the parent layer [116],
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Figure 4.5: Frequency shift versus sin 6, for 33% (a), 44% (b), 48% (c) and 52% (d)
single porous layer. The letters on the right hand side indicate the origin of the
phonons. R - surface Rayleigh, S, - unknown, QT - quasi-transverse, QL - quasi-
longitudinal.
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Figure 4.6: Frequency shift versus sin, for 54% (), 59% (b), 70% (c) and 72% (d)
single porous layer. The letters on the right hand side indicate the origin of the
face Rayleigh, S, ~ unknown, QT - quasi-transverse, QL — quasi-

longitudinal.
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[14] cubic anisotropy of the layers is expected. The plots of angular dependencies
of the bulk phonon velocities for each sample are shown in Figs. 4.7(a)-(d) and
Figs. 48(a)-(d). Fitting Eqs. (2.44) and (245) to the data points for v_ and vy,
xespectively, allows determination of the values of the elastic constants of the p-Si
single layers. The weighting of the data points was inversely proportional to the
square of the uncertainty associated with it. Taking into consideration reports on
birefringence [151] showing evidence that p-Si structure is more anisotropic, data
presented in Figs. 4.7(a)-(d) and Figs. 48(a)-(d) were fitted into Eqs (2:53) and
(2.54). No improvement of the fit was observed. Additionally, the values of cyy and
33 agreed within uncertainty, suggesting cubic symmetry of the layers

There is a weak dependence of the phonon frequency shift on the incident an-
gle which should not be observed in the case of the pure transverse phonon (see
Eq. (243)) [101). In any event, the fitting procedure gave slightly more precise re-
sults for quasi-transverse phonon comparing to that of pure shear character. That
could be related to the fact that fixing one of the elastic constants (cy) limits the
range within which the other two constants, ¢y and ¢y could vary. There is no obvi-
ous reason why the character of the phonon of smaller frequency shift was assumed to

be quasi-transverse versus pure transverse other than the arguments presented above.

It is worth mentioning, however, that the values of transverse phonon velocities are
almostdegenerate for propagation directions close to normal to the surface, espe-

cially within the uncertainty associated with the velocities and for the small angle of



incidence (see Eq. (2.43) and (2.4)).

4.3 Elastic Constants

The initial guesses of values of longitudinal and transverse elastic constants, ci

and ¢4y come from the calculation using velocity determined from the spectra collected

at the smallest 6;. The range within which the elastic constants were allowed to vary
was at first determined by the uncertainties in the acoustic velocity. None of the
constants reached cither of the limits during initial fitting therefore the narrowing
down of the possible values turned out to be wnnecessary. During the fitting, the
only constraints placed on the elastic constants were those of elastic stability for
cubic materials: cyy > 0, ¢y > |eiz] and eiy + 261z > 0 [110]. The obtained values
of elastic constants together with calculated Young’s moduli and anisotropy ratios

are tabulated in Table 4.5. Young's modulus along the [001] direction for a cubic
23,
i ten

‘material is calculated according to Y = ¢ — and the anisotropy ratios
are calculated using Eq. (2.46).

In general, the anisotropy ratio a % 1 for nearly all samples suggesting the
anisotropy of the p-Si film is very small or even negligible. The relative uncertainties,
however, are large, especially for the layers of lower porosity. In the case of the sample
with 33% porosity, although the value of a seems reasonable, it has to be noted that

the value of ¢y s slightly smaller than that observed for the sample with the next

lowest porosity. Additionally, the value of ciz carries an uncertainty that exceeds the
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Figure 4.7: Bulk phonon velocities versus angle from z-axis for 33% (a), 44% (b),
48% (c) and 52% (d) single porous layer.
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Table 4.5: Elastic constants, Young’s moduli and anisotropy ratios of the single p-Si
layers determined for cubic symmetry of the material.

Posty | Dlutio Comstants_ ong®. Anworony
1 cu iz Cat Y @
1% |GPa] _ [GPa] _ [GPa] __ [GPa]
33+2 EIESY 3£5 16.7£0.9 37 1.0+0.3
44x2 39+2 14+£3 16£2 32 1.3+0.6
48+3 31+2 23+2 10+2 5 31
52+3 28+1 T+2 8408 20 11402
54+1 186+03 7205 6.6+03 u 1.240.2
59+2 174£03 71 46+03 13 0.9+0.3
T0£2 156+06 60+06 56+04 u 1.240.3
72+3 140+02 57403 45401 11 1.140.1

value itself. This is attributed to the experimental error associated with determina-
tion of the frequency shifts of the peaks due to the bulk phonons propagating in the
33% porous films. It could also be related to the determination of the porosity of
these samples as the small mass loss could cause additional inaccuracy.

‘Two samples that require additional commentary are those of 4% and 485% poros-
ity. For the first one the relative uncertainty in a is almost half of the value of the

anisotropy ratio. In the case of the 48% porous layer the anisotropy ratio appears

to be three times greater than that calculated for any other p-Si film. This is an
unexplained anomaly, as there is no reason to believe that there is anything special
about this sample.

A plot of transverse and longitudinal elastic constants versus porosity of the film

is shown in Fig. 4.9. It can be noted that values of ¢;; and ¢y of the 33% porous layer

do not lie on the best fit curve. This can be attributed to a systematic uncertainty
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resulting from poor quality of the spectra collected from this sample. The relationship

between the constants and the porosity can be characterized by the equation [65]
=1 -6, (@)

where ij=11 and 44 and the values of the elastic constants for ¢-Si are 166 GPa for
e and 79 GPa for ey [152]. The corresponding equations for the data of the present

study presented in the plot (dashed line) are
en = 166(1 - §)**, (4.20)

co=T9(1 - €2 (4.2b)

The porosity dependence of the values of elastic constant cyz (right-hand axis) is
also shown in Fig. 4.9. For low porosity samples the values of ciz are scattered. For
high porosity samples the decrease of the value with the increase of the porasity can
be noticed.

All the elastic constants values obtained in this work are more than an order of
magnitude lower than those reported by Matthai ef al. [154) (cy = 94 GPa and
1z = 34 GPa). The elastic constants were calculated for a cubic symmetry of the
P-Si layer for modified diffusion limited model created to simulate the 75% porous
structure. It is possible that the discrepancies in the values of the elastic constants
are related to the differences in the morphology of the films modeled in the work of

Matthai and those examined in this study. It could also be caused by the fact that
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Figure 4.9: Elastic constants of the p-Si single layers as a function of porosity. Left-
hand side scale shows values of (s ~ present work, o — [70], & - [72], o - [95]>
[153]) and cyq (8~ present work, o - [70], v - [72], © -~ [95], < - [153]) for all data
Right-hand side scale shows the values of ¢ obtained in the present study (s). Dashed
line shows the best fit curve to the values of cyy and ey presented in this work

it is not entirely clear whether the elastic constants referred to as ci; and ¢y are the
same as those determined in this work.

The work of Boumaiza ct al. 153] suggest that the porosity dependence of veloc-

ities, impedances and elastic constants (X) of p-S

layers can be described using the

expression X = Xo(1 = m& +1€?), where X, represents the appropriate value for
@Si, € is layer porosity and ~; are parameters determined empirically. All the samples
examined were of porosity lower than 50%. The values of ¢;; and ey obtained using

the suggested parameters (71 = 0.77, 72 = —0.73 for ¢ and 7 = L1, % = ~0.33
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for cu) are shown in Fig. 49. The values of elastic constants decrease faster with
increasing porosity than those obtained in this work.

Fan et al. [70] reported values of elastic constants ¢, and ¢y for isotropic, 70%
porous Si film. These values (3.4 GPa and 1.3 GPa) are almost three times lower than
those obtained from our samples. The direct comparison cannot be made as most of
the work done by Fan is with the p™ type Si but the trend s in agreement with reports

by Andrews et al. [73], that the elasti P~ samples are sig ly lower

than those of p* at the same porosity. There is agreement, however, between the
present work and that of Andrews et al. for p* samples [72).

The values of ¢y, and cy reported by Polomska et al. [95] for 30% and 60%
porous films made from identical parent wafers but using a solution of 1 49% HF, 1
C;H;0H and 1 nanopure H;0, were calculated assuming isotropy of p-Si layers. The
agreement with values reported in this work is good, especially for the higher porosity

layer. This result is understandable considering the fact that the anisotropy ratios

of samples examined in this work are close to unity. For the 30% porous samples, as
expected, the reported values are larger. It is also mentioned that the quality of the
spectra collected from the samples of lower porosity was poor.

The porosity dependence of Young's modulus caleulated for the [001] direction
in a cubic material is presented in Fig. 4.10. The value of Young’s modulus for c-
Si along the [001] direction is 130 GPa [155) and the equivalent of the Eq. (4.1) is

fitted to the data, resulting in the value of 7y

8+0.2. With the exception of the
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Figure 4.10: Young’s modulus of the p-Si single layers as a function of porosity (o
present work, & (6], 6 ~ [67], % - [116], o, @ - [28]). The dashed line presents the
best fit curve to the values of ¥ obtained in present, work.

datum for the 48% porous sample, Young's modulus decreases monotonically with

increasing porosity. The problem with the value of ¥ obtained for th

particular
layer s related to the high anisotropy that was obtained for the film. The unexpected
Iack of agreement with other values suggests that the anisotropy is not real but rather
conld be related to the frequency shifts of the wide Brillouin peaks observed for the
spectra collected from this layer.

Magonrice [116] presented a model predicting the elastic properties of nano-p-Si,

obtaining the theoretical value of the parameter 7y =2 with Y, s,

20 GPa. Adjust-

ing the value of Young's modulus for c-Si to the value used by these authors brings

4y obtained in this work down to 2.6. The reason behind the lack of agreement is
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most likely related to the limitations of the model (it takes only nearest and next

‘nearest neighbours i ion and i ! are of fixed

size. It could also be related to the morphology of the p-Si films as p* samples are
characterized by larger pore size than p~ for which the model was developed. The

authors also conclude that, according to the model, for porosities close to 30% p-Si

1 be approximated as an isotropic material.

Bellet et al. 28] reports values of Young's modulus obtained via nanoindentation

for p* and p~ samples. The same report recalls results obtained by Barla et. al
using X-ray diffraction technique. Al the results regarding p* layers are included in
Fig. 4.10 and are in agreement with those presented in this work, especially in the
xegion of higher porosities,

Knowledge of elastic constants of the p-Si layer allows determination of the veloc-
ities of the transverse and longitudinal acoustic phonons propagating along the (001]
direction. These velocities are calculated using the values of ¢y and ey elastic con-
stants, respectively. The values of all the velocities, including previously calculated
velocities of surface modes are tabulated in Table 4.6.

The experimental results of surface, transverse and longitudinal phonon veloci-
ties are shown as a function of porosity of the p-Si film in Fig. 4.11. This figure
also includes the value of the transverse and longitudinal phonon velocities of ¢-Si
(5.82 km/s and 8.44 km/s [152], respectively). From Table 4.6 and Fig. 4.11 it can

be seen that the surface, transverse and longitudinal velocities show overall decrease
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Table 4.6: Surface and bulk phonon velocities of the single p-Si layers. The values
of bulk phonon velocities are calculated for the [001] direction of propagation using
elastic constants obtained during the fit.

Porosity Phonon Velocity

E vR vr v
% kn/s] kn/s] /s
T332 3022003 3272000 4STE0.00
44£2 2973002 3.51£0.06 5.48+0.09
4842 3164001 288£007 5.06:0.09
5243 253001 28401 46401
417 £0.02

4.26£0.04
4724005

with increasing porosity. The velocity of the phonons may be related to the porosity

according to da Fonseca’s cquation [65). It has the general form
vrzL = Vi (1 = €T, 3)

where vgr.., is the phonon velocity of the p-Si layer, vf;%y is the equivalent phonon
velocity of the ¢-Si, € is the porosity and ., is an empirical parameter evaluated
by numerical analysis software. The values of v, and ~7 are 0.73:+0.07 and 0.9£0.1,
respectively. These values should be related to those of 7, via equations 71,=27+1
and 744=277-+1 [66]. In our case the empirical exponents, calculated from the values
of 1, are equal to 2802 and 2.5+0.1, respectively. Within uncertainties these
values agree with those in Eq. (4.2).

Da Fonseca at al. [63], (6] presented values of surface and transverse phonon
velocities as well as values of the empirical parameters ;. The experiments were

carried out for p* p-Si layers ranging in porosity from 20% to 50% with the as-
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Figure 4.11; Transverse (s) and longitudinal (o - present work) phonon velocities of
the p-Si single layers as a function of porosity. The thin dotted line is the best fit
curve to data presented in this work, dashed line is the best fit curve proposed by Da
Fonseca et al. [65,66], solid line s the best fit curve presented by Fan et al. [70] and
thick dotted line is best it curve proposed by Aliev et al. [74]

sumption of elastic isotropy. The longitudinal phonon velocities of the present study
are higher than those obtained by da Fonseca. The empirical parameter 7,=1.095
obtained by these authors does not agree with that presented in this work. It is, how-

086). The values of

ever, in agreement with that reported by Fan et al. [70] (3
surface Rayleigh and bulk longitudinal velocitics are used by da Fonseca to obtain the
velocities of the transverse acoustic phonon using Viktorov's relation [156]. As can be

seen in Fig. .11 the values of transverse phonon velocities are very similar to those

presented in this work. The similarity is confirmed by the value of y7=1.185, which is

slightly higher. The value of yr obtained by Fan et al. (yr=1.083) shows even better
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agreement with the value of this empirical parameter for transverse phonon velocities
presented in this work

The discrepancies in the values of the empirical parameter v, could be caused
by the difference in resistivity of the silicon samples, especially in case of the data
obtained from samples of a wide range of resistivities (between 5 and 184 mQ-cm)
reported by Fan. Particularly interesting is that the results of da Fonseca’s work
done mostly on p* samples, roughly agree with those of the present work in the case
of transverse velocities (1.185 versus 0.9, respectively) while lacking a correlation for

0.73, respectively). The difference could

longitudinal phonon velocities (1,095 versu
be associated with the order of the p-Si structure affecting phonon polarized along the
direction of propagation. It could also be related to the fact, that although within
uncertainty the anisotropy ratio is equal to unity (see Table 4.5), the actual value
may differ from it, making Viktorov's relation used by da Fonseca invalid for samples
examined in this work and agreement for the values of yr coincidental. No other
explanation can be provided, especially taking into consideration the comparisons
‘made between the elastic constants and Young's moduli calculated for the p-Si layers
presented above.

The work done by Lockwood et al. [69) estimates the ranges of empirical parame-
ters based on the Brillouin frequency shifts obtained from the high-porosity samples
and the mode assignment o be 7 < 0.84 and ;> 0.72. These values agree within

uncertainty with the values of the empirical parameters presented in this work. The
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nificantly affect

correction of the mode assignment provided later [70] should not
the limits of the estimated ranges. The only correction regarded the peak initially
assigued us originating due to the longitudinal guided mode (LGM) and later assigned
as due to longitudinal acoustic mode. As vy, < vy, regarding the Eq. 4.3, the value
of 7, would become equal to 0.72.

The value of 7, is in reasonable agreement, with the value of 0.58 determined
by Aliev et al. [74] for samples of resistivity 10-15 mQ-cm, which are comparable
to those of the present work. According to these authors, the low value of the 7,
suggests well-ordered structure of the p-Si layer.

Discrepancies between the work done by the author and that presented in all the
reports referenced above could also be related to the morphology and geometry of
the pores characterizing the samples. These factors depend on the resistivity and
therefore the doping level of the ¢-Si wafers. As shown by Audrews et al. [73] they
influence the acoustic phonon velocities, changing them and, consequently, the elastic
stiffness constants.

The results obtained for the single laye in this chapter were used in

further production and analysis of p-Si superlattices. Proper and thorough character-
ization of the single p-Si layers is crucial as the constituent layers of the superlattices
will be fabricated under conditions identical to those used to fabricate the single lay-
ers. The elastic properties of the single layers are also used as input to obtain modeled

values of the effective elastic constants



Chapter 5

Porous Silicon Superlattices

The constituent layers of multilayered structures with period A at least an order of
‘magnitude smaller than the wavelength of the acoustic phonon propagating through
the structure (~100 nm) were fabricated under identical experimental conditions as

p-Si single layer films characterized in Chapter 4. As mentioned in Section 3.1 and

shown in Table 3.2, all porous silicon superlattices were obtained by alternating the
electric current between two values as a function of time. The etch times for each
current were chosen so that the constituent layers are approximately 10 nm thick
and the number of cycles (250) was picked to obtain films with a thickness of a few
im. One of the layers was kept the same through the set of examined superlattices
while the other was different for each sample. Each period of the superlattice consists
therefore of one layer of 59% porosity (referred from here on as the “permanent” layer)

and one layer of porosity characterized in Chapter 4 (referred to as the “variable”

layer)
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The reason behind keeping one layer identical in all samples was to observe the
change in the clastic constants and make comparison with the Grimsditch-Nizzoli
model for the largest possible range of porosities while having a common factor for
all the samples. It was also of interest to observe the behaviour of surface modes
when the top layer (permanent one) s respectively of higher and lower porosity than
the average. The choice of 59% porous layer over any other is justified by the fact
that during the preliminary experiments, when only two single layers with ~30%
and ~60% porosity were investigated, the spectra collected from the latter one were
of much better quality and hence provided frequency shifts and phonon velocities

cartying much smaller experimental uncertainty.

5.1 Brillouin Spectra

Asin the case of single layer p-Si films, a set of spectra with incident angles ranging
from ~5 to ~75° was collected for each superlattice. All spectra were collected in
air, with normal pressure and room temperature and are presented in Figs. 5.1(a)-(c)
and 5.2(a)-(d).

Similar to the single layer films, the quality of the spectra increased with increasing

n the spectra, the

average porosity of the superlattice. Based on the f
samples can be divided into two groups - one with the variable layer of porosity lower
than 50% and one with variable layer with porosity higher than 50%. The sharp, well

defined peak labeled R, located closest to the peak due to elastically scattered light
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Figure 5.1: Brillouin spectra from p-Si superlattices with 50%-33% (a), 50-44% (b)
and 50-48% (c) porous constituent, layers. The symbols above (R, QT, QL) the
diagrams indicate the phonons due to which peaks originate (surface Rayleigh, quasi-
transverse and quasi longitudinal, respectively). The labels to the right indicate the
incidence angle mensured from the normal to the sample in the air.
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Figure 5.2: Brillouin spectra from p-Si superlattices with 59%-52% (a), 50-54% (b),
59-70% (c) and 50-72% (d) porous constituent layers. The symbols above (R, QT, QL)
the dingrams indicate the phonons due to which peaks originate (surface Rayleigh,
quasi-transverse and quasi longitudinal, respectively). The labels to the right

the incidence angle measured from the normal to the sample in the air
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(of a frequency shift of 0 GHz) of all the observed peaks, showed a lincar dependence
on the sine of the incident angle and therefore was assigned as originating due to
the Rayleigh surface phonon propagating along the free surface. The assignment is

additionally supported by the fact that the velocity of this phonon calculated later

was the smallest of the velocities of all identified phonons. The other two modes were
identified as due to quasi-transverse (QT) and quasi-longitudinal (QL) bulk phonons.
The assignment is based on the same grounds as for the p-Si single layers (weak
dependence of the frequency shift on the incidence angle and no peaks observed for
frequencies larger than those attributed to the QL mode). The mode assignment is
indicated by labels placed above the topmost spectrum in each of Fig. 5.1(a)-(c) and

5.2(a)-(d).

5.2 Frequency Shifts and Phonon Velocities

Al peaks were fitted using a Lorentzian function and their frequency shifts and
uncertainties, together with values of bulk phonon velocities along each direction are
presented in Tables 5.1-5.3.

The quasi-transverse mode is not apparent in the spectra collected at incident
‘angles lower than 40° from samples with a variable layer of lower porosity. In addition,
well defined, narrow peaks, situated at frequency shifts between R and QT modes
were observed in spectra collected at higher incident angles. Two peaks were resolved

in this frequency region in samples consisting of a permanent layer with those of
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porosity lower than 50% and one in samples with variable layer of porosity higher
than 50%. These peaks showed linear dependence on the sine of the incident angle
(see Figs. 5.3(a)-(c) and 5.4(a)-(d)). The origin of these peaks is not clear. The
first order modes could originate due to Lamb modes, connected the existence of
stress-free surface [131] as their velocities fall within the range between vr and vy,
For the semi-infinite medium, which the SL is suppose to represent, those modes
coincide with surface Rayleigh phonon [137]. The origin due to the Love waves is also
excluded as additionally to the fact that the p-Si layer is semi-infinite, the velocity of
the transverse bulk phonon propagating in the SL of any average porosity is smaller
than that of ¢-Si substrates (131], [137). They cannot be classified as due to Stoneley
waves that appear on the interfaces between different elastic media. In the case of
SL the layer thickness is larger than the penetration depth of the incident light. The
only reasonable guess is that the peaks could originate due to pseudo-surface modes
observed when the surface of the medium is anisotropic [157]. As the symmetry of
the SLs combines those of constituent layers, it is possible that the observed modes
are related to the existence of anisotropic surface. For simplicity these modes are
labeled S, and, from now on, are referred to in this chapter as “pseudo-surface”

modes although their actual origin is not certain.

In some respects, however, these peaks resemble features observed by Dutcher et
al. [158] for thin metallic superlattice films with a total thickness of ~0.5 um which

is about an order of magnitude lower than the SLs studied in this work. Thin, sharp
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Figure 5.3: Frequency shift versus sin 6, for p-Si superlattices with 59%-33% (a), 59-
44% (b) and 59-48% (c) porous constituent layers. The letters on the right hand side
denote the origin of the phonons. surface Rayleigh, S, - pseudo-surface, QT
quasi-transverse, QL - quasi-longitudinal
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and well defined peaks were also observed by Carlotti et al. [150] for transparent ZnO
film of hexagonal symmetry. Both authors associate this peak with the “leaky” longi-
tudinal mode (in Dutcher's work they are identified as originating due to longitudinal
guided modes) with velocities that depend on the angle of incidence and strongly on
clastic constant cy;. The problem with direct comparison is that, despite similari-
ties in the lineshape, the spectra described in [158] and [159) were obtained from SL
that are an order of maguitude thinner that those presented here. The referenced
samples are as a whole are examples of “slow on fast” systems [160], which support
the existence of longitudinal guided modes. The samples studied and presented here
are supposedly examples of semi-infinite medium, in which individual guided modes
should not be observed [160].

The angular dependence of all of the frequency shifts of the SL Brillouin peaks
are shown in Figs. 5.3(a)-(c) and 5.4(a)-(d). The modes are indicated by appropriate
letters (R, S,, QT and QL) in the plots. The frequency shifts of all the S, phonons
show linear dependence on the sine of the incident angle. The line of the best fit is
shown s dotted line in Figs. 5.3(a)-(c) and 5.4(a)-(d).

The velocity of the surface Rayleigh mode is determined from the slope of the
line of the best fit when Eq. (2.87) is fitted to the data shown in Figs. 5.3(a)-(c) and
5.4(a)-(d). The velocities of the QT and QL phonons were calculated using Eq. (2.81)
for each angle. The obtained values are plotted as a function of the angle of phonon

‘propagation inside the superlattice and are shown in Fig. 5.5(a)-5.6(d).
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Figure 5.5: Bulk phonon velocities versus angle from z-axis for p-Si superlattices with
59%-33% (a), 59-44% (b) and 59-48% (c) porous constituent layers.
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Figure 5.6: Bulk phonon velocities versus angle from 7-axis for p-Si superlattices with
59%-52% (a), 59-54% (b), 59-70% (c) and 59-729% (d) porous constituent layers.
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5.3 Elastic Constants

As th ituent layers were of cubi i luded

to be of at least tetragonal symmetry. The length in the dircction perpendicular to
the plane of layers is now defined by the modulation wavelength of the SL and is
distinguished from any characteristic dimensions that could be observed in the planes

of the layers. This conclusion in consistent with the Grimsditch-Nizzoli model [84],

which predicts a tetragonal elasti for isting of two

layers of cubi In order to obtain the elasti f

Eqs. (2:53) and (2.54) were fitted the phonon velocity versus angle from z-axis data.
‘To make sure that the most general case is taken into consideration, an attempt was
made to it expressions for the quasi-transverse and the quasi-longitudinal phonon
propagating in a material of orthorhombic symmetry [101). No reasonable fit was
achieved due to limitations related to the number of data points and the size of their
domain (small range of angles inside the material covered by the data points). As
in the case of single layer films, the quasi-transverse mode was plotted as opposed
t0 the pure transverse one. At low angles from the z-axis the mode velocities are
nearly the same (QT and T are degenerate for & = 0). The fitting of the directional
dependence of the quasi-transverse phonon velocity also gives more precise results
of elastic constants. This, however, may be related to the fact that v_ and v, are
functions of the same four constants, ¢y, i, csa and ¢, in contrast to vr, which

depends only on ¢y and cgg. The values of the former four constants are determined



during the fitting procedure.
The values of two of the elastic constants related directly to longitudinal and

transverse velocities along [001] direction, ey and i, can be directly calculated from

the velocity of QL and QT at nearly normal incidence (6 = 5° corresponding to
0~ 2°). In SLs with variable layer porosity less than 50% and also when it was
72%, the peak originating due to the QT phonon is not apparent at low incident

angles. The transverse elastic constant, ¢y, could not be therefore determined in this

way for these superlattices. The elastic constants obtained from direct calculations

were used as initial guesses during the fitting procedure. Additionally, the values of

e were calculated assuming the first order S, modes are longitudinal guided modes
dependent on the clastic constant according 0 the cyy= v, p [158).

The ftting process was performed twice resulting in two sets of elastic constants
for the p-Si superlattices. In the first case the values of ¢ included in Eq. (2.53)
and (2:54) were allowed to vary freely, with the only limits being those imposed by
the stability conditions for a tetragonal system (e > 0 and cys > 0 [99]). The

values obtained from this process are referred to as fitted “without constraints” and

are denoted “w/o constraints”. The second set. was fitted imposing an additional
constraint, that is ¢;; > cyy. The rationale for this constraint comes only from the
fact that for the model values such a relationship always applies. There is otherwise
1o physical reason why such a relationship should hold. In both cases fixing cxs and

44 on values determined directly from the Brillouin spectra resulted in slight decrease



of uncertainty associated with cyy and ¢y but did not influence their values.
A complete set of effective elastic constants was determined using Grimsditch-
Nizzoli model [84] for various combinations of cubic constituent layers with elastic

constants as presented in Table 4.5. The values were calculated using Eqs. 2.67. These

effective elastic constants along with those determined from S Brillouin spectra are
tabulated in Table 5.4.

A plot of all of the values of ¢ys and iy versus average porosity of the p-Si su-

perlattice is shown in Fig. 5.7. The values decrease with increasing average porosity
of the superlattice. Excellent agreement is observed between cyy and cy for the

Grimsditch-]

oli model, both fits and values obtained directly from the spectra.
Although the fitting method did not much affect the values of sy and ¢y, the
presence of constraints had a significant influcnce on the other two elastic constants
for all samples with the exception of the superlattice made of 59%-33% constituent
layers (“59-33"). In this case, the best fit both with and without constraints gave
the same values of the elastic constants. For all of the other samples fitted with
constraints, the value of ci; reached during iterations the lower limit imposed on it (i.e.
the value of cag). The obtained value of ey does, however, agree within uncertainty

with that calculated using Grimsditch-Nizzoli model, especially for samples with a

high porosity variable Inyer. This result suggests lack of anisotropy and equivalence

of all rystallographic axis, as for cubic material cyy = ¢ ( [101]). Unfortunately, the

fact that the value of c;, reaches the imposed limit decreases the credibility of the
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result. Without the constraint that cy1 > ¢z imposed on the elastic constants during
‘ the fit, the results for all samples other than “59-33" suggest significant anisotropy

| in the tetragonal superlattice, with values of ¢y smaller than those of cyy. The ratio

[ 11 /e, that can serve as one of anisotropy ratios for the tetragonal lattice, is plotted
| as a function of porosity in Fig. 5.9 for three methods for which both values were

determined. Agreement between the model and the fit with constraint, especially for

‘ samples with variable layer of porosity higher than 50%, is observed, while the ratios
‘ for two fits differ substantially.
‘ The unknown origin of the S modes inspired checking the relationship between the

‘ velocity of the first order pseudo-surface mode Sy and the elastic constant iy, e =

vh,p [159). The results of the calculations, presented in Table 5.4 (as ¢f,) show

reasonable agreement with values of ci; determined for the fit without ¢

The values turn out to be approximately 10% higher that those of ¢iy obtained from

the fit without constraint, which is similar to Dutcher’s observations [158]. The data
points are plotted versus SL average porosity in Fig. 5.8

The values of ¢13 obtained with constraints show better agreement with the mod-
cled values for superlattices with higher average porosity. The lack of agreement
between experimental values and model in superlattices with variable layer of lower

porosity is, at least partially, a consequence of the difficulties in obt

ning the elastic

constants for those layers. The elastic constant ¢y is strongly dependent on ¢, which

was the one determined with the lowest accuracy and in the case of low porosity layers
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Figure 5.7 Pomuu dwuuluuw of the longitudinal (cgs) and transverse (cq) elastic
constants for p erlat sditch-Nizzoli model
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Figure 5.8: Porosity dependence of the ¢y, elastic constant for p-Si superlattices.
The valucs shown as « are elastic constants calculated using velocity of a first order
pseudo-transverse mode S, using relationship provided by Dutcher [158]
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59-33 59-44 59-48 59-52 59-54 59-70 59-72
Sample
Figure 5.9: ¢11/cgy versus average superlattice porosity.

carry significant uncertainties. The values of ¢y obtained in fit without constraints

for the most part (with the exception of value obtained for SL with 72% porous
variable laer) agree within uncertainties. Their absolute uncertainties, however, are
approximately equal to their values.

Out of the four experimentally determined elastic constants only the ratio of two

ment.

longitudinal clastic constants (cry and ¢g) could serve as an anisotropy measur

The anisotropy ratio shown in Fig. 5.9 serves as an indication of the applicability of

the Gri

usditch-Nizzoli model. The dependence confirms the agreement between the
model and the constrained fit and lack thereof in the fit without constraints.

With the increase of the porosity of the constituent layers, the effective elastic
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constant tensor obtained using the Grimsditch-Nizzoli model for the SLs changed
from that of tetragonal symmetry to that of cubic with ey & cgs, €z & 1y and
14 % cog. This is likely related to the decrease of the difference between the elastic
constants of the constituent layers. As shown in Fig 5.10, the difference between
model values of appropriate pairs of elastic constants (¢ and css, ciz and cig, and ¢y
and cgs, respectively) goes to zero as the difference between values of the longitudinal
elastic constant of the constituent layers ci{ decreases. At the same limit (Ac! — 0)
the anisotropy ratio cyi /e, approaches unity. This result could be explained by
the fact that for more elastically similar constituent layers the less stress and strain
exists on the boundaries between them. Should the experimentally determined elastic
constants follow the same trend, it would open a possibility to create materials of
the same density, porosity and characterized by identical optical properties, however
differing elastically, depending on the constituent, layers. For cxample, a SL with
constituent layers of equal thickness and of 30% and 60% porosity form the same
effective medium of the same average porosity, density and refractive index as SL
composed of 40% and 50% porous layers. However, because the elastic constants of
the constituent layers vary, the effective media would be characterized by different
sets of effective clastic constants.

The values of 55 and ¢4y obtained for the fit without constraints are used to cal

late the velocities of bulk phonons propagating along [001] direction using Eqs (2.53)

and (2:54) for 6 = 0°. The velocities of all of the phonons are presented together in
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Figure 5.10: Relationship between the pairs of effective elastic constants and the
differences in the elastic constants of the constituent layers of the superlattice as
obtained using Grimsditch-Nizzoli model [84]

Table 5.5. As one can see, the values of surface phonon velocities, in general, decrease

with increasing average porosity of the superlattice. The only two values that appear
1ot to follow the trend are those for superlattices with either 33% porous variable
Iaer or 44% porous layer. In the former case, the value is lower than expected, in
the Intter, higher. This is consistent with observations of phonon velocities in single
Iaers (sce Table 4.6). The reason for this could be related to the uncertainty in
‘mass loss and therefore porosity of the layers of low porosity that carries through all
the velocity calculations or to the morphology of the constituent layers, causing such

anomaly. The velocities of S, phonons presented in the Table 5.5 are calculated using.
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Tuble 5.5: Surface, pseudo-surface and bulk phonon velocities of p-Si superlattices.
‘The values of bulk phonon velocities are caleulated for the [001] direction of propa-
gation using elastic constants obtained during the fit without constraints.

Phionon Velocity

Superlattice

" us, vs, ur w
(kn/s] [k, lkm/s]  (km/s] [km/s]
59-33 2354005 34£01 52402 26+0.1 4.25%0.09
59-44. 2652002 3.75£0.08 5.0£0.1 2.96£0.04 4.63£0.05
59-48 2504002 3501 4.6+0.2 283+0.05 4.53+0.07

5052 2294003 4.1£0.1 — 230004 420£0.00
5054 2294002 3884005 — 2684002 458£0.03
5970 2274002 3.9+01 — 2894002 4.93+0.03
5072 197#002 30401  — 2554005 4274008

the same procedure as for surface Rayleigh phonons with intercept on frequency shift

axis forced to be zero, i.c assuming the peaks originate due to longitudinal guided
‘phonons. The velocities of the transverse and longitudinal bulk acoustic phonons are
calculated for phonons propagating along the [001] direction (ie., normal to the plane
of the SL constituent layers).

Very good agreement is observed between these values and those calculated for
small incident angles (see Table 5.6). The velocity of the transverse mode is lower
than that of the first order pseudo-surface mode which agrees with the idea that the
Iatter could originate from a “leaky” longitudinal mode propagating nearly parallel to
the surface. It should be noted that all pseudo-surface modes labeled S, are of higher
velocity that the bulk longitudinal phonon propagating in the superlattice. Fig 5.3
shows a plot of longitudinal and transverse velocity data points for superlattices and

single layers of comparable porosity. Although it is not apparent from the Fig 5.3, the

velocities of bulk phonons in SL are dependent on the average porosity of the film.
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Figure 5.11: Porosity dependence of the longitudinal and transverse phonon veloc-
ities for p-Si superlatices and single layers. The dotted line presents the porosity
dependence of the p-Si single layers according to Eq. (4.3).

The reason for lack of obvious trend is connected to the range of average porosities
and the fact that any data point that originates from the 33% porous layer creates
an anomaly.

The values of the effective elastic constants depend on the elastic constants of the
constituent layers and on the constituent layer thickness ratio. As all of these values
carry uncertainty one way of checking whether the lack of agreement between the

values of ¢ and 13 obtained for a fit without constraints and the model is associated

with those work out stants yer from
the Eqs. (2.67). The elastic constants iy, ci3, ¢33 and cyq obtained from the fit without

constraints and the elastic constants ¢}, ¢} and c{] of the permanent constituent
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Table 5.6: Comparison of T and L bulk phonon velocities propagating along [001]
direction and QT and QL phonons caleulated for small incident angles.

o G v D
Superlattice n il (mfs]  flan ey}
(kmy/s]
59-33 - 2.6+0.1  4.3:0.1 4.254+0.09
59-44 - 2.96£0.04 4.7£0.1 4.63£0.05
59-48 2.83+£0.05 4.6+£0.2 4.53+0.07

5952 25402 2504004 42402 4.20+0.06
5054 29402 20684002 4502 458+0.03
5070 29402 2894002 49402 493+0.03
59-72 255400545403 4.27+0.08

Iayer (as they are the same for each sample) were then substituted into the expressions
for cu, crg, e, and ey according to Eqs. (2.67), (2.67¢), (2.67d) and (2.67¢) in the
model calculations. The elastic constants and the thickness ratio for the variable
Iayer were obtained and the results disagreed with the stability conditions that have
to be imposed on the cubic layer [110]. The values of iy were negative, what for
cubic material would make the strain energy of the lattice negative. Additionally, for
most superlattices, the abtained values of thickness ratios were unreasonable (cither
significantly larger than unity or very close to 0).

Elastic properties of p-Si superlattices consisting of 60% and 30% constituent
layers with modulation wavelength of 17 nm are discussed by Polomska et al. [95].
The p-Si layers were assumed to be isotropic, therefore the superlattices were modeled
as hexagonal, with the same constraint as used here for one of the fits imposed on the
values of effective clastic constants. The experimental and model elastic constants

are fairly different and only qualitative agreement is obtained. Rough agreement
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between the experi .9 GPa, c13=4.7 GPa,
€33=15.4 GPa and c44=5.2 GPa) and those presented in this work for the superlattice
with comparable average porosity is obtained. This could be related to the choice of

symmetry of the p-Si single layers and consequently the superlattices, the difference

in fabrication (electrolyte composition) or the thickness ratios.

Based on the results presented in this work the applicability of the Grimsditch-
Nizzoli model for p-Si multilayered structures is not certain. The excellent agreement
obtained for two elastic constants (css and cy) which values can be calculated directly
from the spectra may either mean that the other two cannot be determined due to
uncertainties involved in the experiments (contributed by porosity, etched area, etch
rates, frequency shifts, etc.) or that the at the present form the model is not a
good representation of the elastic properties of p-Si structures. The experimental re-
sults obtained for polymers [38,90] and some quasi-periodic structures [93,94) showed
agreement with the Grimsditch-Nizzoli model, suggesting that it could be used to
describe elastic properties of unconventional multilayered systems. In the case of p-Si
superlattices the problem may be related to the boundary conditions in the inter-
fces between the constituent layers, as the system was created by etching a stable,
solid crystalline wafer as oppose to the deposition of the individual layers on the free
surface, creating strains and stresses as the structure is created. Additionally, the
presence of the pores could influence the applicability of the model. The size of the

pores is smaller than that of acoustic phonons propagating in the films therefore, on
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macroscopic level, the p-Si layer can be treated as an effective medium. The size of

the pores and microstructure of the film, however, was shown to affect the value of

elastic constants of single p-Si films. The other possible explanation could be related
to the problem of boundary conditions at the interfaces between coustituent porous
Jayers. The lateral roughness of the interfaces is not included in the assumption of

the Grimsditch-Nizzoli model. The interfaces are sharp on a nm scale [7), which could

be of a significance for layers of thickness of ~10 nm. It is also uncertain whether
the fact that the pore size and the layer thickness in SL are of comparable dimension
is of any importance for the determination of the boundary conditions and therefore

the effective elastic constants of the porous multilayered film.
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Chapter 6

Conclusions

The elastic properties of single p-Si layers were determined for layers with porosity
ranging from 30% to 729% using Brillouin light scattering technique. The peaks ob-
served in the spectra were identified as originating due to surface Rayleigh R, pseudo-
surface S, quasi-transverse QT and quasi-longitudinal QL bulk acoustic modes.

The quality of the Brillouin spectra. collected from p-Si single layers increases
with layer porosity. This could be attributed to the decrease of the attenuation of
the light penetrating the film which results in an increase in the scatteting volume.
The intensities of the QT and QL bulk acoustic modes change with the porosity of
the single layer and with the incident angle. The ratio of absolute intensities, Ir/I1,
increases with incident angle.

The velocities of the QT and QL were plotted as a function of incident angle inside
the sample, 0. A set of elastic constants was determined for each p-Si layer. The

values of the longitudinal and transverse elastic constants depended on the porosity




127

according to equations

e = 166(1 - €)%, (6.1a)

ey =19(1 - €)*2 (6.1b)

23,
12_) yas also
THe

The porosity dependence of Young's modulus (¥ = cyy

determined. The relationship between Y and porosity is described by

¥

130(1 - €)**, (6:2)

The values of ¢, and ¢y were used to obtain the longitudinal and transverse

the p-Si layer. The

velocities of acoustic phonons propagating along [001] direction

dependence of the velocities on porosity was found to follow equations

8.44(1-€)°®, (6.2a)

5.82(1-§)°. (6.2b)

The relation between the empirical parameters describing porosity dependence (3
in Eqs. 4.1 and 4.3) determined for longitudinal and transverse elastic constants and
respective velocities follow the relationship 7,44 = 27,7+ 1 (25 0.1 and 28402

calenlated from values of 5,7 in comparison with 2.8 0.2 and 3.2:+0.2, respectively

I parameters yr, L

structure is rather well-ordered.

\
\

obtained from the ¢, v porosity data). The size of the empi
suggests that the p-
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The elastic constants of p-Si superlattices were determined through examination
of superlattices with one identical constituent layer (59% porous) and one varying
from superlattice to superlattice, covering the range from 33% porous to 72% porous.

Four out of the six elastic constants of the tetragonal SLs were determined using
two different fitting approaches (with and without constraints on the value of ci1)

and compared to those d d using the diteh-Nizzoli model (84]. The first

one, a fit with the imposed constraint ¢y > ¢y resulted in values that agree with

the model. However, problems that occurred during fitting make the credibility of
the values obtained questionable. The second fit, allowing all the elastic constants to
vary freely with exception of stability conditions, resulted in partial agreement (csy
and cys) and completely different values of ¢,y and ¢y from those determined by the
model

The elastic constants cy1, ¢y and ¢y were also determined directly from the spec-
tra, using velocities of longitudinal, transverse and first order pseudo-surface mode,
respectively. Those values show agreement with fits obtained without constraints.

The velocities of the longitudinal and transverse modes propagating along [001]
direction in superlattices are comparable to those obtained for single p-Si layers with
the same average porosity. Additionally, the difference between the velocities of the
transverse and longitudinal phonons propagating along [001] direction and those of
QT and QL calculated from Brillouin spectra collected at incident angle of a few

degrees was negligible
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The presence of pseudo-surface modes, which yield values of ¢y that support
the validity of the fit without constraints (i.e., ¢y calculated from pseudo-surface
mode are comparable to the values of c;; obtained from fit without constraints),
and the fact that an attempt to work “backward” to the values of elastic constants
of the constituent layers failed 10 yield physically reasonable values suggests that
adjustments to the model may have to be made before it can accurately predict the
clastic constants of the p-Si and other similarly formed superlattices

Based on the results no definite statement on the applicability of the Grimsditch-

Nizzoli model to the p-Si bemade. The excellent btained

for two elastic constants (css and cyy) may either mean that the other two cannot be

determined due to inties involved in th i (contributed by porosity,

ctched area, etch rates, frequency shifts, etc.) or that the model needs some adjust-
ment in order to work for superlattices created by electrochemical etching of a bulk
crystalline parent material. The comparable dimensions of the pore size and the layer
thickness in SL could carry significance in determination of the applicability of the
model. Additionally, the presence of the pores could be a factor as well. The size
of the pores is smaller than that of acoustic phonons propagating in the films and
macroscopically the p-Si layer can be treated as an effective medium. The size of
the pores and morphology of the film affect the value of elastic constants of single
Iayers therefore the influence of the microstructure on the elastic properties can be

important. The other possible explanation of the discrepancies between the values of
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the elastie constants could be related to the problem of boundary conditions at the

erfaces between constituent porous layers. The interfaces between layers of differ-

ent porasities are sharp on a nm seale [7] and the lateral roughness is not anyhow

included in the assumptions of the model.
The difference in the anisotropy ratios, ¢y /css, determined for the model and the

fit without i iffer from

those of single layered film with the same porosity. This gives more space for tailoring
of the elastic properties of p-Si, making them more adjustable for applications in
different fields.

‘The Brillouin light scattering was shown to be an effective tool for characterization
of p-Si multilayered structure. Additional experiments, using different scattering ge-
ometrics, light polarization and sample orientation would provide information regard-
ing the phonons which velocities are related to other elastic constants (especially coo).

These data would help in ination the validity of the ditch-Nizzoli model

and verify the need of its adjustments. Finally, the characterization of porous mul-

tilayered structures and superlattices formed by other means than deposition could

both benefit from the findings of this work and possible modifications of the model

s well as help its development.
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Appendix A

Additional Data

Frequency shifts and phonon velocities of the second set of superlatices are shown
in Tables A.1 and A.2. The elastic constants, determined with stability conditions as

constraints (ie. using the method deseribed as “without constraints” in the thesis) are

presented in Table A.3. All samples were made and characterized the way described
in Chapter 3.1. The samples numbered 2.21#1, 2.21#3 and 22147 were made using

HF from a different supply.
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Table A.3: Elastic constants for the second set of p-Si superlattices determined using
the fit without constraints,
Sample Elastic Constants

T e cu

% (PGP [GPa]  [GPa]

T59-48 32%7 843 262208 8.2%06
59-52 85 3+3 222305 8303
59-70 TxT 16 191201 65+05
59-72 1247 533 18+l  6.1+0.6
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Appendix B

Grimsditch-Nizzoli model for constituent layers of

cubic symmetry

Derivation of the effective elastic constants using Grimsditch-Nizzoli model for the
case of two constituent layers of cubic symmetry.
The equation that allows to caleulate the effective elastic constants, Eq. (2.65) is

of form

o= (FUCUM 4 PR (UM + fRD)

The boundary condition (2.61) can be written as

which leads to Eq. (2.62) if M is defined as



M =PI~ pil

For a cubic layer, the matrix P is defined as

0 1 0 0 00
Al dd o 00
00 0o dl oo .
00 0 0 dlo
00 0 0 01

what leads to the transformation matrix M of form

1 0 0 0 00
0 100 00
el

el 00

M=|T
0 0 00
0 0o 0 0 %o
0 0 0 0 01

Working out the first part of Eq. (2.65), namely A1 = fUe!'l M gives
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0

0

0
i

0

0
0

i

The second element of the sum in the first bracket, matrix A2 = ¢ f# is equal

i dige i
e iy i

| e i

A2
0 0 0
0 0 0
0 0 0

‘The last element, A3 = 1M + [T is

0

0

0

i

0

0

0

0

o

0
&

0

0
0
e



704 g2 0 0 0 0 0
0 JRES L) 0 0 0 0
dledt el ) 5
Az=|
0 0 0 0
0 0 0 0o Hemoo0
0 0 0 0 0 puegm

Finally, the calculation of the inverse of matrix A3, A4 = (f/'IM + fo1)"

results in matrix of form

T 0 0 0 0 0

0 T 0 0 0 0
Gl syt . o " i
(e e R e L e o
Ad= v
0 0 0 e 0
T
0 0 0 0 m— 0
Form

0 0 0 0 0

Performing the last operation, multiplication of matrices (A1 + A2).Ad gi
clastic tensor of this multilayered film, ¢ with six independent elastic constants i1,
€12, €13, €33, €44 and cos and is of the form shown by Eq. (2.66) with the components

calculated using Eqs. (2.67).
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